Fix a potential illegal memory access whilt parsing an x86 insn.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191
192 /* GNU_PROPERTY_X86_ISA_1_USED. */
193 static unsigned int x86_isa_1_used;
194 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
195 static unsigned int x86_feature_2_used;
196 /* Generate x86 used ISA and feature properties. */
197 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
198 #endif
199
200 static const char *default_arch = DEFAULT_ARCH;
201
202 /* This struct describes rounding control and SAE in the instruction. */
203 struct RC_Operation
204 {
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214 };
215
216 static struct RC_Operation rc_op;
217
218 /* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221 struct Mask_Operation
222 {
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227 };
228
229 static struct Mask_Operation mask_op;
230
231 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233 struct Broadcast_Operation
234 {
235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
240
241 /* Number of bytes to broadcast. */
242 int bytes;
243 };
244
245 static struct Broadcast_Operation broadcast_op;
246
247 /* VEX prefix. */
248 typedef struct
249 {
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255 } vex_prefix;
256
257 /* 'md_assemble ()' gathers together information and puts it into a
258 i386_insn. */
259
260 union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
267 enum i386_error
268 {
269 operand_size_mismatch,
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
277 unsupported,
278 invalid_vsib_address,
279 invalid_vector_register_set,
280 unsupported_vector_index_register,
281 unsupported_broadcast,
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
289 };
290
291 struct _i386_insn
292 {
293 /* TM holds the template for the insn were currently assembling. */
294 insn_template tm;
295
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
298 char suffix;
299
300 /* OPERANDS gives the number of given operands. */
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
305 operands. */
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
309 use OP[i] for the corresponding operand. */
310 i386_operand_type types[MAX_OPERANDS];
311
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
315
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318 #define Operand_PCrel 1
319 #define Operand_Mem 2
320
321 /* Relocation type for operand */
322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
323
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
331 explicit segment overrides are given. */
332 const seg_entry *seg[2];
333
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
354 /* RM and SIB are the modrm byte and the sib byte where the
355 addressing modes of this insn are encoded. */
356 modrm_byte rm;
357 rex_byte rex;
358 rex_byte vrex;
359 sib_byte sib;
360 vex_prefix vex;
361
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
379 dir_encoding_store,
380 dir_encoding_swap
381 } dir_encoding;
382
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
390
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
406 /* REP prefix. */
407 const char *rep_prefix;
408
409 /* HLE prefix. */
410 const char *hle_prefix;
411
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
418 /* Error message. */
419 enum i386_error error;
420 };
421
422 typedef struct _i386_insn i386_insn;
423
424 /* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426 struct RC_name
427 {
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431 };
432
433 static const struct RC_name RC_NamesTable[] =
434 {
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440 };
441
442 /* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
444 const char extra_symbol_chars[] = "*%-([{}"
445 #ifdef LEX_AT
446 "@"
447 #endif
448 #ifdef LEX_QM
449 "?"
450 #endif
451 ;
452
453 #if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
455 && !defined (TE_GNU) \
456 && !defined (TE_LINUX) \
457 && !defined (TE_NACL) \
458 && !defined (TE_FreeBSD) \
459 && !defined (TE_DragonFly) \
460 && !defined (TE_NetBSD)))
461 /* This array holds the chars that always start a comment. If the
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464 const char *i386_comment_chars = "#/";
465 #define SVR4_COMMENT_CHARS 1
466 #define PREFIX_SEPARATOR '\\'
467
468 #else
469 const char *i386_comment_chars = "#";
470 #define PREFIX_SEPARATOR '/'
471 #endif
472
473 /* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
477 first line of the input file. This is because the compiler outputs
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
480 '/' isn't otherwise defined. */
481 const char line_comment_chars[] = "#/";
482
483 const char line_separator_chars[] = ";";
484
485 /* Chars that can be used to separate mant from exp in floating point
486 nums. */
487 const char EXP_CHARS[] = "eE";
488
489 /* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
492 const char FLT_CHARS[] = "fFdDxX";
493
494 /* Tables for lexical analysis. */
495 static char mnemonic_chars[256];
496 static char register_chars[256];
497 static char operand_chars[256];
498 static char identifier_chars[256];
499 static char digit_chars[256];
500
501 /* Lexical macros. */
502 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503 #define is_operand_char(x) (operand_chars[(unsigned char) x])
504 #define is_register_char(x) (register_chars[(unsigned char) x])
505 #define is_space_char(x) ((x) == ' ')
506 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507 #define is_digit_char(x) (digit_chars[(unsigned char) x])
508
509 /* All non-digit non-letter characters that may occur in an operand. */
510 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512 /* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
515 assembler instruction). */
516 static char save_stack[32];
517 static char *save_stack_p;
518 #define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520 #define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
523 /* The instruction we're assembling. */
524 static i386_insn i;
525
526 /* Possible templates for current insn. */
527 static const templates *current_templates;
528
529 /* Per instruction expressionS buffers: max displacements & immediates. */
530 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
532
533 /* Current operand we are working on. */
534 static int this_operand = -1;
535
536 /* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539 enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544 static enum flag_code flag_code;
545 static unsigned int object_64bit;
546 static unsigned int disallow_64bit_reloc;
547 static int use_rela_relocations = 0;
548
549 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
553 /* The ELF ABI to use. */
554 enum x86_elf_abi
555 {
556 I386_ABI,
557 X86_64_ABI,
558 X86_64_X32_ABI
559 };
560
561 static enum x86_elf_abi x86_elf_abi = I386_ABI;
562 #endif
563
564 #if defined (TE_PE) || defined (TE_PEP)
565 /* Use big object file format. */
566 static int use_big_obj = 0;
567 #endif
568
569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570 /* 1 if generating code for a shared library. */
571 static int shared = 0;
572 #endif
573
574 /* 1 for intel syntax,
575 0 if att syntax. */
576 static int intel_syntax = 0;
577
578 /* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580 static int intel64;
581
582 /* 1 for intel mnemonic,
583 0 if att mnemonic. */
584 static int intel_mnemonic = !SYSV386_COMPAT;
585
586 /* 1 if pseudo registers are permitted. */
587 static int allow_pseudo_reg = 0;
588
589 /* 1 if register prefix % not required. */
590 static int allow_naked_reg = 0;
591
592 /* 1 if the assembler should add BND prefix for all control-transferring
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595 static int add_bnd_prefix = 0;
596
597 /* 1 if pseudo index register, eiz/riz, is allowed . */
598 static int allow_index_reg = 0;
599
600 /* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602 static int omit_lock_prefix = 0;
603
604 /* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606 static int avoid_fence = 0;
607
608 /* 1 if the assembler should generate relax relocations. */
609
610 static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
613 static enum check_kind
614 {
615 check_none = 0,
616 check_warning,
617 check_error
618 }
619 sse_check, operand_check = check_warning;
620
621 /* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626 static int optimize = 0;
627
628 /* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635 static int optimize_for_space = 0;
636
637 /* Register prefix used for error message. */
638 static const char *register_prefix = "%";
639
640 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643 static char stackop_size = '\0';
644
645 /* Non-zero to optimize code alignment. */
646 int optimize_align_code = 1;
647
648 /* Non-zero to quieten some warnings. */
649 static int quiet_warnings = 0;
650
651 /* CPU name. */
652 static const char *cpu_arch_name = NULL;
653 static char *cpu_sub_arch_name = NULL;
654
655 /* CPU feature flags. */
656 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
658 /* If we have selected a cpu we are generating instructions for. */
659 static int cpu_arch_tune_set = 0;
660
661 /* Cpu we are generating instructions for. */
662 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
663
664 /* CPU feature flags of cpu we are generating instructions for. */
665 static i386_cpu_flags cpu_arch_tune_flags;
666
667 /* CPU instruction set architecture used. */
668 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
669
670 /* CPU feature flags of instruction set architecture used. */
671 i386_cpu_flags cpu_arch_isa_flags;
672
673 /* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675 static unsigned int no_cond_jump_promotion = 0;
676
677 /* Encode SSE instructions with VEX prefix. */
678 static unsigned int sse2avx;
679
680 /* Encode scalar AVX instructions with specific vector length. */
681 static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
687 /* Encode VEX WIG instructions with specific vex.w. */
688 static enum
689 {
690 vexw0 = 0,
691 vexw1
692 } vexwig;
693
694 /* Encode scalar EVEX LIG instructions with specific vector length. */
695 static enum
696 {
697 evexl128 = 0,
698 evexl256,
699 evexl512
700 } evexlig;
701
702 /* Encode EVEX WIG instructions with specific evex.w. */
703 static enum
704 {
705 evexw0 = 0,
706 evexw1
707 } evexwig;
708
709 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
710 static enum rc_type evexrcig = rne;
711
712 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
713 static symbolS *GOT_symbol;
714
715 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
716 unsigned int x86_dwarf2_return_column;
717
718 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
719 int x86_cie_data_alignment;
720
721 /* Interface to relax_segment.
722 There are 3 major relax states for 386 jump insns because the
723 different types of jumps add different sizes to frags when we're
724 figuring out what sort of jump to choose to reach a given label. */
725
726 /* Types. */
727 #define UNCOND_JUMP 0
728 #define COND_JUMP 1
729 #define COND_JUMP86 2
730
731 /* Sizes. */
732 #define CODE16 1
733 #define SMALL 0
734 #define SMALL16 (SMALL | CODE16)
735 #define BIG 2
736 #define BIG16 (BIG | CODE16)
737
738 #ifndef INLINE
739 #ifdef __GNUC__
740 #define INLINE __inline__
741 #else
742 #define INLINE
743 #endif
744 #endif
745
746 #define ENCODE_RELAX_STATE(type, size) \
747 ((relax_substateT) (((type) << 2) | (size)))
748 #define TYPE_FROM_RELAX_STATE(s) \
749 ((s) >> 2)
750 #define DISP_SIZE_FROM_RELAX_STATE(s) \
751 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
752
753 /* This table is used by relax_frag to promote short jumps to long
754 ones where necessary. SMALL (short) jumps may be promoted to BIG
755 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
756 don't allow a short jump in a 32 bit code segment to be promoted to
757 a 16 bit offset jump because it's slower (requires data size
758 prefix), and doesn't work, unless the destination is in the bottom
759 64k of the code segment (The top 16 bits of eip are zeroed). */
760
761 const relax_typeS md_relax_table[] =
762 {
763 /* The fields are:
764 1) most positive reach of this state,
765 2) most negative reach of this state,
766 3) how many bytes this mode will have in the variable part of the frag
767 4) which index into the table to try if we can't fit into this one. */
768
769 /* UNCOND_JUMP states. */
770 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
771 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
772 /* dword jmp adds 4 bytes to frag:
773 0 extra opcode bytes, 4 displacement bytes. */
774 {0, 0, 4, 0},
775 /* word jmp adds 2 byte2 to frag:
776 0 extra opcode bytes, 2 displacement bytes. */
777 {0, 0, 2, 0},
778
779 /* COND_JUMP states. */
780 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
782 /* dword conditionals adds 5 bytes to frag:
783 1 extra opcode byte, 4 displacement bytes. */
784 {0, 0, 5, 0},
785 /* word conditionals add 3 bytes to frag:
786 1 extra opcode byte, 2 displacement bytes. */
787 {0, 0, 3, 0},
788
789 /* COND_JUMP86 states. */
790 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
792 /* dword conditionals adds 5 bytes to frag:
793 1 extra opcode byte, 4 displacement bytes. */
794 {0, 0, 5, 0},
795 /* word conditionals add 4 bytes to frag:
796 1 displacement byte and a 3 byte long branch insn. */
797 {0, 0, 4, 0}
798 };
799
800 static const arch_entry cpu_arch[] =
801 {
802 /* Do not replace the first two entries - i386_target_format()
803 relies on them being there in this order. */
804 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
805 CPU_GENERIC32_FLAGS, 0 },
806 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
807 CPU_GENERIC64_FLAGS, 0 },
808 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
809 CPU_NONE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
811 CPU_I186_FLAGS, 0 },
812 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
813 CPU_I286_FLAGS, 0 },
814 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
815 CPU_I386_FLAGS, 0 },
816 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
817 CPU_I486_FLAGS, 0 },
818 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
819 CPU_I586_FLAGS, 0 },
820 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
821 CPU_I686_FLAGS, 0 },
822 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
823 CPU_I586_FLAGS, 0 },
824 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
825 CPU_PENTIUMPRO_FLAGS, 0 },
826 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
827 CPU_P2_FLAGS, 0 },
828 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
829 CPU_P3_FLAGS, 0 },
830 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
831 CPU_P4_FLAGS, 0 },
832 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
833 CPU_CORE_FLAGS, 0 },
834 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
835 CPU_NOCONA_FLAGS, 0 },
836 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
837 CPU_CORE_FLAGS, 1 },
838 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
839 CPU_CORE_FLAGS, 0 },
840 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
841 CPU_CORE2_FLAGS, 1 },
842 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
843 CPU_CORE2_FLAGS, 0 },
844 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
845 CPU_COREI7_FLAGS, 0 },
846 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
847 CPU_L1OM_FLAGS, 0 },
848 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
849 CPU_K1OM_FLAGS, 0 },
850 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
851 CPU_IAMCU_FLAGS, 0 },
852 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
853 CPU_K6_FLAGS, 0 },
854 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
855 CPU_K6_2_FLAGS, 0 },
856 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
857 CPU_ATHLON_FLAGS, 0 },
858 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
859 CPU_K8_FLAGS, 1 },
860 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
861 CPU_K8_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
863 CPU_K8_FLAGS, 0 },
864 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
865 CPU_AMDFAM10_FLAGS, 0 },
866 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
867 CPU_BDVER1_FLAGS, 0 },
868 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
869 CPU_BDVER2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
871 CPU_BDVER3_FLAGS, 0 },
872 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
873 CPU_BDVER4_FLAGS, 0 },
874 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
875 CPU_ZNVER1_FLAGS, 0 },
876 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
877 CPU_ZNVER2_FLAGS, 0 },
878 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
879 CPU_BTVER1_FLAGS, 0 },
880 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
881 CPU_BTVER2_FLAGS, 0 },
882 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
883 CPU_8087_FLAGS, 0 },
884 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
885 CPU_287_FLAGS, 0 },
886 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
887 CPU_387_FLAGS, 0 },
888 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
889 CPU_687_FLAGS, 0 },
890 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
891 CPU_CMOV_FLAGS, 0 },
892 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
893 CPU_FXSR_FLAGS, 0 },
894 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
895 CPU_MMX_FLAGS, 0 },
896 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
897 CPU_SSE_FLAGS, 0 },
898 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
899 CPU_SSE2_FLAGS, 0 },
900 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
901 CPU_SSE3_FLAGS, 0 },
902 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
903 CPU_SSSE3_FLAGS, 0 },
904 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
905 CPU_SSE4_1_FLAGS, 0 },
906 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
907 CPU_SSE4_2_FLAGS, 0 },
908 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
909 CPU_SSE4_2_FLAGS, 0 },
910 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
911 CPU_AVX_FLAGS, 0 },
912 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
913 CPU_AVX2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
915 CPU_AVX512F_FLAGS, 0 },
916 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
917 CPU_AVX512CD_FLAGS, 0 },
918 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
919 CPU_AVX512ER_FLAGS, 0 },
920 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
921 CPU_AVX512PF_FLAGS, 0 },
922 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
923 CPU_AVX512DQ_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
925 CPU_AVX512BW_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
927 CPU_AVX512VL_FLAGS, 0 },
928 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
929 CPU_VMX_FLAGS, 0 },
930 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
931 CPU_VMFUNC_FLAGS, 0 },
932 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
933 CPU_SMX_FLAGS, 0 },
934 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
935 CPU_XSAVE_FLAGS, 0 },
936 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
937 CPU_XSAVEOPT_FLAGS, 0 },
938 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
939 CPU_XSAVEC_FLAGS, 0 },
940 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
941 CPU_XSAVES_FLAGS, 0 },
942 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
943 CPU_AES_FLAGS, 0 },
944 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
945 CPU_PCLMUL_FLAGS, 0 },
946 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
947 CPU_PCLMUL_FLAGS, 1 },
948 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
949 CPU_FSGSBASE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
951 CPU_RDRND_FLAGS, 0 },
952 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
953 CPU_F16C_FLAGS, 0 },
954 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
955 CPU_BMI2_FLAGS, 0 },
956 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
957 CPU_FMA_FLAGS, 0 },
958 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
959 CPU_FMA4_FLAGS, 0 },
960 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
961 CPU_XOP_FLAGS, 0 },
962 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
963 CPU_LWP_FLAGS, 0 },
964 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
965 CPU_MOVBE_FLAGS, 0 },
966 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
967 CPU_CX16_FLAGS, 0 },
968 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
969 CPU_EPT_FLAGS, 0 },
970 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
971 CPU_LZCNT_FLAGS, 0 },
972 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
973 CPU_HLE_FLAGS, 0 },
974 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
975 CPU_RTM_FLAGS, 0 },
976 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
977 CPU_INVPCID_FLAGS, 0 },
978 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
979 CPU_CLFLUSH_FLAGS, 0 },
980 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
981 CPU_NOP_FLAGS, 0 },
982 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
983 CPU_SYSCALL_FLAGS, 0 },
984 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
985 CPU_RDTSCP_FLAGS, 0 },
986 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
987 CPU_3DNOW_FLAGS, 0 },
988 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
989 CPU_3DNOWA_FLAGS, 0 },
990 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
991 CPU_PADLOCK_FLAGS, 0 },
992 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
993 CPU_SVME_FLAGS, 1 },
994 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
995 CPU_SVME_FLAGS, 0 },
996 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
997 CPU_SSE4A_FLAGS, 0 },
998 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
999 CPU_ABM_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1001 CPU_BMI_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1003 CPU_TBM_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1005 CPU_ADX_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1007 CPU_RDSEED_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1009 CPU_PRFCHW_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1011 CPU_SMAP_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1013 CPU_MPX_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1015 CPU_SHA_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1017 CPU_CLFLUSHOPT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1019 CPU_PREFETCHWT1_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1021 CPU_SE1_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1023 CPU_CLWB_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1025 CPU_AVX512IFMA_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1027 CPU_AVX512VBMI_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1029 CPU_AVX512_4FMAPS_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1031 CPU_AVX512_4VNNIW_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1033 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1035 CPU_AVX512_VBMI2_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1037 CPU_AVX512_VNNI_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512_BITALG_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1041 CPU_CLZERO_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1043 CPU_MWAITX_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1045 CPU_OSPKE_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1047 CPU_RDPID_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1049 CPU_PTWRITE_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1051 CPU_IBT_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1053 CPU_SHSTK_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1055 CPU_GFNI_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1057 CPU_VAES_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1059 CPU_VPCLMULQDQ_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1061 CPU_WBNOINVD_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1063 CPU_PCONFIG_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1065 CPU_WAITPKG_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1067 CPU_CLDEMOTE_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1069 CPU_MOVDIRI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1071 CPU_MOVDIR64B_FLAGS, 0 },
1072 };
1073
1074 static const noarch_entry cpu_noarch[] =
1075 {
1076 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1077 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1078 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1079 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1080 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1081 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1082 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1083 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1084 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1085 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1086 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1087 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1088 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1089 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1090 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1091 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1100 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1101 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1102 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1103 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1104 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1105 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1107 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1108 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1109 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1110 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1111 };
1112
1113 #ifdef I386COFF
1114 /* Like s_lcomm_internal in gas/read.c but the alignment string
1115 is allowed to be optional. */
1116
1117 static symbolS *
1118 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1119 {
1120 addressT align = 0;
1121
1122 SKIP_WHITESPACE ();
1123
1124 if (needs_align
1125 && *input_line_pointer == ',')
1126 {
1127 align = parse_align (needs_align - 1);
1128
1129 if (align == (addressT) -1)
1130 return NULL;
1131 }
1132 else
1133 {
1134 if (size >= 8)
1135 align = 3;
1136 else if (size >= 4)
1137 align = 2;
1138 else if (size >= 2)
1139 align = 1;
1140 else
1141 align = 0;
1142 }
1143
1144 bss_alloc (symbolP, size, align);
1145 return symbolP;
1146 }
1147
1148 static void
1149 pe_lcomm (int needs_align)
1150 {
1151 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1152 }
1153 #endif
1154
1155 const pseudo_typeS md_pseudo_table[] =
1156 {
1157 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1158 {"align", s_align_bytes, 0},
1159 #else
1160 {"align", s_align_ptwo, 0},
1161 #endif
1162 {"arch", set_cpu_arch, 0},
1163 #ifndef I386COFF
1164 {"bss", s_bss, 0},
1165 #else
1166 {"lcomm", pe_lcomm, 1},
1167 #endif
1168 {"ffloat", float_cons, 'f'},
1169 {"dfloat", float_cons, 'd'},
1170 {"tfloat", float_cons, 'x'},
1171 {"value", cons, 2},
1172 {"slong", signed_cons, 4},
1173 {"noopt", s_ignore, 0},
1174 {"optim", s_ignore, 0},
1175 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1176 {"code16", set_code_flag, CODE_16BIT},
1177 {"code32", set_code_flag, CODE_32BIT},
1178 #ifdef BFD64
1179 {"code64", set_code_flag, CODE_64BIT},
1180 #endif
1181 {"intel_syntax", set_intel_syntax, 1},
1182 {"att_syntax", set_intel_syntax, 0},
1183 {"intel_mnemonic", set_intel_mnemonic, 1},
1184 {"att_mnemonic", set_intel_mnemonic, 0},
1185 {"allow_index_reg", set_allow_index_reg, 1},
1186 {"disallow_index_reg", set_allow_index_reg, 0},
1187 {"sse_check", set_check, 0},
1188 {"operand_check", set_check, 1},
1189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1190 {"largecomm", handle_large_common, 0},
1191 #else
1192 {"file", dwarf2_directive_file, 0},
1193 {"loc", dwarf2_directive_loc, 0},
1194 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1195 #endif
1196 #ifdef TE_PE
1197 {"secrel32", pe_directive_secrel, 0},
1198 #endif
1199 {0, 0, 0}
1200 };
1201
1202 /* For interface with expression (). */
1203 extern char *input_line_pointer;
1204
1205 /* Hash table for instruction mnemonic lookup. */
1206 static struct hash_control *op_hash;
1207
1208 /* Hash table for register lookup. */
1209 static struct hash_control *reg_hash;
1210 \f
1211 /* Various efficient no-op patterns for aligning code labels.
1212 Note: Don't try to assemble the instructions in the comments.
1213 0L and 0w are not legal. */
1214 static const unsigned char f32_1[] =
1215 {0x90}; /* nop */
1216 static const unsigned char f32_2[] =
1217 {0x66,0x90}; /* xchg %ax,%ax */
1218 static const unsigned char f32_3[] =
1219 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1220 static const unsigned char f32_4[] =
1221 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1222 static const unsigned char f32_6[] =
1223 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1224 static const unsigned char f32_7[] =
1225 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1226 static const unsigned char f16_3[] =
1227 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1228 static const unsigned char f16_4[] =
1229 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1230 static const unsigned char jump_disp8[] =
1231 {0xeb}; /* jmp disp8 */
1232 static const unsigned char jump32_disp32[] =
1233 {0xe9}; /* jmp disp32 */
1234 static const unsigned char jump16_disp32[] =
1235 {0x66,0xe9}; /* jmp disp32 */
1236 /* 32-bit NOPs patterns. */
1237 static const unsigned char *const f32_patt[] = {
1238 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1239 };
1240 /* 16-bit NOPs patterns. */
1241 static const unsigned char *const f16_patt[] = {
1242 f32_1, f32_2, f16_3, f16_4
1243 };
1244 /* nopl (%[re]ax) */
1245 static const unsigned char alt_3[] =
1246 {0x0f,0x1f,0x00};
1247 /* nopl 0(%[re]ax) */
1248 static const unsigned char alt_4[] =
1249 {0x0f,0x1f,0x40,0x00};
1250 /* nopl 0(%[re]ax,%[re]ax,1) */
1251 static const unsigned char alt_5[] =
1252 {0x0f,0x1f,0x44,0x00,0x00};
1253 /* nopw 0(%[re]ax,%[re]ax,1) */
1254 static const unsigned char alt_6[] =
1255 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1256 /* nopl 0L(%[re]ax) */
1257 static const unsigned char alt_7[] =
1258 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1259 /* nopl 0L(%[re]ax,%[re]ax,1) */
1260 static const unsigned char alt_8[] =
1261 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1262 /* nopw 0L(%[re]ax,%[re]ax,1) */
1263 static const unsigned char alt_9[] =
1264 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1265 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1266 static const unsigned char alt_10[] =
1267 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1268 /* data16 nopw %cs:0L(%eax,%eax,1) */
1269 static const unsigned char alt_11[] =
1270 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1271 /* 32-bit and 64-bit NOPs patterns. */
1272 static const unsigned char *const alt_patt[] = {
1273 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1274 alt_9, alt_10, alt_11
1275 };
1276
1277 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1278 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1279
1280 static void
1281 i386_output_nops (char *where, const unsigned char *const *patt,
1282 int count, int max_single_nop_size)
1283
1284 {
1285 /* Place the longer NOP first. */
1286 int last;
1287 int offset;
1288 const unsigned char *nops = patt[max_single_nop_size - 1];
1289
1290 /* Use the smaller one if the requsted one isn't available. */
1291 if (nops == NULL)
1292 {
1293 max_single_nop_size--;
1294 nops = patt[max_single_nop_size - 1];
1295 }
1296
1297 last = count % max_single_nop_size;
1298
1299 count -= last;
1300 for (offset = 0; offset < count; offset += max_single_nop_size)
1301 memcpy (where + offset, nops, max_single_nop_size);
1302
1303 if (last)
1304 {
1305 nops = patt[last - 1];
1306 if (nops == NULL)
1307 {
1308 /* Use the smaller one plus one-byte NOP if the needed one
1309 isn't available. */
1310 last--;
1311 nops = patt[last - 1];
1312 memcpy (where + offset, nops, last);
1313 where[offset + last] = *patt[0];
1314 }
1315 else
1316 memcpy (where + offset, nops, last);
1317 }
1318 }
1319
1320 static INLINE int
1321 fits_in_imm7 (offsetT num)
1322 {
1323 return (num & 0x7f) == num;
1324 }
1325
1326 static INLINE int
1327 fits_in_imm31 (offsetT num)
1328 {
1329 return (num & 0x7fffffff) == num;
1330 }
1331
1332 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1333 single NOP instruction LIMIT. */
1334
1335 void
1336 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1337 {
1338 const unsigned char *const *patt = NULL;
1339 int max_single_nop_size;
1340 /* Maximum number of NOPs before switching to jump over NOPs. */
1341 int max_number_of_nops;
1342
1343 switch (fragP->fr_type)
1344 {
1345 case rs_fill_nop:
1346 case rs_align_code:
1347 break;
1348 default:
1349 return;
1350 }
1351
1352 /* We need to decide which NOP sequence to use for 32bit and
1353 64bit. When -mtune= is used:
1354
1355 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1356 PROCESSOR_GENERIC32, f32_patt will be used.
1357 2. For the rest, alt_patt will be used.
1358
1359 When -mtune= isn't used, alt_patt will be used if
1360 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1361 be used.
1362
1363 When -march= or .arch is used, we can't use anything beyond
1364 cpu_arch_isa_flags. */
1365
1366 if (flag_code == CODE_16BIT)
1367 {
1368 patt = f16_patt;
1369 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1370 /* Limit number of NOPs to 2 in 16-bit mode. */
1371 max_number_of_nops = 2;
1372 }
1373 else
1374 {
1375 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1376 {
1377 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1378 switch (cpu_arch_tune)
1379 {
1380 case PROCESSOR_UNKNOWN:
1381 /* We use cpu_arch_isa_flags to check if we SHOULD
1382 optimize with nops. */
1383 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1384 patt = alt_patt;
1385 else
1386 patt = f32_patt;
1387 break;
1388 case PROCESSOR_PENTIUM4:
1389 case PROCESSOR_NOCONA:
1390 case PROCESSOR_CORE:
1391 case PROCESSOR_CORE2:
1392 case PROCESSOR_COREI7:
1393 case PROCESSOR_L1OM:
1394 case PROCESSOR_K1OM:
1395 case PROCESSOR_GENERIC64:
1396 case PROCESSOR_K6:
1397 case PROCESSOR_ATHLON:
1398 case PROCESSOR_K8:
1399 case PROCESSOR_AMDFAM10:
1400 case PROCESSOR_BD:
1401 case PROCESSOR_ZNVER:
1402 case PROCESSOR_BT:
1403 patt = alt_patt;
1404 break;
1405 case PROCESSOR_I386:
1406 case PROCESSOR_I486:
1407 case PROCESSOR_PENTIUM:
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_IAMCU:
1410 case PROCESSOR_GENERIC32:
1411 patt = f32_patt;
1412 break;
1413 }
1414 }
1415 else
1416 {
1417 switch (fragP->tc_frag_data.tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1421 PROCESSOR_UNKNOWN. */
1422 abort ();
1423 break;
1424
1425 case PROCESSOR_I386:
1426 case PROCESSOR_I486:
1427 case PROCESSOR_PENTIUM:
1428 case PROCESSOR_IAMCU:
1429 case PROCESSOR_K6:
1430 case PROCESSOR_ATHLON:
1431 case PROCESSOR_K8:
1432 case PROCESSOR_AMDFAM10:
1433 case PROCESSOR_BD:
1434 case PROCESSOR_ZNVER:
1435 case PROCESSOR_BT:
1436 case PROCESSOR_GENERIC32:
1437 /* We use cpu_arch_isa_flags to check if we CAN optimize
1438 with nops. */
1439 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1440 patt = alt_patt;
1441 else
1442 patt = f32_patt;
1443 break;
1444 case PROCESSOR_PENTIUMPRO:
1445 case PROCESSOR_PENTIUM4:
1446 case PROCESSOR_NOCONA:
1447 case PROCESSOR_CORE:
1448 case PROCESSOR_CORE2:
1449 case PROCESSOR_COREI7:
1450 case PROCESSOR_L1OM:
1451 case PROCESSOR_K1OM:
1452 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1453 patt = alt_patt;
1454 else
1455 patt = f32_patt;
1456 break;
1457 case PROCESSOR_GENERIC64:
1458 patt = alt_patt;
1459 break;
1460 }
1461 }
1462
1463 if (patt == f32_patt)
1464 {
1465 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1466 /* Limit number of NOPs to 2 for older processors. */
1467 max_number_of_nops = 2;
1468 }
1469 else
1470 {
1471 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1472 /* Limit number of NOPs to 7 for newer processors. */
1473 max_number_of_nops = 7;
1474 }
1475 }
1476
1477 if (limit == 0)
1478 limit = max_single_nop_size;
1479
1480 if (fragP->fr_type == rs_fill_nop)
1481 {
1482 /* Output NOPs for .nop directive. */
1483 if (limit > max_single_nop_size)
1484 {
1485 as_bad_where (fragP->fr_file, fragP->fr_line,
1486 _("invalid single nop size: %d "
1487 "(expect within [0, %d])"),
1488 limit, max_single_nop_size);
1489 return;
1490 }
1491 }
1492 else
1493 fragP->fr_var = count;
1494
1495 if ((count / max_single_nop_size) > max_number_of_nops)
1496 {
1497 /* Generate jump over NOPs. */
1498 offsetT disp = count - 2;
1499 if (fits_in_imm7 (disp))
1500 {
1501 /* Use "jmp disp8" if possible. */
1502 count = disp;
1503 where[0] = jump_disp8[0];
1504 where[1] = count;
1505 where += 2;
1506 }
1507 else
1508 {
1509 unsigned int size_of_jump;
1510
1511 if (flag_code == CODE_16BIT)
1512 {
1513 where[0] = jump16_disp32[0];
1514 where[1] = jump16_disp32[1];
1515 size_of_jump = 2;
1516 }
1517 else
1518 {
1519 where[0] = jump32_disp32[0];
1520 size_of_jump = 1;
1521 }
1522
1523 count -= size_of_jump + 4;
1524 if (!fits_in_imm31 (count))
1525 {
1526 as_bad_where (fragP->fr_file, fragP->fr_line,
1527 _("jump over nop padding out of range"));
1528 return;
1529 }
1530
1531 md_number_to_chars (where + size_of_jump, count, 4);
1532 where += size_of_jump + 4;
1533 }
1534 }
1535
1536 /* Generate multiple NOPs. */
1537 i386_output_nops (where, patt, count, limit);
1538 }
1539
1540 static INLINE int
1541 operand_type_all_zero (const union i386_operand_type *x)
1542 {
1543 switch (ARRAY_SIZE(x->array))
1544 {
1545 case 3:
1546 if (x->array[2])
1547 return 0;
1548 /* Fall through. */
1549 case 2:
1550 if (x->array[1])
1551 return 0;
1552 /* Fall through. */
1553 case 1:
1554 return !x->array[0];
1555 default:
1556 abort ();
1557 }
1558 }
1559
1560 static INLINE void
1561 operand_type_set (union i386_operand_type *x, unsigned int v)
1562 {
1563 switch (ARRAY_SIZE(x->array))
1564 {
1565 case 3:
1566 x->array[2] = v;
1567 /* Fall through. */
1568 case 2:
1569 x->array[1] = v;
1570 /* Fall through. */
1571 case 1:
1572 x->array[0] = v;
1573 /* Fall through. */
1574 break;
1575 default:
1576 abort ();
1577 }
1578 }
1579
1580 static INLINE int
1581 operand_type_equal (const union i386_operand_type *x,
1582 const union i386_operand_type *y)
1583 {
1584 switch (ARRAY_SIZE(x->array))
1585 {
1586 case 3:
1587 if (x->array[2] != y->array[2])
1588 return 0;
1589 /* Fall through. */
1590 case 2:
1591 if (x->array[1] != y->array[1])
1592 return 0;
1593 /* Fall through. */
1594 case 1:
1595 return x->array[0] == y->array[0];
1596 break;
1597 default:
1598 abort ();
1599 }
1600 }
1601
1602 static INLINE int
1603 cpu_flags_all_zero (const union i386_cpu_flags *x)
1604 {
1605 switch (ARRAY_SIZE(x->array))
1606 {
1607 case 4:
1608 if (x->array[3])
1609 return 0;
1610 /* Fall through. */
1611 case 3:
1612 if (x->array[2])
1613 return 0;
1614 /* Fall through. */
1615 case 2:
1616 if (x->array[1])
1617 return 0;
1618 /* Fall through. */
1619 case 1:
1620 return !x->array[0];
1621 default:
1622 abort ();
1623 }
1624 }
1625
1626 static INLINE int
1627 cpu_flags_equal (const union i386_cpu_flags *x,
1628 const union i386_cpu_flags *y)
1629 {
1630 switch (ARRAY_SIZE(x->array))
1631 {
1632 case 4:
1633 if (x->array[3] != y->array[3])
1634 return 0;
1635 /* Fall through. */
1636 case 3:
1637 if (x->array[2] != y->array[2])
1638 return 0;
1639 /* Fall through. */
1640 case 2:
1641 if (x->array[1] != y->array[1])
1642 return 0;
1643 /* Fall through. */
1644 case 1:
1645 return x->array[0] == y->array[0];
1646 break;
1647 default:
1648 abort ();
1649 }
1650 }
1651
1652 static INLINE int
1653 cpu_flags_check_cpu64 (i386_cpu_flags f)
1654 {
1655 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1656 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1657 }
1658
1659 static INLINE i386_cpu_flags
1660 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1661 {
1662 switch (ARRAY_SIZE (x.array))
1663 {
1664 case 4:
1665 x.array [3] &= y.array [3];
1666 /* Fall through. */
1667 case 3:
1668 x.array [2] &= y.array [2];
1669 /* Fall through. */
1670 case 2:
1671 x.array [1] &= y.array [1];
1672 /* Fall through. */
1673 case 1:
1674 x.array [0] &= y.array [0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 return x;
1680 }
1681
1682 static INLINE i386_cpu_flags
1683 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1684 {
1685 switch (ARRAY_SIZE (x.array))
1686 {
1687 case 4:
1688 x.array [3] |= y.array [3];
1689 /* Fall through. */
1690 case 3:
1691 x.array [2] |= y.array [2];
1692 /* Fall through. */
1693 case 2:
1694 x.array [1] |= y.array [1];
1695 /* Fall through. */
1696 case 1:
1697 x.array [0] |= y.array [0];
1698 break;
1699 default:
1700 abort ();
1701 }
1702 return x;
1703 }
1704
1705 static INLINE i386_cpu_flags
1706 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1707 {
1708 switch (ARRAY_SIZE (x.array))
1709 {
1710 case 4:
1711 x.array [3] &= ~y.array [3];
1712 /* Fall through. */
1713 case 3:
1714 x.array [2] &= ~y.array [2];
1715 /* Fall through. */
1716 case 2:
1717 x.array [1] &= ~y.array [1];
1718 /* Fall through. */
1719 case 1:
1720 x.array [0] &= ~y.array [0];
1721 break;
1722 default:
1723 abort ();
1724 }
1725 return x;
1726 }
1727
1728 #define CPU_FLAGS_ARCH_MATCH 0x1
1729 #define CPU_FLAGS_64BIT_MATCH 0x2
1730
1731 #define CPU_FLAGS_PERFECT_MATCH \
1732 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1733
1734 /* Return CPU flags match bits. */
1735
1736 static int
1737 cpu_flags_match (const insn_template *t)
1738 {
1739 i386_cpu_flags x = t->cpu_flags;
1740 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1741
1742 x.bitfield.cpu64 = 0;
1743 x.bitfield.cpuno64 = 0;
1744
1745 if (cpu_flags_all_zero (&x))
1746 {
1747 /* This instruction is available on all archs. */
1748 match |= CPU_FLAGS_ARCH_MATCH;
1749 }
1750 else
1751 {
1752 /* This instruction is available only on some archs. */
1753 i386_cpu_flags cpu = cpu_arch_flags;
1754
1755 /* AVX512VL is no standalone feature - match it and then strip it. */
1756 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1757 return match;
1758 x.bitfield.cpuavx512vl = 0;
1759
1760 cpu = cpu_flags_and (x, cpu);
1761 if (!cpu_flags_all_zero (&cpu))
1762 {
1763 if (x.bitfield.cpuavx)
1764 {
1765 /* We need to check a few extra flags with AVX. */
1766 if (cpu.bitfield.cpuavx
1767 && (!t->opcode_modifier.sse2avx || sse2avx)
1768 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1769 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1770 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1771 match |= CPU_FLAGS_ARCH_MATCH;
1772 }
1773 else if (x.bitfield.cpuavx512f)
1774 {
1775 /* We need to check a few extra flags with AVX512F. */
1776 if (cpu.bitfield.cpuavx512f
1777 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1778 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1779 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 match |= CPU_FLAGS_ARCH_MATCH;
1784 }
1785 }
1786 return match;
1787 }
1788
1789 static INLINE i386_operand_type
1790 operand_type_and (i386_operand_type x, i386_operand_type y)
1791 {
1792 switch (ARRAY_SIZE (x.array))
1793 {
1794 case 3:
1795 x.array [2] &= y.array [2];
1796 /* Fall through. */
1797 case 2:
1798 x.array [1] &= y.array [1];
1799 /* Fall through. */
1800 case 1:
1801 x.array [0] &= y.array [0];
1802 break;
1803 default:
1804 abort ();
1805 }
1806 return x;
1807 }
1808
1809 static INLINE i386_operand_type
1810 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1811 {
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] &= ~y.array [2];
1816 /* Fall through. */
1817 case 2:
1818 x.array [1] &= ~y.array [1];
1819 /* Fall through. */
1820 case 1:
1821 x.array [0] &= ~y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
1826 return x;
1827 }
1828
1829 static INLINE i386_operand_type
1830 operand_type_or (i386_operand_type x, i386_operand_type y)
1831 {
1832 switch (ARRAY_SIZE (x.array))
1833 {
1834 case 3:
1835 x.array [2] |= y.array [2];
1836 /* Fall through. */
1837 case 2:
1838 x.array [1] |= y.array [1];
1839 /* Fall through. */
1840 case 1:
1841 x.array [0] |= y.array [0];
1842 break;
1843 default:
1844 abort ();
1845 }
1846 return x;
1847 }
1848
1849 static INLINE i386_operand_type
1850 operand_type_xor (i386_operand_type x, i386_operand_type y)
1851 {
1852 switch (ARRAY_SIZE (x.array))
1853 {
1854 case 3:
1855 x.array [2] ^= y.array [2];
1856 /* Fall through. */
1857 case 2:
1858 x.array [1] ^= y.array [1];
1859 /* Fall through. */
1860 case 1:
1861 x.array [0] ^= y.array [0];
1862 break;
1863 default:
1864 abort ();
1865 }
1866 return x;
1867 }
1868
1869 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1870 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1871 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1872 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1873 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1874 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1875 static const i386_operand_type anydisp
1876 = OPERAND_TYPE_ANYDISP;
1877 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1878 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1879 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1880 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1881 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1882 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1883 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1884 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1885 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1886 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1887 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1888 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1889
1890 enum operand_type
1891 {
1892 reg,
1893 imm,
1894 disp,
1895 anymem
1896 };
1897
1898 static INLINE int
1899 operand_type_check (i386_operand_type t, enum operand_type c)
1900 {
1901 switch (c)
1902 {
1903 case reg:
1904 return t.bitfield.reg;
1905
1906 case imm:
1907 return (t.bitfield.imm8
1908 || t.bitfield.imm8s
1909 || t.bitfield.imm16
1910 || t.bitfield.imm32
1911 || t.bitfield.imm32s
1912 || t.bitfield.imm64);
1913
1914 case disp:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64);
1920
1921 case anymem:
1922 return (t.bitfield.disp8
1923 || t.bitfield.disp16
1924 || t.bitfield.disp32
1925 || t.bitfield.disp32s
1926 || t.bitfield.disp64
1927 || t.bitfield.baseindex);
1928
1929 default:
1930 abort ();
1931 }
1932
1933 return 0;
1934 }
1935
1936 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1937 between operand GIVEN and opeand WANTED for instruction template T. */
1938
1939 static INLINE int
1940 match_operand_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
1942 {
1943 return !((i.types[given].bitfield.byte
1944 && !t->operand_types[wanted].bitfield.byte)
1945 || (i.types[given].bitfield.word
1946 && !t->operand_types[wanted].bitfield.word)
1947 || (i.types[given].bitfield.dword
1948 && !t->operand_types[wanted].bitfield.dword)
1949 || (i.types[given].bitfield.qword
1950 && !t->operand_types[wanted].bitfield.qword)
1951 || (i.types[given].bitfield.tbyte
1952 && !t->operand_types[wanted].bitfield.tbyte));
1953 }
1954
1955 /* Return 1 if there is no conflict in SIMD register between operand
1956 GIVEN and opeand WANTED for instruction template T. */
1957
1958 static INLINE int
1959 match_simd_size (const insn_template *t, unsigned int wanted,
1960 unsigned int given)
1961 {
1962 return !((i.types[given].bitfield.xmmword
1963 && !t->operand_types[wanted].bitfield.xmmword)
1964 || (i.types[given].bitfield.ymmword
1965 && !t->operand_types[wanted].bitfield.ymmword)
1966 || (i.types[given].bitfield.zmmword
1967 && !t->operand_types[wanted].bitfield.zmmword));
1968 }
1969
1970 /* Return 1 if there is no conflict in any size between operand GIVEN
1971 and opeand WANTED for instruction template T. */
1972
1973 static INLINE int
1974 match_mem_size (const insn_template *t, unsigned int wanted,
1975 unsigned int given)
1976 {
1977 return (match_operand_size (t, wanted, given)
1978 && !((i.types[given].bitfield.unspecified
1979 && !i.broadcast
1980 && !t->operand_types[wanted].bitfield.unspecified)
1981 || (i.types[given].bitfield.fword
1982 && !t->operand_types[wanted].bitfield.fword)
1983 /* For scalar opcode templates to allow register and memory
1984 operands at the same time, some special casing is needed
1985 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1986 down-conversion vpmov*. */
1987 || ((t->operand_types[wanted].bitfield.regsimd
1988 && !t->opcode_modifier.broadcast
1989 && (t->operand_types[wanted].bitfield.byte
1990 || t->operand_types[wanted].bitfield.word
1991 || t->operand_types[wanted].bitfield.dword
1992 || t->operand_types[wanted].bitfield.qword))
1993 ? (i.types[given].bitfield.xmmword
1994 || i.types[given].bitfield.ymmword
1995 || i.types[given].bitfield.zmmword)
1996 : !match_simd_size(t, wanted, given))));
1997 }
1998
1999 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2000 operands for instruction template T, and it has MATCH_REVERSE set if there
2001 is no size conflict on any operands for the template with operands reversed
2002 (and the template allows for reversing in the first place). */
2003
2004 #define MATCH_STRAIGHT 1
2005 #define MATCH_REVERSE 2
2006
2007 static INLINE unsigned int
2008 operand_size_match (const insn_template *t)
2009 {
2010 unsigned int j, match = MATCH_STRAIGHT;
2011
2012 /* Don't check jump instructions. */
2013 if (t->opcode_modifier.jump
2014 || t->opcode_modifier.jumpbyte
2015 || t->opcode_modifier.jumpdword
2016 || t->opcode_modifier.jumpintersegment)
2017 return match;
2018
2019 /* Check memory and accumulator operand size. */
2020 for (j = 0; j < i.operands; j++)
2021 {
2022 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2023 && t->operand_types[j].bitfield.anysize)
2024 continue;
2025
2026 if (t->operand_types[j].bitfield.reg
2027 && !match_operand_size (t, j, j))
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.regsimd
2034 && !match_simd_size (t, j, j))
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if (t->operand_types[j].bitfield.acc
2041 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2042 {
2043 match = 0;
2044 break;
2045 }
2046
2047 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2048 {
2049 match = 0;
2050 break;
2051 }
2052 }
2053
2054 if (!t->opcode_modifier.d)
2055 {
2056 mismatch:
2057 if (!match)
2058 i.error = operand_size_mismatch;
2059 return match;
2060 }
2061
2062 /* Check reverse. */
2063 gas_assert (i.operands >= 2 && i.operands <= 3);
2064
2065 for (j = 0; j < i.operands; j++)
2066 {
2067 unsigned int given = i.operands - j - 1;
2068
2069 if (t->operand_types[j].bitfield.reg
2070 && !match_operand_size (t, j, given))
2071 goto mismatch;
2072
2073 if (t->operand_types[j].bitfield.regsimd
2074 && !match_simd_size (t, j, given))
2075 goto mismatch;
2076
2077 if (t->operand_types[j].bitfield.acc
2078 && (!match_operand_size (t, j, given)
2079 || !match_simd_size (t, j, given)))
2080 goto mismatch;
2081
2082 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2083 goto mismatch;
2084 }
2085
2086 return match | MATCH_REVERSE;
2087 }
2088
2089 static INLINE int
2090 operand_type_match (i386_operand_type overlap,
2091 i386_operand_type given)
2092 {
2093 i386_operand_type temp = overlap;
2094
2095 temp.bitfield.jumpabsolute = 0;
2096 temp.bitfield.unspecified = 0;
2097 temp.bitfield.byte = 0;
2098 temp.bitfield.word = 0;
2099 temp.bitfield.dword = 0;
2100 temp.bitfield.fword = 0;
2101 temp.bitfield.qword = 0;
2102 temp.bitfield.tbyte = 0;
2103 temp.bitfield.xmmword = 0;
2104 temp.bitfield.ymmword = 0;
2105 temp.bitfield.zmmword = 0;
2106 if (operand_type_all_zero (&temp))
2107 goto mismatch;
2108
2109 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2110 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2111 return 1;
2112
2113 mismatch:
2114 i.error = operand_type_mismatch;
2115 return 0;
2116 }
2117
2118 /* If given types g0 and g1 are registers they must be of the same type
2119 unless the expected operand type register overlap is null.
2120 Memory operand size of certain SIMD instructions is also being checked
2121 here. */
2122
2123 static INLINE int
2124 operand_type_register_match (i386_operand_type g0,
2125 i386_operand_type t0,
2126 i386_operand_type g1,
2127 i386_operand_type t1)
2128 {
2129 if (!g0.bitfield.reg
2130 && !g0.bitfield.regsimd
2131 && (!operand_type_check (g0, anymem)
2132 || g0.bitfield.unspecified
2133 || !t0.bitfield.regsimd))
2134 return 1;
2135
2136 if (!g1.bitfield.reg
2137 && !g1.bitfield.regsimd
2138 && (!operand_type_check (g1, anymem)
2139 || g1.bitfield.unspecified
2140 || !t1.bitfield.regsimd))
2141 return 1;
2142
2143 if (g0.bitfield.byte == g1.bitfield.byte
2144 && g0.bitfield.word == g1.bitfield.word
2145 && g0.bitfield.dword == g1.bitfield.dword
2146 && g0.bitfield.qword == g1.bitfield.qword
2147 && g0.bitfield.xmmword == g1.bitfield.xmmword
2148 && g0.bitfield.ymmword == g1.bitfield.ymmword
2149 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2150 return 1;
2151
2152 if (!(t0.bitfield.byte & t1.bitfield.byte)
2153 && !(t0.bitfield.word & t1.bitfield.word)
2154 && !(t0.bitfield.dword & t1.bitfield.dword)
2155 && !(t0.bitfield.qword & t1.bitfield.qword)
2156 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2157 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2158 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2159 return 1;
2160
2161 i.error = register_type_mismatch;
2162
2163 return 0;
2164 }
2165
2166 static INLINE unsigned int
2167 register_number (const reg_entry *r)
2168 {
2169 unsigned int nr = r->reg_num;
2170
2171 if (r->reg_flags & RegRex)
2172 nr += 8;
2173
2174 if (r->reg_flags & RegVRex)
2175 nr += 16;
2176
2177 return nr;
2178 }
2179
2180 static INLINE unsigned int
2181 mode_from_disp_size (i386_operand_type t)
2182 {
2183 if (t.bitfield.disp8)
2184 return 1;
2185 else if (t.bitfield.disp16
2186 || t.bitfield.disp32
2187 || t.bitfield.disp32s)
2188 return 2;
2189 else
2190 return 0;
2191 }
2192
2193 static INLINE int
2194 fits_in_signed_byte (addressT num)
2195 {
2196 return num + 0x80 <= 0xff;
2197 }
2198
2199 static INLINE int
2200 fits_in_unsigned_byte (addressT num)
2201 {
2202 return num <= 0xff;
2203 }
2204
2205 static INLINE int
2206 fits_in_unsigned_word (addressT num)
2207 {
2208 return num <= 0xffff;
2209 }
2210
2211 static INLINE int
2212 fits_in_signed_word (addressT num)
2213 {
2214 return num + 0x8000 <= 0xffff;
2215 }
2216
2217 static INLINE int
2218 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2219 {
2220 #ifndef BFD64
2221 return 1;
2222 #else
2223 return num + 0x80000000 <= 0xffffffff;
2224 #endif
2225 } /* fits_in_signed_long() */
2226
2227 static INLINE int
2228 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2229 {
2230 #ifndef BFD64
2231 return 1;
2232 #else
2233 return num <= 0xffffffff;
2234 #endif
2235 } /* fits_in_unsigned_long() */
2236
2237 static INLINE int
2238 fits_in_disp8 (offsetT num)
2239 {
2240 int shift = i.memshift;
2241 unsigned int mask;
2242
2243 if (shift == -1)
2244 abort ();
2245
2246 mask = (1 << shift) - 1;
2247
2248 /* Return 0 if NUM isn't properly aligned. */
2249 if ((num & mask))
2250 return 0;
2251
2252 /* Check if NUM will fit in 8bit after shift. */
2253 return fits_in_signed_byte (num >> shift);
2254 }
2255
2256 static INLINE int
2257 fits_in_imm4 (offsetT num)
2258 {
2259 return (num & 0xf) == num;
2260 }
2261
2262 static i386_operand_type
2263 smallest_imm_type (offsetT num)
2264 {
2265 i386_operand_type t;
2266
2267 operand_type_set (&t, 0);
2268 t.bitfield.imm64 = 1;
2269
2270 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2271 {
2272 /* This code is disabled on the 486 because all the Imm1 forms
2273 in the opcode table are slower on the i486. They're the
2274 versions with the implicitly specified single-position
2275 displacement, which has another syntax if you really want to
2276 use that form. */
2277 t.bitfield.imm1 = 1;
2278 t.bitfield.imm8 = 1;
2279 t.bitfield.imm8s = 1;
2280 t.bitfield.imm16 = 1;
2281 t.bitfield.imm32 = 1;
2282 t.bitfield.imm32s = 1;
2283 }
2284 else if (fits_in_signed_byte (num))
2285 {
2286 t.bitfield.imm8 = 1;
2287 t.bitfield.imm8s = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_unsigned_byte (num))
2293 {
2294 t.bitfield.imm8 = 1;
2295 t.bitfield.imm16 = 1;
2296 t.bitfield.imm32 = 1;
2297 t.bitfield.imm32s = 1;
2298 }
2299 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2300 {
2301 t.bitfield.imm16 = 1;
2302 t.bitfield.imm32 = 1;
2303 t.bitfield.imm32s = 1;
2304 }
2305 else if (fits_in_signed_long (num))
2306 {
2307 t.bitfield.imm32 = 1;
2308 t.bitfield.imm32s = 1;
2309 }
2310 else if (fits_in_unsigned_long (num))
2311 t.bitfield.imm32 = 1;
2312
2313 return t;
2314 }
2315
2316 static offsetT
2317 offset_in_range (offsetT val, int size)
2318 {
2319 addressT mask;
2320
2321 switch (size)
2322 {
2323 case 1: mask = ((addressT) 1 << 8) - 1; break;
2324 case 2: mask = ((addressT) 1 << 16) - 1; break;
2325 case 4: mask = ((addressT) 2 << 31) - 1; break;
2326 #ifdef BFD64
2327 case 8: mask = ((addressT) 2 << 63) - 1; break;
2328 #endif
2329 default: abort ();
2330 }
2331
2332 #ifdef BFD64
2333 /* If BFD64, sign extend val for 32bit address mode. */
2334 if (flag_code != CODE_64BIT
2335 || i.prefix[ADDR_PREFIX])
2336 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2337 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2338 #endif
2339
2340 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2341 {
2342 char buf1[40], buf2[40];
2343
2344 sprint_value (buf1, val);
2345 sprint_value (buf2, val & mask);
2346 as_warn (_("%s shortened to %s"), buf1, buf2);
2347 }
2348 return val & mask;
2349 }
2350
2351 enum PREFIX_GROUP
2352 {
2353 PREFIX_EXIST = 0,
2354 PREFIX_LOCK,
2355 PREFIX_REP,
2356 PREFIX_DS,
2357 PREFIX_OTHER
2358 };
2359
2360 /* Returns
2361 a. PREFIX_EXIST if attempting to add a prefix where one from the
2362 same class already exists.
2363 b. PREFIX_LOCK if lock prefix is added.
2364 c. PREFIX_REP if rep/repne prefix is added.
2365 d. PREFIX_DS if ds prefix is added.
2366 e. PREFIX_OTHER if other prefix is added.
2367 */
2368
2369 static enum PREFIX_GROUP
2370 add_prefix (unsigned int prefix)
2371 {
2372 enum PREFIX_GROUP ret = PREFIX_OTHER;
2373 unsigned int q;
2374
2375 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2376 && flag_code == CODE_64BIT)
2377 {
2378 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2379 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2380 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2381 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2382 ret = PREFIX_EXIST;
2383 q = REX_PREFIX;
2384 }
2385 else
2386 {
2387 switch (prefix)
2388 {
2389 default:
2390 abort ();
2391
2392 case DS_PREFIX_OPCODE:
2393 ret = PREFIX_DS;
2394 /* Fall through. */
2395 case CS_PREFIX_OPCODE:
2396 case ES_PREFIX_OPCODE:
2397 case FS_PREFIX_OPCODE:
2398 case GS_PREFIX_OPCODE:
2399 case SS_PREFIX_OPCODE:
2400 q = SEG_PREFIX;
2401 break;
2402
2403 case REPNE_PREFIX_OPCODE:
2404 case REPE_PREFIX_OPCODE:
2405 q = REP_PREFIX;
2406 ret = PREFIX_REP;
2407 break;
2408
2409 case LOCK_PREFIX_OPCODE:
2410 q = LOCK_PREFIX;
2411 ret = PREFIX_LOCK;
2412 break;
2413
2414 case FWAIT_OPCODE:
2415 q = WAIT_PREFIX;
2416 break;
2417
2418 case ADDR_PREFIX_OPCODE:
2419 q = ADDR_PREFIX;
2420 break;
2421
2422 case DATA_PREFIX_OPCODE:
2423 q = DATA_PREFIX;
2424 break;
2425 }
2426 if (i.prefix[q] != 0)
2427 ret = PREFIX_EXIST;
2428 }
2429
2430 if (ret)
2431 {
2432 if (!i.prefix[q])
2433 ++i.prefixes;
2434 i.prefix[q] |= prefix;
2435 }
2436 else
2437 as_bad (_("same type of prefix used twice"));
2438
2439 return ret;
2440 }
2441
2442 static void
2443 update_code_flag (int value, int check)
2444 {
2445 PRINTF_LIKE ((*as_error));
2446
2447 flag_code = (enum flag_code) value;
2448 if (flag_code == CODE_64BIT)
2449 {
2450 cpu_arch_flags.bitfield.cpu64 = 1;
2451 cpu_arch_flags.bitfield.cpuno64 = 0;
2452 }
2453 else
2454 {
2455 cpu_arch_flags.bitfield.cpu64 = 0;
2456 cpu_arch_flags.bitfield.cpuno64 = 1;
2457 }
2458 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2459 {
2460 if (check)
2461 as_error = as_fatal;
2462 else
2463 as_error = as_bad;
2464 (*as_error) (_("64bit mode not supported on `%s'."),
2465 cpu_arch_name ? cpu_arch_name : default_arch);
2466 }
2467 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2468 {
2469 if (check)
2470 as_error = as_fatal;
2471 else
2472 as_error = as_bad;
2473 (*as_error) (_("32bit mode not supported on `%s'."),
2474 cpu_arch_name ? cpu_arch_name : default_arch);
2475 }
2476 stackop_size = '\0';
2477 }
2478
2479 static void
2480 set_code_flag (int value)
2481 {
2482 update_code_flag (value, 0);
2483 }
2484
2485 static void
2486 set_16bit_gcc_code_flag (int new_code_flag)
2487 {
2488 flag_code = (enum flag_code) new_code_flag;
2489 if (flag_code != CODE_16BIT)
2490 abort ();
2491 cpu_arch_flags.bitfield.cpu64 = 0;
2492 cpu_arch_flags.bitfield.cpuno64 = 1;
2493 stackop_size = LONG_MNEM_SUFFIX;
2494 }
2495
2496 static void
2497 set_intel_syntax (int syntax_flag)
2498 {
2499 /* Find out if register prefixing is specified. */
2500 int ask_naked_reg = 0;
2501
2502 SKIP_WHITESPACE ();
2503 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2504 {
2505 char *string;
2506 int e = get_symbol_name (&string);
2507
2508 if (strcmp (string, "prefix") == 0)
2509 ask_naked_reg = 1;
2510 else if (strcmp (string, "noprefix") == 0)
2511 ask_naked_reg = -1;
2512 else
2513 as_bad (_("bad argument to syntax directive."));
2514 (void) restore_line_pointer (e);
2515 }
2516 demand_empty_rest_of_line ();
2517
2518 intel_syntax = syntax_flag;
2519
2520 if (ask_naked_reg == 0)
2521 allow_naked_reg = (intel_syntax
2522 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2523 else
2524 allow_naked_reg = (ask_naked_reg < 0);
2525
2526 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2527
2528 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2529 identifier_chars['$'] = intel_syntax ? '$' : 0;
2530 register_prefix = allow_naked_reg ? "" : "%";
2531 }
2532
2533 static void
2534 set_intel_mnemonic (int mnemonic_flag)
2535 {
2536 intel_mnemonic = mnemonic_flag;
2537 }
2538
2539 static void
2540 set_allow_index_reg (int flag)
2541 {
2542 allow_index_reg = flag;
2543 }
2544
2545 static void
2546 set_check (int what)
2547 {
2548 enum check_kind *kind;
2549 const char *str;
2550
2551 if (what)
2552 {
2553 kind = &operand_check;
2554 str = "operand";
2555 }
2556 else
2557 {
2558 kind = &sse_check;
2559 str = "sse";
2560 }
2561
2562 SKIP_WHITESPACE ();
2563
2564 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2565 {
2566 char *string;
2567 int e = get_symbol_name (&string);
2568
2569 if (strcmp (string, "none") == 0)
2570 *kind = check_none;
2571 else if (strcmp (string, "warning") == 0)
2572 *kind = check_warning;
2573 else if (strcmp (string, "error") == 0)
2574 *kind = check_error;
2575 else
2576 as_bad (_("bad argument to %s_check directive."), str);
2577 (void) restore_line_pointer (e);
2578 }
2579 else
2580 as_bad (_("missing argument for %s_check directive"), str);
2581
2582 demand_empty_rest_of_line ();
2583 }
2584
2585 static void
2586 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2587 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2588 {
2589 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2590 static const char *arch;
2591
2592 /* Intel LIOM is only supported on ELF. */
2593 if (!IS_ELF)
2594 return;
2595
2596 if (!arch)
2597 {
2598 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2599 use default_arch. */
2600 arch = cpu_arch_name;
2601 if (!arch)
2602 arch = default_arch;
2603 }
2604
2605 /* If we are targeting Intel MCU, we must enable it. */
2606 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2607 || new_flag.bitfield.cpuiamcu)
2608 return;
2609
2610 /* If we are targeting Intel L1OM, we must enable it. */
2611 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2612 || new_flag.bitfield.cpul1om)
2613 return;
2614
2615 /* If we are targeting Intel K1OM, we must enable it. */
2616 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2617 || new_flag.bitfield.cpuk1om)
2618 return;
2619
2620 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2621 #endif
2622 }
2623
2624 static void
2625 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2626 {
2627 SKIP_WHITESPACE ();
2628
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633 unsigned int j;
2634 i386_cpu_flags flags;
2635
2636 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2637 {
2638 if (strcmp (string, cpu_arch[j].name) == 0)
2639 {
2640 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2641
2642 if (*string != '.')
2643 {
2644 cpu_arch_name = cpu_arch[j].name;
2645 cpu_sub_arch_name = NULL;
2646 cpu_arch_flags = cpu_arch[j].flags;
2647 if (flag_code == CODE_64BIT)
2648 {
2649 cpu_arch_flags.bitfield.cpu64 = 1;
2650 cpu_arch_flags.bitfield.cpuno64 = 0;
2651 }
2652 else
2653 {
2654 cpu_arch_flags.bitfield.cpu64 = 0;
2655 cpu_arch_flags.bitfield.cpuno64 = 1;
2656 }
2657 cpu_arch_isa = cpu_arch[j].type;
2658 cpu_arch_isa_flags = cpu_arch[j].flags;
2659 if (!cpu_arch_tune_set)
2660 {
2661 cpu_arch_tune = cpu_arch_isa;
2662 cpu_arch_tune_flags = cpu_arch_isa_flags;
2663 }
2664 break;
2665 }
2666
2667 flags = cpu_flags_or (cpu_arch_flags,
2668 cpu_arch[j].flags);
2669
2670 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2671 {
2672 if (cpu_sub_arch_name)
2673 {
2674 char *name = cpu_sub_arch_name;
2675 cpu_sub_arch_name = concat (name,
2676 cpu_arch[j].name,
2677 (const char *) NULL);
2678 free (name);
2679 }
2680 else
2681 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2682 cpu_arch_flags = flags;
2683 cpu_arch_isa_flags = flags;
2684 }
2685 else
2686 cpu_arch_isa_flags
2687 = cpu_flags_or (cpu_arch_isa_flags,
2688 cpu_arch[j].flags);
2689 (void) restore_line_pointer (e);
2690 demand_empty_rest_of_line ();
2691 return;
2692 }
2693 }
2694
2695 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2696 {
2697 /* Disable an ISA extension. */
2698 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2699 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2700 {
2701 flags = cpu_flags_and_not (cpu_arch_flags,
2702 cpu_noarch[j].flags);
2703 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2704 {
2705 if (cpu_sub_arch_name)
2706 {
2707 char *name = cpu_sub_arch_name;
2708 cpu_sub_arch_name = concat (name, string,
2709 (const char *) NULL);
2710 free (name);
2711 }
2712 else
2713 cpu_sub_arch_name = xstrdup (string);
2714 cpu_arch_flags = flags;
2715 cpu_arch_isa_flags = flags;
2716 }
2717 (void) restore_line_pointer (e);
2718 demand_empty_rest_of_line ();
2719 return;
2720 }
2721
2722 j = ARRAY_SIZE (cpu_arch);
2723 }
2724
2725 if (j >= ARRAY_SIZE (cpu_arch))
2726 as_bad (_("no such architecture: `%s'"), string);
2727
2728 *input_line_pointer = e;
2729 }
2730 else
2731 as_bad (_("missing cpu architecture"));
2732
2733 no_cond_jump_promotion = 0;
2734 if (*input_line_pointer == ','
2735 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2736 {
2737 char *string;
2738 char e;
2739
2740 ++input_line_pointer;
2741 e = get_symbol_name (&string);
2742
2743 if (strcmp (string, "nojumps") == 0)
2744 no_cond_jump_promotion = 1;
2745 else if (strcmp (string, "jumps") == 0)
2746 ;
2747 else
2748 as_bad (_("no such architecture modifier: `%s'"), string);
2749
2750 (void) restore_line_pointer (e);
2751 }
2752
2753 demand_empty_rest_of_line ();
2754 }
2755
2756 enum bfd_architecture
2757 i386_arch (void)
2758 {
2759 if (cpu_arch_isa == PROCESSOR_L1OM)
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel L1OM is 64bit ELF only"));
2764 return bfd_arch_l1om;
2765 }
2766 else if (cpu_arch_isa == PROCESSOR_K1OM)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code != CODE_64BIT)
2770 as_fatal (_("Intel K1OM is 64bit ELF only"));
2771 return bfd_arch_k1om;
2772 }
2773 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code == CODE_64BIT)
2777 as_fatal (_("Intel MCU is 32bit ELF only"));
2778 return bfd_arch_iamcu;
2779 }
2780 else
2781 return bfd_arch_i386;
2782 }
2783
2784 unsigned long
2785 i386_mach (void)
2786 {
2787 if (!strncmp (default_arch, "x86_64", 6))
2788 {
2789 if (cpu_arch_isa == PROCESSOR_L1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_mach_l1om;
2795 }
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || default_arch[6] != '\0')
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_mach_k1om;
2802 }
2803 else if (default_arch[6] == '\0')
2804 return bfd_mach_x86_64;
2805 else
2806 return bfd_mach_x64_32;
2807 }
2808 else if (!strcmp (default_arch, "i386")
2809 || !strcmp (default_arch, "iamcu"))
2810 {
2811 if (cpu_arch_isa == PROCESSOR_IAMCU)
2812 {
2813 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2814 as_fatal (_("Intel MCU is 32bit ELF only"));
2815 return bfd_mach_i386_iamcu;
2816 }
2817 else
2818 return bfd_mach_i386_i386;
2819 }
2820 else
2821 as_fatal (_("unknown architecture"));
2822 }
2823 \f
2824 void
2825 md_begin (void)
2826 {
2827 const char *hash_err;
2828
2829 /* Support pseudo prefixes like {disp32}. */
2830 lex_type ['{'] = LEX_BEGIN_NAME;
2831
2832 /* Initialize op_hash hash table. */
2833 op_hash = hash_new ();
2834
2835 {
2836 const insn_template *optab;
2837 templates *core_optab;
2838
2839 /* Setup for loop. */
2840 optab = i386_optab;
2841 core_optab = XNEW (templates);
2842 core_optab->start = optab;
2843
2844 while (1)
2845 {
2846 ++optab;
2847 if (optab->name == NULL
2848 || strcmp (optab->name, (optab - 1)->name) != 0)
2849 {
2850 /* different name --> ship out current template list;
2851 add to hash table; & begin anew. */
2852 core_optab->end = optab;
2853 hash_err = hash_insert (op_hash,
2854 (optab - 1)->name,
2855 (void *) core_optab);
2856 if (hash_err)
2857 {
2858 as_fatal (_("can't hash %s: %s"),
2859 (optab - 1)->name,
2860 hash_err);
2861 }
2862 if (optab->name == NULL)
2863 break;
2864 core_optab = XNEW (templates);
2865 core_optab->start = optab;
2866 }
2867 }
2868 }
2869
2870 /* Initialize reg_hash hash table. */
2871 reg_hash = hash_new ();
2872 {
2873 const reg_entry *regtab;
2874 unsigned int regtab_size = i386_regtab_size;
2875
2876 for (regtab = i386_regtab; regtab_size--; regtab++)
2877 {
2878 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2879 if (hash_err)
2880 as_fatal (_("can't hash %s: %s"),
2881 regtab->reg_name,
2882 hash_err);
2883 }
2884 }
2885
2886 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2887 {
2888 int c;
2889 char *p;
2890
2891 for (c = 0; c < 256; c++)
2892 {
2893 if (ISDIGIT (c))
2894 {
2895 digit_chars[c] = c;
2896 mnemonic_chars[c] = c;
2897 register_chars[c] = c;
2898 operand_chars[c] = c;
2899 }
2900 else if (ISLOWER (c))
2901 {
2902 mnemonic_chars[c] = c;
2903 register_chars[c] = c;
2904 operand_chars[c] = c;
2905 }
2906 else if (ISUPPER (c))
2907 {
2908 mnemonic_chars[c] = TOLOWER (c);
2909 register_chars[c] = mnemonic_chars[c];
2910 operand_chars[c] = c;
2911 }
2912 else if (c == '{' || c == '}')
2913 {
2914 mnemonic_chars[c] = c;
2915 operand_chars[c] = c;
2916 }
2917
2918 if (ISALPHA (c) || ISDIGIT (c))
2919 identifier_chars[c] = c;
2920 else if (c >= 128)
2921 {
2922 identifier_chars[c] = c;
2923 operand_chars[c] = c;
2924 }
2925 }
2926
2927 #ifdef LEX_AT
2928 identifier_chars['@'] = '@';
2929 #endif
2930 #ifdef LEX_QM
2931 identifier_chars['?'] = '?';
2932 operand_chars['?'] = '?';
2933 #endif
2934 digit_chars['-'] = '-';
2935 mnemonic_chars['_'] = '_';
2936 mnemonic_chars['-'] = '-';
2937 mnemonic_chars['.'] = '.';
2938 identifier_chars['_'] = '_';
2939 identifier_chars['.'] = '.';
2940
2941 for (p = operand_special_chars; *p != '\0'; p++)
2942 operand_chars[(unsigned char) *p] = *p;
2943 }
2944
2945 if (flag_code == CODE_64BIT)
2946 {
2947 #if defined (OBJ_COFF) && defined (TE_PE)
2948 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2949 ? 32 : 16);
2950 #else
2951 x86_dwarf2_return_column = 16;
2952 #endif
2953 x86_cie_data_alignment = -8;
2954 }
2955 else
2956 {
2957 x86_dwarf2_return_column = 8;
2958 x86_cie_data_alignment = -4;
2959 }
2960 }
2961
2962 void
2963 i386_print_statistics (FILE *file)
2964 {
2965 hash_print_statistics (file, "i386 opcode", op_hash);
2966 hash_print_statistics (file, "i386 register", reg_hash);
2967 }
2968 \f
2969 #ifdef DEBUG386
2970
2971 /* Debugging routines for md_assemble. */
2972 static void pte (insn_template *);
2973 static void pt (i386_operand_type);
2974 static void pe (expressionS *);
2975 static void ps (symbolS *);
2976
2977 static void
2978 pi (char *line, i386_insn *x)
2979 {
2980 unsigned int j;
2981
2982 fprintf (stdout, "%s: template ", line);
2983 pte (&x->tm);
2984 fprintf (stdout, " address: base %s index %s scale %x\n",
2985 x->base_reg ? x->base_reg->reg_name : "none",
2986 x->index_reg ? x->index_reg->reg_name : "none",
2987 x->log2_scale_factor);
2988 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2989 x->rm.mode, x->rm.reg, x->rm.regmem);
2990 fprintf (stdout, " sib: base %x index %x scale %x\n",
2991 x->sib.base, x->sib.index, x->sib.scale);
2992 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2993 (x->rex & REX_W) != 0,
2994 (x->rex & REX_R) != 0,
2995 (x->rex & REX_X) != 0,
2996 (x->rex & REX_B) != 0);
2997 for (j = 0; j < x->operands; j++)
2998 {
2999 fprintf (stdout, " #%d: ", j + 1);
3000 pt (x->types[j]);
3001 fprintf (stdout, "\n");
3002 if (x->types[j].bitfield.reg
3003 || x->types[j].bitfield.regmmx
3004 || x->types[j].bitfield.regsimd
3005 || x->types[j].bitfield.sreg2
3006 || x->types[j].bitfield.sreg3
3007 || x->types[j].bitfield.control
3008 || x->types[j].bitfield.debug
3009 || x->types[j].bitfield.test)
3010 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3011 if (operand_type_check (x->types[j], imm))
3012 pe (x->op[j].imms);
3013 if (operand_type_check (x->types[j], disp))
3014 pe (x->op[j].disps);
3015 }
3016 }
3017
3018 static void
3019 pte (insn_template *t)
3020 {
3021 unsigned int j;
3022 fprintf (stdout, " %d operands ", t->operands);
3023 fprintf (stdout, "opcode %x ", t->base_opcode);
3024 if (t->extension_opcode != None)
3025 fprintf (stdout, "ext %x ", t->extension_opcode);
3026 if (t->opcode_modifier.d)
3027 fprintf (stdout, "D");
3028 if (t->opcode_modifier.w)
3029 fprintf (stdout, "W");
3030 fprintf (stdout, "\n");
3031 for (j = 0; j < t->operands; j++)
3032 {
3033 fprintf (stdout, " #%d type ", j + 1);
3034 pt (t->operand_types[j]);
3035 fprintf (stdout, "\n");
3036 }
3037 }
3038
3039 static void
3040 pe (expressionS *e)
3041 {
3042 fprintf (stdout, " operation %d\n", e->X_op);
3043 fprintf (stdout, " add_number %ld (%lx)\n",
3044 (long) e->X_add_number, (long) e->X_add_number);
3045 if (e->X_add_symbol)
3046 {
3047 fprintf (stdout, " add_symbol ");
3048 ps (e->X_add_symbol);
3049 fprintf (stdout, "\n");
3050 }
3051 if (e->X_op_symbol)
3052 {
3053 fprintf (stdout, " op_symbol ");
3054 ps (e->X_op_symbol);
3055 fprintf (stdout, "\n");
3056 }
3057 }
3058
3059 static void
3060 ps (symbolS *s)
3061 {
3062 fprintf (stdout, "%s type %s%s",
3063 S_GET_NAME (s),
3064 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3065 segment_name (S_GET_SEGMENT (s)));
3066 }
3067
3068 static struct type_name
3069 {
3070 i386_operand_type mask;
3071 const char *name;
3072 }
3073 const type_names[] =
3074 {
3075 { OPERAND_TYPE_REG8, "r8" },
3076 { OPERAND_TYPE_REG16, "r16" },
3077 { OPERAND_TYPE_REG32, "r32" },
3078 { OPERAND_TYPE_REG64, "r64" },
3079 { OPERAND_TYPE_IMM8, "i8" },
3080 { OPERAND_TYPE_IMM8, "i8s" },
3081 { OPERAND_TYPE_IMM16, "i16" },
3082 { OPERAND_TYPE_IMM32, "i32" },
3083 { OPERAND_TYPE_IMM32S, "i32s" },
3084 { OPERAND_TYPE_IMM64, "i64" },
3085 { OPERAND_TYPE_IMM1, "i1" },
3086 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3087 { OPERAND_TYPE_DISP8, "d8" },
3088 { OPERAND_TYPE_DISP16, "d16" },
3089 { OPERAND_TYPE_DISP32, "d32" },
3090 { OPERAND_TYPE_DISP32S, "d32s" },
3091 { OPERAND_TYPE_DISP64, "d64" },
3092 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3093 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3094 { OPERAND_TYPE_CONTROL, "control reg" },
3095 { OPERAND_TYPE_TEST, "test reg" },
3096 { OPERAND_TYPE_DEBUG, "debug reg" },
3097 { OPERAND_TYPE_FLOATREG, "FReg" },
3098 { OPERAND_TYPE_FLOATACC, "FAcc" },
3099 { OPERAND_TYPE_SREG2, "SReg2" },
3100 { OPERAND_TYPE_SREG3, "SReg3" },
3101 { OPERAND_TYPE_ACC, "Acc" },
3102 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3103 { OPERAND_TYPE_REGMMX, "rMMX" },
3104 { OPERAND_TYPE_REGXMM, "rXMM" },
3105 { OPERAND_TYPE_REGYMM, "rYMM" },
3106 { OPERAND_TYPE_REGZMM, "rZMM" },
3107 { OPERAND_TYPE_REGMASK, "Mask reg" },
3108 { OPERAND_TYPE_ESSEG, "es" },
3109 };
3110
3111 static void
3112 pt (i386_operand_type t)
3113 {
3114 unsigned int j;
3115 i386_operand_type a;
3116
3117 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3118 {
3119 a = operand_type_and (t, type_names[j].mask);
3120 if (!operand_type_all_zero (&a))
3121 fprintf (stdout, "%s, ", type_names[j].name);
3122 }
3123 fflush (stdout);
3124 }
3125
3126 #endif /* DEBUG386 */
3127 \f
3128 static bfd_reloc_code_real_type
3129 reloc (unsigned int size,
3130 int pcrel,
3131 int sign,
3132 bfd_reloc_code_real_type other)
3133 {
3134 if (other != NO_RELOC)
3135 {
3136 reloc_howto_type *rel;
3137
3138 if (size == 8)
3139 switch (other)
3140 {
3141 case BFD_RELOC_X86_64_GOT32:
3142 return BFD_RELOC_X86_64_GOT64;
3143 break;
3144 case BFD_RELOC_X86_64_GOTPLT64:
3145 return BFD_RELOC_X86_64_GOTPLT64;
3146 break;
3147 case BFD_RELOC_X86_64_PLTOFF64:
3148 return BFD_RELOC_X86_64_PLTOFF64;
3149 break;
3150 case BFD_RELOC_X86_64_GOTPC32:
3151 other = BFD_RELOC_X86_64_GOTPC64;
3152 break;
3153 case BFD_RELOC_X86_64_GOTPCREL:
3154 other = BFD_RELOC_X86_64_GOTPCREL64;
3155 break;
3156 case BFD_RELOC_X86_64_TPOFF32:
3157 other = BFD_RELOC_X86_64_TPOFF64;
3158 break;
3159 case BFD_RELOC_X86_64_DTPOFF32:
3160 other = BFD_RELOC_X86_64_DTPOFF64;
3161 break;
3162 default:
3163 break;
3164 }
3165
3166 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3167 if (other == BFD_RELOC_SIZE32)
3168 {
3169 if (size == 8)
3170 other = BFD_RELOC_SIZE64;
3171 if (pcrel)
3172 {
3173 as_bad (_("there are no pc-relative size relocations"));
3174 return NO_RELOC;
3175 }
3176 }
3177 #endif
3178
3179 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3180 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3181 sign = -1;
3182
3183 rel = bfd_reloc_type_lookup (stdoutput, other);
3184 if (!rel)
3185 as_bad (_("unknown relocation (%u)"), other);
3186 else if (size != bfd_get_reloc_size (rel))
3187 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3188 bfd_get_reloc_size (rel),
3189 size);
3190 else if (pcrel && !rel->pc_relative)
3191 as_bad (_("non-pc-relative relocation for pc-relative field"));
3192 else if ((rel->complain_on_overflow == complain_overflow_signed
3193 && !sign)
3194 || (rel->complain_on_overflow == complain_overflow_unsigned
3195 && sign > 0))
3196 as_bad (_("relocated field and relocation type differ in signedness"));
3197 else
3198 return other;
3199 return NO_RELOC;
3200 }
3201
3202 if (pcrel)
3203 {
3204 if (!sign)
3205 as_bad (_("there are no unsigned pc-relative relocations"));
3206 switch (size)
3207 {
3208 case 1: return BFD_RELOC_8_PCREL;
3209 case 2: return BFD_RELOC_16_PCREL;
3210 case 4: return BFD_RELOC_32_PCREL;
3211 case 8: return BFD_RELOC_64_PCREL;
3212 }
3213 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3214 }
3215 else
3216 {
3217 if (sign > 0)
3218 switch (size)
3219 {
3220 case 4: return BFD_RELOC_X86_64_32S;
3221 }
3222 else
3223 switch (size)
3224 {
3225 case 1: return BFD_RELOC_8;
3226 case 2: return BFD_RELOC_16;
3227 case 4: return BFD_RELOC_32;
3228 case 8: return BFD_RELOC_64;
3229 }
3230 as_bad (_("cannot do %s %u byte relocation"),
3231 sign > 0 ? "signed" : "unsigned", size);
3232 }
3233
3234 return NO_RELOC;
3235 }
3236
3237 /* Here we decide which fixups can be adjusted to make them relative to
3238 the beginning of the section instead of the symbol. Basically we need
3239 to make sure that the dynamic relocations are done correctly, so in
3240 some cases we force the original symbol to be used. */
3241
3242 int
3243 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3244 {
3245 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3246 if (!IS_ELF)
3247 return 1;
3248
3249 /* Don't adjust pc-relative references to merge sections in 64-bit
3250 mode. */
3251 if (use_rela_relocations
3252 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3253 && fixP->fx_pcrel)
3254 return 0;
3255
3256 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3257 and changed later by validate_fix. */
3258 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3259 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3260 return 0;
3261
3262 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3263 for size relocations. */
3264 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3265 || fixP->fx_r_type == BFD_RELOC_SIZE64
3266 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3267 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3268 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3269 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3273 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3274 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3275 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3276 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3277 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3278 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3279 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3288 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3290 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3291 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3292 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3293 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3295 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3296 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3297 return 0;
3298 #endif
3299 return 1;
3300 }
3301
3302 static int
3303 intel_float_operand (const char *mnemonic)
3304 {
3305 /* Note that the value returned is meaningful only for opcodes with (memory)
3306 operands, hence the code here is free to improperly handle opcodes that
3307 have no operands (for better performance and smaller code). */
3308
3309 if (mnemonic[0] != 'f')
3310 return 0; /* non-math */
3311
3312 switch (mnemonic[1])
3313 {
3314 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3315 the fs segment override prefix not currently handled because no
3316 call path can make opcodes without operands get here */
3317 case 'i':
3318 return 2 /* integer op */;
3319 case 'l':
3320 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3321 return 3; /* fldcw/fldenv */
3322 break;
3323 case 'n':
3324 if (mnemonic[2] != 'o' /* fnop */)
3325 return 3; /* non-waiting control op */
3326 break;
3327 case 'r':
3328 if (mnemonic[2] == 's')
3329 return 3; /* frstor/frstpm */
3330 break;
3331 case 's':
3332 if (mnemonic[2] == 'a')
3333 return 3; /* fsave */
3334 if (mnemonic[2] == 't')
3335 {
3336 switch (mnemonic[3])
3337 {
3338 case 'c': /* fstcw */
3339 case 'd': /* fstdw */
3340 case 'e': /* fstenv */
3341 case 's': /* fsts[gw] */
3342 return 3;
3343 }
3344 }
3345 break;
3346 case 'x':
3347 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3348 return 0; /* fxsave/fxrstor are not really math ops */
3349 break;
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Build the VEX prefix. */
3356
3357 static void
3358 build_vex_prefix (const insn_template *t)
3359 {
3360 unsigned int register_specifier;
3361 unsigned int implied_prefix;
3362 unsigned int vector_length;
3363 unsigned int w;
3364
3365 /* Check register specifier. */
3366 if (i.vex.register_specifier)
3367 {
3368 register_specifier =
3369 ~register_number (i.vex.register_specifier) & 0xf;
3370 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3371 }
3372 else
3373 register_specifier = 0xf;
3374
3375 /* Use 2-byte VEX prefix by swapping destination and source operand
3376 if there are more than 1 register operand. */
3377 if (i.reg_operands > 1
3378 && i.vec_encoding != vex_encoding_vex3
3379 && i.dir_encoding == dir_encoding_default
3380 && i.operands == i.reg_operands
3381 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3382 && i.tm.opcode_modifier.vexopcode == VEX0F
3383 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3384 && i.rex == REX_B)
3385 {
3386 unsigned int xchg = i.operands - 1;
3387 union i386_op temp_op;
3388 i386_operand_type temp_type;
3389
3390 temp_type = i.types[xchg];
3391 i.types[xchg] = i.types[0];
3392 i.types[0] = temp_type;
3393 temp_op = i.op[xchg];
3394 i.op[xchg] = i.op[0];
3395 i.op[0] = temp_op;
3396
3397 gas_assert (i.rm.mode == 3);
3398
3399 i.rex = REX_R;
3400 xchg = i.rm.regmem;
3401 i.rm.regmem = i.rm.reg;
3402 i.rm.reg = xchg;
3403
3404 if (i.tm.opcode_modifier.d)
3405 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3406 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3407 else /* Use the next insn. */
3408 i.tm = t[1];
3409 }
3410
3411 if (i.tm.opcode_modifier.vex == VEXScalar)
3412 vector_length = avxscalar;
3413 else if (i.tm.opcode_modifier.vex == VEX256)
3414 vector_length = 1;
3415 else
3416 {
3417 unsigned int op;
3418
3419 /* Determine vector length from the last multi-length vector
3420 operand. */
3421 vector_length = 0;
3422 for (op = t->operands; op--;)
3423 if (t->operand_types[op].bitfield.xmmword
3424 && t->operand_types[op].bitfield.ymmword
3425 && i.types[op].bitfield.ymmword)
3426 {
3427 vector_length = 1;
3428 break;
3429 }
3430 }
3431
3432 switch ((i.tm.base_opcode >> 8) & 0xff)
3433 {
3434 case 0:
3435 implied_prefix = 0;
3436 break;
3437 case DATA_PREFIX_OPCODE:
3438 implied_prefix = 1;
3439 break;
3440 case REPE_PREFIX_OPCODE:
3441 implied_prefix = 2;
3442 break;
3443 case REPNE_PREFIX_OPCODE:
3444 implied_prefix = 3;
3445 break;
3446 default:
3447 abort ();
3448 }
3449
3450 /* Check the REX.W bit and VEXW. */
3451 if (i.tm.opcode_modifier.vexw == VEXWIG)
3452 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3453 else if (i.tm.opcode_modifier.vexw)
3454 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3455 else
3456 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3457
3458 /* Use 2-byte VEX prefix if possible. */
3459 if (w == 0
3460 && i.vec_encoding != vex_encoding_vex3
3461 && i.tm.opcode_modifier.vexopcode == VEX0F
3462 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3463 {
3464 /* 2-byte VEX prefix. */
3465 unsigned int r;
3466
3467 i.vex.length = 2;
3468 i.vex.bytes[0] = 0xc5;
3469
3470 /* Check the REX.R bit. */
3471 r = (i.rex & REX_R) ? 0 : 1;
3472 i.vex.bytes[1] = (r << 7
3473 | register_specifier << 3
3474 | vector_length << 2
3475 | implied_prefix);
3476 }
3477 else
3478 {
3479 /* 3-byte VEX prefix. */
3480 unsigned int m;
3481
3482 i.vex.length = 3;
3483
3484 switch (i.tm.opcode_modifier.vexopcode)
3485 {
3486 case VEX0F:
3487 m = 0x1;
3488 i.vex.bytes[0] = 0xc4;
3489 break;
3490 case VEX0F38:
3491 m = 0x2;
3492 i.vex.bytes[0] = 0xc4;
3493 break;
3494 case VEX0F3A:
3495 m = 0x3;
3496 i.vex.bytes[0] = 0xc4;
3497 break;
3498 case XOP08:
3499 m = 0x8;
3500 i.vex.bytes[0] = 0x8f;
3501 break;
3502 case XOP09:
3503 m = 0x9;
3504 i.vex.bytes[0] = 0x8f;
3505 break;
3506 case XOP0A:
3507 m = 0xa;
3508 i.vex.bytes[0] = 0x8f;
3509 break;
3510 default:
3511 abort ();
3512 }
3513
3514 /* The high 3 bits of the second VEX byte are 1's compliment
3515 of RXB bits from REX. */
3516 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3517
3518 i.vex.bytes[2] = (w << 7
3519 | register_specifier << 3
3520 | vector_length << 2
3521 | implied_prefix);
3522 }
3523 }
3524
3525 static INLINE bfd_boolean
3526 is_evex_encoding (const insn_template *t)
3527 {
3528 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3529 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3530 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3531 }
3532
3533 static INLINE bfd_boolean
3534 is_any_vex_encoding (const insn_template *t)
3535 {
3536 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3537 || is_evex_encoding (t);
3538 }
3539
3540 /* Build the EVEX prefix. */
3541
3542 static void
3543 build_evex_prefix (void)
3544 {
3545 unsigned int register_specifier;
3546 unsigned int implied_prefix;
3547 unsigned int m, w;
3548 rex_byte vrex_used = 0;
3549
3550 /* Check register specifier. */
3551 if (i.vex.register_specifier)
3552 {
3553 gas_assert ((i.vrex & REX_X) == 0);
3554
3555 register_specifier = i.vex.register_specifier->reg_num;
3556 if ((i.vex.register_specifier->reg_flags & RegRex))
3557 register_specifier += 8;
3558 /* The upper 16 registers are encoded in the fourth byte of the
3559 EVEX prefix. */
3560 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3561 i.vex.bytes[3] = 0x8;
3562 register_specifier = ~register_specifier & 0xf;
3563 }
3564 else
3565 {
3566 register_specifier = 0xf;
3567
3568 /* Encode upper 16 vector index register in the fourth byte of
3569 the EVEX prefix. */
3570 if (!(i.vrex & REX_X))
3571 i.vex.bytes[3] = 0x8;
3572 else
3573 vrex_used |= REX_X;
3574 }
3575
3576 switch ((i.tm.base_opcode >> 8) & 0xff)
3577 {
3578 case 0:
3579 implied_prefix = 0;
3580 break;
3581 case DATA_PREFIX_OPCODE:
3582 implied_prefix = 1;
3583 break;
3584 case REPE_PREFIX_OPCODE:
3585 implied_prefix = 2;
3586 break;
3587 case REPNE_PREFIX_OPCODE:
3588 implied_prefix = 3;
3589 break;
3590 default:
3591 abort ();
3592 }
3593
3594 /* 4 byte EVEX prefix. */
3595 i.vex.length = 4;
3596 i.vex.bytes[0] = 0x62;
3597
3598 /* mmmm bits. */
3599 switch (i.tm.opcode_modifier.vexopcode)
3600 {
3601 case VEX0F:
3602 m = 1;
3603 break;
3604 case VEX0F38:
3605 m = 2;
3606 break;
3607 case VEX0F3A:
3608 m = 3;
3609 break;
3610 default:
3611 abort ();
3612 break;
3613 }
3614
3615 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3616 bits from REX. */
3617 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3618
3619 /* The fifth bit of the second EVEX byte is 1's compliment of the
3620 REX_R bit in VREX. */
3621 if (!(i.vrex & REX_R))
3622 i.vex.bytes[1] |= 0x10;
3623 else
3624 vrex_used |= REX_R;
3625
3626 if ((i.reg_operands + i.imm_operands) == i.operands)
3627 {
3628 /* When all operands are registers, the REX_X bit in REX is not
3629 used. We reuse it to encode the upper 16 registers, which is
3630 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3631 as 1's compliment. */
3632 if ((i.vrex & REX_B))
3633 {
3634 vrex_used |= REX_B;
3635 i.vex.bytes[1] &= ~0x40;
3636 }
3637 }
3638
3639 /* EVEX instructions shouldn't need the REX prefix. */
3640 i.vrex &= ~vrex_used;
3641 gas_assert (i.vrex == 0);
3642
3643 /* Check the REX.W bit and VEXW. */
3644 if (i.tm.opcode_modifier.vexw == VEXWIG)
3645 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3646 else if (i.tm.opcode_modifier.vexw)
3647 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3648 else
3649 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3650
3651 /* Encode the U bit. */
3652 implied_prefix |= 0x4;
3653
3654 /* The third byte of the EVEX prefix. */
3655 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3656
3657 /* The fourth byte of the EVEX prefix. */
3658 /* The zeroing-masking bit. */
3659 if (i.mask && i.mask->zeroing)
3660 i.vex.bytes[3] |= 0x80;
3661
3662 /* Don't always set the broadcast bit if there is no RC. */
3663 if (!i.rounding)
3664 {
3665 /* Encode the vector length. */
3666 unsigned int vec_length;
3667
3668 if (!i.tm.opcode_modifier.evex
3669 || i.tm.opcode_modifier.evex == EVEXDYN)
3670 {
3671 unsigned int op;
3672
3673 /* Determine vector length from the last multi-length vector
3674 operand. */
3675 vec_length = 0;
3676 for (op = i.operands; op--;)
3677 if (i.tm.operand_types[op].bitfield.xmmword
3678 + i.tm.operand_types[op].bitfield.ymmword
3679 + i.tm.operand_types[op].bitfield.zmmword > 1)
3680 {
3681 if (i.types[op].bitfield.zmmword)
3682 {
3683 i.tm.opcode_modifier.evex = EVEX512;
3684 break;
3685 }
3686 else if (i.types[op].bitfield.ymmword)
3687 {
3688 i.tm.opcode_modifier.evex = EVEX256;
3689 break;
3690 }
3691 else if (i.types[op].bitfield.xmmword)
3692 {
3693 i.tm.opcode_modifier.evex = EVEX128;
3694 break;
3695 }
3696 else if (i.broadcast && (int) op == i.broadcast->operand)
3697 {
3698 switch (i.broadcast->bytes)
3699 {
3700 case 64:
3701 i.tm.opcode_modifier.evex = EVEX512;
3702 break;
3703 case 32:
3704 i.tm.opcode_modifier.evex = EVEX256;
3705 break;
3706 case 16:
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 default:
3710 abort ();
3711 }
3712 break;
3713 }
3714 }
3715
3716 if (op >= MAX_OPERANDS)
3717 abort ();
3718 }
3719
3720 switch (i.tm.opcode_modifier.evex)
3721 {
3722 case EVEXLIG: /* LL' is ignored */
3723 vec_length = evexlig << 5;
3724 break;
3725 case EVEX128:
3726 vec_length = 0 << 5;
3727 break;
3728 case EVEX256:
3729 vec_length = 1 << 5;
3730 break;
3731 case EVEX512:
3732 vec_length = 2 << 5;
3733 break;
3734 default:
3735 abort ();
3736 break;
3737 }
3738 i.vex.bytes[3] |= vec_length;
3739 /* Encode the broadcast bit. */
3740 if (i.broadcast)
3741 i.vex.bytes[3] |= 0x10;
3742 }
3743 else
3744 {
3745 if (i.rounding->type != saeonly)
3746 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3747 else
3748 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3749 }
3750
3751 if (i.mask && i.mask->mask)
3752 i.vex.bytes[3] |= i.mask->mask->reg_num;
3753 }
3754
3755 static void
3756 process_immext (void)
3757 {
3758 expressionS *exp;
3759
3760 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3761 && i.operands > 0)
3762 {
3763 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3764 with an opcode suffix which is coded in the same place as an
3765 8-bit immediate field would be.
3766 Here we check those operands and remove them afterwards. */
3767 unsigned int x;
3768
3769 for (x = 0; x < i.operands; x++)
3770 if (register_number (i.op[x].regs) != x)
3771 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3772 register_prefix, i.op[x].regs->reg_name, x + 1,
3773 i.tm.name);
3774
3775 i.operands = 0;
3776 }
3777
3778 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3779 {
3780 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3781 suffix which is coded in the same place as an 8-bit immediate
3782 field would be.
3783 Here we check those operands and remove them afterwards. */
3784 unsigned int x;
3785
3786 if (i.operands != 3)
3787 abort();
3788
3789 for (x = 0; x < 2; x++)
3790 if (register_number (i.op[x].regs) != x)
3791 goto bad_register_operand;
3792
3793 /* Check for third operand for mwaitx/monitorx insn. */
3794 if (register_number (i.op[x].regs)
3795 != (x + (i.tm.extension_opcode == 0xfb)))
3796 {
3797 bad_register_operand:
3798 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3799 register_prefix, i.op[x].regs->reg_name, x+1,
3800 i.tm.name);
3801 }
3802
3803 i.operands = 0;
3804 }
3805
3806 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3807 which is coded in the same place as an 8-bit immediate field
3808 would be. Here we fake an 8-bit immediate operand from the
3809 opcode suffix stored in tm.extension_opcode.
3810
3811 AVX instructions also use this encoding, for some of
3812 3 argument instructions. */
3813
3814 gas_assert (i.imm_operands <= 1
3815 && (i.operands <= 2
3816 || (is_any_vex_encoding (&i.tm)
3817 && i.operands <= 4)));
3818
3819 exp = &im_expressions[i.imm_operands++];
3820 i.op[i.operands].imms = exp;
3821 i.types[i.operands] = imm8;
3822 i.operands++;
3823 exp->X_op = O_constant;
3824 exp->X_add_number = i.tm.extension_opcode;
3825 i.tm.extension_opcode = None;
3826 }
3827
3828
3829 static int
3830 check_hle (void)
3831 {
3832 switch (i.tm.opcode_modifier.hleprefixok)
3833 {
3834 default:
3835 abort ();
3836 case HLEPrefixNone:
3837 as_bad (_("invalid instruction `%s' after `%s'"),
3838 i.tm.name, i.hle_prefix);
3839 return 0;
3840 case HLEPrefixLock:
3841 if (i.prefix[LOCK_PREFIX])
3842 return 1;
3843 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3844 return 0;
3845 case HLEPrefixAny:
3846 return 1;
3847 case HLEPrefixRelease:
3848 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3849 {
3850 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3851 i.tm.name);
3852 return 0;
3853 }
3854 if (i.mem_operands == 0
3855 || !operand_type_check (i.types[i.operands - 1], anymem))
3856 {
3857 as_bad (_("memory destination needed for instruction `%s'"
3858 " after `xrelease'"), i.tm.name);
3859 return 0;
3860 }
3861 return 1;
3862 }
3863 }
3864
3865 /* Try the shortest encoding by shortening operand size. */
3866
3867 static void
3868 optimize_encoding (void)
3869 {
3870 int j;
3871
3872 if (optimize_for_space
3873 && i.reg_operands == 1
3874 && i.imm_operands == 1
3875 && !i.types[1].bitfield.byte
3876 && i.op[0].imms->X_op == O_constant
3877 && fits_in_imm7 (i.op[0].imms->X_add_number)
3878 && ((i.tm.base_opcode == 0xa8
3879 && i.tm.extension_opcode == None)
3880 || (i.tm.base_opcode == 0xf6
3881 && i.tm.extension_opcode == 0x0)))
3882 {
3883 /* Optimize: -Os:
3884 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3885 */
3886 unsigned int base_regnum = i.op[1].regs->reg_num;
3887 if (flag_code == CODE_64BIT || base_regnum < 4)
3888 {
3889 i.types[1].bitfield.byte = 1;
3890 /* Ignore the suffix. */
3891 i.suffix = 0;
3892 if (base_regnum >= 4
3893 && !(i.op[1].regs->reg_flags & RegRex))
3894 {
3895 /* Handle SP, BP, SI and DI registers. */
3896 if (i.types[1].bitfield.word)
3897 j = 16;
3898 else if (i.types[1].bitfield.dword)
3899 j = 32;
3900 else
3901 j = 48;
3902 i.op[1].regs -= j;
3903 }
3904 }
3905 }
3906 else if (flag_code == CODE_64BIT
3907 && ((i.types[1].bitfield.qword
3908 && i.reg_operands == 1
3909 && i.imm_operands == 1
3910 && i.op[0].imms->X_op == O_constant
3911 && ((i.tm.base_opcode == 0xb0
3912 && i.tm.extension_opcode == None
3913 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3914 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3915 && (((i.tm.base_opcode == 0x24
3916 || i.tm.base_opcode == 0xa8)
3917 && i.tm.extension_opcode == None)
3918 || (i.tm.base_opcode == 0x80
3919 && i.tm.extension_opcode == 0x4)
3920 || ((i.tm.base_opcode == 0xf6
3921 || i.tm.base_opcode == 0xc6)
3922 && i.tm.extension_opcode == 0x0)))))
3923 || (i.types[0].bitfield.qword
3924 && ((i.reg_operands == 2
3925 && i.op[0].regs == i.op[1].regs
3926 && ((i.tm.base_opcode == 0x30
3927 || i.tm.base_opcode == 0x28)
3928 && i.tm.extension_opcode == None))
3929 || (i.reg_operands == 1
3930 && i.operands == 1
3931 && i.tm.base_opcode == 0x30
3932 && i.tm.extension_opcode == None)))))
3933 {
3934 /* Optimize: -O:
3935 andq $imm31, %r64 -> andl $imm31, %r32
3936 testq $imm31, %r64 -> testl $imm31, %r32
3937 xorq %r64, %r64 -> xorl %r32, %r32
3938 subq %r64, %r64 -> subl %r32, %r32
3939 movq $imm31, %r64 -> movl $imm31, %r32
3940 movq $imm32, %r64 -> movl $imm32, %r32
3941 */
3942 i.tm.opcode_modifier.norex64 = 1;
3943 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3944 {
3945 /* Handle
3946 movq $imm31, %r64 -> movl $imm31, %r32
3947 movq $imm32, %r64 -> movl $imm32, %r32
3948 */
3949 i.tm.operand_types[0].bitfield.imm32 = 1;
3950 i.tm.operand_types[0].bitfield.imm32s = 0;
3951 i.tm.operand_types[0].bitfield.imm64 = 0;
3952 i.types[0].bitfield.imm32 = 1;
3953 i.types[0].bitfield.imm32s = 0;
3954 i.types[0].bitfield.imm64 = 0;
3955 i.types[1].bitfield.dword = 1;
3956 i.types[1].bitfield.qword = 0;
3957 if (i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 */
3962 i.tm.base_opcode = 0xb0;
3963 i.tm.extension_opcode = None;
3964 i.tm.opcode_modifier.shortform = 1;
3965 i.tm.opcode_modifier.modrm = 0;
3966 }
3967 }
3968 }
3969 else if (optimize > 1
3970 && i.reg_operands == 3
3971 && i.op[0].regs == i.op[1].regs
3972 && !i.types[2].bitfield.xmmword
3973 && (i.tm.opcode_modifier.vex
3974 || ((!i.mask || i.mask->zeroing)
3975 && !i.rounding
3976 && is_evex_encoding (&i.tm)
3977 && (i.vec_encoding != vex_encoding_evex
3978 || i.tm.cpu_flags.bitfield.cpuavx512vl
3979 || (i.tm.operand_types[2].bitfield.zmmword
3980 && i.types[2].bitfield.ymmword)
3981 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3982 && ((i.tm.base_opcode == 0x55
3983 || i.tm.base_opcode == 0x6655
3984 || i.tm.base_opcode == 0x66df
3985 || i.tm.base_opcode == 0x57
3986 || i.tm.base_opcode == 0x6657
3987 || i.tm.base_opcode == 0x66ef
3988 || i.tm.base_opcode == 0x66f8
3989 || i.tm.base_opcode == 0x66f9
3990 || i.tm.base_opcode == 0x66fa
3991 || i.tm.base_opcode == 0x66fb
3992 || i.tm.base_opcode == 0x42
3993 || i.tm.base_opcode == 0x6642
3994 || i.tm.base_opcode == 0x47
3995 || i.tm.base_opcode == 0x6647)
3996 && i.tm.extension_opcode == None))
3997 {
3998 /* Optimize: -O2:
3999 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4000 vpsubq and vpsubw:
4001 EVEX VOP %zmmM, %zmmM, %zmmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4003 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4004 EVEX VOP %ymmM, %ymmM, %ymmN
4005 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4006 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4007 VEX VOP %ymmM, %ymmM, %ymmN
4008 -> VEX VOP %xmmM, %xmmM, %xmmN
4009 VOP, one of vpandn and vpxor:
4010 VEX VOP %ymmM, %ymmM, %ymmN
4011 -> VEX VOP %xmmM, %xmmM, %xmmN
4012 VOP, one of vpandnd and vpandnq:
4013 EVEX VOP %zmmM, %zmmM, %zmmN
4014 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4015 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4016 EVEX VOP %ymmM, %ymmM, %ymmN
4017 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4018 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4019 VOP, one of vpxord and vpxorq:
4020 EVEX VOP %zmmM, %zmmM, %zmmN
4021 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4022 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4023 EVEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4025 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4026 VOP, one of kxord and kxorq:
4027 VEX VOP %kM, %kM, %kN
4028 -> VEX kxorw %kM, %kM, %kN
4029 VOP, one of kandnd and kandnq:
4030 VEX VOP %kM, %kM, %kN
4031 -> VEX kandnw %kM, %kM, %kN
4032 */
4033 if (is_evex_encoding (&i.tm))
4034 {
4035 if (i.vec_encoding == vex_encoding_evex)
4036 i.tm.opcode_modifier.evex = EVEX128;
4037 else
4038 {
4039 i.tm.opcode_modifier.vex = VEX128;
4040 i.tm.opcode_modifier.vexw = VEXW0;
4041 i.tm.opcode_modifier.evex = 0;
4042 }
4043 }
4044 else if (i.tm.operand_types[0].bitfield.regmask)
4045 {
4046 i.tm.base_opcode &= 0xff;
4047 i.tm.opcode_modifier.vexw = VEXW0;
4048 }
4049 else
4050 i.tm.opcode_modifier.vex = VEX128;
4051
4052 if (i.tm.opcode_modifier.vex)
4053 for (j = 0; j < 3; j++)
4054 {
4055 i.types[j].bitfield.xmmword = 1;
4056 i.types[j].bitfield.ymmword = 0;
4057 }
4058 }
4059 }
4060
4061 /* This is the guts of the machine-dependent assembler. LINE points to a
4062 machine dependent instruction. This function is supposed to emit
4063 the frags/bytes it assembles to. */
4064
4065 void
4066 md_assemble (char *line)
4067 {
4068 unsigned int j;
4069 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4070 const insn_template *t;
4071
4072 /* Initialize globals. */
4073 memset (&i, '\0', sizeof (i));
4074 for (j = 0; j < MAX_OPERANDS; j++)
4075 i.reloc[j] = NO_RELOC;
4076 memset (disp_expressions, '\0', sizeof (disp_expressions));
4077 memset (im_expressions, '\0', sizeof (im_expressions));
4078 save_stack_p = save_stack;
4079
4080 /* First parse an instruction mnemonic & call i386_operand for the operands.
4081 We assume that the scrubber has arranged it so that line[0] is the valid
4082 start of a (possibly prefixed) mnemonic. */
4083
4084 line = parse_insn (line, mnemonic);
4085 if (line == NULL)
4086 return;
4087 mnem_suffix = i.suffix;
4088
4089 line = parse_operands (line, mnemonic);
4090 this_operand = -1;
4091 xfree (i.memop1_string);
4092 i.memop1_string = NULL;
4093 if (line == NULL)
4094 return;
4095
4096 /* Now we've parsed the mnemonic into a set of templates, and have the
4097 operands at hand. */
4098
4099 /* All intel opcodes have reversed operands except for "bound" and
4100 "enter". We also don't reverse intersegment "jmp" and "call"
4101 instructions with 2 immediate operands so that the immediate segment
4102 precedes the offset, as it does when in AT&T mode. */
4103 if (intel_syntax
4104 && i.operands > 1
4105 && (strcmp (mnemonic, "bound") != 0)
4106 && (strcmp (mnemonic, "invlpga") != 0)
4107 && !(operand_type_check (i.types[0], imm)
4108 && operand_type_check (i.types[1], imm)))
4109 swap_operands ();
4110
4111 /* The order of the immediates should be reversed
4112 for 2 immediates extrq and insertq instructions */
4113 if (i.imm_operands == 2
4114 && (strcmp (mnemonic, "extrq") == 0
4115 || strcmp (mnemonic, "insertq") == 0))
4116 swap_2_operands (0, 1);
4117
4118 if (i.imm_operands)
4119 optimize_imm ();
4120
4121 /* Don't optimize displacement for movabs since it only takes 64bit
4122 displacement. */
4123 if (i.disp_operands
4124 && i.disp_encoding != disp_encoding_32bit
4125 && (flag_code != CODE_64BIT
4126 || strcmp (mnemonic, "movabs") != 0))
4127 optimize_disp ();
4128
4129 /* Next, we find a template that matches the given insn,
4130 making sure the overlap of the given operands types is consistent
4131 with the template operand types. */
4132
4133 if (!(t = match_template (mnem_suffix)))
4134 return;
4135
4136 if (sse_check != check_none
4137 && !i.tm.opcode_modifier.noavx
4138 && !i.tm.cpu_flags.bitfield.cpuavx
4139 && (i.tm.cpu_flags.bitfield.cpusse
4140 || i.tm.cpu_flags.bitfield.cpusse2
4141 || i.tm.cpu_flags.bitfield.cpusse3
4142 || i.tm.cpu_flags.bitfield.cpussse3
4143 || i.tm.cpu_flags.bitfield.cpusse4_1
4144 || i.tm.cpu_flags.bitfield.cpusse4_2
4145 || i.tm.cpu_flags.bitfield.cpupclmul
4146 || i.tm.cpu_flags.bitfield.cpuaes
4147 || i.tm.cpu_flags.bitfield.cpugfni))
4148 {
4149 (sse_check == check_warning
4150 ? as_warn
4151 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4152 }
4153
4154 /* Zap movzx and movsx suffix. The suffix has been set from
4155 "word ptr" or "byte ptr" on the source operand in Intel syntax
4156 or extracted from mnemonic in AT&T syntax. But we'll use
4157 the destination register to choose the suffix for encoding. */
4158 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4159 {
4160 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4161 there is no suffix, the default will be byte extension. */
4162 if (i.reg_operands != 2
4163 && !i.suffix
4164 && intel_syntax)
4165 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4166
4167 i.suffix = 0;
4168 }
4169
4170 if (i.tm.opcode_modifier.fwait)
4171 if (!add_prefix (FWAIT_OPCODE))
4172 return;
4173
4174 /* Check if REP prefix is OK. */
4175 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4176 {
4177 as_bad (_("invalid instruction `%s' after `%s'"),
4178 i.tm.name, i.rep_prefix);
4179 return;
4180 }
4181
4182 /* Check for lock without a lockable instruction. Destination operand
4183 must be memory unless it is xchg (0x86). */
4184 if (i.prefix[LOCK_PREFIX]
4185 && (!i.tm.opcode_modifier.islockable
4186 || i.mem_operands == 0
4187 || (i.tm.base_opcode != 0x86
4188 && !operand_type_check (i.types[i.operands - 1], anymem))))
4189 {
4190 as_bad (_("expecting lockable instruction after `lock'"));
4191 return;
4192 }
4193
4194 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4195 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4196 {
4197 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4198 return;
4199 }
4200
4201 /* Check if HLE prefix is OK. */
4202 if (i.hle_prefix && !check_hle ())
4203 return;
4204
4205 /* Check BND prefix. */
4206 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4207 as_bad (_("expecting valid branch instruction after `bnd'"));
4208
4209 /* Check NOTRACK prefix. */
4210 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4211 as_bad (_("expecting indirect branch instruction after `notrack'"));
4212
4213 if (i.tm.cpu_flags.bitfield.cpumpx)
4214 {
4215 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4216 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4217 else if (flag_code != CODE_16BIT
4218 ? i.prefix[ADDR_PREFIX]
4219 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4220 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4221 }
4222
4223 /* Insert BND prefix. */
4224 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4225 {
4226 if (!i.prefix[BND_PREFIX])
4227 add_prefix (BND_PREFIX_OPCODE);
4228 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4229 {
4230 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4231 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4232 }
4233 }
4234
4235 /* Check string instruction segment overrides. */
4236 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4237 {
4238 if (!check_string ())
4239 return;
4240 i.disp_operands = 0;
4241 }
4242
4243 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4244 optimize_encoding ();
4245
4246 if (!process_suffix ())
4247 return;
4248
4249 /* Update operand types. */
4250 for (j = 0; j < i.operands; j++)
4251 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4252
4253 /* Make still unresolved immediate matches conform to size of immediate
4254 given in i.suffix. */
4255 if (!finalize_imm ())
4256 return;
4257
4258 if (i.types[0].bitfield.imm1)
4259 i.imm_operands = 0; /* kludge for shift insns. */
4260
4261 /* We only need to check those implicit registers for instructions
4262 with 3 operands or less. */
4263 if (i.operands <= 3)
4264 for (j = 0; j < i.operands; j++)
4265 if (i.types[j].bitfield.inoutportreg
4266 || i.types[j].bitfield.shiftcount
4267 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4268 i.reg_operands--;
4269
4270 /* ImmExt should be processed after SSE2AVX. */
4271 if (!i.tm.opcode_modifier.sse2avx
4272 && i.tm.opcode_modifier.immext)
4273 process_immext ();
4274
4275 /* For insns with operands there are more diddles to do to the opcode. */
4276 if (i.operands)
4277 {
4278 if (!process_operands ())
4279 return;
4280 }
4281 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4282 {
4283 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4284 as_warn (_("translating to `%sp'"), i.tm.name);
4285 }
4286
4287 if (is_any_vex_encoding (&i.tm))
4288 {
4289 if (flag_code == CODE_16BIT)
4290 {
4291 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4292 i.tm.name);
4293 return;
4294 }
4295
4296 if (i.tm.opcode_modifier.vex)
4297 build_vex_prefix (t);
4298 else
4299 build_evex_prefix ();
4300 }
4301
4302 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4303 instructions may define INT_OPCODE as well, so avoid this corner
4304 case for those instructions that use MODRM. */
4305 if (i.tm.base_opcode == INT_OPCODE
4306 && !i.tm.opcode_modifier.modrm
4307 && i.op[0].imms->X_add_number == 3)
4308 {
4309 i.tm.base_opcode = INT3_OPCODE;
4310 i.imm_operands = 0;
4311 }
4312
4313 if ((i.tm.opcode_modifier.jump
4314 || i.tm.opcode_modifier.jumpbyte
4315 || i.tm.opcode_modifier.jumpdword)
4316 && i.op[0].disps->X_op == O_constant)
4317 {
4318 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4319 the absolute address given by the constant. Since ix86 jumps and
4320 calls are pc relative, we need to generate a reloc. */
4321 i.op[0].disps->X_add_symbol = &abs_symbol;
4322 i.op[0].disps->X_op = O_symbol;
4323 }
4324
4325 if (i.tm.opcode_modifier.rex64)
4326 i.rex |= REX_W;
4327
4328 /* For 8 bit registers we need an empty rex prefix. Also if the
4329 instruction already has a prefix, we need to convert old
4330 registers to new ones. */
4331
4332 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4333 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4334 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4335 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4336 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4337 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4338 && i.rex != 0))
4339 {
4340 int x;
4341
4342 i.rex |= REX_OPCODE;
4343 for (x = 0; x < 2; x++)
4344 {
4345 /* Look for 8 bit operand that uses old registers. */
4346 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4347 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4348 {
4349 /* In case it is "hi" register, give up. */
4350 if (i.op[x].regs->reg_num > 3)
4351 as_bad (_("can't encode register '%s%s' in an "
4352 "instruction requiring REX prefix."),
4353 register_prefix, i.op[x].regs->reg_name);
4354
4355 /* Otherwise it is equivalent to the extended register.
4356 Since the encoding doesn't change this is merely
4357 cosmetic cleanup for debug output. */
4358
4359 i.op[x].regs = i.op[x].regs + 8;
4360 }
4361 }
4362 }
4363
4364 if (i.rex == 0 && i.rex_encoding)
4365 {
4366 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4367 that uses legacy register. If it is "hi" register, don't add
4368 the REX_OPCODE byte. */
4369 int x;
4370 for (x = 0; x < 2; x++)
4371 if (i.types[x].bitfield.reg
4372 && i.types[x].bitfield.byte
4373 && (i.op[x].regs->reg_flags & RegRex64) == 0
4374 && i.op[x].regs->reg_num > 3)
4375 {
4376 i.rex_encoding = FALSE;
4377 break;
4378 }
4379
4380 if (i.rex_encoding)
4381 i.rex = REX_OPCODE;
4382 }
4383
4384 if (i.rex != 0)
4385 add_prefix (REX_OPCODE | i.rex);
4386
4387 /* We are ready to output the insn. */
4388 output_insn ();
4389 }
4390
4391 static char *
4392 parse_insn (char *line, char *mnemonic)
4393 {
4394 char *l = line;
4395 char *token_start = l;
4396 char *mnem_p;
4397 int supported;
4398 const insn_template *t;
4399 char *dot_p = NULL;
4400
4401 while (1)
4402 {
4403 mnem_p = mnemonic;
4404 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4405 {
4406 if (*mnem_p == '.')
4407 dot_p = mnem_p;
4408 mnem_p++;
4409 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4410 {
4411 as_bad (_("no such instruction: `%s'"), token_start);
4412 return NULL;
4413 }
4414 l++;
4415 }
4416 if (!is_space_char (*l)
4417 && *l != END_OF_INSN
4418 && (intel_syntax
4419 || (*l != PREFIX_SEPARATOR
4420 && *l != ',')))
4421 {
4422 as_bad (_("invalid character %s in mnemonic"),
4423 output_invalid (*l));
4424 return NULL;
4425 }
4426 if (token_start == l)
4427 {
4428 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4429 as_bad (_("expecting prefix; got nothing"));
4430 else
4431 as_bad (_("expecting mnemonic; got nothing"));
4432 return NULL;
4433 }
4434
4435 /* Look up instruction (or prefix) via hash table. */
4436 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4437
4438 if (*l != END_OF_INSN
4439 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4440 && current_templates
4441 && current_templates->start->opcode_modifier.isprefix)
4442 {
4443 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4444 {
4445 as_bad ((flag_code != CODE_64BIT
4446 ? _("`%s' is only supported in 64-bit mode")
4447 : _("`%s' is not supported in 64-bit mode")),
4448 current_templates->start->name);
4449 return NULL;
4450 }
4451 /* If we are in 16-bit mode, do not allow addr16 or data16.
4452 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4453 if ((current_templates->start->opcode_modifier.size == SIZE16
4454 || current_templates->start->opcode_modifier.size == SIZE32)
4455 && flag_code != CODE_64BIT
4456 && ((current_templates->start->opcode_modifier.size == SIZE32)
4457 ^ (flag_code == CODE_16BIT)))
4458 {
4459 as_bad (_("redundant %s prefix"),
4460 current_templates->start->name);
4461 return NULL;
4462 }
4463 if (current_templates->start->opcode_length == 0)
4464 {
4465 /* Handle pseudo prefixes. */
4466 switch (current_templates->start->base_opcode)
4467 {
4468 case 0x0:
4469 /* {disp8} */
4470 i.disp_encoding = disp_encoding_8bit;
4471 break;
4472 case 0x1:
4473 /* {disp32} */
4474 i.disp_encoding = disp_encoding_32bit;
4475 break;
4476 case 0x2:
4477 /* {load} */
4478 i.dir_encoding = dir_encoding_load;
4479 break;
4480 case 0x3:
4481 /* {store} */
4482 i.dir_encoding = dir_encoding_store;
4483 break;
4484 case 0x4:
4485 /* {vex2} */
4486 i.vec_encoding = vex_encoding_vex2;
4487 break;
4488 case 0x5:
4489 /* {vex3} */
4490 i.vec_encoding = vex_encoding_vex3;
4491 break;
4492 case 0x6:
4493 /* {evex} */
4494 i.vec_encoding = vex_encoding_evex;
4495 break;
4496 case 0x7:
4497 /* {rex} */
4498 i.rex_encoding = TRUE;
4499 break;
4500 case 0x8:
4501 /* {nooptimize} */
4502 i.no_optimize = TRUE;
4503 break;
4504 default:
4505 abort ();
4506 }
4507 }
4508 else
4509 {
4510 /* Add prefix, checking for repeated prefixes. */
4511 switch (add_prefix (current_templates->start->base_opcode))
4512 {
4513 case PREFIX_EXIST:
4514 return NULL;
4515 case PREFIX_DS:
4516 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4517 i.notrack_prefix = current_templates->start->name;
4518 break;
4519 case PREFIX_REP:
4520 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4521 i.hle_prefix = current_templates->start->name;
4522 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4523 i.bnd_prefix = current_templates->start->name;
4524 else
4525 i.rep_prefix = current_templates->start->name;
4526 break;
4527 default:
4528 break;
4529 }
4530 }
4531 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4532 token_start = ++l;
4533 }
4534 else
4535 break;
4536 }
4537
4538 if (!current_templates)
4539 {
4540 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4541 Check if we should swap operand or force 32bit displacement in
4542 encoding. */
4543 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4544 i.dir_encoding = dir_encoding_swap;
4545 else if (mnem_p - 3 == dot_p
4546 && dot_p[1] == 'd'
4547 && dot_p[2] == '8')
4548 i.disp_encoding = disp_encoding_8bit;
4549 else if (mnem_p - 4 == dot_p
4550 && dot_p[1] == 'd'
4551 && dot_p[2] == '3'
4552 && dot_p[3] == '2')
4553 i.disp_encoding = disp_encoding_32bit;
4554 else
4555 goto check_suffix;
4556 mnem_p = dot_p;
4557 *dot_p = '\0';
4558 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4559 }
4560
4561 if (!current_templates)
4562 {
4563 check_suffix:
4564 if (mnem_p > mnemonic)
4565 {
4566 /* See if we can get a match by trimming off a suffix. */
4567 switch (mnem_p[-1])
4568 {
4569 case WORD_MNEM_SUFFIX:
4570 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4571 i.suffix = SHORT_MNEM_SUFFIX;
4572 else
4573 /* Fall through. */
4574 case BYTE_MNEM_SUFFIX:
4575 case QWORD_MNEM_SUFFIX:
4576 i.suffix = mnem_p[-1];
4577 mnem_p[-1] = '\0';
4578 current_templates = (const templates *) hash_find (op_hash,
4579 mnemonic);
4580 break;
4581 case SHORT_MNEM_SUFFIX:
4582 case LONG_MNEM_SUFFIX:
4583 if (!intel_syntax)
4584 {
4585 i.suffix = mnem_p[-1];
4586 mnem_p[-1] = '\0';
4587 current_templates = (const templates *) hash_find (op_hash,
4588 mnemonic);
4589 }
4590 break;
4591
4592 /* Intel Syntax. */
4593 case 'd':
4594 if (intel_syntax)
4595 {
4596 if (intel_float_operand (mnemonic) == 1)
4597 i.suffix = SHORT_MNEM_SUFFIX;
4598 else
4599 i.suffix = LONG_MNEM_SUFFIX;
4600 mnem_p[-1] = '\0';
4601 current_templates = (const templates *) hash_find (op_hash,
4602 mnemonic);
4603 }
4604 break;
4605 }
4606 }
4607
4608 if (!current_templates)
4609 {
4610 as_bad (_("no such instruction: `%s'"), token_start);
4611 return NULL;
4612 }
4613 }
4614
4615 if (current_templates->start->opcode_modifier.jump
4616 || current_templates->start->opcode_modifier.jumpbyte)
4617 {
4618 /* Check for a branch hint. We allow ",pt" and ",pn" for
4619 predict taken and predict not taken respectively.
4620 I'm not sure that branch hints actually do anything on loop
4621 and jcxz insns (JumpByte) for current Pentium4 chips. They
4622 may work in the future and it doesn't hurt to accept them
4623 now. */
4624 if (l[0] == ',' && l[1] == 'p')
4625 {
4626 if (l[2] == 't')
4627 {
4628 if (!add_prefix (DS_PREFIX_OPCODE))
4629 return NULL;
4630 l += 3;
4631 }
4632 else if (l[2] == 'n')
4633 {
4634 if (!add_prefix (CS_PREFIX_OPCODE))
4635 return NULL;
4636 l += 3;
4637 }
4638 }
4639 }
4640 /* Any other comma loses. */
4641 if (*l == ',')
4642 {
4643 as_bad (_("invalid character %s in mnemonic"),
4644 output_invalid (*l));
4645 return NULL;
4646 }
4647
4648 /* Check if instruction is supported on specified architecture. */
4649 supported = 0;
4650 for (t = current_templates->start; t < current_templates->end; ++t)
4651 {
4652 supported |= cpu_flags_match (t);
4653 if (supported == CPU_FLAGS_PERFECT_MATCH)
4654 {
4655 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4656 as_warn (_("use .code16 to ensure correct addressing mode"));
4657
4658 return l;
4659 }
4660 }
4661
4662 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4663 as_bad (flag_code == CODE_64BIT
4664 ? _("`%s' is not supported in 64-bit mode")
4665 : _("`%s' is only supported in 64-bit mode"),
4666 current_templates->start->name);
4667 else
4668 as_bad (_("`%s' is not supported on `%s%s'"),
4669 current_templates->start->name,
4670 cpu_arch_name ? cpu_arch_name : default_arch,
4671 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4672
4673 return NULL;
4674 }
4675
4676 static char *
4677 parse_operands (char *l, const char *mnemonic)
4678 {
4679 char *token_start;
4680
4681 /* 1 if operand is pending after ','. */
4682 unsigned int expecting_operand = 0;
4683
4684 /* Non-zero if operand parens not balanced. */
4685 unsigned int paren_not_balanced;
4686
4687 while (*l != END_OF_INSN)
4688 {
4689 /* Skip optional white space before operand. */
4690 if (is_space_char (*l))
4691 ++l;
4692 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4693 {
4694 as_bad (_("invalid character %s before operand %d"),
4695 output_invalid (*l),
4696 i.operands + 1);
4697 return NULL;
4698 }
4699 token_start = l; /* After white space. */
4700 paren_not_balanced = 0;
4701 while (paren_not_balanced || *l != ',')
4702 {
4703 if (*l == END_OF_INSN)
4704 {
4705 if (paren_not_balanced)
4706 {
4707 if (!intel_syntax)
4708 as_bad (_("unbalanced parenthesis in operand %d."),
4709 i.operands + 1);
4710 else
4711 as_bad (_("unbalanced brackets in operand %d."),
4712 i.operands + 1);
4713 return NULL;
4714 }
4715 else
4716 break; /* we are done */
4717 }
4718 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4719 {
4720 as_bad (_("invalid character %s in operand %d"),
4721 output_invalid (*l),
4722 i.operands + 1);
4723 return NULL;
4724 }
4725 if (!intel_syntax)
4726 {
4727 if (*l == '(')
4728 ++paren_not_balanced;
4729 if (*l == ')')
4730 --paren_not_balanced;
4731 }
4732 else
4733 {
4734 if (*l == '[')
4735 ++paren_not_balanced;
4736 if (*l == ']')
4737 --paren_not_balanced;
4738 }
4739 l++;
4740 }
4741 if (l != token_start)
4742 { /* Yes, we've read in another operand. */
4743 unsigned int operand_ok;
4744 this_operand = i.operands++;
4745 if (i.operands > MAX_OPERANDS)
4746 {
4747 as_bad (_("spurious operands; (%d operands/instruction max)"),
4748 MAX_OPERANDS);
4749 return NULL;
4750 }
4751 i.types[this_operand].bitfield.unspecified = 1;
4752 /* Now parse operand adding info to 'i' as we go along. */
4753 END_STRING_AND_SAVE (l);
4754
4755 if (i.mem_operands > 1)
4756 {
4757 as_bad (_("too many memory references for `%s'"),
4758 mnemonic);
4759 return 0;
4760 }
4761
4762 if (intel_syntax)
4763 operand_ok =
4764 i386_intel_operand (token_start,
4765 intel_float_operand (mnemonic));
4766 else
4767 operand_ok = i386_att_operand (token_start);
4768
4769 RESTORE_END_STRING (l);
4770 if (!operand_ok)
4771 return NULL;
4772 }
4773 else
4774 {
4775 if (expecting_operand)
4776 {
4777 expecting_operand_after_comma:
4778 as_bad (_("expecting operand after ','; got nothing"));
4779 return NULL;
4780 }
4781 if (*l == ',')
4782 {
4783 as_bad (_("expecting operand before ','; got nothing"));
4784 return NULL;
4785 }
4786 }
4787
4788 /* Now *l must be either ',' or END_OF_INSN. */
4789 if (*l == ',')
4790 {
4791 if (*++l == END_OF_INSN)
4792 {
4793 /* Just skip it, if it's \n complain. */
4794 goto expecting_operand_after_comma;
4795 }
4796 expecting_operand = 1;
4797 }
4798 }
4799 return l;
4800 }
4801
4802 static void
4803 swap_2_operands (int xchg1, int xchg2)
4804 {
4805 union i386_op temp_op;
4806 i386_operand_type temp_type;
4807 unsigned int temp_flags;
4808 enum bfd_reloc_code_real temp_reloc;
4809
4810 temp_type = i.types[xchg2];
4811 i.types[xchg2] = i.types[xchg1];
4812 i.types[xchg1] = temp_type;
4813
4814 temp_flags = i.flags[xchg2];
4815 i.flags[xchg2] = i.flags[xchg1];
4816 i.flags[xchg1] = temp_flags;
4817
4818 temp_op = i.op[xchg2];
4819 i.op[xchg2] = i.op[xchg1];
4820 i.op[xchg1] = temp_op;
4821
4822 temp_reloc = i.reloc[xchg2];
4823 i.reloc[xchg2] = i.reloc[xchg1];
4824 i.reloc[xchg1] = temp_reloc;
4825
4826 if (i.mask)
4827 {
4828 if (i.mask->operand == xchg1)
4829 i.mask->operand = xchg2;
4830 else if (i.mask->operand == xchg2)
4831 i.mask->operand = xchg1;
4832 }
4833 if (i.broadcast)
4834 {
4835 if (i.broadcast->operand == xchg1)
4836 i.broadcast->operand = xchg2;
4837 else if (i.broadcast->operand == xchg2)
4838 i.broadcast->operand = xchg1;
4839 }
4840 if (i.rounding)
4841 {
4842 if (i.rounding->operand == xchg1)
4843 i.rounding->operand = xchg2;
4844 else if (i.rounding->operand == xchg2)
4845 i.rounding->operand = xchg1;
4846 }
4847 }
4848
4849 static void
4850 swap_operands (void)
4851 {
4852 switch (i.operands)
4853 {
4854 case 5:
4855 case 4:
4856 swap_2_operands (1, i.operands - 2);
4857 /* Fall through. */
4858 case 3:
4859 case 2:
4860 swap_2_operands (0, i.operands - 1);
4861 break;
4862 default:
4863 abort ();
4864 }
4865
4866 if (i.mem_operands == 2)
4867 {
4868 const seg_entry *temp_seg;
4869 temp_seg = i.seg[0];
4870 i.seg[0] = i.seg[1];
4871 i.seg[1] = temp_seg;
4872 }
4873 }
4874
4875 /* Try to ensure constant immediates are represented in the smallest
4876 opcode possible. */
4877 static void
4878 optimize_imm (void)
4879 {
4880 char guess_suffix = 0;
4881 int op;
4882
4883 if (i.suffix)
4884 guess_suffix = i.suffix;
4885 else if (i.reg_operands)
4886 {
4887 /* Figure out a suffix from the last register operand specified.
4888 We can't do this properly yet, ie. excluding InOutPortReg,
4889 but the following works for instructions with immediates.
4890 In any case, we can't set i.suffix yet. */
4891 for (op = i.operands; --op >= 0;)
4892 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4893 {
4894 guess_suffix = BYTE_MNEM_SUFFIX;
4895 break;
4896 }
4897 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4898 {
4899 guess_suffix = WORD_MNEM_SUFFIX;
4900 break;
4901 }
4902 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4903 {
4904 guess_suffix = LONG_MNEM_SUFFIX;
4905 break;
4906 }
4907 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4908 {
4909 guess_suffix = QWORD_MNEM_SUFFIX;
4910 break;
4911 }
4912 }
4913 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4914 guess_suffix = WORD_MNEM_SUFFIX;
4915
4916 for (op = i.operands; --op >= 0;)
4917 if (operand_type_check (i.types[op], imm))
4918 {
4919 switch (i.op[op].imms->X_op)
4920 {
4921 case O_constant:
4922 /* If a suffix is given, this operand may be shortened. */
4923 switch (guess_suffix)
4924 {
4925 case LONG_MNEM_SUFFIX:
4926 i.types[op].bitfield.imm32 = 1;
4927 i.types[op].bitfield.imm64 = 1;
4928 break;
4929 case WORD_MNEM_SUFFIX:
4930 i.types[op].bitfield.imm16 = 1;
4931 i.types[op].bitfield.imm32 = 1;
4932 i.types[op].bitfield.imm32s = 1;
4933 i.types[op].bitfield.imm64 = 1;
4934 break;
4935 case BYTE_MNEM_SUFFIX:
4936 i.types[op].bitfield.imm8 = 1;
4937 i.types[op].bitfield.imm8s = 1;
4938 i.types[op].bitfield.imm16 = 1;
4939 i.types[op].bitfield.imm32 = 1;
4940 i.types[op].bitfield.imm32s = 1;
4941 i.types[op].bitfield.imm64 = 1;
4942 break;
4943 }
4944
4945 /* If this operand is at most 16 bits, convert it
4946 to a signed 16 bit number before trying to see
4947 whether it will fit in an even smaller size.
4948 This allows a 16-bit operand such as $0xffe0 to
4949 be recognised as within Imm8S range. */
4950 if ((i.types[op].bitfield.imm16)
4951 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4952 {
4953 i.op[op].imms->X_add_number =
4954 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4955 }
4956 #ifdef BFD64
4957 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4958 if ((i.types[op].bitfield.imm32)
4959 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4960 == 0))
4961 {
4962 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4963 ^ ((offsetT) 1 << 31))
4964 - ((offsetT) 1 << 31));
4965 }
4966 #endif
4967 i.types[op]
4968 = operand_type_or (i.types[op],
4969 smallest_imm_type (i.op[op].imms->X_add_number));
4970
4971 /* We must avoid matching of Imm32 templates when 64bit
4972 only immediate is available. */
4973 if (guess_suffix == QWORD_MNEM_SUFFIX)
4974 i.types[op].bitfield.imm32 = 0;
4975 break;
4976
4977 case O_absent:
4978 case O_register:
4979 abort ();
4980
4981 /* Symbols and expressions. */
4982 default:
4983 /* Convert symbolic operand to proper sizes for matching, but don't
4984 prevent matching a set of insns that only supports sizes other
4985 than those matching the insn suffix. */
4986 {
4987 i386_operand_type mask, allowed;
4988 const insn_template *t;
4989
4990 operand_type_set (&mask, 0);
4991 operand_type_set (&allowed, 0);
4992
4993 for (t = current_templates->start;
4994 t < current_templates->end;
4995 ++t)
4996 allowed = operand_type_or (allowed,
4997 t->operand_types[op]);
4998 switch (guess_suffix)
4999 {
5000 case QWORD_MNEM_SUFFIX:
5001 mask.bitfield.imm64 = 1;
5002 mask.bitfield.imm32s = 1;
5003 break;
5004 case LONG_MNEM_SUFFIX:
5005 mask.bitfield.imm32 = 1;
5006 break;
5007 case WORD_MNEM_SUFFIX:
5008 mask.bitfield.imm16 = 1;
5009 break;
5010 case BYTE_MNEM_SUFFIX:
5011 mask.bitfield.imm8 = 1;
5012 break;
5013 default:
5014 break;
5015 }
5016 allowed = operand_type_and (mask, allowed);
5017 if (!operand_type_all_zero (&allowed))
5018 i.types[op] = operand_type_and (i.types[op], mask);
5019 }
5020 break;
5021 }
5022 }
5023 }
5024
5025 /* Try to use the smallest displacement type too. */
5026 static void
5027 optimize_disp (void)
5028 {
5029 int op;
5030
5031 for (op = i.operands; --op >= 0;)
5032 if (operand_type_check (i.types[op], disp))
5033 {
5034 if (i.op[op].disps->X_op == O_constant)
5035 {
5036 offsetT op_disp = i.op[op].disps->X_add_number;
5037
5038 if (i.types[op].bitfield.disp16
5039 && (op_disp & ~(offsetT) 0xffff) == 0)
5040 {
5041 /* If this operand is at most 16 bits, convert
5042 to a signed 16 bit number and don't use 64bit
5043 displacement. */
5044 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5045 i.types[op].bitfield.disp64 = 0;
5046 }
5047 #ifdef BFD64
5048 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5049 if (i.types[op].bitfield.disp32
5050 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5051 {
5052 /* If this operand is at most 32 bits, convert
5053 to a signed 32 bit number and don't use 64bit
5054 displacement. */
5055 op_disp &= (((offsetT) 2 << 31) - 1);
5056 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5057 i.types[op].bitfield.disp64 = 0;
5058 }
5059 #endif
5060 if (!op_disp && i.types[op].bitfield.baseindex)
5061 {
5062 i.types[op].bitfield.disp8 = 0;
5063 i.types[op].bitfield.disp16 = 0;
5064 i.types[op].bitfield.disp32 = 0;
5065 i.types[op].bitfield.disp32s = 0;
5066 i.types[op].bitfield.disp64 = 0;
5067 i.op[op].disps = 0;
5068 i.disp_operands--;
5069 }
5070 else if (flag_code == CODE_64BIT)
5071 {
5072 if (fits_in_signed_long (op_disp))
5073 {
5074 i.types[op].bitfield.disp64 = 0;
5075 i.types[op].bitfield.disp32s = 1;
5076 }
5077 if (i.prefix[ADDR_PREFIX]
5078 && fits_in_unsigned_long (op_disp))
5079 i.types[op].bitfield.disp32 = 1;
5080 }
5081 if ((i.types[op].bitfield.disp32
5082 || i.types[op].bitfield.disp32s
5083 || i.types[op].bitfield.disp16)
5084 && fits_in_disp8 (op_disp))
5085 i.types[op].bitfield.disp8 = 1;
5086 }
5087 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5088 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5089 {
5090 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5091 i.op[op].disps, 0, i.reloc[op]);
5092 i.types[op].bitfield.disp8 = 0;
5093 i.types[op].bitfield.disp16 = 0;
5094 i.types[op].bitfield.disp32 = 0;
5095 i.types[op].bitfield.disp32s = 0;
5096 i.types[op].bitfield.disp64 = 0;
5097 }
5098 else
5099 /* We only support 64bit displacement on constants. */
5100 i.types[op].bitfield.disp64 = 0;
5101 }
5102 }
5103
5104 /* Return 1 if there is a match in broadcast bytes between operand
5105 GIVEN and instruction template T. */
5106
5107 static INLINE int
5108 match_broadcast_size (const insn_template *t, unsigned int given)
5109 {
5110 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5111 && i.types[given].bitfield.byte)
5112 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5113 && i.types[given].bitfield.word)
5114 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5115 && i.types[given].bitfield.dword)
5116 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5117 && i.types[given].bitfield.qword));
5118 }
5119
5120 /* Check if operands are valid for the instruction. */
5121
5122 static int
5123 check_VecOperands (const insn_template *t)
5124 {
5125 unsigned int op;
5126 i386_cpu_flags cpu;
5127 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5128
5129 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5130 any one operand are implicity requiring AVX512VL support if the actual
5131 operand size is YMMword or XMMword. Since this function runs after
5132 template matching, there's no need to check for YMMword/XMMword in
5133 the template. */
5134 cpu = cpu_flags_and (t->cpu_flags, avx512);
5135 if (!cpu_flags_all_zero (&cpu)
5136 && !t->cpu_flags.bitfield.cpuavx512vl
5137 && !cpu_arch_flags.bitfield.cpuavx512vl)
5138 {
5139 for (op = 0; op < t->operands; ++op)
5140 {
5141 if (t->operand_types[op].bitfield.zmmword
5142 && (i.types[op].bitfield.ymmword
5143 || i.types[op].bitfield.xmmword))
5144 {
5145 i.error = unsupported;
5146 return 1;
5147 }
5148 }
5149 }
5150
5151 /* Without VSIB byte, we can't have a vector register for index. */
5152 if (!t->opcode_modifier.vecsib
5153 && i.index_reg
5154 && (i.index_reg->reg_type.bitfield.xmmword
5155 || i.index_reg->reg_type.bitfield.ymmword
5156 || i.index_reg->reg_type.bitfield.zmmword))
5157 {
5158 i.error = unsupported_vector_index_register;
5159 return 1;
5160 }
5161
5162 /* Check if default mask is allowed. */
5163 if (t->opcode_modifier.nodefmask
5164 && (!i.mask || i.mask->mask->reg_num == 0))
5165 {
5166 i.error = no_default_mask;
5167 return 1;
5168 }
5169
5170 /* For VSIB byte, we need a vector register for index, and all vector
5171 registers must be distinct. */
5172 if (t->opcode_modifier.vecsib)
5173 {
5174 if (!i.index_reg
5175 || !((t->opcode_modifier.vecsib == VecSIB128
5176 && i.index_reg->reg_type.bitfield.xmmword)
5177 || (t->opcode_modifier.vecsib == VecSIB256
5178 && i.index_reg->reg_type.bitfield.ymmword)
5179 || (t->opcode_modifier.vecsib == VecSIB512
5180 && i.index_reg->reg_type.bitfield.zmmword)))
5181 {
5182 i.error = invalid_vsib_address;
5183 return 1;
5184 }
5185
5186 gas_assert (i.reg_operands == 2 || i.mask);
5187 if (i.reg_operands == 2 && !i.mask)
5188 {
5189 gas_assert (i.types[0].bitfield.regsimd);
5190 gas_assert (i.types[0].bitfield.xmmword
5191 || i.types[0].bitfield.ymmword);
5192 gas_assert (i.types[2].bitfield.regsimd);
5193 gas_assert (i.types[2].bitfield.xmmword
5194 || i.types[2].bitfield.ymmword);
5195 if (operand_check == check_none)
5196 return 0;
5197 if (register_number (i.op[0].regs)
5198 != register_number (i.index_reg)
5199 && register_number (i.op[2].regs)
5200 != register_number (i.index_reg)
5201 && register_number (i.op[0].regs)
5202 != register_number (i.op[2].regs))
5203 return 0;
5204 if (operand_check == check_error)
5205 {
5206 i.error = invalid_vector_register_set;
5207 return 1;
5208 }
5209 as_warn (_("mask, index, and destination registers should be distinct"));
5210 }
5211 else if (i.reg_operands == 1 && i.mask)
5212 {
5213 if (i.types[1].bitfield.regsimd
5214 && (i.types[1].bitfield.xmmword
5215 || i.types[1].bitfield.ymmword
5216 || i.types[1].bitfield.zmmword)
5217 && (register_number (i.op[1].regs)
5218 == register_number (i.index_reg)))
5219 {
5220 if (operand_check == check_error)
5221 {
5222 i.error = invalid_vector_register_set;
5223 return 1;
5224 }
5225 if (operand_check != check_none)
5226 as_warn (_("index and destination registers should be distinct"));
5227 }
5228 }
5229 }
5230
5231 /* Check if broadcast is supported by the instruction and is applied
5232 to the memory operand. */
5233 if (i.broadcast)
5234 {
5235 i386_operand_type type, overlap;
5236
5237 /* Check if specified broadcast is supported in this instruction,
5238 and its broadcast bytes match the memory operand. */
5239 op = i.broadcast->operand;
5240 if (!t->opcode_modifier.broadcast
5241 || !(i.flags[op] & Operand_Mem)
5242 || (!i.types[op].bitfield.unspecified
5243 && !match_broadcast_size (t, op)))
5244 {
5245 bad_broadcast:
5246 i.error = unsupported_broadcast;
5247 return 1;
5248 }
5249
5250 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5251 * i.broadcast->type);
5252 operand_type_set (&type, 0);
5253 switch (i.broadcast->bytes)
5254 {
5255 case 2:
5256 type.bitfield.word = 1;
5257 break;
5258 case 4:
5259 type.bitfield.dword = 1;
5260 break;
5261 case 8:
5262 type.bitfield.qword = 1;
5263 break;
5264 case 16:
5265 type.bitfield.xmmword = 1;
5266 break;
5267 case 32:
5268 type.bitfield.ymmword = 1;
5269 break;
5270 case 64:
5271 type.bitfield.zmmword = 1;
5272 break;
5273 default:
5274 goto bad_broadcast;
5275 }
5276
5277 overlap = operand_type_and (type, t->operand_types[op]);
5278 if (operand_type_all_zero (&overlap))
5279 goto bad_broadcast;
5280
5281 if (t->opcode_modifier.checkregsize)
5282 {
5283 unsigned int j;
5284
5285 type.bitfield.baseindex = 1;
5286 for (j = 0; j < i.operands; ++j)
5287 {
5288 if (j != op
5289 && !operand_type_register_match(i.types[j],
5290 t->operand_types[j],
5291 type,
5292 t->operand_types[op]))
5293 goto bad_broadcast;
5294 }
5295 }
5296 }
5297 /* If broadcast is supported in this instruction, we need to check if
5298 operand of one-element size isn't specified without broadcast. */
5299 else if (t->opcode_modifier.broadcast && i.mem_operands)
5300 {
5301 /* Find memory operand. */
5302 for (op = 0; op < i.operands; op++)
5303 if (operand_type_check (i.types[op], anymem))
5304 break;
5305 gas_assert (op < i.operands);
5306 /* Check size of the memory operand. */
5307 if (match_broadcast_size (t, op))
5308 {
5309 i.error = broadcast_needed;
5310 return 1;
5311 }
5312 }
5313 else
5314 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5315
5316 /* Check if requested masking is supported. */
5317 if (i.mask)
5318 {
5319 switch (t->opcode_modifier.masking)
5320 {
5321 case BOTH_MASKING:
5322 break;
5323 case MERGING_MASKING:
5324 if (i.mask->zeroing)
5325 {
5326 case 0:
5327 i.error = unsupported_masking;
5328 return 1;
5329 }
5330 break;
5331 case DYNAMIC_MASKING:
5332 /* Memory destinations allow only merging masking. */
5333 if (i.mask->zeroing && i.mem_operands)
5334 {
5335 /* Find memory operand. */
5336 for (op = 0; op < i.operands; op++)
5337 if (i.flags[op] & Operand_Mem)
5338 break;
5339 gas_assert (op < i.operands);
5340 if (op == i.operands - 1)
5341 {
5342 i.error = unsupported_masking;
5343 return 1;
5344 }
5345 }
5346 break;
5347 default:
5348 abort ();
5349 }
5350 }
5351
5352 /* Check if masking is applied to dest operand. */
5353 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5354 {
5355 i.error = mask_not_on_destination;
5356 return 1;
5357 }
5358
5359 /* Check RC/SAE. */
5360 if (i.rounding)
5361 {
5362 if ((i.rounding->type != saeonly
5363 && !t->opcode_modifier.staticrounding)
5364 || (i.rounding->type == saeonly
5365 && (t->opcode_modifier.staticrounding
5366 || !t->opcode_modifier.sae)))
5367 {
5368 i.error = unsupported_rc_sae;
5369 return 1;
5370 }
5371 /* If the instruction has several immediate operands and one of
5372 them is rounding, the rounding operand should be the last
5373 immediate operand. */
5374 if (i.imm_operands > 1
5375 && i.rounding->operand != (int) (i.imm_operands - 1))
5376 {
5377 i.error = rc_sae_operand_not_last_imm;
5378 return 1;
5379 }
5380 }
5381
5382 /* Check vector Disp8 operand. */
5383 if (t->opcode_modifier.disp8memshift
5384 && i.disp_encoding != disp_encoding_32bit)
5385 {
5386 if (i.broadcast)
5387 i.memshift = t->opcode_modifier.broadcast - 1;
5388 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5389 i.memshift = t->opcode_modifier.disp8memshift;
5390 else
5391 {
5392 const i386_operand_type *type = NULL;
5393
5394 i.memshift = 0;
5395 for (op = 0; op < i.operands; op++)
5396 if (operand_type_check (i.types[op], anymem))
5397 {
5398 if (t->opcode_modifier.evex == EVEXLIG)
5399 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5400 else if (t->operand_types[op].bitfield.xmmword
5401 + t->operand_types[op].bitfield.ymmword
5402 + t->operand_types[op].bitfield.zmmword <= 1)
5403 type = &t->operand_types[op];
5404 else if (!i.types[op].bitfield.unspecified)
5405 type = &i.types[op];
5406 }
5407 else if (i.types[op].bitfield.regsimd
5408 && t->opcode_modifier.evex != EVEXLIG)
5409 {
5410 if (i.types[op].bitfield.zmmword)
5411 i.memshift = 6;
5412 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5413 i.memshift = 5;
5414 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5415 i.memshift = 4;
5416 }
5417
5418 if (type)
5419 {
5420 if (type->bitfield.zmmword)
5421 i.memshift = 6;
5422 else if (type->bitfield.ymmword)
5423 i.memshift = 5;
5424 else if (type->bitfield.xmmword)
5425 i.memshift = 4;
5426 }
5427
5428 /* For the check in fits_in_disp8(). */
5429 if (i.memshift == 0)
5430 i.memshift = -1;
5431 }
5432
5433 for (op = 0; op < i.operands; op++)
5434 if (operand_type_check (i.types[op], disp)
5435 && i.op[op].disps->X_op == O_constant)
5436 {
5437 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5438 {
5439 i.types[op].bitfield.disp8 = 1;
5440 return 0;
5441 }
5442 i.types[op].bitfield.disp8 = 0;
5443 }
5444 }
5445
5446 i.memshift = 0;
5447
5448 return 0;
5449 }
5450
5451 /* Check if operands are valid for the instruction. Update VEX
5452 operand types. */
5453
5454 static int
5455 VEX_check_operands (const insn_template *t)
5456 {
5457 if (i.vec_encoding == vex_encoding_evex)
5458 {
5459 /* This instruction must be encoded with EVEX prefix. */
5460 if (!is_evex_encoding (t))
5461 {
5462 i.error = unsupported;
5463 return 1;
5464 }
5465 return 0;
5466 }
5467
5468 if (!t->opcode_modifier.vex)
5469 {
5470 /* This instruction template doesn't have VEX prefix. */
5471 if (i.vec_encoding != vex_encoding_default)
5472 {
5473 i.error = unsupported;
5474 return 1;
5475 }
5476 return 0;
5477 }
5478
5479 /* Only check VEX_Imm4, which must be the first operand. */
5480 if (t->operand_types[0].bitfield.vec_imm4)
5481 {
5482 if (i.op[0].imms->X_op != O_constant
5483 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5484 {
5485 i.error = bad_imm4;
5486 return 1;
5487 }
5488
5489 /* Turn off Imm8 so that update_imm won't complain. */
5490 i.types[0] = vec_imm4;
5491 }
5492
5493 return 0;
5494 }
5495
5496 static const insn_template *
5497 match_template (char mnem_suffix)
5498 {
5499 /* Points to template once we've found it. */
5500 const insn_template *t;
5501 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5502 i386_operand_type overlap4;
5503 unsigned int found_reverse_match;
5504 i386_opcode_modifier suffix_check, mnemsuf_check;
5505 i386_operand_type operand_types [MAX_OPERANDS];
5506 int addr_prefix_disp;
5507 unsigned int j;
5508 unsigned int found_cpu_match, size_match;
5509 unsigned int check_register;
5510 enum i386_error specific_error = 0;
5511
5512 #if MAX_OPERANDS != 5
5513 # error "MAX_OPERANDS must be 5."
5514 #endif
5515
5516 found_reverse_match = 0;
5517 addr_prefix_disp = -1;
5518
5519 memset (&suffix_check, 0, sizeof (suffix_check));
5520 if (intel_syntax && i.broadcast)
5521 /* nothing */;
5522 else if (i.suffix == BYTE_MNEM_SUFFIX)
5523 suffix_check.no_bsuf = 1;
5524 else if (i.suffix == WORD_MNEM_SUFFIX)
5525 suffix_check.no_wsuf = 1;
5526 else if (i.suffix == SHORT_MNEM_SUFFIX)
5527 suffix_check.no_ssuf = 1;
5528 else if (i.suffix == LONG_MNEM_SUFFIX)
5529 suffix_check.no_lsuf = 1;
5530 else if (i.suffix == QWORD_MNEM_SUFFIX)
5531 suffix_check.no_qsuf = 1;
5532 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5533 suffix_check.no_ldsuf = 1;
5534
5535 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5536 if (intel_syntax)
5537 {
5538 switch (mnem_suffix)
5539 {
5540 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5541 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5542 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5543 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5544 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5545 }
5546 }
5547
5548 /* Must have right number of operands. */
5549 i.error = number_of_operands_mismatch;
5550
5551 for (t = current_templates->start; t < current_templates->end; t++)
5552 {
5553 addr_prefix_disp = -1;
5554 found_reverse_match = 0;
5555
5556 if (i.operands != t->operands)
5557 continue;
5558
5559 /* Check processor support. */
5560 i.error = unsupported;
5561 found_cpu_match = (cpu_flags_match (t)
5562 == CPU_FLAGS_PERFECT_MATCH);
5563 if (!found_cpu_match)
5564 continue;
5565
5566 /* Check AT&T mnemonic. */
5567 i.error = unsupported_with_intel_mnemonic;
5568 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5569 continue;
5570
5571 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5572 i.error = unsupported_syntax;
5573 if ((intel_syntax && t->opcode_modifier.attsyntax)
5574 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5575 || (intel64 && t->opcode_modifier.amd64)
5576 || (!intel64 && t->opcode_modifier.intel64))
5577 continue;
5578
5579 /* Check the suffix, except for some instructions in intel mode. */
5580 i.error = invalid_instruction_suffix;
5581 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5582 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5583 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5584 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5585 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5586 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5587 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5588 continue;
5589 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5590 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5591 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5592 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5593 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5594 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5595 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5596 continue;
5597
5598 size_match = operand_size_match (t);
5599 if (!size_match)
5600 continue;
5601
5602 for (j = 0; j < MAX_OPERANDS; j++)
5603 operand_types[j] = t->operand_types[j];
5604
5605 /* In general, don't allow 64-bit operands in 32-bit mode. */
5606 if (i.suffix == QWORD_MNEM_SUFFIX
5607 && flag_code != CODE_64BIT
5608 && (intel_syntax
5609 ? (!t->opcode_modifier.ignoresize
5610 && !t->opcode_modifier.broadcast
5611 && !intel_float_operand (t->name))
5612 : intel_float_operand (t->name) != 2)
5613 && ((!operand_types[0].bitfield.regmmx
5614 && !operand_types[0].bitfield.regsimd)
5615 || (!operand_types[t->operands > 1].bitfield.regmmx
5616 && !operand_types[t->operands > 1].bitfield.regsimd))
5617 && (t->base_opcode != 0x0fc7
5618 || t->extension_opcode != 1 /* cmpxchg8b */))
5619 continue;
5620
5621 /* In general, don't allow 32-bit operands on pre-386. */
5622 else if (i.suffix == LONG_MNEM_SUFFIX
5623 && !cpu_arch_flags.bitfield.cpui386
5624 && (intel_syntax
5625 ? (!t->opcode_modifier.ignoresize
5626 && !intel_float_operand (t->name))
5627 : intel_float_operand (t->name) != 2)
5628 && ((!operand_types[0].bitfield.regmmx
5629 && !operand_types[0].bitfield.regsimd)
5630 || (!operand_types[t->operands > 1].bitfield.regmmx
5631 && !operand_types[t->operands > 1].bitfield.regsimd)))
5632 continue;
5633
5634 /* Do not verify operands when there are none. */
5635 else
5636 {
5637 if (!t->operands)
5638 /* We've found a match; break out of loop. */
5639 break;
5640 }
5641
5642 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5643 into Disp32/Disp16/Disp32 operand. */
5644 if (i.prefix[ADDR_PREFIX] != 0)
5645 {
5646 /* There should be only one Disp operand. */
5647 switch (flag_code)
5648 {
5649 case CODE_16BIT:
5650 for (j = 0; j < MAX_OPERANDS; j++)
5651 {
5652 if (operand_types[j].bitfield.disp16)
5653 {
5654 addr_prefix_disp = j;
5655 operand_types[j].bitfield.disp32 = 1;
5656 operand_types[j].bitfield.disp16 = 0;
5657 break;
5658 }
5659 }
5660 break;
5661 case CODE_32BIT:
5662 for (j = 0; j < MAX_OPERANDS; j++)
5663 {
5664 if (operand_types[j].bitfield.disp32)
5665 {
5666 addr_prefix_disp = j;
5667 operand_types[j].bitfield.disp32 = 0;
5668 operand_types[j].bitfield.disp16 = 1;
5669 break;
5670 }
5671 }
5672 break;
5673 case CODE_64BIT:
5674 for (j = 0; j < MAX_OPERANDS; j++)
5675 {
5676 if (operand_types[j].bitfield.disp64)
5677 {
5678 addr_prefix_disp = j;
5679 operand_types[j].bitfield.disp64 = 0;
5680 operand_types[j].bitfield.disp32 = 1;
5681 break;
5682 }
5683 }
5684 break;
5685 }
5686 }
5687
5688 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5689 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5690 continue;
5691
5692 /* We check register size if needed. */
5693 if (t->opcode_modifier.checkregsize)
5694 {
5695 check_register = (1 << t->operands) - 1;
5696 if (i.broadcast)
5697 check_register &= ~(1 << i.broadcast->operand);
5698 }
5699 else
5700 check_register = 0;
5701
5702 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5703 switch (t->operands)
5704 {
5705 case 1:
5706 if (!operand_type_match (overlap0, i.types[0]))
5707 continue;
5708 break;
5709 case 2:
5710 /* xchg %eax, %eax is a special case. It is an alias for nop
5711 only in 32bit mode and we can use opcode 0x90. In 64bit
5712 mode, we can't use 0x90 for xchg %eax, %eax since it should
5713 zero-extend %eax to %rax. */
5714 if (flag_code == CODE_64BIT
5715 && t->base_opcode == 0x90
5716 && operand_type_equal (&i.types [0], &acc32)
5717 && operand_type_equal (&i.types [1], &acc32))
5718 continue;
5719 /* xrelease mov %eax, <disp> is another special case. It must not
5720 match the accumulator-only encoding of mov. */
5721 if (flag_code != CODE_64BIT
5722 && i.hle_prefix
5723 && t->base_opcode == 0xa0
5724 && i.types[0].bitfield.acc
5725 && operand_type_check (i.types[1], anymem))
5726 continue;
5727 /* Fall through. */
5728
5729 case 3:
5730 if (!(size_match & MATCH_STRAIGHT))
5731 goto check_reverse;
5732 /* Reverse direction of operands if swapping is possible in the first
5733 place (operands need to be symmetric) and
5734 - the load form is requested, and the template is a store form,
5735 - the store form is requested, and the template is a load form,
5736 - the non-default (swapped) form is requested. */
5737 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5738 if (t->opcode_modifier.d && i.reg_operands == i.operands
5739 && !operand_type_all_zero (&overlap1))
5740 switch (i.dir_encoding)
5741 {
5742 case dir_encoding_load:
5743 if (operand_type_check (operand_types[i.operands - 1], anymem)
5744 || operand_types[i.operands - 1].bitfield.regmem)
5745 goto check_reverse;
5746 break;
5747
5748 case dir_encoding_store:
5749 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5750 && !operand_types[i.operands - 1].bitfield.regmem)
5751 goto check_reverse;
5752 break;
5753
5754 case dir_encoding_swap:
5755 goto check_reverse;
5756
5757 case dir_encoding_default:
5758 break;
5759 }
5760 /* If we want store form, we skip the current load. */
5761 if ((i.dir_encoding == dir_encoding_store
5762 || i.dir_encoding == dir_encoding_swap)
5763 && i.mem_operands == 0
5764 && t->opcode_modifier.load)
5765 continue;
5766 /* Fall through. */
5767 case 4:
5768 case 5:
5769 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5770 if (!operand_type_match (overlap0, i.types[0])
5771 || !operand_type_match (overlap1, i.types[1])
5772 || ((check_register & 3) == 3
5773 && !operand_type_register_match (i.types[0],
5774 operand_types[0],
5775 i.types[1],
5776 operand_types[1])))
5777 {
5778 /* Check if other direction is valid ... */
5779 if (!t->opcode_modifier.d)
5780 continue;
5781
5782 check_reverse:
5783 if (!(size_match & MATCH_REVERSE))
5784 continue;
5785 /* Try reversing direction of operands. */
5786 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5787 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5788 if (!operand_type_match (overlap0, i.types[0])
5789 || !operand_type_match (overlap1, i.types[i.operands - 1])
5790 || (check_register
5791 && !operand_type_register_match (i.types[0],
5792 operand_types[i.operands - 1],
5793 i.types[i.operands - 1],
5794 operand_types[0])))
5795 {
5796 /* Does not match either direction. */
5797 continue;
5798 }
5799 /* found_reverse_match holds which of D or FloatR
5800 we've found. */
5801 if (!t->opcode_modifier.d)
5802 found_reverse_match = 0;
5803 else if (operand_types[0].bitfield.tbyte)
5804 found_reverse_match = Opcode_FloatD;
5805 else if (operand_types[0].bitfield.xmmword
5806 || operand_types[i.operands - 1].bitfield.xmmword
5807 || operand_types[0].bitfield.regmmx
5808 || operand_types[i.operands - 1].bitfield.regmmx
5809 || is_any_vex_encoding(t))
5810 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5811 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5812 else
5813 found_reverse_match = Opcode_D;
5814 if (t->opcode_modifier.floatr)
5815 found_reverse_match |= Opcode_FloatR;
5816 }
5817 else
5818 {
5819 /* Found a forward 2 operand match here. */
5820 switch (t->operands)
5821 {
5822 case 5:
5823 overlap4 = operand_type_and (i.types[4],
5824 operand_types[4]);
5825 /* Fall through. */
5826 case 4:
5827 overlap3 = operand_type_and (i.types[3],
5828 operand_types[3]);
5829 /* Fall through. */
5830 case 3:
5831 overlap2 = operand_type_and (i.types[2],
5832 operand_types[2]);
5833 break;
5834 }
5835
5836 switch (t->operands)
5837 {
5838 case 5:
5839 if (!operand_type_match (overlap4, i.types[4])
5840 || !operand_type_register_match (i.types[3],
5841 operand_types[3],
5842 i.types[4],
5843 operand_types[4]))
5844 continue;
5845 /* Fall through. */
5846 case 4:
5847 if (!operand_type_match (overlap3, i.types[3])
5848 || ((check_register & 0xa) == 0xa
5849 && !operand_type_register_match (i.types[1],
5850 operand_types[1],
5851 i.types[3],
5852 operand_types[3]))
5853 || ((check_register & 0xc) == 0xc
5854 && !operand_type_register_match (i.types[2],
5855 operand_types[2],
5856 i.types[3],
5857 operand_types[3])))
5858 continue;
5859 /* Fall through. */
5860 case 3:
5861 /* Here we make use of the fact that there are no
5862 reverse match 3 operand instructions. */
5863 if (!operand_type_match (overlap2, i.types[2])
5864 || ((check_register & 5) == 5
5865 && !operand_type_register_match (i.types[0],
5866 operand_types[0],
5867 i.types[2],
5868 operand_types[2]))
5869 || ((check_register & 6) == 6
5870 && !operand_type_register_match (i.types[1],
5871 operand_types[1],
5872 i.types[2],
5873 operand_types[2])))
5874 continue;
5875 break;
5876 }
5877 }
5878 /* Found either forward/reverse 2, 3 or 4 operand match here:
5879 slip through to break. */
5880 }
5881 if (!found_cpu_match)
5882 continue;
5883
5884 /* Check if vector and VEX operands are valid. */
5885 if (check_VecOperands (t) || VEX_check_operands (t))
5886 {
5887 specific_error = i.error;
5888 continue;
5889 }
5890
5891 /* We've found a match; break out of loop. */
5892 break;
5893 }
5894
5895 if (t == current_templates->end)
5896 {
5897 /* We found no match. */
5898 const char *err_msg;
5899 switch (specific_error ? specific_error : i.error)
5900 {
5901 default:
5902 abort ();
5903 case operand_size_mismatch:
5904 err_msg = _("operand size mismatch");
5905 break;
5906 case operand_type_mismatch:
5907 err_msg = _("operand type mismatch");
5908 break;
5909 case register_type_mismatch:
5910 err_msg = _("register type mismatch");
5911 break;
5912 case number_of_operands_mismatch:
5913 err_msg = _("number of operands mismatch");
5914 break;
5915 case invalid_instruction_suffix:
5916 err_msg = _("invalid instruction suffix");
5917 break;
5918 case bad_imm4:
5919 err_msg = _("constant doesn't fit in 4 bits");
5920 break;
5921 case unsupported_with_intel_mnemonic:
5922 err_msg = _("unsupported with Intel mnemonic");
5923 break;
5924 case unsupported_syntax:
5925 err_msg = _("unsupported syntax");
5926 break;
5927 case unsupported:
5928 as_bad (_("unsupported instruction `%s'"),
5929 current_templates->start->name);
5930 return NULL;
5931 case invalid_vsib_address:
5932 err_msg = _("invalid VSIB address");
5933 break;
5934 case invalid_vector_register_set:
5935 err_msg = _("mask, index, and destination registers must be distinct");
5936 break;
5937 case unsupported_vector_index_register:
5938 err_msg = _("unsupported vector index register");
5939 break;
5940 case unsupported_broadcast:
5941 err_msg = _("unsupported broadcast");
5942 break;
5943 case broadcast_needed:
5944 err_msg = _("broadcast is needed for operand of such type");
5945 break;
5946 case unsupported_masking:
5947 err_msg = _("unsupported masking");
5948 break;
5949 case mask_not_on_destination:
5950 err_msg = _("mask not on destination operand");
5951 break;
5952 case no_default_mask:
5953 err_msg = _("default mask isn't allowed");
5954 break;
5955 case unsupported_rc_sae:
5956 err_msg = _("unsupported static rounding/sae");
5957 break;
5958 case rc_sae_operand_not_last_imm:
5959 if (intel_syntax)
5960 err_msg = _("RC/SAE operand must precede immediate operands");
5961 else
5962 err_msg = _("RC/SAE operand must follow immediate operands");
5963 break;
5964 case invalid_register_operand:
5965 err_msg = _("invalid register operand");
5966 break;
5967 }
5968 as_bad (_("%s for `%s'"), err_msg,
5969 current_templates->start->name);
5970 return NULL;
5971 }
5972
5973 if (!quiet_warnings)
5974 {
5975 if (!intel_syntax
5976 && (i.types[0].bitfield.jumpabsolute
5977 != operand_types[0].bitfield.jumpabsolute))
5978 {
5979 as_warn (_("indirect %s without `*'"), t->name);
5980 }
5981
5982 if (t->opcode_modifier.isprefix
5983 && t->opcode_modifier.ignoresize)
5984 {
5985 /* Warn them that a data or address size prefix doesn't
5986 affect assembly of the next line of code. */
5987 as_warn (_("stand-alone `%s' prefix"), t->name);
5988 }
5989 }
5990
5991 /* Copy the template we found. */
5992 i.tm = *t;
5993
5994 if (addr_prefix_disp != -1)
5995 i.tm.operand_types[addr_prefix_disp]
5996 = operand_types[addr_prefix_disp];
5997
5998 if (found_reverse_match)
5999 {
6000 /* If we found a reverse match we must alter the opcode
6001 direction bit. found_reverse_match holds bits to change
6002 (different for int & float insns). */
6003
6004 i.tm.base_opcode ^= found_reverse_match;
6005
6006 i.tm.operand_types[0] = operand_types[i.operands - 1];
6007 i.tm.operand_types[i.operands - 1] = operand_types[0];
6008 }
6009
6010 return t;
6011 }
6012
6013 static int
6014 check_string (void)
6015 {
6016 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6017 if (i.tm.operand_types[mem_op].bitfield.esseg)
6018 {
6019 if (i.seg[0] != NULL && i.seg[0] != &es)
6020 {
6021 as_bad (_("`%s' operand %d must use `%ses' segment"),
6022 i.tm.name,
6023 mem_op + 1,
6024 register_prefix);
6025 return 0;
6026 }
6027 /* There's only ever one segment override allowed per instruction.
6028 This instruction possibly has a legal segment override on the
6029 second operand, so copy the segment to where non-string
6030 instructions store it, allowing common code. */
6031 i.seg[0] = i.seg[1];
6032 }
6033 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6034 {
6035 if (i.seg[1] != NULL && i.seg[1] != &es)
6036 {
6037 as_bad (_("`%s' operand %d must use `%ses' segment"),
6038 i.tm.name,
6039 mem_op + 2,
6040 register_prefix);
6041 return 0;
6042 }
6043 }
6044 return 1;
6045 }
6046
6047 static int
6048 process_suffix (void)
6049 {
6050 /* If matched instruction specifies an explicit instruction mnemonic
6051 suffix, use it. */
6052 if (i.tm.opcode_modifier.size == SIZE16)
6053 i.suffix = WORD_MNEM_SUFFIX;
6054 else if (i.tm.opcode_modifier.size == SIZE32)
6055 i.suffix = LONG_MNEM_SUFFIX;
6056 else if (i.tm.opcode_modifier.size == SIZE64)
6057 i.suffix = QWORD_MNEM_SUFFIX;
6058 else if (i.reg_operands)
6059 {
6060 /* If there's no instruction mnemonic suffix we try to invent one
6061 based on register operands. */
6062 if (!i.suffix)
6063 {
6064 /* We take i.suffix from the last register operand specified,
6065 Destination register type is more significant than source
6066 register type. crc32 in SSE4.2 prefers source register
6067 type. */
6068 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6069 {
6070 if (i.types[0].bitfield.byte)
6071 i.suffix = BYTE_MNEM_SUFFIX;
6072 else if (i.types[0].bitfield.word)
6073 i.suffix = WORD_MNEM_SUFFIX;
6074 else if (i.types[0].bitfield.dword)
6075 i.suffix = LONG_MNEM_SUFFIX;
6076 else if (i.types[0].bitfield.qword)
6077 i.suffix = QWORD_MNEM_SUFFIX;
6078 }
6079
6080 if (!i.suffix)
6081 {
6082 int op;
6083
6084 if (i.tm.base_opcode == 0xf20f38f0)
6085 {
6086 /* We have to know the operand size for crc32. */
6087 as_bad (_("ambiguous memory operand size for `%s`"),
6088 i.tm.name);
6089 return 0;
6090 }
6091
6092 for (op = i.operands; --op >= 0;)
6093 if (!i.tm.operand_types[op].bitfield.inoutportreg
6094 && !i.tm.operand_types[op].bitfield.shiftcount)
6095 {
6096 if (!i.types[op].bitfield.reg)
6097 continue;
6098 if (i.types[op].bitfield.byte)
6099 i.suffix = BYTE_MNEM_SUFFIX;
6100 else if (i.types[op].bitfield.word)
6101 i.suffix = WORD_MNEM_SUFFIX;
6102 else if (i.types[op].bitfield.dword)
6103 i.suffix = LONG_MNEM_SUFFIX;
6104 else if (i.types[op].bitfield.qword)
6105 i.suffix = QWORD_MNEM_SUFFIX;
6106 else
6107 continue;
6108 break;
6109 }
6110 }
6111 }
6112 else if (i.suffix == BYTE_MNEM_SUFFIX)
6113 {
6114 if (intel_syntax
6115 && i.tm.opcode_modifier.ignoresize
6116 && i.tm.opcode_modifier.no_bsuf)
6117 i.suffix = 0;
6118 else if (!check_byte_reg ())
6119 return 0;
6120 }
6121 else if (i.suffix == LONG_MNEM_SUFFIX)
6122 {
6123 if (intel_syntax
6124 && i.tm.opcode_modifier.ignoresize
6125 && i.tm.opcode_modifier.no_lsuf
6126 && !i.tm.opcode_modifier.todword
6127 && !i.tm.opcode_modifier.toqword)
6128 i.suffix = 0;
6129 else if (!check_long_reg ())
6130 return 0;
6131 }
6132 else if (i.suffix == QWORD_MNEM_SUFFIX)
6133 {
6134 if (intel_syntax
6135 && i.tm.opcode_modifier.ignoresize
6136 && i.tm.opcode_modifier.no_qsuf
6137 && !i.tm.opcode_modifier.todword
6138 && !i.tm.opcode_modifier.toqword)
6139 i.suffix = 0;
6140 else if (!check_qword_reg ())
6141 return 0;
6142 }
6143 else if (i.suffix == WORD_MNEM_SUFFIX)
6144 {
6145 if (intel_syntax
6146 && i.tm.opcode_modifier.ignoresize
6147 && i.tm.opcode_modifier.no_wsuf)
6148 i.suffix = 0;
6149 else if (!check_word_reg ())
6150 return 0;
6151 }
6152 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6153 /* Do nothing if the instruction is going to ignore the prefix. */
6154 ;
6155 else
6156 abort ();
6157 }
6158 else if (i.tm.opcode_modifier.defaultsize
6159 && !i.suffix
6160 /* exclude fldenv/frstor/fsave/fstenv */
6161 && i.tm.opcode_modifier.no_ssuf)
6162 {
6163 i.suffix = stackop_size;
6164 }
6165 else if (intel_syntax
6166 && !i.suffix
6167 && (i.tm.operand_types[0].bitfield.jumpabsolute
6168 || i.tm.opcode_modifier.jumpbyte
6169 || i.tm.opcode_modifier.jumpintersegment
6170 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6171 && i.tm.extension_opcode <= 3)))
6172 {
6173 switch (flag_code)
6174 {
6175 case CODE_64BIT:
6176 if (!i.tm.opcode_modifier.no_qsuf)
6177 {
6178 i.suffix = QWORD_MNEM_SUFFIX;
6179 break;
6180 }
6181 /* Fall through. */
6182 case CODE_32BIT:
6183 if (!i.tm.opcode_modifier.no_lsuf)
6184 i.suffix = LONG_MNEM_SUFFIX;
6185 break;
6186 case CODE_16BIT:
6187 if (!i.tm.opcode_modifier.no_wsuf)
6188 i.suffix = WORD_MNEM_SUFFIX;
6189 break;
6190 }
6191 }
6192
6193 if (!i.suffix)
6194 {
6195 if (!intel_syntax)
6196 {
6197 if (i.tm.opcode_modifier.w)
6198 {
6199 as_bad (_("no instruction mnemonic suffix given and "
6200 "no register operands; can't size instruction"));
6201 return 0;
6202 }
6203 }
6204 else
6205 {
6206 unsigned int suffixes;
6207
6208 suffixes = !i.tm.opcode_modifier.no_bsuf;
6209 if (!i.tm.opcode_modifier.no_wsuf)
6210 suffixes |= 1 << 1;
6211 if (!i.tm.opcode_modifier.no_lsuf)
6212 suffixes |= 1 << 2;
6213 if (!i.tm.opcode_modifier.no_ldsuf)
6214 suffixes |= 1 << 3;
6215 if (!i.tm.opcode_modifier.no_ssuf)
6216 suffixes |= 1 << 4;
6217 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6218 suffixes |= 1 << 5;
6219
6220 /* There are more than suffix matches. */
6221 if (i.tm.opcode_modifier.w
6222 || ((suffixes & (suffixes - 1))
6223 && !i.tm.opcode_modifier.defaultsize
6224 && !i.tm.opcode_modifier.ignoresize))
6225 {
6226 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6227 return 0;
6228 }
6229 }
6230 }
6231
6232 /* Change the opcode based on the operand size given by i.suffix. */
6233 switch (i.suffix)
6234 {
6235 /* Size floating point instruction. */
6236 case LONG_MNEM_SUFFIX:
6237 if (i.tm.opcode_modifier.floatmf)
6238 {
6239 i.tm.base_opcode ^= 4;
6240 break;
6241 }
6242 /* fall through */
6243 case WORD_MNEM_SUFFIX:
6244 case QWORD_MNEM_SUFFIX:
6245 /* It's not a byte, select word/dword operation. */
6246 if (i.tm.opcode_modifier.w)
6247 {
6248 if (i.tm.opcode_modifier.shortform)
6249 i.tm.base_opcode |= 8;
6250 else
6251 i.tm.base_opcode |= 1;
6252 }
6253 /* fall through */
6254 case SHORT_MNEM_SUFFIX:
6255 /* Now select between word & dword operations via the operand
6256 size prefix, except for instructions that will ignore this
6257 prefix anyway. */
6258 if (i.reg_operands > 0
6259 && i.types[0].bitfield.reg
6260 && i.tm.opcode_modifier.addrprefixopreg
6261 && (i.tm.opcode_modifier.immext
6262 || i.operands == 1))
6263 {
6264 /* The address size override prefix changes the size of the
6265 first operand. */
6266 if ((flag_code == CODE_32BIT
6267 && i.op[0].regs->reg_type.bitfield.word)
6268 || (flag_code != CODE_32BIT
6269 && i.op[0].regs->reg_type.bitfield.dword))
6270 if (!add_prefix (ADDR_PREFIX_OPCODE))
6271 return 0;
6272 }
6273 else if (i.suffix != QWORD_MNEM_SUFFIX
6274 && !i.tm.opcode_modifier.ignoresize
6275 && !i.tm.opcode_modifier.floatmf
6276 && !i.tm.opcode_modifier.vex
6277 && !i.tm.opcode_modifier.vexopcode
6278 && !is_evex_encoding (&i.tm)
6279 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6280 || (flag_code == CODE_64BIT
6281 && i.tm.opcode_modifier.jumpbyte)))
6282 {
6283 unsigned int prefix = DATA_PREFIX_OPCODE;
6284
6285 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6286 prefix = ADDR_PREFIX_OPCODE;
6287
6288 if (!add_prefix (prefix))
6289 return 0;
6290 }
6291
6292 /* Set mode64 for an operand. */
6293 if (i.suffix == QWORD_MNEM_SUFFIX
6294 && flag_code == CODE_64BIT
6295 && !i.tm.opcode_modifier.norex64
6296 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6297 need rex64. */
6298 && ! (i.operands == 2
6299 && i.tm.base_opcode == 0x90
6300 && i.tm.extension_opcode == None
6301 && operand_type_equal (&i.types [0], &acc64)
6302 && operand_type_equal (&i.types [1], &acc64)))
6303 i.rex |= REX_W;
6304
6305 break;
6306 }
6307
6308 if (i.reg_operands != 0
6309 && i.operands > 1
6310 && i.tm.opcode_modifier.addrprefixopreg
6311 && !i.tm.opcode_modifier.immext)
6312 {
6313 /* Check invalid register operand when the address size override
6314 prefix changes the size of register operands. */
6315 unsigned int op;
6316 enum { need_word, need_dword, need_qword } need;
6317
6318 if (flag_code == CODE_32BIT)
6319 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6320 else
6321 {
6322 if (i.prefix[ADDR_PREFIX])
6323 need = need_dword;
6324 else
6325 need = flag_code == CODE_64BIT ? need_qword : need_word;
6326 }
6327
6328 for (op = 0; op < i.operands; op++)
6329 if (i.types[op].bitfield.reg
6330 && ((need == need_word
6331 && !i.op[op].regs->reg_type.bitfield.word)
6332 || (need == need_dword
6333 && !i.op[op].regs->reg_type.bitfield.dword)
6334 || (need == need_qword
6335 && !i.op[op].regs->reg_type.bitfield.qword)))
6336 {
6337 as_bad (_("invalid register operand size for `%s'"),
6338 i.tm.name);
6339 return 0;
6340 }
6341 }
6342
6343 return 1;
6344 }
6345
6346 static int
6347 check_byte_reg (void)
6348 {
6349 int op;
6350
6351 for (op = i.operands; --op >= 0;)
6352 {
6353 /* Skip non-register operands. */
6354 if (!i.types[op].bitfield.reg)
6355 continue;
6356
6357 /* If this is an eight bit register, it's OK. If it's the 16 or
6358 32 bit version of an eight bit register, we will just use the
6359 low portion, and that's OK too. */
6360 if (i.types[op].bitfield.byte)
6361 continue;
6362
6363 /* I/O port address operands are OK too. */
6364 if (i.tm.operand_types[op].bitfield.inoutportreg)
6365 continue;
6366
6367 /* crc32 doesn't generate this warning. */
6368 if (i.tm.base_opcode == 0xf20f38f0)
6369 continue;
6370
6371 if ((i.types[op].bitfield.word
6372 || i.types[op].bitfield.dword
6373 || i.types[op].bitfield.qword)
6374 && i.op[op].regs->reg_num < 4
6375 /* Prohibit these changes in 64bit mode, since the lowering
6376 would be more complicated. */
6377 && flag_code != CODE_64BIT)
6378 {
6379 #if REGISTER_WARNINGS
6380 if (!quiet_warnings)
6381 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6382 register_prefix,
6383 (i.op[op].regs + (i.types[op].bitfield.word
6384 ? REGNAM_AL - REGNAM_AX
6385 : REGNAM_AL - REGNAM_EAX))->reg_name,
6386 register_prefix,
6387 i.op[op].regs->reg_name,
6388 i.suffix);
6389 #endif
6390 continue;
6391 }
6392 /* Any other register is bad. */
6393 if (i.types[op].bitfield.reg
6394 || i.types[op].bitfield.regmmx
6395 || i.types[op].bitfield.regsimd
6396 || i.types[op].bitfield.sreg2
6397 || i.types[op].bitfield.sreg3
6398 || i.types[op].bitfield.control
6399 || i.types[op].bitfield.debug
6400 || i.types[op].bitfield.test)
6401 {
6402 as_bad (_("`%s%s' not allowed with `%s%c'"),
6403 register_prefix,
6404 i.op[op].regs->reg_name,
6405 i.tm.name,
6406 i.suffix);
6407 return 0;
6408 }
6409 }
6410 return 1;
6411 }
6412
6413 static int
6414 check_long_reg (void)
6415 {
6416 int op;
6417
6418 for (op = i.operands; --op >= 0;)
6419 /* Skip non-register operands. */
6420 if (!i.types[op].bitfield.reg)
6421 continue;
6422 /* Reject eight bit registers, except where the template requires
6423 them. (eg. movzb) */
6424 else if (i.types[op].bitfield.byte
6425 && (i.tm.operand_types[op].bitfield.reg
6426 || i.tm.operand_types[op].bitfield.acc)
6427 && (i.tm.operand_types[op].bitfield.word
6428 || i.tm.operand_types[op].bitfield.dword))
6429 {
6430 as_bad (_("`%s%s' not allowed with `%s%c'"),
6431 register_prefix,
6432 i.op[op].regs->reg_name,
6433 i.tm.name,
6434 i.suffix);
6435 return 0;
6436 }
6437 /* Warn if the e prefix on a general reg is missing. */
6438 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6439 && i.types[op].bitfield.word
6440 && (i.tm.operand_types[op].bitfield.reg
6441 || i.tm.operand_types[op].bitfield.acc)
6442 && i.tm.operand_types[op].bitfield.dword)
6443 {
6444 /* Prohibit these changes in the 64bit mode, since the
6445 lowering is more complicated. */
6446 if (flag_code == CODE_64BIT)
6447 {
6448 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6449 register_prefix, i.op[op].regs->reg_name,
6450 i.suffix);
6451 return 0;
6452 }
6453 #if REGISTER_WARNINGS
6454 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6455 register_prefix,
6456 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6457 register_prefix, i.op[op].regs->reg_name, i.suffix);
6458 #endif
6459 }
6460 /* Warn if the r prefix on a general reg is present. */
6461 else if (i.types[op].bitfield.qword
6462 && (i.tm.operand_types[op].bitfield.reg
6463 || i.tm.operand_types[op].bitfield.acc)
6464 && i.tm.operand_types[op].bitfield.dword)
6465 {
6466 if (intel_syntax
6467 && i.tm.opcode_modifier.toqword
6468 && !i.types[0].bitfield.regsimd)
6469 {
6470 /* Convert to QWORD. We want REX byte. */
6471 i.suffix = QWORD_MNEM_SUFFIX;
6472 }
6473 else
6474 {
6475 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6476 register_prefix, i.op[op].regs->reg_name,
6477 i.suffix);
6478 return 0;
6479 }
6480 }
6481 return 1;
6482 }
6483
6484 static int
6485 check_qword_reg (void)
6486 {
6487 int op;
6488
6489 for (op = i.operands; --op >= 0; )
6490 /* Skip non-register operands. */
6491 if (!i.types[op].bitfield.reg)
6492 continue;
6493 /* Reject eight bit registers, except where the template requires
6494 them. (eg. movzb) */
6495 else if (i.types[op].bitfield.byte
6496 && (i.tm.operand_types[op].bitfield.reg
6497 || i.tm.operand_types[op].bitfield.acc)
6498 && (i.tm.operand_types[op].bitfield.word
6499 || i.tm.operand_types[op].bitfield.dword))
6500 {
6501 as_bad (_("`%s%s' not allowed with `%s%c'"),
6502 register_prefix,
6503 i.op[op].regs->reg_name,
6504 i.tm.name,
6505 i.suffix);
6506 return 0;
6507 }
6508 /* Warn if the r prefix on a general reg is missing. */
6509 else if ((i.types[op].bitfield.word
6510 || i.types[op].bitfield.dword)
6511 && (i.tm.operand_types[op].bitfield.reg
6512 || i.tm.operand_types[op].bitfield.acc)
6513 && i.tm.operand_types[op].bitfield.qword)
6514 {
6515 /* Prohibit these changes in the 64bit mode, since the
6516 lowering is more complicated. */
6517 if (intel_syntax
6518 && i.tm.opcode_modifier.todword
6519 && !i.types[0].bitfield.regsimd)
6520 {
6521 /* Convert to DWORD. We don't want REX byte. */
6522 i.suffix = LONG_MNEM_SUFFIX;
6523 }
6524 else
6525 {
6526 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6527 register_prefix, i.op[op].regs->reg_name,
6528 i.suffix);
6529 return 0;
6530 }
6531 }
6532 return 1;
6533 }
6534
6535 static int
6536 check_word_reg (void)
6537 {
6538 int op;
6539 for (op = i.operands; --op >= 0;)
6540 /* Skip non-register operands. */
6541 if (!i.types[op].bitfield.reg)
6542 continue;
6543 /* Reject eight bit registers, except where the template requires
6544 them. (eg. movzb) */
6545 else if (i.types[op].bitfield.byte
6546 && (i.tm.operand_types[op].bitfield.reg
6547 || i.tm.operand_types[op].bitfield.acc)
6548 && (i.tm.operand_types[op].bitfield.word
6549 || i.tm.operand_types[op].bitfield.dword))
6550 {
6551 as_bad (_("`%s%s' not allowed with `%s%c'"),
6552 register_prefix,
6553 i.op[op].regs->reg_name,
6554 i.tm.name,
6555 i.suffix);
6556 return 0;
6557 }
6558 /* Warn if the e or r prefix on a general reg is present. */
6559 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6560 && (i.types[op].bitfield.dword
6561 || i.types[op].bitfield.qword)
6562 && (i.tm.operand_types[op].bitfield.reg
6563 || i.tm.operand_types[op].bitfield.acc)
6564 && i.tm.operand_types[op].bitfield.word)
6565 {
6566 /* Prohibit these changes in the 64bit mode, since the
6567 lowering is more complicated. */
6568 if (flag_code == CODE_64BIT)
6569 {
6570 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6571 register_prefix, i.op[op].regs->reg_name,
6572 i.suffix);
6573 return 0;
6574 }
6575 #if REGISTER_WARNINGS
6576 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6577 register_prefix,
6578 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6579 register_prefix, i.op[op].regs->reg_name, i.suffix);
6580 #endif
6581 }
6582 return 1;
6583 }
6584
6585 static int
6586 update_imm (unsigned int j)
6587 {
6588 i386_operand_type overlap = i.types[j];
6589 if ((overlap.bitfield.imm8
6590 || overlap.bitfield.imm8s
6591 || overlap.bitfield.imm16
6592 || overlap.bitfield.imm32
6593 || overlap.bitfield.imm32s
6594 || overlap.bitfield.imm64)
6595 && !operand_type_equal (&overlap, &imm8)
6596 && !operand_type_equal (&overlap, &imm8s)
6597 && !operand_type_equal (&overlap, &imm16)
6598 && !operand_type_equal (&overlap, &imm32)
6599 && !operand_type_equal (&overlap, &imm32s)
6600 && !operand_type_equal (&overlap, &imm64))
6601 {
6602 if (i.suffix)
6603 {
6604 i386_operand_type temp;
6605
6606 operand_type_set (&temp, 0);
6607 if (i.suffix == BYTE_MNEM_SUFFIX)
6608 {
6609 temp.bitfield.imm8 = overlap.bitfield.imm8;
6610 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6611 }
6612 else if (i.suffix == WORD_MNEM_SUFFIX)
6613 temp.bitfield.imm16 = overlap.bitfield.imm16;
6614 else if (i.suffix == QWORD_MNEM_SUFFIX)
6615 {
6616 temp.bitfield.imm64 = overlap.bitfield.imm64;
6617 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6618 }
6619 else
6620 temp.bitfield.imm32 = overlap.bitfield.imm32;
6621 overlap = temp;
6622 }
6623 else if (operand_type_equal (&overlap, &imm16_32_32s)
6624 || operand_type_equal (&overlap, &imm16_32)
6625 || operand_type_equal (&overlap, &imm16_32s))
6626 {
6627 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6628 overlap = imm16;
6629 else
6630 overlap = imm32s;
6631 }
6632 if (!operand_type_equal (&overlap, &imm8)
6633 && !operand_type_equal (&overlap, &imm8s)
6634 && !operand_type_equal (&overlap, &imm16)
6635 && !operand_type_equal (&overlap, &imm32)
6636 && !operand_type_equal (&overlap, &imm32s)
6637 && !operand_type_equal (&overlap, &imm64))
6638 {
6639 as_bad (_("no instruction mnemonic suffix given; "
6640 "can't determine immediate size"));
6641 return 0;
6642 }
6643 }
6644 i.types[j] = overlap;
6645
6646 return 1;
6647 }
6648
6649 static int
6650 finalize_imm (void)
6651 {
6652 unsigned int j, n;
6653
6654 /* Update the first 2 immediate operands. */
6655 n = i.operands > 2 ? 2 : i.operands;
6656 if (n)
6657 {
6658 for (j = 0; j < n; j++)
6659 if (update_imm (j) == 0)
6660 return 0;
6661
6662 /* The 3rd operand can't be immediate operand. */
6663 gas_assert (operand_type_check (i.types[2], imm) == 0);
6664 }
6665
6666 return 1;
6667 }
6668
6669 static int
6670 process_operands (void)
6671 {
6672 /* Default segment register this instruction will use for memory
6673 accesses. 0 means unknown. This is only for optimizing out
6674 unnecessary segment overrides. */
6675 const seg_entry *default_seg = 0;
6676
6677 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6678 {
6679 unsigned int dupl = i.operands;
6680 unsigned int dest = dupl - 1;
6681 unsigned int j;
6682
6683 /* The destination must be an xmm register. */
6684 gas_assert (i.reg_operands
6685 && MAX_OPERANDS > dupl
6686 && operand_type_equal (&i.types[dest], &regxmm));
6687
6688 if (i.tm.operand_types[0].bitfield.acc
6689 && i.tm.operand_types[0].bitfield.xmmword)
6690 {
6691 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6692 {
6693 /* Keep xmm0 for instructions with VEX prefix and 3
6694 sources. */
6695 i.tm.operand_types[0].bitfield.acc = 0;
6696 i.tm.operand_types[0].bitfield.regsimd = 1;
6697 goto duplicate;
6698 }
6699 else
6700 {
6701 /* We remove the first xmm0 and keep the number of
6702 operands unchanged, which in fact duplicates the
6703 destination. */
6704 for (j = 1; j < i.operands; j++)
6705 {
6706 i.op[j - 1] = i.op[j];
6707 i.types[j - 1] = i.types[j];
6708 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6709 }
6710 }
6711 }
6712 else if (i.tm.opcode_modifier.implicit1stxmm0)
6713 {
6714 gas_assert ((MAX_OPERANDS - 1) > dupl
6715 && (i.tm.opcode_modifier.vexsources
6716 == VEX3SOURCES));
6717
6718 /* Add the implicit xmm0 for instructions with VEX prefix
6719 and 3 sources. */
6720 for (j = i.operands; j > 0; j--)
6721 {
6722 i.op[j] = i.op[j - 1];
6723 i.types[j] = i.types[j - 1];
6724 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6725 }
6726 i.op[0].regs
6727 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6728 i.types[0] = regxmm;
6729 i.tm.operand_types[0] = regxmm;
6730
6731 i.operands += 2;
6732 i.reg_operands += 2;
6733 i.tm.operands += 2;
6734
6735 dupl++;
6736 dest++;
6737 i.op[dupl] = i.op[dest];
6738 i.types[dupl] = i.types[dest];
6739 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6740 }
6741 else
6742 {
6743 duplicate:
6744 i.operands++;
6745 i.reg_operands++;
6746 i.tm.operands++;
6747
6748 i.op[dupl] = i.op[dest];
6749 i.types[dupl] = i.types[dest];
6750 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6751 }
6752
6753 if (i.tm.opcode_modifier.immext)
6754 process_immext ();
6755 }
6756 else if (i.tm.operand_types[0].bitfield.acc
6757 && i.tm.operand_types[0].bitfield.xmmword)
6758 {
6759 unsigned int j;
6760
6761 for (j = 1; j < i.operands; j++)
6762 {
6763 i.op[j - 1] = i.op[j];
6764 i.types[j - 1] = i.types[j];
6765
6766 /* We need to adjust fields in i.tm since they are used by
6767 build_modrm_byte. */
6768 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6769 }
6770
6771 i.operands--;
6772 i.reg_operands--;
6773 i.tm.operands--;
6774 }
6775 else if (i.tm.opcode_modifier.implicitquadgroup)
6776 {
6777 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6778
6779 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6780 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6781 regnum = register_number (i.op[1].regs);
6782 first_reg_in_group = regnum & ~3;
6783 last_reg_in_group = first_reg_in_group + 3;
6784 if (regnum != first_reg_in_group)
6785 as_warn (_("source register `%s%s' implicitly denotes"
6786 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6787 register_prefix, i.op[1].regs->reg_name,
6788 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6789 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6790 i.tm.name);
6791 }
6792 else if (i.tm.opcode_modifier.regkludge)
6793 {
6794 /* The imul $imm, %reg instruction is converted into
6795 imul $imm, %reg, %reg, and the clr %reg instruction
6796 is converted into xor %reg, %reg. */
6797
6798 unsigned int first_reg_op;
6799
6800 if (operand_type_check (i.types[0], reg))
6801 first_reg_op = 0;
6802 else
6803 first_reg_op = 1;
6804 /* Pretend we saw the extra register operand. */
6805 gas_assert (i.reg_operands == 1
6806 && i.op[first_reg_op + 1].regs == 0);
6807 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6808 i.types[first_reg_op + 1] = i.types[first_reg_op];
6809 i.operands++;
6810 i.reg_operands++;
6811 }
6812
6813 if (i.tm.opcode_modifier.shortform)
6814 {
6815 if (i.types[0].bitfield.sreg2
6816 || i.types[0].bitfield.sreg3)
6817 {
6818 if (i.tm.base_opcode == POP_SEG_SHORT
6819 && i.op[0].regs->reg_num == 1)
6820 {
6821 as_bad (_("you can't `pop %scs'"), register_prefix);
6822 return 0;
6823 }
6824 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6825 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6826 i.rex |= REX_B;
6827 }
6828 else
6829 {
6830 /* The register or float register operand is in operand
6831 0 or 1. */
6832 unsigned int op;
6833
6834 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6835 || operand_type_check (i.types[0], reg))
6836 op = 0;
6837 else
6838 op = 1;
6839 /* Register goes in low 3 bits of opcode. */
6840 i.tm.base_opcode |= i.op[op].regs->reg_num;
6841 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6842 i.rex |= REX_B;
6843 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6844 {
6845 /* Warn about some common errors, but press on regardless.
6846 The first case can be generated by gcc (<= 2.8.1). */
6847 if (i.operands == 2)
6848 {
6849 /* Reversed arguments on faddp, fsubp, etc. */
6850 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6851 register_prefix, i.op[!intel_syntax].regs->reg_name,
6852 register_prefix, i.op[intel_syntax].regs->reg_name);
6853 }
6854 else
6855 {
6856 /* Extraneous `l' suffix on fp insn. */
6857 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6858 register_prefix, i.op[0].regs->reg_name);
6859 }
6860 }
6861 }
6862 }
6863 else if (i.tm.opcode_modifier.modrm)
6864 {
6865 /* The opcode is completed (modulo i.tm.extension_opcode which
6866 must be put into the modrm byte). Now, we make the modrm and
6867 index base bytes based on all the info we've collected. */
6868
6869 default_seg = build_modrm_byte ();
6870 }
6871 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6872 {
6873 default_seg = &ds;
6874 }
6875 else if (i.tm.opcode_modifier.isstring)
6876 {
6877 /* For the string instructions that allow a segment override
6878 on one of their operands, the default segment is ds. */
6879 default_seg = &ds;
6880 }
6881
6882 if (i.tm.base_opcode == 0x8d /* lea */
6883 && i.seg[0]
6884 && !quiet_warnings)
6885 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6886
6887 /* If a segment was explicitly specified, and the specified segment
6888 is not the default, use an opcode prefix to select it. If we
6889 never figured out what the default segment is, then default_seg
6890 will be zero at this point, and the specified segment prefix will
6891 always be used. */
6892 if ((i.seg[0]) && (i.seg[0] != default_seg))
6893 {
6894 if (!add_prefix (i.seg[0]->seg_prefix))
6895 return 0;
6896 }
6897 return 1;
6898 }
6899
6900 static const seg_entry *
6901 build_modrm_byte (void)
6902 {
6903 const seg_entry *default_seg = 0;
6904 unsigned int source, dest;
6905 int vex_3_sources;
6906
6907 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6908 if (vex_3_sources)
6909 {
6910 unsigned int nds, reg_slot;
6911 expressionS *exp;
6912
6913 dest = i.operands - 1;
6914 nds = dest - 1;
6915
6916 /* There are 2 kinds of instructions:
6917 1. 5 operands: 4 register operands or 3 register operands
6918 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6919 VexW0 or VexW1. The destination must be either XMM, YMM or
6920 ZMM register.
6921 2. 4 operands: 4 register operands or 3 register operands
6922 plus 1 memory operand, with VexXDS. */
6923 gas_assert ((i.reg_operands == 4
6924 || (i.reg_operands == 3 && i.mem_operands == 1))
6925 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6926 && i.tm.opcode_modifier.vexw
6927 && i.tm.operand_types[dest].bitfield.regsimd);
6928
6929 /* If VexW1 is set, the first non-immediate operand is the source and
6930 the second non-immediate one is encoded in the immediate operand. */
6931 if (i.tm.opcode_modifier.vexw == VEXW1)
6932 {
6933 source = i.imm_operands;
6934 reg_slot = i.imm_operands + 1;
6935 }
6936 else
6937 {
6938 source = i.imm_operands + 1;
6939 reg_slot = i.imm_operands;
6940 }
6941
6942 if (i.imm_operands == 0)
6943 {
6944 /* When there is no immediate operand, generate an 8bit
6945 immediate operand to encode the first operand. */
6946 exp = &im_expressions[i.imm_operands++];
6947 i.op[i.operands].imms = exp;
6948 i.types[i.operands] = imm8;
6949 i.operands++;
6950
6951 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6952 exp->X_op = O_constant;
6953 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6954 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6955 }
6956 else
6957 {
6958 unsigned int imm_slot;
6959
6960 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6961
6962 if (i.tm.opcode_modifier.immext)
6963 {
6964 /* When ImmExt is set, the immediate byte is the last
6965 operand. */
6966 imm_slot = i.operands - 1;
6967 source--;
6968 reg_slot--;
6969 }
6970 else
6971 {
6972 imm_slot = 0;
6973
6974 /* Turn on Imm8 so that output_imm will generate it. */
6975 i.types[imm_slot].bitfield.imm8 = 1;
6976 }
6977
6978 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6979 i.op[imm_slot].imms->X_add_number
6980 |= register_number (i.op[reg_slot].regs) << 4;
6981 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6982 }
6983
6984 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6985 i.vex.register_specifier = i.op[nds].regs;
6986 }
6987 else
6988 source = dest = 0;
6989
6990 /* i.reg_operands MUST be the number of real register operands;
6991 implicit registers do not count. If there are 3 register
6992 operands, it must be a instruction with VexNDS. For a
6993 instruction with VexNDD, the destination register is encoded
6994 in VEX prefix. If there are 4 register operands, it must be
6995 a instruction with VEX prefix and 3 sources. */
6996 if (i.mem_operands == 0
6997 && ((i.reg_operands == 2
6998 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6999 || (i.reg_operands == 3
7000 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7001 || (i.reg_operands == 4 && vex_3_sources)))
7002 {
7003 switch (i.operands)
7004 {
7005 case 2:
7006 source = 0;
7007 break;
7008 case 3:
7009 /* When there are 3 operands, one of them may be immediate,
7010 which may be the first or the last operand. Otherwise,
7011 the first operand must be shift count register (cl) or it
7012 is an instruction with VexNDS. */
7013 gas_assert (i.imm_operands == 1
7014 || (i.imm_operands == 0
7015 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7016 || i.types[0].bitfield.shiftcount)));
7017 if (operand_type_check (i.types[0], imm)
7018 || i.types[0].bitfield.shiftcount)
7019 source = 1;
7020 else
7021 source = 0;
7022 break;
7023 case 4:
7024 /* When there are 4 operands, the first two must be 8bit
7025 immediate operands. The source operand will be the 3rd
7026 one.
7027
7028 For instructions with VexNDS, if the first operand
7029 an imm8, the source operand is the 2nd one. If the last
7030 operand is imm8, the source operand is the first one. */
7031 gas_assert ((i.imm_operands == 2
7032 && i.types[0].bitfield.imm8
7033 && i.types[1].bitfield.imm8)
7034 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7035 && i.imm_operands == 1
7036 && (i.types[0].bitfield.imm8
7037 || i.types[i.operands - 1].bitfield.imm8
7038 || i.rounding)));
7039 if (i.imm_operands == 2)
7040 source = 2;
7041 else
7042 {
7043 if (i.types[0].bitfield.imm8)
7044 source = 1;
7045 else
7046 source = 0;
7047 }
7048 break;
7049 case 5:
7050 if (is_evex_encoding (&i.tm))
7051 {
7052 /* For EVEX instructions, when there are 5 operands, the
7053 first one must be immediate operand. If the second one
7054 is immediate operand, the source operand is the 3th
7055 one. If the last one is immediate operand, the source
7056 operand is the 2nd one. */
7057 gas_assert (i.imm_operands == 2
7058 && i.tm.opcode_modifier.sae
7059 && operand_type_check (i.types[0], imm));
7060 if (operand_type_check (i.types[1], imm))
7061 source = 2;
7062 else if (operand_type_check (i.types[4], imm))
7063 source = 1;
7064 else
7065 abort ();
7066 }
7067 break;
7068 default:
7069 abort ();
7070 }
7071
7072 if (!vex_3_sources)
7073 {
7074 dest = source + 1;
7075
7076 /* RC/SAE operand could be between DEST and SRC. That happens
7077 when one operand is GPR and the other one is XMM/YMM/ZMM
7078 register. */
7079 if (i.rounding && i.rounding->operand == (int) dest)
7080 dest++;
7081
7082 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7083 {
7084 /* For instructions with VexNDS, the register-only source
7085 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7086 register. It is encoded in VEX prefix. We need to
7087 clear RegMem bit before calling operand_type_equal. */
7088
7089 i386_operand_type op;
7090 unsigned int vvvv;
7091
7092 /* Check register-only source operand when two source
7093 operands are swapped. */
7094 if (!i.tm.operand_types[source].bitfield.baseindex
7095 && i.tm.operand_types[dest].bitfield.baseindex)
7096 {
7097 vvvv = source;
7098 source = dest;
7099 }
7100 else
7101 vvvv = dest;
7102
7103 op = i.tm.operand_types[vvvv];
7104 op.bitfield.regmem = 0;
7105 if ((dest + 1) >= i.operands
7106 || ((!op.bitfield.reg
7107 || (!op.bitfield.dword && !op.bitfield.qword))
7108 && !op.bitfield.regsimd
7109 && !operand_type_equal (&op, &regmask)))
7110 abort ();
7111 i.vex.register_specifier = i.op[vvvv].regs;
7112 dest++;
7113 }
7114 }
7115
7116 i.rm.mode = 3;
7117 /* One of the register operands will be encoded in the i.tm.reg
7118 field, the other in the combined i.tm.mode and i.tm.regmem
7119 fields. If no form of this instruction supports a memory
7120 destination operand, then we assume the source operand may
7121 sometimes be a memory operand and so we need to store the
7122 destination in the i.rm.reg field. */
7123 if (!i.tm.operand_types[dest].bitfield.regmem
7124 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7125 {
7126 i.rm.reg = i.op[dest].regs->reg_num;
7127 i.rm.regmem = i.op[source].regs->reg_num;
7128 if (i.op[dest].regs->reg_type.bitfield.regmmx
7129 || i.op[source].regs->reg_type.bitfield.regmmx)
7130 i.has_regmmx = TRUE;
7131 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7132 || i.op[source].regs->reg_type.bitfield.regsimd)
7133 {
7134 if (i.types[dest].bitfield.zmmword
7135 || i.types[source].bitfield.zmmword)
7136 i.has_regzmm = TRUE;
7137 else if (i.types[dest].bitfield.ymmword
7138 || i.types[source].bitfield.ymmword)
7139 i.has_regymm = TRUE;
7140 else
7141 i.has_regxmm = TRUE;
7142 }
7143 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7144 i.rex |= REX_R;
7145 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7146 i.vrex |= REX_R;
7147 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7148 i.rex |= REX_B;
7149 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7150 i.vrex |= REX_B;
7151 }
7152 else
7153 {
7154 i.rm.reg = i.op[source].regs->reg_num;
7155 i.rm.regmem = i.op[dest].regs->reg_num;
7156 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7157 i.rex |= REX_B;
7158 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7159 i.vrex |= REX_B;
7160 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7161 i.rex |= REX_R;
7162 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7163 i.vrex |= REX_R;
7164 }
7165 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7166 {
7167 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7168 abort ();
7169 i.rex &= ~REX_R;
7170 add_prefix (LOCK_PREFIX_OPCODE);
7171 }
7172 }
7173 else
7174 { /* If it's not 2 reg operands... */
7175 unsigned int mem;
7176
7177 if (i.mem_operands)
7178 {
7179 unsigned int fake_zero_displacement = 0;
7180 unsigned int op;
7181
7182 for (op = 0; op < i.operands; op++)
7183 if (operand_type_check (i.types[op], anymem))
7184 break;
7185 gas_assert (op < i.operands);
7186
7187 if (i.tm.opcode_modifier.vecsib)
7188 {
7189 if (i.index_reg->reg_num == RegIZ)
7190 abort ();
7191
7192 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7193 if (!i.base_reg)
7194 {
7195 i.sib.base = NO_BASE_REGISTER;
7196 i.sib.scale = i.log2_scale_factor;
7197 i.types[op].bitfield.disp8 = 0;
7198 i.types[op].bitfield.disp16 = 0;
7199 i.types[op].bitfield.disp64 = 0;
7200 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7201 {
7202 /* Must be 32 bit */
7203 i.types[op].bitfield.disp32 = 1;
7204 i.types[op].bitfield.disp32s = 0;
7205 }
7206 else
7207 {
7208 i.types[op].bitfield.disp32 = 0;
7209 i.types[op].bitfield.disp32s = 1;
7210 }
7211 }
7212 i.sib.index = i.index_reg->reg_num;
7213 if ((i.index_reg->reg_flags & RegRex) != 0)
7214 i.rex |= REX_X;
7215 if ((i.index_reg->reg_flags & RegVRex) != 0)
7216 i.vrex |= REX_X;
7217 }
7218
7219 default_seg = &ds;
7220
7221 if (i.base_reg == 0)
7222 {
7223 i.rm.mode = 0;
7224 if (!i.disp_operands)
7225 fake_zero_displacement = 1;
7226 if (i.index_reg == 0)
7227 {
7228 i386_operand_type newdisp;
7229
7230 gas_assert (!i.tm.opcode_modifier.vecsib);
7231 /* Operand is just <disp> */
7232 if (flag_code == CODE_64BIT)
7233 {
7234 /* 64bit mode overwrites the 32bit absolute
7235 addressing by RIP relative addressing and
7236 absolute addressing is encoded by one of the
7237 redundant SIB forms. */
7238 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7239 i.sib.base = NO_BASE_REGISTER;
7240 i.sib.index = NO_INDEX_REGISTER;
7241 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7242 }
7243 else if ((flag_code == CODE_16BIT)
7244 ^ (i.prefix[ADDR_PREFIX] != 0))
7245 {
7246 i.rm.regmem = NO_BASE_REGISTER_16;
7247 newdisp = disp16;
7248 }
7249 else
7250 {
7251 i.rm.regmem = NO_BASE_REGISTER;
7252 newdisp = disp32;
7253 }
7254 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7255 i.types[op] = operand_type_or (i.types[op], newdisp);
7256 }
7257 else if (!i.tm.opcode_modifier.vecsib)
7258 {
7259 /* !i.base_reg && i.index_reg */
7260 if (i.index_reg->reg_num == RegIZ)
7261 i.sib.index = NO_INDEX_REGISTER;
7262 else
7263 i.sib.index = i.index_reg->reg_num;
7264 i.sib.base = NO_BASE_REGISTER;
7265 i.sib.scale = i.log2_scale_factor;
7266 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7267 i.types[op].bitfield.disp8 = 0;
7268 i.types[op].bitfield.disp16 = 0;
7269 i.types[op].bitfield.disp64 = 0;
7270 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7271 {
7272 /* Must be 32 bit */
7273 i.types[op].bitfield.disp32 = 1;
7274 i.types[op].bitfield.disp32s = 0;
7275 }
7276 else
7277 {
7278 i.types[op].bitfield.disp32 = 0;
7279 i.types[op].bitfield.disp32s = 1;
7280 }
7281 if ((i.index_reg->reg_flags & RegRex) != 0)
7282 i.rex |= REX_X;
7283 }
7284 }
7285 /* RIP addressing for 64bit mode. */
7286 else if (i.base_reg->reg_num == RegIP)
7287 {
7288 gas_assert (!i.tm.opcode_modifier.vecsib);
7289 i.rm.regmem = NO_BASE_REGISTER;
7290 i.types[op].bitfield.disp8 = 0;
7291 i.types[op].bitfield.disp16 = 0;
7292 i.types[op].bitfield.disp32 = 0;
7293 i.types[op].bitfield.disp32s = 1;
7294 i.types[op].bitfield.disp64 = 0;
7295 i.flags[op] |= Operand_PCrel;
7296 if (! i.disp_operands)
7297 fake_zero_displacement = 1;
7298 }
7299 else if (i.base_reg->reg_type.bitfield.word)
7300 {
7301 gas_assert (!i.tm.opcode_modifier.vecsib);
7302 switch (i.base_reg->reg_num)
7303 {
7304 case 3: /* (%bx) */
7305 if (i.index_reg == 0)
7306 i.rm.regmem = 7;
7307 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7308 i.rm.regmem = i.index_reg->reg_num - 6;
7309 break;
7310 case 5: /* (%bp) */
7311 default_seg = &ss;
7312 if (i.index_reg == 0)
7313 {
7314 i.rm.regmem = 6;
7315 if (operand_type_check (i.types[op], disp) == 0)
7316 {
7317 /* fake (%bp) into 0(%bp) */
7318 i.types[op].bitfield.disp8 = 1;
7319 fake_zero_displacement = 1;
7320 }
7321 }
7322 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7323 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7324 break;
7325 default: /* (%si) -> 4 or (%di) -> 5 */
7326 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7327 }
7328 i.rm.mode = mode_from_disp_size (i.types[op]);
7329 }
7330 else /* i.base_reg and 32/64 bit mode */
7331 {
7332 if (flag_code == CODE_64BIT
7333 && operand_type_check (i.types[op], disp))
7334 {
7335 i.types[op].bitfield.disp16 = 0;
7336 i.types[op].bitfield.disp64 = 0;
7337 if (i.prefix[ADDR_PREFIX] == 0)
7338 {
7339 i.types[op].bitfield.disp32 = 0;
7340 i.types[op].bitfield.disp32s = 1;
7341 }
7342 else
7343 {
7344 i.types[op].bitfield.disp32 = 1;
7345 i.types[op].bitfield.disp32s = 0;
7346 }
7347 }
7348
7349 if (!i.tm.opcode_modifier.vecsib)
7350 i.rm.regmem = i.base_reg->reg_num;
7351 if ((i.base_reg->reg_flags & RegRex) != 0)
7352 i.rex |= REX_B;
7353 i.sib.base = i.base_reg->reg_num;
7354 /* x86-64 ignores REX prefix bit here to avoid decoder
7355 complications. */
7356 if (!(i.base_reg->reg_flags & RegRex)
7357 && (i.base_reg->reg_num == EBP_REG_NUM
7358 || i.base_reg->reg_num == ESP_REG_NUM))
7359 default_seg = &ss;
7360 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7361 {
7362 fake_zero_displacement = 1;
7363 i.types[op].bitfield.disp8 = 1;
7364 }
7365 i.sib.scale = i.log2_scale_factor;
7366 if (i.index_reg == 0)
7367 {
7368 gas_assert (!i.tm.opcode_modifier.vecsib);
7369 /* <disp>(%esp) becomes two byte modrm with no index
7370 register. We've already stored the code for esp
7371 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7372 Any base register besides %esp will not use the
7373 extra modrm byte. */
7374 i.sib.index = NO_INDEX_REGISTER;
7375 }
7376 else if (!i.tm.opcode_modifier.vecsib)
7377 {
7378 if (i.index_reg->reg_num == RegIZ)
7379 i.sib.index = NO_INDEX_REGISTER;
7380 else
7381 i.sib.index = i.index_reg->reg_num;
7382 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7383 if ((i.index_reg->reg_flags & RegRex) != 0)
7384 i.rex |= REX_X;
7385 }
7386
7387 if (i.disp_operands
7388 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7389 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7390 i.rm.mode = 0;
7391 else
7392 {
7393 if (!fake_zero_displacement
7394 && !i.disp_operands
7395 && i.disp_encoding)
7396 {
7397 fake_zero_displacement = 1;
7398 if (i.disp_encoding == disp_encoding_8bit)
7399 i.types[op].bitfield.disp8 = 1;
7400 else
7401 i.types[op].bitfield.disp32 = 1;
7402 }
7403 i.rm.mode = mode_from_disp_size (i.types[op]);
7404 }
7405 }
7406
7407 if (fake_zero_displacement)
7408 {
7409 /* Fakes a zero displacement assuming that i.types[op]
7410 holds the correct displacement size. */
7411 expressionS *exp;
7412
7413 gas_assert (i.op[op].disps == 0);
7414 exp = &disp_expressions[i.disp_operands++];
7415 i.op[op].disps = exp;
7416 exp->X_op = O_constant;
7417 exp->X_add_number = 0;
7418 exp->X_add_symbol = (symbolS *) 0;
7419 exp->X_op_symbol = (symbolS *) 0;
7420 }
7421
7422 mem = op;
7423 }
7424 else
7425 mem = ~0;
7426
7427 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7428 {
7429 if (operand_type_check (i.types[0], imm))
7430 i.vex.register_specifier = NULL;
7431 else
7432 {
7433 /* VEX.vvvv encodes one of the sources when the first
7434 operand is not an immediate. */
7435 if (i.tm.opcode_modifier.vexw == VEXW0)
7436 i.vex.register_specifier = i.op[0].regs;
7437 else
7438 i.vex.register_specifier = i.op[1].regs;
7439 }
7440
7441 /* Destination is a XMM register encoded in the ModRM.reg
7442 and VEX.R bit. */
7443 i.rm.reg = i.op[2].regs->reg_num;
7444 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7445 i.rex |= REX_R;
7446
7447 /* ModRM.rm and VEX.B encodes the other source. */
7448 if (!i.mem_operands)
7449 {
7450 i.rm.mode = 3;
7451
7452 if (i.tm.opcode_modifier.vexw == VEXW0)
7453 i.rm.regmem = i.op[1].regs->reg_num;
7454 else
7455 i.rm.regmem = i.op[0].regs->reg_num;
7456
7457 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7458 i.rex |= REX_B;
7459 }
7460 }
7461 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7462 {
7463 i.vex.register_specifier = i.op[2].regs;
7464 if (!i.mem_operands)
7465 {
7466 i.rm.mode = 3;
7467 i.rm.regmem = i.op[1].regs->reg_num;
7468 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7469 i.rex |= REX_B;
7470 }
7471 }
7472 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7473 (if any) based on i.tm.extension_opcode. Again, we must be
7474 careful to make sure that segment/control/debug/test/MMX
7475 registers are coded into the i.rm.reg field. */
7476 else if (i.reg_operands)
7477 {
7478 unsigned int op;
7479 unsigned int vex_reg = ~0;
7480
7481 for (op = 0; op < i.operands; op++)
7482 {
7483 if (i.types[op].bitfield.reg
7484 || i.types[op].bitfield.regbnd
7485 || i.types[op].bitfield.regmask
7486 || i.types[op].bitfield.sreg2
7487 || i.types[op].bitfield.sreg3
7488 || i.types[op].bitfield.control
7489 || i.types[op].bitfield.debug
7490 || i.types[op].bitfield.test)
7491 break;
7492 if (i.types[op].bitfield.regsimd)
7493 {
7494 if (i.types[op].bitfield.zmmword)
7495 i.has_regzmm = TRUE;
7496 else if (i.types[op].bitfield.ymmword)
7497 i.has_regymm = TRUE;
7498 else
7499 i.has_regxmm = TRUE;
7500 break;
7501 }
7502 if (i.types[op].bitfield.regmmx)
7503 {
7504 i.has_regmmx = TRUE;
7505 break;
7506 }
7507 }
7508
7509 if (vex_3_sources)
7510 op = dest;
7511 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7512 {
7513 /* For instructions with VexNDS, the register-only
7514 source operand is encoded in VEX prefix. */
7515 gas_assert (mem != (unsigned int) ~0);
7516
7517 if (op > mem)
7518 {
7519 vex_reg = op++;
7520 gas_assert (op < i.operands);
7521 }
7522 else
7523 {
7524 /* Check register-only source operand when two source
7525 operands are swapped. */
7526 if (!i.tm.operand_types[op].bitfield.baseindex
7527 && i.tm.operand_types[op + 1].bitfield.baseindex)
7528 {
7529 vex_reg = op;
7530 op += 2;
7531 gas_assert (mem == (vex_reg + 1)
7532 && op < i.operands);
7533 }
7534 else
7535 {
7536 vex_reg = op + 1;
7537 gas_assert (vex_reg < i.operands);
7538 }
7539 }
7540 }
7541 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7542 {
7543 /* For instructions with VexNDD, the register destination
7544 is encoded in VEX prefix. */
7545 if (i.mem_operands == 0)
7546 {
7547 /* There is no memory operand. */
7548 gas_assert ((op + 2) == i.operands);
7549 vex_reg = op + 1;
7550 }
7551 else
7552 {
7553 /* There are only 2 non-immediate operands. */
7554 gas_assert (op < i.imm_operands + 2
7555 && i.operands == i.imm_operands + 2);
7556 vex_reg = i.imm_operands + 1;
7557 }
7558 }
7559 else
7560 gas_assert (op < i.operands);
7561
7562 if (vex_reg != (unsigned int) ~0)
7563 {
7564 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7565
7566 if ((!type->bitfield.reg
7567 || (!type->bitfield.dword && !type->bitfield.qword))
7568 && !type->bitfield.regsimd
7569 && !operand_type_equal (type, &regmask))
7570 abort ();
7571
7572 i.vex.register_specifier = i.op[vex_reg].regs;
7573 }
7574
7575 /* Don't set OP operand twice. */
7576 if (vex_reg != op)
7577 {
7578 /* If there is an extension opcode to put here, the
7579 register number must be put into the regmem field. */
7580 if (i.tm.extension_opcode != None)
7581 {
7582 i.rm.regmem = i.op[op].regs->reg_num;
7583 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7584 i.rex |= REX_B;
7585 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7586 i.vrex |= REX_B;
7587 }
7588 else
7589 {
7590 i.rm.reg = i.op[op].regs->reg_num;
7591 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7592 i.rex |= REX_R;
7593 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7594 i.vrex |= REX_R;
7595 }
7596 }
7597
7598 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7599 must set it to 3 to indicate this is a register operand
7600 in the regmem field. */
7601 if (!i.mem_operands)
7602 i.rm.mode = 3;
7603 }
7604
7605 /* Fill in i.rm.reg field with extension opcode (if any). */
7606 if (i.tm.extension_opcode != None)
7607 i.rm.reg = i.tm.extension_opcode;
7608 }
7609 return default_seg;
7610 }
7611
7612 static void
7613 output_branch (void)
7614 {
7615 char *p;
7616 int size;
7617 int code16;
7618 int prefix;
7619 relax_substateT subtype;
7620 symbolS *sym;
7621 offsetT off;
7622
7623 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7624 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7625
7626 prefix = 0;
7627 if (i.prefix[DATA_PREFIX] != 0)
7628 {
7629 prefix = 1;
7630 i.prefixes -= 1;
7631 code16 ^= CODE16;
7632 }
7633 /* Pentium4 branch hints. */
7634 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7635 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7636 {
7637 prefix++;
7638 i.prefixes--;
7639 }
7640 if (i.prefix[REX_PREFIX] != 0)
7641 {
7642 prefix++;
7643 i.prefixes--;
7644 }
7645
7646 /* BND prefixed jump. */
7647 if (i.prefix[BND_PREFIX] != 0)
7648 {
7649 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7650 i.prefixes -= 1;
7651 }
7652
7653 if (i.prefixes != 0 && !intel_syntax)
7654 as_warn (_("skipping prefixes on this instruction"));
7655
7656 /* It's always a symbol; End frag & setup for relax.
7657 Make sure there is enough room in this frag for the largest
7658 instruction we may generate in md_convert_frag. This is 2
7659 bytes for the opcode and room for the prefix and largest
7660 displacement. */
7661 frag_grow (prefix + 2 + 4);
7662 /* Prefix and 1 opcode byte go in fr_fix. */
7663 p = frag_more (prefix + 1);
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 *p++ = DATA_PREFIX_OPCODE;
7666 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7667 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7668 *p++ = i.prefix[SEG_PREFIX];
7669 if (i.prefix[REX_PREFIX] != 0)
7670 *p++ = i.prefix[REX_PREFIX];
7671 *p = i.tm.base_opcode;
7672
7673 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7674 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7675 else if (cpu_arch_flags.bitfield.cpui386)
7676 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7677 else
7678 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7679 subtype |= code16;
7680
7681 sym = i.op[0].disps->X_add_symbol;
7682 off = i.op[0].disps->X_add_number;
7683
7684 if (i.op[0].disps->X_op != O_constant
7685 && i.op[0].disps->X_op != O_symbol)
7686 {
7687 /* Handle complex expressions. */
7688 sym = make_expr_symbol (i.op[0].disps);
7689 off = 0;
7690 }
7691
7692 /* 1 possible extra opcode + 4 byte displacement go in var part.
7693 Pass reloc in fr_var. */
7694 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7695 }
7696
7697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7698 /* Return TRUE iff PLT32 relocation should be used for branching to
7699 symbol S. */
7700
7701 static bfd_boolean
7702 need_plt32_p (symbolS *s)
7703 {
7704 /* PLT32 relocation is ELF only. */
7705 if (!IS_ELF)
7706 return FALSE;
7707
7708 /* Since there is no need to prepare for PLT branch on x86-64, we
7709 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7710 be used as a marker for 32-bit PC-relative branches. */
7711 if (!object_64bit)
7712 return FALSE;
7713
7714 /* Weak or undefined symbol need PLT32 relocation. */
7715 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7716 return TRUE;
7717
7718 /* Non-global symbol doesn't need PLT32 relocation. */
7719 if (! S_IS_EXTERNAL (s))
7720 return FALSE;
7721
7722 /* Other global symbols need PLT32 relocation. NB: Symbol with
7723 non-default visibilities are treated as normal global symbol
7724 so that PLT32 relocation can be used as a marker for 32-bit
7725 PC-relative branches. It is useful for linker relaxation. */
7726 return TRUE;
7727 }
7728 #endif
7729
7730 static void
7731 output_jump (void)
7732 {
7733 char *p;
7734 int size;
7735 fixS *fixP;
7736 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7737
7738 if (i.tm.opcode_modifier.jumpbyte)
7739 {
7740 /* This is a loop or jecxz type instruction. */
7741 size = 1;
7742 if (i.prefix[ADDR_PREFIX] != 0)
7743 {
7744 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7745 i.prefixes -= 1;
7746 }
7747 /* Pentium4 branch hints. */
7748 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7749 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7750 {
7751 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7752 i.prefixes--;
7753 }
7754 }
7755 else
7756 {
7757 int code16;
7758
7759 code16 = 0;
7760 if (flag_code == CODE_16BIT)
7761 code16 = CODE16;
7762
7763 if (i.prefix[DATA_PREFIX] != 0)
7764 {
7765 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7766 i.prefixes -= 1;
7767 code16 ^= CODE16;
7768 }
7769
7770 size = 4;
7771 if (code16)
7772 size = 2;
7773 }
7774
7775 if (i.prefix[REX_PREFIX] != 0)
7776 {
7777 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7778 i.prefixes -= 1;
7779 }
7780
7781 /* BND prefixed jump. */
7782 if (i.prefix[BND_PREFIX] != 0)
7783 {
7784 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7785 i.prefixes -= 1;
7786 }
7787
7788 if (i.prefixes != 0 && !intel_syntax)
7789 as_warn (_("skipping prefixes on this instruction"));
7790
7791 p = frag_more (i.tm.opcode_length + size);
7792 switch (i.tm.opcode_length)
7793 {
7794 case 2:
7795 *p++ = i.tm.base_opcode >> 8;
7796 /* Fall through. */
7797 case 1:
7798 *p++ = i.tm.base_opcode;
7799 break;
7800 default:
7801 abort ();
7802 }
7803
7804 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7805 if (size == 4
7806 && jump_reloc == NO_RELOC
7807 && need_plt32_p (i.op[0].disps->X_add_symbol))
7808 jump_reloc = BFD_RELOC_X86_64_PLT32;
7809 #endif
7810
7811 jump_reloc = reloc (size, 1, 1, jump_reloc);
7812
7813 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7814 i.op[0].disps, 1, jump_reloc);
7815
7816 /* All jumps handled here are signed, but don't use a signed limit
7817 check for 32 and 16 bit jumps as we want to allow wrap around at
7818 4G and 64k respectively. */
7819 if (size == 1)
7820 fixP->fx_signed = 1;
7821 }
7822
7823 static void
7824 output_interseg_jump (void)
7825 {
7826 char *p;
7827 int size;
7828 int prefix;
7829 int code16;
7830
7831 code16 = 0;
7832 if (flag_code == CODE_16BIT)
7833 code16 = CODE16;
7834
7835 prefix = 0;
7836 if (i.prefix[DATA_PREFIX] != 0)
7837 {
7838 prefix = 1;
7839 i.prefixes -= 1;
7840 code16 ^= CODE16;
7841 }
7842 if (i.prefix[REX_PREFIX] != 0)
7843 {
7844 prefix++;
7845 i.prefixes -= 1;
7846 }
7847
7848 size = 4;
7849 if (code16)
7850 size = 2;
7851
7852 if (i.prefixes != 0 && !intel_syntax)
7853 as_warn (_("skipping prefixes on this instruction"));
7854
7855 /* 1 opcode; 2 segment; offset */
7856 p = frag_more (prefix + 1 + 2 + size);
7857
7858 if (i.prefix[DATA_PREFIX] != 0)
7859 *p++ = DATA_PREFIX_OPCODE;
7860
7861 if (i.prefix[REX_PREFIX] != 0)
7862 *p++ = i.prefix[REX_PREFIX];
7863
7864 *p++ = i.tm.base_opcode;
7865 if (i.op[1].imms->X_op == O_constant)
7866 {
7867 offsetT n = i.op[1].imms->X_add_number;
7868
7869 if (size == 2
7870 && !fits_in_unsigned_word (n)
7871 && !fits_in_signed_word (n))
7872 {
7873 as_bad (_("16-bit jump out of range"));
7874 return;
7875 }
7876 md_number_to_chars (p, n, size);
7877 }
7878 else
7879 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7880 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7881 if (i.op[0].imms->X_op != O_constant)
7882 as_bad (_("can't handle non absolute segment in `%s'"),
7883 i.tm.name);
7884 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7885 }
7886
7887 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7888 void
7889 x86_cleanup (void)
7890 {
7891 char *p;
7892 asection *seg = now_seg;
7893 subsegT subseg = now_subseg;
7894 asection *sec;
7895 unsigned int alignment, align_size_1;
7896 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7897 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7898 unsigned int padding;
7899
7900 if (!IS_ELF || !x86_used_note)
7901 return;
7902
7903 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7904
7905 /* The .note.gnu.property section layout:
7906
7907 Field Length Contents
7908 ---- ---- ----
7909 n_namsz 4 4
7910 n_descsz 4 The note descriptor size
7911 n_type 4 NT_GNU_PROPERTY_TYPE_0
7912 n_name 4 "GNU"
7913 n_desc n_descsz The program property array
7914 .... .... ....
7915 */
7916
7917 /* Create the .note.gnu.property section. */
7918 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7919 bfd_set_section_flags (stdoutput, sec,
7920 (SEC_ALLOC
7921 | SEC_LOAD
7922 | SEC_DATA
7923 | SEC_HAS_CONTENTS
7924 | SEC_READONLY));
7925
7926 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7927 {
7928 align_size_1 = 7;
7929 alignment = 3;
7930 }
7931 else
7932 {
7933 align_size_1 = 3;
7934 alignment = 2;
7935 }
7936
7937 bfd_set_section_alignment (stdoutput, sec, alignment);
7938 elf_section_type (sec) = SHT_NOTE;
7939
7940 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7941 + 4-byte data */
7942 isa_1_descsz_raw = 4 + 4 + 4;
7943 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7944 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7945
7946 feature_2_descsz_raw = isa_1_descsz;
7947 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7948 + 4-byte data */
7949 feature_2_descsz_raw += 4 + 4 + 4;
7950 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7951 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7952 & ~align_size_1);
7953
7954 descsz = feature_2_descsz;
7955 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7956 p = frag_more (4 + 4 + 4 + 4 + descsz);
7957
7958 /* Write n_namsz. */
7959 md_number_to_chars (p, (valueT) 4, 4);
7960
7961 /* Write n_descsz. */
7962 md_number_to_chars (p + 4, (valueT) descsz, 4);
7963
7964 /* Write n_type. */
7965 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7966
7967 /* Write n_name. */
7968 memcpy (p + 4 * 3, "GNU", 4);
7969
7970 /* Write 4-byte type. */
7971 md_number_to_chars (p + 4 * 4,
7972 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7973
7974 /* Write 4-byte data size. */
7975 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7976
7977 /* Write 4-byte data. */
7978 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7979
7980 /* Zero out paddings. */
7981 padding = isa_1_descsz - isa_1_descsz_raw;
7982 if (padding)
7983 memset (p + 4 * 7, 0, padding);
7984
7985 /* Write 4-byte type. */
7986 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7987 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7988
7989 /* Write 4-byte data size. */
7990 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7991
7992 /* Write 4-byte data. */
7993 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7994 (valueT) x86_feature_2_used, 4);
7995
7996 /* Zero out paddings. */
7997 padding = feature_2_descsz - feature_2_descsz_raw;
7998 if (padding)
7999 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8000
8001 /* We probably can't restore the current segment, for there likely
8002 isn't one yet... */
8003 if (seg && subseg)
8004 subseg_set (seg, subseg);
8005 }
8006 #endif
8007
8008 static void
8009 output_insn (void)
8010 {
8011 fragS *insn_start_frag;
8012 offsetT insn_start_off;
8013
8014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8015 if (IS_ELF && x86_used_note)
8016 {
8017 if (i.tm.cpu_flags.bitfield.cpucmov)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8019 if (i.tm.cpu_flags.bitfield.cpusse)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8021 if (i.tm.cpu_flags.bitfield.cpusse2)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8023 if (i.tm.cpu_flags.bitfield.cpusse3)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8025 if (i.tm.cpu_flags.bitfield.cpussse3)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8027 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8029 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8031 if (i.tm.cpu_flags.bitfield.cpuavx)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8033 if (i.tm.cpu_flags.bitfield.cpuavx2)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8035 if (i.tm.cpu_flags.bitfield.cpufma)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8057 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8059 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8061 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8062 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8063 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8064 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8065
8066 if (i.tm.cpu_flags.bitfield.cpu8087
8067 || i.tm.cpu_flags.bitfield.cpu287
8068 || i.tm.cpu_flags.bitfield.cpu387
8069 || i.tm.cpu_flags.bitfield.cpu687
8070 || i.tm.cpu_flags.bitfield.cpufisttp)
8071 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8072 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8073 Xfence instructions. */
8074 if (i.tm.base_opcode != 0xf18
8075 && i.tm.base_opcode != 0xf0d
8076 && i.tm.base_opcode != 0xfae
8077 && (i.has_regmmx
8078 || i.tm.cpu_flags.bitfield.cpummx
8079 || i.tm.cpu_flags.bitfield.cpua3dnow
8080 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8082 if (i.has_regxmm)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8084 if (i.has_regymm)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8086 if (i.has_regzmm)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8088 if (i.tm.cpu_flags.bitfield.cpufxsr)
8089 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8090 if (i.tm.cpu_flags.bitfield.cpuxsave)
8091 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8092 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8093 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8094 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8095 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8096 }
8097 #endif
8098
8099 /* Tie dwarf2 debug info to the address at the start of the insn.
8100 We can't do this after the insn has been output as the current
8101 frag may have been closed off. eg. by frag_var. */
8102 dwarf2_emit_insn (0);
8103
8104 insn_start_frag = frag_now;
8105 insn_start_off = frag_now_fix ();
8106
8107 /* Output jumps. */
8108 if (i.tm.opcode_modifier.jump)
8109 output_branch ();
8110 else if (i.tm.opcode_modifier.jumpbyte
8111 || i.tm.opcode_modifier.jumpdword)
8112 output_jump ();
8113 else if (i.tm.opcode_modifier.jumpintersegment)
8114 output_interseg_jump ();
8115 else
8116 {
8117 /* Output normal instructions here. */
8118 char *p;
8119 unsigned char *q;
8120 unsigned int j;
8121 unsigned int prefix;
8122
8123 if (avoid_fence
8124 && i.tm.base_opcode == 0xfae
8125 && i.operands == 1
8126 && i.imm_operands == 1
8127 && (i.op[0].imms->X_add_number == 0xe8
8128 || i.op[0].imms->X_add_number == 0xf0
8129 || i.op[0].imms->X_add_number == 0xf8))
8130 {
8131 /* Encode lfence, mfence, and sfence as
8132 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8133 offsetT val = 0x240483f0ULL;
8134 p = frag_more (5);
8135 md_number_to_chars (p, val, 5);
8136 return;
8137 }
8138
8139 /* Some processors fail on LOCK prefix. This options makes
8140 assembler ignore LOCK prefix and serves as a workaround. */
8141 if (omit_lock_prefix)
8142 {
8143 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8144 return;
8145 i.prefix[LOCK_PREFIX] = 0;
8146 }
8147
8148 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8149 don't need the explicit prefix. */
8150 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8151 {
8152 switch (i.tm.opcode_length)
8153 {
8154 case 3:
8155 if (i.tm.base_opcode & 0xff000000)
8156 {
8157 prefix = (i.tm.base_opcode >> 24) & 0xff;
8158 add_prefix (prefix);
8159 }
8160 break;
8161 case 2:
8162 if ((i.tm.base_opcode & 0xff0000) != 0)
8163 {
8164 prefix = (i.tm.base_opcode >> 16) & 0xff;
8165 if (!i.tm.cpu_flags.bitfield.cpupadlock
8166 || prefix != REPE_PREFIX_OPCODE
8167 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8168 add_prefix (prefix);
8169 }
8170 break;
8171 case 1:
8172 break;
8173 case 0:
8174 /* Check for pseudo prefixes. */
8175 as_bad_where (insn_start_frag->fr_file,
8176 insn_start_frag->fr_line,
8177 _("pseudo prefix without instruction"));
8178 return;
8179 default:
8180 abort ();
8181 }
8182
8183 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8184 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8185 R_X86_64_GOTTPOFF relocation so that linker can safely
8186 perform IE->LE optimization. */
8187 if (x86_elf_abi == X86_64_X32_ABI
8188 && i.operands == 2
8189 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8190 && i.prefix[REX_PREFIX] == 0)
8191 add_prefix (REX_OPCODE);
8192 #endif
8193
8194 /* The prefix bytes. */
8195 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8196 if (*q)
8197 FRAG_APPEND_1_CHAR (*q);
8198 }
8199 else
8200 {
8201 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8202 if (*q)
8203 switch (j)
8204 {
8205 case REX_PREFIX:
8206 /* REX byte is encoded in VEX prefix. */
8207 break;
8208 case SEG_PREFIX:
8209 case ADDR_PREFIX:
8210 FRAG_APPEND_1_CHAR (*q);
8211 break;
8212 default:
8213 /* There should be no other prefixes for instructions
8214 with VEX prefix. */
8215 abort ();
8216 }
8217
8218 /* For EVEX instructions i.vrex should become 0 after
8219 build_evex_prefix. For VEX instructions upper 16 registers
8220 aren't available, so VREX should be 0. */
8221 if (i.vrex)
8222 abort ();
8223 /* Now the VEX prefix. */
8224 p = frag_more (i.vex.length);
8225 for (j = 0; j < i.vex.length; j++)
8226 p[j] = i.vex.bytes[j];
8227 }
8228
8229 /* Now the opcode; be careful about word order here! */
8230 if (i.tm.opcode_length == 1)
8231 {
8232 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8233 }
8234 else
8235 {
8236 switch (i.tm.opcode_length)
8237 {
8238 case 4:
8239 p = frag_more (4);
8240 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8241 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8242 break;
8243 case 3:
8244 p = frag_more (3);
8245 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8246 break;
8247 case 2:
8248 p = frag_more (2);
8249 break;
8250 default:
8251 abort ();
8252 break;
8253 }
8254
8255 /* Put out high byte first: can't use md_number_to_chars! */
8256 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8257 *p = i.tm.base_opcode & 0xff;
8258 }
8259
8260 /* Now the modrm byte and sib byte (if present). */
8261 if (i.tm.opcode_modifier.modrm)
8262 {
8263 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8264 | i.rm.reg << 3
8265 | i.rm.mode << 6));
8266 /* If i.rm.regmem == ESP (4)
8267 && i.rm.mode != (Register mode)
8268 && not 16 bit
8269 ==> need second modrm byte. */
8270 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8271 && i.rm.mode != 3
8272 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8273 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8274 | i.sib.index << 3
8275 | i.sib.scale << 6));
8276 }
8277
8278 if (i.disp_operands)
8279 output_disp (insn_start_frag, insn_start_off);
8280
8281 if (i.imm_operands)
8282 output_imm (insn_start_frag, insn_start_off);
8283 }
8284
8285 #ifdef DEBUG386
8286 if (flag_debug)
8287 {
8288 pi ("" /*line*/, &i);
8289 }
8290 #endif /* DEBUG386 */
8291 }
8292
8293 /* Return the size of the displacement operand N. */
8294
8295 static int
8296 disp_size (unsigned int n)
8297 {
8298 int size = 4;
8299
8300 if (i.types[n].bitfield.disp64)
8301 size = 8;
8302 else if (i.types[n].bitfield.disp8)
8303 size = 1;
8304 else if (i.types[n].bitfield.disp16)
8305 size = 2;
8306 return size;
8307 }
8308
8309 /* Return the size of the immediate operand N. */
8310
8311 static int
8312 imm_size (unsigned int n)
8313 {
8314 int size = 4;
8315 if (i.types[n].bitfield.imm64)
8316 size = 8;
8317 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8318 size = 1;
8319 else if (i.types[n].bitfield.imm16)
8320 size = 2;
8321 return size;
8322 }
8323
8324 static void
8325 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8326 {
8327 char *p;
8328 unsigned int n;
8329
8330 for (n = 0; n < i.operands; n++)
8331 {
8332 if (operand_type_check (i.types[n], disp))
8333 {
8334 if (i.op[n].disps->X_op == O_constant)
8335 {
8336 int size = disp_size (n);
8337 offsetT val = i.op[n].disps->X_add_number;
8338
8339 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8340 size);
8341 p = frag_more (size);
8342 md_number_to_chars (p, val, size);
8343 }
8344 else
8345 {
8346 enum bfd_reloc_code_real reloc_type;
8347 int size = disp_size (n);
8348 int sign = i.types[n].bitfield.disp32s;
8349 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8350 fixS *fixP;
8351
8352 /* We can't have 8 bit displacement here. */
8353 gas_assert (!i.types[n].bitfield.disp8);
8354
8355 /* The PC relative address is computed relative
8356 to the instruction boundary, so in case immediate
8357 fields follows, we need to adjust the value. */
8358 if (pcrel && i.imm_operands)
8359 {
8360 unsigned int n1;
8361 int sz = 0;
8362
8363 for (n1 = 0; n1 < i.operands; n1++)
8364 if (operand_type_check (i.types[n1], imm))
8365 {
8366 /* Only one immediate is allowed for PC
8367 relative address. */
8368 gas_assert (sz == 0);
8369 sz = imm_size (n1);
8370 i.op[n].disps->X_add_number -= sz;
8371 }
8372 /* We should find the immediate. */
8373 gas_assert (sz != 0);
8374 }
8375
8376 p = frag_more (size);
8377 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8378 if (GOT_symbol
8379 && GOT_symbol == i.op[n].disps->X_add_symbol
8380 && (((reloc_type == BFD_RELOC_32
8381 || reloc_type == BFD_RELOC_X86_64_32S
8382 || (reloc_type == BFD_RELOC_64
8383 && object_64bit))
8384 && (i.op[n].disps->X_op == O_symbol
8385 || (i.op[n].disps->X_op == O_add
8386 && ((symbol_get_value_expression
8387 (i.op[n].disps->X_op_symbol)->X_op)
8388 == O_subtract))))
8389 || reloc_type == BFD_RELOC_32_PCREL))
8390 {
8391 offsetT add;
8392
8393 if (insn_start_frag == frag_now)
8394 add = (p - frag_now->fr_literal) - insn_start_off;
8395 else
8396 {
8397 fragS *fr;
8398
8399 add = insn_start_frag->fr_fix - insn_start_off;
8400 for (fr = insn_start_frag->fr_next;
8401 fr && fr != frag_now; fr = fr->fr_next)
8402 add += fr->fr_fix;
8403 add += p - frag_now->fr_literal;
8404 }
8405
8406 if (!object_64bit)
8407 {
8408 reloc_type = BFD_RELOC_386_GOTPC;
8409 i.op[n].imms->X_add_number += add;
8410 }
8411 else if (reloc_type == BFD_RELOC_64)
8412 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8413 else
8414 /* Don't do the adjustment for x86-64, as there
8415 the pcrel addressing is relative to the _next_
8416 insn, and that is taken care of in other code. */
8417 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8418 }
8419 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8420 size, i.op[n].disps, pcrel,
8421 reloc_type);
8422 /* Check for "call/jmp *mem", "mov mem, %reg",
8423 "test %reg, mem" and "binop mem, %reg" where binop
8424 is one of adc, add, and, cmp, or, sbb, sub, xor
8425 instructions without data prefix. Always generate
8426 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8427 if (i.prefix[DATA_PREFIX] == 0
8428 && (generate_relax_relocations
8429 || (!object_64bit
8430 && i.rm.mode == 0
8431 && i.rm.regmem == 5))
8432 && (i.rm.mode == 2
8433 || (i.rm.mode == 0 && i.rm.regmem == 5))
8434 && ((i.operands == 1
8435 && i.tm.base_opcode == 0xff
8436 && (i.rm.reg == 2 || i.rm.reg == 4))
8437 || (i.operands == 2
8438 && (i.tm.base_opcode == 0x8b
8439 || i.tm.base_opcode == 0x85
8440 || (i.tm.base_opcode & 0xc7) == 0x03))))
8441 {
8442 if (object_64bit)
8443 {
8444 fixP->fx_tcbit = i.rex != 0;
8445 if (i.base_reg
8446 && (i.base_reg->reg_num == RegIP))
8447 fixP->fx_tcbit2 = 1;
8448 }
8449 else
8450 fixP->fx_tcbit2 = 1;
8451 }
8452 }
8453 }
8454 }
8455 }
8456
8457 static void
8458 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8459 {
8460 char *p;
8461 unsigned int n;
8462
8463 for (n = 0; n < i.operands; n++)
8464 {
8465 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8466 if (i.rounding && (int) n == i.rounding->operand)
8467 continue;
8468
8469 if (operand_type_check (i.types[n], imm))
8470 {
8471 if (i.op[n].imms->X_op == O_constant)
8472 {
8473 int size = imm_size (n);
8474 offsetT val;
8475
8476 val = offset_in_range (i.op[n].imms->X_add_number,
8477 size);
8478 p = frag_more (size);
8479 md_number_to_chars (p, val, size);
8480 }
8481 else
8482 {
8483 /* Not absolute_section.
8484 Need a 32-bit fixup (don't support 8bit
8485 non-absolute imms). Try to support other
8486 sizes ... */
8487 enum bfd_reloc_code_real reloc_type;
8488 int size = imm_size (n);
8489 int sign;
8490
8491 if (i.types[n].bitfield.imm32s
8492 && (i.suffix == QWORD_MNEM_SUFFIX
8493 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8494 sign = 1;
8495 else
8496 sign = 0;
8497
8498 p = frag_more (size);
8499 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8500
8501 /* This is tough to explain. We end up with this one if we
8502 * have operands that look like
8503 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8504 * obtain the absolute address of the GOT, and it is strongly
8505 * preferable from a performance point of view to avoid using
8506 * a runtime relocation for this. The actual sequence of
8507 * instructions often look something like:
8508 *
8509 * call .L66
8510 * .L66:
8511 * popl %ebx
8512 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8513 *
8514 * The call and pop essentially return the absolute address
8515 * of the label .L66 and store it in %ebx. The linker itself
8516 * will ultimately change the first operand of the addl so
8517 * that %ebx points to the GOT, but to keep things simple, the
8518 * .o file must have this operand set so that it generates not
8519 * the absolute address of .L66, but the absolute address of
8520 * itself. This allows the linker itself simply treat a GOTPC
8521 * relocation as asking for a pcrel offset to the GOT to be
8522 * added in, and the addend of the relocation is stored in the
8523 * operand field for the instruction itself.
8524 *
8525 * Our job here is to fix the operand so that it would add
8526 * the correct offset so that %ebx would point to itself. The
8527 * thing that is tricky is that .-.L66 will point to the
8528 * beginning of the instruction, so we need to further modify
8529 * the operand so that it will point to itself. There are
8530 * other cases where you have something like:
8531 *
8532 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8533 *
8534 * and here no correction would be required. Internally in
8535 * the assembler we treat operands of this form as not being
8536 * pcrel since the '.' is explicitly mentioned, and I wonder
8537 * whether it would simplify matters to do it this way. Who
8538 * knows. In earlier versions of the PIC patches, the
8539 * pcrel_adjust field was used to store the correction, but
8540 * since the expression is not pcrel, I felt it would be
8541 * confusing to do it this way. */
8542
8543 if ((reloc_type == BFD_RELOC_32
8544 || reloc_type == BFD_RELOC_X86_64_32S
8545 || reloc_type == BFD_RELOC_64)
8546 && GOT_symbol
8547 && GOT_symbol == i.op[n].imms->X_add_symbol
8548 && (i.op[n].imms->X_op == O_symbol
8549 || (i.op[n].imms->X_op == O_add
8550 && ((symbol_get_value_expression
8551 (i.op[n].imms->X_op_symbol)->X_op)
8552 == O_subtract))))
8553 {
8554 offsetT add;
8555
8556 if (insn_start_frag == frag_now)
8557 add = (p - frag_now->fr_literal) - insn_start_off;
8558 else
8559 {
8560 fragS *fr;
8561
8562 add = insn_start_frag->fr_fix - insn_start_off;
8563 for (fr = insn_start_frag->fr_next;
8564 fr && fr != frag_now; fr = fr->fr_next)
8565 add += fr->fr_fix;
8566 add += p - frag_now->fr_literal;
8567 }
8568
8569 if (!object_64bit)
8570 reloc_type = BFD_RELOC_386_GOTPC;
8571 else if (size == 4)
8572 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8573 else if (size == 8)
8574 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8575 i.op[n].imms->X_add_number += add;
8576 }
8577 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8578 i.op[n].imms, 0, reloc_type);
8579 }
8580 }
8581 }
8582 }
8583 \f
8584 /* x86_cons_fix_new is called via the expression parsing code when a
8585 reloc is needed. We use this hook to get the correct .got reloc. */
8586 static int cons_sign = -1;
8587
8588 void
8589 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8590 expressionS *exp, bfd_reloc_code_real_type r)
8591 {
8592 r = reloc (len, 0, cons_sign, r);
8593
8594 #ifdef TE_PE
8595 if (exp->X_op == O_secrel)
8596 {
8597 exp->X_op = O_symbol;
8598 r = BFD_RELOC_32_SECREL;
8599 }
8600 #endif
8601
8602 fix_new_exp (frag, off, len, exp, 0, r);
8603 }
8604
8605 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8606 purpose of the `.dc.a' internal pseudo-op. */
8607
8608 int
8609 x86_address_bytes (void)
8610 {
8611 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8612 return 4;
8613 return stdoutput->arch_info->bits_per_address / 8;
8614 }
8615
8616 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8617 || defined (LEX_AT)
8618 # define lex_got(reloc, adjust, types) NULL
8619 #else
8620 /* Parse operands of the form
8621 <symbol>@GOTOFF+<nnn>
8622 and similar .plt or .got references.
8623
8624 If we find one, set up the correct relocation in RELOC and copy the
8625 input string, minus the `@GOTOFF' into a malloc'd buffer for
8626 parsing by the calling routine. Return this buffer, and if ADJUST
8627 is non-null set it to the length of the string we removed from the
8628 input line. Otherwise return NULL. */
8629 static char *
8630 lex_got (enum bfd_reloc_code_real *rel,
8631 int *adjust,
8632 i386_operand_type *types)
8633 {
8634 /* Some of the relocations depend on the size of what field is to
8635 be relocated. But in our callers i386_immediate and i386_displacement
8636 we don't yet know the operand size (this will be set by insn
8637 matching). Hence we record the word32 relocation here,
8638 and adjust the reloc according to the real size in reloc(). */
8639 static const struct {
8640 const char *str;
8641 int len;
8642 const enum bfd_reloc_code_real rel[2];
8643 const i386_operand_type types64;
8644 } gotrel[] = {
8645 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8646 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8647 BFD_RELOC_SIZE32 },
8648 OPERAND_TYPE_IMM32_64 },
8649 #endif
8650 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8651 BFD_RELOC_X86_64_PLTOFF64 },
8652 OPERAND_TYPE_IMM64 },
8653 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8654 BFD_RELOC_X86_64_PLT32 },
8655 OPERAND_TYPE_IMM32_32S_DISP32 },
8656 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8657 BFD_RELOC_X86_64_GOTPLT64 },
8658 OPERAND_TYPE_IMM64_DISP64 },
8659 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8660 BFD_RELOC_X86_64_GOTOFF64 },
8661 OPERAND_TYPE_IMM64_DISP64 },
8662 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8663 BFD_RELOC_X86_64_GOTPCREL },
8664 OPERAND_TYPE_IMM32_32S_DISP32 },
8665 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8666 BFD_RELOC_X86_64_TLSGD },
8667 OPERAND_TYPE_IMM32_32S_DISP32 },
8668 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8669 _dummy_first_bfd_reloc_code_real },
8670 OPERAND_TYPE_NONE },
8671 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8672 BFD_RELOC_X86_64_TLSLD },
8673 OPERAND_TYPE_IMM32_32S_DISP32 },
8674 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8675 BFD_RELOC_X86_64_GOTTPOFF },
8676 OPERAND_TYPE_IMM32_32S_DISP32 },
8677 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8678 BFD_RELOC_X86_64_TPOFF32 },
8679 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8680 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8681 _dummy_first_bfd_reloc_code_real },
8682 OPERAND_TYPE_NONE },
8683 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8684 BFD_RELOC_X86_64_DTPOFF32 },
8685 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8686 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8687 _dummy_first_bfd_reloc_code_real },
8688 OPERAND_TYPE_NONE },
8689 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8690 _dummy_first_bfd_reloc_code_real },
8691 OPERAND_TYPE_NONE },
8692 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8693 BFD_RELOC_X86_64_GOT32 },
8694 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8695 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8696 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8697 OPERAND_TYPE_IMM32_32S_DISP32 },
8698 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8699 BFD_RELOC_X86_64_TLSDESC_CALL },
8700 OPERAND_TYPE_IMM32_32S_DISP32 },
8701 };
8702 char *cp;
8703 unsigned int j;
8704
8705 #if defined (OBJ_MAYBE_ELF)
8706 if (!IS_ELF)
8707 return NULL;
8708 #endif
8709
8710 for (cp = input_line_pointer; *cp != '@'; cp++)
8711 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8712 return NULL;
8713
8714 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8715 {
8716 int len = gotrel[j].len;
8717 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8718 {
8719 if (gotrel[j].rel[object_64bit] != 0)
8720 {
8721 int first, second;
8722 char *tmpbuf, *past_reloc;
8723
8724 *rel = gotrel[j].rel[object_64bit];
8725
8726 if (types)
8727 {
8728 if (flag_code != CODE_64BIT)
8729 {
8730 types->bitfield.imm32 = 1;
8731 types->bitfield.disp32 = 1;
8732 }
8733 else
8734 *types = gotrel[j].types64;
8735 }
8736
8737 if (j != 0 && GOT_symbol == NULL)
8738 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8739
8740 /* The length of the first part of our input line. */
8741 first = cp - input_line_pointer;
8742
8743 /* The second part goes from after the reloc token until
8744 (and including) an end_of_line char or comma. */
8745 past_reloc = cp + 1 + len;
8746 cp = past_reloc;
8747 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8748 ++cp;
8749 second = cp + 1 - past_reloc;
8750
8751 /* Allocate and copy string. The trailing NUL shouldn't
8752 be necessary, but be safe. */
8753 tmpbuf = XNEWVEC (char, first + second + 2);
8754 memcpy (tmpbuf, input_line_pointer, first);
8755 if (second != 0 && *past_reloc != ' ')
8756 /* Replace the relocation token with ' ', so that
8757 errors like foo@GOTOFF1 will be detected. */
8758 tmpbuf[first++] = ' ';
8759 else
8760 /* Increment length by 1 if the relocation token is
8761 removed. */
8762 len++;
8763 if (adjust)
8764 *adjust = len;
8765 memcpy (tmpbuf + first, past_reloc, second);
8766 tmpbuf[first + second] = '\0';
8767 return tmpbuf;
8768 }
8769
8770 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8771 gotrel[j].str, 1 << (5 + object_64bit));
8772 return NULL;
8773 }
8774 }
8775
8776 /* Might be a symbol version string. Don't as_bad here. */
8777 return NULL;
8778 }
8779 #endif
8780
8781 #ifdef TE_PE
8782 #ifdef lex_got
8783 #undef lex_got
8784 #endif
8785 /* Parse operands of the form
8786 <symbol>@SECREL32+<nnn>
8787
8788 If we find one, set up the correct relocation in RELOC and copy the
8789 input string, minus the `@SECREL32' into a malloc'd buffer for
8790 parsing by the calling routine. Return this buffer, and if ADJUST
8791 is non-null set it to the length of the string we removed from the
8792 input line. Otherwise return NULL.
8793
8794 This function is copied from the ELF version above adjusted for PE targets. */
8795
8796 static char *
8797 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8798 int *adjust ATTRIBUTE_UNUSED,
8799 i386_operand_type *types)
8800 {
8801 static const struct
8802 {
8803 const char *str;
8804 int len;
8805 const enum bfd_reloc_code_real rel[2];
8806 const i386_operand_type types64;
8807 }
8808 gotrel[] =
8809 {
8810 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8811 BFD_RELOC_32_SECREL },
8812 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8813 };
8814
8815 char *cp;
8816 unsigned j;
8817
8818 for (cp = input_line_pointer; *cp != '@'; cp++)
8819 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8820 return NULL;
8821
8822 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8823 {
8824 int len = gotrel[j].len;
8825
8826 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8827 {
8828 if (gotrel[j].rel[object_64bit] != 0)
8829 {
8830 int first, second;
8831 char *tmpbuf, *past_reloc;
8832
8833 *rel = gotrel[j].rel[object_64bit];
8834 if (adjust)
8835 *adjust = len;
8836
8837 if (types)
8838 {
8839 if (flag_code != CODE_64BIT)
8840 {
8841 types->bitfield.imm32 = 1;
8842 types->bitfield.disp32 = 1;
8843 }
8844 else
8845 *types = gotrel[j].types64;
8846 }
8847
8848 /* The length of the first part of our input line. */
8849 first = cp - input_line_pointer;
8850
8851 /* The second part goes from after the reloc token until
8852 (and including) an end_of_line char or comma. */
8853 past_reloc = cp + 1 + len;
8854 cp = past_reloc;
8855 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8856 ++cp;
8857 second = cp + 1 - past_reloc;
8858
8859 /* Allocate and copy string. The trailing NUL shouldn't
8860 be necessary, but be safe. */
8861 tmpbuf = XNEWVEC (char, first + second + 2);
8862 memcpy (tmpbuf, input_line_pointer, first);
8863 if (second != 0 && *past_reloc != ' ')
8864 /* Replace the relocation token with ' ', so that
8865 errors like foo@SECLREL321 will be detected. */
8866 tmpbuf[first++] = ' ';
8867 memcpy (tmpbuf + first, past_reloc, second);
8868 tmpbuf[first + second] = '\0';
8869 return tmpbuf;
8870 }
8871
8872 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8873 gotrel[j].str, 1 << (5 + object_64bit));
8874 return NULL;
8875 }
8876 }
8877
8878 /* Might be a symbol version string. Don't as_bad here. */
8879 return NULL;
8880 }
8881
8882 #endif /* TE_PE */
8883
8884 bfd_reloc_code_real_type
8885 x86_cons (expressionS *exp, int size)
8886 {
8887 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8888
8889 intel_syntax = -intel_syntax;
8890
8891 exp->X_md = 0;
8892 if (size == 4 || (object_64bit && size == 8))
8893 {
8894 /* Handle @GOTOFF and the like in an expression. */
8895 char *save;
8896 char *gotfree_input_line;
8897 int adjust = 0;
8898
8899 save = input_line_pointer;
8900 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8901 if (gotfree_input_line)
8902 input_line_pointer = gotfree_input_line;
8903
8904 expression (exp);
8905
8906 if (gotfree_input_line)
8907 {
8908 /* expression () has merrily parsed up to the end of line,
8909 or a comma - in the wrong buffer. Transfer how far
8910 input_line_pointer has moved to the right buffer. */
8911 input_line_pointer = (save
8912 + (input_line_pointer - gotfree_input_line)
8913 + adjust);
8914 free (gotfree_input_line);
8915 if (exp->X_op == O_constant
8916 || exp->X_op == O_absent
8917 || exp->X_op == O_illegal
8918 || exp->X_op == O_register
8919 || exp->X_op == O_big)
8920 {
8921 char c = *input_line_pointer;
8922 *input_line_pointer = 0;
8923 as_bad (_("missing or invalid expression `%s'"), save);
8924 *input_line_pointer = c;
8925 }
8926 else if ((got_reloc == BFD_RELOC_386_PLT32
8927 || got_reloc == BFD_RELOC_X86_64_PLT32)
8928 && exp->X_op != O_symbol)
8929 {
8930 char c = *input_line_pointer;
8931 *input_line_pointer = 0;
8932 as_bad (_("invalid PLT expression `%s'"), save);
8933 *input_line_pointer = c;
8934 }
8935 }
8936 }
8937 else
8938 expression (exp);
8939
8940 intel_syntax = -intel_syntax;
8941
8942 if (intel_syntax)
8943 i386_intel_simplify (exp);
8944
8945 return got_reloc;
8946 }
8947
8948 static void
8949 signed_cons (int size)
8950 {
8951 if (flag_code == CODE_64BIT)
8952 cons_sign = 1;
8953 cons (size);
8954 cons_sign = -1;
8955 }
8956
8957 #ifdef TE_PE
8958 static void
8959 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8960 {
8961 expressionS exp;
8962
8963 do
8964 {
8965 expression (&exp);
8966 if (exp.X_op == O_symbol)
8967 exp.X_op = O_secrel;
8968
8969 emit_expr (&exp, 4);
8970 }
8971 while (*input_line_pointer++ == ',');
8972
8973 input_line_pointer--;
8974 demand_empty_rest_of_line ();
8975 }
8976 #endif
8977
8978 /* Handle Vector operations. */
8979
8980 static char *
8981 check_VecOperations (char *op_string, char *op_end)
8982 {
8983 const reg_entry *mask;
8984 const char *saved;
8985 char *end_op;
8986
8987 while (*op_string
8988 && (op_end == NULL || op_string < op_end))
8989 {
8990 saved = op_string;
8991 if (*op_string == '{')
8992 {
8993 op_string++;
8994
8995 /* Check broadcasts. */
8996 if (strncmp (op_string, "1to", 3) == 0)
8997 {
8998 int bcst_type;
8999
9000 if (i.broadcast)
9001 goto duplicated_vec_op;
9002
9003 op_string += 3;
9004 if (*op_string == '8')
9005 bcst_type = 8;
9006 else if (*op_string == '4')
9007 bcst_type = 4;
9008 else if (*op_string == '2')
9009 bcst_type = 2;
9010 else if (*op_string == '1'
9011 && *(op_string+1) == '6')
9012 {
9013 bcst_type = 16;
9014 op_string++;
9015 }
9016 else
9017 {
9018 as_bad (_("Unsupported broadcast: `%s'"), saved);
9019 return NULL;
9020 }
9021 op_string++;
9022
9023 broadcast_op.type = bcst_type;
9024 broadcast_op.operand = this_operand;
9025 broadcast_op.bytes = 0;
9026 i.broadcast = &broadcast_op;
9027 }
9028 /* Check masking operation. */
9029 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9030 {
9031 /* k0 can't be used for write mask. */
9032 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9033 {
9034 as_bad (_("`%s%s' can't be used for write mask"),
9035 register_prefix, mask->reg_name);
9036 return NULL;
9037 }
9038
9039 if (!i.mask)
9040 {
9041 mask_op.mask = mask;
9042 mask_op.zeroing = 0;
9043 mask_op.operand = this_operand;
9044 i.mask = &mask_op;
9045 }
9046 else
9047 {
9048 if (i.mask->mask)
9049 goto duplicated_vec_op;
9050
9051 i.mask->mask = mask;
9052
9053 /* Only "{z}" is allowed here. No need to check
9054 zeroing mask explicitly. */
9055 if (i.mask->operand != this_operand)
9056 {
9057 as_bad (_("invalid write mask `%s'"), saved);
9058 return NULL;
9059 }
9060 }
9061
9062 op_string = end_op;
9063 }
9064 /* Check zeroing-flag for masking operation. */
9065 else if (*op_string == 'z')
9066 {
9067 if (!i.mask)
9068 {
9069 mask_op.mask = NULL;
9070 mask_op.zeroing = 1;
9071 mask_op.operand = this_operand;
9072 i.mask = &mask_op;
9073 }
9074 else
9075 {
9076 if (i.mask->zeroing)
9077 {
9078 duplicated_vec_op:
9079 as_bad (_("duplicated `%s'"), saved);
9080 return NULL;
9081 }
9082
9083 i.mask->zeroing = 1;
9084
9085 /* Only "{%k}" is allowed here. No need to check mask
9086 register explicitly. */
9087 if (i.mask->operand != this_operand)
9088 {
9089 as_bad (_("invalid zeroing-masking `%s'"),
9090 saved);
9091 return NULL;
9092 }
9093 }
9094
9095 op_string++;
9096 }
9097 else
9098 goto unknown_vec_op;
9099
9100 if (*op_string != '}')
9101 {
9102 as_bad (_("missing `}' in `%s'"), saved);
9103 return NULL;
9104 }
9105 op_string++;
9106
9107 /* Strip whitespace since the addition of pseudo prefixes
9108 changed how the scrubber treats '{'. */
9109 if (is_space_char (*op_string))
9110 ++op_string;
9111
9112 continue;
9113 }
9114 unknown_vec_op:
9115 /* We don't know this one. */
9116 as_bad (_("unknown vector operation: `%s'"), saved);
9117 return NULL;
9118 }
9119
9120 if (i.mask && i.mask->zeroing && !i.mask->mask)
9121 {
9122 as_bad (_("zeroing-masking only allowed with write mask"));
9123 return NULL;
9124 }
9125
9126 return op_string;
9127 }
9128
9129 static int
9130 i386_immediate (char *imm_start)
9131 {
9132 char *save_input_line_pointer;
9133 char *gotfree_input_line;
9134 segT exp_seg = 0;
9135 expressionS *exp;
9136 i386_operand_type types;
9137
9138 operand_type_set (&types, ~0);
9139
9140 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9141 {
9142 as_bad (_("at most %d immediate operands are allowed"),
9143 MAX_IMMEDIATE_OPERANDS);
9144 return 0;
9145 }
9146
9147 exp = &im_expressions[i.imm_operands++];
9148 i.op[this_operand].imms = exp;
9149
9150 if (is_space_char (*imm_start))
9151 ++imm_start;
9152
9153 save_input_line_pointer = input_line_pointer;
9154 input_line_pointer = imm_start;
9155
9156 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9157 if (gotfree_input_line)
9158 input_line_pointer = gotfree_input_line;
9159
9160 exp_seg = expression (exp);
9161
9162 SKIP_WHITESPACE ();
9163
9164 /* Handle vector operations. */
9165 if (*input_line_pointer == '{')
9166 {
9167 input_line_pointer = check_VecOperations (input_line_pointer,
9168 NULL);
9169 if (input_line_pointer == NULL)
9170 return 0;
9171 }
9172
9173 if (*input_line_pointer)
9174 as_bad (_("junk `%s' after expression"), input_line_pointer);
9175
9176 input_line_pointer = save_input_line_pointer;
9177 if (gotfree_input_line)
9178 {
9179 free (gotfree_input_line);
9180
9181 if (exp->X_op == O_constant || exp->X_op == O_register)
9182 exp->X_op = O_illegal;
9183 }
9184
9185 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9186 }
9187
9188 static int
9189 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9190 i386_operand_type types, const char *imm_start)
9191 {
9192 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9193 {
9194 if (imm_start)
9195 as_bad (_("missing or invalid immediate expression `%s'"),
9196 imm_start);
9197 return 0;
9198 }
9199 else if (exp->X_op == O_constant)
9200 {
9201 /* Size it properly later. */
9202 i.types[this_operand].bitfield.imm64 = 1;
9203 /* If not 64bit, sign extend val. */
9204 if (flag_code != CODE_64BIT
9205 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9206 exp->X_add_number
9207 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9208 }
9209 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9210 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9211 && exp_seg != absolute_section
9212 && exp_seg != text_section
9213 && exp_seg != data_section
9214 && exp_seg != bss_section
9215 && exp_seg != undefined_section
9216 && !bfd_is_com_section (exp_seg))
9217 {
9218 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9219 return 0;
9220 }
9221 #endif
9222 else if (!intel_syntax && exp_seg == reg_section)
9223 {
9224 if (imm_start)
9225 as_bad (_("illegal immediate register operand %s"), imm_start);
9226 return 0;
9227 }
9228 else
9229 {
9230 /* This is an address. The size of the address will be
9231 determined later, depending on destination register,
9232 suffix, or the default for the section. */
9233 i.types[this_operand].bitfield.imm8 = 1;
9234 i.types[this_operand].bitfield.imm16 = 1;
9235 i.types[this_operand].bitfield.imm32 = 1;
9236 i.types[this_operand].bitfield.imm32s = 1;
9237 i.types[this_operand].bitfield.imm64 = 1;
9238 i.types[this_operand] = operand_type_and (i.types[this_operand],
9239 types);
9240 }
9241
9242 return 1;
9243 }
9244
9245 static char *
9246 i386_scale (char *scale)
9247 {
9248 offsetT val;
9249 char *save = input_line_pointer;
9250
9251 input_line_pointer = scale;
9252 val = get_absolute_expression ();
9253
9254 switch (val)
9255 {
9256 case 1:
9257 i.log2_scale_factor = 0;
9258 break;
9259 case 2:
9260 i.log2_scale_factor = 1;
9261 break;
9262 case 4:
9263 i.log2_scale_factor = 2;
9264 break;
9265 case 8:
9266 i.log2_scale_factor = 3;
9267 break;
9268 default:
9269 {
9270 char sep = *input_line_pointer;
9271
9272 *input_line_pointer = '\0';
9273 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9274 scale);
9275 *input_line_pointer = sep;
9276 input_line_pointer = save;
9277 return NULL;
9278 }
9279 }
9280 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9281 {
9282 as_warn (_("scale factor of %d without an index register"),
9283 1 << i.log2_scale_factor);
9284 i.log2_scale_factor = 0;
9285 }
9286 scale = input_line_pointer;
9287 input_line_pointer = save;
9288 return scale;
9289 }
9290
9291 static int
9292 i386_displacement (char *disp_start, char *disp_end)
9293 {
9294 expressionS *exp;
9295 segT exp_seg = 0;
9296 char *save_input_line_pointer;
9297 char *gotfree_input_line;
9298 int override;
9299 i386_operand_type bigdisp, types = anydisp;
9300 int ret;
9301
9302 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9303 {
9304 as_bad (_("at most %d displacement operands are allowed"),
9305 MAX_MEMORY_OPERANDS);
9306 return 0;
9307 }
9308
9309 operand_type_set (&bigdisp, 0);
9310 if ((i.types[this_operand].bitfield.jumpabsolute)
9311 || (!current_templates->start->opcode_modifier.jump
9312 && !current_templates->start->opcode_modifier.jumpdword))
9313 {
9314 bigdisp.bitfield.disp32 = 1;
9315 override = (i.prefix[ADDR_PREFIX] != 0);
9316 if (flag_code == CODE_64BIT)
9317 {
9318 if (!override)
9319 {
9320 bigdisp.bitfield.disp32s = 1;
9321 bigdisp.bitfield.disp64 = 1;
9322 }
9323 }
9324 else if ((flag_code == CODE_16BIT) ^ override)
9325 {
9326 bigdisp.bitfield.disp32 = 0;
9327 bigdisp.bitfield.disp16 = 1;
9328 }
9329 }
9330 else
9331 {
9332 /* For PC-relative branches, the width of the displacement
9333 is dependent upon data size, not address size. */
9334 override = (i.prefix[DATA_PREFIX] != 0);
9335 if (flag_code == CODE_64BIT)
9336 {
9337 if (override || i.suffix == WORD_MNEM_SUFFIX)
9338 bigdisp.bitfield.disp16 = 1;
9339 else
9340 {
9341 bigdisp.bitfield.disp32 = 1;
9342 bigdisp.bitfield.disp32s = 1;
9343 }
9344 }
9345 else
9346 {
9347 if (!override)
9348 override = (i.suffix == (flag_code != CODE_16BIT
9349 ? WORD_MNEM_SUFFIX
9350 : LONG_MNEM_SUFFIX));
9351 bigdisp.bitfield.disp32 = 1;
9352 if ((flag_code == CODE_16BIT) ^ override)
9353 {
9354 bigdisp.bitfield.disp32 = 0;
9355 bigdisp.bitfield.disp16 = 1;
9356 }
9357 }
9358 }
9359 i.types[this_operand] = operand_type_or (i.types[this_operand],
9360 bigdisp);
9361
9362 exp = &disp_expressions[i.disp_operands];
9363 i.op[this_operand].disps = exp;
9364 i.disp_operands++;
9365 save_input_line_pointer = input_line_pointer;
9366 input_line_pointer = disp_start;
9367 END_STRING_AND_SAVE (disp_end);
9368
9369 #ifndef GCC_ASM_O_HACK
9370 #define GCC_ASM_O_HACK 0
9371 #endif
9372 #if GCC_ASM_O_HACK
9373 END_STRING_AND_SAVE (disp_end + 1);
9374 if (i.types[this_operand].bitfield.baseIndex
9375 && displacement_string_end[-1] == '+')
9376 {
9377 /* This hack is to avoid a warning when using the "o"
9378 constraint within gcc asm statements.
9379 For instance:
9380
9381 #define _set_tssldt_desc(n,addr,limit,type) \
9382 __asm__ __volatile__ ( \
9383 "movw %w2,%0\n\t" \
9384 "movw %w1,2+%0\n\t" \
9385 "rorl $16,%1\n\t" \
9386 "movb %b1,4+%0\n\t" \
9387 "movb %4,5+%0\n\t" \
9388 "movb $0,6+%0\n\t" \
9389 "movb %h1,7+%0\n\t" \
9390 "rorl $16,%1" \
9391 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9392
9393 This works great except that the output assembler ends
9394 up looking a bit weird if it turns out that there is
9395 no offset. You end up producing code that looks like:
9396
9397 #APP
9398 movw $235,(%eax)
9399 movw %dx,2+(%eax)
9400 rorl $16,%edx
9401 movb %dl,4+(%eax)
9402 movb $137,5+(%eax)
9403 movb $0,6+(%eax)
9404 movb %dh,7+(%eax)
9405 rorl $16,%edx
9406 #NO_APP
9407
9408 So here we provide the missing zero. */
9409
9410 *displacement_string_end = '0';
9411 }
9412 #endif
9413 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9414 if (gotfree_input_line)
9415 input_line_pointer = gotfree_input_line;
9416
9417 exp_seg = expression (exp);
9418
9419 SKIP_WHITESPACE ();
9420 if (*input_line_pointer)
9421 as_bad (_("junk `%s' after expression"), input_line_pointer);
9422 #if GCC_ASM_O_HACK
9423 RESTORE_END_STRING (disp_end + 1);
9424 #endif
9425 input_line_pointer = save_input_line_pointer;
9426 if (gotfree_input_line)
9427 {
9428 free (gotfree_input_line);
9429
9430 if (exp->X_op == O_constant || exp->X_op == O_register)
9431 exp->X_op = O_illegal;
9432 }
9433
9434 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9435
9436 RESTORE_END_STRING (disp_end);
9437
9438 return ret;
9439 }
9440
9441 static int
9442 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9443 i386_operand_type types, const char *disp_start)
9444 {
9445 i386_operand_type bigdisp;
9446 int ret = 1;
9447
9448 /* We do this to make sure that the section symbol is in
9449 the symbol table. We will ultimately change the relocation
9450 to be relative to the beginning of the section. */
9451 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9452 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9453 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9454 {
9455 if (exp->X_op != O_symbol)
9456 goto inv_disp;
9457
9458 if (S_IS_LOCAL (exp->X_add_symbol)
9459 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9460 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9461 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9462 exp->X_op = O_subtract;
9463 exp->X_op_symbol = GOT_symbol;
9464 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9465 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9466 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9467 i.reloc[this_operand] = BFD_RELOC_64;
9468 else
9469 i.reloc[this_operand] = BFD_RELOC_32;
9470 }
9471
9472 else if (exp->X_op == O_absent
9473 || exp->X_op == O_illegal
9474 || exp->X_op == O_big)
9475 {
9476 inv_disp:
9477 as_bad (_("missing or invalid displacement expression `%s'"),
9478 disp_start);
9479 ret = 0;
9480 }
9481
9482 else if (flag_code == CODE_64BIT
9483 && !i.prefix[ADDR_PREFIX]
9484 && exp->X_op == O_constant)
9485 {
9486 /* Since displacement is signed extended to 64bit, don't allow
9487 disp32 and turn off disp32s if they are out of range. */
9488 i.types[this_operand].bitfield.disp32 = 0;
9489 if (!fits_in_signed_long (exp->X_add_number))
9490 {
9491 i.types[this_operand].bitfield.disp32s = 0;
9492 if (i.types[this_operand].bitfield.baseindex)
9493 {
9494 as_bad (_("0x%lx out range of signed 32bit displacement"),
9495 (long) exp->X_add_number);
9496 ret = 0;
9497 }
9498 }
9499 }
9500
9501 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9502 else if (exp->X_op != O_constant
9503 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9504 && exp_seg != absolute_section
9505 && exp_seg != text_section
9506 && exp_seg != data_section
9507 && exp_seg != bss_section
9508 && exp_seg != undefined_section
9509 && !bfd_is_com_section (exp_seg))
9510 {
9511 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9512 ret = 0;
9513 }
9514 #endif
9515
9516 /* Check if this is a displacement only operand. */
9517 bigdisp = i.types[this_operand];
9518 bigdisp.bitfield.disp8 = 0;
9519 bigdisp.bitfield.disp16 = 0;
9520 bigdisp.bitfield.disp32 = 0;
9521 bigdisp.bitfield.disp32s = 0;
9522 bigdisp.bitfield.disp64 = 0;
9523 if (operand_type_all_zero (&bigdisp))
9524 i.types[this_operand] = operand_type_and (i.types[this_operand],
9525 types);
9526
9527 return ret;
9528 }
9529
9530 /* Return the active addressing mode, taking address override and
9531 registers forming the address into consideration. Update the
9532 address override prefix if necessary. */
9533
9534 static enum flag_code
9535 i386_addressing_mode (void)
9536 {
9537 enum flag_code addr_mode;
9538
9539 if (i.prefix[ADDR_PREFIX])
9540 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9541 else
9542 {
9543 addr_mode = flag_code;
9544
9545 #if INFER_ADDR_PREFIX
9546 if (i.mem_operands == 0)
9547 {
9548 /* Infer address prefix from the first memory operand. */
9549 const reg_entry *addr_reg = i.base_reg;
9550
9551 if (addr_reg == NULL)
9552 addr_reg = i.index_reg;
9553
9554 if (addr_reg)
9555 {
9556 if (addr_reg->reg_type.bitfield.dword)
9557 addr_mode = CODE_32BIT;
9558 else if (flag_code != CODE_64BIT
9559 && addr_reg->reg_type.bitfield.word)
9560 addr_mode = CODE_16BIT;
9561
9562 if (addr_mode != flag_code)
9563 {
9564 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9565 i.prefixes += 1;
9566 /* Change the size of any displacement too. At most one
9567 of Disp16 or Disp32 is set.
9568 FIXME. There doesn't seem to be any real need for
9569 separate Disp16 and Disp32 flags. The same goes for
9570 Imm16 and Imm32. Removing them would probably clean
9571 up the code quite a lot. */
9572 if (flag_code != CODE_64BIT
9573 && (i.types[this_operand].bitfield.disp16
9574 || i.types[this_operand].bitfield.disp32))
9575 i.types[this_operand]
9576 = operand_type_xor (i.types[this_operand], disp16_32);
9577 }
9578 }
9579 }
9580 #endif
9581 }
9582
9583 return addr_mode;
9584 }
9585
9586 /* Make sure the memory operand we've been dealt is valid.
9587 Return 1 on success, 0 on a failure. */
9588
9589 static int
9590 i386_index_check (const char *operand_string)
9591 {
9592 const char *kind = "base/index";
9593 enum flag_code addr_mode = i386_addressing_mode ();
9594
9595 if (current_templates->start->opcode_modifier.isstring
9596 && !current_templates->start->opcode_modifier.immext
9597 && (current_templates->end[-1].opcode_modifier.isstring
9598 || i.mem_operands))
9599 {
9600 /* Memory operands of string insns are special in that they only allow
9601 a single register (rDI, rSI, or rBX) as their memory address. */
9602 const reg_entry *expected_reg;
9603 static const char *di_si[][2] =
9604 {
9605 { "esi", "edi" },
9606 { "si", "di" },
9607 { "rsi", "rdi" }
9608 };
9609 static const char *bx[] = { "ebx", "bx", "rbx" };
9610
9611 kind = "string address";
9612
9613 if (current_templates->start->opcode_modifier.repprefixok)
9614 {
9615 i386_operand_type type = current_templates->end[-1].operand_types[0];
9616
9617 if (!type.bitfield.baseindex
9618 || ((!i.mem_operands != !intel_syntax)
9619 && current_templates->end[-1].operand_types[1]
9620 .bitfield.baseindex))
9621 type = current_templates->end[-1].operand_types[1];
9622 expected_reg = hash_find (reg_hash,
9623 di_si[addr_mode][type.bitfield.esseg]);
9624
9625 }
9626 else
9627 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9628
9629 if (i.base_reg != expected_reg
9630 || i.index_reg
9631 || operand_type_check (i.types[this_operand], disp))
9632 {
9633 /* The second memory operand must have the same size as
9634 the first one. */
9635 if (i.mem_operands
9636 && i.base_reg
9637 && !((addr_mode == CODE_64BIT
9638 && i.base_reg->reg_type.bitfield.qword)
9639 || (addr_mode == CODE_32BIT
9640 ? i.base_reg->reg_type.bitfield.dword
9641 : i.base_reg->reg_type.bitfield.word)))
9642 goto bad_address;
9643
9644 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9645 operand_string,
9646 intel_syntax ? '[' : '(',
9647 register_prefix,
9648 expected_reg->reg_name,
9649 intel_syntax ? ']' : ')');
9650 return 1;
9651 }
9652 else
9653 return 1;
9654
9655 bad_address:
9656 as_bad (_("`%s' is not a valid %s expression"),
9657 operand_string, kind);
9658 return 0;
9659 }
9660 else
9661 {
9662 if (addr_mode != CODE_16BIT)
9663 {
9664 /* 32-bit/64-bit checks. */
9665 if ((i.base_reg
9666 && ((addr_mode == CODE_64BIT
9667 ? !i.base_reg->reg_type.bitfield.qword
9668 : !i.base_reg->reg_type.bitfield.dword)
9669 || (i.index_reg && i.base_reg->reg_num == RegIP)
9670 || i.base_reg->reg_num == RegIZ))
9671 || (i.index_reg
9672 && !i.index_reg->reg_type.bitfield.xmmword
9673 && !i.index_reg->reg_type.bitfield.ymmword
9674 && !i.index_reg->reg_type.bitfield.zmmword
9675 && ((addr_mode == CODE_64BIT
9676 ? !i.index_reg->reg_type.bitfield.qword
9677 : !i.index_reg->reg_type.bitfield.dword)
9678 || !i.index_reg->reg_type.bitfield.baseindex)))
9679 goto bad_address;
9680
9681 /* bndmk, bndldx, and bndstx have special restrictions. */
9682 if (current_templates->start->base_opcode == 0xf30f1b
9683 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9684 {
9685 /* They cannot use RIP-relative addressing. */
9686 if (i.base_reg && i.base_reg->reg_num == RegIP)
9687 {
9688 as_bad (_("`%s' cannot be used here"), operand_string);
9689 return 0;
9690 }
9691
9692 /* bndldx and bndstx ignore their scale factor. */
9693 if (current_templates->start->base_opcode != 0xf30f1b
9694 && i.log2_scale_factor)
9695 as_warn (_("register scaling is being ignored here"));
9696 }
9697 }
9698 else
9699 {
9700 /* 16-bit checks. */
9701 if ((i.base_reg
9702 && (!i.base_reg->reg_type.bitfield.word
9703 || !i.base_reg->reg_type.bitfield.baseindex))
9704 || (i.index_reg
9705 && (!i.index_reg->reg_type.bitfield.word
9706 || !i.index_reg->reg_type.bitfield.baseindex
9707 || !(i.base_reg
9708 && i.base_reg->reg_num < 6
9709 && i.index_reg->reg_num >= 6
9710 && i.log2_scale_factor == 0))))
9711 goto bad_address;
9712 }
9713 }
9714 return 1;
9715 }
9716
9717 /* Handle vector immediates. */
9718
9719 static int
9720 RC_SAE_immediate (const char *imm_start)
9721 {
9722 unsigned int match_found, j;
9723 const char *pstr = imm_start;
9724 expressionS *exp;
9725
9726 if (*pstr != '{')
9727 return 0;
9728
9729 pstr++;
9730 match_found = 0;
9731 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9732 {
9733 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9734 {
9735 if (!i.rounding)
9736 {
9737 rc_op.type = RC_NamesTable[j].type;
9738 rc_op.operand = this_operand;
9739 i.rounding = &rc_op;
9740 }
9741 else
9742 {
9743 as_bad (_("duplicated `%s'"), imm_start);
9744 return 0;
9745 }
9746 pstr += RC_NamesTable[j].len;
9747 match_found = 1;
9748 break;
9749 }
9750 }
9751 if (!match_found)
9752 return 0;
9753
9754 if (*pstr++ != '}')
9755 {
9756 as_bad (_("Missing '}': '%s'"), imm_start);
9757 return 0;
9758 }
9759 /* RC/SAE immediate string should contain nothing more. */;
9760 if (*pstr != 0)
9761 {
9762 as_bad (_("Junk after '}': '%s'"), imm_start);
9763 return 0;
9764 }
9765
9766 exp = &im_expressions[i.imm_operands++];
9767 i.op[this_operand].imms = exp;
9768
9769 exp->X_op = O_constant;
9770 exp->X_add_number = 0;
9771 exp->X_add_symbol = (symbolS *) 0;
9772 exp->X_op_symbol = (symbolS *) 0;
9773
9774 i.types[this_operand].bitfield.imm8 = 1;
9775 return 1;
9776 }
9777
9778 /* Only string instructions can have a second memory operand, so
9779 reduce current_templates to just those if it contains any. */
9780 static int
9781 maybe_adjust_templates (void)
9782 {
9783 const insn_template *t;
9784
9785 gas_assert (i.mem_operands == 1);
9786
9787 for (t = current_templates->start; t < current_templates->end; ++t)
9788 if (t->opcode_modifier.isstring)
9789 break;
9790
9791 if (t < current_templates->end)
9792 {
9793 static templates aux_templates;
9794 bfd_boolean recheck;
9795
9796 aux_templates.start = t;
9797 for (; t < current_templates->end; ++t)
9798 if (!t->opcode_modifier.isstring)
9799 break;
9800 aux_templates.end = t;
9801
9802 /* Determine whether to re-check the first memory operand. */
9803 recheck = (aux_templates.start != current_templates->start
9804 || t != current_templates->end);
9805
9806 current_templates = &aux_templates;
9807
9808 if (recheck)
9809 {
9810 i.mem_operands = 0;
9811 if (i.memop1_string != NULL
9812 && i386_index_check (i.memop1_string) == 0)
9813 return 0;
9814 i.mem_operands = 1;
9815 }
9816 }
9817
9818 return 1;
9819 }
9820
9821 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9822 on error. */
9823
9824 static int
9825 i386_att_operand (char *operand_string)
9826 {
9827 const reg_entry *r;
9828 char *end_op;
9829 char *op_string = operand_string;
9830
9831 if (is_space_char (*op_string))
9832 ++op_string;
9833
9834 /* We check for an absolute prefix (differentiating,
9835 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9836 if (*op_string == ABSOLUTE_PREFIX)
9837 {
9838 ++op_string;
9839 if (is_space_char (*op_string))
9840 ++op_string;
9841 i.types[this_operand].bitfield.jumpabsolute = 1;
9842 }
9843
9844 /* Check if operand is a register. */
9845 if ((r = parse_register (op_string, &end_op)) != NULL)
9846 {
9847 i386_operand_type temp;
9848
9849 /* Check for a segment override by searching for ':' after a
9850 segment register. */
9851 op_string = end_op;
9852 if (is_space_char (*op_string))
9853 ++op_string;
9854 if (*op_string == ':'
9855 && (r->reg_type.bitfield.sreg2
9856 || r->reg_type.bitfield.sreg3))
9857 {
9858 switch (r->reg_num)
9859 {
9860 case 0:
9861 i.seg[i.mem_operands] = &es;
9862 break;
9863 case 1:
9864 i.seg[i.mem_operands] = &cs;
9865 break;
9866 case 2:
9867 i.seg[i.mem_operands] = &ss;
9868 break;
9869 case 3:
9870 i.seg[i.mem_operands] = &ds;
9871 break;
9872 case 4:
9873 i.seg[i.mem_operands] = &fs;
9874 break;
9875 case 5:
9876 i.seg[i.mem_operands] = &gs;
9877 break;
9878 }
9879
9880 /* Skip the ':' and whitespace. */
9881 ++op_string;
9882 if (is_space_char (*op_string))
9883 ++op_string;
9884
9885 if (!is_digit_char (*op_string)
9886 && !is_identifier_char (*op_string)
9887 && *op_string != '('
9888 && *op_string != ABSOLUTE_PREFIX)
9889 {
9890 as_bad (_("bad memory operand `%s'"), op_string);
9891 return 0;
9892 }
9893 /* Handle case of %es:*foo. */
9894 if (*op_string == ABSOLUTE_PREFIX)
9895 {
9896 ++op_string;
9897 if (is_space_char (*op_string))
9898 ++op_string;
9899 i.types[this_operand].bitfield.jumpabsolute = 1;
9900 }
9901 goto do_memory_reference;
9902 }
9903
9904 /* Handle vector operations. */
9905 if (*op_string == '{')
9906 {
9907 op_string = check_VecOperations (op_string, NULL);
9908 if (op_string == NULL)
9909 return 0;
9910 }
9911
9912 if (*op_string)
9913 {
9914 as_bad (_("junk `%s' after register"), op_string);
9915 return 0;
9916 }
9917 temp = r->reg_type;
9918 temp.bitfield.baseindex = 0;
9919 i.types[this_operand] = operand_type_or (i.types[this_operand],
9920 temp);
9921 i.types[this_operand].bitfield.unspecified = 0;
9922 i.op[this_operand].regs = r;
9923 i.reg_operands++;
9924 }
9925 else if (*op_string == REGISTER_PREFIX)
9926 {
9927 as_bad (_("bad register name `%s'"), op_string);
9928 return 0;
9929 }
9930 else if (*op_string == IMMEDIATE_PREFIX)
9931 {
9932 ++op_string;
9933 if (i.types[this_operand].bitfield.jumpabsolute)
9934 {
9935 as_bad (_("immediate operand illegal with absolute jump"));
9936 return 0;
9937 }
9938 if (!i386_immediate (op_string))
9939 return 0;
9940 }
9941 else if (RC_SAE_immediate (operand_string))
9942 {
9943 /* If it is a RC or SAE immediate, do nothing. */
9944 ;
9945 }
9946 else if (is_digit_char (*op_string)
9947 || is_identifier_char (*op_string)
9948 || *op_string == '"'
9949 || *op_string == '(')
9950 {
9951 /* This is a memory reference of some sort. */
9952 char *base_string;
9953
9954 /* Start and end of displacement string expression (if found). */
9955 char *displacement_string_start;
9956 char *displacement_string_end;
9957 char *vop_start;
9958
9959 do_memory_reference:
9960 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9961 return 0;
9962 if ((i.mem_operands == 1
9963 && !current_templates->start->opcode_modifier.isstring)
9964 || i.mem_operands == 2)
9965 {
9966 as_bad (_("too many memory references for `%s'"),
9967 current_templates->start->name);
9968 return 0;
9969 }
9970
9971 /* Check for base index form. We detect the base index form by
9972 looking for an ')' at the end of the operand, searching
9973 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9974 after the '('. */
9975 base_string = op_string + strlen (op_string);
9976
9977 /* Handle vector operations. */
9978 vop_start = strchr (op_string, '{');
9979 if (vop_start && vop_start < base_string)
9980 {
9981 if (check_VecOperations (vop_start, base_string) == NULL)
9982 return 0;
9983 base_string = vop_start;
9984 }
9985
9986 --base_string;
9987 if (is_space_char (*base_string))
9988 --base_string;
9989
9990 /* If we only have a displacement, set-up for it to be parsed later. */
9991 displacement_string_start = op_string;
9992 displacement_string_end = base_string + 1;
9993
9994 if (*base_string == ')')
9995 {
9996 char *temp_string;
9997 unsigned int parens_balanced = 1;
9998 /* We've already checked that the number of left & right ()'s are
9999 equal, so this loop will not be infinite. */
10000 do
10001 {
10002 base_string--;
10003 if (*base_string == ')')
10004 parens_balanced++;
10005 if (*base_string == '(')
10006 parens_balanced--;
10007 }
10008 while (parens_balanced);
10009
10010 temp_string = base_string;
10011
10012 /* Skip past '(' and whitespace. */
10013 ++base_string;
10014 if (is_space_char (*base_string))
10015 ++base_string;
10016
10017 if (*base_string == ','
10018 || ((i.base_reg = parse_register (base_string, &end_op))
10019 != NULL))
10020 {
10021 displacement_string_end = temp_string;
10022
10023 i.types[this_operand].bitfield.baseindex = 1;
10024
10025 if (i.base_reg)
10026 {
10027 base_string = end_op;
10028 if (is_space_char (*base_string))
10029 ++base_string;
10030 }
10031
10032 /* There may be an index reg or scale factor here. */
10033 if (*base_string == ',')
10034 {
10035 ++base_string;
10036 if (is_space_char (*base_string))
10037 ++base_string;
10038
10039 if ((i.index_reg = parse_register (base_string, &end_op))
10040 != NULL)
10041 {
10042 base_string = end_op;
10043 if (is_space_char (*base_string))
10044 ++base_string;
10045 if (*base_string == ',')
10046 {
10047 ++base_string;
10048 if (is_space_char (*base_string))
10049 ++base_string;
10050 }
10051 else if (*base_string != ')')
10052 {
10053 as_bad (_("expecting `,' or `)' "
10054 "after index register in `%s'"),
10055 operand_string);
10056 return 0;
10057 }
10058 }
10059 else if (*base_string == REGISTER_PREFIX)
10060 {
10061 end_op = strchr (base_string, ',');
10062 if (end_op)
10063 *end_op = '\0';
10064 as_bad (_("bad register name `%s'"), base_string);
10065 return 0;
10066 }
10067
10068 /* Check for scale factor. */
10069 if (*base_string != ')')
10070 {
10071 char *end_scale = i386_scale (base_string);
10072
10073 if (!end_scale)
10074 return 0;
10075
10076 base_string = end_scale;
10077 if (is_space_char (*base_string))
10078 ++base_string;
10079 if (*base_string != ')')
10080 {
10081 as_bad (_("expecting `)' "
10082 "after scale factor in `%s'"),
10083 operand_string);
10084 return 0;
10085 }
10086 }
10087 else if (!i.index_reg)
10088 {
10089 as_bad (_("expecting index register or scale factor "
10090 "after `,'; got '%c'"),
10091 *base_string);
10092 return 0;
10093 }
10094 }
10095 else if (*base_string != ')')
10096 {
10097 as_bad (_("expecting `,' or `)' "
10098 "after base register in `%s'"),
10099 operand_string);
10100 return 0;
10101 }
10102 }
10103 else if (*base_string == REGISTER_PREFIX)
10104 {
10105 end_op = strchr (base_string, ',');
10106 if (end_op)
10107 *end_op = '\0';
10108 as_bad (_("bad register name `%s'"), base_string);
10109 return 0;
10110 }
10111 }
10112
10113 /* If there's an expression beginning the operand, parse it,
10114 assuming displacement_string_start and
10115 displacement_string_end are meaningful. */
10116 if (displacement_string_start != displacement_string_end)
10117 {
10118 if (!i386_displacement (displacement_string_start,
10119 displacement_string_end))
10120 return 0;
10121 }
10122
10123 /* Special case for (%dx) while doing input/output op. */
10124 if (i.base_reg
10125 && i.base_reg->reg_type.bitfield.inoutportreg
10126 && i.index_reg == 0
10127 && i.log2_scale_factor == 0
10128 && i.seg[i.mem_operands] == 0
10129 && !operand_type_check (i.types[this_operand], disp))
10130 {
10131 i.types[this_operand] = i.base_reg->reg_type;
10132 return 1;
10133 }
10134
10135 if (i386_index_check (operand_string) == 0)
10136 return 0;
10137 i.flags[this_operand] |= Operand_Mem;
10138 if (i.mem_operands == 0)
10139 i.memop1_string = xstrdup (operand_string);
10140 i.mem_operands++;
10141 }
10142 else
10143 {
10144 /* It's not a memory operand; argh! */
10145 as_bad (_("invalid char %s beginning operand %d `%s'"),
10146 output_invalid (*op_string),
10147 this_operand + 1,
10148 op_string);
10149 return 0;
10150 }
10151 return 1; /* Normal return. */
10152 }
10153 \f
10154 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10155 that an rs_machine_dependent frag may reach. */
10156
10157 unsigned int
10158 i386_frag_max_var (fragS *frag)
10159 {
10160 /* The only relaxable frags are for jumps.
10161 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10162 gas_assert (frag->fr_type == rs_machine_dependent);
10163 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10164 }
10165
10166 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10167 static int
10168 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10169 {
10170 /* STT_GNU_IFUNC symbol must go through PLT. */
10171 if ((symbol_get_bfdsym (fr_symbol)->flags
10172 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10173 return 0;
10174
10175 if (!S_IS_EXTERNAL (fr_symbol))
10176 /* Symbol may be weak or local. */
10177 return !S_IS_WEAK (fr_symbol);
10178
10179 /* Global symbols with non-default visibility can't be preempted. */
10180 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10181 return 1;
10182
10183 if (fr_var != NO_RELOC)
10184 switch ((enum bfd_reloc_code_real) fr_var)
10185 {
10186 case BFD_RELOC_386_PLT32:
10187 case BFD_RELOC_X86_64_PLT32:
10188 /* Symbol with PLT relocation may be preempted. */
10189 return 0;
10190 default:
10191 abort ();
10192 }
10193
10194 /* Global symbols with default visibility in a shared library may be
10195 preempted by another definition. */
10196 return !shared;
10197 }
10198 #endif
10199
10200 /* md_estimate_size_before_relax()
10201
10202 Called just before relax() for rs_machine_dependent frags. The x86
10203 assembler uses these frags to handle variable size jump
10204 instructions.
10205
10206 Any symbol that is now undefined will not become defined.
10207 Return the correct fr_subtype in the frag.
10208 Return the initial "guess for variable size of frag" to caller.
10209 The guess is actually the growth beyond the fixed part. Whatever
10210 we do to grow the fixed or variable part contributes to our
10211 returned value. */
10212
10213 int
10214 md_estimate_size_before_relax (fragS *fragP, segT segment)
10215 {
10216 /* We've already got fragP->fr_subtype right; all we have to do is
10217 check for un-relaxable symbols. On an ELF system, we can't relax
10218 an externally visible symbol, because it may be overridden by a
10219 shared library. */
10220 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10221 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10222 || (IS_ELF
10223 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10224 fragP->fr_var))
10225 #endif
10226 #if defined (OBJ_COFF) && defined (TE_PE)
10227 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10228 && S_IS_WEAK (fragP->fr_symbol))
10229 #endif
10230 )
10231 {
10232 /* Symbol is undefined in this segment, or we need to keep a
10233 reloc so that weak symbols can be overridden. */
10234 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10235 enum bfd_reloc_code_real reloc_type;
10236 unsigned char *opcode;
10237 int old_fr_fix;
10238
10239 if (fragP->fr_var != NO_RELOC)
10240 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10241 else if (size == 2)
10242 reloc_type = BFD_RELOC_16_PCREL;
10243 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10244 else if (need_plt32_p (fragP->fr_symbol))
10245 reloc_type = BFD_RELOC_X86_64_PLT32;
10246 #endif
10247 else
10248 reloc_type = BFD_RELOC_32_PCREL;
10249
10250 old_fr_fix = fragP->fr_fix;
10251 opcode = (unsigned char *) fragP->fr_opcode;
10252
10253 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10254 {
10255 case UNCOND_JUMP:
10256 /* Make jmp (0xeb) a (d)word displacement jump. */
10257 opcode[0] = 0xe9;
10258 fragP->fr_fix += size;
10259 fix_new (fragP, old_fr_fix, size,
10260 fragP->fr_symbol,
10261 fragP->fr_offset, 1,
10262 reloc_type);
10263 break;
10264
10265 case COND_JUMP86:
10266 if (size == 2
10267 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10268 {
10269 /* Negate the condition, and branch past an
10270 unconditional jump. */
10271 opcode[0] ^= 1;
10272 opcode[1] = 3;
10273 /* Insert an unconditional jump. */
10274 opcode[2] = 0xe9;
10275 /* We added two extra opcode bytes, and have a two byte
10276 offset. */
10277 fragP->fr_fix += 2 + 2;
10278 fix_new (fragP, old_fr_fix + 2, 2,
10279 fragP->fr_symbol,
10280 fragP->fr_offset, 1,
10281 reloc_type);
10282 break;
10283 }
10284 /* Fall through. */
10285
10286 case COND_JUMP:
10287 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10288 {
10289 fixS *fixP;
10290
10291 fragP->fr_fix += 1;
10292 fixP = fix_new (fragP, old_fr_fix, 1,
10293 fragP->fr_symbol,
10294 fragP->fr_offset, 1,
10295 BFD_RELOC_8_PCREL);
10296 fixP->fx_signed = 1;
10297 break;
10298 }
10299
10300 /* This changes the byte-displacement jump 0x7N
10301 to the (d)word-displacement jump 0x0f,0x8N. */
10302 opcode[1] = opcode[0] + 0x10;
10303 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10304 /* We've added an opcode byte. */
10305 fragP->fr_fix += 1 + size;
10306 fix_new (fragP, old_fr_fix + 1, size,
10307 fragP->fr_symbol,
10308 fragP->fr_offset, 1,
10309 reloc_type);
10310 break;
10311
10312 default:
10313 BAD_CASE (fragP->fr_subtype);
10314 break;
10315 }
10316 frag_wane (fragP);
10317 return fragP->fr_fix - old_fr_fix;
10318 }
10319
10320 /* Guess size depending on current relax state. Initially the relax
10321 state will correspond to a short jump and we return 1, because
10322 the variable part of the frag (the branch offset) is one byte
10323 long. However, we can relax a section more than once and in that
10324 case we must either set fr_subtype back to the unrelaxed state,
10325 or return the value for the appropriate branch. */
10326 return md_relax_table[fragP->fr_subtype].rlx_length;
10327 }
10328
10329 /* Called after relax() is finished.
10330
10331 In: Address of frag.
10332 fr_type == rs_machine_dependent.
10333 fr_subtype is what the address relaxed to.
10334
10335 Out: Any fixSs and constants are set up.
10336 Caller will turn frag into a ".space 0". */
10337
10338 void
10339 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10340 fragS *fragP)
10341 {
10342 unsigned char *opcode;
10343 unsigned char *where_to_put_displacement = NULL;
10344 offsetT target_address;
10345 offsetT opcode_address;
10346 unsigned int extension = 0;
10347 offsetT displacement_from_opcode_start;
10348
10349 opcode = (unsigned char *) fragP->fr_opcode;
10350
10351 /* Address we want to reach in file space. */
10352 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10353
10354 /* Address opcode resides at in file space. */
10355 opcode_address = fragP->fr_address + fragP->fr_fix;
10356
10357 /* Displacement from opcode start to fill into instruction. */
10358 displacement_from_opcode_start = target_address - opcode_address;
10359
10360 if ((fragP->fr_subtype & BIG) == 0)
10361 {
10362 /* Don't have to change opcode. */
10363 extension = 1; /* 1 opcode + 1 displacement */
10364 where_to_put_displacement = &opcode[1];
10365 }
10366 else
10367 {
10368 if (no_cond_jump_promotion
10369 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10370 as_warn_where (fragP->fr_file, fragP->fr_line,
10371 _("long jump required"));
10372
10373 switch (fragP->fr_subtype)
10374 {
10375 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10376 extension = 4; /* 1 opcode + 4 displacement */
10377 opcode[0] = 0xe9;
10378 where_to_put_displacement = &opcode[1];
10379 break;
10380
10381 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10382 extension = 2; /* 1 opcode + 2 displacement */
10383 opcode[0] = 0xe9;
10384 where_to_put_displacement = &opcode[1];
10385 break;
10386
10387 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10388 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10389 extension = 5; /* 2 opcode + 4 displacement */
10390 opcode[1] = opcode[0] + 0x10;
10391 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10392 where_to_put_displacement = &opcode[2];
10393 break;
10394
10395 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10396 extension = 3; /* 2 opcode + 2 displacement */
10397 opcode[1] = opcode[0] + 0x10;
10398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10399 where_to_put_displacement = &opcode[2];
10400 break;
10401
10402 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10403 extension = 4;
10404 opcode[0] ^= 1;
10405 opcode[1] = 3;
10406 opcode[2] = 0xe9;
10407 where_to_put_displacement = &opcode[3];
10408 break;
10409
10410 default:
10411 BAD_CASE (fragP->fr_subtype);
10412 break;
10413 }
10414 }
10415
10416 /* If size if less then four we are sure that the operand fits,
10417 but if it's 4, then it could be that the displacement is larger
10418 then -/+ 2GB. */
10419 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10420 && object_64bit
10421 && ((addressT) (displacement_from_opcode_start - extension
10422 + ((addressT) 1 << 31))
10423 > (((addressT) 2 << 31) - 1)))
10424 {
10425 as_bad_where (fragP->fr_file, fragP->fr_line,
10426 _("jump target out of range"));
10427 /* Make us emit 0. */
10428 displacement_from_opcode_start = extension;
10429 }
10430 /* Now put displacement after opcode. */
10431 md_number_to_chars ((char *) where_to_put_displacement,
10432 (valueT) (displacement_from_opcode_start - extension),
10433 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10434 fragP->fr_fix += extension;
10435 }
10436 \f
10437 /* Apply a fixup (fixP) to segment data, once it has been determined
10438 by our caller that we have all the info we need to fix it up.
10439
10440 Parameter valP is the pointer to the value of the bits.
10441
10442 On the 386, immediates, displacements, and data pointers are all in
10443 the same (little-endian) format, so we don't need to care about which
10444 we are handling. */
10445
10446 void
10447 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10448 {
10449 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10450 valueT value = *valP;
10451
10452 #if !defined (TE_Mach)
10453 if (fixP->fx_pcrel)
10454 {
10455 switch (fixP->fx_r_type)
10456 {
10457 default:
10458 break;
10459
10460 case BFD_RELOC_64:
10461 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10462 break;
10463 case BFD_RELOC_32:
10464 case BFD_RELOC_X86_64_32S:
10465 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10466 break;
10467 case BFD_RELOC_16:
10468 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10469 break;
10470 case BFD_RELOC_8:
10471 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10472 break;
10473 }
10474 }
10475
10476 if (fixP->fx_addsy != NULL
10477 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10478 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10479 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10480 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10481 && !use_rela_relocations)
10482 {
10483 /* This is a hack. There should be a better way to handle this.
10484 This covers for the fact that bfd_install_relocation will
10485 subtract the current location (for partial_inplace, PC relative
10486 relocations); see more below. */
10487 #ifndef OBJ_AOUT
10488 if (IS_ELF
10489 #ifdef TE_PE
10490 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10491 #endif
10492 )
10493 value += fixP->fx_where + fixP->fx_frag->fr_address;
10494 #endif
10495 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10496 if (IS_ELF)
10497 {
10498 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10499
10500 if ((sym_seg == seg
10501 || (symbol_section_p (fixP->fx_addsy)
10502 && sym_seg != absolute_section))
10503 && !generic_force_reloc (fixP))
10504 {
10505 /* Yes, we add the values in twice. This is because
10506 bfd_install_relocation subtracts them out again. I think
10507 bfd_install_relocation is broken, but I don't dare change
10508 it. FIXME. */
10509 value += fixP->fx_where + fixP->fx_frag->fr_address;
10510 }
10511 }
10512 #endif
10513 #if defined (OBJ_COFF) && defined (TE_PE)
10514 /* For some reason, the PE format does not store a
10515 section address offset for a PC relative symbol. */
10516 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10517 || S_IS_WEAK (fixP->fx_addsy))
10518 value += md_pcrel_from (fixP);
10519 #endif
10520 }
10521 #if defined (OBJ_COFF) && defined (TE_PE)
10522 if (fixP->fx_addsy != NULL
10523 && S_IS_WEAK (fixP->fx_addsy)
10524 /* PR 16858: Do not modify weak function references. */
10525 && ! fixP->fx_pcrel)
10526 {
10527 #if !defined (TE_PEP)
10528 /* For x86 PE weak function symbols are neither PC-relative
10529 nor do they set S_IS_FUNCTION. So the only reliable way
10530 to detect them is to check the flags of their containing
10531 section. */
10532 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10533 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10534 ;
10535 else
10536 #endif
10537 value -= S_GET_VALUE (fixP->fx_addsy);
10538 }
10539 #endif
10540
10541 /* Fix a few things - the dynamic linker expects certain values here,
10542 and we must not disappoint it. */
10543 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10544 if (IS_ELF && fixP->fx_addsy)
10545 switch (fixP->fx_r_type)
10546 {
10547 case BFD_RELOC_386_PLT32:
10548 case BFD_RELOC_X86_64_PLT32:
10549 /* Make the jump instruction point to the address of the operand.
10550 At runtime we merely add the offset to the actual PLT entry.
10551 NB: Subtract the offset size only for jump instructions. */
10552 if (fixP->fx_pcrel)
10553 value = -4;
10554 break;
10555
10556 case BFD_RELOC_386_TLS_GD:
10557 case BFD_RELOC_386_TLS_LDM:
10558 case BFD_RELOC_386_TLS_IE_32:
10559 case BFD_RELOC_386_TLS_IE:
10560 case BFD_RELOC_386_TLS_GOTIE:
10561 case BFD_RELOC_386_TLS_GOTDESC:
10562 case BFD_RELOC_X86_64_TLSGD:
10563 case BFD_RELOC_X86_64_TLSLD:
10564 case BFD_RELOC_X86_64_GOTTPOFF:
10565 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10566 value = 0; /* Fully resolved at runtime. No addend. */
10567 /* Fallthrough */
10568 case BFD_RELOC_386_TLS_LE:
10569 case BFD_RELOC_386_TLS_LDO_32:
10570 case BFD_RELOC_386_TLS_LE_32:
10571 case BFD_RELOC_X86_64_DTPOFF32:
10572 case BFD_RELOC_X86_64_DTPOFF64:
10573 case BFD_RELOC_X86_64_TPOFF32:
10574 case BFD_RELOC_X86_64_TPOFF64:
10575 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10576 break;
10577
10578 case BFD_RELOC_386_TLS_DESC_CALL:
10579 case BFD_RELOC_X86_64_TLSDESC_CALL:
10580 value = 0; /* Fully resolved at runtime. No addend. */
10581 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10582 fixP->fx_done = 0;
10583 return;
10584
10585 case BFD_RELOC_VTABLE_INHERIT:
10586 case BFD_RELOC_VTABLE_ENTRY:
10587 fixP->fx_done = 0;
10588 return;
10589
10590 default:
10591 break;
10592 }
10593 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10594 *valP = value;
10595 #endif /* !defined (TE_Mach) */
10596
10597 /* Are we finished with this relocation now? */
10598 if (fixP->fx_addsy == NULL)
10599 fixP->fx_done = 1;
10600 #if defined (OBJ_COFF) && defined (TE_PE)
10601 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10602 {
10603 fixP->fx_done = 0;
10604 /* Remember value for tc_gen_reloc. */
10605 fixP->fx_addnumber = value;
10606 /* Clear out the frag for now. */
10607 value = 0;
10608 }
10609 #endif
10610 else if (use_rela_relocations)
10611 {
10612 fixP->fx_no_overflow = 1;
10613 /* Remember value for tc_gen_reloc. */
10614 fixP->fx_addnumber = value;
10615 value = 0;
10616 }
10617
10618 md_number_to_chars (p, value, fixP->fx_size);
10619 }
10620 \f
10621 const char *
10622 md_atof (int type, char *litP, int *sizeP)
10623 {
10624 /* This outputs the LITTLENUMs in REVERSE order;
10625 in accord with the bigendian 386. */
10626 return ieee_md_atof (type, litP, sizeP, FALSE);
10627 }
10628 \f
10629 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10630
10631 static char *
10632 output_invalid (int c)
10633 {
10634 if (ISPRINT (c))
10635 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10636 "'%c'", c);
10637 else
10638 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10639 "(0x%x)", (unsigned char) c);
10640 return output_invalid_buf;
10641 }
10642
10643 /* REG_STRING starts *before* REGISTER_PREFIX. */
10644
10645 static const reg_entry *
10646 parse_real_register (char *reg_string, char **end_op)
10647 {
10648 char *s = reg_string;
10649 char *p;
10650 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10651 const reg_entry *r;
10652
10653 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10654 if (*s == REGISTER_PREFIX)
10655 ++s;
10656
10657 if (is_space_char (*s))
10658 ++s;
10659
10660 p = reg_name_given;
10661 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10662 {
10663 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10664 return (const reg_entry *) NULL;
10665 s++;
10666 }
10667
10668 /* For naked regs, make sure that we are not dealing with an identifier.
10669 This prevents confusing an identifier like `eax_var' with register
10670 `eax'. */
10671 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10672 return (const reg_entry *) NULL;
10673
10674 *end_op = s;
10675
10676 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10677
10678 /* Handle floating point regs, allowing spaces in the (i) part. */
10679 if (r == i386_regtab /* %st is first entry of table */)
10680 {
10681 if (!cpu_arch_flags.bitfield.cpu8087
10682 && !cpu_arch_flags.bitfield.cpu287
10683 && !cpu_arch_flags.bitfield.cpu387)
10684 return (const reg_entry *) NULL;
10685
10686 if (is_space_char (*s))
10687 ++s;
10688 if (*s == '(')
10689 {
10690 ++s;
10691 if (is_space_char (*s))
10692 ++s;
10693 if (*s >= '0' && *s <= '7')
10694 {
10695 int fpr = *s - '0';
10696 ++s;
10697 if (is_space_char (*s))
10698 ++s;
10699 if (*s == ')')
10700 {
10701 *end_op = s + 1;
10702 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10703 know (r);
10704 return r + fpr;
10705 }
10706 }
10707 /* We have "%st(" then garbage. */
10708 return (const reg_entry *) NULL;
10709 }
10710 }
10711
10712 if (r == NULL || allow_pseudo_reg)
10713 return r;
10714
10715 if (operand_type_all_zero (&r->reg_type))
10716 return (const reg_entry *) NULL;
10717
10718 if ((r->reg_type.bitfield.dword
10719 || r->reg_type.bitfield.sreg3
10720 || r->reg_type.bitfield.control
10721 || r->reg_type.bitfield.debug
10722 || r->reg_type.bitfield.test)
10723 && !cpu_arch_flags.bitfield.cpui386)
10724 return (const reg_entry *) NULL;
10725
10726 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10727 return (const reg_entry *) NULL;
10728
10729 if (!cpu_arch_flags.bitfield.cpuavx512f)
10730 {
10731 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10732 return (const reg_entry *) NULL;
10733
10734 if (!cpu_arch_flags.bitfield.cpuavx)
10735 {
10736 if (r->reg_type.bitfield.ymmword)
10737 return (const reg_entry *) NULL;
10738
10739 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10740 return (const reg_entry *) NULL;
10741 }
10742 }
10743
10744 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10745 return (const reg_entry *) NULL;
10746
10747 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10748 if (!allow_index_reg && r->reg_num == RegIZ)
10749 return (const reg_entry *) NULL;
10750
10751 /* Upper 16 vector registers are only available with VREX in 64bit
10752 mode, and require EVEX encoding. */
10753 if (r->reg_flags & RegVRex)
10754 {
10755 if (!cpu_arch_flags.bitfield.cpuavx512f
10756 || flag_code != CODE_64BIT)
10757 return (const reg_entry *) NULL;
10758
10759 i.vec_encoding = vex_encoding_evex;
10760 }
10761
10762 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10763 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10764 && flag_code != CODE_64BIT)
10765 return (const reg_entry *) NULL;
10766
10767 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10768 return (const reg_entry *) NULL;
10769
10770 return r;
10771 }
10772
10773 /* REG_STRING starts *before* REGISTER_PREFIX. */
10774
10775 static const reg_entry *
10776 parse_register (char *reg_string, char **end_op)
10777 {
10778 const reg_entry *r;
10779
10780 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10781 r = parse_real_register (reg_string, end_op);
10782 else
10783 r = NULL;
10784 if (!r)
10785 {
10786 char *save = input_line_pointer;
10787 char c;
10788 symbolS *symbolP;
10789
10790 input_line_pointer = reg_string;
10791 c = get_symbol_name (&reg_string);
10792 symbolP = symbol_find (reg_string);
10793 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10794 {
10795 const expressionS *e = symbol_get_value_expression (symbolP);
10796
10797 know (e->X_op == O_register);
10798 know (e->X_add_number >= 0
10799 && (valueT) e->X_add_number < i386_regtab_size);
10800 r = i386_regtab + e->X_add_number;
10801 if ((r->reg_flags & RegVRex))
10802 i.vec_encoding = vex_encoding_evex;
10803 *end_op = input_line_pointer;
10804 }
10805 *input_line_pointer = c;
10806 input_line_pointer = save;
10807 }
10808 return r;
10809 }
10810
10811 int
10812 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10813 {
10814 const reg_entry *r;
10815 char *end = input_line_pointer;
10816
10817 *end = *nextcharP;
10818 r = parse_register (name, &input_line_pointer);
10819 if (r && end <= input_line_pointer)
10820 {
10821 *nextcharP = *input_line_pointer;
10822 *input_line_pointer = 0;
10823 e->X_op = O_register;
10824 e->X_add_number = r - i386_regtab;
10825 return 1;
10826 }
10827 input_line_pointer = end;
10828 *end = 0;
10829 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10830 }
10831
10832 void
10833 md_operand (expressionS *e)
10834 {
10835 char *end;
10836 const reg_entry *r;
10837
10838 switch (*input_line_pointer)
10839 {
10840 case REGISTER_PREFIX:
10841 r = parse_real_register (input_line_pointer, &end);
10842 if (r)
10843 {
10844 e->X_op = O_register;
10845 e->X_add_number = r - i386_regtab;
10846 input_line_pointer = end;
10847 }
10848 break;
10849
10850 case '[':
10851 gas_assert (intel_syntax);
10852 end = input_line_pointer++;
10853 expression (e);
10854 if (*input_line_pointer == ']')
10855 {
10856 ++input_line_pointer;
10857 e->X_op_symbol = make_expr_symbol (e);
10858 e->X_add_symbol = NULL;
10859 e->X_add_number = 0;
10860 e->X_op = O_index;
10861 }
10862 else
10863 {
10864 e->X_op = O_absent;
10865 input_line_pointer = end;
10866 }
10867 break;
10868 }
10869 }
10870
10871 \f
10872 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10873 const char *md_shortopts = "kVQ:sqnO::";
10874 #else
10875 const char *md_shortopts = "qnO::";
10876 #endif
10877
10878 #define OPTION_32 (OPTION_MD_BASE + 0)
10879 #define OPTION_64 (OPTION_MD_BASE + 1)
10880 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10881 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10882 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10883 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10884 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10885 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10886 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10887 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10888 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10889 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10890 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10891 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10892 #define OPTION_X32 (OPTION_MD_BASE + 14)
10893 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10894 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10895 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10896 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10897 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10898 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10899 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10900 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10901 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10902 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10903 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10904 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
10905
10906 struct option md_longopts[] =
10907 {
10908 {"32", no_argument, NULL, OPTION_32},
10909 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10910 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10911 {"64", no_argument, NULL, OPTION_64},
10912 #endif
10913 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10914 {"x32", no_argument, NULL, OPTION_X32},
10915 {"mshared", no_argument, NULL, OPTION_MSHARED},
10916 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10917 #endif
10918 {"divide", no_argument, NULL, OPTION_DIVIDE},
10919 {"march", required_argument, NULL, OPTION_MARCH},
10920 {"mtune", required_argument, NULL, OPTION_MTUNE},
10921 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10922 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10923 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10924 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10925 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10926 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10927 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10928 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10929 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
10930 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10931 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10932 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10933 # if defined (TE_PE) || defined (TE_PEP)
10934 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10935 #endif
10936 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10937 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10938 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10939 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10940 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10941 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10942 {NULL, no_argument, NULL, 0}
10943 };
10944 size_t md_longopts_size = sizeof (md_longopts);
10945
10946 int
10947 md_parse_option (int c, const char *arg)
10948 {
10949 unsigned int j;
10950 char *arch, *next, *saved;
10951
10952 switch (c)
10953 {
10954 case 'n':
10955 optimize_align_code = 0;
10956 break;
10957
10958 case 'q':
10959 quiet_warnings = 1;
10960 break;
10961
10962 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10963 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10964 should be emitted or not. FIXME: Not implemented. */
10965 case 'Q':
10966 break;
10967
10968 /* -V: SVR4 argument to print version ID. */
10969 case 'V':
10970 print_version_id ();
10971 break;
10972
10973 /* -k: Ignore for FreeBSD compatibility. */
10974 case 'k':
10975 break;
10976
10977 case 's':
10978 /* -s: On i386 Solaris, this tells the native assembler to use
10979 .stab instead of .stab.excl. We always use .stab anyhow. */
10980 break;
10981
10982 case OPTION_MSHARED:
10983 shared = 1;
10984 break;
10985
10986 case OPTION_X86_USED_NOTE:
10987 if (strcasecmp (arg, "yes") == 0)
10988 x86_used_note = 1;
10989 else if (strcasecmp (arg, "no") == 0)
10990 x86_used_note = 0;
10991 else
10992 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10993 break;
10994
10995
10996 #endif
10997 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10998 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10999 case OPTION_64:
11000 {
11001 const char **list, **l;
11002
11003 list = bfd_target_list ();
11004 for (l = list; *l != NULL; l++)
11005 if (CONST_STRNEQ (*l, "elf64-x86-64")
11006 || strcmp (*l, "coff-x86-64") == 0
11007 || strcmp (*l, "pe-x86-64") == 0
11008 || strcmp (*l, "pei-x86-64") == 0
11009 || strcmp (*l, "mach-o-x86-64") == 0)
11010 {
11011 default_arch = "x86_64";
11012 break;
11013 }
11014 if (*l == NULL)
11015 as_fatal (_("no compiled in support for x86_64"));
11016 free (list);
11017 }
11018 break;
11019 #endif
11020
11021 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11022 case OPTION_X32:
11023 if (IS_ELF)
11024 {
11025 const char **list, **l;
11026
11027 list = bfd_target_list ();
11028 for (l = list; *l != NULL; l++)
11029 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11030 {
11031 default_arch = "x86_64:32";
11032 break;
11033 }
11034 if (*l == NULL)
11035 as_fatal (_("no compiled in support for 32bit x86_64"));
11036 free (list);
11037 }
11038 else
11039 as_fatal (_("32bit x86_64 is only supported for ELF"));
11040 break;
11041 #endif
11042
11043 case OPTION_32:
11044 default_arch = "i386";
11045 break;
11046
11047 case OPTION_DIVIDE:
11048 #ifdef SVR4_COMMENT_CHARS
11049 {
11050 char *n, *t;
11051 const char *s;
11052
11053 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11054 t = n;
11055 for (s = i386_comment_chars; *s != '\0'; s++)
11056 if (*s != '/')
11057 *t++ = *s;
11058 *t = '\0';
11059 i386_comment_chars = n;
11060 }
11061 #endif
11062 break;
11063
11064 case OPTION_MARCH:
11065 saved = xstrdup (arg);
11066 arch = saved;
11067 /* Allow -march=+nosse. */
11068 if (*arch == '+')
11069 arch++;
11070 do
11071 {
11072 if (*arch == '.')
11073 as_fatal (_("invalid -march= option: `%s'"), arg);
11074 next = strchr (arch, '+');
11075 if (next)
11076 *next++ = '\0';
11077 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11078 {
11079 if (strcmp (arch, cpu_arch [j].name) == 0)
11080 {
11081 /* Processor. */
11082 if (! cpu_arch[j].flags.bitfield.cpui386)
11083 continue;
11084
11085 cpu_arch_name = cpu_arch[j].name;
11086 cpu_sub_arch_name = NULL;
11087 cpu_arch_flags = cpu_arch[j].flags;
11088 cpu_arch_isa = cpu_arch[j].type;
11089 cpu_arch_isa_flags = cpu_arch[j].flags;
11090 if (!cpu_arch_tune_set)
11091 {
11092 cpu_arch_tune = cpu_arch_isa;
11093 cpu_arch_tune_flags = cpu_arch_isa_flags;
11094 }
11095 break;
11096 }
11097 else if (*cpu_arch [j].name == '.'
11098 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11099 {
11100 /* ISA extension. */
11101 i386_cpu_flags flags;
11102
11103 flags = cpu_flags_or (cpu_arch_flags,
11104 cpu_arch[j].flags);
11105
11106 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11107 {
11108 if (cpu_sub_arch_name)
11109 {
11110 char *name = cpu_sub_arch_name;
11111 cpu_sub_arch_name = concat (name,
11112 cpu_arch[j].name,
11113 (const char *) NULL);
11114 free (name);
11115 }
11116 else
11117 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11118 cpu_arch_flags = flags;
11119 cpu_arch_isa_flags = flags;
11120 }
11121 else
11122 cpu_arch_isa_flags
11123 = cpu_flags_or (cpu_arch_isa_flags,
11124 cpu_arch[j].flags);
11125 break;
11126 }
11127 }
11128
11129 if (j >= ARRAY_SIZE (cpu_arch))
11130 {
11131 /* Disable an ISA extension. */
11132 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11133 if (strcmp (arch, cpu_noarch [j].name) == 0)
11134 {
11135 i386_cpu_flags flags;
11136
11137 flags = cpu_flags_and_not (cpu_arch_flags,
11138 cpu_noarch[j].flags);
11139 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11140 {
11141 if (cpu_sub_arch_name)
11142 {
11143 char *name = cpu_sub_arch_name;
11144 cpu_sub_arch_name = concat (arch,
11145 (const char *) NULL);
11146 free (name);
11147 }
11148 else
11149 cpu_sub_arch_name = xstrdup (arch);
11150 cpu_arch_flags = flags;
11151 cpu_arch_isa_flags = flags;
11152 }
11153 break;
11154 }
11155
11156 if (j >= ARRAY_SIZE (cpu_noarch))
11157 j = ARRAY_SIZE (cpu_arch);
11158 }
11159
11160 if (j >= ARRAY_SIZE (cpu_arch))
11161 as_fatal (_("invalid -march= option: `%s'"), arg);
11162
11163 arch = next;
11164 }
11165 while (next != NULL);
11166 free (saved);
11167 break;
11168
11169 case OPTION_MTUNE:
11170 if (*arg == '.')
11171 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11172 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11173 {
11174 if (strcmp (arg, cpu_arch [j].name) == 0)
11175 {
11176 cpu_arch_tune_set = 1;
11177 cpu_arch_tune = cpu_arch [j].type;
11178 cpu_arch_tune_flags = cpu_arch[j].flags;
11179 break;
11180 }
11181 }
11182 if (j >= ARRAY_SIZE (cpu_arch))
11183 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11184 break;
11185
11186 case OPTION_MMNEMONIC:
11187 if (strcasecmp (arg, "att") == 0)
11188 intel_mnemonic = 0;
11189 else if (strcasecmp (arg, "intel") == 0)
11190 intel_mnemonic = 1;
11191 else
11192 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11193 break;
11194
11195 case OPTION_MSYNTAX:
11196 if (strcasecmp (arg, "att") == 0)
11197 intel_syntax = 0;
11198 else if (strcasecmp (arg, "intel") == 0)
11199 intel_syntax = 1;
11200 else
11201 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11202 break;
11203
11204 case OPTION_MINDEX_REG:
11205 allow_index_reg = 1;
11206 break;
11207
11208 case OPTION_MNAKED_REG:
11209 allow_naked_reg = 1;
11210 break;
11211
11212 case OPTION_MSSE2AVX:
11213 sse2avx = 1;
11214 break;
11215
11216 case OPTION_MSSE_CHECK:
11217 if (strcasecmp (arg, "error") == 0)
11218 sse_check = check_error;
11219 else if (strcasecmp (arg, "warning") == 0)
11220 sse_check = check_warning;
11221 else if (strcasecmp (arg, "none") == 0)
11222 sse_check = check_none;
11223 else
11224 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11225 break;
11226
11227 case OPTION_MOPERAND_CHECK:
11228 if (strcasecmp (arg, "error") == 0)
11229 operand_check = check_error;
11230 else if (strcasecmp (arg, "warning") == 0)
11231 operand_check = check_warning;
11232 else if (strcasecmp (arg, "none") == 0)
11233 operand_check = check_none;
11234 else
11235 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11236 break;
11237
11238 case OPTION_MAVXSCALAR:
11239 if (strcasecmp (arg, "128") == 0)
11240 avxscalar = vex128;
11241 else if (strcasecmp (arg, "256") == 0)
11242 avxscalar = vex256;
11243 else
11244 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11245 break;
11246
11247 case OPTION_MVEXWIG:
11248 if (strcmp (arg, "0") == 0)
11249 vexwig = evexw0;
11250 else if (strcmp (arg, "1") == 0)
11251 vexwig = evexw1;
11252 else
11253 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11254 break;
11255
11256 case OPTION_MADD_BND_PREFIX:
11257 add_bnd_prefix = 1;
11258 break;
11259
11260 case OPTION_MEVEXLIG:
11261 if (strcmp (arg, "128") == 0)
11262 evexlig = evexl128;
11263 else if (strcmp (arg, "256") == 0)
11264 evexlig = evexl256;
11265 else if (strcmp (arg, "512") == 0)
11266 evexlig = evexl512;
11267 else
11268 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11269 break;
11270
11271 case OPTION_MEVEXRCIG:
11272 if (strcmp (arg, "rne") == 0)
11273 evexrcig = rne;
11274 else if (strcmp (arg, "rd") == 0)
11275 evexrcig = rd;
11276 else if (strcmp (arg, "ru") == 0)
11277 evexrcig = ru;
11278 else if (strcmp (arg, "rz") == 0)
11279 evexrcig = rz;
11280 else
11281 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11282 break;
11283
11284 case OPTION_MEVEXWIG:
11285 if (strcmp (arg, "0") == 0)
11286 evexwig = evexw0;
11287 else if (strcmp (arg, "1") == 0)
11288 evexwig = evexw1;
11289 else
11290 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11291 break;
11292
11293 # if defined (TE_PE) || defined (TE_PEP)
11294 case OPTION_MBIG_OBJ:
11295 use_big_obj = 1;
11296 break;
11297 #endif
11298
11299 case OPTION_MOMIT_LOCK_PREFIX:
11300 if (strcasecmp (arg, "yes") == 0)
11301 omit_lock_prefix = 1;
11302 else if (strcasecmp (arg, "no") == 0)
11303 omit_lock_prefix = 0;
11304 else
11305 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11306 break;
11307
11308 case OPTION_MFENCE_AS_LOCK_ADD:
11309 if (strcasecmp (arg, "yes") == 0)
11310 avoid_fence = 1;
11311 else if (strcasecmp (arg, "no") == 0)
11312 avoid_fence = 0;
11313 else
11314 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11315 break;
11316
11317 case OPTION_MRELAX_RELOCATIONS:
11318 if (strcasecmp (arg, "yes") == 0)
11319 generate_relax_relocations = 1;
11320 else if (strcasecmp (arg, "no") == 0)
11321 generate_relax_relocations = 0;
11322 else
11323 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11324 break;
11325
11326 case OPTION_MAMD64:
11327 intel64 = 0;
11328 break;
11329
11330 case OPTION_MINTEL64:
11331 intel64 = 1;
11332 break;
11333
11334 case 'O':
11335 if (arg == NULL)
11336 {
11337 optimize = 1;
11338 /* Turn off -Os. */
11339 optimize_for_space = 0;
11340 }
11341 else if (*arg == 's')
11342 {
11343 optimize_for_space = 1;
11344 /* Turn on all encoding optimizations. */
11345 optimize = -1;
11346 }
11347 else
11348 {
11349 optimize = atoi (arg);
11350 /* Turn off -Os. */
11351 optimize_for_space = 0;
11352 }
11353 break;
11354
11355 default:
11356 return 0;
11357 }
11358 return 1;
11359 }
11360
11361 #define MESSAGE_TEMPLATE \
11362 " "
11363
11364 static char *
11365 output_message (FILE *stream, char *p, char *message, char *start,
11366 int *left_p, const char *name, int len)
11367 {
11368 int size = sizeof (MESSAGE_TEMPLATE);
11369 int left = *left_p;
11370
11371 /* Reserve 2 spaces for ", " or ",\0" */
11372 left -= len + 2;
11373
11374 /* Check if there is any room. */
11375 if (left >= 0)
11376 {
11377 if (p != start)
11378 {
11379 *p++ = ',';
11380 *p++ = ' ';
11381 }
11382 p = mempcpy (p, name, len);
11383 }
11384 else
11385 {
11386 /* Output the current message now and start a new one. */
11387 *p++ = ',';
11388 *p = '\0';
11389 fprintf (stream, "%s\n", message);
11390 p = start;
11391 left = size - (start - message) - len - 2;
11392
11393 gas_assert (left >= 0);
11394
11395 p = mempcpy (p, name, len);
11396 }
11397
11398 *left_p = left;
11399 return p;
11400 }
11401
11402 static void
11403 show_arch (FILE *stream, int ext, int check)
11404 {
11405 static char message[] = MESSAGE_TEMPLATE;
11406 char *start = message + 27;
11407 char *p;
11408 int size = sizeof (MESSAGE_TEMPLATE);
11409 int left;
11410 const char *name;
11411 int len;
11412 unsigned int j;
11413
11414 p = start;
11415 left = size - (start - message);
11416 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11417 {
11418 /* Should it be skipped? */
11419 if (cpu_arch [j].skip)
11420 continue;
11421
11422 name = cpu_arch [j].name;
11423 len = cpu_arch [j].len;
11424 if (*name == '.')
11425 {
11426 /* It is an extension. Skip if we aren't asked to show it. */
11427 if (ext)
11428 {
11429 name++;
11430 len--;
11431 }
11432 else
11433 continue;
11434 }
11435 else if (ext)
11436 {
11437 /* It is an processor. Skip if we show only extension. */
11438 continue;
11439 }
11440 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11441 {
11442 /* It is an impossible processor - skip. */
11443 continue;
11444 }
11445
11446 p = output_message (stream, p, message, start, &left, name, len);
11447 }
11448
11449 /* Display disabled extensions. */
11450 if (ext)
11451 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11452 {
11453 name = cpu_noarch [j].name;
11454 len = cpu_noarch [j].len;
11455 p = output_message (stream, p, message, start, &left, name,
11456 len);
11457 }
11458
11459 *p = '\0';
11460 fprintf (stream, "%s\n", message);
11461 }
11462
11463 void
11464 md_show_usage (FILE *stream)
11465 {
11466 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11467 fprintf (stream, _("\
11468 -Q ignored\n\
11469 -V print assembler version number\n\
11470 -k ignored\n"));
11471 #endif
11472 fprintf (stream, _("\
11473 -n Do not optimize code alignment\n\
11474 -q quieten some warnings\n"));
11475 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11476 fprintf (stream, _("\
11477 -s ignored\n"));
11478 #endif
11479 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11480 || defined (TE_PE) || defined (TE_PEP))
11481 fprintf (stream, _("\
11482 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11483 #endif
11484 #ifdef SVR4_COMMENT_CHARS
11485 fprintf (stream, _("\
11486 --divide do not treat `/' as a comment character\n"));
11487 #else
11488 fprintf (stream, _("\
11489 --divide ignored\n"));
11490 #endif
11491 fprintf (stream, _("\
11492 -march=CPU[,+EXTENSION...]\n\
11493 generate code for CPU and EXTENSION, CPU is one of:\n"));
11494 show_arch (stream, 0, 1);
11495 fprintf (stream, _("\
11496 EXTENSION is combination of:\n"));
11497 show_arch (stream, 1, 0);
11498 fprintf (stream, _("\
11499 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11500 show_arch (stream, 0, 0);
11501 fprintf (stream, _("\
11502 -msse2avx encode SSE instructions with VEX prefix\n"));
11503 fprintf (stream, _("\
11504 -msse-check=[none|error|warning] (default: warning)\n\
11505 check SSE instructions\n"));
11506 fprintf (stream, _("\
11507 -moperand-check=[none|error|warning] (default: warning)\n\
11508 check operand combinations for validity\n"));
11509 fprintf (stream, _("\
11510 -mavxscalar=[128|256] (default: 128)\n\
11511 encode scalar AVX instructions with specific vector\n\
11512 length\n"));
11513 fprintf (stream, _("\
11514 -mvexwig=[0|1] (default: 0)\n\
11515 encode VEX instructions with specific VEX.W value\n\
11516 for VEX.W bit ignored instructions\n"));
11517 fprintf (stream, _("\
11518 -mevexlig=[128|256|512] (default: 128)\n\
11519 encode scalar EVEX instructions with specific vector\n\
11520 length\n"));
11521 fprintf (stream, _("\
11522 -mevexwig=[0|1] (default: 0)\n\
11523 encode EVEX instructions with specific EVEX.W value\n\
11524 for EVEX.W bit ignored instructions\n"));
11525 fprintf (stream, _("\
11526 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11527 encode EVEX instructions with specific EVEX.RC value\n\
11528 for SAE-only ignored instructions\n"));
11529 fprintf (stream, _("\
11530 -mmnemonic=[att|intel] "));
11531 if (SYSV386_COMPAT)
11532 fprintf (stream, _("(default: att)\n"));
11533 else
11534 fprintf (stream, _("(default: intel)\n"));
11535 fprintf (stream, _("\
11536 use AT&T/Intel mnemonic\n"));
11537 fprintf (stream, _("\
11538 -msyntax=[att|intel] (default: att)\n\
11539 use AT&T/Intel syntax\n"));
11540 fprintf (stream, _("\
11541 -mindex-reg support pseudo index registers\n"));
11542 fprintf (stream, _("\
11543 -mnaked-reg don't require `%%' prefix for registers\n"));
11544 fprintf (stream, _("\
11545 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11547 fprintf (stream, _("\
11548 -mshared disable branch optimization for shared code\n"));
11549 fprintf (stream, _("\
11550 -mx86-used-note=[no|yes] "));
11551 if (DEFAULT_X86_USED_NOTE)
11552 fprintf (stream, _("(default: yes)\n"));
11553 else
11554 fprintf (stream, _("(default: no)\n"));
11555 fprintf (stream, _("\
11556 generate x86 used ISA and feature properties\n"));
11557 #endif
11558 #if defined (TE_PE) || defined (TE_PEP)
11559 fprintf (stream, _("\
11560 -mbig-obj generate big object files\n"));
11561 #endif
11562 fprintf (stream, _("\
11563 -momit-lock-prefix=[no|yes] (default: no)\n\
11564 strip all lock prefixes\n"));
11565 fprintf (stream, _("\
11566 -mfence-as-lock-add=[no|yes] (default: no)\n\
11567 encode lfence, mfence and sfence as\n\
11568 lock addl $0x0, (%%{re}sp)\n"));
11569 fprintf (stream, _("\
11570 -mrelax-relocations=[no|yes] "));
11571 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11572 fprintf (stream, _("(default: yes)\n"));
11573 else
11574 fprintf (stream, _("(default: no)\n"));
11575 fprintf (stream, _("\
11576 generate relax relocations\n"));
11577 fprintf (stream, _("\
11578 -mamd64 accept only AMD64 ISA [default]\n"));
11579 fprintf (stream, _("\
11580 -mintel64 accept only Intel64 ISA\n"));
11581 }
11582
11583 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11584 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11585 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11586
11587 /* Pick the target format to use. */
11588
11589 const char *
11590 i386_target_format (void)
11591 {
11592 if (!strncmp (default_arch, "x86_64", 6))
11593 {
11594 update_code_flag (CODE_64BIT, 1);
11595 if (default_arch[6] == '\0')
11596 x86_elf_abi = X86_64_ABI;
11597 else
11598 x86_elf_abi = X86_64_X32_ABI;
11599 }
11600 else if (!strcmp (default_arch, "i386"))
11601 update_code_flag (CODE_32BIT, 1);
11602 else if (!strcmp (default_arch, "iamcu"))
11603 {
11604 update_code_flag (CODE_32BIT, 1);
11605 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11606 {
11607 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11608 cpu_arch_name = "iamcu";
11609 cpu_sub_arch_name = NULL;
11610 cpu_arch_flags = iamcu_flags;
11611 cpu_arch_isa = PROCESSOR_IAMCU;
11612 cpu_arch_isa_flags = iamcu_flags;
11613 if (!cpu_arch_tune_set)
11614 {
11615 cpu_arch_tune = cpu_arch_isa;
11616 cpu_arch_tune_flags = cpu_arch_isa_flags;
11617 }
11618 }
11619 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11620 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11621 cpu_arch_name);
11622 }
11623 else
11624 as_fatal (_("unknown architecture"));
11625
11626 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11627 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11628 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11629 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11630
11631 switch (OUTPUT_FLAVOR)
11632 {
11633 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11634 case bfd_target_aout_flavour:
11635 return AOUT_TARGET_FORMAT;
11636 #endif
11637 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11638 # if defined (TE_PE) || defined (TE_PEP)
11639 case bfd_target_coff_flavour:
11640 if (flag_code == CODE_64BIT)
11641 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11642 else
11643 return "pe-i386";
11644 # elif defined (TE_GO32)
11645 case bfd_target_coff_flavour:
11646 return "coff-go32";
11647 # else
11648 case bfd_target_coff_flavour:
11649 return "coff-i386";
11650 # endif
11651 #endif
11652 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11653 case bfd_target_elf_flavour:
11654 {
11655 const char *format;
11656
11657 switch (x86_elf_abi)
11658 {
11659 default:
11660 format = ELF_TARGET_FORMAT;
11661 break;
11662 case X86_64_ABI:
11663 use_rela_relocations = 1;
11664 object_64bit = 1;
11665 format = ELF_TARGET_FORMAT64;
11666 break;
11667 case X86_64_X32_ABI:
11668 use_rela_relocations = 1;
11669 object_64bit = 1;
11670 disallow_64bit_reloc = 1;
11671 format = ELF_TARGET_FORMAT32;
11672 break;
11673 }
11674 if (cpu_arch_isa == PROCESSOR_L1OM)
11675 {
11676 if (x86_elf_abi != X86_64_ABI)
11677 as_fatal (_("Intel L1OM is 64bit only"));
11678 return ELF_TARGET_L1OM_FORMAT;
11679 }
11680 else if (cpu_arch_isa == PROCESSOR_K1OM)
11681 {
11682 if (x86_elf_abi != X86_64_ABI)
11683 as_fatal (_("Intel K1OM is 64bit only"));
11684 return ELF_TARGET_K1OM_FORMAT;
11685 }
11686 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11687 {
11688 if (x86_elf_abi != I386_ABI)
11689 as_fatal (_("Intel MCU is 32bit only"));
11690 return ELF_TARGET_IAMCU_FORMAT;
11691 }
11692 else
11693 return format;
11694 }
11695 #endif
11696 #if defined (OBJ_MACH_O)
11697 case bfd_target_mach_o_flavour:
11698 if (flag_code == CODE_64BIT)
11699 {
11700 use_rela_relocations = 1;
11701 object_64bit = 1;
11702 return "mach-o-x86-64";
11703 }
11704 else
11705 return "mach-o-i386";
11706 #endif
11707 default:
11708 abort ();
11709 return NULL;
11710 }
11711 }
11712
11713 #endif /* OBJ_MAYBE_ more than one */
11714 \f
11715 symbolS *
11716 md_undefined_symbol (char *name)
11717 {
11718 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11719 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11720 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11721 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11722 {
11723 if (!GOT_symbol)
11724 {
11725 if (symbol_find (name))
11726 as_bad (_("GOT already in symbol table"));
11727 GOT_symbol = symbol_new (name, undefined_section,
11728 (valueT) 0, &zero_address_frag);
11729 };
11730 return GOT_symbol;
11731 }
11732 return 0;
11733 }
11734
11735 /* Round up a section size to the appropriate boundary. */
11736
11737 valueT
11738 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11739 {
11740 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11741 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11742 {
11743 /* For a.out, force the section size to be aligned. If we don't do
11744 this, BFD will align it for us, but it will not write out the
11745 final bytes of the section. This may be a bug in BFD, but it is
11746 easier to fix it here since that is how the other a.out targets
11747 work. */
11748 int align;
11749
11750 align = bfd_get_section_alignment (stdoutput, segment);
11751 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11752 }
11753 #endif
11754
11755 return size;
11756 }
11757
11758 /* On the i386, PC-relative offsets are relative to the start of the
11759 next instruction. That is, the address of the offset, plus its
11760 size, since the offset is always the last part of the insn. */
11761
11762 long
11763 md_pcrel_from (fixS *fixP)
11764 {
11765 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11766 }
11767
11768 #ifndef I386COFF
11769
11770 static void
11771 s_bss (int ignore ATTRIBUTE_UNUSED)
11772 {
11773 int temp;
11774
11775 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11776 if (IS_ELF)
11777 obj_elf_section_change_hook ();
11778 #endif
11779 temp = get_absolute_expression ();
11780 subseg_set (bss_section, (subsegT) temp);
11781 demand_empty_rest_of_line ();
11782 }
11783
11784 #endif
11785
11786 void
11787 i386_validate_fix (fixS *fixp)
11788 {
11789 if (fixp->fx_subsy)
11790 {
11791 if (fixp->fx_subsy == GOT_symbol)
11792 {
11793 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11794 {
11795 if (!object_64bit)
11796 abort ();
11797 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11798 if (fixp->fx_tcbit2)
11799 fixp->fx_r_type = (fixp->fx_tcbit
11800 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11801 : BFD_RELOC_X86_64_GOTPCRELX);
11802 else
11803 #endif
11804 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11805 }
11806 else
11807 {
11808 if (!object_64bit)
11809 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11810 else
11811 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11812 }
11813 fixp->fx_subsy = 0;
11814 }
11815 }
11816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11817 else if (!object_64bit)
11818 {
11819 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11820 && fixp->fx_tcbit2)
11821 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11822 }
11823 #endif
11824 }
11825
11826 arelent *
11827 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11828 {
11829 arelent *rel;
11830 bfd_reloc_code_real_type code;
11831
11832 switch (fixp->fx_r_type)
11833 {
11834 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11835 case BFD_RELOC_SIZE32:
11836 case BFD_RELOC_SIZE64:
11837 if (S_IS_DEFINED (fixp->fx_addsy)
11838 && !S_IS_EXTERNAL (fixp->fx_addsy))
11839 {
11840 /* Resolve size relocation against local symbol to size of
11841 the symbol plus addend. */
11842 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11843 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11844 && !fits_in_unsigned_long (value))
11845 as_bad_where (fixp->fx_file, fixp->fx_line,
11846 _("symbol size computation overflow"));
11847 fixp->fx_addsy = NULL;
11848 fixp->fx_subsy = NULL;
11849 md_apply_fix (fixp, (valueT *) &value, NULL);
11850 return NULL;
11851 }
11852 #endif
11853 /* Fall through. */
11854
11855 case BFD_RELOC_X86_64_PLT32:
11856 case BFD_RELOC_X86_64_GOT32:
11857 case BFD_RELOC_X86_64_GOTPCREL:
11858 case BFD_RELOC_X86_64_GOTPCRELX:
11859 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11860 case BFD_RELOC_386_PLT32:
11861 case BFD_RELOC_386_GOT32:
11862 case BFD_RELOC_386_GOT32X:
11863 case BFD_RELOC_386_GOTOFF:
11864 case BFD_RELOC_386_GOTPC:
11865 case BFD_RELOC_386_TLS_GD:
11866 case BFD_RELOC_386_TLS_LDM:
11867 case BFD_RELOC_386_TLS_LDO_32:
11868 case BFD_RELOC_386_TLS_IE_32:
11869 case BFD_RELOC_386_TLS_IE:
11870 case BFD_RELOC_386_TLS_GOTIE:
11871 case BFD_RELOC_386_TLS_LE_32:
11872 case BFD_RELOC_386_TLS_LE:
11873 case BFD_RELOC_386_TLS_GOTDESC:
11874 case BFD_RELOC_386_TLS_DESC_CALL:
11875 case BFD_RELOC_X86_64_TLSGD:
11876 case BFD_RELOC_X86_64_TLSLD:
11877 case BFD_RELOC_X86_64_DTPOFF32:
11878 case BFD_RELOC_X86_64_DTPOFF64:
11879 case BFD_RELOC_X86_64_GOTTPOFF:
11880 case BFD_RELOC_X86_64_TPOFF32:
11881 case BFD_RELOC_X86_64_TPOFF64:
11882 case BFD_RELOC_X86_64_GOTOFF64:
11883 case BFD_RELOC_X86_64_GOTPC32:
11884 case BFD_RELOC_X86_64_GOT64:
11885 case BFD_RELOC_X86_64_GOTPCREL64:
11886 case BFD_RELOC_X86_64_GOTPC64:
11887 case BFD_RELOC_X86_64_GOTPLT64:
11888 case BFD_RELOC_X86_64_PLTOFF64:
11889 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11890 case BFD_RELOC_X86_64_TLSDESC_CALL:
11891 case BFD_RELOC_RVA:
11892 case BFD_RELOC_VTABLE_ENTRY:
11893 case BFD_RELOC_VTABLE_INHERIT:
11894 #ifdef TE_PE
11895 case BFD_RELOC_32_SECREL:
11896 #endif
11897 code = fixp->fx_r_type;
11898 break;
11899 case BFD_RELOC_X86_64_32S:
11900 if (!fixp->fx_pcrel)
11901 {
11902 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11903 code = fixp->fx_r_type;
11904 break;
11905 }
11906 /* Fall through. */
11907 default:
11908 if (fixp->fx_pcrel)
11909 {
11910 switch (fixp->fx_size)
11911 {
11912 default:
11913 as_bad_where (fixp->fx_file, fixp->fx_line,
11914 _("can not do %d byte pc-relative relocation"),
11915 fixp->fx_size);
11916 code = BFD_RELOC_32_PCREL;
11917 break;
11918 case 1: code = BFD_RELOC_8_PCREL; break;
11919 case 2: code = BFD_RELOC_16_PCREL; break;
11920 case 4: code = BFD_RELOC_32_PCREL; break;
11921 #ifdef BFD64
11922 case 8: code = BFD_RELOC_64_PCREL; break;
11923 #endif
11924 }
11925 }
11926 else
11927 {
11928 switch (fixp->fx_size)
11929 {
11930 default:
11931 as_bad_where (fixp->fx_file, fixp->fx_line,
11932 _("can not do %d byte relocation"),
11933 fixp->fx_size);
11934 code = BFD_RELOC_32;
11935 break;
11936 case 1: code = BFD_RELOC_8; break;
11937 case 2: code = BFD_RELOC_16; break;
11938 case 4: code = BFD_RELOC_32; break;
11939 #ifdef BFD64
11940 case 8: code = BFD_RELOC_64; break;
11941 #endif
11942 }
11943 }
11944 break;
11945 }
11946
11947 if ((code == BFD_RELOC_32
11948 || code == BFD_RELOC_32_PCREL
11949 || code == BFD_RELOC_X86_64_32S)
11950 && GOT_symbol
11951 && fixp->fx_addsy == GOT_symbol)
11952 {
11953 if (!object_64bit)
11954 code = BFD_RELOC_386_GOTPC;
11955 else
11956 code = BFD_RELOC_X86_64_GOTPC32;
11957 }
11958 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11959 && GOT_symbol
11960 && fixp->fx_addsy == GOT_symbol)
11961 {
11962 code = BFD_RELOC_X86_64_GOTPC64;
11963 }
11964
11965 rel = XNEW (arelent);
11966 rel->sym_ptr_ptr = XNEW (asymbol *);
11967 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11968
11969 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11970
11971 if (!use_rela_relocations)
11972 {
11973 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11974 vtable entry to be used in the relocation's section offset. */
11975 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11976 rel->address = fixp->fx_offset;
11977 #if defined (OBJ_COFF) && defined (TE_PE)
11978 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11979 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11980 else
11981 #endif
11982 rel->addend = 0;
11983 }
11984 /* Use the rela in 64bit mode. */
11985 else
11986 {
11987 if (disallow_64bit_reloc)
11988 switch (code)
11989 {
11990 case BFD_RELOC_X86_64_DTPOFF64:
11991 case BFD_RELOC_X86_64_TPOFF64:
11992 case BFD_RELOC_64_PCREL:
11993 case BFD_RELOC_X86_64_GOTOFF64:
11994 case BFD_RELOC_X86_64_GOT64:
11995 case BFD_RELOC_X86_64_GOTPCREL64:
11996 case BFD_RELOC_X86_64_GOTPC64:
11997 case BFD_RELOC_X86_64_GOTPLT64:
11998 case BFD_RELOC_X86_64_PLTOFF64:
11999 as_bad_where (fixp->fx_file, fixp->fx_line,
12000 _("cannot represent relocation type %s in x32 mode"),
12001 bfd_get_reloc_code_name (code));
12002 break;
12003 default:
12004 break;
12005 }
12006
12007 if (!fixp->fx_pcrel)
12008 rel->addend = fixp->fx_offset;
12009 else
12010 switch (code)
12011 {
12012 case BFD_RELOC_X86_64_PLT32:
12013 case BFD_RELOC_X86_64_GOT32:
12014 case BFD_RELOC_X86_64_GOTPCREL:
12015 case BFD_RELOC_X86_64_GOTPCRELX:
12016 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12017 case BFD_RELOC_X86_64_TLSGD:
12018 case BFD_RELOC_X86_64_TLSLD:
12019 case BFD_RELOC_X86_64_GOTTPOFF:
12020 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12021 case BFD_RELOC_X86_64_TLSDESC_CALL:
12022 rel->addend = fixp->fx_offset - fixp->fx_size;
12023 break;
12024 default:
12025 rel->addend = (section->vma
12026 - fixp->fx_size
12027 + fixp->fx_addnumber
12028 + md_pcrel_from (fixp));
12029 break;
12030 }
12031 }
12032
12033 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12034 if (rel->howto == NULL)
12035 {
12036 as_bad_where (fixp->fx_file, fixp->fx_line,
12037 _("cannot represent relocation type %s"),
12038 bfd_get_reloc_code_name (code));
12039 /* Set howto to a garbage value so that we can keep going. */
12040 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12041 gas_assert (rel->howto != NULL);
12042 }
12043
12044 return rel;
12045 }
12046
12047 #include "tc-i386-intel.c"
12048
12049 void
12050 tc_x86_parse_to_dw2regnum (expressionS *exp)
12051 {
12052 int saved_naked_reg;
12053 char saved_register_dot;
12054
12055 saved_naked_reg = allow_naked_reg;
12056 allow_naked_reg = 1;
12057 saved_register_dot = register_chars['.'];
12058 register_chars['.'] = '.';
12059 allow_pseudo_reg = 1;
12060 expression_and_evaluate (exp);
12061 allow_pseudo_reg = 0;
12062 register_chars['.'] = saved_register_dot;
12063 allow_naked_reg = saved_naked_reg;
12064
12065 if (exp->X_op == O_register && exp->X_add_number >= 0)
12066 {
12067 if ((addressT) exp->X_add_number < i386_regtab_size)
12068 {
12069 exp->X_op = O_constant;
12070 exp->X_add_number = i386_regtab[exp->X_add_number]
12071 .dw2_regnum[flag_code >> 1];
12072 }
12073 else
12074 exp->X_op = O_illegal;
12075 }
12076 }
12077
12078 void
12079 tc_x86_frame_initial_instructions (void)
12080 {
12081 static unsigned int sp_regno[2];
12082
12083 if (!sp_regno[flag_code >> 1])
12084 {
12085 char *saved_input = input_line_pointer;
12086 char sp[][4] = {"esp", "rsp"};
12087 expressionS exp;
12088
12089 input_line_pointer = sp[flag_code >> 1];
12090 tc_x86_parse_to_dw2regnum (&exp);
12091 gas_assert (exp.X_op == O_constant);
12092 sp_regno[flag_code >> 1] = exp.X_add_number;
12093 input_line_pointer = saved_input;
12094 }
12095
12096 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12097 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12098 }
12099
12100 int
12101 x86_dwarf2_addr_size (void)
12102 {
12103 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12104 if (x86_elf_abi == X86_64_X32_ABI)
12105 return 4;
12106 #endif
12107 return bfd_arch_bits_per_address (stdoutput) / 8;
12108 }
12109
12110 int
12111 i386_elf_section_type (const char *str, size_t len)
12112 {
12113 if (flag_code == CODE_64BIT
12114 && len == sizeof ("unwind") - 1
12115 && strncmp (str, "unwind", 6) == 0)
12116 return SHT_X86_64_UNWIND;
12117
12118 return -1;
12119 }
12120
12121 #ifdef TE_SOLARIS
12122 void
12123 i386_solaris_fix_up_eh_frame (segT sec)
12124 {
12125 if (flag_code == CODE_64BIT)
12126 elf_section_type (sec) = SHT_X86_64_UNWIND;
12127 }
12128 #endif
12129
12130 #ifdef TE_PE
12131 void
12132 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12133 {
12134 expressionS exp;
12135
12136 exp.X_op = O_secrel;
12137 exp.X_add_symbol = symbol;
12138 exp.X_add_number = 0;
12139 emit_expr (&exp, size);
12140 }
12141 #endif
12142
12143 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12144 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12145
12146 bfd_vma
12147 x86_64_section_letter (int letter, const char **ptr_msg)
12148 {
12149 if (flag_code == CODE_64BIT)
12150 {
12151 if (letter == 'l')
12152 return SHF_X86_64_LARGE;
12153
12154 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12155 }
12156 else
12157 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12158 return -1;
12159 }
12160
12161 bfd_vma
12162 x86_64_section_word (char *str, size_t len)
12163 {
12164 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12165 return SHF_X86_64_LARGE;
12166
12167 return -1;
12168 }
12169
12170 static void
12171 handle_large_common (int small ATTRIBUTE_UNUSED)
12172 {
12173 if (flag_code != CODE_64BIT)
12174 {
12175 s_comm_internal (0, elf_common_parse);
12176 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12177 }
12178 else
12179 {
12180 static segT lbss_section;
12181 asection *saved_com_section_ptr = elf_com_section_ptr;
12182 asection *saved_bss_section = bss_section;
12183
12184 if (lbss_section == NULL)
12185 {
12186 flagword applicable;
12187 segT seg = now_seg;
12188 subsegT subseg = now_subseg;
12189
12190 /* The .lbss section is for local .largecomm symbols. */
12191 lbss_section = subseg_new (".lbss", 0);
12192 applicable = bfd_applicable_section_flags (stdoutput);
12193 bfd_set_section_flags (stdoutput, lbss_section,
12194 applicable & SEC_ALLOC);
12195 seg_info (lbss_section)->bss = 1;
12196
12197 subseg_set (seg, subseg);
12198 }
12199
12200 elf_com_section_ptr = &_bfd_elf_large_com_section;
12201 bss_section = lbss_section;
12202
12203 s_comm_internal (0, elf_common_parse);
12204
12205 elf_com_section_ptr = saved_com_section_ptr;
12206 bss_section = saved_bss_section;
12207 }
12208 }
12209 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.42237 seconds and 5 git commands to generate.