x86-64: Properly encode and decode movsxd
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 /* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603 static int intel64;
604
605 /* 1 for intel mnemonic,
606 0 if att mnemonic. */
607 static int intel_mnemonic = !SYSV386_COMPAT;
608
609 /* 1 if pseudo registers are permitted. */
610 static int allow_pseudo_reg = 0;
611
612 /* 1 if register prefix % not required. */
613 static int allow_naked_reg = 0;
614
615 /* 1 if the assembler should add BND prefix for all control-transferring
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618 static int add_bnd_prefix = 0;
619
620 /* 1 if pseudo index register, eiz/riz, is allowed . */
621 static int allow_index_reg = 0;
622
623 /* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625 static int omit_lock_prefix = 0;
626
627 /* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629 static int avoid_fence = 0;
630
631 /* Type of the previous instruction. */
632 static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
646 /* 1 if the assembler should generate relax relocations. */
647
648 static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
651 static enum check_kind
652 {
653 check_none = 0,
654 check_warning,
655 check_error
656 }
657 sse_check, operand_check = check_warning;
658
659 /* Non-zero if branches should be aligned within power of 2 boundary. */
660 static int align_branch_power = 0;
661
662 /* Types of branches to align. */
663 enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674 /* Type bits of branches to align. */
675 enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685 static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689 /* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692 #define MAX_FUSED_JCC_PADDING_SIZE 20
693
694 /* The maximum number of prefixes added for an instruction. */
695 static unsigned int align_branch_prefix_size = 5;
696
697 /* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702 static int optimize = 0;
703
704 /* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711 static int optimize_for_space = 0;
712
713 /* Register prefix used for error message. */
714 static const char *register_prefix = "%";
715
716 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719 static char stackop_size = '\0';
720
721 /* Non-zero to optimize code alignment. */
722 int optimize_align_code = 1;
723
724 /* Non-zero to quieten some warnings. */
725 static int quiet_warnings = 0;
726
727 /* CPU name. */
728 static const char *cpu_arch_name = NULL;
729 static char *cpu_sub_arch_name = NULL;
730
731 /* CPU feature flags. */
732 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
734 /* If we have selected a cpu we are generating instructions for. */
735 static int cpu_arch_tune_set = 0;
736
737 /* Cpu we are generating instructions for. */
738 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
739
740 /* CPU feature flags of cpu we are generating instructions for. */
741 static i386_cpu_flags cpu_arch_tune_flags;
742
743 /* CPU instruction set architecture used. */
744 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
745
746 /* CPU feature flags of instruction set architecture used. */
747 i386_cpu_flags cpu_arch_isa_flags;
748
749 /* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751 static unsigned int no_cond_jump_promotion = 0;
752
753 /* Encode SSE instructions with VEX prefix. */
754 static unsigned int sse2avx;
755
756 /* Encode scalar AVX instructions with specific vector length. */
757 static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
763 /* Encode VEX WIG instructions with specific vex.w. */
764 static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
770 /* Encode scalar EVEX LIG instructions with specific vector length. */
771 static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778 /* Encode EVEX WIG instructions with specific evex.w. */
779 static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
785 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
786 static enum rc_type evexrcig = rne;
787
788 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
789 static symbolS *GOT_symbol;
790
791 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
792 unsigned int x86_dwarf2_return_column;
793
794 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795 int x86_cie_data_alignment;
796
797 /* Interface to relax_segment.
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
805
806 /* Types. */
807 #define UNCOND_JUMP 0
808 #define COND_JUMP 1
809 #define COND_JUMP86 2
810 #define BRANCH_PADDING 3
811 #define BRANCH_PREFIX 4
812 #define FUSED_JCC_PADDING 5
813
814 /* Sizes. */
815 #define CODE16 1
816 #define SMALL 0
817 #define SMALL16 (SMALL | CODE16)
818 #define BIG 2
819 #define BIG16 (BIG | CODE16)
820
821 #ifndef INLINE
822 #ifdef __GNUC__
823 #define INLINE __inline__
824 #else
825 #define INLINE
826 #endif
827 #endif
828
829 #define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831 #define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833 #define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
835
836 /* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844 const relax_typeS md_relax_table[] =
845 {
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
849 3) how many bytes this mode will have in the variable part of the frag
850 4) which index into the table to try if we can't fit into this one. */
851
852 /* UNCOND_JUMP states. */
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
857 {0, 0, 4, 0},
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
860 {0, 0, 2, 0},
861
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
868 /* word conditionals add 3 bytes to frag:
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
881 };
882
883 static const arch_entry cpu_arch[] =
884 {
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
888 CPU_GENERIC32_FLAGS, 0 },
889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
890 CPU_GENERIC64_FLAGS, 0 },
891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
892 CPU_NONE_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
894 CPU_I186_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
896 CPU_I286_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
898 CPU_I386_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
900 CPU_I486_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
902 CPU_I586_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
904 CPU_I686_FLAGS, 0 },
905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
906 CPU_I586_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
908 CPU_PENTIUMPRO_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
910 CPU_P2_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
912 CPU_P3_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
914 CPU_P4_FLAGS, 0 },
915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
916 CPU_CORE_FLAGS, 0 },
917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
918 CPU_NOCONA_FLAGS, 0 },
919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
920 CPU_CORE_FLAGS, 1 },
921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 0 },
923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
924 CPU_CORE2_FLAGS, 1 },
925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 0 },
927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
928 CPU_COREI7_FLAGS, 0 },
929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
930 CPU_L1OM_FLAGS, 0 },
931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
932 CPU_K1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
934 CPU_IAMCU_FLAGS, 0 },
935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
936 CPU_K6_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
938 CPU_K6_2_FLAGS, 0 },
939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
940 CPU_ATHLON_FLAGS, 0 },
941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
942 CPU_K8_FLAGS, 1 },
943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 0 },
945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
948 CPU_AMDFAM10_FLAGS, 0 },
949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
950 CPU_BDVER1_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
952 CPU_BDVER2_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
954 CPU_BDVER3_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
956 CPU_BDVER4_FLAGS, 0 },
957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
958 CPU_ZNVER1_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
962 CPU_BTVER1_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
964 CPU_BTVER2_FLAGS, 0 },
965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
966 CPU_8087_FLAGS, 0 },
967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
968 CPU_287_FLAGS, 0 },
969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
970 CPU_387_FLAGS, 0 },
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
978 CPU_MMX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
980 CPU_SSE_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
982 CPU_SSE2_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
984 CPU_SSE3_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
986 CPU_SSSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
988 CPU_SSE4_1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_2_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
994 CPU_AVX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
996 CPU_AVX2_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
998 CPU_AVX512F_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512CD_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512ER_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512PF_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512DQ_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512BW_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512VL_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1012 CPU_VMX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1014 CPU_VMFUNC_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1016 CPU_SMX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1018 CPU_XSAVE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVEOPT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEC_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVES_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1026 CPU_AES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1028 CPU_PCLMUL_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 1 },
1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1032 CPU_FSGSBASE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1034 CPU_RDRND_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1036 CPU_F16C_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1038 CPU_BMI2_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1040 CPU_FMA_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1042 CPU_FMA4_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1044 CPU_XOP_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1046 CPU_LWP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1048 CPU_MOVBE_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1050 CPU_CX16_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1052 CPU_EPT_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1054 CPU_LZCNT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1056 CPU_HLE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1058 CPU_RTM_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1060 CPU_INVPCID_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1062 CPU_CLFLUSH_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1064 CPU_NOP_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1066 CPU_SYSCALL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1068 CPU_RDTSCP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1070 CPU_3DNOW_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOWA_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1074 CPU_PADLOCK_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1076 CPU_SVME_FLAGS, 1 },
1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1080 CPU_SSE4A_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1082 CPU_ABM_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1084 CPU_BMI_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1086 CPU_TBM_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1088 CPU_ADX_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1090 CPU_RDSEED_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1092 CPU_PRFCHW_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1094 CPU_SMAP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1096 CPU_MPX_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1098 CPU_SHA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1100 CPU_CLFLUSHOPT_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1102 CPU_PREFETCHWT1_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1104 CPU_SE1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1106 CPU_CLWB_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1108 CPU_AVX512IFMA_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512VBMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1124 CPU_CLZERO_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1126 CPU_MWAITX_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1128 CPU_OSPKE_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1130 CPU_RDPID_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
1165 };
1166
1167 static const noarch_entry cpu_noarch[] =
1168 {
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1207 };
1208
1209 #ifdef I386COFF
1210 /* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213 static symbolS *
1214 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215 {
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
1220 if (needs_align
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
1224
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242 }
1243
1244 static void
1245 pe_lcomm (int needs_align)
1246 {
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248 }
1249 #endif
1250
1251 const pseudo_typeS md_pseudo_table[] =
1252 {
1253 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255 #else
1256 {"align", s_align_ptwo, 0},
1257 #endif
1258 {"arch", set_cpu_arch, 0},
1259 #ifndef I386COFF
1260 {"bss", s_bss, 0},
1261 #else
1262 {"lcomm", pe_lcomm, 1},
1263 #endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
1268 {"slong", signed_cons, 4},
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
1274 #ifdef BFD64
1275 {"code64", set_code_flag, CODE_64BIT},
1276 #endif
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
1285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
1287 #else
1288 {"file", dwarf2_directive_file, 0},
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1291 #endif
1292 #ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294 #endif
1295 {0, 0, 0}
1296 };
1297
1298 /* For interface with expression (). */
1299 extern char *input_line_pointer;
1300
1301 /* Hash table for instruction mnemonic lookup. */
1302 static struct hash_control *op_hash;
1303
1304 /* Hash table for register lookup. */
1305 static struct hash_control *reg_hash;
1306 \f
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
1310 static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312 static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314 static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316 static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1318 static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320 static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1322 static const unsigned char f16_3[] =
1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1324 static const unsigned char f16_4[] =
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326 static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328 static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330 static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
1332 /* 32-bit NOPs patterns. */
1333 static const unsigned char *const f32_patt[] = {
1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1335 };
1336 /* 16-bit NOPs patterns. */
1337 static const unsigned char *const f16_patt[] = {
1338 f32_1, f32_2, f16_3, f16_4
1339 };
1340 /* nopl (%[re]ax) */
1341 static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343 /* nopl 0(%[re]ax) */
1344 static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346 /* nopl 0(%[re]ax,%[re]ax,1) */
1347 static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349 /* nopw 0(%[re]ax,%[re]ax,1) */
1350 static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352 /* nopl 0L(%[re]ax) */
1353 static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355 /* nopl 0L(%[re]ax,%[re]ax,1) */
1356 static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358 /* nopw 0L(%[re]ax,%[re]ax,1) */
1359 static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362 static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1364 /* data16 nopw %cs:0L(%eax,%eax,1) */
1365 static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1367 /* 32-bit and 64-bit NOPs patterns. */
1368 static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1370 alt_9, alt_10, alt_11
1371 };
1372
1373 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376 static void
1377 i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380 {
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
1397 {
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
1400 }
1401
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
1423 }
1424
1425 static INLINE int
1426 fits_in_imm7 (offsetT num)
1427 {
1428 return (num & 0x7f) == num;
1429 }
1430
1431 static INLINE int
1432 fits_in_imm31 (offsetT num)
1433 {
1434 return (num & 0x7fffffff) == num;
1435 }
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440 void
1441 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1442 {
1443 const unsigned char *const *patt = NULL;
1444 int max_single_nop_size;
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
1447
1448 switch (fragP->fr_type)
1449 {
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
1459 default:
1460 return;
1461 }
1462
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
1465
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1472 be used.
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
1483 }
1484 else
1485 {
1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1495 patt = alt_patt;
1496 else
1497 patt = f32_patt;
1498 break;
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
1501 case PROCESSOR_CORE:
1502 case PROCESSOR_CORE2:
1503 case PROCESSOR_COREI7:
1504 case PROCESSOR_L1OM:
1505 case PROCESSOR_K1OM:
1506 case PROCESSOR_GENERIC64:
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
1510 case PROCESSOR_AMDFAM10:
1511 case PROCESSOR_BD:
1512 case PROCESSOR_ZNVER:
1513 case PROCESSOR_BT:
1514 patt = alt_patt;
1515 break;
1516 case PROCESSOR_I386:
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
1519 case PROCESSOR_PENTIUMPRO:
1520 case PROCESSOR_IAMCU:
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
1524 }
1525 }
1526 else
1527 {
1528 switch (fragP->tc_frag_data.tune)
1529 {
1530 case PROCESSOR_UNKNOWN:
1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
1536 case PROCESSOR_I386:
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
1539 case PROCESSOR_IAMCU:
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
1543 case PROCESSOR_AMDFAM10:
1544 case PROCESSOR_BD:
1545 case PROCESSOR_ZNVER:
1546 case PROCESSOR_BT:
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1551 patt = alt_patt;
1552 else
1553 patt = f32_patt;
1554 break;
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
1559 case PROCESSOR_CORE2:
1560 case PROCESSOR_COREI7:
1561 case PROCESSOR_L1OM:
1562 case PROCESSOR_K1OM:
1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1564 patt = alt_patt;
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
1569 patt = alt_patt;
1570 break;
1571 }
1572 }
1573
1574 if (patt == f32_patt)
1575 {
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
1579 }
1580 else
1581 {
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
1603 else if (fragP->fr_type != rs_machine_dependent)
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
1644 }
1645 }
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
1649 }
1650
1651 static INLINE int
1652 operand_type_all_zero (const union i386_operand_type *x)
1653 {
1654 switch (ARRAY_SIZE(x->array))
1655 {
1656 case 3:
1657 if (x->array[2])
1658 return 0;
1659 /* Fall through. */
1660 case 2:
1661 if (x->array[1])
1662 return 0;
1663 /* Fall through. */
1664 case 1:
1665 return !x->array[0];
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 static INLINE void
1672 operand_type_set (union i386_operand_type *x, unsigned int v)
1673 {
1674 switch (ARRAY_SIZE(x->array))
1675 {
1676 case 3:
1677 x->array[2] = v;
1678 /* Fall through. */
1679 case 2:
1680 x->array[1] = v;
1681 /* Fall through. */
1682 case 1:
1683 x->array[0] = v;
1684 /* Fall through. */
1685 break;
1686 default:
1687 abort ();
1688 }
1689
1690 x->bitfield.class = ClassNone;
1691 x->bitfield.instance = InstanceNone;
1692 }
1693
1694 static INLINE int
1695 operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
1697 {
1698 switch (ARRAY_SIZE(x->array))
1699 {
1700 case 3:
1701 if (x->array[2] != y->array[2])
1702 return 0;
1703 /* Fall through. */
1704 case 2:
1705 if (x->array[1] != y->array[1])
1706 return 0;
1707 /* Fall through. */
1708 case 1:
1709 return x->array[0] == y->array[0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 }
1715
1716 static INLINE int
1717 cpu_flags_all_zero (const union i386_cpu_flags *x)
1718 {
1719 switch (ARRAY_SIZE(x->array))
1720 {
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1728 /* Fall through. */
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1732 /* Fall through. */
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738 }
1739
1740 static INLINE int
1741 cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743 {
1744 switch (ARRAY_SIZE(x->array))
1745 {
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1753 /* Fall through. */
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1757 /* Fall through. */
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 }
1765
1766 static INLINE int
1767 cpu_flags_check_cpu64 (i386_cpu_flags f)
1768 {
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1771 }
1772
1773 static INLINE i386_cpu_flags
1774 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
1781 case 3:
1782 x.array [2] &= y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_cpu_flags
1797 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
1804 case 3:
1805 x.array [2] |= y.array [2];
1806 /* Fall through. */
1807 case 2:
1808 x.array [1] |= y.array [1];
1809 /* Fall through. */
1810 case 1:
1811 x.array [0] |= y.array [0];
1812 break;
1813 default:
1814 abort ();
1815 }
1816 return x;
1817 }
1818
1819 static INLINE i386_cpu_flags
1820 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821 {
1822 switch (ARRAY_SIZE (x.array))
1823 {
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 #define CPU_FLAGS_ARCH_MATCH 0x1
1843 #define CPU_FLAGS_64BIT_MATCH 0x2
1844
1845 #define CPU_FLAGS_PERFECT_MATCH \
1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1847
1848 /* Return CPU flags match bits. */
1849
1850 static int
1851 cpu_flags_match (const insn_template *t)
1852 {
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
1859 if (cpu_flags_all_zero (&x))
1860 {
1861 /* This instruction is available on all archs. */
1862 match |= CPU_FLAGS_ARCH_MATCH;
1863 }
1864 else
1865 {
1866 /* This instruction is available only on some archs. */
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
1874 cpu = cpu_flags_and (x, cpu);
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
1877 if (x.bitfield.cpuavx)
1878 {
1879 /* We need to check a few extra flags with AVX. */
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
1886 }
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
1896 else
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 }
1900 return match;
1901 }
1902
1903 static INLINE i386_operand_type
1904 operand_type_and (i386_operand_type x, i386_operand_type y)
1905 {
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
1910
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static INLINE i386_operand_type
1929 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930 {
1931 gas_assert (y.bitfield.class == ClassNone);
1932 gas_assert (y.bitfield.instance == InstanceNone);
1933
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949 }
1950
1951 static INLINE i386_operand_type
1952 operand_type_or (i386_operand_type x, i386_operand_type y)
1953 {
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
1960
1961 switch (ARRAY_SIZE (x.array))
1962 {
1963 case 3:
1964 x.array [2] |= y.array [2];
1965 /* Fall through. */
1966 case 2:
1967 x.array [1] |= y.array [1];
1968 /* Fall through. */
1969 case 1:
1970 x.array [0] |= y.array [0];
1971 break;
1972 default:
1973 abort ();
1974 }
1975 return x;
1976 }
1977
1978 static INLINE i386_operand_type
1979 operand_type_xor (i386_operand_type x, i386_operand_type y)
1980 {
1981 gas_assert (y.bitfield.class == ClassNone);
1982 gas_assert (y.bitfield.instance == InstanceNone);
1983
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1988 /* Fall through. */
1989 case 2:
1990 x.array [1] ^= y.array [1];
1991 /* Fall through. */
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
1998 return x;
1999 }
2000
2001 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2005 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2007 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2008 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2009 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019 enum operand_type
2020 {
2021 reg,
2022 imm,
2023 disp,
2024 anymem
2025 };
2026
2027 static INLINE int
2028 operand_type_check (i386_operand_type t, enum operand_type c)
2029 {
2030 switch (c)
2031 {
2032 case reg:
2033 return t.bitfield.class == Reg;
2034
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
2067
2068 static INLINE int
2069 match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
2071 {
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
2082 }
2083
2084 /* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
2086
2087 static INLINE int
2088 match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
2090 {
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
2097 }
2098
2099 /* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
2101
2102 static INLINE int
2103 match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
2105 {
2106 return (match_operand_size (t, wanted, given)
2107 && !((i.types[given].bitfield.unspecified
2108 && !i.broadcast
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2117 && !t->opcode_modifier.broadcast
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
2126 }
2127
2128 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
2132
2133 #define MATCH_STRAIGHT 1
2134 #define MATCH_REVERSE 2
2135
2136 static INLINE unsigned int
2137 operand_size_match (const insn_template *t)
2138 {
2139 unsigned int j, match = MATCH_STRAIGHT;
2140
2141 /* Don't check non-absolute jump instructions. */
2142 if (t->opcode_modifier.jump
2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
2151 && t->opcode_modifier.anysize)
2152 continue;
2153
2154 if (t->operand_types[j].bitfield.class == Reg
2155 && !match_operand_size (t, j, j))
2156 {
2157 match = 0;
2158 break;
2159 }
2160
2161 if (t->operand_types[j].bitfield.class == RegSIMD
2162 && !match_simd_size (t, j, j))
2163 {
2164 match = 0;
2165 break;
2166 }
2167
2168 if (t->operand_types[j].bitfield.instance == Accum
2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2170 {
2171 match = 0;
2172 break;
2173 }
2174
2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
2182 if (!t->opcode_modifier.d)
2183 {
2184 mismatch:
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
2188 }
2189
2190 /* Check reverse. */
2191 gas_assert (i.operands >= 2 && i.operands <= 3);
2192
2193 for (j = 0; j < i.operands; j++)
2194 {
2195 unsigned int given = i.operands - j - 1;
2196
2197 if (t->operand_types[j].bitfield.class == Reg
2198 && !match_operand_size (t, j, given))
2199 goto mismatch;
2200
2201 if (t->operand_types[j].bitfield.class == RegSIMD
2202 && !match_simd_size (t, j, given))
2203 goto mismatch;
2204
2205 if (t->operand_types[j].bitfield.instance == Accum
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
2208 goto mismatch;
2209
2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2211 goto mismatch;
2212 }
2213
2214 return match | MATCH_REVERSE;
2215 }
2216
2217 static INLINE int
2218 operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220 {
2221 i386_operand_type temp = overlap;
2222
2223 temp.bitfield.unspecified = 0;
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
2231 temp.bitfield.ymmword = 0;
2232 temp.bitfield.zmmword = 0;
2233 if (operand_type_all_zero (&temp))
2234 goto mismatch;
2235
2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2237 return 1;
2238
2239 mismatch:
2240 i.error = operand_type_mismatch;
2241 return 0;
2242 }
2243
2244 /* If given types g0 and g1 are registers they must be of the same type
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || t0.bitfield.class != RegSIMD))
2260 return 1;
2261
2262 if (g1.bitfield.class != Reg
2263 && g1.bitfield.class != RegSIMD
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
2266 || t1.bitfield.class != RegSIMD))
2267 return 1;
2268
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2276 return 1;
2277
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2285 return 1;
2286
2287 i.error = register_type_mismatch;
2288
2289 return 0;
2290 }
2291
2292 static INLINE unsigned int
2293 register_number (const reg_entry *r)
2294 {
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
2303 return nr;
2304 }
2305
2306 static INLINE unsigned int
2307 mode_from_disp_size (i386_operand_type t)
2308 {
2309 if (t.bitfield.disp8)
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
2317 }
2318
2319 static INLINE int
2320 fits_in_signed_byte (addressT num)
2321 {
2322 return num + 0x80 <= 0xff;
2323 }
2324
2325 static INLINE int
2326 fits_in_unsigned_byte (addressT num)
2327 {
2328 return num <= 0xff;
2329 }
2330
2331 static INLINE int
2332 fits_in_unsigned_word (addressT num)
2333 {
2334 return num <= 0xffff;
2335 }
2336
2337 static INLINE int
2338 fits_in_signed_word (addressT num)
2339 {
2340 return num + 0x8000 <= 0xffff;
2341 }
2342
2343 static INLINE int
2344 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2345 {
2346 #ifndef BFD64
2347 return 1;
2348 #else
2349 return num + 0x80000000 <= 0xffffffff;
2350 #endif
2351 } /* fits_in_signed_long() */
2352
2353 static INLINE int
2354 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2355 {
2356 #ifndef BFD64
2357 return 1;
2358 #else
2359 return num <= 0xffffffff;
2360 #endif
2361 } /* fits_in_unsigned_long() */
2362
2363 static INLINE int
2364 fits_in_disp8 (offsetT num)
2365 {
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380 }
2381
2382 static INLINE int
2383 fits_in_imm4 (offsetT num)
2384 {
2385 return (num & 0xf) == num;
2386 }
2387
2388 static i386_operand_type
2389 smallest_imm_type (offsetT num)
2390 {
2391 i386_operand_type t;
2392
2393 operand_type_set (&t, 0);
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
2440 }
2441
2442 static offsetT
2443 offset_in_range (offsetT val, int size)
2444 {
2445 addressT mask;
2446
2447 switch (size)
2448 {
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
2452 #ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454 #endif
2455 default: abort ();
2456 }
2457
2458 #ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2464 #endif
2465
2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475 }
2476
2477 enum PREFIX_GROUP
2478 {
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
2482 PREFIX_DS,
2483 PREFIX_OTHER
2484 };
2485
2486 /* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
2493 */
2494
2495 static enum PREFIX_GROUP
2496 add_prefix (unsigned int prefix)
2497 {
2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
2499 unsigned int q;
2500
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
2503 {
2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2508 ret = PREFIX_EXIST;
2509 q = REX_PREFIX;
2510 }
2511 else
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
2518 case DS_PREFIX_OPCODE:
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
2535 case LOCK_PREFIX_OPCODE:
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
2553 ret = PREFIX_EXIST;
2554 }
2555
2556 if (ret)
2557 {
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
2561 }
2562 else
2563 as_bad (_("same type of prefix used twice"));
2564
2565 return ret;
2566 }
2567
2568 static void
2569 update_code_flag (int value, int check)
2570 {
2571 PRINTF_LIKE ((*as_error));
2572
2573 flag_code = (enum flag_code) value;
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2585 {
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
2592 }
2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2594 {
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
2601 }
2602 stackop_size = '\0';
2603 }
2604
2605 static void
2606 set_code_flag (int value)
2607 {
2608 update_code_flag (value, 0);
2609 }
2610
2611 static void
2612 set_16bit_gcc_code_flag (int new_code_flag)
2613 {
2614 flag_code = (enum flag_code) new_code_flag;
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
2619 stackop_size = LONG_MNEM_SUFFIX;
2620 }
2621
2622 static void
2623 set_intel_syntax (int syntax_flag)
2624 {
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633
2634 if (strcmp (string, "prefix") == 0)
2635 ask_naked_reg = 1;
2636 else if (strcmp (string, "noprefix") == 0)
2637 ask_naked_reg = -1;
2638 else
2639 as_bad (_("bad argument to syntax directive."));
2640 (void) restore_line_pointer (e);
2641 }
2642 demand_empty_rest_of_line ();
2643
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
2651
2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2653
2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
2656 register_prefix = allow_naked_reg ? "" : "%";
2657 }
2658
2659 static void
2660 set_intel_mnemonic (int mnemonic_flag)
2661 {
2662 intel_mnemonic = mnemonic_flag;
2663 }
2664
2665 static void
2666 set_allow_index_reg (int flag)
2667 {
2668 allow_index_reg = flag;
2669 }
2670
2671 static void
2672 set_check (int what)
2673 {
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "none") == 0)
2696 *kind = check_none;
2697 else if (strcmp (string, "warning") == 0)
2698 *kind = check_warning;
2699 else if (strcmp (string, "error") == 0)
2700 *kind = check_error;
2701 else
2702 as_bad (_("bad argument to %s_check directive."), str);
2703 (void) restore_line_pointer (e);
2704 }
2705 else
2706 as_bad (_("missing argument for %s_check directive"), str);
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2714 {
2715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
2736 /* If we are targeting Intel L1OM, we must enable it. */
2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2738 || new_flag.bitfield.cpul1om)
2739 return;
2740
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747 #endif
2748 }
2749
2750 static void
2751 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2752 {
2753 SKIP_WHITESPACE ();
2754
2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2756 {
2757 char *string;
2758 int e = get_symbol_name (&string);
2759 unsigned int j;
2760 i386_cpu_flags flags;
2761
2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2763 {
2764 if (strcmp (string, cpu_arch[j].name) == 0)
2765 {
2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2767
2768 if (*string != '.')
2769 {
2770 cpu_arch_name = cpu_arch[j].name;
2771 cpu_sub_arch_name = NULL;
2772 cpu_arch_flags = cpu_arch[j].flags;
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
2790 break;
2791 }
2792
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
2795
2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2797 {
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
2802 cpu_arch[j].name,
2803 (const char *) NULL);
2804 free (name);
2805 }
2806 else
2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2808 cpu_arch_flags = flags;
2809 cpu_arch_isa_flags = flags;
2810 }
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
2815 (void) restore_line_pointer (e);
2816 demand_empty_rest_of_line ();
2817 return;
2818 }
2819 }
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
2823 /* Disable an ISA extension. */
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
2851 if (j >= ARRAY_SIZE (cpu_arch))
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2862 {
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
2876 (void) restore_line_pointer (e);
2877 }
2878
2879 demand_empty_rest_of_line ();
2880 }
2881
2882 enum bfd_architecture
2883 i386_arch (void)
2884 {
2885 if (cpu_arch_isa == PROCESSOR_L1OM)
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
2906 else
2907 return bfd_arch_i386;
2908 }
2909
2910 unsigned long
2911 i386_mach (void)
2912 {
2913 if (!strncmp (default_arch, "x86_64", 6))
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
2929 else if (default_arch[6] == '\0')
2930 return bfd_mach_x86_64;
2931 else
2932 return bfd_mach_x64_32;
2933 }
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
2946 else
2947 as_fatal (_("unknown architecture"));
2948 }
2949 \f
2950 void
2951 md_begin (void)
2952 {
2953 const char *hash_err;
2954
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
2958 /* Initialize op_hash hash table. */
2959 op_hash = hash_new ();
2960
2961 {
2962 const insn_template *optab;
2963 templates *core_optab;
2964
2965 /* Setup for loop. */
2966 optab = i386_optab;
2967 core_optab = XNEW (templates);
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
2977 add to hash table; & begin anew. */
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
2981 (void *) core_optab);
2982 if (hash_err)
2983 {
2984 as_fatal (_("can't hash %s: %s"),
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
2990 core_optab = XNEW (templates);
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
2996 /* Initialize reg_hash hash table. */
2997 reg_hash = hash_new ();
2998 {
2999 const reg_entry *regtab;
3000 unsigned int regtab_size = i386_regtab_size;
3001
3002 for (regtab = i386_regtab; regtab_size--; regtab++)
3003 {
3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3005 if (hash_err)
3006 as_fatal (_("can't hash %s: %s"),
3007 regtab->reg_name,
3008 hash_err);
3009 }
3010 }
3011
3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3013 {
3014 int c;
3015 char *p;
3016
3017 for (c = 0; c < 256; c++)
3018 {
3019 if (ISDIGIT (c))
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3026 else if (ISLOWER (c))
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3032 else if (ISUPPER (c))
3033 {
3034 mnemonic_chars[c] = TOLOWER (c);
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
3038 else if (c == '{' || c == '}')
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
3043
3044 if (ISALPHA (c) || ISDIGIT (c))
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053 #ifdef LEX_AT
3054 identifier_chars['@'] = '@';
3055 #endif
3056 #ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
3059 #endif
3060 digit_chars['-'] = '-';
3061 mnemonic_chars['_'] = '_';
3062 mnemonic_chars['-'] = '-';
3063 mnemonic_chars['.'] = '.';
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
3071 if (flag_code == CODE_64BIT)
3072 {
3073 #if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076 #else
3077 x86_dwarf2_return_column = 16;
3078 #endif
3079 x86_cie_data_alignment = -8;
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
3091 }
3092
3093 void
3094 i386_print_statistics (FILE *file)
3095 {
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098 }
3099 \f
3100 #ifdef DEBUG386
3101
3102 /* Debugging routines for md_assemble. */
3103 static void pte (insn_template *);
3104 static void pt (i386_operand_type);
3105 static void pe (expressionS *);
3106 static void ps (symbolS *);
3107
3108 static void
3109 pi (const char *line, i386_insn *x)
3110 {
3111 unsigned int j;
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3120 x->rm.mode, x->rm.reg, x->rm.regmem);
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
3128 for (j = 0; j < x->operands; j++)
3129 {
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
3132 fprintf (stdout, "\n");
3133 if (x->types[j].bitfield.class == Reg
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
3136 || x->types[j].bitfield.class == SReg
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
3145 }
3146 }
3147
3148 static void
3149 pte (insn_template *t)
3150 {
3151 unsigned int j;
3152 fprintf (stdout, " %d operands ", t->operands);
3153 fprintf (stdout, "opcode %x ", t->base_opcode);
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
3156 if (t->opcode_modifier.d)
3157 fprintf (stdout, "D");
3158 if (t->opcode_modifier.w)
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
3161 for (j = 0; j < t->operands; j++)
3162 {
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
3165 fprintf (stdout, "\n");
3166 }
3167 }
3168
3169 static void
3170 pe (expressionS *e)
3171 {
3172 fprintf (stdout, " operation %d\n", e->X_op);
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187 }
3188
3189 static void
3190 ps (symbolS *s)
3191 {
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196 }
3197
3198 static struct type_name
3199 {
3200 i386_operand_type mask;
3201 const char *name;
3202 }
3203 const type_names[] =
3204 {
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
3233 { OPERAND_TYPE_SREG, "SReg" },
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
3236 { OPERAND_TYPE_REGYMM, "rYMM" },
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
3239 };
3240
3241 static void
3242 pt (i386_operand_type t)
3243 {
3244 unsigned int j;
3245 i386_operand_type a;
3246
3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
3250 if (operand_type_equal (&a, &type_names[j].mask))
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
3253 fflush (stdout);
3254 }
3255
3256 #endif /* DEBUG386 */
3257 \f
3258 static bfd_reloc_code_real_type
3259 reloc (unsigned int size,
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
3263 {
3264 if (other != NO_RELOC)
3265 {
3266 reloc_howto_type *rel;
3267
3268 if (size == 8)
3269 switch (other)
3270 {
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
3300 other = BFD_RELOC_SIZE64;
3301 if (pcrel)
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
3306 }
3307 #endif
3308
3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3311 sign = -1;
3312
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3315 as_bad (_("unknown relocation (%u)"), other);
3316 else if (size != bfd_get_reloc_size (rel))
3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3318 bfd_get_reloc_size (rel),
3319 size);
3320 else if (pcrel && !rel->pc_relative)
3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3323 && !sign)
3324 || (rel->complain_on_overflow == complain_overflow_unsigned
3325 && sign > 0))
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
3331
3332 if (pcrel)
3333 {
3334 if (!sign)
3335 as_bad (_("there are no unsigned pc-relative relocations"));
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
3340 case 4: return BFD_RELOC_32_PCREL;
3341 case 8: return BFD_RELOC_64_PCREL;
3342 }
3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3344 }
3345 else
3346 {
3347 if (sign > 0)
3348 switch (size)
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
3362 }
3363
3364 return NO_RELOC;
3365 }
3366
3367 /* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
3372 int
3373 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3374 {
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (!IS_ELF)
3377 return 1;
3378
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
3384 return 0;
3385
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
3428 #endif
3429 return 1;
3430 }
3431
3432 static int
3433 intel_float_operand (const char *mnemonic)
3434 {
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Build the VEX prefix. */
3486
3487 static void
3488 build_vex_prefix (const insn_template *t)
3489 {
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
3493 unsigned int w;
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
3502 else
3503 register_specifier = 0xf;
3504
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
3509 && i.dir_encoding == dir_encoding_default
3510 && i.operands == i.reg_operands
3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3512 && i.tm.opcode_modifier.vexopcode == VEX0F
3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
3527 gas_assert (i.rm.mode == 3);
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
3539 }
3540
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
3582 else
3583 {
3584 unsigned int op;
3585
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
3588 vector_length = 0;
3589 for (op = t->operands; op--;)
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3624
3625 /* Use 2-byte VEX prefix if possible. */
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
3628 && i.tm.opcode_modifier.vexopcode == VEX0F
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
3647 unsigned int m;
3648
3649 i.vex.length = 3;
3650
3651 switch (i.tm.opcode_modifier.vexopcode)
3652 {
3653 case VEX0F:
3654 m = 0x1;
3655 i.vex.bytes[0] = 0xc4;
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case XOP08:
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
3668 break;
3669 case XOP09:
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP0A:
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 default:
3678 abort ();
3679 }
3680
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690 }
3691
3692 static INLINE bfd_boolean
3693 is_evex_encoding (const insn_template *t)
3694 {
3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3697 || t->opcode_modifier.sae;
3698 }
3699
3700 static INLINE bfd_boolean
3701 is_any_vex_encoding (const insn_template *t)
3702 {
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705 }
3706
3707 /* Build the EVEX prefix. */
3708
3709 static void
3710 build_evex_prefix (void)
3711 {
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
3838 unsigned int op;
3839
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
3842 vec_length = 0;
3843 for (op = i.operands; op--;)
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
3853 else if (i.types[op].bitfield.ymmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.xmmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
3865 switch (i.broadcast->bytes)
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
3877 abort ();
3878 }
3879 break;
3880 }
3881 }
3882
3883 if (op >= MAX_OPERANDS)
3884 abort ();
3885 }
3886
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920 }
3921
3922 static void
3923 process_immext (void)
3924 {
3925 expressionS *exp;
3926
3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
3932 AVX instructions also use this encoding, for some of
3933 3 argument instructions. */
3934
3935 gas_assert (i.imm_operands <= 1
3936 && (i.operands <= 2
3937 || (is_any_vex_encoding (&i.tm)
3938 && i.operands <= 4)));
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947 }
3948
3949
3950 static int
3951 check_hle (void)
3952 {
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
3957 case HLEPrefixNone:
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
3960 return 0;
3961 case HLEPrefixLock:
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3965 return 0;
3966 case HLEPrefixAny:
3967 return 1;
3968 case HLEPrefixRelease:
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983 }
3984
3985 /* Try the shortest encoding by shortening operand size. */
3986
3987 static void
3988 optimize_encoding (void)
3989 {
3990 unsigned int j;
3991
3992 if (optimize_for_space
3993 && !is_any_vex_encoding (&i.tm)
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
3999 && (i.tm.base_opcode == 0xa8
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
4025 && !is_any_vex_encoding (&i.tm)
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
4030 && ((i.tm.base_opcode == 0xb8
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
4039 || (i.tm.base_opcode | 1) == 0xc7)
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
4049 || (i.reg_operands == 1
4050 && i.operands == 1
4051 && i.tm.base_opcode == 0x30)))))
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
4055 andq $imm7, %r64 -> andl $imm7, %r32
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
4077 if ((i.tm.base_opcode | 1) == 0xc7)
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
4082 i.tm.base_opcode = 0xb8;
4083 i.tm.extension_opcode = None;
4084 i.tm.opcode_modifier.w = 0;
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
4090 else if (optimize > 1
4091 && !optimize_for_space
4092 && !is_any_vex_encoding (&i.tm)
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
4114 else if (i.reg_operands == 3
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
4118 || ((!i.mask || i.mask->zeroing)
4119 && !i.rounding
4120 && is_evex_encoding (&i.tm)
4121 && (i.vec_encoding != vex_encoding_evex
4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
4124 || (i.tm.operand_types[2].bitfield.zmmword
4125 && i.types[2].bitfield.ymmword))))
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
4140 && i.tm.extension_opcode == None))
4141 {
4142 /* Optimize: -O1:
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
4176 */
4177 if (is_evex_encoding (&i.tm))
4178 {
4179 if (i.vec_encoding != vex_encoding_evex)
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
4185 else if (optimize > 1)
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
4189 }
4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
4205 else if (i.vec_encoding != vex_encoding_evex
4206 && !i.types[0].bitfield.zmmword
4207 && !i.types[1].bitfield.zmmword
4208 && !i.mask
4209 && !i.broadcast
4210 && is_evex_encoding (&i.tm)
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4242 */
4243 for (j = 0; j < i.operands; j++)
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
4276 i.tm.opcode_modifier.broadcast = 0;
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
4282 }
4283 }
4284
4285 /* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289 void
4290 md_assemble (char *line)
4291 {
4292 unsigned int j;
4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4294 const insn_template *t;
4295
4296 /* Initialize globals. */
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
4299 i.reloc[j] = NO_RELOC;
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
4302 save_stack_p = save_stack;
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
4306 start of a (possibly prefixed) mnemonic. */
4307
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
4311 mnem_suffix = i.suffix;
4312
4313 line = parse_operands (line, mnemonic);
4314 this_operand = -1;
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
4317 if (line == NULL)
4318 return;
4319
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
4326 precedes the offset, as it does when in AT&T mode. */
4327 if (intel_syntax
4328 && i.operands > 1
4329 && (strcmp (mnemonic, "bound") != 0)
4330 && (strcmp (mnemonic, "invlpga") != 0)
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
4333 swap_operands ();
4334
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
4348 && i.disp_encoding != disp_encoding_32bit
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
4356
4357 if (!(t = match_template (mnem_suffix)))
4358 return;
4359
4360 if (sse_check != check_none
4361 && !i.tm.opcode_modifier.noavx
4362 && !i.tm.cpu_flags.bitfield.cpuavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
4369 || i.tm.cpu_flags.bitfield.cpusse4_2
4370 || i.tm.cpu_flags.bitfield.cpusse4a
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
4373 || i.tm.cpu_flags.bitfield.cpusha
4374 || i.tm.cpu_flags.bitfield.cpugfni))
4375 {
4376 (sse_check == check_warning
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4386 {
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
4391 && intel_syntax)
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
4395 }
4396
4397 if (i.tm.opcode_modifier.fwait)
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
4400
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
4428 /* Check if HLE prefix is OK. */
4429 if (i.hle_prefix && !check_hle ())
4430 return;
4431
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
4436 /* Check NOTRACK prefix. */
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
4439
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
4449
4450 /* Insert BND prefix. */
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
4461
4462 /* Check string instruction segment overrides. */
4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4464 {
4465 gas_assert (i.mem_operands);
4466 if (!check_string ())
4467 return;
4468 i.disp_operands = 0;
4469 }
4470
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
4474 if (!process_suffix ())
4475 return;
4476
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
4485
4486 if (i.types[0].bitfield.imm1)
4487 i.imm_operands = 0; /* kludge for shift insns. */
4488
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
4495 i.reg_operands--;
4496
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
4500 process_immext ();
4501
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
4513
4514 if (is_any_vex_encoding (&i.tm))
4515 {
4516 if (!cpu_arch_flags.bitfield.cpui286)
4517 {
4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4519 i.tm.name);
4520 return;
4521 }
4522
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
4528
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
4539
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
4551
4552 if (i.tm.opcode_modifier.rex64)
4553 i.rex |= REX_W;
4554
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
4558
4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4565 && i.rex != 0))
4566 {
4567 int x;
4568
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4575 {
4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
4579 as_bad (_("can't encode register '%s%s' in an "
4580 "instruction requiring REX prefix."),
4581 register_prefix, i.op[x].regs->reg_name);
4582
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
4588 }
4589 }
4590 }
4591
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
4599 if (i.types[x].bitfield.class == Reg
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
4613 if (i.rex != 0)
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
4629 }
4630
4631 static char *
4632 parse_insn (char *line, char *mnemonic)
4633 {
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
4637 int supported;
4638 const insn_template *t;
4639 char *dot_p = NULL;
4640
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4650 {
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
4674
4675 /* Look up instruction (or prefix) via hash table. */
4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4677
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
4681 && current_templates->start->opcode_modifier.isprefix)
4682 {
4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
4695 && flag_code != CODE_64BIT
4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
4702 }
4703 if (current_templates->start->opcode_length == 0)
4704 {
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4751 switch (add_prefix (current_templates->start->base_opcode))
4752 {
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
4769 }
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
4777
4778 if (!current_templates)
4779 {
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
4782 encoding. */
4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4784 i.dir_encoding = dir_encoding_swap;
4785 else if (mnem_p - 3 == dot_p
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
4789 else if (mnem_p - 4 == dot_p
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
4793 i.disp_encoding = disp_encoding_32bit;
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4799 }
4800
4801 if (!current_templates)
4802 {
4803 check_suffix:
4804 if (mnem_p > mnemonic)
4805 {
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
4808 {
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
4817 mnem_p[-1] = '\0';
4818 current_templates = (const templates *) hash_find (op_hash,
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
4845 }
4846 }
4847
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
4854
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
4887
4888 /* Check if instruction is supported on specified architecture. */
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
4897
4898 return l;
4899 }
4900 }
4901
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4912
4913 return NULL;
4914 }
4915
4916 static char *
4917 parse_operands (char *l, const char *mnemonic)
4918 {
4919 char *token_start;
4920
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
4923
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
4939 token_start = l; /* After white space. */
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
4991 i.types[this_operand].bitfield.unspecified = 1;
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
5007 operand_ok = i386_att_operand (token_start);
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
5027
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040 }
5041
5042 static void
5043 swap_2_operands (int xchg1, int xchg2)
5044 {
5045 union i386_op temp_op;
5046 i386_operand_type temp_type;
5047 unsigned int temp_flags;
5048 enum bfd_reloc_code_real temp_reloc;
5049
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
5061
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
5087 }
5088
5089 static void
5090 swap_operands (void)
5091 {
5092 switch (i.operands)
5093 {
5094 case 5:
5095 case 4:
5096 swap_2_operands (1, i.operands - 2);
5097 /* Fall through. */
5098 case 3:
5099 case 2:
5100 swap_2_operands (0, i.operands - 1);
5101 break;
5102 default:
5103 abort ();
5104 }
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113 }
5114
5115 /* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117 static void
5118 optimize_imm (void)
5119 {
5120 char guess_suffix = 0;
5121 int op;
5122
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
5131 for (op = i.operands; --op >= 0;)
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
5135 {
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.word)
5140 {
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.dword)
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.qword)
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
5152 break;
5153 }
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
5159 if (operand_type_check (i.types[op], imm))
5160 {
5161 switch (i.op[op].imms->X_op)
5162 {
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
5166 {
5167 case LONG_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
5170 break;
5171 case WORD_MNEM_SUFFIX:
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
5176 break;
5177 case BYTE_MNEM_SUFFIX:
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
5184 break;
5185 }
5186
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
5192 if ((i.types[op].bitfield.imm16)
5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5194 {
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
5198 #ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5200 if ((i.types[op].bitfield.imm32)
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
5208 #endif
5209 i.types[op]
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
5212
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
5216 i.types[op].bitfield.imm32 = 0;
5217 break;
5218
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
5229 i386_operand_type mask, allowed;
5230 const insn_template *t;
5231
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
5234
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
5247 break;
5248 case LONG_MNEM_SUFFIX:
5249 mask.bitfield.imm32 = 1;
5250 break;
5251 case WORD_MNEM_SUFFIX:
5252 mask.bitfield.imm16 = 1;
5253 break;
5254 case BYTE_MNEM_SUFFIX:
5255 mask.bitfield.imm8 = 1;
5256 break;
5257 default:
5258 break;
5259 }
5260 allowed = operand_type_and (mask, allowed);
5261 if (!operand_type_all_zero (&allowed))
5262 i.types[op] = operand_type_and (i.types[op], mask);
5263 }
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* Try to use the smallest displacement type too. */
5270 static void
5271 optimize_disp (void)
5272 {
5273 int op;
5274
5275 for (op = i.operands; --op >= 0;)
5276 if (operand_type_check (i.types[op], disp))
5277 {
5278 if (i.op[op].disps->X_op == O_constant)
5279 {
5280 offsetT op_disp = i.op[op].disps->X_add_number;
5281
5282 if (i.types[op].bitfield.disp16
5283 && (op_disp & ~(offsetT) 0xffff) == 0)
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5293 if (i.types[op].bitfield.disp32
5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5301 i.types[op].bitfield.disp64 = 0;
5302 }
5303 #endif
5304 if (!op_disp && i.types[op].bitfield.baseindex)
5305 {
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
5316 if (fits_in_signed_long (op_disp))
5317 {
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
5320 }
5321 if (i.prefix[ADDR_PREFIX]
5322 && fits_in_unsigned_long (op_disp))
5323 i.types[op].bitfield.disp32 = 1;
5324 }
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
5328 && fits_in_disp8 (op_disp))
5329 i.types[op].bitfield.disp8 = 1;
5330 }
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
5341 }
5342 else
5343 /* We only support 64bit displacement on constants. */
5344 i.types[op].bitfield.disp64 = 0;
5345 }
5346 }
5347
5348 /* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351 static INLINE int
5352 match_broadcast_size (const insn_template *t, unsigned int given)
5353 {
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362 }
5363
5364 /* Check if operands are valid for the instruction. */
5365
5366 static int
5367 check_VecOperands (const insn_template *t)
5368 {
5369 unsigned int op;
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
5814 continue;
5815
5816 /* Check the suffix. */
5817 i.error = invalid_instruction_suffix;
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5824 continue;
5825
5826 size_match = operand_size_match (t);
5827 if (!size_match)
5828 continue;
5829
5830 /* This is intentionally not
5831
5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
5849 ? (!t->opcode_modifier.ignoresize
5850 && !t->opcode_modifier.broadcast
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
5873 continue;
5874
5875 /* Do not verify operands when there are none. */
5876 else
5877 {
5878 if (!t->operands)
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
5889 break;
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
5899 {
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
5906 {
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
5909 }
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
5917 {
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
5921 }
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
5924 }
5925 }
5926 }
5927
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
5932 /* We check register size if needed. */
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5943 switch (t->operands)
5944 {
5945 case 1:
5946 if (!operand_type_match (overlap0, i.types[0]))
5947 continue;
5948 break;
5949 case 2:
5950 /* xchg %eax, %eax is a special case. It is an alias for nop
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
5960 continue;
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
5966 && i.types[0].bitfield.instance == Accum
5967 && (i.flags[1] & Operand_Mem))
5968 continue;
5969 /* Fall through. */
5970
5971 case 3:
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
5986 || t->opcode_modifier.regmem)
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5992 && !t->opcode_modifier.regmem)
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
6002 /* If we want store form, we skip the current load. */
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
6007 continue;
6008 /* Fall through. */
6009 case 4:
6010 case 5:
6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
6014 || ((check_register & 3) == 3
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[1],
6018 operand_types[1])))
6019 {
6020 /* Check if other direction is valid ... */
6021 if (!t->opcode_modifier.d)
6022 continue;
6023
6024 check_reverse:
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
6027 /* Try reversing direction of operands. */
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
6032 || (check_register
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
6036 operand_types[0])))
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
6041 /* found_reverse_match holds which of D or FloatR
6042 we've found. */
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
6046 found_reverse_match = Opcode_FloatD;
6047 else if (operand_types[0].bitfield.xmmword
6048 || operand_types[i.operands - 1].bitfield.xmmword
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6054 else
6055 found_reverse_match = Opcode_D;
6056 if (t->opcode_modifier.floatr)
6057 found_reverse_match |= Opcode_FloatR;
6058 }
6059 else
6060 {
6061 /* Found a forward 2 operand match here. */
6062 switch (t->operands)
6063 {
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
6067 /* Fall through. */
6068 case 4:
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
6071 /* Fall through. */
6072 case 3:
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
6075 break;
6076 }
6077
6078 switch (t->operands)
6079 {
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
6082 || !operand_type_register_match (i.types[3],
6083 operand_types[3],
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
6087 /* Fall through. */
6088 case 4:
6089 if (!operand_type_match (overlap3, i.types[3])
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
6092 operand_types[1],
6093 i.types[3],
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
6100 continue;
6101 /* Fall through. */
6102 case 3:
6103 /* Here we make use of the fact that there are no
6104 reverse match 3 operand instructions. */
6105 if (!operand_type_match (overlap2, i.types[2])
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
6108 operand_types[0],
6109 i.types[2],
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
6116 continue;
6117 break;
6118 }
6119 }
6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
6121 slip through to break. */
6122 }
6123
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
6130
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
6138 const char *err_msg;
6139 switch (specific_error ? specific_error : i.error)
6140 {
6141 default:
6142 abort ();
6143 case operand_size_mismatch:
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
6159 err_msg = _("constant doesn't fit in 4 bits");
6160 break;
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
6168 as_bad (_("unsupported instruction `%s'"),
6169 current_templates->start->name);
6170 return NULL;
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
6209 current_templates->start->name);
6210 return NULL;
6211 }
6212
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6217 as_warn (_("indirect %s without `*'"), t->name);
6218
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
6235 if (found_reverse_match)
6236 {
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
6253 }
6254
6255 return t;
6256 }
6257
6258 static int
6259 check_string (void)
6260 {
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6263
6264 if (i.seg[op] != NULL && i.seg[op] != &es)
6265 {
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
6271 }
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
6279 return 1;
6280 }
6281
6282 static int
6283 process_suffix (void)
6284 {
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
6287 if (i.tm.opcode_modifier.size == SIZE16)
6288 i.suffix = WORD_MNEM_SUFFIX;
6289 else if (i.tm.opcode_modifier.size == SIZE32)
6290 i.suffix = LONG_MNEM_SUFFIX;
6291 else if (i.tm.opcode_modifier.size == SIZE64)
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
6297 based on GPR operands. */
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6305
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
6363 return 0;
6364 }
6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
6371 else if (i.tm.opcode_modifier.defaultsize
6372 && !i.suffix
6373 /* exclude fldenv/frstor/fsave/fstenv */
6374 && i.tm.opcode_modifier.no_ssuf)
6375 {
6376 i.suffix = stackop_size;
6377 if (stackop_size == LONG_MNEM_SUFFIX)
6378 {
6379 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6380 .code16gcc directive to support 16-bit mode with
6381 32-bit address. For IRET without a suffix, generate
6382 16-bit IRET (opcode 0xcf) to return from an interrupt
6383 handler. */
6384 if (i.tm.base_opcode == 0xcf)
6385 {
6386 i.suffix = WORD_MNEM_SUFFIX;
6387 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6388 }
6389 /* Warn about changed behavior for segment register push/pop. */
6390 else if ((i.tm.base_opcode | 1) == 0x07)
6391 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6392 i.tm.name);
6393 }
6394 }
6395 else if (!i.suffix
6396 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6397 || i.tm.opcode_modifier.jump == JUMP_BYTE
6398 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6399 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6400 && i.tm.extension_opcode <= 3)))
6401 {
6402 switch (flag_code)
6403 {
6404 case CODE_64BIT:
6405 if (!i.tm.opcode_modifier.no_qsuf)
6406 {
6407 i.suffix = QWORD_MNEM_SUFFIX;
6408 break;
6409 }
6410 /* Fall through. */
6411 case CODE_32BIT:
6412 if (!i.tm.opcode_modifier.no_lsuf)
6413 i.suffix = LONG_MNEM_SUFFIX;
6414 break;
6415 case CODE_16BIT:
6416 if (!i.tm.opcode_modifier.no_wsuf)
6417 i.suffix = WORD_MNEM_SUFFIX;
6418 break;
6419 }
6420 }
6421
6422 if (!i.suffix
6423 && !i.tm.opcode_modifier.defaultsize
6424 && !i.tm.opcode_modifier.ignoresize)
6425 {
6426 unsigned int suffixes;
6427
6428 suffixes = !i.tm.opcode_modifier.no_bsuf;
6429 if (!i.tm.opcode_modifier.no_wsuf)
6430 suffixes |= 1 << 1;
6431 if (!i.tm.opcode_modifier.no_lsuf)
6432 suffixes |= 1 << 2;
6433 if (!i.tm.opcode_modifier.no_ldsuf)
6434 suffixes |= 1 << 3;
6435 if (!i.tm.opcode_modifier.no_ssuf)
6436 suffixes |= 1 << 4;
6437 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6438 suffixes |= 1 << 5;
6439
6440 /* Are multiple suffixes allowed? */
6441 if (suffixes & (suffixes - 1))
6442 {
6443 if (intel_syntax)
6444 {
6445 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6446 return 0;
6447 }
6448 if (operand_check == check_error)
6449 {
6450 as_bad (_("no instruction mnemonic suffix given and "
6451 "no register operands; can't size `%s'"), i.tm.name);
6452 return 0;
6453 }
6454 if (operand_check == check_warning)
6455 as_warn (_("no instruction mnemonic suffix given and "
6456 "no register operands; using default for `%s'"),
6457 i.tm.name);
6458
6459 if (i.tm.opcode_modifier.floatmf)
6460 i.suffix = SHORT_MNEM_SUFFIX;
6461 else if (flag_code == CODE_16BIT)
6462 i.suffix = WORD_MNEM_SUFFIX;
6463 else if (!i.tm.opcode_modifier.no_lsuf)
6464 i.suffix = LONG_MNEM_SUFFIX;
6465 else
6466 i.suffix = QWORD_MNEM_SUFFIX;
6467 }
6468 }
6469
6470 /* Change the opcode based on the operand size given by i.suffix. */
6471 switch (i.suffix)
6472 {
6473 /* Size floating point instruction. */
6474 case LONG_MNEM_SUFFIX:
6475 if (i.tm.opcode_modifier.floatmf)
6476 {
6477 i.tm.base_opcode ^= 4;
6478 break;
6479 }
6480 /* fall through */
6481 case WORD_MNEM_SUFFIX:
6482 case QWORD_MNEM_SUFFIX:
6483 /* It's not a byte, select word/dword operation. */
6484 if (i.tm.opcode_modifier.w)
6485 {
6486 if (i.tm.opcode_modifier.shortform)
6487 i.tm.base_opcode |= 8;
6488 else
6489 i.tm.base_opcode |= 1;
6490 }
6491 /* fall through */
6492 case SHORT_MNEM_SUFFIX:
6493 /* Now select between word & dword operations via the operand
6494 size prefix, except for instructions that will ignore this
6495 prefix anyway. */
6496 if (i.reg_operands > 0
6497 && i.types[0].bitfield.class == Reg
6498 && i.tm.opcode_modifier.addrprefixopreg
6499 && (i.tm.operand_types[0].bitfield.instance == Accum
6500 || i.operands == 1))
6501 {
6502 /* The address size override prefix changes the size of the
6503 first operand. */
6504 if ((flag_code == CODE_32BIT
6505 && i.op[0].regs->reg_type.bitfield.word)
6506 || (flag_code != CODE_32BIT
6507 && i.op[0].regs->reg_type.bitfield.dword))
6508 if (!add_prefix (ADDR_PREFIX_OPCODE))
6509 return 0;
6510 }
6511 else if (i.suffix != QWORD_MNEM_SUFFIX
6512 && !i.tm.opcode_modifier.ignoresize
6513 && !i.tm.opcode_modifier.floatmf
6514 && !is_any_vex_encoding (&i.tm)
6515 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6516 || (flag_code == CODE_64BIT
6517 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6518 {
6519 unsigned int prefix = DATA_PREFIX_OPCODE;
6520
6521 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6522 prefix = ADDR_PREFIX_OPCODE;
6523
6524 if (!add_prefix (prefix))
6525 return 0;
6526 }
6527
6528 /* Set mode64 for an operand. */
6529 if (i.suffix == QWORD_MNEM_SUFFIX
6530 && flag_code == CODE_64BIT
6531 && !i.tm.opcode_modifier.norex64
6532 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6533 need rex64. */
6534 && ! (i.operands == 2
6535 && i.tm.base_opcode == 0x90
6536 && i.tm.extension_opcode == None
6537 && i.types[0].bitfield.instance == Accum
6538 && i.types[0].bitfield.qword
6539 && i.types[1].bitfield.instance == Accum
6540 && i.types[1].bitfield.qword))
6541 i.rex |= REX_W;
6542
6543 break;
6544 }
6545
6546 if (i.reg_operands != 0
6547 && i.operands > 1
6548 && i.tm.opcode_modifier.addrprefixopreg
6549 && i.tm.operand_types[0].bitfield.instance != Accum)
6550 {
6551 /* Check invalid register operand when the address size override
6552 prefix changes the size of register operands. */
6553 unsigned int op;
6554 enum { need_word, need_dword, need_qword } need;
6555
6556 if (flag_code == CODE_32BIT)
6557 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6558 else
6559 {
6560 if (i.prefix[ADDR_PREFIX])
6561 need = need_dword;
6562 else
6563 need = flag_code == CODE_64BIT ? need_qword : need_word;
6564 }
6565
6566 for (op = 0; op < i.operands; op++)
6567 if (i.types[op].bitfield.class == Reg
6568 && ((need == need_word
6569 && !i.op[op].regs->reg_type.bitfield.word)
6570 || (need == need_dword
6571 && !i.op[op].regs->reg_type.bitfield.dword)
6572 || (need == need_qword
6573 && !i.op[op].regs->reg_type.bitfield.qword)))
6574 {
6575 as_bad (_("invalid register operand size for `%s'"),
6576 i.tm.name);
6577 return 0;
6578 }
6579 }
6580
6581 return 1;
6582 }
6583
6584 static int
6585 check_byte_reg (void)
6586 {
6587 int op;
6588
6589 for (op = i.operands; --op >= 0;)
6590 {
6591 /* Skip non-register operands. */
6592 if (i.types[op].bitfield.class != Reg)
6593 continue;
6594
6595 /* If this is an eight bit register, it's OK. If it's the 16 or
6596 32 bit version of an eight bit register, we will just use the
6597 low portion, and that's OK too. */
6598 if (i.types[op].bitfield.byte)
6599 continue;
6600
6601 /* I/O port address operands are OK too. */
6602 if (i.tm.operand_types[op].bitfield.instance == RegD
6603 && i.tm.operand_types[op].bitfield.word)
6604 continue;
6605
6606 /* crc32 doesn't generate this warning. */
6607 if (i.tm.base_opcode == 0xf20f38f0)
6608 continue;
6609
6610 if ((i.types[op].bitfield.word
6611 || i.types[op].bitfield.dword
6612 || i.types[op].bitfield.qword)
6613 && i.op[op].regs->reg_num < 4
6614 /* Prohibit these changes in 64bit mode, since the lowering
6615 would be more complicated. */
6616 && flag_code != CODE_64BIT)
6617 {
6618 #if REGISTER_WARNINGS
6619 if (!quiet_warnings)
6620 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6621 register_prefix,
6622 (i.op[op].regs + (i.types[op].bitfield.word
6623 ? REGNAM_AL - REGNAM_AX
6624 : REGNAM_AL - REGNAM_EAX))->reg_name,
6625 register_prefix,
6626 i.op[op].regs->reg_name,
6627 i.suffix);
6628 #endif
6629 continue;
6630 }
6631 /* Any other register is bad. */
6632 if (i.types[op].bitfield.class == Reg
6633 || i.types[op].bitfield.class == RegMMX
6634 || i.types[op].bitfield.class == RegSIMD
6635 || i.types[op].bitfield.class == SReg
6636 || i.types[op].bitfield.class == RegCR
6637 || i.types[op].bitfield.class == RegDR
6638 || i.types[op].bitfield.class == RegTR)
6639 {
6640 as_bad (_("`%s%s' not allowed with `%s%c'"),
6641 register_prefix,
6642 i.op[op].regs->reg_name,
6643 i.tm.name,
6644 i.suffix);
6645 return 0;
6646 }
6647 }
6648 return 1;
6649 }
6650
6651 static int
6652 check_long_reg (void)
6653 {
6654 int op;
6655
6656 for (op = i.operands; --op >= 0;)
6657 /* Skip non-register operands. */
6658 if (i.types[op].bitfield.class != Reg)
6659 continue;
6660 /* Reject eight bit registers, except where the template requires
6661 them. (eg. movzb) */
6662 else if (i.types[op].bitfield.byte
6663 && (i.tm.operand_types[op].bitfield.class == Reg
6664 || i.tm.operand_types[op].bitfield.instance == Accum)
6665 && (i.tm.operand_types[op].bitfield.word
6666 || i.tm.operand_types[op].bitfield.dword))
6667 {
6668 as_bad (_("`%s%s' not allowed with `%s%c'"),
6669 register_prefix,
6670 i.op[op].regs->reg_name,
6671 i.tm.name,
6672 i.suffix);
6673 return 0;
6674 }
6675 /* Error if the e prefix on a general reg is missing. */
6676 else if (i.types[op].bitfield.word
6677 && (i.tm.operand_types[op].bitfield.class == Reg
6678 || i.tm.operand_types[op].bitfield.instance == Accum)
6679 && i.tm.operand_types[op].bitfield.dword)
6680 {
6681 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6682 register_prefix, i.op[op].regs->reg_name,
6683 i.suffix);
6684 return 0;
6685 }
6686 /* Warn if the r prefix on a general reg is present. */
6687 else if (i.types[op].bitfield.qword
6688 && (i.tm.operand_types[op].bitfield.class == Reg
6689 || i.tm.operand_types[op].bitfield.instance == Accum)
6690 && i.tm.operand_types[op].bitfield.dword)
6691 {
6692 if (intel_syntax
6693 && (i.tm.opcode_modifier.toqword
6694 /* Also convert to QWORD for MOVSXD. */
6695 || i.tm.base_opcode == 0x63)
6696 && i.types[0].bitfield.class != RegSIMD)
6697 {
6698 /* Convert to QWORD. We want REX byte. */
6699 i.suffix = QWORD_MNEM_SUFFIX;
6700 }
6701 else
6702 {
6703 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6704 register_prefix, i.op[op].regs->reg_name,
6705 i.suffix);
6706 return 0;
6707 }
6708 }
6709 return 1;
6710 }
6711
6712 static int
6713 check_qword_reg (void)
6714 {
6715 int op;
6716
6717 for (op = i.operands; --op >= 0; )
6718 /* Skip non-register operands. */
6719 if (i.types[op].bitfield.class != Reg)
6720 continue;
6721 /* Reject eight bit registers, except where the template requires
6722 them. (eg. movzb) */
6723 else if (i.types[op].bitfield.byte
6724 && (i.tm.operand_types[op].bitfield.class == Reg
6725 || i.tm.operand_types[op].bitfield.instance == Accum)
6726 && (i.tm.operand_types[op].bitfield.word
6727 || i.tm.operand_types[op].bitfield.dword))
6728 {
6729 as_bad (_("`%s%s' not allowed with `%s%c'"),
6730 register_prefix,
6731 i.op[op].regs->reg_name,
6732 i.tm.name,
6733 i.suffix);
6734 return 0;
6735 }
6736 /* Warn if the r prefix on a general reg is missing. */
6737 else if ((i.types[op].bitfield.word
6738 || i.types[op].bitfield.dword)
6739 && (i.tm.operand_types[op].bitfield.class == Reg
6740 || i.tm.operand_types[op].bitfield.instance == Accum)
6741 && i.tm.operand_types[op].bitfield.qword)
6742 {
6743 /* Prohibit these changes in the 64bit mode, since the
6744 lowering is more complicated. */
6745 if (intel_syntax
6746 && i.tm.opcode_modifier.todword
6747 && i.types[0].bitfield.class != RegSIMD)
6748 {
6749 /* Convert to DWORD. We don't want REX byte. */
6750 i.suffix = LONG_MNEM_SUFFIX;
6751 }
6752 else
6753 {
6754 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6755 register_prefix, i.op[op].regs->reg_name,
6756 i.suffix);
6757 return 0;
6758 }
6759 }
6760 return 1;
6761 }
6762
6763 static int
6764 check_word_reg (void)
6765 {
6766 int op;
6767 for (op = i.operands; --op >= 0;)
6768 /* Skip non-register operands. */
6769 if (i.types[op].bitfield.class != Reg)
6770 continue;
6771 /* Reject eight bit registers, except where the template requires
6772 them. (eg. movzb) */
6773 else if (i.types[op].bitfield.byte
6774 && (i.tm.operand_types[op].bitfield.class == Reg
6775 || i.tm.operand_types[op].bitfield.instance == Accum)
6776 && (i.tm.operand_types[op].bitfield.word
6777 || i.tm.operand_types[op].bitfield.dword))
6778 {
6779 as_bad (_("`%s%s' not allowed with `%s%c'"),
6780 register_prefix,
6781 i.op[op].regs->reg_name,
6782 i.tm.name,
6783 i.suffix);
6784 return 0;
6785 }
6786 /* Warn if the e or r prefix on a general reg is present. */
6787 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6788 && (i.types[op].bitfield.dword
6789 || i.types[op].bitfield.qword)
6790 && (i.tm.operand_types[op].bitfield.class == Reg
6791 || i.tm.operand_types[op].bitfield.instance == Accum)
6792 && i.tm.operand_types[op].bitfield.word)
6793 {
6794 /* Prohibit these changes in the 64bit mode, since the
6795 lowering is more complicated. */
6796 if (flag_code == CODE_64BIT)
6797 {
6798 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6799 register_prefix, i.op[op].regs->reg_name,
6800 i.suffix);
6801 return 0;
6802 }
6803 #if REGISTER_WARNINGS
6804 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6805 register_prefix,
6806 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6807 register_prefix, i.op[op].regs->reg_name, i.suffix);
6808 #endif
6809 }
6810 return 1;
6811 }
6812
6813 static int
6814 update_imm (unsigned int j)
6815 {
6816 i386_operand_type overlap = i.types[j];
6817 if ((overlap.bitfield.imm8
6818 || overlap.bitfield.imm8s
6819 || overlap.bitfield.imm16
6820 || overlap.bitfield.imm32
6821 || overlap.bitfield.imm32s
6822 || overlap.bitfield.imm64)
6823 && !operand_type_equal (&overlap, &imm8)
6824 && !operand_type_equal (&overlap, &imm8s)
6825 && !operand_type_equal (&overlap, &imm16)
6826 && !operand_type_equal (&overlap, &imm32)
6827 && !operand_type_equal (&overlap, &imm32s)
6828 && !operand_type_equal (&overlap, &imm64))
6829 {
6830 if (i.suffix)
6831 {
6832 i386_operand_type temp;
6833
6834 operand_type_set (&temp, 0);
6835 if (i.suffix == BYTE_MNEM_SUFFIX)
6836 {
6837 temp.bitfield.imm8 = overlap.bitfield.imm8;
6838 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6839 }
6840 else if (i.suffix == WORD_MNEM_SUFFIX)
6841 temp.bitfield.imm16 = overlap.bitfield.imm16;
6842 else if (i.suffix == QWORD_MNEM_SUFFIX)
6843 {
6844 temp.bitfield.imm64 = overlap.bitfield.imm64;
6845 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6846 }
6847 else
6848 temp.bitfield.imm32 = overlap.bitfield.imm32;
6849 overlap = temp;
6850 }
6851 else if (operand_type_equal (&overlap, &imm16_32_32s)
6852 || operand_type_equal (&overlap, &imm16_32)
6853 || operand_type_equal (&overlap, &imm16_32s))
6854 {
6855 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6856 overlap = imm16;
6857 else
6858 overlap = imm32s;
6859 }
6860 if (!operand_type_equal (&overlap, &imm8)
6861 && !operand_type_equal (&overlap, &imm8s)
6862 && !operand_type_equal (&overlap, &imm16)
6863 && !operand_type_equal (&overlap, &imm32)
6864 && !operand_type_equal (&overlap, &imm32s)
6865 && !operand_type_equal (&overlap, &imm64))
6866 {
6867 as_bad (_("no instruction mnemonic suffix given; "
6868 "can't determine immediate size"));
6869 return 0;
6870 }
6871 }
6872 i.types[j] = overlap;
6873
6874 return 1;
6875 }
6876
6877 static int
6878 finalize_imm (void)
6879 {
6880 unsigned int j, n;
6881
6882 /* Update the first 2 immediate operands. */
6883 n = i.operands > 2 ? 2 : i.operands;
6884 if (n)
6885 {
6886 for (j = 0; j < n; j++)
6887 if (update_imm (j) == 0)
6888 return 0;
6889
6890 /* The 3rd operand can't be immediate operand. */
6891 gas_assert (operand_type_check (i.types[2], imm) == 0);
6892 }
6893
6894 return 1;
6895 }
6896
6897 static int
6898 process_operands (void)
6899 {
6900 /* Default segment register this instruction will use for memory
6901 accesses. 0 means unknown. This is only for optimizing out
6902 unnecessary segment overrides. */
6903 const seg_entry *default_seg = 0;
6904
6905 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6906 {
6907 unsigned int dupl = i.operands;
6908 unsigned int dest = dupl - 1;
6909 unsigned int j;
6910
6911 /* The destination must be an xmm register. */
6912 gas_assert (i.reg_operands
6913 && MAX_OPERANDS > dupl
6914 && operand_type_equal (&i.types[dest], &regxmm));
6915
6916 if (i.tm.operand_types[0].bitfield.instance == Accum
6917 && i.tm.operand_types[0].bitfield.xmmword)
6918 {
6919 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6920 {
6921 /* Keep xmm0 for instructions with VEX prefix and 3
6922 sources. */
6923 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6924 i.tm.operand_types[0].bitfield.class = RegSIMD;
6925 goto duplicate;
6926 }
6927 else
6928 {
6929 /* We remove the first xmm0 and keep the number of
6930 operands unchanged, which in fact duplicates the
6931 destination. */
6932 for (j = 1; j < i.operands; j++)
6933 {
6934 i.op[j - 1] = i.op[j];
6935 i.types[j - 1] = i.types[j];
6936 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6937 i.flags[j - 1] = i.flags[j];
6938 }
6939 }
6940 }
6941 else if (i.tm.opcode_modifier.implicit1stxmm0)
6942 {
6943 gas_assert ((MAX_OPERANDS - 1) > dupl
6944 && (i.tm.opcode_modifier.vexsources
6945 == VEX3SOURCES));
6946
6947 /* Add the implicit xmm0 for instructions with VEX prefix
6948 and 3 sources. */
6949 for (j = i.operands; j > 0; j--)
6950 {
6951 i.op[j] = i.op[j - 1];
6952 i.types[j] = i.types[j - 1];
6953 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6954 i.flags[j] = i.flags[j - 1];
6955 }
6956 i.op[0].regs
6957 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6958 i.types[0] = regxmm;
6959 i.tm.operand_types[0] = regxmm;
6960
6961 i.operands += 2;
6962 i.reg_operands += 2;
6963 i.tm.operands += 2;
6964
6965 dupl++;
6966 dest++;
6967 i.op[dupl] = i.op[dest];
6968 i.types[dupl] = i.types[dest];
6969 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6970 i.flags[dupl] = i.flags[dest];
6971 }
6972 else
6973 {
6974 duplicate:
6975 i.operands++;
6976 i.reg_operands++;
6977 i.tm.operands++;
6978
6979 i.op[dupl] = i.op[dest];
6980 i.types[dupl] = i.types[dest];
6981 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6982 i.flags[dupl] = i.flags[dest];
6983 }
6984
6985 if (i.tm.opcode_modifier.immext)
6986 process_immext ();
6987 }
6988 else if (i.tm.operand_types[0].bitfield.instance == Accum
6989 && i.tm.operand_types[0].bitfield.xmmword)
6990 {
6991 unsigned int j;
6992
6993 for (j = 1; j < i.operands; j++)
6994 {
6995 i.op[j - 1] = i.op[j];
6996 i.types[j - 1] = i.types[j];
6997
6998 /* We need to adjust fields in i.tm since they are used by
6999 build_modrm_byte. */
7000 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7001
7002 i.flags[j - 1] = i.flags[j];
7003 }
7004
7005 i.operands--;
7006 i.reg_operands--;
7007 i.tm.operands--;
7008 }
7009 else if (i.tm.opcode_modifier.implicitquadgroup)
7010 {
7011 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7012
7013 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7014 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7015 regnum = register_number (i.op[1].regs);
7016 first_reg_in_group = regnum & ~3;
7017 last_reg_in_group = first_reg_in_group + 3;
7018 if (regnum != first_reg_in_group)
7019 as_warn (_("source register `%s%s' implicitly denotes"
7020 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7021 register_prefix, i.op[1].regs->reg_name,
7022 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7023 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7024 i.tm.name);
7025 }
7026 else if (i.tm.opcode_modifier.regkludge)
7027 {
7028 /* The imul $imm, %reg instruction is converted into
7029 imul $imm, %reg, %reg, and the clr %reg instruction
7030 is converted into xor %reg, %reg. */
7031
7032 unsigned int first_reg_op;
7033
7034 if (operand_type_check (i.types[0], reg))
7035 first_reg_op = 0;
7036 else
7037 first_reg_op = 1;
7038 /* Pretend we saw the extra register operand. */
7039 gas_assert (i.reg_operands == 1
7040 && i.op[first_reg_op + 1].regs == 0);
7041 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7042 i.types[first_reg_op + 1] = i.types[first_reg_op];
7043 i.operands++;
7044 i.reg_operands++;
7045 }
7046
7047 if (i.tm.opcode_modifier.modrm)
7048 {
7049 /* The opcode is completed (modulo i.tm.extension_opcode which
7050 must be put into the modrm byte). Now, we make the modrm and
7051 index base bytes based on all the info we've collected. */
7052
7053 default_seg = build_modrm_byte ();
7054 }
7055 else if (i.types[0].bitfield.class == SReg)
7056 {
7057 if (flag_code != CODE_64BIT
7058 ? i.tm.base_opcode == POP_SEG_SHORT
7059 && i.op[0].regs->reg_num == 1
7060 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7061 && i.op[0].regs->reg_num < 4)
7062 {
7063 as_bad (_("you can't `%s %s%s'"),
7064 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7065 return 0;
7066 }
7067 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7068 {
7069 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7070 i.tm.opcode_length = 2;
7071 }
7072 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7073 }
7074 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7075 {
7076 default_seg = &ds;
7077 }
7078 else if (i.tm.opcode_modifier.isstring)
7079 {
7080 /* For the string instructions that allow a segment override
7081 on one of their operands, the default segment is ds. */
7082 default_seg = &ds;
7083 }
7084 else if (i.tm.opcode_modifier.shortform)
7085 {
7086 /* The register or float register operand is in operand
7087 0 or 1. */
7088 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7089
7090 /* Register goes in low 3 bits of opcode. */
7091 i.tm.base_opcode |= i.op[op].regs->reg_num;
7092 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7093 i.rex |= REX_B;
7094 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7095 {
7096 /* Warn about some common errors, but press on regardless.
7097 The first case can be generated by gcc (<= 2.8.1). */
7098 if (i.operands == 2)
7099 {
7100 /* Reversed arguments on faddp, fsubp, etc. */
7101 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7102 register_prefix, i.op[!intel_syntax].regs->reg_name,
7103 register_prefix, i.op[intel_syntax].regs->reg_name);
7104 }
7105 else
7106 {
7107 /* Extraneous `l' suffix on fp insn. */
7108 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7109 register_prefix, i.op[0].regs->reg_name);
7110 }
7111 }
7112 }
7113
7114 if (i.tm.base_opcode == 0x8d /* lea */
7115 && i.seg[0]
7116 && !quiet_warnings)
7117 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7118
7119 /* If a segment was explicitly specified, and the specified segment
7120 is not the default, use an opcode prefix to select it. If we
7121 never figured out what the default segment is, then default_seg
7122 will be zero at this point, and the specified segment prefix will
7123 always be used. */
7124 if ((i.seg[0]) && (i.seg[0] != default_seg))
7125 {
7126 if (!add_prefix (i.seg[0]->seg_prefix))
7127 return 0;
7128 }
7129 return 1;
7130 }
7131
7132 static const seg_entry *
7133 build_modrm_byte (void)
7134 {
7135 const seg_entry *default_seg = 0;
7136 unsigned int source, dest;
7137 int vex_3_sources;
7138
7139 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7140 if (vex_3_sources)
7141 {
7142 unsigned int nds, reg_slot;
7143 expressionS *exp;
7144
7145 dest = i.operands - 1;
7146 nds = dest - 1;
7147
7148 /* There are 2 kinds of instructions:
7149 1. 5 operands: 4 register operands or 3 register operands
7150 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7151 VexW0 or VexW1. The destination must be either XMM, YMM or
7152 ZMM register.
7153 2. 4 operands: 4 register operands or 3 register operands
7154 plus 1 memory operand, with VexXDS. */
7155 gas_assert ((i.reg_operands == 4
7156 || (i.reg_operands == 3 && i.mem_operands == 1))
7157 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7158 && i.tm.opcode_modifier.vexw
7159 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7160
7161 /* If VexW1 is set, the first non-immediate operand is the source and
7162 the second non-immediate one is encoded in the immediate operand. */
7163 if (i.tm.opcode_modifier.vexw == VEXW1)
7164 {
7165 source = i.imm_operands;
7166 reg_slot = i.imm_operands + 1;
7167 }
7168 else
7169 {
7170 source = i.imm_operands + 1;
7171 reg_slot = i.imm_operands;
7172 }
7173
7174 if (i.imm_operands == 0)
7175 {
7176 /* When there is no immediate operand, generate an 8bit
7177 immediate operand to encode the first operand. */
7178 exp = &im_expressions[i.imm_operands++];
7179 i.op[i.operands].imms = exp;
7180 i.types[i.operands] = imm8;
7181 i.operands++;
7182
7183 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7184 exp->X_op = O_constant;
7185 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7186 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7187 }
7188 else
7189 {
7190 gas_assert (i.imm_operands == 1);
7191 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7192 gas_assert (!i.tm.opcode_modifier.immext);
7193
7194 /* Turn on Imm8 again so that output_imm will generate it. */
7195 i.types[0].bitfield.imm8 = 1;
7196
7197 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7198 i.op[0].imms->X_add_number
7199 |= register_number (i.op[reg_slot].regs) << 4;
7200 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7201 }
7202
7203 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7204 i.vex.register_specifier = i.op[nds].regs;
7205 }
7206 else
7207 source = dest = 0;
7208
7209 /* i.reg_operands MUST be the number of real register operands;
7210 implicit registers do not count. If there are 3 register
7211 operands, it must be a instruction with VexNDS. For a
7212 instruction with VexNDD, the destination register is encoded
7213 in VEX prefix. If there are 4 register operands, it must be
7214 a instruction with VEX prefix and 3 sources. */
7215 if (i.mem_operands == 0
7216 && ((i.reg_operands == 2
7217 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7218 || (i.reg_operands == 3
7219 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7220 || (i.reg_operands == 4 && vex_3_sources)))
7221 {
7222 switch (i.operands)
7223 {
7224 case 2:
7225 source = 0;
7226 break;
7227 case 3:
7228 /* When there are 3 operands, one of them may be immediate,
7229 which may be the first or the last operand. Otherwise,
7230 the first operand must be shift count register (cl) or it
7231 is an instruction with VexNDS. */
7232 gas_assert (i.imm_operands == 1
7233 || (i.imm_operands == 0
7234 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7235 || (i.types[0].bitfield.instance == RegC
7236 && i.types[0].bitfield.byte))));
7237 if (operand_type_check (i.types[0], imm)
7238 || (i.types[0].bitfield.instance == RegC
7239 && i.types[0].bitfield.byte))
7240 source = 1;
7241 else
7242 source = 0;
7243 break;
7244 case 4:
7245 /* When there are 4 operands, the first two must be 8bit
7246 immediate operands. The source operand will be the 3rd
7247 one.
7248
7249 For instructions with VexNDS, if the first operand
7250 an imm8, the source operand is the 2nd one. If the last
7251 operand is imm8, the source operand is the first one. */
7252 gas_assert ((i.imm_operands == 2
7253 && i.types[0].bitfield.imm8
7254 && i.types[1].bitfield.imm8)
7255 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7256 && i.imm_operands == 1
7257 && (i.types[0].bitfield.imm8
7258 || i.types[i.operands - 1].bitfield.imm8
7259 || i.rounding)));
7260 if (i.imm_operands == 2)
7261 source = 2;
7262 else
7263 {
7264 if (i.types[0].bitfield.imm8)
7265 source = 1;
7266 else
7267 source = 0;
7268 }
7269 break;
7270 case 5:
7271 if (is_evex_encoding (&i.tm))
7272 {
7273 /* For EVEX instructions, when there are 5 operands, the
7274 first one must be immediate operand. If the second one
7275 is immediate operand, the source operand is the 3th
7276 one. If the last one is immediate operand, the source
7277 operand is the 2nd one. */
7278 gas_assert (i.imm_operands == 2
7279 && i.tm.opcode_modifier.sae
7280 && operand_type_check (i.types[0], imm));
7281 if (operand_type_check (i.types[1], imm))
7282 source = 2;
7283 else if (operand_type_check (i.types[4], imm))
7284 source = 1;
7285 else
7286 abort ();
7287 }
7288 break;
7289 default:
7290 abort ();
7291 }
7292
7293 if (!vex_3_sources)
7294 {
7295 dest = source + 1;
7296
7297 /* RC/SAE operand could be between DEST and SRC. That happens
7298 when one operand is GPR and the other one is XMM/YMM/ZMM
7299 register. */
7300 if (i.rounding && i.rounding->operand == (int) dest)
7301 dest++;
7302
7303 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7304 {
7305 /* For instructions with VexNDS, the register-only source
7306 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7307 register. It is encoded in VEX prefix. */
7308
7309 i386_operand_type op;
7310 unsigned int vvvv;
7311
7312 /* Check register-only source operand when two source
7313 operands are swapped. */
7314 if (!i.tm.operand_types[source].bitfield.baseindex
7315 && i.tm.operand_types[dest].bitfield.baseindex)
7316 {
7317 vvvv = source;
7318 source = dest;
7319 }
7320 else
7321 vvvv = dest;
7322
7323 op = i.tm.operand_types[vvvv];
7324 if ((dest + 1) >= i.operands
7325 || ((op.bitfield.class != Reg
7326 || (!op.bitfield.dword && !op.bitfield.qword))
7327 && op.bitfield.class != RegSIMD
7328 && !operand_type_equal (&op, &regmask)))
7329 abort ();
7330 i.vex.register_specifier = i.op[vvvv].regs;
7331 dest++;
7332 }
7333 }
7334
7335 i.rm.mode = 3;
7336 /* One of the register operands will be encoded in the i.rm.reg
7337 field, the other in the combined i.rm.mode and i.rm.regmem
7338 fields. If no form of this instruction supports a memory
7339 destination operand, then we assume the source operand may
7340 sometimes be a memory operand and so we need to store the
7341 destination in the i.rm.reg field. */
7342 if (!i.tm.opcode_modifier.regmem
7343 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7344 {
7345 i.rm.reg = i.op[dest].regs->reg_num;
7346 i.rm.regmem = i.op[source].regs->reg_num;
7347 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7348 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7349 i.has_regmmx = TRUE;
7350 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7351 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7352 {
7353 if (i.types[dest].bitfield.zmmword
7354 || i.types[source].bitfield.zmmword)
7355 i.has_regzmm = TRUE;
7356 else if (i.types[dest].bitfield.ymmword
7357 || i.types[source].bitfield.ymmword)
7358 i.has_regymm = TRUE;
7359 else
7360 i.has_regxmm = TRUE;
7361 }
7362 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7363 i.rex |= REX_R;
7364 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7365 i.vrex |= REX_R;
7366 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7367 i.rex |= REX_B;
7368 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7369 i.vrex |= REX_B;
7370 }
7371 else
7372 {
7373 i.rm.reg = i.op[source].regs->reg_num;
7374 i.rm.regmem = i.op[dest].regs->reg_num;
7375 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7376 i.rex |= REX_B;
7377 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7378 i.vrex |= REX_B;
7379 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7380 i.rex |= REX_R;
7381 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7382 i.vrex |= REX_R;
7383 }
7384 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7385 {
7386 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7387 abort ();
7388 i.rex &= ~REX_R;
7389 add_prefix (LOCK_PREFIX_OPCODE);
7390 }
7391 }
7392 else
7393 { /* If it's not 2 reg operands... */
7394 unsigned int mem;
7395
7396 if (i.mem_operands)
7397 {
7398 unsigned int fake_zero_displacement = 0;
7399 unsigned int op;
7400
7401 for (op = 0; op < i.operands; op++)
7402 if (i.flags[op] & Operand_Mem)
7403 break;
7404 gas_assert (op < i.operands);
7405
7406 if (i.tm.opcode_modifier.vecsib)
7407 {
7408 if (i.index_reg->reg_num == RegIZ)
7409 abort ();
7410
7411 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7412 if (!i.base_reg)
7413 {
7414 i.sib.base = NO_BASE_REGISTER;
7415 i.sib.scale = i.log2_scale_factor;
7416 i.types[op].bitfield.disp8 = 0;
7417 i.types[op].bitfield.disp16 = 0;
7418 i.types[op].bitfield.disp64 = 0;
7419 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7420 {
7421 /* Must be 32 bit */
7422 i.types[op].bitfield.disp32 = 1;
7423 i.types[op].bitfield.disp32s = 0;
7424 }
7425 else
7426 {
7427 i.types[op].bitfield.disp32 = 0;
7428 i.types[op].bitfield.disp32s = 1;
7429 }
7430 }
7431 i.sib.index = i.index_reg->reg_num;
7432 if ((i.index_reg->reg_flags & RegRex) != 0)
7433 i.rex |= REX_X;
7434 if ((i.index_reg->reg_flags & RegVRex) != 0)
7435 i.vrex |= REX_X;
7436 }
7437
7438 default_seg = &ds;
7439
7440 if (i.base_reg == 0)
7441 {
7442 i.rm.mode = 0;
7443 if (!i.disp_operands)
7444 fake_zero_displacement = 1;
7445 if (i.index_reg == 0)
7446 {
7447 i386_operand_type newdisp;
7448
7449 gas_assert (!i.tm.opcode_modifier.vecsib);
7450 /* Operand is just <disp> */
7451 if (flag_code == CODE_64BIT)
7452 {
7453 /* 64bit mode overwrites the 32bit absolute
7454 addressing by RIP relative addressing and
7455 absolute addressing is encoded by one of the
7456 redundant SIB forms. */
7457 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7458 i.sib.base = NO_BASE_REGISTER;
7459 i.sib.index = NO_INDEX_REGISTER;
7460 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7461 }
7462 else if ((flag_code == CODE_16BIT)
7463 ^ (i.prefix[ADDR_PREFIX] != 0))
7464 {
7465 i.rm.regmem = NO_BASE_REGISTER_16;
7466 newdisp = disp16;
7467 }
7468 else
7469 {
7470 i.rm.regmem = NO_BASE_REGISTER;
7471 newdisp = disp32;
7472 }
7473 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7474 i.types[op] = operand_type_or (i.types[op], newdisp);
7475 }
7476 else if (!i.tm.opcode_modifier.vecsib)
7477 {
7478 /* !i.base_reg && i.index_reg */
7479 if (i.index_reg->reg_num == RegIZ)
7480 i.sib.index = NO_INDEX_REGISTER;
7481 else
7482 i.sib.index = i.index_reg->reg_num;
7483 i.sib.base = NO_BASE_REGISTER;
7484 i.sib.scale = i.log2_scale_factor;
7485 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7486 i.types[op].bitfield.disp8 = 0;
7487 i.types[op].bitfield.disp16 = 0;
7488 i.types[op].bitfield.disp64 = 0;
7489 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7490 {
7491 /* Must be 32 bit */
7492 i.types[op].bitfield.disp32 = 1;
7493 i.types[op].bitfield.disp32s = 0;
7494 }
7495 else
7496 {
7497 i.types[op].bitfield.disp32 = 0;
7498 i.types[op].bitfield.disp32s = 1;
7499 }
7500 if ((i.index_reg->reg_flags & RegRex) != 0)
7501 i.rex |= REX_X;
7502 }
7503 }
7504 /* RIP addressing for 64bit mode. */
7505 else if (i.base_reg->reg_num == RegIP)
7506 {
7507 gas_assert (!i.tm.opcode_modifier.vecsib);
7508 i.rm.regmem = NO_BASE_REGISTER;
7509 i.types[op].bitfield.disp8 = 0;
7510 i.types[op].bitfield.disp16 = 0;
7511 i.types[op].bitfield.disp32 = 0;
7512 i.types[op].bitfield.disp32s = 1;
7513 i.types[op].bitfield.disp64 = 0;
7514 i.flags[op] |= Operand_PCrel;
7515 if (! i.disp_operands)
7516 fake_zero_displacement = 1;
7517 }
7518 else if (i.base_reg->reg_type.bitfield.word)
7519 {
7520 gas_assert (!i.tm.opcode_modifier.vecsib);
7521 switch (i.base_reg->reg_num)
7522 {
7523 case 3: /* (%bx) */
7524 if (i.index_reg == 0)
7525 i.rm.regmem = 7;
7526 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7527 i.rm.regmem = i.index_reg->reg_num - 6;
7528 break;
7529 case 5: /* (%bp) */
7530 default_seg = &ss;
7531 if (i.index_reg == 0)
7532 {
7533 i.rm.regmem = 6;
7534 if (operand_type_check (i.types[op], disp) == 0)
7535 {
7536 /* fake (%bp) into 0(%bp) */
7537 i.types[op].bitfield.disp8 = 1;
7538 fake_zero_displacement = 1;
7539 }
7540 }
7541 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7542 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7543 break;
7544 default: /* (%si) -> 4 or (%di) -> 5 */
7545 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7546 }
7547 i.rm.mode = mode_from_disp_size (i.types[op]);
7548 }
7549 else /* i.base_reg and 32/64 bit mode */
7550 {
7551 if (flag_code == CODE_64BIT
7552 && operand_type_check (i.types[op], disp))
7553 {
7554 i.types[op].bitfield.disp16 = 0;
7555 i.types[op].bitfield.disp64 = 0;
7556 if (i.prefix[ADDR_PREFIX] == 0)
7557 {
7558 i.types[op].bitfield.disp32 = 0;
7559 i.types[op].bitfield.disp32s = 1;
7560 }
7561 else
7562 {
7563 i.types[op].bitfield.disp32 = 1;
7564 i.types[op].bitfield.disp32s = 0;
7565 }
7566 }
7567
7568 if (!i.tm.opcode_modifier.vecsib)
7569 i.rm.regmem = i.base_reg->reg_num;
7570 if ((i.base_reg->reg_flags & RegRex) != 0)
7571 i.rex |= REX_B;
7572 i.sib.base = i.base_reg->reg_num;
7573 /* x86-64 ignores REX prefix bit here to avoid decoder
7574 complications. */
7575 if (!(i.base_reg->reg_flags & RegRex)
7576 && (i.base_reg->reg_num == EBP_REG_NUM
7577 || i.base_reg->reg_num == ESP_REG_NUM))
7578 default_seg = &ss;
7579 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7580 {
7581 fake_zero_displacement = 1;
7582 i.types[op].bitfield.disp8 = 1;
7583 }
7584 i.sib.scale = i.log2_scale_factor;
7585 if (i.index_reg == 0)
7586 {
7587 gas_assert (!i.tm.opcode_modifier.vecsib);
7588 /* <disp>(%esp) becomes two byte modrm with no index
7589 register. We've already stored the code for esp
7590 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7591 Any base register besides %esp will not use the
7592 extra modrm byte. */
7593 i.sib.index = NO_INDEX_REGISTER;
7594 }
7595 else if (!i.tm.opcode_modifier.vecsib)
7596 {
7597 if (i.index_reg->reg_num == RegIZ)
7598 i.sib.index = NO_INDEX_REGISTER;
7599 else
7600 i.sib.index = i.index_reg->reg_num;
7601 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7602 if ((i.index_reg->reg_flags & RegRex) != 0)
7603 i.rex |= REX_X;
7604 }
7605
7606 if (i.disp_operands
7607 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7608 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7609 i.rm.mode = 0;
7610 else
7611 {
7612 if (!fake_zero_displacement
7613 && !i.disp_operands
7614 && i.disp_encoding)
7615 {
7616 fake_zero_displacement = 1;
7617 if (i.disp_encoding == disp_encoding_8bit)
7618 i.types[op].bitfield.disp8 = 1;
7619 else
7620 i.types[op].bitfield.disp32 = 1;
7621 }
7622 i.rm.mode = mode_from_disp_size (i.types[op]);
7623 }
7624 }
7625
7626 if (fake_zero_displacement)
7627 {
7628 /* Fakes a zero displacement assuming that i.types[op]
7629 holds the correct displacement size. */
7630 expressionS *exp;
7631
7632 gas_assert (i.op[op].disps == 0);
7633 exp = &disp_expressions[i.disp_operands++];
7634 i.op[op].disps = exp;
7635 exp->X_op = O_constant;
7636 exp->X_add_number = 0;
7637 exp->X_add_symbol = (symbolS *) 0;
7638 exp->X_op_symbol = (symbolS *) 0;
7639 }
7640
7641 mem = op;
7642 }
7643 else
7644 mem = ~0;
7645
7646 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7647 {
7648 if (operand_type_check (i.types[0], imm))
7649 i.vex.register_specifier = NULL;
7650 else
7651 {
7652 /* VEX.vvvv encodes one of the sources when the first
7653 operand is not an immediate. */
7654 if (i.tm.opcode_modifier.vexw == VEXW0)
7655 i.vex.register_specifier = i.op[0].regs;
7656 else
7657 i.vex.register_specifier = i.op[1].regs;
7658 }
7659
7660 /* Destination is a XMM register encoded in the ModRM.reg
7661 and VEX.R bit. */
7662 i.rm.reg = i.op[2].regs->reg_num;
7663 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7664 i.rex |= REX_R;
7665
7666 /* ModRM.rm and VEX.B encodes the other source. */
7667 if (!i.mem_operands)
7668 {
7669 i.rm.mode = 3;
7670
7671 if (i.tm.opcode_modifier.vexw == VEXW0)
7672 i.rm.regmem = i.op[1].regs->reg_num;
7673 else
7674 i.rm.regmem = i.op[0].regs->reg_num;
7675
7676 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7677 i.rex |= REX_B;
7678 }
7679 }
7680 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7681 {
7682 i.vex.register_specifier = i.op[2].regs;
7683 if (!i.mem_operands)
7684 {
7685 i.rm.mode = 3;
7686 i.rm.regmem = i.op[1].regs->reg_num;
7687 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7688 i.rex |= REX_B;
7689 }
7690 }
7691 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7692 (if any) based on i.tm.extension_opcode. Again, we must be
7693 careful to make sure that segment/control/debug/test/MMX
7694 registers are coded into the i.rm.reg field. */
7695 else if (i.reg_operands)
7696 {
7697 unsigned int op;
7698 unsigned int vex_reg = ~0;
7699
7700 for (op = 0; op < i.operands; op++)
7701 {
7702 if (i.types[op].bitfield.class == Reg
7703 || i.types[op].bitfield.class == RegBND
7704 || i.types[op].bitfield.class == RegMask
7705 || i.types[op].bitfield.class == SReg
7706 || i.types[op].bitfield.class == RegCR
7707 || i.types[op].bitfield.class == RegDR
7708 || i.types[op].bitfield.class == RegTR)
7709 break;
7710 if (i.types[op].bitfield.class == RegSIMD)
7711 {
7712 if (i.types[op].bitfield.zmmword)
7713 i.has_regzmm = TRUE;
7714 else if (i.types[op].bitfield.ymmword)
7715 i.has_regymm = TRUE;
7716 else
7717 i.has_regxmm = TRUE;
7718 break;
7719 }
7720 if (i.types[op].bitfield.class == RegMMX)
7721 {
7722 i.has_regmmx = TRUE;
7723 break;
7724 }
7725 }
7726
7727 if (vex_3_sources)
7728 op = dest;
7729 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7730 {
7731 /* For instructions with VexNDS, the register-only
7732 source operand is encoded in VEX prefix. */
7733 gas_assert (mem != (unsigned int) ~0);
7734
7735 if (op > mem)
7736 {
7737 vex_reg = op++;
7738 gas_assert (op < i.operands);
7739 }
7740 else
7741 {
7742 /* Check register-only source operand when two source
7743 operands are swapped. */
7744 if (!i.tm.operand_types[op].bitfield.baseindex
7745 && i.tm.operand_types[op + 1].bitfield.baseindex)
7746 {
7747 vex_reg = op;
7748 op += 2;
7749 gas_assert (mem == (vex_reg + 1)
7750 && op < i.operands);
7751 }
7752 else
7753 {
7754 vex_reg = op + 1;
7755 gas_assert (vex_reg < i.operands);
7756 }
7757 }
7758 }
7759 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7760 {
7761 /* For instructions with VexNDD, the register destination
7762 is encoded in VEX prefix. */
7763 if (i.mem_operands == 0)
7764 {
7765 /* There is no memory operand. */
7766 gas_assert ((op + 2) == i.operands);
7767 vex_reg = op + 1;
7768 }
7769 else
7770 {
7771 /* There are only 2 non-immediate operands. */
7772 gas_assert (op < i.imm_operands + 2
7773 && i.operands == i.imm_operands + 2);
7774 vex_reg = i.imm_operands + 1;
7775 }
7776 }
7777 else
7778 gas_assert (op < i.operands);
7779
7780 if (vex_reg != (unsigned int) ~0)
7781 {
7782 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7783
7784 if ((type->bitfield.class != Reg
7785 || (!type->bitfield.dword && !type->bitfield.qword))
7786 && type->bitfield.class != RegSIMD
7787 && !operand_type_equal (type, &regmask))
7788 abort ();
7789
7790 i.vex.register_specifier = i.op[vex_reg].regs;
7791 }
7792
7793 /* Don't set OP operand twice. */
7794 if (vex_reg != op)
7795 {
7796 /* If there is an extension opcode to put here, the
7797 register number must be put into the regmem field. */
7798 if (i.tm.extension_opcode != None)
7799 {
7800 i.rm.regmem = i.op[op].regs->reg_num;
7801 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7802 i.rex |= REX_B;
7803 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7804 i.vrex |= REX_B;
7805 }
7806 else
7807 {
7808 i.rm.reg = i.op[op].regs->reg_num;
7809 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7810 i.rex |= REX_R;
7811 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7812 i.vrex |= REX_R;
7813 }
7814 }
7815
7816 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7817 must set it to 3 to indicate this is a register operand
7818 in the regmem field. */
7819 if (!i.mem_operands)
7820 i.rm.mode = 3;
7821 }
7822
7823 /* Fill in i.rm.reg field with extension opcode (if any). */
7824 if (i.tm.extension_opcode != None)
7825 i.rm.reg = i.tm.extension_opcode;
7826 }
7827 return default_seg;
7828 }
7829
7830 static unsigned int
7831 flip_code16 (unsigned int code16)
7832 {
7833 gas_assert (i.tm.operands == 1);
7834
7835 return !(i.prefix[REX_PREFIX] & REX_W)
7836 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7837 || i.tm.operand_types[0].bitfield.disp32s
7838 : i.tm.operand_types[0].bitfield.disp16)
7839 ? CODE16 : 0;
7840 }
7841
7842 static void
7843 output_branch (void)
7844 {
7845 char *p;
7846 int size;
7847 int code16;
7848 int prefix;
7849 relax_substateT subtype;
7850 symbolS *sym;
7851 offsetT off;
7852
7853 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7854 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7855
7856 prefix = 0;
7857 if (i.prefix[DATA_PREFIX] != 0)
7858 {
7859 prefix = 1;
7860 i.prefixes -= 1;
7861 code16 ^= flip_code16(code16);
7862 }
7863 /* Pentium4 branch hints. */
7864 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7865 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7866 {
7867 prefix++;
7868 i.prefixes--;
7869 }
7870 if (i.prefix[REX_PREFIX] != 0)
7871 {
7872 prefix++;
7873 i.prefixes--;
7874 }
7875
7876 /* BND prefixed jump. */
7877 if (i.prefix[BND_PREFIX] != 0)
7878 {
7879 prefix++;
7880 i.prefixes--;
7881 }
7882
7883 if (i.prefixes != 0)
7884 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7885
7886 /* It's always a symbol; End frag & setup for relax.
7887 Make sure there is enough room in this frag for the largest
7888 instruction we may generate in md_convert_frag. This is 2
7889 bytes for the opcode and room for the prefix and largest
7890 displacement. */
7891 frag_grow (prefix + 2 + 4);
7892 /* Prefix and 1 opcode byte go in fr_fix. */
7893 p = frag_more (prefix + 1);
7894 if (i.prefix[DATA_PREFIX] != 0)
7895 *p++ = DATA_PREFIX_OPCODE;
7896 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7897 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7898 *p++ = i.prefix[SEG_PREFIX];
7899 if (i.prefix[BND_PREFIX] != 0)
7900 *p++ = BND_PREFIX_OPCODE;
7901 if (i.prefix[REX_PREFIX] != 0)
7902 *p++ = i.prefix[REX_PREFIX];
7903 *p = i.tm.base_opcode;
7904
7905 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7906 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7907 else if (cpu_arch_flags.bitfield.cpui386)
7908 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7909 else
7910 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7911 subtype |= code16;
7912
7913 sym = i.op[0].disps->X_add_symbol;
7914 off = i.op[0].disps->X_add_number;
7915
7916 if (i.op[0].disps->X_op != O_constant
7917 && i.op[0].disps->X_op != O_symbol)
7918 {
7919 /* Handle complex expressions. */
7920 sym = make_expr_symbol (i.op[0].disps);
7921 off = 0;
7922 }
7923
7924 /* 1 possible extra opcode + 4 byte displacement go in var part.
7925 Pass reloc in fr_var. */
7926 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7927 }
7928
7929 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7930 /* Return TRUE iff PLT32 relocation should be used for branching to
7931 symbol S. */
7932
7933 static bfd_boolean
7934 need_plt32_p (symbolS *s)
7935 {
7936 /* PLT32 relocation is ELF only. */
7937 if (!IS_ELF)
7938 return FALSE;
7939
7940 #ifdef TE_SOLARIS
7941 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7942 krtld support it. */
7943 return FALSE;
7944 #endif
7945
7946 /* Since there is no need to prepare for PLT branch on x86-64, we
7947 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7948 be used as a marker for 32-bit PC-relative branches. */
7949 if (!object_64bit)
7950 return FALSE;
7951
7952 /* Weak or undefined symbol need PLT32 relocation. */
7953 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7954 return TRUE;
7955
7956 /* Non-global symbol doesn't need PLT32 relocation. */
7957 if (! S_IS_EXTERNAL (s))
7958 return FALSE;
7959
7960 /* Other global symbols need PLT32 relocation. NB: Symbol with
7961 non-default visibilities are treated as normal global symbol
7962 so that PLT32 relocation can be used as a marker for 32-bit
7963 PC-relative branches. It is useful for linker relaxation. */
7964 return TRUE;
7965 }
7966 #endif
7967
7968 static void
7969 output_jump (void)
7970 {
7971 char *p;
7972 int size;
7973 fixS *fixP;
7974 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7975
7976 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7977 {
7978 /* This is a loop or jecxz type instruction. */
7979 size = 1;
7980 if (i.prefix[ADDR_PREFIX] != 0)
7981 {
7982 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7983 i.prefixes -= 1;
7984 }
7985 /* Pentium4 branch hints. */
7986 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7987 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7988 {
7989 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7990 i.prefixes--;
7991 }
7992 }
7993 else
7994 {
7995 int code16;
7996
7997 code16 = 0;
7998 if (flag_code == CODE_16BIT)
7999 code16 = CODE16;
8000
8001 if (i.prefix[DATA_PREFIX] != 0)
8002 {
8003 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8004 i.prefixes -= 1;
8005 code16 ^= flip_code16(code16);
8006 }
8007
8008 size = 4;
8009 if (code16)
8010 size = 2;
8011 }
8012
8013 /* BND prefixed jump. */
8014 if (i.prefix[BND_PREFIX] != 0)
8015 {
8016 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8017 i.prefixes -= 1;
8018 }
8019
8020 if (i.prefix[REX_PREFIX] != 0)
8021 {
8022 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8023 i.prefixes -= 1;
8024 }
8025
8026 if (i.prefixes != 0)
8027 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8028
8029 p = frag_more (i.tm.opcode_length + size);
8030 switch (i.tm.opcode_length)
8031 {
8032 case 2:
8033 *p++ = i.tm.base_opcode >> 8;
8034 /* Fall through. */
8035 case 1:
8036 *p++ = i.tm.base_opcode;
8037 break;
8038 default:
8039 abort ();
8040 }
8041
8042 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8043 if (size == 4
8044 && jump_reloc == NO_RELOC
8045 && need_plt32_p (i.op[0].disps->X_add_symbol))
8046 jump_reloc = BFD_RELOC_X86_64_PLT32;
8047 #endif
8048
8049 jump_reloc = reloc (size, 1, 1, jump_reloc);
8050
8051 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8052 i.op[0].disps, 1, jump_reloc);
8053
8054 /* All jumps handled here are signed, but don't use a signed limit
8055 check for 32 and 16 bit jumps as we want to allow wrap around at
8056 4G and 64k respectively. */
8057 if (size == 1)
8058 fixP->fx_signed = 1;
8059 }
8060
8061 static void
8062 output_interseg_jump (void)
8063 {
8064 char *p;
8065 int size;
8066 int prefix;
8067 int code16;
8068
8069 code16 = 0;
8070 if (flag_code == CODE_16BIT)
8071 code16 = CODE16;
8072
8073 prefix = 0;
8074 if (i.prefix[DATA_PREFIX] != 0)
8075 {
8076 prefix = 1;
8077 i.prefixes -= 1;
8078 code16 ^= CODE16;
8079 }
8080
8081 gas_assert (!i.prefix[REX_PREFIX]);
8082
8083 size = 4;
8084 if (code16)
8085 size = 2;
8086
8087 if (i.prefixes != 0)
8088 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8089
8090 /* 1 opcode; 2 segment; offset */
8091 p = frag_more (prefix + 1 + 2 + size);
8092
8093 if (i.prefix[DATA_PREFIX] != 0)
8094 *p++ = DATA_PREFIX_OPCODE;
8095
8096 if (i.prefix[REX_PREFIX] != 0)
8097 *p++ = i.prefix[REX_PREFIX];
8098
8099 *p++ = i.tm.base_opcode;
8100 if (i.op[1].imms->X_op == O_constant)
8101 {
8102 offsetT n = i.op[1].imms->X_add_number;
8103
8104 if (size == 2
8105 && !fits_in_unsigned_word (n)
8106 && !fits_in_signed_word (n))
8107 {
8108 as_bad (_("16-bit jump out of range"));
8109 return;
8110 }
8111 md_number_to_chars (p, n, size);
8112 }
8113 else
8114 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8115 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8116 if (i.op[0].imms->X_op != O_constant)
8117 as_bad (_("can't handle non absolute segment in `%s'"),
8118 i.tm.name);
8119 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8120 }
8121
8122 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8123 void
8124 x86_cleanup (void)
8125 {
8126 char *p;
8127 asection *seg = now_seg;
8128 subsegT subseg = now_subseg;
8129 asection *sec;
8130 unsigned int alignment, align_size_1;
8131 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8132 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8133 unsigned int padding;
8134
8135 if (!IS_ELF || !x86_used_note)
8136 return;
8137
8138 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8139
8140 /* The .note.gnu.property section layout:
8141
8142 Field Length Contents
8143 ---- ---- ----
8144 n_namsz 4 4
8145 n_descsz 4 The note descriptor size
8146 n_type 4 NT_GNU_PROPERTY_TYPE_0
8147 n_name 4 "GNU"
8148 n_desc n_descsz The program property array
8149 .... .... ....
8150 */
8151
8152 /* Create the .note.gnu.property section. */
8153 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8154 bfd_set_section_flags (sec,
8155 (SEC_ALLOC
8156 | SEC_LOAD
8157 | SEC_DATA
8158 | SEC_HAS_CONTENTS
8159 | SEC_READONLY));
8160
8161 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8162 {
8163 align_size_1 = 7;
8164 alignment = 3;
8165 }
8166 else
8167 {
8168 align_size_1 = 3;
8169 alignment = 2;
8170 }
8171
8172 bfd_set_section_alignment (sec, alignment);
8173 elf_section_type (sec) = SHT_NOTE;
8174
8175 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8176 + 4-byte data */
8177 isa_1_descsz_raw = 4 + 4 + 4;
8178 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8179 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8180
8181 feature_2_descsz_raw = isa_1_descsz;
8182 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8183 + 4-byte data */
8184 feature_2_descsz_raw += 4 + 4 + 4;
8185 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8186 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8187 & ~align_size_1);
8188
8189 descsz = feature_2_descsz;
8190 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8191 p = frag_more (4 + 4 + 4 + 4 + descsz);
8192
8193 /* Write n_namsz. */
8194 md_number_to_chars (p, (valueT) 4, 4);
8195
8196 /* Write n_descsz. */
8197 md_number_to_chars (p + 4, (valueT) descsz, 4);
8198
8199 /* Write n_type. */
8200 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8201
8202 /* Write n_name. */
8203 memcpy (p + 4 * 3, "GNU", 4);
8204
8205 /* Write 4-byte type. */
8206 md_number_to_chars (p + 4 * 4,
8207 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8208
8209 /* Write 4-byte data size. */
8210 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8211
8212 /* Write 4-byte data. */
8213 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8214
8215 /* Zero out paddings. */
8216 padding = isa_1_descsz - isa_1_descsz_raw;
8217 if (padding)
8218 memset (p + 4 * 7, 0, padding);
8219
8220 /* Write 4-byte type. */
8221 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8222 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8223
8224 /* Write 4-byte data size. */
8225 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8226
8227 /* Write 4-byte data. */
8228 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8229 (valueT) x86_feature_2_used, 4);
8230
8231 /* Zero out paddings. */
8232 padding = feature_2_descsz - feature_2_descsz_raw;
8233 if (padding)
8234 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8235
8236 /* We probably can't restore the current segment, for there likely
8237 isn't one yet... */
8238 if (seg && subseg)
8239 subseg_set (seg, subseg);
8240 }
8241 #endif
8242
8243 static unsigned int
8244 encoding_length (const fragS *start_frag, offsetT start_off,
8245 const char *frag_now_ptr)
8246 {
8247 unsigned int len = 0;
8248
8249 if (start_frag != frag_now)
8250 {
8251 const fragS *fr = start_frag;
8252
8253 do {
8254 len += fr->fr_fix;
8255 fr = fr->fr_next;
8256 } while (fr && fr != frag_now);
8257 }
8258
8259 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8260 }
8261
8262 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8263 be macro-fused with conditional jumps. */
8264
8265 static int
8266 maybe_fused_with_jcc_p (void)
8267 {
8268 /* No RIP address. */
8269 if (i.base_reg && i.base_reg->reg_num == RegIP)
8270 return 0;
8271
8272 /* No VEX/EVEX encoding. */
8273 if (is_any_vex_encoding (&i.tm))
8274 return 0;
8275
8276 /* and, add, sub with destination register. */
8277 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8278 || i.tm.base_opcode <= 5
8279 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8280 || ((i.tm.base_opcode | 3) == 0x83
8281 && ((i.tm.extension_opcode | 1) == 0x5
8282 || i.tm.extension_opcode == 0x0)))
8283 return (i.types[1].bitfield.class == Reg
8284 || i.types[1].bitfield.instance == Accum);
8285
8286 /* test, cmp with any register. */
8287 if ((i.tm.base_opcode | 1) == 0x85
8288 || (i.tm.base_opcode | 1) == 0xa9
8289 || ((i.tm.base_opcode | 1) == 0xf7
8290 && i.tm.extension_opcode == 0)
8291 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8292 || ((i.tm.base_opcode | 3) == 0x83
8293 && (i.tm.extension_opcode == 0x7)))
8294 return (i.types[0].bitfield.class == Reg
8295 || i.types[0].bitfield.instance == Accum
8296 || i.types[1].bitfield.class == Reg
8297 || i.types[1].bitfield.instance == Accum);
8298
8299 /* inc, dec with any register. */
8300 if ((i.tm.cpu_flags.bitfield.cpuno64
8301 && (i.tm.base_opcode | 0xf) == 0x4f)
8302 || ((i.tm.base_opcode | 1) == 0xff
8303 && i.tm.extension_opcode <= 0x1))
8304 return (i.types[0].bitfield.class == Reg
8305 || i.types[0].bitfield.instance == Accum);
8306
8307 return 0;
8308 }
8309
8310 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8311
8312 static int
8313 add_fused_jcc_padding_frag_p (void)
8314 {
8315 /* NB: Don't work with COND_JUMP86 without i386. */
8316 if (!align_branch_power
8317 || now_seg == absolute_section
8318 || !cpu_arch_flags.bitfield.cpui386
8319 || !(align_branch & align_branch_fused_bit))
8320 return 0;
8321
8322 if (maybe_fused_with_jcc_p ())
8323 {
8324 if (last_insn.kind == last_insn_other
8325 || last_insn.seg != now_seg)
8326 return 1;
8327 if (flag_debug)
8328 as_warn_where (last_insn.file, last_insn.line,
8329 _("`%s` skips -malign-branch-boundary on `%s`"),
8330 last_insn.name, i.tm.name);
8331 }
8332
8333 return 0;
8334 }
8335
8336 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8337
8338 static int
8339 add_branch_prefix_frag_p (void)
8340 {
8341 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8342 to PadLock instructions since they include prefixes in opcode. */
8343 if (!align_branch_power
8344 || !align_branch_prefix_size
8345 || now_seg == absolute_section
8346 || i.tm.cpu_flags.bitfield.cpupadlock
8347 || !cpu_arch_flags.bitfield.cpui386)
8348 return 0;
8349
8350 /* Don't add prefix if it is a prefix or there is no operand in case
8351 that segment prefix is special. */
8352 if (!i.operands || i.tm.opcode_modifier.isprefix)
8353 return 0;
8354
8355 if (last_insn.kind == last_insn_other
8356 || last_insn.seg != now_seg)
8357 return 1;
8358
8359 if (flag_debug)
8360 as_warn_where (last_insn.file, last_insn.line,
8361 _("`%s` skips -malign-branch-boundary on `%s`"),
8362 last_insn.name, i.tm.name);
8363
8364 return 0;
8365 }
8366
8367 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8368
8369 static int
8370 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8371 {
8372 int add_padding;
8373
8374 /* NB: Don't work with COND_JUMP86 without i386. */
8375 if (!align_branch_power
8376 || now_seg == absolute_section
8377 || !cpu_arch_flags.bitfield.cpui386)
8378 return 0;
8379
8380 add_padding = 0;
8381
8382 /* Check for jcc and direct jmp. */
8383 if (i.tm.opcode_modifier.jump == JUMP)
8384 {
8385 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8386 {
8387 *branch_p = align_branch_jmp;
8388 add_padding = align_branch & align_branch_jmp_bit;
8389 }
8390 else
8391 {
8392 *branch_p = align_branch_jcc;
8393 if ((align_branch & align_branch_jcc_bit))
8394 add_padding = 1;
8395 }
8396 }
8397 else if (is_any_vex_encoding (&i.tm))
8398 return 0;
8399 else if ((i.tm.base_opcode | 1) == 0xc3)
8400 {
8401 /* Near ret. */
8402 *branch_p = align_branch_ret;
8403 if ((align_branch & align_branch_ret_bit))
8404 add_padding = 1;
8405 }
8406 else
8407 {
8408 /* Check for indirect jmp, direct and indirect calls. */
8409 if (i.tm.base_opcode == 0xe8)
8410 {
8411 /* Direct call. */
8412 *branch_p = align_branch_call;
8413 if ((align_branch & align_branch_call_bit))
8414 add_padding = 1;
8415 }
8416 else if (i.tm.base_opcode == 0xff
8417 && (i.tm.extension_opcode == 2
8418 || i.tm.extension_opcode == 4))
8419 {
8420 /* Indirect call and jmp. */
8421 *branch_p = align_branch_indirect;
8422 if ((align_branch & align_branch_indirect_bit))
8423 add_padding = 1;
8424 }
8425
8426 if (add_padding
8427 && i.disp_operands
8428 && tls_get_addr
8429 && (i.op[0].disps->X_op == O_symbol
8430 || (i.op[0].disps->X_op == O_subtract
8431 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8432 {
8433 symbolS *s = i.op[0].disps->X_add_symbol;
8434 /* No padding to call to global or undefined tls_get_addr. */
8435 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8436 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8437 return 0;
8438 }
8439 }
8440
8441 if (add_padding
8442 && last_insn.kind != last_insn_other
8443 && last_insn.seg == now_seg)
8444 {
8445 if (flag_debug)
8446 as_warn_where (last_insn.file, last_insn.line,
8447 _("`%s` skips -malign-branch-boundary on `%s`"),
8448 last_insn.name, i.tm.name);
8449 return 0;
8450 }
8451
8452 return add_padding;
8453 }
8454
8455 static void
8456 output_insn (void)
8457 {
8458 fragS *insn_start_frag;
8459 offsetT insn_start_off;
8460 fragS *fragP = NULL;
8461 enum align_branch_kind branch = align_branch_none;
8462
8463 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8464 if (IS_ELF && x86_used_note)
8465 {
8466 if (i.tm.cpu_flags.bitfield.cpucmov)
8467 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8468 if (i.tm.cpu_flags.bitfield.cpusse)
8469 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8470 if (i.tm.cpu_flags.bitfield.cpusse2)
8471 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8472 if (i.tm.cpu_flags.bitfield.cpusse3)
8473 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8474 if (i.tm.cpu_flags.bitfield.cpussse3)
8475 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8476 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8478 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8480 if (i.tm.cpu_flags.bitfield.cpuavx)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8482 if (i.tm.cpu_flags.bitfield.cpuavx2)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8484 if (i.tm.cpu_flags.bitfield.cpufma)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8486 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8488 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8490 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8492 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8494 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8514 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8516
8517 if (i.tm.cpu_flags.bitfield.cpu8087
8518 || i.tm.cpu_flags.bitfield.cpu287
8519 || i.tm.cpu_flags.bitfield.cpu387
8520 || i.tm.cpu_flags.bitfield.cpu687
8521 || i.tm.cpu_flags.bitfield.cpufisttp)
8522 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8523 if (i.has_regmmx
8524 || i.tm.base_opcode == 0xf77 /* emms */
8525 || i.tm.base_opcode == 0xf0e /* femms */)
8526 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8527 if (i.has_regxmm)
8528 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8529 if (i.has_regymm)
8530 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8531 if (i.has_regzmm)
8532 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8533 if (i.tm.cpu_flags.bitfield.cpufxsr)
8534 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8535 if (i.tm.cpu_flags.bitfield.cpuxsave)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8537 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8539 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8541 }
8542 #endif
8543
8544 /* Tie dwarf2 debug info to the address at the start of the insn.
8545 We can't do this after the insn has been output as the current
8546 frag may have been closed off. eg. by frag_var. */
8547 dwarf2_emit_insn (0);
8548
8549 insn_start_frag = frag_now;
8550 insn_start_off = frag_now_fix ();
8551
8552 if (add_branch_padding_frag_p (&branch))
8553 {
8554 char *p;
8555 /* Branch can be 8 bytes. Leave some room for prefixes. */
8556 unsigned int max_branch_padding_size = 14;
8557
8558 /* Align section to boundary. */
8559 record_alignment (now_seg, align_branch_power);
8560
8561 /* Make room for padding. */
8562 frag_grow (max_branch_padding_size);
8563
8564 /* Start of the padding. */
8565 p = frag_more (0);
8566
8567 fragP = frag_now;
8568
8569 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8570 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8571 NULL, 0, p);
8572
8573 fragP->tc_frag_data.branch_type = branch;
8574 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8575 }
8576
8577 /* Output jumps. */
8578 if (i.tm.opcode_modifier.jump == JUMP)
8579 output_branch ();
8580 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8581 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8582 output_jump ();
8583 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8584 output_interseg_jump ();
8585 else
8586 {
8587 /* Output normal instructions here. */
8588 char *p;
8589 unsigned char *q;
8590 unsigned int j;
8591 unsigned int prefix;
8592
8593 if (avoid_fence
8594 && (i.tm.base_opcode == 0xfaee8
8595 || i.tm.base_opcode == 0xfaef0
8596 || i.tm.base_opcode == 0xfaef8))
8597 {
8598 /* Encode lfence, mfence, and sfence as
8599 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8600 offsetT val = 0x240483f0ULL;
8601 p = frag_more (5);
8602 md_number_to_chars (p, val, 5);
8603 return;
8604 }
8605
8606 /* Some processors fail on LOCK prefix. This options makes
8607 assembler ignore LOCK prefix and serves as a workaround. */
8608 if (omit_lock_prefix)
8609 {
8610 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8611 return;
8612 i.prefix[LOCK_PREFIX] = 0;
8613 }
8614
8615 if (branch)
8616 /* Skip if this is a branch. */
8617 ;
8618 else if (add_fused_jcc_padding_frag_p ())
8619 {
8620 /* Make room for padding. */
8621 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8622 p = frag_more (0);
8623
8624 fragP = frag_now;
8625
8626 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8627 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8628 NULL, 0, p);
8629
8630 fragP->tc_frag_data.branch_type = align_branch_fused;
8631 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8632 }
8633 else if (add_branch_prefix_frag_p ())
8634 {
8635 unsigned int max_prefix_size = align_branch_prefix_size;
8636
8637 /* Make room for padding. */
8638 frag_grow (max_prefix_size);
8639 p = frag_more (0);
8640
8641 fragP = frag_now;
8642
8643 frag_var (rs_machine_dependent, max_prefix_size, 0,
8644 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8645 NULL, 0, p);
8646
8647 fragP->tc_frag_data.max_bytes = max_prefix_size;
8648 }
8649
8650 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8651 don't need the explicit prefix. */
8652 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8653 {
8654 switch (i.tm.opcode_length)
8655 {
8656 case 3:
8657 if (i.tm.base_opcode & 0xff000000)
8658 {
8659 prefix = (i.tm.base_opcode >> 24) & 0xff;
8660 if (!i.tm.cpu_flags.bitfield.cpupadlock
8661 || prefix != REPE_PREFIX_OPCODE
8662 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8663 add_prefix (prefix);
8664 }
8665 break;
8666 case 2:
8667 if ((i.tm.base_opcode & 0xff0000) != 0)
8668 {
8669 prefix = (i.tm.base_opcode >> 16) & 0xff;
8670 add_prefix (prefix);
8671 }
8672 break;
8673 case 1:
8674 break;
8675 case 0:
8676 /* Check for pseudo prefixes. */
8677 as_bad_where (insn_start_frag->fr_file,
8678 insn_start_frag->fr_line,
8679 _("pseudo prefix without instruction"));
8680 return;
8681 default:
8682 abort ();
8683 }
8684
8685 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8686 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8687 R_X86_64_GOTTPOFF relocation so that linker can safely
8688 perform IE->LE optimization. A dummy REX_OPCODE prefix
8689 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8690 relocation for GDesc -> IE/LE optimization. */
8691 if (x86_elf_abi == X86_64_X32_ABI
8692 && i.operands == 2
8693 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8694 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8695 && i.prefix[REX_PREFIX] == 0)
8696 add_prefix (REX_OPCODE);
8697 #endif
8698
8699 /* The prefix bytes. */
8700 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8701 if (*q)
8702 FRAG_APPEND_1_CHAR (*q);
8703 }
8704 else
8705 {
8706 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8707 if (*q)
8708 switch (j)
8709 {
8710 case REX_PREFIX:
8711 /* REX byte is encoded in VEX prefix. */
8712 break;
8713 case SEG_PREFIX:
8714 case ADDR_PREFIX:
8715 FRAG_APPEND_1_CHAR (*q);
8716 break;
8717 default:
8718 /* There should be no other prefixes for instructions
8719 with VEX prefix. */
8720 abort ();
8721 }
8722
8723 /* For EVEX instructions i.vrex should become 0 after
8724 build_evex_prefix. For VEX instructions upper 16 registers
8725 aren't available, so VREX should be 0. */
8726 if (i.vrex)
8727 abort ();
8728 /* Now the VEX prefix. */
8729 p = frag_more (i.vex.length);
8730 for (j = 0; j < i.vex.length; j++)
8731 p[j] = i.vex.bytes[j];
8732 }
8733
8734 /* Now the opcode; be careful about word order here! */
8735 if (i.tm.opcode_length == 1)
8736 {
8737 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8738 }
8739 else
8740 {
8741 switch (i.tm.opcode_length)
8742 {
8743 case 4:
8744 p = frag_more (4);
8745 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8746 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8747 break;
8748 case 3:
8749 p = frag_more (3);
8750 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8751 break;
8752 case 2:
8753 p = frag_more (2);
8754 break;
8755 default:
8756 abort ();
8757 break;
8758 }
8759
8760 /* Put out high byte first: can't use md_number_to_chars! */
8761 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8762 *p = i.tm.base_opcode & 0xff;
8763 }
8764
8765 /* Now the modrm byte and sib byte (if present). */
8766 if (i.tm.opcode_modifier.modrm)
8767 {
8768 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8769 | i.rm.reg << 3
8770 | i.rm.mode << 6));
8771 /* If i.rm.regmem == ESP (4)
8772 && i.rm.mode != (Register mode)
8773 && not 16 bit
8774 ==> need second modrm byte. */
8775 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8776 && i.rm.mode != 3
8777 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8778 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8779 | i.sib.index << 3
8780 | i.sib.scale << 6));
8781 }
8782
8783 if (i.disp_operands)
8784 output_disp (insn_start_frag, insn_start_off);
8785
8786 if (i.imm_operands)
8787 output_imm (insn_start_frag, insn_start_off);
8788
8789 /*
8790 * frag_now_fix () returning plain abs_section_offset when we're in the
8791 * absolute section, and abs_section_offset not getting updated as data
8792 * gets added to the frag breaks the logic below.
8793 */
8794 if (now_seg != absolute_section)
8795 {
8796 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8797 if (j > 15)
8798 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8799 j);
8800 else if (fragP)
8801 {
8802 /* NB: Don't add prefix with GOTPC relocation since
8803 output_disp() above depends on the fixed encoding
8804 length. Can't add prefix with TLS relocation since
8805 it breaks TLS linker optimization. */
8806 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8807 /* Prefix count on the current instruction. */
8808 unsigned int count = i.vex.length;
8809 unsigned int k;
8810 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8811 /* REX byte is encoded in VEX/EVEX prefix. */
8812 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8813 count++;
8814
8815 /* Count prefixes for extended opcode maps. */
8816 if (!i.vex.length)
8817 switch (i.tm.opcode_length)
8818 {
8819 case 3:
8820 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8821 {
8822 count++;
8823 switch ((i.tm.base_opcode >> 8) & 0xff)
8824 {
8825 case 0x38:
8826 case 0x3a:
8827 count++;
8828 break;
8829 default:
8830 break;
8831 }
8832 }
8833 break;
8834 case 2:
8835 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8836 count++;
8837 break;
8838 case 1:
8839 break;
8840 default:
8841 abort ();
8842 }
8843
8844 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8845 == BRANCH_PREFIX)
8846 {
8847 /* Set the maximum prefix size in BRANCH_PREFIX
8848 frag. */
8849 if (fragP->tc_frag_data.max_bytes > max)
8850 fragP->tc_frag_data.max_bytes = max;
8851 if (fragP->tc_frag_data.max_bytes > count)
8852 fragP->tc_frag_data.max_bytes -= count;
8853 else
8854 fragP->tc_frag_data.max_bytes = 0;
8855 }
8856 else
8857 {
8858 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8859 frag. */
8860 unsigned int max_prefix_size;
8861 if (align_branch_prefix_size > max)
8862 max_prefix_size = max;
8863 else
8864 max_prefix_size = align_branch_prefix_size;
8865 if (max_prefix_size > count)
8866 fragP->tc_frag_data.max_prefix_length
8867 = max_prefix_size - count;
8868 }
8869
8870 /* Use existing segment prefix if possible. Use CS
8871 segment prefix in 64-bit mode. In 32-bit mode, use SS
8872 segment prefix with ESP/EBP base register and use DS
8873 segment prefix without ESP/EBP base register. */
8874 if (i.prefix[SEG_PREFIX])
8875 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8876 else if (flag_code == CODE_64BIT)
8877 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8878 else if (i.base_reg
8879 && (i.base_reg->reg_num == 4
8880 || i.base_reg->reg_num == 5))
8881 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8882 else
8883 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8884 }
8885 }
8886 }
8887
8888 /* NB: Don't work with COND_JUMP86 without i386. */
8889 if (align_branch_power
8890 && now_seg != absolute_section
8891 && cpu_arch_flags.bitfield.cpui386)
8892 {
8893 /* Terminate each frag so that we can add prefix and check for
8894 fused jcc. */
8895 frag_wane (frag_now);
8896 frag_new (0);
8897 }
8898
8899 #ifdef DEBUG386
8900 if (flag_debug)
8901 {
8902 pi ("" /*line*/, &i);
8903 }
8904 #endif /* DEBUG386 */
8905 }
8906
8907 /* Return the size of the displacement operand N. */
8908
8909 static int
8910 disp_size (unsigned int n)
8911 {
8912 int size = 4;
8913
8914 if (i.types[n].bitfield.disp64)
8915 size = 8;
8916 else if (i.types[n].bitfield.disp8)
8917 size = 1;
8918 else if (i.types[n].bitfield.disp16)
8919 size = 2;
8920 return size;
8921 }
8922
8923 /* Return the size of the immediate operand N. */
8924
8925 static int
8926 imm_size (unsigned int n)
8927 {
8928 int size = 4;
8929 if (i.types[n].bitfield.imm64)
8930 size = 8;
8931 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8932 size = 1;
8933 else if (i.types[n].bitfield.imm16)
8934 size = 2;
8935 return size;
8936 }
8937
8938 static void
8939 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8940 {
8941 char *p;
8942 unsigned int n;
8943
8944 for (n = 0; n < i.operands; n++)
8945 {
8946 if (operand_type_check (i.types[n], disp))
8947 {
8948 if (i.op[n].disps->X_op == O_constant)
8949 {
8950 int size = disp_size (n);
8951 offsetT val = i.op[n].disps->X_add_number;
8952
8953 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8954 size);
8955 p = frag_more (size);
8956 md_number_to_chars (p, val, size);
8957 }
8958 else
8959 {
8960 enum bfd_reloc_code_real reloc_type;
8961 int size = disp_size (n);
8962 int sign = i.types[n].bitfield.disp32s;
8963 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8964 fixS *fixP;
8965
8966 /* We can't have 8 bit displacement here. */
8967 gas_assert (!i.types[n].bitfield.disp8);
8968
8969 /* The PC relative address is computed relative
8970 to the instruction boundary, so in case immediate
8971 fields follows, we need to adjust the value. */
8972 if (pcrel && i.imm_operands)
8973 {
8974 unsigned int n1;
8975 int sz = 0;
8976
8977 for (n1 = 0; n1 < i.operands; n1++)
8978 if (operand_type_check (i.types[n1], imm))
8979 {
8980 /* Only one immediate is allowed for PC
8981 relative address. */
8982 gas_assert (sz == 0);
8983 sz = imm_size (n1);
8984 i.op[n].disps->X_add_number -= sz;
8985 }
8986 /* We should find the immediate. */
8987 gas_assert (sz != 0);
8988 }
8989
8990 p = frag_more (size);
8991 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8992 if (GOT_symbol
8993 && GOT_symbol == i.op[n].disps->X_add_symbol
8994 && (((reloc_type == BFD_RELOC_32
8995 || reloc_type == BFD_RELOC_X86_64_32S
8996 || (reloc_type == BFD_RELOC_64
8997 && object_64bit))
8998 && (i.op[n].disps->X_op == O_symbol
8999 || (i.op[n].disps->X_op == O_add
9000 && ((symbol_get_value_expression
9001 (i.op[n].disps->X_op_symbol)->X_op)
9002 == O_subtract))))
9003 || reloc_type == BFD_RELOC_32_PCREL))
9004 {
9005 if (!object_64bit)
9006 {
9007 reloc_type = BFD_RELOC_386_GOTPC;
9008 i.has_gotpc_tls_reloc = TRUE;
9009 i.op[n].imms->X_add_number +=
9010 encoding_length (insn_start_frag, insn_start_off, p);
9011 }
9012 else if (reloc_type == BFD_RELOC_64)
9013 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9014 else
9015 /* Don't do the adjustment for x86-64, as there
9016 the pcrel addressing is relative to the _next_
9017 insn, and that is taken care of in other code. */
9018 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9019 }
9020 else if (align_branch_power)
9021 {
9022 switch (reloc_type)
9023 {
9024 case BFD_RELOC_386_TLS_GD:
9025 case BFD_RELOC_386_TLS_LDM:
9026 case BFD_RELOC_386_TLS_IE:
9027 case BFD_RELOC_386_TLS_IE_32:
9028 case BFD_RELOC_386_TLS_GOTIE:
9029 case BFD_RELOC_386_TLS_GOTDESC:
9030 case BFD_RELOC_386_TLS_DESC_CALL:
9031 case BFD_RELOC_X86_64_TLSGD:
9032 case BFD_RELOC_X86_64_TLSLD:
9033 case BFD_RELOC_X86_64_GOTTPOFF:
9034 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9035 case BFD_RELOC_X86_64_TLSDESC_CALL:
9036 i.has_gotpc_tls_reloc = TRUE;
9037 default:
9038 break;
9039 }
9040 }
9041 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9042 size, i.op[n].disps, pcrel,
9043 reloc_type);
9044 /* Check for "call/jmp *mem", "mov mem, %reg",
9045 "test %reg, mem" and "binop mem, %reg" where binop
9046 is one of adc, add, and, cmp, or, sbb, sub, xor
9047 instructions without data prefix. Always generate
9048 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9049 if (i.prefix[DATA_PREFIX] == 0
9050 && (generate_relax_relocations
9051 || (!object_64bit
9052 && i.rm.mode == 0
9053 && i.rm.regmem == 5))
9054 && (i.rm.mode == 2
9055 || (i.rm.mode == 0 && i.rm.regmem == 5))
9056 && ((i.operands == 1
9057 && i.tm.base_opcode == 0xff
9058 && (i.rm.reg == 2 || i.rm.reg == 4))
9059 || (i.operands == 2
9060 && (i.tm.base_opcode == 0x8b
9061 || i.tm.base_opcode == 0x85
9062 || (i.tm.base_opcode & 0xc7) == 0x03))))
9063 {
9064 if (object_64bit)
9065 {
9066 fixP->fx_tcbit = i.rex != 0;
9067 if (i.base_reg
9068 && (i.base_reg->reg_num == RegIP))
9069 fixP->fx_tcbit2 = 1;
9070 }
9071 else
9072 fixP->fx_tcbit2 = 1;
9073 }
9074 }
9075 }
9076 }
9077 }
9078
9079 static void
9080 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9081 {
9082 char *p;
9083 unsigned int n;
9084
9085 for (n = 0; n < i.operands; n++)
9086 {
9087 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9088 if (i.rounding && (int) n == i.rounding->operand)
9089 continue;
9090
9091 if (operand_type_check (i.types[n], imm))
9092 {
9093 if (i.op[n].imms->X_op == O_constant)
9094 {
9095 int size = imm_size (n);
9096 offsetT val;
9097
9098 val = offset_in_range (i.op[n].imms->X_add_number,
9099 size);
9100 p = frag_more (size);
9101 md_number_to_chars (p, val, size);
9102 }
9103 else
9104 {
9105 /* Not absolute_section.
9106 Need a 32-bit fixup (don't support 8bit
9107 non-absolute imms). Try to support other
9108 sizes ... */
9109 enum bfd_reloc_code_real reloc_type;
9110 int size = imm_size (n);
9111 int sign;
9112
9113 if (i.types[n].bitfield.imm32s
9114 && (i.suffix == QWORD_MNEM_SUFFIX
9115 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9116 sign = 1;
9117 else
9118 sign = 0;
9119
9120 p = frag_more (size);
9121 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9122
9123 /* This is tough to explain. We end up with this one if we
9124 * have operands that look like
9125 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9126 * obtain the absolute address of the GOT, and it is strongly
9127 * preferable from a performance point of view to avoid using
9128 * a runtime relocation for this. The actual sequence of
9129 * instructions often look something like:
9130 *
9131 * call .L66
9132 * .L66:
9133 * popl %ebx
9134 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9135 *
9136 * The call and pop essentially return the absolute address
9137 * of the label .L66 and store it in %ebx. The linker itself
9138 * will ultimately change the first operand of the addl so
9139 * that %ebx points to the GOT, but to keep things simple, the
9140 * .o file must have this operand set so that it generates not
9141 * the absolute address of .L66, but the absolute address of
9142 * itself. This allows the linker itself simply treat a GOTPC
9143 * relocation as asking for a pcrel offset to the GOT to be
9144 * added in, and the addend of the relocation is stored in the
9145 * operand field for the instruction itself.
9146 *
9147 * Our job here is to fix the operand so that it would add
9148 * the correct offset so that %ebx would point to itself. The
9149 * thing that is tricky is that .-.L66 will point to the
9150 * beginning of the instruction, so we need to further modify
9151 * the operand so that it will point to itself. There are
9152 * other cases where you have something like:
9153 *
9154 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9155 *
9156 * and here no correction would be required. Internally in
9157 * the assembler we treat operands of this form as not being
9158 * pcrel since the '.' is explicitly mentioned, and I wonder
9159 * whether it would simplify matters to do it this way. Who
9160 * knows. In earlier versions of the PIC patches, the
9161 * pcrel_adjust field was used to store the correction, but
9162 * since the expression is not pcrel, I felt it would be
9163 * confusing to do it this way. */
9164
9165 if ((reloc_type == BFD_RELOC_32
9166 || reloc_type == BFD_RELOC_X86_64_32S
9167 || reloc_type == BFD_RELOC_64)
9168 && GOT_symbol
9169 && GOT_symbol == i.op[n].imms->X_add_symbol
9170 && (i.op[n].imms->X_op == O_symbol
9171 || (i.op[n].imms->X_op == O_add
9172 && ((symbol_get_value_expression
9173 (i.op[n].imms->X_op_symbol)->X_op)
9174 == O_subtract))))
9175 {
9176 if (!object_64bit)
9177 reloc_type = BFD_RELOC_386_GOTPC;
9178 else if (size == 4)
9179 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9180 else if (size == 8)
9181 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9182 i.has_gotpc_tls_reloc = TRUE;
9183 i.op[n].imms->X_add_number +=
9184 encoding_length (insn_start_frag, insn_start_off, p);
9185 }
9186 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9187 i.op[n].imms, 0, reloc_type);
9188 }
9189 }
9190 }
9191 }
9192 \f
9193 /* x86_cons_fix_new is called via the expression parsing code when a
9194 reloc is needed. We use this hook to get the correct .got reloc. */
9195 static int cons_sign = -1;
9196
9197 void
9198 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9199 expressionS *exp, bfd_reloc_code_real_type r)
9200 {
9201 r = reloc (len, 0, cons_sign, r);
9202
9203 #ifdef TE_PE
9204 if (exp->X_op == O_secrel)
9205 {
9206 exp->X_op = O_symbol;
9207 r = BFD_RELOC_32_SECREL;
9208 }
9209 #endif
9210
9211 fix_new_exp (frag, off, len, exp, 0, r);
9212 }
9213
9214 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9215 purpose of the `.dc.a' internal pseudo-op. */
9216
9217 int
9218 x86_address_bytes (void)
9219 {
9220 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9221 return 4;
9222 return stdoutput->arch_info->bits_per_address / 8;
9223 }
9224
9225 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9226 || defined (LEX_AT)
9227 # define lex_got(reloc, adjust, types) NULL
9228 #else
9229 /* Parse operands of the form
9230 <symbol>@GOTOFF+<nnn>
9231 and similar .plt or .got references.
9232
9233 If we find one, set up the correct relocation in RELOC and copy the
9234 input string, minus the `@GOTOFF' into a malloc'd buffer for
9235 parsing by the calling routine. Return this buffer, and if ADJUST
9236 is non-null set it to the length of the string we removed from the
9237 input line. Otherwise return NULL. */
9238 static char *
9239 lex_got (enum bfd_reloc_code_real *rel,
9240 int *adjust,
9241 i386_operand_type *types)
9242 {
9243 /* Some of the relocations depend on the size of what field is to
9244 be relocated. But in our callers i386_immediate and i386_displacement
9245 we don't yet know the operand size (this will be set by insn
9246 matching). Hence we record the word32 relocation here,
9247 and adjust the reloc according to the real size in reloc(). */
9248 static const struct {
9249 const char *str;
9250 int len;
9251 const enum bfd_reloc_code_real rel[2];
9252 const i386_operand_type types64;
9253 } gotrel[] = {
9254 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9255 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9256 BFD_RELOC_SIZE32 },
9257 OPERAND_TYPE_IMM32_64 },
9258 #endif
9259 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9260 BFD_RELOC_X86_64_PLTOFF64 },
9261 OPERAND_TYPE_IMM64 },
9262 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9263 BFD_RELOC_X86_64_PLT32 },
9264 OPERAND_TYPE_IMM32_32S_DISP32 },
9265 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9266 BFD_RELOC_X86_64_GOTPLT64 },
9267 OPERAND_TYPE_IMM64_DISP64 },
9268 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9269 BFD_RELOC_X86_64_GOTOFF64 },
9270 OPERAND_TYPE_IMM64_DISP64 },
9271 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9272 BFD_RELOC_X86_64_GOTPCREL },
9273 OPERAND_TYPE_IMM32_32S_DISP32 },
9274 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9275 BFD_RELOC_X86_64_TLSGD },
9276 OPERAND_TYPE_IMM32_32S_DISP32 },
9277 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9278 _dummy_first_bfd_reloc_code_real },
9279 OPERAND_TYPE_NONE },
9280 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9281 BFD_RELOC_X86_64_TLSLD },
9282 OPERAND_TYPE_IMM32_32S_DISP32 },
9283 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9284 BFD_RELOC_X86_64_GOTTPOFF },
9285 OPERAND_TYPE_IMM32_32S_DISP32 },
9286 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9287 BFD_RELOC_X86_64_TPOFF32 },
9288 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9289 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9290 _dummy_first_bfd_reloc_code_real },
9291 OPERAND_TYPE_NONE },
9292 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9293 BFD_RELOC_X86_64_DTPOFF32 },
9294 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9295 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9296 _dummy_first_bfd_reloc_code_real },
9297 OPERAND_TYPE_NONE },
9298 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9299 _dummy_first_bfd_reloc_code_real },
9300 OPERAND_TYPE_NONE },
9301 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9302 BFD_RELOC_X86_64_GOT32 },
9303 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9304 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9305 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9306 OPERAND_TYPE_IMM32_32S_DISP32 },
9307 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9308 BFD_RELOC_X86_64_TLSDESC_CALL },
9309 OPERAND_TYPE_IMM32_32S_DISP32 },
9310 };
9311 char *cp;
9312 unsigned int j;
9313
9314 #if defined (OBJ_MAYBE_ELF)
9315 if (!IS_ELF)
9316 return NULL;
9317 #endif
9318
9319 for (cp = input_line_pointer; *cp != '@'; cp++)
9320 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9321 return NULL;
9322
9323 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9324 {
9325 int len = gotrel[j].len;
9326 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9327 {
9328 if (gotrel[j].rel[object_64bit] != 0)
9329 {
9330 int first, second;
9331 char *tmpbuf, *past_reloc;
9332
9333 *rel = gotrel[j].rel[object_64bit];
9334
9335 if (types)
9336 {
9337 if (flag_code != CODE_64BIT)
9338 {
9339 types->bitfield.imm32 = 1;
9340 types->bitfield.disp32 = 1;
9341 }
9342 else
9343 *types = gotrel[j].types64;
9344 }
9345
9346 if (j != 0 && GOT_symbol == NULL)
9347 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9348
9349 /* The length of the first part of our input line. */
9350 first = cp - input_line_pointer;
9351
9352 /* The second part goes from after the reloc token until
9353 (and including) an end_of_line char or comma. */
9354 past_reloc = cp + 1 + len;
9355 cp = past_reloc;
9356 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9357 ++cp;
9358 second = cp + 1 - past_reloc;
9359
9360 /* Allocate and copy string. The trailing NUL shouldn't
9361 be necessary, but be safe. */
9362 tmpbuf = XNEWVEC (char, first + second + 2);
9363 memcpy (tmpbuf, input_line_pointer, first);
9364 if (second != 0 && *past_reloc != ' ')
9365 /* Replace the relocation token with ' ', so that
9366 errors like foo@GOTOFF1 will be detected. */
9367 tmpbuf[first++] = ' ';
9368 else
9369 /* Increment length by 1 if the relocation token is
9370 removed. */
9371 len++;
9372 if (adjust)
9373 *adjust = len;
9374 memcpy (tmpbuf + first, past_reloc, second);
9375 tmpbuf[first + second] = '\0';
9376 return tmpbuf;
9377 }
9378
9379 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9380 gotrel[j].str, 1 << (5 + object_64bit));
9381 return NULL;
9382 }
9383 }
9384
9385 /* Might be a symbol version string. Don't as_bad here. */
9386 return NULL;
9387 }
9388 #endif
9389
9390 #ifdef TE_PE
9391 #ifdef lex_got
9392 #undef lex_got
9393 #endif
9394 /* Parse operands of the form
9395 <symbol>@SECREL32+<nnn>
9396
9397 If we find one, set up the correct relocation in RELOC and copy the
9398 input string, minus the `@SECREL32' into a malloc'd buffer for
9399 parsing by the calling routine. Return this buffer, and if ADJUST
9400 is non-null set it to the length of the string we removed from the
9401 input line. Otherwise return NULL.
9402
9403 This function is copied from the ELF version above adjusted for PE targets. */
9404
9405 static char *
9406 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9407 int *adjust ATTRIBUTE_UNUSED,
9408 i386_operand_type *types)
9409 {
9410 static const struct
9411 {
9412 const char *str;
9413 int len;
9414 const enum bfd_reloc_code_real rel[2];
9415 const i386_operand_type types64;
9416 }
9417 gotrel[] =
9418 {
9419 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9420 BFD_RELOC_32_SECREL },
9421 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9422 };
9423
9424 char *cp;
9425 unsigned j;
9426
9427 for (cp = input_line_pointer; *cp != '@'; cp++)
9428 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9429 return NULL;
9430
9431 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9432 {
9433 int len = gotrel[j].len;
9434
9435 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9436 {
9437 if (gotrel[j].rel[object_64bit] != 0)
9438 {
9439 int first, second;
9440 char *tmpbuf, *past_reloc;
9441
9442 *rel = gotrel[j].rel[object_64bit];
9443 if (adjust)
9444 *adjust = len;
9445
9446 if (types)
9447 {
9448 if (flag_code != CODE_64BIT)
9449 {
9450 types->bitfield.imm32 = 1;
9451 types->bitfield.disp32 = 1;
9452 }
9453 else
9454 *types = gotrel[j].types64;
9455 }
9456
9457 /* The length of the first part of our input line. */
9458 first = cp - input_line_pointer;
9459
9460 /* The second part goes from after the reloc token until
9461 (and including) an end_of_line char or comma. */
9462 past_reloc = cp + 1 + len;
9463 cp = past_reloc;
9464 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9465 ++cp;
9466 second = cp + 1 - past_reloc;
9467
9468 /* Allocate and copy string. The trailing NUL shouldn't
9469 be necessary, but be safe. */
9470 tmpbuf = XNEWVEC (char, first + second + 2);
9471 memcpy (tmpbuf, input_line_pointer, first);
9472 if (second != 0 && *past_reloc != ' ')
9473 /* Replace the relocation token with ' ', so that
9474 errors like foo@SECLREL321 will be detected. */
9475 tmpbuf[first++] = ' ';
9476 memcpy (tmpbuf + first, past_reloc, second);
9477 tmpbuf[first + second] = '\0';
9478 return tmpbuf;
9479 }
9480
9481 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9482 gotrel[j].str, 1 << (5 + object_64bit));
9483 return NULL;
9484 }
9485 }
9486
9487 /* Might be a symbol version string. Don't as_bad here. */
9488 return NULL;
9489 }
9490
9491 #endif /* TE_PE */
9492
9493 bfd_reloc_code_real_type
9494 x86_cons (expressionS *exp, int size)
9495 {
9496 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9497
9498 intel_syntax = -intel_syntax;
9499
9500 exp->X_md = 0;
9501 if (size == 4 || (object_64bit && size == 8))
9502 {
9503 /* Handle @GOTOFF and the like in an expression. */
9504 char *save;
9505 char *gotfree_input_line;
9506 int adjust = 0;
9507
9508 save = input_line_pointer;
9509 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9510 if (gotfree_input_line)
9511 input_line_pointer = gotfree_input_line;
9512
9513 expression (exp);
9514
9515 if (gotfree_input_line)
9516 {
9517 /* expression () has merrily parsed up to the end of line,
9518 or a comma - in the wrong buffer. Transfer how far
9519 input_line_pointer has moved to the right buffer. */
9520 input_line_pointer = (save
9521 + (input_line_pointer - gotfree_input_line)
9522 + adjust);
9523 free (gotfree_input_line);
9524 if (exp->X_op == O_constant
9525 || exp->X_op == O_absent
9526 || exp->X_op == O_illegal
9527 || exp->X_op == O_register
9528 || exp->X_op == O_big)
9529 {
9530 char c = *input_line_pointer;
9531 *input_line_pointer = 0;
9532 as_bad (_("missing or invalid expression `%s'"), save);
9533 *input_line_pointer = c;
9534 }
9535 else if ((got_reloc == BFD_RELOC_386_PLT32
9536 || got_reloc == BFD_RELOC_X86_64_PLT32)
9537 && exp->X_op != O_symbol)
9538 {
9539 char c = *input_line_pointer;
9540 *input_line_pointer = 0;
9541 as_bad (_("invalid PLT expression `%s'"), save);
9542 *input_line_pointer = c;
9543 }
9544 }
9545 }
9546 else
9547 expression (exp);
9548
9549 intel_syntax = -intel_syntax;
9550
9551 if (intel_syntax)
9552 i386_intel_simplify (exp);
9553
9554 return got_reloc;
9555 }
9556
9557 static void
9558 signed_cons (int size)
9559 {
9560 if (flag_code == CODE_64BIT)
9561 cons_sign = 1;
9562 cons (size);
9563 cons_sign = -1;
9564 }
9565
9566 #ifdef TE_PE
9567 static void
9568 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9569 {
9570 expressionS exp;
9571
9572 do
9573 {
9574 expression (&exp);
9575 if (exp.X_op == O_symbol)
9576 exp.X_op = O_secrel;
9577
9578 emit_expr (&exp, 4);
9579 }
9580 while (*input_line_pointer++ == ',');
9581
9582 input_line_pointer--;
9583 demand_empty_rest_of_line ();
9584 }
9585 #endif
9586
9587 /* Handle Vector operations. */
9588
9589 static char *
9590 check_VecOperations (char *op_string, char *op_end)
9591 {
9592 const reg_entry *mask;
9593 const char *saved;
9594 char *end_op;
9595
9596 while (*op_string
9597 && (op_end == NULL || op_string < op_end))
9598 {
9599 saved = op_string;
9600 if (*op_string == '{')
9601 {
9602 op_string++;
9603
9604 /* Check broadcasts. */
9605 if (strncmp (op_string, "1to", 3) == 0)
9606 {
9607 int bcst_type;
9608
9609 if (i.broadcast)
9610 goto duplicated_vec_op;
9611
9612 op_string += 3;
9613 if (*op_string == '8')
9614 bcst_type = 8;
9615 else if (*op_string == '4')
9616 bcst_type = 4;
9617 else if (*op_string == '2')
9618 bcst_type = 2;
9619 else if (*op_string == '1'
9620 && *(op_string+1) == '6')
9621 {
9622 bcst_type = 16;
9623 op_string++;
9624 }
9625 else
9626 {
9627 as_bad (_("Unsupported broadcast: `%s'"), saved);
9628 return NULL;
9629 }
9630 op_string++;
9631
9632 broadcast_op.type = bcst_type;
9633 broadcast_op.operand = this_operand;
9634 broadcast_op.bytes = 0;
9635 i.broadcast = &broadcast_op;
9636 }
9637 /* Check masking operation. */
9638 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9639 {
9640 /* k0 can't be used for write mask. */
9641 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9642 {
9643 as_bad (_("`%s%s' can't be used for write mask"),
9644 register_prefix, mask->reg_name);
9645 return NULL;
9646 }
9647
9648 if (!i.mask)
9649 {
9650 mask_op.mask = mask;
9651 mask_op.zeroing = 0;
9652 mask_op.operand = this_operand;
9653 i.mask = &mask_op;
9654 }
9655 else
9656 {
9657 if (i.mask->mask)
9658 goto duplicated_vec_op;
9659
9660 i.mask->mask = mask;
9661
9662 /* Only "{z}" is allowed here. No need to check
9663 zeroing mask explicitly. */
9664 if (i.mask->operand != this_operand)
9665 {
9666 as_bad (_("invalid write mask `%s'"), saved);
9667 return NULL;
9668 }
9669 }
9670
9671 op_string = end_op;
9672 }
9673 /* Check zeroing-flag for masking operation. */
9674 else if (*op_string == 'z')
9675 {
9676 if (!i.mask)
9677 {
9678 mask_op.mask = NULL;
9679 mask_op.zeroing = 1;
9680 mask_op.operand = this_operand;
9681 i.mask = &mask_op;
9682 }
9683 else
9684 {
9685 if (i.mask->zeroing)
9686 {
9687 duplicated_vec_op:
9688 as_bad (_("duplicated `%s'"), saved);
9689 return NULL;
9690 }
9691
9692 i.mask->zeroing = 1;
9693
9694 /* Only "{%k}" is allowed here. No need to check mask
9695 register explicitly. */
9696 if (i.mask->operand != this_operand)
9697 {
9698 as_bad (_("invalid zeroing-masking `%s'"),
9699 saved);
9700 return NULL;
9701 }
9702 }
9703
9704 op_string++;
9705 }
9706 else
9707 goto unknown_vec_op;
9708
9709 if (*op_string != '}')
9710 {
9711 as_bad (_("missing `}' in `%s'"), saved);
9712 return NULL;
9713 }
9714 op_string++;
9715
9716 /* Strip whitespace since the addition of pseudo prefixes
9717 changed how the scrubber treats '{'. */
9718 if (is_space_char (*op_string))
9719 ++op_string;
9720
9721 continue;
9722 }
9723 unknown_vec_op:
9724 /* We don't know this one. */
9725 as_bad (_("unknown vector operation: `%s'"), saved);
9726 return NULL;
9727 }
9728
9729 if (i.mask && i.mask->zeroing && !i.mask->mask)
9730 {
9731 as_bad (_("zeroing-masking only allowed with write mask"));
9732 return NULL;
9733 }
9734
9735 return op_string;
9736 }
9737
9738 static int
9739 i386_immediate (char *imm_start)
9740 {
9741 char *save_input_line_pointer;
9742 char *gotfree_input_line;
9743 segT exp_seg = 0;
9744 expressionS *exp;
9745 i386_operand_type types;
9746
9747 operand_type_set (&types, ~0);
9748
9749 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9750 {
9751 as_bad (_("at most %d immediate operands are allowed"),
9752 MAX_IMMEDIATE_OPERANDS);
9753 return 0;
9754 }
9755
9756 exp = &im_expressions[i.imm_operands++];
9757 i.op[this_operand].imms = exp;
9758
9759 if (is_space_char (*imm_start))
9760 ++imm_start;
9761
9762 save_input_line_pointer = input_line_pointer;
9763 input_line_pointer = imm_start;
9764
9765 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9766 if (gotfree_input_line)
9767 input_line_pointer = gotfree_input_line;
9768
9769 exp_seg = expression (exp);
9770
9771 SKIP_WHITESPACE ();
9772
9773 /* Handle vector operations. */
9774 if (*input_line_pointer == '{')
9775 {
9776 input_line_pointer = check_VecOperations (input_line_pointer,
9777 NULL);
9778 if (input_line_pointer == NULL)
9779 return 0;
9780 }
9781
9782 if (*input_line_pointer)
9783 as_bad (_("junk `%s' after expression"), input_line_pointer);
9784
9785 input_line_pointer = save_input_line_pointer;
9786 if (gotfree_input_line)
9787 {
9788 free (gotfree_input_line);
9789
9790 if (exp->X_op == O_constant || exp->X_op == O_register)
9791 exp->X_op = O_illegal;
9792 }
9793
9794 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9795 }
9796
9797 static int
9798 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9799 i386_operand_type types, const char *imm_start)
9800 {
9801 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9802 {
9803 if (imm_start)
9804 as_bad (_("missing or invalid immediate expression `%s'"),
9805 imm_start);
9806 return 0;
9807 }
9808 else if (exp->X_op == O_constant)
9809 {
9810 /* Size it properly later. */
9811 i.types[this_operand].bitfield.imm64 = 1;
9812 /* If not 64bit, sign extend val. */
9813 if (flag_code != CODE_64BIT
9814 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9815 exp->X_add_number
9816 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9817 }
9818 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9819 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9820 && exp_seg != absolute_section
9821 && exp_seg != text_section
9822 && exp_seg != data_section
9823 && exp_seg != bss_section
9824 && exp_seg != undefined_section
9825 && !bfd_is_com_section (exp_seg))
9826 {
9827 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9828 return 0;
9829 }
9830 #endif
9831 else if (!intel_syntax && exp_seg == reg_section)
9832 {
9833 if (imm_start)
9834 as_bad (_("illegal immediate register operand %s"), imm_start);
9835 return 0;
9836 }
9837 else
9838 {
9839 /* This is an address. The size of the address will be
9840 determined later, depending on destination register,
9841 suffix, or the default for the section. */
9842 i.types[this_operand].bitfield.imm8 = 1;
9843 i.types[this_operand].bitfield.imm16 = 1;
9844 i.types[this_operand].bitfield.imm32 = 1;
9845 i.types[this_operand].bitfield.imm32s = 1;
9846 i.types[this_operand].bitfield.imm64 = 1;
9847 i.types[this_operand] = operand_type_and (i.types[this_operand],
9848 types);
9849 }
9850
9851 return 1;
9852 }
9853
9854 static char *
9855 i386_scale (char *scale)
9856 {
9857 offsetT val;
9858 char *save = input_line_pointer;
9859
9860 input_line_pointer = scale;
9861 val = get_absolute_expression ();
9862
9863 switch (val)
9864 {
9865 case 1:
9866 i.log2_scale_factor = 0;
9867 break;
9868 case 2:
9869 i.log2_scale_factor = 1;
9870 break;
9871 case 4:
9872 i.log2_scale_factor = 2;
9873 break;
9874 case 8:
9875 i.log2_scale_factor = 3;
9876 break;
9877 default:
9878 {
9879 char sep = *input_line_pointer;
9880
9881 *input_line_pointer = '\0';
9882 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9883 scale);
9884 *input_line_pointer = sep;
9885 input_line_pointer = save;
9886 return NULL;
9887 }
9888 }
9889 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9890 {
9891 as_warn (_("scale factor of %d without an index register"),
9892 1 << i.log2_scale_factor);
9893 i.log2_scale_factor = 0;
9894 }
9895 scale = input_line_pointer;
9896 input_line_pointer = save;
9897 return scale;
9898 }
9899
9900 static int
9901 i386_displacement (char *disp_start, char *disp_end)
9902 {
9903 expressionS *exp;
9904 segT exp_seg = 0;
9905 char *save_input_line_pointer;
9906 char *gotfree_input_line;
9907 int override;
9908 i386_operand_type bigdisp, types = anydisp;
9909 int ret;
9910
9911 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9912 {
9913 as_bad (_("at most %d displacement operands are allowed"),
9914 MAX_MEMORY_OPERANDS);
9915 return 0;
9916 }
9917
9918 operand_type_set (&bigdisp, 0);
9919 if (i.jumpabsolute
9920 || i.types[this_operand].bitfield.baseindex
9921 || (current_templates->start->opcode_modifier.jump != JUMP
9922 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9923 {
9924 i386_addressing_mode ();
9925 override = (i.prefix[ADDR_PREFIX] != 0);
9926 if (flag_code == CODE_64BIT)
9927 {
9928 if (!override)
9929 {
9930 bigdisp.bitfield.disp32s = 1;
9931 bigdisp.bitfield.disp64 = 1;
9932 }
9933 else
9934 bigdisp.bitfield.disp32 = 1;
9935 }
9936 else if ((flag_code == CODE_16BIT) ^ override)
9937 bigdisp.bitfield.disp16 = 1;
9938 else
9939 bigdisp.bitfield.disp32 = 1;
9940 }
9941 else
9942 {
9943 /* For PC-relative branches, the width of the displacement may be
9944 dependent upon data size, but is never dependent upon address size.
9945 Also make sure to not unintentionally match against a non-PC-relative
9946 branch template. */
9947 static templates aux_templates;
9948 const insn_template *t = current_templates->start;
9949 bfd_boolean has_intel64 = FALSE;
9950
9951 aux_templates.start = t;
9952 while (++t < current_templates->end)
9953 {
9954 if (t->opcode_modifier.jump
9955 != current_templates->start->opcode_modifier.jump)
9956 break;
9957 if (t->opcode_modifier.intel64)
9958 has_intel64 = TRUE;
9959 }
9960 if (t < current_templates->end)
9961 {
9962 aux_templates.end = t;
9963 current_templates = &aux_templates;
9964 }
9965
9966 override = (i.prefix[DATA_PREFIX] != 0);
9967 if (flag_code == CODE_64BIT)
9968 {
9969 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9970 && (!intel64 || !has_intel64))
9971 bigdisp.bitfield.disp16 = 1;
9972 else
9973 bigdisp.bitfield.disp32s = 1;
9974 }
9975 else
9976 {
9977 if (!override)
9978 override = (i.suffix == (flag_code != CODE_16BIT
9979 ? WORD_MNEM_SUFFIX
9980 : LONG_MNEM_SUFFIX));
9981 bigdisp.bitfield.disp32 = 1;
9982 if ((flag_code == CODE_16BIT) ^ override)
9983 {
9984 bigdisp.bitfield.disp32 = 0;
9985 bigdisp.bitfield.disp16 = 1;
9986 }
9987 }
9988 }
9989 i.types[this_operand] = operand_type_or (i.types[this_operand],
9990 bigdisp);
9991
9992 exp = &disp_expressions[i.disp_operands];
9993 i.op[this_operand].disps = exp;
9994 i.disp_operands++;
9995 save_input_line_pointer = input_line_pointer;
9996 input_line_pointer = disp_start;
9997 END_STRING_AND_SAVE (disp_end);
9998
9999 #ifndef GCC_ASM_O_HACK
10000 #define GCC_ASM_O_HACK 0
10001 #endif
10002 #if GCC_ASM_O_HACK
10003 END_STRING_AND_SAVE (disp_end + 1);
10004 if (i.types[this_operand].bitfield.baseIndex
10005 && displacement_string_end[-1] == '+')
10006 {
10007 /* This hack is to avoid a warning when using the "o"
10008 constraint within gcc asm statements.
10009 For instance:
10010
10011 #define _set_tssldt_desc(n,addr,limit,type) \
10012 __asm__ __volatile__ ( \
10013 "movw %w2,%0\n\t" \
10014 "movw %w1,2+%0\n\t" \
10015 "rorl $16,%1\n\t" \
10016 "movb %b1,4+%0\n\t" \
10017 "movb %4,5+%0\n\t" \
10018 "movb $0,6+%0\n\t" \
10019 "movb %h1,7+%0\n\t" \
10020 "rorl $16,%1" \
10021 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10022
10023 This works great except that the output assembler ends
10024 up looking a bit weird if it turns out that there is
10025 no offset. You end up producing code that looks like:
10026
10027 #APP
10028 movw $235,(%eax)
10029 movw %dx,2+(%eax)
10030 rorl $16,%edx
10031 movb %dl,4+(%eax)
10032 movb $137,5+(%eax)
10033 movb $0,6+(%eax)
10034 movb %dh,7+(%eax)
10035 rorl $16,%edx
10036 #NO_APP
10037
10038 So here we provide the missing zero. */
10039
10040 *displacement_string_end = '0';
10041 }
10042 #endif
10043 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10044 if (gotfree_input_line)
10045 input_line_pointer = gotfree_input_line;
10046
10047 exp_seg = expression (exp);
10048
10049 SKIP_WHITESPACE ();
10050 if (*input_line_pointer)
10051 as_bad (_("junk `%s' after expression"), input_line_pointer);
10052 #if GCC_ASM_O_HACK
10053 RESTORE_END_STRING (disp_end + 1);
10054 #endif
10055 input_line_pointer = save_input_line_pointer;
10056 if (gotfree_input_line)
10057 {
10058 free (gotfree_input_line);
10059
10060 if (exp->X_op == O_constant || exp->X_op == O_register)
10061 exp->X_op = O_illegal;
10062 }
10063
10064 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10065
10066 RESTORE_END_STRING (disp_end);
10067
10068 return ret;
10069 }
10070
10071 static int
10072 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10073 i386_operand_type types, const char *disp_start)
10074 {
10075 i386_operand_type bigdisp;
10076 int ret = 1;
10077
10078 /* We do this to make sure that the section symbol is in
10079 the symbol table. We will ultimately change the relocation
10080 to be relative to the beginning of the section. */
10081 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10082 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10083 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10084 {
10085 if (exp->X_op != O_symbol)
10086 goto inv_disp;
10087
10088 if (S_IS_LOCAL (exp->X_add_symbol)
10089 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10090 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10091 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10092 exp->X_op = O_subtract;
10093 exp->X_op_symbol = GOT_symbol;
10094 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10095 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10096 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10097 i.reloc[this_operand] = BFD_RELOC_64;
10098 else
10099 i.reloc[this_operand] = BFD_RELOC_32;
10100 }
10101
10102 else if (exp->X_op == O_absent
10103 || exp->X_op == O_illegal
10104 || exp->X_op == O_big)
10105 {
10106 inv_disp:
10107 as_bad (_("missing or invalid displacement expression `%s'"),
10108 disp_start);
10109 ret = 0;
10110 }
10111
10112 else if (flag_code == CODE_64BIT
10113 && !i.prefix[ADDR_PREFIX]
10114 && exp->X_op == O_constant)
10115 {
10116 /* Since displacement is signed extended to 64bit, don't allow
10117 disp32 and turn off disp32s if they are out of range. */
10118 i.types[this_operand].bitfield.disp32 = 0;
10119 if (!fits_in_signed_long (exp->X_add_number))
10120 {
10121 i.types[this_operand].bitfield.disp32s = 0;
10122 if (i.types[this_operand].bitfield.baseindex)
10123 {
10124 as_bad (_("0x%lx out range of signed 32bit displacement"),
10125 (long) exp->X_add_number);
10126 ret = 0;
10127 }
10128 }
10129 }
10130
10131 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10132 else if (exp->X_op != O_constant
10133 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10134 && exp_seg != absolute_section
10135 && exp_seg != text_section
10136 && exp_seg != data_section
10137 && exp_seg != bss_section
10138 && exp_seg != undefined_section
10139 && !bfd_is_com_section (exp_seg))
10140 {
10141 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10142 ret = 0;
10143 }
10144 #endif
10145
10146 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10147 /* Constants get taken care of by optimize_disp(). */
10148 && exp->X_op != O_constant)
10149 i.types[this_operand].bitfield.disp8 = 1;
10150
10151 /* Check if this is a displacement only operand. */
10152 bigdisp = i.types[this_operand];
10153 bigdisp.bitfield.disp8 = 0;
10154 bigdisp.bitfield.disp16 = 0;
10155 bigdisp.bitfield.disp32 = 0;
10156 bigdisp.bitfield.disp32s = 0;
10157 bigdisp.bitfield.disp64 = 0;
10158 if (operand_type_all_zero (&bigdisp))
10159 i.types[this_operand] = operand_type_and (i.types[this_operand],
10160 types);
10161
10162 return ret;
10163 }
10164
10165 /* Return the active addressing mode, taking address override and
10166 registers forming the address into consideration. Update the
10167 address override prefix if necessary. */
10168
10169 static enum flag_code
10170 i386_addressing_mode (void)
10171 {
10172 enum flag_code addr_mode;
10173
10174 if (i.prefix[ADDR_PREFIX])
10175 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10176 else
10177 {
10178 addr_mode = flag_code;
10179
10180 #if INFER_ADDR_PREFIX
10181 if (i.mem_operands == 0)
10182 {
10183 /* Infer address prefix from the first memory operand. */
10184 const reg_entry *addr_reg = i.base_reg;
10185
10186 if (addr_reg == NULL)
10187 addr_reg = i.index_reg;
10188
10189 if (addr_reg)
10190 {
10191 if (addr_reg->reg_type.bitfield.dword)
10192 addr_mode = CODE_32BIT;
10193 else if (flag_code != CODE_64BIT
10194 && addr_reg->reg_type.bitfield.word)
10195 addr_mode = CODE_16BIT;
10196
10197 if (addr_mode != flag_code)
10198 {
10199 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10200 i.prefixes += 1;
10201 /* Change the size of any displacement too. At most one
10202 of Disp16 or Disp32 is set.
10203 FIXME. There doesn't seem to be any real need for
10204 separate Disp16 and Disp32 flags. The same goes for
10205 Imm16 and Imm32. Removing them would probably clean
10206 up the code quite a lot. */
10207 if (flag_code != CODE_64BIT
10208 && (i.types[this_operand].bitfield.disp16
10209 || i.types[this_operand].bitfield.disp32))
10210 i.types[this_operand]
10211 = operand_type_xor (i.types[this_operand], disp16_32);
10212 }
10213 }
10214 }
10215 #endif
10216 }
10217
10218 return addr_mode;
10219 }
10220
10221 /* Make sure the memory operand we've been dealt is valid.
10222 Return 1 on success, 0 on a failure. */
10223
10224 static int
10225 i386_index_check (const char *operand_string)
10226 {
10227 const char *kind = "base/index";
10228 enum flag_code addr_mode = i386_addressing_mode ();
10229
10230 if (current_templates->start->opcode_modifier.isstring
10231 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10232 && (current_templates->end[-1].opcode_modifier.isstring
10233 || i.mem_operands))
10234 {
10235 /* Memory operands of string insns are special in that they only allow
10236 a single register (rDI, rSI, or rBX) as their memory address. */
10237 const reg_entry *expected_reg;
10238 static const char *di_si[][2] =
10239 {
10240 { "esi", "edi" },
10241 { "si", "di" },
10242 { "rsi", "rdi" }
10243 };
10244 static const char *bx[] = { "ebx", "bx", "rbx" };
10245
10246 kind = "string address";
10247
10248 if (current_templates->start->opcode_modifier.repprefixok)
10249 {
10250 int es_op = current_templates->end[-1].opcode_modifier.isstring
10251 - IS_STRING_ES_OP0;
10252 int op = 0;
10253
10254 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10255 || ((!i.mem_operands != !intel_syntax)
10256 && current_templates->end[-1].operand_types[1]
10257 .bitfield.baseindex))
10258 op = 1;
10259 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10260 }
10261 else
10262 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10263
10264 if (i.base_reg != expected_reg
10265 || i.index_reg
10266 || operand_type_check (i.types[this_operand], disp))
10267 {
10268 /* The second memory operand must have the same size as
10269 the first one. */
10270 if (i.mem_operands
10271 && i.base_reg
10272 && !((addr_mode == CODE_64BIT
10273 && i.base_reg->reg_type.bitfield.qword)
10274 || (addr_mode == CODE_32BIT
10275 ? i.base_reg->reg_type.bitfield.dword
10276 : i.base_reg->reg_type.bitfield.word)))
10277 goto bad_address;
10278
10279 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10280 operand_string,
10281 intel_syntax ? '[' : '(',
10282 register_prefix,
10283 expected_reg->reg_name,
10284 intel_syntax ? ']' : ')');
10285 return 1;
10286 }
10287 else
10288 return 1;
10289
10290 bad_address:
10291 as_bad (_("`%s' is not a valid %s expression"),
10292 operand_string, kind);
10293 return 0;
10294 }
10295 else
10296 {
10297 if (addr_mode != CODE_16BIT)
10298 {
10299 /* 32-bit/64-bit checks. */
10300 if ((i.base_reg
10301 && ((addr_mode == CODE_64BIT
10302 ? !i.base_reg->reg_type.bitfield.qword
10303 : !i.base_reg->reg_type.bitfield.dword)
10304 || (i.index_reg && i.base_reg->reg_num == RegIP)
10305 || i.base_reg->reg_num == RegIZ))
10306 || (i.index_reg
10307 && !i.index_reg->reg_type.bitfield.xmmword
10308 && !i.index_reg->reg_type.bitfield.ymmword
10309 && !i.index_reg->reg_type.bitfield.zmmword
10310 && ((addr_mode == CODE_64BIT
10311 ? !i.index_reg->reg_type.bitfield.qword
10312 : !i.index_reg->reg_type.bitfield.dword)
10313 || !i.index_reg->reg_type.bitfield.baseindex)))
10314 goto bad_address;
10315
10316 /* bndmk, bndldx, and bndstx have special restrictions. */
10317 if (current_templates->start->base_opcode == 0xf30f1b
10318 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10319 {
10320 /* They cannot use RIP-relative addressing. */
10321 if (i.base_reg && i.base_reg->reg_num == RegIP)
10322 {
10323 as_bad (_("`%s' cannot be used here"), operand_string);
10324 return 0;
10325 }
10326
10327 /* bndldx and bndstx ignore their scale factor. */
10328 if (current_templates->start->base_opcode != 0xf30f1b
10329 && i.log2_scale_factor)
10330 as_warn (_("register scaling is being ignored here"));
10331 }
10332 }
10333 else
10334 {
10335 /* 16-bit checks. */
10336 if ((i.base_reg
10337 && (!i.base_reg->reg_type.bitfield.word
10338 || !i.base_reg->reg_type.bitfield.baseindex))
10339 || (i.index_reg
10340 && (!i.index_reg->reg_type.bitfield.word
10341 || !i.index_reg->reg_type.bitfield.baseindex
10342 || !(i.base_reg
10343 && i.base_reg->reg_num < 6
10344 && i.index_reg->reg_num >= 6
10345 && i.log2_scale_factor == 0))))
10346 goto bad_address;
10347 }
10348 }
10349 return 1;
10350 }
10351
10352 /* Handle vector immediates. */
10353
10354 static int
10355 RC_SAE_immediate (const char *imm_start)
10356 {
10357 unsigned int match_found, j;
10358 const char *pstr = imm_start;
10359 expressionS *exp;
10360
10361 if (*pstr != '{')
10362 return 0;
10363
10364 pstr++;
10365 match_found = 0;
10366 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10367 {
10368 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10369 {
10370 if (!i.rounding)
10371 {
10372 rc_op.type = RC_NamesTable[j].type;
10373 rc_op.operand = this_operand;
10374 i.rounding = &rc_op;
10375 }
10376 else
10377 {
10378 as_bad (_("duplicated `%s'"), imm_start);
10379 return 0;
10380 }
10381 pstr += RC_NamesTable[j].len;
10382 match_found = 1;
10383 break;
10384 }
10385 }
10386 if (!match_found)
10387 return 0;
10388
10389 if (*pstr++ != '}')
10390 {
10391 as_bad (_("Missing '}': '%s'"), imm_start);
10392 return 0;
10393 }
10394 /* RC/SAE immediate string should contain nothing more. */;
10395 if (*pstr != 0)
10396 {
10397 as_bad (_("Junk after '}': '%s'"), imm_start);
10398 return 0;
10399 }
10400
10401 exp = &im_expressions[i.imm_operands++];
10402 i.op[this_operand].imms = exp;
10403
10404 exp->X_op = O_constant;
10405 exp->X_add_number = 0;
10406 exp->X_add_symbol = (symbolS *) 0;
10407 exp->X_op_symbol = (symbolS *) 0;
10408
10409 i.types[this_operand].bitfield.imm8 = 1;
10410 return 1;
10411 }
10412
10413 /* Only string instructions can have a second memory operand, so
10414 reduce current_templates to just those if it contains any. */
10415 static int
10416 maybe_adjust_templates (void)
10417 {
10418 const insn_template *t;
10419
10420 gas_assert (i.mem_operands == 1);
10421
10422 for (t = current_templates->start; t < current_templates->end; ++t)
10423 if (t->opcode_modifier.isstring)
10424 break;
10425
10426 if (t < current_templates->end)
10427 {
10428 static templates aux_templates;
10429 bfd_boolean recheck;
10430
10431 aux_templates.start = t;
10432 for (; t < current_templates->end; ++t)
10433 if (!t->opcode_modifier.isstring)
10434 break;
10435 aux_templates.end = t;
10436
10437 /* Determine whether to re-check the first memory operand. */
10438 recheck = (aux_templates.start != current_templates->start
10439 || t != current_templates->end);
10440
10441 current_templates = &aux_templates;
10442
10443 if (recheck)
10444 {
10445 i.mem_operands = 0;
10446 if (i.memop1_string != NULL
10447 && i386_index_check (i.memop1_string) == 0)
10448 return 0;
10449 i.mem_operands = 1;
10450 }
10451 }
10452
10453 return 1;
10454 }
10455
10456 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10457 on error. */
10458
10459 static int
10460 i386_att_operand (char *operand_string)
10461 {
10462 const reg_entry *r;
10463 char *end_op;
10464 char *op_string = operand_string;
10465
10466 if (is_space_char (*op_string))
10467 ++op_string;
10468
10469 /* We check for an absolute prefix (differentiating,
10470 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10471 if (*op_string == ABSOLUTE_PREFIX)
10472 {
10473 ++op_string;
10474 if (is_space_char (*op_string))
10475 ++op_string;
10476 i.jumpabsolute = TRUE;
10477 }
10478
10479 /* Check if operand is a register. */
10480 if ((r = parse_register (op_string, &end_op)) != NULL)
10481 {
10482 i386_operand_type temp;
10483
10484 /* Check for a segment override by searching for ':' after a
10485 segment register. */
10486 op_string = end_op;
10487 if (is_space_char (*op_string))
10488 ++op_string;
10489 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10490 {
10491 switch (r->reg_num)
10492 {
10493 case 0:
10494 i.seg[i.mem_operands] = &es;
10495 break;
10496 case 1:
10497 i.seg[i.mem_operands] = &cs;
10498 break;
10499 case 2:
10500 i.seg[i.mem_operands] = &ss;
10501 break;
10502 case 3:
10503 i.seg[i.mem_operands] = &ds;
10504 break;
10505 case 4:
10506 i.seg[i.mem_operands] = &fs;
10507 break;
10508 case 5:
10509 i.seg[i.mem_operands] = &gs;
10510 break;
10511 }
10512
10513 /* Skip the ':' and whitespace. */
10514 ++op_string;
10515 if (is_space_char (*op_string))
10516 ++op_string;
10517
10518 if (!is_digit_char (*op_string)
10519 && !is_identifier_char (*op_string)
10520 && *op_string != '('
10521 && *op_string != ABSOLUTE_PREFIX)
10522 {
10523 as_bad (_("bad memory operand `%s'"), op_string);
10524 return 0;
10525 }
10526 /* Handle case of %es:*foo. */
10527 if (*op_string == ABSOLUTE_PREFIX)
10528 {
10529 ++op_string;
10530 if (is_space_char (*op_string))
10531 ++op_string;
10532 i.jumpabsolute = TRUE;
10533 }
10534 goto do_memory_reference;
10535 }
10536
10537 /* Handle vector operations. */
10538 if (*op_string == '{')
10539 {
10540 op_string = check_VecOperations (op_string, NULL);
10541 if (op_string == NULL)
10542 return 0;
10543 }
10544
10545 if (*op_string)
10546 {
10547 as_bad (_("junk `%s' after register"), op_string);
10548 return 0;
10549 }
10550 temp = r->reg_type;
10551 temp.bitfield.baseindex = 0;
10552 i.types[this_operand] = operand_type_or (i.types[this_operand],
10553 temp);
10554 i.types[this_operand].bitfield.unspecified = 0;
10555 i.op[this_operand].regs = r;
10556 i.reg_operands++;
10557 }
10558 else if (*op_string == REGISTER_PREFIX)
10559 {
10560 as_bad (_("bad register name `%s'"), op_string);
10561 return 0;
10562 }
10563 else if (*op_string == IMMEDIATE_PREFIX)
10564 {
10565 ++op_string;
10566 if (i.jumpabsolute)
10567 {
10568 as_bad (_("immediate operand illegal with absolute jump"));
10569 return 0;
10570 }
10571 if (!i386_immediate (op_string))
10572 return 0;
10573 }
10574 else if (RC_SAE_immediate (operand_string))
10575 {
10576 /* If it is a RC or SAE immediate, do nothing. */
10577 ;
10578 }
10579 else if (is_digit_char (*op_string)
10580 || is_identifier_char (*op_string)
10581 || *op_string == '"'
10582 || *op_string == '(')
10583 {
10584 /* This is a memory reference of some sort. */
10585 char *base_string;
10586
10587 /* Start and end of displacement string expression (if found). */
10588 char *displacement_string_start;
10589 char *displacement_string_end;
10590 char *vop_start;
10591
10592 do_memory_reference:
10593 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10594 return 0;
10595 if ((i.mem_operands == 1
10596 && !current_templates->start->opcode_modifier.isstring)
10597 || i.mem_operands == 2)
10598 {
10599 as_bad (_("too many memory references for `%s'"),
10600 current_templates->start->name);
10601 return 0;
10602 }
10603
10604 /* Check for base index form. We detect the base index form by
10605 looking for an ')' at the end of the operand, searching
10606 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10607 after the '('. */
10608 base_string = op_string + strlen (op_string);
10609
10610 /* Handle vector operations. */
10611 vop_start = strchr (op_string, '{');
10612 if (vop_start && vop_start < base_string)
10613 {
10614 if (check_VecOperations (vop_start, base_string) == NULL)
10615 return 0;
10616 base_string = vop_start;
10617 }
10618
10619 --base_string;
10620 if (is_space_char (*base_string))
10621 --base_string;
10622
10623 /* If we only have a displacement, set-up for it to be parsed later. */
10624 displacement_string_start = op_string;
10625 displacement_string_end = base_string + 1;
10626
10627 if (*base_string == ')')
10628 {
10629 char *temp_string;
10630 unsigned int parens_balanced = 1;
10631 /* We've already checked that the number of left & right ()'s are
10632 equal, so this loop will not be infinite. */
10633 do
10634 {
10635 base_string--;
10636 if (*base_string == ')')
10637 parens_balanced++;
10638 if (*base_string == '(')
10639 parens_balanced--;
10640 }
10641 while (parens_balanced);
10642
10643 temp_string = base_string;
10644
10645 /* Skip past '(' and whitespace. */
10646 ++base_string;
10647 if (is_space_char (*base_string))
10648 ++base_string;
10649
10650 if (*base_string == ','
10651 || ((i.base_reg = parse_register (base_string, &end_op))
10652 != NULL))
10653 {
10654 displacement_string_end = temp_string;
10655
10656 i.types[this_operand].bitfield.baseindex = 1;
10657
10658 if (i.base_reg)
10659 {
10660 base_string = end_op;
10661 if (is_space_char (*base_string))
10662 ++base_string;
10663 }
10664
10665 /* There may be an index reg or scale factor here. */
10666 if (*base_string == ',')
10667 {
10668 ++base_string;
10669 if (is_space_char (*base_string))
10670 ++base_string;
10671
10672 if ((i.index_reg = parse_register (base_string, &end_op))
10673 != NULL)
10674 {
10675 base_string = end_op;
10676 if (is_space_char (*base_string))
10677 ++base_string;
10678 if (*base_string == ',')
10679 {
10680 ++base_string;
10681 if (is_space_char (*base_string))
10682 ++base_string;
10683 }
10684 else if (*base_string != ')')
10685 {
10686 as_bad (_("expecting `,' or `)' "
10687 "after index register in `%s'"),
10688 operand_string);
10689 return 0;
10690 }
10691 }
10692 else if (*base_string == REGISTER_PREFIX)
10693 {
10694 end_op = strchr (base_string, ',');
10695 if (end_op)
10696 *end_op = '\0';
10697 as_bad (_("bad register name `%s'"), base_string);
10698 return 0;
10699 }
10700
10701 /* Check for scale factor. */
10702 if (*base_string != ')')
10703 {
10704 char *end_scale = i386_scale (base_string);
10705
10706 if (!end_scale)
10707 return 0;
10708
10709 base_string = end_scale;
10710 if (is_space_char (*base_string))
10711 ++base_string;
10712 if (*base_string != ')')
10713 {
10714 as_bad (_("expecting `)' "
10715 "after scale factor in `%s'"),
10716 operand_string);
10717 return 0;
10718 }
10719 }
10720 else if (!i.index_reg)
10721 {
10722 as_bad (_("expecting index register or scale factor "
10723 "after `,'; got '%c'"),
10724 *base_string);
10725 return 0;
10726 }
10727 }
10728 else if (*base_string != ')')
10729 {
10730 as_bad (_("expecting `,' or `)' "
10731 "after base register in `%s'"),
10732 operand_string);
10733 return 0;
10734 }
10735 }
10736 else if (*base_string == REGISTER_PREFIX)
10737 {
10738 end_op = strchr (base_string, ',');
10739 if (end_op)
10740 *end_op = '\0';
10741 as_bad (_("bad register name `%s'"), base_string);
10742 return 0;
10743 }
10744 }
10745
10746 /* If there's an expression beginning the operand, parse it,
10747 assuming displacement_string_start and
10748 displacement_string_end are meaningful. */
10749 if (displacement_string_start != displacement_string_end)
10750 {
10751 if (!i386_displacement (displacement_string_start,
10752 displacement_string_end))
10753 return 0;
10754 }
10755
10756 /* Special case for (%dx) while doing input/output op. */
10757 if (i.base_reg
10758 && i.base_reg->reg_type.bitfield.instance == RegD
10759 && i.base_reg->reg_type.bitfield.word
10760 && i.index_reg == 0
10761 && i.log2_scale_factor == 0
10762 && i.seg[i.mem_operands] == 0
10763 && !operand_type_check (i.types[this_operand], disp))
10764 {
10765 i.types[this_operand] = i.base_reg->reg_type;
10766 return 1;
10767 }
10768
10769 if (i386_index_check (operand_string) == 0)
10770 return 0;
10771 i.flags[this_operand] |= Operand_Mem;
10772 if (i.mem_operands == 0)
10773 i.memop1_string = xstrdup (operand_string);
10774 i.mem_operands++;
10775 }
10776 else
10777 {
10778 /* It's not a memory operand; argh! */
10779 as_bad (_("invalid char %s beginning operand %d `%s'"),
10780 output_invalid (*op_string),
10781 this_operand + 1,
10782 op_string);
10783 return 0;
10784 }
10785 return 1; /* Normal return. */
10786 }
10787 \f
10788 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10789 that an rs_machine_dependent frag may reach. */
10790
10791 unsigned int
10792 i386_frag_max_var (fragS *frag)
10793 {
10794 /* The only relaxable frags are for jumps.
10795 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10796 gas_assert (frag->fr_type == rs_machine_dependent);
10797 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10798 }
10799
10800 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10801 static int
10802 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10803 {
10804 /* STT_GNU_IFUNC symbol must go through PLT. */
10805 if ((symbol_get_bfdsym (fr_symbol)->flags
10806 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10807 return 0;
10808
10809 if (!S_IS_EXTERNAL (fr_symbol))
10810 /* Symbol may be weak or local. */
10811 return !S_IS_WEAK (fr_symbol);
10812
10813 /* Global symbols with non-default visibility can't be preempted. */
10814 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10815 return 1;
10816
10817 if (fr_var != NO_RELOC)
10818 switch ((enum bfd_reloc_code_real) fr_var)
10819 {
10820 case BFD_RELOC_386_PLT32:
10821 case BFD_RELOC_X86_64_PLT32:
10822 /* Symbol with PLT relocation may be preempted. */
10823 return 0;
10824 default:
10825 abort ();
10826 }
10827
10828 /* Global symbols with default visibility in a shared library may be
10829 preempted by another definition. */
10830 return !shared;
10831 }
10832 #endif
10833
10834 /* Return the next non-empty frag. */
10835
10836 static fragS *
10837 i386_next_non_empty_frag (fragS *fragP)
10838 {
10839 /* There may be a frag with a ".fill 0" when there is no room in
10840 the current frag for frag_grow in output_insn. */
10841 for (fragP = fragP->fr_next;
10842 (fragP != NULL
10843 && fragP->fr_type == rs_fill
10844 && fragP->fr_fix == 0);
10845 fragP = fragP->fr_next)
10846 ;
10847 return fragP;
10848 }
10849
10850 /* Return the next jcc frag after BRANCH_PADDING. */
10851
10852 static fragS *
10853 i386_next_jcc_frag (fragS *fragP)
10854 {
10855 if (!fragP)
10856 return NULL;
10857
10858 if (fragP->fr_type == rs_machine_dependent
10859 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10860 == BRANCH_PADDING))
10861 {
10862 fragP = i386_next_non_empty_frag (fragP);
10863 if (fragP->fr_type != rs_machine_dependent)
10864 return NULL;
10865 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10866 return fragP;
10867 }
10868
10869 return NULL;
10870 }
10871
10872 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10873
10874 static void
10875 i386_classify_machine_dependent_frag (fragS *fragP)
10876 {
10877 fragS *cmp_fragP;
10878 fragS *pad_fragP;
10879 fragS *branch_fragP;
10880 fragS *next_fragP;
10881 unsigned int max_prefix_length;
10882
10883 if (fragP->tc_frag_data.classified)
10884 return;
10885
10886 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10887 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10888 for (next_fragP = fragP;
10889 next_fragP != NULL;
10890 next_fragP = next_fragP->fr_next)
10891 {
10892 next_fragP->tc_frag_data.classified = 1;
10893 if (next_fragP->fr_type == rs_machine_dependent)
10894 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10895 {
10896 case BRANCH_PADDING:
10897 /* The BRANCH_PADDING frag must be followed by a branch
10898 frag. */
10899 branch_fragP = i386_next_non_empty_frag (next_fragP);
10900 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10901 break;
10902 case FUSED_JCC_PADDING:
10903 /* Check if this is a fused jcc:
10904 FUSED_JCC_PADDING
10905 CMP like instruction
10906 BRANCH_PADDING
10907 COND_JUMP
10908 */
10909 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10910 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10911 branch_fragP = i386_next_jcc_frag (pad_fragP);
10912 if (branch_fragP)
10913 {
10914 /* The BRANCH_PADDING frag is merged with the
10915 FUSED_JCC_PADDING frag. */
10916 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10917 /* CMP like instruction size. */
10918 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10919 frag_wane (pad_fragP);
10920 /* Skip to branch_fragP. */
10921 next_fragP = branch_fragP;
10922 }
10923 else if (next_fragP->tc_frag_data.max_prefix_length)
10924 {
10925 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10926 a fused jcc. */
10927 next_fragP->fr_subtype
10928 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10929 next_fragP->tc_frag_data.max_bytes
10930 = next_fragP->tc_frag_data.max_prefix_length;
10931 /* This will be updated in the BRANCH_PREFIX scan. */
10932 next_fragP->tc_frag_data.max_prefix_length = 0;
10933 }
10934 else
10935 frag_wane (next_fragP);
10936 break;
10937 }
10938 }
10939
10940 /* Stop if there is no BRANCH_PREFIX. */
10941 if (!align_branch_prefix_size)
10942 return;
10943
10944 /* Scan for BRANCH_PREFIX. */
10945 for (; fragP != NULL; fragP = fragP->fr_next)
10946 {
10947 if (fragP->fr_type != rs_machine_dependent
10948 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10949 != BRANCH_PREFIX))
10950 continue;
10951
10952 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10953 COND_JUMP_PREFIX. */
10954 max_prefix_length = 0;
10955 for (next_fragP = fragP;
10956 next_fragP != NULL;
10957 next_fragP = next_fragP->fr_next)
10958 {
10959 if (next_fragP->fr_type == rs_fill)
10960 /* Skip rs_fill frags. */
10961 continue;
10962 else if (next_fragP->fr_type != rs_machine_dependent)
10963 /* Stop for all other frags. */
10964 break;
10965
10966 /* rs_machine_dependent frags. */
10967 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10968 == BRANCH_PREFIX)
10969 {
10970 /* Count BRANCH_PREFIX frags. */
10971 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10972 {
10973 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10974 frag_wane (next_fragP);
10975 }
10976 else
10977 max_prefix_length
10978 += next_fragP->tc_frag_data.max_bytes;
10979 }
10980 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10981 == BRANCH_PADDING)
10982 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10983 == FUSED_JCC_PADDING))
10984 {
10985 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10986 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10987 break;
10988 }
10989 else
10990 /* Stop for other rs_machine_dependent frags. */
10991 break;
10992 }
10993
10994 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
10995
10996 /* Skip to the next frag. */
10997 fragP = next_fragP;
10998 }
10999 }
11000
11001 /* Compute padding size for
11002
11003 FUSED_JCC_PADDING
11004 CMP like instruction
11005 BRANCH_PADDING
11006 COND_JUMP/UNCOND_JUMP
11007
11008 or
11009
11010 BRANCH_PADDING
11011 COND_JUMP/UNCOND_JUMP
11012 */
11013
11014 static int
11015 i386_branch_padding_size (fragS *fragP, offsetT address)
11016 {
11017 unsigned int offset, size, padding_size;
11018 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11019
11020 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11021 if (!address)
11022 address = fragP->fr_address;
11023 address += fragP->fr_fix;
11024
11025 /* CMP like instrunction size. */
11026 size = fragP->tc_frag_data.cmp_size;
11027
11028 /* The base size of the branch frag. */
11029 size += branch_fragP->fr_fix;
11030
11031 /* Add opcode and displacement bytes for the rs_machine_dependent
11032 branch frag. */
11033 if (branch_fragP->fr_type == rs_machine_dependent)
11034 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11035
11036 /* Check if branch is within boundary and doesn't end at the last
11037 byte. */
11038 offset = address & ((1U << align_branch_power) - 1);
11039 if ((offset + size) >= (1U << align_branch_power))
11040 /* Padding needed to avoid crossing boundary. */
11041 padding_size = (1U << align_branch_power) - offset;
11042 else
11043 /* No padding needed. */
11044 padding_size = 0;
11045
11046 /* The return value may be saved in tc_frag_data.length which is
11047 unsigned byte. */
11048 if (!fits_in_unsigned_byte (padding_size))
11049 abort ();
11050
11051 return padding_size;
11052 }
11053
11054 /* i386_generic_table_relax_frag()
11055
11056 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11057 grow/shrink padding to align branch frags. Hand others to
11058 relax_frag(). */
11059
11060 long
11061 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11062 {
11063 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11064 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11065 {
11066 long padding_size = i386_branch_padding_size (fragP, 0);
11067 long grow = padding_size - fragP->tc_frag_data.length;
11068
11069 /* When the BRANCH_PREFIX frag is used, the computed address
11070 must match the actual address and there should be no padding. */
11071 if (fragP->tc_frag_data.padding_address
11072 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11073 || padding_size))
11074 abort ();
11075
11076 /* Update the padding size. */
11077 if (grow)
11078 fragP->tc_frag_data.length = padding_size;
11079
11080 return grow;
11081 }
11082 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11083 {
11084 fragS *padding_fragP, *next_fragP;
11085 long padding_size, left_size, last_size;
11086
11087 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11088 if (!padding_fragP)
11089 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11090 return (fragP->tc_frag_data.length
11091 - fragP->tc_frag_data.last_length);
11092
11093 /* Compute the relative address of the padding frag in the very
11094 first time where the BRANCH_PREFIX frag sizes are zero. */
11095 if (!fragP->tc_frag_data.padding_address)
11096 fragP->tc_frag_data.padding_address
11097 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11098
11099 /* First update the last length from the previous interation. */
11100 left_size = fragP->tc_frag_data.prefix_length;
11101 for (next_fragP = fragP;
11102 next_fragP != padding_fragP;
11103 next_fragP = next_fragP->fr_next)
11104 if (next_fragP->fr_type == rs_machine_dependent
11105 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11106 == BRANCH_PREFIX))
11107 {
11108 if (left_size)
11109 {
11110 int max = next_fragP->tc_frag_data.max_bytes;
11111 if (max)
11112 {
11113 int size;
11114 if (max > left_size)
11115 size = left_size;
11116 else
11117 size = max;
11118 left_size -= size;
11119 next_fragP->tc_frag_data.last_length = size;
11120 }
11121 }
11122 else
11123 next_fragP->tc_frag_data.last_length = 0;
11124 }
11125
11126 /* Check the padding size for the padding frag. */
11127 padding_size = i386_branch_padding_size
11128 (padding_fragP, (fragP->fr_address
11129 + fragP->tc_frag_data.padding_address));
11130
11131 last_size = fragP->tc_frag_data.prefix_length;
11132 /* Check if there is change from the last interation. */
11133 if (padding_size == last_size)
11134 {
11135 /* Update the expected address of the padding frag. */
11136 padding_fragP->tc_frag_data.padding_address
11137 = (fragP->fr_address + padding_size
11138 + fragP->tc_frag_data.padding_address);
11139 return 0;
11140 }
11141
11142 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11143 {
11144 /* No padding if there is no sufficient room. Clear the
11145 expected address of the padding frag. */
11146 padding_fragP->tc_frag_data.padding_address = 0;
11147 padding_size = 0;
11148 }
11149 else
11150 /* Store the expected address of the padding frag. */
11151 padding_fragP->tc_frag_data.padding_address
11152 = (fragP->fr_address + padding_size
11153 + fragP->tc_frag_data.padding_address);
11154
11155 fragP->tc_frag_data.prefix_length = padding_size;
11156
11157 /* Update the length for the current interation. */
11158 left_size = padding_size;
11159 for (next_fragP = fragP;
11160 next_fragP != padding_fragP;
11161 next_fragP = next_fragP->fr_next)
11162 if (next_fragP->fr_type == rs_machine_dependent
11163 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11164 == BRANCH_PREFIX))
11165 {
11166 if (left_size)
11167 {
11168 int max = next_fragP->tc_frag_data.max_bytes;
11169 if (max)
11170 {
11171 int size;
11172 if (max > left_size)
11173 size = left_size;
11174 else
11175 size = max;
11176 left_size -= size;
11177 next_fragP->tc_frag_data.length = size;
11178 }
11179 }
11180 else
11181 next_fragP->tc_frag_data.length = 0;
11182 }
11183
11184 return (fragP->tc_frag_data.length
11185 - fragP->tc_frag_data.last_length);
11186 }
11187 return relax_frag (segment, fragP, stretch);
11188 }
11189
11190 /* md_estimate_size_before_relax()
11191
11192 Called just before relax() for rs_machine_dependent frags. The x86
11193 assembler uses these frags to handle variable size jump
11194 instructions.
11195
11196 Any symbol that is now undefined will not become defined.
11197 Return the correct fr_subtype in the frag.
11198 Return the initial "guess for variable size of frag" to caller.
11199 The guess is actually the growth beyond the fixed part. Whatever
11200 we do to grow the fixed or variable part contributes to our
11201 returned value. */
11202
11203 int
11204 md_estimate_size_before_relax (fragS *fragP, segT segment)
11205 {
11206 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11207 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11208 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11209 {
11210 i386_classify_machine_dependent_frag (fragP);
11211 return fragP->tc_frag_data.length;
11212 }
11213
11214 /* We've already got fragP->fr_subtype right; all we have to do is
11215 check for un-relaxable symbols. On an ELF system, we can't relax
11216 an externally visible symbol, because it may be overridden by a
11217 shared library. */
11218 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11220 || (IS_ELF
11221 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11222 fragP->fr_var))
11223 #endif
11224 #if defined (OBJ_COFF) && defined (TE_PE)
11225 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11226 && S_IS_WEAK (fragP->fr_symbol))
11227 #endif
11228 )
11229 {
11230 /* Symbol is undefined in this segment, or we need to keep a
11231 reloc so that weak symbols can be overridden. */
11232 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11233 enum bfd_reloc_code_real reloc_type;
11234 unsigned char *opcode;
11235 int old_fr_fix;
11236
11237 if (fragP->fr_var != NO_RELOC)
11238 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11239 else if (size == 2)
11240 reloc_type = BFD_RELOC_16_PCREL;
11241 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11242 else if (need_plt32_p (fragP->fr_symbol))
11243 reloc_type = BFD_RELOC_X86_64_PLT32;
11244 #endif
11245 else
11246 reloc_type = BFD_RELOC_32_PCREL;
11247
11248 old_fr_fix = fragP->fr_fix;
11249 opcode = (unsigned char *) fragP->fr_opcode;
11250
11251 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11252 {
11253 case UNCOND_JUMP:
11254 /* Make jmp (0xeb) a (d)word displacement jump. */
11255 opcode[0] = 0xe9;
11256 fragP->fr_fix += size;
11257 fix_new (fragP, old_fr_fix, size,
11258 fragP->fr_symbol,
11259 fragP->fr_offset, 1,
11260 reloc_type);
11261 break;
11262
11263 case COND_JUMP86:
11264 if (size == 2
11265 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11266 {
11267 /* Negate the condition, and branch past an
11268 unconditional jump. */
11269 opcode[0] ^= 1;
11270 opcode[1] = 3;
11271 /* Insert an unconditional jump. */
11272 opcode[2] = 0xe9;
11273 /* We added two extra opcode bytes, and have a two byte
11274 offset. */
11275 fragP->fr_fix += 2 + 2;
11276 fix_new (fragP, old_fr_fix + 2, 2,
11277 fragP->fr_symbol,
11278 fragP->fr_offset, 1,
11279 reloc_type);
11280 break;
11281 }
11282 /* Fall through. */
11283
11284 case COND_JUMP:
11285 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11286 {
11287 fixS *fixP;
11288
11289 fragP->fr_fix += 1;
11290 fixP = fix_new (fragP, old_fr_fix, 1,
11291 fragP->fr_symbol,
11292 fragP->fr_offset, 1,
11293 BFD_RELOC_8_PCREL);
11294 fixP->fx_signed = 1;
11295 break;
11296 }
11297
11298 /* This changes the byte-displacement jump 0x7N
11299 to the (d)word-displacement jump 0x0f,0x8N. */
11300 opcode[1] = opcode[0] + 0x10;
11301 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11302 /* We've added an opcode byte. */
11303 fragP->fr_fix += 1 + size;
11304 fix_new (fragP, old_fr_fix + 1, size,
11305 fragP->fr_symbol,
11306 fragP->fr_offset, 1,
11307 reloc_type);
11308 break;
11309
11310 default:
11311 BAD_CASE (fragP->fr_subtype);
11312 break;
11313 }
11314 frag_wane (fragP);
11315 return fragP->fr_fix - old_fr_fix;
11316 }
11317
11318 /* Guess size depending on current relax state. Initially the relax
11319 state will correspond to a short jump and we return 1, because
11320 the variable part of the frag (the branch offset) is one byte
11321 long. However, we can relax a section more than once and in that
11322 case we must either set fr_subtype back to the unrelaxed state,
11323 or return the value for the appropriate branch. */
11324 return md_relax_table[fragP->fr_subtype].rlx_length;
11325 }
11326
11327 /* Called after relax() is finished.
11328
11329 In: Address of frag.
11330 fr_type == rs_machine_dependent.
11331 fr_subtype is what the address relaxed to.
11332
11333 Out: Any fixSs and constants are set up.
11334 Caller will turn frag into a ".space 0". */
11335
11336 void
11337 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11338 fragS *fragP)
11339 {
11340 unsigned char *opcode;
11341 unsigned char *where_to_put_displacement = NULL;
11342 offsetT target_address;
11343 offsetT opcode_address;
11344 unsigned int extension = 0;
11345 offsetT displacement_from_opcode_start;
11346
11347 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11348 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11349 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11350 {
11351 /* Generate nop padding. */
11352 unsigned int size = fragP->tc_frag_data.length;
11353 if (size)
11354 {
11355 if (size > fragP->tc_frag_data.max_bytes)
11356 abort ();
11357
11358 if (flag_debug)
11359 {
11360 const char *msg;
11361 const char *branch = "branch";
11362 const char *prefix = "";
11363 fragS *padding_fragP;
11364 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11365 == BRANCH_PREFIX)
11366 {
11367 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11368 switch (fragP->tc_frag_data.default_prefix)
11369 {
11370 default:
11371 abort ();
11372 break;
11373 case CS_PREFIX_OPCODE:
11374 prefix = " cs";
11375 break;
11376 case DS_PREFIX_OPCODE:
11377 prefix = " ds";
11378 break;
11379 case ES_PREFIX_OPCODE:
11380 prefix = " es";
11381 break;
11382 case FS_PREFIX_OPCODE:
11383 prefix = " fs";
11384 break;
11385 case GS_PREFIX_OPCODE:
11386 prefix = " gs";
11387 break;
11388 case SS_PREFIX_OPCODE:
11389 prefix = " ss";
11390 break;
11391 }
11392 if (padding_fragP)
11393 msg = _("%s:%u: add %d%s at 0x%llx to align "
11394 "%s within %d-byte boundary\n");
11395 else
11396 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11397 "align %s within %d-byte boundary\n");
11398 }
11399 else
11400 {
11401 padding_fragP = fragP;
11402 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11403 "%s within %d-byte boundary\n");
11404 }
11405
11406 if (padding_fragP)
11407 switch (padding_fragP->tc_frag_data.branch_type)
11408 {
11409 case align_branch_jcc:
11410 branch = "jcc";
11411 break;
11412 case align_branch_fused:
11413 branch = "fused jcc";
11414 break;
11415 case align_branch_jmp:
11416 branch = "jmp";
11417 break;
11418 case align_branch_call:
11419 branch = "call";
11420 break;
11421 case align_branch_indirect:
11422 branch = "indiret branch";
11423 break;
11424 case align_branch_ret:
11425 branch = "ret";
11426 break;
11427 default:
11428 break;
11429 }
11430
11431 fprintf (stdout, msg,
11432 fragP->fr_file, fragP->fr_line, size, prefix,
11433 (long long) fragP->fr_address, branch,
11434 1 << align_branch_power);
11435 }
11436 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11437 memset (fragP->fr_opcode,
11438 fragP->tc_frag_data.default_prefix, size);
11439 else
11440 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11441 size, 0);
11442 fragP->fr_fix += size;
11443 }
11444 return;
11445 }
11446
11447 opcode = (unsigned char *) fragP->fr_opcode;
11448
11449 /* Address we want to reach in file space. */
11450 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11451
11452 /* Address opcode resides at in file space. */
11453 opcode_address = fragP->fr_address + fragP->fr_fix;
11454
11455 /* Displacement from opcode start to fill into instruction. */
11456 displacement_from_opcode_start = target_address - opcode_address;
11457
11458 if ((fragP->fr_subtype & BIG) == 0)
11459 {
11460 /* Don't have to change opcode. */
11461 extension = 1; /* 1 opcode + 1 displacement */
11462 where_to_put_displacement = &opcode[1];
11463 }
11464 else
11465 {
11466 if (no_cond_jump_promotion
11467 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11468 as_warn_where (fragP->fr_file, fragP->fr_line,
11469 _("long jump required"));
11470
11471 switch (fragP->fr_subtype)
11472 {
11473 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11474 extension = 4; /* 1 opcode + 4 displacement */
11475 opcode[0] = 0xe9;
11476 where_to_put_displacement = &opcode[1];
11477 break;
11478
11479 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11480 extension = 2; /* 1 opcode + 2 displacement */
11481 opcode[0] = 0xe9;
11482 where_to_put_displacement = &opcode[1];
11483 break;
11484
11485 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11486 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11487 extension = 5; /* 2 opcode + 4 displacement */
11488 opcode[1] = opcode[0] + 0x10;
11489 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11490 where_to_put_displacement = &opcode[2];
11491 break;
11492
11493 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11494 extension = 3; /* 2 opcode + 2 displacement */
11495 opcode[1] = opcode[0] + 0x10;
11496 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11497 where_to_put_displacement = &opcode[2];
11498 break;
11499
11500 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11501 extension = 4;
11502 opcode[0] ^= 1;
11503 opcode[1] = 3;
11504 opcode[2] = 0xe9;
11505 where_to_put_displacement = &opcode[3];
11506 break;
11507
11508 default:
11509 BAD_CASE (fragP->fr_subtype);
11510 break;
11511 }
11512 }
11513
11514 /* If size if less then four we are sure that the operand fits,
11515 but if it's 4, then it could be that the displacement is larger
11516 then -/+ 2GB. */
11517 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11518 && object_64bit
11519 && ((addressT) (displacement_from_opcode_start - extension
11520 + ((addressT) 1 << 31))
11521 > (((addressT) 2 << 31) - 1)))
11522 {
11523 as_bad_where (fragP->fr_file, fragP->fr_line,
11524 _("jump target out of range"));
11525 /* Make us emit 0. */
11526 displacement_from_opcode_start = extension;
11527 }
11528 /* Now put displacement after opcode. */
11529 md_number_to_chars ((char *) where_to_put_displacement,
11530 (valueT) (displacement_from_opcode_start - extension),
11531 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11532 fragP->fr_fix += extension;
11533 }
11534 \f
11535 /* Apply a fixup (fixP) to segment data, once it has been determined
11536 by our caller that we have all the info we need to fix it up.
11537
11538 Parameter valP is the pointer to the value of the bits.
11539
11540 On the 386, immediates, displacements, and data pointers are all in
11541 the same (little-endian) format, so we don't need to care about which
11542 we are handling. */
11543
11544 void
11545 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11546 {
11547 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11548 valueT value = *valP;
11549
11550 #if !defined (TE_Mach)
11551 if (fixP->fx_pcrel)
11552 {
11553 switch (fixP->fx_r_type)
11554 {
11555 default:
11556 break;
11557
11558 case BFD_RELOC_64:
11559 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11560 break;
11561 case BFD_RELOC_32:
11562 case BFD_RELOC_X86_64_32S:
11563 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11564 break;
11565 case BFD_RELOC_16:
11566 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11567 break;
11568 case BFD_RELOC_8:
11569 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11570 break;
11571 }
11572 }
11573
11574 if (fixP->fx_addsy != NULL
11575 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11576 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11577 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11578 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11579 && !use_rela_relocations)
11580 {
11581 /* This is a hack. There should be a better way to handle this.
11582 This covers for the fact that bfd_install_relocation will
11583 subtract the current location (for partial_inplace, PC relative
11584 relocations); see more below. */
11585 #ifndef OBJ_AOUT
11586 if (IS_ELF
11587 #ifdef TE_PE
11588 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11589 #endif
11590 )
11591 value += fixP->fx_where + fixP->fx_frag->fr_address;
11592 #endif
11593 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11594 if (IS_ELF)
11595 {
11596 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11597
11598 if ((sym_seg == seg
11599 || (symbol_section_p (fixP->fx_addsy)
11600 && sym_seg != absolute_section))
11601 && !generic_force_reloc (fixP))
11602 {
11603 /* Yes, we add the values in twice. This is because
11604 bfd_install_relocation subtracts them out again. I think
11605 bfd_install_relocation is broken, but I don't dare change
11606 it. FIXME. */
11607 value += fixP->fx_where + fixP->fx_frag->fr_address;
11608 }
11609 }
11610 #endif
11611 #if defined (OBJ_COFF) && defined (TE_PE)
11612 /* For some reason, the PE format does not store a
11613 section address offset for a PC relative symbol. */
11614 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11615 || S_IS_WEAK (fixP->fx_addsy))
11616 value += md_pcrel_from (fixP);
11617 #endif
11618 }
11619 #if defined (OBJ_COFF) && defined (TE_PE)
11620 if (fixP->fx_addsy != NULL
11621 && S_IS_WEAK (fixP->fx_addsy)
11622 /* PR 16858: Do not modify weak function references. */
11623 && ! fixP->fx_pcrel)
11624 {
11625 #if !defined (TE_PEP)
11626 /* For x86 PE weak function symbols are neither PC-relative
11627 nor do they set S_IS_FUNCTION. So the only reliable way
11628 to detect them is to check the flags of their containing
11629 section. */
11630 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11631 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11632 ;
11633 else
11634 #endif
11635 value -= S_GET_VALUE (fixP->fx_addsy);
11636 }
11637 #endif
11638
11639 /* Fix a few things - the dynamic linker expects certain values here,
11640 and we must not disappoint it. */
11641 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11642 if (IS_ELF && fixP->fx_addsy)
11643 switch (fixP->fx_r_type)
11644 {
11645 case BFD_RELOC_386_PLT32:
11646 case BFD_RELOC_X86_64_PLT32:
11647 /* Make the jump instruction point to the address of the operand.
11648 At runtime we merely add the offset to the actual PLT entry.
11649 NB: Subtract the offset size only for jump instructions. */
11650 if (fixP->fx_pcrel)
11651 value = -4;
11652 break;
11653
11654 case BFD_RELOC_386_TLS_GD:
11655 case BFD_RELOC_386_TLS_LDM:
11656 case BFD_RELOC_386_TLS_IE_32:
11657 case BFD_RELOC_386_TLS_IE:
11658 case BFD_RELOC_386_TLS_GOTIE:
11659 case BFD_RELOC_386_TLS_GOTDESC:
11660 case BFD_RELOC_X86_64_TLSGD:
11661 case BFD_RELOC_X86_64_TLSLD:
11662 case BFD_RELOC_X86_64_GOTTPOFF:
11663 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11664 value = 0; /* Fully resolved at runtime. No addend. */
11665 /* Fallthrough */
11666 case BFD_RELOC_386_TLS_LE:
11667 case BFD_RELOC_386_TLS_LDO_32:
11668 case BFD_RELOC_386_TLS_LE_32:
11669 case BFD_RELOC_X86_64_DTPOFF32:
11670 case BFD_RELOC_X86_64_DTPOFF64:
11671 case BFD_RELOC_X86_64_TPOFF32:
11672 case BFD_RELOC_X86_64_TPOFF64:
11673 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11674 break;
11675
11676 case BFD_RELOC_386_TLS_DESC_CALL:
11677 case BFD_RELOC_X86_64_TLSDESC_CALL:
11678 value = 0; /* Fully resolved at runtime. No addend. */
11679 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11680 fixP->fx_done = 0;
11681 return;
11682
11683 case BFD_RELOC_VTABLE_INHERIT:
11684 case BFD_RELOC_VTABLE_ENTRY:
11685 fixP->fx_done = 0;
11686 return;
11687
11688 default:
11689 break;
11690 }
11691 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11692 *valP = value;
11693 #endif /* !defined (TE_Mach) */
11694
11695 /* Are we finished with this relocation now? */
11696 if (fixP->fx_addsy == NULL)
11697 fixP->fx_done = 1;
11698 #if defined (OBJ_COFF) && defined (TE_PE)
11699 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11700 {
11701 fixP->fx_done = 0;
11702 /* Remember value for tc_gen_reloc. */
11703 fixP->fx_addnumber = value;
11704 /* Clear out the frag for now. */
11705 value = 0;
11706 }
11707 #endif
11708 else if (use_rela_relocations)
11709 {
11710 fixP->fx_no_overflow = 1;
11711 /* Remember value for tc_gen_reloc. */
11712 fixP->fx_addnumber = value;
11713 value = 0;
11714 }
11715
11716 md_number_to_chars (p, value, fixP->fx_size);
11717 }
11718 \f
11719 const char *
11720 md_atof (int type, char *litP, int *sizeP)
11721 {
11722 /* This outputs the LITTLENUMs in REVERSE order;
11723 in accord with the bigendian 386. */
11724 return ieee_md_atof (type, litP, sizeP, FALSE);
11725 }
11726 \f
11727 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11728
11729 static char *
11730 output_invalid (int c)
11731 {
11732 if (ISPRINT (c))
11733 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11734 "'%c'", c);
11735 else
11736 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11737 "(0x%x)", (unsigned char) c);
11738 return output_invalid_buf;
11739 }
11740
11741 /* REG_STRING starts *before* REGISTER_PREFIX. */
11742
11743 static const reg_entry *
11744 parse_real_register (char *reg_string, char **end_op)
11745 {
11746 char *s = reg_string;
11747 char *p;
11748 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11749 const reg_entry *r;
11750
11751 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11752 if (*s == REGISTER_PREFIX)
11753 ++s;
11754
11755 if (is_space_char (*s))
11756 ++s;
11757
11758 p = reg_name_given;
11759 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11760 {
11761 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11762 return (const reg_entry *) NULL;
11763 s++;
11764 }
11765
11766 /* For naked regs, make sure that we are not dealing with an identifier.
11767 This prevents confusing an identifier like `eax_var' with register
11768 `eax'. */
11769 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11770 return (const reg_entry *) NULL;
11771
11772 *end_op = s;
11773
11774 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11775
11776 /* Handle floating point regs, allowing spaces in the (i) part. */
11777 if (r == i386_regtab /* %st is first entry of table */)
11778 {
11779 if (!cpu_arch_flags.bitfield.cpu8087
11780 && !cpu_arch_flags.bitfield.cpu287
11781 && !cpu_arch_flags.bitfield.cpu387)
11782 return (const reg_entry *) NULL;
11783
11784 if (is_space_char (*s))
11785 ++s;
11786 if (*s == '(')
11787 {
11788 ++s;
11789 if (is_space_char (*s))
11790 ++s;
11791 if (*s >= '0' && *s <= '7')
11792 {
11793 int fpr = *s - '0';
11794 ++s;
11795 if (is_space_char (*s))
11796 ++s;
11797 if (*s == ')')
11798 {
11799 *end_op = s + 1;
11800 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11801 know (r);
11802 return r + fpr;
11803 }
11804 }
11805 /* We have "%st(" then garbage. */
11806 return (const reg_entry *) NULL;
11807 }
11808 }
11809
11810 if (r == NULL || allow_pseudo_reg)
11811 return r;
11812
11813 if (operand_type_all_zero (&r->reg_type))
11814 return (const reg_entry *) NULL;
11815
11816 if ((r->reg_type.bitfield.dword
11817 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11818 || r->reg_type.bitfield.class == RegCR
11819 || r->reg_type.bitfield.class == RegDR
11820 || r->reg_type.bitfield.class == RegTR)
11821 && !cpu_arch_flags.bitfield.cpui386)
11822 return (const reg_entry *) NULL;
11823
11824 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11825 return (const reg_entry *) NULL;
11826
11827 if (!cpu_arch_flags.bitfield.cpuavx512f)
11828 {
11829 if (r->reg_type.bitfield.zmmword
11830 || r->reg_type.bitfield.class == RegMask)
11831 return (const reg_entry *) NULL;
11832
11833 if (!cpu_arch_flags.bitfield.cpuavx)
11834 {
11835 if (r->reg_type.bitfield.ymmword)
11836 return (const reg_entry *) NULL;
11837
11838 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11839 return (const reg_entry *) NULL;
11840 }
11841 }
11842
11843 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11844 return (const reg_entry *) NULL;
11845
11846 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11847 if (!allow_index_reg && r->reg_num == RegIZ)
11848 return (const reg_entry *) NULL;
11849
11850 /* Upper 16 vector registers are only available with VREX in 64bit
11851 mode, and require EVEX encoding. */
11852 if (r->reg_flags & RegVRex)
11853 {
11854 if (!cpu_arch_flags.bitfield.cpuavx512f
11855 || flag_code != CODE_64BIT)
11856 return (const reg_entry *) NULL;
11857
11858 i.vec_encoding = vex_encoding_evex;
11859 }
11860
11861 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11862 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11863 && flag_code != CODE_64BIT)
11864 return (const reg_entry *) NULL;
11865
11866 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11867 && !intel_syntax)
11868 return (const reg_entry *) NULL;
11869
11870 return r;
11871 }
11872
11873 /* REG_STRING starts *before* REGISTER_PREFIX. */
11874
11875 static const reg_entry *
11876 parse_register (char *reg_string, char **end_op)
11877 {
11878 const reg_entry *r;
11879
11880 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11881 r = parse_real_register (reg_string, end_op);
11882 else
11883 r = NULL;
11884 if (!r)
11885 {
11886 char *save = input_line_pointer;
11887 char c;
11888 symbolS *symbolP;
11889
11890 input_line_pointer = reg_string;
11891 c = get_symbol_name (&reg_string);
11892 symbolP = symbol_find (reg_string);
11893 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11894 {
11895 const expressionS *e = symbol_get_value_expression (symbolP);
11896
11897 know (e->X_op == O_register);
11898 know (e->X_add_number >= 0
11899 && (valueT) e->X_add_number < i386_regtab_size);
11900 r = i386_regtab + e->X_add_number;
11901 if ((r->reg_flags & RegVRex))
11902 i.vec_encoding = vex_encoding_evex;
11903 *end_op = input_line_pointer;
11904 }
11905 *input_line_pointer = c;
11906 input_line_pointer = save;
11907 }
11908 return r;
11909 }
11910
11911 int
11912 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11913 {
11914 const reg_entry *r;
11915 char *end = input_line_pointer;
11916
11917 *end = *nextcharP;
11918 r = parse_register (name, &input_line_pointer);
11919 if (r && end <= input_line_pointer)
11920 {
11921 *nextcharP = *input_line_pointer;
11922 *input_line_pointer = 0;
11923 e->X_op = O_register;
11924 e->X_add_number = r - i386_regtab;
11925 return 1;
11926 }
11927 input_line_pointer = end;
11928 *end = 0;
11929 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11930 }
11931
11932 void
11933 md_operand (expressionS *e)
11934 {
11935 char *end;
11936 const reg_entry *r;
11937
11938 switch (*input_line_pointer)
11939 {
11940 case REGISTER_PREFIX:
11941 r = parse_real_register (input_line_pointer, &end);
11942 if (r)
11943 {
11944 e->X_op = O_register;
11945 e->X_add_number = r - i386_regtab;
11946 input_line_pointer = end;
11947 }
11948 break;
11949
11950 case '[':
11951 gas_assert (intel_syntax);
11952 end = input_line_pointer++;
11953 expression (e);
11954 if (*input_line_pointer == ']')
11955 {
11956 ++input_line_pointer;
11957 e->X_op_symbol = make_expr_symbol (e);
11958 e->X_add_symbol = NULL;
11959 e->X_add_number = 0;
11960 e->X_op = O_index;
11961 }
11962 else
11963 {
11964 e->X_op = O_absent;
11965 input_line_pointer = end;
11966 }
11967 break;
11968 }
11969 }
11970
11971 \f
11972 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11973 const char *md_shortopts = "kVQ:sqnO::";
11974 #else
11975 const char *md_shortopts = "qnO::";
11976 #endif
11977
11978 #define OPTION_32 (OPTION_MD_BASE + 0)
11979 #define OPTION_64 (OPTION_MD_BASE + 1)
11980 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11981 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11982 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11983 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11984 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11985 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11986 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11987 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11988 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11989 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11990 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11991 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11992 #define OPTION_X32 (OPTION_MD_BASE + 14)
11993 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11994 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11995 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11996 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11997 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11998 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11999 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12000 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12001 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12002 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12003 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12004 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12005 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12006 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12007 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12008 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12009
12010 struct option md_longopts[] =
12011 {
12012 {"32", no_argument, NULL, OPTION_32},
12013 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12014 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12015 {"64", no_argument, NULL, OPTION_64},
12016 #endif
12017 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12018 {"x32", no_argument, NULL, OPTION_X32},
12019 {"mshared", no_argument, NULL, OPTION_MSHARED},
12020 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12021 #endif
12022 {"divide", no_argument, NULL, OPTION_DIVIDE},
12023 {"march", required_argument, NULL, OPTION_MARCH},
12024 {"mtune", required_argument, NULL, OPTION_MTUNE},
12025 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12026 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12027 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12028 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12029 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12030 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12031 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12032 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12033 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12034 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12035 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12036 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12037 # if defined (TE_PE) || defined (TE_PEP)
12038 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12039 #endif
12040 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12041 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12042 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12043 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12044 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12045 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12046 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12047 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12048 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12049 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12050 {NULL, no_argument, NULL, 0}
12051 };
12052 size_t md_longopts_size = sizeof (md_longopts);
12053
12054 int
12055 md_parse_option (int c, const char *arg)
12056 {
12057 unsigned int j;
12058 char *arch, *next, *saved, *type;
12059
12060 switch (c)
12061 {
12062 case 'n':
12063 optimize_align_code = 0;
12064 break;
12065
12066 case 'q':
12067 quiet_warnings = 1;
12068 break;
12069
12070 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12071 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12072 should be emitted or not. FIXME: Not implemented. */
12073 case 'Q':
12074 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12075 return 0;
12076 break;
12077
12078 /* -V: SVR4 argument to print version ID. */
12079 case 'V':
12080 print_version_id ();
12081 break;
12082
12083 /* -k: Ignore for FreeBSD compatibility. */
12084 case 'k':
12085 break;
12086
12087 case 's':
12088 /* -s: On i386 Solaris, this tells the native assembler to use
12089 .stab instead of .stab.excl. We always use .stab anyhow. */
12090 break;
12091
12092 case OPTION_MSHARED:
12093 shared = 1;
12094 break;
12095
12096 case OPTION_X86_USED_NOTE:
12097 if (strcasecmp (arg, "yes") == 0)
12098 x86_used_note = 1;
12099 else if (strcasecmp (arg, "no") == 0)
12100 x86_used_note = 0;
12101 else
12102 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12103 break;
12104
12105
12106 #endif
12107 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12108 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12109 case OPTION_64:
12110 {
12111 const char **list, **l;
12112
12113 list = bfd_target_list ();
12114 for (l = list; *l != NULL; l++)
12115 if (CONST_STRNEQ (*l, "elf64-x86-64")
12116 || strcmp (*l, "coff-x86-64") == 0
12117 || strcmp (*l, "pe-x86-64") == 0
12118 || strcmp (*l, "pei-x86-64") == 0
12119 || strcmp (*l, "mach-o-x86-64") == 0)
12120 {
12121 default_arch = "x86_64";
12122 break;
12123 }
12124 if (*l == NULL)
12125 as_fatal (_("no compiled in support for x86_64"));
12126 free (list);
12127 }
12128 break;
12129 #endif
12130
12131 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12132 case OPTION_X32:
12133 if (IS_ELF)
12134 {
12135 const char **list, **l;
12136
12137 list = bfd_target_list ();
12138 for (l = list; *l != NULL; l++)
12139 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12140 {
12141 default_arch = "x86_64:32";
12142 break;
12143 }
12144 if (*l == NULL)
12145 as_fatal (_("no compiled in support for 32bit x86_64"));
12146 free (list);
12147 }
12148 else
12149 as_fatal (_("32bit x86_64 is only supported for ELF"));
12150 break;
12151 #endif
12152
12153 case OPTION_32:
12154 default_arch = "i386";
12155 break;
12156
12157 case OPTION_DIVIDE:
12158 #ifdef SVR4_COMMENT_CHARS
12159 {
12160 char *n, *t;
12161 const char *s;
12162
12163 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12164 t = n;
12165 for (s = i386_comment_chars; *s != '\0'; s++)
12166 if (*s != '/')
12167 *t++ = *s;
12168 *t = '\0';
12169 i386_comment_chars = n;
12170 }
12171 #endif
12172 break;
12173
12174 case OPTION_MARCH:
12175 saved = xstrdup (arg);
12176 arch = saved;
12177 /* Allow -march=+nosse. */
12178 if (*arch == '+')
12179 arch++;
12180 do
12181 {
12182 if (*arch == '.')
12183 as_fatal (_("invalid -march= option: `%s'"), arg);
12184 next = strchr (arch, '+');
12185 if (next)
12186 *next++ = '\0';
12187 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12188 {
12189 if (strcmp (arch, cpu_arch [j].name) == 0)
12190 {
12191 /* Processor. */
12192 if (! cpu_arch[j].flags.bitfield.cpui386)
12193 continue;
12194
12195 cpu_arch_name = cpu_arch[j].name;
12196 cpu_sub_arch_name = NULL;
12197 cpu_arch_flags = cpu_arch[j].flags;
12198 cpu_arch_isa = cpu_arch[j].type;
12199 cpu_arch_isa_flags = cpu_arch[j].flags;
12200 if (!cpu_arch_tune_set)
12201 {
12202 cpu_arch_tune = cpu_arch_isa;
12203 cpu_arch_tune_flags = cpu_arch_isa_flags;
12204 }
12205 break;
12206 }
12207 else if (*cpu_arch [j].name == '.'
12208 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12209 {
12210 /* ISA extension. */
12211 i386_cpu_flags flags;
12212
12213 flags = cpu_flags_or (cpu_arch_flags,
12214 cpu_arch[j].flags);
12215
12216 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12217 {
12218 if (cpu_sub_arch_name)
12219 {
12220 char *name = cpu_sub_arch_name;
12221 cpu_sub_arch_name = concat (name,
12222 cpu_arch[j].name,
12223 (const char *) NULL);
12224 free (name);
12225 }
12226 else
12227 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12228 cpu_arch_flags = flags;
12229 cpu_arch_isa_flags = flags;
12230 }
12231 else
12232 cpu_arch_isa_flags
12233 = cpu_flags_or (cpu_arch_isa_flags,
12234 cpu_arch[j].flags);
12235 break;
12236 }
12237 }
12238
12239 if (j >= ARRAY_SIZE (cpu_arch))
12240 {
12241 /* Disable an ISA extension. */
12242 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12243 if (strcmp (arch, cpu_noarch [j].name) == 0)
12244 {
12245 i386_cpu_flags flags;
12246
12247 flags = cpu_flags_and_not (cpu_arch_flags,
12248 cpu_noarch[j].flags);
12249 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12250 {
12251 if (cpu_sub_arch_name)
12252 {
12253 char *name = cpu_sub_arch_name;
12254 cpu_sub_arch_name = concat (arch,
12255 (const char *) NULL);
12256 free (name);
12257 }
12258 else
12259 cpu_sub_arch_name = xstrdup (arch);
12260 cpu_arch_flags = flags;
12261 cpu_arch_isa_flags = flags;
12262 }
12263 break;
12264 }
12265
12266 if (j >= ARRAY_SIZE (cpu_noarch))
12267 j = ARRAY_SIZE (cpu_arch);
12268 }
12269
12270 if (j >= ARRAY_SIZE (cpu_arch))
12271 as_fatal (_("invalid -march= option: `%s'"), arg);
12272
12273 arch = next;
12274 }
12275 while (next != NULL);
12276 free (saved);
12277 break;
12278
12279 case OPTION_MTUNE:
12280 if (*arg == '.')
12281 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12282 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12283 {
12284 if (strcmp (arg, cpu_arch [j].name) == 0)
12285 {
12286 cpu_arch_tune_set = 1;
12287 cpu_arch_tune = cpu_arch [j].type;
12288 cpu_arch_tune_flags = cpu_arch[j].flags;
12289 break;
12290 }
12291 }
12292 if (j >= ARRAY_SIZE (cpu_arch))
12293 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12294 break;
12295
12296 case OPTION_MMNEMONIC:
12297 if (strcasecmp (arg, "att") == 0)
12298 intel_mnemonic = 0;
12299 else if (strcasecmp (arg, "intel") == 0)
12300 intel_mnemonic = 1;
12301 else
12302 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12303 break;
12304
12305 case OPTION_MSYNTAX:
12306 if (strcasecmp (arg, "att") == 0)
12307 intel_syntax = 0;
12308 else if (strcasecmp (arg, "intel") == 0)
12309 intel_syntax = 1;
12310 else
12311 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12312 break;
12313
12314 case OPTION_MINDEX_REG:
12315 allow_index_reg = 1;
12316 break;
12317
12318 case OPTION_MNAKED_REG:
12319 allow_naked_reg = 1;
12320 break;
12321
12322 case OPTION_MSSE2AVX:
12323 sse2avx = 1;
12324 break;
12325
12326 case OPTION_MSSE_CHECK:
12327 if (strcasecmp (arg, "error") == 0)
12328 sse_check = check_error;
12329 else if (strcasecmp (arg, "warning") == 0)
12330 sse_check = check_warning;
12331 else if (strcasecmp (arg, "none") == 0)
12332 sse_check = check_none;
12333 else
12334 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12335 break;
12336
12337 case OPTION_MOPERAND_CHECK:
12338 if (strcasecmp (arg, "error") == 0)
12339 operand_check = check_error;
12340 else if (strcasecmp (arg, "warning") == 0)
12341 operand_check = check_warning;
12342 else if (strcasecmp (arg, "none") == 0)
12343 operand_check = check_none;
12344 else
12345 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12346 break;
12347
12348 case OPTION_MAVXSCALAR:
12349 if (strcasecmp (arg, "128") == 0)
12350 avxscalar = vex128;
12351 else if (strcasecmp (arg, "256") == 0)
12352 avxscalar = vex256;
12353 else
12354 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12355 break;
12356
12357 case OPTION_MVEXWIG:
12358 if (strcmp (arg, "0") == 0)
12359 vexwig = vexw0;
12360 else if (strcmp (arg, "1") == 0)
12361 vexwig = vexw1;
12362 else
12363 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12364 break;
12365
12366 case OPTION_MADD_BND_PREFIX:
12367 add_bnd_prefix = 1;
12368 break;
12369
12370 case OPTION_MEVEXLIG:
12371 if (strcmp (arg, "128") == 0)
12372 evexlig = evexl128;
12373 else if (strcmp (arg, "256") == 0)
12374 evexlig = evexl256;
12375 else if (strcmp (arg, "512") == 0)
12376 evexlig = evexl512;
12377 else
12378 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12379 break;
12380
12381 case OPTION_MEVEXRCIG:
12382 if (strcmp (arg, "rne") == 0)
12383 evexrcig = rne;
12384 else if (strcmp (arg, "rd") == 0)
12385 evexrcig = rd;
12386 else if (strcmp (arg, "ru") == 0)
12387 evexrcig = ru;
12388 else if (strcmp (arg, "rz") == 0)
12389 evexrcig = rz;
12390 else
12391 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12392 break;
12393
12394 case OPTION_MEVEXWIG:
12395 if (strcmp (arg, "0") == 0)
12396 evexwig = evexw0;
12397 else if (strcmp (arg, "1") == 0)
12398 evexwig = evexw1;
12399 else
12400 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12401 break;
12402
12403 # if defined (TE_PE) || defined (TE_PEP)
12404 case OPTION_MBIG_OBJ:
12405 use_big_obj = 1;
12406 break;
12407 #endif
12408
12409 case OPTION_MOMIT_LOCK_PREFIX:
12410 if (strcasecmp (arg, "yes") == 0)
12411 omit_lock_prefix = 1;
12412 else if (strcasecmp (arg, "no") == 0)
12413 omit_lock_prefix = 0;
12414 else
12415 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12416 break;
12417
12418 case OPTION_MFENCE_AS_LOCK_ADD:
12419 if (strcasecmp (arg, "yes") == 0)
12420 avoid_fence = 1;
12421 else if (strcasecmp (arg, "no") == 0)
12422 avoid_fence = 0;
12423 else
12424 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12425 break;
12426
12427 case OPTION_MRELAX_RELOCATIONS:
12428 if (strcasecmp (arg, "yes") == 0)
12429 generate_relax_relocations = 1;
12430 else if (strcasecmp (arg, "no") == 0)
12431 generate_relax_relocations = 0;
12432 else
12433 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12434 break;
12435
12436 case OPTION_MALIGN_BRANCH_BOUNDARY:
12437 {
12438 char *end;
12439 long int align = strtoul (arg, &end, 0);
12440 if (*end == '\0')
12441 {
12442 if (align == 0)
12443 {
12444 align_branch_power = 0;
12445 break;
12446 }
12447 else if (align >= 16)
12448 {
12449 int align_power;
12450 for (align_power = 0;
12451 (align & 1) == 0;
12452 align >>= 1, align_power++)
12453 continue;
12454 /* Limit alignment power to 31. */
12455 if (align == 1 && align_power < 32)
12456 {
12457 align_branch_power = align_power;
12458 break;
12459 }
12460 }
12461 }
12462 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12463 }
12464 break;
12465
12466 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12467 {
12468 char *end;
12469 int align = strtoul (arg, &end, 0);
12470 /* Some processors only support 5 prefixes. */
12471 if (*end == '\0' && align >= 0 && align < 6)
12472 {
12473 align_branch_prefix_size = align;
12474 break;
12475 }
12476 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12477 arg);
12478 }
12479 break;
12480
12481 case OPTION_MALIGN_BRANCH:
12482 align_branch = 0;
12483 saved = xstrdup (arg);
12484 type = saved;
12485 do
12486 {
12487 next = strchr (type, '+');
12488 if (next)
12489 *next++ = '\0';
12490 if (strcasecmp (type, "jcc") == 0)
12491 align_branch |= align_branch_jcc_bit;
12492 else if (strcasecmp (type, "fused") == 0)
12493 align_branch |= align_branch_fused_bit;
12494 else if (strcasecmp (type, "jmp") == 0)
12495 align_branch |= align_branch_jmp_bit;
12496 else if (strcasecmp (type, "call") == 0)
12497 align_branch |= align_branch_call_bit;
12498 else if (strcasecmp (type, "ret") == 0)
12499 align_branch |= align_branch_ret_bit;
12500 else if (strcasecmp (type, "indirect") == 0)
12501 align_branch |= align_branch_indirect_bit;
12502 else
12503 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12504 type = next;
12505 }
12506 while (next != NULL);
12507 free (saved);
12508 break;
12509
12510 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12511 align_branch_power = 5;
12512 align_branch_prefix_size = 5;
12513 align_branch = (align_branch_jcc_bit
12514 | align_branch_fused_bit
12515 | align_branch_jmp_bit);
12516 break;
12517
12518 case OPTION_MAMD64:
12519 intel64 = 0;
12520 break;
12521
12522 case OPTION_MINTEL64:
12523 intel64 = 1;
12524 break;
12525
12526 case 'O':
12527 if (arg == NULL)
12528 {
12529 optimize = 1;
12530 /* Turn off -Os. */
12531 optimize_for_space = 0;
12532 }
12533 else if (*arg == 's')
12534 {
12535 optimize_for_space = 1;
12536 /* Turn on all encoding optimizations. */
12537 optimize = INT_MAX;
12538 }
12539 else
12540 {
12541 optimize = atoi (arg);
12542 /* Turn off -Os. */
12543 optimize_for_space = 0;
12544 }
12545 break;
12546
12547 default:
12548 return 0;
12549 }
12550 return 1;
12551 }
12552
12553 #define MESSAGE_TEMPLATE \
12554 " "
12555
12556 static char *
12557 output_message (FILE *stream, char *p, char *message, char *start,
12558 int *left_p, const char *name, int len)
12559 {
12560 int size = sizeof (MESSAGE_TEMPLATE);
12561 int left = *left_p;
12562
12563 /* Reserve 2 spaces for ", " or ",\0" */
12564 left -= len + 2;
12565
12566 /* Check if there is any room. */
12567 if (left >= 0)
12568 {
12569 if (p != start)
12570 {
12571 *p++ = ',';
12572 *p++ = ' ';
12573 }
12574 p = mempcpy (p, name, len);
12575 }
12576 else
12577 {
12578 /* Output the current message now and start a new one. */
12579 *p++ = ',';
12580 *p = '\0';
12581 fprintf (stream, "%s\n", message);
12582 p = start;
12583 left = size - (start - message) - len - 2;
12584
12585 gas_assert (left >= 0);
12586
12587 p = mempcpy (p, name, len);
12588 }
12589
12590 *left_p = left;
12591 return p;
12592 }
12593
12594 static void
12595 show_arch (FILE *stream, int ext, int check)
12596 {
12597 static char message[] = MESSAGE_TEMPLATE;
12598 char *start = message + 27;
12599 char *p;
12600 int size = sizeof (MESSAGE_TEMPLATE);
12601 int left;
12602 const char *name;
12603 int len;
12604 unsigned int j;
12605
12606 p = start;
12607 left = size - (start - message);
12608 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12609 {
12610 /* Should it be skipped? */
12611 if (cpu_arch [j].skip)
12612 continue;
12613
12614 name = cpu_arch [j].name;
12615 len = cpu_arch [j].len;
12616 if (*name == '.')
12617 {
12618 /* It is an extension. Skip if we aren't asked to show it. */
12619 if (ext)
12620 {
12621 name++;
12622 len--;
12623 }
12624 else
12625 continue;
12626 }
12627 else if (ext)
12628 {
12629 /* It is an processor. Skip if we show only extension. */
12630 continue;
12631 }
12632 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12633 {
12634 /* It is an impossible processor - skip. */
12635 continue;
12636 }
12637
12638 p = output_message (stream, p, message, start, &left, name, len);
12639 }
12640
12641 /* Display disabled extensions. */
12642 if (ext)
12643 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12644 {
12645 name = cpu_noarch [j].name;
12646 len = cpu_noarch [j].len;
12647 p = output_message (stream, p, message, start, &left, name,
12648 len);
12649 }
12650
12651 *p = '\0';
12652 fprintf (stream, "%s\n", message);
12653 }
12654
12655 void
12656 md_show_usage (FILE *stream)
12657 {
12658 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12659 fprintf (stream, _("\
12660 -Qy, -Qn ignored\n\
12661 -V print assembler version number\n\
12662 -k ignored\n"));
12663 #endif
12664 fprintf (stream, _("\
12665 -n Do not optimize code alignment\n\
12666 -q quieten some warnings\n"));
12667 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12668 fprintf (stream, _("\
12669 -s ignored\n"));
12670 #endif
12671 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12672 || defined (TE_PE) || defined (TE_PEP))
12673 fprintf (stream, _("\
12674 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12675 #endif
12676 #ifdef SVR4_COMMENT_CHARS
12677 fprintf (stream, _("\
12678 --divide do not treat `/' as a comment character\n"));
12679 #else
12680 fprintf (stream, _("\
12681 --divide ignored\n"));
12682 #endif
12683 fprintf (stream, _("\
12684 -march=CPU[,+EXTENSION...]\n\
12685 generate code for CPU and EXTENSION, CPU is one of:\n"));
12686 show_arch (stream, 0, 1);
12687 fprintf (stream, _("\
12688 EXTENSION is combination of:\n"));
12689 show_arch (stream, 1, 0);
12690 fprintf (stream, _("\
12691 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12692 show_arch (stream, 0, 0);
12693 fprintf (stream, _("\
12694 -msse2avx encode SSE instructions with VEX prefix\n"));
12695 fprintf (stream, _("\
12696 -msse-check=[none|error|warning] (default: warning)\n\
12697 check SSE instructions\n"));
12698 fprintf (stream, _("\
12699 -moperand-check=[none|error|warning] (default: warning)\n\
12700 check operand combinations for validity\n"));
12701 fprintf (stream, _("\
12702 -mavxscalar=[128|256] (default: 128)\n\
12703 encode scalar AVX instructions with specific vector\n\
12704 length\n"));
12705 fprintf (stream, _("\
12706 -mvexwig=[0|1] (default: 0)\n\
12707 encode VEX instructions with specific VEX.W value\n\
12708 for VEX.W bit ignored instructions\n"));
12709 fprintf (stream, _("\
12710 -mevexlig=[128|256|512] (default: 128)\n\
12711 encode scalar EVEX instructions with specific vector\n\
12712 length\n"));
12713 fprintf (stream, _("\
12714 -mevexwig=[0|1] (default: 0)\n\
12715 encode EVEX instructions with specific EVEX.W value\n\
12716 for EVEX.W bit ignored instructions\n"));
12717 fprintf (stream, _("\
12718 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12719 encode EVEX instructions with specific EVEX.RC value\n\
12720 for SAE-only ignored instructions\n"));
12721 fprintf (stream, _("\
12722 -mmnemonic=[att|intel] "));
12723 if (SYSV386_COMPAT)
12724 fprintf (stream, _("(default: att)\n"));
12725 else
12726 fprintf (stream, _("(default: intel)\n"));
12727 fprintf (stream, _("\
12728 use AT&T/Intel mnemonic\n"));
12729 fprintf (stream, _("\
12730 -msyntax=[att|intel] (default: att)\n\
12731 use AT&T/Intel syntax\n"));
12732 fprintf (stream, _("\
12733 -mindex-reg support pseudo index registers\n"));
12734 fprintf (stream, _("\
12735 -mnaked-reg don't require `%%' prefix for registers\n"));
12736 fprintf (stream, _("\
12737 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12738 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12739 fprintf (stream, _("\
12740 -mshared disable branch optimization for shared code\n"));
12741 fprintf (stream, _("\
12742 -mx86-used-note=[no|yes] "));
12743 if (DEFAULT_X86_USED_NOTE)
12744 fprintf (stream, _("(default: yes)\n"));
12745 else
12746 fprintf (stream, _("(default: no)\n"));
12747 fprintf (stream, _("\
12748 generate x86 used ISA and feature properties\n"));
12749 #endif
12750 #if defined (TE_PE) || defined (TE_PEP)
12751 fprintf (stream, _("\
12752 -mbig-obj generate big object files\n"));
12753 #endif
12754 fprintf (stream, _("\
12755 -momit-lock-prefix=[no|yes] (default: no)\n\
12756 strip all lock prefixes\n"));
12757 fprintf (stream, _("\
12758 -mfence-as-lock-add=[no|yes] (default: no)\n\
12759 encode lfence, mfence and sfence as\n\
12760 lock addl $0x0, (%%{re}sp)\n"));
12761 fprintf (stream, _("\
12762 -mrelax-relocations=[no|yes] "));
12763 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12764 fprintf (stream, _("(default: yes)\n"));
12765 else
12766 fprintf (stream, _("(default: no)\n"));
12767 fprintf (stream, _("\
12768 generate relax relocations\n"));
12769 fprintf (stream, _("\
12770 -malign-branch-boundary=NUM (default: 0)\n\
12771 align branches within NUM byte boundary\n"));
12772 fprintf (stream, _("\
12773 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12774 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12775 indirect\n\
12776 specify types of branches to align\n"));
12777 fprintf (stream, _("\
12778 -malign-branch-prefix-size=NUM (default: 5)\n\
12779 align branches with NUM prefixes per instruction\n"));
12780 fprintf (stream, _("\
12781 -mbranches-within-32B-boundaries\n\
12782 align branches within 32 byte boundary\n"));
12783 fprintf (stream, _("\
12784 -mamd64 accept only AMD64 ISA [default]\n"));
12785 fprintf (stream, _("\
12786 -mintel64 accept only Intel64 ISA\n"));
12787 }
12788
12789 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12790 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12791 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12792
12793 /* Pick the target format to use. */
12794
12795 const char *
12796 i386_target_format (void)
12797 {
12798 if (!strncmp (default_arch, "x86_64", 6))
12799 {
12800 update_code_flag (CODE_64BIT, 1);
12801 if (default_arch[6] == '\0')
12802 x86_elf_abi = X86_64_ABI;
12803 else
12804 x86_elf_abi = X86_64_X32_ABI;
12805 }
12806 else if (!strcmp (default_arch, "i386"))
12807 update_code_flag (CODE_32BIT, 1);
12808 else if (!strcmp (default_arch, "iamcu"))
12809 {
12810 update_code_flag (CODE_32BIT, 1);
12811 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12812 {
12813 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12814 cpu_arch_name = "iamcu";
12815 cpu_sub_arch_name = NULL;
12816 cpu_arch_flags = iamcu_flags;
12817 cpu_arch_isa = PROCESSOR_IAMCU;
12818 cpu_arch_isa_flags = iamcu_flags;
12819 if (!cpu_arch_tune_set)
12820 {
12821 cpu_arch_tune = cpu_arch_isa;
12822 cpu_arch_tune_flags = cpu_arch_isa_flags;
12823 }
12824 }
12825 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12826 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12827 cpu_arch_name);
12828 }
12829 else
12830 as_fatal (_("unknown architecture"));
12831
12832 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12833 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12834 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12835 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12836
12837 switch (OUTPUT_FLAVOR)
12838 {
12839 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12840 case bfd_target_aout_flavour:
12841 return AOUT_TARGET_FORMAT;
12842 #endif
12843 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12844 # if defined (TE_PE) || defined (TE_PEP)
12845 case bfd_target_coff_flavour:
12846 if (flag_code == CODE_64BIT)
12847 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12848 else
12849 return "pe-i386";
12850 # elif defined (TE_GO32)
12851 case bfd_target_coff_flavour:
12852 return "coff-go32";
12853 # else
12854 case bfd_target_coff_flavour:
12855 return "coff-i386";
12856 # endif
12857 #endif
12858 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12859 case bfd_target_elf_flavour:
12860 {
12861 const char *format;
12862
12863 switch (x86_elf_abi)
12864 {
12865 default:
12866 format = ELF_TARGET_FORMAT;
12867 #ifndef TE_SOLARIS
12868 tls_get_addr = "___tls_get_addr";
12869 #endif
12870 break;
12871 case X86_64_ABI:
12872 use_rela_relocations = 1;
12873 object_64bit = 1;
12874 #ifndef TE_SOLARIS
12875 tls_get_addr = "__tls_get_addr";
12876 #endif
12877 format = ELF_TARGET_FORMAT64;
12878 break;
12879 case X86_64_X32_ABI:
12880 use_rela_relocations = 1;
12881 object_64bit = 1;
12882 #ifndef TE_SOLARIS
12883 tls_get_addr = "__tls_get_addr";
12884 #endif
12885 disallow_64bit_reloc = 1;
12886 format = ELF_TARGET_FORMAT32;
12887 break;
12888 }
12889 if (cpu_arch_isa == PROCESSOR_L1OM)
12890 {
12891 if (x86_elf_abi != X86_64_ABI)
12892 as_fatal (_("Intel L1OM is 64bit only"));
12893 return ELF_TARGET_L1OM_FORMAT;
12894 }
12895 else if (cpu_arch_isa == PROCESSOR_K1OM)
12896 {
12897 if (x86_elf_abi != X86_64_ABI)
12898 as_fatal (_("Intel K1OM is 64bit only"));
12899 return ELF_TARGET_K1OM_FORMAT;
12900 }
12901 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12902 {
12903 if (x86_elf_abi != I386_ABI)
12904 as_fatal (_("Intel MCU is 32bit only"));
12905 return ELF_TARGET_IAMCU_FORMAT;
12906 }
12907 else
12908 return format;
12909 }
12910 #endif
12911 #if defined (OBJ_MACH_O)
12912 case bfd_target_mach_o_flavour:
12913 if (flag_code == CODE_64BIT)
12914 {
12915 use_rela_relocations = 1;
12916 object_64bit = 1;
12917 return "mach-o-x86-64";
12918 }
12919 else
12920 return "mach-o-i386";
12921 #endif
12922 default:
12923 abort ();
12924 return NULL;
12925 }
12926 }
12927
12928 #endif /* OBJ_MAYBE_ more than one */
12929 \f
12930 symbolS *
12931 md_undefined_symbol (char *name)
12932 {
12933 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12934 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12935 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12936 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12937 {
12938 if (!GOT_symbol)
12939 {
12940 if (symbol_find (name))
12941 as_bad (_("GOT already in symbol table"));
12942 GOT_symbol = symbol_new (name, undefined_section,
12943 (valueT) 0, &zero_address_frag);
12944 };
12945 return GOT_symbol;
12946 }
12947 return 0;
12948 }
12949
12950 /* Round up a section size to the appropriate boundary. */
12951
12952 valueT
12953 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12954 {
12955 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12956 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12957 {
12958 /* For a.out, force the section size to be aligned. If we don't do
12959 this, BFD will align it for us, but it will not write out the
12960 final bytes of the section. This may be a bug in BFD, but it is
12961 easier to fix it here since that is how the other a.out targets
12962 work. */
12963 int align;
12964
12965 align = bfd_section_alignment (segment);
12966 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12967 }
12968 #endif
12969
12970 return size;
12971 }
12972
12973 /* On the i386, PC-relative offsets are relative to the start of the
12974 next instruction. That is, the address of the offset, plus its
12975 size, since the offset is always the last part of the insn. */
12976
12977 long
12978 md_pcrel_from (fixS *fixP)
12979 {
12980 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12981 }
12982
12983 #ifndef I386COFF
12984
12985 static void
12986 s_bss (int ignore ATTRIBUTE_UNUSED)
12987 {
12988 int temp;
12989
12990 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12991 if (IS_ELF)
12992 obj_elf_section_change_hook ();
12993 #endif
12994 temp = get_absolute_expression ();
12995 subseg_set (bss_section, (subsegT) temp);
12996 demand_empty_rest_of_line ();
12997 }
12998
12999 #endif
13000
13001 /* Remember constant directive. */
13002
13003 void
13004 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13005 {
13006 if (last_insn.kind != last_insn_directive
13007 && (bfd_section_flags (now_seg) & SEC_CODE))
13008 {
13009 last_insn.seg = now_seg;
13010 last_insn.kind = last_insn_directive;
13011 last_insn.name = "constant directive";
13012 last_insn.file = as_where (&last_insn.line);
13013 }
13014 }
13015
13016 void
13017 i386_validate_fix (fixS *fixp)
13018 {
13019 if (fixp->fx_subsy)
13020 {
13021 if (fixp->fx_subsy == GOT_symbol)
13022 {
13023 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13024 {
13025 if (!object_64bit)
13026 abort ();
13027 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13028 if (fixp->fx_tcbit2)
13029 fixp->fx_r_type = (fixp->fx_tcbit
13030 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13031 : BFD_RELOC_X86_64_GOTPCRELX);
13032 else
13033 #endif
13034 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13035 }
13036 else
13037 {
13038 if (!object_64bit)
13039 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13040 else
13041 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13042 }
13043 fixp->fx_subsy = 0;
13044 }
13045 }
13046 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13047 else if (!object_64bit)
13048 {
13049 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13050 && fixp->fx_tcbit2)
13051 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13052 }
13053 #endif
13054 }
13055
13056 arelent *
13057 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13058 {
13059 arelent *rel;
13060 bfd_reloc_code_real_type code;
13061
13062 switch (fixp->fx_r_type)
13063 {
13064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13065 case BFD_RELOC_SIZE32:
13066 case BFD_RELOC_SIZE64:
13067 if (S_IS_DEFINED (fixp->fx_addsy)
13068 && !S_IS_EXTERNAL (fixp->fx_addsy))
13069 {
13070 /* Resolve size relocation against local symbol to size of
13071 the symbol plus addend. */
13072 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13073 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13074 && !fits_in_unsigned_long (value))
13075 as_bad_where (fixp->fx_file, fixp->fx_line,
13076 _("symbol size computation overflow"));
13077 fixp->fx_addsy = NULL;
13078 fixp->fx_subsy = NULL;
13079 md_apply_fix (fixp, (valueT *) &value, NULL);
13080 return NULL;
13081 }
13082 #endif
13083 /* Fall through. */
13084
13085 case BFD_RELOC_X86_64_PLT32:
13086 case BFD_RELOC_X86_64_GOT32:
13087 case BFD_RELOC_X86_64_GOTPCREL:
13088 case BFD_RELOC_X86_64_GOTPCRELX:
13089 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13090 case BFD_RELOC_386_PLT32:
13091 case BFD_RELOC_386_GOT32:
13092 case BFD_RELOC_386_GOT32X:
13093 case BFD_RELOC_386_GOTOFF:
13094 case BFD_RELOC_386_GOTPC:
13095 case BFD_RELOC_386_TLS_GD:
13096 case BFD_RELOC_386_TLS_LDM:
13097 case BFD_RELOC_386_TLS_LDO_32:
13098 case BFD_RELOC_386_TLS_IE_32:
13099 case BFD_RELOC_386_TLS_IE:
13100 case BFD_RELOC_386_TLS_GOTIE:
13101 case BFD_RELOC_386_TLS_LE_32:
13102 case BFD_RELOC_386_TLS_LE:
13103 case BFD_RELOC_386_TLS_GOTDESC:
13104 case BFD_RELOC_386_TLS_DESC_CALL:
13105 case BFD_RELOC_X86_64_TLSGD:
13106 case BFD_RELOC_X86_64_TLSLD:
13107 case BFD_RELOC_X86_64_DTPOFF32:
13108 case BFD_RELOC_X86_64_DTPOFF64:
13109 case BFD_RELOC_X86_64_GOTTPOFF:
13110 case BFD_RELOC_X86_64_TPOFF32:
13111 case BFD_RELOC_X86_64_TPOFF64:
13112 case BFD_RELOC_X86_64_GOTOFF64:
13113 case BFD_RELOC_X86_64_GOTPC32:
13114 case BFD_RELOC_X86_64_GOT64:
13115 case BFD_RELOC_X86_64_GOTPCREL64:
13116 case BFD_RELOC_X86_64_GOTPC64:
13117 case BFD_RELOC_X86_64_GOTPLT64:
13118 case BFD_RELOC_X86_64_PLTOFF64:
13119 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13120 case BFD_RELOC_X86_64_TLSDESC_CALL:
13121 case BFD_RELOC_RVA:
13122 case BFD_RELOC_VTABLE_ENTRY:
13123 case BFD_RELOC_VTABLE_INHERIT:
13124 #ifdef TE_PE
13125 case BFD_RELOC_32_SECREL:
13126 #endif
13127 code = fixp->fx_r_type;
13128 break;
13129 case BFD_RELOC_X86_64_32S:
13130 if (!fixp->fx_pcrel)
13131 {
13132 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13133 code = fixp->fx_r_type;
13134 break;
13135 }
13136 /* Fall through. */
13137 default:
13138 if (fixp->fx_pcrel)
13139 {
13140 switch (fixp->fx_size)
13141 {
13142 default:
13143 as_bad_where (fixp->fx_file, fixp->fx_line,
13144 _("can not do %d byte pc-relative relocation"),
13145 fixp->fx_size);
13146 code = BFD_RELOC_32_PCREL;
13147 break;
13148 case 1: code = BFD_RELOC_8_PCREL; break;
13149 case 2: code = BFD_RELOC_16_PCREL; break;
13150 case 4: code = BFD_RELOC_32_PCREL; break;
13151 #ifdef BFD64
13152 case 8: code = BFD_RELOC_64_PCREL; break;
13153 #endif
13154 }
13155 }
13156 else
13157 {
13158 switch (fixp->fx_size)
13159 {
13160 default:
13161 as_bad_where (fixp->fx_file, fixp->fx_line,
13162 _("can not do %d byte relocation"),
13163 fixp->fx_size);
13164 code = BFD_RELOC_32;
13165 break;
13166 case 1: code = BFD_RELOC_8; break;
13167 case 2: code = BFD_RELOC_16; break;
13168 case 4: code = BFD_RELOC_32; break;
13169 #ifdef BFD64
13170 case 8: code = BFD_RELOC_64; break;
13171 #endif
13172 }
13173 }
13174 break;
13175 }
13176
13177 if ((code == BFD_RELOC_32
13178 || code == BFD_RELOC_32_PCREL
13179 || code == BFD_RELOC_X86_64_32S)
13180 && GOT_symbol
13181 && fixp->fx_addsy == GOT_symbol)
13182 {
13183 if (!object_64bit)
13184 code = BFD_RELOC_386_GOTPC;
13185 else
13186 code = BFD_RELOC_X86_64_GOTPC32;
13187 }
13188 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13189 && GOT_symbol
13190 && fixp->fx_addsy == GOT_symbol)
13191 {
13192 code = BFD_RELOC_X86_64_GOTPC64;
13193 }
13194
13195 rel = XNEW (arelent);
13196 rel->sym_ptr_ptr = XNEW (asymbol *);
13197 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13198
13199 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13200
13201 if (!use_rela_relocations)
13202 {
13203 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13204 vtable entry to be used in the relocation's section offset. */
13205 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13206 rel->address = fixp->fx_offset;
13207 #if defined (OBJ_COFF) && defined (TE_PE)
13208 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13209 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13210 else
13211 #endif
13212 rel->addend = 0;
13213 }
13214 /* Use the rela in 64bit mode. */
13215 else
13216 {
13217 if (disallow_64bit_reloc)
13218 switch (code)
13219 {
13220 case BFD_RELOC_X86_64_DTPOFF64:
13221 case BFD_RELOC_X86_64_TPOFF64:
13222 case BFD_RELOC_64_PCREL:
13223 case BFD_RELOC_X86_64_GOTOFF64:
13224 case BFD_RELOC_X86_64_GOT64:
13225 case BFD_RELOC_X86_64_GOTPCREL64:
13226 case BFD_RELOC_X86_64_GOTPC64:
13227 case BFD_RELOC_X86_64_GOTPLT64:
13228 case BFD_RELOC_X86_64_PLTOFF64:
13229 as_bad_where (fixp->fx_file, fixp->fx_line,
13230 _("cannot represent relocation type %s in x32 mode"),
13231 bfd_get_reloc_code_name (code));
13232 break;
13233 default:
13234 break;
13235 }
13236
13237 if (!fixp->fx_pcrel)
13238 rel->addend = fixp->fx_offset;
13239 else
13240 switch (code)
13241 {
13242 case BFD_RELOC_X86_64_PLT32:
13243 case BFD_RELOC_X86_64_GOT32:
13244 case BFD_RELOC_X86_64_GOTPCREL:
13245 case BFD_RELOC_X86_64_GOTPCRELX:
13246 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13247 case BFD_RELOC_X86_64_TLSGD:
13248 case BFD_RELOC_X86_64_TLSLD:
13249 case BFD_RELOC_X86_64_GOTTPOFF:
13250 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13251 case BFD_RELOC_X86_64_TLSDESC_CALL:
13252 rel->addend = fixp->fx_offset - fixp->fx_size;
13253 break;
13254 default:
13255 rel->addend = (section->vma
13256 - fixp->fx_size
13257 + fixp->fx_addnumber
13258 + md_pcrel_from (fixp));
13259 break;
13260 }
13261 }
13262
13263 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13264 if (rel->howto == NULL)
13265 {
13266 as_bad_where (fixp->fx_file, fixp->fx_line,
13267 _("cannot represent relocation type %s"),
13268 bfd_get_reloc_code_name (code));
13269 /* Set howto to a garbage value so that we can keep going. */
13270 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13271 gas_assert (rel->howto != NULL);
13272 }
13273
13274 return rel;
13275 }
13276
13277 #include "tc-i386-intel.c"
13278
13279 void
13280 tc_x86_parse_to_dw2regnum (expressionS *exp)
13281 {
13282 int saved_naked_reg;
13283 char saved_register_dot;
13284
13285 saved_naked_reg = allow_naked_reg;
13286 allow_naked_reg = 1;
13287 saved_register_dot = register_chars['.'];
13288 register_chars['.'] = '.';
13289 allow_pseudo_reg = 1;
13290 expression_and_evaluate (exp);
13291 allow_pseudo_reg = 0;
13292 register_chars['.'] = saved_register_dot;
13293 allow_naked_reg = saved_naked_reg;
13294
13295 if (exp->X_op == O_register && exp->X_add_number >= 0)
13296 {
13297 if ((addressT) exp->X_add_number < i386_regtab_size)
13298 {
13299 exp->X_op = O_constant;
13300 exp->X_add_number = i386_regtab[exp->X_add_number]
13301 .dw2_regnum[flag_code >> 1];
13302 }
13303 else
13304 exp->X_op = O_illegal;
13305 }
13306 }
13307
13308 void
13309 tc_x86_frame_initial_instructions (void)
13310 {
13311 static unsigned int sp_regno[2];
13312
13313 if (!sp_regno[flag_code >> 1])
13314 {
13315 char *saved_input = input_line_pointer;
13316 char sp[][4] = {"esp", "rsp"};
13317 expressionS exp;
13318
13319 input_line_pointer = sp[flag_code >> 1];
13320 tc_x86_parse_to_dw2regnum (&exp);
13321 gas_assert (exp.X_op == O_constant);
13322 sp_regno[flag_code >> 1] = exp.X_add_number;
13323 input_line_pointer = saved_input;
13324 }
13325
13326 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13327 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13328 }
13329
13330 int
13331 x86_dwarf2_addr_size (void)
13332 {
13333 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13334 if (x86_elf_abi == X86_64_X32_ABI)
13335 return 4;
13336 #endif
13337 return bfd_arch_bits_per_address (stdoutput) / 8;
13338 }
13339
13340 int
13341 i386_elf_section_type (const char *str, size_t len)
13342 {
13343 if (flag_code == CODE_64BIT
13344 && len == sizeof ("unwind") - 1
13345 && strncmp (str, "unwind", 6) == 0)
13346 return SHT_X86_64_UNWIND;
13347
13348 return -1;
13349 }
13350
13351 #ifdef TE_SOLARIS
13352 void
13353 i386_solaris_fix_up_eh_frame (segT sec)
13354 {
13355 if (flag_code == CODE_64BIT)
13356 elf_section_type (sec) = SHT_X86_64_UNWIND;
13357 }
13358 #endif
13359
13360 #ifdef TE_PE
13361 void
13362 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13363 {
13364 expressionS exp;
13365
13366 exp.X_op = O_secrel;
13367 exp.X_add_symbol = symbol;
13368 exp.X_add_number = 0;
13369 emit_expr (&exp, size);
13370 }
13371 #endif
13372
13373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13374 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13375
13376 bfd_vma
13377 x86_64_section_letter (int letter, const char **ptr_msg)
13378 {
13379 if (flag_code == CODE_64BIT)
13380 {
13381 if (letter == 'l')
13382 return SHF_X86_64_LARGE;
13383
13384 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13385 }
13386 else
13387 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13388 return -1;
13389 }
13390
13391 bfd_vma
13392 x86_64_section_word (char *str, size_t len)
13393 {
13394 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13395 return SHF_X86_64_LARGE;
13396
13397 return -1;
13398 }
13399
13400 static void
13401 handle_large_common (int small ATTRIBUTE_UNUSED)
13402 {
13403 if (flag_code != CODE_64BIT)
13404 {
13405 s_comm_internal (0, elf_common_parse);
13406 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13407 }
13408 else
13409 {
13410 static segT lbss_section;
13411 asection *saved_com_section_ptr = elf_com_section_ptr;
13412 asection *saved_bss_section = bss_section;
13413
13414 if (lbss_section == NULL)
13415 {
13416 flagword applicable;
13417 segT seg = now_seg;
13418 subsegT subseg = now_subseg;
13419
13420 /* The .lbss section is for local .largecomm symbols. */
13421 lbss_section = subseg_new (".lbss", 0);
13422 applicable = bfd_applicable_section_flags (stdoutput);
13423 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13424 seg_info (lbss_section)->bss = 1;
13425
13426 subseg_set (seg, subseg);
13427 }
13428
13429 elf_com_section_ptr = &_bfd_elf_large_com_section;
13430 bss_section = lbss_section;
13431
13432 s_comm_internal (0, elf_common_parse);
13433
13434 elf_com_section_ptr = saved_com_section_ptr;
13435 bss_section = saved_bss_section;
13436 }
13437 }
13438 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.480766 seconds and 4 git commands to generate.