1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
29 #include "safe-ctype.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
56 #define DEFAULT_ARCH "i386"
61 #define INLINE __inline__
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
99 #define END_OF_INSN '\0'
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
113 const insn_template
*start
;
114 const insn_template
*end
;
118 /* 386 operand encoding bytes: see 386 book for details of this. */
121 unsigned int regmem
; /* codes register or memory operand */
122 unsigned int reg
; /* codes register operand (or extended opcode) */
123 unsigned int mode
; /* how to interpret regmem & reg */
127 /* x86-64 extension prefix. */
128 typedef int rex_byte
;
130 /* 386 opcode byte to code indirect addressing. */
139 /* x86 arch names, types and features */
142 const char *name
; /* arch name */
143 unsigned int len
; /* arch string length */
144 enum processor_type type
; /* arch type */
145 i386_cpu_flags flags
; /* cpu feature flags */
146 unsigned int skip
; /* show_arch should skip this. */
150 /* Used to turn off indicated flags. */
153 const char *name
; /* arch name */
154 unsigned int len
; /* arch string length */
155 i386_cpu_flags flags
; /* cpu feature flags */
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
168 static void pe_directive_secrel (int);
170 static void signed_cons (int);
171 static char *output_invalid (int c
);
172 static int i386_finalize_immediate (segT
, expressionS
*, i386_operand_type
,
174 static int i386_finalize_displacement (segT
, expressionS
*, i386_operand_type
,
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS
*);
179 static int i386_intel_parse_name (const char *, expressionS
*);
180 static const reg_entry
*parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template
*match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry
*build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS
*, offsetT
);
199 static void output_disp (fragS
*, offsetT
);
201 static void s_bss (int);
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED
);
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used
;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used
;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note
= DEFAULT_X86_USED_NOTE
;
214 static const char *default_arch
= DEFAULT_ARCH
;
216 /* This struct describes rounding control and SAE in the instruction. */
230 static struct RC_Operation rc_op
;
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
237 const reg_entry
*mask
;
238 unsigned int zeroing
;
239 /* The operand where this operation is associated. */
243 static struct Mask_Operation mask_op
;
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 struct Broadcast_Operation
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
252 /* Index of broadcasted operand. */
255 /* Number of bytes to broadcast. */
259 static struct Broadcast_Operation broadcast_op
;
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes
[4];
267 /* Destination or source register specifier. */
268 const reg_entry
*register_specifier
;
271 /* 'md_assemble ()' gathers together information and puts it into a
278 const reg_entry
*regs
;
283 operand_size_mismatch
,
284 operand_type_mismatch
,
285 register_type_mismatch
,
286 number_of_operands_mismatch
,
287 invalid_instruction_suffix
,
289 unsupported_with_intel_mnemonic
,
292 invalid_vsib_address
,
293 invalid_vector_register_set
,
294 unsupported_vector_index_register
,
295 unsupported_broadcast
,
298 mask_not_on_destination
,
301 rc_sae_operand_not_last_imm
,
302 invalid_register_operand
,
307 /* TM holds the template for the insn were currently assembling. */
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands
;
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
320 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types
[MAX_OPERANDS
];
326 /* Displacement expression, immediate expression, or register for each
328 union i386_op op
[MAX_OPERANDS
];
330 /* Flags for operands. */
331 unsigned int flags
[MAX_OPERANDS
];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc
[MAX_OPERANDS
];
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry
*base_reg
;
341 const reg_entry
*index_reg
;
342 unsigned int log2_scale_factor
;
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry
*seg
[2];
348 /* Copied first memory operand string, for re-checking. */
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes
;
354 unsigned char prefix
[MAX_PREFIXES
];
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx
;
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm
;
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm
;
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm
;
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
376 /* Masking attributes. */
377 struct Mask_Operation
*mask
;
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation
*rounding
;
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation
*broadcast
;
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift
;
388 /* Prefer load or store in encoding. */
391 dir_encoding_default
= 0,
397 /* Prefer 8bit or 32bit displacement in encoding. */
400 disp_encoding_default
= 0,
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding
;
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize
;
411 /* How to encode vector instructions. */
414 vex_encoding_default
= 0,
421 const char *rep_prefix
;
424 const char *hle_prefix
;
426 /* Have BND prefix. */
427 const char *bnd_prefix
;
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix
;
433 enum i386_error error
;
436 typedef struct _i386_insn i386_insn
;
438 /* Link RC type with corresponding string, that'll be looked for in
447 static const struct RC_name RC_NamesTable
[] =
449 { rne
, STRING_COMMA_LEN ("rn-sae") },
450 { rd
, STRING_COMMA_LEN ("rd-sae") },
451 { ru
, STRING_COMMA_LEN ("ru-sae") },
452 { rz
, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly
, STRING_COMMA_LEN ("sae") },
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars
[] = "*%-([{}"
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars
= "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
483 const char *i386_comment_chars
= "#";
484 #define PREFIX_SEPARATOR '/'
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars
[] = "#/";
497 const char line_separator_chars
[] = ";";
499 /* Chars that can be used to separate mant from exp in floating point
501 const char EXP_CHARS
[] = "eE";
503 /* Chars that mean this number is a floating point constant
506 const char FLT_CHARS
[] = "fFdDxX";
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars
[256];
510 static char register_chars
[256];
511 static char operand_chars
[256];
512 static char identifier_chars
[256];
513 static char digit_chars
[256];
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack
[32];
531 static char *save_stack_p
;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
537 /* The instruction we're assembling. */
540 /* Possible templates for current insn. */
541 static const templates
*current_templates
;
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions
[MAX_MEMORY_OPERANDS
];
545 static expressionS im_expressions
[MAX_IMMEDIATE_OPERANDS
];
547 /* Current operand we are working on. */
548 static int this_operand
= -1;
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 static enum flag_code flag_code
;
559 static unsigned int object_64bit
;
560 static unsigned int disallow_64bit_reloc
;
561 static int use_rela_relocations
= 0;
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
567 /* The ELF ABI to use. */
575 static enum x86_elf_abi x86_elf_abi
= I386_ABI
;
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj
= 0;
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared
= 0;
588 /* 1 for intel syntax,
590 static int intel_syntax
= 0;
592 /* 1 for Intel64 ISA,
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic
= !SYSV386_COMPAT
;
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg
= 0;
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg
= 0;
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
609 static int add_bnd_prefix
= 0;
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg
= 0;
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix
= 0;
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence
= 0;
622 /* 1 if the assembler should generate relax relocations. */
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS
;
627 static enum check_kind
633 sse_check
, operand_check
= check_warning
;
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
640 static int optimize
= 0;
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
649 static int optimize_for_space
= 0;
651 /* Register prefix used for error message. */
652 static const char *register_prefix
= "%";
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size
= '\0';
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code
= 1;
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings
= 0;
666 static const char *cpu_arch_name
= NULL
;
667 static char *cpu_sub_arch_name
= NULL
;
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags
= CPU_UNKNOWN_FLAGS
;
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set
= 0;
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune
= PROCESSOR_UNKNOWN
;
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags
;
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa
= PROCESSOR_UNKNOWN
;
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags
;
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion
= 0;
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx
;
694 /* Encode scalar AVX instructions with specific vector length. */
701 /* Encode VEX WIG instructions with specific vex.w. */
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
716 /* Encode EVEX WIG instructions with specific evex.w. */
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig
= rne
;
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS
*GOT_symbol
;
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column
;
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment
;
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
741 #define UNCOND_JUMP 0
743 #define COND_JUMP86 2
748 #define SMALL16 (SMALL | CODE16)
750 #define BIG16 (BIG | CODE16)
754 #define INLINE __inline__
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
775 const relax_typeS md_relax_table
[] =
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
814 static const arch_entry cpu_arch
[] =
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32
,
819 CPU_GENERIC32_FLAGS
, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64
,
821 CPU_GENERIC64_FLAGS
, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN
,
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN
,
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN
,
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386
,
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486
,
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM
,
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO
,
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM
,
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO
,
839 CPU_PENTIUMPRO_FLAGS
, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO
,
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO
,
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4
,
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA
,
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA
,
849 CPU_NOCONA_FLAGS
, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE
,
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE
,
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2
,
855 CPU_CORE2_FLAGS
, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2
,
857 CPU_CORE2_FLAGS
, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7
,
859 CPU_COREI7_FLAGS
, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM
,
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM
,
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU
,
865 CPU_IAMCU_FLAGS
, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6
,
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6
,
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON
,
871 CPU_ATHLON_FLAGS
, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8
,
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8
,
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8
,
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10
,
879 CPU_AMDFAM10_FLAGS
, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD
,
881 CPU_BDVER1_FLAGS
, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD
,
883 CPU_BDVER2_FLAGS
, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD
,
885 CPU_BDVER3_FLAGS
, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD
,
887 CPU_BDVER4_FLAGS
, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER
,
889 CPU_ZNVER1_FLAGS
, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER
,
891 CPU_ZNVER2_FLAGS
, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT
,
893 CPU_BTVER1_FLAGS
, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT
,
895 CPU_BTVER2_FLAGS
, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN
,
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN
,
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN
,
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN
,
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN
,
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN
,
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN
,
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN
,
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN
,
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN
,
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN
,
917 CPU_SSSE3_FLAGS
, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN
,
919 CPU_SSE4_1_FLAGS
, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN
,
921 CPU_SSE4_2_FLAGS
, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN
,
923 CPU_SSE4_2_FLAGS
, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN
,
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN
,
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN
,
929 CPU_AVX512F_FLAGS
, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN
,
931 CPU_AVX512CD_FLAGS
, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN
,
933 CPU_AVX512ER_FLAGS
, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN
,
935 CPU_AVX512PF_FLAGS
, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN
,
937 CPU_AVX512DQ_FLAGS
, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN
,
939 CPU_AVX512BW_FLAGS
, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN
,
941 CPU_AVX512VL_FLAGS
, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN
,
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN
,
945 CPU_VMFUNC_FLAGS
, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN
,
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN
,
949 CPU_XSAVE_FLAGS
, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN
,
951 CPU_XSAVEOPT_FLAGS
, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN
,
953 CPU_XSAVEC_FLAGS
, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN
,
955 CPU_XSAVES_FLAGS
, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN
,
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN
,
959 CPU_PCLMUL_FLAGS
, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN
,
961 CPU_PCLMUL_FLAGS
, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN
,
963 CPU_FSGSBASE_FLAGS
, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN
,
965 CPU_RDRND_FLAGS
, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN
,
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN
,
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN
,
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN
,
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN
,
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN
,
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN
,
979 CPU_MOVBE_FLAGS
, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN
,
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN
,
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN
,
985 CPU_LZCNT_FLAGS
, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN
,
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN
,
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN
,
991 CPU_INVPCID_FLAGS
, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN
,
993 CPU_CLFLUSH_FLAGS
, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN
,
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN
,
997 CPU_SYSCALL_FLAGS
, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN
,
999 CPU_RDTSCP_FLAGS
, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN
,
1001 CPU_3DNOW_FLAGS
, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN
,
1003 CPU_3DNOWA_FLAGS
, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN
,
1005 CPU_PADLOCK_FLAGS
, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN
,
1007 CPU_SVME_FLAGS
, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN
,
1009 CPU_SVME_FLAGS
, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN
,
1011 CPU_SSE4A_FLAGS
, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN
,
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN
,
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN
,
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN
,
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN
,
1021 CPU_RDSEED_FLAGS
, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN
,
1023 CPU_PRFCHW_FLAGS
, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN
,
1025 CPU_SMAP_FLAGS
, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN
,
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN
,
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN
,
1031 CPU_CLFLUSHOPT_FLAGS
, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN
,
1033 CPU_PREFETCHWT1_FLAGS
, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN
,
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN
,
1037 CPU_CLWB_FLAGS
, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN
,
1039 CPU_AVX512IFMA_FLAGS
, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN
,
1041 CPU_AVX512VBMI_FLAGS
, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN
,
1043 CPU_AVX512_4FMAPS_FLAGS
, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN
,
1045 CPU_AVX512_4VNNIW_FLAGS
, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN
,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS
, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN
,
1049 CPU_AVX512_VBMI2_FLAGS
, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN
,
1051 CPU_AVX512_VNNI_FLAGS
, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN
,
1053 CPU_AVX512_BITALG_FLAGS
, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN
,
1055 CPU_CLZERO_FLAGS
, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN
,
1057 CPU_MWAITX_FLAGS
, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN
,
1059 CPU_OSPKE_FLAGS
, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN
,
1061 CPU_RDPID_FLAGS
, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN
,
1063 CPU_PTWRITE_FLAGS
, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN
,
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN
,
1067 CPU_SHSTK_FLAGS
, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN
,
1069 CPU_GFNI_FLAGS
, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN
,
1071 CPU_VAES_FLAGS
, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN
,
1073 CPU_VPCLMULQDQ_FLAGS
, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN
,
1075 CPU_WBNOINVD_FLAGS
, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN
,
1077 CPU_PCONFIG_FLAGS
, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN
,
1079 CPU_WAITPKG_FLAGS
, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN
,
1081 CPU_CLDEMOTE_FLAGS
, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN
,
1083 CPU_MOVDIRI_FLAGS
, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN
,
1085 CPU_MOVDIR64B_FLAGS
, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN
,
1087 CPU_AVX512_BF16_FLAGS
, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN
,
1089 CPU_AVX512_VP2INTERSECT_FLAGS
, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN
,
1091 CPU_ENQCMD_FLAGS
, 0 },
1094 static const noarch_entry cpu_noarch
[] =
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS
},
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS
},
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS
},
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS
},
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS
},
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS
},
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS
},
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS
},
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS
},
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS
},
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS
},
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS
},
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS
},
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS
},
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS
},
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS
},
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS
},
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS
},
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS
},
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS
},
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS
},
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS
},
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS
},
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS
},
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS
},
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS
},
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS
},
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS
},
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS
},
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS
},
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS
},
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS
},
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS
},
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS
},
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS
},
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS
},
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS
},
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS
},
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1141 pe_lcomm_internal (int needs_align
, symbolS
*symbolP
, addressT size
)
1148 && *input_line_pointer
== ',')
1150 align
= parse_align (needs_align
- 1);
1152 if (align
== (addressT
) -1)
1167 bss_alloc (symbolP
, size
, align
);
1172 pe_lcomm (int needs_align
)
1174 s_comm_internal (needs_align
* 2, pe_lcomm_internal
);
1178 const pseudo_typeS md_pseudo_table
[] =
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes
, 0},
1183 {"align", s_align_ptwo
, 0},
1185 {"arch", set_cpu_arch
, 0},
1189 {"lcomm", pe_lcomm
, 1},
1191 {"ffloat", float_cons
, 'f'},
1192 {"dfloat", float_cons
, 'd'},
1193 {"tfloat", float_cons
, 'x'},
1195 {"slong", signed_cons
, 4},
1196 {"noopt", s_ignore
, 0},
1197 {"optim", s_ignore
, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
1199 {"code16", set_code_flag
, CODE_16BIT
},
1200 {"code32", set_code_flag
, CODE_32BIT
},
1202 {"code64", set_code_flag
, CODE_64BIT
},
1204 {"intel_syntax", set_intel_syntax
, 1},
1205 {"att_syntax", set_intel_syntax
, 0},
1206 {"intel_mnemonic", set_intel_mnemonic
, 1},
1207 {"att_mnemonic", set_intel_mnemonic
, 0},
1208 {"allow_index_reg", set_allow_index_reg
, 1},
1209 {"disallow_index_reg", set_allow_index_reg
, 0},
1210 {"sse_check", set_check
, 0},
1211 {"operand_check", set_check
, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common
, 0},
1215 {"file", dwarf2_directive_file
, 0},
1216 {"loc", dwarf2_directive_loc
, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0},
1220 {"secrel32", pe_directive_secrel
, 0},
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer
;
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control
*op_hash
;
1231 /* Hash table for register lookup. */
1232 static struct hash_control
*reg_hash
;
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1
[] =
1239 static const unsigned char f32_2
[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3
[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4
[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6
[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7
[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3
[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4
[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8
[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32
[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32
[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt
[] = {
1261 f32_1
, f32_2
, f32_3
, f32_4
, NULL
, f32_6
, f32_7
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt
[] = {
1265 f32_1
, f32_2
, f16_3
, f16_4
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3
[] =
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4
[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5
[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6
[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7
[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8
[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9
[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10
[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11
[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt
[] = {
1296 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
1297 alt_9
, alt_10
, alt_11
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1304 i386_output_nops (char *where
, const unsigned char *const *patt
,
1305 int count
, int max_single_nop_size
)
1308 /* Place the longer NOP first. */
1311 const unsigned char *nops
;
1313 if (max_single_nop_size
< 1)
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size
);
1320 nops
= patt
[max_single_nop_size
- 1];
1322 /* Use the smaller one if the requsted one isn't available. */
1325 max_single_nop_size
--;
1326 nops
= patt
[max_single_nop_size
- 1];
1329 last
= count
% max_single_nop_size
;
1332 for (offset
= 0; offset
< count
; offset
+= max_single_nop_size
)
1333 memcpy (where
+ offset
, nops
, max_single_nop_size
);
1337 nops
= patt
[last
- 1];
1340 /* Use the smaller one plus one-byte NOP if the needed one
1343 nops
= patt
[last
- 1];
1344 memcpy (where
+ offset
, nops
, last
);
1345 where
[offset
+ last
] = *patt
[0];
1348 memcpy (where
+ offset
, nops
, last
);
1353 fits_in_imm7 (offsetT num
)
1355 return (num
& 0x7f) == num
;
1359 fits_in_imm31 (offsetT num
)
1361 return (num
& 0x7fffffff) == num
;
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1368 i386_generate_nops (fragS
*fragP
, char *where
, offsetT count
, int limit
)
1370 const unsigned char *const *patt
= NULL
;
1371 int max_single_nop_size
;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops
;
1375 switch (fragP
->fr_type
)
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1398 if (flag_code
== CODE_16BIT
)
1401 max_single_nop_size
= sizeof (f16_patt
) / sizeof (f16_patt
[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops
= 2;
1407 if (fragP
->tc_frag_data
.isa
== PROCESSOR_UNKNOWN
)
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune
)
1412 case PROCESSOR_UNKNOWN
:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1420 case PROCESSOR_PENTIUM4
:
1421 case PROCESSOR_NOCONA
:
1422 case PROCESSOR_CORE
:
1423 case PROCESSOR_CORE2
:
1424 case PROCESSOR_COREI7
:
1425 case PROCESSOR_L1OM
:
1426 case PROCESSOR_K1OM
:
1427 case PROCESSOR_GENERIC64
:
1429 case PROCESSOR_ATHLON
:
1431 case PROCESSOR_AMDFAM10
:
1433 case PROCESSOR_ZNVER
:
1437 case PROCESSOR_I386
:
1438 case PROCESSOR_I486
:
1439 case PROCESSOR_PENTIUM
:
1440 case PROCESSOR_PENTIUMPRO
:
1441 case PROCESSOR_IAMCU
:
1442 case PROCESSOR_GENERIC32
:
1449 switch (fragP
->tc_frag_data
.tune
)
1451 case PROCESSOR_UNKNOWN
:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1457 case PROCESSOR_I386
:
1458 case PROCESSOR_I486
:
1459 case PROCESSOR_PENTIUM
:
1460 case PROCESSOR_IAMCU
:
1462 case PROCESSOR_ATHLON
:
1464 case PROCESSOR_AMDFAM10
:
1466 case PROCESSOR_ZNVER
:
1468 case PROCESSOR_GENERIC32
:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1471 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1476 case PROCESSOR_PENTIUMPRO
:
1477 case PROCESSOR_PENTIUM4
:
1478 case PROCESSOR_NOCONA
:
1479 case PROCESSOR_CORE
:
1480 case PROCESSOR_CORE2
:
1481 case PROCESSOR_COREI7
:
1482 case PROCESSOR_L1OM
:
1483 case PROCESSOR_K1OM
:
1484 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpunop
)
1489 case PROCESSOR_GENERIC64
:
1495 if (patt
== f32_patt
)
1497 max_single_nop_size
= sizeof (f32_patt
) / sizeof (f32_patt
[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops
= 2;
1503 max_single_nop_size
= sizeof (alt_patt
) / sizeof (alt_patt
[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops
= 7;
1510 limit
= max_single_nop_size
;
1512 if (fragP
->fr_type
== rs_fill_nop
)
1514 /* Output NOPs for .nop directive. */
1515 if (limit
> max_single_nop_size
)
1517 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit
, max_single_nop_size
);
1525 fragP
->fr_var
= count
;
1527 if ((count
/ max_single_nop_size
) > max_number_of_nops
)
1529 /* Generate jump over NOPs. */
1530 offsetT disp
= count
- 2;
1531 if (fits_in_imm7 (disp
))
1533 /* Use "jmp disp8" if possible. */
1535 where
[0] = jump_disp8
[0];
1541 unsigned int size_of_jump
;
1543 if (flag_code
== CODE_16BIT
)
1545 where
[0] = jump16_disp32
[0];
1546 where
[1] = jump16_disp32
[1];
1551 where
[0] = jump32_disp32
[0];
1555 count
-= size_of_jump
+ 4;
1556 if (!fits_in_imm31 (count
))
1558 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
1559 _("jump over nop padding out of range"));
1563 md_number_to_chars (where
+ size_of_jump
, count
, 4);
1564 where
+= size_of_jump
+ 4;
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where
, patt
, count
, limit
);
1573 operand_type_all_zero (const union i386_operand_type
*x
)
1575 switch (ARRAY_SIZE(x
->array
))
1586 return !x
->array
[0];
1593 operand_type_set (union i386_operand_type
*x
, unsigned int v
)
1595 switch (ARRAY_SIZE(x
->array
))
1613 operand_type_equal (const union i386_operand_type
*x
,
1614 const union i386_operand_type
*y
)
1616 switch (ARRAY_SIZE(x
->array
))
1619 if (x
->array
[2] != y
->array
[2])
1623 if (x
->array
[1] != y
->array
[1])
1627 return x
->array
[0] == y
->array
[0];
1635 cpu_flags_all_zero (const union i386_cpu_flags
*x
)
1637 switch (ARRAY_SIZE(x
->array
))
1652 return !x
->array
[0];
1659 cpu_flags_equal (const union i386_cpu_flags
*x
,
1660 const union i386_cpu_flags
*y
)
1662 switch (ARRAY_SIZE(x
->array
))
1665 if (x
->array
[3] != y
->array
[3])
1669 if (x
->array
[2] != y
->array
[2])
1673 if (x
->array
[1] != y
->array
[1])
1677 return x
->array
[0] == y
->array
[0];
1685 cpu_flags_check_cpu64 (i386_cpu_flags f
)
1687 return !((flag_code
== CODE_64BIT
&& f
.bitfield
.cpuno64
)
1688 || (flag_code
!= CODE_64BIT
&& f
.bitfield
.cpu64
));
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x
, i386_cpu_flags y
)
1694 switch (ARRAY_SIZE (x
.array
))
1697 x
.array
[3] &= y
.array
[3];
1700 x
.array
[2] &= y
.array
[2];
1703 x
.array
[1] &= y
.array
[1];
1706 x
.array
[0] &= y
.array
[0];
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x
, i386_cpu_flags y
)
1717 switch (ARRAY_SIZE (x
.array
))
1720 x
.array
[3] |= y
.array
[3];
1723 x
.array
[2] |= y
.array
[2];
1726 x
.array
[1] |= y
.array
[1];
1729 x
.array
[0] |= y
.array
[0];
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x
, i386_cpu_flags y
)
1740 switch (ARRAY_SIZE (x
.array
))
1743 x
.array
[3] &= ~y
.array
[3];
1746 x
.array
[2] &= ~y
.array
[2];
1749 x
.array
[1] &= ~y
.array
[1];
1752 x
.array
[0] &= ~y
.array
[0];
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1766 /* Return CPU flags match bits. */
1769 cpu_flags_match (const insn_template
*t
)
1771 i386_cpu_flags x
= t
->cpu_flags
;
1772 int match
= cpu_flags_check_cpu64 (x
) ? CPU_FLAGS_64BIT_MATCH
: 0;
1774 x
.bitfield
.cpu64
= 0;
1775 x
.bitfield
.cpuno64
= 0;
1777 if (cpu_flags_all_zero (&x
))
1779 /* This instruction is available on all archs. */
1780 match
|= CPU_FLAGS_ARCH_MATCH
;
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu
= cpu_arch_flags
;
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x
.bitfield
.cpuavx512vl
&& !cpu
.bitfield
.cpuavx512vl
)
1790 x
.bitfield
.cpuavx512vl
= 0;
1792 cpu
= cpu_flags_and (x
, cpu
);
1793 if (!cpu_flags_all_zero (&cpu
))
1795 if (x
.bitfield
.cpuavx
)
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu
.bitfield
.cpuavx
1799 && (!t
->opcode_modifier
.sse2avx
|| sse2avx
)
1800 && (!x
.bitfield
.cpuaes
|| cpu
.bitfield
.cpuaes
)
1801 && (!x
.bitfield
.cpugfni
|| cpu
.bitfield
.cpugfni
)
1802 && (!x
.bitfield
.cpupclmul
|| cpu
.bitfield
.cpupclmul
))
1803 match
|= CPU_FLAGS_ARCH_MATCH
;
1805 else if (x
.bitfield
.cpuavx512f
)
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu
.bitfield
.cpuavx512f
1809 && (!x
.bitfield
.cpugfni
|| cpu
.bitfield
.cpugfni
)
1810 && (!x
.bitfield
.cpuvaes
|| cpu
.bitfield
.cpuvaes
)
1811 && (!x
.bitfield
.cpuvpclmulqdq
|| cpu
.bitfield
.cpuvpclmulqdq
))
1812 match
|= CPU_FLAGS_ARCH_MATCH
;
1815 match
|= CPU_FLAGS_ARCH_MATCH
;
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x
, i386_operand_type y
)
1824 switch (ARRAY_SIZE (x
.array
))
1827 x
.array
[2] &= y
.array
[2];
1830 x
.array
[1] &= y
.array
[1];
1833 x
.array
[0] &= y
.array
[0];
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x
, i386_operand_type y
)
1844 switch (ARRAY_SIZE (x
.array
))
1847 x
.array
[2] &= ~y
.array
[2];
1850 x
.array
[1] &= ~y
.array
[1];
1853 x
.array
[0] &= ~y
.array
[0];
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x
, i386_operand_type y
)
1864 switch (ARRAY_SIZE (x
.array
))
1867 x
.array
[2] |= y
.array
[2];
1870 x
.array
[1] |= y
.array
[1];
1873 x
.array
[0] |= y
.array
[0];
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x
, i386_operand_type y
)
1884 switch (ARRAY_SIZE (x
.array
))
1887 x
.array
[2] ^= y
.array
[2];
1890 x
.array
[1] ^= y
.array
[1];
1893 x
.array
[0] ^= y
.array
[0];
1901 static const i386_operand_type disp16
= OPERAND_TYPE_DISP16
;
1902 static const i386_operand_type disp32
= OPERAND_TYPE_DISP32
;
1903 static const i386_operand_type disp32s
= OPERAND_TYPE_DISP32S
;
1904 static const i386_operand_type disp16_32
= OPERAND_TYPE_DISP16_32
;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP
;
1907 static const i386_operand_type regxmm
= OPERAND_TYPE_REGXMM
;
1908 static const i386_operand_type regmask
= OPERAND_TYPE_REGMASK
;
1909 static const i386_operand_type imm8
= OPERAND_TYPE_IMM8
;
1910 static const i386_operand_type imm8s
= OPERAND_TYPE_IMM8S
;
1911 static const i386_operand_type imm16
= OPERAND_TYPE_IMM16
;
1912 static const i386_operand_type imm32
= OPERAND_TYPE_IMM32
;
1913 static const i386_operand_type imm32s
= OPERAND_TYPE_IMM32S
;
1914 static const i386_operand_type imm64
= OPERAND_TYPE_IMM64
;
1915 static const i386_operand_type imm16_32
= OPERAND_TYPE_IMM16_32
;
1916 static const i386_operand_type imm16_32s
= OPERAND_TYPE_IMM16_32S
;
1917 static const i386_operand_type imm16_32_32s
= OPERAND_TYPE_IMM16_32_32S
;
1928 operand_type_check (i386_operand_type t
, enum operand_type c
)
1933 return t
.bitfield
.reg
;
1936 return (t
.bitfield
.imm8
1940 || t
.bitfield
.imm32s
1941 || t
.bitfield
.imm64
);
1944 return (t
.bitfield
.disp8
1945 || t
.bitfield
.disp16
1946 || t
.bitfield
.disp32
1947 || t
.bitfield
.disp32s
1948 || t
.bitfield
.disp64
);
1951 return (t
.bitfield
.disp8
1952 || t
.bitfield
.disp16
1953 || t
.bitfield
.disp32
1954 || t
.bitfield
.disp32s
1955 || t
.bitfield
.disp64
1956 || t
.bitfield
.baseindex
);
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1969 match_operand_size (const insn_template
*t
, unsigned int wanted
,
1972 return !((i
.types
[given
].bitfield
.byte
1973 && !t
->operand_types
[wanted
].bitfield
.byte
)
1974 || (i
.types
[given
].bitfield
.word
1975 && !t
->operand_types
[wanted
].bitfield
.word
)
1976 || (i
.types
[given
].bitfield
.dword
1977 && !t
->operand_types
[wanted
].bitfield
.dword
)
1978 || (i
.types
[given
].bitfield
.qword
1979 && !t
->operand_types
[wanted
].bitfield
.qword
)
1980 || (i
.types
[given
].bitfield
.tbyte
1981 && !t
->operand_types
[wanted
].bitfield
.tbyte
));
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1988 match_simd_size (const insn_template
*t
, unsigned int wanted
,
1991 return !((i
.types
[given
].bitfield
.xmmword
1992 && !t
->operand_types
[wanted
].bitfield
.xmmword
)
1993 || (i
.types
[given
].bitfield
.ymmword
1994 && !t
->operand_types
[wanted
].bitfield
.ymmword
)
1995 || (i
.types
[given
].bitfield
.zmmword
1996 && !t
->operand_types
[wanted
].bitfield
.zmmword
));
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2003 match_mem_size (const insn_template
*t
, unsigned int wanted
,
2006 return (match_operand_size (t
, wanted
, given
)
2007 && !((i
.types
[given
].bitfield
.unspecified
2009 && !t
->operand_types
[wanted
].bitfield
.unspecified
)
2010 || (i
.types
[given
].bitfield
.fword
2011 && !t
->operand_types
[wanted
].bitfield
.fword
)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t
->operand_types
[wanted
].bitfield
.regsimd
2017 && !t
->opcode_modifier
.broadcast
2018 && (t
->operand_types
[wanted
].bitfield
.byte
2019 || t
->operand_types
[wanted
].bitfield
.word
2020 || t
->operand_types
[wanted
].bitfield
.dword
2021 || t
->operand_types
[wanted
].bitfield
.qword
))
2022 ? (i
.types
[given
].bitfield
.xmmword
2023 || i
.types
[given
].bitfield
.ymmword
2024 || i
.types
[given
].bitfield
.zmmword
)
2025 : !match_simd_size(t
, wanted
, given
))));
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2036 static INLINE
unsigned int
2037 operand_size_match (const insn_template
*t
)
2039 unsigned int j
, match
= MATCH_STRAIGHT
;
2041 /* Don't check jump instructions. */
2042 if (t
->opcode_modifier
.jump
2043 || t
->opcode_modifier
.jumpbyte
2044 || t
->opcode_modifier
.jumpdword
2045 || t
->opcode_modifier
.jumpintersegment
)
2048 /* Check memory and accumulator operand size. */
2049 for (j
= 0; j
< i
.operands
; j
++)
2051 if (!i
.types
[j
].bitfield
.reg
&& !i
.types
[j
].bitfield
.regsimd
2052 && t
->operand_types
[j
].bitfield
.anysize
)
2055 if (t
->operand_types
[j
].bitfield
.reg
2056 && !match_operand_size (t
, j
, j
))
2062 if (t
->operand_types
[j
].bitfield
.regsimd
2063 && !match_simd_size (t
, j
, j
))
2069 if (t
->operand_types
[j
].bitfield
.acc
2070 && (!match_operand_size (t
, j
, j
) || !match_simd_size (t
, j
, j
)))
2076 if ((i
.flags
[j
] & Operand_Mem
) && !match_mem_size (t
, j
, j
))
2083 if (!t
->opcode_modifier
.d
)
2087 i
.error
= operand_size_mismatch
;
2091 /* Check reverse. */
2092 gas_assert (i
.operands
>= 2 && i
.operands
<= 3);
2094 for (j
= 0; j
< i
.operands
; j
++)
2096 unsigned int given
= i
.operands
- j
- 1;
2098 if (t
->operand_types
[j
].bitfield
.reg
2099 && !match_operand_size (t
, j
, given
))
2102 if (t
->operand_types
[j
].bitfield
.regsimd
2103 && !match_simd_size (t
, j
, given
))
2106 if (t
->operand_types
[j
].bitfield
.acc
2107 && (!match_operand_size (t
, j
, given
)
2108 || !match_simd_size (t
, j
, given
)))
2111 if ((i
.flags
[given
] & Operand_Mem
) && !match_mem_size (t
, j
, given
))
2115 return match
| MATCH_REVERSE
;
2119 operand_type_match (i386_operand_type overlap
,
2120 i386_operand_type given
)
2122 i386_operand_type temp
= overlap
;
2124 temp
.bitfield
.jumpabsolute
= 0;
2125 temp
.bitfield
.unspecified
= 0;
2126 temp
.bitfield
.byte
= 0;
2127 temp
.bitfield
.word
= 0;
2128 temp
.bitfield
.dword
= 0;
2129 temp
.bitfield
.fword
= 0;
2130 temp
.bitfield
.qword
= 0;
2131 temp
.bitfield
.tbyte
= 0;
2132 temp
.bitfield
.xmmword
= 0;
2133 temp
.bitfield
.ymmword
= 0;
2134 temp
.bitfield
.zmmword
= 0;
2135 if (operand_type_all_zero (&temp
))
2138 if (given
.bitfield
.baseindex
== overlap
.bitfield
.baseindex
2139 && given
.bitfield
.jumpabsolute
== overlap
.bitfield
.jumpabsolute
)
2143 i
.error
= operand_type_mismatch
;
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2153 operand_type_register_match (i386_operand_type g0
,
2154 i386_operand_type t0
,
2155 i386_operand_type g1
,
2156 i386_operand_type t1
)
2158 if (!g0
.bitfield
.reg
2159 && !g0
.bitfield
.regsimd
2160 && (!operand_type_check (g0
, anymem
)
2161 || g0
.bitfield
.unspecified
2162 || !t0
.bitfield
.regsimd
))
2165 if (!g1
.bitfield
.reg
2166 && !g1
.bitfield
.regsimd
2167 && (!operand_type_check (g1
, anymem
)
2168 || g1
.bitfield
.unspecified
2169 || !t1
.bitfield
.regsimd
))
2172 if (g0
.bitfield
.byte
== g1
.bitfield
.byte
2173 && g0
.bitfield
.word
== g1
.bitfield
.word
2174 && g0
.bitfield
.dword
== g1
.bitfield
.dword
2175 && g0
.bitfield
.qword
== g1
.bitfield
.qword
2176 && g0
.bitfield
.xmmword
== g1
.bitfield
.xmmword
2177 && g0
.bitfield
.ymmword
== g1
.bitfield
.ymmword
2178 && g0
.bitfield
.zmmword
== g1
.bitfield
.zmmword
)
2181 if (!(t0
.bitfield
.byte
& t1
.bitfield
.byte
)
2182 && !(t0
.bitfield
.word
& t1
.bitfield
.word
)
2183 && !(t0
.bitfield
.dword
& t1
.bitfield
.dword
)
2184 && !(t0
.bitfield
.qword
& t1
.bitfield
.qword
)
2185 && !(t0
.bitfield
.xmmword
& t1
.bitfield
.xmmword
)
2186 && !(t0
.bitfield
.ymmword
& t1
.bitfield
.ymmword
)
2187 && !(t0
.bitfield
.zmmword
& t1
.bitfield
.zmmword
))
2190 i
.error
= register_type_mismatch
;
2195 static INLINE
unsigned int
2196 register_number (const reg_entry
*r
)
2198 unsigned int nr
= r
->reg_num
;
2200 if (r
->reg_flags
& RegRex
)
2203 if (r
->reg_flags
& RegVRex
)
2209 static INLINE
unsigned int
2210 mode_from_disp_size (i386_operand_type t
)
2212 if (t
.bitfield
.disp8
)
2214 else if (t
.bitfield
.disp16
2215 || t
.bitfield
.disp32
2216 || t
.bitfield
.disp32s
)
2223 fits_in_signed_byte (addressT num
)
2225 return num
+ 0x80 <= 0xff;
2229 fits_in_unsigned_byte (addressT num
)
2235 fits_in_unsigned_word (addressT num
)
2237 return num
<= 0xffff;
2241 fits_in_signed_word (addressT num
)
2243 return num
+ 0x8000 <= 0xffff;
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED
)
2252 return num
+ 0x80000000 <= 0xffffffff;
2254 } /* fits_in_signed_long() */
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED
)
2262 return num
<= 0xffffffff;
2264 } /* fits_in_unsigned_long() */
2267 fits_in_disp8 (offsetT num
)
2269 int shift
= i
.memshift
;
2275 mask
= (1 << shift
) - 1;
2277 /* Return 0 if NUM isn't properly aligned. */
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num
>> shift
);
2286 fits_in_imm4 (offsetT num
)
2288 return (num
& 0xf) == num
;
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num
)
2294 i386_operand_type t
;
2296 operand_type_set (&t
, 0);
2297 t
.bitfield
.imm64
= 1;
2299 if (cpu_arch_tune
!= PROCESSOR_I486
&& num
== 1)
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2306 t
.bitfield
.imm1
= 1;
2307 t
.bitfield
.imm8
= 1;
2308 t
.bitfield
.imm8s
= 1;
2309 t
.bitfield
.imm16
= 1;
2310 t
.bitfield
.imm32
= 1;
2311 t
.bitfield
.imm32s
= 1;
2313 else if (fits_in_signed_byte (num
))
2315 t
.bitfield
.imm8
= 1;
2316 t
.bitfield
.imm8s
= 1;
2317 t
.bitfield
.imm16
= 1;
2318 t
.bitfield
.imm32
= 1;
2319 t
.bitfield
.imm32s
= 1;
2321 else if (fits_in_unsigned_byte (num
))
2323 t
.bitfield
.imm8
= 1;
2324 t
.bitfield
.imm16
= 1;
2325 t
.bitfield
.imm32
= 1;
2326 t
.bitfield
.imm32s
= 1;
2328 else if (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
2330 t
.bitfield
.imm16
= 1;
2331 t
.bitfield
.imm32
= 1;
2332 t
.bitfield
.imm32s
= 1;
2334 else if (fits_in_signed_long (num
))
2336 t
.bitfield
.imm32
= 1;
2337 t
.bitfield
.imm32s
= 1;
2339 else if (fits_in_unsigned_long (num
))
2340 t
.bitfield
.imm32
= 1;
2346 offset_in_range (offsetT val
, int size
)
2352 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
2353 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
2354 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
2356 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code
!= CODE_64BIT
2364 || i
.prefix
[ADDR_PREFIX
])
2365 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
2366 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
2369 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
2371 char buf1
[40], buf2
[40];
2373 sprint_value (buf1
, val
);
2374 sprint_value (buf2
, val
& mask
);
2375 as_warn (_("%s shortened to %s"), buf1
, buf2
);
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix
)
2401 enum PREFIX_GROUP ret
= PREFIX_OTHER
;
2404 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
2405 && flag_code
== CODE_64BIT
)
2407 if ((i
.prefix
[REX_PREFIX
] & prefix
& REX_W
)
2408 || (i
.prefix
[REX_PREFIX
] & prefix
& REX_R
)
2409 || (i
.prefix
[REX_PREFIX
] & prefix
& REX_X
)
2410 || (i
.prefix
[REX_PREFIX
] & prefix
& REX_B
))
2421 case DS_PREFIX_OPCODE
:
2424 case CS_PREFIX_OPCODE
:
2425 case ES_PREFIX_OPCODE
:
2426 case FS_PREFIX_OPCODE
:
2427 case GS_PREFIX_OPCODE
:
2428 case SS_PREFIX_OPCODE
:
2432 case REPNE_PREFIX_OPCODE
:
2433 case REPE_PREFIX_OPCODE
:
2438 case LOCK_PREFIX_OPCODE
:
2447 case ADDR_PREFIX_OPCODE
:
2451 case DATA_PREFIX_OPCODE
:
2455 if (i
.prefix
[q
] != 0)
2463 i
.prefix
[q
] |= prefix
;
2466 as_bad (_("same type of prefix used twice"));
2472 update_code_flag (int value
, int check
)
2474 PRINTF_LIKE ((*as_error
));
2476 flag_code
= (enum flag_code
) value
;
2477 if (flag_code
== CODE_64BIT
)
2479 cpu_arch_flags
.bitfield
.cpu64
= 1;
2480 cpu_arch_flags
.bitfield
.cpuno64
= 0;
2484 cpu_arch_flags
.bitfield
.cpu64
= 0;
2485 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2487 if (value
== CODE_64BIT
&& !cpu_arch_flags
.bitfield
.cpulm
)
2490 as_error
= as_fatal
;
2493 (*as_error
) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name
? cpu_arch_name
: default_arch
);
2496 if (value
== CODE_32BIT
&& !cpu_arch_flags
.bitfield
.cpui386
)
2499 as_error
= as_fatal
;
2502 (*as_error
) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name
? cpu_arch_name
: default_arch
);
2505 stackop_size
= '\0';
2509 set_code_flag (int value
)
2511 update_code_flag (value
, 0);
2515 set_16bit_gcc_code_flag (int new_code_flag
)
2517 flag_code
= (enum flag_code
) new_code_flag
;
2518 if (flag_code
!= CODE_16BIT
)
2520 cpu_arch_flags
.bitfield
.cpu64
= 0;
2521 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2522 stackop_size
= LONG_MNEM_SUFFIX
;
2526 set_intel_syntax (int syntax_flag
)
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg
= 0;
2532 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2535 int e
= get_symbol_name (&string
);
2537 if (strcmp (string
, "prefix") == 0)
2539 else if (strcmp (string
, "noprefix") == 0)
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e
);
2545 demand_empty_rest_of_line ();
2547 intel_syntax
= syntax_flag
;
2549 if (ask_naked_reg
== 0)
2550 allow_naked_reg
= (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
2553 allow_naked_reg
= (ask_naked_reg
< 0);
2555 expr_set_rank (O_full_ptr
, syntax_flag
? 10 : 0);
2557 identifier_chars
['%'] = intel_syntax
&& allow_naked_reg
? '%' : 0;
2558 identifier_chars
['$'] = intel_syntax
? '$' : 0;
2559 register_prefix
= allow_naked_reg
? "" : "%";
2563 set_intel_mnemonic (int mnemonic_flag
)
2565 intel_mnemonic
= mnemonic_flag
;
2569 set_allow_index_reg (int flag
)
2571 allow_index_reg
= flag
;
2575 set_check (int what
)
2577 enum check_kind
*kind
;
2582 kind
= &operand_check
;
2593 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2596 int e
= get_symbol_name (&string
);
2598 if (strcmp (string
, "none") == 0)
2600 else if (strcmp (string
, "warning") == 0)
2601 *kind
= check_warning
;
2602 else if (strcmp (string
, "error") == 0)
2603 *kind
= check_error
;
2605 as_bad (_("bad argument to %s_check directive."), str
);
2606 (void) restore_line_pointer (e
);
2609 as_bad (_("missing argument for %s_check directive"), str
);
2611 demand_empty_rest_of_line ();
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED
,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED
)
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch
;
2621 /* Intel LIOM is only supported on ELF. */
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch
= cpu_arch_name
;
2631 arch
= default_arch
;
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_IAMCU
2636 || new_flag
.bitfield
.cpuiamcu
)
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_L1OM
2641 || new_flag
.bitfield
.cpul1om
)
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_K1OM
2646 || new_flag
.bitfield
.cpuk1om
)
2649 as_bad (_("`%s' is not supported on `%s'"), name
, arch
);
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED
)
2658 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2661 int e
= get_symbol_name (&string
);
2663 i386_cpu_flags flags
;
2665 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
2667 if (strcmp (string
, cpu_arch
[j
].name
) == 0)
2669 check_cpu_arch_compatible (string
, cpu_arch
[j
].flags
);
2673 cpu_arch_name
= cpu_arch
[j
].name
;
2674 cpu_sub_arch_name
= NULL
;
2675 cpu_arch_flags
= cpu_arch
[j
].flags
;
2676 if (flag_code
== CODE_64BIT
)
2678 cpu_arch_flags
.bitfield
.cpu64
= 1;
2679 cpu_arch_flags
.bitfield
.cpuno64
= 0;
2683 cpu_arch_flags
.bitfield
.cpu64
= 0;
2684 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2686 cpu_arch_isa
= cpu_arch
[j
].type
;
2687 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
2688 if (!cpu_arch_tune_set
)
2690 cpu_arch_tune
= cpu_arch_isa
;
2691 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
2696 flags
= cpu_flags_or (cpu_arch_flags
,
2699 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
2701 if (cpu_sub_arch_name
)
2703 char *name
= cpu_sub_arch_name
;
2704 cpu_sub_arch_name
= concat (name
,
2706 (const char *) NULL
);
2710 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
2711 cpu_arch_flags
= flags
;
2712 cpu_arch_isa_flags
= flags
;
2716 = cpu_flags_or (cpu_arch_isa_flags
,
2718 (void) restore_line_pointer (e
);
2719 demand_empty_rest_of_line ();
2724 if (*string
== '.' && j
>= ARRAY_SIZE (cpu_arch
))
2726 /* Disable an ISA extension. */
2727 for (j
= 0; j
< ARRAY_SIZE (cpu_noarch
); j
++)
2728 if (strcmp (string
+ 1, cpu_noarch
[j
].name
) == 0)
2730 flags
= cpu_flags_and_not (cpu_arch_flags
,
2731 cpu_noarch
[j
].flags
);
2732 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
2734 if (cpu_sub_arch_name
)
2736 char *name
= cpu_sub_arch_name
;
2737 cpu_sub_arch_name
= concat (name
, string
,
2738 (const char *) NULL
);
2742 cpu_sub_arch_name
= xstrdup (string
);
2743 cpu_arch_flags
= flags
;
2744 cpu_arch_isa_flags
= flags
;
2746 (void) restore_line_pointer (e
);
2747 demand_empty_rest_of_line ();
2751 j
= ARRAY_SIZE (cpu_arch
);
2754 if (j
>= ARRAY_SIZE (cpu_arch
))
2755 as_bad (_("no such architecture: `%s'"), string
);
2757 *input_line_pointer
= e
;
2760 as_bad (_("missing cpu architecture"));
2762 no_cond_jump_promotion
= 0;
2763 if (*input_line_pointer
== ','
2764 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
2769 ++input_line_pointer
;
2770 e
= get_symbol_name (&string
);
2772 if (strcmp (string
, "nojumps") == 0)
2773 no_cond_jump_promotion
= 1;
2774 else if (strcmp (string
, "jumps") == 0)
2777 as_bad (_("no such architecture modifier: `%s'"), string
);
2779 (void) restore_line_pointer (e
);
2782 demand_empty_rest_of_line ();
2785 enum bfd_architecture
2788 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2790 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2791 || flag_code
!= CODE_64BIT
)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om
;
2795 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
2797 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2798 || flag_code
!= CODE_64BIT
)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om
;
2802 else if (cpu_arch_isa
== PROCESSOR_IAMCU
)
2804 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2805 || flag_code
== CODE_64BIT
)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu
;
2810 return bfd_arch_i386
;
2816 if (!strncmp (default_arch
, "x86_64", 6))
2818 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2820 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2821 || default_arch
[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om
;
2825 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
2827 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2828 || default_arch
[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om
;
2832 else if (default_arch
[6] == '\0')
2833 return bfd_mach_x86_64
;
2835 return bfd_mach_x64_32
;
2837 else if (!strcmp (default_arch
, "i386")
2838 || !strcmp (default_arch
, "iamcu"))
2840 if (cpu_arch_isa
== PROCESSOR_IAMCU
)
2842 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu
;
2847 return bfd_mach_i386_i386
;
2850 as_fatal (_("unknown architecture"));
2856 const char *hash_err
;
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type
['{'] = LEX_BEGIN_NAME
;
2861 /* Initialize op_hash hash table. */
2862 op_hash
= hash_new ();
2865 const insn_template
*optab
;
2866 templates
*core_optab
;
2868 /* Setup for loop. */
2870 core_optab
= XNEW (templates
);
2871 core_optab
->start
= optab
;
2876 if (optab
->name
== NULL
2877 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab
->end
= optab
;
2882 hash_err
= hash_insert (op_hash
,
2884 (void *) core_optab
);
2887 as_fatal (_("can't hash %s: %s"),
2891 if (optab
->name
== NULL
)
2893 core_optab
= XNEW (templates
);
2894 core_optab
->start
= optab
;
2899 /* Initialize reg_hash hash table. */
2900 reg_hash
= hash_new ();
2902 const reg_entry
*regtab
;
2903 unsigned int regtab_size
= i386_regtab_size
;
2905 for (regtab
= i386_regtab
; regtab_size
--; regtab
++)
2907 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (void *) regtab
);
2909 as_fatal (_("can't hash %s: %s"),
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2920 for (c
= 0; c
< 256; c
++)
2925 mnemonic_chars
[c
] = c
;
2926 register_chars
[c
] = c
;
2927 operand_chars
[c
] = c
;
2929 else if (ISLOWER (c
))
2931 mnemonic_chars
[c
] = c
;
2932 register_chars
[c
] = c
;
2933 operand_chars
[c
] = c
;
2935 else if (ISUPPER (c
))
2937 mnemonic_chars
[c
] = TOLOWER (c
);
2938 register_chars
[c
] = mnemonic_chars
[c
];
2939 operand_chars
[c
] = c
;
2941 else if (c
== '{' || c
== '}')
2943 mnemonic_chars
[c
] = c
;
2944 operand_chars
[c
] = c
;
2947 if (ISALPHA (c
) || ISDIGIT (c
))
2948 identifier_chars
[c
] = c
;
2951 identifier_chars
[c
] = c
;
2952 operand_chars
[c
] = c
;
2957 identifier_chars
['@'] = '@';
2960 identifier_chars
['?'] = '?';
2961 operand_chars
['?'] = '?';
2963 digit_chars
['-'] = '-';
2964 mnemonic_chars
['_'] = '_';
2965 mnemonic_chars
['-'] = '-';
2966 mnemonic_chars
['.'] = '.';
2967 identifier_chars
['_'] = '_';
2968 identifier_chars
['.'] = '.';
2970 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
2971 operand_chars
[(unsigned char) *p
] = *p
;
2974 if (flag_code
== CODE_64BIT
)
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column
= (OUTPUT_FLAVOR
== bfd_target_coff_flavour
2980 x86_dwarf2_return_column
= 16;
2982 x86_cie_data_alignment
= -8;
2986 x86_dwarf2_return_column
= 8;
2987 x86_cie_data_alignment
= -4;
2992 i386_print_statistics (FILE *file
)
2994 hash_print_statistics (file
, "i386 opcode", op_hash
);
2995 hash_print_statistics (file
, "i386 register", reg_hash
);
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template
*);
3002 static void pt (i386_operand_type
);
3003 static void pe (expressionS
*);
3004 static void ps (symbolS
*);
3007 pi (const char *line
, i386_insn
*x
)
3011 fprintf (stdout
, "%s: template ", line
);
3013 fprintf (stdout
, " address: base %s index %s scale %x\n",
3014 x
->base_reg
? x
->base_reg
->reg_name
: "none",
3015 x
->index_reg
? x
->index_reg
->reg_name
: "none",
3016 x
->log2_scale_factor
);
3017 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
3018 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
3019 fprintf (stdout
, " sib: base %x index %x scale %x\n",
3020 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
3021 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x
->rex
& REX_W
) != 0,
3023 (x
->rex
& REX_R
) != 0,
3024 (x
->rex
& REX_X
) != 0,
3025 (x
->rex
& REX_B
) != 0);
3026 for (j
= 0; j
< x
->operands
; j
++)
3028 fprintf (stdout
, " #%d: ", j
+ 1);
3030 fprintf (stdout
, "\n");
3031 if (x
->types
[j
].bitfield
.reg
3032 || x
->types
[j
].bitfield
.regmmx
3033 || x
->types
[j
].bitfield
.regsimd
3034 || x
->types
[j
].bitfield
.sreg
3035 || x
->types
[j
].bitfield
.control
3036 || x
->types
[j
].bitfield
.debug
3037 || x
->types
[j
].bitfield
.test
)
3038 fprintf (stdout
, "%s\n", x
->op
[j
].regs
->reg_name
);
3039 if (operand_type_check (x
->types
[j
], imm
))
3041 if (operand_type_check (x
->types
[j
], disp
))
3042 pe (x
->op
[j
].disps
);
3047 pte (insn_template
*t
)
3050 fprintf (stdout
, " %d operands ", t
->operands
);
3051 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
3052 if (t
->extension_opcode
!= None
)
3053 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
3054 if (t
->opcode_modifier
.d
)
3055 fprintf (stdout
, "D");
3056 if (t
->opcode_modifier
.w
)
3057 fprintf (stdout
, "W");
3058 fprintf (stdout
, "\n");
3059 for (j
= 0; j
< t
->operands
; j
++)
3061 fprintf (stdout
, " #%d type ", j
+ 1);
3062 pt (t
->operand_types
[j
]);
3063 fprintf (stdout
, "\n");
3070 fprintf (stdout
, " operation %d\n", e
->X_op
);
3071 fprintf (stdout
, " add_number %ld (%lx)\n",
3072 (long) e
->X_add_number
, (long) e
->X_add_number
);
3073 if (e
->X_add_symbol
)
3075 fprintf (stdout
, " add_symbol ");
3076 ps (e
->X_add_symbol
);
3077 fprintf (stdout
, "\n");
3081 fprintf (stdout
, " op_symbol ");
3082 ps (e
->X_op_symbol
);
3083 fprintf (stdout
, "\n");
3090 fprintf (stdout
, "%s type %s%s",
3092 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s
)));
3096 static struct type_name
3098 i386_operand_type mask
;
3101 const type_names
[] =
3103 { OPERAND_TYPE_REG8
, "r8" },
3104 { OPERAND_TYPE_REG16
, "r16" },
3105 { OPERAND_TYPE_REG32
, "r32" },
3106 { OPERAND_TYPE_REG64
, "r64" },
3107 { OPERAND_TYPE_ACC8
, "acc8" },
3108 { OPERAND_TYPE_ACC16
, "acc16" },
3109 { OPERAND_TYPE_ACC32
, "acc32" },
3110 { OPERAND_TYPE_ACC64
, "acc64" },
3111 { OPERAND_TYPE_IMM8
, "i8" },
3112 { OPERAND_TYPE_IMM8
, "i8s" },
3113 { OPERAND_TYPE_IMM16
, "i16" },
3114 { OPERAND_TYPE_IMM32
, "i32" },
3115 { OPERAND_TYPE_IMM32S
, "i32s" },
3116 { OPERAND_TYPE_IMM64
, "i64" },
3117 { OPERAND_TYPE_IMM1
, "i1" },
3118 { OPERAND_TYPE_BASEINDEX
, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8
, "d8" },
3120 { OPERAND_TYPE_DISP16
, "d16" },
3121 { OPERAND_TYPE_DISP32
, "d32" },
3122 { OPERAND_TYPE_DISP32S
, "d32s" },
3123 { OPERAND_TYPE_DISP64
, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG
, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT
, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL
, "control reg" },
3127 { OPERAND_TYPE_TEST
, "test reg" },
3128 { OPERAND_TYPE_DEBUG
, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG
, "FReg" },
3130 { OPERAND_TYPE_FLOATACC
, "FAcc" },
3131 { OPERAND_TYPE_SREG
, "SReg" },
3132 { OPERAND_TYPE_JUMPABSOLUTE
, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX
, "rMMX" },
3134 { OPERAND_TYPE_REGXMM
, "rXMM" },
3135 { OPERAND_TYPE_REGYMM
, "rYMM" },
3136 { OPERAND_TYPE_REGZMM
, "rZMM" },
3137 { OPERAND_TYPE_REGMASK
, "Mask reg" },
3138 { OPERAND_TYPE_ESSEG
, "es" },
3142 pt (i386_operand_type t
)
3145 i386_operand_type a
;
3147 for (j
= 0; j
< ARRAY_SIZE (type_names
); j
++)
3149 a
= operand_type_and (t
, type_names
[j
].mask
);
3150 if (operand_type_equal (&a
, &type_names
[j
].mask
))
3151 fprintf (stdout
, "%s, ", type_names
[j
].name
);
3156 #endif /* DEBUG386 */
3158 static bfd_reloc_code_real_type
3159 reloc (unsigned int size
,
3162 bfd_reloc_code_real_type other
)
3164 if (other
!= NO_RELOC
)
3166 reloc_howto_type
*rel
;
3171 case BFD_RELOC_X86_64_GOT32
:
3172 return BFD_RELOC_X86_64_GOT64
;
3174 case BFD_RELOC_X86_64_GOTPLT64
:
3175 return BFD_RELOC_X86_64_GOTPLT64
;
3177 case BFD_RELOC_X86_64_PLTOFF64
:
3178 return BFD_RELOC_X86_64_PLTOFF64
;
3180 case BFD_RELOC_X86_64_GOTPC32
:
3181 other
= BFD_RELOC_X86_64_GOTPC64
;
3183 case BFD_RELOC_X86_64_GOTPCREL
:
3184 other
= BFD_RELOC_X86_64_GOTPCREL64
;
3186 case BFD_RELOC_X86_64_TPOFF32
:
3187 other
= BFD_RELOC_X86_64_TPOFF64
;
3189 case BFD_RELOC_X86_64_DTPOFF32
:
3190 other
= BFD_RELOC_X86_64_DTPOFF64
;
3196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3197 if (other
== BFD_RELOC_SIZE32
)
3200 other
= BFD_RELOC_SIZE64
;
3203 as_bad (_("there are no pc-relative size relocations"));
3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3210 if (size
== 4 && (flag_code
!= CODE_64BIT
|| disallow_64bit_reloc
))
3213 rel
= bfd_reloc_type_lookup (stdoutput
, other
);
3215 as_bad (_("unknown relocation (%u)"), other
);
3216 else if (size
!= bfd_get_reloc_size (rel
))
3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3218 bfd_get_reloc_size (rel
),
3220 else if (pcrel
&& !rel
->pc_relative
)
3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
3222 else if ((rel
->complain_on_overflow
== complain_overflow_signed
3224 || (rel
->complain_on_overflow
== complain_overflow_unsigned
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3235 as_bad (_("there are no unsigned pc-relative relocations"));
3238 case 1: return BFD_RELOC_8_PCREL
;
3239 case 2: return BFD_RELOC_16_PCREL
;
3240 case 4: return BFD_RELOC_32_PCREL
;
3241 case 8: return BFD_RELOC_64_PCREL
;
3243 as_bad (_("cannot do %u byte pc-relative relocation"), size
);
3250 case 4: return BFD_RELOC_X86_64_32S
;
3255 case 1: return BFD_RELOC_8
;
3256 case 2: return BFD_RELOC_16
;
3257 case 4: return BFD_RELOC_32
;
3258 case 8: return BFD_RELOC_64
;
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign
> 0 ? "signed" : "unsigned", size
);
3267 /* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3273 tc_i386_fix_adjustable (fixS
*fixP ATTRIBUTE_UNUSED
)
3275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol
&& fixP
->fx_subsy
== GOT_symbol
3289 && fixP
->fx_r_type
== BFD_RELOC_32_PCREL
)
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP
->fx_r_type
== BFD_RELOC_SIZE32
3295 || fixP
->fx_r_type
== BFD_RELOC_SIZE64
3296 || fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
3297 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
3298 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
3299 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32X
3300 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
3301 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
3302 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
3303 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
3304 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
3305 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
3306 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
3307 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
3308 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTDESC
3309 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_DESC_CALL
3310 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
3311 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
3312 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
3313 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP
->fx_r_type
== BFD_RELOC_X86_64_REX_GOTPCRELX
3315 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
3316 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
3317 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
3318 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF64
3319 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
3321 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF64
3322 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTOFF64
3323 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSDESC_CALL
3325 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
3326 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
3333 intel_float_operand (const char *mnemonic
)
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3339 if (mnemonic
[0] != 'f')
3340 return 0; /* non-math */
3342 switch (mnemonic
[1])
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3348 return 2 /* integer op */;
3350 if (mnemonic
[2] == 'd' && (mnemonic
[3] == 'c' || mnemonic
[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3354 if (mnemonic
[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3358 if (mnemonic
[2] == 's')
3359 return 3; /* frstor/frstpm */
3362 if (mnemonic
[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic
[2] == 't')
3366 switch (mnemonic
[3])
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3377 if (mnemonic
[2] == 'r' || mnemonic
[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3385 /* Build the VEX prefix. */
3388 build_vex_prefix (const insn_template
*t
)
3390 unsigned int register_specifier
;
3391 unsigned int implied_prefix
;
3392 unsigned int vector_length
;
3395 /* Check register specifier. */
3396 if (i
.vex
.register_specifier
)
3398 register_specifier
=
3399 ~register_number (i
.vex
.register_specifier
) & 0xf;
3400 gas_assert ((i
.vex
.register_specifier
->reg_flags
& RegVRex
) == 0);
3403 register_specifier
= 0xf;
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i
.reg_operands
> 1
3408 && i
.vec_encoding
!= vex_encoding_vex3
3409 && i
.dir_encoding
== dir_encoding_default
3410 && i
.operands
== i
.reg_operands
3411 && operand_type_equal (&i
.types
[0], &i
.types
[i
.operands
- 1])
3412 && i
.tm
.opcode_modifier
.vexopcode
== VEX0F
3413 && (i
.tm
.opcode_modifier
.load
|| i
.tm
.opcode_modifier
.d
)
3416 unsigned int xchg
= i
.operands
- 1;
3417 union i386_op temp_op
;
3418 i386_operand_type temp_type
;
3420 temp_type
= i
.types
[xchg
];
3421 i
.types
[xchg
] = i
.types
[0];
3422 i
.types
[0] = temp_type
;
3423 temp_op
= i
.op
[xchg
];
3424 i
.op
[xchg
] = i
.op
[0];
3427 gas_assert (i
.rm
.mode
== 3);
3431 i
.rm
.regmem
= i
.rm
.reg
;
3434 if (i
.tm
.opcode_modifier
.d
)
3435 i
.tm
.base_opcode
^= (i
.tm
.base_opcode
& 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD
: Opcode_SIMD_IntD
;
3437 else /* Use the next insn. */
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i
.reg_operands
>= 3
3444 && i
.vec_encoding
!= vex_encoding_vex3
3445 && i
.reg_operands
== i
.operands
- i
.imm_operands
3446 && i
.tm
.opcode_modifier
.vex
3447 && i
.tm
.opcode_modifier
.commutative
3448 && (i
.tm
.opcode_modifier
.sse2avx
|| optimize
> 1)
3450 && i
.vex
.register_specifier
3451 && !(i
.vex
.register_specifier
->reg_flags
& RegRex
))
3453 unsigned int xchg
= i
.operands
- i
.reg_operands
;
3454 union i386_op temp_op
;
3455 i386_operand_type temp_type
;
3457 gas_assert (i
.tm
.opcode_modifier
.vexopcode
== VEX0F
);
3458 gas_assert (!i
.tm
.opcode_modifier
.sae
);
3459 gas_assert (operand_type_equal (&i
.types
[i
.operands
- 2],
3460 &i
.types
[i
.operands
- 3]));
3461 gas_assert (i
.rm
.mode
== 3);
3463 temp_type
= i
.types
[xchg
];
3464 i
.types
[xchg
] = i
.types
[xchg
+ 1];
3465 i
.types
[xchg
+ 1] = temp_type
;
3466 temp_op
= i
.op
[xchg
];
3467 i
.op
[xchg
] = i
.op
[xchg
+ 1];
3468 i
.op
[xchg
+ 1] = temp_op
;
3471 xchg
= i
.rm
.regmem
| 8;
3472 i
.rm
.regmem
= ~register_specifier
& 0xf;
3473 gas_assert (!(i
.rm
.regmem
& 8));
3474 i
.vex
.register_specifier
+= xchg
- i
.rm
.regmem
;
3475 register_specifier
= ~xchg
& 0xf;
3478 if (i
.tm
.opcode_modifier
.vex
== VEXScalar
)
3479 vector_length
= avxscalar
;
3480 else if (i
.tm
.opcode_modifier
.vex
== VEX256
)
3486 /* Determine vector length from the last multi-length vector
3489 for (op
= t
->operands
; op
--;)
3490 if (t
->operand_types
[op
].bitfield
.xmmword
3491 && t
->operand_types
[op
].bitfield
.ymmword
3492 && i
.types
[op
].bitfield
.ymmword
)
3499 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
3504 case DATA_PREFIX_OPCODE
:
3507 case REPE_PREFIX_OPCODE
:
3510 case REPNE_PREFIX_OPCODE
:
3517 /* Check the REX.W bit and VEXW. */
3518 if (i
.tm
.opcode_modifier
.vexw
== VEXWIG
)
3519 w
= (vexwig
== vexw1
|| (i
.rex
& REX_W
)) ? 1 : 0;
3520 else if (i
.tm
.opcode_modifier
.vexw
)
3521 w
= i
.tm
.opcode_modifier
.vexw
== VEXW1
? 1 : 0;
3523 w
= (flag_code
== CODE_64BIT
? i
.rex
& REX_W
: vexwig
== vexw1
) ? 1 : 0;
3525 /* Use 2-byte VEX prefix if possible. */
3527 && i
.vec_encoding
!= vex_encoding_vex3
3528 && i
.tm
.opcode_modifier
.vexopcode
== VEX0F
3529 && (i
.rex
& (REX_W
| REX_X
| REX_B
)) == 0)
3531 /* 2-byte VEX prefix. */
3535 i
.vex
.bytes
[0] = 0xc5;
3537 /* Check the REX.R bit. */
3538 r
= (i
.rex
& REX_R
) ? 0 : 1;
3539 i
.vex
.bytes
[1] = (r
<< 7
3540 | register_specifier
<< 3
3541 | vector_length
<< 2
3546 /* 3-byte VEX prefix. */
3551 switch (i
.tm
.opcode_modifier
.vexopcode
)
3555 i
.vex
.bytes
[0] = 0xc4;
3559 i
.vex
.bytes
[0] = 0xc4;
3563 i
.vex
.bytes
[0] = 0xc4;
3567 i
.vex
.bytes
[0] = 0x8f;
3571 i
.vex
.bytes
[0] = 0x8f;
3575 i
.vex
.bytes
[0] = 0x8f;
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
3585 i
.vex
.bytes
[2] = (w
<< 7
3586 | register_specifier
<< 3
3587 | vector_length
<< 2
3592 static INLINE bfd_boolean
3593 is_evex_encoding (const insn_template
*t
)
3595 return t
->opcode_modifier
.evex
|| t
->opcode_modifier
.disp8memshift
3596 || t
->opcode_modifier
.broadcast
|| t
->opcode_modifier
.masking
3597 || t
->opcode_modifier
.sae
;
3600 static INLINE bfd_boolean
3601 is_any_vex_encoding (const insn_template
*t
)
3603 return t
->opcode_modifier
.vex
|| t
->opcode_modifier
.vexopcode
3604 || is_evex_encoding (t
);
3607 /* Build the EVEX prefix. */
3610 build_evex_prefix (void)
3612 unsigned int register_specifier
;
3613 unsigned int implied_prefix
;
3615 rex_byte vrex_used
= 0;
3617 /* Check register specifier. */
3618 if (i
.vex
.register_specifier
)
3620 gas_assert ((i
.vrex
& REX_X
) == 0);
3622 register_specifier
= i
.vex
.register_specifier
->reg_num
;
3623 if ((i
.vex
.register_specifier
->reg_flags
& RegRex
))
3624 register_specifier
+= 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3627 if (!(i
.vex
.register_specifier
->reg_flags
& RegVRex
))
3628 i
.vex
.bytes
[3] = 0x8;
3629 register_specifier
= ~register_specifier
& 0xf;
3633 register_specifier
= 0xf;
3635 /* Encode upper 16 vector index register in the fourth byte of
3637 if (!(i
.vrex
& REX_X
))
3638 i
.vex
.bytes
[3] = 0x8;
3643 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
3648 case DATA_PREFIX_OPCODE
:
3651 case REPE_PREFIX_OPCODE
:
3654 case REPNE_PREFIX_OPCODE
:
3661 /* 4 byte EVEX prefix. */
3663 i
.vex
.bytes
[0] = 0x62;
3666 switch (i
.tm
.opcode_modifier
.vexopcode
)
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3684 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i
.vrex
& REX_R
))
3689 i
.vex
.bytes
[1] |= 0x10;
3693 if ((i
.reg_operands
+ i
.imm_operands
) == i
.operands
)
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i
.vrex
& REX_B
))
3702 i
.vex
.bytes
[1] &= ~0x40;
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i
.vrex
&= ~vrex_used
;
3708 gas_assert (i
.vrex
== 0);
3710 /* Check the REX.W bit and VEXW. */
3711 if (i
.tm
.opcode_modifier
.vexw
== VEXWIG
)
3712 w
= (evexwig
== evexw1
|| (i
.rex
& REX_W
)) ? 1 : 0;
3713 else if (i
.tm
.opcode_modifier
.vexw
)
3714 w
= i
.tm
.opcode_modifier
.vexw
== VEXW1
? 1 : 0;
3716 w
= (flag_code
== CODE_64BIT
? i
.rex
& REX_W
: evexwig
== evexw1
) ? 1 : 0;
3718 /* Encode the U bit. */
3719 implied_prefix
|= 0x4;
3721 /* The third byte of the EVEX prefix. */
3722 i
.vex
.bytes
[2] = (w
<< 7 | register_specifier
<< 3 | implied_prefix
);
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i
.mask
&& i
.mask
->zeroing
)
3727 i
.vex
.bytes
[3] |= 0x80;
3729 /* Don't always set the broadcast bit if there is no RC. */
3732 /* Encode the vector length. */
3733 unsigned int vec_length
;
3735 if (!i
.tm
.opcode_modifier
.evex
3736 || i
.tm
.opcode_modifier
.evex
== EVEXDYN
)
3740 /* Determine vector length from the last multi-length vector
3743 for (op
= i
.operands
; op
--;)
3744 if (i
.tm
.operand_types
[op
].bitfield
.xmmword
3745 + i
.tm
.operand_types
[op
].bitfield
.ymmword
3746 + i
.tm
.operand_types
[op
].bitfield
.zmmword
> 1)
3748 if (i
.types
[op
].bitfield
.zmmword
)
3750 i
.tm
.opcode_modifier
.evex
= EVEX512
;
3753 else if (i
.types
[op
].bitfield
.ymmword
)
3755 i
.tm
.opcode_modifier
.evex
= EVEX256
;
3758 else if (i
.types
[op
].bitfield
.xmmword
)
3760 i
.tm
.opcode_modifier
.evex
= EVEX128
;
3763 else if (i
.broadcast
&& (int) op
== i
.broadcast
->operand
)
3765 switch (i
.broadcast
->bytes
)
3768 i
.tm
.opcode_modifier
.evex
= EVEX512
;
3771 i
.tm
.opcode_modifier
.evex
= EVEX256
;
3774 i
.tm
.opcode_modifier
.evex
= EVEX128
;
3783 if (op
>= MAX_OPERANDS
)
3787 switch (i
.tm
.opcode_modifier
.evex
)
3789 case EVEXLIG
: /* LL' is ignored */
3790 vec_length
= evexlig
<< 5;
3793 vec_length
= 0 << 5;
3796 vec_length
= 1 << 5;
3799 vec_length
= 2 << 5;
3805 i
.vex
.bytes
[3] |= vec_length
;
3806 /* Encode the broadcast bit. */
3808 i
.vex
.bytes
[3] |= 0x10;
3812 if (i
.rounding
->type
!= saeonly
)
3813 i
.vex
.bytes
[3] |= 0x10 | (i
.rounding
->type
<< 5);
3815 i
.vex
.bytes
[3] |= 0x10 | (evexrcig
<< 5);
3818 if (i
.mask
&& i
.mask
->mask
)
3819 i
.vex
.bytes
[3] |= i
.mask
->mask
->reg_num
;
3823 process_immext (void)
3827 if ((i
.tm
.cpu_flags
.bitfield
.cpusse3
|| i
.tm
.cpu_flags
.bitfield
.cpusvme
)
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
3836 for (x
= 0; x
< i
.operands
; x
++)
3837 if (register_number (i
.op
[x
].regs
) != x
)
3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3839 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+ 1,
3845 if (i
.tm
.cpu_flags
.bitfield
.cpumwaitx
&& i
.operands
> 0)
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3850 Here we check those operands and remove them afterwards. */
3853 if (i
.operands
!= 3)
3856 for (x
= 0; x
< 2; x
++)
3857 if (register_number (i
.op
[x
].regs
) != x
)
3858 goto bad_register_operand
;
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i
.op
[x
].regs
)
3862 != (x
+ (i
.tm
.extension_opcode
== 0xfb)))
3864 bad_register_operand
:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+1,
3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3878 AVX instructions also use this encoding, for some of
3879 3 argument instructions. */
3881 gas_assert (i
.imm_operands
<= 1
3883 || (is_any_vex_encoding (&i
.tm
)
3884 && i
.operands
<= 4)));
3886 exp
= &im_expressions
[i
.imm_operands
++];
3887 i
.op
[i
.operands
].imms
= exp
;
3888 i
.types
[i
.operands
] = imm8
;
3890 exp
->X_op
= O_constant
;
3891 exp
->X_add_number
= i
.tm
.extension_opcode
;
3892 i
.tm
.extension_opcode
= None
;
3899 switch (i
.tm
.opcode_modifier
.hleprefixok
)
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i
.tm
.name
, i
.hle_prefix
);
3908 if (i
.prefix
[LOCK_PREFIX
])
3910 as_bad (_("missing `lock' with `%s'"), i
.hle_prefix
);
3914 case HLEPrefixRelease
:
3915 if (i
.prefix
[HLE_PREFIX
] != XRELEASE_PREFIX_OPCODE
)
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3921 if (i
.mem_operands
== 0
3922 || !operand_type_check (i
.types
[i
.operands
- 1], anymem
))
3924 as_bad (_("memory destination needed for instruction `%s'"
3925 " after `xrelease'"), i
.tm
.name
);
3932 /* Try the shortest encoding by shortening operand size. */
3935 optimize_encoding (void)
3939 if (optimize_for_space
3940 && i
.reg_operands
== 1
3941 && i
.imm_operands
== 1
3942 && !i
.types
[1].bitfield
.byte
3943 && i
.op
[0].imms
->X_op
== O_constant
3944 && fits_in_imm7 (i
.op
[0].imms
->X_add_number
)
3945 && ((i
.tm
.base_opcode
== 0xa8
3946 && i
.tm
.extension_opcode
== None
)
3947 || (i
.tm
.base_opcode
== 0xf6
3948 && i
.tm
.extension_opcode
== 0x0)))
3951 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3953 unsigned int base_regnum
= i
.op
[1].regs
->reg_num
;
3954 if (flag_code
== CODE_64BIT
|| base_regnum
< 4)
3956 i
.types
[1].bitfield
.byte
= 1;
3957 /* Ignore the suffix. */
3959 if (base_regnum
>= 4
3960 && !(i
.op
[1].regs
->reg_flags
& RegRex
))
3962 /* Handle SP, BP, SI and DI registers. */
3963 if (i
.types
[1].bitfield
.word
)
3965 else if (i
.types
[1].bitfield
.dword
)
3973 else if (flag_code
== CODE_64BIT
3974 && ((i
.types
[1].bitfield
.qword
3975 && i
.reg_operands
== 1
3976 && i
.imm_operands
== 1
3977 && i
.op
[0].imms
->X_op
== O_constant
3978 && ((i
.tm
.base_opcode
== 0xb0
3979 && i
.tm
.extension_opcode
== None
3980 && fits_in_unsigned_long (i
.op
[0].imms
->X_add_number
))
3981 || (fits_in_imm31 (i
.op
[0].imms
->X_add_number
)
3982 && (((i
.tm
.base_opcode
== 0x24
3983 || i
.tm
.base_opcode
== 0xa8)
3984 && i
.tm
.extension_opcode
== None
)
3985 || (i
.tm
.base_opcode
== 0x80
3986 && i
.tm
.extension_opcode
== 0x4)
3987 || ((i
.tm
.base_opcode
== 0xf6
3988 || i
.tm
.base_opcode
== 0xc6)
3989 && i
.tm
.extension_opcode
== 0x0)))
3990 || (fits_in_imm7 (i
.op
[0].imms
->X_add_number
)
3991 && i
.tm
.base_opcode
== 0x83
3992 && i
.tm
.extension_opcode
== 0x4)))
3993 || (i
.types
[0].bitfield
.qword
3994 && ((i
.reg_operands
== 2
3995 && i
.op
[0].regs
== i
.op
[1].regs
3996 && ((i
.tm
.base_opcode
== 0x30
3997 || i
.tm
.base_opcode
== 0x28)
3998 && i
.tm
.extension_opcode
== None
))
3999 || (i
.reg_operands
== 1
4001 && i
.tm
.base_opcode
== 0x30
4002 && i
.tm
.extension_opcode
== None
)))))
4005 andq $imm31, %r64 -> andl $imm31, %r32
4006 andq $imm7, %r64 -> andl $imm7, %r32
4007 testq $imm31, %r64 -> testl $imm31, %r32
4008 xorq %r64, %r64 -> xorl %r32, %r32
4009 subq %r64, %r64 -> subl %r32, %r32
4010 movq $imm31, %r64 -> movl $imm31, %r32
4011 movq $imm32, %r64 -> movl $imm32, %r32
4013 i
.tm
.opcode_modifier
.norex64
= 1;
4014 if (i
.tm
.base_opcode
== 0xb0 || i
.tm
.base_opcode
== 0xc6)
4017 movq $imm31, %r64 -> movl $imm31, %r32
4018 movq $imm32, %r64 -> movl $imm32, %r32
4020 i
.tm
.operand_types
[0].bitfield
.imm32
= 1;
4021 i
.tm
.operand_types
[0].bitfield
.imm32s
= 0;
4022 i
.tm
.operand_types
[0].bitfield
.imm64
= 0;
4023 i
.types
[0].bitfield
.imm32
= 1;
4024 i
.types
[0].bitfield
.imm32s
= 0;
4025 i
.types
[0].bitfield
.imm64
= 0;
4026 i
.types
[1].bitfield
.dword
= 1;
4027 i
.types
[1].bitfield
.qword
= 0;
4028 if (i
.tm
.base_opcode
== 0xc6)
4031 movq $imm31, %r64 -> movl $imm31, %r32
4033 i
.tm
.base_opcode
= 0xb0;
4034 i
.tm
.extension_opcode
= None
;
4035 i
.tm
.opcode_modifier
.shortform
= 1;
4036 i
.tm
.opcode_modifier
.modrm
= 0;
4040 else if (optimize
> 1
4041 && !optimize_for_space
4042 && i
.reg_operands
== 2
4043 && i
.op
[0].regs
== i
.op
[1].regs
4044 && ((i
.tm
.base_opcode
& ~(Opcode_D
| 1)) == 0x8
4045 || (i
.tm
.base_opcode
& ~(Opcode_D
| 1)) == 0x20)
4046 && (flag_code
!= CODE_64BIT
|| !i
.types
[0].bitfield
.dword
))
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4056 and outside of 64-bit mode
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4061 i
.tm
.base_opcode
= 0x84 | (i
.tm
.base_opcode
& 1);
4063 else if (i
.reg_operands
== 3
4064 && i
.op
[0].regs
== i
.op
[1].regs
4065 && !i
.types
[2].bitfield
.xmmword
4066 && (i
.tm
.opcode_modifier
.vex
4067 || ((!i
.mask
|| i
.mask
->zeroing
)
4069 && is_evex_encoding (&i
.tm
)
4070 && (i
.vec_encoding
!= vex_encoding_evex
4071 || cpu_arch_isa_flags
.bitfield
.cpuavx512vl
4072 || i
.tm
.cpu_flags
.bitfield
.cpuavx512vl
4073 || (i
.tm
.operand_types
[2].bitfield
.zmmword
4074 && i
.types
[2].bitfield
.ymmword
))))
4075 && ((i
.tm
.base_opcode
== 0x55
4076 || i
.tm
.base_opcode
== 0x6655
4077 || i
.tm
.base_opcode
== 0x66df
4078 || i
.tm
.base_opcode
== 0x57
4079 || i
.tm
.base_opcode
== 0x6657
4080 || i
.tm
.base_opcode
== 0x66ef
4081 || i
.tm
.base_opcode
== 0x66f8
4082 || i
.tm
.base_opcode
== 0x66f9
4083 || i
.tm
.base_opcode
== 0x66fa
4084 || i
.tm
.base_opcode
== 0x66fb
4085 || i
.tm
.base_opcode
== 0x42
4086 || i
.tm
.base_opcode
== 0x6642
4087 || i
.tm
.base_opcode
== 0x47
4088 || i
.tm
.base_opcode
== 0x6647)
4089 && i
.tm
.extension_opcode
== None
))
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
4126 if (is_evex_encoding (&i
.tm
))
4128 if (i
.vec_encoding
!= vex_encoding_evex
)
4130 i
.tm
.opcode_modifier
.vex
= VEX128
;
4131 i
.tm
.opcode_modifier
.vexw
= VEXW0
;
4132 i
.tm
.opcode_modifier
.evex
= 0;
4134 else if (optimize
> 1)
4135 i
.tm
.opcode_modifier
.evex
= EVEX128
;
4139 else if (i
.tm
.operand_types
[0].bitfield
.regmask
)
4141 i
.tm
.base_opcode
&= 0xff;
4142 i
.tm
.opcode_modifier
.vexw
= VEXW0
;
4145 i
.tm
.opcode_modifier
.vex
= VEX128
;
4147 if (i
.tm
.opcode_modifier
.vex
)
4148 for (j
= 0; j
< 3; j
++)
4150 i
.types
[j
].bitfield
.xmmword
= 1;
4151 i
.types
[j
].bitfield
.ymmword
= 0;
4154 else if (i
.vec_encoding
!= vex_encoding_evex
4155 && !i
.types
[0].bitfield
.zmmword
4156 && !i
.types
[1].bitfield
.zmmword
4159 && is_evex_encoding (&i
.tm
)
4160 && ((i
.tm
.base_opcode
& ~Opcode_SIMD_IntD
) == 0x666f
4161 || (i
.tm
.base_opcode
& ~Opcode_SIMD_IntD
) == 0xf36f
4162 || (i
.tm
.base_opcode
& ~Opcode_SIMD_IntD
) == 0xf26f
4163 || (i
.tm
.base_opcode
& ~4) == 0x66db
4164 || (i
.tm
.base_opcode
& ~4) == 0x66eb)
4165 && i
.tm
.extension_opcode
== None
)
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4192 for (j
= 0; j
< i
.operands
; j
++)
4193 if (operand_type_check (i
.types
[j
], disp
)
4194 && i
.op
[j
].disps
->X_op
== O_constant
)
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8
, vex_disp8
;
4200 unsigned int memshift
= i
.memshift
;
4201 offsetT n
= i
.op
[j
].disps
->X_add_number
;
4203 evex_disp8
= fits_in_disp8 (n
);
4205 vex_disp8
= fits_in_disp8 (n
);
4206 if (evex_disp8
!= vex_disp8
)
4208 i
.memshift
= memshift
;
4212 i
.types
[j
].bitfield
.disp8
= vex_disp8
;
4215 if ((i
.tm
.base_opcode
& ~Opcode_SIMD_IntD
) == 0xf26f)
4216 i
.tm
.base_opcode
^= 0xf36f ^ 0xf26f;
4217 i
.tm
.opcode_modifier
.vex
4218 = i
.types
[0].bitfield
.ymmword
? VEX256
: VEX128
;
4219 i
.tm
.opcode_modifier
.vexw
= VEXW0
;
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i
.reg_operands
== 3 && i
.tm
.base_opcode
!= 0x66df)
4222 i
.tm
.opcode_modifier
.commutative
= 1;
4223 i
.tm
.opcode_modifier
.evex
= 0;
4224 i
.tm
.opcode_modifier
.masking
= 0;
4225 i
.tm
.opcode_modifier
.broadcast
= 0;
4226 i
.tm
.opcode_modifier
.disp8memshift
= 0;
4229 i
.types
[j
].bitfield
.disp8
4230 = fits_in_disp8 (i
.op
[j
].disps
->X_add_number
);
4234 /* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4239 md_assemble (char *line
)
4242 char mnemonic
[MAX_MNEM_SIZE
], mnem_suffix
;
4243 const insn_template
*t
;
4245 /* Initialize globals. */
4246 memset (&i
, '\0', sizeof (i
));
4247 for (j
= 0; j
< MAX_OPERANDS
; j
++)
4248 i
.reloc
[j
] = NO_RELOC
;
4249 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
4250 memset (im_expressions
, '\0', sizeof (im_expressions
));
4251 save_stack_p
= save_stack
;
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
4255 start of a (possibly prefixed) mnemonic. */
4257 line
= parse_insn (line
, mnemonic
);
4260 mnem_suffix
= i
.suffix
;
4262 line
= parse_operands (line
, mnemonic
);
4264 xfree (i
.memop1_string
);
4265 i
.memop1_string
= NULL
;
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
4275 precedes the offset, as it does when in AT&T mode. */
4278 && (strcmp (mnemonic
, "bound") != 0)
4279 && (strcmp (mnemonic
, "invlpga") != 0)
4280 && !(operand_type_check (i
.types
[0], imm
)
4281 && operand_type_check (i
.types
[1], imm
)))
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i
.imm_operands
== 2
4287 && (strcmp (mnemonic
, "extrq") == 0
4288 || strcmp (mnemonic
, "insertq") == 0))
4289 swap_2_operands (0, 1);
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4297 && i
.disp_encoding
!= disp_encoding_32bit
4298 && (flag_code
!= CODE_64BIT
4299 || strcmp (mnemonic
, "movabs") != 0))
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
4306 if (!(t
= match_template (mnem_suffix
)))
4309 if (sse_check
!= check_none
4310 && !i
.tm
.opcode_modifier
.noavx
4311 && !i
.tm
.cpu_flags
.bitfield
.cpuavx
4312 && (i
.tm
.cpu_flags
.bitfield
.cpusse
4313 || i
.tm
.cpu_flags
.bitfield
.cpusse2
4314 || i
.tm
.cpu_flags
.bitfield
.cpusse3
4315 || i
.tm
.cpu_flags
.bitfield
.cpussse3
4316 || i
.tm
.cpu_flags
.bitfield
.cpusse4_1
4317 || i
.tm
.cpu_flags
.bitfield
.cpusse4_2
4318 || i
.tm
.cpu_flags
.bitfield
.cpupclmul
4319 || i
.tm
.cpu_flags
.bitfield
.cpuaes
4320 || i
.tm
.cpu_flags
.bitfield
.cpugfni
))
4322 (sse_check
== check_warning
4324 : as_bad
) (_("SSE instruction `%s' is used"), i
.tm
.name
);
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i
.reg_operands
!= 2
4338 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
4343 if (i
.tm
.opcode_modifier
.fwait
)
4344 if (!add_prefix (FWAIT_OPCODE
))
4347 /* Check if REP prefix is OK. */
4348 if (i
.rep_prefix
&& !i
.tm
.opcode_modifier
.repprefixok
)
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i
.tm
.name
, i
.rep_prefix
);
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
4357 if (i
.prefix
[LOCK_PREFIX
]
4358 && (!i
.tm
.opcode_modifier
.islockable
4359 || i
.mem_operands
== 0
4360 || (i
.tm
.base_opcode
!= 0x86
4361 && !operand_type_check (i
.types
[i
.operands
- 1], anymem
))))
4363 as_bad (_("expecting lockable instruction after `lock'"));
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i
.prefix
[DATA_PREFIX
] && is_any_vex_encoding (&i
.tm
))
4370 as_bad (_("data size prefix invalid with `%s'"), i
.tm
.name
);
4374 /* Check if HLE prefix is OK. */
4375 if (i
.hle_prefix
&& !check_hle ())
4378 /* Check BND prefix. */
4379 if (i
.bnd_prefix
&& !i
.tm
.opcode_modifier
.bndprefixok
)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4382 /* Check NOTRACK prefix. */
4383 if (i
.notrack_prefix
&& !i
.tm
.opcode_modifier
.notrackprefixok
)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
4386 if (i
.tm
.cpu_flags
.bitfield
.cpumpx
)
4388 if (flag_code
== CODE_64BIT
&& i
.prefix
[ADDR_PREFIX
])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code
!= CODE_16BIT
4391 ? i
.prefix
[ADDR_PREFIX
]
4392 : i
.mem_operands
&& !i
.prefix
[ADDR_PREFIX
])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4396 /* Insert BND prefix. */
4397 if (add_bnd_prefix
&& i
.tm
.opcode_modifier
.bndprefixok
)
4399 if (!i
.prefix
[BND_PREFIX
])
4400 add_prefix (BND_PREFIX_OPCODE
);
4401 else if (i
.prefix
[BND_PREFIX
] != BND_PREFIX_OPCODE
)
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i
.prefix
[BND_PREFIX
] = BND_PREFIX_OPCODE
;
4408 /* Check string instruction segment overrides. */
4409 if (i
.tm
.opcode_modifier
.isstring
&& i
.mem_operands
!= 0)
4411 if (!check_string ())
4413 i
.disp_operands
= 0;
4416 if (optimize
&& !i
.no_optimize
&& i
.tm
.opcode_modifier
.optimize
)
4417 optimize_encoding ();
4419 if (!process_suffix ())
4422 /* Update operand types. */
4423 for (j
= 0; j
< i
.operands
; j
++)
4424 i
.types
[j
] = operand_type_and (i
.types
[j
], i
.tm
.operand_types
[j
]);
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4431 if (i
.types
[0].bitfield
.imm1
)
4432 i
.imm_operands
= 0; /* kludge for shift insns. */
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i
.operands
<= 3)
4437 for (j
= 0; j
< i
.operands
; j
++)
4438 if (i
.types
[j
].bitfield
.inoutportreg
4439 || i
.types
[j
].bitfield
.shiftcount
4440 || (i
.types
[j
].bitfield
.acc
&& !i
.types
[j
].bitfield
.xmmword
))
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i
.tm
.opcode_modifier
.sse2avx
4445 && i
.tm
.opcode_modifier
.immext
)
4448 /* For insns with operands there are more diddles to do to the opcode. */
4451 if (!process_operands ())
4454 else if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i
.tm
.name
);
4460 if (is_any_vex_encoding (&i
.tm
))
4462 if (!cpu_arch_flags
.bitfield
.cpui286
)
4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4469 if (i
.tm
.opcode_modifier
.vex
)
4470 build_vex_prefix (t
);
4472 build_evex_prefix ();
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i
.tm
.base_opcode
== INT_OPCODE
4479 && !i
.tm
.opcode_modifier
.modrm
4480 && i
.op
[0].imms
->X_add_number
== 3)
4482 i
.tm
.base_opcode
= INT3_OPCODE
;
4486 if ((i
.tm
.opcode_modifier
.jump
4487 || i
.tm
.opcode_modifier
.jumpbyte
4488 || i
.tm
.opcode_modifier
.jumpdword
)
4489 && i
.op
[0].disps
->X_op
== O_constant
)
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
4495 i
.op
[0].disps
->X_op
= O_symbol
;
4498 if (i
.tm
.opcode_modifier
.rex64
)
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
4505 if ((i
.types
[0].bitfield
.reg
&& i
.types
[0].bitfield
.byte
4506 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
4507 || (i
.types
[1].bitfield
.reg
&& i
.types
[1].bitfield
.byte
4508 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
4509 || (((i
.types
[0].bitfield
.reg
&& i
.types
[0].bitfield
.byte
)
4510 || (i
.types
[1].bitfield
.reg
&& i
.types
[1].bitfield
.byte
))
4515 i
.rex
|= REX_OPCODE
;
4516 for (x
= 0; x
< 2; x
++)
4518 /* Look for 8 bit operand that uses old registers. */
4519 if (i
.types
[x
].bitfield
.reg
&& i
.types
[x
].bitfield
.byte
4520 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
4522 /* In case it is "hi" register, give up. */
4523 if (i
.op
[x
].regs
->reg_num
> 3)
4524 as_bad (_("can't encode register '%s%s' in an "
4525 "instruction requiring REX prefix."),
4526 register_prefix
, i
.op
[x
].regs
->reg_name
);
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4532 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
4537 if (i
.rex
== 0 && i
.rex_encoding
)
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4543 for (x
= 0; x
< 2; x
++)
4544 if (i
.types
[x
].bitfield
.reg
4545 && i
.types
[x
].bitfield
.byte
4546 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0
4547 && i
.op
[x
].regs
->reg_num
> 3)
4549 i
.rex_encoding
= FALSE
;
4558 add_prefix (REX_OPCODE
| i
.rex
);
4560 /* We are ready to output the insn. */
4565 parse_insn (char *line
, char *mnemonic
)
4568 char *token_start
= l
;
4571 const insn_template
*t
;
4577 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
4582 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
4584 as_bad (_("no such instruction: `%s'"), token_start
);
4589 if (!is_space_char (*l
)
4590 && *l
!= END_OF_INSN
4592 || (*l
!= PREFIX_SEPARATOR
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l
));
4599 if (token_start
== l
)
4601 if (!intel_syntax
&& *l
== PREFIX_SEPARATOR
)
4602 as_bad (_("expecting prefix; got nothing"));
4604 as_bad (_("expecting mnemonic; got nothing"));
4608 /* Look up instruction (or prefix) via hash table. */
4609 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
4611 if (*l
!= END_OF_INSN
4612 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
4613 && current_templates
4614 && current_templates
->start
->opcode_modifier
.isprefix
)
4616 if (!cpu_flags_check_cpu64 (current_templates
->start
->cpu_flags
))
4618 as_bad ((flag_code
!= CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates
->start
->name
);
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4626 if ((current_templates
->start
->opcode_modifier
.size
== SIZE16
4627 || current_templates
->start
->opcode_modifier
.size
== SIZE32
)
4628 && flag_code
!= CODE_64BIT
4629 && ((current_templates
->start
->opcode_modifier
.size
== SIZE32
)
4630 ^ (flag_code
== CODE_16BIT
)))
4632 as_bad (_("redundant %s prefix"),
4633 current_templates
->start
->name
);
4636 if (current_templates
->start
->opcode_length
== 0)
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates
->start
->base_opcode
)
4643 i
.disp_encoding
= disp_encoding_8bit
;
4647 i
.disp_encoding
= disp_encoding_32bit
;
4651 i
.dir_encoding
= dir_encoding_load
;
4655 i
.dir_encoding
= dir_encoding_store
;
4659 i
.vec_encoding
= vex_encoding_vex2
;
4663 i
.vec_encoding
= vex_encoding_vex3
;
4667 i
.vec_encoding
= vex_encoding_evex
;
4671 i
.rex_encoding
= TRUE
;
4675 i
.no_optimize
= TRUE
;
4683 /* Add prefix, checking for repeated prefixes. */
4684 switch (add_prefix (current_templates
->start
->base_opcode
))
4689 if (current_templates
->start
->cpu_flags
.bitfield
.cpuibt
)
4690 i
.notrack_prefix
= current_templates
->start
->name
;
4693 if (current_templates
->start
->cpu_flags
.bitfield
.cpuhle
)
4694 i
.hle_prefix
= current_templates
->start
->name
;
4695 else if (current_templates
->start
->cpu_flags
.bitfield
.cpumpx
)
4696 i
.bnd_prefix
= current_templates
->start
->name
;
4698 i
.rep_prefix
= current_templates
->start
->name
;
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4711 if (!current_templates
)
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
4716 if (mnem_p
- 2 == dot_p
&& dot_p
[1] == 's')
4717 i
.dir_encoding
= dir_encoding_swap
;
4718 else if (mnem_p
- 3 == dot_p
4721 i
.disp_encoding
= disp_encoding_8bit
;
4722 else if (mnem_p
- 4 == dot_p
4726 i
.disp_encoding
= disp_encoding_32bit
;
4731 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
4734 if (!current_templates
)
4737 if (mnem_p
> mnemonic
)
4739 /* See if we can get a match by trimming off a suffix. */
4742 case WORD_MNEM_SUFFIX
:
4743 if (intel_syntax
&& (intel_float_operand (mnemonic
) & 2))
4744 i
.suffix
= SHORT_MNEM_SUFFIX
;
4747 case BYTE_MNEM_SUFFIX
:
4748 case QWORD_MNEM_SUFFIX
:
4749 i
.suffix
= mnem_p
[-1];
4751 current_templates
= (const templates
*) hash_find (op_hash
,
4754 case SHORT_MNEM_SUFFIX
:
4755 case LONG_MNEM_SUFFIX
:
4758 i
.suffix
= mnem_p
[-1];
4760 current_templates
= (const templates
*) hash_find (op_hash
,
4769 if (intel_float_operand (mnemonic
) == 1)
4770 i
.suffix
= SHORT_MNEM_SUFFIX
;
4772 i
.suffix
= LONG_MNEM_SUFFIX
;
4774 current_templates
= (const templates
*) hash_find (op_hash
,
4781 if (!current_templates
)
4783 as_bad (_("no such instruction: `%s'"), token_start
);
4788 if (current_templates
->start
->opcode_modifier
.jump
4789 || current_templates
->start
->opcode_modifier
.jumpbyte
)
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4797 if (l
[0] == ',' && l
[1] == 'p')
4801 if (!add_prefix (DS_PREFIX_OPCODE
))
4805 else if (l
[2] == 'n')
4807 if (!add_prefix (CS_PREFIX_OPCODE
))
4813 /* Any other comma loses. */
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l
));
4821 /* Check if instruction is supported on specified architecture. */
4823 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
4825 supported
|= cpu_flags_match (t
);
4826 if (supported
== CPU_FLAGS_PERFECT_MATCH
)
4828 if (!cpu_arch_flags
.bitfield
.cpui386
&& (flag_code
!= CODE_16BIT
))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
4835 if (!(supported
& CPU_FLAGS_64BIT_MATCH
))
4836 as_bad (flag_code
== CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates
->start
->name
);
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates
->start
->name
,
4843 cpu_arch_name
? cpu_arch_name
: default_arch
,
4844 cpu_sub_arch_name
? cpu_sub_arch_name
: "");
4850 parse_operands (char *l
, const char *mnemonic
)
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand
= 0;
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced
;
4860 while (*l
!= END_OF_INSN
)
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l
))
4865 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
&& *l
!= '"')
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l
),
4872 token_start
= l
; /* After white space. */
4873 paren_not_balanced
= 0;
4874 while (paren_not_balanced
|| *l
!= ',')
4876 if (*l
== END_OF_INSN
)
4878 if (paren_not_balanced
)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4884 as_bad (_("unbalanced brackets in operand %d."),
4889 break; /* we are done */
4891 else if (!is_operand_char (*l
) && !is_space_char (*l
) && *l
!= '"')
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l
),
4901 ++paren_not_balanced
;
4903 --paren_not_balanced
;
4908 ++paren_not_balanced
;
4910 --paren_not_balanced
;
4914 if (l
!= token_start
)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok
;
4917 this_operand
= i
.operands
++;
4918 if (i
.operands
> MAX_OPERANDS
)
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4924 i
.types
[this_operand
].bitfield
.unspecified
= 1;
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l
);
4928 if (i
.mem_operands
> 1)
4930 as_bad (_("too many memory references for `%s'"),
4937 i386_intel_operand (token_start
,
4938 intel_float_operand (mnemonic
));
4940 operand_ok
= i386_att_operand (token_start
);
4942 RESTORE_END_STRING (l
);
4948 if (expecting_operand
)
4950 expecting_operand_after_comma
:
4951 as_bad (_("expecting operand after ','; got nothing"));
4956 as_bad (_("expecting operand before ','; got nothing"));
4961 /* Now *l must be either ',' or END_OF_INSN. */
4964 if (*++l
== END_OF_INSN
)
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma
;
4969 expecting_operand
= 1;
4976 swap_2_operands (int xchg1
, int xchg2
)
4978 union i386_op temp_op
;
4979 i386_operand_type temp_type
;
4980 unsigned int temp_flags
;
4981 enum bfd_reloc_code_real temp_reloc
;
4983 temp_type
= i
.types
[xchg2
];
4984 i
.types
[xchg2
] = i
.types
[xchg1
];
4985 i
.types
[xchg1
] = temp_type
;
4987 temp_flags
= i
.flags
[xchg2
];
4988 i
.flags
[xchg2
] = i
.flags
[xchg1
];
4989 i
.flags
[xchg1
] = temp_flags
;
4991 temp_op
= i
.op
[xchg2
];
4992 i
.op
[xchg2
] = i
.op
[xchg1
];
4993 i
.op
[xchg1
] = temp_op
;
4995 temp_reloc
= i
.reloc
[xchg2
];
4996 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
4997 i
.reloc
[xchg1
] = temp_reloc
;
5001 if (i
.mask
->operand
== xchg1
)
5002 i
.mask
->operand
= xchg2
;
5003 else if (i
.mask
->operand
== xchg2
)
5004 i
.mask
->operand
= xchg1
;
5008 if (i
.broadcast
->operand
== xchg1
)
5009 i
.broadcast
->operand
= xchg2
;
5010 else if (i
.broadcast
->operand
== xchg2
)
5011 i
.broadcast
->operand
= xchg1
;
5015 if (i
.rounding
->operand
== xchg1
)
5016 i
.rounding
->operand
= xchg2
;
5017 else if (i
.rounding
->operand
== xchg2
)
5018 i
.rounding
->operand
= xchg1
;
5023 swap_operands (void)
5029 swap_2_operands (1, i
.operands
- 2);
5033 swap_2_operands (0, i
.operands
- 1);
5039 if (i
.mem_operands
== 2)
5041 const seg_entry
*temp_seg
;
5042 temp_seg
= i
.seg
[0];
5043 i
.seg
[0] = i
.seg
[1];
5044 i
.seg
[1] = temp_seg
;
5048 /* Try to ensure constant immediates are represented in the smallest
5053 char guess_suffix
= 0;
5057 guess_suffix
= i
.suffix
;
5058 else if (i
.reg_operands
)
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op
= i
.operands
; --op
>= 0;)
5065 if (i
.types
[op
].bitfield
.reg
&& i
.types
[op
].bitfield
.byte
)
5067 guess_suffix
= BYTE_MNEM_SUFFIX
;
5070 else if (i
.types
[op
].bitfield
.reg
&& i
.types
[op
].bitfield
.word
)
5072 guess_suffix
= WORD_MNEM_SUFFIX
;
5075 else if (i
.types
[op
].bitfield
.reg
&& i
.types
[op
].bitfield
.dword
)
5077 guess_suffix
= LONG_MNEM_SUFFIX
;
5080 else if (i
.types
[op
].bitfield
.reg
&& i
.types
[op
].bitfield
.qword
)
5082 guess_suffix
= QWORD_MNEM_SUFFIX
;
5086 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
5087 guess_suffix
= WORD_MNEM_SUFFIX
;
5089 for (op
= i
.operands
; --op
>= 0;)
5090 if (operand_type_check (i
.types
[op
], imm
))
5092 switch (i
.op
[op
].imms
->X_op
)
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix
)
5098 case LONG_MNEM_SUFFIX
:
5099 i
.types
[op
].bitfield
.imm32
= 1;
5100 i
.types
[op
].bitfield
.imm64
= 1;
5102 case WORD_MNEM_SUFFIX
:
5103 i
.types
[op
].bitfield
.imm16
= 1;
5104 i
.types
[op
].bitfield
.imm32
= 1;
5105 i
.types
[op
].bitfield
.imm32s
= 1;
5106 i
.types
[op
].bitfield
.imm64
= 1;
5108 case BYTE_MNEM_SUFFIX
:
5109 i
.types
[op
].bitfield
.imm8
= 1;
5110 i
.types
[op
].bitfield
.imm8s
= 1;
5111 i
.types
[op
].bitfield
.imm16
= 1;
5112 i
.types
[op
].bitfield
.imm32
= 1;
5113 i
.types
[op
].bitfield
.imm32s
= 1;
5114 i
.types
[op
].bitfield
.imm64
= 1;
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
5123 if ((i
.types
[op
].bitfield
.imm16
)
5124 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
5126 i
.op
[op
].imms
->X_add_number
=
5127 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5131 if ((i
.types
[op
].bitfield
.imm32
)
5132 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
5135 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
5136 ^ ((offsetT
) 1 << 31))
5137 - ((offsetT
) 1 << 31));
5141 = operand_type_or (i
.types
[op
],
5142 smallest_imm_type (i
.op
[op
].imms
->X_add_number
));
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
5147 i
.types
[op
].bitfield
.imm32
= 0;
5154 /* Symbols and expressions. */
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5160 i386_operand_type mask
, allowed
;
5161 const insn_template
*t
;
5163 operand_type_set (&mask
, 0);
5164 operand_type_set (&allowed
, 0);
5166 for (t
= current_templates
->start
;
5167 t
< current_templates
->end
;
5169 allowed
= operand_type_or (allowed
,
5170 t
->operand_types
[op
]);
5171 switch (guess_suffix
)
5173 case QWORD_MNEM_SUFFIX
:
5174 mask
.bitfield
.imm64
= 1;
5175 mask
.bitfield
.imm32s
= 1;
5177 case LONG_MNEM_SUFFIX
:
5178 mask
.bitfield
.imm32
= 1;
5180 case WORD_MNEM_SUFFIX
:
5181 mask
.bitfield
.imm16
= 1;
5183 case BYTE_MNEM_SUFFIX
:
5184 mask
.bitfield
.imm8
= 1;
5189 allowed
= operand_type_and (mask
, allowed
);
5190 if (!operand_type_all_zero (&allowed
))
5191 i
.types
[op
] = operand_type_and (i
.types
[op
], mask
);
5198 /* Try to use the smallest displacement type too. */
5200 optimize_disp (void)
5204 for (op
= i
.operands
; --op
>= 0;)
5205 if (operand_type_check (i
.types
[op
], disp
))
5207 if (i
.op
[op
].disps
->X_op
== O_constant
)
5209 offsetT op_disp
= i
.op
[op
].disps
->X_add_number
;
5211 if (i
.types
[op
].bitfield
.disp16
5212 && (op_disp
& ~(offsetT
) 0xffff) == 0)
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5217 op_disp
= (((op_disp
& 0xffff) ^ 0x8000) - 0x8000);
5218 i
.types
[op
].bitfield
.disp64
= 0;
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5222 if (i
.types
[op
].bitfield
.disp32
5223 && (op_disp
& ~(((offsetT
) 2 << 31) - 1)) == 0)
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5228 op_disp
&= (((offsetT
) 2 << 31) - 1);
5229 op_disp
= (op_disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
5230 i
.types
[op
].bitfield
.disp64
= 0;
5233 if (!op_disp
&& i
.types
[op
].bitfield
.baseindex
)
5235 i
.types
[op
].bitfield
.disp8
= 0;
5236 i
.types
[op
].bitfield
.disp16
= 0;
5237 i
.types
[op
].bitfield
.disp32
= 0;
5238 i
.types
[op
].bitfield
.disp32s
= 0;
5239 i
.types
[op
].bitfield
.disp64
= 0;
5243 else if (flag_code
== CODE_64BIT
)
5245 if (fits_in_signed_long (op_disp
))
5247 i
.types
[op
].bitfield
.disp64
= 0;
5248 i
.types
[op
].bitfield
.disp32s
= 1;
5250 if (i
.prefix
[ADDR_PREFIX
]
5251 && fits_in_unsigned_long (op_disp
))
5252 i
.types
[op
].bitfield
.disp32
= 1;
5254 if ((i
.types
[op
].bitfield
.disp32
5255 || i
.types
[op
].bitfield
.disp32s
5256 || i
.types
[op
].bitfield
.disp16
)
5257 && fits_in_disp8 (op_disp
))
5258 i
.types
[op
].bitfield
.disp8
= 1;
5260 else if (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
)
5263 fix_new_exp (frag_now
, frag_more (0) - frag_now
->fr_literal
, 0,
5264 i
.op
[op
].disps
, 0, i
.reloc
[op
]);
5265 i
.types
[op
].bitfield
.disp8
= 0;
5266 i
.types
[op
].bitfield
.disp16
= 0;
5267 i
.types
[op
].bitfield
.disp32
= 0;
5268 i
.types
[op
].bitfield
.disp32s
= 0;
5269 i
.types
[op
].bitfield
.disp64
= 0;
5272 /* We only support 64bit displacement on constants. */
5273 i
.types
[op
].bitfield
.disp64
= 0;
5277 /* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5281 match_broadcast_size (const insn_template
*t
, unsigned int given
)
5283 return ((t
->opcode_modifier
.broadcast
== BYTE_BROADCAST
5284 && i
.types
[given
].bitfield
.byte
)
5285 || (t
->opcode_modifier
.broadcast
== WORD_BROADCAST
5286 && i
.types
[given
].bitfield
.word
)
5287 || (t
->opcode_modifier
.broadcast
== DWORD_BROADCAST
5288 && i
.types
[given
].bitfield
.dword
)
5289 || (t
->opcode_modifier
.broadcast
== QWORD_BROADCAST
5290 && i
.types
[given
].bitfield
.qword
));
5293 /* Check if operands are valid for the instruction. */
5296 check_VecOperands (const insn_template
*t
)
5300 static const i386_cpu_flags avx512
= CPU_ANY_AVX512F_FLAGS
;
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5307 cpu
= cpu_flags_and (t
->cpu_flags
, avx512
);
5308 if (!cpu_flags_all_zero (&cpu
)
5309 && !t
->cpu_flags
.bitfield
.cpuavx512vl
5310 && !cpu_arch_flags
.bitfield
.cpuavx512vl
)
5312 for (op
= 0; op
< t
->operands
; ++op
)
5314 if (t
->operand_types
[op
].bitfield
.zmmword
5315 && (i
.types
[op
].bitfield
.ymmword
5316 || i
.types
[op
].bitfield
.xmmword
))
5318 i
.error
= unsupported
;
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t
->opcode_modifier
.vecsib
5327 && (i
.index_reg
->reg_type
.bitfield
.xmmword
5328 || i
.index_reg
->reg_type
.bitfield
.ymmword
5329 || i
.index_reg
->reg_type
.bitfield
.zmmword
))
5331 i
.error
= unsupported_vector_index_register
;
5335 /* Check if default mask is allowed. */
5336 if (t
->opcode_modifier
.nodefmask
5337 && (!i
.mask
|| i
.mask
->mask
->reg_num
== 0))
5339 i
.error
= no_default_mask
;
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t
->opcode_modifier
.vecsib
)
5348 || !((t
->opcode_modifier
.vecsib
== VecSIB128
5349 && i
.index_reg
->reg_type
.bitfield
.xmmword
)
5350 || (t
->opcode_modifier
.vecsib
== VecSIB256
5351 && i
.index_reg
->reg_type
.bitfield
.ymmword
)
5352 || (t
->opcode_modifier
.vecsib
== VecSIB512
5353 && i
.index_reg
->reg_type
.bitfield
.zmmword
)))
5355 i
.error
= invalid_vsib_address
;
5359 gas_assert (i
.reg_operands
== 2 || i
.mask
);
5360 if (i
.reg_operands
== 2 && !i
.mask
)
5362 gas_assert (i
.types
[0].bitfield
.regsimd
);
5363 gas_assert (i
.types
[0].bitfield
.xmmword
5364 || i
.types
[0].bitfield
.ymmword
);
5365 gas_assert (i
.types
[2].bitfield
.regsimd
);
5366 gas_assert (i
.types
[2].bitfield
.xmmword
5367 || i
.types
[2].bitfield
.ymmword
);
5368 if (operand_check
== check_none
)
5370 if (register_number (i
.op
[0].regs
)
5371 != register_number (i
.index_reg
)
5372 && register_number (i
.op
[2].regs
)
5373 != register_number (i
.index_reg
)
5374 && register_number (i
.op
[0].regs
)
5375 != register_number (i
.op
[2].regs
))
5377 if (operand_check
== check_error
)
5379 i
.error
= invalid_vector_register_set
;
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5384 else if (i
.reg_operands
== 1 && i
.mask
)
5386 if (i
.types
[1].bitfield
.regsimd
5387 && (i
.types
[1].bitfield
.xmmword
5388 || i
.types
[1].bitfield
.ymmword
5389 || i
.types
[1].bitfield
.zmmword
)
5390 && (register_number (i
.op
[1].regs
)
5391 == register_number (i
.index_reg
)))
5393 if (operand_check
== check_error
)
5395 i
.error
= invalid_vector_register_set
;
5398 if (operand_check
!= check_none
)
5399 as_warn (_("index and destination registers should be distinct"));
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5408 i386_operand_type type
, overlap
;
5410 /* Check if specified broadcast is supported in this instruction,
5411 and its broadcast bytes match the memory operand. */
5412 op
= i
.broadcast
->operand
;
5413 if (!t
->opcode_modifier
.broadcast
5414 || !(i
.flags
[op
] & Operand_Mem
)
5415 || (!i
.types
[op
].bitfield
.unspecified
5416 && !match_broadcast_size (t
, op
)))
5419 i
.error
= unsupported_broadcast
;
5423 i
.broadcast
->bytes
= ((1 << (t
->opcode_modifier
.broadcast
- 1))
5424 * i
.broadcast
->type
);
5425 operand_type_set (&type
, 0);
5426 switch (i
.broadcast
->bytes
)
5429 type
.bitfield
.word
= 1;
5432 type
.bitfield
.dword
= 1;
5435 type
.bitfield
.qword
= 1;
5438 type
.bitfield
.xmmword
= 1;
5441 type
.bitfield
.ymmword
= 1;
5444 type
.bitfield
.zmmword
= 1;
5450 overlap
= operand_type_and (type
, t
->operand_types
[op
]);
5451 if (operand_type_all_zero (&overlap
))
5454 if (t
->opcode_modifier
.checkregsize
)
5458 type
.bitfield
.baseindex
= 1;
5459 for (j
= 0; j
< i
.operands
; ++j
)
5462 && !operand_type_register_match(i
.types
[j
],
5463 t
->operand_types
[j
],
5465 t
->operand_types
[op
]))
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t
->opcode_modifier
.broadcast
&& i
.mem_operands
)
5474 /* Find memory operand. */
5475 for (op
= 0; op
< i
.operands
; op
++)
5476 if (operand_type_check (i
.types
[op
], anymem
))
5478 gas_assert (op
< i
.operands
);
5479 /* Check size of the memory operand. */
5480 if (match_broadcast_size (t
, op
))
5482 i
.error
= broadcast_needed
;
5487 op
= MAX_OPERANDS
- 1; /* Avoid uninitialized variable warning. */
5489 /* Check if requested masking is supported. */
5492 switch (t
->opcode_modifier
.masking
)
5496 case MERGING_MASKING
:
5497 if (i
.mask
->zeroing
)
5500 i
.error
= unsupported_masking
;
5504 case DYNAMIC_MASKING
:
5505 /* Memory destinations allow only merging masking. */
5506 if (i
.mask
->zeroing
&& i
.mem_operands
)
5508 /* Find memory operand. */
5509 for (op
= 0; op
< i
.operands
; op
++)
5510 if (i
.flags
[op
] & Operand_Mem
)
5512 gas_assert (op
< i
.operands
);
5513 if (op
== i
.operands
- 1)
5515 i
.error
= unsupported_masking
;
5525 /* Check if masking is applied to dest operand. */
5526 if (i
.mask
&& (i
.mask
->operand
!= (int) (i
.operands
- 1)))
5528 i
.error
= mask_not_on_destination
;
5535 if (!t
->opcode_modifier
.sae
5536 || (i
.rounding
->type
!= saeonly
&& !t
->opcode_modifier
.staticrounding
))
5538 i
.error
= unsupported_rc_sae
;
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i
.imm_operands
> 1
5545 && i
.rounding
->operand
!= (int) (i
.imm_operands
- 1))
5547 i
.error
= rc_sae_operand_not_last_imm
;
5552 /* Check vector Disp8 operand. */
5553 if (t
->opcode_modifier
.disp8memshift
5554 && i
.disp_encoding
!= disp_encoding_32bit
)
5557 i
.memshift
= t
->opcode_modifier
.broadcast
- 1;
5558 else if (t
->opcode_modifier
.disp8memshift
!= DISP8_SHIFT_VL
)
5559 i
.memshift
= t
->opcode_modifier
.disp8memshift
;
5562 const i386_operand_type
*type
= NULL
;
5565 for (op
= 0; op
< i
.operands
; op
++)
5566 if (operand_type_check (i
.types
[op
], anymem
))
5568 if (t
->opcode_modifier
.evex
== EVEXLIG
)
5569 i
.memshift
= 2 + (i
.suffix
== QWORD_MNEM_SUFFIX
);
5570 else if (t
->operand_types
[op
].bitfield
.xmmword
5571 + t
->operand_types
[op
].bitfield
.ymmword
5572 + t
->operand_types
[op
].bitfield
.zmmword
<= 1)
5573 type
= &t
->operand_types
[op
];
5574 else if (!i
.types
[op
].bitfield
.unspecified
)
5575 type
= &i
.types
[op
];
5577 else if (i
.types
[op
].bitfield
.regsimd
5578 && t
->opcode_modifier
.evex
!= EVEXLIG
)
5580 if (i
.types
[op
].bitfield
.zmmword
)
5582 else if (i
.types
[op
].bitfield
.ymmword
&& i
.memshift
< 5)
5584 else if (i
.types
[op
].bitfield
.xmmword
&& i
.memshift
< 4)
5590 if (type
->bitfield
.zmmword
)
5592 else if (type
->bitfield
.ymmword
)
5594 else if (type
->bitfield
.xmmword
)
5598 /* For the check in fits_in_disp8(). */
5599 if (i
.memshift
== 0)
5603 for (op
= 0; op
< i
.operands
; op
++)
5604 if (operand_type_check (i
.types
[op
], disp
)
5605 && i
.op
[op
].disps
->X_op
== O_constant
)
5607 if (fits_in_disp8 (i
.op
[op
].disps
->X_add_number
))
5609 i
.types
[op
].bitfield
.disp8
= 1;
5612 i
.types
[op
].bitfield
.disp8
= 0;
5621 /* Check if operands are valid for the instruction. Update VEX
5625 VEX_check_operands (const insn_template
*t
)
5627 if (i
.vec_encoding
== vex_encoding_evex
)
5629 /* This instruction must be encoded with EVEX prefix. */
5630 if (!is_evex_encoding (t
))
5632 i
.error
= unsupported
;
5638 if (!t
->opcode_modifier
.vex
)
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i
.vec_encoding
!= vex_encoding_default
)
5643 i
.error
= unsupported
;
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t
->cpu_flags
.bitfield
.cpuxop
&& t
->operands
== 5)
5652 if (i
.op
[0].imms
->X_op
!= O_constant
5653 || !fits_in_imm4 (i
.op
[0].imms
->X_add_number
))
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i
.types
[0], 0);
5666 static const insn_template
*
5667 match_template (char mnem_suffix
)
5669 /* Points to template once we've found it. */
5670 const insn_template
*t
;
5671 i386_operand_type overlap0
, overlap1
, overlap2
, overlap3
;
5672 i386_operand_type overlap4
;
5673 unsigned int found_reverse_match
;
5674 i386_opcode_modifier suffix_check
, mnemsuf_check
;
5675 i386_operand_type operand_types
[MAX_OPERANDS
];
5676 int addr_prefix_disp
;
5678 unsigned int found_cpu_match
, size_match
;
5679 unsigned int check_register
;
5680 enum i386_error specific_error
= 0;
5682 #if MAX_OPERANDS != 5
5683 # error "MAX_OPERANDS must be 5."
5686 found_reverse_match
= 0;
5687 addr_prefix_disp
= -1;
5689 memset (&suffix_check
, 0, sizeof (suffix_check
));
5690 if (intel_syntax
&& i
.broadcast
)
5692 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
5693 suffix_check
.no_bsuf
= 1;
5694 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
5695 suffix_check
.no_wsuf
= 1;
5696 else if (i
.suffix
== SHORT_MNEM_SUFFIX
)
5697 suffix_check
.no_ssuf
= 1;
5698 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
5699 suffix_check
.no_lsuf
= 1;
5700 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
5701 suffix_check
.no_qsuf
= 1;
5702 else if (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
)
5703 suffix_check
.no_ldsuf
= 1;
5705 memset (&mnemsuf_check
, 0, sizeof (mnemsuf_check
));
5708 switch (mnem_suffix
)
5710 case BYTE_MNEM_SUFFIX
: mnemsuf_check
.no_bsuf
= 1; break;
5711 case WORD_MNEM_SUFFIX
: mnemsuf_check
.no_wsuf
= 1; break;
5712 case SHORT_MNEM_SUFFIX
: mnemsuf_check
.no_ssuf
= 1; break;
5713 case LONG_MNEM_SUFFIX
: mnemsuf_check
.no_lsuf
= 1; break;
5714 case QWORD_MNEM_SUFFIX
: mnemsuf_check
.no_qsuf
= 1; break;
5718 /* Must have right number of operands. */
5719 i
.error
= number_of_operands_mismatch
;
5721 for (t
= current_templates
->start
; t
< current_templates
->end
; t
++)
5723 addr_prefix_disp
= -1;
5724 found_reverse_match
= 0;
5726 if (i
.operands
!= t
->operands
)
5729 /* Check processor support. */
5730 i
.error
= unsupported
;
5731 found_cpu_match
= (cpu_flags_match (t
)
5732 == CPU_FLAGS_PERFECT_MATCH
);
5733 if (!found_cpu_match
)
5736 /* Check AT&T mnemonic. */
5737 i
.error
= unsupported_with_intel_mnemonic
;
5738 if (intel_mnemonic
&& t
->opcode_modifier
.attmnemonic
)
5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5742 i
.error
= unsupported_syntax
;
5743 if ((intel_syntax
&& t
->opcode_modifier
.attsyntax
)
5744 || (!intel_syntax
&& t
->opcode_modifier
.intelsyntax
)
5745 || (intel64
&& t
->opcode_modifier
.amd64
)
5746 || (!intel64
&& t
->opcode_modifier
.intel64
))
5749 /* Check the suffix, except for some instructions in intel mode. */
5750 i
.error
= invalid_instruction_suffix
;
5751 if ((!intel_syntax
|| !t
->opcode_modifier
.ignoresize
)
5752 && ((t
->opcode_modifier
.no_bsuf
&& suffix_check
.no_bsuf
)
5753 || (t
->opcode_modifier
.no_wsuf
&& suffix_check
.no_wsuf
)
5754 || (t
->opcode_modifier
.no_lsuf
&& suffix_check
.no_lsuf
)
5755 || (t
->opcode_modifier
.no_ssuf
&& suffix_check
.no_ssuf
)
5756 || (t
->opcode_modifier
.no_qsuf
&& suffix_check
.no_qsuf
)
5757 || (t
->opcode_modifier
.no_ldsuf
&& suffix_check
.no_ldsuf
)))
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t
->opcode_modifier
.no_bsuf
&& mnemsuf_check
.no_bsuf
)
5761 || (t
->opcode_modifier
.no_wsuf
&& mnemsuf_check
.no_wsuf
)
5762 || (t
->opcode_modifier
.no_lsuf
&& mnemsuf_check
.no_lsuf
)
5763 || (t
->opcode_modifier
.no_ssuf
&& mnemsuf_check
.no_ssuf
)
5764 || (t
->opcode_modifier
.no_qsuf
&& mnemsuf_check
.no_qsuf
)
5765 || (t
->opcode_modifier
.no_ldsuf
&& mnemsuf_check
.no_ldsuf
))
5768 size_match
= operand_size_match (t
);
5772 for (j
= 0; j
< MAX_OPERANDS
; j
++)
5773 operand_types
[j
] = t
->operand_types
[j
];
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i
.suffix
== QWORD_MNEM_SUFFIX
5777 && flag_code
!= CODE_64BIT
5779 ? (!t
->opcode_modifier
.ignoresize
5780 && !t
->opcode_modifier
.broadcast
5781 && !intel_float_operand (t
->name
))
5782 : intel_float_operand (t
->name
) != 2)
5783 && ((!operand_types
[0].bitfield
.regmmx
5784 && !operand_types
[0].bitfield
.regsimd
)
5785 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
5786 && !operand_types
[t
->operands
> 1].bitfield
.regsimd
))
5787 && (t
->base_opcode
!= 0x0fc7
5788 || t
->extension_opcode
!= 1 /* cmpxchg8b */))
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i
.suffix
== LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags
.bitfield
.cpui386
5795 ? (!t
->opcode_modifier
.ignoresize
5796 && !intel_float_operand (t
->name
))
5797 : intel_float_operand (t
->name
) != 2)
5798 && ((!operand_types
[0].bitfield
.regmmx
5799 && !operand_types
[0].bitfield
.regsimd
)
5800 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
5801 && !operand_types
[t
->operands
> 1].bitfield
.regsimd
)))
5804 /* Do not verify operands when there are none. */
5808 /* We've found a match; break out of loop. */
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i
.prefix
[ADDR_PREFIX
] != 0)
5816 /* There should be only one Disp operand. */
5820 for (j
= 0; j
< MAX_OPERANDS
; j
++)
5822 if (operand_types
[j
].bitfield
.disp16
)
5824 addr_prefix_disp
= j
;
5825 operand_types
[j
].bitfield
.disp32
= 1;
5826 operand_types
[j
].bitfield
.disp16
= 0;
5832 for (j
= 0; j
< MAX_OPERANDS
; j
++)
5834 if (operand_types
[j
].bitfield
.disp32
)
5836 addr_prefix_disp
= j
;
5837 operand_types
[j
].bitfield
.disp32
= 0;
5838 operand_types
[j
].bitfield
.disp16
= 1;
5844 for (j
= 0; j
< MAX_OPERANDS
; j
++)
5846 if (operand_types
[j
].bitfield
.disp64
)
5848 addr_prefix_disp
= j
;
5849 operand_types
[j
].bitfield
.disp64
= 0;
5850 operand_types
[j
].bitfield
.disp32
= 1;
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i
.reloc
[0] == BFD_RELOC_386_GOT32
&& t
->base_opcode
== 0xa0)
5862 /* We check register size if needed. */
5863 if (t
->opcode_modifier
.checkregsize
)
5865 check_register
= (1 << t
->operands
) - 1;
5867 check_register
&= ~(1 << i
.broadcast
->operand
);
5872 overlap0
= operand_type_and (i
.types
[0], operand_types
[0]);
5873 switch (t
->operands
)
5876 if (!operand_type_match (overlap0
, i
.types
[0]))
5880 /* xchg %eax, %eax is a special case. It is an alias for nop
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code
== CODE_64BIT
5885 && t
->base_opcode
== 0x90
5886 && i
.types
[0].bitfield
.acc
&& i
.types
[0].bitfield
.dword
5887 && i
.types
[1].bitfield
.acc
&& i
.types
[1].bitfield
.dword
)
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code
!= CODE_64BIT
5893 && t
->base_opcode
== 0xa0
5894 && i
.types
[0].bitfield
.acc
5895 && operand_type_check (i
.types
[1], anymem
))
5900 if (!(size_match
& MATCH_STRAIGHT
))
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1
= operand_type_and (operand_types
[0], operand_types
[1]);
5908 if (t
->opcode_modifier
.d
&& i
.reg_operands
== i
.operands
5909 && !operand_type_all_zero (&overlap1
))
5910 switch (i
.dir_encoding
)
5912 case dir_encoding_load
:
5913 if (operand_type_check (operand_types
[i
.operands
- 1], anymem
)
5914 || operand_types
[i
.operands
- 1].bitfield
.regmem
)
5918 case dir_encoding_store
:
5919 if (!operand_type_check (operand_types
[i
.operands
- 1], anymem
)
5920 && !operand_types
[i
.operands
- 1].bitfield
.regmem
)
5924 case dir_encoding_swap
:
5927 case dir_encoding_default
:
5930 /* If we want store form, we skip the current load. */
5931 if ((i
.dir_encoding
== dir_encoding_store
5932 || i
.dir_encoding
== dir_encoding_swap
)
5933 && i
.mem_operands
== 0
5934 && t
->opcode_modifier
.load
)
5939 overlap1
= operand_type_and (i
.types
[1], operand_types
[1]);
5940 if (!operand_type_match (overlap0
, i
.types
[0])
5941 || !operand_type_match (overlap1
, i
.types
[1])
5942 || ((check_register
& 3) == 3
5943 && !operand_type_register_match (i
.types
[0],
5948 /* Check if other direction is valid ... */
5949 if (!t
->opcode_modifier
.d
)
5953 if (!(size_match
& MATCH_REVERSE
))
5955 /* Try reversing direction of operands. */
5956 overlap0
= operand_type_and (i
.types
[0], operand_types
[i
.operands
- 1]);
5957 overlap1
= operand_type_and (i
.types
[i
.operands
- 1], operand_types
[0]);
5958 if (!operand_type_match (overlap0
, i
.types
[0])
5959 || !operand_type_match (overlap1
, i
.types
[i
.operands
- 1])
5961 && !operand_type_register_match (i
.types
[0],
5962 operand_types
[i
.operands
- 1],
5963 i
.types
[i
.operands
- 1],
5966 /* Does not match either direction. */
5969 /* found_reverse_match holds which of D or FloatR
5971 if (!t
->opcode_modifier
.d
)
5972 found_reverse_match
= 0;
5973 else if (operand_types
[0].bitfield
.tbyte
)
5974 found_reverse_match
= Opcode_FloatD
;
5975 else if (operand_types
[0].bitfield
.xmmword
5976 || operand_types
[i
.operands
- 1].bitfield
.xmmword
5977 || operand_types
[0].bitfield
.regmmx
5978 || operand_types
[i
.operands
- 1].bitfield
.regmmx
5979 || is_any_vex_encoding(t
))
5980 found_reverse_match
= (t
->base_opcode
& 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD
: Opcode_SIMD_IntD
;
5983 found_reverse_match
= Opcode_D
;
5984 if (t
->opcode_modifier
.floatr
)
5985 found_reverse_match
|= Opcode_FloatR
;
5989 /* Found a forward 2 operand match here. */
5990 switch (t
->operands
)
5993 overlap4
= operand_type_and (i
.types
[4],
5997 overlap3
= operand_type_and (i
.types
[3],
6001 overlap2
= operand_type_and (i
.types
[2],
6006 switch (t
->operands
)
6009 if (!operand_type_match (overlap4
, i
.types
[4])
6010 || !operand_type_register_match (i
.types
[3],
6017 if (!operand_type_match (overlap3
, i
.types
[3])
6018 || ((check_register
& 0xa) == 0xa
6019 && !operand_type_register_match (i
.types
[1],
6023 || ((check_register
& 0xc) == 0xc
6024 && !operand_type_register_match (i
.types
[2],
6031 /* Here we make use of the fact that there are no
6032 reverse match 3 operand instructions. */
6033 if (!operand_type_match (overlap2
, i
.types
[2])
6034 || ((check_register
& 5) == 5
6035 && !operand_type_register_match (i
.types
[0],
6039 || ((check_register
& 6) == 6
6040 && !operand_type_register_match (i
.types
[1],
6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
6049 slip through to break. */
6051 if (!found_cpu_match
)
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t
) || VEX_check_operands (t
))
6057 specific_error
= i
.error
;
6061 /* We've found a match; break out of loop. */
6065 if (t
== current_templates
->end
)
6067 /* We found no match. */
6068 const char *err_msg
;
6069 switch (specific_error
? specific_error
: i
.error
)
6073 case operand_size_mismatch
:
6074 err_msg
= _("operand size mismatch");
6076 case operand_type_mismatch
:
6077 err_msg
= _("operand type mismatch");
6079 case register_type_mismatch
:
6080 err_msg
= _("register type mismatch");
6082 case number_of_operands_mismatch
:
6083 err_msg
= _("number of operands mismatch");
6085 case invalid_instruction_suffix
:
6086 err_msg
= _("invalid instruction suffix");
6089 err_msg
= _("constant doesn't fit in 4 bits");
6091 case unsupported_with_intel_mnemonic
:
6092 err_msg
= _("unsupported with Intel mnemonic");
6094 case unsupported_syntax
:
6095 err_msg
= _("unsupported syntax");
6098 as_bad (_("unsupported instruction `%s'"),
6099 current_templates
->start
->name
);
6101 case invalid_vsib_address
:
6102 err_msg
= _("invalid VSIB address");
6104 case invalid_vector_register_set
:
6105 err_msg
= _("mask, index, and destination registers must be distinct");
6107 case unsupported_vector_index_register
:
6108 err_msg
= _("unsupported vector index register");
6110 case unsupported_broadcast
:
6111 err_msg
= _("unsupported broadcast");
6113 case broadcast_needed
:
6114 err_msg
= _("broadcast is needed for operand of such type");
6116 case unsupported_masking
:
6117 err_msg
= _("unsupported masking");
6119 case mask_not_on_destination
:
6120 err_msg
= _("mask not on destination operand");
6122 case no_default_mask
:
6123 err_msg
= _("default mask isn't allowed");
6125 case unsupported_rc_sae
:
6126 err_msg
= _("unsupported static rounding/sae");
6128 case rc_sae_operand_not_last_imm
:
6130 err_msg
= _("RC/SAE operand must precede immediate operands");
6132 err_msg
= _("RC/SAE operand must follow immediate operands");
6134 case invalid_register_operand
:
6135 err_msg
= _("invalid register operand");
6138 as_bad (_("%s for `%s'"), err_msg
,
6139 current_templates
->start
->name
);
6143 if (!quiet_warnings
)
6146 && (i
.types
[0].bitfield
.jumpabsolute
6147 != operand_types
[0].bitfield
.jumpabsolute
))
6149 as_warn (_("indirect %s without `*'"), t
->name
);
6152 if (t
->opcode_modifier
.isprefix
6153 && t
->opcode_modifier
.ignoresize
)
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t
->name
);
6161 /* Copy the template we found. */
6164 if (addr_prefix_disp
!= -1)
6165 i
.tm
.operand_types
[addr_prefix_disp
]
6166 = operand_types
[addr_prefix_disp
];
6168 if (found_reverse_match
)
6170 /* If we found a reverse match we must alter the opcode
6171 direction bit. found_reverse_match holds bits to change
6172 (different for int & float insns). */
6174 i
.tm
.base_opcode
^= found_reverse_match
;
6176 i
.tm
.operand_types
[0] = operand_types
[i
.operands
- 1];
6177 i
.tm
.operand_types
[i
.operands
- 1] = operand_types
[0];
6186 int mem_op
= operand_type_check (i
.types
[0], anymem
) ? 0 : 1;
6187 if (i
.tm
.operand_types
[mem_op
].bitfield
.esseg
)
6189 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
6191 as_bad (_("`%s' operand %d must use `%ses' segment"),
6197 /* There's only ever one segment override allowed per instruction.
6198 This instruction possibly has a legal segment override on the
6199 second operand, so copy the segment to where non-string
6200 instructions store it, allowing common code. */
6201 i
.seg
[0] = i
.seg
[1];
6203 else if (i
.tm
.operand_types
[mem_op
+ 1].bitfield
.esseg
)
6205 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
6207 as_bad (_("`%s' operand %d must use `%ses' segment"),
6218 process_suffix (void)
6220 /* If matched instruction specifies an explicit instruction mnemonic
6222 if (i
.tm
.opcode_modifier
.size
== SIZE16
)
6223 i
.suffix
= WORD_MNEM_SUFFIX
;
6224 else if (i
.tm
.opcode_modifier
.size
== SIZE32
)
6225 i
.suffix
= LONG_MNEM_SUFFIX
;
6226 else if (i
.tm
.opcode_modifier
.size
== SIZE64
)
6227 i
.suffix
= QWORD_MNEM_SUFFIX
;
6228 else if (i
.reg_operands
)
6230 /* If there's no instruction mnemonic suffix we try to invent one
6231 based on register operands. */
6234 /* We take i.suffix from the last register operand specified,
6235 Destination register type is more significant than source
6236 register type. crc32 in SSE4.2 prefers source register
6238 if (i
.tm
.base_opcode
== 0xf20f38f0 && i
.types
[0].bitfield
.reg
)
6240 if (i
.types
[0].bitfield
.byte
)
6241 i
.suffix
= BYTE_MNEM_SUFFIX
;
6242 else if (i
.types
[0].bitfield
.word
)
6243 i
.suffix
= WORD_MNEM_SUFFIX
;
6244 else if (i
.types
[0].bitfield
.dword
)
6245 i
.suffix
= LONG_MNEM_SUFFIX
;
6246 else if (i
.types
[0].bitfield
.qword
)
6247 i
.suffix
= QWORD_MNEM_SUFFIX
;
6254 if (i
.tm
.base_opcode
== 0xf20f38f0)
6256 /* We have to know the operand size for crc32. */
6257 as_bad (_("ambiguous memory operand size for `%s`"),
6262 for (op
= i
.operands
; --op
>= 0;)
6263 if (!i
.tm
.operand_types
[op
].bitfield
.inoutportreg
6264 && !i
.tm
.operand_types
[op
].bitfield
.shiftcount
)
6266 if (!i
.types
[op
].bitfield
.reg
)
6268 if (i
.types
[op
].bitfield
.byte
)
6269 i
.suffix
= BYTE_MNEM_SUFFIX
;
6270 else if (i
.types
[op
].bitfield
.word
)
6271 i
.suffix
= WORD_MNEM_SUFFIX
;
6272 else if (i
.types
[op
].bitfield
.dword
)
6273 i
.suffix
= LONG_MNEM_SUFFIX
;
6274 else if (i
.types
[op
].bitfield
.qword
)
6275 i
.suffix
= QWORD_MNEM_SUFFIX
;
6282 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
6285 && i
.tm
.opcode_modifier
.ignoresize
6286 && i
.tm
.opcode_modifier
.no_bsuf
)
6288 else if (!check_byte_reg ())
6291 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
6294 && i
.tm
.opcode_modifier
.ignoresize
6295 && i
.tm
.opcode_modifier
.no_lsuf
6296 && !i
.tm
.opcode_modifier
.todword
6297 && !i
.tm
.opcode_modifier
.toqword
)
6299 else if (!check_long_reg ())
6302 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
6305 && i
.tm
.opcode_modifier
.ignoresize
6306 && i
.tm
.opcode_modifier
.no_qsuf
6307 && !i
.tm
.opcode_modifier
.todword
6308 && !i
.tm
.opcode_modifier
.toqword
)
6310 else if (!check_qword_reg ())
6313 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
6316 && i
.tm
.opcode_modifier
.ignoresize
6317 && i
.tm
.opcode_modifier
.no_wsuf
)
6319 else if (!check_word_reg ())
6322 else if (intel_syntax
&& i
.tm
.opcode_modifier
.ignoresize
)
6323 /* Do nothing if the instruction is going to ignore the prefix. */
6328 else if (i
.tm
.opcode_modifier
.defaultsize
6330 /* exclude fldenv/frstor/fsave/fstenv */
6331 && i
.tm
.opcode_modifier
.no_ssuf
)
6333 if (stackop_size
== LONG_MNEM_SUFFIX
6334 && i
.tm
.base_opcode
== 0xcf)
6336 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6337 .code16gcc directive to support 16-bit mode with
6338 32-bit address. For IRET without a suffix, generate
6339 16-bit IRET (opcode 0xcf) to return from an interrupt
6341 i
.suffix
= WORD_MNEM_SUFFIX
;
6342 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6345 i
.suffix
= stackop_size
;
6347 else if (intel_syntax
6349 && (i
.tm
.operand_types
[0].bitfield
.jumpabsolute
6350 || i
.tm
.opcode_modifier
.jumpbyte
6351 || i
.tm
.opcode_modifier
.jumpintersegment
6352 || (i
.tm
.base_opcode
== 0x0f01 /* [ls][gi]dt */
6353 && i
.tm
.extension_opcode
<= 3)))
6358 if (!i
.tm
.opcode_modifier
.no_qsuf
)
6360 i
.suffix
= QWORD_MNEM_SUFFIX
;
6365 if (!i
.tm
.opcode_modifier
.no_lsuf
)
6366 i
.suffix
= LONG_MNEM_SUFFIX
;
6369 if (!i
.tm
.opcode_modifier
.no_wsuf
)
6370 i
.suffix
= WORD_MNEM_SUFFIX
;
6379 if (i
.tm
.opcode_modifier
.w
)
6381 as_bad (_("no instruction mnemonic suffix given and "
6382 "no register operands; can't size instruction"));
6388 unsigned int suffixes
;
6390 suffixes
= !i
.tm
.opcode_modifier
.no_bsuf
;
6391 if (!i
.tm
.opcode_modifier
.no_wsuf
)
6393 if (!i
.tm
.opcode_modifier
.no_lsuf
)
6395 if (!i
.tm
.opcode_modifier
.no_ldsuf
)
6397 if (!i
.tm
.opcode_modifier
.no_ssuf
)
6399 if (flag_code
== CODE_64BIT
&& !i
.tm
.opcode_modifier
.no_qsuf
)
6402 /* There are more than suffix matches. */
6403 if (i
.tm
.opcode_modifier
.w
6404 || ((suffixes
& (suffixes
- 1))
6405 && !i
.tm
.opcode_modifier
.defaultsize
6406 && !i
.tm
.opcode_modifier
.ignoresize
))
6408 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
6414 /* Change the opcode based on the operand size given by i.suffix. */
6417 /* Size floating point instruction. */
6418 case LONG_MNEM_SUFFIX
:
6419 if (i
.tm
.opcode_modifier
.floatmf
)
6421 i
.tm
.base_opcode
^= 4;
6425 case WORD_MNEM_SUFFIX
:
6426 case QWORD_MNEM_SUFFIX
:
6427 /* It's not a byte, select word/dword operation. */
6428 if (i
.tm
.opcode_modifier
.w
)
6430 if (i
.tm
.opcode_modifier
.shortform
)
6431 i
.tm
.base_opcode
|= 8;
6433 i
.tm
.base_opcode
|= 1;
6436 case SHORT_MNEM_SUFFIX
:
6437 /* Now select between word & dword operations via the operand
6438 size prefix, except for instructions that will ignore this
6440 if (i
.reg_operands
> 0
6441 && i
.types
[0].bitfield
.reg
6442 && i
.tm
.opcode_modifier
.addrprefixopreg
6443 && (i
.tm
.opcode_modifier
.immext
6444 || i
.operands
== 1))
6446 /* The address size override prefix changes the size of the
6448 if ((flag_code
== CODE_32BIT
6449 && i
.op
[0].regs
->reg_type
.bitfield
.word
)
6450 || (flag_code
!= CODE_32BIT
6451 && i
.op
[0].regs
->reg_type
.bitfield
.dword
))
6452 if (!add_prefix (ADDR_PREFIX_OPCODE
))
6455 else if (i
.suffix
!= QWORD_MNEM_SUFFIX
6456 && !i
.tm
.opcode_modifier
.ignoresize
6457 && !i
.tm
.opcode_modifier
.floatmf
6458 && !is_any_vex_encoding (&i
.tm
)
6459 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
6460 || (flag_code
== CODE_64BIT
6461 && i
.tm
.opcode_modifier
.jumpbyte
)))
6463 unsigned int prefix
= DATA_PREFIX_OPCODE
;
6465 if (i
.tm
.opcode_modifier
.jumpbyte
) /* jcxz, loop */
6466 prefix
= ADDR_PREFIX_OPCODE
;
6468 if (!add_prefix (prefix
))
6472 /* Set mode64 for an operand. */
6473 if (i
.suffix
== QWORD_MNEM_SUFFIX
6474 && flag_code
== CODE_64BIT
6475 && !i
.tm
.opcode_modifier
.norex64
6476 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6478 && ! (i
.operands
== 2
6479 && i
.tm
.base_opcode
== 0x90
6480 && i
.tm
.extension_opcode
== None
6481 && i
.types
[0].bitfield
.acc
&& i
.types
[0].bitfield
.qword
6482 && i
.types
[1].bitfield
.acc
&& i
.types
[1].bitfield
.qword
))
6488 if (i
.reg_operands
!= 0
6490 && i
.tm
.opcode_modifier
.addrprefixopreg
6491 && !i
.tm
.opcode_modifier
.immext
)
6493 /* Check invalid register operand when the address size override
6494 prefix changes the size of register operands. */
6496 enum { need_word
, need_dword
, need_qword
} need
;
6498 if (flag_code
== CODE_32BIT
)
6499 need
= i
.prefix
[ADDR_PREFIX
] ? need_word
: need_dword
;
6502 if (i
.prefix
[ADDR_PREFIX
])
6505 need
= flag_code
== CODE_64BIT
? need_qword
: need_word
;
6508 for (op
= 0; op
< i
.operands
; op
++)
6509 if (i
.types
[op
].bitfield
.reg
6510 && ((need
== need_word
6511 && !i
.op
[op
].regs
->reg_type
.bitfield
.word
)
6512 || (need
== need_dword
6513 && !i
.op
[op
].regs
->reg_type
.bitfield
.dword
)
6514 || (need
== need_qword
6515 && !i
.op
[op
].regs
->reg_type
.bitfield
.qword
)))
6517 as_bad (_("invalid register operand size for `%s'"),
6527 check_byte_reg (void)
6531 for (op
= i
.operands
; --op
>= 0;)
6533 /* Skip non-register operands. */
6534 if (!i
.types
[op
].bitfield
.reg
)
6537 /* If this is an eight bit register, it's OK. If it's the 16 or
6538 32 bit version of an eight bit register, we will just use the
6539 low portion, and that's OK too. */
6540 if (i
.types
[op
].bitfield
.byte
)
6543 /* I/O port address operands are OK too. */
6544 if (i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
6547 /* crc32 doesn't generate this warning. */
6548 if (i
.tm
.base_opcode
== 0xf20f38f0)
6551 if ((i
.types
[op
].bitfield
.word
6552 || i
.types
[op
].bitfield
.dword
6553 || i
.types
[op
].bitfield
.qword
)
6554 && i
.op
[op
].regs
->reg_num
< 4
6555 /* Prohibit these changes in 64bit mode, since the lowering
6556 would be more complicated. */
6557 && flag_code
!= CODE_64BIT
)
6559 #if REGISTER_WARNINGS
6560 if (!quiet_warnings
)
6561 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6563 (i
.op
[op
].regs
+ (i
.types
[op
].bitfield
.word
6564 ? REGNAM_AL
- REGNAM_AX
6565 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
6567 i
.op
[op
].regs
->reg_name
,
6572 /* Any other register is bad. */
6573 if (i
.types
[op
].bitfield
.reg
6574 || i
.types
[op
].bitfield
.regmmx
6575 || i
.types
[op
].bitfield
.regsimd
6576 || i
.types
[op
].bitfield
.sreg
6577 || i
.types
[op
].bitfield
.control
6578 || i
.types
[op
].bitfield
.debug
6579 || i
.types
[op
].bitfield
.test
)
6581 as_bad (_("`%s%s' not allowed with `%s%c'"),
6583 i
.op
[op
].regs
->reg_name
,
6593 check_long_reg (void)
6597 for (op
= i
.operands
; --op
>= 0;)
6598 /* Skip non-register operands. */
6599 if (!i
.types
[op
].bitfield
.reg
)
6601 /* Reject eight bit registers, except where the template requires
6602 them. (eg. movzb) */
6603 else if (i
.types
[op
].bitfield
.byte
6604 && (i
.tm
.operand_types
[op
].bitfield
.reg
6605 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6606 && (i
.tm
.operand_types
[op
].bitfield
.word
6607 || i
.tm
.operand_types
[op
].bitfield
.dword
))
6609 as_bad (_("`%s%s' not allowed with `%s%c'"),
6611 i
.op
[op
].regs
->reg_name
,
6616 /* Warn if the e prefix on a general reg is missing. */
6617 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
6618 && i
.types
[op
].bitfield
.word
6619 && (i
.tm
.operand_types
[op
].bitfield
.reg
6620 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6621 && i
.tm
.operand_types
[op
].bitfield
.dword
)
6623 /* Prohibit these changes in the 64bit mode, since the
6624 lowering is more complicated. */
6625 if (flag_code
== CODE_64BIT
)
6627 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6628 register_prefix
, i
.op
[op
].regs
->reg_name
,
6632 #if REGISTER_WARNINGS
6633 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6635 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
6636 register_prefix
, i
.op
[op
].regs
->reg_name
, i
.suffix
);
6639 /* Warn if the r prefix on a general reg is present. */
6640 else if (i
.types
[op
].bitfield
.qword
6641 && (i
.tm
.operand_types
[op
].bitfield
.reg
6642 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6643 && i
.tm
.operand_types
[op
].bitfield
.dword
)
6646 && i
.tm
.opcode_modifier
.toqword
6647 && !i
.types
[0].bitfield
.regsimd
)
6649 /* Convert to QWORD. We want REX byte. */
6650 i
.suffix
= QWORD_MNEM_SUFFIX
;
6654 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6655 register_prefix
, i
.op
[op
].regs
->reg_name
,
6664 check_qword_reg (void)
6668 for (op
= i
.operands
; --op
>= 0; )
6669 /* Skip non-register operands. */
6670 if (!i
.types
[op
].bitfield
.reg
)
6672 /* Reject eight bit registers, except where the template requires
6673 them. (eg. movzb) */
6674 else if (i
.types
[op
].bitfield
.byte
6675 && (i
.tm
.operand_types
[op
].bitfield
.reg
6676 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6677 && (i
.tm
.operand_types
[op
].bitfield
.word
6678 || i
.tm
.operand_types
[op
].bitfield
.dword
))
6680 as_bad (_("`%s%s' not allowed with `%s%c'"),
6682 i
.op
[op
].regs
->reg_name
,
6687 /* Warn if the r prefix on a general reg is missing. */
6688 else if ((i
.types
[op
].bitfield
.word
6689 || i
.types
[op
].bitfield
.dword
)
6690 && (i
.tm
.operand_types
[op
].bitfield
.reg
6691 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6692 && i
.tm
.operand_types
[op
].bitfield
.qword
)
6694 /* Prohibit these changes in the 64bit mode, since the
6695 lowering is more complicated. */
6697 && i
.tm
.opcode_modifier
.todword
6698 && !i
.types
[0].bitfield
.regsimd
)
6700 /* Convert to DWORD. We don't want REX byte. */
6701 i
.suffix
= LONG_MNEM_SUFFIX
;
6705 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6706 register_prefix
, i
.op
[op
].regs
->reg_name
,
6715 check_word_reg (void)
6718 for (op
= i
.operands
; --op
>= 0;)
6719 /* Skip non-register operands. */
6720 if (!i
.types
[op
].bitfield
.reg
)
6722 /* Reject eight bit registers, except where the template requires
6723 them. (eg. movzb) */
6724 else if (i
.types
[op
].bitfield
.byte
6725 && (i
.tm
.operand_types
[op
].bitfield
.reg
6726 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6727 && (i
.tm
.operand_types
[op
].bitfield
.word
6728 || i
.tm
.operand_types
[op
].bitfield
.dword
))
6730 as_bad (_("`%s%s' not allowed with `%s%c'"),
6732 i
.op
[op
].regs
->reg_name
,
6737 /* Warn if the e or r prefix on a general reg is present. */
6738 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
6739 && (i
.types
[op
].bitfield
.dword
6740 || i
.types
[op
].bitfield
.qword
)
6741 && (i
.tm
.operand_types
[op
].bitfield
.reg
6742 || i
.tm
.operand_types
[op
].bitfield
.acc
)
6743 && i
.tm
.operand_types
[op
].bitfield
.word
)
6745 /* Prohibit these changes in the 64bit mode, since the
6746 lowering is more complicated. */
6747 if (flag_code
== CODE_64BIT
)
6749 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6750 register_prefix
, i
.op
[op
].regs
->reg_name
,
6754 #if REGISTER_WARNINGS
6755 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6757 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
6758 register_prefix
, i
.op
[op
].regs
->reg_name
, i
.suffix
);
6765 update_imm (unsigned int j
)
6767 i386_operand_type overlap
= i
.types
[j
];
6768 if ((overlap
.bitfield
.imm8
6769 || overlap
.bitfield
.imm8s
6770 || overlap
.bitfield
.imm16
6771 || overlap
.bitfield
.imm32
6772 || overlap
.bitfield
.imm32s
6773 || overlap
.bitfield
.imm64
)
6774 && !operand_type_equal (&overlap
, &imm8
)
6775 && !operand_type_equal (&overlap
, &imm8s
)
6776 && !operand_type_equal (&overlap
, &imm16
)
6777 && !operand_type_equal (&overlap
, &imm32
)
6778 && !operand_type_equal (&overlap
, &imm32s
)
6779 && !operand_type_equal (&overlap
, &imm64
))
6783 i386_operand_type temp
;
6785 operand_type_set (&temp
, 0);
6786 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
6788 temp
.bitfield
.imm8
= overlap
.bitfield
.imm8
;
6789 temp
.bitfield
.imm8s
= overlap
.bitfield
.imm8s
;
6791 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
6792 temp
.bitfield
.imm16
= overlap
.bitfield
.imm16
;
6793 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
6795 temp
.bitfield
.imm64
= overlap
.bitfield
.imm64
;
6796 temp
.bitfield
.imm32s
= overlap
.bitfield
.imm32s
;
6799 temp
.bitfield
.imm32
= overlap
.bitfield
.imm32
;
6802 else if (operand_type_equal (&overlap
, &imm16_32_32s
)
6803 || operand_type_equal (&overlap
, &imm16_32
)
6804 || operand_type_equal (&overlap
, &imm16_32s
))
6806 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
6811 if (!operand_type_equal (&overlap
, &imm8
)
6812 && !operand_type_equal (&overlap
, &imm8s
)
6813 && !operand_type_equal (&overlap
, &imm16
)
6814 && !operand_type_equal (&overlap
, &imm32
)
6815 && !operand_type_equal (&overlap
, &imm32s
)
6816 && !operand_type_equal (&overlap
, &imm64
))
6818 as_bad (_("no instruction mnemonic suffix given; "
6819 "can't determine immediate size"));
6823 i
.types
[j
] = overlap
;
6833 /* Update the first 2 immediate operands. */
6834 n
= i
.operands
> 2 ? 2 : i
.operands
;
6837 for (j
= 0; j
< n
; j
++)
6838 if (update_imm (j
) == 0)
6841 /* The 3rd operand can't be immediate operand. */
6842 gas_assert (operand_type_check (i
.types
[2], imm
) == 0);
6849 process_operands (void)
6851 /* Default segment register this instruction will use for memory
6852 accesses. 0 means unknown. This is only for optimizing out
6853 unnecessary segment overrides. */
6854 const seg_entry
*default_seg
= 0;
6856 if (i
.tm
.opcode_modifier
.sse2avx
&& i
.tm
.opcode_modifier
.vexvvvv
)
6858 unsigned int dupl
= i
.operands
;
6859 unsigned int dest
= dupl
- 1;
6862 /* The destination must be an xmm register. */
6863 gas_assert (i
.reg_operands
6864 && MAX_OPERANDS
> dupl
6865 && operand_type_equal (&i
.types
[dest
], ®xmm
));
6867 if (i
.tm
.operand_types
[0].bitfield
.acc
6868 && i
.tm
.operand_types
[0].bitfield
.xmmword
)
6870 if (i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
)
6872 /* Keep xmm0 for instructions with VEX prefix and 3
6874 i
.tm
.operand_types
[0].bitfield
.acc
= 0;
6875 i
.tm
.operand_types
[0].bitfield
.regsimd
= 1;
6880 /* We remove the first xmm0 and keep the number of
6881 operands unchanged, which in fact duplicates the
6883 for (j
= 1; j
< i
.operands
; j
++)
6885 i
.op
[j
- 1] = i
.op
[j
];
6886 i
.types
[j
- 1] = i
.types
[j
];
6887 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
6891 else if (i
.tm
.opcode_modifier
.implicit1stxmm0
)
6893 gas_assert ((MAX_OPERANDS
- 1) > dupl
6894 && (i
.tm
.opcode_modifier
.vexsources
6897 /* Add the implicit xmm0 for instructions with VEX prefix
6899 for (j
= i
.operands
; j
> 0; j
--)
6901 i
.op
[j
] = i
.op
[j
- 1];
6902 i
.types
[j
] = i
.types
[j
- 1];
6903 i
.tm
.operand_types
[j
] = i
.tm
.operand_types
[j
- 1];
6906 = (const reg_entry
*) hash_find (reg_hash
, "xmm0");
6907 i
.types
[0] = regxmm
;
6908 i
.tm
.operand_types
[0] = regxmm
;
6911 i
.reg_operands
+= 2;
6916 i
.op
[dupl
] = i
.op
[dest
];
6917 i
.types
[dupl
] = i
.types
[dest
];
6918 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
6927 i
.op
[dupl
] = i
.op
[dest
];
6928 i
.types
[dupl
] = i
.types
[dest
];
6929 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
6932 if (i
.tm
.opcode_modifier
.immext
)
6935 else if (i
.tm
.operand_types
[0].bitfield
.acc
6936 && i
.tm
.operand_types
[0].bitfield
.xmmword
)
6940 for (j
= 1; j
< i
.operands
; j
++)
6942 i
.op
[j
- 1] = i
.op
[j
];
6943 i
.types
[j
- 1] = i
.types
[j
];
6945 /* We need to adjust fields in i.tm since they are used by
6946 build_modrm_byte. */
6947 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
6954 else if (i
.tm
.opcode_modifier
.implicitquadgroup
)
6956 unsigned int regnum
, first_reg_in_group
, last_reg_in_group
;
6958 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6959 gas_assert (i
.operands
>= 2 && i
.types
[1].bitfield
.regsimd
);
6960 regnum
= register_number (i
.op
[1].regs
);
6961 first_reg_in_group
= regnum
& ~3;
6962 last_reg_in_group
= first_reg_in_group
+ 3;
6963 if (regnum
!= first_reg_in_group
)
6964 as_warn (_("source register `%s%s' implicitly denotes"
6965 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6966 register_prefix
, i
.op
[1].regs
->reg_name
,
6967 register_prefix
, i
.op
[1].regs
->reg_name
, first_reg_in_group
,
6968 register_prefix
, i
.op
[1].regs
->reg_name
, last_reg_in_group
,
6971 else if (i
.tm
.opcode_modifier
.regkludge
)
6973 /* The imul $imm, %reg instruction is converted into
6974 imul $imm, %reg, %reg, and the clr %reg instruction
6975 is converted into xor %reg, %reg. */
6977 unsigned int first_reg_op
;
6979 if (operand_type_check (i
.types
[0], reg
))
6983 /* Pretend we saw the extra register operand. */
6984 gas_assert (i
.reg_operands
== 1
6985 && i
.op
[first_reg_op
+ 1].regs
== 0);
6986 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
6987 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
6992 if (i
.tm
.opcode_modifier
.shortform
)
6994 if (i
.types
[0].bitfield
.sreg
)
6996 if (flag_code
!= CODE_64BIT
6997 ? i
.tm
.base_opcode
== POP_SEG_SHORT
6998 && i
.op
[0].regs
->reg_num
== 1
6999 : (i
.tm
.base_opcode
| 1) == POP_SEG_SHORT
7000 && i
.op
[0].regs
->reg_num
< 4)
7002 as_bad (_("you can't `%s %s%s'"),
7003 i
.tm
.name
, register_prefix
, i
.op
[0].regs
->reg_name
);
7006 if ( i
.op
[0].regs
->reg_num
> 3 )
7008 i
.tm
.base_opcode
^= POP_SEG_SHORT
^ POP_SEG386_SHORT
;
7009 i
.tm
.opcode_length
= 2;
7011 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
7015 /* The register or float register operand is in operand
7019 if ((i
.types
[0].bitfield
.reg
&& i
.types
[0].bitfield
.tbyte
)
7020 || operand_type_check (i
.types
[0], reg
))
7024 /* Register goes in low 3 bits of opcode. */
7025 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
7026 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
7028 if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
7030 /* Warn about some common errors, but press on regardless.
7031 The first case can be generated by gcc (<= 2.8.1). */
7032 if (i
.operands
== 2)
7034 /* Reversed arguments on faddp, fsubp, etc. */
7035 as_warn (_("translating to `%s %s%s,%s%s'"), i
.tm
.name
,
7036 register_prefix
, i
.op
[!intel_syntax
].regs
->reg_name
,
7037 register_prefix
, i
.op
[intel_syntax
].regs
->reg_name
);
7041 /* Extraneous `l' suffix on fp insn. */
7042 as_warn (_("translating to `%s %s%s'"), i
.tm
.name
,
7043 register_prefix
, i
.op
[0].regs
->reg_name
);
7048 else if (i
.tm
.opcode_modifier
.modrm
)
7050 /* The opcode is completed (modulo i.tm.extension_opcode which
7051 must be put into the modrm byte). Now, we make the modrm and
7052 index base bytes based on all the info we've collected. */
7054 default_seg
= build_modrm_byte ();
7056 else if ((i
.tm
.base_opcode
& ~0x3) == MOV_AX_DISP32
)
7060 else if (i
.tm
.opcode_modifier
.isstring
)
7062 /* For the string instructions that allow a segment override
7063 on one of their operands, the default segment is ds. */
7067 if (i
.tm
.base_opcode
== 0x8d /* lea */
7070 as_warn (_("segment override on `%s' is ineffectual"), i
.tm
.name
);
7072 /* If a segment was explicitly specified, and the specified segment
7073 is not the default, use an opcode prefix to select it. If we
7074 never figured out what the default segment is, then default_seg
7075 will be zero at this point, and the specified segment prefix will
7077 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
7079 if (!add_prefix (i
.seg
[0]->seg_prefix
))
7085 static const seg_entry
*
7086 build_modrm_byte (void)
7088 const seg_entry
*default_seg
= 0;
7089 unsigned int source
, dest
;
7092 vex_3_sources
= i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
;
7095 unsigned int nds
, reg_slot
;
7098 dest
= i
.operands
- 1;
7101 /* There are 2 kinds of instructions:
7102 1. 5 operands: 4 register operands or 3 register operands
7103 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7104 VexW0 or VexW1. The destination must be either XMM, YMM or
7106 2. 4 operands: 4 register operands or 3 register operands
7107 plus 1 memory operand, with VexXDS. */
7108 gas_assert ((i
.reg_operands
== 4
7109 || (i
.reg_operands
== 3 && i
.mem_operands
== 1))
7110 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
7111 && i
.tm
.opcode_modifier
.vexw
7112 && i
.tm
.operand_types
[dest
].bitfield
.regsimd
);
7114 /* If VexW1 is set, the first non-immediate operand is the source and
7115 the second non-immediate one is encoded in the immediate operand. */
7116 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
7118 source
= i
.imm_operands
;
7119 reg_slot
= i
.imm_operands
+ 1;
7123 source
= i
.imm_operands
+ 1;
7124 reg_slot
= i
.imm_operands
;
7127 if (i
.imm_operands
== 0)
7129 /* When there is no immediate operand, generate an 8bit
7130 immediate operand to encode the first operand. */
7131 exp
= &im_expressions
[i
.imm_operands
++];
7132 i
.op
[i
.operands
].imms
= exp
;
7133 i
.types
[i
.operands
] = imm8
;
7136 gas_assert (i
.tm
.operand_types
[reg_slot
].bitfield
.regsimd
);
7137 exp
->X_op
= O_constant
;
7138 exp
->X_add_number
= register_number (i
.op
[reg_slot
].regs
) << 4;
7139 gas_assert ((i
.op
[reg_slot
].regs
->reg_flags
& RegVRex
) == 0);
7143 gas_assert (i
.imm_operands
== 1);
7144 gas_assert (fits_in_imm4 (i
.op
[0].imms
->X_add_number
));
7145 gas_assert (!i
.tm
.opcode_modifier
.immext
);
7147 /* Turn on Imm8 again so that output_imm will generate it. */
7148 i
.types
[0].bitfield
.imm8
= 1;
7150 gas_assert (i
.tm
.operand_types
[reg_slot
].bitfield
.regsimd
);
7151 i
.op
[0].imms
->X_add_number
7152 |= register_number (i
.op
[reg_slot
].regs
) << 4;
7153 gas_assert ((i
.op
[reg_slot
].regs
->reg_flags
& RegVRex
) == 0);
7156 gas_assert (i
.tm
.operand_types
[nds
].bitfield
.regsimd
);
7157 i
.vex
.register_specifier
= i
.op
[nds
].regs
;
7162 /* i.reg_operands MUST be the number of real register operands;
7163 implicit registers do not count. If there are 3 register
7164 operands, it must be a instruction with VexNDS. For a
7165 instruction with VexNDD, the destination register is encoded
7166 in VEX prefix. If there are 4 register operands, it must be
7167 a instruction with VEX prefix and 3 sources. */
7168 if (i
.mem_operands
== 0
7169 && ((i
.reg_operands
== 2
7170 && i
.tm
.opcode_modifier
.vexvvvv
<= VEXXDS
)
7171 || (i
.reg_operands
== 3
7172 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
7173 || (i
.reg_operands
== 4 && vex_3_sources
)))
7181 /* When there are 3 operands, one of them may be immediate,
7182 which may be the first or the last operand. Otherwise,
7183 the first operand must be shift count register (cl) or it
7184 is an instruction with VexNDS. */
7185 gas_assert (i
.imm_operands
== 1
7186 || (i
.imm_operands
== 0
7187 && (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
7188 || i
.types
[0].bitfield
.shiftcount
)));
7189 if (operand_type_check (i
.types
[0], imm
)
7190 || i
.types
[0].bitfield
.shiftcount
)
7196 /* When there are 4 operands, the first two must be 8bit
7197 immediate operands. The source operand will be the 3rd
7200 For instructions with VexNDS, if the first operand
7201 an imm8, the source operand is the 2nd one. If the last
7202 operand is imm8, the source operand is the first one. */
7203 gas_assert ((i
.imm_operands
== 2
7204 && i
.types
[0].bitfield
.imm8
7205 && i
.types
[1].bitfield
.imm8
)
7206 || (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
7207 && i
.imm_operands
== 1
7208 && (i
.types
[0].bitfield
.imm8
7209 || i
.types
[i
.operands
- 1].bitfield
.imm8
7211 if (i
.imm_operands
== 2)
7215 if (i
.types
[0].bitfield
.imm8
)
7222 if (is_evex_encoding (&i
.tm
))
7224 /* For EVEX instructions, when there are 5 operands, the
7225 first one must be immediate operand. If the second one
7226 is immediate operand, the source operand is the 3th
7227 one. If the last one is immediate operand, the source
7228 operand is the 2nd one. */
7229 gas_assert (i
.imm_operands
== 2
7230 && i
.tm
.opcode_modifier
.sae
7231 && operand_type_check (i
.types
[0], imm
));
7232 if (operand_type_check (i
.types
[1], imm
))
7234 else if (operand_type_check (i
.types
[4], imm
))
7248 /* RC/SAE operand could be between DEST and SRC. That happens
7249 when one operand is GPR and the other one is XMM/YMM/ZMM
7251 if (i
.rounding
&& i
.rounding
->operand
== (int) dest
)
7254 if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
7256 /* For instructions with VexNDS, the register-only source
7257 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7258 register. It is encoded in VEX prefix. We need to
7259 clear RegMem bit before calling operand_type_equal. */
7261 i386_operand_type op
;
7264 /* Check register-only source operand when two source
7265 operands are swapped. */
7266 if (!i
.tm
.operand_types
[source
].bitfield
.baseindex
7267 && i
.tm
.operand_types
[dest
].bitfield
.baseindex
)
7275 op
= i
.tm
.operand_types
[vvvv
];
7276 op
.bitfield
.regmem
= 0;
7277 if ((dest
+ 1) >= i
.operands
7278 || ((!op
.bitfield
.reg
7279 || (!op
.bitfield
.dword
&& !op
.bitfield
.qword
))
7280 && !op
.bitfield
.regsimd
7281 && !operand_type_equal (&op
, ®mask
)))
7283 i
.vex
.register_specifier
= i
.op
[vvvv
].regs
;
7289 /* One of the register operands will be encoded in the i.tm.reg
7290 field, the other in the combined i.tm.mode and i.tm.regmem
7291 fields. If no form of this instruction supports a memory
7292 destination operand, then we assume the source operand may
7293 sometimes be a memory operand and so we need to store the
7294 destination in the i.rm.reg field. */
7295 if (!i
.tm
.operand_types
[dest
].bitfield
.regmem
7296 && operand_type_check (i
.tm
.operand_types
[dest
], anymem
) == 0)
7298 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
7299 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
7300 if (i
.op
[dest
].regs
->reg_type
.bitfield
.regmmx
7301 || i
.op
[source
].regs
->reg_type
.bitfield
.regmmx
)
7302 i
.has_regmmx
= TRUE
;
7303 else if (i
.op
[dest
].regs
->reg_type
.bitfield
.regsimd
7304 || i
.op
[source
].regs
->reg_type
.bitfield
.regsimd
)
7306 if (i
.types
[dest
].bitfield
.zmmword
7307 || i
.types
[source
].bitfield
.zmmword
)
7308 i
.has_regzmm
= TRUE
;
7309 else if (i
.types
[dest
].bitfield
.ymmword
7310 || i
.types
[source
].bitfield
.ymmword
)
7311 i
.has_regymm
= TRUE
;
7313 i
.has_regxmm
= TRUE
;
7315 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
7317 if ((i
.op
[dest
].regs
->reg_flags
& RegVRex
) != 0)
7319 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
7321 if ((i
.op
[source
].regs
->reg_flags
& RegVRex
) != 0)
7326 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
7327 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
7328 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
7330 if ((i
.op
[dest
].regs
->reg_flags
& RegVRex
) != 0)
7332 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
7334 if ((i
.op
[source
].regs
->reg_flags
& RegVRex
) != 0)
7337 if (flag_code
!= CODE_64BIT
&& (i
.rex
& REX_R
))
7339 if (!i
.types
[i
.tm
.operand_types
[0].bitfield
.regmem
].bitfield
.control
)
7342 add_prefix (LOCK_PREFIX_OPCODE
);
7346 { /* If it's not 2 reg operands... */
7351 unsigned int fake_zero_displacement
= 0;
7354 for (op
= 0; op
< i
.operands
; op
++)
7355 if (operand_type_check (i
.types
[op
], anymem
))
7357 gas_assert (op
< i
.operands
);
7359 if (i
.tm
.opcode_modifier
.vecsib
)
7361 if (i
.index_reg
->reg_num
== RegIZ
)
7364 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
7367 i
.sib
.base
= NO_BASE_REGISTER
;
7368 i
.sib
.scale
= i
.log2_scale_factor
;
7369 i
.types
[op
].bitfield
.disp8
= 0;
7370 i
.types
[op
].bitfield
.disp16
= 0;
7371 i
.types
[op
].bitfield
.disp64
= 0;
7372 if (flag_code
!= CODE_64BIT
|| i
.prefix
[ADDR_PREFIX
])
7374 /* Must be 32 bit */
7375 i
.types
[op
].bitfield
.disp32
= 1;
7376 i
.types
[op
].bitfield
.disp32s
= 0;
7380 i
.types
[op
].bitfield
.disp32
= 0;
7381 i
.types
[op
].bitfield
.disp32s
= 1;
7384 i
.sib
.index
= i
.index_reg
->reg_num
;
7385 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
7387 if ((i
.index_reg
->reg_flags
& RegVRex
) != 0)
7393 if (i
.base_reg
== 0)
7396 if (!i
.disp_operands
)
7397 fake_zero_displacement
= 1;
7398 if (i
.index_reg
== 0)
7400 i386_operand_type newdisp
;
7402 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
7403 /* Operand is just <disp> */
7404 if (flag_code
== CODE_64BIT
)
7406 /* 64bit mode overwrites the 32bit absolute
7407 addressing by RIP relative addressing and
7408 absolute addressing is encoded by one of the
7409 redundant SIB forms. */
7410 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
7411 i
.sib
.base
= NO_BASE_REGISTER
;
7412 i
.sib
.index
= NO_INDEX_REGISTER
;
7413 newdisp
= (!i
.prefix
[ADDR_PREFIX
] ? disp32s
: disp32
);
7415 else if ((flag_code
== CODE_16BIT
)
7416 ^ (i
.prefix
[ADDR_PREFIX
] != 0))
7418 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
7423 i
.rm
.regmem
= NO_BASE_REGISTER
;
7426 i
.types
[op
] = operand_type_and_not (i
.types
[op
], anydisp
);
7427 i
.types
[op
] = operand_type_or (i
.types
[op
], newdisp
);
7429 else if (!i
.tm
.opcode_modifier
.vecsib
)
7431 /* !i.base_reg && i.index_reg */
7432 if (i
.index_reg
->reg_num
== RegIZ
)
7433 i
.sib
.index
= NO_INDEX_REGISTER
;
7435 i
.sib
.index
= i
.index_reg
->reg_num
;
7436 i
.sib
.base
= NO_BASE_REGISTER
;
7437 i
.sib
.scale
= i
.log2_scale_factor
;
7438 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
7439 i
.types
[op
].bitfield
.disp8
= 0;
7440 i
.types
[op
].bitfield
.disp16
= 0;
7441 i
.types
[op
].bitfield
.disp64
= 0;
7442 if (flag_code
!= CODE_64BIT
|| i
.prefix
[ADDR_PREFIX
])
7444 /* Must be 32 bit */
7445 i
.types
[op
].bitfield
.disp32
= 1;
7446 i
.types
[op
].bitfield
.disp32s
= 0;
7450 i
.types
[op
].bitfield
.disp32
= 0;
7451 i
.types
[op
].bitfield
.disp32s
= 1;
7453 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
7457 /* RIP addressing for 64bit mode. */
7458 else if (i
.base_reg
->reg_num
== RegIP
)
7460 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
7461 i
.rm
.regmem
= NO_BASE_REGISTER
;
7462 i
.types
[op
].bitfield
.disp8
= 0;
7463 i
.types
[op
].bitfield
.disp16
= 0;
7464 i
.types
[op
].bitfield
.disp32
= 0;
7465 i
.types
[op
].bitfield
.disp32s
= 1;
7466 i
.types
[op
].bitfield
.disp64
= 0;
7467 i
.flags
[op
] |= Operand_PCrel
;
7468 if (! i
.disp_operands
)
7469 fake_zero_displacement
= 1;
7471 else if (i
.base_reg
->reg_type
.bitfield
.word
)
7473 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
7474 switch (i
.base_reg
->reg_num
)
7477 if (i
.index_reg
== 0)
7479 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7480 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
7484 if (i
.index_reg
== 0)
7487 if (operand_type_check (i
.types
[op
], disp
) == 0)
7489 /* fake (%bp) into 0(%bp) */
7490 i
.types
[op
].bitfield
.disp8
= 1;
7491 fake_zero_displacement
= 1;
7494 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7495 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
7497 default: /* (%si) -> 4 or (%di) -> 5 */
7498 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
7500 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
7502 else /* i.base_reg and 32/64 bit mode */
7504 if (flag_code
== CODE_64BIT
7505 && operand_type_check (i
.types
[op
], disp
))
7507 i
.types
[op
].bitfield
.disp16
= 0;
7508 i
.types
[op
].bitfield
.disp64
= 0;
7509 if (i
.prefix
[ADDR_PREFIX
] == 0)
7511 i
.types
[op
].bitfield
.disp32
= 0;
7512 i
.types
[op
].bitfield
.disp32s
= 1;
7516 i
.types
[op
].bitfield
.disp32
= 1;
7517 i
.types
[op
].bitfield
.disp32s
= 0;
7521 if (!i
.tm
.opcode_modifier
.vecsib
)
7522 i
.rm
.regmem
= i
.base_reg
->reg_num
;
7523 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
7525 i
.sib
.base
= i
.base_reg
->reg_num
;
7526 /* x86-64 ignores REX prefix bit here to avoid decoder
7528 if (!(i
.base_reg
->reg_flags
& RegRex
)
7529 && (i
.base_reg
->reg_num
== EBP_REG_NUM
7530 || i
.base_reg
->reg_num
== ESP_REG_NUM
))
7532 if (i
.base_reg
->reg_num
== 5 && i
.disp_operands
== 0)
7534 fake_zero_displacement
= 1;
7535 i
.types
[op
].bitfield
.disp8
= 1;
7537 i
.sib
.scale
= i
.log2_scale_factor
;
7538 if (i
.index_reg
== 0)
7540 gas_assert (!i
.tm
.opcode_modifier
.vecsib
);
7541 /* <disp>(%esp) becomes two byte modrm with no index
7542 register. We've already stored the code for esp
7543 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7544 Any base register besides %esp will not use the
7545 extra modrm byte. */
7546 i
.sib
.index
= NO_INDEX_REGISTER
;
7548 else if (!i
.tm
.opcode_modifier
.vecsib
)
7550 if (i
.index_reg
->reg_num
== RegIZ
)
7551 i
.sib
.index
= NO_INDEX_REGISTER
;
7553 i
.sib
.index
= i
.index_reg
->reg_num
;
7554 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
7555 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
7560 && (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
7561 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
))
7565 if (!fake_zero_displacement
7569 fake_zero_displacement
= 1;
7570 if (i
.disp_encoding
== disp_encoding_8bit
)
7571 i
.types
[op
].bitfield
.disp8
= 1;
7573 i
.types
[op
].bitfield
.disp32
= 1;
7575 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
7579 if (fake_zero_displacement
)
7581 /* Fakes a zero displacement assuming that i.types[op]
7582 holds the correct displacement size. */
7585 gas_assert (i
.op
[op
].disps
== 0);
7586 exp
= &disp_expressions
[i
.disp_operands
++];
7587 i
.op
[op
].disps
= exp
;
7588 exp
->X_op
= O_constant
;
7589 exp
->X_add_number
= 0;
7590 exp
->X_add_symbol
= (symbolS
*) 0;
7591 exp
->X_op_symbol
= (symbolS
*) 0;
7599 if (i
.tm
.opcode_modifier
.vexsources
== XOP2SOURCES
)
7601 if (operand_type_check (i
.types
[0], imm
))
7602 i
.vex
.register_specifier
= NULL
;
7605 /* VEX.vvvv encodes one of the sources when the first
7606 operand is not an immediate. */
7607 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
7608 i
.vex
.register_specifier
= i
.op
[0].regs
;
7610 i
.vex
.register_specifier
= i
.op
[1].regs
;
7613 /* Destination is a XMM register encoded in the ModRM.reg
7615 i
.rm
.reg
= i
.op
[2].regs
->reg_num
;
7616 if ((i
.op
[2].regs
->reg_flags
& RegRex
) != 0)
7619 /* ModRM.rm and VEX.B encodes the other source. */
7620 if (!i
.mem_operands
)
7624 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
7625 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
7627 i
.rm
.regmem
= i
.op
[0].regs
->reg_num
;
7629 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
7633 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXLWP
)
7635 i
.vex
.register_specifier
= i
.op
[2].regs
;
7636 if (!i
.mem_operands
)
7639 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
7640 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
7644 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7645 (if any) based on i.tm.extension_opcode. Again, we must be
7646 careful to make sure that segment/control/debug/test/MMX
7647 registers are coded into the i.rm.reg field. */
7648 else if (i
.reg_operands
)
7651 unsigned int vex_reg
= ~0;
7653 for (op
= 0; op
< i
.operands
; op
++)
7655 if (i
.types
[op
].bitfield
.reg
7656 || i
.types
[op
].bitfield
.regbnd
7657 || i
.types
[op
].bitfield
.regmask
7658 || i
.types
[op
].bitfield
.sreg
7659 || i
.types
[op
].bitfield
.control
7660 || i
.types
[op
].bitfield
.debug
7661 || i
.types
[op
].bitfield
.test
)
7663 if (i
.types
[op
].bitfield
.regsimd
)
7665 if (i
.types
[op
].bitfield
.zmmword
)
7666 i
.has_regzmm
= TRUE
;
7667 else if (i
.types
[op
].bitfield
.ymmword
)
7668 i
.has_regymm
= TRUE
;
7670 i
.has_regxmm
= TRUE
;
7673 if (i
.types
[op
].bitfield
.regmmx
)
7675 i
.has_regmmx
= TRUE
;
7682 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
7684 /* For instructions with VexNDS, the register-only
7685 source operand is encoded in VEX prefix. */
7686 gas_assert (mem
!= (unsigned int) ~0);
7691 gas_assert (op
< i
.operands
);
7695 /* Check register-only source operand when two source
7696 operands are swapped. */
7697 if (!i
.tm
.operand_types
[op
].bitfield
.baseindex
7698 && i
.tm
.operand_types
[op
+ 1].bitfield
.baseindex
)
7702 gas_assert (mem
== (vex_reg
+ 1)
7703 && op
< i
.operands
);
7708 gas_assert (vex_reg
< i
.operands
);
7712 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXNDD
)
7714 /* For instructions with VexNDD, the register destination
7715 is encoded in VEX prefix. */
7716 if (i
.mem_operands
== 0)
7718 /* There is no memory operand. */
7719 gas_assert ((op
+ 2) == i
.operands
);
7724 /* There are only 2 non-immediate operands. */
7725 gas_assert (op
< i
.imm_operands
+ 2
7726 && i
.operands
== i
.imm_operands
+ 2);
7727 vex_reg
= i
.imm_operands
+ 1;
7731 gas_assert (op
< i
.operands
);
7733 if (vex_reg
!= (unsigned int) ~0)
7735 i386_operand_type
*type
= &i
.tm
.operand_types
[vex_reg
];
7737 if ((!type
->bitfield
.reg
7738 || (!type
->bitfield
.dword
&& !type
->bitfield
.qword
))
7739 && !type
->bitfield
.regsimd
7740 && !operand_type_equal (type
, ®mask
))
7743 i
.vex
.register_specifier
= i
.op
[vex_reg
].regs
;
7746 /* Don't set OP operand twice. */
7749 /* If there is an extension opcode to put here, the
7750 register number must be put into the regmem field. */
7751 if (i
.tm
.extension_opcode
!= None
)
7753 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
7754 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
7756 if ((i
.op
[op
].regs
->reg_flags
& RegVRex
) != 0)
7761 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
7762 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
7764 if ((i
.op
[op
].regs
->reg_flags
& RegVRex
) != 0)
7769 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7770 must set it to 3 to indicate this is a register operand
7771 in the regmem field. */
7772 if (!i
.mem_operands
)
7776 /* Fill in i.rm.reg field with extension opcode (if any). */
7777 if (i
.tm
.extension_opcode
!= None
)
7778 i
.rm
.reg
= i
.tm
.extension_opcode
;
7784 output_branch (void)
7790 relax_substateT subtype
;
7794 code16
= flag_code
== CODE_16BIT
? CODE16
: 0;
7795 size
= i
.disp_encoding
== disp_encoding_32bit
? BIG
: SMALL
;
7798 if (i
.prefix
[DATA_PREFIX
] != 0)
7804 /* Pentium4 branch hints. */
7805 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
7806 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
7811 if (i
.prefix
[REX_PREFIX
] != 0)
7817 /* BND prefixed jump. */
7818 if (i
.prefix
[BND_PREFIX
] != 0)
7820 FRAG_APPEND_1_CHAR (i
.prefix
[BND_PREFIX
]);
7824 if (i
.prefixes
!= 0 && !intel_syntax
)
7825 as_warn (_("skipping prefixes on this instruction"));
7827 /* It's always a symbol; End frag & setup for relax.
7828 Make sure there is enough room in this frag for the largest
7829 instruction we may generate in md_convert_frag. This is 2
7830 bytes for the opcode and room for the prefix and largest
7832 frag_grow (prefix
+ 2 + 4);
7833 /* Prefix and 1 opcode byte go in fr_fix. */
7834 p
= frag_more (prefix
+ 1);
7835 if (i
.prefix
[DATA_PREFIX
] != 0)
7836 *p
++ = DATA_PREFIX_OPCODE
;
7837 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
7838 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
7839 *p
++ = i
.prefix
[SEG_PREFIX
];
7840 if (i
.prefix
[REX_PREFIX
] != 0)
7841 *p
++ = i
.prefix
[REX_PREFIX
];
7842 *p
= i
.tm
.base_opcode
;
7844 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
7845 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, size
);
7846 else if (cpu_arch_flags
.bitfield
.cpui386
)
7847 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, size
);
7849 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, size
);
7852 sym
= i
.op
[0].disps
->X_add_symbol
;
7853 off
= i
.op
[0].disps
->X_add_number
;
7855 if (i
.op
[0].disps
->X_op
!= O_constant
7856 && i
.op
[0].disps
->X_op
!= O_symbol
)
7858 /* Handle complex expressions. */
7859 sym
= make_expr_symbol (i
.op
[0].disps
);
7863 /* 1 possible extra opcode + 4 byte displacement go in var part.
7864 Pass reloc in fr_var. */
7865 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
7868 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7869 /* Return TRUE iff PLT32 relocation should be used for branching to
7873 need_plt32_p (symbolS
*s
)
7875 /* PLT32 relocation is ELF only. */
7880 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7881 krtld support it. */
7885 /* Since there is no need to prepare for PLT branch on x86-64, we
7886 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7887 be used as a marker for 32-bit PC-relative branches. */
7891 /* Weak or undefined symbol need PLT32 relocation. */
7892 if (S_IS_WEAK (s
) || !S_IS_DEFINED (s
))
7895 /* Non-global symbol doesn't need PLT32 relocation. */
7896 if (! S_IS_EXTERNAL (s
))
7899 /* Other global symbols need PLT32 relocation. NB: Symbol with
7900 non-default visibilities are treated as normal global symbol
7901 so that PLT32 relocation can be used as a marker for 32-bit
7902 PC-relative branches. It is useful for linker relaxation. */
7913 bfd_reloc_code_real_type jump_reloc
= i
.reloc
[0];
7915 if (i
.tm
.opcode_modifier
.jumpbyte
)
7917 /* This is a loop or jecxz type instruction. */
7919 if (i
.prefix
[ADDR_PREFIX
] != 0)
7921 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
7924 /* Pentium4 branch hints. */
7925 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
7926 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
7928 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
7937 if (flag_code
== CODE_16BIT
)
7940 if (i
.prefix
[DATA_PREFIX
] != 0)
7942 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
7952 if (i
.prefix
[REX_PREFIX
] != 0)
7954 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
7958 /* BND prefixed jump. */
7959 if (i
.prefix
[BND_PREFIX
] != 0)
7961 FRAG_APPEND_1_CHAR (i
.prefix
[BND_PREFIX
]);
7965 if (i
.prefixes
!= 0 && !intel_syntax
)
7966 as_warn (_("skipping prefixes on this instruction"));
7968 p
= frag_more (i
.tm
.opcode_length
+ size
);
7969 switch (i
.tm
.opcode_length
)
7972 *p
++ = i
.tm
.base_opcode
>> 8;
7975 *p
++ = i
.tm
.base_opcode
;
7981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7983 && jump_reloc
== NO_RELOC
7984 && need_plt32_p (i
.op
[0].disps
->X_add_symbol
))
7985 jump_reloc
= BFD_RELOC_X86_64_PLT32
;
7988 jump_reloc
= reloc (size
, 1, 1, jump_reloc
);
7990 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
7991 i
.op
[0].disps
, 1, jump_reloc
);
7993 /* All jumps handled here are signed, but don't use a signed limit
7994 check for 32 and 16 bit jumps as we want to allow wrap around at
7995 4G and 64k respectively. */
7997 fixP
->fx_signed
= 1;
8001 output_interseg_jump (void)
8009 if (flag_code
== CODE_16BIT
)
8013 if (i
.prefix
[DATA_PREFIX
] != 0)
8019 if (i
.prefix
[REX_PREFIX
] != 0)
8029 if (i
.prefixes
!= 0 && !intel_syntax
)
8030 as_warn (_("skipping prefixes on this instruction"));
8032 /* 1 opcode; 2 segment; offset */
8033 p
= frag_more (prefix
+ 1 + 2 + size
);
8035 if (i
.prefix
[DATA_PREFIX
] != 0)
8036 *p
++ = DATA_PREFIX_OPCODE
;
8038 if (i
.prefix
[REX_PREFIX
] != 0)
8039 *p
++ = i
.prefix
[REX_PREFIX
];
8041 *p
++ = i
.tm
.base_opcode
;
8042 if (i
.op
[1].imms
->X_op
== O_constant
)
8044 offsetT n
= i
.op
[1].imms
->X_add_number
;
8047 && !fits_in_unsigned_word (n
)
8048 && !fits_in_signed_word (n
))
8050 as_bad (_("16-bit jump out of range"));
8053 md_number_to_chars (p
, n
, size
);
8056 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
8057 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
8058 if (i
.op
[0].imms
->X_op
!= O_constant
)
8059 as_bad (_("can't handle non absolute segment in `%s'"),
8061 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
8064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8069 asection
*seg
= now_seg
;
8070 subsegT subseg
= now_subseg
;
8072 unsigned int alignment
, align_size_1
;
8073 unsigned int isa_1_descsz
, feature_2_descsz
, descsz
;
8074 unsigned int isa_1_descsz_raw
, feature_2_descsz_raw
;
8075 unsigned int padding
;
8077 if (!IS_ELF
|| !x86_used_note
)
8080 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_X86
;
8082 /* The .note.gnu.property section layout:
8084 Field Length Contents
8087 n_descsz 4 The note descriptor size
8088 n_type 4 NT_GNU_PROPERTY_TYPE_0
8090 n_desc n_descsz The program property array
8094 /* Create the .note.gnu.property section. */
8095 sec
= subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME
, 0);
8096 bfd_set_section_flags (stdoutput
, sec
,
8103 if (get_elf_backend_data (stdoutput
)->s
->elfclass
== ELFCLASS64
)
8114 bfd_set_section_alignment (stdoutput
, sec
, alignment
);
8115 elf_section_type (sec
) = SHT_NOTE
;
8117 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8119 isa_1_descsz_raw
= 4 + 4 + 4;
8120 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8121 isa_1_descsz
= (isa_1_descsz_raw
+ align_size_1
) & ~align_size_1
;
8123 feature_2_descsz_raw
= isa_1_descsz
;
8124 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8126 feature_2_descsz_raw
+= 4 + 4 + 4;
8127 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8128 feature_2_descsz
= ((feature_2_descsz_raw
+ align_size_1
)
8131 descsz
= feature_2_descsz
;
8132 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8133 p
= frag_more (4 + 4 + 4 + 4 + descsz
);
8135 /* Write n_namsz. */
8136 md_number_to_chars (p
, (valueT
) 4, 4);
8138 /* Write n_descsz. */
8139 md_number_to_chars (p
+ 4, (valueT
) descsz
, 4);
8142 md_number_to_chars (p
+ 4 * 2, (valueT
) NT_GNU_PROPERTY_TYPE_0
, 4);
8145 memcpy (p
+ 4 * 3, "GNU", 4);
8147 /* Write 4-byte type. */
8148 md_number_to_chars (p
+ 4 * 4,
8149 (valueT
) GNU_PROPERTY_X86_ISA_1_USED
, 4);
8151 /* Write 4-byte data size. */
8152 md_number_to_chars (p
+ 4 * 5, (valueT
) 4, 4);
8154 /* Write 4-byte data. */
8155 md_number_to_chars (p
+ 4 * 6, (valueT
) x86_isa_1_used
, 4);
8157 /* Zero out paddings. */
8158 padding
= isa_1_descsz
- isa_1_descsz_raw
;
8160 memset (p
+ 4 * 7, 0, padding
);
8162 /* Write 4-byte type. */
8163 md_number_to_chars (p
+ isa_1_descsz
+ 4 * 4,
8164 (valueT
) GNU_PROPERTY_X86_FEATURE_2_USED
, 4);
8166 /* Write 4-byte data size. */
8167 md_number_to_chars (p
+ isa_1_descsz
+ 4 * 5, (valueT
) 4, 4);
8169 /* Write 4-byte data. */
8170 md_number_to_chars (p
+ isa_1_descsz
+ 4 * 6,
8171 (valueT
) x86_feature_2_used
, 4);
8173 /* Zero out paddings. */
8174 padding
= feature_2_descsz
- feature_2_descsz_raw
;
8176 memset (p
+ isa_1_descsz
+ 4 * 7, 0, padding
);
8178 /* We probably can't restore the current segment, for there likely
8181 subseg_set (seg
, subseg
);
8186 encoding_length (const fragS
*start_frag
, offsetT start_off
,
8187 const char *frag_now_ptr
)
8189 unsigned int len
= 0;
8191 if (start_frag
!= frag_now
)
8193 const fragS
*fr
= start_frag
;
8198 } while (fr
&& fr
!= frag_now
);
8201 return len
- start_off
+ (frag_now_ptr
- frag_now
->fr_literal
);
8207 fragS
*insn_start_frag
;
8208 offsetT insn_start_off
;
8210 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8211 if (IS_ELF
&& x86_used_note
)
8213 if (i
.tm
.cpu_flags
.bitfield
.cpucmov
)
8214 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_CMOV
;
8215 if (i
.tm
.cpu_flags
.bitfield
.cpusse
)
8216 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSE
;
8217 if (i
.tm
.cpu_flags
.bitfield
.cpusse2
)
8218 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSE2
;
8219 if (i
.tm
.cpu_flags
.bitfield
.cpusse3
)
8220 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSE3
;
8221 if (i
.tm
.cpu_flags
.bitfield
.cpussse3
)
8222 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSSE3
;
8223 if (i
.tm
.cpu_flags
.bitfield
.cpusse4_1
)
8224 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSE4_1
;
8225 if (i
.tm
.cpu_flags
.bitfield
.cpusse4_2
)
8226 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_SSE4_2
;
8227 if (i
.tm
.cpu_flags
.bitfield
.cpuavx
)
8228 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX
;
8229 if (i
.tm
.cpu_flags
.bitfield
.cpuavx2
)
8230 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX2
;
8231 if (i
.tm
.cpu_flags
.bitfield
.cpufma
)
8232 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_FMA
;
8233 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512f
)
8234 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512F
;
8235 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512cd
)
8236 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512CD
;
8237 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512er
)
8238 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512ER
;
8239 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512pf
)
8240 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512PF
;
8241 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512vl
)
8242 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512VL
;
8243 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512dq
)
8244 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512DQ
;
8245 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512bw
)
8246 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512BW
;
8247 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_4fmaps
)
8248 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS
;
8249 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_4vnniw
)
8250 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW
;
8251 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_bitalg
)
8252 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG
;
8253 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512ifma
)
8254 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA
;
8255 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512vbmi
)
8256 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI
;
8257 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_vbmi2
)
8258 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2
;
8259 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_vnni
)
8260 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI
;
8261 if (i
.tm
.cpu_flags
.bitfield
.cpuavx512_bf16
)
8262 x86_isa_1_used
|= GNU_PROPERTY_X86_ISA_1_AVX512_BF16
;
8264 if (i
.tm
.cpu_flags
.bitfield
.cpu8087
8265 || i
.tm
.cpu_flags
.bitfield
.cpu287
8266 || i
.tm
.cpu_flags
.bitfield
.cpu387
8267 || i
.tm
.cpu_flags
.bitfield
.cpu687
8268 || i
.tm
.cpu_flags
.bitfield
.cpufisttp
)
8269 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_X87
;
8270 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8271 Xfence instructions. */
8272 if (i
.tm
.base_opcode
!= 0xf18
8273 && i
.tm
.base_opcode
!= 0xf0d
8274 && i
.tm
.base_opcode
!= 0xfaef8
8276 || i
.tm
.cpu_flags
.bitfield
.cpummx
8277 || i
.tm
.cpu_flags
.bitfield
.cpua3dnow
8278 || i
.tm
.cpu_flags
.bitfield
.cpua3dnowa
))
8279 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_MMX
;
8281 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_XMM
;
8283 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_YMM
;
8285 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_ZMM
;
8286 if (i
.tm
.cpu_flags
.bitfield
.cpufxsr
)
8287 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_FXSR
;
8288 if (i
.tm
.cpu_flags
.bitfield
.cpuxsave
)
8289 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_XSAVE
;
8290 if (i
.tm
.cpu_flags
.bitfield
.cpuxsaveopt
)
8291 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
;
8292 if (i
.tm
.cpu_flags
.bitfield
.cpuxsavec
)
8293 x86_feature_2_used
|= GNU_PROPERTY_X86_FEATURE_2_XSAVEC
;
8297 /* Tie dwarf2 debug info to the address at the start of the insn.
8298 We can't do this after the insn has been output as the current
8299 frag may have been closed off. eg. by frag_var. */
8300 dwarf2_emit_insn (0);
8302 insn_start_frag
= frag_now
;
8303 insn_start_off
= frag_now_fix ();
8306 if (i
.tm
.opcode_modifier
.jump
)
8308 else if (i
.tm
.opcode_modifier
.jumpbyte
8309 || i
.tm
.opcode_modifier
.jumpdword
)
8311 else if (i
.tm
.opcode_modifier
.jumpintersegment
)
8312 output_interseg_jump ();
8315 /* Output normal instructions here. */
8319 unsigned int prefix
;
8322 && (i
.tm
.base_opcode
== 0xfaee8
8323 || i
.tm
.base_opcode
== 0xfaef0
8324 || i
.tm
.base_opcode
== 0xfaef8))
8326 /* Encode lfence, mfence, and sfence as
8327 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8328 offsetT val
= 0x240483f0ULL
;
8330 md_number_to_chars (p
, val
, 5);
8334 /* Some processors fail on LOCK prefix. This options makes
8335 assembler ignore LOCK prefix and serves as a workaround. */
8336 if (omit_lock_prefix
)
8338 if (i
.tm
.base_opcode
== LOCK_PREFIX_OPCODE
)
8340 i
.prefix
[LOCK_PREFIX
] = 0;
8343 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8344 don't need the explicit prefix. */
8345 if (!i
.tm
.opcode_modifier
.vex
&& !i
.tm
.opcode_modifier
.evex
)
8347 switch (i
.tm
.opcode_length
)
8350 if (i
.tm
.base_opcode
& 0xff000000)
8352 prefix
= (i
.tm
.base_opcode
>> 24) & 0xff;
8353 if (!i
.tm
.cpu_flags
.bitfield
.cpupadlock
8354 || prefix
!= REPE_PREFIX_OPCODE
8355 || (i
.prefix
[REP_PREFIX
] != REPE_PREFIX_OPCODE
))
8356 add_prefix (prefix
);
8360 if ((i
.tm
.base_opcode
& 0xff0000) != 0)
8362 prefix
= (i
.tm
.base_opcode
>> 16) & 0xff;
8363 add_prefix (prefix
);
8369 /* Check for pseudo prefixes. */
8370 as_bad_where (insn_start_frag
->fr_file
,
8371 insn_start_frag
->fr_line
,
8372 _("pseudo prefix without instruction"));
8378 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8379 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8380 R_X86_64_GOTTPOFF relocation so that linker can safely
8381 perform IE->LE optimization. */
8382 if (x86_elf_abi
== X86_64_X32_ABI
8384 && i
.reloc
[0] == BFD_RELOC_X86_64_GOTTPOFF
8385 && i
.prefix
[REX_PREFIX
] == 0)
8386 add_prefix (REX_OPCODE
);
8389 /* The prefix bytes. */
8390 for (j
= ARRAY_SIZE (i
.prefix
), q
= i
.prefix
; j
> 0; j
--, q
++)
8392 FRAG_APPEND_1_CHAR (*q
);
8396 for (j
= 0, q
= i
.prefix
; j
< ARRAY_SIZE (i
.prefix
); j
++, q
++)
8401 /* REX byte is encoded in VEX prefix. */
8405 FRAG_APPEND_1_CHAR (*q
);
8408 /* There should be no other prefixes for instructions
8413 /* For EVEX instructions i.vrex should become 0 after
8414 build_evex_prefix. For VEX instructions upper 16 registers
8415 aren't available, so VREX should be 0. */
8418 /* Now the VEX prefix. */
8419 p
= frag_more (i
.vex
.length
);
8420 for (j
= 0; j
< i
.vex
.length
; j
++)
8421 p
[j
] = i
.vex
.bytes
[j
];
8424 /* Now the opcode; be careful about word order here! */
8425 if (i
.tm
.opcode_length
== 1)
8427 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
8431 switch (i
.tm
.opcode_length
)
8435 *p
++ = (i
.tm
.base_opcode
>> 24) & 0xff;
8436 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
8440 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
8450 /* Put out high byte first: can't use md_number_to_chars! */
8451 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
8452 *p
= i
.tm
.base_opcode
& 0xff;
8455 /* Now the modrm byte and sib byte (if present). */
8456 if (i
.tm
.opcode_modifier
.modrm
)
8458 FRAG_APPEND_1_CHAR ((i
.rm
.regmem
<< 0
8461 /* If i.rm.regmem == ESP (4)
8462 && i.rm.mode != (Register mode)
8464 ==> need second modrm byte. */
8465 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
8467 && !(i
.base_reg
&& i
.base_reg
->reg_type
.bitfield
.word
))
8468 FRAG_APPEND_1_CHAR ((i
.sib
.base
<< 0
8470 | i
.sib
.scale
<< 6));
8473 if (i
.disp_operands
)
8474 output_disp (insn_start_frag
, insn_start_off
);
8477 output_imm (insn_start_frag
, insn_start_off
);
8480 * frag_now_fix () returning plain abs_section_offset when we're in the
8481 * absolute section, and abs_section_offset not getting updated as data
8482 * gets added to the frag breaks the logic below.
8484 if (now_seg
!= absolute_section
)
8486 j
= encoding_length (insn_start_frag
, insn_start_off
, frag_more (0));
8488 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8496 pi ("" /*line*/, &i
);
8498 #endif /* DEBUG386 */
8501 /* Return the size of the displacement operand N. */
8504 disp_size (unsigned int n
)
8508 if (i
.types
[n
].bitfield
.disp64
)
8510 else if (i
.types
[n
].bitfield
.disp8
)
8512 else if (i
.types
[n
].bitfield
.disp16
)
8517 /* Return the size of the immediate operand N. */
8520 imm_size (unsigned int n
)
8523 if (i
.types
[n
].bitfield
.imm64
)
8525 else if (i
.types
[n
].bitfield
.imm8
|| i
.types
[n
].bitfield
.imm8s
)
8527 else if (i
.types
[n
].bitfield
.imm16
)
8533 output_disp (fragS
*insn_start_frag
, offsetT insn_start_off
)
8538 for (n
= 0; n
< i
.operands
; n
++)
8540 if (operand_type_check (i
.types
[n
], disp
))
8542 if (i
.op
[n
].disps
->X_op
== O_constant
)
8544 int size
= disp_size (n
);
8545 offsetT val
= i
.op
[n
].disps
->X_add_number
;
8547 val
= offset_in_range (val
>> (size
== 1 ? i
.memshift
: 0),
8549 p
= frag_more (size
);
8550 md_number_to_chars (p
, val
, size
);
8554 enum bfd_reloc_code_real reloc_type
;
8555 int size
= disp_size (n
);
8556 int sign
= i
.types
[n
].bitfield
.disp32s
;
8557 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
8560 /* We can't have 8 bit displacement here. */
8561 gas_assert (!i
.types
[n
].bitfield
.disp8
);
8563 /* The PC relative address is computed relative
8564 to the instruction boundary, so in case immediate
8565 fields follows, we need to adjust the value. */
8566 if (pcrel
&& i
.imm_operands
)
8571 for (n1
= 0; n1
< i
.operands
; n1
++)
8572 if (operand_type_check (i
.types
[n1
], imm
))
8574 /* Only one immediate is allowed for PC
8575 relative address. */
8576 gas_assert (sz
== 0);
8578 i
.op
[n
].disps
->X_add_number
-= sz
;
8580 /* We should find the immediate. */
8581 gas_assert (sz
!= 0);
8584 p
= frag_more (size
);
8585 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
8587 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
8588 && (((reloc_type
== BFD_RELOC_32
8589 || reloc_type
== BFD_RELOC_X86_64_32S
8590 || (reloc_type
== BFD_RELOC_64
8592 && (i
.op
[n
].disps
->X_op
== O_symbol
8593 || (i
.op
[n
].disps
->X_op
== O_add
8594 && ((symbol_get_value_expression
8595 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
8597 || reloc_type
== BFD_RELOC_32_PCREL
))
8601 reloc_type
= BFD_RELOC_386_GOTPC
;
8602 i
.op
[n
].imms
->X_add_number
+=
8603 encoding_length (insn_start_frag
, insn_start_off
, p
);
8605 else if (reloc_type
== BFD_RELOC_64
)
8606 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
8608 /* Don't do the adjustment for x86-64, as there
8609 the pcrel addressing is relative to the _next_
8610 insn, and that is taken care of in other code. */
8611 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
8613 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
,
8614 size
, i
.op
[n
].disps
, pcrel
,
8616 /* Check for "call/jmp *mem", "mov mem, %reg",
8617 "test %reg, mem" and "binop mem, %reg" where binop
8618 is one of adc, add, and, cmp, or, sbb, sub, xor
8619 instructions without data prefix. Always generate
8620 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8621 if (i
.prefix
[DATA_PREFIX
] == 0
8622 && (generate_relax_relocations
8625 && i
.rm
.regmem
== 5))
8627 || (i
.rm
.mode
== 0 && i
.rm
.regmem
== 5))
8628 && ((i
.operands
== 1
8629 && i
.tm
.base_opcode
== 0xff
8630 && (i
.rm
.reg
== 2 || i
.rm
.reg
== 4))
8632 && (i
.tm
.base_opcode
== 0x8b
8633 || i
.tm
.base_opcode
== 0x85
8634 || (i
.tm
.base_opcode
& 0xc7) == 0x03))))
8638 fixP
->fx_tcbit
= i
.rex
!= 0;
8640 && (i
.base_reg
->reg_num
== RegIP
))
8641 fixP
->fx_tcbit2
= 1;
8644 fixP
->fx_tcbit2
= 1;
8652 output_imm (fragS
*insn_start_frag
, offsetT insn_start_off
)
8657 for (n
= 0; n
< i
.operands
; n
++)
8659 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8660 if (i
.rounding
&& (int) n
== i
.rounding
->operand
)
8663 if (operand_type_check (i
.types
[n
], imm
))
8665 if (i
.op
[n
].imms
->X_op
== O_constant
)
8667 int size
= imm_size (n
);
8670 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
8672 p
= frag_more (size
);
8673 md_number_to_chars (p
, val
, size
);
8677 /* Not absolute_section.
8678 Need a 32-bit fixup (don't support 8bit
8679 non-absolute imms). Try to support other
8681 enum bfd_reloc_code_real reloc_type
;
8682 int size
= imm_size (n
);
8685 if (i
.types
[n
].bitfield
.imm32s
8686 && (i
.suffix
== QWORD_MNEM_SUFFIX
8687 || (!i
.suffix
&& i
.tm
.opcode_modifier
.no_lsuf
)))
8692 p
= frag_more (size
);
8693 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
8695 /* This is tough to explain. We end up with this one if we
8696 * have operands that look like
8697 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8698 * obtain the absolute address of the GOT, and it is strongly
8699 * preferable from a performance point of view to avoid using
8700 * a runtime relocation for this. The actual sequence of
8701 * instructions often look something like:
8706 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8708 * The call and pop essentially return the absolute address
8709 * of the label .L66 and store it in %ebx. The linker itself
8710 * will ultimately change the first operand of the addl so
8711 * that %ebx points to the GOT, but to keep things simple, the
8712 * .o file must have this operand set so that it generates not
8713 * the absolute address of .L66, but the absolute address of
8714 * itself. This allows the linker itself simply treat a GOTPC
8715 * relocation as asking for a pcrel offset to the GOT to be
8716 * added in, and the addend of the relocation is stored in the
8717 * operand field for the instruction itself.
8719 * Our job here is to fix the operand so that it would add
8720 * the correct offset so that %ebx would point to itself. The
8721 * thing that is tricky is that .-.L66 will point to the
8722 * beginning of the instruction, so we need to further modify
8723 * the operand so that it will point to itself. There are
8724 * other cases where you have something like:
8726 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8728 * and here no correction would be required. Internally in
8729 * the assembler we treat operands of this form as not being
8730 * pcrel since the '.' is explicitly mentioned, and I wonder
8731 * whether it would simplify matters to do it this way. Who
8732 * knows. In earlier versions of the PIC patches, the
8733 * pcrel_adjust field was used to store the correction, but
8734 * since the expression is not pcrel, I felt it would be
8735 * confusing to do it this way. */
8737 if ((reloc_type
== BFD_RELOC_32
8738 || reloc_type
== BFD_RELOC_X86_64_32S
8739 || reloc_type
== BFD_RELOC_64
)
8741 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
8742 && (i
.op
[n
].imms
->X_op
== O_symbol
8743 || (i
.op
[n
].imms
->X_op
== O_add
8744 && ((symbol_get_value_expression
8745 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
8749 reloc_type
= BFD_RELOC_386_GOTPC
;
8751 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
8753 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
8754 i
.op
[n
].imms
->X_add_number
+=
8755 encoding_length (insn_start_frag
, insn_start_off
, p
);
8757 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
8758 i
.op
[n
].imms
, 0, reloc_type
);
8764 /* x86_cons_fix_new is called via the expression parsing code when a
8765 reloc is needed. We use this hook to get the correct .got reloc. */
8766 static int cons_sign
= -1;
8769 x86_cons_fix_new (fragS
*frag
, unsigned int off
, unsigned int len
,
8770 expressionS
*exp
, bfd_reloc_code_real_type r
)
8772 r
= reloc (len
, 0, cons_sign
, r
);
8775 if (exp
->X_op
== O_secrel
)
8777 exp
->X_op
= O_symbol
;
8778 r
= BFD_RELOC_32_SECREL
;
8782 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
8785 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8786 purpose of the `.dc.a' internal pseudo-op. */
8789 x86_address_bytes (void)
8791 if ((stdoutput
->arch_info
->mach
& bfd_mach_x64_32
))
8793 return stdoutput
->arch_info
->bits_per_address
/ 8;
8796 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8798 # define lex_got(reloc, adjust, types) NULL
8800 /* Parse operands of the form
8801 <symbol>@GOTOFF+<nnn>
8802 and similar .plt or .got references.
8804 If we find one, set up the correct relocation in RELOC and copy the
8805 input string, minus the `@GOTOFF' into a malloc'd buffer for
8806 parsing by the calling routine. Return this buffer, and if ADJUST
8807 is non-null set it to the length of the string we removed from the
8808 input line. Otherwise return NULL. */
8810 lex_got (enum bfd_reloc_code_real
*rel
,
8812 i386_operand_type
*types
)
8814 /* Some of the relocations depend on the size of what field is to
8815 be relocated. But in our callers i386_immediate and i386_displacement
8816 we don't yet know the operand size (this will be set by insn
8817 matching). Hence we record the word32 relocation here,
8818 and adjust the reloc according to the real size in reloc(). */
8819 static const struct {
8822 const enum bfd_reloc_code_real rel
[2];
8823 const i386_operand_type types64
;
8825 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8826 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32
,
8828 OPERAND_TYPE_IMM32_64
},
8830 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real
,
8831 BFD_RELOC_X86_64_PLTOFF64
},
8832 OPERAND_TYPE_IMM64
},
8833 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32
,
8834 BFD_RELOC_X86_64_PLT32
},
8835 OPERAND_TYPE_IMM32_32S_DISP32
},
8836 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real
,
8837 BFD_RELOC_X86_64_GOTPLT64
},
8838 OPERAND_TYPE_IMM64_DISP64
},
8839 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF
,
8840 BFD_RELOC_X86_64_GOTOFF64
},
8841 OPERAND_TYPE_IMM64_DISP64
},
8842 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real
,
8843 BFD_RELOC_X86_64_GOTPCREL
},
8844 OPERAND_TYPE_IMM32_32S_DISP32
},
8845 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD
,
8846 BFD_RELOC_X86_64_TLSGD
},
8847 OPERAND_TYPE_IMM32_32S_DISP32
},
8848 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM
,
8849 _dummy_first_bfd_reloc_code_real
},
8850 OPERAND_TYPE_NONE
},
8851 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real
,
8852 BFD_RELOC_X86_64_TLSLD
},
8853 OPERAND_TYPE_IMM32_32S_DISP32
},
8854 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32
,
8855 BFD_RELOC_X86_64_GOTTPOFF
},
8856 OPERAND_TYPE_IMM32_32S_DISP32
},
8857 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32
,
8858 BFD_RELOC_X86_64_TPOFF32
},
8859 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
8860 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE
,
8861 _dummy_first_bfd_reloc_code_real
},
8862 OPERAND_TYPE_NONE
},
8863 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32
,
8864 BFD_RELOC_X86_64_DTPOFF32
},
8865 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
8866 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE
,
8867 _dummy_first_bfd_reloc_code_real
},
8868 OPERAND_TYPE_NONE
},
8869 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE
,
8870 _dummy_first_bfd_reloc_code_real
},
8871 OPERAND_TYPE_NONE
},
8872 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32
,
8873 BFD_RELOC_X86_64_GOT32
},
8874 OPERAND_TYPE_IMM32_32S_64_DISP32
},
8875 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC
,
8876 BFD_RELOC_X86_64_GOTPC32_TLSDESC
},
8877 OPERAND_TYPE_IMM32_32S_DISP32
},
8878 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL
,
8879 BFD_RELOC_X86_64_TLSDESC_CALL
},
8880 OPERAND_TYPE_IMM32_32S_DISP32
},
8885 #if defined (OBJ_MAYBE_ELF)
8890 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
8891 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
8894 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
8896 int len
= gotrel
[j
].len
;
8897 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
8899 if (gotrel
[j
].rel
[object_64bit
] != 0)
8902 char *tmpbuf
, *past_reloc
;
8904 *rel
= gotrel
[j
].rel
[object_64bit
];
8908 if (flag_code
!= CODE_64BIT
)
8910 types
->bitfield
.imm32
= 1;
8911 types
->bitfield
.disp32
= 1;
8914 *types
= gotrel
[j
].types64
;
8917 if (j
!= 0 && GOT_symbol
== NULL
)
8918 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
8920 /* The length of the first part of our input line. */
8921 first
= cp
- input_line_pointer
;
8923 /* The second part goes from after the reloc token until
8924 (and including) an end_of_line char or comma. */
8925 past_reloc
= cp
+ 1 + len
;
8927 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
8929 second
= cp
+ 1 - past_reloc
;
8931 /* Allocate and copy string. The trailing NUL shouldn't
8932 be necessary, but be safe. */
8933 tmpbuf
= XNEWVEC (char, first
+ second
+ 2);
8934 memcpy (tmpbuf
, input_line_pointer
, first
);
8935 if (second
!= 0 && *past_reloc
!= ' ')
8936 /* Replace the relocation token with ' ', so that
8937 errors like foo@GOTOFF1 will be detected. */
8938 tmpbuf
[first
++] = ' ';
8940 /* Increment length by 1 if the relocation token is
8945 memcpy (tmpbuf
+ first
, past_reloc
, second
);
8946 tmpbuf
[first
+ second
] = '\0';
8950 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8951 gotrel
[j
].str
, 1 << (5 + object_64bit
));
8956 /* Might be a symbol version string. Don't as_bad here. */
8965 /* Parse operands of the form
8966 <symbol>@SECREL32+<nnn>
8968 If we find one, set up the correct relocation in RELOC and copy the
8969 input string, minus the `@SECREL32' into a malloc'd buffer for
8970 parsing by the calling routine. Return this buffer, and if ADJUST
8971 is non-null set it to the length of the string we removed from the
8972 input line. Otherwise return NULL.
8974 This function is copied from the ELF version above adjusted for PE targets. */
8977 lex_got (enum bfd_reloc_code_real
*rel ATTRIBUTE_UNUSED
,
8978 int *adjust ATTRIBUTE_UNUSED
,
8979 i386_operand_type
*types
)
8985 const enum bfd_reloc_code_real rel
[2];
8986 const i386_operand_type types64
;
8990 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL
,
8991 BFD_RELOC_32_SECREL
},
8992 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
8998 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
8999 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
9002 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
9004 int len
= gotrel
[j
].len
;
9006 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
9008 if (gotrel
[j
].rel
[object_64bit
] != 0)
9011 char *tmpbuf
, *past_reloc
;
9013 *rel
= gotrel
[j
].rel
[object_64bit
];
9019 if (flag_code
!= CODE_64BIT
)
9021 types
->bitfield
.imm32
= 1;
9022 types
->bitfield
.disp32
= 1;
9025 *types
= gotrel
[j
].types64
;
9028 /* The length of the first part of our input line. */
9029 first
= cp
- input_line_pointer
;
9031 /* The second part goes from after the reloc token until
9032 (and including) an end_of_line char or comma. */
9033 past_reloc
= cp
+ 1 + len
;
9035 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
9037 second
= cp
+ 1 - past_reloc
;
9039 /* Allocate and copy string. The trailing NUL shouldn't
9040 be necessary, but be safe. */
9041 tmpbuf
= XNEWVEC (char, first
+ second
+ 2);
9042 memcpy (tmpbuf
, input_line_pointer
, first
);
9043 if (second
!= 0 && *past_reloc
!= ' ')
9044 /* Replace the relocation token with ' ', so that
9045 errors like foo@SECLREL321 will be detected. */
9046 tmpbuf
[first
++] = ' ';
9047 memcpy (tmpbuf
+ first
, past_reloc
, second
);
9048 tmpbuf
[first
+ second
] = '\0';
9052 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9053 gotrel
[j
].str
, 1 << (5 + object_64bit
));
9058 /* Might be a symbol version string. Don't as_bad here. */
9064 bfd_reloc_code_real_type
9065 x86_cons (expressionS
*exp
, int size
)
9067 bfd_reloc_code_real_type got_reloc
= NO_RELOC
;
9069 intel_syntax
= -intel_syntax
;
9072 if (size
== 4 || (object_64bit
&& size
== 8))
9074 /* Handle @GOTOFF and the like in an expression. */
9076 char *gotfree_input_line
;
9079 save
= input_line_pointer
;
9080 gotfree_input_line
= lex_got (&got_reloc
, &adjust
, NULL
);
9081 if (gotfree_input_line
)
9082 input_line_pointer
= gotfree_input_line
;
9086 if (gotfree_input_line
)
9088 /* expression () has merrily parsed up to the end of line,
9089 or a comma - in the wrong buffer. Transfer how far
9090 input_line_pointer has moved to the right buffer. */
9091 input_line_pointer
= (save
9092 + (input_line_pointer
- gotfree_input_line
)
9094 free (gotfree_input_line
);
9095 if (exp
->X_op
== O_constant
9096 || exp
->X_op
== O_absent
9097 || exp
->X_op
== O_illegal
9098 || exp
->X_op
== O_register
9099 || exp
->X_op
== O_big
)
9101 char c
= *input_line_pointer
;
9102 *input_line_pointer
= 0;
9103 as_bad (_("missing or invalid expression `%s'"), save
);
9104 *input_line_pointer
= c
;
9106 else if ((got_reloc
== BFD_RELOC_386_PLT32
9107 || got_reloc
== BFD_RELOC_X86_64_PLT32
)
9108 && exp
->X_op
!= O_symbol
)
9110 char c
= *input_line_pointer
;
9111 *input_line_pointer
= 0;
9112 as_bad (_("invalid PLT expression `%s'"), save
);
9113 *input_line_pointer
= c
;
9120 intel_syntax
= -intel_syntax
;
9123 i386_intel_simplify (exp
);
9129 signed_cons (int size
)
9131 if (flag_code
== CODE_64BIT
)
9139 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
9146 if (exp
.X_op
== O_symbol
)
9147 exp
.X_op
= O_secrel
;
9149 emit_expr (&exp
, 4);
9151 while (*input_line_pointer
++ == ',');
9153 input_line_pointer
--;
9154 demand_empty_rest_of_line ();
9158 /* Handle Vector operations. */
9161 check_VecOperations (char *op_string
, char *op_end
)
9163 const reg_entry
*mask
;
9168 && (op_end
== NULL
|| op_string
< op_end
))
9171 if (*op_string
== '{')
9175 /* Check broadcasts. */
9176 if (strncmp (op_string
, "1to", 3) == 0)
9181 goto duplicated_vec_op
;
9184 if (*op_string
== '8')
9186 else if (*op_string
== '4')
9188 else if (*op_string
== '2')
9190 else if (*op_string
== '1'
9191 && *(op_string
+1) == '6')
9198 as_bad (_("Unsupported broadcast: `%s'"), saved
);
9203 broadcast_op
.type
= bcst_type
;
9204 broadcast_op
.operand
= this_operand
;
9205 broadcast_op
.bytes
= 0;
9206 i
.broadcast
= &broadcast_op
;
9208 /* Check masking operation. */
9209 else if ((mask
= parse_register (op_string
, &end_op
)) != NULL
)
9211 /* k0 can't be used for write mask. */
9212 if (!mask
->reg_type
.bitfield
.regmask
|| mask
->reg_num
== 0)
9214 as_bad (_("`%s%s' can't be used for write mask"),
9215 register_prefix
, mask
->reg_name
);
9221 mask_op
.mask
= mask
;
9222 mask_op
.zeroing
= 0;
9223 mask_op
.operand
= this_operand
;
9229 goto duplicated_vec_op
;
9231 i
.mask
->mask
= mask
;
9233 /* Only "{z}" is allowed here. No need to check
9234 zeroing mask explicitly. */
9235 if (i
.mask
->operand
!= this_operand
)
9237 as_bad (_("invalid write mask `%s'"), saved
);
9244 /* Check zeroing-flag for masking operation. */
9245 else if (*op_string
== 'z')
9249 mask_op
.mask
= NULL
;
9250 mask_op
.zeroing
= 1;
9251 mask_op
.operand
= this_operand
;
9256 if (i
.mask
->zeroing
)
9259 as_bad (_("duplicated `%s'"), saved
);
9263 i
.mask
->zeroing
= 1;
9265 /* Only "{%k}" is allowed here. No need to check mask
9266 register explicitly. */
9267 if (i
.mask
->operand
!= this_operand
)
9269 as_bad (_("invalid zeroing-masking `%s'"),
9278 goto unknown_vec_op
;
9280 if (*op_string
!= '}')
9282 as_bad (_("missing `}' in `%s'"), saved
);
9287 /* Strip whitespace since the addition of pseudo prefixes
9288 changed how the scrubber treats '{'. */
9289 if (is_space_char (*op_string
))
9295 /* We don't know this one. */
9296 as_bad (_("unknown vector operation: `%s'"), saved
);
9300 if (i
.mask
&& i
.mask
->zeroing
&& !i
.mask
->mask
)
9302 as_bad (_("zeroing-masking only allowed with write mask"));
9310 i386_immediate (char *imm_start
)
9312 char *save_input_line_pointer
;
9313 char *gotfree_input_line
;
9316 i386_operand_type types
;
9318 operand_type_set (&types
, ~0);
9320 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
9322 as_bad (_("at most %d immediate operands are allowed"),
9323 MAX_IMMEDIATE_OPERANDS
);
9327 exp
= &im_expressions
[i
.imm_operands
++];
9328 i
.op
[this_operand
].imms
= exp
;
9330 if (is_space_char (*imm_start
))
9333 save_input_line_pointer
= input_line_pointer
;
9334 input_line_pointer
= imm_start
;
9336 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
9337 if (gotfree_input_line
)
9338 input_line_pointer
= gotfree_input_line
;
9340 exp_seg
= expression (exp
);
9344 /* Handle vector operations. */
9345 if (*input_line_pointer
== '{')
9347 input_line_pointer
= check_VecOperations (input_line_pointer
,
9349 if (input_line_pointer
== NULL
)
9353 if (*input_line_pointer
)
9354 as_bad (_("junk `%s' after expression"), input_line_pointer
);
9356 input_line_pointer
= save_input_line_pointer
;
9357 if (gotfree_input_line
)
9359 free (gotfree_input_line
);
9361 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
9362 exp
->X_op
= O_illegal
;
9365 return i386_finalize_immediate (exp_seg
, exp
, types
, imm_start
);
9369 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
9370 i386_operand_type types
, const char *imm_start
)
9372 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_illegal
|| exp
->X_op
== O_big
)
9375 as_bad (_("missing or invalid immediate expression `%s'"),
9379 else if (exp
->X_op
== O_constant
)
9381 /* Size it properly later. */
9382 i
.types
[this_operand
].bitfield
.imm64
= 1;
9383 /* If not 64bit, sign extend val. */
9384 if (flag_code
!= CODE_64BIT
9385 && (exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
9387 = (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
9389 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9390 else if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
9391 && exp_seg
!= absolute_section
9392 && exp_seg
!= text_section
9393 && exp_seg
!= data_section
9394 && exp_seg
!= bss_section
9395 && exp_seg
!= undefined_section
9396 && !bfd_is_com_section (exp_seg
))
9398 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
9402 else if (!intel_syntax
&& exp_seg
== reg_section
)
9405 as_bad (_("illegal immediate register operand %s"), imm_start
);
9410 /* This is an address. The size of the address will be
9411 determined later, depending on destination register,
9412 suffix, or the default for the section. */
9413 i
.types
[this_operand
].bitfield
.imm8
= 1;
9414 i
.types
[this_operand
].bitfield
.imm16
= 1;
9415 i
.types
[this_operand
].bitfield
.imm32
= 1;
9416 i
.types
[this_operand
].bitfield
.imm32s
= 1;
9417 i
.types
[this_operand
].bitfield
.imm64
= 1;
9418 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
9426 i386_scale (char *scale
)
9429 char *save
= input_line_pointer
;
9431 input_line_pointer
= scale
;
9432 val
= get_absolute_expression ();
9437 i
.log2_scale_factor
= 0;
9440 i
.log2_scale_factor
= 1;
9443 i
.log2_scale_factor
= 2;
9446 i
.log2_scale_factor
= 3;
9450 char sep
= *input_line_pointer
;
9452 *input_line_pointer
= '\0';
9453 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9455 *input_line_pointer
= sep
;
9456 input_line_pointer
= save
;
9460 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
9462 as_warn (_("scale factor of %d without an index register"),
9463 1 << i
.log2_scale_factor
);
9464 i
.log2_scale_factor
= 0;
9466 scale
= input_line_pointer
;
9467 input_line_pointer
= save
;
9472 i386_displacement (char *disp_start
, char *disp_end
)
9476 char *save_input_line_pointer
;
9477 char *gotfree_input_line
;
9479 i386_operand_type bigdisp
, types
= anydisp
;
9482 if (i
.disp_operands
== MAX_MEMORY_OPERANDS
)
9484 as_bad (_("at most %d displacement operands are allowed"),
9485 MAX_MEMORY_OPERANDS
);
9489 operand_type_set (&bigdisp
, 0);
9490 if ((i
.types
[this_operand
].bitfield
.jumpabsolute
)
9491 || (!current_templates
->start
->opcode_modifier
.jump
9492 && !current_templates
->start
->opcode_modifier
.jumpdword
))
9494 bigdisp
.bitfield
.disp32
= 1;
9495 override
= (i
.prefix
[ADDR_PREFIX
] != 0);
9496 if (flag_code
== CODE_64BIT
)
9500 bigdisp
.bitfield
.disp32s
= 1;
9501 bigdisp
.bitfield
.disp64
= 1;
9504 else if ((flag_code
== CODE_16BIT
) ^ override
)
9506 bigdisp
.bitfield
.disp32
= 0;
9507 bigdisp
.bitfield
.disp16
= 1;
9512 /* For PC-relative branches, the width of the displacement
9513 is dependent upon data size, not address size. */
9514 override
= (i
.prefix
[DATA_PREFIX
] != 0);
9515 if (flag_code
== CODE_64BIT
)
9517 if (override
|| i
.suffix
== WORD_MNEM_SUFFIX
)
9518 bigdisp
.bitfield
.disp16
= 1;
9521 bigdisp
.bitfield
.disp32
= 1;
9522 bigdisp
.bitfield
.disp32s
= 1;
9528 override
= (i
.suffix
== (flag_code
!= CODE_16BIT
9530 : LONG_MNEM_SUFFIX
));
9531 bigdisp
.bitfield
.disp32
= 1;
9532 if ((flag_code
== CODE_16BIT
) ^ override
)
9534 bigdisp
.bitfield
.disp32
= 0;
9535 bigdisp
.bitfield
.disp16
= 1;
9539 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
9542 exp
= &disp_expressions
[i
.disp_operands
];
9543 i
.op
[this_operand
].disps
= exp
;
9545 save_input_line_pointer
= input_line_pointer
;
9546 input_line_pointer
= disp_start
;
9547 END_STRING_AND_SAVE (disp_end
);
9549 #ifndef GCC_ASM_O_HACK
9550 #define GCC_ASM_O_HACK 0
9553 END_STRING_AND_SAVE (disp_end
+ 1);
9554 if (i
.types
[this_operand
].bitfield
.baseIndex
9555 && displacement_string_end
[-1] == '+')
9557 /* This hack is to avoid a warning when using the "o"
9558 constraint within gcc asm statements.
9561 #define _set_tssldt_desc(n,addr,limit,type) \
9562 __asm__ __volatile__ ( \
9564 "movw %w1,2+%0\n\t" \
9566 "movb %b1,4+%0\n\t" \
9567 "movb %4,5+%0\n\t" \
9568 "movb $0,6+%0\n\t" \
9569 "movb %h1,7+%0\n\t" \
9571 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9573 This works great except that the output assembler ends
9574 up looking a bit weird if it turns out that there is
9575 no offset. You end up producing code that looks like:
9588 So here we provide the missing zero. */
9590 *displacement_string_end
= '0';
9593 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
9594 if (gotfree_input_line
)
9595 input_line_pointer
= gotfree_input_line
;
9597 exp_seg
= expression (exp
);
9600 if (*input_line_pointer
)
9601 as_bad (_("junk `%s' after expression"), input_line_pointer
);
9603 RESTORE_END_STRING (disp_end
+ 1);
9605 input_line_pointer
= save_input_line_pointer
;
9606 if (gotfree_input_line
)
9608 free (gotfree_input_line
);
9610 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
9611 exp
->X_op
= O_illegal
;
9614 ret
= i386_finalize_displacement (exp_seg
, exp
, types
, disp_start
);
9616 RESTORE_END_STRING (disp_end
);
9622 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
9623 i386_operand_type types
, const char *disp_start
)
9625 i386_operand_type bigdisp
;
9628 /* We do this to make sure that the section symbol is in
9629 the symbol table. We will ultimately change the relocation
9630 to be relative to the beginning of the section. */
9631 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
9632 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
9633 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
9635 if (exp
->X_op
!= O_symbol
)
9638 if (S_IS_LOCAL (exp
->X_add_symbol
)
9639 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
9640 && S_GET_SEGMENT (exp
->X_add_symbol
) != expr_section
)
9641 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
9642 exp
->X_op
= O_subtract
;
9643 exp
->X_op_symbol
= GOT_symbol
;
9644 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
9645 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
9646 else if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
9647 i
.reloc
[this_operand
] = BFD_RELOC_64
;
9649 i
.reloc
[this_operand
] = BFD_RELOC_32
;
9652 else if (exp
->X_op
== O_absent
9653 || exp
->X_op
== O_illegal
9654 || exp
->X_op
== O_big
)
9657 as_bad (_("missing or invalid displacement expression `%s'"),
9662 else if (flag_code
== CODE_64BIT
9663 && !i
.prefix
[ADDR_PREFIX
]
9664 && exp
->X_op
== O_constant
)
9666 /* Since displacement is signed extended to 64bit, don't allow
9667 disp32 and turn off disp32s if they are out of range. */
9668 i
.types
[this_operand
].bitfield
.disp32
= 0;
9669 if (!fits_in_signed_long (exp
->X_add_number
))
9671 i
.types
[this_operand
].bitfield
.disp32s
= 0;
9672 if (i
.types
[this_operand
].bitfield
.baseindex
)
9674 as_bad (_("0x%lx out range of signed 32bit displacement"),
9675 (long) exp
->X_add_number
);
9681 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9682 else if (exp
->X_op
!= O_constant
9683 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
9684 && exp_seg
!= absolute_section
9685 && exp_seg
!= text_section
9686 && exp_seg
!= data_section
9687 && exp_seg
!= bss_section
9688 && exp_seg
!= undefined_section
9689 && !bfd_is_com_section (exp_seg
))
9691 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
9696 /* Check if this is a displacement only operand. */
9697 bigdisp
= i
.types
[this_operand
];
9698 bigdisp
.bitfield
.disp8
= 0;
9699 bigdisp
.bitfield
.disp16
= 0;
9700 bigdisp
.bitfield
.disp32
= 0;
9701 bigdisp
.bitfield
.disp32s
= 0;
9702 bigdisp
.bitfield
.disp64
= 0;
9703 if (operand_type_all_zero (&bigdisp
))
9704 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
9710 /* Return the active addressing mode, taking address override and
9711 registers forming the address into consideration. Update the
9712 address override prefix if necessary. */
9714 static enum flag_code
9715 i386_addressing_mode (void)
9717 enum flag_code addr_mode
;
9719 if (i
.prefix
[ADDR_PREFIX
])
9720 addr_mode
= flag_code
== CODE_32BIT
? CODE_16BIT
: CODE_32BIT
;
9723 addr_mode
= flag_code
;
9725 #if INFER_ADDR_PREFIX
9726 if (i
.mem_operands
== 0)
9728 /* Infer address prefix from the first memory operand. */
9729 const reg_entry
*addr_reg
= i
.base_reg
;
9731 if (addr_reg
== NULL
)
9732 addr_reg
= i
.index_reg
;
9736 if (addr_reg
->reg_type
.bitfield
.dword
)
9737 addr_mode
= CODE_32BIT
;
9738 else if (flag_code
!= CODE_64BIT
9739 && addr_reg
->reg_type
.bitfield
.word
)
9740 addr_mode
= CODE_16BIT
;
9742 if (addr_mode
!= flag_code
)
9744 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
9746 /* Change the size of any displacement too. At most one
9747 of Disp16 or Disp32 is set.
9748 FIXME. There doesn't seem to be any real need for
9749 separate Disp16 and Disp32 flags. The same goes for
9750 Imm16 and Imm32. Removing them would probably clean
9751 up the code quite a lot. */
9752 if (flag_code
!= CODE_64BIT
9753 && (i
.types
[this_operand
].bitfield
.disp16
9754 || i
.types
[this_operand
].bitfield
.disp32
))
9755 i
.types
[this_operand
]
9756 = operand_type_xor (i
.types
[this_operand
], disp16_32
);
9766 /* Make sure the memory operand we've been dealt is valid.
9767 Return 1 on success, 0 on a failure. */
9770 i386_index_check (const char *operand_string
)
9772 const char *kind
= "base/index";
9773 enum flag_code addr_mode
= i386_addressing_mode ();
9775 if (current_templates
->start
->opcode_modifier
.isstring
9776 && !current_templates
->start
->cpu_flags
.bitfield
.cpupadlock
9777 && (current_templates
->end
[-1].opcode_modifier
.isstring
9780 /* Memory operands of string insns are special in that they only allow
9781 a single register (rDI, rSI, or rBX) as their memory address. */
9782 const reg_entry
*expected_reg
;
9783 static const char *di_si
[][2] =
9789 static const char *bx
[] = { "ebx", "bx", "rbx" };
9791 kind
= "string address";
9793 if (current_templates
->start
->opcode_modifier
.repprefixok
)
9795 i386_operand_type type
= current_templates
->end
[-1].operand_types
[0];
9797 if (!type
.bitfield
.baseindex
9798 || ((!i
.mem_operands
!= !intel_syntax
)
9799 && current_templates
->end
[-1].operand_types
[1]
9800 .bitfield
.baseindex
))
9801 type
= current_templates
->end
[-1].operand_types
[1];
9802 expected_reg
= hash_find (reg_hash
,
9803 di_si
[addr_mode
][type
.bitfield
.esseg
]);
9807 expected_reg
= hash_find (reg_hash
, bx
[addr_mode
]);
9809 if (i
.base_reg
!= expected_reg
9811 || operand_type_check (i
.types
[this_operand
], disp
))
9813 /* The second memory operand must have the same size as
9817 && !((addr_mode
== CODE_64BIT
9818 && i
.base_reg
->reg_type
.bitfield
.qword
)
9819 || (addr_mode
== CODE_32BIT
9820 ? i
.base_reg
->reg_type
.bitfield
.dword
9821 : i
.base_reg
->reg_type
.bitfield
.word
)))
9824 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9826 intel_syntax
? '[' : '(',
9828 expected_reg
->reg_name
,
9829 intel_syntax
? ']' : ')');
9836 as_bad (_("`%s' is not a valid %s expression"),
9837 operand_string
, kind
);
9842 if (addr_mode
!= CODE_16BIT
)
9844 /* 32-bit/64-bit checks. */
9846 && ((addr_mode
== CODE_64BIT
9847 ? !i
.base_reg
->reg_type
.bitfield
.qword
9848 : !i
.base_reg
->reg_type
.bitfield
.dword
)
9849 || (i
.index_reg
&& i
.base_reg
->reg_num
== RegIP
)
9850 || i
.base_reg
->reg_num
== RegIZ
))
9852 && !i
.index_reg
->reg_type
.bitfield
.xmmword
9853 && !i
.index_reg
->reg_type
.bitfield
.ymmword
9854 && !i
.index_reg
->reg_type
.bitfield
.zmmword
9855 && ((addr_mode
== CODE_64BIT
9856 ? !i
.index_reg
->reg_type
.bitfield
.qword
9857 : !i
.index_reg
->reg_type
.bitfield
.dword
)
9858 || !i
.index_reg
->reg_type
.bitfield
.baseindex
)))
9861 /* bndmk, bndldx, and bndstx have special restrictions. */
9862 if (current_templates
->start
->base_opcode
== 0xf30f1b
9863 || (current_templates
->start
->base_opcode
& ~1) == 0x0f1a)
9865 /* They cannot use RIP-relative addressing. */
9866 if (i
.base_reg
&& i
.base_reg
->reg_num
== RegIP
)
9868 as_bad (_("`%s' cannot be used here"), operand_string
);
9872 /* bndldx and bndstx ignore their scale factor. */
9873 if (current_templates
->start
->base_opcode
!= 0xf30f1b
9874 && i
.log2_scale_factor
)
9875 as_warn (_("register scaling is being ignored here"));
9880 /* 16-bit checks. */
9882 && (!i
.base_reg
->reg_type
.bitfield
.word
9883 || !i
.base_reg
->reg_type
.bitfield
.baseindex
))
9885 && (!i
.index_reg
->reg_type
.bitfield
.word
9886 || !i
.index_reg
->reg_type
.bitfield
.baseindex
9888 && i
.base_reg
->reg_num
< 6
9889 && i
.index_reg
->reg_num
>= 6
9890 && i
.log2_scale_factor
== 0))))
9897 /* Handle vector immediates. */
9900 RC_SAE_immediate (const char *imm_start
)
9902 unsigned int match_found
, j
;
9903 const char *pstr
= imm_start
;
9911 for (j
= 0; j
< ARRAY_SIZE (RC_NamesTable
); j
++)
9913 if (!strncmp (pstr
, RC_NamesTable
[j
].name
, RC_NamesTable
[j
].len
))
9917 rc_op
.type
= RC_NamesTable
[j
].type
;
9918 rc_op
.operand
= this_operand
;
9919 i
.rounding
= &rc_op
;
9923 as_bad (_("duplicated `%s'"), imm_start
);
9926 pstr
+= RC_NamesTable
[j
].len
;
9936 as_bad (_("Missing '}': '%s'"), imm_start
);
9939 /* RC/SAE immediate string should contain nothing more. */;
9942 as_bad (_("Junk after '}': '%s'"), imm_start
);
9946 exp
= &im_expressions
[i
.imm_operands
++];
9947 i
.op
[this_operand
].imms
= exp
;
9949 exp
->X_op
= O_constant
;
9950 exp
->X_add_number
= 0;
9951 exp
->X_add_symbol
= (symbolS
*) 0;
9952 exp
->X_op_symbol
= (symbolS
*) 0;
9954 i
.types
[this_operand
].bitfield
.imm8
= 1;
9958 /* Only string instructions can have a second memory operand, so
9959 reduce current_templates to just those if it contains any. */
9961 maybe_adjust_templates (void)
9963 const insn_template
*t
;
9965 gas_assert (i
.mem_operands
== 1);
9967 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
9968 if (t
->opcode_modifier
.isstring
)
9971 if (t
< current_templates
->end
)
9973 static templates aux_templates
;
9974 bfd_boolean recheck
;
9976 aux_templates
.start
= t
;
9977 for (; t
< current_templates
->end
; ++t
)
9978 if (!t
->opcode_modifier
.isstring
)
9980 aux_templates
.end
= t
;
9982 /* Determine whether to re-check the first memory operand. */
9983 recheck
= (aux_templates
.start
!= current_templates
->start
9984 || t
!= current_templates
->end
);
9986 current_templates
= &aux_templates
;
9991 if (i
.memop1_string
!= NULL
9992 && i386_index_check (i
.memop1_string
) == 0)
10001 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10005 i386_att_operand (char *operand_string
)
10007 const reg_entry
*r
;
10009 char *op_string
= operand_string
;
10011 if (is_space_char (*op_string
))
10014 /* We check for an absolute prefix (differentiating,
10015 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10016 if (*op_string
== ABSOLUTE_PREFIX
)
10019 if (is_space_char (*op_string
))
10021 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
10024 /* Check if operand is a register. */
10025 if ((r
= parse_register (op_string
, &end_op
)) != NULL
)
10027 i386_operand_type temp
;
10029 /* Check for a segment override by searching for ':' after a
10030 segment register. */
10031 op_string
= end_op
;
10032 if (is_space_char (*op_string
))
10034 if (*op_string
== ':' && r
->reg_type
.bitfield
.sreg
)
10036 switch (r
->reg_num
)
10039 i
.seg
[i
.mem_operands
] = &es
;
10042 i
.seg
[i
.mem_operands
] = &cs
;
10045 i
.seg
[i
.mem_operands
] = &ss
;
10048 i
.seg
[i
.mem_operands
] = &ds
;
10051 i
.seg
[i
.mem_operands
] = &fs
;
10054 i
.seg
[i
.mem_operands
] = &gs
;
10058 /* Skip the ':' and whitespace. */
10060 if (is_space_char (*op_string
))
10063 if (!is_digit_char (*op_string
)
10064 && !is_identifier_char (*op_string
)
10065 && *op_string
!= '('
10066 && *op_string
!= ABSOLUTE_PREFIX
)
10068 as_bad (_("bad memory operand `%s'"), op_string
);
10071 /* Handle case of %es:*foo. */
10072 if (*op_string
== ABSOLUTE_PREFIX
)
10075 if (is_space_char (*op_string
))
10077 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
10079 goto do_memory_reference
;
10082 /* Handle vector operations. */
10083 if (*op_string
== '{')
10085 op_string
= check_VecOperations (op_string
, NULL
);
10086 if (op_string
== NULL
)
10092 as_bad (_("junk `%s' after register"), op_string
);
10095 temp
= r
->reg_type
;
10096 temp
.bitfield
.baseindex
= 0;
10097 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
10099 i
.types
[this_operand
].bitfield
.unspecified
= 0;
10100 i
.op
[this_operand
].regs
= r
;
10103 else if (*op_string
== REGISTER_PREFIX
)
10105 as_bad (_("bad register name `%s'"), op_string
);
10108 else if (*op_string
== IMMEDIATE_PREFIX
)
10111 if (i
.types
[this_operand
].bitfield
.jumpabsolute
)
10113 as_bad (_("immediate operand illegal with absolute jump"));
10116 if (!i386_immediate (op_string
))
10119 else if (RC_SAE_immediate (operand_string
))
10121 /* If it is a RC or SAE immediate, do nothing. */
10124 else if (is_digit_char (*op_string
)
10125 || is_identifier_char (*op_string
)
10126 || *op_string
== '"'
10127 || *op_string
== '(')
10129 /* This is a memory reference of some sort. */
10132 /* Start and end of displacement string expression (if found). */
10133 char *displacement_string_start
;
10134 char *displacement_string_end
;
10137 do_memory_reference
:
10138 if (i
.mem_operands
== 1 && !maybe_adjust_templates ())
10140 if ((i
.mem_operands
== 1
10141 && !current_templates
->start
->opcode_modifier
.isstring
)
10142 || i
.mem_operands
== 2)
10144 as_bad (_("too many memory references for `%s'"),
10145 current_templates
->start
->name
);
10149 /* Check for base index form. We detect the base index form by
10150 looking for an ')' at the end of the operand, searching
10151 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10153 base_string
= op_string
+ strlen (op_string
);
10155 /* Handle vector operations. */
10156 vop_start
= strchr (op_string
, '{');
10157 if (vop_start
&& vop_start
< base_string
)
10159 if (check_VecOperations (vop_start
, base_string
) == NULL
)
10161 base_string
= vop_start
;
10165 if (is_space_char (*base_string
))
10168 /* If we only have a displacement, set-up for it to be parsed later. */
10169 displacement_string_start
= op_string
;
10170 displacement_string_end
= base_string
+ 1;
10172 if (*base_string
== ')')
10175 unsigned int parens_balanced
= 1;
10176 /* We've already checked that the number of left & right ()'s are
10177 equal, so this loop will not be infinite. */
10181 if (*base_string
== ')')
10183 if (*base_string
== '(')
10186 while (parens_balanced
);
10188 temp_string
= base_string
;
10190 /* Skip past '(' and whitespace. */
10192 if (is_space_char (*base_string
))
10195 if (*base_string
== ','
10196 || ((i
.base_reg
= parse_register (base_string
, &end_op
))
10199 displacement_string_end
= temp_string
;
10201 i
.types
[this_operand
].bitfield
.baseindex
= 1;
10205 base_string
= end_op
;
10206 if (is_space_char (*base_string
))
10210 /* There may be an index reg or scale factor here. */
10211 if (*base_string
== ',')
10214 if (is_space_char (*base_string
))
10217 if ((i
.index_reg
= parse_register (base_string
, &end_op
))
10220 base_string
= end_op
;
10221 if (is_space_char (*base_string
))
10223 if (*base_string
== ',')
10226 if (is_space_char (*base_string
))
10229 else if (*base_string
!= ')')
10231 as_bad (_("expecting `,' or `)' "
10232 "after index register in `%s'"),
10237 else if (*base_string
== REGISTER_PREFIX
)
10239 end_op
= strchr (base_string
, ',');
10242 as_bad (_("bad register name `%s'"), base_string
);
10246 /* Check for scale factor. */
10247 if (*base_string
!= ')')
10249 char *end_scale
= i386_scale (base_string
);
10254 base_string
= end_scale
;
10255 if (is_space_char (*base_string
))
10257 if (*base_string
!= ')')
10259 as_bad (_("expecting `)' "
10260 "after scale factor in `%s'"),
10265 else if (!i
.index_reg
)
10267 as_bad (_("expecting index register or scale factor "
10268 "after `,'; got '%c'"),
10273 else if (*base_string
!= ')')
10275 as_bad (_("expecting `,' or `)' "
10276 "after base register in `%s'"),
10281 else if (*base_string
== REGISTER_PREFIX
)
10283 end_op
= strchr (base_string
, ',');
10286 as_bad (_("bad register name `%s'"), base_string
);
10291 /* If there's an expression beginning the operand, parse it,
10292 assuming displacement_string_start and
10293 displacement_string_end are meaningful. */
10294 if (displacement_string_start
!= displacement_string_end
)
10296 if (!i386_displacement (displacement_string_start
,
10297 displacement_string_end
))
10301 /* Special case for (%dx) while doing input/output op. */
10303 && i
.base_reg
->reg_type
.bitfield
.inoutportreg
10304 && i
.index_reg
== 0
10305 && i
.log2_scale_factor
== 0
10306 && i
.seg
[i
.mem_operands
] == 0
10307 && !operand_type_check (i
.types
[this_operand
], disp
))
10309 i
.types
[this_operand
] = i
.base_reg
->reg_type
;
10313 if (i386_index_check (operand_string
) == 0)
10315 i
.flags
[this_operand
] |= Operand_Mem
;
10316 if (i
.mem_operands
== 0)
10317 i
.memop1_string
= xstrdup (operand_string
);
10322 /* It's not a memory operand; argh! */
10323 as_bad (_("invalid char %s beginning operand %d `%s'"),
10324 output_invalid (*op_string
),
10329 return 1; /* Normal return. */
10332 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10333 that an rs_machine_dependent frag may reach. */
10336 i386_frag_max_var (fragS
*frag
)
10338 /* The only relaxable frags are for jumps.
10339 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10340 gas_assert (frag
->fr_type
== rs_machine_dependent
);
10341 return TYPE_FROM_RELAX_STATE (frag
->fr_subtype
) == UNCOND_JUMP
? 4 : 5;
10344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10346 elf_symbol_resolved_in_segment_p (symbolS
*fr_symbol
, offsetT fr_var
)
10348 /* STT_GNU_IFUNC symbol must go through PLT. */
10349 if ((symbol_get_bfdsym (fr_symbol
)->flags
10350 & BSF_GNU_INDIRECT_FUNCTION
) != 0)
10353 if (!S_IS_EXTERNAL (fr_symbol
))
10354 /* Symbol may be weak or local. */
10355 return !S_IS_WEAK (fr_symbol
);
10357 /* Global symbols with non-default visibility can't be preempted. */
10358 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol
)) != STV_DEFAULT
)
10361 if (fr_var
!= NO_RELOC
)
10362 switch ((enum bfd_reloc_code_real
) fr_var
)
10364 case BFD_RELOC_386_PLT32
:
10365 case BFD_RELOC_X86_64_PLT32
:
10366 /* Symbol with PLT relocation may be preempted. */
10372 /* Global symbols with default visibility in a shared library may be
10373 preempted by another definition. */
10378 /* md_estimate_size_before_relax()
10380 Called just before relax() for rs_machine_dependent frags. The x86
10381 assembler uses these frags to handle variable size jump
10384 Any symbol that is now undefined will not become defined.
10385 Return the correct fr_subtype in the frag.
10386 Return the initial "guess for variable size of frag" to caller.
10387 The guess is actually the growth beyond the fixed part. Whatever
10388 we do to grow the fixed or variable part contributes to our
10392 md_estimate_size_before_relax (fragS
*fragP
, segT segment
)
10394 /* We've already got fragP->fr_subtype right; all we have to do is
10395 check for un-relaxable symbols. On an ELF system, we can't relax
10396 an externally visible symbol, because it may be overridden by a
10398 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
10399 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10401 && !elf_symbol_resolved_in_segment_p (fragP
->fr_symbol
,
10404 #if defined (OBJ_COFF) && defined (TE_PE)
10405 || (OUTPUT_FLAVOR
== bfd_target_coff_flavour
10406 && S_IS_WEAK (fragP
->fr_symbol
))
10410 /* Symbol is undefined in this segment, or we need to keep a
10411 reloc so that weak symbols can be overridden. */
10412 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
10413 enum bfd_reloc_code_real reloc_type
;
10414 unsigned char *opcode
;
10417 if (fragP
->fr_var
!= NO_RELOC
)
10418 reloc_type
= (enum bfd_reloc_code_real
) fragP
->fr_var
;
10419 else if (size
== 2)
10420 reloc_type
= BFD_RELOC_16_PCREL
;
10421 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10422 else if (need_plt32_p (fragP
->fr_symbol
))
10423 reloc_type
= BFD_RELOC_X86_64_PLT32
;
10426 reloc_type
= BFD_RELOC_32_PCREL
;
10428 old_fr_fix
= fragP
->fr_fix
;
10429 opcode
= (unsigned char *) fragP
->fr_opcode
;
10431 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
10434 /* Make jmp (0xeb) a (d)word displacement jump. */
10436 fragP
->fr_fix
+= size
;
10437 fix_new (fragP
, old_fr_fix
, size
,
10439 fragP
->fr_offset
, 1,
10445 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
10447 /* Negate the condition, and branch past an
10448 unconditional jump. */
10451 /* Insert an unconditional jump. */
10453 /* We added two extra opcode bytes, and have a two byte
10455 fragP
->fr_fix
+= 2 + 2;
10456 fix_new (fragP
, old_fr_fix
+ 2, 2,
10458 fragP
->fr_offset
, 1,
10462 /* Fall through. */
10465 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
10469 fragP
->fr_fix
+= 1;
10470 fixP
= fix_new (fragP
, old_fr_fix
, 1,
10472 fragP
->fr_offset
, 1,
10473 BFD_RELOC_8_PCREL
);
10474 fixP
->fx_signed
= 1;
10478 /* This changes the byte-displacement jump 0x7N
10479 to the (d)word-displacement jump 0x0f,0x8N. */
10480 opcode
[1] = opcode
[0] + 0x10;
10481 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
10482 /* We've added an opcode byte. */
10483 fragP
->fr_fix
+= 1 + size
;
10484 fix_new (fragP
, old_fr_fix
+ 1, size
,
10486 fragP
->fr_offset
, 1,
10491 BAD_CASE (fragP
->fr_subtype
);
10495 return fragP
->fr_fix
- old_fr_fix
;
10498 /* Guess size depending on current relax state. Initially the relax
10499 state will correspond to a short jump and we return 1, because
10500 the variable part of the frag (the branch offset) is one byte
10501 long. However, we can relax a section more than once and in that
10502 case we must either set fr_subtype back to the unrelaxed state,
10503 or return the value for the appropriate branch. */
10504 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
10507 /* Called after relax() is finished.
10509 In: Address of frag.
10510 fr_type == rs_machine_dependent.
10511 fr_subtype is what the address relaxed to.
10513 Out: Any fixSs and constants are set up.
10514 Caller will turn frag into a ".space 0". */
10517 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, segT sec ATTRIBUTE_UNUSED
,
10520 unsigned char *opcode
;
10521 unsigned char *where_to_put_displacement
= NULL
;
10522 offsetT target_address
;
10523 offsetT opcode_address
;
10524 unsigned int extension
= 0;
10525 offsetT displacement_from_opcode_start
;
10527 opcode
= (unsigned char *) fragP
->fr_opcode
;
10529 /* Address we want to reach in file space. */
10530 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
10532 /* Address opcode resides at in file space. */
10533 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
10535 /* Displacement from opcode start to fill into instruction. */
10536 displacement_from_opcode_start
= target_address
- opcode_address
;
10538 if ((fragP
->fr_subtype
& BIG
) == 0)
10540 /* Don't have to change opcode. */
10541 extension
= 1; /* 1 opcode + 1 displacement */
10542 where_to_put_displacement
= &opcode
[1];
10546 if (no_cond_jump_promotion
10547 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
10548 as_warn_where (fragP
->fr_file
, fragP
->fr_line
,
10549 _("long jump required"));
10551 switch (fragP
->fr_subtype
)
10553 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
10554 extension
= 4; /* 1 opcode + 4 displacement */
10556 where_to_put_displacement
= &opcode
[1];
10559 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
10560 extension
= 2; /* 1 opcode + 2 displacement */
10562 where_to_put_displacement
= &opcode
[1];
10565 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
10566 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
10567 extension
= 5; /* 2 opcode + 4 displacement */
10568 opcode
[1] = opcode
[0] + 0x10;
10569 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
10570 where_to_put_displacement
= &opcode
[2];
10573 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
10574 extension
= 3; /* 2 opcode + 2 displacement */
10575 opcode
[1] = opcode
[0] + 0x10;
10576 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
10577 where_to_put_displacement
= &opcode
[2];
10580 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
10585 where_to_put_displacement
= &opcode
[3];
10589 BAD_CASE (fragP
->fr_subtype
);
10594 /* If size if less then four we are sure that the operand fits,
10595 but if it's 4, then it could be that the displacement is larger
10597 if (DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
) == 4
10599 && ((addressT
) (displacement_from_opcode_start
- extension
10600 + ((addressT
) 1 << 31))
10601 > (((addressT
) 2 << 31) - 1)))
10603 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
10604 _("jump target out of range"));
10605 /* Make us emit 0. */
10606 displacement_from_opcode_start
= extension
;
10608 /* Now put displacement after opcode. */
10609 md_number_to_chars ((char *) where_to_put_displacement
,
10610 (valueT
) (displacement_from_opcode_start
- extension
),
10611 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
10612 fragP
->fr_fix
+= extension
;
10615 /* Apply a fixup (fixP) to segment data, once it has been determined
10616 by our caller that we have all the info we need to fix it up.
10618 Parameter valP is the pointer to the value of the bits.
10620 On the 386, immediates, displacements, and data pointers are all in
10621 the same (little-endian) format, so we don't need to care about which
10622 we are handling. */
10625 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
10627 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
10628 valueT value
= *valP
;
10630 #if !defined (TE_Mach)
10631 if (fixP
->fx_pcrel
)
10633 switch (fixP
->fx_r_type
)
10639 fixP
->fx_r_type
= BFD_RELOC_64_PCREL
;
10642 case BFD_RELOC_X86_64_32S
:
10643 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
10646 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
10649 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
10654 if (fixP
->fx_addsy
!= NULL
10655 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
10656 || fixP
->fx_r_type
== BFD_RELOC_64_PCREL
10657 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
10658 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
10659 && !use_rela_relocations
)
10661 /* This is a hack. There should be a better way to handle this.
10662 This covers for the fact that bfd_install_relocation will
10663 subtract the current location (for partial_inplace, PC relative
10664 relocations); see more below. */
10668 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
10671 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
10673 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10676 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
10678 if ((sym_seg
== seg
10679 || (symbol_section_p (fixP
->fx_addsy
)
10680 && sym_seg
!= absolute_section
))
10681 && !generic_force_reloc (fixP
))
10683 /* Yes, we add the values in twice. This is because
10684 bfd_install_relocation subtracts them out again. I think
10685 bfd_install_relocation is broken, but I don't dare change
10687 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
10691 #if defined (OBJ_COFF) && defined (TE_PE)
10692 /* For some reason, the PE format does not store a
10693 section address offset for a PC relative symbol. */
10694 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
10695 || S_IS_WEAK (fixP
->fx_addsy
))
10696 value
+= md_pcrel_from (fixP
);
10699 #if defined (OBJ_COFF) && defined (TE_PE)
10700 if (fixP
->fx_addsy
!= NULL
10701 && S_IS_WEAK (fixP
->fx_addsy
)
10702 /* PR 16858: Do not modify weak function references. */
10703 && ! fixP
->fx_pcrel
)
10705 #if !defined (TE_PEP)
10706 /* For x86 PE weak function symbols are neither PC-relative
10707 nor do they set S_IS_FUNCTION. So the only reliable way
10708 to detect them is to check the flags of their containing
10710 if (S_GET_SEGMENT (fixP
->fx_addsy
) != NULL
10711 && S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_CODE
)
10715 value
-= S_GET_VALUE (fixP
->fx_addsy
);
10719 /* Fix a few things - the dynamic linker expects certain values here,
10720 and we must not disappoint it. */
10721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10722 if (IS_ELF
&& fixP
->fx_addsy
)
10723 switch (fixP
->fx_r_type
)
10725 case BFD_RELOC_386_PLT32
:
10726 case BFD_RELOC_X86_64_PLT32
:
10727 /* Make the jump instruction point to the address of the operand.
10728 At runtime we merely add the offset to the actual PLT entry.
10729 NB: Subtract the offset size only for jump instructions. */
10730 if (fixP
->fx_pcrel
)
10734 case BFD_RELOC_386_TLS_GD
:
10735 case BFD_RELOC_386_TLS_LDM
:
10736 case BFD_RELOC_386_TLS_IE_32
:
10737 case BFD_RELOC_386_TLS_IE
:
10738 case BFD_RELOC_386_TLS_GOTIE
:
10739 case BFD_RELOC_386_TLS_GOTDESC
:
10740 case BFD_RELOC_X86_64_TLSGD
:
10741 case BFD_RELOC_X86_64_TLSLD
:
10742 case BFD_RELOC_X86_64_GOTTPOFF
:
10743 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
10744 value
= 0; /* Fully resolved at runtime. No addend. */
10746 case BFD_RELOC_386_TLS_LE
:
10747 case BFD_RELOC_386_TLS_LDO_32
:
10748 case BFD_RELOC_386_TLS_LE_32
:
10749 case BFD_RELOC_X86_64_DTPOFF32
:
10750 case BFD_RELOC_X86_64_DTPOFF64
:
10751 case BFD_RELOC_X86_64_TPOFF32
:
10752 case BFD_RELOC_X86_64_TPOFF64
:
10753 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
10756 case BFD_RELOC_386_TLS_DESC_CALL
:
10757 case BFD_RELOC_X86_64_TLSDESC_CALL
:
10758 value
= 0; /* Fully resolved at runtime. No addend. */
10759 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
10763 case BFD_RELOC_VTABLE_INHERIT
:
10764 case BFD_RELOC_VTABLE_ENTRY
:
10771 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10773 #endif /* !defined (TE_Mach) */
10775 /* Are we finished with this relocation now? */
10776 if (fixP
->fx_addsy
== NULL
)
10778 #if defined (OBJ_COFF) && defined (TE_PE)
10779 else if (fixP
->fx_addsy
!= NULL
&& S_IS_WEAK (fixP
->fx_addsy
))
10782 /* Remember value for tc_gen_reloc. */
10783 fixP
->fx_addnumber
= value
;
10784 /* Clear out the frag for now. */
10788 else if (use_rela_relocations
)
10790 fixP
->fx_no_overflow
= 1;
10791 /* Remember value for tc_gen_reloc. */
10792 fixP
->fx_addnumber
= value
;
10796 md_number_to_chars (p
, value
, fixP
->fx_size
);
10800 md_atof (int type
, char *litP
, int *sizeP
)
10802 /* This outputs the LITTLENUMs in REVERSE order;
10803 in accord with the bigendian 386. */
10804 return ieee_md_atof (type
, litP
, sizeP
, FALSE
);
10807 static char output_invalid_buf
[sizeof (unsigned char) * 2 + 6];
10810 output_invalid (int c
)
10813 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
10816 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
10817 "(0x%x)", (unsigned char) c
);
10818 return output_invalid_buf
;
10821 /* REG_STRING starts *before* REGISTER_PREFIX. */
10823 static const reg_entry
*
10824 parse_real_register (char *reg_string
, char **end_op
)
10826 char *s
= reg_string
;
10828 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
10829 const reg_entry
*r
;
10831 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10832 if (*s
== REGISTER_PREFIX
)
10835 if (is_space_char (*s
))
10838 p
= reg_name_given
;
10839 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
10841 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
10842 return (const reg_entry
*) NULL
;
10846 /* For naked regs, make sure that we are not dealing with an identifier.
10847 This prevents confusing an identifier like `eax_var' with register
10849 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
10850 return (const reg_entry
*) NULL
;
10854 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
10856 /* Handle floating point regs, allowing spaces in the (i) part. */
10857 if (r
== i386_regtab
/* %st is first entry of table */)
10859 if (!cpu_arch_flags
.bitfield
.cpu8087
10860 && !cpu_arch_flags
.bitfield
.cpu287
10861 && !cpu_arch_flags
.bitfield
.cpu387
)
10862 return (const reg_entry
*) NULL
;
10864 if (is_space_char (*s
))
10869 if (is_space_char (*s
))
10871 if (*s
>= '0' && *s
<= '7')
10873 int fpr
= *s
- '0';
10875 if (is_space_char (*s
))
10880 r
= (const reg_entry
*) hash_find (reg_hash
, "st(0)");
10885 /* We have "%st(" then garbage. */
10886 return (const reg_entry
*) NULL
;
10890 if (r
== NULL
|| allow_pseudo_reg
)
10893 if (operand_type_all_zero (&r
->reg_type
))
10894 return (const reg_entry
*) NULL
;
10896 if ((r
->reg_type
.bitfield
.dword
10897 || (r
->reg_type
.bitfield
.sreg
&& r
->reg_num
> 3)
10898 || r
->reg_type
.bitfield
.control
10899 || r
->reg_type
.bitfield
.debug
10900 || r
->reg_type
.bitfield
.test
)
10901 && !cpu_arch_flags
.bitfield
.cpui386
)
10902 return (const reg_entry
*) NULL
;
10904 if (r
->reg_type
.bitfield
.regmmx
&& !cpu_arch_flags
.bitfield
.cpummx
)
10905 return (const reg_entry
*) NULL
;
10907 if (!cpu_arch_flags
.bitfield
.cpuavx512f
)
10909 if (r
->reg_type
.bitfield
.zmmword
|| r
->reg_type
.bitfield
.regmask
)
10910 return (const reg_entry
*) NULL
;
10912 if (!cpu_arch_flags
.bitfield
.cpuavx
)
10914 if (r
->reg_type
.bitfield
.ymmword
)
10915 return (const reg_entry
*) NULL
;
10917 if (!cpu_arch_flags
.bitfield
.cpusse
&& r
->reg_type
.bitfield
.xmmword
)
10918 return (const reg_entry
*) NULL
;
10922 if (r
->reg_type
.bitfield
.regbnd
&& !cpu_arch_flags
.bitfield
.cpumpx
)
10923 return (const reg_entry
*) NULL
;
10925 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10926 if (!allow_index_reg
&& r
->reg_num
== RegIZ
)
10927 return (const reg_entry
*) NULL
;
10929 /* Upper 16 vector registers are only available with VREX in 64bit
10930 mode, and require EVEX encoding. */
10931 if (r
->reg_flags
& RegVRex
)
10933 if (!cpu_arch_flags
.bitfield
.cpuavx512f
10934 || flag_code
!= CODE_64BIT
)
10935 return (const reg_entry
*) NULL
;
10937 i
.vec_encoding
= vex_encoding_evex
;
10940 if (((r
->reg_flags
& (RegRex64
| RegRex
)) || r
->reg_type
.bitfield
.qword
)
10941 && (!cpu_arch_flags
.bitfield
.cpulm
|| !r
->reg_type
.bitfield
.control
)
10942 && flag_code
!= CODE_64BIT
)
10943 return (const reg_entry
*) NULL
;
10945 if (r
->reg_type
.bitfield
.sreg
&& r
->reg_num
== RegFlat
&& !intel_syntax
)
10946 return (const reg_entry
*) NULL
;
10951 /* REG_STRING starts *before* REGISTER_PREFIX. */
10953 static const reg_entry
*
10954 parse_register (char *reg_string
, char **end_op
)
10956 const reg_entry
*r
;
10958 if (*reg_string
== REGISTER_PREFIX
|| allow_naked_reg
)
10959 r
= parse_real_register (reg_string
, end_op
);
10964 char *save
= input_line_pointer
;
10968 input_line_pointer
= reg_string
;
10969 c
= get_symbol_name (®_string
);
10970 symbolP
= symbol_find (reg_string
);
10971 if (symbolP
&& S_GET_SEGMENT (symbolP
) == reg_section
)
10973 const expressionS
*e
= symbol_get_value_expression (symbolP
);
10975 know (e
->X_op
== O_register
);
10976 know (e
->X_add_number
>= 0
10977 && (valueT
) e
->X_add_number
< i386_regtab_size
);
10978 r
= i386_regtab
+ e
->X_add_number
;
10979 if ((r
->reg_flags
& RegVRex
))
10980 i
.vec_encoding
= vex_encoding_evex
;
10981 *end_op
= input_line_pointer
;
10983 *input_line_pointer
= c
;
10984 input_line_pointer
= save
;
10990 i386_parse_name (char *name
, expressionS
*e
, char *nextcharP
)
10992 const reg_entry
*r
;
10993 char *end
= input_line_pointer
;
10996 r
= parse_register (name
, &input_line_pointer
);
10997 if (r
&& end
<= input_line_pointer
)
10999 *nextcharP
= *input_line_pointer
;
11000 *input_line_pointer
= 0;
11001 e
->X_op
= O_register
;
11002 e
->X_add_number
= r
- i386_regtab
;
11005 input_line_pointer
= end
;
11007 return intel_syntax
? i386_intel_parse_name (name
, e
) : 0;
11011 md_operand (expressionS
*e
)
11014 const reg_entry
*r
;
11016 switch (*input_line_pointer
)
11018 case REGISTER_PREFIX
:
11019 r
= parse_real_register (input_line_pointer
, &end
);
11022 e
->X_op
= O_register
;
11023 e
->X_add_number
= r
- i386_regtab
;
11024 input_line_pointer
= end
;
11029 gas_assert (intel_syntax
);
11030 end
= input_line_pointer
++;
11032 if (*input_line_pointer
== ']')
11034 ++input_line_pointer
;
11035 e
->X_op_symbol
= make_expr_symbol (e
);
11036 e
->X_add_symbol
= NULL
;
11037 e
->X_add_number
= 0;
11042 e
->X_op
= O_absent
;
11043 input_line_pointer
= end
;
11050 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11051 const char *md_shortopts
= "kVQ:sqnO::";
11053 const char *md_shortopts
= "qnO::";
11056 #define OPTION_32 (OPTION_MD_BASE + 0)
11057 #define OPTION_64 (OPTION_MD_BASE + 1)
11058 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11059 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11060 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11061 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11062 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11063 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11064 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11065 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11066 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11067 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11068 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11069 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11070 #define OPTION_X32 (OPTION_MD_BASE + 14)
11071 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11072 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11073 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11074 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11075 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11076 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11077 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11078 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11079 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11080 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11081 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11082 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11084 struct option md_longopts
[] =
11086 {"32", no_argument
, NULL
, OPTION_32
},
11087 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11088 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11089 {"64", no_argument
, NULL
, OPTION_64
},
11091 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11092 {"x32", no_argument
, NULL
, OPTION_X32
},
11093 {"mshared", no_argument
, NULL
, OPTION_MSHARED
},
11094 {"mx86-used-note", required_argument
, NULL
, OPTION_X86_USED_NOTE
},
11096 {"divide", no_argument
, NULL
, OPTION_DIVIDE
},
11097 {"march", required_argument
, NULL
, OPTION_MARCH
},
11098 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
11099 {"mmnemonic", required_argument
, NULL
, OPTION_MMNEMONIC
},
11100 {"msyntax", required_argument
, NULL
, OPTION_MSYNTAX
},
11101 {"mindex-reg", no_argument
, NULL
, OPTION_MINDEX_REG
},
11102 {"mnaked-reg", no_argument
, NULL
, OPTION_MNAKED_REG
},
11103 {"msse2avx", no_argument
, NULL
, OPTION_MSSE2AVX
},
11104 {"msse-check", required_argument
, NULL
, OPTION_MSSE_CHECK
},
11105 {"moperand-check", required_argument
, NULL
, OPTION_MOPERAND_CHECK
},
11106 {"mavxscalar", required_argument
, NULL
, OPTION_MAVXSCALAR
},
11107 {"mvexwig", required_argument
, NULL
, OPTION_MVEXWIG
},
11108 {"madd-bnd-prefix", no_argument
, NULL
, OPTION_MADD_BND_PREFIX
},
11109 {"mevexlig", required_argument
, NULL
, OPTION_MEVEXLIG
},
11110 {"mevexwig", required_argument
, NULL
, OPTION_MEVEXWIG
},
11111 # if defined (TE_PE) || defined (TE_PEP)
11112 {"mbig-obj", no_argument
, NULL
, OPTION_MBIG_OBJ
},
11114 {"momit-lock-prefix", required_argument
, NULL
, OPTION_MOMIT_LOCK_PREFIX
},
11115 {"mfence-as-lock-add", required_argument
, NULL
, OPTION_MFENCE_AS_LOCK_ADD
},
11116 {"mrelax-relocations", required_argument
, NULL
, OPTION_MRELAX_RELOCATIONS
},
11117 {"mevexrcig", required_argument
, NULL
, OPTION_MEVEXRCIG
},
11118 {"mamd64", no_argument
, NULL
, OPTION_MAMD64
},
11119 {"mintel64", no_argument
, NULL
, OPTION_MINTEL64
},
11120 {NULL
, no_argument
, NULL
, 0}
11122 size_t md_longopts_size
= sizeof (md_longopts
);
11125 md_parse_option (int c
, const char *arg
)
11128 char *arch
, *next
, *saved
;
11133 optimize_align_code
= 0;
11137 quiet_warnings
= 1;
11140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11141 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11142 should be emitted or not. FIXME: Not implemented. */
11144 if ((arg
[0] != 'y' && arg
[0] != 'n') || arg
[1])
11148 /* -V: SVR4 argument to print version ID. */
11150 print_version_id ();
11153 /* -k: Ignore for FreeBSD compatibility. */
11158 /* -s: On i386 Solaris, this tells the native assembler to use
11159 .stab instead of .stab.excl. We always use .stab anyhow. */
11162 case OPTION_MSHARED
:
11166 case OPTION_X86_USED_NOTE
:
11167 if (strcasecmp (arg
, "yes") == 0)
11169 else if (strcasecmp (arg
, "no") == 0)
11172 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg
);
11177 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11178 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11181 const char **list
, **l
;
11183 list
= bfd_target_list ();
11184 for (l
= list
; *l
!= NULL
; l
++)
11185 if (CONST_STRNEQ (*l
, "elf64-x86-64")
11186 || strcmp (*l
, "coff-x86-64") == 0
11187 || strcmp (*l
, "pe-x86-64") == 0
11188 || strcmp (*l
, "pei-x86-64") == 0
11189 || strcmp (*l
, "mach-o-x86-64") == 0)
11191 default_arch
= "x86_64";
11195 as_fatal (_("no compiled in support for x86_64"));
11201 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11205 const char **list
, **l
;
11207 list
= bfd_target_list ();
11208 for (l
= list
; *l
!= NULL
; l
++)
11209 if (CONST_STRNEQ (*l
, "elf32-x86-64"))
11211 default_arch
= "x86_64:32";
11215 as_fatal (_("no compiled in support for 32bit x86_64"));
11219 as_fatal (_("32bit x86_64 is only supported for ELF"));
11224 default_arch
= "i386";
11227 case OPTION_DIVIDE
:
11228 #ifdef SVR4_COMMENT_CHARS
11233 n
= XNEWVEC (char, strlen (i386_comment_chars
) + 1);
11235 for (s
= i386_comment_chars
; *s
!= '\0'; s
++)
11239 i386_comment_chars
= n
;
11245 saved
= xstrdup (arg
);
11247 /* Allow -march=+nosse. */
11253 as_fatal (_("invalid -march= option: `%s'"), arg
);
11254 next
= strchr (arch
, '+');
11257 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
11259 if (strcmp (arch
, cpu_arch
[j
].name
) == 0)
11262 if (! cpu_arch
[j
].flags
.bitfield
.cpui386
)
11265 cpu_arch_name
= cpu_arch
[j
].name
;
11266 cpu_sub_arch_name
= NULL
;
11267 cpu_arch_flags
= cpu_arch
[j
].flags
;
11268 cpu_arch_isa
= cpu_arch
[j
].type
;
11269 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
11270 if (!cpu_arch_tune_set
)
11272 cpu_arch_tune
= cpu_arch_isa
;
11273 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
11277 else if (*cpu_arch
[j
].name
== '.'
11278 && strcmp (arch
, cpu_arch
[j
].name
+ 1) == 0)
11280 /* ISA extension. */
11281 i386_cpu_flags flags
;
11283 flags
= cpu_flags_or (cpu_arch_flags
,
11284 cpu_arch
[j
].flags
);
11286 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
11288 if (cpu_sub_arch_name
)
11290 char *name
= cpu_sub_arch_name
;
11291 cpu_sub_arch_name
= concat (name
,
11293 (const char *) NULL
);
11297 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
11298 cpu_arch_flags
= flags
;
11299 cpu_arch_isa_flags
= flags
;
11303 = cpu_flags_or (cpu_arch_isa_flags
,
11304 cpu_arch
[j
].flags
);
11309 if (j
>= ARRAY_SIZE (cpu_arch
))
11311 /* Disable an ISA extension. */
11312 for (j
= 0; j
< ARRAY_SIZE (cpu_noarch
); j
++)
11313 if (strcmp (arch
, cpu_noarch
[j
].name
) == 0)
11315 i386_cpu_flags flags
;
11317 flags
= cpu_flags_and_not (cpu_arch_flags
,
11318 cpu_noarch
[j
].flags
);
11319 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
11321 if (cpu_sub_arch_name
)
11323 char *name
= cpu_sub_arch_name
;
11324 cpu_sub_arch_name
= concat (arch
,
11325 (const char *) NULL
);
11329 cpu_sub_arch_name
= xstrdup (arch
);
11330 cpu_arch_flags
= flags
;
11331 cpu_arch_isa_flags
= flags
;
11336 if (j
>= ARRAY_SIZE (cpu_noarch
))
11337 j
= ARRAY_SIZE (cpu_arch
);
11340 if (j
>= ARRAY_SIZE (cpu_arch
))
11341 as_fatal (_("invalid -march= option: `%s'"), arg
);
11345 while (next
!= NULL
);
11351 as_fatal (_("invalid -mtune= option: `%s'"), arg
);
11352 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
11354 if (strcmp (arg
, cpu_arch
[j
].name
) == 0)
11356 cpu_arch_tune_set
= 1;
11357 cpu_arch_tune
= cpu_arch
[j
].type
;
11358 cpu_arch_tune_flags
= cpu_arch
[j
].flags
;
11362 if (j
>= ARRAY_SIZE (cpu_arch
))
11363 as_fatal (_("invalid -mtune= option: `%s'"), arg
);
11366 case OPTION_MMNEMONIC
:
11367 if (strcasecmp (arg
, "att") == 0)
11368 intel_mnemonic
= 0;
11369 else if (strcasecmp (arg
, "intel") == 0)
11370 intel_mnemonic
= 1;
11372 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg
);
11375 case OPTION_MSYNTAX
:
11376 if (strcasecmp (arg
, "att") == 0)
11378 else if (strcasecmp (arg
, "intel") == 0)
11381 as_fatal (_("invalid -msyntax= option: `%s'"), arg
);
11384 case OPTION_MINDEX_REG
:
11385 allow_index_reg
= 1;
11388 case OPTION_MNAKED_REG
:
11389 allow_naked_reg
= 1;
11392 case OPTION_MSSE2AVX
:
11396 case OPTION_MSSE_CHECK
:
11397 if (strcasecmp (arg
, "error") == 0)
11398 sse_check
= check_error
;
11399 else if (strcasecmp (arg
, "warning") == 0)
11400 sse_check
= check_warning
;
11401 else if (strcasecmp (arg
, "none") == 0)
11402 sse_check
= check_none
;
11404 as_fatal (_("invalid -msse-check= option: `%s'"), arg
);
11407 case OPTION_MOPERAND_CHECK
:
11408 if (strcasecmp (arg
, "error") == 0)
11409 operand_check
= check_error
;
11410 else if (strcasecmp (arg
, "warning") == 0)
11411 operand_check
= check_warning
;
11412 else if (strcasecmp (arg
, "none") == 0)
11413 operand_check
= check_none
;
11415 as_fatal (_("invalid -moperand-check= option: `%s'"), arg
);
11418 case OPTION_MAVXSCALAR
:
11419 if (strcasecmp (arg
, "128") == 0)
11420 avxscalar
= vex128
;
11421 else if (strcasecmp (arg
, "256") == 0)
11422 avxscalar
= vex256
;
11424 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg
);
11427 case OPTION_MVEXWIG
:
11428 if (strcmp (arg
, "0") == 0)
11430 else if (strcmp (arg
, "1") == 0)
11433 as_fatal (_("invalid -mvexwig= option: `%s'"), arg
);
11436 case OPTION_MADD_BND_PREFIX
:
11437 add_bnd_prefix
= 1;
11440 case OPTION_MEVEXLIG
:
11441 if (strcmp (arg
, "128") == 0)
11442 evexlig
= evexl128
;
11443 else if (strcmp (arg
, "256") == 0)
11444 evexlig
= evexl256
;
11445 else if (strcmp (arg
, "512") == 0)
11446 evexlig
= evexl512
;
11448 as_fatal (_("invalid -mevexlig= option: `%s'"), arg
);
11451 case OPTION_MEVEXRCIG
:
11452 if (strcmp (arg
, "rne") == 0)
11454 else if (strcmp (arg
, "rd") == 0)
11456 else if (strcmp (arg
, "ru") == 0)
11458 else if (strcmp (arg
, "rz") == 0)
11461 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg
);
11464 case OPTION_MEVEXWIG
:
11465 if (strcmp (arg
, "0") == 0)
11467 else if (strcmp (arg
, "1") == 0)
11470 as_fatal (_("invalid -mevexwig= option: `%s'"), arg
);
11473 # if defined (TE_PE) || defined (TE_PEP)
11474 case OPTION_MBIG_OBJ
:
11479 case OPTION_MOMIT_LOCK_PREFIX
:
11480 if (strcasecmp (arg
, "yes") == 0)
11481 omit_lock_prefix
= 1;
11482 else if (strcasecmp (arg
, "no") == 0)
11483 omit_lock_prefix
= 0;
11485 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg
);
11488 case OPTION_MFENCE_AS_LOCK_ADD
:
11489 if (strcasecmp (arg
, "yes") == 0)
11491 else if (strcasecmp (arg
, "no") == 0)
11494 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg
);
11497 case OPTION_MRELAX_RELOCATIONS
:
11498 if (strcasecmp (arg
, "yes") == 0)
11499 generate_relax_relocations
= 1;
11500 else if (strcasecmp (arg
, "no") == 0)
11501 generate_relax_relocations
= 0;
11503 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg
);
11506 case OPTION_MAMD64
:
11510 case OPTION_MINTEL64
:
11518 /* Turn off -Os. */
11519 optimize_for_space
= 0;
11521 else if (*arg
== 's')
11523 optimize_for_space
= 1;
11524 /* Turn on all encoding optimizations. */
11525 optimize
= INT_MAX
;
11529 optimize
= atoi (arg
);
11530 /* Turn off -Os. */
11531 optimize_for_space
= 0;
11541 #define MESSAGE_TEMPLATE \
11545 output_message (FILE *stream
, char *p
, char *message
, char *start
,
11546 int *left_p
, const char *name
, int len
)
11548 int size
= sizeof (MESSAGE_TEMPLATE
);
11549 int left
= *left_p
;
11551 /* Reserve 2 spaces for ", " or ",\0" */
11554 /* Check if there is any room. */
11562 p
= mempcpy (p
, name
, len
);
11566 /* Output the current message now and start a new one. */
11569 fprintf (stream
, "%s\n", message
);
11571 left
= size
- (start
- message
) - len
- 2;
11573 gas_assert (left
>= 0);
11575 p
= mempcpy (p
, name
, len
);
11583 show_arch (FILE *stream
, int ext
, int check
)
11585 static char message
[] = MESSAGE_TEMPLATE
;
11586 char *start
= message
+ 27;
11588 int size
= sizeof (MESSAGE_TEMPLATE
);
11595 left
= size
- (start
- message
);
11596 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
11598 /* Should it be skipped? */
11599 if (cpu_arch
[j
].skip
)
11602 name
= cpu_arch
[j
].name
;
11603 len
= cpu_arch
[j
].len
;
11606 /* It is an extension. Skip if we aren't asked to show it. */
11617 /* It is an processor. Skip if we show only extension. */
11620 else if (check
&& ! cpu_arch
[j
].flags
.bitfield
.cpui386
)
11622 /* It is an impossible processor - skip. */
11626 p
= output_message (stream
, p
, message
, start
, &left
, name
, len
);
11629 /* Display disabled extensions. */
11631 for (j
= 0; j
< ARRAY_SIZE (cpu_noarch
); j
++)
11633 name
= cpu_noarch
[j
].name
;
11634 len
= cpu_noarch
[j
].len
;
11635 p
= output_message (stream
, p
, message
, start
, &left
, name
,
11640 fprintf (stream
, "%s\n", message
);
11644 md_show_usage (FILE *stream
)
11646 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11647 fprintf (stream
, _("\
11648 -Qy, -Qn ignored\n\
11649 -V print assembler version number\n\
11652 fprintf (stream
, _("\
11653 -n Do not optimize code alignment\n\
11654 -q quieten some warnings\n"));
11655 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11656 fprintf (stream
, _("\
11659 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11660 || defined (TE_PE) || defined (TE_PEP))
11661 fprintf (stream
, _("\
11662 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11664 #ifdef SVR4_COMMENT_CHARS
11665 fprintf (stream
, _("\
11666 --divide do not treat `/' as a comment character\n"));
11668 fprintf (stream
, _("\
11669 --divide ignored\n"));
11671 fprintf (stream
, _("\
11672 -march=CPU[,+EXTENSION...]\n\
11673 generate code for CPU and EXTENSION, CPU is one of:\n"));
11674 show_arch (stream
, 0, 1);
11675 fprintf (stream
, _("\
11676 EXTENSION is combination of:\n"));
11677 show_arch (stream
, 1, 0);
11678 fprintf (stream
, _("\
11679 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11680 show_arch (stream
, 0, 0);
11681 fprintf (stream
, _("\
11682 -msse2avx encode SSE instructions with VEX prefix\n"));
11683 fprintf (stream
, _("\
11684 -msse-check=[none|error|warning] (default: warning)\n\
11685 check SSE instructions\n"));
11686 fprintf (stream
, _("\
11687 -moperand-check=[none|error|warning] (default: warning)\n\
11688 check operand combinations for validity\n"));
11689 fprintf (stream
, _("\
11690 -mavxscalar=[128|256] (default: 128)\n\
11691 encode scalar AVX instructions with specific vector\n\
11693 fprintf (stream
, _("\
11694 -mvexwig=[0|1] (default: 0)\n\
11695 encode VEX instructions with specific VEX.W value\n\
11696 for VEX.W bit ignored instructions\n"));
11697 fprintf (stream
, _("\
11698 -mevexlig=[128|256|512] (default: 128)\n\
11699 encode scalar EVEX instructions with specific vector\n\
11701 fprintf (stream
, _("\
11702 -mevexwig=[0|1] (default: 0)\n\
11703 encode EVEX instructions with specific EVEX.W value\n\
11704 for EVEX.W bit ignored instructions\n"));
11705 fprintf (stream
, _("\
11706 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11707 encode EVEX instructions with specific EVEX.RC value\n\
11708 for SAE-only ignored instructions\n"));
11709 fprintf (stream
, _("\
11710 -mmnemonic=[att|intel] "));
11711 if (SYSV386_COMPAT
)
11712 fprintf (stream
, _("(default: att)\n"));
11714 fprintf (stream
, _("(default: intel)\n"));
11715 fprintf (stream
, _("\
11716 use AT&T/Intel mnemonic\n"));
11717 fprintf (stream
, _("\
11718 -msyntax=[att|intel] (default: att)\n\
11719 use AT&T/Intel syntax\n"));
11720 fprintf (stream
, _("\
11721 -mindex-reg support pseudo index registers\n"));
11722 fprintf (stream
, _("\
11723 -mnaked-reg don't require `%%' prefix for registers\n"));
11724 fprintf (stream
, _("\
11725 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11726 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11727 fprintf (stream
, _("\
11728 -mshared disable branch optimization for shared code\n"));
11729 fprintf (stream
, _("\
11730 -mx86-used-note=[no|yes] "));
11731 if (DEFAULT_X86_USED_NOTE
)
11732 fprintf (stream
, _("(default: yes)\n"));
11734 fprintf (stream
, _("(default: no)\n"));
11735 fprintf (stream
, _("\
11736 generate x86 used ISA and feature properties\n"));
11738 #if defined (TE_PE) || defined (TE_PEP)
11739 fprintf (stream
, _("\
11740 -mbig-obj generate big object files\n"));
11742 fprintf (stream
, _("\
11743 -momit-lock-prefix=[no|yes] (default: no)\n\
11744 strip all lock prefixes\n"));
11745 fprintf (stream
, _("\
11746 -mfence-as-lock-add=[no|yes] (default: no)\n\
11747 encode lfence, mfence and sfence as\n\
11748 lock addl $0x0, (%%{re}sp)\n"));
11749 fprintf (stream
, _("\
11750 -mrelax-relocations=[no|yes] "));
11751 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS
)
11752 fprintf (stream
, _("(default: yes)\n"));
11754 fprintf (stream
, _("(default: no)\n"));
11755 fprintf (stream
, _("\
11756 generate relax relocations\n"));
11757 fprintf (stream
, _("\
11758 -mamd64 accept only AMD64 ISA [default]\n"));
11759 fprintf (stream
, _("\
11760 -mintel64 accept only Intel64 ISA\n"));
11763 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11764 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11765 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11767 /* Pick the target format to use. */
11770 i386_target_format (void)
11772 if (!strncmp (default_arch
, "x86_64", 6))
11774 update_code_flag (CODE_64BIT
, 1);
11775 if (default_arch
[6] == '\0')
11776 x86_elf_abi
= X86_64_ABI
;
11778 x86_elf_abi
= X86_64_X32_ABI
;
11780 else if (!strcmp (default_arch
, "i386"))
11781 update_code_flag (CODE_32BIT
, 1);
11782 else if (!strcmp (default_arch
, "iamcu"))
11784 update_code_flag (CODE_32BIT
, 1);
11785 if (cpu_arch_isa
== PROCESSOR_UNKNOWN
)
11787 static const i386_cpu_flags iamcu_flags
= CPU_IAMCU_FLAGS
;
11788 cpu_arch_name
= "iamcu";
11789 cpu_sub_arch_name
= NULL
;
11790 cpu_arch_flags
= iamcu_flags
;
11791 cpu_arch_isa
= PROCESSOR_IAMCU
;
11792 cpu_arch_isa_flags
= iamcu_flags
;
11793 if (!cpu_arch_tune_set
)
11795 cpu_arch_tune
= cpu_arch_isa
;
11796 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
11799 else if (cpu_arch_isa
!= PROCESSOR_IAMCU
)
11800 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11804 as_fatal (_("unknown architecture"));
11806 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
11807 cpu_arch_isa_flags
= cpu_arch
[flag_code
== CODE_64BIT
].flags
;
11808 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
11809 cpu_arch_tune_flags
= cpu_arch
[flag_code
== CODE_64BIT
].flags
;
11811 switch (OUTPUT_FLAVOR
)
11813 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11814 case bfd_target_aout_flavour
:
11815 return AOUT_TARGET_FORMAT
;
11817 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11818 # if defined (TE_PE) || defined (TE_PEP)
11819 case bfd_target_coff_flavour
:
11820 if (flag_code
== CODE_64BIT
)
11821 return use_big_obj
? "pe-bigobj-x86-64" : "pe-x86-64";
11824 # elif defined (TE_GO32)
11825 case bfd_target_coff_flavour
:
11826 return "coff-go32";
11828 case bfd_target_coff_flavour
:
11829 return "coff-i386";
11832 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11833 case bfd_target_elf_flavour
:
11835 const char *format
;
11837 switch (x86_elf_abi
)
11840 format
= ELF_TARGET_FORMAT
;
11843 use_rela_relocations
= 1;
11845 format
= ELF_TARGET_FORMAT64
;
11847 case X86_64_X32_ABI
:
11848 use_rela_relocations
= 1;
11850 disallow_64bit_reloc
= 1;
11851 format
= ELF_TARGET_FORMAT32
;
11854 if (cpu_arch_isa
== PROCESSOR_L1OM
)
11856 if (x86_elf_abi
!= X86_64_ABI
)
11857 as_fatal (_("Intel L1OM is 64bit only"));
11858 return ELF_TARGET_L1OM_FORMAT
;
11860 else if (cpu_arch_isa
== PROCESSOR_K1OM
)
11862 if (x86_elf_abi
!= X86_64_ABI
)
11863 as_fatal (_("Intel K1OM is 64bit only"));
11864 return ELF_TARGET_K1OM_FORMAT
;
11866 else if (cpu_arch_isa
== PROCESSOR_IAMCU
)
11868 if (x86_elf_abi
!= I386_ABI
)
11869 as_fatal (_("Intel MCU is 32bit only"));
11870 return ELF_TARGET_IAMCU_FORMAT
;
11876 #if defined (OBJ_MACH_O)
11877 case bfd_target_mach_o_flavour
:
11878 if (flag_code
== CODE_64BIT
)
11880 use_rela_relocations
= 1;
11882 return "mach-o-x86-64";
11885 return "mach-o-i386";
11893 #endif /* OBJ_MAYBE_ more than one */
11896 md_undefined_symbol (char *name
)
11898 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
11899 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
11900 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
11901 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
11905 if (symbol_find (name
))
11906 as_bad (_("GOT already in symbol table"));
11907 GOT_symbol
= symbol_new (name
, undefined_section
,
11908 (valueT
) 0, &zero_address_frag
);
11915 /* Round up a section size to the appropriate boundary. */
11918 md_section_align (segT segment ATTRIBUTE_UNUSED
, valueT size
)
11920 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11921 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
11923 /* For a.out, force the section size to be aligned. If we don't do
11924 this, BFD will align it for us, but it will not write out the
11925 final bytes of the section. This may be a bug in BFD, but it is
11926 easier to fix it here since that is how the other a.out targets
11930 align
= bfd_get_section_alignment (stdoutput
, segment
);
11931 size
= ((size
+ (1 << align
) - 1) & (-((valueT
) 1 << align
)));
11938 /* On the i386, PC-relative offsets are relative to the start of the
11939 next instruction. That is, the address of the offset, plus its
11940 size, since the offset is always the last part of the insn. */
11943 md_pcrel_from (fixS
*fixP
)
11945 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
11951 s_bss (int ignore ATTRIBUTE_UNUSED
)
11955 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11957 obj_elf_section_change_hook ();
11959 temp
= get_absolute_expression ();
11960 subseg_set (bss_section
, (subsegT
) temp
);
11961 demand_empty_rest_of_line ();
11967 i386_validate_fix (fixS
*fixp
)
11969 if (fixp
->fx_subsy
)
11971 if (fixp
->fx_subsy
== GOT_symbol
)
11973 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
11977 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11978 if (fixp
->fx_tcbit2
)
11979 fixp
->fx_r_type
= (fixp
->fx_tcbit
11980 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11981 : BFD_RELOC_X86_64_GOTPCRELX
);
11984 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
11989 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
11991 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTOFF64
;
11993 fixp
->fx_subsy
= 0;
11996 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11997 else if (!object_64bit
)
11999 if (fixp
->fx_r_type
== BFD_RELOC_386_GOT32
12000 && fixp
->fx_tcbit2
)
12001 fixp
->fx_r_type
= BFD_RELOC_386_GOT32X
;
12007 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
*fixp
)
12010 bfd_reloc_code_real_type code
;
12012 switch (fixp
->fx_r_type
)
12014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12015 case BFD_RELOC_SIZE32
:
12016 case BFD_RELOC_SIZE64
:
12017 if (S_IS_DEFINED (fixp
->fx_addsy
)
12018 && !S_IS_EXTERNAL (fixp
->fx_addsy
))
12020 /* Resolve size relocation against local symbol to size of
12021 the symbol plus addend. */
12022 valueT value
= S_GET_SIZE (fixp
->fx_addsy
) + fixp
->fx_offset
;
12023 if (fixp
->fx_r_type
== BFD_RELOC_SIZE32
12024 && !fits_in_unsigned_long (value
))
12025 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
12026 _("symbol size computation overflow"));
12027 fixp
->fx_addsy
= NULL
;
12028 fixp
->fx_subsy
= NULL
;
12029 md_apply_fix (fixp
, (valueT
*) &value
, NULL
);
12033 /* Fall through. */
12035 case BFD_RELOC_X86_64_PLT32
:
12036 case BFD_RELOC_X86_64_GOT32
:
12037 case BFD_RELOC_X86_64_GOTPCREL
:
12038 case BFD_RELOC_X86_64_GOTPCRELX
:
12039 case BFD_RELOC_X86_64_REX_GOTPCRELX
:
12040 case BFD_RELOC_386_PLT32
:
12041 case BFD_RELOC_386_GOT32
:
12042 case BFD_RELOC_386_GOT32X
:
12043 case BFD_RELOC_386_GOTOFF
:
12044 case BFD_RELOC_386_GOTPC
:
12045 case BFD_RELOC_386_TLS_GD
:
12046 case BFD_RELOC_386_TLS_LDM
:
12047 case BFD_RELOC_386_TLS_LDO_32
:
12048 case BFD_RELOC_386_TLS_IE_32
:
12049 case BFD_RELOC_386_TLS_IE
:
12050 case BFD_RELOC_386_TLS_GOTIE
:
12051 case BFD_RELOC_386_TLS_LE_32
:
12052 case BFD_RELOC_386_TLS_LE
:
12053 case BFD_RELOC_386_TLS_GOTDESC
:
12054 case BFD_RELOC_386_TLS_DESC_CALL
:
12055 case BFD_RELOC_X86_64_TLSGD
:
12056 case BFD_RELOC_X86_64_TLSLD
:
12057 case BFD_RELOC_X86_64_DTPOFF32
:
12058 case BFD_RELOC_X86_64_DTPOFF64
:
12059 case BFD_RELOC_X86_64_GOTTPOFF
:
12060 case BFD_RELOC_X86_64_TPOFF32
:
12061 case BFD_RELOC_X86_64_TPOFF64
:
12062 case BFD_RELOC_X86_64_GOTOFF64
:
12063 case BFD_RELOC_X86_64_GOTPC32
:
12064 case BFD_RELOC_X86_64_GOT64
:
12065 case BFD_RELOC_X86_64_GOTPCREL64
:
12066 case BFD_RELOC_X86_64_GOTPC64
:
12067 case BFD_RELOC_X86_64_GOTPLT64
:
12068 case BFD_RELOC_X86_64_PLTOFF64
:
12069 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
12070 case BFD_RELOC_X86_64_TLSDESC_CALL
:
12071 case BFD_RELOC_RVA
:
12072 case BFD_RELOC_VTABLE_ENTRY
:
12073 case BFD_RELOC_VTABLE_INHERIT
:
12075 case BFD_RELOC_32_SECREL
:
12077 code
= fixp
->fx_r_type
;
12079 case BFD_RELOC_X86_64_32S
:
12080 if (!fixp
->fx_pcrel
)
12082 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12083 code
= fixp
->fx_r_type
;
12086 /* Fall through. */
12088 if (fixp
->fx_pcrel
)
12090 switch (fixp
->fx_size
)
12093 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
12094 _("can not do %d byte pc-relative relocation"),
12096 code
= BFD_RELOC_32_PCREL
;
12098 case 1: code
= BFD_RELOC_8_PCREL
; break;
12099 case 2: code
= BFD_RELOC_16_PCREL
; break;
12100 case 4: code
= BFD_RELOC_32_PCREL
; break;
12102 case 8: code
= BFD_RELOC_64_PCREL
; break;
12108 switch (fixp
->fx_size
)
12111 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
12112 _("can not do %d byte relocation"),
12114 code
= BFD_RELOC_32
;
12116 case 1: code
= BFD_RELOC_8
; break;
12117 case 2: code
= BFD_RELOC_16
; break;
12118 case 4: code
= BFD_RELOC_32
; break;
12120 case 8: code
= BFD_RELOC_64
; break;
12127 if ((code
== BFD_RELOC_32
12128 || code
== BFD_RELOC_32_PCREL
12129 || code
== BFD_RELOC_X86_64_32S
)
12131 && fixp
->fx_addsy
== GOT_symbol
)
12134 code
= BFD_RELOC_386_GOTPC
;
12136 code
= BFD_RELOC_X86_64_GOTPC32
;
12138 if ((code
== BFD_RELOC_64
|| code
== BFD_RELOC_64_PCREL
)
12140 && fixp
->fx_addsy
== GOT_symbol
)
12142 code
= BFD_RELOC_X86_64_GOTPC64
;
12145 rel
= XNEW (arelent
);
12146 rel
->sym_ptr_ptr
= XNEW (asymbol
*);
12147 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
12149 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
12151 if (!use_rela_relocations
)
12153 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12154 vtable entry to be used in the relocation's section offset. */
12155 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
12156 rel
->address
= fixp
->fx_offset
;
12157 #if defined (OBJ_COFF) && defined (TE_PE)
12158 else if (fixp
->fx_addsy
&& S_IS_WEAK (fixp
->fx_addsy
))
12159 rel
->addend
= fixp
->fx_addnumber
- (S_GET_VALUE (fixp
->fx_addsy
) * 2);
12164 /* Use the rela in 64bit mode. */
12167 if (disallow_64bit_reloc
)
12170 case BFD_RELOC_X86_64_DTPOFF64
:
12171 case BFD_RELOC_X86_64_TPOFF64
:
12172 case BFD_RELOC_64_PCREL
:
12173 case BFD_RELOC_X86_64_GOTOFF64
:
12174 case BFD_RELOC_X86_64_GOT64
:
12175 case BFD_RELOC_X86_64_GOTPCREL64
:
12176 case BFD_RELOC_X86_64_GOTPC64
:
12177 case BFD_RELOC_X86_64_GOTPLT64
:
12178 case BFD_RELOC_X86_64_PLTOFF64
:
12179 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
12180 _("cannot represent relocation type %s in x32 mode"),
12181 bfd_get_reloc_code_name (code
));
12187 if (!fixp
->fx_pcrel
)
12188 rel
->addend
= fixp
->fx_offset
;
12192 case BFD_RELOC_X86_64_PLT32
:
12193 case BFD_RELOC_X86_64_GOT32
:
12194 case BFD_RELOC_X86_64_GOTPCREL
:
12195 case BFD_RELOC_X86_64_GOTPCRELX
:
12196 case BFD_RELOC_X86_64_REX_GOTPCRELX
:
12197 case BFD_RELOC_X86_64_TLSGD
:
12198 case BFD_RELOC_X86_64_TLSLD
:
12199 case BFD_RELOC_X86_64_GOTTPOFF
:
12200 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
12201 case BFD_RELOC_X86_64_TLSDESC_CALL
:
12202 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
12205 rel
->addend
= (section
->vma
12207 + fixp
->fx_addnumber
12208 + md_pcrel_from (fixp
));
12213 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
12214 if (rel
->howto
== NULL
)
12216 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
12217 _("cannot represent relocation type %s"),
12218 bfd_get_reloc_code_name (code
));
12219 /* Set howto to a garbage value so that we can keep going. */
12220 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
12221 gas_assert (rel
->howto
!= NULL
);
12227 #include "tc-i386-intel.c"
12230 tc_x86_parse_to_dw2regnum (expressionS
*exp
)
12232 int saved_naked_reg
;
12233 char saved_register_dot
;
12235 saved_naked_reg
= allow_naked_reg
;
12236 allow_naked_reg
= 1;
12237 saved_register_dot
= register_chars
['.'];
12238 register_chars
['.'] = '.';
12239 allow_pseudo_reg
= 1;
12240 expression_and_evaluate (exp
);
12241 allow_pseudo_reg
= 0;
12242 register_chars
['.'] = saved_register_dot
;
12243 allow_naked_reg
= saved_naked_reg
;
12245 if (exp
->X_op
== O_register
&& exp
->X_add_number
>= 0)
12247 if ((addressT
) exp
->X_add_number
< i386_regtab_size
)
12249 exp
->X_op
= O_constant
;
12250 exp
->X_add_number
= i386_regtab
[exp
->X_add_number
]
12251 .dw2_regnum
[flag_code
>> 1];
12254 exp
->X_op
= O_illegal
;
12259 tc_x86_frame_initial_instructions (void)
12261 static unsigned int sp_regno
[2];
12263 if (!sp_regno
[flag_code
>> 1])
12265 char *saved_input
= input_line_pointer
;
12266 char sp
[][4] = {"esp", "rsp"};
12269 input_line_pointer
= sp
[flag_code
>> 1];
12270 tc_x86_parse_to_dw2regnum (&exp
);
12271 gas_assert (exp
.X_op
== O_constant
);
12272 sp_regno
[flag_code
>> 1] = exp
.X_add_number
;
12273 input_line_pointer
= saved_input
;
12276 cfi_add_CFA_def_cfa (sp_regno
[flag_code
>> 1], -x86_cie_data_alignment
);
12277 cfi_add_CFA_offset (x86_dwarf2_return_column
, x86_cie_data_alignment
);
12281 x86_dwarf2_addr_size (void)
12283 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12284 if (x86_elf_abi
== X86_64_X32_ABI
)
12287 return bfd_arch_bits_per_address (stdoutput
) / 8;
12291 i386_elf_section_type (const char *str
, size_t len
)
12293 if (flag_code
== CODE_64BIT
12294 && len
== sizeof ("unwind") - 1
12295 && strncmp (str
, "unwind", 6) == 0)
12296 return SHT_X86_64_UNWIND
;
12303 i386_solaris_fix_up_eh_frame (segT sec
)
12305 if (flag_code
== CODE_64BIT
)
12306 elf_section_type (sec
) = SHT_X86_64_UNWIND
;
12312 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
12316 exp
.X_op
= O_secrel
;
12317 exp
.X_add_symbol
= symbol
;
12318 exp
.X_add_number
= 0;
12319 emit_expr (&exp
, size
);
12323 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12324 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12327 x86_64_section_letter (int letter
, const char **ptr_msg
)
12329 if (flag_code
== CODE_64BIT
)
12332 return SHF_X86_64_LARGE
;
12334 *ptr_msg
= _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12337 *ptr_msg
= _("bad .section directive: want a,w,x,M,S,G,T in string");
12342 x86_64_section_word (char *str
, size_t len
)
12344 if (len
== 5 && flag_code
== CODE_64BIT
&& CONST_STRNEQ (str
, "large"))
12345 return SHF_X86_64_LARGE
;
12351 handle_large_common (int small ATTRIBUTE_UNUSED
)
12353 if (flag_code
!= CODE_64BIT
)
12355 s_comm_internal (0, elf_common_parse
);
12356 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12360 static segT lbss_section
;
12361 asection
*saved_com_section_ptr
= elf_com_section_ptr
;
12362 asection
*saved_bss_section
= bss_section
;
12364 if (lbss_section
== NULL
)
12366 flagword applicable
;
12367 segT seg
= now_seg
;
12368 subsegT subseg
= now_subseg
;
12370 /* The .lbss section is for local .largecomm symbols. */
12371 lbss_section
= subseg_new (".lbss", 0);
12372 applicable
= bfd_applicable_section_flags (stdoutput
);
12373 bfd_set_section_flags (stdoutput
, lbss_section
,
12374 applicable
& SEC_ALLOC
);
12375 seg_info (lbss_section
)->bss
= 1;
12377 subseg_set (seg
, subseg
);
12380 elf_com_section_ptr
= &_bfd_elf_large_com_section
;
12381 bss_section
= lbss_section
;
12383 s_comm_internal (0, elf_common_parse
);
12385 elf_com_section_ptr
= saved_com_section_ptr
;
12386 bss_section
= saved_bss_section
;
12389 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */