b3760018139c567c7aba557c373be8b40930da1c
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191
192 /* GNU_PROPERTY_X86_ISA_1_USED. */
193 static unsigned int x86_isa_1_used;
194 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
195 static unsigned int x86_feature_2_used;
196 /* Generate x86 used ISA and feature properties. */
197 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
198 #endif
199
200 static const char *default_arch = DEFAULT_ARCH;
201
202 /* This struct describes rounding control and SAE in the instruction. */
203 struct RC_Operation
204 {
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214 };
215
216 static struct RC_Operation rc_op;
217
218 /* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221 struct Mask_Operation
222 {
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227 };
228
229 static struct Mask_Operation mask_op;
230
231 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233 struct Broadcast_Operation
234 {
235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
240
241 /* Number of bytes to broadcast. */
242 int bytes;
243 };
244
245 static struct Broadcast_Operation broadcast_op;
246
247 /* VEX prefix. */
248 typedef struct
249 {
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255 } vex_prefix;
256
257 /* 'md_assemble ()' gathers together information and puts it into a
258 i386_insn. */
259
260 union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
267 enum i386_error
268 {
269 operand_size_mismatch,
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
277 unsupported,
278 invalid_vsib_address,
279 invalid_vector_register_set,
280 unsupported_vector_index_register,
281 unsupported_broadcast,
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
289 };
290
291 struct _i386_insn
292 {
293 /* TM holds the template for the insn were currently assembling. */
294 insn_template tm;
295
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
298 char suffix;
299
300 /* OPERANDS gives the number of given operands. */
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
305 operands. */
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
309 use OP[i] for the corresponding operand. */
310 i386_operand_type types[MAX_OPERANDS];
311
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
315
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318 #define Operand_PCrel 1
319 #define Operand_Mem 2
320
321 /* Relocation type for operand */
322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
323
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
331 explicit segment overrides are given. */
332 const seg_entry *seg[2];
333
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
354 /* RM and SIB are the modrm byte and the sib byte where the
355 addressing modes of this insn are encoded. */
356 modrm_byte rm;
357 rex_byte rex;
358 rex_byte vrex;
359 sib_byte sib;
360 vex_prefix vex;
361
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
379 dir_encoding_store,
380 dir_encoding_swap
381 } dir_encoding;
382
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
390
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
406 /* REP prefix. */
407 const char *rep_prefix;
408
409 /* HLE prefix. */
410 const char *hle_prefix;
411
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
418 /* Error message. */
419 enum i386_error error;
420 };
421
422 typedef struct _i386_insn i386_insn;
423
424 /* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426 struct RC_name
427 {
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431 };
432
433 static const struct RC_name RC_NamesTable[] =
434 {
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440 };
441
442 /* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
444 const char extra_symbol_chars[] = "*%-([{}"
445 #ifdef LEX_AT
446 "@"
447 #endif
448 #ifdef LEX_QM
449 "?"
450 #endif
451 ;
452
453 #if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
455 && !defined (TE_GNU) \
456 && !defined (TE_LINUX) \
457 && !defined (TE_NACL) \
458 && !defined (TE_FreeBSD) \
459 && !defined (TE_DragonFly) \
460 && !defined (TE_NetBSD)))
461 /* This array holds the chars that always start a comment. If the
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464 const char *i386_comment_chars = "#/";
465 #define SVR4_COMMENT_CHARS 1
466 #define PREFIX_SEPARATOR '\\'
467
468 #else
469 const char *i386_comment_chars = "#";
470 #define PREFIX_SEPARATOR '/'
471 #endif
472
473 /* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
477 first line of the input file. This is because the compiler outputs
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
480 '/' isn't otherwise defined. */
481 const char line_comment_chars[] = "#/";
482
483 const char line_separator_chars[] = ";";
484
485 /* Chars that can be used to separate mant from exp in floating point
486 nums. */
487 const char EXP_CHARS[] = "eE";
488
489 /* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
492 const char FLT_CHARS[] = "fFdDxX";
493
494 /* Tables for lexical analysis. */
495 static char mnemonic_chars[256];
496 static char register_chars[256];
497 static char operand_chars[256];
498 static char identifier_chars[256];
499 static char digit_chars[256];
500
501 /* Lexical macros. */
502 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503 #define is_operand_char(x) (operand_chars[(unsigned char) x])
504 #define is_register_char(x) (register_chars[(unsigned char) x])
505 #define is_space_char(x) ((x) == ' ')
506 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507 #define is_digit_char(x) (digit_chars[(unsigned char) x])
508
509 /* All non-digit non-letter characters that may occur in an operand. */
510 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512 /* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
515 assembler instruction). */
516 static char save_stack[32];
517 static char *save_stack_p;
518 #define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520 #define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
523 /* The instruction we're assembling. */
524 static i386_insn i;
525
526 /* Possible templates for current insn. */
527 static const templates *current_templates;
528
529 /* Per instruction expressionS buffers: max displacements & immediates. */
530 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
532
533 /* Current operand we are working on. */
534 static int this_operand = -1;
535
536 /* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539 enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544 static enum flag_code flag_code;
545 static unsigned int object_64bit;
546 static unsigned int disallow_64bit_reloc;
547 static int use_rela_relocations = 0;
548
549 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
553 /* The ELF ABI to use. */
554 enum x86_elf_abi
555 {
556 I386_ABI,
557 X86_64_ABI,
558 X86_64_X32_ABI
559 };
560
561 static enum x86_elf_abi x86_elf_abi = I386_ABI;
562 #endif
563
564 #if defined (TE_PE) || defined (TE_PEP)
565 /* Use big object file format. */
566 static int use_big_obj = 0;
567 #endif
568
569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570 /* 1 if generating code for a shared library. */
571 static int shared = 0;
572 #endif
573
574 /* 1 for intel syntax,
575 0 if att syntax. */
576 static int intel_syntax = 0;
577
578 /* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580 static int intel64;
581
582 /* 1 for intel mnemonic,
583 0 if att mnemonic. */
584 static int intel_mnemonic = !SYSV386_COMPAT;
585
586 /* 1 if pseudo registers are permitted. */
587 static int allow_pseudo_reg = 0;
588
589 /* 1 if register prefix % not required. */
590 static int allow_naked_reg = 0;
591
592 /* 1 if the assembler should add BND prefix for all control-transferring
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595 static int add_bnd_prefix = 0;
596
597 /* 1 if pseudo index register, eiz/riz, is allowed . */
598 static int allow_index_reg = 0;
599
600 /* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602 static int omit_lock_prefix = 0;
603
604 /* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606 static int avoid_fence = 0;
607
608 /* 1 if the assembler should generate relax relocations. */
609
610 static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
613 static enum check_kind
614 {
615 check_none = 0,
616 check_warning,
617 check_error
618 }
619 sse_check, operand_check = check_warning;
620
621 /* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626 static int optimize = 0;
627
628 /* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635 static int optimize_for_space = 0;
636
637 /* Register prefix used for error message. */
638 static const char *register_prefix = "%";
639
640 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643 static char stackop_size = '\0';
644
645 /* Non-zero to optimize code alignment. */
646 int optimize_align_code = 1;
647
648 /* Non-zero to quieten some warnings. */
649 static int quiet_warnings = 0;
650
651 /* CPU name. */
652 static const char *cpu_arch_name = NULL;
653 static char *cpu_sub_arch_name = NULL;
654
655 /* CPU feature flags. */
656 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
658 /* If we have selected a cpu we are generating instructions for. */
659 static int cpu_arch_tune_set = 0;
660
661 /* Cpu we are generating instructions for. */
662 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
663
664 /* CPU feature flags of cpu we are generating instructions for. */
665 static i386_cpu_flags cpu_arch_tune_flags;
666
667 /* CPU instruction set architecture used. */
668 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
669
670 /* CPU feature flags of instruction set architecture used. */
671 i386_cpu_flags cpu_arch_isa_flags;
672
673 /* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675 static unsigned int no_cond_jump_promotion = 0;
676
677 /* Encode SSE instructions with VEX prefix. */
678 static unsigned int sse2avx;
679
680 /* Encode scalar AVX instructions with specific vector length. */
681 static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
687 /* Encode scalar EVEX LIG instructions with specific vector length. */
688 static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695 /* Encode EVEX WIG instructions with specific evex.w. */
696 static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
702 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
703 static enum rc_type evexrcig = rne;
704
705 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
706 static symbolS *GOT_symbol;
707
708 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
709 unsigned int x86_dwarf2_return_column;
710
711 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712 int x86_cie_data_alignment;
713
714 /* Interface to relax_segment.
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
718
719 /* Types. */
720 #define UNCOND_JUMP 0
721 #define COND_JUMP 1
722 #define COND_JUMP86 2
723
724 /* Sizes. */
725 #define CODE16 1
726 #define SMALL 0
727 #define SMALL16 (SMALL | CODE16)
728 #define BIG 2
729 #define BIG16 (BIG | CODE16)
730
731 #ifndef INLINE
732 #ifdef __GNUC__
733 #define INLINE __inline__
734 #else
735 #define INLINE
736 #endif
737 #endif
738
739 #define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741 #define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743 #define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
745
746 /* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754 const relax_typeS md_relax_table[] =
755 {
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
759 3) how many bytes this mode will have in the variable part of the frag
760 4) which index into the table to try if we can't fit into this one. */
761
762 /* UNCOND_JUMP states. */
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
767 {0, 0, 4, 0},
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
770 {0, 0, 2, 0},
771
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
778 /* word conditionals add 3 bytes to frag:
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
791 };
792
793 static const arch_entry cpu_arch[] =
794 {
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
798 CPU_GENERIC32_FLAGS, 0 },
799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
800 CPU_GENERIC64_FLAGS, 0 },
801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
802 CPU_NONE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
804 CPU_I186_FLAGS, 0 },
805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
806 CPU_I286_FLAGS, 0 },
807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
808 CPU_I386_FLAGS, 0 },
809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
810 CPU_I486_FLAGS, 0 },
811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
812 CPU_I586_FLAGS, 0 },
813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
814 CPU_I686_FLAGS, 0 },
815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
816 CPU_I586_FLAGS, 0 },
817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
818 CPU_PENTIUMPRO_FLAGS, 0 },
819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
820 CPU_P2_FLAGS, 0 },
821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
822 CPU_P3_FLAGS, 0 },
823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
824 CPU_P4_FLAGS, 0 },
825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
826 CPU_CORE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
828 CPU_NOCONA_FLAGS, 0 },
829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
830 CPU_CORE_FLAGS, 1 },
831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
832 CPU_CORE_FLAGS, 0 },
833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
834 CPU_CORE2_FLAGS, 1 },
835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
836 CPU_CORE2_FLAGS, 0 },
837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
838 CPU_COREI7_FLAGS, 0 },
839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
840 CPU_L1OM_FLAGS, 0 },
841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
842 CPU_K1OM_FLAGS, 0 },
843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
844 CPU_IAMCU_FLAGS, 0 },
845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
846 CPU_K6_FLAGS, 0 },
847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
848 CPU_K6_2_FLAGS, 0 },
849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
850 CPU_ATHLON_FLAGS, 0 },
851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
852 CPU_K8_FLAGS, 1 },
853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
854 CPU_K8_FLAGS, 0 },
855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
856 CPU_K8_FLAGS, 0 },
857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
858 CPU_AMDFAM10_FLAGS, 0 },
859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
860 CPU_BDVER1_FLAGS, 0 },
861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
862 CPU_BDVER2_FLAGS, 0 },
863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
864 CPU_BDVER3_FLAGS, 0 },
865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
866 CPU_BDVER4_FLAGS, 0 },
867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
868 CPU_ZNVER1_FLAGS, 0 },
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
872 CPU_BTVER1_FLAGS, 0 },
873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
874 CPU_BTVER2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
876 CPU_8087_FLAGS, 0 },
877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
878 CPU_287_FLAGS, 0 },
879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
880 CPU_387_FLAGS, 0 },
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
888 CPU_MMX_FLAGS, 0 },
889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
890 CPU_SSE_FLAGS, 0 },
891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
892 CPU_SSE2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
894 CPU_SSE3_FLAGS, 0 },
895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
896 CPU_SSSE3_FLAGS, 0 },
897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
898 CPU_SSE4_1_FLAGS, 0 },
899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
900 CPU_SSE4_2_FLAGS, 0 },
901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
902 CPU_SSE4_2_FLAGS, 0 },
903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
904 CPU_AVX_FLAGS, 0 },
905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
906 CPU_AVX2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
908 CPU_AVX512F_FLAGS, 0 },
909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
910 CPU_AVX512CD_FLAGS, 0 },
911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
912 CPU_AVX512ER_FLAGS, 0 },
913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
914 CPU_AVX512PF_FLAGS, 0 },
915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
916 CPU_AVX512DQ_FLAGS, 0 },
917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
918 CPU_AVX512BW_FLAGS, 0 },
919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
920 CPU_AVX512VL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
922 CPU_VMX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
924 CPU_VMFUNC_FLAGS, 0 },
925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
926 CPU_SMX_FLAGS, 0 },
927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
928 CPU_XSAVE_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
930 CPU_XSAVEOPT_FLAGS, 0 },
931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
932 CPU_XSAVEC_FLAGS, 0 },
933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
934 CPU_XSAVES_FLAGS, 0 },
935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
936 CPU_AES_FLAGS, 0 },
937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
938 CPU_PCLMUL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
940 CPU_PCLMUL_FLAGS, 1 },
941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
942 CPU_FSGSBASE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
944 CPU_RDRND_FLAGS, 0 },
945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
946 CPU_F16C_FLAGS, 0 },
947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
948 CPU_BMI2_FLAGS, 0 },
949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
950 CPU_FMA_FLAGS, 0 },
951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
952 CPU_FMA4_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
954 CPU_XOP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
956 CPU_LWP_FLAGS, 0 },
957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
958 CPU_MOVBE_FLAGS, 0 },
959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
960 CPU_CX16_FLAGS, 0 },
961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
962 CPU_EPT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
964 CPU_LZCNT_FLAGS, 0 },
965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
966 CPU_HLE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
968 CPU_RTM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
970 CPU_INVPCID_FLAGS, 0 },
971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
972 CPU_CLFLUSH_FLAGS, 0 },
973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
974 CPU_NOP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
976 CPU_SYSCALL_FLAGS, 0 },
977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
978 CPU_RDTSCP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
980 CPU_3DNOW_FLAGS, 0 },
981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
982 CPU_3DNOWA_FLAGS, 0 },
983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
984 CPU_PADLOCK_FLAGS, 0 },
985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
986 CPU_SVME_FLAGS, 1 },
987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
988 CPU_SVME_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
990 CPU_SSE4A_FLAGS, 0 },
991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
992 CPU_ABM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
994 CPU_BMI_FLAGS, 0 },
995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
996 CPU_TBM_FLAGS, 0 },
997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
998 CPU_ADX_FLAGS, 0 },
999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1000 CPU_RDSEED_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1002 CPU_PRFCHW_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1004 CPU_SMAP_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1006 CPU_MPX_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1008 CPU_SHA_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1010 CPU_CLFLUSHOPT_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1012 CPU_PREFETCHWT1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1014 CPU_SE1_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1016 CPU_CLWB_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1018 CPU_AVX512IFMA_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1020 CPU_AVX512VBMI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1034 CPU_CLZERO_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1036 CPU_MWAITX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1038 CPU_OSPKE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1040 CPU_RDPID_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
1065 };
1066
1067 static const noarch_entry cpu_noarch[] =
1068 {
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1104 };
1105
1106 #ifdef I386COFF
1107 /* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110 static symbolS *
1111 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112 {
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
1117 if (needs_align
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
1121
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139 }
1140
1141 static void
1142 pe_lcomm (int needs_align)
1143 {
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145 }
1146 #endif
1147
1148 const pseudo_typeS md_pseudo_table[] =
1149 {
1150 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152 #else
1153 {"align", s_align_ptwo, 0},
1154 #endif
1155 {"arch", set_cpu_arch, 0},
1156 #ifndef I386COFF
1157 {"bss", s_bss, 0},
1158 #else
1159 {"lcomm", pe_lcomm, 1},
1160 #endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
1165 {"slong", signed_cons, 4},
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
1171 #ifdef BFD64
1172 {"code64", set_code_flag, CODE_64BIT},
1173 #endif
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
1182 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
1184 #else
1185 {"file", dwarf2_directive_file, 0},
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1188 #endif
1189 #ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191 #endif
1192 {0, 0, 0}
1193 };
1194
1195 /* For interface with expression (). */
1196 extern char *input_line_pointer;
1197
1198 /* Hash table for instruction mnemonic lookup. */
1199 static struct hash_control *op_hash;
1200
1201 /* Hash table for register lookup. */
1202 static struct hash_control *reg_hash;
1203 \f
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
1207 static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209 static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211 static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213 static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1215 static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217 static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1219 static const unsigned char f16_3[] =
1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1221 static const unsigned char f16_4[] =
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223 static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225 static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227 static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
1229 /* 32-bit NOPs patterns. */
1230 static const unsigned char *const f32_patt[] = {
1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1232 };
1233 /* 16-bit NOPs patterns. */
1234 static const unsigned char *const f16_patt[] = {
1235 f32_1, f32_2, f16_3, f16_4
1236 };
1237 /* nopl (%[re]ax) */
1238 static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240 /* nopl 0(%[re]ax) */
1241 static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243 /* nopl 0(%[re]ax,%[re]ax,1) */
1244 static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246 /* nopw 0(%[re]ax,%[re]ax,1) */
1247 static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249 /* nopl 0L(%[re]ax) */
1250 static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252 /* nopl 0L(%[re]ax,%[re]ax,1) */
1253 static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255 /* nopw 0L(%[re]ax,%[re]ax,1) */
1256 static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259 static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1261 /* data16 nopw %cs:0L(%eax,%eax,1) */
1262 static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1264 /* 32-bit and 64-bit NOPs patterns. */
1265 static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1267 alt_9, alt_10, alt_11
1268 };
1269
1270 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273 static void
1274 i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277 {
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
1285 {
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
1288 }
1289
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
1311 }
1312
1313 static INLINE int
1314 fits_in_imm7 (offsetT num)
1315 {
1316 return (num & 0x7f) == num;
1317 }
1318
1319 static INLINE int
1320 fits_in_imm31 (offsetT num)
1321 {
1322 return (num & 0x7fffffff) == num;
1323 }
1324
1325 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328 void
1329 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1330 {
1331 const unsigned char *const *patt = NULL;
1332 int max_single_nop_size;
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
1335
1336 switch (fragP->fr_type)
1337 {
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
1342 return;
1343 }
1344
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
1347
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1354 be used.
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
1365 }
1366 else
1367 {
1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1377 patt = alt_patt;
1378 else
1379 patt = f32_patt;
1380 break;
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
1383 case PROCESSOR_CORE:
1384 case PROCESSOR_CORE2:
1385 case PROCESSOR_COREI7:
1386 case PROCESSOR_L1OM:
1387 case PROCESSOR_K1OM:
1388 case PROCESSOR_GENERIC64:
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
1392 case PROCESSOR_AMDFAM10:
1393 case PROCESSOR_BD:
1394 case PROCESSOR_ZNVER:
1395 case PROCESSOR_BT:
1396 patt = alt_patt;
1397 break;
1398 case PROCESSOR_I386:
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
1401 case PROCESSOR_PENTIUMPRO:
1402 case PROCESSOR_IAMCU:
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
1406 }
1407 }
1408 else
1409 {
1410 switch (fragP->tc_frag_data.tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
1418 case PROCESSOR_I386:
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
1421 case PROCESSOR_IAMCU:
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
1425 case PROCESSOR_AMDFAM10:
1426 case PROCESSOR_BD:
1427 case PROCESSOR_ZNVER:
1428 case PROCESSOR_BT:
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1433 patt = alt_patt;
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
1441 case PROCESSOR_CORE2:
1442 case PROCESSOR_COREI7:
1443 case PROCESSOR_L1OM:
1444 case PROCESSOR_K1OM:
1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1446 patt = alt_patt;
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
1451 patt = alt_patt;
1452 break;
1453 }
1454 }
1455
1456 if (patt == f32_patt)
1457 {
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
1461 }
1462 else
1463 {
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
1526 }
1527 }
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
1531 }
1532
1533 static INLINE int
1534 operand_type_all_zero (const union i386_operand_type *x)
1535 {
1536 switch (ARRAY_SIZE(x->array))
1537 {
1538 case 3:
1539 if (x->array[2])
1540 return 0;
1541 /* Fall through. */
1542 case 2:
1543 if (x->array[1])
1544 return 0;
1545 /* Fall through. */
1546 case 1:
1547 return !x->array[0];
1548 default:
1549 abort ();
1550 }
1551 }
1552
1553 static INLINE void
1554 operand_type_set (union i386_operand_type *x, unsigned int v)
1555 {
1556 switch (ARRAY_SIZE(x->array))
1557 {
1558 case 3:
1559 x->array[2] = v;
1560 /* Fall through. */
1561 case 2:
1562 x->array[1] = v;
1563 /* Fall through. */
1564 case 1:
1565 x->array[0] = v;
1566 /* Fall through. */
1567 break;
1568 default:
1569 abort ();
1570 }
1571 }
1572
1573 static INLINE int
1574 operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 if (x->array[2] != y->array[2])
1581 return 0;
1582 /* Fall through. */
1583 case 2:
1584 if (x->array[1] != y->array[1])
1585 return 0;
1586 /* Fall through. */
1587 case 1:
1588 return x->array[0] == y->array[0];
1589 break;
1590 default:
1591 abort ();
1592 }
1593 }
1594
1595 static INLINE int
1596 cpu_flags_all_zero (const union i386_cpu_flags *x)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1607 /* Fall through. */
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1611 /* Fall through. */
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617 }
1618
1619 static INLINE int
1620 cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622 {
1623 switch (ARRAY_SIZE(x->array))
1624 {
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1632 /* Fall through. */
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1636 /* Fall through. */
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 }
1644
1645 static INLINE int
1646 cpu_flags_check_cpu64 (i386_cpu_flags f)
1647 {
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1650 }
1651
1652 static INLINE i386_cpu_flags
1653 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1654 {
1655 switch (ARRAY_SIZE (x.array))
1656 {
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
1660 case 3:
1661 x.array [2] &= y.array [2];
1662 /* Fall through. */
1663 case 2:
1664 x.array [1] &= y.array [1];
1665 /* Fall through. */
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673 }
1674
1675 static INLINE i386_cpu_flags
1676 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1677 {
1678 switch (ARRAY_SIZE (x.array))
1679 {
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
1683 case 3:
1684 x.array [2] |= y.array [2];
1685 /* Fall through. */
1686 case 2:
1687 x.array [1] |= y.array [1];
1688 /* Fall through. */
1689 case 1:
1690 x.array [0] |= y.array [0];
1691 break;
1692 default:
1693 abort ();
1694 }
1695 return x;
1696 }
1697
1698 static INLINE i386_cpu_flags
1699 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700 {
1701 switch (ARRAY_SIZE (x.array))
1702 {
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1708 /* Fall through. */
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1711 /* Fall through. */
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719 }
1720
1721 #define CPU_FLAGS_ARCH_MATCH 0x1
1722 #define CPU_FLAGS_64BIT_MATCH 0x2
1723
1724 #define CPU_FLAGS_PERFECT_MATCH \
1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1726
1727 /* Return CPU flags match bits. */
1728
1729 static int
1730 cpu_flags_match (const insn_template *t)
1731 {
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
1738 if (cpu_flags_all_zero (&x))
1739 {
1740 /* This instruction is available on all archs. */
1741 match |= CPU_FLAGS_ARCH_MATCH;
1742 }
1743 else
1744 {
1745 /* This instruction is available only on some archs. */
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
1753 cpu = cpu_flags_and (x, cpu);
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
1756 if (x.bitfield.cpuavx)
1757 {
1758 /* We need to check a few extra flags with AVX. */
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
1765 }
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
1775 else
1776 match |= CPU_FLAGS_ARCH_MATCH;
1777 }
1778 }
1779 return match;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_and (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] &= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static INLINE i386_operand_type
1823 operand_type_or (i386_operand_type x, i386_operand_type y)
1824 {
1825 switch (ARRAY_SIZE (x.array))
1826 {
1827 case 3:
1828 x.array [2] |= y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] |= y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] |= y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 static INLINE i386_operand_type
1843 operand_type_xor (i386_operand_type x, i386_operand_type y)
1844 {
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1849 /* Fall through. */
1850 case 2:
1851 x.array [1] ^= y.array [1];
1852 /* Fall through. */
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
1859 return x;
1860 }
1861
1862 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1864 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868 static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
1870 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1871 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1872 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1881 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1882
1883 enum operand_type
1884 {
1885 reg,
1886 imm,
1887 disp,
1888 anymem
1889 };
1890
1891 static INLINE int
1892 operand_type_check (i386_operand_type t, enum operand_type c)
1893 {
1894 switch (c)
1895 {
1896 case reg:
1897 return t.bitfield.reg;
1898
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
1925
1926 return 0;
1927 }
1928
1929 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
1931
1932 static INLINE int
1933 match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
1935 {
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
1946 }
1947
1948 /* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1950
1951 static INLINE int
1952 match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1954 {
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1961 }
1962
1963 /* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
1965
1966 static INLINE int
1967 match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
1969 {
1970 return (match_operand_size (t, wanted, given)
1971 && !((i.types[given].bitfield.unspecified
1972 && !i.broadcast
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
1980 || ((t->operand_types[wanted].bitfield.regsimd
1981 && !t->opcode_modifier.broadcast
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
1990 }
1991
1992 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
1996
1997 #define MATCH_STRAIGHT 1
1998 #define MATCH_REVERSE 2
1999
2000 static INLINE unsigned int
2001 operand_size_match (const insn_template *t)
2002 {
2003 unsigned int j, match = MATCH_STRAIGHT;
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
2017 continue;
2018
2019 if (t->operand_types[j].bitfield.reg
2020 && !match_operand_size (t, j, j))
2021 {
2022 match = 0;
2023 break;
2024 }
2025
2026 if (t->operand_types[j].bitfield.regsimd
2027 && !match_simd_size (t, j, j))
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
2047 if (!t->opcode_modifier.d)
2048 {
2049 mismatch:
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
2053 }
2054
2055 /* Check reverse. */
2056 gas_assert (i.operands == 2);
2057
2058 for (j = 0; j < 2; j++)
2059 {
2060 if (t->operand_types[j].bitfield.reg
2061 && !match_operand_size (t, j, !j))
2062 goto mismatch;
2063
2064 if (t->operand_types[j].bitfield.regsimd
2065 && !match_simd_size (t, j, !j))
2066 goto mismatch;
2067
2068 if (t->operand_types[j].bitfield.acc
2069 && (!match_operand_size (t, j, !j) || !match_simd_size (t, j, !j)))
2070 goto mismatch;
2071
2072 if ((i.flags[!j] & Operand_Mem) && !match_mem_size (t, j, !j))
2073 goto mismatch;
2074 }
2075
2076 return match | MATCH_REVERSE;
2077 }
2078
2079 static INLINE int
2080 operand_type_match (i386_operand_type overlap,
2081 i386_operand_type given)
2082 {
2083 i386_operand_type temp = overlap;
2084
2085 temp.bitfield.jumpabsolute = 0;
2086 temp.bitfield.unspecified = 0;
2087 temp.bitfield.byte = 0;
2088 temp.bitfield.word = 0;
2089 temp.bitfield.dword = 0;
2090 temp.bitfield.fword = 0;
2091 temp.bitfield.qword = 0;
2092 temp.bitfield.tbyte = 0;
2093 temp.bitfield.xmmword = 0;
2094 temp.bitfield.ymmword = 0;
2095 temp.bitfield.zmmword = 0;
2096 if (operand_type_all_zero (&temp))
2097 goto mismatch;
2098
2099 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2100 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2101 return 1;
2102
2103 mismatch:
2104 i.error = operand_type_mismatch;
2105 return 0;
2106 }
2107
2108 /* If given types g0 and g1 are registers they must be of the same type
2109 unless the expected operand type register overlap is null.
2110 Memory operand size of certain SIMD instructions is also being checked
2111 here. */
2112
2113 static INLINE int
2114 operand_type_register_match (i386_operand_type g0,
2115 i386_operand_type t0,
2116 i386_operand_type g1,
2117 i386_operand_type t1)
2118 {
2119 if (!g0.bitfield.reg
2120 && !g0.bitfield.regsimd
2121 && (!operand_type_check (g0, anymem)
2122 || g0.bitfield.unspecified
2123 || !t0.bitfield.regsimd))
2124 return 1;
2125
2126 if (!g1.bitfield.reg
2127 && !g1.bitfield.regsimd
2128 && (!operand_type_check (g1, anymem)
2129 || g1.bitfield.unspecified
2130 || !t1.bitfield.regsimd))
2131 return 1;
2132
2133 if (g0.bitfield.byte == g1.bitfield.byte
2134 && g0.bitfield.word == g1.bitfield.word
2135 && g0.bitfield.dword == g1.bitfield.dword
2136 && g0.bitfield.qword == g1.bitfield.qword
2137 && g0.bitfield.xmmword == g1.bitfield.xmmword
2138 && g0.bitfield.ymmword == g1.bitfield.ymmword
2139 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2140 return 1;
2141
2142 if (!(t0.bitfield.byte & t1.bitfield.byte)
2143 && !(t0.bitfield.word & t1.bitfield.word)
2144 && !(t0.bitfield.dword & t1.bitfield.dword)
2145 && !(t0.bitfield.qword & t1.bitfield.qword)
2146 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2147 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2148 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2149 return 1;
2150
2151 i.error = register_type_mismatch;
2152
2153 return 0;
2154 }
2155
2156 static INLINE unsigned int
2157 register_number (const reg_entry *r)
2158 {
2159 unsigned int nr = r->reg_num;
2160
2161 if (r->reg_flags & RegRex)
2162 nr += 8;
2163
2164 if (r->reg_flags & RegVRex)
2165 nr += 16;
2166
2167 return nr;
2168 }
2169
2170 static INLINE unsigned int
2171 mode_from_disp_size (i386_operand_type t)
2172 {
2173 if (t.bitfield.disp8)
2174 return 1;
2175 else if (t.bitfield.disp16
2176 || t.bitfield.disp32
2177 || t.bitfield.disp32s)
2178 return 2;
2179 else
2180 return 0;
2181 }
2182
2183 static INLINE int
2184 fits_in_signed_byte (addressT num)
2185 {
2186 return num + 0x80 <= 0xff;
2187 }
2188
2189 static INLINE int
2190 fits_in_unsigned_byte (addressT num)
2191 {
2192 return num <= 0xff;
2193 }
2194
2195 static INLINE int
2196 fits_in_unsigned_word (addressT num)
2197 {
2198 return num <= 0xffff;
2199 }
2200
2201 static INLINE int
2202 fits_in_signed_word (addressT num)
2203 {
2204 return num + 0x8000 <= 0xffff;
2205 }
2206
2207 static INLINE int
2208 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2209 {
2210 #ifndef BFD64
2211 return 1;
2212 #else
2213 return num + 0x80000000 <= 0xffffffff;
2214 #endif
2215 } /* fits_in_signed_long() */
2216
2217 static INLINE int
2218 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2219 {
2220 #ifndef BFD64
2221 return 1;
2222 #else
2223 return num <= 0xffffffff;
2224 #endif
2225 } /* fits_in_unsigned_long() */
2226
2227 static INLINE int
2228 fits_in_disp8 (offsetT num)
2229 {
2230 int shift = i.memshift;
2231 unsigned int mask;
2232
2233 if (shift == -1)
2234 abort ();
2235
2236 mask = (1 << shift) - 1;
2237
2238 /* Return 0 if NUM isn't properly aligned. */
2239 if ((num & mask))
2240 return 0;
2241
2242 /* Check if NUM will fit in 8bit after shift. */
2243 return fits_in_signed_byte (num >> shift);
2244 }
2245
2246 static INLINE int
2247 fits_in_imm4 (offsetT num)
2248 {
2249 return (num & 0xf) == num;
2250 }
2251
2252 static i386_operand_type
2253 smallest_imm_type (offsetT num)
2254 {
2255 i386_operand_type t;
2256
2257 operand_type_set (&t, 0);
2258 t.bitfield.imm64 = 1;
2259
2260 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2261 {
2262 /* This code is disabled on the 486 because all the Imm1 forms
2263 in the opcode table are slower on the i486. They're the
2264 versions with the implicitly specified single-position
2265 displacement, which has another syntax if you really want to
2266 use that form. */
2267 t.bitfield.imm1 = 1;
2268 t.bitfield.imm8 = 1;
2269 t.bitfield.imm8s = 1;
2270 t.bitfield.imm16 = 1;
2271 t.bitfield.imm32 = 1;
2272 t.bitfield.imm32s = 1;
2273 }
2274 else if (fits_in_signed_byte (num))
2275 {
2276 t.bitfield.imm8 = 1;
2277 t.bitfield.imm8s = 1;
2278 t.bitfield.imm16 = 1;
2279 t.bitfield.imm32 = 1;
2280 t.bitfield.imm32s = 1;
2281 }
2282 else if (fits_in_unsigned_byte (num))
2283 {
2284 t.bitfield.imm8 = 1;
2285 t.bitfield.imm16 = 1;
2286 t.bitfield.imm32 = 1;
2287 t.bitfield.imm32s = 1;
2288 }
2289 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2290 {
2291 t.bitfield.imm16 = 1;
2292 t.bitfield.imm32 = 1;
2293 t.bitfield.imm32s = 1;
2294 }
2295 else if (fits_in_signed_long (num))
2296 {
2297 t.bitfield.imm32 = 1;
2298 t.bitfield.imm32s = 1;
2299 }
2300 else if (fits_in_unsigned_long (num))
2301 t.bitfield.imm32 = 1;
2302
2303 return t;
2304 }
2305
2306 static offsetT
2307 offset_in_range (offsetT val, int size)
2308 {
2309 addressT mask;
2310
2311 switch (size)
2312 {
2313 case 1: mask = ((addressT) 1 << 8) - 1; break;
2314 case 2: mask = ((addressT) 1 << 16) - 1; break;
2315 case 4: mask = ((addressT) 2 << 31) - 1; break;
2316 #ifdef BFD64
2317 case 8: mask = ((addressT) 2 << 63) - 1; break;
2318 #endif
2319 default: abort ();
2320 }
2321
2322 #ifdef BFD64
2323 /* If BFD64, sign extend val for 32bit address mode. */
2324 if (flag_code != CODE_64BIT
2325 || i.prefix[ADDR_PREFIX])
2326 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2327 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2328 #endif
2329
2330 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2331 {
2332 char buf1[40], buf2[40];
2333
2334 sprint_value (buf1, val);
2335 sprint_value (buf2, val & mask);
2336 as_warn (_("%s shortened to %s"), buf1, buf2);
2337 }
2338 return val & mask;
2339 }
2340
2341 enum PREFIX_GROUP
2342 {
2343 PREFIX_EXIST = 0,
2344 PREFIX_LOCK,
2345 PREFIX_REP,
2346 PREFIX_DS,
2347 PREFIX_OTHER
2348 };
2349
2350 /* Returns
2351 a. PREFIX_EXIST if attempting to add a prefix where one from the
2352 same class already exists.
2353 b. PREFIX_LOCK if lock prefix is added.
2354 c. PREFIX_REP if rep/repne prefix is added.
2355 d. PREFIX_DS if ds prefix is added.
2356 e. PREFIX_OTHER if other prefix is added.
2357 */
2358
2359 static enum PREFIX_GROUP
2360 add_prefix (unsigned int prefix)
2361 {
2362 enum PREFIX_GROUP ret = PREFIX_OTHER;
2363 unsigned int q;
2364
2365 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2366 && flag_code == CODE_64BIT)
2367 {
2368 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2369 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2370 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2371 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2372 ret = PREFIX_EXIST;
2373 q = REX_PREFIX;
2374 }
2375 else
2376 {
2377 switch (prefix)
2378 {
2379 default:
2380 abort ();
2381
2382 case DS_PREFIX_OPCODE:
2383 ret = PREFIX_DS;
2384 /* Fall through. */
2385 case CS_PREFIX_OPCODE:
2386 case ES_PREFIX_OPCODE:
2387 case FS_PREFIX_OPCODE:
2388 case GS_PREFIX_OPCODE:
2389 case SS_PREFIX_OPCODE:
2390 q = SEG_PREFIX;
2391 break;
2392
2393 case REPNE_PREFIX_OPCODE:
2394 case REPE_PREFIX_OPCODE:
2395 q = REP_PREFIX;
2396 ret = PREFIX_REP;
2397 break;
2398
2399 case LOCK_PREFIX_OPCODE:
2400 q = LOCK_PREFIX;
2401 ret = PREFIX_LOCK;
2402 break;
2403
2404 case FWAIT_OPCODE:
2405 q = WAIT_PREFIX;
2406 break;
2407
2408 case ADDR_PREFIX_OPCODE:
2409 q = ADDR_PREFIX;
2410 break;
2411
2412 case DATA_PREFIX_OPCODE:
2413 q = DATA_PREFIX;
2414 break;
2415 }
2416 if (i.prefix[q] != 0)
2417 ret = PREFIX_EXIST;
2418 }
2419
2420 if (ret)
2421 {
2422 if (!i.prefix[q])
2423 ++i.prefixes;
2424 i.prefix[q] |= prefix;
2425 }
2426 else
2427 as_bad (_("same type of prefix used twice"));
2428
2429 return ret;
2430 }
2431
2432 static void
2433 update_code_flag (int value, int check)
2434 {
2435 PRINTF_LIKE ((*as_error));
2436
2437 flag_code = (enum flag_code) value;
2438 if (flag_code == CODE_64BIT)
2439 {
2440 cpu_arch_flags.bitfield.cpu64 = 1;
2441 cpu_arch_flags.bitfield.cpuno64 = 0;
2442 }
2443 else
2444 {
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
2447 }
2448 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2449 {
2450 if (check)
2451 as_error = as_fatal;
2452 else
2453 as_error = as_bad;
2454 (*as_error) (_("64bit mode not supported on `%s'."),
2455 cpu_arch_name ? cpu_arch_name : default_arch);
2456 }
2457 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2458 {
2459 if (check)
2460 as_error = as_fatal;
2461 else
2462 as_error = as_bad;
2463 (*as_error) (_("32bit mode not supported on `%s'."),
2464 cpu_arch_name ? cpu_arch_name : default_arch);
2465 }
2466 stackop_size = '\0';
2467 }
2468
2469 static void
2470 set_code_flag (int value)
2471 {
2472 update_code_flag (value, 0);
2473 }
2474
2475 static void
2476 set_16bit_gcc_code_flag (int new_code_flag)
2477 {
2478 flag_code = (enum flag_code) new_code_flag;
2479 if (flag_code != CODE_16BIT)
2480 abort ();
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
2483 stackop_size = LONG_MNEM_SUFFIX;
2484 }
2485
2486 static void
2487 set_intel_syntax (int syntax_flag)
2488 {
2489 /* Find out if register prefixing is specified. */
2490 int ask_naked_reg = 0;
2491
2492 SKIP_WHITESPACE ();
2493 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2494 {
2495 char *string;
2496 int e = get_symbol_name (&string);
2497
2498 if (strcmp (string, "prefix") == 0)
2499 ask_naked_reg = 1;
2500 else if (strcmp (string, "noprefix") == 0)
2501 ask_naked_reg = -1;
2502 else
2503 as_bad (_("bad argument to syntax directive."));
2504 (void) restore_line_pointer (e);
2505 }
2506 demand_empty_rest_of_line ();
2507
2508 intel_syntax = syntax_flag;
2509
2510 if (ask_naked_reg == 0)
2511 allow_naked_reg = (intel_syntax
2512 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2513 else
2514 allow_naked_reg = (ask_naked_reg < 0);
2515
2516 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2517
2518 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2519 identifier_chars['$'] = intel_syntax ? '$' : 0;
2520 register_prefix = allow_naked_reg ? "" : "%";
2521 }
2522
2523 static void
2524 set_intel_mnemonic (int mnemonic_flag)
2525 {
2526 intel_mnemonic = mnemonic_flag;
2527 }
2528
2529 static void
2530 set_allow_index_reg (int flag)
2531 {
2532 allow_index_reg = flag;
2533 }
2534
2535 static void
2536 set_check (int what)
2537 {
2538 enum check_kind *kind;
2539 const char *str;
2540
2541 if (what)
2542 {
2543 kind = &operand_check;
2544 str = "operand";
2545 }
2546 else
2547 {
2548 kind = &sse_check;
2549 str = "sse";
2550 }
2551
2552 SKIP_WHITESPACE ();
2553
2554 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2555 {
2556 char *string;
2557 int e = get_symbol_name (&string);
2558
2559 if (strcmp (string, "none") == 0)
2560 *kind = check_none;
2561 else if (strcmp (string, "warning") == 0)
2562 *kind = check_warning;
2563 else if (strcmp (string, "error") == 0)
2564 *kind = check_error;
2565 else
2566 as_bad (_("bad argument to %s_check directive."), str);
2567 (void) restore_line_pointer (e);
2568 }
2569 else
2570 as_bad (_("missing argument for %s_check directive"), str);
2571
2572 demand_empty_rest_of_line ();
2573 }
2574
2575 static void
2576 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2577 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2578 {
2579 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2580 static const char *arch;
2581
2582 /* Intel LIOM is only supported on ELF. */
2583 if (!IS_ELF)
2584 return;
2585
2586 if (!arch)
2587 {
2588 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2589 use default_arch. */
2590 arch = cpu_arch_name;
2591 if (!arch)
2592 arch = default_arch;
2593 }
2594
2595 /* If we are targeting Intel MCU, we must enable it. */
2596 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2597 || new_flag.bitfield.cpuiamcu)
2598 return;
2599
2600 /* If we are targeting Intel L1OM, we must enable it. */
2601 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2602 || new_flag.bitfield.cpul1om)
2603 return;
2604
2605 /* If we are targeting Intel K1OM, we must enable it. */
2606 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2607 || new_flag.bitfield.cpuk1om)
2608 return;
2609
2610 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2611 #endif
2612 }
2613
2614 static void
2615 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2616 {
2617 SKIP_WHITESPACE ();
2618
2619 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2620 {
2621 char *string;
2622 int e = get_symbol_name (&string);
2623 unsigned int j;
2624 i386_cpu_flags flags;
2625
2626 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2627 {
2628 if (strcmp (string, cpu_arch[j].name) == 0)
2629 {
2630 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2631
2632 if (*string != '.')
2633 {
2634 cpu_arch_name = cpu_arch[j].name;
2635 cpu_sub_arch_name = NULL;
2636 cpu_arch_flags = cpu_arch[j].flags;
2637 if (flag_code == CODE_64BIT)
2638 {
2639 cpu_arch_flags.bitfield.cpu64 = 1;
2640 cpu_arch_flags.bitfield.cpuno64 = 0;
2641 }
2642 else
2643 {
2644 cpu_arch_flags.bitfield.cpu64 = 0;
2645 cpu_arch_flags.bitfield.cpuno64 = 1;
2646 }
2647 cpu_arch_isa = cpu_arch[j].type;
2648 cpu_arch_isa_flags = cpu_arch[j].flags;
2649 if (!cpu_arch_tune_set)
2650 {
2651 cpu_arch_tune = cpu_arch_isa;
2652 cpu_arch_tune_flags = cpu_arch_isa_flags;
2653 }
2654 break;
2655 }
2656
2657 flags = cpu_flags_or (cpu_arch_flags,
2658 cpu_arch[j].flags);
2659
2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2661 {
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name,
2666 cpu_arch[j].name,
2667 (const char *) NULL);
2668 free (name);
2669 }
2670 else
2671 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2672 cpu_arch_flags = flags;
2673 cpu_arch_isa_flags = flags;
2674 }
2675 else
2676 cpu_arch_isa_flags
2677 = cpu_flags_or (cpu_arch_isa_flags,
2678 cpu_arch[j].flags);
2679 (void) restore_line_pointer (e);
2680 demand_empty_rest_of_line ();
2681 return;
2682 }
2683 }
2684
2685 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2686 {
2687 /* Disable an ISA extension. */
2688 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2689 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2690 {
2691 flags = cpu_flags_and_not (cpu_arch_flags,
2692 cpu_noarch[j].flags);
2693 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2694 {
2695 if (cpu_sub_arch_name)
2696 {
2697 char *name = cpu_sub_arch_name;
2698 cpu_sub_arch_name = concat (name, string,
2699 (const char *) NULL);
2700 free (name);
2701 }
2702 else
2703 cpu_sub_arch_name = xstrdup (string);
2704 cpu_arch_flags = flags;
2705 cpu_arch_isa_flags = flags;
2706 }
2707 (void) restore_line_pointer (e);
2708 demand_empty_rest_of_line ();
2709 return;
2710 }
2711
2712 j = ARRAY_SIZE (cpu_arch);
2713 }
2714
2715 if (j >= ARRAY_SIZE (cpu_arch))
2716 as_bad (_("no such architecture: `%s'"), string);
2717
2718 *input_line_pointer = e;
2719 }
2720 else
2721 as_bad (_("missing cpu architecture"));
2722
2723 no_cond_jump_promotion = 0;
2724 if (*input_line_pointer == ','
2725 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2726 {
2727 char *string;
2728 char e;
2729
2730 ++input_line_pointer;
2731 e = get_symbol_name (&string);
2732
2733 if (strcmp (string, "nojumps") == 0)
2734 no_cond_jump_promotion = 1;
2735 else if (strcmp (string, "jumps") == 0)
2736 ;
2737 else
2738 as_bad (_("no such architecture modifier: `%s'"), string);
2739
2740 (void) restore_line_pointer (e);
2741 }
2742
2743 demand_empty_rest_of_line ();
2744 }
2745
2746 enum bfd_architecture
2747 i386_arch (void)
2748 {
2749 if (cpu_arch_isa == PROCESSOR_L1OM)
2750 {
2751 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2752 || flag_code != CODE_64BIT)
2753 as_fatal (_("Intel L1OM is 64bit ELF only"));
2754 return bfd_arch_l1om;
2755 }
2756 else if (cpu_arch_isa == PROCESSOR_K1OM)
2757 {
2758 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2759 || flag_code != CODE_64BIT)
2760 as_fatal (_("Intel K1OM is 64bit ELF only"));
2761 return bfd_arch_k1om;
2762 }
2763 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2766 || flag_code == CODE_64BIT)
2767 as_fatal (_("Intel MCU is 32bit ELF only"));
2768 return bfd_arch_iamcu;
2769 }
2770 else
2771 return bfd_arch_i386;
2772 }
2773
2774 unsigned long
2775 i386_mach (void)
2776 {
2777 if (!strncmp (default_arch, "x86_64", 6))
2778 {
2779 if (cpu_arch_isa == PROCESSOR_L1OM)
2780 {
2781 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2782 || default_arch[6] != '\0')
2783 as_fatal (_("Intel L1OM is 64bit ELF only"));
2784 return bfd_mach_l1om;
2785 }
2786 else if (cpu_arch_isa == PROCESSOR_K1OM)
2787 {
2788 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2789 || default_arch[6] != '\0')
2790 as_fatal (_("Intel K1OM is 64bit ELF only"));
2791 return bfd_mach_k1om;
2792 }
2793 else if (default_arch[6] == '\0')
2794 return bfd_mach_x86_64;
2795 else
2796 return bfd_mach_x64_32;
2797 }
2798 else if (!strcmp (default_arch, "i386")
2799 || !strcmp (default_arch, "iamcu"))
2800 {
2801 if (cpu_arch_isa == PROCESSOR_IAMCU)
2802 {
2803 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2804 as_fatal (_("Intel MCU is 32bit ELF only"));
2805 return bfd_mach_i386_iamcu;
2806 }
2807 else
2808 return bfd_mach_i386_i386;
2809 }
2810 else
2811 as_fatal (_("unknown architecture"));
2812 }
2813 \f
2814 void
2815 md_begin (void)
2816 {
2817 const char *hash_err;
2818
2819 /* Support pseudo prefixes like {disp32}. */
2820 lex_type ['{'] = LEX_BEGIN_NAME;
2821
2822 /* Initialize op_hash hash table. */
2823 op_hash = hash_new ();
2824
2825 {
2826 const insn_template *optab;
2827 templates *core_optab;
2828
2829 /* Setup for loop. */
2830 optab = i386_optab;
2831 core_optab = XNEW (templates);
2832 core_optab->start = optab;
2833
2834 while (1)
2835 {
2836 ++optab;
2837 if (optab->name == NULL
2838 || strcmp (optab->name, (optab - 1)->name) != 0)
2839 {
2840 /* different name --> ship out current template list;
2841 add to hash table; & begin anew. */
2842 core_optab->end = optab;
2843 hash_err = hash_insert (op_hash,
2844 (optab - 1)->name,
2845 (void *) core_optab);
2846 if (hash_err)
2847 {
2848 as_fatal (_("can't hash %s: %s"),
2849 (optab - 1)->name,
2850 hash_err);
2851 }
2852 if (optab->name == NULL)
2853 break;
2854 core_optab = XNEW (templates);
2855 core_optab->start = optab;
2856 }
2857 }
2858 }
2859
2860 /* Initialize reg_hash hash table. */
2861 reg_hash = hash_new ();
2862 {
2863 const reg_entry *regtab;
2864 unsigned int regtab_size = i386_regtab_size;
2865
2866 for (regtab = i386_regtab; regtab_size--; regtab++)
2867 {
2868 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2869 if (hash_err)
2870 as_fatal (_("can't hash %s: %s"),
2871 regtab->reg_name,
2872 hash_err);
2873 }
2874 }
2875
2876 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2877 {
2878 int c;
2879 char *p;
2880
2881 for (c = 0; c < 256; c++)
2882 {
2883 if (ISDIGIT (c))
2884 {
2885 digit_chars[c] = c;
2886 mnemonic_chars[c] = c;
2887 register_chars[c] = c;
2888 operand_chars[c] = c;
2889 }
2890 else if (ISLOWER (c))
2891 {
2892 mnemonic_chars[c] = c;
2893 register_chars[c] = c;
2894 operand_chars[c] = c;
2895 }
2896 else if (ISUPPER (c))
2897 {
2898 mnemonic_chars[c] = TOLOWER (c);
2899 register_chars[c] = mnemonic_chars[c];
2900 operand_chars[c] = c;
2901 }
2902 else if (c == '{' || c == '}')
2903 {
2904 mnemonic_chars[c] = c;
2905 operand_chars[c] = c;
2906 }
2907
2908 if (ISALPHA (c) || ISDIGIT (c))
2909 identifier_chars[c] = c;
2910 else if (c >= 128)
2911 {
2912 identifier_chars[c] = c;
2913 operand_chars[c] = c;
2914 }
2915 }
2916
2917 #ifdef LEX_AT
2918 identifier_chars['@'] = '@';
2919 #endif
2920 #ifdef LEX_QM
2921 identifier_chars['?'] = '?';
2922 operand_chars['?'] = '?';
2923 #endif
2924 digit_chars['-'] = '-';
2925 mnemonic_chars['_'] = '_';
2926 mnemonic_chars['-'] = '-';
2927 mnemonic_chars['.'] = '.';
2928 identifier_chars['_'] = '_';
2929 identifier_chars['.'] = '.';
2930
2931 for (p = operand_special_chars; *p != '\0'; p++)
2932 operand_chars[(unsigned char) *p] = *p;
2933 }
2934
2935 if (flag_code == CODE_64BIT)
2936 {
2937 #if defined (OBJ_COFF) && defined (TE_PE)
2938 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2939 ? 32 : 16);
2940 #else
2941 x86_dwarf2_return_column = 16;
2942 #endif
2943 x86_cie_data_alignment = -8;
2944 }
2945 else
2946 {
2947 x86_dwarf2_return_column = 8;
2948 x86_cie_data_alignment = -4;
2949 }
2950 }
2951
2952 void
2953 i386_print_statistics (FILE *file)
2954 {
2955 hash_print_statistics (file, "i386 opcode", op_hash);
2956 hash_print_statistics (file, "i386 register", reg_hash);
2957 }
2958 \f
2959 #ifdef DEBUG386
2960
2961 /* Debugging routines for md_assemble. */
2962 static void pte (insn_template *);
2963 static void pt (i386_operand_type);
2964 static void pe (expressionS *);
2965 static void ps (symbolS *);
2966
2967 static void
2968 pi (char *line, i386_insn *x)
2969 {
2970 unsigned int j;
2971
2972 fprintf (stdout, "%s: template ", line);
2973 pte (&x->tm);
2974 fprintf (stdout, " address: base %s index %s scale %x\n",
2975 x->base_reg ? x->base_reg->reg_name : "none",
2976 x->index_reg ? x->index_reg->reg_name : "none",
2977 x->log2_scale_factor);
2978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2979 x->rm.mode, x->rm.reg, x->rm.regmem);
2980 fprintf (stdout, " sib: base %x index %x scale %x\n",
2981 x->sib.base, x->sib.index, x->sib.scale);
2982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2983 (x->rex & REX_W) != 0,
2984 (x->rex & REX_R) != 0,
2985 (x->rex & REX_X) != 0,
2986 (x->rex & REX_B) != 0);
2987 for (j = 0; j < x->operands; j++)
2988 {
2989 fprintf (stdout, " #%d: ", j + 1);
2990 pt (x->types[j]);
2991 fprintf (stdout, "\n");
2992 if (x->types[j].bitfield.reg
2993 || x->types[j].bitfield.regmmx
2994 || x->types[j].bitfield.regsimd
2995 || x->types[j].bitfield.sreg2
2996 || x->types[j].bitfield.sreg3
2997 || x->types[j].bitfield.control
2998 || x->types[j].bitfield.debug
2999 || x->types[j].bitfield.test)
3000 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3001 if (operand_type_check (x->types[j], imm))
3002 pe (x->op[j].imms);
3003 if (operand_type_check (x->types[j], disp))
3004 pe (x->op[j].disps);
3005 }
3006 }
3007
3008 static void
3009 pte (insn_template *t)
3010 {
3011 unsigned int j;
3012 fprintf (stdout, " %d operands ", t->operands);
3013 fprintf (stdout, "opcode %x ", t->base_opcode);
3014 if (t->extension_opcode != None)
3015 fprintf (stdout, "ext %x ", t->extension_opcode);
3016 if (t->opcode_modifier.d)
3017 fprintf (stdout, "D");
3018 if (t->opcode_modifier.w)
3019 fprintf (stdout, "W");
3020 fprintf (stdout, "\n");
3021 for (j = 0; j < t->operands; j++)
3022 {
3023 fprintf (stdout, " #%d type ", j + 1);
3024 pt (t->operand_types[j]);
3025 fprintf (stdout, "\n");
3026 }
3027 }
3028
3029 static void
3030 pe (expressionS *e)
3031 {
3032 fprintf (stdout, " operation %d\n", e->X_op);
3033 fprintf (stdout, " add_number %ld (%lx)\n",
3034 (long) e->X_add_number, (long) e->X_add_number);
3035 if (e->X_add_symbol)
3036 {
3037 fprintf (stdout, " add_symbol ");
3038 ps (e->X_add_symbol);
3039 fprintf (stdout, "\n");
3040 }
3041 if (e->X_op_symbol)
3042 {
3043 fprintf (stdout, " op_symbol ");
3044 ps (e->X_op_symbol);
3045 fprintf (stdout, "\n");
3046 }
3047 }
3048
3049 static void
3050 ps (symbolS *s)
3051 {
3052 fprintf (stdout, "%s type %s%s",
3053 S_GET_NAME (s),
3054 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3055 segment_name (S_GET_SEGMENT (s)));
3056 }
3057
3058 static struct type_name
3059 {
3060 i386_operand_type mask;
3061 const char *name;
3062 }
3063 const type_names[] =
3064 {
3065 { OPERAND_TYPE_REG8, "r8" },
3066 { OPERAND_TYPE_REG16, "r16" },
3067 { OPERAND_TYPE_REG32, "r32" },
3068 { OPERAND_TYPE_REG64, "r64" },
3069 { OPERAND_TYPE_IMM8, "i8" },
3070 { OPERAND_TYPE_IMM8, "i8s" },
3071 { OPERAND_TYPE_IMM16, "i16" },
3072 { OPERAND_TYPE_IMM32, "i32" },
3073 { OPERAND_TYPE_IMM32S, "i32s" },
3074 { OPERAND_TYPE_IMM64, "i64" },
3075 { OPERAND_TYPE_IMM1, "i1" },
3076 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3077 { OPERAND_TYPE_DISP8, "d8" },
3078 { OPERAND_TYPE_DISP16, "d16" },
3079 { OPERAND_TYPE_DISP32, "d32" },
3080 { OPERAND_TYPE_DISP32S, "d32s" },
3081 { OPERAND_TYPE_DISP64, "d64" },
3082 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3083 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3084 { OPERAND_TYPE_CONTROL, "control reg" },
3085 { OPERAND_TYPE_TEST, "test reg" },
3086 { OPERAND_TYPE_DEBUG, "debug reg" },
3087 { OPERAND_TYPE_FLOATREG, "FReg" },
3088 { OPERAND_TYPE_FLOATACC, "FAcc" },
3089 { OPERAND_TYPE_SREG2, "SReg2" },
3090 { OPERAND_TYPE_SREG3, "SReg3" },
3091 { OPERAND_TYPE_ACC, "Acc" },
3092 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3093 { OPERAND_TYPE_REGMMX, "rMMX" },
3094 { OPERAND_TYPE_REGXMM, "rXMM" },
3095 { OPERAND_TYPE_REGYMM, "rYMM" },
3096 { OPERAND_TYPE_REGZMM, "rZMM" },
3097 { OPERAND_TYPE_REGMASK, "Mask reg" },
3098 { OPERAND_TYPE_ESSEG, "es" },
3099 };
3100
3101 static void
3102 pt (i386_operand_type t)
3103 {
3104 unsigned int j;
3105 i386_operand_type a;
3106
3107 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3108 {
3109 a = operand_type_and (t, type_names[j].mask);
3110 if (!operand_type_all_zero (&a))
3111 fprintf (stdout, "%s, ", type_names[j].name);
3112 }
3113 fflush (stdout);
3114 }
3115
3116 #endif /* DEBUG386 */
3117 \f
3118 static bfd_reloc_code_real_type
3119 reloc (unsigned int size,
3120 int pcrel,
3121 int sign,
3122 bfd_reloc_code_real_type other)
3123 {
3124 if (other != NO_RELOC)
3125 {
3126 reloc_howto_type *rel;
3127
3128 if (size == 8)
3129 switch (other)
3130 {
3131 case BFD_RELOC_X86_64_GOT32:
3132 return BFD_RELOC_X86_64_GOT64;
3133 break;
3134 case BFD_RELOC_X86_64_GOTPLT64:
3135 return BFD_RELOC_X86_64_GOTPLT64;
3136 break;
3137 case BFD_RELOC_X86_64_PLTOFF64:
3138 return BFD_RELOC_X86_64_PLTOFF64;
3139 break;
3140 case BFD_RELOC_X86_64_GOTPC32:
3141 other = BFD_RELOC_X86_64_GOTPC64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPCREL:
3144 other = BFD_RELOC_X86_64_GOTPCREL64;
3145 break;
3146 case BFD_RELOC_X86_64_TPOFF32:
3147 other = BFD_RELOC_X86_64_TPOFF64;
3148 break;
3149 case BFD_RELOC_X86_64_DTPOFF32:
3150 other = BFD_RELOC_X86_64_DTPOFF64;
3151 break;
3152 default:
3153 break;
3154 }
3155
3156 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3157 if (other == BFD_RELOC_SIZE32)
3158 {
3159 if (size == 8)
3160 other = BFD_RELOC_SIZE64;
3161 if (pcrel)
3162 {
3163 as_bad (_("there are no pc-relative size relocations"));
3164 return NO_RELOC;
3165 }
3166 }
3167 #endif
3168
3169 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3170 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3171 sign = -1;
3172
3173 rel = bfd_reloc_type_lookup (stdoutput, other);
3174 if (!rel)
3175 as_bad (_("unknown relocation (%u)"), other);
3176 else if (size != bfd_get_reloc_size (rel))
3177 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3178 bfd_get_reloc_size (rel),
3179 size);
3180 else if (pcrel && !rel->pc_relative)
3181 as_bad (_("non-pc-relative relocation for pc-relative field"));
3182 else if ((rel->complain_on_overflow == complain_overflow_signed
3183 && !sign)
3184 || (rel->complain_on_overflow == complain_overflow_unsigned
3185 && sign > 0))
3186 as_bad (_("relocated field and relocation type differ in signedness"));
3187 else
3188 return other;
3189 return NO_RELOC;
3190 }
3191
3192 if (pcrel)
3193 {
3194 if (!sign)
3195 as_bad (_("there are no unsigned pc-relative relocations"));
3196 switch (size)
3197 {
3198 case 1: return BFD_RELOC_8_PCREL;
3199 case 2: return BFD_RELOC_16_PCREL;
3200 case 4: return BFD_RELOC_32_PCREL;
3201 case 8: return BFD_RELOC_64_PCREL;
3202 }
3203 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3204 }
3205 else
3206 {
3207 if (sign > 0)
3208 switch (size)
3209 {
3210 case 4: return BFD_RELOC_X86_64_32S;
3211 }
3212 else
3213 switch (size)
3214 {
3215 case 1: return BFD_RELOC_8;
3216 case 2: return BFD_RELOC_16;
3217 case 4: return BFD_RELOC_32;
3218 case 8: return BFD_RELOC_64;
3219 }
3220 as_bad (_("cannot do %s %u byte relocation"),
3221 sign > 0 ? "signed" : "unsigned", size);
3222 }
3223
3224 return NO_RELOC;
3225 }
3226
3227 /* Here we decide which fixups can be adjusted to make them relative to
3228 the beginning of the section instead of the symbol. Basically we need
3229 to make sure that the dynamic relocations are done correctly, so in
3230 some cases we force the original symbol to be used. */
3231
3232 int
3233 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3234 {
3235 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3236 if (!IS_ELF)
3237 return 1;
3238
3239 /* Don't adjust pc-relative references to merge sections in 64-bit
3240 mode. */
3241 if (use_rela_relocations
3242 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3243 && fixP->fx_pcrel)
3244 return 0;
3245
3246 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3247 and changed later by validate_fix. */
3248 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3249 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3250 return 0;
3251
3252 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3253 for size relocations. */
3254 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3255 || fixP->fx_r_type == BFD_RELOC_SIZE64
3256 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3257 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3258 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3259 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3260 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3261 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3262 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3270 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3271 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3272 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3278 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3285 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3286 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3287 return 0;
3288 #endif
3289 return 1;
3290 }
3291
3292 static int
3293 intel_float_operand (const char *mnemonic)
3294 {
3295 /* Note that the value returned is meaningful only for opcodes with (memory)
3296 operands, hence the code here is free to improperly handle opcodes that
3297 have no operands (for better performance and smaller code). */
3298
3299 if (mnemonic[0] != 'f')
3300 return 0; /* non-math */
3301
3302 switch (mnemonic[1])
3303 {
3304 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3305 the fs segment override prefix not currently handled because no
3306 call path can make opcodes without operands get here */
3307 case 'i':
3308 return 2 /* integer op */;
3309 case 'l':
3310 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3311 return 3; /* fldcw/fldenv */
3312 break;
3313 case 'n':
3314 if (mnemonic[2] != 'o' /* fnop */)
3315 return 3; /* non-waiting control op */
3316 break;
3317 case 'r':
3318 if (mnemonic[2] == 's')
3319 return 3; /* frstor/frstpm */
3320 break;
3321 case 's':
3322 if (mnemonic[2] == 'a')
3323 return 3; /* fsave */
3324 if (mnemonic[2] == 't')
3325 {
3326 switch (mnemonic[3])
3327 {
3328 case 'c': /* fstcw */
3329 case 'd': /* fstdw */
3330 case 'e': /* fstenv */
3331 case 's': /* fsts[gw] */
3332 return 3;
3333 }
3334 }
3335 break;
3336 case 'x':
3337 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3338 return 0; /* fxsave/fxrstor are not really math ops */
3339 break;
3340 }
3341
3342 return 1;
3343 }
3344
3345 /* Build the VEX prefix. */
3346
3347 static void
3348 build_vex_prefix (const insn_template *t)
3349 {
3350 unsigned int register_specifier;
3351 unsigned int implied_prefix;
3352 unsigned int vector_length;
3353
3354 /* Check register specifier. */
3355 if (i.vex.register_specifier)
3356 {
3357 register_specifier =
3358 ~register_number (i.vex.register_specifier) & 0xf;
3359 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3360 }
3361 else
3362 register_specifier = 0xf;
3363
3364 /* Use 2-byte VEX prefix by swapping destination and source
3365 operand. */
3366 if (i.vec_encoding != vex_encoding_vex3
3367 && i.dir_encoding == dir_encoding_default
3368 && i.operands == i.reg_operands
3369 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3370 && i.tm.opcode_modifier.vexopcode == VEX0F
3371 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3372 && i.rex == REX_B)
3373 {
3374 unsigned int xchg = i.operands - 1;
3375 union i386_op temp_op;
3376 i386_operand_type temp_type;
3377
3378 temp_type = i.types[xchg];
3379 i.types[xchg] = i.types[0];
3380 i.types[0] = temp_type;
3381 temp_op = i.op[xchg];
3382 i.op[xchg] = i.op[0];
3383 i.op[0] = temp_op;
3384
3385 gas_assert (i.rm.mode == 3);
3386
3387 i.rex = REX_R;
3388 xchg = i.rm.regmem;
3389 i.rm.regmem = i.rm.reg;
3390 i.rm.reg = xchg;
3391
3392 if (i.tm.opcode_modifier.d)
3393 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3394 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3395 else /* Use the next insn. */
3396 i.tm = t[1];
3397 }
3398
3399 if (i.tm.opcode_modifier.vex == VEXScalar)
3400 vector_length = avxscalar;
3401 else if (i.tm.opcode_modifier.vex == VEX256)
3402 vector_length = 1;
3403 else
3404 {
3405 unsigned int op;
3406
3407 /* Determine vector length from the last multi-length vector
3408 operand. */
3409 vector_length = 0;
3410 for (op = t->operands; op--;)
3411 if (t->operand_types[op].bitfield.xmmword
3412 && t->operand_types[op].bitfield.ymmword
3413 && i.types[op].bitfield.ymmword)
3414 {
3415 vector_length = 1;
3416 break;
3417 }
3418 }
3419
3420 switch ((i.tm.base_opcode >> 8) & 0xff)
3421 {
3422 case 0:
3423 implied_prefix = 0;
3424 break;
3425 case DATA_PREFIX_OPCODE:
3426 implied_prefix = 1;
3427 break;
3428 case REPE_PREFIX_OPCODE:
3429 implied_prefix = 2;
3430 break;
3431 case REPNE_PREFIX_OPCODE:
3432 implied_prefix = 3;
3433 break;
3434 default:
3435 abort ();
3436 }
3437
3438 /* Use 2-byte VEX prefix if possible. */
3439 if (i.vec_encoding != vex_encoding_vex3
3440 && i.tm.opcode_modifier.vexopcode == VEX0F
3441 && i.tm.opcode_modifier.vexw != VEXW1
3442 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3443 {
3444 /* 2-byte VEX prefix. */
3445 unsigned int r;
3446
3447 i.vex.length = 2;
3448 i.vex.bytes[0] = 0xc5;
3449
3450 /* Check the REX.R bit. */
3451 r = (i.rex & REX_R) ? 0 : 1;
3452 i.vex.bytes[1] = (r << 7
3453 | register_specifier << 3
3454 | vector_length << 2
3455 | implied_prefix);
3456 }
3457 else
3458 {
3459 /* 3-byte VEX prefix. */
3460 unsigned int m, w;
3461
3462 i.vex.length = 3;
3463
3464 switch (i.tm.opcode_modifier.vexopcode)
3465 {
3466 case VEX0F:
3467 m = 0x1;
3468 i.vex.bytes[0] = 0xc4;
3469 break;
3470 case VEX0F38:
3471 m = 0x2;
3472 i.vex.bytes[0] = 0xc4;
3473 break;
3474 case VEX0F3A:
3475 m = 0x3;
3476 i.vex.bytes[0] = 0xc4;
3477 break;
3478 case XOP08:
3479 m = 0x8;
3480 i.vex.bytes[0] = 0x8f;
3481 break;
3482 case XOP09:
3483 m = 0x9;
3484 i.vex.bytes[0] = 0x8f;
3485 break;
3486 case XOP0A:
3487 m = 0xa;
3488 i.vex.bytes[0] = 0x8f;
3489 break;
3490 default:
3491 abort ();
3492 }
3493
3494 /* The high 3 bits of the second VEX byte are 1's compliment
3495 of RXB bits from REX. */
3496 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3497
3498 /* Check the REX.W bit. */
3499 w = (i.rex & REX_W) ? 1 : 0;
3500 if (i.tm.opcode_modifier.vexw == VEXW1)
3501 w = 1;
3502
3503 i.vex.bytes[2] = (w << 7
3504 | register_specifier << 3
3505 | vector_length << 2
3506 | implied_prefix);
3507 }
3508 }
3509
3510 static INLINE bfd_boolean
3511 is_evex_encoding (const insn_template *t)
3512 {
3513 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3514 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3515 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3516 }
3517
3518 static INLINE bfd_boolean
3519 is_any_vex_encoding (const insn_template *t)
3520 {
3521 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3522 || is_evex_encoding (t);
3523 }
3524
3525 /* Build the EVEX prefix. */
3526
3527 static void
3528 build_evex_prefix (void)
3529 {
3530 unsigned int register_specifier;
3531 unsigned int implied_prefix;
3532 unsigned int m, w;
3533 rex_byte vrex_used = 0;
3534
3535 /* Check register specifier. */
3536 if (i.vex.register_specifier)
3537 {
3538 gas_assert ((i.vrex & REX_X) == 0);
3539
3540 register_specifier = i.vex.register_specifier->reg_num;
3541 if ((i.vex.register_specifier->reg_flags & RegRex))
3542 register_specifier += 8;
3543 /* The upper 16 registers are encoded in the fourth byte of the
3544 EVEX prefix. */
3545 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3546 i.vex.bytes[3] = 0x8;
3547 register_specifier = ~register_specifier & 0xf;
3548 }
3549 else
3550 {
3551 register_specifier = 0xf;
3552
3553 /* Encode upper 16 vector index register in the fourth byte of
3554 the EVEX prefix. */
3555 if (!(i.vrex & REX_X))
3556 i.vex.bytes[3] = 0x8;
3557 else
3558 vrex_used |= REX_X;
3559 }
3560
3561 switch ((i.tm.base_opcode >> 8) & 0xff)
3562 {
3563 case 0:
3564 implied_prefix = 0;
3565 break;
3566 case DATA_PREFIX_OPCODE:
3567 implied_prefix = 1;
3568 break;
3569 case REPE_PREFIX_OPCODE:
3570 implied_prefix = 2;
3571 break;
3572 case REPNE_PREFIX_OPCODE:
3573 implied_prefix = 3;
3574 break;
3575 default:
3576 abort ();
3577 }
3578
3579 /* 4 byte EVEX prefix. */
3580 i.vex.length = 4;
3581 i.vex.bytes[0] = 0x62;
3582
3583 /* mmmm bits. */
3584 switch (i.tm.opcode_modifier.vexopcode)
3585 {
3586 case VEX0F:
3587 m = 1;
3588 break;
3589 case VEX0F38:
3590 m = 2;
3591 break;
3592 case VEX0F3A:
3593 m = 3;
3594 break;
3595 default:
3596 abort ();
3597 break;
3598 }
3599
3600 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3601 bits from REX. */
3602 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3603
3604 /* The fifth bit of the second EVEX byte is 1's compliment of the
3605 REX_R bit in VREX. */
3606 if (!(i.vrex & REX_R))
3607 i.vex.bytes[1] |= 0x10;
3608 else
3609 vrex_used |= REX_R;
3610
3611 if ((i.reg_operands + i.imm_operands) == i.operands)
3612 {
3613 /* When all operands are registers, the REX_X bit in REX is not
3614 used. We reuse it to encode the upper 16 registers, which is
3615 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3616 as 1's compliment. */
3617 if ((i.vrex & REX_B))
3618 {
3619 vrex_used |= REX_B;
3620 i.vex.bytes[1] &= ~0x40;
3621 }
3622 }
3623
3624 /* EVEX instructions shouldn't need the REX prefix. */
3625 i.vrex &= ~vrex_used;
3626 gas_assert (i.vrex == 0);
3627
3628 /* Check the REX.W bit. */
3629 w = (i.rex & REX_W) ? 1 : 0;
3630 if (i.tm.opcode_modifier.vexw)
3631 {
3632 if (i.tm.opcode_modifier.vexw == VEXW1)
3633 w = 1;
3634 }
3635 /* If w is not set it means we are dealing with WIG instruction. */
3636 else if (!w)
3637 {
3638 if (evexwig == evexw1)
3639 w = 1;
3640 }
3641
3642 /* Encode the U bit. */
3643 implied_prefix |= 0x4;
3644
3645 /* The third byte of the EVEX prefix. */
3646 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3647
3648 /* The fourth byte of the EVEX prefix. */
3649 /* The zeroing-masking bit. */
3650 if (i.mask && i.mask->zeroing)
3651 i.vex.bytes[3] |= 0x80;
3652
3653 /* Don't always set the broadcast bit if there is no RC. */
3654 if (!i.rounding)
3655 {
3656 /* Encode the vector length. */
3657 unsigned int vec_length;
3658
3659 if (!i.tm.opcode_modifier.evex
3660 || i.tm.opcode_modifier.evex == EVEXDYN)
3661 {
3662 unsigned int op;
3663
3664 /* Determine vector length from the last multi-length vector
3665 operand. */
3666 vec_length = 0;
3667 for (op = i.operands; op--;)
3668 if (i.tm.operand_types[op].bitfield.xmmword
3669 + i.tm.operand_types[op].bitfield.ymmword
3670 + i.tm.operand_types[op].bitfield.zmmword > 1)
3671 {
3672 if (i.types[op].bitfield.zmmword)
3673 {
3674 i.tm.opcode_modifier.evex = EVEX512;
3675 break;
3676 }
3677 else if (i.types[op].bitfield.ymmword)
3678 {
3679 i.tm.opcode_modifier.evex = EVEX256;
3680 break;
3681 }
3682 else if (i.types[op].bitfield.xmmword)
3683 {
3684 i.tm.opcode_modifier.evex = EVEX128;
3685 break;
3686 }
3687 else if (i.broadcast && (int) op == i.broadcast->operand)
3688 {
3689 switch (i.broadcast->bytes)
3690 {
3691 case 64:
3692 i.tm.opcode_modifier.evex = EVEX512;
3693 break;
3694 case 32:
3695 i.tm.opcode_modifier.evex = EVEX256;
3696 break;
3697 case 16:
3698 i.tm.opcode_modifier.evex = EVEX128;
3699 break;
3700 default:
3701 abort ();
3702 }
3703 break;
3704 }
3705 }
3706
3707 if (op >= MAX_OPERANDS)
3708 abort ();
3709 }
3710
3711 switch (i.tm.opcode_modifier.evex)
3712 {
3713 case EVEXLIG: /* LL' is ignored */
3714 vec_length = evexlig << 5;
3715 break;
3716 case EVEX128:
3717 vec_length = 0 << 5;
3718 break;
3719 case EVEX256:
3720 vec_length = 1 << 5;
3721 break;
3722 case EVEX512:
3723 vec_length = 2 << 5;
3724 break;
3725 default:
3726 abort ();
3727 break;
3728 }
3729 i.vex.bytes[3] |= vec_length;
3730 /* Encode the broadcast bit. */
3731 if (i.broadcast)
3732 i.vex.bytes[3] |= 0x10;
3733 }
3734 else
3735 {
3736 if (i.rounding->type != saeonly)
3737 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3738 else
3739 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3740 }
3741
3742 if (i.mask && i.mask->mask)
3743 i.vex.bytes[3] |= i.mask->mask->reg_num;
3744 }
3745
3746 static void
3747 process_immext (void)
3748 {
3749 expressionS *exp;
3750
3751 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3752 && i.operands > 0)
3753 {
3754 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3755 with an opcode suffix which is coded in the same place as an
3756 8-bit immediate field would be.
3757 Here we check those operands and remove them afterwards. */
3758 unsigned int x;
3759
3760 for (x = 0; x < i.operands; x++)
3761 if (register_number (i.op[x].regs) != x)
3762 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3763 register_prefix, i.op[x].regs->reg_name, x + 1,
3764 i.tm.name);
3765
3766 i.operands = 0;
3767 }
3768
3769 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3770 {
3771 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3772 suffix which is coded in the same place as an 8-bit immediate
3773 field would be.
3774 Here we check those operands and remove them afterwards. */
3775 unsigned int x;
3776
3777 if (i.operands != 3)
3778 abort();
3779
3780 for (x = 0; x < 2; x++)
3781 if (register_number (i.op[x].regs) != x)
3782 goto bad_register_operand;
3783
3784 /* Check for third operand for mwaitx/monitorx insn. */
3785 if (register_number (i.op[x].regs)
3786 != (x + (i.tm.extension_opcode == 0xfb)))
3787 {
3788 bad_register_operand:
3789 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3790 register_prefix, i.op[x].regs->reg_name, x+1,
3791 i.tm.name);
3792 }
3793
3794 i.operands = 0;
3795 }
3796
3797 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3798 which is coded in the same place as an 8-bit immediate field
3799 would be. Here we fake an 8-bit immediate operand from the
3800 opcode suffix stored in tm.extension_opcode.
3801
3802 AVX instructions also use this encoding, for some of
3803 3 argument instructions. */
3804
3805 gas_assert (i.imm_operands <= 1
3806 && (i.operands <= 2
3807 || (is_any_vex_encoding (&i.tm)
3808 && i.operands <= 4)));
3809
3810 exp = &im_expressions[i.imm_operands++];
3811 i.op[i.operands].imms = exp;
3812 i.types[i.operands] = imm8;
3813 i.operands++;
3814 exp->X_op = O_constant;
3815 exp->X_add_number = i.tm.extension_opcode;
3816 i.tm.extension_opcode = None;
3817 }
3818
3819
3820 static int
3821 check_hle (void)
3822 {
3823 switch (i.tm.opcode_modifier.hleprefixok)
3824 {
3825 default:
3826 abort ();
3827 case HLEPrefixNone:
3828 as_bad (_("invalid instruction `%s' after `%s'"),
3829 i.tm.name, i.hle_prefix);
3830 return 0;
3831 case HLEPrefixLock:
3832 if (i.prefix[LOCK_PREFIX])
3833 return 1;
3834 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3835 return 0;
3836 case HLEPrefixAny:
3837 return 1;
3838 case HLEPrefixRelease:
3839 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3840 {
3841 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3842 i.tm.name);
3843 return 0;
3844 }
3845 if (i.mem_operands == 0
3846 || !operand_type_check (i.types[i.operands - 1], anymem))
3847 {
3848 as_bad (_("memory destination needed for instruction `%s'"
3849 " after `xrelease'"), i.tm.name);
3850 return 0;
3851 }
3852 return 1;
3853 }
3854 }
3855
3856 /* Try the shortest encoding by shortening operand size. */
3857
3858 static void
3859 optimize_encoding (void)
3860 {
3861 int j;
3862
3863 if (optimize_for_space
3864 && i.reg_operands == 1
3865 && i.imm_operands == 1
3866 && !i.types[1].bitfield.byte
3867 && i.op[0].imms->X_op == O_constant
3868 && fits_in_imm7 (i.op[0].imms->X_add_number)
3869 && ((i.tm.base_opcode == 0xa8
3870 && i.tm.extension_opcode == None)
3871 || (i.tm.base_opcode == 0xf6
3872 && i.tm.extension_opcode == 0x0)))
3873 {
3874 /* Optimize: -Os:
3875 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3876 */
3877 unsigned int base_regnum = i.op[1].regs->reg_num;
3878 if (flag_code == CODE_64BIT || base_regnum < 4)
3879 {
3880 i.types[1].bitfield.byte = 1;
3881 /* Ignore the suffix. */
3882 i.suffix = 0;
3883 if (base_regnum >= 4
3884 && !(i.op[1].regs->reg_flags & RegRex))
3885 {
3886 /* Handle SP, BP, SI and DI registers. */
3887 if (i.types[1].bitfield.word)
3888 j = 16;
3889 else if (i.types[1].bitfield.dword)
3890 j = 32;
3891 else
3892 j = 48;
3893 i.op[1].regs -= j;
3894 }
3895 }
3896 }
3897 else if (flag_code == CODE_64BIT
3898 && ((i.types[1].bitfield.qword
3899 && i.reg_operands == 1
3900 && i.imm_operands == 1
3901 && i.op[0].imms->X_op == O_constant
3902 && ((i.tm.base_opcode == 0xb0
3903 && i.tm.extension_opcode == None
3904 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3905 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3906 && (((i.tm.base_opcode == 0x24
3907 || i.tm.base_opcode == 0xa8)
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0x80
3910 && i.tm.extension_opcode == 0x4)
3911 || ((i.tm.base_opcode == 0xf6
3912 || i.tm.base_opcode == 0xc6)
3913 && i.tm.extension_opcode == 0x0)))))
3914 || (i.types[0].bitfield.qword
3915 && ((i.reg_operands == 2
3916 && i.op[0].regs == i.op[1].regs
3917 && ((i.tm.base_opcode == 0x30
3918 || i.tm.base_opcode == 0x28)
3919 && i.tm.extension_opcode == None))
3920 || (i.reg_operands == 1
3921 && i.operands == 1
3922 && i.tm.base_opcode == 0x30
3923 && i.tm.extension_opcode == None)))))
3924 {
3925 /* Optimize: -O:
3926 andq $imm31, %r64 -> andl $imm31, %r32
3927 testq $imm31, %r64 -> testl $imm31, %r32
3928 xorq %r64, %r64 -> xorl %r32, %r32
3929 subq %r64, %r64 -> subl %r32, %r32
3930 movq $imm31, %r64 -> movl $imm31, %r32
3931 movq $imm32, %r64 -> movl $imm32, %r32
3932 */
3933 i.tm.opcode_modifier.norex64 = 1;
3934 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3935 {
3936 /* Handle
3937 movq $imm31, %r64 -> movl $imm31, %r32
3938 movq $imm32, %r64 -> movl $imm32, %r32
3939 */
3940 i.tm.operand_types[0].bitfield.imm32 = 1;
3941 i.tm.operand_types[0].bitfield.imm32s = 0;
3942 i.tm.operand_types[0].bitfield.imm64 = 0;
3943 i.types[0].bitfield.imm32 = 1;
3944 i.types[0].bitfield.imm32s = 0;
3945 i.types[0].bitfield.imm64 = 0;
3946 i.types[1].bitfield.dword = 1;
3947 i.types[1].bitfield.qword = 0;
3948 if (i.tm.base_opcode == 0xc6)
3949 {
3950 /* Handle
3951 movq $imm31, %r64 -> movl $imm31, %r32
3952 */
3953 i.tm.base_opcode = 0xb0;
3954 i.tm.extension_opcode = None;
3955 i.tm.opcode_modifier.shortform = 1;
3956 i.tm.opcode_modifier.modrm = 0;
3957 }
3958 }
3959 }
3960 else if (optimize > 1
3961 && i.reg_operands == 3
3962 && i.op[0].regs == i.op[1].regs
3963 && !i.types[2].bitfield.xmmword
3964 && (i.tm.opcode_modifier.vex
3965 || ((!i.mask || i.mask->zeroing)
3966 && !i.rounding
3967 && is_evex_encoding (&i.tm)
3968 && (i.vec_encoding != vex_encoding_evex
3969 || i.tm.cpu_flags.bitfield.cpuavx512vl
3970 || (i.tm.operand_types[2].bitfield.zmmword
3971 && i.types[2].bitfield.ymmword)
3972 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3973 && ((i.tm.base_opcode == 0x55
3974 || i.tm.base_opcode == 0x6655
3975 || i.tm.base_opcode == 0x66df
3976 || i.tm.base_opcode == 0x57
3977 || i.tm.base_opcode == 0x6657
3978 || i.tm.base_opcode == 0x66ef
3979 || i.tm.base_opcode == 0x66f8
3980 || i.tm.base_opcode == 0x66f9
3981 || i.tm.base_opcode == 0x66fa
3982 || i.tm.base_opcode == 0x66fb
3983 || i.tm.base_opcode == 0x42
3984 || i.tm.base_opcode == 0x6642
3985 || i.tm.base_opcode == 0x47
3986 || i.tm.base_opcode == 0x6647)
3987 && i.tm.extension_opcode == None))
3988 {
3989 /* Optimize: -O2:
3990 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3991 vpsubq and vpsubw:
3992 EVEX VOP %zmmM, %zmmM, %zmmN
3993 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3994 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3995 EVEX VOP %ymmM, %ymmM, %ymmN
3996 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3997 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3998 VEX VOP %ymmM, %ymmM, %ymmN
3999 -> VEX VOP %xmmM, %xmmM, %xmmN
4000 VOP, one of vpandn and vpxor:
4001 VEX VOP %ymmM, %ymmM, %ymmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN
4003 VOP, one of vpandnd and vpandnq:
4004 EVEX VOP %zmmM, %zmmM, %zmmN
4005 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4006 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4007 EVEX VOP %ymmM, %ymmM, %ymmN
4008 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4009 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4010 VOP, one of vpxord and vpxorq:
4011 EVEX VOP %zmmM, %zmmM, %zmmN
4012 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4013 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4014 EVEX VOP %ymmM, %ymmM, %ymmN
4015 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4017 VOP, one of kxord and kxorq:
4018 VEX VOP %kM, %kM, %kN
4019 -> VEX kxorw %kM, %kM, %kN
4020 VOP, one of kandnd and kandnq:
4021 VEX VOP %kM, %kM, %kN
4022 -> VEX kandnw %kM, %kM, %kN
4023 */
4024 if (is_evex_encoding (&i.tm))
4025 {
4026 if (i.vec_encoding == vex_encoding_evex)
4027 i.tm.opcode_modifier.evex = EVEX128;
4028 else
4029 {
4030 i.tm.opcode_modifier.vex = VEX128;
4031 i.tm.opcode_modifier.vexw = VEXW0;
4032 i.tm.opcode_modifier.evex = 0;
4033 }
4034 }
4035 else if (i.tm.operand_types[0].bitfield.regmask)
4036 {
4037 i.tm.base_opcode &= 0xff;
4038 i.tm.opcode_modifier.vexw = VEXW0;
4039 }
4040 else
4041 i.tm.opcode_modifier.vex = VEX128;
4042
4043 if (i.tm.opcode_modifier.vex)
4044 for (j = 0; j < 3; j++)
4045 {
4046 i.types[j].bitfield.xmmword = 1;
4047 i.types[j].bitfield.ymmword = 0;
4048 }
4049 }
4050 }
4051
4052 /* This is the guts of the machine-dependent assembler. LINE points to a
4053 machine dependent instruction. This function is supposed to emit
4054 the frags/bytes it assembles to. */
4055
4056 void
4057 md_assemble (char *line)
4058 {
4059 unsigned int j;
4060 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4061 const insn_template *t;
4062
4063 /* Initialize globals. */
4064 memset (&i, '\0', sizeof (i));
4065 for (j = 0; j < MAX_OPERANDS; j++)
4066 i.reloc[j] = NO_RELOC;
4067 memset (disp_expressions, '\0', sizeof (disp_expressions));
4068 memset (im_expressions, '\0', sizeof (im_expressions));
4069 save_stack_p = save_stack;
4070
4071 /* First parse an instruction mnemonic & call i386_operand for the operands.
4072 We assume that the scrubber has arranged it so that line[0] is the valid
4073 start of a (possibly prefixed) mnemonic. */
4074
4075 line = parse_insn (line, mnemonic);
4076 if (line == NULL)
4077 return;
4078 mnem_suffix = i.suffix;
4079
4080 line = parse_operands (line, mnemonic);
4081 this_operand = -1;
4082 xfree (i.memop1_string);
4083 i.memop1_string = NULL;
4084 if (line == NULL)
4085 return;
4086
4087 /* Now we've parsed the mnemonic into a set of templates, and have the
4088 operands at hand. */
4089
4090 /* All intel opcodes have reversed operands except for "bound" and
4091 "enter". We also don't reverse intersegment "jmp" and "call"
4092 instructions with 2 immediate operands so that the immediate segment
4093 precedes the offset, as it does when in AT&T mode. */
4094 if (intel_syntax
4095 && i.operands > 1
4096 && (strcmp (mnemonic, "bound") != 0)
4097 && (strcmp (mnemonic, "invlpga") != 0)
4098 && !(operand_type_check (i.types[0], imm)
4099 && operand_type_check (i.types[1], imm)))
4100 swap_operands ();
4101
4102 /* The order of the immediates should be reversed
4103 for 2 immediates extrq and insertq instructions */
4104 if (i.imm_operands == 2
4105 && (strcmp (mnemonic, "extrq") == 0
4106 || strcmp (mnemonic, "insertq") == 0))
4107 swap_2_operands (0, 1);
4108
4109 if (i.imm_operands)
4110 optimize_imm ();
4111
4112 /* Don't optimize displacement for movabs since it only takes 64bit
4113 displacement. */
4114 if (i.disp_operands
4115 && i.disp_encoding != disp_encoding_32bit
4116 && (flag_code != CODE_64BIT
4117 || strcmp (mnemonic, "movabs") != 0))
4118 optimize_disp ();
4119
4120 /* Next, we find a template that matches the given insn,
4121 making sure the overlap of the given operands types is consistent
4122 with the template operand types. */
4123
4124 if (!(t = match_template (mnem_suffix)))
4125 return;
4126
4127 if (sse_check != check_none
4128 && !i.tm.opcode_modifier.noavx
4129 && !i.tm.cpu_flags.bitfield.cpuavx
4130 && (i.tm.cpu_flags.bitfield.cpusse
4131 || i.tm.cpu_flags.bitfield.cpusse2
4132 || i.tm.cpu_flags.bitfield.cpusse3
4133 || i.tm.cpu_flags.bitfield.cpussse3
4134 || i.tm.cpu_flags.bitfield.cpusse4_1
4135 || i.tm.cpu_flags.bitfield.cpusse4_2
4136 || i.tm.cpu_flags.bitfield.cpupclmul
4137 || i.tm.cpu_flags.bitfield.cpuaes
4138 || i.tm.cpu_flags.bitfield.cpugfni))
4139 {
4140 (sse_check == check_warning
4141 ? as_warn
4142 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4143 }
4144
4145 /* Zap movzx and movsx suffix. The suffix has been set from
4146 "word ptr" or "byte ptr" on the source operand in Intel syntax
4147 or extracted from mnemonic in AT&T syntax. But we'll use
4148 the destination register to choose the suffix for encoding. */
4149 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4150 {
4151 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4152 there is no suffix, the default will be byte extension. */
4153 if (i.reg_operands != 2
4154 && !i.suffix
4155 && intel_syntax)
4156 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4157
4158 i.suffix = 0;
4159 }
4160
4161 if (i.tm.opcode_modifier.fwait)
4162 if (!add_prefix (FWAIT_OPCODE))
4163 return;
4164
4165 /* Check if REP prefix is OK. */
4166 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4167 {
4168 as_bad (_("invalid instruction `%s' after `%s'"),
4169 i.tm.name, i.rep_prefix);
4170 return;
4171 }
4172
4173 /* Check for lock without a lockable instruction. Destination operand
4174 must be memory unless it is xchg (0x86). */
4175 if (i.prefix[LOCK_PREFIX]
4176 && (!i.tm.opcode_modifier.islockable
4177 || i.mem_operands == 0
4178 || (i.tm.base_opcode != 0x86
4179 && !operand_type_check (i.types[i.operands - 1], anymem))))
4180 {
4181 as_bad (_("expecting lockable instruction after `lock'"));
4182 return;
4183 }
4184
4185 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4186 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4187 {
4188 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4189 return;
4190 }
4191
4192 /* Check if HLE prefix is OK. */
4193 if (i.hle_prefix && !check_hle ())
4194 return;
4195
4196 /* Check BND prefix. */
4197 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4198 as_bad (_("expecting valid branch instruction after `bnd'"));
4199
4200 /* Check NOTRACK prefix. */
4201 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4202 as_bad (_("expecting indirect branch instruction after `notrack'"));
4203
4204 if (i.tm.cpu_flags.bitfield.cpumpx)
4205 {
4206 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4207 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4208 else if (flag_code != CODE_16BIT
4209 ? i.prefix[ADDR_PREFIX]
4210 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4211 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4212 }
4213
4214 /* Insert BND prefix. */
4215 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4216 {
4217 if (!i.prefix[BND_PREFIX])
4218 add_prefix (BND_PREFIX_OPCODE);
4219 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4220 {
4221 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4222 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4223 }
4224 }
4225
4226 /* Check string instruction segment overrides. */
4227 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4228 {
4229 if (!check_string ())
4230 return;
4231 i.disp_operands = 0;
4232 }
4233
4234 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4235 optimize_encoding ();
4236
4237 if (!process_suffix ())
4238 return;
4239
4240 /* Update operand types. */
4241 for (j = 0; j < i.operands; j++)
4242 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4243
4244 /* Make still unresolved immediate matches conform to size of immediate
4245 given in i.suffix. */
4246 if (!finalize_imm ())
4247 return;
4248
4249 if (i.types[0].bitfield.imm1)
4250 i.imm_operands = 0; /* kludge for shift insns. */
4251
4252 /* We only need to check those implicit registers for instructions
4253 with 3 operands or less. */
4254 if (i.operands <= 3)
4255 for (j = 0; j < i.operands; j++)
4256 if (i.types[j].bitfield.inoutportreg
4257 || i.types[j].bitfield.shiftcount
4258 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4259 i.reg_operands--;
4260
4261 /* ImmExt should be processed after SSE2AVX. */
4262 if (!i.tm.opcode_modifier.sse2avx
4263 && i.tm.opcode_modifier.immext)
4264 process_immext ();
4265
4266 /* For insns with operands there are more diddles to do to the opcode. */
4267 if (i.operands)
4268 {
4269 if (!process_operands ())
4270 return;
4271 }
4272 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4273 {
4274 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4275 as_warn (_("translating to `%sp'"), i.tm.name);
4276 }
4277
4278 if (is_any_vex_encoding (&i.tm))
4279 {
4280 if (flag_code == CODE_16BIT)
4281 {
4282 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4283 i.tm.name);
4284 return;
4285 }
4286
4287 if (i.tm.opcode_modifier.vex)
4288 build_vex_prefix (t);
4289 else
4290 build_evex_prefix ();
4291 }
4292
4293 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4294 instructions may define INT_OPCODE as well, so avoid this corner
4295 case for those instructions that use MODRM. */
4296 if (i.tm.base_opcode == INT_OPCODE
4297 && !i.tm.opcode_modifier.modrm
4298 && i.op[0].imms->X_add_number == 3)
4299 {
4300 i.tm.base_opcode = INT3_OPCODE;
4301 i.imm_operands = 0;
4302 }
4303
4304 if ((i.tm.opcode_modifier.jump
4305 || i.tm.opcode_modifier.jumpbyte
4306 || i.tm.opcode_modifier.jumpdword)
4307 && i.op[0].disps->X_op == O_constant)
4308 {
4309 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4310 the absolute address given by the constant. Since ix86 jumps and
4311 calls are pc relative, we need to generate a reloc. */
4312 i.op[0].disps->X_add_symbol = &abs_symbol;
4313 i.op[0].disps->X_op = O_symbol;
4314 }
4315
4316 if (i.tm.opcode_modifier.rex64)
4317 i.rex |= REX_W;
4318
4319 /* For 8 bit registers we need an empty rex prefix. Also if the
4320 instruction already has a prefix, we need to convert old
4321 registers to new ones. */
4322
4323 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4324 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4325 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4326 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4327 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4328 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4329 && i.rex != 0))
4330 {
4331 int x;
4332
4333 i.rex |= REX_OPCODE;
4334 for (x = 0; x < 2; x++)
4335 {
4336 /* Look for 8 bit operand that uses old registers. */
4337 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4338 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4339 {
4340 /* In case it is "hi" register, give up. */
4341 if (i.op[x].regs->reg_num > 3)
4342 as_bad (_("can't encode register '%s%s' in an "
4343 "instruction requiring REX prefix."),
4344 register_prefix, i.op[x].regs->reg_name);
4345
4346 /* Otherwise it is equivalent to the extended register.
4347 Since the encoding doesn't change this is merely
4348 cosmetic cleanup for debug output. */
4349
4350 i.op[x].regs = i.op[x].regs + 8;
4351 }
4352 }
4353 }
4354
4355 if (i.rex == 0 && i.rex_encoding)
4356 {
4357 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4358 that uses legacy register. If it is "hi" register, don't add
4359 the REX_OPCODE byte. */
4360 int x;
4361 for (x = 0; x < 2; x++)
4362 if (i.types[x].bitfield.reg
4363 && i.types[x].bitfield.byte
4364 && (i.op[x].regs->reg_flags & RegRex64) == 0
4365 && i.op[x].regs->reg_num > 3)
4366 {
4367 i.rex_encoding = FALSE;
4368 break;
4369 }
4370
4371 if (i.rex_encoding)
4372 i.rex = REX_OPCODE;
4373 }
4374
4375 if (i.rex != 0)
4376 add_prefix (REX_OPCODE | i.rex);
4377
4378 /* We are ready to output the insn. */
4379 output_insn ();
4380 }
4381
4382 static char *
4383 parse_insn (char *line, char *mnemonic)
4384 {
4385 char *l = line;
4386 char *token_start = l;
4387 char *mnem_p;
4388 int supported;
4389 const insn_template *t;
4390 char *dot_p = NULL;
4391
4392 while (1)
4393 {
4394 mnem_p = mnemonic;
4395 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4396 {
4397 if (*mnem_p == '.')
4398 dot_p = mnem_p;
4399 mnem_p++;
4400 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4401 {
4402 as_bad (_("no such instruction: `%s'"), token_start);
4403 return NULL;
4404 }
4405 l++;
4406 }
4407 if (!is_space_char (*l)
4408 && *l != END_OF_INSN
4409 && (intel_syntax
4410 || (*l != PREFIX_SEPARATOR
4411 && *l != ',')))
4412 {
4413 as_bad (_("invalid character %s in mnemonic"),
4414 output_invalid (*l));
4415 return NULL;
4416 }
4417 if (token_start == l)
4418 {
4419 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4420 as_bad (_("expecting prefix; got nothing"));
4421 else
4422 as_bad (_("expecting mnemonic; got nothing"));
4423 return NULL;
4424 }
4425
4426 /* Look up instruction (or prefix) via hash table. */
4427 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4428
4429 if (*l != END_OF_INSN
4430 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4431 && current_templates
4432 && current_templates->start->opcode_modifier.isprefix)
4433 {
4434 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4435 {
4436 as_bad ((flag_code != CODE_64BIT
4437 ? _("`%s' is only supported in 64-bit mode")
4438 : _("`%s' is not supported in 64-bit mode")),
4439 current_templates->start->name);
4440 return NULL;
4441 }
4442 /* If we are in 16-bit mode, do not allow addr16 or data16.
4443 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4444 if ((current_templates->start->opcode_modifier.size16
4445 || current_templates->start->opcode_modifier.size32)
4446 && flag_code != CODE_64BIT
4447 && (current_templates->start->opcode_modifier.size32
4448 ^ (flag_code == CODE_16BIT)))
4449 {
4450 as_bad (_("redundant %s prefix"),
4451 current_templates->start->name);
4452 return NULL;
4453 }
4454 if (current_templates->start->opcode_length == 0)
4455 {
4456 /* Handle pseudo prefixes. */
4457 switch (current_templates->start->base_opcode)
4458 {
4459 case 0x0:
4460 /* {disp8} */
4461 i.disp_encoding = disp_encoding_8bit;
4462 break;
4463 case 0x1:
4464 /* {disp32} */
4465 i.disp_encoding = disp_encoding_32bit;
4466 break;
4467 case 0x2:
4468 /* {load} */
4469 i.dir_encoding = dir_encoding_load;
4470 break;
4471 case 0x3:
4472 /* {store} */
4473 i.dir_encoding = dir_encoding_store;
4474 break;
4475 case 0x4:
4476 /* {vex2} */
4477 i.vec_encoding = vex_encoding_vex2;
4478 break;
4479 case 0x5:
4480 /* {vex3} */
4481 i.vec_encoding = vex_encoding_vex3;
4482 break;
4483 case 0x6:
4484 /* {evex} */
4485 i.vec_encoding = vex_encoding_evex;
4486 break;
4487 case 0x7:
4488 /* {rex} */
4489 i.rex_encoding = TRUE;
4490 break;
4491 case 0x8:
4492 /* {nooptimize} */
4493 i.no_optimize = TRUE;
4494 break;
4495 default:
4496 abort ();
4497 }
4498 }
4499 else
4500 {
4501 /* Add prefix, checking for repeated prefixes. */
4502 switch (add_prefix (current_templates->start->base_opcode))
4503 {
4504 case PREFIX_EXIST:
4505 return NULL;
4506 case PREFIX_DS:
4507 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4508 i.notrack_prefix = current_templates->start->name;
4509 break;
4510 case PREFIX_REP:
4511 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4512 i.hle_prefix = current_templates->start->name;
4513 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4514 i.bnd_prefix = current_templates->start->name;
4515 else
4516 i.rep_prefix = current_templates->start->name;
4517 break;
4518 default:
4519 break;
4520 }
4521 }
4522 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4523 token_start = ++l;
4524 }
4525 else
4526 break;
4527 }
4528
4529 if (!current_templates)
4530 {
4531 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4532 Check if we should swap operand or force 32bit displacement in
4533 encoding. */
4534 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4535 i.dir_encoding = dir_encoding_swap;
4536 else if (mnem_p - 3 == dot_p
4537 && dot_p[1] == 'd'
4538 && dot_p[2] == '8')
4539 i.disp_encoding = disp_encoding_8bit;
4540 else if (mnem_p - 4 == dot_p
4541 && dot_p[1] == 'd'
4542 && dot_p[2] == '3'
4543 && dot_p[3] == '2')
4544 i.disp_encoding = disp_encoding_32bit;
4545 else
4546 goto check_suffix;
4547 mnem_p = dot_p;
4548 *dot_p = '\0';
4549 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4550 }
4551
4552 if (!current_templates)
4553 {
4554 check_suffix:
4555 /* See if we can get a match by trimming off a suffix. */
4556 switch (mnem_p[-1])
4557 {
4558 case WORD_MNEM_SUFFIX:
4559 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4560 i.suffix = SHORT_MNEM_SUFFIX;
4561 else
4562 /* Fall through. */
4563 case BYTE_MNEM_SUFFIX:
4564 case QWORD_MNEM_SUFFIX:
4565 i.suffix = mnem_p[-1];
4566 mnem_p[-1] = '\0';
4567 current_templates = (const templates *) hash_find (op_hash,
4568 mnemonic);
4569 break;
4570 case SHORT_MNEM_SUFFIX:
4571 case LONG_MNEM_SUFFIX:
4572 if (!intel_syntax)
4573 {
4574 i.suffix = mnem_p[-1];
4575 mnem_p[-1] = '\0';
4576 current_templates = (const templates *) hash_find (op_hash,
4577 mnemonic);
4578 }
4579 break;
4580
4581 /* Intel Syntax. */
4582 case 'd':
4583 if (intel_syntax)
4584 {
4585 if (intel_float_operand (mnemonic) == 1)
4586 i.suffix = SHORT_MNEM_SUFFIX;
4587 else
4588 i.suffix = LONG_MNEM_SUFFIX;
4589 mnem_p[-1] = '\0';
4590 current_templates = (const templates *) hash_find (op_hash,
4591 mnemonic);
4592 }
4593 break;
4594 }
4595 if (!current_templates)
4596 {
4597 as_bad (_("no such instruction: `%s'"), token_start);
4598 return NULL;
4599 }
4600 }
4601
4602 if (current_templates->start->opcode_modifier.jump
4603 || current_templates->start->opcode_modifier.jumpbyte)
4604 {
4605 /* Check for a branch hint. We allow ",pt" and ",pn" for
4606 predict taken and predict not taken respectively.
4607 I'm not sure that branch hints actually do anything on loop
4608 and jcxz insns (JumpByte) for current Pentium4 chips. They
4609 may work in the future and it doesn't hurt to accept them
4610 now. */
4611 if (l[0] == ',' && l[1] == 'p')
4612 {
4613 if (l[2] == 't')
4614 {
4615 if (!add_prefix (DS_PREFIX_OPCODE))
4616 return NULL;
4617 l += 3;
4618 }
4619 else if (l[2] == 'n')
4620 {
4621 if (!add_prefix (CS_PREFIX_OPCODE))
4622 return NULL;
4623 l += 3;
4624 }
4625 }
4626 }
4627 /* Any other comma loses. */
4628 if (*l == ',')
4629 {
4630 as_bad (_("invalid character %s in mnemonic"),
4631 output_invalid (*l));
4632 return NULL;
4633 }
4634
4635 /* Check if instruction is supported on specified architecture. */
4636 supported = 0;
4637 for (t = current_templates->start; t < current_templates->end; ++t)
4638 {
4639 supported |= cpu_flags_match (t);
4640 if (supported == CPU_FLAGS_PERFECT_MATCH)
4641 {
4642 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4643 as_warn (_("use .code16 to ensure correct addressing mode"));
4644
4645 return l;
4646 }
4647 }
4648
4649 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4650 as_bad (flag_code == CODE_64BIT
4651 ? _("`%s' is not supported in 64-bit mode")
4652 : _("`%s' is only supported in 64-bit mode"),
4653 current_templates->start->name);
4654 else
4655 as_bad (_("`%s' is not supported on `%s%s'"),
4656 current_templates->start->name,
4657 cpu_arch_name ? cpu_arch_name : default_arch,
4658 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4659
4660 return NULL;
4661 }
4662
4663 static char *
4664 parse_operands (char *l, const char *mnemonic)
4665 {
4666 char *token_start;
4667
4668 /* 1 if operand is pending after ','. */
4669 unsigned int expecting_operand = 0;
4670
4671 /* Non-zero if operand parens not balanced. */
4672 unsigned int paren_not_balanced;
4673
4674 while (*l != END_OF_INSN)
4675 {
4676 /* Skip optional white space before operand. */
4677 if (is_space_char (*l))
4678 ++l;
4679 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4680 {
4681 as_bad (_("invalid character %s before operand %d"),
4682 output_invalid (*l),
4683 i.operands + 1);
4684 return NULL;
4685 }
4686 token_start = l; /* After white space. */
4687 paren_not_balanced = 0;
4688 while (paren_not_balanced || *l != ',')
4689 {
4690 if (*l == END_OF_INSN)
4691 {
4692 if (paren_not_balanced)
4693 {
4694 if (!intel_syntax)
4695 as_bad (_("unbalanced parenthesis in operand %d."),
4696 i.operands + 1);
4697 else
4698 as_bad (_("unbalanced brackets in operand %d."),
4699 i.operands + 1);
4700 return NULL;
4701 }
4702 else
4703 break; /* we are done */
4704 }
4705 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4706 {
4707 as_bad (_("invalid character %s in operand %d"),
4708 output_invalid (*l),
4709 i.operands + 1);
4710 return NULL;
4711 }
4712 if (!intel_syntax)
4713 {
4714 if (*l == '(')
4715 ++paren_not_balanced;
4716 if (*l == ')')
4717 --paren_not_balanced;
4718 }
4719 else
4720 {
4721 if (*l == '[')
4722 ++paren_not_balanced;
4723 if (*l == ']')
4724 --paren_not_balanced;
4725 }
4726 l++;
4727 }
4728 if (l != token_start)
4729 { /* Yes, we've read in another operand. */
4730 unsigned int operand_ok;
4731 this_operand = i.operands++;
4732 if (i.operands > MAX_OPERANDS)
4733 {
4734 as_bad (_("spurious operands; (%d operands/instruction max)"),
4735 MAX_OPERANDS);
4736 return NULL;
4737 }
4738 i.types[this_operand].bitfield.unspecified = 1;
4739 /* Now parse operand adding info to 'i' as we go along. */
4740 END_STRING_AND_SAVE (l);
4741
4742 if (i.mem_operands > 1)
4743 {
4744 as_bad (_("too many memory references for `%s'"),
4745 mnemonic);
4746 return 0;
4747 }
4748
4749 if (intel_syntax)
4750 operand_ok =
4751 i386_intel_operand (token_start,
4752 intel_float_operand (mnemonic));
4753 else
4754 operand_ok = i386_att_operand (token_start);
4755
4756 RESTORE_END_STRING (l);
4757 if (!operand_ok)
4758 return NULL;
4759 }
4760 else
4761 {
4762 if (expecting_operand)
4763 {
4764 expecting_operand_after_comma:
4765 as_bad (_("expecting operand after ','; got nothing"));
4766 return NULL;
4767 }
4768 if (*l == ',')
4769 {
4770 as_bad (_("expecting operand before ','; got nothing"));
4771 return NULL;
4772 }
4773 }
4774
4775 /* Now *l must be either ',' or END_OF_INSN. */
4776 if (*l == ',')
4777 {
4778 if (*++l == END_OF_INSN)
4779 {
4780 /* Just skip it, if it's \n complain. */
4781 goto expecting_operand_after_comma;
4782 }
4783 expecting_operand = 1;
4784 }
4785 }
4786 return l;
4787 }
4788
4789 static void
4790 swap_2_operands (int xchg1, int xchg2)
4791 {
4792 union i386_op temp_op;
4793 i386_operand_type temp_type;
4794 unsigned int temp_flags;
4795 enum bfd_reloc_code_real temp_reloc;
4796
4797 temp_type = i.types[xchg2];
4798 i.types[xchg2] = i.types[xchg1];
4799 i.types[xchg1] = temp_type;
4800
4801 temp_flags = i.flags[xchg2];
4802 i.flags[xchg2] = i.flags[xchg1];
4803 i.flags[xchg1] = temp_flags;
4804
4805 temp_op = i.op[xchg2];
4806 i.op[xchg2] = i.op[xchg1];
4807 i.op[xchg1] = temp_op;
4808
4809 temp_reloc = i.reloc[xchg2];
4810 i.reloc[xchg2] = i.reloc[xchg1];
4811 i.reloc[xchg1] = temp_reloc;
4812
4813 if (i.mask)
4814 {
4815 if (i.mask->operand == xchg1)
4816 i.mask->operand = xchg2;
4817 else if (i.mask->operand == xchg2)
4818 i.mask->operand = xchg1;
4819 }
4820 if (i.broadcast)
4821 {
4822 if (i.broadcast->operand == xchg1)
4823 i.broadcast->operand = xchg2;
4824 else if (i.broadcast->operand == xchg2)
4825 i.broadcast->operand = xchg1;
4826 }
4827 if (i.rounding)
4828 {
4829 if (i.rounding->operand == xchg1)
4830 i.rounding->operand = xchg2;
4831 else if (i.rounding->operand == xchg2)
4832 i.rounding->operand = xchg1;
4833 }
4834 }
4835
4836 static void
4837 swap_operands (void)
4838 {
4839 switch (i.operands)
4840 {
4841 case 5:
4842 case 4:
4843 swap_2_operands (1, i.operands - 2);
4844 /* Fall through. */
4845 case 3:
4846 case 2:
4847 swap_2_operands (0, i.operands - 1);
4848 break;
4849 default:
4850 abort ();
4851 }
4852
4853 if (i.mem_operands == 2)
4854 {
4855 const seg_entry *temp_seg;
4856 temp_seg = i.seg[0];
4857 i.seg[0] = i.seg[1];
4858 i.seg[1] = temp_seg;
4859 }
4860 }
4861
4862 /* Try to ensure constant immediates are represented in the smallest
4863 opcode possible. */
4864 static void
4865 optimize_imm (void)
4866 {
4867 char guess_suffix = 0;
4868 int op;
4869
4870 if (i.suffix)
4871 guess_suffix = i.suffix;
4872 else if (i.reg_operands)
4873 {
4874 /* Figure out a suffix from the last register operand specified.
4875 We can't do this properly yet, ie. excluding InOutPortReg,
4876 but the following works for instructions with immediates.
4877 In any case, we can't set i.suffix yet. */
4878 for (op = i.operands; --op >= 0;)
4879 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4880 {
4881 guess_suffix = BYTE_MNEM_SUFFIX;
4882 break;
4883 }
4884 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4885 {
4886 guess_suffix = WORD_MNEM_SUFFIX;
4887 break;
4888 }
4889 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4890 {
4891 guess_suffix = LONG_MNEM_SUFFIX;
4892 break;
4893 }
4894 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4895 {
4896 guess_suffix = QWORD_MNEM_SUFFIX;
4897 break;
4898 }
4899 }
4900 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4901 guess_suffix = WORD_MNEM_SUFFIX;
4902
4903 for (op = i.operands; --op >= 0;)
4904 if (operand_type_check (i.types[op], imm))
4905 {
4906 switch (i.op[op].imms->X_op)
4907 {
4908 case O_constant:
4909 /* If a suffix is given, this operand may be shortened. */
4910 switch (guess_suffix)
4911 {
4912 case LONG_MNEM_SUFFIX:
4913 i.types[op].bitfield.imm32 = 1;
4914 i.types[op].bitfield.imm64 = 1;
4915 break;
4916 case WORD_MNEM_SUFFIX:
4917 i.types[op].bitfield.imm16 = 1;
4918 i.types[op].bitfield.imm32 = 1;
4919 i.types[op].bitfield.imm32s = 1;
4920 i.types[op].bitfield.imm64 = 1;
4921 break;
4922 case BYTE_MNEM_SUFFIX:
4923 i.types[op].bitfield.imm8 = 1;
4924 i.types[op].bitfield.imm8s = 1;
4925 i.types[op].bitfield.imm16 = 1;
4926 i.types[op].bitfield.imm32 = 1;
4927 i.types[op].bitfield.imm32s = 1;
4928 i.types[op].bitfield.imm64 = 1;
4929 break;
4930 }
4931
4932 /* If this operand is at most 16 bits, convert it
4933 to a signed 16 bit number before trying to see
4934 whether it will fit in an even smaller size.
4935 This allows a 16-bit operand such as $0xffe0 to
4936 be recognised as within Imm8S range. */
4937 if ((i.types[op].bitfield.imm16)
4938 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4939 {
4940 i.op[op].imms->X_add_number =
4941 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4942 }
4943 #ifdef BFD64
4944 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4945 if ((i.types[op].bitfield.imm32)
4946 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4947 == 0))
4948 {
4949 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4950 ^ ((offsetT) 1 << 31))
4951 - ((offsetT) 1 << 31));
4952 }
4953 #endif
4954 i.types[op]
4955 = operand_type_or (i.types[op],
4956 smallest_imm_type (i.op[op].imms->X_add_number));
4957
4958 /* We must avoid matching of Imm32 templates when 64bit
4959 only immediate is available. */
4960 if (guess_suffix == QWORD_MNEM_SUFFIX)
4961 i.types[op].bitfield.imm32 = 0;
4962 break;
4963
4964 case O_absent:
4965 case O_register:
4966 abort ();
4967
4968 /* Symbols and expressions. */
4969 default:
4970 /* Convert symbolic operand to proper sizes for matching, but don't
4971 prevent matching a set of insns that only supports sizes other
4972 than those matching the insn suffix. */
4973 {
4974 i386_operand_type mask, allowed;
4975 const insn_template *t;
4976
4977 operand_type_set (&mask, 0);
4978 operand_type_set (&allowed, 0);
4979
4980 for (t = current_templates->start;
4981 t < current_templates->end;
4982 ++t)
4983 allowed = operand_type_or (allowed,
4984 t->operand_types[op]);
4985 switch (guess_suffix)
4986 {
4987 case QWORD_MNEM_SUFFIX:
4988 mask.bitfield.imm64 = 1;
4989 mask.bitfield.imm32s = 1;
4990 break;
4991 case LONG_MNEM_SUFFIX:
4992 mask.bitfield.imm32 = 1;
4993 break;
4994 case WORD_MNEM_SUFFIX:
4995 mask.bitfield.imm16 = 1;
4996 break;
4997 case BYTE_MNEM_SUFFIX:
4998 mask.bitfield.imm8 = 1;
4999 break;
5000 default:
5001 break;
5002 }
5003 allowed = operand_type_and (mask, allowed);
5004 if (!operand_type_all_zero (&allowed))
5005 i.types[op] = operand_type_and (i.types[op], mask);
5006 }
5007 break;
5008 }
5009 }
5010 }
5011
5012 /* Try to use the smallest displacement type too. */
5013 static void
5014 optimize_disp (void)
5015 {
5016 int op;
5017
5018 for (op = i.operands; --op >= 0;)
5019 if (operand_type_check (i.types[op], disp))
5020 {
5021 if (i.op[op].disps->X_op == O_constant)
5022 {
5023 offsetT op_disp = i.op[op].disps->X_add_number;
5024
5025 if (i.types[op].bitfield.disp16
5026 && (op_disp & ~(offsetT) 0xffff) == 0)
5027 {
5028 /* If this operand is at most 16 bits, convert
5029 to a signed 16 bit number and don't use 64bit
5030 displacement. */
5031 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5032 i.types[op].bitfield.disp64 = 0;
5033 }
5034 #ifdef BFD64
5035 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5036 if (i.types[op].bitfield.disp32
5037 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5038 {
5039 /* If this operand is at most 32 bits, convert
5040 to a signed 32 bit number and don't use 64bit
5041 displacement. */
5042 op_disp &= (((offsetT) 2 << 31) - 1);
5043 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5044 i.types[op].bitfield.disp64 = 0;
5045 }
5046 #endif
5047 if (!op_disp && i.types[op].bitfield.baseindex)
5048 {
5049 i.types[op].bitfield.disp8 = 0;
5050 i.types[op].bitfield.disp16 = 0;
5051 i.types[op].bitfield.disp32 = 0;
5052 i.types[op].bitfield.disp32s = 0;
5053 i.types[op].bitfield.disp64 = 0;
5054 i.op[op].disps = 0;
5055 i.disp_operands--;
5056 }
5057 else if (flag_code == CODE_64BIT)
5058 {
5059 if (fits_in_signed_long (op_disp))
5060 {
5061 i.types[op].bitfield.disp64 = 0;
5062 i.types[op].bitfield.disp32s = 1;
5063 }
5064 if (i.prefix[ADDR_PREFIX]
5065 && fits_in_unsigned_long (op_disp))
5066 i.types[op].bitfield.disp32 = 1;
5067 }
5068 if ((i.types[op].bitfield.disp32
5069 || i.types[op].bitfield.disp32s
5070 || i.types[op].bitfield.disp16)
5071 && fits_in_disp8 (op_disp))
5072 i.types[op].bitfield.disp8 = 1;
5073 }
5074 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5075 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5076 {
5077 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5078 i.op[op].disps, 0, i.reloc[op]);
5079 i.types[op].bitfield.disp8 = 0;
5080 i.types[op].bitfield.disp16 = 0;
5081 i.types[op].bitfield.disp32 = 0;
5082 i.types[op].bitfield.disp32s = 0;
5083 i.types[op].bitfield.disp64 = 0;
5084 }
5085 else
5086 /* We only support 64bit displacement on constants. */
5087 i.types[op].bitfield.disp64 = 0;
5088 }
5089 }
5090
5091 /* Return 1 if there is a match in broadcast bytes between operand
5092 GIVEN and instruction template T. */
5093
5094 static INLINE int
5095 match_broadcast_size (const insn_template *t, unsigned int given)
5096 {
5097 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5098 && i.types[given].bitfield.byte)
5099 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5100 && i.types[given].bitfield.word)
5101 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5102 && i.types[given].bitfield.dword)
5103 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5104 && i.types[given].bitfield.qword));
5105 }
5106
5107 /* Check if operands are valid for the instruction. */
5108
5109 static int
5110 check_VecOperands (const insn_template *t)
5111 {
5112 unsigned int op;
5113 i386_cpu_flags cpu;
5114 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5115
5116 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5117 any one operand are implicity requiring AVX512VL support if the actual
5118 operand size is YMMword or XMMword. Since this function runs after
5119 template matching, there's no need to check for YMMword/XMMword in
5120 the template. */
5121 cpu = cpu_flags_and (t->cpu_flags, avx512);
5122 if (!cpu_flags_all_zero (&cpu)
5123 && !t->cpu_flags.bitfield.cpuavx512vl
5124 && !cpu_arch_flags.bitfield.cpuavx512vl)
5125 {
5126 for (op = 0; op < t->operands; ++op)
5127 {
5128 if (t->operand_types[op].bitfield.zmmword
5129 && (i.types[op].bitfield.ymmword
5130 || i.types[op].bitfield.xmmword))
5131 {
5132 i.error = unsupported;
5133 return 1;
5134 }
5135 }
5136 }
5137
5138 /* Without VSIB byte, we can't have a vector register for index. */
5139 if (!t->opcode_modifier.vecsib
5140 && i.index_reg
5141 && (i.index_reg->reg_type.bitfield.xmmword
5142 || i.index_reg->reg_type.bitfield.ymmword
5143 || i.index_reg->reg_type.bitfield.zmmword))
5144 {
5145 i.error = unsupported_vector_index_register;
5146 return 1;
5147 }
5148
5149 /* Check if default mask is allowed. */
5150 if (t->opcode_modifier.nodefmask
5151 && (!i.mask || i.mask->mask->reg_num == 0))
5152 {
5153 i.error = no_default_mask;
5154 return 1;
5155 }
5156
5157 /* For VSIB byte, we need a vector register for index, and all vector
5158 registers must be distinct. */
5159 if (t->opcode_modifier.vecsib)
5160 {
5161 if (!i.index_reg
5162 || !((t->opcode_modifier.vecsib == VecSIB128
5163 && i.index_reg->reg_type.bitfield.xmmword)
5164 || (t->opcode_modifier.vecsib == VecSIB256
5165 && i.index_reg->reg_type.bitfield.ymmword)
5166 || (t->opcode_modifier.vecsib == VecSIB512
5167 && i.index_reg->reg_type.bitfield.zmmword)))
5168 {
5169 i.error = invalid_vsib_address;
5170 return 1;
5171 }
5172
5173 gas_assert (i.reg_operands == 2 || i.mask);
5174 if (i.reg_operands == 2 && !i.mask)
5175 {
5176 gas_assert (i.types[0].bitfield.regsimd);
5177 gas_assert (i.types[0].bitfield.xmmword
5178 || i.types[0].bitfield.ymmword);
5179 gas_assert (i.types[2].bitfield.regsimd);
5180 gas_assert (i.types[2].bitfield.xmmword
5181 || i.types[2].bitfield.ymmword);
5182 if (operand_check == check_none)
5183 return 0;
5184 if (register_number (i.op[0].regs)
5185 != register_number (i.index_reg)
5186 && register_number (i.op[2].regs)
5187 != register_number (i.index_reg)
5188 && register_number (i.op[0].regs)
5189 != register_number (i.op[2].regs))
5190 return 0;
5191 if (operand_check == check_error)
5192 {
5193 i.error = invalid_vector_register_set;
5194 return 1;
5195 }
5196 as_warn (_("mask, index, and destination registers should be distinct"));
5197 }
5198 else if (i.reg_operands == 1 && i.mask)
5199 {
5200 if (i.types[1].bitfield.regsimd
5201 && (i.types[1].bitfield.xmmword
5202 || i.types[1].bitfield.ymmword
5203 || i.types[1].bitfield.zmmword)
5204 && (register_number (i.op[1].regs)
5205 == register_number (i.index_reg)))
5206 {
5207 if (operand_check == check_error)
5208 {
5209 i.error = invalid_vector_register_set;
5210 return 1;
5211 }
5212 if (operand_check != check_none)
5213 as_warn (_("index and destination registers should be distinct"));
5214 }
5215 }
5216 }
5217
5218 /* Check if broadcast is supported by the instruction and is applied
5219 to the memory operand. */
5220 if (i.broadcast)
5221 {
5222 i386_operand_type type, overlap;
5223
5224 /* Check if specified broadcast is supported in this instruction,
5225 and its broadcast bytes match the memory operand. */
5226 op = i.broadcast->operand;
5227 if (!t->opcode_modifier.broadcast
5228 || !(i.flags[op] & Operand_Mem)
5229 || (!i.types[op].bitfield.unspecified
5230 && !match_broadcast_size (t, op)))
5231 {
5232 bad_broadcast:
5233 i.error = unsupported_broadcast;
5234 return 1;
5235 }
5236
5237 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5238 * i.broadcast->type);
5239 operand_type_set (&type, 0);
5240 switch (i.broadcast->bytes)
5241 {
5242 case 2:
5243 type.bitfield.word = 1;
5244 break;
5245 case 4:
5246 type.bitfield.dword = 1;
5247 break;
5248 case 8:
5249 type.bitfield.qword = 1;
5250 break;
5251 case 16:
5252 type.bitfield.xmmword = 1;
5253 break;
5254 case 32:
5255 type.bitfield.ymmword = 1;
5256 break;
5257 case 64:
5258 type.bitfield.zmmword = 1;
5259 break;
5260 default:
5261 goto bad_broadcast;
5262 }
5263
5264 overlap = operand_type_and (type, t->operand_types[op]);
5265 if (operand_type_all_zero (&overlap))
5266 goto bad_broadcast;
5267
5268 if (t->opcode_modifier.checkregsize)
5269 {
5270 unsigned int j;
5271
5272 type.bitfield.baseindex = 1;
5273 for (j = 0; j < i.operands; ++j)
5274 {
5275 if (j != op
5276 && !operand_type_register_match(i.types[j],
5277 t->operand_types[j],
5278 type,
5279 t->operand_types[op]))
5280 goto bad_broadcast;
5281 }
5282 }
5283 }
5284 /* If broadcast is supported in this instruction, we need to check if
5285 operand of one-element size isn't specified without broadcast. */
5286 else if (t->opcode_modifier.broadcast && i.mem_operands)
5287 {
5288 /* Find memory operand. */
5289 for (op = 0; op < i.operands; op++)
5290 if (operand_type_check (i.types[op], anymem))
5291 break;
5292 gas_assert (op < i.operands);
5293 /* Check size of the memory operand. */
5294 if (match_broadcast_size (t, op))
5295 {
5296 i.error = broadcast_needed;
5297 return 1;
5298 }
5299 }
5300 else
5301 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5302
5303 /* Check if requested masking is supported. */
5304 if (i.mask)
5305 {
5306 switch (t->opcode_modifier.masking)
5307 {
5308 case BOTH_MASKING:
5309 break;
5310 case MERGING_MASKING:
5311 if (i.mask->zeroing)
5312 {
5313 case 0:
5314 i.error = unsupported_masking;
5315 return 1;
5316 }
5317 break;
5318 case DYNAMIC_MASKING:
5319 /* Memory destinations allow only merging masking. */
5320 if (i.mask->zeroing && i.mem_operands)
5321 {
5322 /* Find memory operand. */
5323 for (op = 0; op < i.operands; op++)
5324 if (i.flags[op] & Operand_Mem)
5325 break;
5326 gas_assert (op < i.operands);
5327 if (op == i.operands - 1)
5328 {
5329 i.error = unsupported_masking;
5330 return 1;
5331 }
5332 }
5333 break;
5334 default:
5335 abort ();
5336 }
5337 }
5338
5339 /* Check if masking is applied to dest operand. */
5340 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5341 {
5342 i.error = mask_not_on_destination;
5343 return 1;
5344 }
5345
5346 /* Check RC/SAE. */
5347 if (i.rounding)
5348 {
5349 if ((i.rounding->type != saeonly
5350 && !t->opcode_modifier.staticrounding)
5351 || (i.rounding->type == saeonly
5352 && (t->opcode_modifier.staticrounding
5353 || !t->opcode_modifier.sae)))
5354 {
5355 i.error = unsupported_rc_sae;
5356 return 1;
5357 }
5358 /* If the instruction has several immediate operands and one of
5359 them is rounding, the rounding operand should be the last
5360 immediate operand. */
5361 if (i.imm_operands > 1
5362 && i.rounding->operand != (int) (i.imm_operands - 1))
5363 {
5364 i.error = rc_sae_operand_not_last_imm;
5365 return 1;
5366 }
5367 }
5368
5369 /* Check vector Disp8 operand. */
5370 if (t->opcode_modifier.disp8memshift
5371 && i.disp_encoding != disp_encoding_32bit)
5372 {
5373 if (i.broadcast)
5374 i.memshift = t->opcode_modifier.broadcast - 1;
5375 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5376 i.memshift = t->opcode_modifier.disp8memshift;
5377 else
5378 {
5379 const i386_operand_type *type = NULL;
5380
5381 i.memshift = 0;
5382 for (op = 0; op < i.operands; op++)
5383 if (operand_type_check (i.types[op], anymem))
5384 {
5385 if (t->opcode_modifier.evex == EVEXLIG)
5386 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5387 else if (t->operand_types[op].bitfield.xmmword
5388 + t->operand_types[op].bitfield.ymmword
5389 + t->operand_types[op].bitfield.zmmword <= 1)
5390 type = &t->operand_types[op];
5391 else if (!i.types[op].bitfield.unspecified)
5392 type = &i.types[op];
5393 }
5394 else if (i.types[op].bitfield.regsimd
5395 && t->opcode_modifier.evex != EVEXLIG)
5396 {
5397 if (i.types[op].bitfield.zmmword)
5398 i.memshift = 6;
5399 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5400 i.memshift = 5;
5401 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5402 i.memshift = 4;
5403 }
5404
5405 if (type)
5406 {
5407 if (type->bitfield.zmmword)
5408 i.memshift = 6;
5409 else if (type->bitfield.ymmword)
5410 i.memshift = 5;
5411 else if (type->bitfield.xmmword)
5412 i.memshift = 4;
5413 }
5414
5415 /* For the check in fits_in_disp8(). */
5416 if (i.memshift == 0)
5417 i.memshift = -1;
5418 }
5419
5420 for (op = 0; op < i.operands; op++)
5421 if (operand_type_check (i.types[op], disp)
5422 && i.op[op].disps->X_op == O_constant)
5423 {
5424 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5425 {
5426 i.types[op].bitfield.disp8 = 1;
5427 return 0;
5428 }
5429 i.types[op].bitfield.disp8 = 0;
5430 }
5431 }
5432
5433 i.memshift = 0;
5434
5435 return 0;
5436 }
5437
5438 /* Check if operands are valid for the instruction. Update VEX
5439 operand types. */
5440
5441 static int
5442 VEX_check_operands (const insn_template *t)
5443 {
5444 if (i.vec_encoding == vex_encoding_evex)
5445 {
5446 /* This instruction must be encoded with EVEX prefix. */
5447 if (!is_evex_encoding (t))
5448 {
5449 i.error = unsupported;
5450 return 1;
5451 }
5452 return 0;
5453 }
5454
5455 if (!t->opcode_modifier.vex)
5456 {
5457 /* This instruction template doesn't have VEX prefix. */
5458 if (i.vec_encoding != vex_encoding_default)
5459 {
5460 i.error = unsupported;
5461 return 1;
5462 }
5463 return 0;
5464 }
5465
5466 /* Only check VEX_Imm4, which must be the first operand. */
5467 if (t->operand_types[0].bitfield.vec_imm4)
5468 {
5469 if (i.op[0].imms->X_op != O_constant
5470 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5471 {
5472 i.error = bad_imm4;
5473 return 1;
5474 }
5475
5476 /* Turn off Imm8 so that update_imm won't complain. */
5477 i.types[0] = vec_imm4;
5478 }
5479
5480 return 0;
5481 }
5482
5483 static const insn_template *
5484 match_template (char mnem_suffix)
5485 {
5486 /* Points to template once we've found it. */
5487 const insn_template *t;
5488 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5489 i386_operand_type overlap4;
5490 unsigned int found_reverse_match;
5491 i386_opcode_modifier suffix_check, mnemsuf_check;
5492 i386_operand_type operand_types [MAX_OPERANDS];
5493 int addr_prefix_disp;
5494 unsigned int j;
5495 unsigned int found_cpu_match, size_match;
5496 unsigned int check_register;
5497 enum i386_error specific_error = 0;
5498
5499 #if MAX_OPERANDS != 5
5500 # error "MAX_OPERANDS must be 5."
5501 #endif
5502
5503 found_reverse_match = 0;
5504 addr_prefix_disp = -1;
5505
5506 memset (&suffix_check, 0, sizeof (suffix_check));
5507 if (intel_syntax && i.broadcast)
5508 /* nothing */;
5509 else if (i.suffix == BYTE_MNEM_SUFFIX)
5510 suffix_check.no_bsuf = 1;
5511 else if (i.suffix == WORD_MNEM_SUFFIX)
5512 suffix_check.no_wsuf = 1;
5513 else if (i.suffix == SHORT_MNEM_SUFFIX)
5514 suffix_check.no_ssuf = 1;
5515 else if (i.suffix == LONG_MNEM_SUFFIX)
5516 suffix_check.no_lsuf = 1;
5517 else if (i.suffix == QWORD_MNEM_SUFFIX)
5518 suffix_check.no_qsuf = 1;
5519 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5520 suffix_check.no_ldsuf = 1;
5521
5522 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5523 if (intel_syntax)
5524 {
5525 switch (mnem_suffix)
5526 {
5527 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5528 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5529 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5530 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5531 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5532 }
5533 }
5534
5535 /* Must have right number of operands. */
5536 i.error = number_of_operands_mismatch;
5537
5538 for (t = current_templates->start; t < current_templates->end; t++)
5539 {
5540 addr_prefix_disp = -1;
5541 found_reverse_match = 0;
5542
5543 if (i.operands != t->operands)
5544 continue;
5545
5546 /* Check processor support. */
5547 i.error = unsupported;
5548 found_cpu_match = (cpu_flags_match (t)
5549 == CPU_FLAGS_PERFECT_MATCH);
5550 if (!found_cpu_match)
5551 continue;
5552
5553 /* Check AT&T mnemonic. */
5554 i.error = unsupported_with_intel_mnemonic;
5555 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5556 continue;
5557
5558 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5559 i.error = unsupported_syntax;
5560 if ((intel_syntax && t->opcode_modifier.attsyntax)
5561 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5562 || (intel64 && t->opcode_modifier.amd64)
5563 || (!intel64 && t->opcode_modifier.intel64))
5564 continue;
5565
5566 /* Check the suffix, except for some instructions in intel mode. */
5567 i.error = invalid_instruction_suffix;
5568 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5569 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5570 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5571 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5572 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5573 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5574 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5575 continue;
5576 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5577 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5578 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5579 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5580 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5581 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5582 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5583 continue;
5584
5585 size_match = operand_size_match (t);
5586 if (!size_match)
5587 continue;
5588
5589 for (j = 0; j < MAX_OPERANDS; j++)
5590 operand_types[j] = t->operand_types[j];
5591
5592 /* In general, don't allow 64-bit operands in 32-bit mode. */
5593 if (i.suffix == QWORD_MNEM_SUFFIX
5594 && flag_code != CODE_64BIT
5595 && (intel_syntax
5596 ? (!t->opcode_modifier.ignoresize
5597 && !t->opcode_modifier.broadcast
5598 && !intel_float_operand (t->name))
5599 : intel_float_operand (t->name) != 2)
5600 && ((!operand_types[0].bitfield.regmmx
5601 && !operand_types[0].bitfield.regsimd)
5602 || (!operand_types[t->operands > 1].bitfield.regmmx
5603 && !operand_types[t->operands > 1].bitfield.regsimd))
5604 && (t->base_opcode != 0x0fc7
5605 || t->extension_opcode != 1 /* cmpxchg8b */))
5606 continue;
5607
5608 /* In general, don't allow 32-bit operands on pre-386. */
5609 else if (i.suffix == LONG_MNEM_SUFFIX
5610 && !cpu_arch_flags.bitfield.cpui386
5611 && (intel_syntax
5612 ? (!t->opcode_modifier.ignoresize
5613 && !intel_float_operand (t->name))
5614 : intel_float_operand (t->name) != 2)
5615 && ((!operand_types[0].bitfield.regmmx
5616 && !operand_types[0].bitfield.regsimd)
5617 || (!operand_types[t->operands > 1].bitfield.regmmx
5618 && !operand_types[t->operands > 1].bitfield.regsimd)))
5619 continue;
5620
5621 /* Do not verify operands when there are none. */
5622 else
5623 {
5624 if (!t->operands)
5625 /* We've found a match; break out of loop. */
5626 break;
5627 }
5628
5629 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5630 into Disp32/Disp16/Disp32 operand. */
5631 if (i.prefix[ADDR_PREFIX] != 0)
5632 {
5633 /* There should be only one Disp operand. */
5634 switch (flag_code)
5635 {
5636 case CODE_16BIT:
5637 for (j = 0; j < MAX_OPERANDS; j++)
5638 {
5639 if (operand_types[j].bitfield.disp16)
5640 {
5641 addr_prefix_disp = j;
5642 operand_types[j].bitfield.disp32 = 1;
5643 operand_types[j].bitfield.disp16 = 0;
5644 break;
5645 }
5646 }
5647 break;
5648 case CODE_32BIT:
5649 for (j = 0; j < MAX_OPERANDS; j++)
5650 {
5651 if (operand_types[j].bitfield.disp32)
5652 {
5653 addr_prefix_disp = j;
5654 operand_types[j].bitfield.disp32 = 0;
5655 operand_types[j].bitfield.disp16 = 1;
5656 break;
5657 }
5658 }
5659 break;
5660 case CODE_64BIT:
5661 for (j = 0; j < MAX_OPERANDS; j++)
5662 {
5663 if (operand_types[j].bitfield.disp64)
5664 {
5665 addr_prefix_disp = j;
5666 operand_types[j].bitfield.disp64 = 0;
5667 operand_types[j].bitfield.disp32 = 1;
5668 break;
5669 }
5670 }
5671 break;
5672 }
5673 }
5674
5675 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5676 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5677 continue;
5678
5679 /* We check register size if needed. */
5680 if (t->opcode_modifier.checkregsize)
5681 {
5682 check_register = (1 << t->operands) - 1;
5683 if (i.broadcast)
5684 check_register &= ~(1 << i.broadcast->operand);
5685 }
5686 else
5687 check_register = 0;
5688
5689 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5690 switch (t->operands)
5691 {
5692 case 1:
5693 if (!operand_type_match (overlap0, i.types[0]))
5694 continue;
5695 break;
5696 case 2:
5697 /* xchg %eax, %eax is a special case. It is an alias for nop
5698 only in 32bit mode and we can use opcode 0x90. In 64bit
5699 mode, we can't use 0x90 for xchg %eax, %eax since it should
5700 zero-extend %eax to %rax. */
5701 if (flag_code == CODE_64BIT
5702 && t->base_opcode == 0x90
5703 && operand_type_equal (&i.types [0], &acc32)
5704 && operand_type_equal (&i.types [1], &acc32))
5705 continue;
5706 /* xrelease mov %eax, <disp> is another special case. It must not
5707 match the accumulator-only encoding of mov. */
5708 if (flag_code != CODE_64BIT
5709 && i.hle_prefix
5710 && t->base_opcode == 0xa0
5711 && i.types[0].bitfield.acc
5712 && operand_type_check (i.types[1], anymem))
5713 continue;
5714 if (!(size_match & MATCH_STRAIGHT))
5715 goto check_reverse;
5716 /* Reverse direction of operands if swapping is possible in the first
5717 place (operands need to be symmetric) and
5718 - the load form is requested, and the template is a store form,
5719 - the store form is requested, and the template is a load form,
5720 - the non-default (swapped) form is requested. */
5721 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5722 if (t->opcode_modifier.d && i.reg_operands == 2
5723 && !operand_type_all_zero (&overlap1))
5724 switch (i.dir_encoding)
5725 {
5726 case dir_encoding_load:
5727 if (operand_type_check (operand_types[i.operands - 1], anymem)
5728 || operand_types[i.operands - 1].bitfield.regmem)
5729 goto check_reverse;
5730 break;
5731
5732 case dir_encoding_store:
5733 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5734 && !operand_types[i.operands - 1].bitfield.regmem)
5735 goto check_reverse;
5736 break;
5737
5738 case dir_encoding_swap:
5739 goto check_reverse;
5740
5741 case dir_encoding_default:
5742 break;
5743 }
5744 /* Fall through. */
5745
5746 case 3:
5747 /* If we want store form, we skip the current load. */
5748 if ((i.dir_encoding == dir_encoding_store
5749 || i.dir_encoding == dir_encoding_swap)
5750 && i.mem_operands == 0
5751 && t->opcode_modifier.load)
5752 continue;
5753 /* Fall through. */
5754 case 4:
5755 case 5:
5756 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5757 if (!operand_type_match (overlap0, i.types[0])
5758 || !operand_type_match (overlap1, i.types[1])
5759 || ((check_register & 3) == 3
5760 && !operand_type_register_match (i.types[0],
5761 operand_types[0],
5762 i.types[1],
5763 operand_types[1])))
5764 {
5765 /* Check if other direction is valid ... */
5766 if (!t->opcode_modifier.d)
5767 continue;
5768
5769 check_reverse:
5770 if (!(size_match & MATCH_REVERSE))
5771 continue;
5772 /* Try reversing direction of operands. */
5773 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5774 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5775 if (!operand_type_match (overlap0, i.types[0])
5776 || !operand_type_match (overlap1, i.types[1])
5777 || (check_register
5778 && !operand_type_register_match (i.types[0],
5779 operand_types[1],
5780 i.types[1],
5781 operand_types[0])))
5782 {
5783 /* Does not match either direction. */
5784 continue;
5785 }
5786 /* found_reverse_match holds which of D or FloatR
5787 we've found. */
5788 if (!t->opcode_modifier.d)
5789 found_reverse_match = 0;
5790 else if (operand_types[0].bitfield.tbyte)
5791 found_reverse_match = Opcode_FloatD;
5792 else if (operand_types[0].bitfield.xmmword
5793 || operand_types[1].bitfield.xmmword
5794 || operand_types[0].bitfield.regmmx
5795 || operand_types[1].bitfield.regmmx
5796 || is_any_vex_encoding(t))
5797 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5798 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5799 else
5800 found_reverse_match = Opcode_D;
5801 if (t->opcode_modifier.floatr)
5802 found_reverse_match |= Opcode_FloatR;
5803 }
5804 else
5805 {
5806 /* Found a forward 2 operand match here. */
5807 switch (t->operands)
5808 {
5809 case 5:
5810 overlap4 = operand_type_and (i.types[4],
5811 operand_types[4]);
5812 /* Fall through. */
5813 case 4:
5814 overlap3 = operand_type_and (i.types[3],
5815 operand_types[3]);
5816 /* Fall through. */
5817 case 3:
5818 overlap2 = operand_type_and (i.types[2],
5819 operand_types[2]);
5820 break;
5821 }
5822
5823 switch (t->operands)
5824 {
5825 case 5:
5826 if (!operand_type_match (overlap4, i.types[4])
5827 || !operand_type_register_match (i.types[3],
5828 operand_types[3],
5829 i.types[4],
5830 operand_types[4]))
5831 continue;
5832 /* Fall through. */
5833 case 4:
5834 if (!operand_type_match (overlap3, i.types[3])
5835 || ((check_register & 0xa) == 0xa
5836 && !operand_type_register_match (i.types[1],
5837 operand_types[1],
5838 i.types[3],
5839 operand_types[3]))
5840 || ((check_register & 0xc) == 0xc
5841 && !operand_type_register_match (i.types[2],
5842 operand_types[2],
5843 i.types[3],
5844 operand_types[3])))
5845 continue;
5846 /* Fall through. */
5847 case 3:
5848 /* Here we make use of the fact that there are no
5849 reverse match 3 operand instructions. */
5850 if (!operand_type_match (overlap2, i.types[2])
5851 || ((check_register & 5) == 5
5852 && !operand_type_register_match (i.types[0],
5853 operand_types[0],
5854 i.types[2],
5855 operand_types[2]))
5856 || ((check_register & 6) == 6
5857 && !operand_type_register_match (i.types[1],
5858 operand_types[1],
5859 i.types[2],
5860 operand_types[2])))
5861 continue;
5862 break;
5863 }
5864 }
5865 /* Found either forward/reverse 2, 3 or 4 operand match here:
5866 slip through to break. */
5867 }
5868 if (!found_cpu_match)
5869 continue;
5870
5871 /* Check if vector and VEX operands are valid. */
5872 if (check_VecOperands (t) || VEX_check_operands (t))
5873 {
5874 specific_error = i.error;
5875 continue;
5876 }
5877
5878 /* We've found a match; break out of loop. */
5879 break;
5880 }
5881
5882 if (t == current_templates->end)
5883 {
5884 /* We found no match. */
5885 const char *err_msg;
5886 switch (specific_error ? specific_error : i.error)
5887 {
5888 default:
5889 abort ();
5890 case operand_size_mismatch:
5891 err_msg = _("operand size mismatch");
5892 break;
5893 case operand_type_mismatch:
5894 err_msg = _("operand type mismatch");
5895 break;
5896 case register_type_mismatch:
5897 err_msg = _("register type mismatch");
5898 break;
5899 case number_of_operands_mismatch:
5900 err_msg = _("number of operands mismatch");
5901 break;
5902 case invalid_instruction_suffix:
5903 err_msg = _("invalid instruction suffix");
5904 break;
5905 case bad_imm4:
5906 err_msg = _("constant doesn't fit in 4 bits");
5907 break;
5908 case unsupported_with_intel_mnemonic:
5909 err_msg = _("unsupported with Intel mnemonic");
5910 break;
5911 case unsupported_syntax:
5912 err_msg = _("unsupported syntax");
5913 break;
5914 case unsupported:
5915 as_bad (_("unsupported instruction `%s'"),
5916 current_templates->start->name);
5917 return NULL;
5918 case invalid_vsib_address:
5919 err_msg = _("invalid VSIB address");
5920 break;
5921 case invalid_vector_register_set:
5922 err_msg = _("mask, index, and destination registers must be distinct");
5923 break;
5924 case unsupported_vector_index_register:
5925 err_msg = _("unsupported vector index register");
5926 break;
5927 case unsupported_broadcast:
5928 err_msg = _("unsupported broadcast");
5929 break;
5930 case broadcast_needed:
5931 err_msg = _("broadcast is needed for operand of such type");
5932 break;
5933 case unsupported_masking:
5934 err_msg = _("unsupported masking");
5935 break;
5936 case mask_not_on_destination:
5937 err_msg = _("mask not on destination operand");
5938 break;
5939 case no_default_mask:
5940 err_msg = _("default mask isn't allowed");
5941 break;
5942 case unsupported_rc_sae:
5943 err_msg = _("unsupported static rounding/sae");
5944 break;
5945 case rc_sae_operand_not_last_imm:
5946 if (intel_syntax)
5947 err_msg = _("RC/SAE operand must precede immediate operands");
5948 else
5949 err_msg = _("RC/SAE operand must follow immediate operands");
5950 break;
5951 case invalid_register_operand:
5952 err_msg = _("invalid register operand");
5953 break;
5954 }
5955 as_bad (_("%s for `%s'"), err_msg,
5956 current_templates->start->name);
5957 return NULL;
5958 }
5959
5960 if (!quiet_warnings)
5961 {
5962 if (!intel_syntax
5963 && (i.types[0].bitfield.jumpabsolute
5964 != operand_types[0].bitfield.jumpabsolute))
5965 {
5966 as_warn (_("indirect %s without `*'"), t->name);
5967 }
5968
5969 if (t->opcode_modifier.isprefix
5970 && t->opcode_modifier.ignoresize)
5971 {
5972 /* Warn them that a data or address size prefix doesn't
5973 affect assembly of the next line of code. */
5974 as_warn (_("stand-alone `%s' prefix"), t->name);
5975 }
5976 }
5977
5978 /* Copy the template we found. */
5979 i.tm = *t;
5980
5981 if (addr_prefix_disp != -1)
5982 i.tm.operand_types[addr_prefix_disp]
5983 = operand_types[addr_prefix_disp];
5984
5985 if (found_reverse_match)
5986 {
5987 /* If we found a reverse match we must alter the opcode
5988 direction bit. found_reverse_match holds bits to change
5989 (different for int & float insns). */
5990
5991 i.tm.base_opcode ^= found_reverse_match;
5992
5993 i.tm.operand_types[0] = operand_types[1];
5994 i.tm.operand_types[1] = operand_types[0];
5995 }
5996
5997 return t;
5998 }
5999
6000 static int
6001 check_string (void)
6002 {
6003 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6004 if (i.tm.operand_types[mem_op].bitfield.esseg)
6005 {
6006 if (i.seg[0] != NULL && i.seg[0] != &es)
6007 {
6008 as_bad (_("`%s' operand %d must use `%ses' segment"),
6009 i.tm.name,
6010 mem_op + 1,
6011 register_prefix);
6012 return 0;
6013 }
6014 /* There's only ever one segment override allowed per instruction.
6015 This instruction possibly has a legal segment override on the
6016 second operand, so copy the segment to where non-string
6017 instructions store it, allowing common code. */
6018 i.seg[0] = i.seg[1];
6019 }
6020 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6021 {
6022 if (i.seg[1] != NULL && i.seg[1] != &es)
6023 {
6024 as_bad (_("`%s' operand %d must use `%ses' segment"),
6025 i.tm.name,
6026 mem_op + 2,
6027 register_prefix);
6028 return 0;
6029 }
6030 }
6031 return 1;
6032 }
6033
6034 static int
6035 process_suffix (void)
6036 {
6037 /* If matched instruction specifies an explicit instruction mnemonic
6038 suffix, use it. */
6039 if (i.tm.opcode_modifier.size16)
6040 i.suffix = WORD_MNEM_SUFFIX;
6041 else if (i.tm.opcode_modifier.size32)
6042 i.suffix = LONG_MNEM_SUFFIX;
6043 else if (i.tm.opcode_modifier.size64)
6044 i.suffix = QWORD_MNEM_SUFFIX;
6045 else if (i.reg_operands)
6046 {
6047 /* If there's no instruction mnemonic suffix we try to invent one
6048 based on register operands. */
6049 if (!i.suffix)
6050 {
6051 /* We take i.suffix from the last register operand specified,
6052 Destination register type is more significant than source
6053 register type. crc32 in SSE4.2 prefers source register
6054 type. */
6055 if (i.tm.base_opcode == 0xf20f38f1)
6056 {
6057 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
6058 i.suffix = WORD_MNEM_SUFFIX;
6059 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
6060 i.suffix = LONG_MNEM_SUFFIX;
6061 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
6062 i.suffix = QWORD_MNEM_SUFFIX;
6063 }
6064 else if (i.tm.base_opcode == 0xf20f38f0)
6065 {
6066 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
6067 i.suffix = BYTE_MNEM_SUFFIX;
6068 }
6069
6070 if (!i.suffix)
6071 {
6072 int op;
6073
6074 if (i.tm.base_opcode == 0xf20f38f1
6075 || i.tm.base_opcode == 0xf20f38f0)
6076 {
6077 /* We have to know the operand size for crc32. */
6078 as_bad (_("ambiguous memory operand size for `%s`"),
6079 i.tm.name);
6080 return 0;
6081 }
6082
6083 for (op = i.operands; --op >= 0;)
6084 if (!i.tm.operand_types[op].bitfield.inoutportreg
6085 && !i.tm.operand_types[op].bitfield.shiftcount)
6086 {
6087 if (!i.types[op].bitfield.reg)
6088 continue;
6089 if (i.types[op].bitfield.byte)
6090 i.suffix = BYTE_MNEM_SUFFIX;
6091 else if (i.types[op].bitfield.word)
6092 i.suffix = WORD_MNEM_SUFFIX;
6093 else if (i.types[op].bitfield.dword)
6094 i.suffix = LONG_MNEM_SUFFIX;
6095 else if (i.types[op].bitfield.qword)
6096 i.suffix = QWORD_MNEM_SUFFIX;
6097 else
6098 continue;
6099 break;
6100 }
6101 }
6102 }
6103 else if (i.suffix == BYTE_MNEM_SUFFIX)
6104 {
6105 if (intel_syntax
6106 && i.tm.opcode_modifier.ignoresize
6107 && i.tm.opcode_modifier.no_bsuf)
6108 i.suffix = 0;
6109 else if (!check_byte_reg ())
6110 return 0;
6111 }
6112 else if (i.suffix == LONG_MNEM_SUFFIX)
6113 {
6114 if (intel_syntax
6115 && i.tm.opcode_modifier.ignoresize
6116 && i.tm.opcode_modifier.no_lsuf
6117 && !i.tm.opcode_modifier.todword
6118 && !i.tm.opcode_modifier.toqword)
6119 i.suffix = 0;
6120 else if (!check_long_reg ())
6121 return 0;
6122 }
6123 else if (i.suffix == QWORD_MNEM_SUFFIX)
6124 {
6125 if (intel_syntax
6126 && i.tm.opcode_modifier.ignoresize
6127 && i.tm.opcode_modifier.no_qsuf
6128 && !i.tm.opcode_modifier.todword
6129 && !i.tm.opcode_modifier.toqword)
6130 i.suffix = 0;
6131 else if (!check_qword_reg ())
6132 return 0;
6133 }
6134 else if (i.suffix == WORD_MNEM_SUFFIX)
6135 {
6136 if (intel_syntax
6137 && i.tm.opcode_modifier.ignoresize
6138 && i.tm.opcode_modifier.no_wsuf)
6139 i.suffix = 0;
6140 else if (!check_word_reg ())
6141 return 0;
6142 }
6143 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6144 /* Do nothing if the instruction is going to ignore the prefix. */
6145 ;
6146 else
6147 abort ();
6148 }
6149 else if (i.tm.opcode_modifier.defaultsize
6150 && !i.suffix
6151 /* exclude fldenv/frstor/fsave/fstenv */
6152 && i.tm.opcode_modifier.no_ssuf)
6153 {
6154 i.suffix = stackop_size;
6155 }
6156 else if (intel_syntax
6157 && !i.suffix
6158 && (i.tm.operand_types[0].bitfield.jumpabsolute
6159 || i.tm.opcode_modifier.jumpbyte
6160 || i.tm.opcode_modifier.jumpintersegment
6161 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6162 && i.tm.extension_opcode <= 3)))
6163 {
6164 switch (flag_code)
6165 {
6166 case CODE_64BIT:
6167 if (!i.tm.opcode_modifier.no_qsuf)
6168 {
6169 i.suffix = QWORD_MNEM_SUFFIX;
6170 break;
6171 }
6172 /* Fall through. */
6173 case CODE_32BIT:
6174 if (!i.tm.opcode_modifier.no_lsuf)
6175 i.suffix = LONG_MNEM_SUFFIX;
6176 break;
6177 case CODE_16BIT:
6178 if (!i.tm.opcode_modifier.no_wsuf)
6179 i.suffix = WORD_MNEM_SUFFIX;
6180 break;
6181 }
6182 }
6183
6184 if (!i.suffix)
6185 {
6186 if (!intel_syntax)
6187 {
6188 if (i.tm.opcode_modifier.w)
6189 {
6190 as_bad (_("no instruction mnemonic suffix given and "
6191 "no register operands; can't size instruction"));
6192 return 0;
6193 }
6194 }
6195 else
6196 {
6197 unsigned int suffixes;
6198
6199 suffixes = !i.tm.opcode_modifier.no_bsuf;
6200 if (!i.tm.opcode_modifier.no_wsuf)
6201 suffixes |= 1 << 1;
6202 if (!i.tm.opcode_modifier.no_lsuf)
6203 suffixes |= 1 << 2;
6204 if (!i.tm.opcode_modifier.no_ldsuf)
6205 suffixes |= 1 << 3;
6206 if (!i.tm.opcode_modifier.no_ssuf)
6207 suffixes |= 1 << 4;
6208 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6209 suffixes |= 1 << 5;
6210
6211 /* There are more than suffix matches. */
6212 if (i.tm.opcode_modifier.w
6213 || ((suffixes & (suffixes - 1))
6214 && !i.tm.opcode_modifier.defaultsize
6215 && !i.tm.opcode_modifier.ignoresize))
6216 {
6217 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6218 return 0;
6219 }
6220 }
6221 }
6222
6223 /* Change the opcode based on the operand size given by i.suffix. */
6224 switch (i.suffix)
6225 {
6226 /* Size floating point instruction. */
6227 case LONG_MNEM_SUFFIX:
6228 if (i.tm.opcode_modifier.floatmf)
6229 {
6230 i.tm.base_opcode ^= 4;
6231 break;
6232 }
6233 /* fall through */
6234 case WORD_MNEM_SUFFIX:
6235 case QWORD_MNEM_SUFFIX:
6236 /* It's not a byte, select word/dword operation. */
6237 if (i.tm.opcode_modifier.w)
6238 {
6239 if (i.tm.opcode_modifier.shortform)
6240 i.tm.base_opcode |= 8;
6241 else
6242 i.tm.base_opcode |= 1;
6243 }
6244 /* fall through */
6245 case SHORT_MNEM_SUFFIX:
6246 /* Now select between word & dword operations via the operand
6247 size prefix, except for instructions that will ignore this
6248 prefix anyway. */
6249 if (i.reg_operands > 0
6250 && i.types[0].bitfield.reg
6251 && i.tm.opcode_modifier.addrprefixopreg
6252 && (i.tm.opcode_modifier.immext
6253 || i.operands == 1))
6254 {
6255 /* The address size override prefix changes the size of the
6256 first operand. */
6257 if ((flag_code == CODE_32BIT
6258 && i.op[0].regs->reg_type.bitfield.word)
6259 || (flag_code != CODE_32BIT
6260 && i.op[0].regs->reg_type.bitfield.dword))
6261 if (!add_prefix (ADDR_PREFIX_OPCODE))
6262 return 0;
6263 }
6264 else if (i.suffix != QWORD_MNEM_SUFFIX
6265 && !i.tm.opcode_modifier.ignoresize
6266 && !i.tm.opcode_modifier.floatmf
6267 && !i.tm.opcode_modifier.vex
6268 && !i.tm.opcode_modifier.vexopcode
6269 && !is_evex_encoding (&i.tm)
6270 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6271 || (flag_code == CODE_64BIT
6272 && i.tm.opcode_modifier.jumpbyte)))
6273 {
6274 unsigned int prefix = DATA_PREFIX_OPCODE;
6275
6276 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6277 prefix = ADDR_PREFIX_OPCODE;
6278
6279 if (!add_prefix (prefix))
6280 return 0;
6281 }
6282
6283 /* Set mode64 for an operand. */
6284 if (i.suffix == QWORD_MNEM_SUFFIX
6285 && flag_code == CODE_64BIT
6286 && !i.tm.opcode_modifier.norex64
6287 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6288 need rex64. */
6289 && ! (i.operands == 2
6290 && i.tm.base_opcode == 0x90
6291 && i.tm.extension_opcode == None
6292 && operand_type_equal (&i.types [0], &acc64)
6293 && operand_type_equal (&i.types [1], &acc64)))
6294 i.rex |= REX_W;
6295
6296 break;
6297 }
6298
6299 if (i.reg_operands != 0
6300 && i.operands > 1
6301 && i.tm.opcode_modifier.addrprefixopreg
6302 && !i.tm.opcode_modifier.immext)
6303 {
6304 /* Check invalid register operand when the address size override
6305 prefix changes the size of register operands. */
6306 unsigned int op;
6307 enum { need_word, need_dword, need_qword } need;
6308
6309 if (flag_code == CODE_32BIT)
6310 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6311 else
6312 {
6313 if (i.prefix[ADDR_PREFIX])
6314 need = need_dword;
6315 else
6316 need = flag_code == CODE_64BIT ? need_qword : need_word;
6317 }
6318
6319 for (op = 0; op < i.operands; op++)
6320 if (i.types[op].bitfield.reg
6321 && ((need == need_word
6322 && !i.op[op].regs->reg_type.bitfield.word)
6323 || (need == need_dword
6324 && !i.op[op].regs->reg_type.bitfield.dword)
6325 || (need == need_qword
6326 && !i.op[op].regs->reg_type.bitfield.qword)))
6327 {
6328 as_bad (_("invalid register operand size for `%s'"),
6329 i.tm.name);
6330 return 0;
6331 }
6332 }
6333
6334 return 1;
6335 }
6336
6337 static int
6338 check_byte_reg (void)
6339 {
6340 int op;
6341
6342 for (op = i.operands; --op >= 0;)
6343 {
6344 /* Skip non-register operands. */
6345 if (!i.types[op].bitfield.reg)
6346 continue;
6347
6348 /* If this is an eight bit register, it's OK. If it's the 16 or
6349 32 bit version of an eight bit register, we will just use the
6350 low portion, and that's OK too. */
6351 if (i.types[op].bitfield.byte)
6352 continue;
6353
6354 /* I/O port address operands are OK too. */
6355 if (i.tm.operand_types[op].bitfield.inoutportreg)
6356 continue;
6357
6358 /* crc32 doesn't generate this warning. */
6359 if (i.tm.base_opcode == 0xf20f38f0)
6360 continue;
6361
6362 if ((i.types[op].bitfield.word
6363 || i.types[op].bitfield.dword
6364 || i.types[op].bitfield.qword)
6365 && i.op[op].regs->reg_num < 4
6366 /* Prohibit these changes in 64bit mode, since the lowering
6367 would be more complicated. */
6368 && flag_code != CODE_64BIT)
6369 {
6370 #if REGISTER_WARNINGS
6371 if (!quiet_warnings)
6372 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6373 register_prefix,
6374 (i.op[op].regs + (i.types[op].bitfield.word
6375 ? REGNAM_AL - REGNAM_AX
6376 : REGNAM_AL - REGNAM_EAX))->reg_name,
6377 register_prefix,
6378 i.op[op].regs->reg_name,
6379 i.suffix);
6380 #endif
6381 continue;
6382 }
6383 /* Any other register is bad. */
6384 if (i.types[op].bitfield.reg
6385 || i.types[op].bitfield.regmmx
6386 || i.types[op].bitfield.regsimd
6387 || i.types[op].bitfield.sreg2
6388 || i.types[op].bitfield.sreg3
6389 || i.types[op].bitfield.control
6390 || i.types[op].bitfield.debug
6391 || i.types[op].bitfield.test)
6392 {
6393 as_bad (_("`%s%s' not allowed with `%s%c'"),
6394 register_prefix,
6395 i.op[op].regs->reg_name,
6396 i.tm.name,
6397 i.suffix);
6398 return 0;
6399 }
6400 }
6401 return 1;
6402 }
6403
6404 static int
6405 check_long_reg (void)
6406 {
6407 int op;
6408
6409 for (op = i.operands; --op >= 0;)
6410 /* Skip non-register operands. */
6411 if (!i.types[op].bitfield.reg)
6412 continue;
6413 /* Reject eight bit registers, except where the template requires
6414 them. (eg. movzb) */
6415 else if (i.types[op].bitfield.byte
6416 && (i.tm.operand_types[op].bitfield.reg
6417 || i.tm.operand_types[op].bitfield.acc)
6418 && (i.tm.operand_types[op].bitfield.word
6419 || i.tm.operand_types[op].bitfield.dword))
6420 {
6421 as_bad (_("`%s%s' not allowed with `%s%c'"),
6422 register_prefix,
6423 i.op[op].regs->reg_name,
6424 i.tm.name,
6425 i.suffix);
6426 return 0;
6427 }
6428 /* Warn if the e prefix on a general reg is missing. */
6429 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6430 && i.types[op].bitfield.word
6431 && (i.tm.operand_types[op].bitfield.reg
6432 || i.tm.operand_types[op].bitfield.acc)
6433 && i.tm.operand_types[op].bitfield.dword)
6434 {
6435 /* Prohibit these changes in the 64bit mode, since the
6436 lowering is more complicated. */
6437 if (flag_code == CODE_64BIT)
6438 {
6439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6440 register_prefix, i.op[op].regs->reg_name,
6441 i.suffix);
6442 return 0;
6443 }
6444 #if REGISTER_WARNINGS
6445 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6446 register_prefix,
6447 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6448 register_prefix, i.op[op].regs->reg_name, i.suffix);
6449 #endif
6450 }
6451 /* Warn if the r prefix on a general reg is present. */
6452 else if (i.types[op].bitfield.qword
6453 && (i.tm.operand_types[op].bitfield.reg
6454 || i.tm.operand_types[op].bitfield.acc)
6455 && i.tm.operand_types[op].bitfield.dword)
6456 {
6457 if (intel_syntax
6458 && i.tm.opcode_modifier.toqword
6459 && !i.types[0].bitfield.regsimd)
6460 {
6461 /* Convert to QWORD. We want REX byte. */
6462 i.suffix = QWORD_MNEM_SUFFIX;
6463 }
6464 else
6465 {
6466 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6467 register_prefix, i.op[op].regs->reg_name,
6468 i.suffix);
6469 return 0;
6470 }
6471 }
6472 return 1;
6473 }
6474
6475 static int
6476 check_qword_reg (void)
6477 {
6478 int op;
6479
6480 for (op = i.operands; --op >= 0; )
6481 /* Skip non-register operands. */
6482 if (!i.types[op].bitfield.reg)
6483 continue;
6484 /* Reject eight bit registers, except where the template requires
6485 them. (eg. movzb) */
6486 else if (i.types[op].bitfield.byte
6487 && (i.tm.operand_types[op].bitfield.reg
6488 || i.tm.operand_types[op].bitfield.acc)
6489 && (i.tm.operand_types[op].bitfield.word
6490 || i.tm.operand_types[op].bitfield.dword))
6491 {
6492 as_bad (_("`%s%s' not allowed with `%s%c'"),
6493 register_prefix,
6494 i.op[op].regs->reg_name,
6495 i.tm.name,
6496 i.suffix);
6497 return 0;
6498 }
6499 /* Warn if the r prefix on a general reg is missing. */
6500 else if ((i.types[op].bitfield.word
6501 || i.types[op].bitfield.dword)
6502 && (i.tm.operand_types[op].bitfield.reg
6503 || i.tm.operand_types[op].bitfield.acc)
6504 && i.tm.operand_types[op].bitfield.qword)
6505 {
6506 /* Prohibit these changes in the 64bit mode, since the
6507 lowering is more complicated. */
6508 if (intel_syntax
6509 && i.tm.opcode_modifier.todword
6510 && !i.types[0].bitfield.regsimd)
6511 {
6512 /* Convert to DWORD. We don't want REX byte. */
6513 i.suffix = LONG_MNEM_SUFFIX;
6514 }
6515 else
6516 {
6517 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6518 register_prefix, i.op[op].regs->reg_name,
6519 i.suffix);
6520 return 0;
6521 }
6522 }
6523 return 1;
6524 }
6525
6526 static int
6527 check_word_reg (void)
6528 {
6529 int op;
6530 for (op = i.operands; --op >= 0;)
6531 /* Skip non-register operands. */
6532 if (!i.types[op].bitfield.reg)
6533 continue;
6534 /* Reject eight bit registers, except where the template requires
6535 them. (eg. movzb) */
6536 else if (i.types[op].bitfield.byte
6537 && (i.tm.operand_types[op].bitfield.reg
6538 || i.tm.operand_types[op].bitfield.acc)
6539 && (i.tm.operand_types[op].bitfield.word
6540 || i.tm.operand_types[op].bitfield.dword))
6541 {
6542 as_bad (_("`%s%s' not allowed with `%s%c'"),
6543 register_prefix,
6544 i.op[op].regs->reg_name,
6545 i.tm.name,
6546 i.suffix);
6547 return 0;
6548 }
6549 /* Warn if the e or r prefix on a general reg is present. */
6550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6551 && (i.types[op].bitfield.dword
6552 || i.types[op].bitfield.qword)
6553 && (i.tm.operand_types[op].bitfield.reg
6554 || i.tm.operand_types[op].bitfield.acc)
6555 && i.tm.operand_types[op].bitfield.word)
6556 {
6557 /* Prohibit these changes in the 64bit mode, since the
6558 lowering is more complicated. */
6559 if (flag_code == CODE_64BIT)
6560 {
6561 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6562 register_prefix, i.op[op].regs->reg_name,
6563 i.suffix);
6564 return 0;
6565 }
6566 #if REGISTER_WARNINGS
6567 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6568 register_prefix,
6569 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6570 register_prefix, i.op[op].regs->reg_name, i.suffix);
6571 #endif
6572 }
6573 return 1;
6574 }
6575
6576 static int
6577 update_imm (unsigned int j)
6578 {
6579 i386_operand_type overlap = i.types[j];
6580 if ((overlap.bitfield.imm8
6581 || overlap.bitfield.imm8s
6582 || overlap.bitfield.imm16
6583 || overlap.bitfield.imm32
6584 || overlap.bitfield.imm32s
6585 || overlap.bitfield.imm64)
6586 && !operand_type_equal (&overlap, &imm8)
6587 && !operand_type_equal (&overlap, &imm8s)
6588 && !operand_type_equal (&overlap, &imm16)
6589 && !operand_type_equal (&overlap, &imm32)
6590 && !operand_type_equal (&overlap, &imm32s)
6591 && !operand_type_equal (&overlap, &imm64))
6592 {
6593 if (i.suffix)
6594 {
6595 i386_operand_type temp;
6596
6597 operand_type_set (&temp, 0);
6598 if (i.suffix == BYTE_MNEM_SUFFIX)
6599 {
6600 temp.bitfield.imm8 = overlap.bitfield.imm8;
6601 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6602 }
6603 else if (i.suffix == WORD_MNEM_SUFFIX)
6604 temp.bitfield.imm16 = overlap.bitfield.imm16;
6605 else if (i.suffix == QWORD_MNEM_SUFFIX)
6606 {
6607 temp.bitfield.imm64 = overlap.bitfield.imm64;
6608 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6609 }
6610 else
6611 temp.bitfield.imm32 = overlap.bitfield.imm32;
6612 overlap = temp;
6613 }
6614 else if (operand_type_equal (&overlap, &imm16_32_32s)
6615 || operand_type_equal (&overlap, &imm16_32)
6616 || operand_type_equal (&overlap, &imm16_32s))
6617 {
6618 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6619 overlap = imm16;
6620 else
6621 overlap = imm32s;
6622 }
6623 if (!operand_type_equal (&overlap, &imm8)
6624 && !operand_type_equal (&overlap, &imm8s)
6625 && !operand_type_equal (&overlap, &imm16)
6626 && !operand_type_equal (&overlap, &imm32)
6627 && !operand_type_equal (&overlap, &imm32s)
6628 && !operand_type_equal (&overlap, &imm64))
6629 {
6630 as_bad (_("no instruction mnemonic suffix given; "
6631 "can't determine immediate size"));
6632 return 0;
6633 }
6634 }
6635 i.types[j] = overlap;
6636
6637 return 1;
6638 }
6639
6640 static int
6641 finalize_imm (void)
6642 {
6643 unsigned int j, n;
6644
6645 /* Update the first 2 immediate operands. */
6646 n = i.operands > 2 ? 2 : i.operands;
6647 if (n)
6648 {
6649 for (j = 0; j < n; j++)
6650 if (update_imm (j) == 0)
6651 return 0;
6652
6653 /* The 3rd operand can't be immediate operand. */
6654 gas_assert (operand_type_check (i.types[2], imm) == 0);
6655 }
6656
6657 return 1;
6658 }
6659
6660 static int
6661 process_operands (void)
6662 {
6663 /* Default segment register this instruction will use for memory
6664 accesses. 0 means unknown. This is only for optimizing out
6665 unnecessary segment overrides. */
6666 const seg_entry *default_seg = 0;
6667
6668 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6669 {
6670 unsigned int dupl = i.operands;
6671 unsigned int dest = dupl - 1;
6672 unsigned int j;
6673
6674 /* The destination must be an xmm register. */
6675 gas_assert (i.reg_operands
6676 && MAX_OPERANDS > dupl
6677 && operand_type_equal (&i.types[dest], &regxmm));
6678
6679 if (i.tm.operand_types[0].bitfield.acc
6680 && i.tm.operand_types[0].bitfield.xmmword)
6681 {
6682 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6683 {
6684 /* Keep xmm0 for instructions with VEX prefix and 3
6685 sources. */
6686 i.tm.operand_types[0].bitfield.acc = 0;
6687 i.tm.operand_types[0].bitfield.regsimd = 1;
6688 goto duplicate;
6689 }
6690 else
6691 {
6692 /* We remove the first xmm0 and keep the number of
6693 operands unchanged, which in fact duplicates the
6694 destination. */
6695 for (j = 1; j < i.operands; j++)
6696 {
6697 i.op[j - 1] = i.op[j];
6698 i.types[j - 1] = i.types[j];
6699 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6700 }
6701 }
6702 }
6703 else if (i.tm.opcode_modifier.implicit1stxmm0)
6704 {
6705 gas_assert ((MAX_OPERANDS - 1) > dupl
6706 && (i.tm.opcode_modifier.vexsources
6707 == VEX3SOURCES));
6708
6709 /* Add the implicit xmm0 for instructions with VEX prefix
6710 and 3 sources. */
6711 for (j = i.operands; j > 0; j--)
6712 {
6713 i.op[j] = i.op[j - 1];
6714 i.types[j] = i.types[j - 1];
6715 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6716 }
6717 i.op[0].regs
6718 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6719 i.types[0] = regxmm;
6720 i.tm.operand_types[0] = regxmm;
6721
6722 i.operands += 2;
6723 i.reg_operands += 2;
6724 i.tm.operands += 2;
6725
6726 dupl++;
6727 dest++;
6728 i.op[dupl] = i.op[dest];
6729 i.types[dupl] = i.types[dest];
6730 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6731 }
6732 else
6733 {
6734 duplicate:
6735 i.operands++;
6736 i.reg_operands++;
6737 i.tm.operands++;
6738
6739 i.op[dupl] = i.op[dest];
6740 i.types[dupl] = i.types[dest];
6741 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6742 }
6743
6744 if (i.tm.opcode_modifier.immext)
6745 process_immext ();
6746 }
6747 else if (i.tm.operand_types[0].bitfield.acc
6748 && i.tm.operand_types[0].bitfield.xmmword)
6749 {
6750 unsigned int j;
6751
6752 for (j = 1; j < i.operands; j++)
6753 {
6754 i.op[j - 1] = i.op[j];
6755 i.types[j - 1] = i.types[j];
6756
6757 /* We need to adjust fields in i.tm since they are used by
6758 build_modrm_byte. */
6759 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6760 }
6761
6762 i.operands--;
6763 i.reg_operands--;
6764 i.tm.operands--;
6765 }
6766 else if (i.tm.opcode_modifier.implicitquadgroup)
6767 {
6768 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6769
6770 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6771 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6772 regnum = register_number (i.op[1].regs);
6773 first_reg_in_group = regnum & ~3;
6774 last_reg_in_group = first_reg_in_group + 3;
6775 if (regnum != first_reg_in_group)
6776 as_warn (_("source register `%s%s' implicitly denotes"
6777 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6778 register_prefix, i.op[1].regs->reg_name,
6779 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6780 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6781 i.tm.name);
6782 }
6783 else if (i.tm.opcode_modifier.regkludge)
6784 {
6785 /* The imul $imm, %reg instruction is converted into
6786 imul $imm, %reg, %reg, and the clr %reg instruction
6787 is converted into xor %reg, %reg. */
6788
6789 unsigned int first_reg_op;
6790
6791 if (operand_type_check (i.types[0], reg))
6792 first_reg_op = 0;
6793 else
6794 first_reg_op = 1;
6795 /* Pretend we saw the extra register operand. */
6796 gas_assert (i.reg_operands == 1
6797 && i.op[first_reg_op + 1].regs == 0);
6798 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6799 i.types[first_reg_op + 1] = i.types[first_reg_op];
6800 i.operands++;
6801 i.reg_operands++;
6802 }
6803
6804 if (i.tm.opcode_modifier.shortform)
6805 {
6806 if (i.types[0].bitfield.sreg2
6807 || i.types[0].bitfield.sreg3)
6808 {
6809 if (i.tm.base_opcode == POP_SEG_SHORT
6810 && i.op[0].regs->reg_num == 1)
6811 {
6812 as_bad (_("you can't `pop %scs'"), register_prefix);
6813 return 0;
6814 }
6815 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6816 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6817 i.rex |= REX_B;
6818 }
6819 else
6820 {
6821 /* The register or float register operand is in operand
6822 0 or 1. */
6823 unsigned int op;
6824
6825 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6826 || operand_type_check (i.types[0], reg))
6827 op = 0;
6828 else
6829 op = 1;
6830 /* Register goes in low 3 bits of opcode. */
6831 i.tm.base_opcode |= i.op[op].regs->reg_num;
6832 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6833 i.rex |= REX_B;
6834 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6835 {
6836 /* Warn about some common errors, but press on regardless.
6837 The first case can be generated by gcc (<= 2.8.1). */
6838 if (i.operands == 2)
6839 {
6840 /* Reversed arguments on faddp, fsubp, etc. */
6841 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6842 register_prefix, i.op[!intel_syntax].regs->reg_name,
6843 register_prefix, i.op[intel_syntax].regs->reg_name);
6844 }
6845 else
6846 {
6847 /* Extraneous `l' suffix on fp insn. */
6848 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6849 register_prefix, i.op[0].regs->reg_name);
6850 }
6851 }
6852 }
6853 }
6854 else if (i.tm.opcode_modifier.modrm)
6855 {
6856 /* The opcode is completed (modulo i.tm.extension_opcode which
6857 must be put into the modrm byte). Now, we make the modrm and
6858 index base bytes based on all the info we've collected. */
6859
6860 default_seg = build_modrm_byte ();
6861 }
6862 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6863 {
6864 default_seg = &ds;
6865 }
6866 else if (i.tm.opcode_modifier.isstring)
6867 {
6868 /* For the string instructions that allow a segment override
6869 on one of their operands, the default segment is ds. */
6870 default_seg = &ds;
6871 }
6872
6873 if (i.tm.base_opcode == 0x8d /* lea */
6874 && i.seg[0]
6875 && !quiet_warnings)
6876 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6877
6878 /* If a segment was explicitly specified, and the specified segment
6879 is not the default, use an opcode prefix to select it. If we
6880 never figured out what the default segment is, then default_seg
6881 will be zero at this point, and the specified segment prefix will
6882 always be used. */
6883 if ((i.seg[0]) && (i.seg[0] != default_seg))
6884 {
6885 if (!add_prefix (i.seg[0]->seg_prefix))
6886 return 0;
6887 }
6888 return 1;
6889 }
6890
6891 static const seg_entry *
6892 build_modrm_byte (void)
6893 {
6894 const seg_entry *default_seg = 0;
6895 unsigned int source, dest;
6896 int vex_3_sources;
6897
6898 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6899 if (vex_3_sources)
6900 {
6901 unsigned int nds, reg_slot;
6902 expressionS *exp;
6903
6904 dest = i.operands - 1;
6905 nds = dest - 1;
6906
6907 /* There are 2 kinds of instructions:
6908 1. 5 operands: 4 register operands or 3 register operands
6909 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6910 VexW0 or VexW1. The destination must be either XMM, YMM or
6911 ZMM register.
6912 2. 4 operands: 4 register operands or 3 register operands
6913 plus 1 memory operand, with VexXDS. */
6914 gas_assert ((i.reg_operands == 4
6915 || (i.reg_operands == 3 && i.mem_operands == 1))
6916 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6917 && i.tm.opcode_modifier.vexw
6918 && i.tm.operand_types[dest].bitfield.regsimd);
6919
6920 /* If VexW1 is set, the first non-immediate operand is the source and
6921 the second non-immediate one is encoded in the immediate operand. */
6922 if (i.tm.opcode_modifier.vexw == VEXW1)
6923 {
6924 source = i.imm_operands;
6925 reg_slot = i.imm_operands + 1;
6926 }
6927 else
6928 {
6929 source = i.imm_operands + 1;
6930 reg_slot = i.imm_operands;
6931 }
6932
6933 if (i.imm_operands == 0)
6934 {
6935 /* When there is no immediate operand, generate an 8bit
6936 immediate operand to encode the first operand. */
6937 exp = &im_expressions[i.imm_operands++];
6938 i.op[i.operands].imms = exp;
6939 i.types[i.operands] = imm8;
6940 i.operands++;
6941
6942 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6943 exp->X_op = O_constant;
6944 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6945 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6946 }
6947 else
6948 {
6949 unsigned int imm_slot;
6950
6951 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6952
6953 if (i.tm.opcode_modifier.immext)
6954 {
6955 /* When ImmExt is set, the immediate byte is the last
6956 operand. */
6957 imm_slot = i.operands - 1;
6958 source--;
6959 reg_slot--;
6960 }
6961 else
6962 {
6963 imm_slot = 0;
6964
6965 /* Turn on Imm8 so that output_imm will generate it. */
6966 i.types[imm_slot].bitfield.imm8 = 1;
6967 }
6968
6969 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6970 i.op[imm_slot].imms->X_add_number
6971 |= register_number (i.op[reg_slot].regs) << 4;
6972 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6973 }
6974
6975 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6976 i.vex.register_specifier = i.op[nds].regs;
6977 }
6978 else
6979 source = dest = 0;
6980
6981 /* i.reg_operands MUST be the number of real register operands;
6982 implicit registers do not count. If there are 3 register
6983 operands, it must be a instruction with VexNDS. For a
6984 instruction with VexNDD, the destination register is encoded
6985 in VEX prefix. If there are 4 register operands, it must be
6986 a instruction with VEX prefix and 3 sources. */
6987 if (i.mem_operands == 0
6988 && ((i.reg_operands == 2
6989 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6990 || (i.reg_operands == 3
6991 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6992 || (i.reg_operands == 4 && vex_3_sources)))
6993 {
6994 switch (i.operands)
6995 {
6996 case 2:
6997 source = 0;
6998 break;
6999 case 3:
7000 /* When there are 3 operands, one of them may be immediate,
7001 which may be the first or the last operand. Otherwise,
7002 the first operand must be shift count register (cl) or it
7003 is an instruction with VexNDS. */
7004 gas_assert (i.imm_operands == 1
7005 || (i.imm_operands == 0
7006 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7007 || i.types[0].bitfield.shiftcount)));
7008 if (operand_type_check (i.types[0], imm)
7009 || i.types[0].bitfield.shiftcount)
7010 source = 1;
7011 else
7012 source = 0;
7013 break;
7014 case 4:
7015 /* When there are 4 operands, the first two must be 8bit
7016 immediate operands. The source operand will be the 3rd
7017 one.
7018
7019 For instructions with VexNDS, if the first operand
7020 an imm8, the source operand is the 2nd one. If the last
7021 operand is imm8, the source operand is the first one. */
7022 gas_assert ((i.imm_operands == 2
7023 && i.types[0].bitfield.imm8
7024 && i.types[1].bitfield.imm8)
7025 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7026 && i.imm_operands == 1
7027 && (i.types[0].bitfield.imm8
7028 || i.types[i.operands - 1].bitfield.imm8
7029 || i.rounding)));
7030 if (i.imm_operands == 2)
7031 source = 2;
7032 else
7033 {
7034 if (i.types[0].bitfield.imm8)
7035 source = 1;
7036 else
7037 source = 0;
7038 }
7039 break;
7040 case 5:
7041 if (is_evex_encoding (&i.tm))
7042 {
7043 /* For EVEX instructions, when there are 5 operands, the
7044 first one must be immediate operand. If the second one
7045 is immediate operand, the source operand is the 3th
7046 one. If the last one is immediate operand, the source
7047 operand is the 2nd one. */
7048 gas_assert (i.imm_operands == 2
7049 && i.tm.opcode_modifier.sae
7050 && operand_type_check (i.types[0], imm));
7051 if (operand_type_check (i.types[1], imm))
7052 source = 2;
7053 else if (operand_type_check (i.types[4], imm))
7054 source = 1;
7055 else
7056 abort ();
7057 }
7058 break;
7059 default:
7060 abort ();
7061 }
7062
7063 if (!vex_3_sources)
7064 {
7065 dest = source + 1;
7066
7067 /* RC/SAE operand could be between DEST and SRC. That happens
7068 when one operand is GPR and the other one is XMM/YMM/ZMM
7069 register. */
7070 if (i.rounding && i.rounding->operand == (int) dest)
7071 dest++;
7072
7073 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7074 {
7075 /* For instructions with VexNDS, the register-only source
7076 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7077 register. It is encoded in VEX prefix. We need to
7078 clear RegMem bit before calling operand_type_equal. */
7079
7080 i386_operand_type op;
7081 unsigned int vvvv;
7082
7083 /* Check register-only source operand when two source
7084 operands are swapped. */
7085 if (!i.tm.operand_types[source].bitfield.baseindex
7086 && i.tm.operand_types[dest].bitfield.baseindex)
7087 {
7088 vvvv = source;
7089 source = dest;
7090 }
7091 else
7092 vvvv = dest;
7093
7094 op = i.tm.operand_types[vvvv];
7095 op.bitfield.regmem = 0;
7096 if ((dest + 1) >= i.operands
7097 || ((!op.bitfield.reg
7098 || (!op.bitfield.dword && !op.bitfield.qword))
7099 && !op.bitfield.regsimd
7100 && !operand_type_equal (&op, &regmask)))
7101 abort ();
7102 i.vex.register_specifier = i.op[vvvv].regs;
7103 dest++;
7104 }
7105 }
7106
7107 i.rm.mode = 3;
7108 /* One of the register operands will be encoded in the i.tm.reg
7109 field, the other in the combined i.tm.mode and i.tm.regmem
7110 fields. If no form of this instruction supports a memory
7111 destination operand, then we assume the source operand may
7112 sometimes be a memory operand and so we need to store the
7113 destination in the i.rm.reg field. */
7114 if (!i.tm.operand_types[dest].bitfield.regmem
7115 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7116 {
7117 i.rm.reg = i.op[dest].regs->reg_num;
7118 i.rm.regmem = i.op[source].regs->reg_num;
7119 if (i.op[dest].regs->reg_type.bitfield.regmmx
7120 || i.op[source].regs->reg_type.bitfield.regmmx)
7121 i.has_regmmx = TRUE;
7122 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7123 || i.op[source].regs->reg_type.bitfield.regsimd)
7124 {
7125 if (i.types[dest].bitfield.zmmword
7126 || i.types[source].bitfield.zmmword)
7127 i.has_regzmm = TRUE;
7128 else if (i.types[dest].bitfield.ymmword
7129 || i.types[source].bitfield.ymmword)
7130 i.has_regymm = TRUE;
7131 else
7132 i.has_regxmm = TRUE;
7133 }
7134 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7135 i.rex |= REX_R;
7136 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7137 i.vrex |= REX_R;
7138 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7139 i.rex |= REX_B;
7140 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7141 i.vrex |= REX_B;
7142 }
7143 else
7144 {
7145 i.rm.reg = i.op[source].regs->reg_num;
7146 i.rm.regmem = i.op[dest].regs->reg_num;
7147 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7148 i.rex |= REX_B;
7149 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7150 i.vrex |= REX_B;
7151 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7152 i.rex |= REX_R;
7153 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7154 i.vrex |= REX_R;
7155 }
7156 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7157 {
7158 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7159 abort ();
7160 i.rex &= ~REX_R;
7161 add_prefix (LOCK_PREFIX_OPCODE);
7162 }
7163 }
7164 else
7165 { /* If it's not 2 reg operands... */
7166 unsigned int mem;
7167
7168 if (i.mem_operands)
7169 {
7170 unsigned int fake_zero_displacement = 0;
7171 unsigned int op;
7172
7173 for (op = 0; op < i.operands; op++)
7174 if (operand_type_check (i.types[op], anymem))
7175 break;
7176 gas_assert (op < i.operands);
7177
7178 if (i.tm.opcode_modifier.vecsib)
7179 {
7180 if (i.index_reg->reg_num == RegIZ)
7181 abort ();
7182
7183 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7184 if (!i.base_reg)
7185 {
7186 i.sib.base = NO_BASE_REGISTER;
7187 i.sib.scale = i.log2_scale_factor;
7188 i.types[op].bitfield.disp8 = 0;
7189 i.types[op].bitfield.disp16 = 0;
7190 i.types[op].bitfield.disp64 = 0;
7191 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7192 {
7193 /* Must be 32 bit */
7194 i.types[op].bitfield.disp32 = 1;
7195 i.types[op].bitfield.disp32s = 0;
7196 }
7197 else
7198 {
7199 i.types[op].bitfield.disp32 = 0;
7200 i.types[op].bitfield.disp32s = 1;
7201 }
7202 }
7203 i.sib.index = i.index_reg->reg_num;
7204 if ((i.index_reg->reg_flags & RegRex) != 0)
7205 i.rex |= REX_X;
7206 if ((i.index_reg->reg_flags & RegVRex) != 0)
7207 i.vrex |= REX_X;
7208 }
7209
7210 default_seg = &ds;
7211
7212 if (i.base_reg == 0)
7213 {
7214 i.rm.mode = 0;
7215 if (!i.disp_operands)
7216 fake_zero_displacement = 1;
7217 if (i.index_reg == 0)
7218 {
7219 i386_operand_type newdisp;
7220
7221 gas_assert (!i.tm.opcode_modifier.vecsib);
7222 /* Operand is just <disp> */
7223 if (flag_code == CODE_64BIT)
7224 {
7225 /* 64bit mode overwrites the 32bit absolute
7226 addressing by RIP relative addressing and
7227 absolute addressing is encoded by one of the
7228 redundant SIB forms. */
7229 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7230 i.sib.base = NO_BASE_REGISTER;
7231 i.sib.index = NO_INDEX_REGISTER;
7232 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7233 }
7234 else if ((flag_code == CODE_16BIT)
7235 ^ (i.prefix[ADDR_PREFIX] != 0))
7236 {
7237 i.rm.regmem = NO_BASE_REGISTER_16;
7238 newdisp = disp16;
7239 }
7240 else
7241 {
7242 i.rm.regmem = NO_BASE_REGISTER;
7243 newdisp = disp32;
7244 }
7245 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7246 i.types[op] = operand_type_or (i.types[op], newdisp);
7247 }
7248 else if (!i.tm.opcode_modifier.vecsib)
7249 {
7250 /* !i.base_reg && i.index_reg */
7251 if (i.index_reg->reg_num == RegIZ)
7252 i.sib.index = NO_INDEX_REGISTER;
7253 else
7254 i.sib.index = i.index_reg->reg_num;
7255 i.sib.base = NO_BASE_REGISTER;
7256 i.sib.scale = i.log2_scale_factor;
7257 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7258 i.types[op].bitfield.disp8 = 0;
7259 i.types[op].bitfield.disp16 = 0;
7260 i.types[op].bitfield.disp64 = 0;
7261 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7262 {
7263 /* Must be 32 bit */
7264 i.types[op].bitfield.disp32 = 1;
7265 i.types[op].bitfield.disp32s = 0;
7266 }
7267 else
7268 {
7269 i.types[op].bitfield.disp32 = 0;
7270 i.types[op].bitfield.disp32s = 1;
7271 }
7272 if ((i.index_reg->reg_flags & RegRex) != 0)
7273 i.rex |= REX_X;
7274 }
7275 }
7276 /* RIP addressing for 64bit mode. */
7277 else if (i.base_reg->reg_num == RegIP)
7278 {
7279 gas_assert (!i.tm.opcode_modifier.vecsib);
7280 i.rm.regmem = NO_BASE_REGISTER;
7281 i.types[op].bitfield.disp8 = 0;
7282 i.types[op].bitfield.disp16 = 0;
7283 i.types[op].bitfield.disp32 = 0;
7284 i.types[op].bitfield.disp32s = 1;
7285 i.types[op].bitfield.disp64 = 0;
7286 i.flags[op] |= Operand_PCrel;
7287 if (! i.disp_operands)
7288 fake_zero_displacement = 1;
7289 }
7290 else if (i.base_reg->reg_type.bitfield.word)
7291 {
7292 gas_assert (!i.tm.opcode_modifier.vecsib);
7293 switch (i.base_reg->reg_num)
7294 {
7295 case 3: /* (%bx) */
7296 if (i.index_reg == 0)
7297 i.rm.regmem = 7;
7298 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7299 i.rm.regmem = i.index_reg->reg_num - 6;
7300 break;
7301 case 5: /* (%bp) */
7302 default_seg = &ss;
7303 if (i.index_reg == 0)
7304 {
7305 i.rm.regmem = 6;
7306 if (operand_type_check (i.types[op], disp) == 0)
7307 {
7308 /* fake (%bp) into 0(%bp) */
7309 i.types[op].bitfield.disp8 = 1;
7310 fake_zero_displacement = 1;
7311 }
7312 }
7313 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7314 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7315 break;
7316 default: /* (%si) -> 4 or (%di) -> 5 */
7317 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7318 }
7319 i.rm.mode = mode_from_disp_size (i.types[op]);
7320 }
7321 else /* i.base_reg and 32/64 bit mode */
7322 {
7323 if (flag_code == CODE_64BIT
7324 && operand_type_check (i.types[op], disp))
7325 {
7326 i.types[op].bitfield.disp16 = 0;
7327 i.types[op].bitfield.disp64 = 0;
7328 if (i.prefix[ADDR_PREFIX] == 0)
7329 {
7330 i.types[op].bitfield.disp32 = 0;
7331 i.types[op].bitfield.disp32s = 1;
7332 }
7333 else
7334 {
7335 i.types[op].bitfield.disp32 = 1;
7336 i.types[op].bitfield.disp32s = 0;
7337 }
7338 }
7339
7340 if (!i.tm.opcode_modifier.vecsib)
7341 i.rm.regmem = i.base_reg->reg_num;
7342 if ((i.base_reg->reg_flags & RegRex) != 0)
7343 i.rex |= REX_B;
7344 i.sib.base = i.base_reg->reg_num;
7345 /* x86-64 ignores REX prefix bit here to avoid decoder
7346 complications. */
7347 if (!(i.base_reg->reg_flags & RegRex)
7348 && (i.base_reg->reg_num == EBP_REG_NUM
7349 || i.base_reg->reg_num == ESP_REG_NUM))
7350 default_seg = &ss;
7351 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7352 {
7353 fake_zero_displacement = 1;
7354 i.types[op].bitfield.disp8 = 1;
7355 }
7356 i.sib.scale = i.log2_scale_factor;
7357 if (i.index_reg == 0)
7358 {
7359 gas_assert (!i.tm.opcode_modifier.vecsib);
7360 /* <disp>(%esp) becomes two byte modrm with no index
7361 register. We've already stored the code for esp
7362 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7363 Any base register besides %esp will not use the
7364 extra modrm byte. */
7365 i.sib.index = NO_INDEX_REGISTER;
7366 }
7367 else if (!i.tm.opcode_modifier.vecsib)
7368 {
7369 if (i.index_reg->reg_num == RegIZ)
7370 i.sib.index = NO_INDEX_REGISTER;
7371 else
7372 i.sib.index = i.index_reg->reg_num;
7373 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7374 if ((i.index_reg->reg_flags & RegRex) != 0)
7375 i.rex |= REX_X;
7376 }
7377
7378 if (i.disp_operands
7379 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7380 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7381 i.rm.mode = 0;
7382 else
7383 {
7384 if (!fake_zero_displacement
7385 && !i.disp_operands
7386 && i.disp_encoding)
7387 {
7388 fake_zero_displacement = 1;
7389 if (i.disp_encoding == disp_encoding_8bit)
7390 i.types[op].bitfield.disp8 = 1;
7391 else
7392 i.types[op].bitfield.disp32 = 1;
7393 }
7394 i.rm.mode = mode_from_disp_size (i.types[op]);
7395 }
7396 }
7397
7398 if (fake_zero_displacement)
7399 {
7400 /* Fakes a zero displacement assuming that i.types[op]
7401 holds the correct displacement size. */
7402 expressionS *exp;
7403
7404 gas_assert (i.op[op].disps == 0);
7405 exp = &disp_expressions[i.disp_operands++];
7406 i.op[op].disps = exp;
7407 exp->X_op = O_constant;
7408 exp->X_add_number = 0;
7409 exp->X_add_symbol = (symbolS *) 0;
7410 exp->X_op_symbol = (symbolS *) 0;
7411 }
7412
7413 mem = op;
7414 }
7415 else
7416 mem = ~0;
7417
7418 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7419 {
7420 if (operand_type_check (i.types[0], imm))
7421 i.vex.register_specifier = NULL;
7422 else
7423 {
7424 /* VEX.vvvv encodes one of the sources when the first
7425 operand is not an immediate. */
7426 if (i.tm.opcode_modifier.vexw == VEXW0)
7427 i.vex.register_specifier = i.op[0].regs;
7428 else
7429 i.vex.register_specifier = i.op[1].regs;
7430 }
7431
7432 /* Destination is a XMM register encoded in the ModRM.reg
7433 and VEX.R bit. */
7434 i.rm.reg = i.op[2].regs->reg_num;
7435 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7436 i.rex |= REX_R;
7437
7438 /* ModRM.rm and VEX.B encodes the other source. */
7439 if (!i.mem_operands)
7440 {
7441 i.rm.mode = 3;
7442
7443 if (i.tm.opcode_modifier.vexw == VEXW0)
7444 i.rm.regmem = i.op[1].regs->reg_num;
7445 else
7446 i.rm.regmem = i.op[0].regs->reg_num;
7447
7448 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7449 i.rex |= REX_B;
7450 }
7451 }
7452 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7453 {
7454 i.vex.register_specifier = i.op[2].regs;
7455 if (!i.mem_operands)
7456 {
7457 i.rm.mode = 3;
7458 i.rm.regmem = i.op[1].regs->reg_num;
7459 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7460 i.rex |= REX_B;
7461 }
7462 }
7463 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7464 (if any) based on i.tm.extension_opcode. Again, we must be
7465 careful to make sure that segment/control/debug/test/MMX
7466 registers are coded into the i.rm.reg field. */
7467 else if (i.reg_operands)
7468 {
7469 unsigned int op;
7470 unsigned int vex_reg = ~0;
7471
7472 for (op = 0; op < i.operands; op++)
7473 {
7474 if (i.types[op].bitfield.reg
7475 || i.types[op].bitfield.regbnd
7476 || i.types[op].bitfield.regmask
7477 || i.types[op].bitfield.sreg2
7478 || i.types[op].bitfield.sreg3
7479 || i.types[op].bitfield.control
7480 || i.types[op].bitfield.debug
7481 || i.types[op].bitfield.test)
7482 break;
7483 if (i.types[op].bitfield.regsimd)
7484 {
7485 if (i.types[op].bitfield.zmmword)
7486 i.has_regzmm = TRUE;
7487 else if (i.types[op].bitfield.ymmword)
7488 i.has_regymm = TRUE;
7489 else
7490 i.has_regxmm = TRUE;
7491 break;
7492 }
7493 if (i.types[op].bitfield.regmmx)
7494 {
7495 i.has_regmmx = TRUE;
7496 break;
7497 }
7498 }
7499
7500 if (vex_3_sources)
7501 op = dest;
7502 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7503 {
7504 /* For instructions with VexNDS, the register-only
7505 source operand is encoded in VEX prefix. */
7506 gas_assert (mem != (unsigned int) ~0);
7507
7508 if (op > mem)
7509 {
7510 vex_reg = op++;
7511 gas_assert (op < i.operands);
7512 }
7513 else
7514 {
7515 /* Check register-only source operand when two source
7516 operands are swapped. */
7517 if (!i.tm.operand_types[op].bitfield.baseindex
7518 && i.tm.operand_types[op + 1].bitfield.baseindex)
7519 {
7520 vex_reg = op;
7521 op += 2;
7522 gas_assert (mem == (vex_reg + 1)
7523 && op < i.operands);
7524 }
7525 else
7526 {
7527 vex_reg = op + 1;
7528 gas_assert (vex_reg < i.operands);
7529 }
7530 }
7531 }
7532 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7533 {
7534 /* For instructions with VexNDD, the register destination
7535 is encoded in VEX prefix. */
7536 if (i.mem_operands == 0)
7537 {
7538 /* There is no memory operand. */
7539 gas_assert ((op + 2) == i.operands);
7540 vex_reg = op + 1;
7541 }
7542 else
7543 {
7544 /* There are only 2 non-immediate operands. */
7545 gas_assert (op < i.imm_operands + 2
7546 && i.operands == i.imm_operands + 2);
7547 vex_reg = i.imm_operands + 1;
7548 }
7549 }
7550 else
7551 gas_assert (op < i.operands);
7552
7553 if (vex_reg != (unsigned int) ~0)
7554 {
7555 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7556
7557 if ((!type->bitfield.reg
7558 || (!type->bitfield.dword && !type->bitfield.qword))
7559 && !type->bitfield.regsimd
7560 && !operand_type_equal (type, &regmask))
7561 abort ();
7562
7563 i.vex.register_specifier = i.op[vex_reg].regs;
7564 }
7565
7566 /* Don't set OP operand twice. */
7567 if (vex_reg != op)
7568 {
7569 /* If there is an extension opcode to put here, the
7570 register number must be put into the regmem field. */
7571 if (i.tm.extension_opcode != None)
7572 {
7573 i.rm.regmem = i.op[op].regs->reg_num;
7574 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7575 i.rex |= REX_B;
7576 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7577 i.vrex |= REX_B;
7578 }
7579 else
7580 {
7581 i.rm.reg = i.op[op].regs->reg_num;
7582 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7583 i.rex |= REX_R;
7584 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7585 i.vrex |= REX_R;
7586 }
7587 }
7588
7589 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7590 must set it to 3 to indicate this is a register operand
7591 in the regmem field. */
7592 if (!i.mem_operands)
7593 i.rm.mode = 3;
7594 }
7595
7596 /* Fill in i.rm.reg field with extension opcode (if any). */
7597 if (i.tm.extension_opcode != None)
7598 i.rm.reg = i.tm.extension_opcode;
7599 }
7600 return default_seg;
7601 }
7602
7603 static void
7604 output_branch (void)
7605 {
7606 char *p;
7607 int size;
7608 int code16;
7609 int prefix;
7610 relax_substateT subtype;
7611 symbolS *sym;
7612 offsetT off;
7613
7614 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7615 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7616
7617 prefix = 0;
7618 if (i.prefix[DATA_PREFIX] != 0)
7619 {
7620 prefix = 1;
7621 i.prefixes -= 1;
7622 code16 ^= CODE16;
7623 }
7624 /* Pentium4 branch hints. */
7625 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7626 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7627 {
7628 prefix++;
7629 i.prefixes--;
7630 }
7631 if (i.prefix[REX_PREFIX] != 0)
7632 {
7633 prefix++;
7634 i.prefixes--;
7635 }
7636
7637 /* BND prefixed jump. */
7638 if (i.prefix[BND_PREFIX] != 0)
7639 {
7640 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7641 i.prefixes -= 1;
7642 }
7643
7644 if (i.prefixes != 0 && !intel_syntax)
7645 as_warn (_("skipping prefixes on this instruction"));
7646
7647 /* It's always a symbol; End frag & setup for relax.
7648 Make sure there is enough room in this frag for the largest
7649 instruction we may generate in md_convert_frag. This is 2
7650 bytes for the opcode and room for the prefix and largest
7651 displacement. */
7652 frag_grow (prefix + 2 + 4);
7653 /* Prefix and 1 opcode byte go in fr_fix. */
7654 p = frag_more (prefix + 1);
7655 if (i.prefix[DATA_PREFIX] != 0)
7656 *p++ = DATA_PREFIX_OPCODE;
7657 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7658 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7659 *p++ = i.prefix[SEG_PREFIX];
7660 if (i.prefix[REX_PREFIX] != 0)
7661 *p++ = i.prefix[REX_PREFIX];
7662 *p = i.tm.base_opcode;
7663
7664 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7665 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7666 else if (cpu_arch_flags.bitfield.cpui386)
7667 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7668 else
7669 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7670 subtype |= code16;
7671
7672 sym = i.op[0].disps->X_add_symbol;
7673 off = i.op[0].disps->X_add_number;
7674
7675 if (i.op[0].disps->X_op != O_constant
7676 && i.op[0].disps->X_op != O_symbol)
7677 {
7678 /* Handle complex expressions. */
7679 sym = make_expr_symbol (i.op[0].disps);
7680 off = 0;
7681 }
7682
7683 /* 1 possible extra opcode + 4 byte displacement go in var part.
7684 Pass reloc in fr_var. */
7685 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7686 }
7687
7688 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7689 /* Return TRUE iff PLT32 relocation should be used for branching to
7690 symbol S. */
7691
7692 static bfd_boolean
7693 need_plt32_p (symbolS *s)
7694 {
7695 /* PLT32 relocation is ELF only. */
7696 if (!IS_ELF)
7697 return FALSE;
7698
7699 /* Since there is no need to prepare for PLT branch on x86-64, we
7700 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7701 be used as a marker for 32-bit PC-relative branches. */
7702 if (!object_64bit)
7703 return FALSE;
7704
7705 /* Weak or undefined symbol need PLT32 relocation. */
7706 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7707 return TRUE;
7708
7709 /* Non-global symbol doesn't need PLT32 relocation. */
7710 if (! S_IS_EXTERNAL (s))
7711 return FALSE;
7712
7713 /* Other global symbols need PLT32 relocation. NB: Symbol with
7714 non-default visibilities are treated as normal global symbol
7715 so that PLT32 relocation can be used as a marker for 32-bit
7716 PC-relative branches. It is useful for linker relaxation. */
7717 return TRUE;
7718 }
7719 #endif
7720
7721 static void
7722 output_jump (void)
7723 {
7724 char *p;
7725 int size;
7726 fixS *fixP;
7727 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7728
7729 if (i.tm.opcode_modifier.jumpbyte)
7730 {
7731 /* This is a loop or jecxz type instruction. */
7732 size = 1;
7733 if (i.prefix[ADDR_PREFIX] != 0)
7734 {
7735 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7736 i.prefixes -= 1;
7737 }
7738 /* Pentium4 branch hints. */
7739 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7740 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7741 {
7742 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7743 i.prefixes--;
7744 }
7745 }
7746 else
7747 {
7748 int code16;
7749
7750 code16 = 0;
7751 if (flag_code == CODE_16BIT)
7752 code16 = CODE16;
7753
7754 if (i.prefix[DATA_PREFIX] != 0)
7755 {
7756 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7757 i.prefixes -= 1;
7758 code16 ^= CODE16;
7759 }
7760
7761 size = 4;
7762 if (code16)
7763 size = 2;
7764 }
7765
7766 if (i.prefix[REX_PREFIX] != 0)
7767 {
7768 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7769 i.prefixes -= 1;
7770 }
7771
7772 /* BND prefixed jump. */
7773 if (i.prefix[BND_PREFIX] != 0)
7774 {
7775 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7776 i.prefixes -= 1;
7777 }
7778
7779 if (i.prefixes != 0 && !intel_syntax)
7780 as_warn (_("skipping prefixes on this instruction"));
7781
7782 p = frag_more (i.tm.opcode_length + size);
7783 switch (i.tm.opcode_length)
7784 {
7785 case 2:
7786 *p++ = i.tm.base_opcode >> 8;
7787 /* Fall through. */
7788 case 1:
7789 *p++ = i.tm.base_opcode;
7790 break;
7791 default:
7792 abort ();
7793 }
7794
7795 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7796 if (size == 4
7797 && jump_reloc == NO_RELOC
7798 && need_plt32_p (i.op[0].disps->X_add_symbol))
7799 jump_reloc = BFD_RELOC_X86_64_PLT32;
7800 #endif
7801
7802 jump_reloc = reloc (size, 1, 1, jump_reloc);
7803
7804 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7805 i.op[0].disps, 1, jump_reloc);
7806
7807 /* All jumps handled here are signed, but don't use a signed limit
7808 check for 32 and 16 bit jumps as we want to allow wrap around at
7809 4G and 64k respectively. */
7810 if (size == 1)
7811 fixP->fx_signed = 1;
7812 }
7813
7814 static void
7815 output_interseg_jump (void)
7816 {
7817 char *p;
7818 int size;
7819 int prefix;
7820 int code16;
7821
7822 code16 = 0;
7823 if (flag_code == CODE_16BIT)
7824 code16 = CODE16;
7825
7826 prefix = 0;
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 {
7829 prefix = 1;
7830 i.prefixes -= 1;
7831 code16 ^= CODE16;
7832 }
7833 if (i.prefix[REX_PREFIX] != 0)
7834 {
7835 prefix++;
7836 i.prefixes -= 1;
7837 }
7838
7839 size = 4;
7840 if (code16)
7841 size = 2;
7842
7843 if (i.prefixes != 0 && !intel_syntax)
7844 as_warn (_("skipping prefixes on this instruction"));
7845
7846 /* 1 opcode; 2 segment; offset */
7847 p = frag_more (prefix + 1 + 2 + size);
7848
7849 if (i.prefix[DATA_PREFIX] != 0)
7850 *p++ = DATA_PREFIX_OPCODE;
7851
7852 if (i.prefix[REX_PREFIX] != 0)
7853 *p++ = i.prefix[REX_PREFIX];
7854
7855 *p++ = i.tm.base_opcode;
7856 if (i.op[1].imms->X_op == O_constant)
7857 {
7858 offsetT n = i.op[1].imms->X_add_number;
7859
7860 if (size == 2
7861 && !fits_in_unsigned_word (n)
7862 && !fits_in_signed_word (n))
7863 {
7864 as_bad (_("16-bit jump out of range"));
7865 return;
7866 }
7867 md_number_to_chars (p, n, size);
7868 }
7869 else
7870 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7871 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7872 if (i.op[0].imms->X_op != O_constant)
7873 as_bad (_("can't handle non absolute segment in `%s'"),
7874 i.tm.name);
7875 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7876 }
7877
7878 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7879 void
7880 x86_cleanup (void)
7881 {
7882 char *p;
7883 asection *seg = now_seg;
7884 subsegT subseg = now_subseg;
7885 asection *sec;
7886 unsigned int alignment, align_size_1;
7887 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7888 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7889 unsigned int padding;
7890
7891 if (!IS_ELF || !x86_used_note)
7892 return;
7893
7894 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7895 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7896
7897 /* The .note.gnu.property section layout:
7898
7899 Field Length Contents
7900 ---- ---- ----
7901 n_namsz 4 4
7902 n_descsz 4 The note descriptor size
7903 n_type 4 NT_GNU_PROPERTY_TYPE_0
7904 n_name 4 "GNU"
7905 n_desc n_descsz The program property array
7906 .... .... ....
7907 */
7908
7909 /* Create the .note.gnu.property section. */
7910 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7911 bfd_set_section_flags (stdoutput, sec,
7912 (SEC_ALLOC
7913 | SEC_LOAD
7914 | SEC_DATA
7915 | SEC_HAS_CONTENTS
7916 | SEC_READONLY));
7917
7918 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7919 {
7920 align_size_1 = 7;
7921 alignment = 3;
7922 }
7923 else
7924 {
7925 align_size_1 = 3;
7926 alignment = 2;
7927 }
7928
7929 bfd_set_section_alignment (stdoutput, sec, alignment);
7930 elf_section_type (sec) = SHT_NOTE;
7931
7932 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7933 + 4-byte data */
7934 isa_1_descsz_raw = 4 + 4 + 4;
7935 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7936 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7937
7938 feature_2_descsz_raw = isa_1_descsz;
7939 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7940 + 4-byte data */
7941 feature_2_descsz_raw += 4 + 4 + 4;
7942 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7943 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7944 & ~align_size_1);
7945
7946 descsz = feature_2_descsz;
7947 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7948 p = frag_more (4 + 4 + 4 + 4 + descsz);
7949
7950 /* Write n_namsz. */
7951 md_number_to_chars (p, (valueT) 4, 4);
7952
7953 /* Write n_descsz. */
7954 md_number_to_chars (p + 4, (valueT) descsz, 4);
7955
7956 /* Write n_type. */
7957 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7958
7959 /* Write n_name. */
7960 memcpy (p + 4 * 3, "GNU", 4);
7961
7962 /* Write 4-byte type. */
7963 md_number_to_chars (p + 4 * 4,
7964 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7965
7966 /* Write 4-byte data size. */
7967 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7968
7969 /* Write 4-byte data. */
7970 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7971
7972 /* Zero out paddings. */
7973 padding = isa_1_descsz - isa_1_descsz_raw;
7974 if (padding)
7975 memset (p + 4 * 7, 0, padding);
7976
7977 /* Write 4-byte type. */
7978 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7979 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7980
7981 /* Write 4-byte data size. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7983
7984 /* Write 4-byte data. */
7985 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7986 (valueT) x86_feature_2_used, 4);
7987
7988 /* Zero out paddings. */
7989 padding = feature_2_descsz - feature_2_descsz_raw;
7990 if (padding)
7991 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7992
7993 /* We probably can't restore the current segment, for there likely
7994 isn't one yet... */
7995 if (seg && subseg)
7996 subseg_set (seg, subseg);
7997 }
7998 #endif
7999
8000 static void
8001 output_insn (void)
8002 {
8003 fragS *insn_start_frag;
8004 offsetT insn_start_off;
8005
8006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8007 if (IS_ELF && x86_used_note)
8008 {
8009 if (i.tm.cpu_flags.bitfield.cpucmov)
8010 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8011 if (i.tm.cpu_flags.bitfield.cpusse)
8012 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8013 if (i.tm.cpu_flags.bitfield.cpusse2)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8015 if (i.tm.cpu_flags.bitfield.cpusse3)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8017 if (i.tm.cpu_flags.bitfield.cpussse3)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8019 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8021 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8023 if (i.tm.cpu_flags.bitfield.cpuavx)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8025 if (i.tm.cpu_flags.bitfield.cpuavx2)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8027 if (i.tm.cpu_flags.bitfield.cpufma)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8029 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8031 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8057
8058 if (i.tm.cpu_flags.bitfield.cpu8087
8059 || i.tm.cpu_flags.bitfield.cpu287
8060 || i.tm.cpu_flags.bitfield.cpu387
8061 || i.tm.cpu_flags.bitfield.cpu687
8062 || i.tm.cpu_flags.bitfield.cpufisttp)
8063 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8064 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8065 Xfence instructions. */
8066 if (i.tm.base_opcode != 0xf18
8067 && i.tm.base_opcode != 0xf0d
8068 && i.tm.base_opcode != 0xfae
8069 && (i.has_regmmx
8070 || i.tm.cpu_flags.bitfield.cpummx
8071 || i.tm.cpu_flags.bitfield.cpua3dnow
8072 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8073 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8074 if (i.has_regxmm)
8075 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8076 if (i.has_regymm)
8077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8078 if (i.has_regzmm)
8079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8080 if (i.tm.cpu_flags.bitfield.cpufxsr)
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8082 if (i.tm.cpu_flags.bitfield.cpuxsave)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8084 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8086 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8088 }
8089 #endif
8090
8091 /* Tie dwarf2 debug info to the address at the start of the insn.
8092 We can't do this after the insn has been output as the current
8093 frag may have been closed off. eg. by frag_var. */
8094 dwarf2_emit_insn (0);
8095
8096 insn_start_frag = frag_now;
8097 insn_start_off = frag_now_fix ();
8098
8099 /* Output jumps. */
8100 if (i.tm.opcode_modifier.jump)
8101 output_branch ();
8102 else if (i.tm.opcode_modifier.jumpbyte
8103 || i.tm.opcode_modifier.jumpdword)
8104 output_jump ();
8105 else if (i.tm.opcode_modifier.jumpintersegment)
8106 output_interseg_jump ();
8107 else
8108 {
8109 /* Output normal instructions here. */
8110 char *p;
8111 unsigned char *q;
8112 unsigned int j;
8113 unsigned int prefix;
8114
8115 if (avoid_fence
8116 && i.tm.base_opcode == 0xfae
8117 && i.operands == 1
8118 && i.imm_operands == 1
8119 && (i.op[0].imms->X_add_number == 0xe8
8120 || i.op[0].imms->X_add_number == 0xf0
8121 || i.op[0].imms->X_add_number == 0xf8))
8122 {
8123 /* Encode lfence, mfence, and sfence as
8124 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8125 offsetT val = 0x240483f0ULL;
8126 p = frag_more (5);
8127 md_number_to_chars (p, val, 5);
8128 return;
8129 }
8130
8131 /* Some processors fail on LOCK prefix. This options makes
8132 assembler ignore LOCK prefix and serves as a workaround. */
8133 if (omit_lock_prefix)
8134 {
8135 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8136 return;
8137 i.prefix[LOCK_PREFIX] = 0;
8138 }
8139
8140 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8141 don't need the explicit prefix. */
8142 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8143 {
8144 switch (i.tm.opcode_length)
8145 {
8146 case 3:
8147 if (i.tm.base_opcode & 0xff000000)
8148 {
8149 prefix = (i.tm.base_opcode >> 24) & 0xff;
8150 add_prefix (prefix);
8151 }
8152 break;
8153 case 2:
8154 if ((i.tm.base_opcode & 0xff0000) != 0)
8155 {
8156 prefix = (i.tm.base_opcode >> 16) & 0xff;
8157 if (!i.tm.cpu_flags.bitfield.cpupadlock
8158 || prefix != REPE_PREFIX_OPCODE
8159 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8160 add_prefix (prefix);
8161 }
8162 break;
8163 case 1:
8164 break;
8165 case 0:
8166 /* Check for pseudo prefixes. */
8167 as_bad_where (insn_start_frag->fr_file,
8168 insn_start_frag->fr_line,
8169 _("pseudo prefix without instruction"));
8170 return;
8171 default:
8172 abort ();
8173 }
8174
8175 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8176 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8177 R_X86_64_GOTTPOFF relocation so that linker can safely
8178 perform IE->LE optimization. */
8179 if (x86_elf_abi == X86_64_X32_ABI
8180 && i.operands == 2
8181 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8182 && i.prefix[REX_PREFIX] == 0)
8183 add_prefix (REX_OPCODE);
8184 #endif
8185
8186 /* The prefix bytes. */
8187 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8188 if (*q)
8189 FRAG_APPEND_1_CHAR (*q);
8190 }
8191 else
8192 {
8193 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8194 if (*q)
8195 switch (j)
8196 {
8197 case REX_PREFIX:
8198 /* REX byte is encoded in VEX prefix. */
8199 break;
8200 case SEG_PREFIX:
8201 case ADDR_PREFIX:
8202 FRAG_APPEND_1_CHAR (*q);
8203 break;
8204 default:
8205 /* There should be no other prefixes for instructions
8206 with VEX prefix. */
8207 abort ();
8208 }
8209
8210 /* For EVEX instructions i.vrex should become 0 after
8211 build_evex_prefix. For VEX instructions upper 16 registers
8212 aren't available, so VREX should be 0. */
8213 if (i.vrex)
8214 abort ();
8215 /* Now the VEX prefix. */
8216 p = frag_more (i.vex.length);
8217 for (j = 0; j < i.vex.length; j++)
8218 p[j] = i.vex.bytes[j];
8219 }
8220
8221 /* Now the opcode; be careful about word order here! */
8222 if (i.tm.opcode_length == 1)
8223 {
8224 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8225 }
8226 else
8227 {
8228 switch (i.tm.opcode_length)
8229 {
8230 case 4:
8231 p = frag_more (4);
8232 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8233 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8234 break;
8235 case 3:
8236 p = frag_more (3);
8237 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8238 break;
8239 case 2:
8240 p = frag_more (2);
8241 break;
8242 default:
8243 abort ();
8244 break;
8245 }
8246
8247 /* Put out high byte first: can't use md_number_to_chars! */
8248 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8249 *p = i.tm.base_opcode & 0xff;
8250 }
8251
8252 /* Now the modrm byte and sib byte (if present). */
8253 if (i.tm.opcode_modifier.modrm)
8254 {
8255 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8256 | i.rm.reg << 3
8257 | i.rm.mode << 6));
8258 /* If i.rm.regmem == ESP (4)
8259 && i.rm.mode != (Register mode)
8260 && not 16 bit
8261 ==> need second modrm byte. */
8262 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8263 && i.rm.mode != 3
8264 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8265 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8266 | i.sib.index << 3
8267 | i.sib.scale << 6));
8268 }
8269
8270 if (i.disp_operands)
8271 output_disp (insn_start_frag, insn_start_off);
8272
8273 if (i.imm_operands)
8274 output_imm (insn_start_frag, insn_start_off);
8275 }
8276
8277 #ifdef DEBUG386
8278 if (flag_debug)
8279 {
8280 pi ("" /*line*/, &i);
8281 }
8282 #endif /* DEBUG386 */
8283 }
8284
8285 /* Return the size of the displacement operand N. */
8286
8287 static int
8288 disp_size (unsigned int n)
8289 {
8290 int size = 4;
8291
8292 if (i.types[n].bitfield.disp64)
8293 size = 8;
8294 else if (i.types[n].bitfield.disp8)
8295 size = 1;
8296 else if (i.types[n].bitfield.disp16)
8297 size = 2;
8298 return size;
8299 }
8300
8301 /* Return the size of the immediate operand N. */
8302
8303 static int
8304 imm_size (unsigned int n)
8305 {
8306 int size = 4;
8307 if (i.types[n].bitfield.imm64)
8308 size = 8;
8309 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8310 size = 1;
8311 else if (i.types[n].bitfield.imm16)
8312 size = 2;
8313 return size;
8314 }
8315
8316 static void
8317 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8318 {
8319 char *p;
8320 unsigned int n;
8321
8322 for (n = 0; n < i.operands; n++)
8323 {
8324 if (operand_type_check (i.types[n], disp))
8325 {
8326 if (i.op[n].disps->X_op == O_constant)
8327 {
8328 int size = disp_size (n);
8329 offsetT val = i.op[n].disps->X_add_number;
8330
8331 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8332 size);
8333 p = frag_more (size);
8334 md_number_to_chars (p, val, size);
8335 }
8336 else
8337 {
8338 enum bfd_reloc_code_real reloc_type;
8339 int size = disp_size (n);
8340 int sign = i.types[n].bitfield.disp32s;
8341 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8342 fixS *fixP;
8343
8344 /* We can't have 8 bit displacement here. */
8345 gas_assert (!i.types[n].bitfield.disp8);
8346
8347 /* The PC relative address is computed relative
8348 to the instruction boundary, so in case immediate
8349 fields follows, we need to adjust the value. */
8350 if (pcrel && i.imm_operands)
8351 {
8352 unsigned int n1;
8353 int sz = 0;
8354
8355 for (n1 = 0; n1 < i.operands; n1++)
8356 if (operand_type_check (i.types[n1], imm))
8357 {
8358 /* Only one immediate is allowed for PC
8359 relative address. */
8360 gas_assert (sz == 0);
8361 sz = imm_size (n1);
8362 i.op[n].disps->X_add_number -= sz;
8363 }
8364 /* We should find the immediate. */
8365 gas_assert (sz != 0);
8366 }
8367
8368 p = frag_more (size);
8369 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8370 if (GOT_symbol
8371 && GOT_symbol == i.op[n].disps->X_add_symbol
8372 && (((reloc_type == BFD_RELOC_32
8373 || reloc_type == BFD_RELOC_X86_64_32S
8374 || (reloc_type == BFD_RELOC_64
8375 && object_64bit))
8376 && (i.op[n].disps->X_op == O_symbol
8377 || (i.op[n].disps->X_op == O_add
8378 && ((symbol_get_value_expression
8379 (i.op[n].disps->X_op_symbol)->X_op)
8380 == O_subtract))))
8381 || reloc_type == BFD_RELOC_32_PCREL))
8382 {
8383 offsetT add;
8384
8385 if (insn_start_frag == frag_now)
8386 add = (p - frag_now->fr_literal) - insn_start_off;
8387 else
8388 {
8389 fragS *fr;
8390
8391 add = insn_start_frag->fr_fix - insn_start_off;
8392 for (fr = insn_start_frag->fr_next;
8393 fr && fr != frag_now; fr = fr->fr_next)
8394 add += fr->fr_fix;
8395 add += p - frag_now->fr_literal;
8396 }
8397
8398 if (!object_64bit)
8399 {
8400 reloc_type = BFD_RELOC_386_GOTPC;
8401 i.op[n].imms->X_add_number += add;
8402 }
8403 else if (reloc_type == BFD_RELOC_64)
8404 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8405 else
8406 /* Don't do the adjustment for x86-64, as there
8407 the pcrel addressing is relative to the _next_
8408 insn, and that is taken care of in other code. */
8409 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8410 }
8411 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8412 size, i.op[n].disps, pcrel,
8413 reloc_type);
8414 /* Check for "call/jmp *mem", "mov mem, %reg",
8415 "test %reg, mem" and "binop mem, %reg" where binop
8416 is one of adc, add, and, cmp, or, sbb, sub, xor
8417 instructions. Always generate R_386_GOT32X for
8418 "sym*GOT" operand in 32-bit mode. */
8419 if ((generate_relax_relocations
8420 || (!object_64bit
8421 && i.rm.mode == 0
8422 && i.rm.regmem == 5))
8423 && (i.rm.mode == 2
8424 || (i.rm.mode == 0 && i.rm.regmem == 5))
8425 && ((i.operands == 1
8426 && i.tm.base_opcode == 0xff
8427 && (i.rm.reg == 2 || i.rm.reg == 4))
8428 || (i.operands == 2
8429 && (i.tm.base_opcode == 0x8b
8430 || i.tm.base_opcode == 0x85
8431 || (i.tm.base_opcode & 0xc7) == 0x03))))
8432 {
8433 if (object_64bit)
8434 {
8435 fixP->fx_tcbit = i.rex != 0;
8436 if (i.base_reg
8437 && (i.base_reg->reg_num == RegIP))
8438 fixP->fx_tcbit2 = 1;
8439 }
8440 else
8441 fixP->fx_tcbit2 = 1;
8442 }
8443 }
8444 }
8445 }
8446 }
8447
8448 static void
8449 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8450 {
8451 char *p;
8452 unsigned int n;
8453
8454 for (n = 0; n < i.operands; n++)
8455 {
8456 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8457 if (i.rounding && (int) n == i.rounding->operand)
8458 continue;
8459
8460 if (operand_type_check (i.types[n], imm))
8461 {
8462 if (i.op[n].imms->X_op == O_constant)
8463 {
8464 int size = imm_size (n);
8465 offsetT val;
8466
8467 val = offset_in_range (i.op[n].imms->X_add_number,
8468 size);
8469 p = frag_more (size);
8470 md_number_to_chars (p, val, size);
8471 }
8472 else
8473 {
8474 /* Not absolute_section.
8475 Need a 32-bit fixup (don't support 8bit
8476 non-absolute imms). Try to support other
8477 sizes ... */
8478 enum bfd_reloc_code_real reloc_type;
8479 int size = imm_size (n);
8480 int sign;
8481
8482 if (i.types[n].bitfield.imm32s
8483 && (i.suffix == QWORD_MNEM_SUFFIX
8484 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8485 sign = 1;
8486 else
8487 sign = 0;
8488
8489 p = frag_more (size);
8490 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8491
8492 /* This is tough to explain. We end up with this one if we
8493 * have operands that look like
8494 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8495 * obtain the absolute address of the GOT, and it is strongly
8496 * preferable from a performance point of view to avoid using
8497 * a runtime relocation for this. The actual sequence of
8498 * instructions often look something like:
8499 *
8500 * call .L66
8501 * .L66:
8502 * popl %ebx
8503 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8504 *
8505 * The call and pop essentially return the absolute address
8506 * of the label .L66 and store it in %ebx. The linker itself
8507 * will ultimately change the first operand of the addl so
8508 * that %ebx points to the GOT, but to keep things simple, the
8509 * .o file must have this operand set so that it generates not
8510 * the absolute address of .L66, but the absolute address of
8511 * itself. This allows the linker itself simply treat a GOTPC
8512 * relocation as asking for a pcrel offset to the GOT to be
8513 * added in, and the addend of the relocation is stored in the
8514 * operand field for the instruction itself.
8515 *
8516 * Our job here is to fix the operand so that it would add
8517 * the correct offset so that %ebx would point to itself. The
8518 * thing that is tricky is that .-.L66 will point to the
8519 * beginning of the instruction, so we need to further modify
8520 * the operand so that it will point to itself. There are
8521 * other cases where you have something like:
8522 *
8523 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8524 *
8525 * and here no correction would be required. Internally in
8526 * the assembler we treat operands of this form as not being
8527 * pcrel since the '.' is explicitly mentioned, and I wonder
8528 * whether it would simplify matters to do it this way. Who
8529 * knows. In earlier versions of the PIC patches, the
8530 * pcrel_adjust field was used to store the correction, but
8531 * since the expression is not pcrel, I felt it would be
8532 * confusing to do it this way. */
8533
8534 if ((reloc_type == BFD_RELOC_32
8535 || reloc_type == BFD_RELOC_X86_64_32S
8536 || reloc_type == BFD_RELOC_64)
8537 && GOT_symbol
8538 && GOT_symbol == i.op[n].imms->X_add_symbol
8539 && (i.op[n].imms->X_op == O_symbol
8540 || (i.op[n].imms->X_op == O_add
8541 && ((symbol_get_value_expression
8542 (i.op[n].imms->X_op_symbol)->X_op)
8543 == O_subtract))))
8544 {
8545 offsetT add;
8546
8547 if (insn_start_frag == frag_now)
8548 add = (p - frag_now->fr_literal) - insn_start_off;
8549 else
8550 {
8551 fragS *fr;
8552
8553 add = insn_start_frag->fr_fix - insn_start_off;
8554 for (fr = insn_start_frag->fr_next;
8555 fr && fr != frag_now; fr = fr->fr_next)
8556 add += fr->fr_fix;
8557 add += p - frag_now->fr_literal;
8558 }
8559
8560 if (!object_64bit)
8561 reloc_type = BFD_RELOC_386_GOTPC;
8562 else if (size == 4)
8563 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8564 else if (size == 8)
8565 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8566 i.op[n].imms->X_add_number += add;
8567 }
8568 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8569 i.op[n].imms, 0, reloc_type);
8570 }
8571 }
8572 }
8573 }
8574 \f
8575 /* x86_cons_fix_new is called via the expression parsing code when a
8576 reloc is needed. We use this hook to get the correct .got reloc. */
8577 static int cons_sign = -1;
8578
8579 void
8580 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8581 expressionS *exp, bfd_reloc_code_real_type r)
8582 {
8583 r = reloc (len, 0, cons_sign, r);
8584
8585 #ifdef TE_PE
8586 if (exp->X_op == O_secrel)
8587 {
8588 exp->X_op = O_symbol;
8589 r = BFD_RELOC_32_SECREL;
8590 }
8591 #endif
8592
8593 fix_new_exp (frag, off, len, exp, 0, r);
8594 }
8595
8596 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8597 purpose of the `.dc.a' internal pseudo-op. */
8598
8599 int
8600 x86_address_bytes (void)
8601 {
8602 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8603 return 4;
8604 return stdoutput->arch_info->bits_per_address / 8;
8605 }
8606
8607 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8608 || defined (LEX_AT)
8609 # define lex_got(reloc, adjust, types) NULL
8610 #else
8611 /* Parse operands of the form
8612 <symbol>@GOTOFF+<nnn>
8613 and similar .plt or .got references.
8614
8615 If we find one, set up the correct relocation in RELOC and copy the
8616 input string, minus the `@GOTOFF' into a malloc'd buffer for
8617 parsing by the calling routine. Return this buffer, and if ADJUST
8618 is non-null set it to the length of the string we removed from the
8619 input line. Otherwise return NULL. */
8620 static char *
8621 lex_got (enum bfd_reloc_code_real *rel,
8622 int *adjust,
8623 i386_operand_type *types)
8624 {
8625 /* Some of the relocations depend on the size of what field is to
8626 be relocated. But in our callers i386_immediate and i386_displacement
8627 we don't yet know the operand size (this will be set by insn
8628 matching). Hence we record the word32 relocation here,
8629 and adjust the reloc according to the real size in reloc(). */
8630 static const struct {
8631 const char *str;
8632 int len;
8633 const enum bfd_reloc_code_real rel[2];
8634 const i386_operand_type types64;
8635 } gotrel[] = {
8636 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8637 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8638 BFD_RELOC_SIZE32 },
8639 OPERAND_TYPE_IMM32_64 },
8640 #endif
8641 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8642 BFD_RELOC_X86_64_PLTOFF64 },
8643 OPERAND_TYPE_IMM64 },
8644 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8645 BFD_RELOC_X86_64_PLT32 },
8646 OPERAND_TYPE_IMM32_32S_DISP32 },
8647 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8648 BFD_RELOC_X86_64_GOTPLT64 },
8649 OPERAND_TYPE_IMM64_DISP64 },
8650 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8651 BFD_RELOC_X86_64_GOTOFF64 },
8652 OPERAND_TYPE_IMM64_DISP64 },
8653 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8654 BFD_RELOC_X86_64_GOTPCREL },
8655 OPERAND_TYPE_IMM32_32S_DISP32 },
8656 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8657 BFD_RELOC_X86_64_TLSGD },
8658 OPERAND_TYPE_IMM32_32S_DISP32 },
8659 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8660 _dummy_first_bfd_reloc_code_real },
8661 OPERAND_TYPE_NONE },
8662 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8663 BFD_RELOC_X86_64_TLSLD },
8664 OPERAND_TYPE_IMM32_32S_DISP32 },
8665 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8666 BFD_RELOC_X86_64_GOTTPOFF },
8667 OPERAND_TYPE_IMM32_32S_DISP32 },
8668 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8669 BFD_RELOC_X86_64_TPOFF32 },
8670 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8671 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8672 _dummy_first_bfd_reloc_code_real },
8673 OPERAND_TYPE_NONE },
8674 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8675 BFD_RELOC_X86_64_DTPOFF32 },
8676 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8677 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8678 _dummy_first_bfd_reloc_code_real },
8679 OPERAND_TYPE_NONE },
8680 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8681 _dummy_first_bfd_reloc_code_real },
8682 OPERAND_TYPE_NONE },
8683 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8684 BFD_RELOC_X86_64_GOT32 },
8685 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8686 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8687 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8688 OPERAND_TYPE_IMM32_32S_DISP32 },
8689 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8690 BFD_RELOC_X86_64_TLSDESC_CALL },
8691 OPERAND_TYPE_IMM32_32S_DISP32 },
8692 };
8693 char *cp;
8694 unsigned int j;
8695
8696 #if defined (OBJ_MAYBE_ELF)
8697 if (!IS_ELF)
8698 return NULL;
8699 #endif
8700
8701 for (cp = input_line_pointer; *cp != '@'; cp++)
8702 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8703 return NULL;
8704
8705 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8706 {
8707 int len = gotrel[j].len;
8708 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8709 {
8710 if (gotrel[j].rel[object_64bit] != 0)
8711 {
8712 int first, second;
8713 char *tmpbuf, *past_reloc;
8714
8715 *rel = gotrel[j].rel[object_64bit];
8716
8717 if (types)
8718 {
8719 if (flag_code != CODE_64BIT)
8720 {
8721 types->bitfield.imm32 = 1;
8722 types->bitfield.disp32 = 1;
8723 }
8724 else
8725 *types = gotrel[j].types64;
8726 }
8727
8728 if (j != 0 && GOT_symbol == NULL)
8729 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8730
8731 /* The length of the first part of our input line. */
8732 first = cp - input_line_pointer;
8733
8734 /* The second part goes from after the reloc token until
8735 (and including) an end_of_line char or comma. */
8736 past_reloc = cp + 1 + len;
8737 cp = past_reloc;
8738 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8739 ++cp;
8740 second = cp + 1 - past_reloc;
8741
8742 /* Allocate and copy string. The trailing NUL shouldn't
8743 be necessary, but be safe. */
8744 tmpbuf = XNEWVEC (char, first + second + 2);
8745 memcpy (tmpbuf, input_line_pointer, first);
8746 if (second != 0 && *past_reloc != ' ')
8747 /* Replace the relocation token with ' ', so that
8748 errors like foo@GOTOFF1 will be detected. */
8749 tmpbuf[first++] = ' ';
8750 else
8751 /* Increment length by 1 if the relocation token is
8752 removed. */
8753 len++;
8754 if (adjust)
8755 *adjust = len;
8756 memcpy (tmpbuf + first, past_reloc, second);
8757 tmpbuf[first + second] = '\0';
8758 return tmpbuf;
8759 }
8760
8761 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8762 gotrel[j].str, 1 << (5 + object_64bit));
8763 return NULL;
8764 }
8765 }
8766
8767 /* Might be a symbol version string. Don't as_bad here. */
8768 return NULL;
8769 }
8770 #endif
8771
8772 #ifdef TE_PE
8773 #ifdef lex_got
8774 #undef lex_got
8775 #endif
8776 /* Parse operands of the form
8777 <symbol>@SECREL32+<nnn>
8778
8779 If we find one, set up the correct relocation in RELOC and copy the
8780 input string, minus the `@SECREL32' into a malloc'd buffer for
8781 parsing by the calling routine. Return this buffer, and if ADJUST
8782 is non-null set it to the length of the string we removed from the
8783 input line. Otherwise return NULL.
8784
8785 This function is copied from the ELF version above adjusted for PE targets. */
8786
8787 static char *
8788 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8789 int *adjust ATTRIBUTE_UNUSED,
8790 i386_operand_type *types)
8791 {
8792 static const struct
8793 {
8794 const char *str;
8795 int len;
8796 const enum bfd_reloc_code_real rel[2];
8797 const i386_operand_type types64;
8798 }
8799 gotrel[] =
8800 {
8801 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8802 BFD_RELOC_32_SECREL },
8803 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8804 };
8805
8806 char *cp;
8807 unsigned j;
8808
8809 for (cp = input_line_pointer; *cp != '@'; cp++)
8810 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8811 return NULL;
8812
8813 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8814 {
8815 int len = gotrel[j].len;
8816
8817 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8818 {
8819 if (gotrel[j].rel[object_64bit] != 0)
8820 {
8821 int first, second;
8822 char *tmpbuf, *past_reloc;
8823
8824 *rel = gotrel[j].rel[object_64bit];
8825 if (adjust)
8826 *adjust = len;
8827
8828 if (types)
8829 {
8830 if (flag_code != CODE_64BIT)
8831 {
8832 types->bitfield.imm32 = 1;
8833 types->bitfield.disp32 = 1;
8834 }
8835 else
8836 *types = gotrel[j].types64;
8837 }
8838
8839 /* The length of the first part of our input line. */
8840 first = cp - input_line_pointer;
8841
8842 /* The second part goes from after the reloc token until
8843 (and including) an end_of_line char or comma. */
8844 past_reloc = cp + 1 + len;
8845 cp = past_reloc;
8846 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8847 ++cp;
8848 second = cp + 1 - past_reloc;
8849
8850 /* Allocate and copy string. The trailing NUL shouldn't
8851 be necessary, but be safe. */
8852 tmpbuf = XNEWVEC (char, first + second + 2);
8853 memcpy (tmpbuf, input_line_pointer, first);
8854 if (second != 0 && *past_reloc != ' ')
8855 /* Replace the relocation token with ' ', so that
8856 errors like foo@SECLREL321 will be detected. */
8857 tmpbuf[first++] = ' ';
8858 memcpy (tmpbuf + first, past_reloc, second);
8859 tmpbuf[first + second] = '\0';
8860 return tmpbuf;
8861 }
8862
8863 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8864 gotrel[j].str, 1 << (5 + object_64bit));
8865 return NULL;
8866 }
8867 }
8868
8869 /* Might be a symbol version string. Don't as_bad here. */
8870 return NULL;
8871 }
8872
8873 #endif /* TE_PE */
8874
8875 bfd_reloc_code_real_type
8876 x86_cons (expressionS *exp, int size)
8877 {
8878 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8879
8880 intel_syntax = -intel_syntax;
8881
8882 exp->X_md = 0;
8883 if (size == 4 || (object_64bit && size == 8))
8884 {
8885 /* Handle @GOTOFF and the like in an expression. */
8886 char *save;
8887 char *gotfree_input_line;
8888 int adjust = 0;
8889
8890 save = input_line_pointer;
8891 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8892 if (gotfree_input_line)
8893 input_line_pointer = gotfree_input_line;
8894
8895 expression (exp);
8896
8897 if (gotfree_input_line)
8898 {
8899 /* expression () has merrily parsed up to the end of line,
8900 or a comma - in the wrong buffer. Transfer how far
8901 input_line_pointer has moved to the right buffer. */
8902 input_line_pointer = (save
8903 + (input_line_pointer - gotfree_input_line)
8904 + adjust);
8905 free (gotfree_input_line);
8906 if (exp->X_op == O_constant
8907 || exp->X_op == O_absent
8908 || exp->X_op == O_illegal
8909 || exp->X_op == O_register
8910 || exp->X_op == O_big)
8911 {
8912 char c = *input_line_pointer;
8913 *input_line_pointer = 0;
8914 as_bad (_("missing or invalid expression `%s'"), save);
8915 *input_line_pointer = c;
8916 }
8917 }
8918 }
8919 else
8920 expression (exp);
8921
8922 intel_syntax = -intel_syntax;
8923
8924 if (intel_syntax)
8925 i386_intel_simplify (exp);
8926
8927 return got_reloc;
8928 }
8929
8930 static void
8931 signed_cons (int size)
8932 {
8933 if (flag_code == CODE_64BIT)
8934 cons_sign = 1;
8935 cons (size);
8936 cons_sign = -1;
8937 }
8938
8939 #ifdef TE_PE
8940 static void
8941 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8942 {
8943 expressionS exp;
8944
8945 do
8946 {
8947 expression (&exp);
8948 if (exp.X_op == O_symbol)
8949 exp.X_op = O_secrel;
8950
8951 emit_expr (&exp, 4);
8952 }
8953 while (*input_line_pointer++ == ',');
8954
8955 input_line_pointer--;
8956 demand_empty_rest_of_line ();
8957 }
8958 #endif
8959
8960 /* Handle Vector operations. */
8961
8962 static char *
8963 check_VecOperations (char *op_string, char *op_end)
8964 {
8965 const reg_entry *mask;
8966 const char *saved;
8967 char *end_op;
8968
8969 while (*op_string
8970 && (op_end == NULL || op_string < op_end))
8971 {
8972 saved = op_string;
8973 if (*op_string == '{')
8974 {
8975 op_string++;
8976
8977 /* Check broadcasts. */
8978 if (strncmp (op_string, "1to", 3) == 0)
8979 {
8980 int bcst_type;
8981
8982 if (i.broadcast)
8983 goto duplicated_vec_op;
8984
8985 op_string += 3;
8986 if (*op_string == '8')
8987 bcst_type = 8;
8988 else if (*op_string == '4')
8989 bcst_type = 4;
8990 else if (*op_string == '2')
8991 bcst_type = 2;
8992 else if (*op_string == '1'
8993 && *(op_string+1) == '6')
8994 {
8995 bcst_type = 16;
8996 op_string++;
8997 }
8998 else
8999 {
9000 as_bad (_("Unsupported broadcast: `%s'"), saved);
9001 return NULL;
9002 }
9003 op_string++;
9004
9005 broadcast_op.type = bcst_type;
9006 broadcast_op.operand = this_operand;
9007 broadcast_op.bytes = 0;
9008 i.broadcast = &broadcast_op;
9009 }
9010 /* Check masking operation. */
9011 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9012 {
9013 /* k0 can't be used for write mask. */
9014 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9015 {
9016 as_bad (_("`%s%s' can't be used for write mask"),
9017 register_prefix, mask->reg_name);
9018 return NULL;
9019 }
9020
9021 if (!i.mask)
9022 {
9023 mask_op.mask = mask;
9024 mask_op.zeroing = 0;
9025 mask_op.operand = this_operand;
9026 i.mask = &mask_op;
9027 }
9028 else
9029 {
9030 if (i.mask->mask)
9031 goto duplicated_vec_op;
9032
9033 i.mask->mask = mask;
9034
9035 /* Only "{z}" is allowed here. No need to check
9036 zeroing mask explicitly. */
9037 if (i.mask->operand != this_operand)
9038 {
9039 as_bad (_("invalid write mask `%s'"), saved);
9040 return NULL;
9041 }
9042 }
9043
9044 op_string = end_op;
9045 }
9046 /* Check zeroing-flag for masking operation. */
9047 else if (*op_string == 'z')
9048 {
9049 if (!i.mask)
9050 {
9051 mask_op.mask = NULL;
9052 mask_op.zeroing = 1;
9053 mask_op.operand = this_operand;
9054 i.mask = &mask_op;
9055 }
9056 else
9057 {
9058 if (i.mask->zeroing)
9059 {
9060 duplicated_vec_op:
9061 as_bad (_("duplicated `%s'"), saved);
9062 return NULL;
9063 }
9064
9065 i.mask->zeroing = 1;
9066
9067 /* Only "{%k}" is allowed here. No need to check mask
9068 register explicitly. */
9069 if (i.mask->operand != this_operand)
9070 {
9071 as_bad (_("invalid zeroing-masking `%s'"),
9072 saved);
9073 return NULL;
9074 }
9075 }
9076
9077 op_string++;
9078 }
9079 else
9080 goto unknown_vec_op;
9081
9082 if (*op_string != '}')
9083 {
9084 as_bad (_("missing `}' in `%s'"), saved);
9085 return NULL;
9086 }
9087 op_string++;
9088
9089 /* Strip whitespace since the addition of pseudo prefixes
9090 changed how the scrubber treats '{'. */
9091 if (is_space_char (*op_string))
9092 ++op_string;
9093
9094 continue;
9095 }
9096 unknown_vec_op:
9097 /* We don't know this one. */
9098 as_bad (_("unknown vector operation: `%s'"), saved);
9099 return NULL;
9100 }
9101
9102 if (i.mask && i.mask->zeroing && !i.mask->mask)
9103 {
9104 as_bad (_("zeroing-masking only allowed with write mask"));
9105 return NULL;
9106 }
9107
9108 return op_string;
9109 }
9110
9111 static int
9112 i386_immediate (char *imm_start)
9113 {
9114 char *save_input_line_pointer;
9115 char *gotfree_input_line;
9116 segT exp_seg = 0;
9117 expressionS *exp;
9118 i386_operand_type types;
9119
9120 operand_type_set (&types, ~0);
9121
9122 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9123 {
9124 as_bad (_("at most %d immediate operands are allowed"),
9125 MAX_IMMEDIATE_OPERANDS);
9126 return 0;
9127 }
9128
9129 exp = &im_expressions[i.imm_operands++];
9130 i.op[this_operand].imms = exp;
9131
9132 if (is_space_char (*imm_start))
9133 ++imm_start;
9134
9135 save_input_line_pointer = input_line_pointer;
9136 input_line_pointer = imm_start;
9137
9138 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9139 if (gotfree_input_line)
9140 input_line_pointer = gotfree_input_line;
9141
9142 exp_seg = expression (exp);
9143
9144 SKIP_WHITESPACE ();
9145
9146 /* Handle vector operations. */
9147 if (*input_line_pointer == '{')
9148 {
9149 input_line_pointer = check_VecOperations (input_line_pointer,
9150 NULL);
9151 if (input_line_pointer == NULL)
9152 return 0;
9153 }
9154
9155 if (*input_line_pointer)
9156 as_bad (_("junk `%s' after expression"), input_line_pointer);
9157
9158 input_line_pointer = save_input_line_pointer;
9159 if (gotfree_input_line)
9160 {
9161 free (gotfree_input_line);
9162
9163 if (exp->X_op == O_constant || exp->X_op == O_register)
9164 exp->X_op = O_illegal;
9165 }
9166
9167 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9168 }
9169
9170 static int
9171 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9172 i386_operand_type types, const char *imm_start)
9173 {
9174 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9175 {
9176 if (imm_start)
9177 as_bad (_("missing or invalid immediate expression `%s'"),
9178 imm_start);
9179 return 0;
9180 }
9181 else if (exp->X_op == O_constant)
9182 {
9183 /* Size it properly later. */
9184 i.types[this_operand].bitfield.imm64 = 1;
9185 /* If not 64bit, sign extend val. */
9186 if (flag_code != CODE_64BIT
9187 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9188 exp->X_add_number
9189 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9190 }
9191 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9192 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9193 && exp_seg != absolute_section
9194 && exp_seg != text_section
9195 && exp_seg != data_section
9196 && exp_seg != bss_section
9197 && exp_seg != undefined_section
9198 && !bfd_is_com_section (exp_seg))
9199 {
9200 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9201 return 0;
9202 }
9203 #endif
9204 else if (!intel_syntax && exp_seg == reg_section)
9205 {
9206 if (imm_start)
9207 as_bad (_("illegal immediate register operand %s"), imm_start);
9208 return 0;
9209 }
9210 else
9211 {
9212 /* This is an address. The size of the address will be
9213 determined later, depending on destination register,
9214 suffix, or the default for the section. */
9215 i.types[this_operand].bitfield.imm8 = 1;
9216 i.types[this_operand].bitfield.imm16 = 1;
9217 i.types[this_operand].bitfield.imm32 = 1;
9218 i.types[this_operand].bitfield.imm32s = 1;
9219 i.types[this_operand].bitfield.imm64 = 1;
9220 i.types[this_operand] = operand_type_and (i.types[this_operand],
9221 types);
9222 }
9223
9224 return 1;
9225 }
9226
9227 static char *
9228 i386_scale (char *scale)
9229 {
9230 offsetT val;
9231 char *save = input_line_pointer;
9232
9233 input_line_pointer = scale;
9234 val = get_absolute_expression ();
9235
9236 switch (val)
9237 {
9238 case 1:
9239 i.log2_scale_factor = 0;
9240 break;
9241 case 2:
9242 i.log2_scale_factor = 1;
9243 break;
9244 case 4:
9245 i.log2_scale_factor = 2;
9246 break;
9247 case 8:
9248 i.log2_scale_factor = 3;
9249 break;
9250 default:
9251 {
9252 char sep = *input_line_pointer;
9253
9254 *input_line_pointer = '\0';
9255 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9256 scale);
9257 *input_line_pointer = sep;
9258 input_line_pointer = save;
9259 return NULL;
9260 }
9261 }
9262 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9263 {
9264 as_warn (_("scale factor of %d without an index register"),
9265 1 << i.log2_scale_factor);
9266 i.log2_scale_factor = 0;
9267 }
9268 scale = input_line_pointer;
9269 input_line_pointer = save;
9270 return scale;
9271 }
9272
9273 static int
9274 i386_displacement (char *disp_start, char *disp_end)
9275 {
9276 expressionS *exp;
9277 segT exp_seg = 0;
9278 char *save_input_line_pointer;
9279 char *gotfree_input_line;
9280 int override;
9281 i386_operand_type bigdisp, types = anydisp;
9282 int ret;
9283
9284 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9285 {
9286 as_bad (_("at most %d displacement operands are allowed"),
9287 MAX_MEMORY_OPERANDS);
9288 return 0;
9289 }
9290
9291 operand_type_set (&bigdisp, 0);
9292 if ((i.types[this_operand].bitfield.jumpabsolute)
9293 || (!current_templates->start->opcode_modifier.jump
9294 && !current_templates->start->opcode_modifier.jumpdword))
9295 {
9296 bigdisp.bitfield.disp32 = 1;
9297 override = (i.prefix[ADDR_PREFIX] != 0);
9298 if (flag_code == CODE_64BIT)
9299 {
9300 if (!override)
9301 {
9302 bigdisp.bitfield.disp32s = 1;
9303 bigdisp.bitfield.disp64 = 1;
9304 }
9305 }
9306 else if ((flag_code == CODE_16BIT) ^ override)
9307 {
9308 bigdisp.bitfield.disp32 = 0;
9309 bigdisp.bitfield.disp16 = 1;
9310 }
9311 }
9312 else
9313 {
9314 /* For PC-relative branches, the width of the displacement
9315 is dependent upon data size, not address size. */
9316 override = (i.prefix[DATA_PREFIX] != 0);
9317 if (flag_code == CODE_64BIT)
9318 {
9319 if (override || i.suffix == WORD_MNEM_SUFFIX)
9320 bigdisp.bitfield.disp16 = 1;
9321 else
9322 {
9323 bigdisp.bitfield.disp32 = 1;
9324 bigdisp.bitfield.disp32s = 1;
9325 }
9326 }
9327 else
9328 {
9329 if (!override)
9330 override = (i.suffix == (flag_code != CODE_16BIT
9331 ? WORD_MNEM_SUFFIX
9332 : LONG_MNEM_SUFFIX));
9333 bigdisp.bitfield.disp32 = 1;
9334 if ((flag_code == CODE_16BIT) ^ override)
9335 {
9336 bigdisp.bitfield.disp32 = 0;
9337 bigdisp.bitfield.disp16 = 1;
9338 }
9339 }
9340 }
9341 i.types[this_operand] = operand_type_or (i.types[this_operand],
9342 bigdisp);
9343
9344 exp = &disp_expressions[i.disp_operands];
9345 i.op[this_operand].disps = exp;
9346 i.disp_operands++;
9347 save_input_line_pointer = input_line_pointer;
9348 input_line_pointer = disp_start;
9349 END_STRING_AND_SAVE (disp_end);
9350
9351 #ifndef GCC_ASM_O_HACK
9352 #define GCC_ASM_O_HACK 0
9353 #endif
9354 #if GCC_ASM_O_HACK
9355 END_STRING_AND_SAVE (disp_end + 1);
9356 if (i.types[this_operand].bitfield.baseIndex
9357 && displacement_string_end[-1] == '+')
9358 {
9359 /* This hack is to avoid a warning when using the "o"
9360 constraint within gcc asm statements.
9361 For instance:
9362
9363 #define _set_tssldt_desc(n,addr,limit,type) \
9364 __asm__ __volatile__ ( \
9365 "movw %w2,%0\n\t" \
9366 "movw %w1,2+%0\n\t" \
9367 "rorl $16,%1\n\t" \
9368 "movb %b1,4+%0\n\t" \
9369 "movb %4,5+%0\n\t" \
9370 "movb $0,6+%0\n\t" \
9371 "movb %h1,7+%0\n\t" \
9372 "rorl $16,%1" \
9373 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9374
9375 This works great except that the output assembler ends
9376 up looking a bit weird if it turns out that there is
9377 no offset. You end up producing code that looks like:
9378
9379 #APP
9380 movw $235,(%eax)
9381 movw %dx,2+(%eax)
9382 rorl $16,%edx
9383 movb %dl,4+(%eax)
9384 movb $137,5+(%eax)
9385 movb $0,6+(%eax)
9386 movb %dh,7+(%eax)
9387 rorl $16,%edx
9388 #NO_APP
9389
9390 So here we provide the missing zero. */
9391
9392 *displacement_string_end = '0';
9393 }
9394 #endif
9395 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9396 if (gotfree_input_line)
9397 input_line_pointer = gotfree_input_line;
9398
9399 exp_seg = expression (exp);
9400
9401 SKIP_WHITESPACE ();
9402 if (*input_line_pointer)
9403 as_bad (_("junk `%s' after expression"), input_line_pointer);
9404 #if GCC_ASM_O_HACK
9405 RESTORE_END_STRING (disp_end + 1);
9406 #endif
9407 input_line_pointer = save_input_line_pointer;
9408 if (gotfree_input_line)
9409 {
9410 free (gotfree_input_line);
9411
9412 if (exp->X_op == O_constant || exp->X_op == O_register)
9413 exp->X_op = O_illegal;
9414 }
9415
9416 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9417
9418 RESTORE_END_STRING (disp_end);
9419
9420 return ret;
9421 }
9422
9423 static int
9424 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9425 i386_operand_type types, const char *disp_start)
9426 {
9427 i386_operand_type bigdisp;
9428 int ret = 1;
9429
9430 /* We do this to make sure that the section symbol is in
9431 the symbol table. We will ultimately change the relocation
9432 to be relative to the beginning of the section. */
9433 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9434 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9435 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9436 {
9437 if (exp->X_op != O_symbol)
9438 goto inv_disp;
9439
9440 if (S_IS_LOCAL (exp->X_add_symbol)
9441 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9442 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9443 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9444 exp->X_op = O_subtract;
9445 exp->X_op_symbol = GOT_symbol;
9446 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9447 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9448 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9449 i.reloc[this_operand] = BFD_RELOC_64;
9450 else
9451 i.reloc[this_operand] = BFD_RELOC_32;
9452 }
9453
9454 else if (exp->X_op == O_absent
9455 || exp->X_op == O_illegal
9456 || exp->X_op == O_big)
9457 {
9458 inv_disp:
9459 as_bad (_("missing or invalid displacement expression `%s'"),
9460 disp_start);
9461 ret = 0;
9462 }
9463
9464 else if (flag_code == CODE_64BIT
9465 && !i.prefix[ADDR_PREFIX]
9466 && exp->X_op == O_constant)
9467 {
9468 /* Since displacement is signed extended to 64bit, don't allow
9469 disp32 and turn off disp32s if they are out of range. */
9470 i.types[this_operand].bitfield.disp32 = 0;
9471 if (!fits_in_signed_long (exp->X_add_number))
9472 {
9473 i.types[this_operand].bitfield.disp32s = 0;
9474 if (i.types[this_operand].bitfield.baseindex)
9475 {
9476 as_bad (_("0x%lx out range of signed 32bit displacement"),
9477 (long) exp->X_add_number);
9478 ret = 0;
9479 }
9480 }
9481 }
9482
9483 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9484 else if (exp->X_op != O_constant
9485 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9486 && exp_seg != absolute_section
9487 && exp_seg != text_section
9488 && exp_seg != data_section
9489 && exp_seg != bss_section
9490 && exp_seg != undefined_section
9491 && !bfd_is_com_section (exp_seg))
9492 {
9493 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9494 ret = 0;
9495 }
9496 #endif
9497
9498 /* Check if this is a displacement only operand. */
9499 bigdisp = i.types[this_operand];
9500 bigdisp.bitfield.disp8 = 0;
9501 bigdisp.bitfield.disp16 = 0;
9502 bigdisp.bitfield.disp32 = 0;
9503 bigdisp.bitfield.disp32s = 0;
9504 bigdisp.bitfield.disp64 = 0;
9505 if (operand_type_all_zero (&bigdisp))
9506 i.types[this_operand] = operand_type_and (i.types[this_operand],
9507 types);
9508
9509 return ret;
9510 }
9511
9512 /* Return the active addressing mode, taking address override and
9513 registers forming the address into consideration. Update the
9514 address override prefix if necessary. */
9515
9516 static enum flag_code
9517 i386_addressing_mode (void)
9518 {
9519 enum flag_code addr_mode;
9520
9521 if (i.prefix[ADDR_PREFIX])
9522 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9523 else
9524 {
9525 addr_mode = flag_code;
9526
9527 #if INFER_ADDR_PREFIX
9528 if (i.mem_operands == 0)
9529 {
9530 /* Infer address prefix from the first memory operand. */
9531 const reg_entry *addr_reg = i.base_reg;
9532
9533 if (addr_reg == NULL)
9534 addr_reg = i.index_reg;
9535
9536 if (addr_reg)
9537 {
9538 if (addr_reg->reg_type.bitfield.dword)
9539 addr_mode = CODE_32BIT;
9540 else if (flag_code != CODE_64BIT
9541 && addr_reg->reg_type.bitfield.word)
9542 addr_mode = CODE_16BIT;
9543
9544 if (addr_mode != flag_code)
9545 {
9546 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9547 i.prefixes += 1;
9548 /* Change the size of any displacement too. At most one
9549 of Disp16 or Disp32 is set.
9550 FIXME. There doesn't seem to be any real need for
9551 separate Disp16 and Disp32 flags. The same goes for
9552 Imm16 and Imm32. Removing them would probably clean
9553 up the code quite a lot. */
9554 if (flag_code != CODE_64BIT
9555 && (i.types[this_operand].bitfield.disp16
9556 || i.types[this_operand].bitfield.disp32))
9557 i.types[this_operand]
9558 = operand_type_xor (i.types[this_operand], disp16_32);
9559 }
9560 }
9561 }
9562 #endif
9563 }
9564
9565 return addr_mode;
9566 }
9567
9568 /* Make sure the memory operand we've been dealt is valid.
9569 Return 1 on success, 0 on a failure. */
9570
9571 static int
9572 i386_index_check (const char *operand_string)
9573 {
9574 const char *kind = "base/index";
9575 enum flag_code addr_mode = i386_addressing_mode ();
9576
9577 if (current_templates->start->opcode_modifier.isstring
9578 && !current_templates->start->opcode_modifier.immext
9579 && (current_templates->end[-1].opcode_modifier.isstring
9580 || i.mem_operands))
9581 {
9582 /* Memory operands of string insns are special in that they only allow
9583 a single register (rDI, rSI, or rBX) as their memory address. */
9584 const reg_entry *expected_reg;
9585 static const char *di_si[][2] =
9586 {
9587 { "esi", "edi" },
9588 { "si", "di" },
9589 { "rsi", "rdi" }
9590 };
9591 static const char *bx[] = { "ebx", "bx", "rbx" };
9592
9593 kind = "string address";
9594
9595 if (current_templates->start->opcode_modifier.repprefixok)
9596 {
9597 i386_operand_type type = current_templates->end[-1].operand_types[0];
9598
9599 if (!type.bitfield.baseindex
9600 || ((!i.mem_operands != !intel_syntax)
9601 && current_templates->end[-1].operand_types[1]
9602 .bitfield.baseindex))
9603 type = current_templates->end[-1].operand_types[1];
9604 expected_reg = hash_find (reg_hash,
9605 di_si[addr_mode][type.bitfield.esseg]);
9606
9607 }
9608 else
9609 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9610
9611 if (i.base_reg != expected_reg
9612 || i.index_reg
9613 || operand_type_check (i.types[this_operand], disp))
9614 {
9615 /* The second memory operand must have the same size as
9616 the first one. */
9617 if (i.mem_operands
9618 && i.base_reg
9619 && !((addr_mode == CODE_64BIT
9620 && i.base_reg->reg_type.bitfield.qword)
9621 || (addr_mode == CODE_32BIT
9622 ? i.base_reg->reg_type.bitfield.dword
9623 : i.base_reg->reg_type.bitfield.word)))
9624 goto bad_address;
9625
9626 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9627 operand_string,
9628 intel_syntax ? '[' : '(',
9629 register_prefix,
9630 expected_reg->reg_name,
9631 intel_syntax ? ']' : ')');
9632 return 1;
9633 }
9634 else
9635 return 1;
9636
9637 bad_address:
9638 as_bad (_("`%s' is not a valid %s expression"),
9639 operand_string, kind);
9640 return 0;
9641 }
9642 else
9643 {
9644 if (addr_mode != CODE_16BIT)
9645 {
9646 /* 32-bit/64-bit checks. */
9647 if ((i.base_reg
9648 && ((addr_mode == CODE_64BIT
9649 ? !i.base_reg->reg_type.bitfield.qword
9650 : !i.base_reg->reg_type.bitfield.dword)
9651 || (i.index_reg && i.base_reg->reg_num == RegIP)
9652 || i.base_reg->reg_num == RegIZ))
9653 || (i.index_reg
9654 && !i.index_reg->reg_type.bitfield.xmmword
9655 && !i.index_reg->reg_type.bitfield.ymmword
9656 && !i.index_reg->reg_type.bitfield.zmmword
9657 && ((addr_mode == CODE_64BIT
9658 ? !i.index_reg->reg_type.bitfield.qword
9659 : !i.index_reg->reg_type.bitfield.dword)
9660 || !i.index_reg->reg_type.bitfield.baseindex)))
9661 goto bad_address;
9662
9663 /* bndmk, bndldx, and bndstx have special restrictions. */
9664 if (current_templates->start->base_opcode == 0xf30f1b
9665 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9666 {
9667 /* They cannot use RIP-relative addressing. */
9668 if (i.base_reg && i.base_reg->reg_num == RegIP)
9669 {
9670 as_bad (_("`%s' cannot be used here"), operand_string);
9671 return 0;
9672 }
9673
9674 /* bndldx and bndstx ignore their scale factor. */
9675 if (current_templates->start->base_opcode != 0xf30f1b
9676 && i.log2_scale_factor)
9677 as_warn (_("register scaling is being ignored here"));
9678 }
9679 }
9680 else
9681 {
9682 /* 16-bit checks. */
9683 if ((i.base_reg
9684 && (!i.base_reg->reg_type.bitfield.word
9685 || !i.base_reg->reg_type.bitfield.baseindex))
9686 || (i.index_reg
9687 && (!i.index_reg->reg_type.bitfield.word
9688 || !i.index_reg->reg_type.bitfield.baseindex
9689 || !(i.base_reg
9690 && i.base_reg->reg_num < 6
9691 && i.index_reg->reg_num >= 6
9692 && i.log2_scale_factor == 0))))
9693 goto bad_address;
9694 }
9695 }
9696 return 1;
9697 }
9698
9699 /* Handle vector immediates. */
9700
9701 static int
9702 RC_SAE_immediate (const char *imm_start)
9703 {
9704 unsigned int match_found, j;
9705 const char *pstr = imm_start;
9706 expressionS *exp;
9707
9708 if (*pstr != '{')
9709 return 0;
9710
9711 pstr++;
9712 match_found = 0;
9713 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9714 {
9715 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9716 {
9717 if (!i.rounding)
9718 {
9719 rc_op.type = RC_NamesTable[j].type;
9720 rc_op.operand = this_operand;
9721 i.rounding = &rc_op;
9722 }
9723 else
9724 {
9725 as_bad (_("duplicated `%s'"), imm_start);
9726 return 0;
9727 }
9728 pstr += RC_NamesTable[j].len;
9729 match_found = 1;
9730 break;
9731 }
9732 }
9733 if (!match_found)
9734 return 0;
9735
9736 if (*pstr++ != '}')
9737 {
9738 as_bad (_("Missing '}': '%s'"), imm_start);
9739 return 0;
9740 }
9741 /* RC/SAE immediate string should contain nothing more. */;
9742 if (*pstr != 0)
9743 {
9744 as_bad (_("Junk after '}': '%s'"), imm_start);
9745 return 0;
9746 }
9747
9748 exp = &im_expressions[i.imm_operands++];
9749 i.op[this_operand].imms = exp;
9750
9751 exp->X_op = O_constant;
9752 exp->X_add_number = 0;
9753 exp->X_add_symbol = (symbolS *) 0;
9754 exp->X_op_symbol = (symbolS *) 0;
9755
9756 i.types[this_operand].bitfield.imm8 = 1;
9757 return 1;
9758 }
9759
9760 /* Only string instructions can have a second memory operand, so
9761 reduce current_templates to just those if it contains any. */
9762 static int
9763 maybe_adjust_templates (void)
9764 {
9765 const insn_template *t;
9766
9767 gas_assert (i.mem_operands == 1);
9768
9769 for (t = current_templates->start; t < current_templates->end; ++t)
9770 if (t->opcode_modifier.isstring)
9771 break;
9772
9773 if (t < current_templates->end)
9774 {
9775 static templates aux_templates;
9776 bfd_boolean recheck;
9777
9778 aux_templates.start = t;
9779 for (; t < current_templates->end; ++t)
9780 if (!t->opcode_modifier.isstring)
9781 break;
9782 aux_templates.end = t;
9783
9784 /* Determine whether to re-check the first memory operand. */
9785 recheck = (aux_templates.start != current_templates->start
9786 || t != current_templates->end);
9787
9788 current_templates = &aux_templates;
9789
9790 if (recheck)
9791 {
9792 i.mem_operands = 0;
9793 if (i.memop1_string != NULL
9794 && i386_index_check (i.memop1_string) == 0)
9795 return 0;
9796 i.mem_operands = 1;
9797 }
9798 }
9799
9800 return 1;
9801 }
9802
9803 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9804 on error. */
9805
9806 static int
9807 i386_att_operand (char *operand_string)
9808 {
9809 const reg_entry *r;
9810 char *end_op;
9811 char *op_string = operand_string;
9812
9813 if (is_space_char (*op_string))
9814 ++op_string;
9815
9816 /* We check for an absolute prefix (differentiating,
9817 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9818 if (*op_string == ABSOLUTE_PREFIX)
9819 {
9820 ++op_string;
9821 if (is_space_char (*op_string))
9822 ++op_string;
9823 i.types[this_operand].bitfield.jumpabsolute = 1;
9824 }
9825
9826 /* Check if operand is a register. */
9827 if ((r = parse_register (op_string, &end_op)) != NULL)
9828 {
9829 i386_operand_type temp;
9830
9831 /* Check for a segment override by searching for ':' after a
9832 segment register. */
9833 op_string = end_op;
9834 if (is_space_char (*op_string))
9835 ++op_string;
9836 if (*op_string == ':'
9837 && (r->reg_type.bitfield.sreg2
9838 || r->reg_type.bitfield.sreg3))
9839 {
9840 switch (r->reg_num)
9841 {
9842 case 0:
9843 i.seg[i.mem_operands] = &es;
9844 break;
9845 case 1:
9846 i.seg[i.mem_operands] = &cs;
9847 break;
9848 case 2:
9849 i.seg[i.mem_operands] = &ss;
9850 break;
9851 case 3:
9852 i.seg[i.mem_operands] = &ds;
9853 break;
9854 case 4:
9855 i.seg[i.mem_operands] = &fs;
9856 break;
9857 case 5:
9858 i.seg[i.mem_operands] = &gs;
9859 break;
9860 }
9861
9862 /* Skip the ':' and whitespace. */
9863 ++op_string;
9864 if (is_space_char (*op_string))
9865 ++op_string;
9866
9867 if (!is_digit_char (*op_string)
9868 && !is_identifier_char (*op_string)
9869 && *op_string != '('
9870 && *op_string != ABSOLUTE_PREFIX)
9871 {
9872 as_bad (_("bad memory operand `%s'"), op_string);
9873 return 0;
9874 }
9875 /* Handle case of %es:*foo. */
9876 if (*op_string == ABSOLUTE_PREFIX)
9877 {
9878 ++op_string;
9879 if (is_space_char (*op_string))
9880 ++op_string;
9881 i.types[this_operand].bitfield.jumpabsolute = 1;
9882 }
9883 goto do_memory_reference;
9884 }
9885
9886 /* Handle vector operations. */
9887 if (*op_string == '{')
9888 {
9889 op_string = check_VecOperations (op_string, NULL);
9890 if (op_string == NULL)
9891 return 0;
9892 }
9893
9894 if (*op_string)
9895 {
9896 as_bad (_("junk `%s' after register"), op_string);
9897 return 0;
9898 }
9899 temp = r->reg_type;
9900 temp.bitfield.baseindex = 0;
9901 i.types[this_operand] = operand_type_or (i.types[this_operand],
9902 temp);
9903 i.types[this_operand].bitfield.unspecified = 0;
9904 i.op[this_operand].regs = r;
9905 i.reg_operands++;
9906 }
9907 else if (*op_string == REGISTER_PREFIX)
9908 {
9909 as_bad (_("bad register name `%s'"), op_string);
9910 return 0;
9911 }
9912 else if (*op_string == IMMEDIATE_PREFIX)
9913 {
9914 ++op_string;
9915 if (i.types[this_operand].bitfield.jumpabsolute)
9916 {
9917 as_bad (_("immediate operand illegal with absolute jump"));
9918 return 0;
9919 }
9920 if (!i386_immediate (op_string))
9921 return 0;
9922 }
9923 else if (RC_SAE_immediate (operand_string))
9924 {
9925 /* If it is a RC or SAE immediate, do nothing. */
9926 ;
9927 }
9928 else if (is_digit_char (*op_string)
9929 || is_identifier_char (*op_string)
9930 || *op_string == '"'
9931 || *op_string == '(')
9932 {
9933 /* This is a memory reference of some sort. */
9934 char *base_string;
9935
9936 /* Start and end of displacement string expression (if found). */
9937 char *displacement_string_start;
9938 char *displacement_string_end;
9939 char *vop_start;
9940
9941 do_memory_reference:
9942 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9943 return 0;
9944 if ((i.mem_operands == 1
9945 && !current_templates->start->opcode_modifier.isstring)
9946 || i.mem_operands == 2)
9947 {
9948 as_bad (_("too many memory references for `%s'"),
9949 current_templates->start->name);
9950 return 0;
9951 }
9952
9953 /* Check for base index form. We detect the base index form by
9954 looking for an ')' at the end of the operand, searching
9955 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9956 after the '('. */
9957 base_string = op_string + strlen (op_string);
9958
9959 /* Handle vector operations. */
9960 vop_start = strchr (op_string, '{');
9961 if (vop_start && vop_start < base_string)
9962 {
9963 if (check_VecOperations (vop_start, base_string) == NULL)
9964 return 0;
9965 base_string = vop_start;
9966 }
9967
9968 --base_string;
9969 if (is_space_char (*base_string))
9970 --base_string;
9971
9972 /* If we only have a displacement, set-up for it to be parsed later. */
9973 displacement_string_start = op_string;
9974 displacement_string_end = base_string + 1;
9975
9976 if (*base_string == ')')
9977 {
9978 char *temp_string;
9979 unsigned int parens_balanced = 1;
9980 /* We've already checked that the number of left & right ()'s are
9981 equal, so this loop will not be infinite. */
9982 do
9983 {
9984 base_string--;
9985 if (*base_string == ')')
9986 parens_balanced++;
9987 if (*base_string == '(')
9988 parens_balanced--;
9989 }
9990 while (parens_balanced);
9991
9992 temp_string = base_string;
9993
9994 /* Skip past '(' and whitespace. */
9995 ++base_string;
9996 if (is_space_char (*base_string))
9997 ++base_string;
9998
9999 if (*base_string == ','
10000 || ((i.base_reg = parse_register (base_string, &end_op))
10001 != NULL))
10002 {
10003 displacement_string_end = temp_string;
10004
10005 i.types[this_operand].bitfield.baseindex = 1;
10006
10007 if (i.base_reg)
10008 {
10009 base_string = end_op;
10010 if (is_space_char (*base_string))
10011 ++base_string;
10012 }
10013
10014 /* There may be an index reg or scale factor here. */
10015 if (*base_string == ',')
10016 {
10017 ++base_string;
10018 if (is_space_char (*base_string))
10019 ++base_string;
10020
10021 if ((i.index_reg = parse_register (base_string, &end_op))
10022 != NULL)
10023 {
10024 base_string = end_op;
10025 if (is_space_char (*base_string))
10026 ++base_string;
10027 if (*base_string == ',')
10028 {
10029 ++base_string;
10030 if (is_space_char (*base_string))
10031 ++base_string;
10032 }
10033 else if (*base_string != ')')
10034 {
10035 as_bad (_("expecting `,' or `)' "
10036 "after index register in `%s'"),
10037 operand_string);
10038 return 0;
10039 }
10040 }
10041 else if (*base_string == REGISTER_PREFIX)
10042 {
10043 end_op = strchr (base_string, ',');
10044 if (end_op)
10045 *end_op = '\0';
10046 as_bad (_("bad register name `%s'"), base_string);
10047 return 0;
10048 }
10049
10050 /* Check for scale factor. */
10051 if (*base_string != ')')
10052 {
10053 char *end_scale = i386_scale (base_string);
10054
10055 if (!end_scale)
10056 return 0;
10057
10058 base_string = end_scale;
10059 if (is_space_char (*base_string))
10060 ++base_string;
10061 if (*base_string != ')')
10062 {
10063 as_bad (_("expecting `)' "
10064 "after scale factor in `%s'"),
10065 operand_string);
10066 return 0;
10067 }
10068 }
10069 else if (!i.index_reg)
10070 {
10071 as_bad (_("expecting index register or scale factor "
10072 "after `,'; got '%c'"),
10073 *base_string);
10074 return 0;
10075 }
10076 }
10077 else if (*base_string != ')')
10078 {
10079 as_bad (_("expecting `,' or `)' "
10080 "after base register in `%s'"),
10081 operand_string);
10082 return 0;
10083 }
10084 }
10085 else if (*base_string == REGISTER_PREFIX)
10086 {
10087 end_op = strchr (base_string, ',');
10088 if (end_op)
10089 *end_op = '\0';
10090 as_bad (_("bad register name `%s'"), base_string);
10091 return 0;
10092 }
10093 }
10094
10095 /* If there's an expression beginning the operand, parse it,
10096 assuming displacement_string_start and
10097 displacement_string_end are meaningful. */
10098 if (displacement_string_start != displacement_string_end)
10099 {
10100 if (!i386_displacement (displacement_string_start,
10101 displacement_string_end))
10102 return 0;
10103 }
10104
10105 /* Special case for (%dx) while doing input/output op. */
10106 if (i.base_reg
10107 && i.base_reg->reg_type.bitfield.inoutportreg
10108 && i.index_reg == 0
10109 && i.log2_scale_factor == 0
10110 && i.seg[i.mem_operands] == 0
10111 && !operand_type_check (i.types[this_operand], disp))
10112 {
10113 i.types[this_operand] = i.base_reg->reg_type;
10114 return 1;
10115 }
10116
10117 if (i386_index_check (operand_string) == 0)
10118 return 0;
10119 i.flags[this_operand] |= Operand_Mem;
10120 if (i.mem_operands == 0)
10121 i.memop1_string = xstrdup (operand_string);
10122 i.mem_operands++;
10123 }
10124 else
10125 {
10126 /* It's not a memory operand; argh! */
10127 as_bad (_("invalid char %s beginning operand %d `%s'"),
10128 output_invalid (*op_string),
10129 this_operand + 1,
10130 op_string);
10131 return 0;
10132 }
10133 return 1; /* Normal return. */
10134 }
10135 \f
10136 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10137 that an rs_machine_dependent frag may reach. */
10138
10139 unsigned int
10140 i386_frag_max_var (fragS *frag)
10141 {
10142 /* The only relaxable frags are for jumps.
10143 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10144 gas_assert (frag->fr_type == rs_machine_dependent);
10145 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10146 }
10147
10148 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10149 static int
10150 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10151 {
10152 /* STT_GNU_IFUNC symbol must go through PLT. */
10153 if ((symbol_get_bfdsym (fr_symbol)->flags
10154 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10155 return 0;
10156
10157 if (!S_IS_EXTERNAL (fr_symbol))
10158 /* Symbol may be weak or local. */
10159 return !S_IS_WEAK (fr_symbol);
10160
10161 /* Global symbols with non-default visibility can't be preempted. */
10162 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10163 return 1;
10164
10165 if (fr_var != NO_RELOC)
10166 switch ((enum bfd_reloc_code_real) fr_var)
10167 {
10168 case BFD_RELOC_386_PLT32:
10169 case BFD_RELOC_X86_64_PLT32:
10170 /* Symbol with PLT relocation may be preempted. */
10171 return 0;
10172 default:
10173 abort ();
10174 }
10175
10176 /* Global symbols with default visibility in a shared library may be
10177 preempted by another definition. */
10178 return !shared;
10179 }
10180 #endif
10181
10182 /* md_estimate_size_before_relax()
10183
10184 Called just before relax() for rs_machine_dependent frags. The x86
10185 assembler uses these frags to handle variable size jump
10186 instructions.
10187
10188 Any symbol that is now undefined will not become defined.
10189 Return the correct fr_subtype in the frag.
10190 Return the initial "guess for variable size of frag" to caller.
10191 The guess is actually the growth beyond the fixed part. Whatever
10192 we do to grow the fixed or variable part contributes to our
10193 returned value. */
10194
10195 int
10196 md_estimate_size_before_relax (fragS *fragP, segT segment)
10197 {
10198 /* We've already got fragP->fr_subtype right; all we have to do is
10199 check for un-relaxable symbols. On an ELF system, we can't relax
10200 an externally visible symbol, because it may be overridden by a
10201 shared library. */
10202 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10204 || (IS_ELF
10205 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10206 fragP->fr_var))
10207 #endif
10208 #if defined (OBJ_COFF) && defined (TE_PE)
10209 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10210 && S_IS_WEAK (fragP->fr_symbol))
10211 #endif
10212 )
10213 {
10214 /* Symbol is undefined in this segment, or we need to keep a
10215 reloc so that weak symbols can be overridden. */
10216 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10217 enum bfd_reloc_code_real reloc_type;
10218 unsigned char *opcode;
10219 int old_fr_fix;
10220
10221 if (fragP->fr_var != NO_RELOC)
10222 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10223 else if (size == 2)
10224 reloc_type = BFD_RELOC_16_PCREL;
10225 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10226 else if (need_plt32_p (fragP->fr_symbol))
10227 reloc_type = BFD_RELOC_X86_64_PLT32;
10228 #endif
10229 else
10230 reloc_type = BFD_RELOC_32_PCREL;
10231
10232 old_fr_fix = fragP->fr_fix;
10233 opcode = (unsigned char *) fragP->fr_opcode;
10234
10235 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10236 {
10237 case UNCOND_JUMP:
10238 /* Make jmp (0xeb) a (d)word displacement jump. */
10239 opcode[0] = 0xe9;
10240 fragP->fr_fix += size;
10241 fix_new (fragP, old_fr_fix, size,
10242 fragP->fr_symbol,
10243 fragP->fr_offset, 1,
10244 reloc_type);
10245 break;
10246
10247 case COND_JUMP86:
10248 if (size == 2
10249 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10250 {
10251 /* Negate the condition, and branch past an
10252 unconditional jump. */
10253 opcode[0] ^= 1;
10254 opcode[1] = 3;
10255 /* Insert an unconditional jump. */
10256 opcode[2] = 0xe9;
10257 /* We added two extra opcode bytes, and have a two byte
10258 offset. */
10259 fragP->fr_fix += 2 + 2;
10260 fix_new (fragP, old_fr_fix + 2, 2,
10261 fragP->fr_symbol,
10262 fragP->fr_offset, 1,
10263 reloc_type);
10264 break;
10265 }
10266 /* Fall through. */
10267
10268 case COND_JUMP:
10269 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10270 {
10271 fixS *fixP;
10272
10273 fragP->fr_fix += 1;
10274 fixP = fix_new (fragP, old_fr_fix, 1,
10275 fragP->fr_symbol,
10276 fragP->fr_offset, 1,
10277 BFD_RELOC_8_PCREL);
10278 fixP->fx_signed = 1;
10279 break;
10280 }
10281
10282 /* This changes the byte-displacement jump 0x7N
10283 to the (d)word-displacement jump 0x0f,0x8N. */
10284 opcode[1] = opcode[0] + 0x10;
10285 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10286 /* We've added an opcode byte. */
10287 fragP->fr_fix += 1 + size;
10288 fix_new (fragP, old_fr_fix + 1, size,
10289 fragP->fr_symbol,
10290 fragP->fr_offset, 1,
10291 reloc_type);
10292 break;
10293
10294 default:
10295 BAD_CASE (fragP->fr_subtype);
10296 break;
10297 }
10298 frag_wane (fragP);
10299 return fragP->fr_fix - old_fr_fix;
10300 }
10301
10302 /* Guess size depending on current relax state. Initially the relax
10303 state will correspond to a short jump and we return 1, because
10304 the variable part of the frag (the branch offset) is one byte
10305 long. However, we can relax a section more than once and in that
10306 case we must either set fr_subtype back to the unrelaxed state,
10307 or return the value for the appropriate branch. */
10308 return md_relax_table[fragP->fr_subtype].rlx_length;
10309 }
10310
10311 /* Called after relax() is finished.
10312
10313 In: Address of frag.
10314 fr_type == rs_machine_dependent.
10315 fr_subtype is what the address relaxed to.
10316
10317 Out: Any fixSs and constants are set up.
10318 Caller will turn frag into a ".space 0". */
10319
10320 void
10321 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10322 fragS *fragP)
10323 {
10324 unsigned char *opcode;
10325 unsigned char *where_to_put_displacement = NULL;
10326 offsetT target_address;
10327 offsetT opcode_address;
10328 unsigned int extension = 0;
10329 offsetT displacement_from_opcode_start;
10330
10331 opcode = (unsigned char *) fragP->fr_opcode;
10332
10333 /* Address we want to reach in file space. */
10334 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10335
10336 /* Address opcode resides at in file space. */
10337 opcode_address = fragP->fr_address + fragP->fr_fix;
10338
10339 /* Displacement from opcode start to fill into instruction. */
10340 displacement_from_opcode_start = target_address - opcode_address;
10341
10342 if ((fragP->fr_subtype & BIG) == 0)
10343 {
10344 /* Don't have to change opcode. */
10345 extension = 1; /* 1 opcode + 1 displacement */
10346 where_to_put_displacement = &opcode[1];
10347 }
10348 else
10349 {
10350 if (no_cond_jump_promotion
10351 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10352 as_warn_where (fragP->fr_file, fragP->fr_line,
10353 _("long jump required"));
10354
10355 switch (fragP->fr_subtype)
10356 {
10357 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10358 extension = 4; /* 1 opcode + 4 displacement */
10359 opcode[0] = 0xe9;
10360 where_to_put_displacement = &opcode[1];
10361 break;
10362
10363 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10364 extension = 2; /* 1 opcode + 2 displacement */
10365 opcode[0] = 0xe9;
10366 where_to_put_displacement = &opcode[1];
10367 break;
10368
10369 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10370 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10371 extension = 5; /* 2 opcode + 4 displacement */
10372 opcode[1] = opcode[0] + 0x10;
10373 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10374 where_to_put_displacement = &opcode[2];
10375 break;
10376
10377 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10378 extension = 3; /* 2 opcode + 2 displacement */
10379 opcode[1] = opcode[0] + 0x10;
10380 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10381 where_to_put_displacement = &opcode[2];
10382 break;
10383
10384 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10385 extension = 4;
10386 opcode[0] ^= 1;
10387 opcode[1] = 3;
10388 opcode[2] = 0xe9;
10389 where_to_put_displacement = &opcode[3];
10390 break;
10391
10392 default:
10393 BAD_CASE (fragP->fr_subtype);
10394 break;
10395 }
10396 }
10397
10398 /* If size if less then four we are sure that the operand fits,
10399 but if it's 4, then it could be that the displacement is larger
10400 then -/+ 2GB. */
10401 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10402 && object_64bit
10403 && ((addressT) (displacement_from_opcode_start - extension
10404 + ((addressT) 1 << 31))
10405 > (((addressT) 2 << 31) - 1)))
10406 {
10407 as_bad_where (fragP->fr_file, fragP->fr_line,
10408 _("jump target out of range"));
10409 /* Make us emit 0. */
10410 displacement_from_opcode_start = extension;
10411 }
10412 /* Now put displacement after opcode. */
10413 md_number_to_chars ((char *) where_to_put_displacement,
10414 (valueT) (displacement_from_opcode_start - extension),
10415 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10416 fragP->fr_fix += extension;
10417 }
10418 \f
10419 /* Apply a fixup (fixP) to segment data, once it has been determined
10420 by our caller that we have all the info we need to fix it up.
10421
10422 Parameter valP is the pointer to the value of the bits.
10423
10424 On the 386, immediates, displacements, and data pointers are all in
10425 the same (little-endian) format, so we don't need to care about which
10426 we are handling. */
10427
10428 void
10429 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10430 {
10431 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10432 valueT value = *valP;
10433
10434 #if !defined (TE_Mach)
10435 if (fixP->fx_pcrel)
10436 {
10437 switch (fixP->fx_r_type)
10438 {
10439 default:
10440 break;
10441
10442 case BFD_RELOC_64:
10443 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10444 break;
10445 case BFD_RELOC_32:
10446 case BFD_RELOC_X86_64_32S:
10447 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10448 break;
10449 case BFD_RELOC_16:
10450 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10451 break;
10452 case BFD_RELOC_8:
10453 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10454 break;
10455 }
10456 }
10457
10458 if (fixP->fx_addsy != NULL
10459 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10460 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10461 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10462 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10463 && !use_rela_relocations)
10464 {
10465 /* This is a hack. There should be a better way to handle this.
10466 This covers for the fact that bfd_install_relocation will
10467 subtract the current location (for partial_inplace, PC relative
10468 relocations); see more below. */
10469 #ifndef OBJ_AOUT
10470 if (IS_ELF
10471 #ifdef TE_PE
10472 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10473 #endif
10474 )
10475 value += fixP->fx_where + fixP->fx_frag->fr_address;
10476 #endif
10477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10478 if (IS_ELF)
10479 {
10480 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10481
10482 if ((sym_seg == seg
10483 || (symbol_section_p (fixP->fx_addsy)
10484 && sym_seg != absolute_section))
10485 && !generic_force_reloc (fixP))
10486 {
10487 /* Yes, we add the values in twice. This is because
10488 bfd_install_relocation subtracts them out again. I think
10489 bfd_install_relocation is broken, but I don't dare change
10490 it. FIXME. */
10491 value += fixP->fx_where + fixP->fx_frag->fr_address;
10492 }
10493 }
10494 #endif
10495 #if defined (OBJ_COFF) && defined (TE_PE)
10496 /* For some reason, the PE format does not store a
10497 section address offset for a PC relative symbol. */
10498 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10499 || S_IS_WEAK (fixP->fx_addsy))
10500 value += md_pcrel_from (fixP);
10501 #endif
10502 }
10503 #if defined (OBJ_COFF) && defined (TE_PE)
10504 if (fixP->fx_addsy != NULL
10505 && S_IS_WEAK (fixP->fx_addsy)
10506 /* PR 16858: Do not modify weak function references. */
10507 && ! fixP->fx_pcrel)
10508 {
10509 #if !defined (TE_PEP)
10510 /* For x86 PE weak function symbols are neither PC-relative
10511 nor do they set S_IS_FUNCTION. So the only reliable way
10512 to detect them is to check the flags of their containing
10513 section. */
10514 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10515 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10516 ;
10517 else
10518 #endif
10519 value -= S_GET_VALUE (fixP->fx_addsy);
10520 }
10521 #endif
10522
10523 /* Fix a few things - the dynamic linker expects certain values here,
10524 and we must not disappoint it. */
10525 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10526 if (IS_ELF && fixP->fx_addsy)
10527 switch (fixP->fx_r_type)
10528 {
10529 case BFD_RELOC_386_PLT32:
10530 case BFD_RELOC_X86_64_PLT32:
10531 /* Make the jump instruction point to the address of the operand. At
10532 runtime we merely add the offset to the actual PLT entry. */
10533 value = -4;
10534 break;
10535
10536 case BFD_RELOC_386_TLS_GD:
10537 case BFD_RELOC_386_TLS_LDM:
10538 case BFD_RELOC_386_TLS_IE_32:
10539 case BFD_RELOC_386_TLS_IE:
10540 case BFD_RELOC_386_TLS_GOTIE:
10541 case BFD_RELOC_386_TLS_GOTDESC:
10542 case BFD_RELOC_X86_64_TLSGD:
10543 case BFD_RELOC_X86_64_TLSLD:
10544 case BFD_RELOC_X86_64_GOTTPOFF:
10545 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10546 value = 0; /* Fully resolved at runtime. No addend. */
10547 /* Fallthrough */
10548 case BFD_RELOC_386_TLS_LE:
10549 case BFD_RELOC_386_TLS_LDO_32:
10550 case BFD_RELOC_386_TLS_LE_32:
10551 case BFD_RELOC_X86_64_DTPOFF32:
10552 case BFD_RELOC_X86_64_DTPOFF64:
10553 case BFD_RELOC_X86_64_TPOFF32:
10554 case BFD_RELOC_X86_64_TPOFF64:
10555 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10556 break;
10557
10558 case BFD_RELOC_386_TLS_DESC_CALL:
10559 case BFD_RELOC_X86_64_TLSDESC_CALL:
10560 value = 0; /* Fully resolved at runtime. No addend. */
10561 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10562 fixP->fx_done = 0;
10563 return;
10564
10565 case BFD_RELOC_VTABLE_INHERIT:
10566 case BFD_RELOC_VTABLE_ENTRY:
10567 fixP->fx_done = 0;
10568 return;
10569
10570 default:
10571 break;
10572 }
10573 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10574 *valP = value;
10575 #endif /* !defined (TE_Mach) */
10576
10577 /* Are we finished with this relocation now? */
10578 if (fixP->fx_addsy == NULL)
10579 fixP->fx_done = 1;
10580 #if defined (OBJ_COFF) && defined (TE_PE)
10581 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10582 {
10583 fixP->fx_done = 0;
10584 /* Remember value for tc_gen_reloc. */
10585 fixP->fx_addnumber = value;
10586 /* Clear out the frag for now. */
10587 value = 0;
10588 }
10589 #endif
10590 else if (use_rela_relocations)
10591 {
10592 fixP->fx_no_overflow = 1;
10593 /* Remember value for tc_gen_reloc. */
10594 fixP->fx_addnumber = value;
10595 value = 0;
10596 }
10597
10598 md_number_to_chars (p, value, fixP->fx_size);
10599 }
10600 \f
10601 const char *
10602 md_atof (int type, char *litP, int *sizeP)
10603 {
10604 /* This outputs the LITTLENUMs in REVERSE order;
10605 in accord with the bigendian 386. */
10606 return ieee_md_atof (type, litP, sizeP, FALSE);
10607 }
10608 \f
10609 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10610
10611 static char *
10612 output_invalid (int c)
10613 {
10614 if (ISPRINT (c))
10615 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10616 "'%c'", c);
10617 else
10618 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10619 "(0x%x)", (unsigned char) c);
10620 return output_invalid_buf;
10621 }
10622
10623 /* REG_STRING starts *before* REGISTER_PREFIX. */
10624
10625 static const reg_entry *
10626 parse_real_register (char *reg_string, char **end_op)
10627 {
10628 char *s = reg_string;
10629 char *p;
10630 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10631 const reg_entry *r;
10632
10633 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10634 if (*s == REGISTER_PREFIX)
10635 ++s;
10636
10637 if (is_space_char (*s))
10638 ++s;
10639
10640 p = reg_name_given;
10641 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10642 {
10643 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10644 return (const reg_entry *) NULL;
10645 s++;
10646 }
10647
10648 /* For naked regs, make sure that we are not dealing with an identifier.
10649 This prevents confusing an identifier like `eax_var' with register
10650 `eax'. */
10651 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10652 return (const reg_entry *) NULL;
10653
10654 *end_op = s;
10655
10656 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10657
10658 /* Handle floating point regs, allowing spaces in the (i) part. */
10659 if (r == i386_regtab /* %st is first entry of table */)
10660 {
10661 if (!cpu_arch_flags.bitfield.cpu8087
10662 && !cpu_arch_flags.bitfield.cpu287
10663 && !cpu_arch_flags.bitfield.cpu387)
10664 return (const reg_entry *) NULL;
10665
10666 if (is_space_char (*s))
10667 ++s;
10668 if (*s == '(')
10669 {
10670 ++s;
10671 if (is_space_char (*s))
10672 ++s;
10673 if (*s >= '0' && *s <= '7')
10674 {
10675 int fpr = *s - '0';
10676 ++s;
10677 if (is_space_char (*s))
10678 ++s;
10679 if (*s == ')')
10680 {
10681 *end_op = s + 1;
10682 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10683 know (r);
10684 return r + fpr;
10685 }
10686 }
10687 /* We have "%st(" then garbage. */
10688 return (const reg_entry *) NULL;
10689 }
10690 }
10691
10692 if (r == NULL || allow_pseudo_reg)
10693 return r;
10694
10695 if (operand_type_all_zero (&r->reg_type))
10696 return (const reg_entry *) NULL;
10697
10698 if ((r->reg_type.bitfield.dword
10699 || r->reg_type.bitfield.sreg3
10700 || r->reg_type.bitfield.control
10701 || r->reg_type.bitfield.debug
10702 || r->reg_type.bitfield.test)
10703 && !cpu_arch_flags.bitfield.cpui386)
10704 return (const reg_entry *) NULL;
10705
10706 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10707 return (const reg_entry *) NULL;
10708
10709 if (!cpu_arch_flags.bitfield.cpuavx512f)
10710 {
10711 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10712 return (const reg_entry *) NULL;
10713
10714 if (!cpu_arch_flags.bitfield.cpuavx)
10715 {
10716 if (r->reg_type.bitfield.ymmword)
10717 return (const reg_entry *) NULL;
10718
10719 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10720 return (const reg_entry *) NULL;
10721 }
10722 }
10723
10724 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10725 return (const reg_entry *) NULL;
10726
10727 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10728 if (!allow_index_reg && r->reg_num == RegIZ)
10729 return (const reg_entry *) NULL;
10730
10731 /* Upper 16 vector registers are only available with VREX in 64bit
10732 mode, and require EVEX encoding. */
10733 if (r->reg_flags & RegVRex)
10734 {
10735 if (!cpu_arch_flags.bitfield.cpuavx512f
10736 || flag_code != CODE_64BIT)
10737 return (const reg_entry *) NULL;
10738
10739 i.vec_encoding = vex_encoding_evex;
10740 }
10741
10742 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10743 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10744 && flag_code != CODE_64BIT)
10745 return (const reg_entry *) NULL;
10746
10747 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10748 return (const reg_entry *) NULL;
10749
10750 return r;
10751 }
10752
10753 /* REG_STRING starts *before* REGISTER_PREFIX. */
10754
10755 static const reg_entry *
10756 parse_register (char *reg_string, char **end_op)
10757 {
10758 const reg_entry *r;
10759
10760 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10761 r = parse_real_register (reg_string, end_op);
10762 else
10763 r = NULL;
10764 if (!r)
10765 {
10766 char *save = input_line_pointer;
10767 char c;
10768 symbolS *symbolP;
10769
10770 input_line_pointer = reg_string;
10771 c = get_symbol_name (&reg_string);
10772 symbolP = symbol_find (reg_string);
10773 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10774 {
10775 const expressionS *e = symbol_get_value_expression (symbolP);
10776
10777 know (e->X_op == O_register);
10778 know (e->X_add_number >= 0
10779 && (valueT) e->X_add_number < i386_regtab_size);
10780 r = i386_regtab + e->X_add_number;
10781 if ((r->reg_flags & RegVRex))
10782 i.vec_encoding = vex_encoding_evex;
10783 *end_op = input_line_pointer;
10784 }
10785 *input_line_pointer = c;
10786 input_line_pointer = save;
10787 }
10788 return r;
10789 }
10790
10791 int
10792 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10793 {
10794 const reg_entry *r;
10795 char *end = input_line_pointer;
10796
10797 *end = *nextcharP;
10798 r = parse_register (name, &input_line_pointer);
10799 if (r && end <= input_line_pointer)
10800 {
10801 *nextcharP = *input_line_pointer;
10802 *input_line_pointer = 0;
10803 e->X_op = O_register;
10804 e->X_add_number = r - i386_regtab;
10805 return 1;
10806 }
10807 input_line_pointer = end;
10808 *end = 0;
10809 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10810 }
10811
10812 void
10813 md_operand (expressionS *e)
10814 {
10815 char *end;
10816 const reg_entry *r;
10817
10818 switch (*input_line_pointer)
10819 {
10820 case REGISTER_PREFIX:
10821 r = parse_real_register (input_line_pointer, &end);
10822 if (r)
10823 {
10824 e->X_op = O_register;
10825 e->X_add_number = r - i386_regtab;
10826 input_line_pointer = end;
10827 }
10828 break;
10829
10830 case '[':
10831 gas_assert (intel_syntax);
10832 end = input_line_pointer++;
10833 expression (e);
10834 if (*input_line_pointer == ']')
10835 {
10836 ++input_line_pointer;
10837 e->X_op_symbol = make_expr_symbol (e);
10838 e->X_add_symbol = NULL;
10839 e->X_add_number = 0;
10840 e->X_op = O_index;
10841 }
10842 else
10843 {
10844 e->X_op = O_absent;
10845 input_line_pointer = end;
10846 }
10847 break;
10848 }
10849 }
10850
10851 \f
10852 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10853 const char *md_shortopts = "kVQ:sqnO::";
10854 #else
10855 const char *md_shortopts = "qnO::";
10856 #endif
10857
10858 #define OPTION_32 (OPTION_MD_BASE + 0)
10859 #define OPTION_64 (OPTION_MD_BASE + 1)
10860 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10861 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10862 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10863 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10864 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10865 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10866 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10867 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10868 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10869 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10870 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10871 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10872 #define OPTION_X32 (OPTION_MD_BASE + 14)
10873 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10874 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10875 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10876 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10877 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10878 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10879 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10880 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10881 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10882 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10883 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10884
10885 struct option md_longopts[] =
10886 {
10887 {"32", no_argument, NULL, OPTION_32},
10888 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10889 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10890 {"64", no_argument, NULL, OPTION_64},
10891 #endif
10892 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10893 {"x32", no_argument, NULL, OPTION_X32},
10894 {"mshared", no_argument, NULL, OPTION_MSHARED},
10895 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10896 #endif
10897 {"divide", no_argument, NULL, OPTION_DIVIDE},
10898 {"march", required_argument, NULL, OPTION_MARCH},
10899 {"mtune", required_argument, NULL, OPTION_MTUNE},
10900 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10901 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10902 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10903 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10904 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10905 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10906 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10907 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10908 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10909 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10910 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10911 # if defined (TE_PE) || defined (TE_PEP)
10912 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10913 #endif
10914 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10915 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10916 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10917 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10918 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10919 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10920 {NULL, no_argument, NULL, 0}
10921 };
10922 size_t md_longopts_size = sizeof (md_longopts);
10923
10924 int
10925 md_parse_option (int c, const char *arg)
10926 {
10927 unsigned int j;
10928 char *arch, *next, *saved;
10929
10930 switch (c)
10931 {
10932 case 'n':
10933 optimize_align_code = 0;
10934 break;
10935
10936 case 'q':
10937 quiet_warnings = 1;
10938 break;
10939
10940 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10941 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10942 should be emitted or not. FIXME: Not implemented. */
10943 case 'Q':
10944 break;
10945
10946 /* -V: SVR4 argument to print version ID. */
10947 case 'V':
10948 print_version_id ();
10949 break;
10950
10951 /* -k: Ignore for FreeBSD compatibility. */
10952 case 'k':
10953 break;
10954
10955 case 's':
10956 /* -s: On i386 Solaris, this tells the native assembler to use
10957 .stab instead of .stab.excl. We always use .stab anyhow. */
10958 break;
10959
10960 case OPTION_MSHARED:
10961 shared = 1;
10962 break;
10963
10964 case OPTION_X86_USED_NOTE:
10965 if (strcasecmp (arg, "yes") == 0)
10966 x86_used_note = 1;
10967 else if (strcasecmp (arg, "no") == 0)
10968 x86_used_note = 0;
10969 else
10970 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10971 break;
10972
10973
10974 #endif
10975 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10976 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10977 case OPTION_64:
10978 {
10979 const char **list, **l;
10980
10981 list = bfd_target_list ();
10982 for (l = list; *l != NULL; l++)
10983 if (CONST_STRNEQ (*l, "elf64-x86-64")
10984 || strcmp (*l, "coff-x86-64") == 0
10985 || strcmp (*l, "pe-x86-64") == 0
10986 || strcmp (*l, "pei-x86-64") == 0
10987 || strcmp (*l, "mach-o-x86-64") == 0)
10988 {
10989 default_arch = "x86_64";
10990 break;
10991 }
10992 if (*l == NULL)
10993 as_fatal (_("no compiled in support for x86_64"));
10994 free (list);
10995 }
10996 break;
10997 #endif
10998
10999 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11000 case OPTION_X32:
11001 if (IS_ELF)
11002 {
11003 const char **list, **l;
11004
11005 list = bfd_target_list ();
11006 for (l = list; *l != NULL; l++)
11007 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11008 {
11009 default_arch = "x86_64:32";
11010 break;
11011 }
11012 if (*l == NULL)
11013 as_fatal (_("no compiled in support for 32bit x86_64"));
11014 free (list);
11015 }
11016 else
11017 as_fatal (_("32bit x86_64 is only supported for ELF"));
11018 break;
11019 #endif
11020
11021 case OPTION_32:
11022 default_arch = "i386";
11023 break;
11024
11025 case OPTION_DIVIDE:
11026 #ifdef SVR4_COMMENT_CHARS
11027 {
11028 char *n, *t;
11029 const char *s;
11030
11031 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11032 t = n;
11033 for (s = i386_comment_chars; *s != '\0'; s++)
11034 if (*s != '/')
11035 *t++ = *s;
11036 *t = '\0';
11037 i386_comment_chars = n;
11038 }
11039 #endif
11040 break;
11041
11042 case OPTION_MARCH:
11043 saved = xstrdup (arg);
11044 arch = saved;
11045 /* Allow -march=+nosse. */
11046 if (*arch == '+')
11047 arch++;
11048 do
11049 {
11050 if (*arch == '.')
11051 as_fatal (_("invalid -march= option: `%s'"), arg);
11052 next = strchr (arch, '+');
11053 if (next)
11054 *next++ = '\0';
11055 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11056 {
11057 if (strcmp (arch, cpu_arch [j].name) == 0)
11058 {
11059 /* Processor. */
11060 if (! cpu_arch[j].flags.bitfield.cpui386)
11061 continue;
11062
11063 cpu_arch_name = cpu_arch[j].name;
11064 cpu_sub_arch_name = NULL;
11065 cpu_arch_flags = cpu_arch[j].flags;
11066 cpu_arch_isa = cpu_arch[j].type;
11067 cpu_arch_isa_flags = cpu_arch[j].flags;
11068 if (!cpu_arch_tune_set)
11069 {
11070 cpu_arch_tune = cpu_arch_isa;
11071 cpu_arch_tune_flags = cpu_arch_isa_flags;
11072 }
11073 break;
11074 }
11075 else if (*cpu_arch [j].name == '.'
11076 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11077 {
11078 /* ISA extension. */
11079 i386_cpu_flags flags;
11080
11081 flags = cpu_flags_or (cpu_arch_flags,
11082 cpu_arch[j].flags);
11083
11084 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11085 {
11086 if (cpu_sub_arch_name)
11087 {
11088 char *name = cpu_sub_arch_name;
11089 cpu_sub_arch_name = concat (name,
11090 cpu_arch[j].name,
11091 (const char *) NULL);
11092 free (name);
11093 }
11094 else
11095 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11096 cpu_arch_flags = flags;
11097 cpu_arch_isa_flags = flags;
11098 }
11099 else
11100 cpu_arch_isa_flags
11101 = cpu_flags_or (cpu_arch_isa_flags,
11102 cpu_arch[j].flags);
11103 break;
11104 }
11105 }
11106
11107 if (j >= ARRAY_SIZE (cpu_arch))
11108 {
11109 /* Disable an ISA extension. */
11110 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11111 if (strcmp (arch, cpu_noarch [j].name) == 0)
11112 {
11113 i386_cpu_flags flags;
11114
11115 flags = cpu_flags_and_not (cpu_arch_flags,
11116 cpu_noarch[j].flags);
11117 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11118 {
11119 if (cpu_sub_arch_name)
11120 {
11121 char *name = cpu_sub_arch_name;
11122 cpu_sub_arch_name = concat (arch,
11123 (const char *) NULL);
11124 free (name);
11125 }
11126 else
11127 cpu_sub_arch_name = xstrdup (arch);
11128 cpu_arch_flags = flags;
11129 cpu_arch_isa_flags = flags;
11130 }
11131 break;
11132 }
11133
11134 if (j >= ARRAY_SIZE (cpu_noarch))
11135 j = ARRAY_SIZE (cpu_arch);
11136 }
11137
11138 if (j >= ARRAY_SIZE (cpu_arch))
11139 as_fatal (_("invalid -march= option: `%s'"), arg);
11140
11141 arch = next;
11142 }
11143 while (next != NULL);
11144 free (saved);
11145 break;
11146
11147 case OPTION_MTUNE:
11148 if (*arg == '.')
11149 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11150 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11151 {
11152 if (strcmp (arg, cpu_arch [j].name) == 0)
11153 {
11154 cpu_arch_tune_set = 1;
11155 cpu_arch_tune = cpu_arch [j].type;
11156 cpu_arch_tune_flags = cpu_arch[j].flags;
11157 break;
11158 }
11159 }
11160 if (j >= ARRAY_SIZE (cpu_arch))
11161 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11162 break;
11163
11164 case OPTION_MMNEMONIC:
11165 if (strcasecmp (arg, "att") == 0)
11166 intel_mnemonic = 0;
11167 else if (strcasecmp (arg, "intel") == 0)
11168 intel_mnemonic = 1;
11169 else
11170 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11171 break;
11172
11173 case OPTION_MSYNTAX:
11174 if (strcasecmp (arg, "att") == 0)
11175 intel_syntax = 0;
11176 else if (strcasecmp (arg, "intel") == 0)
11177 intel_syntax = 1;
11178 else
11179 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11180 break;
11181
11182 case OPTION_MINDEX_REG:
11183 allow_index_reg = 1;
11184 break;
11185
11186 case OPTION_MNAKED_REG:
11187 allow_naked_reg = 1;
11188 break;
11189
11190 case OPTION_MSSE2AVX:
11191 sse2avx = 1;
11192 break;
11193
11194 case OPTION_MSSE_CHECK:
11195 if (strcasecmp (arg, "error") == 0)
11196 sse_check = check_error;
11197 else if (strcasecmp (arg, "warning") == 0)
11198 sse_check = check_warning;
11199 else if (strcasecmp (arg, "none") == 0)
11200 sse_check = check_none;
11201 else
11202 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11203 break;
11204
11205 case OPTION_MOPERAND_CHECK:
11206 if (strcasecmp (arg, "error") == 0)
11207 operand_check = check_error;
11208 else if (strcasecmp (arg, "warning") == 0)
11209 operand_check = check_warning;
11210 else if (strcasecmp (arg, "none") == 0)
11211 operand_check = check_none;
11212 else
11213 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11214 break;
11215
11216 case OPTION_MAVXSCALAR:
11217 if (strcasecmp (arg, "128") == 0)
11218 avxscalar = vex128;
11219 else if (strcasecmp (arg, "256") == 0)
11220 avxscalar = vex256;
11221 else
11222 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11223 break;
11224
11225 case OPTION_MADD_BND_PREFIX:
11226 add_bnd_prefix = 1;
11227 break;
11228
11229 case OPTION_MEVEXLIG:
11230 if (strcmp (arg, "128") == 0)
11231 evexlig = evexl128;
11232 else if (strcmp (arg, "256") == 0)
11233 evexlig = evexl256;
11234 else if (strcmp (arg, "512") == 0)
11235 evexlig = evexl512;
11236 else
11237 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11238 break;
11239
11240 case OPTION_MEVEXRCIG:
11241 if (strcmp (arg, "rne") == 0)
11242 evexrcig = rne;
11243 else if (strcmp (arg, "rd") == 0)
11244 evexrcig = rd;
11245 else if (strcmp (arg, "ru") == 0)
11246 evexrcig = ru;
11247 else if (strcmp (arg, "rz") == 0)
11248 evexrcig = rz;
11249 else
11250 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11251 break;
11252
11253 case OPTION_MEVEXWIG:
11254 if (strcmp (arg, "0") == 0)
11255 evexwig = evexw0;
11256 else if (strcmp (arg, "1") == 0)
11257 evexwig = evexw1;
11258 else
11259 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11260 break;
11261
11262 # if defined (TE_PE) || defined (TE_PEP)
11263 case OPTION_MBIG_OBJ:
11264 use_big_obj = 1;
11265 break;
11266 #endif
11267
11268 case OPTION_MOMIT_LOCK_PREFIX:
11269 if (strcasecmp (arg, "yes") == 0)
11270 omit_lock_prefix = 1;
11271 else if (strcasecmp (arg, "no") == 0)
11272 omit_lock_prefix = 0;
11273 else
11274 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11275 break;
11276
11277 case OPTION_MFENCE_AS_LOCK_ADD:
11278 if (strcasecmp (arg, "yes") == 0)
11279 avoid_fence = 1;
11280 else if (strcasecmp (arg, "no") == 0)
11281 avoid_fence = 0;
11282 else
11283 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11284 break;
11285
11286 case OPTION_MRELAX_RELOCATIONS:
11287 if (strcasecmp (arg, "yes") == 0)
11288 generate_relax_relocations = 1;
11289 else if (strcasecmp (arg, "no") == 0)
11290 generate_relax_relocations = 0;
11291 else
11292 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11293 break;
11294
11295 case OPTION_MAMD64:
11296 intel64 = 0;
11297 break;
11298
11299 case OPTION_MINTEL64:
11300 intel64 = 1;
11301 break;
11302
11303 case 'O':
11304 if (arg == NULL)
11305 {
11306 optimize = 1;
11307 /* Turn off -Os. */
11308 optimize_for_space = 0;
11309 }
11310 else if (*arg == 's')
11311 {
11312 optimize_for_space = 1;
11313 /* Turn on all encoding optimizations. */
11314 optimize = -1;
11315 }
11316 else
11317 {
11318 optimize = atoi (arg);
11319 /* Turn off -Os. */
11320 optimize_for_space = 0;
11321 }
11322 break;
11323
11324 default:
11325 return 0;
11326 }
11327 return 1;
11328 }
11329
11330 #define MESSAGE_TEMPLATE \
11331 " "
11332
11333 static char *
11334 output_message (FILE *stream, char *p, char *message, char *start,
11335 int *left_p, const char *name, int len)
11336 {
11337 int size = sizeof (MESSAGE_TEMPLATE);
11338 int left = *left_p;
11339
11340 /* Reserve 2 spaces for ", " or ",\0" */
11341 left -= len + 2;
11342
11343 /* Check if there is any room. */
11344 if (left >= 0)
11345 {
11346 if (p != start)
11347 {
11348 *p++ = ',';
11349 *p++ = ' ';
11350 }
11351 p = mempcpy (p, name, len);
11352 }
11353 else
11354 {
11355 /* Output the current message now and start a new one. */
11356 *p++ = ',';
11357 *p = '\0';
11358 fprintf (stream, "%s\n", message);
11359 p = start;
11360 left = size - (start - message) - len - 2;
11361
11362 gas_assert (left >= 0);
11363
11364 p = mempcpy (p, name, len);
11365 }
11366
11367 *left_p = left;
11368 return p;
11369 }
11370
11371 static void
11372 show_arch (FILE *stream, int ext, int check)
11373 {
11374 static char message[] = MESSAGE_TEMPLATE;
11375 char *start = message + 27;
11376 char *p;
11377 int size = sizeof (MESSAGE_TEMPLATE);
11378 int left;
11379 const char *name;
11380 int len;
11381 unsigned int j;
11382
11383 p = start;
11384 left = size - (start - message);
11385 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11386 {
11387 /* Should it be skipped? */
11388 if (cpu_arch [j].skip)
11389 continue;
11390
11391 name = cpu_arch [j].name;
11392 len = cpu_arch [j].len;
11393 if (*name == '.')
11394 {
11395 /* It is an extension. Skip if we aren't asked to show it. */
11396 if (ext)
11397 {
11398 name++;
11399 len--;
11400 }
11401 else
11402 continue;
11403 }
11404 else if (ext)
11405 {
11406 /* It is an processor. Skip if we show only extension. */
11407 continue;
11408 }
11409 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11410 {
11411 /* It is an impossible processor - skip. */
11412 continue;
11413 }
11414
11415 p = output_message (stream, p, message, start, &left, name, len);
11416 }
11417
11418 /* Display disabled extensions. */
11419 if (ext)
11420 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11421 {
11422 name = cpu_noarch [j].name;
11423 len = cpu_noarch [j].len;
11424 p = output_message (stream, p, message, start, &left, name,
11425 len);
11426 }
11427
11428 *p = '\0';
11429 fprintf (stream, "%s\n", message);
11430 }
11431
11432 void
11433 md_show_usage (FILE *stream)
11434 {
11435 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11436 fprintf (stream, _("\
11437 -Q ignored\n\
11438 -V print assembler version number\n\
11439 -k ignored\n"));
11440 #endif
11441 fprintf (stream, _("\
11442 -n Do not optimize code alignment\n\
11443 -q quieten some warnings\n"));
11444 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11445 fprintf (stream, _("\
11446 -s ignored\n"));
11447 #endif
11448 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11449 || defined (TE_PE) || defined (TE_PEP))
11450 fprintf (stream, _("\
11451 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11452 #endif
11453 #ifdef SVR4_COMMENT_CHARS
11454 fprintf (stream, _("\
11455 --divide do not treat `/' as a comment character\n"));
11456 #else
11457 fprintf (stream, _("\
11458 --divide ignored\n"));
11459 #endif
11460 fprintf (stream, _("\
11461 -march=CPU[,+EXTENSION...]\n\
11462 generate code for CPU and EXTENSION, CPU is one of:\n"));
11463 show_arch (stream, 0, 1);
11464 fprintf (stream, _("\
11465 EXTENSION is combination of:\n"));
11466 show_arch (stream, 1, 0);
11467 fprintf (stream, _("\
11468 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11469 show_arch (stream, 0, 0);
11470 fprintf (stream, _("\
11471 -msse2avx encode SSE instructions with VEX prefix\n"));
11472 fprintf (stream, _("\
11473 -msse-check=[none|error|warning] (default: warning)\n\
11474 check SSE instructions\n"));
11475 fprintf (stream, _("\
11476 -moperand-check=[none|error|warning] (default: warning)\n\
11477 check operand combinations for validity\n"));
11478 fprintf (stream, _("\
11479 -mavxscalar=[128|256] (default: 128)\n\
11480 encode scalar AVX instructions with specific vector\n\
11481 length\n"));
11482 fprintf (stream, _("\
11483 -mevexlig=[128|256|512] (default: 128)\n\
11484 encode scalar EVEX instructions with specific vector\n\
11485 length\n"));
11486 fprintf (stream, _("\
11487 -mevexwig=[0|1] (default: 0)\n\
11488 encode EVEX instructions with specific EVEX.W value\n\
11489 for EVEX.W bit ignored instructions\n"));
11490 fprintf (stream, _("\
11491 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11492 encode EVEX instructions with specific EVEX.RC value\n\
11493 for SAE-only ignored instructions\n"));
11494 fprintf (stream, _("\
11495 -mmnemonic=[att|intel] "));
11496 if (SYSV386_COMPAT)
11497 fprintf (stream, _("(default: att)\n"));
11498 else
11499 fprintf (stream, _("(default: intel)\n"));
11500 fprintf (stream, _("\
11501 use AT&T/Intel mnemonic\n"));
11502 fprintf (stream, _("\
11503 -msyntax=[att|intel] (default: att)\n\
11504 use AT&T/Intel syntax\n"));
11505 fprintf (stream, _("\
11506 -mindex-reg support pseudo index registers\n"));
11507 fprintf (stream, _("\
11508 -mnaked-reg don't require `%%' prefix for registers\n"));
11509 fprintf (stream, _("\
11510 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11511 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11512 fprintf (stream, _("\
11513 -mshared disable branch optimization for shared code\n"));
11514 fprintf (stream, _("\
11515 -mx86-used-note=[no|yes] "));
11516 if (DEFAULT_X86_USED_NOTE)
11517 fprintf (stream, _("(default: yes)\n"));
11518 else
11519 fprintf (stream, _("(default: no)\n"));
11520 fprintf (stream, _("\
11521 generate x86 used ISA and feature properties\n"));
11522 #endif
11523 #if defined (TE_PE) || defined (TE_PEP)
11524 fprintf (stream, _("\
11525 -mbig-obj generate big object files\n"));
11526 #endif
11527 fprintf (stream, _("\
11528 -momit-lock-prefix=[no|yes] (default: no)\n\
11529 strip all lock prefixes\n"));
11530 fprintf (stream, _("\
11531 -mfence-as-lock-add=[no|yes] (default: no)\n\
11532 encode lfence, mfence and sfence as\n\
11533 lock addl $0x0, (%%{re}sp)\n"));
11534 fprintf (stream, _("\
11535 -mrelax-relocations=[no|yes] "));
11536 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11537 fprintf (stream, _("(default: yes)\n"));
11538 else
11539 fprintf (stream, _("(default: no)\n"));
11540 fprintf (stream, _("\
11541 generate relax relocations\n"));
11542 fprintf (stream, _("\
11543 -mamd64 accept only AMD64 ISA [default]\n"));
11544 fprintf (stream, _("\
11545 -mintel64 accept only Intel64 ISA\n"));
11546 }
11547
11548 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11549 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11550 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11551
11552 /* Pick the target format to use. */
11553
11554 const char *
11555 i386_target_format (void)
11556 {
11557 if (!strncmp (default_arch, "x86_64", 6))
11558 {
11559 update_code_flag (CODE_64BIT, 1);
11560 if (default_arch[6] == '\0')
11561 x86_elf_abi = X86_64_ABI;
11562 else
11563 x86_elf_abi = X86_64_X32_ABI;
11564 }
11565 else if (!strcmp (default_arch, "i386"))
11566 update_code_flag (CODE_32BIT, 1);
11567 else if (!strcmp (default_arch, "iamcu"))
11568 {
11569 update_code_flag (CODE_32BIT, 1);
11570 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11571 {
11572 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11573 cpu_arch_name = "iamcu";
11574 cpu_sub_arch_name = NULL;
11575 cpu_arch_flags = iamcu_flags;
11576 cpu_arch_isa = PROCESSOR_IAMCU;
11577 cpu_arch_isa_flags = iamcu_flags;
11578 if (!cpu_arch_tune_set)
11579 {
11580 cpu_arch_tune = cpu_arch_isa;
11581 cpu_arch_tune_flags = cpu_arch_isa_flags;
11582 }
11583 }
11584 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11585 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11586 cpu_arch_name);
11587 }
11588 else
11589 as_fatal (_("unknown architecture"));
11590
11591 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11592 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11593 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11594 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11595
11596 switch (OUTPUT_FLAVOR)
11597 {
11598 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11599 case bfd_target_aout_flavour:
11600 return AOUT_TARGET_FORMAT;
11601 #endif
11602 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11603 # if defined (TE_PE) || defined (TE_PEP)
11604 case bfd_target_coff_flavour:
11605 if (flag_code == CODE_64BIT)
11606 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11607 else
11608 return "pe-i386";
11609 # elif defined (TE_GO32)
11610 case bfd_target_coff_flavour:
11611 return "coff-go32";
11612 # else
11613 case bfd_target_coff_flavour:
11614 return "coff-i386";
11615 # endif
11616 #endif
11617 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11618 case bfd_target_elf_flavour:
11619 {
11620 const char *format;
11621
11622 switch (x86_elf_abi)
11623 {
11624 default:
11625 format = ELF_TARGET_FORMAT;
11626 break;
11627 case X86_64_ABI:
11628 use_rela_relocations = 1;
11629 object_64bit = 1;
11630 format = ELF_TARGET_FORMAT64;
11631 break;
11632 case X86_64_X32_ABI:
11633 use_rela_relocations = 1;
11634 object_64bit = 1;
11635 disallow_64bit_reloc = 1;
11636 format = ELF_TARGET_FORMAT32;
11637 break;
11638 }
11639 if (cpu_arch_isa == PROCESSOR_L1OM)
11640 {
11641 if (x86_elf_abi != X86_64_ABI)
11642 as_fatal (_("Intel L1OM is 64bit only"));
11643 return ELF_TARGET_L1OM_FORMAT;
11644 }
11645 else if (cpu_arch_isa == PROCESSOR_K1OM)
11646 {
11647 if (x86_elf_abi != X86_64_ABI)
11648 as_fatal (_("Intel K1OM is 64bit only"));
11649 return ELF_TARGET_K1OM_FORMAT;
11650 }
11651 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11652 {
11653 if (x86_elf_abi != I386_ABI)
11654 as_fatal (_("Intel MCU is 32bit only"));
11655 return ELF_TARGET_IAMCU_FORMAT;
11656 }
11657 else
11658 return format;
11659 }
11660 #endif
11661 #if defined (OBJ_MACH_O)
11662 case bfd_target_mach_o_flavour:
11663 if (flag_code == CODE_64BIT)
11664 {
11665 use_rela_relocations = 1;
11666 object_64bit = 1;
11667 return "mach-o-x86-64";
11668 }
11669 else
11670 return "mach-o-i386";
11671 #endif
11672 default:
11673 abort ();
11674 return NULL;
11675 }
11676 }
11677
11678 #endif /* OBJ_MAYBE_ more than one */
11679 \f
11680 symbolS *
11681 md_undefined_symbol (char *name)
11682 {
11683 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11684 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11685 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11686 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11687 {
11688 if (!GOT_symbol)
11689 {
11690 if (symbol_find (name))
11691 as_bad (_("GOT already in symbol table"));
11692 GOT_symbol = symbol_new (name, undefined_section,
11693 (valueT) 0, &zero_address_frag);
11694 };
11695 return GOT_symbol;
11696 }
11697 return 0;
11698 }
11699
11700 /* Round up a section size to the appropriate boundary. */
11701
11702 valueT
11703 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11704 {
11705 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11706 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11707 {
11708 /* For a.out, force the section size to be aligned. If we don't do
11709 this, BFD will align it for us, but it will not write out the
11710 final bytes of the section. This may be a bug in BFD, but it is
11711 easier to fix it here since that is how the other a.out targets
11712 work. */
11713 int align;
11714
11715 align = bfd_get_section_alignment (stdoutput, segment);
11716 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11717 }
11718 #endif
11719
11720 return size;
11721 }
11722
11723 /* On the i386, PC-relative offsets are relative to the start of the
11724 next instruction. That is, the address of the offset, plus its
11725 size, since the offset is always the last part of the insn. */
11726
11727 long
11728 md_pcrel_from (fixS *fixP)
11729 {
11730 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11731 }
11732
11733 #ifndef I386COFF
11734
11735 static void
11736 s_bss (int ignore ATTRIBUTE_UNUSED)
11737 {
11738 int temp;
11739
11740 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11741 if (IS_ELF)
11742 obj_elf_section_change_hook ();
11743 #endif
11744 temp = get_absolute_expression ();
11745 subseg_set (bss_section, (subsegT) temp);
11746 demand_empty_rest_of_line ();
11747 }
11748
11749 #endif
11750
11751 void
11752 i386_validate_fix (fixS *fixp)
11753 {
11754 if (fixp->fx_subsy)
11755 {
11756 if (fixp->fx_subsy == GOT_symbol)
11757 {
11758 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11759 {
11760 if (!object_64bit)
11761 abort ();
11762 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11763 if (fixp->fx_tcbit2)
11764 fixp->fx_r_type = (fixp->fx_tcbit
11765 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11766 : BFD_RELOC_X86_64_GOTPCRELX);
11767 else
11768 #endif
11769 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11770 }
11771 else
11772 {
11773 if (!object_64bit)
11774 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11775 else
11776 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11777 }
11778 fixp->fx_subsy = 0;
11779 }
11780 }
11781 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11782 else if (!object_64bit)
11783 {
11784 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11785 && fixp->fx_tcbit2)
11786 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11787 }
11788 #endif
11789 }
11790
11791 arelent *
11792 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11793 {
11794 arelent *rel;
11795 bfd_reloc_code_real_type code;
11796
11797 switch (fixp->fx_r_type)
11798 {
11799 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11800 case BFD_RELOC_SIZE32:
11801 case BFD_RELOC_SIZE64:
11802 if (S_IS_DEFINED (fixp->fx_addsy)
11803 && !S_IS_EXTERNAL (fixp->fx_addsy))
11804 {
11805 /* Resolve size relocation against local symbol to size of
11806 the symbol plus addend. */
11807 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11808 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11809 && !fits_in_unsigned_long (value))
11810 as_bad_where (fixp->fx_file, fixp->fx_line,
11811 _("symbol size computation overflow"));
11812 fixp->fx_addsy = NULL;
11813 fixp->fx_subsy = NULL;
11814 md_apply_fix (fixp, (valueT *) &value, NULL);
11815 return NULL;
11816 }
11817 #endif
11818 /* Fall through. */
11819
11820 case BFD_RELOC_X86_64_PLT32:
11821 case BFD_RELOC_X86_64_GOT32:
11822 case BFD_RELOC_X86_64_GOTPCREL:
11823 case BFD_RELOC_X86_64_GOTPCRELX:
11824 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11825 case BFD_RELOC_386_PLT32:
11826 case BFD_RELOC_386_GOT32:
11827 case BFD_RELOC_386_GOT32X:
11828 case BFD_RELOC_386_GOTOFF:
11829 case BFD_RELOC_386_GOTPC:
11830 case BFD_RELOC_386_TLS_GD:
11831 case BFD_RELOC_386_TLS_LDM:
11832 case BFD_RELOC_386_TLS_LDO_32:
11833 case BFD_RELOC_386_TLS_IE_32:
11834 case BFD_RELOC_386_TLS_IE:
11835 case BFD_RELOC_386_TLS_GOTIE:
11836 case BFD_RELOC_386_TLS_LE_32:
11837 case BFD_RELOC_386_TLS_LE:
11838 case BFD_RELOC_386_TLS_GOTDESC:
11839 case BFD_RELOC_386_TLS_DESC_CALL:
11840 case BFD_RELOC_X86_64_TLSGD:
11841 case BFD_RELOC_X86_64_TLSLD:
11842 case BFD_RELOC_X86_64_DTPOFF32:
11843 case BFD_RELOC_X86_64_DTPOFF64:
11844 case BFD_RELOC_X86_64_GOTTPOFF:
11845 case BFD_RELOC_X86_64_TPOFF32:
11846 case BFD_RELOC_X86_64_TPOFF64:
11847 case BFD_RELOC_X86_64_GOTOFF64:
11848 case BFD_RELOC_X86_64_GOTPC32:
11849 case BFD_RELOC_X86_64_GOT64:
11850 case BFD_RELOC_X86_64_GOTPCREL64:
11851 case BFD_RELOC_X86_64_GOTPC64:
11852 case BFD_RELOC_X86_64_GOTPLT64:
11853 case BFD_RELOC_X86_64_PLTOFF64:
11854 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11855 case BFD_RELOC_X86_64_TLSDESC_CALL:
11856 case BFD_RELOC_RVA:
11857 case BFD_RELOC_VTABLE_ENTRY:
11858 case BFD_RELOC_VTABLE_INHERIT:
11859 #ifdef TE_PE
11860 case BFD_RELOC_32_SECREL:
11861 #endif
11862 code = fixp->fx_r_type;
11863 break;
11864 case BFD_RELOC_X86_64_32S:
11865 if (!fixp->fx_pcrel)
11866 {
11867 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11868 code = fixp->fx_r_type;
11869 break;
11870 }
11871 /* Fall through. */
11872 default:
11873 if (fixp->fx_pcrel)
11874 {
11875 switch (fixp->fx_size)
11876 {
11877 default:
11878 as_bad_where (fixp->fx_file, fixp->fx_line,
11879 _("can not do %d byte pc-relative relocation"),
11880 fixp->fx_size);
11881 code = BFD_RELOC_32_PCREL;
11882 break;
11883 case 1: code = BFD_RELOC_8_PCREL; break;
11884 case 2: code = BFD_RELOC_16_PCREL; break;
11885 case 4: code = BFD_RELOC_32_PCREL; break;
11886 #ifdef BFD64
11887 case 8: code = BFD_RELOC_64_PCREL; break;
11888 #endif
11889 }
11890 }
11891 else
11892 {
11893 switch (fixp->fx_size)
11894 {
11895 default:
11896 as_bad_where (fixp->fx_file, fixp->fx_line,
11897 _("can not do %d byte relocation"),
11898 fixp->fx_size);
11899 code = BFD_RELOC_32;
11900 break;
11901 case 1: code = BFD_RELOC_8; break;
11902 case 2: code = BFD_RELOC_16; break;
11903 case 4: code = BFD_RELOC_32; break;
11904 #ifdef BFD64
11905 case 8: code = BFD_RELOC_64; break;
11906 #endif
11907 }
11908 }
11909 break;
11910 }
11911
11912 if ((code == BFD_RELOC_32
11913 || code == BFD_RELOC_32_PCREL
11914 || code == BFD_RELOC_X86_64_32S)
11915 && GOT_symbol
11916 && fixp->fx_addsy == GOT_symbol)
11917 {
11918 if (!object_64bit)
11919 code = BFD_RELOC_386_GOTPC;
11920 else
11921 code = BFD_RELOC_X86_64_GOTPC32;
11922 }
11923 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11924 && GOT_symbol
11925 && fixp->fx_addsy == GOT_symbol)
11926 {
11927 code = BFD_RELOC_X86_64_GOTPC64;
11928 }
11929
11930 rel = XNEW (arelent);
11931 rel->sym_ptr_ptr = XNEW (asymbol *);
11932 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11933
11934 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11935
11936 if (!use_rela_relocations)
11937 {
11938 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11939 vtable entry to be used in the relocation's section offset. */
11940 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11941 rel->address = fixp->fx_offset;
11942 #if defined (OBJ_COFF) && defined (TE_PE)
11943 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11944 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11945 else
11946 #endif
11947 rel->addend = 0;
11948 }
11949 /* Use the rela in 64bit mode. */
11950 else
11951 {
11952 if (disallow_64bit_reloc)
11953 switch (code)
11954 {
11955 case BFD_RELOC_X86_64_DTPOFF64:
11956 case BFD_RELOC_X86_64_TPOFF64:
11957 case BFD_RELOC_64_PCREL:
11958 case BFD_RELOC_X86_64_GOTOFF64:
11959 case BFD_RELOC_X86_64_GOT64:
11960 case BFD_RELOC_X86_64_GOTPCREL64:
11961 case BFD_RELOC_X86_64_GOTPC64:
11962 case BFD_RELOC_X86_64_GOTPLT64:
11963 case BFD_RELOC_X86_64_PLTOFF64:
11964 as_bad_where (fixp->fx_file, fixp->fx_line,
11965 _("cannot represent relocation type %s in x32 mode"),
11966 bfd_get_reloc_code_name (code));
11967 break;
11968 default:
11969 break;
11970 }
11971
11972 if (!fixp->fx_pcrel)
11973 rel->addend = fixp->fx_offset;
11974 else
11975 switch (code)
11976 {
11977 case BFD_RELOC_X86_64_PLT32:
11978 case BFD_RELOC_X86_64_GOT32:
11979 case BFD_RELOC_X86_64_GOTPCREL:
11980 case BFD_RELOC_X86_64_GOTPCRELX:
11981 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11982 case BFD_RELOC_X86_64_TLSGD:
11983 case BFD_RELOC_X86_64_TLSLD:
11984 case BFD_RELOC_X86_64_GOTTPOFF:
11985 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11986 case BFD_RELOC_X86_64_TLSDESC_CALL:
11987 rel->addend = fixp->fx_offset - fixp->fx_size;
11988 break;
11989 default:
11990 rel->addend = (section->vma
11991 - fixp->fx_size
11992 + fixp->fx_addnumber
11993 + md_pcrel_from (fixp));
11994 break;
11995 }
11996 }
11997
11998 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11999 if (rel->howto == NULL)
12000 {
12001 as_bad_where (fixp->fx_file, fixp->fx_line,
12002 _("cannot represent relocation type %s"),
12003 bfd_get_reloc_code_name (code));
12004 /* Set howto to a garbage value so that we can keep going. */
12005 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12006 gas_assert (rel->howto != NULL);
12007 }
12008
12009 return rel;
12010 }
12011
12012 #include "tc-i386-intel.c"
12013
12014 void
12015 tc_x86_parse_to_dw2regnum (expressionS *exp)
12016 {
12017 int saved_naked_reg;
12018 char saved_register_dot;
12019
12020 saved_naked_reg = allow_naked_reg;
12021 allow_naked_reg = 1;
12022 saved_register_dot = register_chars['.'];
12023 register_chars['.'] = '.';
12024 allow_pseudo_reg = 1;
12025 expression_and_evaluate (exp);
12026 allow_pseudo_reg = 0;
12027 register_chars['.'] = saved_register_dot;
12028 allow_naked_reg = saved_naked_reg;
12029
12030 if (exp->X_op == O_register && exp->X_add_number >= 0)
12031 {
12032 if ((addressT) exp->X_add_number < i386_regtab_size)
12033 {
12034 exp->X_op = O_constant;
12035 exp->X_add_number = i386_regtab[exp->X_add_number]
12036 .dw2_regnum[flag_code >> 1];
12037 }
12038 else
12039 exp->X_op = O_illegal;
12040 }
12041 }
12042
12043 void
12044 tc_x86_frame_initial_instructions (void)
12045 {
12046 static unsigned int sp_regno[2];
12047
12048 if (!sp_regno[flag_code >> 1])
12049 {
12050 char *saved_input = input_line_pointer;
12051 char sp[][4] = {"esp", "rsp"};
12052 expressionS exp;
12053
12054 input_line_pointer = sp[flag_code >> 1];
12055 tc_x86_parse_to_dw2regnum (&exp);
12056 gas_assert (exp.X_op == O_constant);
12057 sp_regno[flag_code >> 1] = exp.X_add_number;
12058 input_line_pointer = saved_input;
12059 }
12060
12061 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12062 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12063 }
12064
12065 int
12066 x86_dwarf2_addr_size (void)
12067 {
12068 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12069 if (x86_elf_abi == X86_64_X32_ABI)
12070 return 4;
12071 #endif
12072 return bfd_arch_bits_per_address (stdoutput) / 8;
12073 }
12074
12075 int
12076 i386_elf_section_type (const char *str, size_t len)
12077 {
12078 if (flag_code == CODE_64BIT
12079 && len == sizeof ("unwind") - 1
12080 && strncmp (str, "unwind", 6) == 0)
12081 return SHT_X86_64_UNWIND;
12082
12083 return -1;
12084 }
12085
12086 #ifdef TE_SOLARIS
12087 void
12088 i386_solaris_fix_up_eh_frame (segT sec)
12089 {
12090 if (flag_code == CODE_64BIT)
12091 elf_section_type (sec) = SHT_X86_64_UNWIND;
12092 }
12093 #endif
12094
12095 #ifdef TE_PE
12096 void
12097 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12098 {
12099 expressionS exp;
12100
12101 exp.X_op = O_secrel;
12102 exp.X_add_symbol = symbol;
12103 exp.X_add_number = 0;
12104 emit_expr (&exp, size);
12105 }
12106 #endif
12107
12108 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12109 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12110
12111 bfd_vma
12112 x86_64_section_letter (int letter, const char **ptr_msg)
12113 {
12114 if (flag_code == CODE_64BIT)
12115 {
12116 if (letter == 'l')
12117 return SHF_X86_64_LARGE;
12118
12119 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12120 }
12121 else
12122 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12123 return -1;
12124 }
12125
12126 bfd_vma
12127 x86_64_section_word (char *str, size_t len)
12128 {
12129 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12130 return SHF_X86_64_LARGE;
12131
12132 return -1;
12133 }
12134
12135 static void
12136 handle_large_common (int small ATTRIBUTE_UNUSED)
12137 {
12138 if (flag_code != CODE_64BIT)
12139 {
12140 s_comm_internal (0, elf_common_parse);
12141 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12142 }
12143 else
12144 {
12145 static segT lbss_section;
12146 asection *saved_com_section_ptr = elf_com_section_ptr;
12147 asection *saved_bss_section = bss_section;
12148
12149 if (lbss_section == NULL)
12150 {
12151 flagword applicable;
12152 segT seg = now_seg;
12153 subsegT subseg = now_subseg;
12154
12155 /* The .lbss section is for local .largecomm symbols. */
12156 lbss_section = subseg_new (".lbss", 0);
12157 applicable = bfd_applicable_section_flags (stdoutput);
12158 bfd_set_section_flags (stdoutput, lbss_section,
12159 applicable & SEC_ALLOC);
12160 seg_info (lbss_section)->bss = 1;
12161
12162 subseg_set (seg, subseg);
12163 }
12164
12165 elf_com_section_ptr = &_bfd_elf_large_com_section;
12166 bss_section = lbss_section;
12167
12168 s_comm_internal (0, elf_common_parse);
12169
12170 elf_com_section_ptr = saved_com_section_ptr;
12171 bss_section = saved_bss_section;
12172 }
12173 }
12174 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.39883 seconds and 4 git commands to generate.