Default e_machine to EM_IAMCU for i?86-*-elfiamcu
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef TE_LINUX
37 /* Default to compress debug sections for Linux. */
38 enum compressed_debug_section_type flag_compress_debug
39 = COMPRESS_DEBUG_ZLIB;
40 #endif
41
42 #ifndef REGISTER_WARNINGS
43 #define REGISTER_WARNINGS 1
44 #endif
45
46 #ifndef INFER_ADDR_PREFIX
47 #define INFER_ADDR_PREFIX 1
48 #endif
49
50 #ifndef DEFAULT_ARCH
51 #define DEFAULT_ARCH "i386"
52 #endif
53
54 #ifndef INLINE
55 #if __GNUC__ >= 2
56 #define INLINE __inline__
57 #else
58 #define INLINE
59 #endif
60 #endif
61
62 /* Prefixes will be emitted in the order defined below.
63 WAIT_PREFIX must be the first prefix since FWAIT is really is an
64 instruction, and so must come before any prefixes.
65 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
66 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
67 #define WAIT_PREFIX 0
68 #define SEG_PREFIX 1
69 #define ADDR_PREFIX 2
70 #define DATA_PREFIX 3
71 #define REP_PREFIX 4
72 #define HLE_PREFIX REP_PREFIX
73 #define BND_PREFIX REP_PREFIX
74 #define LOCK_PREFIX 5
75 #define REX_PREFIX 6 /* must come last. */
76 #define MAX_PREFIXES 7 /* max prefixes per opcode */
77
78 /* we define the syntax here (modulo base,index,scale syntax) */
79 #define REGISTER_PREFIX '%'
80 #define IMMEDIATE_PREFIX '$'
81 #define ABSOLUTE_PREFIX '*'
82
83 /* these are the instruction mnemonic suffixes in AT&T syntax or
84 memory operand size in Intel syntax. */
85 #define WORD_MNEM_SUFFIX 'w'
86 #define BYTE_MNEM_SUFFIX 'b'
87 #define SHORT_MNEM_SUFFIX 's'
88 #define LONG_MNEM_SUFFIX 'l'
89 #define QWORD_MNEM_SUFFIX 'q'
90 #define XMMWORD_MNEM_SUFFIX 'x'
91 #define YMMWORD_MNEM_SUFFIX 'y'
92 #define ZMMWORD_MNEM_SUFFIX 'z'
93 /* Intel Syntax. Use a non-ascii letter since since it never appears
94 in instructions. */
95 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
96
97 #define END_OF_INSN '\0'
98
99 /*
100 'templates' is for grouping together 'template' structures for opcodes
101 of the same name. This is only used for storing the insns in the grand
102 ole hash table of insns.
103 The templates themselves start at START and range up to (but not including)
104 END.
105 */
106 typedef struct
107 {
108 const insn_template *start;
109 const insn_template *end;
110 }
111 templates;
112
113 /* 386 operand encoding bytes: see 386 book for details of this. */
114 typedef struct
115 {
116 unsigned int regmem; /* codes register or memory operand */
117 unsigned int reg; /* codes register operand (or extended opcode) */
118 unsigned int mode; /* how to interpret regmem & reg */
119 }
120 modrm_byte;
121
122 /* x86-64 extension prefix. */
123 typedef int rex_byte;
124
125 /* 386 opcode byte to code indirect addressing. */
126 typedef struct
127 {
128 unsigned base;
129 unsigned index;
130 unsigned scale;
131 }
132 sib_byte;
133
134 /* x86 arch names, types and features */
135 typedef struct
136 {
137 const char *name; /* arch name */
138 unsigned int len; /* arch string length */
139 enum processor_type type; /* arch type */
140 i386_cpu_flags flags; /* cpu feature flags */
141 unsigned int skip; /* show_arch should skip this. */
142 unsigned int negated; /* turn off indicated flags. */
143 }
144 arch_entry;
145
146 static void update_code_flag (int, int);
147 static void set_code_flag (int);
148 static void set_16bit_gcc_code_flag (int);
149 static void set_intel_syntax (int);
150 static void set_intel_mnemonic (int);
151 static void set_allow_index_reg (int);
152 static void set_check (int);
153 static void set_cpu_arch (int);
154 #ifdef TE_PE
155 static void pe_directive_secrel (int);
156 #endif
157 static void signed_cons (int);
158 static char *output_invalid (int c);
159 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
160 const char *);
161 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_att_operand (char *);
164 static int i386_intel_operand (char *, int);
165 static int i386_intel_simplify (expressionS *);
166 static int i386_intel_parse_name (const char *, expressionS *);
167 static const reg_entry *parse_register (char *, char **);
168 static char *parse_insn (char *, char *);
169 static char *parse_operands (char *, const char *);
170 static void swap_operands (void);
171 static void swap_2_operands (int, int);
172 static void optimize_imm (void);
173 static void optimize_disp (void);
174 static const insn_template *match_template (void);
175 static int check_string (void);
176 static int process_suffix (void);
177 static int check_byte_reg (void);
178 static int check_long_reg (void);
179 static int check_qword_reg (void);
180 static int check_word_reg (void);
181 static int finalize_imm (void);
182 static int process_operands (void);
183 static const seg_entry *build_modrm_byte (void);
184 static void output_insn (void);
185 static void output_imm (fragS *, offsetT);
186 static void output_disp (fragS *, offsetT);
187 #ifndef I386COFF
188 static void s_bss (int);
189 #endif
190 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
191 static void handle_large_common (int small ATTRIBUTE_UNUSED);
192 #endif
193
194 static const char *default_arch = DEFAULT_ARCH;
195
196 /* This struct describes rounding control and SAE in the instruction. */
197 struct RC_Operation
198 {
199 enum rc_type
200 {
201 rne = 0,
202 rd,
203 ru,
204 rz,
205 saeonly
206 } type;
207 int operand;
208 };
209
210 static struct RC_Operation rc_op;
211
212 /* The struct describes masking, applied to OPERAND in the instruction.
213 MASK is a pointer to the corresponding mask register. ZEROING tells
214 whether merging or zeroing mask is used. */
215 struct Mask_Operation
216 {
217 const reg_entry *mask;
218 unsigned int zeroing;
219 /* The operand where this operation is associated. */
220 int operand;
221 };
222
223 static struct Mask_Operation mask_op;
224
225 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
226 broadcast factor. */
227 struct Broadcast_Operation
228 {
229 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
230 int type;
231
232 /* Index of broadcasted operand. */
233 int operand;
234 };
235
236 static struct Broadcast_Operation broadcast_op;
237
238 /* VEX prefix. */
239 typedef struct
240 {
241 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
242 unsigned char bytes[4];
243 unsigned int length;
244 /* Destination or source register specifier. */
245 const reg_entry *register_specifier;
246 } vex_prefix;
247
248 /* 'md_assemble ()' gathers together information and puts it into a
249 i386_insn. */
250
251 union i386_op
252 {
253 expressionS *disps;
254 expressionS *imms;
255 const reg_entry *regs;
256 };
257
258 enum i386_error
259 {
260 operand_size_mismatch,
261 operand_type_mismatch,
262 register_type_mismatch,
263 number_of_operands_mismatch,
264 invalid_instruction_suffix,
265 bad_imm4,
266 old_gcc_only,
267 unsupported_with_intel_mnemonic,
268 unsupported_syntax,
269 unsupported,
270 invalid_vsib_address,
271 invalid_vector_register_set,
272 unsupported_vector_index_register,
273 unsupported_broadcast,
274 broadcast_not_on_src_operand,
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
282 try_vector_disp8
283 };
284
285 struct _i386_insn
286 {
287 /* TM holds the template for the insn were currently assembling. */
288 insn_template tm;
289
290 /* SUFFIX holds the instruction size suffix for byte, word, dword
291 or qword, if given. */
292 char suffix;
293
294 /* OPERANDS gives the number of given operands. */
295 unsigned int operands;
296
297 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
298 of given register, displacement, memory operands and immediate
299 operands. */
300 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
301
302 /* TYPES [i] is the type (see above #defines) which tells us how to
303 use OP[i] for the corresponding operand. */
304 i386_operand_type types[MAX_OPERANDS];
305
306 /* Displacement expression, immediate expression, or register for each
307 operand. */
308 union i386_op op[MAX_OPERANDS];
309
310 /* Flags for operands. */
311 unsigned int flags[MAX_OPERANDS];
312 #define Operand_PCrel 1
313
314 /* Relocation type for operand */
315 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
316
317 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
318 the base index byte below. */
319 const reg_entry *base_reg;
320 const reg_entry *index_reg;
321 unsigned int log2_scale_factor;
322
323 /* SEG gives the seg_entries of this insn. They are zero unless
324 explicit segment overrides are given. */
325 const seg_entry *seg[2];
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Swap operand in encoding. */
353 unsigned int swap_operand;
354
355 /* Prefer 8bit or 32bit displacement in encoding. */
356 enum
357 {
358 disp_encoding_default = 0,
359 disp_encoding_8bit,
360 disp_encoding_32bit
361 } disp_encoding;
362
363 /* REP prefix. */
364 const char *rep_prefix;
365
366 /* HLE prefix. */
367 const char *hle_prefix;
368
369 /* Have BND prefix. */
370 const char *bnd_prefix;
371
372 /* Need VREX to support upper 16 registers. */
373 int need_vrex;
374
375 /* Error message. */
376 enum i386_error error;
377 };
378
379 typedef struct _i386_insn i386_insn;
380
381 /* Link RC type with corresponding string, that'll be looked for in
382 asm. */
383 struct RC_name
384 {
385 enum rc_type type;
386 const char *name;
387 unsigned int len;
388 };
389
390 static const struct RC_name RC_NamesTable[] =
391 {
392 { rne, STRING_COMMA_LEN ("rn-sae") },
393 { rd, STRING_COMMA_LEN ("rd-sae") },
394 { ru, STRING_COMMA_LEN ("ru-sae") },
395 { rz, STRING_COMMA_LEN ("rz-sae") },
396 { saeonly, STRING_COMMA_LEN ("sae") },
397 };
398
399 /* List of chars besides those in app.c:symbol_chars that can start an
400 operand. Used to prevent the scrubber eating vital white-space. */
401 const char extra_symbol_chars[] = "*%-([{"
402 #ifdef LEX_AT
403 "@"
404 #endif
405 #ifdef LEX_QM
406 "?"
407 #endif
408 ;
409
410 #if (defined (TE_I386AIX) \
411 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
412 && !defined (TE_GNU) \
413 && !defined (TE_LINUX) \
414 && !defined (TE_NACL) \
415 && !defined (TE_NETWARE) \
416 && !defined (TE_FreeBSD) \
417 && !defined (TE_DragonFly) \
418 && !defined (TE_NetBSD)))
419 /* This array holds the chars that always start a comment. If the
420 pre-processor is disabled, these aren't very useful. The option
421 --divide will remove '/' from this list. */
422 const char *i386_comment_chars = "#/";
423 #define SVR4_COMMENT_CHARS 1
424 #define PREFIX_SEPARATOR '\\'
425
426 #else
427 const char *i386_comment_chars = "#";
428 #define PREFIX_SEPARATOR '/'
429 #endif
430
431 /* This array holds the chars that only start a comment at the beginning of
432 a line. If the line seems to have the form '# 123 filename'
433 .line and .file directives will appear in the pre-processed output.
434 Note that input_file.c hand checks for '#' at the beginning of the
435 first line of the input file. This is because the compiler outputs
436 #NO_APP at the beginning of its output.
437 Also note that comments started like this one will always work if
438 '/' isn't otherwise defined. */
439 const char line_comment_chars[] = "#/";
440
441 const char line_separator_chars[] = ";";
442
443 /* Chars that can be used to separate mant from exp in floating point
444 nums. */
445 const char EXP_CHARS[] = "eE";
446
447 /* Chars that mean this number is a floating point constant
448 As in 0f12.456
449 or 0d1.2345e12. */
450 const char FLT_CHARS[] = "fFdDxX";
451
452 /* Tables for lexical analysis. */
453 static char mnemonic_chars[256];
454 static char register_chars[256];
455 static char operand_chars[256];
456 static char identifier_chars[256];
457 static char digit_chars[256];
458
459 /* Lexical macros. */
460 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
461 #define is_operand_char(x) (operand_chars[(unsigned char) x])
462 #define is_register_char(x) (register_chars[(unsigned char) x])
463 #define is_space_char(x) ((x) == ' ')
464 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
465 #define is_digit_char(x) (digit_chars[(unsigned char) x])
466
467 /* All non-digit non-letter characters that may occur in an operand. */
468 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
469
470 /* md_assemble() always leaves the strings it's passed unaltered. To
471 effect this we maintain a stack of saved characters that we've smashed
472 with '\0's (indicating end of strings for various sub-fields of the
473 assembler instruction). */
474 static char save_stack[32];
475 static char *save_stack_p;
476 #define END_STRING_AND_SAVE(s) \
477 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
478 #define RESTORE_END_STRING(s) \
479 do { *(s) = *--save_stack_p; } while (0)
480
481 /* The instruction we're assembling. */
482 static i386_insn i;
483
484 /* Possible templates for current insn. */
485 static const templates *current_templates;
486
487 /* Per instruction expressionS buffers: max displacements & immediates. */
488 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
489 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
490
491 /* Current operand we are working on. */
492 static int this_operand = -1;
493
494 /* We support four different modes. FLAG_CODE variable is used to distinguish
495 these. */
496
497 enum flag_code {
498 CODE_32BIT,
499 CODE_16BIT,
500 CODE_64BIT };
501
502 static enum flag_code flag_code;
503 static unsigned int object_64bit;
504 static unsigned int disallow_64bit_reloc;
505 static int use_rela_relocations = 0;
506
507 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
508 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
509 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
510
511 /* The ELF ABI to use. */
512 enum x86_elf_abi
513 {
514 I386_ABI,
515 X86_64_ABI,
516 X86_64_X32_ABI
517 };
518
519 static enum x86_elf_abi x86_elf_abi = I386_ABI;
520 #endif
521
522 #if defined (TE_PE) || defined (TE_PEP)
523 /* Use big object file format. */
524 static int use_big_obj = 0;
525 #endif
526
527 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
528 /* 1 if not generating code for a shared library. */
529 static int no_shared = 0;
530 #endif
531
532 /* 1 for intel syntax,
533 0 if att syntax. */
534 static int intel_syntax = 0;
535
536 /* 1 for intel mnemonic,
537 0 if att mnemonic. */
538 static int intel_mnemonic = !SYSV386_COMPAT;
539
540 /* 1 if support old (<= 2.8.1) versions of gcc. */
541 static int old_gcc = OLDGCC_COMPAT;
542
543 /* 1 if pseudo registers are permitted. */
544 static int allow_pseudo_reg = 0;
545
546 /* 1 if register prefix % not required. */
547 static int allow_naked_reg = 0;
548
549 /* 1 if the assembler should add BND prefix for all control-tranferring
550 instructions supporting it, even if this prefix wasn't specified
551 explicitly. */
552 static int add_bnd_prefix = 0;
553
554 /* 1 if pseudo index register, eiz/riz, is allowed . */
555 static int allow_index_reg = 0;
556
557 /* 1 if the assembler should ignore LOCK prefix, even if it was
558 specified explicitly. */
559 static int omit_lock_prefix = 0;
560
561 static enum check_kind
562 {
563 check_none = 0,
564 check_warning,
565 check_error
566 }
567 sse_check, operand_check = check_warning;
568
569 /* Register prefix used for error message. */
570 static const char *register_prefix = "%";
571
572 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
573 leave, push, and pop instructions so that gcc has the same stack
574 frame as in 32 bit mode. */
575 static char stackop_size = '\0';
576
577 /* Non-zero to optimize code alignment. */
578 int optimize_align_code = 1;
579
580 /* Non-zero to quieten some warnings. */
581 static int quiet_warnings = 0;
582
583 /* CPU name. */
584 static const char *cpu_arch_name = NULL;
585 static char *cpu_sub_arch_name = NULL;
586
587 /* CPU feature flags. */
588 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
589
590 /* If we have selected a cpu we are generating instructions for. */
591 static int cpu_arch_tune_set = 0;
592
593 /* Cpu we are generating instructions for. */
594 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
595
596 /* CPU feature flags of cpu we are generating instructions for. */
597 static i386_cpu_flags cpu_arch_tune_flags;
598
599 /* CPU instruction set architecture used. */
600 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
601
602 /* CPU feature flags of instruction set architecture used. */
603 i386_cpu_flags cpu_arch_isa_flags;
604
605 /* If set, conditional jumps are not automatically promoted to handle
606 larger than a byte offset. */
607 static unsigned int no_cond_jump_promotion = 0;
608
609 /* Encode SSE instructions with VEX prefix. */
610 static unsigned int sse2avx;
611
612 /* Encode scalar AVX instructions with specific vector length. */
613 static enum
614 {
615 vex128 = 0,
616 vex256
617 } avxscalar;
618
619 /* Encode scalar EVEX LIG instructions with specific vector length. */
620 static enum
621 {
622 evexl128 = 0,
623 evexl256,
624 evexl512
625 } evexlig;
626
627 /* Encode EVEX WIG instructions with specific evex.w. */
628 static enum
629 {
630 evexw0 = 0,
631 evexw1
632 } evexwig;
633
634 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
635 static enum rc_type evexrcig = rne;
636
637 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
638 static symbolS *GOT_symbol;
639
640 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
641 unsigned int x86_dwarf2_return_column;
642
643 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
644 int x86_cie_data_alignment;
645
646 /* Interface to relax_segment.
647 There are 3 major relax states for 386 jump insns because the
648 different types of jumps add different sizes to frags when we're
649 figuring out what sort of jump to choose to reach a given label. */
650
651 /* Types. */
652 #define UNCOND_JUMP 0
653 #define COND_JUMP 1
654 #define COND_JUMP86 2
655
656 /* Sizes. */
657 #define CODE16 1
658 #define SMALL 0
659 #define SMALL16 (SMALL | CODE16)
660 #define BIG 2
661 #define BIG16 (BIG | CODE16)
662
663 #ifndef INLINE
664 #ifdef __GNUC__
665 #define INLINE __inline__
666 #else
667 #define INLINE
668 #endif
669 #endif
670
671 #define ENCODE_RELAX_STATE(type, size) \
672 ((relax_substateT) (((type) << 2) | (size)))
673 #define TYPE_FROM_RELAX_STATE(s) \
674 ((s) >> 2)
675 #define DISP_SIZE_FROM_RELAX_STATE(s) \
676 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
677
678 /* This table is used by relax_frag to promote short jumps to long
679 ones where necessary. SMALL (short) jumps may be promoted to BIG
680 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
681 don't allow a short jump in a 32 bit code segment to be promoted to
682 a 16 bit offset jump because it's slower (requires data size
683 prefix), and doesn't work, unless the destination is in the bottom
684 64k of the code segment (The top 16 bits of eip are zeroed). */
685
686 const relax_typeS md_relax_table[] =
687 {
688 /* The fields are:
689 1) most positive reach of this state,
690 2) most negative reach of this state,
691 3) how many bytes this mode will have in the variable part of the frag
692 4) which index into the table to try if we can't fit into this one. */
693
694 /* UNCOND_JUMP states. */
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
696 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
697 /* dword jmp adds 4 bytes to frag:
698 0 extra opcode bytes, 4 displacement bytes. */
699 {0, 0, 4, 0},
700 /* word jmp adds 2 byte2 to frag:
701 0 extra opcode bytes, 2 displacement bytes. */
702 {0, 0, 2, 0},
703
704 /* COND_JUMP states. */
705 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
706 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
707 /* dword conditionals adds 5 bytes to frag:
708 1 extra opcode byte, 4 displacement bytes. */
709 {0, 0, 5, 0},
710 /* word conditionals add 3 bytes to frag:
711 1 extra opcode byte, 2 displacement bytes. */
712 {0, 0, 3, 0},
713
714 /* COND_JUMP86 states. */
715 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
716 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
717 /* dword conditionals adds 5 bytes to frag:
718 1 extra opcode byte, 4 displacement bytes. */
719 {0, 0, 5, 0},
720 /* word conditionals add 4 bytes to frag:
721 1 displacement byte and a 3 byte long branch insn. */
722 {0, 0, 4, 0}
723 };
724
725 static const arch_entry cpu_arch[] =
726 {
727 /* Do not replace the first two entries - i386_target_format()
728 relies on them being there in this order. */
729 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
730 CPU_GENERIC32_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
732 CPU_GENERIC64_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
734 CPU_NONE_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
736 CPU_I186_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
738 CPU_I286_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
740 CPU_I386_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
742 CPU_I486_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
744 CPU_I586_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
746 CPU_I686_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
748 CPU_I586_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
750 CPU_PENTIUMPRO_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
752 CPU_P2_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
754 CPU_P3_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
756 CPU_P4_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
758 CPU_CORE_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
760 CPU_NOCONA_FLAGS, 0, 0 },
761 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
762 CPU_CORE_FLAGS, 1, 0 },
763 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
764 CPU_CORE_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
766 CPU_CORE2_FLAGS, 1, 0 },
767 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
768 CPU_CORE2_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
770 CPU_COREI7_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
772 CPU_L1OM_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
774 CPU_K1OM_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
776 CPU_IAMCU_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
778 CPU_K6_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
780 CPU_K6_2_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
782 CPU_ATHLON_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
784 CPU_K8_FLAGS, 1, 0 },
785 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
786 CPU_K8_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
788 CPU_K8_FLAGS, 0, 0 },
789 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
790 CPU_AMDFAM10_FLAGS, 0, 0 },
791 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
792 CPU_BDVER1_FLAGS, 0, 0 },
793 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
794 CPU_BDVER2_FLAGS, 0, 0 },
795 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
796 CPU_BDVER3_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
798 CPU_BDVER4_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
800 CPU_ZNVER1_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
802 CPU_BTVER1_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
804 CPU_BTVER2_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
806 CPU_8087_FLAGS, 0, 0 },
807 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
808 CPU_287_FLAGS, 0, 0 },
809 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
810 CPU_387_FLAGS, 0, 0 },
811 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
812 CPU_ANY87_FLAGS, 0, 1 },
813 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
814 CPU_MMX_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
816 CPU_3DNOWA_FLAGS, 0, 1 },
817 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
818 CPU_SSE_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
820 CPU_SSE2_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
822 CPU_SSE3_FLAGS, 0, 0 },
823 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
824 CPU_SSSE3_FLAGS, 0, 0 },
825 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
826 CPU_SSE4_1_FLAGS, 0, 0 },
827 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
828 CPU_SSE4_2_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
830 CPU_SSE4_2_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
832 CPU_ANY_SSE_FLAGS, 0, 1 },
833 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
834 CPU_AVX_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
836 CPU_AVX2_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
838 CPU_AVX512F_FLAGS, 0, 0 },
839 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
840 CPU_AVX512CD_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
842 CPU_AVX512ER_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
844 CPU_AVX512PF_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
846 CPU_AVX512DQ_FLAGS, 0, 0 },
847 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
848 CPU_AVX512BW_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
850 CPU_AVX512VL_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
852 CPU_ANY_AVX_FLAGS, 0, 1 },
853 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
854 CPU_VMX_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
856 CPU_VMFUNC_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
858 CPU_SMX_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
860 CPU_XSAVE_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
862 CPU_XSAVEOPT_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
864 CPU_XSAVEC_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
866 CPU_XSAVES_FLAGS, 0, 0 },
867 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
868 CPU_AES_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
870 CPU_PCLMUL_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
872 CPU_PCLMUL_FLAGS, 1, 0 },
873 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
874 CPU_FSGSBASE_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
876 CPU_RDRND_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
878 CPU_F16C_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
880 CPU_BMI2_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
882 CPU_FMA_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
884 CPU_FMA4_FLAGS, 0, 0 },
885 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
886 CPU_XOP_FLAGS, 0, 0 },
887 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
888 CPU_LWP_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
890 CPU_MOVBE_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
892 CPU_CX16_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
894 CPU_EPT_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
896 CPU_LZCNT_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
898 CPU_HLE_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
900 CPU_RTM_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
902 CPU_INVPCID_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
904 CPU_CLFLUSH_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
906 CPU_NOP_FLAGS, 0, 0 },
907 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
908 CPU_SYSCALL_FLAGS, 0, 0 },
909 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
910 CPU_RDTSCP_FLAGS, 0, 0 },
911 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
912 CPU_3DNOW_FLAGS, 0, 0 },
913 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
914 CPU_3DNOWA_FLAGS, 0, 0 },
915 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
916 CPU_PADLOCK_FLAGS, 0, 0 },
917 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
918 CPU_SVME_FLAGS, 1, 0 },
919 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
920 CPU_SVME_FLAGS, 0, 0 },
921 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
922 CPU_SSE4A_FLAGS, 0, 0 },
923 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
924 CPU_ABM_FLAGS, 0, 0 },
925 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
926 CPU_BMI_FLAGS, 0, 0 },
927 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
928 CPU_TBM_FLAGS, 0, 0 },
929 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
930 CPU_ADX_FLAGS, 0, 0 },
931 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
932 CPU_RDSEED_FLAGS, 0, 0 },
933 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
934 CPU_PRFCHW_FLAGS, 0, 0 },
935 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
936 CPU_SMAP_FLAGS, 0, 0 },
937 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
938 CPU_MPX_FLAGS, 0, 0 },
939 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
940 CPU_SHA_FLAGS, 0, 0 },
941 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
942 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
943 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
944 CPU_PREFETCHWT1_FLAGS, 0, 0 },
945 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
946 CPU_SE1_FLAGS, 0, 0 },
947 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
948 CPU_CLWB_FLAGS, 0, 0 },
949 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
950 CPU_PCOMMIT_FLAGS, 0, 0 },
951 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
952 CPU_AVX512IFMA_FLAGS, 0, 0 },
953 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
954 CPU_AVX512VBMI_FLAGS, 0, 0 },
955 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
956 CPU_CLZERO_FLAGS, 0, 0 },
957 };
958
959 #ifdef I386COFF
960 /* Like s_lcomm_internal in gas/read.c but the alignment string
961 is allowed to be optional. */
962
963 static symbolS *
964 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
965 {
966 addressT align = 0;
967
968 SKIP_WHITESPACE ();
969
970 if (needs_align
971 && *input_line_pointer == ',')
972 {
973 align = parse_align (needs_align - 1);
974
975 if (align == (addressT) -1)
976 return NULL;
977 }
978 else
979 {
980 if (size >= 8)
981 align = 3;
982 else if (size >= 4)
983 align = 2;
984 else if (size >= 2)
985 align = 1;
986 else
987 align = 0;
988 }
989
990 bss_alloc (symbolP, size, align);
991 return symbolP;
992 }
993
994 static void
995 pe_lcomm (int needs_align)
996 {
997 s_comm_internal (needs_align * 2, pe_lcomm_internal);
998 }
999 #endif
1000
1001 const pseudo_typeS md_pseudo_table[] =
1002 {
1003 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1004 {"align", s_align_bytes, 0},
1005 #else
1006 {"align", s_align_ptwo, 0},
1007 #endif
1008 {"arch", set_cpu_arch, 0},
1009 #ifndef I386COFF
1010 {"bss", s_bss, 0},
1011 #else
1012 {"lcomm", pe_lcomm, 1},
1013 #endif
1014 {"ffloat", float_cons, 'f'},
1015 {"dfloat", float_cons, 'd'},
1016 {"tfloat", float_cons, 'x'},
1017 {"value", cons, 2},
1018 {"slong", signed_cons, 4},
1019 {"noopt", s_ignore, 0},
1020 {"optim", s_ignore, 0},
1021 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1022 {"code16", set_code_flag, CODE_16BIT},
1023 {"code32", set_code_flag, CODE_32BIT},
1024 {"code64", set_code_flag, CODE_64BIT},
1025 {"intel_syntax", set_intel_syntax, 1},
1026 {"att_syntax", set_intel_syntax, 0},
1027 {"intel_mnemonic", set_intel_mnemonic, 1},
1028 {"att_mnemonic", set_intel_mnemonic, 0},
1029 {"allow_index_reg", set_allow_index_reg, 1},
1030 {"disallow_index_reg", set_allow_index_reg, 0},
1031 {"sse_check", set_check, 0},
1032 {"operand_check", set_check, 1},
1033 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1034 {"largecomm", handle_large_common, 0},
1035 #else
1036 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1037 {"loc", dwarf2_directive_loc, 0},
1038 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1039 #endif
1040 #ifdef TE_PE
1041 {"secrel32", pe_directive_secrel, 0},
1042 #endif
1043 {0, 0, 0}
1044 };
1045
1046 /* For interface with expression (). */
1047 extern char *input_line_pointer;
1048
1049 /* Hash table for instruction mnemonic lookup. */
1050 static struct hash_control *op_hash;
1051
1052 /* Hash table for register lookup. */
1053 static struct hash_control *reg_hash;
1054 \f
1055 void
1056 i386_align_code (fragS *fragP, int count)
1057 {
1058 /* Various efficient no-op patterns for aligning code labels.
1059 Note: Don't try to assemble the instructions in the comments.
1060 0L and 0w are not legal. */
1061 static const char f32_1[] =
1062 {0x90}; /* nop */
1063 static const char f32_2[] =
1064 {0x66,0x90}; /* xchg %ax,%ax */
1065 static const char f32_3[] =
1066 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1067 static const char f32_4[] =
1068 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1069 static const char f32_5[] =
1070 {0x90, /* nop */
1071 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1072 static const char f32_6[] =
1073 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1074 static const char f32_7[] =
1075 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1076 static const char f32_8[] =
1077 {0x90, /* nop */
1078 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1079 static const char f32_9[] =
1080 {0x89,0xf6, /* movl %esi,%esi */
1081 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1082 static const char f32_10[] =
1083 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1084 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1085 static const char f32_11[] =
1086 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1087 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1088 static const char f32_12[] =
1089 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1090 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1091 static const char f32_13[] =
1092 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1093 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1094 static const char f32_14[] =
1095 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1096 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1097 static const char f16_3[] =
1098 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1099 static const char f16_4[] =
1100 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1101 static const char f16_5[] =
1102 {0x90, /* nop */
1103 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1104 static const char f16_6[] =
1105 {0x89,0xf6, /* mov %si,%si */
1106 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1107 static const char f16_7[] =
1108 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1109 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1110 static const char f16_8[] =
1111 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1112 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1113 static const char jump_31[] =
1114 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1115 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1116 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1117 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1118 static const char *const f32_patt[] = {
1119 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1120 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1121 };
1122 static const char *const f16_patt[] = {
1123 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1124 };
1125 /* nopl (%[re]ax) */
1126 static const char alt_3[] =
1127 {0x0f,0x1f,0x00};
1128 /* nopl 0(%[re]ax) */
1129 static const char alt_4[] =
1130 {0x0f,0x1f,0x40,0x00};
1131 /* nopl 0(%[re]ax,%[re]ax,1) */
1132 static const char alt_5[] =
1133 {0x0f,0x1f,0x44,0x00,0x00};
1134 /* nopw 0(%[re]ax,%[re]ax,1) */
1135 static const char alt_6[] =
1136 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1137 /* nopl 0L(%[re]ax) */
1138 static const char alt_7[] =
1139 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1140 /* nopl 0L(%[re]ax,%[re]ax,1) */
1141 static const char alt_8[] =
1142 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1143 /* nopw 0L(%[re]ax,%[re]ax,1) */
1144 static const char alt_9[] =
1145 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1146 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1147 static const char alt_10[] =
1148 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1149 static const char *const alt_patt[] = {
1150 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1151 alt_9, alt_10
1152 };
1153
1154 /* Only align for at least a positive non-zero boundary. */
1155 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1156 return;
1157
1158 /* We need to decide which NOP sequence to use for 32bit and
1159 64bit. When -mtune= is used:
1160
1161 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1162 PROCESSOR_GENERIC32, f32_patt will be used.
1163 2. For the rest, alt_patt will be used.
1164
1165 When -mtune= isn't used, alt_patt will be used if
1166 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1167 be used.
1168
1169 When -march= or .arch is used, we can't use anything beyond
1170 cpu_arch_isa_flags. */
1171
1172 if (flag_code == CODE_16BIT)
1173 {
1174 if (count > 8)
1175 {
1176 memcpy (fragP->fr_literal + fragP->fr_fix,
1177 jump_31, count);
1178 /* Adjust jump offset. */
1179 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1180 }
1181 else
1182 memcpy (fragP->fr_literal + fragP->fr_fix,
1183 f16_patt[count - 1], count);
1184 }
1185 else
1186 {
1187 const char *const *patt = NULL;
1188
1189 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1190 {
1191 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1192 switch (cpu_arch_tune)
1193 {
1194 case PROCESSOR_UNKNOWN:
1195 /* We use cpu_arch_isa_flags to check if we SHOULD
1196 optimize with nops. */
1197 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1198 patt = alt_patt;
1199 else
1200 patt = f32_patt;
1201 break;
1202 case PROCESSOR_PENTIUM4:
1203 case PROCESSOR_NOCONA:
1204 case PROCESSOR_CORE:
1205 case PROCESSOR_CORE2:
1206 case PROCESSOR_COREI7:
1207 case PROCESSOR_L1OM:
1208 case PROCESSOR_K1OM:
1209 case PROCESSOR_GENERIC64:
1210 case PROCESSOR_K6:
1211 case PROCESSOR_ATHLON:
1212 case PROCESSOR_K8:
1213 case PROCESSOR_AMDFAM10:
1214 case PROCESSOR_BD:
1215 case PROCESSOR_ZNVER:
1216 case PROCESSOR_BT:
1217 patt = alt_patt;
1218 break;
1219 case PROCESSOR_I386:
1220 case PROCESSOR_I486:
1221 case PROCESSOR_PENTIUM:
1222 case PROCESSOR_PENTIUMPRO:
1223 case PROCESSOR_IAMCU:
1224 case PROCESSOR_GENERIC32:
1225 patt = f32_patt;
1226 break;
1227 }
1228 }
1229 else
1230 {
1231 switch (fragP->tc_frag_data.tune)
1232 {
1233 case PROCESSOR_UNKNOWN:
1234 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1235 PROCESSOR_UNKNOWN. */
1236 abort ();
1237 break;
1238
1239 case PROCESSOR_I386:
1240 case PROCESSOR_I486:
1241 case PROCESSOR_PENTIUM:
1242 case PROCESSOR_IAMCU:
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
1246 case PROCESSOR_AMDFAM10:
1247 case PROCESSOR_BD:
1248 case PROCESSOR_ZNVER:
1249 case PROCESSOR_BT:
1250 case PROCESSOR_GENERIC32:
1251 /* We use cpu_arch_isa_flags to check if we CAN optimize
1252 with nops. */
1253 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1254 patt = alt_patt;
1255 else
1256 patt = f32_patt;
1257 break;
1258 case PROCESSOR_PENTIUMPRO:
1259 case PROCESSOR_PENTIUM4:
1260 case PROCESSOR_NOCONA:
1261 case PROCESSOR_CORE:
1262 case PROCESSOR_CORE2:
1263 case PROCESSOR_COREI7:
1264 case PROCESSOR_L1OM:
1265 case PROCESSOR_K1OM:
1266 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1267 patt = alt_patt;
1268 else
1269 patt = f32_patt;
1270 break;
1271 case PROCESSOR_GENERIC64:
1272 patt = alt_patt;
1273 break;
1274 }
1275 }
1276
1277 if (patt == f32_patt)
1278 {
1279 /* If the padding is less than 15 bytes, we use the normal
1280 ones. Otherwise, we use a jump instruction and adjust
1281 its offset. */
1282 int limit;
1283
1284 /* For 64bit, the limit is 3 bytes. */
1285 if (flag_code == CODE_64BIT
1286 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1287 limit = 3;
1288 else
1289 limit = 15;
1290 if (count < limit)
1291 memcpy (fragP->fr_literal + fragP->fr_fix,
1292 patt[count - 1], count);
1293 else
1294 {
1295 memcpy (fragP->fr_literal + fragP->fr_fix,
1296 jump_31, count);
1297 /* Adjust jump offset. */
1298 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1299 }
1300 }
1301 else
1302 {
1303 /* Maximum length of an instruction is 10 byte. If the
1304 padding is greater than 10 bytes and we don't use jump,
1305 we have to break it into smaller pieces. */
1306 int padding = count;
1307 while (padding > 10)
1308 {
1309 padding -= 10;
1310 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1311 patt [9], 10);
1312 }
1313
1314 if (padding)
1315 memcpy (fragP->fr_literal + fragP->fr_fix,
1316 patt [padding - 1], padding);
1317 }
1318 }
1319 fragP->fr_var = count;
1320 }
1321
1322 static INLINE int
1323 operand_type_all_zero (const union i386_operand_type *x)
1324 {
1325 switch (ARRAY_SIZE(x->array))
1326 {
1327 case 3:
1328 if (x->array[2])
1329 return 0;
1330 case 2:
1331 if (x->array[1])
1332 return 0;
1333 case 1:
1334 return !x->array[0];
1335 default:
1336 abort ();
1337 }
1338 }
1339
1340 static INLINE void
1341 operand_type_set (union i386_operand_type *x, unsigned int v)
1342 {
1343 switch (ARRAY_SIZE(x->array))
1344 {
1345 case 3:
1346 x->array[2] = v;
1347 case 2:
1348 x->array[1] = v;
1349 case 1:
1350 x->array[0] = v;
1351 break;
1352 default:
1353 abort ();
1354 }
1355 }
1356
1357 static INLINE int
1358 operand_type_equal (const union i386_operand_type *x,
1359 const union i386_operand_type *y)
1360 {
1361 switch (ARRAY_SIZE(x->array))
1362 {
1363 case 3:
1364 if (x->array[2] != y->array[2])
1365 return 0;
1366 case 2:
1367 if (x->array[1] != y->array[1])
1368 return 0;
1369 case 1:
1370 return x->array[0] == y->array[0];
1371 break;
1372 default:
1373 abort ();
1374 }
1375 }
1376
1377 static INLINE int
1378 cpu_flags_all_zero (const union i386_cpu_flags *x)
1379 {
1380 switch (ARRAY_SIZE(x->array))
1381 {
1382 case 3:
1383 if (x->array[2])
1384 return 0;
1385 case 2:
1386 if (x->array[1])
1387 return 0;
1388 case 1:
1389 return !x->array[0];
1390 default:
1391 abort ();
1392 }
1393 }
1394
1395 static INLINE int
1396 cpu_flags_equal (const union i386_cpu_flags *x,
1397 const union i386_cpu_flags *y)
1398 {
1399 switch (ARRAY_SIZE(x->array))
1400 {
1401 case 3:
1402 if (x->array[2] != y->array[2])
1403 return 0;
1404 case 2:
1405 if (x->array[1] != y->array[1])
1406 return 0;
1407 case 1:
1408 return x->array[0] == y->array[0];
1409 break;
1410 default:
1411 abort ();
1412 }
1413 }
1414
1415 static INLINE int
1416 cpu_flags_check_cpu64 (i386_cpu_flags f)
1417 {
1418 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1419 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1420 }
1421
1422 static INLINE i386_cpu_flags
1423 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1424 {
1425 switch (ARRAY_SIZE (x.array))
1426 {
1427 case 3:
1428 x.array [2] &= y.array [2];
1429 case 2:
1430 x.array [1] &= y.array [1];
1431 case 1:
1432 x.array [0] &= y.array [0];
1433 break;
1434 default:
1435 abort ();
1436 }
1437 return x;
1438 }
1439
1440 static INLINE i386_cpu_flags
1441 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1442 {
1443 switch (ARRAY_SIZE (x.array))
1444 {
1445 case 3:
1446 x.array [2] |= y.array [2];
1447 case 2:
1448 x.array [1] |= y.array [1];
1449 case 1:
1450 x.array [0] |= y.array [0];
1451 break;
1452 default:
1453 abort ();
1454 }
1455 return x;
1456 }
1457
1458 static INLINE i386_cpu_flags
1459 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1460 {
1461 switch (ARRAY_SIZE (x.array))
1462 {
1463 case 3:
1464 x.array [2] &= ~y.array [2];
1465 case 2:
1466 x.array [1] &= ~y.array [1];
1467 case 1:
1468 x.array [0] &= ~y.array [0];
1469 break;
1470 default:
1471 abort ();
1472 }
1473 return x;
1474 }
1475
1476 static int
1477 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1478 {
1479 if (cpu_arch_isa == PROCESSOR_IAMCU)
1480 {
1481 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1482 i386_cpu_flags compat_flags;
1483 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1484 return cpu_flags_all_zero (&compat_flags);
1485 }
1486 else
1487 return 1;
1488 }
1489
1490 #define CPU_FLAGS_ARCH_MATCH 0x1
1491 #define CPU_FLAGS_64BIT_MATCH 0x2
1492 #define CPU_FLAGS_AES_MATCH 0x4
1493 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1494 #define CPU_FLAGS_AVX_MATCH 0x10
1495
1496 #define CPU_FLAGS_32BIT_MATCH \
1497 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1498 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1499 #define CPU_FLAGS_PERFECT_MATCH \
1500 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1501
1502 /* Return CPU flags match bits. */
1503
1504 static int
1505 cpu_flags_match (const insn_template *t)
1506 {
1507 i386_cpu_flags x = t->cpu_flags;
1508 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1509
1510 x.bitfield.cpu64 = 0;
1511 x.bitfield.cpuno64 = 0;
1512
1513 if (cpu_flags_all_zero (&x))
1514 {
1515 /* This instruction is available on all archs. */
1516 match |= CPU_FLAGS_32BIT_MATCH;
1517 }
1518 else
1519 {
1520 /* This instruction is available only on some archs. */
1521 i386_cpu_flags cpu = cpu_arch_flags;
1522
1523 cpu.bitfield.cpu64 = 0;
1524 cpu.bitfield.cpuno64 = 0;
1525 cpu = cpu_flags_and (x, cpu);
1526 if (!cpu_flags_all_zero (&cpu))
1527 {
1528 if (x.bitfield.cpuavx)
1529 {
1530 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1531 if (cpu.bitfield.cpuavx)
1532 {
1533 /* Check SSE2AVX. */
1534 if (!t->opcode_modifier.sse2avx|| sse2avx)
1535 {
1536 match |= (CPU_FLAGS_ARCH_MATCH
1537 | CPU_FLAGS_AVX_MATCH);
1538 /* Check AES. */
1539 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1540 match |= CPU_FLAGS_AES_MATCH;
1541 /* Check PCLMUL. */
1542 if (!x.bitfield.cpupclmul
1543 || cpu.bitfield.cpupclmul)
1544 match |= CPU_FLAGS_PCLMUL_MATCH;
1545 }
1546 }
1547 else
1548 match |= CPU_FLAGS_ARCH_MATCH;
1549 }
1550 else
1551 match |= CPU_FLAGS_32BIT_MATCH;
1552 }
1553 }
1554 return match;
1555 }
1556
1557 static INLINE i386_operand_type
1558 operand_type_and (i386_operand_type x, i386_operand_type y)
1559 {
1560 switch (ARRAY_SIZE (x.array))
1561 {
1562 case 3:
1563 x.array [2] &= y.array [2];
1564 case 2:
1565 x.array [1] &= y.array [1];
1566 case 1:
1567 x.array [0] &= y.array [0];
1568 break;
1569 default:
1570 abort ();
1571 }
1572 return x;
1573 }
1574
1575 static INLINE i386_operand_type
1576 operand_type_or (i386_operand_type x, i386_operand_type y)
1577 {
1578 switch (ARRAY_SIZE (x.array))
1579 {
1580 case 3:
1581 x.array [2] |= y.array [2];
1582 case 2:
1583 x.array [1] |= y.array [1];
1584 case 1:
1585 x.array [0] |= y.array [0];
1586 break;
1587 default:
1588 abort ();
1589 }
1590 return x;
1591 }
1592
1593 static INLINE i386_operand_type
1594 operand_type_xor (i386_operand_type x, i386_operand_type y)
1595 {
1596 switch (ARRAY_SIZE (x.array))
1597 {
1598 case 3:
1599 x.array [2] ^= y.array [2];
1600 case 2:
1601 x.array [1] ^= y.array [1];
1602 case 1:
1603 x.array [0] ^= y.array [0];
1604 break;
1605 default:
1606 abort ();
1607 }
1608 return x;
1609 }
1610
1611 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1612 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1613 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1614 static const i386_operand_type inoutportreg
1615 = OPERAND_TYPE_INOUTPORTREG;
1616 static const i386_operand_type reg16_inoutportreg
1617 = OPERAND_TYPE_REG16_INOUTPORTREG;
1618 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1619 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1620 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1621 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1622 static const i386_operand_type anydisp
1623 = OPERAND_TYPE_ANYDISP;
1624 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1625 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1626 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1627 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1628 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1629 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1630 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1631 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1632 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1633 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1634 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1635 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1636 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1637 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1638
1639 enum operand_type
1640 {
1641 reg,
1642 imm,
1643 disp,
1644 anymem
1645 };
1646
1647 static INLINE int
1648 operand_type_check (i386_operand_type t, enum operand_type c)
1649 {
1650 switch (c)
1651 {
1652 case reg:
1653 return (t.bitfield.reg8
1654 || t.bitfield.reg16
1655 || t.bitfield.reg32
1656 || t.bitfield.reg64);
1657
1658 case imm:
1659 return (t.bitfield.imm8
1660 || t.bitfield.imm8s
1661 || t.bitfield.imm16
1662 || t.bitfield.imm32
1663 || t.bitfield.imm32s
1664 || t.bitfield.imm64);
1665
1666 case disp:
1667 return (t.bitfield.disp8
1668 || t.bitfield.disp16
1669 || t.bitfield.disp32
1670 || t.bitfield.disp32s
1671 || t.bitfield.disp64);
1672
1673 case anymem:
1674 return (t.bitfield.disp8
1675 || t.bitfield.disp16
1676 || t.bitfield.disp32
1677 || t.bitfield.disp32s
1678 || t.bitfield.disp64
1679 || t.bitfield.baseindex);
1680
1681 default:
1682 abort ();
1683 }
1684
1685 return 0;
1686 }
1687
1688 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1689 operand J for instruction template T. */
1690
1691 static INLINE int
1692 match_reg_size (const insn_template *t, unsigned int j)
1693 {
1694 return !((i.types[j].bitfield.byte
1695 && !t->operand_types[j].bitfield.byte)
1696 || (i.types[j].bitfield.word
1697 && !t->operand_types[j].bitfield.word)
1698 || (i.types[j].bitfield.dword
1699 && !t->operand_types[j].bitfield.dword)
1700 || (i.types[j].bitfield.qword
1701 && !t->operand_types[j].bitfield.qword));
1702 }
1703
1704 /* Return 1 if there is no conflict in any size on operand J for
1705 instruction template T. */
1706
1707 static INLINE int
1708 match_mem_size (const insn_template *t, unsigned int j)
1709 {
1710 return (match_reg_size (t, j)
1711 && !((i.types[j].bitfield.unspecified
1712 && !i.broadcast
1713 && !t->operand_types[j].bitfield.unspecified)
1714 || (i.types[j].bitfield.fword
1715 && !t->operand_types[j].bitfield.fword)
1716 || (i.types[j].bitfield.tbyte
1717 && !t->operand_types[j].bitfield.tbyte)
1718 || (i.types[j].bitfield.xmmword
1719 && !t->operand_types[j].bitfield.xmmword)
1720 || (i.types[j].bitfield.ymmword
1721 && !t->operand_types[j].bitfield.ymmword)
1722 || (i.types[j].bitfield.zmmword
1723 && !t->operand_types[j].bitfield.zmmword)));
1724 }
1725
1726 /* Return 1 if there is no size conflict on any operands for
1727 instruction template T. */
1728
1729 static INLINE int
1730 operand_size_match (const insn_template *t)
1731 {
1732 unsigned int j;
1733 int match = 1;
1734
1735 /* Don't check jump instructions. */
1736 if (t->opcode_modifier.jump
1737 || t->opcode_modifier.jumpbyte
1738 || t->opcode_modifier.jumpdword
1739 || t->opcode_modifier.jumpintersegment)
1740 return match;
1741
1742 /* Check memory and accumulator operand size. */
1743 for (j = 0; j < i.operands; j++)
1744 {
1745 if (t->operand_types[j].bitfield.anysize)
1746 continue;
1747
1748 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1749 {
1750 match = 0;
1751 break;
1752 }
1753
1754 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1755 {
1756 match = 0;
1757 break;
1758 }
1759 }
1760
1761 if (match)
1762 return match;
1763 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1764 {
1765 mismatch:
1766 i.error = operand_size_mismatch;
1767 return 0;
1768 }
1769
1770 /* Check reverse. */
1771 gas_assert (i.operands == 2);
1772
1773 match = 1;
1774 for (j = 0; j < 2; j++)
1775 {
1776 if (t->operand_types[j].bitfield.acc
1777 && !match_reg_size (t, j ? 0 : 1))
1778 goto mismatch;
1779
1780 if (i.types[j].bitfield.mem
1781 && !match_mem_size (t, j ? 0 : 1))
1782 goto mismatch;
1783 }
1784
1785 return match;
1786 }
1787
1788 static INLINE int
1789 operand_type_match (i386_operand_type overlap,
1790 i386_operand_type given)
1791 {
1792 i386_operand_type temp = overlap;
1793
1794 temp.bitfield.jumpabsolute = 0;
1795 temp.bitfield.unspecified = 0;
1796 temp.bitfield.byte = 0;
1797 temp.bitfield.word = 0;
1798 temp.bitfield.dword = 0;
1799 temp.bitfield.fword = 0;
1800 temp.bitfield.qword = 0;
1801 temp.bitfield.tbyte = 0;
1802 temp.bitfield.xmmword = 0;
1803 temp.bitfield.ymmword = 0;
1804 temp.bitfield.zmmword = 0;
1805 if (operand_type_all_zero (&temp))
1806 goto mismatch;
1807
1808 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1809 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1810 return 1;
1811
1812 mismatch:
1813 i.error = operand_type_mismatch;
1814 return 0;
1815 }
1816
1817 /* If given types g0 and g1 are registers they must be of the same type
1818 unless the expected operand type register overlap is null.
1819 Note that Acc in a template matches every size of reg. */
1820
1821 static INLINE int
1822 operand_type_register_match (i386_operand_type m0,
1823 i386_operand_type g0,
1824 i386_operand_type t0,
1825 i386_operand_type m1,
1826 i386_operand_type g1,
1827 i386_operand_type t1)
1828 {
1829 if (!operand_type_check (g0, reg))
1830 return 1;
1831
1832 if (!operand_type_check (g1, reg))
1833 return 1;
1834
1835 if (g0.bitfield.reg8 == g1.bitfield.reg8
1836 && g0.bitfield.reg16 == g1.bitfield.reg16
1837 && g0.bitfield.reg32 == g1.bitfield.reg32
1838 && g0.bitfield.reg64 == g1.bitfield.reg64)
1839 return 1;
1840
1841 if (m0.bitfield.acc)
1842 {
1843 t0.bitfield.reg8 = 1;
1844 t0.bitfield.reg16 = 1;
1845 t0.bitfield.reg32 = 1;
1846 t0.bitfield.reg64 = 1;
1847 }
1848
1849 if (m1.bitfield.acc)
1850 {
1851 t1.bitfield.reg8 = 1;
1852 t1.bitfield.reg16 = 1;
1853 t1.bitfield.reg32 = 1;
1854 t1.bitfield.reg64 = 1;
1855 }
1856
1857 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1858 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1859 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1860 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1861 return 1;
1862
1863 i.error = register_type_mismatch;
1864
1865 return 0;
1866 }
1867
1868 static INLINE unsigned int
1869 register_number (const reg_entry *r)
1870 {
1871 unsigned int nr = r->reg_num;
1872
1873 if (r->reg_flags & RegRex)
1874 nr += 8;
1875
1876 return nr;
1877 }
1878
1879 static INLINE unsigned int
1880 mode_from_disp_size (i386_operand_type t)
1881 {
1882 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1883 return 1;
1884 else if (t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s)
1887 return 2;
1888 else
1889 return 0;
1890 }
1891
1892 static INLINE int
1893 fits_in_signed_byte (addressT num)
1894 {
1895 return num + 0x80 <= 0xff;
1896 }
1897
1898 static INLINE int
1899 fits_in_unsigned_byte (addressT num)
1900 {
1901 return num <= 0xff;
1902 }
1903
1904 static INLINE int
1905 fits_in_unsigned_word (addressT num)
1906 {
1907 return num <= 0xffff;
1908 }
1909
1910 static INLINE int
1911 fits_in_signed_word (addressT num)
1912 {
1913 return num + 0x8000 <= 0xffff;
1914 }
1915
1916 static INLINE int
1917 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1918 {
1919 #ifndef BFD64
1920 return 1;
1921 #else
1922 return num + 0x80000000 <= 0xffffffff;
1923 #endif
1924 } /* fits_in_signed_long() */
1925
1926 static INLINE int
1927 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1928 {
1929 #ifndef BFD64
1930 return 1;
1931 #else
1932 return num <= 0xffffffff;
1933 #endif
1934 } /* fits_in_unsigned_long() */
1935
1936 static INLINE int
1937 fits_in_vec_disp8 (offsetT num)
1938 {
1939 int shift = i.memshift;
1940 unsigned int mask;
1941
1942 if (shift == -1)
1943 abort ();
1944
1945 mask = (1 << shift) - 1;
1946
1947 /* Return 0 if NUM isn't properly aligned. */
1948 if ((num & mask))
1949 return 0;
1950
1951 /* Check if NUM will fit in 8bit after shift. */
1952 return fits_in_signed_byte (num >> shift);
1953 }
1954
1955 static INLINE int
1956 fits_in_imm4 (offsetT num)
1957 {
1958 return (num & 0xf) == num;
1959 }
1960
1961 static i386_operand_type
1962 smallest_imm_type (offsetT num)
1963 {
1964 i386_operand_type t;
1965
1966 operand_type_set (&t, 0);
1967 t.bitfield.imm64 = 1;
1968
1969 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1970 {
1971 /* This code is disabled on the 486 because all the Imm1 forms
1972 in the opcode table are slower on the i486. They're the
1973 versions with the implicitly specified single-position
1974 displacement, which has another syntax if you really want to
1975 use that form. */
1976 t.bitfield.imm1 = 1;
1977 t.bitfield.imm8 = 1;
1978 t.bitfield.imm8s = 1;
1979 t.bitfield.imm16 = 1;
1980 t.bitfield.imm32 = 1;
1981 t.bitfield.imm32s = 1;
1982 }
1983 else if (fits_in_signed_byte (num))
1984 {
1985 t.bitfield.imm8 = 1;
1986 t.bitfield.imm8s = 1;
1987 t.bitfield.imm16 = 1;
1988 t.bitfield.imm32 = 1;
1989 t.bitfield.imm32s = 1;
1990 }
1991 else if (fits_in_unsigned_byte (num))
1992 {
1993 t.bitfield.imm8 = 1;
1994 t.bitfield.imm16 = 1;
1995 t.bitfield.imm32 = 1;
1996 t.bitfield.imm32s = 1;
1997 }
1998 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1999 {
2000 t.bitfield.imm16 = 1;
2001 t.bitfield.imm32 = 1;
2002 t.bitfield.imm32s = 1;
2003 }
2004 else if (fits_in_signed_long (num))
2005 {
2006 t.bitfield.imm32 = 1;
2007 t.bitfield.imm32s = 1;
2008 }
2009 else if (fits_in_unsigned_long (num))
2010 t.bitfield.imm32 = 1;
2011
2012 return t;
2013 }
2014
2015 static offsetT
2016 offset_in_range (offsetT val, int size)
2017 {
2018 addressT mask;
2019
2020 switch (size)
2021 {
2022 case 1: mask = ((addressT) 1 << 8) - 1; break;
2023 case 2: mask = ((addressT) 1 << 16) - 1; break;
2024 case 4: mask = ((addressT) 2 << 31) - 1; break;
2025 #ifdef BFD64
2026 case 8: mask = ((addressT) 2 << 63) - 1; break;
2027 #endif
2028 default: abort ();
2029 }
2030
2031 #ifdef BFD64
2032 /* If BFD64, sign extend val for 32bit address mode. */
2033 if (flag_code != CODE_64BIT
2034 || i.prefix[ADDR_PREFIX])
2035 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2036 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2037 #endif
2038
2039 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2040 {
2041 char buf1[40], buf2[40];
2042
2043 sprint_value (buf1, val);
2044 sprint_value (buf2, val & mask);
2045 as_warn (_("%s shortened to %s"), buf1, buf2);
2046 }
2047 return val & mask;
2048 }
2049
2050 enum PREFIX_GROUP
2051 {
2052 PREFIX_EXIST = 0,
2053 PREFIX_LOCK,
2054 PREFIX_REP,
2055 PREFIX_OTHER
2056 };
2057
2058 /* Returns
2059 a. PREFIX_EXIST if attempting to add a prefix where one from the
2060 same class already exists.
2061 b. PREFIX_LOCK if lock prefix is added.
2062 c. PREFIX_REP if rep/repne prefix is added.
2063 d. PREFIX_OTHER if other prefix is added.
2064 */
2065
2066 static enum PREFIX_GROUP
2067 add_prefix (unsigned int prefix)
2068 {
2069 enum PREFIX_GROUP ret = PREFIX_OTHER;
2070 unsigned int q;
2071
2072 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2073 && flag_code == CODE_64BIT)
2074 {
2075 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2076 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2077 && (prefix & (REX_R | REX_X | REX_B))))
2078 ret = PREFIX_EXIST;
2079 q = REX_PREFIX;
2080 }
2081 else
2082 {
2083 switch (prefix)
2084 {
2085 default:
2086 abort ();
2087
2088 case CS_PREFIX_OPCODE:
2089 case DS_PREFIX_OPCODE:
2090 case ES_PREFIX_OPCODE:
2091 case FS_PREFIX_OPCODE:
2092 case GS_PREFIX_OPCODE:
2093 case SS_PREFIX_OPCODE:
2094 q = SEG_PREFIX;
2095 break;
2096
2097 case REPNE_PREFIX_OPCODE:
2098 case REPE_PREFIX_OPCODE:
2099 q = REP_PREFIX;
2100 ret = PREFIX_REP;
2101 break;
2102
2103 case LOCK_PREFIX_OPCODE:
2104 q = LOCK_PREFIX;
2105 ret = PREFIX_LOCK;
2106 break;
2107
2108 case FWAIT_OPCODE:
2109 q = WAIT_PREFIX;
2110 break;
2111
2112 case ADDR_PREFIX_OPCODE:
2113 q = ADDR_PREFIX;
2114 break;
2115
2116 case DATA_PREFIX_OPCODE:
2117 q = DATA_PREFIX;
2118 break;
2119 }
2120 if (i.prefix[q] != 0)
2121 ret = PREFIX_EXIST;
2122 }
2123
2124 if (ret)
2125 {
2126 if (!i.prefix[q])
2127 ++i.prefixes;
2128 i.prefix[q] |= prefix;
2129 }
2130 else
2131 as_bad (_("same type of prefix used twice"));
2132
2133 return ret;
2134 }
2135
2136 static void
2137 update_code_flag (int value, int check)
2138 {
2139 PRINTF_LIKE ((*as_error));
2140
2141 flag_code = (enum flag_code) value;
2142 if (flag_code == CODE_64BIT)
2143 {
2144 cpu_arch_flags.bitfield.cpu64 = 1;
2145 cpu_arch_flags.bitfield.cpuno64 = 0;
2146 }
2147 else
2148 {
2149 cpu_arch_flags.bitfield.cpu64 = 0;
2150 cpu_arch_flags.bitfield.cpuno64 = 1;
2151 }
2152 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2153 {
2154 if (check)
2155 as_error = as_fatal;
2156 else
2157 as_error = as_bad;
2158 (*as_error) (_("64bit mode not supported on `%s'."),
2159 cpu_arch_name ? cpu_arch_name : default_arch);
2160 }
2161 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2162 {
2163 if (check)
2164 as_error = as_fatal;
2165 else
2166 as_error = as_bad;
2167 (*as_error) (_("32bit mode not supported on `%s'."),
2168 cpu_arch_name ? cpu_arch_name : default_arch);
2169 }
2170 stackop_size = '\0';
2171 }
2172
2173 static void
2174 set_code_flag (int value)
2175 {
2176 update_code_flag (value, 0);
2177 }
2178
2179 static void
2180 set_16bit_gcc_code_flag (int new_code_flag)
2181 {
2182 flag_code = (enum flag_code) new_code_flag;
2183 if (flag_code != CODE_16BIT)
2184 abort ();
2185 cpu_arch_flags.bitfield.cpu64 = 0;
2186 cpu_arch_flags.bitfield.cpuno64 = 1;
2187 stackop_size = LONG_MNEM_SUFFIX;
2188 }
2189
2190 static void
2191 set_intel_syntax (int syntax_flag)
2192 {
2193 /* Find out if register prefixing is specified. */
2194 int ask_naked_reg = 0;
2195
2196 SKIP_WHITESPACE ();
2197 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2198 {
2199 char *string = input_line_pointer;
2200 int e = get_symbol_end ();
2201
2202 if (strcmp (string, "prefix") == 0)
2203 ask_naked_reg = 1;
2204 else if (strcmp (string, "noprefix") == 0)
2205 ask_naked_reg = -1;
2206 else
2207 as_bad (_("bad argument to syntax directive."));
2208 *input_line_pointer = e;
2209 }
2210 demand_empty_rest_of_line ();
2211
2212 intel_syntax = syntax_flag;
2213
2214 if (ask_naked_reg == 0)
2215 allow_naked_reg = (intel_syntax
2216 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2217 else
2218 allow_naked_reg = (ask_naked_reg < 0);
2219
2220 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2221
2222 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2223 identifier_chars['$'] = intel_syntax ? '$' : 0;
2224 register_prefix = allow_naked_reg ? "" : "%";
2225 }
2226
2227 static void
2228 set_intel_mnemonic (int mnemonic_flag)
2229 {
2230 intel_mnemonic = mnemonic_flag;
2231 }
2232
2233 static void
2234 set_allow_index_reg (int flag)
2235 {
2236 allow_index_reg = flag;
2237 }
2238
2239 static void
2240 set_check (int what)
2241 {
2242 enum check_kind *kind;
2243 const char *str;
2244
2245 if (what)
2246 {
2247 kind = &operand_check;
2248 str = "operand";
2249 }
2250 else
2251 {
2252 kind = &sse_check;
2253 str = "sse";
2254 }
2255
2256 SKIP_WHITESPACE ();
2257
2258 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2259 {
2260 char *string = input_line_pointer;
2261 int e = get_symbol_end ();
2262
2263 if (strcmp (string, "none") == 0)
2264 *kind = check_none;
2265 else if (strcmp (string, "warning") == 0)
2266 *kind = check_warning;
2267 else if (strcmp (string, "error") == 0)
2268 *kind = check_error;
2269 else
2270 as_bad (_("bad argument to %s_check directive."), str);
2271 *input_line_pointer = e;
2272 }
2273 else
2274 as_bad (_("missing argument for %s_check directive"), str);
2275
2276 demand_empty_rest_of_line ();
2277 }
2278
2279 static void
2280 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2281 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2282 {
2283 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2284 static const char *arch;
2285
2286 /* Intel LIOM is only supported on ELF. */
2287 if (!IS_ELF)
2288 return;
2289
2290 if (!arch)
2291 {
2292 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2293 use default_arch. */
2294 arch = cpu_arch_name;
2295 if (!arch)
2296 arch = default_arch;
2297 }
2298
2299 /* If we are targeting Intel MCU, we must enable it. */
2300 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2301 || new_flag.bitfield.cpuiamcu)
2302 return;
2303
2304 /* If we are targeting Intel L1OM, we must enable it. */
2305 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2306 || new_flag.bitfield.cpul1om)
2307 return;
2308
2309 /* If we are targeting Intel K1OM, we must enable it. */
2310 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2311 || new_flag.bitfield.cpuk1om)
2312 return;
2313
2314 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2315 #endif
2316 }
2317
2318 static void
2319 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2320 {
2321 SKIP_WHITESPACE ();
2322
2323 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2324 {
2325 char *string = input_line_pointer;
2326 int e = get_symbol_end ();
2327 unsigned int j;
2328 i386_cpu_flags flags;
2329
2330 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2331 {
2332 if (strcmp (string, cpu_arch[j].name) == 0)
2333 {
2334 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2335
2336 if (*string != '.')
2337 {
2338 cpu_arch_name = cpu_arch[j].name;
2339 cpu_sub_arch_name = NULL;
2340 cpu_arch_flags = cpu_arch[j].flags;
2341 if (flag_code == CODE_64BIT)
2342 {
2343 cpu_arch_flags.bitfield.cpu64 = 1;
2344 cpu_arch_flags.bitfield.cpuno64 = 0;
2345 }
2346 else
2347 {
2348 cpu_arch_flags.bitfield.cpu64 = 0;
2349 cpu_arch_flags.bitfield.cpuno64 = 1;
2350 }
2351 cpu_arch_isa = cpu_arch[j].type;
2352 cpu_arch_isa_flags = cpu_arch[j].flags;
2353 if (!cpu_arch_tune_set)
2354 {
2355 cpu_arch_tune = cpu_arch_isa;
2356 cpu_arch_tune_flags = cpu_arch_isa_flags;
2357 }
2358 break;
2359 }
2360
2361 if (!cpu_arch[j].negated)
2362 flags = cpu_flags_or (cpu_arch_flags,
2363 cpu_arch[j].flags);
2364 else
2365 flags = cpu_flags_and_not (cpu_arch_flags,
2366 cpu_arch[j].flags);
2367
2368 if (!valid_iamcu_cpu_flags (&flags))
2369 as_fatal (_("`%s' isn't valid for Intel MCU"),
2370 cpu_arch[j].name);
2371 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2372 {
2373 if (cpu_sub_arch_name)
2374 {
2375 char *name = cpu_sub_arch_name;
2376 cpu_sub_arch_name = concat (name,
2377 cpu_arch[j].name,
2378 (const char *) NULL);
2379 free (name);
2380 }
2381 else
2382 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2383 cpu_arch_flags = flags;
2384 cpu_arch_isa_flags = flags;
2385 }
2386 *input_line_pointer = e;
2387 demand_empty_rest_of_line ();
2388 return;
2389 }
2390 }
2391 if (j >= ARRAY_SIZE (cpu_arch))
2392 as_bad (_("no such architecture: `%s'"), string);
2393
2394 *input_line_pointer = e;
2395 }
2396 else
2397 as_bad (_("missing cpu architecture"));
2398
2399 no_cond_jump_promotion = 0;
2400 if (*input_line_pointer == ','
2401 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2402 {
2403 char *string = ++input_line_pointer;
2404 int e = get_symbol_end ();
2405
2406 if (strcmp (string, "nojumps") == 0)
2407 no_cond_jump_promotion = 1;
2408 else if (strcmp (string, "jumps") == 0)
2409 ;
2410 else
2411 as_bad (_("no such architecture modifier: `%s'"), string);
2412
2413 *input_line_pointer = e;
2414 }
2415
2416 demand_empty_rest_of_line ();
2417 }
2418
2419 enum bfd_architecture
2420 i386_arch (void)
2421 {
2422 if (cpu_arch_isa == PROCESSOR_L1OM)
2423 {
2424 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2425 || flag_code != CODE_64BIT)
2426 as_fatal (_("Intel L1OM is 64bit ELF only"));
2427 return bfd_arch_l1om;
2428 }
2429 else if (cpu_arch_isa == PROCESSOR_K1OM)
2430 {
2431 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2432 || flag_code != CODE_64BIT)
2433 as_fatal (_("Intel K1OM is 64bit ELF only"));
2434 return bfd_arch_k1om;
2435 }
2436 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2437 {
2438 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2439 || flag_code == CODE_64BIT)
2440 as_fatal (_("Intel MCU is 32bit ELF only"));
2441 return bfd_arch_iamcu;
2442 }
2443 else
2444 return bfd_arch_i386;
2445 }
2446
2447 unsigned long
2448 i386_mach (void)
2449 {
2450 if (!strncmp (default_arch, "x86_64", 6))
2451 {
2452 if (cpu_arch_isa == PROCESSOR_L1OM)
2453 {
2454 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2455 || default_arch[6] != '\0')
2456 as_fatal (_("Intel L1OM is 64bit ELF only"));
2457 return bfd_mach_l1om;
2458 }
2459 else if (cpu_arch_isa == PROCESSOR_K1OM)
2460 {
2461 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2462 || default_arch[6] != '\0')
2463 as_fatal (_("Intel K1OM is 64bit ELF only"));
2464 return bfd_mach_k1om;
2465 }
2466 else if (default_arch[6] == '\0')
2467 return bfd_mach_x86_64;
2468 else
2469 return bfd_mach_x64_32;
2470 }
2471 else if (!strcmp (default_arch, "i386")
2472 || !strcmp (default_arch, "iamcu"))
2473 {
2474 if (cpu_arch_isa == PROCESSOR_IAMCU)
2475 {
2476 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2477 as_fatal (_("Intel MCU is 32bit ELF only"));
2478 return bfd_mach_i386_iamcu;
2479 }
2480 else
2481 return bfd_mach_i386_i386;
2482 }
2483 else
2484 as_fatal (_("unknown architecture"));
2485 }
2486 \f
2487 void
2488 md_begin (void)
2489 {
2490 const char *hash_err;
2491
2492 /* Initialize op_hash hash table. */
2493 op_hash = hash_new ();
2494
2495 {
2496 const insn_template *optab;
2497 templates *core_optab;
2498
2499 /* Setup for loop. */
2500 optab = i386_optab;
2501 core_optab = (templates *) xmalloc (sizeof (templates));
2502 core_optab->start = optab;
2503
2504 while (1)
2505 {
2506 ++optab;
2507 if (optab->name == NULL
2508 || strcmp (optab->name, (optab - 1)->name) != 0)
2509 {
2510 /* different name --> ship out current template list;
2511 add to hash table; & begin anew. */
2512 core_optab->end = optab;
2513 hash_err = hash_insert (op_hash,
2514 (optab - 1)->name,
2515 (void *) core_optab);
2516 if (hash_err)
2517 {
2518 as_fatal (_("can't hash %s: %s"),
2519 (optab - 1)->name,
2520 hash_err);
2521 }
2522 if (optab->name == NULL)
2523 break;
2524 core_optab = (templates *) xmalloc (sizeof (templates));
2525 core_optab->start = optab;
2526 }
2527 }
2528 }
2529
2530 /* Initialize reg_hash hash table. */
2531 reg_hash = hash_new ();
2532 {
2533 const reg_entry *regtab;
2534 unsigned int regtab_size = i386_regtab_size;
2535
2536 for (regtab = i386_regtab; regtab_size--; regtab++)
2537 {
2538 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2539 if (hash_err)
2540 as_fatal (_("can't hash %s: %s"),
2541 regtab->reg_name,
2542 hash_err);
2543 }
2544 }
2545
2546 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2547 {
2548 int c;
2549 char *p;
2550
2551 for (c = 0; c < 256; c++)
2552 {
2553 if (ISDIGIT (c))
2554 {
2555 digit_chars[c] = c;
2556 mnemonic_chars[c] = c;
2557 register_chars[c] = c;
2558 operand_chars[c] = c;
2559 }
2560 else if (ISLOWER (c))
2561 {
2562 mnemonic_chars[c] = c;
2563 register_chars[c] = c;
2564 operand_chars[c] = c;
2565 }
2566 else if (ISUPPER (c))
2567 {
2568 mnemonic_chars[c] = TOLOWER (c);
2569 register_chars[c] = mnemonic_chars[c];
2570 operand_chars[c] = c;
2571 }
2572 else if (c == '{' || c == '}')
2573 operand_chars[c] = c;
2574
2575 if (ISALPHA (c) || ISDIGIT (c))
2576 identifier_chars[c] = c;
2577 else if (c >= 128)
2578 {
2579 identifier_chars[c] = c;
2580 operand_chars[c] = c;
2581 }
2582 }
2583
2584 #ifdef LEX_AT
2585 identifier_chars['@'] = '@';
2586 #endif
2587 #ifdef LEX_QM
2588 identifier_chars['?'] = '?';
2589 operand_chars['?'] = '?';
2590 #endif
2591 digit_chars['-'] = '-';
2592 mnemonic_chars['_'] = '_';
2593 mnemonic_chars['-'] = '-';
2594 mnemonic_chars['.'] = '.';
2595 identifier_chars['_'] = '_';
2596 identifier_chars['.'] = '.';
2597
2598 for (p = operand_special_chars; *p != '\0'; p++)
2599 operand_chars[(unsigned char) *p] = *p;
2600 }
2601
2602 if (flag_code == CODE_64BIT)
2603 {
2604 #if defined (OBJ_COFF) && defined (TE_PE)
2605 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2606 ? 32 : 16);
2607 #else
2608 x86_dwarf2_return_column = 16;
2609 #endif
2610 x86_cie_data_alignment = -8;
2611 }
2612 else
2613 {
2614 x86_dwarf2_return_column = 8;
2615 x86_cie_data_alignment = -4;
2616 }
2617 }
2618
2619 void
2620 i386_print_statistics (FILE *file)
2621 {
2622 hash_print_statistics (file, "i386 opcode", op_hash);
2623 hash_print_statistics (file, "i386 register", reg_hash);
2624 }
2625 \f
2626 #ifdef DEBUG386
2627
2628 /* Debugging routines for md_assemble. */
2629 static void pte (insn_template *);
2630 static void pt (i386_operand_type);
2631 static void pe (expressionS *);
2632 static void ps (symbolS *);
2633
2634 static void
2635 pi (char *line, i386_insn *x)
2636 {
2637 unsigned int j;
2638
2639 fprintf (stdout, "%s: template ", line);
2640 pte (&x->tm);
2641 fprintf (stdout, " address: base %s index %s scale %x\n",
2642 x->base_reg ? x->base_reg->reg_name : "none",
2643 x->index_reg ? x->index_reg->reg_name : "none",
2644 x->log2_scale_factor);
2645 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2646 x->rm.mode, x->rm.reg, x->rm.regmem);
2647 fprintf (stdout, " sib: base %x index %x scale %x\n",
2648 x->sib.base, x->sib.index, x->sib.scale);
2649 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2650 (x->rex & REX_W) != 0,
2651 (x->rex & REX_R) != 0,
2652 (x->rex & REX_X) != 0,
2653 (x->rex & REX_B) != 0);
2654 for (j = 0; j < x->operands; j++)
2655 {
2656 fprintf (stdout, " #%d: ", j + 1);
2657 pt (x->types[j]);
2658 fprintf (stdout, "\n");
2659 if (x->types[j].bitfield.reg8
2660 || x->types[j].bitfield.reg16
2661 || x->types[j].bitfield.reg32
2662 || x->types[j].bitfield.reg64
2663 || x->types[j].bitfield.regmmx
2664 || x->types[j].bitfield.regxmm
2665 || x->types[j].bitfield.regymm
2666 || x->types[j].bitfield.regzmm
2667 || x->types[j].bitfield.sreg2
2668 || x->types[j].bitfield.sreg3
2669 || x->types[j].bitfield.control
2670 || x->types[j].bitfield.debug
2671 || x->types[j].bitfield.test)
2672 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2673 if (operand_type_check (x->types[j], imm))
2674 pe (x->op[j].imms);
2675 if (operand_type_check (x->types[j], disp))
2676 pe (x->op[j].disps);
2677 }
2678 }
2679
2680 static void
2681 pte (insn_template *t)
2682 {
2683 unsigned int j;
2684 fprintf (stdout, " %d operands ", t->operands);
2685 fprintf (stdout, "opcode %x ", t->base_opcode);
2686 if (t->extension_opcode != None)
2687 fprintf (stdout, "ext %x ", t->extension_opcode);
2688 if (t->opcode_modifier.d)
2689 fprintf (stdout, "D");
2690 if (t->opcode_modifier.w)
2691 fprintf (stdout, "W");
2692 fprintf (stdout, "\n");
2693 for (j = 0; j < t->operands; j++)
2694 {
2695 fprintf (stdout, " #%d type ", j + 1);
2696 pt (t->operand_types[j]);
2697 fprintf (stdout, "\n");
2698 }
2699 }
2700
2701 static void
2702 pe (expressionS *e)
2703 {
2704 fprintf (stdout, " operation %d\n", e->X_op);
2705 fprintf (stdout, " add_number %ld (%lx)\n",
2706 (long) e->X_add_number, (long) e->X_add_number);
2707 if (e->X_add_symbol)
2708 {
2709 fprintf (stdout, " add_symbol ");
2710 ps (e->X_add_symbol);
2711 fprintf (stdout, "\n");
2712 }
2713 if (e->X_op_symbol)
2714 {
2715 fprintf (stdout, " op_symbol ");
2716 ps (e->X_op_symbol);
2717 fprintf (stdout, "\n");
2718 }
2719 }
2720
2721 static void
2722 ps (symbolS *s)
2723 {
2724 fprintf (stdout, "%s type %s%s",
2725 S_GET_NAME (s),
2726 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2727 segment_name (S_GET_SEGMENT (s)));
2728 }
2729
2730 static struct type_name
2731 {
2732 i386_operand_type mask;
2733 const char *name;
2734 }
2735 const type_names[] =
2736 {
2737 { OPERAND_TYPE_REG8, "r8" },
2738 { OPERAND_TYPE_REG16, "r16" },
2739 { OPERAND_TYPE_REG32, "r32" },
2740 { OPERAND_TYPE_REG64, "r64" },
2741 { OPERAND_TYPE_IMM8, "i8" },
2742 { OPERAND_TYPE_IMM8, "i8s" },
2743 { OPERAND_TYPE_IMM16, "i16" },
2744 { OPERAND_TYPE_IMM32, "i32" },
2745 { OPERAND_TYPE_IMM32S, "i32s" },
2746 { OPERAND_TYPE_IMM64, "i64" },
2747 { OPERAND_TYPE_IMM1, "i1" },
2748 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2749 { OPERAND_TYPE_DISP8, "d8" },
2750 { OPERAND_TYPE_DISP16, "d16" },
2751 { OPERAND_TYPE_DISP32, "d32" },
2752 { OPERAND_TYPE_DISP32S, "d32s" },
2753 { OPERAND_TYPE_DISP64, "d64" },
2754 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2755 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2756 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2757 { OPERAND_TYPE_CONTROL, "control reg" },
2758 { OPERAND_TYPE_TEST, "test reg" },
2759 { OPERAND_TYPE_DEBUG, "debug reg" },
2760 { OPERAND_TYPE_FLOATREG, "FReg" },
2761 { OPERAND_TYPE_FLOATACC, "FAcc" },
2762 { OPERAND_TYPE_SREG2, "SReg2" },
2763 { OPERAND_TYPE_SREG3, "SReg3" },
2764 { OPERAND_TYPE_ACC, "Acc" },
2765 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2766 { OPERAND_TYPE_REGMMX, "rMMX" },
2767 { OPERAND_TYPE_REGXMM, "rXMM" },
2768 { OPERAND_TYPE_REGYMM, "rYMM" },
2769 { OPERAND_TYPE_REGZMM, "rZMM" },
2770 { OPERAND_TYPE_REGMASK, "Mask reg" },
2771 { OPERAND_TYPE_ESSEG, "es" },
2772 };
2773
2774 static void
2775 pt (i386_operand_type t)
2776 {
2777 unsigned int j;
2778 i386_operand_type a;
2779
2780 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2781 {
2782 a = operand_type_and (t, type_names[j].mask);
2783 if (!operand_type_all_zero (&a))
2784 fprintf (stdout, "%s, ", type_names[j].name);
2785 }
2786 fflush (stdout);
2787 }
2788
2789 #endif /* DEBUG386 */
2790 \f
2791 static bfd_reloc_code_real_type
2792 reloc (unsigned int size,
2793 int pcrel,
2794 int sign,
2795 bfd_reloc_code_real_type other)
2796 {
2797 if (other != NO_RELOC)
2798 {
2799 reloc_howto_type *rel;
2800
2801 if (size == 8)
2802 switch (other)
2803 {
2804 case BFD_RELOC_X86_64_GOT32:
2805 return BFD_RELOC_X86_64_GOT64;
2806 break;
2807 case BFD_RELOC_X86_64_GOTPLT64:
2808 return BFD_RELOC_X86_64_GOTPLT64;
2809 break;
2810 case BFD_RELOC_X86_64_PLTOFF64:
2811 return BFD_RELOC_X86_64_PLTOFF64;
2812 break;
2813 case BFD_RELOC_X86_64_GOTPC32:
2814 other = BFD_RELOC_X86_64_GOTPC64;
2815 break;
2816 case BFD_RELOC_X86_64_GOTPCREL:
2817 other = BFD_RELOC_X86_64_GOTPCREL64;
2818 break;
2819 case BFD_RELOC_X86_64_TPOFF32:
2820 other = BFD_RELOC_X86_64_TPOFF64;
2821 break;
2822 case BFD_RELOC_X86_64_DTPOFF32:
2823 other = BFD_RELOC_X86_64_DTPOFF64;
2824 break;
2825 default:
2826 break;
2827 }
2828
2829 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2830 if (other == BFD_RELOC_SIZE32)
2831 {
2832 if (size == 8)
2833 other = BFD_RELOC_SIZE64;
2834 if (pcrel)
2835 {
2836 as_bad (_("there are no pc-relative size relocations"));
2837 return NO_RELOC;
2838 }
2839 }
2840 #endif
2841
2842 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2843 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2844 sign = -1;
2845
2846 rel = bfd_reloc_type_lookup (stdoutput, other);
2847 if (!rel)
2848 as_bad (_("unknown relocation (%u)"), other);
2849 else if (size != bfd_get_reloc_size (rel))
2850 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2851 bfd_get_reloc_size (rel),
2852 size);
2853 else if (pcrel && !rel->pc_relative)
2854 as_bad (_("non-pc-relative relocation for pc-relative field"));
2855 else if ((rel->complain_on_overflow == complain_overflow_signed
2856 && !sign)
2857 || (rel->complain_on_overflow == complain_overflow_unsigned
2858 && sign > 0))
2859 as_bad (_("relocated field and relocation type differ in signedness"));
2860 else
2861 return other;
2862 return NO_RELOC;
2863 }
2864
2865 if (pcrel)
2866 {
2867 if (!sign)
2868 as_bad (_("there are no unsigned pc-relative relocations"));
2869 switch (size)
2870 {
2871 case 1: return BFD_RELOC_8_PCREL;
2872 case 2: return BFD_RELOC_16_PCREL;
2873 case 4: return BFD_RELOC_32_PCREL;
2874 case 8: return BFD_RELOC_64_PCREL;
2875 }
2876 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2877 }
2878 else
2879 {
2880 if (sign > 0)
2881 switch (size)
2882 {
2883 case 4: return BFD_RELOC_X86_64_32S;
2884 }
2885 else
2886 switch (size)
2887 {
2888 case 1: return BFD_RELOC_8;
2889 case 2: return BFD_RELOC_16;
2890 case 4: return BFD_RELOC_32;
2891 case 8: return BFD_RELOC_64;
2892 }
2893 as_bad (_("cannot do %s %u byte relocation"),
2894 sign > 0 ? "signed" : "unsigned", size);
2895 }
2896
2897 return NO_RELOC;
2898 }
2899
2900 /* Here we decide which fixups can be adjusted to make them relative to
2901 the beginning of the section instead of the symbol. Basically we need
2902 to make sure that the dynamic relocations are done correctly, so in
2903 some cases we force the original symbol to be used. */
2904
2905 int
2906 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2907 {
2908 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2909 if (!IS_ELF)
2910 return 1;
2911
2912 /* Don't adjust pc-relative references to merge sections in 64-bit
2913 mode. */
2914 if (use_rela_relocations
2915 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2916 && fixP->fx_pcrel)
2917 return 0;
2918
2919 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2920 and changed later by validate_fix. */
2921 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2922 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2923 return 0;
2924
2925 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2926 for size relocations. */
2927 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2928 || fixP->fx_r_type == BFD_RELOC_SIZE64
2929 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2930 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2931 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2932 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2933 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2942 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2943 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2946 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2955 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2956 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2957 return 0;
2958 #endif
2959 return 1;
2960 }
2961
2962 static int
2963 intel_float_operand (const char *mnemonic)
2964 {
2965 /* Note that the value returned is meaningful only for opcodes with (memory)
2966 operands, hence the code here is free to improperly handle opcodes that
2967 have no operands (for better performance and smaller code). */
2968
2969 if (mnemonic[0] != 'f')
2970 return 0; /* non-math */
2971
2972 switch (mnemonic[1])
2973 {
2974 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2975 the fs segment override prefix not currently handled because no
2976 call path can make opcodes without operands get here */
2977 case 'i':
2978 return 2 /* integer op */;
2979 case 'l':
2980 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2981 return 3; /* fldcw/fldenv */
2982 break;
2983 case 'n':
2984 if (mnemonic[2] != 'o' /* fnop */)
2985 return 3; /* non-waiting control op */
2986 break;
2987 case 'r':
2988 if (mnemonic[2] == 's')
2989 return 3; /* frstor/frstpm */
2990 break;
2991 case 's':
2992 if (mnemonic[2] == 'a')
2993 return 3; /* fsave */
2994 if (mnemonic[2] == 't')
2995 {
2996 switch (mnemonic[3])
2997 {
2998 case 'c': /* fstcw */
2999 case 'd': /* fstdw */
3000 case 'e': /* fstenv */
3001 case 's': /* fsts[gw] */
3002 return 3;
3003 }
3004 }
3005 break;
3006 case 'x':
3007 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3008 return 0; /* fxsave/fxrstor are not really math ops */
3009 break;
3010 }
3011
3012 return 1;
3013 }
3014
3015 /* Build the VEX prefix. */
3016
3017 static void
3018 build_vex_prefix (const insn_template *t)
3019 {
3020 unsigned int register_specifier;
3021 unsigned int implied_prefix;
3022 unsigned int vector_length;
3023
3024 /* Check register specifier. */
3025 if (i.vex.register_specifier)
3026 {
3027 register_specifier =
3028 ~register_number (i.vex.register_specifier) & 0xf;
3029 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3030 }
3031 else
3032 register_specifier = 0xf;
3033
3034 /* Use 2-byte VEX prefix by swappping destination and source
3035 operand. */
3036 if (!i.swap_operand
3037 && i.operands == i.reg_operands
3038 && i.tm.opcode_modifier.vexopcode == VEX0F
3039 && i.tm.opcode_modifier.s
3040 && i.rex == REX_B)
3041 {
3042 unsigned int xchg = i.operands - 1;
3043 union i386_op temp_op;
3044 i386_operand_type temp_type;
3045
3046 temp_type = i.types[xchg];
3047 i.types[xchg] = i.types[0];
3048 i.types[0] = temp_type;
3049 temp_op = i.op[xchg];
3050 i.op[xchg] = i.op[0];
3051 i.op[0] = temp_op;
3052
3053 gas_assert (i.rm.mode == 3);
3054
3055 i.rex = REX_R;
3056 xchg = i.rm.regmem;
3057 i.rm.regmem = i.rm.reg;
3058 i.rm.reg = xchg;
3059
3060 /* Use the next insn. */
3061 i.tm = t[1];
3062 }
3063
3064 if (i.tm.opcode_modifier.vex == VEXScalar)
3065 vector_length = avxscalar;
3066 else
3067 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3068
3069 switch ((i.tm.base_opcode >> 8) & 0xff)
3070 {
3071 case 0:
3072 implied_prefix = 0;
3073 break;
3074 case DATA_PREFIX_OPCODE:
3075 implied_prefix = 1;
3076 break;
3077 case REPE_PREFIX_OPCODE:
3078 implied_prefix = 2;
3079 break;
3080 case REPNE_PREFIX_OPCODE:
3081 implied_prefix = 3;
3082 break;
3083 default:
3084 abort ();
3085 }
3086
3087 /* Use 2-byte VEX prefix if possible. */
3088 if (i.tm.opcode_modifier.vexopcode == VEX0F
3089 && i.tm.opcode_modifier.vexw != VEXW1
3090 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3091 {
3092 /* 2-byte VEX prefix. */
3093 unsigned int r;
3094
3095 i.vex.length = 2;
3096 i.vex.bytes[0] = 0xc5;
3097
3098 /* Check the REX.R bit. */
3099 r = (i.rex & REX_R) ? 0 : 1;
3100 i.vex.bytes[1] = (r << 7
3101 | register_specifier << 3
3102 | vector_length << 2
3103 | implied_prefix);
3104 }
3105 else
3106 {
3107 /* 3-byte VEX prefix. */
3108 unsigned int m, w;
3109
3110 i.vex.length = 3;
3111
3112 switch (i.tm.opcode_modifier.vexopcode)
3113 {
3114 case VEX0F:
3115 m = 0x1;
3116 i.vex.bytes[0] = 0xc4;
3117 break;
3118 case VEX0F38:
3119 m = 0x2;
3120 i.vex.bytes[0] = 0xc4;
3121 break;
3122 case VEX0F3A:
3123 m = 0x3;
3124 i.vex.bytes[0] = 0xc4;
3125 break;
3126 case XOP08:
3127 m = 0x8;
3128 i.vex.bytes[0] = 0x8f;
3129 break;
3130 case XOP09:
3131 m = 0x9;
3132 i.vex.bytes[0] = 0x8f;
3133 break;
3134 case XOP0A:
3135 m = 0xa;
3136 i.vex.bytes[0] = 0x8f;
3137 break;
3138 default:
3139 abort ();
3140 }
3141
3142 /* The high 3 bits of the second VEX byte are 1's compliment
3143 of RXB bits from REX. */
3144 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3145
3146 /* Check the REX.W bit. */
3147 w = (i.rex & REX_W) ? 1 : 0;
3148 if (i.tm.opcode_modifier.vexw == VEXW1)
3149 w = 1;
3150
3151 i.vex.bytes[2] = (w << 7
3152 | register_specifier << 3
3153 | vector_length << 2
3154 | implied_prefix);
3155 }
3156 }
3157
3158 /* Build the EVEX prefix. */
3159
3160 static void
3161 build_evex_prefix (void)
3162 {
3163 unsigned int register_specifier;
3164 unsigned int implied_prefix;
3165 unsigned int m, w;
3166 rex_byte vrex_used = 0;
3167
3168 /* Check register specifier. */
3169 if (i.vex.register_specifier)
3170 {
3171 gas_assert ((i.vrex & REX_X) == 0);
3172
3173 register_specifier = i.vex.register_specifier->reg_num;
3174 if ((i.vex.register_specifier->reg_flags & RegRex))
3175 register_specifier += 8;
3176 /* The upper 16 registers are encoded in the fourth byte of the
3177 EVEX prefix. */
3178 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3179 i.vex.bytes[3] = 0x8;
3180 register_specifier = ~register_specifier & 0xf;
3181 }
3182 else
3183 {
3184 register_specifier = 0xf;
3185
3186 /* Encode upper 16 vector index register in the fourth byte of
3187 the EVEX prefix. */
3188 if (!(i.vrex & REX_X))
3189 i.vex.bytes[3] = 0x8;
3190 else
3191 vrex_used |= REX_X;
3192 }
3193
3194 switch ((i.tm.base_opcode >> 8) & 0xff)
3195 {
3196 case 0:
3197 implied_prefix = 0;
3198 break;
3199 case DATA_PREFIX_OPCODE:
3200 implied_prefix = 1;
3201 break;
3202 case REPE_PREFIX_OPCODE:
3203 implied_prefix = 2;
3204 break;
3205 case REPNE_PREFIX_OPCODE:
3206 implied_prefix = 3;
3207 break;
3208 default:
3209 abort ();
3210 }
3211
3212 /* 4 byte EVEX prefix. */
3213 i.vex.length = 4;
3214 i.vex.bytes[0] = 0x62;
3215
3216 /* mmmm bits. */
3217 switch (i.tm.opcode_modifier.vexopcode)
3218 {
3219 case VEX0F:
3220 m = 1;
3221 break;
3222 case VEX0F38:
3223 m = 2;
3224 break;
3225 case VEX0F3A:
3226 m = 3;
3227 break;
3228 default:
3229 abort ();
3230 break;
3231 }
3232
3233 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3234 bits from REX. */
3235 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3236
3237 /* The fifth bit of the second EVEX byte is 1's compliment of the
3238 REX_R bit in VREX. */
3239 if (!(i.vrex & REX_R))
3240 i.vex.bytes[1] |= 0x10;
3241 else
3242 vrex_used |= REX_R;
3243
3244 if ((i.reg_operands + i.imm_operands) == i.operands)
3245 {
3246 /* When all operands are registers, the REX_X bit in REX is not
3247 used. We reuse it to encode the upper 16 registers, which is
3248 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3249 as 1's compliment. */
3250 if ((i.vrex & REX_B))
3251 {
3252 vrex_used |= REX_B;
3253 i.vex.bytes[1] &= ~0x40;
3254 }
3255 }
3256
3257 /* EVEX instructions shouldn't need the REX prefix. */
3258 i.vrex &= ~vrex_used;
3259 gas_assert (i.vrex == 0);
3260
3261 /* Check the REX.W bit. */
3262 w = (i.rex & REX_W) ? 1 : 0;
3263 if (i.tm.opcode_modifier.vexw)
3264 {
3265 if (i.tm.opcode_modifier.vexw == VEXW1)
3266 w = 1;
3267 }
3268 /* If w is not set it means we are dealing with WIG instruction. */
3269 else if (!w)
3270 {
3271 if (evexwig == evexw1)
3272 w = 1;
3273 }
3274
3275 /* Encode the U bit. */
3276 implied_prefix |= 0x4;
3277
3278 /* The third byte of the EVEX prefix. */
3279 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3280
3281 /* The fourth byte of the EVEX prefix. */
3282 /* The zeroing-masking bit. */
3283 if (i.mask && i.mask->zeroing)
3284 i.vex.bytes[3] |= 0x80;
3285
3286 /* Don't always set the broadcast bit if there is no RC. */
3287 if (!i.rounding)
3288 {
3289 /* Encode the vector length. */
3290 unsigned int vec_length;
3291
3292 switch (i.tm.opcode_modifier.evex)
3293 {
3294 case EVEXLIG: /* LL' is ignored */
3295 vec_length = evexlig << 5;
3296 break;
3297 case EVEX128:
3298 vec_length = 0 << 5;
3299 break;
3300 case EVEX256:
3301 vec_length = 1 << 5;
3302 break;
3303 case EVEX512:
3304 vec_length = 2 << 5;
3305 break;
3306 default:
3307 abort ();
3308 break;
3309 }
3310 i.vex.bytes[3] |= vec_length;
3311 /* Encode the broadcast bit. */
3312 if (i.broadcast)
3313 i.vex.bytes[3] |= 0x10;
3314 }
3315 else
3316 {
3317 if (i.rounding->type != saeonly)
3318 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3319 else
3320 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3321 }
3322
3323 if (i.mask && i.mask->mask)
3324 i.vex.bytes[3] |= i.mask->mask->reg_num;
3325 }
3326
3327 static void
3328 process_immext (void)
3329 {
3330 expressionS *exp;
3331
3332 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3333 && i.operands > 0)
3334 {
3335 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3336 with an opcode suffix which is coded in the same place as an
3337 8-bit immediate field would be.
3338 Here we check those operands and remove them afterwards. */
3339 unsigned int x;
3340
3341 for (x = 0; x < i.operands; x++)
3342 if (register_number (i.op[x].regs) != x)
3343 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3344 register_prefix, i.op[x].regs->reg_name, x + 1,
3345 i.tm.name);
3346
3347 i.operands = 0;
3348 }
3349
3350 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3351 which is coded in the same place as an 8-bit immediate field
3352 would be. Here we fake an 8-bit immediate operand from the
3353 opcode suffix stored in tm.extension_opcode.
3354
3355 AVX instructions also use this encoding, for some of
3356 3 argument instructions. */
3357
3358 gas_assert (i.imm_operands <= 1
3359 && (i.operands <= 2
3360 || ((i.tm.opcode_modifier.vex
3361 || i.tm.opcode_modifier.evex)
3362 && i.operands <= 4)));
3363
3364 exp = &im_expressions[i.imm_operands++];
3365 i.op[i.operands].imms = exp;
3366 i.types[i.operands] = imm8;
3367 i.operands++;
3368 exp->X_op = O_constant;
3369 exp->X_add_number = i.tm.extension_opcode;
3370 i.tm.extension_opcode = None;
3371 }
3372
3373
3374 static int
3375 check_hle (void)
3376 {
3377 switch (i.tm.opcode_modifier.hleprefixok)
3378 {
3379 default:
3380 abort ();
3381 case HLEPrefixNone:
3382 as_bad (_("invalid instruction `%s' after `%s'"),
3383 i.tm.name, i.hle_prefix);
3384 return 0;
3385 case HLEPrefixLock:
3386 if (i.prefix[LOCK_PREFIX])
3387 return 1;
3388 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3389 return 0;
3390 case HLEPrefixAny:
3391 return 1;
3392 case HLEPrefixRelease:
3393 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3394 {
3395 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3396 i.tm.name);
3397 return 0;
3398 }
3399 if (i.mem_operands == 0
3400 || !operand_type_check (i.types[i.operands - 1], anymem))
3401 {
3402 as_bad (_("memory destination needed for instruction `%s'"
3403 " after `xrelease'"), i.tm.name);
3404 return 0;
3405 }
3406 return 1;
3407 }
3408 }
3409
3410 /* This is the guts of the machine-dependent assembler. LINE points to a
3411 machine dependent instruction. This function is supposed to emit
3412 the frags/bytes it assembles to. */
3413
3414 void
3415 md_assemble (char *line)
3416 {
3417 unsigned int j;
3418 char mnemonic[MAX_MNEM_SIZE];
3419 const insn_template *t;
3420
3421 /* Initialize globals. */
3422 memset (&i, '\0', sizeof (i));
3423 for (j = 0; j < MAX_OPERANDS; j++)
3424 i.reloc[j] = NO_RELOC;
3425 memset (disp_expressions, '\0', sizeof (disp_expressions));
3426 memset (im_expressions, '\0', sizeof (im_expressions));
3427 save_stack_p = save_stack;
3428
3429 /* First parse an instruction mnemonic & call i386_operand for the operands.
3430 We assume that the scrubber has arranged it so that line[0] is the valid
3431 start of a (possibly prefixed) mnemonic. */
3432
3433 line = parse_insn (line, mnemonic);
3434 if (line == NULL)
3435 return;
3436
3437 line = parse_operands (line, mnemonic);
3438 this_operand = -1;
3439 if (line == NULL)
3440 return;
3441
3442 /* Now we've parsed the mnemonic into a set of templates, and have the
3443 operands at hand. */
3444
3445 /* All intel opcodes have reversed operands except for "bound" and
3446 "enter". We also don't reverse intersegment "jmp" and "call"
3447 instructions with 2 immediate operands so that the immediate segment
3448 precedes the offset, as it does when in AT&T mode. */
3449 if (intel_syntax
3450 && i.operands > 1
3451 && (strcmp (mnemonic, "bound") != 0)
3452 && (strcmp (mnemonic, "invlpga") != 0)
3453 && !(operand_type_check (i.types[0], imm)
3454 && operand_type_check (i.types[1], imm)))
3455 swap_operands ();
3456
3457 /* The order of the immediates should be reversed
3458 for 2 immediates extrq and insertq instructions */
3459 if (i.imm_operands == 2
3460 && (strcmp (mnemonic, "extrq") == 0
3461 || strcmp (mnemonic, "insertq") == 0))
3462 swap_2_operands (0, 1);
3463
3464 if (i.imm_operands)
3465 optimize_imm ();
3466
3467 /* Don't optimize displacement for movabs since it only takes 64bit
3468 displacement. */
3469 if (i.disp_operands
3470 && i.disp_encoding != disp_encoding_32bit
3471 && (flag_code != CODE_64BIT
3472 || strcmp (mnemonic, "movabs") != 0))
3473 optimize_disp ();
3474
3475 /* Next, we find a template that matches the given insn,
3476 making sure the overlap of the given operands types is consistent
3477 with the template operand types. */
3478
3479 if (!(t = match_template ()))
3480 return;
3481
3482 if (sse_check != check_none
3483 && !i.tm.opcode_modifier.noavx
3484 && (i.tm.cpu_flags.bitfield.cpusse
3485 || i.tm.cpu_flags.bitfield.cpusse2
3486 || i.tm.cpu_flags.bitfield.cpusse3
3487 || i.tm.cpu_flags.bitfield.cpussse3
3488 || i.tm.cpu_flags.bitfield.cpusse4_1
3489 || i.tm.cpu_flags.bitfield.cpusse4_2))
3490 {
3491 (sse_check == check_warning
3492 ? as_warn
3493 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3494 }
3495
3496 /* Zap movzx and movsx suffix. The suffix has been set from
3497 "word ptr" or "byte ptr" on the source operand in Intel syntax
3498 or extracted from mnemonic in AT&T syntax. But we'll use
3499 the destination register to choose the suffix for encoding. */
3500 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3501 {
3502 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3503 there is no suffix, the default will be byte extension. */
3504 if (i.reg_operands != 2
3505 && !i.suffix
3506 && intel_syntax)
3507 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3508
3509 i.suffix = 0;
3510 }
3511
3512 if (i.tm.opcode_modifier.fwait)
3513 if (!add_prefix (FWAIT_OPCODE))
3514 return;
3515
3516 /* Check if REP prefix is OK. */
3517 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3518 {
3519 as_bad (_("invalid instruction `%s' after `%s'"),
3520 i.tm.name, i.rep_prefix);
3521 return;
3522 }
3523
3524 /* Check for lock without a lockable instruction. Destination operand
3525 must be memory unless it is xchg (0x86). */
3526 if (i.prefix[LOCK_PREFIX]
3527 && (!i.tm.opcode_modifier.islockable
3528 || i.mem_operands == 0
3529 || (i.tm.base_opcode != 0x86
3530 && !operand_type_check (i.types[i.operands - 1], anymem))))
3531 {
3532 as_bad (_("expecting lockable instruction after `lock'"));
3533 return;
3534 }
3535
3536 /* Check if HLE prefix is OK. */
3537 if (i.hle_prefix && !check_hle ())
3538 return;
3539
3540 /* Check BND prefix. */
3541 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3542 as_bad (_("expecting valid branch instruction after `bnd'"));
3543
3544 if (i.tm.cpu_flags.bitfield.cpumpx
3545 && flag_code == CODE_64BIT
3546 && i.prefix[ADDR_PREFIX])
3547 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3548
3549 /* Insert BND prefix. */
3550 if (add_bnd_prefix
3551 && i.tm.opcode_modifier.bndprefixok
3552 && !i.prefix[BND_PREFIX])
3553 add_prefix (BND_PREFIX_OPCODE);
3554
3555 /* Check string instruction segment overrides. */
3556 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3557 {
3558 if (!check_string ())
3559 return;
3560 i.disp_operands = 0;
3561 }
3562
3563 if (!process_suffix ())
3564 return;
3565
3566 /* Update operand types. */
3567 for (j = 0; j < i.operands; j++)
3568 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3569
3570 /* Make still unresolved immediate matches conform to size of immediate
3571 given in i.suffix. */
3572 if (!finalize_imm ())
3573 return;
3574
3575 if (i.types[0].bitfield.imm1)
3576 i.imm_operands = 0; /* kludge for shift insns. */
3577
3578 /* We only need to check those implicit registers for instructions
3579 with 3 operands or less. */
3580 if (i.operands <= 3)
3581 for (j = 0; j < i.operands; j++)
3582 if (i.types[j].bitfield.inoutportreg
3583 || i.types[j].bitfield.shiftcount
3584 || i.types[j].bitfield.acc
3585 || i.types[j].bitfield.floatacc)
3586 i.reg_operands--;
3587
3588 /* ImmExt should be processed after SSE2AVX. */
3589 if (!i.tm.opcode_modifier.sse2avx
3590 && i.tm.opcode_modifier.immext)
3591 process_immext ();
3592
3593 /* For insns with operands there are more diddles to do to the opcode. */
3594 if (i.operands)
3595 {
3596 if (!process_operands ())
3597 return;
3598 }
3599 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3600 {
3601 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3602 as_warn (_("translating to `%sp'"), i.tm.name);
3603 }
3604
3605 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3606 {
3607 if (flag_code == CODE_16BIT)
3608 {
3609 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3610 i.tm.name);
3611 return;
3612 }
3613
3614 if (i.tm.opcode_modifier.vex)
3615 build_vex_prefix (t);
3616 else
3617 build_evex_prefix ();
3618 }
3619
3620 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3621 instructions may define INT_OPCODE as well, so avoid this corner
3622 case for those instructions that use MODRM. */
3623 if (i.tm.base_opcode == INT_OPCODE
3624 && !i.tm.opcode_modifier.modrm
3625 && i.op[0].imms->X_add_number == 3)
3626 {
3627 i.tm.base_opcode = INT3_OPCODE;
3628 i.imm_operands = 0;
3629 }
3630
3631 if ((i.tm.opcode_modifier.jump
3632 || i.tm.opcode_modifier.jumpbyte
3633 || i.tm.opcode_modifier.jumpdword)
3634 && i.op[0].disps->X_op == O_constant)
3635 {
3636 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3637 the absolute address given by the constant. Since ix86 jumps and
3638 calls are pc relative, we need to generate a reloc. */
3639 i.op[0].disps->X_add_symbol = &abs_symbol;
3640 i.op[0].disps->X_op = O_symbol;
3641 }
3642
3643 if (i.tm.opcode_modifier.rex64)
3644 i.rex |= REX_W;
3645
3646 /* For 8 bit registers we need an empty rex prefix. Also if the
3647 instruction already has a prefix, we need to convert old
3648 registers to new ones. */
3649
3650 if ((i.types[0].bitfield.reg8
3651 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3652 || (i.types[1].bitfield.reg8
3653 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3654 || ((i.types[0].bitfield.reg8
3655 || i.types[1].bitfield.reg8)
3656 && i.rex != 0))
3657 {
3658 int x;
3659
3660 i.rex |= REX_OPCODE;
3661 for (x = 0; x < 2; x++)
3662 {
3663 /* Look for 8 bit operand that uses old registers. */
3664 if (i.types[x].bitfield.reg8
3665 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3666 {
3667 /* In case it is "hi" register, give up. */
3668 if (i.op[x].regs->reg_num > 3)
3669 as_bad (_("can't encode register '%s%s' in an "
3670 "instruction requiring REX prefix."),
3671 register_prefix, i.op[x].regs->reg_name);
3672
3673 /* Otherwise it is equivalent to the extended register.
3674 Since the encoding doesn't change this is merely
3675 cosmetic cleanup for debug output. */
3676
3677 i.op[x].regs = i.op[x].regs + 8;
3678 }
3679 }
3680 }
3681
3682 if (i.rex != 0)
3683 add_prefix (REX_OPCODE | i.rex);
3684
3685 /* We are ready to output the insn. */
3686 output_insn ();
3687 }
3688
3689 static char *
3690 parse_insn (char *line, char *mnemonic)
3691 {
3692 char *l = line;
3693 char *token_start = l;
3694 char *mnem_p;
3695 int supported;
3696 const insn_template *t;
3697 char *dot_p = NULL;
3698
3699 while (1)
3700 {
3701 mnem_p = mnemonic;
3702 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3703 {
3704 if (*mnem_p == '.')
3705 dot_p = mnem_p;
3706 mnem_p++;
3707 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3708 {
3709 as_bad (_("no such instruction: `%s'"), token_start);
3710 return NULL;
3711 }
3712 l++;
3713 }
3714 if (!is_space_char (*l)
3715 && *l != END_OF_INSN
3716 && (intel_syntax
3717 || (*l != PREFIX_SEPARATOR
3718 && *l != ',')))
3719 {
3720 as_bad (_("invalid character %s in mnemonic"),
3721 output_invalid (*l));
3722 return NULL;
3723 }
3724 if (token_start == l)
3725 {
3726 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3727 as_bad (_("expecting prefix; got nothing"));
3728 else
3729 as_bad (_("expecting mnemonic; got nothing"));
3730 return NULL;
3731 }
3732
3733 /* Look up instruction (or prefix) via hash table. */
3734 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3735
3736 if (*l != END_OF_INSN
3737 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3738 && current_templates
3739 && current_templates->start->opcode_modifier.isprefix)
3740 {
3741 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3742 {
3743 as_bad ((flag_code != CODE_64BIT
3744 ? _("`%s' is only supported in 64-bit mode")
3745 : _("`%s' is not supported in 64-bit mode")),
3746 current_templates->start->name);
3747 return NULL;
3748 }
3749 /* If we are in 16-bit mode, do not allow addr16 or data16.
3750 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3751 if ((current_templates->start->opcode_modifier.size16
3752 || current_templates->start->opcode_modifier.size32)
3753 && flag_code != CODE_64BIT
3754 && (current_templates->start->opcode_modifier.size32
3755 ^ (flag_code == CODE_16BIT)))
3756 {
3757 as_bad (_("redundant %s prefix"),
3758 current_templates->start->name);
3759 return NULL;
3760 }
3761 /* Add prefix, checking for repeated prefixes. */
3762 switch (add_prefix (current_templates->start->base_opcode))
3763 {
3764 case PREFIX_EXIST:
3765 return NULL;
3766 case PREFIX_REP:
3767 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3768 i.hle_prefix = current_templates->start->name;
3769 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3770 i.bnd_prefix = current_templates->start->name;
3771 else
3772 i.rep_prefix = current_templates->start->name;
3773 break;
3774 default:
3775 break;
3776 }
3777 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3778 token_start = ++l;
3779 }
3780 else
3781 break;
3782 }
3783
3784 if (!current_templates)
3785 {
3786 /* Check if we should swap operand or force 32bit displacement in
3787 encoding. */
3788 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3789 i.swap_operand = 1;
3790 else if (mnem_p - 3 == dot_p
3791 && dot_p[1] == 'd'
3792 && dot_p[2] == '8')
3793 i.disp_encoding = disp_encoding_8bit;
3794 else if (mnem_p - 4 == dot_p
3795 && dot_p[1] == 'd'
3796 && dot_p[2] == '3'
3797 && dot_p[3] == '2')
3798 i.disp_encoding = disp_encoding_32bit;
3799 else
3800 goto check_suffix;
3801 mnem_p = dot_p;
3802 *dot_p = '\0';
3803 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3804 }
3805
3806 if (!current_templates)
3807 {
3808 check_suffix:
3809 /* See if we can get a match by trimming off a suffix. */
3810 switch (mnem_p[-1])
3811 {
3812 case WORD_MNEM_SUFFIX:
3813 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3814 i.suffix = SHORT_MNEM_SUFFIX;
3815 else
3816 case BYTE_MNEM_SUFFIX:
3817 case QWORD_MNEM_SUFFIX:
3818 i.suffix = mnem_p[-1];
3819 mnem_p[-1] = '\0';
3820 current_templates = (const templates *) hash_find (op_hash,
3821 mnemonic);
3822 break;
3823 case SHORT_MNEM_SUFFIX:
3824 case LONG_MNEM_SUFFIX:
3825 if (!intel_syntax)
3826 {
3827 i.suffix = mnem_p[-1];
3828 mnem_p[-1] = '\0';
3829 current_templates = (const templates *) hash_find (op_hash,
3830 mnemonic);
3831 }
3832 break;
3833
3834 /* Intel Syntax. */
3835 case 'd':
3836 if (intel_syntax)
3837 {
3838 if (intel_float_operand (mnemonic) == 1)
3839 i.suffix = SHORT_MNEM_SUFFIX;
3840 else
3841 i.suffix = LONG_MNEM_SUFFIX;
3842 mnem_p[-1] = '\0';
3843 current_templates = (const templates *) hash_find (op_hash,
3844 mnemonic);
3845 }
3846 break;
3847 }
3848 if (!current_templates)
3849 {
3850 as_bad (_("no such instruction: `%s'"), token_start);
3851 return NULL;
3852 }
3853 }
3854
3855 if (current_templates->start->opcode_modifier.jump
3856 || current_templates->start->opcode_modifier.jumpbyte)
3857 {
3858 /* Check for a branch hint. We allow ",pt" and ",pn" for
3859 predict taken and predict not taken respectively.
3860 I'm not sure that branch hints actually do anything on loop
3861 and jcxz insns (JumpByte) for current Pentium4 chips. They
3862 may work in the future and it doesn't hurt to accept them
3863 now. */
3864 if (l[0] == ',' && l[1] == 'p')
3865 {
3866 if (l[2] == 't')
3867 {
3868 if (!add_prefix (DS_PREFIX_OPCODE))
3869 return NULL;
3870 l += 3;
3871 }
3872 else if (l[2] == 'n')
3873 {
3874 if (!add_prefix (CS_PREFIX_OPCODE))
3875 return NULL;
3876 l += 3;
3877 }
3878 }
3879 }
3880 /* Any other comma loses. */
3881 if (*l == ',')
3882 {
3883 as_bad (_("invalid character %s in mnemonic"),
3884 output_invalid (*l));
3885 return NULL;
3886 }
3887
3888 /* Check if instruction is supported on specified architecture. */
3889 supported = 0;
3890 for (t = current_templates->start; t < current_templates->end; ++t)
3891 {
3892 supported |= cpu_flags_match (t);
3893 if (supported == CPU_FLAGS_PERFECT_MATCH)
3894 goto skip;
3895 }
3896
3897 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3898 {
3899 as_bad (flag_code == CODE_64BIT
3900 ? _("`%s' is not supported in 64-bit mode")
3901 : _("`%s' is only supported in 64-bit mode"),
3902 current_templates->start->name);
3903 return NULL;
3904 }
3905 if (supported != CPU_FLAGS_PERFECT_MATCH)
3906 {
3907 as_bad (_("`%s' is not supported on `%s%s'"),
3908 current_templates->start->name,
3909 cpu_arch_name ? cpu_arch_name : default_arch,
3910 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3911 return NULL;
3912 }
3913
3914 skip:
3915 if (!cpu_arch_flags.bitfield.cpui386
3916 && (flag_code != CODE_16BIT))
3917 {
3918 as_warn (_("use .code16 to ensure correct addressing mode"));
3919 }
3920
3921 return l;
3922 }
3923
3924 static char *
3925 parse_operands (char *l, const char *mnemonic)
3926 {
3927 char *token_start;
3928
3929 /* 1 if operand is pending after ','. */
3930 unsigned int expecting_operand = 0;
3931
3932 /* Non-zero if operand parens not balanced. */
3933 unsigned int paren_not_balanced;
3934
3935 while (*l != END_OF_INSN)
3936 {
3937 /* Skip optional white space before operand. */
3938 if (is_space_char (*l))
3939 ++l;
3940 if (!is_operand_char (*l) && *l != END_OF_INSN)
3941 {
3942 as_bad (_("invalid character %s before operand %d"),
3943 output_invalid (*l),
3944 i.operands + 1);
3945 return NULL;
3946 }
3947 token_start = l; /* after white space */
3948 paren_not_balanced = 0;
3949 while (paren_not_balanced || *l != ',')
3950 {
3951 if (*l == END_OF_INSN)
3952 {
3953 if (paren_not_balanced)
3954 {
3955 if (!intel_syntax)
3956 as_bad (_("unbalanced parenthesis in operand %d."),
3957 i.operands + 1);
3958 else
3959 as_bad (_("unbalanced brackets in operand %d."),
3960 i.operands + 1);
3961 return NULL;
3962 }
3963 else
3964 break; /* we are done */
3965 }
3966 else if (!is_operand_char (*l) && !is_space_char (*l))
3967 {
3968 as_bad (_("invalid character %s in operand %d"),
3969 output_invalid (*l),
3970 i.operands + 1);
3971 return NULL;
3972 }
3973 if (!intel_syntax)
3974 {
3975 if (*l == '(')
3976 ++paren_not_balanced;
3977 if (*l == ')')
3978 --paren_not_balanced;
3979 }
3980 else
3981 {
3982 if (*l == '[')
3983 ++paren_not_balanced;
3984 if (*l == ']')
3985 --paren_not_balanced;
3986 }
3987 l++;
3988 }
3989 if (l != token_start)
3990 { /* Yes, we've read in another operand. */
3991 unsigned int operand_ok;
3992 this_operand = i.operands++;
3993 i.types[this_operand].bitfield.unspecified = 1;
3994 if (i.operands > MAX_OPERANDS)
3995 {
3996 as_bad (_("spurious operands; (%d operands/instruction max)"),
3997 MAX_OPERANDS);
3998 return NULL;
3999 }
4000 /* Now parse operand adding info to 'i' as we go along. */
4001 END_STRING_AND_SAVE (l);
4002
4003 if (intel_syntax)
4004 operand_ok =
4005 i386_intel_operand (token_start,
4006 intel_float_operand (mnemonic));
4007 else
4008 operand_ok = i386_att_operand (token_start);
4009
4010 RESTORE_END_STRING (l);
4011 if (!operand_ok)
4012 return NULL;
4013 }
4014 else
4015 {
4016 if (expecting_operand)
4017 {
4018 expecting_operand_after_comma:
4019 as_bad (_("expecting operand after ','; got nothing"));
4020 return NULL;
4021 }
4022 if (*l == ',')
4023 {
4024 as_bad (_("expecting operand before ','; got nothing"));
4025 return NULL;
4026 }
4027 }
4028
4029 /* Now *l must be either ',' or END_OF_INSN. */
4030 if (*l == ',')
4031 {
4032 if (*++l == END_OF_INSN)
4033 {
4034 /* Just skip it, if it's \n complain. */
4035 goto expecting_operand_after_comma;
4036 }
4037 expecting_operand = 1;
4038 }
4039 }
4040 return l;
4041 }
4042
4043 static void
4044 swap_2_operands (int xchg1, int xchg2)
4045 {
4046 union i386_op temp_op;
4047 i386_operand_type temp_type;
4048 enum bfd_reloc_code_real temp_reloc;
4049
4050 temp_type = i.types[xchg2];
4051 i.types[xchg2] = i.types[xchg1];
4052 i.types[xchg1] = temp_type;
4053 temp_op = i.op[xchg2];
4054 i.op[xchg2] = i.op[xchg1];
4055 i.op[xchg1] = temp_op;
4056 temp_reloc = i.reloc[xchg2];
4057 i.reloc[xchg2] = i.reloc[xchg1];
4058 i.reloc[xchg1] = temp_reloc;
4059
4060 if (i.mask)
4061 {
4062 if (i.mask->operand == xchg1)
4063 i.mask->operand = xchg2;
4064 else if (i.mask->operand == xchg2)
4065 i.mask->operand = xchg1;
4066 }
4067 if (i.broadcast)
4068 {
4069 if (i.broadcast->operand == xchg1)
4070 i.broadcast->operand = xchg2;
4071 else if (i.broadcast->operand == xchg2)
4072 i.broadcast->operand = xchg1;
4073 }
4074 if (i.rounding)
4075 {
4076 if (i.rounding->operand == xchg1)
4077 i.rounding->operand = xchg2;
4078 else if (i.rounding->operand == xchg2)
4079 i.rounding->operand = xchg1;
4080 }
4081 }
4082
4083 static void
4084 swap_operands (void)
4085 {
4086 switch (i.operands)
4087 {
4088 case 5:
4089 case 4:
4090 swap_2_operands (1, i.operands - 2);
4091 case 3:
4092 case 2:
4093 swap_2_operands (0, i.operands - 1);
4094 break;
4095 default:
4096 abort ();
4097 }
4098
4099 if (i.mem_operands == 2)
4100 {
4101 const seg_entry *temp_seg;
4102 temp_seg = i.seg[0];
4103 i.seg[0] = i.seg[1];
4104 i.seg[1] = temp_seg;
4105 }
4106 }
4107
4108 /* Try to ensure constant immediates are represented in the smallest
4109 opcode possible. */
4110 static void
4111 optimize_imm (void)
4112 {
4113 char guess_suffix = 0;
4114 int op;
4115
4116 if (i.suffix)
4117 guess_suffix = i.suffix;
4118 else if (i.reg_operands)
4119 {
4120 /* Figure out a suffix from the last register operand specified.
4121 We can't do this properly yet, ie. excluding InOutPortReg,
4122 but the following works for instructions with immediates.
4123 In any case, we can't set i.suffix yet. */
4124 for (op = i.operands; --op >= 0;)
4125 if (i.types[op].bitfield.reg8)
4126 {
4127 guess_suffix = BYTE_MNEM_SUFFIX;
4128 break;
4129 }
4130 else if (i.types[op].bitfield.reg16)
4131 {
4132 guess_suffix = WORD_MNEM_SUFFIX;
4133 break;
4134 }
4135 else if (i.types[op].bitfield.reg32)
4136 {
4137 guess_suffix = LONG_MNEM_SUFFIX;
4138 break;
4139 }
4140 else if (i.types[op].bitfield.reg64)
4141 {
4142 guess_suffix = QWORD_MNEM_SUFFIX;
4143 break;
4144 }
4145 }
4146 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4147 guess_suffix = WORD_MNEM_SUFFIX;
4148
4149 for (op = i.operands; --op >= 0;)
4150 if (operand_type_check (i.types[op], imm))
4151 {
4152 switch (i.op[op].imms->X_op)
4153 {
4154 case O_constant:
4155 /* If a suffix is given, this operand may be shortened. */
4156 switch (guess_suffix)
4157 {
4158 case LONG_MNEM_SUFFIX:
4159 i.types[op].bitfield.imm32 = 1;
4160 i.types[op].bitfield.imm64 = 1;
4161 break;
4162 case WORD_MNEM_SUFFIX:
4163 i.types[op].bitfield.imm16 = 1;
4164 i.types[op].bitfield.imm32 = 1;
4165 i.types[op].bitfield.imm32s = 1;
4166 i.types[op].bitfield.imm64 = 1;
4167 break;
4168 case BYTE_MNEM_SUFFIX:
4169 i.types[op].bitfield.imm8 = 1;
4170 i.types[op].bitfield.imm8s = 1;
4171 i.types[op].bitfield.imm16 = 1;
4172 i.types[op].bitfield.imm32 = 1;
4173 i.types[op].bitfield.imm32s = 1;
4174 i.types[op].bitfield.imm64 = 1;
4175 break;
4176 }
4177
4178 /* If this operand is at most 16 bits, convert it
4179 to a signed 16 bit number before trying to see
4180 whether it will fit in an even smaller size.
4181 This allows a 16-bit operand such as $0xffe0 to
4182 be recognised as within Imm8S range. */
4183 if ((i.types[op].bitfield.imm16)
4184 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4185 {
4186 i.op[op].imms->X_add_number =
4187 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4188 }
4189 if ((i.types[op].bitfield.imm32)
4190 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4191 == 0))
4192 {
4193 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4194 ^ ((offsetT) 1 << 31))
4195 - ((offsetT) 1 << 31));
4196 }
4197 i.types[op]
4198 = operand_type_or (i.types[op],
4199 smallest_imm_type (i.op[op].imms->X_add_number));
4200
4201 /* We must avoid matching of Imm32 templates when 64bit
4202 only immediate is available. */
4203 if (guess_suffix == QWORD_MNEM_SUFFIX)
4204 i.types[op].bitfield.imm32 = 0;
4205 break;
4206
4207 case O_absent:
4208 case O_register:
4209 abort ();
4210
4211 /* Symbols and expressions. */
4212 default:
4213 /* Convert symbolic operand to proper sizes for matching, but don't
4214 prevent matching a set of insns that only supports sizes other
4215 than those matching the insn suffix. */
4216 {
4217 i386_operand_type mask, allowed;
4218 const insn_template *t;
4219
4220 operand_type_set (&mask, 0);
4221 operand_type_set (&allowed, 0);
4222
4223 for (t = current_templates->start;
4224 t < current_templates->end;
4225 ++t)
4226 allowed = operand_type_or (allowed,
4227 t->operand_types[op]);
4228 switch (guess_suffix)
4229 {
4230 case QWORD_MNEM_SUFFIX:
4231 mask.bitfield.imm64 = 1;
4232 mask.bitfield.imm32s = 1;
4233 break;
4234 case LONG_MNEM_SUFFIX:
4235 mask.bitfield.imm32 = 1;
4236 break;
4237 case WORD_MNEM_SUFFIX:
4238 mask.bitfield.imm16 = 1;
4239 break;
4240 case BYTE_MNEM_SUFFIX:
4241 mask.bitfield.imm8 = 1;
4242 break;
4243 default:
4244 break;
4245 }
4246 allowed = operand_type_and (mask, allowed);
4247 if (!operand_type_all_zero (&allowed))
4248 i.types[op] = operand_type_and (i.types[op], mask);
4249 }
4250 break;
4251 }
4252 }
4253 }
4254
4255 /* Try to use the smallest displacement type too. */
4256 static void
4257 optimize_disp (void)
4258 {
4259 int op;
4260
4261 for (op = i.operands; --op >= 0;)
4262 if (operand_type_check (i.types[op], disp))
4263 {
4264 if (i.op[op].disps->X_op == O_constant)
4265 {
4266 offsetT op_disp = i.op[op].disps->X_add_number;
4267
4268 if (i.types[op].bitfield.disp16
4269 && (op_disp & ~(offsetT) 0xffff) == 0)
4270 {
4271 /* If this operand is at most 16 bits, convert
4272 to a signed 16 bit number and don't use 64bit
4273 displacement. */
4274 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4275 i.types[op].bitfield.disp64 = 0;
4276 }
4277 if (i.types[op].bitfield.disp32
4278 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4279 {
4280 /* If this operand is at most 32 bits, convert
4281 to a signed 32 bit number and don't use 64bit
4282 displacement. */
4283 op_disp &= (((offsetT) 2 << 31) - 1);
4284 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4285 i.types[op].bitfield.disp64 = 0;
4286 }
4287 if (!op_disp && i.types[op].bitfield.baseindex)
4288 {
4289 i.types[op].bitfield.disp8 = 0;
4290 i.types[op].bitfield.disp16 = 0;
4291 i.types[op].bitfield.disp32 = 0;
4292 i.types[op].bitfield.disp32s = 0;
4293 i.types[op].bitfield.disp64 = 0;
4294 i.op[op].disps = 0;
4295 i.disp_operands--;
4296 }
4297 else if (flag_code == CODE_64BIT)
4298 {
4299 if (fits_in_signed_long (op_disp))
4300 {
4301 i.types[op].bitfield.disp64 = 0;
4302 i.types[op].bitfield.disp32s = 1;
4303 }
4304 if (i.prefix[ADDR_PREFIX]
4305 && fits_in_unsigned_long (op_disp))
4306 i.types[op].bitfield.disp32 = 1;
4307 }
4308 if ((i.types[op].bitfield.disp32
4309 || i.types[op].bitfield.disp32s
4310 || i.types[op].bitfield.disp16)
4311 && fits_in_signed_byte (op_disp))
4312 i.types[op].bitfield.disp8 = 1;
4313 }
4314 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4315 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4316 {
4317 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4318 i.op[op].disps, 0, i.reloc[op]);
4319 i.types[op].bitfield.disp8 = 0;
4320 i.types[op].bitfield.disp16 = 0;
4321 i.types[op].bitfield.disp32 = 0;
4322 i.types[op].bitfield.disp32s = 0;
4323 i.types[op].bitfield.disp64 = 0;
4324 }
4325 else
4326 /* We only support 64bit displacement on constants. */
4327 i.types[op].bitfield.disp64 = 0;
4328 }
4329 }
4330
4331 /* Check if operands are valid for the instruction. */
4332
4333 static int
4334 check_VecOperands (const insn_template *t)
4335 {
4336 unsigned int op;
4337
4338 /* Without VSIB byte, we can't have a vector register for index. */
4339 if (!t->opcode_modifier.vecsib
4340 && i.index_reg
4341 && (i.index_reg->reg_type.bitfield.regxmm
4342 || i.index_reg->reg_type.bitfield.regymm
4343 || i.index_reg->reg_type.bitfield.regzmm))
4344 {
4345 i.error = unsupported_vector_index_register;
4346 return 1;
4347 }
4348
4349 /* Check if default mask is allowed. */
4350 if (t->opcode_modifier.nodefmask
4351 && (!i.mask || i.mask->mask->reg_num == 0))
4352 {
4353 i.error = no_default_mask;
4354 return 1;
4355 }
4356
4357 /* For VSIB byte, we need a vector register for index, and all vector
4358 registers must be distinct. */
4359 if (t->opcode_modifier.vecsib)
4360 {
4361 if (!i.index_reg
4362 || !((t->opcode_modifier.vecsib == VecSIB128
4363 && i.index_reg->reg_type.bitfield.regxmm)
4364 || (t->opcode_modifier.vecsib == VecSIB256
4365 && i.index_reg->reg_type.bitfield.regymm)
4366 || (t->opcode_modifier.vecsib == VecSIB512
4367 && i.index_reg->reg_type.bitfield.regzmm)))
4368 {
4369 i.error = invalid_vsib_address;
4370 return 1;
4371 }
4372
4373 gas_assert (i.reg_operands == 2 || i.mask);
4374 if (i.reg_operands == 2 && !i.mask)
4375 {
4376 gas_assert (i.types[0].bitfield.regxmm
4377 || i.types[0].bitfield.regymm);
4378 gas_assert (i.types[2].bitfield.regxmm
4379 || i.types[2].bitfield.regymm);
4380 if (operand_check == check_none)
4381 return 0;
4382 if (register_number (i.op[0].regs)
4383 != register_number (i.index_reg)
4384 && register_number (i.op[2].regs)
4385 != register_number (i.index_reg)
4386 && register_number (i.op[0].regs)
4387 != register_number (i.op[2].regs))
4388 return 0;
4389 if (operand_check == check_error)
4390 {
4391 i.error = invalid_vector_register_set;
4392 return 1;
4393 }
4394 as_warn (_("mask, index, and destination registers should be distinct"));
4395 }
4396 else if (i.reg_operands == 1 && i.mask)
4397 {
4398 if ((i.types[1].bitfield.regymm
4399 || i.types[1].bitfield.regzmm)
4400 && (register_number (i.op[1].regs)
4401 == register_number (i.index_reg)))
4402 {
4403 if (operand_check == check_error)
4404 {
4405 i.error = invalid_vector_register_set;
4406 return 1;
4407 }
4408 if (operand_check != check_none)
4409 as_warn (_("index and destination registers should be distinct"));
4410 }
4411 }
4412 }
4413
4414 /* Check if broadcast is supported by the instruction and is applied
4415 to the memory operand. */
4416 if (i.broadcast)
4417 {
4418 int broadcasted_opnd_size;
4419
4420 /* Check if specified broadcast is supported in this instruction,
4421 and it's applied to memory operand of DWORD or QWORD type,
4422 depending on VecESize. */
4423 if (i.broadcast->type != t->opcode_modifier.broadcast
4424 || !i.types[i.broadcast->operand].bitfield.mem
4425 || (t->opcode_modifier.vecesize == 0
4426 && !i.types[i.broadcast->operand].bitfield.dword
4427 && !i.types[i.broadcast->operand].bitfield.unspecified)
4428 || (t->opcode_modifier.vecesize == 1
4429 && !i.types[i.broadcast->operand].bitfield.qword
4430 && !i.types[i.broadcast->operand].bitfield.unspecified))
4431 goto bad_broadcast;
4432
4433 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4434 if (i.broadcast->type == BROADCAST_1TO16)
4435 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4436 else if (i.broadcast->type == BROADCAST_1TO8)
4437 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4438 else if (i.broadcast->type == BROADCAST_1TO4)
4439 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4440 else if (i.broadcast->type == BROADCAST_1TO2)
4441 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4442 else
4443 goto bad_broadcast;
4444
4445 if ((broadcasted_opnd_size == 256
4446 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4447 || (broadcasted_opnd_size == 512
4448 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4449 {
4450 bad_broadcast:
4451 i.error = unsupported_broadcast;
4452 return 1;
4453 }
4454 }
4455 /* If broadcast is supported in this instruction, we need to check if
4456 operand of one-element size isn't specified without broadcast. */
4457 else if (t->opcode_modifier.broadcast && i.mem_operands)
4458 {
4459 /* Find memory operand. */
4460 for (op = 0; op < i.operands; op++)
4461 if (operand_type_check (i.types[op], anymem))
4462 break;
4463 gas_assert (op < i.operands);
4464 /* Check size of the memory operand. */
4465 if ((t->opcode_modifier.vecesize == 0
4466 && i.types[op].bitfield.dword)
4467 || (t->opcode_modifier.vecesize == 1
4468 && i.types[op].bitfield.qword))
4469 {
4470 i.error = broadcast_needed;
4471 return 1;
4472 }
4473 }
4474
4475 /* Check if requested masking is supported. */
4476 if (i.mask
4477 && (!t->opcode_modifier.masking
4478 || (i.mask->zeroing
4479 && t->opcode_modifier.masking == MERGING_MASKING)))
4480 {
4481 i.error = unsupported_masking;
4482 return 1;
4483 }
4484
4485 /* Check if masking is applied to dest operand. */
4486 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4487 {
4488 i.error = mask_not_on_destination;
4489 return 1;
4490 }
4491
4492 /* Check RC/SAE. */
4493 if (i.rounding)
4494 {
4495 if ((i.rounding->type != saeonly
4496 && !t->opcode_modifier.staticrounding)
4497 || (i.rounding->type == saeonly
4498 && (t->opcode_modifier.staticrounding
4499 || !t->opcode_modifier.sae)))
4500 {
4501 i.error = unsupported_rc_sae;
4502 return 1;
4503 }
4504 /* If the instruction has several immediate operands and one of
4505 them is rounding, the rounding operand should be the last
4506 immediate operand. */
4507 if (i.imm_operands > 1
4508 && i.rounding->operand != (int) (i.imm_operands - 1))
4509 {
4510 i.error = rc_sae_operand_not_last_imm;
4511 return 1;
4512 }
4513 }
4514
4515 /* Check vector Disp8 operand. */
4516 if (t->opcode_modifier.disp8memshift)
4517 {
4518 if (i.broadcast)
4519 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4520 else
4521 i.memshift = t->opcode_modifier.disp8memshift;
4522
4523 for (op = 0; op < i.operands; op++)
4524 if (operand_type_check (i.types[op], disp)
4525 && i.op[op].disps->X_op == O_constant)
4526 {
4527 offsetT value = i.op[op].disps->X_add_number;
4528 int vec_disp8_ok = fits_in_vec_disp8 (value);
4529 if (t->operand_types [op].bitfield.vec_disp8)
4530 {
4531 if (vec_disp8_ok)
4532 i.types[op].bitfield.vec_disp8 = 1;
4533 else
4534 {
4535 /* Vector insn can only have Vec_Disp8/Disp32 in
4536 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4537 mode. */
4538 i.types[op].bitfield.disp8 = 0;
4539 if (flag_code != CODE_16BIT)
4540 i.types[op].bitfield.disp16 = 0;
4541 }
4542 }
4543 else if (flag_code != CODE_16BIT)
4544 {
4545 /* One form of this instruction supports vector Disp8.
4546 Try vector Disp8 if we need to use Disp32. */
4547 if (vec_disp8_ok && !fits_in_signed_byte (value))
4548 {
4549 i.error = try_vector_disp8;
4550 return 1;
4551 }
4552 }
4553 }
4554 }
4555 else
4556 i.memshift = -1;
4557
4558 return 0;
4559 }
4560
4561 /* Check if operands are valid for the instruction. Update VEX
4562 operand types. */
4563
4564 static int
4565 VEX_check_operands (const insn_template *t)
4566 {
4567 /* VREX is only valid with EVEX prefix. */
4568 if (i.need_vrex && !t->opcode_modifier.evex)
4569 {
4570 i.error = invalid_register_operand;
4571 return 1;
4572 }
4573
4574 if (!t->opcode_modifier.vex)
4575 return 0;
4576
4577 /* Only check VEX_Imm4, which must be the first operand. */
4578 if (t->operand_types[0].bitfield.vec_imm4)
4579 {
4580 if (i.op[0].imms->X_op != O_constant
4581 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4582 {
4583 i.error = bad_imm4;
4584 return 1;
4585 }
4586
4587 /* Turn off Imm8 so that update_imm won't complain. */
4588 i.types[0] = vec_imm4;
4589 }
4590
4591 return 0;
4592 }
4593
4594 static const insn_template *
4595 match_template (void)
4596 {
4597 /* Points to template once we've found it. */
4598 const insn_template *t;
4599 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4600 i386_operand_type overlap4;
4601 unsigned int found_reverse_match;
4602 i386_opcode_modifier suffix_check;
4603 i386_operand_type operand_types [MAX_OPERANDS];
4604 int addr_prefix_disp;
4605 unsigned int j;
4606 unsigned int found_cpu_match;
4607 unsigned int check_register;
4608 enum i386_error specific_error = 0;
4609
4610 #if MAX_OPERANDS != 5
4611 # error "MAX_OPERANDS must be 5."
4612 #endif
4613
4614 found_reverse_match = 0;
4615 addr_prefix_disp = -1;
4616
4617 memset (&suffix_check, 0, sizeof (suffix_check));
4618 if (i.suffix == BYTE_MNEM_SUFFIX)
4619 suffix_check.no_bsuf = 1;
4620 else if (i.suffix == WORD_MNEM_SUFFIX)
4621 suffix_check.no_wsuf = 1;
4622 else if (i.suffix == SHORT_MNEM_SUFFIX)
4623 suffix_check.no_ssuf = 1;
4624 else if (i.suffix == LONG_MNEM_SUFFIX)
4625 suffix_check.no_lsuf = 1;
4626 else if (i.suffix == QWORD_MNEM_SUFFIX)
4627 suffix_check.no_qsuf = 1;
4628 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4629 suffix_check.no_ldsuf = 1;
4630
4631 /* Must have right number of operands. */
4632 i.error = number_of_operands_mismatch;
4633
4634 for (t = current_templates->start; t < current_templates->end; t++)
4635 {
4636 addr_prefix_disp = -1;
4637
4638 if (i.operands != t->operands)
4639 continue;
4640
4641 /* Check processor support. */
4642 i.error = unsupported;
4643 found_cpu_match = (cpu_flags_match (t)
4644 == CPU_FLAGS_PERFECT_MATCH);
4645 if (!found_cpu_match)
4646 continue;
4647
4648 /* Check old gcc support. */
4649 i.error = old_gcc_only;
4650 if (!old_gcc && t->opcode_modifier.oldgcc)
4651 continue;
4652
4653 /* Check AT&T mnemonic. */
4654 i.error = unsupported_with_intel_mnemonic;
4655 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4656 continue;
4657
4658 /* Check AT&T/Intel syntax. */
4659 i.error = unsupported_syntax;
4660 if ((intel_syntax && t->opcode_modifier.attsyntax)
4661 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4662 continue;
4663
4664 /* Check the suffix, except for some instructions in intel mode. */
4665 i.error = invalid_instruction_suffix;
4666 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4667 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4668 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4669 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4670 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4671 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4672 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4673 continue;
4674
4675 if (!operand_size_match (t))
4676 continue;
4677
4678 for (j = 0; j < MAX_OPERANDS; j++)
4679 operand_types[j] = t->operand_types[j];
4680
4681 /* In general, don't allow 64-bit operands in 32-bit mode. */
4682 if (i.suffix == QWORD_MNEM_SUFFIX
4683 && flag_code != CODE_64BIT
4684 && (intel_syntax
4685 ? (!t->opcode_modifier.ignoresize
4686 && !intel_float_operand (t->name))
4687 : intel_float_operand (t->name) != 2)
4688 && ((!operand_types[0].bitfield.regmmx
4689 && !operand_types[0].bitfield.regxmm
4690 && !operand_types[0].bitfield.regymm
4691 && !operand_types[0].bitfield.regzmm)
4692 || (!operand_types[t->operands > 1].bitfield.regmmx
4693 && operand_types[t->operands > 1].bitfield.regxmm
4694 && operand_types[t->operands > 1].bitfield.regymm
4695 && operand_types[t->operands > 1].bitfield.regzmm))
4696 && (t->base_opcode != 0x0fc7
4697 || t->extension_opcode != 1 /* cmpxchg8b */))
4698 continue;
4699
4700 /* In general, don't allow 32-bit operands on pre-386. */
4701 else if (i.suffix == LONG_MNEM_SUFFIX
4702 && !cpu_arch_flags.bitfield.cpui386
4703 && (intel_syntax
4704 ? (!t->opcode_modifier.ignoresize
4705 && !intel_float_operand (t->name))
4706 : intel_float_operand (t->name) != 2)
4707 && ((!operand_types[0].bitfield.regmmx
4708 && !operand_types[0].bitfield.regxmm)
4709 || (!operand_types[t->operands > 1].bitfield.regmmx
4710 && operand_types[t->operands > 1].bitfield.regxmm)))
4711 continue;
4712
4713 /* Do not verify operands when there are none. */
4714 else
4715 {
4716 if (!t->operands)
4717 /* We've found a match; break out of loop. */
4718 break;
4719 }
4720
4721 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4722 into Disp32/Disp16/Disp32 operand. */
4723 if (i.prefix[ADDR_PREFIX] != 0)
4724 {
4725 /* There should be only one Disp operand. */
4726 switch (flag_code)
4727 {
4728 case CODE_16BIT:
4729 for (j = 0; j < MAX_OPERANDS; j++)
4730 {
4731 if (operand_types[j].bitfield.disp16)
4732 {
4733 addr_prefix_disp = j;
4734 operand_types[j].bitfield.disp32 = 1;
4735 operand_types[j].bitfield.disp16 = 0;
4736 break;
4737 }
4738 }
4739 break;
4740 case CODE_32BIT:
4741 for (j = 0; j < MAX_OPERANDS; j++)
4742 {
4743 if (operand_types[j].bitfield.disp32)
4744 {
4745 addr_prefix_disp = j;
4746 operand_types[j].bitfield.disp32 = 0;
4747 operand_types[j].bitfield.disp16 = 1;
4748 break;
4749 }
4750 }
4751 break;
4752 case CODE_64BIT:
4753 for (j = 0; j < MAX_OPERANDS; j++)
4754 {
4755 if (operand_types[j].bitfield.disp64)
4756 {
4757 addr_prefix_disp = j;
4758 operand_types[j].bitfield.disp64 = 0;
4759 operand_types[j].bitfield.disp32 = 1;
4760 break;
4761 }
4762 }
4763 break;
4764 }
4765 }
4766
4767 /* We check register size if needed. */
4768 check_register = t->opcode_modifier.checkregsize;
4769 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4770 switch (t->operands)
4771 {
4772 case 1:
4773 if (!operand_type_match (overlap0, i.types[0]))
4774 continue;
4775 break;
4776 case 2:
4777 /* xchg %eax, %eax is a special case. It is an aliase for nop
4778 only in 32bit mode and we can use opcode 0x90. In 64bit
4779 mode, we can't use 0x90 for xchg %eax, %eax since it should
4780 zero-extend %eax to %rax. */
4781 if (flag_code == CODE_64BIT
4782 && t->base_opcode == 0x90
4783 && operand_type_equal (&i.types [0], &acc32)
4784 && operand_type_equal (&i.types [1], &acc32))
4785 continue;
4786 if (i.swap_operand)
4787 {
4788 /* If we swap operand in encoding, we either match
4789 the next one or reverse direction of operands. */
4790 if (t->opcode_modifier.s)
4791 continue;
4792 else if (t->opcode_modifier.d)
4793 goto check_reverse;
4794 }
4795
4796 case 3:
4797 /* If we swap operand in encoding, we match the next one. */
4798 if (i.swap_operand && t->opcode_modifier.s)
4799 continue;
4800 case 4:
4801 case 5:
4802 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4803 if (!operand_type_match (overlap0, i.types[0])
4804 || !operand_type_match (overlap1, i.types[1])
4805 || (check_register
4806 && !operand_type_register_match (overlap0, i.types[0],
4807 operand_types[0],
4808 overlap1, i.types[1],
4809 operand_types[1])))
4810 {
4811 /* Check if other direction is valid ... */
4812 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4813 continue;
4814
4815 check_reverse:
4816 /* Try reversing direction of operands. */
4817 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4818 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4819 if (!operand_type_match (overlap0, i.types[0])
4820 || !operand_type_match (overlap1, i.types[1])
4821 || (check_register
4822 && !operand_type_register_match (overlap0,
4823 i.types[0],
4824 operand_types[1],
4825 overlap1,
4826 i.types[1],
4827 operand_types[0])))
4828 {
4829 /* Does not match either direction. */
4830 continue;
4831 }
4832 /* found_reverse_match holds which of D or FloatDR
4833 we've found. */
4834 if (t->opcode_modifier.d)
4835 found_reverse_match = Opcode_D;
4836 else if (t->opcode_modifier.floatd)
4837 found_reverse_match = Opcode_FloatD;
4838 else
4839 found_reverse_match = 0;
4840 if (t->opcode_modifier.floatr)
4841 found_reverse_match |= Opcode_FloatR;
4842 }
4843 else
4844 {
4845 /* Found a forward 2 operand match here. */
4846 switch (t->operands)
4847 {
4848 case 5:
4849 overlap4 = operand_type_and (i.types[4],
4850 operand_types[4]);
4851 case 4:
4852 overlap3 = operand_type_and (i.types[3],
4853 operand_types[3]);
4854 case 3:
4855 overlap2 = operand_type_and (i.types[2],
4856 operand_types[2]);
4857 break;
4858 }
4859
4860 switch (t->operands)
4861 {
4862 case 5:
4863 if (!operand_type_match (overlap4, i.types[4])
4864 || !operand_type_register_match (overlap3,
4865 i.types[3],
4866 operand_types[3],
4867 overlap4,
4868 i.types[4],
4869 operand_types[4]))
4870 continue;
4871 case 4:
4872 if (!operand_type_match (overlap3, i.types[3])
4873 || (check_register
4874 && !operand_type_register_match (overlap2,
4875 i.types[2],
4876 operand_types[2],
4877 overlap3,
4878 i.types[3],
4879 operand_types[3])))
4880 continue;
4881 case 3:
4882 /* Here we make use of the fact that there are no
4883 reverse match 3 operand instructions, and all 3
4884 operand instructions only need to be checked for
4885 register consistency between operands 2 and 3. */
4886 if (!operand_type_match (overlap2, i.types[2])
4887 || (check_register
4888 && !operand_type_register_match (overlap1,
4889 i.types[1],
4890 operand_types[1],
4891 overlap2,
4892 i.types[2],
4893 operand_types[2])))
4894 continue;
4895 break;
4896 }
4897 }
4898 /* Found either forward/reverse 2, 3 or 4 operand match here:
4899 slip through to break. */
4900 }
4901 if (!found_cpu_match)
4902 {
4903 found_reverse_match = 0;
4904 continue;
4905 }
4906
4907 /* Check if vector and VEX operands are valid. */
4908 if (check_VecOperands (t) || VEX_check_operands (t))
4909 {
4910 specific_error = i.error;
4911 continue;
4912 }
4913
4914 /* We've found a match; break out of loop. */
4915 break;
4916 }
4917
4918 if (t == current_templates->end)
4919 {
4920 /* We found no match. */
4921 const char *err_msg;
4922 switch (specific_error ? specific_error : i.error)
4923 {
4924 default:
4925 abort ();
4926 case operand_size_mismatch:
4927 err_msg = _("operand size mismatch");
4928 break;
4929 case operand_type_mismatch:
4930 err_msg = _("operand type mismatch");
4931 break;
4932 case register_type_mismatch:
4933 err_msg = _("register type mismatch");
4934 break;
4935 case number_of_operands_mismatch:
4936 err_msg = _("number of operands mismatch");
4937 break;
4938 case invalid_instruction_suffix:
4939 err_msg = _("invalid instruction suffix");
4940 break;
4941 case bad_imm4:
4942 err_msg = _("constant doesn't fit in 4 bits");
4943 break;
4944 case old_gcc_only:
4945 err_msg = _("only supported with old gcc");
4946 break;
4947 case unsupported_with_intel_mnemonic:
4948 err_msg = _("unsupported with Intel mnemonic");
4949 break;
4950 case unsupported_syntax:
4951 err_msg = _("unsupported syntax");
4952 break;
4953 case unsupported:
4954 as_bad (_("unsupported instruction `%s'"),
4955 current_templates->start->name);
4956 return NULL;
4957 case invalid_vsib_address:
4958 err_msg = _("invalid VSIB address");
4959 break;
4960 case invalid_vector_register_set:
4961 err_msg = _("mask, index, and destination registers must be distinct");
4962 break;
4963 case unsupported_vector_index_register:
4964 err_msg = _("unsupported vector index register");
4965 break;
4966 case unsupported_broadcast:
4967 err_msg = _("unsupported broadcast");
4968 break;
4969 case broadcast_not_on_src_operand:
4970 err_msg = _("broadcast not on source memory operand");
4971 break;
4972 case broadcast_needed:
4973 err_msg = _("broadcast is needed for operand of such type");
4974 break;
4975 case unsupported_masking:
4976 err_msg = _("unsupported masking");
4977 break;
4978 case mask_not_on_destination:
4979 err_msg = _("mask not on destination operand");
4980 break;
4981 case no_default_mask:
4982 err_msg = _("default mask isn't allowed");
4983 break;
4984 case unsupported_rc_sae:
4985 err_msg = _("unsupported static rounding/sae");
4986 break;
4987 case rc_sae_operand_not_last_imm:
4988 if (intel_syntax)
4989 err_msg = _("RC/SAE operand must precede immediate operands");
4990 else
4991 err_msg = _("RC/SAE operand must follow immediate operands");
4992 break;
4993 case invalid_register_operand:
4994 err_msg = _("invalid register operand");
4995 break;
4996 }
4997 as_bad (_("%s for `%s'"), err_msg,
4998 current_templates->start->name);
4999 return NULL;
5000 }
5001
5002 if (!quiet_warnings)
5003 {
5004 if (!intel_syntax
5005 && (i.types[0].bitfield.jumpabsolute
5006 != operand_types[0].bitfield.jumpabsolute))
5007 {
5008 as_warn (_("indirect %s without `*'"), t->name);
5009 }
5010
5011 if (t->opcode_modifier.isprefix
5012 && t->opcode_modifier.ignoresize)
5013 {
5014 /* Warn them that a data or address size prefix doesn't
5015 affect assembly of the next line of code. */
5016 as_warn (_("stand-alone `%s' prefix"), t->name);
5017 }
5018 }
5019
5020 /* Copy the template we found. */
5021 i.tm = *t;
5022
5023 if (addr_prefix_disp != -1)
5024 i.tm.operand_types[addr_prefix_disp]
5025 = operand_types[addr_prefix_disp];
5026
5027 if (found_reverse_match)
5028 {
5029 /* If we found a reverse match we must alter the opcode
5030 direction bit. found_reverse_match holds bits to change
5031 (different for int & float insns). */
5032
5033 i.tm.base_opcode ^= found_reverse_match;
5034
5035 i.tm.operand_types[0] = operand_types[1];
5036 i.tm.operand_types[1] = operand_types[0];
5037 }
5038
5039 return t;
5040 }
5041
5042 static int
5043 check_string (void)
5044 {
5045 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5046 if (i.tm.operand_types[mem_op].bitfield.esseg)
5047 {
5048 if (i.seg[0] != NULL && i.seg[0] != &es)
5049 {
5050 as_bad (_("`%s' operand %d must use `%ses' segment"),
5051 i.tm.name,
5052 mem_op + 1,
5053 register_prefix);
5054 return 0;
5055 }
5056 /* There's only ever one segment override allowed per instruction.
5057 This instruction possibly has a legal segment override on the
5058 second operand, so copy the segment to where non-string
5059 instructions store it, allowing common code. */
5060 i.seg[0] = i.seg[1];
5061 }
5062 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5063 {
5064 if (i.seg[1] != NULL && i.seg[1] != &es)
5065 {
5066 as_bad (_("`%s' operand %d must use `%ses' segment"),
5067 i.tm.name,
5068 mem_op + 2,
5069 register_prefix);
5070 return 0;
5071 }
5072 }
5073 return 1;
5074 }
5075
5076 static int
5077 process_suffix (void)
5078 {
5079 /* If matched instruction specifies an explicit instruction mnemonic
5080 suffix, use it. */
5081 if (i.tm.opcode_modifier.size16)
5082 i.suffix = WORD_MNEM_SUFFIX;
5083 else if (i.tm.opcode_modifier.size32)
5084 i.suffix = LONG_MNEM_SUFFIX;
5085 else if (i.tm.opcode_modifier.size64)
5086 i.suffix = QWORD_MNEM_SUFFIX;
5087 else if (i.reg_operands)
5088 {
5089 /* If there's no instruction mnemonic suffix we try to invent one
5090 based on register operands. */
5091 if (!i.suffix)
5092 {
5093 /* We take i.suffix from the last register operand specified,
5094 Destination register type is more significant than source
5095 register type. crc32 in SSE4.2 prefers source register
5096 type. */
5097 if (i.tm.base_opcode == 0xf20f38f1)
5098 {
5099 if (i.types[0].bitfield.reg16)
5100 i.suffix = WORD_MNEM_SUFFIX;
5101 else if (i.types[0].bitfield.reg32)
5102 i.suffix = LONG_MNEM_SUFFIX;
5103 else if (i.types[0].bitfield.reg64)
5104 i.suffix = QWORD_MNEM_SUFFIX;
5105 }
5106 else if (i.tm.base_opcode == 0xf20f38f0)
5107 {
5108 if (i.types[0].bitfield.reg8)
5109 i.suffix = BYTE_MNEM_SUFFIX;
5110 }
5111
5112 if (!i.suffix)
5113 {
5114 int op;
5115
5116 if (i.tm.base_opcode == 0xf20f38f1
5117 || i.tm.base_opcode == 0xf20f38f0)
5118 {
5119 /* We have to know the operand size for crc32. */
5120 as_bad (_("ambiguous memory operand size for `%s`"),
5121 i.tm.name);
5122 return 0;
5123 }
5124
5125 for (op = i.operands; --op >= 0;)
5126 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5127 {
5128 if (i.types[op].bitfield.reg8)
5129 {
5130 i.suffix = BYTE_MNEM_SUFFIX;
5131 break;
5132 }
5133 else if (i.types[op].bitfield.reg16)
5134 {
5135 i.suffix = WORD_MNEM_SUFFIX;
5136 break;
5137 }
5138 else if (i.types[op].bitfield.reg32)
5139 {
5140 i.suffix = LONG_MNEM_SUFFIX;
5141 break;
5142 }
5143 else if (i.types[op].bitfield.reg64)
5144 {
5145 i.suffix = QWORD_MNEM_SUFFIX;
5146 break;
5147 }
5148 }
5149 }
5150 }
5151 else if (i.suffix == BYTE_MNEM_SUFFIX)
5152 {
5153 if (intel_syntax
5154 && i.tm.opcode_modifier.ignoresize
5155 && i.tm.opcode_modifier.no_bsuf)
5156 i.suffix = 0;
5157 else if (!check_byte_reg ())
5158 return 0;
5159 }
5160 else if (i.suffix == LONG_MNEM_SUFFIX)
5161 {
5162 if (intel_syntax
5163 && i.tm.opcode_modifier.ignoresize
5164 && i.tm.opcode_modifier.no_lsuf)
5165 i.suffix = 0;
5166 else if (!check_long_reg ())
5167 return 0;
5168 }
5169 else if (i.suffix == QWORD_MNEM_SUFFIX)
5170 {
5171 if (intel_syntax
5172 && i.tm.opcode_modifier.ignoresize
5173 && i.tm.opcode_modifier.no_qsuf)
5174 i.suffix = 0;
5175 else if (!check_qword_reg ())
5176 return 0;
5177 }
5178 else if (i.suffix == WORD_MNEM_SUFFIX)
5179 {
5180 if (intel_syntax
5181 && i.tm.opcode_modifier.ignoresize
5182 && i.tm.opcode_modifier.no_wsuf)
5183 i.suffix = 0;
5184 else if (!check_word_reg ())
5185 return 0;
5186 }
5187 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5188 || i.suffix == YMMWORD_MNEM_SUFFIX
5189 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5190 {
5191 /* Skip if the instruction has x/y/z suffix. match_template
5192 should check if it is a valid suffix. */
5193 }
5194 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5195 /* Do nothing if the instruction is going to ignore the prefix. */
5196 ;
5197 else
5198 abort ();
5199 }
5200 else if (i.tm.opcode_modifier.defaultsize
5201 && !i.suffix
5202 /* exclude fldenv/frstor/fsave/fstenv */
5203 && i.tm.opcode_modifier.no_ssuf)
5204 {
5205 i.suffix = stackop_size;
5206 }
5207 else if (intel_syntax
5208 && !i.suffix
5209 && (i.tm.operand_types[0].bitfield.jumpabsolute
5210 || i.tm.opcode_modifier.jumpbyte
5211 || i.tm.opcode_modifier.jumpintersegment
5212 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5213 && i.tm.extension_opcode <= 3)))
5214 {
5215 switch (flag_code)
5216 {
5217 case CODE_64BIT:
5218 if (!i.tm.opcode_modifier.no_qsuf)
5219 {
5220 i.suffix = QWORD_MNEM_SUFFIX;
5221 break;
5222 }
5223 case CODE_32BIT:
5224 if (!i.tm.opcode_modifier.no_lsuf)
5225 i.suffix = LONG_MNEM_SUFFIX;
5226 break;
5227 case CODE_16BIT:
5228 if (!i.tm.opcode_modifier.no_wsuf)
5229 i.suffix = WORD_MNEM_SUFFIX;
5230 break;
5231 }
5232 }
5233
5234 if (!i.suffix)
5235 {
5236 if (!intel_syntax)
5237 {
5238 if (i.tm.opcode_modifier.w)
5239 {
5240 as_bad (_("no instruction mnemonic suffix given and "
5241 "no register operands; can't size instruction"));
5242 return 0;
5243 }
5244 }
5245 else
5246 {
5247 unsigned int suffixes;
5248
5249 suffixes = !i.tm.opcode_modifier.no_bsuf;
5250 if (!i.tm.opcode_modifier.no_wsuf)
5251 suffixes |= 1 << 1;
5252 if (!i.tm.opcode_modifier.no_lsuf)
5253 suffixes |= 1 << 2;
5254 if (!i.tm.opcode_modifier.no_ldsuf)
5255 suffixes |= 1 << 3;
5256 if (!i.tm.opcode_modifier.no_ssuf)
5257 suffixes |= 1 << 4;
5258 if (!i.tm.opcode_modifier.no_qsuf)
5259 suffixes |= 1 << 5;
5260
5261 /* There are more than suffix matches. */
5262 if (i.tm.opcode_modifier.w
5263 || ((suffixes & (suffixes - 1))
5264 && !i.tm.opcode_modifier.defaultsize
5265 && !i.tm.opcode_modifier.ignoresize))
5266 {
5267 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5268 return 0;
5269 }
5270 }
5271 }
5272
5273 /* Change the opcode based on the operand size given by i.suffix;
5274 We don't need to change things for byte insns. */
5275
5276 if (i.suffix
5277 && i.suffix != BYTE_MNEM_SUFFIX
5278 && i.suffix != XMMWORD_MNEM_SUFFIX
5279 && i.suffix != YMMWORD_MNEM_SUFFIX
5280 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5281 {
5282 /* It's not a byte, select word/dword operation. */
5283 if (i.tm.opcode_modifier.w)
5284 {
5285 if (i.tm.opcode_modifier.shortform)
5286 i.tm.base_opcode |= 8;
5287 else
5288 i.tm.base_opcode |= 1;
5289 }
5290
5291 /* Now select between word & dword operations via the operand
5292 size prefix, except for instructions that will ignore this
5293 prefix anyway. */
5294 if (i.tm.opcode_modifier.addrprefixop0)
5295 {
5296 /* The address size override prefix changes the size of the
5297 first operand. */
5298 if ((flag_code == CODE_32BIT
5299 && i.op->regs[0].reg_type.bitfield.reg16)
5300 || (flag_code != CODE_32BIT
5301 && i.op->regs[0].reg_type.bitfield.reg32))
5302 if (!add_prefix (ADDR_PREFIX_OPCODE))
5303 return 0;
5304 }
5305 else if (i.suffix != QWORD_MNEM_SUFFIX
5306 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5307 && !i.tm.opcode_modifier.ignoresize
5308 && !i.tm.opcode_modifier.floatmf
5309 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5310 || (flag_code == CODE_64BIT
5311 && i.tm.opcode_modifier.jumpbyte)))
5312 {
5313 unsigned int prefix = DATA_PREFIX_OPCODE;
5314
5315 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5316 prefix = ADDR_PREFIX_OPCODE;
5317
5318 if (!add_prefix (prefix))
5319 return 0;
5320 }
5321
5322 /* Set mode64 for an operand. */
5323 if (i.suffix == QWORD_MNEM_SUFFIX
5324 && flag_code == CODE_64BIT
5325 && !i.tm.opcode_modifier.norex64)
5326 {
5327 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5328 need rex64. cmpxchg8b is also a special case. */
5329 if (! (i.operands == 2
5330 && i.tm.base_opcode == 0x90
5331 && i.tm.extension_opcode == None
5332 && operand_type_equal (&i.types [0], &acc64)
5333 && operand_type_equal (&i.types [1], &acc64))
5334 && ! (i.operands == 1
5335 && i.tm.base_opcode == 0xfc7
5336 && i.tm.extension_opcode == 1
5337 && !operand_type_check (i.types [0], reg)
5338 && operand_type_check (i.types [0], anymem)))
5339 i.rex |= REX_W;
5340 }
5341
5342 /* Size floating point instruction. */
5343 if (i.suffix == LONG_MNEM_SUFFIX)
5344 if (i.tm.opcode_modifier.floatmf)
5345 i.tm.base_opcode ^= 4;
5346 }
5347
5348 return 1;
5349 }
5350
5351 static int
5352 check_byte_reg (void)
5353 {
5354 int op;
5355
5356 for (op = i.operands; --op >= 0;)
5357 {
5358 /* If this is an eight bit register, it's OK. If it's the 16 or
5359 32 bit version of an eight bit register, we will just use the
5360 low portion, and that's OK too. */
5361 if (i.types[op].bitfield.reg8)
5362 continue;
5363
5364 /* I/O port address operands are OK too. */
5365 if (i.tm.operand_types[op].bitfield.inoutportreg)
5366 continue;
5367
5368 /* crc32 doesn't generate this warning. */
5369 if (i.tm.base_opcode == 0xf20f38f0)
5370 continue;
5371
5372 if ((i.types[op].bitfield.reg16
5373 || i.types[op].bitfield.reg32
5374 || i.types[op].bitfield.reg64)
5375 && i.op[op].regs->reg_num < 4
5376 /* Prohibit these changes in 64bit mode, since the lowering
5377 would be more complicated. */
5378 && flag_code != CODE_64BIT)
5379 {
5380 #if REGISTER_WARNINGS
5381 if (!quiet_warnings)
5382 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5383 register_prefix,
5384 (i.op[op].regs + (i.types[op].bitfield.reg16
5385 ? REGNAM_AL - REGNAM_AX
5386 : REGNAM_AL - REGNAM_EAX))->reg_name,
5387 register_prefix,
5388 i.op[op].regs->reg_name,
5389 i.suffix);
5390 #endif
5391 continue;
5392 }
5393 /* Any other register is bad. */
5394 if (i.types[op].bitfield.reg16
5395 || i.types[op].bitfield.reg32
5396 || i.types[op].bitfield.reg64
5397 || i.types[op].bitfield.regmmx
5398 || i.types[op].bitfield.regxmm
5399 || i.types[op].bitfield.regymm
5400 || i.types[op].bitfield.regzmm
5401 || i.types[op].bitfield.sreg2
5402 || i.types[op].bitfield.sreg3
5403 || i.types[op].bitfield.control
5404 || i.types[op].bitfield.debug
5405 || i.types[op].bitfield.test
5406 || i.types[op].bitfield.floatreg
5407 || i.types[op].bitfield.floatacc)
5408 {
5409 as_bad (_("`%s%s' not allowed with `%s%c'"),
5410 register_prefix,
5411 i.op[op].regs->reg_name,
5412 i.tm.name,
5413 i.suffix);
5414 return 0;
5415 }
5416 }
5417 return 1;
5418 }
5419
5420 static int
5421 check_long_reg (void)
5422 {
5423 int op;
5424
5425 for (op = i.operands; --op >= 0;)
5426 /* Reject eight bit registers, except where the template requires
5427 them. (eg. movzb) */
5428 if (i.types[op].bitfield.reg8
5429 && (i.tm.operand_types[op].bitfield.reg16
5430 || i.tm.operand_types[op].bitfield.reg32
5431 || i.tm.operand_types[op].bitfield.acc))
5432 {
5433 as_bad (_("`%s%s' not allowed with `%s%c'"),
5434 register_prefix,
5435 i.op[op].regs->reg_name,
5436 i.tm.name,
5437 i.suffix);
5438 return 0;
5439 }
5440 /* Warn if the e prefix on a general reg is missing. */
5441 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5442 && i.types[op].bitfield.reg16
5443 && (i.tm.operand_types[op].bitfield.reg32
5444 || i.tm.operand_types[op].bitfield.acc))
5445 {
5446 /* Prohibit these changes in the 64bit mode, since the
5447 lowering is more complicated. */
5448 if (flag_code == CODE_64BIT)
5449 {
5450 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5451 register_prefix, i.op[op].regs->reg_name,
5452 i.suffix);
5453 return 0;
5454 }
5455 #if REGISTER_WARNINGS
5456 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5457 register_prefix,
5458 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5459 register_prefix, i.op[op].regs->reg_name, i.suffix);
5460 #endif
5461 }
5462 /* Warn if the r prefix on a general reg is present. */
5463 else if (i.types[op].bitfield.reg64
5464 && (i.tm.operand_types[op].bitfield.reg32
5465 || i.tm.operand_types[op].bitfield.acc))
5466 {
5467 if (intel_syntax
5468 && i.tm.opcode_modifier.toqword
5469 && !i.types[0].bitfield.regxmm)
5470 {
5471 /* Convert to QWORD. We want REX byte. */
5472 i.suffix = QWORD_MNEM_SUFFIX;
5473 }
5474 else
5475 {
5476 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5477 register_prefix, i.op[op].regs->reg_name,
5478 i.suffix);
5479 return 0;
5480 }
5481 }
5482 return 1;
5483 }
5484
5485 static int
5486 check_qword_reg (void)
5487 {
5488 int op;
5489
5490 for (op = i.operands; --op >= 0; )
5491 /* Reject eight bit registers, except where the template requires
5492 them. (eg. movzb) */
5493 if (i.types[op].bitfield.reg8
5494 && (i.tm.operand_types[op].bitfield.reg16
5495 || i.tm.operand_types[op].bitfield.reg32
5496 || i.tm.operand_types[op].bitfield.acc))
5497 {
5498 as_bad (_("`%s%s' not allowed with `%s%c'"),
5499 register_prefix,
5500 i.op[op].regs->reg_name,
5501 i.tm.name,
5502 i.suffix);
5503 return 0;
5504 }
5505 /* Warn if the r prefix on a general reg is missing. */
5506 else if ((i.types[op].bitfield.reg16
5507 || i.types[op].bitfield.reg32)
5508 && (i.tm.operand_types[op].bitfield.reg32
5509 || i.tm.operand_types[op].bitfield.acc))
5510 {
5511 /* Prohibit these changes in the 64bit mode, since the
5512 lowering is more complicated. */
5513 if (intel_syntax
5514 && i.tm.opcode_modifier.todword
5515 && !i.types[0].bitfield.regxmm)
5516 {
5517 /* Convert to DWORD. We don't want REX byte. */
5518 i.suffix = LONG_MNEM_SUFFIX;
5519 }
5520 else
5521 {
5522 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5523 register_prefix, i.op[op].regs->reg_name,
5524 i.suffix);
5525 return 0;
5526 }
5527 }
5528 return 1;
5529 }
5530
5531 static int
5532 check_word_reg (void)
5533 {
5534 int op;
5535 for (op = i.operands; --op >= 0;)
5536 /* Reject eight bit registers, except where the template requires
5537 them. (eg. movzb) */
5538 if (i.types[op].bitfield.reg8
5539 && (i.tm.operand_types[op].bitfield.reg16
5540 || i.tm.operand_types[op].bitfield.reg32
5541 || i.tm.operand_types[op].bitfield.acc))
5542 {
5543 as_bad (_("`%s%s' not allowed with `%s%c'"),
5544 register_prefix,
5545 i.op[op].regs->reg_name,
5546 i.tm.name,
5547 i.suffix);
5548 return 0;
5549 }
5550 /* Warn if the e or r prefix on a general reg is present. */
5551 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5552 && (i.types[op].bitfield.reg32
5553 || i.types[op].bitfield.reg64)
5554 && (i.tm.operand_types[op].bitfield.reg16
5555 || i.tm.operand_types[op].bitfield.acc))
5556 {
5557 /* Prohibit these changes in the 64bit mode, since the
5558 lowering is more complicated. */
5559 if (flag_code == CODE_64BIT)
5560 {
5561 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5562 register_prefix, i.op[op].regs->reg_name,
5563 i.suffix);
5564 return 0;
5565 }
5566 #if REGISTER_WARNINGS
5567 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5568 register_prefix,
5569 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5570 register_prefix, i.op[op].regs->reg_name, i.suffix);
5571 #endif
5572 }
5573 return 1;
5574 }
5575
5576 static int
5577 update_imm (unsigned int j)
5578 {
5579 i386_operand_type overlap = i.types[j];
5580 if ((overlap.bitfield.imm8
5581 || overlap.bitfield.imm8s
5582 || overlap.bitfield.imm16
5583 || overlap.bitfield.imm32
5584 || overlap.bitfield.imm32s
5585 || overlap.bitfield.imm64)
5586 && !operand_type_equal (&overlap, &imm8)
5587 && !operand_type_equal (&overlap, &imm8s)
5588 && !operand_type_equal (&overlap, &imm16)
5589 && !operand_type_equal (&overlap, &imm32)
5590 && !operand_type_equal (&overlap, &imm32s)
5591 && !operand_type_equal (&overlap, &imm64))
5592 {
5593 if (i.suffix)
5594 {
5595 i386_operand_type temp;
5596
5597 operand_type_set (&temp, 0);
5598 if (i.suffix == BYTE_MNEM_SUFFIX)
5599 {
5600 temp.bitfield.imm8 = overlap.bitfield.imm8;
5601 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5602 }
5603 else if (i.suffix == WORD_MNEM_SUFFIX)
5604 temp.bitfield.imm16 = overlap.bitfield.imm16;
5605 else if (i.suffix == QWORD_MNEM_SUFFIX)
5606 {
5607 temp.bitfield.imm64 = overlap.bitfield.imm64;
5608 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5609 }
5610 else
5611 temp.bitfield.imm32 = overlap.bitfield.imm32;
5612 overlap = temp;
5613 }
5614 else if (operand_type_equal (&overlap, &imm16_32_32s)
5615 || operand_type_equal (&overlap, &imm16_32)
5616 || operand_type_equal (&overlap, &imm16_32s))
5617 {
5618 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5619 overlap = imm16;
5620 else
5621 overlap = imm32s;
5622 }
5623 if (!operand_type_equal (&overlap, &imm8)
5624 && !operand_type_equal (&overlap, &imm8s)
5625 && !operand_type_equal (&overlap, &imm16)
5626 && !operand_type_equal (&overlap, &imm32)
5627 && !operand_type_equal (&overlap, &imm32s)
5628 && !operand_type_equal (&overlap, &imm64))
5629 {
5630 as_bad (_("no instruction mnemonic suffix given; "
5631 "can't determine immediate size"));
5632 return 0;
5633 }
5634 }
5635 i.types[j] = overlap;
5636
5637 return 1;
5638 }
5639
5640 static int
5641 finalize_imm (void)
5642 {
5643 unsigned int j, n;
5644
5645 /* Update the first 2 immediate operands. */
5646 n = i.operands > 2 ? 2 : i.operands;
5647 if (n)
5648 {
5649 for (j = 0; j < n; j++)
5650 if (update_imm (j) == 0)
5651 return 0;
5652
5653 /* The 3rd operand can't be immediate operand. */
5654 gas_assert (operand_type_check (i.types[2], imm) == 0);
5655 }
5656
5657 return 1;
5658 }
5659
5660 static int
5661 bad_implicit_operand (int xmm)
5662 {
5663 const char *ireg = xmm ? "xmm0" : "ymm0";
5664
5665 if (intel_syntax)
5666 as_bad (_("the last operand of `%s' must be `%s%s'"),
5667 i.tm.name, register_prefix, ireg);
5668 else
5669 as_bad (_("the first operand of `%s' must be `%s%s'"),
5670 i.tm.name, register_prefix, ireg);
5671 return 0;
5672 }
5673
5674 static int
5675 process_operands (void)
5676 {
5677 /* Default segment register this instruction will use for memory
5678 accesses. 0 means unknown. This is only for optimizing out
5679 unnecessary segment overrides. */
5680 const seg_entry *default_seg = 0;
5681
5682 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5683 {
5684 unsigned int dupl = i.operands;
5685 unsigned int dest = dupl - 1;
5686 unsigned int j;
5687
5688 /* The destination must be an xmm register. */
5689 gas_assert (i.reg_operands
5690 && MAX_OPERANDS > dupl
5691 && operand_type_equal (&i.types[dest], &regxmm));
5692
5693 if (i.tm.opcode_modifier.firstxmm0)
5694 {
5695 /* The first operand is implicit and must be xmm0. */
5696 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5697 if (register_number (i.op[0].regs) != 0)
5698 return bad_implicit_operand (1);
5699
5700 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5701 {
5702 /* Keep xmm0 for instructions with VEX prefix and 3
5703 sources. */
5704 goto duplicate;
5705 }
5706 else
5707 {
5708 /* We remove the first xmm0 and keep the number of
5709 operands unchanged, which in fact duplicates the
5710 destination. */
5711 for (j = 1; j < i.operands; j++)
5712 {
5713 i.op[j - 1] = i.op[j];
5714 i.types[j - 1] = i.types[j];
5715 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5716 }
5717 }
5718 }
5719 else if (i.tm.opcode_modifier.implicit1stxmm0)
5720 {
5721 gas_assert ((MAX_OPERANDS - 1) > dupl
5722 && (i.tm.opcode_modifier.vexsources
5723 == VEX3SOURCES));
5724
5725 /* Add the implicit xmm0 for instructions with VEX prefix
5726 and 3 sources. */
5727 for (j = i.operands; j > 0; j--)
5728 {
5729 i.op[j] = i.op[j - 1];
5730 i.types[j] = i.types[j - 1];
5731 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5732 }
5733 i.op[0].regs
5734 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5735 i.types[0] = regxmm;
5736 i.tm.operand_types[0] = regxmm;
5737
5738 i.operands += 2;
5739 i.reg_operands += 2;
5740 i.tm.operands += 2;
5741
5742 dupl++;
5743 dest++;
5744 i.op[dupl] = i.op[dest];
5745 i.types[dupl] = i.types[dest];
5746 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5747 }
5748 else
5749 {
5750 duplicate:
5751 i.operands++;
5752 i.reg_operands++;
5753 i.tm.operands++;
5754
5755 i.op[dupl] = i.op[dest];
5756 i.types[dupl] = i.types[dest];
5757 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5758 }
5759
5760 if (i.tm.opcode_modifier.immext)
5761 process_immext ();
5762 }
5763 else if (i.tm.opcode_modifier.firstxmm0)
5764 {
5765 unsigned int j;
5766
5767 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5768 gas_assert (i.reg_operands
5769 && (operand_type_equal (&i.types[0], &regxmm)
5770 || operand_type_equal (&i.types[0], &regymm)
5771 || operand_type_equal (&i.types[0], &regzmm)));
5772 if (register_number (i.op[0].regs) != 0)
5773 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5774
5775 for (j = 1; j < i.operands; j++)
5776 {
5777 i.op[j - 1] = i.op[j];
5778 i.types[j - 1] = i.types[j];
5779
5780 /* We need to adjust fields in i.tm since they are used by
5781 build_modrm_byte. */
5782 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5783 }
5784
5785 i.operands--;
5786 i.reg_operands--;
5787 i.tm.operands--;
5788 }
5789 else if (i.tm.opcode_modifier.regkludge)
5790 {
5791 /* The imul $imm, %reg instruction is converted into
5792 imul $imm, %reg, %reg, and the clr %reg instruction
5793 is converted into xor %reg, %reg. */
5794
5795 unsigned int first_reg_op;
5796
5797 if (operand_type_check (i.types[0], reg))
5798 first_reg_op = 0;
5799 else
5800 first_reg_op = 1;
5801 /* Pretend we saw the extra register operand. */
5802 gas_assert (i.reg_operands == 1
5803 && i.op[first_reg_op + 1].regs == 0);
5804 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5805 i.types[first_reg_op + 1] = i.types[first_reg_op];
5806 i.operands++;
5807 i.reg_operands++;
5808 }
5809
5810 if (i.tm.opcode_modifier.shortform)
5811 {
5812 if (i.types[0].bitfield.sreg2
5813 || i.types[0].bitfield.sreg3)
5814 {
5815 if (i.tm.base_opcode == POP_SEG_SHORT
5816 && i.op[0].regs->reg_num == 1)
5817 {
5818 as_bad (_("you can't `pop %scs'"), register_prefix);
5819 return 0;
5820 }
5821 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5822 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5823 i.rex |= REX_B;
5824 }
5825 else
5826 {
5827 /* The register or float register operand is in operand
5828 0 or 1. */
5829 unsigned int op;
5830
5831 if (i.types[0].bitfield.floatreg
5832 || operand_type_check (i.types[0], reg))
5833 op = 0;
5834 else
5835 op = 1;
5836 /* Register goes in low 3 bits of opcode. */
5837 i.tm.base_opcode |= i.op[op].regs->reg_num;
5838 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5839 i.rex |= REX_B;
5840 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5841 {
5842 /* Warn about some common errors, but press on regardless.
5843 The first case can be generated by gcc (<= 2.8.1). */
5844 if (i.operands == 2)
5845 {
5846 /* Reversed arguments on faddp, fsubp, etc. */
5847 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5848 register_prefix, i.op[!intel_syntax].regs->reg_name,
5849 register_prefix, i.op[intel_syntax].regs->reg_name);
5850 }
5851 else
5852 {
5853 /* Extraneous `l' suffix on fp insn. */
5854 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5855 register_prefix, i.op[0].regs->reg_name);
5856 }
5857 }
5858 }
5859 }
5860 else if (i.tm.opcode_modifier.modrm)
5861 {
5862 /* The opcode is completed (modulo i.tm.extension_opcode which
5863 must be put into the modrm byte). Now, we make the modrm and
5864 index base bytes based on all the info we've collected. */
5865
5866 default_seg = build_modrm_byte ();
5867 }
5868 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5869 {
5870 default_seg = &ds;
5871 }
5872 else if (i.tm.opcode_modifier.isstring)
5873 {
5874 /* For the string instructions that allow a segment override
5875 on one of their operands, the default segment is ds. */
5876 default_seg = &ds;
5877 }
5878
5879 if (i.tm.base_opcode == 0x8d /* lea */
5880 && i.seg[0]
5881 && !quiet_warnings)
5882 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5883
5884 /* If a segment was explicitly specified, and the specified segment
5885 is not the default, use an opcode prefix to select it. If we
5886 never figured out what the default segment is, then default_seg
5887 will be zero at this point, and the specified segment prefix will
5888 always be used. */
5889 if ((i.seg[0]) && (i.seg[0] != default_seg))
5890 {
5891 if (!add_prefix (i.seg[0]->seg_prefix))
5892 return 0;
5893 }
5894 return 1;
5895 }
5896
5897 static const seg_entry *
5898 build_modrm_byte (void)
5899 {
5900 const seg_entry *default_seg = 0;
5901 unsigned int source, dest;
5902 int vex_3_sources;
5903
5904 /* The first operand of instructions with VEX prefix and 3 sources
5905 must be VEX_Imm4. */
5906 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5907 if (vex_3_sources)
5908 {
5909 unsigned int nds, reg_slot;
5910 expressionS *exp;
5911
5912 if (i.tm.opcode_modifier.veximmext
5913 && i.tm.opcode_modifier.immext)
5914 {
5915 dest = i.operands - 2;
5916 gas_assert (dest == 3);
5917 }
5918 else
5919 dest = i.operands - 1;
5920 nds = dest - 1;
5921
5922 /* There are 2 kinds of instructions:
5923 1. 5 operands: 4 register operands or 3 register operands
5924 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5925 VexW0 or VexW1. The destination must be either XMM, YMM or
5926 ZMM register.
5927 2. 4 operands: 4 register operands or 3 register operands
5928 plus 1 memory operand, VexXDS, and VexImmExt */
5929 gas_assert ((i.reg_operands == 4
5930 || (i.reg_operands == 3 && i.mem_operands == 1))
5931 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5932 && (i.tm.opcode_modifier.veximmext
5933 || (i.imm_operands == 1
5934 && i.types[0].bitfield.vec_imm4
5935 && (i.tm.opcode_modifier.vexw == VEXW0
5936 || i.tm.opcode_modifier.vexw == VEXW1)
5937 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5938 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5939 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5940
5941 if (i.imm_operands == 0)
5942 {
5943 /* When there is no immediate operand, generate an 8bit
5944 immediate operand to encode the first operand. */
5945 exp = &im_expressions[i.imm_operands++];
5946 i.op[i.operands].imms = exp;
5947 i.types[i.operands] = imm8;
5948 i.operands++;
5949 /* If VexW1 is set, the first operand is the source and
5950 the second operand is encoded in the immediate operand. */
5951 if (i.tm.opcode_modifier.vexw == VEXW1)
5952 {
5953 source = 0;
5954 reg_slot = 1;
5955 }
5956 else
5957 {
5958 source = 1;
5959 reg_slot = 0;
5960 }
5961
5962 /* FMA swaps REG and NDS. */
5963 if (i.tm.cpu_flags.bitfield.cpufma)
5964 {
5965 unsigned int tmp;
5966 tmp = reg_slot;
5967 reg_slot = nds;
5968 nds = tmp;
5969 }
5970
5971 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5972 &regxmm)
5973 || operand_type_equal (&i.tm.operand_types[reg_slot],
5974 &regymm)
5975 || operand_type_equal (&i.tm.operand_types[reg_slot],
5976 &regzmm));
5977 exp->X_op = O_constant;
5978 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5979 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5980 }
5981 else
5982 {
5983 unsigned int imm_slot;
5984
5985 if (i.tm.opcode_modifier.vexw == VEXW0)
5986 {
5987 /* If VexW0 is set, the third operand is the source and
5988 the second operand is encoded in the immediate
5989 operand. */
5990 source = 2;
5991 reg_slot = 1;
5992 }
5993 else
5994 {
5995 /* VexW1 is set, the second operand is the source and
5996 the third operand is encoded in the immediate
5997 operand. */
5998 source = 1;
5999 reg_slot = 2;
6000 }
6001
6002 if (i.tm.opcode_modifier.immext)
6003 {
6004 /* When ImmExt is set, the immdiate byte is the last
6005 operand. */
6006 imm_slot = i.operands - 1;
6007 source--;
6008 reg_slot--;
6009 }
6010 else
6011 {
6012 imm_slot = 0;
6013
6014 /* Turn on Imm8 so that output_imm will generate it. */
6015 i.types[imm_slot].bitfield.imm8 = 1;
6016 }
6017
6018 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6019 &regxmm)
6020 || operand_type_equal (&i.tm.operand_types[reg_slot],
6021 &regymm)
6022 || operand_type_equal (&i.tm.operand_types[reg_slot],
6023 &regzmm));
6024 i.op[imm_slot].imms->X_add_number
6025 |= register_number (i.op[reg_slot].regs) << 4;
6026 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6027 }
6028
6029 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6030 || operand_type_equal (&i.tm.operand_types[nds],
6031 &regymm)
6032 || operand_type_equal (&i.tm.operand_types[nds],
6033 &regzmm));
6034 i.vex.register_specifier = i.op[nds].regs;
6035 }
6036 else
6037 source = dest = 0;
6038
6039 /* i.reg_operands MUST be the number of real register operands;
6040 implicit registers do not count. If there are 3 register
6041 operands, it must be a instruction with VexNDS. For a
6042 instruction with VexNDD, the destination register is encoded
6043 in VEX prefix. If there are 4 register operands, it must be
6044 a instruction with VEX prefix and 3 sources. */
6045 if (i.mem_operands == 0
6046 && ((i.reg_operands == 2
6047 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6048 || (i.reg_operands == 3
6049 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6050 || (i.reg_operands == 4 && vex_3_sources)))
6051 {
6052 switch (i.operands)
6053 {
6054 case 2:
6055 source = 0;
6056 break;
6057 case 3:
6058 /* When there are 3 operands, one of them may be immediate,
6059 which may be the first or the last operand. Otherwise,
6060 the first operand must be shift count register (cl) or it
6061 is an instruction with VexNDS. */
6062 gas_assert (i.imm_operands == 1
6063 || (i.imm_operands == 0
6064 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6065 || i.types[0].bitfield.shiftcount)));
6066 if (operand_type_check (i.types[0], imm)
6067 || i.types[0].bitfield.shiftcount)
6068 source = 1;
6069 else
6070 source = 0;
6071 break;
6072 case 4:
6073 /* When there are 4 operands, the first two must be 8bit
6074 immediate operands. The source operand will be the 3rd
6075 one.
6076
6077 For instructions with VexNDS, if the first operand
6078 an imm8, the source operand is the 2nd one. If the last
6079 operand is imm8, the source operand is the first one. */
6080 gas_assert ((i.imm_operands == 2
6081 && i.types[0].bitfield.imm8
6082 && i.types[1].bitfield.imm8)
6083 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6084 && i.imm_operands == 1
6085 && (i.types[0].bitfield.imm8
6086 || i.types[i.operands - 1].bitfield.imm8
6087 || i.rounding)));
6088 if (i.imm_operands == 2)
6089 source = 2;
6090 else
6091 {
6092 if (i.types[0].bitfield.imm8)
6093 source = 1;
6094 else
6095 source = 0;
6096 }
6097 break;
6098 case 5:
6099 if (i.tm.opcode_modifier.evex)
6100 {
6101 /* For EVEX instructions, when there are 5 operands, the
6102 first one must be immediate operand. If the second one
6103 is immediate operand, the source operand is the 3th
6104 one. If the last one is immediate operand, the source
6105 operand is the 2nd one. */
6106 gas_assert (i.imm_operands == 2
6107 && i.tm.opcode_modifier.sae
6108 && operand_type_check (i.types[0], imm));
6109 if (operand_type_check (i.types[1], imm))
6110 source = 2;
6111 else if (operand_type_check (i.types[4], imm))
6112 source = 1;
6113 else
6114 abort ();
6115 }
6116 break;
6117 default:
6118 abort ();
6119 }
6120
6121 if (!vex_3_sources)
6122 {
6123 dest = source + 1;
6124
6125 /* RC/SAE operand could be between DEST and SRC. That happens
6126 when one operand is GPR and the other one is XMM/YMM/ZMM
6127 register. */
6128 if (i.rounding && i.rounding->operand == (int) dest)
6129 dest++;
6130
6131 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6132 {
6133 /* For instructions with VexNDS, the register-only source
6134 operand must be 32/64bit integer, XMM, YMM or ZMM
6135 register. It is encoded in VEX prefix. We need to
6136 clear RegMem bit before calling operand_type_equal. */
6137
6138 i386_operand_type op;
6139 unsigned int vvvv;
6140
6141 /* Check register-only source operand when two source
6142 operands are swapped. */
6143 if (!i.tm.operand_types[source].bitfield.baseindex
6144 && i.tm.operand_types[dest].bitfield.baseindex)
6145 {
6146 vvvv = source;
6147 source = dest;
6148 }
6149 else
6150 vvvv = dest;
6151
6152 op = i.tm.operand_types[vvvv];
6153 op.bitfield.regmem = 0;
6154 if ((dest + 1) >= i.operands
6155 || (!op.bitfield.reg32
6156 && op.bitfield.reg64
6157 && !operand_type_equal (&op, &regxmm)
6158 && !operand_type_equal (&op, &regymm)
6159 && !operand_type_equal (&op, &regzmm)
6160 && !operand_type_equal (&op, &regmask)))
6161 abort ();
6162 i.vex.register_specifier = i.op[vvvv].regs;
6163 dest++;
6164 }
6165 }
6166
6167 i.rm.mode = 3;
6168 /* One of the register operands will be encoded in the i.tm.reg
6169 field, the other in the combined i.tm.mode and i.tm.regmem
6170 fields. If no form of this instruction supports a memory
6171 destination operand, then we assume the source operand may
6172 sometimes be a memory operand and so we need to store the
6173 destination in the i.rm.reg field. */
6174 if (!i.tm.operand_types[dest].bitfield.regmem
6175 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6176 {
6177 i.rm.reg = i.op[dest].regs->reg_num;
6178 i.rm.regmem = i.op[source].regs->reg_num;
6179 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6180 i.rex |= REX_R;
6181 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6182 i.vrex |= REX_R;
6183 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6184 i.rex |= REX_B;
6185 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6186 i.vrex |= REX_B;
6187 }
6188 else
6189 {
6190 i.rm.reg = i.op[source].regs->reg_num;
6191 i.rm.regmem = i.op[dest].regs->reg_num;
6192 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6193 i.rex |= REX_B;
6194 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6195 i.vrex |= REX_B;
6196 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6197 i.rex |= REX_R;
6198 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6199 i.vrex |= REX_R;
6200 }
6201 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6202 {
6203 if (!i.types[0].bitfield.control
6204 && !i.types[1].bitfield.control)
6205 abort ();
6206 i.rex &= ~(REX_R | REX_B);
6207 add_prefix (LOCK_PREFIX_OPCODE);
6208 }
6209 }
6210 else
6211 { /* If it's not 2 reg operands... */
6212 unsigned int mem;
6213
6214 if (i.mem_operands)
6215 {
6216 unsigned int fake_zero_displacement = 0;
6217 unsigned int op;
6218
6219 for (op = 0; op < i.operands; op++)
6220 if (operand_type_check (i.types[op], anymem))
6221 break;
6222 gas_assert (op < i.operands);
6223
6224 if (i.tm.opcode_modifier.vecsib)
6225 {
6226 if (i.index_reg->reg_num == RegEiz
6227 || i.index_reg->reg_num == RegRiz)
6228 abort ();
6229
6230 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6231 if (!i.base_reg)
6232 {
6233 i.sib.base = NO_BASE_REGISTER;
6234 i.sib.scale = i.log2_scale_factor;
6235 /* No Vec_Disp8 if there is no base. */
6236 i.types[op].bitfield.vec_disp8 = 0;
6237 i.types[op].bitfield.disp8 = 0;
6238 i.types[op].bitfield.disp16 = 0;
6239 i.types[op].bitfield.disp64 = 0;
6240 if (flag_code != CODE_64BIT)
6241 {
6242 /* Must be 32 bit */
6243 i.types[op].bitfield.disp32 = 1;
6244 i.types[op].bitfield.disp32s = 0;
6245 }
6246 else
6247 {
6248 i.types[op].bitfield.disp32 = 0;
6249 i.types[op].bitfield.disp32s = 1;
6250 }
6251 }
6252 i.sib.index = i.index_reg->reg_num;
6253 if ((i.index_reg->reg_flags & RegRex) != 0)
6254 i.rex |= REX_X;
6255 if ((i.index_reg->reg_flags & RegVRex) != 0)
6256 i.vrex |= REX_X;
6257 }
6258
6259 default_seg = &ds;
6260
6261 if (i.base_reg == 0)
6262 {
6263 i.rm.mode = 0;
6264 if (!i.disp_operands)
6265 {
6266 fake_zero_displacement = 1;
6267 /* Instructions with VSIB byte need 32bit displacement
6268 if there is no base register. */
6269 if (i.tm.opcode_modifier.vecsib)
6270 i.types[op].bitfield.disp32 = 1;
6271 }
6272 if (i.index_reg == 0)
6273 {
6274 gas_assert (!i.tm.opcode_modifier.vecsib);
6275 /* Operand is just <disp> */
6276 if (flag_code == CODE_64BIT)
6277 {
6278 /* 64bit mode overwrites the 32bit absolute
6279 addressing by RIP relative addressing and
6280 absolute addressing is encoded by one of the
6281 redundant SIB forms. */
6282 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6283 i.sib.base = NO_BASE_REGISTER;
6284 i.sib.index = NO_INDEX_REGISTER;
6285 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6286 ? disp32s : disp32);
6287 }
6288 else if ((flag_code == CODE_16BIT)
6289 ^ (i.prefix[ADDR_PREFIX] != 0))
6290 {
6291 i.rm.regmem = NO_BASE_REGISTER_16;
6292 i.types[op] = disp16;
6293 }
6294 else
6295 {
6296 i.rm.regmem = NO_BASE_REGISTER;
6297 i.types[op] = disp32;
6298 }
6299 }
6300 else if (!i.tm.opcode_modifier.vecsib)
6301 {
6302 /* !i.base_reg && i.index_reg */
6303 if (i.index_reg->reg_num == RegEiz
6304 || i.index_reg->reg_num == RegRiz)
6305 i.sib.index = NO_INDEX_REGISTER;
6306 else
6307 i.sib.index = i.index_reg->reg_num;
6308 i.sib.base = NO_BASE_REGISTER;
6309 i.sib.scale = i.log2_scale_factor;
6310 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6311 /* No Vec_Disp8 if there is no base. */
6312 i.types[op].bitfield.vec_disp8 = 0;
6313 i.types[op].bitfield.disp8 = 0;
6314 i.types[op].bitfield.disp16 = 0;
6315 i.types[op].bitfield.disp64 = 0;
6316 if (flag_code != CODE_64BIT)
6317 {
6318 /* Must be 32 bit */
6319 i.types[op].bitfield.disp32 = 1;
6320 i.types[op].bitfield.disp32s = 0;
6321 }
6322 else
6323 {
6324 i.types[op].bitfield.disp32 = 0;
6325 i.types[op].bitfield.disp32s = 1;
6326 }
6327 if ((i.index_reg->reg_flags & RegRex) != 0)
6328 i.rex |= REX_X;
6329 }
6330 }
6331 /* RIP addressing for 64bit mode. */
6332 else if (i.base_reg->reg_num == RegRip ||
6333 i.base_reg->reg_num == RegEip)
6334 {
6335 gas_assert (!i.tm.opcode_modifier.vecsib);
6336 i.rm.regmem = NO_BASE_REGISTER;
6337 i.types[op].bitfield.disp8 = 0;
6338 i.types[op].bitfield.disp16 = 0;
6339 i.types[op].bitfield.disp32 = 0;
6340 i.types[op].bitfield.disp32s = 1;
6341 i.types[op].bitfield.disp64 = 0;
6342 i.types[op].bitfield.vec_disp8 = 0;
6343 i.flags[op] |= Operand_PCrel;
6344 if (! i.disp_operands)
6345 fake_zero_displacement = 1;
6346 }
6347 else if (i.base_reg->reg_type.bitfield.reg16)
6348 {
6349 gas_assert (!i.tm.opcode_modifier.vecsib);
6350 switch (i.base_reg->reg_num)
6351 {
6352 case 3: /* (%bx) */
6353 if (i.index_reg == 0)
6354 i.rm.regmem = 7;
6355 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6356 i.rm.regmem = i.index_reg->reg_num - 6;
6357 break;
6358 case 5: /* (%bp) */
6359 default_seg = &ss;
6360 if (i.index_reg == 0)
6361 {
6362 i.rm.regmem = 6;
6363 if (operand_type_check (i.types[op], disp) == 0)
6364 {
6365 /* fake (%bp) into 0(%bp) */
6366 if (i.tm.operand_types[op].bitfield.vec_disp8)
6367 i.types[op].bitfield.vec_disp8 = 1;
6368 else
6369 i.types[op].bitfield.disp8 = 1;
6370 fake_zero_displacement = 1;
6371 }
6372 }
6373 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6374 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6375 break;
6376 default: /* (%si) -> 4 or (%di) -> 5 */
6377 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6378 }
6379 i.rm.mode = mode_from_disp_size (i.types[op]);
6380 }
6381 else /* i.base_reg and 32/64 bit mode */
6382 {
6383 if (flag_code == CODE_64BIT
6384 && operand_type_check (i.types[op], disp))
6385 {
6386 i386_operand_type temp;
6387 operand_type_set (&temp, 0);
6388 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6389 temp.bitfield.vec_disp8
6390 = i.types[op].bitfield.vec_disp8;
6391 i.types[op] = temp;
6392 if (i.prefix[ADDR_PREFIX] == 0)
6393 i.types[op].bitfield.disp32s = 1;
6394 else
6395 i.types[op].bitfield.disp32 = 1;
6396 }
6397
6398 if (!i.tm.opcode_modifier.vecsib)
6399 i.rm.regmem = i.base_reg->reg_num;
6400 if ((i.base_reg->reg_flags & RegRex) != 0)
6401 i.rex |= REX_B;
6402 i.sib.base = i.base_reg->reg_num;
6403 /* x86-64 ignores REX prefix bit here to avoid decoder
6404 complications. */
6405 if (!(i.base_reg->reg_flags & RegRex)
6406 && (i.base_reg->reg_num == EBP_REG_NUM
6407 || i.base_reg->reg_num == ESP_REG_NUM))
6408 default_seg = &ss;
6409 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6410 {
6411 fake_zero_displacement = 1;
6412 if (i.tm.operand_types [op].bitfield.vec_disp8)
6413 i.types[op].bitfield.vec_disp8 = 1;
6414 else
6415 i.types[op].bitfield.disp8 = 1;
6416 }
6417 i.sib.scale = i.log2_scale_factor;
6418 if (i.index_reg == 0)
6419 {
6420 gas_assert (!i.tm.opcode_modifier.vecsib);
6421 /* <disp>(%esp) becomes two byte modrm with no index
6422 register. We've already stored the code for esp
6423 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6424 Any base register besides %esp will not use the
6425 extra modrm byte. */
6426 i.sib.index = NO_INDEX_REGISTER;
6427 }
6428 else if (!i.tm.opcode_modifier.vecsib)
6429 {
6430 if (i.index_reg->reg_num == RegEiz
6431 || i.index_reg->reg_num == RegRiz)
6432 i.sib.index = NO_INDEX_REGISTER;
6433 else
6434 i.sib.index = i.index_reg->reg_num;
6435 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6436 if ((i.index_reg->reg_flags & RegRex) != 0)
6437 i.rex |= REX_X;
6438 }
6439
6440 if (i.disp_operands
6441 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6442 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6443 i.rm.mode = 0;
6444 else
6445 {
6446 if (!fake_zero_displacement
6447 && !i.disp_operands
6448 && i.disp_encoding)
6449 {
6450 fake_zero_displacement = 1;
6451 if (i.disp_encoding == disp_encoding_8bit)
6452 i.types[op].bitfield.disp8 = 1;
6453 else
6454 i.types[op].bitfield.disp32 = 1;
6455 }
6456 i.rm.mode = mode_from_disp_size (i.types[op]);
6457 }
6458 }
6459
6460 if (fake_zero_displacement)
6461 {
6462 /* Fakes a zero displacement assuming that i.types[op]
6463 holds the correct displacement size. */
6464 expressionS *exp;
6465
6466 gas_assert (i.op[op].disps == 0);
6467 exp = &disp_expressions[i.disp_operands++];
6468 i.op[op].disps = exp;
6469 exp->X_op = O_constant;
6470 exp->X_add_number = 0;
6471 exp->X_add_symbol = (symbolS *) 0;
6472 exp->X_op_symbol = (symbolS *) 0;
6473 }
6474
6475 mem = op;
6476 }
6477 else
6478 mem = ~0;
6479
6480 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6481 {
6482 if (operand_type_check (i.types[0], imm))
6483 i.vex.register_specifier = NULL;
6484 else
6485 {
6486 /* VEX.vvvv encodes one of the sources when the first
6487 operand is not an immediate. */
6488 if (i.tm.opcode_modifier.vexw == VEXW0)
6489 i.vex.register_specifier = i.op[0].regs;
6490 else
6491 i.vex.register_specifier = i.op[1].regs;
6492 }
6493
6494 /* Destination is a XMM register encoded in the ModRM.reg
6495 and VEX.R bit. */
6496 i.rm.reg = i.op[2].regs->reg_num;
6497 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6498 i.rex |= REX_R;
6499
6500 /* ModRM.rm and VEX.B encodes the other source. */
6501 if (!i.mem_operands)
6502 {
6503 i.rm.mode = 3;
6504
6505 if (i.tm.opcode_modifier.vexw == VEXW0)
6506 i.rm.regmem = i.op[1].regs->reg_num;
6507 else
6508 i.rm.regmem = i.op[0].regs->reg_num;
6509
6510 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6511 i.rex |= REX_B;
6512 }
6513 }
6514 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6515 {
6516 i.vex.register_specifier = i.op[2].regs;
6517 if (!i.mem_operands)
6518 {
6519 i.rm.mode = 3;
6520 i.rm.regmem = i.op[1].regs->reg_num;
6521 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6522 i.rex |= REX_B;
6523 }
6524 }
6525 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6526 (if any) based on i.tm.extension_opcode. Again, we must be
6527 careful to make sure that segment/control/debug/test/MMX
6528 registers are coded into the i.rm.reg field. */
6529 else if (i.reg_operands)
6530 {
6531 unsigned int op;
6532 unsigned int vex_reg = ~0;
6533
6534 for (op = 0; op < i.operands; op++)
6535 if (i.types[op].bitfield.reg8
6536 || i.types[op].bitfield.reg16
6537 || i.types[op].bitfield.reg32
6538 || i.types[op].bitfield.reg64
6539 || i.types[op].bitfield.regmmx
6540 || i.types[op].bitfield.regxmm
6541 || i.types[op].bitfield.regymm
6542 || i.types[op].bitfield.regbnd
6543 || i.types[op].bitfield.regzmm
6544 || i.types[op].bitfield.regmask
6545 || i.types[op].bitfield.sreg2
6546 || i.types[op].bitfield.sreg3
6547 || i.types[op].bitfield.control
6548 || i.types[op].bitfield.debug
6549 || i.types[op].bitfield.test)
6550 break;
6551
6552 if (vex_3_sources)
6553 op = dest;
6554 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6555 {
6556 /* For instructions with VexNDS, the register-only
6557 source operand is encoded in VEX prefix. */
6558 gas_assert (mem != (unsigned int) ~0);
6559
6560 if (op > mem)
6561 {
6562 vex_reg = op++;
6563 gas_assert (op < i.operands);
6564 }
6565 else
6566 {
6567 /* Check register-only source operand when two source
6568 operands are swapped. */
6569 if (!i.tm.operand_types[op].bitfield.baseindex
6570 && i.tm.operand_types[op + 1].bitfield.baseindex)
6571 {
6572 vex_reg = op;
6573 op += 2;
6574 gas_assert (mem == (vex_reg + 1)
6575 && op < i.operands);
6576 }
6577 else
6578 {
6579 vex_reg = op + 1;
6580 gas_assert (vex_reg < i.operands);
6581 }
6582 }
6583 }
6584 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6585 {
6586 /* For instructions with VexNDD, the register destination
6587 is encoded in VEX prefix. */
6588 if (i.mem_operands == 0)
6589 {
6590 /* There is no memory operand. */
6591 gas_assert ((op + 2) == i.operands);
6592 vex_reg = op + 1;
6593 }
6594 else
6595 {
6596 /* There are only 2 operands. */
6597 gas_assert (op < 2 && i.operands == 2);
6598 vex_reg = 1;
6599 }
6600 }
6601 else
6602 gas_assert (op < i.operands);
6603
6604 if (vex_reg != (unsigned int) ~0)
6605 {
6606 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6607
6608 if (type->bitfield.reg32 != 1
6609 && type->bitfield.reg64 != 1
6610 && !operand_type_equal (type, &regxmm)
6611 && !operand_type_equal (type, &regymm)
6612 && !operand_type_equal (type, &regzmm)
6613 && !operand_type_equal (type, &regmask))
6614 abort ();
6615
6616 i.vex.register_specifier = i.op[vex_reg].regs;
6617 }
6618
6619 /* Don't set OP operand twice. */
6620 if (vex_reg != op)
6621 {
6622 /* If there is an extension opcode to put here, the
6623 register number must be put into the regmem field. */
6624 if (i.tm.extension_opcode != None)
6625 {
6626 i.rm.regmem = i.op[op].regs->reg_num;
6627 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6628 i.rex |= REX_B;
6629 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6630 i.vrex |= REX_B;
6631 }
6632 else
6633 {
6634 i.rm.reg = i.op[op].regs->reg_num;
6635 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6636 i.rex |= REX_R;
6637 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6638 i.vrex |= REX_R;
6639 }
6640 }
6641
6642 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6643 must set it to 3 to indicate this is a register operand
6644 in the regmem field. */
6645 if (!i.mem_operands)
6646 i.rm.mode = 3;
6647 }
6648
6649 /* Fill in i.rm.reg field with extension opcode (if any). */
6650 if (i.tm.extension_opcode != None)
6651 i.rm.reg = i.tm.extension_opcode;
6652 }
6653 return default_seg;
6654 }
6655
6656 static void
6657 output_branch (void)
6658 {
6659 char *p;
6660 int size;
6661 int code16;
6662 int prefix;
6663 relax_substateT subtype;
6664 symbolS *sym;
6665 offsetT off;
6666
6667 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6668 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6669
6670 prefix = 0;
6671 if (i.prefix[DATA_PREFIX] != 0)
6672 {
6673 prefix = 1;
6674 i.prefixes -= 1;
6675 code16 ^= CODE16;
6676 }
6677 /* Pentium4 branch hints. */
6678 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6679 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6680 {
6681 prefix++;
6682 i.prefixes--;
6683 }
6684 if (i.prefix[REX_PREFIX] != 0)
6685 {
6686 prefix++;
6687 i.prefixes--;
6688 }
6689
6690 /* BND prefixed jump. */
6691 if (i.prefix[BND_PREFIX] != 0)
6692 {
6693 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6694 i.prefixes -= 1;
6695 }
6696
6697 if (i.prefixes != 0 && !intel_syntax)
6698 as_warn (_("skipping prefixes on this instruction"));
6699
6700 /* It's always a symbol; End frag & setup for relax.
6701 Make sure there is enough room in this frag for the largest
6702 instruction we may generate in md_convert_frag. This is 2
6703 bytes for the opcode and room for the prefix and largest
6704 displacement. */
6705 frag_grow (prefix + 2 + 4);
6706 /* Prefix and 1 opcode byte go in fr_fix. */
6707 p = frag_more (prefix + 1);
6708 if (i.prefix[DATA_PREFIX] != 0)
6709 *p++ = DATA_PREFIX_OPCODE;
6710 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6711 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6712 *p++ = i.prefix[SEG_PREFIX];
6713 if (i.prefix[REX_PREFIX] != 0)
6714 *p++ = i.prefix[REX_PREFIX];
6715 *p = i.tm.base_opcode;
6716
6717 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6718 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6719 else if (cpu_arch_flags.bitfield.cpui386)
6720 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6721 else
6722 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6723 subtype |= code16;
6724
6725 sym = i.op[0].disps->X_add_symbol;
6726 off = i.op[0].disps->X_add_number;
6727
6728 if (i.op[0].disps->X_op != O_constant
6729 && i.op[0].disps->X_op != O_symbol)
6730 {
6731 /* Handle complex expressions. */
6732 sym = make_expr_symbol (i.op[0].disps);
6733 off = 0;
6734 }
6735
6736 /* 1 possible extra opcode + 4 byte displacement go in var part.
6737 Pass reloc in fr_var. */
6738 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6739 }
6740
6741 static void
6742 output_jump (void)
6743 {
6744 char *p;
6745 int size;
6746 fixS *fixP;
6747
6748 if (i.tm.opcode_modifier.jumpbyte)
6749 {
6750 /* This is a loop or jecxz type instruction. */
6751 size = 1;
6752 if (i.prefix[ADDR_PREFIX] != 0)
6753 {
6754 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6755 i.prefixes -= 1;
6756 }
6757 /* Pentium4 branch hints. */
6758 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6759 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6760 {
6761 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6762 i.prefixes--;
6763 }
6764 }
6765 else
6766 {
6767 int code16;
6768
6769 code16 = 0;
6770 if (flag_code == CODE_16BIT)
6771 code16 = CODE16;
6772
6773 if (i.prefix[DATA_PREFIX] != 0)
6774 {
6775 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6776 i.prefixes -= 1;
6777 code16 ^= CODE16;
6778 }
6779
6780 size = 4;
6781 if (code16)
6782 size = 2;
6783 }
6784
6785 if (i.prefix[REX_PREFIX] != 0)
6786 {
6787 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6788 i.prefixes -= 1;
6789 }
6790
6791 /* BND prefixed jump. */
6792 if (i.prefix[BND_PREFIX] != 0)
6793 {
6794 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6795 i.prefixes -= 1;
6796 }
6797
6798 if (i.prefixes != 0 && !intel_syntax)
6799 as_warn (_("skipping prefixes on this instruction"));
6800
6801 p = frag_more (i.tm.opcode_length + size);
6802 switch (i.tm.opcode_length)
6803 {
6804 case 2:
6805 *p++ = i.tm.base_opcode >> 8;
6806 case 1:
6807 *p++ = i.tm.base_opcode;
6808 break;
6809 default:
6810 abort ();
6811 }
6812
6813 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6814 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6815
6816 /* All jumps handled here are signed, but don't use a signed limit
6817 check for 32 and 16 bit jumps as we want to allow wrap around at
6818 4G and 64k respectively. */
6819 if (size == 1)
6820 fixP->fx_signed = 1;
6821 }
6822
6823 static void
6824 output_interseg_jump (void)
6825 {
6826 char *p;
6827 int size;
6828 int prefix;
6829 int code16;
6830
6831 code16 = 0;
6832 if (flag_code == CODE_16BIT)
6833 code16 = CODE16;
6834
6835 prefix = 0;
6836 if (i.prefix[DATA_PREFIX] != 0)
6837 {
6838 prefix = 1;
6839 i.prefixes -= 1;
6840 code16 ^= CODE16;
6841 }
6842 if (i.prefix[REX_PREFIX] != 0)
6843 {
6844 prefix++;
6845 i.prefixes -= 1;
6846 }
6847
6848 size = 4;
6849 if (code16)
6850 size = 2;
6851
6852 if (i.prefixes != 0 && !intel_syntax)
6853 as_warn (_("skipping prefixes on this instruction"));
6854
6855 /* 1 opcode; 2 segment; offset */
6856 p = frag_more (prefix + 1 + 2 + size);
6857
6858 if (i.prefix[DATA_PREFIX] != 0)
6859 *p++ = DATA_PREFIX_OPCODE;
6860
6861 if (i.prefix[REX_PREFIX] != 0)
6862 *p++ = i.prefix[REX_PREFIX];
6863
6864 *p++ = i.tm.base_opcode;
6865 if (i.op[1].imms->X_op == O_constant)
6866 {
6867 offsetT n = i.op[1].imms->X_add_number;
6868
6869 if (size == 2
6870 && !fits_in_unsigned_word (n)
6871 && !fits_in_signed_word (n))
6872 {
6873 as_bad (_("16-bit jump out of range"));
6874 return;
6875 }
6876 md_number_to_chars (p, n, size);
6877 }
6878 else
6879 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6880 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6881 if (i.op[0].imms->X_op != O_constant)
6882 as_bad (_("can't handle non absolute segment in `%s'"),
6883 i.tm.name);
6884 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6885 }
6886
6887 static void
6888 output_insn (void)
6889 {
6890 fragS *insn_start_frag;
6891 offsetT insn_start_off;
6892
6893 /* Tie dwarf2 debug info to the address at the start of the insn.
6894 We can't do this after the insn has been output as the current
6895 frag may have been closed off. eg. by frag_var. */
6896 dwarf2_emit_insn (0);
6897
6898 insn_start_frag = frag_now;
6899 insn_start_off = frag_now_fix ();
6900
6901 /* Output jumps. */
6902 if (i.tm.opcode_modifier.jump)
6903 output_branch ();
6904 else if (i.tm.opcode_modifier.jumpbyte
6905 || i.tm.opcode_modifier.jumpdword)
6906 output_jump ();
6907 else if (i.tm.opcode_modifier.jumpintersegment)
6908 output_interseg_jump ();
6909 else
6910 {
6911 /* Output normal instructions here. */
6912 char *p;
6913 unsigned char *q;
6914 unsigned int j;
6915 unsigned int prefix;
6916
6917 /* Some processors fail on LOCK prefix. This options makes
6918 assembler ignore LOCK prefix and serves as a workaround. */
6919 if (omit_lock_prefix)
6920 {
6921 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6922 return;
6923 i.prefix[LOCK_PREFIX] = 0;
6924 }
6925
6926 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6927 don't need the explicit prefix. */
6928 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6929 {
6930 switch (i.tm.opcode_length)
6931 {
6932 case 3:
6933 if (i.tm.base_opcode & 0xff000000)
6934 {
6935 prefix = (i.tm.base_opcode >> 24) & 0xff;
6936 goto check_prefix;
6937 }
6938 break;
6939 case 2:
6940 if ((i.tm.base_opcode & 0xff0000) != 0)
6941 {
6942 prefix = (i.tm.base_opcode >> 16) & 0xff;
6943 if (i.tm.cpu_flags.bitfield.cpupadlock)
6944 {
6945 check_prefix:
6946 if (prefix != REPE_PREFIX_OPCODE
6947 || (i.prefix[REP_PREFIX]
6948 != REPE_PREFIX_OPCODE))
6949 add_prefix (prefix);
6950 }
6951 else
6952 add_prefix (prefix);
6953 }
6954 break;
6955 case 1:
6956 break;
6957 default:
6958 abort ();
6959 }
6960
6961 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6962 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
6963 R_X86_64_GOTTPOFF relocation so that linker can safely
6964 perform IE->LE optimization. */
6965 if (x86_elf_abi == X86_64_X32_ABI
6966 && i.operands == 2
6967 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
6968 && i.prefix[REX_PREFIX] == 0)
6969 add_prefix (REX_OPCODE);
6970 #endif
6971
6972 /* The prefix bytes. */
6973 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6974 if (*q)
6975 FRAG_APPEND_1_CHAR (*q);
6976 }
6977 else
6978 {
6979 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6980 if (*q)
6981 switch (j)
6982 {
6983 case REX_PREFIX:
6984 /* REX byte is encoded in VEX prefix. */
6985 break;
6986 case SEG_PREFIX:
6987 case ADDR_PREFIX:
6988 FRAG_APPEND_1_CHAR (*q);
6989 break;
6990 default:
6991 /* There should be no other prefixes for instructions
6992 with VEX prefix. */
6993 abort ();
6994 }
6995
6996 /* For EVEX instructions i.vrex should become 0 after
6997 build_evex_prefix. For VEX instructions upper 16 registers
6998 aren't available, so VREX should be 0. */
6999 if (i.vrex)
7000 abort ();
7001 /* Now the VEX prefix. */
7002 p = frag_more (i.vex.length);
7003 for (j = 0; j < i.vex.length; j++)
7004 p[j] = i.vex.bytes[j];
7005 }
7006
7007 /* Now the opcode; be careful about word order here! */
7008 if (i.tm.opcode_length == 1)
7009 {
7010 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7011 }
7012 else
7013 {
7014 switch (i.tm.opcode_length)
7015 {
7016 case 4:
7017 p = frag_more (4);
7018 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7019 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7020 break;
7021 case 3:
7022 p = frag_more (3);
7023 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7024 break;
7025 case 2:
7026 p = frag_more (2);
7027 break;
7028 default:
7029 abort ();
7030 break;
7031 }
7032
7033 /* Put out high byte first: can't use md_number_to_chars! */
7034 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7035 *p = i.tm.base_opcode & 0xff;
7036 }
7037
7038 /* Now the modrm byte and sib byte (if present). */
7039 if (i.tm.opcode_modifier.modrm)
7040 {
7041 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7042 | i.rm.reg << 3
7043 | i.rm.mode << 6));
7044 /* If i.rm.regmem == ESP (4)
7045 && i.rm.mode != (Register mode)
7046 && not 16 bit
7047 ==> need second modrm byte. */
7048 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7049 && i.rm.mode != 3
7050 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7051 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7052 | i.sib.index << 3
7053 | i.sib.scale << 6));
7054 }
7055
7056 if (i.disp_operands)
7057 output_disp (insn_start_frag, insn_start_off);
7058
7059 if (i.imm_operands)
7060 output_imm (insn_start_frag, insn_start_off);
7061 }
7062
7063 #ifdef DEBUG386
7064 if (flag_debug)
7065 {
7066 pi ("" /*line*/, &i);
7067 }
7068 #endif /* DEBUG386 */
7069 }
7070
7071 /* Return the size of the displacement operand N. */
7072
7073 static int
7074 disp_size (unsigned int n)
7075 {
7076 int size = 4;
7077
7078 /* Vec_Disp8 has to be 8bit. */
7079 if (i.types[n].bitfield.vec_disp8)
7080 size = 1;
7081 else if (i.types[n].bitfield.disp64)
7082 size = 8;
7083 else if (i.types[n].bitfield.disp8)
7084 size = 1;
7085 else if (i.types[n].bitfield.disp16)
7086 size = 2;
7087 return size;
7088 }
7089
7090 /* Return the size of the immediate operand N. */
7091
7092 static int
7093 imm_size (unsigned int n)
7094 {
7095 int size = 4;
7096 if (i.types[n].bitfield.imm64)
7097 size = 8;
7098 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7099 size = 1;
7100 else if (i.types[n].bitfield.imm16)
7101 size = 2;
7102 return size;
7103 }
7104
7105 static void
7106 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7107 {
7108 char *p;
7109 unsigned int n;
7110
7111 for (n = 0; n < i.operands; n++)
7112 {
7113 if (i.types[n].bitfield.vec_disp8
7114 || operand_type_check (i.types[n], disp))
7115 {
7116 if (i.op[n].disps->X_op == O_constant)
7117 {
7118 int size = disp_size (n);
7119 offsetT val = i.op[n].disps->X_add_number;
7120
7121 if (i.types[n].bitfield.vec_disp8)
7122 val >>= i.memshift;
7123 val = offset_in_range (val, size);
7124 p = frag_more (size);
7125 md_number_to_chars (p, val, size);
7126 }
7127 else
7128 {
7129 enum bfd_reloc_code_real reloc_type;
7130 int size = disp_size (n);
7131 int sign = i.types[n].bitfield.disp32s;
7132 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7133
7134 /* We can't have 8 bit displacement here. */
7135 gas_assert (!i.types[n].bitfield.disp8);
7136
7137 /* The PC relative address is computed relative
7138 to the instruction boundary, so in case immediate
7139 fields follows, we need to adjust the value. */
7140 if (pcrel && i.imm_operands)
7141 {
7142 unsigned int n1;
7143 int sz = 0;
7144
7145 for (n1 = 0; n1 < i.operands; n1++)
7146 if (operand_type_check (i.types[n1], imm))
7147 {
7148 /* Only one immediate is allowed for PC
7149 relative address. */
7150 gas_assert (sz == 0);
7151 sz = imm_size (n1);
7152 i.op[n].disps->X_add_number -= sz;
7153 }
7154 /* We should find the immediate. */
7155 gas_assert (sz != 0);
7156 }
7157
7158 p = frag_more (size);
7159 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7160 if (GOT_symbol
7161 && GOT_symbol == i.op[n].disps->X_add_symbol
7162 && (((reloc_type == BFD_RELOC_32
7163 || reloc_type == BFD_RELOC_X86_64_32S
7164 || (reloc_type == BFD_RELOC_64
7165 && object_64bit))
7166 && (i.op[n].disps->X_op == O_symbol
7167 || (i.op[n].disps->X_op == O_add
7168 && ((symbol_get_value_expression
7169 (i.op[n].disps->X_op_symbol)->X_op)
7170 == O_subtract))))
7171 || reloc_type == BFD_RELOC_32_PCREL))
7172 {
7173 offsetT add;
7174
7175 if (insn_start_frag == frag_now)
7176 add = (p - frag_now->fr_literal) - insn_start_off;
7177 else
7178 {
7179 fragS *fr;
7180
7181 add = insn_start_frag->fr_fix - insn_start_off;
7182 for (fr = insn_start_frag->fr_next;
7183 fr && fr != frag_now; fr = fr->fr_next)
7184 add += fr->fr_fix;
7185 add += p - frag_now->fr_literal;
7186 }
7187
7188 if (!object_64bit)
7189 {
7190 reloc_type = BFD_RELOC_386_GOTPC;
7191 i.op[n].imms->X_add_number += add;
7192 }
7193 else if (reloc_type == BFD_RELOC_64)
7194 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7195 else
7196 /* Don't do the adjustment for x86-64, as there
7197 the pcrel addressing is relative to the _next_
7198 insn, and that is taken care of in other code. */
7199 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7200 }
7201 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7202 i.op[n].disps, pcrel, reloc_type);
7203 }
7204 }
7205 }
7206 }
7207
7208 static void
7209 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7210 {
7211 char *p;
7212 unsigned int n;
7213
7214 for (n = 0; n < i.operands; n++)
7215 {
7216 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7217 if (i.rounding && (int) n == i.rounding->operand)
7218 continue;
7219
7220 if (operand_type_check (i.types[n], imm))
7221 {
7222 if (i.op[n].imms->X_op == O_constant)
7223 {
7224 int size = imm_size (n);
7225 offsetT val;
7226
7227 val = offset_in_range (i.op[n].imms->X_add_number,
7228 size);
7229 p = frag_more (size);
7230 md_number_to_chars (p, val, size);
7231 }
7232 else
7233 {
7234 /* Not absolute_section.
7235 Need a 32-bit fixup (don't support 8bit
7236 non-absolute imms). Try to support other
7237 sizes ... */
7238 enum bfd_reloc_code_real reloc_type;
7239 int size = imm_size (n);
7240 int sign;
7241
7242 if (i.types[n].bitfield.imm32s
7243 && (i.suffix == QWORD_MNEM_SUFFIX
7244 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7245 sign = 1;
7246 else
7247 sign = 0;
7248
7249 p = frag_more (size);
7250 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7251
7252 /* This is tough to explain. We end up with this one if we
7253 * have operands that look like
7254 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7255 * obtain the absolute address of the GOT, and it is strongly
7256 * preferable from a performance point of view to avoid using
7257 * a runtime relocation for this. The actual sequence of
7258 * instructions often look something like:
7259 *
7260 * call .L66
7261 * .L66:
7262 * popl %ebx
7263 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7264 *
7265 * The call and pop essentially return the absolute address
7266 * of the label .L66 and store it in %ebx. The linker itself
7267 * will ultimately change the first operand of the addl so
7268 * that %ebx points to the GOT, but to keep things simple, the
7269 * .o file must have this operand set so that it generates not
7270 * the absolute address of .L66, but the absolute address of
7271 * itself. This allows the linker itself simply treat a GOTPC
7272 * relocation as asking for a pcrel offset to the GOT to be
7273 * added in, and the addend of the relocation is stored in the
7274 * operand field for the instruction itself.
7275 *
7276 * Our job here is to fix the operand so that it would add
7277 * the correct offset so that %ebx would point to itself. The
7278 * thing that is tricky is that .-.L66 will point to the
7279 * beginning of the instruction, so we need to further modify
7280 * the operand so that it will point to itself. There are
7281 * other cases where you have something like:
7282 *
7283 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7284 *
7285 * and here no correction would be required. Internally in
7286 * the assembler we treat operands of this form as not being
7287 * pcrel since the '.' is explicitly mentioned, and I wonder
7288 * whether it would simplify matters to do it this way. Who
7289 * knows. In earlier versions of the PIC patches, the
7290 * pcrel_adjust field was used to store the correction, but
7291 * since the expression is not pcrel, I felt it would be
7292 * confusing to do it this way. */
7293
7294 if ((reloc_type == BFD_RELOC_32
7295 || reloc_type == BFD_RELOC_X86_64_32S
7296 || reloc_type == BFD_RELOC_64)
7297 && GOT_symbol
7298 && GOT_symbol == i.op[n].imms->X_add_symbol
7299 && (i.op[n].imms->X_op == O_symbol
7300 || (i.op[n].imms->X_op == O_add
7301 && ((symbol_get_value_expression
7302 (i.op[n].imms->X_op_symbol)->X_op)
7303 == O_subtract))))
7304 {
7305 offsetT add;
7306
7307 if (insn_start_frag == frag_now)
7308 add = (p - frag_now->fr_literal) - insn_start_off;
7309 else
7310 {
7311 fragS *fr;
7312
7313 add = insn_start_frag->fr_fix - insn_start_off;
7314 for (fr = insn_start_frag->fr_next;
7315 fr && fr != frag_now; fr = fr->fr_next)
7316 add += fr->fr_fix;
7317 add += p - frag_now->fr_literal;
7318 }
7319
7320 if (!object_64bit)
7321 reloc_type = BFD_RELOC_386_GOTPC;
7322 else if (size == 4)
7323 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7324 else if (size == 8)
7325 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7326 i.op[n].imms->X_add_number += add;
7327 }
7328 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7329 i.op[n].imms, 0, reloc_type);
7330 }
7331 }
7332 }
7333 }
7334 \f
7335 /* x86_cons_fix_new is called via the expression parsing code when a
7336 reloc is needed. We use this hook to get the correct .got reloc. */
7337 static int cons_sign = -1;
7338
7339 void
7340 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7341 expressionS *exp, bfd_reloc_code_real_type r)
7342 {
7343 r = reloc (len, 0, cons_sign, r);
7344
7345 #ifdef TE_PE
7346 if (exp->X_op == O_secrel)
7347 {
7348 exp->X_op = O_symbol;
7349 r = BFD_RELOC_32_SECREL;
7350 }
7351 #endif
7352
7353 fix_new_exp (frag, off, len, exp, 0, r);
7354 }
7355
7356 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7357 purpose of the `.dc.a' internal pseudo-op. */
7358
7359 int
7360 x86_address_bytes (void)
7361 {
7362 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7363 return 4;
7364 return stdoutput->arch_info->bits_per_address / 8;
7365 }
7366
7367 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7368 || defined (LEX_AT)
7369 # define lex_got(reloc, adjust, types) NULL
7370 #else
7371 /* Parse operands of the form
7372 <symbol>@GOTOFF+<nnn>
7373 and similar .plt or .got references.
7374
7375 If we find one, set up the correct relocation in RELOC and copy the
7376 input string, minus the `@GOTOFF' into a malloc'd buffer for
7377 parsing by the calling routine. Return this buffer, and if ADJUST
7378 is non-null set it to the length of the string we removed from the
7379 input line. Otherwise return NULL. */
7380 static char *
7381 lex_got (enum bfd_reloc_code_real *rel,
7382 int *adjust,
7383 i386_operand_type *types)
7384 {
7385 /* Some of the relocations depend on the size of what field is to
7386 be relocated. But in our callers i386_immediate and i386_displacement
7387 we don't yet know the operand size (this will be set by insn
7388 matching). Hence we record the word32 relocation here,
7389 and adjust the reloc according to the real size in reloc(). */
7390 static const struct {
7391 const char *str;
7392 int len;
7393 const enum bfd_reloc_code_real rel[2];
7394 const i386_operand_type types64;
7395 } gotrel[] = {
7396 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7397 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7398 BFD_RELOC_SIZE32 },
7399 OPERAND_TYPE_IMM32_64 },
7400 #endif
7401 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7402 BFD_RELOC_X86_64_PLTOFF64 },
7403 OPERAND_TYPE_IMM64 },
7404 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7405 BFD_RELOC_X86_64_PLT32 },
7406 OPERAND_TYPE_IMM32_32S_DISP32 },
7407 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7408 BFD_RELOC_X86_64_GOTPLT64 },
7409 OPERAND_TYPE_IMM64_DISP64 },
7410 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7411 BFD_RELOC_X86_64_GOTOFF64 },
7412 OPERAND_TYPE_IMM64_DISP64 },
7413 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7414 BFD_RELOC_X86_64_GOTPCREL },
7415 OPERAND_TYPE_IMM32_32S_DISP32 },
7416 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7417 BFD_RELOC_X86_64_TLSGD },
7418 OPERAND_TYPE_IMM32_32S_DISP32 },
7419 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7420 _dummy_first_bfd_reloc_code_real },
7421 OPERAND_TYPE_NONE },
7422 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7423 BFD_RELOC_X86_64_TLSLD },
7424 OPERAND_TYPE_IMM32_32S_DISP32 },
7425 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7426 BFD_RELOC_X86_64_GOTTPOFF },
7427 OPERAND_TYPE_IMM32_32S_DISP32 },
7428 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7429 BFD_RELOC_X86_64_TPOFF32 },
7430 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7431 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7432 _dummy_first_bfd_reloc_code_real },
7433 OPERAND_TYPE_NONE },
7434 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7435 BFD_RELOC_X86_64_DTPOFF32 },
7436 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7437 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7438 _dummy_first_bfd_reloc_code_real },
7439 OPERAND_TYPE_NONE },
7440 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7441 _dummy_first_bfd_reloc_code_real },
7442 OPERAND_TYPE_NONE },
7443 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7444 BFD_RELOC_X86_64_GOT32 },
7445 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7446 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7447 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7448 OPERAND_TYPE_IMM32_32S_DISP32 },
7449 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7450 BFD_RELOC_X86_64_TLSDESC_CALL },
7451 OPERAND_TYPE_IMM32_32S_DISP32 },
7452 };
7453 char *cp;
7454 unsigned int j;
7455
7456 #if defined (OBJ_MAYBE_ELF)
7457 if (!IS_ELF)
7458 return NULL;
7459 #endif
7460
7461 for (cp = input_line_pointer; *cp != '@'; cp++)
7462 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7463 return NULL;
7464
7465 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7466 {
7467 int len = gotrel[j].len;
7468 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7469 {
7470 if (gotrel[j].rel[object_64bit] != 0)
7471 {
7472 int first, second;
7473 char *tmpbuf, *past_reloc;
7474
7475 *rel = gotrel[j].rel[object_64bit];
7476
7477 if (types)
7478 {
7479 if (flag_code != CODE_64BIT)
7480 {
7481 types->bitfield.imm32 = 1;
7482 types->bitfield.disp32 = 1;
7483 }
7484 else
7485 *types = gotrel[j].types64;
7486 }
7487
7488 if (j != 0 && GOT_symbol == NULL)
7489 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7490
7491 /* The length of the first part of our input line. */
7492 first = cp - input_line_pointer;
7493
7494 /* The second part goes from after the reloc token until
7495 (and including) an end_of_line char or comma. */
7496 past_reloc = cp + 1 + len;
7497 cp = past_reloc;
7498 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7499 ++cp;
7500 second = cp + 1 - past_reloc;
7501
7502 /* Allocate and copy string. The trailing NUL shouldn't
7503 be necessary, but be safe. */
7504 tmpbuf = (char *) xmalloc (first + second + 2);
7505 memcpy (tmpbuf, input_line_pointer, first);
7506 if (second != 0 && *past_reloc != ' ')
7507 /* Replace the relocation token with ' ', so that
7508 errors like foo@GOTOFF1 will be detected. */
7509 tmpbuf[first++] = ' ';
7510 else
7511 /* Increment length by 1 if the relocation token is
7512 removed. */
7513 len++;
7514 if (adjust)
7515 *adjust = len;
7516 memcpy (tmpbuf + first, past_reloc, second);
7517 tmpbuf[first + second] = '\0';
7518 return tmpbuf;
7519 }
7520
7521 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7522 gotrel[j].str, 1 << (5 + object_64bit));
7523 return NULL;
7524 }
7525 }
7526
7527 /* Might be a symbol version string. Don't as_bad here. */
7528 return NULL;
7529 }
7530 #endif
7531
7532 #ifdef TE_PE
7533 #ifdef lex_got
7534 #undef lex_got
7535 #endif
7536 /* Parse operands of the form
7537 <symbol>@SECREL32+<nnn>
7538
7539 If we find one, set up the correct relocation in RELOC and copy the
7540 input string, minus the `@SECREL32' into a malloc'd buffer for
7541 parsing by the calling routine. Return this buffer, and if ADJUST
7542 is non-null set it to the length of the string we removed from the
7543 input line. Otherwise return NULL.
7544
7545 This function is copied from the ELF version above adjusted for PE targets. */
7546
7547 static char *
7548 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7549 int *adjust ATTRIBUTE_UNUSED,
7550 i386_operand_type *types)
7551 {
7552 static const struct
7553 {
7554 const char *str;
7555 int len;
7556 const enum bfd_reloc_code_real rel[2];
7557 const i386_operand_type types64;
7558 }
7559 gotrel[] =
7560 {
7561 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7562 BFD_RELOC_32_SECREL },
7563 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7564 };
7565
7566 char *cp;
7567 unsigned j;
7568
7569 for (cp = input_line_pointer; *cp != '@'; cp++)
7570 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7571 return NULL;
7572
7573 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7574 {
7575 int len = gotrel[j].len;
7576
7577 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7578 {
7579 if (gotrel[j].rel[object_64bit] != 0)
7580 {
7581 int first, second;
7582 char *tmpbuf, *past_reloc;
7583
7584 *rel = gotrel[j].rel[object_64bit];
7585 if (adjust)
7586 *adjust = len;
7587
7588 if (types)
7589 {
7590 if (flag_code != CODE_64BIT)
7591 {
7592 types->bitfield.imm32 = 1;
7593 types->bitfield.disp32 = 1;
7594 }
7595 else
7596 *types = gotrel[j].types64;
7597 }
7598
7599 /* The length of the first part of our input line. */
7600 first = cp - input_line_pointer;
7601
7602 /* The second part goes from after the reloc token until
7603 (and including) an end_of_line char or comma. */
7604 past_reloc = cp + 1 + len;
7605 cp = past_reloc;
7606 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7607 ++cp;
7608 second = cp + 1 - past_reloc;
7609
7610 /* Allocate and copy string. The trailing NUL shouldn't
7611 be necessary, but be safe. */
7612 tmpbuf = (char *) xmalloc (first + second + 2);
7613 memcpy (tmpbuf, input_line_pointer, first);
7614 if (second != 0 && *past_reloc != ' ')
7615 /* Replace the relocation token with ' ', so that
7616 errors like foo@SECLREL321 will be detected. */
7617 tmpbuf[first++] = ' ';
7618 memcpy (tmpbuf + first, past_reloc, second);
7619 tmpbuf[first + second] = '\0';
7620 return tmpbuf;
7621 }
7622
7623 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7624 gotrel[j].str, 1 << (5 + object_64bit));
7625 return NULL;
7626 }
7627 }
7628
7629 /* Might be a symbol version string. Don't as_bad here. */
7630 return NULL;
7631 }
7632
7633 #endif /* TE_PE */
7634
7635 bfd_reloc_code_real_type
7636 x86_cons (expressionS *exp, int size)
7637 {
7638 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7639
7640 intel_syntax = -intel_syntax;
7641
7642 exp->X_md = 0;
7643 if (size == 4 || (object_64bit && size == 8))
7644 {
7645 /* Handle @GOTOFF and the like in an expression. */
7646 char *save;
7647 char *gotfree_input_line;
7648 int adjust = 0;
7649
7650 save = input_line_pointer;
7651 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7652 if (gotfree_input_line)
7653 input_line_pointer = gotfree_input_line;
7654
7655 expression (exp);
7656
7657 if (gotfree_input_line)
7658 {
7659 /* expression () has merrily parsed up to the end of line,
7660 or a comma - in the wrong buffer. Transfer how far
7661 input_line_pointer has moved to the right buffer. */
7662 input_line_pointer = (save
7663 + (input_line_pointer - gotfree_input_line)
7664 + adjust);
7665 free (gotfree_input_line);
7666 if (exp->X_op == O_constant
7667 || exp->X_op == O_absent
7668 || exp->X_op == O_illegal
7669 || exp->X_op == O_register
7670 || exp->X_op == O_big)
7671 {
7672 char c = *input_line_pointer;
7673 *input_line_pointer = 0;
7674 as_bad (_("missing or invalid expression `%s'"), save);
7675 *input_line_pointer = c;
7676 }
7677 }
7678 }
7679 else
7680 expression (exp);
7681
7682 intel_syntax = -intel_syntax;
7683
7684 if (intel_syntax)
7685 i386_intel_simplify (exp);
7686
7687 return got_reloc;
7688 }
7689
7690 static void
7691 signed_cons (int size)
7692 {
7693 if (flag_code == CODE_64BIT)
7694 cons_sign = 1;
7695 cons (size);
7696 cons_sign = -1;
7697 }
7698
7699 #ifdef TE_PE
7700 static void
7701 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7702 {
7703 expressionS exp;
7704
7705 do
7706 {
7707 expression (&exp);
7708 if (exp.X_op == O_symbol)
7709 exp.X_op = O_secrel;
7710
7711 emit_expr (&exp, 4);
7712 }
7713 while (*input_line_pointer++ == ',');
7714
7715 input_line_pointer--;
7716 demand_empty_rest_of_line ();
7717 }
7718 #endif
7719
7720 /* Handle Vector operations. */
7721
7722 static char *
7723 check_VecOperations (char *op_string, char *op_end)
7724 {
7725 const reg_entry *mask;
7726 const char *saved;
7727 char *end_op;
7728
7729 while (*op_string
7730 && (op_end == NULL || op_string < op_end))
7731 {
7732 saved = op_string;
7733 if (*op_string == '{')
7734 {
7735 op_string++;
7736
7737 /* Check broadcasts. */
7738 if (strncmp (op_string, "1to", 3) == 0)
7739 {
7740 int bcst_type;
7741
7742 if (i.broadcast)
7743 goto duplicated_vec_op;
7744
7745 op_string += 3;
7746 if (*op_string == '8')
7747 bcst_type = BROADCAST_1TO8;
7748 else if (*op_string == '4')
7749 bcst_type = BROADCAST_1TO4;
7750 else if (*op_string == '2')
7751 bcst_type = BROADCAST_1TO2;
7752 else if (*op_string == '1'
7753 && *(op_string+1) == '6')
7754 {
7755 bcst_type = BROADCAST_1TO16;
7756 op_string++;
7757 }
7758 else
7759 {
7760 as_bad (_("Unsupported broadcast: `%s'"), saved);
7761 return NULL;
7762 }
7763 op_string++;
7764
7765 broadcast_op.type = bcst_type;
7766 broadcast_op.operand = this_operand;
7767 i.broadcast = &broadcast_op;
7768 }
7769 /* Check masking operation. */
7770 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7771 {
7772 /* k0 can't be used for write mask. */
7773 if (mask->reg_num == 0)
7774 {
7775 as_bad (_("`%s' can't be used for write mask"),
7776 op_string);
7777 return NULL;
7778 }
7779
7780 if (!i.mask)
7781 {
7782 mask_op.mask = mask;
7783 mask_op.zeroing = 0;
7784 mask_op.operand = this_operand;
7785 i.mask = &mask_op;
7786 }
7787 else
7788 {
7789 if (i.mask->mask)
7790 goto duplicated_vec_op;
7791
7792 i.mask->mask = mask;
7793
7794 /* Only "{z}" is allowed here. No need to check
7795 zeroing mask explicitly. */
7796 if (i.mask->operand != this_operand)
7797 {
7798 as_bad (_("invalid write mask `%s'"), saved);
7799 return NULL;
7800 }
7801 }
7802
7803 op_string = end_op;
7804 }
7805 /* Check zeroing-flag for masking operation. */
7806 else if (*op_string == 'z')
7807 {
7808 if (!i.mask)
7809 {
7810 mask_op.mask = NULL;
7811 mask_op.zeroing = 1;
7812 mask_op.operand = this_operand;
7813 i.mask = &mask_op;
7814 }
7815 else
7816 {
7817 if (i.mask->zeroing)
7818 {
7819 duplicated_vec_op:
7820 as_bad (_("duplicated `%s'"), saved);
7821 return NULL;
7822 }
7823
7824 i.mask->zeroing = 1;
7825
7826 /* Only "{%k}" is allowed here. No need to check mask
7827 register explicitly. */
7828 if (i.mask->operand != this_operand)
7829 {
7830 as_bad (_("invalid zeroing-masking `%s'"),
7831 saved);
7832 return NULL;
7833 }
7834 }
7835
7836 op_string++;
7837 }
7838 else
7839 goto unknown_vec_op;
7840
7841 if (*op_string != '}')
7842 {
7843 as_bad (_("missing `}' in `%s'"), saved);
7844 return NULL;
7845 }
7846 op_string++;
7847 continue;
7848 }
7849 unknown_vec_op:
7850 /* We don't know this one. */
7851 as_bad (_("unknown vector operation: `%s'"), saved);
7852 return NULL;
7853 }
7854
7855 return op_string;
7856 }
7857
7858 static int
7859 i386_immediate (char *imm_start)
7860 {
7861 char *save_input_line_pointer;
7862 char *gotfree_input_line;
7863 segT exp_seg = 0;
7864 expressionS *exp;
7865 i386_operand_type types;
7866
7867 operand_type_set (&types, ~0);
7868
7869 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7870 {
7871 as_bad (_("at most %d immediate operands are allowed"),
7872 MAX_IMMEDIATE_OPERANDS);
7873 return 0;
7874 }
7875
7876 exp = &im_expressions[i.imm_operands++];
7877 i.op[this_operand].imms = exp;
7878
7879 if (is_space_char (*imm_start))
7880 ++imm_start;
7881
7882 save_input_line_pointer = input_line_pointer;
7883 input_line_pointer = imm_start;
7884
7885 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7886 if (gotfree_input_line)
7887 input_line_pointer = gotfree_input_line;
7888
7889 exp_seg = expression (exp);
7890
7891 SKIP_WHITESPACE ();
7892
7893 /* Handle vector operations. */
7894 if (*input_line_pointer == '{')
7895 {
7896 input_line_pointer = check_VecOperations (input_line_pointer,
7897 NULL);
7898 if (input_line_pointer == NULL)
7899 return 0;
7900 }
7901
7902 if (*input_line_pointer)
7903 as_bad (_("junk `%s' after expression"), input_line_pointer);
7904
7905 input_line_pointer = save_input_line_pointer;
7906 if (gotfree_input_line)
7907 {
7908 free (gotfree_input_line);
7909
7910 if (exp->X_op == O_constant || exp->X_op == O_register)
7911 exp->X_op = O_illegal;
7912 }
7913
7914 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7915 }
7916
7917 static int
7918 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7919 i386_operand_type types, const char *imm_start)
7920 {
7921 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7922 {
7923 if (imm_start)
7924 as_bad (_("missing or invalid immediate expression `%s'"),
7925 imm_start);
7926 return 0;
7927 }
7928 else if (exp->X_op == O_constant)
7929 {
7930 /* Size it properly later. */
7931 i.types[this_operand].bitfield.imm64 = 1;
7932 /* If not 64bit, sign extend val. */
7933 if (flag_code != CODE_64BIT
7934 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7935 exp->X_add_number
7936 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7937 }
7938 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7939 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7940 && exp_seg != absolute_section
7941 && exp_seg != text_section
7942 && exp_seg != data_section
7943 && exp_seg != bss_section
7944 && exp_seg != undefined_section
7945 && !bfd_is_com_section (exp_seg))
7946 {
7947 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7948 return 0;
7949 }
7950 #endif
7951 else if (!intel_syntax && exp_seg == reg_section)
7952 {
7953 if (imm_start)
7954 as_bad (_("illegal immediate register operand %s"), imm_start);
7955 return 0;
7956 }
7957 else
7958 {
7959 /* This is an address. The size of the address will be
7960 determined later, depending on destination register,
7961 suffix, or the default for the section. */
7962 i.types[this_operand].bitfield.imm8 = 1;
7963 i.types[this_operand].bitfield.imm16 = 1;
7964 i.types[this_operand].bitfield.imm32 = 1;
7965 i.types[this_operand].bitfield.imm32s = 1;
7966 i.types[this_operand].bitfield.imm64 = 1;
7967 i.types[this_operand] = operand_type_and (i.types[this_operand],
7968 types);
7969 }
7970
7971 return 1;
7972 }
7973
7974 static char *
7975 i386_scale (char *scale)
7976 {
7977 offsetT val;
7978 char *save = input_line_pointer;
7979
7980 input_line_pointer = scale;
7981 val = get_absolute_expression ();
7982
7983 switch (val)
7984 {
7985 case 1:
7986 i.log2_scale_factor = 0;
7987 break;
7988 case 2:
7989 i.log2_scale_factor = 1;
7990 break;
7991 case 4:
7992 i.log2_scale_factor = 2;
7993 break;
7994 case 8:
7995 i.log2_scale_factor = 3;
7996 break;
7997 default:
7998 {
7999 char sep = *input_line_pointer;
8000
8001 *input_line_pointer = '\0';
8002 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8003 scale);
8004 *input_line_pointer = sep;
8005 input_line_pointer = save;
8006 return NULL;
8007 }
8008 }
8009 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8010 {
8011 as_warn (_("scale factor of %d without an index register"),
8012 1 << i.log2_scale_factor);
8013 i.log2_scale_factor = 0;
8014 }
8015 scale = input_line_pointer;
8016 input_line_pointer = save;
8017 return scale;
8018 }
8019
8020 static int
8021 i386_displacement (char *disp_start, char *disp_end)
8022 {
8023 expressionS *exp;
8024 segT exp_seg = 0;
8025 char *save_input_line_pointer;
8026 char *gotfree_input_line;
8027 int override;
8028 i386_operand_type bigdisp, types = anydisp;
8029 int ret;
8030
8031 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8032 {
8033 as_bad (_("at most %d displacement operands are allowed"),
8034 MAX_MEMORY_OPERANDS);
8035 return 0;
8036 }
8037
8038 operand_type_set (&bigdisp, 0);
8039 if ((i.types[this_operand].bitfield.jumpabsolute)
8040 || (!current_templates->start->opcode_modifier.jump
8041 && !current_templates->start->opcode_modifier.jumpdword))
8042 {
8043 bigdisp.bitfield.disp32 = 1;
8044 override = (i.prefix[ADDR_PREFIX] != 0);
8045 if (flag_code == CODE_64BIT)
8046 {
8047 if (!override)
8048 {
8049 bigdisp.bitfield.disp32s = 1;
8050 bigdisp.bitfield.disp64 = 1;
8051 }
8052 }
8053 else if ((flag_code == CODE_16BIT) ^ override)
8054 {
8055 bigdisp.bitfield.disp32 = 0;
8056 bigdisp.bitfield.disp16 = 1;
8057 }
8058 }
8059 else
8060 {
8061 /* For PC-relative branches, the width of the displacement
8062 is dependent upon data size, not address size. */
8063 override = (i.prefix[DATA_PREFIX] != 0);
8064 if (flag_code == CODE_64BIT)
8065 {
8066 if (override || i.suffix == WORD_MNEM_SUFFIX)
8067 bigdisp.bitfield.disp16 = 1;
8068 else
8069 {
8070 bigdisp.bitfield.disp32 = 1;
8071 bigdisp.bitfield.disp32s = 1;
8072 }
8073 }
8074 else
8075 {
8076 if (!override)
8077 override = (i.suffix == (flag_code != CODE_16BIT
8078 ? WORD_MNEM_SUFFIX
8079 : LONG_MNEM_SUFFIX));
8080 bigdisp.bitfield.disp32 = 1;
8081 if ((flag_code == CODE_16BIT) ^ override)
8082 {
8083 bigdisp.bitfield.disp32 = 0;
8084 bigdisp.bitfield.disp16 = 1;
8085 }
8086 }
8087 }
8088 i.types[this_operand] = operand_type_or (i.types[this_operand],
8089 bigdisp);
8090
8091 exp = &disp_expressions[i.disp_operands];
8092 i.op[this_operand].disps = exp;
8093 i.disp_operands++;
8094 save_input_line_pointer = input_line_pointer;
8095 input_line_pointer = disp_start;
8096 END_STRING_AND_SAVE (disp_end);
8097
8098 #ifndef GCC_ASM_O_HACK
8099 #define GCC_ASM_O_HACK 0
8100 #endif
8101 #if GCC_ASM_O_HACK
8102 END_STRING_AND_SAVE (disp_end + 1);
8103 if (i.types[this_operand].bitfield.baseIndex
8104 && displacement_string_end[-1] == '+')
8105 {
8106 /* This hack is to avoid a warning when using the "o"
8107 constraint within gcc asm statements.
8108 For instance:
8109
8110 #define _set_tssldt_desc(n,addr,limit,type) \
8111 __asm__ __volatile__ ( \
8112 "movw %w2,%0\n\t" \
8113 "movw %w1,2+%0\n\t" \
8114 "rorl $16,%1\n\t" \
8115 "movb %b1,4+%0\n\t" \
8116 "movb %4,5+%0\n\t" \
8117 "movb $0,6+%0\n\t" \
8118 "movb %h1,7+%0\n\t" \
8119 "rorl $16,%1" \
8120 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8121
8122 This works great except that the output assembler ends
8123 up looking a bit weird if it turns out that there is
8124 no offset. You end up producing code that looks like:
8125
8126 #APP
8127 movw $235,(%eax)
8128 movw %dx,2+(%eax)
8129 rorl $16,%edx
8130 movb %dl,4+(%eax)
8131 movb $137,5+(%eax)
8132 movb $0,6+(%eax)
8133 movb %dh,7+(%eax)
8134 rorl $16,%edx
8135 #NO_APP
8136
8137 So here we provide the missing zero. */
8138
8139 *displacement_string_end = '0';
8140 }
8141 #endif
8142 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8143 if (gotfree_input_line)
8144 input_line_pointer = gotfree_input_line;
8145
8146 exp_seg = expression (exp);
8147
8148 SKIP_WHITESPACE ();
8149 if (*input_line_pointer)
8150 as_bad (_("junk `%s' after expression"), input_line_pointer);
8151 #if GCC_ASM_O_HACK
8152 RESTORE_END_STRING (disp_end + 1);
8153 #endif
8154 input_line_pointer = save_input_line_pointer;
8155 if (gotfree_input_line)
8156 {
8157 free (gotfree_input_line);
8158
8159 if (exp->X_op == O_constant || exp->X_op == O_register)
8160 exp->X_op = O_illegal;
8161 }
8162
8163 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8164
8165 RESTORE_END_STRING (disp_end);
8166
8167 return ret;
8168 }
8169
8170 static int
8171 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8172 i386_operand_type types, const char *disp_start)
8173 {
8174 i386_operand_type bigdisp;
8175 int ret = 1;
8176
8177 /* We do this to make sure that the section symbol is in
8178 the symbol table. We will ultimately change the relocation
8179 to be relative to the beginning of the section. */
8180 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8181 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8182 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8183 {
8184 if (exp->X_op != O_symbol)
8185 goto inv_disp;
8186
8187 if (S_IS_LOCAL (exp->X_add_symbol)
8188 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8189 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8190 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8191 exp->X_op = O_subtract;
8192 exp->X_op_symbol = GOT_symbol;
8193 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8194 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8195 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8196 i.reloc[this_operand] = BFD_RELOC_64;
8197 else
8198 i.reloc[this_operand] = BFD_RELOC_32;
8199 }
8200
8201 else if (exp->X_op == O_absent
8202 || exp->X_op == O_illegal
8203 || exp->X_op == O_big)
8204 {
8205 inv_disp:
8206 as_bad (_("missing or invalid displacement expression `%s'"),
8207 disp_start);
8208 ret = 0;
8209 }
8210
8211 else if (flag_code == CODE_64BIT
8212 && !i.prefix[ADDR_PREFIX]
8213 && exp->X_op == O_constant)
8214 {
8215 /* Since displacement is signed extended to 64bit, don't allow
8216 disp32 and turn off disp32s if they are out of range. */
8217 i.types[this_operand].bitfield.disp32 = 0;
8218 if (!fits_in_signed_long (exp->X_add_number))
8219 {
8220 i.types[this_operand].bitfield.disp32s = 0;
8221 if (i.types[this_operand].bitfield.baseindex)
8222 {
8223 as_bad (_("0x%lx out range of signed 32bit displacement"),
8224 (long) exp->X_add_number);
8225 ret = 0;
8226 }
8227 }
8228 }
8229
8230 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8231 else if (exp->X_op != O_constant
8232 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8233 && exp_seg != absolute_section
8234 && exp_seg != text_section
8235 && exp_seg != data_section
8236 && exp_seg != bss_section
8237 && exp_seg != undefined_section
8238 && !bfd_is_com_section (exp_seg))
8239 {
8240 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8241 ret = 0;
8242 }
8243 #endif
8244
8245 /* Check if this is a displacement only operand. */
8246 bigdisp = i.types[this_operand];
8247 bigdisp.bitfield.disp8 = 0;
8248 bigdisp.bitfield.disp16 = 0;
8249 bigdisp.bitfield.disp32 = 0;
8250 bigdisp.bitfield.disp32s = 0;
8251 bigdisp.bitfield.disp64 = 0;
8252 if (operand_type_all_zero (&bigdisp))
8253 i.types[this_operand] = operand_type_and (i.types[this_operand],
8254 types);
8255
8256 return ret;
8257 }
8258
8259 /* Make sure the memory operand we've been dealt is valid.
8260 Return 1 on success, 0 on a failure. */
8261
8262 static int
8263 i386_index_check (const char *operand_string)
8264 {
8265 const char *kind = "base/index";
8266 enum flag_code addr_mode;
8267
8268 if (i.prefix[ADDR_PREFIX])
8269 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8270 else
8271 {
8272 addr_mode = flag_code;
8273
8274 #if INFER_ADDR_PREFIX
8275 if (i.mem_operands == 0)
8276 {
8277 /* Infer address prefix from the first memory operand. */
8278 const reg_entry *addr_reg = i.base_reg;
8279
8280 if (addr_reg == NULL)
8281 addr_reg = i.index_reg;
8282
8283 if (addr_reg)
8284 {
8285 if (addr_reg->reg_num == RegEip
8286 || addr_reg->reg_num == RegEiz
8287 || addr_reg->reg_type.bitfield.reg32)
8288 addr_mode = CODE_32BIT;
8289 else if (flag_code != CODE_64BIT
8290 && addr_reg->reg_type.bitfield.reg16)
8291 addr_mode = CODE_16BIT;
8292
8293 if (addr_mode != flag_code)
8294 {
8295 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8296 i.prefixes += 1;
8297 /* Change the size of any displacement too. At most one
8298 of Disp16 or Disp32 is set.
8299 FIXME. There doesn't seem to be any real need for
8300 separate Disp16 and Disp32 flags. The same goes for
8301 Imm16 and Imm32. Removing them would probably clean
8302 up the code quite a lot. */
8303 if (flag_code != CODE_64BIT
8304 && (i.types[this_operand].bitfield.disp16
8305 || i.types[this_operand].bitfield.disp32))
8306 i.types[this_operand]
8307 = operand_type_xor (i.types[this_operand], disp16_32);
8308 }
8309 }
8310 }
8311 #endif
8312 }
8313
8314 if (current_templates->start->opcode_modifier.isstring
8315 && !current_templates->start->opcode_modifier.immext
8316 && (current_templates->end[-1].opcode_modifier.isstring
8317 || i.mem_operands))
8318 {
8319 /* Memory operands of string insns are special in that they only allow
8320 a single register (rDI, rSI, or rBX) as their memory address. */
8321 const reg_entry *expected_reg;
8322 static const char *di_si[][2] =
8323 {
8324 { "esi", "edi" },
8325 { "si", "di" },
8326 { "rsi", "rdi" }
8327 };
8328 static const char *bx[] = { "ebx", "bx", "rbx" };
8329
8330 kind = "string address";
8331
8332 if (current_templates->start->opcode_modifier.w)
8333 {
8334 i386_operand_type type = current_templates->end[-1].operand_types[0];
8335
8336 if (!type.bitfield.baseindex
8337 || ((!i.mem_operands != !intel_syntax)
8338 && current_templates->end[-1].operand_types[1]
8339 .bitfield.baseindex))
8340 type = current_templates->end[-1].operand_types[1];
8341 expected_reg = hash_find (reg_hash,
8342 di_si[addr_mode][type.bitfield.esseg]);
8343
8344 }
8345 else
8346 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8347
8348 if (i.base_reg != expected_reg
8349 || i.index_reg
8350 || operand_type_check (i.types[this_operand], disp))
8351 {
8352 /* The second memory operand must have the same size as
8353 the first one. */
8354 if (i.mem_operands
8355 && i.base_reg
8356 && !((addr_mode == CODE_64BIT
8357 && i.base_reg->reg_type.bitfield.reg64)
8358 || (addr_mode == CODE_32BIT
8359 ? i.base_reg->reg_type.bitfield.reg32
8360 : i.base_reg->reg_type.bitfield.reg16)))
8361 goto bad_address;
8362
8363 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8364 operand_string,
8365 intel_syntax ? '[' : '(',
8366 register_prefix,
8367 expected_reg->reg_name,
8368 intel_syntax ? ']' : ')');
8369 return 1;
8370 }
8371 else
8372 return 1;
8373
8374 bad_address:
8375 as_bad (_("`%s' is not a valid %s expression"),
8376 operand_string, kind);
8377 return 0;
8378 }
8379 else
8380 {
8381 if (addr_mode != CODE_16BIT)
8382 {
8383 /* 32-bit/64-bit checks. */
8384 if ((i.base_reg
8385 && (addr_mode == CODE_64BIT
8386 ? !i.base_reg->reg_type.bitfield.reg64
8387 : !i.base_reg->reg_type.bitfield.reg32)
8388 && (i.index_reg
8389 || (i.base_reg->reg_num
8390 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8391 || (i.index_reg
8392 && !i.index_reg->reg_type.bitfield.regxmm
8393 && !i.index_reg->reg_type.bitfield.regymm
8394 && !i.index_reg->reg_type.bitfield.regzmm
8395 && ((addr_mode == CODE_64BIT
8396 ? !(i.index_reg->reg_type.bitfield.reg64
8397 || i.index_reg->reg_num == RegRiz)
8398 : !(i.index_reg->reg_type.bitfield.reg32
8399 || i.index_reg->reg_num == RegEiz))
8400 || !i.index_reg->reg_type.bitfield.baseindex)))
8401 goto bad_address;
8402 }
8403 else
8404 {
8405 /* 16-bit checks. */
8406 if ((i.base_reg
8407 && (!i.base_reg->reg_type.bitfield.reg16
8408 || !i.base_reg->reg_type.bitfield.baseindex))
8409 || (i.index_reg
8410 && (!i.index_reg->reg_type.bitfield.reg16
8411 || !i.index_reg->reg_type.bitfield.baseindex
8412 || !(i.base_reg
8413 && i.base_reg->reg_num < 6
8414 && i.index_reg->reg_num >= 6
8415 && i.log2_scale_factor == 0))))
8416 goto bad_address;
8417 }
8418 }
8419 return 1;
8420 }
8421
8422 /* Handle vector immediates. */
8423
8424 static int
8425 RC_SAE_immediate (const char *imm_start)
8426 {
8427 unsigned int match_found, j;
8428 const char *pstr = imm_start;
8429 expressionS *exp;
8430
8431 if (*pstr != '{')
8432 return 0;
8433
8434 pstr++;
8435 match_found = 0;
8436 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8437 {
8438 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8439 {
8440 if (!i.rounding)
8441 {
8442 rc_op.type = RC_NamesTable[j].type;
8443 rc_op.operand = this_operand;
8444 i.rounding = &rc_op;
8445 }
8446 else
8447 {
8448 as_bad (_("duplicated `%s'"), imm_start);
8449 return 0;
8450 }
8451 pstr += RC_NamesTable[j].len;
8452 match_found = 1;
8453 break;
8454 }
8455 }
8456 if (!match_found)
8457 return 0;
8458
8459 if (*pstr++ != '}')
8460 {
8461 as_bad (_("Missing '}': '%s'"), imm_start);
8462 return 0;
8463 }
8464 /* RC/SAE immediate string should contain nothing more. */;
8465 if (*pstr != 0)
8466 {
8467 as_bad (_("Junk after '}': '%s'"), imm_start);
8468 return 0;
8469 }
8470
8471 exp = &im_expressions[i.imm_operands++];
8472 i.op[this_operand].imms = exp;
8473
8474 exp->X_op = O_constant;
8475 exp->X_add_number = 0;
8476 exp->X_add_symbol = (symbolS *) 0;
8477 exp->X_op_symbol = (symbolS *) 0;
8478
8479 i.types[this_operand].bitfield.imm8 = 1;
8480 return 1;
8481 }
8482
8483 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8484 on error. */
8485
8486 static int
8487 i386_att_operand (char *operand_string)
8488 {
8489 const reg_entry *r;
8490 char *end_op;
8491 char *op_string = operand_string;
8492
8493 if (is_space_char (*op_string))
8494 ++op_string;
8495
8496 /* We check for an absolute prefix (differentiating,
8497 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8498 if (*op_string == ABSOLUTE_PREFIX)
8499 {
8500 ++op_string;
8501 if (is_space_char (*op_string))
8502 ++op_string;
8503 i.types[this_operand].bitfield.jumpabsolute = 1;
8504 }
8505
8506 /* Check if operand is a register. */
8507 if ((r = parse_register (op_string, &end_op)) != NULL)
8508 {
8509 i386_operand_type temp;
8510
8511 /* Check for a segment override by searching for ':' after a
8512 segment register. */
8513 op_string = end_op;
8514 if (is_space_char (*op_string))
8515 ++op_string;
8516 if (*op_string == ':'
8517 && (r->reg_type.bitfield.sreg2
8518 || r->reg_type.bitfield.sreg3))
8519 {
8520 switch (r->reg_num)
8521 {
8522 case 0:
8523 i.seg[i.mem_operands] = &es;
8524 break;
8525 case 1:
8526 i.seg[i.mem_operands] = &cs;
8527 break;
8528 case 2:
8529 i.seg[i.mem_operands] = &ss;
8530 break;
8531 case 3:
8532 i.seg[i.mem_operands] = &ds;
8533 break;
8534 case 4:
8535 i.seg[i.mem_operands] = &fs;
8536 break;
8537 case 5:
8538 i.seg[i.mem_operands] = &gs;
8539 break;
8540 }
8541
8542 /* Skip the ':' and whitespace. */
8543 ++op_string;
8544 if (is_space_char (*op_string))
8545 ++op_string;
8546
8547 if (!is_digit_char (*op_string)
8548 && !is_identifier_char (*op_string)
8549 && *op_string != '('
8550 && *op_string != ABSOLUTE_PREFIX)
8551 {
8552 as_bad (_("bad memory operand `%s'"), op_string);
8553 return 0;
8554 }
8555 /* Handle case of %es:*foo. */
8556 if (*op_string == ABSOLUTE_PREFIX)
8557 {
8558 ++op_string;
8559 if (is_space_char (*op_string))
8560 ++op_string;
8561 i.types[this_operand].bitfield.jumpabsolute = 1;
8562 }
8563 goto do_memory_reference;
8564 }
8565
8566 /* Handle vector operations. */
8567 if (*op_string == '{')
8568 {
8569 op_string = check_VecOperations (op_string, NULL);
8570 if (op_string == NULL)
8571 return 0;
8572 }
8573
8574 if (*op_string)
8575 {
8576 as_bad (_("junk `%s' after register"), op_string);
8577 return 0;
8578 }
8579 temp = r->reg_type;
8580 temp.bitfield.baseindex = 0;
8581 i.types[this_operand] = operand_type_or (i.types[this_operand],
8582 temp);
8583 i.types[this_operand].bitfield.unspecified = 0;
8584 i.op[this_operand].regs = r;
8585 i.reg_operands++;
8586 }
8587 else if (*op_string == REGISTER_PREFIX)
8588 {
8589 as_bad (_("bad register name `%s'"), op_string);
8590 return 0;
8591 }
8592 else if (*op_string == IMMEDIATE_PREFIX)
8593 {
8594 ++op_string;
8595 if (i.types[this_operand].bitfield.jumpabsolute)
8596 {
8597 as_bad (_("immediate operand illegal with absolute jump"));
8598 return 0;
8599 }
8600 if (!i386_immediate (op_string))
8601 return 0;
8602 }
8603 else if (RC_SAE_immediate (operand_string))
8604 {
8605 /* If it is a RC or SAE immediate, do nothing. */
8606 ;
8607 }
8608 else if (is_digit_char (*op_string)
8609 || is_identifier_char (*op_string)
8610 || *op_string == '(')
8611 {
8612 /* This is a memory reference of some sort. */
8613 char *base_string;
8614
8615 /* Start and end of displacement string expression (if found). */
8616 char *displacement_string_start;
8617 char *displacement_string_end;
8618 char *vop_start;
8619
8620 do_memory_reference:
8621 if ((i.mem_operands == 1
8622 && !current_templates->start->opcode_modifier.isstring)
8623 || i.mem_operands == 2)
8624 {
8625 as_bad (_("too many memory references for `%s'"),
8626 current_templates->start->name);
8627 return 0;
8628 }
8629
8630 /* Check for base index form. We detect the base index form by
8631 looking for an ')' at the end of the operand, searching
8632 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8633 after the '('. */
8634 base_string = op_string + strlen (op_string);
8635
8636 /* Handle vector operations. */
8637 vop_start = strchr (op_string, '{');
8638 if (vop_start && vop_start < base_string)
8639 {
8640 if (check_VecOperations (vop_start, base_string) == NULL)
8641 return 0;
8642 base_string = vop_start;
8643 }
8644
8645 --base_string;
8646 if (is_space_char (*base_string))
8647 --base_string;
8648
8649 /* If we only have a displacement, set-up for it to be parsed later. */
8650 displacement_string_start = op_string;
8651 displacement_string_end = base_string + 1;
8652
8653 if (*base_string == ')')
8654 {
8655 char *temp_string;
8656 unsigned int parens_balanced = 1;
8657 /* We've already checked that the number of left & right ()'s are
8658 equal, so this loop will not be infinite. */
8659 do
8660 {
8661 base_string--;
8662 if (*base_string == ')')
8663 parens_balanced++;
8664 if (*base_string == '(')
8665 parens_balanced--;
8666 }
8667 while (parens_balanced);
8668
8669 temp_string = base_string;
8670
8671 /* Skip past '(' and whitespace. */
8672 ++base_string;
8673 if (is_space_char (*base_string))
8674 ++base_string;
8675
8676 if (*base_string == ','
8677 || ((i.base_reg = parse_register (base_string, &end_op))
8678 != NULL))
8679 {
8680 displacement_string_end = temp_string;
8681
8682 i.types[this_operand].bitfield.baseindex = 1;
8683
8684 if (i.base_reg)
8685 {
8686 base_string = end_op;
8687 if (is_space_char (*base_string))
8688 ++base_string;
8689 }
8690
8691 /* There may be an index reg or scale factor here. */
8692 if (*base_string == ',')
8693 {
8694 ++base_string;
8695 if (is_space_char (*base_string))
8696 ++base_string;
8697
8698 if ((i.index_reg = parse_register (base_string, &end_op))
8699 != NULL)
8700 {
8701 base_string = end_op;
8702 if (is_space_char (*base_string))
8703 ++base_string;
8704 if (*base_string == ',')
8705 {
8706 ++base_string;
8707 if (is_space_char (*base_string))
8708 ++base_string;
8709 }
8710 else if (*base_string != ')')
8711 {
8712 as_bad (_("expecting `,' or `)' "
8713 "after index register in `%s'"),
8714 operand_string);
8715 return 0;
8716 }
8717 }
8718 else if (*base_string == REGISTER_PREFIX)
8719 {
8720 end_op = strchr (base_string, ',');
8721 if (end_op)
8722 *end_op = '\0';
8723 as_bad (_("bad register name `%s'"), base_string);
8724 return 0;
8725 }
8726
8727 /* Check for scale factor. */
8728 if (*base_string != ')')
8729 {
8730 char *end_scale = i386_scale (base_string);
8731
8732 if (!end_scale)
8733 return 0;
8734
8735 base_string = end_scale;
8736 if (is_space_char (*base_string))
8737 ++base_string;
8738 if (*base_string != ')')
8739 {
8740 as_bad (_("expecting `)' "
8741 "after scale factor in `%s'"),
8742 operand_string);
8743 return 0;
8744 }
8745 }
8746 else if (!i.index_reg)
8747 {
8748 as_bad (_("expecting index register or scale factor "
8749 "after `,'; got '%c'"),
8750 *base_string);
8751 return 0;
8752 }
8753 }
8754 else if (*base_string != ')')
8755 {
8756 as_bad (_("expecting `,' or `)' "
8757 "after base register in `%s'"),
8758 operand_string);
8759 return 0;
8760 }
8761 }
8762 else if (*base_string == REGISTER_PREFIX)
8763 {
8764 end_op = strchr (base_string, ',');
8765 if (end_op)
8766 *end_op = '\0';
8767 as_bad (_("bad register name `%s'"), base_string);
8768 return 0;
8769 }
8770 }
8771
8772 /* If there's an expression beginning the operand, parse it,
8773 assuming displacement_string_start and
8774 displacement_string_end are meaningful. */
8775 if (displacement_string_start != displacement_string_end)
8776 {
8777 if (!i386_displacement (displacement_string_start,
8778 displacement_string_end))
8779 return 0;
8780 }
8781
8782 /* Special case for (%dx) while doing input/output op. */
8783 if (i.base_reg
8784 && operand_type_equal (&i.base_reg->reg_type,
8785 &reg16_inoutportreg)
8786 && i.index_reg == 0
8787 && i.log2_scale_factor == 0
8788 && i.seg[i.mem_operands] == 0
8789 && !operand_type_check (i.types[this_operand], disp))
8790 {
8791 i.types[this_operand] = inoutportreg;
8792 return 1;
8793 }
8794
8795 if (i386_index_check (operand_string) == 0)
8796 return 0;
8797 i.types[this_operand].bitfield.mem = 1;
8798 i.mem_operands++;
8799 }
8800 else
8801 {
8802 /* It's not a memory operand; argh! */
8803 as_bad (_("invalid char %s beginning operand %d `%s'"),
8804 output_invalid (*op_string),
8805 this_operand + 1,
8806 op_string);
8807 return 0;
8808 }
8809 return 1; /* Normal return. */
8810 }
8811 \f
8812 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8813 that an rs_machine_dependent frag may reach. */
8814
8815 unsigned int
8816 i386_frag_max_var (fragS *frag)
8817 {
8818 /* The only relaxable frags are for jumps.
8819 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8820 gas_assert (frag->fr_type == rs_machine_dependent);
8821 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8822 }
8823
8824 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8825 static int
8826 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol)
8827 {
8828 /* STT_GNU_IFUNC symbol must go through PLT. */
8829 if ((symbol_get_bfdsym (fr_symbol)->flags
8830 & BSF_GNU_INDIRECT_FUNCTION) != 0)
8831 return 0;
8832
8833 if (!S_IS_EXTERNAL (fr_symbol))
8834 /* Symbol may be weak or local. */
8835 return !S_IS_WEAK (fr_symbol);
8836
8837 /* Non-weak symbols won't be preempted. */
8838 if (no_shared)
8839 return 1;
8840
8841 /* Global symbols with default visibility in a shared library may be
8842 preempted by another definition. */
8843 return ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT;
8844 }
8845 #endif
8846
8847 /* md_estimate_size_before_relax()
8848
8849 Called just before relax() for rs_machine_dependent frags. The x86
8850 assembler uses these frags to handle variable size jump
8851 instructions.
8852
8853 Any symbol that is now undefined will not become defined.
8854 Return the correct fr_subtype in the frag.
8855 Return the initial "guess for variable size of frag" to caller.
8856 The guess is actually the growth beyond the fixed part. Whatever
8857 we do to grow the fixed or variable part contributes to our
8858 returned value. */
8859
8860 int
8861 md_estimate_size_before_relax (fragS *fragP, segT segment)
8862 {
8863 /* We've already got fragP->fr_subtype right; all we have to do is
8864 check for un-relaxable symbols. On an ELF system, we can't relax
8865 an externally visible symbol, because it may be overridden by a
8866 shared library. */
8867 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8868 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8869 || (IS_ELF
8870 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol))
8871 #endif
8872 #if defined (OBJ_COFF) && defined (TE_PE)
8873 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8874 && S_IS_WEAK (fragP->fr_symbol))
8875 #endif
8876 )
8877 {
8878 /* Symbol is undefined in this segment, or we need to keep a
8879 reloc so that weak symbols can be overridden. */
8880 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8881 enum bfd_reloc_code_real reloc_type;
8882 unsigned char *opcode;
8883 int old_fr_fix;
8884
8885 if (fragP->fr_var != NO_RELOC)
8886 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8887 else if (size == 2)
8888 reloc_type = BFD_RELOC_16_PCREL;
8889 else
8890 reloc_type = BFD_RELOC_32_PCREL;
8891
8892 old_fr_fix = fragP->fr_fix;
8893 opcode = (unsigned char *) fragP->fr_opcode;
8894
8895 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8896 {
8897 case UNCOND_JUMP:
8898 /* Make jmp (0xeb) a (d)word displacement jump. */
8899 opcode[0] = 0xe9;
8900 fragP->fr_fix += size;
8901 fix_new (fragP, old_fr_fix, size,
8902 fragP->fr_symbol,
8903 fragP->fr_offset, 1,
8904 reloc_type);
8905 break;
8906
8907 case COND_JUMP86:
8908 if (size == 2
8909 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8910 {
8911 /* Negate the condition, and branch past an
8912 unconditional jump. */
8913 opcode[0] ^= 1;
8914 opcode[1] = 3;
8915 /* Insert an unconditional jump. */
8916 opcode[2] = 0xe9;
8917 /* We added two extra opcode bytes, and have a two byte
8918 offset. */
8919 fragP->fr_fix += 2 + 2;
8920 fix_new (fragP, old_fr_fix + 2, 2,
8921 fragP->fr_symbol,
8922 fragP->fr_offset, 1,
8923 reloc_type);
8924 break;
8925 }
8926 /* Fall through. */
8927
8928 case COND_JUMP:
8929 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8930 {
8931 fixS *fixP;
8932
8933 fragP->fr_fix += 1;
8934 fixP = fix_new (fragP, old_fr_fix, 1,
8935 fragP->fr_symbol,
8936 fragP->fr_offset, 1,
8937 BFD_RELOC_8_PCREL);
8938 fixP->fx_signed = 1;
8939 break;
8940 }
8941
8942 /* This changes the byte-displacement jump 0x7N
8943 to the (d)word-displacement jump 0x0f,0x8N. */
8944 opcode[1] = opcode[0] + 0x10;
8945 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8946 /* We've added an opcode byte. */
8947 fragP->fr_fix += 1 + size;
8948 fix_new (fragP, old_fr_fix + 1, size,
8949 fragP->fr_symbol,
8950 fragP->fr_offset, 1,
8951 reloc_type);
8952 break;
8953
8954 default:
8955 BAD_CASE (fragP->fr_subtype);
8956 break;
8957 }
8958 frag_wane (fragP);
8959 return fragP->fr_fix - old_fr_fix;
8960 }
8961
8962 /* Guess size depending on current relax state. Initially the relax
8963 state will correspond to a short jump and we return 1, because
8964 the variable part of the frag (the branch offset) is one byte
8965 long. However, we can relax a section more than once and in that
8966 case we must either set fr_subtype back to the unrelaxed state,
8967 or return the value for the appropriate branch. */
8968 return md_relax_table[fragP->fr_subtype].rlx_length;
8969 }
8970
8971 /* Called after relax() is finished.
8972
8973 In: Address of frag.
8974 fr_type == rs_machine_dependent.
8975 fr_subtype is what the address relaxed to.
8976
8977 Out: Any fixSs and constants are set up.
8978 Caller will turn frag into a ".space 0". */
8979
8980 void
8981 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8982 fragS *fragP)
8983 {
8984 unsigned char *opcode;
8985 unsigned char *where_to_put_displacement = NULL;
8986 offsetT target_address;
8987 offsetT opcode_address;
8988 unsigned int extension = 0;
8989 offsetT displacement_from_opcode_start;
8990
8991 opcode = (unsigned char *) fragP->fr_opcode;
8992
8993 /* Address we want to reach in file space. */
8994 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8995
8996 /* Address opcode resides at in file space. */
8997 opcode_address = fragP->fr_address + fragP->fr_fix;
8998
8999 /* Displacement from opcode start to fill into instruction. */
9000 displacement_from_opcode_start = target_address - opcode_address;
9001
9002 if ((fragP->fr_subtype & BIG) == 0)
9003 {
9004 /* Don't have to change opcode. */
9005 extension = 1; /* 1 opcode + 1 displacement */
9006 where_to_put_displacement = &opcode[1];
9007 }
9008 else
9009 {
9010 if (no_cond_jump_promotion
9011 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9012 as_warn_where (fragP->fr_file, fragP->fr_line,
9013 _("long jump required"));
9014
9015 switch (fragP->fr_subtype)
9016 {
9017 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9018 extension = 4; /* 1 opcode + 4 displacement */
9019 opcode[0] = 0xe9;
9020 where_to_put_displacement = &opcode[1];
9021 break;
9022
9023 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9024 extension = 2; /* 1 opcode + 2 displacement */
9025 opcode[0] = 0xe9;
9026 where_to_put_displacement = &opcode[1];
9027 break;
9028
9029 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9030 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9031 extension = 5; /* 2 opcode + 4 displacement */
9032 opcode[1] = opcode[0] + 0x10;
9033 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9034 where_to_put_displacement = &opcode[2];
9035 break;
9036
9037 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9038 extension = 3; /* 2 opcode + 2 displacement */
9039 opcode[1] = opcode[0] + 0x10;
9040 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9041 where_to_put_displacement = &opcode[2];
9042 break;
9043
9044 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9045 extension = 4;
9046 opcode[0] ^= 1;
9047 opcode[1] = 3;
9048 opcode[2] = 0xe9;
9049 where_to_put_displacement = &opcode[3];
9050 break;
9051
9052 default:
9053 BAD_CASE (fragP->fr_subtype);
9054 break;
9055 }
9056 }
9057
9058 /* If size if less then four we are sure that the operand fits,
9059 but if it's 4, then it could be that the displacement is larger
9060 then -/+ 2GB. */
9061 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9062 && object_64bit
9063 && ((addressT) (displacement_from_opcode_start - extension
9064 + ((addressT) 1 << 31))
9065 > (((addressT) 2 << 31) - 1)))
9066 {
9067 as_bad_where (fragP->fr_file, fragP->fr_line,
9068 _("jump target out of range"));
9069 /* Make us emit 0. */
9070 displacement_from_opcode_start = extension;
9071 }
9072 /* Now put displacement after opcode. */
9073 md_number_to_chars ((char *) where_to_put_displacement,
9074 (valueT) (displacement_from_opcode_start - extension),
9075 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9076 fragP->fr_fix += extension;
9077 }
9078 \f
9079 /* Apply a fixup (fixP) to segment data, once it has been determined
9080 by our caller that we have all the info we need to fix it up.
9081
9082 Parameter valP is the pointer to the value of the bits.
9083
9084 On the 386, immediates, displacements, and data pointers are all in
9085 the same (little-endian) format, so we don't need to care about which
9086 we are handling. */
9087
9088 void
9089 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9090 {
9091 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9092 valueT value = *valP;
9093
9094 #if !defined (TE_Mach)
9095 if (fixP->fx_pcrel)
9096 {
9097 switch (fixP->fx_r_type)
9098 {
9099 default:
9100 break;
9101
9102 case BFD_RELOC_64:
9103 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9104 break;
9105 case BFD_RELOC_32:
9106 case BFD_RELOC_X86_64_32S:
9107 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9108 break;
9109 case BFD_RELOC_16:
9110 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9111 break;
9112 case BFD_RELOC_8:
9113 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9114 break;
9115 }
9116 }
9117
9118 if (fixP->fx_addsy != NULL
9119 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9120 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9121 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9122 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9123 && !use_rela_relocations)
9124 {
9125 /* This is a hack. There should be a better way to handle this.
9126 This covers for the fact that bfd_install_relocation will
9127 subtract the current location (for partial_inplace, PC relative
9128 relocations); see more below. */
9129 #ifndef OBJ_AOUT
9130 if (IS_ELF
9131 #ifdef TE_PE
9132 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9133 #endif
9134 )
9135 value += fixP->fx_where + fixP->fx_frag->fr_address;
9136 #endif
9137 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9138 if (IS_ELF)
9139 {
9140 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9141
9142 if ((sym_seg == seg
9143 || (symbol_section_p (fixP->fx_addsy)
9144 && sym_seg != absolute_section))
9145 && !generic_force_reloc (fixP))
9146 {
9147 /* Yes, we add the values in twice. This is because
9148 bfd_install_relocation subtracts them out again. I think
9149 bfd_install_relocation is broken, but I don't dare change
9150 it. FIXME. */
9151 value += fixP->fx_where + fixP->fx_frag->fr_address;
9152 }
9153 }
9154 #endif
9155 #if defined (OBJ_COFF) && defined (TE_PE)
9156 /* For some reason, the PE format does not store a
9157 section address offset for a PC relative symbol. */
9158 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9159 || S_IS_WEAK (fixP->fx_addsy))
9160 value += md_pcrel_from (fixP);
9161 #endif
9162 }
9163 #if defined (OBJ_COFF) && defined (TE_PE)
9164 if (fixP->fx_addsy != NULL
9165 && S_IS_WEAK (fixP->fx_addsy)
9166 /* PR 16858: Do not modify weak function references. */
9167 && ! fixP->fx_pcrel)
9168 {
9169 #if !defined (TE_PEP)
9170 /* For x86 PE weak function symbols are neither PC-relative
9171 nor do they set S_IS_FUNCTION. So the only reliable way
9172 to detect them is to check the flags of their containing
9173 section. */
9174 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9175 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9176 ;
9177 else
9178 #endif
9179 value -= S_GET_VALUE (fixP->fx_addsy);
9180 }
9181 #endif
9182
9183 /* Fix a few things - the dynamic linker expects certain values here,
9184 and we must not disappoint it. */
9185 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9186 if (IS_ELF && fixP->fx_addsy)
9187 switch (fixP->fx_r_type)
9188 {
9189 case BFD_RELOC_386_PLT32:
9190 case BFD_RELOC_X86_64_PLT32:
9191 /* Make the jump instruction point to the address of the operand. At
9192 runtime we merely add the offset to the actual PLT entry. */
9193 value = -4;
9194 break;
9195
9196 case BFD_RELOC_386_TLS_GD:
9197 case BFD_RELOC_386_TLS_LDM:
9198 case BFD_RELOC_386_TLS_IE_32:
9199 case BFD_RELOC_386_TLS_IE:
9200 case BFD_RELOC_386_TLS_GOTIE:
9201 case BFD_RELOC_386_TLS_GOTDESC:
9202 case BFD_RELOC_X86_64_TLSGD:
9203 case BFD_RELOC_X86_64_TLSLD:
9204 case BFD_RELOC_X86_64_GOTTPOFF:
9205 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9206 value = 0; /* Fully resolved at runtime. No addend. */
9207 /* Fallthrough */
9208 case BFD_RELOC_386_TLS_LE:
9209 case BFD_RELOC_386_TLS_LDO_32:
9210 case BFD_RELOC_386_TLS_LE_32:
9211 case BFD_RELOC_X86_64_DTPOFF32:
9212 case BFD_RELOC_X86_64_DTPOFF64:
9213 case BFD_RELOC_X86_64_TPOFF32:
9214 case BFD_RELOC_X86_64_TPOFF64:
9215 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9216 break;
9217
9218 case BFD_RELOC_386_TLS_DESC_CALL:
9219 case BFD_RELOC_X86_64_TLSDESC_CALL:
9220 value = 0; /* Fully resolved at runtime. No addend. */
9221 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9222 fixP->fx_done = 0;
9223 return;
9224
9225 case BFD_RELOC_386_GOT32:
9226 case BFD_RELOC_X86_64_GOT32:
9227 value = 0; /* Fully resolved at runtime. No addend. */
9228 break;
9229
9230 case BFD_RELOC_VTABLE_INHERIT:
9231 case BFD_RELOC_VTABLE_ENTRY:
9232 fixP->fx_done = 0;
9233 return;
9234
9235 default:
9236 break;
9237 }
9238 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9239 *valP = value;
9240 #endif /* !defined (TE_Mach) */
9241
9242 /* Are we finished with this relocation now? */
9243 if (fixP->fx_addsy == NULL)
9244 fixP->fx_done = 1;
9245 #if defined (OBJ_COFF) && defined (TE_PE)
9246 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9247 {
9248 fixP->fx_done = 0;
9249 /* Remember value for tc_gen_reloc. */
9250 fixP->fx_addnumber = value;
9251 /* Clear out the frag for now. */
9252 value = 0;
9253 }
9254 #endif
9255 else if (use_rela_relocations)
9256 {
9257 fixP->fx_no_overflow = 1;
9258 /* Remember value for tc_gen_reloc. */
9259 fixP->fx_addnumber = value;
9260 value = 0;
9261 }
9262
9263 md_number_to_chars (p, value, fixP->fx_size);
9264 }
9265 \f
9266 char *
9267 md_atof (int type, char *litP, int *sizeP)
9268 {
9269 /* This outputs the LITTLENUMs in REVERSE order;
9270 in accord with the bigendian 386. */
9271 return ieee_md_atof (type, litP, sizeP, FALSE);
9272 }
9273 \f
9274 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9275
9276 static char *
9277 output_invalid (int c)
9278 {
9279 if (ISPRINT (c))
9280 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9281 "'%c'", c);
9282 else
9283 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9284 "(0x%x)", (unsigned char) c);
9285 return output_invalid_buf;
9286 }
9287
9288 /* REG_STRING starts *before* REGISTER_PREFIX. */
9289
9290 static const reg_entry *
9291 parse_real_register (char *reg_string, char **end_op)
9292 {
9293 char *s = reg_string;
9294 char *p;
9295 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9296 const reg_entry *r;
9297
9298 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9299 if (*s == REGISTER_PREFIX)
9300 ++s;
9301
9302 if (is_space_char (*s))
9303 ++s;
9304
9305 p = reg_name_given;
9306 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9307 {
9308 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9309 return (const reg_entry *) NULL;
9310 s++;
9311 }
9312
9313 /* For naked regs, make sure that we are not dealing with an identifier.
9314 This prevents confusing an identifier like `eax_var' with register
9315 `eax'. */
9316 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9317 return (const reg_entry *) NULL;
9318
9319 *end_op = s;
9320
9321 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9322
9323 /* Handle floating point regs, allowing spaces in the (i) part. */
9324 if (r == i386_regtab /* %st is first entry of table */)
9325 {
9326 if (is_space_char (*s))
9327 ++s;
9328 if (*s == '(')
9329 {
9330 ++s;
9331 if (is_space_char (*s))
9332 ++s;
9333 if (*s >= '0' && *s <= '7')
9334 {
9335 int fpr = *s - '0';
9336 ++s;
9337 if (is_space_char (*s))
9338 ++s;
9339 if (*s == ')')
9340 {
9341 *end_op = s + 1;
9342 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9343 know (r);
9344 return r + fpr;
9345 }
9346 }
9347 /* We have "%st(" then garbage. */
9348 return (const reg_entry *) NULL;
9349 }
9350 }
9351
9352 if (r == NULL || allow_pseudo_reg)
9353 return r;
9354
9355 if (operand_type_all_zero (&r->reg_type))
9356 return (const reg_entry *) NULL;
9357
9358 if ((r->reg_type.bitfield.reg32
9359 || r->reg_type.bitfield.sreg3
9360 || r->reg_type.bitfield.control
9361 || r->reg_type.bitfield.debug
9362 || r->reg_type.bitfield.test)
9363 && !cpu_arch_flags.bitfield.cpui386)
9364 return (const reg_entry *) NULL;
9365
9366 if (r->reg_type.bitfield.floatreg
9367 && !cpu_arch_flags.bitfield.cpu8087
9368 && !cpu_arch_flags.bitfield.cpu287
9369 && !cpu_arch_flags.bitfield.cpu387)
9370 return (const reg_entry *) NULL;
9371
9372 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9373 return (const reg_entry *) NULL;
9374
9375 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9376 return (const reg_entry *) NULL;
9377
9378 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9379 return (const reg_entry *) NULL;
9380
9381 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9382 && !cpu_arch_flags.bitfield.cpuavx512f)
9383 return (const reg_entry *) NULL;
9384
9385 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9386 if (!allow_index_reg
9387 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9388 return (const reg_entry *) NULL;
9389
9390 /* Upper 16 vector register is only available with VREX in 64bit
9391 mode. */
9392 if ((r->reg_flags & RegVRex))
9393 {
9394 if (!cpu_arch_flags.bitfield.cpuvrex
9395 || flag_code != CODE_64BIT)
9396 return (const reg_entry *) NULL;
9397
9398 i.need_vrex = 1;
9399 }
9400
9401 if (((r->reg_flags & (RegRex64 | RegRex))
9402 || r->reg_type.bitfield.reg64)
9403 && (!cpu_arch_flags.bitfield.cpulm
9404 || !operand_type_equal (&r->reg_type, &control))
9405 && flag_code != CODE_64BIT)
9406 return (const reg_entry *) NULL;
9407
9408 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9409 return (const reg_entry *) NULL;
9410
9411 return r;
9412 }
9413
9414 /* REG_STRING starts *before* REGISTER_PREFIX. */
9415
9416 static const reg_entry *
9417 parse_register (char *reg_string, char **end_op)
9418 {
9419 const reg_entry *r;
9420
9421 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9422 r = parse_real_register (reg_string, end_op);
9423 else
9424 r = NULL;
9425 if (!r)
9426 {
9427 char *save = input_line_pointer;
9428 char c;
9429 symbolS *symbolP;
9430
9431 input_line_pointer = reg_string;
9432 c = get_symbol_end ();
9433 symbolP = symbol_find (reg_string);
9434 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9435 {
9436 const expressionS *e = symbol_get_value_expression (symbolP);
9437
9438 know (e->X_op == O_register);
9439 know (e->X_add_number >= 0
9440 && (valueT) e->X_add_number < i386_regtab_size);
9441 r = i386_regtab + e->X_add_number;
9442 if ((r->reg_flags & RegVRex))
9443 i.need_vrex = 1;
9444 *end_op = input_line_pointer;
9445 }
9446 *input_line_pointer = c;
9447 input_line_pointer = save;
9448 }
9449 return r;
9450 }
9451
9452 int
9453 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9454 {
9455 const reg_entry *r;
9456 char *end = input_line_pointer;
9457
9458 *end = *nextcharP;
9459 r = parse_register (name, &input_line_pointer);
9460 if (r && end <= input_line_pointer)
9461 {
9462 *nextcharP = *input_line_pointer;
9463 *input_line_pointer = 0;
9464 e->X_op = O_register;
9465 e->X_add_number = r - i386_regtab;
9466 return 1;
9467 }
9468 input_line_pointer = end;
9469 *end = 0;
9470 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9471 }
9472
9473 void
9474 md_operand (expressionS *e)
9475 {
9476 char *end;
9477 const reg_entry *r;
9478
9479 switch (*input_line_pointer)
9480 {
9481 case REGISTER_PREFIX:
9482 r = parse_real_register (input_line_pointer, &end);
9483 if (r)
9484 {
9485 e->X_op = O_register;
9486 e->X_add_number = r - i386_regtab;
9487 input_line_pointer = end;
9488 }
9489 break;
9490
9491 case '[':
9492 gas_assert (intel_syntax);
9493 end = input_line_pointer++;
9494 expression (e);
9495 if (*input_line_pointer == ']')
9496 {
9497 ++input_line_pointer;
9498 e->X_op_symbol = make_expr_symbol (e);
9499 e->X_add_symbol = NULL;
9500 e->X_add_number = 0;
9501 e->X_op = O_index;
9502 }
9503 else
9504 {
9505 e->X_op = O_absent;
9506 input_line_pointer = end;
9507 }
9508 break;
9509 }
9510 }
9511
9512 \f
9513 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9514 const char *md_shortopts = "kVQ:sqn";
9515 #else
9516 const char *md_shortopts = "qn";
9517 #endif
9518
9519 #define OPTION_32 (OPTION_MD_BASE + 0)
9520 #define OPTION_64 (OPTION_MD_BASE + 1)
9521 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9522 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9523 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9524 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9525 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9526 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9527 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9528 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9529 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9530 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9531 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9532 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9533 #define OPTION_X32 (OPTION_MD_BASE + 14)
9534 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9535 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9536 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9537 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9538 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9539 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9540 #define OPTION_MNO_SHARED (OPTION_MD_BASE + 21)
9541
9542 struct option md_longopts[] =
9543 {
9544 {"32", no_argument, NULL, OPTION_32},
9545 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9546 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9547 {"64", no_argument, NULL, OPTION_64},
9548 #endif
9549 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9550 {"x32", no_argument, NULL, OPTION_X32},
9551 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
9552 #endif
9553 {"divide", no_argument, NULL, OPTION_DIVIDE},
9554 {"march", required_argument, NULL, OPTION_MARCH},
9555 {"mtune", required_argument, NULL, OPTION_MTUNE},
9556 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9557 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9558 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9559 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9560 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9561 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9562 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9563 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9564 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9565 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9566 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9567 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9568 # if defined (TE_PE) || defined (TE_PEP)
9569 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9570 #endif
9571 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9572 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9573 {NULL, no_argument, NULL, 0}
9574 };
9575 size_t md_longopts_size = sizeof (md_longopts);
9576
9577 int
9578 md_parse_option (int c, char *arg)
9579 {
9580 unsigned int j;
9581 char *arch, *next;
9582
9583 switch (c)
9584 {
9585 case 'n':
9586 optimize_align_code = 0;
9587 break;
9588
9589 case 'q':
9590 quiet_warnings = 1;
9591 break;
9592
9593 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9594 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9595 should be emitted or not. FIXME: Not implemented. */
9596 case 'Q':
9597 break;
9598
9599 /* -V: SVR4 argument to print version ID. */
9600 case 'V':
9601 print_version_id ();
9602 break;
9603
9604 /* -k: Ignore for FreeBSD compatibility. */
9605 case 'k':
9606 break;
9607
9608 case 's':
9609 /* -s: On i386 Solaris, this tells the native assembler to use
9610 .stab instead of .stab.excl. We always use .stab anyhow. */
9611 break;
9612
9613 case OPTION_MNO_SHARED:
9614 no_shared = 1;
9615 break;
9616 #endif
9617 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9618 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9619 case OPTION_64:
9620 {
9621 const char **list, **l;
9622
9623 list = bfd_target_list ();
9624 for (l = list; *l != NULL; l++)
9625 if (CONST_STRNEQ (*l, "elf64-x86-64")
9626 || strcmp (*l, "coff-x86-64") == 0
9627 || strcmp (*l, "pe-x86-64") == 0
9628 || strcmp (*l, "pei-x86-64") == 0
9629 || strcmp (*l, "mach-o-x86-64") == 0)
9630 {
9631 default_arch = "x86_64";
9632 break;
9633 }
9634 if (*l == NULL)
9635 as_fatal (_("no compiled in support for x86_64"));
9636 free (list);
9637 }
9638 break;
9639 #endif
9640
9641 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9642 case OPTION_X32:
9643 if (IS_ELF)
9644 {
9645 const char **list, **l;
9646
9647 list = bfd_target_list ();
9648 for (l = list; *l != NULL; l++)
9649 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9650 {
9651 default_arch = "x86_64:32";
9652 break;
9653 }
9654 if (*l == NULL)
9655 as_fatal (_("no compiled in support for 32bit x86_64"));
9656 free (list);
9657 }
9658 else
9659 as_fatal (_("32bit x86_64 is only supported for ELF"));
9660 break;
9661 #endif
9662
9663 case OPTION_32:
9664 default_arch = "i386";
9665 break;
9666
9667 case OPTION_DIVIDE:
9668 #ifdef SVR4_COMMENT_CHARS
9669 {
9670 char *n, *t;
9671 const char *s;
9672
9673 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9674 t = n;
9675 for (s = i386_comment_chars; *s != '\0'; s++)
9676 if (*s != '/')
9677 *t++ = *s;
9678 *t = '\0';
9679 i386_comment_chars = n;
9680 }
9681 #endif
9682 break;
9683
9684 case OPTION_MARCH:
9685 arch = xstrdup (arg);
9686 do
9687 {
9688 if (*arch == '.')
9689 as_fatal (_("invalid -march= option: `%s'"), arg);
9690 next = strchr (arch, '+');
9691 if (next)
9692 *next++ = '\0';
9693 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9694 {
9695 if (strcmp (arch, cpu_arch [j].name) == 0)
9696 {
9697 /* Processor. */
9698 if (! cpu_arch[j].flags.bitfield.cpui386)
9699 continue;
9700
9701 cpu_arch_name = cpu_arch[j].name;
9702 cpu_sub_arch_name = NULL;
9703 cpu_arch_flags = cpu_arch[j].flags;
9704 cpu_arch_isa = cpu_arch[j].type;
9705 cpu_arch_isa_flags = cpu_arch[j].flags;
9706 if (!cpu_arch_tune_set)
9707 {
9708 cpu_arch_tune = cpu_arch_isa;
9709 cpu_arch_tune_flags = cpu_arch_isa_flags;
9710 }
9711 break;
9712 }
9713 else if (*cpu_arch [j].name == '.'
9714 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9715 {
9716 /* ISA entension. */
9717 i386_cpu_flags flags;
9718
9719 if (!cpu_arch[j].negated)
9720 flags = cpu_flags_or (cpu_arch_flags,
9721 cpu_arch[j].flags);
9722 else
9723 flags = cpu_flags_and_not (cpu_arch_flags,
9724 cpu_arch[j].flags);
9725
9726 if (!valid_iamcu_cpu_flags (&flags))
9727 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9728 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9729 {
9730 if (cpu_sub_arch_name)
9731 {
9732 char *name = cpu_sub_arch_name;
9733 cpu_sub_arch_name = concat (name,
9734 cpu_arch[j].name,
9735 (const char *) NULL);
9736 free (name);
9737 }
9738 else
9739 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9740 cpu_arch_flags = flags;
9741 cpu_arch_isa_flags = flags;
9742 }
9743 break;
9744 }
9745 }
9746
9747 if (j >= ARRAY_SIZE (cpu_arch))
9748 as_fatal (_("invalid -march= option: `%s'"), arg);
9749
9750 arch = next;
9751 }
9752 while (next != NULL );
9753 break;
9754
9755 case OPTION_MTUNE:
9756 if (*arg == '.')
9757 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9758 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9759 {
9760 if (strcmp (arg, cpu_arch [j].name) == 0)
9761 {
9762 cpu_arch_tune_set = 1;
9763 cpu_arch_tune = cpu_arch [j].type;
9764 cpu_arch_tune_flags = cpu_arch[j].flags;
9765 break;
9766 }
9767 }
9768 if (j >= ARRAY_SIZE (cpu_arch))
9769 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9770 break;
9771
9772 case OPTION_MMNEMONIC:
9773 if (strcasecmp (arg, "att") == 0)
9774 intel_mnemonic = 0;
9775 else if (strcasecmp (arg, "intel") == 0)
9776 intel_mnemonic = 1;
9777 else
9778 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9779 break;
9780
9781 case OPTION_MSYNTAX:
9782 if (strcasecmp (arg, "att") == 0)
9783 intel_syntax = 0;
9784 else if (strcasecmp (arg, "intel") == 0)
9785 intel_syntax = 1;
9786 else
9787 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9788 break;
9789
9790 case OPTION_MINDEX_REG:
9791 allow_index_reg = 1;
9792 break;
9793
9794 case OPTION_MNAKED_REG:
9795 allow_naked_reg = 1;
9796 break;
9797
9798 case OPTION_MOLD_GCC:
9799 old_gcc = 1;
9800 break;
9801
9802 case OPTION_MSSE2AVX:
9803 sse2avx = 1;
9804 break;
9805
9806 case OPTION_MSSE_CHECK:
9807 if (strcasecmp (arg, "error") == 0)
9808 sse_check = check_error;
9809 else if (strcasecmp (arg, "warning") == 0)
9810 sse_check = check_warning;
9811 else if (strcasecmp (arg, "none") == 0)
9812 sse_check = check_none;
9813 else
9814 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9815 break;
9816
9817 case OPTION_MOPERAND_CHECK:
9818 if (strcasecmp (arg, "error") == 0)
9819 operand_check = check_error;
9820 else if (strcasecmp (arg, "warning") == 0)
9821 operand_check = check_warning;
9822 else if (strcasecmp (arg, "none") == 0)
9823 operand_check = check_none;
9824 else
9825 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9826 break;
9827
9828 case OPTION_MAVXSCALAR:
9829 if (strcasecmp (arg, "128") == 0)
9830 avxscalar = vex128;
9831 else if (strcasecmp (arg, "256") == 0)
9832 avxscalar = vex256;
9833 else
9834 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9835 break;
9836
9837 case OPTION_MADD_BND_PREFIX:
9838 add_bnd_prefix = 1;
9839 break;
9840
9841 case OPTION_MEVEXLIG:
9842 if (strcmp (arg, "128") == 0)
9843 evexlig = evexl128;
9844 else if (strcmp (arg, "256") == 0)
9845 evexlig = evexl256;
9846 else if (strcmp (arg, "512") == 0)
9847 evexlig = evexl512;
9848 else
9849 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9850 break;
9851
9852 case OPTION_MEVEXRCIG:
9853 if (strcmp (arg, "rne") == 0)
9854 evexrcig = rne;
9855 else if (strcmp (arg, "rd") == 0)
9856 evexrcig = rd;
9857 else if (strcmp (arg, "ru") == 0)
9858 evexrcig = ru;
9859 else if (strcmp (arg, "rz") == 0)
9860 evexrcig = rz;
9861 else
9862 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9863 break;
9864
9865 case OPTION_MEVEXWIG:
9866 if (strcmp (arg, "0") == 0)
9867 evexwig = evexw0;
9868 else if (strcmp (arg, "1") == 0)
9869 evexwig = evexw1;
9870 else
9871 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9872 break;
9873
9874 # if defined (TE_PE) || defined (TE_PEP)
9875 case OPTION_MBIG_OBJ:
9876 use_big_obj = 1;
9877 break;
9878 #endif
9879
9880 case OPTION_OMIT_LOCK_PREFIX:
9881 if (strcasecmp (arg, "yes") == 0)
9882 omit_lock_prefix = 1;
9883 else if (strcasecmp (arg, "no") == 0)
9884 omit_lock_prefix = 0;
9885 else
9886 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9887 break;
9888
9889 default:
9890 return 0;
9891 }
9892 return 1;
9893 }
9894
9895 #define MESSAGE_TEMPLATE \
9896 " "
9897
9898 static void
9899 show_arch (FILE *stream, int ext, int check)
9900 {
9901 static char message[] = MESSAGE_TEMPLATE;
9902 char *start = message + 27;
9903 char *p;
9904 int size = sizeof (MESSAGE_TEMPLATE);
9905 int left;
9906 const char *name;
9907 int len;
9908 unsigned int j;
9909
9910 p = start;
9911 left = size - (start - message);
9912 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9913 {
9914 /* Should it be skipped? */
9915 if (cpu_arch [j].skip)
9916 continue;
9917
9918 name = cpu_arch [j].name;
9919 len = cpu_arch [j].len;
9920 if (*name == '.')
9921 {
9922 /* It is an extension. Skip if we aren't asked to show it. */
9923 if (ext)
9924 {
9925 name++;
9926 len--;
9927 }
9928 else
9929 continue;
9930 }
9931 else if (ext)
9932 {
9933 /* It is an processor. Skip if we show only extension. */
9934 continue;
9935 }
9936 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9937 {
9938 /* It is an impossible processor - skip. */
9939 continue;
9940 }
9941
9942 /* Reserve 2 spaces for ", " or ",\0" */
9943 left -= len + 2;
9944
9945 /* Check if there is any room. */
9946 if (left >= 0)
9947 {
9948 if (p != start)
9949 {
9950 *p++ = ',';
9951 *p++ = ' ';
9952 }
9953 p = mempcpy (p, name, len);
9954 }
9955 else
9956 {
9957 /* Output the current message now and start a new one. */
9958 *p++ = ',';
9959 *p = '\0';
9960 fprintf (stream, "%s\n", message);
9961 p = start;
9962 left = size - (start - message) - len - 2;
9963
9964 gas_assert (left >= 0);
9965
9966 p = mempcpy (p, name, len);
9967 }
9968 }
9969
9970 *p = '\0';
9971 fprintf (stream, "%s\n", message);
9972 }
9973
9974 void
9975 md_show_usage (FILE *stream)
9976 {
9977 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9978 fprintf (stream, _("\
9979 -Q ignored\n\
9980 -V print assembler version number\n\
9981 -k ignored\n"));
9982 #endif
9983 fprintf (stream, _("\
9984 -n Do not optimize code alignment\n\
9985 -q quieten some warnings\n"));
9986 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9987 fprintf (stream, _("\
9988 -s ignored\n"));
9989 #endif
9990 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9991 || defined (TE_PE) || defined (TE_PEP))
9992 fprintf (stream, _("\
9993 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9994 #endif
9995 #ifdef SVR4_COMMENT_CHARS
9996 fprintf (stream, _("\
9997 --divide do not treat `/' as a comment character\n"));
9998 #else
9999 fprintf (stream, _("\
10000 --divide ignored\n"));
10001 #endif
10002 fprintf (stream, _("\
10003 -march=CPU[,+EXTENSION...]\n\
10004 generate code for CPU and EXTENSION, CPU is one of:\n"));
10005 show_arch (stream, 0, 1);
10006 fprintf (stream, _("\
10007 EXTENSION is combination of:\n"));
10008 show_arch (stream, 1, 0);
10009 fprintf (stream, _("\
10010 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10011 show_arch (stream, 0, 0);
10012 fprintf (stream, _("\
10013 -msse2avx encode SSE instructions with VEX prefix\n"));
10014 fprintf (stream, _("\
10015 -msse-check=[none|error|warning]\n\
10016 check SSE instructions\n"));
10017 fprintf (stream, _("\
10018 -moperand-check=[none|error|warning]\n\
10019 check operand combinations for validity\n"));
10020 fprintf (stream, _("\
10021 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10022 length\n"));
10023 fprintf (stream, _("\
10024 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10025 length\n"));
10026 fprintf (stream, _("\
10027 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10028 for EVEX.W bit ignored instructions\n"));
10029 fprintf (stream, _("\
10030 -mevexrcig=[rne|rd|ru|rz]\n\
10031 encode EVEX instructions with specific EVEX.RC value\n\
10032 for SAE-only ignored instructions\n"));
10033 fprintf (stream, _("\
10034 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10035 fprintf (stream, _("\
10036 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10037 fprintf (stream, _("\
10038 -mindex-reg support pseudo index registers\n"));
10039 fprintf (stream, _("\
10040 -mnaked-reg don't require `%%' prefix for registers\n"));
10041 fprintf (stream, _("\
10042 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10043 fprintf (stream, _("\
10044 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10045 fprintf (stream, _("\
10046 -mno-shared enable branch optimization for non shared code\n"));
10047 # if defined (TE_PE) || defined (TE_PEP)
10048 fprintf (stream, _("\
10049 -mbig-obj generate big object files\n"));
10050 #endif
10051 fprintf (stream, _("\
10052 -momit-lock-prefix=[no|yes]\n\
10053 strip all lock prefixes\n"));
10054 }
10055
10056 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10057 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10058 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10059
10060 /* Pick the target format to use. */
10061
10062 const char *
10063 i386_target_format (void)
10064 {
10065 if (!strncmp (default_arch, "x86_64", 6))
10066 {
10067 update_code_flag (CODE_64BIT, 1);
10068 if (default_arch[6] == '\0')
10069 x86_elf_abi = X86_64_ABI;
10070 else
10071 x86_elf_abi = X86_64_X32_ABI;
10072 }
10073 else if (!strcmp (default_arch, "i386"))
10074 update_code_flag (CODE_32BIT, 1);
10075 else if (!strcmp (default_arch, "iamcu"))
10076 {
10077 update_code_flag (CODE_32BIT, 1);
10078 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10079 {
10080 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10081 cpu_arch_name = "iamcu";
10082 cpu_sub_arch_name = NULL;
10083 cpu_arch_flags = iamcu_flags;
10084 cpu_arch_isa = PROCESSOR_IAMCU;
10085 cpu_arch_isa_flags = iamcu_flags;
10086 if (!cpu_arch_tune_set)
10087 {
10088 cpu_arch_tune = cpu_arch_isa;
10089 cpu_arch_tune_flags = cpu_arch_isa_flags;
10090 }
10091 }
10092 else
10093 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10094 cpu_arch_name);
10095 }
10096 else
10097 as_fatal (_("unknown architecture"));
10098
10099 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10100 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10101 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10102 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10103
10104 switch (OUTPUT_FLAVOR)
10105 {
10106 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10107 case bfd_target_aout_flavour:
10108 return AOUT_TARGET_FORMAT;
10109 #endif
10110 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10111 # if defined (TE_PE) || defined (TE_PEP)
10112 case bfd_target_coff_flavour:
10113 if (flag_code == CODE_64BIT)
10114 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10115 else
10116 return "pe-i386";
10117 # elif defined (TE_GO32)
10118 case bfd_target_coff_flavour:
10119 return "coff-go32";
10120 # else
10121 case bfd_target_coff_flavour:
10122 return "coff-i386";
10123 # endif
10124 #endif
10125 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10126 case bfd_target_elf_flavour:
10127 {
10128 const char *format;
10129
10130 switch (x86_elf_abi)
10131 {
10132 default:
10133 format = ELF_TARGET_FORMAT;
10134 break;
10135 case X86_64_ABI:
10136 use_rela_relocations = 1;
10137 object_64bit = 1;
10138 format = ELF_TARGET_FORMAT64;
10139 break;
10140 case X86_64_X32_ABI:
10141 use_rela_relocations = 1;
10142 object_64bit = 1;
10143 disallow_64bit_reloc = 1;
10144 format = ELF_TARGET_FORMAT32;
10145 break;
10146 }
10147 if (cpu_arch_isa == PROCESSOR_L1OM)
10148 {
10149 if (x86_elf_abi != X86_64_ABI)
10150 as_fatal (_("Intel L1OM is 64bit only"));
10151 return ELF_TARGET_L1OM_FORMAT;
10152 }
10153 else if (cpu_arch_isa == PROCESSOR_K1OM)
10154 {
10155 if (x86_elf_abi != X86_64_ABI)
10156 as_fatal (_("Intel K1OM is 64bit only"));
10157 return ELF_TARGET_K1OM_FORMAT;
10158 }
10159 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10160 {
10161 if (x86_elf_abi != I386_ABI)
10162 as_fatal (_("Intel MCU is 32bit only"));
10163 return ELF_TARGET_IAMCU_FORMAT;
10164 }
10165 else
10166 return format;
10167 }
10168 #endif
10169 #if defined (OBJ_MACH_O)
10170 case bfd_target_mach_o_flavour:
10171 if (flag_code == CODE_64BIT)
10172 {
10173 use_rela_relocations = 1;
10174 object_64bit = 1;
10175 return "mach-o-x86-64";
10176 }
10177 else
10178 return "mach-o-i386";
10179 #endif
10180 default:
10181 abort ();
10182 return NULL;
10183 }
10184 }
10185
10186 #endif /* OBJ_MAYBE_ more than one */
10187 \f
10188 symbolS *
10189 md_undefined_symbol (char *name)
10190 {
10191 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10192 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10193 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10194 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10195 {
10196 if (!GOT_symbol)
10197 {
10198 if (symbol_find (name))
10199 as_bad (_("GOT already in symbol table"));
10200 GOT_symbol = symbol_new (name, undefined_section,
10201 (valueT) 0, &zero_address_frag);
10202 };
10203 return GOT_symbol;
10204 }
10205 return 0;
10206 }
10207
10208 /* Round up a section size to the appropriate boundary. */
10209
10210 valueT
10211 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10212 {
10213 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10214 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10215 {
10216 /* For a.out, force the section size to be aligned. If we don't do
10217 this, BFD will align it for us, but it will not write out the
10218 final bytes of the section. This may be a bug in BFD, but it is
10219 easier to fix it here since that is how the other a.out targets
10220 work. */
10221 int align;
10222
10223 align = bfd_get_section_alignment (stdoutput, segment);
10224 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10225 }
10226 #endif
10227
10228 return size;
10229 }
10230
10231 /* On the i386, PC-relative offsets are relative to the start of the
10232 next instruction. That is, the address of the offset, plus its
10233 size, since the offset is always the last part of the insn. */
10234
10235 long
10236 md_pcrel_from (fixS *fixP)
10237 {
10238 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10239 }
10240
10241 #ifndef I386COFF
10242
10243 static void
10244 s_bss (int ignore ATTRIBUTE_UNUSED)
10245 {
10246 int temp;
10247
10248 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10249 if (IS_ELF)
10250 obj_elf_section_change_hook ();
10251 #endif
10252 temp = get_absolute_expression ();
10253 subseg_set (bss_section, (subsegT) temp);
10254 demand_empty_rest_of_line ();
10255 }
10256
10257 #endif
10258
10259 void
10260 i386_validate_fix (fixS *fixp)
10261 {
10262 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10263 {
10264 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10265 {
10266 if (!object_64bit)
10267 abort ();
10268 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10269 }
10270 else
10271 {
10272 if (!object_64bit)
10273 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10274 else
10275 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10276 }
10277 fixp->fx_subsy = 0;
10278 }
10279 }
10280
10281 arelent *
10282 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10283 {
10284 arelent *rel;
10285 bfd_reloc_code_real_type code;
10286
10287 switch (fixp->fx_r_type)
10288 {
10289 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10290 case BFD_RELOC_SIZE32:
10291 case BFD_RELOC_SIZE64:
10292 if (S_IS_DEFINED (fixp->fx_addsy)
10293 && !S_IS_EXTERNAL (fixp->fx_addsy))
10294 {
10295 /* Resolve size relocation against local symbol to size of
10296 the symbol plus addend. */
10297 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10298 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10299 && !fits_in_unsigned_long (value))
10300 as_bad_where (fixp->fx_file, fixp->fx_line,
10301 _("symbol size computation overflow"));
10302 fixp->fx_addsy = NULL;
10303 fixp->fx_subsy = NULL;
10304 md_apply_fix (fixp, (valueT *) &value, NULL);
10305 return NULL;
10306 }
10307 #endif
10308
10309 case BFD_RELOC_X86_64_PLT32:
10310 case BFD_RELOC_X86_64_GOT32:
10311 case BFD_RELOC_X86_64_GOTPCREL:
10312 case BFD_RELOC_386_PLT32:
10313 case BFD_RELOC_386_GOT32:
10314 case BFD_RELOC_386_GOTOFF:
10315 case BFD_RELOC_386_GOTPC:
10316 case BFD_RELOC_386_TLS_GD:
10317 case BFD_RELOC_386_TLS_LDM:
10318 case BFD_RELOC_386_TLS_LDO_32:
10319 case BFD_RELOC_386_TLS_IE_32:
10320 case BFD_RELOC_386_TLS_IE:
10321 case BFD_RELOC_386_TLS_GOTIE:
10322 case BFD_RELOC_386_TLS_LE_32:
10323 case BFD_RELOC_386_TLS_LE:
10324 case BFD_RELOC_386_TLS_GOTDESC:
10325 case BFD_RELOC_386_TLS_DESC_CALL:
10326 case BFD_RELOC_X86_64_TLSGD:
10327 case BFD_RELOC_X86_64_TLSLD:
10328 case BFD_RELOC_X86_64_DTPOFF32:
10329 case BFD_RELOC_X86_64_DTPOFF64:
10330 case BFD_RELOC_X86_64_GOTTPOFF:
10331 case BFD_RELOC_X86_64_TPOFF32:
10332 case BFD_RELOC_X86_64_TPOFF64:
10333 case BFD_RELOC_X86_64_GOTOFF64:
10334 case BFD_RELOC_X86_64_GOTPC32:
10335 case BFD_RELOC_X86_64_GOT64:
10336 case BFD_RELOC_X86_64_GOTPCREL64:
10337 case BFD_RELOC_X86_64_GOTPC64:
10338 case BFD_RELOC_X86_64_GOTPLT64:
10339 case BFD_RELOC_X86_64_PLTOFF64:
10340 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10341 case BFD_RELOC_X86_64_TLSDESC_CALL:
10342 case BFD_RELOC_RVA:
10343 case BFD_RELOC_VTABLE_ENTRY:
10344 case BFD_RELOC_VTABLE_INHERIT:
10345 #ifdef TE_PE
10346 case BFD_RELOC_32_SECREL:
10347 #endif
10348 code = fixp->fx_r_type;
10349 break;
10350 case BFD_RELOC_X86_64_32S:
10351 if (!fixp->fx_pcrel)
10352 {
10353 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10354 code = fixp->fx_r_type;
10355 break;
10356 }
10357 default:
10358 if (fixp->fx_pcrel)
10359 {
10360 switch (fixp->fx_size)
10361 {
10362 default:
10363 as_bad_where (fixp->fx_file, fixp->fx_line,
10364 _("can not do %d byte pc-relative relocation"),
10365 fixp->fx_size);
10366 code = BFD_RELOC_32_PCREL;
10367 break;
10368 case 1: code = BFD_RELOC_8_PCREL; break;
10369 case 2: code = BFD_RELOC_16_PCREL; break;
10370 case 4: code = BFD_RELOC_32_PCREL; break;
10371 #ifdef BFD64
10372 case 8: code = BFD_RELOC_64_PCREL; break;
10373 #endif
10374 }
10375 }
10376 else
10377 {
10378 switch (fixp->fx_size)
10379 {
10380 default:
10381 as_bad_where (fixp->fx_file, fixp->fx_line,
10382 _("can not do %d byte relocation"),
10383 fixp->fx_size);
10384 code = BFD_RELOC_32;
10385 break;
10386 case 1: code = BFD_RELOC_8; break;
10387 case 2: code = BFD_RELOC_16; break;
10388 case 4: code = BFD_RELOC_32; break;
10389 #ifdef BFD64
10390 case 8: code = BFD_RELOC_64; break;
10391 #endif
10392 }
10393 }
10394 break;
10395 }
10396
10397 if ((code == BFD_RELOC_32
10398 || code == BFD_RELOC_32_PCREL
10399 || code == BFD_RELOC_X86_64_32S)
10400 && GOT_symbol
10401 && fixp->fx_addsy == GOT_symbol)
10402 {
10403 if (!object_64bit)
10404 code = BFD_RELOC_386_GOTPC;
10405 else
10406 code = BFD_RELOC_X86_64_GOTPC32;
10407 }
10408 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10409 && GOT_symbol
10410 && fixp->fx_addsy == GOT_symbol)
10411 {
10412 code = BFD_RELOC_X86_64_GOTPC64;
10413 }
10414
10415 rel = (arelent *) xmalloc (sizeof (arelent));
10416 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10417 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10418
10419 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10420
10421 if (!use_rela_relocations)
10422 {
10423 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10424 vtable entry to be used in the relocation's section offset. */
10425 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10426 rel->address = fixp->fx_offset;
10427 #if defined (OBJ_COFF) && defined (TE_PE)
10428 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10429 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10430 else
10431 #endif
10432 rel->addend = 0;
10433 }
10434 /* Use the rela in 64bit mode. */
10435 else
10436 {
10437 if (disallow_64bit_reloc)
10438 switch (code)
10439 {
10440 case BFD_RELOC_X86_64_DTPOFF64:
10441 case BFD_RELOC_X86_64_TPOFF64:
10442 case BFD_RELOC_64_PCREL:
10443 case BFD_RELOC_X86_64_GOTOFF64:
10444 case BFD_RELOC_X86_64_GOT64:
10445 case BFD_RELOC_X86_64_GOTPCREL64:
10446 case BFD_RELOC_X86_64_GOTPC64:
10447 case BFD_RELOC_X86_64_GOTPLT64:
10448 case BFD_RELOC_X86_64_PLTOFF64:
10449 as_bad_where (fixp->fx_file, fixp->fx_line,
10450 _("cannot represent relocation type %s in x32 mode"),
10451 bfd_get_reloc_code_name (code));
10452 break;
10453 default:
10454 break;
10455 }
10456
10457 if (!fixp->fx_pcrel)
10458 rel->addend = fixp->fx_offset;
10459 else
10460 switch (code)
10461 {
10462 case BFD_RELOC_X86_64_PLT32:
10463 case BFD_RELOC_X86_64_GOT32:
10464 case BFD_RELOC_X86_64_GOTPCREL:
10465 case BFD_RELOC_X86_64_TLSGD:
10466 case BFD_RELOC_X86_64_TLSLD:
10467 case BFD_RELOC_X86_64_GOTTPOFF:
10468 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10469 case BFD_RELOC_X86_64_TLSDESC_CALL:
10470 rel->addend = fixp->fx_offset - fixp->fx_size;
10471 break;
10472 default:
10473 rel->addend = (section->vma
10474 - fixp->fx_size
10475 + fixp->fx_addnumber
10476 + md_pcrel_from (fixp));
10477 break;
10478 }
10479 }
10480
10481 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10482 if (rel->howto == NULL)
10483 {
10484 as_bad_where (fixp->fx_file, fixp->fx_line,
10485 _("cannot represent relocation type %s"),
10486 bfd_get_reloc_code_name (code));
10487 /* Set howto to a garbage value so that we can keep going. */
10488 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10489 gas_assert (rel->howto != NULL);
10490 }
10491
10492 return rel;
10493 }
10494
10495 #include "tc-i386-intel.c"
10496
10497 void
10498 tc_x86_parse_to_dw2regnum (expressionS *exp)
10499 {
10500 int saved_naked_reg;
10501 char saved_register_dot;
10502
10503 saved_naked_reg = allow_naked_reg;
10504 allow_naked_reg = 1;
10505 saved_register_dot = register_chars['.'];
10506 register_chars['.'] = '.';
10507 allow_pseudo_reg = 1;
10508 expression_and_evaluate (exp);
10509 allow_pseudo_reg = 0;
10510 register_chars['.'] = saved_register_dot;
10511 allow_naked_reg = saved_naked_reg;
10512
10513 if (exp->X_op == O_register && exp->X_add_number >= 0)
10514 {
10515 if ((addressT) exp->X_add_number < i386_regtab_size)
10516 {
10517 exp->X_op = O_constant;
10518 exp->X_add_number = i386_regtab[exp->X_add_number]
10519 .dw2_regnum[flag_code >> 1];
10520 }
10521 else
10522 exp->X_op = O_illegal;
10523 }
10524 }
10525
10526 void
10527 tc_x86_frame_initial_instructions (void)
10528 {
10529 static unsigned int sp_regno[2];
10530
10531 if (!sp_regno[flag_code >> 1])
10532 {
10533 char *saved_input = input_line_pointer;
10534 char sp[][4] = {"esp", "rsp"};
10535 expressionS exp;
10536
10537 input_line_pointer = sp[flag_code >> 1];
10538 tc_x86_parse_to_dw2regnum (&exp);
10539 gas_assert (exp.X_op == O_constant);
10540 sp_regno[flag_code >> 1] = exp.X_add_number;
10541 input_line_pointer = saved_input;
10542 }
10543
10544 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10545 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10546 }
10547
10548 int
10549 x86_dwarf2_addr_size (void)
10550 {
10551 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10552 if (x86_elf_abi == X86_64_X32_ABI)
10553 return 4;
10554 #endif
10555 return bfd_arch_bits_per_address (stdoutput) / 8;
10556 }
10557
10558 int
10559 i386_elf_section_type (const char *str, size_t len)
10560 {
10561 if (flag_code == CODE_64BIT
10562 && len == sizeof ("unwind") - 1
10563 && strncmp (str, "unwind", 6) == 0)
10564 return SHT_X86_64_UNWIND;
10565
10566 return -1;
10567 }
10568
10569 #ifdef TE_SOLARIS
10570 void
10571 i386_solaris_fix_up_eh_frame (segT sec)
10572 {
10573 if (flag_code == CODE_64BIT)
10574 elf_section_type (sec) = SHT_X86_64_UNWIND;
10575 }
10576 #endif
10577
10578 #ifdef TE_PE
10579 void
10580 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10581 {
10582 expressionS exp;
10583
10584 exp.X_op = O_secrel;
10585 exp.X_add_symbol = symbol;
10586 exp.X_add_number = 0;
10587 emit_expr (&exp, size);
10588 }
10589 #endif
10590
10591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10592 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10593
10594 bfd_vma
10595 x86_64_section_letter (int letter, char **ptr_msg)
10596 {
10597 if (flag_code == CODE_64BIT)
10598 {
10599 if (letter == 'l')
10600 return SHF_X86_64_LARGE;
10601
10602 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10603 }
10604 else
10605 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10606 return -1;
10607 }
10608
10609 bfd_vma
10610 x86_64_section_word (char *str, size_t len)
10611 {
10612 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10613 return SHF_X86_64_LARGE;
10614
10615 return -1;
10616 }
10617
10618 static void
10619 handle_large_common (int small ATTRIBUTE_UNUSED)
10620 {
10621 if (flag_code != CODE_64BIT)
10622 {
10623 s_comm_internal (0, elf_common_parse);
10624 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10625 }
10626 else
10627 {
10628 static segT lbss_section;
10629 asection *saved_com_section_ptr = elf_com_section_ptr;
10630 asection *saved_bss_section = bss_section;
10631
10632 if (lbss_section == NULL)
10633 {
10634 flagword applicable;
10635 segT seg = now_seg;
10636 subsegT subseg = now_subseg;
10637
10638 /* The .lbss section is for local .largecomm symbols. */
10639 lbss_section = subseg_new (".lbss", 0);
10640 applicable = bfd_applicable_section_flags (stdoutput);
10641 bfd_set_section_flags (stdoutput, lbss_section,
10642 applicable & SEC_ALLOC);
10643 seg_info (lbss_section)->bss = 1;
10644
10645 subseg_set (seg, subseg);
10646 }
10647
10648 elf_com_section_ptr = &_bfd_elf_large_com_section;
10649 bss_section = lbss_section;
10650
10651 s_comm_internal (0, elf_common_parse);
10652
10653 elf_com_section_ptr = saved_com_section_ptr;
10654 bss_section = saved_bss_section;
10655 }
10656 }
10657 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.290296 seconds and 4 git commands to generate.