x86: fold AddrPrefixOpReg templates
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
987 CPU_SSE4A_FLAGS, 0 },
988 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
989 CPU_SSSE3_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_1_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
995 CPU_SSE4_2_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
997 CPU_AVX_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
999 CPU_AVX2_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512F_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512CD_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512ER_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512PF_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512DQ_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512BW_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1013 CPU_AVX512VL_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1015 CPU_VMX_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1017 CPU_VMFUNC_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1019 CPU_SMX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVE_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEOPT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVEC_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1027 CPU_XSAVES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1029 CPU_AES_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1033 CPU_PCLMUL_FLAGS, 1 },
1034 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1035 CPU_FSGSBASE_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1037 CPU_RDRND_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1039 CPU_F16C_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1041 CPU_BMI2_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1043 CPU_FMA_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1045 CPU_FMA4_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1047 CPU_XOP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1049 CPU_LWP_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1051 CPU_MOVBE_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1053 CPU_CX16_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1055 CPU_EPT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1057 CPU_LZCNT_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1059 CPU_HLE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1061 CPU_RTM_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1063 CPU_INVPCID_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1065 CPU_CLFLUSH_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1067 CPU_NOP_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1069 CPU_SYSCALL_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1071 CPU_RDTSCP_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOW_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1075 CPU_3DNOWA_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1077 CPU_PADLOCK_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 1 },
1080 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1081 CPU_SVME_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1083 CPU_SSE4A_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1085 CPU_ABM_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1087 CPU_BMI_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1089 CPU_TBM_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1091 CPU_ADX_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1093 CPU_RDSEED_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1095 CPU_PRFCHW_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1097 CPU_SMAP_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1099 CPU_MPX_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1101 CPU_SHA_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1103 CPU_CLFLUSHOPT_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1105 CPU_PREFETCHWT1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1107 CPU_SE1_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1109 CPU_CLWB_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512IFMA_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512VBMI_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4FMAPS_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_4VNNIW_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VBMI2_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_VNNI_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1125 CPU_AVX512_BITALG_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1127 CPU_CLZERO_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1129 CPU_MWAITX_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1131 CPU_OSPKE_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1133 CPU_RDPID_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1135 CPU_PTWRITE_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1137 CPU_IBT_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1139 CPU_SHSTK_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1141 CPU_GFNI_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1143 CPU_VAES_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1145 CPU_VPCLMULQDQ_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1147 CPU_WBNOINVD_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1149 CPU_PCONFIG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1151 CPU_WAITPKG_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1153 CPU_CLDEMOTE_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIRI_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1157 CPU_MOVDIR64B_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_BF16_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1161 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1163 CPU_ENQCMD_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1165 CPU_RDPRU_FLAGS, 0 },
1166 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1167 CPU_MCOMMIT_FLAGS, 0 },
1168 };
1169
1170 static const noarch_entry cpu_noarch[] =
1171 {
1172 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1173 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1174 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1175 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1176 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1177 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1178 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1179 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1180 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1181 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1183 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1184 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1185 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1186 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1187 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1188 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1201 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1202 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1203 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1204 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1205 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1207 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1208 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1209 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1210 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1211 };
1212
1213 #ifdef I386COFF
1214 /* Like s_lcomm_internal in gas/read.c but the alignment string
1215 is allowed to be optional. */
1216
1217 static symbolS *
1218 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1219 {
1220 addressT align = 0;
1221
1222 SKIP_WHITESPACE ();
1223
1224 if (needs_align
1225 && *input_line_pointer == ',')
1226 {
1227 align = parse_align (needs_align - 1);
1228
1229 if (align == (addressT) -1)
1230 return NULL;
1231 }
1232 else
1233 {
1234 if (size >= 8)
1235 align = 3;
1236 else if (size >= 4)
1237 align = 2;
1238 else if (size >= 2)
1239 align = 1;
1240 else
1241 align = 0;
1242 }
1243
1244 bss_alloc (symbolP, size, align);
1245 return symbolP;
1246 }
1247
1248 static void
1249 pe_lcomm (int needs_align)
1250 {
1251 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1252 }
1253 #endif
1254
1255 const pseudo_typeS md_pseudo_table[] =
1256 {
1257 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1258 {"align", s_align_bytes, 0},
1259 #else
1260 {"align", s_align_ptwo, 0},
1261 #endif
1262 {"arch", set_cpu_arch, 0},
1263 #ifndef I386COFF
1264 {"bss", s_bss, 0},
1265 #else
1266 {"lcomm", pe_lcomm, 1},
1267 #endif
1268 {"ffloat", float_cons, 'f'},
1269 {"dfloat", float_cons, 'd'},
1270 {"tfloat", float_cons, 'x'},
1271 {"value", cons, 2},
1272 {"slong", signed_cons, 4},
1273 {"noopt", s_ignore, 0},
1274 {"optim", s_ignore, 0},
1275 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1276 {"code16", set_code_flag, CODE_16BIT},
1277 {"code32", set_code_flag, CODE_32BIT},
1278 #ifdef BFD64
1279 {"code64", set_code_flag, CODE_64BIT},
1280 #endif
1281 {"intel_syntax", set_intel_syntax, 1},
1282 {"att_syntax", set_intel_syntax, 0},
1283 {"intel_mnemonic", set_intel_mnemonic, 1},
1284 {"att_mnemonic", set_intel_mnemonic, 0},
1285 {"allow_index_reg", set_allow_index_reg, 1},
1286 {"disallow_index_reg", set_allow_index_reg, 0},
1287 {"sse_check", set_check, 0},
1288 {"operand_check", set_check, 1},
1289 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1290 {"largecomm", handle_large_common, 0},
1291 #else
1292 {"file", dwarf2_directive_file, 0},
1293 {"loc", dwarf2_directive_loc, 0},
1294 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1295 #endif
1296 #ifdef TE_PE
1297 {"secrel32", pe_directive_secrel, 0},
1298 #endif
1299 {0, 0, 0}
1300 };
1301
1302 /* For interface with expression (). */
1303 extern char *input_line_pointer;
1304
1305 /* Hash table for instruction mnemonic lookup. */
1306 static struct hash_control *op_hash;
1307
1308 /* Hash table for register lookup. */
1309 static struct hash_control *reg_hash;
1310 \f
1311 /* Various efficient no-op patterns for aligning code labels.
1312 Note: Don't try to assemble the instructions in the comments.
1313 0L and 0w are not legal. */
1314 static const unsigned char f32_1[] =
1315 {0x90}; /* nop */
1316 static const unsigned char f32_2[] =
1317 {0x66,0x90}; /* xchg %ax,%ax */
1318 static const unsigned char f32_3[] =
1319 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1320 static const unsigned char f32_4[] =
1321 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1322 static const unsigned char f32_6[] =
1323 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1324 static const unsigned char f32_7[] =
1325 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1326 static const unsigned char f16_3[] =
1327 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1328 static const unsigned char f16_4[] =
1329 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1330 static const unsigned char jump_disp8[] =
1331 {0xeb}; /* jmp disp8 */
1332 static const unsigned char jump32_disp32[] =
1333 {0xe9}; /* jmp disp32 */
1334 static const unsigned char jump16_disp32[] =
1335 {0x66,0xe9}; /* jmp disp32 */
1336 /* 32-bit NOPs patterns. */
1337 static const unsigned char *const f32_patt[] = {
1338 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1339 };
1340 /* 16-bit NOPs patterns. */
1341 static const unsigned char *const f16_patt[] = {
1342 f32_1, f32_2, f16_3, f16_4
1343 };
1344 /* nopl (%[re]ax) */
1345 static const unsigned char alt_3[] =
1346 {0x0f,0x1f,0x00};
1347 /* nopl 0(%[re]ax) */
1348 static const unsigned char alt_4[] =
1349 {0x0f,0x1f,0x40,0x00};
1350 /* nopl 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_5[] =
1352 {0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopw 0(%[re]ax,%[re]ax,1) */
1354 static const unsigned char alt_6[] =
1355 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1356 /* nopl 0L(%[re]ax) */
1357 static const unsigned char alt_7[] =
1358 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1359 /* nopl 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_8[] =
1361 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw 0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_9[] =
1364 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1366 static const unsigned char alt_10[] =
1367 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* data16 nopw %cs:0L(%eax,%eax,1) */
1369 static const unsigned char alt_11[] =
1370 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1371 /* 32-bit and 64-bit NOPs patterns. */
1372 static const unsigned char *const alt_patt[] = {
1373 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1374 alt_9, alt_10, alt_11
1375 };
1376
1377 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1378 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1379
1380 static void
1381 i386_output_nops (char *where, const unsigned char *const *patt,
1382 int count, int max_single_nop_size)
1383
1384 {
1385 /* Place the longer NOP first. */
1386 int last;
1387 int offset;
1388 const unsigned char *nops;
1389
1390 if (max_single_nop_size < 1)
1391 {
1392 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1393 max_single_nop_size);
1394 return;
1395 }
1396
1397 nops = patt[max_single_nop_size - 1];
1398
1399 /* Use the smaller one if the requsted one isn't available. */
1400 if (nops == NULL)
1401 {
1402 max_single_nop_size--;
1403 nops = patt[max_single_nop_size - 1];
1404 }
1405
1406 last = count % max_single_nop_size;
1407
1408 count -= last;
1409 for (offset = 0; offset < count; offset += max_single_nop_size)
1410 memcpy (where + offset, nops, max_single_nop_size);
1411
1412 if (last)
1413 {
1414 nops = patt[last - 1];
1415 if (nops == NULL)
1416 {
1417 /* Use the smaller one plus one-byte NOP if the needed one
1418 isn't available. */
1419 last--;
1420 nops = patt[last - 1];
1421 memcpy (where + offset, nops, last);
1422 where[offset + last] = *patt[0];
1423 }
1424 else
1425 memcpy (where + offset, nops, last);
1426 }
1427 }
1428
1429 static INLINE int
1430 fits_in_imm7 (offsetT num)
1431 {
1432 return (num & 0x7f) == num;
1433 }
1434
1435 static INLINE int
1436 fits_in_imm31 (offsetT num)
1437 {
1438 return (num & 0x7fffffff) == num;
1439 }
1440
1441 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1442 single NOP instruction LIMIT. */
1443
1444 void
1445 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1446 {
1447 const unsigned char *const *patt = NULL;
1448 int max_single_nop_size;
1449 /* Maximum number of NOPs before switching to jump over NOPs. */
1450 int max_number_of_nops;
1451
1452 switch (fragP->fr_type)
1453 {
1454 case rs_fill_nop:
1455 case rs_align_code:
1456 break;
1457 case rs_machine_dependent:
1458 /* Allow NOP padding for jumps and calls. */
1459 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1460 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1461 break;
1462 /* Fall through. */
1463 default:
1464 return;
1465 }
1466
1467 /* We need to decide which NOP sequence to use for 32bit and
1468 64bit. When -mtune= is used:
1469
1470 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1471 PROCESSOR_GENERIC32, f32_patt will be used.
1472 2. For the rest, alt_patt will be used.
1473
1474 When -mtune= isn't used, alt_patt will be used if
1475 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1476 be used.
1477
1478 When -march= or .arch is used, we can't use anything beyond
1479 cpu_arch_isa_flags. */
1480
1481 if (flag_code == CODE_16BIT)
1482 {
1483 patt = f16_patt;
1484 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1485 /* Limit number of NOPs to 2 in 16-bit mode. */
1486 max_number_of_nops = 2;
1487 }
1488 else
1489 {
1490 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1491 {
1492 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1493 switch (cpu_arch_tune)
1494 {
1495 case PROCESSOR_UNKNOWN:
1496 /* We use cpu_arch_isa_flags to check if we SHOULD
1497 optimize with nops. */
1498 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1499 patt = alt_patt;
1500 else
1501 patt = f32_patt;
1502 break;
1503 case PROCESSOR_PENTIUM4:
1504 case PROCESSOR_NOCONA:
1505 case PROCESSOR_CORE:
1506 case PROCESSOR_CORE2:
1507 case PROCESSOR_COREI7:
1508 case PROCESSOR_L1OM:
1509 case PROCESSOR_K1OM:
1510 case PROCESSOR_GENERIC64:
1511 case PROCESSOR_K6:
1512 case PROCESSOR_ATHLON:
1513 case PROCESSOR_K8:
1514 case PROCESSOR_AMDFAM10:
1515 case PROCESSOR_BD:
1516 case PROCESSOR_ZNVER:
1517 case PROCESSOR_BT:
1518 patt = alt_patt;
1519 break;
1520 case PROCESSOR_I386:
1521 case PROCESSOR_I486:
1522 case PROCESSOR_PENTIUM:
1523 case PROCESSOR_PENTIUMPRO:
1524 case PROCESSOR_IAMCU:
1525 case PROCESSOR_GENERIC32:
1526 patt = f32_patt;
1527 break;
1528 }
1529 }
1530 else
1531 {
1532 switch (fragP->tc_frag_data.tune)
1533 {
1534 case PROCESSOR_UNKNOWN:
1535 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1536 PROCESSOR_UNKNOWN. */
1537 abort ();
1538 break;
1539
1540 case PROCESSOR_I386:
1541 case PROCESSOR_I486:
1542 case PROCESSOR_PENTIUM:
1543 case PROCESSOR_IAMCU:
1544 case PROCESSOR_K6:
1545 case PROCESSOR_ATHLON:
1546 case PROCESSOR_K8:
1547 case PROCESSOR_AMDFAM10:
1548 case PROCESSOR_BD:
1549 case PROCESSOR_ZNVER:
1550 case PROCESSOR_BT:
1551 case PROCESSOR_GENERIC32:
1552 /* We use cpu_arch_isa_flags to check if we CAN optimize
1553 with nops. */
1554 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1555 patt = alt_patt;
1556 else
1557 patt = f32_patt;
1558 break;
1559 case PROCESSOR_PENTIUMPRO:
1560 case PROCESSOR_PENTIUM4:
1561 case PROCESSOR_NOCONA:
1562 case PROCESSOR_CORE:
1563 case PROCESSOR_CORE2:
1564 case PROCESSOR_COREI7:
1565 case PROCESSOR_L1OM:
1566 case PROCESSOR_K1OM:
1567 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1568 patt = alt_patt;
1569 else
1570 patt = f32_patt;
1571 break;
1572 case PROCESSOR_GENERIC64:
1573 patt = alt_patt;
1574 break;
1575 }
1576 }
1577
1578 if (patt == f32_patt)
1579 {
1580 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1581 /* Limit number of NOPs to 2 for older processors. */
1582 max_number_of_nops = 2;
1583 }
1584 else
1585 {
1586 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1587 /* Limit number of NOPs to 7 for newer processors. */
1588 max_number_of_nops = 7;
1589 }
1590 }
1591
1592 if (limit == 0)
1593 limit = max_single_nop_size;
1594
1595 if (fragP->fr_type == rs_fill_nop)
1596 {
1597 /* Output NOPs for .nop directive. */
1598 if (limit > max_single_nop_size)
1599 {
1600 as_bad_where (fragP->fr_file, fragP->fr_line,
1601 _("invalid single nop size: %d "
1602 "(expect within [0, %d])"),
1603 limit, max_single_nop_size);
1604 return;
1605 }
1606 }
1607 else if (fragP->fr_type != rs_machine_dependent)
1608 fragP->fr_var = count;
1609
1610 if ((count / max_single_nop_size) > max_number_of_nops)
1611 {
1612 /* Generate jump over NOPs. */
1613 offsetT disp = count - 2;
1614 if (fits_in_imm7 (disp))
1615 {
1616 /* Use "jmp disp8" if possible. */
1617 count = disp;
1618 where[0] = jump_disp8[0];
1619 where[1] = count;
1620 where += 2;
1621 }
1622 else
1623 {
1624 unsigned int size_of_jump;
1625
1626 if (flag_code == CODE_16BIT)
1627 {
1628 where[0] = jump16_disp32[0];
1629 where[1] = jump16_disp32[1];
1630 size_of_jump = 2;
1631 }
1632 else
1633 {
1634 where[0] = jump32_disp32[0];
1635 size_of_jump = 1;
1636 }
1637
1638 count -= size_of_jump + 4;
1639 if (!fits_in_imm31 (count))
1640 {
1641 as_bad_where (fragP->fr_file, fragP->fr_line,
1642 _("jump over nop padding out of range"));
1643 return;
1644 }
1645
1646 md_number_to_chars (where + size_of_jump, count, 4);
1647 where += size_of_jump + 4;
1648 }
1649 }
1650
1651 /* Generate multiple NOPs. */
1652 i386_output_nops (where, patt, count, limit);
1653 }
1654
1655 static INLINE int
1656 operand_type_all_zero (const union i386_operand_type *x)
1657 {
1658 switch (ARRAY_SIZE(x->array))
1659 {
1660 case 3:
1661 if (x->array[2])
1662 return 0;
1663 /* Fall through. */
1664 case 2:
1665 if (x->array[1])
1666 return 0;
1667 /* Fall through. */
1668 case 1:
1669 return !x->array[0];
1670 default:
1671 abort ();
1672 }
1673 }
1674
1675 static INLINE void
1676 operand_type_set (union i386_operand_type *x, unsigned int v)
1677 {
1678 switch (ARRAY_SIZE(x->array))
1679 {
1680 case 3:
1681 x->array[2] = v;
1682 /* Fall through. */
1683 case 2:
1684 x->array[1] = v;
1685 /* Fall through. */
1686 case 1:
1687 x->array[0] = v;
1688 /* Fall through. */
1689 break;
1690 default:
1691 abort ();
1692 }
1693
1694 x->bitfield.class = ClassNone;
1695 x->bitfield.instance = InstanceNone;
1696 }
1697
1698 static INLINE int
1699 operand_type_equal (const union i386_operand_type *x,
1700 const union i386_operand_type *y)
1701 {
1702 switch (ARRAY_SIZE(x->array))
1703 {
1704 case 3:
1705 if (x->array[2] != y->array[2])
1706 return 0;
1707 /* Fall through. */
1708 case 2:
1709 if (x->array[1] != y->array[1])
1710 return 0;
1711 /* Fall through. */
1712 case 1:
1713 return x->array[0] == y->array[0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 }
1719
1720 static INLINE int
1721 cpu_flags_all_zero (const union i386_cpu_flags *x)
1722 {
1723 switch (ARRAY_SIZE(x->array))
1724 {
1725 case 4:
1726 if (x->array[3])
1727 return 0;
1728 /* Fall through. */
1729 case 3:
1730 if (x->array[2])
1731 return 0;
1732 /* Fall through. */
1733 case 2:
1734 if (x->array[1])
1735 return 0;
1736 /* Fall through. */
1737 case 1:
1738 return !x->array[0];
1739 default:
1740 abort ();
1741 }
1742 }
1743
1744 static INLINE int
1745 cpu_flags_equal (const union i386_cpu_flags *x,
1746 const union i386_cpu_flags *y)
1747 {
1748 switch (ARRAY_SIZE(x->array))
1749 {
1750 case 4:
1751 if (x->array[3] != y->array[3])
1752 return 0;
1753 /* Fall through. */
1754 case 3:
1755 if (x->array[2] != y->array[2])
1756 return 0;
1757 /* Fall through. */
1758 case 2:
1759 if (x->array[1] != y->array[1])
1760 return 0;
1761 /* Fall through. */
1762 case 1:
1763 return x->array[0] == y->array[0];
1764 break;
1765 default:
1766 abort ();
1767 }
1768 }
1769
1770 static INLINE int
1771 cpu_flags_check_cpu64 (i386_cpu_flags f)
1772 {
1773 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1774 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1775 }
1776
1777 static INLINE i386_cpu_flags
1778 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1779 {
1780 switch (ARRAY_SIZE (x.array))
1781 {
1782 case 4:
1783 x.array [3] &= y.array [3];
1784 /* Fall through. */
1785 case 3:
1786 x.array [2] &= y.array [2];
1787 /* Fall through. */
1788 case 2:
1789 x.array [1] &= y.array [1];
1790 /* Fall through. */
1791 case 1:
1792 x.array [0] &= y.array [0];
1793 break;
1794 default:
1795 abort ();
1796 }
1797 return x;
1798 }
1799
1800 static INLINE i386_cpu_flags
1801 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1802 {
1803 switch (ARRAY_SIZE (x.array))
1804 {
1805 case 4:
1806 x.array [3] |= y.array [3];
1807 /* Fall through. */
1808 case 3:
1809 x.array [2] |= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] |= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] |= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_cpu_flags
1824 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 4:
1829 x.array [3] &= ~y.array [3];
1830 /* Fall through. */
1831 case 3:
1832 x.array [2] &= ~y.array [2];
1833 /* Fall through. */
1834 case 2:
1835 x.array [1] &= ~y.array [1];
1836 /* Fall through. */
1837 case 1:
1838 x.array [0] &= ~y.array [0];
1839 break;
1840 default:
1841 abort ();
1842 }
1843 return x;
1844 }
1845
1846 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1847
1848 #define CPU_FLAGS_ARCH_MATCH 0x1
1849 #define CPU_FLAGS_64BIT_MATCH 0x2
1850
1851 #define CPU_FLAGS_PERFECT_MATCH \
1852 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1853
1854 /* Return CPU flags match bits. */
1855
1856 static int
1857 cpu_flags_match (const insn_template *t)
1858 {
1859 i386_cpu_flags x = t->cpu_flags;
1860 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1861
1862 x.bitfield.cpu64 = 0;
1863 x.bitfield.cpuno64 = 0;
1864
1865 if (cpu_flags_all_zero (&x))
1866 {
1867 /* This instruction is available on all archs. */
1868 match |= CPU_FLAGS_ARCH_MATCH;
1869 }
1870 else
1871 {
1872 /* This instruction is available only on some archs. */
1873 i386_cpu_flags cpu = cpu_arch_flags;
1874
1875 /* AVX512VL is no standalone feature - match it and then strip it. */
1876 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1877 return match;
1878 x.bitfield.cpuavx512vl = 0;
1879
1880 cpu = cpu_flags_and (x, cpu);
1881 if (!cpu_flags_all_zero (&cpu))
1882 {
1883 if (x.bitfield.cpuavx)
1884 {
1885 /* We need to check a few extra flags with AVX. */
1886 if (cpu.bitfield.cpuavx
1887 && (!t->opcode_modifier.sse2avx || sse2avx)
1888 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1889 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1890 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1891 match |= CPU_FLAGS_ARCH_MATCH;
1892 }
1893 else if (x.bitfield.cpuavx512f)
1894 {
1895 /* We need to check a few extra flags with AVX512F. */
1896 if (cpu.bitfield.cpuavx512f
1897 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1898 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1899 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1900 match |= CPU_FLAGS_ARCH_MATCH;
1901 }
1902 else
1903 match |= CPU_FLAGS_ARCH_MATCH;
1904 }
1905 }
1906 return match;
1907 }
1908
1909 static INLINE i386_operand_type
1910 operand_type_and (i386_operand_type x, i386_operand_type y)
1911 {
1912 if (x.bitfield.class != y.bitfield.class)
1913 x.bitfield.class = ClassNone;
1914 if (x.bitfield.instance != y.bitfield.instance)
1915 x.bitfield.instance = InstanceNone;
1916
1917 switch (ARRAY_SIZE (x.array))
1918 {
1919 case 3:
1920 x.array [2] &= y.array [2];
1921 /* Fall through. */
1922 case 2:
1923 x.array [1] &= y.array [1];
1924 /* Fall through. */
1925 case 1:
1926 x.array [0] &= y.array [0];
1927 break;
1928 default:
1929 abort ();
1930 }
1931 return x;
1932 }
1933
1934 static INLINE i386_operand_type
1935 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1936 {
1937 gas_assert (y.bitfield.class == ClassNone);
1938 gas_assert (y.bitfield.instance == InstanceNone);
1939
1940 switch (ARRAY_SIZE (x.array))
1941 {
1942 case 3:
1943 x.array [2] &= ~y.array [2];
1944 /* Fall through. */
1945 case 2:
1946 x.array [1] &= ~y.array [1];
1947 /* Fall through. */
1948 case 1:
1949 x.array [0] &= ~y.array [0];
1950 break;
1951 default:
1952 abort ();
1953 }
1954 return x;
1955 }
1956
1957 static INLINE i386_operand_type
1958 operand_type_or (i386_operand_type x, i386_operand_type y)
1959 {
1960 gas_assert (x.bitfield.class == ClassNone ||
1961 y.bitfield.class == ClassNone ||
1962 x.bitfield.class == y.bitfield.class);
1963 gas_assert (x.bitfield.instance == InstanceNone ||
1964 y.bitfield.instance == InstanceNone ||
1965 x.bitfield.instance == y.bitfield.instance);
1966
1967 switch (ARRAY_SIZE (x.array))
1968 {
1969 case 3:
1970 x.array [2] |= y.array [2];
1971 /* Fall through. */
1972 case 2:
1973 x.array [1] |= y.array [1];
1974 /* Fall through. */
1975 case 1:
1976 x.array [0] |= y.array [0];
1977 break;
1978 default:
1979 abort ();
1980 }
1981 return x;
1982 }
1983
1984 static INLINE i386_operand_type
1985 operand_type_xor (i386_operand_type x, i386_operand_type y)
1986 {
1987 gas_assert (y.bitfield.class == ClassNone);
1988 gas_assert (y.bitfield.instance == InstanceNone);
1989
1990 switch (ARRAY_SIZE (x.array))
1991 {
1992 case 3:
1993 x.array [2] ^= y.array [2];
1994 /* Fall through. */
1995 case 2:
1996 x.array [1] ^= y.array [1];
1997 /* Fall through. */
1998 case 1:
1999 x.array [0] ^= y.array [0];
2000 break;
2001 default:
2002 abort ();
2003 }
2004 return x;
2005 }
2006
2007 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2008 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2009 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2010 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2011 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2012 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2013 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2014 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2015 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2016 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2017 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2018 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2019 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2020 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2021 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2022 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2023 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2024
2025 enum operand_type
2026 {
2027 reg,
2028 imm,
2029 disp,
2030 anymem
2031 };
2032
2033 static INLINE int
2034 operand_type_check (i386_operand_type t, enum operand_type c)
2035 {
2036 switch (c)
2037 {
2038 case reg:
2039 return t.bitfield.class == Reg;
2040
2041 case imm:
2042 return (t.bitfield.imm8
2043 || t.bitfield.imm8s
2044 || t.bitfield.imm16
2045 || t.bitfield.imm32
2046 || t.bitfield.imm32s
2047 || t.bitfield.imm64);
2048
2049 case disp:
2050 return (t.bitfield.disp8
2051 || t.bitfield.disp16
2052 || t.bitfield.disp32
2053 || t.bitfield.disp32s
2054 || t.bitfield.disp64);
2055
2056 case anymem:
2057 return (t.bitfield.disp8
2058 || t.bitfield.disp16
2059 || t.bitfield.disp32
2060 || t.bitfield.disp32s
2061 || t.bitfield.disp64
2062 || t.bitfield.baseindex);
2063
2064 default:
2065 abort ();
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2072 between operand GIVEN and opeand WANTED for instruction template T. */
2073
2074 static INLINE int
2075 match_operand_size (const insn_template *t, unsigned int wanted,
2076 unsigned int given)
2077 {
2078 return !((i.types[given].bitfield.byte
2079 && !t->operand_types[wanted].bitfield.byte)
2080 || (i.types[given].bitfield.word
2081 && !t->operand_types[wanted].bitfield.word)
2082 || (i.types[given].bitfield.dword
2083 && !t->operand_types[wanted].bitfield.dword)
2084 || (i.types[given].bitfield.qword
2085 && !t->operand_types[wanted].bitfield.qword)
2086 || (i.types[given].bitfield.tbyte
2087 && !t->operand_types[wanted].bitfield.tbyte));
2088 }
2089
2090 /* Return 1 if there is no conflict in SIMD register between operand
2091 GIVEN and opeand WANTED for instruction template T. */
2092
2093 static INLINE int
2094 match_simd_size (const insn_template *t, unsigned int wanted,
2095 unsigned int given)
2096 {
2097 return !((i.types[given].bitfield.xmmword
2098 && !t->operand_types[wanted].bitfield.xmmword)
2099 || (i.types[given].bitfield.ymmword
2100 && !t->operand_types[wanted].bitfield.ymmword)
2101 || (i.types[given].bitfield.zmmword
2102 && !t->operand_types[wanted].bitfield.zmmword));
2103 }
2104
2105 /* Return 1 if there is no conflict in any size between operand GIVEN
2106 and opeand WANTED for instruction template T. */
2107
2108 static INLINE int
2109 match_mem_size (const insn_template *t, unsigned int wanted,
2110 unsigned int given)
2111 {
2112 return (match_operand_size (t, wanted, given)
2113 && !((i.types[given].bitfield.unspecified
2114 && !i.broadcast
2115 && !t->operand_types[wanted].bitfield.unspecified)
2116 || (i.types[given].bitfield.fword
2117 && !t->operand_types[wanted].bitfield.fword)
2118 /* For scalar opcode templates to allow register and memory
2119 operands at the same time, some special casing is needed
2120 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2121 down-conversion vpmov*. */
2122 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2123 && !t->opcode_modifier.broadcast
2124 && (t->operand_types[wanted].bitfield.byte
2125 || t->operand_types[wanted].bitfield.word
2126 || t->operand_types[wanted].bitfield.dword
2127 || t->operand_types[wanted].bitfield.qword))
2128 ? (i.types[given].bitfield.xmmword
2129 || i.types[given].bitfield.ymmword
2130 || i.types[given].bitfield.zmmword)
2131 : !match_simd_size(t, wanted, given))));
2132 }
2133
2134 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2135 operands for instruction template T, and it has MATCH_REVERSE set if there
2136 is no size conflict on any operands for the template with operands reversed
2137 (and the template allows for reversing in the first place). */
2138
2139 #define MATCH_STRAIGHT 1
2140 #define MATCH_REVERSE 2
2141
2142 static INLINE unsigned int
2143 operand_size_match (const insn_template *t)
2144 {
2145 unsigned int j, match = MATCH_STRAIGHT;
2146
2147 /* Don't check non-absolute jump instructions. */
2148 if (t->opcode_modifier.jump
2149 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2150 return match;
2151
2152 /* Check memory and accumulator operand size. */
2153 for (j = 0; j < i.operands; j++)
2154 {
2155 if (i.types[j].bitfield.class != Reg
2156 && i.types[j].bitfield.class != RegSIMD
2157 && t->opcode_modifier.anysize)
2158 continue;
2159
2160 if (t->operand_types[j].bitfield.class == Reg
2161 && !match_operand_size (t, j, j))
2162 {
2163 match = 0;
2164 break;
2165 }
2166
2167 if (t->operand_types[j].bitfield.class == RegSIMD
2168 && !match_simd_size (t, j, j))
2169 {
2170 match = 0;
2171 break;
2172 }
2173
2174 if (t->operand_types[j].bitfield.instance == Accum
2175 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2176 {
2177 match = 0;
2178 break;
2179 }
2180
2181 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2182 {
2183 match = 0;
2184 break;
2185 }
2186 }
2187
2188 if (!t->opcode_modifier.d)
2189 {
2190 mismatch:
2191 if (!match)
2192 i.error = operand_size_mismatch;
2193 return match;
2194 }
2195
2196 /* Check reverse. */
2197 gas_assert (i.operands >= 2 && i.operands <= 3);
2198
2199 for (j = 0; j < i.operands; j++)
2200 {
2201 unsigned int given = i.operands - j - 1;
2202
2203 if (t->operand_types[j].bitfield.class == Reg
2204 && !match_operand_size (t, j, given))
2205 goto mismatch;
2206
2207 if (t->operand_types[j].bitfield.class == RegSIMD
2208 && !match_simd_size (t, j, given))
2209 goto mismatch;
2210
2211 if (t->operand_types[j].bitfield.instance == Accum
2212 && (!match_operand_size (t, j, given)
2213 || !match_simd_size (t, j, given)))
2214 goto mismatch;
2215
2216 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2217 goto mismatch;
2218 }
2219
2220 return match | MATCH_REVERSE;
2221 }
2222
2223 static INLINE int
2224 operand_type_match (i386_operand_type overlap,
2225 i386_operand_type given)
2226 {
2227 i386_operand_type temp = overlap;
2228
2229 temp.bitfield.unspecified = 0;
2230 temp.bitfield.byte = 0;
2231 temp.bitfield.word = 0;
2232 temp.bitfield.dword = 0;
2233 temp.bitfield.fword = 0;
2234 temp.bitfield.qword = 0;
2235 temp.bitfield.tbyte = 0;
2236 temp.bitfield.xmmword = 0;
2237 temp.bitfield.ymmword = 0;
2238 temp.bitfield.zmmword = 0;
2239 if (operand_type_all_zero (&temp))
2240 goto mismatch;
2241
2242 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2243 return 1;
2244
2245 mismatch:
2246 i.error = operand_type_mismatch;
2247 return 0;
2248 }
2249
2250 /* If given types g0 and g1 are registers they must be of the same type
2251 unless the expected operand type register overlap is null.
2252 Some Intel syntax memory operand size checking also happens here. */
2253
2254 static INLINE int
2255 operand_type_register_match (i386_operand_type g0,
2256 i386_operand_type t0,
2257 i386_operand_type g1,
2258 i386_operand_type t1)
2259 {
2260 if (g0.bitfield.class != Reg
2261 && g0.bitfield.class != RegSIMD
2262 && (!operand_type_check (g0, anymem)
2263 || g0.bitfield.unspecified
2264 || (t0.bitfield.class != Reg
2265 && t0.bitfield.class != RegSIMD)))
2266 return 1;
2267
2268 if (g1.bitfield.class != Reg
2269 && g1.bitfield.class != RegSIMD
2270 && (!operand_type_check (g1, anymem)
2271 || g1.bitfield.unspecified
2272 || (t1.bitfield.class != Reg
2273 && t1.bitfield.class != RegSIMD)))
2274 return 1;
2275
2276 if (g0.bitfield.byte == g1.bitfield.byte
2277 && g0.bitfield.word == g1.bitfield.word
2278 && g0.bitfield.dword == g1.bitfield.dword
2279 && g0.bitfield.qword == g1.bitfield.qword
2280 && g0.bitfield.xmmword == g1.bitfield.xmmword
2281 && g0.bitfield.ymmword == g1.bitfield.ymmword
2282 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2283 return 1;
2284
2285 if (!(t0.bitfield.byte & t1.bitfield.byte)
2286 && !(t0.bitfield.word & t1.bitfield.word)
2287 && !(t0.bitfield.dword & t1.bitfield.dword)
2288 && !(t0.bitfield.qword & t1.bitfield.qword)
2289 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2290 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2291 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2292 return 1;
2293
2294 i.error = register_type_mismatch;
2295
2296 return 0;
2297 }
2298
2299 static INLINE unsigned int
2300 register_number (const reg_entry *r)
2301 {
2302 unsigned int nr = r->reg_num;
2303
2304 if (r->reg_flags & RegRex)
2305 nr += 8;
2306
2307 if (r->reg_flags & RegVRex)
2308 nr += 16;
2309
2310 return nr;
2311 }
2312
2313 static INLINE unsigned int
2314 mode_from_disp_size (i386_operand_type t)
2315 {
2316 if (t.bitfield.disp8)
2317 return 1;
2318 else if (t.bitfield.disp16
2319 || t.bitfield.disp32
2320 || t.bitfield.disp32s)
2321 return 2;
2322 else
2323 return 0;
2324 }
2325
2326 static INLINE int
2327 fits_in_signed_byte (addressT num)
2328 {
2329 return num + 0x80 <= 0xff;
2330 }
2331
2332 static INLINE int
2333 fits_in_unsigned_byte (addressT num)
2334 {
2335 return num <= 0xff;
2336 }
2337
2338 static INLINE int
2339 fits_in_unsigned_word (addressT num)
2340 {
2341 return num <= 0xffff;
2342 }
2343
2344 static INLINE int
2345 fits_in_signed_word (addressT num)
2346 {
2347 return num + 0x8000 <= 0xffff;
2348 }
2349
2350 static INLINE int
2351 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2352 {
2353 #ifndef BFD64
2354 return 1;
2355 #else
2356 return num + 0x80000000 <= 0xffffffff;
2357 #endif
2358 } /* fits_in_signed_long() */
2359
2360 static INLINE int
2361 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2362 {
2363 #ifndef BFD64
2364 return 1;
2365 #else
2366 return num <= 0xffffffff;
2367 #endif
2368 } /* fits_in_unsigned_long() */
2369
2370 static INLINE int
2371 fits_in_disp8 (offsetT num)
2372 {
2373 int shift = i.memshift;
2374 unsigned int mask;
2375
2376 if (shift == -1)
2377 abort ();
2378
2379 mask = (1 << shift) - 1;
2380
2381 /* Return 0 if NUM isn't properly aligned. */
2382 if ((num & mask))
2383 return 0;
2384
2385 /* Check if NUM will fit in 8bit after shift. */
2386 return fits_in_signed_byte (num >> shift);
2387 }
2388
2389 static INLINE int
2390 fits_in_imm4 (offsetT num)
2391 {
2392 return (num & 0xf) == num;
2393 }
2394
2395 static i386_operand_type
2396 smallest_imm_type (offsetT num)
2397 {
2398 i386_operand_type t;
2399
2400 operand_type_set (&t, 0);
2401 t.bitfield.imm64 = 1;
2402
2403 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2404 {
2405 /* This code is disabled on the 486 because all the Imm1 forms
2406 in the opcode table are slower on the i486. They're the
2407 versions with the implicitly specified single-position
2408 displacement, which has another syntax if you really want to
2409 use that form. */
2410 t.bitfield.imm1 = 1;
2411 t.bitfield.imm8 = 1;
2412 t.bitfield.imm8s = 1;
2413 t.bitfield.imm16 = 1;
2414 t.bitfield.imm32 = 1;
2415 t.bitfield.imm32s = 1;
2416 }
2417 else if (fits_in_signed_byte (num))
2418 {
2419 t.bitfield.imm8 = 1;
2420 t.bitfield.imm8s = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_unsigned_byte (num))
2426 {
2427 t.bitfield.imm8 = 1;
2428 t.bitfield.imm16 = 1;
2429 t.bitfield.imm32 = 1;
2430 t.bitfield.imm32s = 1;
2431 }
2432 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2433 {
2434 t.bitfield.imm16 = 1;
2435 t.bitfield.imm32 = 1;
2436 t.bitfield.imm32s = 1;
2437 }
2438 else if (fits_in_signed_long (num))
2439 {
2440 t.bitfield.imm32 = 1;
2441 t.bitfield.imm32s = 1;
2442 }
2443 else if (fits_in_unsigned_long (num))
2444 t.bitfield.imm32 = 1;
2445
2446 return t;
2447 }
2448
2449 static offsetT
2450 offset_in_range (offsetT val, int size)
2451 {
2452 addressT mask;
2453
2454 switch (size)
2455 {
2456 case 1: mask = ((addressT) 1 << 8) - 1; break;
2457 case 2: mask = ((addressT) 1 << 16) - 1; break;
2458 case 4: mask = ((addressT) 2 << 31) - 1; break;
2459 #ifdef BFD64
2460 case 8: mask = ((addressT) 2 << 63) - 1; break;
2461 #endif
2462 default: abort ();
2463 }
2464
2465 #ifdef BFD64
2466 /* If BFD64, sign extend val for 32bit address mode. */
2467 if (flag_code != CODE_64BIT
2468 || i.prefix[ADDR_PREFIX])
2469 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2470 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2471 #endif
2472
2473 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2474 {
2475 char buf1[40], buf2[40];
2476
2477 sprint_value (buf1, val);
2478 sprint_value (buf2, val & mask);
2479 as_warn (_("%s shortened to %s"), buf1, buf2);
2480 }
2481 return val & mask;
2482 }
2483
2484 enum PREFIX_GROUP
2485 {
2486 PREFIX_EXIST = 0,
2487 PREFIX_LOCK,
2488 PREFIX_REP,
2489 PREFIX_DS,
2490 PREFIX_OTHER
2491 };
2492
2493 /* Returns
2494 a. PREFIX_EXIST if attempting to add a prefix where one from the
2495 same class already exists.
2496 b. PREFIX_LOCK if lock prefix is added.
2497 c. PREFIX_REP if rep/repne prefix is added.
2498 d. PREFIX_DS if ds prefix is added.
2499 e. PREFIX_OTHER if other prefix is added.
2500 */
2501
2502 static enum PREFIX_GROUP
2503 add_prefix (unsigned int prefix)
2504 {
2505 enum PREFIX_GROUP ret = PREFIX_OTHER;
2506 unsigned int q;
2507
2508 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2509 && flag_code == CODE_64BIT)
2510 {
2511 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2512 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2513 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2514 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2515 ret = PREFIX_EXIST;
2516 q = REX_PREFIX;
2517 }
2518 else
2519 {
2520 switch (prefix)
2521 {
2522 default:
2523 abort ();
2524
2525 case DS_PREFIX_OPCODE:
2526 ret = PREFIX_DS;
2527 /* Fall through. */
2528 case CS_PREFIX_OPCODE:
2529 case ES_PREFIX_OPCODE:
2530 case FS_PREFIX_OPCODE:
2531 case GS_PREFIX_OPCODE:
2532 case SS_PREFIX_OPCODE:
2533 q = SEG_PREFIX;
2534 break;
2535
2536 case REPNE_PREFIX_OPCODE:
2537 case REPE_PREFIX_OPCODE:
2538 q = REP_PREFIX;
2539 ret = PREFIX_REP;
2540 break;
2541
2542 case LOCK_PREFIX_OPCODE:
2543 q = LOCK_PREFIX;
2544 ret = PREFIX_LOCK;
2545 break;
2546
2547 case FWAIT_OPCODE:
2548 q = WAIT_PREFIX;
2549 break;
2550
2551 case ADDR_PREFIX_OPCODE:
2552 q = ADDR_PREFIX;
2553 break;
2554
2555 case DATA_PREFIX_OPCODE:
2556 q = DATA_PREFIX;
2557 break;
2558 }
2559 if (i.prefix[q] != 0)
2560 ret = PREFIX_EXIST;
2561 }
2562
2563 if (ret)
2564 {
2565 if (!i.prefix[q])
2566 ++i.prefixes;
2567 i.prefix[q] |= prefix;
2568 }
2569 else
2570 as_bad (_("same type of prefix used twice"));
2571
2572 return ret;
2573 }
2574
2575 static void
2576 update_code_flag (int value, int check)
2577 {
2578 PRINTF_LIKE ((*as_error));
2579
2580 flag_code = (enum flag_code) value;
2581 if (flag_code == CODE_64BIT)
2582 {
2583 cpu_arch_flags.bitfield.cpu64 = 1;
2584 cpu_arch_flags.bitfield.cpuno64 = 0;
2585 }
2586 else
2587 {
2588 cpu_arch_flags.bitfield.cpu64 = 0;
2589 cpu_arch_flags.bitfield.cpuno64 = 1;
2590 }
2591 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2592 {
2593 if (check)
2594 as_error = as_fatal;
2595 else
2596 as_error = as_bad;
2597 (*as_error) (_("64bit mode not supported on `%s'."),
2598 cpu_arch_name ? cpu_arch_name : default_arch);
2599 }
2600 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2601 {
2602 if (check)
2603 as_error = as_fatal;
2604 else
2605 as_error = as_bad;
2606 (*as_error) (_("32bit mode not supported on `%s'."),
2607 cpu_arch_name ? cpu_arch_name : default_arch);
2608 }
2609 stackop_size = '\0';
2610 }
2611
2612 static void
2613 set_code_flag (int value)
2614 {
2615 update_code_flag (value, 0);
2616 }
2617
2618 static void
2619 set_16bit_gcc_code_flag (int new_code_flag)
2620 {
2621 flag_code = (enum flag_code) new_code_flag;
2622 if (flag_code != CODE_16BIT)
2623 abort ();
2624 cpu_arch_flags.bitfield.cpu64 = 0;
2625 cpu_arch_flags.bitfield.cpuno64 = 1;
2626 stackop_size = LONG_MNEM_SUFFIX;
2627 }
2628
2629 static void
2630 set_intel_syntax (int syntax_flag)
2631 {
2632 /* Find out if register prefixing is specified. */
2633 int ask_naked_reg = 0;
2634
2635 SKIP_WHITESPACE ();
2636 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2637 {
2638 char *string;
2639 int e = get_symbol_name (&string);
2640
2641 if (strcmp (string, "prefix") == 0)
2642 ask_naked_reg = 1;
2643 else if (strcmp (string, "noprefix") == 0)
2644 ask_naked_reg = -1;
2645 else
2646 as_bad (_("bad argument to syntax directive."));
2647 (void) restore_line_pointer (e);
2648 }
2649 demand_empty_rest_of_line ();
2650
2651 intel_syntax = syntax_flag;
2652
2653 if (ask_naked_reg == 0)
2654 allow_naked_reg = (intel_syntax
2655 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2656 else
2657 allow_naked_reg = (ask_naked_reg < 0);
2658
2659 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2660
2661 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2662 identifier_chars['$'] = intel_syntax ? '$' : 0;
2663 register_prefix = allow_naked_reg ? "" : "%";
2664 }
2665
2666 static void
2667 set_intel_mnemonic (int mnemonic_flag)
2668 {
2669 intel_mnemonic = mnemonic_flag;
2670 }
2671
2672 static void
2673 set_allow_index_reg (int flag)
2674 {
2675 allow_index_reg = flag;
2676 }
2677
2678 static void
2679 set_check (int what)
2680 {
2681 enum check_kind *kind;
2682 const char *str;
2683
2684 if (what)
2685 {
2686 kind = &operand_check;
2687 str = "operand";
2688 }
2689 else
2690 {
2691 kind = &sse_check;
2692 str = "sse";
2693 }
2694
2695 SKIP_WHITESPACE ();
2696
2697 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2698 {
2699 char *string;
2700 int e = get_symbol_name (&string);
2701
2702 if (strcmp (string, "none") == 0)
2703 *kind = check_none;
2704 else if (strcmp (string, "warning") == 0)
2705 *kind = check_warning;
2706 else if (strcmp (string, "error") == 0)
2707 *kind = check_error;
2708 else
2709 as_bad (_("bad argument to %s_check directive."), str);
2710 (void) restore_line_pointer (e);
2711 }
2712 else
2713 as_bad (_("missing argument for %s_check directive"), str);
2714
2715 demand_empty_rest_of_line ();
2716 }
2717
2718 static void
2719 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2720 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2721 {
2722 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2723 static const char *arch;
2724
2725 /* Intel LIOM is only supported on ELF. */
2726 if (!IS_ELF)
2727 return;
2728
2729 if (!arch)
2730 {
2731 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2732 use default_arch. */
2733 arch = cpu_arch_name;
2734 if (!arch)
2735 arch = default_arch;
2736 }
2737
2738 /* If we are targeting Intel MCU, we must enable it. */
2739 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2740 || new_flag.bitfield.cpuiamcu)
2741 return;
2742
2743 /* If we are targeting Intel L1OM, we must enable it. */
2744 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2745 || new_flag.bitfield.cpul1om)
2746 return;
2747
2748 /* If we are targeting Intel K1OM, we must enable it. */
2749 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2750 || new_flag.bitfield.cpuk1om)
2751 return;
2752
2753 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2754 #endif
2755 }
2756
2757 static void
2758 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2759 {
2760 SKIP_WHITESPACE ();
2761
2762 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2763 {
2764 char *string;
2765 int e = get_symbol_name (&string);
2766 unsigned int j;
2767 i386_cpu_flags flags;
2768
2769 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2770 {
2771 if (strcmp (string, cpu_arch[j].name) == 0)
2772 {
2773 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2774
2775 if (*string != '.')
2776 {
2777 cpu_arch_name = cpu_arch[j].name;
2778 cpu_sub_arch_name = NULL;
2779 cpu_arch_flags = cpu_arch[j].flags;
2780 if (flag_code == CODE_64BIT)
2781 {
2782 cpu_arch_flags.bitfield.cpu64 = 1;
2783 cpu_arch_flags.bitfield.cpuno64 = 0;
2784 }
2785 else
2786 {
2787 cpu_arch_flags.bitfield.cpu64 = 0;
2788 cpu_arch_flags.bitfield.cpuno64 = 1;
2789 }
2790 cpu_arch_isa = cpu_arch[j].type;
2791 cpu_arch_isa_flags = cpu_arch[j].flags;
2792 if (!cpu_arch_tune_set)
2793 {
2794 cpu_arch_tune = cpu_arch_isa;
2795 cpu_arch_tune_flags = cpu_arch_isa_flags;
2796 }
2797 break;
2798 }
2799
2800 flags = cpu_flags_or (cpu_arch_flags,
2801 cpu_arch[j].flags);
2802
2803 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2804 {
2805 if (cpu_sub_arch_name)
2806 {
2807 char *name = cpu_sub_arch_name;
2808 cpu_sub_arch_name = concat (name,
2809 cpu_arch[j].name,
2810 (const char *) NULL);
2811 free (name);
2812 }
2813 else
2814 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2815 cpu_arch_flags = flags;
2816 cpu_arch_isa_flags = flags;
2817 }
2818 else
2819 cpu_arch_isa_flags
2820 = cpu_flags_or (cpu_arch_isa_flags,
2821 cpu_arch[j].flags);
2822 (void) restore_line_pointer (e);
2823 demand_empty_rest_of_line ();
2824 return;
2825 }
2826 }
2827
2828 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2829 {
2830 /* Disable an ISA extension. */
2831 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2832 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2833 {
2834 flags = cpu_flags_and_not (cpu_arch_flags,
2835 cpu_noarch[j].flags);
2836 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2837 {
2838 if (cpu_sub_arch_name)
2839 {
2840 char *name = cpu_sub_arch_name;
2841 cpu_sub_arch_name = concat (name, string,
2842 (const char *) NULL);
2843 free (name);
2844 }
2845 else
2846 cpu_sub_arch_name = xstrdup (string);
2847 cpu_arch_flags = flags;
2848 cpu_arch_isa_flags = flags;
2849 }
2850 (void) restore_line_pointer (e);
2851 demand_empty_rest_of_line ();
2852 return;
2853 }
2854
2855 j = ARRAY_SIZE (cpu_arch);
2856 }
2857
2858 if (j >= ARRAY_SIZE (cpu_arch))
2859 as_bad (_("no such architecture: `%s'"), string);
2860
2861 *input_line_pointer = e;
2862 }
2863 else
2864 as_bad (_("missing cpu architecture"));
2865
2866 no_cond_jump_promotion = 0;
2867 if (*input_line_pointer == ','
2868 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2869 {
2870 char *string;
2871 char e;
2872
2873 ++input_line_pointer;
2874 e = get_symbol_name (&string);
2875
2876 if (strcmp (string, "nojumps") == 0)
2877 no_cond_jump_promotion = 1;
2878 else if (strcmp (string, "jumps") == 0)
2879 ;
2880 else
2881 as_bad (_("no such architecture modifier: `%s'"), string);
2882
2883 (void) restore_line_pointer (e);
2884 }
2885
2886 demand_empty_rest_of_line ();
2887 }
2888
2889 enum bfd_architecture
2890 i386_arch (void)
2891 {
2892 if (cpu_arch_isa == PROCESSOR_L1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel L1OM is 64bit ELF only"));
2897 return bfd_arch_l1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_K1OM)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code != CODE_64BIT)
2903 as_fatal (_("Intel K1OM is 64bit ELF only"));
2904 return bfd_arch_k1om;
2905 }
2906 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2907 {
2908 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2909 || flag_code == CODE_64BIT)
2910 as_fatal (_("Intel MCU is 32bit ELF only"));
2911 return bfd_arch_iamcu;
2912 }
2913 else
2914 return bfd_arch_i386;
2915 }
2916
2917 unsigned long
2918 i386_mach (void)
2919 {
2920 if (!strncmp (default_arch, "x86_64", 6))
2921 {
2922 if (cpu_arch_isa == PROCESSOR_L1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel L1OM is 64bit ELF only"));
2927 return bfd_mach_l1om;
2928 }
2929 else if (cpu_arch_isa == PROCESSOR_K1OM)
2930 {
2931 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2932 || default_arch[6] != '\0')
2933 as_fatal (_("Intel K1OM is 64bit ELF only"));
2934 return bfd_mach_k1om;
2935 }
2936 else if (default_arch[6] == '\0')
2937 return bfd_mach_x86_64;
2938 else
2939 return bfd_mach_x64_32;
2940 }
2941 else if (!strcmp (default_arch, "i386")
2942 || !strcmp (default_arch, "iamcu"))
2943 {
2944 if (cpu_arch_isa == PROCESSOR_IAMCU)
2945 {
2946 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2947 as_fatal (_("Intel MCU is 32bit ELF only"));
2948 return bfd_mach_i386_iamcu;
2949 }
2950 else
2951 return bfd_mach_i386_i386;
2952 }
2953 else
2954 as_fatal (_("unknown architecture"));
2955 }
2956 \f
2957 void
2958 md_begin (void)
2959 {
2960 const char *hash_err;
2961
2962 /* Support pseudo prefixes like {disp32}. */
2963 lex_type ['{'] = LEX_BEGIN_NAME;
2964
2965 /* Initialize op_hash hash table. */
2966 op_hash = hash_new ();
2967
2968 {
2969 const insn_template *optab;
2970 templates *core_optab;
2971
2972 /* Setup for loop. */
2973 optab = i386_optab;
2974 core_optab = XNEW (templates);
2975 core_optab->start = optab;
2976
2977 while (1)
2978 {
2979 ++optab;
2980 if (optab->name == NULL
2981 || strcmp (optab->name, (optab - 1)->name) != 0)
2982 {
2983 /* different name --> ship out current template list;
2984 add to hash table; & begin anew. */
2985 core_optab->end = optab;
2986 hash_err = hash_insert (op_hash,
2987 (optab - 1)->name,
2988 (void *) core_optab);
2989 if (hash_err)
2990 {
2991 as_fatal (_("can't hash %s: %s"),
2992 (optab - 1)->name,
2993 hash_err);
2994 }
2995 if (optab->name == NULL)
2996 break;
2997 core_optab = XNEW (templates);
2998 core_optab->start = optab;
2999 }
3000 }
3001 }
3002
3003 /* Initialize reg_hash hash table. */
3004 reg_hash = hash_new ();
3005 {
3006 const reg_entry *regtab;
3007 unsigned int regtab_size = i386_regtab_size;
3008
3009 for (regtab = i386_regtab; regtab_size--; regtab++)
3010 {
3011 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3012 if (hash_err)
3013 as_fatal (_("can't hash %s: %s"),
3014 regtab->reg_name,
3015 hash_err);
3016 }
3017 }
3018
3019 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3020 {
3021 int c;
3022 char *p;
3023
3024 for (c = 0; c < 256; c++)
3025 {
3026 if (ISDIGIT (c))
3027 {
3028 digit_chars[c] = c;
3029 mnemonic_chars[c] = c;
3030 register_chars[c] = c;
3031 operand_chars[c] = c;
3032 }
3033 else if (ISLOWER (c))
3034 {
3035 mnemonic_chars[c] = c;
3036 register_chars[c] = c;
3037 operand_chars[c] = c;
3038 }
3039 else if (ISUPPER (c))
3040 {
3041 mnemonic_chars[c] = TOLOWER (c);
3042 register_chars[c] = mnemonic_chars[c];
3043 operand_chars[c] = c;
3044 }
3045 else if (c == '{' || c == '}')
3046 {
3047 mnemonic_chars[c] = c;
3048 operand_chars[c] = c;
3049 }
3050
3051 if (ISALPHA (c) || ISDIGIT (c))
3052 identifier_chars[c] = c;
3053 else if (c >= 128)
3054 {
3055 identifier_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3058 }
3059
3060 #ifdef LEX_AT
3061 identifier_chars['@'] = '@';
3062 #endif
3063 #ifdef LEX_QM
3064 identifier_chars['?'] = '?';
3065 operand_chars['?'] = '?';
3066 #endif
3067 digit_chars['-'] = '-';
3068 mnemonic_chars['_'] = '_';
3069 mnemonic_chars['-'] = '-';
3070 mnemonic_chars['.'] = '.';
3071 identifier_chars['_'] = '_';
3072 identifier_chars['.'] = '.';
3073
3074 for (p = operand_special_chars; *p != '\0'; p++)
3075 operand_chars[(unsigned char) *p] = *p;
3076 }
3077
3078 if (flag_code == CODE_64BIT)
3079 {
3080 #if defined (OBJ_COFF) && defined (TE_PE)
3081 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3082 ? 32 : 16);
3083 #else
3084 x86_dwarf2_return_column = 16;
3085 #endif
3086 x86_cie_data_alignment = -8;
3087 }
3088 else
3089 {
3090 x86_dwarf2_return_column = 8;
3091 x86_cie_data_alignment = -4;
3092 }
3093
3094 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3095 can be turned into BRANCH_PREFIX frag. */
3096 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3097 abort ();
3098 }
3099
3100 void
3101 i386_print_statistics (FILE *file)
3102 {
3103 hash_print_statistics (file, "i386 opcode", op_hash);
3104 hash_print_statistics (file, "i386 register", reg_hash);
3105 }
3106 \f
3107 #ifdef DEBUG386
3108
3109 /* Debugging routines for md_assemble. */
3110 static void pte (insn_template *);
3111 static void pt (i386_operand_type);
3112 static void pe (expressionS *);
3113 static void ps (symbolS *);
3114
3115 static void
3116 pi (const char *line, i386_insn *x)
3117 {
3118 unsigned int j;
3119
3120 fprintf (stdout, "%s: template ", line);
3121 pte (&x->tm);
3122 fprintf (stdout, " address: base %s index %s scale %x\n",
3123 x->base_reg ? x->base_reg->reg_name : "none",
3124 x->index_reg ? x->index_reg->reg_name : "none",
3125 x->log2_scale_factor);
3126 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3127 x->rm.mode, x->rm.reg, x->rm.regmem);
3128 fprintf (stdout, " sib: base %x index %x scale %x\n",
3129 x->sib.base, x->sib.index, x->sib.scale);
3130 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3131 (x->rex & REX_W) != 0,
3132 (x->rex & REX_R) != 0,
3133 (x->rex & REX_X) != 0,
3134 (x->rex & REX_B) != 0);
3135 for (j = 0; j < x->operands; j++)
3136 {
3137 fprintf (stdout, " #%d: ", j + 1);
3138 pt (x->types[j]);
3139 fprintf (stdout, "\n");
3140 if (x->types[j].bitfield.class == Reg
3141 || x->types[j].bitfield.class == RegMMX
3142 || x->types[j].bitfield.class == RegSIMD
3143 || x->types[j].bitfield.class == SReg
3144 || x->types[j].bitfield.class == RegCR
3145 || x->types[j].bitfield.class == RegDR
3146 || x->types[j].bitfield.class == RegTR)
3147 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3148 if (operand_type_check (x->types[j], imm))
3149 pe (x->op[j].imms);
3150 if (operand_type_check (x->types[j], disp))
3151 pe (x->op[j].disps);
3152 }
3153 }
3154
3155 static void
3156 pte (insn_template *t)
3157 {
3158 unsigned int j;
3159 fprintf (stdout, " %d operands ", t->operands);
3160 fprintf (stdout, "opcode %x ", t->base_opcode);
3161 if (t->extension_opcode != None)
3162 fprintf (stdout, "ext %x ", t->extension_opcode);
3163 if (t->opcode_modifier.d)
3164 fprintf (stdout, "D");
3165 if (t->opcode_modifier.w)
3166 fprintf (stdout, "W");
3167 fprintf (stdout, "\n");
3168 for (j = 0; j < t->operands; j++)
3169 {
3170 fprintf (stdout, " #%d type ", j + 1);
3171 pt (t->operand_types[j]);
3172 fprintf (stdout, "\n");
3173 }
3174 }
3175
3176 static void
3177 pe (expressionS *e)
3178 {
3179 fprintf (stdout, " operation %d\n", e->X_op);
3180 fprintf (stdout, " add_number %ld (%lx)\n",
3181 (long) e->X_add_number, (long) e->X_add_number);
3182 if (e->X_add_symbol)
3183 {
3184 fprintf (stdout, " add_symbol ");
3185 ps (e->X_add_symbol);
3186 fprintf (stdout, "\n");
3187 }
3188 if (e->X_op_symbol)
3189 {
3190 fprintf (stdout, " op_symbol ");
3191 ps (e->X_op_symbol);
3192 fprintf (stdout, "\n");
3193 }
3194 }
3195
3196 static void
3197 ps (symbolS *s)
3198 {
3199 fprintf (stdout, "%s type %s%s",
3200 S_GET_NAME (s),
3201 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3202 segment_name (S_GET_SEGMENT (s)));
3203 }
3204
3205 static struct type_name
3206 {
3207 i386_operand_type mask;
3208 const char *name;
3209 }
3210 const type_names[] =
3211 {
3212 { OPERAND_TYPE_REG8, "r8" },
3213 { OPERAND_TYPE_REG16, "r16" },
3214 { OPERAND_TYPE_REG32, "r32" },
3215 { OPERAND_TYPE_REG64, "r64" },
3216 { OPERAND_TYPE_ACC8, "acc8" },
3217 { OPERAND_TYPE_ACC16, "acc16" },
3218 { OPERAND_TYPE_ACC32, "acc32" },
3219 { OPERAND_TYPE_ACC64, "acc64" },
3220 { OPERAND_TYPE_IMM8, "i8" },
3221 { OPERAND_TYPE_IMM8, "i8s" },
3222 { OPERAND_TYPE_IMM16, "i16" },
3223 { OPERAND_TYPE_IMM32, "i32" },
3224 { OPERAND_TYPE_IMM32S, "i32s" },
3225 { OPERAND_TYPE_IMM64, "i64" },
3226 { OPERAND_TYPE_IMM1, "i1" },
3227 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3228 { OPERAND_TYPE_DISP8, "d8" },
3229 { OPERAND_TYPE_DISP16, "d16" },
3230 { OPERAND_TYPE_DISP32, "d32" },
3231 { OPERAND_TYPE_DISP32S, "d32s" },
3232 { OPERAND_TYPE_DISP64, "d64" },
3233 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3234 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3235 { OPERAND_TYPE_CONTROL, "control reg" },
3236 { OPERAND_TYPE_TEST, "test reg" },
3237 { OPERAND_TYPE_DEBUG, "debug reg" },
3238 { OPERAND_TYPE_FLOATREG, "FReg" },
3239 { OPERAND_TYPE_FLOATACC, "FAcc" },
3240 { OPERAND_TYPE_SREG, "SReg" },
3241 { OPERAND_TYPE_REGMMX, "rMMX" },
3242 { OPERAND_TYPE_REGXMM, "rXMM" },
3243 { OPERAND_TYPE_REGYMM, "rYMM" },
3244 { OPERAND_TYPE_REGZMM, "rZMM" },
3245 { OPERAND_TYPE_REGMASK, "Mask reg" },
3246 };
3247
3248 static void
3249 pt (i386_operand_type t)
3250 {
3251 unsigned int j;
3252 i386_operand_type a;
3253
3254 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3255 {
3256 a = operand_type_and (t, type_names[j].mask);
3257 if (operand_type_equal (&a, &type_names[j].mask))
3258 fprintf (stdout, "%s, ", type_names[j].name);
3259 }
3260 fflush (stdout);
3261 }
3262
3263 #endif /* DEBUG386 */
3264 \f
3265 static bfd_reloc_code_real_type
3266 reloc (unsigned int size,
3267 int pcrel,
3268 int sign,
3269 bfd_reloc_code_real_type other)
3270 {
3271 if (other != NO_RELOC)
3272 {
3273 reloc_howto_type *rel;
3274
3275 if (size == 8)
3276 switch (other)
3277 {
3278 case BFD_RELOC_X86_64_GOT32:
3279 return BFD_RELOC_X86_64_GOT64;
3280 break;
3281 case BFD_RELOC_X86_64_GOTPLT64:
3282 return BFD_RELOC_X86_64_GOTPLT64;
3283 break;
3284 case BFD_RELOC_X86_64_PLTOFF64:
3285 return BFD_RELOC_X86_64_PLTOFF64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPC32:
3288 other = BFD_RELOC_X86_64_GOTPC64;
3289 break;
3290 case BFD_RELOC_X86_64_GOTPCREL:
3291 other = BFD_RELOC_X86_64_GOTPCREL64;
3292 break;
3293 case BFD_RELOC_X86_64_TPOFF32:
3294 other = BFD_RELOC_X86_64_TPOFF64;
3295 break;
3296 case BFD_RELOC_X86_64_DTPOFF32:
3297 other = BFD_RELOC_X86_64_DTPOFF64;
3298 break;
3299 default:
3300 break;
3301 }
3302
3303 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3304 if (other == BFD_RELOC_SIZE32)
3305 {
3306 if (size == 8)
3307 other = BFD_RELOC_SIZE64;
3308 if (pcrel)
3309 {
3310 as_bad (_("there are no pc-relative size relocations"));
3311 return NO_RELOC;
3312 }
3313 }
3314 #endif
3315
3316 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3317 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3318 sign = -1;
3319
3320 rel = bfd_reloc_type_lookup (stdoutput, other);
3321 if (!rel)
3322 as_bad (_("unknown relocation (%u)"), other);
3323 else if (size != bfd_get_reloc_size (rel))
3324 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3325 bfd_get_reloc_size (rel),
3326 size);
3327 else if (pcrel && !rel->pc_relative)
3328 as_bad (_("non-pc-relative relocation for pc-relative field"));
3329 else if ((rel->complain_on_overflow == complain_overflow_signed
3330 && !sign)
3331 || (rel->complain_on_overflow == complain_overflow_unsigned
3332 && sign > 0))
3333 as_bad (_("relocated field and relocation type differ in signedness"));
3334 else
3335 return other;
3336 return NO_RELOC;
3337 }
3338
3339 if (pcrel)
3340 {
3341 if (!sign)
3342 as_bad (_("there are no unsigned pc-relative relocations"));
3343 switch (size)
3344 {
3345 case 1: return BFD_RELOC_8_PCREL;
3346 case 2: return BFD_RELOC_16_PCREL;
3347 case 4: return BFD_RELOC_32_PCREL;
3348 case 8: return BFD_RELOC_64_PCREL;
3349 }
3350 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3351 }
3352 else
3353 {
3354 if (sign > 0)
3355 switch (size)
3356 {
3357 case 4: return BFD_RELOC_X86_64_32S;
3358 }
3359 else
3360 switch (size)
3361 {
3362 case 1: return BFD_RELOC_8;
3363 case 2: return BFD_RELOC_16;
3364 case 4: return BFD_RELOC_32;
3365 case 8: return BFD_RELOC_64;
3366 }
3367 as_bad (_("cannot do %s %u byte relocation"),
3368 sign > 0 ? "signed" : "unsigned", size);
3369 }
3370
3371 return NO_RELOC;
3372 }
3373
3374 /* Here we decide which fixups can be adjusted to make them relative to
3375 the beginning of the section instead of the symbol. Basically we need
3376 to make sure that the dynamic relocations are done correctly, so in
3377 some cases we force the original symbol to be used. */
3378
3379 int
3380 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3381 {
3382 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3383 if (!IS_ELF)
3384 return 1;
3385
3386 /* Don't adjust pc-relative references to merge sections in 64-bit
3387 mode. */
3388 if (use_rela_relocations
3389 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3390 && fixP->fx_pcrel)
3391 return 0;
3392
3393 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3394 and changed later by validate_fix. */
3395 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3396 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3397 return 0;
3398
3399 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3400 for size relocations. */
3401 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3402 || fixP->fx_r_type == BFD_RELOC_SIZE64
3403 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3404 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3405 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3413 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3414 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3415 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3427 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3428 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3429 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3430 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3431 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3432 return 0;
3433 #endif
3434 return 1;
3435 }
3436
3437 static int
3438 intel_float_operand (const char *mnemonic)
3439 {
3440 /* Note that the value returned is meaningful only for opcodes with (memory)
3441 operands, hence the code here is free to improperly handle opcodes that
3442 have no operands (for better performance and smaller code). */
3443
3444 if (mnemonic[0] != 'f')
3445 return 0; /* non-math */
3446
3447 switch (mnemonic[1])
3448 {
3449 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3450 the fs segment override prefix not currently handled because no
3451 call path can make opcodes without operands get here */
3452 case 'i':
3453 return 2 /* integer op */;
3454 case 'l':
3455 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3456 return 3; /* fldcw/fldenv */
3457 break;
3458 case 'n':
3459 if (mnemonic[2] != 'o' /* fnop */)
3460 return 3; /* non-waiting control op */
3461 break;
3462 case 'r':
3463 if (mnemonic[2] == 's')
3464 return 3; /* frstor/frstpm */
3465 break;
3466 case 's':
3467 if (mnemonic[2] == 'a')
3468 return 3; /* fsave */
3469 if (mnemonic[2] == 't')
3470 {
3471 switch (mnemonic[3])
3472 {
3473 case 'c': /* fstcw */
3474 case 'd': /* fstdw */
3475 case 'e': /* fstenv */
3476 case 's': /* fsts[gw] */
3477 return 3;
3478 }
3479 }
3480 break;
3481 case 'x':
3482 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3483 return 0; /* fxsave/fxrstor are not really math ops */
3484 break;
3485 }
3486
3487 return 1;
3488 }
3489
3490 /* Build the VEX prefix. */
3491
3492 static void
3493 build_vex_prefix (const insn_template *t)
3494 {
3495 unsigned int register_specifier;
3496 unsigned int implied_prefix;
3497 unsigned int vector_length;
3498 unsigned int w;
3499
3500 /* Check register specifier. */
3501 if (i.vex.register_specifier)
3502 {
3503 register_specifier =
3504 ~register_number (i.vex.register_specifier) & 0xf;
3505 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3506 }
3507 else
3508 register_specifier = 0xf;
3509
3510 /* Use 2-byte VEX prefix by swapping destination and source operand
3511 if there are more than 1 register operand. */
3512 if (i.reg_operands > 1
3513 && i.vec_encoding != vex_encoding_vex3
3514 && i.dir_encoding == dir_encoding_default
3515 && i.operands == i.reg_operands
3516 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3517 && i.tm.opcode_modifier.vexopcode == VEX0F
3518 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3519 && i.rex == REX_B)
3520 {
3521 unsigned int xchg = i.operands - 1;
3522 union i386_op temp_op;
3523 i386_operand_type temp_type;
3524
3525 temp_type = i.types[xchg];
3526 i.types[xchg] = i.types[0];
3527 i.types[0] = temp_type;
3528 temp_op = i.op[xchg];
3529 i.op[xchg] = i.op[0];
3530 i.op[0] = temp_op;
3531
3532 gas_assert (i.rm.mode == 3);
3533
3534 i.rex = REX_R;
3535 xchg = i.rm.regmem;
3536 i.rm.regmem = i.rm.reg;
3537 i.rm.reg = xchg;
3538
3539 if (i.tm.opcode_modifier.d)
3540 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3541 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3542 else /* Use the next insn. */
3543 i.tm = t[1];
3544 }
3545
3546 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3547 are no memory operands and at least 3 register ones. */
3548 if (i.reg_operands >= 3
3549 && i.vec_encoding != vex_encoding_vex3
3550 && i.reg_operands == i.operands - i.imm_operands
3551 && i.tm.opcode_modifier.vex
3552 && i.tm.opcode_modifier.commutative
3553 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3554 && i.rex == REX_B
3555 && i.vex.register_specifier
3556 && !(i.vex.register_specifier->reg_flags & RegRex))
3557 {
3558 unsigned int xchg = i.operands - i.reg_operands;
3559 union i386_op temp_op;
3560 i386_operand_type temp_type;
3561
3562 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3563 gas_assert (!i.tm.opcode_modifier.sae);
3564 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3565 &i.types[i.operands - 3]));
3566 gas_assert (i.rm.mode == 3);
3567
3568 temp_type = i.types[xchg];
3569 i.types[xchg] = i.types[xchg + 1];
3570 i.types[xchg + 1] = temp_type;
3571 temp_op = i.op[xchg];
3572 i.op[xchg] = i.op[xchg + 1];
3573 i.op[xchg + 1] = temp_op;
3574
3575 i.rex = 0;
3576 xchg = i.rm.regmem | 8;
3577 i.rm.regmem = ~register_specifier & 0xf;
3578 gas_assert (!(i.rm.regmem & 8));
3579 i.vex.register_specifier += xchg - i.rm.regmem;
3580 register_specifier = ~xchg & 0xf;
3581 }
3582
3583 if (i.tm.opcode_modifier.vex == VEXScalar)
3584 vector_length = avxscalar;
3585 else if (i.tm.opcode_modifier.vex == VEX256)
3586 vector_length = 1;
3587 else
3588 {
3589 unsigned int op;
3590
3591 /* Determine vector length from the last multi-length vector
3592 operand. */
3593 vector_length = 0;
3594 for (op = t->operands; op--;)
3595 if (t->operand_types[op].bitfield.xmmword
3596 && t->operand_types[op].bitfield.ymmword
3597 && i.types[op].bitfield.ymmword)
3598 {
3599 vector_length = 1;
3600 break;
3601 }
3602 }
3603
3604 switch ((i.tm.base_opcode >> 8) & 0xff)
3605 {
3606 case 0:
3607 implied_prefix = 0;
3608 break;
3609 case DATA_PREFIX_OPCODE:
3610 implied_prefix = 1;
3611 break;
3612 case REPE_PREFIX_OPCODE:
3613 implied_prefix = 2;
3614 break;
3615 case REPNE_PREFIX_OPCODE:
3616 implied_prefix = 3;
3617 break;
3618 default:
3619 abort ();
3620 }
3621
3622 /* Check the REX.W bit and VEXW. */
3623 if (i.tm.opcode_modifier.vexw == VEXWIG)
3624 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3625 else if (i.tm.opcode_modifier.vexw)
3626 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3627 else
3628 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3629
3630 /* Use 2-byte VEX prefix if possible. */
3631 if (w == 0
3632 && i.vec_encoding != vex_encoding_vex3
3633 && i.tm.opcode_modifier.vexopcode == VEX0F
3634 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3635 {
3636 /* 2-byte VEX prefix. */
3637 unsigned int r;
3638
3639 i.vex.length = 2;
3640 i.vex.bytes[0] = 0xc5;
3641
3642 /* Check the REX.R bit. */
3643 r = (i.rex & REX_R) ? 0 : 1;
3644 i.vex.bytes[1] = (r << 7
3645 | register_specifier << 3
3646 | vector_length << 2
3647 | implied_prefix);
3648 }
3649 else
3650 {
3651 /* 3-byte VEX prefix. */
3652 unsigned int m;
3653
3654 i.vex.length = 3;
3655
3656 switch (i.tm.opcode_modifier.vexopcode)
3657 {
3658 case VEX0F:
3659 m = 0x1;
3660 i.vex.bytes[0] = 0xc4;
3661 break;
3662 case VEX0F38:
3663 m = 0x2;
3664 i.vex.bytes[0] = 0xc4;
3665 break;
3666 case VEX0F3A:
3667 m = 0x3;
3668 i.vex.bytes[0] = 0xc4;
3669 break;
3670 case XOP08:
3671 m = 0x8;
3672 i.vex.bytes[0] = 0x8f;
3673 break;
3674 case XOP09:
3675 m = 0x9;
3676 i.vex.bytes[0] = 0x8f;
3677 break;
3678 case XOP0A:
3679 m = 0xa;
3680 i.vex.bytes[0] = 0x8f;
3681 break;
3682 default:
3683 abort ();
3684 }
3685
3686 /* The high 3 bits of the second VEX byte are 1's compliment
3687 of RXB bits from REX. */
3688 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3689
3690 i.vex.bytes[2] = (w << 7
3691 | register_specifier << 3
3692 | vector_length << 2
3693 | implied_prefix);
3694 }
3695 }
3696
3697 static INLINE bfd_boolean
3698 is_evex_encoding (const insn_template *t)
3699 {
3700 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3701 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3702 || t->opcode_modifier.sae;
3703 }
3704
3705 static INLINE bfd_boolean
3706 is_any_vex_encoding (const insn_template *t)
3707 {
3708 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3709 || is_evex_encoding (t);
3710 }
3711
3712 /* Build the EVEX prefix. */
3713
3714 static void
3715 build_evex_prefix (void)
3716 {
3717 unsigned int register_specifier;
3718 unsigned int implied_prefix;
3719 unsigned int m, w;
3720 rex_byte vrex_used = 0;
3721
3722 /* Check register specifier. */
3723 if (i.vex.register_specifier)
3724 {
3725 gas_assert ((i.vrex & REX_X) == 0);
3726
3727 register_specifier = i.vex.register_specifier->reg_num;
3728 if ((i.vex.register_specifier->reg_flags & RegRex))
3729 register_specifier += 8;
3730 /* The upper 16 registers are encoded in the fourth byte of the
3731 EVEX prefix. */
3732 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3733 i.vex.bytes[3] = 0x8;
3734 register_specifier = ~register_specifier & 0xf;
3735 }
3736 else
3737 {
3738 register_specifier = 0xf;
3739
3740 /* Encode upper 16 vector index register in the fourth byte of
3741 the EVEX prefix. */
3742 if (!(i.vrex & REX_X))
3743 i.vex.bytes[3] = 0x8;
3744 else
3745 vrex_used |= REX_X;
3746 }
3747
3748 switch ((i.tm.base_opcode >> 8) & 0xff)
3749 {
3750 case 0:
3751 implied_prefix = 0;
3752 break;
3753 case DATA_PREFIX_OPCODE:
3754 implied_prefix = 1;
3755 break;
3756 case REPE_PREFIX_OPCODE:
3757 implied_prefix = 2;
3758 break;
3759 case REPNE_PREFIX_OPCODE:
3760 implied_prefix = 3;
3761 break;
3762 default:
3763 abort ();
3764 }
3765
3766 /* 4 byte EVEX prefix. */
3767 i.vex.length = 4;
3768 i.vex.bytes[0] = 0x62;
3769
3770 /* mmmm bits. */
3771 switch (i.tm.opcode_modifier.vexopcode)
3772 {
3773 case VEX0F:
3774 m = 1;
3775 break;
3776 case VEX0F38:
3777 m = 2;
3778 break;
3779 case VEX0F3A:
3780 m = 3;
3781 break;
3782 default:
3783 abort ();
3784 break;
3785 }
3786
3787 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3788 bits from REX. */
3789 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3790
3791 /* The fifth bit of the second EVEX byte is 1's compliment of the
3792 REX_R bit in VREX. */
3793 if (!(i.vrex & REX_R))
3794 i.vex.bytes[1] |= 0x10;
3795 else
3796 vrex_used |= REX_R;
3797
3798 if ((i.reg_operands + i.imm_operands) == i.operands)
3799 {
3800 /* When all operands are registers, the REX_X bit in REX is not
3801 used. We reuse it to encode the upper 16 registers, which is
3802 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3803 as 1's compliment. */
3804 if ((i.vrex & REX_B))
3805 {
3806 vrex_used |= REX_B;
3807 i.vex.bytes[1] &= ~0x40;
3808 }
3809 }
3810
3811 /* EVEX instructions shouldn't need the REX prefix. */
3812 i.vrex &= ~vrex_used;
3813 gas_assert (i.vrex == 0);
3814
3815 /* Check the REX.W bit and VEXW. */
3816 if (i.tm.opcode_modifier.vexw == VEXWIG)
3817 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3818 else if (i.tm.opcode_modifier.vexw)
3819 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3820 else
3821 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3822
3823 /* Encode the U bit. */
3824 implied_prefix |= 0x4;
3825
3826 /* The third byte of the EVEX prefix. */
3827 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3828
3829 /* The fourth byte of the EVEX prefix. */
3830 /* The zeroing-masking bit. */
3831 if (i.mask && i.mask->zeroing)
3832 i.vex.bytes[3] |= 0x80;
3833
3834 /* Don't always set the broadcast bit if there is no RC. */
3835 if (!i.rounding)
3836 {
3837 /* Encode the vector length. */
3838 unsigned int vec_length;
3839
3840 if (!i.tm.opcode_modifier.evex
3841 || i.tm.opcode_modifier.evex == EVEXDYN)
3842 {
3843 unsigned int op;
3844
3845 /* Determine vector length from the last multi-length vector
3846 operand. */
3847 vec_length = 0;
3848 for (op = i.operands; op--;)
3849 if (i.tm.operand_types[op].bitfield.xmmword
3850 + i.tm.operand_types[op].bitfield.ymmword
3851 + i.tm.operand_types[op].bitfield.zmmword > 1)
3852 {
3853 if (i.types[op].bitfield.zmmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX512;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.ymmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX256;
3861 break;
3862 }
3863 else if (i.types[op].bitfield.xmmword)
3864 {
3865 i.tm.opcode_modifier.evex = EVEX128;
3866 break;
3867 }
3868 else if (i.broadcast && (int) op == i.broadcast->operand)
3869 {
3870 switch (i.broadcast->bytes)
3871 {
3872 case 64:
3873 i.tm.opcode_modifier.evex = EVEX512;
3874 break;
3875 case 32:
3876 i.tm.opcode_modifier.evex = EVEX256;
3877 break;
3878 case 16:
3879 i.tm.opcode_modifier.evex = EVEX128;
3880 break;
3881 default:
3882 abort ();
3883 }
3884 break;
3885 }
3886 }
3887
3888 if (op >= MAX_OPERANDS)
3889 abort ();
3890 }
3891
3892 switch (i.tm.opcode_modifier.evex)
3893 {
3894 case EVEXLIG: /* LL' is ignored */
3895 vec_length = evexlig << 5;
3896 break;
3897 case EVEX128:
3898 vec_length = 0 << 5;
3899 break;
3900 case EVEX256:
3901 vec_length = 1 << 5;
3902 break;
3903 case EVEX512:
3904 vec_length = 2 << 5;
3905 break;
3906 default:
3907 abort ();
3908 break;
3909 }
3910 i.vex.bytes[3] |= vec_length;
3911 /* Encode the broadcast bit. */
3912 if (i.broadcast)
3913 i.vex.bytes[3] |= 0x10;
3914 }
3915 else
3916 {
3917 if (i.rounding->type != saeonly)
3918 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3919 else
3920 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3921 }
3922
3923 if (i.mask && i.mask->mask)
3924 i.vex.bytes[3] |= i.mask->mask->reg_num;
3925 }
3926
3927 static void
3928 process_immext (void)
3929 {
3930 expressionS *exp;
3931
3932 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3933 which is coded in the same place as an 8-bit immediate field
3934 would be. Here we fake an 8-bit immediate operand from the
3935 opcode suffix stored in tm.extension_opcode.
3936
3937 AVX instructions also use this encoding, for some of
3938 3 argument instructions. */
3939
3940 gas_assert (i.imm_operands <= 1
3941 && (i.operands <= 2
3942 || (is_any_vex_encoding (&i.tm)
3943 && i.operands <= 4)));
3944
3945 exp = &im_expressions[i.imm_operands++];
3946 i.op[i.operands].imms = exp;
3947 i.types[i.operands] = imm8;
3948 i.operands++;
3949 exp->X_op = O_constant;
3950 exp->X_add_number = i.tm.extension_opcode;
3951 i.tm.extension_opcode = None;
3952 }
3953
3954
3955 static int
3956 check_hle (void)
3957 {
3958 switch (i.tm.opcode_modifier.hleprefixok)
3959 {
3960 default:
3961 abort ();
3962 case HLEPrefixNone:
3963 as_bad (_("invalid instruction `%s' after `%s'"),
3964 i.tm.name, i.hle_prefix);
3965 return 0;
3966 case HLEPrefixLock:
3967 if (i.prefix[LOCK_PREFIX])
3968 return 1;
3969 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3970 return 0;
3971 case HLEPrefixAny:
3972 return 1;
3973 case HLEPrefixRelease:
3974 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3975 {
3976 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3977 i.tm.name);
3978 return 0;
3979 }
3980 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3981 {
3982 as_bad (_("memory destination needed for instruction `%s'"
3983 " after `xrelease'"), i.tm.name);
3984 return 0;
3985 }
3986 return 1;
3987 }
3988 }
3989
3990 /* Try the shortest encoding by shortening operand size. */
3991
3992 static void
3993 optimize_encoding (void)
3994 {
3995 unsigned int j;
3996
3997 if (optimize_for_space
3998 && !is_any_vex_encoding (&i.tm)
3999 && i.reg_operands == 1
4000 && i.imm_operands == 1
4001 && !i.types[1].bitfield.byte
4002 && i.op[0].imms->X_op == O_constant
4003 && fits_in_imm7 (i.op[0].imms->X_add_number)
4004 && (i.tm.base_opcode == 0xa8
4005 || (i.tm.base_opcode == 0xf6
4006 && i.tm.extension_opcode == 0x0)))
4007 {
4008 /* Optimize: -Os:
4009 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4010 */
4011 unsigned int base_regnum = i.op[1].regs->reg_num;
4012 if (flag_code == CODE_64BIT || base_regnum < 4)
4013 {
4014 i.types[1].bitfield.byte = 1;
4015 /* Ignore the suffix. */
4016 i.suffix = 0;
4017 /* Convert to byte registers. */
4018 if (i.types[1].bitfield.word)
4019 j = 16;
4020 else if (i.types[1].bitfield.dword)
4021 j = 32;
4022 else
4023 j = 48;
4024 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4025 j += 8;
4026 i.op[1].regs -= j;
4027 }
4028 }
4029 else if (flag_code == CODE_64BIT
4030 && !is_any_vex_encoding (&i.tm)
4031 && ((i.types[1].bitfield.qword
4032 && i.reg_operands == 1
4033 && i.imm_operands == 1
4034 && i.op[0].imms->X_op == O_constant
4035 && ((i.tm.base_opcode == 0xb8
4036 && i.tm.extension_opcode == None
4037 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4038 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4039 && ((i.tm.base_opcode == 0x24
4040 || i.tm.base_opcode == 0xa8)
4041 || (i.tm.base_opcode == 0x80
4042 && i.tm.extension_opcode == 0x4)
4043 || ((i.tm.base_opcode == 0xf6
4044 || (i.tm.base_opcode | 1) == 0xc7)
4045 && i.tm.extension_opcode == 0x0)))
4046 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4047 && i.tm.base_opcode == 0x83
4048 && i.tm.extension_opcode == 0x4)))
4049 || (i.types[0].bitfield.qword
4050 && ((i.reg_operands == 2
4051 && i.op[0].regs == i.op[1].regs
4052 && (i.tm.base_opcode == 0x30
4053 || i.tm.base_opcode == 0x28))
4054 || (i.reg_operands == 1
4055 && i.operands == 1
4056 && i.tm.base_opcode == 0x30)))))
4057 {
4058 /* Optimize: -O:
4059 andq $imm31, %r64 -> andl $imm31, %r32
4060 andq $imm7, %r64 -> andl $imm7, %r32
4061 testq $imm31, %r64 -> testl $imm31, %r32
4062 xorq %r64, %r64 -> xorl %r32, %r32
4063 subq %r64, %r64 -> subl %r32, %r32
4064 movq $imm31, %r64 -> movl $imm31, %r32
4065 movq $imm32, %r64 -> movl $imm32, %r32
4066 */
4067 i.tm.opcode_modifier.norex64 = 1;
4068 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4069 {
4070 /* Handle
4071 movq $imm31, %r64 -> movl $imm31, %r32
4072 movq $imm32, %r64 -> movl $imm32, %r32
4073 */
4074 i.tm.operand_types[0].bitfield.imm32 = 1;
4075 i.tm.operand_types[0].bitfield.imm32s = 0;
4076 i.tm.operand_types[0].bitfield.imm64 = 0;
4077 i.types[0].bitfield.imm32 = 1;
4078 i.types[0].bitfield.imm32s = 0;
4079 i.types[0].bitfield.imm64 = 0;
4080 i.types[1].bitfield.dword = 1;
4081 i.types[1].bitfield.qword = 0;
4082 if ((i.tm.base_opcode | 1) == 0xc7)
4083 {
4084 /* Handle
4085 movq $imm31, %r64 -> movl $imm31, %r32
4086 */
4087 i.tm.base_opcode = 0xb8;
4088 i.tm.extension_opcode = None;
4089 i.tm.opcode_modifier.w = 0;
4090 i.tm.opcode_modifier.modrm = 0;
4091 }
4092 }
4093 }
4094 else if (optimize > 1
4095 && !optimize_for_space
4096 && !is_any_vex_encoding (&i.tm)
4097 && i.reg_operands == 2
4098 && i.op[0].regs == i.op[1].regs
4099 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4100 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4101 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4102 {
4103 /* Optimize: -O2:
4104 andb %rN, %rN -> testb %rN, %rN
4105 andw %rN, %rN -> testw %rN, %rN
4106 andq %rN, %rN -> testq %rN, %rN
4107 orb %rN, %rN -> testb %rN, %rN
4108 orw %rN, %rN -> testw %rN, %rN
4109 orq %rN, %rN -> testq %rN, %rN
4110
4111 and outside of 64-bit mode
4112
4113 andl %rN, %rN -> testl %rN, %rN
4114 orl %rN, %rN -> testl %rN, %rN
4115 */
4116 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4117 }
4118 else if (i.reg_operands == 3
4119 && i.op[0].regs == i.op[1].regs
4120 && !i.types[2].bitfield.xmmword
4121 && (i.tm.opcode_modifier.vex
4122 || ((!i.mask || i.mask->zeroing)
4123 && !i.rounding
4124 && is_evex_encoding (&i.tm)
4125 && (i.vec_encoding != vex_encoding_evex
4126 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4127 || i.tm.cpu_flags.bitfield.cpuavx512vl
4128 || (i.tm.operand_types[2].bitfield.zmmword
4129 && i.types[2].bitfield.ymmword))))
4130 && ((i.tm.base_opcode == 0x55
4131 || i.tm.base_opcode == 0x6655
4132 || i.tm.base_opcode == 0x66df
4133 || i.tm.base_opcode == 0x57
4134 || i.tm.base_opcode == 0x6657
4135 || i.tm.base_opcode == 0x66ef
4136 || i.tm.base_opcode == 0x66f8
4137 || i.tm.base_opcode == 0x66f9
4138 || i.tm.base_opcode == 0x66fa
4139 || i.tm.base_opcode == 0x66fb
4140 || i.tm.base_opcode == 0x42
4141 || i.tm.base_opcode == 0x6642
4142 || i.tm.base_opcode == 0x47
4143 || i.tm.base_opcode == 0x6647)
4144 && i.tm.extension_opcode == None))
4145 {
4146 /* Optimize: -O1:
4147 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4148 vpsubq and vpsubw:
4149 EVEX VOP %zmmM, %zmmM, %zmmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4152 EVEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4154 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandn and vpxor:
4158 VEX VOP %ymmM, %ymmM, %ymmN
4159 -> VEX VOP %xmmM, %xmmM, %xmmN
4160 VOP, one of vpandnd and vpandnq:
4161 EVEX VOP %zmmM, %zmmM, %zmmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4164 EVEX VOP %ymmM, %ymmM, %ymmN
4165 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 VOP, one of vpxord and vpxorq:
4168 EVEX VOP %zmmM, %zmmM, %zmmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4171 EVEX VOP %ymmM, %ymmM, %ymmN
4172 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4173 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4174 VOP, one of kxord and kxorq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kxorw %kM, %kM, %kN
4177 VOP, one of kandnd and kandnq:
4178 VEX VOP %kM, %kM, %kN
4179 -> VEX kandnw %kM, %kM, %kN
4180 */
4181 if (is_evex_encoding (&i.tm))
4182 {
4183 if (i.vec_encoding != vex_encoding_evex)
4184 {
4185 i.tm.opcode_modifier.vex = VEX128;
4186 i.tm.opcode_modifier.vexw = VEXW0;
4187 i.tm.opcode_modifier.evex = 0;
4188 }
4189 else if (optimize > 1)
4190 i.tm.opcode_modifier.evex = EVEX128;
4191 else
4192 return;
4193 }
4194 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4195 {
4196 i.tm.base_opcode &= 0xff;
4197 i.tm.opcode_modifier.vexw = VEXW0;
4198 }
4199 else
4200 i.tm.opcode_modifier.vex = VEX128;
4201
4202 if (i.tm.opcode_modifier.vex)
4203 for (j = 0; j < 3; j++)
4204 {
4205 i.types[j].bitfield.xmmword = 1;
4206 i.types[j].bitfield.ymmword = 0;
4207 }
4208 }
4209 else if (i.vec_encoding != vex_encoding_evex
4210 && !i.types[0].bitfield.zmmword
4211 && !i.types[1].bitfield.zmmword
4212 && !i.mask
4213 && !i.broadcast
4214 && is_evex_encoding (&i.tm)
4215 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4216 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4217 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4218 || (i.tm.base_opcode & ~4) == 0x66db
4219 || (i.tm.base_opcode & ~4) == 0x66eb)
4220 && i.tm.extension_opcode == None)
4221 {
4222 /* Optimize: -O1:
4223 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4224 vmovdqu32 and vmovdqu64:
4225 EVEX VOP %xmmM, %xmmN
4226 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4227 EVEX VOP %ymmM, %ymmN
4228 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4229 EVEX VOP %xmmM, mem
4230 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4231 EVEX VOP %ymmM, mem
4232 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4233 EVEX VOP mem, %xmmN
4234 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4235 EVEX VOP mem, %ymmN
4236 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4237 VOP, one of vpand, vpandn, vpor, vpxor:
4238 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4239 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4240 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4241 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4242 EVEX VOP{d,q} mem, %xmmM, %xmmN
4243 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4244 EVEX VOP{d,q} mem, %ymmM, %ymmN
4245 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4246 */
4247 for (j = 0; j < i.operands; j++)
4248 if (operand_type_check (i.types[j], disp)
4249 && i.op[j].disps->X_op == O_constant)
4250 {
4251 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4252 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4253 bytes, we choose EVEX Disp8 over VEX Disp32. */
4254 int evex_disp8, vex_disp8;
4255 unsigned int memshift = i.memshift;
4256 offsetT n = i.op[j].disps->X_add_number;
4257
4258 evex_disp8 = fits_in_disp8 (n);
4259 i.memshift = 0;
4260 vex_disp8 = fits_in_disp8 (n);
4261 if (evex_disp8 != vex_disp8)
4262 {
4263 i.memshift = memshift;
4264 return;
4265 }
4266
4267 i.types[j].bitfield.disp8 = vex_disp8;
4268 break;
4269 }
4270 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4271 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4272 i.tm.opcode_modifier.vex
4273 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4274 i.tm.opcode_modifier.vexw = VEXW0;
4275 /* VPAND, VPOR, and VPXOR are commutative. */
4276 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4277 i.tm.opcode_modifier.commutative = 1;
4278 i.tm.opcode_modifier.evex = 0;
4279 i.tm.opcode_modifier.masking = 0;
4280 i.tm.opcode_modifier.broadcast = 0;
4281 i.tm.opcode_modifier.disp8memshift = 0;
4282 i.memshift = 0;
4283 if (j < i.operands)
4284 i.types[j].bitfield.disp8
4285 = fits_in_disp8 (i.op[j].disps->X_add_number);
4286 }
4287 }
4288
4289 /* This is the guts of the machine-dependent assembler. LINE points to a
4290 machine dependent instruction. This function is supposed to emit
4291 the frags/bytes it assembles to. */
4292
4293 void
4294 md_assemble (char *line)
4295 {
4296 unsigned int j;
4297 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4298 const insn_template *t;
4299
4300 /* Initialize globals. */
4301 memset (&i, '\0', sizeof (i));
4302 for (j = 0; j < MAX_OPERANDS; j++)
4303 i.reloc[j] = NO_RELOC;
4304 memset (disp_expressions, '\0', sizeof (disp_expressions));
4305 memset (im_expressions, '\0', sizeof (im_expressions));
4306 save_stack_p = save_stack;
4307
4308 /* First parse an instruction mnemonic & call i386_operand for the operands.
4309 We assume that the scrubber has arranged it so that line[0] is the valid
4310 start of a (possibly prefixed) mnemonic. */
4311
4312 line = parse_insn (line, mnemonic);
4313 if (line == NULL)
4314 return;
4315 mnem_suffix = i.suffix;
4316
4317 line = parse_operands (line, mnemonic);
4318 this_operand = -1;
4319 xfree (i.memop1_string);
4320 i.memop1_string = NULL;
4321 if (line == NULL)
4322 return;
4323
4324 /* Now we've parsed the mnemonic into a set of templates, and have the
4325 operands at hand. */
4326
4327 /* All Intel opcodes have reversed operands except for "bound", "enter"
4328 "monitor*", and "mwait*". We also don't reverse intersegment "jmp"
4329 and "call" instructions with 2 immediate operands so that the immediate
4330 segment precedes the offset, as it does when in AT&T mode. */
4331 if (intel_syntax
4332 && i.operands > 1
4333 && (strcmp (mnemonic, "bound") != 0)
4334 && (strcmp (mnemonic, "invlpga") != 0)
4335 && (strncmp (mnemonic, "monitor", 7) != 0)
4336 && (strncmp (mnemonic, "mwait", 5) != 0)
4337 && !(operand_type_check (i.types[0], imm)
4338 && operand_type_check (i.types[1], imm)))
4339 swap_operands ();
4340
4341 /* The order of the immediates should be reversed
4342 for 2 immediates extrq and insertq instructions */
4343 if (i.imm_operands == 2
4344 && (strcmp (mnemonic, "extrq") == 0
4345 || strcmp (mnemonic, "insertq") == 0))
4346 swap_2_operands (0, 1);
4347
4348 if (i.imm_operands)
4349 optimize_imm ();
4350
4351 /* Don't optimize displacement for movabs since it only takes 64bit
4352 displacement. */
4353 if (i.disp_operands
4354 && i.disp_encoding != disp_encoding_32bit
4355 && (flag_code != CODE_64BIT
4356 || strcmp (mnemonic, "movabs") != 0))
4357 optimize_disp ();
4358
4359 /* Next, we find a template that matches the given insn,
4360 making sure the overlap of the given operands types is consistent
4361 with the template operand types. */
4362
4363 if (!(t = match_template (mnem_suffix)))
4364 return;
4365
4366 if (sse_check != check_none
4367 && !i.tm.opcode_modifier.noavx
4368 && !i.tm.cpu_flags.bitfield.cpuavx
4369 && !i.tm.cpu_flags.bitfield.cpuavx512f
4370 && (i.tm.cpu_flags.bitfield.cpusse
4371 || i.tm.cpu_flags.bitfield.cpusse2
4372 || i.tm.cpu_flags.bitfield.cpusse3
4373 || i.tm.cpu_flags.bitfield.cpussse3
4374 || i.tm.cpu_flags.bitfield.cpusse4_1
4375 || i.tm.cpu_flags.bitfield.cpusse4_2
4376 || i.tm.cpu_flags.bitfield.cpusse4a
4377 || i.tm.cpu_flags.bitfield.cpupclmul
4378 || i.tm.cpu_flags.bitfield.cpuaes
4379 || i.tm.cpu_flags.bitfield.cpusha
4380 || i.tm.cpu_flags.bitfield.cpugfni))
4381 {
4382 (sse_check == check_warning
4383 ? as_warn
4384 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4385 }
4386
4387 if (i.tm.opcode_modifier.fwait)
4388 if (!add_prefix (FWAIT_OPCODE))
4389 return;
4390
4391 /* Check if REP prefix is OK. */
4392 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4393 {
4394 as_bad (_("invalid instruction `%s' after `%s'"),
4395 i.tm.name, i.rep_prefix);
4396 return;
4397 }
4398
4399 /* Check for lock without a lockable instruction. Destination operand
4400 must be memory unless it is xchg (0x86). */
4401 if (i.prefix[LOCK_PREFIX]
4402 && (!i.tm.opcode_modifier.islockable
4403 || i.mem_operands == 0
4404 || (i.tm.base_opcode != 0x86
4405 && !(i.flags[i.operands - 1] & Operand_Mem))))
4406 {
4407 as_bad (_("expecting lockable instruction after `lock'"));
4408 return;
4409 }
4410
4411 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4412 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4413 {
4414 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4415 return;
4416 }
4417
4418 /* Check if HLE prefix is OK. */
4419 if (i.hle_prefix && !check_hle ())
4420 return;
4421
4422 /* Check BND prefix. */
4423 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4424 as_bad (_("expecting valid branch instruction after `bnd'"));
4425
4426 /* Check NOTRACK prefix. */
4427 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4428 as_bad (_("expecting indirect branch instruction after `notrack'"));
4429
4430 if (i.tm.cpu_flags.bitfield.cpumpx)
4431 {
4432 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4433 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4434 else if (flag_code != CODE_16BIT
4435 ? i.prefix[ADDR_PREFIX]
4436 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4437 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4438 }
4439
4440 /* Insert BND prefix. */
4441 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4442 {
4443 if (!i.prefix[BND_PREFIX])
4444 add_prefix (BND_PREFIX_OPCODE);
4445 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4446 {
4447 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4448 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4449 }
4450 }
4451
4452 /* Check string instruction segment overrides. */
4453 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4454 {
4455 gas_assert (i.mem_operands);
4456 if (!check_string ())
4457 return;
4458 i.disp_operands = 0;
4459 }
4460
4461 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4462 optimize_encoding ();
4463
4464 if (!process_suffix ())
4465 return;
4466
4467 /* Update operand types. */
4468 for (j = 0; j < i.operands; j++)
4469 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4470
4471 /* Make still unresolved immediate matches conform to size of immediate
4472 given in i.suffix. */
4473 if (!finalize_imm ())
4474 return;
4475
4476 if (i.types[0].bitfield.imm1)
4477 i.imm_operands = 0; /* kludge for shift insns. */
4478
4479 /* We only need to check those implicit registers for instructions
4480 with 3 operands or less. */
4481 if (i.operands <= 3)
4482 for (j = 0; j < i.operands; j++)
4483 if (i.types[j].bitfield.instance != InstanceNone
4484 && !i.types[j].bitfield.xmmword)
4485 i.reg_operands--;
4486
4487 /* ImmExt should be processed after SSE2AVX. */
4488 if (!i.tm.opcode_modifier.sse2avx
4489 && i.tm.opcode_modifier.immext)
4490 process_immext ();
4491
4492 /* For insns with operands there are more diddles to do to the opcode. */
4493 if (i.operands)
4494 {
4495 if (!process_operands ())
4496 return;
4497 }
4498 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4499 {
4500 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4501 as_warn (_("translating to `%sp'"), i.tm.name);
4502 }
4503
4504 if (is_any_vex_encoding (&i.tm))
4505 {
4506 if (!cpu_arch_flags.bitfield.cpui286)
4507 {
4508 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4509 i.tm.name);
4510 return;
4511 }
4512
4513 if (i.tm.opcode_modifier.vex)
4514 build_vex_prefix (t);
4515 else
4516 build_evex_prefix ();
4517 }
4518
4519 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4520 instructions may define INT_OPCODE as well, so avoid this corner
4521 case for those instructions that use MODRM. */
4522 if (i.tm.base_opcode == INT_OPCODE
4523 && !i.tm.opcode_modifier.modrm
4524 && i.op[0].imms->X_add_number == 3)
4525 {
4526 i.tm.base_opcode = INT3_OPCODE;
4527 i.imm_operands = 0;
4528 }
4529
4530 if ((i.tm.opcode_modifier.jump == JUMP
4531 || i.tm.opcode_modifier.jump == JUMP_BYTE
4532 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4533 && i.op[0].disps->X_op == O_constant)
4534 {
4535 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4536 the absolute address given by the constant. Since ix86 jumps and
4537 calls are pc relative, we need to generate a reloc. */
4538 i.op[0].disps->X_add_symbol = &abs_symbol;
4539 i.op[0].disps->X_op = O_symbol;
4540 }
4541
4542 if (i.tm.opcode_modifier.rex64)
4543 i.rex |= REX_W;
4544
4545 /* For 8 bit registers we need an empty rex prefix. Also if the
4546 instruction already has a prefix, we need to convert old
4547 registers to new ones. */
4548
4549 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4550 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4551 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4552 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4553 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4554 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4555 && i.rex != 0))
4556 {
4557 int x;
4558
4559 i.rex |= REX_OPCODE;
4560 for (x = 0; x < 2; x++)
4561 {
4562 /* Look for 8 bit operand that uses old registers. */
4563 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4564 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4565 {
4566 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4567 /* In case it is "hi" register, give up. */
4568 if (i.op[x].regs->reg_num > 3)
4569 as_bad (_("can't encode register '%s%s' in an "
4570 "instruction requiring REX prefix."),
4571 register_prefix, i.op[x].regs->reg_name);
4572
4573 /* Otherwise it is equivalent to the extended register.
4574 Since the encoding doesn't change this is merely
4575 cosmetic cleanup for debug output. */
4576
4577 i.op[x].regs = i.op[x].regs + 8;
4578 }
4579 }
4580 }
4581
4582 if (i.rex == 0 && i.rex_encoding)
4583 {
4584 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4585 that uses legacy register. If it is "hi" register, don't add
4586 the REX_OPCODE byte. */
4587 int x;
4588 for (x = 0; x < 2; x++)
4589 if (i.types[x].bitfield.class == Reg
4590 && i.types[x].bitfield.byte
4591 && (i.op[x].regs->reg_flags & RegRex64) == 0
4592 && i.op[x].regs->reg_num > 3)
4593 {
4594 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4595 i.rex_encoding = FALSE;
4596 break;
4597 }
4598
4599 if (i.rex_encoding)
4600 i.rex = REX_OPCODE;
4601 }
4602
4603 if (i.rex != 0)
4604 add_prefix (REX_OPCODE | i.rex);
4605
4606 /* We are ready to output the insn. */
4607 output_insn ();
4608
4609 last_insn.seg = now_seg;
4610
4611 if (i.tm.opcode_modifier.isprefix)
4612 {
4613 last_insn.kind = last_insn_prefix;
4614 last_insn.name = i.tm.name;
4615 last_insn.file = as_where (&last_insn.line);
4616 }
4617 else
4618 last_insn.kind = last_insn_other;
4619 }
4620
4621 static char *
4622 parse_insn (char *line, char *mnemonic)
4623 {
4624 char *l = line;
4625 char *token_start = l;
4626 char *mnem_p;
4627 int supported;
4628 const insn_template *t;
4629 char *dot_p = NULL;
4630
4631 while (1)
4632 {
4633 mnem_p = mnemonic;
4634 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4635 {
4636 if (*mnem_p == '.')
4637 dot_p = mnem_p;
4638 mnem_p++;
4639 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4640 {
4641 as_bad (_("no such instruction: `%s'"), token_start);
4642 return NULL;
4643 }
4644 l++;
4645 }
4646 if (!is_space_char (*l)
4647 && *l != END_OF_INSN
4648 && (intel_syntax
4649 || (*l != PREFIX_SEPARATOR
4650 && *l != ',')))
4651 {
4652 as_bad (_("invalid character %s in mnemonic"),
4653 output_invalid (*l));
4654 return NULL;
4655 }
4656 if (token_start == l)
4657 {
4658 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4659 as_bad (_("expecting prefix; got nothing"));
4660 else
4661 as_bad (_("expecting mnemonic; got nothing"));
4662 return NULL;
4663 }
4664
4665 /* Look up instruction (or prefix) via hash table. */
4666 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4667
4668 if (*l != END_OF_INSN
4669 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4670 && current_templates
4671 && current_templates->start->opcode_modifier.isprefix)
4672 {
4673 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4674 {
4675 as_bad ((flag_code != CODE_64BIT
4676 ? _("`%s' is only supported in 64-bit mode")
4677 : _("`%s' is not supported in 64-bit mode")),
4678 current_templates->start->name);
4679 return NULL;
4680 }
4681 /* If we are in 16-bit mode, do not allow addr16 or data16.
4682 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4683 if ((current_templates->start->opcode_modifier.size == SIZE16
4684 || current_templates->start->opcode_modifier.size == SIZE32)
4685 && flag_code != CODE_64BIT
4686 && ((current_templates->start->opcode_modifier.size == SIZE32)
4687 ^ (flag_code == CODE_16BIT)))
4688 {
4689 as_bad (_("redundant %s prefix"),
4690 current_templates->start->name);
4691 return NULL;
4692 }
4693 if (current_templates->start->opcode_length == 0)
4694 {
4695 /* Handle pseudo prefixes. */
4696 switch (current_templates->start->base_opcode)
4697 {
4698 case 0x0:
4699 /* {disp8} */
4700 i.disp_encoding = disp_encoding_8bit;
4701 break;
4702 case 0x1:
4703 /* {disp32} */
4704 i.disp_encoding = disp_encoding_32bit;
4705 break;
4706 case 0x2:
4707 /* {load} */
4708 i.dir_encoding = dir_encoding_load;
4709 break;
4710 case 0x3:
4711 /* {store} */
4712 i.dir_encoding = dir_encoding_store;
4713 break;
4714 case 0x4:
4715 /* {vex} */
4716 i.vec_encoding = vex_encoding_vex;
4717 break;
4718 case 0x5:
4719 /* {vex3} */
4720 i.vec_encoding = vex_encoding_vex3;
4721 break;
4722 case 0x6:
4723 /* {evex} */
4724 i.vec_encoding = vex_encoding_evex;
4725 break;
4726 case 0x7:
4727 /* {rex} */
4728 i.rex_encoding = TRUE;
4729 break;
4730 case 0x8:
4731 /* {nooptimize} */
4732 i.no_optimize = TRUE;
4733 break;
4734 default:
4735 abort ();
4736 }
4737 }
4738 else
4739 {
4740 /* Add prefix, checking for repeated prefixes. */
4741 switch (add_prefix (current_templates->start->base_opcode))
4742 {
4743 case PREFIX_EXIST:
4744 return NULL;
4745 case PREFIX_DS:
4746 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4747 i.notrack_prefix = current_templates->start->name;
4748 break;
4749 case PREFIX_REP:
4750 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4751 i.hle_prefix = current_templates->start->name;
4752 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4753 i.bnd_prefix = current_templates->start->name;
4754 else
4755 i.rep_prefix = current_templates->start->name;
4756 break;
4757 default:
4758 break;
4759 }
4760 }
4761 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4762 token_start = ++l;
4763 }
4764 else
4765 break;
4766 }
4767
4768 if (!current_templates)
4769 {
4770 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4771 Check if we should swap operand or force 32bit displacement in
4772 encoding. */
4773 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4774 i.dir_encoding = dir_encoding_swap;
4775 else if (mnem_p - 3 == dot_p
4776 && dot_p[1] == 'd'
4777 && dot_p[2] == '8')
4778 i.disp_encoding = disp_encoding_8bit;
4779 else if (mnem_p - 4 == dot_p
4780 && dot_p[1] == 'd'
4781 && dot_p[2] == '3'
4782 && dot_p[3] == '2')
4783 i.disp_encoding = disp_encoding_32bit;
4784 else
4785 goto check_suffix;
4786 mnem_p = dot_p;
4787 *dot_p = '\0';
4788 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4789 }
4790
4791 if (!current_templates)
4792 {
4793 check_suffix:
4794 if (mnem_p > mnemonic)
4795 {
4796 /* See if we can get a match by trimming off a suffix. */
4797 switch (mnem_p[-1])
4798 {
4799 case WORD_MNEM_SUFFIX:
4800 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4801 i.suffix = SHORT_MNEM_SUFFIX;
4802 else
4803 /* Fall through. */
4804 case BYTE_MNEM_SUFFIX:
4805 case QWORD_MNEM_SUFFIX:
4806 i.suffix = mnem_p[-1];
4807 mnem_p[-1] = '\0';
4808 current_templates = (const templates *) hash_find (op_hash,
4809 mnemonic);
4810 break;
4811 case SHORT_MNEM_SUFFIX:
4812 case LONG_MNEM_SUFFIX:
4813 if (!intel_syntax)
4814 {
4815 i.suffix = mnem_p[-1];
4816 mnem_p[-1] = '\0';
4817 current_templates = (const templates *) hash_find (op_hash,
4818 mnemonic);
4819 }
4820 break;
4821
4822 /* Intel Syntax. */
4823 case 'd':
4824 if (intel_syntax)
4825 {
4826 if (intel_float_operand (mnemonic) == 1)
4827 i.suffix = SHORT_MNEM_SUFFIX;
4828 else
4829 i.suffix = LONG_MNEM_SUFFIX;
4830 mnem_p[-1] = '\0';
4831 current_templates = (const templates *) hash_find (op_hash,
4832 mnemonic);
4833 }
4834 break;
4835 }
4836 }
4837
4838 if (!current_templates)
4839 {
4840 as_bad (_("no such instruction: `%s'"), token_start);
4841 return NULL;
4842 }
4843 }
4844
4845 if (current_templates->start->opcode_modifier.jump == JUMP
4846 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4847 {
4848 /* Check for a branch hint. We allow ",pt" and ",pn" for
4849 predict taken and predict not taken respectively.
4850 I'm not sure that branch hints actually do anything on loop
4851 and jcxz insns (JumpByte) for current Pentium4 chips. They
4852 may work in the future and it doesn't hurt to accept them
4853 now. */
4854 if (l[0] == ',' && l[1] == 'p')
4855 {
4856 if (l[2] == 't')
4857 {
4858 if (!add_prefix (DS_PREFIX_OPCODE))
4859 return NULL;
4860 l += 3;
4861 }
4862 else if (l[2] == 'n')
4863 {
4864 if (!add_prefix (CS_PREFIX_OPCODE))
4865 return NULL;
4866 l += 3;
4867 }
4868 }
4869 }
4870 /* Any other comma loses. */
4871 if (*l == ',')
4872 {
4873 as_bad (_("invalid character %s in mnemonic"),
4874 output_invalid (*l));
4875 return NULL;
4876 }
4877
4878 /* Check if instruction is supported on specified architecture. */
4879 supported = 0;
4880 for (t = current_templates->start; t < current_templates->end; ++t)
4881 {
4882 supported |= cpu_flags_match (t);
4883 if (supported == CPU_FLAGS_PERFECT_MATCH)
4884 {
4885 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4886 as_warn (_("use .code16 to ensure correct addressing mode"));
4887
4888 return l;
4889 }
4890 }
4891
4892 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4893 as_bad (flag_code == CODE_64BIT
4894 ? _("`%s' is not supported in 64-bit mode")
4895 : _("`%s' is only supported in 64-bit mode"),
4896 current_templates->start->name);
4897 else
4898 as_bad (_("`%s' is not supported on `%s%s'"),
4899 current_templates->start->name,
4900 cpu_arch_name ? cpu_arch_name : default_arch,
4901 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4902
4903 return NULL;
4904 }
4905
4906 static char *
4907 parse_operands (char *l, const char *mnemonic)
4908 {
4909 char *token_start;
4910
4911 /* 1 if operand is pending after ','. */
4912 unsigned int expecting_operand = 0;
4913
4914 /* Non-zero if operand parens not balanced. */
4915 unsigned int paren_not_balanced;
4916
4917 while (*l != END_OF_INSN)
4918 {
4919 /* Skip optional white space before operand. */
4920 if (is_space_char (*l))
4921 ++l;
4922 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4923 {
4924 as_bad (_("invalid character %s before operand %d"),
4925 output_invalid (*l),
4926 i.operands + 1);
4927 return NULL;
4928 }
4929 token_start = l; /* After white space. */
4930 paren_not_balanced = 0;
4931 while (paren_not_balanced || *l != ',')
4932 {
4933 if (*l == END_OF_INSN)
4934 {
4935 if (paren_not_balanced)
4936 {
4937 if (!intel_syntax)
4938 as_bad (_("unbalanced parenthesis in operand %d."),
4939 i.operands + 1);
4940 else
4941 as_bad (_("unbalanced brackets in operand %d."),
4942 i.operands + 1);
4943 return NULL;
4944 }
4945 else
4946 break; /* we are done */
4947 }
4948 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4949 {
4950 as_bad (_("invalid character %s in operand %d"),
4951 output_invalid (*l),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 if (!intel_syntax)
4956 {
4957 if (*l == '(')
4958 ++paren_not_balanced;
4959 if (*l == ')')
4960 --paren_not_balanced;
4961 }
4962 else
4963 {
4964 if (*l == '[')
4965 ++paren_not_balanced;
4966 if (*l == ']')
4967 --paren_not_balanced;
4968 }
4969 l++;
4970 }
4971 if (l != token_start)
4972 { /* Yes, we've read in another operand. */
4973 unsigned int operand_ok;
4974 this_operand = i.operands++;
4975 if (i.operands > MAX_OPERANDS)
4976 {
4977 as_bad (_("spurious operands; (%d operands/instruction max)"),
4978 MAX_OPERANDS);
4979 return NULL;
4980 }
4981 i.types[this_operand].bitfield.unspecified = 1;
4982 /* Now parse operand adding info to 'i' as we go along. */
4983 END_STRING_AND_SAVE (l);
4984
4985 if (i.mem_operands > 1)
4986 {
4987 as_bad (_("too many memory references for `%s'"),
4988 mnemonic);
4989 return 0;
4990 }
4991
4992 if (intel_syntax)
4993 operand_ok =
4994 i386_intel_operand (token_start,
4995 intel_float_operand (mnemonic));
4996 else
4997 operand_ok = i386_att_operand (token_start);
4998
4999 RESTORE_END_STRING (l);
5000 if (!operand_ok)
5001 return NULL;
5002 }
5003 else
5004 {
5005 if (expecting_operand)
5006 {
5007 expecting_operand_after_comma:
5008 as_bad (_("expecting operand after ','; got nothing"));
5009 return NULL;
5010 }
5011 if (*l == ',')
5012 {
5013 as_bad (_("expecting operand before ','; got nothing"));
5014 return NULL;
5015 }
5016 }
5017
5018 /* Now *l must be either ',' or END_OF_INSN. */
5019 if (*l == ',')
5020 {
5021 if (*++l == END_OF_INSN)
5022 {
5023 /* Just skip it, if it's \n complain. */
5024 goto expecting_operand_after_comma;
5025 }
5026 expecting_operand = 1;
5027 }
5028 }
5029 return l;
5030 }
5031
5032 static void
5033 swap_2_operands (int xchg1, int xchg2)
5034 {
5035 union i386_op temp_op;
5036 i386_operand_type temp_type;
5037 unsigned int temp_flags;
5038 enum bfd_reloc_code_real temp_reloc;
5039
5040 temp_type = i.types[xchg2];
5041 i.types[xchg2] = i.types[xchg1];
5042 i.types[xchg1] = temp_type;
5043
5044 temp_flags = i.flags[xchg2];
5045 i.flags[xchg2] = i.flags[xchg1];
5046 i.flags[xchg1] = temp_flags;
5047
5048 temp_op = i.op[xchg2];
5049 i.op[xchg2] = i.op[xchg1];
5050 i.op[xchg1] = temp_op;
5051
5052 temp_reloc = i.reloc[xchg2];
5053 i.reloc[xchg2] = i.reloc[xchg1];
5054 i.reloc[xchg1] = temp_reloc;
5055
5056 if (i.mask)
5057 {
5058 if (i.mask->operand == xchg1)
5059 i.mask->operand = xchg2;
5060 else if (i.mask->operand == xchg2)
5061 i.mask->operand = xchg1;
5062 }
5063 if (i.broadcast)
5064 {
5065 if (i.broadcast->operand == xchg1)
5066 i.broadcast->operand = xchg2;
5067 else if (i.broadcast->operand == xchg2)
5068 i.broadcast->operand = xchg1;
5069 }
5070 if (i.rounding)
5071 {
5072 if (i.rounding->operand == xchg1)
5073 i.rounding->operand = xchg2;
5074 else if (i.rounding->operand == xchg2)
5075 i.rounding->operand = xchg1;
5076 }
5077 }
5078
5079 static void
5080 swap_operands (void)
5081 {
5082 switch (i.operands)
5083 {
5084 case 5:
5085 case 4:
5086 swap_2_operands (1, i.operands - 2);
5087 /* Fall through. */
5088 case 3:
5089 case 2:
5090 swap_2_operands (0, i.operands - 1);
5091 break;
5092 default:
5093 abort ();
5094 }
5095
5096 if (i.mem_operands == 2)
5097 {
5098 const seg_entry *temp_seg;
5099 temp_seg = i.seg[0];
5100 i.seg[0] = i.seg[1];
5101 i.seg[1] = temp_seg;
5102 }
5103 }
5104
5105 /* Try to ensure constant immediates are represented in the smallest
5106 opcode possible. */
5107 static void
5108 optimize_imm (void)
5109 {
5110 char guess_suffix = 0;
5111 int op;
5112
5113 if (i.suffix)
5114 guess_suffix = i.suffix;
5115 else if (i.reg_operands)
5116 {
5117 /* Figure out a suffix from the last register operand specified.
5118 We can't do this properly yet, i.e. excluding special register
5119 instances, but the following works for instructions with
5120 immediates. In any case, we can't set i.suffix yet. */
5121 for (op = i.operands; --op >= 0;)
5122 if (i.types[op].bitfield.class != Reg)
5123 continue;
5124 else if (i.types[op].bitfield.byte)
5125 {
5126 guess_suffix = BYTE_MNEM_SUFFIX;
5127 break;
5128 }
5129 else if (i.types[op].bitfield.word)
5130 {
5131 guess_suffix = WORD_MNEM_SUFFIX;
5132 break;
5133 }
5134 else if (i.types[op].bitfield.dword)
5135 {
5136 guess_suffix = LONG_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.qword)
5140 {
5141 guess_suffix = QWORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 }
5145 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5146 guess_suffix = WORD_MNEM_SUFFIX;
5147
5148 for (op = i.operands; --op >= 0;)
5149 if (operand_type_check (i.types[op], imm))
5150 {
5151 switch (i.op[op].imms->X_op)
5152 {
5153 case O_constant:
5154 /* If a suffix is given, this operand may be shortened. */
5155 switch (guess_suffix)
5156 {
5157 case LONG_MNEM_SUFFIX:
5158 i.types[op].bitfield.imm32 = 1;
5159 i.types[op].bitfield.imm64 = 1;
5160 break;
5161 case WORD_MNEM_SUFFIX:
5162 i.types[op].bitfield.imm16 = 1;
5163 i.types[op].bitfield.imm32 = 1;
5164 i.types[op].bitfield.imm32s = 1;
5165 i.types[op].bitfield.imm64 = 1;
5166 break;
5167 case BYTE_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm8 = 1;
5169 i.types[op].bitfield.imm8s = 1;
5170 i.types[op].bitfield.imm16 = 1;
5171 i.types[op].bitfield.imm32 = 1;
5172 i.types[op].bitfield.imm32s = 1;
5173 i.types[op].bitfield.imm64 = 1;
5174 break;
5175 }
5176
5177 /* If this operand is at most 16 bits, convert it
5178 to a signed 16 bit number before trying to see
5179 whether it will fit in an even smaller size.
5180 This allows a 16-bit operand such as $0xffe0 to
5181 be recognised as within Imm8S range. */
5182 if ((i.types[op].bitfield.imm16)
5183 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5184 {
5185 i.op[op].imms->X_add_number =
5186 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5187 }
5188 #ifdef BFD64
5189 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5190 if ((i.types[op].bitfield.imm32)
5191 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5192 == 0))
5193 {
5194 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5195 ^ ((offsetT) 1 << 31))
5196 - ((offsetT) 1 << 31));
5197 }
5198 #endif
5199 i.types[op]
5200 = operand_type_or (i.types[op],
5201 smallest_imm_type (i.op[op].imms->X_add_number));
5202
5203 /* We must avoid matching of Imm32 templates when 64bit
5204 only immediate is available. */
5205 if (guess_suffix == QWORD_MNEM_SUFFIX)
5206 i.types[op].bitfield.imm32 = 0;
5207 break;
5208
5209 case O_absent:
5210 case O_register:
5211 abort ();
5212
5213 /* Symbols and expressions. */
5214 default:
5215 /* Convert symbolic operand to proper sizes for matching, but don't
5216 prevent matching a set of insns that only supports sizes other
5217 than those matching the insn suffix. */
5218 {
5219 i386_operand_type mask, allowed;
5220 const insn_template *t;
5221
5222 operand_type_set (&mask, 0);
5223 operand_type_set (&allowed, 0);
5224
5225 for (t = current_templates->start;
5226 t < current_templates->end;
5227 ++t)
5228 {
5229 allowed = operand_type_or (allowed, t->operand_types[op]);
5230 allowed = operand_type_and (allowed, anyimm);
5231 }
5232 switch (guess_suffix)
5233 {
5234 case QWORD_MNEM_SUFFIX:
5235 mask.bitfield.imm64 = 1;
5236 mask.bitfield.imm32s = 1;
5237 break;
5238 case LONG_MNEM_SUFFIX:
5239 mask.bitfield.imm32 = 1;
5240 break;
5241 case WORD_MNEM_SUFFIX:
5242 mask.bitfield.imm16 = 1;
5243 break;
5244 case BYTE_MNEM_SUFFIX:
5245 mask.bitfield.imm8 = 1;
5246 break;
5247 default:
5248 break;
5249 }
5250 allowed = operand_type_and (mask, allowed);
5251 if (!operand_type_all_zero (&allowed))
5252 i.types[op] = operand_type_and (i.types[op], mask);
5253 }
5254 break;
5255 }
5256 }
5257 }
5258
5259 /* Try to use the smallest displacement type too. */
5260 static void
5261 optimize_disp (void)
5262 {
5263 int op;
5264
5265 for (op = i.operands; --op >= 0;)
5266 if (operand_type_check (i.types[op], disp))
5267 {
5268 if (i.op[op].disps->X_op == O_constant)
5269 {
5270 offsetT op_disp = i.op[op].disps->X_add_number;
5271
5272 if (i.types[op].bitfield.disp16
5273 && (op_disp & ~(offsetT) 0xffff) == 0)
5274 {
5275 /* If this operand is at most 16 bits, convert
5276 to a signed 16 bit number and don't use 64bit
5277 displacement. */
5278 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5279 i.types[op].bitfield.disp64 = 0;
5280 }
5281 #ifdef BFD64
5282 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5283 if (i.types[op].bitfield.disp32
5284 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5285 {
5286 /* If this operand is at most 32 bits, convert
5287 to a signed 32 bit number and don't use 64bit
5288 displacement. */
5289 op_disp &= (((offsetT) 2 << 31) - 1);
5290 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5291 i.types[op].bitfield.disp64 = 0;
5292 }
5293 #endif
5294 if (!op_disp && i.types[op].bitfield.baseindex)
5295 {
5296 i.types[op].bitfield.disp8 = 0;
5297 i.types[op].bitfield.disp16 = 0;
5298 i.types[op].bitfield.disp32 = 0;
5299 i.types[op].bitfield.disp32s = 0;
5300 i.types[op].bitfield.disp64 = 0;
5301 i.op[op].disps = 0;
5302 i.disp_operands--;
5303 }
5304 else if (flag_code == CODE_64BIT)
5305 {
5306 if (fits_in_signed_long (op_disp))
5307 {
5308 i.types[op].bitfield.disp64 = 0;
5309 i.types[op].bitfield.disp32s = 1;
5310 }
5311 if (i.prefix[ADDR_PREFIX]
5312 && fits_in_unsigned_long (op_disp))
5313 i.types[op].bitfield.disp32 = 1;
5314 }
5315 if ((i.types[op].bitfield.disp32
5316 || i.types[op].bitfield.disp32s
5317 || i.types[op].bitfield.disp16)
5318 && fits_in_disp8 (op_disp))
5319 i.types[op].bitfield.disp8 = 1;
5320 }
5321 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5322 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5323 {
5324 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5325 i.op[op].disps, 0, i.reloc[op]);
5326 i.types[op].bitfield.disp8 = 0;
5327 i.types[op].bitfield.disp16 = 0;
5328 i.types[op].bitfield.disp32 = 0;
5329 i.types[op].bitfield.disp32s = 0;
5330 i.types[op].bitfield.disp64 = 0;
5331 }
5332 else
5333 /* We only support 64bit displacement on constants. */
5334 i.types[op].bitfield.disp64 = 0;
5335 }
5336 }
5337
5338 /* Return 1 if there is a match in broadcast bytes between operand
5339 GIVEN and instruction template T. */
5340
5341 static INLINE int
5342 match_broadcast_size (const insn_template *t, unsigned int given)
5343 {
5344 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5345 && i.types[given].bitfield.byte)
5346 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5347 && i.types[given].bitfield.word)
5348 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5349 && i.types[given].bitfield.dword)
5350 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5351 && i.types[given].bitfield.qword));
5352 }
5353
5354 /* Check if operands are valid for the instruction. */
5355
5356 static int
5357 check_VecOperands (const insn_template *t)
5358 {
5359 unsigned int op;
5360 i386_cpu_flags cpu;
5361
5362 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5363 any one operand are implicity requiring AVX512VL support if the actual
5364 operand size is YMMword or XMMword. Since this function runs after
5365 template matching, there's no need to check for YMMword/XMMword in
5366 the template. */
5367 cpu = cpu_flags_and (t->cpu_flags, avx512);
5368 if (!cpu_flags_all_zero (&cpu)
5369 && !t->cpu_flags.bitfield.cpuavx512vl
5370 && !cpu_arch_flags.bitfield.cpuavx512vl)
5371 {
5372 for (op = 0; op < t->operands; ++op)
5373 {
5374 if (t->operand_types[op].bitfield.zmmword
5375 && (i.types[op].bitfield.ymmword
5376 || i.types[op].bitfield.xmmword))
5377 {
5378 i.error = unsupported;
5379 return 1;
5380 }
5381 }
5382 }
5383
5384 /* Without VSIB byte, we can't have a vector register for index. */
5385 if (!t->opcode_modifier.vecsib
5386 && i.index_reg
5387 && (i.index_reg->reg_type.bitfield.xmmword
5388 || i.index_reg->reg_type.bitfield.ymmword
5389 || i.index_reg->reg_type.bitfield.zmmword))
5390 {
5391 i.error = unsupported_vector_index_register;
5392 return 1;
5393 }
5394
5395 /* Check if default mask is allowed. */
5396 if (t->opcode_modifier.nodefmask
5397 && (!i.mask || i.mask->mask->reg_num == 0))
5398 {
5399 i.error = no_default_mask;
5400 return 1;
5401 }
5402
5403 /* For VSIB byte, we need a vector register for index, and all vector
5404 registers must be distinct. */
5405 if (t->opcode_modifier.vecsib)
5406 {
5407 if (!i.index_reg
5408 || !((t->opcode_modifier.vecsib == VecSIB128
5409 && i.index_reg->reg_type.bitfield.xmmword)
5410 || (t->opcode_modifier.vecsib == VecSIB256
5411 && i.index_reg->reg_type.bitfield.ymmword)
5412 || (t->opcode_modifier.vecsib == VecSIB512
5413 && i.index_reg->reg_type.bitfield.zmmword)))
5414 {
5415 i.error = invalid_vsib_address;
5416 return 1;
5417 }
5418
5419 gas_assert (i.reg_operands == 2 || i.mask);
5420 if (i.reg_operands == 2 && !i.mask)
5421 {
5422 gas_assert (i.types[0].bitfield.class == RegSIMD);
5423 gas_assert (i.types[0].bitfield.xmmword
5424 || i.types[0].bitfield.ymmword);
5425 gas_assert (i.types[2].bitfield.class == RegSIMD);
5426 gas_assert (i.types[2].bitfield.xmmword
5427 || i.types[2].bitfield.ymmword);
5428 if (operand_check == check_none)
5429 return 0;
5430 if (register_number (i.op[0].regs)
5431 != register_number (i.index_reg)
5432 && register_number (i.op[2].regs)
5433 != register_number (i.index_reg)
5434 && register_number (i.op[0].regs)
5435 != register_number (i.op[2].regs))
5436 return 0;
5437 if (operand_check == check_error)
5438 {
5439 i.error = invalid_vector_register_set;
5440 return 1;
5441 }
5442 as_warn (_("mask, index, and destination registers should be distinct"));
5443 }
5444 else if (i.reg_operands == 1 && i.mask)
5445 {
5446 if (i.types[1].bitfield.class == RegSIMD
5447 && (i.types[1].bitfield.xmmword
5448 || i.types[1].bitfield.ymmword
5449 || i.types[1].bitfield.zmmword)
5450 && (register_number (i.op[1].regs)
5451 == register_number (i.index_reg)))
5452 {
5453 if (operand_check == check_error)
5454 {
5455 i.error = invalid_vector_register_set;
5456 return 1;
5457 }
5458 if (operand_check != check_none)
5459 as_warn (_("index and destination registers should be distinct"));
5460 }
5461 }
5462 }
5463
5464 /* Check if broadcast is supported by the instruction and is applied
5465 to the memory operand. */
5466 if (i.broadcast)
5467 {
5468 i386_operand_type type, overlap;
5469
5470 /* Check if specified broadcast is supported in this instruction,
5471 and its broadcast bytes match the memory operand. */
5472 op = i.broadcast->operand;
5473 if (!t->opcode_modifier.broadcast
5474 || !(i.flags[op] & Operand_Mem)
5475 || (!i.types[op].bitfield.unspecified
5476 && !match_broadcast_size (t, op)))
5477 {
5478 bad_broadcast:
5479 i.error = unsupported_broadcast;
5480 return 1;
5481 }
5482
5483 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5484 * i.broadcast->type);
5485 operand_type_set (&type, 0);
5486 switch (i.broadcast->bytes)
5487 {
5488 case 2:
5489 type.bitfield.word = 1;
5490 break;
5491 case 4:
5492 type.bitfield.dword = 1;
5493 break;
5494 case 8:
5495 type.bitfield.qword = 1;
5496 break;
5497 case 16:
5498 type.bitfield.xmmword = 1;
5499 break;
5500 case 32:
5501 type.bitfield.ymmword = 1;
5502 break;
5503 case 64:
5504 type.bitfield.zmmword = 1;
5505 break;
5506 default:
5507 goto bad_broadcast;
5508 }
5509
5510 overlap = operand_type_and (type, t->operand_types[op]);
5511 if (operand_type_all_zero (&overlap))
5512 goto bad_broadcast;
5513
5514 if (t->opcode_modifier.checkregsize)
5515 {
5516 unsigned int j;
5517
5518 type.bitfield.baseindex = 1;
5519 for (j = 0; j < i.operands; ++j)
5520 {
5521 if (j != op
5522 && !operand_type_register_match(i.types[j],
5523 t->operand_types[j],
5524 type,
5525 t->operand_types[op]))
5526 goto bad_broadcast;
5527 }
5528 }
5529 }
5530 /* If broadcast is supported in this instruction, we need to check if
5531 operand of one-element size isn't specified without broadcast. */
5532 else if (t->opcode_modifier.broadcast && i.mem_operands)
5533 {
5534 /* Find memory operand. */
5535 for (op = 0; op < i.operands; op++)
5536 if (i.flags[op] & Operand_Mem)
5537 break;
5538 gas_assert (op < i.operands);
5539 /* Check size of the memory operand. */
5540 if (match_broadcast_size (t, op))
5541 {
5542 i.error = broadcast_needed;
5543 return 1;
5544 }
5545 }
5546 else
5547 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5548
5549 /* Check if requested masking is supported. */
5550 if (i.mask)
5551 {
5552 switch (t->opcode_modifier.masking)
5553 {
5554 case BOTH_MASKING:
5555 break;
5556 case MERGING_MASKING:
5557 if (i.mask->zeroing)
5558 {
5559 case 0:
5560 i.error = unsupported_masking;
5561 return 1;
5562 }
5563 break;
5564 case DYNAMIC_MASKING:
5565 /* Memory destinations allow only merging masking. */
5566 if (i.mask->zeroing && i.mem_operands)
5567 {
5568 /* Find memory operand. */
5569 for (op = 0; op < i.operands; op++)
5570 if (i.flags[op] & Operand_Mem)
5571 break;
5572 gas_assert (op < i.operands);
5573 if (op == i.operands - 1)
5574 {
5575 i.error = unsupported_masking;
5576 return 1;
5577 }
5578 }
5579 break;
5580 default:
5581 abort ();
5582 }
5583 }
5584
5585 /* Check if masking is applied to dest operand. */
5586 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5587 {
5588 i.error = mask_not_on_destination;
5589 return 1;
5590 }
5591
5592 /* Check RC/SAE. */
5593 if (i.rounding)
5594 {
5595 if (!t->opcode_modifier.sae
5596 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5597 {
5598 i.error = unsupported_rc_sae;
5599 return 1;
5600 }
5601 /* If the instruction has several immediate operands and one of
5602 them is rounding, the rounding operand should be the last
5603 immediate operand. */
5604 if (i.imm_operands > 1
5605 && i.rounding->operand != (int) (i.imm_operands - 1))
5606 {
5607 i.error = rc_sae_operand_not_last_imm;
5608 return 1;
5609 }
5610 }
5611
5612 /* Check vector Disp8 operand. */
5613 if (t->opcode_modifier.disp8memshift
5614 && i.disp_encoding != disp_encoding_32bit)
5615 {
5616 if (i.broadcast)
5617 i.memshift = t->opcode_modifier.broadcast - 1;
5618 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5619 i.memshift = t->opcode_modifier.disp8memshift;
5620 else
5621 {
5622 const i386_operand_type *type = NULL;
5623
5624 i.memshift = 0;
5625 for (op = 0; op < i.operands; op++)
5626 if (i.flags[op] & Operand_Mem)
5627 {
5628 if (t->opcode_modifier.evex == EVEXLIG)
5629 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5630 else if (t->operand_types[op].bitfield.xmmword
5631 + t->operand_types[op].bitfield.ymmword
5632 + t->operand_types[op].bitfield.zmmword <= 1)
5633 type = &t->operand_types[op];
5634 else if (!i.types[op].bitfield.unspecified)
5635 type = &i.types[op];
5636 }
5637 else if (i.types[op].bitfield.class == RegSIMD
5638 && t->opcode_modifier.evex != EVEXLIG)
5639 {
5640 if (i.types[op].bitfield.zmmword)
5641 i.memshift = 6;
5642 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5643 i.memshift = 5;
5644 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5645 i.memshift = 4;
5646 }
5647
5648 if (type)
5649 {
5650 if (type->bitfield.zmmword)
5651 i.memshift = 6;
5652 else if (type->bitfield.ymmword)
5653 i.memshift = 5;
5654 else if (type->bitfield.xmmword)
5655 i.memshift = 4;
5656 }
5657
5658 /* For the check in fits_in_disp8(). */
5659 if (i.memshift == 0)
5660 i.memshift = -1;
5661 }
5662
5663 for (op = 0; op < i.operands; op++)
5664 if (operand_type_check (i.types[op], disp)
5665 && i.op[op].disps->X_op == O_constant)
5666 {
5667 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5668 {
5669 i.types[op].bitfield.disp8 = 1;
5670 return 0;
5671 }
5672 i.types[op].bitfield.disp8 = 0;
5673 }
5674 }
5675
5676 i.memshift = 0;
5677
5678 return 0;
5679 }
5680
5681 /* Check if operands are valid for the instruction. Update VEX
5682 operand types. */
5683
5684 static int
5685 VEX_check_operands (const insn_template *t)
5686 {
5687 if (i.vec_encoding == vex_encoding_evex)
5688 {
5689 /* This instruction must be encoded with EVEX prefix. */
5690 if (!is_evex_encoding (t))
5691 {
5692 i.error = unsupported;
5693 return 1;
5694 }
5695 return 0;
5696 }
5697
5698 if (!t->opcode_modifier.vex)
5699 {
5700 /* This instruction template doesn't have VEX prefix. */
5701 if (i.vec_encoding != vex_encoding_default)
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 /* Check the special Imm4 cases; must be the first operand. */
5710 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5711 {
5712 if (i.op[0].imms->X_op != O_constant
5713 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5714 {
5715 i.error = bad_imm4;
5716 return 1;
5717 }
5718
5719 /* Turn off Imm<N> so that update_imm won't complain. */
5720 operand_type_set (&i.types[0], 0);
5721 }
5722
5723 return 0;
5724 }
5725
5726 static const insn_template *
5727 match_template (char mnem_suffix)
5728 {
5729 /* Points to template once we've found it. */
5730 const insn_template *t;
5731 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5732 i386_operand_type overlap4;
5733 unsigned int found_reverse_match;
5734 i386_opcode_modifier suffix_check;
5735 i386_operand_type operand_types [MAX_OPERANDS];
5736 int addr_prefix_disp;
5737 unsigned int j, size_match, check_register;
5738 enum i386_error specific_error = 0;
5739
5740 #if MAX_OPERANDS != 5
5741 # error "MAX_OPERANDS must be 5."
5742 #endif
5743
5744 found_reverse_match = 0;
5745 addr_prefix_disp = -1;
5746
5747 /* Prepare for mnemonic suffix check. */
5748 memset (&suffix_check, 0, sizeof (suffix_check));
5749 switch (mnem_suffix)
5750 {
5751 case BYTE_MNEM_SUFFIX:
5752 suffix_check.no_bsuf = 1;
5753 break;
5754 case WORD_MNEM_SUFFIX:
5755 suffix_check.no_wsuf = 1;
5756 break;
5757 case SHORT_MNEM_SUFFIX:
5758 suffix_check.no_ssuf = 1;
5759 break;
5760 case LONG_MNEM_SUFFIX:
5761 suffix_check.no_lsuf = 1;
5762 break;
5763 case QWORD_MNEM_SUFFIX:
5764 suffix_check.no_qsuf = 1;
5765 break;
5766 default:
5767 /* NB: In Intel syntax, normally we can check for memory operand
5768 size when there is no mnemonic suffix. But jmp and call have
5769 2 different encodings with Dword memory operand size, one with
5770 No_ldSuf and the other without. i.suffix is set to
5771 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5772 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5773 suffix_check.no_ldsuf = 1;
5774 }
5775
5776 /* Must have right number of operands. */
5777 i.error = number_of_operands_mismatch;
5778
5779 for (t = current_templates->start; t < current_templates->end; t++)
5780 {
5781 addr_prefix_disp = -1;
5782 found_reverse_match = 0;
5783
5784 if (i.operands != t->operands)
5785 continue;
5786
5787 /* Check processor support. */
5788 i.error = unsupported;
5789 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5790 continue;
5791
5792 /* Check AT&T mnemonic. */
5793 i.error = unsupported_with_intel_mnemonic;
5794 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5795 continue;
5796
5797 /* Check AT&T/Intel syntax. */
5798 i.error = unsupported_syntax;
5799 if ((intel_syntax && t->opcode_modifier.attsyntax)
5800 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5801 continue;
5802
5803 /* Check Intel64/AMD64 ISA. */
5804 switch (isa64)
5805 {
5806 default:
5807 /* Default: Don't accept Intel64. */
5808 if (t->opcode_modifier.isa64 == INTEL64)
5809 continue;
5810 break;
5811 case amd64:
5812 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5813 if (t->opcode_modifier.isa64 >= INTEL64)
5814 continue;
5815 break;
5816 case intel64:
5817 /* -mintel64: Don't accept AMD64. */
5818 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5819 continue;
5820 break;
5821 }
5822
5823 /* Check the suffix. */
5824 i.error = invalid_instruction_suffix;
5825 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5826 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5827 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5828 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5829 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5830 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5831 continue;
5832
5833 size_match = operand_size_match (t);
5834 if (!size_match)
5835 continue;
5836
5837 /* This is intentionally not
5838
5839 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5840
5841 as the case of a missing * on the operand is accepted (perhaps with
5842 a warning, issued further down). */
5843 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5844 {
5845 i.error = operand_type_mismatch;
5846 continue;
5847 }
5848
5849 for (j = 0; j < MAX_OPERANDS; j++)
5850 operand_types[j] = t->operand_types[j];
5851
5852 /* In general, don't allow 64-bit operands in 32-bit mode. */
5853 if (i.suffix == QWORD_MNEM_SUFFIX
5854 && flag_code != CODE_64BIT
5855 && (intel_syntax
5856 ? (!t->opcode_modifier.ignoresize
5857 && !t->opcode_modifier.broadcast
5858 && !intel_float_operand (t->name))
5859 : intel_float_operand (t->name) != 2)
5860 && ((operand_types[0].bitfield.class != RegMMX
5861 && operand_types[0].bitfield.class != RegSIMD)
5862 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5863 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5864 && (t->base_opcode != 0x0fc7
5865 || t->extension_opcode != 1 /* cmpxchg8b */))
5866 continue;
5867
5868 /* In general, don't allow 32-bit operands on pre-386. */
5869 else if (i.suffix == LONG_MNEM_SUFFIX
5870 && !cpu_arch_flags.bitfield.cpui386
5871 && (intel_syntax
5872 ? (!t->opcode_modifier.ignoresize
5873 && !intel_float_operand (t->name))
5874 : intel_float_operand (t->name) != 2)
5875 && ((operand_types[0].bitfield.class != RegMMX
5876 && operand_types[0].bitfield.class != RegSIMD)
5877 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5878 && operand_types[t->operands > 1].bitfield.class
5879 != RegSIMD)))
5880 continue;
5881
5882 /* Do not verify operands when there are none. */
5883 else
5884 {
5885 if (!t->operands)
5886 /* We've found a match; break out of loop. */
5887 break;
5888 }
5889
5890 if (!t->opcode_modifier.jump
5891 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5892 {
5893 /* There should be only one Disp operand. */
5894 for (j = 0; j < MAX_OPERANDS; j++)
5895 if (operand_type_check (operand_types[j], disp))
5896 break;
5897 if (j < MAX_OPERANDS)
5898 {
5899 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5900
5901 addr_prefix_disp = j;
5902
5903 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5904 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5905 switch (flag_code)
5906 {
5907 case CODE_16BIT:
5908 override = !override;
5909 /* Fall through. */
5910 case CODE_32BIT:
5911 if (operand_types[j].bitfield.disp32
5912 && operand_types[j].bitfield.disp16)
5913 {
5914 operand_types[j].bitfield.disp16 = override;
5915 operand_types[j].bitfield.disp32 = !override;
5916 }
5917 operand_types[j].bitfield.disp32s = 0;
5918 operand_types[j].bitfield.disp64 = 0;
5919 break;
5920
5921 case CODE_64BIT:
5922 if (operand_types[j].bitfield.disp32s
5923 || operand_types[j].bitfield.disp64)
5924 {
5925 operand_types[j].bitfield.disp64 &= !override;
5926 operand_types[j].bitfield.disp32s &= !override;
5927 operand_types[j].bitfield.disp32 = override;
5928 }
5929 operand_types[j].bitfield.disp16 = 0;
5930 break;
5931 }
5932 }
5933 }
5934
5935 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5936 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5937 continue;
5938
5939 /* We check register size if needed. */
5940 if (t->opcode_modifier.checkregsize)
5941 {
5942 check_register = (1 << t->operands) - 1;
5943 if (i.broadcast)
5944 check_register &= ~(1 << i.broadcast->operand);
5945 }
5946 else
5947 check_register = 0;
5948
5949 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5950 switch (t->operands)
5951 {
5952 case 1:
5953 if (!operand_type_match (overlap0, i.types[0]))
5954 continue;
5955 break;
5956 case 2:
5957 /* xchg %eax, %eax is a special case. It is an alias for nop
5958 only in 32bit mode and we can use opcode 0x90. In 64bit
5959 mode, we can't use 0x90 for xchg %eax, %eax since it should
5960 zero-extend %eax to %rax. */
5961 if (flag_code == CODE_64BIT
5962 && t->base_opcode == 0x90
5963 && i.types[0].bitfield.instance == Accum
5964 && i.types[0].bitfield.dword
5965 && i.types[1].bitfield.instance == Accum
5966 && i.types[1].bitfield.dword)
5967 continue;
5968 /* xrelease mov %eax, <disp> is another special case. It must not
5969 match the accumulator-only encoding of mov. */
5970 if (flag_code != CODE_64BIT
5971 && i.hle_prefix
5972 && t->base_opcode == 0xa0
5973 && i.types[0].bitfield.instance == Accum
5974 && (i.flags[1] & Operand_Mem))
5975 continue;
5976 /* Fall through. */
5977
5978 case 3:
5979 if (!(size_match & MATCH_STRAIGHT))
5980 goto check_reverse;
5981 /* Reverse direction of operands if swapping is possible in the first
5982 place (operands need to be symmetric) and
5983 - the load form is requested, and the template is a store form,
5984 - the store form is requested, and the template is a load form,
5985 - the non-default (swapped) form is requested. */
5986 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5987 if (t->opcode_modifier.d && i.reg_operands == i.operands
5988 && !operand_type_all_zero (&overlap1))
5989 switch (i.dir_encoding)
5990 {
5991 case dir_encoding_load:
5992 if (operand_type_check (operand_types[i.operands - 1], anymem)
5993 || t->opcode_modifier.regmem)
5994 goto check_reverse;
5995 break;
5996
5997 case dir_encoding_store:
5998 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5999 && !t->opcode_modifier.regmem)
6000 goto check_reverse;
6001 break;
6002
6003 case dir_encoding_swap:
6004 goto check_reverse;
6005
6006 case dir_encoding_default:
6007 break;
6008 }
6009 /* If we want store form, we skip the current load. */
6010 if ((i.dir_encoding == dir_encoding_store
6011 || i.dir_encoding == dir_encoding_swap)
6012 && i.mem_operands == 0
6013 && t->opcode_modifier.load)
6014 continue;
6015 /* Fall through. */
6016 case 4:
6017 case 5:
6018 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6019 if (!operand_type_match (overlap0, i.types[0])
6020 || !operand_type_match (overlap1, i.types[1])
6021 || ((check_register & 3) == 3
6022 && !operand_type_register_match (i.types[0],
6023 operand_types[0],
6024 i.types[1],
6025 operand_types[1])))
6026 {
6027 /* Check if other direction is valid ... */
6028 if (!t->opcode_modifier.d)
6029 continue;
6030
6031 check_reverse:
6032 if (!(size_match & MATCH_REVERSE))
6033 continue;
6034 /* Try reversing direction of operands. */
6035 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6036 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6037 if (!operand_type_match (overlap0, i.types[0])
6038 || !operand_type_match (overlap1, i.types[i.operands - 1])
6039 || (check_register
6040 && !operand_type_register_match (i.types[0],
6041 operand_types[i.operands - 1],
6042 i.types[i.operands - 1],
6043 operand_types[0])))
6044 {
6045 /* Does not match either direction. */
6046 continue;
6047 }
6048 /* found_reverse_match holds which of D or FloatR
6049 we've found. */
6050 if (!t->opcode_modifier.d)
6051 found_reverse_match = 0;
6052 else if (operand_types[0].bitfield.tbyte)
6053 found_reverse_match = Opcode_FloatD;
6054 else if (operand_types[0].bitfield.xmmword
6055 || operand_types[i.operands - 1].bitfield.xmmword
6056 || operand_types[0].bitfield.class == RegMMX
6057 || operand_types[i.operands - 1].bitfield.class == RegMMX
6058 || is_any_vex_encoding(t))
6059 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6060 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6061 else
6062 found_reverse_match = Opcode_D;
6063 if (t->opcode_modifier.floatr)
6064 found_reverse_match |= Opcode_FloatR;
6065 }
6066 else
6067 {
6068 /* Found a forward 2 operand match here. */
6069 switch (t->operands)
6070 {
6071 case 5:
6072 overlap4 = operand_type_and (i.types[4],
6073 operand_types[4]);
6074 /* Fall through. */
6075 case 4:
6076 overlap3 = operand_type_and (i.types[3],
6077 operand_types[3]);
6078 /* Fall through. */
6079 case 3:
6080 overlap2 = operand_type_and (i.types[2],
6081 operand_types[2]);
6082 break;
6083 }
6084
6085 switch (t->operands)
6086 {
6087 case 5:
6088 if (!operand_type_match (overlap4, i.types[4])
6089 || !operand_type_register_match (i.types[3],
6090 operand_types[3],
6091 i.types[4],
6092 operand_types[4]))
6093 continue;
6094 /* Fall through. */
6095 case 4:
6096 if (!operand_type_match (overlap3, i.types[3])
6097 || ((check_register & 0xa) == 0xa
6098 && !operand_type_register_match (i.types[1],
6099 operand_types[1],
6100 i.types[3],
6101 operand_types[3]))
6102 || ((check_register & 0xc) == 0xc
6103 && !operand_type_register_match (i.types[2],
6104 operand_types[2],
6105 i.types[3],
6106 operand_types[3])))
6107 continue;
6108 /* Fall through. */
6109 case 3:
6110 /* Here we make use of the fact that there are no
6111 reverse match 3 operand instructions. */
6112 if (!operand_type_match (overlap2, i.types[2])
6113 || ((check_register & 5) == 5
6114 && !operand_type_register_match (i.types[0],
6115 operand_types[0],
6116 i.types[2],
6117 operand_types[2]))
6118 || ((check_register & 6) == 6
6119 && !operand_type_register_match (i.types[1],
6120 operand_types[1],
6121 i.types[2],
6122 operand_types[2])))
6123 continue;
6124 break;
6125 }
6126 }
6127 /* Found either forward/reverse 2, 3 or 4 operand match here:
6128 slip through to break. */
6129 }
6130
6131 /* Check if vector and VEX operands are valid. */
6132 if (check_VecOperands (t) || VEX_check_operands (t))
6133 {
6134 specific_error = i.error;
6135 continue;
6136 }
6137
6138 /* We've found a match; break out of loop. */
6139 break;
6140 }
6141
6142 if (t == current_templates->end)
6143 {
6144 /* We found no match. */
6145 const char *err_msg;
6146 switch (specific_error ? specific_error : i.error)
6147 {
6148 default:
6149 abort ();
6150 case operand_size_mismatch:
6151 err_msg = _("operand size mismatch");
6152 break;
6153 case operand_type_mismatch:
6154 err_msg = _("operand type mismatch");
6155 break;
6156 case register_type_mismatch:
6157 err_msg = _("register type mismatch");
6158 break;
6159 case number_of_operands_mismatch:
6160 err_msg = _("number of operands mismatch");
6161 break;
6162 case invalid_instruction_suffix:
6163 err_msg = _("invalid instruction suffix");
6164 break;
6165 case bad_imm4:
6166 err_msg = _("constant doesn't fit in 4 bits");
6167 break;
6168 case unsupported_with_intel_mnemonic:
6169 err_msg = _("unsupported with Intel mnemonic");
6170 break;
6171 case unsupported_syntax:
6172 err_msg = _("unsupported syntax");
6173 break;
6174 case unsupported:
6175 as_bad (_("unsupported instruction `%s'"),
6176 current_templates->start->name);
6177 return NULL;
6178 case invalid_vsib_address:
6179 err_msg = _("invalid VSIB address");
6180 break;
6181 case invalid_vector_register_set:
6182 err_msg = _("mask, index, and destination registers must be distinct");
6183 break;
6184 case unsupported_vector_index_register:
6185 err_msg = _("unsupported vector index register");
6186 break;
6187 case unsupported_broadcast:
6188 err_msg = _("unsupported broadcast");
6189 break;
6190 case broadcast_needed:
6191 err_msg = _("broadcast is needed for operand of such type");
6192 break;
6193 case unsupported_masking:
6194 err_msg = _("unsupported masking");
6195 break;
6196 case mask_not_on_destination:
6197 err_msg = _("mask not on destination operand");
6198 break;
6199 case no_default_mask:
6200 err_msg = _("default mask isn't allowed");
6201 break;
6202 case unsupported_rc_sae:
6203 err_msg = _("unsupported static rounding/sae");
6204 break;
6205 case rc_sae_operand_not_last_imm:
6206 if (intel_syntax)
6207 err_msg = _("RC/SAE operand must precede immediate operands");
6208 else
6209 err_msg = _("RC/SAE operand must follow immediate operands");
6210 break;
6211 case invalid_register_operand:
6212 err_msg = _("invalid register operand");
6213 break;
6214 }
6215 as_bad (_("%s for `%s'"), err_msg,
6216 current_templates->start->name);
6217 return NULL;
6218 }
6219
6220 if (!quiet_warnings)
6221 {
6222 if (!intel_syntax
6223 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6224 as_warn (_("indirect %s without `*'"), t->name);
6225
6226 if (t->opcode_modifier.isprefix
6227 && t->opcode_modifier.ignoresize)
6228 {
6229 /* Warn them that a data or address size prefix doesn't
6230 affect assembly of the next line of code. */
6231 as_warn (_("stand-alone `%s' prefix"), t->name);
6232 }
6233 }
6234
6235 /* Copy the template we found. */
6236 i.tm = *t;
6237
6238 if (addr_prefix_disp != -1)
6239 i.tm.operand_types[addr_prefix_disp]
6240 = operand_types[addr_prefix_disp];
6241
6242 if (found_reverse_match)
6243 {
6244 /* If we found a reverse match we must alter the opcode direction
6245 bit and clear/flip the regmem modifier one. found_reverse_match
6246 holds bits to change (different for int & float insns). */
6247
6248 i.tm.base_opcode ^= found_reverse_match;
6249
6250 i.tm.operand_types[0] = operand_types[i.operands - 1];
6251 i.tm.operand_types[i.operands - 1] = operand_types[0];
6252
6253 /* Certain SIMD insns have their load forms specified in the opcode
6254 table, and hence we need to _set_ RegMem instead of clearing it.
6255 We need to avoid setting the bit though on insns like KMOVW. */
6256 i.tm.opcode_modifier.regmem
6257 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6258 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6259 && !i.tm.opcode_modifier.regmem;
6260 }
6261
6262 return t;
6263 }
6264
6265 static int
6266 check_string (void)
6267 {
6268 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6269 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6270
6271 if (i.seg[op] != NULL && i.seg[op] != &es)
6272 {
6273 as_bad (_("`%s' operand %u must use `%ses' segment"),
6274 i.tm.name,
6275 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6276 register_prefix);
6277 return 0;
6278 }
6279
6280 /* There's only ever one segment override allowed per instruction.
6281 This instruction possibly has a legal segment override on the
6282 second operand, so copy the segment to where non-string
6283 instructions store it, allowing common code. */
6284 i.seg[op] = i.seg[1];
6285
6286 return 1;
6287 }
6288
6289 static int
6290 process_suffix (void)
6291 {
6292 /* If matched instruction specifies an explicit instruction mnemonic
6293 suffix, use it. */
6294 if (i.tm.opcode_modifier.size == SIZE16)
6295 i.suffix = WORD_MNEM_SUFFIX;
6296 else if (i.tm.opcode_modifier.size == SIZE32)
6297 i.suffix = LONG_MNEM_SUFFIX;
6298 else if (i.tm.opcode_modifier.size == SIZE64)
6299 i.suffix = QWORD_MNEM_SUFFIX;
6300 else if (i.reg_operands
6301 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6302 && !i.tm.opcode_modifier.addrprefixopreg)
6303 {
6304 unsigned int numop = i.operands;
6305
6306 /* movsx/movzx want only their source operand considered here, for the
6307 ambiguity checking below. The suffix will be replaced afterwards
6308 to represent the destination (register). */
6309 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6310 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6311 --i.operands;
6312
6313 /* If there's no instruction mnemonic suffix we try to invent one
6314 based on GPR operands. */
6315 if (!i.suffix)
6316 {
6317 /* We take i.suffix from the last register operand specified,
6318 Destination register type is more significant than source
6319 register type. crc32 in SSE4.2 prefers source register
6320 type. */
6321 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6322
6323 while (op--)
6324 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6325 || i.tm.operand_types[op].bitfield.instance == Accum)
6326 {
6327 if (i.types[op].bitfield.class != Reg)
6328 continue;
6329 if (i.types[op].bitfield.byte)
6330 i.suffix = BYTE_MNEM_SUFFIX;
6331 else if (i.types[op].bitfield.word)
6332 i.suffix = WORD_MNEM_SUFFIX;
6333 else if (i.types[op].bitfield.dword)
6334 i.suffix = LONG_MNEM_SUFFIX;
6335 else if (i.types[op].bitfield.qword)
6336 i.suffix = QWORD_MNEM_SUFFIX;
6337 else
6338 continue;
6339 break;
6340 }
6341
6342 /* As an exception, movsx/movzx silently default to a byte source
6343 in AT&T mode. */
6344 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6345 && !i.suffix && !intel_syntax)
6346 i.suffix = BYTE_MNEM_SUFFIX;
6347 }
6348 else if (i.suffix == BYTE_MNEM_SUFFIX)
6349 {
6350 if (intel_syntax
6351 && i.tm.opcode_modifier.ignoresize
6352 && i.tm.opcode_modifier.no_bsuf)
6353 i.suffix = 0;
6354 else if (!check_byte_reg ())
6355 return 0;
6356 }
6357 else if (i.suffix == LONG_MNEM_SUFFIX)
6358 {
6359 if (intel_syntax
6360 && i.tm.opcode_modifier.ignoresize
6361 && i.tm.opcode_modifier.no_lsuf
6362 && !i.tm.opcode_modifier.todword
6363 && !i.tm.opcode_modifier.toqword)
6364 i.suffix = 0;
6365 else if (!check_long_reg ())
6366 return 0;
6367 }
6368 else if (i.suffix == QWORD_MNEM_SUFFIX)
6369 {
6370 if (intel_syntax
6371 && i.tm.opcode_modifier.ignoresize
6372 && i.tm.opcode_modifier.no_qsuf
6373 && !i.tm.opcode_modifier.todword
6374 && !i.tm.opcode_modifier.toqword)
6375 i.suffix = 0;
6376 else if (!check_qword_reg ())
6377 return 0;
6378 }
6379 else if (i.suffix == WORD_MNEM_SUFFIX)
6380 {
6381 if (intel_syntax
6382 && i.tm.opcode_modifier.ignoresize
6383 && i.tm.opcode_modifier.no_wsuf)
6384 i.suffix = 0;
6385 else if (!check_word_reg ())
6386 return 0;
6387 }
6388 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6389 /* Do nothing if the instruction is going to ignore the prefix. */
6390 ;
6391 else
6392 abort ();
6393
6394 /* Undo the movsx/movzx change done above. */
6395 i.operands = numop;
6396 }
6397 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6398 {
6399 i.suffix = stackop_size;
6400 if (stackop_size == LONG_MNEM_SUFFIX)
6401 {
6402 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6403 .code16gcc directive to support 16-bit mode with
6404 32-bit address. For IRET without a suffix, generate
6405 16-bit IRET (opcode 0xcf) to return from an interrupt
6406 handler. */
6407 if (i.tm.base_opcode == 0xcf)
6408 {
6409 i.suffix = WORD_MNEM_SUFFIX;
6410 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6411 }
6412 /* Warn about changed behavior for segment register push/pop. */
6413 else if ((i.tm.base_opcode | 1) == 0x07)
6414 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6415 i.tm.name);
6416 }
6417 }
6418 else if (!i.suffix
6419 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6420 || i.tm.opcode_modifier.jump == JUMP_BYTE
6421 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6422 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6423 && i.tm.extension_opcode <= 3)))
6424 {
6425 switch (flag_code)
6426 {
6427 case CODE_64BIT:
6428 if (!i.tm.opcode_modifier.no_qsuf)
6429 {
6430 i.suffix = QWORD_MNEM_SUFFIX;
6431 break;
6432 }
6433 /* Fall through. */
6434 case CODE_32BIT:
6435 if (!i.tm.opcode_modifier.no_lsuf)
6436 i.suffix = LONG_MNEM_SUFFIX;
6437 break;
6438 case CODE_16BIT:
6439 if (!i.tm.opcode_modifier.no_wsuf)
6440 i.suffix = WORD_MNEM_SUFFIX;
6441 break;
6442 }
6443 }
6444
6445 if (!i.suffix
6446 && (!i.tm.opcode_modifier.defaultsize
6447 /* Also cover lret/retf/iret in 64-bit mode. */
6448 || (flag_code == CODE_64BIT
6449 && !i.tm.opcode_modifier.no_lsuf
6450 && !i.tm.opcode_modifier.no_qsuf))
6451 && !i.tm.opcode_modifier.ignoresize
6452 /* Accept FLDENV et al without suffix. */
6453 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6454 {
6455 unsigned int suffixes, evex = 0;
6456
6457 suffixes = !i.tm.opcode_modifier.no_bsuf;
6458 if (!i.tm.opcode_modifier.no_wsuf)
6459 suffixes |= 1 << 1;
6460 if (!i.tm.opcode_modifier.no_lsuf)
6461 suffixes |= 1 << 2;
6462 if (!i.tm.opcode_modifier.no_ldsuf)
6463 suffixes |= 1 << 3;
6464 if (!i.tm.opcode_modifier.no_ssuf)
6465 suffixes |= 1 << 4;
6466 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6467 suffixes |= 1 << 5;
6468
6469 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6470 also suitable for AT&T syntax mode, it was requested that this be
6471 restricted to just Intel syntax. */
6472 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6473 {
6474 unsigned int op;
6475
6476 for (op = 0; op < i.tm.operands; ++op)
6477 {
6478 if (is_evex_encoding (&i.tm)
6479 && !cpu_arch_flags.bitfield.cpuavx512vl)
6480 {
6481 if (i.tm.operand_types[op].bitfield.ymmword)
6482 i.tm.operand_types[op].bitfield.xmmword = 0;
6483 if (i.tm.operand_types[op].bitfield.zmmword)
6484 i.tm.operand_types[op].bitfield.ymmword = 0;
6485 if (!i.tm.opcode_modifier.evex
6486 || i.tm.opcode_modifier.evex == EVEXDYN)
6487 i.tm.opcode_modifier.evex = EVEX512;
6488 }
6489
6490 if (i.tm.operand_types[op].bitfield.xmmword
6491 + i.tm.operand_types[op].bitfield.ymmword
6492 + i.tm.operand_types[op].bitfield.zmmword < 2)
6493 continue;
6494
6495 /* Any properly sized operand disambiguates the insn. */
6496 if (i.types[op].bitfield.xmmword
6497 || i.types[op].bitfield.ymmword
6498 || i.types[op].bitfield.zmmword)
6499 {
6500 suffixes &= ~(7 << 6);
6501 evex = 0;
6502 break;
6503 }
6504
6505 if ((i.flags[op] & Operand_Mem)
6506 && i.tm.operand_types[op].bitfield.unspecified)
6507 {
6508 if (i.tm.operand_types[op].bitfield.xmmword)
6509 suffixes |= 1 << 6;
6510 if (i.tm.operand_types[op].bitfield.ymmword)
6511 suffixes |= 1 << 7;
6512 if (i.tm.operand_types[op].bitfield.zmmword)
6513 suffixes |= 1 << 8;
6514 if (is_evex_encoding (&i.tm))
6515 evex = EVEX512;
6516 }
6517 }
6518 }
6519
6520 /* Are multiple suffixes / operand sizes allowed? */
6521 if (suffixes & (suffixes - 1))
6522 {
6523 if (intel_syntax
6524 && (!i.tm.opcode_modifier.defaultsize
6525 || operand_check == check_error))
6526 {
6527 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6528 return 0;
6529 }
6530 if (operand_check == check_error)
6531 {
6532 as_bad (_("no instruction mnemonic suffix given and "
6533 "no register operands; can't size `%s'"), i.tm.name);
6534 return 0;
6535 }
6536 if (operand_check == check_warning)
6537 as_warn (_("%s; using default for `%s'"),
6538 intel_syntax
6539 ? _("ambiguous operand size")
6540 : _("no instruction mnemonic suffix given and "
6541 "no register operands"),
6542 i.tm.name);
6543
6544 if (i.tm.opcode_modifier.floatmf)
6545 i.suffix = SHORT_MNEM_SUFFIX;
6546 else if ((i.tm.base_opcode | 8) == 0xfbe
6547 || (i.tm.base_opcode == 0x63
6548 && i.tm.cpu_flags.bitfield.cpu64))
6549 /* handled below */;
6550 else if (evex)
6551 i.tm.opcode_modifier.evex = evex;
6552 else if (flag_code == CODE_16BIT)
6553 i.suffix = WORD_MNEM_SUFFIX;
6554 else if (!i.tm.opcode_modifier.no_lsuf)
6555 i.suffix = LONG_MNEM_SUFFIX;
6556 else
6557 i.suffix = QWORD_MNEM_SUFFIX;
6558 }
6559 }
6560
6561 if ((i.tm.base_opcode | 8) == 0xfbe
6562 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6563 {
6564 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6565 In AT&T syntax, if there is no suffix (warned about above), the default
6566 will be byte extension. */
6567 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6568 i.tm.base_opcode |= 1;
6569
6570 /* For further processing, the suffix should represent the destination
6571 (register). This is already the case when one was used with
6572 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6573 no suffix to begin with. */
6574 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6575 {
6576 if (i.types[1].bitfield.word)
6577 i.suffix = WORD_MNEM_SUFFIX;
6578 else if (i.types[1].bitfield.qword)
6579 i.suffix = QWORD_MNEM_SUFFIX;
6580 else
6581 i.suffix = LONG_MNEM_SUFFIX;
6582
6583 i.tm.opcode_modifier.w = 0;
6584 }
6585 }
6586
6587 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6588 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6589 != (i.tm.operand_types[1].bitfield.class == Reg);
6590
6591 /* Change the opcode based on the operand size given by i.suffix. */
6592 switch (i.suffix)
6593 {
6594 /* Size floating point instruction. */
6595 case LONG_MNEM_SUFFIX:
6596 if (i.tm.opcode_modifier.floatmf)
6597 {
6598 i.tm.base_opcode ^= 4;
6599 break;
6600 }
6601 /* fall through */
6602 case WORD_MNEM_SUFFIX:
6603 case QWORD_MNEM_SUFFIX:
6604 /* It's not a byte, select word/dword operation. */
6605 if (i.tm.opcode_modifier.w)
6606 {
6607 if (i.short_form)
6608 i.tm.base_opcode |= 8;
6609 else
6610 i.tm.base_opcode |= 1;
6611 }
6612 /* fall through */
6613 case SHORT_MNEM_SUFFIX:
6614 /* Now select between word & dword operations via the operand
6615 size prefix, except for instructions that will ignore this
6616 prefix anyway. */
6617 if (i.suffix != QWORD_MNEM_SUFFIX
6618 && !i.tm.opcode_modifier.ignoresize
6619 && !i.tm.opcode_modifier.floatmf
6620 && !is_any_vex_encoding (&i.tm)
6621 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6622 || (flag_code == CODE_64BIT
6623 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6624 {
6625 unsigned int prefix = DATA_PREFIX_OPCODE;
6626
6627 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6628 prefix = ADDR_PREFIX_OPCODE;
6629
6630 if (!add_prefix (prefix))
6631 return 0;
6632 }
6633
6634 /* Set mode64 for an operand. */
6635 if (i.suffix == QWORD_MNEM_SUFFIX
6636 && flag_code == CODE_64BIT
6637 && !i.tm.opcode_modifier.norex64
6638 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6639 need rex64. */
6640 && ! (i.operands == 2
6641 && i.tm.base_opcode == 0x90
6642 && i.tm.extension_opcode == None
6643 && i.types[0].bitfield.instance == Accum
6644 && i.types[0].bitfield.qword
6645 && i.types[1].bitfield.instance == Accum
6646 && i.types[1].bitfield.qword))
6647 i.rex |= REX_W;
6648
6649 break;
6650 }
6651
6652 if (i.tm.opcode_modifier.addrprefixopreg)
6653 {
6654 gas_assert (!i.suffix);
6655 gas_assert (i.reg_operands);
6656
6657 if (i.tm.operand_types[0].bitfield.instance == Accum
6658 || i.operands == 1)
6659 {
6660 /* The address size override prefix changes the size of the
6661 first operand. */
6662 if (flag_code == CODE_64BIT
6663 && i.op[0].regs->reg_type.bitfield.word)
6664 {
6665 as_bad (_("16-bit addressing unavailable for `%s'"),
6666 i.tm.name);
6667 return 0;
6668 }
6669
6670 if ((flag_code == CODE_32BIT
6671 ? i.op[0].regs->reg_type.bitfield.word
6672 : i.op[0].regs->reg_type.bitfield.dword)
6673 && !add_prefix (ADDR_PREFIX_OPCODE))
6674 return 0;
6675 }
6676 else
6677 {
6678 /* Check invalid register operand when the address size override
6679 prefix changes the size of register operands. */
6680 unsigned int op;
6681 enum { need_word, need_dword, need_qword } need;
6682
6683 if (flag_code == CODE_32BIT)
6684 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6685 else if (i.prefix[ADDR_PREFIX])
6686 need = need_dword;
6687 else
6688 need = flag_code == CODE_64BIT ? need_qword : need_word;
6689
6690 for (op = 0; op < i.operands; op++)
6691 {
6692 if (i.types[op].bitfield.class != Reg)
6693 continue;
6694
6695 switch (need)
6696 {
6697 case need_word:
6698 if (i.op[op].regs->reg_type.bitfield.word)
6699 continue;
6700 break;
6701 case need_dword:
6702 if (i.op[op].regs->reg_type.bitfield.dword)
6703 continue;
6704 break;
6705 case need_qword:
6706 if (i.op[op].regs->reg_type.bitfield.qword)
6707 continue;
6708 break;
6709 }
6710
6711 as_bad (_("invalid register operand size for `%s'"),
6712 i.tm.name);
6713 return 0;
6714 }
6715 }
6716 }
6717
6718 return 1;
6719 }
6720
6721 static int
6722 check_byte_reg (void)
6723 {
6724 int op;
6725
6726 for (op = i.operands; --op >= 0;)
6727 {
6728 /* Skip non-register operands. */
6729 if (i.types[op].bitfield.class != Reg)
6730 continue;
6731
6732 /* If this is an eight bit register, it's OK. If it's the 16 or
6733 32 bit version of an eight bit register, we will just use the
6734 low portion, and that's OK too. */
6735 if (i.types[op].bitfield.byte)
6736 continue;
6737
6738 /* I/O port address operands are OK too. */
6739 if (i.tm.operand_types[op].bitfield.instance == RegD
6740 && i.tm.operand_types[op].bitfield.word)
6741 continue;
6742
6743 /* crc32 only wants its source operand checked here. */
6744 if (i.tm.base_opcode == 0xf20f38f0 && op)
6745 continue;
6746
6747 /* Any other register is bad. */
6748 if (i.types[op].bitfield.class == Reg
6749 || i.types[op].bitfield.class == RegMMX
6750 || i.types[op].bitfield.class == RegSIMD
6751 || i.types[op].bitfield.class == SReg
6752 || i.types[op].bitfield.class == RegCR
6753 || i.types[op].bitfield.class == RegDR
6754 || i.types[op].bitfield.class == RegTR)
6755 {
6756 as_bad (_("`%s%s' not allowed with `%s%c'"),
6757 register_prefix,
6758 i.op[op].regs->reg_name,
6759 i.tm.name,
6760 i.suffix);
6761 return 0;
6762 }
6763 }
6764 return 1;
6765 }
6766
6767 static int
6768 check_long_reg (void)
6769 {
6770 int op;
6771
6772 for (op = i.operands; --op >= 0;)
6773 /* Skip non-register operands. */
6774 if (i.types[op].bitfield.class != Reg)
6775 continue;
6776 /* Reject eight bit registers, except where the template requires
6777 them. (eg. movzb) */
6778 else if (i.types[op].bitfield.byte
6779 && (i.tm.operand_types[op].bitfield.class == Reg
6780 || i.tm.operand_types[op].bitfield.instance == Accum)
6781 && (i.tm.operand_types[op].bitfield.word
6782 || i.tm.operand_types[op].bitfield.dword))
6783 {
6784 as_bad (_("`%s%s' not allowed with `%s%c'"),
6785 register_prefix,
6786 i.op[op].regs->reg_name,
6787 i.tm.name,
6788 i.suffix);
6789 return 0;
6790 }
6791 /* Error if the e prefix on a general reg is missing. */
6792 else if (i.types[op].bitfield.word
6793 && (i.tm.operand_types[op].bitfield.class == Reg
6794 || i.tm.operand_types[op].bitfield.instance == Accum)
6795 && i.tm.operand_types[op].bitfield.dword)
6796 {
6797 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6798 register_prefix, i.op[op].regs->reg_name,
6799 i.suffix);
6800 return 0;
6801 }
6802 /* Warn if the r prefix on a general reg is present. */
6803 else if (i.types[op].bitfield.qword
6804 && (i.tm.operand_types[op].bitfield.class == Reg
6805 || i.tm.operand_types[op].bitfield.instance == Accum)
6806 && i.tm.operand_types[op].bitfield.dword)
6807 {
6808 if (intel_syntax
6809 && i.tm.opcode_modifier.toqword
6810 && i.types[0].bitfield.class != RegSIMD)
6811 {
6812 /* Convert to QWORD. We want REX byte. */
6813 i.suffix = QWORD_MNEM_SUFFIX;
6814 }
6815 else
6816 {
6817 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6818 register_prefix, i.op[op].regs->reg_name,
6819 i.suffix);
6820 return 0;
6821 }
6822 }
6823 return 1;
6824 }
6825
6826 static int
6827 check_qword_reg (void)
6828 {
6829 int op;
6830
6831 for (op = i.operands; --op >= 0; )
6832 /* Skip non-register operands. */
6833 if (i.types[op].bitfield.class != Reg)
6834 continue;
6835 /* Reject eight bit registers, except where the template requires
6836 them. (eg. movzb) */
6837 else if (i.types[op].bitfield.byte
6838 && (i.tm.operand_types[op].bitfield.class == Reg
6839 || i.tm.operand_types[op].bitfield.instance == Accum)
6840 && (i.tm.operand_types[op].bitfield.word
6841 || i.tm.operand_types[op].bitfield.dword))
6842 {
6843 as_bad (_("`%s%s' not allowed with `%s%c'"),
6844 register_prefix,
6845 i.op[op].regs->reg_name,
6846 i.tm.name,
6847 i.suffix);
6848 return 0;
6849 }
6850 /* Warn if the r prefix on a general reg is missing. */
6851 else if ((i.types[op].bitfield.word
6852 || i.types[op].bitfield.dword)
6853 && (i.tm.operand_types[op].bitfield.class == Reg
6854 || i.tm.operand_types[op].bitfield.instance == Accum)
6855 && i.tm.operand_types[op].bitfield.qword)
6856 {
6857 /* Prohibit these changes in the 64bit mode, since the
6858 lowering is more complicated. */
6859 if (intel_syntax
6860 && i.tm.opcode_modifier.todword
6861 && i.types[0].bitfield.class != RegSIMD)
6862 {
6863 /* Convert to DWORD. We don't want REX byte. */
6864 i.suffix = LONG_MNEM_SUFFIX;
6865 }
6866 else
6867 {
6868 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6869 register_prefix, i.op[op].regs->reg_name,
6870 i.suffix);
6871 return 0;
6872 }
6873 }
6874 return 1;
6875 }
6876
6877 static int
6878 check_word_reg (void)
6879 {
6880 int op;
6881 for (op = i.operands; --op >= 0;)
6882 /* Skip non-register operands. */
6883 if (i.types[op].bitfield.class != Reg)
6884 continue;
6885 /* Reject eight bit registers, except where the template requires
6886 them. (eg. movzb) */
6887 else if (i.types[op].bitfield.byte
6888 && (i.tm.operand_types[op].bitfield.class == Reg
6889 || i.tm.operand_types[op].bitfield.instance == Accum)
6890 && (i.tm.operand_types[op].bitfield.word
6891 || i.tm.operand_types[op].bitfield.dword))
6892 {
6893 as_bad (_("`%s%s' not allowed with `%s%c'"),
6894 register_prefix,
6895 i.op[op].regs->reg_name,
6896 i.tm.name,
6897 i.suffix);
6898 return 0;
6899 }
6900 /* Error if the e or r prefix on a general reg is present. */
6901 else if ((i.types[op].bitfield.dword
6902 || i.types[op].bitfield.qword)
6903 && (i.tm.operand_types[op].bitfield.class == Reg
6904 || i.tm.operand_types[op].bitfield.instance == Accum)
6905 && i.tm.operand_types[op].bitfield.word)
6906 {
6907 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6908 register_prefix, i.op[op].regs->reg_name,
6909 i.suffix);
6910 return 0;
6911 }
6912 return 1;
6913 }
6914
6915 static int
6916 update_imm (unsigned int j)
6917 {
6918 i386_operand_type overlap = i.types[j];
6919 if ((overlap.bitfield.imm8
6920 || overlap.bitfield.imm8s
6921 || overlap.bitfield.imm16
6922 || overlap.bitfield.imm32
6923 || overlap.bitfield.imm32s
6924 || overlap.bitfield.imm64)
6925 && !operand_type_equal (&overlap, &imm8)
6926 && !operand_type_equal (&overlap, &imm8s)
6927 && !operand_type_equal (&overlap, &imm16)
6928 && !operand_type_equal (&overlap, &imm32)
6929 && !operand_type_equal (&overlap, &imm32s)
6930 && !operand_type_equal (&overlap, &imm64))
6931 {
6932 if (i.suffix)
6933 {
6934 i386_operand_type temp;
6935
6936 operand_type_set (&temp, 0);
6937 if (i.suffix == BYTE_MNEM_SUFFIX)
6938 {
6939 temp.bitfield.imm8 = overlap.bitfield.imm8;
6940 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6941 }
6942 else if (i.suffix == WORD_MNEM_SUFFIX)
6943 temp.bitfield.imm16 = overlap.bitfield.imm16;
6944 else if (i.suffix == QWORD_MNEM_SUFFIX)
6945 {
6946 temp.bitfield.imm64 = overlap.bitfield.imm64;
6947 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6948 }
6949 else
6950 temp.bitfield.imm32 = overlap.bitfield.imm32;
6951 overlap = temp;
6952 }
6953 else if (operand_type_equal (&overlap, &imm16_32_32s)
6954 || operand_type_equal (&overlap, &imm16_32)
6955 || operand_type_equal (&overlap, &imm16_32s))
6956 {
6957 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6958 overlap = imm16;
6959 else
6960 overlap = imm32s;
6961 }
6962 if (!operand_type_equal (&overlap, &imm8)
6963 && !operand_type_equal (&overlap, &imm8s)
6964 && !operand_type_equal (&overlap, &imm16)
6965 && !operand_type_equal (&overlap, &imm32)
6966 && !operand_type_equal (&overlap, &imm32s)
6967 && !operand_type_equal (&overlap, &imm64))
6968 {
6969 as_bad (_("no instruction mnemonic suffix given; "
6970 "can't determine immediate size"));
6971 return 0;
6972 }
6973 }
6974 i.types[j] = overlap;
6975
6976 return 1;
6977 }
6978
6979 static int
6980 finalize_imm (void)
6981 {
6982 unsigned int j, n;
6983
6984 /* Update the first 2 immediate operands. */
6985 n = i.operands > 2 ? 2 : i.operands;
6986 if (n)
6987 {
6988 for (j = 0; j < n; j++)
6989 if (update_imm (j) == 0)
6990 return 0;
6991
6992 /* The 3rd operand can't be immediate operand. */
6993 gas_assert (operand_type_check (i.types[2], imm) == 0);
6994 }
6995
6996 return 1;
6997 }
6998
6999 static int
7000 process_operands (void)
7001 {
7002 /* Default segment register this instruction will use for memory
7003 accesses. 0 means unknown. This is only for optimizing out
7004 unnecessary segment overrides. */
7005 const seg_entry *default_seg = 0;
7006
7007 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7008 {
7009 unsigned int dupl = i.operands;
7010 unsigned int dest = dupl - 1;
7011 unsigned int j;
7012
7013 /* The destination must be an xmm register. */
7014 gas_assert (i.reg_operands
7015 && MAX_OPERANDS > dupl
7016 && operand_type_equal (&i.types[dest], &regxmm));
7017
7018 if (i.tm.operand_types[0].bitfield.instance == Accum
7019 && i.tm.operand_types[0].bitfield.xmmword)
7020 {
7021 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7022 {
7023 /* Keep xmm0 for instructions with VEX prefix and 3
7024 sources. */
7025 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7026 i.tm.operand_types[0].bitfield.class = RegSIMD;
7027 goto duplicate;
7028 }
7029 else
7030 {
7031 /* We remove the first xmm0 and keep the number of
7032 operands unchanged, which in fact duplicates the
7033 destination. */
7034 for (j = 1; j < i.operands; j++)
7035 {
7036 i.op[j - 1] = i.op[j];
7037 i.types[j - 1] = i.types[j];
7038 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7039 i.flags[j - 1] = i.flags[j];
7040 }
7041 }
7042 }
7043 else if (i.tm.opcode_modifier.implicit1stxmm0)
7044 {
7045 gas_assert ((MAX_OPERANDS - 1) > dupl
7046 && (i.tm.opcode_modifier.vexsources
7047 == VEX3SOURCES));
7048
7049 /* Add the implicit xmm0 for instructions with VEX prefix
7050 and 3 sources. */
7051 for (j = i.operands; j > 0; j--)
7052 {
7053 i.op[j] = i.op[j - 1];
7054 i.types[j] = i.types[j - 1];
7055 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7056 i.flags[j] = i.flags[j - 1];
7057 }
7058 i.op[0].regs
7059 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7060 i.types[0] = regxmm;
7061 i.tm.operand_types[0] = regxmm;
7062
7063 i.operands += 2;
7064 i.reg_operands += 2;
7065 i.tm.operands += 2;
7066
7067 dupl++;
7068 dest++;
7069 i.op[dupl] = i.op[dest];
7070 i.types[dupl] = i.types[dest];
7071 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7072 i.flags[dupl] = i.flags[dest];
7073 }
7074 else
7075 {
7076 duplicate:
7077 i.operands++;
7078 i.reg_operands++;
7079 i.tm.operands++;
7080
7081 i.op[dupl] = i.op[dest];
7082 i.types[dupl] = i.types[dest];
7083 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7084 i.flags[dupl] = i.flags[dest];
7085 }
7086
7087 if (i.tm.opcode_modifier.immext)
7088 process_immext ();
7089 }
7090 else if (i.tm.operand_types[0].bitfield.instance == Accum
7091 && i.tm.operand_types[0].bitfield.xmmword)
7092 {
7093 unsigned int j;
7094
7095 for (j = 1; j < i.operands; j++)
7096 {
7097 i.op[j - 1] = i.op[j];
7098 i.types[j - 1] = i.types[j];
7099
7100 /* We need to adjust fields in i.tm since they are used by
7101 build_modrm_byte. */
7102 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7103
7104 i.flags[j - 1] = i.flags[j];
7105 }
7106
7107 i.operands--;
7108 i.reg_operands--;
7109 i.tm.operands--;
7110 }
7111 else if (i.tm.opcode_modifier.implicitquadgroup)
7112 {
7113 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7114
7115 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7116 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7117 regnum = register_number (i.op[1].regs);
7118 first_reg_in_group = regnum & ~3;
7119 last_reg_in_group = first_reg_in_group + 3;
7120 if (regnum != first_reg_in_group)
7121 as_warn (_("source register `%s%s' implicitly denotes"
7122 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7123 register_prefix, i.op[1].regs->reg_name,
7124 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7125 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7126 i.tm.name);
7127 }
7128 else if (i.tm.opcode_modifier.regkludge)
7129 {
7130 /* The imul $imm, %reg instruction is converted into
7131 imul $imm, %reg, %reg, and the clr %reg instruction
7132 is converted into xor %reg, %reg. */
7133
7134 unsigned int first_reg_op;
7135
7136 if (operand_type_check (i.types[0], reg))
7137 first_reg_op = 0;
7138 else
7139 first_reg_op = 1;
7140 /* Pretend we saw the extra register operand. */
7141 gas_assert (i.reg_operands == 1
7142 && i.op[first_reg_op + 1].regs == 0);
7143 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7144 i.types[first_reg_op + 1] = i.types[first_reg_op];
7145 i.operands++;
7146 i.reg_operands++;
7147 }
7148
7149 if (i.tm.opcode_modifier.modrm)
7150 {
7151 /* The opcode is completed (modulo i.tm.extension_opcode which
7152 must be put into the modrm byte). Now, we make the modrm and
7153 index base bytes based on all the info we've collected. */
7154
7155 default_seg = build_modrm_byte ();
7156 }
7157 else if (i.types[0].bitfield.class == SReg)
7158 {
7159 if (flag_code != CODE_64BIT
7160 ? i.tm.base_opcode == POP_SEG_SHORT
7161 && i.op[0].regs->reg_num == 1
7162 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7163 && i.op[0].regs->reg_num < 4)
7164 {
7165 as_bad (_("you can't `%s %s%s'"),
7166 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7167 return 0;
7168 }
7169 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7170 {
7171 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7172 i.tm.opcode_length = 2;
7173 }
7174 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7175 }
7176 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7177 {
7178 default_seg = &ds;
7179 }
7180 else if (i.tm.opcode_modifier.isstring)
7181 {
7182 /* For the string instructions that allow a segment override
7183 on one of their operands, the default segment is ds. */
7184 default_seg = &ds;
7185 }
7186 else if (i.short_form)
7187 {
7188 /* The register or float register operand is in operand
7189 0 or 1. */
7190 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7191
7192 /* Register goes in low 3 bits of opcode. */
7193 i.tm.base_opcode |= i.op[op].regs->reg_num;
7194 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7195 i.rex |= REX_B;
7196 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7197 {
7198 /* Warn about some common errors, but press on regardless.
7199 The first case can be generated by gcc (<= 2.8.1). */
7200 if (i.operands == 2)
7201 {
7202 /* Reversed arguments on faddp, fsubp, etc. */
7203 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7204 register_prefix, i.op[!intel_syntax].regs->reg_name,
7205 register_prefix, i.op[intel_syntax].regs->reg_name);
7206 }
7207 else
7208 {
7209 /* Extraneous `l' suffix on fp insn. */
7210 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7211 register_prefix, i.op[0].regs->reg_name);
7212 }
7213 }
7214 }
7215
7216 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7217 && i.tm.base_opcode == 0x8d /* lea */
7218 && !is_any_vex_encoding(&i.tm))
7219 {
7220 if (!quiet_warnings)
7221 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7222 if (optimize)
7223 {
7224 i.seg[0] = NULL;
7225 i.prefix[SEG_PREFIX] = 0;
7226 }
7227 }
7228
7229 /* If a segment was explicitly specified, and the specified segment
7230 is neither the default nor the one already recorded from a prefix,
7231 use an opcode prefix to select it. If we never figured out what
7232 the default segment is, then default_seg will be zero at this
7233 point, and the specified segment prefix will always be used. */
7234 if (i.seg[0]
7235 && i.seg[0] != default_seg
7236 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7237 {
7238 if (!add_prefix (i.seg[0]->seg_prefix))
7239 return 0;
7240 }
7241 return 1;
7242 }
7243
7244 static const seg_entry *
7245 build_modrm_byte (void)
7246 {
7247 const seg_entry *default_seg = 0;
7248 unsigned int source, dest;
7249 int vex_3_sources;
7250
7251 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7252 if (vex_3_sources)
7253 {
7254 unsigned int nds, reg_slot;
7255 expressionS *exp;
7256
7257 dest = i.operands - 1;
7258 nds = dest - 1;
7259
7260 /* There are 2 kinds of instructions:
7261 1. 5 operands: 4 register operands or 3 register operands
7262 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7263 VexW0 or VexW1. The destination must be either XMM, YMM or
7264 ZMM register.
7265 2. 4 operands: 4 register operands or 3 register operands
7266 plus 1 memory operand, with VexXDS. */
7267 gas_assert ((i.reg_operands == 4
7268 || (i.reg_operands == 3 && i.mem_operands == 1))
7269 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7270 && i.tm.opcode_modifier.vexw
7271 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7272
7273 /* If VexW1 is set, the first non-immediate operand is the source and
7274 the second non-immediate one is encoded in the immediate operand. */
7275 if (i.tm.opcode_modifier.vexw == VEXW1)
7276 {
7277 source = i.imm_operands;
7278 reg_slot = i.imm_operands + 1;
7279 }
7280 else
7281 {
7282 source = i.imm_operands + 1;
7283 reg_slot = i.imm_operands;
7284 }
7285
7286 if (i.imm_operands == 0)
7287 {
7288 /* When there is no immediate operand, generate an 8bit
7289 immediate operand to encode the first operand. */
7290 exp = &im_expressions[i.imm_operands++];
7291 i.op[i.operands].imms = exp;
7292 i.types[i.operands] = imm8;
7293 i.operands++;
7294
7295 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7296 exp->X_op = O_constant;
7297 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7298 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7299 }
7300 else
7301 {
7302 gas_assert (i.imm_operands == 1);
7303 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7304 gas_assert (!i.tm.opcode_modifier.immext);
7305
7306 /* Turn on Imm8 again so that output_imm will generate it. */
7307 i.types[0].bitfield.imm8 = 1;
7308
7309 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7310 i.op[0].imms->X_add_number
7311 |= register_number (i.op[reg_slot].regs) << 4;
7312 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7313 }
7314
7315 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7316 i.vex.register_specifier = i.op[nds].regs;
7317 }
7318 else
7319 source = dest = 0;
7320
7321 /* i.reg_operands MUST be the number of real register operands;
7322 implicit registers do not count. If there are 3 register
7323 operands, it must be a instruction with VexNDS. For a
7324 instruction with VexNDD, the destination register is encoded
7325 in VEX prefix. If there are 4 register operands, it must be
7326 a instruction with VEX prefix and 3 sources. */
7327 if (i.mem_operands == 0
7328 && ((i.reg_operands == 2
7329 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7330 || (i.reg_operands == 3
7331 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7332 || (i.reg_operands == 4 && vex_3_sources)))
7333 {
7334 switch (i.operands)
7335 {
7336 case 2:
7337 source = 0;
7338 break;
7339 case 3:
7340 /* When there are 3 operands, one of them may be immediate,
7341 which may be the first or the last operand. Otherwise,
7342 the first operand must be shift count register (cl) or it
7343 is an instruction with VexNDS. */
7344 gas_assert (i.imm_operands == 1
7345 || (i.imm_operands == 0
7346 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7347 || (i.types[0].bitfield.instance == RegC
7348 && i.types[0].bitfield.byte))));
7349 if (operand_type_check (i.types[0], imm)
7350 || (i.types[0].bitfield.instance == RegC
7351 && i.types[0].bitfield.byte))
7352 source = 1;
7353 else
7354 source = 0;
7355 break;
7356 case 4:
7357 /* When there are 4 operands, the first two must be 8bit
7358 immediate operands. The source operand will be the 3rd
7359 one.
7360
7361 For instructions with VexNDS, if the first operand
7362 an imm8, the source operand is the 2nd one. If the last
7363 operand is imm8, the source operand is the first one. */
7364 gas_assert ((i.imm_operands == 2
7365 && i.types[0].bitfield.imm8
7366 && i.types[1].bitfield.imm8)
7367 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7368 && i.imm_operands == 1
7369 && (i.types[0].bitfield.imm8
7370 || i.types[i.operands - 1].bitfield.imm8
7371 || i.rounding)));
7372 if (i.imm_operands == 2)
7373 source = 2;
7374 else
7375 {
7376 if (i.types[0].bitfield.imm8)
7377 source = 1;
7378 else
7379 source = 0;
7380 }
7381 break;
7382 case 5:
7383 if (is_evex_encoding (&i.tm))
7384 {
7385 /* For EVEX instructions, when there are 5 operands, the
7386 first one must be immediate operand. If the second one
7387 is immediate operand, the source operand is the 3th
7388 one. If the last one is immediate operand, the source
7389 operand is the 2nd one. */
7390 gas_assert (i.imm_operands == 2
7391 && i.tm.opcode_modifier.sae
7392 && operand_type_check (i.types[0], imm));
7393 if (operand_type_check (i.types[1], imm))
7394 source = 2;
7395 else if (operand_type_check (i.types[4], imm))
7396 source = 1;
7397 else
7398 abort ();
7399 }
7400 break;
7401 default:
7402 abort ();
7403 }
7404
7405 if (!vex_3_sources)
7406 {
7407 dest = source + 1;
7408
7409 /* RC/SAE operand could be between DEST and SRC. That happens
7410 when one operand is GPR and the other one is XMM/YMM/ZMM
7411 register. */
7412 if (i.rounding && i.rounding->operand == (int) dest)
7413 dest++;
7414
7415 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7416 {
7417 /* For instructions with VexNDS, the register-only source
7418 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7419 register. It is encoded in VEX prefix. */
7420
7421 i386_operand_type op;
7422 unsigned int vvvv;
7423
7424 /* Check register-only source operand when two source
7425 operands are swapped. */
7426 if (!i.tm.operand_types[source].bitfield.baseindex
7427 && i.tm.operand_types[dest].bitfield.baseindex)
7428 {
7429 vvvv = source;
7430 source = dest;
7431 }
7432 else
7433 vvvv = dest;
7434
7435 op = i.tm.operand_types[vvvv];
7436 if ((dest + 1) >= i.operands
7437 || ((op.bitfield.class != Reg
7438 || (!op.bitfield.dword && !op.bitfield.qword))
7439 && op.bitfield.class != RegSIMD
7440 && !operand_type_equal (&op, &regmask)))
7441 abort ();
7442 i.vex.register_specifier = i.op[vvvv].regs;
7443 dest++;
7444 }
7445 }
7446
7447 i.rm.mode = 3;
7448 /* One of the register operands will be encoded in the i.rm.reg
7449 field, the other in the combined i.rm.mode and i.rm.regmem
7450 fields. If no form of this instruction supports a memory
7451 destination operand, then we assume the source operand may
7452 sometimes be a memory operand and so we need to store the
7453 destination in the i.rm.reg field. */
7454 if (!i.tm.opcode_modifier.regmem
7455 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7456 {
7457 i.rm.reg = i.op[dest].regs->reg_num;
7458 i.rm.regmem = i.op[source].regs->reg_num;
7459 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7460 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7461 i.has_regmmx = TRUE;
7462 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7463 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7464 {
7465 if (i.types[dest].bitfield.zmmword
7466 || i.types[source].bitfield.zmmword)
7467 i.has_regzmm = TRUE;
7468 else if (i.types[dest].bitfield.ymmword
7469 || i.types[source].bitfield.ymmword)
7470 i.has_regymm = TRUE;
7471 else
7472 i.has_regxmm = TRUE;
7473 }
7474 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7475 i.rex |= REX_R;
7476 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7477 i.vrex |= REX_R;
7478 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7479 i.rex |= REX_B;
7480 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7481 i.vrex |= REX_B;
7482 }
7483 else
7484 {
7485 i.rm.reg = i.op[source].regs->reg_num;
7486 i.rm.regmem = i.op[dest].regs->reg_num;
7487 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7488 i.rex |= REX_B;
7489 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7490 i.vrex |= REX_B;
7491 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7492 i.rex |= REX_R;
7493 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7494 i.vrex |= REX_R;
7495 }
7496 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7497 {
7498 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7499 abort ();
7500 i.rex &= ~REX_R;
7501 add_prefix (LOCK_PREFIX_OPCODE);
7502 }
7503 }
7504 else
7505 { /* If it's not 2 reg operands... */
7506 unsigned int mem;
7507
7508 if (i.mem_operands)
7509 {
7510 unsigned int fake_zero_displacement = 0;
7511 unsigned int op;
7512
7513 for (op = 0; op < i.operands; op++)
7514 if (i.flags[op] & Operand_Mem)
7515 break;
7516 gas_assert (op < i.operands);
7517
7518 if (i.tm.opcode_modifier.vecsib)
7519 {
7520 if (i.index_reg->reg_num == RegIZ)
7521 abort ();
7522
7523 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7524 if (!i.base_reg)
7525 {
7526 i.sib.base = NO_BASE_REGISTER;
7527 i.sib.scale = i.log2_scale_factor;
7528 i.types[op].bitfield.disp8 = 0;
7529 i.types[op].bitfield.disp16 = 0;
7530 i.types[op].bitfield.disp64 = 0;
7531 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7532 {
7533 /* Must be 32 bit */
7534 i.types[op].bitfield.disp32 = 1;
7535 i.types[op].bitfield.disp32s = 0;
7536 }
7537 else
7538 {
7539 i.types[op].bitfield.disp32 = 0;
7540 i.types[op].bitfield.disp32s = 1;
7541 }
7542 }
7543 i.sib.index = i.index_reg->reg_num;
7544 if ((i.index_reg->reg_flags & RegRex) != 0)
7545 i.rex |= REX_X;
7546 if ((i.index_reg->reg_flags & RegVRex) != 0)
7547 i.vrex |= REX_X;
7548 }
7549
7550 default_seg = &ds;
7551
7552 if (i.base_reg == 0)
7553 {
7554 i.rm.mode = 0;
7555 if (!i.disp_operands)
7556 fake_zero_displacement = 1;
7557 if (i.index_reg == 0)
7558 {
7559 i386_operand_type newdisp;
7560
7561 gas_assert (!i.tm.opcode_modifier.vecsib);
7562 /* Operand is just <disp> */
7563 if (flag_code == CODE_64BIT)
7564 {
7565 /* 64bit mode overwrites the 32bit absolute
7566 addressing by RIP relative addressing and
7567 absolute addressing is encoded by one of the
7568 redundant SIB forms. */
7569 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7570 i.sib.base = NO_BASE_REGISTER;
7571 i.sib.index = NO_INDEX_REGISTER;
7572 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7573 }
7574 else if ((flag_code == CODE_16BIT)
7575 ^ (i.prefix[ADDR_PREFIX] != 0))
7576 {
7577 i.rm.regmem = NO_BASE_REGISTER_16;
7578 newdisp = disp16;
7579 }
7580 else
7581 {
7582 i.rm.regmem = NO_BASE_REGISTER;
7583 newdisp = disp32;
7584 }
7585 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7586 i.types[op] = operand_type_or (i.types[op], newdisp);
7587 }
7588 else if (!i.tm.opcode_modifier.vecsib)
7589 {
7590 /* !i.base_reg && i.index_reg */
7591 if (i.index_reg->reg_num == RegIZ)
7592 i.sib.index = NO_INDEX_REGISTER;
7593 else
7594 i.sib.index = i.index_reg->reg_num;
7595 i.sib.base = NO_BASE_REGISTER;
7596 i.sib.scale = i.log2_scale_factor;
7597 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7598 i.types[op].bitfield.disp8 = 0;
7599 i.types[op].bitfield.disp16 = 0;
7600 i.types[op].bitfield.disp64 = 0;
7601 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7602 {
7603 /* Must be 32 bit */
7604 i.types[op].bitfield.disp32 = 1;
7605 i.types[op].bitfield.disp32s = 0;
7606 }
7607 else
7608 {
7609 i.types[op].bitfield.disp32 = 0;
7610 i.types[op].bitfield.disp32s = 1;
7611 }
7612 if ((i.index_reg->reg_flags & RegRex) != 0)
7613 i.rex |= REX_X;
7614 }
7615 }
7616 /* RIP addressing for 64bit mode. */
7617 else if (i.base_reg->reg_num == RegIP)
7618 {
7619 gas_assert (!i.tm.opcode_modifier.vecsib);
7620 i.rm.regmem = NO_BASE_REGISTER;
7621 i.types[op].bitfield.disp8 = 0;
7622 i.types[op].bitfield.disp16 = 0;
7623 i.types[op].bitfield.disp32 = 0;
7624 i.types[op].bitfield.disp32s = 1;
7625 i.types[op].bitfield.disp64 = 0;
7626 i.flags[op] |= Operand_PCrel;
7627 if (! i.disp_operands)
7628 fake_zero_displacement = 1;
7629 }
7630 else if (i.base_reg->reg_type.bitfield.word)
7631 {
7632 gas_assert (!i.tm.opcode_modifier.vecsib);
7633 switch (i.base_reg->reg_num)
7634 {
7635 case 3: /* (%bx) */
7636 if (i.index_reg == 0)
7637 i.rm.regmem = 7;
7638 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7639 i.rm.regmem = i.index_reg->reg_num - 6;
7640 break;
7641 case 5: /* (%bp) */
7642 default_seg = &ss;
7643 if (i.index_reg == 0)
7644 {
7645 i.rm.regmem = 6;
7646 if (operand_type_check (i.types[op], disp) == 0)
7647 {
7648 /* fake (%bp) into 0(%bp) */
7649 i.types[op].bitfield.disp8 = 1;
7650 fake_zero_displacement = 1;
7651 }
7652 }
7653 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7654 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7655 break;
7656 default: /* (%si) -> 4 or (%di) -> 5 */
7657 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7658 }
7659 i.rm.mode = mode_from_disp_size (i.types[op]);
7660 }
7661 else /* i.base_reg and 32/64 bit mode */
7662 {
7663 if (flag_code == CODE_64BIT
7664 && operand_type_check (i.types[op], disp))
7665 {
7666 i.types[op].bitfield.disp16 = 0;
7667 i.types[op].bitfield.disp64 = 0;
7668 if (i.prefix[ADDR_PREFIX] == 0)
7669 {
7670 i.types[op].bitfield.disp32 = 0;
7671 i.types[op].bitfield.disp32s = 1;
7672 }
7673 else
7674 {
7675 i.types[op].bitfield.disp32 = 1;
7676 i.types[op].bitfield.disp32s = 0;
7677 }
7678 }
7679
7680 if (!i.tm.opcode_modifier.vecsib)
7681 i.rm.regmem = i.base_reg->reg_num;
7682 if ((i.base_reg->reg_flags & RegRex) != 0)
7683 i.rex |= REX_B;
7684 i.sib.base = i.base_reg->reg_num;
7685 /* x86-64 ignores REX prefix bit here to avoid decoder
7686 complications. */
7687 if (!(i.base_reg->reg_flags & RegRex)
7688 && (i.base_reg->reg_num == EBP_REG_NUM
7689 || i.base_reg->reg_num == ESP_REG_NUM))
7690 default_seg = &ss;
7691 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7692 {
7693 fake_zero_displacement = 1;
7694 i.types[op].bitfield.disp8 = 1;
7695 }
7696 i.sib.scale = i.log2_scale_factor;
7697 if (i.index_reg == 0)
7698 {
7699 gas_assert (!i.tm.opcode_modifier.vecsib);
7700 /* <disp>(%esp) becomes two byte modrm with no index
7701 register. We've already stored the code for esp
7702 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7703 Any base register besides %esp will not use the
7704 extra modrm byte. */
7705 i.sib.index = NO_INDEX_REGISTER;
7706 }
7707 else if (!i.tm.opcode_modifier.vecsib)
7708 {
7709 if (i.index_reg->reg_num == RegIZ)
7710 i.sib.index = NO_INDEX_REGISTER;
7711 else
7712 i.sib.index = i.index_reg->reg_num;
7713 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7714 if ((i.index_reg->reg_flags & RegRex) != 0)
7715 i.rex |= REX_X;
7716 }
7717
7718 if (i.disp_operands
7719 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7720 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7721 i.rm.mode = 0;
7722 else
7723 {
7724 if (!fake_zero_displacement
7725 && !i.disp_operands
7726 && i.disp_encoding)
7727 {
7728 fake_zero_displacement = 1;
7729 if (i.disp_encoding == disp_encoding_8bit)
7730 i.types[op].bitfield.disp8 = 1;
7731 else
7732 i.types[op].bitfield.disp32 = 1;
7733 }
7734 i.rm.mode = mode_from_disp_size (i.types[op]);
7735 }
7736 }
7737
7738 if (fake_zero_displacement)
7739 {
7740 /* Fakes a zero displacement assuming that i.types[op]
7741 holds the correct displacement size. */
7742 expressionS *exp;
7743
7744 gas_assert (i.op[op].disps == 0);
7745 exp = &disp_expressions[i.disp_operands++];
7746 i.op[op].disps = exp;
7747 exp->X_op = O_constant;
7748 exp->X_add_number = 0;
7749 exp->X_add_symbol = (symbolS *) 0;
7750 exp->X_op_symbol = (symbolS *) 0;
7751 }
7752
7753 mem = op;
7754 }
7755 else
7756 mem = ~0;
7757
7758 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7759 {
7760 if (operand_type_check (i.types[0], imm))
7761 i.vex.register_specifier = NULL;
7762 else
7763 {
7764 /* VEX.vvvv encodes one of the sources when the first
7765 operand is not an immediate. */
7766 if (i.tm.opcode_modifier.vexw == VEXW0)
7767 i.vex.register_specifier = i.op[0].regs;
7768 else
7769 i.vex.register_specifier = i.op[1].regs;
7770 }
7771
7772 /* Destination is a XMM register encoded in the ModRM.reg
7773 and VEX.R bit. */
7774 i.rm.reg = i.op[2].regs->reg_num;
7775 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7776 i.rex |= REX_R;
7777
7778 /* ModRM.rm and VEX.B encodes the other source. */
7779 if (!i.mem_operands)
7780 {
7781 i.rm.mode = 3;
7782
7783 if (i.tm.opcode_modifier.vexw == VEXW0)
7784 i.rm.regmem = i.op[1].regs->reg_num;
7785 else
7786 i.rm.regmem = i.op[0].regs->reg_num;
7787
7788 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7789 i.rex |= REX_B;
7790 }
7791 }
7792 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7793 {
7794 i.vex.register_specifier = i.op[2].regs;
7795 if (!i.mem_operands)
7796 {
7797 i.rm.mode = 3;
7798 i.rm.regmem = i.op[1].regs->reg_num;
7799 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7800 i.rex |= REX_B;
7801 }
7802 }
7803 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7804 (if any) based on i.tm.extension_opcode. Again, we must be
7805 careful to make sure that segment/control/debug/test/MMX
7806 registers are coded into the i.rm.reg field. */
7807 else if (i.reg_operands)
7808 {
7809 unsigned int op;
7810 unsigned int vex_reg = ~0;
7811
7812 for (op = 0; op < i.operands; op++)
7813 {
7814 if (i.types[op].bitfield.class == Reg
7815 || i.types[op].bitfield.class == RegBND
7816 || i.types[op].bitfield.class == RegMask
7817 || i.types[op].bitfield.class == SReg
7818 || i.types[op].bitfield.class == RegCR
7819 || i.types[op].bitfield.class == RegDR
7820 || i.types[op].bitfield.class == RegTR)
7821 break;
7822 if (i.types[op].bitfield.class == RegSIMD)
7823 {
7824 if (i.types[op].bitfield.zmmword)
7825 i.has_regzmm = TRUE;
7826 else if (i.types[op].bitfield.ymmword)
7827 i.has_regymm = TRUE;
7828 else
7829 i.has_regxmm = TRUE;
7830 break;
7831 }
7832 if (i.types[op].bitfield.class == RegMMX)
7833 {
7834 i.has_regmmx = TRUE;
7835 break;
7836 }
7837 }
7838
7839 if (vex_3_sources)
7840 op = dest;
7841 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7842 {
7843 /* For instructions with VexNDS, the register-only
7844 source operand is encoded in VEX prefix. */
7845 gas_assert (mem != (unsigned int) ~0);
7846
7847 if (op > mem)
7848 {
7849 vex_reg = op++;
7850 gas_assert (op < i.operands);
7851 }
7852 else
7853 {
7854 /* Check register-only source operand when two source
7855 operands are swapped. */
7856 if (!i.tm.operand_types[op].bitfield.baseindex
7857 && i.tm.operand_types[op + 1].bitfield.baseindex)
7858 {
7859 vex_reg = op;
7860 op += 2;
7861 gas_assert (mem == (vex_reg + 1)
7862 && op < i.operands);
7863 }
7864 else
7865 {
7866 vex_reg = op + 1;
7867 gas_assert (vex_reg < i.operands);
7868 }
7869 }
7870 }
7871 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7872 {
7873 /* For instructions with VexNDD, the register destination
7874 is encoded in VEX prefix. */
7875 if (i.mem_operands == 0)
7876 {
7877 /* There is no memory operand. */
7878 gas_assert ((op + 2) == i.operands);
7879 vex_reg = op + 1;
7880 }
7881 else
7882 {
7883 /* There are only 2 non-immediate operands. */
7884 gas_assert (op < i.imm_operands + 2
7885 && i.operands == i.imm_operands + 2);
7886 vex_reg = i.imm_operands + 1;
7887 }
7888 }
7889 else
7890 gas_assert (op < i.operands);
7891
7892 if (vex_reg != (unsigned int) ~0)
7893 {
7894 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7895
7896 if ((type->bitfield.class != Reg
7897 || (!type->bitfield.dword && !type->bitfield.qword))
7898 && type->bitfield.class != RegSIMD
7899 && !operand_type_equal (type, &regmask))
7900 abort ();
7901
7902 i.vex.register_specifier = i.op[vex_reg].regs;
7903 }
7904
7905 /* Don't set OP operand twice. */
7906 if (vex_reg != op)
7907 {
7908 /* If there is an extension opcode to put here, the
7909 register number must be put into the regmem field. */
7910 if (i.tm.extension_opcode != None)
7911 {
7912 i.rm.regmem = i.op[op].regs->reg_num;
7913 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7914 i.rex |= REX_B;
7915 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7916 i.vrex |= REX_B;
7917 }
7918 else
7919 {
7920 i.rm.reg = i.op[op].regs->reg_num;
7921 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7922 i.rex |= REX_R;
7923 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7924 i.vrex |= REX_R;
7925 }
7926 }
7927
7928 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7929 must set it to 3 to indicate this is a register operand
7930 in the regmem field. */
7931 if (!i.mem_operands)
7932 i.rm.mode = 3;
7933 }
7934
7935 /* Fill in i.rm.reg field with extension opcode (if any). */
7936 if (i.tm.extension_opcode != None)
7937 i.rm.reg = i.tm.extension_opcode;
7938 }
7939 return default_seg;
7940 }
7941
7942 static unsigned int
7943 flip_code16 (unsigned int code16)
7944 {
7945 gas_assert (i.tm.operands == 1);
7946
7947 return !(i.prefix[REX_PREFIX] & REX_W)
7948 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7949 || i.tm.operand_types[0].bitfield.disp32s
7950 : i.tm.operand_types[0].bitfield.disp16)
7951 ? CODE16 : 0;
7952 }
7953
7954 static void
7955 output_branch (void)
7956 {
7957 char *p;
7958 int size;
7959 int code16;
7960 int prefix;
7961 relax_substateT subtype;
7962 symbolS *sym;
7963 offsetT off;
7964
7965 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7966 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7967
7968 prefix = 0;
7969 if (i.prefix[DATA_PREFIX] != 0)
7970 {
7971 prefix = 1;
7972 i.prefixes -= 1;
7973 code16 ^= flip_code16(code16);
7974 }
7975 /* Pentium4 branch hints. */
7976 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7977 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7978 {
7979 prefix++;
7980 i.prefixes--;
7981 }
7982 if (i.prefix[REX_PREFIX] != 0)
7983 {
7984 prefix++;
7985 i.prefixes--;
7986 }
7987
7988 /* BND prefixed jump. */
7989 if (i.prefix[BND_PREFIX] != 0)
7990 {
7991 prefix++;
7992 i.prefixes--;
7993 }
7994
7995 if (i.prefixes != 0)
7996 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7997
7998 /* It's always a symbol; End frag & setup for relax.
7999 Make sure there is enough room in this frag for the largest
8000 instruction we may generate in md_convert_frag. This is 2
8001 bytes for the opcode and room for the prefix and largest
8002 displacement. */
8003 frag_grow (prefix + 2 + 4);
8004 /* Prefix and 1 opcode byte go in fr_fix. */
8005 p = frag_more (prefix + 1);
8006 if (i.prefix[DATA_PREFIX] != 0)
8007 *p++ = DATA_PREFIX_OPCODE;
8008 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8009 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8010 *p++ = i.prefix[SEG_PREFIX];
8011 if (i.prefix[BND_PREFIX] != 0)
8012 *p++ = BND_PREFIX_OPCODE;
8013 if (i.prefix[REX_PREFIX] != 0)
8014 *p++ = i.prefix[REX_PREFIX];
8015 *p = i.tm.base_opcode;
8016
8017 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8018 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8019 else if (cpu_arch_flags.bitfield.cpui386)
8020 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8021 else
8022 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8023 subtype |= code16;
8024
8025 sym = i.op[0].disps->X_add_symbol;
8026 off = i.op[0].disps->X_add_number;
8027
8028 if (i.op[0].disps->X_op != O_constant
8029 && i.op[0].disps->X_op != O_symbol)
8030 {
8031 /* Handle complex expressions. */
8032 sym = make_expr_symbol (i.op[0].disps);
8033 off = 0;
8034 }
8035
8036 /* 1 possible extra opcode + 4 byte displacement go in var part.
8037 Pass reloc in fr_var. */
8038 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8039 }
8040
8041 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8042 /* Return TRUE iff PLT32 relocation should be used for branching to
8043 symbol S. */
8044
8045 static bfd_boolean
8046 need_plt32_p (symbolS *s)
8047 {
8048 /* PLT32 relocation is ELF only. */
8049 if (!IS_ELF)
8050 return FALSE;
8051
8052 #ifdef TE_SOLARIS
8053 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8054 krtld support it. */
8055 return FALSE;
8056 #endif
8057
8058 /* Since there is no need to prepare for PLT branch on x86-64, we
8059 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8060 be used as a marker for 32-bit PC-relative branches. */
8061 if (!object_64bit)
8062 return FALSE;
8063
8064 /* Weak or undefined symbol need PLT32 relocation. */
8065 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8066 return TRUE;
8067
8068 /* Non-global symbol doesn't need PLT32 relocation. */
8069 if (! S_IS_EXTERNAL (s))
8070 return FALSE;
8071
8072 /* Other global symbols need PLT32 relocation. NB: Symbol with
8073 non-default visibilities are treated as normal global symbol
8074 so that PLT32 relocation can be used as a marker for 32-bit
8075 PC-relative branches. It is useful for linker relaxation. */
8076 return TRUE;
8077 }
8078 #endif
8079
8080 static void
8081 output_jump (void)
8082 {
8083 char *p;
8084 int size;
8085 fixS *fixP;
8086 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8087
8088 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8089 {
8090 /* This is a loop or jecxz type instruction. */
8091 size = 1;
8092 if (i.prefix[ADDR_PREFIX] != 0)
8093 {
8094 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8095 i.prefixes -= 1;
8096 }
8097 /* Pentium4 branch hints. */
8098 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8099 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8100 {
8101 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8102 i.prefixes--;
8103 }
8104 }
8105 else
8106 {
8107 int code16;
8108
8109 code16 = 0;
8110 if (flag_code == CODE_16BIT)
8111 code16 = CODE16;
8112
8113 if (i.prefix[DATA_PREFIX] != 0)
8114 {
8115 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8116 i.prefixes -= 1;
8117 code16 ^= flip_code16(code16);
8118 }
8119
8120 size = 4;
8121 if (code16)
8122 size = 2;
8123 }
8124
8125 /* BND prefixed jump. */
8126 if (i.prefix[BND_PREFIX] != 0)
8127 {
8128 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8129 i.prefixes -= 1;
8130 }
8131
8132 if (i.prefix[REX_PREFIX] != 0)
8133 {
8134 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8135 i.prefixes -= 1;
8136 }
8137
8138 if (i.prefixes != 0)
8139 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8140
8141 p = frag_more (i.tm.opcode_length + size);
8142 switch (i.tm.opcode_length)
8143 {
8144 case 2:
8145 *p++ = i.tm.base_opcode >> 8;
8146 /* Fall through. */
8147 case 1:
8148 *p++ = i.tm.base_opcode;
8149 break;
8150 default:
8151 abort ();
8152 }
8153
8154 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8155 if (size == 4
8156 && jump_reloc == NO_RELOC
8157 && need_plt32_p (i.op[0].disps->X_add_symbol))
8158 jump_reloc = BFD_RELOC_X86_64_PLT32;
8159 #endif
8160
8161 jump_reloc = reloc (size, 1, 1, jump_reloc);
8162
8163 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8164 i.op[0].disps, 1, jump_reloc);
8165
8166 /* All jumps handled here are signed, but don't use a signed limit
8167 check for 32 and 16 bit jumps as we want to allow wrap around at
8168 4G and 64k respectively. */
8169 if (size == 1)
8170 fixP->fx_signed = 1;
8171 }
8172
8173 static void
8174 output_interseg_jump (void)
8175 {
8176 char *p;
8177 int size;
8178 int prefix;
8179 int code16;
8180
8181 code16 = 0;
8182 if (flag_code == CODE_16BIT)
8183 code16 = CODE16;
8184
8185 prefix = 0;
8186 if (i.prefix[DATA_PREFIX] != 0)
8187 {
8188 prefix = 1;
8189 i.prefixes -= 1;
8190 code16 ^= CODE16;
8191 }
8192
8193 gas_assert (!i.prefix[REX_PREFIX]);
8194
8195 size = 4;
8196 if (code16)
8197 size = 2;
8198
8199 if (i.prefixes != 0)
8200 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8201
8202 /* 1 opcode; 2 segment; offset */
8203 p = frag_more (prefix + 1 + 2 + size);
8204
8205 if (i.prefix[DATA_PREFIX] != 0)
8206 *p++ = DATA_PREFIX_OPCODE;
8207
8208 if (i.prefix[REX_PREFIX] != 0)
8209 *p++ = i.prefix[REX_PREFIX];
8210
8211 *p++ = i.tm.base_opcode;
8212 if (i.op[1].imms->X_op == O_constant)
8213 {
8214 offsetT n = i.op[1].imms->X_add_number;
8215
8216 if (size == 2
8217 && !fits_in_unsigned_word (n)
8218 && !fits_in_signed_word (n))
8219 {
8220 as_bad (_("16-bit jump out of range"));
8221 return;
8222 }
8223 md_number_to_chars (p, n, size);
8224 }
8225 else
8226 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8227 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8228 if (i.op[0].imms->X_op != O_constant)
8229 as_bad (_("can't handle non absolute segment in `%s'"),
8230 i.tm.name);
8231 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8232 }
8233
8234 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8235 void
8236 x86_cleanup (void)
8237 {
8238 char *p;
8239 asection *seg = now_seg;
8240 subsegT subseg = now_subseg;
8241 asection *sec;
8242 unsigned int alignment, align_size_1;
8243 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8244 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8245 unsigned int padding;
8246
8247 if (!IS_ELF || !x86_used_note)
8248 return;
8249
8250 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8251
8252 /* The .note.gnu.property section layout:
8253
8254 Field Length Contents
8255 ---- ---- ----
8256 n_namsz 4 4
8257 n_descsz 4 The note descriptor size
8258 n_type 4 NT_GNU_PROPERTY_TYPE_0
8259 n_name 4 "GNU"
8260 n_desc n_descsz The program property array
8261 .... .... ....
8262 */
8263
8264 /* Create the .note.gnu.property section. */
8265 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8266 bfd_set_section_flags (sec,
8267 (SEC_ALLOC
8268 | SEC_LOAD
8269 | SEC_DATA
8270 | SEC_HAS_CONTENTS
8271 | SEC_READONLY));
8272
8273 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8274 {
8275 align_size_1 = 7;
8276 alignment = 3;
8277 }
8278 else
8279 {
8280 align_size_1 = 3;
8281 alignment = 2;
8282 }
8283
8284 bfd_set_section_alignment (sec, alignment);
8285 elf_section_type (sec) = SHT_NOTE;
8286
8287 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8288 + 4-byte data */
8289 isa_1_descsz_raw = 4 + 4 + 4;
8290 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8291 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8292
8293 feature_2_descsz_raw = isa_1_descsz;
8294 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8295 + 4-byte data */
8296 feature_2_descsz_raw += 4 + 4 + 4;
8297 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8298 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8299 & ~align_size_1);
8300
8301 descsz = feature_2_descsz;
8302 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8303 p = frag_more (4 + 4 + 4 + 4 + descsz);
8304
8305 /* Write n_namsz. */
8306 md_number_to_chars (p, (valueT) 4, 4);
8307
8308 /* Write n_descsz. */
8309 md_number_to_chars (p + 4, (valueT) descsz, 4);
8310
8311 /* Write n_type. */
8312 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8313
8314 /* Write n_name. */
8315 memcpy (p + 4 * 3, "GNU", 4);
8316
8317 /* Write 4-byte type. */
8318 md_number_to_chars (p + 4 * 4,
8319 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8320
8321 /* Write 4-byte data size. */
8322 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8323
8324 /* Write 4-byte data. */
8325 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8326
8327 /* Zero out paddings. */
8328 padding = isa_1_descsz - isa_1_descsz_raw;
8329 if (padding)
8330 memset (p + 4 * 7, 0, padding);
8331
8332 /* Write 4-byte type. */
8333 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8334 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8335
8336 /* Write 4-byte data size. */
8337 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8338
8339 /* Write 4-byte data. */
8340 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8341 (valueT) x86_feature_2_used, 4);
8342
8343 /* Zero out paddings. */
8344 padding = feature_2_descsz - feature_2_descsz_raw;
8345 if (padding)
8346 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8347
8348 /* We probably can't restore the current segment, for there likely
8349 isn't one yet... */
8350 if (seg && subseg)
8351 subseg_set (seg, subseg);
8352 }
8353 #endif
8354
8355 static unsigned int
8356 encoding_length (const fragS *start_frag, offsetT start_off,
8357 const char *frag_now_ptr)
8358 {
8359 unsigned int len = 0;
8360
8361 if (start_frag != frag_now)
8362 {
8363 const fragS *fr = start_frag;
8364
8365 do {
8366 len += fr->fr_fix;
8367 fr = fr->fr_next;
8368 } while (fr && fr != frag_now);
8369 }
8370
8371 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8372 }
8373
8374 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8375 be macro-fused with conditional jumps. */
8376
8377 static int
8378 maybe_fused_with_jcc_p (void)
8379 {
8380 /* No RIP address. */
8381 if (i.base_reg && i.base_reg->reg_num == RegIP)
8382 return 0;
8383
8384 /* No VEX/EVEX encoding. */
8385 if (is_any_vex_encoding (&i.tm))
8386 return 0;
8387
8388 /* and, add, sub with destination register. */
8389 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8390 || i.tm.base_opcode <= 5
8391 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8392 || ((i.tm.base_opcode | 3) == 0x83
8393 && ((i.tm.extension_opcode | 1) == 0x5
8394 || i.tm.extension_opcode == 0x0)))
8395 return (i.types[1].bitfield.class == Reg
8396 || i.types[1].bitfield.instance == Accum);
8397
8398 /* test, cmp with any register. */
8399 if ((i.tm.base_opcode | 1) == 0x85
8400 || (i.tm.base_opcode | 1) == 0xa9
8401 || ((i.tm.base_opcode | 1) == 0xf7
8402 && i.tm.extension_opcode == 0)
8403 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8404 || ((i.tm.base_opcode | 3) == 0x83
8405 && (i.tm.extension_opcode == 0x7)))
8406 return (i.types[0].bitfield.class == Reg
8407 || i.types[0].bitfield.instance == Accum
8408 || i.types[1].bitfield.class == Reg
8409 || i.types[1].bitfield.instance == Accum);
8410
8411 /* inc, dec with any register. */
8412 if ((i.tm.cpu_flags.bitfield.cpuno64
8413 && (i.tm.base_opcode | 0xf) == 0x4f)
8414 || ((i.tm.base_opcode | 1) == 0xff
8415 && i.tm.extension_opcode <= 0x1))
8416 return (i.types[0].bitfield.class == Reg
8417 || i.types[0].bitfield.instance == Accum);
8418
8419 return 0;
8420 }
8421
8422 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8423
8424 static int
8425 add_fused_jcc_padding_frag_p (void)
8426 {
8427 /* NB: Don't work with COND_JUMP86 without i386. */
8428 if (!align_branch_power
8429 || now_seg == absolute_section
8430 || !cpu_arch_flags.bitfield.cpui386
8431 || !(align_branch & align_branch_fused_bit))
8432 return 0;
8433
8434 if (maybe_fused_with_jcc_p ())
8435 {
8436 if (last_insn.kind == last_insn_other
8437 || last_insn.seg != now_seg)
8438 return 1;
8439 if (flag_debug)
8440 as_warn_where (last_insn.file, last_insn.line,
8441 _("`%s` skips -malign-branch-boundary on `%s`"),
8442 last_insn.name, i.tm.name);
8443 }
8444
8445 return 0;
8446 }
8447
8448 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8449
8450 static int
8451 add_branch_prefix_frag_p (void)
8452 {
8453 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8454 to PadLock instructions since they include prefixes in opcode. */
8455 if (!align_branch_power
8456 || !align_branch_prefix_size
8457 || now_seg == absolute_section
8458 || i.tm.cpu_flags.bitfield.cpupadlock
8459 || !cpu_arch_flags.bitfield.cpui386)
8460 return 0;
8461
8462 /* Don't add prefix if it is a prefix or there is no operand in case
8463 that segment prefix is special. */
8464 if (!i.operands || i.tm.opcode_modifier.isprefix)
8465 return 0;
8466
8467 if (last_insn.kind == last_insn_other
8468 || last_insn.seg != now_seg)
8469 return 1;
8470
8471 if (flag_debug)
8472 as_warn_where (last_insn.file, last_insn.line,
8473 _("`%s` skips -malign-branch-boundary on `%s`"),
8474 last_insn.name, i.tm.name);
8475
8476 return 0;
8477 }
8478
8479 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8480
8481 static int
8482 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8483 {
8484 int add_padding;
8485
8486 /* NB: Don't work with COND_JUMP86 without i386. */
8487 if (!align_branch_power
8488 || now_seg == absolute_section
8489 || !cpu_arch_flags.bitfield.cpui386)
8490 return 0;
8491
8492 add_padding = 0;
8493
8494 /* Check for jcc and direct jmp. */
8495 if (i.tm.opcode_modifier.jump == JUMP)
8496 {
8497 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8498 {
8499 *branch_p = align_branch_jmp;
8500 add_padding = align_branch & align_branch_jmp_bit;
8501 }
8502 else
8503 {
8504 *branch_p = align_branch_jcc;
8505 if ((align_branch & align_branch_jcc_bit))
8506 add_padding = 1;
8507 }
8508 }
8509 else if (is_any_vex_encoding (&i.tm))
8510 return 0;
8511 else if ((i.tm.base_opcode | 1) == 0xc3)
8512 {
8513 /* Near ret. */
8514 *branch_p = align_branch_ret;
8515 if ((align_branch & align_branch_ret_bit))
8516 add_padding = 1;
8517 }
8518 else
8519 {
8520 /* Check for indirect jmp, direct and indirect calls. */
8521 if (i.tm.base_opcode == 0xe8)
8522 {
8523 /* Direct call. */
8524 *branch_p = align_branch_call;
8525 if ((align_branch & align_branch_call_bit))
8526 add_padding = 1;
8527 }
8528 else if (i.tm.base_opcode == 0xff
8529 && (i.tm.extension_opcode == 2
8530 || i.tm.extension_opcode == 4))
8531 {
8532 /* Indirect call and jmp. */
8533 *branch_p = align_branch_indirect;
8534 if ((align_branch & align_branch_indirect_bit))
8535 add_padding = 1;
8536 }
8537
8538 if (add_padding
8539 && i.disp_operands
8540 && tls_get_addr
8541 && (i.op[0].disps->X_op == O_symbol
8542 || (i.op[0].disps->X_op == O_subtract
8543 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8544 {
8545 symbolS *s = i.op[0].disps->X_add_symbol;
8546 /* No padding to call to global or undefined tls_get_addr. */
8547 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8548 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8549 return 0;
8550 }
8551 }
8552
8553 if (add_padding
8554 && last_insn.kind != last_insn_other
8555 && last_insn.seg == now_seg)
8556 {
8557 if (flag_debug)
8558 as_warn_where (last_insn.file, last_insn.line,
8559 _("`%s` skips -malign-branch-boundary on `%s`"),
8560 last_insn.name, i.tm.name);
8561 return 0;
8562 }
8563
8564 return add_padding;
8565 }
8566
8567 static void
8568 output_insn (void)
8569 {
8570 fragS *insn_start_frag;
8571 offsetT insn_start_off;
8572 fragS *fragP = NULL;
8573 enum align_branch_kind branch = align_branch_none;
8574
8575 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8576 if (IS_ELF && x86_used_note)
8577 {
8578 if (i.tm.cpu_flags.bitfield.cpucmov)
8579 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8580 if (i.tm.cpu_flags.bitfield.cpusse)
8581 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8582 if (i.tm.cpu_flags.bitfield.cpusse2)
8583 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8584 if (i.tm.cpu_flags.bitfield.cpusse3)
8585 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8586 if (i.tm.cpu_flags.bitfield.cpussse3)
8587 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8588 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8589 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8590 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8591 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8592 if (i.tm.cpu_flags.bitfield.cpuavx)
8593 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8594 if (i.tm.cpu_flags.bitfield.cpuavx2)
8595 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8596 if (i.tm.cpu_flags.bitfield.cpufma)
8597 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8598 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8599 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8600 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8601 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8602 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8603 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8604 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8605 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8606 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8607 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8608 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8609 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8610 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8611 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8612 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8613 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8614 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8615 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8616 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8617 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8618 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8619 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8620 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8621 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8622 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8623 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8624 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8625 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8626 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8627 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8628
8629 if (i.tm.cpu_flags.bitfield.cpu8087
8630 || i.tm.cpu_flags.bitfield.cpu287
8631 || i.tm.cpu_flags.bitfield.cpu387
8632 || i.tm.cpu_flags.bitfield.cpu687
8633 || i.tm.cpu_flags.bitfield.cpufisttp)
8634 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8635 if (i.has_regmmx
8636 || i.tm.base_opcode == 0xf77 /* emms */
8637 || i.tm.base_opcode == 0xf0e /* femms */)
8638 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8639 if (i.has_regxmm)
8640 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8641 if (i.has_regymm)
8642 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8643 if (i.has_regzmm)
8644 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8645 if (i.tm.cpu_flags.bitfield.cpufxsr)
8646 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8647 if (i.tm.cpu_flags.bitfield.cpuxsave)
8648 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8649 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8650 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8651 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8652 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8653 }
8654 #endif
8655
8656 /* Tie dwarf2 debug info to the address at the start of the insn.
8657 We can't do this after the insn has been output as the current
8658 frag may have been closed off. eg. by frag_var. */
8659 dwarf2_emit_insn (0);
8660
8661 insn_start_frag = frag_now;
8662 insn_start_off = frag_now_fix ();
8663
8664 if (add_branch_padding_frag_p (&branch))
8665 {
8666 char *p;
8667 /* Branch can be 8 bytes. Leave some room for prefixes. */
8668 unsigned int max_branch_padding_size = 14;
8669
8670 /* Align section to boundary. */
8671 record_alignment (now_seg, align_branch_power);
8672
8673 /* Make room for padding. */
8674 frag_grow (max_branch_padding_size);
8675
8676 /* Start of the padding. */
8677 p = frag_more (0);
8678
8679 fragP = frag_now;
8680
8681 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8682 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8683 NULL, 0, p);
8684
8685 fragP->tc_frag_data.branch_type = branch;
8686 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8687 }
8688
8689 /* Output jumps. */
8690 if (i.tm.opcode_modifier.jump == JUMP)
8691 output_branch ();
8692 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8693 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8694 output_jump ();
8695 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8696 output_interseg_jump ();
8697 else
8698 {
8699 /* Output normal instructions here. */
8700 char *p;
8701 unsigned char *q;
8702 unsigned int j;
8703 unsigned int prefix;
8704
8705 if (avoid_fence
8706 && (i.tm.base_opcode == 0xfaee8
8707 || i.tm.base_opcode == 0xfaef0
8708 || i.tm.base_opcode == 0xfaef8))
8709 {
8710 /* Encode lfence, mfence, and sfence as
8711 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8712 offsetT val = 0x240483f0ULL;
8713 p = frag_more (5);
8714 md_number_to_chars (p, val, 5);
8715 return;
8716 }
8717
8718 /* Some processors fail on LOCK prefix. This options makes
8719 assembler ignore LOCK prefix and serves as a workaround. */
8720 if (omit_lock_prefix)
8721 {
8722 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8723 return;
8724 i.prefix[LOCK_PREFIX] = 0;
8725 }
8726
8727 if (branch)
8728 /* Skip if this is a branch. */
8729 ;
8730 else if (add_fused_jcc_padding_frag_p ())
8731 {
8732 /* Make room for padding. */
8733 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8734 p = frag_more (0);
8735
8736 fragP = frag_now;
8737
8738 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8739 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8740 NULL, 0, p);
8741
8742 fragP->tc_frag_data.branch_type = align_branch_fused;
8743 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8744 }
8745 else if (add_branch_prefix_frag_p ())
8746 {
8747 unsigned int max_prefix_size = align_branch_prefix_size;
8748
8749 /* Make room for padding. */
8750 frag_grow (max_prefix_size);
8751 p = frag_more (0);
8752
8753 fragP = frag_now;
8754
8755 frag_var (rs_machine_dependent, max_prefix_size, 0,
8756 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8757 NULL, 0, p);
8758
8759 fragP->tc_frag_data.max_bytes = max_prefix_size;
8760 }
8761
8762 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8763 don't need the explicit prefix. */
8764 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8765 {
8766 switch (i.tm.opcode_length)
8767 {
8768 case 3:
8769 if (i.tm.base_opcode & 0xff000000)
8770 {
8771 prefix = (i.tm.base_opcode >> 24) & 0xff;
8772 if (!i.tm.cpu_flags.bitfield.cpupadlock
8773 || prefix != REPE_PREFIX_OPCODE
8774 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8775 add_prefix (prefix);
8776 }
8777 break;
8778 case 2:
8779 if ((i.tm.base_opcode & 0xff0000) != 0)
8780 {
8781 prefix = (i.tm.base_opcode >> 16) & 0xff;
8782 add_prefix (prefix);
8783 }
8784 break;
8785 case 1:
8786 break;
8787 case 0:
8788 /* Check for pseudo prefixes. */
8789 as_bad_where (insn_start_frag->fr_file,
8790 insn_start_frag->fr_line,
8791 _("pseudo prefix without instruction"));
8792 return;
8793 default:
8794 abort ();
8795 }
8796
8797 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8798 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8799 R_X86_64_GOTTPOFF relocation so that linker can safely
8800 perform IE->LE optimization. A dummy REX_OPCODE prefix
8801 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8802 relocation for GDesc -> IE/LE optimization. */
8803 if (x86_elf_abi == X86_64_X32_ABI
8804 && i.operands == 2
8805 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8806 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8807 && i.prefix[REX_PREFIX] == 0)
8808 add_prefix (REX_OPCODE);
8809 #endif
8810
8811 /* The prefix bytes. */
8812 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8813 if (*q)
8814 FRAG_APPEND_1_CHAR (*q);
8815 }
8816 else
8817 {
8818 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8819 if (*q)
8820 switch (j)
8821 {
8822 case REX_PREFIX:
8823 /* REX byte is encoded in VEX prefix. */
8824 break;
8825 case SEG_PREFIX:
8826 case ADDR_PREFIX:
8827 FRAG_APPEND_1_CHAR (*q);
8828 break;
8829 default:
8830 /* There should be no other prefixes for instructions
8831 with VEX prefix. */
8832 abort ();
8833 }
8834
8835 /* For EVEX instructions i.vrex should become 0 after
8836 build_evex_prefix. For VEX instructions upper 16 registers
8837 aren't available, so VREX should be 0. */
8838 if (i.vrex)
8839 abort ();
8840 /* Now the VEX prefix. */
8841 p = frag_more (i.vex.length);
8842 for (j = 0; j < i.vex.length; j++)
8843 p[j] = i.vex.bytes[j];
8844 }
8845
8846 /* Now the opcode; be careful about word order here! */
8847 if (i.tm.opcode_length == 1)
8848 {
8849 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8850 }
8851 else
8852 {
8853 switch (i.tm.opcode_length)
8854 {
8855 case 4:
8856 p = frag_more (4);
8857 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8858 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8859 break;
8860 case 3:
8861 p = frag_more (3);
8862 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8863 break;
8864 case 2:
8865 p = frag_more (2);
8866 break;
8867 default:
8868 abort ();
8869 break;
8870 }
8871
8872 /* Put out high byte first: can't use md_number_to_chars! */
8873 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8874 *p = i.tm.base_opcode & 0xff;
8875 }
8876
8877 /* Now the modrm byte and sib byte (if present). */
8878 if (i.tm.opcode_modifier.modrm)
8879 {
8880 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8881 | i.rm.reg << 3
8882 | i.rm.mode << 6));
8883 /* If i.rm.regmem == ESP (4)
8884 && i.rm.mode != (Register mode)
8885 && not 16 bit
8886 ==> need second modrm byte. */
8887 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8888 && i.rm.mode != 3
8889 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8890 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8891 | i.sib.index << 3
8892 | i.sib.scale << 6));
8893 }
8894
8895 if (i.disp_operands)
8896 output_disp (insn_start_frag, insn_start_off);
8897
8898 if (i.imm_operands)
8899 output_imm (insn_start_frag, insn_start_off);
8900
8901 /*
8902 * frag_now_fix () returning plain abs_section_offset when we're in the
8903 * absolute section, and abs_section_offset not getting updated as data
8904 * gets added to the frag breaks the logic below.
8905 */
8906 if (now_seg != absolute_section)
8907 {
8908 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8909 if (j > 15)
8910 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8911 j);
8912 else if (fragP)
8913 {
8914 /* NB: Don't add prefix with GOTPC relocation since
8915 output_disp() above depends on the fixed encoding
8916 length. Can't add prefix with TLS relocation since
8917 it breaks TLS linker optimization. */
8918 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8919 /* Prefix count on the current instruction. */
8920 unsigned int count = i.vex.length;
8921 unsigned int k;
8922 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8923 /* REX byte is encoded in VEX/EVEX prefix. */
8924 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8925 count++;
8926
8927 /* Count prefixes for extended opcode maps. */
8928 if (!i.vex.length)
8929 switch (i.tm.opcode_length)
8930 {
8931 case 3:
8932 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8933 {
8934 count++;
8935 switch ((i.tm.base_opcode >> 8) & 0xff)
8936 {
8937 case 0x38:
8938 case 0x3a:
8939 count++;
8940 break;
8941 default:
8942 break;
8943 }
8944 }
8945 break;
8946 case 2:
8947 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8948 count++;
8949 break;
8950 case 1:
8951 break;
8952 default:
8953 abort ();
8954 }
8955
8956 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8957 == BRANCH_PREFIX)
8958 {
8959 /* Set the maximum prefix size in BRANCH_PREFIX
8960 frag. */
8961 if (fragP->tc_frag_data.max_bytes > max)
8962 fragP->tc_frag_data.max_bytes = max;
8963 if (fragP->tc_frag_data.max_bytes > count)
8964 fragP->tc_frag_data.max_bytes -= count;
8965 else
8966 fragP->tc_frag_data.max_bytes = 0;
8967 }
8968 else
8969 {
8970 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8971 frag. */
8972 unsigned int max_prefix_size;
8973 if (align_branch_prefix_size > max)
8974 max_prefix_size = max;
8975 else
8976 max_prefix_size = align_branch_prefix_size;
8977 if (max_prefix_size > count)
8978 fragP->tc_frag_data.max_prefix_length
8979 = max_prefix_size - count;
8980 }
8981
8982 /* Use existing segment prefix if possible. Use CS
8983 segment prefix in 64-bit mode. In 32-bit mode, use SS
8984 segment prefix with ESP/EBP base register and use DS
8985 segment prefix without ESP/EBP base register. */
8986 if (i.prefix[SEG_PREFIX])
8987 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8988 else if (flag_code == CODE_64BIT)
8989 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8990 else if (i.base_reg
8991 && (i.base_reg->reg_num == 4
8992 || i.base_reg->reg_num == 5))
8993 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8994 else
8995 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8996 }
8997 }
8998 }
8999
9000 /* NB: Don't work with COND_JUMP86 without i386. */
9001 if (align_branch_power
9002 && now_seg != absolute_section
9003 && cpu_arch_flags.bitfield.cpui386)
9004 {
9005 /* Terminate each frag so that we can add prefix and check for
9006 fused jcc. */
9007 frag_wane (frag_now);
9008 frag_new (0);
9009 }
9010
9011 #ifdef DEBUG386
9012 if (flag_debug)
9013 {
9014 pi ("" /*line*/, &i);
9015 }
9016 #endif /* DEBUG386 */
9017 }
9018
9019 /* Return the size of the displacement operand N. */
9020
9021 static int
9022 disp_size (unsigned int n)
9023 {
9024 int size = 4;
9025
9026 if (i.types[n].bitfield.disp64)
9027 size = 8;
9028 else if (i.types[n].bitfield.disp8)
9029 size = 1;
9030 else if (i.types[n].bitfield.disp16)
9031 size = 2;
9032 return size;
9033 }
9034
9035 /* Return the size of the immediate operand N. */
9036
9037 static int
9038 imm_size (unsigned int n)
9039 {
9040 int size = 4;
9041 if (i.types[n].bitfield.imm64)
9042 size = 8;
9043 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9044 size = 1;
9045 else if (i.types[n].bitfield.imm16)
9046 size = 2;
9047 return size;
9048 }
9049
9050 static void
9051 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9052 {
9053 char *p;
9054 unsigned int n;
9055
9056 for (n = 0; n < i.operands; n++)
9057 {
9058 if (operand_type_check (i.types[n], disp))
9059 {
9060 if (i.op[n].disps->X_op == O_constant)
9061 {
9062 int size = disp_size (n);
9063 offsetT val = i.op[n].disps->X_add_number;
9064
9065 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9066 size);
9067 p = frag_more (size);
9068 md_number_to_chars (p, val, size);
9069 }
9070 else
9071 {
9072 enum bfd_reloc_code_real reloc_type;
9073 int size = disp_size (n);
9074 int sign = i.types[n].bitfield.disp32s;
9075 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9076 fixS *fixP;
9077
9078 /* We can't have 8 bit displacement here. */
9079 gas_assert (!i.types[n].bitfield.disp8);
9080
9081 /* The PC relative address is computed relative
9082 to the instruction boundary, so in case immediate
9083 fields follows, we need to adjust the value. */
9084 if (pcrel && i.imm_operands)
9085 {
9086 unsigned int n1;
9087 int sz = 0;
9088
9089 for (n1 = 0; n1 < i.operands; n1++)
9090 if (operand_type_check (i.types[n1], imm))
9091 {
9092 /* Only one immediate is allowed for PC
9093 relative address. */
9094 gas_assert (sz == 0);
9095 sz = imm_size (n1);
9096 i.op[n].disps->X_add_number -= sz;
9097 }
9098 /* We should find the immediate. */
9099 gas_assert (sz != 0);
9100 }
9101
9102 p = frag_more (size);
9103 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9104 if (GOT_symbol
9105 && GOT_symbol == i.op[n].disps->X_add_symbol
9106 && (((reloc_type == BFD_RELOC_32
9107 || reloc_type == BFD_RELOC_X86_64_32S
9108 || (reloc_type == BFD_RELOC_64
9109 && object_64bit))
9110 && (i.op[n].disps->X_op == O_symbol
9111 || (i.op[n].disps->X_op == O_add
9112 && ((symbol_get_value_expression
9113 (i.op[n].disps->X_op_symbol)->X_op)
9114 == O_subtract))))
9115 || reloc_type == BFD_RELOC_32_PCREL))
9116 {
9117 if (!object_64bit)
9118 {
9119 reloc_type = BFD_RELOC_386_GOTPC;
9120 i.has_gotpc_tls_reloc = TRUE;
9121 i.op[n].imms->X_add_number +=
9122 encoding_length (insn_start_frag, insn_start_off, p);
9123 }
9124 else if (reloc_type == BFD_RELOC_64)
9125 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9126 else
9127 /* Don't do the adjustment for x86-64, as there
9128 the pcrel addressing is relative to the _next_
9129 insn, and that is taken care of in other code. */
9130 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9131 }
9132 else if (align_branch_power)
9133 {
9134 switch (reloc_type)
9135 {
9136 case BFD_RELOC_386_TLS_GD:
9137 case BFD_RELOC_386_TLS_LDM:
9138 case BFD_RELOC_386_TLS_IE:
9139 case BFD_RELOC_386_TLS_IE_32:
9140 case BFD_RELOC_386_TLS_GOTIE:
9141 case BFD_RELOC_386_TLS_GOTDESC:
9142 case BFD_RELOC_386_TLS_DESC_CALL:
9143 case BFD_RELOC_X86_64_TLSGD:
9144 case BFD_RELOC_X86_64_TLSLD:
9145 case BFD_RELOC_X86_64_GOTTPOFF:
9146 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9147 case BFD_RELOC_X86_64_TLSDESC_CALL:
9148 i.has_gotpc_tls_reloc = TRUE;
9149 default:
9150 break;
9151 }
9152 }
9153 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9154 size, i.op[n].disps, pcrel,
9155 reloc_type);
9156 /* Check for "call/jmp *mem", "mov mem, %reg",
9157 "test %reg, mem" and "binop mem, %reg" where binop
9158 is one of adc, add, and, cmp, or, sbb, sub, xor
9159 instructions without data prefix. Always generate
9160 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9161 if (i.prefix[DATA_PREFIX] == 0
9162 && (generate_relax_relocations
9163 || (!object_64bit
9164 && i.rm.mode == 0
9165 && i.rm.regmem == 5))
9166 && (i.rm.mode == 2
9167 || (i.rm.mode == 0 && i.rm.regmem == 5))
9168 && !is_any_vex_encoding(&i.tm)
9169 && ((i.operands == 1
9170 && i.tm.base_opcode == 0xff
9171 && (i.rm.reg == 2 || i.rm.reg == 4))
9172 || (i.operands == 2
9173 && (i.tm.base_opcode == 0x8b
9174 || i.tm.base_opcode == 0x85
9175 || (i.tm.base_opcode & ~0x38) == 0x03))))
9176 {
9177 if (object_64bit)
9178 {
9179 fixP->fx_tcbit = i.rex != 0;
9180 if (i.base_reg
9181 && (i.base_reg->reg_num == RegIP))
9182 fixP->fx_tcbit2 = 1;
9183 }
9184 else
9185 fixP->fx_tcbit2 = 1;
9186 }
9187 }
9188 }
9189 }
9190 }
9191
9192 static void
9193 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9194 {
9195 char *p;
9196 unsigned int n;
9197
9198 for (n = 0; n < i.operands; n++)
9199 {
9200 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9201 if (i.rounding && (int) n == i.rounding->operand)
9202 continue;
9203
9204 if (operand_type_check (i.types[n], imm))
9205 {
9206 if (i.op[n].imms->X_op == O_constant)
9207 {
9208 int size = imm_size (n);
9209 offsetT val;
9210
9211 val = offset_in_range (i.op[n].imms->X_add_number,
9212 size);
9213 p = frag_more (size);
9214 md_number_to_chars (p, val, size);
9215 }
9216 else
9217 {
9218 /* Not absolute_section.
9219 Need a 32-bit fixup (don't support 8bit
9220 non-absolute imms). Try to support other
9221 sizes ... */
9222 enum bfd_reloc_code_real reloc_type;
9223 int size = imm_size (n);
9224 int sign;
9225
9226 if (i.types[n].bitfield.imm32s
9227 && (i.suffix == QWORD_MNEM_SUFFIX
9228 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9229 sign = 1;
9230 else
9231 sign = 0;
9232
9233 p = frag_more (size);
9234 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9235
9236 /* This is tough to explain. We end up with this one if we
9237 * have operands that look like
9238 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9239 * obtain the absolute address of the GOT, and it is strongly
9240 * preferable from a performance point of view to avoid using
9241 * a runtime relocation for this. The actual sequence of
9242 * instructions often look something like:
9243 *
9244 * call .L66
9245 * .L66:
9246 * popl %ebx
9247 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9248 *
9249 * The call and pop essentially return the absolute address
9250 * of the label .L66 and store it in %ebx. The linker itself
9251 * will ultimately change the first operand of the addl so
9252 * that %ebx points to the GOT, but to keep things simple, the
9253 * .o file must have this operand set so that it generates not
9254 * the absolute address of .L66, but the absolute address of
9255 * itself. This allows the linker itself simply treat a GOTPC
9256 * relocation as asking for a pcrel offset to the GOT to be
9257 * added in, and the addend of the relocation is stored in the
9258 * operand field for the instruction itself.
9259 *
9260 * Our job here is to fix the operand so that it would add
9261 * the correct offset so that %ebx would point to itself. The
9262 * thing that is tricky is that .-.L66 will point to the
9263 * beginning of the instruction, so we need to further modify
9264 * the operand so that it will point to itself. There are
9265 * other cases where you have something like:
9266 *
9267 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9268 *
9269 * and here no correction would be required. Internally in
9270 * the assembler we treat operands of this form as not being
9271 * pcrel since the '.' is explicitly mentioned, and I wonder
9272 * whether it would simplify matters to do it this way. Who
9273 * knows. In earlier versions of the PIC patches, the
9274 * pcrel_adjust field was used to store the correction, but
9275 * since the expression is not pcrel, I felt it would be
9276 * confusing to do it this way. */
9277
9278 if ((reloc_type == BFD_RELOC_32
9279 || reloc_type == BFD_RELOC_X86_64_32S
9280 || reloc_type == BFD_RELOC_64)
9281 && GOT_symbol
9282 && GOT_symbol == i.op[n].imms->X_add_symbol
9283 && (i.op[n].imms->X_op == O_symbol
9284 || (i.op[n].imms->X_op == O_add
9285 && ((symbol_get_value_expression
9286 (i.op[n].imms->X_op_symbol)->X_op)
9287 == O_subtract))))
9288 {
9289 if (!object_64bit)
9290 reloc_type = BFD_RELOC_386_GOTPC;
9291 else if (size == 4)
9292 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9293 else if (size == 8)
9294 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9295 i.has_gotpc_tls_reloc = TRUE;
9296 i.op[n].imms->X_add_number +=
9297 encoding_length (insn_start_frag, insn_start_off, p);
9298 }
9299 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9300 i.op[n].imms, 0, reloc_type);
9301 }
9302 }
9303 }
9304 }
9305 \f
9306 /* x86_cons_fix_new is called via the expression parsing code when a
9307 reloc is needed. We use this hook to get the correct .got reloc. */
9308 static int cons_sign = -1;
9309
9310 void
9311 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9312 expressionS *exp, bfd_reloc_code_real_type r)
9313 {
9314 r = reloc (len, 0, cons_sign, r);
9315
9316 #ifdef TE_PE
9317 if (exp->X_op == O_secrel)
9318 {
9319 exp->X_op = O_symbol;
9320 r = BFD_RELOC_32_SECREL;
9321 }
9322 #endif
9323
9324 fix_new_exp (frag, off, len, exp, 0, r);
9325 }
9326
9327 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9328 purpose of the `.dc.a' internal pseudo-op. */
9329
9330 int
9331 x86_address_bytes (void)
9332 {
9333 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9334 return 4;
9335 return stdoutput->arch_info->bits_per_address / 8;
9336 }
9337
9338 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9339 || defined (LEX_AT)
9340 # define lex_got(reloc, adjust, types) NULL
9341 #else
9342 /* Parse operands of the form
9343 <symbol>@GOTOFF+<nnn>
9344 and similar .plt or .got references.
9345
9346 If we find one, set up the correct relocation in RELOC and copy the
9347 input string, minus the `@GOTOFF' into a malloc'd buffer for
9348 parsing by the calling routine. Return this buffer, and if ADJUST
9349 is non-null set it to the length of the string we removed from the
9350 input line. Otherwise return NULL. */
9351 static char *
9352 lex_got (enum bfd_reloc_code_real *rel,
9353 int *adjust,
9354 i386_operand_type *types)
9355 {
9356 /* Some of the relocations depend on the size of what field is to
9357 be relocated. But in our callers i386_immediate and i386_displacement
9358 we don't yet know the operand size (this will be set by insn
9359 matching). Hence we record the word32 relocation here,
9360 and adjust the reloc according to the real size in reloc(). */
9361 static const struct {
9362 const char *str;
9363 int len;
9364 const enum bfd_reloc_code_real rel[2];
9365 const i386_operand_type types64;
9366 } gotrel[] = {
9367 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9368 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9369 BFD_RELOC_SIZE32 },
9370 OPERAND_TYPE_IMM32_64 },
9371 #endif
9372 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9373 BFD_RELOC_X86_64_PLTOFF64 },
9374 OPERAND_TYPE_IMM64 },
9375 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9376 BFD_RELOC_X86_64_PLT32 },
9377 OPERAND_TYPE_IMM32_32S_DISP32 },
9378 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9379 BFD_RELOC_X86_64_GOTPLT64 },
9380 OPERAND_TYPE_IMM64_DISP64 },
9381 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9382 BFD_RELOC_X86_64_GOTOFF64 },
9383 OPERAND_TYPE_IMM64_DISP64 },
9384 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9385 BFD_RELOC_X86_64_GOTPCREL },
9386 OPERAND_TYPE_IMM32_32S_DISP32 },
9387 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9388 BFD_RELOC_X86_64_TLSGD },
9389 OPERAND_TYPE_IMM32_32S_DISP32 },
9390 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9391 _dummy_first_bfd_reloc_code_real },
9392 OPERAND_TYPE_NONE },
9393 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9394 BFD_RELOC_X86_64_TLSLD },
9395 OPERAND_TYPE_IMM32_32S_DISP32 },
9396 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9397 BFD_RELOC_X86_64_GOTTPOFF },
9398 OPERAND_TYPE_IMM32_32S_DISP32 },
9399 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9400 BFD_RELOC_X86_64_TPOFF32 },
9401 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9402 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9403 _dummy_first_bfd_reloc_code_real },
9404 OPERAND_TYPE_NONE },
9405 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9406 BFD_RELOC_X86_64_DTPOFF32 },
9407 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9408 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9409 _dummy_first_bfd_reloc_code_real },
9410 OPERAND_TYPE_NONE },
9411 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9412 _dummy_first_bfd_reloc_code_real },
9413 OPERAND_TYPE_NONE },
9414 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9415 BFD_RELOC_X86_64_GOT32 },
9416 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9417 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9418 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9419 OPERAND_TYPE_IMM32_32S_DISP32 },
9420 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9421 BFD_RELOC_X86_64_TLSDESC_CALL },
9422 OPERAND_TYPE_IMM32_32S_DISP32 },
9423 };
9424 char *cp;
9425 unsigned int j;
9426
9427 #if defined (OBJ_MAYBE_ELF)
9428 if (!IS_ELF)
9429 return NULL;
9430 #endif
9431
9432 for (cp = input_line_pointer; *cp != '@'; cp++)
9433 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9434 return NULL;
9435
9436 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9437 {
9438 int len = gotrel[j].len;
9439 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9440 {
9441 if (gotrel[j].rel[object_64bit] != 0)
9442 {
9443 int first, second;
9444 char *tmpbuf, *past_reloc;
9445
9446 *rel = gotrel[j].rel[object_64bit];
9447
9448 if (types)
9449 {
9450 if (flag_code != CODE_64BIT)
9451 {
9452 types->bitfield.imm32 = 1;
9453 types->bitfield.disp32 = 1;
9454 }
9455 else
9456 *types = gotrel[j].types64;
9457 }
9458
9459 if (j != 0 && GOT_symbol == NULL)
9460 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9461
9462 /* The length of the first part of our input line. */
9463 first = cp - input_line_pointer;
9464
9465 /* The second part goes from after the reloc token until
9466 (and including) an end_of_line char or comma. */
9467 past_reloc = cp + 1 + len;
9468 cp = past_reloc;
9469 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9470 ++cp;
9471 second = cp + 1 - past_reloc;
9472
9473 /* Allocate and copy string. The trailing NUL shouldn't
9474 be necessary, but be safe. */
9475 tmpbuf = XNEWVEC (char, first + second + 2);
9476 memcpy (tmpbuf, input_line_pointer, first);
9477 if (second != 0 && *past_reloc != ' ')
9478 /* Replace the relocation token with ' ', so that
9479 errors like foo@GOTOFF1 will be detected. */
9480 tmpbuf[first++] = ' ';
9481 else
9482 /* Increment length by 1 if the relocation token is
9483 removed. */
9484 len++;
9485 if (adjust)
9486 *adjust = len;
9487 memcpy (tmpbuf + first, past_reloc, second);
9488 tmpbuf[first + second] = '\0';
9489 return tmpbuf;
9490 }
9491
9492 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9493 gotrel[j].str, 1 << (5 + object_64bit));
9494 return NULL;
9495 }
9496 }
9497
9498 /* Might be a symbol version string. Don't as_bad here. */
9499 return NULL;
9500 }
9501 #endif
9502
9503 #ifdef TE_PE
9504 #ifdef lex_got
9505 #undef lex_got
9506 #endif
9507 /* Parse operands of the form
9508 <symbol>@SECREL32+<nnn>
9509
9510 If we find one, set up the correct relocation in RELOC and copy the
9511 input string, minus the `@SECREL32' into a malloc'd buffer for
9512 parsing by the calling routine. Return this buffer, and if ADJUST
9513 is non-null set it to the length of the string we removed from the
9514 input line. Otherwise return NULL.
9515
9516 This function is copied from the ELF version above adjusted for PE targets. */
9517
9518 static char *
9519 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9520 int *adjust ATTRIBUTE_UNUSED,
9521 i386_operand_type *types)
9522 {
9523 static const struct
9524 {
9525 const char *str;
9526 int len;
9527 const enum bfd_reloc_code_real rel[2];
9528 const i386_operand_type types64;
9529 }
9530 gotrel[] =
9531 {
9532 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9533 BFD_RELOC_32_SECREL },
9534 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9535 };
9536
9537 char *cp;
9538 unsigned j;
9539
9540 for (cp = input_line_pointer; *cp != '@'; cp++)
9541 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9542 return NULL;
9543
9544 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9545 {
9546 int len = gotrel[j].len;
9547
9548 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9549 {
9550 if (gotrel[j].rel[object_64bit] != 0)
9551 {
9552 int first, second;
9553 char *tmpbuf, *past_reloc;
9554
9555 *rel = gotrel[j].rel[object_64bit];
9556 if (adjust)
9557 *adjust = len;
9558
9559 if (types)
9560 {
9561 if (flag_code != CODE_64BIT)
9562 {
9563 types->bitfield.imm32 = 1;
9564 types->bitfield.disp32 = 1;
9565 }
9566 else
9567 *types = gotrel[j].types64;
9568 }
9569
9570 /* The length of the first part of our input line. */
9571 first = cp - input_line_pointer;
9572
9573 /* The second part goes from after the reloc token until
9574 (and including) an end_of_line char or comma. */
9575 past_reloc = cp + 1 + len;
9576 cp = past_reloc;
9577 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9578 ++cp;
9579 second = cp + 1 - past_reloc;
9580
9581 /* Allocate and copy string. The trailing NUL shouldn't
9582 be necessary, but be safe. */
9583 tmpbuf = XNEWVEC (char, first + second + 2);
9584 memcpy (tmpbuf, input_line_pointer, first);
9585 if (second != 0 && *past_reloc != ' ')
9586 /* Replace the relocation token with ' ', so that
9587 errors like foo@SECLREL321 will be detected. */
9588 tmpbuf[first++] = ' ';
9589 memcpy (tmpbuf + first, past_reloc, second);
9590 tmpbuf[first + second] = '\0';
9591 return tmpbuf;
9592 }
9593
9594 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9595 gotrel[j].str, 1 << (5 + object_64bit));
9596 return NULL;
9597 }
9598 }
9599
9600 /* Might be a symbol version string. Don't as_bad here. */
9601 return NULL;
9602 }
9603
9604 #endif /* TE_PE */
9605
9606 bfd_reloc_code_real_type
9607 x86_cons (expressionS *exp, int size)
9608 {
9609 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9610
9611 intel_syntax = -intel_syntax;
9612
9613 exp->X_md = 0;
9614 if (size == 4 || (object_64bit && size == 8))
9615 {
9616 /* Handle @GOTOFF and the like in an expression. */
9617 char *save;
9618 char *gotfree_input_line;
9619 int adjust = 0;
9620
9621 save = input_line_pointer;
9622 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9623 if (gotfree_input_line)
9624 input_line_pointer = gotfree_input_line;
9625
9626 expression (exp);
9627
9628 if (gotfree_input_line)
9629 {
9630 /* expression () has merrily parsed up to the end of line,
9631 or a comma - in the wrong buffer. Transfer how far
9632 input_line_pointer has moved to the right buffer. */
9633 input_line_pointer = (save
9634 + (input_line_pointer - gotfree_input_line)
9635 + adjust);
9636 free (gotfree_input_line);
9637 if (exp->X_op == O_constant
9638 || exp->X_op == O_absent
9639 || exp->X_op == O_illegal
9640 || exp->X_op == O_register
9641 || exp->X_op == O_big)
9642 {
9643 char c = *input_line_pointer;
9644 *input_line_pointer = 0;
9645 as_bad (_("missing or invalid expression `%s'"), save);
9646 *input_line_pointer = c;
9647 }
9648 else if ((got_reloc == BFD_RELOC_386_PLT32
9649 || got_reloc == BFD_RELOC_X86_64_PLT32)
9650 && exp->X_op != O_symbol)
9651 {
9652 char c = *input_line_pointer;
9653 *input_line_pointer = 0;
9654 as_bad (_("invalid PLT expression `%s'"), save);
9655 *input_line_pointer = c;
9656 }
9657 }
9658 }
9659 else
9660 expression (exp);
9661
9662 intel_syntax = -intel_syntax;
9663
9664 if (intel_syntax)
9665 i386_intel_simplify (exp);
9666
9667 return got_reloc;
9668 }
9669
9670 static void
9671 signed_cons (int size)
9672 {
9673 if (flag_code == CODE_64BIT)
9674 cons_sign = 1;
9675 cons (size);
9676 cons_sign = -1;
9677 }
9678
9679 #ifdef TE_PE
9680 static void
9681 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9682 {
9683 expressionS exp;
9684
9685 do
9686 {
9687 expression (&exp);
9688 if (exp.X_op == O_symbol)
9689 exp.X_op = O_secrel;
9690
9691 emit_expr (&exp, 4);
9692 }
9693 while (*input_line_pointer++ == ',');
9694
9695 input_line_pointer--;
9696 demand_empty_rest_of_line ();
9697 }
9698 #endif
9699
9700 /* Handle Vector operations. */
9701
9702 static char *
9703 check_VecOperations (char *op_string, char *op_end)
9704 {
9705 const reg_entry *mask;
9706 const char *saved;
9707 char *end_op;
9708
9709 while (*op_string
9710 && (op_end == NULL || op_string < op_end))
9711 {
9712 saved = op_string;
9713 if (*op_string == '{')
9714 {
9715 op_string++;
9716
9717 /* Check broadcasts. */
9718 if (strncmp (op_string, "1to", 3) == 0)
9719 {
9720 int bcst_type;
9721
9722 if (i.broadcast)
9723 goto duplicated_vec_op;
9724
9725 op_string += 3;
9726 if (*op_string == '8')
9727 bcst_type = 8;
9728 else if (*op_string == '4')
9729 bcst_type = 4;
9730 else if (*op_string == '2')
9731 bcst_type = 2;
9732 else if (*op_string == '1'
9733 && *(op_string+1) == '6')
9734 {
9735 bcst_type = 16;
9736 op_string++;
9737 }
9738 else
9739 {
9740 as_bad (_("Unsupported broadcast: `%s'"), saved);
9741 return NULL;
9742 }
9743 op_string++;
9744
9745 broadcast_op.type = bcst_type;
9746 broadcast_op.operand = this_operand;
9747 broadcast_op.bytes = 0;
9748 i.broadcast = &broadcast_op;
9749 }
9750 /* Check masking operation. */
9751 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9752 {
9753 /* k0 can't be used for write mask. */
9754 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9755 {
9756 as_bad (_("`%s%s' can't be used for write mask"),
9757 register_prefix, mask->reg_name);
9758 return NULL;
9759 }
9760
9761 if (!i.mask)
9762 {
9763 mask_op.mask = mask;
9764 mask_op.zeroing = 0;
9765 mask_op.operand = this_operand;
9766 i.mask = &mask_op;
9767 }
9768 else
9769 {
9770 if (i.mask->mask)
9771 goto duplicated_vec_op;
9772
9773 i.mask->mask = mask;
9774
9775 /* Only "{z}" is allowed here. No need to check
9776 zeroing mask explicitly. */
9777 if (i.mask->operand != this_operand)
9778 {
9779 as_bad (_("invalid write mask `%s'"), saved);
9780 return NULL;
9781 }
9782 }
9783
9784 op_string = end_op;
9785 }
9786 /* Check zeroing-flag for masking operation. */
9787 else if (*op_string == 'z')
9788 {
9789 if (!i.mask)
9790 {
9791 mask_op.mask = NULL;
9792 mask_op.zeroing = 1;
9793 mask_op.operand = this_operand;
9794 i.mask = &mask_op;
9795 }
9796 else
9797 {
9798 if (i.mask->zeroing)
9799 {
9800 duplicated_vec_op:
9801 as_bad (_("duplicated `%s'"), saved);
9802 return NULL;
9803 }
9804
9805 i.mask->zeroing = 1;
9806
9807 /* Only "{%k}" is allowed here. No need to check mask
9808 register explicitly. */
9809 if (i.mask->operand != this_operand)
9810 {
9811 as_bad (_("invalid zeroing-masking `%s'"),
9812 saved);
9813 return NULL;
9814 }
9815 }
9816
9817 op_string++;
9818 }
9819 else
9820 goto unknown_vec_op;
9821
9822 if (*op_string != '}')
9823 {
9824 as_bad (_("missing `}' in `%s'"), saved);
9825 return NULL;
9826 }
9827 op_string++;
9828
9829 /* Strip whitespace since the addition of pseudo prefixes
9830 changed how the scrubber treats '{'. */
9831 if (is_space_char (*op_string))
9832 ++op_string;
9833
9834 continue;
9835 }
9836 unknown_vec_op:
9837 /* We don't know this one. */
9838 as_bad (_("unknown vector operation: `%s'"), saved);
9839 return NULL;
9840 }
9841
9842 if (i.mask && i.mask->zeroing && !i.mask->mask)
9843 {
9844 as_bad (_("zeroing-masking only allowed with write mask"));
9845 return NULL;
9846 }
9847
9848 return op_string;
9849 }
9850
9851 static int
9852 i386_immediate (char *imm_start)
9853 {
9854 char *save_input_line_pointer;
9855 char *gotfree_input_line;
9856 segT exp_seg = 0;
9857 expressionS *exp;
9858 i386_operand_type types;
9859
9860 operand_type_set (&types, ~0);
9861
9862 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9863 {
9864 as_bad (_("at most %d immediate operands are allowed"),
9865 MAX_IMMEDIATE_OPERANDS);
9866 return 0;
9867 }
9868
9869 exp = &im_expressions[i.imm_operands++];
9870 i.op[this_operand].imms = exp;
9871
9872 if (is_space_char (*imm_start))
9873 ++imm_start;
9874
9875 save_input_line_pointer = input_line_pointer;
9876 input_line_pointer = imm_start;
9877
9878 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9879 if (gotfree_input_line)
9880 input_line_pointer = gotfree_input_line;
9881
9882 exp_seg = expression (exp);
9883
9884 SKIP_WHITESPACE ();
9885
9886 /* Handle vector operations. */
9887 if (*input_line_pointer == '{')
9888 {
9889 input_line_pointer = check_VecOperations (input_line_pointer,
9890 NULL);
9891 if (input_line_pointer == NULL)
9892 return 0;
9893 }
9894
9895 if (*input_line_pointer)
9896 as_bad (_("junk `%s' after expression"), input_line_pointer);
9897
9898 input_line_pointer = save_input_line_pointer;
9899 if (gotfree_input_line)
9900 {
9901 free (gotfree_input_line);
9902
9903 if (exp->X_op == O_constant || exp->X_op == O_register)
9904 exp->X_op = O_illegal;
9905 }
9906
9907 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9908 }
9909
9910 static int
9911 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9912 i386_operand_type types, const char *imm_start)
9913 {
9914 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9915 {
9916 if (imm_start)
9917 as_bad (_("missing or invalid immediate expression `%s'"),
9918 imm_start);
9919 return 0;
9920 }
9921 else if (exp->X_op == O_constant)
9922 {
9923 /* Size it properly later. */
9924 i.types[this_operand].bitfield.imm64 = 1;
9925 /* If not 64bit, sign extend val. */
9926 if (flag_code != CODE_64BIT
9927 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9928 exp->X_add_number
9929 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9930 }
9931 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9932 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9933 && exp_seg != absolute_section
9934 && exp_seg != text_section
9935 && exp_seg != data_section
9936 && exp_seg != bss_section
9937 && exp_seg != undefined_section
9938 && !bfd_is_com_section (exp_seg))
9939 {
9940 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9941 return 0;
9942 }
9943 #endif
9944 else if (!intel_syntax && exp_seg == reg_section)
9945 {
9946 if (imm_start)
9947 as_bad (_("illegal immediate register operand %s"), imm_start);
9948 return 0;
9949 }
9950 else
9951 {
9952 /* This is an address. The size of the address will be
9953 determined later, depending on destination register,
9954 suffix, or the default for the section. */
9955 i.types[this_operand].bitfield.imm8 = 1;
9956 i.types[this_operand].bitfield.imm16 = 1;
9957 i.types[this_operand].bitfield.imm32 = 1;
9958 i.types[this_operand].bitfield.imm32s = 1;
9959 i.types[this_operand].bitfield.imm64 = 1;
9960 i.types[this_operand] = operand_type_and (i.types[this_operand],
9961 types);
9962 }
9963
9964 return 1;
9965 }
9966
9967 static char *
9968 i386_scale (char *scale)
9969 {
9970 offsetT val;
9971 char *save = input_line_pointer;
9972
9973 input_line_pointer = scale;
9974 val = get_absolute_expression ();
9975
9976 switch (val)
9977 {
9978 case 1:
9979 i.log2_scale_factor = 0;
9980 break;
9981 case 2:
9982 i.log2_scale_factor = 1;
9983 break;
9984 case 4:
9985 i.log2_scale_factor = 2;
9986 break;
9987 case 8:
9988 i.log2_scale_factor = 3;
9989 break;
9990 default:
9991 {
9992 char sep = *input_line_pointer;
9993
9994 *input_line_pointer = '\0';
9995 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9996 scale);
9997 *input_line_pointer = sep;
9998 input_line_pointer = save;
9999 return NULL;
10000 }
10001 }
10002 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10003 {
10004 as_warn (_("scale factor of %d without an index register"),
10005 1 << i.log2_scale_factor);
10006 i.log2_scale_factor = 0;
10007 }
10008 scale = input_line_pointer;
10009 input_line_pointer = save;
10010 return scale;
10011 }
10012
10013 static int
10014 i386_displacement (char *disp_start, char *disp_end)
10015 {
10016 expressionS *exp;
10017 segT exp_seg = 0;
10018 char *save_input_line_pointer;
10019 char *gotfree_input_line;
10020 int override;
10021 i386_operand_type bigdisp, types = anydisp;
10022 int ret;
10023
10024 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10025 {
10026 as_bad (_("at most %d displacement operands are allowed"),
10027 MAX_MEMORY_OPERANDS);
10028 return 0;
10029 }
10030
10031 operand_type_set (&bigdisp, 0);
10032 if (i.jumpabsolute
10033 || i.types[this_operand].bitfield.baseindex
10034 || (current_templates->start->opcode_modifier.jump != JUMP
10035 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10036 {
10037 i386_addressing_mode ();
10038 override = (i.prefix[ADDR_PREFIX] != 0);
10039 if (flag_code == CODE_64BIT)
10040 {
10041 if (!override)
10042 {
10043 bigdisp.bitfield.disp32s = 1;
10044 bigdisp.bitfield.disp64 = 1;
10045 }
10046 else
10047 bigdisp.bitfield.disp32 = 1;
10048 }
10049 else if ((flag_code == CODE_16BIT) ^ override)
10050 bigdisp.bitfield.disp16 = 1;
10051 else
10052 bigdisp.bitfield.disp32 = 1;
10053 }
10054 else
10055 {
10056 /* For PC-relative branches, the width of the displacement may be
10057 dependent upon data size, but is never dependent upon address size.
10058 Also make sure to not unintentionally match against a non-PC-relative
10059 branch template. */
10060 static templates aux_templates;
10061 const insn_template *t = current_templates->start;
10062 bfd_boolean has_intel64 = FALSE;
10063
10064 aux_templates.start = t;
10065 while (++t < current_templates->end)
10066 {
10067 if (t->opcode_modifier.jump
10068 != current_templates->start->opcode_modifier.jump)
10069 break;
10070 if ((t->opcode_modifier.isa64 >= INTEL64))
10071 has_intel64 = TRUE;
10072 }
10073 if (t < current_templates->end)
10074 {
10075 aux_templates.end = t;
10076 current_templates = &aux_templates;
10077 }
10078
10079 override = (i.prefix[DATA_PREFIX] != 0);
10080 if (flag_code == CODE_64BIT)
10081 {
10082 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10083 && (!intel64 || !has_intel64))
10084 bigdisp.bitfield.disp16 = 1;
10085 else
10086 bigdisp.bitfield.disp32s = 1;
10087 }
10088 else
10089 {
10090 if (!override)
10091 override = (i.suffix == (flag_code != CODE_16BIT
10092 ? WORD_MNEM_SUFFIX
10093 : LONG_MNEM_SUFFIX));
10094 bigdisp.bitfield.disp32 = 1;
10095 if ((flag_code == CODE_16BIT) ^ override)
10096 {
10097 bigdisp.bitfield.disp32 = 0;
10098 bigdisp.bitfield.disp16 = 1;
10099 }
10100 }
10101 }
10102 i.types[this_operand] = operand_type_or (i.types[this_operand],
10103 bigdisp);
10104
10105 exp = &disp_expressions[i.disp_operands];
10106 i.op[this_operand].disps = exp;
10107 i.disp_operands++;
10108 save_input_line_pointer = input_line_pointer;
10109 input_line_pointer = disp_start;
10110 END_STRING_AND_SAVE (disp_end);
10111
10112 #ifndef GCC_ASM_O_HACK
10113 #define GCC_ASM_O_HACK 0
10114 #endif
10115 #if GCC_ASM_O_HACK
10116 END_STRING_AND_SAVE (disp_end + 1);
10117 if (i.types[this_operand].bitfield.baseIndex
10118 && displacement_string_end[-1] == '+')
10119 {
10120 /* This hack is to avoid a warning when using the "o"
10121 constraint within gcc asm statements.
10122 For instance:
10123
10124 #define _set_tssldt_desc(n,addr,limit,type) \
10125 __asm__ __volatile__ ( \
10126 "movw %w2,%0\n\t" \
10127 "movw %w1,2+%0\n\t" \
10128 "rorl $16,%1\n\t" \
10129 "movb %b1,4+%0\n\t" \
10130 "movb %4,5+%0\n\t" \
10131 "movb $0,6+%0\n\t" \
10132 "movb %h1,7+%0\n\t" \
10133 "rorl $16,%1" \
10134 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10135
10136 This works great except that the output assembler ends
10137 up looking a bit weird if it turns out that there is
10138 no offset. You end up producing code that looks like:
10139
10140 #APP
10141 movw $235,(%eax)
10142 movw %dx,2+(%eax)
10143 rorl $16,%edx
10144 movb %dl,4+(%eax)
10145 movb $137,5+(%eax)
10146 movb $0,6+(%eax)
10147 movb %dh,7+(%eax)
10148 rorl $16,%edx
10149 #NO_APP
10150
10151 So here we provide the missing zero. */
10152
10153 *displacement_string_end = '0';
10154 }
10155 #endif
10156 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10157 if (gotfree_input_line)
10158 input_line_pointer = gotfree_input_line;
10159
10160 exp_seg = expression (exp);
10161
10162 SKIP_WHITESPACE ();
10163 if (*input_line_pointer)
10164 as_bad (_("junk `%s' after expression"), input_line_pointer);
10165 #if GCC_ASM_O_HACK
10166 RESTORE_END_STRING (disp_end + 1);
10167 #endif
10168 input_line_pointer = save_input_line_pointer;
10169 if (gotfree_input_line)
10170 {
10171 free (gotfree_input_line);
10172
10173 if (exp->X_op == O_constant || exp->X_op == O_register)
10174 exp->X_op = O_illegal;
10175 }
10176
10177 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10178
10179 RESTORE_END_STRING (disp_end);
10180
10181 return ret;
10182 }
10183
10184 static int
10185 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10186 i386_operand_type types, const char *disp_start)
10187 {
10188 i386_operand_type bigdisp;
10189 int ret = 1;
10190
10191 /* We do this to make sure that the section symbol is in
10192 the symbol table. We will ultimately change the relocation
10193 to be relative to the beginning of the section. */
10194 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10195 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10196 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10197 {
10198 if (exp->X_op != O_symbol)
10199 goto inv_disp;
10200
10201 if (S_IS_LOCAL (exp->X_add_symbol)
10202 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10203 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10204 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10205 exp->X_op = O_subtract;
10206 exp->X_op_symbol = GOT_symbol;
10207 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10208 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10209 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10210 i.reloc[this_operand] = BFD_RELOC_64;
10211 else
10212 i.reloc[this_operand] = BFD_RELOC_32;
10213 }
10214
10215 else if (exp->X_op == O_absent
10216 || exp->X_op == O_illegal
10217 || exp->X_op == O_big)
10218 {
10219 inv_disp:
10220 as_bad (_("missing or invalid displacement expression `%s'"),
10221 disp_start);
10222 ret = 0;
10223 }
10224
10225 else if (flag_code == CODE_64BIT
10226 && !i.prefix[ADDR_PREFIX]
10227 && exp->X_op == O_constant)
10228 {
10229 /* Since displacement is signed extended to 64bit, don't allow
10230 disp32 and turn off disp32s if they are out of range. */
10231 i.types[this_operand].bitfield.disp32 = 0;
10232 if (!fits_in_signed_long (exp->X_add_number))
10233 {
10234 i.types[this_operand].bitfield.disp32s = 0;
10235 if (i.types[this_operand].bitfield.baseindex)
10236 {
10237 as_bad (_("0x%lx out range of signed 32bit displacement"),
10238 (long) exp->X_add_number);
10239 ret = 0;
10240 }
10241 }
10242 }
10243
10244 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10245 else if (exp->X_op != O_constant
10246 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10247 && exp_seg != absolute_section
10248 && exp_seg != text_section
10249 && exp_seg != data_section
10250 && exp_seg != bss_section
10251 && exp_seg != undefined_section
10252 && !bfd_is_com_section (exp_seg))
10253 {
10254 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10255 ret = 0;
10256 }
10257 #endif
10258
10259 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10260 /* Constants get taken care of by optimize_disp(). */
10261 && exp->X_op != O_constant)
10262 i.types[this_operand].bitfield.disp8 = 1;
10263
10264 /* Check if this is a displacement only operand. */
10265 bigdisp = i.types[this_operand];
10266 bigdisp.bitfield.disp8 = 0;
10267 bigdisp.bitfield.disp16 = 0;
10268 bigdisp.bitfield.disp32 = 0;
10269 bigdisp.bitfield.disp32s = 0;
10270 bigdisp.bitfield.disp64 = 0;
10271 if (operand_type_all_zero (&bigdisp))
10272 i.types[this_operand] = operand_type_and (i.types[this_operand],
10273 types);
10274
10275 return ret;
10276 }
10277
10278 /* Return the active addressing mode, taking address override and
10279 registers forming the address into consideration. Update the
10280 address override prefix if necessary. */
10281
10282 static enum flag_code
10283 i386_addressing_mode (void)
10284 {
10285 enum flag_code addr_mode;
10286
10287 if (i.prefix[ADDR_PREFIX])
10288 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10289 else
10290 {
10291 addr_mode = flag_code;
10292
10293 #if INFER_ADDR_PREFIX
10294 if (i.mem_operands == 0)
10295 {
10296 /* Infer address prefix from the first memory operand. */
10297 const reg_entry *addr_reg = i.base_reg;
10298
10299 if (addr_reg == NULL)
10300 addr_reg = i.index_reg;
10301
10302 if (addr_reg)
10303 {
10304 if (addr_reg->reg_type.bitfield.dword)
10305 addr_mode = CODE_32BIT;
10306 else if (flag_code != CODE_64BIT
10307 && addr_reg->reg_type.bitfield.word)
10308 addr_mode = CODE_16BIT;
10309
10310 if (addr_mode != flag_code)
10311 {
10312 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10313 i.prefixes += 1;
10314 /* Change the size of any displacement too. At most one
10315 of Disp16 or Disp32 is set.
10316 FIXME. There doesn't seem to be any real need for
10317 separate Disp16 and Disp32 flags. The same goes for
10318 Imm16 and Imm32. Removing them would probably clean
10319 up the code quite a lot. */
10320 if (flag_code != CODE_64BIT
10321 && (i.types[this_operand].bitfield.disp16
10322 || i.types[this_operand].bitfield.disp32))
10323 i.types[this_operand]
10324 = operand_type_xor (i.types[this_operand], disp16_32);
10325 }
10326 }
10327 }
10328 #endif
10329 }
10330
10331 return addr_mode;
10332 }
10333
10334 /* Make sure the memory operand we've been dealt is valid.
10335 Return 1 on success, 0 on a failure. */
10336
10337 static int
10338 i386_index_check (const char *operand_string)
10339 {
10340 const char *kind = "base/index";
10341 enum flag_code addr_mode = i386_addressing_mode ();
10342
10343 if (current_templates->start->opcode_modifier.isstring
10344 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10345 && (current_templates->end[-1].opcode_modifier.isstring
10346 || i.mem_operands))
10347 {
10348 /* Memory operands of string insns are special in that they only allow
10349 a single register (rDI, rSI, or rBX) as their memory address. */
10350 const reg_entry *expected_reg;
10351 static const char *di_si[][2] =
10352 {
10353 { "esi", "edi" },
10354 { "si", "di" },
10355 { "rsi", "rdi" }
10356 };
10357 static const char *bx[] = { "ebx", "bx", "rbx" };
10358
10359 kind = "string address";
10360
10361 if (current_templates->start->opcode_modifier.repprefixok)
10362 {
10363 int es_op = current_templates->end[-1].opcode_modifier.isstring
10364 - IS_STRING_ES_OP0;
10365 int op = 0;
10366
10367 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10368 || ((!i.mem_operands != !intel_syntax)
10369 && current_templates->end[-1].operand_types[1]
10370 .bitfield.baseindex))
10371 op = 1;
10372 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10373 }
10374 else
10375 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10376
10377 if (i.base_reg != expected_reg
10378 || i.index_reg
10379 || operand_type_check (i.types[this_operand], disp))
10380 {
10381 /* The second memory operand must have the same size as
10382 the first one. */
10383 if (i.mem_operands
10384 && i.base_reg
10385 && !((addr_mode == CODE_64BIT
10386 && i.base_reg->reg_type.bitfield.qword)
10387 || (addr_mode == CODE_32BIT
10388 ? i.base_reg->reg_type.bitfield.dword
10389 : i.base_reg->reg_type.bitfield.word)))
10390 goto bad_address;
10391
10392 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10393 operand_string,
10394 intel_syntax ? '[' : '(',
10395 register_prefix,
10396 expected_reg->reg_name,
10397 intel_syntax ? ']' : ')');
10398 return 1;
10399 }
10400 else
10401 return 1;
10402
10403 bad_address:
10404 as_bad (_("`%s' is not a valid %s expression"),
10405 operand_string, kind);
10406 return 0;
10407 }
10408 else
10409 {
10410 if (addr_mode != CODE_16BIT)
10411 {
10412 /* 32-bit/64-bit checks. */
10413 if ((i.base_reg
10414 && ((addr_mode == CODE_64BIT
10415 ? !i.base_reg->reg_type.bitfield.qword
10416 : !i.base_reg->reg_type.bitfield.dword)
10417 || (i.index_reg && i.base_reg->reg_num == RegIP)
10418 || i.base_reg->reg_num == RegIZ))
10419 || (i.index_reg
10420 && !i.index_reg->reg_type.bitfield.xmmword
10421 && !i.index_reg->reg_type.bitfield.ymmword
10422 && !i.index_reg->reg_type.bitfield.zmmword
10423 && ((addr_mode == CODE_64BIT
10424 ? !i.index_reg->reg_type.bitfield.qword
10425 : !i.index_reg->reg_type.bitfield.dword)
10426 || !i.index_reg->reg_type.bitfield.baseindex)))
10427 goto bad_address;
10428
10429 /* bndmk, bndldx, and bndstx have special restrictions. */
10430 if (current_templates->start->base_opcode == 0xf30f1b
10431 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10432 {
10433 /* They cannot use RIP-relative addressing. */
10434 if (i.base_reg && i.base_reg->reg_num == RegIP)
10435 {
10436 as_bad (_("`%s' cannot be used here"), operand_string);
10437 return 0;
10438 }
10439
10440 /* bndldx and bndstx ignore their scale factor. */
10441 if (current_templates->start->base_opcode != 0xf30f1b
10442 && i.log2_scale_factor)
10443 as_warn (_("register scaling is being ignored here"));
10444 }
10445 }
10446 else
10447 {
10448 /* 16-bit checks. */
10449 if ((i.base_reg
10450 && (!i.base_reg->reg_type.bitfield.word
10451 || !i.base_reg->reg_type.bitfield.baseindex))
10452 || (i.index_reg
10453 && (!i.index_reg->reg_type.bitfield.word
10454 || !i.index_reg->reg_type.bitfield.baseindex
10455 || !(i.base_reg
10456 && i.base_reg->reg_num < 6
10457 && i.index_reg->reg_num >= 6
10458 && i.log2_scale_factor == 0))))
10459 goto bad_address;
10460 }
10461 }
10462 return 1;
10463 }
10464
10465 /* Handle vector immediates. */
10466
10467 static int
10468 RC_SAE_immediate (const char *imm_start)
10469 {
10470 unsigned int match_found, j;
10471 const char *pstr = imm_start;
10472 expressionS *exp;
10473
10474 if (*pstr != '{')
10475 return 0;
10476
10477 pstr++;
10478 match_found = 0;
10479 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10480 {
10481 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10482 {
10483 if (!i.rounding)
10484 {
10485 rc_op.type = RC_NamesTable[j].type;
10486 rc_op.operand = this_operand;
10487 i.rounding = &rc_op;
10488 }
10489 else
10490 {
10491 as_bad (_("duplicated `%s'"), imm_start);
10492 return 0;
10493 }
10494 pstr += RC_NamesTable[j].len;
10495 match_found = 1;
10496 break;
10497 }
10498 }
10499 if (!match_found)
10500 return 0;
10501
10502 if (*pstr++ != '}')
10503 {
10504 as_bad (_("Missing '}': '%s'"), imm_start);
10505 return 0;
10506 }
10507 /* RC/SAE immediate string should contain nothing more. */;
10508 if (*pstr != 0)
10509 {
10510 as_bad (_("Junk after '}': '%s'"), imm_start);
10511 return 0;
10512 }
10513
10514 exp = &im_expressions[i.imm_operands++];
10515 i.op[this_operand].imms = exp;
10516
10517 exp->X_op = O_constant;
10518 exp->X_add_number = 0;
10519 exp->X_add_symbol = (symbolS *) 0;
10520 exp->X_op_symbol = (symbolS *) 0;
10521
10522 i.types[this_operand].bitfield.imm8 = 1;
10523 return 1;
10524 }
10525
10526 /* Only string instructions can have a second memory operand, so
10527 reduce current_templates to just those if it contains any. */
10528 static int
10529 maybe_adjust_templates (void)
10530 {
10531 const insn_template *t;
10532
10533 gas_assert (i.mem_operands == 1);
10534
10535 for (t = current_templates->start; t < current_templates->end; ++t)
10536 if (t->opcode_modifier.isstring)
10537 break;
10538
10539 if (t < current_templates->end)
10540 {
10541 static templates aux_templates;
10542 bfd_boolean recheck;
10543
10544 aux_templates.start = t;
10545 for (; t < current_templates->end; ++t)
10546 if (!t->opcode_modifier.isstring)
10547 break;
10548 aux_templates.end = t;
10549
10550 /* Determine whether to re-check the first memory operand. */
10551 recheck = (aux_templates.start != current_templates->start
10552 || t != current_templates->end);
10553
10554 current_templates = &aux_templates;
10555
10556 if (recheck)
10557 {
10558 i.mem_operands = 0;
10559 if (i.memop1_string != NULL
10560 && i386_index_check (i.memop1_string) == 0)
10561 return 0;
10562 i.mem_operands = 1;
10563 }
10564 }
10565
10566 return 1;
10567 }
10568
10569 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10570 on error. */
10571
10572 static int
10573 i386_att_operand (char *operand_string)
10574 {
10575 const reg_entry *r;
10576 char *end_op;
10577 char *op_string = operand_string;
10578
10579 if (is_space_char (*op_string))
10580 ++op_string;
10581
10582 /* We check for an absolute prefix (differentiating,
10583 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10584 if (*op_string == ABSOLUTE_PREFIX)
10585 {
10586 ++op_string;
10587 if (is_space_char (*op_string))
10588 ++op_string;
10589 i.jumpabsolute = TRUE;
10590 }
10591
10592 /* Check if operand is a register. */
10593 if ((r = parse_register (op_string, &end_op)) != NULL)
10594 {
10595 i386_operand_type temp;
10596
10597 /* Check for a segment override by searching for ':' after a
10598 segment register. */
10599 op_string = end_op;
10600 if (is_space_char (*op_string))
10601 ++op_string;
10602 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10603 {
10604 switch (r->reg_num)
10605 {
10606 case 0:
10607 i.seg[i.mem_operands] = &es;
10608 break;
10609 case 1:
10610 i.seg[i.mem_operands] = &cs;
10611 break;
10612 case 2:
10613 i.seg[i.mem_operands] = &ss;
10614 break;
10615 case 3:
10616 i.seg[i.mem_operands] = &ds;
10617 break;
10618 case 4:
10619 i.seg[i.mem_operands] = &fs;
10620 break;
10621 case 5:
10622 i.seg[i.mem_operands] = &gs;
10623 break;
10624 }
10625
10626 /* Skip the ':' and whitespace. */
10627 ++op_string;
10628 if (is_space_char (*op_string))
10629 ++op_string;
10630
10631 if (!is_digit_char (*op_string)
10632 && !is_identifier_char (*op_string)
10633 && *op_string != '('
10634 && *op_string != ABSOLUTE_PREFIX)
10635 {
10636 as_bad (_("bad memory operand `%s'"), op_string);
10637 return 0;
10638 }
10639 /* Handle case of %es:*foo. */
10640 if (*op_string == ABSOLUTE_PREFIX)
10641 {
10642 ++op_string;
10643 if (is_space_char (*op_string))
10644 ++op_string;
10645 i.jumpabsolute = TRUE;
10646 }
10647 goto do_memory_reference;
10648 }
10649
10650 /* Handle vector operations. */
10651 if (*op_string == '{')
10652 {
10653 op_string = check_VecOperations (op_string, NULL);
10654 if (op_string == NULL)
10655 return 0;
10656 }
10657
10658 if (*op_string)
10659 {
10660 as_bad (_("junk `%s' after register"), op_string);
10661 return 0;
10662 }
10663 temp = r->reg_type;
10664 temp.bitfield.baseindex = 0;
10665 i.types[this_operand] = operand_type_or (i.types[this_operand],
10666 temp);
10667 i.types[this_operand].bitfield.unspecified = 0;
10668 i.op[this_operand].regs = r;
10669 i.reg_operands++;
10670 }
10671 else if (*op_string == REGISTER_PREFIX)
10672 {
10673 as_bad (_("bad register name `%s'"), op_string);
10674 return 0;
10675 }
10676 else if (*op_string == IMMEDIATE_PREFIX)
10677 {
10678 ++op_string;
10679 if (i.jumpabsolute)
10680 {
10681 as_bad (_("immediate operand illegal with absolute jump"));
10682 return 0;
10683 }
10684 if (!i386_immediate (op_string))
10685 return 0;
10686 }
10687 else if (RC_SAE_immediate (operand_string))
10688 {
10689 /* If it is a RC or SAE immediate, do nothing. */
10690 ;
10691 }
10692 else if (is_digit_char (*op_string)
10693 || is_identifier_char (*op_string)
10694 || *op_string == '"'
10695 || *op_string == '(')
10696 {
10697 /* This is a memory reference of some sort. */
10698 char *base_string;
10699
10700 /* Start and end of displacement string expression (if found). */
10701 char *displacement_string_start;
10702 char *displacement_string_end;
10703 char *vop_start;
10704
10705 do_memory_reference:
10706 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10707 return 0;
10708 if ((i.mem_operands == 1
10709 && !current_templates->start->opcode_modifier.isstring)
10710 || i.mem_operands == 2)
10711 {
10712 as_bad (_("too many memory references for `%s'"),
10713 current_templates->start->name);
10714 return 0;
10715 }
10716
10717 /* Check for base index form. We detect the base index form by
10718 looking for an ')' at the end of the operand, searching
10719 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10720 after the '('. */
10721 base_string = op_string + strlen (op_string);
10722
10723 /* Handle vector operations. */
10724 vop_start = strchr (op_string, '{');
10725 if (vop_start && vop_start < base_string)
10726 {
10727 if (check_VecOperations (vop_start, base_string) == NULL)
10728 return 0;
10729 base_string = vop_start;
10730 }
10731
10732 --base_string;
10733 if (is_space_char (*base_string))
10734 --base_string;
10735
10736 /* If we only have a displacement, set-up for it to be parsed later. */
10737 displacement_string_start = op_string;
10738 displacement_string_end = base_string + 1;
10739
10740 if (*base_string == ')')
10741 {
10742 char *temp_string;
10743 unsigned int parens_balanced = 1;
10744 /* We've already checked that the number of left & right ()'s are
10745 equal, so this loop will not be infinite. */
10746 do
10747 {
10748 base_string--;
10749 if (*base_string == ')')
10750 parens_balanced++;
10751 if (*base_string == '(')
10752 parens_balanced--;
10753 }
10754 while (parens_balanced);
10755
10756 temp_string = base_string;
10757
10758 /* Skip past '(' and whitespace. */
10759 ++base_string;
10760 if (is_space_char (*base_string))
10761 ++base_string;
10762
10763 if (*base_string == ','
10764 || ((i.base_reg = parse_register (base_string, &end_op))
10765 != NULL))
10766 {
10767 displacement_string_end = temp_string;
10768
10769 i.types[this_operand].bitfield.baseindex = 1;
10770
10771 if (i.base_reg)
10772 {
10773 base_string = end_op;
10774 if (is_space_char (*base_string))
10775 ++base_string;
10776 }
10777
10778 /* There may be an index reg or scale factor here. */
10779 if (*base_string == ',')
10780 {
10781 ++base_string;
10782 if (is_space_char (*base_string))
10783 ++base_string;
10784
10785 if ((i.index_reg = parse_register (base_string, &end_op))
10786 != NULL)
10787 {
10788 base_string = end_op;
10789 if (is_space_char (*base_string))
10790 ++base_string;
10791 if (*base_string == ',')
10792 {
10793 ++base_string;
10794 if (is_space_char (*base_string))
10795 ++base_string;
10796 }
10797 else if (*base_string != ')')
10798 {
10799 as_bad (_("expecting `,' or `)' "
10800 "after index register in `%s'"),
10801 operand_string);
10802 return 0;
10803 }
10804 }
10805 else if (*base_string == REGISTER_PREFIX)
10806 {
10807 end_op = strchr (base_string, ',');
10808 if (end_op)
10809 *end_op = '\0';
10810 as_bad (_("bad register name `%s'"), base_string);
10811 return 0;
10812 }
10813
10814 /* Check for scale factor. */
10815 if (*base_string != ')')
10816 {
10817 char *end_scale = i386_scale (base_string);
10818
10819 if (!end_scale)
10820 return 0;
10821
10822 base_string = end_scale;
10823 if (is_space_char (*base_string))
10824 ++base_string;
10825 if (*base_string != ')')
10826 {
10827 as_bad (_("expecting `)' "
10828 "after scale factor in `%s'"),
10829 operand_string);
10830 return 0;
10831 }
10832 }
10833 else if (!i.index_reg)
10834 {
10835 as_bad (_("expecting index register or scale factor "
10836 "after `,'; got '%c'"),
10837 *base_string);
10838 return 0;
10839 }
10840 }
10841 else if (*base_string != ')')
10842 {
10843 as_bad (_("expecting `,' or `)' "
10844 "after base register in `%s'"),
10845 operand_string);
10846 return 0;
10847 }
10848 }
10849 else if (*base_string == REGISTER_PREFIX)
10850 {
10851 end_op = strchr (base_string, ',');
10852 if (end_op)
10853 *end_op = '\0';
10854 as_bad (_("bad register name `%s'"), base_string);
10855 return 0;
10856 }
10857 }
10858
10859 /* If there's an expression beginning the operand, parse it,
10860 assuming displacement_string_start and
10861 displacement_string_end are meaningful. */
10862 if (displacement_string_start != displacement_string_end)
10863 {
10864 if (!i386_displacement (displacement_string_start,
10865 displacement_string_end))
10866 return 0;
10867 }
10868
10869 /* Special case for (%dx) while doing input/output op. */
10870 if (i.base_reg
10871 && i.base_reg->reg_type.bitfield.instance == RegD
10872 && i.base_reg->reg_type.bitfield.word
10873 && i.index_reg == 0
10874 && i.log2_scale_factor == 0
10875 && i.seg[i.mem_operands] == 0
10876 && !operand_type_check (i.types[this_operand], disp))
10877 {
10878 i.types[this_operand] = i.base_reg->reg_type;
10879 return 1;
10880 }
10881
10882 if (i386_index_check (operand_string) == 0)
10883 return 0;
10884 i.flags[this_operand] |= Operand_Mem;
10885 if (i.mem_operands == 0)
10886 i.memop1_string = xstrdup (operand_string);
10887 i.mem_operands++;
10888 }
10889 else
10890 {
10891 /* It's not a memory operand; argh! */
10892 as_bad (_("invalid char %s beginning operand %d `%s'"),
10893 output_invalid (*op_string),
10894 this_operand + 1,
10895 op_string);
10896 return 0;
10897 }
10898 return 1; /* Normal return. */
10899 }
10900 \f
10901 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10902 that an rs_machine_dependent frag may reach. */
10903
10904 unsigned int
10905 i386_frag_max_var (fragS *frag)
10906 {
10907 /* The only relaxable frags are for jumps.
10908 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10909 gas_assert (frag->fr_type == rs_machine_dependent);
10910 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10911 }
10912
10913 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10914 static int
10915 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10916 {
10917 /* STT_GNU_IFUNC symbol must go through PLT. */
10918 if ((symbol_get_bfdsym (fr_symbol)->flags
10919 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10920 return 0;
10921
10922 if (!S_IS_EXTERNAL (fr_symbol))
10923 /* Symbol may be weak or local. */
10924 return !S_IS_WEAK (fr_symbol);
10925
10926 /* Global symbols with non-default visibility can't be preempted. */
10927 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10928 return 1;
10929
10930 if (fr_var != NO_RELOC)
10931 switch ((enum bfd_reloc_code_real) fr_var)
10932 {
10933 case BFD_RELOC_386_PLT32:
10934 case BFD_RELOC_X86_64_PLT32:
10935 /* Symbol with PLT relocation may be preempted. */
10936 return 0;
10937 default:
10938 abort ();
10939 }
10940
10941 /* Global symbols with default visibility in a shared library may be
10942 preempted by another definition. */
10943 return !shared;
10944 }
10945 #endif
10946
10947 /* Return the next non-empty frag. */
10948
10949 static fragS *
10950 i386_next_non_empty_frag (fragS *fragP)
10951 {
10952 /* There may be a frag with a ".fill 0" when there is no room in
10953 the current frag for frag_grow in output_insn. */
10954 for (fragP = fragP->fr_next;
10955 (fragP != NULL
10956 && fragP->fr_type == rs_fill
10957 && fragP->fr_fix == 0);
10958 fragP = fragP->fr_next)
10959 ;
10960 return fragP;
10961 }
10962
10963 /* Return the next jcc frag after BRANCH_PADDING. */
10964
10965 static fragS *
10966 i386_next_jcc_frag (fragS *fragP)
10967 {
10968 if (!fragP)
10969 return NULL;
10970
10971 if (fragP->fr_type == rs_machine_dependent
10972 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10973 == BRANCH_PADDING))
10974 {
10975 fragP = i386_next_non_empty_frag (fragP);
10976 if (fragP->fr_type != rs_machine_dependent)
10977 return NULL;
10978 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10979 return fragP;
10980 }
10981
10982 return NULL;
10983 }
10984
10985 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10986
10987 static void
10988 i386_classify_machine_dependent_frag (fragS *fragP)
10989 {
10990 fragS *cmp_fragP;
10991 fragS *pad_fragP;
10992 fragS *branch_fragP;
10993 fragS *next_fragP;
10994 unsigned int max_prefix_length;
10995
10996 if (fragP->tc_frag_data.classified)
10997 return;
10998
10999 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11000 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11001 for (next_fragP = fragP;
11002 next_fragP != NULL;
11003 next_fragP = next_fragP->fr_next)
11004 {
11005 next_fragP->tc_frag_data.classified = 1;
11006 if (next_fragP->fr_type == rs_machine_dependent)
11007 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11008 {
11009 case BRANCH_PADDING:
11010 /* The BRANCH_PADDING frag must be followed by a branch
11011 frag. */
11012 branch_fragP = i386_next_non_empty_frag (next_fragP);
11013 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11014 break;
11015 case FUSED_JCC_PADDING:
11016 /* Check if this is a fused jcc:
11017 FUSED_JCC_PADDING
11018 CMP like instruction
11019 BRANCH_PADDING
11020 COND_JUMP
11021 */
11022 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11023 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11024 branch_fragP = i386_next_jcc_frag (pad_fragP);
11025 if (branch_fragP)
11026 {
11027 /* The BRANCH_PADDING frag is merged with the
11028 FUSED_JCC_PADDING frag. */
11029 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11030 /* CMP like instruction size. */
11031 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11032 frag_wane (pad_fragP);
11033 /* Skip to branch_fragP. */
11034 next_fragP = branch_fragP;
11035 }
11036 else if (next_fragP->tc_frag_data.max_prefix_length)
11037 {
11038 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11039 a fused jcc. */
11040 next_fragP->fr_subtype
11041 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11042 next_fragP->tc_frag_data.max_bytes
11043 = next_fragP->tc_frag_data.max_prefix_length;
11044 /* This will be updated in the BRANCH_PREFIX scan. */
11045 next_fragP->tc_frag_data.max_prefix_length = 0;
11046 }
11047 else
11048 frag_wane (next_fragP);
11049 break;
11050 }
11051 }
11052
11053 /* Stop if there is no BRANCH_PREFIX. */
11054 if (!align_branch_prefix_size)
11055 return;
11056
11057 /* Scan for BRANCH_PREFIX. */
11058 for (; fragP != NULL; fragP = fragP->fr_next)
11059 {
11060 if (fragP->fr_type != rs_machine_dependent
11061 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11062 != BRANCH_PREFIX))
11063 continue;
11064
11065 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11066 COND_JUMP_PREFIX. */
11067 max_prefix_length = 0;
11068 for (next_fragP = fragP;
11069 next_fragP != NULL;
11070 next_fragP = next_fragP->fr_next)
11071 {
11072 if (next_fragP->fr_type == rs_fill)
11073 /* Skip rs_fill frags. */
11074 continue;
11075 else if (next_fragP->fr_type != rs_machine_dependent)
11076 /* Stop for all other frags. */
11077 break;
11078
11079 /* rs_machine_dependent frags. */
11080 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11081 == BRANCH_PREFIX)
11082 {
11083 /* Count BRANCH_PREFIX frags. */
11084 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11085 {
11086 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11087 frag_wane (next_fragP);
11088 }
11089 else
11090 max_prefix_length
11091 += next_fragP->tc_frag_data.max_bytes;
11092 }
11093 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11094 == BRANCH_PADDING)
11095 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11096 == FUSED_JCC_PADDING))
11097 {
11098 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11099 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11100 break;
11101 }
11102 else
11103 /* Stop for other rs_machine_dependent frags. */
11104 break;
11105 }
11106
11107 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11108
11109 /* Skip to the next frag. */
11110 fragP = next_fragP;
11111 }
11112 }
11113
11114 /* Compute padding size for
11115
11116 FUSED_JCC_PADDING
11117 CMP like instruction
11118 BRANCH_PADDING
11119 COND_JUMP/UNCOND_JUMP
11120
11121 or
11122
11123 BRANCH_PADDING
11124 COND_JUMP/UNCOND_JUMP
11125 */
11126
11127 static int
11128 i386_branch_padding_size (fragS *fragP, offsetT address)
11129 {
11130 unsigned int offset, size, padding_size;
11131 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11132
11133 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11134 if (!address)
11135 address = fragP->fr_address;
11136 address += fragP->fr_fix;
11137
11138 /* CMP like instrunction size. */
11139 size = fragP->tc_frag_data.cmp_size;
11140
11141 /* The base size of the branch frag. */
11142 size += branch_fragP->fr_fix;
11143
11144 /* Add opcode and displacement bytes for the rs_machine_dependent
11145 branch frag. */
11146 if (branch_fragP->fr_type == rs_machine_dependent)
11147 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11148
11149 /* Check if branch is within boundary and doesn't end at the last
11150 byte. */
11151 offset = address & ((1U << align_branch_power) - 1);
11152 if ((offset + size) >= (1U << align_branch_power))
11153 /* Padding needed to avoid crossing boundary. */
11154 padding_size = (1U << align_branch_power) - offset;
11155 else
11156 /* No padding needed. */
11157 padding_size = 0;
11158
11159 /* The return value may be saved in tc_frag_data.length which is
11160 unsigned byte. */
11161 if (!fits_in_unsigned_byte (padding_size))
11162 abort ();
11163
11164 return padding_size;
11165 }
11166
11167 /* i386_generic_table_relax_frag()
11168
11169 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11170 grow/shrink padding to align branch frags. Hand others to
11171 relax_frag(). */
11172
11173 long
11174 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11175 {
11176 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11177 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11178 {
11179 long padding_size = i386_branch_padding_size (fragP, 0);
11180 long grow = padding_size - fragP->tc_frag_data.length;
11181
11182 /* When the BRANCH_PREFIX frag is used, the computed address
11183 must match the actual address and there should be no padding. */
11184 if (fragP->tc_frag_data.padding_address
11185 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11186 || padding_size))
11187 abort ();
11188
11189 /* Update the padding size. */
11190 if (grow)
11191 fragP->tc_frag_data.length = padding_size;
11192
11193 return grow;
11194 }
11195 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11196 {
11197 fragS *padding_fragP, *next_fragP;
11198 long padding_size, left_size, last_size;
11199
11200 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11201 if (!padding_fragP)
11202 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11203 return (fragP->tc_frag_data.length
11204 - fragP->tc_frag_data.last_length);
11205
11206 /* Compute the relative address of the padding frag in the very
11207 first time where the BRANCH_PREFIX frag sizes are zero. */
11208 if (!fragP->tc_frag_data.padding_address)
11209 fragP->tc_frag_data.padding_address
11210 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11211
11212 /* First update the last length from the previous interation. */
11213 left_size = fragP->tc_frag_data.prefix_length;
11214 for (next_fragP = fragP;
11215 next_fragP != padding_fragP;
11216 next_fragP = next_fragP->fr_next)
11217 if (next_fragP->fr_type == rs_machine_dependent
11218 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11219 == BRANCH_PREFIX))
11220 {
11221 if (left_size)
11222 {
11223 int max = next_fragP->tc_frag_data.max_bytes;
11224 if (max)
11225 {
11226 int size;
11227 if (max > left_size)
11228 size = left_size;
11229 else
11230 size = max;
11231 left_size -= size;
11232 next_fragP->tc_frag_data.last_length = size;
11233 }
11234 }
11235 else
11236 next_fragP->tc_frag_data.last_length = 0;
11237 }
11238
11239 /* Check the padding size for the padding frag. */
11240 padding_size = i386_branch_padding_size
11241 (padding_fragP, (fragP->fr_address
11242 + fragP->tc_frag_data.padding_address));
11243
11244 last_size = fragP->tc_frag_data.prefix_length;
11245 /* Check if there is change from the last interation. */
11246 if (padding_size == last_size)
11247 {
11248 /* Update the expected address of the padding frag. */
11249 padding_fragP->tc_frag_data.padding_address
11250 = (fragP->fr_address + padding_size
11251 + fragP->tc_frag_data.padding_address);
11252 return 0;
11253 }
11254
11255 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11256 {
11257 /* No padding if there is no sufficient room. Clear the
11258 expected address of the padding frag. */
11259 padding_fragP->tc_frag_data.padding_address = 0;
11260 padding_size = 0;
11261 }
11262 else
11263 /* Store the expected address of the padding frag. */
11264 padding_fragP->tc_frag_data.padding_address
11265 = (fragP->fr_address + padding_size
11266 + fragP->tc_frag_data.padding_address);
11267
11268 fragP->tc_frag_data.prefix_length = padding_size;
11269
11270 /* Update the length for the current interation. */
11271 left_size = padding_size;
11272 for (next_fragP = fragP;
11273 next_fragP != padding_fragP;
11274 next_fragP = next_fragP->fr_next)
11275 if (next_fragP->fr_type == rs_machine_dependent
11276 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11277 == BRANCH_PREFIX))
11278 {
11279 if (left_size)
11280 {
11281 int max = next_fragP->tc_frag_data.max_bytes;
11282 if (max)
11283 {
11284 int size;
11285 if (max > left_size)
11286 size = left_size;
11287 else
11288 size = max;
11289 left_size -= size;
11290 next_fragP->tc_frag_data.length = size;
11291 }
11292 }
11293 else
11294 next_fragP->tc_frag_data.length = 0;
11295 }
11296
11297 return (fragP->tc_frag_data.length
11298 - fragP->tc_frag_data.last_length);
11299 }
11300 return relax_frag (segment, fragP, stretch);
11301 }
11302
11303 /* md_estimate_size_before_relax()
11304
11305 Called just before relax() for rs_machine_dependent frags. The x86
11306 assembler uses these frags to handle variable size jump
11307 instructions.
11308
11309 Any symbol that is now undefined will not become defined.
11310 Return the correct fr_subtype in the frag.
11311 Return the initial "guess for variable size of frag" to caller.
11312 The guess is actually the growth beyond the fixed part. Whatever
11313 we do to grow the fixed or variable part contributes to our
11314 returned value. */
11315
11316 int
11317 md_estimate_size_before_relax (fragS *fragP, segT segment)
11318 {
11319 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11320 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11321 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11322 {
11323 i386_classify_machine_dependent_frag (fragP);
11324 return fragP->tc_frag_data.length;
11325 }
11326
11327 /* We've already got fragP->fr_subtype right; all we have to do is
11328 check for un-relaxable symbols. On an ELF system, we can't relax
11329 an externally visible symbol, because it may be overridden by a
11330 shared library. */
11331 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11332 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11333 || (IS_ELF
11334 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11335 fragP->fr_var))
11336 #endif
11337 #if defined (OBJ_COFF) && defined (TE_PE)
11338 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11339 && S_IS_WEAK (fragP->fr_symbol))
11340 #endif
11341 )
11342 {
11343 /* Symbol is undefined in this segment, or we need to keep a
11344 reloc so that weak symbols can be overridden. */
11345 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11346 enum bfd_reloc_code_real reloc_type;
11347 unsigned char *opcode;
11348 int old_fr_fix;
11349
11350 if (fragP->fr_var != NO_RELOC)
11351 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11352 else if (size == 2)
11353 reloc_type = BFD_RELOC_16_PCREL;
11354 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11355 else if (need_plt32_p (fragP->fr_symbol))
11356 reloc_type = BFD_RELOC_X86_64_PLT32;
11357 #endif
11358 else
11359 reloc_type = BFD_RELOC_32_PCREL;
11360
11361 old_fr_fix = fragP->fr_fix;
11362 opcode = (unsigned char *) fragP->fr_opcode;
11363
11364 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11365 {
11366 case UNCOND_JUMP:
11367 /* Make jmp (0xeb) a (d)word displacement jump. */
11368 opcode[0] = 0xe9;
11369 fragP->fr_fix += size;
11370 fix_new (fragP, old_fr_fix, size,
11371 fragP->fr_symbol,
11372 fragP->fr_offset, 1,
11373 reloc_type);
11374 break;
11375
11376 case COND_JUMP86:
11377 if (size == 2
11378 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11379 {
11380 /* Negate the condition, and branch past an
11381 unconditional jump. */
11382 opcode[0] ^= 1;
11383 opcode[1] = 3;
11384 /* Insert an unconditional jump. */
11385 opcode[2] = 0xe9;
11386 /* We added two extra opcode bytes, and have a two byte
11387 offset. */
11388 fragP->fr_fix += 2 + 2;
11389 fix_new (fragP, old_fr_fix + 2, 2,
11390 fragP->fr_symbol,
11391 fragP->fr_offset, 1,
11392 reloc_type);
11393 break;
11394 }
11395 /* Fall through. */
11396
11397 case COND_JUMP:
11398 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11399 {
11400 fixS *fixP;
11401
11402 fragP->fr_fix += 1;
11403 fixP = fix_new (fragP, old_fr_fix, 1,
11404 fragP->fr_symbol,
11405 fragP->fr_offset, 1,
11406 BFD_RELOC_8_PCREL);
11407 fixP->fx_signed = 1;
11408 break;
11409 }
11410
11411 /* This changes the byte-displacement jump 0x7N
11412 to the (d)word-displacement jump 0x0f,0x8N. */
11413 opcode[1] = opcode[0] + 0x10;
11414 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11415 /* We've added an opcode byte. */
11416 fragP->fr_fix += 1 + size;
11417 fix_new (fragP, old_fr_fix + 1, size,
11418 fragP->fr_symbol,
11419 fragP->fr_offset, 1,
11420 reloc_type);
11421 break;
11422
11423 default:
11424 BAD_CASE (fragP->fr_subtype);
11425 break;
11426 }
11427 frag_wane (fragP);
11428 return fragP->fr_fix - old_fr_fix;
11429 }
11430
11431 /* Guess size depending on current relax state. Initially the relax
11432 state will correspond to a short jump and we return 1, because
11433 the variable part of the frag (the branch offset) is one byte
11434 long. However, we can relax a section more than once and in that
11435 case we must either set fr_subtype back to the unrelaxed state,
11436 or return the value for the appropriate branch. */
11437 return md_relax_table[fragP->fr_subtype].rlx_length;
11438 }
11439
11440 /* Called after relax() is finished.
11441
11442 In: Address of frag.
11443 fr_type == rs_machine_dependent.
11444 fr_subtype is what the address relaxed to.
11445
11446 Out: Any fixSs and constants are set up.
11447 Caller will turn frag into a ".space 0". */
11448
11449 void
11450 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11451 fragS *fragP)
11452 {
11453 unsigned char *opcode;
11454 unsigned char *where_to_put_displacement = NULL;
11455 offsetT target_address;
11456 offsetT opcode_address;
11457 unsigned int extension = 0;
11458 offsetT displacement_from_opcode_start;
11459
11460 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11461 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11462 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11463 {
11464 /* Generate nop padding. */
11465 unsigned int size = fragP->tc_frag_data.length;
11466 if (size)
11467 {
11468 if (size > fragP->tc_frag_data.max_bytes)
11469 abort ();
11470
11471 if (flag_debug)
11472 {
11473 const char *msg;
11474 const char *branch = "branch";
11475 const char *prefix = "";
11476 fragS *padding_fragP;
11477 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11478 == BRANCH_PREFIX)
11479 {
11480 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11481 switch (fragP->tc_frag_data.default_prefix)
11482 {
11483 default:
11484 abort ();
11485 break;
11486 case CS_PREFIX_OPCODE:
11487 prefix = " cs";
11488 break;
11489 case DS_PREFIX_OPCODE:
11490 prefix = " ds";
11491 break;
11492 case ES_PREFIX_OPCODE:
11493 prefix = " es";
11494 break;
11495 case FS_PREFIX_OPCODE:
11496 prefix = " fs";
11497 break;
11498 case GS_PREFIX_OPCODE:
11499 prefix = " gs";
11500 break;
11501 case SS_PREFIX_OPCODE:
11502 prefix = " ss";
11503 break;
11504 }
11505 if (padding_fragP)
11506 msg = _("%s:%u: add %d%s at 0x%llx to align "
11507 "%s within %d-byte boundary\n");
11508 else
11509 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11510 "align %s within %d-byte boundary\n");
11511 }
11512 else
11513 {
11514 padding_fragP = fragP;
11515 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11516 "%s within %d-byte boundary\n");
11517 }
11518
11519 if (padding_fragP)
11520 switch (padding_fragP->tc_frag_data.branch_type)
11521 {
11522 case align_branch_jcc:
11523 branch = "jcc";
11524 break;
11525 case align_branch_fused:
11526 branch = "fused jcc";
11527 break;
11528 case align_branch_jmp:
11529 branch = "jmp";
11530 break;
11531 case align_branch_call:
11532 branch = "call";
11533 break;
11534 case align_branch_indirect:
11535 branch = "indiret branch";
11536 break;
11537 case align_branch_ret:
11538 branch = "ret";
11539 break;
11540 default:
11541 break;
11542 }
11543
11544 fprintf (stdout, msg,
11545 fragP->fr_file, fragP->fr_line, size, prefix,
11546 (long long) fragP->fr_address, branch,
11547 1 << align_branch_power);
11548 }
11549 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11550 memset (fragP->fr_opcode,
11551 fragP->tc_frag_data.default_prefix, size);
11552 else
11553 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11554 size, 0);
11555 fragP->fr_fix += size;
11556 }
11557 return;
11558 }
11559
11560 opcode = (unsigned char *) fragP->fr_opcode;
11561
11562 /* Address we want to reach in file space. */
11563 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11564
11565 /* Address opcode resides at in file space. */
11566 opcode_address = fragP->fr_address + fragP->fr_fix;
11567
11568 /* Displacement from opcode start to fill into instruction. */
11569 displacement_from_opcode_start = target_address - opcode_address;
11570
11571 if ((fragP->fr_subtype & BIG) == 0)
11572 {
11573 /* Don't have to change opcode. */
11574 extension = 1; /* 1 opcode + 1 displacement */
11575 where_to_put_displacement = &opcode[1];
11576 }
11577 else
11578 {
11579 if (no_cond_jump_promotion
11580 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11581 as_warn_where (fragP->fr_file, fragP->fr_line,
11582 _("long jump required"));
11583
11584 switch (fragP->fr_subtype)
11585 {
11586 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11587 extension = 4; /* 1 opcode + 4 displacement */
11588 opcode[0] = 0xe9;
11589 where_to_put_displacement = &opcode[1];
11590 break;
11591
11592 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11593 extension = 2; /* 1 opcode + 2 displacement */
11594 opcode[0] = 0xe9;
11595 where_to_put_displacement = &opcode[1];
11596 break;
11597
11598 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11599 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11600 extension = 5; /* 2 opcode + 4 displacement */
11601 opcode[1] = opcode[0] + 0x10;
11602 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11603 where_to_put_displacement = &opcode[2];
11604 break;
11605
11606 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11607 extension = 3; /* 2 opcode + 2 displacement */
11608 opcode[1] = opcode[0] + 0x10;
11609 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11610 where_to_put_displacement = &opcode[2];
11611 break;
11612
11613 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11614 extension = 4;
11615 opcode[0] ^= 1;
11616 opcode[1] = 3;
11617 opcode[2] = 0xe9;
11618 where_to_put_displacement = &opcode[3];
11619 break;
11620
11621 default:
11622 BAD_CASE (fragP->fr_subtype);
11623 break;
11624 }
11625 }
11626
11627 /* If size if less then four we are sure that the operand fits,
11628 but if it's 4, then it could be that the displacement is larger
11629 then -/+ 2GB. */
11630 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11631 && object_64bit
11632 && ((addressT) (displacement_from_opcode_start - extension
11633 + ((addressT) 1 << 31))
11634 > (((addressT) 2 << 31) - 1)))
11635 {
11636 as_bad_where (fragP->fr_file, fragP->fr_line,
11637 _("jump target out of range"));
11638 /* Make us emit 0. */
11639 displacement_from_opcode_start = extension;
11640 }
11641 /* Now put displacement after opcode. */
11642 md_number_to_chars ((char *) where_to_put_displacement,
11643 (valueT) (displacement_from_opcode_start - extension),
11644 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11645 fragP->fr_fix += extension;
11646 }
11647 \f
11648 /* Apply a fixup (fixP) to segment data, once it has been determined
11649 by our caller that we have all the info we need to fix it up.
11650
11651 Parameter valP is the pointer to the value of the bits.
11652
11653 On the 386, immediates, displacements, and data pointers are all in
11654 the same (little-endian) format, so we don't need to care about which
11655 we are handling. */
11656
11657 void
11658 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11659 {
11660 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11661 valueT value = *valP;
11662
11663 #if !defined (TE_Mach)
11664 if (fixP->fx_pcrel)
11665 {
11666 switch (fixP->fx_r_type)
11667 {
11668 default:
11669 break;
11670
11671 case BFD_RELOC_64:
11672 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11673 break;
11674 case BFD_RELOC_32:
11675 case BFD_RELOC_X86_64_32S:
11676 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11677 break;
11678 case BFD_RELOC_16:
11679 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11680 break;
11681 case BFD_RELOC_8:
11682 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11683 break;
11684 }
11685 }
11686
11687 if (fixP->fx_addsy != NULL
11688 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11689 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11690 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11691 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11692 && !use_rela_relocations)
11693 {
11694 /* This is a hack. There should be a better way to handle this.
11695 This covers for the fact that bfd_install_relocation will
11696 subtract the current location (for partial_inplace, PC relative
11697 relocations); see more below. */
11698 #ifndef OBJ_AOUT
11699 if (IS_ELF
11700 #ifdef TE_PE
11701 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11702 #endif
11703 )
11704 value += fixP->fx_where + fixP->fx_frag->fr_address;
11705 #endif
11706 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11707 if (IS_ELF)
11708 {
11709 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11710
11711 if ((sym_seg == seg
11712 || (symbol_section_p (fixP->fx_addsy)
11713 && sym_seg != absolute_section))
11714 && !generic_force_reloc (fixP))
11715 {
11716 /* Yes, we add the values in twice. This is because
11717 bfd_install_relocation subtracts them out again. I think
11718 bfd_install_relocation is broken, but I don't dare change
11719 it. FIXME. */
11720 value += fixP->fx_where + fixP->fx_frag->fr_address;
11721 }
11722 }
11723 #endif
11724 #if defined (OBJ_COFF) && defined (TE_PE)
11725 /* For some reason, the PE format does not store a
11726 section address offset for a PC relative symbol. */
11727 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11728 || S_IS_WEAK (fixP->fx_addsy))
11729 value += md_pcrel_from (fixP);
11730 #endif
11731 }
11732 #if defined (OBJ_COFF) && defined (TE_PE)
11733 if (fixP->fx_addsy != NULL
11734 && S_IS_WEAK (fixP->fx_addsy)
11735 /* PR 16858: Do not modify weak function references. */
11736 && ! fixP->fx_pcrel)
11737 {
11738 #if !defined (TE_PEP)
11739 /* For x86 PE weak function symbols are neither PC-relative
11740 nor do they set S_IS_FUNCTION. So the only reliable way
11741 to detect them is to check the flags of their containing
11742 section. */
11743 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11744 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11745 ;
11746 else
11747 #endif
11748 value -= S_GET_VALUE (fixP->fx_addsy);
11749 }
11750 #endif
11751
11752 /* Fix a few things - the dynamic linker expects certain values here,
11753 and we must not disappoint it. */
11754 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11755 if (IS_ELF && fixP->fx_addsy)
11756 switch (fixP->fx_r_type)
11757 {
11758 case BFD_RELOC_386_PLT32:
11759 case BFD_RELOC_X86_64_PLT32:
11760 /* Make the jump instruction point to the address of the operand.
11761 At runtime we merely add the offset to the actual PLT entry.
11762 NB: Subtract the offset size only for jump instructions. */
11763 if (fixP->fx_pcrel)
11764 value = -4;
11765 break;
11766
11767 case BFD_RELOC_386_TLS_GD:
11768 case BFD_RELOC_386_TLS_LDM:
11769 case BFD_RELOC_386_TLS_IE_32:
11770 case BFD_RELOC_386_TLS_IE:
11771 case BFD_RELOC_386_TLS_GOTIE:
11772 case BFD_RELOC_386_TLS_GOTDESC:
11773 case BFD_RELOC_X86_64_TLSGD:
11774 case BFD_RELOC_X86_64_TLSLD:
11775 case BFD_RELOC_X86_64_GOTTPOFF:
11776 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11777 value = 0; /* Fully resolved at runtime. No addend. */
11778 /* Fallthrough */
11779 case BFD_RELOC_386_TLS_LE:
11780 case BFD_RELOC_386_TLS_LDO_32:
11781 case BFD_RELOC_386_TLS_LE_32:
11782 case BFD_RELOC_X86_64_DTPOFF32:
11783 case BFD_RELOC_X86_64_DTPOFF64:
11784 case BFD_RELOC_X86_64_TPOFF32:
11785 case BFD_RELOC_X86_64_TPOFF64:
11786 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11787 break;
11788
11789 case BFD_RELOC_386_TLS_DESC_CALL:
11790 case BFD_RELOC_X86_64_TLSDESC_CALL:
11791 value = 0; /* Fully resolved at runtime. No addend. */
11792 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11793 fixP->fx_done = 0;
11794 return;
11795
11796 case BFD_RELOC_VTABLE_INHERIT:
11797 case BFD_RELOC_VTABLE_ENTRY:
11798 fixP->fx_done = 0;
11799 return;
11800
11801 default:
11802 break;
11803 }
11804 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11805 *valP = value;
11806 #endif /* !defined (TE_Mach) */
11807
11808 /* Are we finished with this relocation now? */
11809 if (fixP->fx_addsy == NULL)
11810 fixP->fx_done = 1;
11811 #if defined (OBJ_COFF) && defined (TE_PE)
11812 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11813 {
11814 fixP->fx_done = 0;
11815 /* Remember value for tc_gen_reloc. */
11816 fixP->fx_addnumber = value;
11817 /* Clear out the frag for now. */
11818 value = 0;
11819 }
11820 #endif
11821 else if (use_rela_relocations)
11822 {
11823 fixP->fx_no_overflow = 1;
11824 /* Remember value for tc_gen_reloc. */
11825 fixP->fx_addnumber = value;
11826 value = 0;
11827 }
11828
11829 md_number_to_chars (p, value, fixP->fx_size);
11830 }
11831 \f
11832 const char *
11833 md_atof (int type, char *litP, int *sizeP)
11834 {
11835 /* This outputs the LITTLENUMs in REVERSE order;
11836 in accord with the bigendian 386. */
11837 return ieee_md_atof (type, litP, sizeP, FALSE);
11838 }
11839 \f
11840 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11841
11842 static char *
11843 output_invalid (int c)
11844 {
11845 if (ISPRINT (c))
11846 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11847 "'%c'", c);
11848 else
11849 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11850 "(0x%x)", (unsigned char) c);
11851 return output_invalid_buf;
11852 }
11853
11854 /* REG_STRING starts *before* REGISTER_PREFIX. */
11855
11856 static const reg_entry *
11857 parse_real_register (char *reg_string, char **end_op)
11858 {
11859 char *s = reg_string;
11860 char *p;
11861 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11862 const reg_entry *r;
11863
11864 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11865 if (*s == REGISTER_PREFIX)
11866 ++s;
11867
11868 if (is_space_char (*s))
11869 ++s;
11870
11871 p = reg_name_given;
11872 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11873 {
11874 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11875 return (const reg_entry *) NULL;
11876 s++;
11877 }
11878
11879 /* For naked regs, make sure that we are not dealing with an identifier.
11880 This prevents confusing an identifier like `eax_var' with register
11881 `eax'. */
11882 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11883 return (const reg_entry *) NULL;
11884
11885 *end_op = s;
11886
11887 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11888
11889 /* Handle floating point regs, allowing spaces in the (i) part. */
11890 if (r == i386_regtab /* %st is first entry of table */)
11891 {
11892 if (!cpu_arch_flags.bitfield.cpu8087
11893 && !cpu_arch_flags.bitfield.cpu287
11894 && !cpu_arch_flags.bitfield.cpu387)
11895 return (const reg_entry *) NULL;
11896
11897 if (is_space_char (*s))
11898 ++s;
11899 if (*s == '(')
11900 {
11901 ++s;
11902 if (is_space_char (*s))
11903 ++s;
11904 if (*s >= '0' && *s <= '7')
11905 {
11906 int fpr = *s - '0';
11907 ++s;
11908 if (is_space_char (*s))
11909 ++s;
11910 if (*s == ')')
11911 {
11912 *end_op = s + 1;
11913 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11914 know (r);
11915 return r + fpr;
11916 }
11917 }
11918 /* We have "%st(" then garbage. */
11919 return (const reg_entry *) NULL;
11920 }
11921 }
11922
11923 if (r == NULL || allow_pseudo_reg)
11924 return r;
11925
11926 if (operand_type_all_zero (&r->reg_type))
11927 return (const reg_entry *) NULL;
11928
11929 if ((r->reg_type.bitfield.dword
11930 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11931 || r->reg_type.bitfield.class == RegCR
11932 || r->reg_type.bitfield.class == RegDR
11933 || r->reg_type.bitfield.class == RegTR)
11934 && !cpu_arch_flags.bitfield.cpui386)
11935 return (const reg_entry *) NULL;
11936
11937 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11938 return (const reg_entry *) NULL;
11939
11940 if (!cpu_arch_flags.bitfield.cpuavx512f)
11941 {
11942 if (r->reg_type.bitfield.zmmword
11943 || r->reg_type.bitfield.class == RegMask)
11944 return (const reg_entry *) NULL;
11945
11946 if (!cpu_arch_flags.bitfield.cpuavx)
11947 {
11948 if (r->reg_type.bitfield.ymmword)
11949 return (const reg_entry *) NULL;
11950
11951 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11952 return (const reg_entry *) NULL;
11953 }
11954 }
11955
11956 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11957 return (const reg_entry *) NULL;
11958
11959 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11960 if (!allow_index_reg && r->reg_num == RegIZ)
11961 return (const reg_entry *) NULL;
11962
11963 /* Upper 16 vector registers are only available with VREX in 64bit
11964 mode, and require EVEX encoding. */
11965 if (r->reg_flags & RegVRex)
11966 {
11967 if (!cpu_arch_flags.bitfield.cpuavx512f
11968 || flag_code != CODE_64BIT)
11969 return (const reg_entry *) NULL;
11970
11971 i.vec_encoding = vex_encoding_evex;
11972 }
11973
11974 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11975 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11976 && flag_code != CODE_64BIT)
11977 return (const reg_entry *) NULL;
11978
11979 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11980 && !intel_syntax)
11981 return (const reg_entry *) NULL;
11982
11983 return r;
11984 }
11985
11986 /* REG_STRING starts *before* REGISTER_PREFIX. */
11987
11988 static const reg_entry *
11989 parse_register (char *reg_string, char **end_op)
11990 {
11991 const reg_entry *r;
11992
11993 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11994 r = parse_real_register (reg_string, end_op);
11995 else
11996 r = NULL;
11997 if (!r)
11998 {
11999 char *save = input_line_pointer;
12000 char c;
12001 symbolS *symbolP;
12002
12003 input_line_pointer = reg_string;
12004 c = get_symbol_name (&reg_string);
12005 symbolP = symbol_find (reg_string);
12006 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12007 {
12008 const expressionS *e = symbol_get_value_expression (symbolP);
12009
12010 know (e->X_op == O_register);
12011 know (e->X_add_number >= 0
12012 && (valueT) e->X_add_number < i386_regtab_size);
12013 r = i386_regtab + e->X_add_number;
12014 if ((r->reg_flags & RegVRex))
12015 i.vec_encoding = vex_encoding_evex;
12016 *end_op = input_line_pointer;
12017 }
12018 *input_line_pointer = c;
12019 input_line_pointer = save;
12020 }
12021 return r;
12022 }
12023
12024 int
12025 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12026 {
12027 const reg_entry *r;
12028 char *end = input_line_pointer;
12029
12030 *end = *nextcharP;
12031 r = parse_register (name, &input_line_pointer);
12032 if (r && end <= input_line_pointer)
12033 {
12034 *nextcharP = *input_line_pointer;
12035 *input_line_pointer = 0;
12036 e->X_op = O_register;
12037 e->X_add_number = r - i386_regtab;
12038 return 1;
12039 }
12040 input_line_pointer = end;
12041 *end = 0;
12042 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12043 }
12044
12045 void
12046 md_operand (expressionS *e)
12047 {
12048 char *end;
12049 const reg_entry *r;
12050
12051 switch (*input_line_pointer)
12052 {
12053 case REGISTER_PREFIX:
12054 r = parse_real_register (input_line_pointer, &end);
12055 if (r)
12056 {
12057 e->X_op = O_register;
12058 e->X_add_number = r - i386_regtab;
12059 input_line_pointer = end;
12060 }
12061 break;
12062
12063 case '[':
12064 gas_assert (intel_syntax);
12065 end = input_line_pointer++;
12066 expression (e);
12067 if (*input_line_pointer == ']')
12068 {
12069 ++input_line_pointer;
12070 e->X_op_symbol = make_expr_symbol (e);
12071 e->X_add_symbol = NULL;
12072 e->X_add_number = 0;
12073 e->X_op = O_index;
12074 }
12075 else
12076 {
12077 e->X_op = O_absent;
12078 input_line_pointer = end;
12079 }
12080 break;
12081 }
12082 }
12083
12084 \f
12085 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12086 const char *md_shortopts = "kVQ:sqnO::";
12087 #else
12088 const char *md_shortopts = "qnO::";
12089 #endif
12090
12091 #define OPTION_32 (OPTION_MD_BASE + 0)
12092 #define OPTION_64 (OPTION_MD_BASE + 1)
12093 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12094 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12095 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12096 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12097 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12098 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12099 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12100 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12101 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12102 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12103 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12104 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12105 #define OPTION_X32 (OPTION_MD_BASE + 14)
12106 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12107 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12108 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12109 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12110 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12111 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12112 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12113 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12114 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12115 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12116 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12117 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12118 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12119 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12120 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12121 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12122
12123 struct option md_longopts[] =
12124 {
12125 {"32", no_argument, NULL, OPTION_32},
12126 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12127 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12128 {"64", no_argument, NULL, OPTION_64},
12129 #endif
12130 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12131 {"x32", no_argument, NULL, OPTION_X32},
12132 {"mshared", no_argument, NULL, OPTION_MSHARED},
12133 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12134 #endif
12135 {"divide", no_argument, NULL, OPTION_DIVIDE},
12136 {"march", required_argument, NULL, OPTION_MARCH},
12137 {"mtune", required_argument, NULL, OPTION_MTUNE},
12138 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12139 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12140 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12141 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12142 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12143 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12144 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12145 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12146 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12147 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12148 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12149 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12150 # if defined (TE_PE) || defined (TE_PEP)
12151 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12152 #endif
12153 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12154 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12155 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12156 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12157 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12158 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12159 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12160 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12161 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12162 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12163 {NULL, no_argument, NULL, 0}
12164 };
12165 size_t md_longopts_size = sizeof (md_longopts);
12166
12167 int
12168 md_parse_option (int c, const char *arg)
12169 {
12170 unsigned int j;
12171 char *arch, *next, *saved, *type;
12172
12173 switch (c)
12174 {
12175 case 'n':
12176 optimize_align_code = 0;
12177 break;
12178
12179 case 'q':
12180 quiet_warnings = 1;
12181 break;
12182
12183 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12184 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12185 should be emitted or not. FIXME: Not implemented. */
12186 case 'Q':
12187 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12188 return 0;
12189 break;
12190
12191 /* -V: SVR4 argument to print version ID. */
12192 case 'V':
12193 print_version_id ();
12194 break;
12195
12196 /* -k: Ignore for FreeBSD compatibility. */
12197 case 'k':
12198 break;
12199
12200 case 's':
12201 /* -s: On i386 Solaris, this tells the native assembler to use
12202 .stab instead of .stab.excl. We always use .stab anyhow. */
12203 break;
12204
12205 case OPTION_MSHARED:
12206 shared = 1;
12207 break;
12208
12209 case OPTION_X86_USED_NOTE:
12210 if (strcasecmp (arg, "yes") == 0)
12211 x86_used_note = 1;
12212 else if (strcasecmp (arg, "no") == 0)
12213 x86_used_note = 0;
12214 else
12215 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12216 break;
12217
12218
12219 #endif
12220 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12221 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12222 case OPTION_64:
12223 {
12224 const char **list, **l;
12225
12226 list = bfd_target_list ();
12227 for (l = list; *l != NULL; l++)
12228 if (CONST_STRNEQ (*l, "elf64-x86-64")
12229 || strcmp (*l, "coff-x86-64") == 0
12230 || strcmp (*l, "pe-x86-64") == 0
12231 || strcmp (*l, "pei-x86-64") == 0
12232 || strcmp (*l, "mach-o-x86-64") == 0)
12233 {
12234 default_arch = "x86_64";
12235 break;
12236 }
12237 if (*l == NULL)
12238 as_fatal (_("no compiled in support for x86_64"));
12239 free (list);
12240 }
12241 break;
12242 #endif
12243
12244 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12245 case OPTION_X32:
12246 if (IS_ELF)
12247 {
12248 const char **list, **l;
12249
12250 list = bfd_target_list ();
12251 for (l = list; *l != NULL; l++)
12252 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12253 {
12254 default_arch = "x86_64:32";
12255 break;
12256 }
12257 if (*l == NULL)
12258 as_fatal (_("no compiled in support for 32bit x86_64"));
12259 free (list);
12260 }
12261 else
12262 as_fatal (_("32bit x86_64 is only supported for ELF"));
12263 break;
12264 #endif
12265
12266 case OPTION_32:
12267 default_arch = "i386";
12268 break;
12269
12270 case OPTION_DIVIDE:
12271 #ifdef SVR4_COMMENT_CHARS
12272 {
12273 char *n, *t;
12274 const char *s;
12275
12276 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12277 t = n;
12278 for (s = i386_comment_chars; *s != '\0'; s++)
12279 if (*s != '/')
12280 *t++ = *s;
12281 *t = '\0';
12282 i386_comment_chars = n;
12283 }
12284 #endif
12285 break;
12286
12287 case OPTION_MARCH:
12288 saved = xstrdup (arg);
12289 arch = saved;
12290 /* Allow -march=+nosse. */
12291 if (*arch == '+')
12292 arch++;
12293 do
12294 {
12295 if (*arch == '.')
12296 as_fatal (_("invalid -march= option: `%s'"), arg);
12297 next = strchr (arch, '+');
12298 if (next)
12299 *next++ = '\0';
12300 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12301 {
12302 if (strcmp (arch, cpu_arch [j].name) == 0)
12303 {
12304 /* Processor. */
12305 if (! cpu_arch[j].flags.bitfield.cpui386)
12306 continue;
12307
12308 cpu_arch_name = cpu_arch[j].name;
12309 cpu_sub_arch_name = NULL;
12310 cpu_arch_flags = cpu_arch[j].flags;
12311 cpu_arch_isa = cpu_arch[j].type;
12312 cpu_arch_isa_flags = cpu_arch[j].flags;
12313 if (!cpu_arch_tune_set)
12314 {
12315 cpu_arch_tune = cpu_arch_isa;
12316 cpu_arch_tune_flags = cpu_arch_isa_flags;
12317 }
12318 break;
12319 }
12320 else if (*cpu_arch [j].name == '.'
12321 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12322 {
12323 /* ISA extension. */
12324 i386_cpu_flags flags;
12325
12326 flags = cpu_flags_or (cpu_arch_flags,
12327 cpu_arch[j].flags);
12328
12329 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12330 {
12331 if (cpu_sub_arch_name)
12332 {
12333 char *name = cpu_sub_arch_name;
12334 cpu_sub_arch_name = concat (name,
12335 cpu_arch[j].name,
12336 (const char *) NULL);
12337 free (name);
12338 }
12339 else
12340 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12341 cpu_arch_flags = flags;
12342 cpu_arch_isa_flags = flags;
12343 }
12344 else
12345 cpu_arch_isa_flags
12346 = cpu_flags_or (cpu_arch_isa_flags,
12347 cpu_arch[j].flags);
12348 break;
12349 }
12350 }
12351
12352 if (j >= ARRAY_SIZE (cpu_arch))
12353 {
12354 /* Disable an ISA extension. */
12355 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12356 if (strcmp (arch, cpu_noarch [j].name) == 0)
12357 {
12358 i386_cpu_flags flags;
12359
12360 flags = cpu_flags_and_not (cpu_arch_flags,
12361 cpu_noarch[j].flags);
12362 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12363 {
12364 if (cpu_sub_arch_name)
12365 {
12366 char *name = cpu_sub_arch_name;
12367 cpu_sub_arch_name = concat (arch,
12368 (const char *) NULL);
12369 free (name);
12370 }
12371 else
12372 cpu_sub_arch_name = xstrdup (arch);
12373 cpu_arch_flags = flags;
12374 cpu_arch_isa_flags = flags;
12375 }
12376 break;
12377 }
12378
12379 if (j >= ARRAY_SIZE (cpu_noarch))
12380 j = ARRAY_SIZE (cpu_arch);
12381 }
12382
12383 if (j >= ARRAY_SIZE (cpu_arch))
12384 as_fatal (_("invalid -march= option: `%s'"), arg);
12385
12386 arch = next;
12387 }
12388 while (next != NULL);
12389 free (saved);
12390 break;
12391
12392 case OPTION_MTUNE:
12393 if (*arg == '.')
12394 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12395 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12396 {
12397 if (strcmp (arg, cpu_arch [j].name) == 0)
12398 {
12399 cpu_arch_tune_set = 1;
12400 cpu_arch_tune = cpu_arch [j].type;
12401 cpu_arch_tune_flags = cpu_arch[j].flags;
12402 break;
12403 }
12404 }
12405 if (j >= ARRAY_SIZE (cpu_arch))
12406 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12407 break;
12408
12409 case OPTION_MMNEMONIC:
12410 if (strcasecmp (arg, "att") == 0)
12411 intel_mnemonic = 0;
12412 else if (strcasecmp (arg, "intel") == 0)
12413 intel_mnemonic = 1;
12414 else
12415 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12416 break;
12417
12418 case OPTION_MSYNTAX:
12419 if (strcasecmp (arg, "att") == 0)
12420 intel_syntax = 0;
12421 else if (strcasecmp (arg, "intel") == 0)
12422 intel_syntax = 1;
12423 else
12424 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12425 break;
12426
12427 case OPTION_MINDEX_REG:
12428 allow_index_reg = 1;
12429 break;
12430
12431 case OPTION_MNAKED_REG:
12432 allow_naked_reg = 1;
12433 break;
12434
12435 case OPTION_MSSE2AVX:
12436 sse2avx = 1;
12437 break;
12438
12439 case OPTION_MSSE_CHECK:
12440 if (strcasecmp (arg, "error") == 0)
12441 sse_check = check_error;
12442 else if (strcasecmp (arg, "warning") == 0)
12443 sse_check = check_warning;
12444 else if (strcasecmp (arg, "none") == 0)
12445 sse_check = check_none;
12446 else
12447 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12448 break;
12449
12450 case OPTION_MOPERAND_CHECK:
12451 if (strcasecmp (arg, "error") == 0)
12452 operand_check = check_error;
12453 else if (strcasecmp (arg, "warning") == 0)
12454 operand_check = check_warning;
12455 else if (strcasecmp (arg, "none") == 0)
12456 operand_check = check_none;
12457 else
12458 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12459 break;
12460
12461 case OPTION_MAVXSCALAR:
12462 if (strcasecmp (arg, "128") == 0)
12463 avxscalar = vex128;
12464 else if (strcasecmp (arg, "256") == 0)
12465 avxscalar = vex256;
12466 else
12467 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12468 break;
12469
12470 case OPTION_MVEXWIG:
12471 if (strcmp (arg, "0") == 0)
12472 vexwig = vexw0;
12473 else if (strcmp (arg, "1") == 0)
12474 vexwig = vexw1;
12475 else
12476 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12477 break;
12478
12479 case OPTION_MADD_BND_PREFIX:
12480 add_bnd_prefix = 1;
12481 break;
12482
12483 case OPTION_MEVEXLIG:
12484 if (strcmp (arg, "128") == 0)
12485 evexlig = evexl128;
12486 else if (strcmp (arg, "256") == 0)
12487 evexlig = evexl256;
12488 else if (strcmp (arg, "512") == 0)
12489 evexlig = evexl512;
12490 else
12491 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12492 break;
12493
12494 case OPTION_MEVEXRCIG:
12495 if (strcmp (arg, "rne") == 0)
12496 evexrcig = rne;
12497 else if (strcmp (arg, "rd") == 0)
12498 evexrcig = rd;
12499 else if (strcmp (arg, "ru") == 0)
12500 evexrcig = ru;
12501 else if (strcmp (arg, "rz") == 0)
12502 evexrcig = rz;
12503 else
12504 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12505 break;
12506
12507 case OPTION_MEVEXWIG:
12508 if (strcmp (arg, "0") == 0)
12509 evexwig = evexw0;
12510 else if (strcmp (arg, "1") == 0)
12511 evexwig = evexw1;
12512 else
12513 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12514 break;
12515
12516 # if defined (TE_PE) || defined (TE_PEP)
12517 case OPTION_MBIG_OBJ:
12518 use_big_obj = 1;
12519 break;
12520 #endif
12521
12522 case OPTION_MOMIT_LOCK_PREFIX:
12523 if (strcasecmp (arg, "yes") == 0)
12524 omit_lock_prefix = 1;
12525 else if (strcasecmp (arg, "no") == 0)
12526 omit_lock_prefix = 0;
12527 else
12528 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12529 break;
12530
12531 case OPTION_MFENCE_AS_LOCK_ADD:
12532 if (strcasecmp (arg, "yes") == 0)
12533 avoid_fence = 1;
12534 else if (strcasecmp (arg, "no") == 0)
12535 avoid_fence = 0;
12536 else
12537 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12538 break;
12539
12540 case OPTION_MRELAX_RELOCATIONS:
12541 if (strcasecmp (arg, "yes") == 0)
12542 generate_relax_relocations = 1;
12543 else if (strcasecmp (arg, "no") == 0)
12544 generate_relax_relocations = 0;
12545 else
12546 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12547 break;
12548
12549 case OPTION_MALIGN_BRANCH_BOUNDARY:
12550 {
12551 char *end;
12552 long int align = strtoul (arg, &end, 0);
12553 if (*end == '\0')
12554 {
12555 if (align == 0)
12556 {
12557 align_branch_power = 0;
12558 break;
12559 }
12560 else if (align >= 16)
12561 {
12562 int align_power;
12563 for (align_power = 0;
12564 (align & 1) == 0;
12565 align >>= 1, align_power++)
12566 continue;
12567 /* Limit alignment power to 31. */
12568 if (align == 1 && align_power < 32)
12569 {
12570 align_branch_power = align_power;
12571 break;
12572 }
12573 }
12574 }
12575 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12576 }
12577 break;
12578
12579 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12580 {
12581 char *end;
12582 int align = strtoul (arg, &end, 0);
12583 /* Some processors only support 5 prefixes. */
12584 if (*end == '\0' && align >= 0 && align < 6)
12585 {
12586 align_branch_prefix_size = align;
12587 break;
12588 }
12589 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12590 arg);
12591 }
12592 break;
12593
12594 case OPTION_MALIGN_BRANCH:
12595 align_branch = 0;
12596 saved = xstrdup (arg);
12597 type = saved;
12598 do
12599 {
12600 next = strchr (type, '+');
12601 if (next)
12602 *next++ = '\0';
12603 if (strcasecmp (type, "jcc") == 0)
12604 align_branch |= align_branch_jcc_bit;
12605 else if (strcasecmp (type, "fused") == 0)
12606 align_branch |= align_branch_fused_bit;
12607 else if (strcasecmp (type, "jmp") == 0)
12608 align_branch |= align_branch_jmp_bit;
12609 else if (strcasecmp (type, "call") == 0)
12610 align_branch |= align_branch_call_bit;
12611 else if (strcasecmp (type, "ret") == 0)
12612 align_branch |= align_branch_ret_bit;
12613 else if (strcasecmp (type, "indirect") == 0)
12614 align_branch |= align_branch_indirect_bit;
12615 else
12616 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12617 type = next;
12618 }
12619 while (next != NULL);
12620 free (saved);
12621 break;
12622
12623 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12624 align_branch_power = 5;
12625 align_branch_prefix_size = 5;
12626 align_branch = (align_branch_jcc_bit
12627 | align_branch_fused_bit
12628 | align_branch_jmp_bit);
12629 break;
12630
12631 case OPTION_MAMD64:
12632 isa64 = amd64;
12633 break;
12634
12635 case OPTION_MINTEL64:
12636 isa64 = intel64;
12637 break;
12638
12639 case 'O':
12640 if (arg == NULL)
12641 {
12642 optimize = 1;
12643 /* Turn off -Os. */
12644 optimize_for_space = 0;
12645 }
12646 else if (*arg == 's')
12647 {
12648 optimize_for_space = 1;
12649 /* Turn on all encoding optimizations. */
12650 optimize = INT_MAX;
12651 }
12652 else
12653 {
12654 optimize = atoi (arg);
12655 /* Turn off -Os. */
12656 optimize_for_space = 0;
12657 }
12658 break;
12659
12660 default:
12661 return 0;
12662 }
12663 return 1;
12664 }
12665
12666 #define MESSAGE_TEMPLATE \
12667 " "
12668
12669 static char *
12670 output_message (FILE *stream, char *p, char *message, char *start,
12671 int *left_p, const char *name, int len)
12672 {
12673 int size = sizeof (MESSAGE_TEMPLATE);
12674 int left = *left_p;
12675
12676 /* Reserve 2 spaces for ", " or ",\0" */
12677 left -= len + 2;
12678
12679 /* Check if there is any room. */
12680 if (left >= 0)
12681 {
12682 if (p != start)
12683 {
12684 *p++ = ',';
12685 *p++ = ' ';
12686 }
12687 p = mempcpy (p, name, len);
12688 }
12689 else
12690 {
12691 /* Output the current message now and start a new one. */
12692 *p++ = ',';
12693 *p = '\0';
12694 fprintf (stream, "%s\n", message);
12695 p = start;
12696 left = size - (start - message) - len - 2;
12697
12698 gas_assert (left >= 0);
12699
12700 p = mempcpy (p, name, len);
12701 }
12702
12703 *left_p = left;
12704 return p;
12705 }
12706
12707 static void
12708 show_arch (FILE *stream, int ext, int check)
12709 {
12710 static char message[] = MESSAGE_TEMPLATE;
12711 char *start = message + 27;
12712 char *p;
12713 int size = sizeof (MESSAGE_TEMPLATE);
12714 int left;
12715 const char *name;
12716 int len;
12717 unsigned int j;
12718
12719 p = start;
12720 left = size - (start - message);
12721 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12722 {
12723 /* Should it be skipped? */
12724 if (cpu_arch [j].skip)
12725 continue;
12726
12727 name = cpu_arch [j].name;
12728 len = cpu_arch [j].len;
12729 if (*name == '.')
12730 {
12731 /* It is an extension. Skip if we aren't asked to show it. */
12732 if (ext)
12733 {
12734 name++;
12735 len--;
12736 }
12737 else
12738 continue;
12739 }
12740 else if (ext)
12741 {
12742 /* It is an processor. Skip if we show only extension. */
12743 continue;
12744 }
12745 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12746 {
12747 /* It is an impossible processor - skip. */
12748 continue;
12749 }
12750
12751 p = output_message (stream, p, message, start, &left, name, len);
12752 }
12753
12754 /* Display disabled extensions. */
12755 if (ext)
12756 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12757 {
12758 name = cpu_noarch [j].name;
12759 len = cpu_noarch [j].len;
12760 p = output_message (stream, p, message, start, &left, name,
12761 len);
12762 }
12763
12764 *p = '\0';
12765 fprintf (stream, "%s\n", message);
12766 }
12767
12768 void
12769 md_show_usage (FILE *stream)
12770 {
12771 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12772 fprintf (stream, _("\
12773 -Qy, -Qn ignored\n\
12774 -V print assembler version number\n\
12775 -k ignored\n"));
12776 #endif
12777 fprintf (stream, _("\
12778 -n Do not optimize code alignment\n\
12779 -q quieten some warnings\n"));
12780 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12781 fprintf (stream, _("\
12782 -s ignored\n"));
12783 #endif
12784 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12785 || defined (TE_PE) || defined (TE_PEP))
12786 fprintf (stream, _("\
12787 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12788 #endif
12789 #ifdef SVR4_COMMENT_CHARS
12790 fprintf (stream, _("\
12791 --divide do not treat `/' as a comment character\n"));
12792 #else
12793 fprintf (stream, _("\
12794 --divide ignored\n"));
12795 #endif
12796 fprintf (stream, _("\
12797 -march=CPU[,+EXTENSION...]\n\
12798 generate code for CPU and EXTENSION, CPU is one of:\n"));
12799 show_arch (stream, 0, 1);
12800 fprintf (stream, _("\
12801 EXTENSION is combination of:\n"));
12802 show_arch (stream, 1, 0);
12803 fprintf (stream, _("\
12804 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12805 show_arch (stream, 0, 0);
12806 fprintf (stream, _("\
12807 -msse2avx encode SSE instructions with VEX prefix\n"));
12808 fprintf (stream, _("\
12809 -msse-check=[none|error|warning] (default: warning)\n\
12810 check SSE instructions\n"));
12811 fprintf (stream, _("\
12812 -moperand-check=[none|error|warning] (default: warning)\n\
12813 check operand combinations for validity\n"));
12814 fprintf (stream, _("\
12815 -mavxscalar=[128|256] (default: 128)\n\
12816 encode scalar AVX instructions with specific vector\n\
12817 length\n"));
12818 fprintf (stream, _("\
12819 -mvexwig=[0|1] (default: 0)\n\
12820 encode VEX instructions with specific VEX.W value\n\
12821 for VEX.W bit ignored instructions\n"));
12822 fprintf (stream, _("\
12823 -mevexlig=[128|256|512] (default: 128)\n\
12824 encode scalar EVEX instructions with specific vector\n\
12825 length\n"));
12826 fprintf (stream, _("\
12827 -mevexwig=[0|1] (default: 0)\n\
12828 encode EVEX instructions with specific EVEX.W value\n\
12829 for EVEX.W bit ignored instructions\n"));
12830 fprintf (stream, _("\
12831 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12832 encode EVEX instructions with specific EVEX.RC value\n\
12833 for SAE-only ignored instructions\n"));
12834 fprintf (stream, _("\
12835 -mmnemonic=[att|intel] "));
12836 if (SYSV386_COMPAT)
12837 fprintf (stream, _("(default: att)\n"));
12838 else
12839 fprintf (stream, _("(default: intel)\n"));
12840 fprintf (stream, _("\
12841 use AT&T/Intel mnemonic\n"));
12842 fprintf (stream, _("\
12843 -msyntax=[att|intel] (default: att)\n\
12844 use AT&T/Intel syntax\n"));
12845 fprintf (stream, _("\
12846 -mindex-reg support pseudo index registers\n"));
12847 fprintf (stream, _("\
12848 -mnaked-reg don't require `%%' prefix for registers\n"));
12849 fprintf (stream, _("\
12850 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12851 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12852 fprintf (stream, _("\
12853 -mshared disable branch optimization for shared code\n"));
12854 fprintf (stream, _("\
12855 -mx86-used-note=[no|yes] "));
12856 if (DEFAULT_X86_USED_NOTE)
12857 fprintf (stream, _("(default: yes)\n"));
12858 else
12859 fprintf (stream, _("(default: no)\n"));
12860 fprintf (stream, _("\
12861 generate x86 used ISA and feature properties\n"));
12862 #endif
12863 #if defined (TE_PE) || defined (TE_PEP)
12864 fprintf (stream, _("\
12865 -mbig-obj generate big object files\n"));
12866 #endif
12867 fprintf (stream, _("\
12868 -momit-lock-prefix=[no|yes] (default: no)\n\
12869 strip all lock prefixes\n"));
12870 fprintf (stream, _("\
12871 -mfence-as-lock-add=[no|yes] (default: no)\n\
12872 encode lfence, mfence and sfence as\n\
12873 lock addl $0x0, (%%{re}sp)\n"));
12874 fprintf (stream, _("\
12875 -mrelax-relocations=[no|yes] "));
12876 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12877 fprintf (stream, _("(default: yes)\n"));
12878 else
12879 fprintf (stream, _("(default: no)\n"));
12880 fprintf (stream, _("\
12881 generate relax relocations\n"));
12882 fprintf (stream, _("\
12883 -malign-branch-boundary=NUM (default: 0)\n\
12884 align branches within NUM byte boundary\n"));
12885 fprintf (stream, _("\
12886 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12887 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12888 indirect\n\
12889 specify types of branches to align\n"));
12890 fprintf (stream, _("\
12891 -malign-branch-prefix-size=NUM (default: 5)\n\
12892 align branches with NUM prefixes per instruction\n"));
12893 fprintf (stream, _("\
12894 -mbranches-within-32B-boundaries\n\
12895 align branches within 32 byte boundary\n"));
12896 fprintf (stream, _("\
12897 -mamd64 accept only AMD64 ISA [default]\n"));
12898 fprintf (stream, _("\
12899 -mintel64 accept only Intel64 ISA\n"));
12900 }
12901
12902 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12903 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12904 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12905
12906 /* Pick the target format to use. */
12907
12908 const char *
12909 i386_target_format (void)
12910 {
12911 if (!strncmp (default_arch, "x86_64", 6))
12912 {
12913 update_code_flag (CODE_64BIT, 1);
12914 if (default_arch[6] == '\0')
12915 x86_elf_abi = X86_64_ABI;
12916 else
12917 x86_elf_abi = X86_64_X32_ABI;
12918 }
12919 else if (!strcmp (default_arch, "i386"))
12920 update_code_flag (CODE_32BIT, 1);
12921 else if (!strcmp (default_arch, "iamcu"))
12922 {
12923 update_code_flag (CODE_32BIT, 1);
12924 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12925 {
12926 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12927 cpu_arch_name = "iamcu";
12928 cpu_sub_arch_name = NULL;
12929 cpu_arch_flags = iamcu_flags;
12930 cpu_arch_isa = PROCESSOR_IAMCU;
12931 cpu_arch_isa_flags = iamcu_flags;
12932 if (!cpu_arch_tune_set)
12933 {
12934 cpu_arch_tune = cpu_arch_isa;
12935 cpu_arch_tune_flags = cpu_arch_isa_flags;
12936 }
12937 }
12938 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12939 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12940 cpu_arch_name);
12941 }
12942 else
12943 as_fatal (_("unknown architecture"));
12944
12945 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12946 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12947 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12948 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12949
12950 switch (OUTPUT_FLAVOR)
12951 {
12952 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12953 case bfd_target_aout_flavour:
12954 return AOUT_TARGET_FORMAT;
12955 #endif
12956 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12957 # if defined (TE_PE) || defined (TE_PEP)
12958 case bfd_target_coff_flavour:
12959 if (flag_code == CODE_64BIT)
12960 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12961 else
12962 return "pe-i386";
12963 # elif defined (TE_GO32)
12964 case bfd_target_coff_flavour:
12965 return "coff-go32";
12966 # else
12967 case bfd_target_coff_flavour:
12968 return "coff-i386";
12969 # endif
12970 #endif
12971 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12972 case bfd_target_elf_flavour:
12973 {
12974 const char *format;
12975
12976 switch (x86_elf_abi)
12977 {
12978 default:
12979 format = ELF_TARGET_FORMAT;
12980 #ifndef TE_SOLARIS
12981 tls_get_addr = "___tls_get_addr";
12982 #endif
12983 break;
12984 case X86_64_ABI:
12985 use_rela_relocations = 1;
12986 object_64bit = 1;
12987 #ifndef TE_SOLARIS
12988 tls_get_addr = "__tls_get_addr";
12989 #endif
12990 format = ELF_TARGET_FORMAT64;
12991 break;
12992 case X86_64_X32_ABI:
12993 use_rela_relocations = 1;
12994 object_64bit = 1;
12995 #ifndef TE_SOLARIS
12996 tls_get_addr = "__tls_get_addr";
12997 #endif
12998 disallow_64bit_reloc = 1;
12999 format = ELF_TARGET_FORMAT32;
13000 break;
13001 }
13002 if (cpu_arch_isa == PROCESSOR_L1OM)
13003 {
13004 if (x86_elf_abi != X86_64_ABI)
13005 as_fatal (_("Intel L1OM is 64bit only"));
13006 return ELF_TARGET_L1OM_FORMAT;
13007 }
13008 else if (cpu_arch_isa == PROCESSOR_K1OM)
13009 {
13010 if (x86_elf_abi != X86_64_ABI)
13011 as_fatal (_("Intel K1OM is 64bit only"));
13012 return ELF_TARGET_K1OM_FORMAT;
13013 }
13014 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13015 {
13016 if (x86_elf_abi != I386_ABI)
13017 as_fatal (_("Intel MCU is 32bit only"));
13018 return ELF_TARGET_IAMCU_FORMAT;
13019 }
13020 else
13021 return format;
13022 }
13023 #endif
13024 #if defined (OBJ_MACH_O)
13025 case bfd_target_mach_o_flavour:
13026 if (flag_code == CODE_64BIT)
13027 {
13028 use_rela_relocations = 1;
13029 object_64bit = 1;
13030 return "mach-o-x86-64";
13031 }
13032 else
13033 return "mach-o-i386";
13034 #endif
13035 default:
13036 abort ();
13037 return NULL;
13038 }
13039 }
13040
13041 #endif /* OBJ_MAYBE_ more than one */
13042 \f
13043 symbolS *
13044 md_undefined_symbol (char *name)
13045 {
13046 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13047 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13048 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13049 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13050 {
13051 if (!GOT_symbol)
13052 {
13053 if (symbol_find (name))
13054 as_bad (_("GOT already in symbol table"));
13055 GOT_symbol = symbol_new (name, undefined_section,
13056 (valueT) 0, &zero_address_frag);
13057 };
13058 return GOT_symbol;
13059 }
13060 return 0;
13061 }
13062
13063 /* Round up a section size to the appropriate boundary. */
13064
13065 valueT
13066 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13067 {
13068 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13069 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13070 {
13071 /* For a.out, force the section size to be aligned. If we don't do
13072 this, BFD will align it for us, but it will not write out the
13073 final bytes of the section. This may be a bug in BFD, but it is
13074 easier to fix it here since that is how the other a.out targets
13075 work. */
13076 int align;
13077
13078 align = bfd_section_alignment (segment);
13079 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13080 }
13081 #endif
13082
13083 return size;
13084 }
13085
13086 /* On the i386, PC-relative offsets are relative to the start of the
13087 next instruction. That is, the address of the offset, plus its
13088 size, since the offset is always the last part of the insn. */
13089
13090 long
13091 md_pcrel_from (fixS *fixP)
13092 {
13093 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13094 }
13095
13096 #ifndef I386COFF
13097
13098 static void
13099 s_bss (int ignore ATTRIBUTE_UNUSED)
13100 {
13101 int temp;
13102
13103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13104 if (IS_ELF)
13105 obj_elf_section_change_hook ();
13106 #endif
13107 temp = get_absolute_expression ();
13108 subseg_set (bss_section, (subsegT) temp);
13109 demand_empty_rest_of_line ();
13110 }
13111
13112 #endif
13113
13114 /* Remember constant directive. */
13115
13116 void
13117 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13118 {
13119 if (last_insn.kind != last_insn_directive
13120 && (bfd_section_flags (now_seg) & SEC_CODE))
13121 {
13122 last_insn.seg = now_seg;
13123 last_insn.kind = last_insn_directive;
13124 last_insn.name = "constant directive";
13125 last_insn.file = as_where (&last_insn.line);
13126 }
13127 }
13128
13129 void
13130 i386_validate_fix (fixS *fixp)
13131 {
13132 if (fixp->fx_subsy)
13133 {
13134 if (fixp->fx_subsy == GOT_symbol)
13135 {
13136 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13137 {
13138 if (!object_64bit)
13139 abort ();
13140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13141 if (fixp->fx_tcbit2)
13142 fixp->fx_r_type = (fixp->fx_tcbit
13143 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13144 : BFD_RELOC_X86_64_GOTPCRELX);
13145 else
13146 #endif
13147 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13148 }
13149 else
13150 {
13151 if (!object_64bit)
13152 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13153 else
13154 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13155 }
13156 fixp->fx_subsy = 0;
13157 }
13158 }
13159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13160 else if (!object_64bit)
13161 {
13162 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13163 && fixp->fx_tcbit2)
13164 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13165 }
13166 #endif
13167 }
13168
13169 arelent *
13170 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13171 {
13172 arelent *rel;
13173 bfd_reloc_code_real_type code;
13174
13175 switch (fixp->fx_r_type)
13176 {
13177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13178 case BFD_RELOC_SIZE32:
13179 case BFD_RELOC_SIZE64:
13180 if (S_IS_DEFINED (fixp->fx_addsy)
13181 && !S_IS_EXTERNAL (fixp->fx_addsy))
13182 {
13183 /* Resolve size relocation against local symbol to size of
13184 the symbol plus addend. */
13185 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13186 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13187 && !fits_in_unsigned_long (value))
13188 as_bad_where (fixp->fx_file, fixp->fx_line,
13189 _("symbol size computation overflow"));
13190 fixp->fx_addsy = NULL;
13191 fixp->fx_subsy = NULL;
13192 md_apply_fix (fixp, (valueT *) &value, NULL);
13193 return NULL;
13194 }
13195 #endif
13196 /* Fall through. */
13197
13198 case BFD_RELOC_X86_64_PLT32:
13199 case BFD_RELOC_X86_64_GOT32:
13200 case BFD_RELOC_X86_64_GOTPCREL:
13201 case BFD_RELOC_X86_64_GOTPCRELX:
13202 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13203 case BFD_RELOC_386_PLT32:
13204 case BFD_RELOC_386_GOT32:
13205 case BFD_RELOC_386_GOT32X:
13206 case BFD_RELOC_386_GOTOFF:
13207 case BFD_RELOC_386_GOTPC:
13208 case BFD_RELOC_386_TLS_GD:
13209 case BFD_RELOC_386_TLS_LDM:
13210 case BFD_RELOC_386_TLS_LDO_32:
13211 case BFD_RELOC_386_TLS_IE_32:
13212 case BFD_RELOC_386_TLS_IE:
13213 case BFD_RELOC_386_TLS_GOTIE:
13214 case BFD_RELOC_386_TLS_LE_32:
13215 case BFD_RELOC_386_TLS_LE:
13216 case BFD_RELOC_386_TLS_GOTDESC:
13217 case BFD_RELOC_386_TLS_DESC_CALL:
13218 case BFD_RELOC_X86_64_TLSGD:
13219 case BFD_RELOC_X86_64_TLSLD:
13220 case BFD_RELOC_X86_64_DTPOFF32:
13221 case BFD_RELOC_X86_64_DTPOFF64:
13222 case BFD_RELOC_X86_64_GOTTPOFF:
13223 case BFD_RELOC_X86_64_TPOFF32:
13224 case BFD_RELOC_X86_64_TPOFF64:
13225 case BFD_RELOC_X86_64_GOTOFF64:
13226 case BFD_RELOC_X86_64_GOTPC32:
13227 case BFD_RELOC_X86_64_GOT64:
13228 case BFD_RELOC_X86_64_GOTPCREL64:
13229 case BFD_RELOC_X86_64_GOTPC64:
13230 case BFD_RELOC_X86_64_GOTPLT64:
13231 case BFD_RELOC_X86_64_PLTOFF64:
13232 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13233 case BFD_RELOC_X86_64_TLSDESC_CALL:
13234 case BFD_RELOC_RVA:
13235 case BFD_RELOC_VTABLE_ENTRY:
13236 case BFD_RELOC_VTABLE_INHERIT:
13237 #ifdef TE_PE
13238 case BFD_RELOC_32_SECREL:
13239 #endif
13240 code = fixp->fx_r_type;
13241 break;
13242 case BFD_RELOC_X86_64_32S:
13243 if (!fixp->fx_pcrel)
13244 {
13245 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13246 code = fixp->fx_r_type;
13247 break;
13248 }
13249 /* Fall through. */
13250 default:
13251 if (fixp->fx_pcrel)
13252 {
13253 switch (fixp->fx_size)
13254 {
13255 default:
13256 as_bad_where (fixp->fx_file, fixp->fx_line,
13257 _("can not do %d byte pc-relative relocation"),
13258 fixp->fx_size);
13259 code = BFD_RELOC_32_PCREL;
13260 break;
13261 case 1: code = BFD_RELOC_8_PCREL; break;
13262 case 2: code = BFD_RELOC_16_PCREL; break;
13263 case 4: code = BFD_RELOC_32_PCREL; break;
13264 #ifdef BFD64
13265 case 8: code = BFD_RELOC_64_PCREL; break;
13266 #endif
13267 }
13268 }
13269 else
13270 {
13271 switch (fixp->fx_size)
13272 {
13273 default:
13274 as_bad_where (fixp->fx_file, fixp->fx_line,
13275 _("can not do %d byte relocation"),
13276 fixp->fx_size);
13277 code = BFD_RELOC_32;
13278 break;
13279 case 1: code = BFD_RELOC_8; break;
13280 case 2: code = BFD_RELOC_16; break;
13281 case 4: code = BFD_RELOC_32; break;
13282 #ifdef BFD64
13283 case 8: code = BFD_RELOC_64; break;
13284 #endif
13285 }
13286 }
13287 break;
13288 }
13289
13290 if ((code == BFD_RELOC_32
13291 || code == BFD_RELOC_32_PCREL
13292 || code == BFD_RELOC_X86_64_32S)
13293 && GOT_symbol
13294 && fixp->fx_addsy == GOT_symbol)
13295 {
13296 if (!object_64bit)
13297 code = BFD_RELOC_386_GOTPC;
13298 else
13299 code = BFD_RELOC_X86_64_GOTPC32;
13300 }
13301 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13302 && GOT_symbol
13303 && fixp->fx_addsy == GOT_symbol)
13304 {
13305 code = BFD_RELOC_X86_64_GOTPC64;
13306 }
13307
13308 rel = XNEW (arelent);
13309 rel->sym_ptr_ptr = XNEW (asymbol *);
13310 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13311
13312 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13313
13314 if (!use_rela_relocations)
13315 {
13316 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13317 vtable entry to be used in the relocation's section offset. */
13318 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13319 rel->address = fixp->fx_offset;
13320 #if defined (OBJ_COFF) && defined (TE_PE)
13321 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13322 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13323 else
13324 #endif
13325 rel->addend = 0;
13326 }
13327 /* Use the rela in 64bit mode. */
13328 else
13329 {
13330 if (disallow_64bit_reloc)
13331 switch (code)
13332 {
13333 case BFD_RELOC_X86_64_DTPOFF64:
13334 case BFD_RELOC_X86_64_TPOFF64:
13335 case BFD_RELOC_64_PCREL:
13336 case BFD_RELOC_X86_64_GOTOFF64:
13337 case BFD_RELOC_X86_64_GOT64:
13338 case BFD_RELOC_X86_64_GOTPCREL64:
13339 case BFD_RELOC_X86_64_GOTPC64:
13340 case BFD_RELOC_X86_64_GOTPLT64:
13341 case BFD_RELOC_X86_64_PLTOFF64:
13342 as_bad_where (fixp->fx_file, fixp->fx_line,
13343 _("cannot represent relocation type %s in x32 mode"),
13344 bfd_get_reloc_code_name (code));
13345 break;
13346 default:
13347 break;
13348 }
13349
13350 if (!fixp->fx_pcrel)
13351 rel->addend = fixp->fx_offset;
13352 else
13353 switch (code)
13354 {
13355 case BFD_RELOC_X86_64_PLT32:
13356 case BFD_RELOC_X86_64_GOT32:
13357 case BFD_RELOC_X86_64_GOTPCREL:
13358 case BFD_RELOC_X86_64_GOTPCRELX:
13359 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13360 case BFD_RELOC_X86_64_TLSGD:
13361 case BFD_RELOC_X86_64_TLSLD:
13362 case BFD_RELOC_X86_64_GOTTPOFF:
13363 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13364 case BFD_RELOC_X86_64_TLSDESC_CALL:
13365 rel->addend = fixp->fx_offset - fixp->fx_size;
13366 break;
13367 default:
13368 rel->addend = (section->vma
13369 - fixp->fx_size
13370 + fixp->fx_addnumber
13371 + md_pcrel_from (fixp));
13372 break;
13373 }
13374 }
13375
13376 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13377 if (rel->howto == NULL)
13378 {
13379 as_bad_where (fixp->fx_file, fixp->fx_line,
13380 _("cannot represent relocation type %s"),
13381 bfd_get_reloc_code_name (code));
13382 /* Set howto to a garbage value so that we can keep going. */
13383 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13384 gas_assert (rel->howto != NULL);
13385 }
13386
13387 return rel;
13388 }
13389
13390 #include "tc-i386-intel.c"
13391
13392 void
13393 tc_x86_parse_to_dw2regnum (expressionS *exp)
13394 {
13395 int saved_naked_reg;
13396 char saved_register_dot;
13397
13398 saved_naked_reg = allow_naked_reg;
13399 allow_naked_reg = 1;
13400 saved_register_dot = register_chars['.'];
13401 register_chars['.'] = '.';
13402 allow_pseudo_reg = 1;
13403 expression_and_evaluate (exp);
13404 allow_pseudo_reg = 0;
13405 register_chars['.'] = saved_register_dot;
13406 allow_naked_reg = saved_naked_reg;
13407
13408 if (exp->X_op == O_register && exp->X_add_number >= 0)
13409 {
13410 if ((addressT) exp->X_add_number < i386_regtab_size)
13411 {
13412 exp->X_op = O_constant;
13413 exp->X_add_number = i386_regtab[exp->X_add_number]
13414 .dw2_regnum[flag_code >> 1];
13415 }
13416 else
13417 exp->X_op = O_illegal;
13418 }
13419 }
13420
13421 void
13422 tc_x86_frame_initial_instructions (void)
13423 {
13424 static unsigned int sp_regno[2];
13425
13426 if (!sp_regno[flag_code >> 1])
13427 {
13428 char *saved_input = input_line_pointer;
13429 char sp[][4] = {"esp", "rsp"};
13430 expressionS exp;
13431
13432 input_line_pointer = sp[flag_code >> 1];
13433 tc_x86_parse_to_dw2regnum (&exp);
13434 gas_assert (exp.X_op == O_constant);
13435 sp_regno[flag_code >> 1] = exp.X_add_number;
13436 input_line_pointer = saved_input;
13437 }
13438
13439 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13440 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13441 }
13442
13443 int
13444 x86_dwarf2_addr_size (void)
13445 {
13446 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13447 if (x86_elf_abi == X86_64_X32_ABI)
13448 return 4;
13449 #endif
13450 return bfd_arch_bits_per_address (stdoutput) / 8;
13451 }
13452
13453 int
13454 i386_elf_section_type (const char *str, size_t len)
13455 {
13456 if (flag_code == CODE_64BIT
13457 && len == sizeof ("unwind") - 1
13458 && strncmp (str, "unwind", 6) == 0)
13459 return SHT_X86_64_UNWIND;
13460
13461 return -1;
13462 }
13463
13464 #ifdef TE_SOLARIS
13465 void
13466 i386_solaris_fix_up_eh_frame (segT sec)
13467 {
13468 if (flag_code == CODE_64BIT)
13469 elf_section_type (sec) = SHT_X86_64_UNWIND;
13470 }
13471 #endif
13472
13473 #ifdef TE_PE
13474 void
13475 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13476 {
13477 expressionS exp;
13478
13479 exp.X_op = O_secrel;
13480 exp.X_add_symbol = symbol;
13481 exp.X_add_number = 0;
13482 emit_expr (&exp, size);
13483 }
13484 #endif
13485
13486 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13487 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13488
13489 bfd_vma
13490 x86_64_section_letter (int letter, const char **ptr_msg)
13491 {
13492 if (flag_code == CODE_64BIT)
13493 {
13494 if (letter == 'l')
13495 return SHF_X86_64_LARGE;
13496
13497 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13498 }
13499 else
13500 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13501 return -1;
13502 }
13503
13504 bfd_vma
13505 x86_64_section_word (char *str, size_t len)
13506 {
13507 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13508 return SHF_X86_64_LARGE;
13509
13510 return -1;
13511 }
13512
13513 static void
13514 handle_large_common (int small ATTRIBUTE_UNUSED)
13515 {
13516 if (flag_code != CODE_64BIT)
13517 {
13518 s_comm_internal (0, elf_common_parse);
13519 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13520 }
13521 else
13522 {
13523 static segT lbss_section;
13524 asection *saved_com_section_ptr = elf_com_section_ptr;
13525 asection *saved_bss_section = bss_section;
13526
13527 if (lbss_section == NULL)
13528 {
13529 flagword applicable;
13530 segT seg = now_seg;
13531 subsegT subseg = now_subseg;
13532
13533 /* The .lbss section is for local .largecomm symbols. */
13534 lbss_section = subseg_new (".lbss", 0);
13535 applicable = bfd_applicable_section_flags (stdoutput);
13536 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13537 seg_info (lbss_section)->bss = 1;
13538
13539 subseg_set (seg, subseg);
13540 }
13541
13542 elf_com_section_ptr = &_bfd_elf_large_com_section;
13543 bss_section = lbss_section;
13544
13545 s_comm_internal (0, elf_common_parse);
13546
13547 elf_com_section_ptr = saved_com_section_ptr;
13548 bss_section = saved_bss_section;
13549 }
13550 }
13551 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.338195 seconds and 4 git commands to generate.