x86: Expand Broadcast to 3 bits
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233
234 /* Number of bytes to broadcast. */
235 int bytes;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 unsupported_with_intel_mnemonic,
269 unsupported_syntax,
270 unsupported,
271 invalid_vsib_address,
272 invalid_vector_register_set,
273 unsupported_vector_index_register,
274 unsupported_broadcast,
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
282 };
283
284 struct _i386_insn
285 {
286 /* TM holds the template for the insn were currently assembling. */
287 insn_template tm;
288
289 /* SUFFIX holds the instruction size suffix for byte, word, dword
290 or qword, if given. */
291 char suffix;
292
293 /* OPERANDS gives the number of given operands. */
294 unsigned int operands;
295
296 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
297 of given register, displacement, memory operands and immediate
298 operands. */
299 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
300
301 /* TYPES [i] is the type (see above #defines) which tells us how to
302 use OP[i] for the corresponding operand. */
303 i386_operand_type types[MAX_OPERANDS];
304
305 /* Displacement expression, immediate expression, or register for each
306 operand. */
307 union i386_op op[MAX_OPERANDS];
308
309 /* Flags for operands. */
310 unsigned int flags[MAX_OPERANDS];
311 #define Operand_PCrel 1
312
313 /* Relocation type for operand */
314 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
315
316 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
317 the base index byte below. */
318 const reg_entry *base_reg;
319 const reg_entry *index_reg;
320 unsigned int log2_scale_factor;
321
322 /* SEG gives the seg_entries of this insn. They are zero unless
323 explicit segment overrides are given. */
324 const seg_entry *seg[2];
325
326 /* Copied first memory operand string, for re-checking. */
327 char *memop1_string;
328
329 /* PREFIX holds all the given prefix opcodes (usually null).
330 PREFIXES is the number of prefix opcodes. */
331 unsigned int prefixes;
332 unsigned char prefix[MAX_PREFIXES];
333
334 /* RM and SIB are the modrm byte and the sib byte where the
335 addressing modes of this insn are encoded. */
336 modrm_byte rm;
337 rex_byte rex;
338 rex_byte vrex;
339 sib_byte sib;
340 vex_prefix vex;
341
342 /* Masking attributes. */
343 struct Mask_Operation *mask;
344
345 /* Rounding control and SAE attributes. */
346 struct RC_Operation *rounding;
347
348 /* Broadcasting attributes. */
349 struct Broadcast_Operation *broadcast;
350
351 /* Compressed disp8*N attribute. */
352 unsigned int memshift;
353
354 /* Prefer load or store in encoding. */
355 enum
356 {
357 dir_encoding_default = 0,
358 dir_encoding_load,
359 dir_encoding_store
360 } dir_encoding;
361
362 /* Prefer 8bit or 32bit displacement in encoding. */
363 enum
364 {
365 disp_encoding_default = 0,
366 disp_encoding_8bit,
367 disp_encoding_32bit
368 } disp_encoding;
369
370 /* Prefer the REX byte in encoding. */
371 bfd_boolean rex_encoding;
372
373 /* Disable instruction size optimization. */
374 bfd_boolean no_optimize;
375
376 /* How to encode vector instructions. */
377 enum
378 {
379 vex_encoding_default = 0,
380 vex_encoding_vex2,
381 vex_encoding_vex3,
382 vex_encoding_evex
383 } vec_encoding;
384
385 /* REP prefix. */
386 const char *rep_prefix;
387
388 /* HLE prefix. */
389 const char *hle_prefix;
390
391 /* Have BND prefix. */
392 const char *bnd_prefix;
393
394 /* Have NOTRACK prefix. */
395 const char *notrack_prefix;
396
397 /* Error message. */
398 enum i386_error error;
399 };
400
401 typedef struct _i386_insn i386_insn;
402
403 /* Link RC type with corresponding string, that'll be looked for in
404 asm. */
405 struct RC_name
406 {
407 enum rc_type type;
408 const char *name;
409 unsigned int len;
410 };
411
412 static const struct RC_name RC_NamesTable[] =
413 {
414 { rne, STRING_COMMA_LEN ("rn-sae") },
415 { rd, STRING_COMMA_LEN ("rd-sae") },
416 { ru, STRING_COMMA_LEN ("ru-sae") },
417 { rz, STRING_COMMA_LEN ("rz-sae") },
418 { saeonly, STRING_COMMA_LEN ("sae") },
419 };
420
421 /* List of chars besides those in app.c:symbol_chars that can start an
422 operand. Used to prevent the scrubber eating vital white-space. */
423 const char extra_symbol_chars[] = "*%-([{}"
424 #ifdef LEX_AT
425 "@"
426 #endif
427 #ifdef LEX_QM
428 "?"
429 #endif
430 ;
431
432 #if (defined (TE_I386AIX) \
433 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
434 && !defined (TE_GNU) \
435 && !defined (TE_LINUX) \
436 && !defined (TE_NACL) \
437 && !defined (TE_FreeBSD) \
438 && !defined (TE_DragonFly) \
439 && !defined (TE_NetBSD)))
440 /* This array holds the chars that always start a comment. If the
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443 const char *i386_comment_chars = "#/";
444 #define SVR4_COMMENT_CHARS 1
445 #define PREFIX_SEPARATOR '\\'
446
447 #else
448 const char *i386_comment_chars = "#";
449 #define PREFIX_SEPARATOR '/'
450 #endif
451
452 /* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
456 first line of the input file. This is because the compiler outputs
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
459 '/' isn't otherwise defined. */
460 const char line_comment_chars[] = "#/";
461
462 const char line_separator_chars[] = ";";
463
464 /* Chars that can be used to separate mant from exp in floating point
465 nums. */
466 const char EXP_CHARS[] = "eE";
467
468 /* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
471 const char FLT_CHARS[] = "fFdDxX";
472
473 /* Tables for lexical analysis. */
474 static char mnemonic_chars[256];
475 static char register_chars[256];
476 static char operand_chars[256];
477 static char identifier_chars[256];
478 static char digit_chars[256];
479
480 /* Lexical macros. */
481 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482 #define is_operand_char(x) (operand_chars[(unsigned char) x])
483 #define is_register_char(x) (register_chars[(unsigned char) x])
484 #define is_space_char(x) ((x) == ' ')
485 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486 #define is_digit_char(x) (digit_chars[(unsigned char) x])
487
488 /* All non-digit non-letter characters that may occur in an operand. */
489 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491 /* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
494 assembler instruction). */
495 static char save_stack[32];
496 static char *save_stack_p;
497 #define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499 #define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
502 /* The instruction we're assembling. */
503 static i386_insn i;
504
505 /* Possible templates for current insn. */
506 static const templates *current_templates;
507
508 /* Per instruction expressionS buffers: max displacements & immediates. */
509 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
511
512 /* Current operand we are working on. */
513 static int this_operand = -1;
514
515 /* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518 enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523 static enum flag_code flag_code;
524 static unsigned int object_64bit;
525 static unsigned int disallow_64bit_reloc;
526 static int use_rela_relocations = 0;
527
528 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
532 /* The ELF ABI to use. */
533 enum x86_elf_abi
534 {
535 I386_ABI,
536 X86_64_ABI,
537 X86_64_X32_ABI
538 };
539
540 static enum x86_elf_abi x86_elf_abi = I386_ABI;
541 #endif
542
543 #if defined (TE_PE) || defined (TE_PEP)
544 /* Use big object file format. */
545 static int use_big_obj = 0;
546 #endif
547
548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549 /* 1 if generating code for a shared library. */
550 static int shared = 0;
551 #endif
552
553 /* 1 for intel syntax,
554 0 if att syntax. */
555 static int intel_syntax = 0;
556
557 /* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559 static int intel64;
560
561 /* 1 for intel mnemonic,
562 0 if att mnemonic. */
563 static int intel_mnemonic = !SYSV386_COMPAT;
564
565 /* 1 if pseudo registers are permitted. */
566 static int allow_pseudo_reg = 0;
567
568 /* 1 if register prefix % not required. */
569 static int allow_naked_reg = 0;
570
571 /* 1 if the assembler should add BND prefix for all control-transferring
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574 static int add_bnd_prefix = 0;
575
576 /* 1 if pseudo index register, eiz/riz, is allowed . */
577 static int allow_index_reg = 0;
578
579 /* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581 static int omit_lock_prefix = 0;
582
583 /* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585 static int avoid_fence = 0;
586
587 /* 1 if the assembler should generate relax relocations. */
588
589 static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
592 static enum check_kind
593 {
594 check_none = 0,
595 check_warning,
596 check_error
597 }
598 sse_check, operand_check = check_warning;
599
600 /* Optimization:
601 1. Clear the REX_W bit with register operand if possible.
602 2. Above plus use 128bit vector instruction to clear the full vector
603 register.
604 */
605 static int optimize = 0;
606
607 /* Optimization:
608 1. Clear the REX_W bit with register operand if possible.
609 2. Above plus use 128bit vector instruction to clear the full vector
610 register.
611 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
612 "testb $imm7,%r8".
613 */
614 static int optimize_for_space = 0;
615
616 /* Register prefix used for error message. */
617 static const char *register_prefix = "%";
618
619 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
620 leave, push, and pop instructions so that gcc has the same stack
621 frame as in 32 bit mode. */
622 static char stackop_size = '\0';
623
624 /* Non-zero to optimize code alignment. */
625 int optimize_align_code = 1;
626
627 /* Non-zero to quieten some warnings. */
628 static int quiet_warnings = 0;
629
630 /* CPU name. */
631 static const char *cpu_arch_name = NULL;
632 static char *cpu_sub_arch_name = NULL;
633
634 /* CPU feature flags. */
635 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
636
637 /* If we have selected a cpu we are generating instructions for. */
638 static int cpu_arch_tune_set = 0;
639
640 /* Cpu we are generating instructions for. */
641 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
642
643 /* CPU feature flags of cpu we are generating instructions for. */
644 static i386_cpu_flags cpu_arch_tune_flags;
645
646 /* CPU instruction set architecture used. */
647 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
648
649 /* CPU feature flags of instruction set architecture used. */
650 i386_cpu_flags cpu_arch_isa_flags;
651
652 /* If set, conditional jumps are not automatically promoted to handle
653 larger than a byte offset. */
654 static unsigned int no_cond_jump_promotion = 0;
655
656 /* Encode SSE instructions with VEX prefix. */
657 static unsigned int sse2avx;
658
659 /* Encode scalar AVX instructions with specific vector length. */
660 static enum
661 {
662 vex128 = 0,
663 vex256
664 } avxscalar;
665
666 /* Encode scalar EVEX LIG instructions with specific vector length. */
667 static enum
668 {
669 evexl128 = 0,
670 evexl256,
671 evexl512
672 } evexlig;
673
674 /* Encode EVEX WIG instructions with specific evex.w. */
675 static enum
676 {
677 evexw0 = 0,
678 evexw1
679 } evexwig;
680
681 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
682 static enum rc_type evexrcig = rne;
683
684 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
685 static symbolS *GOT_symbol;
686
687 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
688 unsigned int x86_dwarf2_return_column;
689
690 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
691 int x86_cie_data_alignment;
692
693 /* Interface to relax_segment.
694 There are 3 major relax states for 386 jump insns because the
695 different types of jumps add different sizes to frags when we're
696 figuring out what sort of jump to choose to reach a given label. */
697
698 /* Types. */
699 #define UNCOND_JUMP 0
700 #define COND_JUMP 1
701 #define COND_JUMP86 2
702
703 /* Sizes. */
704 #define CODE16 1
705 #define SMALL 0
706 #define SMALL16 (SMALL | CODE16)
707 #define BIG 2
708 #define BIG16 (BIG | CODE16)
709
710 #ifndef INLINE
711 #ifdef __GNUC__
712 #define INLINE __inline__
713 #else
714 #define INLINE
715 #endif
716 #endif
717
718 #define ENCODE_RELAX_STATE(type, size) \
719 ((relax_substateT) (((type) << 2) | (size)))
720 #define TYPE_FROM_RELAX_STATE(s) \
721 ((s) >> 2)
722 #define DISP_SIZE_FROM_RELAX_STATE(s) \
723 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
724
725 /* This table is used by relax_frag to promote short jumps to long
726 ones where necessary. SMALL (short) jumps may be promoted to BIG
727 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
728 don't allow a short jump in a 32 bit code segment to be promoted to
729 a 16 bit offset jump because it's slower (requires data size
730 prefix), and doesn't work, unless the destination is in the bottom
731 64k of the code segment (The top 16 bits of eip are zeroed). */
732
733 const relax_typeS md_relax_table[] =
734 {
735 /* The fields are:
736 1) most positive reach of this state,
737 2) most negative reach of this state,
738 3) how many bytes this mode will have in the variable part of the frag
739 4) which index into the table to try if we can't fit into this one. */
740
741 /* UNCOND_JUMP states. */
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
743 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
744 /* dword jmp adds 4 bytes to frag:
745 0 extra opcode bytes, 4 displacement bytes. */
746 {0, 0, 4, 0},
747 /* word jmp adds 2 byte2 to frag:
748 0 extra opcode bytes, 2 displacement bytes. */
749 {0, 0, 2, 0},
750
751 /* COND_JUMP states. */
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
753 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
754 /* dword conditionals adds 5 bytes to frag:
755 1 extra opcode byte, 4 displacement bytes. */
756 {0, 0, 5, 0},
757 /* word conditionals add 3 bytes to frag:
758 1 extra opcode byte, 2 displacement bytes. */
759 {0, 0, 3, 0},
760
761 /* COND_JUMP86 states. */
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
764 /* dword conditionals adds 5 bytes to frag:
765 1 extra opcode byte, 4 displacement bytes. */
766 {0, 0, 5, 0},
767 /* word conditionals add 4 bytes to frag:
768 1 displacement byte and a 3 byte long branch insn. */
769 {0, 0, 4, 0}
770 };
771
772 static const arch_entry cpu_arch[] =
773 {
774 /* Do not replace the first two entries - i386_target_format()
775 relies on them being there in this order. */
776 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
777 CPU_GENERIC32_FLAGS, 0 },
778 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
779 CPU_GENERIC64_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
781 CPU_NONE_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
783 CPU_I186_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
785 CPU_I286_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
787 CPU_I386_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
789 CPU_I486_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
791 CPU_I586_FLAGS, 0 },
792 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
793 CPU_I686_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
795 CPU_I586_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
797 CPU_PENTIUMPRO_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
799 CPU_P2_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
801 CPU_P3_FLAGS, 0 },
802 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
803 CPU_P4_FLAGS, 0 },
804 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
805 CPU_CORE_FLAGS, 0 },
806 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
807 CPU_NOCONA_FLAGS, 0 },
808 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 1 },
810 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
811 CPU_CORE_FLAGS, 0 },
812 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 1 },
814 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
815 CPU_CORE2_FLAGS, 0 },
816 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
817 CPU_COREI7_FLAGS, 0 },
818 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
819 CPU_L1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
821 CPU_K1OM_FLAGS, 0 },
822 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
823 CPU_IAMCU_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
825 CPU_K6_FLAGS, 0 },
826 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
827 CPU_K6_2_FLAGS, 0 },
828 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
829 CPU_ATHLON_FLAGS, 0 },
830 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 1 },
832 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
835 CPU_K8_FLAGS, 0 },
836 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
837 CPU_AMDFAM10_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
839 CPU_BDVER1_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
841 CPU_BDVER2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
843 CPU_BDVER3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
845 CPU_BDVER4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
847 CPU_ZNVER1_FLAGS, 0 },
848 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
849 CPU_ZNVER2_FLAGS, 0 },
850 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
851 CPU_BTVER1_FLAGS, 0 },
852 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
853 CPU_BTVER2_FLAGS, 0 },
854 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
855 CPU_8087_FLAGS, 0 },
856 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
857 CPU_287_FLAGS, 0 },
858 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
859 CPU_387_FLAGS, 0 },
860 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
861 CPU_687_FLAGS, 0 },
862 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
863 CPU_MMX_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
865 CPU_SSE_FLAGS, 0 },
866 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
867 CPU_SSE2_FLAGS, 0 },
868 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
869 CPU_SSE3_FLAGS, 0 },
870 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
871 CPU_SSSE3_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_1_FLAGS, 0 },
874 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
875 CPU_SSE4_2_FLAGS, 0 },
876 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
877 CPU_SSE4_2_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
879 CPU_AVX_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
881 CPU_AVX2_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
883 CPU_AVX512F_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
885 CPU_AVX512CD_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
887 CPU_AVX512ER_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
889 CPU_AVX512PF_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
891 CPU_AVX512DQ_FLAGS, 0 },
892 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
893 CPU_AVX512BW_FLAGS, 0 },
894 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
895 CPU_AVX512VL_FLAGS, 0 },
896 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
897 CPU_VMX_FLAGS, 0 },
898 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
899 CPU_VMFUNC_FLAGS, 0 },
900 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
901 CPU_SMX_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
903 CPU_XSAVE_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
905 CPU_XSAVEOPT_FLAGS, 0 },
906 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
907 CPU_XSAVEC_FLAGS, 0 },
908 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
909 CPU_XSAVES_FLAGS, 0 },
910 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
911 CPU_AES_FLAGS, 0 },
912 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
913 CPU_PCLMUL_FLAGS, 0 },
914 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
915 CPU_PCLMUL_FLAGS, 1 },
916 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
917 CPU_FSGSBASE_FLAGS, 0 },
918 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
919 CPU_RDRND_FLAGS, 0 },
920 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
921 CPU_F16C_FLAGS, 0 },
922 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
923 CPU_BMI2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
925 CPU_FMA_FLAGS, 0 },
926 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
927 CPU_FMA4_FLAGS, 0 },
928 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
929 CPU_XOP_FLAGS, 0 },
930 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
931 CPU_LWP_FLAGS, 0 },
932 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
933 CPU_MOVBE_FLAGS, 0 },
934 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
935 CPU_CX16_FLAGS, 0 },
936 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
937 CPU_EPT_FLAGS, 0 },
938 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
939 CPU_LZCNT_FLAGS, 0 },
940 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
941 CPU_HLE_FLAGS, 0 },
942 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
943 CPU_RTM_FLAGS, 0 },
944 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
945 CPU_INVPCID_FLAGS, 0 },
946 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
947 CPU_CLFLUSH_FLAGS, 0 },
948 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
949 CPU_NOP_FLAGS, 0 },
950 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
951 CPU_SYSCALL_FLAGS, 0 },
952 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
953 CPU_RDTSCP_FLAGS, 0 },
954 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
955 CPU_3DNOW_FLAGS, 0 },
956 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
957 CPU_3DNOWA_FLAGS, 0 },
958 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
959 CPU_PADLOCK_FLAGS, 0 },
960 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
961 CPU_SVME_FLAGS, 1 },
962 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
963 CPU_SVME_FLAGS, 0 },
964 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
965 CPU_SSE4A_FLAGS, 0 },
966 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
967 CPU_ABM_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
969 CPU_BMI_FLAGS, 0 },
970 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
971 CPU_TBM_FLAGS, 0 },
972 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
973 CPU_ADX_FLAGS, 0 },
974 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
975 CPU_RDSEED_FLAGS, 0 },
976 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
977 CPU_PRFCHW_FLAGS, 0 },
978 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
979 CPU_SMAP_FLAGS, 0 },
980 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
981 CPU_MPX_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
983 CPU_SHA_FLAGS, 0 },
984 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
985 CPU_CLFLUSHOPT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
987 CPU_PREFETCHWT1_FLAGS, 0 },
988 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
989 CPU_SE1_FLAGS, 0 },
990 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
991 CPU_CLWB_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
993 CPU_AVX512IFMA_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
995 CPU_AVX512VBMI_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4FMAPS_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_4VNNIW_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VBMI2_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VNNI_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_BITALG_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1009 CPU_CLZERO_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1011 CPU_MWAITX_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1013 CPU_OSPKE_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1015 CPU_RDPID_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1017 CPU_PTWRITE_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1019 CPU_IBT_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1021 CPU_SHSTK_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1023 CPU_GFNI_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1025 CPU_VAES_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1027 CPU_VPCLMULQDQ_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1029 CPU_WBNOINVD_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1031 CPU_PCONFIG_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1033 CPU_WAITPKG_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1035 CPU_CLDEMOTE_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIRI_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1039 CPU_MOVDIR64B_FLAGS, 0 },
1040 };
1041
1042 static const noarch_entry cpu_noarch[] =
1043 {
1044 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1045 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1046 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1047 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1048 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1049 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1050 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1052 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1055 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1056 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1057 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1070 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1071 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1072 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1073 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1074 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1075 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1076 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1077 };
1078
1079 #ifdef I386COFF
1080 /* Like s_lcomm_internal in gas/read.c but the alignment string
1081 is allowed to be optional. */
1082
1083 static symbolS *
1084 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1085 {
1086 addressT align = 0;
1087
1088 SKIP_WHITESPACE ();
1089
1090 if (needs_align
1091 && *input_line_pointer == ',')
1092 {
1093 align = parse_align (needs_align - 1);
1094
1095 if (align == (addressT) -1)
1096 return NULL;
1097 }
1098 else
1099 {
1100 if (size >= 8)
1101 align = 3;
1102 else if (size >= 4)
1103 align = 2;
1104 else if (size >= 2)
1105 align = 1;
1106 else
1107 align = 0;
1108 }
1109
1110 bss_alloc (symbolP, size, align);
1111 return symbolP;
1112 }
1113
1114 static void
1115 pe_lcomm (int needs_align)
1116 {
1117 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1118 }
1119 #endif
1120
1121 const pseudo_typeS md_pseudo_table[] =
1122 {
1123 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1124 {"align", s_align_bytes, 0},
1125 #else
1126 {"align", s_align_ptwo, 0},
1127 #endif
1128 {"arch", set_cpu_arch, 0},
1129 #ifndef I386COFF
1130 {"bss", s_bss, 0},
1131 #else
1132 {"lcomm", pe_lcomm, 1},
1133 #endif
1134 {"ffloat", float_cons, 'f'},
1135 {"dfloat", float_cons, 'd'},
1136 {"tfloat", float_cons, 'x'},
1137 {"value", cons, 2},
1138 {"slong", signed_cons, 4},
1139 {"noopt", s_ignore, 0},
1140 {"optim", s_ignore, 0},
1141 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1142 {"code16", set_code_flag, CODE_16BIT},
1143 {"code32", set_code_flag, CODE_32BIT},
1144 #ifdef BFD64
1145 {"code64", set_code_flag, CODE_64BIT},
1146 #endif
1147 {"intel_syntax", set_intel_syntax, 1},
1148 {"att_syntax", set_intel_syntax, 0},
1149 {"intel_mnemonic", set_intel_mnemonic, 1},
1150 {"att_mnemonic", set_intel_mnemonic, 0},
1151 {"allow_index_reg", set_allow_index_reg, 1},
1152 {"disallow_index_reg", set_allow_index_reg, 0},
1153 {"sse_check", set_check, 0},
1154 {"operand_check", set_check, 1},
1155 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1156 {"largecomm", handle_large_common, 0},
1157 #else
1158 {"file", dwarf2_directive_file, 0},
1159 {"loc", dwarf2_directive_loc, 0},
1160 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1161 #endif
1162 #ifdef TE_PE
1163 {"secrel32", pe_directive_secrel, 0},
1164 #endif
1165 {0, 0, 0}
1166 };
1167
1168 /* For interface with expression (). */
1169 extern char *input_line_pointer;
1170
1171 /* Hash table for instruction mnemonic lookup. */
1172 static struct hash_control *op_hash;
1173
1174 /* Hash table for register lookup. */
1175 static struct hash_control *reg_hash;
1176 \f
1177 /* Various efficient no-op patterns for aligning code labels.
1178 Note: Don't try to assemble the instructions in the comments.
1179 0L and 0w are not legal. */
1180 static const unsigned char f32_1[] =
1181 {0x90}; /* nop */
1182 static const unsigned char f32_2[] =
1183 {0x66,0x90}; /* xchg %ax,%ax */
1184 static const unsigned char f32_3[] =
1185 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1186 static const unsigned char f32_4[] =
1187 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1188 static const unsigned char f32_6[] =
1189 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1190 static const unsigned char f32_7[] =
1191 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1192 static const unsigned char f16_3[] =
1193 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1194 static const unsigned char f16_4[] =
1195 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1196 static const unsigned char jump_disp8[] =
1197 {0xeb}; /* jmp disp8 */
1198 static const unsigned char jump32_disp32[] =
1199 {0xe9}; /* jmp disp32 */
1200 static const unsigned char jump16_disp32[] =
1201 {0x66,0xe9}; /* jmp disp32 */
1202 /* 32-bit NOPs patterns. */
1203 static const unsigned char *const f32_patt[] = {
1204 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1205 };
1206 /* 16-bit NOPs patterns. */
1207 static const unsigned char *const f16_patt[] = {
1208 f32_1, f32_2, f16_3, f16_4
1209 };
1210 /* nopl (%[re]ax) */
1211 static const unsigned char alt_3[] =
1212 {0x0f,0x1f,0x00};
1213 /* nopl 0(%[re]ax) */
1214 static const unsigned char alt_4[] =
1215 {0x0f,0x1f,0x40,0x00};
1216 /* nopl 0(%[re]ax,%[re]ax,1) */
1217 static const unsigned char alt_5[] =
1218 {0x0f,0x1f,0x44,0x00,0x00};
1219 /* nopw 0(%[re]ax,%[re]ax,1) */
1220 static const unsigned char alt_6[] =
1221 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1222 /* nopl 0L(%[re]ax) */
1223 static const unsigned char alt_7[] =
1224 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1225 /* nopl 0L(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_8[] =
1227 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228 /* nopw 0L(%[re]ax,%[re]ax,1) */
1229 static const unsigned char alt_9[] =
1230 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1232 static const unsigned char alt_10[] =
1233 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1234 /* data16 nopw %cs:0L(%eax,%eax,1) */
1235 static const unsigned char alt_11[] =
1236 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1237 /* 32-bit and 64-bit NOPs patterns. */
1238 static const unsigned char *const alt_patt[] = {
1239 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1240 alt_9, alt_10, alt_11
1241 };
1242
1243 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1244 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1245
1246 static void
1247 i386_output_nops (char *where, const unsigned char *const *patt,
1248 int count, int max_single_nop_size)
1249
1250 {
1251 /* Place the longer NOP first. */
1252 int last;
1253 int offset;
1254 const unsigned char *nops = patt[max_single_nop_size - 1];
1255
1256 /* Use the smaller one if the requsted one isn't available. */
1257 if (nops == NULL)
1258 {
1259 max_single_nop_size--;
1260 nops = patt[max_single_nop_size - 1];
1261 }
1262
1263 last = count % max_single_nop_size;
1264
1265 count -= last;
1266 for (offset = 0; offset < count; offset += max_single_nop_size)
1267 memcpy (where + offset, nops, max_single_nop_size);
1268
1269 if (last)
1270 {
1271 nops = patt[last - 1];
1272 if (nops == NULL)
1273 {
1274 /* Use the smaller one plus one-byte NOP if the needed one
1275 isn't available. */
1276 last--;
1277 nops = patt[last - 1];
1278 memcpy (where + offset, nops, last);
1279 where[offset + last] = *patt[0];
1280 }
1281 else
1282 memcpy (where + offset, nops, last);
1283 }
1284 }
1285
1286 static INLINE int
1287 fits_in_imm7 (offsetT num)
1288 {
1289 return (num & 0x7f) == num;
1290 }
1291
1292 static INLINE int
1293 fits_in_imm31 (offsetT num)
1294 {
1295 return (num & 0x7fffffff) == num;
1296 }
1297
1298 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1299 single NOP instruction LIMIT. */
1300
1301 void
1302 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1303 {
1304 const unsigned char *const *patt = NULL;
1305 int max_single_nop_size;
1306 /* Maximum number of NOPs before switching to jump over NOPs. */
1307 int max_number_of_nops;
1308
1309 switch (fragP->fr_type)
1310 {
1311 case rs_fill_nop:
1312 case rs_align_code:
1313 break;
1314 default:
1315 return;
1316 }
1317
1318 /* We need to decide which NOP sequence to use for 32bit and
1319 64bit. When -mtune= is used:
1320
1321 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1322 PROCESSOR_GENERIC32, f32_patt will be used.
1323 2. For the rest, alt_patt will be used.
1324
1325 When -mtune= isn't used, alt_patt will be used if
1326 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1327 be used.
1328
1329 When -march= or .arch is used, we can't use anything beyond
1330 cpu_arch_isa_flags. */
1331
1332 if (flag_code == CODE_16BIT)
1333 {
1334 patt = f16_patt;
1335 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1336 /* Limit number of NOPs to 2 in 16-bit mode. */
1337 max_number_of_nops = 2;
1338 }
1339 else
1340 {
1341 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1342 {
1343 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1344 switch (cpu_arch_tune)
1345 {
1346 case PROCESSOR_UNKNOWN:
1347 /* We use cpu_arch_isa_flags to check if we SHOULD
1348 optimize with nops. */
1349 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1350 patt = alt_patt;
1351 else
1352 patt = f32_patt;
1353 break;
1354 case PROCESSOR_PENTIUM4:
1355 case PROCESSOR_NOCONA:
1356 case PROCESSOR_CORE:
1357 case PROCESSOR_CORE2:
1358 case PROCESSOR_COREI7:
1359 case PROCESSOR_L1OM:
1360 case PROCESSOR_K1OM:
1361 case PROCESSOR_GENERIC64:
1362 case PROCESSOR_K6:
1363 case PROCESSOR_ATHLON:
1364 case PROCESSOR_K8:
1365 case PROCESSOR_AMDFAM10:
1366 case PROCESSOR_BD:
1367 case PROCESSOR_ZNVER:
1368 case PROCESSOR_BT:
1369 patt = alt_patt;
1370 break;
1371 case PROCESSOR_I386:
1372 case PROCESSOR_I486:
1373 case PROCESSOR_PENTIUM:
1374 case PROCESSOR_PENTIUMPRO:
1375 case PROCESSOR_IAMCU:
1376 case PROCESSOR_GENERIC32:
1377 patt = f32_patt;
1378 break;
1379 }
1380 }
1381 else
1382 {
1383 switch (fragP->tc_frag_data.tune)
1384 {
1385 case PROCESSOR_UNKNOWN:
1386 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1387 PROCESSOR_UNKNOWN. */
1388 abort ();
1389 break;
1390
1391 case PROCESSOR_I386:
1392 case PROCESSOR_I486:
1393 case PROCESSOR_PENTIUM:
1394 case PROCESSOR_IAMCU:
1395 case PROCESSOR_K6:
1396 case PROCESSOR_ATHLON:
1397 case PROCESSOR_K8:
1398 case PROCESSOR_AMDFAM10:
1399 case PROCESSOR_BD:
1400 case PROCESSOR_ZNVER:
1401 case PROCESSOR_BT:
1402 case PROCESSOR_GENERIC32:
1403 /* We use cpu_arch_isa_flags to check if we CAN optimize
1404 with nops. */
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_PENTIUMPRO:
1411 case PROCESSOR_PENTIUM4:
1412 case PROCESSOR_NOCONA:
1413 case PROCESSOR_CORE:
1414 case PROCESSOR_CORE2:
1415 case PROCESSOR_COREI7:
1416 case PROCESSOR_L1OM:
1417 case PROCESSOR_K1OM:
1418 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1419 patt = alt_patt;
1420 else
1421 patt = f32_patt;
1422 break;
1423 case PROCESSOR_GENERIC64:
1424 patt = alt_patt;
1425 break;
1426 }
1427 }
1428
1429 if (patt == f32_patt)
1430 {
1431 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1432 /* Limit number of NOPs to 2 for older processors. */
1433 max_number_of_nops = 2;
1434 }
1435 else
1436 {
1437 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1438 /* Limit number of NOPs to 7 for newer processors. */
1439 max_number_of_nops = 7;
1440 }
1441 }
1442
1443 if (limit == 0)
1444 limit = max_single_nop_size;
1445
1446 if (fragP->fr_type == rs_fill_nop)
1447 {
1448 /* Output NOPs for .nop directive. */
1449 if (limit > max_single_nop_size)
1450 {
1451 as_bad_where (fragP->fr_file, fragP->fr_line,
1452 _("invalid single nop size: %d "
1453 "(expect within [0, %d])"),
1454 limit, max_single_nop_size);
1455 return;
1456 }
1457 }
1458 else
1459 fragP->fr_var = count;
1460
1461 if ((count / max_single_nop_size) > max_number_of_nops)
1462 {
1463 /* Generate jump over NOPs. */
1464 offsetT disp = count - 2;
1465 if (fits_in_imm7 (disp))
1466 {
1467 /* Use "jmp disp8" if possible. */
1468 count = disp;
1469 where[0] = jump_disp8[0];
1470 where[1] = count;
1471 where += 2;
1472 }
1473 else
1474 {
1475 unsigned int size_of_jump;
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 where[0] = jump16_disp32[0];
1480 where[1] = jump16_disp32[1];
1481 size_of_jump = 2;
1482 }
1483 else
1484 {
1485 where[0] = jump32_disp32[0];
1486 size_of_jump = 1;
1487 }
1488
1489 count -= size_of_jump + 4;
1490 if (!fits_in_imm31 (count))
1491 {
1492 as_bad_where (fragP->fr_file, fragP->fr_line,
1493 _("jump over nop padding out of range"));
1494 return;
1495 }
1496
1497 md_number_to_chars (where + size_of_jump, count, 4);
1498 where += size_of_jump + 4;
1499 }
1500 }
1501
1502 /* Generate multiple NOPs. */
1503 i386_output_nops (where, patt, count, limit);
1504 }
1505
1506 static INLINE int
1507 operand_type_all_zero (const union i386_operand_type *x)
1508 {
1509 switch (ARRAY_SIZE(x->array))
1510 {
1511 case 3:
1512 if (x->array[2])
1513 return 0;
1514 /* Fall through. */
1515 case 2:
1516 if (x->array[1])
1517 return 0;
1518 /* Fall through. */
1519 case 1:
1520 return !x->array[0];
1521 default:
1522 abort ();
1523 }
1524 }
1525
1526 static INLINE void
1527 operand_type_set (union i386_operand_type *x, unsigned int v)
1528 {
1529 switch (ARRAY_SIZE(x->array))
1530 {
1531 case 3:
1532 x->array[2] = v;
1533 /* Fall through. */
1534 case 2:
1535 x->array[1] = v;
1536 /* Fall through. */
1537 case 1:
1538 x->array[0] = v;
1539 /* Fall through. */
1540 break;
1541 default:
1542 abort ();
1543 }
1544 }
1545
1546 static INLINE int
1547 operand_type_equal (const union i386_operand_type *x,
1548 const union i386_operand_type *y)
1549 {
1550 switch (ARRAY_SIZE(x->array))
1551 {
1552 case 3:
1553 if (x->array[2] != y->array[2])
1554 return 0;
1555 /* Fall through. */
1556 case 2:
1557 if (x->array[1] != y->array[1])
1558 return 0;
1559 /* Fall through. */
1560 case 1:
1561 return x->array[0] == y->array[0];
1562 break;
1563 default:
1564 abort ();
1565 }
1566 }
1567
1568 static INLINE int
1569 cpu_flags_all_zero (const union i386_cpu_flags *x)
1570 {
1571 switch (ARRAY_SIZE(x->array))
1572 {
1573 case 4:
1574 if (x->array[3])
1575 return 0;
1576 /* Fall through. */
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE int
1593 cpu_flags_equal (const union i386_cpu_flags *x,
1594 const union i386_cpu_flags *y)
1595 {
1596 switch (ARRAY_SIZE(x->array))
1597 {
1598 case 4:
1599 if (x->array[3] != y->array[3])
1600 return 0;
1601 /* Fall through. */
1602 case 3:
1603 if (x->array[2] != y->array[2])
1604 return 0;
1605 /* Fall through. */
1606 case 2:
1607 if (x->array[1] != y->array[1])
1608 return 0;
1609 /* Fall through. */
1610 case 1:
1611 return x->array[0] == y->array[0];
1612 break;
1613 default:
1614 abort ();
1615 }
1616 }
1617
1618 static INLINE int
1619 cpu_flags_check_cpu64 (i386_cpu_flags f)
1620 {
1621 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1622 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1623 }
1624
1625 static INLINE i386_cpu_flags
1626 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1627 {
1628 switch (ARRAY_SIZE (x.array))
1629 {
1630 case 4:
1631 x.array [3] &= y.array [3];
1632 /* Fall through. */
1633 case 3:
1634 x.array [2] &= y.array [2];
1635 /* Fall through. */
1636 case 2:
1637 x.array [1] &= y.array [1];
1638 /* Fall through. */
1639 case 1:
1640 x.array [0] &= y.array [0];
1641 break;
1642 default:
1643 abort ();
1644 }
1645 return x;
1646 }
1647
1648 static INLINE i386_cpu_flags
1649 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1650 {
1651 switch (ARRAY_SIZE (x.array))
1652 {
1653 case 4:
1654 x.array [3] |= y.array [3];
1655 /* Fall through. */
1656 case 3:
1657 x.array [2] |= y.array [2];
1658 /* Fall through. */
1659 case 2:
1660 x.array [1] |= y.array [1];
1661 /* Fall through. */
1662 case 1:
1663 x.array [0] |= y.array [0];
1664 break;
1665 default:
1666 abort ();
1667 }
1668 return x;
1669 }
1670
1671 static INLINE i386_cpu_flags
1672 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1673 {
1674 switch (ARRAY_SIZE (x.array))
1675 {
1676 case 4:
1677 x.array [3] &= ~y.array [3];
1678 /* Fall through. */
1679 case 3:
1680 x.array [2] &= ~y.array [2];
1681 /* Fall through. */
1682 case 2:
1683 x.array [1] &= ~y.array [1];
1684 /* Fall through. */
1685 case 1:
1686 x.array [0] &= ~y.array [0];
1687 break;
1688 default:
1689 abort ();
1690 }
1691 return x;
1692 }
1693
1694 #define CPU_FLAGS_ARCH_MATCH 0x1
1695 #define CPU_FLAGS_64BIT_MATCH 0x2
1696
1697 #define CPU_FLAGS_PERFECT_MATCH \
1698 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1699
1700 /* Return CPU flags match bits. */
1701
1702 static int
1703 cpu_flags_match (const insn_template *t)
1704 {
1705 i386_cpu_flags x = t->cpu_flags;
1706 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1707
1708 x.bitfield.cpu64 = 0;
1709 x.bitfield.cpuno64 = 0;
1710
1711 if (cpu_flags_all_zero (&x))
1712 {
1713 /* This instruction is available on all archs. */
1714 match |= CPU_FLAGS_ARCH_MATCH;
1715 }
1716 else
1717 {
1718 /* This instruction is available only on some archs. */
1719 i386_cpu_flags cpu = cpu_arch_flags;
1720
1721 /* AVX512VL is no standalone feature - match it and then strip it. */
1722 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1723 return match;
1724 x.bitfield.cpuavx512vl = 0;
1725
1726 cpu = cpu_flags_and (x, cpu);
1727 if (!cpu_flags_all_zero (&cpu))
1728 {
1729 if (x.bitfield.cpuavx)
1730 {
1731 /* We need to check a few extra flags with AVX. */
1732 if (cpu.bitfield.cpuavx
1733 && (!t->opcode_modifier.sse2avx || sse2avx)
1734 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1735 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1736 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1737 match |= CPU_FLAGS_ARCH_MATCH;
1738 }
1739 else if (x.bitfield.cpuavx512f)
1740 {
1741 /* We need to check a few extra flags with AVX512F. */
1742 if (cpu.bitfield.cpuavx512f
1743 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1744 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1745 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1746 match |= CPU_FLAGS_ARCH_MATCH;
1747 }
1748 else
1749 match |= CPU_FLAGS_ARCH_MATCH;
1750 }
1751 }
1752 return match;
1753 }
1754
1755 static INLINE i386_operand_type
1756 operand_type_and (i386_operand_type x, i386_operand_type y)
1757 {
1758 switch (ARRAY_SIZE (x.array))
1759 {
1760 case 3:
1761 x.array [2] &= y.array [2];
1762 /* Fall through. */
1763 case 2:
1764 x.array [1] &= y.array [1];
1765 /* Fall through. */
1766 case 1:
1767 x.array [0] &= y.array [0];
1768 break;
1769 default:
1770 abort ();
1771 }
1772 return x;
1773 }
1774
1775 static INLINE i386_operand_type
1776 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1777 {
1778 switch (ARRAY_SIZE (x.array))
1779 {
1780 case 3:
1781 x.array [2] &= ~y.array [2];
1782 /* Fall through. */
1783 case 2:
1784 x.array [1] &= ~y.array [1];
1785 /* Fall through. */
1786 case 1:
1787 x.array [0] &= ~y.array [0];
1788 break;
1789 default:
1790 abort ();
1791 }
1792 return x;
1793 }
1794
1795 static INLINE i386_operand_type
1796 operand_type_or (i386_operand_type x, i386_operand_type y)
1797 {
1798 switch (ARRAY_SIZE (x.array))
1799 {
1800 case 3:
1801 x.array [2] |= y.array [2];
1802 /* Fall through. */
1803 case 2:
1804 x.array [1] |= y.array [1];
1805 /* Fall through. */
1806 case 1:
1807 x.array [0] |= y.array [0];
1808 break;
1809 default:
1810 abort ();
1811 }
1812 return x;
1813 }
1814
1815 static INLINE i386_operand_type
1816 operand_type_xor (i386_operand_type x, i386_operand_type y)
1817 {
1818 switch (ARRAY_SIZE (x.array))
1819 {
1820 case 3:
1821 x.array [2] ^= y.array [2];
1822 /* Fall through. */
1823 case 2:
1824 x.array [1] ^= y.array [1];
1825 /* Fall through. */
1826 case 1:
1827 x.array [0] ^= y.array [0];
1828 break;
1829 default:
1830 abort ();
1831 }
1832 return x;
1833 }
1834
1835 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1836 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1837 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1838 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1839 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1840 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1841 static const i386_operand_type anydisp
1842 = OPERAND_TYPE_ANYDISP;
1843 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1844 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1845 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1846 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1847 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1848 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1849 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1850 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1851 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1852 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1853 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1854 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1855
1856 enum operand_type
1857 {
1858 reg,
1859 imm,
1860 disp,
1861 anymem
1862 };
1863
1864 static INLINE int
1865 operand_type_check (i386_operand_type t, enum operand_type c)
1866 {
1867 switch (c)
1868 {
1869 case reg:
1870 return t.bitfield.reg;
1871
1872 case imm:
1873 return (t.bitfield.imm8
1874 || t.bitfield.imm8s
1875 || t.bitfield.imm16
1876 || t.bitfield.imm32
1877 || t.bitfield.imm32s
1878 || t.bitfield.imm64);
1879
1880 case disp:
1881 return (t.bitfield.disp8
1882 || t.bitfield.disp16
1883 || t.bitfield.disp32
1884 || t.bitfield.disp32s
1885 || t.bitfield.disp64);
1886
1887 case anymem:
1888 return (t.bitfield.disp8
1889 || t.bitfield.disp16
1890 || t.bitfield.disp32
1891 || t.bitfield.disp32s
1892 || t.bitfield.disp64
1893 || t.bitfield.baseindex);
1894
1895 default:
1896 abort ();
1897 }
1898
1899 return 0;
1900 }
1901
1902 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1903 between operand GIVEN and opeand WANTED for instruction template T. */
1904
1905 static INLINE int
1906 match_operand_size (const insn_template *t, unsigned int wanted,
1907 unsigned int given)
1908 {
1909 return !((i.types[given].bitfield.byte
1910 && !t->operand_types[wanted].bitfield.byte)
1911 || (i.types[given].bitfield.word
1912 && !t->operand_types[wanted].bitfield.word)
1913 || (i.types[given].bitfield.dword
1914 && !t->operand_types[wanted].bitfield.dword)
1915 || (i.types[given].bitfield.qword
1916 && !t->operand_types[wanted].bitfield.qword)
1917 || (i.types[given].bitfield.tbyte
1918 && !t->operand_types[wanted].bitfield.tbyte));
1919 }
1920
1921 /* Return 1 if there is no conflict in SIMD register between operand
1922 GIVEN and opeand WANTED for instruction template T. */
1923
1924 static INLINE int
1925 match_simd_size (const insn_template *t, unsigned int wanted,
1926 unsigned int given)
1927 {
1928 return !((i.types[given].bitfield.xmmword
1929 && !t->operand_types[wanted].bitfield.xmmword)
1930 || (i.types[given].bitfield.ymmword
1931 && !t->operand_types[wanted].bitfield.ymmword)
1932 || (i.types[given].bitfield.zmmword
1933 && !t->operand_types[wanted].bitfield.zmmword));
1934 }
1935
1936 /* Return 1 if there is no conflict in any size between operand GIVEN
1937 and opeand WANTED for instruction template T. */
1938
1939 static INLINE int
1940 match_mem_size (const insn_template *t, unsigned int wanted,
1941 unsigned int given)
1942 {
1943 return (match_operand_size (t, wanted, given)
1944 && !((i.types[given].bitfield.unspecified
1945 && !i.broadcast
1946 && !t->operand_types[wanted].bitfield.unspecified)
1947 || (i.types[given].bitfield.fword
1948 && !t->operand_types[wanted].bitfield.fword)
1949 /* For scalar opcode templates to allow register and memory
1950 operands at the same time, some special casing is needed
1951 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1952 down-conversion vpmov*. */
1953 || ((t->operand_types[wanted].bitfield.regsimd
1954 && !t->opcode_modifier.broadcast
1955 && (t->operand_types[wanted].bitfield.byte
1956 || t->operand_types[wanted].bitfield.word
1957 || t->operand_types[wanted].bitfield.dword
1958 || t->operand_types[wanted].bitfield.qword))
1959 ? (i.types[given].bitfield.xmmword
1960 || i.types[given].bitfield.ymmword
1961 || i.types[given].bitfield.zmmword)
1962 : !match_simd_size(t, wanted, given))));
1963 }
1964
1965 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1966 operands for instruction template T, and it has MATCH_REVERSE set if there
1967 is no size conflict on any operands for the template with operands reversed
1968 (and the template allows for reversing in the first place). */
1969
1970 #define MATCH_STRAIGHT 1
1971 #define MATCH_REVERSE 2
1972
1973 static INLINE unsigned int
1974 operand_size_match (const insn_template *t)
1975 {
1976 unsigned int j, match = MATCH_STRAIGHT;
1977
1978 /* Don't check jump instructions. */
1979 if (t->opcode_modifier.jump
1980 || t->opcode_modifier.jumpbyte
1981 || t->opcode_modifier.jumpdword
1982 || t->opcode_modifier.jumpintersegment)
1983 return match;
1984
1985 /* Check memory and accumulator operand size. */
1986 for (j = 0; j < i.operands; j++)
1987 {
1988 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1989 && t->operand_types[j].bitfield.anysize)
1990 continue;
1991
1992 if (t->operand_types[j].bitfield.reg
1993 && !match_operand_size (t, j, j))
1994 {
1995 match = 0;
1996 break;
1997 }
1998
1999 if (t->operand_types[j].bitfield.regsimd
2000 && !match_simd_size (t, j, j))
2001 {
2002 match = 0;
2003 break;
2004 }
2005
2006 if (t->operand_types[j].bitfield.acc
2007 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2008 {
2009 match = 0;
2010 break;
2011 }
2012
2013 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
2014 {
2015 match = 0;
2016 break;
2017 }
2018 }
2019
2020 if (!t->opcode_modifier.d)
2021 {
2022 mismatch:
2023 if (!match)
2024 i.error = operand_size_mismatch;
2025 return match;
2026 }
2027
2028 /* Check reverse. */
2029 gas_assert (i.operands == 2);
2030
2031 for (j = 0; j < 2; j++)
2032 {
2033 if ((t->operand_types[j].bitfield.reg
2034 || t->operand_types[j].bitfield.acc)
2035 && !match_operand_size (t, j, !j))
2036 goto mismatch;
2037
2038 if (i.types[!j].bitfield.mem
2039 && !match_mem_size (t, j, !j))
2040 goto mismatch;
2041 }
2042
2043 return match | MATCH_REVERSE;
2044 }
2045
2046 static INLINE int
2047 operand_type_match (i386_operand_type overlap,
2048 i386_operand_type given)
2049 {
2050 i386_operand_type temp = overlap;
2051
2052 temp.bitfield.jumpabsolute = 0;
2053 temp.bitfield.unspecified = 0;
2054 temp.bitfield.byte = 0;
2055 temp.bitfield.word = 0;
2056 temp.bitfield.dword = 0;
2057 temp.bitfield.fword = 0;
2058 temp.bitfield.qword = 0;
2059 temp.bitfield.tbyte = 0;
2060 temp.bitfield.xmmword = 0;
2061 temp.bitfield.ymmword = 0;
2062 temp.bitfield.zmmword = 0;
2063 if (operand_type_all_zero (&temp))
2064 goto mismatch;
2065
2066 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2067 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2068 return 1;
2069
2070 mismatch:
2071 i.error = operand_type_mismatch;
2072 return 0;
2073 }
2074
2075 /* If given types g0 and g1 are registers they must be of the same type
2076 unless the expected operand type register overlap is null.
2077 Memory operand size of certain SIMD instructions is also being checked
2078 here. */
2079
2080 static INLINE int
2081 operand_type_register_match (i386_operand_type g0,
2082 i386_operand_type t0,
2083 i386_operand_type g1,
2084 i386_operand_type t1)
2085 {
2086 if (!g0.bitfield.reg
2087 && !g0.bitfield.regsimd
2088 && (!operand_type_check (g0, anymem)
2089 || g0.bitfield.unspecified
2090 || !t0.bitfield.regsimd))
2091 return 1;
2092
2093 if (!g1.bitfield.reg
2094 && !g1.bitfield.regsimd
2095 && (!operand_type_check (g1, anymem)
2096 || g1.bitfield.unspecified
2097 || !t1.bitfield.regsimd))
2098 return 1;
2099
2100 if (g0.bitfield.byte == g1.bitfield.byte
2101 && g0.bitfield.word == g1.bitfield.word
2102 && g0.bitfield.dword == g1.bitfield.dword
2103 && g0.bitfield.qword == g1.bitfield.qword
2104 && g0.bitfield.xmmword == g1.bitfield.xmmword
2105 && g0.bitfield.ymmword == g1.bitfield.ymmword
2106 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2107 return 1;
2108
2109 if (!(t0.bitfield.byte & t1.bitfield.byte)
2110 && !(t0.bitfield.word & t1.bitfield.word)
2111 && !(t0.bitfield.dword & t1.bitfield.dword)
2112 && !(t0.bitfield.qword & t1.bitfield.qword)
2113 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2114 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2115 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2116 return 1;
2117
2118 i.error = register_type_mismatch;
2119
2120 return 0;
2121 }
2122
2123 static INLINE unsigned int
2124 register_number (const reg_entry *r)
2125 {
2126 unsigned int nr = r->reg_num;
2127
2128 if (r->reg_flags & RegRex)
2129 nr += 8;
2130
2131 if (r->reg_flags & RegVRex)
2132 nr += 16;
2133
2134 return nr;
2135 }
2136
2137 static INLINE unsigned int
2138 mode_from_disp_size (i386_operand_type t)
2139 {
2140 if (t.bitfield.disp8)
2141 return 1;
2142 else if (t.bitfield.disp16
2143 || t.bitfield.disp32
2144 || t.bitfield.disp32s)
2145 return 2;
2146 else
2147 return 0;
2148 }
2149
2150 static INLINE int
2151 fits_in_signed_byte (addressT num)
2152 {
2153 return num + 0x80 <= 0xff;
2154 }
2155
2156 static INLINE int
2157 fits_in_unsigned_byte (addressT num)
2158 {
2159 return num <= 0xff;
2160 }
2161
2162 static INLINE int
2163 fits_in_unsigned_word (addressT num)
2164 {
2165 return num <= 0xffff;
2166 }
2167
2168 static INLINE int
2169 fits_in_signed_word (addressT num)
2170 {
2171 return num + 0x8000 <= 0xffff;
2172 }
2173
2174 static INLINE int
2175 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2176 {
2177 #ifndef BFD64
2178 return 1;
2179 #else
2180 return num + 0x80000000 <= 0xffffffff;
2181 #endif
2182 } /* fits_in_signed_long() */
2183
2184 static INLINE int
2185 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2186 {
2187 #ifndef BFD64
2188 return 1;
2189 #else
2190 return num <= 0xffffffff;
2191 #endif
2192 } /* fits_in_unsigned_long() */
2193
2194 static INLINE int
2195 fits_in_disp8 (offsetT num)
2196 {
2197 int shift = i.memshift;
2198 unsigned int mask;
2199
2200 if (shift == -1)
2201 abort ();
2202
2203 mask = (1 << shift) - 1;
2204
2205 /* Return 0 if NUM isn't properly aligned. */
2206 if ((num & mask))
2207 return 0;
2208
2209 /* Check if NUM will fit in 8bit after shift. */
2210 return fits_in_signed_byte (num >> shift);
2211 }
2212
2213 static INLINE int
2214 fits_in_imm4 (offsetT num)
2215 {
2216 return (num & 0xf) == num;
2217 }
2218
2219 static i386_operand_type
2220 smallest_imm_type (offsetT num)
2221 {
2222 i386_operand_type t;
2223
2224 operand_type_set (&t, 0);
2225 t.bitfield.imm64 = 1;
2226
2227 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2228 {
2229 /* This code is disabled on the 486 because all the Imm1 forms
2230 in the opcode table are slower on the i486. They're the
2231 versions with the implicitly specified single-position
2232 displacement, which has another syntax if you really want to
2233 use that form. */
2234 t.bitfield.imm1 = 1;
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm8s = 1;
2237 t.bitfield.imm16 = 1;
2238 t.bitfield.imm32 = 1;
2239 t.bitfield.imm32s = 1;
2240 }
2241 else if (fits_in_signed_byte (num))
2242 {
2243 t.bitfield.imm8 = 1;
2244 t.bitfield.imm8s = 1;
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_unsigned_byte (num))
2250 {
2251 t.bitfield.imm8 = 1;
2252 t.bitfield.imm16 = 1;
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2257 {
2258 t.bitfield.imm16 = 1;
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_signed_long (num))
2263 {
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_unsigned_long (num))
2268 t.bitfield.imm32 = 1;
2269
2270 return t;
2271 }
2272
2273 static offsetT
2274 offset_in_range (offsetT val, int size)
2275 {
2276 addressT mask;
2277
2278 switch (size)
2279 {
2280 case 1: mask = ((addressT) 1 << 8) - 1; break;
2281 case 2: mask = ((addressT) 1 << 16) - 1; break;
2282 case 4: mask = ((addressT) 2 << 31) - 1; break;
2283 #ifdef BFD64
2284 case 8: mask = ((addressT) 2 << 63) - 1; break;
2285 #endif
2286 default: abort ();
2287 }
2288
2289 #ifdef BFD64
2290 /* If BFD64, sign extend val for 32bit address mode. */
2291 if (flag_code != CODE_64BIT
2292 || i.prefix[ADDR_PREFIX])
2293 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2294 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2295 #endif
2296
2297 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2298 {
2299 char buf1[40], buf2[40];
2300
2301 sprint_value (buf1, val);
2302 sprint_value (buf2, val & mask);
2303 as_warn (_("%s shortened to %s"), buf1, buf2);
2304 }
2305 return val & mask;
2306 }
2307
2308 enum PREFIX_GROUP
2309 {
2310 PREFIX_EXIST = 0,
2311 PREFIX_LOCK,
2312 PREFIX_REP,
2313 PREFIX_DS,
2314 PREFIX_OTHER
2315 };
2316
2317 /* Returns
2318 a. PREFIX_EXIST if attempting to add a prefix where one from the
2319 same class already exists.
2320 b. PREFIX_LOCK if lock prefix is added.
2321 c. PREFIX_REP if rep/repne prefix is added.
2322 d. PREFIX_DS if ds prefix is added.
2323 e. PREFIX_OTHER if other prefix is added.
2324 */
2325
2326 static enum PREFIX_GROUP
2327 add_prefix (unsigned int prefix)
2328 {
2329 enum PREFIX_GROUP ret = PREFIX_OTHER;
2330 unsigned int q;
2331
2332 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2333 && flag_code == CODE_64BIT)
2334 {
2335 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2336 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2337 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2338 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2339 ret = PREFIX_EXIST;
2340 q = REX_PREFIX;
2341 }
2342 else
2343 {
2344 switch (prefix)
2345 {
2346 default:
2347 abort ();
2348
2349 case DS_PREFIX_OPCODE:
2350 ret = PREFIX_DS;
2351 /* Fall through. */
2352 case CS_PREFIX_OPCODE:
2353 case ES_PREFIX_OPCODE:
2354 case FS_PREFIX_OPCODE:
2355 case GS_PREFIX_OPCODE:
2356 case SS_PREFIX_OPCODE:
2357 q = SEG_PREFIX;
2358 break;
2359
2360 case REPNE_PREFIX_OPCODE:
2361 case REPE_PREFIX_OPCODE:
2362 q = REP_PREFIX;
2363 ret = PREFIX_REP;
2364 break;
2365
2366 case LOCK_PREFIX_OPCODE:
2367 q = LOCK_PREFIX;
2368 ret = PREFIX_LOCK;
2369 break;
2370
2371 case FWAIT_OPCODE:
2372 q = WAIT_PREFIX;
2373 break;
2374
2375 case ADDR_PREFIX_OPCODE:
2376 q = ADDR_PREFIX;
2377 break;
2378
2379 case DATA_PREFIX_OPCODE:
2380 q = DATA_PREFIX;
2381 break;
2382 }
2383 if (i.prefix[q] != 0)
2384 ret = PREFIX_EXIST;
2385 }
2386
2387 if (ret)
2388 {
2389 if (!i.prefix[q])
2390 ++i.prefixes;
2391 i.prefix[q] |= prefix;
2392 }
2393 else
2394 as_bad (_("same type of prefix used twice"));
2395
2396 return ret;
2397 }
2398
2399 static void
2400 update_code_flag (int value, int check)
2401 {
2402 PRINTF_LIKE ((*as_error));
2403
2404 flag_code = (enum flag_code) value;
2405 if (flag_code == CODE_64BIT)
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 1;
2408 cpu_arch_flags.bitfield.cpuno64 = 0;
2409 }
2410 else
2411 {
2412 cpu_arch_flags.bitfield.cpu64 = 0;
2413 cpu_arch_flags.bitfield.cpuno64 = 1;
2414 }
2415 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2416 {
2417 if (check)
2418 as_error = as_fatal;
2419 else
2420 as_error = as_bad;
2421 (*as_error) (_("64bit mode not supported on `%s'."),
2422 cpu_arch_name ? cpu_arch_name : default_arch);
2423 }
2424 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2425 {
2426 if (check)
2427 as_error = as_fatal;
2428 else
2429 as_error = as_bad;
2430 (*as_error) (_("32bit mode not supported on `%s'."),
2431 cpu_arch_name ? cpu_arch_name : default_arch);
2432 }
2433 stackop_size = '\0';
2434 }
2435
2436 static void
2437 set_code_flag (int value)
2438 {
2439 update_code_flag (value, 0);
2440 }
2441
2442 static void
2443 set_16bit_gcc_code_flag (int new_code_flag)
2444 {
2445 flag_code = (enum flag_code) new_code_flag;
2446 if (flag_code != CODE_16BIT)
2447 abort ();
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
2450 stackop_size = LONG_MNEM_SUFFIX;
2451 }
2452
2453 static void
2454 set_intel_syntax (int syntax_flag)
2455 {
2456 /* Find out if register prefixing is specified. */
2457 int ask_naked_reg = 0;
2458
2459 SKIP_WHITESPACE ();
2460 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2461 {
2462 char *string;
2463 int e = get_symbol_name (&string);
2464
2465 if (strcmp (string, "prefix") == 0)
2466 ask_naked_reg = 1;
2467 else if (strcmp (string, "noprefix") == 0)
2468 ask_naked_reg = -1;
2469 else
2470 as_bad (_("bad argument to syntax directive."));
2471 (void) restore_line_pointer (e);
2472 }
2473 demand_empty_rest_of_line ();
2474
2475 intel_syntax = syntax_flag;
2476
2477 if (ask_naked_reg == 0)
2478 allow_naked_reg = (intel_syntax
2479 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2480 else
2481 allow_naked_reg = (ask_naked_reg < 0);
2482
2483 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2484
2485 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2486 identifier_chars['$'] = intel_syntax ? '$' : 0;
2487 register_prefix = allow_naked_reg ? "" : "%";
2488 }
2489
2490 static void
2491 set_intel_mnemonic (int mnemonic_flag)
2492 {
2493 intel_mnemonic = mnemonic_flag;
2494 }
2495
2496 static void
2497 set_allow_index_reg (int flag)
2498 {
2499 allow_index_reg = flag;
2500 }
2501
2502 static void
2503 set_check (int what)
2504 {
2505 enum check_kind *kind;
2506 const char *str;
2507
2508 if (what)
2509 {
2510 kind = &operand_check;
2511 str = "operand";
2512 }
2513 else
2514 {
2515 kind = &sse_check;
2516 str = "sse";
2517 }
2518
2519 SKIP_WHITESPACE ();
2520
2521 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2522 {
2523 char *string;
2524 int e = get_symbol_name (&string);
2525
2526 if (strcmp (string, "none") == 0)
2527 *kind = check_none;
2528 else if (strcmp (string, "warning") == 0)
2529 *kind = check_warning;
2530 else if (strcmp (string, "error") == 0)
2531 *kind = check_error;
2532 else
2533 as_bad (_("bad argument to %s_check directive."), str);
2534 (void) restore_line_pointer (e);
2535 }
2536 else
2537 as_bad (_("missing argument for %s_check directive"), str);
2538
2539 demand_empty_rest_of_line ();
2540 }
2541
2542 static void
2543 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2544 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2545 {
2546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2547 static const char *arch;
2548
2549 /* Intel LIOM is only supported on ELF. */
2550 if (!IS_ELF)
2551 return;
2552
2553 if (!arch)
2554 {
2555 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2556 use default_arch. */
2557 arch = cpu_arch_name;
2558 if (!arch)
2559 arch = default_arch;
2560 }
2561
2562 /* If we are targeting Intel MCU, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2564 || new_flag.bitfield.cpuiamcu)
2565 return;
2566
2567 /* If we are targeting Intel L1OM, we must enable it. */
2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2569 || new_flag.bitfield.cpul1om)
2570 return;
2571
2572 /* If we are targeting Intel K1OM, we must enable it. */
2573 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2574 || new_flag.bitfield.cpuk1om)
2575 return;
2576
2577 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2578 #endif
2579 }
2580
2581 static void
2582 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2583 {
2584 SKIP_WHITESPACE ();
2585
2586 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2587 {
2588 char *string;
2589 int e = get_symbol_name (&string);
2590 unsigned int j;
2591 i386_cpu_flags flags;
2592
2593 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2594 {
2595 if (strcmp (string, cpu_arch[j].name) == 0)
2596 {
2597 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2598
2599 if (*string != '.')
2600 {
2601 cpu_arch_name = cpu_arch[j].name;
2602 cpu_sub_arch_name = NULL;
2603 cpu_arch_flags = cpu_arch[j].flags;
2604 if (flag_code == CODE_64BIT)
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 1;
2607 cpu_arch_flags.bitfield.cpuno64 = 0;
2608 }
2609 else
2610 {
2611 cpu_arch_flags.bitfield.cpu64 = 0;
2612 cpu_arch_flags.bitfield.cpuno64 = 1;
2613 }
2614 cpu_arch_isa = cpu_arch[j].type;
2615 cpu_arch_isa_flags = cpu_arch[j].flags;
2616 if (!cpu_arch_tune_set)
2617 {
2618 cpu_arch_tune = cpu_arch_isa;
2619 cpu_arch_tune_flags = cpu_arch_isa_flags;
2620 }
2621 break;
2622 }
2623
2624 flags = cpu_flags_or (cpu_arch_flags,
2625 cpu_arch[j].flags);
2626
2627 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2628 {
2629 if (cpu_sub_arch_name)
2630 {
2631 char *name = cpu_sub_arch_name;
2632 cpu_sub_arch_name = concat (name,
2633 cpu_arch[j].name,
2634 (const char *) NULL);
2635 free (name);
2636 }
2637 else
2638 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2639 cpu_arch_flags = flags;
2640 cpu_arch_isa_flags = flags;
2641 }
2642 else
2643 cpu_arch_isa_flags
2644 = cpu_flags_or (cpu_arch_isa_flags,
2645 cpu_arch[j].flags);
2646 (void) restore_line_pointer (e);
2647 demand_empty_rest_of_line ();
2648 return;
2649 }
2650 }
2651
2652 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2653 {
2654 /* Disable an ISA extension. */
2655 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2656 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2657 {
2658 flags = cpu_flags_and_not (cpu_arch_flags,
2659 cpu_noarch[j].flags);
2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2661 {
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name, string,
2666 (const char *) NULL);
2667 free (name);
2668 }
2669 else
2670 cpu_sub_arch_name = xstrdup (string);
2671 cpu_arch_flags = flags;
2672 cpu_arch_isa_flags = flags;
2673 }
2674 (void) restore_line_pointer (e);
2675 demand_empty_rest_of_line ();
2676 return;
2677 }
2678
2679 j = ARRAY_SIZE (cpu_arch);
2680 }
2681
2682 if (j >= ARRAY_SIZE (cpu_arch))
2683 as_bad (_("no such architecture: `%s'"), string);
2684
2685 *input_line_pointer = e;
2686 }
2687 else
2688 as_bad (_("missing cpu architecture"));
2689
2690 no_cond_jump_promotion = 0;
2691 if (*input_line_pointer == ','
2692 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2693 {
2694 char *string;
2695 char e;
2696
2697 ++input_line_pointer;
2698 e = get_symbol_name (&string);
2699
2700 if (strcmp (string, "nojumps") == 0)
2701 no_cond_jump_promotion = 1;
2702 else if (strcmp (string, "jumps") == 0)
2703 ;
2704 else
2705 as_bad (_("no such architecture modifier: `%s'"), string);
2706
2707 (void) restore_line_pointer (e);
2708 }
2709
2710 demand_empty_rest_of_line ();
2711 }
2712
2713 enum bfd_architecture
2714 i386_arch (void)
2715 {
2716 if (cpu_arch_isa == PROCESSOR_L1OM)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code != CODE_64BIT)
2720 as_fatal (_("Intel L1OM is 64bit ELF only"));
2721 return bfd_arch_l1om;
2722 }
2723 else if (cpu_arch_isa == PROCESSOR_K1OM)
2724 {
2725 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2726 || flag_code != CODE_64BIT)
2727 as_fatal (_("Intel K1OM is 64bit ELF only"));
2728 return bfd_arch_k1om;
2729 }
2730 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2731 {
2732 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2733 || flag_code == CODE_64BIT)
2734 as_fatal (_("Intel MCU is 32bit ELF only"));
2735 return bfd_arch_iamcu;
2736 }
2737 else
2738 return bfd_arch_i386;
2739 }
2740
2741 unsigned long
2742 i386_mach (void)
2743 {
2744 if (!strncmp (default_arch, "x86_64", 6))
2745 {
2746 if (cpu_arch_isa == PROCESSOR_L1OM)
2747 {
2748 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2749 || default_arch[6] != '\0')
2750 as_fatal (_("Intel L1OM is 64bit ELF only"));
2751 return bfd_mach_l1om;
2752 }
2753 else if (cpu_arch_isa == PROCESSOR_K1OM)
2754 {
2755 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2756 || default_arch[6] != '\0')
2757 as_fatal (_("Intel K1OM is 64bit ELF only"));
2758 return bfd_mach_k1om;
2759 }
2760 else if (default_arch[6] == '\0')
2761 return bfd_mach_x86_64;
2762 else
2763 return bfd_mach_x64_32;
2764 }
2765 else if (!strcmp (default_arch, "i386")
2766 || !strcmp (default_arch, "iamcu"))
2767 {
2768 if (cpu_arch_isa == PROCESSOR_IAMCU)
2769 {
2770 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2771 as_fatal (_("Intel MCU is 32bit ELF only"));
2772 return bfd_mach_i386_iamcu;
2773 }
2774 else
2775 return bfd_mach_i386_i386;
2776 }
2777 else
2778 as_fatal (_("unknown architecture"));
2779 }
2780 \f
2781 void
2782 md_begin (void)
2783 {
2784 const char *hash_err;
2785
2786 /* Support pseudo prefixes like {disp32}. */
2787 lex_type ['{'] = LEX_BEGIN_NAME;
2788
2789 /* Initialize op_hash hash table. */
2790 op_hash = hash_new ();
2791
2792 {
2793 const insn_template *optab;
2794 templates *core_optab;
2795
2796 /* Setup for loop. */
2797 optab = i386_optab;
2798 core_optab = XNEW (templates);
2799 core_optab->start = optab;
2800
2801 while (1)
2802 {
2803 ++optab;
2804 if (optab->name == NULL
2805 || strcmp (optab->name, (optab - 1)->name) != 0)
2806 {
2807 /* different name --> ship out current template list;
2808 add to hash table; & begin anew. */
2809 core_optab->end = optab;
2810 hash_err = hash_insert (op_hash,
2811 (optab - 1)->name,
2812 (void *) core_optab);
2813 if (hash_err)
2814 {
2815 as_fatal (_("can't hash %s: %s"),
2816 (optab - 1)->name,
2817 hash_err);
2818 }
2819 if (optab->name == NULL)
2820 break;
2821 core_optab = XNEW (templates);
2822 core_optab->start = optab;
2823 }
2824 }
2825 }
2826
2827 /* Initialize reg_hash hash table. */
2828 reg_hash = hash_new ();
2829 {
2830 const reg_entry *regtab;
2831 unsigned int regtab_size = i386_regtab_size;
2832
2833 for (regtab = i386_regtab; regtab_size--; regtab++)
2834 {
2835 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2836 if (hash_err)
2837 as_fatal (_("can't hash %s: %s"),
2838 regtab->reg_name,
2839 hash_err);
2840 }
2841 }
2842
2843 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2844 {
2845 int c;
2846 char *p;
2847
2848 for (c = 0; c < 256; c++)
2849 {
2850 if (ISDIGIT (c))
2851 {
2852 digit_chars[c] = c;
2853 mnemonic_chars[c] = c;
2854 register_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
2857 else if (ISLOWER (c))
2858 {
2859 mnemonic_chars[c] = c;
2860 register_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
2863 else if (ISUPPER (c))
2864 {
2865 mnemonic_chars[c] = TOLOWER (c);
2866 register_chars[c] = mnemonic_chars[c];
2867 operand_chars[c] = c;
2868 }
2869 else if (c == '{' || c == '}')
2870 {
2871 mnemonic_chars[c] = c;
2872 operand_chars[c] = c;
2873 }
2874
2875 if (ISALPHA (c) || ISDIGIT (c))
2876 identifier_chars[c] = c;
2877 else if (c >= 128)
2878 {
2879 identifier_chars[c] = c;
2880 operand_chars[c] = c;
2881 }
2882 }
2883
2884 #ifdef LEX_AT
2885 identifier_chars['@'] = '@';
2886 #endif
2887 #ifdef LEX_QM
2888 identifier_chars['?'] = '?';
2889 operand_chars['?'] = '?';
2890 #endif
2891 digit_chars['-'] = '-';
2892 mnemonic_chars['_'] = '_';
2893 mnemonic_chars['-'] = '-';
2894 mnemonic_chars['.'] = '.';
2895 identifier_chars['_'] = '_';
2896 identifier_chars['.'] = '.';
2897
2898 for (p = operand_special_chars; *p != '\0'; p++)
2899 operand_chars[(unsigned char) *p] = *p;
2900 }
2901
2902 if (flag_code == CODE_64BIT)
2903 {
2904 #if defined (OBJ_COFF) && defined (TE_PE)
2905 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2906 ? 32 : 16);
2907 #else
2908 x86_dwarf2_return_column = 16;
2909 #endif
2910 x86_cie_data_alignment = -8;
2911 }
2912 else
2913 {
2914 x86_dwarf2_return_column = 8;
2915 x86_cie_data_alignment = -4;
2916 }
2917 }
2918
2919 void
2920 i386_print_statistics (FILE *file)
2921 {
2922 hash_print_statistics (file, "i386 opcode", op_hash);
2923 hash_print_statistics (file, "i386 register", reg_hash);
2924 }
2925 \f
2926 #ifdef DEBUG386
2927
2928 /* Debugging routines for md_assemble. */
2929 static void pte (insn_template *);
2930 static void pt (i386_operand_type);
2931 static void pe (expressionS *);
2932 static void ps (symbolS *);
2933
2934 static void
2935 pi (char *line, i386_insn *x)
2936 {
2937 unsigned int j;
2938
2939 fprintf (stdout, "%s: template ", line);
2940 pte (&x->tm);
2941 fprintf (stdout, " address: base %s index %s scale %x\n",
2942 x->base_reg ? x->base_reg->reg_name : "none",
2943 x->index_reg ? x->index_reg->reg_name : "none",
2944 x->log2_scale_factor);
2945 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2946 x->rm.mode, x->rm.reg, x->rm.regmem);
2947 fprintf (stdout, " sib: base %x index %x scale %x\n",
2948 x->sib.base, x->sib.index, x->sib.scale);
2949 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2950 (x->rex & REX_W) != 0,
2951 (x->rex & REX_R) != 0,
2952 (x->rex & REX_X) != 0,
2953 (x->rex & REX_B) != 0);
2954 for (j = 0; j < x->operands; j++)
2955 {
2956 fprintf (stdout, " #%d: ", j + 1);
2957 pt (x->types[j]);
2958 fprintf (stdout, "\n");
2959 if (x->types[j].bitfield.reg
2960 || x->types[j].bitfield.regmmx
2961 || x->types[j].bitfield.regsimd
2962 || x->types[j].bitfield.sreg2
2963 || x->types[j].bitfield.sreg3
2964 || x->types[j].bitfield.control
2965 || x->types[j].bitfield.debug
2966 || x->types[j].bitfield.test)
2967 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2968 if (operand_type_check (x->types[j], imm))
2969 pe (x->op[j].imms);
2970 if (operand_type_check (x->types[j], disp))
2971 pe (x->op[j].disps);
2972 }
2973 }
2974
2975 static void
2976 pte (insn_template *t)
2977 {
2978 unsigned int j;
2979 fprintf (stdout, " %d operands ", t->operands);
2980 fprintf (stdout, "opcode %x ", t->base_opcode);
2981 if (t->extension_opcode != None)
2982 fprintf (stdout, "ext %x ", t->extension_opcode);
2983 if (t->opcode_modifier.d)
2984 fprintf (stdout, "D");
2985 if (t->opcode_modifier.w)
2986 fprintf (stdout, "W");
2987 fprintf (stdout, "\n");
2988 for (j = 0; j < t->operands; j++)
2989 {
2990 fprintf (stdout, " #%d type ", j + 1);
2991 pt (t->operand_types[j]);
2992 fprintf (stdout, "\n");
2993 }
2994 }
2995
2996 static void
2997 pe (expressionS *e)
2998 {
2999 fprintf (stdout, " operation %d\n", e->X_op);
3000 fprintf (stdout, " add_number %ld (%lx)\n",
3001 (long) e->X_add_number, (long) e->X_add_number);
3002 if (e->X_add_symbol)
3003 {
3004 fprintf (stdout, " add_symbol ");
3005 ps (e->X_add_symbol);
3006 fprintf (stdout, "\n");
3007 }
3008 if (e->X_op_symbol)
3009 {
3010 fprintf (stdout, " op_symbol ");
3011 ps (e->X_op_symbol);
3012 fprintf (stdout, "\n");
3013 }
3014 }
3015
3016 static void
3017 ps (symbolS *s)
3018 {
3019 fprintf (stdout, "%s type %s%s",
3020 S_GET_NAME (s),
3021 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3022 segment_name (S_GET_SEGMENT (s)));
3023 }
3024
3025 static struct type_name
3026 {
3027 i386_operand_type mask;
3028 const char *name;
3029 }
3030 const type_names[] =
3031 {
3032 { OPERAND_TYPE_REG8, "r8" },
3033 { OPERAND_TYPE_REG16, "r16" },
3034 { OPERAND_TYPE_REG32, "r32" },
3035 { OPERAND_TYPE_REG64, "r64" },
3036 { OPERAND_TYPE_IMM8, "i8" },
3037 { OPERAND_TYPE_IMM8, "i8s" },
3038 { OPERAND_TYPE_IMM16, "i16" },
3039 { OPERAND_TYPE_IMM32, "i32" },
3040 { OPERAND_TYPE_IMM32S, "i32s" },
3041 { OPERAND_TYPE_IMM64, "i64" },
3042 { OPERAND_TYPE_IMM1, "i1" },
3043 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3044 { OPERAND_TYPE_DISP8, "d8" },
3045 { OPERAND_TYPE_DISP16, "d16" },
3046 { OPERAND_TYPE_DISP32, "d32" },
3047 { OPERAND_TYPE_DISP32S, "d32s" },
3048 { OPERAND_TYPE_DISP64, "d64" },
3049 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3050 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3051 { OPERAND_TYPE_CONTROL, "control reg" },
3052 { OPERAND_TYPE_TEST, "test reg" },
3053 { OPERAND_TYPE_DEBUG, "debug reg" },
3054 { OPERAND_TYPE_FLOATREG, "FReg" },
3055 { OPERAND_TYPE_FLOATACC, "FAcc" },
3056 { OPERAND_TYPE_SREG2, "SReg2" },
3057 { OPERAND_TYPE_SREG3, "SReg3" },
3058 { OPERAND_TYPE_ACC, "Acc" },
3059 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3060 { OPERAND_TYPE_REGMMX, "rMMX" },
3061 { OPERAND_TYPE_REGXMM, "rXMM" },
3062 { OPERAND_TYPE_REGYMM, "rYMM" },
3063 { OPERAND_TYPE_REGZMM, "rZMM" },
3064 { OPERAND_TYPE_REGMASK, "Mask reg" },
3065 { OPERAND_TYPE_ESSEG, "es" },
3066 };
3067
3068 static void
3069 pt (i386_operand_type t)
3070 {
3071 unsigned int j;
3072 i386_operand_type a;
3073
3074 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3075 {
3076 a = operand_type_and (t, type_names[j].mask);
3077 if (!operand_type_all_zero (&a))
3078 fprintf (stdout, "%s, ", type_names[j].name);
3079 }
3080 fflush (stdout);
3081 }
3082
3083 #endif /* DEBUG386 */
3084 \f
3085 static bfd_reloc_code_real_type
3086 reloc (unsigned int size,
3087 int pcrel,
3088 int sign,
3089 bfd_reloc_code_real_type other)
3090 {
3091 if (other != NO_RELOC)
3092 {
3093 reloc_howto_type *rel;
3094
3095 if (size == 8)
3096 switch (other)
3097 {
3098 case BFD_RELOC_X86_64_GOT32:
3099 return BFD_RELOC_X86_64_GOT64;
3100 break;
3101 case BFD_RELOC_X86_64_GOTPLT64:
3102 return BFD_RELOC_X86_64_GOTPLT64;
3103 break;
3104 case BFD_RELOC_X86_64_PLTOFF64:
3105 return BFD_RELOC_X86_64_PLTOFF64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPC32:
3108 other = BFD_RELOC_X86_64_GOTPC64;
3109 break;
3110 case BFD_RELOC_X86_64_GOTPCREL:
3111 other = BFD_RELOC_X86_64_GOTPCREL64;
3112 break;
3113 case BFD_RELOC_X86_64_TPOFF32:
3114 other = BFD_RELOC_X86_64_TPOFF64;
3115 break;
3116 case BFD_RELOC_X86_64_DTPOFF32:
3117 other = BFD_RELOC_X86_64_DTPOFF64;
3118 break;
3119 default:
3120 break;
3121 }
3122
3123 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3124 if (other == BFD_RELOC_SIZE32)
3125 {
3126 if (size == 8)
3127 other = BFD_RELOC_SIZE64;
3128 if (pcrel)
3129 {
3130 as_bad (_("there are no pc-relative size relocations"));
3131 return NO_RELOC;
3132 }
3133 }
3134 #endif
3135
3136 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3137 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3138 sign = -1;
3139
3140 rel = bfd_reloc_type_lookup (stdoutput, other);
3141 if (!rel)
3142 as_bad (_("unknown relocation (%u)"), other);
3143 else if (size != bfd_get_reloc_size (rel))
3144 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3145 bfd_get_reloc_size (rel),
3146 size);
3147 else if (pcrel && !rel->pc_relative)
3148 as_bad (_("non-pc-relative relocation for pc-relative field"));
3149 else if ((rel->complain_on_overflow == complain_overflow_signed
3150 && !sign)
3151 || (rel->complain_on_overflow == complain_overflow_unsigned
3152 && sign > 0))
3153 as_bad (_("relocated field and relocation type differ in signedness"));
3154 else
3155 return other;
3156 return NO_RELOC;
3157 }
3158
3159 if (pcrel)
3160 {
3161 if (!sign)
3162 as_bad (_("there are no unsigned pc-relative relocations"));
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8_PCREL;
3166 case 2: return BFD_RELOC_16_PCREL;
3167 case 4: return BFD_RELOC_32_PCREL;
3168 case 8: return BFD_RELOC_64_PCREL;
3169 }
3170 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3171 }
3172 else
3173 {
3174 if (sign > 0)
3175 switch (size)
3176 {
3177 case 4: return BFD_RELOC_X86_64_32S;
3178 }
3179 else
3180 switch (size)
3181 {
3182 case 1: return BFD_RELOC_8;
3183 case 2: return BFD_RELOC_16;
3184 case 4: return BFD_RELOC_32;
3185 case 8: return BFD_RELOC_64;
3186 }
3187 as_bad (_("cannot do %s %u byte relocation"),
3188 sign > 0 ? "signed" : "unsigned", size);
3189 }
3190
3191 return NO_RELOC;
3192 }
3193
3194 /* Here we decide which fixups can be adjusted to make them relative to
3195 the beginning of the section instead of the symbol. Basically we need
3196 to make sure that the dynamic relocations are done correctly, so in
3197 some cases we force the original symbol to be used. */
3198
3199 int
3200 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3201 {
3202 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3203 if (!IS_ELF)
3204 return 1;
3205
3206 /* Don't adjust pc-relative references to merge sections in 64-bit
3207 mode. */
3208 if (use_rela_relocations
3209 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3210 && fixP->fx_pcrel)
3211 return 0;
3212
3213 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3214 and changed later by validate_fix. */
3215 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3216 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3217 return 0;
3218
3219 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3220 for size relocations. */
3221 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3222 || fixP->fx_r_type == BFD_RELOC_SIZE64
3223 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3224 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3225 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3226 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3235 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3236 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3250 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3251 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3252 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3253 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3254 return 0;
3255 #endif
3256 return 1;
3257 }
3258
3259 static int
3260 intel_float_operand (const char *mnemonic)
3261 {
3262 /* Note that the value returned is meaningful only for opcodes with (memory)
3263 operands, hence the code here is free to improperly handle opcodes that
3264 have no operands (for better performance and smaller code). */
3265
3266 if (mnemonic[0] != 'f')
3267 return 0; /* non-math */
3268
3269 switch (mnemonic[1])
3270 {
3271 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3272 the fs segment override prefix not currently handled because no
3273 call path can make opcodes without operands get here */
3274 case 'i':
3275 return 2 /* integer op */;
3276 case 'l':
3277 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3278 return 3; /* fldcw/fldenv */
3279 break;
3280 case 'n':
3281 if (mnemonic[2] != 'o' /* fnop */)
3282 return 3; /* non-waiting control op */
3283 break;
3284 case 'r':
3285 if (mnemonic[2] == 's')
3286 return 3; /* frstor/frstpm */
3287 break;
3288 case 's':
3289 if (mnemonic[2] == 'a')
3290 return 3; /* fsave */
3291 if (mnemonic[2] == 't')
3292 {
3293 switch (mnemonic[3])
3294 {
3295 case 'c': /* fstcw */
3296 case 'd': /* fstdw */
3297 case 'e': /* fstenv */
3298 case 's': /* fsts[gw] */
3299 return 3;
3300 }
3301 }
3302 break;
3303 case 'x':
3304 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3305 return 0; /* fxsave/fxrstor are not really math ops */
3306 break;
3307 }
3308
3309 return 1;
3310 }
3311
3312 /* Build the VEX prefix. */
3313
3314 static void
3315 build_vex_prefix (const insn_template *t)
3316 {
3317 unsigned int register_specifier;
3318 unsigned int implied_prefix;
3319 unsigned int vector_length;
3320
3321 /* Check register specifier. */
3322 if (i.vex.register_specifier)
3323 {
3324 register_specifier =
3325 ~register_number (i.vex.register_specifier) & 0xf;
3326 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3327 }
3328 else
3329 register_specifier = 0xf;
3330
3331 /* Use 2-byte VEX prefix by swapping destination and source
3332 operand. */
3333 if (i.vec_encoding != vex_encoding_vex3
3334 && i.dir_encoding == dir_encoding_default
3335 && i.operands == i.reg_operands
3336 && i.tm.opcode_modifier.vexopcode == VEX0F
3337 && i.tm.opcode_modifier.load
3338 && i.rex == REX_B)
3339 {
3340 unsigned int xchg = i.operands - 1;
3341 union i386_op temp_op;
3342 i386_operand_type temp_type;
3343
3344 temp_type = i.types[xchg];
3345 i.types[xchg] = i.types[0];
3346 i.types[0] = temp_type;
3347 temp_op = i.op[xchg];
3348 i.op[xchg] = i.op[0];
3349 i.op[0] = temp_op;
3350
3351 gas_assert (i.rm.mode == 3);
3352
3353 i.rex = REX_R;
3354 xchg = i.rm.regmem;
3355 i.rm.regmem = i.rm.reg;
3356 i.rm.reg = xchg;
3357
3358 /* Use the next insn. */
3359 i.tm = t[1];
3360 }
3361
3362 if (i.tm.opcode_modifier.vex == VEXScalar)
3363 vector_length = avxscalar;
3364 else if (i.tm.opcode_modifier.vex == VEX256)
3365 vector_length = 1;
3366 else
3367 {
3368 unsigned int op;
3369
3370 /* Determine vector length from the last multi-length vector
3371 operand. */
3372 vector_length = 0;
3373 for (op = t->operands; op--;)
3374 if (t->operand_types[op].bitfield.xmmword
3375 && t->operand_types[op].bitfield.ymmword
3376 && i.types[op].bitfield.ymmword)
3377 {
3378 vector_length = 1;
3379 break;
3380 }
3381 }
3382
3383 switch ((i.tm.base_opcode >> 8) & 0xff)
3384 {
3385 case 0:
3386 implied_prefix = 0;
3387 break;
3388 case DATA_PREFIX_OPCODE:
3389 implied_prefix = 1;
3390 break;
3391 case REPE_PREFIX_OPCODE:
3392 implied_prefix = 2;
3393 break;
3394 case REPNE_PREFIX_OPCODE:
3395 implied_prefix = 3;
3396 break;
3397 default:
3398 abort ();
3399 }
3400
3401 /* Use 2-byte VEX prefix if possible. */
3402 if (i.vec_encoding != vex_encoding_vex3
3403 && i.tm.opcode_modifier.vexopcode == VEX0F
3404 && i.tm.opcode_modifier.vexw != VEXW1
3405 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3406 {
3407 /* 2-byte VEX prefix. */
3408 unsigned int r;
3409
3410 i.vex.length = 2;
3411 i.vex.bytes[0] = 0xc5;
3412
3413 /* Check the REX.R bit. */
3414 r = (i.rex & REX_R) ? 0 : 1;
3415 i.vex.bytes[1] = (r << 7
3416 | register_specifier << 3
3417 | vector_length << 2
3418 | implied_prefix);
3419 }
3420 else
3421 {
3422 /* 3-byte VEX prefix. */
3423 unsigned int m, w;
3424
3425 i.vex.length = 3;
3426
3427 switch (i.tm.opcode_modifier.vexopcode)
3428 {
3429 case VEX0F:
3430 m = 0x1;
3431 i.vex.bytes[0] = 0xc4;
3432 break;
3433 case VEX0F38:
3434 m = 0x2;
3435 i.vex.bytes[0] = 0xc4;
3436 break;
3437 case VEX0F3A:
3438 m = 0x3;
3439 i.vex.bytes[0] = 0xc4;
3440 break;
3441 case XOP08:
3442 m = 0x8;
3443 i.vex.bytes[0] = 0x8f;
3444 break;
3445 case XOP09:
3446 m = 0x9;
3447 i.vex.bytes[0] = 0x8f;
3448 break;
3449 case XOP0A:
3450 m = 0xa;
3451 i.vex.bytes[0] = 0x8f;
3452 break;
3453 default:
3454 abort ();
3455 }
3456
3457 /* The high 3 bits of the second VEX byte are 1's compliment
3458 of RXB bits from REX. */
3459 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3460
3461 /* Check the REX.W bit. */
3462 w = (i.rex & REX_W) ? 1 : 0;
3463 if (i.tm.opcode_modifier.vexw == VEXW1)
3464 w = 1;
3465
3466 i.vex.bytes[2] = (w << 7
3467 | register_specifier << 3
3468 | vector_length << 2
3469 | implied_prefix);
3470 }
3471 }
3472
3473 static INLINE bfd_boolean
3474 is_evex_encoding (const insn_template *t)
3475 {
3476 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3477 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3478 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3479 }
3480
3481 /* Build the EVEX prefix. */
3482
3483 static void
3484 build_evex_prefix (void)
3485 {
3486 unsigned int register_specifier;
3487 unsigned int implied_prefix;
3488 unsigned int m, w;
3489 rex_byte vrex_used = 0;
3490
3491 /* Check register specifier. */
3492 if (i.vex.register_specifier)
3493 {
3494 gas_assert ((i.vrex & REX_X) == 0);
3495
3496 register_specifier = i.vex.register_specifier->reg_num;
3497 if ((i.vex.register_specifier->reg_flags & RegRex))
3498 register_specifier += 8;
3499 /* The upper 16 registers are encoded in the fourth byte of the
3500 EVEX prefix. */
3501 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3502 i.vex.bytes[3] = 0x8;
3503 register_specifier = ~register_specifier & 0xf;
3504 }
3505 else
3506 {
3507 register_specifier = 0xf;
3508
3509 /* Encode upper 16 vector index register in the fourth byte of
3510 the EVEX prefix. */
3511 if (!(i.vrex & REX_X))
3512 i.vex.bytes[3] = 0x8;
3513 else
3514 vrex_used |= REX_X;
3515 }
3516
3517 switch ((i.tm.base_opcode >> 8) & 0xff)
3518 {
3519 case 0:
3520 implied_prefix = 0;
3521 break;
3522 case DATA_PREFIX_OPCODE:
3523 implied_prefix = 1;
3524 break;
3525 case REPE_PREFIX_OPCODE:
3526 implied_prefix = 2;
3527 break;
3528 case REPNE_PREFIX_OPCODE:
3529 implied_prefix = 3;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
3535 /* 4 byte EVEX prefix. */
3536 i.vex.length = 4;
3537 i.vex.bytes[0] = 0x62;
3538
3539 /* mmmm bits. */
3540 switch (i.tm.opcode_modifier.vexopcode)
3541 {
3542 case VEX0F:
3543 m = 1;
3544 break;
3545 case VEX0F38:
3546 m = 2;
3547 break;
3548 case VEX0F3A:
3549 m = 3;
3550 break;
3551 default:
3552 abort ();
3553 break;
3554 }
3555
3556 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3557 bits from REX. */
3558 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3559
3560 /* The fifth bit of the second EVEX byte is 1's compliment of the
3561 REX_R bit in VREX. */
3562 if (!(i.vrex & REX_R))
3563 i.vex.bytes[1] |= 0x10;
3564 else
3565 vrex_used |= REX_R;
3566
3567 if ((i.reg_operands + i.imm_operands) == i.operands)
3568 {
3569 /* When all operands are registers, the REX_X bit in REX is not
3570 used. We reuse it to encode the upper 16 registers, which is
3571 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3572 as 1's compliment. */
3573 if ((i.vrex & REX_B))
3574 {
3575 vrex_used |= REX_B;
3576 i.vex.bytes[1] &= ~0x40;
3577 }
3578 }
3579
3580 /* EVEX instructions shouldn't need the REX prefix. */
3581 i.vrex &= ~vrex_used;
3582 gas_assert (i.vrex == 0);
3583
3584 /* Check the REX.W bit. */
3585 w = (i.rex & REX_W) ? 1 : 0;
3586 if (i.tm.opcode_modifier.vexw)
3587 {
3588 if (i.tm.opcode_modifier.vexw == VEXW1)
3589 w = 1;
3590 }
3591 /* If w is not set it means we are dealing with WIG instruction. */
3592 else if (!w)
3593 {
3594 if (evexwig == evexw1)
3595 w = 1;
3596 }
3597
3598 /* Encode the U bit. */
3599 implied_prefix |= 0x4;
3600
3601 /* The third byte of the EVEX prefix. */
3602 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3603
3604 /* The fourth byte of the EVEX prefix. */
3605 /* The zeroing-masking bit. */
3606 if (i.mask && i.mask->zeroing)
3607 i.vex.bytes[3] |= 0x80;
3608
3609 /* Don't always set the broadcast bit if there is no RC. */
3610 if (!i.rounding)
3611 {
3612 /* Encode the vector length. */
3613 unsigned int vec_length;
3614
3615 if (!i.tm.opcode_modifier.evex
3616 || i.tm.opcode_modifier.evex == EVEXDYN)
3617 {
3618 unsigned int op;
3619
3620 /* Determine vector length from the last multi-length vector
3621 operand. */
3622 vec_length = 0;
3623 for (op = i.operands; op--;)
3624 if (i.tm.operand_types[op].bitfield.xmmword
3625 + i.tm.operand_types[op].bitfield.ymmword
3626 + i.tm.operand_types[op].bitfield.zmmword > 1)
3627 {
3628 if (i.types[op].bitfield.zmmword)
3629 {
3630 i.tm.opcode_modifier.evex = EVEX512;
3631 break;
3632 }
3633 else if (i.types[op].bitfield.ymmword)
3634 {
3635 i.tm.opcode_modifier.evex = EVEX256;
3636 break;
3637 }
3638 else if (i.types[op].bitfield.xmmword)
3639 {
3640 i.tm.opcode_modifier.evex = EVEX128;
3641 break;
3642 }
3643 else if (i.broadcast && (int) op == i.broadcast->operand)
3644 {
3645 switch (i.broadcast->bytes)
3646 {
3647 case 64:
3648 i.tm.opcode_modifier.evex = EVEX512;
3649 break;
3650 case 32:
3651 i.tm.opcode_modifier.evex = EVEX256;
3652 break;
3653 case 16:
3654 i.tm.opcode_modifier.evex = EVEX128;
3655 break;
3656 default:
3657 abort ();
3658 }
3659 break;
3660 }
3661 }
3662
3663 if (op >= MAX_OPERANDS)
3664 abort ();
3665 }
3666
3667 switch (i.tm.opcode_modifier.evex)
3668 {
3669 case EVEXLIG: /* LL' is ignored */
3670 vec_length = evexlig << 5;
3671 break;
3672 case EVEX128:
3673 vec_length = 0 << 5;
3674 break;
3675 case EVEX256:
3676 vec_length = 1 << 5;
3677 break;
3678 case EVEX512:
3679 vec_length = 2 << 5;
3680 break;
3681 default:
3682 abort ();
3683 break;
3684 }
3685 i.vex.bytes[3] |= vec_length;
3686 /* Encode the broadcast bit. */
3687 if (i.broadcast)
3688 i.vex.bytes[3] |= 0x10;
3689 }
3690 else
3691 {
3692 if (i.rounding->type != saeonly)
3693 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3694 else
3695 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3696 }
3697
3698 if (i.mask && i.mask->mask)
3699 i.vex.bytes[3] |= i.mask->mask->reg_num;
3700 }
3701
3702 static void
3703 process_immext (void)
3704 {
3705 expressionS *exp;
3706
3707 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3708 && i.operands > 0)
3709 {
3710 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3711 with an opcode suffix which is coded in the same place as an
3712 8-bit immediate field would be.
3713 Here we check those operands and remove them afterwards. */
3714 unsigned int x;
3715
3716 for (x = 0; x < i.operands; x++)
3717 if (register_number (i.op[x].regs) != x)
3718 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3719 register_prefix, i.op[x].regs->reg_name, x + 1,
3720 i.tm.name);
3721
3722 i.operands = 0;
3723 }
3724
3725 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3726 {
3727 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3728 suffix which is coded in the same place as an 8-bit immediate
3729 field would be.
3730 Here we check those operands and remove them afterwards. */
3731 unsigned int x;
3732
3733 if (i.operands != 3)
3734 abort();
3735
3736 for (x = 0; x < 2; x++)
3737 if (register_number (i.op[x].regs) != x)
3738 goto bad_register_operand;
3739
3740 /* Check for third operand for mwaitx/monitorx insn. */
3741 if (register_number (i.op[x].regs)
3742 != (x + (i.tm.extension_opcode == 0xfb)))
3743 {
3744 bad_register_operand:
3745 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3746 register_prefix, i.op[x].regs->reg_name, x+1,
3747 i.tm.name);
3748 }
3749
3750 i.operands = 0;
3751 }
3752
3753 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3754 which is coded in the same place as an 8-bit immediate field
3755 would be. Here we fake an 8-bit immediate operand from the
3756 opcode suffix stored in tm.extension_opcode.
3757
3758 AVX instructions also use this encoding, for some of
3759 3 argument instructions. */
3760
3761 gas_assert (i.imm_operands <= 1
3762 && (i.operands <= 2
3763 || ((i.tm.opcode_modifier.vex
3764 || i.tm.opcode_modifier.vexopcode
3765 || is_evex_encoding (&i.tm))
3766 && i.operands <= 4)));
3767
3768 exp = &im_expressions[i.imm_operands++];
3769 i.op[i.operands].imms = exp;
3770 i.types[i.operands] = imm8;
3771 i.operands++;
3772 exp->X_op = O_constant;
3773 exp->X_add_number = i.tm.extension_opcode;
3774 i.tm.extension_opcode = None;
3775 }
3776
3777
3778 static int
3779 check_hle (void)
3780 {
3781 switch (i.tm.opcode_modifier.hleprefixok)
3782 {
3783 default:
3784 abort ();
3785 case HLEPrefixNone:
3786 as_bad (_("invalid instruction `%s' after `%s'"),
3787 i.tm.name, i.hle_prefix);
3788 return 0;
3789 case HLEPrefixLock:
3790 if (i.prefix[LOCK_PREFIX])
3791 return 1;
3792 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3793 return 0;
3794 case HLEPrefixAny:
3795 return 1;
3796 case HLEPrefixRelease:
3797 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3798 {
3799 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3800 i.tm.name);
3801 return 0;
3802 }
3803 if (i.mem_operands == 0
3804 || !operand_type_check (i.types[i.operands - 1], anymem))
3805 {
3806 as_bad (_("memory destination needed for instruction `%s'"
3807 " after `xrelease'"), i.tm.name);
3808 return 0;
3809 }
3810 return 1;
3811 }
3812 }
3813
3814 /* Try the shortest encoding by shortening operand size. */
3815
3816 static void
3817 optimize_encoding (void)
3818 {
3819 int j;
3820
3821 if (optimize_for_space
3822 && i.reg_operands == 1
3823 && i.imm_operands == 1
3824 && !i.types[1].bitfield.byte
3825 && i.op[0].imms->X_op == O_constant
3826 && fits_in_imm7 (i.op[0].imms->X_add_number)
3827 && ((i.tm.base_opcode == 0xa8
3828 && i.tm.extension_opcode == None)
3829 || (i.tm.base_opcode == 0xf6
3830 && i.tm.extension_opcode == 0x0)))
3831 {
3832 /* Optimize: -Os:
3833 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3834 */
3835 unsigned int base_regnum = i.op[1].regs->reg_num;
3836 if (flag_code == CODE_64BIT || base_regnum < 4)
3837 {
3838 i.types[1].bitfield.byte = 1;
3839 /* Ignore the suffix. */
3840 i.suffix = 0;
3841 if (base_regnum >= 4
3842 && !(i.op[1].regs->reg_flags & RegRex))
3843 {
3844 /* Handle SP, BP, SI and DI registers. */
3845 if (i.types[1].bitfield.word)
3846 j = 16;
3847 else if (i.types[1].bitfield.dword)
3848 j = 32;
3849 else
3850 j = 48;
3851 i.op[1].regs -= j;
3852 }
3853 }
3854 }
3855 else if (flag_code == CODE_64BIT
3856 && ((i.types[1].bitfield.qword
3857 && i.reg_operands == 1
3858 && i.imm_operands == 1
3859 && i.op[0].imms->X_op == O_constant
3860 && ((i.tm.base_opcode == 0xb0
3861 && i.tm.extension_opcode == None
3862 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3863 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3864 && (((i.tm.base_opcode == 0x24
3865 || i.tm.base_opcode == 0xa8)
3866 && i.tm.extension_opcode == None)
3867 || (i.tm.base_opcode == 0x80
3868 && i.tm.extension_opcode == 0x4)
3869 || ((i.tm.base_opcode == 0xf6
3870 || i.tm.base_opcode == 0xc6)
3871 && i.tm.extension_opcode == 0x0)))))
3872 || (i.types[0].bitfield.qword
3873 && ((i.reg_operands == 2
3874 && i.op[0].regs == i.op[1].regs
3875 && ((i.tm.base_opcode == 0x30
3876 || i.tm.base_opcode == 0x28)
3877 && i.tm.extension_opcode == None))
3878 || (i.reg_operands == 1
3879 && i.operands == 1
3880 && i.tm.base_opcode == 0x30
3881 && i.tm.extension_opcode == None)))))
3882 {
3883 /* Optimize: -O:
3884 andq $imm31, %r64 -> andl $imm31, %r32
3885 testq $imm31, %r64 -> testl $imm31, %r32
3886 xorq %r64, %r64 -> xorl %r32, %r32
3887 subq %r64, %r64 -> subl %r32, %r32
3888 movq $imm31, %r64 -> movl $imm31, %r32
3889 movq $imm32, %r64 -> movl $imm32, %r32
3890 */
3891 i.tm.opcode_modifier.norex64 = 1;
3892 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3893 {
3894 /* Handle
3895 movq $imm31, %r64 -> movl $imm31, %r32
3896 movq $imm32, %r64 -> movl $imm32, %r32
3897 */
3898 i.tm.operand_types[0].bitfield.imm32 = 1;
3899 i.tm.operand_types[0].bitfield.imm32s = 0;
3900 i.tm.operand_types[0].bitfield.imm64 = 0;
3901 i.types[0].bitfield.imm32 = 1;
3902 i.types[0].bitfield.imm32s = 0;
3903 i.types[0].bitfield.imm64 = 0;
3904 i.types[1].bitfield.dword = 1;
3905 i.types[1].bitfield.qword = 0;
3906 if (i.tm.base_opcode == 0xc6)
3907 {
3908 /* Handle
3909 movq $imm31, %r64 -> movl $imm31, %r32
3910 */
3911 i.tm.base_opcode = 0xb0;
3912 i.tm.extension_opcode = None;
3913 i.tm.opcode_modifier.shortform = 1;
3914 i.tm.opcode_modifier.modrm = 0;
3915 }
3916 }
3917 }
3918 else if (optimize > 1
3919 && i.reg_operands == 3
3920 && i.op[0].regs == i.op[1].regs
3921 && !i.types[2].bitfield.xmmword
3922 && (i.tm.opcode_modifier.vex
3923 || ((!i.mask || i.mask->zeroing)
3924 && !i.rounding
3925 && is_evex_encoding (&i.tm)
3926 && (i.vec_encoding != vex_encoding_evex
3927 || i.tm.cpu_flags.bitfield.cpuavx512vl
3928 || (i.tm.operand_types[2].bitfield.zmmword
3929 && i.types[2].bitfield.ymmword)
3930 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3931 && ((i.tm.base_opcode == 0x55
3932 || i.tm.base_opcode == 0x6655
3933 || i.tm.base_opcode == 0x66df
3934 || i.tm.base_opcode == 0x57
3935 || i.tm.base_opcode == 0x6657
3936 || i.tm.base_opcode == 0x66ef
3937 || i.tm.base_opcode == 0x66f8
3938 || i.tm.base_opcode == 0x66f9
3939 || i.tm.base_opcode == 0x66fa
3940 || i.tm.base_opcode == 0x66fb)
3941 && i.tm.extension_opcode == None))
3942 {
3943 /* Optimize: -O2:
3944 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3945 vpsubq and vpsubw:
3946 EVEX VOP %zmmM, %zmmM, %zmmN
3947 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3948 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3949 EVEX VOP %ymmM, %ymmM, %ymmN
3950 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3951 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3952 VEX VOP %ymmM, %ymmM, %ymmN
3953 -> VEX VOP %xmmM, %xmmM, %xmmN
3954 VOP, one of vpandn and vpxor:
3955 VEX VOP %ymmM, %ymmM, %ymmN
3956 -> VEX VOP %xmmM, %xmmM, %xmmN
3957 VOP, one of vpandnd and vpandnq:
3958 EVEX VOP %zmmM, %zmmM, %zmmN
3959 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3960 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3961 EVEX VOP %ymmM, %ymmM, %ymmN
3962 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3963 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3964 VOP, one of vpxord and vpxorq:
3965 EVEX VOP %zmmM, %zmmM, %zmmN
3966 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3967 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3968 EVEX VOP %ymmM, %ymmM, %ymmN
3969 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3970 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3971 */
3972 if (is_evex_encoding (&i.tm))
3973 {
3974 if (i.vec_encoding == vex_encoding_evex)
3975 i.tm.opcode_modifier.evex = EVEX128;
3976 else
3977 {
3978 i.tm.opcode_modifier.vex = VEX128;
3979 i.tm.opcode_modifier.vexw = VEXW0;
3980 i.tm.opcode_modifier.evex = 0;
3981 }
3982 }
3983 else
3984 i.tm.opcode_modifier.vex = VEX128;
3985
3986 if (i.tm.opcode_modifier.vex)
3987 for (j = 0; j < 3; j++)
3988 {
3989 i.types[j].bitfield.xmmword = 1;
3990 i.types[j].bitfield.ymmword = 0;
3991 }
3992 }
3993 }
3994
3995 /* This is the guts of the machine-dependent assembler. LINE points to a
3996 machine dependent instruction. This function is supposed to emit
3997 the frags/bytes it assembles to. */
3998
3999 void
4000 md_assemble (char *line)
4001 {
4002 unsigned int j;
4003 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4004 const insn_template *t;
4005
4006 /* Initialize globals. */
4007 memset (&i, '\0', sizeof (i));
4008 for (j = 0; j < MAX_OPERANDS; j++)
4009 i.reloc[j] = NO_RELOC;
4010 memset (disp_expressions, '\0', sizeof (disp_expressions));
4011 memset (im_expressions, '\0', sizeof (im_expressions));
4012 save_stack_p = save_stack;
4013
4014 /* First parse an instruction mnemonic & call i386_operand for the operands.
4015 We assume that the scrubber has arranged it so that line[0] is the valid
4016 start of a (possibly prefixed) mnemonic. */
4017
4018 line = parse_insn (line, mnemonic);
4019 if (line == NULL)
4020 return;
4021 mnem_suffix = i.suffix;
4022
4023 line = parse_operands (line, mnemonic);
4024 this_operand = -1;
4025 xfree (i.memop1_string);
4026 i.memop1_string = NULL;
4027 if (line == NULL)
4028 return;
4029
4030 /* Now we've parsed the mnemonic into a set of templates, and have the
4031 operands at hand. */
4032
4033 /* All intel opcodes have reversed operands except for "bound" and
4034 "enter". We also don't reverse intersegment "jmp" and "call"
4035 instructions with 2 immediate operands so that the immediate segment
4036 precedes the offset, as it does when in AT&T mode. */
4037 if (intel_syntax
4038 && i.operands > 1
4039 && (strcmp (mnemonic, "bound") != 0)
4040 && (strcmp (mnemonic, "invlpga") != 0)
4041 && !(operand_type_check (i.types[0], imm)
4042 && operand_type_check (i.types[1], imm)))
4043 swap_operands ();
4044
4045 /* The order of the immediates should be reversed
4046 for 2 immediates extrq and insertq instructions */
4047 if (i.imm_operands == 2
4048 && (strcmp (mnemonic, "extrq") == 0
4049 || strcmp (mnemonic, "insertq") == 0))
4050 swap_2_operands (0, 1);
4051
4052 if (i.imm_operands)
4053 optimize_imm ();
4054
4055 /* Don't optimize displacement for movabs since it only takes 64bit
4056 displacement. */
4057 if (i.disp_operands
4058 && i.disp_encoding != disp_encoding_32bit
4059 && (flag_code != CODE_64BIT
4060 || strcmp (mnemonic, "movabs") != 0))
4061 optimize_disp ();
4062
4063 /* Next, we find a template that matches the given insn,
4064 making sure the overlap of the given operands types is consistent
4065 with the template operand types. */
4066
4067 if (!(t = match_template (mnem_suffix)))
4068 return;
4069
4070 if (sse_check != check_none
4071 && !i.tm.opcode_modifier.noavx
4072 && !i.tm.cpu_flags.bitfield.cpuavx
4073 && (i.tm.cpu_flags.bitfield.cpusse
4074 || i.tm.cpu_flags.bitfield.cpusse2
4075 || i.tm.cpu_flags.bitfield.cpusse3
4076 || i.tm.cpu_flags.bitfield.cpussse3
4077 || i.tm.cpu_flags.bitfield.cpusse4_1
4078 || i.tm.cpu_flags.bitfield.cpusse4_2
4079 || i.tm.cpu_flags.bitfield.cpupclmul
4080 || i.tm.cpu_flags.bitfield.cpuaes
4081 || i.tm.cpu_flags.bitfield.cpugfni))
4082 {
4083 (sse_check == check_warning
4084 ? as_warn
4085 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4086 }
4087
4088 /* Zap movzx and movsx suffix. The suffix has been set from
4089 "word ptr" or "byte ptr" on the source operand in Intel syntax
4090 or extracted from mnemonic in AT&T syntax. But we'll use
4091 the destination register to choose the suffix for encoding. */
4092 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4093 {
4094 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4095 there is no suffix, the default will be byte extension. */
4096 if (i.reg_operands != 2
4097 && !i.suffix
4098 && intel_syntax)
4099 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4100
4101 i.suffix = 0;
4102 }
4103
4104 if (i.tm.opcode_modifier.fwait)
4105 if (!add_prefix (FWAIT_OPCODE))
4106 return;
4107
4108 /* Check if REP prefix is OK. */
4109 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4110 {
4111 as_bad (_("invalid instruction `%s' after `%s'"),
4112 i.tm.name, i.rep_prefix);
4113 return;
4114 }
4115
4116 /* Check for lock without a lockable instruction. Destination operand
4117 must be memory unless it is xchg (0x86). */
4118 if (i.prefix[LOCK_PREFIX]
4119 && (!i.tm.opcode_modifier.islockable
4120 || i.mem_operands == 0
4121 || (i.tm.base_opcode != 0x86
4122 && !operand_type_check (i.types[i.operands - 1], anymem))))
4123 {
4124 as_bad (_("expecting lockable instruction after `lock'"));
4125 return;
4126 }
4127
4128 /* Check if HLE prefix is OK. */
4129 if (i.hle_prefix && !check_hle ())
4130 return;
4131
4132 /* Check BND prefix. */
4133 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4134 as_bad (_("expecting valid branch instruction after `bnd'"));
4135
4136 /* Check NOTRACK prefix. */
4137 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4138 as_bad (_("expecting indirect branch instruction after `notrack'"));
4139
4140 if (i.tm.cpu_flags.bitfield.cpumpx)
4141 {
4142 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4143 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4144 else if (flag_code != CODE_16BIT
4145 ? i.prefix[ADDR_PREFIX]
4146 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4147 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4148 }
4149
4150 /* Insert BND prefix. */
4151 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4152 {
4153 if (!i.prefix[BND_PREFIX])
4154 add_prefix (BND_PREFIX_OPCODE);
4155 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4156 {
4157 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4158 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4159 }
4160 }
4161
4162 /* Check string instruction segment overrides. */
4163 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4164 {
4165 if (!check_string ())
4166 return;
4167 i.disp_operands = 0;
4168 }
4169
4170 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4171 optimize_encoding ();
4172
4173 if (!process_suffix ())
4174 return;
4175
4176 /* Update operand types. */
4177 for (j = 0; j < i.operands; j++)
4178 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4179
4180 /* Make still unresolved immediate matches conform to size of immediate
4181 given in i.suffix. */
4182 if (!finalize_imm ())
4183 return;
4184
4185 if (i.types[0].bitfield.imm1)
4186 i.imm_operands = 0; /* kludge for shift insns. */
4187
4188 /* We only need to check those implicit registers for instructions
4189 with 3 operands or less. */
4190 if (i.operands <= 3)
4191 for (j = 0; j < i.operands; j++)
4192 if (i.types[j].bitfield.inoutportreg
4193 || i.types[j].bitfield.shiftcount
4194 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4195 i.reg_operands--;
4196
4197 /* ImmExt should be processed after SSE2AVX. */
4198 if (!i.tm.opcode_modifier.sse2avx
4199 && i.tm.opcode_modifier.immext)
4200 process_immext ();
4201
4202 /* For insns with operands there are more diddles to do to the opcode. */
4203 if (i.operands)
4204 {
4205 if (!process_operands ())
4206 return;
4207 }
4208 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4209 {
4210 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4211 as_warn (_("translating to `%sp'"), i.tm.name);
4212 }
4213
4214 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4215 || is_evex_encoding (&i.tm))
4216 {
4217 if (flag_code == CODE_16BIT)
4218 {
4219 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4220 i.tm.name);
4221 return;
4222 }
4223
4224 if (i.tm.opcode_modifier.vex)
4225 build_vex_prefix (t);
4226 else
4227 build_evex_prefix ();
4228 }
4229
4230 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4231 instructions may define INT_OPCODE as well, so avoid this corner
4232 case for those instructions that use MODRM. */
4233 if (i.tm.base_opcode == INT_OPCODE
4234 && !i.tm.opcode_modifier.modrm
4235 && i.op[0].imms->X_add_number == 3)
4236 {
4237 i.tm.base_opcode = INT3_OPCODE;
4238 i.imm_operands = 0;
4239 }
4240
4241 if ((i.tm.opcode_modifier.jump
4242 || i.tm.opcode_modifier.jumpbyte
4243 || i.tm.opcode_modifier.jumpdword)
4244 && i.op[0].disps->X_op == O_constant)
4245 {
4246 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4247 the absolute address given by the constant. Since ix86 jumps and
4248 calls are pc relative, we need to generate a reloc. */
4249 i.op[0].disps->X_add_symbol = &abs_symbol;
4250 i.op[0].disps->X_op = O_symbol;
4251 }
4252
4253 if (i.tm.opcode_modifier.rex64)
4254 i.rex |= REX_W;
4255
4256 /* For 8 bit registers we need an empty rex prefix. Also if the
4257 instruction already has a prefix, we need to convert old
4258 registers to new ones. */
4259
4260 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4261 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4262 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4263 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4264 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4265 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4266 && i.rex != 0))
4267 {
4268 int x;
4269
4270 i.rex |= REX_OPCODE;
4271 for (x = 0; x < 2; x++)
4272 {
4273 /* Look for 8 bit operand that uses old registers. */
4274 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4275 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4276 {
4277 /* In case it is "hi" register, give up. */
4278 if (i.op[x].regs->reg_num > 3)
4279 as_bad (_("can't encode register '%s%s' in an "
4280 "instruction requiring REX prefix."),
4281 register_prefix, i.op[x].regs->reg_name);
4282
4283 /* Otherwise it is equivalent to the extended register.
4284 Since the encoding doesn't change this is merely
4285 cosmetic cleanup for debug output. */
4286
4287 i.op[x].regs = i.op[x].regs + 8;
4288 }
4289 }
4290 }
4291
4292 if (i.rex == 0 && i.rex_encoding)
4293 {
4294 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4295 that uses legacy register. If it is "hi" register, don't add
4296 the REX_OPCODE byte. */
4297 int x;
4298 for (x = 0; x < 2; x++)
4299 if (i.types[x].bitfield.reg
4300 && i.types[x].bitfield.byte
4301 && (i.op[x].regs->reg_flags & RegRex64) == 0
4302 && i.op[x].regs->reg_num > 3)
4303 {
4304 i.rex_encoding = FALSE;
4305 break;
4306 }
4307
4308 if (i.rex_encoding)
4309 i.rex = REX_OPCODE;
4310 }
4311
4312 if (i.rex != 0)
4313 add_prefix (REX_OPCODE | i.rex);
4314
4315 /* We are ready to output the insn. */
4316 output_insn ();
4317 }
4318
4319 static char *
4320 parse_insn (char *line, char *mnemonic)
4321 {
4322 char *l = line;
4323 char *token_start = l;
4324 char *mnem_p;
4325 int supported;
4326 const insn_template *t;
4327 char *dot_p = NULL;
4328
4329 while (1)
4330 {
4331 mnem_p = mnemonic;
4332 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4333 {
4334 if (*mnem_p == '.')
4335 dot_p = mnem_p;
4336 mnem_p++;
4337 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4338 {
4339 as_bad (_("no such instruction: `%s'"), token_start);
4340 return NULL;
4341 }
4342 l++;
4343 }
4344 if (!is_space_char (*l)
4345 && *l != END_OF_INSN
4346 && (intel_syntax
4347 || (*l != PREFIX_SEPARATOR
4348 && *l != ',')))
4349 {
4350 as_bad (_("invalid character %s in mnemonic"),
4351 output_invalid (*l));
4352 return NULL;
4353 }
4354 if (token_start == l)
4355 {
4356 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4357 as_bad (_("expecting prefix; got nothing"));
4358 else
4359 as_bad (_("expecting mnemonic; got nothing"));
4360 return NULL;
4361 }
4362
4363 /* Look up instruction (or prefix) via hash table. */
4364 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4365
4366 if (*l != END_OF_INSN
4367 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4368 && current_templates
4369 && current_templates->start->opcode_modifier.isprefix)
4370 {
4371 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4372 {
4373 as_bad ((flag_code != CODE_64BIT
4374 ? _("`%s' is only supported in 64-bit mode")
4375 : _("`%s' is not supported in 64-bit mode")),
4376 current_templates->start->name);
4377 return NULL;
4378 }
4379 /* If we are in 16-bit mode, do not allow addr16 or data16.
4380 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4381 if ((current_templates->start->opcode_modifier.size16
4382 || current_templates->start->opcode_modifier.size32)
4383 && flag_code != CODE_64BIT
4384 && (current_templates->start->opcode_modifier.size32
4385 ^ (flag_code == CODE_16BIT)))
4386 {
4387 as_bad (_("redundant %s prefix"),
4388 current_templates->start->name);
4389 return NULL;
4390 }
4391 if (current_templates->start->opcode_length == 0)
4392 {
4393 /* Handle pseudo prefixes. */
4394 switch (current_templates->start->base_opcode)
4395 {
4396 case 0x0:
4397 /* {disp8} */
4398 i.disp_encoding = disp_encoding_8bit;
4399 break;
4400 case 0x1:
4401 /* {disp32} */
4402 i.disp_encoding = disp_encoding_32bit;
4403 break;
4404 case 0x2:
4405 /* {load} */
4406 i.dir_encoding = dir_encoding_load;
4407 break;
4408 case 0x3:
4409 /* {store} */
4410 i.dir_encoding = dir_encoding_store;
4411 break;
4412 case 0x4:
4413 /* {vex2} */
4414 i.vec_encoding = vex_encoding_vex2;
4415 break;
4416 case 0x5:
4417 /* {vex3} */
4418 i.vec_encoding = vex_encoding_vex3;
4419 break;
4420 case 0x6:
4421 /* {evex} */
4422 i.vec_encoding = vex_encoding_evex;
4423 break;
4424 case 0x7:
4425 /* {rex} */
4426 i.rex_encoding = TRUE;
4427 break;
4428 case 0x8:
4429 /* {nooptimize} */
4430 i.no_optimize = TRUE;
4431 break;
4432 default:
4433 abort ();
4434 }
4435 }
4436 else
4437 {
4438 /* Add prefix, checking for repeated prefixes. */
4439 switch (add_prefix (current_templates->start->base_opcode))
4440 {
4441 case PREFIX_EXIST:
4442 return NULL;
4443 case PREFIX_DS:
4444 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4445 i.notrack_prefix = current_templates->start->name;
4446 break;
4447 case PREFIX_REP:
4448 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4449 i.hle_prefix = current_templates->start->name;
4450 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4451 i.bnd_prefix = current_templates->start->name;
4452 else
4453 i.rep_prefix = current_templates->start->name;
4454 break;
4455 default:
4456 break;
4457 }
4458 }
4459 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4460 token_start = ++l;
4461 }
4462 else
4463 break;
4464 }
4465
4466 if (!current_templates)
4467 {
4468 /* Check if we should swap operand or force 32bit displacement in
4469 encoding. */
4470 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4471 i.dir_encoding = dir_encoding_store;
4472 else if (mnem_p - 3 == dot_p
4473 && dot_p[1] == 'd'
4474 && dot_p[2] == '8')
4475 i.disp_encoding = disp_encoding_8bit;
4476 else if (mnem_p - 4 == dot_p
4477 && dot_p[1] == 'd'
4478 && dot_p[2] == '3'
4479 && dot_p[3] == '2')
4480 i.disp_encoding = disp_encoding_32bit;
4481 else
4482 goto check_suffix;
4483 mnem_p = dot_p;
4484 *dot_p = '\0';
4485 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4486 }
4487
4488 if (!current_templates)
4489 {
4490 check_suffix:
4491 /* See if we can get a match by trimming off a suffix. */
4492 switch (mnem_p[-1])
4493 {
4494 case WORD_MNEM_SUFFIX:
4495 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4496 i.suffix = SHORT_MNEM_SUFFIX;
4497 else
4498 /* Fall through. */
4499 case BYTE_MNEM_SUFFIX:
4500 case QWORD_MNEM_SUFFIX:
4501 i.suffix = mnem_p[-1];
4502 mnem_p[-1] = '\0';
4503 current_templates = (const templates *) hash_find (op_hash,
4504 mnemonic);
4505 break;
4506 case SHORT_MNEM_SUFFIX:
4507 case LONG_MNEM_SUFFIX:
4508 if (!intel_syntax)
4509 {
4510 i.suffix = mnem_p[-1];
4511 mnem_p[-1] = '\0';
4512 current_templates = (const templates *) hash_find (op_hash,
4513 mnemonic);
4514 }
4515 break;
4516
4517 /* Intel Syntax. */
4518 case 'd':
4519 if (intel_syntax)
4520 {
4521 if (intel_float_operand (mnemonic) == 1)
4522 i.suffix = SHORT_MNEM_SUFFIX;
4523 else
4524 i.suffix = LONG_MNEM_SUFFIX;
4525 mnem_p[-1] = '\0';
4526 current_templates = (const templates *) hash_find (op_hash,
4527 mnemonic);
4528 }
4529 break;
4530 }
4531 if (!current_templates)
4532 {
4533 as_bad (_("no such instruction: `%s'"), token_start);
4534 return NULL;
4535 }
4536 }
4537
4538 if (current_templates->start->opcode_modifier.jump
4539 || current_templates->start->opcode_modifier.jumpbyte)
4540 {
4541 /* Check for a branch hint. We allow ",pt" and ",pn" for
4542 predict taken and predict not taken respectively.
4543 I'm not sure that branch hints actually do anything on loop
4544 and jcxz insns (JumpByte) for current Pentium4 chips. They
4545 may work in the future and it doesn't hurt to accept them
4546 now. */
4547 if (l[0] == ',' && l[1] == 'p')
4548 {
4549 if (l[2] == 't')
4550 {
4551 if (!add_prefix (DS_PREFIX_OPCODE))
4552 return NULL;
4553 l += 3;
4554 }
4555 else if (l[2] == 'n')
4556 {
4557 if (!add_prefix (CS_PREFIX_OPCODE))
4558 return NULL;
4559 l += 3;
4560 }
4561 }
4562 }
4563 /* Any other comma loses. */
4564 if (*l == ',')
4565 {
4566 as_bad (_("invalid character %s in mnemonic"),
4567 output_invalid (*l));
4568 return NULL;
4569 }
4570
4571 /* Check if instruction is supported on specified architecture. */
4572 supported = 0;
4573 for (t = current_templates->start; t < current_templates->end; ++t)
4574 {
4575 supported |= cpu_flags_match (t);
4576 if (supported == CPU_FLAGS_PERFECT_MATCH)
4577 {
4578 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4579 as_warn (_("use .code16 to ensure correct addressing mode"));
4580
4581 return l;
4582 }
4583 }
4584
4585 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4586 as_bad (flag_code == CODE_64BIT
4587 ? _("`%s' is not supported in 64-bit mode")
4588 : _("`%s' is only supported in 64-bit mode"),
4589 current_templates->start->name);
4590 else
4591 as_bad (_("`%s' is not supported on `%s%s'"),
4592 current_templates->start->name,
4593 cpu_arch_name ? cpu_arch_name : default_arch,
4594 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4595
4596 return NULL;
4597 }
4598
4599 static char *
4600 parse_operands (char *l, const char *mnemonic)
4601 {
4602 char *token_start;
4603
4604 /* 1 if operand is pending after ','. */
4605 unsigned int expecting_operand = 0;
4606
4607 /* Non-zero if operand parens not balanced. */
4608 unsigned int paren_not_balanced;
4609
4610 while (*l != END_OF_INSN)
4611 {
4612 /* Skip optional white space before operand. */
4613 if (is_space_char (*l))
4614 ++l;
4615 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4616 {
4617 as_bad (_("invalid character %s before operand %d"),
4618 output_invalid (*l),
4619 i.operands + 1);
4620 return NULL;
4621 }
4622 token_start = l; /* After white space. */
4623 paren_not_balanced = 0;
4624 while (paren_not_balanced || *l != ',')
4625 {
4626 if (*l == END_OF_INSN)
4627 {
4628 if (paren_not_balanced)
4629 {
4630 if (!intel_syntax)
4631 as_bad (_("unbalanced parenthesis in operand %d."),
4632 i.operands + 1);
4633 else
4634 as_bad (_("unbalanced brackets in operand %d."),
4635 i.operands + 1);
4636 return NULL;
4637 }
4638 else
4639 break; /* we are done */
4640 }
4641 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4642 {
4643 as_bad (_("invalid character %s in operand %d"),
4644 output_invalid (*l),
4645 i.operands + 1);
4646 return NULL;
4647 }
4648 if (!intel_syntax)
4649 {
4650 if (*l == '(')
4651 ++paren_not_balanced;
4652 if (*l == ')')
4653 --paren_not_balanced;
4654 }
4655 else
4656 {
4657 if (*l == '[')
4658 ++paren_not_balanced;
4659 if (*l == ']')
4660 --paren_not_balanced;
4661 }
4662 l++;
4663 }
4664 if (l != token_start)
4665 { /* Yes, we've read in another operand. */
4666 unsigned int operand_ok;
4667 this_operand = i.operands++;
4668 if (i.operands > MAX_OPERANDS)
4669 {
4670 as_bad (_("spurious operands; (%d operands/instruction max)"),
4671 MAX_OPERANDS);
4672 return NULL;
4673 }
4674 i.types[this_operand].bitfield.unspecified = 1;
4675 /* Now parse operand adding info to 'i' as we go along. */
4676 END_STRING_AND_SAVE (l);
4677
4678 if (intel_syntax)
4679 operand_ok =
4680 i386_intel_operand (token_start,
4681 intel_float_operand (mnemonic));
4682 else
4683 operand_ok = i386_att_operand (token_start);
4684
4685 RESTORE_END_STRING (l);
4686 if (!operand_ok)
4687 return NULL;
4688 }
4689 else
4690 {
4691 if (expecting_operand)
4692 {
4693 expecting_operand_after_comma:
4694 as_bad (_("expecting operand after ','; got nothing"));
4695 return NULL;
4696 }
4697 if (*l == ',')
4698 {
4699 as_bad (_("expecting operand before ','; got nothing"));
4700 return NULL;
4701 }
4702 }
4703
4704 /* Now *l must be either ',' or END_OF_INSN. */
4705 if (*l == ',')
4706 {
4707 if (*++l == END_OF_INSN)
4708 {
4709 /* Just skip it, if it's \n complain. */
4710 goto expecting_operand_after_comma;
4711 }
4712 expecting_operand = 1;
4713 }
4714 }
4715 return l;
4716 }
4717
4718 static void
4719 swap_2_operands (int xchg1, int xchg2)
4720 {
4721 union i386_op temp_op;
4722 i386_operand_type temp_type;
4723 enum bfd_reloc_code_real temp_reloc;
4724
4725 temp_type = i.types[xchg2];
4726 i.types[xchg2] = i.types[xchg1];
4727 i.types[xchg1] = temp_type;
4728 temp_op = i.op[xchg2];
4729 i.op[xchg2] = i.op[xchg1];
4730 i.op[xchg1] = temp_op;
4731 temp_reloc = i.reloc[xchg2];
4732 i.reloc[xchg2] = i.reloc[xchg1];
4733 i.reloc[xchg1] = temp_reloc;
4734
4735 if (i.mask)
4736 {
4737 if (i.mask->operand == xchg1)
4738 i.mask->operand = xchg2;
4739 else if (i.mask->operand == xchg2)
4740 i.mask->operand = xchg1;
4741 }
4742 if (i.broadcast)
4743 {
4744 if (i.broadcast->operand == xchg1)
4745 i.broadcast->operand = xchg2;
4746 else if (i.broadcast->operand == xchg2)
4747 i.broadcast->operand = xchg1;
4748 }
4749 if (i.rounding)
4750 {
4751 if (i.rounding->operand == xchg1)
4752 i.rounding->operand = xchg2;
4753 else if (i.rounding->operand == xchg2)
4754 i.rounding->operand = xchg1;
4755 }
4756 }
4757
4758 static void
4759 swap_operands (void)
4760 {
4761 switch (i.operands)
4762 {
4763 case 5:
4764 case 4:
4765 swap_2_operands (1, i.operands - 2);
4766 /* Fall through. */
4767 case 3:
4768 case 2:
4769 swap_2_operands (0, i.operands - 1);
4770 break;
4771 default:
4772 abort ();
4773 }
4774
4775 if (i.mem_operands == 2)
4776 {
4777 const seg_entry *temp_seg;
4778 temp_seg = i.seg[0];
4779 i.seg[0] = i.seg[1];
4780 i.seg[1] = temp_seg;
4781 }
4782 }
4783
4784 /* Try to ensure constant immediates are represented in the smallest
4785 opcode possible. */
4786 static void
4787 optimize_imm (void)
4788 {
4789 char guess_suffix = 0;
4790 int op;
4791
4792 if (i.suffix)
4793 guess_suffix = i.suffix;
4794 else if (i.reg_operands)
4795 {
4796 /* Figure out a suffix from the last register operand specified.
4797 We can't do this properly yet, ie. excluding InOutPortReg,
4798 but the following works for instructions with immediates.
4799 In any case, we can't set i.suffix yet. */
4800 for (op = i.operands; --op >= 0;)
4801 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4802 {
4803 guess_suffix = BYTE_MNEM_SUFFIX;
4804 break;
4805 }
4806 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4807 {
4808 guess_suffix = WORD_MNEM_SUFFIX;
4809 break;
4810 }
4811 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4812 {
4813 guess_suffix = LONG_MNEM_SUFFIX;
4814 break;
4815 }
4816 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4817 {
4818 guess_suffix = QWORD_MNEM_SUFFIX;
4819 break;
4820 }
4821 }
4822 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4823 guess_suffix = WORD_MNEM_SUFFIX;
4824
4825 for (op = i.operands; --op >= 0;)
4826 if (operand_type_check (i.types[op], imm))
4827 {
4828 switch (i.op[op].imms->X_op)
4829 {
4830 case O_constant:
4831 /* If a suffix is given, this operand may be shortened. */
4832 switch (guess_suffix)
4833 {
4834 case LONG_MNEM_SUFFIX:
4835 i.types[op].bitfield.imm32 = 1;
4836 i.types[op].bitfield.imm64 = 1;
4837 break;
4838 case WORD_MNEM_SUFFIX:
4839 i.types[op].bitfield.imm16 = 1;
4840 i.types[op].bitfield.imm32 = 1;
4841 i.types[op].bitfield.imm32s = 1;
4842 i.types[op].bitfield.imm64 = 1;
4843 break;
4844 case BYTE_MNEM_SUFFIX:
4845 i.types[op].bitfield.imm8 = 1;
4846 i.types[op].bitfield.imm8s = 1;
4847 i.types[op].bitfield.imm16 = 1;
4848 i.types[op].bitfield.imm32 = 1;
4849 i.types[op].bitfield.imm32s = 1;
4850 i.types[op].bitfield.imm64 = 1;
4851 break;
4852 }
4853
4854 /* If this operand is at most 16 bits, convert it
4855 to a signed 16 bit number before trying to see
4856 whether it will fit in an even smaller size.
4857 This allows a 16-bit operand such as $0xffe0 to
4858 be recognised as within Imm8S range. */
4859 if ((i.types[op].bitfield.imm16)
4860 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4861 {
4862 i.op[op].imms->X_add_number =
4863 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4864 }
4865 #ifdef BFD64
4866 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4867 if ((i.types[op].bitfield.imm32)
4868 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4869 == 0))
4870 {
4871 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4872 ^ ((offsetT) 1 << 31))
4873 - ((offsetT) 1 << 31));
4874 }
4875 #endif
4876 i.types[op]
4877 = operand_type_or (i.types[op],
4878 smallest_imm_type (i.op[op].imms->X_add_number));
4879
4880 /* We must avoid matching of Imm32 templates when 64bit
4881 only immediate is available. */
4882 if (guess_suffix == QWORD_MNEM_SUFFIX)
4883 i.types[op].bitfield.imm32 = 0;
4884 break;
4885
4886 case O_absent:
4887 case O_register:
4888 abort ();
4889
4890 /* Symbols and expressions. */
4891 default:
4892 /* Convert symbolic operand to proper sizes for matching, but don't
4893 prevent matching a set of insns that only supports sizes other
4894 than those matching the insn suffix. */
4895 {
4896 i386_operand_type mask, allowed;
4897 const insn_template *t;
4898
4899 operand_type_set (&mask, 0);
4900 operand_type_set (&allowed, 0);
4901
4902 for (t = current_templates->start;
4903 t < current_templates->end;
4904 ++t)
4905 allowed = operand_type_or (allowed,
4906 t->operand_types[op]);
4907 switch (guess_suffix)
4908 {
4909 case QWORD_MNEM_SUFFIX:
4910 mask.bitfield.imm64 = 1;
4911 mask.bitfield.imm32s = 1;
4912 break;
4913 case LONG_MNEM_SUFFIX:
4914 mask.bitfield.imm32 = 1;
4915 break;
4916 case WORD_MNEM_SUFFIX:
4917 mask.bitfield.imm16 = 1;
4918 break;
4919 case BYTE_MNEM_SUFFIX:
4920 mask.bitfield.imm8 = 1;
4921 break;
4922 default:
4923 break;
4924 }
4925 allowed = operand_type_and (mask, allowed);
4926 if (!operand_type_all_zero (&allowed))
4927 i.types[op] = operand_type_and (i.types[op], mask);
4928 }
4929 break;
4930 }
4931 }
4932 }
4933
4934 /* Try to use the smallest displacement type too. */
4935 static void
4936 optimize_disp (void)
4937 {
4938 int op;
4939
4940 for (op = i.operands; --op >= 0;)
4941 if (operand_type_check (i.types[op], disp))
4942 {
4943 if (i.op[op].disps->X_op == O_constant)
4944 {
4945 offsetT op_disp = i.op[op].disps->X_add_number;
4946
4947 if (i.types[op].bitfield.disp16
4948 && (op_disp & ~(offsetT) 0xffff) == 0)
4949 {
4950 /* If this operand is at most 16 bits, convert
4951 to a signed 16 bit number and don't use 64bit
4952 displacement. */
4953 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4954 i.types[op].bitfield.disp64 = 0;
4955 }
4956 #ifdef BFD64
4957 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4958 if (i.types[op].bitfield.disp32
4959 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4960 {
4961 /* If this operand is at most 32 bits, convert
4962 to a signed 32 bit number and don't use 64bit
4963 displacement. */
4964 op_disp &= (((offsetT) 2 << 31) - 1);
4965 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4966 i.types[op].bitfield.disp64 = 0;
4967 }
4968 #endif
4969 if (!op_disp && i.types[op].bitfield.baseindex)
4970 {
4971 i.types[op].bitfield.disp8 = 0;
4972 i.types[op].bitfield.disp16 = 0;
4973 i.types[op].bitfield.disp32 = 0;
4974 i.types[op].bitfield.disp32s = 0;
4975 i.types[op].bitfield.disp64 = 0;
4976 i.op[op].disps = 0;
4977 i.disp_operands--;
4978 }
4979 else if (flag_code == CODE_64BIT)
4980 {
4981 if (fits_in_signed_long (op_disp))
4982 {
4983 i.types[op].bitfield.disp64 = 0;
4984 i.types[op].bitfield.disp32s = 1;
4985 }
4986 if (i.prefix[ADDR_PREFIX]
4987 && fits_in_unsigned_long (op_disp))
4988 i.types[op].bitfield.disp32 = 1;
4989 }
4990 if ((i.types[op].bitfield.disp32
4991 || i.types[op].bitfield.disp32s
4992 || i.types[op].bitfield.disp16)
4993 && fits_in_disp8 (op_disp))
4994 i.types[op].bitfield.disp8 = 1;
4995 }
4996 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4997 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4998 {
4999 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5000 i.op[op].disps, 0, i.reloc[op]);
5001 i.types[op].bitfield.disp8 = 0;
5002 i.types[op].bitfield.disp16 = 0;
5003 i.types[op].bitfield.disp32 = 0;
5004 i.types[op].bitfield.disp32s = 0;
5005 i.types[op].bitfield.disp64 = 0;
5006 }
5007 else
5008 /* We only support 64bit displacement on constants. */
5009 i.types[op].bitfield.disp64 = 0;
5010 }
5011 }
5012
5013 /* Return 1 if there is a match in broadcast bytes between operand
5014 GIVEN and instruction template T. */
5015
5016 static INLINE int
5017 match_broadcast_size (const insn_template *t, unsigned int given)
5018 {
5019 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5020 && i.types[given].bitfield.byte)
5021 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5022 && i.types[given].bitfield.word)
5023 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5024 && i.types[given].bitfield.dword)
5025 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5026 && i.types[given].bitfield.qword));
5027 }
5028
5029 /* Check if operands are valid for the instruction. */
5030
5031 static int
5032 check_VecOperands (const insn_template *t)
5033 {
5034 unsigned int op;
5035 i386_cpu_flags cpu;
5036 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5037
5038 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5039 any one operand are implicity requiring AVX512VL support if the actual
5040 operand size is YMMword or XMMword. Since this function runs after
5041 template matching, there's no need to check for YMMword/XMMword in
5042 the template. */
5043 cpu = cpu_flags_and (t->cpu_flags, avx512);
5044 if (!cpu_flags_all_zero (&cpu)
5045 && !t->cpu_flags.bitfield.cpuavx512vl
5046 && !cpu_arch_flags.bitfield.cpuavx512vl)
5047 {
5048 for (op = 0; op < t->operands; ++op)
5049 {
5050 if (t->operand_types[op].bitfield.zmmword
5051 && (i.types[op].bitfield.ymmword
5052 || i.types[op].bitfield.xmmword))
5053 {
5054 i.error = unsupported;
5055 return 1;
5056 }
5057 }
5058 }
5059
5060 /* Without VSIB byte, we can't have a vector register for index. */
5061 if (!t->opcode_modifier.vecsib
5062 && i.index_reg
5063 && (i.index_reg->reg_type.bitfield.xmmword
5064 || i.index_reg->reg_type.bitfield.ymmword
5065 || i.index_reg->reg_type.bitfield.zmmword))
5066 {
5067 i.error = unsupported_vector_index_register;
5068 return 1;
5069 }
5070
5071 /* Check if default mask is allowed. */
5072 if (t->opcode_modifier.nodefmask
5073 && (!i.mask || i.mask->mask->reg_num == 0))
5074 {
5075 i.error = no_default_mask;
5076 return 1;
5077 }
5078
5079 /* For VSIB byte, we need a vector register for index, and all vector
5080 registers must be distinct. */
5081 if (t->opcode_modifier.vecsib)
5082 {
5083 if (!i.index_reg
5084 || !((t->opcode_modifier.vecsib == VecSIB128
5085 && i.index_reg->reg_type.bitfield.xmmword)
5086 || (t->opcode_modifier.vecsib == VecSIB256
5087 && i.index_reg->reg_type.bitfield.ymmword)
5088 || (t->opcode_modifier.vecsib == VecSIB512
5089 && i.index_reg->reg_type.bitfield.zmmword)))
5090 {
5091 i.error = invalid_vsib_address;
5092 return 1;
5093 }
5094
5095 gas_assert (i.reg_operands == 2 || i.mask);
5096 if (i.reg_operands == 2 && !i.mask)
5097 {
5098 gas_assert (i.types[0].bitfield.regsimd);
5099 gas_assert (i.types[0].bitfield.xmmword
5100 || i.types[0].bitfield.ymmword);
5101 gas_assert (i.types[2].bitfield.regsimd);
5102 gas_assert (i.types[2].bitfield.xmmword
5103 || i.types[2].bitfield.ymmword);
5104 if (operand_check == check_none)
5105 return 0;
5106 if (register_number (i.op[0].regs)
5107 != register_number (i.index_reg)
5108 && register_number (i.op[2].regs)
5109 != register_number (i.index_reg)
5110 && register_number (i.op[0].regs)
5111 != register_number (i.op[2].regs))
5112 return 0;
5113 if (operand_check == check_error)
5114 {
5115 i.error = invalid_vector_register_set;
5116 return 1;
5117 }
5118 as_warn (_("mask, index, and destination registers should be distinct"));
5119 }
5120 else if (i.reg_operands == 1 && i.mask)
5121 {
5122 if (i.types[1].bitfield.regsimd
5123 && (i.types[1].bitfield.xmmword
5124 || i.types[1].bitfield.ymmword
5125 || i.types[1].bitfield.zmmword)
5126 && (register_number (i.op[1].regs)
5127 == register_number (i.index_reg)))
5128 {
5129 if (operand_check == check_error)
5130 {
5131 i.error = invalid_vector_register_set;
5132 return 1;
5133 }
5134 if (operand_check != check_none)
5135 as_warn (_("index and destination registers should be distinct"));
5136 }
5137 }
5138 }
5139
5140 /* Check if broadcast is supported by the instruction and is applied
5141 to the memory operand. */
5142 if (i.broadcast)
5143 {
5144 i386_operand_type type, overlap;
5145
5146 /* Check if specified broadcast is supported in this instruction,
5147 and its broadcast bytes match the memory operand. */
5148 op = i.broadcast->operand;
5149 if (!t->opcode_modifier.broadcast
5150 || !i.types[op].bitfield.mem
5151 || (!i.types[op].bitfield.unspecified
5152 && !match_broadcast_size (t, op)))
5153 {
5154 bad_broadcast:
5155 i.error = unsupported_broadcast;
5156 return 1;
5157 }
5158
5159 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5160 * i.broadcast->type);
5161 operand_type_set (&type, 0);
5162 switch (i.broadcast->bytes)
5163 {
5164 case 2:
5165 type.bitfield.word = 1;
5166 break;
5167 case 4:
5168 type.bitfield.dword = 1;
5169 break;
5170 case 8:
5171 type.bitfield.qword = 1;
5172 break;
5173 case 16:
5174 type.bitfield.xmmword = 1;
5175 break;
5176 case 32:
5177 type.bitfield.ymmword = 1;
5178 break;
5179 case 64:
5180 type.bitfield.zmmword = 1;
5181 break;
5182 default:
5183 goto bad_broadcast;
5184 }
5185
5186 overlap = operand_type_and (type, t->operand_types[op]);
5187 if (operand_type_all_zero (&overlap))
5188 goto bad_broadcast;
5189
5190 if (t->opcode_modifier.checkregsize)
5191 {
5192 unsigned int j;
5193
5194 type.bitfield.baseindex = 1;
5195 for (j = 0; j < i.operands; ++j)
5196 {
5197 if (j != op
5198 && !operand_type_register_match(i.types[j],
5199 t->operand_types[j],
5200 type,
5201 t->operand_types[op]))
5202 goto bad_broadcast;
5203 }
5204 }
5205 }
5206 /* If broadcast is supported in this instruction, we need to check if
5207 operand of one-element size isn't specified without broadcast. */
5208 else if (t->opcode_modifier.broadcast && i.mem_operands)
5209 {
5210 /* Find memory operand. */
5211 for (op = 0; op < i.operands; op++)
5212 if (operand_type_check (i.types[op], anymem))
5213 break;
5214 gas_assert (op < i.operands);
5215 /* Check size of the memory operand. */
5216 if (match_broadcast_size (t, op))
5217 {
5218 i.error = broadcast_needed;
5219 return 1;
5220 }
5221 }
5222 else
5223 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5224
5225 /* Check if requested masking is supported. */
5226 if (i.mask
5227 && (!t->opcode_modifier.masking
5228 || (i.mask->zeroing
5229 && t->opcode_modifier.masking == MERGING_MASKING)))
5230 {
5231 i.error = unsupported_masking;
5232 return 1;
5233 }
5234
5235 /* Check if masking is applied to dest operand. */
5236 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5237 {
5238 i.error = mask_not_on_destination;
5239 return 1;
5240 }
5241
5242 /* Check RC/SAE. */
5243 if (i.rounding)
5244 {
5245 if ((i.rounding->type != saeonly
5246 && !t->opcode_modifier.staticrounding)
5247 || (i.rounding->type == saeonly
5248 && (t->opcode_modifier.staticrounding
5249 || !t->opcode_modifier.sae)))
5250 {
5251 i.error = unsupported_rc_sae;
5252 return 1;
5253 }
5254 /* If the instruction has several immediate operands and one of
5255 them is rounding, the rounding operand should be the last
5256 immediate operand. */
5257 if (i.imm_operands > 1
5258 && i.rounding->operand != (int) (i.imm_operands - 1))
5259 {
5260 i.error = rc_sae_operand_not_last_imm;
5261 return 1;
5262 }
5263 }
5264
5265 /* Check vector Disp8 operand. */
5266 if (t->opcode_modifier.disp8memshift
5267 && i.disp_encoding != disp_encoding_32bit)
5268 {
5269 if (i.broadcast)
5270 i.memshift = t->opcode_modifier.broadcast - 1;
5271 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5272 i.memshift = t->opcode_modifier.disp8memshift;
5273 else
5274 {
5275 const i386_operand_type *type = NULL;
5276
5277 i.memshift = 0;
5278 for (op = 0; op < i.operands; op++)
5279 if (operand_type_check (i.types[op], anymem))
5280 {
5281 if (t->opcode_modifier.evex == EVEXLIG)
5282 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5283 else if (t->operand_types[op].bitfield.xmmword
5284 + t->operand_types[op].bitfield.ymmword
5285 + t->operand_types[op].bitfield.zmmword <= 1)
5286 type = &t->operand_types[op];
5287 else if (!i.types[op].bitfield.unspecified)
5288 type = &i.types[op];
5289 }
5290 else if (i.types[op].bitfield.regsimd
5291 && t->opcode_modifier.evex != EVEXLIG)
5292 {
5293 if (i.types[op].bitfield.zmmword)
5294 i.memshift = 6;
5295 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5296 i.memshift = 5;
5297 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5298 i.memshift = 4;
5299 }
5300
5301 if (type)
5302 {
5303 if (type->bitfield.zmmword)
5304 i.memshift = 6;
5305 else if (type->bitfield.ymmword)
5306 i.memshift = 5;
5307 else if (type->bitfield.xmmword)
5308 i.memshift = 4;
5309 }
5310
5311 /* For the check in fits_in_disp8(). */
5312 if (i.memshift == 0)
5313 i.memshift = -1;
5314 }
5315
5316 for (op = 0; op < i.operands; op++)
5317 if (operand_type_check (i.types[op], disp)
5318 && i.op[op].disps->X_op == O_constant)
5319 {
5320 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5321 {
5322 i.types[op].bitfield.disp8 = 1;
5323 return 0;
5324 }
5325 i.types[op].bitfield.disp8 = 0;
5326 }
5327 }
5328
5329 i.memshift = 0;
5330
5331 return 0;
5332 }
5333
5334 /* Check if operands are valid for the instruction. Update VEX
5335 operand types. */
5336
5337 static int
5338 VEX_check_operands (const insn_template *t)
5339 {
5340 if (i.vec_encoding == vex_encoding_evex)
5341 {
5342 /* This instruction must be encoded with EVEX prefix. */
5343 if (!is_evex_encoding (t))
5344 {
5345 i.error = unsupported;
5346 return 1;
5347 }
5348 return 0;
5349 }
5350
5351 if (!t->opcode_modifier.vex)
5352 {
5353 /* This instruction template doesn't have VEX prefix. */
5354 if (i.vec_encoding != vex_encoding_default)
5355 {
5356 i.error = unsupported;
5357 return 1;
5358 }
5359 return 0;
5360 }
5361
5362 /* Only check VEX_Imm4, which must be the first operand. */
5363 if (t->operand_types[0].bitfield.vec_imm4)
5364 {
5365 if (i.op[0].imms->X_op != O_constant
5366 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5367 {
5368 i.error = bad_imm4;
5369 return 1;
5370 }
5371
5372 /* Turn off Imm8 so that update_imm won't complain. */
5373 i.types[0] = vec_imm4;
5374 }
5375
5376 return 0;
5377 }
5378
5379 static const insn_template *
5380 match_template (char mnem_suffix)
5381 {
5382 /* Points to template once we've found it. */
5383 const insn_template *t;
5384 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5385 i386_operand_type overlap4;
5386 unsigned int found_reverse_match;
5387 i386_opcode_modifier suffix_check, mnemsuf_check;
5388 i386_operand_type operand_types [MAX_OPERANDS];
5389 int addr_prefix_disp;
5390 unsigned int j;
5391 unsigned int found_cpu_match, size_match;
5392 unsigned int check_register;
5393 enum i386_error specific_error = 0;
5394
5395 #if MAX_OPERANDS != 5
5396 # error "MAX_OPERANDS must be 5."
5397 #endif
5398
5399 found_reverse_match = 0;
5400 addr_prefix_disp = -1;
5401
5402 memset (&suffix_check, 0, sizeof (suffix_check));
5403 if (intel_syntax && i.broadcast)
5404 /* nothing */;
5405 else if (i.suffix == BYTE_MNEM_SUFFIX)
5406 suffix_check.no_bsuf = 1;
5407 else if (i.suffix == WORD_MNEM_SUFFIX)
5408 suffix_check.no_wsuf = 1;
5409 else if (i.suffix == SHORT_MNEM_SUFFIX)
5410 suffix_check.no_ssuf = 1;
5411 else if (i.suffix == LONG_MNEM_SUFFIX)
5412 suffix_check.no_lsuf = 1;
5413 else if (i.suffix == QWORD_MNEM_SUFFIX)
5414 suffix_check.no_qsuf = 1;
5415 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5416 suffix_check.no_ldsuf = 1;
5417
5418 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5419 if (intel_syntax)
5420 {
5421 switch (mnem_suffix)
5422 {
5423 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5424 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5425 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5426 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5427 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5428 }
5429 }
5430
5431 /* Must have right number of operands. */
5432 i.error = number_of_operands_mismatch;
5433
5434 for (t = current_templates->start; t < current_templates->end; t++)
5435 {
5436 addr_prefix_disp = -1;
5437
5438 if (i.operands != t->operands)
5439 continue;
5440
5441 /* Check processor support. */
5442 i.error = unsupported;
5443 found_cpu_match = (cpu_flags_match (t)
5444 == CPU_FLAGS_PERFECT_MATCH);
5445 if (!found_cpu_match)
5446 continue;
5447
5448 /* Check AT&T mnemonic. */
5449 i.error = unsupported_with_intel_mnemonic;
5450 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5451 continue;
5452
5453 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5454 i.error = unsupported_syntax;
5455 if ((intel_syntax && t->opcode_modifier.attsyntax)
5456 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5457 || (intel64 && t->opcode_modifier.amd64)
5458 || (!intel64 && t->opcode_modifier.intel64))
5459 continue;
5460
5461 /* Check the suffix, except for some instructions in intel mode. */
5462 i.error = invalid_instruction_suffix;
5463 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5464 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5465 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5466 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5467 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5468 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5469 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5470 continue;
5471 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5472 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5473 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5474 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5475 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5476 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5477 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5478 continue;
5479
5480 size_match = operand_size_match (t);
5481 if (!size_match)
5482 continue;
5483
5484 for (j = 0; j < MAX_OPERANDS; j++)
5485 operand_types[j] = t->operand_types[j];
5486
5487 /* In general, don't allow 64-bit operands in 32-bit mode. */
5488 if (i.suffix == QWORD_MNEM_SUFFIX
5489 && flag_code != CODE_64BIT
5490 && (intel_syntax
5491 ? (!t->opcode_modifier.ignoresize
5492 && !t->opcode_modifier.broadcast
5493 && !intel_float_operand (t->name))
5494 : intel_float_operand (t->name) != 2)
5495 && ((!operand_types[0].bitfield.regmmx
5496 && !operand_types[0].bitfield.regsimd)
5497 || (!operand_types[t->operands > 1].bitfield.regmmx
5498 && !operand_types[t->operands > 1].bitfield.regsimd))
5499 && (t->base_opcode != 0x0fc7
5500 || t->extension_opcode != 1 /* cmpxchg8b */))
5501 continue;
5502
5503 /* In general, don't allow 32-bit operands on pre-386. */
5504 else if (i.suffix == LONG_MNEM_SUFFIX
5505 && !cpu_arch_flags.bitfield.cpui386
5506 && (intel_syntax
5507 ? (!t->opcode_modifier.ignoresize
5508 && !intel_float_operand (t->name))
5509 : intel_float_operand (t->name) != 2)
5510 && ((!operand_types[0].bitfield.regmmx
5511 && !operand_types[0].bitfield.regsimd)
5512 || (!operand_types[t->operands > 1].bitfield.regmmx
5513 && !operand_types[t->operands > 1].bitfield.regsimd)))
5514 continue;
5515
5516 /* Do not verify operands when there are none. */
5517 else
5518 {
5519 if (!t->operands)
5520 /* We've found a match; break out of loop. */
5521 break;
5522 }
5523
5524 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5525 into Disp32/Disp16/Disp32 operand. */
5526 if (i.prefix[ADDR_PREFIX] != 0)
5527 {
5528 /* There should be only one Disp operand. */
5529 switch (flag_code)
5530 {
5531 case CODE_16BIT:
5532 for (j = 0; j < MAX_OPERANDS; j++)
5533 {
5534 if (operand_types[j].bitfield.disp16)
5535 {
5536 addr_prefix_disp = j;
5537 operand_types[j].bitfield.disp32 = 1;
5538 operand_types[j].bitfield.disp16 = 0;
5539 break;
5540 }
5541 }
5542 break;
5543 case CODE_32BIT:
5544 for (j = 0; j < MAX_OPERANDS; j++)
5545 {
5546 if (operand_types[j].bitfield.disp32)
5547 {
5548 addr_prefix_disp = j;
5549 operand_types[j].bitfield.disp32 = 0;
5550 operand_types[j].bitfield.disp16 = 1;
5551 break;
5552 }
5553 }
5554 break;
5555 case CODE_64BIT:
5556 for (j = 0; j < MAX_OPERANDS; j++)
5557 {
5558 if (operand_types[j].bitfield.disp64)
5559 {
5560 addr_prefix_disp = j;
5561 operand_types[j].bitfield.disp64 = 0;
5562 operand_types[j].bitfield.disp32 = 1;
5563 break;
5564 }
5565 }
5566 break;
5567 }
5568 }
5569
5570 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5571 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5572 continue;
5573
5574 /* We check register size if needed. */
5575 if (t->opcode_modifier.checkregsize)
5576 {
5577 check_register = (1 << t->operands) - 1;
5578 if (i.broadcast)
5579 check_register &= ~(1 << i.broadcast->operand);
5580 }
5581 else
5582 check_register = 0;
5583
5584 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5585 switch (t->operands)
5586 {
5587 case 1:
5588 if (!operand_type_match (overlap0, i.types[0]))
5589 continue;
5590 break;
5591 case 2:
5592 /* xchg %eax, %eax is a special case. It is an alias for nop
5593 only in 32bit mode and we can use opcode 0x90. In 64bit
5594 mode, we can't use 0x90 for xchg %eax, %eax since it should
5595 zero-extend %eax to %rax. */
5596 if (flag_code == CODE_64BIT
5597 && t->base_opcode == 0x90
5598 && operand_type_equal (&i.types [0], &acc32)
5599 && operand_type_equal (&i.types [1], &acc32))
5600 continue;
5601 /* xrelease mov %eax, <disp> is another special case. It must not
5602 match the accumulator-only encoding of mov. */
5603 if (flag_code != CODE_64BIT
5604 && i.hle_prefix
5605 && t->base_opcode == 0xa0
5606 && i.types[0].bitfield.acc
5607 && operand_type_check (i.types[1], anymem))
5608 continue;
5609 if (!(size_match & MATCH_STRAIGHT))
5610 goto check_reverse;
5611 /* If we want store form, we reverse direction of operands. */
5612 if (i.dir_encoding == dir_encoding_store
5613 && t->opcode_modifier.d)
5614 goto check_reverse;
5615 /* Fall through. */
5616
5617 case 3:
5618 /* If we want store form, we skip the current load. */
5619 if (i.dir_encoding == dir_encoding_store
5620 && i.mem_operands == 0
5621 && t->opcode_modifier.load)
5622 continue;
5623 /* Fall through. */
5624 case 4:
5625 case 5:
5626 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5627 if (!operand_type_match (overlap0, i.types[0])
5628 || !operand_type_match (overlap1, i.types[1])
5629 || ((check_register & 3) == 3
5630 && !operand_type_register_match (i.types[0],
5631 operand_types[0],
5632 i.types[1],
5633 operand_types[1])))
5634 {
5635 /* Check if other direction is valid ... */
5636 if (!t->opcode_modifier.d)
5637 continue;
5638
5639 check_reverse:
5640 if (!(size_match & MATCH_REVERSE))
5641 continue;
5642 /* Try reversing direction of operands. */
5643 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5644 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5645 if (!operand_type_match (overlap0, i.types[0])
5646 || !operand_type_match (overlap1, i.types[1])
5647 || (check_register
5648 && !operand_type_register_match (i.types[0],
5649 operand_types[1],
5650 i.types[1],
5651 operand_types[0])))
5652 {
5653 /* Does not match either direction. */
5654 continue;
5655 }
5656 /* found_reverse_match holds which of D or FloatR
5657 we've found. */
5658 if (!t->opcode_modifier.d)
5659 found_reverse_match = 0;
5660 else if (operand_types[0].bitfield.tbyte)
5661 found_reverse_match = Opcode_FloatD;
5662 else
5663 found_reverse_match = Opcode_D;
5664 if (t->opcode_modifier.floatr)
5665 found_reverse_match |= Opcode_FloatR;
5666 }
5667 else
5668 {
5669 /* Found a forward 2 operand match here. */
5670 switch (t->operands)
5671 {
5672 case 5:
5673 overlap4 = operand_type_and (i.types[4],
5674 operand_types[4]);
5675 /* Fall through. */
5676 case 4:
5677 overlap3 = operand_type_and (i.types[3],
5678 operand_types[3]);
5679 /* Fall through. */
5680 case 3:
5681 overlap2 = operand_type_and (i.types[2],
5682 operand_types[2]);
5683 break;
5684 }
5685
5686 switch (t->operands)
5687 {
5688 case 5:
5689 if (!operand_type_match (overlap4, i.types[4])
5690 || !operand_type_register_match (i.types[3],
5691 operand_types[3],
5692 i.types[4],
5693 operand_types[4]))
5694 continue;
5695 /* Fall through. */
5696 case 4:
5697 if (!operand_type_match (overlap3, i.types[3])
5698 || ((check_register & 0xa) == 0xa
5699 && !operand_type_register_match (i.types[1],
5700 operand_types[1],
5701 i.types[3],
5702 operand_types[3]))
5703 || ((check_register & 0xc) == 0xc
5704 && !operand_type_register_match (i.types[2],
5705 operand_types[2],
5706 i.types[3],
5707 operand_types[3])))
5708 continue;
5709 /* Fall through. */
5710 case 3:
5711 /* Here we make use of the fact that there are no
5712 reverse match 3 operand instructions. */
5713 if (!operand_type_match (overlap2, i.types[2])
5714 || ((check_register & 5) == 5
5715 && !operand_type_register_match (i.types[0],
5716 operand_types[0],
5717 i.types[2],
5718 operand_types[2]))
5719 || ((check_register & 6) == 6
5720 && !operand_type_register_match (i.types[1],
5721 operand_types[1],
5722 i.types[2],
5723 operand_types[2])))
5724 continue;
5725 break;
5726 }
5727 }
5728 /* Found either forward/reverse 2, 3 or 4 operand match here:
5729 slip through to break. */
5730 }
5731 if (!found_cpu_match)
5732 {
5733 found_reverse_match = 0;
5734 continue;
5735 }
5736
5737 /* Check if vector and VEX operands are valid. */
5738 if (check_VecOperands (t) || VEX_check_operands (t))
5739 {
5740 specific_error = i.error;
5741 continue;
5742 }
5743
5744 /* We've found a match; break out of loop. */
5745 break;
5746 }
5747
5748 if (t == current_templates->end)
5749 {
5750 /* We found no match. */
5751 const char *err_msg;
5752 switch (specific_error ? specific_error : i.error)
5753 {
5754 default:
5755 abort ();
5756 case operand_size_mismatch:
5757 err_msg = _("operand size mismatch");
5758 break;
5759 case operand_type_mismatch:
5760 err_msg = _("operand type mismatch");
5761 break;
5762 case register_type_mismatch:
5763 err_msg = _("register type mismatch");
5764 break;
5765 case number_of_operands_mismatch:
5766 err_msg = _("number of operands mismatch");
5767 break;
5768 case invalid_instruction_suffix:
5769 err_msg = _("invalid instruction suffix");
5770 break;
5771 case bad_imm4:
5772 err_msg = _("constant doesn't fit in 4 bits");
5773 break;
5774 case unsupported_with_intel_mnemonic:
5775 err_msg = _("unsupported with Intel mnemonic");
5776 break;
5777 case unsupported_syntax:
5778 err_msg = _("unsupported syntax");
5779 break;
5780 case unsupported:
5781 as_bad (_("unsupported instruction `%s'"),
5782 current_templates->start->name);
5783 return NULL;
5784 case invalid_vsib_address:
5785 err_msg = _("invalid VSIB address");
5786 break;
5787 case invalid_vector_register_set:
5788 err_msg = _("mask, index, and destination registers must be distinct");
5789 break;
5790 case unsupported_vector_index_register:
5791 err_msg = _("unsupported vector index register");
5792 break;
5793 case unsupported_broadcast:
5794 err_msg = _("unsupported broadcast");
5795 break;
5796 case broadcast_needed:
5797 err_msg = _("broadcast is needed for operand of such type");
5798 break;
5799 case unsupported_masking:
5800 err_msg = _("unsupported masking");
5801 break;
5802 case mask_not_on_destination:
5803 err_msg = _("mask not on destination operand");
5804 break;
5805 case no_default_mask:
5806 err_msg = _("default mask isn't allowed");
5807 break;
5808 case unsupported_rc_sae:
5809 err_msg = _("unsupported static rounding/sae");
5810 break;
5811 case rc_sae_operand_not_last_imm:
5812 if (intel_syntax)
5813 err_msg = _("RC/SAE operand must precede immediate operands");
5814 else
5815 err_msg = _("RC/SAE operand must follow immediate operands");
5816 break;
5817 case invalid_register_operand:
5818 err_msg = _("invalid register operand");
5819 break;
5820 }
5821 as_bad (_("%s for `%s'"), err_msg,
5822 current_templates->start->name);
5823 return NULL;
5824 }
5825
5826 if (!quiet_warnings)
5827 {
5828 if (!intel_syntax
5829 && (i.types[0].bitfield.jumpabsolute
5830 != operand_types[0].bitfield.jumpabsolute))
5831 {
5832 as_warn (_("indirect %s without `*'"), t->name);
5833 }
5834
5835 if (t->opcode_modifier.isprefix
5836 && t->opcode_modifier.ignoresize)
5837 {
5838 /* Warn them that a data or address size prefix doesn't
5839 affect assembly of the next line of code. */
5840 as_warn (_("stand-alone `%s' prefix"), t->name);
5841 }
5842 }
5843
5844 /* Copy the template we found. */
5845 i.tm = *t;
5846
5847 if (addr_prefix_disp != -1)
5848 i.tm.operand_types[addr_prefix_disp]
5849 = operand_types[addr_prefix_disp];
5850
5851 if (found_reverse_match)
5852 {
5853 /* If we found a reverse match we must alter the opcode
5854 direction bit. found_reverse_match holds bits to change
5855 (different for int & float insns). */
5856
5857 i.tm.base_opcode ^= found_reverse_match;
5858
5859 i.tm.operand_types[0] = operand_types[1];
5860 i.tm.operand_types[1] = operand_types[0];
5861 }
5862
5863 return t;
5864 }
5865
5866 static int
5867 check_string (void)
5868 {
5869 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5870 if (i.tm.operand_types[mem_op].bitfield.esseg)
5871 {
5872 if (i.seg[0] != NULL && i.seg[0] != &es)
5873 {
5874 as_bad (_("`%s' operand %d must use `%ses' segment"),
5875 i.tm.name,
5876 mem_op + 1,
5877 register_prefix);
5878 return 0;
5879 }
5880 /* There's only ever one segment override allowed per instruction.
5881 This instruction possibly has a legal segment override on the
5882 second operand, so copy the segment to where non-string
5883 instructions store it, allowing common code. */
5884 i.seg[0] = i.seg[1];
5885 }
5886 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5887 {
5888 if (i.seg[1] != NULL && i.seg[1] != &es)
5889 {
5890 as_bad (_("`%s' operand %d must use `%ses' segment"),
5891 i.tm.name,
5892 mem_op + 2,
5893 register_prefix);
5894 return 0;
5895 }
5896 }
5897 return 1;
5898 }
5899
5900 static int
5901 process_suffix (void)
5902 {
5903 /* If matched instruction specifies an explicit instruction mnemonic
5904 suffix, use it. */
5905 if (i.tm.opcode_modifier.size16)
5906 i.suffix = WORD_MNEM_SUFFIX;
5907 else if (i.tm.opcode_modifier.size32)
5908 i.suffix = LONG_MNEM_SUFFIX;
5909 else if (i.tm.opcode_modifier.size64)
5910 i.suffix = QWORD_MNEM_SUFFIX;
5911 else if (i.reg_operands)
5912 {
5913 /* If there's no instruction mnemonic suffix we try to invent one
5914 based on register operands. */
5915 if (!i.suffix)
5916 {
5917 /* We take i.suffix from the last register operand specified,
5918 Destination register type is more significant than source
5919 register type. crc32 in SSE4.2 prefers source register
5920 type. */
5921 if (i.tm.base_opcode == 0xf20f38f1)
5922 {
5923 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5924 i.suffix = WORD_MNEM_SUFFIX;
5925 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5926 i.suffix = LONG_MNEM_SUFFIX;
5927 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5928 i.suffix = QWORD_MNEM_SUFFIX;
5929 }
5930 else if (i.tm.base_opcode == 0xf20f38f0)
5931 {
5932 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5933 i.suffix = BYTE_MNEM_SUFFIX;
5934 }
5935
5936 if (!i.suffix)
5937 {
5938 int op;
5939
5940 if (i.tm.base_opcode == 0xf20f38f1
5941 || i.tm.base_opcode == 0xf20f38f0)
5942 {
5943 /* We have to know the operand size for crc32. */
5944 as_bad (_("ambiguous memory operand size for `%s`"),
5945 i.tm.name);
5946 return 0;
5947 }
5948
5949 for (op = i.operands; --op >= 0;)
5950 if (!i.tm.operand_types[op].bitfield.inoutportreg
5951 && !i.tm.operand_types[op].bitfield.shiftcount)
5952 {
5953 if (!i.types[op].bitfield.reg)
5954 continue;
5955 if (i.types[op].bitfield.byte)
5956 i.suffix = BYTE_MNEM_SUFFIX;
5957 else if (i.types[op].bitfield.word)
5958 i.suffix = WORD_MNEM_SUFFIX;
5959 else if (i.types[op].bitfield.dword)
5960 i.suffix = LONG_MNEM_SUFFIX;
5961 else if (i.types[op].bitfield.qword)
5962 i.suffix = QWORD_MNEM_SUFFIX;
5963 else
5964 continue;
5965 break;
5966 }
5967 }
5968 }
5969 else if (i.suffix == BYTE_MNEM_SUFFIX)
5970 {
5971 if (intel_syntax
5972 && i.tm.opcode_modifier.ignoresize
5973 && i.tm.opcode_modifier.no_bsuf)
5974 i.suffix = 0;
5975 else if (!check_byte_reg ())
5976 return 0;
5977 }
5978 else if (i.suffix == LONG_MNEM_SUFFIX)
5979 {
5980 if (intel_syntax
5981 && i.tm.opcode_modifier.ignoresize
5982 && i.tm.opcode_modifier.no_lsuf
5983 && !i.tm.opcode_modifier.todword
5984 && !i.tm.opcode_modifier.toqword)
5985 i.suffix = 0;
5986 else if (!check_long_reg ())
5987 return 0;
5988 }
5989 else if (i.suffix == QWORD_MNEM_SUFFIX)
5990 {
5991 if (intel_syntax
5992 && i.tm.opcode_modifier.ignoresize
5993 && i.tm.opcode_modifier.no_qsuf
5994 && !i.tm.opcode_modifier.todword
5995 && !i.tm.opcode_modifier.toqword)
5996 i.suffix = 0;
5997 else if (!check_qword_reg ())
5998 return 0;
5999 }
6000 else if (i.suffix == WORD_MNEM_SUFFIX)
6001 {
6002 if (intel_syntax
6003 && i.tm.opcode_modifier.ignoresize
6004 && i.tm.opcode_modifier.no_wsuf)
6005 i.suffix = 0;
6006 else if (!check_word_reg ())
6007 return 0;
6008 }
6009 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6010 /* Do nothing if the instruction is going to ignore the prefix. */
6011 ;
6012 else
6013 abort ();
6014 }
6015 else if (i.tm.opcode_modifier.defaultsize
6016 && !i.suffix
6017 /* exclude fldenv/frstor/fsave/fstenv */
6018 && i.tm.opcode_modifier.no_ssuf)
6019 {
6020 i.suffix = stackop_size;
6021 }
6022 else if (intel_syntax
6023 && !i.suffix
6024 && (i.tm.operand_types[0].bitfield.jumpabsolute
6025 || i.tm.opcode_modifier.jumpbyte
6026 || i.tm.opcode_modifier.jumpintersegment
6027 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6028 && i.tm.extension_opcode <= 3)))
6029 {
6030 switch (flag_code)
6031 {
6032 case CODE_64BIT:
6033 if (!i.tm.opcode_modifier.no_qsuf)
6034 {
6035 i.suffix = QWORD_MNEM_SUFFIX;
6036 break;
6037 }
6038 /* Fall through. */
6039 case CODE_32BIT:
6040 if (!i.tm.opcode_modifier.no_lsuf)
6041 i.suffix = LONG_MNEM_SUFFIX;
6042 break;
6043 case CODE_16BIT:
6044 if (!i.tm.opcode_modifier.no_wsuf)
6045 i.suffix = WORD_MNEM_SUFFIX;
6046 break;
6047 }
6048 }
6049
6050 if (!i.suffix)
6051 {
6052 if (!intel_syntax)
6053 {
6054 if (i.tm.opcode_modifier.w)
6055 {
6056 as_bad (_("no instruction mnemonic suffix given and "
6057 "no register operands; can't size instruction"));
6058 return 0;
6059 }
6060 }
6061 else
6062 {
6063 unsigned int suffixes;
6064
6065 suffixes = !i.tm.opcode_modifier.no_bsuf;
6066 if (!i.tm.opcode_modifier.no_wsuf)
6067 suffixes |= 1 << 1;
6068 if (!i.tm.opcode_modifier.no_lsuf)
6069 suffixes |= 1 << 2;
6070 if (!i.tm.opcode_modifier.no_ldsuf)
6071 suffixes |= 1 << 3;
6072 if (!i.tm.opcode_modifier.no_ssuf)
6073 suffixes |= 1 << 4;
6074 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6075 suffixes |= 1 << 5;
6076
6077 /* There are more than suffix matches. */
6078 if (i.tm.opcode_modifier.w
6079 || ((suffixes & (suffixes - 1))
6080 && !i.tm.opcode_modifier.defaultsize
6081 && !i.tm.opcode_modifier.ignoresize))
6082 {
6083 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6084 return 0;
6085 }
6086 }
6087 }
6088
6089 /* Change the opcode based on the operand size given by i.suffix. */
6090 switch (i.suffix)
6091 {
6092 /* Size floating point instruction. */
6093 case LONG_MNEM_SUFFIX:
6094 if (i.tm.opcode_modifier.floatmf)
6095 {
6096 i.tm.base_opcode ^= 4;
6097 break;
6098 }
6099 /* fall through */
6100 case WORD_MNEM_SUFFIX:
6101 case QWORD_MNEM_SUFFIX:
6102 /* It's not a byte, select word/dword operation. */
6103 if (i.tm.opcode_modifier.w)
6104 {
6105 if (i.tm.opcode_modifier.shortform)
6106 i.tm.base_opcode |= 8;
6107 else
6108 i.tm.base_opcode |= 1;
6109 }
6110 /* fall through */
6111 case SHORT_MNEM_SUFFIX:
6112 /* Now select between word & dword operations via the operand
6113 size prefix, except for instructions that will ignore this
6114 prefix anyway. */
6115 if (i.reg_operands > 0
6116 && i.types[0].bitfield.reg
6117 && i.tm.opcode_modifier.addrprefixopreg
6118 && (i.tm.opcode_modifier.immext
6119 || i.operands == 1))
6120 {
6121 /* The address size override prefix changes the size of the
6122 first operand. */
6123 if ((flag_code == CODE_32BIT
6124 && i.op[0].regs->reg_type.bitfield.word)
6125 || (flag_code != CODE_32BIT
6126 && i.op[0].regs->reg_type.bitfield.dword))
6127 if (!add_prefix (ADDR_PREFIX_OPCODE))
6128 return 0;
6129 }
6130 else if (i.suffix != QWORD_MNEM_SUFFIX
6131 && !i.tm.opcode_modifier.ignoresize
6132 && !i.tm.opcode_modifier.floatmf
6133 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6134 || (flag_code == CODE_64BIT
6135 && i.tm.opcode_modifier.jumpbyte)))
6136 {
6137 unsigned int prefix = DATA_PREFIX_OPCODE;
6138
6139 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6140 prefix = ADDR_PREFIX_OPCODE;
6141
6142 if (!add_prefix (prefix))
6143 return 0;
6144 }
6145
6146 /* Set mode64 for an operand. */
6147 if (i.suffix == QWORD_MNEM_SUFFIX
6148 && flag_code == CODE_64BIT
6149 && !i.tm.opcode_modifier.norex64
6150 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6151 need rex64. */
6152 && ! (i.operands == 2
6153 && i.tm.base_opcode == 0x90
6154 && i.tm.extension_opcode == None
6155 && operand_type_equal (&i.types [0], &acc64)
6156 && operand_type_equal (&i.types [1], &acc64)))
6157 i.rex |= REX_W;
6158
6159 break;
6160 }
6161
6162 if (i.reg_operands != 0
6163 && i.operands > 1
6164 && i.tm.opcode_modifier.addrprefixopreg
6165 && !i.tm.opcode_modifier.immext)
6166 {
6167 /* Check invalid register operand when the address size override
6168 prefix changes the size of register operands. */
6169 unsigned int op;
6170 enum { need_word, need_dword, need_qword } need;
6171
6172 if (flag_code == CODE_32BIT)
6173 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6174 else
6175 {
6176 if (i.prefix[ADDR_PREFIX])
6177 need = need_dword;
6178 else
6179 need = flag_code == CODE_64BIT ? need_qword : need_word;
6180 }
6181
6182 for (op = 0; op < i.operands; op++)
6183 if (i.types[op].bitfield.reg
6184 && ((need == need_word
6185 && !i.op[op].regs->reg_type.bitfield.word)
6186 || (need == need_dword
6187 && !i.op[op].regs->reg_type.bitfield.dword)
6188 || (need == need_qword
6189 && !i.op[op].regs->reg_type.bitfield.qword)))
6190 {
6191 as_bad (_("invalid register operand size for `%s'"),
6192 i.tm.name);
6193 return 0;
6194 }
6195 }
6196
6197 return 1;
6198 }
6199
6200 static int
6201 check_byte_reg (void)
6202 {
6203 int op;
6204
6205 for (op = i.operands; --op >= 0;)
6206 {
6207 /* Skip non-register operands. */
6208 if (!i.types[op].bitfield.reg)
6209 continue;
6210
6211 /* If this is an eight bit register, it's OK. If it's the 16 or
6212 32 bit version of an eight bit register, we will just use the
6213 low portion, and that's OK too. */
6214 if (i.types[op].bitfield.byte)
6215 continue;
6216
6217 /* I/O port address operands are OK too. */
6218 if (i.tm.operand_types[op].bitfield.inoutportreg)
6219 continue;
6220
6221 /* crc32 doesn't generate this warning. */
6222 if (i.tm.base_opcode == 0xf20f38f0)
6223 continue;
6224
6225 if ((i.types[op].bitfield.word
6226 || i.types[op].bitfield.dword
6227 || i.types[op].bitfield.qword)
6228 && i.op[op].regs->reg_num < 4
6229 /* Prohibit these changes in 64bit mode, since the lowering
6230 would be more complicated. */
6231 && flag_code != CODE_64BIT)
6232 {
6233 #if REGISTER_WARNINGS
6234 if (!quiet_warnings)
6235 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6236 register_prefix,
6237 (i.op[op].regs + (i.types[op].bitfield.word
6238 ? REGNAM_AL - REGNAM_AX
6239 : REGNAM_AL - REGNAM_EAX))->reg_name,
6240 register_prefix,
6241 i.op[op].regs->reg_name,
6242 i.suffix);
6243 #endif
6244 continue;
6245 }
6246 /* Any other register is bad. */
6247 if (i.types[op].bitfield.reg
6248 || i.types[op].bitfield.regmmx
6249 || i.types[op].bitfield.regsimd
6250 || i.types[op].bitfield.sreg2
6251 || i.types[op].bitfield.sreg3
6252 || i.types[op].bitfield.control
6253 || i.types[op].bitfield.debug
6254 || i.types[op].bitfield.test)
6255 {
6256 as_bad (_("`%s%s' not allowed with `%s%c'"),
6257 register_prefix,
6258 i.op[op].regs->reg_name,
6259 i.tm.name,
6260 i.suffix);
6261 return 0;
6262 }
6263 }
6264 return 1;
6265 }
6266
6267 static int
6268 check_long_reg (void)
6269 {
6270 int op;
6271
6272 for (op = i.operands; --op >= 0;)
6273 /* Skip non-register operands. */
6274 if (!i.types[op].bitfield.reg)
6275 continue;
6276 /* Reject eight bit registers, except where the template requires
6277 them. (eg. movzb) */
6278 else if (i.types[op].bitfield.byte
6279 && (i.tm.operand_types[op].bitfield.reg
6280 || i.tm.operand_types[op].bitfield.acc)
6281 && (i.tm.operand_types[op].bitfield.word
6282 || i.tm.operand_types[op].bitfield.dword))
6283 {
6284 as_bad (_("`%s%s' not allowed with `%s%c'"),
6285 register_prefix,
6286 i.op[op].regs->reg_name,
6287 i.tm.name,
6288 i.suffix);
6289 return 0;
6290 }
6291 /* Warn if the e prefix on a general reg is missing. */
6292 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6293 && i.types[op].bitfield.word
6294 && (i.tm.operand_types[op].bitfield.reg
6295 || i.tm.operand_types[op].bitfield.acc)
6296 && i.tm.operand_types[op].bitfield.dword)
6297 {
6298 /* Prohibit these changes in the 64bit mode, since the
6299 lowering is more complicated. */
6300 if (flag_code == CODE_64BIT)
6301 {
6302 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6303 register_prefix, i.op[op].regs->reg_name,
6304 i.suffix);
6305 return 0;
6306 }
6307 #if REGISTER_WARNINGS
6308 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6309 register_prefix,
6310 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6311 register_prefix, i.op[op].regs->reg_name, i.suffix);
6312 #endif
6313 }
6314 /* Warn if the r prefix on a general reg is present. */
6315 else if (i.types[op].bitfield.qword
6316 && (i.tm.operand_types[op].bitfield.reg
6317 || i.tm.operand_types[op].bitfield.acc)
6318 && i.tm.operand_types[op].bitfield.dword)
6319 {
6320 if (intel_syntax
6321 && i.tm.opcode_modifier.toqword
6322 && !i.types[0].bitfield.regsimd)
6323 {
6324 /* Convert to QWORD. We want REX byte. */
6325 i.suffix = QWORD_MNEM_SUFFIX;
6326 }
6327 else
6328 {
6329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6330 register_prefix, i.op[op].regs->reg_name,
6331 i.suffix);
6332 return 0;
6333 }
6334 }
6335 return 1;
6336 }
6337
6338 static int
6339 check_qword_reg (void)
6340 {
6341 int op;
6342
6343 for (op = i.operands; --op >= 0; )
6344 /* Skip non-register operands. */
6345 if (!i.types[op].bitfield.reg)
6346 continue;
6347 /* Reject eight bit registers, except where the template requires
6348 them. (eg. movzb) */
6349 else if (i.types[op].bitfield.byte
6350 && (i.tm.operand_types[op].bitfield.reg
6351 || i.tm.operand_types[op].bitfield.acc)
6352 && (i.tm.operand_types[op].bitfield.word
6353 || i.tm.operand_types[op].bitfield.dword))
6354 {
6355 as_bad (_("`%s%s' not allowed with `%s%c'"),
6356 register_prefix,
6357 i.op[op].regs->reg_name,
6358 i.tm.name,
6359 i.suffix);
6360 return 0;
6361 }
6362 /* Warn if the r prefix on a general reg is missing. */
6363 else if ((i.types[op].bitfield.word
6364 || i.types[op].bitfield.dword)
6365 && (i.tm.operand_types[op].bitfield.reg
6366 || i.tm.operand_types[op].bitfield.acc)
6367 && i.tm.operand_types[op].bitfield.qword)
6368 {
6369 /* Prohibit these changes in the 64bit mode, since the
6370 lowering is more complicated. */
6371 if (intel_syntax
6372 && i.tm.opcode_modifier.todword
6373 && !i.types[0].bitfield.regsimd)
6374 {
6375 /* Convert to DWORD. We don't want REX byte. */
6376 i.suffix = LONG_MNEM_SUFFIX;
6377 }
6378 else
6379 {
6380 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6381 register_prefix, i.op[op].regs->reg_name,
6382 i.suffix);
6383 return 0;
6384 }
6385 }
6386 return 1;
6387 }
6388
6389 static int
6390 check_word_reg (void)
6391 {
6392 int op;
6393 for (op = i.operands; --op >= 0;)
6394 /* Skip non-register operands. */
6395 if (!i.types[op].bitfield.reg)
6396 continue;
6397 /* Reject eight bit registers, except where the template requires
6398 them. (eg. movzb) */
6399 else if (i.types[op].bitfield.byte
6400 && (i.tm.operand_types[op].bitfield.reg
6401 || i.tm.operand_types[op].bitfield.acc)
6402 && (i.tm.operand_types[op].bitfield.word
6403 || i.tm.operand_types[op].bitfield.dword))
6404 {
6405 as_bad (_("`%s%s' not allowed with `%s%c'"),
6406 register_prefix,
6407 i.op[op].regs->reg_name,
6408 i.tm.name,
6409 i.suffix);
6410 return 0;
6411 }
6412 /* Warn if the e or r prefix on a general reg is present. */
6413 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6414 && (i.types[op].bitfield.dword
6415 || i.types[op].bitfield.qword)
6416 && (i.tm.operand_types[op].bitfield.reg
6417 || i.tm.operand_types[op].bitfield.acc)
6418 && i.tm.operand_types[op].bitfield.word)
6419 {
6420 /* Prohibit these changes in the 64bit mode, since the
6421 lowering is more complicated. */
6422 if (flag_code == CODE_64BIT)
6423 {
6424 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6425 register_prefix, i.op[op].regs->reg_name,
6426 i.suffix);
6427 return 0;
6428 }
6429 #if REGISTER_WARNINGS
6430 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6431 register_prefix,
6432 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6433 register_prefix, i.op[op].regs->reg_name, i.suffix);
6434 #endif
6435 }
6436 return 1;
6437 }
6438
6439 static int
6440 update_imm (unsigned int j)
6441 {
6442 i386_operand_type overlap = i.types[j];
6443 if ((overlap.bitfield.imm8
6444 || overlap.bitfield.imm8s
6445 || overlap.bitfield.imm16
6446 || overlap.bitfield.imm32
6447 || overlap.bitfield.imm32s
6448 || overlap.bitfield.imm64)
6449 && !operand_type_equal (&overlap, &imm8)
6450 && !operand_type_equal (&overlap, &imm8s)
6451 && !operand_type_equal (&overlap, &imm16)
6452 && !operand_type_equal (&overlap, &imm32)
6453 && !operand_type_equal (&overlap, &imm32s)
6454 && !operand_type_equal (&overlap, &imm64))
6455 {
6456 if (i.suffix)
6457 {
6458 i386_operand_type temp;
6459
6460 operand_type_set (&temp, 0);
6461 if (i.suffix == BYTE_MNEM_SUFFIX)
6462 {
6463 temp.bitfield.imm8 = overlap.bitfield.imm8;
6464 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6465 }
6466 else if (i.suffix == WORD_MNEM_SUFFIX)
6467 temp.bitfield.imm16 = overlap.bitfield.imm16;
6468 else if (i.suffix == QWORD_MNEM_SUFFIX)
6469 {
6470 temp.bitfield.imm64 = overlap.bitfield.imm64;
6471 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6472 }
6473 else
6474 temp.bitfield.imm32 = overlap.bitfield.imm32;
6475 overlap = temp;
6476 }
6477 else if (operand_type_equal (&overlap, &imm16_32_32s)
6478 || operand_type_equal (&overlap, &imm16_32)
6479 || operand_type_equal (&overlap, &imm16_32s))
6480 {
6481 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6482 overlap = imm16;
6483 else
6484 overlap = imm32s;
6485 }
6486 if (!operand_type_equal (&overlap, &imm8)
6487 && !operand_type_equal (&overlap, &imm8s)
6488 && !operand_type_equal (&overlap, &imm16)
6489 && !operand_type_equal (&overlap, &imm32)
6490 && !operand_type_equal (&overlap, &imm32s)
6491 && !operand_type_equal (&overlap, &imm64))
6492 {
6493 as_bad (_("no instruction mnemonic suffix given; "
6494 "can't determine immediate size"));
6495 return 0;
6496 }
6497 }
6498 i.types[j] = overlap;
6499
6500 return 1;
6501 }
6502
6503 static int
6504 finalize_imm (void)
6505 {
6506 unsigned int j, n;
6507
6508 /* Update the first 2 immediate operands. */
6509 n = i.operands > 2 ? 2 : i.operands;
6510 if (n)
6511 {
6512 for (j = 0; j < n; j++)
6513 if (update_imm (j) == 0)
6514 return 0;
6515
6516 /* The 3rd operand can't be immediate operand. */
6517 gas_assert (operand_type_check (i.types[2], imm) == 0);
6518 }
6519
6520 return 1;
6521 }
6522
6523 static int
6524 process_operands (void)
6525 {
6526 /* Default segment register this instruction will use for memory
6527 accesses. 0 means unknown. This is only for optimizing out
6528 unnecessary segment overrides. */
6529 const seg_entry *default_seg = 0;
6530
6531 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6532 {
6533 unsigned int dupl = i.operands;
6534 unsigned int dest = dupl - 1;
6535 unsigned int j;
6536
6537 /* The destination must be an xmm register. */
6538 gas_assert (i.reg_operands
6539 && MAX_OPERANDS > dupl
6540 && operand_type_equal (&i.types[dest], &regxmm));
6541
6542 if (i.tm.operand_types[0].bitfield.acc
6543 && i.tm.operand_types[0].bitfield.xmmword)
6544 {
6545 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6546 {
6547 /* Keep xmm0 for instructions with VEX prefix and 3
6548 sources. */
6549 i.tm.operand_types[0].bitfield.acc = 0;
6550 i.tm.operand_types[0].bitfield.regsimd = 1;
6551 goto duplicate;
6552 }
6553 else
6554 {
6555 /* We remove the first xmm0 and keep the number of
6556 operands unchanged, which in fact duplicates the
6557 destination. */
6558 for (j = 1; j < i.operands; j++)
6559 {
6560 i.op[j - 1] = i.op[j];
6561 i.types[j - 1] = i.types[j];
6562 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6563 }
6564 }
6565 }
6566 else if (i.tm.opcode_modifier.implicit1stxmm0)
6567 {
6568 gas_assert ((MAX_OPERANDS - 1) > dupl
6569 && (i.tm.opcode_modifier.vexsources
6570 == VEX3SOURCES));
6571
6572 /* Add the implicit xmm0 for instructions with VEX prefix
6573 and 3 sources. */
6574 for (j = i.operands; j > 0; j--)
6575 {
6576 i.op[j] = i.op[j - 1];
6577 i.types[j] = i.types[j - 1];
6578 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6579 }
6580 i.op[0].regs
6581 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6582 i.types[0] = regxmm;
6583 i.tm.operand_types[0] = regxmm;
6584
6585 i.operands += 2;
6586 i.reg_operands += 2;
6587 i.tm.operands += 2;
6588
6589 dupl++;
6590 dest++;
6591 i.op[dupl] = i.op[dest];
6592 i.types[dupl] = i.types[dest];
6593 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6594 }
6595 else
6596 {
6597 duplicate:
6598 i.operands++;
6599 i.reg_operands++;
6600 i.tm.operands++;
6601
6602 i.op[dupl] = i.op[dest];
6603 i.types[dupl] = i.types[dest];
6604 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6605 }
6606
6607 if (i.tm.opcode_modifier.immext)
6608 process_immext ();
6609 }
6610 else if (i.tm.operand_types[0].bitfield.acc
6611 && i.tm.operand_types[0].bitfield.xmmword)
6612 {
6613 unsigned int j;
6614
6615 for (j = 1; j < i.operands; j++)
6616 {
6617 i.op[j - 1] = i.op[j];
6618 i.types[j - 1] = i.types[j];
6619
6620 /* We need to adjust fields in i.tm since they are used by
6621 build_modrm_byte. */
6622 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6623 }
6624
6625 i.operands--;
6626 i.reg_operands--;
6627 i.tm.operands--;
6628 }
6629 else if (i.tm.opcode_modifier.implicitquadgroup)
6630 {
6631 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6632
6633 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6634 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6635 regnum = register_number (i.op[1].regs);
6636 first_reg_in_group = regnum & ~3;
6637 last_reg_in_group = first_reg_in_group + 3;
6638 if (regnum != first_reg_in_group)
6639 as_warn (_("source register `%s%s' implicitly denotes"
6640 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6641 register_prefix, i.op[1].regs->reg_name,
6642 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6643 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6644 i.tm.name);
6645 }
6646 else if (i.tm.opcode_modifier.regkludge)
6647 {
6648 /* The imul $imm, %reg instruction is converted into
6649 imul $imm, %reg, %reg, and the clr %reg instruction
6650 is converted into xor %reg, %reg. */
6651
6652 unsigned int first_reg_op;
6653
6654 if (operand_type_check (i.types[0], reg))
6655 first_reg_op = 0;
6656 else
6657 first_reg_op = 1;
6658 /* Pretend we saw the extra register operand. */
6659 gas_assert (i.reg_operands == 1
6660 && i.op[first_reg_op + 1].regs == 0);
6661 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6662 i.types[first_reg_op + 1] = i.types[first_reg_op];
6663 i.operands++;
6664 i.reg_operands++;
6665 }
6666
6667 if (i.tm.opcode_modifier.shortform)
6668 {
6669 if (i.types[0].bitfield.sreg2
6670 || i.types[0].bitfield.sreg3)
6671 {
6672 if (i.tm.base_opcode == POP_SEG_SHORT
6673 && i.op[0].regs->reg_num == 1)
6674 {
6675 as_bad (_("you can't `pop %scs'"), register_prefix);
6676 return 0;
6677 }
6678 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6679 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6680 i.rex |= REX_B;
6681 }
6682 else
6683 {
6684 /* The register or float register operand is in operand
6685 0 or 1. */
6686 unsigned int op;
6687
6688 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6689 || operand_type_check (i.types[0], reg))
6690 op = 0;
6691 else
6692 op = 1;
6693 /* Register goes in low 3 bits of opcode. */
6694 i.tm.base_opcode |= i.op[op].regs->reg_num;
6695 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6696 i.rex |= REX_B;
6697 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6698 {
6699 /* Warn about some common errors, but press on regardless.
6700 The first case can be generated by gcc (<= 2.8.1). */
6701 if (i.operands == 2)
6702 {
6703 /* Reversed arguments on faddp, fsubp, etc. */
6704 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6705 register_prefix, i.op[!intel_syntax].regs->reg_name,
6706 register_prefix, i.op[intel_syntax].regs->reg_name);
6707 }
6708 else
6709 {
6710 /* Extraneous `l' suffix on fp insn. */
6711 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6712 register_prefix, i.op[0].regs->reg_name);
6713 }
6714 }
6715 }
6716 }
6717 else if (i.tm.opcode_modifier.modrm)
6718 {
6719 /* The opcode is completed (modulo i.tm.extension_opcode which
6720 must be put into the modrm byte). Now, we make the modrm and
6721 index base bytes based on all the info we've collected. */
6722
6723 default_seg = build_modrm_byte ();
6724 }
6725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6726 {
6727 default_seg = &ds;
6728 }
6729 else if (i.tm.opcode_modifier.isstring)
6730 {
6731 /* For the string instructions that allow a segment override
6732 on one of their operands, the default segment is ds. */
6733 default_seg = &ds;
6734 }
6735
6736 if (i.tm.base_opcode == 0x8d /* lea */
6737 && i.seg[0]
6738 && !quiet_warnings)
6739 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6740
6741 /* If a segment was explicitly specified, and the specified segment
6742 is not the default, use an opcode prefix to select it. If we
6743 never figured out what the default segment is, then default_seg
6744 will be zero at this point, and the specified segment prefix will
6745 always be used. */
6746 if ((i.seg[0]) && (i.seg[0] != default_seg))
6747 {
6748 if (!add_prefix (i.seg[0]->seg_prefix))
6749 return 0;
6750 }
6751 return 1;
6752 }
6753
6754 static const seg_entry *
6755 build_modrm_byte (void)
6756 {
6757 const seg_entry *default_seg = 0;
6758 unsigned int source, dest;
6759 int vex_3_sources;
6760
6761 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6762 if (vex_3_sources)
6763 {
6764 unsigned int nds, reg_slot;
6765 expressionS *exp;
6766
6767 dest = i.operands - 1;
6768 nds = dest - 1;
6769
6770 /* There are 2 kinds of instructions:
6771 1. 5 operands: 4 register operands or 3 register operands
6772 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6773 VexW0 or VexW1. The destination must be either XMM, YMM or
6774 ZMM register.
6775 2. 4 operands: 4 register operands or 3 register operands
6776 plus 1 memory operand, with VexXDS. */
6777 gas_assert ((i.reg_operands == 4
6778 || (i.reg_operands == 3 && i.mem_operands == 1))
6779 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6780 && i.tm.opcode_modifier.vexw
6781 && i.tm.operand_types[dest].bitfield.regsimd);
6782
6783 /* If VexW1 is set, the first non-immediate operand is the source and
6784 the second non-immediate one is encoded in the immediate operand. */
6785 if (i.tm.opcode_modifier.vexw == VEXW1)
6786 {
6787 source = i.imm_operands;
6788 reg_slot = i.imm_operands + 1;
6789 }
6790 else
6791 {
6792 source = i.imm_operands + 1;
6793 reg_slot = i.imm_operands;
6794 }
6795
6796 if (i.imm_operands == 0)
6797 {
6798 /* When there is no immediate operand, generate an 8bit
6799 immediate operand to encode the first operand. */
6800 exp = &im_expressions[i.imm_operands++];
6801 i.op[i.operands].imms = exp;
6802 i.types[i.operands] = imm8;
6803 i.operands++;
6804
6805 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6806 exp->X_op = O_constant;
6807 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6808 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6809 }
6810 else
6811 {
6812 unsigned int imm_slot;
6813
6814 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6815
6816 if (i.tm.opcode_modifier.immext)
6817 {
6818 /* When ImmExt is set, the immediate byte is the last
6819 operand. */
6820 imm_slot = i.operands - 1;
6821 source--;
6822 reg_slot--;
6823 }
6824 else
6825 {
6826 imm_slot = 0;
6827
6828 /* Turn on Imm8 so that output_imm will generate it. */
6829 i.types[imm_slot].bitfield.imm8 = 1;
6830 }
6831
6832 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6833 i.op[imm_slot].imms->X_add_number
6834 |= register_number (i.op[reg_slot].regs) << 4;
6835 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6836 }
6837
6838 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6839 i.vex.register_specifier = i.op[nds].regs;
6840 }
6841 else
6842 source = dest = 0;
6843
6844 /* i.reg_operands MUST be the number of real register operands;
6845 implicit registers do not count. If there are 3 register
6846 operands, it must be a instruction with VexNDS. For a
6847 instruction with VexNDD, the destination register is encoded
6848 in VEX prefix. If there are 4 register operands, it must be
6849 a instruction with VEX prefix and 3 sources. */
6850 if (i.mem_operands == 0
6851 && ((i.reg_operands == 2
6852 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6853 || (i.reg_operands == 3
6854 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6855 || (i.reg_operands == 4 && vex_3_sources)))
6856 {
6857 switch (i.operands)
6858 {
6859 case 2:
6860 source = 0;
6861 break;
6862 case 3:
6863 /* When there are 3 operands, one of them may be immediate,
6864 which may be the first or the last operand. Otherwise,
6865 the first operand must be shift count register (cl) or it
6866 is an instruction with VexNDS. */
6867 gas_assert (i.imm_operands == 1
6868 || (i.imm_operands == 0
6869 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6870 || i.types[0].bitfield.shiftcount)));
6871 if (operand_type_check (i.types[0], imm)
6872 || i.types[0].bitfield.shiftcount)
6873 source = 1;
6874 else
6875 source = 0;
6876 break;
6877 case 4:
6878 /* When there are 4 operands, the first two must be 8bit
6879 immediate operands. The source operand will be the 3rd
6880 one.
6881
6882 For instructions with VexNDS, if the first operand
6883 an imm8, the source operand is the 2nd one. If the last
6884 operand is imm8, the source operand is the first one. */
6885 gas_assert ((i.imm_operands == 2
6886 && i.types[0].bitfield.imm8
6887 && i.types[1].bitfield.imm8)
6888 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6889 && i.imm_operands == 1
6890 && (i.types[0].bitfield.imm8
6891 || i.types[i.operands - 1].bitfield.imm8
6892 || i.rounding)));
6893 if (i.imm_operands == 2)
6894 source = 2;
6895 else
6896 {
6897 if (i.types[0].bitfield.imm8)
6898 source = 1;
6899 else
6900 source = 0;
6901 }
6902 break;
6903 case 5:
6904 if (is_evex_encoding (&i.tm))
6905 {
6906 /* For EVEX instructions, when there are 5 operands, the
6907 first one must be immediate operand. If the second one
6908 is immediate operand, the source operand is the 3th
6909 one. If the last one is immediate operand, the source
6910 operand is the 2nd one. */
6911 gas_assert (i.imm_operands == 2
6912 && i.tm.opcode_modifier.sae
6913 && operand_type_check (i.types[0], imm));
6914 if (operand_type_check (i.types[1], imm))
6915 source = 2;
6916 else if (operand_type_check (i.types[4], imm))
6917 source = 1;
6918 else
6919 abort ();
6920 }
6921 break;
6922 default:
6923 abort ();
6924 }
6925
6926 if (!vex_3_sources)
6927 {
6928 dest = source + 1;
6929
6930 /* RC/SAE operand could be between DEST and SRC. That happens
6931 when one operand is GPR and the other one is XMM/YMM/ZMM
6932 register. */
6933 if (i.rounding && i.rounding->operand == (int) dest)
6934 dest++;
6935
6936 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6937 {
6938 /* For instructions with VexNDS, the register-only source
6939 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6940 register. It is encoded in VEX prefix. We need to
6941 clear RegMem bit before calling operand_type_equal. */
6942
6943 i386_operand_type op;
6944 unsigned int vvvv;
6945
6946 /* Check register-only source operand when two source
6947 operands are swapped. */
6948 if (!i.tm.operand_types[source].bitfield.baseindex
6949 && i.tm.operand_types[dest].bitfield.baseindex)
6950 {
6951 vvvv = source;
6952 source = dest;
6953 }
6954 else
6955 vvvv = dest;
6956
6957 op = i.tm.operand_types[vvvv];
6958 op.bitfield.regmem = 0;
6959 if ((dest + 1) >= i.operands
6960 || ((!op.bitfield.reg
6961 || (!op.bitfield.dword && !op.bitfield.qword))
6962 && !op.bitfield.regsimd
6963 && !operand_type_equal (&op, &regmask)))
6964 abort ();
6965 i.vex.register_specifier = i.op[vvvv].regs;
6966 dest++;
6967 }
6968 }
6969
6970 i.rm.mode = 3;
6971 /* One of the register operands will be encoded in the i.tm.reg
6972 field, the other in the combined i.tm.mode and i.tm.regmem
6973 fields. If no form of this instruction supports a memory
6974 destination operand, then we assume the source operand may
6975 sometimes be a memory operand and so we need to store the
6976 destination in the i.rm.reg field. */
6977 if (!i.tm.operand_types[dest].bitfield.regmem
6978 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6979 {
6980 i.rm.reg = i.op[dest].regs->reg_num;
6981 i.rm.regmem = i.op[source].regs->reg_num;
6982 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6983 i.rex |= REX_R;
6984 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6985 i.vrex |= REX_R;
6986 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6987 i.rex |= REX_B;
6988 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6989 i.vrex |= REX_B;
6990 }
6991 else
6992 {
6993 i.rm.reg = i.op[source].regs->reg_num;
6994 i.rm.regmem = i.op[dest].regs->reg_num;
6995 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6996 i.rex |= REX_B;
6997 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6998 i.vrex |= REX_B;
6999 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7000 i.rex |= REX_R;
7001 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7002 i.vrex |= REX_R;
7003 }
7004 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7005 {
7006 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7007 abort ();
7008 i.rex &= ~REX_R;
7009 add_prefix (LOCK_PREFIX_OPCODE);
7010 }
7011 }
7012 else
7013 { /* If it's not 2 reg operands... */
7014 unsigned int mem;
7015
7016 if (i.mem_operands)
7017 {
7018 unsigned int fake_zero_displacement = 0;
7019 unsigned int op;
7020
7021 for (op = 0; op < i.operands; op++)
7022 if (operand_type_check (i.types[op], anymem))
7023 break;
7024 gas_assert (op < i.operands);
7025
7026 if (i.tm.opcode_modifier.vecsib)
7027 {
7028 if (i.index_reg->reg_num == RegEiz
7029 || i.index_reg->reg_num == RegRiz)
7030 abort ();
7031
7032 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7033 if (!i.base_reg)
7034 {
7035 i.sib.base = NO_BASE_REGISTER;
7036 i.sib.scale = i.log2_scale_factor;
7037 i.types[op].bitfield.disp8 = 0;
7038 i.types[op].bitfield.disp16 = 0;
7039 i.types[op].bitfield.disp64 = 0;
7040 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7041 {
7042 /* Must be 32 bit */
7043 i.types[op].bitfield.disp32 = 1;
7044 i.types[op].bitfield.disp32s = 0;
7045 }
7046 else
7047 {
7048 i.types[op].bitfield.disp32 = 0;
7049 i.types[op].bitfield.disp32s = 1;
7050 }
7051 }
7052 i.sib.index = i.index_reg->reg_num;
7053 if ((i.index_reg->reg_flags & RegRex) != 0)
7054 i.rex |= REX_X;
7055 if ((i.index_reg->reg_flags & RegVRex) != 0)
7056 i.vrex |= REX_X;
7057 }
7058
7059 default_seg = &ds;
7060
7061 if (i.base_reg == 0)
7062 {
7063 i.rm.mode = 0;
7064 if (!i.disp_operands)
7065 fake_zero_displacement = 1;
7066 if (i.index_reg == 0)
7067 {
7068 i386_operand_type newdisp;
7069
7070 gas_assert (!i.tm.opcode_modifier.vecsib);
7071 /* Operand is just <disp> */
7072 if (flag_code == CODE_64BIT)
7073 {
7074 /* 64bit mode overwrites the 32bit absolute
7075 addressing by RIP relative addressing and
7076 absolute addressing is encoded by one of the
7077 redundant SIB forms. */
7078 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7079 i.sib.base = NO_BASE_REGISTER;
7080 i.sib.index = NO_INDEX_REGISTER;
7081 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7082 }
7083 else if ((flag_code == CODE_16BIT)
7084 ^ (i.prefix[ADDR_PREFIX] != 0))
7085 {
7086 i.rm.regmem = NO_BASE_REGISTER_16;
7087 newdisp = disp16;
7088 }
7089 else
7090 {
7091 i.rm.regmem = NO_BASE_REGISTER;
7092 newdisp = disp32;
7093 }
7094 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7095 i.types[op] = operand_type_or (i.types[op], newdisp);
7096 }
7097 else if (!i.tm.opcode_modifier.vecsib)
7098 {
7099 /* !i.base_reg && i.index_reg */
7100 if (i.index_reg->reg_num == RegEiz
7101 || i.index_reg->reg_num == RegRiz)
7102 i.sib.index = NO_INDEX_REGISTER;
7103 else
7104 i.sib.index = i.index_reg->reg_num;
7105 i.sib.base = NO_BASE_REGISTER;
7106 i.sib.scale = i.log2_scale_factor;
7107 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7108 i.types[op].bitfield.disp8 = 0;
7109 i.types[op].bitfield.disp16 = 0;
7110 i.types[op].bitfield.disp64 = 0;
7111 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7112 {
7113 /* Must be 32 bit */
7114 i.types[op].bitfield.disp32 = 1;
7115 i.types[op].bitfield.disp32s = 0;
7116 }
7117 else
7118 {
7119 i.types[op].bitfield.disp32 = 0;
7120 i.types[op].bitfield.disp32s = 1;
7121 }
7122 if ((i.index_reg->reg_flags & RegRex) != 0)
7123 i.rex |= REX_X;
7124 }
7125 }
7126 /* RIP addressing for 64bit mode. */
7127 else if (i.base_reg->reg_num == RegRip ||
7128 i.base_reg->reg_num == RegEip)
7129 {
7130 gas_assert (!i.tm.opcode_modifier.vecsib);
7131 i.rm.regmem = NO_BASE_REGISTER;
7132 i.types[op].bitfield.disp8 = 0;
7133 i.types[op].bitfield.disp16 = 0;
7134 i.types[op].bitfield.disp32 = 0;
7135 i.types[op].bitfield.disp32s = 1;
7136 i.types[op].bitfield.disp64 = 0;
7137 i.flags[op] |= Operand_PCrel;
7138 if (! i.disp_operands)
7139 fake_zero_displacement = 1;
7140 }
7141 else if (i.base_reg->reg_type.bitfield.word)
7142 {
7143 gas_assert (!i.tm.opcode_modifier.vecsib);
7144 switch (i.base_reg->reg_num)
7145 {
7146 case 3: /* (%bx) */
7147 if (i.index_reg == 0)
7148 i.rm.regmem = 7;
7149 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7150 i.rm.regmem = i.index_reg->reg_num - 6;
7151 break;
7152 case 5: /* (%bp) */
7153 default_seg = &ss;
7154 if (i.index_reg == 0)
7155 {
7156 i.rm.regmem = 6;
7157 if (operand_type_check (i.types[op], disp) == 0)
7158 {
7159 /* fake (%bp) into 0(%bp) */
7160 i.types[op].bitfield.disp8 = 1;
7161 fake_zero_displacement = 1;
7162 }
7163 }
7164 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7165 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7166 break;
7167 default: /* (%si) -> 4 or (%di) -> 5 */
7168 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7169 }
7170 i.rm.mode = mode_from_disp_size (i.types[op]);
7171 }
7172 else /* i.base_reg and 32/64 bit mode */
7173 {
7174 if (flag_code == CODE_64BIT
7175 && operand_type_check (i.types[op], disp))
7176 {
7177 i.types[op].bitfield.disp16 = 0;
7178 i.types[op].bitfield.disp64 = 0;
7179 if (i.prefix[ADDR_PREFIX] == 0)
7180 {
7181 i.types[op].bitfield.disp32 = 0;
7182 i.types[op].bitfield.disp32s = 1;
7183 }
7184 else
7185 {
7186 i.types[op].bitfield.disp32 = 1;
7187 i.types[op].bitfield.disp32s = 0;
7188 }
7189 }
7190
7191 if (!i.tm.opcode_modifier.vecsib)
7192 i.rm.regmem = i.base_reg->reg_num;
7193 if ((i.base_reg->reg_flags & RegRex) != 0)
7194 i.rex |= REX_B;
7195 i.sib.base = i.base_reg->reg_num;
7196 /* x86-64 ignores REX prefix bit here to avoid decoder
7197 complications. */
7198 if (!(i.base_reg->reg_flags & RegRex)
7199 && (i.base_reg->reg_num == EBP_REG_NUM
7200 || i.base_reg->reg_num == ESP_REG_NUM))
7201 default_seg = &ss;
7202 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7203 {
7204 fake_zero_displacement = 1;
7205 i.types[op].bitfield.disp8 = 1;
7206 }
7207 i.sib.scale = i.log2_scale_factor;
7208 if (i.index_reg == 0)
7209 {
7210 gas_assert (!i.tm.opcode_modifier.vecsib);
7211 /* <disp>(%esp) becomes two byte modrm with no index
7212 register. We've already stored the code for esp
7213 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7214 Any base register besides %esp will not use the
7215 extra modrm byte. */
7216 i.sib.index = NO_INDEX_REGISTER;
7217 }
7218 else if (!i.tm.opcode_modifier.vecsib)
7219 {
7220 if (i.index_reg->reg_num == RegEiz
7221 || i.index_reg->reg_num == RegRiz)
7222 i.sib.index = NO_INDEX_REGISTER;
7223 else
7224 i.sib.index = i.index_reg->reg_num;
7225 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7226 if ((i.index_reg->reg_flags & RegRex) != 0)
7227 i.rex |= REX_X;
7228 }
7229
7230 if (i.disp_operands
7231 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7232 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7233 i.rm.mode = 0;
7234 else
7235 {
7236 if (!fake_zero_displacement
7237 && !i.disp_operands
7238 && i.disp_encoding)
7239 {
7240 fake_zero_displacement = 1;
7241 if (i.disp_encoding == disp_encoding_8bit)
7242 i.types[op].bitfield.disp8 = 1;
7243 else
7244 i.types[op].bitfield.disp32 = 1;
7245 }
7246 i.rm.mode = mode_from_disp_size (i.types[op]);
7247 }
7248 }
7249
7250 if (fake_zero_displacement)
7251 {
7252 /* Fakes a zero displacement assuming that i.types[op]
7253 holds the correct displacement size. */
7254 expressionS *exp;
7255
7256 gas_assert (i.op[op].disps == 0);
7257 exp = &disp_expressions[i.disp_operands++];
7258 i.op[op].disps = exp;
7259 exp->X_op = O_constant;
7260 exp->X_add_number = 0;
7261 exp->X_add_symbol = (symbolS *) 0;
7262 exp->X_op_symbol = (symbolS *) 0;
7263 }
7264
7265 mem = op;
7266 }
7267 else
7268 mem = ~0;
7269
7270 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7271 {
7272 if (operand_type_check (i.types[0], imm))
7273 i.vex.register_specifier = NULL;
7274 else
7275 {
7276 /* VEX.vvvv encodes one of the sources when the first
7277 operand is not an immediate. */
7278 if (i.tm.opcode_modifier.vexw == VEXW0)
7279 i.vex.register_specifier = i.op[0].regs;
7280 else
7281 i.vex.register_specifier = i.op[1].regs;
7282 }
7283
7284 /* Destination is a XMM register encoded in the ModRM.reg
7285 and VEX.R bit. */
7286 i.rm.reg = i.op[2].regs->reg_num;
7287 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7288 i.rex |= REX_R;
7289
7290 /* ModRM.rm and VEX.B encodes the other source. */
7291 if (!i.mem_operands)
7292 {
7293 i.rm.mode = 3;
7294
7295 if (i.tm.opcode_modifier.vexw == VEXW0)
7296 i.rm.regmem = i.op[1].regs->reg_num;
7297 else
7298 i.rm.regmem = i.op[0].regs->reg_num;
7299
7300 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7301 i.rex |= REX_B;
7302 }
7303 }
7304 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7305 {
7306 i.vex.register_specifier = i.op[2].regs;
7307 if (!i.mem_operands)
7308 {
7309 i.rm.mode = 3;
7310 i.rm.regmem = i.op[1].regs->reg_num;
7311 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7312 i.rex |= REX_B;
7313 }
7314 }
7315 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7316 (if any) based on i.tm.extension_opcode. Again, we must be
7317 careful to make sure that segment/control/debug/test/MMX
7318 registers are coded into the i.rm.reg field. */
7319 else if (i.reg_operands)
7320 {
7321 unsigned int op;
7322 unsigned int vex_reg = ~0;
7323
7324 for (op = 0; op < i.operands; op++)
7325 if (i.types[op].bitfield.reg
7326 || i.types[op].bitfield.regmmx
7327 || i.types[op].bitfield.regsimd
7328 || i.types[op].bitfield.regbnd
7329 || i.types[op].bitfield.regmask
7330 || i.types[op].bitfield.sreg2
7331 || i.types[op].bitfield.sreg3
7332 || i.types[op].bitfield.control
7333 || i.types[op].bitfield.debug
7334 || i.types[op].bitfield.test)
7335 break;
7336
7337 if (vex_3_sources)
7338 op = dest;
7339 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7340 {
7341 /* For instructions with VexNDS, the register-only
7342 source operand is encoded in VEX prefix. */
7343 gas_assert (mem != (unsigned int) ~0);
7344
7345 if (op > mem)
7346 {
7347 vex_reg = op++;
7348 gas_assert (op < i.operands);
7349 }
7350 else
7351 {
7352 /* Check register-only source operand when two source
7353 operands are swapped. */
7354 if (!i.tm.operand_types[op].bitfield.baseindex
7355 && i.tm.operand_types[op + 1].bitfield.baseindex)
7356 {
7357 vex_reg = op;
7358 op += 2;
7359 gas_assert (mem == (vex_reg + 1)
7360 && op < i.operands);
7361 }
7362 else
7363 {
7364 vex_reg = op + 1;
7365 gas_assert (vex_reg < i.operands);
7366 }
7367 }
7368 }
7369 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7370 {
7371 /* For instructions with VexNDD, the register destination
7372 is encoded in VEX prefix. */
7373 if (i.mem_operands == 0)
7374 {
7375 /* There is no memory operand. */
7376 gas_assert ((op + 2) == i.operands);
7377 vex_reg = op + 1;
7378 }
7379 else
7380 {
7381 /* There are only 2 non-immediate operands. */
7382 gas_assert (op < i.imm_operands + 2
7383 && i.operands == i.imm_operands + 2);
7384 vex_reg = i.imm_operands + 1;
7385 }
7386 }
7387 else
7388 gas_assert (op < i.operands);
7389
7390 if (vex_reg != (unsigned int) ~0)
7391 {
7392 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7393
7394 if ((!type->bitfield.reg
7395 || (!type->bitfield.dword && !type->bitfield.qword))
7396 && !type->bitfield.regsimd
7397 && !operand_type_equal (type, &regmask))
7398 abort ();
7399
7400 i.vex.register_specifier = i.op[vex_reg].regs;
7401 }
7402
7403 /* Don't set OP operand twice. */
7404 if (vex_reg != op)
7405 {
7406 /* If there is an extension opcode to put here, the
7407 register number must be put into the regmem field. */
7408 if (i.tm.extension_opcode != None)
7409 {
7410 i.rm.regmem = i.op[op].regs->reg_num;
7411 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7412 i.rex |= REX_B;
7413 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7414 i.vrex |= REX_B;
7415 }
7416 else
7417 {
7418 i.rm.reg = i.op[op].regs->reg_num;
7419 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7420 i.rex |= REX_R;
7421 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7422 i.vrex |= REX_R;
7423 }
7424 }
7425
7426 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7427 must set it to 3 to indicate this is a register operand
7428 in the regmem field. */
7429 if (!i.mem_operands)
7430 i.rm.mode = 3;
7431 }
7432
7433 /* Fill in i.rm.reg field with extension opcode (if any). */
7434 if (i.tm.extension_opcode != None)
7435 i.rm.reg = i.tm.extension_opcode;
7436 }
7437 return default_seg;
7438 }
7439
7440 static void
7441 output_branch (void)
7442 {
7443 char *p;
7444 int size;
7445 int code16;
7446 int prefix;
7447 relax_substateT subtype;
7448 symbolS *sym;
7449 offsetT off;
7450
7451 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7452 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7453
7454 prefix = 0;
7455 if (i.prefix[DATA_PREFIX] != 0)
7456 {
7457 prefix = 1;
7458 i.prefixes -= 1;
7459 code16 ^= CODE16;
7460 }
7461 /* Pentium4 branch hints. */
7462 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7463 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7464 {
7465 prefix++;
7466 i.prefixes--;
7467 }
7468 if (i.prefix[REX_PREFIX] != 0)
7469 {
7470 prefix++;
7471 i.prefixes--;
7472 }
7473
7474 /* BND prefixed jump. */
7475 if (i.prefix[BND_PREFIX] != 0)
7476 {
7477 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7478 i.prefixes -= 1;
7479 }
7480
7481 if (i.prefixes != 0 && !intel_syntax)
7482 as_warn (_("skipping prefixes on this instruction"));
7483
7484 /* It's always a symbol; End frag & setup for relax.
7485 Make sure there is enough room in this frag for the largest
7486 instruction we may generate in md_convert_frag. This is 2
7487 bytes for the opcode and room for the prefix and largest
7488 displacement. */
7489 frag_grow (prefix + 2 + 4);
7490 /* Prefix and 1 opcode byte go in fr_fix. */
7491 p = frag_more (prefix + 1);
7492 if (i.prefix[DATA_PREFIX] != 0)
7493 *p++ = DATA_PREFIX_OPCODE;
7494 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7495 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7496 *p++ = i.prefix[SEG_PREFIX];
7497 if (i.prefix[REX_PREFIX] != 0)
7498 *p++ = i.prefix[REX_PREFIX];
7499 *p = i.tm.base_opcode;
7500
7501 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7502 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7503 else if (cpu_arch_flags.bitfield.cpui386)
7504 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7505 else
7506 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7507 subtype |= code16;
7508
7509 sym = i.op[0].disps->X_add_symbol;
7510 off = i.op[0].disps->X_add_number;
7511
7512 if (i.op[0].disps->X_op != O_constant
7513 && i.op[0].disps->X_op != O_symbol)
7514 {
7515 /* Handle complex expressions. */
7516 sym = make_expr_symbol (i.op[0].disps);
7517 off = 0;
7518 }
7519
7520 /* 1 possible extra opcode + 4 byte displacement go in var part.
7521 Pass reloc in fr_var. */
7522 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7523 }
7524
7525 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7526 /* Return TRUE iff PLT32 relocation should be used for branching to
7527 symbol S. */
7528
7529 static bfd_boolean
7530 need_plt32_p (symbolS *s)
7531 {
7532 /* PLT32 relocation is ELF only. */
7533 if (!IS_ELF)
7534 return FALSE;
7535
7536 /* Since there is no need to prepare for PLT branch on x86-64, we
7537 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7538 be used as a marker for 32-bit PC-relative branches. */
7539 if (!object_64bit)
7540 return FALSE;
7541
7542 /* Weak or undefined symbol need PLT32 relocation. */
7543 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7544 return TRUE;
7545
7546 /* Non-global symbol doesn't need PLT32 relocation. */
7547 if (! S_IS_EXTERNAL (s))
7548 return FALSE;
7549
7550 /* Other global symbols need PLT32 relocation. NB: Symbol with
7551 non-default visibilities are treated as normal global symbol
7552 so that PLT32 relocation can be used as a marker for 32-bit
7553 PC-relative branches. It is useful for linker relaxation. */
7554 return TRUE;
7555 }
7556 #endif
7557
7558 static void
7559 output_jump (void)
7560 {
7561 char *p;
7562 int size;
7563 fixS *fixP;
7564 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7565
7566 if (i.tm.opcode_modifier.jumpbyte)
7567 {
7568 /* This is a loop or jecxz type instruction. */
7569 size = 1;
7570 if (i.prefix[ADDR_PREFIX] != 0)
7571 {
7572 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7573 i.prefixes -= 1;
7574 }
7575 /* Pentium4 branch hints. */
7576 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7577 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7578 {
7579 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7580 i.prefixes--;
7581 }
7582 }
7583 else
7584 {
7585 int code16;
7586
7587 code16 = 0;
7588 if (flag_code == CODE_16BIT)
7589 code16 = CODE16;
7590
7591 if (i.prefix[DATA_PREFIX] != 0)
7592 {
7593 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7594 i.prefixes -= 1;
7595 code16 ^= CODE16;
7596 }
7597
7598 size = 4;
7599 if (code16)
7600 size = 2;
7601 }
7602
7603 if (i.prefix[REX_PREFIX] != 0)
7604 {
7605 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7606 i.prefixes -= 1;
7607 }
7608
7609 /* BND prefixed jump. */
7610 if (i.prefix[BND_PREFIX] != 0)
7611 {
7612 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7613 i.prefixes -= 1;
7614 }
7615
7616 if (i.prefixes != 0 && !intel_syntax)
7617 as_warn (_("skipping prefixes on this instruction"));
7618
7619 p = frag_more (i.tm.opcode_length + size);
7620 switch (i.tm.opcode_length)
7621 {
7622 case 2:
7623 *p++ = i.tm.base_opcode >> 8;
7624 /* Fall through. */
7625 case 1:
7626 *p++ = i.tm.base_opcode;
7627 break;
7628 default:
7629 abort ();
7630 }
7631
7632 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7633 if (size == 4
7634 && jump_reloc == NO_RELOC
7635 && need_plt32_p (i.op[0].disps->X_add_symbol))
7636 jump_reloc = BFD_RELOC_X86_64_PLT32;
7637 #endif
7638
7639 jump_reloc = reloc (size, 1, 1, jump_reloc);
7640
7641 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7642 i.op[0].disps, 1, jump_reloc);
7643
7644 /* All jumps handled here are signed, but don't use a signed limit
7645 check for 32 and 16 bit jumps as we want to allow wrap around at
7646 4G and 64k respectively. */
7647 if (size == 1)
7648 fixP->fx_signed = 1;
7649 }
7650
7651 static void
7652 output_interseg_jump (void)
7653 {
7654 char *p;
7655 int size;
7656 int prefix;
7657 int code16;
7658
7659 code16 = 0;
7660 if (flag_code == CODE_16BIT)
7661 code16 = CODE16;
7662
7663 prefix = 0;
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 {
7666 prefix = 1;
7667 i.prefixes -= 1;
7668 code16 ^= CODE16;
7669 }
7670 if (i.prefix[REX_PREFIX] != 0)
7671 {
7672 prefix++;
7673 i.prefixes -= 1;
7674 }
7675
7676 size = 4;
7677 if (code16)
7678 size = 2;
7679
7680 if (i.prefixes != 0 && !intel_syntax)
7681 as_warn (_("skipping prefixes on this instruction"));
7682
7683 /* 1 opcode; 2 segment; offset */
7684 p = frag_more (prefix + 1 + 2 + size);
7685
7686 if (i.prefix[DATA_PREFIX] != 0)
7687 *p++ = DATA_PREFIX_OPCODE;
7688
7689 if (i.prefix[REX_PREFIX] != 0)
7690 *p++ = i.prefix[REX_PREFIX];
7691
7692 *p++ = i.tm.base_opcode;
7693 if (i.op[1].imms->X_op == O_constant)
7694 {
7695 offsetT n = i.op[1].imms->X_add_number;
7696
7697 if (size == 2
7698 && !fits_in_unsigned_word (n)
7699 && !fits_in_signed_word (n))
7700 {
7701 as_bad (_("16-bit jump out of range"));
7702 return;
7703 }
7704 md_number_to_chars (p, n, size);
7705 }
7706 else
7707 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7708 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7709 if (i.op[0].imms->X_op != O_constant)
7710 as_bad (_("can't handle non absolute segment in `%s'"),
7711 i.tm.name);
7712 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7713 }
7714
7715 static void
7716 output_insn (void)
7717 {
7718 fragS *insn_start_frag;
7719 offsetT insn_start_off;
7720
7721 /* Tie dwarf2 debug info to the address at the start of the insn.
7722 We can't do this after the insn has been output as the current
7723 frag may have been closed off. eg. by frag_var. */
7724 dwarf2_emit_insn (0);
7725
7726 insn_start_frag = frag_now;
7727 insn_start_off = frag_now_fix ();
7728
7729 /* Output jumps. */
7730 if (i.tm.opcode_modifier.jump)
7731 output_branch ();
7732 else if (i.tm.opcode_modifier.jumpbyte
7733 || i.tm.opcode_modifier.jumpdword)
7734 output_jump ();
7735 else if (i.tm.opcode_modifier.jumpintersegment)
7736 output_interseg_jump ();
7737 else
7738 {
7739 /* Output normal instructions here. */
7740 char *p;
7741 unsigned char *q;
7742 unsigned int j;
7743 unsigned int prefix;
7744
7745 if (avoid_fence
7746 && i.tm.base_opcode == 0xfae
7747 && i.operands == 1
7748 && i.imm_operands == 1
7749 && (i.op[0].imms->X_add_number == 0xe8
7750 || i.op[0].imms->X_add_number == 0xf0
7751 || i.op[0].imms->X_add_number == 0xf8))
7752 {
7753 /* Encode lfence, mfence, and sfence as
7754 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7755 offsetT val = 0x240483f0ULL;
7756 p = frag_more (5);
7757 md_number_to_chars (p, val, 5);
7758 return;
7759 }
7760
7761 /* Some processors fail on LOCK prefix. This options makes
7762 assembler ignore LOCK prefix and serves as a workaround. */
7763 if (omit_lock_prefix)
7764 {
7765 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7766 return;
7767 i.prefix[LOCK_PREFIX] = 0;
7768 }
7769
7770 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7771 don't need the explicit prefix. */
7772 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7773 {
7774 switch (i.tm.opcode_length)
7775 {
7776 case 3:
7777 if (i.tm.base_opcode & 0xff000000)
7778 {
7779 prefix = (i.tm.base_opcode >> 24) & 0xff;
7780 add_prefix (prefix);
7781 }
7782 break;
7783 case 2:
7784 if ((i.tm.base_opcode & 0xff0000) != 0)
7785 {
7786 prefix = (i.tm.base_opcode >> 16) & 0xff;
7787 if (!i.tm.cpu_flags.bitfield.cpupadlock
7788 || prefix != REPE_PREFIX_OPCODE
7789 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7790 add_prefix (prefix);
7791 }
7792 break;
7793 case 1:
7794 break;
7795 case 0:
7796 /* Check for pseudo prefixes. */
7797 as_bad_where (insn_start_frag->fr_file,
7798 insn_start_frag->fr_line,
7799 _("pseudo prefix without instruction"));
7800 return;
7801 default:
7802 abort ();
7803 }
7804
7805 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7806 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7807 R_X86_64_GOTTPOFF relocation so that linker can safely
7808 perform IE->LE optimization. */
7809 if (x86_elf_abi == X86_64_X32_ABI
7810 && i.operands == 2
7811 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7812 && i.prefix[REX_PREFIX] == 0)
7813 add_prefix (REX_OPCODE);
7814 #endif
7815
7816 /* The prefix bytes. */
7817 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7818 if (*q)
7819 FRAG_APPEND_1_CHAR (*q);
7820 }
7821 else
7822 {
7823 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7824 if (*q)
7825 switch (j)
7826 {
7827 case REX_PREFIX:
7828 /* REX byte is encoded in VEX prefix. */
7829 break;
7830 case SEG_PREFIX:
7831 case ADDR_PREFIX:
7832 FRAG_APPEND_1_CHAR (*q);
7833 break;
7834 default:
7835 /* There should be no other prefixes for instructions
7836 with VEX prefix. */
7837 abort ();
7838 }
7839
7840 /* For EVEX instructions i.vrex should become 0 after
7841 build_evex_prefix. For VEX instructions upper 16 registers
7842 aren't available, so VREX should be 0. */
7843 if (i.vrex)
7844 abort ();
7845 /* Now the VEX prefix. */
7846 p = frag_more (i.vex.length);
7847 for (j = 0; j < i.vex.length; j++)
7848 p[j] = i.vex.bytes[j];
7849 }
7850
7851 /* Now the opcode; be careful about word order here! */
7852 if (i.tm.opcode_length == 1)
7853 {
7854 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7855 }
7856 else
7857 {
7858 switch (i.tm.opcode_length)
7859 {
7860 case 4:
7861 p = frag_more (4);
7862 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7863 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7864 break;
7865 case 3:
7866 p = frag_more (3);
7867 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7868 break;
7869 case 2:
7870 p = frag_more (2);
7871 break;
7872 default:
7873 abort ();
7874 break;
7875 }
7876
7877 /* Put out high byte first: can't use md_number_to_chars! */
7878 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7879 *p = i.tm.base_opcode & 0xff;
7880 }
7881
7882 /* Now the modrm byte and sib byte (if present). */
7883 if (i.tm.opcode_modifier.modrm)
7884 {
7885 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7886 | i.rm.reg << 3
7887 | i.rm.mode << 6));
7888 /* If i.rm.regmem == ESP (4)
7889 && i.rm.mode != (Register mode)
7890 && not 16 bit
7891 ==> need second modrm byte. */
7892 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7893 && i.rm.mode != 3
7894 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7895 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7896 | i.sib.index << 3
7897 | i.sib.scale << 6));
7898 }
7899
7900 if (i.disp_operands)
7901 output_disp (insn_start_frag, insn_start_off);
7902
7903 if (i.imm_operands)
7904 output_imm (insn_start_frag, insn_start_off);
7905 }
7906
7907 #ifdef DEBUG386
7908 if (flag_debug)
7909 {
7910 pi ("" /*line*/, &i);
7911 }
7912 #endif /* DEBUG386 */
7913 }
7914
7915 /* Return the size of the displacement operand N. */
7916
7917 static int
7918 disp_size (unsigned int n)
7919 {
7920 int size = 4;
7921
7922 if (i.types[n].bitfield.disp64)
7923 size = 8;
7924 else if (i.types[n].bitfield.disp8)
7925 size = 1;
7926 else if (i.types[n].bitfield.disp16)
7927 size = 2;
7928 return size;
7929 }
7930
7931 /* Return the size of the immediate operand N. */
7932
7933 static int
7934 imm_size (unsigned int n)
7935 {
7936 int size = 4;
7937 if (i.types[n].bitfield.imm64)
7938 size = 8;
7939 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7940 size = 1;
7941 else if (i.types[n].bitfield.imm16)
7942 size = 2;
7943 return size;
7944 }
7945
7946 static void
7947 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7948 {
7949 char *p;
7950 unsigned int n;
7951
7952 for (n = 0; n < i.operands; n++)
7953 {
7954 if (operand_type_check (i.types[n], disp))
7955 {
7956 if (i.op[n].disps->X_op == O_constant)
7957 {
7958 int size = disp_size (n);
7959 offsetT val = i.op[n].disps->X_add_number;
7960
7961 val = offset_in_range (val >> i.memshift, size);
7962 p = frag_more (size);
7963 md_number_to_chars (p, val, size);
7964 }
7965 else
7966 {
7967 enum bfd_reloc_code_real reloc_type;
7968 int size = disp_size (n);
7969 int sign = i.types[n].bitfield.disp32s;
7970 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7971 fixS *fixP;
7972
7973 /* We can't have 8 bit displacement here. */
7974 gas_assert (!i.types[n].bitfield.disp8);
7975
7976 /* The PC relative address is computed relative
7977 to the instruction boundary, so in case immediate
7978 fields follows, we need to adjust the value. */
7979 if (pcrel && i.imm_operands)
7980 {
7981 unsigned int n1;
7982 int sz = 0;
7983
7984 for (n1 = 0; n1 < i.operands; n1++)
7985 if (operand_type_check (i.types[n1], imm))
7986 {
7987 /* Only one immediate is allowed for PC
7988 relative address. */
7989 gas_assert (sz == 0);
7990 sz = imm_size (n1);
7991 i.op[n].disps->X_add_number -= sz;
7992 }
7993 /* We should find the immediate. */
7994 gas_assert (sz != 0);
7995 }
7996
7997 p = frag_more (size);
7998 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7999 if (GOT_symbol
8000 && GOT_symbol == i.op[n].disps->X_add_symbol
8001 && (((reloc_type == BFD_RELOC_32
8002 || reloc_type == BFD_RELOC_X86_64_32S
8003 || (reloc_type == BFD_RELOC_64
8004 && object_64bit))
8005 && (i.op[n].disps->X_op == O_symbol
8006 || (i.op[n].disps->X_op == O_add
8007 && ((symbol_get_value_expression
8008 (i.op[n].disps->X_op_symbol)->X_op)
8009 == O_subtract))))
8010 || reloc_type == BFD_RELOC_32_PCREL))
8011 {
8012 offsetT add;
8013
8014 if (insn_start_frag == frag_now)
8015 add = (p - frag_now->fr_literal) - insn_start_off;
8016 else
8017 {
8018 fragS *fr;
8019
8020 add = insn_start_frag->fr_fix - insn_start_off;
8021 for (fr = insn_start_frag->fr_next;
8022 fr && fr != frag_now; fr = fr->fr_next)
8023 add += fr->fr_fix;
8024 add += p - frag_now->fr_literal;
8025 }
8026
8027 if (!object_64bit)
8028 {
8029 reloc_type = BFD_RELOC_386_GOTPC;
8030 i.op[n].imms->X_add_number += add;
8031 }
8032 else if (reloc_type == BFD_RELOC_64)
8033 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8034 else
8035 /* Don't do the adjustment for x86-64, as there
8036 the pcrel addressing is relative to the _next_
8037 insn, and that is taken care of in other code. */
8038 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8039 }
8040 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8041 size, i.op[n].disps, pcrel,
8042 reloc_type);
8043 /* Check for "call/jmp *mem", "mov mem, %reg",
8044 "test %reg, mem" and "binop mem, %reg" where binop
8045 is one of adc, add, and, cmp, or, sbb, sub, xor
8046 instructions. Always generate R_386_GOT32X for
8047 "sym*GOT" operand in 32-bit mode. */
8048 if ((generate_relax_relocations
8049 || (!object_64bit
8050 && i.rm.mode == 0
8051 && i.rm.regmem == 5))
8052 && (i.rm.mode == 2
8053 || (i.rm.mode == 0 && i.rm.regmem == 5))
8054 && ((i.operands == 1
8055 && i.tm.base_opcode == 0xff
8056 && (i.rm.reg == 2 || i.rm.reg == 4))
8057 || (i.operands == 2
8058 && (i.tm.base_opcode == 0x8b
8059 || i.tm.base_opcode == 0x85
8060 || (i.tm.base_opcode & 0xc7) == 0x03))))
8061 {
8062 if (object_64bit)
8063 {
8064 fixP->fx_tcbit = i.rex != 0;
8065 if (i.base_reg
8066 && (i.base_reg->reg_num == RegRip
8067 || i.base_reg->reg_num == RegEip))
8068 fixP->fx_tcbit2 = 1;
8069 }
8070 else
8071 fixP->fx_tcbit2 = 1;
8072 }
8073 }
8074 }
8075 }
8076 }
8077
8078 static void
8079 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8080 {
8081 char *p;
8082 unsigned int n;
8083
8084 for (n = 0; n < i.operands; n++)
8085 {
8086 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8087 if (i.rounding && (int) n == i.rounding->operand)
8088 continue;
8089
8090 if (operand_type_check (i.types[n], imm))
8091 {
8092 if (i.op[n].imms->X_op == O_constant)
8093 {
8094 int size = imm_size (n);
8095 offsetT val;
8096
8097 val = offset_in_range (i.op[n].imms->X_add_number,
8098 size);
8099 p = frag_more (size);
8100 md_number_to_chars (p, val, size);
8101 }
8102 else
8103 {
8104 /* Not absolute_section.
8105 Need a 32-bit fixup (don't support 8bit
8106 non-absolute imms). Try to support other
8107 sizes ... */
8108 enum bfd_reloc_code_real reloc_type;
8109 int size = imm_size (n);
8110 int sign;
8111
8112 if (i.types[n].bitfield.imm32s
8113 && (i.suffix == QWORD_MNEM_SUFFIX
8114 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8115 sign = 1;
8116 else
8117 sign = 0;
8118
8119 p = frag_more (size);
8120 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8121
8122 /* This is tough to explain. We end up with this one if we
8123 * have operands that look like
8124 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8125 * obtain the absolute address of the GOT, and it is strongly
8126 * preferable from a performance point of view to avoid using
8127 * a runtime relocation for this. The actual sequence of
8128 * instructions often look something like:
8129 *
8130 * call .L66
8131 * .L66:
8132 * popl %ebx
8133 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8134 *
8135 * The call and pop essentially return the absolute address
8136 * of the label .L66 and store it in %ebx. The linker itself
8137 * will ultimately change the first operand of the addl so
8138 * that %ebx points to the GOT, but to keep things simple, the
8139 * .o file must have this operand set so that it generates not
8140 * the absolute address of .L66, but the absolute address of
8141 * itself. This allows the linker itself simply treat a GOTPC
8142 * relocation as asking for a pcrel offset to the GOT to be
8143 * added in, and the addend of the relocation is stored in the
8144 * operand field for the instruction itself.
8145 *
8146 * Our job here is to fix the operand so that it would add
8147 * the correct offset so that %ebx would point to itself. The
8148 * thing that is tricky is that .-.L66 will point to the
8149 * beginning of the instruction, so we need to further modify
8150 * the operand so that it will point to itself. There are
8151 * other cases where you have something like:
8152 *
8153 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8154 *
8155 * and here no correction would be required. Internally in
8156 * the assembler we treat operands of this form as not being
8157 * pcrel since the '.' is explicitly mentioned, and I wonder
8158 * whether it would simplify matters to do it this way. Who
8159 * knows. In earlier versions of the PIC patches, the
8160 * pcrel_adjust field was used to store the correction, but
8161 * since the expression is not pcrel, I felt it would be
8162 * confusing to do it this way. */
8163
8164 if ((reloc_type == BFD_RELOC_32
8165 || reloc_type == BFD_RELOC_X86_64_32S
8166 || reloc_type == BFD_RELOC_64)
8167 && GOT_symbol
8168 && GOT_symbol == i.op[n].imms->X_add_symbol
8169 && (i.op[n].imms->X_op == O_symbol
8170 || (i.op[n].imms->X_op == O_add
8171 && ((symbol_get_value_expression
8172 (i.op[n].imms->X_op_symbol)->X_op)
8173 == O_subtract))))
8174 {
8175 offsetT add;
8176
8177 if (insn_start_frag == frag_now)
8178 add = (p - frag_now->fr_literal) - insn_start_off;
8179 else
8180 {
8181 fragS *fr;
8182
8183 add = insn_start_frag->fr_fix - insn_start_off;
8184 for (fr = insn_start_frag->fr_next;
8185 fr && fr != frag_now; fr = fr->fr_next)
8186 add += fr->fr_fix;
8187 add += p - frag_now->fr_literal;
8188 }
8189
8190 if (!object_64bit)
8191 reloc_type = BFD_RELOC_386_GOTPC;
8192 else if (size == 4)
8193 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8194 else if (size == 8)
8195 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8196 i.op[n].imms->X_add_number += add;
8197 }
8198 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8199 i.op[n].imms, 0, reloc_type);
8200 }
8201 }
8202 }
8203 }
8204 \f
8205 /* x86_cons_fix_new is called via the expression parsing code when a
8206 reloc is needed. We use this hook to get the correct .got reloc. */
8207 static int cons_sign = -1;
8208
8209 void
8210 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8211 expressionS *exp, bfd_reloc_code_real_type r)
8212 {
8213 r = reloc (len, 0, cons_sign, r);
8214
8215 #ifdef TE_PE
8216 if (exp->X_op == O_secrel)
8217 {
8218 exp->X_op = O_symbol;
8219 r = BFD_RELOC_32_SECREL;
8220 }
8221 #endif
8222
8223 fix_new_exp (frag, off, len, exp, 0, r);
8224 }
8225
8226 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8227 purpose of the `.dc.a' internal pseudo-op. */
8228
8229 int
8230 x86_address_bytes (void)
8231 {
8232 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8233 return 4;
8234 return stdoutput->arch_info->bits_per_address / 8;
8235 }
8236
8237 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8238 || defined (LEX_AT)
8239 # define lex_got(reloc, adjust, types) NULL
8240 #else
8241 /* Parse operands of the form
8242 <symbol>@GOTOFF+<nnn>
8243 and similar .plt or .got references.
8244
8245 If we find one, set up the correct relocation in RELOC and copy the
8246 input string, minus the `@GOTOFF' into a malloc'd buffer for
8247 parsing by the calling routine. Return this buffer, and if ADJUST
8248 is non-null set it to the length of the string we removed from the
8249 input line. Otherwise return NULL. */
8250 static char *
8251 lex_got (enum bfd_reloc_code_real *rel,
8252 int *adjust,
8253 i386_operand_type *types)
8254 {
8255 /* Some of the relocations depend on the size of what field is to
8256 be relocated. But in our callers i386_immediate and i386_displacement
8257 we don't yet know the operand size (this will be set by insn
8258 matching). Hence we record the word32 relocation here,
8259 and adjust the reloc according to the real size in reloc(). */
8260 static const struct {
8261 const char *str;
8262 int len;
8263 const enum bfd_reloc_code_real rel[2];
8264 const i386_operand_type types64;
8265 } gotrel[] = {
8266 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8267 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8268 BFD_RELOC_SIZE32 },
8269 OPERAND_TYPE_IMM32_64 },
8270 #endif
8271 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8272 BFD_RELOC_X86_64_PLTOFF64 },
8273 OPERAND_TYPE_IMM64 },
8274 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8275 BFD_RELOC_X86_64_PLT32 },
8276 OPERAND_TYPE_IMM32_32S_DISP32 },
8277 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8278 BFD_RELOC_X86_64_GOTPLT64 },
8279 OPERAND_TYPE_IMM64_DISP64 },
8280 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8281 BFD_RELOC_X86_64_GOTOFF64 },
8282 OPERAND_TYPE_IMM64_DISP64 },
8283 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8284 BFD_RELOC_X86_64_GOTPCREL },
8285 OPERAND_TYPE_IMM32_32S_DISP32 },
8286 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8287 BFD_RELOC_X86_64_TLSGD },
8288 OPERAND_TYPE_IMM32_32S_DISP32 },
8289 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8290 _dummy_first_bfd_reloc_code_real },
8291 OPERAND_TYPE_NONE },
8292 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8293 BFD_RELOC_X86_64_TLSLD },
8294 OPERAND_TYPE_IMM32_32S_DISP32 },
8295 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8296 BFD_RELOC_X86_64_GOTTPOFF },
8297 OPERAND_TYPE_IMM32_32S_DISP32 },
8298 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8299 BFD_RELOC_X86_64_TPOFF32 },
8300 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8301 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8302 _dummy_first_bfd_reloc_code_real },
8303 OPERAND_TYPE_NONE },
8304 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8305 BFD_RELOC_X86_64_DTPOFF32 },
8306 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8307 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8308 _dummy_first_bfd_reloc_code_real },
8309 OPERAND_TYPE_NONE },
8310 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8311 _dummy_first_bfd_reloc_code_real },
8312 OPERAND_TYPE_NONE },
8313 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8314 BFD_RELOC_X86_64_GOT32 },
8315 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8316 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8317 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8318 OPERAND_TYPE_IMM32_32S_DISP32 },
8319 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8320 BFD_RELOC_X86_64_TLSDESC_CALL },
8321 OPERAND_TYPE_IMM32_32S_DISP32 },
8322 };
8323 char *cp;
8324 unsigned int j;
8325
8326 #if defined (OBJ_MAYBE_ELF)
8327 if (!IS_ELF)
8328 return NULL;
8329 #endif
8330
8331 for (cp = input_line_pointer; *cp != '@'; cp++)
8332 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8333 return NULL;
8334
8335 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8336 {
8337 int len = gotrel[j].len;
8338 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8339 {
8340 if (gotrel[j].rel[object_64bit] != 0)
8341 {
8342 int first, second;
8343 char *tmpbuf, *past_reloc;
8344
8345 *rel = gotrel[j].rel[object_64bit];
8346
8347 if (types)
8348 {
8349 if (flag_code != CODE_64BIT)
8350 {
8351 types->bitfield.imm32 = 1;
8352 types->bitfield.disp32 = 1;
8353 }
8354 else
8355 *types = gotrel[j].types64;
8356 }
8357
8358 if (j != 0 && GOT_symbol == NULL)
8359 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8360
8361 /* The length of the first part of our input line. */
8362 first = cp - input_line_pointer;
8363
8364 /* The second part goes from after the reloc token until
8365 (and including) an end_of_line char or comma. */
8366 past_reloc = cp + 1 + len;
8367 cp = past_reloc;
8368 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8369 ++cp;
8370 second = cp + 1 - past_reloc;
8371
8372 /* Allocate and copy string. The trailing NUL shouldn't
8373 be necessary, but be safe. */
8374 tmpbuf = XNEWVEC (char, first + second + 2);
8375 memcpy (tmpbuf, input_line_pointer, first);
8376 if (second != 0 && *past_reloc != ' ')
8377 /* Replace the relocation token with ' ', so that
8378 errors like foo@GOTOFF1 will be detected. */
8379 tmpbuf[first++] = ' ';
8380 else
8381 /* Increment length by 1 if the relocation token is
8382 removed. */
8383 len++;
8384 if (adjust)
8385 *adjust = len;
8386 memcpy (tmpbuf + first, past_reloc, second);
8387 tmpbuf[first + second] = '\0';
8388 return tmpbuf;
8389 }
8390
8391 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8392 gotrel[j].str, 1 << (5 + object_64bit));
8393 return NULL;
8394 }
8395 }
8396
8397 /* Might be a symbol version string. Don't as_bad here. */
8398 return NULL;
8399 }
8400 #endif
8401
8402 #ifdef TE_PE
8403 #ifdef lex_got
8404 #undef lex_got
8405 #endif
8406 /* Parse operands of the form
8407 <symbol>@SECREL32+<nnn>
8408
8409 If we find one, set up the correct relocation in RELOC and copy the
8410 input string, minus the `@SECREL32' into a malloc'd buffer for
8411 parsing by the calling routine. Return this buffer, and if ADJUST
8412 is non-null set it to the length of the string we removed from the
8413 input line. Otherwise return NULL.
8414
8415 This function is copied from the ELF version above adjusted for PE targets. */
8416
8417 static char *
8418 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8419 int *adjust ATTRIBUTE_UNUSED,
8420 i386_operand_type *types)
8421 {
8422 static const struct
8423 {
8424 const char *str;
8425 int len;
8426 const enum bfd_reloc_code_real rel[2];
8427 const i386_operand_type types64;
8428 }
8429 gotrel[] =
8430 {
8431 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8432 BFD_RELOC_32_SECREL },
8433 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8434 };
8435
8436 char *cp;
8437 unsigned j;
8438
8439 for (cp = input_line_pointer; *cp != '@'; cp++)
8440 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8441 return NULL;
8442
8443 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8444 {
8445 int len = gotrel[j].len;
8446
8447 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8448 {
8449 if (gotrel[j].rel[object_64bit] != 0)
8450 {
8451 int first, second;
8452 char *tmpbuf, *past_reloc;
8453
8454 *rel = gotrel[j].rel[object_64bit];
8455 if (adjust)
8456 *adjust = len;
8457
8458 if (types)
8459 {
8460 if (flag_code != CODE_64BIT)
8461 {
8462 types->bitfield.imm32 = 1;
8463 types->bitfield.disp32 = 1;
8464 }
8465 else
8466 *types = gotrel[j].types64;
8467 }
8468
8469 /* The length of the first part of our input line. */
8470 first = cp - input_line_pointer;
8471
8472 /* The second part goes from after the reloc token until
8473 (and including) an end_of_line char or comma. */
8474 past_reloc = cp + 1 + len;
8475 cp = past_reloc;
8476 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8477 ++cp;
8478 second = cp + 1 - past_reloc;
8479
8480 /* Allocate and copy string. The trailing NUL shouldn't
8481 be necessary, but be safe. */
8482 tmpbuf = XNEWVEC (char, first + second + 2);
8483 memcpy (tmpbuf, input_line_pointer, first);
8484 if (second != 0 && *past_reloc != ' ')
8485 /* Replace the relocation token with ' ', so that
8486 errors like foo@SECLREL321 will be detected. */
8487 tmpbuf[first++] = ' ';
8488 memcpy (tmpbuf + first, past_reloc, second);
8489 tmpbuf[first + second] = '\0';
8490 return tmpbuf;
8491 }
8492
8493 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8494 gotrel[j].str, 1 << (5 + object_64bit));
8495 return NULL;
8496 }
8497 }
8498
8499 /* Might be a symbol version string. Don't as_bad here. */
8500 return NULL;
8501 }
8502
8503 #endif /* TE_PE */
8504
8505 bfd_reloc_code_real_type
8506 x86_cons (expressionS *exp, int size)
8507 {
8508 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8509
8510 intel_syntax = -intel_syntax;
8511
8512 exp->X_md = 0;
8513 if (size == 4 || (object_64bit && size == 8))
8514 {
8515 /* Handle @GOTOFF and the like in an expression. */
8516 char *save;
8517 char *gotfree_input_line;
8518 int adjust = 0;
8519
8520 save = input_line_pointer;
8521 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8522 if (gotfree_input_line)
8523 input_line_pointer = gotfree_input_line;
8524
8525 expression (exp);
8526
8527 if (gotfree_input_line)
8528 {
8529 /* expression () has merrily parsed up to the end of line,
8530 or a comma - in the wrong buffer. Transfer how far
8531 input_line_pointer has moved to the right buffer. */
8532 input_line_pointer = (save
8533 + (input_line_pointer - gotfree_input_line)
8534 + adjust);
8535 free (gotfree_input_line);
8536 if (exp->X_op == O_constant
8537 || exp->X_op == O_absent
8538 || exp->X_op == O_illegal
8539 || exp->X_op == O_register
8540 || exp->X_op == O_big)
8541 {
8542 char c = *input_line_pointer;
8543 *input_line_pointer = 0;
8544 as_bad (_("missing or invalid expression `%s'"), save);
8545 *input_line_pointer = c;
8546 }
8547 }
8548 }
8549 else
8550 expression (exp);
8551
8552 intel_syntax = -intel_syntax;
8553
8554 if (intel_syntax)
8555 i386_intel_simplify (exp);
8556
8557 return got_reloc;
8558 }
8559
8560 static void
8561 signed_cons (int size)
8562 {
8563 if (flag_code == CODE_64BIT)
8564 cons_sign = 1;
8565 cons (size);
8566 cons_sign = -1;
8567 }
8568
8569 #ifdef TE_PE
8570 static void
8571 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8572 {
8573 expressionS exp;
8574
8575 do
8576 {
8577 expression (&exp);
8578 if (exp.X_op == O_symbol)
8579 exp.X_op = O_secrel;
8580
8581 emit_expr (&exp, 4);
8582 }
8583 while (*input_line_pointer++ == ',');
8584
8585 input_line_pointer--;
8586 demand_empty_rest_of_line ();
8587 }
8588 #endif
8589
8590 /* Handle Vector operations. */
8591
8592 static char *
8593 check_VecOperations (char *op_string, char *op_end)
8594 {
8595 const reg_entry *mask;
8596 const char *saved;
8597 char *end_op;
8598
8599 while (*op_string
8600 && (op_end == NULL || op_string < op_end))
8601 {
8602 saved = op_string;
8603 if (*op_string == '{')
8604 {
8605 op_string++;
8606
8607 /* Check broadcasts. */
8608 if (strncmp (op_string, "1to", 3) == 0)
8609 {
8610 int bcst_type;
8611
8612 if (i.broadcast)
8613 goto duplicated_vec_op;
8614
8615 op_string += 3;
8616 if (*op_string == '8')
8617 bcst_type = 8;
8618 else if (*op_string == '4')
8619 bcst_type = 4;
8620 else if (*op_string == '2')
8621 bcst_type = 2;
8622 else if (*op_string == '1'
8623 && *(op_string+1) == '6')
8624 {
8625 bcst_type = 16;
8626 op_string++;
8627 }
8628 else
8629 {
8630 as_bad (_("Unsupported broadcast: `%s'"), saved);
8631 return NULL;
8632 }
8633 op_string++;
8634
8635 broadcast_op.type = bcst_type;
8636 broadcast_op.operand = this_operand;
8637 i.broadcast = &broadcast_op;
8638 }
8639 /* Check masking operation. */
8640 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8641 {
8642 /* k0 can't be used for write mask. */
8643 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8644 {
8645 as_bad (_("`%s%s' can't be used for write mask"),
8646 register_prefix, mask->reg_name);
8647 return NULL;
8648 }
8649
8650 if (!i.mask)
8651 {
8652 mask_op.mask = mask;
8653 mask_op.zeroing = 0;
8654 mask_op.operand = this_operand;
8655 i.mask = &mask_op;
8656 }
8657 else
8658 {
8659 if (i.mask->mask)
8660 goto duplicated_vec_op;
8661
8662 i.mask->mask = mask;
8663
8664 /* Only "{z}" is allowed here. No need to check
8665 zeroing mask explicitly. */
8666 if (i.mask->operand != this_operand)
8667 {
8668 as_bad (_("invalid write mask `%s'"), saved);
8669 return NULL;
8670 }
8671 }
8672
8673 op_string = end_op;
8674 }
8675 /* Check zeroing-flag for masking operation. */
8676 else if (*op_string == 'z')
8677 {
8678 if (!i.mask)
8679 {
8680 mask_op.mask = NULL;
8681 mask_op.zeroing = 1;
8682 mask_op.operand = this_operand;
8683 i.mask = &mask_op;
8684 }
8685 else
8686 {
8687 if (i.mask->zeroing)
8688 {
8689 duplicated_vec_op:
8690 as_bad (_("duplicated `%s'"), saved);
8691 return NULL;
8692 }
8693
8694 i.mask->zeroing = 1;
8695
8696 /* Only "{%k}" is allowed here. No need to check mask
8697 register explicitly. */
8698 if (i.mask->operand != this_operand)
8699 {
8700 as_bad (_("invalid zeroing-masking `%s'"),
8701 saved);
8702 return NULL;
8703 }
8704 }
8705
8706 op_string++;
8707 }
8708 else
8709 goto unknown_vec_op;
8710
8711 if (*op_string != '}')
8712 {
8713 as_bad (_("missing `}' in `%s'"), saved);
8714 return NULL;
8715 }
8716 op_string++;
8717
8718 /* Strip whitespace since the addition of pseudo prefixes
8719 changed how the scrubber treats '{'. */
8720 if (is_space_char (*op_string))
8721 ++op_string;
8722
8723 continue;
8724 }
8725 unknown_vec_op:
8726 /* We don't know this one. */
8727 as_bad (_("unknown vector operation: `%s'"), saved);
8728 return NULL;
8729 }
8730
8731 if (i.mask && i.mask->zeroing && !i.mask->mask)
8732 {
8733 as_bad (_("zeroing-masking only allowed with write mask"));
8734 return NULL;
8735 }
8736
8737 return op_string;
8738 }
8739
8740 static int
8741 i386_immediate (char *imm_start)
8742 {
8743 char *save_input_line_pointer;
8744 char *gotfree_input_line;
8745 segT exp_seg = 0;
8746 expressionS *exp;
8747 i386_operand_type types;
8748
8749 operand_type_set (&types, ~0);
8750
8751 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8752 {
8753 as_bad (_("at most %d immediate operands are allowed"),
8754 MAX_IMMEDIATE_OPERANDS);
8755 return 0;
8756 }
8757
8758 exp = &im_expressions[i.imm_operands++];
8759 i.op[this_operand].imms = exp;
8760
8761 if (is_space_char (*imm_start))
8762 ++imm_start;
8763
8764 save_input_line_pointer = input_line_pointer;
8765 input_line_pointer = imm_start;
8766
8767 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8768 if (gotfree_input_line)
8769 input_line_pointer = gotfree_input_line;
8770
8771 exp_seg = expression (exp);
8772
8773 SKIP_WHITESPACE ();
8774
8775 /* Handle vector operations. */
8776 if (*input_line_pointer == '{')
8777 {
8778 input_line_pointer = check_VecOperations (input_line_pointer,
8779 NULL);
8780 if (input_line_pointer == NULL)
8781 return 0;
8782 }
8783
8784 if (*input_line_pointer)
8785 as_bad (_("junk `%s' after expression"), input_line_pointer);
8786
8787 input_line_pointer = save_input_line_pointer;
8788 if (gotfree_input_line)
8789 {
8790 free (gotfree_input_line);
8791
8792 if (exp->X_op == O_constant || exp->X_op == O_register)
8793 exp->X_op = O_illegal;
8794 }
8795
8796 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8797 }
8798
8799 static int
8800 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8801 i386_operand_type types, const char *imm_start)
8802 {
8803 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8804 {
8805 if (imm_start)
8806 as_bad (_("missing or invalid immediate expression `%s'"),
8807 imm_start);
8808 return 0;
8809 }
8810 else if (exp->X_op == O_constant)
8811 {
8812 /* Size it properly later. */
8813 i.types[this_operand].bitfield.imm64 = 1;
8814 /* If not 64bit, sign extend val. */
8815 if (flag_code != CODE_64BIT
8816 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8817 exp->X_add_number
8818 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8819 }
8820 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8821 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8822 && exp_seg != absolute_section
8823 && exp_seg != text_section
8824 && exp_seg != data_section
8825 && exp_seg != bss_section
8826 && exp_seg != undefined_section
8827 && !bfd_is_com_section (exp_seg))
8828 {
8829 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8830 return 0;
8831 }
8832 #endif
8833 else if (!intel_syntax && exp_seg == reg_section)
8834 {
8835 if (imm_start)
8836 as_bad (_("illegal immediate register operand %s"), imm_start);
8837 return 0;
8838 }
8839 else
8840 {
8841 /* This is an address. The size of the address will be
8842 determined later, depending on destination register,
8843 suffix, or the default for the section. */
8844 i.types[this_operand].bitfield.imm8 = 1;
8845 i.types[this_operand].bitfield.imm16 = 1;
8846 i.types[this_operand].bitfield.imm32 = 1;
8847 i.types[this_operand].bitfield.imm32s = 1;
8848 i.types[this_operand].bitfield.imm64 = 1;
8849 i.types[this_operand] = operand_type_and (i.types[this_operand],
8850 types);
8851 }
8852
8853 return 1;
8854 }
8855
8856 static char *
8857 i386_scale (char *scale)
8858 {
8859 offsetT val;
8860 char *save = input_line_pointer;
8861
8862 input_line_pointer = scale;
8863 val = get_absolute_expression ();
8864
8865 switch (val)
8866 {
8867 case 1:
8868 i.log2_scale_factor = 0;
8869 break;
8870 case 2:
8871 i.log2_scale_factor = 1;
8872 break;
8873 case 4:
8874 i.log2_scale_factor = 2;
8875 break;
8876 case 8:
8877 i.log2_scale_factor = 3;
8878 break;
8879 default:
8880 {
8881 char sep = *input_line_pointer;
8882
8883 *input_line_pointer = '\0';
8884 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8885 scale);
8886 *input_line_pointer = sep;
8887 input_line_pointer = save;
8888 return NULL;
8889 }
8890 }
8891 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8892 {
8893 as_warn (_("scale factor of %d without an index register"),
8894 1 << i.log2_scale_factor);
8895 i.log2_scale_factor = 0;
8896 }
8897 scale = input_line_pointer;
8898 input_line_pointer = save;
8899 return scale;
8900 }
8901
8902 static int
8903 i386_displacement (char *disp_start, char *disp_end)
8904 {
8905 expressionS *exp;
8906 segT exp_seg = 0;
8907 char *save_input_line_pointer;
8908 char *gotfree_input_line;
8909 int override;
8910 i386_operand_type bigdisp, types = anydisp;
8911 int ret;
8912
8913 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8914 {
8915 as_bad (_("at most %d displacement operands are allowed"),
8916 MAX_MEMORY_OPERANDS);
8917 return 0;
8918 }
8919
8920 operand_type_set (&bigdisp, 0);
8921 if ((i.types[this_operand].bitfield.jumpabsolute)
8922 || (!current_templates->start->opcode_modifier.jump
8923 && !current_templates->start->opcode_modifier.jumpdword))
8924 {
8925 bigdisp.bitfield.disp32 = 1;
8926 override = (i.prefix[ADDR_PREFIX] != 0);
8927 if (flag_code == CODE_64BIT)
8928 {
8929 if (!override)
8930 {
8931 bigdisp.bitfield.disp32s = 1;
8932 bigdisp.bitfield.disp64 = 1;
8933 }
8934 }
8935 else if ((flag_code == CODE_16BIT) ^ override)
8936 {
8937 bigdisp.bitfield.disp32 = 0;
8938 bigdisp.bitfield.disp16 = 1;
8939 }
8940 }
8941 else
8942 {
8943 /* For PC-relative branches, the width of the displacement
8944 is dependent upon data size, not address size. */
8945 override = (i.prefix[DATA_PREFIX] != 0);
8946 if (flag_code == CODE_64BIT)
8947 {
8948 if (override || i.suffix == WORD_MNEM_SUFFIX)
8949 bigdisp.bitfield.disp16 = 1;
8950 else
8951 {
8952 bigdisp.bitfield.disp32 = 1;
8953 bigdisp.bitfield.disp32s = 1;
8954 }
8955 }
8956 else
8957 {
8958 if (!override)
8959 override = (i.suffix == (flag_code != CODE_16BIT
8960 ? WORD_MNEM_SUFFIX
8961 : LONG_MNEM_SUFFIX));
8962 bigdisp.bitfield.disp32 = 1;
8963 if ((flag_code == CODE_16BIT) ^ override)
8964 {
8965 bigdisp.bitfield.disp32 = 0;
8966 bigdisp.bitfield.disp16 = 1;
8967 }
8968 }
8969 }
8970 i.types[this_operand] = operand_type_or (i.types[this_operand],
8971 bigdisp);
8972
8973 exp = &disp_expressions[i.disp_operands];
8974 i.op[this_operand].disps = exp;
8975 i.disp_operands++;
8976 save_input_line_pointer = input_line_pointer;
8977 input_line_pointer = disp_start;
8978 END_STRING_AND_SAVE (disp_end);
8979
8980 #ifndef GCC_ASM_O_HACK
8981 #define GCC_ASM_O_HACK 0
8982 #endif
8983 #if GCC_ASM_O_HACK
8984 END_STRING_AND_SAVE (disp_end + 1);
8985 if (i.types[this_operand].bitfield.baseIndex
8986 && displacement_string_end[-1] == '+')
8987 {
8988 /* This hack is to avoid a warning when using the "o"
8989 constraint within gcc asm statements.
8990 For instance:
8991
8992 #define _set_tssldt_desc(n,addr,limit,type) \
8993 __asm__ __volatile__ ( \
8994 "movw %w2,%0\n\t" \
8995 "movw %w1,2+%0\n\t" \
8996 "rorl $16,%1\n\t" \
8997 "movb %b1,4+%0\n\t" \
8998 "movb %4,5+%0\n\t" \
8999 "movb $0,6+%0\n\t" \
9000 "movb %h1,7+%0\n\t" \
9001 "rorl $16,%1" \
9002 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9003
9004 This works great except that the output assembler ends
9005 up looking a bit weird if it turns out that there is
9006 no offset. You end up producing code that looks like:
9007
9008 #APP
9009 movw $235,(%eax)
9010 movw %dx,2+(%eax)
9011 rorl $16,%edx
9012 movb %dl,4+(%eax)
9013 movb $137,5+(%eax)
9014 movb $0,6+(%eax)
9015 movb %dh,7+(%eax)
9016 rorl $16,%edx
9017 #NO_APP
9018
9019 So here we provide the missing zero. */
9020
9021 *displacement_string_end = '0';
9022 }
9023 #endif
9024 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9025 if (gotfree_input_line)
9026 input_line_pointer = gotfree_input_line;
9027
9028 exp_seg = expression (exp);
9029
9030 SKIP_WHITESPACE ();
9031 if (*input_line_pointer)
9032 as_bad (_("junk `%s' after expression"), input_line_pointer);
9033 #if GCC_ASM_O_HACK
9034 RESTORE_END_STRING (disp_end + 1);
9035 #endif
9036 input_line_pointer = save_input_line_pointer;
9037 if (gotfree_input_line)
9038 {
9039 free (gotfree_input_line);
9040
9041 if (exp->X_op == O_constant || exp->X_op == O_register)
9042 exp->X_op = O_illegal;
9043 }
9044
9045 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9046
9047 RESTORE_END_STRING (disp_end);
9048
9049 return ret;
9050 }
9051
9052 static int
9053 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9054 i386_operand_type types, const char *disp_start)
9055 {
9056 i386_operand_type bigdisp;
9057 int ret = 1;
9058
9059 /* We do this to make sure that the section symbol is in
9060 the symbol table. We will ultimately change the relocation
9061 to be relative to the beginning of the section. */
9062 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9063 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9064 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9065 {
9066 if (exp->X_op != O_symbol)
9067 goto inv_disp;
9068
9069 if (S_IS_LOCAL (exp->X_add_symbol)
9070 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9071 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9072 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9073 exp->X_op = O_subtract;
9074 exp->X_op_symbol = GOT_symbol;
9075 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9076 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9077 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9078 i.reloc[this_operand] = BFD_RELOC_64;
9079 else
9080 i.reloc[this_operand] = BFD_RELOC_32;
9081 }
9082
9083 else if (exp->X_op == O_absent
9084 || exp->X_op == O_illegal
9085 || exp->X_op == O_big)
9086 {
9087 inv_disp:
9088 as_bad (_("missing or invalid displacement expression `%s'"),
9089 disp_start);
9090 ret = 0;
9091 }
9092
9093 else if (flag_code == CODE_64BIT
9094 && !i.prefix[ADDR_PREFIX]
9095 && exp->X_op == O_constant)
9096 {
9097 /* Since displacement is signed extended to 64bit, don't allow
9098 disp32 and turn off disp32s if they are out of range. */
9099 i.types[this_operand].bitfield.disp32 = 0;
9100 if (!fits_in_signed_long (exp->X_add_number))
9101 {
9102 i.types[this_operand].bitfield.disp32s = 0;
9103 if (i.types[this_operand].bitfield.baseindex)
9104 {
9105 as_bad (_("0x%lx out range of signed 32bit displacement"),
9106 (long) exp->X_add_number);
9107 ret = 0;
9108 }
9109 }
9110 }
9111
9112 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9113 else if (exp->X_op != O_constant
9114 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9115 && exp_seg != absolute_section
9116 && exp_seg != text_section
9117 && exp_seg != data_section
9118 && exp_seg != bss_section
9119 && exp_seg != undefined_section
9120 && !bfd_is_com_section (exp_seg))
9121 {
9122 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9123 ret = 0;
9124 }
9125 #endif
9126
9127 /* Check if this is a displacement only operand. */
9128 bigdisp = i.types[this_operand];
9129 bigdisp.bitfield.disp8 = 0;
9130 bigdisp.bitfield.disp16 = 0;
9131 bigdisp.bitfield.disp32 = 0;
9132 bigdisp.bitfield.disp32s = 0;
9133 bigdisp.bitfield.disp64 = 0;
9134 if (operand_type_all_zero (&bigdisp))
9135 i.types[this_operand] = operand_type_and (i.types[this_operand],
9136 types);
9137
9138 return ret;
9139 }
9140
9141 /* Return the active addressing mode, taking address override and
9142 registers forming the address into consideration. Update the
9143 address override prefix if necessary. */
9144
9145 static enum flag_code
9146 i386_addressing_mode (void)
9147 {
9148 enum flag_code addr_mode;
9149
9150 if (i.prefix[ADDR_PREFIX])
9151 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9152 else
9153 {
9154 addr_mode = flag_code;
9155
9156 #if INFER_ADDR_PREFIX
9157 if (i.mem_operands == 0)
9158 {
9159 /* Infer address prefix from the first memory operand. */
9160 const reg_entry *addr_reg = i.base_reg;
9161
9162 if (addr_reg == NULL)
9163 addr_reg = i.index_reg;
9164
9165 if (addr_reg)
9166 {
9167 if (addr_reg->reg_num == RegEip
9168 || addr_reg->reg_num == RegEiz
9169 || addr_reg->reg_type.bitfield.dword)
9170 addr_mode = CODE_32BIT;
9171 else if (flag_code != CODE_64BIT
9172 && addr_reg->reg_type.bitfield.word)
9173 addr_mode = CODE_16BIT;
9174
9175 if (addr_mode != flag_code)
9176 {
9177 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9178 i.prefixes += 1;
9179 /* Change the size of any displacement too. At most one
9180 of Disp16 or Disp32 is set.
9181 FIXME. There doesn't seem to be any real need for
9182 separate Disp16 and Disp32 flags. The same goes for
9183 Imm16 and Imm32. Removing them would probably clean
9184 up the code quite a lot. */
9185 if (flag_code != CODE_64BIT
9186 && (i.types[this_operand].bitfield.disp16
9187 || i.types[this_operand].bitfield.disp32))
9188 i.types[this_operand]
9189 = operand_type_xor (i.types[this_operand], disp16_32);
9190 }
9191 }
9192 }
9193 #endif
9194 }
9195
9196 return addr_mode;
9197 }
9198
9199 /* Make sure the memory operand we've been dealt is valid.
9200 Return 1 on success, 0 on a failure. */
9201
9202 static int
9203 i386_index_check (const char *operand_string)
9204 {
9205 const char *kind = "base/index";
9206 enum flag_code addr_mode = i386_addressing_mode ();
9207
9208 if (current_templates->start->opcode_modifier.isstring
9209 && !current_templates->start->opcode_modifier.immext
9210 && (current_templates->end[-1].opcode_modifier.isstring
9211 || i.mem_operands))
9212 {
9213 /* Memory operands of string insns are special in that they only allow
9214 a single register (rDI, rSI, or rBX) as their memory address. */
9215 const reg_entry *expected_reg;
9216 static const char *di_si[][2] =
9217 {
9218 { "esi", "edi" },
9219 { "si", "di" },
9220 { "rsi", "rdi" }
9221 };
9222 static const char *bx[] = { "ebx", "bx", "rbx" };
9223
9224 kind = "string address";
9225
9226 if (current_templates->start->opcode_modifier.repprefixok)
9227 {
9228 i386_operand_type type = current_templates->end[-1].operand_types[0];
9229
9230 if (!type.bitfield.baseindex
9231 || ((!i.mem_operands != !intel_syntax)
9232 && current_templates->end[-1].operand_types[1]
9233 .bitfield.baseindex))
9234 type = current_templates->end[-1].operand_types[1];
9235 expected_reg = hash_find (reg_hash,
9236 di_si[addr_mode][type.bitfield.esseg]);
9237
9238 }
9239 else
9240 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9241
9242 if (i.base_reg != expected_reg
9243 || i.index_reg
9244 || operand_type_check (i.types[this_operand], disp))
9245 {
9246 /* The second memory operand must have the same size as
9247 the first one. */
9248 if (i.mem_operands
9249 && i.base_reg
9250 && !((addr_mode == CODE_64BIT
9251 && i.base_reg->reg_type.bitfield.qword)
9252 || (addr_mode == CODE_32BIT
9253 ? i.base_reg->reg_type.bitfield.dword
9254 : i.base_reg->reg_type.bitfield.word)))
9255 goto bad_address;
9256
9257 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9258 operand_string,
9259 intel_syntax ? '[' : '(',
9260 register_prefix,
9261 expected_reg->reg_name,
9262 intel_syntax ? ']' : ')');
9263 return 1;
9264 }
9265 else
9266 return 1;
9267
9268 bad_address:
9269 as_bad (_("`%s' is not a valid %s expression"),
9270 operand_string, kind);
9271 return 0;
9272 }
9273 else
9274 {
9275 if (addr_mode != CODE_16BIT)
9276 {
9277 /* 32-bit/64-bit checks. */
9278 if ((i.base_reg
9279 && (addr_mode == CODE_64BIT
9280 ? !i.base_reg->reg_type.bitfield.qword
9281 : !i.base_reg->reg_type.bitfield.dword)
9282 && (i.index_reg
9283 || (i.base_reg->reg_num
9284 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9285 || (i.index_reg
9286 && !i.index_reg->reg_type.bitfield.xmmword
9287 && !i.index_reg->reg_type.bitfield.ymmword
9288 && !i.index_reg->reg_type.bitfield.zmmword
9289 && ((addr_mode == CODE_64BIT
9290 ? !(i.index_reg->reg_type.bitfield.qword
9291 || i.index_reg->reg_num == RegRiz)
9292 : !(i.index_reg->reg_type.bitfield.dword
9293 || i.index_reg->reg_num == RegEiz))
9294 || !i.index_reg->reg_type.bitfield.baseindex)))
9295 goto bad_address;
9296
9297 /* bndmk, bndldx, and bndstx have special restrictions. */
9298 if (current_templates->start->base_opcode == 0xf30f1b
9299 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9300 {
9301 /* They cannot use RIP-relative addressing. */
9302 if (i.base_reg && i.base_reg->reg_num == RegRip)
9303 {
9304 as_bad (_("`%s' cannot be used here"), operand_string);
9305 return 0;
9306 }
9307
9308 /* bndldx and bndstx ignore their scale factor. */
9309 if (current_templates->start->base_opcode != 0xf30f1b
9310 && i.log2_scale_factor)
9311 as_warn (_("register scaling is being ignored here"));
9312 }
9313 }
9314 else
9315 {
9316 /* 16-bit checks. */
9317 if ((i.base_reg
9318 && (!i.base_reg->reg_type.bitfield.word
9319 || !i.base_reg->reg_type.bitfield.baseindex))
9320 || (i.index_reg
9321 && (!i.index_reg->reg_type.bitfield.word
9322 || !i.index_reg->reg_type.bitfield.baseindex
9323 || !(i.base_reg
9324 && i.base_reg->reg_num < 6
9325 && i.index_reg->reg_num >= 6
9326 && i.log2_scale_factor == 0))))
9327 goto bad_address;
9328 }
9329 }
9330 return 1;
9331 }
9332
9333 /* Handle vector immediates. */
9334
9335 static int
9336 RC_SAE_immediate (const char *imm_start)
9337 {
9338 unsigned int match_found, j;
9339 const char *pstr = imm_start;
9340 expressionS *exp;
9341
9342 if (*pstr != '{')
9343 return 0;
9344
9345 pstr++;
9346 match_found = 0;
9347 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9348 {
9349 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9350 {
9351 if (!i.rounding)
9352 {
9353 rc_op.type = RC_NamesTable[j].type;
9354 rc_op.operand = this_operand;
9355 i.rounding = &rc_op;
9356 }
9357 else
9358 {
9359 as_bad (_("duplicated `%s'"), imm_start);
9360 return 0;
9361 }
9362 pstr += RC_NamesTable[j].len;
9363 match_found = 1;
9364 break;
9365 }
9366 }
9367 if (!match_found)
9368 return 0;
9369
9370 if (*pstr++ != '}')
9371 {
9372 as_bad (_("Missing '}': '%s'"), imm_start);
9373 return 0;
9374 }
9375 /* RC/SAE immediate string should contain nothing more. */;
9376 if (*pstr != 0)
9377 {
9378 as_bad (_("Junk after '}': '%s'"), imm_start);
9379 return 0;
9380 }
9381
9382 exp = &im_expressions[i.imm_operands++];
9383 i.op[this_operand].imms = exp;
9384
9385 exp->X_op = O_constant;
9386 exp->X_add_number = 0;
9387 exp->X_add_symbol = (symbolS *) 0;
9388 exp->X_op_symbol = (symbolS *) 0;
9389
9390 i.types[this_operand].bitfield.imm8 = 1;
9391 return 1;
9392 }
9393
9394 /* Only string instructions can have a second memory operand, so
9395 reduce current_templates to just those if it contains any. */
9396 static int
9397 maybe_adjust_templates (void)
9398 {
9399 const insn_template *t;
9400
9401 gas_assert (i.mem_operands == 1);
9402
9403 for (t = current_templates->start; t < current_templates->end; ++t)
9404 if (t->opcode_modifier.isstring)
9405 break;
9406
9407 if (t < current_templates->end)
9408 {
9409 static templates aux_templates;
9410 bfd_boolean recheck;
9411
9412 aux_templates.start = t;
9413 for (; t < current_templates->end; ++t)
9414 if (!t->opcode_modifier.isstring)
9415 break;
9416 aux_templates.end = t;
9417
9418 /* Determine whether to re-check the first memory operand. */
9419 recheck = (aux_templates.start != current_templates->start
9420 || t != current_templates->end);
9421
9422 current_templates = &aux_templates;
9423
9424 if (recheck)
9425 {
9426 i.mem_operands = 0;
9427 if (i.memop1_string != NULL
9428 && i386_index_check (i.memop1_string) == 0)
9429 return 0;
9430 i.mem_operands = 1;
9431 }
9432 }
9433
9434 return 1;
9435 }
9436
9437 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9438 on error. */
9439
9440 static int
9441 i386_att_operand (char *operand_string)
9442 {
9443 const reg_entry *r;
9444 char *end_op;
9445 char *op_string = operand_string;
9446
9447 if (is_space_char (*op_string))
9448 ++op_string;
9449
9450 /* We check for an absolute prefix (differentiating,
9451 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9452 if (*op_string == ABSOLUTE_PREFIX)
9453 {
9454 ++op_string;
9455 if (is_space_char (*op_string))
9456 ++op_string;
9457 i.types[this_operand].bitfield.jumpabsolute = 1;
9458 }
9459
9460 /* Check if operand is a register. */
9461 if ((r = parse_register (op_string, &end_op)) != NULL)
9462 {
9463 i386_operand_type temp;
9464
9465 /* Check for a segment override by searching for ':' after a
9466 segment register. */
9467 op_string = end_op;
9468 if (is_space_char (*op_string))
9469 ++op_string;
9470 if (*op_string == ':'
9471 && (r->reg_type.bitfield.sreg2
9472 || r->reg_type.bitfield.sreg3))
9473 {
9474 switch (r->reg_num)
9475 {
9476 case 0:
9477 i.seg[i.mem_operands] = &es;
9478 break;
9479 case 1:
9480 i.seg[i.mem_operands] = &cs;
9481 break;
9482 case 2:
9483 i.seg[i.mem_operands] = &ss;
9484 break;
9485 case 3:
9486 i.seg[i.mem_operands] = &ds;
9487 break;
9488 case 4:
9489 i.seg[i.mem_operands] = &fs;
9490 break;
9491 case 5:
9492 i.seg[i.mem_operands] = &gs;
9493 break;
9494 }
9495
9496 /* Skip the ':' and whitespace. */
9497 ++op_string;
9498 if (is_space_char (*op_string))
9499 ++op_string;
9500
9501 if (!is_digit_char (*op_string)
9502 && !is_identifier_char (*op_string)
9503 && *op_string != '('
9504 && *op_string != ABSOLUTE_PREFIX)
9505 {
9506 as_bad (_("bad memory operand `%s'"), op_string);
9507 return 0;
9508 }
9509 /* Handle case of %es:*foo. */
9510 if (*op_string == ABSOLUTE_PREFIX)
9511 {
9512 ++op_string;
9513 if (is_space_char (*op_string))
9514 ++op_string;
9515 i.types[this_operand].bitfield.jumpabsolute = 1;
9516 }
9517 goto do_memory_reference;
9518 }
9519
9520 /* Handle vector operations. */
9521 if (*op_string == '{')
9522 {
9523 op_string = check_VecOperations (op_string, NULL);
9524 if (op_string == NULL)
9525 return 0;
9526 }
9527
9528 if (*op_string)
9529 {
9530 as_bad (_("junk `%s' after register"), op_string);
9531 return 0;
9532 }
9533 temp = r->reg_type;
9534 temp.bitfield.baseindex = 0;
9535 i.types[this_operand] = operand_type_or (i.types[this_operand],
9536 temp);
9537 i.types[this_operand].bitfield.unspecified = 0;
9538 i.op[this_operand].regs = r;
9539 i.reg_operands++;
9540 }
9541 else if (*op_string == REGISTER_PREFIX)
9542 {
9543 as_bad (_("bad register name `%s'"), op_string);
9544 return 0;
9545 }
9546 else if (*op_string == IMMEDIATE_PREFIX)
9547 {
9548 ++op_string;
9549 if (i.types[this_operand].bitfield.jumpabsolute)
9550 {
9551 as_bad (_("immediate operand illegal with absolute jump"));
9552 return 0;
9553 }
9554 if (!i386_immediate (op_string))
9555 return 0;
9556 }
9557 else if (RC_SAE_immediate (operand_string))
9558 {
9559 /* If it is a RC or SAE immediate, do nothing. */
9560 ;
9561 }
9562 else if (is_digit_char (*op_string)
9563 || is_identifier_char (*op_string)
9564 || *op_string == '"'
9565 || *op_string == '(')
9566 {
9567 /* This is a memory reference of some sort. */
9568 char *base_string;
9569
9570 /* Start and end of displacement string expression (if found). */
9571 char *displacement_string_start;
9572 char *displacement_string_end;
9573 char *vop_start;
9574
9575 do_memory_reference:
9576 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9577 return 0;
9578 if ((i.mem_operands == 1
9579 && !current_templates->start->opcode_modifier.isstring)
9580 || i.mem_operands == 2)
9581 {
9582 as_bad (_("too many memory references for `%s'"),
9583 current_templates->start->name);
9584 return 0;
9585 }
9586
9587 /* Check for base index form. We detect the base index form by
9588 looking for an ')' at the end of the operand, searching
9589 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9590 after the '('. */
9591 base_string = op_string + strlen (op_string);
9592
9593 /* Handle vector operations. */
9594 vop_start = strchr (op_string, '{');
9595 if (vop_start && vop_start < base_string)
9596 {
9597 if (check_VecOperations (vop_start, base_string) == NULL)
9598 return 0;
9599 base_string = vop_start;
9600 }
9601
9602 --base_string;
9603 if (is_space_char (*base_string))
9604 --base_string;
9605
9606 /* If we only have a displacement, set-up for it to be parsed later. */
9607 displacement_string_start = op_string;
9608 displacement_string_end = base_string + 1;
9609
9610 if (*base_string == ')')
9611 {
9612 char *temp_string;
9613 unsigned int parens_balanced = 1;
9614 /* We've already checked that the number of left & right ()'s are
9615 equal, so this loop will not be infinite. */
9616 do
9617 {
9618 base_string--;
9619 if (*base_string == ')')
9620 parens_balanced++;
9621 if (*base_string == '(')
9622 parens_balanced--;
9623 }
9624 while (parens_balanced);
9625
9626 temp_string = base_string;
9627
9628 /* Skip past '(' and whitespace. */
9629 ++base_string;
9630 if (is_space_char (*base_string))
9631 ++base_string;
9632
9633 if (*base_string == ','
9634 || ((i.base_reg = parse_register (base_string, &end_op))
9635 != NULL))
9636 {
9637 displacement_string_end = temp_string;
9638
9639 i.types[this_operand].bitfield.baseindex = 1;
9640
9641 if (i.base_reg)
9642 {
9643 base_string = end_op;
9644 if (is_space_char (*base_string))
9645 ++base_string;
9646 }
9647
9648 /* There may be an index reg or scale factor here. */
9649 if (*base_string == ',')
9650 {
9651 ++base_string;
9652 if (is_space_char (*base_string))
9653 ++base_string;
9654
9655 if ((i.index_reg = parse_register (base_string, &end_op))
9656 != NULL)
9657 {
9658 base_string = end_op;
9659 if (is_space_char (*base_string))
9660 ++base_string;
9661 if (*base_string == ',')
9662 {
9663 ++base_string;
9664 if (is_space_char (*base_string))
9665 ++base_string;
9666 }
9667 else if (*base_string != ')')
9668 {
9669 as_bad (_("expecting `,' or `)' "
9670 "after index register in `%s'"),
9671 operand_string);
9672 return 0;
9673 }
9674 }
9675 else if (*base_string == REGISTER_PREFIX)
9676 {
9677 end_op = strchr (base_string, ',');
9678 if (end_op)
9679 *end_op = '\0';
9680 as_bad (_("bad register name `%s'"), base_string);
9681 return 0;
9682 }
9683
9684 /* Check for scale factor. */
9685 if (*base_string != ')')
9686 {
9687 char *end_scale = i386_scale (base_string);
9688
9689 if (!end_scale)
9690 return 0;
9691
9692 base_string = end_scale;
9693 if (is_space_char (*base_string))
9694 ++base_string;
9695 if (*base_string != ')')
9696 {
9697 as_bad (_("expecting `)' "
9698 "after scale factor in `%s'"),
9699 operand_string);
9700 return 0;
9701 }
9702 }
9703 else if (!i.index_reg)
9704 {
9705 as_bad (_("expecting index register or scale factor "
9706 "after `,'; got '%c'"),
9707 *base_string);
9708 return 0;
9709 }
9710 }
9711 else if (*base_string != ')')
9712 {
9713 as_bad (_("expecting `,' or `)' "
9714 "after base register in `%s'"),
9715 operand_string);
9716 return 0;
9717 }
9718 }
9719 else if (*base_string == REGISTER_PREFIX)
9720 {
9721 end_op = strchr (base_string, ',');
9722 if (end_op)
9723 *end_op = '\0';
9724 as_bad (_("bad register name `%s'"), base_string);
9725 return 0;
9726 }
9727 }
9728
9729 /* If there's an expression beginning the operand, parse it,
9730 assuming displacement_string_start and
9731 displacement_string_end are meaningful. */
9732 if (displacement_string_start != displacement_string_end)
9733 {
9734 if (!i386_displacement (displacement_string_start,
9735 displacement_string_end))
9736 return 0;
9737 }
9738
9739 /* Special case for (%dx) while doing input/output op. */
9740 if (i.base_reg
9741 && i.base_reg->reg_type.bitfield.inoutportreg
9742 && i.index_reg == 0
9743 && i.log2_scale_factor == 0
9744 && i.seg[i.mem_operands] == 0
9745 && !operand_type_check (i.types[this_operand], disp))
9746 {
9747 i.types[this_operand] = i.base_reg->reg_type;
9748 return 1;
9749 }
9750
9751 if (i386_index_check (operand_string) == 0)
9752 return 0;
9753 i.types[this_operand].bitfield.mem = 1;
9754 if (i.mem_operands == 0)
9755 i.memop1_string = xstrdup (operand_string);
9756 i.mem_operands++;
9757 }
9758 else
9759 {
9760 /* It's not a memory operand; argh! */
9761 as_bad (_("invalid char %s beginning operand %d `%s'"),
9762 output_invalid (*op_string),
9763 this_operand + 1,
9764 op_string);
9765 return 0;
9766 }
9767 return 1; /* Normal return. */
9768 }
9769 \f
9770 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9771 that an rs_machine_dependent frag may reach. */
9772
9773 unsigned int
9774 i386_frag_max_var (fragS *frag)
9775 {
9776 /* The only relaxable frags are for jumps.
9777 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9778 gas_assert (frag->fr_type == rs_machine_dependent);
9779 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9780 }
9781
9782 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9783 static int
9784 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9785 {
9786 /* STT_GNU_IFUNC symbol must go through PLT. */
9787 if ((symbol_get_bfdsym (fr_symbol)->flags
9788 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9789 return 0;
9790
9791 if (!S_IS_EXTERNAL (fr_symbol))
9792 /* Symbol may be weak or local. */
9793 return !S_IS_WEAK (fr_symbol);
9794
9795 /* Global symbols with non-default visibility can't be preempted. */
9796 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9797 return 1;
9798
9799 if (fr_var != NO_RELOC)
9800 switch ((enum bfd_reloc_code_real) fr_var)
9801 {
9802 case BFD_RELOC_386_PLT32:
9803 case BFD_RELOC_X86_64_PLT32:
9804 /* Symbol with PLT relocation may be preempted. */
9805 return 0;
9806 default:
9807 abort ();
9808 }
9809
9810 /* Global symbols with default visibility in a shared library may be
9811 preempted by another definition. */
9812 return !shared;
9813 }
9814 #endif
9815
9816 /* md_estimate_size_before_relax()
9817
9818 Called just before relax() for rs_machine_dependent frags. The x86
9819 assembler uses these frags to handle variable size jump
9820 instructions.
9821
9822 Any symbol that is now undefined will not become defined.
9823 Return the correct fr_subtype in the frag.
9824 Return the initial "guess for variable size of frag" to caller.
9825 The guess is actually the growth beyond the fixed part. Whatever
9826 we do to grow the fixed or variable part contributes to our
9827 returned value. */
9828
9829 int
9830 md_estimate_size_before_relax (fragS *fragP, segT segment)
9831 {
9832 /* We've already got fragP->fr_subtype right; all we have to do is
9833 check for un-relaxable symbols. On an ELF system, we can't relax
9834 an externally visible symbol, because it may be overridden by a
9835 shared library. */
9836 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9837 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9838 || (IS_ELF
9839 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9840 fragP->fr_var))
9841 #endif
9842 #if defined (OBJ_COFF) && defined (TE_PE)
9843 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9844 && S_IS_WEAK (fragP->fr_symbol))
9845 #endif
9846 )
9847 {
9848 /* Symbol is undefined in this segment, or we need to keep a
9849 reloc so that weak symbols can be overridden. */
9850 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9851 enum bfd_reloc_code_real reloc_type;
9852 unsigned char *opcode;
9853 int old_fr_fix;
9854
9855 if (fragP->fr_var != NO_RELOC)
9856 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9857 else if (size == 2)
9858 reloc_type = BFD_RELOC_16_PCREL;
9859 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9860 else if (need_plt32_p (fragP->fr_symbol))
9861 reloc_type = BFD_RELOC_X86_64_PLT32;
9862 #endif
9863 else
9864 reloc_type = BFD_RELOC_32_PCREL;
9865
9866 old_fr_fix = fragP->fr_fix;
9867 opcode = (unsigned char *) fragP->fr_opcode;
9868
9869 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9870 {
9871 case UNCOND_JUMP:
9872 /* Make jmp (0xeb) a (d)word displacement jump. */
9873 opcode[0] = 0xe9;
9874 fragP->fr_fix += size;
9875 fix_new (fragP, old_fr_fix, size,
9876 fragP->fr_symbol,
9877 fragP->fr_offset, 1,
9878 reloc_type);
9879 break;
9880
9881 case COND_JUMP86:
9882 if (size == 2
9883 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9884 {
9885 /* Negate the condition, and branch past an
9886 unconditional jump. */
9887 opcode[0] ^= 1;
9888 opcode[1] = 3;
9889 /* Insert an unconditional jump. */
9890 opcode[2] = 0xe9;
9891 /* We added two extra opcode bytes, and have a two byte
9892 offset. */
9893 fragP->fr_fix += 2 + 2;
9894 fix_new (fragP, old_fr_fix + 2, 2,
9895 fragP->fr_symbol,
9896 fragP->fr_offset, 1,
9897 reloc_type);
9898 break;
9899 }
9900 /* Fall through. */
9901
9902 case COND_JUMP:
9903 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9904 {
9905 fixS *fixP;
9906
9907 fragP->fr_fix += 1;
9908 fixP = fix_new (fragP, old_fr_fix, 1,
9909 fragP->fr_symbol,
9910 fragP->fr_offset, 1,
9911 BFD_RELOC_8_PCREL);
9912 fixP->fx_signed = 1;
9913 break;
9914 }
9915
9916 /* This changes the byte-displacement jump 0x7N
9917 to the (d)word-displacement jump 0x0f,0x8N. */
9918 opcode[1] = opcode[0] + 0x10;
9919 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9920 /* We've added an opcode byte. */
9921 fragP->fr_fix += 1 + size;
9922 fix_new (fragP, old_fr_fix + 1, size,
9923 fragP->fr_symbol,
9924 fragP->fr_offset, 1,
9925 reloc_type);
9926 break;
9927
9928 default:
9929 BAD_CASE (fragP->fr_subtype);
9930 break;
9931 }
9932 frag_wane (fragP);
9933 return fragP->fr_fix - old_fr_fix;
9934 }
9935
9936 /* Guess size depending on current relax state. Initially the relax
9937 state will correspond to a short jump and we return 1, because
9938 the variable part of the frag (the branch offset) is one byte
9939 long. However, we can relax a section more than once and in that
9940 case we must either set fr_subtype back to the unrelaxed state,
9941 or return the value for the appropriate branch. */
9942 return md_relax_table[fragP->fr_subtype].rlx_length;
9943 }
9944
9945 /* Called after relax() is finished.
9946
9947 In: Address of frag.
9948 fr_type == rs_machine_dependent.
9949 fr_subtype is what the address relaxed to.
9950
9951 Out: Any fixSs and constants are set up.
9952 Caller will turn frag into a ".space 0". */
9953
9954 void
9955 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9956 fragS *fragP)
9957 {
9958 unsigned char *opcode;
9959 unsigned char *where_to_put_displacement = NULL;
9960 offsetT target_address;
9961 offsetT opcode_address;
9962 unsigned int extension = 0;
9963 offsetT displacement_from_opcode_start;
9964
9965 opcode = (unsigned char *) fragP->fr_opcode;
9966
9967 /* Address we want to reach in file space. */
9968 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9969
9970 /* Address opcode resides at in file space. */
9971 opcode_address = fragP->fr_address + fragP->fr_fix;
9972
9973 /* Displacement from opcode start to fill into instruction. */
9974 displacement_from_opcode_start = target_address - opcode_address;
9975
9976 if ((fragP->fr_subtype & BIG) == 0)
9977 {
9978 /* Don't have to change opcode. */
9979 extension = 1; /* 1 opcode + 1 displacement */
9980 where_to_put_displacement = &opcode[1];
9981 }
9982 else
9983 {
9984 if (no_cond_jump_promotion
9985 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9986 as_warn_where (fragP->fr_file, fragP->fr_line,
9987 _("long jump required"));
9988
9989 switch (fragP->fr_subtype)
9990 {
9991 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9992 extension = 4; /* 1 opcode + 4 displacement */
9993 opcode[0] = 0xe9;
9994 where_to_put_displacement = &opcode[1];
9995 break;
9996
9997 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9998 extension = 2; /* 1 opcode + 2 displacement */
9999 opcode[0] = 0xe9;
10000 where_to_put_displacement = &opcode[1];
10001 break;
10002
10003 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10004 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10005 extension = 5; /* 2 opcode + 4 displacement */
10006 opcode[1] = opcode[0] + 0x10;
10007 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10008 where_to_put_displacement = &opcode[2];
10009 break;
10010
10011 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10012 extension = 3; /* 2 opcode + 2 displacement */
10013 opcode[1] = opcode[0] + 0x10;
10014 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10015 where_to_put_displacement = &opcode[2];
10016 break;
10017
10018 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10019 extension = 4;
10020 opcode[0] ^= 1;
10021 opcode[1] = 3;
10022 opcode[2] = 0xe9;
10023 where_to_put_displacement = &opcode[3];
10024 break;
10025
10026 default:
10027 BAD_CASE (fragP->fr_subtype);
10028 break;
10029 }
10030 }
10031
10032 /* If size if less then four we are sure that the operand fits,
10033 but if it's 4, then it could be that the displacement is larger
10034 then -/+ 2GB. */
10035 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10036 && object_64bit
10037 && ((addressT) (displacement_from_opcode_start - extension
10038 + ((addressT) 1 << 31))
10039 > (((addressT) 2 << 31) - 1)))
10040 {
10041 as_bad_where (fragP->fr_file, fragP->fr_line,
10042 _("jump target out of range"));
10043 /* Make us emit 0. */
10044 displacement_from_opcode_start = extension;
10045 }
10046 /* Now put displacement after opcode. */
10047 md_number_to_chars ((char *) where_to_put_displacement,
10048 (valueT) (displacement_from_opcode_start - extension),
10049 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10050 fragP->fr_fix += extension;
10051 }
10052 \f
10053 /* Apply a fixup (fixP) to segment data, once it has been determined
10054 by our caller that we have all the info we need to fix it up.
10055
10056 Parameter valP is the pointer to the value of the bits.
10057
10058 On the 386, immediates, displacements, and data pointers are all in
10059 the same (little-endian) format, so we don't need to care about which
10060 we are handling. */
10061
10062 void
10063 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10064 {
10065 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10066 valueT value = *valP;
10067
10068 #if !defined (TE_Mach)
10069 if (fixP->fx_pcrel)
10070 {
10071 switch (fixP->fx_r_type)
10072 {
10073 default:
10074 break;
10075
10076 case BFD_RELOC_64:
10077 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10078 break;
10079 case BFD_RELOC_32:
10080 case BFD_RELOC_X86_64_32S:
10081 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10082 break;
10083 case BFD_RELOC_16:
10084 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10085 break;
10086 case BFD_RELOC_8:
10087 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10088 break;
10089 }
10090 }
10091
10092 if (fixP->fx_addsy != NULL
10093 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10094 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10095 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10096 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10097 && !use_rela_relocations)
10098 {
10099 /* This is a hack. There should be a better way to handle this.
10100 This covers for the fact that bfd_install_relocation will
10101 subtract the current location (for partial_inplace, PC relative
10102 relocations); see more below. */
10103 #ifndef OBJ_AOUT
10104 if (IS_ELF
10105 #ifdef TE_PE
10106 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10107 #endif
10108 )
10109 value += fixP->fx_where + fixP->fx_frag->fr_address;
10110 #endif
10111 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10112 if (IS_ELF)
10113 {
10114 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10115
10116 if ((sym_seg == seg
10117 || (symbol_section_p (fixP->fx_addsy)
10118 && sym_seg != absolute_section))
10119 && !generic_force_reloc (fixP))
10120 {
10121 /* Yes, we add the values in twice. This is because
10122 bfd_install_relocation subtracts them out again. I think
10123 bfd_install_relocation is broken, but I don't dare change
10124 it. FIXME. */
10125 value += fixP->fx_where + fixP->fx_frag->fr_address;
10126 }
10127 }
10128 #endif
10129 #if defined (OBJ_COFF) && defined (TE_PE)
10130 /* For some reason, the PE format does not store a
10131 section address offset for a PC relative symbol. */
10132 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10133 || S_IS_WEAK (fixP->fx_addsy))
10134 value += md_pcrel_from (fixP);
10135 #endif
10136 }
10137 #if defined (OBJ_COFF) && defined (TE_PE)
10138 if (fixP->fx_addsy != NULL
10139 && S_IS_WEAK (fixP->fx_addsy)
10140 /* PR 16858: Do not modify weak function references. */
10141 && ! fixP->fx_pcrel)
10142 {
10143 #if !defined (TE_PEP)
10144 /* For x86 PE weak function symbols are neither PC-relative
10145 nor do they set S_IS_FUNCTION. So the only reliable way
10146 to detect them is to check the flags of their containing
10147 section. */
10148 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10149 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10150 ;
10151 else
10152 #endif
10153 value -= S_GET_VALUE (fixP->fx_addsy);
10154 }
10155 #endif
10156
10157 /* Fix a few things - the dynamic linker expects certain values here,
10158 and we must not disappoint it. */
10159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10160 if (IS_ELF && fixP->fx_addsy)
10161 switch (fixP->fx_r_type)
10162 {
10163 case BFD_RELOC_386_PLT32:
10164 case BFD_RELOC_X86_64_PLT32:
10165 /* Make the jump instruction point to the address of the operand. At
10166 runtime we merely add the offset to the actual PLT entry. */
10167 value = -4;
10168 break;
10169
10170 case BFD_RELOC_386_TLS_GD:
10171 case BFD_RELOC_386_TLS_LDM:
10172 case BFD_RELOC_386_TLS_IE_32:
10173 case BFD_RELOC_386_TLS_IE:
10174 case BFD_RELOC_386_TLS_GOTIE:
10175 case BFD_RELOC_386_TLS_GOTDESC:
10176 case BFD_RELOC_X86_64_TLSGD:
10177 case BFD_RELOC_X86_64_TLSLD:
10178 case BFD_RELOC_X86_64_GOTTPOFF:
10179 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10180 value = 0; /* Fully resolved at runtime. No addend. */
10181 /* Fallthrough */
10182 case BFD_RELOC_386_TLS_LE:
10183 case BFD_RELOC_386_TLS_LDO_32:
10184 case BFD_RELOC_386_TLS_LE_32:
10185 case BFD_RELOC_X86_64_DTPOFF32:
10186 case BFD_RELOC_X86_64_DTPOFF64:
10187 case BFD_RELOC_X86_64_TPOFF32:
10188 case BFD_RELOC_X86_64_TPOFF64:
10189 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10190 break;
10191
10192 case BFD_RELOC_386_TLS_DESC_CALL:
10193 case BFD_RELOC_X86_64_TLSDESC_CALL:
10194 value = 0; /* Fully resolved at runtime. No addend. */
10195 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10196 fixP->fx_done = 0;
10197 return;
10198
10199 case BFD_RELOC_VTABLE_INHERIT:
10200 case BFD_RELOC_VTABLE_ENTRY:
10201 fixP->fx_done = 0;
10202 return;
10203
10204 default:
10205 break;
10206 }
10207 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10208 *valP = value;
10209 #endif /* !defined (TE_Mach) */
10210
10211 /* Are we finished with this relocation now? */
10212 if (fixP->fx_addsy == NULL)
10213 fixP->fx_done = 1;
10214 #if defined (OBJ_COFF) && defined (TE_PE)
10215 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10216 {
10217 fixP->fx_done = 0;
10218 /* Remember value for tc_gen_reloc. */
10219 fixP->fx_addnumber = value;
10220 /* Clear out the frag for now. */
10221 value = 0;
10222 }
10223 #endif
10224 else if (use_rela_relocations)
10225 {
10226 fixP->fx_no_overflow = 1;
10227 /* Remember value for tc_gen_reloc. */
10228 fixP->fx_addnumber = value;
10229 value = 0;
10230 }
10231
10232 md_number_to_chars (p, value, fixP->fx_size);
10233 }
10234 \f
10235 const char *
10236 md_atof (int type, char *litP, int *sizeP)
10237 {
10238 /* This outputs the LITTLENUMs in REVERSE order;
10239 in accord with the bigendian 386. */
10240 return ieee_md_atof (type, litP, sizeP, FALSE);
10241 }
10242 \f
10243 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10244
10245 static char *
10246 output_invalid (int c)
10247 {
10248 if (ISPRINT (c))
10249 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10250 "'%c'", c);
10251 else
10252 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10253 "(0x%x)", (unsigned char) c);
10254 return output_invalid_buf;
10255 }
10256
10257 /* REG_STRING starts *before* REGISTER_PREFIX. */
10258
10259 static const reg_entry *
10260 parse_real_register (char *reg_string, char **end_op)
10261 {
10262 char *s = reg_string;
10263 char *p;
10264 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10265 const reg_entry *r;
10266
10267 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10268 if (*s == REGISTER_PREFIX)
10269 ++s;
10270
10271 if (is_space_char (*s))
10272 ++s;
10273
10274 p = reg_name_given;
10275 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10276 {
10277 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10278 return (const reg_entry *) NULL;
10279 s++;
10280 }
10281
10282 /* For naked regs, make sure that we are not dealing with an identifier.
10283 This prevents confusing an identifier like `eax_var' with register
10284 `eax'. */
10285 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10286 return (const reg_entry *) NULL;
10287
10288 *end_op = s;
10289
10290 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10291
10292 /* Handle floating point regs, allowing spaces in the (i) part. */
10293 if (r == i386_regtab /* %st is first entry of table */)
10294 {
10295 if (!cpu_arch_flags.bitfield.cpu8087
10296 && !cpu_arch_flags.bitfield.cpu287
10297 && !cpu_arch_flags.bitfield.cpu387)
10298 return (const reg_entry *) NULL;
10299
10300 if (is_space_char (*s))
10301 ++s;
10302 if (*s == '(')
10303 {
10304 ++s;
10305 if (is_space_char (*s))
10306 ++s;
10307 if (*s >= '0' && *s <= '7')
10308 {
10309 int fpr = *s - '0';
10310 ++s;
10311 if (is_space_char (*s))
10312 ++s;
10313 if (*s == ')')
10314 {
10315 *end_op = s + 1;
10316 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10317 know (r);
10318 return r + fpr;
10319 }
10320 }
10321 /* We have "%st(" then garbage. */
10322 return (const reg_entry *) NULL;
10323 }
10324 }
10325
10326 if (r == NULL || allow_pseudo_reg)
10327 return r;
10328
10329 if (operand_type_all_zero (&r->reg_type))
10330 return (const reg_entry *) NULL;
10331
10332 if ((r->reg_type.bitfield.dword
10333 || r->reg_type.bitfield.sreg3
10334 || r->reg_type.bitfield.control
10335 || r->reg_type.bitfield.debug
10336 || r->reg_type.bitfield.test)
10337 && !cpu_arch_flags.bitfield.cpui386)
10338 return (const reg_entry *) NULL;
10339
10340 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10341 return (const reg_entry *) NULL;
10342
10343 if (!cpu_arch_flags.bitfield.cpuavx512f)
10344 {
10345 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10346 return (const reg_entry *) NULL;
10347
10348 if (!cpu_arch_flags.bitfield.cpuavx)
10349 {
10350 if (r->reg_type.bitfield.ymmword)
10351 return (const reg_entry *) NULL;
10352
10353 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10354 return (const reg_entry *) NULL;
10355 }
10356 }
10357
10358 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10359 return (const reg_entry *) NULL;
10360
10361 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10362 if (!allow_index_reg
10363 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10364 return (const reg_entry *) NULL;
10365
10366 /* Upper 16 vector registers are only available with VREX in 64bit
10367 mode, and require EVEX encoding. */
10368 if (r->reg_flags & RegVRex)
10369 {
10370 if (!cpu_arch_flags.bitfield.cpuvrex
10371 || flag_code != CODE_64BIT)
10372 return (const reg_entry *) NULL;
10373
10374 i.vec_encoding = vex_encoding_evex;
10375 }
10376
10377 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10378 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10379 && flag_code != CODE_64BIT)
10380 return (const reg_entry *) NULL;
10381
10382 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10383 return (const reg_entry *) NULL;
10384
10385 return r;
10386 }
10387
10388 /* REG_STRING starts *before* REGISTER_PREFIX. */
10389
10390 static const reg_entry *
10391 parse_register (char *reg_string, char **end_op)
10392 {
10393 const reg_entry *r;
10394
10395 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10396 r = parse_real_register (reg_string, end_op);
10397 else
10398 r = NULL;
10399 if (!r)
10400 {
10401 char *save = input_line_pointer;
10402 char c;
10403 symbolS *symbolP;
10404
10405 input_line_pointer = reg_string;
10406 c = get_symbol_name (&reg_string);
10407 symbolP = symbol_find (reg_string);
10408 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10409 {
10410 const expressionS *e = symbol_get_value_expression (symbolP);
10411
10412 know (e->X_op == O_register);
10413 know (e->X_add_number >= 0
10414 && (valueT) e->X_add_number < i386_regtab_size);
10415 r = i386_regtab + e->X_add_number;
10416 if ((r->reg_flags & RegVRex))
10417 i.vec_encoding = vex_encoding_evex;
10418 *end_op = input_line_pointer;
10419 }
10420 *input_line_pointer = c;
10421 input_line_pointer = save;
10422 }
10423 return r;
10424 }
10425
10426 int
10427 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10428 {
10429 const reg_entry *r;
10430 char *end = input_line_pointer;
10431
10432 *end = *nextcharP;
10433 r = parse_register (name, &input_line_pointer);
10434 if (r && end <= input_line_pointer)
10435 {
10436 *nextcharP = *input_line_pointer;
10437 *input_line_pointer = 0;
10438 e->X_op = O_register;
10439 e->X_add_number = r - i386_regtab;
10440 return 1;
10441 }
10442 input_line_pointer = end;
10443 *end = 0;
10444 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10445 }
10446
10447 void
10448 md_operand (expressionS *e)
10449 {
10450 char *end;
10451 const reg_entry *r;
10452
10453 switch (*input_line_pointer)
10454 {
10455 case REGISTER_PREFIX:
10456 r = parse_real_register (input_line_pointer, &end);
10457 if (r)
10458 {
10459 e->X_op = O_register;
10460 e->X_add_number = r - i386_regtab;
10461 input_line_pointer = end;
10462 }
10463 break;
10464
10465 case '[':
10466 gas_assert (intel_syntax);
10467 end = input_line_pointer++;
10468 expression (e);
10469 if (*input_line_pointer == ']')
10470 {
10471 ++input_line_pointer;
10472 e->X_op_symbol = make_expr_symbol (e);
10473 e->X_add_symbol = NULL;
10474 e->X_add_number = 0;
10475 e->X_op = O_index;
10476 }
10477 else
10478 {
10479 e->X_op = O_absent;
10480 input_line_pointer = end;
10481 }
10482 break;
10483 }
10484 }
10485
10486 \f
10487 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10488 const char *md_shortopts = "kVQ:sqnO::";
10489 #else
10490 const char *md_shortopts = "qnO::";
10491 #endif
10492
10493 #define OPTION_32 (OPTION_MD_BASE + 0)
10494 #define OPTION_64 (OPTION_MD_BASE + 1)
10495 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10496 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10497 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10498 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10499 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10500 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10501 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10502 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10503 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10504 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10505 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10506 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10507 #define OPTION_X32 (OPTION_MD_BASE + 14)
10508 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10509 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10510 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10511 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10512 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10513 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10514 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10515 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10516 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10517 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10518
10519 struct option md_longopts[] =
10520 {
10521 {"32", no_argument, NULL, OPTION_32},
10522 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10523 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10524 {"64", no_argument, NULL, OPTION_64},
10525 #endif
10526 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10527 {"x32", no_argument, NULL, OPTION_X32},
10528 {"mshared", no_argument, NULL, OPTION_MSHARED},
10529 #endif
10530 {"divide", no_argument, NULL, OPTION_DIVIDE},
10531 {"march", required_argument, NULL, OPTION_MARCH},
10532 {"mtune", required_argument, NULL, OPTION_MTUNE},
10533 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10534 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10535 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10536 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10537 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10538 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10539 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10540 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10541 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10542 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10543 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10544 # if defined (TE_PE) || defined (TE_PEP)
10545 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10546 #endif
10547 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10548 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10549 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10550 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10551 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10552 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10553 {NULL, no_argument, NULL, 0}
10554 };
10555 size_t md_longopts_size = sizeof (md_longopts);
10556
10557 int
10558 md_parse_option (int c, const char *arg)
10559 {
10560 unsigned int j;
10561 char *arch, *next, *saved;
10562
10563 switch (c)
10564 {
10565 case 'n':
10566 optimize_align_code = 0;
10567 break;
10568
10569 case 'q':
10570 quiet_warnings = 1;
10571 break;
10572
10573 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10574 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10575 should be emitted or not. FIXME: Not implemented. */
10576 case 'Q':
10577 break;
10578
10579 /* -V: SVR4 argument to print version ID. */
10580 case 'V':
10581 print_version_id ();
10582 break;
10583
10584 /* -k: Ignore for FreeBSD compatibility. */
10585 case 'k':
10586 break;
10587
10588 case 's':
10589 /* -s: On i386 Solaris, this tells the native assembler to use
10590 .stab instead of .stab.excl. We always use .stab anyhow. */
10591 break;
10592
10593 case OPTION_MSHARED:
10594 shared = 1;
10595 break;
10596 #endif
10597 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10598 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10599 case OPTION_64:
10600 {
10601 const char **list, **l;
10602
10603 list = bfd_target_list ();
10604 for (l = list; *l != NULL; l++)
10605 if (CONST_STRNEQ (*l, "elf64-x86-64")
10606 || strcmp (*l, "coff-x86-64") == 0
10607 || strcmp (*l, "pe-x86-64") == 0
10608 || strcmp (*l, "pei-x86-64") == 0
10609 || strcmp (*l, "mach-o-x86-64") == 0)
10610 {
10611 default_arch = "x86_64";
10612 break;
10613 }
10614 if (*l == NULL)
10615 as_fatal (_("no compiled in support for x86_64"));
10616 free (list);
10617 }
10618 break;
10619 #endif
10620
10621 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10622 case OPTION_X32:
10623 if (IS_ELF)
10624 {
10625 const char **list, **l;
10626
10627 list = bfd_target_list ();
10628 for (l = list; *l != NULL; l++)
10629 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10630 {
10631 default_arch = "x86_64:32";
10632 break;
10633 }
10634 if (*l == NULL)
10635 as_fatal (_("no compiled in support for 32bit x86_64"));
10636 free (list);
10637 }
10638 else
10639 as_fatal (_("32bit x86_64 is only supported for ELF"));
10640 break;
10641 #endif
10642
10643 case OPTION_32:
10644 default_arch = "i386";
10645 break;
10646
10647 case OPTION_DIVIDE:
10648 #ifdef SVR4_COMMENT_CHARS
10649 {
10650 char *n, *t;
10651 const char *s;
10652
10653 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10654 t = n;
10655 for (s = i386_comment_chars; *s != '\0'; s++)
10656 if (*s != '/')
10657 *t++ = *s;
10658 *t = '\0';
10659 i386_comment_chars = n;
10660 }
10661 #endif
10662 break;
10663
10664 case OPTION_MARCH:
10665 saved = xstrdup (arg);
10666 arch = saved;
10667 /* Allow -march=+nosse. */
10668 if (*arch == '+')
10669 arch++;
10670 do
10671 {
10672 if (*arch == '.')
10673 as_fatal (_("invalid -march= option: `%s'"), arg);
10674 next = strchr (arch, '+');
10675 if (next)
10676 *next++ = '\0';
10677 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10678 {
10679 if (strcmp (arch, cpu_arch [j].name) == 0)
10680 {
10681 /* Processor. */
10682 if (! cpu_arch[j].flags.bitfield.cpui386)
10683 continue;
10684
10685 cpu_arch_name = cpu_arch[j].name;
10686 cpu_sub_arch_name = NULL;
10687 cpu_arch_flags = cpu_arch[j].flags;
10688 cpu_arch_isa = cpu_arch[j].type;
10689 cpu_arch_isa_flags = cpu_arch[j].flags;
10690 if (!cpu_arch_tune_set)
10691 {
10692 cpu_arch_tune = cpu_arch_isa;
10693 cpu_arch_tune_flags = cpu_arch_isa_flags;
10694 }
10695 break;
10696 }
10697 else if (*cpu_arch [j].name == '.'
10698 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10699 {
10700 /* ISA extension. */
10701 i386_cpu_flags flags;
10702
10703 flags = cpu_flags_or (cpu_arch_flags,
10704 cpu_arch[j].flags);
10705
10706 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10707 {
10708 if (cpu_sub_arch_name)
10709 {
10710 char *name = cpu_sub_arch_name;
10711 cpu_sub_arch_name = concat (name,
10712 cpu_arch[j].name,
10713 (const char *) NULL);
10714 free (name);
10715 }
10716 else
10717 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10718 cpu_arch_flags = flags;
10719 cpu_arch_isa_flags = flags;
10720 }
10721 else
10722 cpu_arch_isa_flags
10723 = cpu_flags_or (cpu_arch_isa_flags,
10724 cpu_arch[j].flags);
10725 break;
10726 }
10727 }
10728
10729 if (j >= ARRAY_SIZE (cpu_arch))
10730 {
10731 /* Disable an ISA extension. */
10732 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10733 if (strcmp (arch, cpu_noarch [j].name) == 0)
10734 {
10735 i386_cpu_flags flags;
10736
10737 flags = cpu_flags_and_not (cpu_arch_flags,
10738 cpu_noarch[j].flags);
10739 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10740 {
10741 if (cpu_sub_arch_name)
10742 {
10743 char *name = cpu_sub_arch_name;
10744 cpu_sub_arch_name = concat (arch,
10745 (const char *) NULL);
10746 free (name);
10747 }
10748 else
10749 cpu_sub_arch_name = xstrdup (arch);
10750 cpu_arch_flags = flags;
10751 cpu_arch_isa_flags = flags;
10752 }
10753 break;
10754 }
10755
10756 if (j >= ARRAY_SIZE (cpu_noarch))
10757 j = ARRAY_SIZE (cpu_arch);
10758 }
10759
10760 if (j >= ARRAY_SIZE (cpu_arch))
10761 as_fatal (_("invalid -march= option: `%s'"), arg);
10762
10763 arch = next;
10764 }
10765 while (next != NULL);
10766 free (saved);
10767 break;
10768
10769 case OPTION_MTUNE:
10770 if (*arg == '.')
10771 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10772 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10773 {
10774 if (strcmp (arg, cpu_arch [j].name) == 0)
10775 {
10776 cpu_arch_tune_set = 1;
10777 cpu_arch_tune = cpu_arch [j].type;
10778 cpu_arch_tune_flags = cpu_arch[j].flags;
10779 break;
10780 }
10781 }
10782 if (j >= ARRAY_SIZE (cpu_arch))
10783 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10784 break;
10785
10786 case OPTION_MMNEMONIC:
10787 if (strcasecmp (arg, "att") == 0)
10788 intel_mnemonic = 0;
10789 else if (strcasecmp (arg, "intel") == 0)
10790 intel_mnemonic = 1;
10791 else
10792 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10793 break;
10794
10795 case OPTION_MSYNTAX:
10796 if (strcasecmp (arg, "att") == 0)
10797 intel_syntax = 0;
10798 else if (strcasecmp (arg, "intel") == 0)
10799 intel_syntax = 1;
10800 else
10801 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10802 break;
10803
10804 case OPTION_MINDEX_REG:
10805 allow_index_reg = 1;
10806 break;
10807
10808 case OPTION_MNAKED_REG:
10809 allow_naked_reg = 1;
10810 break;
10811
10812 case OPTION_MSSE2AVX:
10813 sse2avx = 1;
10814 break;
10815
10816 case OPTION_MSSE_CHECK:
10817 if (strcasecmp (arg, "error") == 0)
10818 sse_check = check_error;
10819 else if (strcasecmp (arg, "warning") == 0)
10820 sse_check = check_warning;
10821 else if (strcasecmp (arg, "none") == 0)
10822 sse_check = check_none;
10823 else
10824 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10825 break;
10826
10827 case OPTION_MOPERAND_CHECK:
10828 if (strcasecmp (arg, "error") == 0)
10829 operand_check = check_error;
10830 else if (strcasecmp (arg, "warning") == 0)
10831 operand_check = check_warning;
10832 else if (strcasecmp (arg, "none") == 0)
10833 operand_check = check_none;
10834 else
10835 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10836 break;
10837
10838 case OPTION_MAVXSCALAR:
10839 if (strcasecmp (arg, "128") == 0)
10840 avxscalar = vex128;
10841 else if (strcasecmp (arg, "256") == 0)
10842 avxscalar = vex256;
10843 else
10844 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10845 break;
10846
10847 case OPTION_MADD_BND_PREFIX:
10848 add_bnd_prefix = 1;
10849 break;
10850
10851 case OPTION_MEVEXLIG:
10852 if (strcmp (arg, "128") == 0)
10853 evexlig = evexl128;
10854 else if (strcmp (arg, "256") == 0)
10855 evexlig = evexl256;
10856 else if (strcmp (arg, "512") == 0)
10857 evexlig = evexl512;
10858 else
10859 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10860 break;
10861
10862 case OPTION_MEVEXRCIG:
10863 if (strcmp (arg, "rne") == 0)
10864 evexrcig = rne;
10865 else if (strcmp (arg, "rd") == 0)
10866 evexrcig = rd;
10867 else if (strcmp (arg, "ru") == 0)
10868 evexrcig = ru;
10869 else if (strcmp (arg, "rz") == 0)
10870 evexrcig = rz;
10871 else
10872 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10873 break;
10874
10875 case OPTION_MEVEXWIG:
10876 if (strcmp (arg, "0") == 0)
10877 evexwig = evexw0;
10878 else if (strcmp (arg, "1") == 0)
10879 evexwig = evexw1;
10880 else
10881 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10882 break;
10883
10884 # if defined (TE_PE) || defined (TE_PEP)
10885 case OPTION_MBIG_OBJ:
10886 use_big_obj = 1;
10887 break;
10888 #endif
10889
10890 case OPTION_MOMIT_LOCK_PREFIX:
10891 if (strcasecmp (arg, "yes") == 0)
10892 omit_lock_prefix = 1;
10893 else if (strcasecmp (arg, "no") == 0)
10894 omit_lock_prefix = 0;
10895 else
10896 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10897 break;
10898
10899 case OPTION_MFENCE_AS_LOCK_ADD:
10900 if (strcasecmp (arg, "yes") == 0)
10901 avoid_fence = 1;
10902 else if (strcasecmp (arg, "no") == 0)
10903 avoid_fence = 0;
10904 else
10905 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10906 break;
10907
10908 case OPTION_MRELAX_RELOCATIONS:
10909 if (strcasecmp (arg, "yes") == 0)
10910 generate_relax_relocations = 1;
10911 else if (strcasecmp (arg, "no") == 0)
10912 generate_relax_relocations = 0;
10913 else
10914 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10915 break;
10916
10917 case OPTION_MAMD64:
10918 intel64 = 0;
10919 break;
10920
10921 case OPTION_MINTEL64:
10922 intel64 = 1;
10923 break;
10924
10925 case 'O':
10926 if (arg == NULL)
10927 {
10928 optimize = 1;
10929 /* Turn off -Os. */
10930 optimize_for_space = 0;
10931 }
10932 else if (*arg == 's')
10933 {
10934 optimize_for_space = 1;
10935 /* Turn on all encoding optimizations. */
10936 optimize = -1;
10937 }
10938 else
10939 {
10940 optimize = atoi (arg);
10941 /* Turn off -Os. */
10942 optimize_for_space = 0;
10943 }
10944 break;
10945
10946 default:
10947 return 0;
10948 }
10949 return 1;
10950 }
10951
10952 #define MESSAGE_TEMPLATE \
10953 " "
10954
10955 static char *
10956 output_message (FILE *stream, char *p, char *message, char *start,
10957 int *left_p, const char *name, int len)
10958 {
10959 int size = sizeof (MESSAGE_TEMPLATE);
10960 int left = *left_p;
10961
10962 /* Reserve 2 spaces for ", " or ",\0" */
10963 left -= len + 2;
10964
10965 /* Check if there is any room. */
10966 if (left >= 0)
10967 {
10968 if (p != start)
10969 {
10970 *p++ = ',';
10971 *p++ = ' ';
10972 }
10973 p = mempcpy (p, name, len);
10974 }
10975 else
10976 {
10977 /* Output the current message now and start a new one. */
10978 *p++ = ',';
10979 *p = '\0';
10980 fprintf (stream, "%s\n", message);
10981 p = start;
10982 left = size - (start - message) - len - 2;
10983
10984 gas_assert (left >= 0);
10985
10986 p = mempcpy (p, name, len);
10987 }
10988
10989 *left_p = left;
10990 return p;
10991 }
10992
10993 static void
10994 show_arch (FILE *stream, int ext, int check)
10995 {
10996 static char message[] = MESSAGE_TEMPLATE;
10997 char *start = message + 27;
10998 char *p;
10999 int size = sizeof (MESSAGE_TEMPLATE);
11000 int left;
11001 const char *name;
11002 int len;
11003 unsigned int j;
11004
11005 p = start;
11006 left = size - (start - message);
11007 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11008 {
11009 /* Should it be skipped? */
11010 if (cpu_arch [j].skip)
11011 continue;
11012
11013 name = cpu_arch [j].name;
11014 len = cpu_arch [j].len;
11015 if (*name == '.')
11016 {
11017 /* It is an extension. Skip if we aren't asked to show it. */
11018 if (ext)
11019 {
11020 name++;
11021 len--;
11022 }
11023 else
11024 continue;
11025 }
11026 else if (ext)
11027 {
11028 /* It is an processor. Skip if we show only extension. */
11029 continue;
11030 }
11031 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11032 {
11033 /* It is an impossible processor - skip. */
11034 continue;
11035 }
11036
11037 p = output_message (stream, p, message, start, &left, name, len);
11038 }
11039
11040 /* Display disabled extensions. */
11041 if (ext)
11042 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11043 {
11044 name = cpu_noarch [j].name;
11045 len = cpu_noarch [j].len;
11046 p = output_message (stream, p, message, start, &left, name,
11047 len);
11048 }
11049
11050 *p = '\0';
11051 fprintf (stream, "%s\n", message);
11052 }
11053
11054 void
11055 md_show_usage (FILE *stream)
11056 {
11057 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11058 fprintf (stream, _("\
11059 -Q ignored\n\
11060 -V print assembler version number\n\
11061 -k ignored\n"));
11062 #endif
11063 fprintf (stream, _("\
11064 -n Do not optimize code alignment\n\
11065 -q quieten some warnings\n"));
11066 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11067 fprintf (stream, _("\
11068 -s ignored\n"));
11069 #endif
11070 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11071 || defined (TE_PE) || defined (TE_PEP))
11072 fprintf (stream, _("\
11073 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11074 #endif
11075 #ifdef SVR4_COMMENT_CHARS
11076 fprintf (stream, _("\
11077 --divide do not treat `/' as a comment character\n"));
11078 #else
11079 fprintf (stream, _("\
11080 --divide ignored\n"));
11081 #endif
11082 fprintf (stream, _("\
11083 -march=CPU[,+EXTENSION...]\n\
11084 generate code for CPU and EXTENSION, CPU is one of:\n"));
11085 show_arch (stream, 0, 1);
11086 fprintf (stream, _("\
11087 EXTENSION is combination of:\n"));
11088 show_arch (stream, 1, 0);
11089 fprintf (stream, _("\
11090 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11091 show_arch (stream, 0, 0);
11092 fprintf (stream, _("\
11093 -msse2avx encode SSE instructions with VEX prefix\n"));
11094 fprintf (stream, _("\
11095 -msse-check=[none|error|warning]\n\
11096 check SSE instructions\n"));
11097 fprintf (stream, _("\
11098 -moperand-check=[none|error|warning]\n\
11099 check operand combinations for validity\n"));
11100 fprintf (stream, _("\
11101 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11102 length\n"));
11103 fprintf (stream, _("\
11104 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11105 length\n"));
11106 fprintf (stream, _("\
11107 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11108 for EVEX.W bit ignored instructions\n"));
11109 fprintf (stream, _("\
11110 -mevexrcig=[rne|rd|ru|rz]\n\
11111 encode EVEX instructions with specific EVEX.RC value\n\
11112 for SAE-only ignored instructions\n"));
11113 fprintf (stream, _("\
11114 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11115 fprintf (stream, _("\
11116 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11117 fprintf (stream, _("\
11118 -mindex-reg support pseudo index registers\n"));
11119 fprintf (stream, _("\
11120 -mnaked-reg don't require `%%' prefix for registers\n"));
11121 fprintf (stream, _("\
11122 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11123 fprintf (stream, _("\
11124 -mshared disable branch optimization for shared code\n"));
11125 # if defined (TE_PE) || defined (TE_PEP)
11126 fprintf (stream, _("\
11127 -mbig-obj generate big object files\n"));
11128 #endif
11129 fprintf (stream, _("\
11130 -momit-lock-prefix=[no|yes]\n\
11131 strip all lock prefixes\n"));
11132 fprintf (stream, _("\
11133 -mfence-as-lock-add=[no|yes]\n\
11134 encode lfence, mfence and sfence as\n\
11135 lock addl $0x0, (%%{re}sp)\n"));
11136 fprintf (stream, _("\
11137 -mrelax-relocations=[no|yes]\n\
11138 generate relax relocations\n"));
11139 fprintf (stream, _("\
11140 -mamd64 accept only AMD64 ISA\n"));
11141 fprintf (stream, _("\
11142 -mintel64 accept only Intel64 ISA\n"));
11143 }
11144
11145 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11146 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11147 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11148
11149 /* Pick the target format to use. */
11150
11151 const char *
11152 i386_target_format (void)
11153 {
11154 if (!strncmp (default_arch, "x86_64", 6))
11155 {
11156 update_code_flag (CODE_64BIT, 1);
11157 if (default_arch[6] == '\0')
11158 x86_elf_abi = X86_64_ABI;
11159 else
11160 x86_elf_abi = X86_64_X32_ABI;
11161 }
11162 else if (!strcmp (default_arch, "i386"))
11163 update_code_flag (CODE_32BIT, 1);
11164 else if (!strcmp (default_arch, "iamcu"))
11165 {
11166 update_code_flag (CODE_32BIT, 1);
11167 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11168 {
11169 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11170 cpu_arch_name = "iamcu";
11171 cpu_sub_arch_name = NULL;
11172 cpu_arch_flags = iamcu_flags;
11173 cpu_arch_isa = PROCESSOR_IAMCU;
11174 cpu_arch_isa_flags = iamcu_flags;
11175 if (!cpu_arch_tune_set)
11176 {
11177 cpu_arch_tune = cpu_arch_isa;
11178 cpu_arch_tune_flags = cpu_arch_isa_flags;
11179 }
11180 }
11181 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11182 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11183 cpu_arch_name);
11184 }
11185 else
11186 as_fatal (_("unknown architecture"));
11187
11188 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11189 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11190 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11191 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11192
11193 switch (OUTPUT_FLAVOR)
11194 {
11195 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11196 case bfd_target_aout_flavour:
11197 return AOUT_TARGET_FORMAT;
11198 #endif
11199 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11200 # if defined (TE_PE) || defined (TE_PEP)
11201 case bfd_target_coff_flavour:
11202 if (flag_code == CODE_64BIT)
11203 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11204 else
11205 return "pe-i386";
11206 # elif defined (TE_GO32)
11207 case bfd_target_coff_flavour:
11208 return "coff-go32";
11209 # else
11210 case bfd_target_coff_flavour:
11211 return "coff-i386";
11212 # endif
11213 #endif
11214 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11215 case bfd_target_elf_flavour:
11216 {
11217 const char *format;
11218
11219 switch (x86_elf_abi)
11220 {
11221 default:
11222 format = ELF_TARGET_FORMAT;
11223 break;
11224 case X86_64_ABI:
11225 use_rela_relocations = 1;
11226 object_64bit = 1;
11227 format = ELF_TARGET_FORMAT64;
11228 break;
11229 case X86_64_X32_ABI:
11230 use_rela_relocations = 1;
11231 object_64bit = 1;
11232 disallow_64bit_reloc = 1;
11233 format = ELF_TARGET_FORMAT32;
11234 break;
11235 }
11236 if (cpu_arch_isa == PROCESSOR_L1OM)
11237 {
11238 if (x86_elf_abi != X86_64_ABI)
11239 as_fatal (_("Intel L1OM is 64bit only"));
11240 return ELF_TARGET_L1OM_FORMAT;
11241 }
11242 else if (cpu_arch_isa == PROCESSOR_K1OM)
11243 {
11244 if (x86_elf_abi != X86_64_ABI)
11245 as_fatal (_("Intel K1OM is 64bit only"));
11246 return ELF_TARGET_K1OM_FORMAT;
11247 }
11248 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11249 {
11250 if (x86_elf_abi != I386_ABI)
11251 as_fatal (_("Intel MCU is 32bit only"));
11252 return ELF_TARGET_IAMCU_FORMAT;
11253 }
11254 else
11255 return format;
11256 }
11257 #endif
11258 #if defined (OBJ_MACH_O)
11259 case bfd_target_mach_o_flavour:
11260 if (flag_code == CODE_64BIT)
11261 {
11262 use_rela_relocations = 1;
11263 object_64bit = 1;
11264 return "mach-o-x86-64";
11265 }
11266 else
11267 return "mach-o-i386";
11268 #endif
11269 default:
11270 abort ();
11271 return NULL;
11272 }
11273 }
11274
11275 #endif /* OBJ_MAYBE_ more than one */
11276 \f
11277 symbolS *
11278 md_undefined_symbol (char *name)
11279 {
11280 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11281 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11282 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11283 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11284 {
11285 if (!GOT_symbol)
11286 {
11287 if (symbol_find (name))
11288 as_bad (_("GOT already in symbol table"));
11289 GOT_symbol = symbol_new (name, undefined_section,
11290 (valueT) 0, &zero_address_frag);
11291 };
11292 return GOT_symbol;
11293 }
11294 return 0;
11295 }
11296
11297 /* Round up a section size to the appropriate boundary. */
11298
11299 valueT
11300 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11301 {
11302 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11303 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11304 {
11305 /* For a.out, force the section size to be aligned. If we don't do
11306 this, BFD will align it for us, but it will not write out the
11307 final bytes of the section. This may be a bug in BFD, but it is
11308 easier to fix it here since that is how the other a.out targets
11309 work. */
11310 int align;
11311
11312 align = bfd_get_section_alignment (stdoutput, segment);
11313 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11314 }
11315 #endif
11316
11317 return size;
11318 }
11319
11320 /* On the i386, PC-relative offsets are relative to the start of the
11321 next instruction. That is, the address of the offset, plus its
11322 size, since the offset is always the last part of the insn. */
11323
11324 long
11325 md_pcrel_from (fixS *fixP)
11326 {
11327 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11328 }
11329
11330 #ifndef I386COFF
11331
11332 static void
11333 s_bss (int ignore ATTRIBUTE_UNUSED)
11334 {
11335 int temp;
11336
11337 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11338 if (IS_ELF)
11339 obj_elf_section_change_hook ();
11340 #endif
11341 temp = get_absolute_expression ();
11342 subseg_set (bss_section, (subsegT) temp);
11343 demand_empty_rest_of_line ();
11344 }
11345
11346 #endif
11347
11348 void
11349 i386_validate_fix (fixS *fixp)
11350 {
11351 if (fixp->fx_subsy)
11352 {
11353 if (fixp->fx_subsy == GOT_symbol)
11354 {
11355 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11356 {
11357 if (!object_64bit)
11358 abort ();
11359 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11360 if (fixp->fx_tcbit2)
11361 fixp->fx_r_type = (fixp->fx_tcbit
11362 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11363 : BFD_RELOC_X86_64_GOTPCRELX);
11364 else
11365 #endif
11366 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11367 }
11368 else
11369 {
11370 if (!object_64bit)
11371 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11372 else
11373 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11374 }
11375 fixp->fx_subsy = 0;
11376 }
11377 }
11378 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11379 else if (!object_64bit)
11380 {
11381 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11382 && fixp->fx_tcbit2)
11383 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11384 }
11385 #endif
11386 }
11387
11388 arelent *
11389 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11390 {
11391 arelent *rel;
11392 bfd_reloc_code_real_type code;
11393
11394 switch (fixp->fx_r_type)
11395 {
11396 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11397 case BFD_RELOC_SIZE32:
11398 case BFD_RELOC_SIZE64:
11399 if (S_IS_DEFINED (fixp->fx_addsy)
11400 && !S_IS_EXTERNAL (fixp->fx_addsy))
11401 {
11402 /* Resolve size relocation against local symbol to size of
11403 the symbol plus addend. */
11404 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11405 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11406 && !fits_in_unsigned_long (value))
11407 as_bad_where (fixp->fx_file, fixp->fx_line,
11408 _("symbol size computation overflow"));
11409 fixp->fx_addsy = NULL;
11410 fixp->fx_subsy = NULL;
11411 md_apply_fix (fixp, (valueT *) &value, NULL);
11412 return NULL;
11413 }
11414 #endif
11415 /* Fall through. */
11416
11417 case BFD_RELOC_X86_64_PLT32:
11418 case BFD_RELOC_X86_64_GOT32:
11419 case BFD_RELOC_X86_64_GOTPCREL:
11420 case BFD_RELOC_X86_64_GOTPCRELX:
11421 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11422 case BFD_RELOC_386_PLT32:
11423 case BFD_RELOC_386_GOT32:
11424 case BFD_RELOC_386_GOT32X:
11425 case BFD_RELOC_386_GOTOFF:
11426 case BFD_RELOC_386_GOTPC:
11427 case BFD_RELOC_386_TLS_GD:
11428 case BFD_RELOC_386_TLS_LDM:
11429 case BFD_RELOC_386_TLS_LDO_32:
11430 case BFD_RELOC_386_TLS_IE_32:
11431 case BFD_RELOC_386_TLS_IE:
11432 case BFD_RELOC_386_TLS_GOTIE:
11433 case BFD_RELOC_386_TLS_LE_32:
11434 case BFD_RELOC_386_TLS_LE:
11435 case BFD_RELOC_386_TLS_GOTDESC:
11436 case BFD_RELOC_386_TLS_DESC_CALL:
11437 case BFD_RELOC_X86_64_TLSGD:
11438 case BFD_RELOC_X86_64_TLSLD:
11439 case BFD_RELOC_X86_64_DTPOFF32:
11440 case BFD_RELOC_X86_64_DTPOFF64:
11441 case BFD_RELOC_X86_64_GOTTPOFF:
11442 case BFD_RELOC_X86_64_TPOFF32:
11443 case BFD_RELOC_X86_64_TPOFF64:
11444 case BFD_RELOC_X86_64_GOTOFF64:
11445 case BFD_RELOC_X86_64_GOTPC32:
11446 case BFD_RELOC_X86_64_GOT64:
11447 case BFD_RELOC_X86_64_GOTPCREL64:
11448 case BFD_RELOC_X86_64_GOTPC64:
11449 case BFD_RELOC_X86_64_GOTPLT64:
11450 case BFD_RELOC_X86_64_PLTOFF64:
11451 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11452 case BFD_RELOC_X86_64_TLSDESC_CALL:
11453 case BFD_RELOC_RVA:
11454 case BFD_RELOC_VTABLE_ENTRY:
11455 case BFD_RELOC_VTABLE_INHERIT:
11456 #ifdef TE_PE
11457 case BFD_RELOC_32_SECREL:
11458 #endif
11459 code = fixp->fx_r_type;
11460 break;
11461 case BFD_RELOC_X86_64_32S:
11462 if (!fixp->fx_pcrel)
11463 {
11464 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11465 code = fixp->fx_r_type;
11466 break;
11467 }
11468 /* Fall through. */
11469 default:
11470 if (fixp->fx_pcrel)
11471 {
11472 switch (fixp->fx_size)
11473 {
11474 default:
11475 as_bad_where (fixp->fx_file, fixp->fx_line,
11476 _("can not do %d byte pc-relative relocation"),
11477 fixp->fx_size);
11478 code = BFD_RELOC_32_PCREL;
11479 break;
11480 case 1: code = BFD_RELOC_8_PCREL; break;
11481 case 2: code = BFD_RELOC_16_PCREL; break;
11482 case 4: code = BFD_RELOC_32_PCREL; break;
11483 #ifdef BFD64
11484 case 8: code = BFD_RELOC_64_PCREL; break;
11485 #endif
11486 }
11487 }
11488 else
11489 {
11490 switch (fixp->fx_size)
11491 {
11492 default:
11493 as_bad_where (fixp->fx_file, fixp->fx_line,
11494 _("can not do %d byte relocation"),
11495 fixp->fx_size);
11496 code = BFD_RELOC_32;
11497 break;
11498 case 1: code = BFD_RELOC_8; break;
11499 case 2: code = BFD_RELOC_16; break;
11500 case 4: code = BFD_RELOC_32; break;
11501 #ifdef BFD64
11502 case 8: code = BFD_RELOC_64; break;
11503 #endif
11504 }
11505 }
11506 break;
11507 }
11508
11509 if ((code == BFD_RELOC_32
11510 || code == BFD_RELOC_32_PCREL
11511 || code == BFD_RELOC_X86_64_32S)
11512 && GOT_symbol
11513 && fixp->fx_addsy == GOT_symbol)
11514 {
11515 if (!object_64bit)
11516 code = BFD_RELOC_386_GOTPC;
11517 else
11518 code = BFD_RELOC_X86_64_GOTPC32;
11519 }
11520 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11521 && GOT_symbol
11522 && fixp->fx_addsy == GOT_symbol)
11523 {
11524 code = BFD_RELOC_X86_64_GOTPC64;
11525 }
11526
11527 rel = XNEW (arelent);
11528 rel->sym_ptr_ptr = XNEW (asymbol *);
11529 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11530
11531 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11532
11533 if (!use_rela_relocations)
11534 {
11535 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11536 vtable entry to be used in the relocation's section offset. */
11537 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11538 rel->address = fixp->fx_offset;
11539 #if defined (OBJ_COFF) && defined (TE_PE)
11540 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11541 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11542 else
11543 #endif
11544 rel->addend = 0;
11545 }
11546 /* Use the rela in 64bit mode. */
11547 else
11548 {
11549 if (disallow_64bit_reloc)
11550 switch (code)
11551 {
11552 case BFD_RELOC_X86_64_DTPOFF64:
11553 case BFD_RELOC_X86_64_TPOFF64:
11554 case BFD_RELOC_64_PCREL:
11555 case BFD_RELOC_X86_64_GOTOFF64:
11556 case BFD_RELOC_X86_64_GOT64:
11557 case BFD_RELOC_X86_64_GOTPCREL64:
11558 case BFD_RELOC_X86_64_GOTPC64:
11559 case BFD_RELOC_X86_64_GOTPLT64:
11560 case BFD_RELOC_X86_64_PLTOFF64:
11561 as_bad_where (fixp->fx_file, fixp->fx_line,
11562 _("cannot represent relocation type %s in x32 mode"),
11563 bfd_get_reloc_code_name (code));
11564 break;
11565 default:
11566 break;
11567 }
11568
11569 if (!fixp->fx_pcrel)
11570 rel->addend = fixp->fx_offset;
11571 else
11572 switch (code)
11573 {
11574 case BFD_RELOC_X86_64_PLT32:
11575 case BFD_RELOC_X86_64_GOT32:
11576 case BFD_RELOC_X86_64_GOTPCREL:
11577 case BFD_RELOC_X86_64_GOTPCRELX:
11578 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11579 case BFD_RELOC_X86_64_TLSGD:
11580 case BFD_RELOC_X86_64_TLSLD:
11581 case BFD_RELOC_X86_64_GOTTPOFF:
11582 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11583 case BFD_RELOC_X86_64_TLSDESC_CALL:
11584 rel->addend = fixp->fx_offset - fixp->fx_size;
11585 break;
11586 default:
11587 rel->addend = (section->vma
11588 - fixp->fx_size
11589 + fixp->fx_addnumber
11590 + md_pcrel_from (fixp));
11591 break;
11592 }
11593 }
11594
11595 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11596 if (rel->howto == NULL)
11597 {
11598 as_bad_where (fixp->fx_file, fixp->fx_line,
11599 _("cannot represent relocation type %s"),
11600 bfd_get_reloc_code_name (code));
11601 /* Set howto to a garbage value so that we can keep going. */
11602 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11603 gas_assert (rel->howto != NULL);
11604 }
11605
11606 return rel;
11607 }
11608
11609 #include "tc-i386-intel.c"
11610
11611 void
11612 tc_x86_parse_to_dw2regnum (expressionS *exp)
11613 {
11614 int saved_naked_reg;
11615 char saved_register_dot;
11616
11617 saved_naked_reg = allow_naked_reg;
11618 allow_naked_reg = 1;
11619 saved_register_dot = register_chars['.'];
11620 register_chars['.'] = '.';
11621 allow_pseudo_reg = 1;
11622 expression_and_evaluate (exp);
11623 allow_pseudo_reg = 0;
11624 register_chars['.'] = saved_register_dot;
11625 allow_naked_reg = saved_naked_reg;
11626
11627 if (exp->X_op == O_register && exp->X_add_number >= 0)
11628 {
11629 if ((addressT) exp->X_add_number < i386_regtab_size)
11630 {
11631 exp->X_op = O_constant;
11632 exp->X_add_number = i386_regtab[exp->X_add_number]
11633 .dw2_regnum[flag_code >> 1];
11634 }
11635 else
11636 exp->X_op = O_illegal;
11637 }
11638 }
11639
11640 void
11641 tc_x86_frame_initial_instructions (void)
11642 {
11643 static unsigned int sp_regno[2];
11644
11645 if (!sp_regno[flag_code >> 1])
11646 {
11647 char *saved_input = input_line_pointer;
11648 char sp[][4] = {"esp", "rsp"};
11649 expressionS exp;
11650
11651 input_line_pointer = sp[flag_code >> 1];
11652 tc_x86_parse_to_dw2regnum (&exp);
11653 gas_assert (exp.X_op == O_constant);
11654 sp_regno[flag_code >> 1] = exp.X_add_number;
11655 input_line_pointer = saved_input;
11656 }
11657
11658 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11659 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11660 }
11661
11662 int
11663 x86_dwarf2_addr_size (void)
11664 {
11665 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11666 if (x86_elf_abi == X86_64_X32_ABI)
11667 return 4;
11668 #endif
11669 return bfd_arch_bits_per_address (stdoutput) / 8;
11670 }
11671
11672 int
11673 i386_elf_section_type (const char *str, size_t len)
11674 {
11675 if (flag_code == CODE_64BIT
11676 && len == sizeof ("unwind") - 1
11677 && strncmp (str, "unwind", 6) == 0)
11678 return SHT_X86_64_UNWIND;
11679
11680 return -1;
11681 }
11682
11683 #ifdef TE_SOLARIS
11684 void
11685 i386_solaris_fix_up_eh_frame (segT sec)
11686 {
11687 if (flag_code == CODE_64BIT)
11688 elf_section_type (sec) = SHT_X86_64_UNWIND;
11689 }
11690 #endif
11691
11692 #ifdef TE_PE
11693 void
11694 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11695 {
11696 expressionS exp;
11697
11698 exp.X_op = O_secrel;
11699 exp.X_add_symbol = symbol;
11700 exp.X_add_number = 0;
11701 emit_expr (&exp, size);
11702 }
11703 #endif
11704
11705 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11706 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11707
11708 bfd_vma
11709 x86_64_section_letter (int letter, const char **ptr_msg)
11710 {
11711 if (flag_code == CODE_64BIT)
11712 {
11713 if (letter == 'l')
11714 return SHF_X86_64_LARGE;
11715
11716 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11717 }
11718 else
11719 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11720 return -1;
11721 }
11722
11723 bfd_vma
11724 x86_64_section_word (char *str, size_t len)
11725 {
11726 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11727 return SHF_X86_64_LARGE;
11728
11729 return -1;
11730 }
11731
11732 static void
11733 handle_large_common (int small ATTRIBUTE_UNUSED)
11734 {
11735 if (flag_code != CODE_64BIT)
11736 {
11737 s_comm_internal (0, elf_common_parse);
11738 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11739 }
11740 else
11741 {
11742 static segT lbss_section;
11743 asection *saved_com_section_ptr = elf_com_section_ptr;
11744 asection *saved_bss_section = bss_section;
11745
11746 if (lbss_section == NULL)
11747 {
11748 flagword applicable;
11749 segT seg = now_seg;
11750 subsegT subseg = now_subseg;
11751
11752 /* The .lbss section is for local .largecomm symbols. */
11753 lbss_section = subseg_new (".lbss", 0);
11754 applicable = bfd_applicable_section_flags (stdoutput);
11755 bfd_set_section_flags (stdoutput, lbss_section,
11756 applicable & SEC_ALLOC);
11757 seg_info (lbss_section)->bss = 1;
11758
11759 subseg_set (seg, subseg);
11760 }
11761
11762 elf_com_section_ptr = &_bfd_elf_large_com_section;
11763 bss_section = lbss_section;
11764
11765 s_comm_internal (0, elf_common_parse);
11766
11767 elf_com_section_ptr = saved_com_section_ptr;
11768 bss_section = saved_bss_section;
11769 }
11770 }
11771 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.502098 seconds and 5 git commands to generate.