x86: fix operand size checking
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
847 CPU_ZNVER2_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
849 CPU_BTVER1_FLAGS, 0 },
850 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
851 CPU_BTVER2_FLAGS, 0 },
852 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
853 CPU_8087_FLAGS, 0 },
854 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
855 CPU_287_FLAGS, 0 },
856 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
857 CPU_387_FLAGS, 0 },
858 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
859 CPU_687_FLAGS, 0 },
860 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
861 CPU_MMX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
863 CPU_SSE_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
865 CPU_SSE2_FLAGS, 0 },
866 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
867 CPU_SSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
869 CPU_SSSE3_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_1_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
875 CPU_SSE4_2_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
877 CPU_AVX_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
879 CPU_AVX2_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
881 CPU_AVX512F_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
883 CPU_AVX512CD_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
885 CPU_AVX512ER_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
887 CPU_AVX512PF_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
889 CPU_AVX512DQ_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
891 CPU_AVX512BW_FLAGS, 0 },
892 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
893 CPU_AVX512VL_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
895 CPU_VMX_FLAGS, 0 },
896 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
897 CPU_VMFUNC_FLAGS, 0 },
898 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
899 CPU_SMX_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
901 CPU_XSAVE_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEOPT_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
905 CPU_XSAVEC_FLAGS, 0 },
906 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
907 CPU_XSAVES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
909 CPU_AES_FLAGS, 0 },
910 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 0 },
912 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
913 CPU_PCLMUL_FLAGS, 1 },
914 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
915 CPU_FSGSBASE_FLAGS, 0 },
916 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
917 CPU_RDRND_FLAGS, 0 },
918 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
919 CPU_F16C_FLAGS, 0 },
920 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
921 CPU_BMI2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
923 CPU_FMA_FLAGS, 0 },
924 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
925 CPU_FMA4_FLAGS, 0 },
926 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
927 CPU_XOP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
929 CPU_LWP_FLAGS, 0 },
930 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
931 CPU_MOVBE_FLAGS, 0 },
932 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
933 CPU_CX16_FLAGS, 0 },
934 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
935 CPU_EPT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
937 CPU_LZCNT_FLAGS, 0 },
938 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
939 CPU_HLE_FLAGS, 0 },
940 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
941 CPU_RTM_FLAGS, 0 },
942 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
943 CPU_INVPCID_FLAGS, 0 },
944 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
945 CPU_CLFLUSH_FLAGS, 0 },
946 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
947 CPU_NOP_FLAGS, 0 },
948 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
949 CPU_SYSCALL_FLAGS, 0 },
950 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
951 CPU_RDTSCP_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
953 CPU_3DNOW_FLAGS, 0 },
954 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
955 CPU_3DNOWA_FLAGS, 0 },
956 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
957 CPU_PADLOCK_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 1 },
960 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
961 CPU_SVME_FLAGS, 0 },
962 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
963 CPU_SSE4A_FLAGS, 0 },
964 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
965 CPU_ABM_FLAGS, 0 },
966 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
967 CPU_BMI_FLAGS, 0 },
968 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
969 CPU_TBM_FLAGS, 0 },
970 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
971 CPU_ADX_FLAGS, 0 },
972 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
973 CPU_RDSEED_FLAGS, 0 },
974 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
975 CPU_PRFCHW_FLAGS, 0 },
976 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
977 CPU_SMAP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
979 CPU_MPX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
981 CPU_SHA_FLAGS, 0 },
982 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
983 CPU_CLFLUSHOPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
985 CPU_PREFETCHWT1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
987 CPU_SE1_FLAGS, 0 },
988 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
989 CPU_CLWB_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
991 CPU_AVX512IFMA_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
993 CPU_AVX512VBMI_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4FMAPS_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4VNNIW_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VBMI2_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VNNI_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_BITALG_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1007 CPU_CLZERO_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1009 CPU_MWAITX_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1011 CPU_OSPKE_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1013 CPU_RDPID_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1015 CPU_PTWRITE_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1017 CPU_IBT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1019 CPU_SHSTK_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1021 CPU_GFNI_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1023 CPU_VAES_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1025 CPU_VPCLMULQDQ_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1027 CPU_WBNOINVD_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1029 CPU_PCONFIG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1031 CPU_WAITPKG_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1033 CPU_CLDEMOTE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIRI_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIR64B_FLAGS, 0 },
1038 };
1039
1040 static const noarch_entry cpu_noarch[] =
1041 {
1042 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1043 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1044 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1045 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1046 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1047 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1048 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1049 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1055 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1070 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1071 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1072 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1074 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1075 };
1076
1077 #ifdef I386COFF
1078 /* Like s_lcomm_internal in gas/read.c but the alignment string
1079 is allowed to be optional. */
1080
1081 static symbolS *
1082 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1083 {
1084 addressT align = 0;
1085
1086 SKIP_WHITESPACE ();
1087
1088 if (needs_align
1089 && *input_line_pointer == ',')
1090 {
1091 align = parse_align (needs_align - 1);
1092
1093 if (align == (addressT) -1)
1094 return NULL;
1095 }
1096 else
1097 {
1098 if (size >= 8)
1099 align = 3;
1100 else if (size >= 4)
1101 align = 2;
1102 else if (size >= 2)
1103 align = 1;
1104 else
1105 align = 0;
1106 }
1107
1108 bss_alloc (symbolP, size, align);
1109 return symbolP;
1110 }
1111
1112 static void
1113 pe_lcomm (int needs_align)
1114 {
1115 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1116 }
1117 #endif
1118
1119 const pseudo_typeS md_pseudo_table[] =
1120 {
1121 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1122 {"align", s_align_bytes, 0},
1123 #else
1124 {"align", s_align_ptwo, 0},
1125 #endif
1126 {"arch", set_cpu_arch, 0},
1127 #ifndef I386COFF
1128 {"bss", s_bss, 0},
1129 #else
1130 {"lcomm", pe_lcomm, 1},
1131 #endif
1132 {"ffloat", float_cons, 'f'},
1133 {"dfloat", float_cons, 'd'},
1134 {"tfloat", float_cons, 'x'},
1135 {"value", cons, 2},
1136 {"slong", signed_cons, 4},
1137 {"noopt", s_ignore, 0},
1138 {"optim", s_ignore, 0},
1139 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1140 {"code16", set_code_flag, CODE_16BIT},
1141 {"code32", set_code_flag, CODE_32BIT},
1142 #ifdef BFD64
1143 {"code64", set_code_flag, CODE_64BIT},
1144 #endif
1145 {"intel_syntax", set_intel_syntax, 1},
1146 {"att_syntax", set_intel_syntax, 0},
1147 {"intel_mnemonic", set_intel_mnemonic, 1},
1148 {"att_mnemonic", set_intel_mnemonic, 0},
1149 {"allow_index_reg", set_allow_index_reg, 1},
1150 {"disallow_index_reg", set_allow_index_reg, 0},
1151 {"sse_check", set_check, 0},
1152 {"operand_check", set_check, 1},
1153 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1154 {"largecomm", handle_large_common, 0},
1155 #else
1156 {"file", dwarf2_directive_file, 0},
1157 {"loc", dwarf2_directive_loc, 0},
1158 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1159 #endif
1160 #ifdef TE_PE
1161 {"secrel32", pe_directive_secrel, 0},
1162 #endif
1163 {0, 0, 0}
1164 };
1165
1166 /* For interface with expression (). */
1167 extern char *input_line_pointer;
1168
1169 /* Hash table for instruction mnemonic lookup. */
1170 static struct hash_control *op_hash;
1171
1172 /* Hash table for register lookup. */
1173 static struct hash_control *reg_hash;
1174 \f
1175 /* Various efficient no-op patterns for aligning code labels.
1176 Note: Don't try to assemble the instructions in the comments.
1177 0L and 0w are not legal. */
1178 static const unsigned char f32_1[] =
1179 {0x90}; /* nop */
1180 static const unsigned char f32_2[] =
1181 {0x66,0x90}; /* xchg %ax,%ax */
1182 static const unsigned char f32_3[] =
1183 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1184 static const unsigned char f32_4[] =
1185 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1186 static const unsigned char f32_6[] =
1187 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1188 static const unsigned char f32_7[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1190 static const unsigned char f16_3[] =
1191 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1192 static const unsigned char f16_4[] =
1193 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1194 static const unsigned char jump_disp8[] =
1195 {0xeb}; /* jmp disp8 */
1196 static const unsigned char jump32_disp32[] =
1197 {0xe9}; /* jmp disp32 */
1198 static const unsigned char jump16_disp32[] =
1199 {0x66,0xe9}; /* jmp disp32 */
1200 /* 32-bit NOPs patterns. */
1201 static const unsigned char *const f32_patt[] = {
1202 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1203 };
1204 /* 16-bit NOPs patterns. */
1205 static const unsigned char *const f16_patt[] = {
1206 f32_1, f32_2, f16_3, f16_4
1207 };
1208 /* nopl (%[re]ax) */
1209 static const unsigned char alt_3[] =
1210 {0x0f,0x1f,0x00};
1211 /* nopl 0(%[re]ax) */
1212 static const unsigned char alt_4[] =
1213 {0x0f,0x1f,0x40,0x00};
1214 /* nopl 0(%[re]ax,%[re]ax,1) */
1215 static const unsigned char alt_5[] =
1216 {0x0f,0x1f,0x44,0x00,0x00};
1217 /* nopw 0(%[re]ax,%[re]ax,1) */
1218 static const unsigned char alt_6[] =
1219 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1220 /* nopl 0L(%[re]ax) */
1221 static const unsigned char alt_7[] =
1222 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1223 /* nopl 0L(%[re]ax,%[re]ax,1) */
1224 static const unsigned char alt_8[] =
1225 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226 /* nopw 0L(%[re]ax,%[re]ax,1) */
1227 static const unsigned char alt_9[] =
1228 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1230 static const unsigned char alt_10[] =
1231 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1232 /* data16 nopw %cs:0L(%eax,%eax,1) */
1233 static const unsigned char alt_11[] =
1234 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1235 /* 32-bit and 64-bit NOPs patterns. */
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10, alt_11
1239 };
1240
1241 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1242 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1243
1244 static void
1245 i386_output_nops (char *where, const unsigned char *const *patt,
1246 int count, int max_single_nop_size)
1247
1248 {
1249 /* Place the longer NOP first. */
1250 int last;
1251 int offset;
1252 const unsigned char *nops = patt[max_single_nop_size - 1];
1253
1254 /* Use the smaller one if the requsted one isn't available. */
1255 if (nops == NULL)
1256 {
1257 max_single_nop_size--;
1258 nops = patt[max_single_nop_size - 1];
1259 }
1260
1261 last = count % max_single_nop_size;
1262
1263 count -= last;
1264 for (offset = 0; offset < count; offset += max_single_nop_size)
1265 memcpy (where + offset, nops, max_single_nop_size);
1266
1267 if (last)
1268 {
1269 nops = patt[last - 1];
1270 if (nops == NULL)
1271 {
1272 /* Use the smaller one plus one-byte NOP if the needed one
1273 isn't available. */
1274 last--;
1275 nops = patt[last - 1];
1276 memcpy (where + offset, nops, last);
1277 where[offset + last] = *patt[0];
1278 }
1279 else
1280 memcpy (where + offset, nops, last);
1281 }
1282 }
1283
1284 static INLINE int
1285 fits_in_imm7 (offsetT num)
1286 {
1287 return (num & 0x7f) == num;
1288 }
1289
1290 static INLINE int
1291 fits_in_imm31 (offsetT num)
1292 {
1293 return (num & 0x7fffffff) == num;
1294 }
1295
1296 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1297 single NOP instruction LIMIT. */
1298
1299 void
1300 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1301 {
1302 const unsigned char *const *patt = NULL;
1303 int max_single_nop_size;
1304 /* Maximum number of NOPs before switching to jump over NOPs. */
1305 int max_number_of_nops;
1306
1307 switch (fragP->fr_type)
1308 {
1309 case rs_fill_nop:
1310 case rs_align_code:
1311 break;
1312 default:
1313 return;
1314 }
1315
1316 /* We need to decide which NOP sequence to use for 32bit and
1317 64bit. When -mtune= is used:
1318
1319 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1320 PROCESSOR_GENERIC32, f32_patt will be used.
1321 2. For the rest, alt_patt will be used.
1322
1323 When -mtune= isn't used, alt_patt will be used if
1324 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1325 be used.
1326
1327 When -march= or .arch is used, we can't use anything beyond
1328 cpu_arch_isa_flags. */
1329
1330 if (flag_code == CODE_16BIT)
1331 {
1332 patt = f16_patt;
1333 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1334 /* Limit number of NOPs to 2 in 16-bit mode. */
1335 max_number_of_nops = 2;
1336 }
1337 else
1338 {
1339 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1340 {
1341 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1342 switch (cpu_arch_tune)
1343 {
1344 case PROCESSOR_UNKNOWN:
1345 /* We use cpu_arch_isa_flags to check if we SHOULD
1346 optimize with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1348 patt = alt_patt;
1349 else
1350 patt = f32_patt;
1351 break;
1352 case PROCESSOR_PENTIUM4:
1353 case PROCESSOR_NOCONA:
1354 case PROCESSOR_CORE:
1355 case PROCESSOR_CORE2:
1356 case PROCESSOR_COREI7:
1357 case PROCESSOR_L1OM:
1358 case PROCESSOR_K1OM:
1359 case PROCESSOR_GENERIC64:
1360 case PROCESSOR_K6:
1361 case PROCESSOR_ATHLON:
1362 case PROCESSOR_K8:
1363 case PROCESSOR_AMDFAM10:
1364 case PROCESSOR_BD:
1365 case PROCESSOR_ZNVER:
1366 case PROCESSOR_BT:
1367 patt = alt_patt;
1368 break;
1369 case PROCESSOR_I386:
1370 case PROCESSOR_I486:
1371 case PROCESSOR_PENTIUM:
1372 case PROCESSOR_PENTIUMPRO:
1373 case PROCESSOR_IAMCU:
1374 case PROCESSOR_GENERIC32:
1375 patt = f32_patt;
1376 break;
1377 }
1378 }
1379 else
1380 {
1381 switch (fragP->tc_frag_data.tune)
1382 {
1383 case PROCESSOR_UNKNOWN:
1384 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1385 PROCESSOR_UNKNOWN. */
1386 abort ();
1387 break;
1388
1389 case PROCESSOR_I386:
1390 case PROCESSOR_I486:
1391 case PROCESSOR_PENTIUM:
1392 case PROCESSOR_IAMCU:
1393 case PROCESSOR_K6:
1394 case PROCESSOR_ATHLON:
1395 case PROCESSOR_K8:
1396 case PROCESSOR_AMDFAM10:
1397 case PROCESSOR_BD:
1398 case PROCESSOR_ZNVER:
1399 case PROCESSOR_BT:
1400 case PROCESSOR_GENERIC32:
1401 /* We use cpu_arch_isa_flags to check if we CAN optimize
1402 with nops. */
1403 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1404 patt = alt_patt;
1405 else
1406 patt = f32_patt;
1407 break;
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_PENTIUM4:
1410 case PROCESSOR_NOCONA:
1411 case PROCESSOR_CORE:
1412 case PROCESSOR_CORE2:
1413 case PROCESSOR_COREI7:
1414 case PROCESSOR_L1OM:
1415 case PROCESSOR_K1OM:
1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1417 patt = alt_patt;
1418 else
1419 patt = f32_patt;
1420 break;
1421 case PROCESSOR_GENERIC64:
1422 patt = alt_patt;
1423 break;
1424 }
1425 }
1426
1427 if (patt == f32_patt)
1428 {
1429 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1430 /* Limit number of NOPs to 2 for older processors. */
1431 max_number_of_nops = 2;
1432 }
1433 else
1434 {
1435 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1436 /* Limit number of NOPs to 7 for newer processors. */
1437 max_number_of_nops = 7;
1438 }
1439 }
1440
1441 if (limit == 0)
1442 limit = max_single_nop_size;
1443
1444 if (fragP->fr_type == rs_fill_nop)
1445 {
1446 /* Output NOPs for .nop directive. */
1447 if (limit > max_single_nop_size)
1448 {
1449 as_bad_where (fragP->fr_file, fragP->fr_line,
1450 _("invalid single nop size: %d "
1451 "(expect within [0, %d])"),
1452 limit, max_single_nop_size);
1453 return;
1454 }
1455 }
1456 else
1457 fragP->fr_var = count;
1458
1459 if ((count / max_single_nop_size) > max_number_of_nops)
1460 {
1461 /* Generate jump over NOPs. */
1462 offsetT disp = count - 2;
1463 if (fits_in_imm7 (disp))
1464 {
1465 /* Use "jmp disp8" if possible. */
1466 count = disp;
1467 where[0] = jump_disp8[0];
1468 where[1] = count;
1469 where += 2;
1470 }
1471 else
1472 {
1473 unsigned int size_of_jump;
1474
1475 if (flag_code == CODE_16BIT)
1476 {
1477 where[0] = jump16_disp32[0];
1478 where[1] = jump16_disp32[1];
1479 size_of_jump = 2;
1480 }
1481 else
1482 {
1483 where[0] = jump32_disp32[0];
1484 size_of_jump = 1;
1485 }
1486
1487 count -= size_of_jump + 4;
1488 if (!fits_in_imm31 (count))
1489 {
1490 as_bad_where (fragP->fr_file, fragP->fr_line,
1491 _("jump over nop padding out of range"));
1492 return;
1493 }
1494
1495 md_number_to_chars (where + size_of_jump, count, 4);
1496 where += size_of_jump + 4;
1497 }
1498 }
1499
1500 /* Generate multiple NOPs. */
1501 i386_output_nops (where, patt, count, limit);
1502 }
1503
1504 static INLINE int
1505 operand_type_all_zero (const union i386_operand_type *x)
1506 {
1507 switch (ARRAY_SIZE(x->array))
1508 {
1509 case 3:
1510 if (x->array[2])
1511 return 0;
1512 /* Fall through. */
1513 case 2:
1514 if (x->array[1])
1515 return 0;
1516 /* Fall through. */
1517 case 1:
1518 return !x->array[0];
1519 default:
1520 abort ();
1521 }
1522 }
1523
1524 static INLINE void
1525 operand_type_set (union i386_operand_type *x, unsigned int v)
1526 {
1527 switch (ARRAY_SIZE(x->array))
1528 {
1529 case 3:
1530 x->array[2] = v;
1531 /* Fall through. */
1532 case 2:
1533 x->array[1] = v;
1534 /* Fall through. */
1535 case 1:
1536 x->array[0] = v;
1537 /* Fall through. */
1538 break;
1539 default:
1540 abort ();
1541 }
1542 }
1543
1544 static INLINE int
1545 operand_type_equal (const union i386_operand_type *x,
1546 const union i386_operand_type *y)
1547 {
1548 switch (ARRAY_SIZE(x->array))
1549 {
1550 case 3:
1551 if (x->array[2] != y->array[2])
1552 return 0;
1553 /* Fall through. */
1554 case 2:
1555 if (x->array[1] != y->array[1])
1556 return 0;
1557 /* Fall through. */
1558 case 1:
1559 return x->array[0] == y->array[0];
1560 break;
1561 default:
1562 abort ();
1563 }
1564 }
1565
1566 static INLINE int
1567 cpu_flags_all_zero (const union i386_cpu_flags *x)
1568 {
1569 switch (ARRAY_SIZE(x->array))
1570 {
1571 case 4:
1572 if (x->array[3])
1573 return 0;
1574 /* Fall through. */
1575 case 3:
1576 if (x->array[2])
1577 return 0;
1578 /* Fall through. */
1579 case 2:
1580 if (x->array[1])
1581 return 0;
1582 /* Fall through. */
1583 case 1:
1584 return !x->array[0];
1585 default:
1586 abort ();
1587 }
1588 }
1589
1590 static INLINE int
1591 cpu_flags_equal (const union i386_cpu_flags *x,
1592 const union i386_cpu_flags *y)
1593 {
1594 switch (ARRAY_SIZE(x->array))
1595 {
1596 case 4:
1597 if (x->array[3] != y->array[3])
1598 return 0;
1599 /* Fall through. */
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_check_cpu64 (i386_cpu_flags f)
1618 {
1619 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1620 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1621 }
1622
1623 static INLINE i386_cpu_flags
1624 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1625 {
1626 switch (ARRAY_SIZE (x.array))
1627 {
1628 case 4:
1629 x.array [3] &= y.array [3];
1630 /* Fall through. */
1631 case 3:
1632 x.array [2] &= y.array [2];
1633 /* Fall through. */
1634 case 2:
1635 x.array [1] &= y.array [1];
1636 /* Fall through. */
1637 case 1:
1638 x.array [0] &= y.array [0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 return x;
1644 }
1645
1646 static INLINE i386_cpu_flags
1647 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1648 {
1649 switch (ARRAY_SIZE (x.array))
1650 {
1651 case 4:
1652 x.array [3] |= y.array [3];
1653 /* Fall through. */
1654 case 3:
1655 x.array [2] |= y.array [2];
1656 /* Fall through. */
1657 case 2:
1658 x.array [1] |= y.array [1];
1659 /* Fall through. */
1660 case 1:
1661 x.array [0] |= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
1666 return x;
1667 }
1668
1669 static INLINE i386_cpu_flags
1670 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1671 {
1672 switch (ARRAY_SIZE (x.array))
1673 {
1674 case 4:
1675 x.array [3] &= ~y.array [3];
1676 /* Fall through. */
1677 case 3:
1678 x.array [2] &= ~y.array [2];
1679 /* Fall through. */
1680 case 2:
1681 x.array [1] &= ~y.array [1];
1682 /* Fall through. */
1683 case 1:
1684 x.array [0] &= ~y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690 }
1691
1692 #define CPU_FLAGS_ARCH_MATCH 0x1
1693 #define CPU_FLAGS_64BIT_MATCH 0x2
1694
1695 #define CPU_FLAGS_PERFECT_MATCH \
1696 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1697
1698 /* Return CPU flags match bits. */
1699
1700 static int
1701 cpu_flags_match (const insn_template *t)
1702 {
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
1709 if (cpu_flags_all_zero (&x))
1710 {
1711 /* This instruction is available on all archs. */
1712 match |= CPU_FLAGS_ARCH_MATCH;
1713 }
1714 else
1715 {
1716 /* This instruction is available only on some archs. */
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
1719 /* AVX512VL is no standalone feature - match it and then strip it. */
1720 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1721 return match;
1722 x.bitfield.cpuavx512vl = 0;
1723
1724 cpu = cpu_flags_and (x, cpu);
1725 if (!cpu_flags_all_zero (&cpu))
1726 {
1727 if (x.bitfield.cpuavx)
1728 {
1729 /* We need to check a few extra flags with AVX. */
1730 if (cpu.bitfield.cpuavx
1731 && (!t->opcode_modifier.sse2avx || sse2avx)
1732 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else if (x.bitfield.cpuavx512f)
1738 {
1739 /* We need to check a few extra flags with AVX512F. */
1740 if (cpu.bitfield.cpuavx512f
1741 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1742 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1743 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1744 match |= CPU_FLAGS_ARCH_MATCH;
1745 }
1746 else
1747 match |= CPU_FLAGS_ARCH_MATCH;
1748 }
1749 }
1750 return match;
1751 }
1752
1753 static INLINE i386_operand_type
1754 operand_type_and (i386_operand_type x, i386_operand_type y)
1755 {
1756 switch (ARRAY_SIZE (x.array))
1757 {
1758 case 3:
1759 x.array [2] &= y.array [2];
1760 /* Fall through. */
1761 case 2:
1762 x.array [1] &= y.array [1];
1763 /* Fall through. */
1764 case 1:
1765 x.array [0] &= y.array [0];
1766 break;
1767 default:
1768 abort ();
1769 }
1770 return x;
1771 }
1772
1773 static INLINE i386_operand_type
1774 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 3:
1779 x.array [2] &= ~y.array [2];
1780 /* Fall through. */
1781 case 2:
1782 x.array [1] &= ~y.array [1];
1783 /* Fall through. */
1784 case 1:
1785 x.array [0] &= ~y.array [0];
1786 break;
1787 default:
1788 abort ();
1789 }
1790 return x;
1791 }
1792
1793 static INLINE i386_operand_type
1794 operand_type_or (i386_operand_type x, i386_operand_type y)
1795 {
1796 switch (ARRAY_SIZE (x.array))
1797 {
1798 case 3:
1799 x.array [2] |= y.array [2];
1800 /* Fall through. */
1801 case 2:
1802 x.array [1] |= y.array [1];
1803 /* Fall through. */
1804 case 1:
1805 x.array [0] |= y.array [0];
1806 break;
1807 default:
1808 abort ();
1809 }
1810 return x;
1811 }
1812
1813 static INLINE i386_operand_type
1814 operand_type_xor (i386_operand_type x, i386_operand_type y)
1815 {
1816 switch (ARRAY_SIZE (x.array))
1817 {
1818 case 3:
1819 x.array [2] ^= y.array [2];
1820 /* Fall through. */
1821 case 2:
1822 x.array [1] ^= y.array [1];
1823 /* Fall through. */
1824 case 1:
1825 x.array [0] ^= y.array [0];
1826 break;
1827 default:
1828 abort ();
1829 }
1830 return x;
1831 }
1832
1833 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1834 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1835 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1836 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1837 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1838 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1839 static const i386_operand_type anydisp
1840 = OPERAND_TYPE_ANYDISP;
1841 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1842 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1843 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1844 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1845 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1846 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1847 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1848 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1849 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1850 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1851 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1852 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1853
1854 enum operand_type
1855 {
1856 reg,
1857 imm,
1858 disp,
1859 anymem
1860 };
1861
1862 static INLINE int
1863 operand_type_check (i386_operand_type t, enum operand_type c)
1864 {
1865 switch (c)
1866 {
1867 case reg:
1868 return t.bitfield.reg;
1869
1870 case imm:
1871 return (t.bitfield.imm8
1872 || t.bitfield.imm8s
1873 || t.bitfield.imm16
1874 || t.bitfield.imm32
1875 || t.bitfield.imm32s
1876 || t.bitfield.imm64);
1877
1878 case disp:
1879 return (t.bitfield.disp8
1880 || t.bitfield.disp16
1881 || t.bitfield.disp32
1882 || t.bitfield.disp32s
1883 || t.bitfield.disp64);
1884
1885 case anymem:
1886 return (t.bitfield.disp8
1887 || t.bitfield.disp16
1888 || t.bitfield.disp32
1889 || t.bitfield.disp32s
1890 || t.bitfield.disp64
1891 || t.bitfield.baseindex);
1892
1893 default:
1894 abort ();
1895 }
1896
1897 return 0;
1898 }
1899
1900 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1901 operand J for instruction template T. */
1902
1903 static INLINE int
1904 match_reg_size (const insn_template *t, unsigned int wanted, unsigned int given)
1905 {
1906 return !((i.types[given].bitfield.byte
1907 && !t->operand_types[wanted].bitfield.byte)
1908 || (i.types[given].bitfield.word
1909 && !t->operand_types[wanted].bitfield.word)
1910 || (i.types[given].bitfield.dword
1911 && !t->operand_types[wanted].bitfield.dword)
1912 || (i.types[given].bitfield.qword
1913 && !t->operand_types[wanted].bitfield.qword)
1914 || (i.types[given].bitfield.tbyte
1915 && !t->operand_types[wanted].bitfield.tbyte));
1916 }
1917
1918 /* Return 1 if there is no conflict in SIMD register on
1919 operand J for instruction template T. */
1920
1921 static INLINE int
1922 match_simd_size (const insn_template *t, unsigned int wanted, unsigned int given)
1923 {
1924 return !((i.types[given].bitfield.xmmword
1925 && !t->operand_types[wanted].bitfield.xmmword)
1926 || (i.types[given].bitfield.ymmword
1927 && !t->operand_types[wanted].bitfield.ymmword)
1928 || (i.types[given].bitfield.zmmword
1929 && !t->operand_types[wanted].bitfield.zmmword));
1930 }
1931
1932 /* Return 1 if there is no conflict in any size on operand J for
1933 instruction template T. */
1934
1935 static INLINE int
1936 match_mem_size (const insn_template *t, unsigned int wanted, unsigned int given)
1937 {
1938 return (match_reg_size (t, wanted, given)
1939 && !((i.types[given].bitfield.unspecified
1940 && !i.broadcast
1941 && !t->operand_types[wanted].bitfield.unspecified)
1942 || (i.types[given].bitfield.fword
1943 && !t->operand_types[wanted].bitfield.fword)
1944 /* For scalar opcode templates to allow register and memory
1945 operands at the same time, some special casing is needed
1946 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1947 down-conversion vpmov*. */
1948 || ((t->operand_types[wanted].bitfield.regsimd
1949 && !t->opcode_modifier.broadcast
1950 && (t->operand_types[wanted].bitfield.byte
1951 || t->operand_types[wanted].bitfield.word
1952 || t->operand_types[wanted].bitfield.dword
1953 || t->operand_types[wanted].bitfield.qword))
1954 ? (i.types[given].bitfield.xmmword
1955 || i.types[given].bitfield.ymmword
1956 || i.types[given].bitfield.zmmword)
1957 : !match_simd_size(t, wanted, given))));
1958 }
1959
1960 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1961 operands for instruction template T, and it has MATCH_REVERSE set if there
1962 is no size conflict on any operands for the template with operands reversed
1963 (and the template allows for reversing in the first place). */
1964
1965 #define MATCH_STRAIGHT 1
1966 #define MATCH_REVERSE 2
1967
1968 static INLINE unsigned int
1969 operand_size_match (const insn_template *t)
1970 {
1971 unsigned int j, match = MATCH_STRAIGHT;
1972
1973 /* Don't check jump instructions. */
1974 if (t->opcode_modifier.jump
1975 || t->opcode_modifier.jumpbyte
1976 || t->opcode_modifier.jumpdword
1977 || t->opcode_modifier.jumpintersegment)
1978 return match;
1979
1980 /* Check memory and accumulator operand size. */
1981 for (j = 0; j < i.operands; j++)
1982 {
1983 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1984 && t->operand_types[j].bitfield.anysize)
1985 continue;
1986
1987 if (t->operand_types[j].bitfield.reg
1988 && !match_reg_size (t, j, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.regsimd
1995 && !match_simd_size (t, j, j))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
2001 if (t->operand_types[j].bitfield.acc
2002 && (!match_reg_size (t, j, j) || !match_simd_size (t, j, j)))
2003 {
2004 match = 0;
2005 break;
2006 }
2007
2008 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
2009 {
2010 match = 0;
2011 break;
2012 }
2013 }
2014
2015 if (!t->opcode_modifier.d)
2016 {
2017 mismatch:
2018 if (!match)
2019 i.error = operand_size_mismatch;
2020 return match;
2021 }
2022
2023 /* Check reverse. */
2024 gas_assert (i.operands == 2);
2025
2026 for (j = 0; j < 2; j++)
2027 {
2028 if ((t->operand_types[j].bitfield.reg
2029 || t->operand_types[j].bitfield.acc)
2030 && !match_reg_size (t, j, !j))
2031 goto mismatch;
2032
2033 if (i.types[!j].bitfield.mem
2034 && !match_mem_size (t, j, !j))
2035 goto mismatch;
2036 }
2037
2038 return match | MATCH_REVERSE;
2039 }
2040
2041 static INLINE int
2042 operand_type_match (i386_operand_type overlap,
2043 i386_operand_type given)
2044 {
2045 i386_operand_type temp = overlap;
2046
2047 temp.bitfield.jumpabsolute = 0;
2048 temp.bitfield.unspecified = 0;
2049 temp.bitfield.byte = 0;
2050 temp.bitfield.word = 0;
2051 temp.bitfield.dword = 0;
2052 temp.bitfield.fword = 0;
2053 temp.bitfield.qword = 0;
2054 temp.bitfield.tbyte = 0;
2055 temp.bitfield.xmmword = 0;
2056 temp.bitfield.ymmword = 0;
2057 temp.bitfield.zmmword = 0;
2058 if (operand_type_all_zero (&temp))
2059 goto mismatch;
2060
2061 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2062 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2063 return 1;
2064
2065 mismatch:
2066 i.error = operand_type_mismatch;
2067 return 0;
2068 }
2069
2070 /* If given types g0 and g1 are registers they must be of the same type
2071 unless the expected operand type register overlap is null.
2072 Memory operand size of certain SIMD instructions is also being checked
2073 here. */
2074
2075 static INLINE int
2076 operand_type_register_match (i386_operand_type g0,
2077 i386_operand_type t0,
2078 i386_operand_type g1,
2079 i386_operand_type t1)
2080 {
2081 if (!g0.bitfield.reg
2082 && !g0.bitfield.regsimd
2083 && (!operand_type_check (g0, anymem)
2084 || g0.bitfield.unspecified
2085 || !t0.bitfield.regsimd))
2086 return 1;
2087
2088 if (!g1.bitfield.reg
2089 && !g1.bitfield.regsimd
2090 && (!operand_type_check (g1, anymem)
2091 || g1.bitfield.unspecified
2092 || !t1.bitfield.regsimd))
2093 return 1;
2094
2095 if (g0.bitfield.byte == g1.bitfield.byte
2096 && g0.bitfield.word == g1.bitfield.word
2097 && g0.bitfield.dword == g1.bitfield.dword
2098 && g0.bitfield.qword == g1.bitfield.qword
2099 && g0.bitfield.xmmword == g1.bitfield.xmmword
2100 && g0.bitfield.ymmword == g1.bitfield.ymmword
2101 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2102 return 1;
2103
2104 if (!(t0.bitfield.byte & t1.bitfield.byte)
2105 && !(t0.bitfield.word & t1.bitfield.word)
2106 && !(t0.bitfield.dword & t1.bitfield.dword)
2107 && !(t0.bitfield.qword & t1.bitfield.qword)
2108 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2109 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2110 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2111 return 1;
2112
2113 i.error = register_type_mismatch;
2114
2115 return 0;
2116 }
2117
2118 static INLINE unsigned int
2119 register_number (const reg_entry *r)
2120 {
2121 unsigned int nr = r->reg_num;
2122
2123 if (r->reg_flags & RegRex)
2124 nr += 8;
2125
2126 if (r->reg_flags & RegVRex)
2127 nr += 16;
2128
2129 return nr;
2130 }
2131
2132 static INLINE unsigned int
2133 mode_from_disp_size (i386_operand_type t)
2134 {
2135 if (t.bitfield.disp8)
2136 return 1;
2137 else if (t.bitfield.disp16
2138 || t.bitfield.disp32
2139 || t.bitfield.disp32s)
2140 return 2;
2141 else
2142 return 0;
2143 }
2144
2145 static INLINE int
2146 fits_in_signed_byte (addressT num)
2147 {
2148 return num + 0x80 <= 0xff;
2149 }
2150
2151 static INLINE int
2152 fits_in_unsigned_byte (addressT num)
2153 {
2154 return num <= 0xff;
2155 }
2156
2157 static INLINE int
2158 fits_in_unsigned_word (addressT num)
2159 {
2160 return num <= 0xffff;
2161 }
2162
2163 static INLINE int
2164 fits_in_signed_word (addressT num)
2165 {
2166 return num + 0x8000 <= 0xffff;
2167 }
2168
2169 static INLINE int
2170 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2171 {
2172 #ifndef BFD64
2173 return 1;
2174 #else
2175 return num + 0x80000000 <= 0xffffffff;
2176 #endif
2177 } /* fits_in_signed_long() */
2178
2179 static INLINE int
2180 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2181 {
2182 #ifndef BFD64
2183 return 1;
2184 #else
2185 return num <= 0xffffffff;
2186 #endif
2187 } /* fits_in_unsigned_long() */
2188
2189 static INLINE int
2190 fits_in_disp8 (offsetT num)
2191 {
2192 int shift = i.memshift;
2193 unsigned int mask;
2194
2195 if (shift == -1)
2196 abort ();
2197
2198 mask = (1 << shift) - 1;
2199
2200 /* Return 0 if NUM isn't properly aligned. */
2201 if ((num & mask))
2202 return 0;
2203
2204 /* Check if NUM will fit in 8bit after shift. */
2205 return fits_in_signed_byte (num >> shift);
2206 }
2207
2208 static INLINE int
2209 fits_in_imm4 (offsetT num)
2210 {
2211 return (num & 0xf) == num;
2212 }
2213
2214 static i386_operand_type
2215 smallest_imm_type (offsetT num)
2216 {
2217 i386_operand_type t;
2218
2219 operand_type_set (&t, 0);
2220 t.bitfield.imm64 = 1;
2221
2222 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2223 {
2224 /* This code is disabled on the 486 because all the Imm1 forms
2225 in the opcode table are slower on the i486. They're the
2226 versions with the implicitly specified single-position
2227 displacement, which has another syntax if you really want to
2228 use that form. */
2229 t.bitfield.imm1 = 1;
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_signed_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm8s = 1;
2240 t.bitfield.imm16 = 1;
2241 t.bitfield.imm32 = 1;
2242 t.bitfield.imm32s = 1;
2243 }
2244 else if (fits_in_unsigned_byte (num))
2245 {
2246 t.bitfield.imm8 = 1;
2247 t.bitfield.imm16 = 1;
2248 t.bitfield.imm32 = 1;
2249 t.bitfield.imm32s = 1;
2250 }
2251 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2252 {
2253 t.bitfield.imm16 = 1;
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_signed_long (num))
2258 {
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_unsigned_long (num))
2263 t.bitfield.imm32 = 1;
2264
2265 return t;
2266 }
2267
2268 static offsetT
2269 offset_in_range (offsetT val, int size)
2270 {
2271 addressT mask;
2272
2273 switch (size)
2274 {
2275 case 1: mask = ((addressT) 1 << 8) - 1; break;
2276 case 2: mask = ((addressT) 1 << 16) - 1; break;
2277 case 4: mask = ((addressT) 2 << 31) - 1; break;
2278 #ifdef BFD64
2279 case 8: mask = ((addressT) 2 << 63) - 1; break;
2280 #endif
2281 default: abort ();
2282 }
2283
2284 #ifdef BFD64
2285 /* If BFD64, sign extend val for 32bit address mode. */
2286 if (flag_code != CODE_64BIT
2287 || i.prefix[ADDR_PREFIX])
2288 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2289 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2290 #endif
2291
2292 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2293 {
2294 char buf1[40], buf2[40];
2295
2296 sprint_value (buf1, val);
2297 sprint_value (buf2, val & mask);
2298 as_warn (_("%s shortened to %s"), buf1, buf2);
2299 }
2300 return val & mask;
2301 }
2302
2303 enum PREFIX_GROUP
2304 {
2305 PREFIX_EXIST = 0,
2306 PREFIX_LOCK,
2307 PREFIX_REP,
2308 PREFIX_DS,
2309 PREFIX_OTHER
2310 };
2311
2312 /* Returns
2313 a. PREFIX_EXIST if attempting to add a prefix where one from the
2314 same class already exists.
2315 b. PREFIX_LOCK if lock prefix is added.
2316 c. PREFIX_REP if rep/repne prefix is added.
2317 d. PREFIX_DS if ds prefix is added.
2318 e. PREFIX_OTHER if other prefix is added.
2319 */
2320
2321 static enum PREFIX_GROUP
2322 add_prefix (unsigned int prefix)
2323 {
2324 enum PREFIX_GROUP ret = PREFIX_OTHER;
2325 unsigned int q;
2326
2327 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2328 && flag_code == CODE_64BIT)
2329 {
2330 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2331 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2332 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2333 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2334 ret = PREFIX_EXIST;
2335 q = REX_PREFIX;
2336 }
2337 else
2338 {
2339 switch (prefix)
2340 {
2341 default:
2342 abort ();
2343
2344 case DS_PREFIX_OPCODE:
2345 ret = PREFIX_DS;
2346 /* Fall through. */
2347 case CS_PREFIX_OPCODE:
2348 case ES_PREFIX_OPCODE:
2349 case FS_PREFIX_OPCODE:
2350 case GS_PREFIX_OPCODE:
2351 case SS_PREFIX_OPCODE:
2352 q = SEG_PREFIX;
2353 break;
2354
2355 case REPNE_PREFIX_OPCODE:
2356 case REPE_PREFIX_OPCODE:
2357 q = REP_PREFIX;
2358 ret = PREFIX_REP;
2359 break;
2360
2361 case LOCK_PREFIX_OPCODE:
2362 q = LOCK_PREFIX;
2363 ret = PREFIX_LOCK;
2364 break;
2365
2366 case FWAIT_OPCODE:
2367 q = WAIT_PREFIX;
2368 break;
2369
2370 case ADDR_PREFIX_OPCODE:
2371 q = ADDR_PREFIX;
2372 break;
2373
2374 case DATA_PREFIX_OPCODE:
2375 q = DATA_PREFIX;
2376 break;
2377 }
2378 if (i.prefix[q] != 0)
2379 ret = PREFIX_EXIST;
2380 }
2381
2382 if (ret)
2383 {
2384 if (!i.prefix[q])
2385 ++i.prefixes;
2386 i.prefix[q] |= prefix;
2387 }
2388 else
2389 as_bad (_("same type of prefix used twice"));
2390
2391 return ret;
2392 }
2393
2394 static void
2395 update_code_flag (int value, int check)
2396 {
2397 PRINTF_LIKE ((*as_error));
2398
2399 flag_code = (enum flag_code) value;
2400 if (flag_code == CODE_64BIT)
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 1;
2403 cpu_arch_flags.bitfield.cpuno64 = 0;
2404 }
2405 else
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 0;
2408 cpu_arch_flags.bitfield.cpuno64 = 1;
2409 }
2410 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("64bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2420 {
2421 if (check)
2422 as_error = as_fatal;
2423 else
2424 as_error = as_bad;
2425 (*as_error) (_("32bit mode not supported on `%s'."),
2426 cpu_arch_name ? cpu_arch_name : default_arch);
2427 }
2428 stackop_size = '\0';
2429 }
2430
2431 static void
2432 set_code_flag (int value)
2433 {
2434 update_code_flag (value, 0);
2435 }
2436
2437 static void
2438 set_16bit_gcc_code_flag (int new_code_flag)
2439 {
2440 flag_code = (enum flag_code) new_code_flag;
2441 if (flag_code != CODE_16BIT)
2442 abort ();
2443 cpu_arch_flags.bitfield.cpu64 = 0;
2444 cpu_arch_flags.bitfield.cpuno64 = 1;
2445 stackop_size = LONG_MNEM_SUFFIX;
2446 }
2447
2448 static void
2449 set_intel_syntax (int syntax_flag)
2450 {
2451 /* Find out if register prefixing is specified. */
2452 int ask_naked_reg = 0;
2453
2454 SKIP_WHITESPACE ();
2455 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2456 {
2457 char *string;
2458 int e = get_symbol_name (&string);
2459
2460 if (strcmp (string, "prefix") == 0)
2461 ask_naked_reg = 1;
2462 else if (strcmp (string, "noprefix") == 0)
2463 ask_naked_reg = -1;
2464 else
2465 as_bad (_("bad argument to syntax directive."));
2466 (void) restore_line_pointer (e);
2467 }
2468 demand_empty_rest_of_line ();
2469
2470 intel_syntax = syntax_flag;
2471
2472 if (ask_naked_reg == 0)
2473 allow_naked_reg = (intel_syntax
2474 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2475 else
2476 allow_naked_reg = (ask_naked_reg < 0);
2477
2478 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2479
2480 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2481 identifier_chars['$'] = intel_syntax ? '$' : 0;
2482 register_prefix = allow_naked_reg ? "" : "%";
2483 }
2484
2485 static void
2486 set_intel_mnemonic (int mnemonic_flag)
2487 {
2488 intel_mnemonic = mnemonic_flag;
2489 }
2490
2491 static void
2492 set_allow_index_reg (int flag)
2493 {
2494 allow_index_reg = flag;
2495 }
2496
2497 static void
2498 set_check (int what)
2499 {
2500 enum check_kind *kind;
2501 const char *str;
2502
2503 if (what)
2504 {
2505 kind = &operand_check;
2506 str = "operand";
2507 }
2508 else
2509 {
2510 kind = &sse_check;
2511 str = "sse";
2512 }
2513
2514 SKIP_WHITESPACE ();
2515
2516 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2517 {
2518 char *string;
2519 int e = get_symbol_name (&string);
2520
2521 if (strcmp (string, "none") == 0)
2522 *kind = check_none;
2523 else if (strcmp (string, "warning") == 0)
2524 *kind = check_warning;
2525 else if (strcmp (string, "error") == 0)
2526 *kind = check_error;
2527 else
2528 as_bad (_("bad argument to %s_check directive."), str);
2529 (void) restore_line_pointer (e);
2530 }
2531 else
2532 as_bad (_("missing argument for %s_check directive"), str);
2533
2534 demand_empty_rest_of_line ();
2535 }
2536
2537 static void
2538 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2539 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2540 {
2541 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2542 static const char *arch;
2543
2544 /* Intel LIOM is only supported on ELF. */
2545 if (!IS_ELF)
2546 return;
2547
2548 if (!arch)
2549 {
2550 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2551 use default_arch. */
2552 arch = cpu_arch_name;
2553 if (!arch)
2554 arch = default_arch;
2555 }
2556
2557 /* If we are targeting Intel MCU, we must enable it. */
2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2559 || new_flag.bitfield.cpuiamcu)
2560 return;
2561
2562 /* If we are targeting Intel L1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2564 || new_flag.bitfield.cpul1om)
2565 return;
2566
2567 /* If we are targeting Intel K1OM, we must enable it. */
2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2569 || new_flag.bitfield.cpuk1om)
2570 return;
2571
2572 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2573 #endif
2574 }
2575
2576 static void
2577 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2578 {
2579 SKIP_WHITESPACE ();
2580
2581 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2582 {
2583 char *string;
2584 int e = get_symbol_name (&string);
2585 unsigned int j;
2586 i386_cpu_flags flags;
2587
2588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2589 {
2590 if (strcmp (string, cpu_arch[j].name) == 0)
2591 {
2592 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2593
2594 if (*string != '.')
2595 {
2596 cpu_arch_name = cpu_arch[j].name;
2597 cpu_sub_arch_name = NULL;
2598 cpu_arch_flags = cpu_arch[j].flags;
2599 if (flag_code == CODE_64BIT)
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 1;
2602 cpu_arch_flags.bitfield.cpuno64 = 0;
2603 }
2604 else
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 0;
2607 cpu_arch_flags.bitfield.cpuno64 = 1;
2608 }
2609 cpu_arch_isa = cpu_arch[j].type;
2610 cpu_arch_isa_flags = cpu_arch[j].flags;
2611 if (!cpu_arch_tune_set)
2612 {
2613 cpu_arch_tune = cpu_arch_isa;
2614 cpu_arch_tune_flags = cpu_arch_isa_flags;
2615 }
2616 break;
2617 }
2618
2619 flags = cpu_flags_or (cpu_arch_flags,
2620 cpu_arch[j].flags);
2621
2622 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2623 {
2624 if (cpu_sub_arch_name)
2625 {
2626 char *name = cpu_sub_arch_name;
2627 cpu_sub_arch_name = concat (name,
2628 cpu_arch[j].name,
2629 (const char *) NULL);
2630 free (name);
2631 }
2632 else
2633 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2634 cpu_arch_flags = flags;
2635 cpu_arch_isa_flags = flags;
2636 }
2637 else
2638 cpu_arch_isa_flags
2639 = cpu_flags_or (cpu_arch_isa_flags,
2640 cpu_arch[j].flags);
2641 (void) restore_line_pointer (e);
2642 demand_empty_rest_of_line ();
2643 return;
2644 }
2645 }
2646
2647 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2648 {
2649 /* Disable an ISA extension. */
2650 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2651 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2652 {
2653 flags = cpu_flags_and_not (cpu_arch_flags,
2654 cpu_noarch[j].flags);
2655 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2656 {
2657 if (cpu_sub_arch_name)
2658 {
2659 char *name = cpu_sub_arch_name;
2660 cpu_sub_arch_name = concat (name, string,
2661 (const char *) NULL);
2662 free (name);
2663 }
2664 else
2665 cpu_sub_arch_name = xstrdup (string);
2666 cpu_arch_flags = flags;
2667 cpu_arch_isa_flags = flags;
2668 }
2669 (void) restore_line_pointer (e);
2670 demand_empty_rest_of_line ();
2671 return;
2672 }
2673
2674 j = ARRAY_SIZE (cpu_arch);
2675 }
2676
2677 if (j >= ARRAY_SIZE (cpu_arch))
2678 as_bad (_("no such architecture: `%s'"), string);
2679
2680 *input_line_pointer = e;
2681 }
2682 else
2683 as_bad (_("missing cpu architecture"));
2684
2685 no_cond_jump_promotion = 0;
2686 if (*input_line_pointer == ','
2687 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2688 {
2689 char *string;
2690 char e;
2691
2692 ++input_line_pointer;
2693 e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "nojumps") == 0)
2696 no_cond_jump_promotion = 1;
2697 else if (strcmp (string, "jumps") == 0)
2698 ;
2699 else
2700 as_bad (_("no such architecture modifier: `%s'"), string);
2701
2702 (void) restore_line_pointer (e);
2703 }
2704
2705 demand_empty_rest_of_line ();
2706 }
2707
2708 enum bfd_architecture
2709 i386_arch (void)
2710 {
2711 if (cpu_arch_isa == PROCESSOR_L1OM)
2712 {
2713 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2714 || flag_code != CODE_64BIT)
2715 as_fatal (_("Intel L1OM is 64bit ELF only"));
2716 return bfd_arch_l1om;
2717 }
2718 else if (cpu_arch_isa == PROCESSOR_K1OM)
2719 {
2720 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2721 || flag_code != CODE_64BIT)
2722 as_fatal (_("Intel K1OM is 64bit ELF only"));
2723 return bfd_arch_k1om;
2724 }
2725 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2726 {
2727 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2728 || flag_code == CODE_64BIT)
2729 as_fatal (_("Intel MCU is 32bit ELF only"));
2730 return bfd_arch_iamcu;
2731 }
2732 else
2733 return bfd_arch_i386;
2734 }
2735
2736 unsigned long
2737 i386_mach (void)
2738 {
2739 if (!strncmp (default_arch, "x86_64", 6))
2740 {
2741 if (cpu_arch_isa == PROCESSOR_L1OM)
2742 {
2743 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2744 || default_arch[6] != '\0')
2745 as_fatal (_("Intel L1OM is 64bit ELF only"));
2746 return bfd_mach_l1om;
2747 }
2748 else if (cpu_arch_isa == PROCESSOR_K1OM)
2749 {
2750 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2751 || default_arch[6] != '\0')
2752 as_fatal (_("Intel K1OM is 64bit ELF only"));
2753 return bfd_mach_k1om;
2754 }
2755 else if (default_arch[6] == '\0')
2756 return bfd_mach_x86_64;
2757 else
2758 return bfd_mach_x64_32;
2759 }
2760 else if (!strcmp (default_arch, "i386")
2761 || !strcmp (default_arch, "iamcu"))
2762 {
2763 if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2766 as_fatal (_("Intel MCU is 32bit ELF only"));
2767 return bfd_mach_i386_iamcu;
2768 }
2769 else
2770 return bfd_mach_i386_i386;
2771 }
2772 else
2773 as_fatal (_("unknown architecture"));
2774 }
2775 \f
2776 void
2777 md_begin (void)
2778 {
2779 const char *hash_err;
2780
2781 /* Support pseudo prefixes like {disp32}. */
2782 lex_type ['{'] = LEX_BEGIN_NAME;
2783
2784 /* Initialize op_hash hash table. */
2785 op_hash = hash_new ();
2786
2787 {
2788 const insn_template *optab;
2789 templates *core_optab;
2790
2791 /* Setup for loop. */
2792 optab = i386_optab;
2793 core_optab = XNEW (templates);
2794 core_optab->start = optab;
2795
2796 while (1)
2797 {
2798 ++optab;
2799 if (optab->name == NULL
2800 || strcmp (optab->name, (optab - 1)->name) != 0)
2801 {
2802 /* different name --> ship out current template list;
2803 add to hash table; & begin anew. */
2804 core_optab->end = optab;
2805 hash_err = hash_insert (op_hash,
2806 (optab - 1)->name,
2807 (void *) core_optab);
2808 if (hash_err)
2809 {
2810 as_fatal (_("can't hash %s: %s"),
2811 (optab - 1)->name,
2812 hash_err);
2813 }
2814 if (optab->name == NULL)
2815 break;
2816 core_optab = XNEW (templates);
2817 core_optab->start = optab;
2818 }
2819 }
2820 }
2821
2822 /* Initialize reg_hash hash table. */
2823 reg_hash = hash_new ();
2824 {
2825 const reg_entry *regtab;
2826 unsigned int regtab_size = i386_regtab_size;
2827
2828 for (regtab = i386_regtab; regtab_size--; regtab++)
2829 {
2830 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2831 if (hash_err)
2832 as_fatal (_("can't hash %s: %s"),
2833 regtab->reg_name,
2834 hash_err);
2835 }
2836 }
2837
2838 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2839 {
2840 int c;
2841 char *p;
2842
2843 for (c = 0; c < 256; c++)
2844 {
2845 if (ISDIGIT (c))
2846 {
2847 digit_chars[c] = c;
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
2852 else if (ISLOWER (c))
2853 {
2854 mnemonic_chars[c] = c;
2855 register_chars[c] = c;
2856 operand_chars[c] = c;
2857 }
2858 else if (ISUPPER (c))
2859 {
2860 mnemonic_chars[c] = TOLOWER (c);
2861 register_chars[c] = mnemonic_chars[c];
2862 operand_chars[c] = c;
2863 }
2864 else if (c == '{' || c == '}')
2865 {
2866 mnemonic_chars[c] = c;
2867 operand_chars[c] = c;
2868 }
2869
2870 if (ISALPHA (c) || ISDIGIT (c))
2871 identifier_chars[c] = c;
2872 else if (c >= 128)
2873 {
2874 identifier_chars[c] = c;
2875 operand_chars[c] = c;
2876 }
2877 }
2878
2879 #ifdef LEX_AT
2880 identifier_chars['@'] = '@';
2881 #endif
2882 #ifdef LEX_QM
2883 identifier_chars['?'] = '?';
2884 operand_chars['?'] = '?';
2885 #endif
2886 digit_chars['-'] = '-';
2887 mnemonic_chars['_'] = '_';
2888 mnemonic_chars['-'] = '-';
2889 mnemonic_chars['.'] = '.';
2890 identifier_chars['_'] = '_';
2891 identifier_chars['.'] = '.';
2892
2893 for (p = operand_special_chars; *p != '\0'; p++)
2894 operand_chars[(unsigned char) *p] = *p;
2895 }
2896
2897 if (flag_code == CODE_64BIT)
2898 {
2899 #if defined (OBJ_COFF) && defined (TE_PE)
2900 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2901 ? 32 : 16);
2902 #else
2903 x86_dwarf2_return_column = 16;
2904 #endif
2905 x86_cie_data_alignment = -8;
2906 }
2907 else
2908 {
2909 x86_dwarf2_return_column = 8;
2910 x86_cie_data_alignment = -4;
2911 }
2912 }
2913
2914 void
2915 i386_print_statistics (FILE *file)
2916 {
2917 hash_print_statistics (file, "i386 opcode", op_hash);
2918 hash_print_statistics (file, "i386 register", reg_hash);
2919 }
2920 \f
2921 #ifdef DEBUG386
2922
2923 /* Debugging routines for md_assemble. */
2924 static void pte (insn_template *);
2925 static void pt (i386_operand_type);
2926 static void pe (expressionS *);
2927 static void ps (symbolS *);
2928
2929 static void
2930 pi (char *line, i386_insn *x)
2931 {
2932 unsigned int j;
2933
2934 fprintf (stdout, "%s: template ", line);
2935 pte (&x->tm);
2936 fprintf (stdout, " address: base %s index %s scale %x\n",
2937 x->base_reg ? x->base_reg->reg_name : "none",
2938 x->index_reg ? x->index_reg->reg_name : "none",
2939 x->log2_scale_factor);
2940 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2941 x->rm.mode, x->rm.reg, x->rm.regmem);
2942 fprintf (stdout, " sib: base %x index %x scale %x\n",
2943 x->sib.base, x->sib.index, x->sib.scale);
2944 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2945 (x->rex & REX_W) != 0,
2946 (x->rex & REX_R) != 0,
2947 (x->rex & REX_X) != 0,
2948 (x->rex & REX_B) != 0);
2949 for (j = 0; j < x->operands; j++)
2950 {
2951 fprintf (stdout, " #%d: ", j + 1);
2952 pt (x->types[j]);
2953 fprintf (stdout, "\n");
2954 if (x->types[j].bitfield.reg
2955 || x->types[j].bitfield.regmmx
2956 || x->types[j].bitfield.regsimd
2957 || x->types[j].bitfield.sreg2
2958 || x->types[j].bitfield.sreg3
2959 || x->types[j].bitfield.control
2960 || x->types[j].bitfield.debug
2961 || x->types[j].bitfield.test)
2962 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2963 if (operand_type_check (x->types[j], imm))
2964 pe (x->op[j].imms);
2965 if (operand_type_check (x->types[j], disp))
2966 pe (x->op[j].disps);
2967 }
2968 }
2969
2970 static void
2971 pte (insn_template *t)
2972 {
2973 unsigned int j;
2974 fprintf (stdout, " %d operands ", t->operands);
2975 fprintf (stdout, "opcode %x ", t->base_opcode);
2976 if (t->extension_opcode != None)
2977 fprintf (stdout, "ext %x ", t->extension_opcode);
2978 if (t->opcode_modifier.d)
2979 fprintf (stdout, "D");
2980 if (t->opcode_modifier.w)
2981 fprintf (stdout, "W");
2982 fprintf (stdout, "\n");
2983 for (j = 0; j < t->operands; j++)
2984 {
2985 fprintf (stdout, " #%d type ", j + 1);
2986 pt (t->operand_types[j]);
2987 fprintf (stdout, "\n");
2988 }
2989 }
2990
2991 static void
2992 pe (expressionS *e)
2993 {
2994 fprintf (stdout, " operation %d\n", e->X_op);
2995 fprintf (stdout, " add_number %ld (%lx)\n",
2996 (long) e->X_add_number, (long) e->X_add_number);
2997 if (e->X_add_symbol)
2998 {
2999 fprintf (stdout, " add_symbol ");
3000 ps (e->X_add_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 if (e->X_op_symbol)
3004 {
3005 fprintf (stdout, " op_symbol ");
3006 ps (e->X_op_symbol);
3007 fprintf (stdout, "\n");
3008 }
3009 }
3010
3011 static void
3012 ps (symbolS *s)
3013 {
3014 fprintf (stdout, "%s type %s%s",
3015 S_GET_NAME (s),
3016 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3017 segment_name (S_GET_SEGMENT (s)));
3018 }
3019
3020 static struct type_name
3021 {
3022 i386_operand_type mask;
3023 const char *name;
3024 }
3025 const type_names[] =
3026 {
3027 { OPERAND_TYPE_REG8, "r8" },
3028 { OPERAND_TYPE_REG16, "r16" },
3029 { OPERAND_TYPE_REG32, "r32" },
3030 { OPERAND_TYPE_REG64, "r64" },
3031 { OPERAND_TYPE_IMM8, "i8" },
3032 { OPERAND_TYPE_IMM8, "i8s" },
3033 { OPERAND_TYPE_IMM16, "i16" },
3034 { OPERAND_TYPE_IMM32, "i32" },
3035 { OPERAND_TYPE_IMM32S, "i32s" },
3036 { OPERAND_TYPE_IMM64, "i64" },
3037 { OPERAND_TYPE_IMM1, "i1" },
3038 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3039 { OPERAND_TYPE_DISP8, "d8" },
3040 { OPERAND_TYPE_DISP16, "d16" },
3041 { OPERAND_TYPE_DISP32, "d32" },
3042 { OPERAND_TYPE_DISP32S, "d32s" },
3043 { OPERAND_TYPE_DISP64, "d64" },
3044 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3045 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3046 { OPERAND_TYPE_CONTROL, "control reg" },
3047 { OPERAND_TYPE_TEST, "test reg" },
3048 { OPERAND_TYPE_DEBUG, "debug reg" },
3049 { OPERAND_TYPE_FLOATREG, "FReg" },
3050 { OPERAND_TYPE_FLOATACC, "FAcc" },
3051 { OPERAND_TYPE_SREG2, "SReg2" },
3052 { OPERAND_TYPE_SREG3, "SReg3" },
3053 { OPERAND_TYPE_ACC, "Acc" },
3054 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3055 { OPERAND_TYPE_REGMMX, "rMMX" },
3056 { OPERAND_TYPE_REGXMM, "rXMM" },
3057 { OPERAND_TYPE_REGYMM, "rYMM" },
3058 { OPERAND_TYPE_REGZMM, "rZMM" },
3059 { OPERAND_TYPE_REGMASK, "Mask reg" },
3060 { OPERAND_TYPE_ESSEG, "es" },
3061 };
3062
3063 static void
3064 pt (i386_operand_type t)
3065 {
3066 unsigned int j;
3067 i386_operand_type a;
3068
3069 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3070 {
3071 a = operand_type_and (t, type_names[j].mask);
3072 if (!operand_type_all_zero (&a))
3073 fprintf (stdout, "%s, ", type_names[j].name);
3074 }
3075 fflush (stdout);
3076 }
3077
3078 #endif /* DEBUG386 */
3079 \f
3080 static bfd_reloc_code_real_type
3081 reloc (unsigned int size,
3082 int pcrel,
3083 int sign,
3084 bfd_reloc_code_real_type other)
3085 {
3086 if (other != NO_RELOC)
3087 {
3088 reloc_howto_type *rel;
3089
3090 if (size == 8)
3091 switch (other)
3092 {
3093 case BFD_RELOC_X86_64_GOT32:
3094 return BFD_RELOC_X86_64_GOT64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPLT64:
3097 return BFD_RELOC_X86_64_GOTPLT64;
3098 break;
3099 case BFD_RELOC_X86_64_PLTOFF64:
3100 return BFD_RELOC_X86_64_PLTOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_GOTPC32:
3103 other = BFD_RELOC_X86_64_GOTPC64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPCREL:
3106 other = BFD_RELOC_X86_64_GOTPCREL64;
3107 break;
3108 case BFD_RELOC_X86_64_TPOFF32:
3109 other = BFD_RELOC_X86_64_TPOFF64;
3110 break;
3111 case BFD_RELOC_X86_64_DTPOFF32:
3112 other = BFD_RELOC_X86_64_DTPOFF64;
3113 break;
3114 default:
3115 break;
3116 }
3117
3118 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3119 if (other == BFD_RELOC_SIZE32)
3120 {
3121 if (size == 8)
3122 other = BFD_RELOC_SIZE64;
3123 if (pcrel)
3124 {
3125 as_bad (_("there are no pc-relative size relocations"));
3126 return NO_RELOC;
3127 }
3128 }
3129 #endif
3130
3131 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3132 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3133 sign = -1;
3134
3135 rel = bfd_reloc_type_lookup (stdoutput, other);
3136 if (!rel)
3137 as_bad (_("unknown relocation (%u)"), other);
3138 else if (size != bfd_get_reloc_size (rel))
3139 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3140 bfd_get_reloc_size (rel),
3141 size);
3142 else if (pcrel && !rel->pc_relative)
3143 as_bad (_("non-pc-relative relocation for pc-relative field"));
3144 else if ((rel->complain_on_overflow == complain_overflow_signed
3145 && !sign)
3146 || (rel->complain_on_overflow == complain_overflow_unsigned
3147 && sign > 0))
3148 as_bad (_("relocated field and relocation type differ in signedness"));
3149 else
3150 return other;
3151 return NO_RELOC;
3152 }
3153
3154 if (pcrel)
3155 {
3156 if (!sign)
3157 as_bad (_("there are no unsigned pc-relative relocations"));
3158 switch (size)
3159 {
3160 case 1: return BFD_RELOC_8_PCREL;
3161 case 2: return BFD_RELOC_16_PCREL;
3162 case 4: return BFD_RELOC_32_PCREL;
3163 case 8: return BFD_RELOC_64_PCREL;
3164 }
3165 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3166 }
3167 else
3168 {
3169 if (sign > 0)
3170 switch (size)
3171 {
3172 case 4: return BFD_RELOC_X86_64_32S;
3173 }
3174 else
3175 switch (size)
3176 {
3177 case 1: return BFD_RELOC_8;
3178 case 2: return BFD_RELOC_16;
3179 case 4: return BFD_RELOC_32;
3180 case 8: return BFD_RELOC_64;
3181 }
3182 as_bad (_("cannot do %s %u byte relocation"),
3183 sign > 0 ? "signed" : "unsigned", size);
3184 }
3185
3186 return NO_RELOC;
3187 }
3188
3189 /* Here we decide which fixups can be adjusted to make them relative to
3190 the beginning of the section instead of the symbol. Basically we need
3191 to make sure that the dynamic relocations are done correctly, so in
3192 some cases we force the original symbol to be used. */
3193
3194 int
3195 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3196 {
3197 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3198 if (!IS_ELF)
3199 return 1;
3200
3201 /* Don't adjust pc-relative references to merge sections in 64-bit
3202 mode. */
3203 if (use_rela_relocations
3204 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3205 && fixP->fx_pcrel)
3206 return 0;
3207
3208 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3209 and changed later by validate_fix. */
3210 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3211 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3212 return 0;
3213
3214 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3215 for size relocations. */
3216 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3217 || fixP->fx_r_type == BFD_RELOC_SIZE64
3218 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3219 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3220 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3221 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3247 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3248 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3249 return 0;
3250 #endif
3251 return 1;
3252 }
3253
3254 static int
3255 intel_float_operand (const char *mnemonic)
3256 {
3257 /* Note that the value returned is meaningful only for opcodes with (memory)
3258 operands, hence the code here is free to improperly handle opcodes that
3259 have no operands (for better performance and smaller code). */
3260
3261 if (mnemonic[0] != 'f')
3262 return 0; /* non-math */
3263
3264 switch (mnemonic[1])
3265 {
3266 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3267 the fs segment override prefix not currently handled because no
3268 call path can make opcodes without operands get here */
3269 case 'i':
3270 return 2 /* integer op */;
3271 case 'l':
3272 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3273 return 3; /* fldcw/fldenv */
3274 break;
3275 case 'n':
3276 if (mnemonic[2] != 'o' /* fnop */)
3277 return 3; /* non-waiting control op */
3278 break;
3279 case 'r':
3280 if (mnemonic[2] == 's')
3281 return 3; /* frstor/frstpm */
3282 break;
3283 case 's':
3284 if (mnemonic[2] == 'a')
3285 return 3; /* fsave */
3286 if (mnemonic[2] == 't')
3287 {
3288 switch (mnemonic[3])
3289 {
3290 case 'c': /* fstcw */
3291 case 'd': /* fstdw */
3292 case 'e': /* fstenv */
3293 case 's': /* fsts[gw] */
3294 return 3;
3295 }
3296 }
3297 break;
3298 case 'x':
3299 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3300 return 0; /* fxsave/fxrstor are not really math ops */
3301 break;
3302 }
3303
3304 return 1;
3305 }
3306
3307 /* Build the VEX prefix. */
3308
3309 static void
3310 build_vex_prefix (const insn_template *t)
3311 {
3312 unsigned int register_specifier;
3313 unsigned int implied_prefix;
3314 unsigned int vector_length;
3315
3316 /* Check register specifier. */
3317 if (i.vex.register_specifier)
3318 {
3319 register_specifier =
3320 ~register_number (i.vex.register_specifier) & 0xf;
3321 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3322 }
3323 else
3324 register_specifier = 0xf;
3325
3326 /* Use 2-byte VEX prefix by swapping destination and source
3327 operand. */
3328 if (i.vec_encoding != vex_encoding_vex3
3329 && i.dir_encoding == dir_encoding_default
3330 && i.operands == i.reg_operands
3331 && i.tm.opcode_modifier.vexopcode == VEX0F
3332 && i.tm.opcode_modifier.load
3333 && i.rex == REX_B)
3334 {
3335 unsigned int xchg = i.operands - 1;
3336 union i386_op temp_op;
3337 i386_operand_type temp_type;
3338
3339 temp_type = i.types[xchg];
3340 i.types[xchg] = i.types[0];
3341 i.types[0] = temp_type;
3342 temp_op = i.op[xchg];
3343 i.op[xchg] = i.op[0];
3344 i.op[0] = temp_op;
3345
3346 gas_assert (i.rm.mode == 3);
3347
3348 i.rex = REX_R;
3349 xchg = i.rm.regmem;
3350 i.rm.regmem = i.rm.reg;
3351 i.rm.reg = xchg;
3352
3353 /* Use the next insn. */
3354 i.tm = t[1];
3355 }
3356
3357 if (i.tm.opcode_modifier.vex == VEXScalar)
3358 vector_length = avxscalar;
3359 else if (i.tm.opcode_modifier.vex == VEX256)
3360 vector_length = 1;
3361 else
3362 {
3363 unsigned int op;
3364
3365 vector_length = 0;
3366 for (op = 0; op < t->operands; ++op)
3367 if (t->operand_types[op].bitfield.xmmword
3368 && t->operand_types[op].bitfield.ymmword
3369 && i.types[op].bitfield.ymmword)
3370 {
3371 vector_length = 1;
3372 break;
3373 }
3374 }
3375
3376 switch ((i.tm.base_opcode >> 8) & 0xff)
3377 {
3378 case 0:
3379 implied_prefix = 0;
3380 break;
3381 case DATA_PREFIX_OPCODE:
3382 implied_prefix = 1;
3383 break;
3384 case REPE_PREFIX_OPCODE:
3385 implied_prefix = 2;
3386 break;
3387 case REPNE_PREFIX_OPCODE:
3388 implied_prefix = 3;
3389 break;
3390 default:
3391 abort ();
3392 }
3393
3394 /* Use 2-byte VEX prefix if possible. */
3395 if (i.vec_encoding != vex_encoding_vex3
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
3397 && i.tm.opcode_modifier.vexw != VEXW1
3398 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3399 {
3400 /* 2-byte VEX prefix. */
3401 unsigned int r;
3402
3403 i.vex.length = 2;
3404 i.vex.bytes[0] = 0xc5;
3405
3406 /* Check the REX.R bit. */
3407 r = (i.rex & REX_R) ? 0 : 1;
3408 i.vex.bytes[1] = (r << 7
3409 | register_specifier << 3
3410 | vector_length << 2
3411 | implied_prefix);
3412 }
3413 else
3414 {
3415 /* 3-byte VEX prefix. */
3416 unsigned int m, w;
3417
3418 i.vex.length = 3;
3419
3420 switch (i.tm.opcode_modifier.vexopcode)
3421 {
3422 case VEX0F:
3423 m = 0x1;
3424 i.vex.bytes[0] = 0xc4;
3425 break;
3426 case VEX0F38:
3427 m = 0x2;
3428 i.vex.bytes[0] = 0xc4;
3429 break;
3430 case VEX0F3A:
3431 m = 0x3;
3432 i.vex.bytes[0] = 0xc4;
3433 break;
3434 case XOP08:
3435 m = 0x8;
3436 i.vex.bytes[0] = 0x8f;
3437 break;
3438 case XOP09:
3439 m = 0x9;
3440 i.vex.bytes[0] = 0x8f;
3441 break;
3442 case XOP0A:
3443 m = 0xa;
3444 i.vex.bytes[0] = 0x8f;
3445 break;
3446 default:
3447 abort ();
3448 }
3449
3450 /* The high 3 bits of the second VEX byte are 1's compliment
3451 of RXB bits from REX. */
3452 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3453
3454 /* Check the REX.W bit. */
3455 w = (i.rex & REX_W) ? 1 : 0;
3456 if (i.tm.opcode_modifier.vexw == VEXW1)
3457 w = 1;
3458
3459 i.vex.bytes[2] = (w << 7
3460 | register_specifier << 3
3461 | vector_length << 2
3462 | implied_prefix);
3463 }
3464 }
3465
3466 static INLINE bfd_boolean
3467 is_evex_encoding (const insn_template *t)
3468 {
3469 return t->opcode_modifier.evex
3470 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3471 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3472 }
3473
3474 /* Build the EVEX prefix. */
3475
3476 static void
3477 build_evex_prefix (void)
3478 {
3479 unsigned int register_specifier;
3480 unsigned int implied_prefix;
3481 unsigned int m, w;
3482 rex_byte vrex_used = 0;
3483
3484 /* Check register specifier. */
3485 if (i.vex.register_specifier)
3486 {
3487 gas_assert ((i.vrex & REX_X) == 0);
3488
3489 register_specifier = i.vex.register_specifier->reg_num;
3490 if ((i.vex.register_specifier->reg_flags & RegRex))
3491 register_specifier += 8;
3492 /* The upper 16 registers are encoded in the fourth byte of the
3493 EVEX prefix. */
3494 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3495 i.vex.bytes[3] = 0x8;
3496 register_specifier = ~register_specifier & 0xf;
3497 }
3498 else
3499 {
3500 register_specifier = 0xf;
3501
3502 /* Encode upper 16 vector index register in the fourth byte of
3503 the EVEX prefix. */
3504 if (!(i.vrex & REX_X))
3505 i.vex.bytes[3] = 0x8;
3506 else
3507 vrex_used |= REX_X;
3508 }
3509
3510 switch ((i.tm.base_opcode >> 8) & 0xff)
3511 {
3512 case 0:
3513 implied_prefix = 0;
3514 break;
3515 case DATA_PREFIX_OPCODE:
3516 implied_prefix = 1;
3517 break;
3518 case REPE_PREFIX_OPCODE:
3519 implied_prefix = 2;
3520 break;
3521 case REPNE_PREFIX_OPCODE:
3522 implied_prefix = 3;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* 4 byte EVEX prefix. */
3529 i.vex.length = 4;
3530 i.vex.bytes[0] = 0x62;
3531
3532 /* mmmm bits. */
3533 switch (i.tm.opcode_modifier.vexopcode)
3534 {
3535 case VEX0F:
3536 m = 1;
3537 break;
3538 case VEX0F38:
3539 m = 2;
3540 break;
3541 case VEX0F3A:
3542 m = 3;
3543 break;
3544 default:
3545 abort ();
3546 break;
3547 }
3548
3549 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3550 bits from REX. */
3551 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3552
3553 /* The fifth bit of the second EVEX byte is 1's compliment of the
3554 REX_R bit in VREX. */
3555 if (!(i.vrex & REX_R))
3556 i.vex.bytes[1] |= 0x10;
3557 else
3558 vrex_used |= REX_R;
3559
3560 if ((i.reg_operands + i.imm_operands) == i.operands)
3561 {
3562 /* When all operands are registers, the REX_X bit in REX is not
3563 used. We reuse it to encode the upper 16 registers, which is
3564 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3565 as 1's compliment. */
3566 if ((i.vrex & REX_B))
3567 {
3568 vrex_used |= REX_B;
3569 i.vex.bytes[1] &= ~0x40;
3570 }
3571 }
3572
3573 /* EVEX instructions shouldn't need the REX prefix. */
3574 i.vrex &= ~vrex_used;
3575 gas_assert (i.vrex == 0);
3576
3577 /* Check the REX.W bit. */
3578 w = (i.rex & REX_W) ? 1 : 0;
3579 if (i.tm.opcode_modifier.vexw)
3580 {
3581 if (i.tm.opcode_modifier.vexw == VEXW1)
3582 w = 1;
3583 }
3584 /* If w is not set it means we are dealing with WIG instruction. */
3585 else if (!w)
3586 {
3587 if (evexwig == evexw1)
3588 w = 1;
3589 }
3590
3591 /* Encode the U bit. */
3592 implied_prefix |= 0x4;
3593
3594 /* The third byte of the EVEX prefix. */
3595 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3596
3597 /* The fourth byte of the EVEX prefix. */
3598 /* The zeroing-masking bit. */
3599 if (i.mask && i.mask->zeroing)
3600 i.vex.bytes[3] |= 0x80;
3601
3602 /* Don't always set the broadcast bit if there is no RC. */
3603 if (!i.rounding)
3604 {
3605 /* Encode the vector length. */
3606 unsigned int vec_length;
3607
3608 if (!i.tm.opcode_modifier.evex
3609 || i.tm.opcode_modifier.evex == EVEXDYN)
3610 {
3611 unsigned int op;
3612
3613 vec_length = 0;
3614 for (op = 0; op < i.tm.operands; ++op)
3615 if (i.tm.operand_types[op].bitfield.xmmword
3616 + i.tm.operand_types[op].bitfield.ymmword
3617 + i.tm.operand_types[op].bitfield.zmmword > 1)
3618 {
3619 if (i.types[op].bitfield.zmmword)
3620 i.tm.opcode_modifier.evex = EVEX512;
3621 else if (i.types[op].bitfield.ymmword)
3622 i.tm.opcode_modifier.evex = EVEX256;
3623 else if (i.types[op].bitfield.xmmword)
3624 i.tm.opcode_modifier.evex = EVEX128;
3625 else
3626 continue;
3627 break;
3628 }
3629 }
3630
3631 switch (i.tm.opcode_modifier.evex)
3632 {
3633 case EVEXLIG: /* LL' is ignored */
3634 vec_length = evexlig << 5;
3635 break;
3636 case EVEX128:
3637 vec_length = 0 << 5;
3638 break;
3639 case EVEX256:
3640 vec_length = 1 << 5;
3641 break;
3642 case EVEX512:
3643 vec_length = 2 << 5;
3644 break;
3645 default:
3646 abort ();
3647 break;
3648 }
3649 i.vex.bytes[3] |= vec_length;
3650 /* Encode the broadcast bit. */
3651 if (i.broadcast)
3652 i.vex.bytes[3] |= 0x10;
3653 }
3654 else
3655 {
3656 if (i.rounding->type != saeonly)
3657 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3658 else
3659 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3660 }
3661
3662 if (i.mask && i.mask->mask)
3663 i.vex.bytes[3] |= i.mask->mask->reg_num;
3664 }
3665
3666 static void
3667 process_immext (void)
3668 {
3669 expressionS *exp;
3670
3671 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3672 && i.operands > 0)
3673 {
3674 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3675 with an opcode suffix which is coded in the same place as an
3676 8-bit immediate field would be.
3677 Here we check those operands and remove them afterwards. */
3678 unsigned int x;
3679
3680 for (x = 0; x < i.operands; x++)
3681 if (register_number (i.op[x].regs) != x)
3682 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3683 register_prefix, i.op[x].regs->reg_name, x + 1,
3684 i.tm.name);
3685
3686 i.operands = 0;
3687 }
3688
3689 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3690 {
3691 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3692 suffix which is coded in the same place as an 8-bit immediate
3693 field would be.
3694 Here we check those operands and remove them afterwards. */
3695 unsigned int x;
3696
3697 if (i.operands != 3)
3698 abort();
3699
3700 for (x = 0; x < 2; x++)
3701 if (register_number (i.op[x].regs) != x)
3702 goto bad_register_operand;
3703
3704 /* Check for third operand for mwaitx/monitorx insn. */
3705 if (register_number (i.op[x].regs)
3706 != (x + (i.tm.extension_opcode == 0xfb)))
3707 {
3708 bad_register_operand:
3709 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3710 register_prefix, i.op[x].regs->reg_name, x+1,
3711 i.tm.name);
3712 }
3713
3714 i.operands = 0;
3715 }
3716
3717 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3718 which is coded in the same place as an 8-bit immediate field
3719 would be. Here we fake an 8-bit immediate operand from the
3720 opcode suffix stored in tm.extension_opcode.
3721
3722 AVX instructions also use this encoding, for some of
3723 3 argument instructions. */
3724
3725 gas_assert (i.imm_operands <= 1
3726 && (i.operands <= 2
3727 || ((i.tm.opcode_modifier.vex
3728 || i.tm.opcode_modifier.vexopcode
3729 || is_evex_encoding (&i.tm))
3730 && i.operands <= 4)));
3731
3732 exp = &im_expressions[i.imm_operands++];
3733 i.op[i.operands].imms = exp;
3734 i.types[i.operands] = imm8;
3735 i.operands++;
3736 exp->X_op = O_constant;
3737 exp->X_add_number = i.tm.extension_opcode;
3738 i.tm.extension_opcode = None;
3739 }
3740
3741
3742 static int
3743 check_hle (void)
3744 {
3745 switch (i.tm.opcode_modifier.hleprefixok)
3746 {
3747 default:
3748 abort ();
3749 case HLEPrefixNone:
3750 as_bad (_("invalid instruction `%s' after `%s'"),
3751 i.tm.name, i.hle_prefix);
3752 return 0;
3753 case HLEPrefixLock:
3754 if (i.prefix[LOCK_PREFIX])
3755 return 1;
3756 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3757 return 0;
3758 case HLEPrefixAny:
3759 return 1;
3760 case HLEPrefixRelease:
3761 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3762 {
3763 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3764 i.tm.name);
3765 return 0;
3766 }
3767 if (i.mem_operands == 0
3768 || !operand_type_check (i.types[i.operands - 1], anymem))
3769 {
3770 as_bad (_("memory destination needed for instruction `%s'"
3771 " after `xrelease'"), i.tm.name);
3772 return 0;
3773 }
3774 return 1;
3775 }
3776 }
3777
3778 /* Try the shortest encoding by shortening operand size. */
3779
3780 static void
3781 optimize_encoding (void)
3782 {
3783 int j;
3784
3785 if (optimize_for_space
3786 && i.reg_operands == 1
3787 && i.imm_operands == 1
3788 && !i.types[1].bitfield.byte
3789 && i.op[0].imms->X_op == O_constant
3790 && fits_in_imm7 (i.op[0].imms->X_add_number)
3791 && ((i.tm.base_opcode == 0xa8
3792 && i.tm.extension_opcode == None)
3793 || (i.tm.base_opcode == 0xf6
3794 && i.tm.extension_opcode == 0x0)))
3795 {
3796 /* Optimize: -Os:
3797 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3798 */
3799 unsigned int base_regnum = i.op[1].regs->reg_num;
3800 if (flag_code == CODE_64BIT || base_regnum < 4)
3801 {
3802 i.types[1].bitfield.byte = 1;
3803 /* Ignore the suffix. */
3804 i.suffix = 0;
3805 if (base_regnum >= 4
3806 && !(i.op[1].regs->reg_flags & RegRex))
3807 {
3808 /* Handle SP, BP, SI and DI registers. */
3809 if (i.types[1].bitfield.word)
3810 j = 16;
3811 else if (i.types[1].bitfield.dword)
3812 j = 32;
3813 else
3814 j = 48;
3815 i.op[1].regs -= j;
3816 }
3817 }
3818 }
3819 else if (flag_code == CODE_64BIT
3820 && ((i.types[1].bitfield.qword
3821 && i.reg_operands == 1
3822 && i.imm_operands == 1
3823 && i.op[0].imms->X_op == O_constant
3824 && ((i.tm.base_opcode == 0xb0
3825 && i.tm.extension_opcode == None
3826 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3827 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3828 && (((i.tm.base_opcode == 0x24
3829 || i.tm.base_opcode == 0xa8)
3830 && i.tm.extension_opcode == None)
3831 || (i.tm.base_opcode == 0x80
3832 && i.tm.extension_opcode == 0x4)
3833 || ((i.tm.base_opcode == 0xf6
3834 || i.tm.base_opcode == 0xc6)
3835 && i.tm.extension_opcode == 0x0)))))
3836 || (i.types[0].bitfield.qword
3837 && ((i.reg_operands == 2
3838 && i.op[0].regs == i.op[1].regs
3839 && ((i.tm.base_opcode == 0x30
3840 || i.tm.base_opcode == 0x28)
3841 && i.tm.extension_opcode == None))
3842 || (i.reg_operands == 1
3843 && i.operands == 1
3844 && i.tm.base_opcode == 0x30
3845 && i.tm.extension_opcode == None)))))
3846 {
3847 /* Optimize: -O:
3848 andq $imm31, %r64 -> andl $imm31, %r32
3849 testq $imm31, %r64 -> testl $imm31, %r32
3850 xorq %r64, %r64 -> xorl %r32, %r32
3851 subq %r64, %r64 -> subl %r32, %r32
3852 movq $imm31, %r64 -> movl $imm31, %r32
3853 movq $imm32, %r64 -> movl $imm32, %r32
3854 */
3855 i.tm.opcode_modifier.norex64 = 1;
3856 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3857 {
3858 /* Handle
3859 movq $imm31, %r64 -> movl $imm31, %r32
3860 movq $imm32, %r64 -> movl $imm32, %r32
3861 */
3862 i.tm.operand_types[0].bitfield.imm32 = 1;
3863 i.tm.operand_types[0].bitfield.imm32s = 0;
3864 i.tm.operand_types[0].bitfield.imm64 = 0;
3865 i.types[0].bitfield.imm32 = 1;
3866 i.types[0].bitfield.imm32s = 0;
3867 i.types[0].bitfield.imm64 = 0;
3868 i.types[1].bitfield.dword = 1;
3869 i.types[1].bitfield.qword = 0;
3870 if (i.tm.base_opcode == 0xc6)
3871 {
3872 /* Handle
3873 movq $imm31, %r64 -> movl $imm31, %r32
3874 */
3875 i.tm.base_opcode = 0xb0;
3876 i.tm.extension_opcode = None;
3877 i.tm.opcode_modifier.shortform = 1;
3878 i.tm.opcode_modifier.modrm = 0;
3879 }
3880 }
3881 }
3882 else if (optimize > 1
3883 && i.reg_operands == 3
3884 && i.op[0].regs == i.op[1].regs
3885 && !i.types[2].bitfield.xmmword
3886 && (i.tm.opcode_modifier.vex
3887 || ((!i.mask || i.mask->zeroing)
3888 && !i.rounding
3889 && is_evex_encoding (&i.tm)
3890 && (i.vec_encoding != vex_encoding_evex
3891 || i.tm.cpu_flags.bitfield.cpuavx512vl
3892 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3893 && ((i.tm.base_opcode == 0x55
3894 || i.tm.base_opcode == 0x6655
3895 || i.tm.base_opcode == 0x66df
3896 || i.tm.base_opcode == 0x57
3897 || i.tm.base_opcode == 0x6657
3898 || i.tm.base_opcode == 0x66ef
3899 || i.tm.base_opcode == 0x66f8
3900 || i.tm.base_opcode == 0x66f9
3901 || i.tm.base_opcode == 0x66fa
3902 || i.tm.base_opcode == 0x66fb)
3903 && i.tm.extension_opcode == None))
3904 {
3905 /* Optimize: -O2:
3906 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3907 vpsubq and vpsubw:
3908 EVEX VOP %zmmM, %zmmM, %zmmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3910 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3911 EVEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 VEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX VOP %xmmM, %xmmM, %xmmN
3916 VOP, one of vpandn and vpxor:
3917 VEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX VOP %xmmM, %xmmM, %xmmN
3919 VOP, one of vpandnd and vpandnq:
3920 EVEX VOP %zmmM, %zmmM, %zmmN
3921 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3922 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3923 EVEX VOP %ymmM, %ymmM, %ymmN
3924 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3925 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3926 VOP, one of vpxord and vpxorq:
3927 EVEX VOP %zmmM, %zmmM, %zmmN
3928 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3929 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3930 EVEX VOP %ymmM, %ymmM, %ymmN
3931 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3932 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3933 */
3934 if (is_evex_encoding (&i.tm))
3935 {
3936 if (i.vec_encoding == vex_encoding_evex)
3937 i.tm.opcode_modifier.evex = EVEX128;
3938 else
3939 {
3940 i.tm.opcode_modifier.vex = VEX128;
3941 i.tm.opcode_modifier.vexw = VEXW0;
3942 i.tm.opcode_modifier.evex = 0;
3943 }
3944 }
3945 else
3946 i.tm.opcode_modifier.vex = VEX128;
3947
3948 if (i.tm.opcode_modifier.vex)
3949 for (j = 0; j < 3; j++)
3950 {
3951 i.types[j].bitfield.xmmword = 1;
3952 i.types[j].bitfield.ymmword = 0;
3953 }
3954 }
3955 }
3956
3957 /* This is the guts of the machine-dependent assembler. LINE points to a
3958 machine dependent instruction. This function is supposed to emit
3959 the frags/bytes it assembles to. */
3960
3961 void
3962 md_assemble (char *line)
3963 {
3964 unsigned int j;
3965 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3966 const insn_template *t;
3967
3968 /* Initialize globals. */
3969 memset (&i, '\0', sizeof (i));
3970 for (j = 0; j < MAX_OPERANDS; j++)
3971 i.reloc[j] = NO_RELOC;
3972 memset (disp_expressions, '\0', sizeof (disp_expressions));
3973 memset (im_expressions, '\0', sizeof (im_expressions));
3974 save_stack_p = save_stack;
3975
3976 /* First parse an instruction mnemonic & call i386_operand for the operands.
3977 We assume that the scrubber has arranged it so that line[0] is the valid
3978 start of a (possibly prefixed) mnemonic. */
3979
3980 line = parse_insn (line, mnemonic);
3981 if (line == NULL)
3982 return;
3983 mnem_suffix = i.suffix;
3984
3985 line = parse_operands (line, mnemonic);
3986 this_operand = -1;
3987 xfree (i.memop1_string);
3988 i.memop1_string = NULL;
3989 if (line == NULL)
3990 return;
3991
3992 /* Now we've parsed the mnemonic into a set of templates, and have the
3993 operands at hand. */
3994
3995 /* All intel opcodes have reversed operands except for "bound" and
3996 "enter". We also don't reverse intersegment "jmp" and "call"
3997 instructions with 2 immediate operands so that the immediate segment
3998 precedes the offset, as it does when in AT&T mode. */
3999 if (intel_syntax
4000 && i.operands > 1
4001 && (strcmp (mnemonic, "bound") != 0)
4002 && (strcmp (mnemonic, "invlpga") != 0)
4003 && !(operand_type_check (i.types[0], imm)
4004 && operand_type_check (i.types[1], imm)))
4005 swap_operands ();
4006
4007 /* The order of the immediates should be reversed
4008 for 2 immediates extrq and insertq instructions */
4009 if (i.imm_operands == 2
4010 && (strcmp (mnemonic, "extrq") == 0
4011 || strcmp (mnemonic, "insertq") == 0))
4012 swap_2_operands (0, 1);
4013
4014 if (i.imm_operands)
4015 optimize_imm ();
4016
4017 /* Don't optimize displacement for movabs since it only takes 64bit
4018 displacement. */
4019 if (i.disp_operands
4020 && i.disp_encoding != disp_encoding_32bit
4021 && (flag_code != CODE_64BIT
4022 || strcmp (mnemonic, "movabs") != 0))
4023 optimize_disp ();
4024
4025 /* Next, we find a template that matches the given insn,
4026 making sure the overlap of the given operands types is consistent
4027 with the template operand types. */
4028
4029 if (!(t = match_template (mnem_suffix)))
4030 return;
4031
4032 if (sse_check != check_none
4033 && !i.tm.opcode_modifier.noavx
4034 && !i.tm.cpu_flags.bitfield.cpuavx
4035 && (i.tm.cpu_flags.bitfield.cpusse
4036 || i.tm.cpu_flags.bitfield.cpusse2
4037 || i.tm.cpu_flags.bitfield.cpusse3
4038 || i.tm.cpu_flags.bitfield.cpussse3
4039 || i.tm.cpu_flags.bitfield.cpusse4_1
4040 || i.tm.cpu_flags.bitfield.cpusse4_2
4041 || i.tm.cpu_flags.bitfield.cpupclmul
4042 || i.tm.cpu_flags.bitfield.cpuaes
4043 || i.tm.cpu_flags.bitfield.cpugfni))
4044 {
4045 (sse_check == check_warning
4046 ? as_warn
4047 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4048 }
4049
4050 /* Zap movzx and movsx suffix. The suffix has been set from
4051 "word ptr" or "byte ptr" on the source operand in Intel syntax
4052 or extracted from mnemonic in AT&T syntax. But we'll use
4053 the destination register to choose the suffix for encoding. */
4054 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4055 {
4056 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4057 there is no suffix, the default will be byte extension. */
4058 if (i.reg_operands != 2
4059 && !i.suffix
4060 && intel_syntax)
4061 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4062
4063 i.suffix = 0;
4064 }
4065
4066 if (i.tm.opcode_modifier.fwait)
4067 if (!add_prefix (FWAIT_OPCODE))
4068 return;
4069
4070 /* Check if REP prefix is OK. */
4071 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4072 {
4073 as_bad (_("invalid instruction `%s' after `%s'"),
4074 i.tm.name, i.rep_prefix);
4075 return;
4076 }
4077
4078 /* Check for lock without a lockable instruction. Destination operand
4079 must be memory unless it is xchg (0x86). */
4080 if (i.prefix[LOCK_PREFIX]
4081 && (!i.tm.opcode_modifier.islockable
4082 || i.mem_operands == 0
4083 || (i.tm.base_opcode != 0x86
4084 && !operand_type_check (i.types[i.operands - 1], anymem))))
4085 {
4086 as_bad (_("expecting lockable instruction after `lock'"));
4087 return;
4088 }
4089
4090 /* Check if HLE prefix is OK. */
4091 if (i.hle_prefix && !check_hle ())
4092 return;
4093
4094 /* Check BND prefix. */
4095 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4096 as_bad (_("expecting valid branch instruction after `bnd'"));
4097
4098 /* Check NOTRACK prefix. */
4099 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4100 as_bad (_("expecting indirect branch instruction after `notrack'"));
4101
4102 if (i.tm.cpu_flags.bitfield.cpumpx)
4103 {
4104 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4105 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4106 else if (flag_code != CODE_16BIT
4107 ? i.prefix[ADDR_PREFIX]
4108 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4109 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4110 }
4111
4112 /* Insert BND prefix. */
4113 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4114 {
4115 if (!i.prefix[BND_PREFIX])
4116 add_prefix (BND_PREFIX_OPCODE);
4117 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4118 {
4119 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4120 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4121 }
4122 }
4123
4124 /* Check string instruction segment overrides. */
4125 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4126 {
4127 if (!check_string ())
4128 return;
4129 i.disp_operands = 0;
4130 }
4131
4132 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4133 optimize_encoding ();
4134
4135 if (!process_suffix ())
4136 return;
4137
4138 /* Update operand types. */
4139 for (j = 0; j < i.operands; j++)
4140 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4141
4142 /* Make still unresolved immediate matches conform to size of immediate
4143 given in i.suffix. */
4144 if (!finalize_imm ())
4145 return;
4146
4147 if (i.types[0].bitfield.imm1)
4148 i.imm_operands = 0; /* kludge for shift insns. */
4149
4150 /* We only need to check those implicit registers for instructions
4151 with 3 operands or less. */
4152 if (i.operands <= 3)
4153 for (j = 0; j < i.operands; j++)
4154 if (i.types[j].bitfield.inoutportreg
4155 || i.types[j].bitfield.shiftcount
4156 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4157 i.reg_operands--;
4158
4159 /* ImmExt should be processed after SSE2AVX. */
4160 if (!i.tm.opcode_modifier.sse2avx
4161 && i.tm.opcode_modifier.immext)
4162 process_immext ();
4163
4164 /* For insns with operands there are more diddles to do to the opcode. */
4165 if (i.operands)
4166 {
4167 if (!process_operands ())
4168 return;
4169 }
4170 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4171 {
4172 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4173 as_warn (_("translating to `%sp'"), i.tm.name);
4174 }
4175
4176 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4177 || is_evex_encoding (&i.tm))
4178 {
4179 if (flag_code == CODE_16BIT)
4180 {
4181 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4182 i.tm.name);
4183 return;
4184 }
4185
4186 if (i.tm.opcode_modifier.vex)
4187 build_vex_prefix (t);
4188 else
4189 build_evex_prefix ();
4190 }
4191
4192 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4193 instructions may define INT_OPCODE as well, so avoid this corner
4194 case for those instructions that use MODRM. */
4195 if (i.tm.base_opcode == INT_OPCODE
4196 && !i.tm.opcode_modifier.modrm
4197 && i.op[0].imms->X_add_number == 3)
4198 {
4199 i.tm.base_opcode = INT3_OPCODE;
4200 i.imm_operands = 0;
4201 }
4202
4203 if ((i.tm.opcode_modifier.jump
4204 || i.tm.opcode_modifier.jumpbyte
4205 || i.tm.opcode_modifier.jumpdword)
4206 && i.op[0].disps->X_op == O_constant)
4207 {
4208 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4209 the absolute address given by the constant. Since ix86 jumps and
4210 calls are pc relative, we need to generate a reloc. */
4211 i.op[0].disps->X_add_symbol = &abs_symbol;
4212 i.op[0].disps->X_op = O_symbol;
4213 }
4214
4215 if (i.tm.opcode_modifier.rex64)
4216 i.rex |= REX_W;
4217
4218 /* For 8 bit registers we need an empty rex prefix. Also if the
4219 instruction already has a prefix, we need to convert old
4220 registers to new ones. */
4221
4222 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4223 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4224 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4225 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4226 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4227 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4228 && i.rex != 0))
4229 {
4230 int x;
4231
4232 i.rex |= REX_OPCODE;
4233 for (x = 0; x < 2; x++)
4234 {
4235 /* Look for 8 bit operand that uses old registers. */
4236 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4237 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4238 {
4239 /* In case it is "hi" register, give up. */
4240 if (i.op[x].regs->reg_num > 3)
4241 as_bad (_("can't encode register '%s%s' in an "
4242 "instruction requiring REX prefix."),
4243 register_prefix, i.op[x].regs->reg_name);
4244
4245 /* Otherwise it is equivalent to the extended register.
4246 Since the encoding doesn't change this is merely
4247 cosmetic cleanup for debug output. */
4248
4249 i.op[x].regs = i.op[x].regs + 8;
4250 }
4251 }
4252 }
4253
4254 if (i.rex == 0 && i.rex_encoding)
4255 {
4256 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4257 that uses legacy register. If it is "hi" register, don't add
4258 the REX_OPCODE byte. */
4259 int x;
4260 for (x = 0; x < 2; x++)
4261 if (i.types[x].bitfield.reg
4262 && i.types[x].bitfield.byte
4263 && (i.op[x].regs->reg_flags & RegRex64) == 0
4264 && i.op[x].regs->reg_num > 3)
4265 {
4266 i.rex_encoding = FALSE;
4267 break;
4268 }
4269
4270 if (i.rex_encoding)
4271 i.rex = REX_OPCODE;
4272 }
4273
4274 if (i.rex != 0)
4275 add_prefix (REX_OPCODE | i.rex);
4276
4277 /* We are ready to output the insn. */
4278 output_insn ();
4279 }
4280
4281 static char *
4282 parse_insn (char *line, char *mnemonic)
4283 {
4284 char *l = line;
4285 char *token_start = l;
4286 char *mnem_p;
4287 int supported;
4288 const insn_template *t;
4289 char *dot_p = NULL;
4290
4291 while (1)
4292 {
4293 mnem_p = mnemonic;
4294 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4295 {
4296 if (*mnem_p == '.')
4297 dot_p = mnem_p;
4298 mnem_p++;
4299 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4300 {
4301 as_bad (_("no such instruction: `%s'"), token_start);
4302 return NULL;
4303 }
4304 l++;
4305 }
4306 if (!is_space_char (*l)
4307 && *l != END_OF_INSN
4308 && (intel_syntax
4309 || (*l != PREFIX_SEPARATOR
4310 && *l != ',')))
4311 {
4312 as_bad (_("invalid character %s in mnemonic"),
4313 output_invalid (*l));
4314 return NULL;
4315 }
4316 if (token_start == l)
4317 {
4318 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4319 as_bad (_("expecting prefix; got nothing"));
4320 else
4321 as_bad (_("expecting mnemonic; got nothing"));
4322 return NULL;
4323 }
4324
4325 /* Look up instruction (or prefix) via hash table. */
4326 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4327
4328 if (*l != END_OF_INSN
4329 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4330 && current_templates
4331 && current_templates->start->opcode_modifier.isprefix)
4332 {
4333 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4334 {
4335 as_bad ((flag_code != CODE_64BIT
4336 ? _("`%s' is only supported in 64-bit mode")
4337 : _("`%s' is not supported in 64-bit mode")),
4338 current_templates->start->name);
4339 return NULL;
4340 }
4341 /* If we are in 16-bit mode, do not allow addr16 or data16.
4342 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4343 if ((current_templates->start->opcode_modifier.size16
4344 || current_templates->start->opcode_modifier.size32)
4345 && flag_code != CODE_64BIT
4346 && (current_templates->start->opcode_modifier.size32
4347 ^ (flag_code == CODE_16BIT)))
4348 {
4349 as_bad (_("redundant %s prefix"),
4350 current_templates->start->name);
4351 return NULL;
4352 }
4353 if (current_templates->start->opcode_length == 0)
4354 {
4355 /* Handle pseudo prefixes. */
4356 switch (current_templates->start->base_opcode)
4357 {
4358 case 0x0:
4359 /* {disp8} */
4360 i.disp_encoding = disp_encoding_8bit;
4361 break;
4362 case 0x1:
4363 /* {disp32} */
4364 i.disp_encoding = disp_encoding_32bit;
4365 break;
4366 case 0x2:
4367 /* {load} */
4368 i.dir_encoding = dir_encoding_load;
4369 break;
4370 case 0x3:
4371 /* {store} */
4372 i.dir_encoding = dir_encoding_store;
4373 break;
4374 case 0x4:
4375 /* {vex2} */
4376 i.vec_encoding = vex_encoding_vex2;
4377 break;
4378 case 0x5:
4379 /* {vex3} */
4380 i.vec_encoding = vex_encoding_vex3;
4381 break;
4382 case 0x6:
4383 /* {evex} */
4384 i.vec_encoding = vex_encoding_evex;
4385 break;
4386 case 0x7:
4387 /* {rex} */
4388 i.rex_encoding = TRUE;
4389 break;
4390 case 0x8:
4391 /* {nooptimize} */
4392 i.no_optimize = TRUE;
4393 break;
4394 default:
4395 abort ();
4396 }
4397 }
4398 else
4399 {
4400 /* Add prefix, checking for repeated prefixes. */
4401 switch (add_prefix (current_templates->start->base_opcode))
4402 {
4403 case PREFIX_EXIST:
4404 return NULL;
4405 case PREFIX_DS:
4406 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4407 i.notrack_prefix = current_templates->start->name;
4408 break;
4409 case PREFIX_REP:
4410 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4411 i.hle_prefix = current_templates->start->name;
4412 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4413 i.bnd_prefix = current_templates->start->name;
4414 else
4415 i.rep_prefix = current_templates->start->name;
4416 break;
4417 default:
4418 break;
4419 }
4420 }
4421 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4422 token_start = ++l;
4423 }
4424 else
4425 break;
4426 }
4427
4428 if (!current_templates)
4429 {
4430 /* Check if we should swap operand or force 32bit displacement in
4431 encoding. */
4432 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4433 i.dir_encoding = dir_encoding_store;
4434 else if (mnem_p - 3 == dot_p
4435 && dot_p[1] == 'd'
4436 && dot_p[2] == '8')
4437 i.disp_encoding = disp_encoding_8bit;
4438 else if (mnem_p - 4 == dot_p
4439 && dot_p[1] == 'd'
4440 && dot_p[2] == '3'
4441 && dot_p[3] == '2')
4442 i.disp_encoding = disp_encoding_32bit;
4443 else
4444 goto check_suffix;
4445 mnem_p = dot_p;
4446 *dot_p = '\0';
4447 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4448 }
4449
4450 if (!current_templates)
4451 {
4452 check_suffix:
4453 /* See if we can get a match by trimming off a suffix. */
4454 switch (mnem_p[-1])
4455 {
4456 case WORD_MNEM_SUFFIX:
4457 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4458 i.suffix = SHORT_MNEM_SUFFIX;
4459 else
4460 /* Fall through. */
4461 case BYTE_MNEM_SUFFIX:
4462 case QWORD_MNEM_SUFFIX:
4463 i.suffix = mnem_p[-1];
4464 mnem_p[-1] = '\0';
4465 current_templates = (const templates *) hash_find (op_hash,
4466 mnemonic);
4467 break;
4468 case SHORT_MNEM_SUFFIX:
4469 case LONG_MNEM_SUFFIX:
4470 if (!intel_syntax)
4471 {
4472 i.suffix = mnem_p[-1];
4473 mnem_p[-1] = '\0';
4474 current_templates = (const templates *) hash_find (op_hash,
4475 mnemonic);
4476 }
4477 break;
4478
4479 /* Intel Syntax. */
4480 case 'd':
4481 if (intel_syntax)
4482 {
4483 if (intel_float_operand (mnemonic) == 1)
4484 i.suffix = SHORT_MNEM_SUFFIX;
4485 else
4486 i.suffix = LONG_MNEM_SUFFIX;
4487 mnem_p[-1] = '\0';
4488 current_templates = (const templates *) hash_find (op_hash,
4489 mnemonic);
4490 }
4491 break;
4492 }
4493 if (!current_templates)
4494 {
4495 as_bad (_("no such instruction: `%s'"), token_start);
4496 return NULL;
4497 }
4498 }
4499
4500 if (current_templates->start->opcode_modifier.jump
4501 || current_templates->start->opcode_modifier.jumpbyte)
4502 {
4503 /* Check for a branch hint. We allow ",pt" and ",pn" for
4504 predict taken and predict not taken respectively.
4505 I'm not sure that branch hints actually do anything on loop
4506 and jcxz insns (JumpByte) for current Pentium4 chips. They
4507 may work in the future and it doesn't hurt to accept them
4508 now. */
4509 if (l[0] == ',' && l[1] == 'p')
4510 {
4511 if (l[2] == 't')
4512 {
4513 if (!add_prefix (DS_PREFIX_OPCODE))
4514 return NULL;
4515 l += 3;
4516 }
4517 else if (l[2] == 'n')
4518 {
4519 if (!add_prefix (CS_PREFIX_OPCODE))
4520 return NULL;
4521 l += 3;
4522 }
4523 }
4524 }
4525 /* Any other comma loses. */
4526 if (*l == ',')
4527 {
4528 as_bad (_("invalid character %s in mnemonic"),
4529 output_invalid (*l));
4530 return NULL;
4531 }
4532
4533 /* Check if instruction is supported on specified architecture. */
4534 supported = 0;
4535 for (t = current_templates->start; t < current_templates->end; ++t)
4536 {
4537 supported |= cpu_flags_match (t);
4538 if (supported == CPU_FLAGS_PERFECT_MATCH)
4539 {
4540 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4541 as_warn (_("use .code16 to ensure correct addressing mode"));
4542
4543 return l;
4544 }
4545 }
4546
4547 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4548 as_bad (flag_code == CODE_64BIT
4549 ? _("`%s' is not supported in 64-bit mode")
4550 : _("`%s' is only supported in 64-bit mode"),
4551 current_templates->start->name);
4552 else
4553 as_bad (_("`%s' is not supported on `%s%s'"),
4554 current_templates->start->name,
4555 cpu_arch_name ? cpu_arch_name : default_arch,
4556 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4557
4558 return NULL;
4559 }
4560
4561 static char *
4562 parse_operands (char *l, const char *mnemonic)
4563 {
4564 char *token_start;
4565
4566 /* 1 if operand is pending after ','. */
4567 unsigned int expecting_operand = 0;
4568
4569 /* Non-zero if operand parens not balanced. */
4570 unsigned int paren_not_balanced;
4571
4572 while (*l != END_OF_INSN)
4573 {
4574 /* Skip optional white space before operand. */
4575 if (is_space_char (*l))
4576 ++l;
4577 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4578 {
4579 as_bad (_("invalid character %s before operand %d"),
4580 output_invalid (*l),
4581 i.operands + 1);
4582 return NULL;
4583 }
4584 token_start = l; /* After white space. */
4585 paren_not_balanced = 0;
4586 while (paren_not_balanced || *l != ',')
4587 {
4588 if (*l == END_OF_INSN)
4589 {
4590 if (paren_not_balanced)
4591 {
4592 if (!intel_syntax)
4593 as_bad (_("unbalanced parenthesis in operand %d."),
4594 i.operands + 1);
4595 else
4596 as_bad (_("unbalanced brackets in operand %d."),
4597 i.operands + 1);
4598 return NULL;
4599 }
4600 else
4601 break; /* we are done */
4602 }
4603 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4604 {
4605 as_bad (_("invalid character %s in operand %d"),
4606 output_invalid (*l),
4607 i.operands + 1);
4608 return NULL;
4609 }
4610 if (!intel_syntax)
4611 {
4612 if (*l == '(')
4613 ++paren_not_balanced;
4614 if (*l == ')')
4615 --paren_not_balanced;
4616 }
4617 else
4618 {
4619 if (*l == '[')
4620 ++paren_not_balanced;
4621 if (*l == ']')
4622 --paren_not_balanced;
4623 }
4624 l++;
4625 }
4626 if (l != token_start)
4627 { /* Yes, we've read in another operand. */
4628 unsigned int operand_ok;
4629 this_operand = i.operands++;
4630 if (i.operands > MAX_OPERANDS)
4631 {
4632 as_bad (_("spurious operands; (%d operands/instruction max)"),
4633 MAX_OPERANDS);
4634 return NULL;
4635 }
4636 i.types[this_operand].bitfield.unspecified = 1;
4637 /* Now parse operand adding info to 'i' as we go along. */
4638 END_STRING_AND_SAVE (l);
4639
4640 if (intel_syntax)
4641 operand_ok =
4642 i386_intel_operand (token_start,
4643 intel_float_operand (mnemonic));
4644 else
4645 operand_ok = i386_att_operand (token_start);
4646
4647 RESTORE_END_STRING (l);
4648 if (!operand_ok)
4649 return NULL;
4650 }
4651 else
4652 {
4653 if (expecting_operand)
4654 {
4655 expecting_operand_after_comma:
4656 as_bad (_("expecting operand after ','; got nothing"));
4657 return NULL;
4658 }
4659 if (*l == ',')
4660 {
4661 as_bad (_("expecting operand before ','; got nothing"));
4662 return NULL;
4663 }
4664 }
4665
4666 /* Now *l must be either ',' or END_OF_INSN. */
4667 if (*l == ',')
4668 {
4669 if (*++l == END_OF_INSN)
4670 {
4671 /* Just skip it, if it's \n complain. */
4672 goto expecting_operand_after_comma;
4673 }
4674 expecting_operand = 1;
4675 }
4676 }
4677 return l;
4678 }
4679
4680 static void
4681 swap_2_operands (int xchg1, int xchg2)
4682 {
4683 union i386_op temp_op;
4684 i386_operand_type temp_type;
4685 enum bfd_reloc_code_real temp_reloc;
4686
4687 temp_type = i.types[xchg2];
4688 i.types[xchg2] = i.types[xchg1];
4689 i.types[xchg1] = temp_type;
4690 temp_op = i.op[xchg2];
4691 i.op[xchg2] = i.op[xchg1];
4692 i.op[xchg1] = temp_op;
4693 temp_reloc = i.reloc[xchg2];
4694 i.reloc[xchg2] = i.reloc[xchg1];
4695 i.reloc[xchg1] = temp_reloc;
4696
4697 if (i.mask)
4698 {
4699 if (i.mask->operand == xchg1)
4700 i.mask->operand = xchg2;
4701 else if (i.mask->operand == xchg2)
4702 i.mask->operand = xchg1;
4703 }
4704 if (i.broadcast)
4705 {
4706 if (i.broadcast->operand == xchg1)
4707 i.broadcast->operand = xchg2;
4708 else if (i.broadcast->operand == xchg2)
4709 i.broadcast->operand = xchg1;
4710 }
4711 if (i.rounding)
4712 {
4713 if (i.rounding->operand == xchg1)
4714 i.rounding->operand = xchg2;
4715 else if (i.rounding->operand == xchg2)
4716 i.rounding->operand = xchg1;
4717 }
4718 }
4719
4720 static void
4721 swap_operands (void)
4722 {
4723 switch (i.operands)
4724 {
4725 case 5:
4726 case 4:
4727 swap_2_operands (1, i.operands - 2);
4728 /* Fall through. */
4729 case 3:
4730 case 2:
4731 swap_2_operands (0, i.operands - 1);
4732 break;
4733 default:
4734 abort ();
4735 }
4736
4737 if (i.mem_operands == 2)
4738 {
4739 const seg_entry *temp_seg;
4740 temp_seg = i.seg[0];
4741 i.seg[0] = i.seg[1];
4742 i.seg[1] = temp_seg;
4743 }
4744 }
4745
4746 /* Try to ensure constant immediates are represented in the smallest
4747 opcode possible. */
4748 static void
4749 optimize_imm (void)
4750 {
4751 char guess_suffix = 0;
4752 int op;
4753
4754 if (i.suffix)
4755 guess_suffix = i.suffix;
4756 else if (i.reg_operands)
4757 {
4758 /* Figure out a suffix from the last register operand specified.
4759 We can't do this properly yet, ie. excluding InOutPortReg,
4760 but the following works for instructions with immediates.
4761 In any case, we can't set i.suffix yet. */
4762 for (op = i.operands; --op >= 0;)
4763 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4764 {
4765 guess_suffix = BYTE_MNEM_SUFFIX;
4766 break;
4767 }
4768 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4769 {
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771 break;
4772 }
4773 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4774 {
4775 guess_suffix = LONG_MNEM_SUFFIX;
4776 break;
4777 }
4778 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4779 {
4780 guess_suffix = QWORD_MNEM_SUFFIX;
4781 break;
4782 }
4783 }
4784 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4785 guess_suffix = WORD_MNEM_SUFFIX;
4786
4787 for (op = i.operands; --op >= 0;)
4788 if (operand_type_check (i.types[op], imm))
4789 {
4790 switch (i.op[op].imms->X_op)
4791 {
4792 case O_constant:
4793 /* If a suffix is given, this operand may be shortened. */
4794 switch (guess_suffix)
4795 {
4796 case LONG_MNEM_SUFFIX:
4797 i.types[op].bitfield.imm32 = 1;
4798 i.types[op].bitfield.imm64 = 1;
4799 break;
4800 case WORD_MNEM_SUFFIX:
4801 i.types[op].bitfield.imm16 = 1;
4802 i.types[op].bitfield.imm32 = 1;
4803 i.types[op].bitfield.imm32s = 1;
4804 i.types[op].bitfield.imm64 = 1;
4805 break;
4806 case BYTE_MNEM_SUFFIX:
4807 i.types[op].bitfield.imm8 = 1;
4808 i.types[op].bitfield.imm8s = 1;
4809 i.types[op].bitfield.imm16 = 1;
4810 i.types[op].bitfield.imm32 = 1;
4811 i.types[op].bitfield.imm32s = 1;
4812 i.types[op].bitfield.imm64 = 1;
4813 break;
4814 }
4815
4816 /* If this operand is at most 16 bits, convert it
4817 to a signed 16 bit number before trying to see
4818 whether it will fit in an even smaller size.
4819 This allows a 16-bit operand such as $0xffe0 to
4820 be recognised as within Imm8S range. */
4821 if ((i.types[op].bitfield.imm16)
4822 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4823 {
4824 i.op[op].imms->X_add_number =
4825 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4826 }
4827 #ifdef BFD64
4828 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4829 if ((i.types[op].bitfield.imm32)
4830 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4831 == 0))
4832 {
4833 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4834 ^ ((offsetT) 1 << 31))
4835 - ((offsetT) 1 << 31));
4836 }
4837 #endif
4838 i.types[op]
4839 = operand_type_or (i.types[op],
4840 smallest_imm_type (i.op[op].imms->X_add_number));
4841
4842 /* We must avoid matching of Imm32 templates when 64bit
4843 only immediate is available. */
4844 if (guess_suffix == QWORD_MNEM_SUFFIX)
4845 i.types[op].bitfield.imm32 = 0;
4846 break;
4847
4848 case O_absent:
4849 case O_register:
4850 abort ();
4851
4852 /* Symbols and expressions. */
4853 default:
4854 /* Convert symbolic operand to proper sizes for matching, but don't
4855 prevent matching a set of insns that only supports sizes other
4856 than those matching the insn suffix. */
4857 {
4858 i386_operand_type mask, allowed;
4859 const insn_template *t;
4860
4861 operand_type_set (&mask, 0);
4862 operand_type_set (&allowed, 0);
4863
4864 for (t = current_templates->start;
4865 t < current_templates->end;
4866 ++t)
4867 allowed = operand_type_or (allowed,
4868 t->operand_types[op]);
4869 switch (guess_suffix)
4870 {
4871 case QWORD_MNEM_SUFFIX:
4872 mask.bitfield.imm64 = 1;
4873 mask.bitfield.imm32s = 1;
4874 break;
4875 case LONG_MNEM_SUFFIX:
4876 mask.bitfield.imm32 = 1;
4877 break;
4878 case WORD_MNEM_SUFFIX:
4879 mask.bitfield.imm16 = 1;
4880 break;
4881 case BYTE_MNEM_SUFFIX:
4882 mask.bitfield.imm8 = 1;
4883 break;
4884 default:
4885 break;
4886 }
4887 allowed = operand_type_and (mask, allowed);
4888 if (!operand_type_all_zero (&allowed))
4889 i.types[op] = operand_type_and (i.types[op], mask);
4890 }
4891 break;
4892 }
4893 }
4894 }
4895
4896 /* Try to use the smallest displacement type too. */
4897 static void
4898 optimize_disp (void)
4899 {
4900 int op;
4901
4902 for (op = i.operands; --op >= 0;)
4903 if (operand_type_check (i.types[op], disp))
4904 {
4905 if (i.op[op].disps->X_op == O_constant)
4906 {
4907 offsetT op_disp = i.op[op].disps->X_add_number;
4908
4909 if (i.types[op].bitfield.disp16
4910 && (op_disp & ~(offsetT) 0xffff) == 0)
4911 {
4912 /* If this operand is at most 16 bits, convert
4913 to a signed 16 bit number and don't use 64bit
4914 displacement. */
4915 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4916 i.types[op].bitfield.disp64 = 0;
4917 }
4918 #ifdef BFD64
4919 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4920 if (i.types[op].bitfield.disp32
4921 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4922 {
4923 /* If this operand is at most 32 bits, convert
4924 to a signed 32 bit number and don't use 64bit
4925 displacement. */
4926 op_disp &= (((offsetT) 2 << 31) - 1);
4927 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4928 i.types[op].bitfield.disp64 = 0;
4929 }
4930 #endif
4931 if (!op_disp && i.types[op].bitfield.baseindex)
4932 {
4933 i.types[op].bitfield.disp8 = 0;
4934 i.types[op].bitfield.disp16 = 0;
4935 i.types[op].bitfield.disp32 = 0;
4936 i.types[op].bitfield.disp32s = 0;
4937 i.types[op].bitfield.disp64 = 0;
4938 i.op[op].disps = 0;
4939 i.disp_operands--;
4940 }
4941 else if (flag_code == CODE_64BIT)
4942 {
4943 if (fits_in_signed_long (op_disp))
4944 {
4945 i.types[op].bitfield.disp64 = 0;
4946 i.types[op].bitfield.disp32s = 1;
4947 }
4948 if (i.prefix[ADDR_PREFIX]
4949 && fits_in_unsigned_long (op_disp))
4950 i.types[op].bitfield.disp32 = 1;
4951 }
4952 if ((i.types[op].bitfield.disp32
4953 || i.types[op].bitfield.disp32s
4954 || i.types[op].bitfield.disp16)
4955 && fits_in_disp8 (op_disp))
4956 i.types[op].bitfield.disp8 = 1;
4957 }
4958 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4959 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4960 {
4961 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4962 i.op[op].disps, 0, i.reloc[op]);
4963 i.types[op].bitfield.disp8 = 0;
4964 i.types[op].bitfield.disp16 = 0;
4965 i.types[op].bitfield.disp32 = 0;
4966 i.types[op].bitfield.disp32s = 0;
4967 i.types[op].bitfield.disp64 = 0;
4968 }
4969 else
4970 /* We only support 64bit displacement on constants. */
4971 i.types[op].bitfield.disp64 = 0;
4972 }
4973 }
4974
4975 /* Check if operands are valid for the instruction. */
4976
4977 static int
4978 check_VecOperands (const insn_template *t)
4979 {
4980 unsigned int op;
4981 i386_cpu_flags cpu;
4982 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
4983
4984 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
4985 any one operand are implicity requiring AVX512VL support if the actual
4986 operand size is YMMword or XMMword. Since this function runs after
4987 template matching, there's no need to check for YMMword/XMMword in
4988 the template. */
4989 cpu = cpu_flags_and (t->cpu_flags, avx512);
4990 if (!cpu_flags_all_zero (&cpu)
4991 && !t->cpu_flags.bitfield.cpuavx512vl
4992 && !cpu_arch_flags.bitfield.cpuavx512vl)
4993 {
4994 for (op = 0; op < t->operands; ++op)
4995 {
4996 if (t->operand_types[op].bitfield.zmmword
4997 && (i.types[op].bitfield.ymmword
4998 || i.types[op].bitfield.xmmword))
4999 {
5000 i.error = unsupported;
5001 return 1;
5002 }
5003 }
5004 }
5005
5006 /* Without VSIB byte, we can't have a vector register for index. */
5007 if (!t->opcode_modifier.vecsib
5008 && i.index_reg
5009 && (i.index_reg->reg_type.bitfield.xmmword
5010 || i.index_reg->reg_type.bitfield.ymmword
5011 || i.index_reg->reg_type.bitfield.zmmword))
5012 {
5013 i.error = unsupported_vector_index_register;
5014 return 1;
5015 }
5016
5017 /* Check if default mask is allowed. */
5018 if (t->opcode_modifier.nodefmask
5019 && (!i.mask || i.mask->mask->reg_num == 0))
5020 {
5021 i.error = no_default_mask;
5022 return 1;
5023 }
5024
5025 /* For VSIB byte, we need a vector register for index, and all vector
5026 registers must be distinct. */
5027 if (t->opcode_modifier.vecsib)
5028 {
5029 if (!i.index_reg
5030 || !((t->opcode_modifier.vecsib == VecSIB128
5031 && i.index_reg->reg_type.bitfield.xmmword)
5032 || (t->opcode_modifier.vecsib == VecSIB256
5033 && i.index_reg->reg_type.bitfield.ymmword)
5034 || (t->opcode_modifier.vecsib == VecSIB512
5035 && i.index_reg->reg_type.bitfield.zmmword)))
5036 {
5037 i.error = invalid_vsib_address;
5038 return 1;
5039 }
5040
5041 gas_assert (i.reg_operands == 2 || i.mask);
5042 if (i.reg_operands == 2 && !i.mask)
5043 {
5044 gas_assert (i.types[0].bitfield.regsimd);
5045 gas_assert (i.types[0].bitfield.xmmword
5046 || i.types[0].bitfield.ymmword);
5047 gas_assert (i.types[2].bitfield.regsimd);
5048 gas_assert (i.types[2].bitfield.xmmword
5049 || i.types[2].bitfield.ymmword);
5050 if (operand_check == check_none)
5051 return 0;
5052 if (register_number (i.op[0].regs)
5053 != register_number (i.index_reg)
5054 && register_number (i.op[2].regs)
5055 != register_number (i.index_reg)
5056 && register_number (i.op[0].regs)
5057 != register_number (i.op[2].regs))
5058 return 0;
5059 if (operand_check == check_error)
5060 {
5061 i.error = invalid_vector_register_set;
5062 return 1;
5063 }
5064 as_warn (_("mask, index, and destination registers should be distinct"));
5065 }
5066 else if (i.reg_operands == 1 && i.mask)
5067 {
5068 if (i.types[1].bitfield.regsimd
5069 && (i.types[1].bitfield.xmmword
5070 || i.types[1].bitfield.ymmword
5071 || i.types[1].bitfield.zmmword)
5072 && (register_number (i.op[1].regs)
5073 == register_number (i.index_reg)))
5074 {
5075 if (operand_check == check_error)
5076 {
5077 i.error = invalid_vector_register_set;
5078 return 1;
5079 }
5080 if (operand_check != check_none)
5081 as_warn (_("index and destination registers should be distinct"));
5082 }
5083 }
5084 }
5085
5086 /* Check if broadcast is supported by the instruction and is applied
5087 to the memory operand. */
5088 if (i.broadcast)
5089 {
5090 i386_operand_type type, overlap;
5091
5092 /* Check if specified broadcast is supported in this instruction,
5093 and it's applied to memory operand of DWORD or QWORD type. */
5094 op = i.broadcast->operand;
5095 if (!t->opcode_modifier.broadcast
5096 || !i.types[op].bitfield.mem
5097 || (!i.types[op].bitfield.unspecified
5098 && (t->operand_types[op].bitfield.dword
5099 ? !i.types[op].bitfield.dword
5100 : !i.types[op].bitfield.qword)))
5101 {
5102 bad_broadcast:
5103 i.error = unsupported_broadcast;
5104 return 1;
5105 }
5106
5107 operand_type_set (&type, 0);
5108 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5109 {
5110 case 8:
5111 type.bitfield.qword = 1;
5112 break;
5113 case 16:
5114 type.bitfield.xmmword = 1;
5115 break;
5116 case 32:
5117 type.bitfield.ymmword = 1;
5118 break;
5119 case 64:
5120 type.bitfield.zmmword = 1;
5121 break;
5122 default:
5123 goto bad_broadcast;
5124 }
5125
5126 overlap = operand_type_and (type, t->operand_types[op]);
5127 if (operand_type_all_zero (&overlap))
5128 goto bad_broadcast;
5129
5130 if (t->opcode_modifier.checkregsize)
5131 {
5132 unsigned int j;
5133
5134 type.bitfield.baseindex = 1;
5135 for (j = 0; j < i.operands; ++j)
5136 {
5137 if (j != op
5138 && !operand_type_register_match(i.types[j],
5139 t->operand_types[j],
5140 type,
5141 t->operand_types[op]))
5142 goto bad_broadcast;
5143 }
5144 }
5145 }
5146 /* If broadcast is supported in this instruction, we need to check if
5147 operand of one-element size isn't specified without broadcast. */
5148 else if (t->opcode_modifier.broadcast && i.mem_operands)
5149 {
5150 /* Find memory operand. */
5151 for (op = 0; op < i.operands; op++)
5152 if (operand_type_check (i.types[op], anymem))
5153 break;
5154 gas_assert (op < i.operands);
5155 /* Check size of the memory operand. */
5156 if (t->operand_types[op].bitfield.dword
5157 ? i.types[op].bitfield.dword
5158 : i.types[op].bitfield.qword)
5159 {
5160 i.error = broadcast_needed;
5161 return 1;
5162 }
5163 }
5164 else
5165 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5166
5167 /* Check if requested masking is supported. */
5168 if (i.mask
5169 && (!t->opcode_modifier.masking
5170 || (i.mask->zeroing
5171 && t->opcode_modifier.masking == MERGING_MASKING)))
5172 {
5173 i.error = unsupported_masking;
5174 return 1;
5175 }
5176
5177 /* Check if masking is applied to dest operand. */
5178 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5179 {
5180 i.error = mask_not_on_destination;
5181 return 1;
5182 }
5183
5184 /* Check RC/SAE. */
5185 if (i.rounding)
5186 {
5187 if ((i.rounding->type != saeonly
5188 && !t->opcode_modifier.staticrounding)
5189 || (i.rounding->type == saeonly
5190 && (t->opcode_modifier.staticrounding
5191 || !t->opcode_modifier.sae)))
5192 {
5193 i.error = unsupported_rc_sae;
5194 return 1;
5195 }
5196 /* If the instruction has several immediate operands and one of
5197 them is rounding, the rounding operand should be the last
5198 immediate operand. */
5199 if (i.imm_operands > 1
5200 && i.rounding->operand != (int) (i.imm_operands - 1))
5201 {
5202 i.error = rc_sae_operand_not_last_imm;
5203 return 1;
5204 }
5205 }
5206
5207 /* Check vector Disp8 operand. */
5208 if (t->opcode_modifier.disp8memshift
5209 && i.disp_encoding != disp_encoding_32bit)
5210 {
5211 if (i.broadcast)
5212 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5213 else
5214 i.memshift = t->opcode_modifier.disp8memshift;
5215
5216 for (op = 0; op < i.operands; op++)
5217 if (operand_type_check (i.types[op], disp)
5218 && i.op[op].disps->X_op == O_constant)
5219 {
5220 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5221 {
5222 i.types[op].bitfield.disp8 = 1;
5223 return 0;
5224 }
5225 i.types[op].bitfield.disp8 = 0;
5226 }
5227 }
5228
5229 i.memshift = 0;
5230
5231 return 0;
5232 }
5233
5234 /* Check if operands are valid for the instruction. Update VEX
5235 operand types. */
5236
5237 static int
5238 VEX_check_operands (const insn_template *t)
5239 {
5240 if (i.vec_encoding == vex_encoding_evex)
5241 {
5242 /* This instruction must be encoded with EVEX prefix. */
5243 if (!is_evex_encoding (t))
5244 {
5245 i.error = unsupported;
5246 return 1;
5247 }
5248 return 0;
5249 }
5250
5251 if (!t->opcode_modifier.vex)
5252 {
5253 /* This instruction template doesn't have VEX prefix. */
5254 if (i.vec_encoding != vex_encoding_default)
5255 {
5256 i.error = unsupported;
5257 return 1;
5258 }
5259 return 0;
5260 }
5261
5262 /* Only check VEX_Imm4, which must be the first operand. */
5263 if (t->operand_types[0].bitfield.vec_imm4)
5264 {
5265 if (i.op[0].imms->X_op != O_constant
5266 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5267 {
5268 i.error = bad_imm4;
5269 return 1;
5270 }
5271
5272 /* Turn off Imm8 so that update_imm won't complain. */
5273 i.types[0] = vec_imm4;
5274 }
5275
5276 return 0;
5277 }
5278
5279 static const insn_template *
5280 match_template (char mnem_suffix)
5281 {
5282 /* Points to template once we've found it. */
5283 const insn_template *t;
5284 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5285 i386_operand_type overlap4;
5286 unsigned int found_reverse_match;
5287 i386_opcode_modifier suffix_check, mnemsuf_check;
5288 i386_operand_type operand_types [MAX_OPERANDS];
5289 int addr_prefix_disp;
5290 unsigned int j;
5291 unsigned int found_cpu_match, size_match;
5292 unsigned int check_register;
5293 enum i386_error specific_error = 0;
5294
5295 #if MAX_OPERANDS != 5
5296 # error "MAX_OPERANDS must be 5."
5297 #endif
5298
5299 found_reverse_match = 0;
5300 addr_prefix_disp = -1;
5301
5302 memset (&suffix_check, 0, sizeof (suffix_check));
5303 if (intel_syntax && i.broadcast)
5304 /* nothing */;
5305 else if (i.suffix == BYTE_MNEM_SUFFIX)
5306 suffix_check.no_bsuf = 1;
5307 else if (i.suffix == WORD_MNEM_SUFFIX)
5308 suffix_check.no_wsuf = 1;
5309 else if (i.suffix == SHORT_MNEM_SUFFIX)
5310 suffix_check.no_ssuf = 1;
5311 else if (i.suffix == LONG_MNEM_SUFFIX)
5312 suffix_check.no_lsuf = 1;
5313 else if (i.suffix == QWORD_MNEM_SUFFIX)
5314 suffix_check.no_qsuf = 1;
5315 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5316 suffix_check.no_ldsuf = 1;
5317
5318 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5319 if (intel_syntax)
5320 {
5321 switch (mnem_suffix)
5322 {
5323 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5324 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5325 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5326 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5327 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5328 }
5329 }
5330
5331 /* Must have right number of operands. */
5332 i.error = number_of_operands_mismatch;
5333
5334 for (t = current_templates->start; t < current_templates->end; t++)
5335 {
5336 addr_prefix_disp = -1;
5337
5338 if (i.operands != t->operands)
5339 continue;
5340
5341 /* Check processor support. */
5342 i.error = unsupported;
5343 found_cpu_match = (cpu_flags_match (t)
5344 == CPU_FLAGS_PERFECT_MATCH);
5345 if (!found_cpu_match)
5346 continue;
5347
5348 /* Check AT&T mnemonic. */
5349 i.error = unsupported_with_intel_mnemonic;
5350 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5351 continue;
5352
5353 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5354 i.error = unsupported_syntax;
5355 if ((intel_syntax && t->opcode_modifier.attsyntax)
5356 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5357 || (intel64 && t->opcode_modifier.amd64)
5358 || (!intel64 && t->opcode_modifier.intel64))
5359 continue;
5360
5361 /* Check the suffix, except for some instructions in intel mode. */
5362 i.error = invalid_instruction_suffix;
5363 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5364 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5365 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5366 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5367 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5368 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5369 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5370 continue;
5371 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5372 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5373 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5374 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5375 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5376 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5377 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5378 continue;
5379
5380 size_match = operand_size_match (t);
5381 if (!size_match)
5382 continue;
5383
5384 for (j = 0; j < MAX_OPERANDS; j++)
5385 operand_types[j] = t->operand_types[j];
5386
5387 /* In general, don't allow 64-bit operands in 32-bit mode. */
5388 if (i.suffix == QWORD_MNEM_SUFFIX
5389 && flag_code != CODE_64BIT
5390 && (intel_syntax
5391 ? (!t->opcode_modifier.ignoresize
5392 && !intel_float_operand (t->name))
5393 : intel_float_operand (t->name) != 2)
5394 && ((!operand_types[0].bitfield.regmmx
5395 && !operand_types[0].bitfield.regsimd)
5396 || (!operand_types[t->operands > 1].bitfield.regmmx
5397 && !operand_types[t->operands > 1].bitfield.regsimd))
5398 && (t->base_opcode != 0x0fc7
5399 || t->extension_opcode != 1 /* cmpxchg8b */))
5400 continue;
5401
5402 /* In general, don't allow 32-bit operands on pre-386. */
5403 else if (i.suffix == LONG_MNEM_SUFFIX
5404 && !cpu_arch_flags.bitfield.cpui386
5405 && (intel_syntax
5406 ? (!t->opcode_modifier.ignoresize
5407 && !intel_float_operand (t->name))
5408 : intel_float_operand (t->name) != 2)
5409 && ((!operand_types[0].bitfield.regmmx
5410 && !operand_types[0].bitfield.regsimd)
5411 || (!operand_types[t->operands > 1].bitfield.regmmx
5412 && !operand_types[t->operands > 1].bitfield.regsimd)))
5413 continue;
5414
5415 /* Do not verify operands when there are none. */
5416 else
5417 {
5418 if (!t->operands)
5419 /* We've found a match; break out of loop. */
5420 break;
5421 }
5422
5423 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5424 into Disp32/Disp16/Disp32 operand. */
5425 if (i.prefix[ADDR_PREFIX] != 0)
5426 {
5427 /* There should be only one Disp operand. */
5428 switch (flag_code)
5429 {
5430 case CODE_16BIT:
5431 for (j = 0; j < MAX_OPERANDS; j++)
5432 {
5433 if (operand_types[j].bitfield.disp16)
5434 {
5435 addr_prefix_disp = j;
5436 operand_types[j].bitfield.disp32 = 1;
5437 operand_types[j].bitfield.disp16 = 0;
5438 break;
5439 }
5440 }
5441 break;
5442 case CODE_32BIT:
5443 for (j = 0; j < MAX_OPERANDS; j++)
5444 {
5445 if (operand_types[j].bitfield.disp32)
5446 {
5447 addr_prefix_disp = j;
5448 operand_types[j].bitfield.disp32 = 0;
5449 operand_types[j].bitfield.disp16 = 1;
5450 break;
5451 }
5452 }
5453 break;
5454 case CODE_64BIT:
5455 for (j = 0; j < MAX_OPERANDS; j++)
5456 {
5457 if (operand_types[j].bitfield.disp64)
5458 {
5459 addr_prefix_disp = j;
5460 operand_types[j].bitfield.disp64 = 0;
5461 operand_types[j].bitfield.disp32 = 1;
5462 break;
5463 }
5464 }
5465 break;
5466 }
5467 }
5468
5469 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5470 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5471 continue;
5472
5473 /* We check register size if needed. */
5474 if (t->opcode_modifier.checkregsize)
5475 {
5476 check_register = (1 << t->operands) - 1;
5477 if (i.broadcast)
5478 check_register &= ~(1 << i.broadcast->operand);
5479 }
5480 else
5481 check_register = 0;
5482
5483 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5484 switch (t->operands)
5485 {
5486 case 1:
5487 if (!operand_type_match (overlap0, i.types[0]))
5488 continue;
5489 break;
5490 case 2:
5491 /* xchg %eax, %eax is a special case. It is an alias for nop
5492 only in 32bit mode and we can use opcode 0x90. In 64bit
5493 mode, we can't use 0x90 for xchg %eax, %eax since it should
5494 zero-extend %eax to %rax. */
5495 if (flag_code == CODE_64BIT
5496 && t->base_opcode == 0x90
5497 && operand_type_equal (&i.types [0], &acc32)
5498 && operand_type_equal (&i.types [1], &acc32))
5499 continue;
5500 /* xrelease mov %eax, <disp> is another special case. It must not
5501 match the accumulator-only encoding of mov. */
5502 if (flag_code != CODE_64BIT
5503 && i.hle_prefix
5504 && t->base_opcode == 0xa0
5505 && i.types[0].bitfield.acc
5506 && operand_type_check (i.types[1], anymem))
5507 continue;
5508 if (!(size_match & MATCH_STRAIGHT))
5509 goto check_reverse;
5510 /* If we want store form, we reverse direction of operands. */
5511 if (i.dir_encoding == dir_encoding_store
5512 && t->opcode_modifier.d)
5513 goto check_reverse;
5514 /* Fall through. */
5515
5516 case 3:
5517 /* If we want store form, we skip the current load. */
5518 if (i.dir_encoding == dir_encoding_store
5519 && i.mem_operands == 0
5520 && t->opcode_modifier.load)
5521 continue;
5522 /* Fall through. */
5523 case 4:
5524 case 5:
5525 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5526 if (!operand_type_match (overlap0, i.types[0])
5527 || !operand_type_match (overlap1, i.types[1])
5528 || ((check_register & 3) == 3
5529 && !operand_type_register_match (i.types[0],
5530 operand_types[0],
5531 i.types[1],
5532 operand_types[1])))
5533 {
5534 /* Check if other direction is valid ... */
5535 if (!t->opcode_modifier.d)
5536 continue;
5537
5538 check_reverse:
5539 if (!(size_match & MATCH_REVERSE))
5540 continue;
5541 /* Try reversing direction of operands. */
5542 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5543 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5544 if (!operand_type_match (overlap0, i.types[0])
5545 || !operand_type_match (overlap1, i.types[1])
5546 || (check_register
5547 && !operand_type_register_match (i.types[0],
5548 operand_types[1],
5549 i.types[1],
5550 operand_types[0])))
5551 {
5552 /* Does not match either direction. */
5553 continue;
5554 }
5555 /* found_reverse_match holds which of D or FloatR
5556 we've found. */
5557 if (!t->opcode_modifier.d)
5558 found_reverse_match = 0;
5559 else if (operand_types[0].bitfield.tbyte)
5560 found_reverse_match = Opcode_FloatD;
5561 else
5562 found_reverse_match = Opcode_D;
5563 if (t->opcode_modifier.floatr)
5564 found_reverse_match |= Opcode_FloatR;
5565 }
5566 else
5567 {
5568 /* Found a forward 2 operand match here. */
5569 switch (t->operands)
5570 {
5571 case 5:
5572 overlap4 = operand_type_and (i.types[4],
5573 operand_types[4]);
5574 /* Fall through. */
5575 case 4:
5576 overlap3 = operand_type_and (i.types[3],
5577 operand_types[3]);
5578 /* Fall through. */
5579 case 3:
5580 overlap2 = operand_type_and (i.types[2],
5581 operand_types[2]);
5582 break;
5583 }
5584
5585 switch (t->operands)
5586 {
5587 case 5:
5588 if (!operand_type_match (overlap4, i.types[4])
5589 || !operand_type_register_match (i.types[3],
5590 operand_types[3],
5591 i.types[4],
5592 operand_types[4]))
5593 continue;
5594 /* Fall through. */
5595 case 4:
5596 if (!operand_type_match (overlap3, i.types[3])
5597 || ((check_register & 0xa) == 0xa
5598 && !operand_type_register_match (i.types[1],
5599 operand_types[1],
5600 i.types[3],
5601 operand_types[3]))
5602 || ((check_register & 0xc) == 0xc
5603 && !operand_type_register_match (i.types[2],
5604 operand_types[2],
5605 i.types[3],
5606 operand_types[3])))
5607 continue;
5608 /* Fall through. */
5609 case 3:
5610 /* Here we make use of the fact that there are no
5611 reverse match 3 operand instructions. */
5612 if (!operand_type_match (overlap2, i.types[2])
5613 || ((check_register & 5) == 5
5614 && !operand_type_register_match (i.types[0],
5615 operand_types[0],
5616 i.types[2],
5617 operand_types[2]))
5618 || ((check_register & 6) == 6
5619 && !operand_type_register_match (i.types[1],
5620 operand_types[1],
5621 i.types[2],
5622 operand_types[2])))
5623 continue;
5624 break;
5625 }
5626 }
5627 /* Found either forward/reverse 2, 3 or 4 operand match here:
5628 slip through to break. */
5629 }
5630 if (!found_cpu_match)
5631 {
5632 found_reverse_match = 0;
5633 continue;
5634 }
5635
5636 /* Check if vector and VEX operands are valid. */
5637 if (check_VecOperands (t) || VEX_check_operands (t))
5638 {
5639 specific_error = i.error;
5640 continue;
5641 }
5642
5643 /* We've found a match; break out of loop. */
5644 break;
5645 }
5646
5647 if (t == current_templates->end)
5648 {
5649 /* We found no match. */
5650 const char *err_msg;
5651 switch (specific_error ? specific_error : i.error)
5652 {
5653 default:
5654 abort ();
5655 case operand_size_mismatch:
5656 err_msg = _("operand size mismatch");
5657 break;
5658 case operand_type_mismatch:
5659 err_msg = _("operand type mismatch");
5660 break;
5661 case register_type_mismatch:
5662 err_msg = _("register type mismatch");
5663 break;
5664 case number_of_operands_mismatch:
5665 err_msg = _("number of operands mismatch");
5666 break;
5667 case invalid_instruction_suffix:
5668 err_msg = _("invalid instruction suffix");
5669 break;
5670 case bad_imm4:
5671 err_msg = _("constant doesn't fit in 4 bits");
5672 break;
5673 case unsupported_with_intel_mnemonic:
5674 err_msg = _("unsupported with Intel mnemonic");
5675 break;
5676 case unsupported_syntax:
5677 err_msg = _("unsupported syntax");
5678 break;
5679 case unsupported:
5680 as_bad (_("unsupported instruction `%s'"),
5681 current_templates->start->name);
5682 return NULL;
5683 case invalid_vsib_address:
5684 err_msg = _("invalid VSIB address");
5685 break;
5686 case invalid_vector_register_set:
5687 err_msg = _("mask, index, and destination registers must be distinct");
5688 break;
5689 case unsupported_vector_index_register:
5690 err_msg = _("unsupported vector index register");
5691 break;
5692 case unsupported_broadcast:
5693 err_msg = _("unsupported broadcast");
5694 break;
5695 case broadcast_not_on_src_operand:
5696 err_msg = _("broadcast not on source memory operand");
5697 break;
5698 case broadcast_needed:
5699 err_msg = _("broadcast is needed for operand of such type");
5700 break;
5701 case unsupported_masking:
5702 err_msg = _("unsupported masking");
5703 break;
5704 case mask_not_on_destination:
5705 err_msg = _("mask not on destination operand");
5706 break;
5707 case no_default_mask:
5708 err_msg = _("default mask isn't allowed");
5709 break;
5710 case unsupported_rc_sae:
5711 err_msg = _("unsupported static rounding/sae");
5712 break;
5713 case rc_sae_operand_not_last_imm:
5714 if (intel_syntax)
5715 err_msg = _("RC/SAE operand must precede immediate operands");
5716 else
5717 err_msg = _("RC/SAE operand must follow immediate operands");
5718 break;
5719 case invalid_register_operand:
5720 err_msg = _("invalid register operand");
5721 break;
5722 }
5723 as_bad (_("%s for `%s'"), err_msg,
5724 current_templates->start->name);
5725 return NULL;
5726 }
5727
5728 if (!quiet_warnings)
5729 {
5730 if (!intel_syntax
5731 && (i.types[0].bitfield.jumpabsolute
5732 != operand_types[0].bitfield.jumpabsolute))
5733 {
5734 as_warn (_("indirect %s without `*'"), t->name);
5735 }
5736
5737 if (t->opcode_modifier.isprefix
5738 && t->opcode_modifier.ignoresize)
5739 {
5740 /* Warn them that a data or address size prefix doesn't
5741 affect assembly of the next line of code. */
5742 as_warn (_("stand-alone `%s' prefix"), t->name);
5743 }
5744 }
5745
5746 /* Copy the template we found. */
5747 i.tm = *t;
5748
5749 if (addr_prefix_disp != -1)
5750 i.tm.operand_types[addr_prefix_disp]
5751 = operand_types[addr_prefix_disp];
5752
5753 if (found_reverse_match)
5754 {
5755 /* If we found a reverse match we must alter the opcode
5756 direction bit. found_reverse_match holds bits to change
5757 (different for int & float insns). */
5758
5759 i.tm.base_opcode ^= found_reverse_match;
5760
5761 i.tm.operand_types[0] = operand_types[1];
5762 i.tm.operand_types[1] = operand_types[0];
5763 }
5764
5765 return t;
5766 }
5767
5768 static int
5769 check_string (void)
5770 {
5771 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5772 if (i.tm.operand_types[mem_op].bitfield.esseg)
5773 {
5774 if (i.seg[0] != NULL && i.seg[0] != &es)
5775 {
5776 as_bad (_("`%s' operand %d must use `%ses' segment"),
5777 i.tm.name,
5778 mem_op + 1,
5779 register_prefix);
5780 return 0;
5781 }
5782 /* There's only ever one segment override allowed per instruction.
5783 This instruction possibly has a legal segment override on the
5784 second operand, so copy the segment to where non-string
5785 instructions store it, allowing common code. */
5786 i.seg[0] = i.seg[1];
5787 }
5788 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5789 {
5790 if (i.seg[1] != NULL && i.seg[1] != &es)
5791 {
5792 as_bad (_("`%s' operand %d must use `%ses' segment"),
5793 i.tm.name,
5794 mem_op + 2,
5795 register_prefix);
5796 return 0;
5797 }
5798 }
5799 return 1;
5800 }
5801
5802 static int
5803 process_suffix (void)
5804 {
5805 /* If matched instruction specifies an explicit instruction mnemonic
5806 suffix, use it. */
5807 if (i.tm.opcode_modifier.size16)
5808 i.suffix = WORD_MNEM_SUFFIX;
5809 else if (i.tm.opcode_modifier.size32)
5810 i.suffix = LONG_MNEM_SUFFIX;
5811 else if (i.tm.opcode_modifier.size64)
5812 i.suffix = QWORD_MNEM_SUFFIX;
5813 else if (i.reg_operands)
5814 {
5815 /* If there's no instruction mnemonic suffix we try to invent one
5816 based on register operands. */
5817 if (!i.suffix)
5818 {
5819 /* We take i.suffix from the last register operand specified,
5820 Destination register type is more significant than source
5821 register type. crc32 in SSE4.2 prefers source register
5822 type. */
5823 if (i.tm.base_opcode == 0xf20f38f1)
5824 {
5825 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5826 i.suffix = WORD_MNEM_SUFFIX;
5827 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5828 i.suffix = LONG_MNEM_SUFFIX;
5829 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5830 i.suffix = QWORD_MNEM_SUFFIX;
5831 }
5832 else if (i.tm.base_opcode == 0xf20f38f0)
5833 {
5834 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5835 i.suffix = BYTE_MNEM_SUFFIX;
5836 }
5837
5838 if (!i.suffix)
5839 {
5840 int op;
5841
5842 if (i.tm.base_opcode == 0xf20f38f1
5843 || i.tm.base_opcode == 0xf20f38f0)
5844 {
5845 /* We have to know the operand size for crc32. */
5846 as_bad (_("ambiguous memory operand size for `%s`"),
5847 i.tm.name);
5848 return 0;
5849 }
5850
5851 for (op = i.operands; --op >= 0;)
5852 if (!i.tm.operand_types[op].bitfield.inoutportreg
5853 && !i.tm.operand_types[op].bitfield.shiftcount)
5854 {
5855 if (!i.types[op].bitfield.reg)
5856 continue;
5857 if (i.types[op].bitfield.byte)
5858 i.suffix = BYTE_MNEM_SUFFIX;
5859 else if (i.types[op].bitfield.word)
5860 i.suffix = WORD_MNEM_SUFFIX;
5861 else if (i.types[op].bitfield.dword)
5862 i.suffix = LONG_MNEM_SUFFIX;
5863 else if (i.types[op].bitfield.qword)
5864 i.suffix = QWORD_MNEM_SUFFIX;
5865 else
5866 continue;
5867 break;
5868 }
5869 }
5870 }
5871 else if (i.suffix == BYTE_MNEM_SUFFIX)
5872 {
5873 if (intel_syntax
5874 && i.tm.opcode_modifier.ignoresize
5875 && i.tm.opcode_modifier.no_bsuf)
5876 i.suffix = 0;
5877 else if (!check_byte_reg ())
5878 return 0;
5879 }
5880 else if (i.suffix == LONG_MNEM_SUFFIX)
5881 {
5882 if (intel_syntax
5883 && i.tm.opcode_modifier.ignoresize
5884 && i.tm.opcode_modifier.no_lsuf
5885 && !i.tm.opcode_modifier.todword
5886 && !i.tm.opcode_modifier.toqword)
5887 i.suffix = 0;
5888 else if (!check_long_reg ())
5889 return 0;
5890 }
5891 else if (i.suffix == QWORD_MNEM_SUFFIX)
5892 {
5893 if (intel_syntax
5894 && i.tm.opcode_modifier.ignoresize
5895 && i.tm.opcode_modifier.no_qsuf
5896 && !i.tm.opcode_modifier.todword
5897 && !i.tm.opcode_modifier.toqword)
5898 i.suffix = 0;
5899 else if (!check_qword_reg ())
5900 return 0;
5901 }
5902 else if (i.suffix == WORD_MNEM_SUFFIX)
5903 {
5904 if (intel_syntax
5905 && i.tm.opcode_modifier.ignoresize
5906 && i.tm.opcode_modifier.no_wsuf)
5907 i.suffix = 0;
5908 else if (!check_word_reg ())
5909 return 0;
5910 }
5911 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5912 /* Do nothing if the instruction is going to ignore the prefix. */
5913 ;
5914 else
5915 abort ();
5916 }
5917 else if (i.tm.opcode_modifier.defaultsize
5918 && !i.suffix
5919 /* exclude fldenv/frstor/fsave/fstenv */
5920 && i.tm.opcode_modifier.no_ssuf)
5921 {
5922 i.suffix = stackop_size;
5923 }
5924 else if (intel_syntax
5925 && !i.suffix
5926 && (i.tm.operand_types[0].bitfield.jumpabsolute
5927 || i.tm.opcode_modifier.jumpbyte
5928 || i.tm.opcode_modifier.jumpintersegment
5929 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5930 && i.tm.extension_opcode <= 3)))
5931 {
5932 switch (flag_code)
5933 {
5934 case CODE_64BIT:
5935 if (!i.tm.opcode_modifier.no_qsuf)
5936 {
5937 i.suffix = QWORD_MNEM_SUFFIX;
5938 break;
5939 }
5940 /* Fall through. */
5941 case CODE_32BIT:
5942 if (!i.tm.opcode_modifier.no_lsuf)
5943 i.suffix = LONG_MNEM_SUFFIX;
5944 break;
5945 case CODE_16BIT:
5946 if (!i.tm.opcode_modifier.no_wsuf)
5947 i.suffix = WORD_MNEM_SUFFIX;
5948 break;
5949 }
5950 }
5951
5952 if (!i.suffix)
5953 {
5954 if (!intel_syntax)
5955 {
5956 if (i.tm.opcode_modifier.w)
5957 {
5958 as_bad (_("no instruction mnemonic suffix given and "
5959 "no register operands; can't size instruction"));
5960 return 0;
5961 }
5962 }
5963 else
5964 {
5965 unsigned int suffixes;
5966
5967 suffixes = !i.tm.opcode_modifier.no_bsuf;
5968 if (!i.tm.opcode_modifier.no_wsuf)
5969 suffixes |= 1 << 1;
5970 if (!i.tm.opcode_modifier.no_lsuf)
5971 suffixes |= 1 << 2;
5972 if (!i.tm.opcode_modifier.no_ldsuf)
5973 suffixes |= 1 << 3;
5974 if (!i.tm.opcode_modifier.no_ssuf)
5975 suffixes |= 1 << 4;
5976 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5977 suffixes |= 1 << 5;
5978
5979 /* There are more than suffix matches. */
5980 if (i.tm.opcode_modifier.w
5981 || ((suffixes & (suffixes - 1))
5982 && !i.tm.opcode_modifier.defaultsize
5983 && !i.tm.opcode_modifier.ignoresize))
5984 {
5985 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5986 return 0;
5987 }
5988 }
5989 }
5990
5991 /* Change the opcode based on the operand size given by i.suffix. */
5992 switch (i.suffix)
5993 {
5994 /* Size floating point instruction. */
5995 case LONG_MNEM_SUFFIX:
5996 if (i.tm.opcode_modifier.floatmf)
5997 {
5998 i.tm.base_opcode ^= 4;
5999 break;
6000 }
6001 /* fall through */
6002 case WORD_MNEM_SUFFIX:
6003 case QWORD_MNEM_SUFFIX:
6004 /* It's not a byte, select word/dword operation. */
6005 if (i.tm.opcode_modifier.w)
6006 {
6007 if (i.tm.opcode_modifier.shortform)
6008 i.tm.base_opcode |= 8;
6009 else
6010 i.tm.base_opcode |= 1;
6011 }
6012 /* fall through */
6013 case SHORT_MNEM_SUFFIX:
6014 /* Now select between word & dword operations via the operand
6015 size prefix, except for instructions that will ignore this
6016 prefix anyway. */
6017 if (i.reg_operands > 0
6018 && i.types[0].bitfield.reg
6019 && i.tm.opcode_modifier.addrprefixopreg
6020 && (i.tm.opcode_modifier.immext
6021 || i.operands == 1))
6022 {
6023 /* The address size override prefix changes the size of the
6024 first operand. */
6025 if ((flag_code == CODE_32BIT
6026 && i.op[0].regs->reg_type.bitfield.word)
6027 || (flag_code != CODE_32BIT
6028 && i.op[0].regs->reg_type.bitfield.dword))
6029 if (!add_prefix (ADDR_PREFIX_OPCODE))
6030 return 0;
6031 }
6032 else if (i.suffix != QWORD_MNEM_SUFFIX
6033 && !i.tm.opcode_modifier.ignoresize
6034 && !i.tm.opcode_modifier.floatmf
6035 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6036 || (flag_code == CODE_64BIT
6037 && i.tm.opcode_modifier.jumpbyte)))
6038 {
6039 unsigned int prefix = DATA_PREFIX_OPCODE;
6040
6041 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6042 prefix = ADDR_PREFIX_OPCODE;
6043
6044 if (!add_prefix (prefix))
6045 return 0;
6046 }
6047
6048 /* Set mode64 for an operand. */
6049 if (i.suffix == QWORD_MNEM_SUFFIX
6050 && flag_code == CODE_64BIT
6051 && !i.tm.opcode_modifier.norex64
6052 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6053 need rex64. */
6054 && ! (i.operands == 2
6055 && i.tm.base_opcode == 0x90
6056 && i.tm.extension_opcode == None
6057 && operand_type_equal (&i.types [0], &acc64)
6058 && operand_type_equal (&i.types [1], &acc64)))
6059 i.rex |= REX_W;
6060
6061 break;
6062 }
6063
6064 if (i.reg_operands != 0
6065 && i.operands > 1
6066 && i.tm.opcode_modifier.addrprefixopreg
6067 && !i.tm.opcode_modifier.immext)
6068 {
6069 /* Check invalid register operand when the address size override
6070 prefix changes the size of register operands. */
6071 unsigned int op;
6072 enum { need_word, need_dword, need_qword } need;
6073
6074 if (flag_code == CODE_32BIT)
6075 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6076 else
6077 {
6078 if (i.prefix[ADDR_PREFIX])
6079 need = need_dword;
6080 else
6081 need = flag_code == CODE_64BIT ? need_qword : need_word;
6082 }
6083
6084 for (op = 0; op < i.operands; op++)
6085 if (i.types[op].bitfield.reg
6086 && ((need == need_word
6087 && !i.op[op].regs->reg_type.bitfield.word)
6088 || (need == need_dword
6089 && !i.op[op].regs->reg_type.bitfield.dword)
6090 || (need == need_qword
6091 && !i.op[op].regs->reg_type.bitfield.qword)))
6092 {
6093 as_bad (_("invalid register operand size for `%s'"),
6094 i.tm.name);
6095 return 0;
6096 }
6097 }
6098
6099 return 1;
6100 }
6101
6102 static int
6103 check_byte_reg (void)
6104 {
6105 int op;
6106
6107 for (op = i.operands; --op >= 0;)
6108 {
6109 /* Skip non-register operands. */
6110 if (!i.types[op].bitfield.reg)
6111 continue;
6112
6113 /* If this is an eight bit register, it's OK. If it's the 16 or
6114 32 bit version of an eight bit register, we will just use the
6115 low portion, and that's OK too. */
6116 if (i.types[op].bitfield.byte)
6117 continue;
6118
6119 /* I/O port address operands are OK too. */
6120 if (i.tm.operand_types[op].bitfield.inoutportreg)
6121 continue;
6122
6123 /* crc32 doesn't generate this warning. */
6124 if (i.tm.base_opcode == 0xf20f38f0)
6125 continue;
6126
6127 if ((i.types[op].bitfield.word
6128 || i.types[op].bitfield.dword
6129 || i.types[op].bitfield.qword)
6130 && i.op[op].regs->reg_num < 4
6131 /* Prohibit these changes in 64bit mode, since the lowering
6132 would be more complicated. */
6133 && flag_code != CODE_64BIT)
6134 {
6135 #if REGISTER_WARNINGS
6136 if (!quiet_warnings)
6137 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6138 register_prefix,
6139 (i.op[op].regs + (i.types[op].bitfield.word
6140 ? REGNAM_AL - REGNAM_AX
6141 : REGNAM_AL - REGNAM_EAX))->reg_name,
6142 register_prefix,
6143 i.op[op].regs->reg_name,
6144 i.suffix);
6145 #endif
6146 continue;
6147 }
6148 /* Any other register is bad. */
6149 if (i.types[op].bitfield.reg
6150 || i.types[op].bitfield.regmmx
6151 || i.types[op].bitfield.regsimd
6152 || i.types[op].bitfield.sreg2
6153 || i.types[op].bitfield.sreg3
6154 || i.types[op].bitfield.control
6155 || i.types[op].bitfield.debug
6156 || i.types[op].bitfield.test)
6157 {
6158 as_bad (_("`%s%s' not allowed with `%s%c'"),
6159 register_prefix,
6160 i.op[op].regs->reg_name,
6161 i.tm.name,
6162 i.suffix);
6163 return 0;
6164 }
6165 }
6166 return 1;
6167 }
6168
6169 static int
6170 check_long_reg (void)
6171 {
6172 int op;
6173
6174 for (op = i.operands; --op >= 0;)
6175 /* Skip non-register operands. */
6176 if (!i.types[op].bitfield.reg)
6177 continue;
6178 /* Reject eight bit registers, except where the template requires
6179 them. (eg. movzb) */
6180 else if (i.types[op].bitfield.byte
6181 && (i.tm.operand_types[op].bitfield.reg
6182 || i.tm.operand_types[op].bitfield.acc)
6183 && (i.tm.operand_types[op].bitfield.word
6184 || i.tm.operand_types[op].bitfield.dword))
6185 {
6186 as_bad (_("`%s%s' not allowed with `%s%c'"),
6187 register_prefix,
6188 i.op[op].regs->reg_name,
6189 i.tm.name,
6190 i.suffix);
6191 return 0;
6192 }
6193 /* Warn if the e prefix on a general reg is missing. */
6194 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6195 && i.types[op].bitfield.word
6196 && (i.tm.operand_types[op].bitfield.reg
6197 || i.tm.operand_types[op].bitfield.acc)
6198 && i.tm.operand_types[op].bitfield.dword)
6199 {
6200 /* Prohibit these changes in the 64bit mode, since the
6201 lowering is more complicated. */
6202 if (flag_code == CODE_64BIT)
6203 {
6204 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6205 register_prefix, i.op[op].regs->reg_name,
6206 i.suffix);
6207 return 0;
6208 }
6209 #if REGISTER_WARNINGS
6210 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6211 register_prefix,
6212 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6213 register_prefix, i.op[op].regs->reg_name, i.suffix);
6214 #endif
6215 }
6216 /* Warn if the r prefix on a general reg is present. */
6217 else if (i.types[op].bitfield.qword
6218 && (i.tm.operand_types[op].bitfield.reg
6219 || i.tm.operand_types[op].bitfield.acc)
6220 && i.tm.operand_types[op].bitfield.dword)
6221 {
6222 if (intel_syntax
6223 && i.tm.opcode_modifier.toqword
6224 && !i.types[0].bitfield.regsimd)
6225 {
6226 /* Convert to QWORD. We want REX byte. */
6227 i.suffix = QWORD_MNEM_SUFFIX;
6228 }
6229 else
6230 {
6231 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6232 register_prefix, i.op[op].regs->reg_name,
6233 i.suffix);
6234 return 0;
6235 }
6236 }
6237 return 1;
6238 }
6239
6240 static int
6241 check_qword_reg (void)
6242 {
6243 int op;
6244
6245 for (op = i.operands; --op >= 0; )
6246 /* Skip non-register operands. */
6247 if (!i.types[op].bitfield.reg)
6248 continue;
6249 /* Reject eight bit registers, except where the template requires
6250 them. (eg. movzb) */
6251 else if (i.types[op].bitfield.byte
6252 && (i.tm.operand_types[op].bitfield.reg
6253 || i.tm.operand_types[op].bitfield.acc)
6254 && (i.tm.operand_types[op].bitfield.word
6255 || i.tm.operand_types[op].bitfield.dword))
6256 {
6257 as_bad (_("`%s%s' not allowed with `%s%c'"),
6258 register_prefix,
6259 i.op[op].regs->reg_name,
6260 i.tm.name,
6261 i.suffix);
6262 return 0;
6263 }
6264 /* Warn if the r prefix on a general reg is missing. */
6265 else if ((i.types[op].bitfield.word
6266 || i.types[op].bitfield.dword)
6267 && (i.tm.operand_types[op].bitfield.reg
6268 || i.tm.operand_types[op].bitfield.acc)
6269 && i.tm.operand_types[op].bitfield.qword)
6270 {
6271 /* Prohibit these changes in the 64bit mode, since the
6272 lowering is more complicated. */
6273 if (intel_syntax
6274 && i.tm.opcode_modifier.todword
6275 && !i.types[0].bitfield.regsimd)
6276 {
6277 /* Convert to DWORD. We don't want REX byte. */
6278 i.suffix = LONG_MNEM_SUFFIX;
6279 }
6280 else
6281 {
6282 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6283 register_prefix, i.op[op].regs->reg_name,
6284 i.suffix);
6285 return 0;
6286 }
6287 }
6288 return 1;
6289 }
6290
6291 static int
6292 check_word_reg (void)
6293 {
6294 int op;
6295 for (op = i.operands; --op >= 0;)
6296 /* Skip non-register operands. */
6297 if (!i.types[op].bitfield.reg)
6298 continue;
6299 /* Reject eight bit registers, except where the template requires
6300 them. (eg. movzb) */
6301 else if (i.types[op].bitfield.byte
6302 && (i.tm.operand_types[op].bitfield.reg
6303 || i.tm.operand_types[op].bitfield.acc)
6304 && (i.tm.operand_types[op].bitfield.word
6305 || i.tm.operand_types[op].bitfield.dword))
6306 {
6307 as_bad (_("`%s%s' not allowed with `%s%c'"),
6308 register_prefix,
6309 i.op[op].regs->reg_name,
6310 i.tm.name,
6311 i.suffix);
6312 return 0;
6313 }
6314 /* Warn if the e or r prefix on a general reg is present. */
6315 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6316 && (i.types[op].bitfield.dword
6317 || i.types[op].bitfield.qword)
6318 && (i.tm.operand_types[op].bitfield.reg
6319 || i.tm.operand_types[op].bitfield.acc)
6320 && i.tm.operand_types[op].bitfield.word)
6321 {
6322 /* Prohibit these changes in the 64bit mode, since the
6323 lowering is more complicated. */
6324 if (flag_code == CODE_64BIT)
6325 {
6326 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6327 register_prefix, i.op[op].regs->reg_name,
6328 i.suffix);
6329 return 0;
6330 }
6331 #if REGISTER_WARNINGS
6332 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6333 register_prefix,
6334 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6335 register_prefix, i.op[op].regs->reg_name, i.suffix);
6336 #endif
6337 }
6338 return 1;
6339 }
6340
6341 static int
6342 update_imm (unsigned int j)
6343 {
6344 i386_operand_type overlap = i.types[j];
6345 if ((overlap.bitfield.imm8
6346 || overlap.bitfield.imm8s
6347 || overlap.bitfield.imm16
6348 || overlap.bitfield.imm32
6349 || overlap.bitfield.imm32s
6350 || overlap.bitfield.imm64)
6351 && !operand_type_equal (&overlap, &imm8)
6352 && !operand_type_equal (&overlap, &imm8s)
6353 && !operand_type_equal (&overlap, &imm16)
6354 && !operand_type_equal (&overlap, &imm32)
6355 && !operand_type_equal (&overlap, &imm32s)
6356 && !operand_type_equal (&overlap, &imm64))
6357 {
6358 if (i.suffix)
6359 {
6360 i386_operand_type temp;
6361
6362 operand_type_set (&temp, 0);
6363 if (i.suffix == BYTE_MNEM_SUFFIX)
6364 {
6365 temp.bitfield.imm8 = overlap.bitfield.imm8;
6366 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6367 }
6368 else if (i.suffix == WORD_MNEM_SUFFIX)
6369 temp.bitfield.imm16 = overlap.bitfield.imm16;
6370 else if (i.suffix == QWORD_MNEM_SUFFIX)
6371 {
6372 temp.bitfield.imm64 = overlap.bitfield.imm64;
6373 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6374 }
6375 else
6376 temp.bitfield.imm32 = overlap.bitfield.imm32;
6377 overlap = temp;
6378 }
6379 else if (operand_type_equal (&overlap, &imm16_32_32s)
6380 || operand_type_equal (&overlap, &imm16_32)
6381 || operand_type_equal (&overlap, &imm16_32s))
6382 {
6383 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6384 overlap = imm16;
6385 else
6386 overlap = imm32s;
6387 }
6388 if (!operand_type_equal (&overlap, &imm8)
6389 && !operand_type_equal (&overlap, &imm8s)
6390 && !operand_type_equal (&overlap, &imm16)
6391 && !operand_type_equal (&overlap, &imm32)
6392 && !operand_type_equal (&overlap, &imm32s)
6393 && !operand_type_equal (&overlap, &imm64))
6394 {
6395 as_bad (_("no instruction mnemonic suffix given; "
6396 "can't determine immediate size"));
6397 return 0;
6398 }
6399 }
6400 i.types[j] = overlap;
6401
6402 return 1;
6403 }
6404
6405 static int
6406 finalize_imm (void)
6407 {
6408 unsigned int j, n;
6409
6410 /* Update the first 2 immediate operands. */
6411 n = i.operands > 2 ? 2 : i.operands;
6412 if (n)
6413 {
6414 for (j = 0; j < n; j++)
6415 if (update_imm (j) == 0)
6416 return 0;
6417
6418 /* The 3rd operand can't be immediate operand. */
6419 gas_assert (operand_type_check (i.types[2], imm) == 0);
6420 }
6421
6422 return 1;
6423 }
6424
6425 static int
6426 process_operands (void)
6427 {
6428 /* Default segment register this instruction will use for memory
6429 accesses. 0 means unknown. This is only for optimizing out
6430 unnecessary segment overrides. */
6431 const seg_entry *default_seg = 0;
6432
6433 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6434 {
6435 unsigned int dupl = i.operands;
6436 unsigned int dest = dupl - 1;
6437 unsigned int j;
6438
6439 /* The destination must be an xmm register. */
6440 gas_assert (i.reg_operands
6441 && MAX_OPERANDS > dupl
6442 && operand_type_equal (&i.types[dest], &regxmm));
6443
6444 if (i.tm.operand_types[0].bitfield.acc
6445 && i.tm.operand_types[0].bitfield.xmmword)
6446 {
6447 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6448 {
6449 /* Keep xmm0 for instructions with VEX prefix and 3
6450 sources. */
6451 i.tm.operand_types[0].bitfield.acc = 0;
6452 i.tm.operand_types[0].bitfield.regsimd = 1;
6453 goto duplicate;
6454 }
6455 else
6456 {
6457 /* We remove the first xmm0 and keep the number of
6458 operands unchanged, which in fact duplicates the
6459 destination. */
6460 for (j = 1; j < i.operands; j++)
6461 {
6462 i.op[j - 1] = i.op[j];
6463 i.types[j - 1] = i.types[j];
6464 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6465 }
6466 }
6467 }
6468 else if (i.tm.opcode_modifier.implicit1stxmm0)
6469 {
6470 gas_assert ((MAX_OPERANDS - 1) > dupl
6471 && (i.tm.opcode_modifier.vexsources
6472 == VEX3SOURCES));
6473
6474 /* Add the implicit xmm0 for instructions with VEX prefix
6475 and 3 sources. */
6476 for (j = i.operands; j > 0; j--)
6477 {
6478 i.op[j] = i.op[j - 1];
6479 i.types[j] = i.types[j - 1];
6480 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6481 }
6482 i.op[0].regs
6483 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6484 i.types[0] = regxmm;
6485 i.tm.operand_types[0] = regxmm;
6486
6487 i.operands += 2;
6488 i.reg_operands += 2;
6489 i.tm.operands += 2;
6490
6491 dupl++;
6492 dest++;
6493 i.op[dupl] = i.op[dest];
6494 i.types[dupl] = i.types[dest];
6495 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6496 }
6497 else
6498 {
6499 duplicate:
6500 i.operands++;
6501 i.reg_operands++;
6502 i.tm.operands++;
6503
6504 i.op[dupl] = i.op[dest];
6505 i.types[dupl] = i.types[dest];
6506 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6507 }
6508
6509 if (i.tm.opcode_modifier.immext)
6510 process_immext ();
6511 }
6512 else if (i.tm.operand_types[0].bitfield.acc
6513 && i.tm.operand_types[0].bitfield.xmmword)
6514 {
6515 unsigned int j;
6516
6517 for (j = 1; j < i.operands; j++)
6518 {
6519 i.op[j - 1] = i.op[j];
6520 i.types[j - 1] = i.types[j];
6521
6522 /* We need to adjust fields in i.tm since they are used by
6523 build_modrm_byte. */
6524 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6525 }
6526
6527 i.operands--;
6528 i.reg_operands--;
6529 i.tm.operands--;
6530 }
6531 else if (i.tm.opcode_modifier.implicitquadgroup)
6532 {
6533 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6534
6535 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6536 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6537 regnum = register_number (i.op[1].regs);
6538 first_reg_in_group = regnum & ~3;
6539 last_reg_in_group = first_reg_in_group + 3;
6540 if (regnum != first_reg_in_group)
6541 as_warn (_("source register `%s%s' implicitly denotes"
6542 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6543 register_prefix, i.op[1].regs->reg_name,
6544 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6545 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6546 i.tm.name);
6547 }
6548 else if (i.tm.opcode_modifier.regkludge)
6549 {
6550 /* The imul $imm, %reg instruction is converted into
6551 imul $imm, %reg, %reg, and the clr %reg instruction
6552 is converted into xor %reg, %reg. */
6553
6554 unsigned int first_reg_op;
6555
6556 if (operand_type_check (i.types[0], reg))
6557 first_reg_op = 0;
6558 else
6559 first_reg_op = 1;
6560 /* Pretend we saw the extra register operand. */
6561 gas_assert (i.reg_operands == 1
6562 && i.op[first_reg_op + 1].regs == 0);
6563 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6564 i.types[first_reg_op + 1] = i.types[first_reg_op];
6565 i.operands++;
6566 i.reg_operands++;
6567 }
6568
6569 if (i.tm.opcode_modifier.shortform)
6570 {
6571 if (i.types[0].bitfield.sreg2
6572 || i.types[0].bitfield.sreg3)
6573 {
6574 if (i.tm.base_opcode == POP_SEG_SHORT
6575 && i.op[0].regs->reg_num == 1)
6576 {
6577 as_bad (_("you can't `pop %scs'"), register_prefix);
6578 return 0;
6579 }
6580 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6581 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6582 i.rex |= REX_B;
6583 }
6584 else
6585 {
6586 /* The register or float register operand is in operand
6587 0 or 1. */
6588 unsigned int op;
6589
6590 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6591 || operand_type_check (i.types[0], reg))
6592 op = 0;
6593 else
6594 op = 1;
6595 /* Register goes in low 3 bits of opcode. */
6596 i.tm.base_opcode |= i.op[op].regs->reg_num;
6597 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6598 i.rex |= REX_B;
6599 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6600 {
6601 /* Warn about some common errors, but press on regardless.
6602 The first case can be generated by gcc (<= 2.8.1). */
6603 if (i.operands == 2)
6604 {
6605 /* Reversed arguments on faddp, fsubp, etc. */
6606 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6607 register_prefix, i.op[!intel_syntax].regs->reg_name,
6608 register_prefix, i.op[intel_syntax].regs->reg_name);
6609 }
6610 else
6611 {
6612 /* Extraneous `l' suffix on fp insn. */
6613 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6614 register_prefix, i.op[0].regs->reg_name);
6615 }
6616 }
6617 }
6618 }
6619 else if (i.tm.opcode_modifier.modrm)
6620 {
6621 /* The opcode is completed (modulo i.tm.extension_opcode which
6622 must be put into the modrm byte). Now, we make the modrm and
6623 index base bytes based on all the info we've collected. */
6624
6625 default_seg = build_modrm_byte ();
6626 }
6627 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6628 {
6629 default_seg = &ds;
6630 }
6631 else if (i.tm.opcode_modifier.isstring)
6632 {
6633 /* For the string instructions that allow a segment override
6634 on one of their operands, the default segment is ds. */
6635 default_seg = &ds;
6636 }
6637
6638 if (i.tm.base_opcode == 0x8d /* lea */
6639 && i.seg[0]
6640 && !quiet_warnings)
6641 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6642
6643 /* If a segment was explicitly specified, and the specified segment
6644 is not the default, use an opcode prefix to select it. If we
6645 never figured out what the default segment is, then default_seg
6646 will be zero at this point, and the specified segment prefix will
6647 always be used. */
6648 if ((i.seg[0]) && (i.seg[0] != default_seg))
6649 {
6650 if (!add_prefix (i.seg[0]->seg_prefix))
6651 return 0;
6652 }
6653 return 1;
6654 }
6655
6656 static const seg_entry *
6657 build_modrm_byte (void)
6658 {
6659 const seg_entry *default_seg = 0;
6660 unsigned int source, dest;
6661 int vex_3_sources;
6662
6663 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6664 if (vex_3_sources)
6665 {
6666 unsigned int nds, reg_slot;
6667 expressionS *exp;
6668
6669 dest = i.operands - 1;
6670 nds = dest - 1;
6671
6672 /* There are 2 kinds of instructions:
6673 1. 5 operands: 4 register operands or 3 register operands
6674 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6675 VexW0 or VexW1. The destination must be either XMM, YMM or
6676 ZMM register.
6677 2. 4 operands: 4 register operands or 3 register operands
6678 plus 1 memory operand, with VexXDS. */
6679 gas_assert ((i.reg_operands == 4
6680 || (i.reg_operands == 3 && i.mem_operands == 1))
6681 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6682 && i.tm.opcode_modifier.vexw
6683 && i.tm.operand_types[dest].bitfield.regsimd);
6684
6685 /* If VexW1 is set, the first non-immediate operand is the source and
6686 the second non-immediate one is encoded in the immediate operand. */
6687 if (i.tm.opcode_modifier.vexw == VEXW1)
6688 {
6689 source = i.imm_operands;
6690 reg_slot = i.imm_operands + 1;
6691 }
6692 else
6693 {
6694 source = i.imm_operands + 1;
6695 reg_slot = i.imm_operands;
6696 }
6697
6698 if (i.imm_operands == 0)
6699 {
6700 /* When there is no immediate operand, generate an 8bit
6701 immediate operand to encode the first operand. */
6702 exp = &im_expressions[i.imm_operands++];
6703 i.op[i.operands].imms = exp;
6704 i.types[i.operands] = imm8;
6705 i.operands++;
6706
6707 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6708 exp->X_op = O_constant;
6709 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6710 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6711 }
6712 else
6713 {
6714 unsigned int imm_slot;
6715
6716 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6717
6718 if (i.tm.opcode_modifier.immext)
6719 {
6720 /* When ImmExt is set, the immediate byte is the last
6721 operand. */
6722 imm_slot = i.operands - 1;
6723 source--;
6724 reg_slot--;
6725 }
6726 else
6727 {
6728 imm_slot = 0;
6729
6730 /* Turn on Imm8 so that output_imm will generate it. */
6731 i.types[imm_slot].bitfield.imm8 = 1;
6732 }
6733
6734 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6735 i.op[imm_slot].imms->X_add_number
6736 |= register_number (i.op[reg_slot].regs) << 4;
6737 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6738 }
6739
6740 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6741 i.vex.register_specifier = i.op[nds].regs;
6742 }
6743 else
6744 source = dest = 0;
6745
6746 /* i.reg_operands MUST be the number of real register operands;
6747 implicit registers do not count. If there are 3 register
6748 operands, it must be a instruction with VexNDS. For a
6749 instruction with VexNDD, the destination register is encoded
6750 in VEX prefix. If there are 4 register operands, it must be
6751 a instruction with VEX prefix and 3 sources. */
6752 if (i.mem_operands == 0
6753 && ((i.reg_operands == 2
6754 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6755 || (i.reg_operands == 3
6756 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6757 || (i.reg_operands == 4 && vex_3_sources)))
6758 {
6759 switch (i.operands)
6760 {
6761 case 2:
6762 source = 0;
6763 break;
6764 case 3:
6765 /* When there are 3 operands, one of them may be immediate,
6766 which may be the first or the last operand. Otherwise,
6767 the first operand must be shift count register (cl) or it
6768 is an instruction with VexNDS. */
6769 gas_assert (i.imm_operands == 1
6770 || (i.imm_operands == 0
6771 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6772 || i.types[0].bitfield.shiftcount)));
6773 if (operand_type_check (i.types[0], imm)
6774 || i.types[0].bitfield.shiftcount)
6775 source = 1;
6776 else
6777 source = 0;
6778 break;
6779 case 4:
6780 /* When there are 4 operands, the first two must be 8bit
6781 immediate operands. The source operand will be the 3rd
6782 one.
6783
6784 For instructions with VexNDS, if the first operand
6785 an imm8, the source operand is the 2nd one. If the last
6786 operand is imm8, the source operand is the first one. */
6787 gas_assert ((i.imm_operands == 2
6788 && i.types[0].bitfield.imm8
6789 && i.types[1].bitfield.imm8)
6790 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6791 && i.imm_operands == 1
6792 && (i.types[0].bitfield.imm8
6793 || i.types[i.operands - 1].bitfield.imm8
6794 || i.rounding)));
6795 if (i.imm_operands == 2)
6796 source = 2;
6797 else
6798 {
6799 if (i.types[0].bitfield.imm8)
6800 source = 1;
6801 else
6802 source = 0;
6803 }
6804 break;
6805 case 5:
6806 if (is_evex_encoding (&i.tm))
6807 {
6808 /* For EVEX instructions, when there are 5 operands, the
6809 first one must be immediate operand. If the second one
6810 is immediate operand, the source operand is the 3th
6811 one. If the last one is immediate operand, the source
6812 operand is the 2nd one. */
6813 gas_assert (i.imm_operands == 2
6814 && i.tm.opcode_modifier.sae
6815 && operand_type_check (i.types[0], imm));
6816 if (operand_type_check (i.types[1], imm))
6817 source = 2;
6818 else if (operand_type_check (i.types[4], imm))
6819 source = 1;
6820 else
6821 abort ();
6822 }
6823 break;
6824 default:
6825 abort ();
6826 }
6827
6828 if (!vex_3_sources)
6829 {
6830 dest = source + 1;
6831
6832 /* RC/SAE operand could be between DEST and SRC. That happens
6833 when one operand is GPR and the other one is XMM/YMM/ZMM
6834 register. */
6835 if (i.rounding && i.rounding->operand == (int) dest)
6836 dest++;
6837
6838 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6839 {
6840 /* For instructions with VexNDS, the register-only source
6841 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6842 register. It is encoded in VEX prefix. We need to
6843 clear RegMem bit before calling operand_type_equal. */
6844
6845 i386_operand_type op;
6846 unsigned int vvvv;
6847
6848 /* Check register-only source operand when two source
6849 operands are swapped. */
6850 if (!i.tm.operand_types[source].bitfield.baseindex
6851 && i.tm.operand_types[dest].bitfield.baseindex)
6852 {
6853 vvvv = source;
6854 source = dest;
6855 }
6856 else
6857 vvvv = dest;
6858
6859 op = i.tm.operand_types[vvvv];
6860 op.bitfield.regmem = 0;
6861 if ((dest + 1) >= i.operands
6862 || ((!op.bitfield.reg
6863 || (!op.bitfield.dword && !op.bitfield.qword))
6864 && !op.bitfield.regsimd
6865 && !operand_type_equal (&op, &regmask)))
6866 abort ();
6867 i.vex.register_specifier = i.op[vvvv].regs;
6868 dest++;
6869 }
6870 }
6871
6872 i.rm.mode = 3;
6873 /* One of the register operands will be encoded in the i.tm.reg
6874 field, the other in the combined i.tm.mode and i.tm.regmem
6875 fields. If no form of this instruction supports a memory
6876 destination operand, then we assume the source operand may
6877 sometimes be a memory operand and so we need to store the
6878 destination in the i.rm.reg field. */
6879 if (!i.tm.operand_types[dest].bitfield.regmem
6880 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6881 {
6882 i.rm.reg = i.op[dest].regs->reg_num;
6883 i.rm.regmem = i.op[source].regs->reg_num;
6884 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6885 i.rex |= REX_R;
6886 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6887 i.vrex |= REX_R;
6888 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6889 i.rex |= REX_B;
6890 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6891 i.vrex |= REX_B;
6892 }
6893 else
6894 {
6895 i.rm.reg = i.op[source].regs->reg_num;
6896 i.rm.regmem = i.op[dest].regs->reg_num;
6897 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6898 i.rex |= REX_B;
6899 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6900 i.vrex |= REX_B;
6901 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6902 i.rex |= REX_R;
6903 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6904 i.vrex |= REX_R;
6905 }
6906 if (flag_code != CODE_64BIT && (i.rex & REX_R))
6907 {
6908 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
6909 abort ();
6910 i.rex &= ~REX_R;
6911 add_prefix (LOCK_PREFIX_OPCODE);
6912 }
6913 }
6914 else
6915 { /* If it's not 2 reg operands... */
6916 unsigned int mem;
6917
6918 if (i.mem_operands)
6919 {
6920 unsigned int fake_zero_displacement = 0;
6921 unsigned int op;
6922
6923 for (op = 0; op < i.operands; op++)
6924 if (operand_type_check (i.types[op], anymem))
6925 break;
6926 gas_assert (op < i.operands);
6927
6928 if (i.tm.opcode_modifier.vecsib)
6929 {
6930 if (i.index_reg->reg_num == RegEiz
6931 || i.index_reg->reg_num == RegRiz)
6932 abort ();
6933
6934 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6935 if (!i.base_reg)
6936 {
6937 i.sib.base = NO_BASE_REGISTER;
6938 i.sib.scale = i.log2_scale_factor;
6939 i.types[op].bitfield.disp8 = 0;
6940 i.types[op].bitfield.disp16 = 0;
6941 i.types[op].bitfield.disp64 = 0;
6942 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6943 {
6944 /* Must be 32 bit */
6945 i.types[op].bitfield.disp32 = 1;
6946 i.types[op].bitfield.disp32s = 0;
6947 }
6948 else
6949 {
6950 i.types[op].bitfield.disp32 = 0;
6951 i.types[op].bitfield.disp32s = 1;
6952 }
6953 }
6954 i.sib.index = i.index_reg->reg_num;
6955 if ((i.index_reg->reg_flags & RegRex) != 0)
6956 i.rex |= REX_X;
6957 if ((i.index_reg->reg_flags & RegVRex) != 0)
6958 i.vrex |= REX_X;
6959 }
6960
6961 default_seg = &ds;
6962
6963 if (i.base_reg == 0)
6964 {
6965 i.rm.mode = 0;
6966 if (!i.disp_operands)
6967 fake_zero_displacement = 1;
6968 if (i.index_reg == 0)
6969 {
6970 i386_operand_type newdisp;
6971
6972 gas_assert (!i.tm.opcode_modifier.vecsib);
6973 /* Operand is just <disp> */
6974 if (flag_code == CODE_64BIT)
6975 {
6976 /* 64bit mode overwrites the 32bit absolute
6977 addressing by RIP relative addressing and
6978 absolute addressing is encoded by one of the
6979 redundant SIB forms. */
6980 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6981 i.sib.base = NO_BASE_REGISTER;
6982 i.sib.index = NO_INDEX_REGISTER;
6983 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6984 }
6985 else if ((flag_code == CODE_16BIT)
6986 ^ (i.prefix[ADDR_PREFIX] != 0))
6987 {
6988 i.rm.regmem = NO_BASE_REGISTER_16;
6989 newdisp = disp16;
6990 }
6991 else
6992 {
6993 i.rm.regmem = NO_BASE_REGISTER;
6994 newdisp = disp32;
6995 }
6996 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6997 i.types[op] = operand_type_or (i.types[op], newdisp);
6998 }
6999 else if (!i.tm.opcode_modifier.vecsib)
7000 {
7001 /* !i.base_reg && i.index_reg */
7002 if (i.index_reg->reg_num == RegEiz
7003 || i.index_reg->reg_num == RegRiz)
7004 i.sib.index = NO_INDEX_REGISTER;
7005 else
7006 i.sib.index = i.index_reg->reg_num;
7007 i.sib.base = NO_BASE_REGISTER;
7008 i.sib.scale = i.log2_scale_factor;
7009 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7010 i.types[op].bitfield.disp8 = 0;
7011 i.types[op].bitfield.disp16 = 0;
7012 i.types[op].bitfield.disp64 = 0;
7013 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7014 {
7015 /* Must be 32 bit */
7016 i.types[op].bitfield.disp32 = 1;
7017 i.types[op].bitfield.disp32s = 0;
7018 }
7019 else
7020 {
7021 i.types[op].bitfield.disp32 = 0;
7022 i.types[op].bitfield.disp32s = 1;
7023 }
7024 if ((i.index_reg->reg_flags & RegRex) != 0)
7025 i.rex |= REX_X;
7026 }
7027 }
7028 /* RIP addressing for 64bit mode. */
7029 else if (i.base_reg->reg_num == RegRip ||
7030 i.base_reg->reg_num == RegEip)
7031 {
7032 gas_assert (!i.tm.opcode_modifier.vecsib);
7033 i.rm.regmem = NO_BASE_REGISTER;
7034 i.types[op].bitfield.disp8 = 0;
7035 i.types[op].bitfield.disp16 = 0;
7036 i.types[op].bitfield.disp32 = 0;
7037 i.types[op].bitfield.disp32s = 1;
7038 i.types[op].bitfield.disp64 = 0;
7039 i.flags[op] |= Operand_PCrel;
7040 if (! i.disp_operands)
7041 fake_zero_displacement = 1;
7042 }
7043 else if (i.base_reg->reg_type.bitfield.word)
7044 {
7045 gas_assert (!i.tm.opcode_modifier.vecsib);
7046 switch (i.base_reg->reg_num)
7047 {
7048 case 3: /* (%bx) */
7049 if (i.index_reg == 0)
7050 i.rm.regmem = 7;
7051 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7052 i.rm.regmem = i.index_reg->reg_num - 6;
7053 break;
7054 case 5: /* (%bp) */
7055 default_seg = &ss;
7056 if (i.index_reg == 0)
7057 {
7058 i.rm.regmem = 6;
7059 if (operand_type_check (i.types[op], disp) == 0)
7060 {
7061 /* fake (%bp) into 0(%bp) */
7062 i.types[op].bitfield.disp8 = 1;
7063 fake_zero_displacement = 1;
7064 }
7065 }
7066 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7067 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7068 break;
7069 default: /* (%si) -> 4 or (%di) -> 5 */
7070 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7071 }
7072 i.rm.mode = mode_from_disp_size (i.types[op]);
7073 }
7074 else /* i.base_reg and 32/64 bit mode */
7075 {
7076 if (flag_code == CODE_64BIT
7077 && operand_type_check (i.types[op], disp))
7078 {
7079 i.types[op].bitfield.disp16 = 0;
7080 i.types[op].bitfield.disp64 = 0;
7081 if (i.prefix[ADDR_PREFIX] == 0)
7082 {
7083 i.types[op].bitfield.disp32 = 0;
7084 i.types[op].bitfield.disp32s = 1;
7085 }
7086 else
7087 {
7088 i.types[op].bitfield.disp32 = 1;
7089 i.types[op].bitfield.disp32s = 0;
7090 }
7091 }
7092
7093 if (!i.tm.opcode_modifier.vecsib)
7094 i.rm.regmem = i.base_reg->reg_num;
7095 if ((i.base_reg->reg_flags & RegRex) != 0)
7096 i.rex |= REX_B;
7097 i.sib.base = i.base_reg->reg_num;
7098 /* x86-64 ignores REX prefix bit here to avoid decoder
7099 complications. */
7100 if (!(i.base_reg->reg_flags & RegRex)
7101 && (i.base_reg->reg_num == EBP_REG_NUM
7102 || i.base_reg->reg_num == ESP_REG_NUM))
7103 default_seg = &ss;
7104 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7105 {
7106 fake_zero_displacement = 1;
7107 i.types[op].bitfield.disp8 = 1;
7108 }
7109 i.sib.scale = i.log2_scale_factor;
7110 if (i.index_reg == 0)
7111 {
7112 gas_assert (!i.tm.opcode_modifier.vecsib);
7113 /* <disp>(%esp) becomes two byte modrm with no index
7114 register. We've already stored the code for esp
7115 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7116 Any base register besides %esp will not use the
7117 extra modrm byte. */
7118 i.sib.index = NO_INDEX_REGISTER;
7119 }
7120 else if (!i.tm.opcode_modifier.vecsib)
7121 {
7122 if (i.index_reg->reg_num == RegEiz
7123 || i.index_reg->reg_num == RegRiz)
7124 i.sib.index = NO_INDEX_REGISTER;
7125 else
7126 i.sib.index = i.index_reg->reg_num;
7127 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7128 if ((i.index_reg->reg_flags & RegRex) != 0)
7129 i.rex |= REX_X;
7130 }
7131
7132 if (i.disp_operands
7133 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7134 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7135 i.rm.mode = 0;
7136 else
7137 {
7138 if (!fake_zero_displacement
7139 && !i.disp_operands
7140 && i.disp_encoding)
7141 {
7142 fake_zero_displacement = 1;
7143 if (i.disp_encoding == disp_encoding_8bit)
7144 i.types[op].bitfield.disp8 = 1;
7145 else
7146 i.types[op].bitfield.disp32 = 1;
7147 }
7148 i.rm.mode = mode_from_disp_size (i.types[op]);
7149 }
7150 }
7151
7152 if (fake_zero_displacement)
7153 {
7154 /* Fakes a zero displacement assuming that i.types[op]
7155 holds the correct displacement size. */
7156 expressionS *exp;
7157
7158 gas_assert (i.op[op].disps == 0);
7159 exp = &disp_expressions[i.disp_operands++];
7160 i.op[op].disps = exp;
7161 exp->X_op = O_constant;
7162 exp->X_add_number = 0;
7163 exp->X_add_symbol = (symbolS *) 0;
7164 exp->X_op_symbol = (symbolS *) 0;
7165 }
7166
7167 mem = op;
7168 }
7169 else
7170 mem = ~0;
7171
7172 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7173 {
7174 if (operand_type_check (i.types[0], imm))
7175 i.vex.register_specifier = NULL;
7176 else
7177 {
7178 /* VEX.vvvv encodes one of the sources when the first
7179 operand is not an immediate. */
7180 if (i.tm.opcode_modifier.vexw == VEXW0)
7181 i.vex.register_specifier = i.op[0].regs;
7182 else
7183 i.vex.register_specifier = i.op[1].regs;
7184 }
7185
7186 /* Destination is a XMM register encoded in the ModRM.reg
7187 and VEX.R bit. */
7188 i.rm.reg = i.op[2].regs->reg_num;
7189 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7190 i.rex |= REX_R;
7191
7192 /* ModRM.rm and VEX.B encodes the other source. */
7193 if (!i.mem_operands)
7194 {
7195 i.rm.mode = 3;
7196
7197 if (i.tm.opcode_modifier.vexw == VEXW0)
7198 i.rm.regmem = i.op[1].regs->reg_num;
7199 else
7200 i.rm.regmem = i.op[0].regs->reg_num;
7201
7202 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7203 i.rex |= REX_B;
7204 }
7205 }
7206 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7207 {
7208 i.vex.register_specifier = i.op[2].regs;
7209 if (!i.mem_operands)
7210 {
7211 i.rm.mode = 3;
7212 i.rm.regmem = i.op[1].regs->reg_num;
7213 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7214 i.rex |= REX_B;
7215 }
7216 }
7217 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7218 (if any) based on i.tm.extension_opcode. Again, we must be
7219 careful to make sure that segment/control/debug/test/MMX
7220 registers are coded into the i.rm.reg field. */
7221 else if (i.reg_operands)
7222 {
7223 unsigned int op;
7224 unsigned int vex_reg = ~0;
7225
7226 for (op = 0; op < i.operands; op++)
7227 if (i.types[op].bitfield.reg
7228 || i.types[op].bitfield.regmmx
7229 || i.types[op].bitfield.regsimd
7230 || i.types[op].bitfield.regbnd
7231 || i.types[op].bitfield.regmask
7232 || i.types[op].bitfield.sreg2
7233 || i.types[op].bitfield.sreg3
7234 || i.types[op].bitfield.control
7235 || i.types[op].bitfield.debug
7236 || i.types[op].bitfield.test)
7237 break;
7238
7239 if (vex_3_sources)
7240 op = dest;
7241 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7242 {
7243 /* For instructions with VexNDS, the register-only
7244 source operand is encoded in VEX prefix. */
7245 gas_assert (mem != (unsigned int) ~0);
7246
7247 if (op > mem)
7248 {
7249 vex_reg = op++;
7250 gas_assert (op < i.operands);
7251 }
7252 else
7253 {
7254 /* Check register-only source operand when two source
7255 operands are swapped. */
7256 if (!i.tm.operand_types[op].bitfield.baseindex
7257 && i.tm.operand_types[op + 1].bitfield.baseindex)
7258 {
7259 vex_reg = op;
7260 op += 2;
7261 gas_assert (mem == (vex_reg + 1)
7262 && op < i.operands);
7263 }
7264 else
7265 {
7266 vex_reg = op + 1;
7267 gas_assert (vex_reg < i.operands);
7268 }
7269 }
7270 }
7271 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7272 {
7273 /* For instructions with VexNDD, the register destination
7274 is encoded in VEX prefix. */
7275 if (i.mem_operands == 0)
7276 {
7277 /* There is no memory operand. */
7278 gas_assert ((op + 2) == i.operands);
7279 vex_reg = op + 1;
7280 }
7281 else
7282 {
7283 /* There are only 2 non-immediate operands. */
7284 gas_assert (op < i.imm_operands + 2
7285 && i.operands == i.imm_operands + 2);
7286 vex_reg = i.imm_operands + 1;
7287 }
7288 }
7289 else
7290 gas_assert (op < i.operands);
7291
7292 if (vex_reg != (unsigned int) ~0)
7293 {
7294 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7295
7296 if ((!type->bitfield.reg
7297 || (!type->bitfield.dword && !type->bitfield.qword))
7298 && !type->bitfield.regsimd
7299 && !operand_type_equal (type, &regmask))
7300 abort ();
7301
7302 i.vex.register_specifier = i.op[vex_reg].regs;
7303 }
7304
7305 /* Don't set OP operand twice. */
7306 if (vex_reg != op)
7307 {
7308 /* If there is an extension opcode to put here, the
7309 register number must be put into the regmem field. */
7310 if (i.tm.extension_opcode != None)
7311 {
7312 i.rm.regmem = i.op[op].regs->reg_num;
7313 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7314 i.rex |= REX_B;
7315 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7316 i.vrex |= REX_B;
7317 }
7318 else
7319 {
7320 i.rm.reg = i.op[op].regs->reg_num;
7321 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7322 i.rex |= REX_R;
7323 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7324 i.vrex |= REX_R;
7325 }
7326 }
7327
7328 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7329 must set it to 3 to indicate this is a register operand
7330 in the regmem field. */
7331 if (!i.mem_operands)
7332 i.rm.mode = 3;
7333 }
7334
7335 /* Fill in i.rm.reg field with extension opcode (if any). */
7336 if (i.tm.extension_opcode != None)
7337 i.rm.reg = i.tm.extension_opcode;
7338 }
7339 return default_seg;
7340 }
7341
7342 static void
7343 output_branch (void)
7344 {
7345 char *p;
7346 int size;
7347 int code16;
7348 int prefix;
7349 relax_substateT subtype;
7350 symbolS *sym;
7351 offsetT off;
7352
7353 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7354 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7355
7356 prefix = 0;
7357 if (i.prefix[DATA_PREFIX] != 0)
7358 {
7359 prefix = 1;
7360 i.prefixes -= 1;
7361 code16 ^= CODE16;
7362 }
7363 /* Pentium4 branch hints. */
7364 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7365 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7366 {
7367 prefix++;
7368 i.prefixes--;
7369 }
7370 if (i.prefix[REX_PREFIX] != 0)
7371 {
7372 prefix++;
7373 i.prefixes--;
7374 }
7375
7376 /* BND prefixed jump. */
7377 if (i.prefix[BND_PREFIX] != 0)
7378 {
7379 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7380 i.prefixes -= 1;
7381 }
7382
7383 if (i.prefixes != 0 && !intel_syntax)
7384 as_warn (_("skipping prefixes on this instruction"));
7385
7386 /* It's always a symbol; End frag & setup for relax.
7387 Make sure there is enough room in this frag for the largest
7388 instruction we may generate in md_convert_frag. This is 2
7389 bytes for the opcode and room for the prefix and largest
7390 displacement. */
7391 frag_grow (prefix + 2 + 4);
7392 /* Prefix and 1 opcode byte go in fr_fix. */
7393 p = frag_more (prefix + 1);
7394 if (i.prefix[DATA_PREFIX] != 0)
7395 *p++ = DATA_PREFIX_OPCODE;
7396 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7397 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7398 *p++ = i.prefix[SEG_PREFIX];
7399 if (i.prefix[REX_PREFIX] != 0)
7400 *p++ = i.prefix[REX_PREFIX];
7401 *p = i.tm.base_opcode;
7402
7403 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7404 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7405 else if (cpu_arch_flags.bitfield.cpui386)
7406 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7407 else
7408 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7409 subtype |= code16;
7410
7411 sym = i.op[0].disps->X_add_symbol;
7412 off = i.op[0].disps->X_add_number;
7413
7414 if (i.op[0].disps->X_op != O_constant
7415 && i.op[0].disps->X_op != O_symbol)
7416 {
7417 /* Handle complex expressions. */
7418 sym = make_expr_symbol (i.op[0].disps);
7419 off = 0;
7420 }
7421
7422 /* 1 possible extra opcode + 4 byte displacement go in var part.
7423 Pass reloc in fr_var. */
7424 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7425 }
7426
7427 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7428 /* Return TRUE iff PLT32 relocation should be used for branching to
7429 symbol S. */
7430
7431 static bfd_boolean
7432 need_plt32_p (symbolS *s)
7433 {
7434 /* PLT32 relocation is ELF only. */
7435 if (!IS_ELF)
7436 return FALSE;
7437
7438 /* Since there is no need to prepare for PLT branch on x86-64, we
7439 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7440 be used as a marker for 32-bit PC-relative branches. */
7441 if (!object_64bit)
7442 return FALSE;
7443
7444 /* Weak or undefined symbol need PLT32 relocation. */
7445 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7446 return TRUE;
7447
7448 /* Non-global symbol doesn't need PLT32 relocation. */
7449 if (! S_IS_EXTERNAL (s))
7450 return FALSE;
7451
7452 /* Other global symbols need PLT32 relocation. NB: Symbol with
7453 non-default visibilities are treated as normal global symbol
7454 so that PLT32 relocation can be used as a marker for 32-bit
7455 PC-relative branches. It is useful for linker relaxation. */
7456 return TRUE;
7457 }
7458 #endif
7459
7460 static void
7461 output_jump (void)
7462 {
7463 char *p;
7464 int size;
7465 fixS *fixP;
7466 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7467
7468 if (i.tm.opcode_modifier.jumpbyte)
7469 {
7470 /* This is a loop or jecxz type instruction. */
7471 size = 1;
7472 if (i.prefix[ADDR_PREFIX] != 0)
7473 {
7474 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7475 i.prefixes -= 1;
7476 }
7477 /* Pentium4 branch hints. */
7478 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7479 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7480 {
7481 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7482 i.prefixes--;
7483 }
7484 }
7485 else
7486 {
7487 int code16;
7488
7489 code16 = 0;
7490 if (flag_code == CODE_16BIT)
7491 code16 = CODE16;
7492
7493 if (i.prefix[DATA_PREFIX] != 0)
7494 {
7495 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7496 i.prefixes -= 1;
7497 code16 ^= CODE16;
7498 }
7499
7500 size = 4;
7501 if (code16)
7502 size = 2;
7503 }
7504
7505 if (i.prefix[REX_PREFIX] != 0)
7506 {
7507 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7508 i.prefixes -= 1;
7509 }
7510
7511 /* BND prefixed jump. */
7512 if (i.prefix[BND_PREFIX] != 0)
7513 {
7514 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7515 i.prefixes -= 1;
7516 }
7517
7518 if (i.prefixes != 0 && !intel_syntax)
7519 as_warn (_("skipping prefixes on this instruction"));
7520
7521 p = frag_more (i.tm.opcode_length + size);
7522 switch (i.tm.opcode_length)
7523 {
7524 case 2:
7525 *p++ = i.tm.base_opcode >> 8;
7526 /* Fall through. */
7527 case 1:
7528 *p++ = i.tm.base_opcode;
7529 break;
7530 default:
7531 abort ();
7532 }
7533
7534 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7535 if (size == 4
7536 && jump_reloc == NO_RELOC
7537 && need_plt32_p (i.op[0].disps->X_add_symbol))
7538 jump_reloc = BFD_RELOC_X86_64_PLT32;
7539 #endif
7540
7541 jump_reloc = reloc (size, 1, 1, jump_reloc);
7542
7543 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7544 i.op[0].disps, 1, jump_reloc);
7545
7546 /* All jumps handled here are signed, but don't use a signed limit
7547 check for 32 and 16 bit jumps as we want to allow wrap around at
7548 4G and 64k respectively. */
7549 if (size == 1)
7550 fixP->fx_signed = 1;
7551 }
7552
7553 static void
7554 output_interseg_jump (void)
7555 {
7556 char *p;
7557 int size;
7558 int prefix;
7559 int code16;
7560
7561 code16 = 0;
7562 if (flag_code == CODE_16BIT)
7563 code16 = CODE16;
7564
7565 prefix = 0;
7566 if (i.prefix[DATA_PREFIX] != 0)
7567 {
7568 prefix = 1;
7569 i.prefixes -= 1;
7570 code16 ^= CODE16;
7571 }
7572 if (i.prefix[REX_PREFIX] != 0)
7573 {
7574 prefix++;
7575 i.prefixes -= 1;
7576 }
7577
7578 size = 4;
7579 if (code16)
7580 size = 2;
7581
7582 if (i.prefixes != 0 && !intel_syntax)
7583 as_warn (_("skipping prefixes on this instruction"));
7584
7585 /* 1 opcode; 2 segment; offset */
7586 p = frag_more (prefix + 1 + 2 + size);
7587
7588 if (i.prefix[DATA_PREFIX] != 0)
7589 *p++ = DATA_PREFIX_OPCODE;
7590
7591 if (i.prefix[REX_PREFIX] != 0)
7592 *p++ = i.prefix[REX_PREFIX];
7593
7594 *p++ = i.tm.base_opcode;
7595 if (i.op[1].imms->X_op == O_constant)
7596 {
7597 offsetT n = i.op[1].imms->X_add_number;
7598
7599 if (size == 2
7600 && !fits_in_unsigned_word (n)
7601 && !fits_in_signed_word (n))
7602 {
7603 as_bad (_("16-bit jump out of range"));
7604 return;
7605 }
7606 md_number_to_chars (p, n, size);
7607 }
7608 else
7609 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7610 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7611 if (i.op[0].imms->X_op != O_constant)
7612 as_bad (_("can't handle non absolute segment in `%s'"),
7613 i.tm.name);
7614 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7615 }
7616
7617 static void
7618 output_insn (void)
7619 {
7620 fragS *insn_start_frag;
7621 offsetT insn_start_off;
7622
7623 /* Tie dwarf2 debug info to the address at the start of the insn.
7624 We can't do this after the insn has been output as the current
7625 frag may have been closed off. eg. by frag_var. */
7626 dwarf2_emit_insn (0);
7627
7628 insn_start_frag = frag_now;
7629 insn_start_off = frag_now_fix ();
7630
7631 /* Output jumps. */
7632 if (i.tm.opcode_modifier.jump)
7633 output_branch ();
7634 else if (i.tm.opcode_modifier.jumpbyte
7635 || i.tm.opcode_modifier.jumpdword)
7636 output_jump ();
7637 else if (i.tm.opcode_modifier.jumpintersegment)
7638 output_interseg_jump ();
7639 else
7640 {
7641 /* Output normal instructions here. */
7642 char *p;
7643 unsigned char *q;
7644 unsigned int j;
7645 unsigned int prefix;
7646
7647 if (avoid_fence
7648 && i.tm.base_opcode == 0xfae
7649 && i.operands == 1
7650 && i.imm_operands == 1
7651 && (i.op[0].imms->X_add_number == 0xe8
7652 || i.op[0].imms->X_add_number == 0xf0
7653 || i.op[0].imms->X_add_number == 0xf8))
7654 {
7655 /* Encode lfence, mfence, and sfence as
7656 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7657 offsetT val = 0x240483f0ULL;
7658 p = frag_more (5);
7659 md_number_to_chars (p, val, 5);
7660 return;
7661 }
7662
7663 /* Some processors fail on LOCK prefix. This options makes
7664 assembler ignore LOCK prefix and serves as a workaround. */
7665 if (omit_lock_prefix)
7666 {
7667 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7668 return;
7669 i.prefix[LOCK_PREFIX] = 0;
7670 }
7671
7672 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7673 don't need the explicit prefix. */
7674 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7675 {
7676 switch (i.tm.opcode_length)
7677 {
7678 case 3:
7679 if (i.tm.base_opcode & 0xff000000)
7680 {
7681 prefix = (i.tm.base_opcode >> 24) & 0xff;
7682 add_prefix (prefix);
7683 }
7684 break;
7685 case 2:
7686 if ((i.tm.base_opcode & 0xff0000) != 0)
7687 {
7688 prefix = (i.tm.base_opcode >> 16) & 0xff;
7689 if (!i.tm.cpu_flags.bitfield.cpupadlock
7690 || prefix != REPE_PREFIX_OPCODE
7691 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7692 add_prefix (prefix);
7693 }
7694 break;
7695 case 1:
7696 break;
7697 case 0:
7698 /* Check for pseudo prefixes. */
7699 as_bad_where (insn_start_frag->fr_file,
7700 insn_start_frag->fr_line,
7701 _("pseudo prefix without instruction"));
7702 return;
7703 default:
7704 abort ();
7705 }
7706
7707 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7708 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7709 R_X86_64_GOTTPOFF relocation so that linker can safely
7710 perform IE->LE optimization. */
7711 if (x86_elf_abi == X86_64_X32_ABI
7712 && i.operands == 2
7713 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7714 && i.prefix[REX_PREFIX] == 0)
7715 add_prefix (REX_OPCODE);
7716 #endif
7717
7718 /* The prefix bytes. */
7719 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7720 if (*q)
7721 FRAG_APPEND_1_CHAR (*q);
7722 }
7723 else
7724 {
7725 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7726 if (*q)
7727 switch (j)
7728 {
7729 case REX_PREFIX:
7730 /* REX byte is encoded in VEX prefix. */
7731 break;
7732 case SEG_PREFIX:
7733 case ADDR_PREFIX:
7734 FRAG_APPEND_1_CHAR (*q);
7735 break;
7736 default:
7737 /* There should be no other prefixes for instructions
7738 with VEX prefix. */
7739 abort ();
7740 }
7741
7742 /* For EVEX instructions i.vrex should become 0 after
7743 build_evex_prefix. For VEX instructions upper 16 registers
7744 aren't available, so VREX should be 0. */
7745 if (i.vrex)
7746 abort ();
7747 /* Now the VEX prefix. */
7748 p = frag_more (i.vex.length);
7749 for (j = 0; j < i.vex.length; j++)
7750 p[j] = i.vex.bytes[j];
7751 }
7752
7753 /* Now the opcode; be careful about word order here! */
7754 if (i.tm.opcode_length == 1)
7755 {
7756 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7757 }
7758 else
7759 {
7760 switch (i.tm.opcode_length)
7761 {
7762 case 4:
7763 p = frag_more (4);
7764 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7765 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7766 break;
7767 case 3:
7768 p = frag_more (3);
7769 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7770 break;
7771 case 2:
7772 p = frag_more (2);
7773 break;
7774 default:
7775 abort ();
7776 break;
7777 }
7778
7779 /* Put out high byte first: can't use md_number_to_chars! */
7780 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7781 *p = i.tm.base_opcode & 0xff;
7782 }
7783
7784 /* Now the modrm byte and sib byte (if present). */
7785 if (i.tm.opcode_modifier.modrm)
7786 {
7787 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7788 | i.rm.reg << 3
7789 | i.rm.mode << 6));
7790 /* If i.rm.regmem == ESP (4)
7791 && i.rm.mode != (Register mode)
7792 && not 16 bit
7793 ==> need second modrm byte. */
7794 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7795 && i.rm.mode != 3
7796 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7797 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7798 | i.sib.index << 3
7799 | i.sib.scale << 6));
7800 }
7801
7802 if (i.disp_operands)
7803 output_disp (insn_start_frag, insn_start_off);
7804
7805 if (i.imm_operands)
7806 output_imm (insn_start_frag, insn_start_off);
7807 }
7808
7809 #ifdef DEBUG386
7810 if (flag_debug)
7811 {
7812 pi ("" /*line*/, &i);
7813 }
7814 #endif /* DEBUG386 */
7815 }
7816
7817 /* Return the size of the displacement operand N. */
7818
7819 static int
7820 disp_size (unsigned int n)
7821 {
7822 int size = 4;
7823
7824 if (i.types[n].bitfield.disp64)
7825 size = 8;
7826 else if (i.types[n].bitfield.disp8)
7827 size = 1;
7828 else if (i.types[n].bitfield.disp16)
7829 size = 2;
7830 return size;
7831 }
7832
7833 /* Return the size of the immediate operand N. */
7834
7835 static int
7836 imm_size (unsigned int n)
7837 {
7838 int size = 4;
7839 if (i.types[n].bitfield.imm64)
7840 size = 8;
7841 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7842 size = 1;
7843 else if (i.types[n].bitfield.imm16)
7844 size = 2;
7845 return size;
7846 }
7847
7848 static void
7849 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7850 {
7851 char *p;
7852 unsigned int n;
7853
7854 for (n = 0; n < i.operands; n++)
7855 {
7856 if (operand_type_check (i.types[n], disp))
7857 {
7858 if (i.op[n].disps->X_op == O_constant)
7859 {
7860 int size = disp_size (n);
7861 offsetT val = i.op[n].disps->X_add_number;
7862
7863 val = offset_in_range (val >> i.memshift, size);
7864 p = frag_more (size);
7865 md_number_to_chars (p, val, size);
7866 }
7867 else
7868 {
7869 enum bfd_reloc_code_real reloc_type;
7870 int size = disp_size (n);
7871 int sign = i.types[n].bitfield.disp32s;
7872 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7873 fixS *fixP;
7874
7875 /* We can't have 8 bit displacement here. */
7876 gas_assert (!i.types[n].bitfield.disp8);
7877
7878 /* The PC relative address is computed relative
7879 to the instruction boundary, so in case immediate
7880 fields follows, we need to adjust the value. */
7881 if (pcrel && i.imm_operands)
7882 {
7883 unsigned int n1;
7884 int sz = 0;
7885
7886 for (n1 = 0; n1 < i.operands; n1++)
7887 if (operand_type_check (i.types[n1], imm))
7888 {
7889 /* Only one immediate is allowed for PC
7890 relative address. */
7891 gas_assert (sz == 0);
7892 sz = imm_size (n1);
7893 i.op[n].disps->X_add_number -= sz;
7894 }
7895 /* We should find the immediate. */
7896 gas_assert (sz != 0);
7897 }
7898
7899 p = frag_more (size);
7900 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7901 if (GOT_symbol
7902 && GOT_symbol == i.op[n].disps->X_add_symbol
7903 && (((reloc_type == BFD_RELOC_32
7904 || reloc_type == BFD_RELOC_X86_64_32S
7905 || (reloc_type == BFD_RELOC_64
7906 && object_64bit))
7907 && (i.op[n].disps->X_op == O_symbol
7908 || (i.op[n].disps->X_op == O_add
7909 && ((symbol_get_value_expression
7910 (i.op[n].disps->X_op_symbol)->X_op)
7911 == O_subtract))))
7912 || reloc_type == BFD_RELOC_32_PCREL))
7913 {
7914 offsetT add;
7915
7916 if (insn_start_frag == frag_now)
7917 add = (p - frag_now->fr_literal) - insn_start_off;
7918 else
7919 {
7920 fragS *fr;
7921
7922 add = insn_start_frag->fr_fix - insn_start_off;
7923 for (fr = insn_start_frag->fr_next;
7924 fr && fr != frag_now; fr = fr->fr_next)
7925 add += fr->fr_fix;
7926 add += p - frag_now->fr_literal;
7927 }
7928
7929 if (!object_64bit)
7930 {
7931 reloc_type = BFD_RELOC_386_GOTPC;
7932 i.op[n].imms->X_add_number += add;
7933 }
7934 else if (reloc_type == BFD_RELOC_64)
7935 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7936 else
7937 /* Don't do the adjustment for x86-64, as there
7938 the pcrel addressing is relative to the _next_
7939 insn, and that is taken care of in other code. */
7940 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7941 }
7942 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7943 size, i.op[n].disps, pcrel,
7944 reloc_type);
7945 /* Check for "call/jmp *mem", "mov mem, %reg",
7946 "test %reg, mem" and "binop mem, %reg" where binop
7947 is one of adc, add, and, cmp, or, sbb, sub, xor
7948 instructions. Always generate R_386_GOT32X for
7949 "sym*GOT" operand in 32-bit mode. */
7950 if ((generate_relax_relocations
7951 || (!object_64bit
7952 && i.rm.mode == 0
7953 && i.rm.regmem == 5))
7954 && (i.rm.mode == 2
7955 || (i.rm.mode == 0 && i.rm.regmem == 5))
7956 && ((i.operands == 1
7957 && i.tm.base_opcode == 0xff
7958 && (i.rm.reg == 2 || i.rm.reg == 4))
7959 || (i.operands == 2
7960 && (i.tm.base_opcode == 0x8b
7961 || i.tm.base_opcode == 0x85
7962 || (i.tm.base_opcode & 0xc7) == 0x03))))
7963 {
7964 if (object_64bit)
7965 {
7966 fixP->fx_tcbit = i.rex != 0;
7967 if (i.base_reg
7968 && (i.base_reg->reg_num == RegRip
7969 || i.base_reg->reg_num == RegEip))
7970 fixP->fx_tcbit2 = 1;
7971 }
7972 else
7973 fixP->fx_tcbit2 = 1;
7974 }
7975 }
7976 }
7977 }
7978 }
7979
7980 static void
7981 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7982 {
7983 char *p;
7984 unsigned int n;
7985
7986 for (n = 0; n < i.operands; n++)
7987 {
7988 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7989 if (i.rounding && (int) n == i.rounding->operand)
7990 continue;
7991
7992 if (operand_type_check (i.types[n], imm))
7993 {
7994 if (i.op[n].imms->X_op == O_constant)
7995 {
7996 int size = imm_size (n);
7997 offsetT val;
7998
7999 val = offset_in_range (i.op[n].imms->X_add_number,
8000 size);
8001 p = frag_more (size);
8002 md_number_to_chars (p, val, size);
8003 }
8004 else
8005 {
8006 /* Not absolute_section.
8007 Need a 32-bit fixup (don't support 8bit
8008 non-absolute imms). Try to support other
8009 sizes ... */
8010 enum bfd_reloc_code_real reloc_type;
8011 int size = imm_size (n);
8012 int sign;
8013
8014 if (i.types[n].bitfield.imm32s
8015 && (i.suffix == QWORD_MNEM_SUFFIX
8016 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8017 sign = 1;
8018 else
8019 sign = 0;
8020
8021 p = frag_more (size);
8022 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8023
8024 /* This is tough to explain. We end up with this one if we
8025 * have operands that look like
8026 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8027 * obtain the absolute address of the GOT, and it is strongly
8028 * preferable from a performance point of view to avoid using
8029 * a runtime relocation for this. The actual sequence of
8030 * instructions often look something like:
8031 *
8032 * call .L66
8033 * .L66:
8034 * popl %ebx
8035 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8036 *
8037 * The call and pop essentially return the absolute address
8038 * of the label .L66 and store it in %ebx. The linker itself
8039 * will ultimately change the first operand of the addl so
8040 * that %ebx points to the GOT, but to keep things simple, the
8041 * .o file must have this operand set so that it generates not
8042 * the absolute address of .L66, but the absolute address of
8043 * itself. This allows the linker itself simply treat a GOTPC
8044 * relocation as asking for a pcrel offset to the GOT to be
8045 * added in, and the addend of the relocation is stored in the
8046 * operand field for the instruction itself.
8047 *
8048 * Our job here is to fix the operand so that it would add
8049 * the correct offset so that %ebx would point to itself. The
8050 * thing that is tricky is that .-.L66 will point to the
8051 * beginning of the instruction, so we need to further modify
8052 * the operand so that it will point to itself. There are
8053 * other cases where you have something like:
8054 *
8055 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8056 *
8057 * and here no correction would be required. Internally in
8058 * the assembler we treat operands of this form as not being
8059 * pcrel since the '.' is explicitly mentioned, and I wonder
8060 * whether it would simplify matters to do it this way. Who
8061 * knows. In earlier versions of the PIC patches, the
8062 * pcrel_adjust field was used to store the correction, but
8063 * since the expression is not pcrel, I felt it would be
8064 * confusing to do it this way. */
8065
8066 if ((reloc_type == BFD_RELOC_32
8067 || reloc_type == BFD_RELOC_X86_64_32S
8068 || reloc_type == BFD_RELOC_64)
8069 && GOT_symbol
8070 && GOT_symbol == i.op[n].imms->X_add_symbol
8071 && (i.op[n].imms->X_op == O_symbol
8072 || (i.op[n].imms->X_op == O_add
8073 && ((symbol_get_value_expression
8074 (i.op[n].imms->X_op_symbol)->X_op)
8075 == O_subtract))))
8076 {
8077 offsetT add;
8078
8079 if (insn_start_frag == frag_now)
8080 add = (p - frag_now->fr_literal) - insn_start_off;
8081 else
8082 {
8083 fragS *fr;
8084
8085 add = insn_start_frag->fr_fix - insn_start_off;
8086 for (fr = insn_start_frag->fr_next;
8087 fr && fr != frag_now; fr = fr->fr_next)
8088 add += fr->fr_fix;
8089 add += p - frag_now->fr_literal;
8090 }
8091
8092 if (!object_64bit)
8093 reloc_type = BFD_RELOC_386_GOTPC;
8094 else if (size == 4)
8095 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8096 else if (size == 8)
8097 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8098 i.op[n].imms->X_add_number += add;
8099 }
8100 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8101 i.op[n].imms, 0, reloc_type);
8102 }
8103 }
8104 }
8105 }
8106 \f
8107 /* x86_cons_fix_new is called via the expression parsing code when a
8108 reloc is needed. We use this hook to get the correct .got reloc. */
8109 static int cons_sign = -1;
8110
8111 void
8112 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8113 expressionS *exp, bfd_reloc_code_real_type r)
8114 {
8115 r = reloc (len, 0, cons_sign, r);
8116
8117 #ifdef TE_PE
8118 if (exp->X_op == O_secrel)
8119 {
8120 exp->X_op = O_symbol;
8121 r = BFD_RELOC_32_SECREL;
8122 }
8123 #endif
8124
8125 fix_new_exp (frag, off, len, exp, 0, r);
8126 }
8127
8128 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8129 purpose of the `.dc.a' internal pseudo-op. */
8130
8131 int
8132 x86_address_bytes (void)
8133 {
8134 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8135 return 4;
8136 return stdoutput->arch_info->bits_per_address / 8;
8137 }
8138
8139 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8140 || defined (LEX_AT)
8141 # define lex_got(reloc, adjust, types) NULL
8142 #else
8143 /* Parse operands of the form
8144 <symbol>@GOTOFF+<nnn>
8145 and similar .plt or .got references.
8146
8147 If we find one, set up the correct relocation in RELOC and copy the
8148 input string, minus the `@GOTOFF' into a malloc'd buffer for
8149 parsing by the calling routine. Return this buffer, and if ADJUST
8150 is non-null set it to the length of the string we removed from the
8151 input line. Otherwise return NULL. */
8152 static char *
8153 lex_got (enum bfd_reloc_code_real *rel,
8154 int *adjust,
8155 i386_operand_type *types)
8156 {
8157 /* Some of the relocations depend on the size of what field is to
8158 be relocated. But in our callers i386_immediate and i386_displacement
8159 we don't yet know the operand size (this will be set by insn
8160 matching). Hence we record the word32 relocation here,
8161 and adjust the reloc according to the real size in reloc(). */
8162 static const struct {
8163 const char *str;
8164 int len;
8165 const enum bfd_reloc_code_real rel[2];
8166 const i386_operand_type types64;
8167 } gotrel[] = {
8168 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8169 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8170 BFD_RELOC_SIZE32 },
8171 OPERAND_TYPE_IMM32_64 },
8172 #endif
8173 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8174 BFD_RELOC_X86_64_PLTOFF64 },
8175 OPERAND_TYPE_IMM64 },
8176 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8177 BFD_RELOC_X86_64_PLT32 },
8178 OPERAND_TYPE_IMM32_32S_DISP32 },
8179 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8180 BFD_RELOC_X86_64_GOTPLT64 },
8181 OPERAND_TYPE_IMM64_DISP64 },
8182 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8183 BFD_RELOC_X86_64_GOTOFF64 },
8184 OPERAND_TYPE_IMM64_DISP64 },
8185 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8186 BFD_RELOC_X86_64_GOTPCREL },
8187 OPERAND_TYPE_IMM32_32S_DISP32 },
8188 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8189 BFD_RELOC_X86_64_TLSGD },
8190 OPERAND_TYPE_IMM32_32S_DISP32 },
8191 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8192 _dummy_first_bfd_reloc_code_real },
8193 OPERAND_TYPE_NONE },
8194 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8195 BFD_RELOC_X86_64_TLSLD },
8196 OPERAND_TYPE_IMM32_32S_DISP32 },
8197 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8198 BFD_RELOC_X86_64_GOTTPOFF },
8199 OPERAND_TYPE_IMM32_32S_DISP32 },
8200 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8201 BFD_RELOC_X86_64_TPOFF32 },
8202 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8203 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8204 _dummy_first_bfd_reloc_code_real },
8205 OPERAND_TYPE_NONE },
8206 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8207 BFD_RELOC_X86_64_DTPOFF32 },
8208 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8209 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8210 _dummy_first_bfd_reloc_code_real },
8211 OPERAND_TYPE_NONE },
8212 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8213 _dummy_first_bfd_reloc_code_real },
8214 OPERAND_TYPE_NONE },
8215 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8216 BFD_RELOC_X86_64_GOT32 },
8217 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8218 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8219 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8220 OPERAND_TYPE_IMM32_32S_DISP32 },
8221 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8222 BFD_RELOC_X86_64_TLSDESC_CALL },
8223 OPERAND_TYPE_IMM32_32S_DISP32 },
8224 };
8225 char *cp;
8226 unsigned int j;
8227
8228 #if defined (OBJ_MAYBE_ELF)
8229 if (!IS_ELF)
8230 return NULL;
8231 #endif
8232
8233 for (cp = input_line_pointer; *cp != '@'; cp++)
8234 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8235 return NULL;
8236
8237 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8238 {
8239 int len = gotrel[j].len;
8240 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8241 {
8242 if (gotrel[j].rel[object_64bit] != 0)
8243 {
8244 int first, second;
8245 char *tmpbuf, *past_reloc;
8246
8247 *rel = gotrel[j].rel[object_64bit];
8248
8249 if (types)
8250 {
8251 if (flag_code != CODE_64BIT)
8252 {
8253 types->bitfield.imm32 = 1;
8254 types->bitfield.disp32 = 1;
8255 }
8256 else
8257 *types = gotrel[j].types64;
8258 }
8259
8260 if (j != 0 && GOT_symbol == NULL)
8261 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8262
8263 /* The length of the first part of our input line. */
8264 first = cp - input_line_pointer;
8265
8266 /* The second part goes from after the reloc token until
8267 (and including) an end_of_line char or comma. */
8268 past_reloc = cp + 1 + len;
8269 cp = past_reloc;
8270 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8271 ++cp;
8272 second = cp + 1 - past_reloc;
8273
8274 /* Allocate and copy string. The trailing NUL shouldn't
8275 be necessary, but be safe. */
8276 tmpbuf = XNEWVEC (char, first + second + 2);
8277 memcpy (tmpbuf, input_line_pointer, first);
8278 if (second != 0 && *past_reloc != ' ')
8279 /* Replace the relocation token with ' ', so that
8280 errors like foo@GOTOFF1 will be detected. */
8281 tmpbuf[first++] = ' ';
8282 else
8283 /* Increment length by 1 if the relocation token is
8284 removed. */
8285 len++;
8286 if (adjust)
8287 *adjust = len;
8288 memcpy (tmpbuf + first, past_reloc, second);
8289 tmpbuf[first + second] = '\0';
8290 return tmpbuf;
8291 }
8292
8293 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8294 gotrel[j].str, 1 << (5 + object_64bit));
8295 return NULL;
8296 }
8297 }
8298
8299 /* Might be a symbol version string. Don't as_bad here. */
8300 return NULL;
8301 }
8302 #endif
8303
8304 #ifdef TE_PE
8305 #ifdef lex_got
8306 #undef lex_got
8307 #endif
8308 /* Parse operands of the form
8309 <symbol>@SECREL32+<nnn>
8310
8311 If we find one, set up the correct relocation in RELOC and copy the
8312 input string, minus the `@SECREL32' into a malloc'd buffer for
8313 parsing by the calling routine. Return this buffer, and if ADJUST
8314 is non-null set it to the length of the string we removed from the
8315 input line. Otherwise return NULL.
8316
8317 This function is copied from the ELF version above adjusted for PE targets. */
8318
8319 static char *
8320 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8321 int *adjust ATTRIBUTE_UNUSED,
8322 i386_operand_type *types)
8323 {
8324 static const struct
8325 {
8326 const char *str;
8327 int len;
8328 const enum bfd_reloc_code_real rel[2];
8329 const i386_operand_type types64;
8330 }
8331 gotrel[] =
8332 {
8333 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8334 BFD_RELOC_32_SECREL },
8335 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8336 };
8337
8338 char *cp;
8339 unsigned j;
8340
8341 for (cp = input_line_pointer; *cp != '@'; cp++)
8342 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8343 return NULL;
8344
8345 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8346 {
8347 int len = gotrel[j].len;
8348
8349 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8350 {
8351 if (gotrel[j].rel[object_64bit] != 0)
8352 {
8353 int first, second;
8354 char *tmpbuf, *past_reloc;
8355
8356 *rel = gotrel[j].rel[object_64bit];
8357 if (adjust)
8358 *adjust = len;
8359
8360 if (types)
8361 {
8362 if (flag_code != CODE_64BIT)
8363 {
8364 types->bitfield.imm32 = 1;
8365 types->bitfield.disp32 = 1;
8366 }
8367 else
8368 *types = gotrel[j].types64;
8369 }
8370
8371 /* The length of the first part of our input line. */
8372 first = cp - input_line_pointer;
8373
8374 /* The second part goes from after the reloc token until
8375 (and including) an end_of_line char or comma. */
8376 past_reloc = cp + 1 + len;
8377 cp = past_reloc;
8378 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8379 ++cp;
8380 second = cp + 1 - past_reloc;
8381
8382 /* Allocate and copy string. The trailing NUL shouldn't
8383 be necessary, but be safe. */
8384 tmpbuf = XNEWVEC (char, first + second + 2);
8385 memcpy (tmpbuf, input_line_pointer, first);
8386 if (second != 0 && *past_reloc != ' ')
8387 /* Replace the relocation token with ' ', so that
8388 errors like foo@SECLREL321 will be detected. */
8389 tmpbuf[first++] = ' ';
8390 memcpy (tmpbuf + first, past_reloc, second);
8391 tmpbuf[first + second] = '\0';
8392 return tmpbuf;
8393 }
8394
8395 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8396 gotrel[j].str, 1 << (5 + object_64bit));
8397 return NULL;
8398 }
8399 }
8400
8401 /* Might be a symbol version string. Don't as_bad here. */
8402 return NULL;
8403 }
8404
8405 #endif /* TE_PE */
8406
8407 bfd_reloc_code_real_type
8408 x86_cons (expressionS *exp, int size)
8409 {
8410 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8411
8412 intel_syntax = -intel_syntax;
8413
8414 exp->X_md = 0;
8415 if (size == 4 || (object_64bit && size == 8))
8416 {
8417 /* Handle @GOTOFF and the like in an expression. */
8418 char *save;
8419 char *gotfree_input_line;
8420 int adjust = 0;
8421
8422 save = input_line_pointer;
8423 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8424 if (gotfree_input_line)
8425 input_line_pointer = gotfree_input_line;
8426
8427 expression (exp);
8428
8429 if (gotfree_input_line)
8430 {
8431 /* expression () has merrily parsed up to the end of line,
8432 or a comma - in the wrong buffer. Transfer how far
8433 input_line_pointer has moved to the right buffer. */
8434 input_line_pointer = (save
8435 + (input_line_pointer - gotfree_input_line)
8436 + adjust);
8437 free (gotfree_input_line);
8438 if (exp->X_op == O_constant
8439 || exp->X_op == O_absent
8440 || exp->X_op == O_illegal
8441 || exp->X_op == O_register
8442 || exp->X_op == O_big)
8443 {
8444 char c = *input_line_pointer;
8445 *input_line_pointer = 0;
8446 as_bad (_("missing or invalid expression `%s'"), save);
8447 *input_line_pointer = c;
8448 }
8449 }
8450 }
8451 else
8452 expression (exp);
8453
8454 intel_syntax = -intel_syntax;
8455
8456 if (intel_syntax)
8457 i386_intel_simplify (exp);
8458
8459 return got_reloc;
8460 }
8461
8462 static void
8463 signed_cons (int size)
8464 {
8465 if (flag_code == CODE_64BIT)
8466 cons_sign = 1;
8467 cons (size);
8468 cons_sign = -1;
8469 }
8470
8471 #ifdef TE_PE
8472 static void
8473 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8474 {
8475 expressionS exp;
8476
8477 do
8478 {
8479 expression (&exp);
8480 if (exp.X_op == O_symbol)
8481 exp.X_op = O_secrel;
8482
8483 emit_expr (&exp, 4);
8484 }
8485 while (*input_line_pointer++ == ',');
8486
8487 input_line_pointer--;
8488 demand_empty_rest_of_line ();
8489 }
8490 #endif
8491
8492 /* Handle Vector operations. */
8493
8494 static char *
8495 check_VecOperations (char *op_string, char *op_end)
8496 {
8497 const reg_entry *mask;
8498 const char *saved;
8499 char *end_op;
8500
8501 while (*op_string
8502 && (op_end == NULL || op_string < op_end))
8503 {
8504 saved = op_string;
8505 if (*op_string == '{')
8506 {
8507 op_string++;
8508
8509 /* Check broadcasts. */
8510 if (strncmp (op_string, "1to", 3) == 0)
8511 {
8512 int bcst_type;
8513
8514 if (i.broadcast)
8515 goto duplicated_vec_op;
8516
8517 op_string += 3;
8518 if (*op_string == '8')
8519 bcst_type = 8;
8520 else if (*op_string == '4')
8521 bcst_type = 4;
8522 else if (*op_string == '2')
8523 bcst_type = 2;
8524 else if (*op_string == '1'
8525 && *(op_string+1) == '6')
8526 {
8527 bcst_type = 16;
8528 op_string++;
8529 }
8530 else
8531 {
8532 as_bad (_("Unsupported broadcast: `%s'"), saved);
8533 return NULL;
8534 }
8535 op_string++;
8536
8537 broadcast_op.type = bcst_type;
8538 broadcast_op.operand = this_operand;
8539 i.broadcast = &broadcast_op;
8540 }
8541 /* Check masking operation. */
8542 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8543 {
8544 /* k0 can't be used for write mask. */
8545 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8546 {
8547 as_bad (_("`%s%s' can't be used for write mask"),
8548 register_prefix, mask->reg_name);
8549 return NULL;
8550 }
8551
8552 if (!i.mask)
8553 {
8554 mask_op.mask = mask;
8555 mask_op.zeroing = 0;
8556 mask_op.operand = this_operand;
8557 i.mask = &mask_op;
8558 }
8559 else
8560 {
8561 if (i.mask->mask)
8562 goto duplicated_vec_op;
8563
8564 i.mask->mask = mask;
8565
8566 /* Only "{z}" is allowed here. No need to check
8567 zeroing mask explicitly. */
8568 if (i.mask->operand != this_operand)
8569 {
8570 as_bad (_("invalid write mask `%s'"), saved);
8571 return NULL;
8572 }
8573 }
8574
8575 op_string = end_op;
8576 }
8577 /* Check zeroing-flag for masking operation. */
8578 else if (*op_string == 'z')
8579 {
8580 if (!i.mask)
8581 {
8582 mask_op.mask = NULL;
8583 mask_op.zeroing = 1;
8584 mask_op.operand = this_operand;
8585 i.mask = &mask_op;
8586 }
8587 else
8588 {
8589 if (i.mask->zeroing)
8590 {
8591 duplicated_vec_op:
8592 as_bad (_("duplicated `%s'"), saved);
8593 return NULL;
8594 }
8595
8596 i.mask->zeroing = 1;
8597
8598 /* Only "{%k}" is allowed here. No need to check mask
8599 register explicitly. */
8600 if (i.mask->operand != this_operand)
8601 {
8602 as_bad (_("invalid zeroing-masking `%s'"),
8603 saved);
8604 return NULL;
8605 }
8606 }
8607
8608 op_string++;
8609 }
8610 else
8611 goto unknown_vec_op;
8612
8613 if (*op_string != '}')
8614 {
8615 as_bad (_("missing `}' in `%s'"), saved);
8616 return NULL;
8617 }
8618 op_string++;
8619
8620 /* Strip whitespace since the addition of pseudo prefixes
8621 changed how the scrubber treats '{'. */
8622 if (is_space_char (*op_string))
8623 ++op_string;
8624
8625 continue;
8626 }
8627 unknown_vec_op:
8628 /* We don't know this one. */
8629 as_bad (_("unknown vector operation: `%s'"), saved);
8630 return NULL;
8631 }
8632
8633 if (i.mask && i.mask->zeroing && !i.mask->mask)
8634 {
8635 as_bad (_("zeroing-masking only allowed with write mask"));
8636 return NULL;
8637 }
8638
8639 return op_string;
8640 }
8641
8642 static int
8643 i386_immediate (char *imm_start)
8644 {
8645 char *save_input_line_pointer;
8646 char *gotfree_input_line;
8647 segT exp_seg = 0;
8648 expressionS *exp;
8649 i386_operand_type types;
8650
8651 operand_type_set (&types, ~0);
8652
8653 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8654 {
8655 as_bad (_("at most %d immediate operands are allowed"),
8656 MAX_IMMEDIATE_OPERANDS);
8657 return 0;
8658 }
8659
8660 exp = &im_expressions[i.imm_operands++];
8661 i.op[this_operand].imms = exp;
8662
8663 if (is_space_char (*imm_start))
8664 ++imm_start;
8665
8666 save_input_line_pointer = input_line_pointer;
8667 input_line_pointer = imm_start;
8668
8669 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8670 if (gotfree_input_line)
8671 input_line_pointer = gotfree_input_line;
8672
8673 exp_seg = expression (exp);
8674
8675 SKIP_WHITESPACE ();
8676
8677 /* Handle vector operations. */
8678 if (*input_line_pointer == '{')
8679 {
8680 input_line_pointer = check_VecOperations (input_line_pointer,
8681 NULL);
8682 if (input_line_pointer == NULL)
8683 return 0;
8684 }
8685
8686 if (*input_line_pointer)
8687 as_bad (_("junk `%s' after expression"), input_line_pointer);
8688
8689 input_line_pointer = save_input_line_pointer;
8690 if (gotfree_input_line)
8691 {
8692 free (gotfree_input_line);
8693
8694 if (exp->X_op == O_constant || exp->X_op == O_register)
8695 exp->X_op = O_illegal;
8696 }
8697
8698 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8699 }
8700
8701 static int
8702 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8703 i386_operand_type types, const char *imm_start)
8704 {
8705 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8706 {
8707 if (imm_start)
8708 as_bad (_("missing or invalid immediate expression `%s'"),
8709 imm_start);
8710 return 0;
8711 }
8712 else if (exp->X_op == O_constant)
8713 {
8714 /* Size it properly later. */
8715 i.types[this_operand].bitfield.imm64 = 1;
8716 /* If not 64bit, sign extend val. */
8717 if (flag_code != CODE_64BIT
8718 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8719 exp->X_add_number
8720 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8721 }
8722 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8723 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8724 && exp_seg != absolute_section
8725 && exp_seg != text_section
8726 && exp_seg != data_section
8727 && exp_seg != bss_section
8728 && exp_seg != undefined_section
8729 && !bfd_is_com_section (exp_seg))
8730 {
8731 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8732 return 0;
8733 }
8734 #endif
8735 else if (!intel_syntax && exp_seg == reg_section)
8736 {
8737 if (imm_start)
8738 as_bad (_("illegal immediate register operand %s"), imm_start);
8739 return 0;
8740 }
8741 else
8742 {
8743 /* This is an address. The size of the address will be
8744 determined later, depending on destination register,
8745 suffix, or the default for the section. */
8746 i.types[this_operand].bitfield.imm8 = 1;
8747 i.types[this_operand].bitfield.imm16 = 1;
8748 i.types[this_operand].bitfield.imm32 = 1;
8749 i.types[this_operand].bitfield.imm32s = 1;
8750 i.types[this_operand].bitfield.imm64 = 1;
8751 i.types[this_operand] = operand_type_and (i.types[this_operand],
8752 types);
8753 }
8754
8755 return 1;
8756 }
8757
8758 static char *
8759 i386_scale (char *scale)
8760 {
8761 offsetT val;
8762 char *save = input_line_pointer;
8763
8764 input_line_pointer = scale;
8765 val = get_absolute_expression ();
8766
8767 switch (val)
8768 {
8769 case 1:
8770 i.log2_scale_factor = 0;
8771 break;
8772 case 2:
8773 i.log2_scale_factor = 1;
8774 break;
8775 case 4:
8776 i.log2_scale_factor = 2;
8777 break;
8778 case 8:
8779 i.log2_scale_factor = 3;
8780 break;
8781 default:
8782 {
8783 char sep = *input_line_pointer;
8784
8785 *input_line_pointer = '\0';
8786 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8787 scale);
8788 *input_line_pointer = sep;
8789 input_line_pointer = save;
8790 return NULL;
8791 }
8792 }
8793 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8794 {
8795 as_warn (_("scale factor of %d without an index register"),
8796 1 << i.log2_scale_factor);
8797 i.log2_scale_factor = 0;
8798 }
8799 scale = input_line_pointer;
8800 input_line_pointer = save;
8801 return scale;
8802 }
8803
8804 static int
8805 i386_displacement (char *disp_start, char *disp_end)
8806 {
8807 expressionS *exp;
8808 segT exp_seg = 0;
8809 char *save_input_line_pointer;
8810 char *gotfree_input_line;
8811 int override;
8812 i386_operand_type bigdisp, types = anydisp;
8813 int ret;
8814
8815 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8816 {
8817 as_bad (_("at most %d displacement operands are allowed"),
8818 MAX_MEMORY_OPERANDS);
8819 return 0;
8820 }
8821
8822 operand_type_set (&bigdisp, 0);
8823 if ((i.types[this_operand].bitfield.jumpabsolute)
8824 || (!current_templates->start->opcode_modifier.jump
8825 && !current_templates->start->opcode_modifier.jumpdword))
8826 {
8827 bigdisp.bitfield.disp32 = 1;
8828 override = (i.prefix[ADDR_PREFIX] != 0);
8829 if (flag_code == CODE_64BIT)
8830 {
8831 if (!override)
8832 {
8833 bigdisp.bitfield.disp32s = 1;
8834 bigdisp.bitfield.disp64 = 1;
8835 }
8836 }
8837 else if ((flag_code == CODE_16BIT) ^ override)
8838 {
8839 bigdisp.bitfield.disp32 = 0;
8840 bigdisp.bitfield.disp16 = 1;
8841 }
8842 }
8843 else
8844 {
8845 /* For PC-relative branches, the width of the displacement
8846 is dependent upon data size, not address size. */
8847 override = (i.prefix[DATA_PREFIX] != 0);
8848 if (flag_code == CODE_64BIT)
8849 {
8850 if (override || i.suffix == WORD_MNEM_SUFFIX)
8851 bigdisp.bitfield.disp16 = 1;
8852 else
8853 {
8854 bigdisp.bitfield.disp32 = 1;
8855 bigdisp.bitfield.disp32s = 1;
8856 }
8857 }
8858 else
8859 {
8860 if (!override)
8861 override = (i.suffix == (flag_code != CODE_16BIT
8862 ? WORD_MNEM_SUFFIX
8863 : LONG_MNEM_SUFFIX));
8864 bigdisp.bitfield.disp32 = 1;
8865 if ((flag_code == CODE_16BIT) ^ override)
8866 {
8867 bigdisp.bitfield.disp32 = 0;
8868 bigdisp.bitfield.disp16 = 1;
8869 }
8870 }
8871 }
8872 i.types[this_operand] = operand_type_or (i.types[this_operand],
8873 bigdisp);
8874
8875 exp = &disp_expressions[i.disp_operands];
8876 i.op[this_operand].disps = exp;
8877 i.disp_operands++;
8878 save_input_line_pointer = input_line_pointer;
8879 input_line_pointer = disp_start;
8880 END_STRING_AND_SAVE (disp_end);
8881
8882 #ifndef GCC_ASM_O_HACK
8883 #define GCC_ASM_O_HACK 0
8884 #endif
8885 #if GCC_ASM_O_HACK
8886 END_STRING_AND_SAVE (disp_end + 1);
8887 if (i.types[this_operand].bitfield.baseIndex
8888 && displacement_string_end[-1] == '+')
8889 {
8890 /* This hack is to avoid a warning when using the "o"
8891 constraint within gcc asm statements.
8892 For instance:
8893
8894 #define _set_tssldt_desc(n,addr,limit,type) \
8895 __asm__ __volatile__ ( \
8896 "movw %w2,%0\n\t" \
8897 "movw %w1,2+%0\n\t" \
8898 "rorl $16,%1\n\t" \
8899 "movb %b1,4+%0\n\t" \
8900 "movb %4,5+%0\n\t" \
8901 "movb $0,6+%0\n\t" \
8902 "movb %h1,7+%0\n\t" \
8903 "rorl $16,%1" \
8904 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8905
8906 This works great except that the output assembler ends
8907 up looking a bit weird if it turns out that there is
8908 no offset. You end up producing code that looks like:
8909
8910 #APP
8911 movw $235,(%eax)
8912 movw %dx,2+(%eax)
8913 rorl $16,%edx
8914 movb %dl,4+(%eax)
8915 movb $137,5+(%eax)
8916 movb $0,6+(%eax)
8917 movb %dh,7+(%eax)
8918 rorl $16,%edx
8919 #NO_APP
8920
8921 So here we provide the missing zero. */
8922
8923 *displacement_string_end = '0';
8924 }
8925 #endif
8926 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8927 if (gotfree_input_line)
8928 input_line_pointer = gotfree_input_line;
8929
8930 exp_seg = expression (exp);
8931
8932 SKIP_WHITESPACE ();
8933 if (*input_line_pointer)
8934 as_bad (_("junk `%s' after expression"), input_line_pointer);
8935 #if GCC_ASM_O_HACK
8936 RESTORE_END_STRING (disp_end + 1);
8937 #endif
8938 input_line_pointer = save_input_line_pointer;
8939 if (gotfree_input_line)
8940 {
8941 free (gotfree_input_line);
8942
8943 if (exp->X_op == O_constant || exp->X_op == O_register)
8944 exp->X_op = O_illegal;
8945 }
8946
8947 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8948
8949 RESTORE_END_STRING (disp_end);
8950
8951 return ret;
8952 }
8953
8954 static int
8955 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8956 i386_operand_type types, const char *disp_start)
8957 {
8958 i386_operand_type bigdisp;
8959 int ret = 1;
8960
8961 /* We do this to make sure that the section symbol is in
8962 the symbol table. We will ultimately change the relocation
8963 to be relative to the beginning of the section. */
8964 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8965 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8966 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8967 {
8968 if (exp->X_op != O_symbol)
8969 goto inv_disp;
8970
8971 if (S_IS_LOCAL (exp->X_add_symbol)
8972 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8973 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8974 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8975 exp->X_op = O_subtract;
8976 exp->X_op_symbol = GOT_symbol;
8977 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8978 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8979 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8980 i.reloc[this_operand] = BFD_RELOC_64;
8981 else
8982 i.reloc[this_operand] = BFD_RELOC_32;
8983 }
8984
8985 else if (exp->X_op == O_absent
8986 || exp->X_op == O_illegal
8987 || exp->X_op == O_big)
8988 {
8989 inv_disp:
8990 as_bad (_("missing or invalid displacement expression `%s'"),
8991 disp_start);
8992 ret = 0;
8993 }
8994
8995 else if (flag_code == CODE_64BIT
8996 && !i.prefix[ADDR_PREFIX]
8997 && exp->X_op == O_constant)
8998 {
8999 /* Since displacement is signed extended to 64bit, don't allow
9000 disp32 and turn off disp32s if they are out of range. */
9001 i.types[this_operand].bitfield.disp32 = 0;
9002 if (!fits_in_signed_long (exp->X_add_number))
9003 {
9004 i.types[this_operand].bitfield.disp32s = 0;
9005 if (i.types[this_operand].bitfield.baseindex)
9006 {
9007 as_bad (_("0x%lx out range of signed 32bit displacement"),
9008 (long) exp->X_add_number);
9009 ret = 0;
9010 }
9011 }
9012 }
9013
9014 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9015 else if (exp->X_op != O_constant
9016 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9017 && exp_seg != absolute_section
9018 && exp_seg != text_section
9019 && exp_seg != data_section
9020 && exp_seg != bss_section
9021 && exp_seg != undefined_section
9022 && !bfd_is_com_section (exp_seg))
9023 {
9024 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9025 ret = 0;
9026 }
9027 #endif
9028
9029 /* Check if this is a displacement only operand. */
9030 bigdisp = i.types[this_operand];
9031 bigdisp.bitfield.disp8 = 0;
9032 bigdisp.bitfield.disp16 = 0;
9033 bigdisp.bitfield.disp32 = 0;
9034 bigdisp.bitfield.disp32s = 0;
9035 bigdisp.bitfield.disp64 = 0;
9036 if (operand_type_all_zero (&bigdisp))
9037 i.types[this_operand] = operand_type_and (i.types[this_operand],
9038 types);
9039
9040 return ret;
9041 }
9042
9043 /* Return the active addressing mode, taking address override and
9044 registers forming the address into consideration. Update the
9045 address override prefix if necessary. */
9046
9047 static enum flag_code
9048 i386_addressing_mode (void)
9049 {
9050 enum flag_code addr_mode;
9051
9052 if (i.prefix[ADDR_PREFIX])
9053 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9054 else
9055 {
9056 addr_mode = flag_code;
9057
9058 #if INFER_ADDR_PREFIX
9059 if (i.mem_operands == 0)
9060 {
9061 /* Infer address prefix from the first memory operand. */
9062 const reg_entry *addr_reg = i.base_reg;
9063
9064 if (addr_reg == NULL)
9065 addr_reg = i.index_reg;
9066
9067 if (addr_reg)
9068 {
9069 if (addr_reg->reg_num == RegEip
9070 || addr_reg->reg_num == RegEiz
9071 || addr_reg->reg_type.bitfield.dword)
9072 addr_mode = CODE_32BIT;
9073 else if (flag_code != CODE_64BIT
9074 && addr_reg->reg_type.bitfield.word)
9075 addr_mode = CODE_16BIT;
9076
9077 if (addr_mode != flag_code)
9078 {
9079 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9080 i.prefixes += 1;
9081 /* Change the size of any displacement too. At most one
9082 of Disp16 or Disp32 is set.
9083 FIXME. There doesn't seem to be any real need for
9084 separate Disp16 and Disp32 flags. The same goes for
9085 Imm16 and Imm32. Removing them would probably clean
9086 up the code quite a lot. */
9087 if (flag_code != CODE_64BIT
9088 && (i.types[this_operand].bitfield.disp16
9089 || i.types[this_operand].bitfield.disp32))
9090 i.types[this_operand]
9091 = operand_type_xor (i.types[this_operand], disp16_32);
9092 }
9093 }
9094 }
9095 #endif
9096 }
9097
9098 return addr_mode;
9099 }
9100
9101 /* Make sure the memory operand we've been dealt is valid.
9102 Return 1 on success, 0 on a failure. */
9103
9104 static int
9105 i386_index_check (const char *operand_string)
9106 {
9107 const char *kind = "base/index";
9108 enum flag_code addr_mode = i386_addressing_mode ();
9109
9110 if (current_templates->start->opcode_modifier.isstring
9111 && !current_templates->start->opcode_modifier.immext
9112 && (current_templates->end[-1].opcode_modifier.isstring
9113 || i.mem_operands))
9114 {
9115 /* Memory operands of string insns are special in that they only allow
9116 a single register (rDI, rSI, or rBX) as their memory address. */
9117 const reg_entry *expected_reg;
9118 static const char *di_si[][2] =
9119 {
9120 { "esi", "edi" },
9121 { "si", "di" },
9122 { "rsi", "rdi" }
9123 };
9124 static const char *bx[] = { "ebx", "bx", "rbx" };
9125
9126 kind = "string address";
9127
9128 if (current_templates->start->opcode_modifier.repprefixok)
9129 {
9130 i386_operand_type type = current_templates->end[-1].operand_types[0];
9131
9132 if (!type.bitfield.baseindex
9133 || ((!i.mem_operands != !intel_syntax)
9134 && current_templates->end[-1].operand_types[1]
9135 .bitfield.baseindex))
9136 type = current_templates->end[-1].operand_types[1];
9137 expected_reg = hash_find (reg_hash,
9138 di_si[addr_mode][type.bitfield.esseg]);
9139
9140 }
9141 else
9142 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9143
9144 if (i.base_reg != expected_reg
9145 || i.index_reg
9146 || operand_type_check (i.types[this_operand], disp))
9147 {
9148 /* The second memory operand must have the same size as
9149 the first one. */
9150 if (i.mem_operands
9151 && i.base_reg
9152 && !((addr_mode == CODE_64BIT
9153 && i.base_reg->reg_type.bitfield.qword)
9154 || (addr_mode == CODE_32BIT
9155 ? i.base_reg->reg_type.bitfield.dword
9156 : i.base_reg->reg_type.bitfield.word)))
9157 goto bad_address;
9158
9159 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9160 operand_string,
9161 intel_syntax ? '[' : '(',
9162 register_prefix,
9163 expected_reg->reg_name,
9164 intel_syntax ? ']' : ')');
9165 return 1;
9166 }
9167 else
9168 return 1;
9169
9170 bad_address:
9171 as_bad (_("`%s' is not a valid %s expression"),
9172 operand_string, kind);
9173 return 0;
9174 }
9175 else
9176 {
9177 if (addr_mode != CODE_16BIT)
9178 {
9179 /* 32-bit/64-bit checks. */
9180 if ((i.base_reg
9181 && (addr_mode == CODE_64BIT
9182 ? !i.base_reg->reg_type.bitfield.qword
9183 : !i.base_reg->reg_type.bitfield.dword)
9184 && (i.index_reg
9185 || (i.base_reg->reg_num
9186 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9187 || (i.index_reg
9188 && !i.index_reg->reg_type.bitfield.xmmword
9189 && !i.index_reg->reg_type.bitfield.ymmword
9190 && !i.index_reg->reg_type.bitfield.zmmword
9191 && ((addr_mode == CODE_64BIT
9192 ? !(i.index_reg->reg_type.bitfield.qword
9193 || i.index_reg->reg_num == RegRiz)
9194 : !(i.index_reg->reg_type.bitfield.dword
9195 || i.index_reg->reg_num == RegEiz))
9196 || !i.index_reg->reg_type.bitfield.baseindex)))
9197 goto bad_address;
9198
9199 /* bndmk, bndldx, and bndstx have special restrictions. */
9200 if (current_templates->start->base_opcode == 0xf30f1b
9201 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9202 {
9203 /* They cannot use RIP-relative addressing. */
9204 if (i.base_reg && i.base_reg->reg_num == RegRip)
9205 {
9206 as_bad (_("`%s' cannot be used here"), operand_string);
9207 return 0;
9208 }
9209
9210 /* bndldx and bndstx ignore their scale factor. */
9211 if (current_templates->start->base_opcode != 0xf30f1b
9212 && i.log2_scale_factor)
9213 as_warn (_("register scaling is being ignored here"));
9214 }
9215 }
9216 else
9217 {
9218 /* 16-bit checks. */
9219 if ((i.base_reg
9220 && (!i.base_reg->reg_type.bitfield.word
9221 || !i.base_reg->reg_type.bitfield.baseindex))
9222 || (i.index_reg
9223 && (!i.index_reg->reg_type.bitfield.word
9224 || !i.index_reg->reg_type.bitfield.baseindex
9225 || !(i.base_reg
9226 && i.base_reg->reg_num < 6
9227 && i.index_reg->reg_num >= 6
9228 && i.log2_scale_factor == 0))))
9229 goto bad_address;
9230 }
9231 }
9232 return 1;
9233 }
9234
9235 /* Handle vector immediates. */
9236
9237 static int
9238 RC_SAE_immediate (const char *imm_start)
9239 {
9240 unsigned int match_found, j;
9241 const char *pstr = imm_start;
9242 expressionS *exp;
9243
9244 if (*pstr != '{')
9245 return 0;
9246
9247 pstr++;
9248 match_found = 0;
9249 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9250 {
9251 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9252 {
9253 if (!i.rounding)
9254 {
9255 rc_op.type = RC_NamesTable[j].type;
9256 rc_op.operand = this_operand;
9257 i.rounding = &rc_op;
9258 }
9259 else
9260 {
9261 as_bad (_("duplicated `%s'"), imm_start);
9262 return 0;
9263 }
9264 pstr += RC_NamesTable[j].len;
9265 match_found = 1;
9266 break;
9267 }
9268 }
9269 if (!match_found)
9270 return 0;
9271
9272 if (*pstr++ != '}')
9273 {
9274 as_bad (_("Missing '}': '%s'"), imm_start);
9275 return 0;
9276 }
9277 /* RC/SAE immediate string should contain nothing more. */;
9278 if (*pstr != 0)
9279 {
9280 as_bad (_("Junk after '}': '%s'"), imm_start);
9281 return 0;
9282 }
9283
9284 exp = &im_expressions[i.imm_operands++];
9285 i.op[this_operand].imms = exp;
9286
9287 exp->X_op = O_constant;
9288 exp->X_add_number = 0;
9289 exp->X_add_symbol = (symbolS *) 0;
9290 exp->X_op_symbol = (symbolS *) 0;
9291
9292 i.types[this_operand].bitfield.imm8 = 1;
9293 return 1;
9294 }
9295
9296 /* Only string instructions can have a second memory operand, so
9297 reduce current_templates to just those if it contains any. */
9298 static int
9299 maybe_adjust_templates (void)
9300 {
9301 const insn_template *t;
9302
9303 gas_assert (i.mem_operands == 1);
9304
9305 for (t = current_templates->start; t < current_templates->end; ++t)
9306 if (t->opcode_modifier.isstring)
9307 break;
9308
9309 if (t < current_templates->end)
9310 {
9311 static templates aux_templates;
9312 bfd_boolean recheck;
9313
9314 aux_templates.start = t;
9315 for (; t < current_templates->end; ++t)
9316 if (!t->opcode_modifier.isstring)
9317 break;
9318 aux_templates.end = t;
9319
9320 /* Determine whether to re-check the first memory operand. */
9321 recheck = (aux_templates.start != current_templates->start
9322 || t != current_templates->end);
9323
9324 current_templates = &aux_templates;
9325
9326 if (recheck)
9327 {
9328 i.mem_operands = 0;
9329 if (i.memop1_string != NULL
9330 && i386_index_check (i.memop1_string) == 0)
9331 return 0;
9332 i.mem_operands = 1;
9333 }
9334 }
9335
9336 return 1;
9337 }
9338
9339 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9340 on error. */
9341
9342 static int
9343 i386_att_operand (char *operand_string)
9344 {
9345 const reg_entry *r;
9346 char *end_op;
9347 char *op_string = operand_string;
9348
9349 if (is_space_char (*op_string))
9350 ++op_string;
9351
9352 /* We check for an absolute prefix (differentiating,
9353 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9354 if (*op_string == ABSOLUTE_PREFIX)
9355 {
9356 ++op_string;
9357 if (is_space_char (*op_string))
9358 ++op_string;
9359 i.types[this_operand].bitfield.jumpabsolute = 1;
9360 }
9361
9362 /* Check if operand is a register. */
9363 if ((r = parse_register (op_string, &end_op)) != NULL)
9364 {
9365 i386_operand_type temp;
9366
9367 /* Check for a segment override by searching for ':' after a
9368 segment register. */
9369 op_string = end_op;
9370 if (is_space_char (*op_string))
9371 ++op_string;
9372 if (*op_string == ':'
9373 && (r->reg_type.bitfield.sreg2
9374 || r->reg_type.bitfield.sreg3))
9375 {
9376 switch (r->reg_num)
9377 {
9378 case 0:
9379 i.seg[i.mem_operands] = &es;
9380 break;
9381 case 1:
9382 i.seg[i.mem_operands] = &cs;
9383 break;
9384 case 2:
9385 i.seg[i.mem_operands] = &ss;
9386 break;
9387 case 3:
9388 i.seg[i.mem_operands] = &ds;
9389 break;
9390 case 4:
9391 i.seg[i.mem_operands] = &fs;
9392 break;
9393 case 5:
9394 i.seg[i.mem_operands] = &gs;
9395 break;
9396 }
9397
9398 /* Skip the ':' and whitespace. */
9399 ++op_string;
9400 if (is_space_char (*op_string))
9401 ++op_string;
9402
9403 if (!is_digit_char (*op_string)
9404 && !is_identifier_char (*op_string)
9405 && *op_string != '('
9406 && *op_string != ABSOLUTE_PREFIX)
9407 {
9408 as_bad (_("bad memory operand `%s'"), op_string);
9409 return 0;
9410 }
9411 /* Handle case of %es:*foo. */
9412 if (*op_string == ABSOLUTE_PREFIX)
9413 {
9414 ++op_string;
9415 if (is_space_char (*op_string))
9416 ++op_string;
9417 i.types[this_operand].bitfield.jumpabsolute = 1;
9418 }
9419 goto do_memory_reference;
9420 }
9421
9422 /* Handle vector operations. */
9423 if (*op_string == '{')
9424 {
9425 op_string = check_VecOperations (op_string, NULL);
9426 if (op_string == NULL)
9427 return 0;
9428 }
9429
9430 if (*op_string)
9431 {
9432 as_bad (_("junk `%s' after register"), op_string);
9433 return 0;
9434 }
9435 temp = r->reg_type;
9436 temp.bitfield.baseindex = 0;
9437 i.types[this_operand] = operand_type_or (i.types[this_operand],
9438 temp);
9439 i.types[this_operand].bitfield.unspecified = 0;
9440 i.op[this_operand].regs = r;
9441 i.reg_operands++;
9442 }
9443 else if (*op_string == REGISTER_PREFIX)
9444 {
9445 as_bad (_("bad register name `%s'"), op_string);
9446 return 0;
9447 }
9448 else if (*op_string == IMMEDIATE_PREFIX)
9449 {
9450 ++op_string;
9451 if (i.types[this_operand].bitfield.jumpabsolute)
9452 {
9453 as_bad (_("immediate operand illegal with absolute jump"));
9454 return 0;
9455 }
9456 if (!i386_immediate (op_string))
9457 return 0;
9458 }
9459 else if (RC_SAE_immediate (operand_string))
9460 {
9461 /* If it is a RC or SAE immediate, do nothing. */
9462 ;
9463 }
9464 else if (is_digit_char (*op_string)
9465 || is_identifier_char (*op_string)
9466 || *op_string == '"'
9467 || *op_string == '(')
9468 {
9469 /* This is a memory reference of some sort. */
9470 char *base_string;
9471
9472 /* Start and end of displacement string expression (if found). */
9473 char *displacement_string_start;
9474 char *displacement_string_end;
9475 char *vop_start;
9476
9477 do_memory_reference:
9478 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9479 return 0;
9480 if ((i.mem_operands == 1
9481 && !current_templates->start->opcode_modifier.isstring)
9482 || i.mem_operands == 2)
9483 {
9484 as_bad (_("too many memory references for `%s'"),
9485 current_templates->start->name);
9486 return 0;
9487 }
9488
9489 /* Check for base index form. We detect the base index form by
9490 looking for an ')' at the end of the operand, searching
9491 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9492 after the '('. */
9493 base_string = op_string + strlen (op_string);
9494
9495 /* Handle vector operations. */
9496 vop_start = strchr (op_string, '{');
9497 if (vop_start && vop_start < base_string)
9498 {
9499 if (check_VecOperations (vop_start, base_string) == NULL)
9500 return 0;
9501 base_string = vop_start;
9502 }
9503
9504 --base_string;
9505 if (is_space_char (*base_string))
9506 --base_string;
9507
9508 /* If we only have a displacement, set-up for it to be parsed later. */
9509 displacement_string_start = op_string;
9510 displacement_string_end = base_string + 1;
9511
9512 if (*base_string == ')')
9513 {
9514 char *temp_string;
9515 unsigned int parens_balanced = 1;
9516 /* We've already checked that the number of left & right ()'s are
9517 equal, so this loop will not be infinite. */
9518 do
9519 {
9520 base_string--;
9521 if (*base_string == ')')
9522 parens_balanced++;
9523 if (*base_string == '(')
9524 parens_balanced--;
9525 }
9526 while (parens_balanced);
9527
9528 temp_string = base_string;
9529
9530 /* Skip past '(' and whitespace. */
9531 ++base_string;
9532 if (is_space_char (*base_string))
9533 ++base_string;
9534
9535 if (*base_string == ','
9536 || ((i.base_reg = parse_register (base_string, &end_op))
9537 != NULL))
9538 {
9539 displacement_string_end = temp_string;
9540
9541 i.types[this_operand].bitfield.baseindex = 1;
9542
9543 if (i.base_reg)
9544 {
9545 base_string = end_op;
9546 if (is_space_char (*base_string))
9547 ++base_string;
9548 }
9549
9550 /* There may be an index reg or scale factor here. */
9551 if (*base_string == ',')
9552 {
9553 ++base_string;
9554 if (is_space_char (*base_string))
9555 ++base_string;
9556
9557 if ((i.index_reg = parse_register (base_string, &end_op))
9558 != NULL)
9559 {
9560 base_string = end_op;
9561 if (is_space_char (*base_string))
9562 ++base_string;
9563 if (*base_string == ',')
9564 {
9565 ++base_string;
9566 if (is_space_char (*base_string))
9567 ++base_string;
9568 }
9569 else if (*base_string != ')')
9570 {
9571 as_bad (_("expecting `,' or `)' "
9572 "after index register in `%s'"),
9573 operand_string);
9574 return 0;
9575 }
9576 }
9577 else if (*base_string == REGISTER_PREFIX)
9578 {
9579 end_op = strchr (base_string, ',');
9580 if (end_op)
9581 *end_op = '\0';
9582 as_bad (_("bad register name `%s'"), base_string);
9583 return 0;
9584 }
9585
9586 /* Check for scale factor. */
9587 if (*base_string != ')')
9588 {
9589 char *end_scale = i386_scale (base_string);
9590
9591 if (!end_scale)
9592 return 0;
9593
9594 base_string = end_scale;
9595 if (is_space_char (*base_string))
9596 ++base_string;
9597 if (*base_string != ')')
9598 {
9599 as_bad (_("expecting `)' "
9600 "after scale factor in `%s'"),
9601 operand_string);
9602 return 0;
9603 }
9604 }
9605 else if (!i.index_reg)
9606 {
9607 as_bad (_("expecting index register or scale factor "
9608 "after `,'; got '%c'"),
9609 *base_string);
9610 return 0;
9611 }
9612 }
9613 else if (*base_string != ')')
9614 {
9615 as_bad (_("expecting `,' or `)' "
9616 "after base register in `%s'"),
9617 operand_string);
9618 return 0;
9619 }
9620 }
9621 else if (*base_string == REGISTER_PREFIX)
9622 {
9623 end_op = strchr (base_string, ',');
9624 if (end_op)
9625 *end_op = '\0';
9626 as_bad (_("bad register name `%s'"), base_string);
9627 return 0;
9628 }
9629 }
9630
9631 /* If there's an expression beginning the operand, parse it,
9632 assuming displacement_string_start and
9633 displacement_string_end are meaningful. */
9634 if (displacement_string_start != displacement_string_end)
9635 {
9636 if (!i386_displacement (displacement_string_start,
9637 displacement_string_end))
9638 return 0;
9639 }
9640
9641 /* Special case for (%dx) while doing input/output op. */
9642 if (i.base_reg
9643 && i.base_reg->reg_type.bitfield.inoutportreg
9644 && i.index_reg == 0
9645 && i.log2_scale_factor == 0
9646 && i.seg[i.mem_operands] == 0
9647 && !operand_type_check (i.types[this_operand], disp))
9648 {
9649 i.types[this_operand] = i.base_reg->reg_type;
9650 return 1;
9651 }
9652
9653 if (i386_index_check (operand_string) == 0)
9654 return 0;
9655 i.types[this_operand].bitfield.mem = 1;
9656 if (i.mem_operands == 0)
9657 i.memop1_string = xstrdup (operand_string);
9658 i.mem_operands++;
9659 }
9660 else
9661 {
9662 /* It's not a memory operand; argh! */
9663 as_bad (_("invalid char %s beginning operand %d `%s'"),
9664 output_invalid (*op_string),
9665 this_operand + 1,
9666 op_string);
9667 return 0;
9668 }
9669 return 1; /* Normal return. */
9670 }
9671 \f
9672 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9673 that an rs_machine_dependent frag may reach. */
9674
9675 unsigned int
9676 i386_frag_max_var (fragS *frag)
9677 {
9678 /* The only relaxable frags are for jumps.
9679 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9680 gas_assert (frag->fr_type == rs_machine_dependent);
9681 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9682 }
9683
9684 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9685 static int
9686 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9687 {
9688 /* STT_GNU_IFUNC symbol must go through PLT. */
9689 if ((symbol_get_bfdsym (fr_symbol)->flags
9690 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9691 return 0;
9692
9693 if (!S_IS_EXTERNAL (fr_symbol))
9694 /* Symbol may be weak or local. */
9695 return !S_IS_WEAK (fr_symbol);
9696
9697 /* Global symbols with non-default visibility can't be preempted. */
9698 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9699 return 1;
9700
9701 if (fr_var != NO_RELOC)
9702 switch ((enum bfd_reloc_code_real) fr_var)
9703 {
9704 case BFD_RELOC_386_PLT32:
9705 case BFD_RELOC_X86_64_PLT32:
9706 /* Symbol with PLT relocation may be preempted. */
9707 return 0;
9708 default:
9709 abort ();
9710 }
9711
9712 /* Global symbols with default visibility in a shared library may be
9713 preempted by another definition. */
9714 return !shared;
9715 }
9716 #endif
9717
9718 /* md_estimate_size_before_relax()
9719
9720 Called just before relax() for rs_machine_dependent frags. The x86
9721 assembler uses these frags to handle variable size jump
9722 instructions.
9723
9724 Any symbol that is now undefined will not become defined.
9725 Return the correct fr_subtype in the frag.
9726 Return the initial "guess for variable size of frag" to caller.
9727 The guess is actually the growth beyond the fixed part. Whatever
9728 we do to grow the fixed or variable part contributes to our
9729 returned value. */
9730
9731 int
9732 md_estimate_size_before_relax (fragS *fragP, segT segment)
9733 {
9734 /* We've already got fragP->fr_subtype right; all we have to do is
9735 check for un-relaxable symbols. On an ELF system, we can't relax
9736 an externally visible symbol, because it may be overridden by a
9737 shared library. */
9738 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9739 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9740 || (IS_ELF
9741 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9742 fragP->fr_var))
9743 #endif
9744 #if defined (OBJ_COFF) && defined (TE_PE)
9745 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9746 && S_IS_WEAK (fragP->fr_symbol))
9747 #endif
9748 )
9749 {
9750 /* Symbol is undefined in this segment, or we need to keep a
9751 reloc so that weak symbols can be overridden. */
9752 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9753 enum bfd_reloc_code_real reloc_type;
9754 unsigned char *opcode;
9755 int old_fr_fix;
9756
9757 if (fragP->fr_var != NO_RELOC)
9758 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9759 else if (size == 2)
9760 reloc_type = BFD_RELOC_16_PCREL;
9761 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9762 else if (need_plt32_p (fragP->fr_symbol))
9763 reloc_type = BFD_RELOC_X86_64_PLT32;
9764 #endif
9765 else
9766 reloc_type = BFD_RELOC_32_PCREL;
9767
9768 old_fr_fix = fragP->fr_fix;
9769 opcode = (unsigned char *) fragP->fr_opcode;
9770
9771 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9772 {
9773 case UNCOND_JUMP:
9774 /* Make jmp (0xeb) a (d)word displacement jump. */
9775 opcode[0] = 0xe9;
9776 fragP->fr_fix += size;
9777 fix_new (fragP, old_fr_fix, size,
9778 fragP->fr_symbol,
9779 fragP->fr_offset, 1,
9780 reloc_type);
9781 break;
9782
9783 case COND_JUMP86:
9784 if (size == 2
9785 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9786 {
9787 /* Negate the condition, and branch past an
9788 unconditional jump. */
9789 opcode[0] ^= 1;
9790 opcode[1] = 3;
9791 /* Insert an unconditional jump. */
9792 opcode[2] = 0xe9;
9793 /* We added two extra opcode bytes, and have a two byte
9794 offset. */
9795 fragP->fr_fix += 2 + 2;
9796 fix_new (fragP, old_fr_fix + 2, 2,
9797 fragP->fr_symbol,
9798 fragP->fr_offset, 1,
9799 reloc_type);
9800 break;
9801 }
9802 /* Fall through. */
9803
9804 case COND_JUMP:
9805 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9806 {
9807 fixS *fixP;
9808
9809 fragP->fr_fix += 1;
9810 fixP = fix_new (fragP, old_fr_fix, 1,
9811 fragP->fr_symbol,
9812 fragP->fr_offset, 1,
9813 BFD_RELOC_8_PCREL);
9814 fixP->fx_signed = 1;
9815 break;
9816 }
9817
9818 /* This changes the byte-displacement jump 0x7N
9819 to the (d)word-displacement jump 0x0f,0x8N. */
9820 opcode[1] = opcode[0] + 0x10;
9821 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9822 /* We've added an opcode byte. */
9823 fragP->fr_fix += 1 + size;
9824 fix_new (fragP, old_fr_fix + 1, size,
9825 fragP->fr_symbol,
9826 fragP->fr_offset, 1,
9827 reloc_type);
9828 break;
9829
9830 default:
9831 BAD_CASE (fragP->fr_subtype);
9832 break;
9833 }
9834 frag_wane (fragP);
9835 return fragP->fr_fix - old_fr_fix;
9836 }
9837
9838 /* Guess size depending on current relax state. Initially the relax
9839 state will correspond to a short jump and we return 1, because
9840 the variable part of the frag (the branch offset) is one byte
9841 long. However, we can relax a section more than once and in that
9842 case we must either set fr_subtype back to the unrelaxed state,
9843 or return the value for the appropriate branch. */
9844 return md_relax_table[fragP->fr_subtype].rlx_length;
9845 }
9846
9847 /* Called after relax() is finished.
9848
9849 In: Address of frag.
9850 fr_type == rs_machine_dependent.
9851 fr_subtype is what the address relaxed to.
9852
9853 Out: Any fixSs and constants are set up.
9854 Caller will turn frag into a ".space 0". */
9855
9856 void
9857 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9858 fragS *fragP)
9859 {
9860 unsigned char *opcode;
9861 unsigned char *where_to_put_displacement = NULL;
9862 offsetT target_address;
9863 offsetT opcode_address;
9864 unsigned int extension = 0;
9865 offsetT displacement_from_opcode_start;
9866
9867 opcode = (unsigned char *) fragP->fr_opcode;
9868
9869 /* Address we want to reach in file space. */
9870 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9871
9872 /* Address opcode resides at in file space. */
9873 opcode_address = fragP->fr_address + fragP->fr_fix;
9874
9875 /* Displacement from opcode start to fill into instruction. */
9876 displacement_from_opcode_start = target_address - opcode_address;
9877
9878 if ((fragP->fr_subtype & BIG) == 0)
9879 {
9880 /* Don't have to change opcode. */
9881 extension = 1; /* 1 opcode + 1 displacement */
9882 where_to_put_displacement = &opcode[1];
9883 }
9884 else
9885 {
9886 if (no_cond_jump_promotion
9887 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9888 as_warn_where (fragP->fr_file, fragP->fr_line,
9889 _("long jump required"));
9890
9891 switch (fragP->fr_subtype)
9892 {
9893 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9894 extension = 4; /* 1 opcode + 4 displacement */
9895 opcode[0] = 0xe9;
9896 where_to_put_displacement = &opcode[1];
9897 break;
9898
9899 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9900 extension = 2; /* 1 opcode + 2 displacement */
9901 opcode[0] = 0xe9;
9902 where_to_put_displacement = &opcode[1];
9903 break;
9904
9905 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9906 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9907 extension = 5; /* 2 opcode + 4 displacement */
9908 opcode[1] = opcode[0] + 0x10;
9909 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9910 where_to_put_displacement = &opcode[2];
9911 break;
9912
9913 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9914 extension = 3; /* 2 opcode + 2 displacement */
9915 opcode[1] = opcode[0] + 0x10;
9916 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9917 where_to_put_displacement = &opcode[2];
9918 break;
9919
9920 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9921 extension = 4;
9922 opcode[0] ^= 1;
9923 opcode[1] = 3;
9924 opcode[2] = 0xe9;
9925 where_to_put_displacement = &opcode[3];
9926 break;
9927
9928 default:
9929 BAD_CASE (fragP->fr_subtype);
9930 break;
9931 }
9932 }
9933
9934 /* If size if less then four we are sure that the operand fits,
9935 but if it's 4, then it could be that the displacement is larger
9936 then -/+ 2GB. */
9937 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9938 && object_64bit
9939 && ((addressT) (displacement_from_opcode_start - extension
9940 + ((addressT) 1 << 31))
9941 > (((addressT) 2 << 31) - 1)))
9942 {
9943 as_bad_where (fragP->fr_file, fragP->fr_line,
9944 _("jump target out of range"));
9945 /* Make us emit 0. */
9946 displacement_from_opcode_start = extension;
9947 }
9948 /* Now put displacement after opcode. */
9949 md_number_to_chars ((char *) where_to_put_displacement,
9950 (valueT) (displacement_from_opcode_start - extension),
9951 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9952 fragP->fr_fix += extension;
9953 }
9954 \f
9955 /* Apply a fixup (fixP) to segment data, once it has been determined
9956 by our caller that we have all the info we need to fix it up.
9957
9958 Parameter valP is the pointer to the value of the bits.
9959
9960 On the 386, immediates, displacements, and data pointers are all in
9961 the same (little-endian) format, so we don't need to care about which
9962 we are handling. */
9963
9964 void
9965 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9966 {
9967 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9968 valueT value = *valP;
9969
9970 #if !defined (TE_Mach)
9971 if (fixP->fx_pcrel)
9972 {
9973 switch (fixP->fx_r_type)
9974 {
9975 default:
9976 break;
9977
9978 case BFD_RELOC_64:
9979 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9980 break;
9981 case BFD_RELOC_32:
9982 case BFD_RELOC_X86_64_32S:
9983 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9984 break;
9985 case BFD_RELOC_16:
9986 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9987 break;
9988 case BFD_RELOC_8:
9989 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9990 break;
9991 }
9992 }
9993
9994 if (fixP->fx_addsy != NULL
9995 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9996 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9997 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9998 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9999 && !use_rela_relocations)
10000 {
10001 /* This is a hack. There should be a better way to handle this.
10002 This covers for the fact that bfd_install_relocation will
10003 subtract the current location (for partial_inplace, PC relative
10004 relocations); see more below. */
10005 #ifndef OBJ_AOUT
10006 if (IS_ELF
10007 #ifdef TE_PE
10008 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10009 #endif
10010 )
10011 value += fixP->fx_where + fixP->fx_frag->fr_address;
10012 #endif
10013 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10014 if (IS_ELF)
10015 {
10016 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10017
10018 if ((sym_seg == seg
10019 || (symbol_section_p (fixP->fx_addsy)
10020 && sym_seg != absolute_section))
10021 && !generic_force_reloc (fixP))
10022 {
10023 /* Yes, we add the values in twice. This is because
10024 bfd_install_relocation subtracts them out again. I think
10025 bfd_install_relocation is broken, but I don't dare change
10026 it. FIXME. */
10027 value += fixP->fx_where + fixP->fx_frag->fr_address;
10028 }
10029 }
10030 #endif
10031 #if defined (OBJ_COFF) && defined (TE_PE)
10032 /* For some reason, the PE format does not store a
10033 section address offset for a PC relative symbol. */
10034 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10035 || S_IS_WEAK (fixP->fx_addsy))
10036 value += md_pcrel_from (fixP);
10037 #endif
10038 }
10039 #if defined (OBJ_COFF) && defined (TE_PE)
10040 if (fixP->fx_addsy != NULL
10041 && S_IS_WEAK (fixP->fx_addsy)
10042 /* PR 16858: Do not modify weak function references. */
10043 && ! fixP->fx_pcrel)
10044 {
10045 #if !defined (TE_PEP)
10046 /* For x86 PE weak function symbols are neither PC-relative
10047 nor do they set S_IS_FUNCTION. So the only reliable way
10048 to detect them is to check the flags of their containing
10049 section. */
10050 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10051 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10052 ;
10053 else
10054 #endif
10055 value -= S_GET_VALUE (fixP->fx_addsy);
10056 }
10057 #endif
10058
10059 /* Fix a few things - the dynamic linker expects certain values here,
10060 and we must not disappoint it. */
10061 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10062 if (IS_ELF && fixP->fx_addsy)
10063 switch (fixP->fx_r_type)
10064 {
10065 case BFD_RELOC_386_PLT32:
10066 case BFD_RELOC_X86_64_PLT32:
10067 /* Make the jump instruction point to the address of the operand. At
10068 runtime we merely add the offset to the actual PLT entry. */
10069 value = -4;
10070 break;
10071
10072 case BFD_RELOC_386_TLS_GD:
10073 case BFD_RELOC_386_TLS_LDM:
10074 case BFD_RELOC_386_TLS_IE_32:
10075 case BFD_RELOC_386_TLS_IE:
10076 case BFD_RELOC_386_TLS_GOTIE:
10077 case BFD_RELOC_386_TLS_GOTDESC:
10078 case BFD_RELOC_X86_64_TLSGD:
10079 case BFD_RELOC_X86_64_TLSLD:
10080 case BFD_RELOC_X86_64_GOTTPOFF:
10081 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10082 value = 0; /* Fully resolved at runtime. No addend. */
10083 /* Fallthrough */
10084 case BFD_RELOC_386_TLS_LE:
10085 case BFD_RELOC_386_TLS_LDO_32:
10086 case BFD_RELOC_386_TLS_LE_32:
10087 case BFD_RELOC_X86_64_DTPOFF32:
10088 case BFD_RELOC_X86_64_DTPOFF64:
10089 case BFD_RELOC_X86_64_TPOFF32:
10090 case BFD_RELOC_X86_64_TPOFF64:
10091 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10092 break;
10093
10094 case BFD_RELOC_386_TLS_DESC_CALL:
10095 case BFD_RELOC_X86_64_TLSDESC_CALL:
10096 value = 0; /* Fully resolved at runtime. No addend. */
10097 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10098 fixP->fx_done = 0;
10099 return;
10100
10101 case BFD_RELOC_VTABLE_INHERIT:
10102 case BFD_RELOC_VTABLE_ENTRY:
10103 fixP->fx_done = 0;
10104 return;
10105
10106 default:
10107 break;
10108 }
10109 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10110 *valP = value;
10111 #endif /* !defined (TE_Mach) */
10112
10113 /* Are we finished with this relocation now? */
10114 if (fixP->fx_addsy == NULL)
10115 fixP->fx_done = 1;
10116 #if defined (OBJ_COFF) && defined (TE_PE)
10117 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10118 {
10119 fixP->fx_done = 0;
10120 /* Remember value for tc_gen_reloc. */
10121 fixP->fx_addnumber = value;
10122 /* Clear out the frag for now. */
10123 value = 0;
10124 }
10125 #endif
10126 else if (use_rela_relocations)
10127 {
10128 fixP->fx_no_overflow = 1;
10129 /* Remember value for tc_gen_reloc. */
10130 fixP->fx_addnumber = value;
10131 value = 0;
10132 }
10133
10134 md_number_to_chars (p, value, fixP->fx_size);
10135 }
10136 \f
10137 const char *
10138 md_atof (int type, char *litP, int *sizeP)
10139 {
10140 /* This outputs the LITTLENUMs in REVERSE order;
10141 in accord with the bigendian 386. */
10142 return ieee_md_atof (type, litP, sizeP, FALSE);
10143 }
10144 \f
10145 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10146
10147 static char *
10148 output_invalid (int c)
10149 {
10150 if (ISPRINT (c))
10151 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10152 "'%c'", c);
10153 else
10154 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10155 "(0x%x)", (unsigned char) c);
10156 return output_invalid_buf;
10157 }
10158
10159 /* REG_STRING starts *before* REGISTER_PREFIX. */
10160
10161 static const reg_entry *
10162 parse_real_register (char *reg_string, char **end_op)
10163 {
10164 char *s = reg_string;
10165 char *p;
10166 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10167 const reg_entry *r;
10168
10169 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10170 if (*s == REGISTER_PREFIX)
10171 ++s;
10172
10173 if (is_space_char (*s))
10174 ++s;
10175
10176 p = reg_name_given;
10177 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10178 {
10179 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10180 return (const reg_entry *) NULL;
10181 s++;
10182 }
10183
10184 /* For naked regs, make sure that we are not dealing with an identifier.
10185 This prevents confusing an identifier like `eax_var' with register
10186 `eax'. */
10187 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10188 return (const reg_entry *) NULL;
10189
10190 *end_op = s;
10191
10192 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10193
10194 /* Handle floating point regs, allowing spaces in the (i) part. */
10195 if (r == i386_regtab /* %st is first entry of table */)
10196 {
10197 if (!cpu_arch_flags.bitfield.cpu8087
10198 && !cpu_arch_flags.bitfield.cpu287
10199 && !cpu_arch_flags.bitfield.cpu387)
10200 return (const reg_entry *) NULL;
10201
10202 if (is_space_char (*s))
10203 ++s;
10204 if (*s == '(')
10205 {
10206 ++s;
10207 if (is_space_char (*s))
10208 ++s;
10209 if (*s >= '0' && *s <= '7')
10210 {
10211 int fpr = *s - '0';
10212 ++s;
10213 if (is_space_char (*s))
10214 ++s;
10215 if (*s == ')')
10216 {
10217 *end_op = s + 1;
10218 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10219 know (r);
10220 return r + fpr;
10221 }
10222 }
10223 /* We have "%st(" then garbage. */
10224 return (const reg_entry *) NULL;
10225 }
10226 }
10227
10228 if (r == NULL || allow_pseudo_reg)
10229 return r;
10230
10231 if (operand_type_all_zero (&r->reg_type))
10232 return (const reg_entry *) NULL;
10233
10234 if ((r->reg_type.bitfield.dword
10235 || r->reg_type.bitfield.sreg3
10236 || r->reg_type.bitfield.control
10237 || r->reg_type.bitfield.debug
10238 || r->reg_type.bitfield.test)
10239 && !cpu_arch_flags.bitfield.cpui386)
10240 return (const reg_entry *) NULL;
10241
10242 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10243 return (const reg_entry *) NULL;
10244
10245 if (!cpu_arch_flags.bitfield.cpuavx512f)
10246 {
10247 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10248 return (const reg_entry *) NULL;
10249
10250 if (!cpu_arch_flags.bitfield.cpuavx)
10251 {
10252 if (r->reg_type.bitfield.ymmword)
10253 return (const reg_entry *) NULL;
10254
10255 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10256 return (const reg_entry *) NULL;
10257 }
10258 }
10259
10260 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10261 return (const reg_entry *) NULL;
10262
10263 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10264 if (!allow_index_reg
10265 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10266 return (const reg_entry *) NULL;
10267
10268 /* Upper 16 vector registers are only available with VREX in 64bit
10269 mode, and require EVEX encoding. */
10270 if (r->reg_flags & RegVRex)
10271 {
10272 if (!cpu_arch_flags.bitfield.cpuvrex
10273 || flag_code != CODE_64BIT)
10274 return (const reg_entry *) NULL;
10275
10276 i.vec_encoding = vex_encoding_evex;
10277 }
10278
10279 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10280 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10281 && flag_code != CODE_64BIT)
10282 return (const reg_entry *) NULL;
10283
10284 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10285 return (const reg_entry *) NULL;
10286
10287 return r;
10288 }
10289
10290 /* REG_STRING starts *before* REGISTER_PREFIX. */
10291
10292 static const reg_entry *
10293 parse_register (char *reg_string, char **end_op)
10294 {
10295 const reg_entry *r;
10296
10297 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10298 r = parse_real_register (reg_string, end_op);
10299 else
10300 r = NULL;
10301 if (!r)
10302 {
10303 char *save = input_line_pointer;
10304 char c;
10305 symbolS *symbolP;
10306
10307 input_line_pointer = reg_string;
10308 c = get_symbol_name (&reg_string);
10309 symbolP = symbol_find (reg_string);
10310 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10311 {
10312 const expressionS *e = symbol_get_value_expression (symbolP);
10313
10314 know (e->X_op == O_register);
10315 know (e->X_add_number >= 0
10316 && (valueT) e->X_add_number < i386_regtab_size);
10317 r = i386_regtab + e->X_add_number;
10318 if ((r->reg_flags & RegVRex))
10319 i.vec_encoding = vex_encoding_evex;
10320 *end_op = input_line_pointer;
10321 }
10322 *input_line_pointer = c;
10323 input_line_pointer = save;
10324 }
10325 return r;
10326 }
10327
10328 int
10329 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10330 {
10331 const reg_entry *r;
10332 char *end = input_line_pointer;
10333
10334 *end = *nextcharP;
10335 r = parse_register (name, &input_line_pointer);
10336 if (r && end <= input_line_pointer)
10337 {
10338 *nextcharP = *input_line_pointer;
10339 *input_line_pointer = 0;
10340 e->X_op = O_register;
10341 e->X_add_number = r - i386_regtab;
10342 return 1;
10343 }
10344 input_line_pointer = end;
10345 *end = 0;
10346 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10347 }
10348
10349 void
10350 md_operand (expressionS *e)
10351 {
10352 char *end;
10353 const reg_entry *r;
10354
10355 switch (*input_line_pointer)
10356 {
10357 case REGISTER_PREFIX:
10358 r = parse_real_register (input_line_pointer, &end);
10359 if (r)
10360 {
10361 e->X_op = O_register;
10362 e->X_add_number = r - i386_regtab;
10363 input_line_pointer = end;
10364 }
10365 break;
10366
10367 case '[':
10368 gas_assert (intel_syntax);
10369 end = input_line_pointer++;
10370 expression (e);
10371 if (*input_line_pointer == ']')
10372 {
10373 ++input_line_pointer;
10374 e->X_op_symbol = make_expr_symbol (e);
10375 e->X_add_symbol = NULL;
10376 e->X_add_number = 0;
10377 e->X_op = O_index;
10378 }
10379 else
10380 {
10381 e->X_op = O_absent;
10382 input_line_pointer = end;
10383 }
10384 break;
10385 }
10386 }
10387
10388 \f
10389 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10390 const char *md_shortopts = "kVQ:sqnO::";
10391 #else
10392 const char *md_shortopts = "qnO::";
10393 #endif
10394
10395 #define OPTION_32 (OPTION_MD_BASE + 0)
10396 #define OPTION_64 (OPTION_MD_BASE + 1)
10397 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10398 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10399 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10400 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10401 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10402 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10403 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10404 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10405 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10406 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10407 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10408 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10409 #define OPTION_X32 (OPTION_MD_BASE + 14)
10410 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10411 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10412 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10413 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10414 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10415 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10416 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10417 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10418 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10419 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10420
10421 struct option md_longopts[] =
10422 {
10423 {"32", no_argument, NULL, OPTION_32},
10424 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10425 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10426 {"64", no_argument, NULL, OPTION_64},
10427 #endif
10428 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10429 {"x32", no_argument, NULL, OPTION_X32},
10430 {"mshared", no_argument, NULL, OPTION_MSHARED},
10431 #endif
10432 {"divide", no_argument, NULL, OPTION_DIVIDE},
10433 {"march", required_argument, NULL, OPTION_MARCH},
10434 {"mtune", required_argument, NULL, OPTION_MTUNE},
10435 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10436 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10437 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10438 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10439 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10440 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10441 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10442 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10443 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10444 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10445 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10446 # if defined (TE_PE) || defined (TE_PEP)
10447 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10448 #endif
10449 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10450 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10451 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10452 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10453 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10454 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10455 {NULL, no_argument, NULL, 0}
10456 };
10457 size_t md_longopts_size = sizeof (md_longopts);
10458
10459 int
10460 md_parse_option (int c, const char *arg)
10461 {
10462 unsigned int j;
10463 char *arch, *next, *saved;
10464
10465 switch (c)
10466 {
10467 case 'n':
10468 optimize_align_code = 0;
10469 break;
10470
10471 case 'q':
10472 quiet_warnings = 1;
10473 break;
10474
10475 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10476 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10477 should be emitted or not. FIXME: Not implemented. */
10478 case 'Q':
10479 break;
10480
10481 /* -V: SVR4 argument to print version ID. */
10482 case 'V':
10483 print_version_id ();
10484 break;
10485
10486 /* -k: Ignore for FreeBSD compatibility. */
10487 case 'k':
10488 break;
10489
10490 case 's':
10491 /* -s: On i386 Solaris, this tells the native assembler to use
10492 .stab instead of .stab.excl. We always use .stab anyhow. */
10493 break;
10494
10495 case OPTION_MSHARED:
10496 shared = 1;
10497 break;
10498 #endif
10499 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10500 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10501 case OPTION_64:
10502 {
10503 const char **list, **l;
10504
10505 list = bfd_target_list ();
10506 for (l = list; *l != NULL; l++)
10507 if (CONST_STRNEQ (*l, "elf64-x86-64")
10508 || strcmp (*l, "coff-x86-64") == 0
10509 || strcmp (*l, "pe-x86-64") == 0
10510 || strcmp (*l, "pei-x86-64") == 0
10511 || strcmp (*l, "mach-o-x86-64") == 0)
10512 {
10513 default_arch = "x86_64";
10514 break;
10515 }
10516 if (*l == NULL)
10517 as_fatal (_("no compiled in support for x86_64"));
10518 free (list);
10519 }
10520 break;
10521 #endif
10522
10523 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10524 case OPTION_X32:
10525 if (IS_ELF)
10526 {
10527 const char **list, **l;
10528
10529 list = bfd_target_list ();
10530 for (l = list; *l != NULL; l++)
10531 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10532 {
10533 default_arch = "x86_64:32";
10534 break;
10535 }
10536 if (*l == NULL)
10537 as_fatal (_("no compiled in support for 32bit x86_64"));
10538 free (list);
10539 }
10540 else
10541 as_fatal (_("32bit x86_64 is only supported for ELF"));
10542 break;
10543 #endif
10544
10545 case OPTION_32:
10546 default_arch = "i386";
10547 break;
10548
10549 case OPTION_DIVIDE:
10550 #ifdef SVR4_COMMENT_CHARS
10551 {
10552 char *n, *t;
10553 const char *s;
10554
10555 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10556 t = n;
10557 for (s = i386_comment_chars; *s != '\0'; s++)
10558 if (*s != '/')
10559 *t++ = *s;
10560 *t = '\0';
10561 i386_comment_chars = n;
10562 }
10563 #endif
10564 break;
10565
10566 case OPTION_MARCH:
10567 saved = xstrdup (arg);
10568 arch = saved;
10569 /* Allow -march=+nosse. */
10570 if (*arch == '+')
10571 arch++;
10572 do
10573 {
10574 if (*arch == '.')
10575 as_fatal (_("invalid -march= option: `%s'"), arg);
10576 next = strchr (arch, '+');
10577 if (next)
10578 *next++ = '\0';
10579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10580 {
10581 if (strcmp (arch, cpu_arch [j].name) == 0)
10582 {
10583 /* Processor. */
10584 if (! cpu_arch[j].flags.bitfield.cpui386)
10585 continue;
10586
10587 cpu_arch_name = cpu_arch[j].name;
10588 cpu_sub_arch_name = NULL;
10589 cpu_arch_flags = cpu_arch[j].flags;
10590 cpu_arch_isa = cpu_arch[j].type;
10591 cpu_arch_isa_flags = cpu_arch[j].flags;
10592 if (!cpu_arch_tune_set)
10593 {
10594 cpu_arch_tune = cpu_arch_isa;
10595 cpu_arch_tune_flags = cpu_arch_isa_flags;
10596 }
10597 break;
10598 }
10599 else if (*cpu_arch [j].name == '.'
10600 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10601 {
10602 /* ISA extension. */
10603 i386_cpu_flags flags;
10604
10605 flags = cpu_flags_or (cpu_arch_flags,
10606 cpu_arch[j].flags);
10607
10608 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10609 {
10610 if (cpu_sub_arch_name)
10611 {
10612 char *name = cpu_sub_arch_name;
10613 cpu_sub_arch_name = concat (name,
10614 cpu_arch[j].name,
10615 (const char *) NULL);
10616 free (name);
10617 }
10618 else
10619 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10620 cpu_arch_flags = flags;
10621 cpu_arch_isa_flags = flags;
10622 }
10623 else
10624 cpu_arch_isa_flags
10625 = cpu_flags_or (cpu_arch_isa_flags,
10626 cpu_arch[j].flags);
10627 break;
10628 }
10629 }
10630
10631 if (j >= ARRAY_SIZE (cpu_arch))
10632 {
10633 /* Disable an ISA extension. */
10634 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10635 if (strcmp (arch, cpu_noarch [j].name) == 0)
10636 {
10637 i386_cpu_flags flags;
10638
10639 flags = cpu_flags_and_not (cpu_arch_flags,
10640 cpu_noarch[j].flags);
10641 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10642 {
10643 if (cpu_sub_arch_name)
10644 {
10645 char *name = cpu_sub_arch_name;
10646 cpu_sub_arch_name = concat (arch,
10647 (const char *) NULL);
10648 free (name);
10649 }
10650 else
10651 cpu_sub_arch_name = xstrdup (arch);
10652 cpu_arch_flags = flags;
10653 cpu_arch_isa_flags = flags;
10654 }
10655 break;
10656 }
10657
10658 if (j >= ARRAY_SIZE (cpu_noarch))
10659 j = ARRAY_SIZE (cpu_arch);
10660 }
10661
10662 if (j >= ARRAY_SIZE (cpu_arch))
10663 as_fatal (_("invalid -march= option: `%s'"), arg);
10664
10665 arch = next;
10666 }
10667 while (next != NULL);
10668 free (saved);
10669 break;
10670
10671 case OPTION_MTUNE:
10672 if (*arg == '.')
10673 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10674 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10675 {
10676 if (strcmp (arg, cpu_arch [j].name) == 0)
10677 {
10678 cpu_arch_tune_set = 1;
10679 cpu_arch_tune = cpu_arch [j].type;
10680 cpu_arch_tune_flags = cpu_arch[j].flags;
10681 break;
10682 }
10683 }
10684 if (j >= ARRAY_SIZE (cpu_arch))
10685 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10686 break;
10687
10688 case OPTION_MMNEMONIC:
10689 if (strcasecmp (arg, "att") == 0)
10690 intel_mnemonic = 0;
10691 else if (strcasecmp (arg, "intel") == 0)
10692 intel_mnemonic = 1;
10693 else
10694 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10695 break;
10696
10697 case OPTION_MSYNTAX:
10698 if (strcasecmp (arg, "att") == 0)
10699 intel_syntax = 0;
10700 else if (strcasecmp (arg, "intel") == 0)
10701 intel_syntax = 1;
10702 else
10703 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10704 break;
10705
10706 case OPTION_MINDEX_REG:
10707 allow_index_reg = 1;
10708 break;
10709
10710 case OPTION_MNAKED_REG:
10711 allow_naked_reg = 1;
10712 break;
10713
10714 case OPTION_MSSE2AVX:
10715 sse2avx = 1;
10716 break;
10717
10718 case OPTION_MSSE_CHECK:
10719 if (strcasecmp (arg, "error") == 0)
10720 sse_check = check_error;
10721 else if (strcasecmp (arg, "warning") == 0)
10722 sse_check = check_warning;
10723 else if (strcasecmp (arg, "none") == 0)
10724 sse_check = check_none;
10725 else
10726 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10727 break;
10728
10729 case OPTION_MOPERAND_CHECK:
10730 if (strcasecmp (arg, "error") == 0)
10731 operand_check = check_error;
10732 else if (strcasecmp (arg, "warning") == 0)
10733 operand_check = check_warning;
10734 else if (strcasecmp (arg, "none") == 0)
10735 operand_check = check_none;
10736 else
10737 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10738 break;
10739
10740 case OPTION_MAVXSCALAR:
10741 if (strcasecmp (arg, "128") == 0)
10742 avxscalar = vex128;
10743 else if (strcasecmp (arg, "256") == 0)
10744 avxscalar = vex256;
10745 else
10746 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10747 break;
10748
10749 case OPTION_MADD_BND_PREFIX:
10750 add_bnd_prefix = 1;
10751 break;
10752
10753 case OPTION_MEVEXLIG:
10754 if (strcmp (arg, "128") == 0)
10755 evexlig = evexl128;
10756 else if (strcmp (arg, "256") == 0)
10757 evexlig = evexl256;
10758 else if (strcmp (arg, "512") == 0)
10759 evexlig = evexl512;
10760 else
10761 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10762 break;
10763
10764 case OPTION_MEVEXRCIG:
10765 if (strcmp (arg, "rne") == 0)
10766 evexrcig = rne;
10767 else if (strcmp (arg, "rd") == 0)
10768 evexrcig = rd;
10769 else if (strcmp (arg, "ru") == 0)
10770 evexrcig = ru;
10771 else if (strcmp (arg, "rz") == 0)
10772 evexrcig = rz;
10773 else
10774 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10775 break;
10776
10777 case OPTION_MEVEXWIG:
10778 if (strcmp (arg, "0") == 0)
10779 evexwig = evexw0;
10780 else if (strcmp (arg, "1") == 0)
10781 evexwig = evexw1;
10782 else
10783 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10784 break;
10785
10786 # if defined (TE_PE) || defined (TE_PEP)
10787 case OPTION_MBIG_OBJ:
10788 use_big_obj = 1;
10789 break;
10790 #endif
10791
10792 case OPTION_MOMIT_LOCK_PREFIX:
10793 if (strcasecmp (arg, "yes") == 0)
10794 omit_lock_prefix = 1;
10795 else if (strcasecmp (arg, "no") == 0)
10796 omit_lock_prefix = 0;
10797 else
10798 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10799 break;
10800
10801 case OPTION_MFENCE_AS_LOCK_ADD:
10802 if (strcasecmp (arg, "yes") == 0)
10803 avoid_fence = 1;
10804 else if (strcasecmp (arg, "no") == 0)
10805 avoid_fence = 0;
10806 else
10807 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10808 break;
10809
10810 case OPTION_MRELAX_RELOCATIONS:
10811 if (strcasecmp (arg, "yes") == 0)
10812 generate_relax_relocations = 1;
10813 else if (strcasecmp (arg, "no") == 0)
10814 generate_relax_relocations = 0;
10815 else
10816 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10817 break;
10818
10819 case OPTION_MAMD64:
10820 intel64 = 0;
10821 break;
10822
10823 case OPTION_MINTEL64:
10824 intel64 = 1;
10825 break;
10826
10827 case 'O':
10828 if (arg == NULL)
10829 {
10830 optimize = 1;
10831 /* Turn off -Os. */
10832 optimize_for_space = 0;
10833 }
10834 else if (*arg == 's')
10835 {
10836 optimize_for_space = 1;
10837 /* Turn on all encoding optimizations. */
10838 optimize = -1;
10839 }
10840 else
10841 {
10842 optimize = atoi (arg);
10843 /* Turn off -Os. */
10844 optimize_for_space = 0;
10845 }
10846 break;
10847
10848 default:
10849 return 0;
10850 }
10851 return 1;
10852 }
10853
10854 #define MESSAGE_TEMPLATE \
10855 " "
10856
10857 static char *
10858 output_message (FILE *stream, char *p, char *message, char *start,
10859 int *left_p, const char *name, int len)
10860 {
10861 int size = sizeof (MESSAGE_TEMPLATE);
10862 int left = *left_p;
10863
10864 /* Reserve 2 spaces for ", " or ",\0" */
10865 left -= len + 2;
10866
10867 /* Check if there is any room. */
10868 if (left >= 0)
10869 {
10870 if (p != start)
10871 {
10872 *p++ = ',';
10873 *p++ = ' ';
10874 }
10875 p = mempcpy (p, name, len);
10876 }
10877 else
10878 {
10879 /* Output the current message now and start a new one. */
10880 *p++ = ',';
10881 *p = '\0';
10882 fprintf (stream, "%s\n", message);
10883 p = start;
10884 left = size - (start - message) - len - 2;
10885
10886 gas_assert (left >= 0);
10887
10888 p = mempcpy (p, name, len);
10889 }
10890
10891 *left_p = left;
10892 return p;
10893 }
10894
10895 static void
10896 show_arch (FILE *stream, int ext, int check)
10897 {
10898 static char message[] = MESSAGE_TEMPLATE;
10899 char *start = message + 27;
10900 char *p;
10901 int size = sizeof (MESSAGE_TEMPLATE);
10902 int left;
10903 const char *name;
10904 int len;
10905 unsigned int j;
10906
10907 p = start;
10908 left = size - (start - message);
10909 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10910 {
10911 /* Should it be skipped? */
10912 if (cpu_arch [j].skip)
10913 continue;
10914
10915 name = cpu_arch [j].name;
10916 len = cpu_arch [j].len;
10917 if (*name == '.')
10918 {
10919 /* It is an extension. Skip if we aren't asked to show it. */
10920 if (ext)
10921 {
10922 name++;
10923 len--;
10924 }
10925 else
10926 continue;
10927 }
10928 else if (ext)
10929 {
10930 /* It is an processor. Skip if we show only extension. */
10931 continue;
10932 }
10933 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10934 {
10935 /* It is an impossible processor - skip. */
10936 continue;
10937 }
10938
10939 p = output_message (stream, p, message, start, &left, name, len);
10940 }
10941
10942 /* Display disabled extensions. */
10943 if (ext)
10944 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10945 {
10946 name = cpu_noarch [j].name;
10947 len = cpu_noarch [j].len;
10948 p = output_message (stream, p, message, start, &left, name,
10949 len);
10950 }
10951
10952 *p = '\0';
10953 fprintf (stream, "%s\n", message);
10954 }
10955
10956 void
10957 md_show_usage (FILE *stream)
10958 {
10959 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10960 fprintf (stream, _("\
10961 -Q ignored\n\
10962 -V print assembler version number\n\
10963 -k ignored\n"));
10964 #endif
10965 fprintf (stream, _("\
10966 -n Do not optimize code alignment\n\
10967 -q quieten some warnings\n"));
10968 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10969 fprintf (stream, _("\
10970 -s ignored\n"));
10971 #endif
10972 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10973 || defined (TE_PE) || defined (TE_PEP))
10974 fprintf (stream, _("\
10975 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10976 #endif
10977 #ifdef SVR4_COMMENT_CHARS
10978 fprintf (stream, _("\
10979 --divide do not treat `/' as a comment character\n"));
10980 #else
10981 fprintf (stream, _("\
10982 --divide ignored\n"));
10983 #endif
10984 fprintf (stream, _("\
10985 -march=CPU[,+EXTENSION...]\n\
10986 generate code for CPU and EXTENSION, CPU is one of:\n"));
10987 show_arch (stream, 0, 1);
10988 fprintf (stream, _("\
10989 EXTENSION is combination of:\n"));
10990 show_arch (stream, 1, 0);
10991 fprintf (stream, _("\
10992 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10993 show_arch (stream, 0, 0);
10994 fprintf (stream, _("\
10995 -msse2avx encode SSE instructions with VEX prefix\n"));
10996 fprintf (stream, _("\
10997 -msse-check=[none|error|warning]\n\
10998 check SSE instructions\n"));
10999 fprintf (stream, _("\
11000 -moperand-check=[none|error|warning]\n\
11001 check operand combinations for validity\n"));
11002 fprintf (stream, _("\
11003 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11004 length\n"));
11005 fprintf (stream, _("\
11006 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11007 length\n"));
11008 fprintf (stream, _("\
11009 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11010 for EVEX.W bit ignored instructions\n"));
11011 fprintf (stream, _("\
11012 -mevexrcig=[rne|rd|ru|rz]\n\
11013 encode EVEX instructions with specific EVEX.RC value\n\
11014 for SAE-only ignored instructions\n"));
11015 fprintf (stream, _("\
11016 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11017 fprintf (stream, _("\
11018 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11019 fprintf (stream, _("\
11020 -mindex-reg support pseudo index registers\n"));
11021 fprintf (stream, _("\
11022 -mnaked-reg don't require `%%' prefix for registers\n"));
11023 fprintf (stream, _("\
11024 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11025 fprintf (stream, _("\
11026 -mshared disable branch optimization for shared code\n"));
11027 # if defined (TE_PE) || defined (TE_PEP)
11028 fprintf (stream, _("\
11029 -mbig-obj generate big object files\n"));
11030 #endif
11031 fprintf (stream, _("\
11032 -momit-lock-prefix=[no|yes]\n\
11033 strip all lock prefixes\n"));
11034 fprintf (stream, _("\
11035 -mfence-as-lock-add=[no|yes]\n\
11036 encode lfence, mfence and sfence as\n\
11037 lock addl $0x0, (%%{re}sp)\n"));
11038 fprintf (stream, _("\
11039 -mrelax-relocations=[no|yes]\n\
11040 generate relax relocations\n"));
11041 fprintf (stream, _("\
11042 -mamd64 accept only AMD64 ISA\n"));
11043 fprintf (stream, _("\
11044 -mintel64 accept only Intel64 ISA\n"));
11045 }
11046
11047 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11048 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11049 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11050
11051 /* Pick the target format to use. */
11052
11053 const char *
11054 i386_target_format (void)
11055 {
11056 if (!strncmp (default_arch, "x86_64", 6))
11057 {
11058 update_code_flag (CODE_64BIT, 1);
11059 if (default_arch[6] == '\0')
11060 x86_elf_abi = X86_64_ABI;
11061 else
11062 x86_elf_abi = X86_64_X32_ABI;
11063 }
11064 else if (!strcmp (default_arch, "i386"))
11065 update_code_flag (CODE_32BIT, 1);
11066 else if (!strcmp (default_arch, "iamcu"))
11067 {
11068 update_code_flag (CODE_32BIT, 1);
11069 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11070 {
11071 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11072 cpu_arch_name = "iamcu";
11073 cpu_sub_arch_name = NULL;
11074 cpu_arch_flags = iamcu_flags;
11075 cpu_arch_isa = PROCESSOR_IAMCU;
11076 cpu_arch_isa_flags = iamcu_flags;
11077 if (!cpu_arch_tune_set)
11078 {
11079 cpu_arch_tune = cpu_arch_isa;
11080 cpu_arch_tune_flags = cpu_arch_isa_flags;
11081 }
11082 }
11083 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11084 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11085 cpu_arch_name);
11086 }
11087 else
11088 as_fatal (_("unknown architecture"));
11089
11090 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11091 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11092 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11093 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11094
11095 switch (OUTPUT_FLAVOR)
11096 {
11097 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11098 case bfd_target_aout_flavour:
11099 return AOUT_TARGET_FORMAT;
11100 #endif
11101 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11102 # if defined (TE_PE) || defined (TE_PEP)
11103 case bfd_target_coff_flavour:
11104 if (flag_code == CODE_64BIT)
11105 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11106 else
11107 return "pe-i386";
11108 # elif defined (TE_GO32)
11109 case bfd_target_coff_flavour:
11110 return "coff-go32";
11111 # else
11112 case bfd_target_coff_flavour:
11113 return "coff-i386";
11114 # endif
11115 #endif
11116 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11117 case bfd_target_elf_flavour:
11118 {
11119 const char *format;
11120
11121 switch (x86_elf_abi)
11122 {
11123 default:
11124 format = ELF_TARGET_FORMAT;
11125 break;
11126 case X86_64_ABI:
11127 use_rela_relocations = 1;
11128 object_64bit = 1;
11129 format = ELF_TARGET_FORMAT64;
11130 break;
11131 case X86_64_X32_ABI:
11132 use_rela_relocations = 1;
11133 object_64bit = 1;
11134 disallow_64bit_reloc = 1;
11135 format = ELF_TARGET_FORMAT32;
11136 break;
11137 }
11138 if (cpu_arch_isa == PROCESSOR_L1OM)
11139 {
11140 if (x86_elf_abi != X86_64_ABI)
11141 as_fatal (_("Intel L1OM is 64bit only"));
11142 return ELF_TARGET_L1OM_FORMAT;
11143 }
11144 else if (cpu_arch_isa == PROCESSOR_K1OM)
11145 {
11146 if (x86_elf_abi != X86_64_ABI)
11147 as_fatal (_("Intel K1OM is 64bit only"));
11148 return ELF_TARGET_K1OM_FORMAT;
11149 }
11150 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11151 {
11152 if (x86_elf_abi != I386_ABI)
11153 as_fatal (_("Intel MCU is 32bit only"));
11154 return ELF_TARGET_IAMCU_FORMAT;
11155 }
11156 else
11157 return format;
11158 }
11159 #endif
11160 #if defined (OBJ_MACH_O)
11161 case bfd_target_mach_o_flavour:
11162 if (flag_code == CODE_64BIT)
11163 {
11164 use_rela_relocations = 1;
11165 object_64bit = 1;
11166 return "mach-o-x86-64";
11167 }
11168 else
11169 return "mach-o-i386";
11170 #endif
11171 default:
11172 abort ();
11173 return NULL;
11174 }
11175 }
11176
11177 #endif /* OBJ_MAYBE_ more than one */
11178 \f
11179 symbolS *
11180 md_undefined_symbol (char *name)
11181 {
11182 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11183 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11184 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11185 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11186 {
11187 if (!GOT_symbol)
11188 {
11189 if (symbol_find (name))
11190 as_bad (_("GOT already in symbol table"));
11191 GOT_symbol = symbol_new (name, undefined_section,
11192 (valueT) 0, &zero_address_frag);
11193 };
11194 return GOT_symbol;
11195 }
11196 return 0;
11197 }
11198
11199 /* Round up a section size to the appropriate boundary. */
11200
11201 valueT
11202 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11203 {
11204 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11205 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11206 {
11207 /* For a.out, force the section size to be aligned. If we don't do
11208 this, BFD will align it for us, but it will not write out the
11209 final bytes of the section. This may be a bug in BFD, but it is
11210 easier to fix it here since that is how the other a.out targets
11211 work. */
11212 int align;
11213
11214 align = bfd_get_section_alignment (stdoutput, segment);
11215 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11216 }
11217 #endif
11218
11219 return size;
11220 }
11221
11222 /* On the i386, PC-relative offsets are relative to the start of the
11223 next instruction. That is, the address of the offset, plus its
11224 size, since the offset is always the last part of the insn. */
11225
11226 long
11227 md_pcrel_from (fixS *fixP)
11228 {
11229 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11230 }
11231
11232 #ifndef I386COFF
11233
11234 static void
11235 s_bss (int ignore ATTRIBUTE_UNUSED)
11236 {
11237 int temp;
11238
11239 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11240 if (IS_ELF)
11241 obj_elf_section_change_hook ();
11242 #endif
11243 temp = get_absolute_expression ();
11244 subseg_set (bss_section, (subsegT) temp);
11245 demand_empty_rest_of_line ();
11246 }
11247
11248 #endif
11249
11250 void
11251 i386_validate_fix (fixS *fixp)
11252 {
11253 if (fixp->fx_subsy)
11254 {
11255 if (fixp->fx_subsy == GOT_symbol)
11256 {
11257 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11258 {
11259 if (!object_64bit)
11260 abort ();
11261 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11262 if (fixp->fx_tcbit2)
11263 fixp->fx_r_type = (fixp->fx_tcbit
11264 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11265 : BFD_RELOC_X86_64_GOTPCRELX);
11266 else
11267 #endif
11268 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11269 }
11270 else
11271 {
11272 if (!object_64bit)
11273 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11274 else
11275 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11276 }
11277 fixp->fx_subsy = 0;
11278 }
11279 }
11280 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11281 else if (!object_64bit)
11282 {
11283 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11284 && fixp->fx_tcbit2)
11285 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11286 }
11287 #endif
11288 }
11289
11290 arelent *
11291 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11292 {
11293 arelent *rel;
11294 bfd_reloc_code_real_type code;
11295
11296 switch (fixp->fx_r_type)
11297 {
11298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11299 case BFD_RELOC_SIZE32:
11300 case BFD_RELOC_SIZE64:
11301 if (S_IS_DEFINED (fixp->fx_addsy)
11302 && !S_IS_EXTERNAL (fixp->fx_addsy))
11303 {
11304 /* Resolve size relocation against local symbol to size of
11305 the symbol plus addend. */
11306 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11307 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11308 && !fits_in_unsigned_long (value))
11309 as_bad_where (fixp->fx_file, fixp->fx_line,
11310 _("symbol size computation overflow"));
11311 fixp->fx_addsy = NULL;
11312 fixp->fx_subsy = NULL;
11313 md_apply_fix (fixp, (valueT *) &value, NULL);
11314 return NULL;
11315 }
11316 #endif
11317 /* Fall through. */
11318
11319 case BFD_RELOC_X86_64_PLT32:
11320 case BFD_RELOC_X86_64_GOT32:
11321 case BFD_RELOC_X86_64_GOTPCREL:
11322 case BFD_RELOC_X86_64_GOTPCRELX:
11323 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11324 case BFD_RELOC_386_PLT32:
11325 case BFD_RELOC_386_GOT32:
11326 case BFD_RELOC_386_GOT32X:
11327 case BFD_RELOC_386_GOTOFF:
11328 case BFD_RELOC_386_GOTPC:
11329 case BFD_RELOC_386_TLS_GD:
11330 case BFD_RELOC_386_TLS_LDM:
11331 case BFD_RELOC_386_TLS_LDO_32:
11332 case BFD_RELOC_386_TLS_IE_32:
11333 case BFD_RELOC_386_TLS_IE:
11334 case BFD_RELOC_386_TLS_GOTIE:
11335 case BFD_RELOC_386_TLS_LE_32:
11336 case BFD_RELOC_386_TLS_LE:
11337 case BFD_RELOC_386_TLS_GOTDESC:
11338 case BFD_RELOC_386_TLS_DESC_CALL:
11339 case BFD_RELOC_X86_64_TLSGD:
11340 case BFD_RELOC_X86_64_TLSLD:
11341 case BFD_RELOC_X86_64_DTPOFF32:
11342 case BFD_RELOC_X86_64_DTPOFF64:
11343 case BFD_RELOC_X86_64_GOTTPOFF:
11344 case BFD_RELOC_X86_64_TPOFF32:
11345 case BFD_RELOC_X86_64_TPOFF64:
11346 case BFD_RELOC_X86_64_GOTOFF64:
11347 case BFD_RELOC_X86_64_GOTPC32:
11348 case BFD_RELOC_X86_64_GOT64:
11349 case BFD_RELOC_X86_64_GOTPCREL64:
11350 case BFD_RELOC_X86_64_GOTPC64:
11351 case BFD_RELOC_X86_64_GOTPLT64:
11352 case BFD_RELOC_X86_64_PLTOFF64:
11353 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11354 case BFD_RELOC_X86_64_TLSDESC_CALL:
11355 case BFD_RELOC_RVA:
11356 case BFD_RELOC_VTABLE_ENTRY:
11357 case BFD_RELOC_VTABLE_INHERIT:
11358 #ifdef TE_PE
11359 case BFD_RELOC_32_SECREL:
11360 #endif
11361 code = fixp->fx_r_type;
11362 break;
11363 case BFD_RELOC_X86_64_32S:
11364 if (!fixp->fx_pcrel)
11365 {
11366 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11367 code = fixp->fx_r_type;
11368 break;
11369 }
11370 /* Fall through. */
11371 default:
11372 if (fixp->fx_pcrel)
11373 {
11374 switch (fixp->fx_size)
11375 {
11376 default:
11377 as_bad_where (fixp->fx_file, fixp->fx_line,
11378 _("can not do %d byte pc-relative relocation"),
11379 fixp->fx_size);
11380 code = BFD_RELOC_32_PCREL;
11381 break;
11382 case 1: code = BFD_RELOC_8_PCREL; break;
11383 case 2: code = BFD_RELOC_16_PCREL; break;
11384 case 4: code = BFD_RELOC_32_PCREL; break;
11385 #ifdef BFD64
11386 case 8: code = BFD_RELOC_64_PCREL; break;
11387 #endif
11388 }
11389 }
11390 else
11391 {
11392 switch (fixp->fx_size)
11393 {
11394 default:
11395 as_bad_where (fixp->fx_file, fixp->fx_line,
11396 _("can not do %d byte relocation"),
11397 fixp->fx_size);
11398 code = BFD_RELOC_32;
11399 break;
11400 case 1: code = BFD_RELOC_8; break;
11401 case 2: code = BFD_RELOC_16; break;
11402 case 4: code = BFD_RELOC_32; break;
11403 #ifdef BFD64
11404 case 8: code = BFD_RELOC_64; break;
11405 #endif
11406 }
11407 }
11408 break;
11409 }
11410
11411 if ((code == BFD_RELOC_32
11412 || code == BFD_RELOC_32_PCREL
11413 || code == BFD_RELOC_X86_64_32S)
11414 && GOT_symbol
11415 && fixp->fx_addsy == GOT_symbol)
11416 {
11417 if (!object_64bit)
11418 code = BFD_RELOC_386_GOTPC;
11419 else
11420 code = BFD_RELOC_X86_64_GOTPC32;
11421 }
11422 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11423 && GOT_symbol
11424 && fixp->fx_addsy == GOT_symbol)
11425 {
11426 code = BFD_RELOC_X86_64_GOTPC64;
11427 }
11428
11429 rel = XNEW (arelent);
11430 rel->sym_ptr_ptr = XNEW (asymbol *);
11431 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11432
11433 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11434
11435 if (!use_rela_relocations)
11436 {
11437 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11438 vtable entry to be used in the relocation's section offset. */
11439 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11440 rel->address = fixp->fx_offset;
11441 #if defined (OBJ_COFF) && defined (TE_PE)
11442 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11443 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11444 else
11445 #endif
11446 rel->addend = 0;
11447 }
11448 /* Use the rela in 64bit mode. */
11449 else
11450 {
11451 if (disallow_64bit_reloc)
11452 switch (code)
11453 {
11454 case BFD_RELOC_X86_64_DTPOFF64:
11455 case BFD_RELOC_X86_64_TPOFF64:
11456 case BFD_RELOC_64_PCREL:
11457 case BFD_RELOC_X86_64_GOTOFF64:
11458 case BFD_RELOC_X86_64_GOT64:
11459 case BFD_RELOC_X86_64_GOTPCREL64:
11460 case BFD_RELOC_X86_64_GOTPC64:
11461 case BFD_RELOC_X86_64_GOTPLT64:
11462 case BFD_RELOC_X86_64_PLTOFF64:
11463 as_bad_where (fixp->fx_file, fixp->fx_line,
11464 _("cannot represent relocation type %s in x32 mode"),
11465 bfd_get_reloc_code_name (code));
11466 break;
11467 default:
11468 break;
11469 }
11470
11471 if (!fixp->fx_pcrel)
11472 rel->addend = fixp->fx_offset;
11473 else
11474 switch (code)
11475 {
11476 case BFD_RELOC_X86_64_PLT32:
11477 case BFD_RELOC_X86_64_GOT32:
11478 case BFD_RELOC_X86_64_GOTPCREL:
11479 case BFD_RELOC_X86_64_GOTPCRELX:
11480 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11481 case BFD_RELOC_X86_64_TLSGD:
11482 case BFD_RELOC_X86_64_TLSLD:
11483 case BFD_RELOC_X86_64_GOTTPOFF:
11484 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11485 case BFD_RELOC_X86_64_TLSDESC_CALL:
11486 rel->addend = fixp->fx_offset - fixp->fx_size;
11487 break;
11488 default:
11489 rel->addend = (section->vma
11490 - fixp->fx_size
11491 + fixp->fx_addnumber
11492 + md_pcrel_from (fixp));
11493 break;
11494 }
11495 }
11496
11497 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11498 if (rel->howto == NULL)
11499 {
11500 as_bad_where (fixp->fx_file, fixp->fx_line,
11501 _("cannot represent relocation type %s"),
11502 bfd_get_reloc_code_name (code));
11503 /* Set howto to a garbage value so that we can keep going. */
11504 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11505 gas_assert (rel->howto != NULL);
11506 }
11507
11508 return rel;
11509 }
11510
11511 #include "tc-i386-intel.c"
11512
11513 void
11514 tc_x86_parse_to_dw2regnum (expressionS *exp)
11515 {
11516 int saved_naked_reg;
11517 char saved_register_dot;
11518
11519 saved_naked_reg = allow_naked_reg;
11520 allow_naked_reg = 1;
11521 saved_register_dot = register_chars['.'];
11522 register_chars['.'] = '.';
11523 allow_pseudo_reg = 1;
11524 expression_and_evaluate (exp);
11525 allow_pseudo_reg = 0;
11526 register_chars['.'] = saved_register_dot;
11527 allow_naked_reg = saved_naked_reg;
11528
11529 if (exp->X_op == O_register && exp->X_add_number >= 0)
11530 {
11531 if ((addressT) exp->X_add_number < i386_regtab_size)
11532 {
11533 exp->X_op = O_constant;
11534 exp->X_add_number = i386_regtab[exp->X_add_number]
11535 .dw2_regnum[flag_code >> 1];
11536 }
11537 else
11538 exp->X_op = O_illegal;
11539 }
11540 }
11541
11542 void
11543 tc_x86_frame_initial_instructions (void)
11544 {
11545 static unsigned int sp_regno[2];
11546
11547 if (!sp_regno[flag_code >> 1])
11548 {
11549 char *saved_input = input_line_pointer;
11550 char sp[][4] = {"esp", "rsp"};
11551 expressionS exp;
11552
11553 input_line_pointer = sp[flag_code >> 1];
11554 tc_x86_parse_to_dw2regnum (&exp);
11555 gas_assert (exp.X_op == O_constant);
11556 sp_regno[flag_code >> 1] = exp.X_add_number;
11557 input_line_pointer = saved_input;
11558 }
11559
11560 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11561 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11562 }
11563
11564 int
11565 x86_dwarf2_addr_size (void)
11566 {
11567 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11568 if (x86_elf_abi == X86_64_X32_ABI)
11569 return 4;
11570 #endif
11571 return bfd_arch_bits_per_address (stdoutput) / 8;
11572 }
11573
11574 int
11575 i386_elf_section_type (const char *str, size_t len)
11576 {
11577 if (flag_code == CODE_64BIT
11578 && len == sizeof ("unwind") - 1
11579 && strncmp (str, "unwind", 6) == 0)
11580 return SHT_X86_64_UNWIND;
11581
11582 return -1;
11583 }
11584
11585 #ifdef TE_SOLARIS
11586 void
11587 i386_solaris_fix_up_eh_frame (segT sec)
11588 {
11589 if (flag_code == CODE_64BIT)
11590 elf_section_type (sec) = SHT_X86_64_UNWIND;
11591 }
11592 #endif
11593
11594 #ifdef TE_PE
11595 void
11596 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11597 {
11598 expressionS exp;
11599
11600 exp.X_op = O_secrel;
11601 exp.X_add_symbol = symbol;
11602 exp.X_add_number = 0;
11603 emit_expr (&exp, size);
11604 }
11605 #endif
11606
11607 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11608 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11609
11610 bfd_vma
11611 x86_64_section_letter (int letter, const char **ptr_msg)
11612 {
11613 if (flag_code == CODE_64BIT)
11614 {
11615 if (letter == 'l')
11616 return SHF_X86_64_LARGE;
11617
11618 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11619 }
11620 else
11621 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11622 return -1;
11623 }
11624
11625 bfd_vma
11626 x86_64_section_word (char *str, size_t len)
11627 {
11628 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11629 return SHF_X86_64_LARGE;
11630
11631 return -1;
11632 }
11633
11634 static void
11635 handle_large_common (int small ATTRIBUTE_UNUSED)
11636 {
11637 if (flag_code != CODE_64BIT)
11638 {
11639 s_comm_internal (0, elf_common_parse);
11640 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11641 }
11642 else
11643 {
11644 static segT lbss_section;
11645 asection *saved_com_section_ptr = elf_com_section_ptr;
11646 asection *saved_bss_section = bss_section;
11647
11648 if (lbss_section == NULL)
11649 {
11650 flagword applicable;
11651 segT seg = now_seg;
11652 subsegT subseg = now_subseg;
11653
11654 /* The .lbss section is for local .largecomm symbols. */
11655 lbss_section = subseg_new (".lbss", 0);
11656 applicable = bfd_applicable_section_flags (stdoutput);
11657 bfd_set_section_flags (stdoutput, lbss_section,
11658 applicable & SEC_ALLOC);
11659 seg_info (lbss_section)->bss = 1;
11660
11661 subseg_set (seg, subseg);
11662 }
11663
11664 elf_com_section_ptr = &_bfd_elf_large_com_section;
11665 bss_section = lbss_section;
11666
11667 s_comm_internal (0, elf_common_parse);
11668
11669 elf_com_section_ptr = saved_com_section_ptr;
11670 bss_section = saved_bss_section;
11671 }
11672 }
11673 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.371038 seconds and 5 git commands to generate.