x86: fold SReg{2,3}
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919 enum operand_type
1920 {
1921 reg,
1922 imm,
1923 disp,
1924 anymem
1925 };
1926
1927 static INLINE int
1928 operand_type_check (i386_operand_type t, enum operand_type c)
1929 {
1930 switch (c)
1931 {
1932 case reg:
1933 return t.bitfield.reg;
1934
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1967
1968 static INLINE int
1969 match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
1971 {
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
1982 }
1983
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1997 }
1998
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2001
2002 static INLINE int
2003 match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
2005 {
2006 return (match_operand_size (t, wanted, given)
2007 && !((i.types[given].bitfield.unspecified
2008 && !i.broadcast
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t->operand_types[wanted].bitfield.regsimd
2017 && !t->opcode_modifier.broadcast
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
2026 }
2027
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2032
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2035
2036 static INLINE unsigned int
2037 operand_size_match (const insn_template *t)
2038 {
2039 unsigned int j, match = MATCH_STRAIGHT;
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
2053 continue;
2054
2055 if (t->operand_types[j].bitfield.reg
2056 && !match_operand_size (t, j, j))
2057 {
2058 match = 0;
2059 break;
2060 }
2061
2062 if (t->operand_types[j].bitfield.regsimd
2063 && !match_simd_size (t, j, j))
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2071 {
2072 match = 0;
2073 break;
2074 }
2075
2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
2083 if (!t->opcode_modifier.d)
2084 {
2085 mismatch:
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
2089 }
2090
2091 /* Check reverse. */
2092 gas_assert (i.operands >= 2 && i.operands <= 3);
2093
2094 for (j = 0; j < i.operands; j++)
2095 {
2096 unsigned int given = i.operands - j - 1;
2097
2098 if (t->operand_types[j].bitfield.reg
2099 && !match_operand_size (t, j, given))
2100 goto mismatch;
2101
2102 if (t->operand_types[j].bitfield.regsimd
2103 && !match_simd_size (t, j, given))
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
2109 goto mismatch;
2110
2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2112 goto mismatch;
2113 }
2114
2115 return match | MATCH_REVERSE;
2116 }
2117
2118 static INLINE int
2119 operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121 {
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
2125 temp.bitfield.unspecified = 0;
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
2133 temp.bitfield.ymmword = 0;
2134 temp.bitfield.zmmword = 0;
2135 if (operand_type_all_zero (&temp))
2136 goto mismatch;
2137
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142 mismatch:
2143 i.error = operand_type_mismatch;
2144 return 0;
2145 }
2146
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
2151
2152 static INLINE int
2153 operand_type_register_match (i386_operand_type g0,
2154 i386_operand_type t0,
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157 {
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
2163 return 1;
2164
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
2170 return 1;
2171
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2179 return 1;
2180
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2188 return 1;
2189
2190 i.error = register_type_mismatch;
2191
2192 return 0;
2193 }
2194
2195 static INLINE unsigned int
2196 register_number (const reg_entry *r)
2197 {
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
2206 return nr;
2207 }
2208
2209 static INLINE unsigned int
2210 mode_from_disp_size (i386_operand_type t)
2211 {
2212 if (t.bitfield.disp8)
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
2220 }
2221
2222 static INLINE int
2223 fits_in_signed_byte (addressT num)
2224 {
2225 return num + 0x80 <= 0xff;
2226 }
2227
2228 static INLINE int
2229 fits_in_unsigned_byte (addressT num)
2230 {
2231 return num <= 0xff;
2232 }
2233
2234 static INLINE int
2235 fits_in_unsigned_word (addressT num)
2236 {
2237 return num <= 0xffff;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_word (addressT num)
2242 {
2243 return num + 0x8000 <= 0xffff;
2244 }
2245
2246 static INLINE int
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2248 {
2249 #ifndef BFD64
2250 return 1;
2251 #else
2252 return num + 0x80000000 <= 0xffffffff;
2253 #endif
2254 } /* fits_in_signed_long() */
2255
2256 static INLINE int
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2258 {
2259 #ifndef BFD64
2260 return 1;
2261 #else
2262 return num <= 0xffffffff;
2263 #endif
2264 } /* fits_in_unsigned_long() */
2265
2266 static INLINE int
2267 fits_in_disp8 (offsetT num)
2268 {
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283 }
2284
2285 static INLINE int
2286 fits_in_imm4 (offsetT num)
2287 {
2288 return (num & 0xf) == num;
2289 }
2290
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num)
2293 {
2294 i386_operand_type t;
2295
2296 operand_type_set (&t, 0);
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
2343 }
2344
2345 static offsetT
2346 offset_in_range (offsetT val, int size)
2347 {
2348 addressT mask;
2349
2350 switch (size)
2351 {
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
2355 #ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357 #endif
2358 default: abort ();
2359 }
2360
2361 #ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2367 #endif
2368
2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378 }
2379
2380 enum PREFIX_GROUP
2381 {
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
2385 PREFIX_DS,
2386 PREFIX_OTHER
2387 };
2388
2389 /* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2396 */
2397
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix)
2400 {
2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
2402 unsigned int q;
2403
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
2406 {
2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2411 ret = PREFIX_EXIST;
2412 q = REX_PREFIX;
2413 }
2414 else
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
2421 case DS_PREFIX_OPCODE:
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
2438 case LOCK_PREFIX_OPCODE:
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
2456 ret = PREFIX_EXIST;
2457 }
2458
2459 if (ret)
2460 {
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
2464 }
2465 else
2466 as_bad (_("same type of prefix used twice"));
2467
2468 return ret;
2469 }
2470
2471 static void
2472 update_code_flag (int value, int check)
2473 {
2474 PRINTF_LIKE ((*as_error));
2475
2476 flag_code = (enum flag_code) value;
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2488 {
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
2495 }
2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2497 {
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
2504 }
2505 stackop_size = '\0';
2506 }
2507
2508 static void
2509 set_code_flag (int value)
2510 {
2511 update_code_flag (value, 0);
2512 }
2513
2514 static void
2515 set_16bit_gcc_code_flag (int new_code_flag)
2516 {
2517 flag_code = (enum flag_code) new_code_flag;
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
2522 stackop_size = LONG_MNEM_SUFFIX;
2523 }
2524
2525 static void
2526 set_intel_syntax (int syntax_flag)
2527 {
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2533 {
2534 char *string;
2535 int e = get_symbol_name (&string);
2536
2537 if (strcmp (string, "prefix") == 0)
2538 ask_naked_reg = 1;
2539 else if (strcmp (string, "noprefix") == 0)
2540 ask_naked_reg = -1;
2541 else
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e);
2544 }
2545 demand_empty_rest_of_line ();
2546
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
2554
2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2556
2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
2559 register_prefix = allow_naked_reg ? "" : "%";
2560 }
2561
2562 static void
2563 set_intel_mnemonic (int mnemonic_flag)
2564 {
2565 intel_mnemonic = mnemonic_flag;
2566 }
2567
2568 static void
2569 set_allow_index_reg (int flag)
2570 {
2571 allow_index_reg = flag;
2572 }
2573
2574 static void
2575 set_check (int what)
2576 {
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
2595 char *string;
2596 int e = get_symbol_name (&string);
2597
2598 if (strcmp (string, "none") == 0)
2599 *kind = check_none;
2600 else if (strcmp (string, "warning") == 0)
2601 *kind = check_warning;
2602 else if (strcmp (string, "error") == 0)
2603 *kind = check_error;
2604 else
2605 as_bad (_("bad argument to %s_check directive."), str);
2606 (void) restore_line_pointer (e);
2607 }
2608 else
2609 as_bad (_("missing argument for %s_check directive"), str);
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 static void
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2617 {
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2641 || new_flag.bitfield.cpul1om)
2642 return;
2643
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650 #endif
2651 }
2652
2653 static void
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2655 {
2656 SKIP_WHITESPACE ();
2657
2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2659 {
2660 char *string;
2661 int e = get_symbol_name (&string);
2662 unsigned int j;
2663 i386_cpu_flags flags;
2664
2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2666 {
2667 if (strcmp (string, cpu_arch[j].name) == 0)
2668 {
2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2670
2671 if (*string != '.')
2672 {
2673 cpu_arch_name = cpu_arch[j].name;
2674 cpu_sub_arch_name = NULL;
2675 cpu_arch_flags = cpu_arch[j].flags;
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
2693 break;
2694 }
2695
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
2698
2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2700 {
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
2705 cpu_arch[j].name,
2706 (const char *) NULL);
2707 free (name);
2708 }
2709 else
2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2711 cpu_arch_flags = flags;
2712 cpu_arch_isa_flags = flags;
2713 }
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
2718 (void) restore_line_pointer (e);
2719 demand_empty_rest_of_line ();
2720 return;
2721 }
2722 }
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
2726 /* Disable an ISA extension. */
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
2754 if (j >= ARRAY_SIZE (cpu_arch))
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2765 {
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
2779 (void) restore_line_pointer (e);
2780 }
2781
2782 demand_empty_rest_of_line ();
2783 }
2784
2785 enum bfd_architecture
2786 i386_arch (void)
2787 {
2788 if (cpu_arch_isa == PROCESSOR_L1OM)
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
2809 else
2810 return bfd_arch_i386;
2811 }
2812
2813 unsigned long
2814 i386_mach (void)
2815 {
2816 if (!strncmp (default_arch, "x86_64", 6))
2817 {
2818 if (cpu_arch_isa == PROCESSOR_L1OM)
2819 {
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
2832 else if (default_arch[6] == '\0')
2833 return bfd_mach_x86_64;
2834 else
2835 return bfd_mach_x64_32;
2836 }
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
2849 else
2850 as_fatal (_("unknown architecture"));
2851 }
2852 \f
2853 void
2854 md_begin (void)
2855 {
2856 const char *hash_err;
2857
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
2861 /* Initialize op_hash hash table. */
2862 op_hash = hash_new ();
2863
2864 {
2865 const insn_template *optab;
2866 templates *core_optab;
2867
2868 /* Setup for loop. */
2869 optab = i386_optab;
2870 core_optab = XNEW (templates);
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
2884 (void *) core_optab);
2885 if (hash_err)
2886 {
2887 as_fatal (_("can't hash %s: %s"),
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
2893 core_optab = XNEW (templates);
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
2899 /* Initialize reg_hash hash table. */
2900 reg_hash = hash_new ();
2901 {
2902 const reg_entry *regtab;
2903 unsigned int regtab_size = i386_regtab_size;
2904
2905 for (regtab = i386_regtab; regtab_size--; regtab++)
2906 {
2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2908 if (hash_err)
2909 as_fatal (_("can't hash %s: %s"),
2910 regtab->reg_name,
2911 hash_err);
2912 }
2913 }
2914
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2916 {
2917 int c;
2918 char *p;
2919
2920 for (c = 0; c < 256; c++)
2921 {
2922 if (ISDIGIT (c))
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
2929 else if (ISLOWER (c))
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
2935 else if (ISUPPER (c))
2936 {
2937 mnemonic_chars[c] = TOLOWER (c);
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
2941 else if (c == '{' || c == '}')
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
2946
2947 if (ISALPHA (c) || ISDIGIT (c))
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956 #ifdef LEX_AT
2957 identifier_chars['@'] = '@';
2958 #endif
2959 #ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
2962 #endif
2963 digit_chars['-'] = '-';
2964 mnemonic_chars['_'] = '_';
2965 mnemonic_chars['-'] = '-';
2966 mnemonic_chars['.'] = '.';
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
2974 if (flag_code == CODE_64BIT)
2975 {
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979 #else
2980 x86_dwarf2_return_column = 16;
2981 #endif
2982 x86_cie_data_alignment = -8;
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
2989 }
2990
2991 void
2992 i386_print_statistics (FILE *file)
2993 {
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996 }
2997 \f
2998 #ifdef DEBUG386
2999
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template *);
3002 static void pt (i386_operand_type);
3003 static void pe (expressionS *);
3004 static void ps (symbolS *);
3005
3006 static void
3007 pi (const char *line, i386_insn *x)
3008 {
3009 unsigned int j;
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3018 x->rm.mode, x->rm.reg, x->rm.regmem);
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
3026 for (j = 0; j < x->operands; j++)
3027 {
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
3030 fprintf (stdout, "\n");
3031 if (x->types[j].bitfield.reg
3032 || x->types[j].bitfield.regmmx
3033 || x->types[j].bitfield.regsimd
3034 || x->types[j].bitfield.sreg
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
3043 }
3044 }
3045
3046 static void
3047 pte (insn_template *t)
3048 {
3049 unsigned int j;
3050 fprintf (stdout, " %d operands ", t->operands);
3051 fprintf (stdout, "opcode %x ", t->base_opcode);
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
3054 if (t->opcode_modifier.d)
3055 fprintf (stdout, "D");
3056 if (t->opcode_modifier.w)
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
3059 for (j = 0; j < t->operands; j++)
3060 {
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
3063 fprintf (stdout, "\n");
3064 }
3065 }
3066
3067 static void
3068 pe (expressionS *e)
3069 {
3070 fprintf (stdout, " operation %d\n", e->X_op);
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085 }
3086
3087 static void
3088 ps (symbolS *s)
3089 {
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094 }
3095
3096 static struct type_name
3097 {
3098 i386_operand_type mask;
3099 const char *name;
3100 }
3101 const type_names[] =
3102 {
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
3131 { OPERAND_TYPE_SREG, "SReg" },
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
3135 { OPERAND_TYPE_REGYMM, "rYMM" },
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
3138 { OPERAND_TYPE_ESSEG, "es" },
3139 };
3140
3141 static void
3142 pt (i386_operand_type t)
3143 {
3144 unsigned int j;
3145 i386_operand_type a;
3146
3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
3150 if (operand_type_equal (&a, &type_names[j].mask))
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
3153 fflush (stdout);
3154 }
3155
3156 #endif /* DEBUG386 */
3157 \f
3158 static bfd_reloc_code_real_type
3159 reloc (unsigned int size,
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
3163 {
3164 if (other != NO_RELOC)
3165 {
3166 reloc_howto_type *rel;
3167
3168 if (size == 8)
3169 switch (other)
3170 {
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
3200 other = BFD_RELOC_SIZE64;
3201 if (pcrel)
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
3206 }
3207 #endif
3208
3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3211 sign = -1;
3212
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3215 as_bad (_("unknown relocation (%u)"), other);
3216 else if (size != bfd_get_reloc_size (rel))
3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3218 bfd_get_reloc_size (rel),
3219 size);
3220 else if (pcrel && !rel->pc_relative)
3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3223 && !sign)
3224 || (rel->complain_on_overflow == complain_overflow_unsigned
3225 && sign > 0))
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
3231
3232 if (pcrel)
3233 {
3234 if (!sign)
3235 as_bad (_("there are no unsigned pc-relative relocations"));
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
3240 case 4: return BFD_RELOC_32_PCREL;
3241 case 8: return BFD_RELOC_64_PCREL;
3242 }
3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3244 }
3245 else
3246 {
3247 if (sign > 0)
3248 switch (size)
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
3262 }
3263
3264 return NO_RELOC;
3265 }
3266
3267 /* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
3272 int
3273 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3274 {
3275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3276 if (!IS_ELF)
3277 return 1;
3278
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
3284 return 0;
3285
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
3328 #endif
3329 return 1;
3330 }
3331
3332 static int
3333 intel_float_operand (const char *mnemonic)
3334 {
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
3381
3382 return 1;
3383 }
3384
3385 /* Build the VEX prefix. */
3386
3387 static void
3388 build_vex_prefix (const insn_template *t)
3389 {
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
3393 unsigned int w;
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
3402 else
3403 register_specifier = 0xf;
3404
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
3409 && i.dir_encoding == dir_encoding_default
3410 && i.operands == i.reg_operands
3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3412 && i.tm.opcode_modifier.vexopcode == VEX0F
3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
3427 gas_assert (i.rm.mode == 3);
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
3439 }
3440
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
3482 else
3483 {
3484 unsigned int op;
3485
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
3488 vector_length = 0;
3489 for (op = t->operands; op--;)
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3524
3525 /* Use 2-byte VEX prefix if possible. */
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
3528 && i.tm.opcode_modifier.vexopcode == VEX0F
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
3547 unsigned int m;
3548
3549 i.vex.length = 3;
3550
3551 switch (i.tm.opcode_modifier.vexopcode)
3552 {
3553 case VEX0F:
3554 m = 0x1;
3555 i.vex.bytes[0] = 0xc4;
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
3559 i.vex.bytes[0] = 0xc4;
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
3563 i.vex.bytes[0] = 0xc4;
3564 break;
3565 case XOP08:
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
3568 break;
3569 case XOP09:
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
3572 break;
3573 case XOP0A:
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
3576 break;
3577 default:
3578 abort ();
3579 }
3580
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590 }
3591
3592 static INLINE bfd_boolean
3593 is_evex_encoding (const insn_template *t)
3594 {
3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3597 || t->opcode_modifier.sae;
3598 }
3599
3600 static INLINE bfd_boolean
3601 is_any_vex_encoding (const insn_template *t)
3602 {
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605 }
3606
3607 /* Build the EVEX prefix. */
3608
3609 static void
3610 build_evex_prefix (void)
3611 {
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
3738 unsigned int op;
3739
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
3742 vec_length = 0;
3743 for (op = i.operands; op--;)
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
3753 else if (i.types[op].bitfield.ymmword)
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
3758 else if (i.types[op].bitfield.xmmword)
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
3765 switch (i.broadcast->bytes)
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
3777 abort ();
3778 }
3779 break;
3780 }
3781 }
3782
3783 if (op >= MAX_OPERANDS)
3784 abort ();
3785 }
3786
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820 }
3821
3822 static void
3823 process_immext (void)
3824 {
3825 expressionS *exp;
3826
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
3829 {
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
3837 if (register_number (i.op[x].regs) != x)
3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
3843 }
3844
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864 bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
3878 AVX instructions also use this encoding, for some of
3879 3 argument instructions. */
3880
3881 gas_assert (i.imm_operands <= 1
3882 && (i.operands <= 2
3883 || (is_any_vex_encoding (&i.tm)
3884 && i.operands <= 4)));
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893 }
3894
3895
3896 static int
3897 check_hle (void)
3898 {
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
3903 case HLEPrefixNone:
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
3906 return 0;
3907 case HLEPrefixLock:
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3911 return 0;
3912 case HLEPrefixAny:
3913 return 1;
3914 case HLEPrefixRelease:
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
3921 if (i.mem_operands == 0
3922 || !operand_type_check (i.types[i.operands - 1], anymem))
3923 {
3924 as_bad (_("memory destination needed for instruction `%s'"
3925 " after `xrelease'"), i.tm.name);
3926 return 0;
3927 }
3928 return 1;
3929 }
3930 }
3931
3932 /* Try the shortest encoding by shortening operand size. */
3933
3934 static void
3935 optimize_encoding (void)
3936 {
3937 unsigned int j;
3938
3939 if (optimize_for_space
3940 && i.reg_operands == 1
3941 && i.imm_operands == 1
3942 && !i.types[1].bitfield.byte
3943 && i.op[0].imms->X_op == O_constant
3944 && fits_in_imm7 (i.op[0].imms->X_add_number)
3945 && ((i.tm.base_opcode == 0xa8
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0xf6
3948 && i.tm.extension_opcode == 0x0)))
3949 {
3950 /* Optimize: -Os:
3951 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3952 */
3953 unsigned int base_regnum = i.op[1].regs->reg_num;
3954 if (flag_code == CODE_64BIT || base_regnum < 4)
3955 {
3956 i.types[1].bitfield.byte = 1;
3957 /* Ignore the suffix. */
3958 i.suffix = 0;
3959 if (base_regnum >= 4
3960 && !(i.op[1].regs->reg_flags & RegRex))
3961 {
3962 /* Handle SP, BP, SI and DI registers. */
3963 if (i.types[1].bitfield.word)
3964 j = 16;
3965 else if (i.types[1].bitfield.dword)
3966 j = 32;
3967 else
3968 j = 48;
3969 i.op[1].regs -= j;
3970 }
3971 }
3972 }
3973 else if (flag_code == CODE_64BIT
3974 && ((i.types[1].bitfield.qword
3975 && i.reg_operands == 1
3976 && i.imm_operands == 1
3977 && i.op[0].imms->X_op == O_constant
3978 && ((i.tm.base_opcode == 0xb0
3979 && i.tm.extension_opcode == None
3980 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3981 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3982 && (((i.tm.base_opcode == 0x24
3983 || i.tm.base_opcode == 0xa8)
3984 && i.tm.extension_opcode == None)
3985 || (i.tm.base_opcode == 0x80
3986 && i.tm.extension_opcode == 0x4)
3987 || ((i.tm.base_opcode == 0xf6
3988 || i.tm.base_opcode == 0xc6)
3989 && i.tm.extension_opcode == 0x0)))
3990 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3991 && i.tm.base_opcode == 0x83
3992 && i.tm.extension_opcode == 0x4)))
3993 || (i.types[0].bitfield.qword
3994 && ((i.reg_operands == 2
3995 && i.op[0].regs == i.op[1].regs
3996 && ((i.tm.base_opcode == 0x30
3997 || i.tm.base_opcode == 0x28)
3998 && i.tm.extension_opcode == None))
3999 || (i.reg_operands == 1
4000 && i.operands == 1
4001 && i.tm.base_opcode == 0x30
4002 && i.tm.extension_opcode == None)))))
4003 {
4004 /* Optimize: -O:
4005 andq $imm31, %r64 -> andl $imm31, %r32
4006 andq $imm7, %r64 -> andl $imm7, %r32
4007 testq $imm31, %r64 -> testl $imm31, %r32
4008 xorq %r64, %r64 -> xorl %r32, %r32
4009 subq %r64, %r64 -> subl %r32, %r32
4010 movq $imm31, %r64 -> movl $imm31, %r32
4011 movq $imm32, %r64 -> movl $imm32, %r32
4012 */
4013 i.tm.opcode_modifier.norex64 = 1;
4014 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4015 {
4016 /* Handle
4017 movq $imm31, %r64 -> movl $imm31, %r32
4018 movq $imm32, %r64 -> movl $imm32, %r32
4019 */
4020 i.tm.operand_types[0].bitfield.imm32 = 1;
4021 i.tm.operand_types[0].bitfield.imm32s = 0;
4022 i.tm.operand_types[0].bitfield.imm64 = 0;
4023 i.types[0].bitfield.imm32 = 1;
4024 i.types[0].bitfield.imm32s = 0;
4025 i.types[0].bitfield.imm64 = 0;
4026 i.types[1].bitfield.dword = 1;
4027 i.types[1].bitfield.qword = 0;
4028 if (i.tm.base_opcode == 0xc6)
4029 {
4030 /* Handle
4031 movq $imm31, %r64 -> movl $imm31, %r32
4032 */
4033 i.tm.base_opcode = 0xb0;
4034 i.tm.extension_opcode = None;
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
4063 else if (i.reg_operands == 3
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
4067 || ((!i.mask || i.mask->zeroing)
4068 && !i.rounding
4069 && is_evex_encoding (&i.tm)
4070 && (i.vec_encoding != vex_encoding_evex
4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
4073 || (i.tm.operand_types[2].bitfield.zmmword
4074 && i.types[2].bitfield.ymmword))))
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
4089 && i.tm.extension_opcode == None))
4090 {
4091 /* Optimize: -O1:
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
4125 */
4126 if (is_evex_encoding (&i.tm))
4127 {
4128 if (i.vec_encoding != vex_encoding_evex)
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
4134 else if (optimize > 1)
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
4138 }
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
4154 else if (i.vec_encoding != vex_encoding_evex
4155 && !i.types[0].bitfield.zmmword
4156 && !i.types[1].bitfield.zmmword
4157 && !i.mask
4158 && !i.broadcast
4159 && is_evex_encoding (&i.tm)
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4191 */
4192 for (j = 0; j < i.operands; j++)
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
4225 i.tm.opcode_modifier.broadcast = 0;
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
4231 }
4232 }
4233
4234 /* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238 void
4239 md_assemble (char *line)
4240 {
4241 unsigned int j;
4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4243 const insn_template *t;
4244
4245 /* Initialize globals. */
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
4248 i.reloc[j] = NO_RELOC;
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
4251 save_stack_p = save_stack;
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
4255 start of a (possibly prefixed) mnemonic. */
4256
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
4260 mnem_suffix = i.suffix;
4261
4262 line = parse_operands (line, mnemonic);
4263 this_operand = -1;
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
4266 if (line == NULL)
4267 return;
4268
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
4275 precedes the offset, as it does when in AT&T mode. */
4276 if (intel_syntax
4277 && i.operands > 1
4278 && (strcmp (mnemonic, "bound") != 0)
4279 && (strcmp (mnemonic, "invlpga") != 0)
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
4282 swap_operands ();
4283
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
4297 && i.disp_encoding != disp_encoding_32bit
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
4305
4306 if (!(t = match_template (mnem_suffix)))
4307 return;
4308
4309 if (sse_check != check_none
4310 && !i.tm.opcode_modifier.noavx
4311 && !i.tm.cpu_flags.bitfield.cpuavx
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
4321 {
4322 (sse_check == check_warning
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4332 {
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
4337 && intel_syntax)
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
4341 }
4342
4343 if (i.tm.opcode_modifier.fwait)
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
4346
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
4361 && !operand_type_check (i.types[i.operands - 1], anymem))))
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
4374 /* Check if HLE prefix is OK. */
4375 if (i.hle_prefix && !check_hle ())
4376 return;
4377
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
4382 /* Check NOTRACK prefix. */
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
4385
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
4395
4396 /* Insert BND prefix. */
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
4407
4408 /* Check string instruction segment overrides. */
4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4410 {
4411 if (!check_string ())
4412 return;
4413 i.disp_operands = 0;
4414 }
4415
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
4419 if (!process_suffix ())
4420 return;
4421
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
4430
4431 if (i.types[0].bitfield.imm1)
4432 i.imm_operands = 0; /* kludge for shift insns. */
4433
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4441 i.reg_operands--;
4442
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
4446 process_immext ();
4447
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
4459
4460 if (is_any_vex_encoding (&i.tm))
4461 {
4462 if (!cpu_arch_flags.bitfield.cpui286)
4463 {
4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4465 i.tm.name);
4466 return;
4467 }
4468
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
4474
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
4485
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
4497
4498 if (i.tm.opcode_modifier.rex64)
4499 i.rex |= REX_W;
4500
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
4504
4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4511 && i.rex != 0))
4512 {
4513 int x;
4514
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4521 {
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
4524 as_bad (_("can't encode register '%s%s' in an "
4525 "instruction requiring REX prefix."),
4526 register_prefix, i.op[x].regs->reg_name);
4527
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
4533 }
4534 }
4535 }
4536
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
4557 if (i.rex != 0)
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562 }
4563
4564 static char *
4565 parse_insn (char *line, char *mnemonic)
4566 {
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
4570 int supported;
4571 const insn_template *t;
4572 char *dot_p = NULL;
4573
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4583 {
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
4607
4608 /* Look up instruction (or prefix) via hash table. */
4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4610
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
4614 && current_templates->start->opcode_modifier.isprefix)
4615 {
4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
4628 && flag_code != CODE_64BIT
4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
4635 }
4636 if (current_templates->start->opcode_length == 0)
4637 {
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4684 switch (add_prefix (current_templates->start->base_opcode))
4685 {
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
4702 }
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
4710
4711 if (!current_templates)
4712 {
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
4715 encoding. */
4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4717 i.dir_encoding = dir_encoding_swap;
4718 else if (mnem_p - 3 == dot_p
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
4722 else if (mnem_p - 4 == dot_p
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
4726 i.disp_encoding = disp_encoding_32bit;
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4732 }
4733
4734 if (!current_templates)
4735 {
4736 check_suffix:
4737 if (mnem_p > mnemonic)
4738 {
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
4741 {
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
4778 }
4779 }
4780
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
4787
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
4820
4821 /* Check if instruction is supported on specified architecture. */
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
4830
4831 return l;
4832 }
4833 }
4834
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4845
4846 return NULL;
4847 }
4848
4849 static char *
4850 parse_operands (char *l, const char *mnemonic)
4851 {
4852 char *token_start;
4853
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
4856
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
4872 token_start = l; /* After white space. */
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
4924 i.types[this_operand].bitfield.unspecified = 1;
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
4940 operand_ok = i386_att_operand (token_start);
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
4960
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973 }
4974
4975 static void
4976 swap_2_operands (int xchg1, int xchg2)
4977 {
4978 union i386_op temp_op;
4979 i386_operand_type temp_type;
4980 unsigned int temp_flags;
4981 enum bfd_reloc_code_real temp_reloc;
4982
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
4994
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
5020 }
5021
5022 static void
5023 swap_operands (void)
5024 {
5025 switch (i.operands)
5026 {
5027 case 5:
5028 case 4:
5029 swap_2_operands (1, i.operands - 2);
5030 /* Fall through. */
5031 case 3:
5032 case 2:
5033 swap_2_operands (0, i.operands - 1);
5034 break;
5035 default:
5036 abort ();
5037 }
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046 }
5047
5048 /* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050 static void
5051 optimize_imm (void)
5052 {
5053 char guess_suffix = 0;
5054 int op;
5055
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5066 {
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5071 {
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
5083 break;
5084 }
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
5090 if (operand_type_check (i.types[op], imm))
5091 {
5092 switch (i.op[op].imms->X_op)
5093 {
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
5097 {
5098 case LONG_MNEM_SUFFIX:
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
5101 break;
5102 case WORD_MNEM_SUFFIX:
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
5107 break;
5108 case BYTE_MNEM_SUFFIX:
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
5115 break;
5116 }
5117
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
5123 if ((i.types[op].bitfield.imm16)
5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5125 {
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
5129 #ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5131 if ((i.types[op].bitfield.imm32)
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
5139 #endif
5140 i.types[op]
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
5143
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
5147 i.types[op].bitfield.imm32 = 0;
5148 break;
5149
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
5160 i386_operand_type mask, allowed;
5161 const insn_template *t;
5162
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
5165
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
5176 break;
5177 case LONG_MNEM_SUFFIX:
5178 mask.bitfield.imm32 = 1;
5179 break;
5180 case WORD_MNEM_SUFFIX:
5181 mask.bitfield.imm16 = 1;
5182 break;
5183 case BYTE_MNEM_SUFFIX:
5184 mask.bitfield.imm8 = 1;
5185 break;
5186 default:
5187 break;
5188 }
5189 allowed = operand_type_and (mask, allowed);
5190 if (!operand_type_all_zero (&allowed))
5191 i.types[op] = operand_type_and (i.types[op], mask);
5192 }
5193 break;
5194 }
5195 }
5196 }
5197
5198 /* Try to use the smallest displacement type too. */
5199 static void
5200 optimize_disp (void)
5201 {
5202 int op;
5203
5204 for (op = i.operands; --op >= 0;)
5205 if (operand_type_check (i.types[op], disp))
5206 {
5207 if (i.op[op].disps->X_op == O_constant)
5208 {
5209 offsetT op_disp = i.op[op].disps->X_add_number;
5210
5211 if (i.types[op].bitfield.disp16
5212 && (op_disp & ~(offsetT) 0xffff) == 0)
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5218 i.types[op].bitfield.disp64 = 0;
5219 }
5220 #ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5222 if (i.types[op].bitfield.disp32
5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5230 i.types[op].bitfield.disp64 = 0;
5231 }
5232 #endif
5233 if (!op_disp && i.types[op].bitfield.baseindex)
5234 {
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
5245 if (fits_in_signed_long (op_disp))
5246 {
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
5249 }
5250 if (i.prefix[ADDR_PREFIX]
5251 && fits_in_unsigned_long (op_disp))
5252 i.types[op].bitfield.disp32 = 1;
5253 }
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
5257 && fits_in_disp8 (op_disp))
5258 i.types[op].bitfield.disp8 = 1;
5259 }
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
5270 }
5271 else
5272 /* We only support 64bit displacement on constants. */
5273 i.types[op].bitfield.disp64 = 0;
5274 }
5275 }
5276
5277 /* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280 static INLINE int
5281 match_broadcast_size (const insn_template *t, unsigned int given)
5282 {
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291 }
5292
5293 /* Check if operands are valid for the instruction. */
5294
5295 static int
5296 check_VecOperands (const insn_template *t)
5297 {
5298 unsigned int op;
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
5323
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
5348 || !((t->opcode_modifier.vecsib == VecSIB128
5349 && i.index_reg->reg_type.bitfield.xmmword)
5350 || (t->opcode_modifier.vecsib == VecSIB256
5351 && i.index_reg->reg_type.bitfield.ymmword)
5352 || (t->opcode_modifier.vecsib == VecSIB512
5353 && i.index_reg->reg_type.bitfield.zmmword)))
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
5402 }
5403
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
5408 i386_operand_type type, overlap;
5409
5410 /* Check if specified broadcast is supported in this instruction,
5411 and its broadcast bytes match the memory operand. */
5412 op = i.broadcast->operand;
5413 if (!t->opcode_modifier.broadcast
5414 || !(i.flags[op] & Operand_Mem)
5415 || (!i.types[op].bitfield.unspecified
5416 && !match_broadcast_size (t, op)))
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
5422
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
5425 operand_type_set (&type, 0);
5426 switch (i.broadcast->bytes)
5427 {
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
5458 type.bitfield.baseindex = 1;
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
5476 if (operand_type_check (i.types[op], anymem))
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
5480 if (match_broadcast_size (t, op))
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5488
5489 /* Check if requested masking is supported. */
5490 if (i.mask)
5491 {
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
5510 if (i.flags[op] & Operand_Mem)
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
5546 {
5547 i.error = rc_sae_operand_not_last_imm;
5548 return 1;
5549 }
5550 }
5551
5552 /* Check vector Disp8 operand. */
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
5555 {
5556 if (i.broadcast)
5557 i.memshift = t->opcode_modifier.broadcast - 1;
5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5559 i.memshift = t->opcode_modifier.disp8memshift;
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
5566 if (operand_type_check (i.types[op], anymem))
5567 {
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5608 {
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
5611 }
5612 i.types[op].bitfield.disp8 = 0;
5613 }
5614 }
5615
5616 i.memshift = 0;
5617
5618 return 0;
5619 }
5620
5621 /* Check if operands are valid for the instruction. Update VEX
5622 operand types. */
5623
5624 static int
5625 VEX_check_operands (const insn_template *t)
5626 {
5627 if (i.vec_encoding == vex_encoding_evex)
5628 {
5629 /* This instruction must be encoded with EVEX prefix. */
5630 if (!is_evex_encoding (t))
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
5636 }
5637
5638 if (!t->opcode_modifier.vex)
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
5648
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5654 {
5655 i.error = bad_imm4;
5656 return 1;
5657 }
5658
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
5661 }
5662
5663 return 0;
5664 }
5665
5666 static const insn_template *
5667 match_template (char mnem_suffix)
5668 {
5669 /* Points to template once we've found it. */
5670 const insn_template *t;
5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5672 i386_operand_type overlap4;
5673 unsigned int found_reverse_match;
5674 i386_opcode_modifier suffix_check, mnemsuf_check;
5675 i386_operand_type operand_types [MAX_OPERANDS];
5676 int addr_prefix_disp;
5677 unsigned int j;
5678 unsigned int found_cpu_match, size_match;
5679 unsigned int check_register;
5680 enum i386_error specific_error = 0;
5681
5682 #if MAX_OPERANDS != 5
5683 # error "MAX_OPERANDS must be 5."
5684 #endif
5685
5686 found_reverse_match = 0;
5687 addr_prefix_disp = -1;
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5703 suffix_check.no_ldsuf = 1;
5704
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
5721 for (t = current_templates->start; t < current_templates->end; t++)
5722 {
5723 addr_prefix_disp = -1;
5724 found_reverse_match = 0;
5725
5726 if (i.operands != t->operands)
5727 continue;
5728
5729 /* Check processor support. */
5730 i.error = unsupported;
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
5733 if (!found_cpu_match)
5734 continue;
5735
5736 /* Check AT&T mnemonic. */
5737 i.error = unsupported_with_intel_mnemonic;
5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5739 continue;
5740
5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5742 i.error = unsupported_syntax;
5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
5747 continue;
5748
5749 /* Check the suffix, except for some instructions in intel mode. */
5750 i.error = invalid_instruction_suffix;
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5758 continue;
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
5767
5768 size_match = operand_size_match (t);
5769 if (!size_match)
5770 continue;
5771
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !t->opcode_modifier.broadcast
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
5783 && ((!operand_types[0].bitfield.regmmx
5784 && !operand_types[0].bitfield.regsimd)
5785 || (!operand_types[t->operands > 1].bitfield.regmmx
5786 && !operand_types[t->operands > 1].bitfield.regsimd))
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
5799 && !operand_types[0].bitfield.regsimd)
5800 || (!operand_types[t->operands > 1].bitfield.regmmx
5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
5802 continue;
5803
5804 /* Do not verify operands when there are none. */
5805 else
5806 {
5807 if (!t->operands)
5808 /* We've found a match; break out of loop. */
5809 break;
5810 }
5811
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
5816 /* There should be only one Disp operand. */
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
5830 break;
5831 case CODE_32BIT:
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
5842 break;
5843 case CODE_64BIT:
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
5854 break;
5855 }
5856 }
5857
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
5862 /* We check register size if needed. */
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5873 switch (t->operands)
5874 {
5875 case 1:
5876 if (!operand_type_match (overlap0, i.types[0]))
5877 continue;
5878 break;
5879 case 2:
5880 /* xchg %eax, %eax is a special case. It is an alias for nop
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5888 continue;
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
5895 && operand_type_check (i.types[1], anymem))
5896 continue;
5897 /* Fall through. */
5898
5899 case 3:
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
5914 || operand_types[i.operands - 1].bitfield.regmem)
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5920 && !operand_types[i.operands - 1].bitfield.regmem)
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
5930 /* If we want store form, we skip the current load. */
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
5935 continue;
5936 /* Fall through. */
5937 case 4:
5938 case 5:
5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
5942 || ((check_register & 3) == 3
5943 && !operand_type_register_match (i.types[0],
5944 operand_types[0],
5945 i.types[1],
5946 operand_types[1])))
5947 {
5948 /* Check if other direction is valid ... */
5949 if (!t->opcode_modifier.d)
5950 continue;
5951
5952 check_reverse:
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
5955 /* Try reversing direction of operands. */
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5958 if (!operand_type_match (overlap0, i.types[0])
5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
5960 || (check_register
5961 && !operand_type_register_match (i.types[0],
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
5964 operand_types[0])))
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
5969 /* found_reverse_match holds which of D or FloatR
5970 we've found. */
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
5974 found_reverse_match = Opcode_FloatD;
5975 else if (operand_types[0].bitfield.xmmword
5976 || operand_types[i.operands - 1].bitfield.xmmword
5977 || operand_types[0].bitfield.regmmx
5978 || operand_types[i.operands - 1].bitfield.regmmx
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5982 else
5983 found_reverse_match = Opcode_D;
5984 if (t->opcode_modifier.floatr)
5985 found_reverse_match |= Opcode_FloatR;
5986 }
5987 else
5988 {
5989 /* Found a forward 2 operand match here. */
5990 switch (t->operands)
5991 {
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
5995 /* Fall through. */
5996 case 4:
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
5999 /* Fall through. */
6000 case 3:
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
6003 break;
6004 }
6005
6006 switch (t->operands)
6007 {
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
6010 || !operand_type_register_match (i.types[3],
6011 operand_types[3],
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
6015 /* Fall through. */
6016 case 4:
6017 if (!operand_type_match (overlap3, i.types[3])
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
6020 operand_types[1],
6021 i.types[3],
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
6028 continue;
6029 /* Fall through. */
6030 case 3:
6031 /* Here we make use of the fact that there are no
6032 reverse match 3 operand instructions. */
6033 if (!operand_type_match (overlap2, i.types[2])
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
6036 operand_types[0],
6037 i.types[2],
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
6044 continue;
6045 break;
6046 }
6047 }
6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
6049 slip through to break. */
6050 }
6051 if (!found_cpu_match)
6052 continue;
6053
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
6060
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
6068 const char *err_msg;
6069 switch (specific_error ? specific_error : i.error)
6070 {
6071 default:
6072 abort ();
6073 case operand_size_mismatch:
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
6089 err_msg = _("constant doesn't fit in 4 bits");
6090 break;
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
6098 as_bad (_("unsupported instruction `%s'"),
6099 current_templates->start->name);
6100 return NULL;
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
6139 current_templates->start->name);
6140 return NULL;
6141 }
6142
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
6168 if (found_reverse_match)
6169 {
6170 /* If we found a reverse match we must alter the opcode
6171 direction bit. found_reverse_match holds bits to change
6172 (different for int & float insns). */
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
6178 }
6179
6180 return t;
6181 }
6182
6183 static int
6184 check_string (void)
6185 {
6186 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6187 if (i.tm.operand_types[mem_op].bitfield.esseg)
6188 {
6189 if (i.seg[0] != NULL && i.seg[0] != &es)
6190 {
6191 as_bad (_("`%s' operand %d must use `%ses' segment"),
6192 i.tm.name,
6193 mem_op + 1,
6194 register_prefix);
6195 return 0;
6196 }
6197 /* There's only ever one segment override allowed per instruction.
6198 This instruction possibly has a legal segment override on the
6199 second operand, so copy the segment to where non-string
6200 instructions store it, allowing common code. */
6201 i.seg[0] = i.seg[1];
6202 }
6203 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6204 {
6205 if (i.seg[1] != NULL && i.seg[1] != &es)
6206 {
6207 as_bad (_("`%s' operand %d must use `%ses' segment"),
6208 i.tm.name,
6209 mem_op + 2,
6210 register_prefix);
6211 return 0;
6212 }
6213 }
6214 return 1;
6215 }
6216
6217 static int
6218 process_suffix (void)
6219 {
6220 /* If matched instruction specifies an explicit instruction mnemonic
6221 suffix, use it. */
6222 if (i.tm.opcode_modifier.size == SIZE16)
6223 i.suffix = WORD_MNEM_SUFFIX;
6224 else if (i.tm.opcode_modifier.size == SIZE32)
6225 i.suffix = LONG_MNEM_SUFFIX;
6226 else if (i.tm.opcode_modifier.size == SIZE64)
6227 i.suffix = QWORD_MNEM_SUFFIX;
6228 else if (i.reg_operands)
6229 {
6230 /* If there's no instruction mnemonic suffix we try to invent one
6231 based on register operands. */
6232 if (!i.suffix)
6233 {
6234 /* We take i.suffix from the last register operand specified,
6235 Destination register type is more significant than source
6236 register type. crc32 in SSE4.2 prefers source register
6237 type. */
6238 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6239 {
6240 if (i.types[0].bitfield.byte)
6241 i.suffix = BYTE_MNEM_SUFFIX;
6242 else if (i.types[0].bitfield.word)
6243 i.suffix = WORD_MNEM_SUFFIX;
6244 else if (i.types[0].bitfield.dword)
6245 i.suffix = LONG_MNEM_SUFFIX;
6246 else if (i.types[0].bitfield.qword)
6247 i.suffix = QWORD_MNEM_SUFFIX;
6248 }
6249
6250 if (!i.suffix)
6251 {
6252 int op;
6253
6254 if (i.tm.base_opcode == 0xf20f38f0)
6255 {
6256 /* We have to know the operand size for crc32. */
6257 as_bad (_("ambiguous memory operand size for `%s`"),
6258 i.tm.name);
6259 return 0;
6260 }
6261
6262 for (op = i.operands; --op >= 0;)
6263 if (!i.tm.operand_types[op].bitfield.inoutportreg
6264 && !i.tm.operand_types[op].bitfield.shiftcount)
6265 {
6266 if (!i.types[op].bitfield.reg)
6267 continue;
6268 if (i.types[op].bitfield.byte)
6269 i.suffix = BYTE_MNEM_SUFFIX;
6270 else if (i.types[op].bitfield.word)
6271 i.suffix = WORD_MNEM_SUFFIX;
6272 else if (i.types[op].bitfield.dword)
6273 i.suffix = LONG_MNEM_SUFFIX;
6274 else if (i.types[op].bitfield.qword)
6275 i.suffix = QWORD_MNEM_SUFFIX;
6276 else
6277 continue;
6278 break;
6279 }
6280 }
6281 }
6282 else if (i.suffix == BYTE_MNEM_SUFFIX)
6283 {
6284 if (intel_syntax
6285 && i.tm.opcode_modifier.ignoresize
6286 && i.tm.opcode_modifier.no_bsuf)
6287 i.suffix = 0;
6288 else if (!check_byte_reg ())
6289 return 0;
6290 }
6291 else if (i.suffix == LONG_MNEM_SUFFIX)
6292 {
6293 if (intel_syntax
6294 && i.tm.opcode_modifier.ignoresize
6295 && i.tm.opcode_modifier.no_lsuf
6296 && !i.tm.opcode_modifier.todword
6297 && !i.tm.opcode_modifier.toqword)
6298 i.suffix = 0;
6299 else if (!check_long_reg ())
6300 return 0;
6301 }
6302 else if (i.suffix == QWORD_MNEM_SUFFIX)
6303 {
6304 if (intel_syntax
6305 && i.tm.opcode_modifier.ignoresize
6306 && i.tm.opcode_modifier.no_qsuf
6307 && !i.tm.opcode_modifier.todword
6308 && !i.tm.opcode_modifier.toqword)
6309 i.suffix = 0;
6310 else if (!check_qword_reg ())
6311 return 0;
6312 }
6313 else if (i.suffix == WORD_MNEM_SUFFIX)
6314 {
6315 if (intel_syntax
6316 && i.tm.opcode_modifier.ignoresize
6317 && i.tm.opcode_modifier.no_wsuf)
6318 i.suffix = 0;
6319 else if (!check_word_reg ())
6320 return 0;
6321 }
6322 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6323 /* Do nothing if the instruction is going to ignore the prefix. */
6324 ;
6325 else
6326 abort ();
6327 }
6328 else if (i.tm.opcode_modifier.defaultsize
6329 && !i.suffix
6330 /* exclude fldenv/frstor/fsave/fstenv */
6331 && i.tm.opcode_modifier.no_ssuf)
6332 {
6333 if (stackop_size == LONG_MNEM_SUFFIX
6334 && i.tm.base_opcode == 0xcf)
6335 {
6336 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6337 .code16gcc directive to support 16-bit mode with
6338 32-bit address. For IRET without a suffix, generate
6339 16-bit IRET (opcode 0xcf) to return from an interrupt
6340 handler. */
6341 i.suffix = WORD_MNEM_SUFFIX;
6342 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6343 }
6344 else
6345 i.suffix = stackop_size;
6346 }
6347 else if (intel_syntax
6348 && !i.suffix
6349 && (i.tm.operand_types[0].bitfield.jumpabsolute
6350 || i.tm.opcode_modifier.jumpbyte
6351 || i.tm.opcode_modifier.jumpintersegment
6352 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6353 && i.tm.extension_opcode <= 3)))
6354 {
6355 switch (flag_code)
6356 {
6357 case CODE_64BIT:
6358 if (!i.tm.opcode_modifier.no_qsuf)
6359 {
6360 i.suffix = QWORD_MNEM_SUFFIX;
6361 break;
6362 }
6363 /* Fall through. */
6364 case CODE_32BIT:
6365 if (!i.tm.opcode_modifier.no_lsuf)
6366 i.suffix = LONG_MNEM_SUFFIX;
6367 break;
6368 case CODE_16BIT:
6369 if (!i.tm.opcode_modifier.no_wsuf)
6370 i.suffix = WORD_MNEM_SUFFIX;
6371 break;
6372 }
6373 }
6374
6375 if (!i.suffix)
6376 {
6377 if (!intel_syntax)
6378 {
6379 if (i.tm.opcode_modifier.w)
6380 {
6381 as_bad (_("no instruction mnemonic suffix given and "
6382 "no register operands; can't size instruction"));
6383 return 0;
6384 }
6385 }
6386 else
6387 {
6388 unsigned int suffixes;
6389
6390 suffixes = !i.tm.opcode_modifier.no_bsuf;
6391 if (!i.tm.opcode_modifier.no_wsuf)
6392 suffixes |= 1 << 1;
6393 if (!i.tm.opcode_modifier.no_lsuf)
6394 suffixes |= 1 << 2;
6395 if (!i.tm.opcode_modifier.no_ldsuf)
6396 suffixes |= 1 << 3;
6397 if (!i.tm.opcode_modifier.no_ssuf)
6398 suffixes |= 1 << 4;
6399 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6400 suffixes |= 1 << 5;
6401
6402 /* There are more than suffix matches. */
6403 if (i.tm.opcode_modifier.w
6404 || ((suffixes & (suffixes - 1))
6405 && !i.tm.opcode_modifier.defaultsize
6406 && !i.tm.opcode_modifier.ignoresize))
6407 {
6408 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6409 return 0;
6410 }
6411 }
6412 }
6413
6414 /* Change the opcode based on the operand size given by i.suffix. */
6415 switch (i.suffix)
6416 {
6417 /* Size floating point instruction. */
6418 case LONG_MNEM_SUFFIX:
6419 if (i.tm.opcode_modifier.floatmf)
6420 {
6421 i.tm.base_opcode ^= 4;
6422 break;
6423 }
6424 /* fall through */
6425 case WORD_MNEM_SUFFIX:
6426 case QWORD_MNEM_SUFFIX:
6427 /* It's not a byte, select word/dword operation. */
6428 if (i.tm.opcode_modifier.w)
6429 {
6430 if (i.tm.opcode_modifier.shortform)
6431 i.tm.base_opcode |= 8;
6432 else
6433 i.tm.base_opcode |= 1;
6434 }
6435 /* fall through */
6436 case SHORT_MNEM_SUFFIX:
6437 /* Now select between word & dword operations via the operand
6438 size prefix, except for instructions that will ignore this
6439 prefix anyway. */
6440 if (i.reg_operands > 0
6441 && i.types[0].bitfield.reg
6442 && i.tm.opcode_modifier.addrprefixopreg
6443 && (i.tm.opcode_modifier.immext
6444 || i.operands == 1))
6445 {
6446 /* The address size override prefix changes the size of the
6447 first operand. */
6448 if ((flag_code == CODE_32BIT
6449 && i.op[0].regs->reg_type.bitfield.word)
6450 || (flag_code != CODE_32BIT
6451 && i.op[0].regs->reg_type.bitfield.dword))
6452 if (!add_prefix (ADDR_PREFIX_OPCODE))
6453 return 0;
6454 }
6455 else if (i.suffix != QWORD_MNEM_SUFFIX
6456 && !i.tm.opcode_modifier.ignoresize
6457 && !i.tm.opcode_modifier.floatmf
6458 && !is_any_vex_encoding (&i.tm)
6459 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6460 || (flag_code == CODE_64BIT
6461 && i.tm.opcode_modifier.jumpbyte)))
6462 {
6463 unsigned int prefix = DATA_PREFIX_OPCODE;
6464
6465 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6466 prefix = ADDR_PREFIX_OPCODE;
6467
6468 if (!add_prefix (prefix))
6469 return 0;
6470 }
6471
6472 /* Set mode64 for an operand. */
6473 if (i.suffix == QWORD_MNEM_SUFFIX
6474 && flag_code == CODE_64BIT
6475 && !i.tm.opcode_modifier.norex64
6476 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6477 need rex64. */
6478 && ! (i.operands == 2
6479 && i.tm.base_opcode == 0x90
6480 && i.tm.extension_opcode == None
6481 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6482 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6483 i.rex |= REX_W;
6484
6485 break;
6486 }
6487
6488 if (i.reg_operands != 0
6489 && i.operands > 1
6490 && i.tm.opcode_modifier.addrprefixopreg
6491 && !i.tm.opcode_modifier.immext)
6492 {
6493 /* Check invalid register operand when the address size override
6494 prefix changes the size of register operands. */
6495 unsigned int op;
6496 enum { need_word, need_dword, need_qword } need;
6497
6498 if (flag_code == CODE_32BIT)
6499 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6500 else
6501 {
6502 if (i.prefix[ADDR_PREFIX])
6503 need = need_dword;
6504 else
6505 need = flag_code == CODE_64BIT ? need_qword : need_word;
6506 }
6507
6508 for (op = 0; op < i.operands; op++)
6509 if (i.types[op].bitfield.reg
6510 && ((need == need_word
6511 && !i.op[op].regs->reg_type.bitfield.word)
6512 || (need == need_dword
6513 && !i.op[op].regs->reg_type.bitfield.dword)
6514 || (need == need_qword
6515 && !i.op[op].regs->reg_type.bitfield.qword)))
6516 {
6517 as_bad (_("invalid register operand size for `%s'"),
6518 i.tm.name);
6519 return 0;
6520 }
6521 }
6522
6523 return 1;
6524 }
6525
6526 static int
6527 check_byte_reg (void)
6528 {
6529 int op;
6530
6531 for (op = i.operands; --op >= 0;)
6532 {
6533 /* Skip non-register operands. */
6534 if (!i.types[op].bitfield.reg)
6535 continue;
6536
6537 /* If this is an eight bit register, it's OK. If it's the 16 or
6538 32 bit version of an eight bit register, we will just use the
6539 low portion, and that's OK too. */
6540 if (i.types[op].bitfield.byte)
6541 continue;
6542
6543 /* I/O port address operands are OK too. */
6544 if (i.tm.operand_types[op].bitfield.inoutportreg)
6545 continue;
6546
6547 /* crc32 doesn't generate this warning. */
6548 if (i.tm.base_opcode == 0xf20f38f0)
6549 continue;
6550
6551 if ((i.types[op].bitfield.word
6552 || i.types[op].bitfield.dword
6553 || i.types[op].bitfield.qword)
6554 && i.op[op].regs->reg_num < 4
6555 /* Prohibit these changes in 64bit mode, since the lowering
6556 would be more complicated. */
6557 && flag_code != CODE_64BIT)
6558 {
6559 #if REGISTER_WARNINGS
6560 if (!quiet_warnings)
6561 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6562 register_prefix,
6563 (i.op[op].regs + (i.types[op].bitfield.word
6564 ? REGNAM_AL - REGNAM_AX
6565 : REGNAM_AL - REGNAM_EAX))->reg_name,
6566 register_prefix,
6567 i.op[op].regs->reg_name,
6568 i.suffix);
6569 #endif
6570 continue;
6571 }
6572 /* Any other register is bad. */
6573 if (i.types[op].bitfield.reg
6574 || i.types[op].bitfield.regmmx
6575 || i.types[op].bitfield.regsimd
6576 || i.types[op].bitfield.sreg
6577 || i.types[op].bitfield.control
6578 || i.types[op].bitfield.debug
6579 || i.types[op].bitfield.test)
6580 {
6581 as_bad (_("`%s%s' not allowed with `%s%c'"),
6582 register_prefix,
6583 i.op[op].regs->reg_name,
6584 i.tm.name,
6585 i.suffix);
6586 return 0;
6587 }
6588 }
6589 return 1;
6590 }
6591
6592 static int
6593 check_long_reg (void)
6594 {
6595 int op;
6596
6597 for (op = i.operands; --op >= 0;)
6598 /* Skip non-register operands. */
6599 if (!i.types[op].bitfield.reg)
6600 continue;
6601 /* Reject eight bit registers, except where the template requires
6602 them. (eg. movzb) */
6603 else if (i.types[op].bitfield.byte
6604 && (i.tm.operand_types[op].bitfield.reg
6605 || i.tm.operand_types[op].bitfield.acc)
6606 && (i.tm.operand_types[op].bitfield.word
6607 || i.tm.operand_types[op].bitfield.dword))
6608 {
6609 as_bad (_("`%s%s' not allowed with `%s%c'"),
6610 register_prefix,
6611 i.op[op].regs->reg_name,
6612 i.tm.name,
6613 i.suffix);
6614 return 0;
6615 }
6616 /* Warn if the e prefix on a general reg is missing. */
6617 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6618 && i.types[op].bitfield.word
6619 && (i.tm.operand_types[op].bitfield.reg
6620 || i.tm.operand_types[op].bitfield.acc)
6621 && i.tm.operand_types[op].bitfield.dword)
6622 {
6623 /* Prohibit these changes in the 64bit mode, since the
6624 lowering is more complicated. */
6625 if (flag_code == CODE_64BIT)
6626 {
6627 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6628 register_prefix, i.op[op].regs->reg_name,
6629 i.suffix);
6630 return 0;
6631 }
6632 #if REGISTER_WARNINGS
6633 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6634 register_prefix,
6635 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6636 register_prefix, i.op[op].regs->reg_name, i.suffix);
6637 #endif
6638 }
6639 /* Warn if the r prefix on a general reg is present. */
6640 else if (i.types[op].bitfield.qword
6641 && (i.tm.operand_types[op].bitfield.reg
6642 || i.tm.operand_types[op].bitfield.acc)
6643 && i.tm.operand_types[op].bitfield.dword)
6644 {
6645 if (intel_syntax
6646 && i.tm.opcode_modifier.toqword
6647 && !i.types[0].bitfield.regsimd)
6648 {
6649 /* Convert to QWORD. We want REX byte. */
6650 i.suffix = QWORD_MNEM_SUFFIX;
6651 }
6652 else
6653 {
6654 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6655 register_prefix, i.op[op].regs->reg_name,
6656 i.suffix);
6657 return 0;
6658 }
6659 }
6660 return 1;
6661 }
6662
6663 static int
6664 check_qword_reg (void)
6665 {
6666 int op;
6667
6668 for (op = i.operands; --op >= 0; )
6669 /* Skip non-register operands. */
6670 if (!i.types[op].bitfield.reg)
6671 continue;
6672 /* Reject eight bit registers, except where the template requires
6673 them. (eg. movzb) */
6674 else if (i.types[op].bitfield.byte
6675 && (i.tm.operand_types[op].bitfield.reg
6676 || i.tm.operand_types[op].bitfield.acc)
6677 && (i.tm.operand_types[op].bitfield.word
6678 || i.tm.operand_types[op].bitfield.dword))
6679 {
6680 as_bad (_("`%s%s' not allowed with `%s%c'"),
6681 register_prefix,
6682 i.op[op].regs->reg_name,
6683 i.tm.name,
6684 i.suffix);
6685 return 0;
6686 }
6687 /* Warn if the r prefix on a general reg is missing. */
6688 else if ((i.types[op].bitfield.word
6689 || i.types[op].bitfield.dword)
6690 && (i.tm.operand_types[op].bitfield.reg
6691 || i.tm.operand_types[op].bitfield.acc)
6692 && i.tm.operand_types[op].bitfield.qword)
6693 {
6694 /* Prohibit these changes in the 64bit mode, since the
6695 lowering is more complicated. */
6696 if (intel_syntax
6697 && i.tm.opcode_modifier.todword
6698 && !i.types[0].bitfield.regsimd)
6699 {
6700 /* Convert to DWORD. We don't want REX byte. */
6701 i.suffix = LONG_MNEM_SUFFIX;
6702 }
6703 else
6704 {
6705 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6706 register_prefix, i.op[op].regs->reg_name,
6707 i.suffix);
6708 return 0;
6709 }
6710 }
6711 return 1;
6712 }
6713
6714 static int
6715 check_word_reg (void)
6716 {
6717 int op;
6718 for (op = i.operands; --op >= 0;)
6719 /* Skip non-register operands. */
6720 if (!i.types[op].bitfield.reg)
6721 continue;
6722 /* Reject eight bit registers, except where the template requires
6723 them. (eg. movzb) */
6724 else if (i.types[op].bitfield.byte
6725 && (i.tm.operand_types[op].bitfield.reg
6726 || i.tm.operand_types[op].bitfield.acc)
6727 && (i.tm.operand_types[op].bitfield.word
6728 || i.tm.operand_types[op].bitfield.dword))
6729 {
6730 as_bad (_("`%s%s' not allowed with `%s%c'"),
6731 register_prefix,
6732 i.op[op].regs->reg_name,
6733 i.tm.name,
6734 i.suffix);
6735 return 0;
6736 }
6737 /* Warn if the e or r prefix on a general reg is present. */
6738 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6739 && (i.types[op].bitfield.dword
6740 || i.types[op].bitfield.qword)
6741 && (i.tm.operand_types[op].bitfield.reg
6742 || i.tm.operand_types[op].bitfield.acc)
6743 && i.tm.operand_types[op].bitfield.word)
6744 {
6745 /* Prohibit these changes in the 64bit mode, since the
6746 lowering is more complicated. */
6747 if (flag_code == CODE_64BIT)
6748 {
6749 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6750 register_prefix, i.op[op].regs->reg_name,
6751 i.suffix);
6752 return 0;
6753 }
6754 #if REGISTER_WARNINGS
6755 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6756 register_prefix,
6757 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6758 register_prefix, i.op[op].regs->reg_name, i.suffix);
6759 #endif
6760 }
6761 return 1;
6762 }
6763
6764 static int
6765 update_imm (unsigned int j)
6766 {
6767 i386_operand_type overlap = i.types[j];
6768 if ((overlap.bitfield.imm8
6769 || overlap.bitfield.imm8s
6770 || overlap.bitfield.imm16
6771 || overlap.bitfield.imm32
6772 || overlap.bitfield.imm32s
6773 || overlap.bitfield.imm64)
6774 && !operand_type_equal (&overlap, &imm8)
6775 && !operand_type_equal (&overlap, &imm8s)
6776 && !operand_type_equal (&overlap, &imm16)
6777 && !operand_type_equal (&overlap, &imm32)
6778 && !operand_type_equal (&overlap, &imm32s)
6779 && !operand_type_equal (&overlap, &imm64))
6780 {
6781 if (i.suffix)
6782 {
6783 i386_operand_type temp;
6784
6785 operand_type_set (&temp, 0);
6786 if (i.suffix == BYTE_MNEM_SUFFIX)
6787 {
6788 temp.bitfield.imm8 = overlap.bitfield.imm8;
6789 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6790 }
6791 else if (i.suffix == WORD_MNEM_SUFFIX)
6792 temp.bitfield.imm16 = overlap.bitfield.imm16;
6793 else if (i.suffix == QWORD_MNEM_SUFFIX)
6794 {
6795 temp.bitfield.imm64 = overlap.bitfield.imm64;
6796 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6797 }
6798 else
6799 temp.bitfield.imm32 = overlap.bitfield.imm32;
6800 overlap = temp;
6801 }
6802 else if (operand_type_equal (&overlap, &imm16_32_32s)
6803 || operand_type_equal (&overlap, &imm16_32)
6804 || operand_type_equal (&overlap, &imm16_32s))
6805 {
6806 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6807 overlap = imm16;
6808 else
6809 overlap = imm32s;
6810 }
6811 if (!operand_type_equal (&overlap, &imm8)
6812 && !operand_type_equal (&overlap, &imm8s)
6813 && !operand_type_equal (&overlap, &imm16)
6814 && !operand_type_equal (&overlap, &imm32)
6815 && !operand_type_equal (&overlap, &imm32s)
6816 && !operand_type_equal (&overlap, &imm64))
6817 {
6818 as_bad (_("no instruction mnemonic suffix given; "
6819 "can't determine immediate size"));
6820 return 0;
6821 }
6822 }
6823 i.types[j] = overlap;
6824
6825 return 1;
6826 }
6827
6828 static int
6829 finalize_imm (void)
6830 {
6831 unsigned int j, n;
6832
6833 /* Update the first 2 immediate operands. */
6834 n = i.operands > 2 ? 2 : i.operands;
6835 if (n)
6836 {
6837 for (j = 0; j < n; j++)
6838 if (update_imm (j) == 0)
6839 return 0;
6840
6841 /* The 3rd operand can't be immediate operand. */
6842 gas_assert (operand_type_check (i.types[2], imm) == 0);
6843 }
6844
6845 return 1;
6846 }
6847
6848 static int
6849 process_operands (void)
6850 {
6851 /* Default segment register this instruction will use for memory
6852 accesses. 0 means unknown. This is only for optimizing out
6853 unnecessary segment overrides. */
6854 const seg_entry *default_seg = 0;
6855
6856 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6857 {
6858 unsigned int dupl = i.operands;
6859 unsigned int dest = dupl - 1;
6860 unsigned int j;
6861
6862 /* The destination must be an xmm register. */
6863 gas_assert (i.reg_operands
6864 && MAX_OPERANDS > dupl
6865 && operand_type_equal (&i.types[dest], &regxmm));
6866
6867 if (i.tm.operand_types[0].bitfield.acc
6868 && i.tm.operand_types[0].bitfield.xmmword)
6869 {
6870 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6871 {
6872 /* Keep xmm0 for instructions with VEX prefix and 3
6873 sources. */
6874 i.tm.operand_types[0].bitfield.acc = 0;
6875 i.tm.operand_types[0].bitfield.regsimd = 1;
6876 goto duplicate;
6877 }
6878 else
6879 {
6880 /* We remove the first xmm0 and keep the number of
6881 operands unchanged, which in fact duplicates the
6882 destination. */
6883 for (j = 1; j < i.operands; j++)
6884 {
6885 i.op[j - 1] = i.op[j];
6886 i.types[j - 1] = i.types[j];
6887 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6888 }
6889 }
6890 }
6891 else if (i.tm.opcode_modifier.implicit1stxmm0)
6892 {
6893 gas_assert ((MAX_OPERANDS - 1) > dupl
6894 && (i.tm.opcode_modifier.vexsources
6895 == VEX3SOURCES));
6896
6897 /* Add the implicit xmm0 for instructions with VEX prefix
6898 and 3 sources. */
6899 for (j = i.operands; j > 0; j--)
6900 {
6901 i.op[j] = i.op[j - 1];
6902 i.types[j] = i.types[j - 1];
6903 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6904 }
6905 i.op[0].regs
6906 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6907 i.types[0] = regxmm;
6908 i.tm.operand_types[0] = regxmm;
6909
6910 i.operands += 2;
6911 i.reg_operands += 2;
6912 i.tm.operands += 2;
6913
6914 dupl++;
6915 dest++;
6916 i.op[dupl] = i.op[dest];
6917 i.types[dupl] = i.types[dest];
6918 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6919 }
6920 else
6921 {
6922 duplicate:
6923 i.operands++;
6924 i.reg_operands++;
6925 i.tm.operands++;
6926
6927 i.op[dupl] = i.op[dest];
6928 i.types[dupl] = i.types[dest];
6929 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6930 }
6931
6932 if (i.tm.opcode_modifier.immext)
6933 process_immext ();
6934 }
6935 else if (i.tm.operand_types[0].bitfield.acc
6936 && i.tm.operand_types[0].bitfield.xmmword)
6937 {
6938 unsigned int j;
6939
6940 for (j = 1; j < i.operands; j++)
6941 {
6942 i.op[j - 1] = i.op[j];
6943 i.types[j - 1] = i.types[j];
6944
6945 /* We need to adjust fields in i.tm since they are used by
6946 build_modrm_byte. */
6947 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6948 }
6949
6950 i.operands--;
6951 i.reg_operands--;
6952 i.tm.operands--;
6953 }
6954 else if (i.tm.opcode_modifier.implicitquadgroup)
6955 {
6956 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6957
6958 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6959 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6960 regnum = register_number (i.op[1].regs);
6961 first_reg_in_group = regnum & ~3;
6962 last_reg_in_group = first_reg_in_group + 3;
6963 if (regnum != first_reg_in_group)
6964 as_warn (_("source register `%s%s' implicitly denotes"
6965 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6966 register_prefix, i.op[1].regs->reg_name,
6967 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6968 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6969 i.tm.name);
6970 }
6971 else if (i.tm.opcode_modifier.regkludge)
6972 {
6973 /* The imul $imm, %reg instruction is converted into
6974 imul $imm, %reg, %reg, and the clr %reg instruction
6975 is converted into xor %reg, %reg. */
6976
6977 unsigned int first_reg_op;
6978
6979 if (operand_type_check (i.types[0], reg))
6980 first_reg_op = 0;
6981 else
6982 first_reg_op = 1;
6983 /* Pretend we saw the extra register operand. */
6984 gas_assert (i.reg_operands == 1
6985 && i.op[first_reg_op + 1].regs == 0);
6986 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6987 i.types[first_reg_op + 1] = i.types[first_reg_op];
6988 i.operands++;
6989 i.reg_operands++;
6990 }
6991
6992 if (i.tm.opcode_modifier.shortform)
6993 {
6994 if (i.types[0].bitfield.sreg)
6995 {
6996 if (flag_code != CODE_64BIT
6997 ? i.tm.base_opcode == POP_SEG_SHORT
6998 && i.op[0].regs->reg_num == 1
6999 : (i.tm.base_opcode | 1) == POP_SEG_SHORT
7000 && i.op[0].regs->reg_num < 4)
7001 {
7002 as_bad (_("you can't `%s %s%s'"),
7003 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7004 return 0;
7005 }
7006 if ( i.op[0].regs->reg_num > 3 )
7007 {
7008 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7009 i.tm.opcode_length = 2;
7010 }
7011 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7012 }
7013 else
7014 {
7015 /* The register or float register operand is in operand
7016 0 or 1. */
7017 unsigned int op;
7018
7019 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7020 || operand_type_check (i.types[0], reg))
7021 op = 0;
7022 else
7023 op = 1;
7024 /* Register goes in low 3 bits of opcode. */
7025 i.tm.base_opcode |= i.op[op].regs->reg_num;
7026 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7027 i.rex |= REX_B;
7028 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7029 {
7030 /* Warn about some common errors, but press on regardless.
7031 The first case can be generated by gcc (<= 2.8.1). */
7032 if (i.operands == 2)
7033 {
7034 /* Reversed arguments on faddp, fsubp, etc. */
7035 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7036 register_prefix, i.op[!intel_syntax].regs->reg_name,
7037 register_prefix, i.op[intel_syntax].regs->reg_name);
7038 }
7039 else
7040 {
7041 /* Extraneous `l' suffix on fp insn. */
7042 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7043 register_prefix, i.op[0].regs->reg_name);
7044 }
7045 }
7046 }
7047 }
7048 else if (i.tm.opcode_modifier.modrm)
7049 {
7050 /* The opcode is completed (modulo i.tm.extension_opcode which
7051 must be put into the modrm byte). Now, we make the modrm and
7052 index base bytes based on all the info we've collected. */
7053
7054 default_seg = build_modrm_byte ();
7055 }
7056 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7057 {
7058 default_seg = &ds;
7059 }
7060 else if (i.tm.opcode_modifier.isstring)
7061 {
7062 /* For the string instructions that allow a segment override
7063 on one of their operands, the default segment is ds. */
7064 default_seg = &ds;
7065 }
7066
7067 if (i.tm.base_opcode == 0x8d /* lea */
7068 && i.seg[0]
7069 && !quiet_warnings)
7070 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7071
7072 /* If a segment was explicitly specified, and the specified segment
7073 is not the default, use an opcode prefix to select it. If we
7074 never figured out what the default segment is, then default_seg
7075 will be zero at this point, and the specified segment prefix will
7076 always be used. */
7077 if ((i.seg[0]) && (i.seg[0] != default_seg))
7078 {
7079 if (!add_prefix (i.seg[0]->seg_prefix))
7080 return 0;
7081 }
7082 return 1;
7083 }
7084
7085 static const seg_entry *
7086 build_modrm_byte (void)
7087 {
7088 const seg_entry *default_seg = 0;
7089 unsigned int source, dest;
7090 int vex_3_sources;
7091
7092 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7093 if (vex_3_sources)
7094 {
7095 unsigned int nds, reg_slot;
7096 expressionS *exp;
7097
7098 dest = i.operands - 1;
7099 nds = dest - 1;
7100
7101 /* There are 2 kinds of instructions:
7102 1. 5 operands: 4 register operands or 3 register operands
7103 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7104 VexW0 or VexW1. The destination must be either XMM, YMM or
7105 ZMM register.
7106 2. 4 operands: 4 register operands or 3 register operands
7107 plus 1 memory operand, with VexXDS. */
7108 gas_assert ((i.reg_operands == 4
7109 || (i.reg_operands == 3 && i.mem_operands == 1))
7110 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7111 && i.tm.opcode_modifier.vexw
7112 && i.tm.operand_types[dest].bitfield.regsimd);
7113
7114 /* If VexW1 is set, the first non-immediate operand is the source and
7115 the second non-immediate one is encoded in the immediate operand. */
7116 if (i.tm.opcode_modifier.vexw == VEXW1)
7117 {
7118 source = i.imm_operands;
7119 reg_slot = i.imm_operands + 1;
7120 }
7121 else
7122 {
7123 source = i.imm_operands + 1;
7124 reg_slot = i.imm_operands;
7125 }
7126
7127 if (i.imm_operands == 0)
7128 {
7129 /* When there is no immediate operand, generate an 8bit
7130 immediate operand to encode the first operand. */
7131 exp = &im_expressions[i.imm_operands++];
7132 i.op[i.operands].imms = exp;
7133 i.types[i.operands] = imm8;
7134 i.operands++;
7135
7136 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7137 exp->X_op = O_constant;
7138 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7139 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7140 }
7141 else
7142 {
7143 gas_assert (i.imm_operands == 1);
7144 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7145 gas_assert (!i.tm.opcode_modifier.immext);
7146
7147 /* Turn on Imm8 again so that output_imm will generate it. */
7148 i.types[0].bitfield.imm8 = 1;
7149
7150 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7151 i.op[0].imms->X_add_number
7152 |= register_number (i.op[reg_slot].regs) << 4;
7153 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7154 }
7155
7156 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7157 i.vex.register_specifier = i.op[nds].regs;
7158 }
7159 else
7160 source = dest = 0;
7161
7162 /* i.reg_operands MUST be the number of real register operands;
7163 implicit registers do not count. If there are 3 register
7164 operands, it must be a instruction with VexNDS. For a
7165 instruction with VexNDD, the destination register is encoded
7166 in VEX prefix. If there are 4 register operands, it must be
7167 a instruction with VEX prefix and 3 sources. */
7168 if (i.mem_operands == 0
7169 && ((i.reg_operands == 2
7170 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7171 || (i.reg_operands == 3
7172 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7173 || (i.reg_operands == 4 && vex_3_sources)))
7174 {
7175 switch (i.operands)
7176 {
7177 case 2:
7178 source = 0;
7179 break;
7180 case 3:
7181 /* When there are 3 operands, one of them may be immediate,
7182 which may be the first or the last operand. Otherwise,
7183 the first operand must be shift count register (cl) or it
7184 is an instruction with VexNDS. */
7185 gas_assert (i.imm_operands == 1
7186 || (i.imm_operands == 0
7187 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7188 || i.types[0].bitfield.shiftcount)));
7189 if (operand_type_check (i.types[0], imm)
7190 || i.types[0].bitfield.shiftcount)
7191 source = 1;
7192 else
7193 source = 0;
7194 break;
7195 case 4:
7196 /* When there are 4 operands, the first two must be 8bit
7197 immediate operands. The source operand will be the 3rd
7198 one.
7199
7200 For instructions with VexNDS, if the first operand
7201 an imm8, the source operand is the 2nd one. If the last
7202 operand is imm8, the source operand is the first one. */
7203 gas_assert ((i.imm_operands == 2
7204 && i.types[0].bitfield.imm8
7205 && i.types[1].bitfield.imm8)
7206 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7207 && i.imm_operands == 1
7208 && (i.types[0].bitfield.imm8
7209 || i.types[i.operands - 1].bitfield.imm8
7210 || i.rounding)));
7211 if (i.imm_operands == 2)
7212 source = 2;
7213 else
7214 {
7215 if (i.types[0].bitfield.imm8)
7216 source = 1;
7217 else
7218 source = 0;
7219 }
7220 break;
7221 case 5:
7222 if (is_evex_encoding (&i.tm))
7223 {
7224 /* For EVEX instructions, when there are 5 operands, the
7225 first one must be immediate operand. If the second one
7226 is immediate operand, the source operand is the 3th
7227 one. If the last one is immediate operand, the source
7228 operand is the 2nd one. */
7229 gas_assert (i.imm_operands == 2
7230 && i.tm.opcode_modifier.sae
7231 && operand_type_check (i.types[0], imm));
7232 if (operand_type_check (i.types[1], imm))
7233 source = 2;
7234 else if (operand_type_check (i.types[4], imm))
7235 source = 1;
7236 else
7237 abort ();
7238 }
7239 break;
7240 default:
7241 abort ();
7242 }
7243
7244 if (!vex_3_sources)
7245 {
7246 dest = source + 1;
7247
7248 /* RC/SAE operand could be between DEST and SRC. That happens
7249 when one operand is GPR and the other one is XMM/YMM/ZMM
7250 register. */
7251 if (i.rounding && i.rounding->operand == (int) dest)
7252 dest++;
7253
7254 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7255 {
7256 /* For instructions with VexNDS, the register-only source
7257 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7258 register. It is encoded in VEX prefix. We need to
7259 clear RegMem bit before calling operand_type_equal. */
7260
7261 i386_operand_type op;
7262 unsigned int vvvv;
7263
7264 /* Check register-only source operand when two source
7265 operands are swapped. */
7266 if (!i.tm.operand_types[source].bitfield.baseindex
7267 && i.tm.operand_types[dest].bitfield.baseindex)
7268 {
7269 vvvv = source;
7270 source = dest;
7271 }
7272 else
7273 vvvv = dest;
7274
7275 op = i.tm.operand_types[vvvv];
7276 op.bitfield.regmem = 0;
7277 if ((dest + 1) >= i.operands
7278 || ((!op.bitfield.reg
7279 || (!op.bitfield.dword && !op.bitfield.qword))
7280 && !op.bitfield.regsimd
7281 && !operand_type_equal (&op, &regmask)))
7282 abort ();
7283 i.vex.register_specifier = i.op[vvvv].regs;
7284 dest++;
7285 }
7286 }
7287
7288 i.rm.mode = 3;
7289 /* One of the register operands will be encoded in the i.tm.reg
7290 field, the other in the combined i.tm.mode and i.tm.regmem
7291 fields. If no form of this instruction supports a memory
7292 destination operand, then we assume the source operand may
7293 sometimes be a memory operand and so we need to store the
7294 destination in the i.rm.reg field. */
7295 if (!i.tm.operand_types[dest].bitfield.regmem
7296 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7297 {
7298 i.rm.reg = i.op[dest].regs->reg_num;
7299 i.rm.regmem = i.op[source].regs->reg_num;
7300 if (i.op[dest].regs->reg_type.bitfield.regmmx
7301 || i.op[source].regs->reg_type.bitfield.regmmx)
7302 i.has_regmmx = TRUE;
7303 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7304 || i.op[source].regs->reg_type.bitfield.regsimd)
7305 {
7306 if (i.types[dest].bitfield.zmmword
7307 || i.types[source].bitfield.zmmword)
7308 i.has_regzmm = TRUE;
7309 else if (i.types[dest].bitfield.ymmword
7310 || i.types[source].bitfield.ymmword)
7311 i.has_regymm = TRUE;
7312 else
7313 i.has_regxmm = TRUE;
7314 }
7315 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7316 i.rex |= REX_R;
7317 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7318 i.vrex |= REX_R;
7319 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7320 i.rex |= REX_B;
7321 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7322 i.vrex |= REX_B;
7323 }
7324 else
7325 {
7326 i.rm.reg = i.op[source].regs->reg_num;
7327 i.rm.regmem = i.op[dest].regs->reg_num;
7328 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7329 i.rex |= REX_B;
7330 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7331 i.vrex |= REX_B;
7332 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7333 i.rex |= REX_R;
7334 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7335 i.vrex |= REX_R;
7336 }
7337 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7338 {
7339 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7340 abort ();
7341 i.rex &= ~REX_R;
7342 add_prefix (LOCK_PREFIX_OPCODE);
7343 }
7344 }
7345 else
7346 { /* If it's not 2 reg operands... */
7347 unsigned int mem;
7348
7349 if (i.mem_operands)
7350 {
7351 unsigned int fake_zero_displacement = 0;
7352 unsigned int op;
7353
7354 for (op = 0; op < i.operands; op++)
7355 if (operand_type_check (i.types[op], anymem))
7356 break;
7357 gas_assert (op < i.operands);
7358
7359 if (i.tm.opcode_modifier.vecsib)
7360 {
7361 if (i.index_reg->reg_num == RegIZ)
7362 abort ();
7363
7364 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7365 if (!i.base_reg)
7366 {
7367 i.sib.base = NO_BASE_REGISTER;
7368 i.sib.scale = i.log2_scale_factor;
7369 i.types[op].bitfield.disp8 = 0;
7370 i.types[op].bitfield.disp16 = 0;
7371 i.types[op].bitfield.disp64 = 0;
7372 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7373 {
7374 /* Must be 32 bit */
7375 i.types[op].bitfield.disp32 = 1;
7376 i.types[op].bitfield.disp32s = 0;
7377 }
7378 else
7379 {
7380 i.types[op].bitfield.disp32 = 0;
7381 i.types[op].bitfield.disp32s = 1;
7382 }
7383 }
7384 i.sib.index = i.index_reg->reg_num;
7385 if ((i.index_reg->reg_flags & RegRex) != 0)
7386 i.rex |= REX_X;
7387 if ((i.index_reg->reg_flags & RegVRex) != 0)
7388 i.vrex |= REX_X;
7389 }
7390
7391 default_seg = &ds;
7392
7393 if (i.base_reg == 0)
7394 {
7395 i.rm.mode = 0;
7396 if (!i.disp_operands)
7397 fake_zero_displacement = 1;
7398 if (i.index_reg == 0)
7399 {
7400 i386_operand_type newdisp;
7401
7402 gas_assert (!i.tm.opcode_modifier.vecsib);
7403 /* Operand is just <disp> */
7404 if (flag_code == CODE_64BIT)
7405 {
7406 /* 64bit mode overwrites the 32bit absolute
7407 addressing by RIP relative addressing and
7408 absolute addressing is encoded by one of the
7409 redundant SIB forms. */
7410 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7411 i.sib.base = NO_BASE_REGISTER;
7412 i.sib.index = NO_INDEX_REGISTER;
7413 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7414 }
7415 else if ((flag_code == CODE_16BIT)
7416 ^ (i.prefix[ADDR_PREFIX] != 0))
7417 {
7418 i.rm.regmem = NO_BASE_REGISTER_16;
7419 newdisp = disp16;
7420 }
7421 else
7422 {
7423 i.rm.regmem = NO_BASE_REGISTER;
7424 newdisp = disp32;
7425 }
7426 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7427 i.types[op] = operand_type_or (i.types[op], newdisp);
7428 }
7429 else if (!i.tm.opcode_modifier.vecsib)
7430 {
7431 /* !i.base_reg && i.index_reg */
7432 if (i.index_reg->reg_num == RegIZ)
7433 i.sib.index = NO_INDEX_REGISTER;
7434 else
7435 i.sib.index = i.index_reg->reg_num;
7436 i.sib.base = NO_BASE_REGISTER;
7437 i.sib.scale = i.log2_scale_factor;
7438 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7439 i.types[op].bitfield.disp8 = 0;
7440 i.types[op].bitfield.disp16 = 0;
7441 i.types[op].bitfield.disp64 = 0;
7442 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7443 {
7444 /* Must be 32 bit */
7445 i.types[op].bitfield.disp32 = 1;
7446 i.types[op].bitfield.disp32s = 0;
7447 }
7448 else
7449 {
7450 i.types[op].bitfield.disp32 = 0;
7451 i.types[op].bitfield.disp32s = 1;
7452 }
7453 if ((i.index_reg->reg_flags & RegRex) != 0)
7454 i.rex |= REX_X;
7455 }
7456 }
7457 /* RIP addressing for 64bit mode. */
7458 else if (i.base_reg->reg_num == RegIP)
7459 {
7460 gas_assert (!i.tm.opcode_modifier.vecsib);
7461 i.rm.regmem = NO_BASE_REGISTER;
7462 i.types[op].bitfield.disp8 = 0;
7463 i.types[op].bitfield.disp16 = 0;
7464 i.types[op].bitfield.disp32 = 0;
7465 i.types[op].bitfield.disp32s = 1;
7466 i.types[op].bitfield.disp64 = 0;
7467 i.flags[op] |= Operand_PCrel;
7468 if (! i.disp_operands)
7469 fake_zero_displacement = 1;
7470 }
7471 else if (i.base_reg->reg_type.bitfield.word)
7472 {
7473 gas_assert (!i.tm.opcode_modifier.vecsib);
7474 switch (i.base_reg->reg_num)
7475 {
7476 case 3: /* (%bx) */
7477 if (i.index_reg == 0)
7478 i.rm.regmem = 7;
7479 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7480 i.rm.regmem = i.index_reg->reg_num - 6;
7481 break;
7482 case 5: /* (%bp) */
7483 default_seg = &ss;
7484 if (i.index_reg == 0)
7485 {
7486 i.rm.regmem = 6;
7487 if (operand_type_check (i.types[op], disp) == 0)
7488 {
7489 /* fake (%bp) into 0(%bp) */
7490 i.types[op].bitfield.disp8 = 1;
7491 fake_zero_displacement = 1;
7492 }
7493 }
7494 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7495 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7496 break;
7497 default: /* (%si) -> 4 or (%di) -> 5 */
7498 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7499 }
7500 i.rm.mode = mode_from_disp_size (i.types[op]);
7501 }
7502 else /* i.base_reg and 32/64 bit mode */
7503 {
7504 if (flag_code == CODE_64BIT
7505 && operand_type_check (i.types[op], disp))
7506 {
7507 i.types[op].bitfield.disp16 = 0;
7508 i.types[op].bitfield.disp64 = 0;
7509 if (i.prefix[ADDR_PREFIX] == 0)
7510 {
7511 i.types[op].bitfield.disp32 = 0;
7512 i.types[op].bitfield.disp32s = 1;
7513 }
7514 else
7515 {
7516 i.types[op].bitfield.disp32 = 1;
7517 i.types[op].bitfield.disp32s = 0;
7518 }
7519 }
7520
7521 if (!i.tm.opcode_modifier.vecsib)
7522 i.rm.regmem = i.base_reg->reg_num;
7523 if ((i.base_reg->reg_flags & RegRex) != 0)
7524 i.rex |= REX_B;
7525 i.sib.base = i.base_reg->reg_num;
7526 /* x86-64 ignores REX prefix bit here to avoid decoder
7527 complications. */
7528 if (!(i.base_reg->reg_flags & RegRex)
7529 && (i.base_reg->reg_num == EBP_REG_NUM
7530 || i.base_reg->reg_num == ESP_REG_NUM))
7531 default_seg = &ss;
7532 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7533 {
7534 fake_zero_displacement = 1;
7535 i.types[op].bitfield.disp8 = 1;
7536 }
7537 i.sib.scale = i.log2_scale_factor;
7538 if (i.index_reg == 0)
7539 {
7540 gas_assert (!i.tm.opcode_modifier.vecsib);
7541 /* <disp>(%esp) becomes two byte modrm with no index
7542 register. We've already stored the code for esp
7543 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7544 Any base register besides %esp will not use the
7545 extra modrm byte. */
7546 i.sib.index = NO_INDEX_REGISTER;
7547 }
7548 else if (!i.tm.opcode_modifier.vecsib)
7549 {
7550 if (i.index_reg->reg_num == RegIZ)
7551 i.sib.index = NO_INDEX_REGISTER;
7552 else
7553 i.sib.index = i.index_reg->reg_num;
7554 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7555 if ((i.index_reg->reg_flags & RegRex) != 0)
7556 i.rex |= REX_X;
7557 }
7558
7559 if (i.disp_operands
7560 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7561 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7562 i.rm.mode = 0;
7563 else
7564 {
7565 if (!fake_zero_displacement
7566 && !i.disp_operands
7567 && i.disp_encoding)
7568 {
7569 fake_zero_displacement = 1;
7570 if (i.disp_encoding == disp_encoding_8bit)
7571 i.types[op].bitfield.disp8 = 1;
7572 else
7573 i.types[op].bitfield.disp32 = 1;
7574 }
7575 i.rm.mode = mode_from_disp_size (i.types[op]);
7576 }
7577 }
7578
7579 if (fake_zero_displacement)
7580 {
7581 /* Fakes a zero displacement assuming that i.types[op]
7582 holds the correct displacement size. */
7583 expressionS *exp;
7584
7585 gas_assert (i.op[op].disps == 0);
7586 exp = &disp_expressions[i.disp_operands++];
7587 i.op[op].disps = exp;
7588 exp->X_op = O_constant;
7589 exp->X_add_number = 0;
7590 exp->X_add_symbol = (symbolS *) 0;
7591 exp->X_op_symbol = (symbolS *) 0;
7592 }
7593
7594 mem = op;
7595 }
7596 else
7597 mem = ~0;
7598
7599 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7600 {
7601 if (operand_type_check (i.types[0], imm))
7602 i.vex.register_specifier = NULL;
7603 else
7604 {
7605 /* VEX.vvvv encodes one of the sources when the first
7606 operand is not an immediate. */
7607 if (i.tm.opcode_modifier.vexw == VEXW0)
7608 i.vex.register_specifier = i.op[0].regs;
7609 else
7610 i.vex.register_specifier = i.op[1].regs;
7611 }
7612
7613 /* Destination is a XMM register encoded in the ModRM.reg
7614 and VEX.R bit. */
7615 i.rm.reg = i.op[2].regs->reg_num;
7616 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7617 i.rex |= REX_R;
7618
7619 /* ModRM.rm and VEX.B encodes the other source. */
7620 if (!i.mem_operands)
7621 {
7622 i.rm.mode = 3;
7623
7624 if (i.tm.opcode_modifier.vexw == VEXW0)
7625 i.rm.regmem = i.op[1].regs->reg_num;
7626 else
7627 i.rm.regmem = i.op[0].regs->reg_num;
7628
7629 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7630 i.rex |= REX_B;
7631 }
7632 }
7633 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7634 {
7635 i.vex.register_specifier = i.op[2].regs;
7636 if (!i.mem_operands)
7637 {
7638 i.rm.mode = 3;
7639 i.rm.regmem = i.op[1].regs->reg_num;
7640 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7641 i.rex |= REX_B;
7642 }
7643 }
7644 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7645 (if any) based on i.tm.extension_opcode. Again, we must be
7646 careful to make sure that segment/control/debug/test/MMX
7647 registers are coded into the i.rm.reg field. */
7648 else if (i.reg_operands)
7649 {
7650 unsigned int op;
7651 unsigned int vex_reg = ~0;
7652
7653 for (op = 0; op < i.operands; op++)
7654 {
7655 if (i.types[op].bitfield.reg
7656 || i.types[op].bitfield.regbnd
7657 || i.types[op].bitfield.regmask
7658 || i.types[op].bitfield.sreg
7659 || i.types[op].bitfield.control
7660 || i.types[op].bitfield.debug
7661 || i.types[op].bitfield.test)
7662 break;
7663 if (i.types[op].bitfield.regsimd)
7664 {
7665 if (i.types[op].bitfield.zmmword)
7666 i.has_regzmm = TRUE;
7667 else if (i.types[op].bitfield.ymmword)
7668 i.has_regymm = TRUE;
7669 else
7670 i.has_regxmm = TRUE;
7671 break;
7672 }
7673 if (i.types[op].bitfield.regmmx)
7674 {
7675 i.has_regmmx = TRUE;
7676 break;
7677 }
7678 }
7679
7680 if (vex_3_sources)
7681 op = dest;
7682 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7683 {
7684 /* For instructions with VexNDS, the register-only
7685 source operand is encoded in VEX prefix. */
7686 gas_assert (mem != (unsigned int) ~0);
7687
7688 if (op > mem)
7689 {
7690 vex_reg = op++;
7691 gas_assert (op < i.operands);
7692 }
7693 else
7694 {
7695 /* Check register-only source operand when two source
7696 operands are swapped. */
7697 if (!i.tm.operand_types[op].bitfield.baseindex
7698 && i.tm.operand_types[op + 1].bitfield.baseindex)
7699 {
7700 vex_reg = op;
7701 op += 2;
7702 gas_assert (mem == (vex_reg + 1)
7703 && op < i.operands);
7704 }
7705 else
7706 {
7707 vex_reg = op + 1;
7708 gas_assert (vex_reg < i.operands);
7709 }
7710 }
7711 }
7712 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7713 {
7714 /* For instructions with VexNDD, the register destination
7715 is encoded in VEX prefix. */
7716 if (i.mem_operands == 0)
7717 {
7718 /* There is no memory operand. */
7719 gas_assert ((op + 2) == i.operands);
7720 vex_reg = op + 1;
7721 }
7722 else
7723 {
7724 /* There are only 2 non-immediate operands. */
7725 gas_assert (op < i.imm_operands + 2
7726 && i.operands == i.imm_operands + 2);
7727 vex_reg = i.imm_operands + 1;
7728 }
7729 }
7730 else
7731 gas_assert (op < i.operands);
7732
7733 if (vex_reg != (unsigned int) ~0)
7734 {
7735 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7736
7737 if ((!type->bitfield.reg
7738 || (!type->bitfield.dword && !type->bitfield.qword))
7739 && !type->bitfield.regsimd
7740 && !operand_type_equal (type, &regmask))
7741 abort ();
7742
7743 i.vex.register_specifier = i.op[vex_reg].regs;
7744 }
7745
7746 /* Don't set OP operand twice. */
7747 if (vex_reg != op)
7748 {
7749 /* If there is an extension opcode to put here, the
7750 register number must be put into the regmem field. */
7751 if (i.tm.extension_opcode != None)
7752 {
7753 i.rm.regmem = i.op[op].regs->reg_num;
7754 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7755 i.rex |= REX_B;
7756 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7757 i.vrex |= REX_B;
7758 }
7759 else
7760 {
7761 i.rm.reg = i.op[op].regs->reg_num;
7762 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7763 i.rex |= REX_R;
7764 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7765 i.vrex |= REX_R;
7766 }
7767 }
7768
7769 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7770 must set it to 3 to indicate this is a register operand
7771 in the regmem field. */
7772 if (!i.mem_operands)
7773 i.rm.mode = 3;
7774 }
7775
7776 /* Fill in i.rm.reg field with extension opcode (if any). */
7777 if (i.tm.extension_opcode != None)
7778 i.rm.reg = i.tm.extension_opcode;
7779 }
7780 return default_seg;
7781 }
7782
7783 static void
7784 output_branch (void)
7785 {
7786 char *p;
7787 int size;
7788 int code16;
7789 int prefix;
7790 relax_substateT subtype;
7791 symbolS *sym;
7792 offsetT off;
7793
7794 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7795 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7796
7797 prefix = 0;
7798 if (i.prefix[DATA_PREFIX] != 0)
7799 {
7800 prefix = 1;
7801 i.prefixes -= 1;
7802 code16 ^= CODE16;
7803 }
7804 /* Pentium4 branch hints. */
7805 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7806 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7807 {
7808 prefix++;
7809 i.prefixes--;
7810 }
7811 if (i.prefix[REX_PREFIX] != 0)
7812 {
7813 prefix++;
7814 i.prefixes--;
7815 }
7816
7817 /* BND prefixed jump. */
7818 if (i.prefix[BND_PREFIX] != 0)
7819 {
7820 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7821 i.prefixes -= 1;
7822 }
7823
7824 if (i.prefixes != 0 && !intel_syntax)
7825 as_warn (_("skipping prefixes on this instruction"));
7826
7827 /* It's always a symbol; End frag & setup for relax.
7828 Make sure there is enough room in this frag for the largest
7829 instruction we may generate in md_convert_frag. This is 2
7830 bytes for the opcode and room for the prefix and largest
7831 displacement. */
7832 frag_grow (prefix + 2 + 4);
7833 /* Prefix and 1 opcode byte go in fr_fix. */
7834 p = frag_more (prefix + 1);
7835 if (i.prefix[DATA_PREFIX] != 0)
7836 *p++ = DATA_PREFIX_OPCODE;
7837 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7838 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7839 *p++ = i.prefix[SEG_PREFIX];
7840 if (i.prefix[REX_PREFIX] != 0)
7841 *p++ = i.prefix[REX_PREFIX];
7842 *p = i.tm.base_opcode;
7843
7844 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7845 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7846 else if (cpu_arch_flags.bitfield.cpui386)
7847 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7848 else
7849 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7850 subtype |= code16;
7851
7852 sym = i.op[0].disps->X_add_symbol;
7853 off = i.op[0].disps->X_add_number;
7854
7855 if (i.op[0].disps->X_op != O_constant
7856 && i.op[0].disps->X_op != O_symbol)
7857 {
7858 /* Handle complex expressions. */
7859 sym = make_expr_symbol (i.op[0].disps);
7860 off = 0;
7861 }
7862
7863 /* 1 possible extra opcode + 4 byte displacement go in var part.
7864 Pass reloc in fr_var. */
7865 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7866 }
7867
7868 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7869 /* Return TRUE iff PLT32 relocation should be used for branching to
7870 symbol S. */
7871
7872 static bfd_boolean
7873 need_plt32_p (symbolS *s)
7874 {
7875 /* PLT32 relocation is ELF only. */
7876 if (!IS_ELF)
7877 return FALSE;
7878
7879 #ifdef TE_SOLARIS
7880 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7881 krtld support it. */
7882 return FALSE;
7883 #endif
7884
7885 /* Since there is no need to prepare for PLT branch on x86-64, we
7886 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7887 be used as a marker for 32-bit PC-relative branches. */
7888 if (!object_64bit)
7889 return FALSE;
7890
7891 /* Weak or undefined symbol need PLT32 relocation. */
7892 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7893 return TRUE;
7894
7895 /* Non-global symbol doesn't need PLT32 relocation. */
7896 if (! S_IS_EXTERNAL (s))
7897 return FALSE;
7898
7899 /* Other global symbols need PLT32 relocation. NB: Symbol with
7900 non-default visibilities are treated as normal global symbol
7901 so that PLT32 relocation can be used as a marker for 32-bit
7902 PC-relative branches. It is useful for linker relaxation. */
7903 return TRUE;
7904 }
7905 #endif
7906
7907 static void
7908 output_jump (void)
7909 {
7910 char *p;
7911 int size;
7912 fixS *fixP;
7913 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7914
7915 if (i.tm.opcode_modifier.jumpbyte)
7916 {
7917 /* This is a loop or jecxz type instruction. */
7918 size = 1;
7919 if (i.prefix[ADDR_PREFIX] != 0)
7920 {
7921 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7922 i.prefixes -= 1;
7923 }
7924 /* Pentium4 branch hints. */
7925 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7926 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7927 {
7928 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7929 i.prefixes--;
7930 }
7931 }
7932 else
7933 {
7934 int code16;
7935
7936 code16 = 0;
7937 if (flag_code == CODE_16BIT)
7938 code16 = CODE16;
7939
7940 if (i.prefix[DATA_PREFIX] != 0)
7941 {
7942 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7943 i.prefixes -= 1;
7944 code16 ^= CODE16;
7945 }
7946
7947 size = 4;
7948 if (code16)
7949 size = 2;
7950 }
7951
7952 if (i.prefix[REX_PREFIX] != 0)
7953 {
7954 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7955 i.prefixes -= 1;
7956 }
7957
7958 /* BND prefixed jump. */
7959 if (i.prefix[BND_PREFIX] != 0)
7960 {
7961 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7962 i.prefixes -= 1;
7963 }
7964
7965 if (i.prefixes != 0 && !intel_syntax)
7966 as_warn (_("skipping prefixes on this instruction"));
7967
7968 p = frag_more (i.tm.opcode_length + size);
7969 switch (i.tm.opcode_length)
7970 {
7971 case 2:
7972 *p++ = i.tm.base_opcode >> 8;
7973 /* Fall through. */
7974 case 1:
7975 *p++ = i.tm.base_opcode;
7976 break;
7977 default:
7978 abort ();
7979 }
7980
7981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7982 if (size == 4
7983 && jump_reloc == NO_RELOC
7984 && need_plt32_p (i.op[0].disps->X_add_symbol))
7985 jump_reloc = BFD_RELOC_X86_64_PLT32;
7986 #endif
7987
7988 jump_reloc = reloc (size, 1, 1, jump_reloc);
7989
7990 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7991 i.op[0].disps, 1, jump_reloc);
7992
7993 /* All jumps handled here are signed, but don't use a signed limit
7994 check for 32 and 16 bit jumps as we want to allow wrap around at
7995 4G and 64k respectively. */
7996 if (size == 1)
7997 fixP->fx_signed = 1;
7998 }
7999
8000 static void
8001 output_interseg_jump (void)
8002 {
8003 char *p;
8004 int size;
8005 int prefix;
8006 int code16;
8007
8008 code16 = 0;
8009 if (flag_code == CODE_16BIT)
8010 code16 = CODE16;
8011
8012 prefix = 0;
8013 if (i.prefix[DATA_PREFIX] != 0)
8014 {
8015 prefix = 1;
8016 i.prefixes -= 1;
8017 code16 ^= CODE16;
8018 }
8019 if (i.prefix[REX_PREFIX] != 0)
8020 {
8021 prefix++;
8022 i.prefixes -= 1;
8023 }
8024
8025 size = 4;
8026 if (code16)
8027 size = 2;
8028
8029 if (i.prefixes != 0 && !intel_syntax)
8030 as_warn (_("skipping prefixes on this instruction"));
8031
8032 /* 1 opcode; 2 segment; offset */
8033 p = frag_more (prefix + 1 + 2 + size);
8034
8035 if (i.prefix[DATA_PREFIX] != 0)
8036 *p++ = DATA_PREFIX_OPCODE;
8037
8038 if (i.prefix[REX_PREFIX] != 0)
8039 *p++ = i.prefix[REX_PREFIX];
8040
8041 *p++ = i.tm.base_opcode;
8042 if (i.op[1].imms->X_op == O_constant)
8043 {
8044 offsetT n = i.op[1].imms->X_add_number;
8045
8046 if (size == 2
8047 && !fits_in_unsigned_word (n)
8048 && !fits_in_signed_word (n))
8049 {
8050 as_bad (_("16-bit jump out of range"));
8051 return;
8052 }
8053 md_number_to_chars (p, n, size);
8054 }
8055 else
8056 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8057 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8058 if (i.op[0].imms->X_op != O_constant)
8059 as_bad (_("can't handle non absolute segment in `%s'"),
8060 i.tm.name);
8061 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8062 }
8063
8064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8065 void
8066 x86_cleanup (void)
8067 {
8068 char *p;
8069 asection *seg = now_seg;
8070 subsegT subseg = now_subseg;
8071 asection *sec;
8072 unsigned int alignment, align_size_1;
8073 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8074 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8075 unsigned int padding;
8076
8077 if (!IS_ELF || !x86_used_note)
8078 return;
8079
8080 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8081
8082 /* The .note.gnu.property section layout:
8083
8084 Field Length Contents
8085 ---- ---- ----
8086 n_namsz 4 4
8087 n_descsz 4 The note descriptor size
8088 n_type 4 NT_GNU_PROPERTY_TYPE_0
8089 n_name 4 "GNU"
8090 n_desc n_descsz The program property array
8091 .... .... ....
8092 */
8093
8094 /* Create the .note.gnu.property section. */
8095 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8096 bfd_set_section_flags (stdoutput, sec,
8097 (SEC_ALLOC
8098 | SEC_LOAD
8099 | SEC_DATA
8100 | SEC_HAS_CONTENTS
8101 | SEC_READONLY));
8102
8103 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8104 {
8105 align_size_1 = 7;
8106 alignment = 3;
8107 }
8108 else
8109 {
8110 align_size_1 = 3;
8111 alignment = 2;
8112 }
8113
8114 bfd_set_section_alignment (stdoutput, sec, alignment);
8115 elf_section_type (sec) = SHT_NOTE;
8116
8117 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8118 + 4-byte data */
8119 isa_1_descsz_raw = 4 + 4 + 4;
8120 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8121 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8122
8123 feature_2_descsz_raw = isa_1_descsz;
8124 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8125 + 4-byte data */
8126 feature_2_descsz_raw += 4 + 4 + 4;
8127 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8128 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8129 & ~align_size_1);
8130
8131 descsz = feature_2_descsz;
8132 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8133 p = frag_more (4 + 4 + 4 + 4 + descsz);
8134
8135 /* Write n_namsz. */
8136 md_number_to_chars (p, (valueT) 4, 4);
8137
8138 /* Write n_descsz. */
8139 md_number_to_chars (p + 4, (valueT) descsz, 4);
8140
8141 /* Write n_type. */
8142 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8143
8144 /* Write n_name. */
8145 memcpy (p + 4 * 3, "GNU", 4);
8146
8147 /* Write 4-byte type. */
8148 md_number_to_chars (p + 4 * 4,
8149 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8150
8151 /* Write 4-byte data size. */
8152 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8153
8154 /* Write 4-byte data. */
8155 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8156
8157 /* Zero out paddings. */
8158 padding = isa_1_descsz - isa_1_descsz_raw;
8159 if (padding)
8160 memset (p + 4 * 7, 0, padding);
8161
8162 /* Write 4-byte type. */
8163 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8164 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8165
8166 /* Write 4-byte data size. */
8167 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8168
8169 /* Write 4-byte data. */
8170 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8171 (valueT) x86_feature_2_used, 4);
8172
8173 /* Zero out paddings. */
8174 padding = feature_2_descsz - feature_2_descsz_raw;
8175 if (padding)
8176 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8177
8178 /* We probably can't restore the current segment, for there likely
8179 isn't one yet... */
8180 if (seg && subseg)
8181 subseg_set (seg, subseg);
8182 }
8183 #endif
8184
8185 static unsigned int
8186 encoding_length (const fragS *start_frag, offsetT start_off,
8187 const char *frag_now_ptr)
8188 {
8189 unsigned int len = 0;
8190
8191 if (start_frag != frag_now)
8192 {
8193 const fragS *fr = start_frag;
8194
8195 do {
8196 len += fr->fr_fix;
8197 fr = fr->fr_next;
8198 } while (fr && fr != frag_now);
8199 }
8200
8201 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8202 }
8203
8204 static void
8205 output_insn (void)
8206 {
8207 fragS *insn_start_frag;
8208 offsetT insn_start_off;
8209
8210 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8211 if (IS_ELF && x86_used_note)
8212 {
8213 if (i.tm.cpu_flags.bitfield.cpucmov)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8215 if (i.tm.cpu_flags.bitfield.cpusse)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8217 if (i.tm.cpu_flags.bitfield.cpusse2)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8219 if (i.tm.cpu_flags.bitfield.cpusse3)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8221 if (i.tm.cpu_flags.bitfield.cpussse3)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8223 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8225 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8227 if (i.tm.cpu_flags.bitfield.cpuavx)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8229 if (i.tm.cpu_flags.bitfield.cpuavx2)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8231 if (i.tm.cpu_flags.bitfield.cpufma)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8263
8264 if (i.tm.cpu_flags.bitfield.cpu8087
8265 || i.tm.cpu_flags.bitfield.cpu287
8266 || i.tm.cpu_flags.bitfield.cpu387
8267 || i.tm.cpu_flags.bitfield.cpu687
8268 || i.tm.cpu_flags.bitfield.cpufisttp)
8269 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8270 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8271 Xfence instructions. */
8272 if (i.tm.base_opcode != 0xf18
8273 && i.tm.base_opcode != 0xf0d
8274 && i.tm.base_opcode != 0xfaef8
8275 && (i.has_regmmx
8276 || i.tm.cpu_flags.bitfield.cpummx
8277 || i.tm.cpu_flags.bitfield.cpua3dnow
8278 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8279 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8280 if (i.has_regxmm)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8282 if (i.has_regymm)
8283 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8284 if (i.has_regzmm)
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8286 if (i.tm.cpu_flags.bitfield.cpufxsr)
8287 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8288 if (i.tm.cpu_flags.bitfield.cpuxsave)
8289 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8290 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8292 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8294 }
8295 #endif
8296
8297 /* Tie dwarf2 debug info to the address at the start of the insn.
8298 We can't do this after the insn has been output as the current
8299 frag may have been closed off. eg. by frag_var. */
8300 dwarf2_emit_insn (0);
8301
8302 insn_start_frag = frag_now;
8303 insn_start_off = frag_now_fix ();
8304
8305 /* Output jumps. */
8306 if (i.tm.opcode_modifier.jump)
8307 output_branch ();
8308 else if (i.tm.opcode_modifier.jumpbyte
8309 || i.tm.opcode_modifier.jumpdword)
8310 output_jump ();
8311 else if (i.tm.opcode_modifier.jumpintersegment)
8312 output_interseg_jump ();
8313 else
8314 {
8315 /* Output normal instructions here. */
8316 char *p;
8317 unsigned char *q;
8318 unsigned int j;
8319 unsigned int prefix;
8320
8321 if (avoid_fence
8322 && (i.tm.base_opcode == 0xfaee8
8323 || i.tm.base_opcode == 0xfaef0
8324 || i.tm.base_opcode == 0xfaef8))
8325 {
8326 /* Encode lfence, mfence, and sfence as
8327 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8328 offsetT val = 0x240483f0ULL;
8329 p = frag_more (5);
8330 md_number_to_chars (p, val, 5);
8331 return;
8332 }
8333
8334 /* Some processors fail on LOCK prefix. This options makes
8335 assembler ignore LOCK prefix and serves as a workaround. */
8336 if (omit_lock_prefix)
8337 {
8338 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8339 return;
8340 i.prefix[LOCK_PREFIX] = 0;
8341 }
8342
8343 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8344 don't need the explicit prefix. */
8345 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8346 {
8347 switch (i.tm.opcode_length)
8348 {
8349 case 3:
8350 if (i.tm.base_opcode & 0xff000000)
8351 {
8352 prefix = (i.tm.base_opcode >> 24) & 0xff;
8353 if (!i.tm.cpu_flags.bitfield.cpupadlock
8354 || prefix != REPE_PREFIX_OPCODE
8355 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8356 add_prefix (prefix);
8357 }
8358 break;
8359 case 2:
8360 if ((i.tm.base_opcode & 0xff0000) != 0)
8361 {
8362 prefix = (i.tm.base_opcode >> 16) & 0xff;
8363 add_prefix (prefix);
8364 }
8365 break;
8366 case 1:
8367 break;
8368 case 0:
8369 /* Check for pseudo prefixes. */
8370 as_bad_where (insn_start_frag->fr_file,
8371 insn_start_frag->fr_line,
8372 _("pseudo prefix without instruction"));
8373 return;
8374 default:
8375 abort ();
8376 }
8377
8378 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8379 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8380 R_X86_64_GOTTPOFF relocation so that linker can safely
8381 perform IE->LE optimization. */
8382 if (x86_elf_abi == X86_64_X32_ABI
8383 && i.operands == 2
8384 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8385 && i.prefix[REX_PREFIX] == 0)
8386 add_prefix (REX_OPCODE);
8387 #endif
8388
8389 /* The prefix bytes. */
8390 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8391 if (*q)
8392 FRAG_APPEND_1_CHAR (*q);
8393 }
8394 else
8395 {
8396 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8397 if (*q)
8398 switch (j)
8399 {
8400 case REX_PREFIX:
8401 /* REX byte is encoded in VEX prefix. */
8402 break;
8403 case SEG_PREFIX:
8404 case ADDR_PREFIX:
8405 FRAG_APPEND_1_CHAR (*q);
8406 break;
8407 default:
8408 /* There should be no other prefixes for instructions
8409 with VEX prefix. */
8410 abort ();
8411 }
8412
8413 /* For EVEX instructions i.vrex should become 0 after
8414 build_evex_prefix. For VEX instructions upper 16 registers
8415 aren't available, so VREX should be 0. */
8416 if (i.vrex)
8417 abort ();
8418 /* Now the VEX prefix. */
8419 p = frag_more (i.vex.length);
8420 for (j = 0; j < i.vex.length; j++)
8421 p[j] = i.vex.bytes[j];
8422 }
8423
8424 /* Now the opcode; be careful about word order here! */
8425 if (i.tm.opcode_length == 1)
8426 {
8427 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8428 }
8429 else
8430 {
8431 switch (i.tm.opcode_length)
8432 {
8433 case 4:
8434 p = frag_more (4);
8435 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8436 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8437 break;
8438 case 3:
8439 p = frag_more (3);
8440 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8441 break;
8442 case 2:
8443 p = frag_more (2);
8444 break;
8445 default:
8446 abort ();
8447 break;
8448 }
8449
8450 /* Put out high byte first: can't use md_number_to_chars! */
8451 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8452 *p = i.tm.base_opcode & 0xff;
8453 }
8454
8455 /* Now the modrm byte and sib byte (if present). */
8456 if (i.tm.opcode_modifier.modrm)
8457 {
8458 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8459 | i.rm.reg << 3
8460 | i.rm.mode << 6));
8461 /* If i.rm.regmem == ESP (4)
8462 && i.rm.mode != (Register mode)
8463 && not 16 bit
8464 ==> need second modrm byte. */
8465 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8466 && i.rm.mode != 3
8467 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8468 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8469 | i.sib.index << 3
8470 | i.sib.scale << 6));
8471 }
8472
8473 if (i.disp_operands)
8474 output_disp (insn_start_frag, insn_start_off);
8475
8476 if (i.imm_operands)
8477 output_imm (insn_start_frag, insn_start_off);
8478
8479 /*
8480 * frag_now_fix () returning plain abs_section_offset when we're in the
8481 * absolute section, and abs_section_offset not getting updated as data
8482 * gets added to the frag breaks the logic below.
8483 */
8484 if (now_seg != absolute_section)
8485 {
8486 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8487 if (j > 15)
8488 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8489 j);
8490 }
8491 }
8492
8493 #ifdef DEBUG386
8494 if (flag_debug)
8495 {
8496 pi ("" /*line*/, &i);
8497 }
8498 #endif /* DEBUG386 */
8499 }
8500
8501 /* Return the size of the displacement operand N. */
8502
8503 static int
8504 disp_size (unsigned int n)
8505 {
8506 int size = 4;
8507
8508 if (i.types[n].bitfield.disp64)
8509 size = 8;
8510 else if (i.types[n].bitfield.disp8)
8511 size = 1;
8512 else if (i.types[n].bitfield.disp16)
8513 size = 2;
8514 return size;
8515 }
8516
8517 /* Return the size of the immediate operand N. */
8518
8519 static int
8520 imm_size (unsigned int n)
8521 {
8522 int size = 4;
8523 if (i.types[n].bitfield.imm64)
8524 size = 8;
8525 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8526 size = 1;
8527 else if (i.types[n].bitfield.imm16)
8528 size = 2;
8529 return size;
8530 }
8531
8532 static void
8533 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8534 {
8535 char *p;
8536 unsigned int n;
8537
8538 for (n = 0; n < i.operands; n++)
8539 {
8540 if (operand_type_check (i.types[n], disp))
8541 {
8542 if (i.op[n].disps->X_op == O_constant)
8543 {
8544 int size = disp_size (n);
8545 offsetT val = i.op[n].disps->X_add_number;
8546
8547 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8548 size);
8549 p = frag_more (size);
8550 md_number_to_chars (p, val, size);
8551 }
8552 else
8553 {
8554 enum bfd_reloc_code_real reloc_type;
8555 int size = disp_size (n);
8556 int sign = i.types[n].bitfield.disp32s;
8557 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8558 fixS *fixP;
8559
8560 /* We can't have 8 bit displacement here. */
8561 gas_assert (!i.types[n].bitfield.disp8);
8562
8563 /* The PC relative address is computed relative
8564 to the instruction boundary, so in case immediate
8565 fields follows, we need to adjust the value. */
8566 if (pcrel && i.imm_operands)
8567 {
8568 unsigned int n1;
8569 int sz = 0;
8570
8571 for (n1 = 0; n1 < i.operands; n1++)
8572 if (operand_type_check (i.types[n1], imm))
8573 {
8574 /* Only one immediate is allowed for PC
8575 relative address. */
8576 gas_assert (sz == 0);
8577 sz = imm_size (n1);
8578 i.op[n].disps->X_add_number -= sz;
8579 }
8580 /* We should find the immediate. */
8581 gas_assert (sz != 0);
8582 }
8583
8584 p = frag_more (size);
8585 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8586 if (GOT_symbol
8587 && GOT_symbol == i.op[n].disps->X_add_symbol
8588 && (((reloc_type == BFD_RELOC_32
8589 || reloc_type == BFD_RELOC_X86_64_32S
8590 || (reloc_type == BFD_RELOC_64
8591 && object_64bit))
8592 && (i.op[n].disps->X_op == O_symbol
8593 || (i.op[n].disps->X_op == O_add
8594 && ((symbol_get_value_expression
8595 (i.op[n].disps->X_op_symbol)->X_op)
8596 == O_subtract))))
8597 || reloc_type == BFD_RELOC_32_PCREL))
8598 {
8599 if (!object_64bit)
8600 {
8601 reloc_type = BFD_RELOC_386_GOTPC;
8602 i.op[n].imms->X_add_number +=
8603 encoding_length (insn_start_frag, insn_start_off, p);
8604 }
8605 else if (reloc_type == BFD_RELOC_64)
8606 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8607 else
8608 /* Don't do the adjustment for x86-64, as there
8609 the pcrel addressing is relative to the _next_
8610 insn, and that is taken care of in other code. */
8611 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8612 }
8613 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8614 size, i.op[n].disps, pcrel,
8615 reloc_type);
8616 /* Check for "call/jmp *mem", "mov mem, %reg",
8617 "test %reg, mem" and "binop mem, %reg" where binop
8618 is one of adc, add, and, cmp, or, sbb, sub, xor
8619 instructions without data prefix. Always generate
8620 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8621 if (i.prefix[DATA_PREFIX] == 0
8622 && (generate_relax_relocations
8623 || (!object_64bit
8624 && i.rm.mode == 0
8625 && i.rm.regmem == 5))
8626 && (i.rm.mode == 2
8627 || (i.rm.mode == 0 && i.rm.regmem == 5))
8628 && ((i.operands == 1
8629 && i.tm.base_opcode == 0xff
8630 && (i.rm.reg == 2 || i.rm.reg == 4))
8631 || (i.operands == 2
8632 && (i.tm.base_opcode == 0x8b
8633 || i.tm.base_opcode == 0x85
8634 || (i.tm.base_opcode & 0xc7) == 0x03))))
8635 {
8636 if (object_64bit)
8637 {
8638 fixP->fx_tcbit = i.rex != 0;
8639 if (i.base_reg
8640 && (i.base_reg->reg_num == RegIP))
8641 fixP->fx_tcbit2 = 1;
8642 }
8643 else
8644 fixP->fx_tcbit2 = 1;
8645 }
8646 }
8647 }
8648 }
8649 }
8650
8651 static void
8652 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8653 {
8654 char *p;
8655 unsigned int n;
8656
8657 for (n = 0; n < i.operands; n++)
8658 {
8659 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8660 if (i.rounding && (int) n == i.rounding->operand)
8661 continue;
8662
8663 if (operand_type_check (i.types[n], imm))
8664 {
8665 if (i.op[n].imms->X_op == O_constant)
8666 {
8667 int size = imm_size (n);
8668 offsetT val;
8669
8670 val = offset_in_range (i.op[n].imms->X_add_number,
8671 size);
8672 p = frag_more (size);
8673 md_number_to_chars (p, val, size);
8674 }
8675 else
8676 {
8677 /* Not absolute_section.
8678 Need a 32-bit fixup (don't support 8bit
8679 non-absolute imms). Try to support other
8680 sizes ... */
8681 enum bfd_reloc_code_real reloc_type;
8682 int size = imm_size (n);
8683 int sign;
8684
8685 if (i.types[n].bitfield.imm32s
8686 && (i.suffix == QWORD_MNEM_SUFFIX
8687 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8688 sign = 1;
8689 else
8690 sign = 0;
8691
8692 p = frag_more (size);
8693 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8694
8695 /* This is tough to explain. We end up with this one if we
8696 * have operands that look like
8697 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8698 * obtain the absolute address of the GOT, and it is strongly
8699 * preferable from a performance point of view to avoid using
8700 * a runtime relocation for this. The actual sequence of
8701 * instructions often look something like:
8702 *
8703 * call .L66
8704 * .L66:
8705 * popl %ebx
8706 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8707 *
8708 * The call and pop essentially return the absolute address
8709 * of the label .L66 and store it in %ebx. The linker itself
8710 * will ultimately change the first operand of the addl so
8711 * that %ebx points to the GOT, but to keep things simple, the
8712 * .o file must have this operand set so that it generates not
8713 * the absolute address of .L66, but the absolute address of
8714 * itself. This allows the linker itself simply treat a GOTPC
8715 * relocation as asking for a pcrel offset to the GOT to be
8716 * added in, and the addend of the relocation is stored in the
8717 * operand field for the instruction itself.
8718 *
8719 * Our job here is to fix the operand so that it would add
8720 * the correct offset so that %ebx would point to itself. The
8721 * thing that is tricky is that .-.L66 will point to the
8722 * beginning of the instruction, so we need to further modify
8723 * the operand so that it will point to itself. There are
8724 * other cases where you have something like:
8725 *
8726 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8727 *
8728 * and here no correction would be required. Internally in
8729 * the assembler we treat operands of this form as not being
8730 * pcrel since the '.' is explicitly mentioned, and I wonder
8731 * whether it would simplify matters to do it this way. Who
8732 * knows. In earlier versions of the PIC patches, the
8733 * pcrel_adjust field was used to store the correction, but
8734 * since the expression is not pcrel, I felt it would be
8735 * confusing to do it this way. */
8736
8737 if ((reloc_type == BFD_RELOC_32
8738 || reloc_type == BFD_RELOC_X86_64_32S
8739 || reloc_type == BFD_RELOC_64)
8740 && GOT_symbol
8741 && GOT_symbol == i.op[n].imms->X_add_symbol
8742 && (i.op[n].imms->X_op == O_symbol
8743 || (i.op[n].imms->X_op == O_add
8744 && ((symbol_get_value_expression
8745 (i.op[n].imms->X_op_symbol)->X_op)
8746 == O_subtract))))
8747 {
8748 if (!object_64bit)
8749 reloc_type = BFD_RELOC_386_GOTPC;
8750 else if (size == 4)
8751 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8752 else if (size == 8)
8753 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8754 i.op[n].imms->X_add_number +=
8755 encoding_length (insn_start_frag, insn_start_off, p);
8756 }
8757 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8758 i.op[n].imms, 0, reloc_type);
8759 }
8760 }
8761 }
8762 }
8763 \f
8764 /* x86_cons_fix_new is called via the expression parsing code when a
8765 reloc is needed. We use this hook to get the correct .got reloc. */
8766 static int cons_sign = -1;
8767
8768 void
8769 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8770 expressionS *exp, bfd_reloc_code_real_type r)
8771 {
8772 r = reloc (len, 0, cons_sign, r);
8773
8774 #ifdef TE_PE
8775 if (exp->X_op == O_secrel)
8776 {
8777 exp->X_op = O_symbol;
8778 r = BFD_RELOC_32_SECREL;
8779 }
8780 #endif
8781
8782 fix_new_exp (frag, off, len, exp, 0, r);
8783 }
8784
8785 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8786 purpose of the `.dc.a' internal pseudo-op. */
8787
8788 int
8789 x86_address_bytes (void)
8790 {
8791 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8792 return 4;
8793 return stdoutput->arch_info->bits_per_address / 8;
8794 }
8795
8796 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8797 || defined (LEX_AT)
8798 # define lex_got(reloc, adjust, types) NULL
8799 #else
8800 /* Parse operands of the form
8801 <symbol>@GOTOFF+<nnn>
8802 and similar .plt or .got references.
8803
8804 If we find one, set up the correct relocation in RELOC and copy the
8805 input string, minus the `@GOTOFF' into a malloc'd buffer for
8806 parsing by the calling routine. Return this buffer, and if ADJUST
8807 is non-null set it to the length of the string we removed from the
8808 input line. Otherwise return NULL. */
8809 static char *
8810 lex_got (enum bfd_reloc_code_real *rel,
8811 int *adjust,
8812 i386_operand_type *types)
8813 {
8814 /* Some of the relocations depend on the size of what field is to
8815 be relocated. But in our callers i386_immediate and i386_displacement
8816 we don't yet know the operand size (this will be set by insn
8817 matching). Hence we record the word32 relocation here,
8818 and adjust the reloc according to the real size in reloc(). */
8819 static const struct {
8820 const char *str;
8821 int len;
8822 const enum bfd_reloc_code_real rel[2];
8823 const i386_operand_type types64;
8824 } gotrel[] = {
8825 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8826 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8827 BFD_RELOC_SIZE32 },
8828 OPERAND_TYPE_IMM32_64 },
8829 #endif
8830 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8831 BFD_RELOC_X86_64_PLTOFF64 },
8832 OPERAND_TYPE_IMM64 },
8833 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8834 BFD_RELOC_X86_64_PLT32 },
8835 OPERAND_TYPE_IMM32_32S_DISP32 },
8836 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8837 BFD_RELOC_X86_64_GOTPLT64 },
8838 OPERAND_TYPE_IMM64_DISP64 },
8839 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8840 BFD_RELOC_X86_64_GOTOFF64 },
8841 OPERAND_TYPE_IMM64_DISP64 },
8842 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8843 BFD_RELOC_X86_64_GOTPCREL },
8844 OPERAND_TYPE_IMM32_32S_DISP32 },
8845 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8846 BFD_RELOC_X86_64_TLSGD },
8847 OPERAND_TYPE_IMM32_32S_DISP32 },
8848 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8849 _dummy_first_bfd_reloc_code_real },
8850 OPERAND_TYPE_NONE },
8851 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8852 BFD_RELOC_X86_64_TLSLD },
8853 OPERAND_TYPE_IMM32_32S_DISP32 },
8854 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8855 BFD_RELOC_X86_64_GOTTPOFF },
8856 OPERAND_TYPE_IMM32_32S_DISP32 },
8857 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8858 BFD_RELOC_X86_64_TPOFF32 },
8859 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8860 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8861 _dummy_first_bfd_reloc_code_real },
8862 OPERAND_TYPE_NONE },
8863 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8864 BFD_RELOC_X86_64_DTPOFF32 },
8865 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8866 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8867 _dummy_first_bfd_reloc_code_real },
8868 OPERAND_TYPE_NONE },
8869 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8870 _dummy_first_bfd_reloc_code_real },
8871 OPERAND_TYPE_NONE },
8872 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8873 BFD_RELOC_X86_64_GOT32 },
8874 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8875 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8876 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8877 OPERAND_TYPE_IMM32_32S_DISP32 },
8878 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8879 BFD_RELOC_X86_64_TLSDESC_CALL },
8880 OPERAND_TYPE_IMM32_32S_DISP32 },
8881 };
8882 char *cp;
8883 unsigned int j;
8884
8885 #if defined (OBJ_MAYBE_ELF)
8886 if (!IS_ELF)
8887 return NULL;
8888 #endif
8889
8890 for (cp = input_line_pointer; *cp != '@'; cp++)
8891 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8892 return NULL;
8893
8894 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8895 {
8896 int len = gotrel[j].len;
8897 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8898 {
8899 if (gotrel[j].rel[object_64bit] != 0)
8900 {
8901 int first, second;
8902 char *tmpbuf, *past_reloc;
8903
8904 *rel = gotrel[j].rel[object_64bit];
8905
8906 if (types)
8907 {
8908 if (flag_code != CODE_64BIT)
8909 {
8910 types->bitfield.imm32 = 1;
8911 types->bitfield.disp32 = 1;
8912 }
8913 else
8914 *types = gotrel[j].types64;
8915 }
8916
8917 if (j != 0 && GOT_symbol == NULL)
8918 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8919
8920 /* The length of the first part of our input line. */
8921 first = cp - input_line_pointer;
8922
8923 /* The second part goes from after the reloc token until
8924 (and including) an end_of_line char or comma. */
8925 past_reloc = cp + 1 + len;
8926 cp = past_reloc;
8927 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8928 ++cp;
8929 second = cp + 1 - past_reloc;
8930
8931 /* Allocate and copy string. The trailing NUL shouldn't
8932 be necessary, but be safe. */
8933 tmpbuf = XNEWVEC (char, first + second + 2);
8934 memcpy (tmpbuf, input_line_pointer, first);
8935 if (second != 0 && *past_reloc != ' ')
8936 /* Replace the relocation token with ' ', so that
8937 errors like foo@GOTOFF1 will be detected. */
8938 tmpbuf[first++] = ' ';
8939 else
8940 /* Increment length by 1 if the relocation token is
8941 removed. */
8942 len++;
8943 if (adjust)
8944 *adjust = len;
8945 memcpy (tmpbuf + first, past_reloc, second);
8946 tmpbuf[first + second] = '\0';
8947 return tmpbuf;
8948 }
8949
8950 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8951 gotrel[j].str, 1 << (5 + object_64bit));
8952 return NULL;
8953 }
8954 }
8955
8956 /* Might be a symbol version string. Don't as_bad here. */
8957 return NULL;
8958 }
8959 #endif
8960
8961 #ifdef TE_PE
8962 #ifdef lex_got
8963 #undef lex_got
8964 #endif
8965 /* Parse operands of the form
8966 <symbol>@SECREL32+<nnn>
8967
8968 If we find one, set up the correct relocation in RELOC and copy the
8969 input string, minus the `@SECREL32' into a malloc'd buffer for
8970 parsing by the calling routine. Return this buffer, and if ADJUST
8971 is non-null set it to the length of the string we removed from the
8972 input line. Otherwise return NULL.
8973
8974 This function is copied from the ELF version above adjusted for PE targets. */
8975
8976 static char *
8977 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8978 int *adjust ATTRIBUTE_UNUSED,
8979 i386_operand_type *types)
8980 {
8981 static const struct
8982 {
8983 const char *str;
8984 int len;
8985 const enum bfd_reloc_code_real rel[2];
8986 const i386_operand_type types64;
8987 }
8988 gotrel[] =
8989 {
8990 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8991 BFD_RELOC_32_SECREL },
8992 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8993 };
8994
8995 char *cp;
8996 unsigned j;
8997
8998 for (cp = input_line_pointer; *cp != '@'; cp++)
8999 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9000 return NULL;
9001
9002 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9003 {
9004 int len = gotrel[j].len;
9005
9006 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9007 {
9008 if (gotrel[j].rel[object_64bit] != 0)
9009 {
9010 int first, second;
9011 char *tmpbuf, *past_reloc;
9012
9013 *rel = gotrel[j].rel[object_64bit];
9014 if (adjust)
9015 *adjust = len;
9016
9017 if (types)
9018 {
9019 if (flag_code != CODE_64BIT)
9020 {
9021 types->bitfield.imm32 = 1;
9022 types->bitfield.disp32 = 1;
9023 }
9024 else
9025 *types = gotrel[j].types64;
9026 }
9027
9028 /* The length of the first part of our input line. */
9029 first = cp - input_line_pointer;
9030
9031 /* The second part goes from after the reloc token until
9032 (and including) an end_of_line char or comma. */
9033 past_reloc = cp + 1 + len;
9034 cp = past_reloc;
9035 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9036 ++cp;
9037 second = cp + 1 - past_reloc;
9038
9039 /* Allocate and copy string. The trailing NUL shouldn't
9040 be necessary, but be safe. */
9041 tmpbuf = XNEWVEC (char, first + second + 2);
9042 memcpy (tmpbuf, input_line_pointer, first);
9043 if (second != 0 && *past_reloc != ' ')
9044 /* Replace the relocation token with ' ', so that
9045 errors like foo@SECLREL321 will be detected. */
9046 tmpbuf[first++] = ' ';
9047 memcpy (tmpbuf + first, past_reloc, second);
9048 tmpbuf[first + second] = '\0';
9049 return tmpbuf;
9050 }
9051
9052 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9053 gotrel[j].str, 1 << (5 + object_64bit));
9054 return NULL;
9055 }
9056 }
9057
9058 /* Might be a symbol version string. Don't as_bad here. */
9059 return NULL;
9060 }
9061
9062 #endif /* TE_PE */
9063
9064 bfd_reloc_code_real_type
9065 x86_cons (expressionS *exp, int size)
9066 {
9067 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9068
9069 intel_syntax = -intel_syntax;
9070
9071 exp->X_md = 0;
9072 if (size == 4 || (object_64bit && size == 8))
9073 {
9074 /* Handle @GOTOFF and the like in an expression. */
9075 char *save;
9076 char *gotfree_input_line;
9077 int adjust = 0;
9078
9079 save = input_line_pointer;
9080 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9081 if (gotfree_input_line)
9082 input_line_pointer = gotfree_input_line;
9083
9084 expression (exp);
9085
9086 if (gotfree_input_line)
9087 {
9088 /* expression () has merrily parsed up to the end of line,
9089 or a comma - in the wrong buffer. Transfer how far
9090 input_line_pointer has moved to the right buffer. */
9091 input_line_pointer = (save
9092 + (input_line_pointer - gotfree_input_line)
9093 + adjust);
9094 free (gotfree_input_line);
9095 if (exp->X_op == O_constant
9096 || exp->X_op == O_absent
9097 || exp->X_op == O_illegal
9098 || exp->X_op == O_register
9099 || exp->X_op == O_big)
9100 {
9101 char c = *input_line_pointer;
9102 *input_line_pointer = 0;
9103 as_bad (_("missing or invalid expression `%s'"), save);
9104 *input_line_pointer = c;
9105 }
9106 else if ((got_reloc == BFD_RELOC_386_PLT32
9107 || got_reloc == BFD_RELOC_X86_64_PLT32)
9108 && exp->X_op != O_symbol)
9109 {
9110 char c = *input_line_pointer;
9111 *input_line_pointer = 0;
9112 as_bad (_("invalid PLT expression `%s'"), save);
9113 *input_line_pointer = c;
9114 }
9115 }
9116 }
9117 else
9118 expression (exp);
9119
9120 intel_syntax = -intel_syntax;
9121
9122 if (intel_syntax)
9123 i386_intel_simplify (exp);
9124
9125 return got_reloc;
9126 }
9127
9128 static void
9129 signed_cons (int size)
9130 {
9131 if (flag_code == CODE_64BIT)
9132 cons_sign = 1;
9133 cons (size);
9134 cons_sign = -1;
9135 }
9136
9137 #ifdef TE_PE
9138 static void
9139 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9140 {
9141 expressionS exp;
9142
9143 do
9144 {
9145 expression (&exp);
9146 if (exp.X_op == O_symbol)
9147 exp.X_op = O_secrel;
9148
9149 emit_expr (&exp, 4);
9150 }
9151 while (*input_line_pointer++ == ',');
9152
9153 input_line_pointer--;
9154 demand_empty_rest_of_line ();
9155 }
9156 #endif
9157
9158 /* Handle Vector operations. */
9159
9160 static char *
9161 check_VecOperations (char *op_string, char *op_end)
9162 {
9163 const reg_entry *mask;
9164 const char *saved;
9165 char *end_op;
9166
9167 while (*op_string
9168 && (op_end == NULL || op_string < op_end))
9169 {
9170 saved = op_string;
9171 if (*op_string == '{')
9172 {
9173 op_string++;
9174
9175 /* Check broadcasts. */
9176 if (strncmp (op_string, "1to", 3) == 0)
9177 {
9178 int bcst_type;
9179
9180 if (i.broadcast)
9181 goto duplicated_vec_op;
9182
9183 op_string += 3;
9184 if (*op_string == '8')
9185 bcst_type = 8;
9186 else if (*op_string == '4')
9187 bcst_type = 4;
9188 else if (*op_string == '2')
9189 bcst_type = 2;
9190 else if (*op_string == '1'
9191 && *(op_string+1) == '6')
9192 {
9193 bcst_type = 16;
9194 op_string++;
9195 }
9196 else
9197 {
9198 as_bad (_("Unsupported broadcast: `%s'"), saved);
9199 return NULL;
9200 }
9201 op_string++;
9202
9203 broadcast_op.type = bcst_type;
9204 broadcast_op.operand = this_operand;
9205 broadcast_op.bytes = 0;
9206 i.broadcast = &broadcast_op;
9207 }
9208 /* Check masking operation. */
9209 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9210 {
9211 /* k0 can't be used for write mask. */
9212 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9213 {
9214 as_bad (_("`%s%s' can't be used for write mask"),
9215 register_prefix, mask->reg_name);
9216 return NULL;
9217 }
9218
9219 if (!i.mask)
9220 {
9221 mask_op.mask = mask;
9222 mask_op.zeroing = 0;
9223 mask_op.operand = this_operand;
9224 i.mask = &mask_op;
9225 }
9226 else
9227 {
9228 if (i.mask->mask)
9229 goto duplicated_vec_op;
9230
9231 i.mask->mask = mask;
9232
9233 /* Only "{z}" is allowed here. No need to check
9234 zeroing mask explicitly. */
9235 if (i.mask->operand != this_operand)
9236 {
9237 as_bad (_("invalid write mask `%s'"), saved);
9238 return NULL;
9239 }
9240 }
9241
9242 op_string = end_op;
9243 }
9244 /* Check zeroing-flag for masking operation. */
9245 else if (*op_string == 'z')
9246 {
9247 if (!i.mask)
9248 {
9249 mask_op.mask = NULL;
9250 mask_op.zeroing = 1;
9251 mask_op.operand = this_operand;
9252 i.mask = &mask_op;
9253 }
9254 else
9255 {
9256 if (i.mask->zeroing)
9257 {
9258 duplicated_vec_op:
9259 as_bad (_("duplicated `%s'"), saved);
9260 return NULL;
9261 }
9262
9263 i.mask->zeroing = 1;
9264
9265 /* Only "{%k}" is allowed here. No need to check mask
9266 register explicitly. */
9267 if (i.mask->operand != this_operand)
9268 {
9269 as_bad (_("invalid zeroing-masking `%s'"),
9270 saved);
9271 return NULL;
9272 }
9273 }
9274
9275 op_string++;
9276 }
9277 else
9278 goto unknown_vec_op;
9279
9280 if (*op_string != '}')
9281 {
9282 as_bad (_("missing `}' in `%s'"), saved);
9283 return NULL;
9284 }
9285 op_string++;
9286
9287 /* Strip whitespace since the addition of pseudo prefixes
9288 changed how the scrubber treats '{'. */
9289 if (is_space_char (*op_string))
9290 ++op_string;
9291
9292 continue;
9293 }
9294 unknown_vec_op:
9295 /* We don't know this one. */
9296 as_bad (_("unknown vector operation: `%s'"), saved);
9297 return NULL;
9298 }
9299
9300 if (i.mask && i.mask->zeroing && !i.mask->mask)
9301 {
9302 as_bad (_("zeroing-masking only allowed with write mask"));
9303 return NULL;
9304 }
9305
9306 return op_string;
9307 }
9308
9309 static int
9310 i386_immediate (char *imm_start)
9311 {
9312 char *save_input_line_pointer;
9313 char *gotfree_input_line;
9314 segT exp_seg = 0;
9315 expressionS *exp;
9316 i386_operand_type types;
9317
9318 operand_type_set (&types, ~0);
9319
9320 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9321 {
9322 as_bad (_("at most %d immediate operands are allowed"),
9323 MAX_IMMEDIATE_OPERANDS);
9324 return 0;
9325 }
9326
9327 exp = &im_expressions[i.imm_operands++];
9328 i.op[this_operand].imms = exp;
9329
9330 if (is_space_char (*imm_start))
9331 ++imm_start;
9332
9333 save_input_line_pointer = input_line_pointer;
9334 input_line_pointer = imm_start;
9335
9336 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9337 if (gotfree_input_line)
9338 input_line_pointer = gotfree_input_line;
9339
9340 exp_seg = expression (exp);
9341
9342 SKIP_WHITESPACE ();
9343
9344 /* Handle vector operations. */
9345 if (*input_line_pointer == '{')
9346 {
9347 input_line_pointer = check_VecOperations (input_line_pointer,
9348 NULL);
9349 if (input_line_pointer == NULL)
9350 return 0;
9351 }
9352
9353 if (*input_line_pointer)
9354 as_bad (_("junk `%s' after expression"), input_line_pointer);
9355
9356 input_line_pointer = save_input_line_pointer;
9357 if (gotfree_input_line)
9358 {
9359 free (gotfree_input_line);
9360
9361 if (exp->X_op == O_constant || exp->X_op == O_register)
9362 exp->X_op = O_illegal;
9363 }
9364
9365 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9366 }
9367
9368 static int
9369 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9370 i386_operand_type types, const char *imm_start)
9371 {
9372 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9373 {
9374 if (imm_start)
9375 as_bad (_("missing or invalid immediate expression `%s'"),
9376 imm_start);
9377 return 0;
9378 }
9379 else if (exp->X_op == O_constant)
9380 {
9381 /* Size it properly later. */
9382 i.types[this_operand].bitfield.imm64 = 1;
9383 /* If not 64bit, sign extend val. */
9384 if (flag_code != CODE_64BIT
9385 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9386 exp->X_add_number
9387 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9388 }
9389 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9390 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9391 && exp_seg != absolute_section
9392 && exp_seg != text_section
9393 && exp_seg != data_section
9394 && exp_seg != bss_section
9395 && exp_seg != undefined_section
9396 && !bfd_is_com_section (exp_seg))
9397 {
9398 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9399 return 0;
9400 }
9401 #endif
9402 else if (!intel_syntax && exp_seg == reg_section)
9403 {
9404 if (imm_start)
9405 as_bad (_("illegal immediate register operand %s"), imm_start);
9406 return 0;
9407 }
9408 else
9409 {
9410 /* This is an address. The size of the address will be
9411 determined later, depending on destination register,
9412 suffix, or the default for the section. */
9413 i.types[this_operand].bitfield.imm8 = 1;
9414 i.types[this_operand].bitfield.imm16 = 1;
9415 i.types[this_operand].bitfield.imm32 = 1;
9416 i.types[this_operand].bitfield.imm32s = 1;
9417 i.types[this_operand].bitfield.imm64 = 1;
9418 i.types[this_operand] = operand_type_and (i.types[this_operand],
9419 types);
9420 }
9421
9422 return 1;
9423 }
9424
9425 static char *
9426 i386_scale (char *scale)
9427 {
9428 offsetT val;
9429 char *save = input_line_pointer;
9430
9431 input_line_pointer = scale;
9432 val = get_absolute_expression ();
9433
9434 switch (val)
9435 {
9436 case 1:
9437 i.log2_scale_factor = 0;
9438 break;
9439 case 2:
9440 i.log2_scale_factor = 1;
9441 break;
9442 case 4:
9443 i.log2_scale_factor = 2;
9444 break;
9445 case 8:
9446 i.log2_scale_factor = 3;
9447 break;
9448 default:
9449 {
9450 char sep = *input_line_pointer;
9451
9452 *input_line_pointer = '\0';
9453 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9454 scale);
9455 *input_line_pointer = sep;
9456 input_line_pointer = save;
9457 return NULL;
9458 }
9459 }
9460 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9461 {
9462 as_warn (_("scale factor of %d without an index register"),
9463 1 << i.log2_scale_factor);
9464 i.log2_scale_factor = 0;
9465 }
9466 scale = input_line_pointer;
9467 input_line_pointer = save;
9468 return scale;
9469 }
9470
9471 static int
9472 i386_displacement (char *disp_start, char *disp_end)
9473 {
9474 expressionS *exp;
9475 segT exp_seg = 0;
9476 char *save_input_line_pointer;
9477 char *gotfree_input_line;
9478 int override;
9479 i386_operand_type bigdisp, types = anydisp;
9480 int ret;
9481
9482 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9483 {
9484 as_bad (_("at most %d displacement operands are allowed"),
9485 MAX_MEMORY_OPERANDS);
9486 return 0;
9487 }
9488
9489 operand_type_set (&bigdisp, 0);
9490 if ((i.types[this_operand].bitfield.jumpabsolute)
9491 || (!current_templates->start->opcode_modifier.jump
9492 && !current_templates->start->opcode_modifier.jumpdword))
9493 {
9494 bigdisp.bitfield.disp32 = 1;
9495 override = (i.prefix[ADDR_PREFIX] != 0);
9496 if (flag_code == CODE_64BIT)
9497 {
9498 if (!override)
9499 {
9500 bigdisp.bitfield.disp32s = 1;
9501 bigdisp.bitfield.disp64 = 1;
9502 }
9503 }
9504 else if ((flag_code == CODE_16BIT) ^ override)
9505 {
9506 bigdisp.bitfield.disp32 = 0;
9507 bigdisp.bitfield.disp16 = 1;
9508 }
9509 }
9510 else
9511 {
9512 /* For PC-relative branches, the width of the displacement
9513 is dependent upon data size, not address size. */
9514 override = (i.prefix[DATA_PREFIX] != 0);
9515 if (flag_code == CODE_64BIT)
9516 {
9517 if (override || i.suffix == WORD_MNEM_SUFFIX)
9518 bigdisp.bitfield.disp16 = 1;
9519 else
9520 {
9521 bigdisp.bitfield.disp32 = 1;
9522 bigdisp.bitfield.disp32s = 1;
9523 }
9524 }
9525 else
9526 {
9527 if (!override)
9528 override = (i.suffix == (flag_code != CODE_16BIT
9529 ? WORD_MNEM_SUFFIX
9530 : LONG_MNEM_SUFFIX));
9531 bigdisp.bitfield.disp32 = 1;
9532 if ((flag_code == CODE_16BIT) ^ override)
9533 {
9534 bigdisp.bitfield.disp32 = 0;
9535 bigdisp.bitfield.disp16 = 1;
9536 }
9537 }
9538 }
9539 i.types[this_operand] = operand_type_or (i.types[this_operand],
9540 bigdisp);
9541
9542 exp = &disp_expressions[i.disp_operands];
9543 i.op[this_operand].disps = exp;
9544 i.disp_operands++;
9545 save_input_line_pointer = input_line_pointer;
9546 input_line_pointer = disp_start;
9547 END_STRING_AND_SAVE (disp_end);
9548
9549 #ifndef GCC_ASM_O_HACK
9550 #define GCC_ASM_O_HACK 0
9551 #endif
9552 #if GCC_ASM_O_HACK
9553 END_STRING_AND_SAVE (disp_end + 1);
9554 if (i.types[this_operand].bitfield.baseIndex
9555 && displacement_string_end[-1] == '+')
9556 {
9557 /* This hack is to avoid a warning when using the "o"
9558 constraint within gcc asm statements.
9559 For instance:
9560
9561 #define _set_tssldt_desc(n,addr,limit,type) \
9562 __asm__ __volatile__ ( \
9563 "movw %w2,%0\n\t" \
9564 "movw %w1,2+%0\n\t" \
9565 "rorl $16,%1\n\t" \
9566 "movb %b1,4+%0\n\t" \
9567 "movb %4,5+%0\n\t" \
9568 "movb $0,6+%0\n\t" \
9569 "movb %h1,7+%0\n\t" \
9570 "rorl $16,%1" \
9571 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9572
9573 This works great except that the output assembler ends
9574 up looking a bit weird if it turns out that there is
9575 no offset. You end up producing code that looks like:
9576
9577 #APP
9578 movw $235,(%eax)
9579 movw %dx,2+(%eax)
9580 rorl $16,%edx
9581 movb %dl,4+(%eax)
9582 movb $137,5+(%eax)
9583 movb $0,6+(%eax)
9584 movb %dh,7+(%eax)
9585 rorl $16,%edx
9586 #NO_APP
9587
9588 So here we provide the missing zero. */
9589
9590 *displacement_string_end = '0';
9591 }
9592 #endif
9593 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9594 if (gotfree_input_line)
9595 input_line_pointer = gotfree_input_line;
9596
9597 exp_seg = expression (exp);
9598
9599 SKIP_WHITESPACE ();
9600 if (*input_line_pointer)
9601 as_bad (_("junk `%s' after expression"), input_line_pointer);
9602 #if GCC_ASM_O_HACK
9603 RESTORE_END_STRING (disp_end + 1);
9604 #endif
9605 input_line_pointer = save_input_line_pointer;
9606 if (gotfree_input_line)
9607 {
9608 free (gotfree_input_line);
9609
9610 if (exp->X_op == O_constant || exp->X_op == O_register)
9611 exp->X_op = O_illegal;
9612 }
9613
9614 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9615
9616 RESTORE_END_STRING (disp_end);
9617
9618 return ret;
9619 }
9620
9621 static int
9622 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9623 i386_operand_type types, const char *disp_start)
9624 {
9625 i386_operand_type bigdisp;
9626 int ret = 1;
9627
9628 /* We do this to make sure that the section symbol is in
9629 the symbol table. We will ultimately change the relocation
9630 to be relative to the beginning of the section. */
9631 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9632 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9633 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9634 {
9635 if (exp->X_op != O_symbol)
9636 goto inv_disp;
9637
9638 if (S_IS_LOCAL (exp->X_add_symbol)
9639 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9640 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9641 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9642 exp->X_op = O_subtract;
9643 exp->X_op_symbol = GOT_symbol;
9644 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9645 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9646 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9647 i.reloc[this_operand] = BFD_RELOC_64;
9648 else
9649 i.reloc[this_operand] = BFD_RELOC_32;
9650 }
9651
9652 else if (exp->X_op == O_absent
9653 || exp->X_op == O_illegal
9654 || exp->X_op == O_big)
9655 {
9656 inv_disp:
9657 as_bad (_("missing or invalid displacement expression `%s'"),
9658 disp_start);
9659 ret = 0;
9660 }
9661
9662 else if (flag_code == CODE_64BIT
9663 && !i.prefix[ADDR_PREFIX]
9664 && exp->X_op == O_constant)
9665 {
9666 /* Since displacement is signed extended to 64bit, don't allow
9667 disp32 and turn off disp32s if they are out of range. */
9668 i.types[this_operand].bitfield.disp32 = 0;
9669 if (!fits_in_signed_long (exp->X_add_number))
9670 {
9671 i.types[this_operand].bitfield.disp32s = 0;
9672 if (i.types[this_operand].bitfield.baseindex)
9673 {
9674 as_bad (_("0x%lx out range of signed 32bit displacement"),
9675 (long) exp->X_add_number);
9676 ret = 0;
9677 }
9678 }
9679 }
9680
9681 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9682 else if (exp->X_op != O_constant
9683 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9684 && exp_seg != absolute_section
9685 && exp_seg != text_section
9686 && exp_seg != data_section
9687 && exp_seg != bss_section
9688 && exp_seg != undefined_section
9689 && !bfd_is_com_section (exp_seg))
9690 {
9691 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9692 ret = 0;
9693 }
9694 #endif
9695
9696 /* Check if this is a displacement only operand. */
9697 bigdisp = i.types[this_operand];
9698 bigdisp.bitfield.disp8 = 0;
9699 bigdisp.bitfield.disp16 = 0;
9700 bigdisp.bitfield.disp32 = 0;
9701 bigdisp.bitfield.disp32s = 0;
9702 bigdisp.bitfield.disp64 = 0;
9703 if (operand_type_all_zero (&bigdisp))
9704 i.types[this_operand] = operand_type_and (i.types[this_operand],
9705 types);
9706
9707 return ret;
9708 }
9709
9710 /* Return the active addressing mode, taking address override and
9711 registers forming the address into consideration. Update the
9712 address override prefix if necessary. */
9713
9714 static enum flag_code
9715 i386_addressing_mode (void)
9716 {
9717 enum flag_code addr_mode;
9718
9719 if (i.prefix[ADDR_PREFIX])
9720 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9721 else
9722 {
9723 addr_mode = flag_code;
9724
9725 #if INFER_ADDR_PREFIX
9726 if (i.mem_operands == 0)
9727 {
9728 /* Infer address prefix from the first memory operand. */
9729 const reg_entry *addr_reg = i.base_reg;
9730
9731 if (addr_reg == NULL)
9732 addr_reg = i.index_reg;
9733
9734 if (addr_reg)
9735 {
9736 if (addr_reg->reg_type.bitfield.dword)
9737 addr_mode = CODE_32BIT;
9738 else if (flag_code != CODE_64BIT
9739 && addr_reg->reg_type.bitfield.word)
9740 addr_mode = CODE_16BIT;
9741
9742 if (addr_mode != flag_code)
9743 {
9744 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9745 i.prefixes += 1;
9746 /* Change the size of any displacement too. At most one
9747 of Disp16 or Disp32 is set.
9748 FIXME. There doesn't seem to be any real need for
9749 separate Disp16 and Disp32 flags. The same goes for
9750 Imm16 and Imm32. Removing them would probably clean
9751 up the code quite a lot. */
9752 if (flag_code != CODE_64BIT
9753 && (i.types[this_operand].bitfield.disp16
9754 || i.types[this_operand].bitfield.disp32))
9755 i.types[this_operand]
9756 = operand_type_xor (i.types[this_operand], disp16_32);
9757 }
9758 }
9759 }
9760 #endif
9761 }
9762
9763 return addr_mode;
9764 }
9765
9766 /* Make sure the memory operand we've been dealt is valid.
9767 Return 1 on success, 0 on a failure. */
9768
9769 static int
9770 i386_index_check (const char *operand_string)
9771 {
9772 const char *kind = "base/index";
9773 enum flag_code addr_mode = i386_addressing_mode ();
9774
9775 if (current_templates->start->opcode_modifier.isstring
9776 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9777 && (current_templates->end[-1].opcode_modifier.isstring
9778 || i.mem_operands))
9779 {
9780 /* Memory operands of string insns are special in that they only allow
9781 a single register (rDI, rSI, or rBX) as their memory address. */
9782 const reg_entry *expected_reg;
9783 static const char *di_si[][2] =
9784 {
9785 { "esi", "edi" },
9786 { "si", "di" },
9787 { "rsi", "rdi" }
9788 };
9789 static const char *bx[] = { "ebx", "bx", "rbx" };
9790
9791 kind = "string address";
9792
9793 if (current_templates->start->opcode_modifier.repprefixok)
9794 {
9795 i386_operand_type type = current_templates->end[-1].operand_types[0];
9796
9797 if (!type.bitfield.baseindex
9798 || ((!i.mem_operands != !intel_syntax)
9799 && current_templates->end[-1].operand_types[1]
9800 .bitfield.baseindex))
9801 type = current_templates->end[-1].operand_types[1];
9802 expected_reg = hash_find (reg_hash,
9803 di_si[addr_mode][type.bitfield.esseg]);
9804
9805 }
9806 else
9807 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9808
9809 if (i.base_reg != expected_reg
9810 || i.index_reg
9811 || operand_type_check (i.types[this_operand], disp))
9812 {
9813 /* The second memory operand must have the same size as
9814 the first one. */
9815 if (i.mem_operands
9816 && i.base_reg
9817 && !((addr_mode == CODE_64BIT
9818 && i.base_reg->reg_type.bitfield.qword)
9819 || (addr_mode == CODE_32BIT
9820 ? i.base_reg->reg_type.bitfield.dword
9821 : i.base_reg->reg_type.bitfield.word)))
9822 goto bad_address;
9823
9824 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9825 operand_string,
9826 intel_syntax ? '[' : '(',
9827 register_prefix,
9828 expected_reg->reg_name,
9829 intel_syntax ? ']' : ')');
9830 return 1;
9831 }
9832 else
9833 return 1;
9834
9835 bad_address:
9836 as_bad (_("`%s' is not a valid %s expression"),
9837 operand_string, kind);
9838 return 0;
9839 }
9840 else
9841 {
9842 if (addr_mode != CODE_16BIT)
9843 {
9844 /* 32-bit/64-bit checks. */
9845 if ((i.base_reg
9846 && ((addr_mode == CODE_64BIT
9847 ? !i.base_reg->reg_type.bitfield.qword
9848 : !i.base_reg->reg_type.bitfield.dword)
9849 || (i.index_reg && i.base_reg->reg_num == RegIP)
9850 || i.base_reg->reg_num == RegIZ))
9851 || (i.index_reg
9852 && !i.index_reg->reg_type.bitfield.xmmword
9853 && !i.index_reg->reg_type.bitfield.ymmword
9854 && !i.index_reg->reg_type.bitfield.zmmword
9855 && ((addr_mode == CODE_64BIT
9856 ? !i.index_reg->reg_type.bitfield.qword
9857 : !i.index_reg->reg_type.bitfield.dword)
9858 || !i.index_reg->reg_type.bitfield.baseindex)))
9859 goto bad_address;
9860
9861 /* bndmk, bndldx, and bndstx have special restrictions. */
9862 if (current_templates->start->base_opcode == 0xf30f1b
9863 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9864 {
9865 /* They cannot use RIP-relative addressing. */
9866 if (i.base_reg && i.base_reg->reg_num == RegIP)
9867 {
9868 as_bad (_("`%s' cannot be used here"), operand_string);
9869 return 0;
9870 }
9871
9872 /* bndldx and bndstx ignore their scale factor. */
9873 if (current_templates->start->base_opcode != 0xf30f1b
9874 && i.log2_scale_factor)
9875 as_warn (_("register scaling is being ignored here"));
9876 }
9877 }
9878 else
9879 {
9880 /* 16-bit checks. */
9881 if ((i.base_reg
9882 && (!i.base_reg->reg_type.bitfield.word
9883 || !i.base_reg->reg_type.bitfield.baseindex))
9884 || (i.index_reg
9885 && (!i.index_reg->reg_type.bitfield.word
9886 || !i.index_reg->reg_type.bitfield.baseindex
9887 || !(i.base_reg
9888 && i.base_reg->reg_num < 6
9889 && i.index_reg->reg_num >= 6
9890 && i.log2_scale_factor == 0))))
9891 goto bad_address;
9892 }
9893 }
9894 return 1;
9895 }
9896
9897 /* Handle vector immediates. */
9898
9899 static int
9900 RC_SAE_immediate (const char *imm_start)
9901 {
9902 unsigned int match_found, j;
9903 const char *pstr = imm_start;
9904 expressionS *exp;
9905
9906 if (*pstr != '{')
9907 return 0;
9908
9909 pstr++;
9910 match_found = 0;
9911 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9912 {
9913 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9914 {
9915 if (!i.rounding)
9916 {
9917 rc_op.type = RC_NamesTable[j].type;
9918 rc_op.operand = this_operand;
9919 i.rounding = &rc_op;
9920 }
9921 else
9922 {
9923 as_bad (_("duplicated `%s'"), imm_start);
9924 return 0;
9925 }
9926 pstr += RC_NamesTable[j].len;
9927 match_found = 1;
9928 break;
9929 }
9930 }
9931 if (!match_found)
9932 return 0;
9933
9934 if (*pstr++ != '}')
9935 {
9936 as_bad (_("Missing '}': '%s'"), imm_start);
9937 return 0;
9938 }
9939 /* RC/SAE immediate string should contain nothing more. */;
9940 if (*pstr != 0)
9941 {
9942 as_bad (_("Junk after '}': '%s'"), imm_start);
9943 return 0;
9944 }
9945
9946 exp = &im_expressions[i.imm_operands++];
9947 i.op[this_operand].imms = exp;
9948
9949 exp->X_op = O_constant;
9950 exp->X_add_number = 0;
9951 exp->X_add_symbol = (symbolS *) 0;
9952 exp->X_op_symbol = (symbolS *) 0;
9953
9954 i.types[this_operand].bitfield.imm8 = 1;
9955 return 1;
9956 }
9957
9958 /* Only string instructions can have a second memory operand, so
9959 reduce current_templates to just those if it contains any. */
9960 static int
9961 maybe_adjust_templates (void)
9962 {
9963 const insn_template *t;
9964
9965 gas_assert (i.mem_operands == 1);
9966
9967 for (t = current_templates->start; t < current_templates->end; ++t)
9968 if (t->opcode_modifier.isstring)
9969 break;
9970
9971 if (t < current_templates->end)
9972 {
9973 static templates aux_templates;
9974 bfd_boolean recheck;
9975
9976 aux_templates.start = t;
9977 for (; t < current_templates->end; ++t)
9978 if (!t->opcode_modifier.isstring)
9979 break;
9980 aux_templates.end = t;
9981
9982 /* Determine whether to re-check the first memory operand. */
9983 recheck = (aux_templates.start != current_templates->start
9984 || t != current_templates->end);
9985
9986 current_templates = &aux_templates;
9987
9988 if (recheck)
9989 {
9990 i.mem_operands = 0;
9991 if (i.memop1_string != NULL
9992 && i386_index_check (i.memop1_string) == 0)
9993 return 0;
9994 i.mem_operands = 1;
9995 }
9996 }
9997
9998 return 1;
9999 }
10000
10001 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10002 on error. */
10003
10004 static int
10005 i386_att_operand (char *operand_string)
10006 {
10007 const reg_entry *r;
10008 char *end_op;
10009 char *op_string = operand_string;
10010
10011 if (is_space_char (*op_string))
10012 ++op_string;
10013
10014 /* We check for an absolute prefix (differentiating,
10015 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10016 if (*op_string == ABSOLUTE_PREFIX)
10017 {
10018 ++op_string;
10019 if (is_space_char (*op_string))
10020 ++op_string;
10021 i.types[this_operand].bitfield.jumpabsolute = 1;
10022 }
10023
10024 /* Check if operand is a register. */
10025 if ((r = parse_register (op_string, &end_op)) != NULL)
10026 {
10027 i386_operand_type temp;
10028
10029 /* Check for a segment override by searching for ':' after a
10030 segment register. */
10031 op_string = end_op;
10032 if (is_space_char (*op_string))
10033 ++op_string;
10034 if (*op_string == ':' && r->reg_type.bitfield.sreg)
10035 {
10036 switch (r->reg_num)
10037 {
10038 case 0:
10039 i.seg[i.mem_operands] = &es;
10040 break;
10041 case 1:
10042 i.seg[i.mem_operands] = &cs;
10043 break;
10044 case 2:
10045 i.seg[i.mem_operands] = &ss;
10046 break;
10047 case 3:
10048 i.seg[i.mem_operands] = &ds;
10049 break;
10050 case 4:
10051 i.seg[i.mem_operands] = &fs;
10052 break;
10053 case 5:
10054 i.seg[i.mem_operands] = &gs;
10055 break;
10056 }
10057
10058 /* Skip the ':' and whitespace. */
10059 ++op_string;
10060 if (is_space_char (*op_string))
10061 ++op_string;
10062
10063 if (!is_digit_char (*op_string)
10064 && !is_identifier_char (*op_string)
10065 && *op_string != '('
10066 && *op_string != ABSOLUTE_PREFIX)
10067 {
10068 as_bad (_("bad memory operand `%s'"), op_string);
10069 return 0;
10070 }
10071 /* Handle case of %es:*foo. */
10072 if (*op_string == ABSOLUTE_PREFIX)
10073 {
10074 ++op_string;
10075 if (is_space_char (*op_string))
10076 ++op_string;
10077 i.types[this_operand].bitfield.jumpabsolute = 1;
10078 }
10079 goto do_memory_reference;
10080 }
10081
10082 /* Handle vector operations. */
10083 if (*op_string == '{')
10084 {
10085 op_string = check_VecOperations (op_string, NULL);
10086 if (op_string == NULL)
10087 return 0;
10088 }
10089
10090 if (*op_string)
10091 {
10092 as_bad (_("junk `%s' after register"), op_string);
10093 return 0;
10094 }
10095 temp = r->reg_type;
10096 temp.bitfield.baseindex = 0;
10097 i.types[this_operand] = operand_type_or (i.types[this_operand],
10098 temp);
10099 i.types[this_operand].bitfield.unspecified = 0;
10100 i.op[this_operand].regs = r;
10101 i.reg_operands++;
10102 }
10103 else if (*op_string == REGISTER_PREFIX)
10104 {
10105 as_bad (_("bad register name `%s'"), op_string);
10106 return 0;
10107 }
10108 else if (*op_string == IMMEDIATE_PREFIX)
10109 {
10110 ++op_string;
10111 if (i.types[this_operand].bitfield.jumpabsolute)
10112 {
10113 as_bad (_("immediate operand illegal with absolute jump"));
10114 return 0;
10115 }
10116 if (!i386_immediate (op_string))
10117 return 0;
10118 }
10119 else if (RC_SAE_immediate (operand_string))
10120 {
10121 /* If it is a RC or SAE immediate, do nothing. */
10122 ;
10123 }
10124 else if (is_digit_char (*op_string)
10125 || is_identifier_char (*op_string)
10126 || *op_string == '"'
10127 || *op_string == '(')
10128 {
10129 /* This is a memory reference of some sort. */
10130 char *base_string;
10131
10132 /* Start and end of displacement string expression (if found). */
10133 char *displacement_string_start;
10134 char *displacement_string_end;
10135 char *vop_start;
10136
10137 do_memory_reference:
10138 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10139 return 0;
10140 if ((i.mem_operands == 1
10141 && !current_templates->start->opcode_modifier.isstring)
10142 || i.mem_operands == 2)
10143 {
10144 as_bad (_("too many memory references for `%s'"),
10145 current_templates->start->name);
10146 return 0;
10147 }
10148
10149 /* Check for base index form. We detect the base index form by
10150 looking for an ')' at the end of the operand, searching
10151 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10152 after the '('. */
10153 base_string = op_string + strlen (op_string);
10154
10155 /* Handle vector operations. */
10156 vop_start = strchr (op_string, '{');
10157 if (vop_start && vop_start < base_string)
10158 {
10159 if (check_VecOperations (vop_start, base_string) == NULL)
10160 return 0;
10161 base_string = vop_start;
10162 }
10163
10164 --base_string;
10165 if (is_space_char (*base_string))
10166 --base_string;
10167
10168 /* If we only have a displacement, set-up for it to be parsed later. */
10169 displacement_string_start = op_string;
10170 displacement_string_end = base_string + 1;
10171
10172 if (*base_string == ')')
10173 {
10174 char *temp_string;
10175 unsigned int parens_balanced = 1;
10176 /* We've already checked that the number of left & right ()'s are
10177 equal, so this loop will not be infinite. */
10178 do
10179 {
10180 base_string--;
10181 if (*base_string == ')')
10182 parens_balanced++;
10183 if (*base_string == '(')
10184 parens_balanced--;
10185 }
10186 while (parens_balanced);
10187
10188 temp_string = base_string;
10189
10190 /* Skip past '(' and whitespace. */
10191 ++base_string;
10192 if (is_space_char (*base_string))
10193 ++base_string;
10194
10195 if (*base_string == ','
10196 || ((i.base_reg = parse_register (base_string, &end_op))
10197 != NULL))
10198 {
10199 displacement_string_end = temp_string;
10200
10201 i.types[this_operand].bitfield.baseindex = 1;
10202
10203 if (i.base_reg)
10204 {
10205 base_string = end_op;
10206 if (is_space_char (*base_string))
10207 ++base_string;
10208 }
10209
10210 /* There may be an index reg or scale factor here. */
10211 if (*base_string == ',')
10212 {
10213 ++base_string;
10214 if (is_space_char (*base_string))
10215 ++base_string;
10216
10217 if ((i.index_reg = parse_register (base_string, &end_op))
10218 != NULL)
10219 {
10220 base_string = end_op;
10221 if (is_space_char (*base_string))
10222 ++base_string;
10223 if (*base_string == ',')
10224 {
10225 ++base_string;
10226 if (is_space_char (*base_string))
10227 ++base_string;
10228 }
10229 else if (*base_string != ')')
10230 {
10231 as_bad (_("expecting `,' or `)' "
10232 "after index register in `%s'"),
10233 operand_string);
10234 return 0;
10235 }
10236 }
10237 else if (*base_string == REGISTER_PREFIX)
10238 {
10239 end_op = strchr (base_string, ',');
10240 if (end_op)
10241 *end_op = '\0';
10242 as_bad (_("bad register name `%s'"), base_string);
10243 return 0;
10244 }
10245
10246 /* Check for scale factor. */
10247 if (*base_string != ')')
10248 {
10249 char *end_scale = i386_scale (base_string);
10250
10251 if (!end_scale)
10252 return 0;
10253
10254 base_string = end_scale;
10255 if (is_space_char (*base_string))
10256 ++base_string;
10257 if (*base_string != ')')
10258 {
10259 as_bad (_("expecting `)' "
10260 "after scale factor in `%s'"),
10261 operand_string);
10262 return 0;
10263 }
10264 }
10265 else if (!i.index_reg)
10266 {
10267 as_bad (_("expecting index register or scale factor "
10268 "after `,'; got '%c'"),
10269 *base_string);
10270 return 0;
10271 }
10272 }
10273 else if (*base_string != ')')
10274 {
10275 as_bad (_("expecting `,' or `)' "
10276 "after base register in `%s'"),
10277 operand_string);
10278 return 0;
10279 }
10280 }
10281 else if (*base_string == REGISTER_PREFIX)
10282 {
10283 end_op = strchr (base_string, ',');
10284 if (end_op)
10285 *end_op = '\0';
10286 as_bad (_("bad register name `%s'"), base_string);
10287 return 0;
10288 }
10289 }
10290
10291 /* If there's an expression beginning the operand, parse it,
10292 assuming displacement_string_start and
10293 displacement_string_end are meaningful. */
10294 if (displacement_string_start != displacement_string_end)
10295 {
10296 if (!i386_displacement (displacement_string_start,
10297 displacement_string_end))
10298 return 0;
10299 }
10300
10301 /* Special case for (%dx) while doing input/output op. */
10302 if (i.base_reg
10303 && i.base_reg->reg_type.bitfield.inoutportreg
10304 && i.index_reg == 0
10305 && i.log2_scale_factor == 0
10306 && i.seg[i.mem_operands] == 0
10307 && !operand_type_check (i.types[this_operand], disp))
10308 {
10309 i.types[this_operand] = i.base_reg->reg_type;
10310 return 1;
10311 }
10312
10313 if (i386_index_check (operand_string) == 0)
10314 return 0;
10315 i.flags[this_operand] |= Operand_Mem;
10316 if (i.mem_operands == 0)
10317 i.memop1_string = xstrdup (operand_string);
10318 i.mem_operands++;
10319 }
10320 else
10321 {
10322 /* It's not a memory operand; argh! */
10323 as_bad (_("invalid char %s beginning operand %d `%s'"),
10324 output_invalid (*op_string),
10325 this_operand + 1,
10326 op_string);
10327 return 0;
10328 }
10329 return 1; /* Normal return. */
10330 }
10331 \f
10332 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10333 that an rs_machine_dependent frag may reach. */
10334
10335 unsigned int
10336 i386_frag_max_var (fragS *frag)
10337 {
10338 /* The only relaxable frags are for jumps.
10339 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10340 gas_assert (frag->fr_type == rs_machine_dependent);
10341 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10342 }
10343
10344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10345 static int
10346 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10347 {
10348 /* STT_GNU_IFUNC symbol must go through PLT. */
10349 if ((symbol_get_bfdsym (fr_symbol)->flags
10350 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10351 return 0;
10352
10353 if (!S_IS_EXTERNAL (fr_symbol))
10354 /* Symbol may be weak or local. */
10355 return !S_IS_WEAK (fr_symbol);
10356
10357 /* Global symbols with non-default visibility can't be preempted. */
10358 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10359 return 1;
10360
10361 if (fr_var != NO_RELOC)
10362 switch ((enum bfd_reloc_code_real) fr_var)
10363 {
10364 case BFD_RELOC_386_PLT32:
10365 case BFD_RELOC_X86_64_PLT32:
10366 /* Symbol with PLT relocation may be preempted. */
10367 return 0;
10368 default:
10369 abort ();
10370 }
10371
10372 /* Global symbols with default visibility in a shared library may be
10373 preempted by another definition. */
10374 return !shared;
10375 }
10376 #endif
10377
10378 /* md_estimate_size_before_relax()
10379
10380 Called just before relax() for rs_machine_dependent frags. The x86
10381 assembler uses these frags to handle variable size jump
10382 instructions.
10383
10384 Any symbol that is now undefined will not become defined.
10385 Return the correct fr_subtype in the frag.
10386 Return the initial "guess for variable size of frag" to caller.
10387 The guess is actually the growth beyond the fixed part. Whatever
10388 we do to grow the fixed or variable part contributes to our
10389 returned value. */
10390
10391 int
10392 md_estimate_size_before_relax (fragS *fragP, segT segment)
10393 {
10394 /* We've already got fragP->fr_subtype right; all we have to do is
10395 check for un-relaxable symbols. On an ELF system, we can't relax
10396 an externally visible symbol, because it may be overridden by a
10397 shared library. */
10398 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10399 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10400 || (IS_ELF
10401 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10402 fragP->fr_var))
10403 #endif
10404 #if defined (OBJ_COFF) && defined (TE_PE)
10405 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10406 && S_IS_WEAK (fragP->fr_symbol))
10407 #endif
10408 )
10409 {
10410 /* Symbol is undefined in this segment, or we need to keep a
10411 reloc so that weak symbols can be overridden. */
10412 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10413 enum bfd_reloc_code_real reloc_type;
10414 unsigned char *opcode;
10415 int old_fr_fix;
10416
10417 if (fragP->fr_var != NO_RELOC)
10418 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10419 else if (size == 2)
10420 reloc_type = BFD_RELOC_16_PCREL;
10421 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10422 else if (need_plt32_p (fragP->fr_symbol))
10423 reloc_type = BFD_RELOC_X86_64_PLT32;
10424 #endif
10425 else
10426 reloc_type = BFD_RELOC_32_PCREL;
10427
10428 old_fr_fix = fragP->fr_fix;
10429 opcode = (unsigned char *) fragP->fr_opcode;
10430
10431 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10432 {
10433 case UNCOND_JUMP:
10434 /* Make jmp (0xeb) a (d)word displacement jump. */
10435 opcode[0] = 0xe9;
10436 fragP->fr_fix += size;
10437 fix_new (fragP, old_fr_fix, size,
10438 fragP->fr_symbol,
10439 fragP->fr_offset, 1,
10440 reloc_type);
10441 break;
10442
10443 case COND_JUMP86:
10444 if (size == 2
10445 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10446 {
10447 /* Negate the condition, and branch past an
10448 unconditional jump. */
10449 opcode[0] ^= 1;
10450 opcode[1] = 3;
10451 /* Insert an unconditional jump. */
10452 opcode[2] = 0xe9;
10453 /* We added two extra opcode bytes, and have a two byte
10454 offset. */
10455 fragP->fr_fix += 2 + 2;
10456 fix_new (fragP, old_fr_fix + 2, 2,
10457 fragP->fr_symbol,
10458 fragP->fr_offset, 1,
10459 reloc_type);
10460 break;
10461 }
10462 /* Fall through. */
10463
10464 case COND_JUMP:
10465 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10466 {
10467 fixS *fixP;
10468
10469 fragP->fr_fix += 1;
10470 fixP = fix_new (fragP, old_fr_fix, 1,
10471 fragP->fr_symbol,
10472 fragP->fr_offset, 1,
10473 BFD_RELOC_8_PCREL);
10474 fixP->fx_signed = 1;
10475 break;
10476 }
10477
10478 /* This changes the byte-displacement jump 0x7N
10479 to the (d)word-displacement jump 0x0f,0x8N. */
10480 opcode[1] = opcode[0] + 0x10;
10481 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10482 /* We've added an opcode byte. */
10483 fragP->fr_fix += 1 + size;
10484 fix_new (fragP, old_fr_fix + 1, size,
10485 fragP->fr_symbol,
10486 fragP->fr_offset, 1,
10487 reloc_type);
10488 break;
10489
10490 default:
10491 BAD_CASE (fragP->fr_subtype);
10492 break;
10493 }
10494 frag_wane (fragP);
10495 return fragP->fr_fix - old_fr_fix;
10496 }
10497
10498 /* Guess size depending on current relax state. Initially the relax
10499 state will correspond to a short jump and we return 1, because
10500 the variable part of the frag (the branch offset) is one byte
10501 long. However, we can relax a section more than once and in that
10502 case we must either set fr_subtype back to the unrelaxed state,
10503 or return the value for the appropriate branch. */
10504 return md_relax_table[fragP->fr_subtype].rlx_length;
10505 }
10506
10507 /* Called after relax() is finished.
10508
10509 In: Address of frag.
10510 fr_type == rs_machine_dependent.
10511 fr_subtype is what the address relaxed to.
10512
10513 Out: Any fixSs and constants are set up.
10514 Caller will turn frag into a ".space 0". */
10515
10516 void
10517 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10518 fragS *fragP)
10519 {
10520 unsigned char *opcode;
10521 unsigned char *where_to_put_displacement = NULL;
10522 offsetT target_address;
10523 offsetT opcode_address;
10524 unsigned int extension = 0;
10525 offsetT displacement_from_opcode_start;
10526
10527 opcode = (unsigned char *) fragP->fr_opcode;
10528
10529 /* Address we want to reach in file space. */
10530 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10531
10532 /* Address opcode resides at in file space. */
10533 opcode_address = fragP->fr_address + fragP->fr_fix;
10534
10535 /* Displacement from opcode start to fill into instruction. */
10536 displacement_from_opcode_start = target_address - opcode_address;
10537
10538 if ((fragP->fr_subtype & BIG) == 0)
10539 {
10540 /* Don't have to change opcode. */
10541 extension = 1; /* 1 opcode + 1 displacement */
10542 where_to_put_displacement = &opcode[1];
10543 }
10544 else
10545 {
10546 if (no_cond_jump_promotion
10547 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10548 as_warn_where (fragP->fr_file, fragP->fr_line,
10549 _("long jump required"));
10550
10551 switch (fragP->fr_subtype)
10552 {
10553 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10554 extension = 4; /* 1 opcode + 4 displacement */
10555 opcode[0] = 0xe9;
10556 where_to_put_displacement = &opcode[1];
10557 break;
10558
10559 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10560 extension = 2; /* 1 opcode + 2 displacement */
10561 opcode[0] = 0xe9;
10562 where_to_put_displacement = &opcode[1];
10563 break;
10564
10565 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10566 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10567 extension = 5; /* 2 opcode + 4 displacement */
10568 opcode[1] = opcode[0] + 0x10;
10569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10570 where_to_put_displacement = &opcode[2];
10571 break;
10572
10573 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10574 extension = 3; /* 2 opcode + 2 displacement */
10575 opcode[1] = opcode[0] + 0x10;
10576 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10577 where_to_put_displacement = &opcode[2];
10578 break;
10579
10580 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10581 extension = 4;
10582 opcode[0] ^= 1;
10583 opcode[1] = 3;
10584 opcode[2] = 0xe9;
10585 where_to_put_displacement = &opcode[3];
10586 break;
10587
10588 default:
10589 BAD_CASE (fragP->fr_subtype);
10590 break;
10591 }
10592 }
10593
10594 /* If size if less then four we are sure that the operand fits,
10595 but if it's 4, then it could be that the displacement is larger
10596 then -/+ 2GB. */
10597 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10598 && object_64bit
10599 && ((addressT) (displacement_from_opcode_start - extension
10600 + ((addressT) 1 << 31))
10601 > (((addressT) 2 << 31) - 1)))
10602 {
10603 as_bad_where (fragP->fr_file, fragP->fr_line,
10604 _("jump target out of range"));
10605 /* Make us emit 0. */
10606 displacement_from_opcode_start = extension;
10607 }
10608 /* Now put displacement after opcode. */
10609 md_number_to_chars ((char *) where_to_put_displacement,
10610 (valueT) (displacement_from_opcode_start - extension),
10611 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10612 fragP->fr_fix += extension;
10613 }
10614 \f
10615 /* Apply a fixup (fixP) to segment data, once it has been determined
10616 by our caller that we have all the info we need to fix it up.
10617
10618 Parameter valP is the pointer to the value of the bits.
10619
10620 On the 386, immediates, displacements, and data pointers are all in
10621 the same (little-endian) format, so we don't need to care about which
10622 we are handling. */
10623
10624 void
10625 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10626 {
10627 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10628 valueT value = *valP;
10629
10630 #if !defined (TE_Mach)
10631 if (fixP->fx_pcrel)
10632 {
10633 switch (fixP->fx_r_type)
10634 {
10635 default:
10636 break;
10637
10638 case BFD_RELOC_64:
10639 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10640 break;
10641 case BFD_RELOC_32:
10642 case BFD_RELOC_X86_64_32S:
10643 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10644 break;
10645 case BFD_RELOC_16:
10646 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10647 break;
10648 case BFD_RELOC_8:
10649 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10650 break;
10651 }
10652 }
10653
10654 if (fixP->fx_addsy != NULL
10655 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10656 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10657 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10658 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10659 && !use_rela_relocations)
10660 {
10661 /* This is a hack. There should be a better way to handle this.
10662 This covers for the fact that bfd_install_relocation will
10663 subtract the current location (for partial_inplace, PC relative
10664 relocations); see more below. */
10665 #ifndef OBJ_AOUT
10666 if (IS_ELF
10667 #ifdef TE_PE
10668 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10669 #endif
10670 )
10671 value += fixP->fx_where + fixP->fx_frag->fr_address;
10672 #endif
10673 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10674 if (IS_ELF)
10675 {
10676 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10677
10678 if ((sym_seg == seg
10679 || (symbol_section_p (fixP->fx_addsy)
10680 && sym_seg != absolute_section))
10681 && !generic_force_reloc (fixP))
10682 {
10683 /* Yes, we add the values in twice. This is because
10684 bfd_install_relocation subtracts them out again. I think
10685 bfd_install_relocation is broken, but I don't dare change
10686 it. FIXME. */
10687 value += fixP->fx_where + fixP->fx_frag->fr_address;
10688 }
10689 }
10690 #endif
10691 #if defined (OBJ_COFF) && defined (TE_PE)
10692 /* For some reason, the PE format does not store a
10693 section address offset for a PC relative symbol. */
10694 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10695 || S_IS_WEAK (fixP->fx_addsy))
10696 value += md_pcrel_from (fixP);
10697 #endif
10698 }
10699 #if defined (OBJ_COFF) && defined (TE_PE)
10700 if (fixP->fx_addsy != NULL
10701 && S_IS_WEAK (fixP->fx_addsy)
10702 /* PR 16858: Do not modify weak function references. */
10703 && ! fixP->fx_pcrel)
10704 {
10705 #if !defined (TE_PEP)
10706 /* For x86 PE weak function symbols are neither PC-relative
10707 nor do they set S_IS_FUNCTION. So the only reliable way
10708 to detect them is to check the flags of their containing
10709 section. */
10710 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10711 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10712 ;
10713 else
10714 #endif
10715 value -= S_GET_VALUE (fixP->fx_addsy);
10716 }
10717 #endif
10718
10719 /* Fix a few things - the dynamic linker expects certain values here,
10720 and we must not disappoint it. */
10721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10722 if (IS_ELF && fixP->fx_addsy)
10723 switch (fixP->fx_r_type)
10724 {
10725 case BFD_RELOC_386_PLT32:
10726 case BFD_RELOC_X86_64_PLT32:
10727 /* Make the jump instruction point to the address of the operand.
10728 At runtime we merely add the offset to the actual PLT entry.
10729 NB: Subtract the offset size only for jump instructions. */
10730 if (fixP->fx_pcrel)
10731 value = -4;
10732 break;
10733
10734 case BFD_RELOC_386_TLS_GD:
10735 case BFD_RELOC_386_TLS_LDM:
10736 case BFD_RELOC_386_TLS_IE_32:
10737 case BFD_RELOC_386_TLS_IE:
10738 case BFD_RELOC_386_TLS_GOTIE:
10739 case BFD_RELOC_386_TLS_GOTDESC:
10740 case BFD_RELOC_X86_64_TLSGD:
10741 case BFD_RELOC_X86_64_TLSLD:
10742 case BFD_RELOC_X86_64_GOTTPOFF:
10743 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10744 value = 0; /* Fully resolved at runtime. No addend. */
10745 /* Fallthrough */
10746 case BFD_RELOC_386_TLS_LE:
10747 case BFD_RELOC_386_TLS_LDO_32:
10748 case BFD_RELOC_386_TLS_LE_32:
10749 case BFD_RELOC_X86_64_DTPOFF32:
10750 case BFD_RELOC_X86_64_DTPOFF64:
10751 case BFD_RELOC_X86_64_TPOFF32:
10752 case BFD_RELOC_X86_64_TPOFF64:
10753 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10754 break;
10755
10756 case BFD_RELOC_386_TLS_DESC_CALL:
10757 case BFD_RELOC_X86_64_TLSDESC_CALL:
10758 value = 0; /* Fully resolved at runtime. No addend. */
10759 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10760 fixP->fx_done = 0;
10761 return;
10762
10763 case BFD_RELOC_VTABLE_INHERIT:
10764 case BFD_RELOC_VTABLE_ENTRY:
10765 fixP->fx_done = 0;
10766 return;
10767
10768 default:
10769 break;
10770 }
10771 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10772 *valP = value;
10773 #endif /* !defined (TE_Mach) */
10774
10775 /* Are we finished with this relocation now? */
10776 if (fixP->fx_addsy == NULL)
10777 fixP->fx_done = 1;
10778 #if defined (OBJ_COFF) && defined (TE_PE)
10779 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10780 {
10781 fixP->fx_done = 0;
10782 /* Remember value for tc_gen_reloc. */
10783 fixP->fx_addnumber = value;
10784 /* Clear out the frag for now. */
10785 value = 0;
10786 }
10787 #endif
10788 else if (use_rela_relocations)
10789 {
10790 fixP->fx_no_overflow = 1;
10791 /* Remember value for tc_gen_reloc. */
10792 fixP->fx_addnumber = value;
10793 value = 0;
10794 }
10795
10796 md_number_to_chars (p, value, fixP->fx_size);
10797 }
10798 \f
10799 const char *
10800 md_atof (int type, char *litP, int *sizeP)
10801 {
10802 /* This outputs the LITTLENUMs in REVERSE order;
10803 in accord with the bigendian 386. */
10804 return ieee_md_atof (type, litP, sizeP, FALSE);
10805 }
10806 \f
10807 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10808
10809 static char *
10810 output_invalid (int c)
10811 {
10812 if (ISPRINT (c))
10813 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10814 "'%c'", c);
10815 else
10816 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10817 "(0x%x)", (unsigned char) c);
10818 return output_invalid_buf;
10819 }
10820
10821 /* REG_STRING starts *before* REGISTER_PREFIX. */
10822
10823 static const reg_entry *
10824 parse_real_register (char *reg_string, char **end_op)
10825 {
10826 char *s = reg_string;
10827 char *p;
10828 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10829 const reg_entry *r;
10830
10831 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10832 if (*s == REGISTER_PREFIX)
10833 ++s;
10834
10835 if (is_space_char (*s))
10836 ++s;
10837
10838 p = reg_name_given;
10839 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10840 {
10841 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10842 return (const reg_entry *) NULL;
10843 s++;
10844 }
10845
10846 /* For naked regs, make sure that we are not dealing with an identifier.
10847 This prevents confusing an identifier like `eax_var' with register
10848 `eax'. */
10849 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10850 return (const reg_entry *) NULL;
10851
10852 *end_op = s;
10853
10854 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10855
10856 /* Handle floating point regs, allowing spaces in the (i) part. */
10857 if (r == i386_regtab /* %st is first entry of table */)
10858 {
10859 if (!cpu_arch_flags.bitfield.cpu8087
10860 && !cpu_arch_flags.bitfield.cpu287
10861 && !cpu_arch_flags.bitfield.cpu387)
10862 return (const reg_entry *) NULL;
10863
10864 if (is_space_char (*s))
10865 ++s;
10866 if (*s == '(')
10867 {
10868 ++s;
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s >= '0' && *s <= '7')
10872 {
10873 int fpr = *s - '0';
10874 ++s;
10875 if (is_space_char (*s))
10876 ++s;
10877 if (*s == ')')
10878 {
10879 *end_op = s + 1;
10880 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10881 know (r);
10882 return r + fpr;
10883 }
10884 }
10885 /* We have "%st(" then garbage. */
10886 return (const reg_entry *) NULL;
10887 }
10888 }
10889
10890 if (r == NULL || allow_pseudo_reg)
10891 return r;
10892
10893 if (operand_type_all_zero (&r->reg_type))
10894 return (const reg_entry *) NULL;
10895
10896 if ((r->reg_type.bitfield.dword
10897 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
10898 || r->reg_type.bitfield.control
10899 || r->reg_type.bitfield.debug
10900 || r->reg_type.bitfield.test)
10901 && !cpu_arch_flags.bitfield.cpui386)
10902 return (const reg_entry *) NULL;
10903
10904 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10905 return (const reg_entry *) NULL;
10906
10907 if (!cpu_arch_flags.bitfield.cpuavx512f)
10908 {
10909 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10910 return (const reg_entry *) NULL;
10911
10912 if (!cpu_arch_flags.bitfield.cpuavx)
10913 {
10914 if (r->reg_type.bitfield.ymmword)
10915 return (const reg_entry *) NULL;
10916
10917 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10918 return (const reg_entry *) NULL;
10919 }
10920 }
10921
10922 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10923 return (const reg_entry *) NULL;
10924
10925 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10926 if (!allow_index_reg && r->reg_num == RegIZ)
10927 return (const reg_entry *) NULL;
10928
10929 /* Upper 16 vector registers are only available with VREX in 64bit
10930 mode, and require EVEX encoding. */
10931 if (r->reg_flags & RegVRex)
10932 {
10933 if (!cpu_arch_flags.bitfield.cpuavx512f
10934 || flag_code != CODE_64BIT)
10935 return (const reg_entry *) NULL;
10936
10937 i.vec_encoding = vex_encoding_evex;
10938 }
10939
10940 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10941 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10942 && flag_code != CODE_64BIT)
10943 return (const reg_entry *) NULL;
10944
10945 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
10946 return (const reg_entry *) NULL;
10947
10948 return r;
10949 }
10950
10951 /* REG_STRING starts *before* REGISTER_PREFIX. */
10952
10953 static const reg_entry *
10954 parse_register (char *reg_string, char **end_op)
10955 {
10956 const reg_entry *r;
10957
10958 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10959 r = parse_real_register (reg_string, end_op);
10960 else
10961 r = NULL;
10962 if (!r)
10963 {
10964 char *save = input_line_pointer;
10965 char c;
10966 symbolS *symbolP;
10967
10968 input_line_pointer = reg_string;
10969 c = get_symbol_name (&reg_string);
10970 symbolP = symbol_find (reg_string);
10971 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10972 {
10973 const expressionS *e = symbol_get_value_expression (symbolP);
10974
10975 know (e->X_op == O_register);
10976 know (e->X_add_number >= 0
10977 && (valueT) e->X_add_number < i386_regtab_size);
10978 r = i386_regtab + e->X_add_number;
10979 if ((r->reg_flags & RegVRex))
10980 i.vec_encoding = vex_encoding_evex;
10981 *end_op = input_line_pointer;
10982 }
10983 *input_line_pointer = c;
10984 input_line_pointer = save;
10985 }
10986 return r;
10987 }
10988
10989 int
10990 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10991 {
10992 const reg_entry *r;
10993 char *end = input_line_pointer;
10994
10995 *end = *nextcharP;
10996 r = parse_register (name, &input_line_pointer);
10997 if (r && end <= input_line_pointer)
10998 {
10999 *nextcharP = *input_line_pointer;
11000 *input_line_pointer = 0;
11001 e->X_op = O_register;
11002 e->X_add_number = r - i386_regtab;
11003 return 1;
11004 }
11005 input_line_pointer = end;
11006 *end = 0;
11007 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11008 }
11009
11010 void
11011 md_operand (expressionS *e)
11012 {
11013 char *end;
11014 const reg_entry *r;
11015
11016 switch (*input_line_pointer)
11017 {
11018 case REGISTER_PREFIX:
11019 r = parse_real_register (input_line_pointer, &end);
11020 if (r)
11021 {
11022 e->X_op = O_register;
11023 e->X_add_number = r - i386_regtab;
11024 input_line_pointer = end;
11025 }
11026 break;
11027
11028 case '[':
11029 gas_assert (intel_syntax);
11030 end = input_line_pointer++;
11031 expression (e);
11032 if (*input_line_pointer == ']')
11033 {
11034 ++input_line_pointer;
11035 e->X_op_symbol = make_expr_symbol (e);
11036 e->X_add_symbol = NULL;
11037 e->X_add_number = 0;
11038 e->X_op = O_index;
11039 }
11040 else
11041 {
11042 e->X_op = O_absent;
11043 input_line_pointer = end;
11044 }
11045 break;
11046 }
11047 }
11048
11049 \f
11050 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11051 const char *md_shortopts = "kVQ:sqnO::";
11052 #else
11053 const char *md_shortopts = "qnO::";
11054 #endif
11055
11056 #define OPTION_32 (OPTION_MD_BASE + 0)
11057 #define OPTION_64 (OPTION_MD_BASE + 1)
11058 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11059 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11060 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11061 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11062 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11063 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11064 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11065 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11066 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11067 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11068 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11069 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11070 #define OPTION_X32 (OPTION_MD_BASE + 14)
11071 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11072 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11073 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11074 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11075 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11076 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11077 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11078 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11079 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11080 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11081 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11082 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11083
11084 struct option md_longopts[] =
11085 {
11086 {"32", no_argument, NULL, OPTION_32},
11087 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11088 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11089 {"64", no_argument, NULL, OPTION_64},
11090 #endif
11091 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11092 {"x32", no_argument, NULL, OPTION_X32},
11093 {"mshared", no_argument, NULL, OPTION_MSHARED},
11094 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11095 #endif
11096 {"divide", no_argument, NULL, OPTION_DIVIDE},
11097 {"march", required_argument, NULL, OPTION_MARCH},
11098 {"mtune", required_argument, NULL, OPTION_MTUNE},
11099 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11100 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11101 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11102 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11103 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11104 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11105 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11106 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11107 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11108 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11109 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11110 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11111 # if defined (TE_PE) || defined (TE_PEP)
11112 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11113 #endif
11114 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11115 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11116 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11117 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11118 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11119 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11120 {NULL, no_argument, NULL, 0}
11121 };
11122 size_t md_longopts_size = sizeof (md_longopts);
11123
11124 int
11125 md_parse_option (int c, const char *arg)
11126 {
11127 unsigned int j;
11128 char *arch, *next, *saved;
11129
11130 switch (c)
11131 {
11132 case 'n':
11133 optimize_align_code = 0;
11134 break;
11135
11136 case 'q':
11137 quiet_warnings = 1;
11138 break;
11139
11140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11141 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11142 should be emitted or not. FIXME: Not implemented. */
11143 case 'Q':
11144 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11145 return 0;
11146 break;
11147
11148 /* -V: SVR4 argument to print version ID. */
11149 case 'V':
11150 print_version_id ();
11151 break;
11152
11153 /* -k: Ignore for FreeBSD compatibility. */
11154 case 'k':
11155 break;
11156
11157 case 's':
11158 /* -s: On i386 Solaris, this tells the native assembler to use
11159 .stab instead of .stab.excl. We always use .stab anyhow. */
11160 break;
11161
11162 case OPTION_MSHARED:
11163 shared = 1;
11164 break;
11165
11166 case OPTION_X86_USED_NOTE:
11167 if (strcasecmp (arg, "yes") == 0)
11168 x86_used_note = 1;
11169 else if (strcasecmp (arg, "no") == 0)
11170 x86_used_note = 0;
11171 else
11172 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11173 break;
11174
11175
11176 #endif
11177 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11178 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11179 case OPTION_64:
11180 {
11181 const char **list, **l;
11182
11183 list = bfd_target_list ();
11184 for (l = list; *l != NULL; l++)
11185 if (CONST_STRNEQ (*l, "elf64-x86-64")
11186 || strcmp (*l, "coff-x86-64") == 0
11187 || strcmp (*l, "pe-x86-64") == 0
11188 || strcmp (*l, "pei-x86-64") == 0
11189 || strcmp (*l, "mach-o-x86-64") == 0)
11190 {
11191 default_arch = "x86_64";
11192 break;
11193 }
11194 if (*l == NULL)
11195 as_fatal (_("no compiled in support for x86_64"));
11196 free (list);
11197 }
11198 break;
11199 #endif
11200
11201 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11202 case OPTION_X32:
11203 if (IS_ELF)
11204 {
11205 const char **list, **l;
11206
11207 list = bfd_target_list ();
11208 for (l = list; *l != NULL; l++)
11209 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11210 {
11211 default_arch = "x86_64:32";
11212 break;
11213 }
11214 if (*l == NULL)
11215 as_fatal (_("no compiled in support for 32bit x86_64"));
11216 free (list);
11217 }
11218 else
11219 as_fatal (_("32bit x86_64 is only supported for ELF"));
11220 break;
11221 #endif
11222
11223 case OPTION_32:
11224 default_arch = "i386";
11225 break;
11226
11227 case OPTION_DIVIDE:
11228 #ifdef SVR4_COMMENT_CHARS
11229 {
11230 char *n, *t;
11231 const char *s;
11232
11233 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11234 t = n;
11235 for (s = i386_comment_chars; *s != '\0'; s++)
11236 if (*s != '/')
11237 *t++ = *s;
11238 *t = '\0';
11239 i386_comment_chars = n;
11240 }
11241 #endif
11242 break;
11243
11244 case OPTION_MARCH:
11245 saved = xstrdup (arg);
11246 arch = saved;
11247 /* Allow -march=+nosse. */
11248 if (*arch == '+')
11249 arch++;
11250 do
11251 {
11252 if (*arch == '.')
11253 as_fatal (_("invalid -march= option: `%s'"), arg);
11254 next = strchr (arch, '+');
11255 if (next)
11256 *next++ = '\0';
11257 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11258 {
11259 if (strcmp (arch, cpu_arch [j].name) == 0)
11260 {
11261 /* Processor. */
11262 if (! cpu_arch[j].flags.bitfield.cpui386)
11263 continue;
11264
11265 cpu_arch_name = cpu_arch[j].name;
11266 cpu_sub_arch_name = NULL;
11267 cpu_arch_flags = cpu_arch[j].flags;
11268 cpu_arch_isa = cpu_arch[j].type;
11269 cpu_arch_isa_flags = cpu_arch[j].flags;
11270 if (!cpu_arch_tune_set)
11271 {
11272 cpu_arch_tune = cpu_arch_isa;
11273 cpu_arch_tune_flags = cpu_arch_isa_flags;
11274 }
11275 break;
11276 }
11277 else if (*cpu_arch [j].name == '.'
11278 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11279 {
11280 /* ISA extension. */
11281 i386_cpu_flags flags;
11282
11283 flags = cpu_flags_or (cpu_arch_flags,
11284 cpu_arch[j].flags);
11285
11286 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11287 {
11288 if (cpu_sub_arch_name)
11289 {
11290 char *name = cpu_sub_arch_name;
11291 cpu_sub_arch_name = concat (name,
11292 cpu_arch[j].name,
11293 (const char *) NULL);
11294 free (name);
11295 }
11296 else
11297 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11298 cpu_arch_flags = flags;
11299 cpu_arch_isa_flags = flags;
11300 }
11301 else
11302 cpu_arch_isa_flags
11303 = cpu_flags_or (cpu_arch_isa_flags,
11304 cpu_arch[j].flags);
11305 break;
11306 }
11307 }
11308
11309 if (j >= ARRAY_SIZE (cpu_arch))
11310 {
11311 /* Disable an ISA extension. */
11312 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11313 if (strcmp (arch, cpu_noarch [j].name) == 0)
11314 {
11315 i386_cpu_flags flags;
11316
11317 flags = cpu_flags_and_not (cpu_arch_flags,
11318 cpu_noarch[j].flags);
11319 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11320 {
11321 if (cpu_sub_arch_name)
11322 {
11323 char *name = cpu_sub_arch_name;
11324 cpu_sub_arch_name = concat (arch,
11325 (const char *) NULL);
11326 free (name);
11327 }
11328 else
11329 cpu_sub_arch_name = xstrdup (arch);
11330 cpu_arch_flags = flags;
11331 cpu_arch_isa_flags = flags;
11332 }
11333 break;
11334 }
11335
11336 if (j >= ARRAY_SIZE (cpu_noarch))
11337 j = ARRAY_SIZE (cpu_arch);
11338 }
11339
11340 if (j >= ARRAY_SIZE (cpu_arch))
11341 as_fatal (_("invalid -march= option: `%s'"), arg);
11342
11343 arch = next;
11344 }
11345 while (next != NULL);
11346 free (saved);
11347 break;
11348
11349 case OPTION_MTUNE:
11350 if (*arg == '.')
11351 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11352 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11353 {
11354 if (strcmp (arg, cpu_arch [j].name) == 0)
11355 {
11356 cpu_arch_tune_set = 1;
11357 cpu_arch_tune = cpu_arch [j].type;
11358 cpu_arch_tune_flags = cpu_arch[j].flags;
11359 break;
11360 }
11361 }
11362 if (j >= ARRAY_SIZE (cpu_arch))
11363 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11364 break;
11365
11366 case OPTION_MMNEMONIC:
11367 if (strcasecmp (arg, "att") == 0)
11368 intel_mnemonic = 0;
11369 else if (strcasecmp (arg, "intel") == 0)
11370 intel_mnemonic = 1;
11371 else
11372 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11373 break;
11374
11375 case OPTION_MSYNTAX:
11376 if (strcasecmp (arg, "att") == 0)
11377 intel_syntax = 0;
11378 else if (strcasecmp (arg, "intel") == 0)
11379 intel_syntax = 1;
11380 else
11381 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11382 break;
11383
11384 case OPTION_MINDEX_REG:
11385 allow_index_reg = 1;
11386 break;
11387
11388 case OPTION_MNAKED_REG:
11389 allow_naked_reg = 1;
11390 break;
11391
11392 case OPTION_MSSE2AVX:
11393 sse2avx = 1;
11394 break;
11395
11396 case OPTION_MSSE_CHECK:
11397 if (strcasecmp (arg, "error") == 0)
11398 sse_check = check_error;
11399 else if (strcasecmp (arg, "warning") == 0)
11400 sse_check = check_warning;
11401 else if (strcasecmp (arg, "none") == 0)
11402 sse_check = check_none;
11403 else
11404 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11405 break;
11406
11407 case OPTION_MOPERAND_CHECK:
11408 if (strcasecmp (arg, "error") == 0)
11409 operand_check = check_error;
11410 else if (strcasecmp (arg, "warning") == 0)
11411 operand_check = check_warning;
11412 else if (strcasecmp (arg, "none") == 0)
11413 operand_check = check_none;
11414 else
11415 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11416 break;
11417
11418 case OPTION_MAVXSCALAR:
11419 if (strcasecmp (arg, "128") == 0)
11420 avxscalar = vex128;
11421 else if (strcasecmp (arg, "256") == 0)
11422 avxscalar = vex256;
11423 else
11424 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11425 break;
11426
11427 case OPTION_MVEXWIG:
11428 if (strcmp (arg, "0") == 0)
11429 vexwig = evexw0;
11430 else if (strcmp (arg, "1") == 0)
11431 vexwig = evexw1;
11432 else
11433 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11434 break;
11435
11436 case OPTION_MADD_BND_PREFIX:
11437 add_bnd_prefix = 1;
11438 break;
11439
11440 case OPTION_MEVEXLIG:
11441 if (strcmp (arg, "128") == 0)
11442 evexlig = evexl128;
11443 else if (strcmp (arg, "256") == 0)
11444 evexlig = evexl256;
11445 else if (strcmp (arg, "512") == 0)
11446 evexlig = evexl512;
11447 else
11448 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11449 break;
11450
11451 case OPTION_MEVEXRCIG:
11452 if (strcmp (arg, "rne") == 0)
11453 evexrcig = rne;
11454 else if (strcmp (arg, "rd") == 0)
11455 evexrcig = rd;
11456 else if (strcmp (arg, "ru") == 0)
11457 evexrcig = ru;
11458 else if (strcmp (arg, "rz") == 0)
11459 evexrcig = rz;
11460 else
11461 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11462 break;
11463
11464 case OPTION_MEVEXWIG:
11465 if (strcmp (arg, "0") == 0)
11466 evexwig = evexw0;
11467 else if (strcmp (arg, "1") == 0)
11468 evexwig = evexw1;
11469 else
11470 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11471 break;
11472
11473 # if defined (TE_PE) || defined (TE_PEP)
11474 case OPTION_MBIG_OBJ:
11475 use_big_obj = 1;
11476 break;
11477 #endif
11478
11479 case OPTION_MOMIT_LOCK_PREFIX:
11480 if (strcasecmp (arg, "yes") == 0)
11481 omit_lock_prefix = 1;
11482 else if (strcasecmp (arg, "no") == 0)
11483 omit_lock_prefix = 0;
11484 else
11485 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11486 break;
11487
11488 case OPTION_MFENCE_AS_LOCK_ADD:
11489 if (strcasecmp (arg, "yes") == 0)
11490 avoid_fence = 1;
11491 else if (strcasecmp (arg, "no") == 0)
11492 avoid_fence = 0;
11493 else
11494 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11495 break;
11496
11497 case OPTION_MRELAX_RELOCATIONS:
11498 if (strcasecmp (arg, "yes") == 0)
11499 generate_relax_relocations = 1;
11500 else if (strcasecmp (arg, "no") == 0)
11501 generate_relax_relocations = 0;
11502 else
11503 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11504 break;
11505
11506 case OPTION_MAMD64:
11507 intel64 = 0;
11508 break;
11509
11510 case OPTION_MINTEL64:
11511 intel64 = 1;
11512 break;
11513
11514 case 'O':
11515 if (arg == NULL)
11516 {
11517 optimize = 1;
11518 /* Turn off -Os. */
11519 optimize_for_space = 0;
11520 }
11521 else if (*arg == 's')
11522 {
11523 optimize_for_space = 1;
11524 /* Turn on all encoding optimizations. */
11525 optimize = INT_MAX;
11526 }
11527 else
11528 {
11529 optimize = atoi (arg);
11530 /* Turn off -Os. */
11531 optimize_for_space = 0;
11532 }
11533 break;
11534
11535 default:
11536 return 0;
11537 }
11538 return 1;
11539 }
11540
11541 #define MESSAGE_TEMPLATE \
11542 " "
11543
11544 static char *
11545 output_message (FILE *stream, char *p, char *message, char *start,
11546 int *left_p, const char *name, int len)
11547 {
11548 int size = sizeof (MESSAGE_TEMPLATE);
11549 int left = *left_p;
11550
11551 /* Reserve 2 spaces for ", " or ",\0" */
11552 left -= len + 2;
11553
11554 /* Check if there is any room. */
11555 if (left >= 0)
11556 {
11557 if (p != start)
11558 {
11559 *p++ = ',';
11560 *p++ = ' ';
11561 }
11562 p = mempcpy (p, name, len);
11563 }
11564 else
11565 {
11566 /* Output the current message now and start a new one. */
11567 *p++ = ',';
11568 *p = '\0';
11569 fprintf (stream, "%s\n", message);
11570 p = start;
11571 left = size - (start - message) - len - 2;
11572
11573 gas_assert (left >= 0);
11574
11575 p = mempcpy (p, name, len);
11576 }
11577
11578 *left_p = left;
11579 return p;
11580 }
11581
11582 static void
11583 show_arch (FILE *stream, int ext, int check)
11584 {
11585 static char message[] = MESSAGE_TEMPLATE;
11586 char *start = message + 27;
11587 char *p;
11588 int size = sizeof (MESSAGE_TEMPLATE);
11589 int left;
11590 const char *name;
11591 int len;
11592 unsigned int j;
11593
11594 p = start;
11595 left = size - (start - message);
11596 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11597 {
11598 /* Should it be skipped? */
11599 if (cpu_arch [j].skip)
11600 continue;
11601
11602 name = cpu_arch [j].name;
11603 len = cpu_arch [j].len;
11604 if (*name == '.')
11605 {
11606 /* It is an extension. Skip if we aren't asked to show it. */
11607 if (ext)
11608 {
11609 name++;
11610 len--;
11611 }
11612 else
11613 continue;
11614 }
11615 else if (ext)
11616 {
11617 /* It is an processor. Skip if we show only extension. */
11618 continue;
11619 }
11620 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11621 {
11622 /* It is an impossible processor - skip. */
11623 continue;
11624 }
11625
11626 p = output_message (stream, p, message, start, &left, name, len);
11627 }
11628
11629 /* Display disabled extensions. */
11630 if (ext)
11631 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11632 {
11633 name = cpu_noarch [j].name;
11634 len = cpu_noarch [j].len;
11635 p = output_message (stream, p, message, start, &left, name,
11636 len);
11637 }
11638
11639 *p = '\0';
11640 fprintf (stream, "%s\n", message);
11641 }
11642
11643 void
11644 md_show_usage (FILE *stream)
11645 {
11646 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11647 fprintf (stream, _("\
11648 -Qy, -Qn ignored\n\
11649 -V print assembler version number\n\
11650 -k ignored\n"));
11651 #endif
11652 fprintf (stream, _("\
11653 -n Do not optimize code alignment\n\
11654 -q quieten some warnings\n"));
11655 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11656 fprintf (stream, _("\
11657 -s ignored\n"));
11658 #endif
11659 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11660 || defined (TE_PE) || defined (TE_PEP))
11661 fprintf (stream, _("\
11662 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11663 #endif
11664 #ifdef SVR4_COMMENT_CHARS
11665 fprintf (stream, _("\
11666 --divide do not treat `/' as a comment character\n"));
11667 #else
11668 fprintf (stream, _("\
11669 --divide ignored\n"));
11670 #endif
11671 fprintf (stream, _("\
11672 -march=CPU[,+EXTENSION...]\n\
11673 generate code for CPU and EXTENSION, CPU is one of:\n"));
11674 show_arch (stream, 0, 1);
11675 fprintf (stream, _("\
11676 EXTENSION is combination of:\n"));
11677 show_arch (stream, 1, 0);
11678 fprintf (stream, _("\
11679 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11680 show_arch (stream, 0, 0);
11681 fprintf (stream, _("\
11682 -msse2avx encode SSE instructions with VEX prefix\n"));
11683 fprintf (stream, _("\
11684 -msse-check=[none|error|warning] (default: warning)\n\
11685 check SSE instructions\n"));
11686 fprintf (stream, _("\
11687 -moperand-check=[none|error|warning] (default: warning)\n\
11688 check operand combinations for validity\n"));
11689 fprintf (stream, _("\
11690 -mavxscalar=[128|256] (default: 128)\n\
11691 encode scalar AVX instructions with specific vector\n\
11692 length\n"));
11693 fprintf (stream, _("\
11694 -mvexwig=[0|1] (default: 0)\n\
11695 encode VEX instructions with specific VEX.W value\n\
11696 for VEX.W bit ignored instructions\n"));
11697 fprintf (stream, _("\
11698 -mevexlig=[128|256|512] (default: 128)\n\
11699 encode scalar EVEX instructions with specific vector\n\
11700 length\n"));
11701 fprintf (stream, _("\
11702 -mevexwig=[0|1] (default: 0)\n\
11703 encode EVEX instructions with specific EVEX.W value\n\
11704 for EVEX.W bit ignored instructions\n"));
11705 fprintf (stream, _("\
11706 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11707 encode EVEX instructions with specific EVEX.RC value\n\
11708 for SAE-only ignored instructions\n"));
11709 fprintf (stream, _("\
11710 -mmnemonic=[att|intel] "));
11711 if (SYSV386_COMPAT)
11712 fprintf (stream, _("(default: att)\n"));
11713 else
11714 fprintf (stream, _("(default: intel)\n"));
11715 fprintf (stream, _("\
11716 use AT&T/Intel mnemonic\n"));
11717 fprintf (stream, _("\
11718 -msyntax=[att|intel] (default: att)\n\
11719 use AT&T/Intel syntax\n"));
11720 fprintf (stream, _("\
11721 -mindex-reg support pseudo index registers\n"));
11722 fprintf (stream, _("\
11723 -mnaked-reg don't require `%%' prefix for registers\n"));
11724 fprintf (stream, _("\
11725 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11726 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11727 fprintf (stream, _("\
11728 -mshared disable branch optimization for shared code\n"));
11729 fprintf (stream, _("\
11730 -mx86-used-note=[no|yes] "));
11731 if (DEFAULT_X86_USED_NOTE)
11732 fprintf (stream, _("(default: yes)\n"));
11733 else
11734 fprintf (stream, _("(default: no)\n"));
11735 fprintf (stream, _("\
11736 generate x86 used ISA and feature properties\n"));
11737 #endif
11738 #if defined (TE_PE) || defined (TE_PEP)
11739 fprintf (stream, _("\
11740 -mbig-obj generate big object files\n"));
11741 #endif
11742 fprintf (stream, _("\
11743 -momit-lock-prefix=[no|yes] (default: no)\n\
11744 strip all lock prefixes\n"));
11745 fprintf (stream, _("\
11746 -mfence-as-lock-add=[no|yes] (default: no)\n\
11747 encode lfence, mfence and sfence as\n\
11748 lock addl $0x0, (%%{re}sp)\n"));
11749 fprintf (stream, _("\
11750 -mrelax-relocations=[no|yes] "));
11751 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11752 fprintf (stream, _("(default: yes)\n"));
11753 else
11754 fprintf (stream, _("(default: no)\n"));
11755 fprintf (stream, _("\
11756 generate relax relocations\n"));
11757 fprintf (stream, _("\
11758 -mamd64 accept only AMD64 ISA [default]\n"));
11759 fprintf (stream, _("\
11760 -mintel64 accept only Intel64 ISA\n"));
11761 }
11762
11763 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11764 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11765 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11766
11767 /* Pick the target format to use. */
11768
11769 const char *
11770 i386_target_format (void)
11771 {
11772 if (!strncmp (default_arch, "x86_64", 6))
11773 {
11774 update_code_flag (CODE_64BIT, 1);
11775 if (default_arch[6] == '\0')
11776 x86_elf_abi = X86_64_ABI;
11777 else
11778 x86_elf_abi = X86_64_X32_ABI;
11779 }
11780 else if (!strcmp (default_arch, "i386"))
11781 update_code_flag (CODE_32BIT, 1);
11782 else if (!strcmp (default_arch, "iamcu"))
11783 {
11784 update_code_flag (CODE_32BIT, 1);
11785 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11786 {
11787 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11788 cpu_arch_name = "iamcu";
11789 cpu_sub_arch_name = NULL;
11790 cpu_arch_flags = iamcu_flags;
11791 cpu_arch_isa = PROCESSOR_IAMCU;
11792 cpu_arch_isa_flags = iamcu_flags;
11793 if (!cpu_arch_tune_set)
11794 {
11795 cpu_arch_tune = cpu_arch_isa;
11796 cpu_arch_tune_flags = cpu_arch_isa_flags;
11797 }
11798 }
11799 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11800 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11801 cpu_arch_name);
11802 }
11803 else
11804 as_fatal (_("unknown architecture"));
11805
11806 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11807 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11808 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11809 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11810
11811 switch (OUTPUT_FLAVOR)
11812 {
11813 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11814 case bfd_target_aout_flavour:
11815 return AOUT_TARGET_FORMAT;
11816 #endif
11817 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11818 # if defined (TE_PE) || defined (TE_PEP)
11819 case bfd_target_coff_flavour:
11820 if (flag_code == CODE_64BIT)
11821 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11822 else
11823 return "pe-i386";
11824 # elif defined (TE_GO32)
11825 case bfd_target_coff_flavour:
11826 return "coff-go32";
11827 # else
11828 case bfd_target_coff_flavour:
11829 return "coff-i386";
11830 # endif
11831 #endif
11832 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11833 case bfd_target_elf_flavour:
11834 {
11835 const char *format;
11836
11837 switch (x86_elf_abi)
11838 {
11839 default:
11840 format = ELF_TARGET_FORMAT;
11841 break;
11842 case X86_64_ABI:
11843 use_rela_relocations = 1;
11844 object_64bit = 1;
11845 format = ELF_TARGET_FORMAT64;
11846 break;
11847 case X86_64_X32_ABI:
11848 use_rela_relocations = 1;
11849 object_64bit = 1;
11850 disallow_64bit_reloc = 1;
11851 format = ELF_TARGET_FORMAT32;
11852 break;
11853 }
11854 if (cpu_arch_isa == PROCESSOR_L1OM)
11855 {
11856 if (x86_elf_abi != X86_64_ABI)
11857 as_fatal (_("Intel L1OM is 64bit only"));
11858 return ELF_TARGET_L1OM_FORMAT;
11859 }
11860 else if (cpu_arch_isa == PROCESSOR_K1OM)
11861 {
11862 if (x86_elf_abi != X86_64_ABI)
11863 as_fatal (_("Intel K1OM is 64bit only"));
11864 return ELF_TARGET_K1OM_FORMAT;
11865 }
11866 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11867 {
11868 if (x86_elf_abi != I386_ABI)
11869 as_fatal (_("Intel MCU is 32bit only"));
11870 return ELF_TARGET_IAMCU_FORMAT;
11871 }
11872 else
11873 return format;
11874 }
11875 #endif
11876 #if defined (OBJ_MACH_O)
11877 case bfd_target_mach_o_flavour:
11878 if (flag_code == CODE_64BIT)
11879 {
11880 use_rela_relocations = 1;
11881 object_64bit = 1;
11882 return "mach-o-x86-64";
11883 }
11884 else
11885 return "mach-o-i386";
11886 #endif
11887 default:
11888 abort ();
11889 return NULL;
11890 }
11891 }
11892
11893 #endif /* OBJ_MAYBE_ more than one */
11894 \f
11895 symbolS *
11896 md_undefined_symbol (char *name)
11897 {
11898 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11899 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11900 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11901 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11902 {
11903 if (!GOT_symbol)
11904 {
11905 if (symbol_find (name))
11906 as_bad (_("GOT already in symbol table"));
11907 GOT_symbol = symbol_new (name, undefined_section,
11908 (valueT) 0, &zero_address_frag);
11909 };
11910 return GOT_symbol;
11911 }
11912 return 0;
11913 }
11914
11915 /* Round up a section size to the appropriate boundary. */
11916
11917 valueT
11918 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11919 {
11920 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11921 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11922 {
11923 /* For a.out, force the section size to be aligned. If we don't do
11924 this, BFD will align it for us, but it will not write out the
11925 final bytes of the section. This may be a bug in BFD, but it is
11926 easier to fix it here since that is how the other a.out targets
11927 work. */
11928 int align;
11929
11930 align = bfd_get_section_alignment (stdoutput, segment);
11931 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11932 }
11933 #endif
11934
11935 return size;
11936 }
11937
11938 /* On the i386, PC-relative offsets are relative to the start of the
11939 next instruction. That is, the address of the offset, plus its
11940 size, since the offset is always the last part of the insn. */
11941
11942 long
11943 md_pcrel_from (fixS *fixP)
11944 {
11945 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11946 }
11947
11948 #ifndef I386COFF
11949
11950 static void
11951 s_bss (int ignore ATTRIBUTE_UNUSED)
11952 {
11953 int temp;
11954
11955 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11956 if (IS_ELF)
11957 obj_elf_section_change_hook ();
11958 #endif
11959 temp = get_absolute_expression ();
11960 subseg_set (bss_section, (subsegT) temp);
11961 demand_empty_rest_of_line ();
11962 }
11963
11964 #endif
11965
11966 void
11967 i386_validate_fix (fixS *fixp)
11968 {
11969 if (fixp->fx_subsy)
11970 {
11971 if (fixp->fx_subsy == GOT_symbol)
11972 {
11973 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11974 {
11975 if (!object_64bit)
11976 abort ();
11977 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11978 if (fixp->fx_tcbit2)
11979 fixp->fx_r_type = (fixp->fx_tcbit
11980 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11981 : BFD_RELOC_X86_64_GOTPCRELX);
11982 else
11983 #endif
11984 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11985 }
11986 else
11987 {
11988 if (!object_64bit)
11989 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11990 else
11991 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11992 }
11993 fixp->fx_subsy = 0;
11994 }
11995 }
11996 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11997 else if (!object_64bit)
11998 {
11999 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12000 && fixp->fx_tcbit2)
12001 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12002 }
12003 #endif
12004 }
12005
12006 arelent *
12007 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12008 {
12009 arelent *rel;
12010 bfd_reloc_code_real_type code;
12011
12012 switch (fixp->fx_r_type)
12013 {
12014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12015 case BFD_RELOC_SIZE32:
12016 case BFD_RELOC_SIZE64:
12017 if (S_IS_DEFINED (fixp->fx_addsy)
12018 && !S_IS_EXTERNAL (fixp->fx_addsy))
12019 {
12020 /* Resolve size relocation against local symbol to size of
12021 the symbol plus addend. */
12022 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12023 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12024 && !fits_in_unsigned_long (value))
12025 as_bad_where (fixp->fx_file, fixp->fx_line,
12026 _("symbol size computation overflow"));
12027 fixp->fx_addsy = NULL;
12028 fixp->fx_subsy = NULL;
12029 md_apply_fix (fixp, (valueT *) &value, NULL);
12030 return NULL;
12031 }
12032 #endif
12033 /* Fall through. */
12034
12035 case BFD_RELOC_X86_64_PLT32:
12036 case BFD_RELOC_X86_64_GOT32:
12037 case BFD_RELOC_X86_64_GOTPCREL:
12038 case BFD_RELOC_X86_64_GOTPCRELX:
12039 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12040 case BFD_RELOC_386_PLT32:
12041 case BFD_RELOC_386_GOT32:
12042 case BFD_RELOC_386_GOT32X:
12043 case BFD_RELOC_386_GOTOFF:
12044 case BFD_RELOC_386_GOTPC:
12045 case BFD_RELOC_386_TLS_GD:
12046 case BFD_RELOC_386_TLS_LDM:
12047 case BFD_RELOC_386_TLS_LDO_32:
12048 case BFD_RELOC_386_TLS_IE_32:
12049 case BFD_RELOC_386_TLS_IE:
12050 case BFD_RELOC_386_TLS_GOTIE:
12051 case BFD_RELOC_386_TLS_LE_32:
12052 case BFD_RELOC_386_TLS_LE:
12053 case BFD_RELOC_386_TLS_GOTDESC:
12054 case BFD_RELOC_386_TLS_DESC_CALL:
12055 case BFD_RELOC_X86_64_TLSGD:
12056 case BFD_RELOC_X86_64_TLSLD:
12057 case BFD_RELOC_X86_64_DTPOFF32:
12058 case BFD_RELOC_X86_64_DTPOFF64:
12059 case BFD_RELOC_X86_64_GOTTPOFF:
12060 case BFD_RELOC_X86_64_TPOFF32:
12061 case BFD_RELOC_X86_64_TPOFF64:
12062 case BFD_RELOC_X86_64_GOTOFF64:
12063 case BFD_RELOC_X86_64_GOTPC32:
12064 case BFD_RELOC_X86_64_GOT64:
12065 case BFD_RELOC_X86_64_GOTPCREL64:
12066 case BFD_RELOC_X86_64_GOTPC64:
12067 case BFD_RELOC_X86_64_GOTPLT64:
12068 case BFD_RELOC_X86_64_PLTOFF64:
12069 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12070 case BFD_RELOC_X86_64_TLSDESC_CALL:
12071 case BFD_RELOC_RVA:
12072 case BFD_RELOC_VTABLE_ENTRY:
12073 case BFD_RELOC_VTABLE_INHERIT:
12074 #ifdef TE_PE
12075 case BFD_RELOC_32_SECREL:
12076 #endif
12077 code = fixp->fx_r_type;
12078 break;
12079 case BFD_RELOC_X86_64_32S:
12080 if (!fixp->fx_pcrel)
12081 {
12082 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12083 code = fixp->fx_r_type;
12084 break;
12085 }
12086 /* Fall through. */
12087 default:
12088 if (fixp->fx_pcrel)
12089 {
12090 switch (fixp->fx_size)
12091 {
12092 default:
12093 as_bad_where (fixp->fx_file, fixp->fx_line,
12094 _("can not do %d byte pc-relative relocation"),
12095 fixp->fx_size);
12096 code = BFD_RELOC_32_PCREL;
12097 break;
12098 case 1: code = BFD_RELOC_8_PCREL; break;
12099 case 2: code = BFD_RELOC_16_PCREL; break;
12100 case 4: code = BFD_RELOC_32_PCREL; break;
12101 #ifdef BFD64
12102 case 8: code = BFD_RELOC_64_PCREL; break;
12103 #endif
12104 }
12105 }
12106 else
12107 {
12108 switch (fixp->fx_size)
12109 {
12110 default:
12111 as_bad_where (fixp->fx_file, fixp->fx_line,
12112 _("can not do %d byte relocation"),
12113 fixp->fx_size);
12114 code = BFD_RELOC_32;
12115 break;
12116 case 1: code = BFD_RELOC_8; break;
12117 case 2: code = BFD_RELOC_16; break;
12118 case 4: code = BFD_RELOC_32; break;
12119 #ifdef BFD64
12120 case 8: code = BFD_RELOC_64; break;
12121 #endif
12122 }
12123 }
12124 break;
12125 }
12126
12127 if ((code == BFD_RELOC_32
12128 || code == BFD_RELOC_32_PCREL
12129 || code == BFD_RELOC_X86_64_32S)
12130 && GOT_symbol
12131 && fixp->fx_addsy == GOT_symbol)
12132 {
12133 if (!object_64bit)
12134 code = BFD_RELOC_386_GOTPC;
12135 else
12136 code = BFD_RELOC_X86_64_GOTPC32;
12137 }
12138 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12139 && GOT_symbol
12140 && fixp->fx_addsy == GOT_symbol)
12141 {
12142 code = BFD_RELOC_X86_64_GOTPC64;
12143 }
12144
12145 rel = XNEW (arelent);
12146 rel->sym_ptr_ptr = XNEW (asymbol *);
12147 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12148
12149 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12150
12151 if (!use_rela_relocations)
12152 {
12153 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12154 vtable entry to be used in the relocation's section offset. */
12155 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12156 rel->address = fixp->fx_offset;
12157 #if defined (OBJ_COFF) && defined (TE_PE)
12158 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12159 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12160 else
12161 #endif
12162 rel->addend = 0;
12163 }
12164 /* Use the rela in 64bit mode. */
12165 else
12166 {
12167 if (disallow_64bit_reloc)
12168 switch (code)
12169 {
12170 case BFD_RELOC_X86_64_DTPOFF64:
12171 case BFD_RELOC_X86_64_TPOFF64:
12172 case BFD_RELOC_64_PCREL:
12173 case BFD_RELOC_X86_64_GOTOFF64:
12174 case BFD_RELOC_X86_64_GOT64:
12175 case BFD_RELOC_X86_64_GOTPCREL64:
12176 case BFD_RELOC_X86_64_GOTPC64:
12177 case BFD_RELOC_X86_64_GOTPLT64:
12178 case BFD_RELOC_X86_64_PLTOFF64:
12179 as_bad_where (fixp->fx_file, fixp->fx_line,
12180 _("cannot represent relocation type %s in x32 mode"),
12181 bfd_get_reloc_code_name (code));
12182 break;
12183 default:
12184 break;
12185 }
12186
12187 if (!fixp->fx_pcrel)
12188 rel->addend = fixp->fx_offset;
12189 else
12190 switch (code)
12191 {
12192 case BFD_RELOC_X86_64_PLT32:
12193 case BFD_RELOC_X86_64_GOT32:
12194 case BFD_RELOC_X86_64_GOTPCREL:
12195 case BFD_RELOC_X86_64_GOTPCRELX:
12196 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12197 case BFD_RELOC_X86_64_TLSGD:
12198 case BFD_RELOC_X86_64_TLSLD:
12199 case BFD_RELOC_X86_64_GOTTPOFF:
12200 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12201 case BFD_RELOC_X86_64_TLSDESC_CALL:
12202 rel->addend = fixp->fx_offset - fixp->fx_size;
12203 break;
12204 default:
12205 rel->addend = (section->vma
12206 - fixp->fx_size
12207 + fixp->fx_addnumber
12208 + md_pcrel_from (fixp));
12209 break;
12210 }
12211 }
12212
12213 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12214 if (rel->howto == NULL)
12215 {
12216 as_bad_where (fixp->fx_file, fixp->fx_line,
12217 _("cannot represent relocation type %s"),
12218 bfd_get_reloc_code_name (code));
12219 /* Set howto to a garbage value so that we can keep going. */
12220 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12221 gas_assert (rel->howto != NULL);
12222 }
12223
12224 return rel;
12225 }
12226
12227 #include "tc-i386-intel.c"
12228
12229 void
12230 tc_x86_parse_to_dw2regnum (expressionS *exp)
12231 {
12232 int saved_naked_reg;
12233 char saved_register_dot;
12234
12235 saved_naked_reg = allow_naked_reg;
12236 allow_naked_reg = 1;
12237 saved_register_dot = register_chars['.'];
12238 register_chars['.'] = '.';
12239 allow_pseudo_reg = 1;
12240 expression_and_evaluate (exp);
12241 allow_pseudo_reg = 0;
12242 register_chars['.'] = saved_register_dot;
12243 allow_naked_reg = saved_naked_reg;
12244
12245 if (exp->X_op == O_register && exp->X_add_number >= 0)
12246 {
12247 if ((addressT) exp->X_add_number < i386_regtab_size)
12248 {
12249 exp->X_op = O_constant;
12250 exp->X_add_number = i386_regtab[exp->X_add_number]
12251 .dw2_regnum[flag_code >> 1];
12252 }
12253 else
12254 exp->X_op = O_illegal;
12255 }
12256 }
12257
12258 void
12259 tc_x86_frame_initial_instructions (void)
12260 {
12261 static unsigned int sp_regno[2];
12262
12263 if (!sp_regno[flag_code >> 1])
12264 {
12265 char *saved_input = input_line_pointer;
12266 char sp[][4] = {"esp", "rsp"};
12267 expressionS exp;
12268
12269 input_line_pointer = sp[flag_code >> 1];
12270 tc_x86_parse_to_dw2regnum (&exp);
12271 gas_assert (exp.X_op == O_constant);
12272 sp_regno[flag_code >> 1] = exp.X_add_number;
12273 input_line_pointer = saved_input;
12274 }
12275
12276 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12277 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12278 }
12279
12280 int
12281 x86_dwarf2_addr_size (void)
12282 {
12283 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12284 if (x86_elf_abi == X86_64_X32_ABI)
12285 return 4;
12286 #endif
12287 return bfd_arch_bits_per_address (stdoutput) / 8;
12288 }
12289
12290 int
12291 i386_elf_section_type (const char *str, size_t len)
12292 {
12293 if (flag_code == CODE_64BIT
12294 && len == sizeof ("unwind") - 1
12295 && strncmp (str, "unwind", 6) == 0)
12296 return SHT_X86_64_UNWIND;
12297
12298 return -1;
12299 }
12300
12301 #ifdef TE_SOLARIS
12302 void
12303 i386_solaris_fix_up_eh_frame (segT sec)
12304 {
12305 if (flag_code == CODE_64BIT)
12306 elf_section_type (sec) = SHT_X86_64_UNWIND;
12307 }
12308 #endif
12309
12310 #ifdef TE_PE
12311 void
12312 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12313 {
12314 expressionS exp;
12315
12316 exp.X_op = O_secrel;
12317 exp.X_add_symbol = symbol;
12318 exp.X_add_number = 0;
12319 emit_expr (&exp, size);
12320 }
12321 #endif
12322
12323 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12324 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12325
12326 bfd_vma
12327 x86_64_section_letter (int letter, const char **ptr_msg)
12328 {
12329 if (flag_code == CODE_64BIT)
12330 {
12331 if (letter == 'l')
12332 return SHF_X86_64_LARGE;
12333
12334 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12335 }
12336 else
12337 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12338 return -1;
12339 }
12340
12341 bfd_vma
12342 x86_64_section_word (char *str, size_t len)
12343 {
12344 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12345 return SHF_X86_64_LARGE;
12346
12347 return -1;
12348 }
12349
12350 static void
12351 handle_large_common (int small ATTRIBUTE_UNUSED)
12352 {
12353 if (flag_code != CODE_64BIT)
12354 {
12355 s_comm_internal (0, elf_common_parse);
12356 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12357 }
12358 else
12359 {
12360 static segT lbss_section;
12361 asection *saved_com_section_ptr = elf_com_section_ptr;
12362 asection *saved_bss_section = bss_section;
12363
12364 if (lbss_section == NULL)
12365 {
12366 flagword applicable;
12367 segT seg = now_seg;
12368 subsegT subseg = now_subseg;
12369
12370 /* The .lbss section is for local .largecomm symbols. */
12371 lbss_section = subseg_new (".lbss", 0);
12372 applicable = bfd_applicable_section_flags (stdoutput);
12373 bfd_set_section_flags (stdoutput, lbss_section,
12374 applicable & SEC_ALLOC);
12375 seg_info (lbss_section)->bss = 1;
12376
12377 subseg_set (seg, subseg);
12378 }
12379
12380 elf_com_section_ptr = &_bfd_elf_large_com_section;
12381 bss_section = lbss_section;
12382
12383 s_comm_internal (0, elf_common_parse);
12384
12385 elf_com_section_ptr = saved_com_section_ptr;
12386 bss_section = saved_bss_section;
12387 }
12388 }
12389 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.319404 seconds and 5 git commands to generate.