x86-64: optimize certain commutative VEX-encoded insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1919
1920 enum operand_type
1921 {
1922 reg,
1923 imm,
1924 disp,
1925 anymem
1926 };
1927
1928 static INLINE int
1929 operand_type_check (i386_operand_type t, enum operand_type c)
1930 {
1931 switch (c)
1932 {
1933 case reg:
1934 return t.bitfield.reg;
1935
1936 case imm:
1937 return (t.bitfield.imm8
1938 || t.bitfield.imm8s
1939 || t.bitfield.imm16
1940 || t.bitfield.imm32
1941 || t.bitfield.imm32s
1942 || t.bitfield.imm64);
1943
1944 case disp:
1945 return (t.bitfield.disp8
1946 || t.bitfield.disp16
1947 || t.bitfield.disp32
1948 || t.bitfield.disp32s
1949 || t.bitfield.disp64);
1950
1951 case anymem:
1952 return (t.bitfield.disp8
1953 || t.bitfield.disp16
1954 || t.bitfield.disp32
1955 || t.bitfield.disp32s
1956 || t.bitfield.disp64
1957 || t.bitfield.baseindex);
1958
1959 default:
1960 abort ();
1961 }
1962
1963 return 0;
1964 }
1965
1966 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1967 between operand GIVEN and opeand WANTED for instruction template T. */
1968
1969 static INLINE int
1970 match_operand_size (const insn_template *t, unsigned int wanted,
1971 unsigned int given)
1972 {
1973 return !((i.types[given].bitfield.byte
1974 && !t->operand_types[wanted].bitfield.byte)
1975 || (i.types[given].bitfield.word
1976 && !t->operand_types[wanted].bitfield.word)
1977 || (i.types[given].bitfield.dword
1978 && !t->operand_types[wanted].bitfield.dword)
1979 || (i.types[given].bitfield.qword
1980 && !t->operand_types[wanted].bitfield.qword)
1981 || (i.types[given].bitfield.tbyte
1982 && !t->operand_types[wanted].bitfield.tbyte));
1983 }
1984
1985 /* Return 1 if there is no conflict in SIMD register between operand
1986 GIVEN and opeand WANTED for instruction template T. */
1987
1988 static INLINE int
1989 match_simd_size (const insn_template *t, unsigned int wanted,
1990 unsigned int given)
1991 {
1992 return !((i.types[given].bitfield.xmmword
1993 && !t->operand_types[wanted].bitfield.xmmword)
1994 || (i.types[given].bitfield.ymmword
1995 && !t->operand_types[wanted].bitfield.ymmword)
1996 || (i.types[given].bitfield.zmmword
1997 && !t->operand_types[wanted].bitfield.zmmword));
1998 }
1999
2000 /* Return 1 if there is no conflict in any size between operand GIVEN
2001 and opeand WANTED for instruction template T. */
2002
2003 static INLINE int
2004 match_mem_size (const insn_template *t, unsigned int wanted,
2005 unsigned int given)
2006 {
2007 return (match_operand_size (t, wanted, given)
2008 && !((i.types[given].bitfield.unspecified
2009 && !i.broadcast
2010 && !t->operand_types[wanted].bitfield.unspecified)
2011 || (i.types[given].bitfield.fword
2012 && !t->operand_types[wanted].bitfield.fword)
2013 /* For scalar opcode templates to allow register and memory
2014 operands at the same time, some special casing is needed
2015 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2016 down-conversion vpmov*. */
2017 || ((t->operand_types[wanted].bitfield.regsimd
2018 && !t->opcode_modifier.broadcast
2019 && (t->operand_types[wanted].bitfield.byte
2020 || t->operand_types[wanted].bitfield.word
2021 || t->operand_types[wanted].bitfield.dword
2022 || t->operand_types[wanted].bitfield.qword))
2023 ? (i.types[given].bitfield.xmmword
2024 || i.types[given].bitfield.ymmword
2025 || i.types[given].bitfield.zmmword)
2026 : !match_simd_size(t, wanted, given))));
2027 }
2028
2029 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2030 operands for instruction template T, and it has MATCH_REVERSE set if there
2031 is no size conflict on any operands for the template with operands reversed
2032 (and the template allows for reversing in the first place). */
2033
2034 #define MATCH_STRAIGHT 1
2035 #define MATCH_REVERSE 2
2036
2037 static INLINE unsigned int
2038 operand_size_match (const insn_template *t)
2039 {
2040 unsigned int j, match = MATCH_STRAIGHT;
2041
2042 /* Don't check jump instructions. */
2043 if (t->opcode_modifier.jump
2044 || t->opcode_modifier.jumpbyte
2045 || t->opcode_modifier.jumpdword
2046 || t->opcode_modifier.jumpintersegment)
2047 return match;
2048
2049 /* Check memory and accumulator operand size. */
2050 for (j = 0; j < i.operands; j++)
2051 {
2052 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2053 && t->operand_types[j].bitfield.anysize)
2054 continue;
2055
2056 if (t->operand_types[j].bitfield.reg
2057 && !match_operand_size (t, j, j))
2058 {
2059 match = 0;
2060 break;
2061 }
2062
2063 if (t->operand_types[j].bitfield.regsimd
2064 && !match_simd_size (t, j, j))
2065 {
2066 match = 0;
2067 break;
2068 }
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2072 {
2073 match = 0;
2074 break;
2075 }
2076
2077 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2078 {
2079 match = 0;
2080 break;
2081 }
2082 }
2083
2084 if (!t->opcode_modifier.d)
2085 {
2086 mismatch:
2087 if (!match)
2088 i.error = operand_size_mismatch;
2089 return match;
2090 }
2091
2092 /* Check reverse. */
2093 gas_assert (i.operands >= 2 && i.operands <= 3);
2094
2095 for (j = 0; j < i.operands; j++)
2096 {
2097 unsigned int given = i.operands - j - 1;
2098
2099 if (t->operand_types[j].bitfield.reg
2100 && !match_operand_size (t, j, given))
2101 goto mismatch;
2102
2103 if (t->operand_types[j].bitfield.regsimd
2104 && !match_simd_size (t, j, given))
2105 goto mismatch;
2106
2107 if (t->operand_types[j].bitfield.acc
2108 && (!match_operand_size (t, j, given)
2109 || !match_simd_size (t, j, given)))
2110 goto mismatch;
2111
2112 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2113 goto mismatch;
2114 }
2115
2116 return match | MATCH_REVERSE;
2117 }
2118
2119 static INLINE int
2120 operand_type_match (i386_operand_type overlap,
2121 i386_operand_type given)
2122 {
2123 i386_operand_type temp = overlap;
2124
2125 temp.bitfield.jumpabsolute = 0;
2126 temp.bitfield.unspecified = 0;
2127 temp.bitfield.byte = 0;
2128 temp.bitfield.word = 0;
2129 temp.bitfield.dword = 0;
2130 temp.bitfield.fword = 0;
2131 temp.bitfield.qword = 0;
2132 temp.bitfield.tbyte = 0;
2133 temp.bitfield.xmmword = 0;
2134 temp.bitfield.ymmword = 0;
2135 temp.bitfield.zmmword = 0;
2136 if (operand_type_all_zero (&temp))
2137 goto mismatch;
2138
2139 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2140 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2141 return 1;
2142
2143 mismatch:
2144 i.error = operand_type_mismatch;
2145 return 0;
2146 }
2147
2148 /* If given types g0 and g1 are registers they must be of the same type
2149 unless the expected operand type register overlap is null.
2150 Memory operand size of certain SIMD instructions is also being checked
2151 here. */
2152
2153 static INLINE int
2154 operand_type_register_match (i386_operand_type g0,
2155 i386_operand_type t0,
2156 i386_operand_type g1,
2157 i386_operand_type t1)
2158 {
2159 if (!g0.bitfield.reg
2160 && !g0.bitfield.regsimd
2161 && (!operand_type_check (g0, anymem)
2162 || g0.bitfield.unspecified
2163 || !t0.bitfield.regsimd))
2164 return 1;
2165
2166 if (!g1.bitfield.reg
2167 && !g1.bitfield.regsimd
2168 && (!operand_type_check (g1, anymem)
2169 || g1.bitfield.unspecified
2170 || !t1.bitfield.regsimd))
2171 return 1;
2172
2173 if (g0.bitfield.byte == g1.bitfield.byte
2174 && g0.bitfield.word == g1.bitfield.word
2175 && g0.bitfield.dword == g1.bitfield.dword
2176 && g0.bitfield.qword == g1.bitfield.qword
2177 && g0.bitfield.xmmword == g1.bitfield.xmmword
2178 && g0.bitfield.ymmword == g1.bitfield.ymmword
2179 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2180 return 1;
2181
2182 if (!(t0.bitfield.byte & t1.bitfield.byte)
2183 && !(t0.bitfield.word & t1.bitfield.word)
2184 && !(t0.bitfield.dword & t1.bitfield.dword)
2185 && !(t0.bitfield.qword & t1.bitfield.qword)
2186 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2187 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2188 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2189 return 1;
2190
2191 i.error = register_type_mismatch;
2192
2193 return 0;
2194 }
2195
2196 static INLINE unsigned int
2197 register_number (const reg_entry *r)
2198 {
2199 unsigned int nr = r->reg_num;
2200
2201 if (r->reg_flags & RegRex)
2202 nr += 8;
2203
2204 if (r->reg_flags & RegVRex)
2205 nr += 16;
2206
2207 return nr;
2208 }
2209
2210 static INLINE unsigned int
2211 mode_from_disp_size (i386_operand_type t)
2212 {
2213 if (t.bitfield.disp8)
2214 return 1;
2215 else if (t.bitfield.disp16
2216 || t.bitfield.disp32
2217 || t.bitfield.disp32s)
2218 return 2;
2219 else
2220 return 0;
2221 }
2222
2223 static INLINE int
2224 fits_in_signed_byte (addressT num)
2225 {
2226 return num + 0x80 <= 0xff;
2227 }
2228
2229 static INLINE int
2230 fits_in_unsigned_byte (addressT num)
2231 {
2232 return num <= 0xff;
2233 }
2234
2235 static INLINE int
2236 fits_in_unsigned_word (addressT num)
2237 {
2238 return num <= 0xffff;
2239 }
2240
2241 static INLINE int
2242 fits_in_signed_word (addressT num)
2243 {
2244 return num + 0x8000 <= 0xffff;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2249 {
2250 #ifndef BFD64
2251 return 1;
2252 #else
2253 return num + 0x80000000 <= 0xffffffff;
2254 #endif
2255 } /* fits_in_signed_long() */
2256
2257 static INLINE int
2258 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2259 {
2260 #ifndef BFD64
2261 return 1;
2262 #else
2263 return num <= 0xffffffff;
2264 #endif
2265 } /* fits_in_unsigned_long() */
2266
2267 static INLINE int
2268 fits_in_disp8 (offsetT num)
2269 {
2270 int shift = i.memshift;
2271 unsigned int mask;
2272
2273 if (shift == -1)
2274 abort ();
2275
2276 mask = (1 << shift) - 1;
2277
2278 /* Return 0 if NUM isn't properly aligned. */
2279 if ((num & mask))
2280 return 0;
2281
2282 /* Check if NUM will fit in 8bit after shift. */
2283 return fits_in_signed_byte (num >> shift);
2284 }
2285
2286 static INLINE int
2287 fits_in_imm4 (offsetT num)
2288 {
2289 return (num & 0xf) == num;
2290 }
2291
2292 static i386_operand_type
2293 smallest_imm_type (offsetT num)
2294 {
2295 i386_operand_type t;
2296
2297 operand_type_set (&t, 0);
2298 t.bitfield.imm64 = 1;
2299
2300 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2301 {
2302 /* This code is disabled on the 486 because all the Imm1 forms
2303 in the opcode table are slower on the i486. They're the
2304 versions with the implicitly specified single-position
2305 displacement, which has another syntax if you really want to
2306 use that form. */
2307 t.bitfield.imm1 = 1;
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm8s = 1;
2310 t.bitfield.imm16 = 1;
2311 t.bitfield.imm32 = 1;
2312 t.bitfield.imm32s = 1;
2313 }
2314 else if (fits_in_signed_byte (num))
2315 {
2316 t.bitfield.imm8 = 1;
2317 t.bitfield.imm8s = 1;
2318 t.bitfield.imm16 = 1;
2319 t.bitfield.imm32 = 1;
2320 t.bitfield.imm32s = 1;
2321 }
2322 else if (fits_in_unsigned_byte (num))
2323 {
2324 t.bitfield.imm8 = 1;
2325 t.bitfield.imm16 = 1;
2326 t.bitfield.imm32 = 1;
2327 t.bitfield.imm32s = 1;
2328 }
2329 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2330 {
2331 t.bitfield.imm16 = 1;
2332 t.bitfield.imm32 = 1;
2333 t.bitfield.imm32s = 1;
2334 }
2335 else if (fits_in_signed_long (num))
2336 {
2337 t.bitfield.imm32 = 1;
2338 t.bitfield.imm32s = 1;
2339 }
2340 else if (fits_in_unsigned_long (num))
2341 t.bitfield.imm32 = 1;
2342
2343 return t;
2344 }
2345
2346 static offsetT
2347 offset_in_range (offsetT val, int size)
2348 {
2349 addressT mask;
2350
2351 switch (size)
2352 {
2353 case 1: mask = ((addressT) 1 << 8) - 1; break;
2354 case 2: mask = ((addressT) 1 << 16) - 1; break;
2355 case 4: mask = ((addressT) 2 << 31) - 1; break;
2356 #ifdef BFD64
2357 case 8: mask = ((addressT) 2 << 63) - 1; break;
2358 #endif
2359 default: abort ();
2360 }
2361
2362 #ifdef BFD64
2363 /* If BFD64, sign extend val for 32bit address mode. */
2364 if (flag_code != CODE_64BIT
2365 || i.prefix[ADDR_PREFIX])
2366 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2367 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2368 #endif
2369
2370 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2371 {
2372 char buf1[40], buf2[40];
2373
2374 sprint_value (buf1, val);
2375 sprint_value (buf2, val & mask);
2376 as_warn (_("%s shortened to %s"), buf1, buf2);
2377 }
2378 return val & mask;
2379 }
2380
2381 enum PREFIX_GROUP
2382 {
2383 PREFIX_EXIST = 0,
2384 PREFIX_LOCK,
2385 PREFIX_REP,
2386 PREFIX_DS,
2387 PREFIX_OTHER
2388 };
2389
2390 /* Returns
2391 a. PREFIX_EXIST if attempting to add a prefix where one from the
2392 same class already exists.
2393 b. PREFIX_LOCK if lock prefix is added.
2394 c. PREFIX_REP if rep/repne prefix is added.
2395 d. PREFIX_DS if ds prefix is added.
2396 e. PREFIX_OTHER if other prefix is added.
2397 */
2398
2399 static enum PREFIX_GROUP
2400 add_prefix (unsigned int prefix)
2401 {
2402 enum PREFIX_GROUP ret = PREFIX_OTHER;
2403 unsigned int q;
2404
2405 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2406 && flag_code == CODE_64BIT)
2407 {
2408 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2411 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2412 ret = PREFIX_EXIST;
2413 q = REX_PREFIX;
2414 }
2415 else
2416 {
2417 switch (prefix)
2418 {
2419 default:
2420 abort ();
2421
2422 case DS_PREFIX_OPCODE:
2423 ret = PREFIX_DS;
2424 /* Fall through. */
2425 case CS_PREFIX_OPCODE:
2426 case ES_PREFIX_OPCODE:
2427 case FS_PREFIX_OPCODE:
2428 case GS_PREFIX_OPCODE:
2429 case SS_PREFIX_OPCODE:
2430 q = SEG_PREFIX;
2431 break;
2432
2433 case REPNE_PREFIX_OPCODE:
2434 case REPE_PREFIX_OPCODE:
2435 q = REP_PREFIX;
2436 ret = PREFIX_REP;
2437 break;
2438
2439 case LOCK_PREFIX_OPCODE:
2440 q = LOCK_PREFIX;
2441 ret = PREFIX_LOCK;
2442 break;
2443
2444 case FWAIT_OPCODE:
2445 q = WAIT_PREFIX;
2446 break;
2447
2448 case ADDR_PREFIX_OPCODE:
2449 q = ADDR_PREFIX;
2450 break;
2451
2452 case DATA_PREFIX_OPCODE:
2453 q = DATA_PREFIX;
2454 break;
2455 }
2456 if (i.prefix[q] != 0)
2457 ret = PREFIX_EXIST;
2458 }
2459
2460 if (ret)
2461 {
2462 if (!i.prefix[q])
2463 ++i.prefixes;
2464 i.prefix[q] |= prefix;
2465 }
2466 else
2467 as_bad (_("same type of prefix used twice"));
2468
2469 return ret;
2470 }
2471
2472 static void
2473 update_code_flag (int value, int check)
2474 {
2475 PRINTF_LIKE ((*as_error));
2476
2477 flag_code = (enum flag_code) value;
2478 if (flag_code == CODE_64BIT)
2479 {
2480 cpu_arch_flags.bitfield.cpu64 = 1;
2481 cpu_arch_flags.bitfield.cpuno64 = 0;
2482 }
2483 else
2484 {
2485 cpu_arch_flags.bitfield.cpu64 = 0;
2486 cpu_arch_flags.bitfield.cpuno64 = 1;
2487 }
2488 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2489 {
2490 if (check)
2491 as_error = as_fatal;
2492 else
2493 as_error = as_bad;
2494 (*as_error) (_("64bit mode not supported on `%s'."),
2495 cpu_arch_name ? cpu_arch_name : default_arch);
2496 }
2497 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2498 {
2499 if (check)
2500 as_error = as_fatal;
2501 else
2502 as_error = as_bad;
2503 (*as_error) (_("32bit mode not supported on `%s'."),
2504 cpu_arch_name ? cpu_arch_name : default_arch);
2505 }
2506 stackop_size = '\0';
2507 }
2508
2509 static void
2510 set_code_flag (int value)
2511 {
2512 update_code_flag (value, 0);
2513 }
2514
2515 static void
2516 set_16bit_gcc_code_flag (int new_code_flag)
2517 {
2518 flag_code = (enum flag_code) new_code_flag;
2519 if (flag_code != CODE_16BIT)
2520 abort ();
2521 cpu_arch_flags.bitfield.cpu64 = 0;
2522 cpu_arch_flags.bitfield.cpuno64 = 1;
2523 stackop_size = LONG_MNEM_SUFFIX;
2524 }
2525
2526 static void
2527 set_intel_syntax (int syntax_flag)
2528 {
2529 /* Find out if register prefixing is specified. */
2530 int ask_naked_reg = 0;
2531
2532 SKIP_WHITESPACE ();
2533 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2534 {
2535 char *string;
2536 int e = get_symbol_name (&string);
2537
2538 if (strcmp (string, "prefix") == 0)
2539 ask_naked_reg = 1;
2540 else if (strcmp (string, "noprefix") == 0)
2541 ask_naked_reg = -1;
2542 else
2543 as_bad (_("bad argument to syntax directive."));
2544 (void) restore_line_pointer (e);
2545 }
2546 demand_empty_rest_of_line ();
2547
2548 intel_syntax = syntax_flag;
2549
2550 if (ask_naked_reg == 0)
2551 allow_naked_reg = (intel_syntax
2552 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2553 else
2554 allow_naked_reg = (ask_naked_reg < 0);
2555
2556 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2557
2558 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2559 identifier_chars['$'] = intel_syntax ? '$' : 0;
2560 register_prefix = allow_naked_reg ? "" : "%";
2561 }
2562
2563 static void
2564 set_intel_mnemonic (int mnemonic_flag)
2565 {
2566 intel_mnemonic = mnemonic_flag;
2567 }
2568
2569 static void
2570 set_allow_index_reg (int flag)
2571 {
2572 allow_index_reg = flag;
2573 }
2574
2575 static void
2576 set_check (int what)
2577 {
2578 enum check_kind *kind;
2579 const char *str;
2580
2581 if (what)
2582 {
2583 kind = &operand_check;
2584 str = "operand";
2585 }
2586 else
2587 {
2588 kind = &sse_check;
2589 str = "sse";
2590 }
2591
2592 SKIP_WHITESPACE ();
2593
2594 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2595 {
2596 char *string;
2597 int e = get_symbol_name (&string);
2598
2599 if (strcmp (string, "none") == 0)
2600 *kind = check_none;
2601 else if (strcmp (string, "warning") == 0)
2602 *kind = check_warning;
2603 else if (strcmp (string, "error") == 0)
2604 *kind = check_error;
2605 else
2606 as_bad (_("bad argument to %s_check directive."), str);
2607 (void) restore_line_pointer (e);
2608 }
2609 else
2610 as_bad (_("missing argument for %s_check directive"), str);
2611
2612 demand_empty_rest_of_line ();
2613 }
2614
2615 static void
2616 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2617 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2618 {
2619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2620 static const char *arch;
2621
2622 /* Intel LIOM is only supported on ELF. */
2623 if (!IS_ELF)
2624 return;
2625
2626 if (!arch)
2627 {
2628 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2629 use default_arch. */
2630 arch = cpu_arch_name;
2631 if (!arch)
2632 arch = default_arch;
2633 }
2634
2635 /* If we are targeting Intel MCU, we must enable it. */
2636 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2637 || new_flag.bitfield.cpuiamcu)
2638 return;
2639
2640 /* If we are targeting Intel L1OM, we must enable it. */
2641 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2642 || new_flag.bitfield.cpul1om)
2643 return;
2644
2645 /* If we are targeting Intel K1OM, we must enable it. */
2646 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2647 || new_flag.bitfield.cpuk1om)
2648 return;
2649
2650 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2651 #endif
2652 }
2653
2654 static void
2655 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2656 {
2657 SKIP_WHITESPACE ();
2658
2659 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2660 {
2661 char *string;
2662 int e = get_symbol_name (&string);
2663 unsigned int j;
2664 i386_cpu_flags flags;
2665
2666 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2667 {
2668 if (strcmp (string, cpu_arch[j].name) == 0)
2669 {
2670 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2671
2672 if (*string != '.')
2673 {
2674 cpu_arch_name = cpu_arch[j].name;
2675 cpu_sub_arch_name = NULL;
2676 cpu_arch_flags = cpu_arch[j].flags;
2677 if (flag_code == CODE_64BIT)
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 1;
2680 cpu_arch_flags.bitfield.cpuno64 = 0;
2681 }
2682 else
2683 {
2684 cpu_arch_flags.bitfield.cpu64 = 0;
2685 cpu_arch_flags.bitfield.cpuno64 = 1;
2686 }
2687 cpu_arch_isa = cpu_arch[j].type;
2688 cpu_arch_isa_flags = cpu_arch[j].flags;
2689 if (!cpu_arch_tune_set)
2690 {
2691 cpu_arch_tune = cpu_arch_isa;
2692 cpu_arch_tune_flags = cpu_arch_isa_flags;
2693 }
2694 break;
2695 }
2696
2697 flags = cpu_flags_or (cpu_arch_flags,
2698 cpu_arch[j].flags);
2699
2700 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2701 {
2702 if (cpu_sub_arch_name)
2703 {
2704 char *name = cpu_sub_arch_name;
2705 cpu_sub_arch_name = concat (name,
2706 cpu_arch[j].name,
2707 (const char *) NULL);
2708 free (name);
2709 }
2710 else
2711 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2712 cpu_arch_flags = flags;
2713 cpu_arch_isa_flags = flags;
2714 }
2715 else
2716 cpu_arch_isa_flags
2717 = cpu_flags_or (cpu_arch_isa_flags,
2718 cpu_arch[j].flags);
2719 (void) restore_line_pointer (e);
2720 demand_empty_rest_of_line ();
2721 return;
2722 }
2723 }
2724
2725 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2726 {
2727 /* Disable an ISA extension. */
2728 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2729 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2730 {
2731 flags = cpu_flags_and_not (cpu_arch_flags,
2732 cpu_noarch[j].flags);
2733 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2734 {
2735 if (cpu_sub_arch_name)
2736 {
2737 char *name = cpu_sub_arch_name;
2738 cpu_sub_arch_name = concat (name, string,
2739 (const char *) NULL);
2740 free (name);
2741 }
2742 else
2743 cpu_sub_arch_name = xstrdup (string);
2744 cpu_arch_flags = flags;
2745 cpu_arch_isa_flags = flags;
2746 }
2747 (void) restore_line_pointer (e);
2748 demand_empty_rest_of_line ();
2749 return;
2750 }
2751
2752 j = ARRAY_SIZE (cpu_arch);
2753 }
2754
2755 if (j >= ARRAY_SIZE (cpu_arch))
2756 as_bad (_("no such architecture: `%s'"), string);
2757
2758 *input_line_pointer = e;
2759 }
2760 else
2761 as_bad (_("missing cpu architecture"));
2762
2763 no_cond_jump_promotion = 0;
2764 if (*input_line_pointer == ','
2765 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2766 {
2767 char *string;
2768 char e;
2769
2770 ++input_line_pointer;
2771 e = get_symbol_name (&string);
2772
2773 if (strcmp (string, "nojumps") == 0)
2774 no_cond_jump_promotion = 1;
2775 else if (strcmp (string, "jumps") == 0)
2776 ;
2777 else
2778 as_bad (_("no such architecture modifier: `%s'"), string);
2779
2780 (void) restore_line_pointer (e);
2781 }
2782
2783 demand_empty_rest_of_line ();
2784 }
2785
2786 enum bfd_architecture
2787 i386_arch (void)
2788 {
2789 if (cpu_arch_isa == PROCESSOR_L1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || flag_code != CODE_64BIT)
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_arch_l1om;
2795 }
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || flag_code != CODE_64BIT)
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_arch_k1om;
2802 }
2803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || flag_code == CODE_64BIT)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_arch_iamcu;
2809 }
2810 else
2811 return bfd_arch_i386;
2812 }
2813
2814 unsigned long
2815 i386_mach (void)
2816 {
2817 if (!strncmp (default_arch, "x86_64", 6))
2818 {
2819 if (cpu_arch_isa == PROCESSOR_L1OM)
2820 {
2821 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2822 || default_arch[6] != '\0')
2823 as_fatal (_("Intel L1OM is 64bit ELF only"));
2824 return bfd_mach_l1om;
2825 }
2826 else if (cpu_arch_isa == PROCESSOR_K1OM)
2827 {
2828 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2829 || default_arch[6] != '\0')
2830 as_fatal (_("Intel K1OM is 64bit ELF only"));
2831 return bfd_mach_k1om;
2832 }
2833 else if (default_arch[6] == '\0')
2834 return bfd_mach_x86_64;
2835 else
2836 return bfd_mach_x64_32;
2837 }
2838 else if (!strcmp (default_arch, "i386")
2839 || !strcmp (default_arch, "iamcu"))
2840 {
2841 if (cpu_arch_isa == PROCESSOR_IAMCU)
2842 {
2843 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2844 as_fatal (_("Intel MCU is 32bit ELF only"));
2845 return bfd_mach_i386_iamcu;
2846 }
2847 else
2848 return bfd_mach_i386_i386;
2849 }
2850 else
2851 as_fatal (_("unknown architecture"));
2852 }
2853 \f
2854 void
2855 md_begin (void)
2856 {
2857 const char *hash_err;
2858
2859 /* Support pseudo prefixes like {disp32}. */
2860 lex_type ['{'] = LEX_BEGIN_NAME;
2861
2862 /* Initialize op_hash hash table. */
2863 op_hash = hash_new ();
2864
2865 {
2866 const insn_template *optab;
2867 templates *core_optab;
2868
2869 /* Setup for loop. */
2870 optab = i386_optab;
2871 core_optab = XNEW (templates);
2872 core_optab->start = optab;
2873
2874 while (1)
2875 {
2876 ++optab;
2877 if (optab->name == NULL
2878 || strcmp (optab->name, (optab - 1)->name) != 0)
2879 {
2880 /* different name --> ship out current template list;
2881 add to hash table; & begin anew. */
2882 core_optab->end = optab;
2883 hash_err = hash_insert (op_hash,
2884 (optab - 1)->name,
2885 (void *) core_optab);
2886 if (hash_err)
2887 {
2888 as_fatal (_("can't hash %s: %s"),
2889 (optab - 1)->name,
2890 hash_err);
2891 }
2892 if (optab->name == NULL)
2893 break;
2894 core_optab = XNEW (templates);
2895 core_optab->start = optab;
2896 }
2897 }
2898 }
2899
2900 /* Initialize reg_hash hash table. */
2901 reg_hash = hash_new ();
2902 {
2903 const reg_entry *regtab;
2904 unsigned int regtab_size = i386_regtab_size;
2905
2906 for (regtab = i386_regtab; regtab_size--; regtab++)
2907 {
2908 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2909 if (hash_err)
2910 as_fatal (_("can't hash %s: %s"),
2911 regtab->reg_name,
2912 hash_err);
2913 }
2914 }
2915
2916 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2917 {
2918 int c;
2919 char *p;
2920
2921 for (c = 0; c < 256; c++)
2922 {
2923 if (ISDIGIT (c))
2924 {
2925 digit_chars[c] = c;
2926 mnemonic_chars[c] = c;
2927 register_chars[c] = c;
2928 operand_chars[c] = c;
2929 }
2930 else if (ISLOWER (c))
2931 {
2932 mnemonic_chars[c] = c;
2933 register_chars[c] = c;
2934 operand_chars[c] = c;
2935 }
2936 else if (ISUPPER (c))
2937 {
2938 mnemonic_chars[c] = TOLOWER (c);
2939 register_chars[c] = mnemonic_chars[c];
2940 operand_chars[c] = c;
2941 }
2942 else if (c == '{' || c == '}')
2943 {
2944 mnemonic_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
2947
2948 if (ISALPHA (c) || ISDIGIT (c))
2949 identifier_chars[c] = c;
2950 else if (c >= 128)
2951 {
2952 identifier_chars[c] = c;
2953 operand_chars[c] = c;
2954 }
2955 }
2956
2957 #ifdef LEX_AT
2958 identifier_chars['@'] = '@';
2959 #endif
2960 #ifdef LEX_QM
2961 identifier_chars['?'] = '?';
2962 operand_chars['?'] = '?';
2963 #endif
2964 digit_chars['-'] = '-';
2965 mnemonic_chars['_'] = '_';
2966 mnemonic_chars['-'] = '-';
2967 mnemonic_chars['.'] = '.';
2968 identifier_chars['_'] = '_';
2969 identifier_chars['.'] = '.';
2970
2971 for (p = operand_special_chars; *p != '\0'; p++)
2972 operand_chars[(unsigned char) *p] = *p;
2973 }
2974
2975 if (flag_code == CODE_64BIT)
2976 {
2977 #if defined (OBJ_COFF) && defined (TE_PE)
2978 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2979 ? 32 : 16);
2980 #else
2981 x86_dwarf2_return_column = 16;
2982 #endif
2983 x86_cie_data_alignment = -8;
2984 }
2985 else
2986 {
2987 x86_dwarf2_return_column = 8;
2988 x86_cie_data_alignment = -4;
2989 }
2990 }
2991
2992 void
2993 i386_print_statistics (FILE *file)
2994 {
2995 hash_print_statistics (file, "i386 opcode", op_hash);
2996 hash_print_statistics (file, "i386 register", reg_hash);
2997 }
2998 \f
2999 #ifdef DEBUG386
3000
3001 /* Debugging routines for md_assemble. */
3002 static void pte (insn_template *);
3003 static void pt (i386_operand_type);
3004 static void pe (expressionS *);
3005 static void ps (symbolS *);
3006
3007 static void
3008 pi (const char *line, i386_insn *x)
3009 {
3010 unsigned int j;
3011
3012 fprintf (stdout, "%s: template ", line);
3013 pte (&x->tm);
3014 fprintf (stdout, " address: base %s index %s scale %x\n",
3015 x->base_reg ? x->base_reg->reg_name : "none",
3016 x->index_reg ? x->index_reg->reg_name : "none",
3017 x->log2_scale_factor);
3018 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3019 x->rm.mode, x->rm.reg, x->rm.regmem);
3020 fprintf (stdout, " sib: base %x index %x scale %x\n",
3021 x->sib.base, x->sib.index, x->sib.scale);
3022 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3023 (x->rex & REX_W) != 0,
3024 (x->rex & REX_R) != 0,
3025 (x->rex & REX_X) != 0,
3026 (x->rex & REX_B) != 0);
3027 for (j = 0; j < x->operands; j++)
3028 {
3029 fprintf (stdout, " #%d: ", j + 1);
3030 pt (x->types[j]);
3031 fprintf (stdout, "\n");
3032 if (x->types[j].bitfield.reg
3033 || x->types[j].bitfield.regmmx
3034 || x->types[j].bitfield.regsimd
3035 || x->types[j].bitfield.sreg2
3036 || x->types[j].bitfield.sreg3
3037 || x->types[j].bitfield.control
3038 || x->types[j].bitfield.debug
3039 || x->types[j].bitfield.test)
3040 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3041 if (operand_type_check (x->types[j], imm))
3042 pe (x->op[j].imms);
3043 if (operand_type_check (x->types[j], disp))
3044 pe (x->op[j].disps);
3045 }
3046 }
3047
3048 static void
3049 pte (insn_template *t)
3050 {
3051 unsigned int j;
3052 fprintf (stdout, " %d operands ", t->operands);
3053 fprintf (stdout, "opcode %x ", t->base_opcode);
3054 if (t->extension_opcode != None)
3055 fprintf (stdout, "ext %x ", t->extension_opcode);
3056 if (t->opcode_modifier.d)
3057 fprintf (stdout, "D");
3058 if (t->opcode_modifier.w)
3059 fprintf (stdout, "W");
3060 fprintf (stdout, "\n");
3061 for (j = 0; j < t->operands; j++)
3062 {
3063 fprintf (stdout, " #%d type ", j + 1);
3064 pt (t->operand_types[j]);
3065 fprintf (stdout, "\n");
3066 }
3067 }
3068
3069 static void
3070 pe (expressionS *e)
3071 {
3072 fprintf (stdout, " operation %d\n", e->X_op);
3073 fprintf (stdout, " add_number %ld (%lx)\n",
3074 (long) e->X_add_number, (long) e->X_add_number);
3075 if (e->X_add_symbol)
3076 {
3077 fprintf (stdout, " add_symbol ");
3078 ps (e->X_add_symbol);
3079 fprintf (stdout, "\n");
3080 }
3081 if (e->X_op_symbol)
3082 {
3083 fprintf (stdout, " op_symbol ");
3084 ps (e->X_op_symbol);
3085 fprintf (stdout, "\n");
3086 }
3087 }
3088
3089 static void
3090 ps (symbolS *s)
3091 {
3092 fprintf (stdout, "%s type %s%s",
3093 S_GET_NAME (s),
3094 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3095 segment_name (S_GET_SEGMENT (s)));
3096 }
3097
3098 static struct type_name
3099 {
3100 i386_operand_type mask;
3101 const char *name;
3102 }
3103 const type_names[] =
3104 {
3105 { OPERAND_TYPE_REG8, "r8" },
3106 { OPERAND_TYPE_REG16, "r16" },
3107 { OPERAND_TYPE_REG32, "r32" },
3108 { OPERAND_TYPE_REG64, "r64" },
3109 { OPERAND_TYPE_ACC8, "acc8" },
3110 { OPERAND_TYPE_ACC16, "acc16" },
3111 { OPERAND_TYPE_ACC32, "acc32" },
3112 { OPERAND_TYPE_ACC64, "acc64" },
3113 { OPERAND_TYPE_IMM8, "i8" },
3114 { OPERAND_TYPE_IMM8, "i8s" },
3115 { OPERAND_TYPE_IMM16, "i16" },
3116 { OPERAND_TYPE_IMM32, "i32" },
3117 { OPERAND_TYPE_IMM32S, "i32s" },
3118 { OPERAND_TYPE_IMM64, "i64" },
3119 { OPERAND_TYPE_IMM1, "i1" },
3120 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3121 { OPERAND_TYPE_DISP8, "d8" },
3122 { OPERAND_TYPE_DISP16, "d16" },
3123 { OPERAND_TYPE_DISP32, "d32" },
3124 { OPERAND_TYPE_DISP32S, "d32s" },
3125 { OPERAND_TYPE_DISP64, "d64" },
3126 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3127 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3128 { OPERAND_TYPE_CONTROL, "control reg" },
3129 { OPERAND_TYPE_TEST, "test reg" },
3130 { OPERAND_TYPE_DEBUG, "debug reg" },
3131 { OPERAND_TYPE_FLOATREG, "FReg" },
3132 { OPERAND_TYPE_FLOATACC, "FAcc" },
3133 { OPERAND_TYPE_SREG2, "SReg2" },
3134 { OPERAND_TYPE_SREG3, "SReg3" },
3135 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3136 { OPERAND_TYPE_REGMMX, "rMMX" },
3137 { OPERAND_TYPE_REGXMM, "rXMM" },
3138 { OPERAND_TYPE_REGYMM, "rYMM" },
3139 { OPERAND_TYPE_REGZMM, "rZMM" },
3140 { OPERAND_TYPE_REGMASK, "Mask reg" },
3141 { OPERAND_TYPE_ESSEG, "es" },
3142 };
3143
3144 static void
3145 pt (i386_operand_type t)
3146 {
3147 unsigned int j;
3148 i386_operand_type a;
3149
3150 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3151 {
3152 a = operand_type_and (t, type_names[j].mask);
3153 if (operand_type_equal (&a, &type_names[j].mask))
3154 fprintf (stdout, "%s, ", type_names[j].name);
3155 }
3156 fflush (stdout);
3157 }
3158
3159 #endif /* DEBUG386 */
3160 \f
3161 static bfd_reloc_code_real_type
3162 reloc (unsigned int size,
3163 int pcrel,
3164 int sign,
3165 bfd_reloc_code_real_type other)
3166 {
3167 if (other != NO_RELOC)
3168 {
3169 reloc_howto_type *rel;
3170
3171 if (size == 8)
3172 switch (other)
3173 {
3174 case BFD_RELOC_X86_64_GOT32:
3175 return BFD_RELOC_X86_64_GOT64;
3176 break;
3177 case BFD_RELOC_X86_64_GOTPLT64:
3178 return BFD_RELOC_X86_64_GOTPLT64;
3179 break;
3180 case BFD_RELOC_X86_64_PLTOFF64:
3181 return BFD_RELOC_X86_64_PLTOFF64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPC32:
3184 other = BFD_RELOC_X86_64_GOTPC64;
3185 break;
3186 case BFD_RELOC_X86_64_GOTPCREL:
3187 other = BFD_RELOC_X86_64_GOTPCREL64;
3188 break;
3189 case BFD_RELOC_X86_64_TPOFF32:
3190 other = BFD_RELOC_X86_64_TPOFF64;
3191 break;
3192 case BFD_RELOC_X86_64_DTPOFF32:
3193 other = BFD_RELOC_X86_64_DTPOFF64;
3194 break;
3195 default:
3196 break;
3197 }
3198
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (other == BFD_RELOC_SIZE32)
3201 {
3202 if (size == 8)
3203 other = BFD_RELOC_SIZE64;
3204 if (pcrel)
3205 {
3206 as_bad (_("there are no pc-relative size relocations"));
3207 return NO_RELOC;
3208 }
3209 }
3210 #endif
3211
3212 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3213 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3214 sign = -1;
3215
3216 rel = bfd_reloc_type_lookup (stdoutput, other);
3217 if (!rel)
3218 as_bad (_("unknown relocation (%u)"), other);
3219 else if (size != bfd_get_reloc_size (rel))
3220 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3221 bfd_get_reloc_size (rel),
3222 size);
3223 else if (pcrel && !rel->pc_relative)
3224 as_bad (_("non-pc-relative relocation for pc-relative field"));
3225 else if ((rel->complain_on_overflow == complain_overflow_signed
3226 && !sign)
3227 || (rel->complain_on_overflow == complain_overflow_unsigned
3228 && sign > 0))
3229 as_bad (_("relocated field and relocation type differ in signedness"));
3230 else
3231 return other;
3232 return NO_RELOC;
3233 }
3234
3235 if (pcrel)
3236 {
3237 if (!sign)
3238 as_bad (_("there are no unsigned pc-relative relocations"));
3239 switch (size)
3240 {
3241 case 1: return BFD_RELOC_8_PCREL;
3242 case 2: return BFD_RELOC_16_PCREL;
3243 case 4: return BFD_RELOC_32_PCREL;
3244 case 8: return BFD_RELOC_64_PCREL;
3245 }
3246 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3247 }
3248 else
3249 {
3250 if (sign > 0)
3251 switch (size)
3252 {
3253 case 4: return BFD_RELOC_X86_64_32S;
3254 }
3255 else
3256 switch (size)
3257 {
3258 case 1: return BFD_RELOC_8;
3259 case 2: return BFD_RELOC_16;
3260 case 4: return BFD_RELOC_32;
3261 case 8: return BFD_RELOC_64;
3262 }
3263 as_bad (_("cannot do %s %u byte relocation"),
3264 sign > 0 ? "signed" : "unsigned", size);
3265 }
3266
3267 return NO_RELOC;
3268 }
3269
3270 /* Here we decide which fixups can be adjusted to make them relative to
3271 the beginning of the section instead of the symbol. Basically we need
3272 to make sure that the dynamic relocations are done correctly, so in
3273 some cases we force the original symbol to be used. */
3274
3275 int
3276 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3277 {
3278 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3279 if (!IS_ELF)
3280 return 1;
3281
3282 /* Don't adjust pc-relative references to merge sections in 64-bit
3283 mode. */
3284 if (use_rela_relocations
3285 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3286 && fixP->fx_pcrel)
3287 return 0;
3288
3289 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3290 and changed later by validate_fix. */
3291 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3292 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3293 return 0;
3294
3295 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3296 for size relocations. */
3297 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3298 || fixP->fx_r_type == BFD_RELOC_SIZE64
3299 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3300 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3301 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3302 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3310 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3311 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3312 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3325 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3326 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3327 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3328 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3329 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3330 return 0;
3331 #endif
3332 return 1;
3333 }
3334
3335 static int
3336 intel_float_operand (const char *mnemonic)
3337 {
3338 /* Note that the value returned is meaningful only for opcodes with (memory)
3339 operands, hence the code here is free to improperly handle opcodes that
3340 have no operands (for better performance and smaller code). */
3341
3342 if (mnemonic[0] != 'f')
3343 return 0; /* non-math */
3344
3345 switch (mnemonic[1])
3346 {
3347 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3348 the fs segment override prefix not currently handled because no
3349 call path can make opcodes without operands get here */
3350 case 'i':
3351 return 2 /* integer op */;
3352 case 'l':
3353 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3354 return 3; /* fldcw/fldenv */
3355 break;
3356 case 'n':
3357 if (mnemonic[2] != 'o' /* fnop */)
3358 return 3; /* non-waiting control op */
3359 break;
3360 case 'r':
3361 if (mnemonic[2] == 's')
3362 return 3; /* frstor/frstpm */
3363 break;
3364 case 's':
3365 if (mnemonic[2] == 'a')
3366 return 3; /* fsave */
3367 if (mnemonic[2] == 't')
3368 {
3369 switch (mnemonic[3])
3370 {
3371 case 'c': /* fstcw */
3372 case 'd': /* fstdw */
3373 case 'e': /* fstenv */
3374 case 's': /* fsts[gw] */
3375 return 3;
3376 }
3377 }
3378 break;
3379 case 'x':
3380 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3381 return 0; /* fxsave/fxrstor are not really math ops */
3382 break;
3383 }
3384
3385 return 1;
3386 }
3387
3388 /* Build the VEX prefix. */
3389
3390 static void
3391 build_vex_prefix (const insn_template *t)
3392 {
3393 unsigned int register_specifier;
3394 unsigned int implied_prefix;
3395 unsigned int vector_length;
3396 unsigned int w;
3397
3398 /* Check register specifier. */
3399 if (i.vex.register_specifier)
3400 {
3401 register_specifier =
3402 ~register_number (i.vex.register_specifier) & 0xf;
3403 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3404 }
3405 else
3406 register_specifier = 0xf;
3407
3408 /* Use 2-byte VEX prefix by swapping destination and source operand
3409 if there are more than 1 register operand. */
3410 if (i.reg_operands > 1
3411 && i.vec_encoding != vex_encoding_vex3
3412 && i.dir_encoding == dir_encoding_default
3413 && i.operands == i.reg_operands
3414 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3415 && i.tm.opcode_modifier.vexopcode == VEX0F
3416 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3417 && i.rex == REX_B)
3418 {
3419 unsigned int xchg = i.operands - 1;
3420 union i386_op temp_op;
3421 i386_operand_type temp_type;
3422
3423 temp_type = i.types[xchg];
3424 i.types[xchg] = i.types[0];
3425 i.types[0] = temp_type;
3426 temp_op = i.op[xchg];
3427 i.op[xchg] = i.op[0];
3428 i.op[0] = temp_op;
3429
3430 gas_assert (i.rm.mode == 3);
3431
3432 i.rex = REX_R;
3433 xchg = i.rm.regmem;
3434 i.rm.regmem = i.rm.reg;
3435 i.rm.reg = xchg;
3436
3437 if (i.tm.opcode_modifier.d)
3438 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3439 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3440 else /* Use the next insn. */
3441 i.tm = t[1];
3442 }
3443
3444 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3445 are no memory operands and at least 3 register ones. */
3446 if (i.reg_operands >= 3
3447 && i.vec_encoding != vex_encoding_vex3
3448 && i.reg_operands == i.operands - i.imm_operands
3449 && i.tm.opcode_modifier.vex
3450 && i.tm.opcode_modifier.commutative
3451 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3452 && i.rex == REX_B
3453 && i.vex.register_specifier
3454 && !(i.vex.register_specifier->reg_flags & RegRex))
3455 {
3456 unsigned int xchg = i.operands - i.reg_operands;
3457 union i386_op temp_op;
3458 i386_operand_type temp_type;
3459
3460 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3461 gas_assert (!i.tm.opcode_modifier.sae);
3462 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3463 &i.types[i.operands - 3]));
3464 gas_assert (i.rm.mode == 3);
3465
3466 temp_type = i.types[xchg];
3467 i.types[xchg] = i.types[xchg + 1];
3468 i.types[xchg + 1] = temp_type;
3469 temp_op = i.op[xchg];
3470 i.op[xchg] = i.op[xchg + 1];
3471 i.op[xchg + 1] = temp_op;
3472
3473 i.rex = 0;
3474 xchg = i.rm.regmem | 8;
3475 i.rm.regmem = ~register_specifier & 0xf;
3476 gas_assert (!(i.rm.regmem & 8));
3477 i.vex.register_specifier += xchg - i.rm.regmem;
3478 register_specifier = ~xchg & 0xf;
3479 }
3480
3481 if (i.tm.opcode_modifier.vex == VEXScalar)
3482 vector_length = avxscalar;
3483 else if (i.tm.opcode_modifier.vex == VEX256)
3484 vector_length = 1;
3485 else
3486 {
3487 unsigned int op;
3488
3489 /* Determine vector length from the last multi-length vector
3490 operand. */
3491 vector_length = 0;
3492 for (op = t->operands; op--;)
3493 if (t->operand_types[op].bitfield.xmmword
3494 && t->operand_types[op].bitfield.ymmword
3495 && i.types[op].bitfield.ymmword)
3496 {
3497 vector_length = 1;
3498 break;
3499 }
3500 }
3501
3502 switch ((i.tm.base_opcode >> 8) & 0xff)
3503 {
3504 case 0:
3505 implied_prefix = 0;
3506 break;
3507 case DATA_PREFIX_OPCODE:
3508 implied_prefix = 1;
3509 break;
3510 case REPE_PREFIX_OPCODE:
3511 implied_prefix = 2;
3512 break;
3513 case REPNE_PREFIX_OPCODE:
3514 implied_prefix = 3;
3515 break;
3516 default:
3517 abort ();
3518 }
3519
3520 /* Check the REX.W bit and VEXW. */
3521 if (i.tm.opcode_modifier.vexw == VEXWIG)
3522 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3523 else if (i.tm.opcode_modifier.vexw)
3524 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3525 else
3526 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3527
3528 /* Use 2-byte VEX prefix if possible. */
3529 if (w == 0
3530 && i.vec_encoding != vex_encoding_vex3
3531 && i.tm.opcode_modifier.vexopcode == VEX0F
3532 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3533 {
3534 /* 2-byte VEX prefix. */
3535 unsigned int r;
3536
3537 i.vex.length = 2;
3538 i.vex.bytes[0] = 0xc5;
3539
3540 /* Check the REX.R bit. */
3541 r = (i.rex & REX_R) ? 0 : 1;
3542 i.vex.bytes[1] = (r << 7
3543 | register_specifier << 3
3544 | vector_length << 2
3545 | implied_prefix);
3546 }
3547 else
3548 {
3549 /* 3-byte VEX prefix. */
3550 unsigned int m;
3551
3552 i.vex.length = 3;
3553
3554 switch (i.tm.opcode_modifier.vexopcode)
3555 {
3556 case VEX0F:
3557 m = 0x1;
3558 i.vex.bytes[0] = 0xc4;
3559 break;
3560 case VEX0F38:
3561 m = 0x2;
3562 i.vex.bytes[0] = 0xc4;
3563 break;
3564 case VEX0F3A:
3565 m = 0x3;
3566 i.vex.bytes[0] = 0xc4;
3567 break;
3568 case XOP08:
3569 m = 0x8;
3570 i.vex.bytes[0] = 0x8f;
3571 break;
3572 case XOP09:
3573 m = 0x9;
3574 i.vex.bytes[0] = 0x8f;
3575 break;
3576 case XOP0A:
3577 m = 0xa;
3578 i.vex.bytes[0] = 0x8f;
3579 break;
3580 default:
3581 abort ();
3582 }
3583
3584 /* The high 3 bits of the second VEX byte are 1's compliment
3585 of RXB bits from REX. */
3586 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3587
3588 i.vex.bytes[2] = (w << 7
3589 | register_specifier << 3
3590 | vector_length << 2
3591 | implied_prefix);
3592 }
3593 }
3594
3595 static INLINE bfd_boolean
3596 is_evex_encoding (const insn_template *t)
3597 {
3598 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3599 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3600 || t->opcode_modifier.sae;
3601 }
3602
3603 static INLINE bfd_boolean
3604 is_any_vex_encoding (const insn_template *t)
3605 {
3606 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3607 || is_evex_encoding (t);
3608 }
3609
3610 /* Build the EVEX prefix. */
3611
3612 static void
3613 build_evex_prefix (void)
3614 {
3615 unsigned int register_specifier;
3616 unsigned int implied_prefix;
3617 unsigned int m, w;
3618 rex_byte vrex_used = 0;
3619
3620 /* Check register specifier. */
3621 if (i.vex.register_specifier)
3622 {
3623 gas_assert ((i.vrex & REX_X) == 0);
3624
3625 register_specifier = i.vex.register_specifier->reg_num;
3626 if ((i.vex.register_specifier->reg_flags & RegRex))
3627 register_specifier += 8;
3628 /* The upper 16 registers are encoded in the fourth byte of the
3629 EVEX prefix. */
3630 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3631 i.vex.bytes[3] = 0x8;
3632 register_specifier = ~register_specifier & 0xf;
3633 }
3634 else
3635 {
3636 register_specifier = 0xf;
3637
3638 /* Encode upper 16 vector index register in the fourth byte of
3639 the EVEX prefix. */
3640 if (!(i.vrex & REX_X))
3641 i.vex.bytes[3] = 0x8;
3642 else
3643 vrex_used |= REX_X;
3644 }
3645
3646 switch ((i.tm.base_opcode >> 8) & 0xff)
3647 {
3648 case 0:
3649 implied_prefix = 0;
3650 break;
3651 case DATA_PREFIX_OPCODE:
3652 implied_prefix = 1;
3653 break;
3654 case REPE_PREFIX_OPCODE:
3655 implied_prefix = 2;
3656 break;
3657 case REPNE_PREFIX_OPCODE:
3658 implied_prefix = 3;
3659 break;
3660 default:
3661 abort ();
3662 }
3663
3664 /* 4 byte EVEX prefix. */
3665 i.vex.length = 4;
3666 i.vex.bytes[0] = 0x62;
3667
3668 /* mmmm bits. */
3669 switch (i.tm.opcode_modifier.vexopcode)
3670 {
3671 case VEX0F:
3672 m = 1;
3673 break;
3674 case VEX0F38:
3675 m = 2;
3676 break;
3677 case VEX0F3A:
3678 m = 3;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684
3685 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3686 bits from REX. */
3687 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3688
3689 /* The fifth bit of the second EVEX byte is 1's compliment of the
3690 REX_R bit in VREX. */
3691 if (!(i.vrex & REX_R))
3692 i.vex.bytes[1] |= 0x10;
3693 else
3694 vrex_used |= REX_R;
3695
3696 if ((i.reg_operands + i.imm_operands) == i.operands)
3697 {
3698 /* When all operands are registers, the REX_X bit in REX is not
3699 used. We reuse it to encode the upper 16 registers, which is
3700 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3701 as 1's compliment. */
3702 if ((i.vrex & REX_B))
3703 {
3704 vrex_used |= REX_B;
3705 i.vex.bytes[1] &= ~0x40;
3706 }
3707 }
3708
3709 /* EVEX instructions shouldn't need the REX prefix. */
3710 i.vrex &= ~vrex_used;
3711 gas_assert (i.vrex == 0);
3712
3713 /* Check the REX.W bit and VEXW. */
3714 if (i.tm.opcode_modifier.vexw == VEXWIG)
3715 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3716 else if (i.tm.opcode_modifier.vexw)
3717 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3718 else
3719 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3720
3721 /* Encode the U bit. */
3722 implied_prefix |= 0x4;
3723
3724 /* The third byte of the EVEX prefix. */
3725 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3726
3727 /* The fourth byte of the EVEX prefix. */
3728 /* The zeroing-masking bit. */
3729 if (i.mask && i.mask->zeroing)
3730 i.vex.bytes[3] |= 0x80;
3731
3732 /* Don't always set the broadcast bit if there is no RC. */
3733 if (!i.rounding)
3734 {
3735 /* Encode the vector length. */
3736 unsigned int vec_length;
3737
3738 if (!i.tm.opcode_modifier.evex
3739 || i.tm.opcode_modifier.evex == EVEXDYN)
3740 {
3741 unsigned int op;
3742
3743 /* Determine vector length from the last multi-length vector
3744 operand. */
3745 vec_length = 0;
3746 for (op = i.operands; op--;)
3747 if (i.tm.operand_types[op].bitfield.xmmword
3748 + i.tm.operand_types[op].bitfield.ymmword
3749 + i.tm.operand_types[op].bitfield.zmmword > 1)
3750 {
3751 if (i.types[op].bitfield.zmmword)
3752 {
3753 i.tm.opcode_modifier.evex = EVEX512;
3754 break;
3755 }
3756 else if (i.types[op].bitfield.ymmword)
3757 {
3758 i.tm.opcode_modifier.evex = EVEX256;
3759 break;
3760 }
3761 else if (i.types[op].bitfield.xmmword)
3762 {
3763 i.tm.opcode_modifier.evex = EVEX128;
3764 break;
3765 }
3766 else if (i.broadcast && (int) op == i.broadcast->operand)
3767 {
3768 switch (i.broadcast->bytes)
3769 {
3770 case 64:
3771 i.tm.opcode_modifier.evex = EVEX512;
3772 break;
3773 case 32:
3774 i.tm.opcode_modifier.evex = EVEX256;
3775 break;
3776 case 16:
3777 i.tm.opcode_modifier.evex = EVEX128;
3778 break;
3779 default:
3780 abort ();
3781 }
3782 break;
3783 }
3784 }
3785
3786 if (op >= MAX_OPERANDS)
3787 abort ();
3788 }
3789
3790 switch (i.tm.opcode_modifier.evex)
3791 {
3792 case EVEXLIG: /* LL' is ignored */
3793 vec_length = evexlig << 5;
3794 break;
3795 case EVEX128:
3796 vec_length = 0 << 5;
3797 break;
3798 case EVEX256:
3799 vec_length = 1 << 5;
3800 break;
3801 case EVEX512:
3802 vec_length = 2 << 5;
3803 break;
3804 default:
3805 abort ();
3806 break;
3807 }
3808 i.vex.bytes[3] |= vec_length;
3809 /* Encode the broadcast bit. */
3810 if (i.broadcast)
3811 i.vex.bytes[3] |= 0x10;
3812 }
3813 else
3814 {
3815 if (i.rounding->type != saeonly)
3816 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3817 else
3818 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3819 }
3820
3821 if (i.mask && i.mask->mask)
3822 i.vex.bytes[3] |= i.mask->mask->reg_num;
3823 }
3824
3825 static void
3826 process_immext (void)
3827 {
3828 expressionS *exp;
3829
3830 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3831 && i.operands > 0)
3832 {
3833 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3834 with an opcode suffix which is coded in the same place as an
3835 8-bit immediate field would be.
3836 Here we check those operands and remove them afterwards. */
3837 unsigned int x;
3838
3839 for (x = 0; x < i.operands; x++)
3840 if (register_number (i.op[x].regs) != x)
3841 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3842 register_prefix, i.op[x].regs->reg_name, x + 1,
3843 i.tm.name);
3844
3845 i.operands = 0;
3846 }
3847
3848 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3849 {
3850 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3851 suffix which is coded in the same place as an 8-bit immediate
3852 field would be.
3853 Here we check those operands and remove them afterwards. */
3854 unsigned int x;
3855
3856 if (i.operands != 3)
3857 abort();
3858
3859 for (x = 0; x < 2; x++)
3860 if (register_number (i.op[x].regs) != x)
3861 goto bad_register_operand;
3862
3863 /* Check for third operand for mwaitx/monitorx insn. */
3864 if (register_number (i.op[x].regs)
3865 != (x + (i.tm.extension_opcode == 0xfb)))
3866 {
3867 bad_register_operand:
3868 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3869 register_prefix, i.op[x].regs->reg_name, x+1,
3870 i.tm.name);
3871 }
3872
3873 i.operands = 0;
3874 }
3875
3876 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3877 which is coded in the same place as an 8-bit immediate field
3878 would be. Here we fake an 8-bit immediate operand from the
3879 opcode suffix stored in tm.extension_opcode.
3880
3881 AVX instructions also use this encoding, for some of
3882 3 argument instructions. */
3883
3884 gas_assert (i.imm_operands <= 1
3885 && (i.operands <= 2
3886 || (is_any_vex_encoding (&i.tm)
3887 && i.operands <= 4)));
3888
3889 exp = &im_expressions[i.imm_operands++];
3890 i.op[i.operands].imms = exp;
3891 i.types[i.operands] = imm8;
3892 i.operands++;
3893 exp->X_op = O_constant;
3894 exp->X_add_number = i.tm.extension_opcode;
3895 i.tm.extension_opcode = None;
3896 }
3897
3898
3899 static int
3900 check_hle (void)
3901 {
3902 switch (i.tm.opcode_modifier.hleprefixok)
3903 {
3904 default:
3905 abort ();
3906 case HLEPrefixNone:
3907 as_bad (_("invalid instruction `%s' after `%s'"),
3908 i.tm.name, i.hle_prefix);
3909 return 0;
3910 case HLEPrefixLock:
3911 if (i.prefix[LOCK_PREFIX])
3912 return 1;
3913 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3914 return 0;
3915 case HLEPrefixAny:
3916 return 1;
3917 case HLEPrefixRelease:
3918 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3919 {
3920 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3921 i.tm.name);
3922 return 0;
3923 }
3924 if (i.mem_operands == 0
3925 || !operand_type_check (i.types[i.operands - 1], anymem))
3926 {
3927 as_bad (_("memory destination needed for instruction `%s'"
3928 " after `xrelease'"), i.tm.name);
3929 return 0;
3930 }
3931 return 1;
3932 }
3933 }
3934
3935 /* Try the shortest encoding by shortening operand size. */
3936
3937 static void
3938 optimize_encoding (void)
3939 {
3940 unsigned int j;
3941
3942 if (optimize_for_space
3943 && i.reg_operands == 1
3944 && i.imm_operands == 1
3945 && !i.types[1].bitfield.byte
3946 && i.op[0].imms->X_op == O_constant
3947 && fits_in_imm7 (i.op[0].imms->X_add_number)
3948 && ((i.tm.base_opcode == 0xa8
3949 && i.tm.extension_opcode == None)
3950 || (i.tm.base_opcode == 0xf6
3951 && i.tm.extension_opcode == 0x0)))
3952 {
3953 /* Optimize: -Os:
3954 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3955 */
3956 unsigned int base_regnum = i.op[1].regs->reg_num;
3957 if (flag_code == CODE_64BIT || base_regnum < 4)
3958 {
3959 i.types[1].bitfield.byte = 1;
3960 /* Ignore the suffix. */
3961 i.suffix = 0;
3962 if (base_regnum >= 4
3963 && !(i.op[1].regs->reg_flags & RegRex))
3964 {
3965 /* Handle SP, BP, SI and DI registers. */
3966 if (i.types[1].bitfield.word)
3967 j = 16;
3968 else if (i.types[1].bitfield.dword)
3969 j = 32;
3970 else
3971 j = 48;
3972 i.op[1].regs -= j;
3973 }
3974 }
3975 }
3976 else if (flag_code == CODE_64BIT
3977 && ((i.types[1].bitfield.qword
3978 && i.reg_operands == 1
3979 && i.imm_operands == 1
3980 && i.op[0].imms->X_op == O_constant
3981 && ((i.tm.base_opcode == 0xb0
3982 && i.tm.extension_opcode == None
3983 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3984 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3985 && (((i.tm.base_opcode == 0x24
3986 || i.tm.base_opcode == 0xa8)
3987 && i.tm.extension_opcode == None)
3988 || (i.tm.base_opcode == 0x80
3989 && i.tm.extension_opcode == 0x4)
3990 || ((i.tm.base_opcode == 0xf6
3991 || i.tm.base_opcode == 0xc6)
3992 && i.tm.extension_opcode == 0x0)))
3993 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3994 && i.tm.base_opcode == 0x83
3995 && i.tm.extension_opcode == 0x4)))
3996 || (i.types[0].bitfield.qword
3997 && ((i.reg_operands == 2
3998 && i.op[0].regs == i.op[1].regs
3999 && ((i.tm.base_opcode == 0x30
4000 || i.tm.base_opcode == 0x28)
4001 && i.tm.extension_opcode == None))
4002 || (i.reg_operands == 1
4003 && i.operands == 1
4004 && i.tm.base_opcode == 0x30
4005 && i.tm.extension_opcode == None)))))
4006 {
4007 /* Optimize: -O:
4008 andq $imm31, %r64 -> andl $imm31, %r32
4009 andq $imm7, %r64 -> andl $imm7, %r32
4010 testq $imm31, %r64 -> testl $imm31, %r32
4011 xorq %r64, %r64 -> xorl %r32, %r32
4012 subq %r64, %r64 -> subl %r32, %r32
4013 movq $imm31, %r64 -> movl $imm31, %r32
4014 movq $imm32, %r64 -> movl $imm32, %r32
4015 */
4016 i.tm.opcode_modifier.norex64 = 1;
4017 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4018 {
4019 /* Handle
4020 movq $imm31, %r64 -> movl $imm31, %r32
4021 movq $imm32, %r64 -> movl $imm32, %r32
4022 */
4023 i.tm.operand_types[0].bitfield.imm32 = 1;
4024 i.tm.operand_types[0].bitfield.imm32s = 0;
4025 i.tm.operand_types[0].bitfield.imm64 = 0;
4026 i.types[0].bitfield.imm32 = 1;
4027 i.types[0].bitfield.imm32s = 0;
4028 i.types[0].bitfield.imm64 = 0;
4029 i.types[1].bitfield.dword = 1;
4030 i.types[1].bitfield.qword = 0;
4031 if (i.tm.base_opcode == 0xc6)
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 */
4036 i.tm.base_opcode = 0xb0;
4037 i.tm.extension_opcode = None;
4038 i.tm.opcode_modifier.shortform = 1;
4039 i.tm.opcode_modifier.modrm = 0;
4040 }
4041 }
4042 }
4043 else if (i.reg_operands == 3
4044 && i.op[0].regs == i.op[1].regs
4045 && !i.types[2].bitfield.xmmword
4046 && (i.tm.opcode_modifier.vex
4047 || ((!i.mask || i.mask->zeroing)
4048 && !i.rounding
4049 && is_evex_encoding (&i.tm)
4050 && (i.vec_encoding != vex_encoding_evex
4051 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4052 || i.tm.cpu_flags.bitfield.cpuavx512vl
4053 || (i.tm.operand_types[2].bitfield.zmmword
4054 && i.types[2].bitfield.ymmword))))
4055 && ((i.tm.base_opcode == 0x55
4056 || i.tm.base_opcode == 0x6655
4057 || i.tm.base_opcode == 0x66df
4058 || i.tm.base_opcode == 0x57
4059 || i.tm.base_opcode == 0x6657
4060 || i.tm.base_opcode == 0x66ef
4061 || i.tm.base_opcode == 0x66f8
4062 || i.tm.base_opcode == 0x66f9
4063 || i.tm.base_opcode == 0x66fa
4064 || i.tm.base_opcode == 0x66fb
4065 || i.tm.base_opcode == 0x42
4066 || i.tm.base_opcode == 0x6642
4067 || i.tm.base_opcode == 0x47
4068 || i.tm.base_opcode == 0x6647)
4069 && i.tm.extension_opcode == None))
4070 {
4071 /* Optimize: -O1:
4072 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4073 vpsubq and vpsubw:
4074 EVEX VOP %zmmM, %zmmM, %zmmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4077 EVEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4079 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandn and vpxor:
4083 VEX VOP %ymmM, %ymmM, %ymmN
4084 -> VEX VOP %xmmM, %xmmM, %xmmN
4085 VOP, one of vpandnd and vpandnq:
4086 EVEX VOP %zmmM, %zmmM, %zmmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4089 EVEX VOP %ymmM, %ymmM, %ymmN
4090 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4091 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4092 VOP, one of vpxord and vpxorq:
4093 EVEX VOP %zmmM, %zmmM, %zmmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4096 EVEX VOP %ymmM, %ymmM, %ymmN
4097 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4098 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4099 VOP, one of kxord and kxorq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kxorw %kM, %kM, %kN
4102 VOP, one of kandnd and kandnq:
4103 VEX VOP %kM, %kM, %kN
4104 -> VEX kandnw %kM, %kM, %kN
4105 */
4106 if (is_evex_encoding (&i.tm))
4107 {
4108 if (i.vec_encoding != vex_encoding_evex)
4109 {
4110 i.tm.opcode_modifier.vex = VEX128;
4111 i.tm.opcode_modifier.vexw = VEXW0;
4112 i.tm.opcode_modifier.evex = 0;
4113 }
4114 else if (optimize > 1)
4115 i.tm.opcode_modifier.evex = EVEX128;
4116 else
4117 return;
4118 }
4119 else if (i.tm.operand_types[0].bitfield.regmask)
4120 {
4121 i.tm.base_opcode &= 0xff;
4122 i.tm.opcode_modifier.vexw = VEXW0;
4123 }
4124 else
4125 i.tm.opcode_modifier.vex = VEX128;
4126
4127 if (i.tm.opcode_modifier.vex)
4128 for (j = 0; j < 3; j++)
4129 {
4130 i.types[j].bitfield.xmmword = 1;
4131 i.types[j].bitfield.ymmword = 0;
4132 }
4133 }
4134 else if (i.vec_encoding != vex_encoding_evex
4135 && !i.types[0].bitfield.zmmword
4136 && !i.types[1].bitfield.zmmword
4137 && !i.mask
4138 && !i.broadcast
4139 && is_evex_encoding (&i.tm)
4140 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4141 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4142 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4143 || (i.tm.base_opcode & ~4) == 0x66db
4144 || (i.tm.base_opcode & ~4) == 0x66eb)
4145 && i.tm.extension_opcode == None)
4146 {
4147 /* Optimize: -O1:
4148 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4149 vmovdqu32 and vmovdqu64:
4150 EVEX VOP %xmmM, %xmmN
4151 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4152 EVEX VOP %ymmM, %ymmN
4153 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4154 EVEX VOP %xmmM, mem
4155 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4156 EVEX VOP %ymmM, mem
4157 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4158 EVEX VOP mem, %xmmN
4159 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4160 EVEX VOP mem, %ymmN
4161 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4162 VOP, one of vpand, vpandn, vpor, vpxor:
4163 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4164 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4165 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4166 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4167 EVEX VOP{d,q} mem, %xmmM, %xmmN
4168 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4169 EVEX VOP{d,q} mem, %ymmM, %ymmN
4170 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4171 */
4172 for (j = 0; j < i.operands; j++)
4173 if (operand_type_check (i.types[j], disp)
4174 && i.op[j].disps->X_op == O_constant)
4175 {
4176 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4177 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4178 bytes, we choose EVEX Disp8 over VEX Disp32. */
4179 int evex_disp8, vex_disp8;
4180 unsigned int memshift = i.memshift;
4181 offsetT n = i.op[j].disps->X_add_number;
4182
4183 evex_disp8 = fits_in_disp8 (n);
4184 i.memshift = 0;
4185 vex_disp8 = fits_in_disp8 (n);
4186 if (evex_disp8 != vex_disp8)
4187 {
4188 i.memshift = memshift;
4189 return;
4190 }
4191
4192 i.types[j].bitfield.disp8 = vex_disp8;
4193 break;
4194 }
4195 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4196 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4197 i.tm.opcode_modifier.vex
4198 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4199 i.tm.opcode_modifier.vexw = VEXW0;
4200 /* VPAND, VPOR, and VPXOR are commutative. */
4201 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4202 i.tm.opcode_modifier.commutative = 1;
4203 i.tm.opcode_modifier.evex = 0;
4204 i.tm.opcode_modifier.masking = 0;
4205 i.tm.opcode_modifier.broadcast = 0;
4206 i.tm.opcode_modifier.disp8memshift = 0;
4207 i.memshift = 0;
4208 if (j < i.operands)
4209 i.types[j].bitfield.disp8
4210 = fits_in_disp8 (i.op[j].disps->X_add_number);
4211 }
4212 }
4213
4214 /* This is the guts of the machine-dependent assembler. LINE points to a
4215 machine dependent instruction. This function is supposed to emit
4216 the frags/bytes it assembles to. */
4217
4218 void
4219 md_assemble (char *line)
4220 {
4221 unsigned int j;
4222 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4223 const insn_template *t;
4224
4225 /* Initialize globals. */
4226 memset (&i, '\0', sizeof (i));
4227 for (j = 0; j < MAX_OPERANDS; j++)
4228 i.reloc[j] = NO_RELOC;
4229 memset (disp_expressions, '\0', sizeof (disp_expressions));
4230 memset (im_expressions, '\0', sizeof (im_expressions));
4231 save_stack_p = save_stack;
4232
4233 /* First parse an instruction mnemonic & call i386_operand for the operands.
4234 We assume that the scrubber has arranged it so that line[0] is the valid
4235 start of a (possibly prefixed) mnemonic. */
4236
4237 line = parse_insn (line, mnemonic);
4238 if (line == NULL)
4239 return;
4240 mnem_suffix = i.suffix;
4241
4242 line = parse_operands (line, mnemonic);
4243 this_operand = -1;
4244 xfree (i.memop1_string);
4245 i.memop1_string = NULL;
4246 if (line == NULL)
4247 return;
4248
4249 /* Now we've parsed the mnemonic into a set of templates, and have the
4250 operands at hand. */
4251
4252 /* All intel opcodes have reversed operands except for "bound" and
4253 "enter". We also don't reverse intersegment "jmp" and "call"
4254 instructions with 2 immediate operands so that the immediate segment
4255 precedes the offset, as it does when in AT&T mode. */
4256 if (intel_syntax
4257 && i.operands > 1
4258 && (strcmp (mnemonic, "bound") != 0)
4259 && (strcmp (mnemonic, "invlpga") != 0)
4260 && !(operand_type_check (i.types[0], imm)
4261 && operand_type_check (i.types[1], imm)))
4262 swap_operands ();
4263
4264 /* The order of the immediates should be reversed
4265 for 2 immediates extrq and insertq instructions */
4266 if (i.imm_operands == 2
4267 && (strcmp (mnemonic, "extrq") == 0
4268 || strcmp (mnemonic, "insertq") == 0))
4269 swap_2_operands (0, 1);
4270
4271 if (i.imm_operands)
4272 optimize_imm ();
4273
4274 /* Don't optimize displacement for movabs since it only takes 64bit
4275 displacement. */
4276 if (i.disp_operands
4277 && i.disp_encoding != disp_encoding_32bit
4278 && (flag_code != CODE_64BIT
4279 || strcmp (mnemonic, "movabs") != 0))
4280 optimize_disp ();
4281
4282 /* Next, we find a template that matches the given insn,
4283 making sure the overlap of the given operands types is consistent
4284 with the template operand types. */
4285
4286 if (!(t = match_template (mnem_suffix)))
4287 return;
4288
4289 if (sse_check != check_none
4290 && !i.tm.opcode_modifier.noavx
4291 && !i.tm.cpu_flags.bitfield.cpuavx
4292 && (i.tm.cpu_flags.bitfield.cpusse
4293 || i.tm.cpu_flags.bitfield.cpusse2
4294 || i.tm.cpu_flags.bitfield.cpusse3
4295 || i.tm.cpu_flags.bitfield.cpussse3
4296 || i.tm.cpu_flags.bitfield.cpusse4_1
4297 || i.tm.cpu_flags.bitfield.cpusse4_2
4298 || i.tm.cpu_flags.bitfield.cpupclmul
4299 || i.tm.cpu_flags.bitfield.cpuaes
4300 || i.tm.cpu_flags.bitfield.cpugfni))
4301 {
4302 (sse_check == check_warning
4303 ? as_warn
4304 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4305 }
4306
4307 /* Zap movzx and movsx suffix. The suffix has been set from
4308 "word ptr" or "byte ptr" on the source operand in Intel syntax
4309 or extracted from mnemonic in AT&T syntax. But we'll use
4310 the destination register to choose the suffix for encoding. */
4311 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4312 {
4313 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4314 there is no suffix, the default will be byte extension. */
4315 if (i.reg_operands != 2
4316 && !i.suffix
4317 && intel_syntax)
4318 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4319
4320 i.suffix = 0;
4321 }
4322
4323 if (i.tm.opcode_modifier.fwait)
4324 if (!add_prefix (FWAIT_OPCODE))
4325 return;
4326
4327 /* Check if REP prefix is OK. */
4328 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4329 {
4330 as_bad (_("invalid instruction `%s' after `%s'"),
4331 i.tm.name, i.rep_prefix);
4332 return;
4333 }
4334
4335 /* Check for lock without a lockable instruction. Destination operand
4336 must be memory unless it is xchg (0x86). */
4337 if (i.prefix[LOCK_PREFIX]
4338 && (!i.tm.opcode_modifier.islockable
4339 || i.mem_operands == 0
4340 || (i.tm.base_opcode != 0x86
4341 && !operand_type_check (i.types[i.operands - 1], anymem))))
4342 {
4343 as_bad (_("expecting lockable instruction after `lock'"));
4344 return;
4345 }
4346
4347 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4348 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4349 {
4350 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4351 return;
4352 }
4353
4354 /* Check if HLE prefix is OK. */
4355 if (i.hle_prefix && !check_hle ())
4356 return;
4357
4358 /* Check BND prefix. */
4359 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4360 as_bad (_("expecting valid branch instruction after `bnd'"));
4361
4362 /* Check NOTRACK prefix. */
4363 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4364 as_bad (_("expecting indirect branch instruction after `notrack'"));
4365
4366 if (i.tm.cpu_flags.bitfield.cpumpx)
4367 {
4368 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4369 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4370 else if (flag_code != CODE_16BIT
4371 ? i.prefix[ADDR_PREFIX]
4372 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4373 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4374 }
4375
4376 /* Insert BND prefix. */
4377 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4378 {
4379 if (!i.prefix[BND_PREFIX])
4380 add_prefix (BND_PREFIX_OPCODE);
4381 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4382 {
4383 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4384 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4385 }
4386 }
4387
4388 /* Check string instruction segment overrides. */
4389 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4390 {
4391 if (!check_string ())
4392 return;
4393 i.disp_operands = 0;
4394 }
4395
4396 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4397 optimize_encoding ();
4398
4399 if (!process_suffix ())
4400 return;
4401
4402 /* Update operand types. */
4403 for (j = 0; j < i.operands; j++)
4404 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4405
4406 /* Make still unresolved immediate matches conform to size of immediate
4407 given in i.suffix. */
4408 if (!finalize_imm ())
4409 return;
4410
4411 if (i.types[0].bitfield.imm1)
4412 i.imm_operands = 0; /* kludge for shift insns. */
4413
4414 /* We only need to check those implicit registers for instructions
4415 with 3 operands or less. */
4416 if (i.operands <= 3)
4417 for (j = 0; j < i.operands; j++)
4418 if (i.types[j].bitfield.inoutportreg
4419 || i.types[j].bitfield.shiftcount
4420 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4421 i.reg_operands--;
4422
4423 /* ImmExt should be processed after SSE2AVX. */
4424 if (!i.tm.opcode_modifier.sse2avx
4425 && i.tm.opcode_modifier.immext)
4426 process_immext ();
4427
4428 /* For insns with operands there are more diddles to do to the opcode. */
4429 if (i.operands)
4430 {
4431 if (!process_operands ())
4432 return;
4433 }
4434 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4435 {
4436 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4437 as_warn (_("translating to `%sp'"), i.tm.name);
4438 }
4439
4440 if (is_any_vex_encoding (&i.tm))
4441 {
4442 if (!cpu_arch_flags.bitfield.cpui286)
4443 {
4444 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4445 i.tm.name);
4446 return;
4447 }
4448
4449 if (i.tm.opcode_modifier.vex)
4450 build_vex_prefix (t);
4451 else
4452 build_evex_prefix ();
4453 }
4454
4455 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4456 instructions may define INT_OPCODE as well, so avoid this corner
4457 case for those instructions that use MODRM. */
4458 if (i.tm.base_opcode == INT_OPCODE
4459 && !i.tm.opcode_modifier.modrm
4460 && i.op[0].imms->X_add_number == 3)
4461 {
4462 i.tm.base_opcode = INT3_OPCODE;
4463 i.imm_operands = 0;
4464 }
4465
4466 if ((i.tm.opcode_modifier.jump
4467 || i.tm.opcode_modifier.jumpbyte
4468 || i.tm.opcode_modifier.jumpdword)
4469 && i.op[0].disps->X_op == O_constant)
4470 {
4471 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4472 the absolute address given by the constant. Since ix86 jumps and
4473 calls are pc relative, we need to generate a reloc. */
4474 i.op[0].disps->X_add_symbol = &abs_symbol;
4475 i.op[0].disps->X_op = O_symbol;
4476 }
4477
4478 if (i.tm.opcode_modifier.rex64)
4479 i.rex |= REX_W;
4480
4481 /* For 8 bit registers we need an empty rex prefix. Also if the
4482 instruction already has a prefix, we need to convert old
4483 registers to new ones. */
4484
4485 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4486 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4487 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4488 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4489 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4490 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4491 && i.rex != 0))
4492 {
4493 int x;
4494
4495 i.rex |= REX_OPCODE;
4496 for (x = 0; x < 2; x++)
4497 {
4498 /* Look for 8 bit operand that uses old registers. */
4499 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4500 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4501 {
4502 /* In case it is "hi" register, give up. */
4503 if (i.op[x].regs->reg_num > 3)
4504 as_bad (_("can't encode register '%s%s' in an "
4505 "instruction requiring REX prefix."),
4506 register_prefix, i.op[x].regs->reg_name);
4507
4508 /* Otherwise it is equivalent to the extended register.
4509 Since the encoding doesn't change this is merely
4510 cosmetic cleanup for debug output. */
4511
4512 i.op[x].regs = i.op[x].regs + 8;
4513 }
4514 }
4515 }
4516
4517 if (i.rex == 0 && i.rex_encoding)
4518 {
4519 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4520 that uses legacy register. If it is "hi" register, don't add
4521 the REX_OPCODE byte. */
4522 int x;
4523 for (x = 0; x < 2; x++)
4524 if (i.types[x].bitfield.reg
4525 && i.types[x].bitfield.byte
4526 && (i.op[x].regs->reg_flags & RegRex64) == 0
4527 && i.op[x].regs->reg_num > 3)
4528 {
4529 i.rex_encoding = FALSE;
4530 break;
4531 }
4532
4533 if (i.rex_encoding)
4534 i.rex = REX_OPCODE;
4535 }
4536
4537 if (i.rex != 0)
4538 add_prefix (REX_OPCODE | i.rex);
4539
4540 /* We are ready to output the insn. */
4541 output_insn ();
4542 }
4543
4544 static char *
4545 parse_insn (char *line, char *mnemonic)
4546 {
4547 char *l = line;
4548 char *token_start = l;
4549 char *mnem_p;
4550 int supported;
4551 const insn_template *t;
4552 char *dot_p = NULL;
4553
4554 while (1)
4555 {
4556 mnem_p = mnemonic;
4557 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4558 {
4559 if (*mnem_p == '.')
4560 dot_p = mnem_p;
4561 mnem_p++;
4562 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4563 {
4564 as_bad (_("no such instruction: `%s'"), token_start);
4565 return NULL;
4566 }
4567 l++;
4568 }
4569 if (!is_space_char (*l)
4570 && *l != END_OF_INSN
4571 && (intel_syntax
4572 || (*l != PREFIX_SEPARATOR
4573 && *l != ',')))
4574 {
4575 as_bad (_("invalid character %s in mnemonic"),
4576 output_invalid (*l));
4577 return NULL;
4578 }
4579 if (token_start == l)
4580 {
4581 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4582 as_bad (_("expecting prefix; got nothing"));
4583 else
4584 as_bad (_("expecting mnemonic; got nothing"));
4585 return NULL;
4586 }
4587
4588 /* Look up instruction (or prefix) via hash table. */
4589 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4590
4591 if (*l != END_OF_INSN
4592 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4593 && current_templates
4594 && current_templates->start->opcode_modifier.isprefix)
4595 {
4596 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4597 {
4598 as_bad ((flag_code != CODE_64BIT
4599 ? _("`%s' is only supported in 64-bit mode")
4600 : _("`%s' is not supported in 64-bit mode")),
4601 current_templates->start->name);
4602 return NULL;
4603 }
4604 /* If we are in 16-bit mode, do not allow addr16 or data16.
4605 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4606 if ((current_templates->start->opcode_modifier.size == SIZE16
4607 || current_templates->start->opcode_modifier.size == SIZE32)
4608 && flag_code != CODE_64BIT
4609 && ((current_templates->start->opcode_modifier.size == SIZE32)
4610 ^ (flag_code == CODE_16BIT)))
4611 {
4612 as_bad (_("redundant %s prefix"),
4613 current_templates->start->name);
4614 return NULL;
4615 }
4616 if (current_templates->start->opcode_length == 0)
4617 {
4618 /* Handle pseudo prefixes. */
4619 switch (current_templates->start->base_opcode)
4620 {
4621 case 0x0:
4622 /* {disp8} */
4623 i.disp_encoding = disp_encoding_8bit;
4624 break;
4625 case 0x1:
4626 /* {disp32} */
4627 i.disp_encoding = disp_encoding_32bit;
4628 break;
4629 case 0x2:
4630 /* {load} */
4631 i.dir_encoding = dir_encoding_load;
4632 break;
4633 case 0x3:
4634 /* {store} */
4635 i.dir_encoding = dir_encoding_store;
4636 break;
4637 case 0x4:
4638 /* {vex2} */
4639 i.vec_encoding = vex_encoding_vex2;
4640 break;
4641 case 0x5:
4642 /* {vex3} */
4643 i.vec_encoding = vex_encoding_vex3;
4644 break;
4645 case 0x6:
4646 /* {evex} */
4647 i.vec_encoding = vex_encoding_evex;
4648 break;
4649 case 0x7:
4650 /* {rex} */
4651 i.rex_encoding = TRUE;
4652 break;
4653 case 0x8:
4654 /* {nooptimize} */
4655 i.no_optimize = TRUE;
4656 break;
4657 default:
4658 abort ();
4659 }
4660 }
4661 else
4662 {
4663 /* Add prefix, checking for repeated prefixes. */
4664 switch (add_prefix (current_templates->start->base_opcode))
4665 {
4666 case PREFIX_EXIST:
4667 return NULL;
4668 case PREFIX_DS:
4669 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4670 i.notrack_prefix = current_templates->start->name;
4671 break;
4672 case PREFIX_REP:
4673 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4674 i.hle_prefix = current_templates->start->name;
4675 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4676 i.bnd_prefix = current_templates->start->name;
4677 else
4678 i.rep_prefix = current_templates->start->name;
4679 break;
4680 default:
4681 break;
4682 }
4683 }
4684 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4685 token_start = ++l;
4686 }
4687 else
4688 break;
4689 }
4690
4691 if (!current_templates)
4692 {
4693 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4694 Check if we should swap operand or force 32bit displacement in
4695 encoding. */
4696 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4697 i.dir_encoding = dir_encoding_swap;
4698 else if (mnem_p - 3 == dot_p
4699 && dot_p[1] == 'd'
4700 && dot_p[2] == '8')
4701 i.disp_encoding = disp_encoding_8bit;
4702 else if (mnem_p - 4 == dot_p
4703 && dot_p[1] == 'd'
4704 && dot_p[2] == '3'
4705 && dot_p[3] == '2')
4706 i.disp_encoding = disp_encoding_32bit;
4707 else
4708 goto check_suffix;
4709 mnem_p = dot_p;
4710 *dot_p = '\0';
4711 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4712 }
4713
4714 if (!current_templates)
4715 {
4716 check_suffix:
4717 if (mnem_p > mnemonic)
4718 {
4719 /* See if we can get a match by trimming off a suffix. */
4720 switch (mnem_p[-1])
4721 {
4722 case WORD_MNEM_SUFFIX:
4723 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4724 i.suffix = SHORT_MNEM_SUFFIX;
4725 else
4726 /* Fall through. */
4727 case BYTE_MNEM_SUFFIX:
4728 case QWORD_MNEM_SUFFIX:
4729 i.suffix = mnem_p[-1];
4730 mnem_p[-1] = '\0';
4731 current_templates = (const templates *) hash_find (op_hash,
4732 mnemonic);
4733 break;
4734 case SHORT_MNEM_SUFFIX:
4735 case LONG_MNEM_SUFFIX:
4736 if (!intel_syntax)
4737 {
4738 i.suffix = mnem_p[-1];
4739 mnem_p[-1] = '\0';
4740 current_templates = (const templates *) hash_find (op_hash,
4741 mnemonic);
4742 }
4743 break;
4744
4745 /* Intel Syntax. */
4746 case 'd':
4747 if (intel_syntax)
4748 {
4749 if (intel_float_operand (mnemonic) == 1)
4750 i.suffix = SHORT_MNEM_SUFFIX;
4751 else
4752 i.suffix = LONG_MNEM_SUFFIX;
4753 mnem_p[-1] = '\0';
4754 current_templates = (const templates *) hash_find (op_hash,
4755 mnemonic);
4756 }
4757 break;
4758 }
4759 }
4760
4761 if (!current_templates)
4762 {
4763 as_bad (_("no such instruction: `%s'"), token_start);
4764 return NULL;
4765 }
4766 }
4767
4768 if (current_templates->start->opcode_modifier.jump
4769 || current_templates->start->opcode_modifier.jumpbyte)
4770 {
4771 /* Check for a branch hint. We allow ",pt" and ",pn" for
4772 predict taken and predict not taken respectively.
4773 I'm not sure that branch hints actually do anything on loop
4774 and jcxz insns (JumpByte) for current Pentium4 chips. They
4775 may work in the future and it doesn't hurt to accept them
4776 now. */
4777 if (l[0] == ',' && l[1] == 'p')
4778 {
4779 if (l[2] == 't')
4780 {
4781 if (!add_prefix (DS_PREFIX_OPCODE))
4782 return NULL;
4783 l += 3;
4784 }
4785 else if (l[2] == 'n')
4786 {
4787 if (!add_prefix (CS_PREFIX_OPCODE))
4788 return NULL;
4789 l += 3;
4790 }
4791 }
4792 }
4793 /* Any other comma loses. */
4794 if (*l == ',')
4795 {
4796 as_bad (_("invalid character %s in mnemonic"),
4797 output_invalid (*l));
4798 return NULL;
4799 }
4800
4801 /* Check if instruction is supported on specified architecture. */
4802 supported = 0;
4803 for (t = current_templates->start; t < current_templates->end; ++t)
4804 {
4805 supported |= cpu_flags_match (t);
4806 if (supported == CPU_FLAGS_PERFECT_MATCH)
4807 {
4808 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4809 as_warn (_("use .code16 to ensure correct addressing mode"));
4810
4811 return l;
4812 }
4813 }
4814
4815 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4816 as_bad (flag_code == CODE_64BIT
4817 ? _("`%s' is not supported in 64-bit mode")
4818 : _("`%s' is only supported in 64-bit mode"),
4819 current_templates->start->name);
4820 else
4821 as_bad (_("`%s' is not supported on `%s%s'"),
4822 current_templates->start->name,
4823 cpu_arch_name ? cpu_arch_name : default_arch,
4824 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4825
4826 return NULL;
4827 }
4828
4829 static char *
4830 parse_operands (char *l, const char *mnemonic)
4831 {
4832 char *token_start;
4833
4834 /* 1 if operand is pending after ','. */
4835 unsigned int expecting_operand = 0;
4836
4837 /* Non-zero if operand parens not balanced. */
4838 unsigned int paren_not_balanced;
4839
4840 while (*l != END_OF_INSN)
4841 {
4842 /* Skip optional white space before operand. */
4843 if (is_space_char (*l))
4844 ++l;
4845 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4846 {
4847 as_bad (_("invalid character %s before operand %d"),
4848 output_invalid (*l),
4849 i.operands + 1);
4850 return NULL;
4851 }
4852 token_start = l; /* After white space. */
4853 paren_not_balanced = 0;
4854 while (paren_not_balanced || *l != ',')
4855 {
4856 if (*l == END_OF_INSN)
4857 {
4858 if (paren_not_balanced)
4859 {
4860 if (!intel_syntax)
4861 as_bad (_("unbalanced parenthesis in operand %d."),
4862 i.operands + 1);
4863 else
4864 as_bad (_("unbalanced brackets in operand %d."),
4865 i.operands + 1);
4866 return NULL;
4867 }
4868 else
4869 break; /* we are done */
4870 }
4871 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4872 {
4873 as_bad (_("invalid character %s in operand %d"),
4874 output_invalid (*l),
4875 i.operands + 1);
4876 return NULL;
4877 }
4878 if (!intel_syntax)
4879 {
4880 if (*l == '(')
4881 ++paren_not_balanced;
4882 if (*l == ')')
4883 --paren_not_balanced;
4884 }
4885 else
4886 {
4887 if (*l == '[')
4888 ++paren_not_balanced;
4889 if (*l == ']')
4890 --paren_not_balanced;
4891 }
4892 l++;
4893 }
4894 if (l != token_start)
4895 { /* Yes, we've read in another operand. */
4896 unsigned int operand_ok;
4897 this_operand = i.operands++;
4898 if (i.operands > MAX_OPERANDS)
4899 {
4900 as_bad (_("spurious operands; (%d operands/instruction max)"),
4901 MAX_OPERANDS);
4902 return NULL;
4903 }
4904 i.types[this_operand].bitfield.unspecified = 1;
4905 /* Now parse operand adding info to 'i' as we go along. */
4906 END_STRING_AND_SAVE (l);
4907
4908 if (i.mem_operands > 1)
4909 {
4910 as_bad (_("too many memory references for `%s'"),
4911 mnemonic);
4912 return 0;
4913 }
4914
4915 if (intel_syntax)
4916 operand_ok =
4917 i386_intel_operand (token_start,
4918 intel_float_operand (mnemonic));
4919 else
4920 operand_ok = i386_att_operand (token_start);
4921
4922 RESTORE_END_STRING (l);
4923 if (!operand_ok)
4924 return NULL;
4925 }
4926 else
4927 {
4928 if (expecting_operand)
4929 {
4930 expecting_operand_after_comma:
4931 as_bad (_("expecting operand after ','; got nothing"));
4932 return NULL;
4933 }
4934 if (*l == ',')
4935 {
4936 as_bad (_("expecting operand before ','; got nothing"));
4937 return NULL;
4938 }
4939 }
4940
4941 /* Now *l must be either ',' or END_OF_INSN. */
4942 if (*l == ',')
4943 {
4944 if (*++l == END_OF_INSN)
4945 {
4946 /* Just skip it, if it's \n complain. */
4947 goto expecting_operand_after_comma;
4948 }
4949 expecting_operand = 1;
4950 }
4951 }
4952 return l;
4953 }
4954
4955 static void
4956 swap_2_operands (int xchg1, int xchg2)
4957 {
4958 union i386_op temp_op;
4959 i386_operand_type temp_type;
4960 unsigned int temp_flags;
4961 enum bfd_reloc_code_real temp_reloc;
4962
4963 temp_type = i.types[xchg2];
4964 i.types[xchg2] = i.types[xchg1];
4965 i.types[xchg1] = temp_type;
4966
4967 temp_flags = i.flags[xchg2];
4968 i.flags[xchg2] = i.flags[xchg1];
4969 i.flags[xchg1] = temp_flags;
4970
4971 temp_op = i.op[xchg2];
4972 i.op[xchg2] = i.op[xchg1];
4973 i.op[xchg1] = temp_op;
4974
4975 temp_reloc = i.reloc[xchg2];
4976 i.reloc[xchg2] = i.reloc[xchg1];
4977 i.reloc[xchg1] = temp_reloc;
4978
4979 if (i.mask)
4980 {
4981 if (i.mask->operand == xchg1)
4982 i.mask->operand = xchg2;
4983 else if (i.mask->operand == xchg2)
4984 i.mask->operand = xchg1;
4985 }
4986 if (i.broadcast)
4987 {
4988 if (i.broadcast->operand == xchg1)
4989 i.broadcast->operand = xchg2;
4990 else if (i.broadcast->operand == xchg2)
4991 i.broadcast->operand = xchg1;
4992 }
4993 if (i.rounding)
4994 {
4995 if (i.rounding->operand == xchg1)
4996 i.rounding->operand = xchg2;
4997 else if (i.rounding->operand == xchg2)
4998 i.rounding->operand = xchg1;
4999 }
5000 }
5001
5002 static void
5003 swap_operands (void)
5004 {
5005 switch (i.operands)
5006 {
5007 case 5:
5008 case 4:
5009 swap_2_operands (1, i.operands - 2);
5010 /* Fall through. */
5011 case 3:
5012 case 2:
5013 swap_2_operands (0, i.operands - 1);
5014 break;
5015 default:
5016 abort ();
5017 }
5018
5019 if (i.mem_operands == 2)
5020 {
5021 const seg_entry *temp_seg;
5022 temp_seg = i.seg[0];
5023 i.seg[0] = i.seg[1];
5024 i.seg[1] = temp_seg;
5025 }
5026 }
5027
5028 /* Try to ensure constant immediates are represented in the smallest
5029 opcode possible. */
5030 static void
5031 optimize_imm (void)
5032 {
5033 char guess_suffix = 0;
5034 int op;
5035
5036 if (i.suffix)
5037 guess_suffix = i.suffix;
5038 else if (i.reg_operands)
5039 {
5040 /* Figure out a suffix from the last register operand specified.
5041 We can't do this properly yet, ie. excluding InOutPortReg,
5042 but the following works for instructions with immediates.
5043 In any case, we can't set i.suffix yet. */
5044 for (op = i.operands; --op >= 0;)
5045 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5046 {
5047 guess_suffix = BYTE_MNEM_SUFFIX;
5048 break;
5049 }
5050 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5051 {
5052 guess_suffix = WORD_MNEM_SUFFIX;
5053 break;
5054 }
5055 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5056 {
5057 guess_suffix = LONG_MNEM_SUFFIX;
5058 break;
5059 }
5060 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5061 {
5062 guess_suffix = QWORD_MNEM_SUFFIX;
5063 break;
5064 }
5065 }
5066 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5067 guess_suffix = WORD_MNEM_SUFFIX;
5068
5069 for (op = i.operands; --op >= 0;)
5070 if (operand_type_check (i.types[op], imm))
5071 {
5072 switch (i.op[op].imms->X_op)
5073 {
5074 case O_constant:
5075 /* If a suffix is given, this operand may be shortened. */
5076 switch (guess_suffix)
5077 {
5078 case LONG_MNEM_SUFFIX:
5079 i.types[op].bitfield.imm32 = 1;
5080 i.types[op].bitfield.imm64 = 1;
5081 break;
5082 case WORD_MNEM_SUFFIX:
5083 i.types[op].bitfield.imm16 = 1;
5084 i.types[op].bitfield.imm32 = 1;
5085 i.types[op].bitfield.imm32s = 1;
5086 i.types[op].bitfield.imm64 = 1;
5087 break;
5088 case BYTE_MNEM_SUFFIX:
5089 i.types[op].bitfield.imm8 = 1;
5090 i.types[op].bitfield.imm8s = 1;
5091 i.types[op].bitfield.imm16 = 1;
5092 i.types[op].bitfield.imm32 = 1;
5093 i.types[op].bitfield.imm32s = 1;
5094 i.types[op].bitfield.imm64 = 1;
5095 break;
5096 }
5097
5098 /* If this operand is at most 16 bits, convert it
5099 to a signed 16 bit number before trying to see
5100 whether it will fit in an even smaller size.
5101 This allows a 16-bit operand such as $0xffe0 to
5102 be recognised as within Imm8S range. */
5103 if ((i.types[op].bitfield.imm16)
5104 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5105 {
5106 i.op[op].imms->X_add_number =
5107 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5108 }
5109 #ifdef BFD64
5110 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5111 if ((i.types[op].bitfield.imm32)
5112 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5113 == 0))
5114 {
5115 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5116 ^ ((offsetT) 1 << 31))
5117 - ((offsetT) 1 << 31));
5118 }
5119 #endif
5120 i.types[op]
5121 = operand_type_or (i.types[op],
5122 smallest_imm_type (i.op[op].imms->X_add_number));
5123
5124 /* We must avoid matching of Imm32 templates when 64bit
5125 only immediate is available. */
5126 if (guess_suffix == QWORD_MNEM_SUFFIX)
5127 i.types[op].bitfield.imm32 = 0;
5128 break;
5129
5130 case O_absent:
5131 case O_register:
5132 abort ();
5133
5134 /* Symbols and expressions. */
5135 default:
5136 /* Convert symbolic operand to proper sizes for matching, but don't
5137 prevent matching a set of insns that only supports sizes other
5138 than those matching the insn suffix. */
5139 {
5140 i386_operand_type mask, allowed;
5141 const insn_template *t;
5142
5143 operand_type_set (&mask, 0);
5144 operand_type_set (&allowed, 0);
5145
5146 for (t = current_templates->start;
5147 t < current_templates->end;
5148 ++t)
5149 allowed = operand_type_or (allowed,
5150 t->operand_types[op]);
5151 switch (guess_suffix)
5152 {
5153 case QWORD_MNEM_SUFFIX:
5154 mask.bitfield.imm64 = 1;
5155 mask.bitfield.imm32s = 1;
5156 break;
5157 case LONG_MNEM_SUFFIX:
5158 mask.bitfield.imm32 = 1;
5159 break;
5160 case WORD_MNEM_SUFFIX:
5161 mask.bitfield.imm16 = 1;
5162 break;
5163 case BYTE_MNEM_SUFFIX:
5164 mask.bitfield.imm8 = 1;
5165 break;
5166 default:
5167 break;
5168 }
5169 allowed = operand_type_and (mask, allowed);
5170 if (!operand_type_all_zero (&allowed))
5171 i.types[op] = operand_type_and (i.types[op], mask);
5172 }
5173 break;
5174 }
5175 }
5176 }
5177
5178 /* Try to use the smallest displacement type too. */
5179 static void
5180 optimize_disp (void)
5181 {
5182 int op;
5183
5184 for (op = i.operands; --op >= 0;)
5185 if (operand_type_check (i.types[op], disp))
5186 {
5187 if (i.op[op].disps->X_op == O_constant)
5188 {
5189 offsetT op_disp = i.op[op].disps->X_add_number;
5190
5191 if (i.types[op].bitfield.disp16
5192 && (op_disp & ~(offsetT) 0xffff) == 0)
5193 {
5194 /* If this operand is at most 16 bits, convert
5195 to a signed 16 bit number and don't use 64bit
5196 displacement. */
5197 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5198 i.types[op].bitfield.disp64 = 0;
5199 }
5200 #ifdef BFD64
5201 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5202 if (i.types[op].bitfield.disp32
5203 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5204 {
5205 /* If this operand is at most 32 bits, convert
5206 to a signed 32 bit number and don't use 64bit
5207 displacement. */
5208 op_disp &= (((offsetT) 2 << 31) - 1);
5209 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5210 i.types[op].bitfield.disp64 = 0;
5211 }
5212 #endif
5213 if (!op_disp && i.types[op].bitfield.baseindex)
5214 {
5215 i.types[op].bitfield.disp8 = 0;
5216 i.types[op].bitfield.disp16 = 0;
5217 i.types[op].bitfield.disp32 = 0;
5218 i.types[op].bitfield.disp32s = 0;
5219 i.types[op].bitfield.disp64 = 0;
5220 i.op[op].disps = 0;
5221 i.disp_operands--;
5222 }
5223 else if (flag_code == CODE_64BIT)
5224 {
5225 if (fits_in_signed_long (op_disp))
5226 {
5227 i.types[op].bitfield.disp64 = 0;
5228 i.types[op].bitfield.disp32s = 1;
5229 }
5230 if (i.prefix[ADDR_PREFIX]
5231 && fits_in_unsigned_long (op_disp))
5232 i.types[op].bitfield.disp32 = 1;
5233 }
5234 if ((i.types[op].bitfield.disp32
5235 || i.types[op].bitfield.disp32s
5236 || i.types[op].bitfield.disp16)
5237 && fits_in_disp8 (op_disp))
5238 i.types[op].bitfield.disp8 = 1;
5239 }
5240 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5241 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5242 {
5243 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5244 i.op[op].disps, 0, i.reloc[op]);
5245 i.types[op].bitfield.disp8 = 0;
5246 i.types[op].bitfield.disp16 = 0;
5247 i.types[op].bitfield.disp32 = 0;
5248 i.types[op].bitfield.disp32s = 0;
5249 i.types[op].bitfield.disp64 = 0;
5250 }
5251 else
5252 /* We only support 64bit displacement on constants. */
5253 i.types[op].bitfield.disp64 = 0;
5254 }
5255 }
5256
5257 /* Return 1 if there is a match in broadcast bytes between operand
5258 GIVEN and instruction template T. */
5259
5260 static INLINE int
5261 match_broadcast_size (const insn_template *t, unsigned int given)
5262 {
5263 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5264 && i.types[given].bitfield.byte)
5265 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5266 && i.types[given].bitfield.word)
5267 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5268 && i.types[given].bitfield.dword)
5269 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5270 && i.types[given].bitfield.qword));
5271 }
5272
5273 /* Check if operands are valid for the instruction. */
5274
5275 static int
5276 check_VecOperands (const insn_template *t)
5277 {
5278 unsigned int op;
5279 i386_cpu_flags cpu;
5280 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5281
5282 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5283 any one operand are implicity requiring AVX512VL support if the actual
5284 operand size is YMMword or XMMword. Since this function runs after
5285 template matching, there's no need to check for YMMword/XMMword in
5286 the template. */
5287 cpu = cpu_flags_and (t->cpu_flags, avx512);
5288 if (!cpu_flags_all_zero (&cpu)
5289 && !t->cpu_flags.bitfield.cpuavx512vl
5290 && !cpu_arch_flags.bitfield.cpuavx512vl)
5291 {
5292 for (op = 0; op < t->operands; ++op)
5293 {
5294 if (t->operand_types[op].bitfield.zmmword
5295 && (i.types[op].bitfield.ymmword
5296 || i.types[op].bitfield.xmmword))
5297 {
5298 i.error = unsupported;
5299 return 1;
5300 }
5301 }
5302 }
5303
5304 /* Without VSIB byte, we can't have a vector register for index. */
5305 if (!t->opcode_modifier.vecsib
5306 && i.index_reg
5307 && (i.index_reg->reg_type.bitfield.xmmword
5308 || i.index_reg->reg_type.bitfield.ymmword
5309 || i.index_reg->reg_type.bitfield.zmmword))
5310 {
5311 i.error = unsupported_vector_index_register;
5312 return 1;
5313 }
5314
5315 /* Check if default mask is allowed. */
5316 if (t->opcode_modifier.nodefmask
5317 && (!i.mask || i.mask->mask->reg_num == 0))
5318 {
5319 i.error = no_default_mask;
5320 return 1;
5321 }
5322
5323 /* For VSIB byte, we need a vector register for index, and all vector
5324 registers must be distinct. */
5325 if (t->opcode_modifier.vecsib)
5326 {
5327 if (!i.index_reg
5328 || !((t->opcode_modifier.vecsib == VecSIB128
5329 && i.index_reg->reg_type.bitfield.xmmword)
5330 || (t->opcode_modifier.vecsib == VecSIB256
5331 && i.index_reg->reg_type.bitfield.ymmword)
5332 || (t->opcode_modifier.vecsib == VecSIB512
5333 && i.index_reg->reg_type.bitfield.zmmword)))
5334 {
5335 i.error = invalid_vsib_address;
5336 return 1;
5337 }
5338
5339 gas_assert (i.reg_operands == 2 || i.mask);
5340 if (i.reg_operands == 2 && !i.mask)
5341 {
5342 gas_assert (i.types[0].bitfield.regsimd);
5343 gas_assert (i.types[0].bitfield.xmmword
5344 || i.types[0].bitfield.ymmword);
5345 gas_assert (i.types[2].bitfield.regsimd);
5346 gas_assert (i.types[2].bitfield.xmmword
5347 || i.types[2].bitfield.ymmword);
5348 if (operand_check == check_none)
5349 return 0;
5350 if (register_number (i.op[0].regs)
5351 != register_number (i.index_reg)
5352 && register_number (i.op[2].regs)
5353 != register_number (i.index_reg)
5354 && register_number (i.op[0].regs)
5355 != register_number (i.op[2].regs))
5356 return 0;
5357 if (operand_check == check_error)
5358 {
5359 i.error = invalid_vector_register_set;
5360 return 1;
5361 }
5362 as_warn (_("mask, index, and destination registers should be distinct"));
5363 }
5364 else if (i.reg_operands == 1 && i.mask)
5365 {
5366 if (i.types[1].bitfield.regsimd
5367 && (i.types[1].bitfield.xmmword
5368 || i.types[1].bitfield.ymmword
5369 || i.types[1].bitfield.zmmword)
5370 && (register_number (i.op[1].regs)
5371 == register_number (i.index_reg)))
5372 {
5373 if (operand_check == check_error)
5374 {
5375 i.error = invalid_vector_register_set;
5376 return 1;
5377 }
5378 if (operand_check != check_none)
5379 as_warn (_("index and destination registers should be distinct"));
5380 }
5381 }
5382 }
5383
5384 /* Check if broadcast is supported by the instruction and is applied
5385 to the memory operand. */
5386 if (i.broadcast)
5387 {
5388 i386_operand_type type, overlap;
5389
5390 /* Check if specified broadcast is supported in this instruction,
5391 and its broadcast bytes match the memory operand. */
5392 op = i.broadcast->operand;
5393 if (!t->opcode_modifier.broadcast
5394 || !(i.flags[op] & Operand_Mem)
5395 || (!i.types[op].bitfield.unspecified
5396 && !match_broadcast_size (t, op)))
5397 {
5398 bad_broadcast:
5399 i.error = unsupported_broadcast;
5400 return 1;
5401 }
5402
5403 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5404 * i.broadcast->type);
5405 operand_type_set (&type, 0);
5406 switch (i.broadcast->bytes)
5407 {
5408 case 2:
5409 type.bitfield.word = 1;
5410 break;
5411 case 4:
5412 type.bitfield.dword = 1;
5413 break;
5414 case 8:
5415 type.bitfield.qword = 1;
5416 break;
5417 case 16:
5418 type.bitfield.xmmword = 1;
5419 break;
5420 case 32:
5421 type.bitfield.ymmword = 1;
5422 break;
5423 case 64:
5424 type.bitfield.zmmword = 1;
5425 break;
5426 default:
5427 goto bad_broadcast;
5428 }
5429
5430 overlap = operand_type_and (type, t->operand_types[op]);
5431 if (operand_type_all_zero (&overlap))
5432 goto bad_broadcast;
5433
5434 if (t->opcode_modifier.checkregsize)
5435 {
5436 unsigned int j;
5437
5438 type.bitfield.baseindex = 1;
5439 for (j = 0; j < i.operands; ++j)
5440 {
5441 if (j != op
5442 && !operand_type_register_match(i.types[j],
5443 t->operand_types[j],
5444 type,
5445 t->operand_types[op]))
5446 goto bad_broadcast;
5447 }
5448 }
5449 }
5450 /* If broadcast is supported in this instruction, we need to check if
5451 operand of one-element size isn't specified without broadcast. */
5452 else if (t->opcode_modifier.broadcast && i.mem_operands)
5453 {
5454 /* Find memory operand. */
5455 for (op = 0; op < i.operands; op++)
5456 if (operand_type_check (i.types[op], anymem))
5457 break;
5458 gas_assert (op < i.operands);
5459 /* Check size of the memory operand. */
5460 if (match_broadcast_size (t, op))
5461 {
5462 i.error = broadcast_needed;
5463 return 1;
5464 }
5465 }
5466 else
5467 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5468
5469 /* Check if requested masking is supported. */
5470 if (i.mask)
5471 {
5472 switch (t->opcode_modifier.masking)
5473 {
5474 case BOTH_MASKING:
5475 break;
5476 case MERGING_MASKING:
5477 if (i.mask->zeroing)
5478 {
5479 case 0:
5480 i.error = unsupported_masking;
5481 return 1;
5482 }
5483 break;
5484 case DYNAMIC_MASKING:
5485 /* Memory destinations allow only merging masking. */
5486 if (i.mask->zeroing && i.mem_operands)
5487 {
5488 /* Find memory operand. */
5489 for (op = 0; op < i.operands; op++)
5490 if (i.flags[op] & Operand_Mem)
5491 break;
5492 gas_assert (op < i.operands);
5493 if (op == i.operands - 1)
5494 {
5495 i.error = unsupported_masking;
5496 return 1;
5497 }
5498 }
5499 break;
5500 default:
5501 abort ();
5502 }
5503 }
5504
5505 /* Check if masking is applied to dest operand. */
5506 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5507 {
5508 i.error = mask_not_on_destination;
5509 return 1;
5510 }
5511
5512 /* Check RC/SAE. */
5513 if (i.rounding)
5514 {
5515 if (!t->opcode_modifier.sae
5516 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5517 {
5518 i.error = unsupported_rc_sae;
5519 return 1;
5520 }
5521 /* If the instruction has several immediate operands and one of
5522 them is rounding, the rounding operand should be the last
5523 immediate operand. */
5524 if (i.imm_operands > 1
5525 && i.rounding->operand != (int) (i.imm_operands - 1))
5526 {
5527 i.error = rc_sae_operand_not_last_imm;
5528 return 1;
5529 }
5530 }
5531
5532 /* Check vector Disp8 operand. */
5533 if (t->opcode_modifier.disp8memshift
5534 && i.disp_encoding != disp_encoding_32bit)
5535 {
5536 if (i.broadcast)
5537 i.memshift = t->opcode_modifier.broadcast - 1;
5538 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5539 i.memshift = t->opcode_modifier.disp8memshift;
5540 else
5541 {
5542 const i386_operand_type *type = NULL;
5543
5544 i.memshift = 0;
5545 for (op = 0; op < i.operands; op++)
5546 if (operand_type_check (i.types[op], anymem))
5547 {
5548 if (t->opcode_modifier.evex == EVEXLIG)
5549 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5550 else if (t->operand_types[op].bitfield.xmmword
5551 + t->operand_types[op].bitfield.ymmword
5552 + t->operand_types[op].bitfield.zmmword <= 1)
5553 type = &t->operand_types[op];
5554 else if (!i.types[op].bitfield.unspecified)
5555 type = &i.types[op];
5556 }
5557 else if (i.types[op].bitfield.regsimd
5558 && t->opcode_modifier.evex != EVEXLIG)
5559 {
5560 if (i.types[op].bitfield.zmmword)
5561 i.memshift = 6;
5562 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5563 i.memshift = 5;
5564 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5565 i.memshift = 4;
5566 }
5567
5568 if (type)
5569 {
5570 if (type->bitfield.zmmword)
5571 i.memshift = 6;
5572 else if (type->bitfield.ymmword)
5573 i.memshift = 5;
5574 else if (type->bitfield.xmmword)
5575 i.memshift = 4;
5576 }
5577
5578 /* For the check in fits_in_disp8(). */
5579 if (i.memshift == 0)
5580 i.memshift = -1;
5581 }
5582
5583 for (op = 0; op < i.operands; op++)
5584 if (operand_type_check (i.types[op], disp)
5585 && i.op[op].disps->X_op == O_constant)
5586 {
5587 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5588 {
5589 i.types[op].bitfield.disp8 = 1;
5590 return 0;
5591 }
5592 i.types[op].bitfield.disp8 = 0;
5593 }
5594 }
5595
5596 i.memshift = 0;
5597
5598 return 0;
5599 }
5600
5601 /* Check if operands are valid for the instruction. Update VEX
5602 operand types. */
5603
5604 static int
5605 VEX_check_operands (const insn_template *t)
5606 {
5607 if (i.vec_encoding == vex_encoding_evex)
5608 {
5609 /* This instruction must be encoded with EVEX prefix. */
5610 if (!is_evex_encoding (t))
5611 {
5612 i.error = unsupported;
5613 return 1;
5614 }
5615 return 0;
5616 }
5617
5618 if (!t->opcode_modifier.vex)
5619 {
5620 /* This instruction template doesn't have VEX prefix. */
5621 if (i.vec_encoding != vex_encoding_default)
5622 {
5623 i.error = unsupported;
5624 return 1;
5625 }
5626 return 0;
5627 }
5628
5629 /* Only check VEX_Imm4, which must be the first operand. */
5630 if (t->operand_types[0].bitfield.vec_imm4)
5631 {
5632 if (i.op[0].imms->X_op != O_constant
5633 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5634 {
5635 i.error = bad_imm4;
5636 return 1;
5637 }
5638
5639 /* Turn off Imm8 so that update_imm won't complain. */
5640 i.types[0] = vec_imm4;
5641 }
5642
5643 return 0;
5644 }
5645
5646 static const insn_template *
5647 match_template (char mnem_suffix)
5648 {
5649 /* Points to template once we've found it. */
5650 const insn_template *t;
5651 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5652 i386_operand_type overlap4;
5653 unsigned int found_reverse_match;
5654 i386_opcode_modifier suffix_check, mnemsuf_check;
5655 i386_operand_type operand_types [MAX_OPERANDS];
5656 int addr_prefix_disp;
5657 unsigned int j;
5658 unsigned int found_cpu_match, size_match;
5659 unsigned int check_register;
5660 enum i386_error specific_error = 0;
5661
5662 #if MAX_OPERANDS != 5
5663 # error "MAX_OPERANDS must be 5."
5664 #endif
5665
5666 found_reverse_match = 0;
5667 addr_prefix_disp = -1;
5668
5669 memset (&suffix_check, 0, sizeof (suffix_check));
5670 if (intel_syntax && i.broadcast)
5671 /* nothing */;
5672 else if (i.suffix == BYTE_MNEM_SUFFIX)
5673 suffix_check.no_bsuf = 1;
5674 else if (i.suffix == WORD_MNEM_SUFFIX)
5675 suffix_check.no_wsuf = 1;
5676 else if (i.suffix == SHORT_MNEM_SUFFIX)
5677 suffix_check.no_ssuf = 1;
5678 else if (i.suffix == LONG_MNEM_SUFFIX)
5679 suffix_check.no_lsuf = 1;
5680 else if (i.suffix == QWORD_MNEM_SUFFIX)
5681 suffix_check.no_qsuf = 1;
5682 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5683 suffix_check.no_ldsuf = 1;
5684
5685 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5686 if (intel_syntax)
5687 {
5688 switch (mnem_suffix)
5689 {
5690 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5691 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5692 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5693 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5694 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5695 }
5696 }
5697
5698 /* Must have right number of operands. */
5699 i.error = number_of_operands_mismatch;
5700
5701 for (t = current_templates->start; t < current_templates->end; t++)
5702 {
5703 addr_prefix_disp = -1;
5704 found_reverse_match = 0;
5705
5706 if (i.operands != t->operands)
5707 continue;
5708
5709 /* Check processor support. */
5710 i.error = unsupported;
5711 found_cpu_match = (cpu_flags_match (t)
5712 == CPU_FLAGS_PERFECT_MATCH);
5713 if (!found_cpu_match)
5714 continue;
5715
5716 /* Check AT&T mnemonic. */
5717 i.error = unsupported_with_intel_mnemonic;
5718 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5719 continue;
5720
5721 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5722 i.error = unsupported_syntax;
5723 if ((intel_syntax && t->opcode_modifier.attsyntax)
5724 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5725 || (intel64 && t->opcode_modifier.amd64)
5726 || (!intel64 && t->opcode_modifier.intel64))
5727 continue;
5728
5729 /* Check the suffix, except for some instructions in intel mode. */
5730 i.error = invalid_instruction_suffix;
5731 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5732 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5738 continue;
5739 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5740 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5741 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5742 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5743 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5744 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5745 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5746 continue;
5747
5748 size_match = operand_size_match (t);
5749 if (!size_match)
5750 continue;
5751
5752 for (j = 0; j < MAX_OPERANDS; j++)
5753 operand_types[j] = t->operand_types[j];
5754
5755 /* In general, don't allow 64-bit operands in 32-bit mode. */
5756 if (i.suffix == QWORD_MNEM_SUFFIX
5757 && flag_code != CODE_64BIT
5758 && (intel_syntax
5759 ? (!t->opcode_modifier.ignoresize
5760 && !t->opcode_modifier.broadcast
5761 && !intel_float_operand (t->name))
5762 : intel_float_operand (t->name) != 2)
5763 && ((!operand_types[0].bitfield.regmmx
5764 && !operand_types[0].bitfield.regsimd)
5765 || (!operand_types[t->operands > 1].bitfield.regmmx
5766 && !operand_types[t->operands > 1].bitfield.regsimd))
5767 && (t->base_opcode != 0x0fc7
5768 || t->extension_opcode != 1 /* cmpxchg8b */))
5769 continue;
5770
5771 /* In general, don't allow 32-bit operands on pre-386. */
5772 else if (i.suffix == LONG_MNEM_SUFFIX
5773 && !cpu_arch_flags.bitfield.cpui386
5774 && (intel_syntax
5775 ? (!t->opcode_modifier.ignoresize
5776 && !intel_float_operand (t->name))
5777 : intel_float_operand (t->name) != 2)
5778 && ((!operand_types[0].bitfield.regmmx
5779 && !operand_types[0].bitfield.regsimd)
5780 || (!operand_types[t->operands > 1].bitfield.regmmx
5781 && !operand_types[t->operands > 1].bitfield.regsimd)))
5782 continue;
5783
5784 /* Do not verify operands when there are none. */
5785 else
5786 {
5787 if (!t->operands)
5788 /* We've found a match; break out of loop. */
5789 break;
5790 }
5791
5792 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5793 into Disp32/Disp16/Disp32 operand. */
5794 if (i.prefix[ADDR_PREFIX] != 0)
5795 {
5796 /* There should be only one Disp operand. */
5797 switch (flag_code)
5798 {
5799 case CODE_16BIT:
5800 for (j = 0; j < MAX_OPERANDS; j++)
5801 {
5802 if (operand_types[j].bitfield.disp16)
5803 {
5804 addr_prefix_disp = j;
5805 operand_types[j].bitfield.disp32 = 1;
5806 operand_types[j].bitfield.disp16 = 0;
5807 break;
5808 }
5809 }
5810 break;
5811 case CODE_32BIT:
5812 for (j = 0; j < MAX_OPERANDS; j++)
5813 {
5814 if (operand_types[j].bitfield.disp32)
5815 {
5816 addr_prefix_disp = j;
5817 operand_types[j].bitfield.disp32 = 0;
5818 operand_types[j].bitfield.disp16 = 1;
5819 break;
5820 }
5821 }
5822 break;
5823 case CODE_64BIT:
5824 for (j = 0; j < MAX_OPERANDS; j++)
5825 {
5826 if (operand_types[j].bitfield.disp64)
5827 {
5828 addr_prefix_disp = j;
5829 operand_types[j].bitfield.disp64 = 0;
5830 operand_types[j].bitfield.disp32 = 1;
5831 break;
5832 }
5833 }
5834 break;
5835 }
5836 }
5837
5838 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5839 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5840 continue;
5841
5842 /* We check register size if needed. */
5843 if (t->opcode_modifier.checkregsize)
5844 {
5845 check_register = (1 << t->operands) - 1;
5846 if (i.broadcast)
5847 check_register &= ~(1 << i.broadcast->operand);
5848 }
5849 else
5850 check_register = 0;
5851
5852 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5853 switch (t->operands)
5854 {
5855 case 1:
5856 if (!operand_type_match (overlap0, i.types[0]))
5857 continue;
5858 break;
5859 case 2:
5860 /* xchg %eax, %eax is a special case. It is an alias for nop
5861 only in 32bit mode and we can use opcode 0x90. In 64bit
5862 mode, we can't use 0x90 for xchg %eax, %eax since it should
5863 zero-extend %eax to %rax. */
5864 if (flag_code == CODE_64BIT
5865 && t->base_opcode == 0x90
5866 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5867 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5868 continue;
5869 /* xrelease mov %eax, <disp> is another special case. It must not
5870 match the accumulator-only encoding of mov. */
5871 if (flag_code != CODE_64BIT
5872 && i.hle_prefix
5873 && t->base_opcode == 0xa0
5874 && i.types[0].bitfield.acc
5875 && operand_type_check (i.types[1], anymem))
5876 continue;
5877 /* Fall through. */
5878
5879 case 3:
5880 if (!(size_match & MATCH_STRAIGHT))
5881 goto check_reverse;
5882 /* Reverse direction of operands if swapping is possible in the first
5883 place (operands need to be symmetric) and
5884 - the load form is requested, and the template is a store form,
5885 - the store form is requested, and the template is a load form,
5886 - the non-default (swapped) form is requested. */
5887 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5888 if (t->opcode_modifier.d && i.reg_operands == i.operands
5889 && !operand_type_all_zero (&overlap1))
5890 switch (i.dir_encoding)
5891 {
5892 case dir_encoding_load:
5893 if (operand_type_check (operand_types[i.operands - 1], anymem)
5894 || operand_types[i.operands - 1].bitfield.regmem)
5895 goto check_reverse;
5896 break;
5897
5898 case dir_encoding_store:
5899 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5900 && !operand_types[i.operands - 1].bitfield.regmem)
5901 goto check_reverse;
5902 break;
5903
5904 case dir_encoding_swap:
5905 goto check_reverse;
5906
5907 case dir_encoding_default:
5908 break;
5909 }
5910 /* If we want store form, we skip the current load. */
5911 if ((i.dir_encoding == dir_encoding_store
5912 || i.dir_encoding == dir_encoding_swap)
5913 && i.mem_operands == 0
5914 && t->opcode_modifier.load)
5915 continue;
5916 /* Fall through. */
5917 case 4:
5918 case 5:
5919 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5920 if (!operand_type_match (overlap0, i.types[0])
5921 || !operand_type_match (overlap1, i.types[1])
5922 || ((check_register & 3) == 3
5923 && !operand_type_register_match (i.types[0],
5924 operand_types[0],
5925 i.types[1],
5926 operand_types[1])))
5927 {
5928 /* Check if other direction is valid ... */
5929 if (!t->opcode_modifier.d)
5930 continue;
5931
5932 check_reverse:
5933 if (!(size_match & MATCH_REVERSE))
5934 continue;
5935 /* Try reversing direction of operands. */
5936 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5937 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5938 if (!operand_type_match (overlap0, i.types[0])
5939 || !operand_type_match (overlap1, i.types[i.operands - 1])
5940 || (check_register
5941 && !operand_type_register_match (i.types[0],
5942 operand_types[i.operands - 1],
5943 i.types[i.operands - 1],
5944 operand_types[0])))
5945 {
5946 /* Does not match either direction. */
5947 continue;
5948 }
5949 /* found_reverse_match holds which of D or FloatR
5950 we've found. */
5951 if (!t->opcode_modifier.d)
5952 found_reverse_match = 0;
5953 else if (operand_types[0].bitfield.tbyte)
5954 found_reverse_match = Opcode_FloatD;
5955 else if (operand_types[0].bitfield.xmmword
5956 || operand_types[i.operands - 1].bitfield.xmmword
5957 || operand_types[0].bitfield.regmmx
5958 || operand_types[i.operands - 1].bitfield.regmmx
5959 || is_any_vex_encoding(t))
5960 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5961 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5962 else
5963 found_reverse_match = Opcode_D;
5964 if (t->opcode_modifier.floatr)
5965 found_reverse_match |= Opcode_FloatR;
5966 }
5967 else
5968 {
5969 /* Found a forward 2 operand match here. */
5970 switch (t->operands)
5971 {
5972 case 5:
5973 overlap4 = operand_type_and (i.types[4],
5974 operand_types[4]);
5975 /* Fall through. */
5976 case 4:
5977 overlap3 = operand_type_and (i.types[3],
5978 operand_types[3]);
5979 /* Fall through. */
5980 case 3:
5981 overlap2 = operand_type_and (i.types[2],
5982 operand_types[2]);
5983 break;
5984 }
5985
5986 switch (t->operands)
5987 {
5988 case 5:
5989 if (!operand_type_match (overlap4, i.types[4])
5990 || !operand_type_register_match (i.types[3],
5991 operand_types[3],
5992 i.types[4],
5993 operand_types[4]))
5994 continue;
5995 /* Fall through. */
5996 case 4:
5997 if (!operand_type_match (overlap3, i.types[3])
5998 || ((check_register & 0xa) == 0xa
5999 && !operand_type_register_match (i.types[1],
6000 operand_types[1],
6001 i.types[3],
6002 operand_types[3]))
6003 || ((check_register & 0xc) == 0xc
6004 && !operand_type_register_match (i.types[2],
6005 operand_types[2],
6006 i.types[3],
6007 operand_types[3])))
6008 continue;
6009 /* Fall through. */
6010 case 3:
6011 /* Here we make use of the fact that there are no
6012 reverse match 3 operand instructions. */
6013 if (!operand_type_match (overlap2, i.types[2])
6014 || ((check_register & 5) == 5
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[2],
6018 operand_types[2]))
6019 || ((check_register & 6) == 6
6020 && !operand_type_register_match (i.types[1],
6021 operand_types[1],
6022 i.types[2],
6023 operand_types[2])))
6024 continue;
6025 break;
6026 }
6027 }
6028 /* Found either forward/reverse 2, 3 or 4 operand match here:
6029 slip through to break. */
6030 }
6031 if (!found_cpu_match)
6032 continue;
6033
6034 /* Check if vector and VEX operands are valid. */
6035 if (check_VecOperands (t) || VEX_check_operands (t))
6036 {
6037 specific_error = i.error;
6038 continue;
6039 }
6040
6041 /* We've found a match; break out of loop. */
6042 break;
6043 }
6044
6045 if (t == current_templates->end)
6046 {
6047 /* We found no match. */
6048 const char *err_msg;
6049 switch (specific_error ? specific_error : i.error)
6050 {
6051 default:
6052 abort ();
6053 case operand_size_mismatch:
6054 err_msg = _("operand size mismatch");
6055 break;
6056 case operand_type_mismatch:
6057 err_msg = _("operand type mismatch");
6058 break;
6059 case register_type_mismatch:
6060 err_msg = _("register type mismatch");
6061 break;
6062 case number_of_operands_mismatch:
6063 err_msg = _("number of operands mismatch");
6064 break;
6065 case invalid_instruction_suffix:
6066 err_msg = _("invalid instruction suffix");
6067 break;
6068 case bad_imm4:
6069 err_msg = _("constant doesn't fit in 4 bits");
6070 break;
6071 case unsupported_with_intel_mnemonic:
6072 err_msg = _("unsupported with Intel mnemonic");
6073 break;
6074 case unsupported_syntax:
6075 err_msg = _("unsupported syntax");
6076 break;
6077 case unsupported:
6078 as_bad (_("unsupported instruction `%s'"),
6079 current_templates->start->name);
6080 return NULL;
6081 case invalid_vsib_address:
6082 err_msg = _("invalid VSIB address");
6083 break;
6084 case invalid_vector_register_set:
6085 err_msg = _("mask, index, and destination registers must be distinct");
6086 break;
6087 case unsupported_vector_index_register:
6088 err_msg = _("unsupported vector index register");
6089 break;
6090 case unsupported_broadcast:
6091 err_msg = _("unsupported broadcast");
6092 break;
6093 case broadcast_needed:
6094 err_msg = _("broadcast is needed for operand of such type");
6095 break;
6096 case unsupported_masking:
6097 err_msg = _("unsupported masking");
6098 break;
6099 case mask_not_on_destination:
6100 err_msg = _("mask not on destination operand");
6101 break;
6102 case no_default_mask:
6103 err_msg = _("default mask isn't allowed");
6104 break;
6105 case unsupported_rc_sae:
6106 err_msg = _("unsupported static rounding/sae");
6107 break;
6108 case rc_sae_operand_not_last_imm:
6109 if (intel_syntax)
6110 err_msg = _("RC/SAE operand must precede immediate operands");
6111 else
6112 err_msg = _("RC/SAE operand must follow immediate operands");
6113 break;
6114 case invalid_register_operand:
6115 err_msg = _("invalid register operand");
6116 break;
6117 }
6118 as_bad (_("%s for `%s'"), err_msg,
6119 current_templates->start->name);
6120 return NULL;
6121 }
6122
6123 if (!quiet_warnings)
6124 {
6125 if (!intel_syntax
6126 && (i.types[0].bitfield.jumpabsolute
6127 != operand_types[0].bitfield.jumpabsolute))
6128 {
6129 as_warn (_("indirect %s without `*'"), t->name);
6130 }
6131
6132 if (t->opcode_modifier.isprefix
6133 && t->opcode_modifier.ignoresize)
6134 {
6135 /* Warn them that a data or address size prefix doesn't
6136 affect assembly of the next line of code. */
6137 as_warn (_("stand-alone `%s' prefix"), t->name);
6138 }
6139 }
6140
6141 /* Copy the template we found. */
6142 i.tm = *t;
6143
6144 if (addr_prefix_disp != -1)
6145 i.tm.operand_types[addr_prefix_disp]
6146 = operand_types[addr_prefix_disp];
6147
6148 if (found_reverse_match)
6149 {
6150 /* If we found a reverse match we must alter the opcode
6151 direction bit. found_reverse_match holds bits to change
6152 (different for int & float insns). */
6153
6154 i.tm.base_opcode ^= found_reverse_match;
6155
6156 i.tm.operand_types[0] = operand_types[i.operands - 1];
6157 i.tm.operand_types[i.operands - 1] = operand_types[0];
6158 }
6159
6160 return t;
6161 }
6162
6163 static int
6164 check_string (void)
6165 {
6166 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6167 if (i.tm.operand_types[mem_op].bitfield.esseg)
6168 {
6169 if (i.seg[0] != NULL && i.seg[0] != &es)
6170 {
6171 as_bad (_("`%s' operand %d must use `%ses' segment"),
6172 i.tm.name,
6173 mem_op + 1,
6174 register_prefix);
6175 return 0;
6176 }
6177 /* There's only ever one segment override allowed per instruction.
6178 This instruction possibly has a legal segment override on the
6179 second operand, so copy the segment to where non-string
6180 instructions store it, allowing common code. */
6181 i.seg[0] = i.seg[1];
6182 }
6183 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6184 {
6185 if (i.seg[1] != NULL && i.seg[1] != &es)
6186 {
6187 as_bad (_("`%s' operand %d must use `%ses' segment"),
6188 i.tm.name,
6189 mem_op + 2,
6190 register_prefix);
6191 return 0;
6192 }
6193 }
6194 return 1;
6195 }
6196
6197 static int
6198 process_suffix (void)
6199 {
6200 /* If matched instruction specifies an explicit instruction mnemonic
6201 suffix, use it. */
6202 if (i.tm.opcode_modifier.size == SIZE16)
6203 i.suffix = WORD_MNEM_SUFFIX;
6204 else if (i.tm.opcode_modifier.size == SIZE32)
6205 i.suffix = LONG_MNEM_SUFFIX;
6206 else if (i.tm.opcode_modifier.size == SIZE64)
6207 i.suffix = QWORD_MNEM_SUFFIX;
6208 else if (i.reg_operands)
6209 {
6210 /* If there's no instruction mnemonic suffix we try to invent one
6211 based on register operands. */
6212 if (!i.suffix)
6213 {
6214 /* We take i.suffix from the last register operand specified,
6215 Destination register type is more significant than source
6216 register type. crc32 in SSE4.2 prefers source register
6217 type. */
6218 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6219 {
6220 if (i.types[0].bitfield.byte)
6221 i.suffix = BYTE_MNEM_SUFFIX;
6222 else if (i.types[0].bitfield.word)
6223 i.suffix = WORD_MNEM_SUFFIX;
6224 else if (i.types[0].bitfield.dword)
6225 i.suffix = LONG_MNEM_SUFFIX;
6226 else if (i.types[0].bitfield.qword)
6227 i.suffix = QWORD_MNEM_SUFFIX;
6228 }
6229
6230 if (!i.suffix)
6231 {
6232 int op;
6233
6234 if (i.tm.base_opcode == 0xf20f38f0)
6235 {
6236 /* We have to know the operand size for crc32. */
6237 as_bad (_("ambiguous memory operand size for `%s`"),
6238 i.tm.name);
6239 return 0;
6240 }
6241
6242 for (op = i.operands; --op >= 0;)
6243 if (!i.tm.operand_types[op].bitfield.inoutportreg
6244 && !i.tm.operand_types[op].bitfield.shiftcount)
6245 {
6246 if (!i.types[op].bitfield.reg)
6247 continue;
6248 if (i.types[op].bitfield.byte)
6249 i.suffix = BYTE_MNEM_SUFFIX;
6250 else if (i.types[op].bitfield.word)
6251 i.suffix = WORD_MNEM_SUFFIX;
6252 else if (i.types[op].bitfield.dword)
6253 i.suffix = LONG_MNEM_SUFFIX;
6254 else if (i.types[op].bitfield.qword)
6255 i.suffix = QWORD_MNEM_SUFFIX;
6256 else
6257 continue;
6258 break;
6259 }
6260 }
6261 }
6262 else if (i.suffix == BYTE_MNEM_SUFFIX)
6263 {
6264 if (intel_syntax
6265 && i.tm.opcode_modifier.ignoresize
6266 && i.tm.opcode_modifier.no_bsuf)
6267 i.suffix = 0;
6268 else if (!check_byte_reg ())
6269 return 0;
6270 }
6271 else if (i.suffix == LONG_MNEM_SUFFIX)
6272 {
6273 if (intel_syntax
6274 && i.tm.opcode_modifier.ignoresize
6275 && i.tm.opcode_modifier.no_lsuf
6276 && !i.tm.opcode_modifier.todword
6277 && !i.tm.opcode_modifier.toqword)
6278 i.suffix = 0;
6279 else if (!check_long_reg ())
6280 return 0;
6281 }
6282 else if (i.suffix == QWORD_MNEM_SUFFIX)
6283 {
6284 if (intel_syntax
6285 && i.tm.opcode_modifier.ignoresize
6286 && i.tm.opcode_modifier.no_qsuf
6287 && !i.tm.opcode_modifier.todword
6288 && !i.tm.opcode_modifier.toqword)
6289 i.suffix = 0;
6290 else if (!check_qword_reg ())
6291 return 0;
6292 }
6293 else if (i.suffix == WORD_MNEM_SUFFIX)
6294 {
6295 if (intel_syntax
6296 && i.tm.opcode_modifier.ignoresize
6297 && i.tm.opcode_modifier.no_wsuf)
6298 i.suffix = 0;
6299 else if (!check_word_reg ())
6300 return 0;
6301 }
6302 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6303 /* Do nothing if the instruction is going to ignore the prefix. */
6304 ;
6305 else
6306 abort ();
6307 }
6308 else if (i.tm.opcode_modifier.defaultsize
6309 && !i.suffix
6310 /* exclude fldenv/frstor/fsave/fstenv */
6311 && i.tm.opcode_modifier.no_ssuf)
6312 {
6313 if (stackop_size == LONG_MNEM_SUFFIX
6314 && i.tm.base_opcode == 0xcf)
6315 {
6316 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6317 .code16gcc directive to support 16-bit mode with
6318 32-bit address. For IRET without a suffix, generate
6319 16-bit IRET (opcode 0xcf) to return from an interrupt
6320 handler. */
6321 i.suffix = WORD_MNEM_SUFFIX;
6322 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6323 }
6324 else
6325 i.suffix = stackop_size;
6326 }
6327 else if (intel_syntax
6328 && !i.suffix
6329 && (i.tm.operand_types[0].bitfield.jumpabsolute
6330 || i.tm.opcode_modifier.jumpbyte
6331 || i.tm.opcode_modifier.jumpintersegment
6332 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6333 && i.tm.extension_opcode <= 3)))
6334 {
6335 switch (flag_code)
6336 {
6337 case CODE_64BIT:
6338 if (!i.tm.opcode_modifier.no_qsuf)
6339 {
6340 i.suffix = QWORD_MNEM_SUFFIX;
6341 break;
6342 }
6343 /* Fall through. */
6344 case CODE_32BIT:
6345 if (!i.tm.opcode_modifier.no_lsuf)
6346 i.suffix = LONG_MNEM_SUFFIX;
6347 break;
6348 case CODE_16BIT:
6349 if (!i.tm.opcode_modifier.no_wsuf)
6350 i.suffix = WORD_MNEM_SUFFIX;
6351 break;
6352 }
6353 }
6354
6355 if (!i.suffix)
6356 {
6357 if (!intel_syntax)
6358 {
6359 if (i.tm.opcode_modifier.w)
6360 {
6361 as_bad (_("no instruction mnemonic suffix given and "
6362 "no register operands; can't size instruction"));
6363 return 0;
6364 }
6365 }
6366 else
6367 {
6368 unsigned int suffixes;
6369
6370 suffixes = !i.tm.opcode_modifier.no_bsuf;
6371 if (!i.tm.opcode_modifier.no_wsuf)
6372 suffixes |= 1 << 1;
6373 if (!i.tm.opcode_modifier.no_lsuf)
6374 suffixes |= 1 << 2;
6375 if (!i.tm.opcode_modifier.no_ldsuf)
6376 suffixes |= 1 << 3;
6377 if (!i.tm.opcode_modifier.no_ssuf)
6378 suffixes |= 1 << 4;
6379 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6380 suffixes |= 1 << 5;
6381
6382 /* There are more than suffix matches. */
6383 if (i.tm.opcode_modifier.w
6384 || ((suffixes & (suffixes - 1))
6385 && !i.tm.opcode_modifier.defaultsize
6386 && !i.tm.opcode_modifier.ignoresize))
6387 {
6388 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6389 return 0;
6390 }
6391 }
6392 }
6393
6394 /* Change the opcode based on the operand size given by i.suffix. */
6395 switch (i.suffix)
6396 {
6397 /* Size floating point instruction. */
6398 case LONG_MNEM_SUFFIX:
6399 if (i.tm.opcode_modifier.floatmf)
6400 {
6401 i.tm.base_opcode ^= 4;
6402 break;
6403 }
6404 /* fall through */
6405 case WORD_MNEM_SUFFIX:
6406 case QWORD_MNEM_SUFFIX:
6407 /* It's not a byte, select word/dword operation. */
6408 if (i.tm.opcode_modifier.w)
6409 {
6410 if (i.tm.opcode_modifier.shortform)
6411 i.tm.base_opcode |= 8;
6412 else
6413 i.tm.base_opcode |= 1;
6414 }
6415 /* fall through */
6416 case SHORT_MNEM_SUFFIX:
6417 /* Now select between word & dword operations via the operand
6418 size prefix, except for instructions that will ignore this
6419 prefix anyway. */
6420 if (i.reg_operands > 0
6421 && i.types[0].bitfield.reg
6422 && i.tm.opcode_modifier.addrprefixopreg
6423 && (i.tm.opcode_modifier.immext
6424 || i.operands == 1))
6425 {
6426 /* The address size override prefix changes the size of the
6427 first operand. */
6428 if ((flag_code == CODE_32BIT
6429 && i.op[0].regs->reg_type.bitfield.word)
6430 || (flag_code != CODE_32BIT
6431 && i.op[0].regs->reg_type.bitfield.dword))
6432 if (!add_prefix (ADDR_PREFIX_OPCODE))
6433 return 0;
6434 }
6435 else if (i.suffix != QWORD_MNEM_SUFFIX
6436 && !i.tm.opcode_modifier.ignoresize
6437 && !i.tm.opcode_modifier.floatmf
6438 && !is_any_vex_encoding (&i.tm)
6439 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6440 || (flag_code == CODE_64BIT
6441 && i.tm.opcode_modifier.jumpbyte)))
6442 {
6443 unsigned int prefix = DATA_PREFIX_OPCODE;
6444
6445 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6446 prefix = ADDR_PREFIX_OPCODE;
6447
6448 if (!add_prefix (prefix))
6449 return 0;
6450 }
6451
6452 /* Set mode64 for an operand. */
6453 if (i.suffix == QWORD_MNEM_SUFFIX
6454 && flag_code == CODE_64BIT
6455 && !i.tm.opcode_modifier.norex64
6456 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6457 need rex64. */
6458 && ! (i.operands == 2
6459 && i.tm.base_opcode == 0x90
6460 && i.tm.extension_opcode == None
6461 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6462 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6463 i.rex |= REX_W;
6464
6465 break;
6466 }
6467
6468 if (i.reg_operands != 0
6469 && i.operands > 1
6470 && i.tm.opcode_modifier.addrprefixopreg
6471 && !i.tm.opcode_modifier.immext)
6472 {
6473 /* Check invalid register operand when the address size override
6474 prefix changes the size of register operands. */
6475 unsigned int op;
6476 enum { need_word, need_dword, need_qword } need;
6477
6478 if (flag_code == CODE_32BIT)
6479 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6480 else
6481 {
6482 if (i.prefix[ADDR_PREFIX])
6483 need = need_dword;
6484 else
6485 need = flag_code == CODE_64BIT ? need_qword : need_word;
6486 }
6487
6488 for (op = 0; op < i.operands; op++)
6489 if (i.types[op].bitfield.reg
6490 && ((need == need_word
6491 && !i.op[op].regs->reg_type.bitfield.word)
6492 || (need == need_dword
6493 && !i.op[op].regs->reg_type.bitfield.dword)
6494 || (need == need_qword
6495 && !i.op[op].regs->reg_type.bitfield.qword)))
6496 {
6497 as_bad (_("invalid register operand size for `%s'"),
6498 i.tm.name);
6499 return 0;
6500 }
6501 }
6502
6503 return 1;
6504 }
6505
6506 static int
6507 check_byte_reg (void)
6508 {
6509 int op;
6510
6511 for (op = i.operands; --op >= 0;)
6512 {
6513 /* Skip non-register operands. */
6514 if (!i.types[op].bitfield.reg)
6515 continue;
6516
6517 /* If this is an eight bit register, it's OK. If it's the 16 or
6518 32 bit version of an eight bit register, we will just use the
6519 low portion, and that's OK too. */
6520 if (i.types[op].bitfield.byte)
6521 continue;
6522
6523 /* I/O port address operands are OK too. */
6524 if (i.tm.operand_types[op].bitfield.inoutportreg)
6525 continue;
6526
6527 /* crc32 doesn't generate this warning. */
6528 if (i.tm.base_opcode == 0xf20f38f0)
6529 continue;
6530
6531 if ((i.types[op].bitfield.word
6532 || i.types[op].bitfield.dword
6533 || i.types[op].bitfield.qword)
6534 && i.op[op].regs->reg_num < 4
6535 /* Prohibit these changes in 64bit mode, since the lowering
6536 would be more complicated. */
6537 && flag_code != CODE_64BIT)
6538 {
6539 #if REGISTER_WARNINGS
6540 if (!quiet_warnings)
6541 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6542 register_prefix,
6543 (i.op[op].regs + (i.types[op].bitfield.word
6544 ? REGNAM_AL - REGNAM_AX
6545 : REGNAM_AL - REGNAM_EAX))->reg_name,
6546 register_prefix,
6547 i.op[op].regs->reg_name,
6548 i.suffix);
6549 #endif
6550 continue;
6551 }
6552 /* Any other register is bad. */
6553 if (i.types[op].bitfield.reg
6554 || i.types[op].bitfield.regmmx
6555 || i.types[op].bitfield.regsimd
6556 || i.types[op].bitfield.sreg2
6557 || i.types[op].bitfield.sreg3
6558 || i.types[op].bitfield.control
6559 || i.types[op].bitfield.debug
6560 || i.types[op].bitfield.test)
6561 {
6562 as_bad (_("`%s%s' not allowed with `%s%c'"),
6563 register_prefix,
6564 i.op[op].regs->reg_name,
6565 i.tm.name,
6566 i.suffix);
6567 return 0;
6568 }
6569 }
6570 return 1;
6571 }
6572
6573 static int
6574 check_long_reg (void)
6575 {
6576 int op;
6577
6578 for (op = i.operands; --op >= 0;)
6579 /* Skip non-register operands. */
6580 if (!i.types[op].bitfield.reg)
6581 continue;
6582 /* Reject eight bit registers, except where the template requires
6583 them. (eg. movzb) */
6584 else if (i.types[op].bitfield.byte
6585 && (i.tm.operand_types[op].bitfield.reg
6586 || i.tm.operand_types[op].bitfield.acc)
6587 && (i.tm.operand_types[op].bitfield.word
6588 || i.tm.operand_types[op].bitfield.dword))
6589 {
6590 as_bad (_("`%s%s' not allowed with `%s%c'"),
6591 register_prefix,
6592 i.op[op].regs->reg_name,
6593 i.tm.name,
6594 i.suffix);
6595 return 0;
6596 }
6597 /* Warn if the e prefix on a general reg is missing. */
6598 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6599 && i.types[op].bitfield.word
6600 && (i.tm.operand_types[op].bitfield.reg
6601 || i.tm.operand_types[op].bitfield.acc)
6602 && i.tm.operand_types[op].bitfield.dword)
6603 {
6604 /* Prohibit these changes in the 64bit mode, since the
6605 lowering is more complicated. */
6606 if (flag_code == CODE_64BIT)
6607 {
6608 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6609 register_prefix, i.op[op].regs->reg_name,
6610 i.suffix);
6611 return 0;
6612 }
6613 #if REGISTER_WARNINGS
6614 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6615 register_prefix,
6616 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6617 register_prefix, i.op[op].regs->reg_name, i.suffix);
6618 #endif
6619 }
6620 /* Warn if the r prefix on a general reg is present. */
6621 else if (i.types[op].bitfield.qword
6622 && (i.tm.operand_types[op].bitfield.reg
6623 || i.tm.operand_types[op].bitfield.acc)
6624 && i.tm.operand_types[op].bitfield.dword)
6625 {
6626 if (intel_syntax
6627 && i.tm.opcode_modifier.toqword
6628 && !i.types[0].bitfield.regsimd)
6629 {
6630 /* Convert to QWORD. We want REX byte. */
6631 i.suffix = QWORD_MNEM_SUFFIX;
6632 }
6633 else
6634 {
6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6636 register_prefix, i.op[op].regs->reg_name,
6637 i.suffix);
6638 return 0;
6639 }
6640 }
6641 return 1;
6642 }
6643
6644 static int
6645 check_qword_reg (void)
6646 {
6647 int op;
6648
6649 for (op = i.operands; --op >= 0; )
6650 /* Skip non-register operands. */
6651 if (!i.types[op].bitfield.reg)
6652 continue;
6653 /* Reject eight bit registers, except where the template requires
6654 them. (eg. movzb) */
6655 else if (i.types[op].bitfield.byte
6656 && (i.tm.operand_types[op].bitfield.reg
6657 || i.tm.operand_types[op].bitfield.acc)
6658 && (i.tm.operand_types[op].bitfield.word
6659 || i.tm.operand_types[op].bitfield.dword))
6660 {
6661 as_bad (_("`%s%s' not allowed with `%s%c'"),
6662 register_prefix,
6663 i.op[op].regs->reg_name,
6664 i.tm.name,
6665 i.suffix);
6666 return 0;
6667 }
6668 /* Warn if the r prefix on a general reg is missing. */
6669 else if ((i.types[op].bitfield.word
6670 || i.types[op].bitfield.dword)
6671 && (i.tm.operand_types[op].bitfield.reg
6672 || i.tm.operand_types[op].bitfield.acc)
6673 && i.tm.operand_types[op].bitfield.qword)
6674 {
6675 /* Prohibit these changes in the 64bit mode, since the
6676 lowering is more complicated. */
6677 if (intel_syntax
6678 && i.tm.opcode_modifier.todword
6679 && !i.types[0].bitfield.regsimd)
6680 {
6681 /* Convert to DWORD. We don't want REX byte. */
6682 i.suffix = LONG_MNEM_SUFFIX;
6683 }
6684 else
6685 {
6686 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6687 register_prefix, i.op[op].regs->reg_name,
6688 i.suffix);
6689 return 0;
6690 }
6691 }
6692 return 1;
6693 }
6694
6695 static int
6696 check_word_reg (void)
6697 {
6698 int op;
6699 for (op = i.operands; --op >= 0;)
6700 /* Skip non-register operands. */
6701 if (!i.types[op].bitfield.reg)
6702 continue;
6703 /* Reject eight bit registers, except where the template requires
6704 them. (eg. movzb) */
6705 else if (i.types[op].bitfield.byte
6706 && (i.tm.operand_types[op].bitfield.reg
6707 || i.tm.operand_types[op].bitfield.acc)
6708 && (i.tm.operand_types[op].bitfield.word
6709 || i.tm.operand_types[op].bitfield.dword))
6710 {
6711 as_bad (_("`%s%s' not allowed with `%s%c'"),
6712 register_prefix,
6713 i.op[op].regs->reg_name,
6714 i.tm.name,
6715 i.suffix);
6716 return 0;
6717 }
6718 /* Warn if the e or r prefix on a general reg is present. */
6719 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6720 && (i.types[op].bitfield.dword
6721 || i.types[op].bitfield.qword)
6722 && (i.tm.operand_types[op].bitfield.reg
6723 || i.tm.operand_types[op].bitfield.acc)
6724 && i.tm.operand_types[op].bitfield.word)
6725 {
6726 /* Prohibit these changes in the 64bit mode, since the
6727 lowering is more complicated. */
6728 if (flag_code == CODE_64BIT)
6729 {
6730 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6731 register_prefix, i.op[op].regs->reg_name,
6732 i.suffix);
6733 return 0;
6734 }
6735 #if REGISTER_WARNINGS
6736 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6737 register_prefix,
6738 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6739 register_prefix, i.op[op].regs->reg_name, i.suffix);
6740 #endif
6741 }
6742 return 1;
6743 }
6744
6745 static int
6746 update_imm (unsigned int j)
6747 {
6748 i386_operand_type overlap = i.types[j];
6749 if ((overlap.bitfield.imm8
6750 || overlap.bitfield.imm8s
6751 || overlap.bitfield.imm16
6752 || overlap.bitfield.imm32
6753 || overlap.bitfield.imm32s
6754 || overlap.bitfield.imm64)
6755 && !operand_type_equal (&overlap, &imm8)
6756 && !operand_type_equal (&overlap, &imm8s)
6757 && !operand_type_equal (&overlap, &imm16)
6758 && !operand_type_equal (&overlap, &imm32)
6759 && !operand_type_equal (&overlap, &imm32s)
6760 && !operand_type_equal (&overlap, &imm64))
6761 {
6762 if (i.suffix)
6763 {
6764 i386_operand_type temp;
6765
6766 operand_type_set (&temp, 0);
6767 if (i.suffix == BYTE_MNEM_SUFFIX)
6768 {
6769 temp.bitfield.imm8 = overlap.bitfield.imm8;
6770 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6771 }
6772 else if (i.suffix == WORD_MNEM_SUFFIX)
6773 temp.bitfield.imm16 = overlap.bitfield.imm16;
6774 else if (i.suffix == QWORD_MNEM_SUFFIX)
6775 {
6776 temp.bitfield.imm64 = overlap.bitfield.imm64;
6777 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6778 }
6779 else
6780 temp.bitfield.imm32 = overlap.bitfield.imm32;
6781 overlap = temp;
6782 }
6783 else if (operand_type_equal (&overlap, &imm16_32_32s)
6784 || operand_type_equal (&overlap, &imm16_32)
6785 || operand_type_equal (&overlap, &imm16_32s))
6786 {
6787 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6788 overlap = imm16;
6789 else
6790 overlap = imm32s;
6791 }
6792 if (!operand_type_equal (&overlap, &imm8)
6793 && !operand_type_equal (&overlap, &imm8s)
6794 && !operand_type_equal (&overlap, &imm16)
6795 && !operand_type_equal (&overlap, &imm32)
6796 && !operand_type_equal (&overlap, &imm32s)
6797 && !operand_type_equal (&overlap, &imm64))
6798 {
6799 as_bad (_("no instruction mnemonic suffix given; "
6800 "can't determine immediate size"));
6801 return 0;
6802 }
6803 }
6804 i.types[j] = overlap;
6805
6806 return 1;
6807 }
6808
6809 static int
6810 finalize_imm (void)
6811 {
6812 unsigned int j, n;
6813
6814 /* Update the first 2 immediate operands. */
6815 n = i.operands > 2 ? 2 : i.operands;
6816 if (n)
6817 {
6818 for (j = 0; j < n; j++)
6819 if (update_imm (j) == 0)
6820 return 0;
6821
6822 /* The 3rd operand can't be immediate operand. */
6823 gas_assert (operand_type_check (i.types[2], imm) == 0);
6824 }
6825
6826 return 1;
6827 }
6828
6829 static int
6830 process_operands (void)
6831 {
6832 /* Default segment register this instruction will use for memory
6833 accesses. 0 means unknown. This is only for optimizing out
6834 unnecessary segment overrides. */
6835 const seg_entry *default_seg = 0;
6836
6837 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6838 {
6839 unsigned int dupl = i.operands;
6840 unsigned int dest = dupl - 1;
6841 unsigned int j;
6842
6843 /* The destination must be an xmm register. */
6844 gas_assert (i.reg_operands
6845 && MAX_OPERANDS > dupl
6846 && operand_type_equal (&i.types[dest], &regxmm));
6847
6848 if (i.tm.operand_types[0].bitfield.acc
6849 && i.tm.operand_types[0].bitfield.xmmword)
6850 {
6851 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6852 {
6853 /* Keep xmm0 for instructions with VEX prefix and 3
6854 sources. */
6855 i.tm.operand_types[0].bitfield.acc = 0;
6856 i.tm.operand_types[0].bitfield.regsimd = 1;
6857 goto duplicate;
6858 }
6859 else
6860 {
6861 /* We remove the first xmm0 and keep the number of
6862 operands unchanged, which in fact duplicates the
6863 destination. */
6864 for (j = 1; j < i.operands; j++)
6865 {
6866 i.op[j - 1] = i.op[j];
6867 i.types[j - 1] = i.types[j];
6868 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6869 }
6870 }
6871 }
6872 else if (i.tm.opcode_modifier.implicit1stxmm0)
6873 {
6874 gas_assert ((MAX_OPERANDS - 1) > dupl
6875 && (i.tm.opcode_modifier.vexsources
6876 == VEX3SOURCES));
6877
6878 /* Add the implicit xmm0 for instructions with VEX prefix
6879 and 3 sources. */
6880 for (j = i.operands; j > 0; j--)
6881 {
6882 i.op[j] = i.op[j - 1];
6883 i.types[j] = i.types[j - 1];
6884 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6885 }
6886 i.op[0].regs
6887 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6888 i.types[0] = regxmm;
6889 i.tm.operand_types[0] = regxmm;
6890
6891 i.operands += 2;
6892 i.reg_operands += 2;
6893 i.tm.operands += 2;
6894
6895 dupl++;
6896 dest++;
6897 i.op[dupl] = i.op[dest];
6898 i.types[dupl] = i.types[dest];
6899 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6900 }
6901 else
6902 {
6903 duplicate:
6904 i.operands++;
6905 i.reg_operands++;
6906 i.tm.operands++;
6907
6908 i.op[dupl] = i.op[dest];
6909 i.types[dupl] = i.types[dest];
6910 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6911 }
6912
6913 if (i.tm.opcode_modifier.immext)
6914 process_immext ();
6915 }
6916 else if (i.tm.operand_types[0].bitfield.acc
6917 && i.tm.operand_types[0].bitfield.xmmword)
6918 {
6919 unsigned int j;
6920
6921 for (j = 1; j < i.operands; j++)
6922 {
6923 i.op[j - 1] = i.op[j];
6924 i.types[j - 1] = i.types[j];
6925
6926 /* We need to adjust fields in i.tm since they are used by
6927 build_modrm_byte. */
6928 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6929 }
6930
6931 i.operands--;
6932 i.reg_operands--;
6933 i.tm.operands--;
6934 }
6935 else if (i.tm.opcode_modifier.implicitquadgroup)
6936 {
6937 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6938
6939 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6940 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6941 regnum = register_number (i.op[1].regs);
6942 first_reg_in_group = regnum & ~3;
6943 last_reg_in_group = first_reg_in_group + 3;
6944 if (regnum != first_reg_in_group)
6945 as_warn (_("source register `%s%s' implicitly denotes"
6946 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6947 register_prefix, i.op[1].regs->reg_name,
6948 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6949 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6950 i.tm.name);
6951 }
6952 else if (i.tm.opcode_modifier.regkludge)
6953 {
6954 /* The imul $imm, %reg instruction is converted into
6955 imul $imm, %reg, %reg, and the clr %reg instruction
6956 is converted into xor %reg, %reg. */
6957
6958 unsigned int first_reg_op;
6959
6960 if (operand_type_check (i.types[0], reg))
6961 first_reg_op = 0;
6962 else
6963 first_reg_op = 1;
6964 /* Pretend we saw the extra register operand. */
6965 gas_assert (i.reg_operands == 1
6966 && i.op[first_reg_op + 1].regs == 0);
6967 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6968 i.types[first_reg_op + 1] = i.types[first_reg_op];
6969 i.operands++;
6970 i.reg_operands++;
6971 }
6972
6973 if (i.tm.opcode_modifier.shortform)
6974 {
6975 if (i.types[0].bitfield.sreg2
6976 || i.types[0].bitfield.sreg3)
6977 {
6978 if (i.tm.base_opcode == POP_SEG_SHORT
6979 && i.op[0].regs->reg_num == 1)
6980 {
6981 as_bad (_("you can't `pop %scs'"), register_prefix);
6982 return 0;
6983 }
6984 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6985 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6986 i.rex |= REX_B;
6987 }
6988 else
6989 {
6990 /* The register or float register operand is in operand
6991 0 or 1. */
6992 unsigned int op;
6993
6994 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6995 || operand_type_check (i.types[0], reg))
6996 op = 0;
6997 else
6998 op = 1;
6999 /* Register goes in low 3 bits of opcode. */
7000 i.tm.base_opcode |= i.op[op].regs->reg_num;
7001 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7002 i.rex |= REX_B;
7003 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7004 {
7005 /* Warn about some common errors, but press on regardless.
7006 The first case can be generated by gcc (<= 2.8.1). */
7007 if (i.operands == 2)
7008 {
7009 /* Reversed arguments on faddp, fsubp, etc. */
7010 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7011 register_prefix, i.op[!intel_syntax].regs->reg_name,
7012 register_prefix, i.op[intel_syntax].regs->reg_name);
7013 }
7014 else
7015 {
7016 /* Extraneous `l' suffix on fp insn. */
7017 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7018 register_prefix, i.op[0].regs->reg_name);
7019 }
7020 }
7021 }
7022 }
7023 else if (i.tm.opcode_modifier.modrm)
7024 {
7025 /* The opcode is completed (modulo i.tm.extension_opcode which
7026 must be put into the modrm byte). Now, we make the modrm and
7027 index base bytes based on all the info we've collected. */
7028
7029 default_seg = build_modrm_byte ();
7030 }
7031 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7032 {
7033 default_seg = &ds;
7034 }
7035 else if (i.tm.opcode_modifier.isstring)
7036 {
7037 /* For the string instructions that allow a segment override
7038 on one of their operands, the default segment is ds. */
7039 default_seg = &ds;
7040 }
7041
7042 if (i.tm.base_opcode == 0x8d /* lea */
7043 && i.seg[0]
7044 && !quiet_warnings)
7045 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7046
7047 /* If a segment was explicitly specified, and the specified segment
7048 is not the default, use an opcode prefix to select it. If we
7049 never figured out what the default segment is, then default_seg
7050 will be zero at this point, and the specified segment prefix will
7051 always be used. */
7052 if ((i.seg[0]) && (i.seg[0] != default_seg))
7053 {
7054 if (!add_prefix (i.seg[0]->seg_prefix))
7055 return 0;
7056 }
7057 return 1;
7058 }
7059
7060 static const seg_entry *
7061 build_modrm_byte (void)
7062 {
7063 const seg_entry *default_seg = 0;
7064 unsigned int source, dest;
7065 int vex_3_sources;
7066
7067 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7068 if (vex_3_sources)
7069 {
7070 unsigned int nds, reg_slot;
7071 expressionS *exp;
7072
7073 dest = i.operands - 1;
7074 nds = dest - 1;
7075
7076 /* There are 2 kinds of instructions:
7077 1. 5 operands: 4 register operands or 3 register operands
7078 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7079 VexW0 or VexW1. The destination must be either XMM, YMM or
7080 ZMM register.
7081 2. 4 operands: 4 register operands or 3 register operands
7082 plus 1 memory operand, with VexXDS. */
7083 gas_assert ((i.reg_operands == 4
7084 || (i.reg_operands == 3 && i.mem_operands == 1))
7085 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7086 && i.tm.opcode_modifier.vexw
7087 && i.tm.operand_types[dest].bitfield.regsimd);
7088
7089 /* If VexW1 is set, the first non-immediate operand is the source and
7090 the second non-immediate one is encoded in the immediate operand. */
7091 if (i.tm.opcode_modifier.vexw == VEXW1)
7092 {
7093 source = i.imm_operands;
7094 reg_slot = i.imm_operands + 1;
7095 }
7096 else
7097 {
7098 source = i.imm_operands + 1;
7099 reg_slot = i.imm_operands;
7100 }
7101
7102 if (i.imm_operands == 0)
7103 {
7104 /* When there is no immediate operand, generate an 8bit
7105 immediate operand to encode the first operand. */
7106 exp = &im_expressions[i.imm_operands++];
7107 i.op[i.operands].imms = exp;
7108 i.types[i.operands] = imm8;
7109 i.operands++;
7110
7111 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7112 exp->X_op = O_constant;
7113 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7114 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7115 }
7116 else
7117 {
7118 unsigned int imm_slot;
7119
7120 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7121
7122 if (i.tm.opcode_modifier.immext)
7123 {
7124 /* When ImmExt is set, the immediate byte is the last
7125 operand. */
7126 imm_slot = i.operands - 1;
7127 source--;
7128 reg_slot--;
7129 }
7130 else
7131 {
7132 imm_slot = 0;
7133
7134 /* Turn on Imm8 so that output_imm will generate it. */
7135 i.types[imm_slot].bitfield.imm8 = 1;
7136 }
7137
7138 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7139 i.op[imm_slot].imms->X_add_number
7140 |= register_number (i.op[reg_slot].regs) << 4;
7141 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7142 }
7143
7144 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7145 i.vex.register_specifier = i.op[nds].regs;
7146 }
7147 else
7148 source = dest = 0;
7149
7150 /* i.reg_operands MUST be the number of real register operands;
7151 implicit registers do not count. If there are 3 register
7152 operands, it must be a instruction with VexNDS. For a
7153 instruction with VexNDD, the destination register is encoded
7154 in VEX prefix. If there are 4 register operands, it must be
7155 a instruction with VEX prefix and 3 sources. */
7156 if (i.mem_operands == 0
7157 && ((i.reg_operands == 2
7158 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7159 || (i.reg_operands == 3
7160 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7161 || (i.reg_operands == 4 && vex_3_sources)))
7162 {
7163 switch (i.operands)
7164 {
7165 case 2:
7166 source = 0;
7167 break;
7168 case 3:
7169 /* When there are 3 operands, one of them may be immediate,
7170 which may be the first or the last operand. Otherwise,
7171 the first operand must be shift count register (cl) or it
7172 is an instruction with VexNDS. */
7173 gas_assert (i.imm_operands == 1
7174 || (i.imm_operands == 0
7175 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7176 || i.types[0].bitfield.shiftcount)));
7177 if (operand_type_check (i.types[0], imm)
7178 || i.types[0].bitfield.shiftcount)
7179 source = 1;
7180 else
7181 source = 0;
7182 break;
7183 case 4:
7184 /* When there are 4 operands, the first two must be 8bit
7185 immediate operands. The source operand will be the 3rd
7186 one.
7187
7188 For instructions with VexNDS, if the first operand
7189 an imm8, the source operand is the 2nd one. If the last
7190 operand is imm8, the source operand is the first one. */
7191 gas_assert ((i.imm_operands == 2
7192 && i.types[0].bitfield.imm8
7193 && i.types[1].bitfield.imm8)
7194 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7195 && i.imm_operands == 1
7196 && (i.types[0].bitfield.imm8
7197 || i.types[i.operands - 1].bitfield.imm8
7198 || i.rounding)));
7199 if (i.imm_operands == 2)
7200 source = 2;
7201 else
7202 {
7203 if (i.types[0].bitfield.imm8)
7204 source = 1;
7205 else
7206 source = 0;
7207 }
7208 break;
7209 case 5:
7210 if (is_evex_encoding (&i.tm))
7211 {
7212 /* For EVEX instructions, when there are 5 operands, the
7213 first one must be immediate operand. If the second one
7214 is immediate operand, the source operand is the 3th
7215 one. If the last one is immediate operand, the source
7216 operand is the 2nd one. */
7217 gas_assert (i.imm_operands == 2
7218 && i.tm.opcode_modifier.sae
7219 && operand_type_check (i.types[0], imm));
7220 if (operand_type_check (i.types[1], imm))
7221 source = 2;
7222 else if (operand_type_check (i.types[4], imm))
7223 source = 1;
7224 else
7225 abort ();
7226 }
7227 break;
7228 default:
7229 abort ();
7230 }
7231
7232 if (!vex_3_sources)
7233 {
7234 dest = source + 1;
7235
7236 /* RC/SAE operand could be between DEST and SRC. That happens
7237 when one operand is GPR and the other one is XMM/YMM/ZMM
7238 register. */
7239 if (i.rounding && i.rounding->operand == (int) dest)
7240 dest++;
7241
7242 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7243 {
7244 /* For instructions with VexNDS, the register-only source
7245 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7246 register. It is encoded in VEX prefix. We need to
7247 clear RegMem bit before calling operand_type_equal. */
7248
7249 i386_operand_type op;
7250 unsigned int vvvv;
7251
7252 /* Check register-only source operand when two source
7253 operands are swapped. */
7254 if (!i.tm.operand_types[source].bitfield.baseindex
7255 && i.tm.operand_types[dest].bitfield.baseindex)
7256 {
7257 vvvv = source;
7258 source = dest;
7259 }
7260 else
7261 vvvv = dest;
7262
7263 op = i.tm.operand_types[vvvv];
7264 op.bitfield.regmem = 0;
7265 if ((dest + 1) >= i.operands
7266 || ((!op.bitfield.reg
7267 || (!op.bitfield.dword && !op.bitfield.qword))
7268 && !op.bitfield.regsimd
7269 && !operand_type_equal (&op, &regmask)))
7270 abort ();
7271 i.vex.register_specifier = i.op[vvvv].regs;
7272 dest++;
7273 }
7274 }
7275
7276 i.rm.mode = 3;
7277 /* One of the register operands will be encoded in the i.tm.reg
7278 field, the other in the combined i.tm.mode and i.tm.regmem
7279 fields. If no form of this instruction supports a memory
7280 destination operand, then we assume the source operand may
7281 sometimes be a memory operand and so we need to store the
7282 destination in the i.rm.reg field. */
7283 if (!i.tm.operand_types[dest].bitfield.regmem
7284 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7285 {
7286 i.rm.reg = i.op[dest].regs->reg_num;
7287 i.rm.regmem = i.op[source].regs->reg_num;
7288 if (i.op[dest].regs->reg_type.bitfield.regmmx
7289 || i.op[source].regs->reg_type.bitfield.regmmx)
7290 i.has_regmmx = TRUE;
7291 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7292 || i.op[source].regs->reg_type.bitfield.regsimd)
7293 {
7294 if (i.types[dest].bitfield.zmmword
7295 || i.types[source].bitfield.zmmword)
7296 i.has_regzmm = TRUE;
7297 else if (i.types[dest].bitfield.ymmword
7298 || i.types[source].bitfield.ymmword)
7299 i.has_regymm = TRUE;
7300 else
7301 i.has_regxmm = TRUE;
7302 }
7303 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7304 i.rex |= REX_R;
7305 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7306 i.vrex |= REX_R;
7307 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7308 i.rex |= REX_B;
7309 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_B;
7311 }
7312 else
7313 {
7314 i.rm.reg = i.op[source].regs->reg_num;
7315 i.rm.regmem = i.op[dest].regs->reg_num;
7316 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7317 i.rex |= REX_B;
7318 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7319 i.vrex |= REX_B;
7320 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7321 i.rex |= REX_R;
7322 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_R;
7324 }
7325 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7326 {
7327 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7328 abort ();
7329 i.rex &= ~REX_R;
7330 add_prefix (LOCK_PREFIX_OPCODE);
7331 }
7332 }
7333 else
7334 { /* If it's not 2 reg operands... */
7335 unsigned int mem;
7336
7337 if (i.mem_operands)
7338 {
7339 unsigned int fake_zero_displacement = 0;
7340 unsigned int op;
7341
7342 for (op = 0; op < i.operands; op++)
7343 if (operand_type_check (i.types[op], anymem))
7344 break;
7345 gas_assert (op < i.operands);
7346
7347 if (i.tm.opcode_modifier.vecsib)
7348 {
7349 if (i.index_reg->reg_num == RegIZ)
7350 abort ();
7351
7352 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7353 if (!i.base_reg)
7354 {
7355 i.sib.base = NO_BASE_REGISTER;
7356 i.sib.scale = i.log2_scale_factor;
7357 i.types[op].bitfield.disp8 = 0;
7358 i.types[op].bitfield.disp16 = 0;
7359 i.types[op].bitfield.disp64 = 0;
7360 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7361 {
7362 /* Must be 32 bit */
7363 i.types[op].bitfield.disp32 = 1;
7364 i.types[op].bitfield.disp32s = 0;
7365 }
7366 else
7367 {
7368 i.types[op].bitfield.disp32 = 0;
7369 i.types[op].bitfield.disp32s = 1;
7370 }
7371 }
7372 i.sib.index = i.index_reg->reg_num;
7373 if ((i.index_reg->reg_flags & RegRex) != 0)
7374 i.rex |= REX_X;
7375 if ((i.index_reg->reg_flags & RegVRex) != 0)
7376 i.vrex |= REX_X;
7377 }
7378
7379 default_seg = &ds;
7380
7381 if (i.base_reg == 0)
7382 {
7383 i.rm.mode = 0;
7384 if (!i.disp_operands)
7385 fake_zero_displacement = 1;
7386 if (i.index_reg == 0)
7387 {
7388 i386_operand_type newdisp;
7389
7390 gas_assert (!i.tm.opcode_modifier.vecsib);
7391 /* Operand is just <disp> */
7392 if (flag_code == CODE_64BIT)
7393 {
7394 /* 64bit mode overwrites the 32bit absolute
7395 addressing by RIP relative addressing and
7396 absolute addressing is encoded by one of the
7397 redundant SIB forms. */
7398 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7399 i.sib.base = NO_BASE_REGISTER;
7400 i.sib.index = NO_INDEX_REGISTER;
7401 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7402 }
7403 else if ((flag_code == CODE_16BIT)
7404 ^ (i.prefix[ADDR_PREFIX] != 0))
7405 {
7406 i.rm.regmem = NO_BASE_REGISTER_16;
7407 newdisp = disp16;
7408 }
7409 else
7410 {
7411 i.rm.regmem = NO_BASE_REGISTER;
7412 newdisp = disp32;
7413 }
7414 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7415 i.types[op] = operand_type_or (i.types[op], newdisp);
7416 }
7417 else if (!i.tm.opcode_modifier.vecsib)
7418 {
7419 /* !i.base_reg && i.index_reg */
7420 if (i.index_reg->reg_num == RegIZ)
7421 i.sib.index = NO_INDEX_REGISTER;
7422 else
7423 i.sib.index = i.index_reg->reg_num;
7424 i.sib.base = NO_BASE_REGISTER;
7425 i.sib.scale = i.log2_scale_factor;
7426 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7427 i.types[op].bitfield.disp8 = 0;
7428 i.types[op].bitfield.disp16 = 0;
7429 i.types[op].bitfield.disp64 = 0;
7430 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7431 {
7432 /* Must be 32 bit */
7433 i.types[op].bitfield.disp32 = 1;
7434 i.types[op].bitfield.disp32s = 0;
7435 }
7436 else
7437 {
7438 i.types[op].bitfield.disp32 = 0;
7439 i.types[op].bitfield.disp32s = 1;
7440 }
7441 if ((i.index_reg->reg_flags & RegRex) != 0)
7442 i.rex |= REX_X;
7443 }
7444 }
7445 /* RIP addressing for 64bit mode. */
7446 else if (i.base_reg->reg_num == RegIP)
7447 {
7448 gas_assert (!i.tm.opcode_modifier.vecsib);
7449 i.rm.regmem = NO_BASE_REGISTER;
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp32 = 0;
7453 i.types[op].bitfield.disp32s = 1;
7454 i.types[op].bitfield.disp64 = 0;
7455 i.flags[op] |= Operand_PCrel;
7456 if (! i.disp_operands)
7457 fake_zero_displacement = 1;
7458 }
7459 else if (i.base_reg->reg_type.bitfield.word)
7460 {
7461 gas_assert (!i.tm.opcode_modifier.vecsib);
7462 switch (i.base_reg->reg_num)
7463 {
7464 case 3: /* (%bx) */
7465 if (i.index_reg == 0)
7466 i.rm.regmem = 7;
7467 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7468 i.rm.regmem = i.index_reg->reg_num - 6;
7469 break;
7470 case 5: /* (%bp) */
7471 default_seg = &ss;
7472 if (i.index_reg == 0)
7473 {
7474 i.rm.regmem = 6;
7475 if (operand_type_check (i.types[op], disp) == 0)
7476 {
7477 /* fake (%bp) into 0(%bp) */
7478 i.types[op].bitfield.disp8 = 1;
7479 fake_zero_displacement = 1;
7480 }
7481 }
7482 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7483 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7484 break;
7485 default: /* (%si) -> 4 or (%di) -> 5 */
7486 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7487 }
7488 i.rm.mode = mode_from_disp_size (i.types[op]);
7489 }
7490 else /* i.base_reg and 32/64 bit mode */
7491 {
7492 if (flag_code == CODE_64BIT
7493 && operand_type_check (i.types[op], disp))
7494 {
7495 i.types[op].bitfield.disp16 = 0;
7496 i.types[op].bitfield.disp64 = 0;
7497 if (i.prefix[ADDR_PREFIX] == 0)
7498 {
7499 i.types[op].bitfield.disp32 = 0;
7500 i.types[op].bitfield.disp32s = 1;
7501 }
7502 else
7503 {
7504 i.types[op].bitfield.disp32 = 1;
7505 i.types[op].bitfield.disp32s = 0;
7506 }
7507 }
7508
7509 if (!i.tm.opcode_modifier.vecsib)
7510 i.rm.regmem = i.base_reg->reg_num;
7511 if ((i.base_reg->reg_flags & RegRex) != 0)
7512 i.rex |= REX_B;
7513 i.sib.base = i.base_reg->reg_num;
7514 /* x86-64 ignores REX prefix bit here to avoid decoder
7515 complications. */
7516 if (!(i.base_reg->reg_flags & RegRex)
7517 && (i.base_reg->reg_num == EBP_REG_NUM
7518 || i.base_reg->reg_num == ESP_REG_NUM))
7519 default_seg = &ss;
7520 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7521 {
7522 fake_zero_displacement = 1;
7523 i.types[op].bitfield.disp8 = 1;
7524 }
7525 i.sib.scale = i.log2_scale_factor;
7526 if (i.index_reg == 0)
7527 {
7528 gas_assert (!i.tm.opcode_modifier.vecsib);
7529 /* <disp>(%esp) becomes two byte modrm with no index
7530 register. We've already stored the code for esp
7531 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7532 Any base register besides %esp will not use the
7533 extra modrm byte. */
7534 i.sib.index = NO_INDEX_REGISTER;
7535 }
7536 else if (!i.tm.opcode_modifier.vecsib)
7537 {
7538 if (i.index_reg->reg_num == RegIZ)
7539 i.sib.index = NO_INDEX_REGISTER;
7540 else
7541 i.sib.index = i.index_reg->reg_num;
7542 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7543 if ((i.index_reg->reg_flags & RegRex) != 0)
7544 i.rex |= REX_X;
7545 }
7546
7547 if (i.disp_operands
7548 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7549 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7550 i.rm.mode = 0;
7551 else
7552 {
7553 if (!fake_zero_displacement
7554 && !i.disp_operands
7555 && i.disp_encoding)
7556 {
7557 fake_zero_displacement = 1;
7558 if (i.disp_encoding == disp_encoding_8bit)
7559 i.types[op].bitfield.disp8 = 1;
7560 else
7561 i.types[op].bitfield.disp32 = 1;
7562 }
7563 i.rm.mode = mode_from_disp_size (i.types[op]);
7564 }
7565 }
7566
7567 if (fake_zero_displacement)
7568 {
7569 /* Fakes a zero displacement assuming that i.types[op]
7570 holds the correct displacement size. */
7571 expressionS *exp;
7572
7573 gas_assert (i.op[op].disps == 0);
7574 exp = &disp_expressions[i.disp_operands++];
7575 i.op[op].disps = exp;
7576 exp->X_op = O_constant;
7577 exp->X_add_number = 0;
7578 exp->X_add_symbol = (symbolS *) 0;
7579 exp->X_op_symbol = (symbolS *) 0;
7580 }
7581
7582 mem = op;
7583 }
7584 else
7585 mem = ~0;
7586
7587 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7588 {
7589 if (operand_type_check (i.types[0], imm))
7590 i.vex.register_specifier = NULL;
7591 else
7592 {
7593 /* VEX.vvvv encodes one of the sources when the first
7594 operand is not an immediate. */
7595 if (i.tm.opcode_modifier.vexw == VEXW0)
7596 i.vex.register_specifier = i.op[0].regs;
7597 else
7598 i.vex.register_specifier = i.op[1].regs;
7599 }
7600
7601 /* Destination is a XMM register encoded in the ModRM.reg
7602 and VEX.R bit. */
7603 i.rm.reg = i.op[2].regs->reg_num;
7604 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7605 i.rex |= REX_R;
7606
7607 /* ModRM.rm and VEX.B encodes the other source. */
7608 if (!i.mem_operands)
7609 {
7610 i.rm.mode = 3;
7611
7612 if (i.tm.opcode_modifier.vexw == VEXW0)
7613 i.rm.regmem = i.op[1].regs->reg_num;
7614 else
7615 i.rm.regmem = i.op[0].regs->reg_num;
7616
7617 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7618 i.rex |= REX_B;
7619 }
7620 }
7621 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7622 {
7623 i.vex.register_specifier = i.op[2].regs;
7624 if (!i.mem_operands)
7625 {
7626 i.rm.mode = 3;
7627 i.rm.regmem = i.op[1].regs->reg_num;
7628 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7629 i.rex |= REX_B;
7630 }
7631 }
7632 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7633 (if any) based on i.tm.extension_opcode. Again, we must be
7634 careful to make sure that segment/control/debug/test/MMX
7635 registers are coded into the i.rm.reg field. */
7636 else if (i.reg_operands)
7637 {
7638 unsigned int op;
7639 unsigned int vex_reg = ~0;
7640
7641 for (op = 0; op < i.operands; op++)
7642 {
7643 if (i.types[op].bitfield.reg
7644 || i.types[op].bitfield.regbnd
7645 || i.types[op].bitfield.regmask
7646 || i.types[op].bitfield.sreg2
7647 || i.types[op].bitfield.sreg3
7648 || i.types[op].bitfield.control
7649 || i.types[op].bitfield.debug
7650 || i.types[op].bitfield.test)
7651 break;
7652 if (i.types[op].bitfield.regsimd)
7653 {
7654 if (i.types[op].bitfield.zmmword)
7655 i.has_regzmm = TRUE;
7656 else if (i.types[op].bitfield.ymmword)
7657 i.has_regymm = TRUE;
7658 else
7659 i.has_regxmm = TRUE;
7660 break;
7661 }
7662 if (i.types[op].bitfield.regmmx)
7663 {
7664 i.has_regmmx = TRUE;
7665 break;
7666 }
7667 }
7668
7669 if (vex_3_sources)
7670 op = dest;
7671 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7672 {
7673 /* For instructions with VexNDS, the register-only
7674 source operand is encoded in VEX prefix. */
7675 gas_assert (mem != (unsigned int) ~0);
7676
7677 if (op > mem)
7678 {
7679 vex_reg = op++;
7680 gas_assert (op < i.operands);
7681 }
7682 else
7683 {
7684 /* Check register-only source operand when two source
7685 operands are swapped. */
7686 if (!i.tm.operand_types[op].bitfield.baseindex
7687 && i.tm.operand_types[op + 1].bitfield.baseindex)
7688 {
7689 vex_reg = op;
7690 op += 2;
7691 gas_assert (mem == (vex_reg + 1)
7692 && op < i.operands);
7693 }
7694 else
7695 {
7696 vex_reg = op + 1;
7697 gas_assert (vex_reg < i.operands);
7698 }
7699 }
7700 }
7701 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7702 {
7703 /* For instructions with VexNDD, the register destination
7704 is encoded in VEX prefix. */
7705 if (i.mem_operands == 0)
7706 {
7707 /* There is no memory operand. */
7708 gas_assert ((op + 2) == i.operands);
7709 vex_reg = op + 1;
7710 }
7711 else
7712 {
7713 /* There are only 2 non-immediate operands. */
7714 gas_assert (op < i.imm_operands + 2
7715 && i.operands == i.imm_operands + 2);
7716 vex_reg = i.imm_operands + 1;
7717 }
7718 }
7719 else
7720 gas_assert (op < i.operands);
7721
7722 if (vex_reg != (unsigned int) ~0)
7723 {
7724 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7725
7726 if ((!type->bitfield.reg
7727 || (!type->bitfield.dword && !type->bitfield.qword))
7728 && !type->bitfield.regsimd
7729 && !operand_type_equal (type, &regmask))
7730 abort ();
7731
7732 i.vex.register_specifier = i.op[vex_reg].regs;
7733 }
7734
7735 /* Don't set OP operand twice. */
7736 if (vex_reg != op)
7737 {
7738 /* If there is an extension opcode to put here, the
7739 register number must be put into the regmem field. */
7740 if (i.tm.extension_opcode != None)
7741 {
7742 i.rm.regmem = i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
7745 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7746 i.vrex |= REX_B;
7747 }
7748 else
7749 {
7750 i.rm.reg = i.op[op].regs->reg_num;
7751 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7752 i.rex |= REX_R;
7753 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7754 i.vrex |= REX_R;
7755 }
7756 }
7757
7758 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7759 must set it to 3 to indicate this is a register operand
7760 in the regmem field. */
7761 if (!i.mem_operands)
7762 i.rm.mode = 3;
7763 }
7764
7765 /* Fill in i.rm.reg field with extension opcode (if any). */
7766 if (i.tm.extension_opcode != None)
7767 i.rm.reg = i.tm.extension_opcode;
7768 }
7769 return default_seg;
7770 }
7771
7772 static void
7773 output_branch (void)
7774 {
7775 char *p;
7776 int size;
7777 int code16;
7778 int prefix;
7779 relax_substateT subtype;
7780 symbolS *sym;
7781 offsetT off;
7782
7783 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7784 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7785
7786 prefix = 0;
7787 if (i.prefix[DATA_PREFIX] != 0)
7788 {
7789 prefix = 1;
7790 i.prefixes -= 1;
7791 code16 ^= CODE16;
7792 }
7793 /* Pentium4 branch hints. */
7794 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7795 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7796 {
7797 prefix++;
7798 i.prefixes--;
7799 }
7800 if (i.prefix[REX_PREFIX] != 0)
7801 {
7802 prefix++;
7803 i.prefixes--;
7804 }
7805
7806 /* BND prefixed jump. */
7807 if (i.prefix[BND_PREFIX] != 0)
7808 {
7809 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7810 i.prefixes -= 1;
7811 }
7812
7813 if (i.prefixes != 0 && !intel_syntax)
7814 as_warn (_("skipping prefixes on this instruction"));
7815
7816 /* It's always a symbol; End frag & setup for relax.
7817 Make sure there is enough room in this frag for the largest
7818 instruction we may generate in md_convert_frag. This is 2
7819 bytes for the opcode and room for the prefix and largest
7820 displacement. */
7821 frag_grow (prefix + 2 + 4);
7822 /* Prefix and 1 opcode byte go in fr_fix. */
7823 p = frag_more (prefix + 1);
7824 if (i.prefix[DATA_PREFIX] != 0)
7825 *p++ = DATA_PREFIX_OPCODE;
7826 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7827 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7828 *p++ = i.prefix[SEG_PREFIX];
7829 if (i.prefix[REX_PREFIX] != 0)
7830 *p++ = i.prefix[REX_PREFIX];
7831 *p = i.tm.base_opcode;
7832
7833 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7834 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7835 else if (cpu_arch_flags.bitfield.cpui386)
7836 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7837 else
7838 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7839 subtype |= code16;
7840
7841 sym = i.op[0].disps->X_add_symbol;
7842 off = i.op[0].disps->X_add_number;
7843
7844 if (i.op[0].disps->X_op != O_constant
7845 && i.op[0].disps->X_op != O_symbol)
7846 {
7847 /* Handle complex expressions. */
7848 sym = make_expr_symbol (i.op[0].disps);
7849 off = 0;
7850 }
7851
7852 /* 1 possible extra opcode + 4 byte displacement go in var part.
7853 Pass reloc in fr_var. */
7854 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7855 }
7856
7857 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7858 /* Return TRUE iff PLT32 relocation should be used for branching to
7859 symbol S. */
7860
7861 static bfd_boolean
7862 need_plt32_p (symbolS *s)
7863 {
7864 /* PLT32 relocation is ELF only. */
7865 if (!IS_ELF)
7866 return FALSE;
7867
7868 #ifdef TE_SOLARIS
7869 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7870 krtld support it. */
7871 return FALSE;
7872 #endif
7873
7874 /* Since there is no need to prepare for PLT branch on x86-64, we
7875 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7876 be used as a marker for 32-bit PC-relative branches. */
7877 if (!object_64bit)
7878 return FALSE;
7879
7880 /* Weak or undefined symbol need PLT32 relocation. */
7881 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7882 return TRUE;
7883
7884 /* Non-global symbol doesn't need PLT32 relocation. */
7885 if (! S_IS_EXTERNAL (s))
7886 return FALSE;
7887
7888 /* Other global symbols need PLT32 relocation. NB: Symbol with
7889 non-default visibilities are treated as normal global symbol
7890 so that PLT32 relocation can be used as a marker for 32-bit
7891 PC-relative branches. It is useful for linker relaxation. */
7892 return TRUE;
7893 }
7894 #endif
7895
7896 static void
7897 output_jump (void)
7898 {
7899 char *p;
7900 int size;
7901 fixS *fixP;
7902 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7903
7904 if (i.tm.opcode_modifier.jumpbyte)
7905 {
7906 /* This is a loop or jecxz type instruction. */
7907 size = 1;
7908 if (i.prefix[ADDR_PREFIX] != 0)
7909 {
7910 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7911 i.prefixes -= 1;
7912 }
7913 /* Pentium4 branch hints. */
7914 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7915 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7916 {
7917 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7918 i.prefixes--;
7919 }
7920 }
7921 else
7922 {
7923 int code16;
7924
7925 code16 = 0;
7926 if (flag_code == CODE_16BIT)
7927 code16 = CODE16;
7928
7929 if (i.prefix[DATA_PREFIX] != 0)
7930 {
7931 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7932 i.prefixes -= 1;
7933 code16 ^= CODE16;
7934 }
7935
7936 size = 4;
7937 if (code16)
7938 size = 2;
7939 }
7940
7941 if (i.prefix[REX_PREFIX] != 0)
7942 {
7943 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7944 i.prefixes -= 1;
7945 }
7946
7947 /* BND prefixed jump. */
7948 if (i.prefix[BND_PREFIX] != 0)
7949 {
7950 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7951 i.prefixes -= 1;
7952 }
7953
7954 if (i.prefixes != 0 && !intel_syntax)
7955 as_warn (_("skipping prefixes on this instruction"));
7956
7957 p = frag_more (i.tm.opcode_length + size);
7958 switch (i.tm.opcode_length)
7959 {
7960 case 2:
7961 *p++ = i.tm.base_opcode >> 8;
7962 /* Fall through. */
7963 case 1:
7964 *p++ = i.tm.base_opcode;
7965 break;
7966 default:
7967 abort ();
7968 }
7969
7970 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7971 if (size == 4
7972 && jump_reloc == NO_RELOC
7973 && need_plt32_p (i.op[0].disps->X_add_symbol))
7974 jump_reloc = BFD_RELOC_X86_64_PLT32;
7975 #endif
7976
7977 jump_reloc = reloc (size, 1, 1, jump_reloc);
7978
7979 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7980 i.op[0].disps, 1, jump_reloc);
7981
7982 /* All jumps handled here are signed, but don't use a signed limit
7983 check for 32 and 16 bit jumps as we want to allow wrap around at
7984 4G and 64k respectively. */
7985 if (size == 1)
7986 fixP->fx_signed = 1;
7987 }
7988
7989 static void
7990 output_interseg_jump (void)
7991 {
7992 char *p;
7993 int size;
7994 int prefix;
7995 int code16;
7996
7997 code16 = 0;
7998 if (flag_code == CODE_16BIT)
7999 code16 = CODE16;
8000
8001 prefix = 0;
8002 if (i.prefix[DATA_PREFIX] != 0)
8003 {
8004 prefix = 1;
8005 i.prefixes -= 1;
8006 code16 ^= CODE16;
8007 }
8008 if (i.prefix[REX_PREFIX] != 0)
8009 {
8010 prefix++;
8011 i.prefixes -= 1;
8012 }
8013
8014 size = 4;
8015 if (code16)
8016 size = 2;
8017
8018 if (i.prefixes != 0 && !intel_syntax)
8019 as_warn (_("skipping prefixes on this instruction"));
8020
8021 /* 1 opcode; 2 segment; offset */
8022 p = frag_more (prefix + 1 + 2 + size);
8023
8024 if (i.prefix[DATA_PREFIX] != 0)
8025 *p++ = DATA_PREFIX_OPCODE;
8026
8027 if (i.prefix[REX_PREFIX] != 0)
8028 *p++ = i.prefix[REX_PREFIX];
8029
8030 *p++ = i.tm.base_opcode;
8031 if (i.op[1].imms->X_op == O_constant)
8032 {
8033 offsetT n = i.op[1].imms->X_add_number;
8034
8035 if (size == 2
8036 && !fits_in_unsigned_word (n)
8037 && !fits_in_signed_word (n))
8038 {
8039 as_bad (_("16-bit jump out of range"));
8040 return;
8041 }
8042 md_number_to_chars (p, n, size);
8043 }
8044 else
8045 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8046 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8047 if (i.op[0].imms->X_op != O_constant)
8048 as_bad (_("can't handle non absolute segment in `%s'"),
8049 i.tm.name);
8050 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8051 }
8052
8053 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8054 void
8055 x86_cleanup (void)
8056 {
8057 char *p;
8058 asection *seg = now_seg;
8059 subsegT subseg = now_subseg;
8060 asection *sec;
8061 unsigned int alignment, align_size_1;
8062 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8063 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8064 unsigned int padding;
8065
8066 if (!IS_ELF || !x86_used_note)
8067 return;
8068
8069 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8070
8071 /* The .note.gnu.property section layout:
8072
8073 Field Length Contents
8074 ---- ---- ----
8075 n_namsz 4 4
8076 n_descsz 4 The note descriptor size
8077 n_type 4 NT_GNU_PROPERTY_TYPE_0
8078 n_name 4 "GNU"
8079 n_desc n_descsz The program property array
8080 .... .... ....
8081 */
8082
8083 /* Create the .note.gnu.property section. */
8084 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8085 bfd_set_section_flags (stdoutput, sec,
8086 (SEC_ALLOC
8087 | SEC_LOAD
8088 | SEC_DATA
8089 | SEC_HAS_CONTENTS
8090 | SEC_READONLY));
8091
8092 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8093 {
8094 align_size_1 = 7;
8095 alignment = 3;
8096 }
8097 else
8098 {
8099 align_size_1 = 3;
8100 alignment = 2;
8101 }
8102
8103 bfd_set_section_alignment (stdoutput, sec, alignment);
8104 elf_section_type (sec) = SHT_NOTE;
8105
8106 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8107 + 4-byte data */
8108 isa_1_descsz_raw = 4 + 4 + 4;
8109 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8110 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8111
8112 feature_2_descsz_raw = isa_1_descsz;
8113 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8114 + 4-byte data */
8115 feature_2_descsz_raw += 4 + 4 + 4;
8116 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8117 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8118 & ~align_size_1);
8119
8120 descsz = feature_2_descsz;
8121 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8122 p = frag_more (4 + 4 + 4 + 4 + descsz);
8123
8124 /* Write n_namsz. */
8125 md_number_to_chars (p, (valueT) 4, 4);
8126
8127 /* Write n_descsz. */
8128 md_number_to_chars (p + 4, (valueT) descsz, 4);
8129
8130 /* Write n_type. */
8131 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8132
8133 /* Write n_name. */
8134 memcpy (p + 4 * 3, "GNU", 4);
8135
8136 /* Write 4-byte type. */
8137 md_number_to_chars (p + 4 * 4,
8138 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8139
8140 /* Write 4-byte data size. */
8141 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8142
8143 /* Write 4-byte data. */
8144 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8145
8146 /* Zero out paddings. */
8147 padding = isa_1_descsz - isa_1_descsz_raw;
8148 if (padding)
8149 memset (p + 4 * 7, 0, padding);
8150
8151 /* Write 4-byte type. */
8152 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8153 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8154
8155 /* Write 4-byte data size. */
8156 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8157
8158 /* Write 4-byte data. */
8159 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8160 (valueT) x86_feature_2_used, 4);
8161
8162 /* Zero out paddings. */
8163 padding = feature_2_descsz - feature_2_descsz_raw;
8164 if (padding)
8165 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8166
8167 /* We probably can't restore the current segment, for there likely
8168 isn't one yet... */
8169 if (seg && subseg)
8170 subseg_set (seg, subseg);
8171 }
8172 #endif
8173
8174 static unsigned int
8175 encoding_length (const fragS *start_frag, offsetT start_off,
8176 const char *frag_now_ptr)
8177 {
8178 unsigned int len = 0;
8179
8180 if (start_frag != frag_now)
8181 {
8182 const fragS *fr = start_frag;
8183
8184 do {
8185 len += fr->fr_fix;
8186 fr = fr->fr_next;
8187 } while (fr && fr != frag_now);
8188 }
8189
8190 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8191 }
8192
8193 static void
8194 output_insn (void)
8195 {
8196 fragS *insn_start_frag;
8197 offsetT insn_start_off;
8198
8199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8200 if (IS_ELF && x86_used_note)
8201 {
8202 if (i.tm.cpu_flags.bitfield.cpucmov)
8203 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8204 if (i.tm.cpu_flags.bitfield.cpusse)
8205 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8206 if (i.tm.cpu_flags.bitfield.cpusse2)
8207 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8208 if (i.tm.cpu_flags.bitfield.cpusse3)
8209 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8210 if (i.tm.cpu_flags.bitfield.cpussse3)
8211 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8212 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8213 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8214 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8215 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8216 if (i.tm.cpu_flags.bitfield.cpuavx)
8217 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8218 if (i.tm.cpu_flags.bitfield.cpuavx2)
8219 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8220 if (i.tm.cpu_flags.bitfield.cpufma)
8221 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8222 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8223 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8224 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8225 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8226 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8228 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8230 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8232 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8234 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8236 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8238 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8240 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8242 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8244 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8250 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8252
8253 if (i.tm.cpu_flags.bitfield.cpu8087
8254 || i.tm.cpu_flags.bitfield.cpu287
8255 || i.tm.cpu_flags.bitfield.cpu387
8256 || i.tm.cpu_flags.bitfield.cpu687
8257 || i.tm.cpu_flags.bitfield.cpufisttp)
8258 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8259 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8260 Xfence instructions. */
8261 if (i.tm.base_opcode != 0xf18
8262 && i.tm.base_opcode != 0xf0d
8263 && i.tm.base_opcode != 0xfae
8264 && (i.has_regmmx
8265 || i.tm.cpu_flags.bitfield.cpummx
8266 || i.tm.cpu_flags.bitfield.cpua3dnow
8267 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8268 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8269 if (i.has_regxmm)
8270 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8271 if (i.has_regymm)
8272 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8273 if (i.has_regzmm)
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8275 if (i.tm.cpu_flags.bitfield.cpufxsr)
8276 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8277 if (i.tm.cpu_flags.bitfield.cpuxsave)
8278 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8279 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8280 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8281 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8282 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8283 }
8284 #endif
8285
8286 /* Tie dwarf2 debug info to the address at the start of the insn.
8287 We can't do this after the insn has been output as the current
8288 frag may have been closed off. eg. by frag_var. */
8289 dwarf2_emit_insn (0);
8290
8291 insn_start_frag = frag_now;
8292 insn_start_off = frag_now_fix ();
8293
8294 /* Output jumps. */
8295 if (i.tm.opcode_modifier.jump)
8296 output_branch ();
8297 else if (i.tm.opcode_modifier.jumpbyte
8298 || i.tm.opcode_modifier.jumpdword)
8299 output_jump ();
8300 else if (i.tm.opcode_modifier.jumpintersegment)
8301 output_interseg_jump ();
8302 else
8303 {
8304 /* Output normal instructions here. */
8305 char *p;
8306 unsigned char *q;
8307 unsigned int j;
8308 unsigned int prefix;
8309
8310 if (avoid_fence
8311 && i.tm.base_opcode == 0xfae
8312 && i.operands == 1
8313 && i.imm_operands == 1
8314 && (i.op[0].imms->X_add_number == 0xe8
8315 || i.op[0].imms->X_add_number == 0xf0
8316 || i.op[0].imms->X_add_number == 0xf8))
8317 {
8318 /* Encode lfence, mfence, and sfence as
8319 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8320 offsetT val = 0x240483f0ULL;
8321 p = frag_more (5);
8322 md_number_to_chars (p, val, 5);
8323 return;
8324 }
8325
8326 /* Some processors fail on LOCK prefix. This options makes
8327 assembler ignore LOCK prefix and serves as a workaround. */
8328 if (omit_lock_prefix)
8329 {
8330 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8331 return;
8332 i.prefix[LOCK_PREFIX] = 0;
8333 }
8334
8335 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8336 don't need the explicit prefix. */
8337 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8338 {
8339 switch (i.tm.opcode_length)
8340 {
8341 case 3:
8342 if (i.tm.base_opcode & 0xff000000)
8343 {
8344 prefix = (i.tm.base_opcode >> 24) & 0xff;
8345 add_prefix (prefix);
8346 }
8347 break;
8348 case 2:
8349 if ((i.tm.base_opcode & 0xff0000) != 0)
8350 {
8351 prefix = (i.tm.base_opcode >> 16) & 0xff;
8352 if (!i.tm.cpu_flags.bitfield.cpupadlock
8353 || prefix != REPE_PREFIX_OPCODE
8354 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8355 add_prefix (prefix);
8356 }
8357 break;
8358 case 1:
8359 break;
8360 case 0:
8361 /* Check for pseudo prefixes. */
8362 as_bad_where (insn_start_frag->fr_file,
8363 insn_start_frag->fr_line,
8364 _("pseudo prefix without instruction"));
8365 return;
8366 default:
8367 abort ();
8368 }
8369
8370 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8371 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8372 R_X86_64_GOTTPOFF relocation so that linker can safely
8373 perform IE->LE optimization. */
8374 if (x86_elf_abi == X86_64_X32_ABI
8375 && i.operands == 2
8376 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8377 && i.prefix[REX_PREFIX] == 0)
8378 add_prefix (REX_OPCODE);
8379 #endif
8380
8381 /* The prefix bytes. */
8382 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8383 if (*q)
8384 FRAG_APPEND_1_CHAR (*q);
8385 }
8386 else
8387 {
8388 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8389 if (*q)
8390 switch (j)
8391 {
8392 case REX_PREFIX:
8393 /* REX byte is encoded in VEX prefix. */
8394 break;
8395 case SEG_PREFIX:
8396 case ADDR_PREFIX:
8397 FRAG_APPEND_1_CHAR (*q);
8398 break;
8399 default:
8400 /* There should be no other prefixes for instructions
8401 with VEX prefix. */
8402 abort ();
8403 }
8404
8405 /* For EVEX instructions i.vrex should become 0 after
8406 build_evex_prefix. For VEX instructions upper 16 registers
8407 aren't available, so VREX should be 0. */
8408 if (i.vrex)
8409 abort ();
8410 /* Now the VEX prefix. */
8411 p = frag_more (i.vex.length);
8412 for (j = 0; j < i.vex.length; j++)
8413 p[j] = i.vex.bytes[j];
8414 }
8415
8416 /* Now the opcode; be careful about word order here! */
8417 if (i.tm.opcode_length == 1)
8418 {
8419 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8420 }
8421 else
8422 {
8423 switch (i.tm.opcode_length)
8424 {
8425 case 4:
8426 p = frag_more (4);
8427 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8428 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8429 break;
8430 case 3:
8431 p = frag_more (3);
8432 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8433 break;
8434 case 2:
8435 p = frag_more (2);
8436 break;
8437 default:
8438 abort ();
8439 break;
8440 }
8441
8442 /* Put out high byte first: can't use md_number_to_chars! */
8443 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8444 *p = i.tm.base_opcode & 0xff;
8445 }
8446
8447 /* Now the modrm byte and sib byte (if present). */
8448 if (i.tm.opcode_modifier.modrm)
8449 {
8450 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8451 | i.rm.reg << 3
8452 | i.rm.mode << 6));
8453 /* If i.rm.regmem == ESP (4)
8454 && i.rm.mode != (Register mode)
8455 && not 16 bit
8456 ==> need second modrm byte. */
8457 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8458 && i.rm.mode != 3
8459 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8460 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8461 | i.sib.index << 3
8462 | i.sib.scale << 6));
8463 }
8464
8465 if (i.disp_operands)
8466 output_disp (insn_start_frag, insn_start_off);
8467
8468 if (i.imm_operands)
8469 output_imm (insn_start_frag, insn_start_off);
8470
8471 /*
8472 * frag_now_fix () returning plain abs_section_offset when we're in the
8473 * absolute section, and abs_section_offset not getting updated as data
8474 * gets added to the frag breaks the logic below.
8475 */
8476 if (now_seg != absolute_section)
8477 {
8478 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8479 if (j > 15)
8480 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8481 j);
8482 }
8483 }
8484
8485 #ifdef DEBUG386
8486 if (flag_debug)
8487 {
8488 pi ("" /*line*/, &i);
8489 }
8490 #endif /* DEBUG386 */
8491 }
8492
8493 /* Return the size of the displacement operand N. */
8494
8495 static int
8496 disp_size (unsigned int n)
8497 {
8498 int size = 4;
8499
8500 if (i.types[n].bitfield.disp64)
8501 size = 8;
8502 else if (i.types[n].bitfield.disp8)
8503 size = 1;
8504 else if (i.types[n].bitfield.disp16)
8505 size = 2;
8506 return size;
8507 }
8508
8509 /* Return the size of the immediate operand N. */
8510
8511 static int
8512 imm_size (unsigned int n)
8513 {
8514 int size = 4;
8515 if (i.types[n].bitfield.imm64)
8516 size = 8;
8517 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8518 size = 1;
8519 else if (i.types[n].bitfield.imm16)
8520 size = 2;
8521 return size;
8522 }
8523
8524 static void
8525 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8526 {
8527 char *p;
8528 unsigned int n;
8529
8530 for (n = 0; n < i.operands; n++)
8531 {
8532 if (operand_type_check (i.types[n], disp))
8533 {
8534 if (i.op[n].disps->X_op == O_constant)
8535 {
8536 int size = disp_size (n);
8537 offsetT val = i.op[n].disps->X_add_number;
8538
8539 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8540 size);
8541 p = frag_more (size);
8542 md_number_to_chars (p, val, size);
8543 }
8544 else
8545 {
8546 enum bfd_reloc_code_real reloc_type;
8547 int size = disp_size (n);
8548 int sign = i.types[n].bitfield.disp32s;
8549 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8550 fixS *fixP;
8551
8552 /* We can't have 8 bit displacement here. */
8553 gas_assert (!i.types[n].bitfield.disp8);
8554
8555 /* The PC relative address is computed relative
8556 to the instruction boundary, so in case immediate
8557 fields follows, we need to adjust the value. */
8558 if (pcrel && i.imm_operands)
8559 {
8560 unsigned int n1;
8561 int sz = 0;
8562
8563 for (n1 = 0; n1 < i.operands; n1++)
8564 if (operand_type_check (i.types[n1], imm))
8565 {
8566 /* Only one immediate is allowed for PC
8567 relative address. */
8568 gas_assert (sz == 0);
8569 sz = imm_size (n1);
8570 i.op[n].disps->X_add_number -= sz;
8571 }
8572 /* We should find the immediate. */
8573 gas_assert (sz != 0);
8574 }
8575
8576 p = frag_more (size);
8577 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8578 if (GOT_symbol
8579 && GOT_symbol == i.op[n].disps->X_add_symbol
8580 && (((reloc_type == BFD_RELOC_32
8581 || reloc_type == BFD_RELOC_X86_64_32S
8582 || (reloc_type == BFD_RELOC_64
8583 && object_64bit))
8584 && (i.op[n].disps->X_op == O_symbol
8585 || (i.op[n].disps->X_op == O_add
8586 && ((symbol_get_value_expression
8587 (i.op[n].disps->X_op_symbol)->X_op)
8588 == O_subtract))))
8589 || reloc_type == BFD_RELOC_32_PCREL))
8590 {
8591 if (!object_64bit)
8592 {
8593 reloc_type = BFD_RELOC_386_GOTPC;
8594 i.op[n].imms->X_add_number +=
8595 encoding_length (insn_start_frag, insn_start_off, p);
8596 }
8597 else if (reloc_type == BFD_RELOC_64)
8598 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8599 else
8600 /* Don't do the adjustment for x86-64, as there
8601 the pcrel addressing is relative to the _next_
8602 insn, and that is taken care of in other code. */
8603 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8604 }
8605 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8606 size, i.op[n].disps, pcrel,
8607 reloc_type);
8608 /* Check for "call/jmp *mem", "mov mem, %reg",
8609 "test %reg, mem" and "binop mem, %reg" where binop
8610 is one of adc, add, and, cmp, or, sbb, sub, xor
8611 instructions without data prefix. Always generate
8612 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8613 if (i.prefix[DATA_PREFIX] == 0
8614 && (generate_relax_relocations
8615 || (!object_64bit
8616 && i.rm.mode == 0
8617 && i.rm.regmem == 5))
8618 && (i.rm.mode == 2
8619 || (i.rm.mode == 0 && i.rm.regmem == 5))
8620 && ((i.operands == 1
8621 && i.tm.base_opcode == 0xff
8622 && (i.rm.reg == 2 || i.rm.reg == 4))
8623 || (i.operands == 2
8624 && (i.tm.base_opcode == 0x8b
8625 || i.tm.base_opcode == 0x85
8626 || (i.tm.base_opcode & 0xc7) == 0x03))))
8627 {
8628 if (object_64bit)
8629 {
8630 fixP->fx_tcbit = i.rex != 0;
8631 if (i.base_reg
8632 && (i.base_reg->reg_num == RegIP))
8633 fixP->fx_tcbit2 = 1;
8634 }
8635 else
8636 fixP->fx_tcbit2 = 1;
8637 }
8638 }
8639 }
8640 }
8641 }
8642
8643 static void
8644 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8645 {
8646 char *p;
8647 unsigned int n;
8648
8649 for (n = 0; n < i.operands; n++)
8650 {
8651 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8652 if (i.rounding && (int) n == i.rounding->operand)
8653 continue;
8654
8655 if (operand_type_check (i.types[n], imm))
8656 {
8657 if (i.op[n].imms->X_op == O_constant)
8658 {
8659 int size = imm_size (n);
8660 offsetT val;
8661
8662 val = offset_in_range (i.op[n].imms->X_add_number,
8663 size);
8664 p = frag_more (size);
8665 md_number_to_chars (p, val, size);
8666 }
8667 else
8668 {
8669 /* Not absolute_section.
8670 Need a 32-bit fixup (don't support 8bit
8671 non-absolute imms). Try to support other
8672 sizes ... */
8673 enum bfd_reloc_code_real reloc_type;
8674 int size = imm_size (n);
8675 int sign;
8676
8677 if (i.types[n].bitfield.imm32s
8678 && (i.suffix == QWORD_MNEM_SUFFIX
8679 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8680 sign = 1;
8681 else
8682 sign = 0;
8683
8684 p = frag_more (size);
8685 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8686
8687 /* This is tough to explain. We end up with this one if we
8688 * have operands that look like
8689 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8690 * obtain the absolute address of the GOT, and it is strongly
8691 * preferable from a performance point of view to avoid using
8692 * a runtime relocation for this. The actual sequence of
8693 * instructions often look something like:
8694 *
8695 * call .L66
8696 * .L66:
8697 * popl %ebx
8698 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8699 *
8700 * The call and pop essentially return the absolute address
8701 * of the label .L66 and store it in %ebx. The linker itself
8702 * will ultimately change the first operand of the addl so
8703 * that %ebx points to the GOT, but to keep things simple, the
8704 * .o file must have this operand set so that it generates not
8705 * the absolute address of .L66, but the absolute address of
8706 * itself. This allows the linker itself simply treat a GOTPC
8707 * relocation as asking for a pcrel offset to the GOT to be
8708 * added in, and the addend of the relocation is stored in the
8709 * operand field for the instruction itself.
8710 *
8711 * Our job here is to fix the operand so that it would add
8712 * the correct offset so that %ebx would point to itself. The
8713 * thing that is tricky is that .-.L66 will point to the
8714 * beginning of the instruction, so we need to further modify
8715 * the operand so that it will point to itself. There are
8716 * other cases where you have something like:
8717 *
8718 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8719 *
8720 * and here no correction would be required. Internally in
8721 * the assembler we treat operands of this form as not being
8722 * pcrel since the '.' is explicitly mentioned, and I wonder
8723 * whether it would simplify matters to do it this way. Who
8724 * knows. In earlier versions of the PIC patches, the
8725 * pcrel_adjust field was used to store the correction, but
8726 * since the expression is not pcrel, I felt it would be
8727 * confusing to do it this way. */
8728
8729 if ((reloc_type == BFD_RELOC_32
8730 || reloc_type == BFD_RELOC_X86_64_32S
8731 || reloc_type == BFD_RELOC_64)
8732 && GOT_symbol
8733 && GOT_symbol == i.op[n].imms->X_add_symbol
8734 && (i.op[n].imms->X_op == O_symbol
8735 || (i.op[n].imms->X_op == O_add
8736 && ((symbol_get_value_expression
8737 (i.op[n].imms->X_op_symbol)->X_op)
8738 == O_subtract))))
8739 {
8740 if (!object_64bit)
8741 reloc_type = BFD_RELOC_386_GOTPC;
8742 else if (size == 4)
8743 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8744 else if (size == 8)
8745 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8746 i.op[n].imms->X_add_number +=
8747 encoding_length (insn_start_frag, insn_start_off, p);
8748 }
8749 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8750 i.op[n].imms, 0, reloc_type);
8751 }
8752 }
8753 }
8754 }
8755 \f
8756 /* x86_cons_fix_new is called via the expression parsing code when a
8757 reloc is needed. We use this hook to get the correct .got reloc. */
8758 static int cons_sign = -1;
8759
8760 void
8761 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8762 expressionS *exp, bfd_reloc_code_real_type r)
8763 {
8764 r = reloc (len, 0, cons_sign, r);
8765
8766 #ifdef TE_PE
8767 if (exp->X_op == O_secrel)
8768 {
8769 exp->X_op = O_symbol;
8770 r = BFD_RELOC_32_SECREL;
8771 }
8772 #endif
8773
8774 fix_new_exp (frag, off, len, exp, 0, r);
8775 }
8776
8777 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8778 purpose of the `.dc.a' internal pseudo-op. */
8779
8780 int
8781 x86_address_bytes (void)
8782 {
8783 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8784 return 4;
8785 return stdoutput->arch_info->bits_per_address / 8;
8786 }
8787
8788 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8789 || defined (LEX_AT)
8790 # define lex_got(reloc, adjust, types) NULL
8791 #else
8792 /* Parse operands of the form
8793 <symbol>@GOTOFF+<nnn>
8794 and similar .plt or .got references.
8795
8796 If we find one, set up the correct relocation in RELOC and copy the
8797 input string, minus the `@GOTOFF' into a malloc'd buffer for
8798 parsing by the calling routine. Return this buffer, and if ADJUST
8799 is non-null set it to the length of the string we removed from the
8800 input line. Otherwise return NULL. */
8801 static char *
8802 lex_got (enum bfd_reloc_code_real *rel,
8803 int *adjust,
8804 i386_operand_type *types)
8805 {
8806 /* Some of the relocations depend on the size of what field is to
8807 be relocated. But in our callers i386_immediate and i386_displacement
8808 we don't yet know the operand size (this will be set by insn
8809 matching). Hence we record the word32 relocation here,
8810 and adjust the reloc according to the real size in reloc(). */
8811 static const struct {
8812 const char *str;
8813 int len;
8814 const enum bfd_reloc_code_real rel[2];
8815 const i386_operand_type types64;
8816 } gotrel[] = {
8817 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8818 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8819 BFD_RELOC_SIZE32 },
8820 OPERAND_TYPE_IMM32_64 },
8821 #endif
8822 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8823 BFD_RELOC_X86_64_PLTOFF64 },
8824 OPERAND_TYPE_IMM64 },
8825 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8826 BFD_RELOC_X86_64_PLT32 },
8827 OPERAND_TYPE_IMM32_32S_DISP32 },
8828 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_GOTPLT64 },
8830 OPERAND_TYPE_IMM64_DISP64 },
8831 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8832 BFD_RELOC_X86_64_GOTOFF64 },
8833 OPERAND_TYPE_IMM64_DISP64 },
8834 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8835 BFD_RELOC_X86_64_GOTPCREL },
8836 OPERAND_TYPE_IMM32_32S_DISP32 },
8837 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8838 BFD_RELOC_X86_64_TLSGD },
8839 OPERAND_TYPE_IMM32_32S_DISP32 },
8840 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8841 _dummy_first_bfd_reloc_code_real },
8842 OPERAND_TYPE_NONE },
8843 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8844 BFD_RELOC_X86_64_TLSLD },
8845 OPERAND_TYPE_IMM32_32S_DISP32 },
8846 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8847 BFD_RELOC_X86_64_GOTTPOFF },
8848 OPERAND_TYPE_IMM32_32S_DISP32 },
8849 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8850 BFD_RELOC_X86_64_TPOFF32 },
8851 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8852 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8853 _dummy_first_bfd_reloc_code_real },
8854 OPERAND_TYPE_NONE },
8855 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8856 BFD_RELOC_X86_64_DTPOFF32 },
8857 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8858 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8859 _dummy_first_bfd_reloc_code_real },
8860 OPERAND_TYPE_NONE },
8861 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8862 _dummy_first_bfd_reloc_code_real },
8863 OPERAND_TYPE_NONE },
8864 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8865 BFD_RELOC_X86_64_GOT32 },
8866 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8867 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8868 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8869 OPERAND_TYPE_IMM32_32S_DISP32 },
8870 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8871 BFD_RELOC_X86_64_TLSDESC_CALL },
8872 OPERAND_TYPE_IMM32_32S_DISP32 },
8873 };
8874 char *cp;
8875 unsigned int j;
8876
8877 #if defined (OBJ_MAYBE_ELF)
8878 if (!IS_ELF)
8879 return NULL;
8880 #endif
8881
8882 for (cp = input_line_pointer; *cp != '@'; cp++)
8883 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8884 return NULL;
8885
8886 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8887 {
8888 int len = gotrel[j].len;
8889 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8890 {
8891 if (gotrel[j].rel[object_64bit] != 0)
8892 {
8893 int first, second;
8894 char *tmpbuf, *past_reloc;
8895
8896 *rel = gotrel[j].rel[object_64bit];
8897
8898 if (types)
8899 {
8900 if (flag_code != CODE_64BIT)
8901 {
8902 types->bitfield.imm32 = 1;
8903 types->bitfield.disp32 = 1;
8904 }
8905 else
8906 *types = gotrel[j].types64;
8907 }
8908
8909 if (j != 0 && GOT_symbol == NULL)
8910 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8911
8912 /* The length of the first part of our input line. */
8913 first = cp - input_line_pointer;
8914
8915 /* The second part goes from after the reloc token until
8916 (and including) an end_of_line char or comma. */
8917 past_reloc = cp + 1 + len;
8918 cp = past_reloc;
8919 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8920 ++cp;
8921 second = cp + 1 - past_reloc;
8922
8923 /* Allocate and copy string. The trailing NUL shouldn't
8924 be necessary, but be safe. */
8925 tmpbuf = XNEWVEC (char, first + second + 2);
8926 memcpy (tmpbuf, input_line_pointer, first);
8927 if (second != 0 && *past_reloc != ' ')
8928 /* Replace the relocation token with ' ', so that
8929 errors like foo@GOTOFF1 will be detected. */
8930 tmpbuf[first++] = ' ';
8931 else
8932 /* Increment length by 1 if the relocation token is
8933 removed. */
8934 len++;
8935 if (adjust)
8936 *adjust = len;
8937 memcpy (tmpbuf + first, past_reloc, second);
8938 tmpbuf[first + second] = '\0';
8939 return tmpbuf;
8940 }
8941
8942 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8943 gotrel[j].str, 1 << (5 + object_64bit));
8944 return NULL;
8945 }
8946 }
8947
8948 /* Might be a symbol version string. Don't as_bad here. */
8949 return NULL;
8950 }
8951 #endif
8952
8953 #ifdef TE_PE
8954 #ifdef lex_got
8955 #undef lex_got
8956 #endif
8957 /* Parse operands of the form
8958 <symbol>@SECREL32+<nnn>
8959
8960 If we find one, set up the correct relocation in RELOC and copy the
8961 input string, minus the `@SECREL32' into a malloc'd buffer for
8962 parsing by the calling routine. Return this buffer, and if ADJUST
8963 is non-null set it to the length of the string we removed from the
8964 input line. Otherwise return NULL.
8965
8966 This function is copied from the ELF version above adjusted for PE targets. */
8967
8968 static char *
8969 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8970 int *adjust ATTRIBUTE_UNUSED,
8971 i386_operand_type *types)
8972 {
8973 static const struct
8974 {
8975 const char *str;
8976 int len;
8977 const enum bfd_reloc_code_real rel[2];
8978 const i386_operand_type types64;
8979 }
8980 gotrel[] =
8981 {
8982 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8983 BFD_RELOC_32_SECREL },
8984 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8985 };
8986
8987 char *cp;
8988 unsigned j;
8989
8990 for (cp = input_line_pointer; *cp != '@'; cp++)
8991 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8992 return NULL;
8993
8994 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8995 {
8996 int len = gotrel[j].len;
8997
8998 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8999 {
9000 if (gotrel[j].rel[object_64bit] != 0)
9001 {
9002 int first, second;
9003 char *tmpbuf, *past_reloc;
9004
9005 *rel = gotrel[j].rel[object_64bit];
9006 if (adjust)
9007 *adjust = len;
9008
9009 if (types)
9010 {
9011 if (flag_code != CODE_64BIT)
9012 {
9013 types->bitfield.imm32 = 1;
9014 types->bitfield.disp32 = 1;
9015 }
9016 else
9017 *types = gotrel[j].types64;
9018 }
9019
9020 /* The length of the first part of our input line. */
9021 first = cp - input_line_pointer;
9022
9023 /* The second part goes from after the reloc token until
9024 (and including) an end_of_line char or comma. */
9025 past_reloc = cp + 1 + len;
9026 cp = past_reloc;
9027 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9028 ++cp;
9029 second = cp + 1 - past_reloc;
9030
9031 /* Allocate and copy string. The trailing NUL shouldn't
9032 be necessary, but be safe. */
9033 tmpbuf = XNEWVEC (char, first + second + 2);
9034 memcpy (tmpbuf, input_line_pointer, first);
9035 if (second != 0 && *past_reloc != ' ')
9036 /* Replace the relocation token with ' ', so that
9037 errors like foo@SECLREL321 will be detected. */
9038 tmpbuf[first++] = ' ';
9039 memcpy (tmpbuf + first, past_reloc, second);
9040 tmpbuf[first + second] = '\0';
9041 return tmpbuf;
9042 }
9043
9044 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9045 gotrel[j].str, 1 << (5 + object_64bit));
9046 return NULL;
9047 }
9048 }
9049
9050 /* Might be a symbol version string. Don't as_bad here. */
9051 return NULL;
9052 }
9053
9054 #endif /* TE_PE */
9055
9056 bfd_reloc_code_real_type
9057 x86_cons (expressionS *exp, int size)
9058 {
9059 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9060
9061 intel_syntax = -intel_syntax;
9062
9063 exp->X_md = 0;
9064 if (size == 4 || (object_64bit && size == 8))
9065 {
9066 /* Handle @GOTOFF and the like in an expression. */
9067 char *save;
9068 char *gotfree_input_line;
9069 int adjust = 0;
9070
9071 save = input_line_pointer;
9072 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9073 if (gotfree_input_line)
9074 input_line_pointer = gotfree_input_line;
9075
9076 expression (exp);
9077
9078 if (gotfree_input_line)
9079 {
9080 /* expression () has merrily parsed up to the end of line,
9081 or a comma - in the wrong buffer. Transfer how far
9082 input_line_pointer has moved to the right buffer. */
9083 input_line_pointer = (save
9084 + (input_line_pointer - gotfree_input_line)
9085 + adjust);
9086 free (gotfree_input_line);
9087 if (exp->X_op == O_constant
9088 || exp->X_op == O_absent
9089 || exp->X_op == O_illegal
9090 || exp->X_op == O_register
9091 || exp->X_op == O_big)
9092 {
9093 char c = *input_line_pointer;
9094 *input_line_pointer = 0;
9095 as_bad (_("missing or invalid expression `%s'"), save);
9096 *input_line_pointer = c;
9097 }
9098 else if ((got_reloc == BFD_RELOC_386_PLT32
9099 || got_reloc == BFD_RELOC_X86_64_PLT32)
9100 && exp->X_op != O_symbol)
9101 {
9102 char c = *input_line_pointer;
9103 *input_line_pointer = 0;
9104 as_bad (_("invalid PLT expression `%s'"), save);
9105 *input_line_pointer = c;
9106 }
9107 }
9108 }
9109 else
9110 expression (exp);
9111
9112 intel_syntax = -intel_syntax;
9113
9114 if (intel_syntax)
9115 i386_intel_simplify (exp);
9116
9117 return got_reloc;
9118 }
9119
9120 static void
9121 signed_cons (int size)
9122 {
9123 if (flag_code == CODE_64BIT)
9124 cons_sign = 1;
9125 cons (size);
9126 cons_sign = -1;
9127 }
9128
9129 #ifdef TE_PE
9130 static void
9131 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9132 {
9133 expressionS exp;
9134
9135 do
9136 {
9137 expression (&exp);
9138 if (exp.X_op == O_symbol)
9139 exp.X_op = O_secrel;
9140
9141 emit_expr (&exp, 4);
9142 }
9143 while (*input_line_pointer++ == ',');
9144
9145 input_line_pointer--;
9146 demand_empty_rest_of_line ();
9147 }
9148 #endif
9149
9150 /* Handle Vector operations. */
9151
9152 static char *
9153 check_VecOperations (char *op_string, char *op_end)
9154 {
9155 const reg_entry *mask;
9156 const char *saved;
9157 char *end_op;
9158
9159 while (*op_string
9160 && (op_end == NULL || op_string < op_end))
9161 {
9162 saved = op_string;
9163 if (*op_string == '{')
9164 {
9165 op_string++;
9166
9167 /* Check broadcasts. */
9168 if (strncmp (op_string, "1to", 3) == 0)
9169 {
9170 int bcst_type;
9171
9172 if (i.broadcast)
9173 goto duplicated_vec_op;
9174
9175 op_string += 3;
9176 if (*op_string == '8')
9177 bcst_type = 8;
9178 else if (*op_string == '4')
9179 bcst_type = 4;
9180 else if (*op_string == '2')
9181 bcst_type = 2;
9182 else if (*op_string == '1'
9183 && *(op_string+1) == '6')
9184 {
9185 bcst_type = 16;
9186 op_string++;
9187 }
9188 else
9189 {
9190 as_bad (_("Unsupported broadcast: `%s'"), saved);
9191 return NULL;
9192 }
9193 op_string++;
9194
9195 broadcast_op.type = bcst_type;
9196 broadcast_op.operand = this_operand;
9197 broadcast_op.bytes = 0;
9198 i.broadcast = &broadcast_op;
9199 }
9200 /* Check masking operation. */
9201 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9202 {
9203 /* k0 can't be used for write mask. */
9204 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9205 {
9206 as_bad (_("`%s%s' can't be used for write mask"),
9207 register_prefix, mask->reg_name);
9208 return NULL;
9209 }
9210
9211 if (!i.mask)
9212 {
9213 mask_op.mask = mask;
9214 mask_op.zeroing = 0;
9215 mask_op.operand = this_operand;
9216 i.mask = &mask_op;
9217 }
9218 else
9219 {
9220 if (i.mask->mask)
9221 goto duplicated_vec_op;
9222
9223 i.mask->mask = mask;
9224
9225 /* Only "{z}" is allowed here. No need to check
9226 zeroing mask explicitly. */
9227 if (i.mask->operand != this_operand)
9228 {
9229 as_bad (_("invalid write mask `%s'"), saved);
9230 return NULL;
9231 }
9232 }
9233
9234 op_string = end_op;
9235 }
9236 /* Check zeroing-flag for masking operation. */
9237 else if (*op_string == 'z')
9238 {
9239 if (!i.mask)
9240 {
9241 mask_op.mask = NULL;
9242 mask_op.zeroing = 1;
9243 mask_op.operand = this_operand;
9244 i.mask = &mask_op;
9245 }
9246 else
9247 {
9248 if (i.mask->zeroing)
9249 {
9250 duplicated_vec_op:
9251 as_bad (_("duplicated `%s'"), saved);
9252 return NULL;
9253 }
9254
9255 i.mask->zeroing = 1;
9256
9257 /* Only "{%k}" is allowed here. No need to check mask
9258 register explicitly. */
9259 if (i.mask->operand != this_operand)
9260 {
9261 as_bad (_("invalid zeroing-masking `%s'"),
9262 saved);
9263 return NULL;
9264 }
9265 }
9266
9267 op_string++;
9268 }
9269 else
9270 goto unknown_vec_op;
9271
9272 if (*op_string != '}')
9273 {
9274 as_bad (_("missing `}' in `%s'"), saved);
9275 return NULL;
9276 }
9277 op_string++;
9278
9279 /* Strip whitespace since the addition of pseudo prefixes
9280 changed how the scrubber treats '{'. */
9281 if (is_space_char (*op_string))
9282 ++op_string;
9283
9284 continue;
9285 }
9286 unknown_vec_op:
9287 /* We don't know this one. */
9288 as_bad (_("unknown vector operation: `%s'"), saved);
9289 return NULL;
9290 }
9291
9292 if (i.mask && i.mask->zeroing && !i.mask->mask)
9293 {
9294 as_bad (_("zeroing-masking only allowed with write mask"));
9295 return NULL;
9296 }
9297
9298 return op_string;
9299 }
9300
9301 static int
9302 i386_immediate (char *imm_start)
9303 {
9304 char *save_input_line_pointer;
9305 char *gotfree_input_line;
9306 segT exp_seg = 0;
9307 expressionS *exp;
9308 i386_operand_type types;
9309
9310 operand_type_set (&types, ~0);
9311
9312 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9313 {
9314 as_bad (_("at most %d immediate operands are allowed"),
9315 MAX_IMMEDIATE_OPERANDS);
9316 return 0;
9317 }
9318
9319 exp = &im_expressions[i.imm_operands++];
9320 i.op[this_operand].imms = exp;
9321
9322 if (is_space_char (*imm_start))
9323 ++imm_start;
9324
9325 save_input_line_pointer = input_line_pointer;
9326 input_line_pointer = imm_start;
9327
9328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9329 if (gotfree_input_line)
9330 input_line_pointer = gotfree_input_line;
9331
9332 exp_seg = expression (exp);
9333
9334 SKIP_WHITESPACE ();
9335
9336 /* Handle vector operations. */
9337 if (*input_line_pointer == '{')
9338 {
9339 input_line_pointer = check_VecOperations (input_line_pointer,
9340 NULL);
9341 if (input_line_pointer == NULL)
9342 return 0;
9343 }
9344
9345 if (*input_line_pointer)
9346 as_bad (_("junk `%s' after expression"), input_line_pointer);
9347
9348 input_line_pointer = save_input_line_pointer;
9349 if (gotfree_input_line)
9350 {
9351 free (gotfree_input_line);
9352
9353 if (exp->X_op == O_constant || exp->X_op == O_register)
9354 exp->X_op = O_illegal;
9355 }
9356
9357 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9358 }
9359
9360 static int
9361 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9362 i386_operand_type types, const char *imm_start)
9363 {
9364 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9365 {
9366 if (imm_start)
9367 as_bad (_("missing or invalid immediate expression `%s'"),
9368 imm_start);
9369 return 0;
9370 }
9371 else if (exp->X_op == O_constant)
9372 {
9373 /* Size it properly later. */
9374 i.types[this_operand].bitfield.imm64 = 1;
9375 /* If not 64bit, sign extend val. */
9376 if (flag_code != CODE_64BIT
9377 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9378 exp->X_add_number
9379 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9380 }
9381 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9382 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9383 && exp_seg != absolute_section
9384 && exp_seg != text_section
9385 && exp_seg != data_section
9386 && exp_seg != bss_section
9387 && exp_seg != undefined_section
9388 && !bfd_is_com_section (exp_seg))
9389 {
9390 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9391 return 0;
9392 }
9393 #endif
9394 else if (!intel_syntax && exp_seg == reg_section)
9395 {
9396 if (imm_start)
9397 as_bad (_("illegal immediate register operand %s"), imm_start);
9398 return 0;
9399 }
9400 else
9401 {
9402 /* This is an address. The size of the address will be
9403 determined later, depending on destination register,
9404 suffix, or the default for the section. */
9405 i.types[this_operand].bitfield.imm8 = 1;
9406 i.types[this_operand].bitfield.imm16 = 1;
9407 i.types[this_operand].bitfield.imm32 = 1;
9408 i.types[this_operand].bitfield.imm32s = 1;
9409 i.types[this_operand].bitfield.imm64 = 1;
9410 i.types[this_operand] = operand_type_and (i.types[this_operand],
9411 types);
9412 }
9413
9414 return 1;
9415 }
9416
9417 static char *
9418 i386_scale (char *scale)
9419 {
9420 offsetT val;
9421 char *save = input_line_pointer;
9422
9423 input_line_pointer = scale;
9424 val = get_absolute_expression ();
9425
9426 switch (val)
9427 {
9428 case 1:
9429 i.log2_scale_factor = 0;
9430 break;
9431 case 2:
9432 i.log2_scale_factor = 1;
9433 break;
9434 case 4:
9435 i.log2_scale_factor = 2;
9436 break;
9437 case 8:
9438 i.log2_scale_factor = 3;
9439 break;
9440 default:
9441 {
9442 char sep = *input_line_pointer;
9443
9444 *input_line_pointer = '\0';
9445 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9446 scale);
9447 *input_line_pointer = sep;
9448 input_line_pointer = save;
9449 return NULL;
9450 }
9451 }
9452 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9453 {
9454 as_warn (_("scale factor of %d without an index register"),
9455 1 << i.log2_scale_factor);
9456 i.log2_scale_factor = 0;
9457 }
9458 scale = input_line_pointer;
9459 input_line_pointer = save;
9460 return scale;
9461 }
9462
9463 static int
9464 i386_displacement (char *disp_start, char *disp_end)
9465 {
9466 expressionS *exp;
9467 segT exp_seg = 0;
9468 char *save_input_line_pointer;
9469 char *gotfree_input_line;
9470 int override;
9471 i386_operand_type bigdisp, types = anydisp;
9472 int ret;
9473
9474 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9475 {
9476 as_bad (_("at most %d displacement operands are allowed"),
9477 MAX_MEMORY_OPERANDS);
9478 return 0;
9479 }
9480
9481 operand_type_set (&bigdisp, 0);
9482 if ((i.types[this_operand].bitfield.jumpabsolute)
9483 || (!current_templates->start->opcode_modifier.jump
9484 && !current_templates->start->opcode_modifier.jumpdword))
9485 {
9486 bigdisp.bitfield.disp32 = 1;
9487 override = (i.prefix[ADDR_PREFIX] != 0);
9488 if (flag_code == CODE_64BIT)
9489 {
9490 if (!override)
9491 {
9492 bigdisp.bitfield.disp32s = 1;
9493 bigdisp.bitfield.disp64 = 1;
9494 }
9495 }
9496 else if ((flag_code == CODE_16BIT) ^ override)
9497 {
9498 bigdisp.bitfield.disp32 = 0;
9499 bigdisp.bitfield.disp16 = 1;
9500 }
9501 }
9502 else
9503 {
9504 /* For PC-relative branches, the width of the displacement
9505 is dependent upon data size, not address size. */
9506 override = (i.prefix[DATA_PREFIX] != 0);
9507 if (flag_code == CODE_64BIT)
9508 {
9509 if (override || i.suffix == WORD_MNEM_SUFFIX)
9510 bigdisp.bitfield.disp16 = 1;
9511 else
9512 {
9513 bigdisp.bitfield.disp32 = 1;
9514 bigdisp.bitfield.disp32s = 1;
9515 }
9516 }
9517 else
9518 {
9519 if (!override)
9520 override = (i.suffix == (flag_code != CODE_16BIT
9521 ? WORD_MNEM_SUFFIX
9522 : LONG_MNEM_SUFFIX));
9523 bigdisp.bitfield.disp32 = 1;
9524 if ((flag_code == CODE_16BIT) ^ override)
9525 {
9526 bigdisp.bitfield.disp32 = 0;
9527 bigdisp.bitfield.disp16 = 1;
9528 }
9529 }
9530 }
9531 i.types[this_operand] = operand_type_or (i.types[this_operand],
9532 bigdisp);
9533
9534 exp = &disp_expressions[i.disp_operands];
9535 i.op[this_operand].disps = exp;
9536 i.disp_operands++;
9537 save_input_line_pointer = input_line_pointer;
9538 input_line_pointer = disp_start;
9539 END_STRING_AND_SAVE (disp_end);
9540
9541 #ifndef GCC_ASM_O_HACK
9542 #define GCC_ASM_O_HACK 0
9543 #endif
9544 #if GCC_ASM_O_HACK
9545 END_STRING_AND_SAVE (disp_end + 1);
9546 if (i.types[this_operand].bitfield.baseIndex
9547 && displacement_string_end[-1] == '+')
9548 {
9549 /* This hack is to avoid a warning when using the "o"
9550 constraint within gcc asm statements.
9551 For instance:
9552
9553 #define _set_tssldt_desc(n,addr,limit,type) \
9554 __asm__ __volatile__ ( \
9555 "movw %w2,%0\n\t" \
9556 "movw %w1,2+%0\n\t" \
9557 "rorl $16,%1\n\t" \
9558 "movb %b1,4+%0\n\t" \
9559 "movb %4,5+%0\n\t" \
9560 "movb $0,6+%0\n\t" \
9561 "movb %h1,7+%0\n\t" \
9562 "rorl $16,%1" \
9563 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9564
9565 This works great except that the output assembler ends
9566 up looking a bit weird if it turns out that there is
9567 no offset. You end up producing code that looks like:
9568
9569 #APP
9570 movw $235,(%eax)
9571 movw %dx,2+(%eax)
9572 rorl $16,%edx
9573 movb %dl,4+(%eax)
9574 movb $137,5+(%eax)
9575 movb $0,6+(%eax)
9576 movb %dh,7+(%eax)
9577 rorl $16,%edx
9578 #NO_APP
9579
9580 So here we provide the missing zero. */
9581
9582 *displacement_string_end = '0';
9583 }
9584 #endif
9585 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9586 if (gotfree_input_line)
9587 input_line_pointer = gotfree_input_line;
9588
9589 exp_seg = expression (exp);
9590
9591 SKIP_WHITESPACE ();
9592 if (*input_line_pointer)
9593 as_bad (_("junk `%s' after expression"), input_line_pointer);
9594 #if GCC_ASM_O_HACK
9595 RESTORE_END_STRING (disp_end + 1);
9596 #endif
9597 input_line_pointer = save_input_line_pointer;
9598 if (gotfree_input_line)
9599 {
9600 free (gotfree_input_line);
9601
9602 if (exp->X_op == O_constant || exp->X_op == O_register)
9603 exp->X_op = O_illegal;
9604 }
9605
9606 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9607
9608 RESTORE_END_STRING (disp_end);
9609
9610 return ret;
9611 }
9612
9613 static int
9614 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9615 i386_operand_type types, const char *disp_start)
9616 {
9617 i386_operand_type bigdisp;
9618 int ret = 1;
9619
9620 /* We do this to make sure that the section symbol is in
9621 the symbol table. We will ultimately change the relocation
9622 to be relative to the beginning of the section. */
9623 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9624 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9625 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9626 {
9627 if (exp->X_op != O_symbol)
9628 goto inv_disp;
9629
9630 if (S_IS_LOCAL (exp->X_add_symbol)
9631 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9632 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9633 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9634 exp->X_op = O_subtract;
9635 exp->X_op_symbol = GOT_symbol;
9636 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9637 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9638 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9639 i.reloc[this_operand] = BFD_RELOC_64;
9640 else
9641 i.reloc[this_operand] = BFD_RELOC_32;
9642 }
9643
9644 else if (exp->X_op == O_absent
9645 || exp->X_op == O_illegal
9646 || exp->X_op == O_big)
9647 {
9648 inv_disp:
9649 as_bad (_("missing or invalid displacement expression `%s'"),
9650 disp_start);
9651 ret = 0;
9652 }
9653
9654 else if (flag_code == CODE_64BIT
9655 && !i.prefix[ADDR_PREFIX]
9656 && exp->X_op == O_constant)
9657 {
9658 /* Since displacement is signed extended to 64bit, don't allow
9659 disp32 and turn off disp32s if they are out of range. */
9660 i.types[this_operand].bitfield.disp32 = 0;
9661 if (!fits_in_signed_long (exp->X_add_number))
9662 {
9663 i.types[this_operand].bitfield.disp32s = 0;
9664 if (i.types[this_operand].bitfield.baseindex)
9665 {
9666 as_bad (_("0x%lx out range of signed 32bit displacement"),
9667 (long) exp->X_add_number);
9668 ret = 0;
9669 }
9670 }
9671 }
9672
9673 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9674 else if (exp->X_op != O_constant
9675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9676 && exp_seg != absolute_section
9677 && exp_seg != text_section
9678 && exp_seg != data_section
9679 && exp_seg != bss_section
9680 && exp_seg != undefined_section
9681 && !bfd_is_com_section (exp_seg))
9682 {
9683 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9684 ret = 0;
9685 }
9686 #endif
9687
9688 /* Check if this is a displacement only operand. */
9689 bigdisp = i.types[this_operand];
9690 bigdisp.bitfield.disp8 = 0;
9691 bigdisp.bitfield.disp16 = 0;
9692 bigdisp.bitfield.disp32 = 0;
9693 bigdisp.bitfield.disp32s = 0;
9694 bigdisp.bitfield.disp64 = 0;
9695 if (operand_type_all_zero (&bigdisp))
9696 i.types[this_operand] = operand_type_and (i.types[this_operand],
9697 types);
9698
9699 return ret;
9700 }
9701
9702 /* Return the active addressing mode, taking address override and
9703 registers forming the address into consideration. Update the
9704 address override prefix if necessary. */
9705
9706 static enum flag_code
9707 i386_addressing_mode (void)
9708 {
9709 enum flag_code addr_mode;
9710
9711 if (i.prefix[ADDR_PREFIX])
9712 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9713 else
9714 {
9715 addr_mode = flag_code;
9716
9717 #if INFER_ADDR_PREFIX
9718 if (i.mem_operands == 0)
9719 {
9720 /* Infer address prefix from the first memory operand. */
9721 const reg_entry *addr_reg = i.base_reg;
9722
9723 if (addr_reg == NULL)
9724 addr_reg = i.index_reg;
9725
9726 if (addr_reg)
9727 {
9728 if (addr_reg->reg_type.bitfield.dword)
9729 addr_mode = CODE_32BIT;
9730 else if (flag_code != CODE_64BIT
9731 && addr_reg->reg_type.bitfield.word)
9732 addr_mode = CODE_16BIT;
9733
9734 if (addr_mode != flag_code)
9735 {
9736 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9737 i.prefixes += 1;
9738 /* Change the size of any displacement too. At most one
9739 of Disp16 or Disp32 is set.
9740 FIXME. There doesn't seem to be any real need for
9741 separate Disp16 and Disp32 flags. The same goes for
9742 Imm16 and Imm32. Removing them would probably clean
9743 up the code quite a lot. */
9744 if (flag_code != CODE_64BIT
9745 && (i.types[this_operand].bitfield.disp16
9746 || i.types[this_operand].bitfield.disp32))
9747 i.types[this_operand]
9748 = operand_type_xor (i.types[this_operand], disp16_32);
9749 }
9750 }
9751 }
9752 #endif
9753 }
9754
9755 return addr_mode;
9756 }
9757
9758 /* Make sure the memory operand we've been dealt is valid.
9759 Return 1 on success, 0 on a failure. */
9760
9761 static int
9762 i386_index_check (const char *operand_string)
9763 {
9764 const char *kind = "base/index";
9765 enum flag_code addr_mode = i386_addressing_mode ();
9766
9767 if (current_templates->start->opcode_modifier.isstring
9768 && !current_templates->start->opcode_modifier.immext
9769 && (current_templates->end[-1].opcode_modifier.isstring
9770 || i.mem_operands))
9771 {
9772 /* Memory operands of string insns are special in that they only allow
9773 a single register (rDI, rSI, or rBX) as their memory address. */
9774 const reg_entry *expected_reg;
9775 static const char *di_si[][2] =
9776 {
9777 { "esi", "edi" },
9778 { "si", "di" },
9779 { "rsi", "rdi" }
9780 };
9781 static const char *bx[] = { "ebx", "bx", "rbx" };
9782
9783 kind = "string address";
9784
9785 if (current_templates->start->opcode_modifier.repprefixok)
9786 {
9787 i386_operand_type type = current_templates->end[-1].operand_types[0];
9788
9789 if (!type.bitfield.baseindex
9790 || ((!i.mem_operands != !intel_syntax)
9791 && current_templates->end[-1].operand_types[1]
9792 .bitfield.baseindex))
9793 type = current_templates->end[-1].operand_types[1];
9794 expected_reg = hash_find (reg_hash,
9795 di_si[addr_mode][type.bitfield.esseg]);
9796
9797 }
9798 else
9799 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9800
9801 if (i.base_reg != expected_reg
9802 || i.index_reg
9803 || operand_type_check (i.types[this_operand], disp))
9804 {
9805 /* The second memory operand must have the same size as
9806 the first one. */
9807 if (i.mem_operands
9808 && i.base_reg
9809 && !((addr_mode == CODE_64BIT
9810 && i.base_reg->reg_type.bitfield.qword)
9811 || (addr_mode == CODE_32BIT
9812 ? i.base_reg->reg_type.bitfield.dword
9813 : i.base_reg->reg_type.bitfield.word)))
9814 goto bad_address;
9815
9816 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9817 operand_string,
9818 intel_syntax ? '[' : '(',
9819 register_prefix,
9820 expected_reg->reg_name,
9821 intel_syntax ? ']' : ')');
9822 return 1;
9823 }
9824 else
9825 return 1;
9826
9827 bad_address:
9828 as_bad (_("`%s' is not a valid %s expression"),
9829 operand_string, kind);
9830 return 0;
9831 }
9832 else
9833 {
9834 if (addr_mode != CODE_16BIT)
9835 {
9836 /* 32-bit/64-bit checks. */
9837 if ((i.base_reg
9838 && ((addr_mode == CODE_64BIT
9839 ? !i.base_reg->reg_type.bitfield.qword
9840 : !i.base_reg->reg_type.bitfield.dword)
9841 || (i.index_reg && i.base_reg->reg_num == RegIP)
9842 || i.base_reg->reg_num == RegIZ))
9843 || (i.index_reg
9844 && !i.index_reg->reg_type.bitfield.xmmword
9845 && !i.index_reg->reg_type.bitfield.ymmword
9846 && !i.index_reg->reg_type.bitfield.zmmword
9847 && ((addr_mode == CODE_64BIT
9848 ? !i.index_reg->reg_type.bitfield.qword
9849 : !i.index_reg->reg_type.bitfield.dword)
9850 || !i.index_reg->reg_type.bitfield.baseindex)))
9851 goto bad_address;
9852
9853 /* bndmk, bndldx, and bndstx have special restrictions. */
9854 if (current_templates->start->base_opcode == 0xf30f1b
9855 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9856 {
9857 /* They cannot use RIP-relative addressing. */
9858 if (i.base_reg && i.base_reg->reg_num == RegIP)
9859 {
9860 as_bad (_("`%s' cannot be used here"), operand_string);
9861 return 0;
9862 }
9863
9864 /* bndldx and bndstx ignore their scale factor. */
9865 if (current_templates->start->base_opcode != 0xf30f1b
9866 && i.log2_scale_factor)
9867 as_warn (_("register scaling is being ignored here"));
9868 }
9869 }
9870 else
9871 {
9872 /* 16-bit checks. */
9873 if ((i.base_reg
9874 && (!i.base_reg->reg_type.bitfield.word
9875 || !i.base_reg->reg_type.bitfield.baseindex))
9876 || (i.index_reg
9877 && (!i.index_reg->reg_type.bitfield.word
9878 || !i.index_reg->reg_type.bitfield.baseindex
9879 || !(i.base_reg
9880 && i.base_reg->reg_num < 6
9881 && i.index_reg->reg_num >= 6
9882 && i.log2_scale_factor == 0))))
9883 goto bad_address;
9884 }
9885 }
9886 return 1;
9887 }
9888
9889 /* Handle vector immediates. */
9890
9891 static int
9892 RC_SAE_immediate (const char *imm_start)
9893 {
9894 unsigned int match_found, j;
9895 const char *pstr = imm_start;
9896 expressionS *exp;
9897
9898 if (*pstr != '{')
9899 return 0;
9900
9901 pstr++;
9902 match_found = 0;
9903 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9904 {
9905 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9906 {
9907 if (!i.rounding)
9908 {
9909 rc_op.type = RC_NamesTable[j].type;
9910 rc_op.operand = this_operand;
9911 i.rounding = &rc_op;
9912 }
9913 else
9914 {
9915 as_bad (_("duplicated `%s'"), imm_start);
9916 return 0;
9917 }
9918 pstr += RC_NamesTable[j].len;
9919 match_found = 1;
9920 break;
9921 }
9922 }
9923 if (!match_found)
9924 return 0;
9925
9926 if (*pstr++ != '}')
9927 {
9928 as_bad (_("Missing '}': '%s'"), imm_start);
9929 return 0;
9930 }
9931 /* RC/SAE immediate string should contain nothing more. */;
9932 if (*pstr != 0)
9933 {
9934 as_bad (_("Junk after '}': '%s'"), imm_start);
9935 return 0;
9936 }
9937
9938 exp = &im_expressions[i.imm_operands++];
9939 i.op[this_operand].imms = exp;
9940
9941 exp->X_op = O_constant;
9942 exp->X_add_number = 0;
9943 exp->X_add_symbol = (symbolS *) 0;
9944 exp->X_op_symbol = (symbolS *) 0;
9945
9946 i.types[this_operand].bitfield.imm8 = 1;
9947 return 1;
9948 }
9949
9950 /* Only string instructions can have a second memory operand, so
9951 reduce current_templates to just those if it contains any. */
9952 static int
9953 maybe_adjust_templates (void)
9954 {
9955 const insn_template *t;
9956
9957 gas_assert (i.mem_operands == 1);
9958
9959 for (t = current_templates->start; t < current_templates->end; ++t)
9960 if (t->opcode_modifier.isstring)
9961 break;
9962
9963 if (t < current_templates->end)
9964 {
9965 static templates aux_templates;
9966 bfd_boolean recheck;
9967
9968 aux_templates.start = t;
9969 for (; t < current_templates->end; ++t)
9970 if (!t->opcode_modifier.isstring)
9971 break;
9972 aux_templates.end = t;
9973
9974 /* Determine whether to re-check the first memory operand. */
9975 recheck = (aux_templates.start != current_templates->start
9976 || t != current_templates->end);
9977
9978 current_templates = &aux_templates;
9979
9980 if (recheck)
9981 {
9982 i.mem_operands = 0;
9983 if (i.memop1_string != NULL
9984 && i386_index_check (i.memop1_string) == 0)
9985 return 0;
9986 i.mem_operands = 1;
9987 }
9988 }
9989
9990 return 1;
9991 }
9992
9993 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9994 on error. */
9995
9996 static int
9997 i386_att_operand (char *operand_string)
9998 {
9999 const reg_entry *r;
10000 char *end_op;
10001 char *op_string = operand_string;
10002
10003 if (is_space_char (*op_string))
10004 ++op_string;
10005
10006 /* We check for an absolute prefix (differentiating,
10007 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10008 if (*op_string == ABSOLUTE_PREFIX)
10009 {
10010 ++op_string;
10011 if (is_space_char (*op_string))
10012 ++op_string;
10013 i.types[this_operand].bitfield.jumpabsolute = 1;
10014 }
10015
10016 /* Check if operand is a register. */
10017 if ((r = parse_register (op_string, &end_op)) != NULL)
10018 {
10019 i386_operand_type temp;
10020
10021 /* Check for a segment override by searching for ':' after a
10022 segment register. */
10023 op_string = end_op;
10024 if (is_space_char (*op_string))
10025 ++op_string;
10026 if (*op_string == ':'
10027 && (r->reg_type.bitfield.sreg2
10028 || r->reg_type.bitfield.sreg3))
10029 {
10030 switch (r->reg_num)
10031 {
10032 case 0:
10033 i.seg[i.mem_operands] = &es;
10034 break;
10035 case 1:
10036 i.seg[i.mem_operands] = &cs;
10037 break;
10038 case 2:
10039 i.seg[i.mem_operands] = &ss;
10040 break;
10041 case 3:
10042 i.seg[i.mem_operands] = &ds;
10043 break;
10044 case 4:
10045 i.seg[i.mem_operands] = &fs;
10046 break;
10047 case 5:
10048 i.seg[i.mem_operands] = &gs;
10049 break;
10050 }
10051
10052 /* Skip the ':' and whitespace. */
10053 ++op_string;
10054 if (is_space_char (*op_string))
10055 ++op_string;
10056
10057 if (!is_digit_char (*op_string)
10058 && !is_identifier_char (*op_string)
10059 && *op_string != '('
10060 && *op_string != ABSOLUTE_PREFIX)
10061 {
10062 as_bad (_("bad memory operand `%s'"), op_string);
10063 return 0;
10064 }
10065 /* Handle case of %es:*foo. */
10066 if (*op_string == ABSOLUTE_PREFIX)
10067 {
10068 ++op_string;
10069 if (is_space_char (*op_string))
10070 ++op_string;
10071 i.types[this_operand].bitfield.jumpabsolute = 1;
10072 }
10073 goto do_memory_reference;
10074 }
10075
10076 /* Handle vector operations. */
10077 if (*op_string == '{')
10078 {
10079 op_string = check_VecOperations (op_string, NULL);
10080 if (op_string == NULL)
10081 return 0;
10082 }
10083
10084 if (*op_string)
10085 {
10086 as_bad (_("junk `%s' after register"), op_string);
10087 return 0;
10088 }
10089 temp = r->reg_type;
10090 temp.bitfield.baseindex = 0;
10091 i.types[this_operand] = operand_type_or (i.types[this_operand],
10092 temp);
10093 i.types[this_operand].bitfield.unspecified = 0;
10094 i.op[this_operand].regs = r;
10095 i.reg_operands++;
10096 }
10097 else if (*op_string == REGISTER_PREFIX)
10098 {
10099 as_bad (_("bad register name `%s'"), op_string);
10100 return 0;
10101 }
10102 else if (*op_string == IMMEDIATE_PREFIX)
10103 {
10104 ++op_string;
10105 if (i.types[this_operand].bitfield.jumpabsolute)
10106 {
10107 as_bad (_("immediate operand illegal with absolute jump"));
10108 return 0;
10109 }
10110 if (!i386_immediate (op_string))
10111 return 0;
10112 }
10113 else if (RC_SAE_immediate (operand_string))
10114 {
10115 /* If it is a RC or SAE immediate, do nothing. */
10116 ;
10117 }
10118 else if (is_digit_char (*op_string)
10119 || is_identifier_char (*op_string)
10120 || *op_string == '"'
10121 || *op_string == '(')
10122 {
10123 /* This is a memory reference of some sort. */
10124 char *base_string;
10125
10126 /* Start and end of displacement string expression (if found). */
10127 char *displacement_string_start;
10128 char *displacement_string_end;
10129 char *vop_start;
10130
10131 do_memory_reference:
10132 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10133 return 0;
10134 if ((i.mem_operands == 1
10135 && !current_templates->start->opcode_modifier.isstring)
10136 || i.mem_operands == 2)
10137 {
10138 as_bad (_("too many memory references for `%s'"),
10139 current_templates->start->name);
10140 return 0;
10141 }
10142
10143 /* Check for base index form. We detect the base index form by
10144 looking for an ')' at the end of the operand, searching
10145 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10146 after the '('. */
10147 base_string = op_string + strlen (op_string);
10148
10149 /* Handle vector operations. */
10150 vop_start = strchr (op_string, '{');
10151 if (vop_start && vop_start < base_string)
10152 {
10153 if (check_VecOperations (vop_start, base_string) == NULL)
10154 return 0;
10155 base_string = vop_start;
10156 }
10157
10158 --base_string;
10159 if (is_space_char (*base_string))
10160 --base_string;
10161
10162 /* If we only have a displacement, set-up for it to be parsed later. */
10163 displacement_string_start = op_string;
10164 displacement_string_end = base_string + 1;
10165
10166 if (*base_string == ')')
10167 {
10168 char *temp_string;
10169 unsigned int parens_balanced = 1;
10170 /* We've already checked that the number of left & right ()'s are
10171 equal, so this loop will not be infinite. */
10172 do
10173 {
10174 base_string--;
10175 if (*base_string == ')')
10176 parens_balanced++;
10177 if (*base_string == '(')
10178 parens_balanced--;
10179 }
10180 while (parens_balanced);
10181
10182 temp_string = base_string;
10183
10184 /* Skip past '(' and whitespace. */
10185 ++base_string;
10186 if (is_space_char (*base_string))
10187 ++base_string;
10188
10189 if (*base_string == ','
10190 || ((i.base_reg = parse_register (base_string, &end_op))
10191 != NULL))
10192 {
10193 displacement_string_end = temp_string;
10194
10195 i.types[this_operand].bitfield.baseindex = 1;
10196
10197 if (i.base_reg)
10198 {
10199 base_string = end_op;
10200 if (is_space_char (*base_string))
10201 ++base_string;
10202 }
10203
10204 /* There may be an index reg or scale factor here. */
10205 if (*base_string == ',')
10206 {
10207 ++base_string;
10208 if (is_space_char (*base_string))
10209 ++base_string;
10210
10211 if ((i.index_reg = parse_register (base_string, &end_op))
10212 != NULL)
10213 {
10214 base_string = end_op;
10215 if (is_space_char (*base_string))
10216 ++base_string;
10217 if (*base_string == ',')
10218 {
10219 ++base_string;
10220 if (is_space_char (*base_string))
10221 ++base_string;
10222 }
10223 else if (*base_string != ')')
10224 {
10225 as_bad (_("expecting `,' or `)' "
10226 "after index register in `%s'"),
10227 operand_string);
10228 return 0;
10229 }
10230 }
10231 else if (*base_string == REGISTER_PREFIX)
10232 {
10233 end_op = strchr (base_string, ',');
10234 if (end_op)
10235 *end_op = '\0';
10236 as_bad (_("bad register name `%s'"), base_string);
10237 return 0;
10238 }
10239
10240 /* Check for scale factor. */
10241 if (*base_string != ')')
10242 {
10243 char *end_scale = i386_scale (base_string);
10244
10245 if (!end_scale)
10246 return 0;
10247
10248 base_string = end_scale;
10249 if (is_space_char (*base_string))
10250 ++base_string;
10251 if (*base_string != ')')
10252 {
10253 as_bad (_("expecting `)' "
10254 "after scale factor in `%s'"),
10255 operand_string);
10256 return 0;
10257 }
10258 }
10259 else if (!i.index_reg)
10260 {
10261 as_bad (_("expecting index register or scale factor "
10262 "after `,'; got '%c'"),
10263 *base_string);
10264 return 0;
10265 }
10266 }
10267 else if (*base_string != ')')
10268 {
10269 as_bad (_("expecting `,' or `)' "
10270 "after base register in `%s'"),
10271 operand_string);
10272 return 0;
10273 }
10274 }
10275 else if (*base_string == REGISTER_PREFIX)
10276 {
10277 end_op = strchr (base_string, ',');
10278 if (end_op)
10279 *end_op = '\0';
10280 as_bad (_("bad register name `%s'"), base_string);
10281 return 0;
10282 }
10283 }
10284
10285 /* If there's an expression beginning the operand, parse it,
10286 assuming displacement_string_start and
10287 displacement_string_end are meaningful. */
10288 if (displacement_string_start != displacement_string_end)
10289 {
10290 if (!i386_displacement (displacement_string_start,
10291 displacement_string_end))
10292 return 0;
10293 }
10294
10295 /* Special case for (%dx) while doing input/output op. */
10296 if (i.base_reg
10297 && i.base_reg->reg_type.bitfield.inoutportreg
10298 && i.index_reg == 0
10299 && i.log2_scale_factor == 0
10300 && i.seg[i.mem_operands] == 0
10301 && !operand_type_check (i.types[this_operand], disp))
10302 {
10303 i.types[this_operand] = i.base_reg->reg_type;
10304 return 1;
10305 }
10306
10307 if (i386_index_check (operand_string) == 0)
10308 return 0;
10309 i.flags[this_operand] |= Operand_Mem;
10310 if (i.mem_operands == 0)
10311 i.memop1_string = xstrdup (operand_string);
10312 i.mem_operands++;
10313 }
10314 else
10315 {
10316 /* It's not a memory operand; argh! */
10317 as_bad (_("invalid char %s beginning operand %d `%s'"),
10318 output_invalid (*op_string),
10319 this_operand + 1,
10320 op_string);
10321 return 0;
10322 }
10323 return 1; /* Normal return. */
10324 }
10325 \f
10326 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10327 that an rs_machine_dependent frag may reach. */
10328
10329 unsigned int
10330 i386_frag_max_var (fragS *frag)
10331 {
10332 /* The only relaxable frags are for jumps.
10333 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10334 gas_assert (frag->fr_type == rs_machine_dependent);
10335 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10336 }
10337
10338 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10339 static int
10340 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10341 {
10342 /* STT_GNU_IFUNC symbol must go through PLT. */
10343 if ((symbol_get_bfdsym (fr_symbol)->flags
10344 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10345 return 0;
10346
10347 if (!S_IS_EXTERNAL (fr_symbol))
10348 /* Symbol may be weak or local. */
10349 return !S_IS_WEAK (fr_symbol);
10350
10351 /* Global symbols with non-default visibility can't be preempted. */
10352 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10353 return 1;
10354
10355 if (fr_var != NO_RELOC)
10356 switch ((enum bfd_reloc_code_real) fr_var)
10357 {
10358 case BFD_RELOC_386_PLT32:
10359 case BFD_RELOC_X86_64_PLT32:
10360 /* Symbol with PLT relocation may be preempted. */
10361 return 0;
10362 default:
10363 abort ();
10364 }
10365
10366 /* Global symbols with default visibility in a shared library may be
10367 preempted by another definition. */
10368 return !shared;
10369 }
10370 #endif
10371
10372 /* md_estimate_size_before_relax()
10373
10374 Called just before relax() for rs_machine_dependent frags. The x86
10375 assembler uses these frags to handle variable size jump
10376 instructions.
10377
10378 Any symbol that is now undefined will not become defined.
10379 Return the correct fr_subtype in the frag.
10380 Return the initial "guess for variable size of frag" to caller.
10381 The guess is actually the growth beyond the fixed part. Whatever
10382 we do to grow the fixed or variable part contributes to our
10383 returned value. */
10384
10385 int
10386 md_estimate_size_before_relax (fragS *fragP, segT segment)
10387 {
10388 /* We've already got fragP->fr_subtype right; all we have to do is
10389 check for un-relaxable symbols. On an ELF system, we can't relax
10390 an externally visible symbol, because it may be overridden by a
10391 shared library. */
10392 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10393 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10394 || (IS_ELF
10395 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10396 fragP->fr_var))
10397 #endif
10398 #if defined (OBJ_COFF) && defined (TE_PE)
10399 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10400 && S_IS_WEAK (fragP->fr_symbol))
10401 #endif
10402 )
10403 {
10404 /* Symbol is undefined in this segment, or we need to keep a
10405 reloc so that weak symbols can be overridden. */
10406 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10407 enum bfd_reloc_code_real reloc_type;
10408 unsigned char *opcode;
10409 int old_fr_fix;
10410
10411 if (fragP->fr_var != NO_RELOC)
10412 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10413 else if (size == 2)
10414 reloc_type = BFD_RELOC_16_PCREL;
10415 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10416 else if (need_plt32_p (fragP->fr_symbol))
10417 reloc_type = BFD_RELOC_X86_64_PLT32;
10418 #endif
10419 else
10420 reloc_type = BFD_RELOC_32_PCREL;
10421
10422 old_fr_fix = fragP->fr_fix;
10423 opcode = (unsigned char *) fragP->fr_opcode;
10424
10425 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10426 {
10427 case UNCOND_JUMP:
10428 /* Make jmp (0xeb) a (d)word displacement jump. */
10429 opcode[0] = 0xe9;
10430 fragP->fr_fix += size;
10431 fix_new (fragP, old_fr_fix, size,
10432 fragP->fr_symbol,
10433 fragP->fr_offset, 1,
10434 reloc_type);
10435 break;
10436
10437 case COND_JUMP86:
10438 if (size == 2
10439 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10440 {
10441 /* Negate the condition, and branch past an
10442 unconditional jump. */
10443 opcode[0] ^= 1;
10444 opcode[1] = 3;
10445 /* Insert an unconditional jump. */
10446 opcode[2] = 0xe9;
10447 /* We added two extra opcode bytes, and have a two byte
10448 offset. */
10449 fragP->fr_fix += 2 + 2;
10450 fix_new (fragP, old_fr_fix + 2, 2,
10451 fragP->fr_symbol,
10452 fragP->fr_offset, 1,
10453 reloc_type);
10454 break;
10455 }
10456 /* Fall through. */
10457
10458 case COND_JUMP:
10459 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10460 {
10461 fixS *fixP;
10462
10463 fragP->fr_fix += 1;
10464 fixP = fix_new (fragP, old_fr_fix, 1,
10465 fragP->fr_symbol,
10466 fragP->fr_offset, 1,
10467 BFD_RELOC_8_PCREL);
10468 fixP->fx_signed = 1;
10469 break;
10470 }
10471
10472 /* This changes the byte-displacement jump 0x7N
10473 to the (d)word-displacement jump 0x0f,0x8N. */
10474 opcode[1] = opcode[0] + 0x10;
10475 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10476 /* We've added an opcode byte. */
10477 fragP->fr_fix += 1 + size;
10478 fix_new (fragP, old_fr_fix + 1, size,
10479 fragP->fr_symbol,
10480 fragP->fr_offset, 1,
10481 reloc_type);
10482 break;
10483
10484 default:
10485 BAD_CASE (fragP->fr_subtype);
10486 break;
10487 }
10488 frag_wane (fragP);
10489 return fragP->fr_fix - old_fr_fix;
10490 }
10491
10492 /* Guess size depending on current relax state. Initially the relax
10493 state will correspond to a short jump and we return 1, because
10494 the variable part of the frag (the branch offset) is one byte
10495 long. However, we can relax a section more than once and in that
10496 case we must either set fr_subtype back to the unrelaxed state,
10497 or return the value for the appropriate branch. */
10498 return md_relax_table[fragP->fr_subtype].rlx_length;
10499 }
10500
10501 /* Called after relax() is finished.
10502
10503 In: Address of frag.
10504 fr_type == rs_machine_dependent.
10505 fr_subtype is what the address relaxed to.
10506
10507 Out: Any fixSs and constants are set up.
10508 Caller will turn frag into a ".space 0". */
10509
10510 void
10511 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10512 fragS *fragP)
10513 {
10514 unsigned char *opcode;
10515 unsigned char *where_to_put_displacement = NULL;
10516 offsetT target_address;
10517 offsetT opcode_address;
10518 unsigned int extension = 0;
10519 offsetT displacement_from_opcode_start;
10520
10521 opcode = (unsigned char *) fragP->fr_opcode;
10522
10523 /* Address we want to reach in file space. */
10524 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10525
10526 /* Address opcode resides at in file space. */
10527 opcode_address = fragP->fr_address + fragP->fr_fix;
10528
10529 /* Displacement from opcode start to fill into instruction. */
10530 displacement_from_opcode_start = target_address - opcode_address;
10531
10532 if ((fragP->fr_subtype & BIG) == 0)
10533 {
10534 /* Don't have to change opcode. */
10535 extension = 1; /* 1 opcode + 1 displacement */
10536 where_to_put_displacement = &opcode[1];
10537 }
10538 else
10539 {
10540 if (no_cond_jump_promotion
10541 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10542 as_warn_where (fragP->fr_file, fragP->fr_line,
10543 _("long jump required"));
10544
10545 switch (fragP->fr_subtype)
10546 {
10547 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10548 extension = 4; /* 1 opcode + 4 displacement */
10549 opcode[0] = 0xe9;
10550 where_to_put_displacement = &opcode[1];
10551 break;
10552
10553 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10554 extension = 2; /* 1 opcode + 2 displacement */
10555 opcode[0] = 0xe9;
10556 where_to_put_displacement = &opcode[1];
10557 break;
10558
10559 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10560 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10561 extension = 5; /* 2 opcode + 4 displacement */
10562 opcode[1] = opcode[0] + 0x10;
10563 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10564 where_to_put_displacement = &opcode[2];
10565 break;
10566
10567 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10568 extension = 3; /* 2 opcode + 2 displacement */
10569 opcode[1] = opcode[0] + 0x10;
10570 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10571 where_to_put_displacement = &opcode[2];
10572 break;
10573
10574 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10575 extension = 4;
10576 opcode[0] ^= 1;
10577 opcode[1] = 3;
10578 opcode[2] = 0xe9;
10579 where_to_put_displacement = &opcode[3];
10580 break;
10581
10582 default:
10583 BAD_CASE (fragP->fr_subtype);
10584 break;
10585 }
10586 }
10587
10588 /* If size if less then four we are sure that the operand fits,
10589 but if it's 4, then it could be that the displacement is larger
10590 then -/+ 2GB. */
10591 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10592 && object_64bit
10593 && ((addressT) (displacement_from_opcode_start - extension
10594 + ((addressT) 1 << 31))
10595 > (((addressT) 2 << 31) - 1)))
10596 {
10597 as_bad_where (fragP->fr_file, fragP->fr_line,
10598 _("jump target out of range"));
10599 /* Make us emit 0. */
10600 displacement_from_opcode_start = extension;
10601 }
10602 /* Now put displacement after opcode. */
10603 md_number_to_chars ((char *) where_to_put_displacement,
10604 (valueT) (displacement_from_opcode_start - extension),
10605 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10606 fragP->fr_fix += extension;
10607 }
10608 \f
10609 /* Apply a fixup (fixP) to segment data, once it has been determined
10610 by our caller that we have all the info we need to fix it up.
10611
10612 Parameter valP is the pointer to the value of the bits.
10613
10614 On the 386, immediates, displacements, and data pointers are all in
10615 the same (little-endian) format, so we don't need to care about which
10616 we are handling. */
10617
10618 void
10619 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10620 {
10621 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10622 valueT value = *valP;
10623
10624 #if !defined (TE_Mach)
10625 if (fixP->fx_pcrel)
10626 {
10627 switch (fixP->fx_r_type)
10628 {
10629 default:
10630 break;
10631
10632 case BFD_RELOC_64:
10633 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10634 break;
10635 case BFD_RELOC_32:
10636 case BFD_RELOC_X86_64_32S:
10637 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10638 break;
10639 case BFD_RELOC_16:
10640 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10641 break;
10642 case BFD_RELOC_8:
10643 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10644 break;
10645 }
10646 }
10647
10648 if (fixP->fx_addsy != NULL
10649 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10650 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10651 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10652 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10653 && !use_rela_relocations)
10654 {
10655 /* This is a hack. There should be a better way to handle this.
10656 This covers for the fact that bfd_install_relocation will
10657 subtract the current location (for partial_inplace, PC relative
10658 relocations); see more below. */
10659 #ifndef OBJ_AOUT
10660 if (IS_ELF
10661 #ifdef TE_PE
10662 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10663 #endif
10664 )
10665 value += fixP->fx_where + fixP->fx_frag->fr_address;
10666 #endif
10667 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10668 if (IS_ELF)
10669 {
10670 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10671
10672 if ((sym_seg == seg
10673 || (symbol_section_p (fixP->fx_addsy)
10674 && sym_seg != absolute_section))
10675 && !generic_force_reloc (fixP))
10676 {
10677 /* Yes, we add the values in twice. This is because
10678 bfd_install_relocation subtracts them out again. I think
10679 bfd_install_relocation is broken, but I don't dare change
10680 it. FIXME. */
10681 value += fixP->fx_where + fixP->fx_frag->fr_address;
10682 }
10683 }
10684 #endif
10685 #if defined (OBJ_COFF) && defined (TE_PE)
10686 /* For some reason, the PE format does not store a
10687 section address offset for a PC relative symbol. */
10688 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10689 || S_IS_WEAK (fixP->fx_addsy))
10690 value += md_pcrel_from (fixP);
10691 #endif
10692 }
10693 #if defined (OBJ_COFF) && defined (TE_PE)
10694 if (fixP->fx_addsy != NULL
10695 && S_IS_WEAK (fixP->fx_addsy)
10696 /* PR 16858: Do not modify weak function references. */
10697 && ! fixP->fx_pcrel)
10698 {
10699 #if !defined (TE_PEP)
10700 /* For x86 PE weak function symbols are neither PC-relative
10701 nor do they set S_IS_FUNCTION. So the only reliable way
10702 to detect them is to check the flags of their containing
10703 section. */
10704 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10705 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10706 ;
10707 else
10708 #endif
10709 value -= S_GET_VALUE (fixP->fx_addsy);
10710 }
10711 #endif
10712
10713 /* Fix a few things - the dynamic linker expects certain values here,
10714 and we must not disappoint it. */
10715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10716 if (IS_ELF && fixP->fx_addsy)
10717 switch (fixP->fx_r_type)
10718 {
10719 case BFD_RELOC_386_PLT32:
10720 case BFD_RELOC_X86_64_PLT32:
10721 /* Make the jump instruction point to the address of the operand.
10722 At runtime we merely add the offset to the actual PLT entry.
10723 NB: Subtract the offset size only for jump instructions. */
10724 if (fixP->fx_pcrel)
10725 value = -4;
10726 break;
10727
10728 case BFD_RELOC_386_TLS_GD:
10729 case BFD_RELOC_386_TLS_LDM:
10730 case BFD_RELOC_386_TLS_IE_32:
10731 case BFD_RELOC_386_TLS_IE:
10732 case BFD_RELOC_386_TLS_GOTIE:
10733 case BFD_RELOC_386_TLS_GOTDESC:
10734 case BFD_RELOC_X86_64_TLSGD:
10735 case BFD_RELOC_X86_64_TLSLD:
10736 case BFD_RELOC_X86_64_GOTTPOFF:
10737 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10738 value = 0; /* Fully resolved at runtime. No addend. */
10739 /* Fallthrough */
10740 case BFD_RELOC_386_TLS_LE:
10741 case BFD_RELOC_386_TLS_LDO_32:
10742 case BFD_RELOC_386_TLS_LE_32:
10743 case BFD_RELOC_X86_64_DTPOFF32:
10744 case BFD_RELOC_X86_64_DTPOFF64:
10745 case BFD_RELOC_X86_64_TPOFF32:
10746 case BFD_RELOC_X86_64_TPOFF64:
10747 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10748 break;
10749
10750 case BFD_RELOC_386_TLS_DESC_CALL:
10751 case BFD_RELOC_X86_64_TLSDESC_CALL:
10752 value = 0; /* Fully resolved at runtime. No addend. */
10753 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10754 fixP->fx_done = 0;
10755 return;
10756
10757 case BFD_RELOC_VTABLE_INHERIT:
10758 case BFD_RELOC_VTABLE_ENTRY:
10759 fixP->fx_done = 0;
10760 return;
10761
10762 default:
10763 break;
10764 }
10765 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10766 *valP = value;
10767 #endif /* !defined (TE_Mach) */
10768
10769 /* Are we finished with this relocation now? */
10770 if (fixP->fx_addsy == NULL)
10771 fixP->fx_done = 1;
10772 #if defined (OBJ_COFF) && defined (TE_PE)
10773 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10774 {
10775 fixP->fx_done = 0;
10776 /* Remember value for tc_gen_reloc. */
10777 fixP->fx_addnumber = value;
10778 /* Clear out the frag for now. */
10779 value = 0;
10780 }
10781 #endif
10782 else if (use_rela_relocations)
10783 {
10784 fixP->fx_no_overflow = 1;
10785 /* Remember value for tc_gen_reloc. */
10786 fixP->fx_addnumber = value;
10787 value = 0;
10788 }
10789
10790 md_number_to_chars (p, value, fixP->fx_size);
10791 }
10792 \f
10793 const char *
10794 md_atof (int type, char *litP, int *sizeP)
10795 {
10796 /* This outputs the LITTLENUMs in REVERSE order;
10797 in accord with the bigendian 386. */
10798 return ieee_md_atof (type, litP, sizeP, FALSE);
10799 }
10800 \f
10801 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10802
10803 static char *
10804 output_invalid (int c)
10805 {
10806 if (ISPRINT (c))
10807 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10808 "'%c'", c);
10809 else
10810 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10811 "(0x%x)", (unsigned char) c);
10812 return output_invalid_buf;
10813 }
10814
10815 /* REG_STRING starts *before* REGISTER_PREFIX. */
10816
10817 static const reg_entry *
10818 parse_real_register (char *reg_string, char **end_op)
10819 {
10820 char *s = reg_string;
10821 char *p;
10822 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10823 const reg_entry *r;
10824
10825 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10826 if (*s == REGISTER_PREFIX)
10827 ++s;
10828
10829 if (is_space_char (*s))
10830 ++s;
10831
10832 p = reg_name_given;
10833 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10834 {
10835 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10836 return (const reg_entry *) NULL;
10837 s++;
10838 }
10839
10840 /* For naked regs, make sure that we are not dealing with an identifier.
10841 This prevents confusing an identifier like `eax_var' with register
10842 `eax'. */
10843 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10844 return (const reg_entry *) NULL;
10845
10846 *end_op = s;
10847
10848 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10849
10850 /* Handle floating point regs, allowing spaces in the (i) part. */
10851 if (r == i386_regtab /* %st is first entry of table */)
10852 {
10853 if (!cpu_arch_flags.bitfield.cpu8087
10854 && !cpu_arch_flags.bitfield.cpu287
10855 && !cpu_arch_flags.bitfield.cpu387)
10856 return (const reg_entry *) NULL;
10857
10858 if (is_space_char (*s))
10859 ++s;
10860 if (*s == '(')
10861 {
10862 ++s;
10863 if (is_space_char (*s))
10864 ++s;
10865 if (*s >= '0' && *s <= '7')
10866 {
10867 int fpr = *s - '0';
10868 ++s;
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s == ')')
10872 {
10873 *end_op = s + 1;
10874 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10875 know (r);
10876 return r + fpr;
10877 }
10878 }
10879 /* We have "%st(" then garbage. */
10880 return (const reg_entry *) NULL;
10881 }
10882 }
10883
10884 if (r == NULL || allow_pseudo_reg)
10885 return r;
10886
10887 if (operand_type_all_zero (&r->reg_type))
10888 return (const reg_entry *) NULL;
10889
10890 if ((r->reg_type.bitfield.dword
10891 || r->reg_type.bitfield.sreg3
10892 || r->reg_type.bitfield.control
10893 || r->reg_type.bitfield.debug
10894 || r->reg_type.bitfield.test)
10895 && !cpu_arch_flags.bitfield.cpui386)
10896 return (const reg_entry *) NULL;
10897
10898 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10899 return (const reg_entry *) NULL;
10900
10901 if (!cpu_arch_flags.bitfield.cpuavx512f)
10902 {
10903 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10904 return (const reg_entry *) NULL;
10905
10906 if (!cpu_arch_flags.bitfield.cpuavx)
10907 {
10908 if (r->reg_type.bitfield.ymmword)
10909 return (const reg_entry *) NULL;
10910
10911 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10912 return (const reg_entry *) NULL;
10913 }
10914 }
10915
10916 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10917 return (const reg_entry *) NULL;
10918
10919 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10920 if (!allow_index_reg && r->reg_num == RegIZ)
10921 return (const reg_entry *) NULL;
10922
10923 /* Upper 16 vector registers are only available with VREX in 64bit
10924 mode, and require EVEX encoding. */
10925 if (r->reg_flags & RegVRex)
10926 {
10927 if (!cpu_arch_flags.bitfield.cpuavx512f
10928 || flag_code != CODE_64BIT)
10929 return (const reg_entry *) NULL;
10930
10931 i.vec_encoding = vex_encoding_evex;
10932 }
10933
10934 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10935 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10936 && flag_code != CODE_64BIT)
10937 return (const reg_entry *) NULL;
10938
10939 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10940 return (const reg_entry *) NULL;
10941
10942 return r;
10943 }
10944
10945 /* REG_STRING starts *before* REGISTER_PREFIX. */
10946
10947 static const reg_entry *
10948 parse_register (char *reg_string, char **end_op)
10949 {
10950 const reg_entry *r;
10951
10952 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10953 r = parse_real_register (reg_string, end_op);
10954 else
10955 r = NULL;
10956 if (!r)
10957 {
10958 char *save = input_line_pointer;
10959 char c;
10960 symbolS *symbolP;
10961
10962 input_line_pointer = reg_string;
10963 c = get_symbol_name (&reg_string);
10964 symbolP = symbol_find (reg_string);
10965 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10966 {
10967 const expressionS *e = symbol_get_value_expression (symbolP);
10968
10969 know (e->X_op == O_register);
10970 know (e->X_add_number >= 0
10971 && (valueT) e->X_add_number < i386_regtab_size);
10972 r = i386_regtab + e->X_add_number;
10973 if ((r->reg_flags & RegVRex))
10974 i.vec_encoding = vex_encoding_evex;
10975 *end_op = input_line_pointer;
10976 }
10977 *input_line_pointer = c;
10978 input_line_pointer = save;
10979 }
10980 return r;
10981 }
10982
10983 int
10984 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10985 {
10986 const reg_entry *r;
10987 char *end = input_line_pointer;
10988
10989 *end = *nextcharP;
10990 r = parse_register (name, &input_line_pointer);
10991 if (r && end <= input_line_pointer)
10992 {
10993 *nextcharP = *input_line_pointer;
10994 *input_line_pointer = 0;
10995 e->X_op = O_register;
10996 e->X_add_number = r - i386_regtab;
10997 return 1;
10998 }
10999 input_line_pointer = end;
11000 *end = 0;
11001 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11002 }
11003
11004 void
11005 md_operand (expressionS *e)
11006 {
11007 char *end;
11008 const reg_entry *r;
11009
11010 switch (*input_line_pointer)
11011 {
11012 case REGISTER_PREFIX:
11013 r = parse_real_register (input_line_pointer, &end);
11014 if (r)
11015 {
11016 e->X_op = O_register;
11017 e->X_add_number = r - i386_regtab;
11018 input_line_pointer = end;
11019 }
11020 break;
11021
11022 case '[':
11023 gas_assert (intel_syntax);
11024 end = input_line_pointer++;
11025 expression (e);
11026 if (*input_line_pointer == ']')
11027 {
11028 ++input_line_pointer;
11029 e->X_op_symbol = make_expr_symbol (e);
11030 e->X_add_symbol = NULL;
11031 e->X_add_number = 0;
11032 e->X_op = O_index;
11033 }
11034 else
11035 {
11036 e->X_op = O_absent;
11037 input_line_pointer = end;
11038 }
11039 break;
11040 }
11041 }
11042
11043 \f
11044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11045 const char *md_shortopts = "kVQ:sqnO::";
11046 #else
11047 const char *md_shortopts = "qnO::";
11048 #endif
11049
11050 #define OPTION_32 (OPTION_MD_BASE + 0)
11051 #define OPTION_64 (OPTION_MD_BASE + 1)
11052 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11053 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11054 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11055 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11056 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11057 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11058 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11059 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11060 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11061 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11062 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11063 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11064 #define OPTION_X32 (OPTION_MD_BASE + 14)
11065 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11066 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11067 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11068 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11069 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11070 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11071 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11072 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11073 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11074 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11075 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11076 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11077
11078 struct option md_longopts[] =
11079 {
11080 {"32", no_argument, NULL, OPTION_32},
11081 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11082 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11083 {"64", no_argument, NULL, OPTION_64},
11084 #endif
11085 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11086 {"x32", no_argument, NULL, OPTION_X32},
11087 {"mshared", no_argument, NULL, OPTION_MSHARED},
11088 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11089 #endif
11090 {"divide", no_argument, NULL, OPTION_DIVIDE},
11091 {"march", required_argument, NULL, OPTION_MARCH},
11092 {"mtune", required_argument, NULL, OPTION_MTUNE},
11093 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11094 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11095 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11096 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11097 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11098 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11099 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11100 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11101 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11102 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11103 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11104 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11105 # if defined (TE_PE) || defined (TE_PEP)
11106 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11107 #endif
11108 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11109 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11110 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11111 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11112 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11113 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11114 {NULL, no_argument, NULL, 0}
11115 };
11116 size_t md_longopts_size = sizeof (md_longopts);
11117
11118 int
11119 md_parse_option (int c, const char *arg)
11120 {
11121 unsigned int j;
11122 char *arch, *next, *saved;
11123
11124 switch (c)
11125 {
11126 case 'n':
11127 optimize_align_code = 0;
11128 break;
11129
11130 case 'q':
11131 quiet_warnings = 1;
11132 break;
11133
11134 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11135 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11136 should be emitted or not. FIXME: Not implemented. */
11137 case 'Q':
11138 break;
11139
11140 /* -V: SVR4 argument to print version ID. */
11141 case 'V':
11142 print_version_id ();
11143 break;
11144
11145 /* -k: Ignore for FreeBSD compatibility. */
11146 case 'k':
11147 break;
11148
11149 case 's':
11150 /* -s: On i386 Solaris, this tells the native assembler to use
11151 .stab instead of .stab.excl. We always use .stab anyhow. */
11152 break;
11153
11154 case OPTION_MSHARED:
11155 shared = 1;
11156 break;
11157
11158 case OPTION_X86_USED_NOTE:
11159 if (strcasecmp (arg, "yes") == 0)
11160 x86_used_note = 1;
11161 else if (strcasecmp (arg, "no") == 0)
11162 x86_used_note = 0;
11163 else
11164 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11165 break;
11166
11167
11168 #endif
11169 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11170 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11171 case OPTION_64:
11172 {
11173 const char **list, **l;
11174
11175 list = bfd_target_list ();
11176 for (l = list; *l != NULL; l++)
11177 if (CONST_STRNEQ (*l, "elf64-x86-64")
11178 || strcmp (*l, "coff-x86-64") == 0
11179 || strcmp (*l, "pe-x86-64") == 0
11180 || strcmp (*l, "pei-x86-64") == 0
11181 || strcmp (*l, "mach-o-x86-64") == 0)
11182 {
11183 default_arch = "x86_64";
11184 break;
11185 }
11186 if (*l == NULL)
11187 as_fatal (_("no compiled in support for x86_64"));
11188 free (list);
11189 }
11190 break;
11191 #endif
11192
11193 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11194 case OPTION_X32:
11195 if (IS_ELF)
11196 {
11197 const char **list, **l;
11198
11199 list = bfd_target_list ();
11200 for (l = list; *l != NULL; l++)
11201 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11202 {
11203 default_arch = "x86_64:32";
11204 break;
11205 }
11206 if (*l == NULL)
11207 as_fatal (_("no compiled in support for 32bit x86_64"));
11208 free (list);
11209 }
11210 else
11211 as_fatal (_("32bit x86_64 is only supported for ELF"));
11212 break;
11213 #endif
11214
11215 case OPTION_32:
11216 default_arch = "i386";
11217 break;
11218
11219 case OPTION_DIVIDE:
11220 #ifdef SVR4_COMMENT_CHARS
11221 {
11222 char *n, *t;
11223 const char *s;
11224
11225 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11226 t = n;
11227 for (s = i386_comment_chars; *s != '\0'; s++)
11228 if (*s != '/')
11229 *t++ = *s;
11230 *t = '\0';
11231 i386_comment_chars = n;
11232 }
11233 #endif
11234 break;
11235
11236 case OPTION_MARCH:
11237 saved = xstrdup (arg);
11238 arch = saved;
11239 /* Allow -march=+nosse. */
11240 if (*arch == '+')
11241 arch++;
11242 do
11243 {
11244 if (*arch == '.')
11245 as_fatal (_("invalid -march= option: `%s'"), arg);
11246 next = strchr (arch, '+');
11247 if (next)
11248 *next++ = '\0';
11249 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11250 {
11251 if (strcmp (arch, cpu_arch [j].name) == 0)
11252 {
11253 /* Processor. */
11254 if (! cpu_arch[j].flags.bitfield.cpui386)
11255 continue;
11256
11257 cpu_arch_name = cpu_arch[j].name;
11258 cpu_sub_arch_name = NULL;
11259 cpu_arch_flags = cpu_arch[j].flags;
11260 cpu_arch_isa = cpu_arch[j].type;
11261 cpu_arch_isa_flags = cpu_arch[j].flags;
11262 if (!cpu_arch_tune_set)
11263 {
11264 cpu_arch_tune = cpu_arch_isa;
11265 cpu_arch_tune_flags = cpu_arch_isa_flags;
11266 }
11267 break;
11268 }
11269 else if (*cpu_arch [j].name == '.'
11270 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11271 {
11272 /* ISA extension. */
11273 i386_cpu_flags flags;
11274
11275 flags = cpu_flags_or (cpu_arch_flags,
11276 cpu_arch[j].flags);
11277
11278 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11279 {
11280 if (cpu_sub_arch_name)
11281 {
11282 char *name = cpu_sub_arch_name;
11283 cpu_sub_arch_name = concat (name,
11284 cpu_arch[j].name,
11285 (const char *) NULL);
11286 free (name);
11287 }
11288 else
11289 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11290 cpu_arch_flags = flags;
11291 cpu_arch_isa_flags = flags;
11292 }
11293 else
11294 cpu_arch_isa_flags
11295 = cpu_flags_or (cpu_arch_isa_flags,
11296 cpu_arch[j].flags);
11297 break;
11298 }
11299 }
11300
11301 if (j >= ARRAY_SIZE (cpu_arch))
11302 {
11303 /* Disable an ISA extension. */
11304 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11305 if (strcmp (arch, cpu_noarch [j].name) == 0)
11306 {
11307 i386_cpu_flags flags;
11308
11309 flags = cpu_flags_and_not (cpu_arch_flags,
11310 cpu_noarch[j].flags);
11311 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11312 {
11313 if (cpu_sub_arch_name)
11314 {
11315 char *name = cpu_sub_arch_name;
11316 cpu_sub_arch_name = concat (arch,
11317 (const char *) NULL);
11318 free (name);
11319 }
11320 else
11321 cpu_sub_arch_name = xstrdup (arch);
11322 cpu_arch_flags = flags;
11323 cpu_arch_isa_flags = flags;
11324 }
11325 break;
11326 }
11327
11328 if (j >= ARRAY_SIZE (cpu_noarch))
11329 j = ARRAY_SIZE (cpu_arch);
11330 }
11331
11332 if (j >= ARRAY_SIZE (cpu_arch))
11333 as_fatal (_("invalid -march= option: `%s'"), arg);
11334
11335 arch = next;
11336 }
11337 while (next != NULL);
11338 free (saved);
11339 break;
11340
11341 case OPTION_MTUNE:
11342 if (*arg == '.')
11343 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11344 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11345 {
11346 if (strcmp (arg, cpu_arch [j].name) == 0)
11347 {
11348 cpu_arch_tune_set = 1;
11349 cpu_arch_tune = cpu_arch [j].type;
11350 cpu_arch_tune_flags = cpu_arch[j].flags;
11351 break;
11352 }
11353 }
11354 if (j >= ARRAY_SIZE (cpu_arch))
11355 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11356 break;
11357
11358 case OPTION_MMNEMONIC:
11359 if (strcasecmp (arg, "att") == 0)
11360 intel_mnemonic = 0;
11361 else if (strcasecmp (arg, "intel") == 0)
11362 intel_mnemonic = 1;
11363 else
11364 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11365 break;
11366
11367 case OPTION_MSYNTAX:
11368 if (strcasecmp (arg, "att") == 0)
11369 intel_syntax = 0;
11370 else if (strcasecmp (arg, "intel") == 0)
11371 intel_syntax = 1;
11372 else
11373 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11374 break;
11375
11376 case OPTION_MINDEX_REG:
11377 allow_index_reg = 1;
11378 break;
11379
11380 case OPTION_MNAKED_REG:
11381 allow_naked_reg = 1;
11382 break;
11383
11384 case OPTION_MSSE2AVX:
11385 sse2avx = 1;
11386 break;
11387
11388 case OPTION_MSSE_CHECK:
11389 if (strcasecmp (arg, "error") == 0)
11390 sse_check = check_error;
11391 else if (strcasecmp (arg, "warning") == 0)
11392 sse_check = check_warning;
11393 else if (strcasecmp (arg, "none") == 0)
11394 sse_check = check_none;
11395 else
11396 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11397 break;
11398
11399 case OPTION_MOPERAND_CHECK:
11400 if (strcasecmp (arg, "error") == 0)
11401 operand_check = check_error;
11402 else if (strcasecmp (arg, "warning") == 0)
11403 operand_check = check_warning;
11404 else if (strcasecmp (arg, "none") == 0)
11405 operand_check = check_none;
11406 else
11407 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11408 break;
11409
11410 case OPTION_MAVXSCALAR:
11411 if (strcasecmp (arg, "128") == 0)
11412 avxscalar = vex128;
11413 else if (strcasecmp (arg, "256") == 0)
11414 avxscalar = vex256;
11415 else
11416 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11417 break;
11418
11419 case OPTION_MVEXWIG:
11420 if (strcmp (arg, "0") == 0)
11421 vexwig = evexw0;
11422 else if (strcmp (arg, "1") == 0)
11423 vexwig = evexw1;
11424 else
11425 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11426 break;
11427
11428 case OPTION_MADD_BND_PREFIX:
11429 add_bnd_prefix = 1;
11430 break;
11431
11432 case OPTION_MEVEXLIG:
11433 if (strcmp (arg, "128") == 0)
11434 evexlig = evexl128;
11435 else if (strcmp (arg, "256") == 0)
11436 evexlig = evexl256;
11437 else if (strcmp (arg, "512") == 0)
11438 evexlig = evexl512;
11439 else
11440 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11441 break;
11442
11443 case OPTION_MEVEXRCIG:
11444 if (strcmp (arg, "rne") == 0)
11445 evexrcig = rne;
11446 else if (strcmp (arg, "rd") == 0)
11447 evexrcig = rd;
11448 else if (strcmp (arg, "ru") == 0)
11449 evexrcig = ru;
11450 else if (strcmp (arg, "rz") == 0)
11451 evexrcig = rz;
11452 else
11453 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11454 break;
11455
11456 case OPTION_MEVEXWIG:
11457 if (strcmp (arg, "0") == 0)
11458 evexwig = evexw0;
11459 else if (strcmp (arg, "1") == 0)
11460 evexwig = evexw1;
11461 else
11462 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11463 break;
11464
11465 # if defined (TE_PE) || defined (TE_PEP)
11466 case OPTION_MBIG_OBJ:
11467 use_big_obj = 1;
11468 break;
11469 #endif
11470
11471 case OPTION_MOMIT_LOCK_PREFIX:
11472 if (strcasecmp (arg, "yes") == 0)
11473 omit_lock_prefix = 1;
11474 else if (strcasecmp (arg, "no") == 0)
11475 omit_lock_prefix = 0;
11476 else
11477 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11478 break;
11479
11480 case OPTION_MFENCE_AS_LOCK_ADD:
11481 if (strcasecmp (arg, "yes") == 0)
11482 avoid_fence = 1;
11483 else if (strcasecmp (arg, "no") == 0)
11484 avoid_fence = 0;
11485 else
11486 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11487 break;
11488
11489 case OPTION_MRELAX_RELOCATIONS:
11490 if (strcasecmp (arg, "yes") == 0)
11491 generate_relax_relocations = 1;
11492 else if (strcasecmp (arg, "no") == 0)
11493 generate_relax_relocations = 0;
11494 else
11495 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11496 break;
11497
11498 case OPTION_MAMD64:
11499 intel64 = 0;
11500 break;
11501
11502 case OPTION_MINTEL64:
11503 intel64 = 1;
11504 break;
11505
11506 case 'O':
11507 if (arg == NULL)
11508 {
11509 optimize = 1;
11510 /* Turn off -Os. */
11511 optimize_for_space = 0;
11512 }
11513 else if (*arg == 's')
11514 {
11515 optimize_for_space = 1;
11516 /* Turn on all encoding optimizations. */
11517 optimize = INT_MAX;
11518 }
11519 else
11520 {
11521 optimize = atoi (arg);
11522 /* Turn off -Os. */
11523 optimize_for_space = 0;
11524 }
11525 break;
11526
11527 default:
11528 return 0;
11529 }
11530 return 1;
11531 }
11532
11533 #define MESSAGE_TEMPLATE \
11534 " "
11535
11536 static char *
11537 output_message (FILE *stream, char *p, char *message, char *start,
11538 int *left_p, const char *name, int len)
11539 {
11540 int size = sizeof (MESSAGE_TEMPLATE);
11541 int left = *left_p;
11542
11543 /* Reserve 2 spaces for ", " or ",\0" */
11544 left -= len + 2;
11545
11546 /* Check if there is any room. */
11547 if (left >= 0)
11548 {
11549 if (p != start)
11550 {
11551 *p++ = ',';
11552 *p++ = ' ';
11553 }
11554 p = mempcpy (p, name, len);
11555 }
11556 else
11557 {
11558 /* Output the current message now and start a new one. */
11559 *p++ = ',';
11560 *p = '\0';
11561 fprintf (stream, "%s\n", message);
11562 p = start;
11563 left = size - (start - message) - len - 2;
11564
11565 gas_assert (left >= 0);
11566
11567 p = mempcpy (p, name, len);
11568 }
11569
11570 *left_p = left;
11571 return p;
11572 }
11573
11574 static void
11575 show_arch (FILE *stream, int ext, int check)
11576 {
11577 static char message[] = MESSAGE_TEMPLATE;
11578 char *start = message + 27;
11579 char *p;
11580 int size = sizeof (MESSAGE_TEMPLATE);
11581 int left;
11582 const char *name;
11583 int len;
11584 unsigned int j;
11585
11586 p = start;
11587 left = size - (start - message);
11588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11589 {
11590 /* Should it be skipped? */
11591 if (cpu_arch [j].skip)
11592 continue;
11593
11594 name = cpu_arch [j].name;
11595 len = cpu_arch [j].len;
11596 if (*name == '.')
11597 {
11598 /* It is an extension. Skip if we aren't asked to show it. */
11599 if (ext)
11600 {
11601 name++;
11602 len--;
11603 }
11604 else
11605 continue;
11606 }
11607 else if (ext)
11608 {
11609 /* It is an processor. Skip if we show only extension. */
11610 continue;
11611 }
11612 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11613 {
11614 /* It is an impossible processor - skip. */
11615 continue;
11616 }
11617
11618 p = output_message (stream, p, message, start, &left, name, len);
11619 }
11620
11621 /* Display disabled extensions. */
11622 if (ext)
11623 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11624 {
11625 name = cpu_noarch [j].name;
11626 len = cpu_noarch [j].len;
11627 p = output_message (stream, p, message, start, &left, name,
11628 len);
11629 }
11630
11631 *p = '\0';
11632 fprintf (stream, "%s\n", message);
11633 }
11634
11635 void
11636 md_show_usage (FILE *stream)
11637 {
11638 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11639 fprintf (stream, _("\
11640 -Q ignored\n\
11641 -V print assembler version number\n\
11642 -k ignored\n"));
11643 #endif
11644 fprintf (stream, _("\
11645 -n Do not optimize code alignment\n\
11646 -q quieten some warnings\n"));
11647 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11648 fprintf (stream, _("\
11649 -s ignored\n"));
11650 #endif
11651 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11652 || defined (TE_PE) || defined (TE_PEP))
11653 fprintf (stream, _("\
11654 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11655 #endif
11656 #ifdef SVR4_COMMENT_CHARS
11657 fprintf (stream, _("\
11658 --divide do not treat `/' as a comment character\n"));
11659 #else
11660 fprintf (stream, _("\
11661 --divide ignored\n"));
11662 #endif
11663 fprintf (stream, _("\
11664 -march=CPU[,+EXTENSION...]\n\
11665 generate code for CPU and EXTENSION, CPU is one of:\n"));
11666 show_arch (stream, 0, 1);
11667 fprintf (stream, _("\
11668 EXTENSION is combination of:\n"));
11669 show_arch (stream, 1, 0);
11670 fprintf (stream, _("\
11671 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11672 show_arch (stream, 0, 0);
11673 fprintf (stream, _("\
11674 -msse2avx encode SSE instructions with VEX prefix\n"));
11675 fprintf (stream, _("\
11676 -msse-check=[none|error|warning] (default: warning)\n\
11677 check SSE instructions\n"));
11678 fprintf (stream, _("\
11679 -moperand-check=[none|error|warning] (default: warning)\n\
11680 check operand combinations for validity\n"));
11681 fprintf (stream, _("\
11682 -mavxscalar=[128|256] (default: 128)\n\
11683 encode scalar AVX instructions with specific vector\n\
11684 length\n"));
11685 fprintf (stream, _("\
11686 -mvexwig=[0|1] (default: 0)\n\
11687 encode VEX instructions with specific VEX.W value\n\
11688 for VEX.W bit ignored instructions\n"));
11689 fprintf (stream, _("\
11690 -mevexlig=[128|256|512] (default: 128)\n\
11691 encode scalar EVEX instructions with specific vector\n\
11692 length\n"));
11693 fprintf (stream, _("\
11694 -mevexwig=[0|1] (default: 0)\n\
11695 encode EVEX instructions with specific EVEX.W value\n\
11696 for EVEX.W bit ignored instructions\n"));
11697 fprintf (stream, _("\
11698 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11699 encode EVEX instructions with specific EVEX.RC value\n\
11700 for SAE-only ignored instructions\n"));
11701 fprintf (stream, _("\
11702 -mmnemonic=[att|intel] "));
11703 if (SYSV386_COMPAT)
11704 fprintf (stream, _("(default: att)\n"));
11705 else
11706 fprintf (stream, _("(default: intel)\n"));
11707 fprintf (stream, _("\
11708 use AT&T/Intel mnemonic\n"));
11709 fprintf (stream, _("\
11710 -msyntax=[att|intel] (default: att)\n\
11711 use AT&T/Intel syntax\n"));
11712 fprintf (stream, _("\
11713 -mindex-reg support pseudo index registers\n"));
11714 fprintf (stream, _("\
11715 -mnaked-reg don't require `%%' prefix for registers\n"));
11716 fprintf (stream, _("\
11717 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11718 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11719 fprintf (stream, _("\
11720 -mshared disable branch optimization for shared code\n"));
11721 fprintf (stream, _("\
11722 -mx86-used-note=[no|yes] "));
11723 if (DEFAULT_X86_USED_NOTE)
11724 fprintf (stream, _("(default: yes)\n"));
11725 else
11726 fprintf (stream, _("(default: no)\n"));
11727 fprintf (stream, _("\
11728 generate x86 used ISA and feature properties\n"));
11729 #endif
11730 #if defined (TE_PE) || defined (TE_PEP)
11731 fprintf (stream, _("\
11732 -mbig-obj generate big object files\n"));
11733 #endif
11734 fprintf (stream, _("\
11735 -momit-lock-prefix=[no|yes] (default: no)\n\
11736 strip all lock prefixes\n"));
11737 fprintf (stream, _("\
11738 -mfence-as-lock-add=[no|yes] (default: no)\n\
11739 encode lfence, mfence and sfence as\n\
11740 lock addl $0x0, (%%{re}sp)\n"));
11741 fprintf (stream, _("\
11742 -mrelax-relocations=[no|yes] "));
11743 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11744 fprintf (stream, _("(default: yes)\n"));
11745 else
11746 fprintf (stream, _("(default: no)\n"));
11747 fprintf (stream, _("\
11748 generate relax relocations\n"));
11749 fprintf (stream, _("\
11750 -mamd64 accept only AMD64 ISA [default]\n"));
11751 fprintf (stream, _("\
11752 -mintel64 accept only Intel64 ISA\n"));
11753 }
11754
11755 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11756 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11757 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11758
11759 /* Pick the target format to use. */
11760
11761 const char *
11762 i386_target_format (void)
11763 {
11764 if (!strncmp (default_arch, "x86_64", 6))
11765 {
11766 update_code_flag (CODE_64BIT, 1);
11767 if (default_arch[6] == '\0')
11768 x86_elf_abi = X86_64_ABI;
11769 else
11770 x86_elf_abi = X86_64_X32_ABI;
11771 }
11772 else if (!strcmp (default_arch, "i386"))
11773 update_code_flag (CODE_32BIT, 1);
11774 else if (!strcmp (default_arch, "iamcu"))
11775 {
11776 update_code_flag (CODE_32BIT, 1);
11777 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11778 {
11779 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11780 cpu_arch_name = "iamcu";
11781 cpu_sub_arch_name = NULL;
11782 cpu_arch_flags = iamcu_flags;
11783 cpu_arch_isa = PROCESSOR_IAMCU;
11784 cpu_arch_isa_flags = iamcu_flags;
11785 if (!cpu_arch_tune_set)
11786 {
11787 cpu_arch_tune = cpu_arch_isa;
11788 cpu_arch_tune_flags = cpu_arch_isa_flags;
11789 }
11790 }
11791 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11792 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11793 cpu_arch_name);
11794 }
11795 else
11796 as_fatal (_("unknown architecture"));
11797
11798 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11799 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11800 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11801 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11802
11803 switch (OUTPUT_FLAVOR)
11804 {
11805 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11806 case bfd_target_aout_flavour:
11807 return AOUT_TARGET_FORMAT;
11808 #endif
11809 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11810 # if defined (TE_PE) || defined (TE_PEP)
11811 case bfd_target_coff_flavour:
11812 if (flag_code == CODE_64BIT)
11813 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11814 else
11815 return "pe-i386";
11816 # elif defined (TE_GO32)
11817 case bfd_target_coff_flavour:
11818 return "coff-go32";
11819 # else
11820 case bfd_target_coff_flavour:
11821 return "coff-i386";
11822 # endif
11823 #endif
11824 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11825 case bfd_target_elf_flavour:
11826 {
11827 const char *format;
11828
11829 switch (x86_elf_abi)
11830 {
11831 default:
11832 format = ELF_TARGET_FORMAT;
11833 break;
11834 case X86_64_ABI:
11835 use_rela_relocations = 1;
11836 object_64bit = 1;
11837 format = ELF_TARGET_FORMAT64;
11838 break;
11839 case X86_64_X32_ABI:
11840 use_rela_relocations = 1;
11841 object_64bit = 1;
11842 disallow_64bit_reloc = 1;
11843 format = ELF_TARGET_FORMAT32;
11844 break;
11845 }
11846 if (cpu_arch_isa == PROCESSOR_L1OM)
11847 {
11848 if (x86_elf_abi != X86_64_ABI)
11849 as_fatal (_("Intel L1OM is 64bit only"));
11850 return ELF_TARGET_L1OM_FORMAT;
11851 }
11852 else if (cpu_arch_isa == PROCESSOR_K1OM)
11853 {
11854 if (x86_elf_abi != X86_64_ABI)
11855 as_fatal (_("Intel K1OM is 64bit only"));
11856 return ELF_TARGET_K1OM_FORMAT;
11857 }
11858 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11859 {
11860 if (x86_elf_abi != I386_ABI)
11861 as_fatal (_("Intel MCU is 32bit only"));
11862 return ELF_TARGET_IAMCU_FORMAT;
11863 }
11864 else
11865 return format;
11866 }
11867 #endif
11868 #if defined (OBJ_MACH_O)
11869 case bfd_target_mach_o_flavour:
11870 if (flag_code == CODE_64BIT)
11871 {
11872 use_rela_relocations = 1;
11873 object_64bit = 1;
11874 return "mach-o-x86-64";
11875 }
11876 else
11877 return "mach-o-i386";
11878 #endif
11879 default:
11880 abort ();
11881 return NULL;
11882 }
11883 }
11884
11885 #endif /* OBJ_MAYBE_ more than one */
11886 \f
11887 symbolS *
11888 md_undefined_symbol (char *name)
11889 {
11890 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11891 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11892 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11893 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11894 {
11895 if (!GOT_symbol)
11896 {
11897 if (symbol_find (name))
11898 as_bad (_("GOT already in symbol table"));
11899 GOT_symbol = symbol_new (name, undefined_section,
11900 (valueT) 0, &zero_address_frag);
11901 };
11902 return GOT_symbol;
11903 }
11904 return 0;
11905 }
11906
11907 /* Round up a section size to the appropriate boundary. */
11908
11909 valueT
11910 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11911 {
11912 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11913 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11914 {
11915 /* For a.out, force the section size to be aligned. If we don't do
11916 this, BFD will align it for us, but it will not write out the
11917 final bytes of the section. This may be a bug in BFD, but it is
11918 easier to fix it here since that is how the other a.out targets
11919 work. */
11920 int align;
11921
11922 align = bfd_get_section_alignment (stdoutput, segment);
11923 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11924 }
11925 #endif
11926
11927 return size;
11928 }
11929
11930 /* On the i386, PC-relative offsets are relative to the start of the
11931 next instruction. That is, the address of the offset, plus its
11932 size, since the offset is always the last part of the insn. */
11933
11934 long
11935 md_pcrel_from (fixS *fixP)
11936 {
11937 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11938 }
11939
11940 #ifndef I386COFF
11941
11942 static void
11943 s_bss (int ignore ATTRIBUTE_UNUSED)
11944 {
11945 int temp;
11946
11947 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11948 if (IS_ELF)
11949 obj_elf_section_change_hook ();
11950 #endif
11951 temp = get_absolute_expression ();
11952 subseg_set (bss_section, (subsegT) temp);
11953 demand_empty_rest_of_line ();
11954 }
11955
11956 #endif
11957
11958 void
11959 i386_validate_fix (fixS *fixp)
11960 {
11961 if (fixp->fx_subsy)
11962 {
11963 if (fixp->fx_subsy == GOT_symbol)
11964 {
11965 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11966 {
11967 if (!object_64bit)
11968 abort ();
11969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11970 if (fixp->fx_tcbit2)
11971 fixp->fx_r_type = (fixp->fx_tcbit
11972 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11973 : BFD_RELOC_X86_64_GOTPCRELX);
11974 else
11975 #endif
11976 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11977 }
11978 else
11979 {
11980 if (!object_64bit)
11981 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11982 else
11983 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11984 }
11985 fixp->fx_subsy = 0;
11986 }
11987 }
11988 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11989 else if (!object_64bit)
11990 {
11991 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11992 && fixp->fx_tcbit2)
11993 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11994 }
11995 #endif
11996 }
11997
11998 arelent *
11999 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12000 {
12001 arelent *rel;
12002 bfd_reloc_code_real_type code;
12003
12004 switch (fixp->fx_r_type)
12005 {
12006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12007 case BFD_RELOC_SIZE32:
12008 case BFD_RELOC_SIZE64:
12009 if (S_IS_DEFINED (fixp->fx_addsy)
12010 && !S_IS_EXTERNAL (fixp->fx_addsy))
12011 {
12012 /* Resolve size relocation against local symbol to size of
12013 the symbol plus addend. */
12014 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12015 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12016 && !fits_in_unsigned_long (value))
12017 as_bad_where (fixp->fx_file, fixp->fx_line,
12018 _("symbol size computation overflow"));
12019 fixp->fx_addsy = NULL;
12020 fixp->fx_subsy = NULL;
12021 md_apply_fix (fixp, (valueT *) &value, NULL);
12022 return NULL;
12023 }
12024 #endif
12025 /* Fall through. */
12026
12027 case BFD_RELOC_X86_64_PLT32:
12028 case BFD_RELOC_X86_64_GOT32:
12029 case BFD_RELOC_X86_64_GOTPCREL:
12030 case BFD_RELOC_X86_64_GOTPCRELX:
12031 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12032 case BFD_RELOC_386_PLT32:
12033 case BFD_RELOC_386_GOT32:
12034 case BFD_RELOC_386_GOT32X:
12035 case BFD_RELOC_386_GOTOFF:
12036 case BFD_RELOC_386_GOTPC:
12037 case BFD_RELOC_386_TLS_GD:
12038 case BFD_RELOC_386_TLS_LDM:
12039 case BFD_RELOC_386_TLS_LDO_32:
12040 case BFD_RELOC_386_TLS_IE_32:
12041 case BFD_RELOC_386_TLS_IE:
12042 case BFD_RELOC_386_TLS_GOTIE:
12043 case BFD_RELOC_386_TLS_LE_32:
12044 case BFD_RELOC_386_TLS_LE:
12045 case BFD_RELOC_386_TLS_GOTDESC:
12046 case BFD_RELOC_386_TLS_DESC_CALL:
12047 case BFD_RELOC_X86_64_TLSGD:
12048 case BFD_RELOC_X86_64_TLSLD:
12049 case BFD_RELOC_X86_64_DTPOFF32:
12050 case BFD_RELOC_X86_64_DTPOFF64:
12051 case BFD_RELOC_X86_64_GOTTPOFF:
12052 case BFD_RELOC_X86_64_TPOFF32:
12053 case BFD_RELOC_X86_64_TPOFF64:
12054 case BFD_RELOC_X86_64_GOTOFF64:
12055 case BFD_RELOC_X86_64_GOTPC32:
12056 case BFD_RELOC_X86_64_GOT64:
12057 case BFD_RELOC_X86_64_GOTPCREL64:
12058 case BFD_RELOC_X86_64_GOTPC64:
12059 case BFD_RELOC_X86_64_GOTPLT64:
12060 case BFD_RELOC_X86_64_PLTOFF64:
12061 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12062 case BFD_RELOC_X86_64_TLSDESC_CALL:
12063 case BFD_RELOC_RVA:
12064 case BFD_RELOC_VTABLE_ENTRY:
12065 case BFD_RELOC_VTABLE_INHERIT:
12066 #ifdef TE_PE
12067 case BFD_RELOC_32_SECREL:
12068 #endif
12069 code = fixp->fx_r_type;
12070 break;
12071 case BFD_RELOC_X86_64_32S:
12072 if (!fixp->fx_pcrel)
12073 {
12074 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12075 code = fixp->fx_r_type;
12076 break;
12077 }
12078 /* Fall through. */
12079 default:
12080 if (fixp->fx_pcrel)
12081 {
12082 switch (fixp->fx_size)
12083 {
12084 default:
12085 as_bad_where (fixp->fx_file, fixp->fx_line,
12086 _("can not do %d byte pc-relative relocation"),
12087 fixp->fx_size);
12088 code = BFD_RELOC_32_PCREL;
12089 break;
12090 case 1: code = BFD_RELOC_8_PCREL; break;
12091 case 2: code = BFD_RELOC_16_PCREL; break;
12092 case 4: code = BFD_RELOC_32_PCREL; break;
12093 #ifdef BFD64
12094 case 8: code = BFD_RELOC_64_PCREL; break;
12095 #endif
12096 }
12097 }
12098 else
12099 {
12100 switch (fixp->fx_size)
12101 {
12102 default:
12103 as_bad_where (fixp->fx_file, fixp->fx_line,
12104 _("can not do %d byte relocation"),
12105 fixp->fx_size);
12106 code = BFD_RELOC_32;
12107 break;
12108 case 1: code = BFD_RELOC_8; break;
12109 case 2: code = BFD_RELOC_16; break;
12110 case 4: code = BFD_RELOC_32; break;
12111 #ifdef BFD64
12112 case 8: code = BFD_RELOC_64; break;
12113 #endif
12114 }
12115 }
12116 break;
12117 }
12118
12119 if ((code == BFD_RELOC_32
12120 || code == BFD_RELOC_32_PCREL
12121 || code == BFD_RELOC_X86_64_32S)
12122 && GOT_symbol
12123 && fixp->fx_addsy == GOT_symbol)
12124 {
12125 if (!object_64bit)
12126 code = BFD_RELOC_386_GOTPC;
12127 else
12128 code = BFD_RELOC_X86_64_GOTPC32;
12129 }
12130 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12131 && GOT_symbol
12132 && fixp->fx_addsy == GOT_symbol)
12133 {
12134 code = BFD_RELOC_X86_64_GOTPC64;
12135 }
12136
12137 rel = XNEW (arelent);
12138 rel->sym_ptr_ptr = XNEW (asymbol *);
12139 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12140
12141 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12142
12143 if (!use_rela_relocations)
12144 {
12145 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12146 vtable entry to be used in the relocation's section offset. */
12147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12148 rel->address = fixp->fx_offset;
12149 #if defined (OBJ_COFF) && defined (TE_PE)
12150 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12151 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12152 else
12153 #endif
12154 rel->addend = 0;
12155 }
12156 /* Use the rela in 64bit mode. */
12157 else
12158 {
12159 if (disallow_64bit_reloc)
12160 switch (code)
12161 {
12162 case BFD_RELOC_X86_64_DTPOFF64:
12163 case BFD_RELOC_X86_64_TPOFF64:
12164 case BFD_RELOC_64_PCREL:
12165 case BFD_RELOC_X86_64_GOTOFF64:
12166 case BFD_RELOC_X86_64_GOT64:
12167 case BFD_RELOC_X86_64_GOTPCREL64:
12168 case BFD_RELOC_X86_64_GOTPC64:
12169 case BFD_RELOC_X86_64_GOTPLT64:
12170 case BFD_RELOC_X86_64_PLTOFF64:
12171 as_bad_where (fixp->fx_file, fixp->fx_line,
12172 _("cannot represent relocation type %s in x32 mode"),
12173 bfd_get_reloc_code_name (code));
12174 break;
12175 default:
12176 break;
12177 }
12178
12179 if (!fixp->fx_pcrel)
12180 rel->addend = fixp->fx_offset;
12181 else
12182 switch (code)
12183 {
12184 case BFD_RELOC_X86_64_PLT32:
12185 case BFD_RELOC_X86_64_GOT32:
12186 case BFD_RELOC_X86_64_GOTPCREL:
12187 case BFD_RELOC_X86_64_GOTPCRELX:
12188 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12189 case BFD_RELOC_X86_64_TLSGD:
12190 case BFD_RELOC_X86_64_TLSLD:
12191 case BFD_RELOC_X86_64_GOTTPOFF:
12192 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12193 case BFD_RELOC_X86_64_TLSDESC_CALL:
12194 rel->addend = fixp->fx_offset - fixp->fx_size;
12195 break;
12196 default:
12197 rel->addend = (section->vma
12198 - fixp->fx_size
12199 + fixp->fx_addnumber
12200 + md_pcrel_from (fixp));
12201 break;
12202 }
12203 }
12204
12205 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12206 if (rel->howto == NULL)
12207 {
12208 as_bad_where (fixp->fx_file, fixp->fx_line,
12209 _("cannot represent relocation type %s"),
12210 bfd_get_reloc_code_name (code));
12211 /* Set howto to a garbage value so that we can keep going. */
12212 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12213 gas_assert (rel->howto != NULL);
12214 }
12215
12216 return rel;
12217 }
12218
12219 #include "tc-i386-intel.c"
12220
12221 void
12222 tc_x86_parse_to_dw2regnum (expressionS *exp)
12223 {
12224 int saved_naked_reg;
12225 char saved_register_dot;
12226
12227 saved_naked_reg = allow_naked_reg;
12228 allow_naked_reg = 1;
12229 saved_register_dot = register_chars['.'];
12230 register_chars['.'] = '.';
12231 allow_pseudo_reg = 1;
12232 expression_and_evaluate (exp);
12233 allow_pseudo_reg = 0;
12234 register_chars['.'] = saved_register_dot;
12235 allow_naked_reg = saved_naked_reg;
12236
12237 if (exp->X_op == O_register && exp->X_add_number >= 0)
12238 {
12239 if ((addressT) exp->X_add_number < i386_regtab_size)
12240 {
12241 exp->X_op = O_constant;
12242 exp->X_add_number = i386_regtab[exp->X_add_number]
12243 .dw2_regnum[flag_code >> 1];
12244 }
12245 else
12246 exp->X_op = O_illegal;
12247 }
12248 }
12249
12250 void
12251 tc_x86_frame_initial_instructions (void)
12252 {
12253 static unsigned int sp_regno[2];
12254
12255 if (!sp_regno[flag_code >> 1])
12256 {
12257 char *saved_input = input_line_pointer;
12258 char sp[][4] = {"esp", "rsp"};
12259 expressionS exp;
12260
12261 input_line_pointer = sp[flag_code >> 1];
12262 tc_x86_parse_to_dw2regnum (&exp);
12263 gas_assert (exp.X_op == O_constant);
12264 sp_regno[flag_code >> 1] = exp.X_add_number;
12265 input_line_pointer = saved_input;
12266 }
12267
12268 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12269 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12270 }
12271
12272 int
12273 x86_dwarf2_addr_size (void)
12274 {
12275 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12276 if (x86_elf_abi == X86_64_X32_ABI)
12277 return 4;
12278 #endif
12279 return bfd_arch_bits_per_address (stdoutput) / 8;
12280 }
12281
12282 int
12283 i386_elf_section_type (const char *str, size_t len)
12284 {
12285 if (flag_code == CODE_64BIT
12286 && len == sizeof ("unwind") - 1
12287 && strncmp (str, "unwind", 6) == 0)
12288 return SHT_X86_64_UNWIND;
12289
12290 return -1;
12291 }
12292
12293 #ifdef TE_SOLARIS
12294 void
12295 i386_solaris_fix_up_eh_frame (segT sec)
12296 {
12297 if (flag_code == CODE_64BIT)
12298 elf_section_type (sec) = SHT_X86_64_UNWIND;
12299 }
12300 #endif
12301
12302 #ifdef TE_PE
12303 void
12304 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12305 {
12306 expressionS exp;
12307
12308 exp.X_op = O_secrel;
12309 exp.X_add_symbol = symbol;
12310 exp.X_add_number = 0;
12311 emit_expr (&exp, size);
12312 }
12313 #endif
12314
12315 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12316 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12317
12318 bfd_vma
12319 x86_64_section_letter (int letter, const char **ptr_msg)
12320 {
12321 if (flag_code == CODE_64BIT)
12322 {
12323 if (letter == 'l')
12324 return SHF_X86_64_LARGE;
12325
12326 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12327 }
12328 else
12329 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12330 return -1;
12331 }
12332
12333 bfd_vma
12334 x86_64_section_word (char *str, size_t len)
12335 {
12336 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12337 return SHF_X86_64_LARGE;
12338
12339 return -1;
12340 }
12341
12342 static void
12343 handle_large_common (int small ATTRIBUTE_UNUSED)
12344 {
12345 if (flag_code != CODE_64BIT)
12346 {
12347 s_comm_internal (0, elf_common_parse);
12348 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12349 }
12350 else
12351 {
12352 static segT lbss_section;
12353 asection *saved_com_section_ptr = elf_com_section_ptr;
12354 asection *saved_bss_section = bss_section;
12355
12356 if (lbss_section == NULL)
12357 {
12358 flagword applicable;
12359 segT seg = now_seg;
12360 subsegT subseg = now_subseg;
12361
12362 /* The .lbss section is for local .largecomm symbols. */
12363 lbss_section = subseg_new (".lbss", 0);
12364 applicable = bfd_applicable_section_flags (stdoutput);
12365 bfd_set_section_flags (stdoutput, lbss_section,
12366 applicable & SEC_ALLOC);
12367 seg_info (lbss_section)->bss = 1;
12368
12369 subseg_set (seg, subseg);
12370 }
12371
12372 elf_com_section_ptr = &_bfd_elf_large_com_section;
12373 bss_section = lbss_section;
12374
12375 s_comm_internal (0, elf_common_parse);
12376
12377 elf_com_section_ptr = saved_com_section_ptr;
12378 bss_section = saved_bss_section;
12379 }
12380 }
12381 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.281488 seconds and 5 git commands to generate.