x86: simplify legacy prefix emission
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
847 CPU_ZNVER2_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
849 CPU_BTVER1_FLAGS, 0 },
850 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
851 CPU_BTVER2_FLAGS, 0 },
852 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
853 CPU_8087_FLAGS, 0 },
854 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
855 CPU_287_FLAGS, 0 },
856 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
857 CPU_387_FLAGS, 0 },
858 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
859 CPU_687_FLAGS, 0 },
860 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
861 CPU_MMX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
863 CPU_SSE_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
865 CPU_SSE2_FLAGS, 0 },
866 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
867 CPU_SSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
869 CPU_SSSE3_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_1_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
875 CPU_SSE4_2_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
877 CPU_AVX_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
879 CPU_AVX2_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
881 CPU_AVX512F_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
883 CPU_AVX512CD_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
885 CPU_AVX512ER_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
887 CPU_AVX512PF_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
889 CPU_AVX512DQ_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
891 CPU_AVX512BW_FLAGS, 0 },
892 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
893 CPU_AVX512VL_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
895 CPU_VMX_FLAGS, 0 },
896 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
897 CPU_VMFUNC_FLAGS, 0 },
898 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
899 CPU_SMX_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
901 CPU_XSAVE_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEOPT_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
905 CPU_XSAVEC_FLAGS, 0 },
906 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
907 CPU_XSAVES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
909 CPU_AES_FLAGS, 0 },
910 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 0 },
912 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
913 CPU_PCLMUL_FLAGS, 1 },
914 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
915 CPU_FSGSBASE_FLAGS, 0 },
916 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
917 CPU_RDRND_FLAGS, 0 },
918 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
919 CPU_F16C_FLAGS, 0 },
920 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
921 CPU_BMI2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
923 CPU_FMA_FLAGS, 0 },
924 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
925 CPU_FMA4_FLAGS, 0 },
926 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
927 CPU_XOP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
929 CPU_LWP_FLAGS, 0 },
930 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
931 CPU_MOVBE_FLAGS, 0 },
932 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
933 CPU_CX16_FLAGS, 0 },
934 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
935 CPU_EPT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
937 CPU_LZCNT_FLAGS, 0 },
938 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
939 CPU_HLE_FLAGS, 0 },
940 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
941 CPU_RTM_FLAGS, 0 },
942 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
943 CPU_INVPCID_FLAGS, 0 },
944 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
945 CPU_CLFLUSH_FLAGS, 0 },
946 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
947 CPU_NOP_FLAGS, 0 },
948 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
949 CPU_SYSCALL_FLAGS, 0 },
950 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
951 CPU_RDTSCP_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
953 CPU_3DNOW_FLAGS, 0 },
954 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
955 CPU_3DNOWA_FLAGS, 0 },
956 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
957 CPU_PADLOCK_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 1 },
960 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
961 CPU_SVME_FLAGS, 0 },
962 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
963 CPU_SSE4A_FLAGS, 0 },
964 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
965 CPU_ABM_FLAGS, 0 },
966 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
967 CPU_BMI_FLAGS, 0 },
968 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
969 CPU_TBM_FLAGS, 0 },
970 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
971 CPU_ADX_FLAGS, 0 },
972 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
973 CPU_RDSEED_FLAGS, 0 },
974 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
975 CPU_PRFCHW_FLAGS, 0 },
976 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
977 CPU_SMAP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
979 CPU_MPX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
981 CPU_SHA_FLAGS, 0 },
982 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
983 CPU_CLFLUSHOPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
985 CPU_PREFETCHWT1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
987 CPU_SE1_FLAGS, 0 },
988 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
989 CPU_CLWB_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
991 CPU_AVX512IFMA_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
993 CPU_AVX512VBMI_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4FMAPS_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4VNNIW_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VBMI2_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VNNI_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_BITALG_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1007 CPU_CLZERO_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1009 CPU_MWAITX_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1011 CPU_OSPKE_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1013 CPU_RDPID_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1015 CPU_PTWRITE_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1017 CPU_IBT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1019 CPU_SHSTK_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1021 CPU_GFNI_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1023 CPU_VAES_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1025 CPU_VPCLMULQDQ_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1027 CPU_WBNOINVD_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1029 CPU_PCONFIG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1031 CPU_WAITPKG_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1033 CPU_CLDEMOTE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIRI_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIR64B_FLAGS, 0 },
1038 };
1039
1040 static const noarch_entry cpu_noarch[] =
1041 {
1042 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1043 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1044 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1045 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1046 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1047 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1048 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1049 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1055 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1070 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1071 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1072 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1074 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1075 };
1076
1077 #ifdef I386COFF
1078 /* Like s_lcomm_internal in gas/read.c but the alignment string
1079 is allowed to be optional. */
1080
1081 static symbolS *
1082 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1083 {
1084 addressT align = 0;
1085
1086 SKIP_WHITESPACE ();
1087
1088 if (needs_align
1089 && *input_line_pointer == ',')
1090 {
1091 align = parse_align (needs_align - 1);
1092
1093 if (align == (addressT) -1)
1094 return NULL;
1095 }
1096 else
1097 {
1098 if (size >= 8)
1099 align = 3;
1100 else if (size >= 4)
1101 align = 2;
1102 else if (size >= 2)
1103 align = 1;
1104 else
1105 align = 0;
1106 }
1107
1108 bss_alloc (symbolP, size, align);
1109 return symbolP;
1110 }
1111
1112 static void
1113 pe_lcomm (int needs_align)
1114 {
1115 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1116 }
1117 #endif
1118
1119 const pseudo_typeS md_pseudo_table[] =
1120 {
1121 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1122 {"align", s_align_bytes, 0},
1123 #else
1124 {"align", s_align_ptwo, 0},
1125 #endif
1126 {"arch", set_cpu_arch, 0},
1127 #ifndef I386COFF
1128 {"bss", s_bss, 0},
1129 #else
1130 {"lcomm", pe_lcomm, 1},
1131 #endif
1132 {"ffloat", float_cons, 'f'},
1133 {"dfloat", float_cons, 'd'},
1134 {"tfloat", float_cons, 'x'},
1135 {"value", cons, 2},
1136 {"slong", signed_cons, 4},
1137 {"noopt", s_ignore, 0},
1138 {"optim", s_ignore, 0},
1139 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1140 {"code16", set_code_flag, CODE_16BIT},
1141 {"code32", set_code_flag, CODE_32BIT},
1142 #ifdef BFD64
1143 {"code64", set_code_flag, CODE_64BIT},
1144 #endif
1145 {"intel_syntax", set_intel_syntax, 1},
1146 {"att_syntax", set_intel_syntax, 0},
1147 {"intel_mnemonic", set_intel_mnemonic, 1},
1148 {"att_mnemonic", set_intel_mnemonic, 0},
1149 {"allow_index_reg", set_allow_index_reg, 1},
1150 {"disallow_index_reg", set_allow_index_reg, 0},
1151 {"sse_check", set_check, 0},
1152 {"operand_check", set_check, 1},
1153 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1154 {"largecomm", handle_large_common, 0},
1155 #else
1156 {"file", dwarf2_directive_file, 0},
1157 {"loc", dwarf2_directive_loc, 0},
1158 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1159 #endif
1160 #ifdef TE_PE
1161 {"secrel32", pe_directive_secrel, 0},
1162 #endif
1163 {0, 0, 0}
1164 };
1165
1166 /* For interface with expression (). */
1167 extern char *input_line_pointer;
1168
1169 /* Hash table for instruction mnemonic lookup. */
1170 static struct hash_control *op_hash;
1171
1172 /* Hash table for register lookup. */
1173 static struct hash_control *reg_hash;
1174 \f
1175 /* Various efficient no-op patterns for aligning code labels.
1176 Note: Don't try to assemble the instructions in the comments.
1177 0L and 0w are not legal. */
1178 static const unsigned char f32_1[] =
1179 {0x90}; /* nop */
1180 static const unsigned char f32_2[] =
1181 {0x66,0x90}; /* xchg %ax,%ax */
1182 static const unsigned char f32_3[] =
1183 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1184 static const unsigned char f32_4[] =
1185 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1186 static const unsigned char f32_6[] =
1187 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1188 static const unsigned char f32_7[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1190 static const unsigned char f16_3[] =
1191 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1192 static const unsigned char f16_4[] =
1193 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1194 static const unsigned char jump_disp8[] =
1195 {0xeb}; /* jmp disp8 */
1196 static const unsigned char jump32_disp32[] =
1197 {0xe9}; /* jmp disp32 */
1198 static const unsigned char jump16_disp32[] =
1199 {0x66,0xe9}; /* jmp disp32 */
1200 /* 32-bit NOPs patterns. */
1201 static const unsigned char *const f32_patt[] = {
1202 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1203 };
1204 /* 16-bit NOPs patterns. */
1205 static const unsigned char *const f16_patt[] = {
1206 f32_1, f32_2, f16_3, f16_4
1207 };
1208 /* nopl (%[re]ax) */
1209 static const unsigned char alt_3[] =
1210 {0x0f,0x1f,0x00};
1211 /* nopl 0(%[re]ax) */
1212 static const unsigned char alt_4[] =
1213 {0x0f,0x1f,0x40,0x00};
1214 /* nopl 0(%[re]ax,%[re]ax,1) */
1215 static const unsigned char alt_5[] =
1216 {0x0f,0x1f,0x44,0x00,0x00};
1217 /* nopw 0(%[re]ax,%[re]ax,1) */
1218 static const unsigned char alt_6[] =
1219 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1220 /* nopl 0L(%[re]ax) */
1221 static const unsigned char alt_7[] =
1222 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1223 /* nopl 0L(%[re]ax,%[re]ax,1) */
1224 static const unsigned char alt_8[] =
1225 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226 /* nopw 0L(%[re]ax,%[re]ax,1) */
1227 static const unsigned char alt_9[] =
1228 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1230 static const unsigned char alt_10[] =
1231 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1232 /* data16 nopw %cs:0L(%eax,%eax,1) */
1233 static const unsigned char alt_11[] =
1234 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1235 /* 32-bit and 64-bit NOPs patterns. */
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10, alt_11
1239 };
1240
1241 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1242 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1243
1244 static void
1245 i386_output_nops (char *where, const unsigned char *const *patt,
1246 int count, int max_single_nop_size)
1247
1248 {
1249 /* Place the longer NOP first. */
1250 int last;
1251 int offset;
1252 const unsigned char *nops = patt[max_single_nop_size - 1];
1253
1254 /* Use the smaller one if the requsted one isn't available. */
1255 if (nops == NULL)
1256 {
1257 max_single_nop_size--;
1258 nops = patt[max_single_nop_size - 1];
1259 }
1260
1261 last = count % max_single_nop_size;
1262
1263 count -= last;
1264 for (offset = 0; offset < count; offset += max_single_nop_size)
1265 memcpy (where + offset, nops, max_single_nop_size);
1266
1267 if (last)
1268 {
1269 nops = patt[last - 1];
1270 if (nops == NULL)
1271 {
1272 /* Use the smaller one plus one-byte NOP if the needed one
1273 isn't available. */
1274 last--;
1275 nops = patt[last - 1];
1276 memcpy (where + offset, nops, last);
1277 where[offset + last] = *patt[0];
1278 }
1279 else
1280 memcpy (where + offset, nops, last);
1281 }
1282 }
1283
1284 static INLINE int
1285 fits_in_imm7 (offsetT num)
1286 {
1287 return (num & 0x7f) == num;
1288 }
1289
1290 static INLINE int
1291 fits_in_imm31 (offsetT num)
1292 {
1293 return (num & 0x7fffffff) == num;
1294 }
1295
1296 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1297 single NOP instruction LIMIT. */
1298
1299 void
1300 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1301 {
1302 const unsigned char *const *patt = NULL;
1303 int max_single_nop_size;
1304 /* Maximum number of NOPs before switching to jump over NOPs. */
1305 int max_number_of_nops;
1306
1307 switch (fragP->fr_type)
1308 {
1309 case rs_fill_nop:
1310 case rs_align_code:
1311 break;
1312 default:
1313 return;
1314 }
1315
1316 /* We need to decide which NOP sequence to use for 32bit and
1317 64bit. When -mtune= is used:
1318
1319 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1320 PROCESSOR_GENERIC32, f32_patt will be used.
1321 2. For the rest, alt_patt will be used.
1322
1323 When -mtune= isn't used, alt_patt will be used if
1324 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1325 be used.
1326
1327 When -march= or .arch is used, we can't use anything beyond
1328 cpu_arch_isa_flags. */
1329
1330 if (flag_code == CODE_16BIT)
1331 {
1332 patt = f16_patt;
1333 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1334 /* Limit number of NOPs to 2 in 16-bit mode. */
1335 max_number_of_nops = 2;
1336 }
1337 else
1338 {
1339 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1340 {
1341 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1342 switch (cpu_arch_tune)
1343 {
1344 case PROCESSOR_UNKNOWN:
1345 /* We use cpu_arch_isa_flags to check if we SHOULD
1346 optimize with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1348 patt = alt_patt;
1349 else
1350 patt = f32_patt;
1351 break;
1352 case PROCESSOR_PENTIUM4:
1353 case PROCESSOR_NOCONA:
1354 case PROCESSOR_CORE:
1355 case PROCESSOR_CORE2:
1356 case PROCESSOR_COREI7:
1357 case PROCESSOR_L1OM:
1358 case PROCESSOR_K1OM:
1359 case PROCESSOR_GENERIC64:
1360 case PROCESSOR_K6:
1361 case PROCESSOR_ATHLON:
1362 case PROCESSOR_K8:
1363 case PROCESSOR_AMDFAM10:
1364 case PROCESSOR_BD:
1365 case PROCESSOR_ZNVER:
1366 case PROCESSOR_BT:
1367 patt = alt_patt;
1368 break;
1369 case PROCESSOR_I386:
1370 case PROCESSOR_I486:
1371 case PROCESSOR_PENTIUM:
1372 case PROCESSOR_PENTIUMPRO:
1373 case PROCESSOR_IAMCU:
1374 case PROCESSOR_GENERIC32:
1375 patt = f32_patt;
1376 break;
1377 }
1378 }
1379 else
1380 {
1381 switch (fragP->tc_frag_data.tune)
1382 {
1383 case PROCESSOR_UNKNOWN:
1384 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1385 PROCESSOR_UNKNOWN. */
1386 abort ();
1387 break;
1388
1389 case PROCESSOR_I386:
1390 case PROCESSOR_I486:
1391 case PROCESSOR_PENTIUM:
1392 case PROCESSOR_IAMCU:
1393 case PROCESSOR_K6:
1394 case PROCESSOR_ATHLON:
1395 case PROCESSOR_K8:
1396 case PROCESSOR_AMDFAM10:
1397 case PROCESSOR_BD:
1398 case PROCESSOR_ZNVER:
1399 case PROCESSOR_BT:
1400 case PROCESSOR_GENERIC32:
1401 /* We use cpu_arch_isa_flags to check if we CAN optimize
1402 with nops. */
1403 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1404 patt = alt_patt;
1405 else
1406 patt = f32_patt;
1407 break;
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_PENTIUM4:
1410 case PROCESSOR_NOCONA:
1411 case PROCESSOR_CORE:
1412 case PROCESSOR_CORE2:
1413 case PROCESSOR_COREI7:
1414 case PROCESSOR_L1OM:
1415 case PROCESSOR_K1OM:
1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1417 patt = alt_patt;
1418 else
1419 patt = f32_patt;
1420 break;
1421 case PROCESSOR_GENERIC64:
1422 patt = alt_patt;
1423 break;
1424 }
1425 }
1426
1427 if (patt == f32_patt)
1428 {
1429 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1430 /* Limit number of NOPs to 2 for older processors. */
1431 max_number_of_nops = 2;
1432 }
1433 else
1434 {
1435 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1436 /* Limit number of NOPs to 7 for newer processors. */
1437 max_number_of_nops = 7;
1438 }
1439 }
1440
1441 if (limit == 0)
1442 limit = max_single_nop_size;
1443
1444 if (fragP->fr_type == rs_fill_nop)
1445 {
1446 /* Output NOPs for .nop directive. */
1447 if (limit > max_single_nop_size)
1448 {
1449 as_bad_where (fragP->fr_file, fragP->fr_line,
1450 _("invalid single nop size: %d "
1451 "(expect within [0, %d])"),
1452 limit, max_single_nop_size);
1453 return;
1454 }
1455 }
1456 else
1457 fragP->fr_var = count;
1458
1459 if ((count / max_single_nop_size) > max_number_of_nops)
1460 {
1461 /* Generate jump over NOPs. */
1462 offsetT disp = count - 2;
1463 if (fits_in_imm7 (disp))
1464 {
1465 /* Use "jmp disp8" if possible. */
1466 count = disp;
1467 where[0] = jump_disp8[0];
1468 where[1] = count;
1469 where += 2;
1470 }
1471 else
1472 {
1473 unsigned int size_of_jump;
1474
1475 if (flag_code == CODE_16BIT)
1476 {
1477 where[0] = jump16_disp32[0];
1478 where[1] = jump16_disp32[1];
1479 size_of_jump = 2;
1480 }
1481 else
1482 {
1483 where[0] = jump32_disp32[0];
1484 size_of_jump = 1;
1485 }
1486
1487 count -= size_of_jump + 4;
1488 if (!fits_in_imm31 (count))
1489 {
1490 as_bad_where (fragP->fr_file, fragP->fr_line,
1491 _("jump over nop padding out of range"));
1492 return;
1493 }
1494
1495 md_number_to_chars (where + size_of_jump, count, 4);
1496 where += size_of_jump + 4;
1497 }
1498 }
1499
1500 /* Generate multiple NOPs. */
1501 i386_output_nops (where, patt, count, limit);
1502 }
1503
1504 static INLINE int
1505 operand_type_all_zero (const union i386_operand_type *x)
1506 {
1507 switch (ARRAY_SIZE(x->array))
1508 {
1509 case 3:
1510 if (x->array[2])
1511 return 0;
1512 /* Fall through. */
1513 case 2:
1514 if (x->array[1])
1515 return 0;
1516 /* Fall through. */
1517 case 1:
1518 return !x->array[0];
1519 default:
1520 abort ();
1521 }
1522 }
1523
1524 static INLINE void
1525 operand_type_set (union i386_operand_type *x, unsigned int v)
1526 {
1527 switch (ARRAY_SIZE(x->array))
1528 {
1529 case 3:
1530 x->array[2] = v;
1531 /* Fall through. */
1532 case 2:
1533 x->array[1] = v;
1534 /* Fall through. */
1535 case 1:
1536 x->array[0] = v;
1537 /* Fall through. */
1538 break;
1539 default:
1540 abort ();
1541 }
1542 }
1543
1544 static INLINE int
1545 operand_type_equal (const union i386_operand_type *x,
1546 const union i386_operand_type *y)
1547 {
1548 switch (ARRAY_SIZE(x->array))
1549 {
1550 case 3:
1551 if (x->array[2] != y->array[2])
1552 return 0;
1553 /* Fall through. */
1554 case 2:
1555 if (x->array[1] != y->array[1])
1556 return 0;
1557 /* Fall through. */
1558 case 1:
1559 return x->array[0] == y->array[0];
1560 break;
1561 default:
1562 abort ();
1563 }
1564 }
1565
1566 static INLINE int
1567 cpu_flags_all_zero (const union i386_cpu_flags *x)
1568 {
1569 switch (ARRAY_SIZE(x->array))
1570 {
1571 case 4:
1572 if (x->array[3])
1573 return 0;
1574 /* Fall through. */
1575 case 3:
1576 if (x->array[2])
1577 return 0;
1578 /* Fall through. */
1579 case 2:
1580 if (x->array[1])
1581 return 0;
1582 /* Fall through. */
1583 case 1:
1584 return !x->array[0];
1585 default:
1586 abort ();
1587 }
1588 }
1589
1590 static INLINE int
1591 cpu_flags_equal (const union i386_cpu_flags *x,
1592 const union i386_cpu_flags *y)
1593 {
1594 switch (ARRAY_SIZE(x->array))
1595 {
1596 case 4:
1597 if (x->array[3] != y->array[3])
1598 return 0;
1599 /* Fall through. */
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_check_cpu64 (i386_cpu_flags f)
1618 {
1619 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1620 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1621 }
1622
1623 static INLINE i386_cpu_flags
1624 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1625 {
1626 switch (ARRAY_SIZE (x.array))
1627 {
1628 case 4:
1629 x.array [3] &= y.array [3];
1630 /* Fall through. */
1631 case 3:
1632 x.array [2] &= y.array [2];
1633 /* Fall through. */
1634 case 2:
1635 x.array [1] &= y.array [1];
1636 /* Fall through. */
1637 case 1:
1638 x.array [0] &= y.array [0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 return x;
1644 }
1645
1646 static INLINE i386_cpu_flags
1647 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1648 {
1649 switch (ARRAY_SIZE (x.array))
1650 {
1651 case 4:
1652 x.array [3] |= y.array [3];
1653 /* Fall through. */
1654 case 3:
1655 x.array [2] |= y.array [2];
1656 /* Fall through. */
1657 case 2:
1658 x.array [1] |= y.array [1];
1659 /* Fall through. */
1660 case 1:
1661 x.array [0] |= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
1666 return x;
1667 }
1668
1669 static INLINE i386_cpu_flags
1670 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1671 {
1672 switch (ARRAY_SIZE (x.array))
1673 {
1674 case 4:
1675 x.array [3] &= ~y.array [3];
1676 /* Fall through. */
1677 case 3:
1678 x.array [2] &= ~y.array [2];
1679 /* Fall through. */
1680 case 2:
1681 x.array [1] &= ~y.array [1];
1682 /* Fall through. */
1683 case 1:
1684 x.array [0] &= ~y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690 }
1691
1692 #define CPU_FLAGS_ARCH_MATCH 0x1
1693 #define CPU_FLAGS_64BIT_MATCH 0x2
1694
1695 #define CPU_FLAGS_PERFECT_MATCH \
1696 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1697
1698 /* Return CPU flags match bits. */
1699
1700 static int
1701 cpu_flags_match (const insn_template *t)
1702 {
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
1709 if (cpu_flags_all_zero (&x))
1710 {
1711 /* This instruction is available on all archs. */
1712 match |= CPU_FLAGS_ARCH_MATCH;
1713 }
1714 else
1715 {
1716 /* This instruction is available only on some archs. */
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
1719 /* AVX512VL is no standalone feature - match it and then strip it. */
1720 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1721 return match;
1722 x.bitfield.cpuavx512vl = 0;
1723
1724 cpu = cpu_flags_and (x, cpu);
1725 if (!cpu_flags_all_zero (&cpu))
1726 {
1727 if (x.bitfield.cpuavx)
1728 {
1729 /* We need to check a few extra flags with AVX. */
1730 if (cpu.bitfield.cpuavx
1731 && (!t->opcode_modifier.sse2avx || sse2avx)
1732 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else if (x.bitfield.cpuavx512f)
1738 {
1739 /* We need to check a few extra flags with AVX512F. */
1740 if (cpu.bitfield.cpuavx512f
1741 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1742 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1743 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1744 match |= CPU_FLAGS_ARCH_MATCH;
1745 }
1746 else
1747 match |= CPU_FLAGS_ARCH_MATCH;
1748 }
1749 }
1750 return match;
1751 }
1752
1753 static INLINE i386_operand_type
1754 operand_type_and (i386_operand_type x, i386_operand_type y)
1755 {
1756 switch (ARRAY_SIZE (x.array))
1757 {
1758 case 3:
1759 x.array [2] &= y.array [2];
1760 /* Fall through. */
1761 case 2:
1762 x.array [1] &= y.array [1];
1763 /* Fall through. */
1764 case 1:
1765 x.array [0] &= y.array [0];
1766 break;
1767 default:
1768 abort ();
1769 }
1770 return x;
1771 }
1772
1773 static INLINE i386_operand_type
1774 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 3:
1779 x.array [2] &= ~y.array [2];
1780 /* Fall through. */
1781 case 2:
1782 x.array [1] &= ~y.array [1];
1783 /* Fall through. */
1784 case 1:
1785 x.array [0] &= ~y.array [0];
1786 break;
1787 default:
1788 abort ();
1789 }
1790 return x;
1791 }
1792
1793 static INLINE i386_operand_type
1794 operand_type_or (i386_operand_type x, i386_operand_type y)
1795 {
1796 switch (ARRAY_SIZE (x.array))
1797 {
1798 case 3:
1799 x.array [2] |= y.array [2];
1800 /* Fall through. */
1801 case 2:
1802 x.array [1] |= y.array [1];
1803 /* Fall through. */
1804 case 1:
1805 x.array [0] |= y.array [0];
1806 break;
1807 default:
1808 abort ();
1809 }
1810 return x;
1811 }
1812
1813 static INLINE i386_operand_type
1814 operand_type_xor (i386_operand_type x, i386_operand_type y)
1815 {
1816 switch (ARRAY_SIZE (x.array))
1817 {
1818 case 3:
1819 x.array [2] ^= y.array [2];
1820 /* Fall through. */
1821 case 2:
1822 x.array [1] ^= y.array [1];
1823 /* Fall through. */
1824 case 1:
1825 x.array [0] ^= y.array [0];
1826 break;
1827 default:
1828 abort ();
1829 }
1830 return x;
1831 }
1832
1833 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1834 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1835 static const i386_operand_type inoutportreg
1836 = OPERAND_TYPE_INOUTPORTREG;
1837 static const i386_operand_type reg16_inoutportreg
1838 = OPERAND_TYPE_REG16_INOUTPORTREG;
1839 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1840 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1841 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1842 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1843 static const i386_operand_type anydisp
1844 = OPERAND_TYPE_ANYDISP;
1845 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1846 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1847 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1848 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1849 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1850 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1851 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1852 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1853 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1854 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1855 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1856 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1857
1858 enum operand_type
1859 {
1860 reg,
1861 imm,
1862 disp,
1863 anymem
1864 };
1865
1866 static INLINE int
1867 operand_type_check (i386_operand_type t, enum operand_type c)
1868 {
1869 switch (c)
1870 {
1871 case reg:
1872 return t.bitfield.reg;
1873
1874 case imm:
1875 return (t.bitfield.imm8
1876 || t.bitfield.imm8s
1877 || t.bitfield.imm16
1878 || t.bitfield.imm32
1879 || t.bitfield.imm32s
1880 || t.bitfield.imm64);
1881
1882 case disp:
1883 return (t.bitfield.disp8
1884 || t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s
1887 || t.bitfield.disp64);
1888
1889 case anymem:
1890 return (t.bitfield.disp8
1891 || t.bitfield.disp16
1892 || t.bitfield.disp32
1893 || t.bitfield.disp32s
1894 || t.bitfield.disp64
1895 || t.bitfield.baseindex);
1896
1897 default:
1898 abort ();
1899 }
1900
1901 return 0;
1902 }
1903
1904 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1905 operand J for instruction template T. */
1906
1907 static INLINE int
1908 match_reg_size (const insn_template *t, unsigned int j)
1909 {
1910 return !((i.types[j].bitfield.byte
1911 && !t->operand_types[j].bitfield.byte)
1912 || (i.types[j].bitfield.word
1913 && !t->operand_types[j].bitfield.word)
1914 || (i.types[j].bitfield.dword
1915 && !t->operand_types[j].bitfield.dword)
1916 || (i.types[j].bitfield.qword
1917 && !t->operand_types[j].bitfield.qword)
1918 || (i.types[j].bitfield.tbyte
1919 && !t->operand_types[j].bitfield.tbyte));
1920 }
1921
1922 /* Return 1 if there is no conflict in SIMD register on
1923 operand J for instruction template T. */
1924
1925 static INLINE int
1926 match_simd_size (const insn_template *t, unsigned int j)
1927 {
1928 return !((i.types[j].bitfield.xmmword
1929 && !t->operand_types[j].bitfield.xmmword)
1930 || (i.types[j].bitfield.ymmword
1931 && !t->operand_types[j].bitfield.ymmword)
1932 || (i.types[j].bitfield.zmmword
1933 && !t->operand_types[j].bitfield.zmmword));
1934 }
1935
1936 /* Return 1 if there is no conflict in any size on operand J for
1937 instruction template T. */
1938
1939 static INLINE int
1940 match_mem_size (const insn_template *t, unsigned int j)
1941 {
1942 return (match_reg_size (t, j)
1943 && !((i.types[j].bitfield.unspecified
1944 && !i.broadcast
1945 && !t->operand_types[j].bitfield.unspecified)
1946 || (i.types[j].bitfield.fword
1947 && !t->operand_types[j].bitfield.fword)
1948 /* For scalar opcode templates to allow register and memory
1949 operands at the same time, some special casing is needed
1950 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1951 down-conversion vpmov*. */
1952 || ((t->operand_types[j].bitfield.regsimd
1953 && !t->opcode_modifier.broadcast
1954 && (t->operand_types[j].bitfield.byte
1955 || t->operand_types[j].bitfield.word
1956 || t->operand_types[j].bitfield.dword
1957 || t->operand_types[j].bitfield.qword))
1958 ? (i.types[j].bitfield.xmmword
1959 || i.types[j].bitfield.ymmword
1960 || i.types[j].bitfield.zmmword)
1961 : !match_simd_size(t, j))));
1962 }
1963
1964 /* Return 1 if there is no size conflict on any operands for
1965 instruction template T. */
1966
1967 static INLINE int
1968 operand_size_match (const insn_template *t)
1969 {
1970 unsigned int j;
1971 int match = 1;
1972
1973 /* Don't check jump instructions. */
1974 if (t->opcode_modifier.jump
1975 || t->opcode_modifier.jumpbyte
1976 || t->opcode_modifier.jumpdword
1977 || t->opcode_modifier.jumpintersegment)
1978 return match;
1979
1980 /* Check memory and accumulator operand size. */
1981 for (j = 0; j < i.operands; j++)
1982 {
1983 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1984 && t->operand_types[j].bitfield.anysize)
1985 continue;
1986
1987 if (t->operand_types[j].bitfield.reg
1988 && !match_reg_size (t, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.regsimd
1995 && !match_simd_size (t, j))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
2001 if (t->operand_types[j].bitfield.acc
2002 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
2003 {
2004 match = 0;
2005 break;
2006 }
2007
2008 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2009 {
2010 match = 0;
2011 break;
2012 }
2013 }
2014
2015 if (match)
2016 return match;
2017 else if (!t->opcode_modifier.d)
2018 {
2019 mismatch:
2020 i.error = operand_size_mismatch;
2021 return 0;
2022 }
2023
2024 /* Check reverse. */
2025 gas_assert (i.operands == 2);
2026
2027 match = 1;
2028 for (j = 0; j < 2; j++)
2029 {
2030 if ((t->operand_types[j].bitfield.reg
2031 || t->operand_types[j].bitfield.acc)
2032 && !match_reg_size (t, j ? 0 : 1))
2033 goto mismatch;
2034
2035 if (i.types[j].bitfield.mem
2036 && !match_mem_size (t, j ? 0 : 1))
2037 goto mismatch;
2038 }
2039
2040 return match;
2041 }
2042
2043 static INLINE int
2044 operand_type_match (i386_operand_type overlap,
2045 i386_operand_type given)
2046 {
2047 i386_operand_type temp = overlap;
2048
2049 temp.bitfield.jumpabsolute = 0;
2050 temp.bitfield.unspecified = 0;
2051 temp.bitfield.byte = 0;
2052 temp.bitfield.word = 0;
2053 temp.bitfield.dword = 0;
2054 temp.bitfield.fword = 0;
2055 temp.bitfield.qword = 0;
2056 temp.bitfield.tbyte = 0;
2057 temp.bitfield.xmmword = 0;
2058 temp.bitfield.ymmword = 0;
2059 temp.bitfield.zmmword = 0;
2060 if (operand_type_all_zero (&temp))
2061 goto mismatch;
2062
2063 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2064 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2065 return 1;
2066
2067 mismatch:
2068 i.error = operand_type_mismatch;
2069 return 0;
2070 }
2071
2072 /* If given types g0 and g1 are registers they must be of the same type
2073 unless the expected operand type register overlap is null.
2074 Memory operand size of certain SIMD instructions is also being checked
2075 here. */
2076
2077 static INLINE int
2078 operand_type_register_match (i386_operand_type g0,
2079 i386_operand_type t0,
2080 i386_operand_type g1,
2081 i386_operand_type t1)
2082 {
2083 if (!g0.bitfield.reg
2084 && !g0.bitfield.regsimd
2085 && (!operand_type_check (g0, anymem)
2086 || g0.bitfield.unspecified
2087 || !t0.bitfield.regsimd))
2088 return 1;
2089
2090 if (!g1.bitfield.reg
2091 && !g1.bitfield.regsimd
2092 && (!operand_type_check (g1, anymem)
2093 || g1.bitfield.unspecified
2094 || !t1.bitfield.regsimd))
2095 return 1;
2096
2097 if (g0.bitfield.byte == g1.bitfield.byte
2098 && g0.bitfield.word == g1.bitfield.word
2099 && g0.bitfield.dword == g1.bitfield.dword
2100 && g0.bitfield.qword == g1.bitfield.qword
2101 && g0.bitfield.xmmword == g1.bitfield.xmmword
2102 && g0.bitfield.ymmword == g1.bitfield.ymmword
2103 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2104 return 1;
2105
2106 if (!(t0.bitfield.byte & t1.bitfield.byte)
2107 && !(t0.bitfield.word & t1.bitfield.word)
2108 && !(t0.bitfield.dword & t1.bitfield.dword)
2109 && !(t0.bitfield.qword & t1.bitfield.qword)
2110 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2111 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2112 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2113 return 1;
2114
2115 i.error = register_type_mismatch;
2116
2117 return 0;
2118 }
2119
2120 static INLINE unsigned int
2121 register_number (const reg_entry *r)
2122 {
2123 unsigned int nr = r->reg_num;
2124
2125 if (r->reg_flags & RegRex)
2126 nr += 8;
2127
2128 if (r->reg_flags & RegVRex)
2129 nr += 16;
2130
2131 return nr;
2132 }
2133
2134 static INLINE unsigned int
2135 mode_from_disp_size (i386_operand_type t)
2136 {
2137 if (t.bitfield.disp8)
2138 return 1;
2139 else if (t.bitfield.disp16
2140 || t.bitfield.disp32
2141 || t.bitfield.disp32s)
2142 return 2;
2143 else
2144 return 0;
2145 }
2146
2147 static INLINE int
2148 fits_in_signed_byte (addressT num)
2149 {
2150 return num + 0x80 <= 0xff;
2151 }
2152
2153 static INLINE int
2154 fits_in_unsigned_byte (addressT num)
2155 {
2156 return num <= 0xff;
2157 }
2158
2159 static INLINE int
2160 fits_in_unsigned_word (addressT num)
2161 {
2162 return num <= 0xffff;
2163 }
2164
2165 static INLINE int
2166 fits_in_signed_word (addressT num)
2167 {
2168 return num + 0x8000 <= 0xffff;
2169 }
2170
2171 static INLINE int
2172 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num + 0x80000000 <= 0xffffffff;
2178 #endif
2179 } /* fits_in_signed_long() */
2180
2181 static INLINE int
2182 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2183 {
2184 #ifndef BFD64
2185 return 1;
2186 #else
2187 return num <= 0xffffffff;
2188 #endif
2189 } /* fits_in_unsigned_long() */
2190
2191 static INLINE int
2192 fits_in_disp8 (offsetT num)
2193 {
2194 int shift = i.memshift;
2195 unsigned int mask;
2196
2197 if (shift == -1)
2198 abort ();
2199
2200 mask = (1 << shift) - 1;
2201
2202 /* Return 0 if NUM isn't properly aligned. */
2203 if ((num & mask))
2204 return 0;
2205
2206 /* Check if NUM will fit in 8bit after shift. */
2207 return fits_in_signed_byte (num >> shift);
2208 }
2209
2210 static INLINE int
2211 fits_in_imm4 (offsetT num)
2212 {
2213 return (num & 0xf) == num;
2214 }
2215
2216 static i386_operand_type
2217 smallest_imm_type (offsetT num)
2218 {
2219 i386_operand_type t;
2220
2221 operand_type_set (&t, 0);
2222 t.bitfield.imm64 = 1;
2223
2224 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2225 {
2226 /* This code is disabled on the 486 because all the Imm1 forms
2227 in the opcode table are slower on the i486. They're the
2228 versions with the implicitly specified single-position
2229 displacement, which has another syntax if you really want to
2230 use that form. */
2231 t.bitfield.imm1 = 1;
2232 t.bitfield.imm8 = 1;
2233 t.bitfield.imm8s = 1;
2234 t.bitfield.imm16 = 1;
2235 t.bitfield.imm32 = 1;
2236 t.bitfield.imm32s = 1;
2237 }
2238 else if (fits_in_signed_byte (num))
2239 {
2240 t.bitfield.imm8 = 1;
2241 t.bitfield.imm8s = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_unsigned_byte (num))
2247 {
2248 t.bitfield.imm8 = 1;
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2254 {
2255 t.bitfield.imm16 = 1;
2256 t.bitfield.imm32 = 1;
2257 t.bitfield.imm32s = 1;
2258 }
2259 else if (fits_in_signed_long (num))
2260 {
2261 t.bitfield.imm32 = 1;
2262 t.bitfield.imm32s = 1;
2263 }
2264 else if (fits_in_unsigned_long (num))
2265 t.bitfield.imm32 = 1;
2266
2267 return t;
2268 }
2269
2270 static offsetT
2271 offset_in_range (offsetT val, int size)
2272 {
2273 addressT mask;
2274
2275 switch (size)
2276 {
2277 case 1: mask = ((addressT) 1 << 8) - 1; break;
2278 case 2: mask = ((addressT) 1 << 16) - 1; break;
2279 case 4: mask = ((addressT) 2 << 31) - 1; break;
2280 #ifdef BFD64
2281 case 8: mask = ((addressT) 2 << 63) - 1; break;
2282 #endif
2283 default: abort ();
2284 }
2285
2286 #ifdef BFD64
2287 /* If BFD64, sign extend val for 32bit address mode. */
2288 if (flag_code != CODE_64BIT
2289 || i.prefix[ADDR_PREFIX])
2290 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2291 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2292 #endif
2293
2294 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2295 {
2296 char buf1[40], buf2[40];
2297
2298 sprint_value (buf1, val);
2299 sprint_value (buf2, val & mask);
2300 as_warn (_("%s shortened to %s"), buf1, buf2);
2301 }
2302 return val & mask;
2303 }
2304
2305 enum PREFIX_GROUP
2306 {
2307 PREFIX_EXIST = 0,
2308 PREFIX_LOCK,
2309 PREFIX_REP,
2310 PREFIX_DS,
2311 PREFIX_OTHER
2312 };
2313
2314 /* Returns
2315 a. PREFIX_EXIST if attempting to add a prefix where one from the
2316 same class already exists.
2317 b. PREFIX_LOCK if lock prefix is added.
2318 c. PREFIX_REP if rep/repne prefix is added.
2319 d. PREFIX_DS if ds prefix is added.
2320 e. PREFIX_OTHER if other prefix is added.
2321 */
2322
2323 static enum PREFIX_GROUP
2324 add_prefix (unsigned int prefix)
2325 {
2326 enum PREFIX_GROUP ret = PREFIX_OTHER;
2327 unsigned int q;
2328
2329 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2330 && flag_code == CODE_64BIT)
2331 {
2332 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2333 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2334 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2336 ret = PREFIX_EXIST;
2337 q = REX_PREFIX;
2338 }
2339 else
2340 {
2341 switch (prefix)
2342 {
2343 default:
2344 abort ();
2345
2346 case DS_PREFIX_OPCODE:
2347 ret = PREFIX_DS;
2348 /* Fall through. */
2349 case CS_PREFIX_OPCODE:
2350 case ES_PREFIX_OPCODE:
2351 case FS_PREFIX_OPCODE:
2352 case GS_PREFIX_OPCODE:
2353 case SS_PREFIX_OPCODE:
2354 q = SEG_PREFIX;
2355 break;
2356
2357 case REPNE_PREFIX_OPCODE:
2358 case REPE_PREFIX_OPCODE:
2359 q = REP_PREFIX;
2360 ret = PREFIX_REP;
2361 break;
2362
2363 case LOCK_PREFIX_OPCODE:
2364 q = LOCK_PREFIX;
2365 ret = PREFIX_LOCK;
2366 break;
2367
2368 case FWAIT_OPCODE:
2369 q = WAIT_PREFIX;
2370 break;
2371
2372 case ADDR_PREFIX_OPCODE:
2373 q = ADDR_PREFIX;
2374 break;
2375
2376 case DATA_PREFIX_OPCODE:
2377 q = DATA_PREFIX;
2378 break;
2379 }
2380 if (i.prefix[q] != 0)
2381 ret = PREFIX_EXIST;
2382 }
2383
2384 if (ret)
2385 {
2386 if (!i.prefix[q])
2387 ++i.prefixes;
2388 i.prefix[q] |= prefix;
2389 }
2390 else
2391 as_bad (_("same type of prefix used twice"));
2392
2393 return ret;
2394 }
2395
2396 static void
2397 update_code_flag (int value, int check)
2398 {
2399 PRINTF_LIKE ((*as_error));
2400
2401 flag_code = (enum flag_code) value;
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
2412 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2413 {
2414 if (check)
2415 as_error = as_fatal;
2416 else
2417 as_error = as_bad;
2418 (*as_error) (_("64bit mode not supported on `%s'."),
2419 cpu_arch_name ? cpu_arch_name : default_arch);
2420 }
2421 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2422 {
2423 if (check)
2424 as_error = as_fatal;
2425 else
2426 as_error = as_bad;
2427 (*as_error) (_("32bit mode not supported on `%s'."),
2428 cpu_arch_name ? cpu_arch_name : default_arch);
2429 }
2430 stackop_size = '\0';
2431 }
2432
2433 static void
2434 set_code_flag (int value)
2435 {
2436 update_code_flag (value, 0);
2437 }
2438
2439 static void
2440 set_16bit_gcc_code_flag (int new_code_flag)
2441 {
2442 flag_code = (enum flag_code) new_code_flag;
2443 if (flag_code != CODE_16BIT)
2444 abort ();
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
2447 stackop_size = LONG_MNEM_SUFFIX;
2448 }
2449
2450 static void
2451 set_intel_syntax (int syntax_flag)
2452 {
2453 /* Find out if register prefixing is specified. */
2454 int ask_naked_reg = 0;
2455
2456 SKIP_WHITESPACE ();
2457 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2458 {
2459 char *string;
2460 int e = get_symbol_name (&string);
2461
2462 if (strcmp (string, "prefix") == 0)
2463 ask_naked_reg = 1;
2464 else if (strcmp (string, "noprefix") == 0)
2465 ask_naked_reg = -1;
2466 else
2467 as_bad (_("bad argument to syntax directive."));
2468 (void) restore_line_pointer (e);
2469 }
2470 demand_empty_rest_of_line ();
2471
2472 intel_syntax = syntax_flag;
2473
2474 if (ask_naked_reg == 0)
2475 allow_naked_reg = (intel_syntax
2476 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2477 else
2478 allow_naked_reg = (ask_naked_reg < 0);
2479
2480 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2481
2482 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2483 identifier_chars['$'] = intel_syntax ? '$' : 0;
2484 register_prefix = allow_naked_reg ? "" : "%";
2485 }
2486
2487 static void
2488 set_intel_mnemonic (int mnemonic_flag)
2489 {
2490 intel_mnemonic = mnemonic_flag;
2491 }
2492
2493 static void
2494 set_allow_index_reg (int flag)
2495 {
2496 allow_index_reg = flag;
2497 }
2498
2499 static void
2500 set_check (int what)
2501 {
2502 enum check_kind *kind;
2503 const char *str;
2504
2505 if (what)
2506 {
2507 kind = &operand_check;
2508 str = "operand";
2509 }
2510 else
2511 {
2512 kind = &sse_check;
2513 str = "sse";
2514 }
2515
2516 SKIP_WHITESPACE ();
2517
2518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2519 {
2520 char *string;
2521 int e = get_symbol_name (&string);
2522
2523 if (strcmp (string, "none") == 0)
2524 *kind = check_none;
2525 else if (strcmp (string, "warning") == 0)
2526 *kind = check_warning;
2527 else if (strcmp (string, "error") == 0)
2528 *kind = check_error;
2529 else
2530 as_bad (_("bad argument to %s_check directive."), str);
2531 (void) restore_line_pointer (e);
2532 }
2533 else
2534 as_bad (_("missing argument for %s_check directive"), str);
2535
2536 demand_empty_rest_of_line ();
2537 }
2538
2539 static void
2540 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2541 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2542 {
2543 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2544 static const char *arch;
2545
2546 /* Intel LIOM is only supported on ELF. */
2547 if (!IS_ELF)
2548 return;
2549
2550 if (!arch)
2551 {
2552 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2553 use default_arch. */
2554 arch = cpu_arch_name;
2555 if (!arch)
2556 arch = default_arch;
2557 }
2558
2559 /* If we are targeting Intel MCU, we must enable it. */
2560 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2561 || new_flag.bitfield.cpuiamcu)
2562 return;
2563
2564 /* If we are targeting Intel L1OM, we must enable it. */
2565 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2566 || new_flag.bitfield.cpul1om)
2567 return;
2568
2569 /* If we are targeting Intel K1OM, we must enable it. */
2570 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2571 || new_flag.bitfield.cpuk1om)
2572 return;
2573
2574 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2575 #endif
2576 }
2577
2578 static void
2579 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2580 {
2581 SKIP_WHITESPACE ();
2582
2583 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2584 {
2585 char *string;
2586 int e = get_symbol_name (&string);
2587 unsigned int j;
2588 i386_cpu_flags flags;
2589
2590 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2591 {
2592 if (strcmp (string, cpu_arch[j].name) == 0)
2593 {
2594 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2595
2596 if (*string != '.')
2597 {
2598 cpu_arch_name = cpu_arch[j].name;
2599 cpu_sub_arch_name = NULL;
2600 cpu_arch_flags = cpu_arch[j].flags;
2601 if (flag_code == CODE_64BIT)
2602 {
2603 cpu_arch_flags.bitfield.cpu64 = 1;
2604 cpu_arch_flags.bitfield.cpuno64 = 0;
2605 }
2606 else
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 0;
2609 cpu_arch_flags.bitfield.cpuno64 = 1;
2610 }
2611 cpu_arch_isa = cpu_arch[j].type;
2612 cpu_arch_isa_flags = cpu_arch[j].flags;
2613 if (!cpu_arch_tune_set)
2614 {
2615 cpu_arch_tune = cpu_arch_isa;
2616 cpu_arch_tune_flags = cpu_arch_isa_flags;
2617 }
2618 break;
2619 }
2620
2621 flags = cpu_flags_or (cpu_arch_flags,
2622 cpu_arch[j].flags);
2623
2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2625 {
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name,
2630 cpu_arch[j].name,
2631 (const char *) NULL);
2632 free (name);
2633 }
2634 else
2635 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2636 cpu_arch_flags = flags;
2637 cpu_arch_isa_flags = flags;
2638 }
2639 else
2640 cpu_arch_isa_flags
2641 = cpu_flags_or (cpu_arch_isa_flags,
2642 cpu_arch[j].flags);
2643 (void) restore_line_pointer (e);
2644 demand_empty_rest_of_line ();
2645 return;
2646 }
2647 }
2648
2649 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2650 {
2651 /* Disable an ISA extension. */
2652 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2653 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2654 {
2655 flags = cpu_flags_and_not (cpu_arch_flags,
2656 cpu_noarch[j].flags);
2657 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2658 {
2659 if (cpu_sub_arch_name)
2660 {
2661 char *name = cpu_sub_arch_name;
2662 cpu_sub_arch_name = concat (name, string,
2663 (const char *) NULL);
2664 free (name);
2665 }
2666 else
2667 cpu_sub_arch_name = xstrdup (string);
2668 cpu_arch_flags = flags;
2669 cpu_arch_isa_flags = flags;
2670 }
2671 (void) restore_line_pointer (e);
2672 demand_empty_rest_of_line ();
2673 return;
2674 }
2675
2676 j = ARRAY_SIZE (cpu_arch);
2677 }
2678
2679 if (j >= ARRAY_SIZE (cpu_arch))
2680 as_bad (_("no such architecture: `%s'"), string);
2681
2682 *input_line_pointer = e;
2683 }
2684 else
2685 as_bad (_("missing cpu architecture"));
2686
2687 no_cond_jump_promotion = 0;
2688 if (*input_line_pointer == ','
2689 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2690 {
2691 char *string;
2692 char e;
2693
2694 ++input_line_pointer;
2695 e = get_symbol_name (&string);
2696
2697 if (strcmp (string, "nojumps") == 0)
2698 no_cond_jump_promotion = 1;
2699 else if (strcmp (string, "jumps") == 0)
2700 ;
2701 else
2702 as_bad (_("no such architecture modifier: `%s'"), string);
2703
2704 (void) restore_line_pointer (e);
2705 }
2706
2707 demand_empty_rest_of_line ();
2708 }
2709
2710 enum bfd_architecture
2711 i386_arch (void)
2712 {
2713 if (cpu_arch_isa == PROCESSOR_L1OM)
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code != CODE_64BIT)
2717 as_fatal (_("Intel L1OM is 64bit ELF only"));
2718 return bfd_arch_l1om;
2719 }
2720 else if (cpu_arch_isa == PROCESSOR_K1OM)
2721 {
2722 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2723 || flag_code != CODE_64BIT)
2724 as_fatal (_("Intel K1OM is 64bit ELF only"));
2725 return bfd_arch_k1om;
2726 }
2727 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2728 {
2729 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2730 || flag_code == CODE_64BIT)
2731 as_fatal (_("Intel MCU is 32bit ELF only"));
2732 return bfd_arch_iamcu;
2733 }
2734 else
2735 return bfd_arch_i386;
2736 }
2737
2738 unsigned long
2739 i386_mach (void)
2740 {
2741 if (!strncmp (default_arch, "x86_64", 6))
2742 {
2743 if (cpu_arch_isa == PROCESSOR_L1OM)
2744 {
2745 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2746 || default_arch[6] != '\0')
2747 as_fatal (_("Intel L1OM is 64bit ELF only"));
2748 return bfd_mach_l1om;
2749 }
2750 else if (cpu_arch_isa == PROCESSOR_K1OM)
2751 {
2752 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2753 || default_arch[6] != '\0')
2754 as_fatal (_("Intel K1OM is 64bit ELF only"));
2755 return bfd_mach_k1om;
2756 }
2757 else if (default_arch[6] == '\0')
2758 return bfd_mach_x86_64;
2759 else
2760 return bfd_mach_x64_32;
2761 }
2762 else if (!strcmp (default_arch, "i386")
2763 || !strcmp (default_arch, "iamcu"))
2764 {
2765 if (cpu_arch_isa == PROCESSOR_IAMCU)
2766 {
2767 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2768 as_fatal (_("Intel MCU is 32bit ELF only"));
2769 return bfd_mach_i386_iamcu;
2770 }
2771 else
2772 return bfd_mach_i386_i386;
2773 }
2774 else
2775 as_fatal (_("unknown architecture"));
2776 }
2777 \f
2778 void
2779 md_begin (void)
2780 {
2781 const char *hash_err;
2782
2783 /* Support pseudo prefixes like {disp32}. */
2784 lex_type ['{'] = LEX_BEGIN_NAME;
2785
2786 /* Initialize op_hash hash table. */
2787 op_hash = hash_new ();
2788
2789 {
2790 const insn_template *optab;
2791 templates *core_optab;
2792
2793 /* Setup for loop. */
2794 optab = i386_optab;
2795 core_optab = XNEW (templates);
2796 core_optab->start = optab;
2797
2798 while (1)
2799 {
2800 ++optab;
2801 if (optab->name == NULL
2802 || strcmp (optab->name, (optab - 1)->name) != 0)
2803 {
2804 /* different name --> ship out current template list;
2805 add to hash table; & begin anew. */
2806 core_optab->end = optab;
2807 hash_err = hash_insert (op_hash,
2808 (optab - 1)->name,
2809 (void *) core_optab);
2810 if (hash_err)
2811 {
2812 as_fatal (_("can't hash %s: %s"),
2813 (optab - 1)->name,
2814 hash_err);
2815 }
2816 if (optab->name == NULL)
2817 break;
2818 core_optab = XNEW (templates);
2819 core_optab->start = optab;
2820 }
2821 }
2822 }
2823
2824 /* Initialize reg_hash hash table. */
2825 reg_hash = hash_new ();
2826 {
2827 const reg_entry *regtab;
2828 unsigned int regtab_size = i386_regtab_size;
2829
2830 for (regtab = i386_regtab; regtab_size--; regtab++)
2831 {
2832 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2833 if (hash_err)
2834 as_fatal (_("can't hash %s: %s"),
2835 regtab->reg_name,
2836 hash_err);
2837 }
2838 }
2839
2840 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2841 {
2842 int c;
2843 char *p;
2844
2845 for (c = 0; c < 256; c++)
2846 {
2847 if (ISDIGIT (c))
2848 {
2849 digit_chars[c] = c;
2850 mnemonic_chars[c] = c;
2851 register_chars[c] = c;
2852 operand_chars[c] = c;
2853 }
2854 else if (ISLOWER (c))
2855 {
2856 mnemonic_chars[c] = c;
2857 register_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860 else if (ISUPPER (c))
2861 {
2862 mnemonic_chars[c] = TOLOWER (c);
2863 register_chars[c] = mnemonic_chars[c];
2864 operand_chars[c] = c;
2865 }
2866 else if (c == '{' || c == '}')
2867 {
2868 mnemonic_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871
2872 if (ISALPHA (c) || ISDIGIT (c))
2873 identifier_chars[c] = c;
2874 else if (c >= 128)
2875 {
2876 identifier_chars[c] = c;
2877 operand_chars[c] = c;
2878 }
2879 }
2880
2881 #ifdef LEX_AT
2882 identifier_chars['@'] = '@';
2883 #endif
2884 #ifdef LEX_QM
2885 identifier_chars['?'] = '?';
2886 operand_chars['?'] = '?';
2887 #endif
2888 digit_chars['-'] = '-';
2889 mnemonic_chars['_'] = '_';
2890 mnemonic_chars['-'] = '-';
2891 mnemonic_chars['.'] = '.';
2892 identifier_chars['_'] = '_';
2893 identifier_chars['.'] = '.';
2894
2895 for (p = operand_special_chars; *p != '\0'; p++)
2896 operand_chars[(unsigned char) *p] = *p;
2897 }
2898
2899 if (flag_code == CODE_64BIT)
2900 {
2901 #if defined (OBJ_COFF) && defined (TE_PE)
2902 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2903 ? 32 : 16);
2904 #else
2905 x86_dwarf2_return_column = 16;
2906 #endif
2907 x86_cie_data_alignment = -8;
2908 }
2909 else
2910 {
2911 x86_dwarf2_return_column = 8;
2912 x86_cie_data_alignment = -4;
2913 }
2914 }
2915
2916 void
2917 i386_print_statistics (FILE *file)
2918 {
2919 hash_print_statistics (file, "i386 opcode", op_hash);
2920 hash_print_statistics (file, "i386 register", reg_hash);
2921 }
2922 \f
2923 #ifdef DEBUG386
2924
2925 /* Debugging routines for md_assemble. */
2926 static void pte (insn_template *);
2927 static void pt (i386_operand_type);
2928 static void pe (expressionS *);
2929 static void ps (symbolS *);
2930
2931 static void
2932 pi (char *line, i386_insn *x)
2933 {
2934 unsigned int j;
2935
2936 fprintf (stdout, "%s: template ", line);
2937 pte (&x->tm);
2938 fprintf (stdout, " address: base %s index %s scale %x\n",
2939 x->base_reg ? x->base_reg->reg_name : "none",
2940 x->index_reg ? x->index_reg->reg_name : "none",
2941 x->log2_scale_factor);
2942 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2943 x->rm.mode, x->rm.reg, x->rm.regmem);
2944 fprintf (stdout, " sib: base %x index %x scale %x\n",
2945 x->sib.base, x->sib.index, x->sib.scale);
2946 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2947 (x->rex & REX_W) != 0,
2948 (x->rex & REX_R) != 0,
2949 (x->rex & REX_X) != 0,
2950 (x->rex & REX_B) != 0);
2951 for (j = 0; j < x->operands; j++)
2952 {
2953 fprintf (stdout, " #%d: ", j + 1);
2954 pt (x->types[j]);
2955 fprintf (stdout, "\n");
2956 if (x->types[j].bitfield.reg
2957 || x->types[j].bitfield.regmmx
2958 || x->types[j].bitfield.regsimd
2959 || x->types[j].bitfield.sreg2
2960 || x->types[j].bitfield.sreg3
2961 || x->types[j].bitfield.control
2962 || x->types[j].bitfield.debug
2963 || x->types[j].bitfield.test)
2964 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2965 if (operand_type_check (x->types[j], imm))
2966 pe (x->op[j].imms);
2967 if (operand_type_check (x->types[j], disp))
2968 pe (x->op[j].disps);
2969 }
2970 }
2971
2972 static void
2973 pte (insn_template *t)
2974 {
2975 unsigned int j;
2976 fprintf (stdout, " %d operands ", t->operands);
2977 fprintf (stdout, "opcode %x ", t->base_opcode);
2978 if (t->extension_opcode != None)
2979 fprintf (stdout, "ext %x ", t->extension_opcode);
2980 if (t->opcode_modifier.d)
2981 fprintf (stdout, "D");
2982 if (t->opcode_modifier.w)
2983 fprintf (stdout, "W");
2984 fprintf (stdout, "\n");
2985 for (j = 0; j < t->operands; j++)
2986 {
2987 fprintf (stdout, " #%d type ", j + 1);
2988 pt (t->operand_types[j]);
2989 fprintf (stdout, "\n");
2990 }
2991 }
2992
2993 static void
2994 pe (expressionS *e)
2995 {
2996 fprintf (stdout, " operation %d\n", e->X_op);
2997 fprintf (stdout, " add_number %ld (%lx)\n",
2998 (long) e->X_add_number, (long) e->X_add_number);
2999 if (e->X_add_symbol)
3000 {
3001 fprintf (stdout, " add_symbol ");
3002 ps (e->X_add_symbol);
3003 fprintf (stdout, "\n");
3004 }
3005 if (e->X_op_symbol)
3006 {
3007 fprintf (stdout, " op_symbol ");
3008 ps (e->X_op_symbol);
3009 fprintf (stdout, "\n");
3010 }
3011 }
3012
3013 static void
3014 ps (symbolS *s)
3015 {
3016 fprintf (stdout, "%s type %s%s",
3017 S_GET_NAME (s),
3018 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3019 segment_name (S_GET_SEGMENT (s)));
3020 }
3021
3022 static struct type_name
3023 {
3024 i386_operand_type mask;
3025 const char *name;
3026 }
3027 const type_names[] =
3028 {
3029 { OPERAND_TYPE_REG8, "r8" },
3030 { OPERAND_TYPE_REG16, "r16" },
3031 { OPERAND_TYPE_REG32, "r32" },
3032 { OPERAND_TYPE_REG64, "r64" },
3033 { OPERAND_TYPE_IMM8, "i8" },
3034 { OPERAND_TYPE_IMM8, "i8s" },
3035 { OPERAND_TYPE_IMM16, "i16" },
3036 { OPERAND_TYPE_IMM32, "i32" },
3037 { OPERAND_TYPE_IMM32S, "i32s" },
3038 { OPERAND_TYPE_IMM64, "i64" },
3039 { OPERAND_TYPE_IMM1, "i1" },
3040 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3041 { OPERAND_TYPE_DISP8, "d8" },
3042 { OPERAND_TYPE_DISP16, "d16" },
3043 { OPERAND_TYPE_DISP32, "d32" },
3044 { OPERAND_TYPE_DISP32S, "d32s" },
3045 { OPERAND_TYPE_DISP64, "d64" },
3046 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3047 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3048 { OPERAND_TYPE_CONTROL, "control reg" },
3049 { OPERAND_TYPE_TEST, "test reg" },
3050 { OPERAND_TYPE_DEBUG, "debug reg" },
3051 { OPERAND_TYPE_FLOATREG, "FReg" },
3052 { OPERAND_TYPE_FLOATACC, "FAcc" },
3053 { OPERAND_TYPE_SREG2, "SReg2" },
3054 { OPERAND_TYPE_SREG3, "SReg3" },
3055 { OPERAND_TYPE_ACC, "Acc" },
3056 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3057 { OPERAND_TYPE_REGMMX, "rMMX" },
3058 { OPERAND_TYPE_REGXMM, "rXMM" },
3059 { OPERAND_TYPE_REGYMM, "rYMM" },
3060 { OPERAND_TYPE_REGZMM, "rZMM" },
3061 { OPERAND_TYPE_REGMASK, "Mask reg" },
3062 { OPERAND_TYPE_ESSEG, "es" },
3063 };
3064
3065 static void
3066 pt (i386_operand_type t)
3067 {
3068 unsigned int j;
3069 i386_operand_type a;
3070
3071 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3072 {
3073 a = operand_type_and (t, type_names[j].mask);
3074 if (!operand_type_all_zero (&a))
3075 fprintf (stdout, "%s, ", type_names[j].name);
3076 }
3077 fflush (stdout);
3078 }
3079
3080 #endif /* DEBUG386 */
3081 \f
3082 static bfd_reloc_code_real_type
3083 reloc (unsigned int size,
3084 int pcrel,
3085 int sign,
3086 bfd_reloc_code_real_type other)
3087 {
3088 if (other != NO_RELOC)
3089 {
3090 reloc_howto_type *rel;
3091
3092 if (size == 8)
3093 switch (other)
3094 {
3095 case BFD_RELOC_X86_64_GOT32:
3096 return BFD_RELOC_X86_64_GOT64;
3097 break;
3098 case BFD_RELOC_X86_64_GOTPLT64:
3099 return BFD_RELOC_X86_64_GOTPLT64;
3100 break;
3101 case BFD_RELOC_X86_64_PLTOFF64:
3102 return BFD_RELOC_X86_64_PLTOFF64;
3103 break;
3104 case BFD_RELOC_X86_64_GOTPC32:
3105 other = BFD_RELOC_X86_64_GOTPC64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPCREL:
3108 other = BFD_RELOC_X86_64_GOTPCREL64;
3109 break;
3110 case BFD_RELOC_X86_64_TPOFF32:
3111 other = BFD_RELOC_X86_64_TPOFF64;
3112 break;
3113 case BFD_RELOC_X86_64_DTPOFF32:
3114 other = BFD_RELOC_X86_64_DTPOFF64;
3115 break;
3116 default:
3117 break;
3118 }
3119
3120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3121 if (other == BFD_RELOC_SIZE32)
3122 {
3123 if (size == 8)
3124 other = BFD_RELOC_SIZE64;
3125 if (pcrel)
3126 {
3127 as_bad (_("there are no pc-relative size relocations"));
3128 return NO_RELOC;
3129 }
3130 }
3131 #endif
3132
3133 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3134 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3135 sign = -1;
3136
3137 rel = bfd_reloc_type_lookup (stdoutput, other);
3138 if (!rel)
3139 as_bad (_("unknown relocation (%u)"), other);
3140 else if (size != bfd_get_reloc_size (rel))
3141 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3142 bfd_get_reloc_size (rel),
3143 size);
3144 else if (pcrel && !rel->pc_relative)
3145 as_bad (_("non-pc-relative relocation for pc-relative field"));
3146 else if ((rel->complain_on_overflow == complain_overflow_signed
3147 && !sign)
3148 || (rel->complain_on_overflow == complain_overflow_unsigned
3149 && sign > 0))
3150 as_bad (_("relocated field and relocation type differ in signedness"));
3151 else
3152 return other;
3153 return NO_RELOC;
3154 }
3155
3156 if (pcrel)
3157 {
3158 if (!sign)
3159 as_bad (_("there are no unsigned pc-relative relocations"));
3160 switch (size)
3161 {
3162 case 1: return BFD_RELOC_8_PCREL;
3163 case 2: return BFD_RELOC_16_PCREL;
3164 case 4: return BFD_RELOC_32_PCREL;
3165 case 8: return BFD_RELOC_64_PCREL;
3166 }
3167 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3168 }
3169 else
3170 {
3171 if (sign > 0)
3172 switch (size)
3173 {
3174 case 4: return BFD_RELOC_X86_64_32S;
3175 }
3176 else
3177 switch (size)
3178 {
3179 case 1: return BFD_RELOC_8;
3180 case 2: return BFD_RELOC_16;
3181 case 4: return BFD_RELOC_32;
3182 case 8: return BFD_RELOC_64;
3183 }
3184 as_bad (_("cannot do %s %u byte relocation"),
3185 sign > 0 ? "signed" : "unsigned", size);
3186 }
3187
3188 return NO_RELOC;
3189 }
3190
3191 /* Here we decide which fixups can be adjusted to make them relative to
3192 the beginning of the section instead of the symbol. Basically we need
3193 to make sure that the dynamic relocations are done correctly, so in
3194 some cases we force the original symbol to be used. */
3195
3196 int
3197 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3198 {
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (!IS_ELF)
3201 return 1;
3202
3203 /* Don't adjust pc-relative references to merge sections in 64-bit
3204 mode. */
3205 if (use_rela_relocations
3206 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3207 && fixP->fx_pcrel)
3208 return 0;
3209
3210 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3211 and changed later by validate_fix. */
3212 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3213 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3214 return 0;
3215
3216 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3217 for size relocations. */
3218 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3219 || fixP->fx_r_type == BFD_RELOC_SIZE64
3220 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3221 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3222 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3249 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3251 return 0;
3252 #endif
3253 return 1;
3254 }
3255
3256 static int
3257 intel_float_operand (const char *mnemonic)
3258 {
3259 /* Note that the value returned is meaningful only for opcodes with (memory)
3260 operands, hence the code here is free to improperly handle opcodes that
3261 have no operands (for better performance and smaller code). */
3262
3263 if (mnemonic[0] != 'f')
3264 return 0; /* non-math */
3265
3266 switch (mnemonic[1])
3267 {
3268 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3269 the fs segment override prefix not currently handled because no
3270 call path can make opcodes without operands get here */
3271 case 'i':
3272 return 2 /* integer op */;
3273 case 'l':
3274 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3275 return 3; /* fldcw/fldenv */
3276 break;
3277 case 'n':
3278 if (mnemonic[2] != 'o' /* fnop */)
3279 return 3; /* non-waiting control op */
3280 break;
3281 case 'r':
3282 if (mnemonic[2] == 's')
3283 return 3; /* frstor/frstpm */
3284 break;
3285 case 's':
3286 if (mnemonic[2] == 'a')
3287 return 3; /* fsave */
3288 if (mnemonic[2] == 't')
3289 {
3290 switch (mnemonic[3])
3291 {
3292 case 'c': /* fstcw */
3293 case 'd': /* fstdw */
3294 case 'e': /* fstenv */
3295 case 's': /* fsts[gw] */
3296 return 3;
3297 }
3298 }
3299 break;
3300 case 'x':
3301 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3302 return 0; /* fxsave/fxrstor are not really math ops */
3303 break;
3304 }
3305
3306 return 1;
3307 }
3308
3309 /* Build the VEX prefix. */
3310
3311 static void
3312 build_vex_prefix (const insn_template *t)
3313 {
3314 unsigned int register_specifier;
3315 unsigned int implied_prefix;
3316 unsigned int vector_length;
3317
3318 /* Check register specifier. */
3319 if (i.vex.register_specifier)
3320 {
3321 register_specifier =
3322 ~register_number (i.vex.register_specifier) & 0xf;
3323 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3324 }
3325 else
3326 register_specifier = 0xf;
3327
3328 /* Use 2-byte VEX prefix by swapping destination and source
3329 operand. */
3330 if (i.vec_encoding != vex_encoding_vex3
3331 && i.dir_encoding == dir_encoding_default
3332 && i.operands == i.reg_operands
3333 && i.tm.opcode_modifier.vexopcode == VEX0F
3334 && i.tm.opcode_modifier.load
3335 && i.rex == REX_B)
3336 {
3337 unsigned int xchg = i.operands - 1;
3338 union i386_op temp_op;
3339 i386_operand_type temp_type;
3340
3341 temp_type = i.types[xchg];
3342 i.types[xchg] = i.types[0];
3343 i.types[0] = temp_type;
3344 temp_op = i.op[xchg];
3345 i.op[xchg] = i.op[0];
3346 i.op[0] = temp_op;
3347
3348 gas_assert (i.rm.mode == 3);
3349
3350 i.rex = REX_R;
3351 xchg = i.rm.regmem;
3352 i.rm.regmem = i.rm.reg;
3353 i.rm.reg = xchg;
3354
3355 /* Use the next insn. */
3356 i.tm = t[1];
3357 }
3358
3359 if (i.tm.opcode_modifier.vex == VEXScalar)
3360 vector_length = avxscalar;
3361 else if (i.tm.opcode_modifier.vex == VEX256)
3362 vector_length = 1;
3363 else
3364 {
3365 unsigned int op;
3366
3367 vector_length = 0;
3368 for (op = 0; op < t->operands; ++op)
3369 if (t->operand_types[op].bitfield.xmmword
3370 && t->operand_types[op].bitfield.ymmword
3371 && i.types[op].bitfield.ymmword)
3372 {
3373 vector_length = 1;
3374 break;
3375 }
3376 }
3377
3378 switch ((i.tm.base_opcode >> 8) & 0xff)
3379 {
3380 case 0:
3381 implied_prefix = 0;
3382 break;
3383 case DATA_PREFIX_OPCODE:
3384 implied_prefix = 1;
3385 break;
3386 case REPE_PREFIX_OPCODE:
3387 implied_prefix = 2;
3388 break;
3389 case REPNE_PREFIX_OPCODE:
3390 implied_prefix = 3;
3391 break;
3392 default:
3393 abort ();
3394 }
3395
3396 /* Use 2-byte VEX prefix if possible. */
3397 if (i.vec_encoding != vex_encoding_vex3
3398 && i.tm.opcode_modifier.vexopcode == VEX0F
3399 && i.tm.opcode_modifier.vexw != VEXW1
3400 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3401 {
3402 /* 2-byte VEX prefix. */
3403 unsigned int r;
3404
3405 i.vex.length = 2;
3406 i.vex.bytes[0] = 0xc5;
3407
3408 /* Check the REX.R bit. */
3409 r = (i.rex & REX_R) ? 0 : 1;
3410 i.vex.bytes[1] = (r << 7
3411 | register_specifier << 3
3412 | vector_length << 2
3413 | implied_prefix);
3414 }
3415 else
3416 {
3417 /* 3-byte VEX prefix. */
3418 unsigned int m, w;
3419
3420 i.vex.length = 3;
3421
3422 switch (i.tm.opcode_modifier.vexopcode)
3423 {
3424 case VEX0F:
3425 m = 0x1;
3426 i.vex.bytes[0] = 0xc4;
3427 break;
3428 case VEX0F38:
3429 m = 0x2;
3430 i.vex.bytes[0] = 0xc4;
3431 break;
3432 case VEX0F3A:
3433 m = 0x3;
3434 i.vex.bytes[0] = 0xc4;
3435 break;
3436 case XOP08:
3437 m = 0x8;
3438 i.vex.bytes[0] = 0x8f;
3439 break;
3440 case XOP09:
3441 m = 0x9;
3442 i.vex.bytes[0] = 0x8f;
3443 break;
3444 case XOP0A:
3445 m = 0xa;
3446 i.vex.bytes[0] = 0x8f;
3447 break;
3448 default:
3449 abort ();
3450 }
3451
3452 /* The high 3 bits of the second VEX byte are 1's compliment
3453 of RXB bits from REX. */
3454 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3455
3456 /* Check the REX.W bit. */
3457 w = (i.rex & REX_W) ? 1 : 0;
3458 if (i.tm.opcode_modifier.vexw == VEXW1)
3459 w = 1;
3460
3461 i.vex.bytes[2] = (w << 7
3462 | register_specifier << 3
3463 | vector_length << 2
3464 | implied_prefix);
3465 }
3466 }
3467
3468 static INLINE bfd_boolean
3469 is_evex_encoding (const insn_template *t)
3470 {
3471 return t->opcode_modifier.evex
3472 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3473 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3474 }
3475
3476 /* Build the EVEX prefix. */
3477
3478 static void
3479 build_evex_prefix (void)
3480 {
3481 unsigned int register_specifier;
3482 unsigned int implied_prefix;
3483 unsigned int m, w;
3484 rex_byte vrex_used = 0;
3485
3486 /* Check register specifier. */
3487 if (i.vex.register_specifier)
3488 {
3489 gas_assert ((i.vrex & REX_X) == 0);
3490
3491 register_specifier = i.vex.register_specifier->reg_num;
3492 if ((i.vex.register_specifier->reg_flags & RegRex))
3493 register_specifier += 8;
3494 /* The upper 16 registers are encoded in the fourth byte of the
3495 EVEX prefix. */
3496 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3497 i.vex.bytes[3] = 0x8;
3498 register_specifier = ~register_specifier & 0xf;
3499 }
3500 else
3501 {
3502 register_specifier = 0xf;
3503
3504 /* Encode upper 16 vector index register in the fourth byte of
3505 the EVEX prefix. */
3506 if (!(i.vrex & REX_X))
3507 i.vex.bytes[3] = 0x8;
3508 else
3509 vrex_used |= REX_X;
3510 }
3511
3512 switch ((i.tm.base_opcode >> 8) & 0xff)
3513 {
3514 case 0:
3515 implied_prefix = 0;
3516 break;
3517 case DATA_PREFIX_OPCODE:
3518 implied_prefix = 1;
3519 break;
3520 case REPE_PREFIX_OPCODE:
3521 implied_prefix = 2;
3522 break;
3523 case REPNE_PREFIX_OPCODE:
3524 implied_prefix = 3;
3525 break;
3526 default:
3527 abort ();
3528 }
3529
3530 /* 4 byte EVEX prefix. */
3531 i.vex.length = 4;
3532 i.vex.bytes[0] = 0x62;
3533
3534 /* mmmm bits. */
3535 switch (i.tm.opcode_modifier.vexopcode)
3536 {
3537 case VEX0F:
3538 m = 1;
3539 break;
3540 case VEX0F38:
3541 m = 2;
3542 break;
3543 case VEX0F3A:
3544 m = 3;
3545 break;
3546 default:
3547 abort ();
3548 break;
3549 }
3550
3551 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3552 bits from REX. */
3553 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3554
3555 /* The fifth bit of the second EVEX byte is 1's compliment of the
3556 REX_R bit in VREX. */
3557 if (!(i.vrex & REX_R))
3558 i.vex.bytes[1] |= 0x10;
3559 else
3560 vrex_used |= REX_R;
3561
3562 if ((i.reg_operands + i.imm_operands) == i.operands)
3563 {
3564 /* When all operands are registers, the REX_X bit in REX is not
3565 used. We reuse it to encode the upper 16 registers, which is
3566 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3567 as 1's compliment. */
3568 if ((i.vrex & REX_B))
3569 {
3570 vrex_used |= REX_B;
3571 i.vex.bytes[1] &= ~0x40;
3572 }
3573 }
3574
3575 /* EVEX instructions shouldn't need the REX prefix. */
3576 i.vrex &= ~vrex_used;
3577 gas_assert (i.vrex == 0);
3578
3579 /* Check the REX.W bit. */
3580 w = (i.rex & REX_W) ? 1 : 0;
3581 if (i.tm.opcode_modifier.vexw)
3582 {
3583 if (i.tm.opcode_modifier.vexw == VEXW1)
3584 w = 1;
3585 }
3586 /* If w is not set it means we are dealing with WIG instruction. */
3587 else if (!w)
3588 {
3589 if (evexwig == evexw1)
3590 w = 1;
3591 }
3592
3593 /* Encode the U bit. */
3594 implied_prefix |= 0x4;
3595
3596 /* The third byte of the EVEX prefix. */
3597 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3598
3599 /* The fourth byte of the EVEX prefix. */
3600 /* The zeroing-masking bit. */
3601 if (i.mask && i.mask->zeroing)
3602 i.vex.bytes[3] |= 0x80;
3603
3604 /* Don't always set the broadcast bit if there is no RC. */
3605 if (!i.rounding)
3606 {
3607 /* Encode the vector length. */
3608 unsigned int vec_length;
3609
3610 if (!i.tm.opcode_modifier.evex
3611 || i.tm.opcode_modifier.evex == EVEXDYN)
3612 {
3613 unsigned int op;
3614
3615 vec_length = 0;
3616 for (op = 0; op < i.tm.operands; ++op)
3617 if (i.tm.operand_types[op].bitfield.xmmword
3618 + i.tm.operand_types[op].bitfield.ymmword
3619 + i.tm.operand_types[op].bitfield.zmmword > 1)
3620 {
3621 if (i.types[op].bitfield.zmmword)
3622 i.tm.opcode_modifier.evex = EVEX512;
3623 else if (i.types[op].bitfield.ymmword)
3624 i.tm.opcode_modifier.evex = EVEX256;
3625 else if (i.types[op].bitfield.xmmword)
3626 i.tm.opcode_modifier.evex = EVEX128;
3627 else
3628 continue;
3629 break;
3630 }
3631 }
3632
3633 switch (i.tm.opcode_modifier.evex)
3634 {
3635 case EVEXLIG: /* LL' is ignored */
3636 vec_length = evexlig << 5;
3637 break;
3638 case EVEX128:
3639 vec_length = 0 << 5;
3640 break;
3641 case EVEX256:
3642 vec_length = 1 << 5;
3643 break;
3644 case EVEX512:
3645 vec_length = 2 << 5;
3646 break;
3647 default:
3648 abort ();
3649 break;
3650 }
3651 i.vex.bytes[3] |= vec_length;
3652 /* Encode the broadcast bit. */
3653 if (i.broadcast)
3654 i.vex.bytes[3] |= 0x10;
3655 }
3656 else
3657 {
3658 if (i.rounding->type != saeonly)
3659 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3660 else
3661 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3662 }
3663
3664 if (i.mask && i.mask->mask)
3665 i.vex.bytes[3] |= i.mask->mask->reg_num;
3666 }
3667
3668 static void
3669 process_immext (void)
3670 {
3671 expressionS *exp;
3672
3673 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3674 && i.operands > 0)
3675 {
3676 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3677 with an opcode suffix which is coded in the same place as an
3678 8-bit immediate field would be.
3679 Here we check those operands and remove them afterwards. */
3680 unsigned int x;
3681
3682 for (x = 0; x < i.operands; x++)
3683 if (register_number (i.op[x].regs) != x)
3684 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3685 register_prefix, i.op[x].regs->reg_name, x + 1,
3686 i.tm.name);
3687
3688 i.operands = 0;
3689 }
3690
3691 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3692 {
3693 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3694 suffix which is coded in the same place as an 8-bit immediate
3695 field would be.
3696 Here we check those operands and remove them afterwards. */
3697 unsigned int x;
3698
3699 if (i.operands != 3)
3700 abort();
3701
3702 for (x = 0; x < 2; x++)
3703 if (register_number (i.op[x].regs) != x)
3704 goto bad_register_operand;
3705
3706 /* Check for third operand for mwaitx/monitorx insn. */
3707 if (register_number (i.op[x].regs)
3708 != (x + (i.tm.extension_opcode == 0xfb)))
3709 {
3710 bad_register_operand:
3711 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3712 register_prefix, i.op[x].regs->reg_name, x+1,
3713 i.tm.name);
3714 }
3715
3716 i.operands = 0;
3717 }
3718
3719 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3720 which is coded in the same place as an 8-bit immediate field
3721 would be. Here we fake an 8-bit immediate operand from the
3722 opcode suffix stored in tm.extension_opcode.
3723
3724 AVX instructions also use this encoding, for some of
3725 3 argument instructions. */
3726
3727 gas_assert (i.imm_operands <= 1
3728 && (i.operands <= 2
3729 || ((i.tm.opcode_modifier.vex
3730 || i.tm.opcode_modifier.vexopcode
3731 || is_evex_encoding (&i.tm))
3732 && i.operands <= 4)));
3733
3734 exp = &im_expressions[i.imm_operands++];
3735 i.op[i.operands].imms = exp;
3736 i.types[i.operands] = imm8;
3737 i.operands++;
3738 exp->X_op = O_constant;
3739 exp->X_add_number = i.tm.extension_opcode;
3740 i.tm.extension_opcode = None;
3741 }
3742
3743
3744 static int
3745 check_hle (void)
3746 {
3747 switch (i.tm.opcode_modifier.hleprefixok)
3748 {
3749 default:
3750 abort ();
3751 case HLEPrefixNone:
3752 as_bad (_("invalid instruction `%s' after `%s'"),
3753 i.tm.name, i.hle_prefix);
3754 return 0;
3755 case HLEPrefixLock:
3756 if (i.prefix[LOCK_PREFIX])
3757 return 1;
3758 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3759 return 0;
3760 case HLEPrefixAny:
3761 return 1;
3762 case HLEPrefixRelease:
3763 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3764 {
3765 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3766 i.tm.name);
3767 return 0;
3768 }
3769 if (i.mem_operands == 0
3770 || !operand_type_check (i.types[i.operands - 1], anymem))
3771 {
3772 as_bad (_("memory destination needed for instruction `%s'"
3773 " after `xrelease'"), i.tm.name);
3774 return 0;
3775 }
3776 return 1;
3777 }
3778 }
3779
3780 /* Try the shortest encoding by shortening operand size. */
3781
3782 static void
3783 optimize_encoding (void)
3784 {
3785 int j;
3786
3787 if (optimize_for_space
3788 && i.reg_operands == 1
3789 && i.imm_operands == 1
3790 && !i.types[1].bitfield.byte
3791 && i.op[0].imms->X_op == O_constant
3792 && fits_in_imm7 (i.op[0].imms->X_add_number)
3793 && ((i.tm.base_opcode == 0xa8
3794 && i.tm.extension_opcode == None)
3795 || (i.tm.base_opcode == 0xf6
3796 && i.tm.extension_opcode == 0x0)))
3797 {
3798 /* Optimize: -Os:
3799 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3800 */
3801 unsigned int base_regnum = i.op[1].regs->reg_num;
3802 if (flag_code == CODE_64BIT || base_regnum < 4)
3803 {
3804 i.types[1].bitfield.byte = 1;
3805 /* Ignore the suffix. */
3806 i.suffix = 0;
3807 if (base_regnum >= 4
3808 && !(i.op[1].regs->reg_flags & RegRex))
3809 {
3810 /* Handle SP, BP, SI and DI registers. */
3811 if (i.types[1].bitfield.word)
3812 j = 16;
3813 else if (i.types[1].bitfield.dword)
3814 j = 32;
3815 else
3816 j = 48;
3817 i.op[1].regs -= j;
3818 }
3819 }
3820 }
3821 else if (flag_code == CODE_64BIT
3822 && ((i.types[1].bitfield.qword
3823 && i.reg_operands == 1
3824 && i.imm_operands == 1
3825 && i.op[0].imms->X_op == O_constant
3826 && ((i.tm.base_opcode == 0xb0
3827 && i.tm.extension_opcode == None
3828 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3829 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3830 && (((i.tm.base_opcode == 0x24
3831 || i.tm.base_opcode == 0xa8)
3832 && i.tm.extension_opcode == None)
3833 || (i.tm.base_opcode == 0x80
3834 && i.tm.extension_opcode == 0x4)
3835 || ((i.tm.base_opcode == 0xf6
3836 || i.tm.base_opcode == 0xc6)
3837 && i.tm.extension_opcode == 0x0)))))
3838 || (i.types[0].bitfield.qword
3839 && ((i.reg_operands == 2
3840 && i.op[0].regs == i.op[1].regs
3841 && ((i.tm.base_opcode == 0x30
3842 || i.tm.base_opcode == 0x28)
3843 && i.tm.extension_opcode == None))
3844 || (i.reg_operands == 1
3845 && i.operands == 1
3846 && i.tm.base_opcode == 0x30
3847 && i.tm.extension_opcode == None)))))
3848 {
3849 /* Optimize: -O:
3850 andq $imm31, %r64 -> andl $imm31, %r32
3851 testq $imm31, %r64 -> testl $imm31, %r32
3852 xorq %r64, %r64 -> xorl %r32, %r32
3853 subq %r64, %r64 -> subl %r32, %r32
3854 movq $imm31, %r64 -> movl $imm31, %r32
3855 movq $imm32, %r64 -> movl $imm32, %r32
3856 */
3857 i.tm.opcode_modifier.norex64 = 1;
3858 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3859 {
3860 /* Handle
3861 movq $imm31, %r64 -> movl $imm31, %r32
3862 movq $imm32, %r64 -> movl $imm32, %r32
3863 */
3864 i.tm.operand_types[0].bitfield.imm32 = 1;
3865 i.tm.operand_types[0].bitfield.imm32s = 0;
3866 i.tm.operand_types[0].bitfield.imm64 = 0;
3867 i.types[0].bitfield.imm32 = 1;
3868 i.types[0].bitfield.imm32s = 0;
3869 i.types[0].bitfield.imm64 = 0;
3870 i.types[1].bitfield.dword = 1;
3871 i.types[1].bitfield.qword = 0;
3872 if (i.tm.base_opcode == 0xc6)
3873 {
3874 /* Handle
3875 movq $imm31, %r64 -> movl $imm31, %r32
3876 */
3877 i.tm.base_opcode = 0xb0;
3878 i.tm.extension_opcode = None;
3879 i.tm.opcode_modifier.shortform = 1;
3880 i.tm.opcode_modifier.modrm = 0;
3881 }
3882 }
3883 }
3884 else if (optimize > 1
3885 && i.reg_operands == 3
3886 && i.op[0].regs == i.op[1].regs
3887 && !i.types[2].bitfield.xmmword
3888 && (i.tm.opcode_modifier.vex
3889 || ((!i.mask || i.mask->zeroing)
3890 && !i.rounding
3891 && is_evex_encoding (&i.tm)
3892 && (i.vec_encoding != vex_encoding_evex
3893 || i.tm.cpu_flags.bitfield.cpuavx512vl
3894 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3895 && ((i.tm.base_opcode == 0x55
3896 || i.tm.base_opcode == 0x6655
3897 || i.tm.base_opcode == 0x66df
3898 || i.tm.base_opcode == 0x57
3899 || i.tm.base_opcode == 0x6657
3900 || i.tm.base_opcode == 0x66ef
3901 || i.tm.base_opcode == 0x66f8
3902 || i.tm.base_opcode == 0x66f9
3903 || i.tm.base_opcode == 0x66fa
3904 || i.tm.base_opcode == 0x66fb)
3905 && i.tm.extension_opcode == None))
3906 {
3907 /* Optimize: -O2:
3908 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3909 vpsubq and vpsubw:
3910 EVEX VOP %zmmM, %zmmM, %zmmN
3911 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3912 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3913 EVEX VOP %ymmM, %ymmM, %ymmN
3914 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3915 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3916 VEX VOP %ymmM, %ymmM, %ymmN
3917 -> VEX VOP %xmmM, %xmmM, %xmmN
3918 VOP, one of vpandn and vpxor:
3919 VEX VOP %ymmM, %ymmM, %ymmN
3920 -> VEX VOP %xmmM, %xmmM, %xmmN
3921 VOP, one of vpandnd and vpandnq:
3922 EVEX VOP %zmmM, %zmmM, %zmmN
3923 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3924 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3925 EVEX VOP %ymmM, %ymmM, %ymmN
3926 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3927 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3928 VOP, one of vpxord and vpxorq:
3929 EVEX VOP %zmmM, %zmmM, %zmmN
3930 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3931 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3932 EVEX VOP %ymmM, %ymmM, %ymmN
3933 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3934 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3935 */
3936 if (is_evex_encoding (&i.tm))
3937 {
3938 if (i.vec_encoding == vex_encoding_evex)
3939 i.tm.opcode_modifier.evex = EVEX128;
3940 else
3941 {
3942 i.tm.opcode_modifier.vex = VEX128;
3943 i.tm.opcode_modifier.vexw = VEXW0;
3944 i.tm.opcode_modifier.evex = 0;
3945 }
3946 }
3947 else
3948 i.tm.opcode_modifier.vex = VEX128;
3949
3950 if (i.tm.opcode_modifier.vex)
3951 for (j = 0; j < 3; j++)
3952 {
3953 i.types[j].bitfield.xmmword = 1;
3954 i.types[j].bitfield.ymmword = 0;
3955 }
3956 }
3957 }
3958
3959 /* This is the guts of the machine-dependent assembler. LINE points to a
3960 machine dependent instruction. This function is supposed to emit
3961 the frags/bytes it assembles to. */
3962
3963 void
3964 md_assemble (char *line)
3965 {
3966 unsigned int j;
3967 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3968 const insn_template *t;
3969
3970 /* Initialize globals. */
3971 memset (&i, '\0', sizeof (i));
3972 for (j = 0; j < MAX_OPERANDS; j++)
3973 i.reloc[j] = NO_RELOC;
3974 memset (disp_expressions, '\0', sizeof (disp_expressions));
3975 memset (im_expressions, '\0', sizeof (im_expressions));
3976 save_stack_p = save_stack;
3977
3978 /* First parse an instruction mnemonic & call i386_operand for the operands.
3979 We assume that the scrubber has arranged it so that line[0] is the valid
3980 start of a (possibly prefixed) mnemonic. */
3981
3982 line = parse_insn (line, mnemonic);
3983 if (line == NULL)
3984 return;
3985 mnem_suffix = i.suffix;
3986
3987 line = parse_operands (line, mnemonic);
3988 this_operand = -1;
3989 xfree (i.memop1_string);
3990 i.memop1_string = NULL;
3991 if (line == NULL)
3992 return;
3993
3994 /* Now we've parsed the mnemonic into a set of templates, and have the
3995 operands at hand. */
3996
3997 /* All intel opcodes have reversed operands except for "bound" and
3998 "enter". We also don't reverse intersegment "jmp" and "call"
3999 instructions with 2 immediate operands so that the immediate segment
4000 precedes the offset, as it does when in AT&T mode. */
4001 if (intel_syntax
4002 && i.operands > 1
4003 && (strcmp (mnemonic, "bound") != 0)
4004 && (strcmp (mnemonic, "invlpga") != 0)
4005 && !(operand_type_check (i.types[0], imm)
4006 && operand_type_check (i.types[1], imm)))
4007 swap_operands ();
4008
4009 /* The order of the immediates should be reversed
4010 for 2 immediates extrq and insertq instructions */
4011 if (i.imm_operands == 2
4012 && (strcmp (mnemonic, "extrq") == 0
4013 || strcmp (mnemonic, "insertq") == 0))
4014 swap_2_operands (0, 1);
4015
4016 if (i.imm_operands)
4017 optimize_imm ();
4018
4019 /* Don't optimize displacement for movabs since it only takes 64bit
4020 displacement. */
4021 if (i.disp_operands
4022 && i.disp_encoding != disp_encoding_32bit
4023 && (flag_code != CODE_64BIT
4024 || strcmp (mnemonic, "movabs") != 0))
4025 optimize_disp ();
4026
4027 /* Next, we find a template that matches the given insn,
4028 making sure the overlap of the given operands types is consistent
4029 with the template operand types. */
4030
4031 if (!(t = match_template (mnem_suffix)))
4032 return;
4033
4034 if (sse_check != check_none
4035 && !i.tm.opcode_modifier.noavx
4036 && !i.tm.cpu_flags.bitfield.cpuavx
4037 && (i.tm.cpu_flags.bitfield.cpusse
4038 || i.tm.cpu_flags.bitfield.cpusse2
4039 || i.tm.cpu_flags.bitfield.cpusse3
4040 || i.tm.cpu_flags.bitfield.cpussse3
4041 || i.tm.cpu_flags.bitfield.cpusse4_1
4042 || i.tm.cpu_flags.bitfield.cpusse4_2
4043 || i.tm.cpu_flags.bitfield.cpupclmul
4044 || i.tm.cpu_flags.bitfield.cpuaes
4045 || i.tm.cpu_flags.bitfield.cpugfni))
4046 {
4047 (sse_check == check_warning
4048 ? as_warn
4049 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4050 }
4051
4052 /* Zap movzx and movsx suffix. The suffix has been set from
4053 "word ptr" or "byte ptr" on the source operand in Intel syntax
4054 or extracted from mnemonic in AT&T syntax. But we'll use
4055 the destination register to choose the suffix for encoding. */
4056 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4057 {
4058 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4059 there is no suffix, the default will be byte extension. */
4060 if (i.reg_operands != 2
4061 && !i.suffix
4062 && intel_syntax)
4063 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4064
4065 i.suffix = 0;
4066 }
4067
4068 if (i.tm.opcode_modifier.fwait)
4069 if (!add_prefix (FWAIT_OPCODE))
4070 return;
4071
4072 /* Check if REP prefix is OK. */
4073 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4074 {
4075 as_bad (_("invalid instruction `%s' after `%s'"),
4076 i.tm.name, i.rep_prefix);
4077 return;
4078 }
4079
4080 /* Check for lock without a lockable instruction. Destination operand
4081 must be memory unless it is xchg (0x86). */
4082 if (i.prefix[LOCK_PREFIX]
4083 && (!i.tm.opcode_modifier.islockable
4084 || i.mem_operands == 0
4085 || (i.tm.base_opcode != 0x86
4086 && !operand_type_check (i.types[i.operands - 1], anymem))))
4087 {
4088 as_bad (_("expecting lockable instruction after `lock'"));
4089 return;
4090 }
4091
4092 /* Check if HLE prefix is OK. */
4093 if (i.hle_prefix && !check_hle ())
4094 return;
4095
4096 /* Check BND prefix. */
4097 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4098 as_bad (_("expecting valid branch instruction after `bnd'"));
4099
4100 /* Check NOTRACK prefix. */
4101 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4102 as_bad (_("expecting indirect branch instruction after `notrack'"));
4103
4104 if (i.tm.cpu_flags.bitfield.cpumpx)
4105 {
4106 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4107 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4108 else if (flag_code != CODE_16BIT
4109 ? i.prefix[ADDR_PREFIX]
4110 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4111 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4112 }
4113
4114 /* Insert BND prefix. */
4115 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4116 {
4117 if (!i.prefix[BND_PREFIX])
4118 add_prefix (BND_PREFIX_OPCODE);
4119 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4120 {
4121 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4122 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4123 }
4124 }
4125
4126 /* Check string instruction segment overrides. */
4127 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4128 {
4129 if (!check_string ())
4130 return;
4131 i.disp_operands = 0;
4132 }
4133
4134 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4135 optimize_encoding ();
4136
4137 if (!process_suffix ())
4138 return;
4139
4140 /* Update operand types. */
4141 for (j = 0; j < i.operands; j++)
4142 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4143
4144 /* Make still unresolved immediate matches conform to size of immediate
4145 given in i.suffix. */
4146 if (!finalize_imm ())
4147 return;
4148
4149 if (i.types[0].bitfield.imm1)
4150 i.imm_operands = 0; /* kludge for shift insns. */
4151
4152 /* We only need to check those implicit registers for instructions
4153 with 3 operands or less. */
4154 if (i.operands <= 3)
4155 for (j = 0; j < i.operands; j++)
4156 if (i.types[j].bitfield.inoutportreg
4157 || i.types[j].bitfield.shiftcount
4158 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4159 i.reg_operands--;
4160
4161 /* ImmExt should be processed after SSE2AVX. */
4162 if (!i.tm.opcode_modifier.sse2avx
4163 && i.tm.opcode_modifier.immext)
4164 process_immext ();
4165
4166 /* For insns with operands there are more diddles to do to the opcode. */
4167 if (i.operands)
4168 {
4169 if (!process_operands ())
4170 return;
4171 }
4172 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4173 {
4174 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4175 as_warn (_("translating to `%sp'"), i.tm.name);
4176 }
4177
4178 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4179 || is_evex_encoding (&i.tm))
4180 {
4181 if (flag_code == CODE_16BIT)
4182 {
4183 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4184 i.tm.name);
4185 return;
4186 }
4187
4188 if (i.tm.opcode_modifier.vex)
4189 build_vex_prefix (t);
4190 else
4191 build_evex_prefix ();
4192 }
4193
4194 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4195 instructions may define INT_OPCODE as well, so avoid this corner
4196 case for those instructions that use MODRM. */
4197 if (i.tm.base_opcode == INT_OPCODE
4198 && !i.tm.opcode_modifier.modrm
4199 && i.op[0].imms->X_add_number == 3)
4200 {
4201 i.tm.base_opcode = INT3_OPCODE;
4202 i.imm_operands = 0;
4203 }
4204
4205 if ((i.tm.opcode_modifier.jump
4206 || i.tm.opcode_modifier.jumpbyte
4207 || i.tm.opcode_modifier.jumpdword)
4208 && i.op[0].disps->X_op == O_constant)
4209 {
4210 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4211 the absolute address given by the constant. Since ix86 jumps and
4212 calls are pc relative, we need to generate a reloc. */
4213 i.op[0].disps->X_add_symbol = &abs_symbol;
4214 i.op[0].disps->X_op = O_symbol;
4215 }
4216
4217 if (i.tm.opcode_modifier.rex64)
4218 i.rex |= REX_W;
4219
4220 /* For 8 bit registers we need an empty rex prefix. Also if the
4221 instruction already has a prefix, we need to convert old
4222 registers to new ones. */
4223
4224 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4225 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4226 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4227 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4228 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4229 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4230 && i.rex != 0))
4231 {
4232 int x;
4233
4234 i.rex |= REX_OPCODE;
4235 for (x = 0; x < 2; x++)
4236 {
4237 /* Look for 8 bit operand that uses old registers. */
4238 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4239 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4240 {
4241 /* In case it is "hi" register, give up. */
4242 if (i.op[x].regs->reg_num > 3)
4243 as_bad (_("can't encode register '%s%s' in an "
4244 "instruction requiring REX prefix."),
4245 register_prefix, i.op[x].regs->reg_name);
4246
4247 /* Otherwise it is equivalent to the extended register.
4248 Since the encoding doesn't change this is merely
4249 cosmetic cleanup for debug output. */
4250
4251 i.op[x].regs = i.op[x].regs + 8;
4252 }
4253 }
4254 }
4255
4256 if (i.rex == 0 && i.rex_encoding)
4257 {
4258 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4259 that uses legacy register. If it is "hi" register, don't add
4260 the REX_OPCODE byte. */
4261 int x;
4262 for (x = 0; x < 2; x++)
4263 if (i.types[x].bitfield.reg
4264 && i.types[x].bitfield.byte
4265 && (i.op[x].regs->reg_flags & RegRex64) == 0
4266 && i.op[x].regs->reg_num > 3)
4267 {
4268 i.rex_encoding = FALSE;
4269 break;
4270 }
4271
4272 if (i.rex_encoding)
4273 i.rex = REX_OPCODE;
4274 }
4275
4276 if (i.rex != 0)
4277 add_prefix (REX_OPCODE | i.rex);
4278
4279 /* We are ready to output the insn. */
4280 output_insn ();
4281 }
4282
4283 static char *
4284 parse_insn (char *line, char *mnemonic)
4285 {
4286 char *l = line;
4287 char *token_start = l;
4288 char *mnem_p;
4289 int supported;
4290 const insn_template *t;
4291 char *dot_p = NULL;
4292
4293 while (1)
4294 {
4295 mnem_p = mnemonic;
4296 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4297 {
4298 if (*mnem_p == '.')
4299 dot_p = mnem_p;
4300 mnem_p++;
4301 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4302 {
4303 as_bad (_("no such instruction: `%s'"), token_start);
4304 return NULL;
4305 }
4306 l++;
4307 }
4308 if (!is_space_char (*l)
4309 && *l != END_OF_INSN
4310 && (intel_syntax
4311 || (*l != PREFIX_SEPARATOR
4312 && *l != ',')))
4313 {
4314 as_bad (_("invalid character %s in mnemonic"),
4315 output_invalid (*l));
4316 return NULL;
4317 }
4318 if (token_start == l)
4319 {
4320 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4321 as_bad (_("expecting prefix; got nothing"));
4322 else
4323 as_bad (_("expecting mnemonic; got nothing"));
4324 return NULL;
4325 }
4326
4327 /* Look up instruction (or prefix) via hash table. */
4328 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4329
4330 if (*l != END_OF_INSN
4331 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4332 && current_templates
4333 && current_templates->start->opcode_modifier.isprefix)
4334 {
4335 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4336 {
4337 as_bad ((flag_code != CODE_64BIT
4338 ? _("`%s' is only supported in 64-bit mode")
4339 : _("`%s' is not supported in 64-bit mode")),
4340 current_templates->start->name);
4341 return NULL;
4342 }
4343 /* If we are in 16-bit mode, do not allow addr16 or data16.
4344 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4345 if ((current_templates->start->opcode_modifier.size16
4346 || current_templates->start->opcode_modifier.size32)
4347 && flag_code != CODE_64BIT
4348 && (current_templates->start->opcode_modifier.size32
4349 ^ (flag_code == CODE_16BIT)))
4350 {
4351 as_bad (_("redundant %s prefix"),
4352 current_templates->start->name);
4353 return NULL;
4354 }
4355 if (current_templates->start->opcode_length == 0)
4356 {
4357 /* Handle pseudo prefixes. */
4358 switch (current_templates->start->base_opcode)
4359 {
4360 case 0x0:
4361 /* {disp8} */
4362 i.disp_encoding = disp_encoding_8bit;
4363 break;
4364 case 0x1:
4365 /* {disp32} */
4366 i.disp_encoding = disp_encoding_32bit;
4367 break;
4368 case 0x2:
4369 /* {load} */
4370 i.dir_encoding = dir_encoding_load;
4371 break;
4372 case 0x3:
4373 /* {store} */
4374 i.dir_encoding = dir_encoding_store;
4375 break;
4376 case 0x4:
4377 /* {vex2} */
4378 i.vec_encoding = vex_encoding_vex2;
4379 break;
4380 case 0x5:
4381 /* {vex3} */
4382 i.vec_encoding = vex_encoding_vex3;
4383 break;
4384 case 0x6:
4385 /* {evex} */
4386 i.vec_encoding = vex_encoding_evex;
4387 break;
4388 case 0x7:
4389 /* {rex} */
4390 i.rex_encoding = TRUE;
4391 break;
4392 case 0x8:
4393 /* {nooptimize} */
4394 i.no_optimize = TRUE;
4395 break;
4396 default:
4397 abort ();
4398 }
4399 }
4400 else
4401 {
4402 /* Add prefix, checking for repeated prefixes. */
4403 switch (add_prefix (current_templates->start->base_opcode))
4404 {
4405 case PREFIX_EXIST:
4406 return NULL;
4407 case PREFIX_DS:
4408 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4409 i.notrack_prefix = current_templates->start->name;
4410 break;
4411 case PREFIX_REP:
4412 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4413 i.hle_prefix = current_templates->start->name;
4414 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4415 i.bnd_prefix = current_templates->start->name;
4416 else
4417 i.rep_prefix = current_templates->start->name;
4418 break;
4419 default:
4420 break;
4421 }
4422 }
4423 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4424 token_start = ++l;
4425 }
4426 else
4427 break;
4428 }
4429
4430 if (!current_templates)
4431 {
4432 /* Check if we should swap operand or force 32bit displacement in
4433 encoding. */
4434 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4435 i.dir_encoding = dir_encoding_store;
4436 else if (mnem_p - 3 == dot_p
4437 && dot_p[1] == 'd'
4438 && dot_p[2] == '8')
4439 i.disp_encoding = disp_encoding_8bit;
4440 else if (mnem_p - 4 == dot_p
4441 && dot_p[1] == 'd'
4442 && dot_p[2] == '3'
4443 && dot_p[3] == '2')
4444 i.disp_encoding = disp_encoding_32bit;
4445 else
4446 goto check_suffix;
4447 mnem_p = dot_p;
4448 *dot_p = '\0';
4449 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4450 }
4451
4452 if (!current_templates)
4453 {
4454 check_suffix:
4455 /* See if we can get a match by trimming off a suffix. */
4456 switch (mnem_p[-1])
4457 {
4458 case WORD_MNEM_SUFFIX:
4459 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4460 i.suffix = SHORT_MNEM_SUFFIX;
4461 else
4462 /* Fall through. */
4463 case BYTE_MNEM_SUFFIX:
4464 case QWORD_MNEM_SUFFIX:
4465 i.suffix = mnem_p[-1];
4466 mnem_p[-1] = '\0';
4467 current_templates = (const templates *) hash_find (op_hash,
4468 mnemonic);
4469 break;
4470 case SHORT_MNEM_SUFFIX:
4471 case LONG_MNEM_SUFFIX:
4472 if (!intel_syntax)
4473 {
4474 i.suffix = mnem_p[-1];
4475 mnem_p[-1] = '\0';
4476 current_templates = (const templates *) hash_find (op_hash,
4477 mnemonic);
4478 }
4479 break;
4480
4481 /* Intel Syntax. */
4482 case 'd':
4483 if (intel_syntax)
4484 {
4485 if (intel_float_operand (mnemonic) == 1)
4486 i.suffix = SHORT_MNEM_SUFFIX;
4487 else
4488 i.suffix = LONG_MNEM_SUFFIX;
4489 mnem_p[-1] = '\0';
4490 current_templates = (const templates *) hash_find (op_hash,
4491 mnemonic);
4492 }
4493 break;
4494 }
4495 if (!current_templates)
4496 {
4497 as_bad (_("no such instruction: `%s'"), token_start);
4498 return NULL;
4499 }
4500 }
4501
4502 if (current_templates->start->opcode_modifier.jump
4503 || current_templates->start->opcode_modifier.jumpbyte)
4504 {
4505 /* Check for a branch hint. We allow ",pt" and ",pn" for
4506 predict taken and predict not taken respectively.
4507 I'm not sure that branch hints actually do anything on loop
4508 and jcxz insns (JumpByte) for current Pentium4 chips. They
4509 may work in the future and it doesn't hurt to accept them
4510 now. */
4511 if (l[0] == ',' && l[1] == 'p')
4512 {
4513 if (l[2] == 't')
4514 {
4515 if (!add_prefix (DS_PREFIX_OPCODE))
4516 return NULL;
4517 l += 3;
4518 }
4519 else if (l[2] == 'n')
4520 {
4521 if (!add_prefix (CS_PREFIX_OPCODE))
4522 return NULL;
4523 l += 3;
4524 }
4525 }
4526 }
4527 /* Any other comma loses. */
4528 if (*l == ',')
4529 {
4530 as_bad (_("invalid character %s in mnemonic"),
4531 output_invalid (*l));
4532 return NULL;
4533 }
4534
4535 /* Check if instruction is supported on specified architecture. */
4536 supported = 0;
4537 for (t = current_templates->start; t < current_templates->end; ++t)
4538 {
4539 supported |= cpu_flags_match (t);
4540 if (supported == CPU_FLAGS_PERFECT_MATCH)
4541 {
4542 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4543 as_warn (_("use .code16 to ensure correct addressing mode"));
4544
4545 return l;
4546 }
4547 }
4548
4549 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4550 as_bad (flag_code == CODE_64BIT
4551 ? _("`%s' is not supported in 64-bit mode")
4552 : _("`%s' is only supported in 64-bit mode"),
4553 current_templates->start->name);
4554 else
4555 as_bad (_("`%s' is not supported on `%s%s'"),
4556 current_templates->start->name,
4557 cpu_arch_name ? cpu_arch_name : default_arch,
4558 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4559
4560 return NULL;
4561 }
4562
4563 static char *
4564 parse_operands (char *l, const char *mnemonic)
4565 {
4566 char *token_start;
4567
4568 /* 1 if operand is pending after ','. */
4569 unsigned int expecting_operand = 0;
4570
4571 /* Non-zero if operand parens not balanced. */
4572 unsigned int paren_not_balanced;
4573
4574 while (*l != END_OF_INSN)
4575 {
4576 /* Skip optional white space before operand. */
4577 if (is_space_char (*l))
4578 ++l;
4579 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4580 {
4581 as_bad (_("invalid character %s before operand %d"),
4582 output_invalid (*l),
4583 i.operands + 1);
4584 return NULL;
4585 }
4586 token_start = l; /* After white space. */
4587 paren_not_balanced = 0;
4588 while (paren_not_balanced || *l != ',')
4589 {
4590 if (*l == END_OF_INSN)
4591 {
4592 if (paren_not_balanced)
4593 {
4594 if (!intel_syntax)
4595 as_bad (_("unbalanced parenthesis in operand %d."),
4596 i.operands + 1);
4597 else
4598 as_bad (_("unbalanced brackets in operand %d."),
4599 i.operands + 1);
4600 return NULL;
4601 }
4602 else
4603 break; /* we are done */
4604 }
4605 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4606 {
4607 as_bad (_("invalid character %s in operand %d"),
4608 output_invalid (*l),
4609 i.operands + 1);
4610 return NULL;
4611 }
4612 if (!intel_syntax)
4613 {
4614 if (*l == '(')
4615 ++paren_not_balanced;
4616 if (*l == ')')
4617 --paren_not_balanced;
4618 }
4619 else
4620 {
4621 if (*l == '[')
4622 ++paren_not_balanced;
4623 if (*l == ']')
4624 --paren_not_balanced;
4625 }
4626 l++;
4627 }
4628 if (l != token_start)
4629 { /* Yes, we've read in another operand. */
4630 unsigned int operand_ok;
4631 this_operand = i.operands++;
4632 if (i.operands > MAX_OPERANDS)
4633 {
4634 as_bad (_("spurious operands; (%d operands/instruction max)"),
4635 MAX_OPERANDS);
4636 return NULL;
4637 }
4638 i.types[this_operand].bitfield.unspecified = 1;
4639 /* Now parse operand adding info to 'i' as we go along. */
4640 END_STRING_AND_SAVE (l);
4641
4642 if (intel_syntax)
4643 operand_ok =
4644 i386_intel_operand (token_start,
4645 intel_float_operand (mnemonic));
4646 else
4647 operand_ok = i386_att_operand (token_start);
4648
4649 RESTORE_END_STRING (l);
4650 if (!operand_ok)
4651 return NULL;
4652 }
4653 else
4654 {
4655 if (expecting_operand)
4656 {
4657 expecting_operand_after_comma:
4658 as_bad (_("expecting operand after ','; got nothing"));
4659 return NULL;
4660 }
4661 if (*l == ',')
4662 {
4663 as_bad (_("expecting operand before ','; got nothing"));
4664 return NULL;
4665 }
4666 }
4667
4668 /* Now *l must be either ',' or END_OF_INSN. */
4669 if (*l == ',')
4670 {
4671 if (*++l == END_OF_INSN)
4672 {
4673 /* Just skip it, if it's \n complain. */
4674 goto expecting_operand_after_comma;
4675 }
4676 expecting_operand = 1;
4677 }
4678 }
4679 return l;
4680 }
4681
4682 static void
4683 swap_2_operands (int xchg1, int xchg2)
4684 {
4685 union i386_op temp_op;
4686 i386_operand_type temp_type;
4687 enum bfd_reloc_code_real temp_reloc;
4688
4689 temp_type = i.types[xchg2];
4690 i.types[xchg2] = i.types[xchg1];
4691 i.types[xchg1] = temp_type;
4692 temp_op = i.op[xchg2];
4693 i.op[xchg2] = i.op[xchg1];
4694 i.op[xchg1] = temp_op;
4695 temp_reloc = i.reloc[xchg2];
4696 i.reloc[xchg2] = i.reloc[xchg1];
4697 i.reloc[xchg1] = temp_reloc;
4698
4699 if (i.mask)
4700 {
4701 if (i.mask->operand == xchg1)
4702 i.mask->operand = xchg2;
4703 else if (i.mask->operand == xchg2)
4704 i.mask->operand = xchg1;
4705 }
4706 if (i.broadcast)
4707 {
4708 if (i.broadcast->operand == xchg1)
4709 i.broadcast->operand = xchg2;
4710 else if (i.broadcast->operand == xchg2)
4711 i.broadcast->operand = xchg1;
4712 }
4713 if (i.rounding)
4714 {
4715 if (i.rounding->operand == xchg1)
4716 i.rounding->operand = xchg2;
4717 else if (i.rounding->operand == xchg2)
4718 i.rounding->operand = xchg1;
4719 }
4720 }
4721
4722 static void
4723 swap_operands (void)
4724 {
4725 switch (i.operands)
4726 {
4727 case 5:
4728 case 4:
4729 swap_2_operands (1, i.operands - 2);
4730 /* Fall through. */
4731 case 3:
4732 case 2:
4733 swap_2_operands (0, i.operands - 1);
4734 break;
4735 default:
4736 abort ();
4737 }
4738
4739 if (i.mem_operands == 2)
4740 {
4741 const seg_entry *temp_seg;
4742 temp_seg = i.seg[0];
4743 i.seg[0] = i.seg[1];
4744 i.seg[1] = temp_seg;
4745 }
4746 }
4747
4748 /* Try to ensure constant immediates are represented in the smallest
4749 opcode possible. */
4750 static void
4751 optimize_imm (void)
4752 {
4753 char guess_suffix = 0;
4754 int op;
4755
4756 if (i.suffix)
4757 guess_suffix = i.suffix;
4758 else if (i.reg_operands)
4759 {
4760 /* Figure out a suffix from the last register operand specified.
4761 We can't do this properly yet, ie. excluding InOutPortReg,
4762 but the following works for instructions with immediates.
4763 In any case, we can't set i.suffix yet. */
4764 for (op = i.operands; --op >= 0;)
4765 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4766 {
4767 guess_suffix = BYTE_MNEM_SUFFIX;
4768 break;
4769 }
4770 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4771 {
4772 guess_suffix = WORD_MNEM_SUFFIX;
4773 break;
4774 }
4775 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4776 {
4777 guess_suffix = LONG_MNEM_SUFFIX;
4778 break;
4779 }
4780 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4781 {
4782 guess_suffix = QWORD_MNEM_SUFFIX;
4783 break;
4784 }
4785 }
4786 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4787 guess_suffix = WORD_MNEM_SUFFIX;
4788
4789 for (op = i.operands; --op >= 0;)
4790 if (operand_type_check (i.types[op], imm))
4791 {
4792 switch (i.op[op].imms->X_op)
4793 {
4794 case O_constant:
4795 /* If a suffix is given, this operand may be shortened. */
4796 switch (guess_suffix)
4797 {
4798 case LONG_MNEM_SUFFIX:
4799 i.types[op].bitfield.imm32 = 1;
4800 i.types[op].bitfield.imm64 = 1;
4801 break;
4802 case WORD_MNEM_SUFFIX:
4803 i.types[op].bitfield.imm16 = 1;
4804 i.types[op].bitfield.imm32 = 1;
4805 i.types[op].bitfield.imm32s = 1;
4806 i.types[op].bitfield.imm64 = 1;
4807 break;
4808 case BYTE_MNEM_SUFFIX:
4809 i.types[op].bitfield.imm8 = 1;
4810 i.types[op].bitfield.imm8s = 1;
4811 i.types[op].bitfield.imm16 = 1;
4812 i.types[op].bitfield.imm32 = 1;
4813 i.types[op].bitfield.imm32s = 1;
4814 i.types[op].bitfield.imm64 = 1;
4815 break;
4816 }
4817
4818 /* If this operand is at most 16 bits, convert it
4819 to a signed 16 bit number before trying to see
4820 whether it will fit in an even smaller size.
4821 This allows a 16-bit operand such as $0xffe0 to
4822 be recognised as within Imm8S range. */
4823 if ((i.types[op].bitfield.imm16)
4824 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4825 {
4826 i.op[op].imms->X_add_number =
4827 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4828 }
4829 #ifdef BFD64
4830 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4831 if ((i.types[op].bitfield.imm32)
4832 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4833 == 0))
4834 {
4835 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4836 ^ ((offsetT) 1 << 31))
4837 - ((offsetT) 1 << 31));
4838 }
4839 #endif
4840 i.types[op]
4841 = operand_type_or (i.types[op],
4842 smallest_imm_type (i.op[op].imms->X_add_number));
4843
4844 /* We must avoid matching of Imm32 templates when 64bit
4845 only immediate is available. */
4846 if (guess_suffix == QWORD_MNEM_SUFFIX)
4847 i.types[op].bitfield.imm32 = 0;
4848 break;
4849
4850 case O_absent:
4851 case O_register:
4852 abort ();
4853
4854 /* Symbols and expressions. */
4855 default:
4856 /* Convert symbolic operand to proper sizes for matching, but don't
4857 prevent matching a set of insns that only supports sizes other
4858 than those matching the insn suffix. */
4859 {
4860 i386_operand_type mask, allowed;
4861 const insn_template *t;
4862
4863 operand_type_set (&mask, 0);
4864 operand_type_set (&allowed, 0);
4865
4866 for (t = current_templates->start;
4867 t < current_templates->end;
4868 ++t)
4869 allowed = operand_type_or (allowed,
4870 t->operand_types[op]);
4871 switch (guess_suffix)
4872 {
4873 case QWORD_MNEM_SUFFIX:
4874 mask.bitfield.imm64 = 1;
4875 mask.bitfield.imm32s = 1;
4876 break;
4877 case LONG_MNEM_SUFFIX:
4878 mask.bitfield.imm32 = 1;
4879 break;
4880 case WORD_MNEM_SUFFIX:
4881 mask.bitfield.imm16 = 1;
4882 break;
4883 case BYTE_MNEM_SUFFIX:
4884 mask.bitfield.imm8 = 1;
4885 break;
4886 default:
4887 break;
4888 }
4889 allowed = operand_type_and (mask, allowed);
4890 if (!operand_type_all_zero (&allowed))
4891 i.types[op] = operand_type_and (i.types[op], mask);
4892 }
4893 break;
4894 }
4895 }
4896 }
4897
4898 /* Try to use the smallest displacement type too. */
4899 static void
4900 optimize_disp (void)
4901 {
4902 int op;
4903
4904 for (op = i.operands; --op >= 0;)
4905 if (operand_type_check (i.types[op], disp))
4906 {
4907 if (i.op[op].disps->X_op == O_constant)
4908 {
4909 offsetT op_disp = i.op[op].disps->X_add_number;
4910
4911 if (i.types[op].bitfield.disp16
4912 && (op_disp & ~(offsetT) 0xffff) == 0)
4913 {
4914 /* If this operand is at most 16 bits, convert
4915 to a signed 16 bit number and don't use 64bit
4916 displacement. */
4917 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4918 i.types[op].bitfield.disp64 = 0;
4919 }
4920 #ifdef BFD64
4921 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4922 if (i.types[op].bitfield.disp32
4923 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4924 {
4925 /* If this operand is at most 32 bits, convert
4926 to a signed 32 bit number and don't use 64bit
4927 displacement. */
4928 op_disp &= (((offsetT) 2 << 31) - 1);
4929 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4930 i.types[op].bitfield.disp64 = 0;
4931 }
4932 #endif
4933 if (!op_disp && i.types[op].bitfield.baseindex)
4934 {
4935 i.types[op].bitfield.disp8 = 0;
4936 i.types[op].bitfield.disp16 = 0;
4937 i.types[op].bitfield.disp32 = 0;
4938 i.types[op].bitfield.disp32s = 0;
4939 i.types[op].bitfield.disp64 = 0;
4940 i.op[op].disps = 0;
4941 i.disp_operands--;
4942 }
4943 else if (flag_code == CODE_64BIT)
4944 {
4945 if (fits_in_signed_long (op_disp))
4946 {
4947 i.types[op].bitfield.disp64 = 0;
4948 i.types[op].bitfield.disp32s = 1;
4949 }
4950 if (i.prefix[ADDR_PREFIX]
4951 && fits_in_unsigned_long (op_disp))
4952 i.types[op].bitfield.disp32 = 1;
4953 }
4954 if ((i.types[op].bitfield.disp32
4955 || i.types[op].bitfield.disp32s
4956 || i.types[op].bitfield.disp16)
4957 && fits_in_disp8 (op_disp))
4958 i.types[op].bitfield.disp8 = 1;
4959 }
4960 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4961 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4962 {
4963 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4964 i.op[op].disps, 0, i.reloc[op]);
4965 i.types[op].bitfield.disp8 = 0;
4966 i.types[op].bitfield.disp16 = 0;
4967 i.types[op].bitfield.disp32 = 0;
4968 i.types[op].bitfield.disp32s = 0;
4969 i.types[op].bitfield.disp64 = 0;
4970 }
4971 else
4972 /* We only support 64bit displacement on constants. */
4973 i.types[op].bitfield.disp64 = 0;
4974 }
4975 }
4976
4977 /* Check if operands are valid for the instruction. */
4978
4979 static int
4980 check_VecOperands (const insn_template *t)
4981 {
4982 unsigned int op;
4983 i386_cpu_flags cpu;
4984 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
4985
4986 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
4987 any one operand are implicity requiring AVX512VL support if the actual
4988 operand size is YMMword or XMMword. Since this function runs after
4989 template matching, there's no need to check for YMMword/XMMword in
4990 the template. */
4991 cpu = cpu_flags_and (t->cpu_flags, avx512);
4992 if (!cpu_flags_all_zero (&cpu)
4993 && !t->cpu_flags.bitfield.cpuavx512vl
4994 && !cpu_arch_flags.bitfield.cpuavx512vl)
4995 {
4996 for (op = 0; op < t->operands; ++op)
4997 {
4998 if (t->operand_types[op].bitfield.zmmword
4999 && (i.types[op].bitfield.ymmword
5000 || i.types[op].bitfield.xmmword))
5001 {
5002 i.error = unsupported;
5003 return 1;
5004 }
5005 }
5006 }
5007
5008 /* Without VSIB byte, we can't have a vector register for index. */
5009 if (!t->opcode_modifier.vecsib
5010 && i.index_reg
5011 && (i.index_reg->reg_type.bitfield.xmmword
5012 || i.index_reg->reg_type.bitfield.ymmword
5013 || i.index_reg->reg_type.bitfield.zmmword))
5014 {
5015 i.error = unsupported_vector_index_register;
5016 return 1;
5017 }
5018
5019 /* Check if default mask is allowed. */
5020 if (t->opcode_modifier.nodefmask
5021 && (!i.mask || i.mask->mask->reg_num == 0))
5022 {
5023 i.error = no_default_mask;
5024 return 1;
5025 }
5026
5027 /* For VSIB byte, we need a vector register for index, and all vector
5028 registers must be distinct. */
5029 if (t->opcode_modifier.vecsib)
5030 {
5031 if (!i.index_reg
5032 || !((t->opcode_modifier.vecsib == VecSIB128
5033 && i.index_reg->reg_type.bitfield.xmmword)
5034 || (t->opcode_modifier.vecsib == VecSIB256
5035 && i.index_reg->reg_type.bitfield.ymmword)
5036 || (t->opcode_modifier.vecsib == VecSIB512
5037 && i.index_reg->reg_type.bitfield.zmmword)))
5038 {
5039 i.error = invalid_vsib_address;
5040 return 1;
5041 }
5042
5043 gas_assert (i.reg_operands == 2 || i.mask);
5044 if (i.reg_operands == 2 && !i.mask)
5045 {
5046 gas_assert (i.types[0].bitfield.regsimd);
5047 gas_assert (i.types[0].bitfield.xmmword
5048 || i.types[0].bitfield.ymmword);
5049 gas_assert (i.types[2].bitfield.regsimd);
5050 gas_assert (i.types[2].bitfield.xmmword
5051 || i.types[2].bitfield.ymmword);
5052 if (operand_check == check_none)
5053 return 0;
5054 if (register_number (i.op[0].regs)
5055 != register_number (i.index_reg)
5056 && register_number (i.op[2].regs)
5057 != register_number (i.index_reg)
5058 && register_number (i.op[0].regs)
5059 != register_number (i.op[2].regs))
5060 return 0;
5061 if (operand_check == check_error)
5062 {
5063 i.error = invalid_vector_register_set;
5064 return 1;
5065 }
5066 as_warn (_("mask, index, and destination registers should be distinct"));
5067 }
5068 else if (i.reg_operands == 1 && i.mask)
5069 {
5070 if (i.types[1].bitfield.regsimd
5071 && (i.types[1].bitfield.xmmword
5072 || i.types[1].bitfield.ymmword
5073 || i.types[1].bitfield.zmmword)
5074 && (register_number (i.op[1].regs)
5075 == register_number (i.index_reg)))
5076 {
5077 if (operand_check == check_error)
5078 {
5079 i.error = invalid_vector_register_set;
5080 return 1;
5081 }
5082 if (operand_check != check_none)
5083 as_warn (_("index and destination registers should be distinct"));
5084 }
5085 }
5086 }
5087
5088 /* Check if broadcast is supported by the instruction and is applied
5089 to the memory operand. */
5090 if (i.broadcast)
5091 {
5092 i386_operand_type type, overlap;
5093
5094 /* Check if specified broadcast is supported in this instruction,
5095 and it's applied to memory operand of DWORD or QWORD type. */
5096 op = i.broadcast->operand;
5097 if (!t->opcode_modifier.broadcast
5098 || !i.types[op].bitfield.mem
5099 || (!i.types[op].bitfield.unspecified
5100 && (t->operand_types[op].bitfield.dword
5101 ? !i.types[op].bitfield.dword
5102 : !i.types[op].bitfield.qword)))
5103 {
5104 bad_broadcast:
5105 i.error = unsupported_broadcast;
5106 return 1;
5107 }
5108
5109 operand_type_set (&type, 0);
5110 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5111 {
5112 case 8:
5113 type.bitfield.qword = 1;
5114 break;
5115 case 16:
5116 type.bitfield.xmmword = 1;
5117 break;
5118 case 32:
5119 type.bitfield.ymmword = 1;
5120 break;
5121 case 64:
5122 type.bitfield.zmmword = 1;
5123 break;
5124 default:
5125 goto bad_broadcast;
5126 }
5127
5128 overlap = operand_type_and (type, t->operand_types[op]);
5129 if (operand_type_all_zero (&overlap))
5130 goto bad_broadcast;
5131
5132 if (t->opcode_modifier.checkregsize)
5133 {
5134 unsigned int j;
5135
5136 type.bitfield.baseindex = 1;
5137 for (j = 0; j < i.operands; ++j)
5138 {
5139 if (j != op
5140 && !operand_type_register_match(i.types[j],
5141 t->operand_types[j],
5142 type,
5143 t->operand_types[op]))
5144 goto bad_broadcast;
5145 }
5146 }
5147 }
5148 /* If broadcast is supported in this instruction, we need to check if
5149 operand of one-element size isn't specified without broadcast. */
5150 else if (t->opcode_modifier.broadcast && i.mem_operands)
5151 {
5152 /* Find memory operand. */
5153 for (op = 0; op < i.operands; op++)
5154 if (operand_type_check (i.types[op], anymem))
5155 break;
5156 gas_assert (op < i.operands);
5157 /* Check size of the memory operand. */
5158 if (t->operand_types[op].bitfield.dword
5159 ? i.types[op].bitfield.dword
5160 : i.types[op].bitfield.qword)
5161 {
5162 i.error = broadcast_needed;
5163 return 1;
5164 }
5165 }
5166 else
5167 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5168
5169 /* Check if requested masking is supported. */
5170 if (i.mask
5171 && (!t->opcode_modifier.masking
5172 || (i.mask->zeroing
5173 && t->opcode_modifier.masking == MERGING_MASKING)))
5174 {
5175 i.error = unsupported_masking;
5176 return 1;
5177 }
5178
5179 /* Check if masking is applied to dest operand. */
5180 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5181 {
5182 i.error = mask_not_on_destination;
5183 return 1;
5184 }
5185
5186 /* Check RC/SAE. */
5187 if (i.rounding)
5188 {
5189 if ((i.rounding->type != saeonly
5190 && !t->opcode_modifier.staticrounding)
5191 || (i.rounding->type == saeonly
5192 && (t->opcode_modifier.staticrounding
5193 || !t->opcode_modifier.sae)))
5194 {
5195 i.error = unsupported_rc_sae;
5196 return 1;
5197 }
5198 /* If the instruction has several immediate operands and one of
5199 them is rounding, the rounding operand should be the last
5200 immediate operand. */
5201 if (i.imm_operands > 1
5202 && i.rounding->operand != (int) (i.imm_operands - 1))
5203 {
5204 i.error = rc_sae_operand_not_last_imm;
5205 return 1;
5206 }
5207 }
5208
5209 /* Check vector Disp8 operand. */
5210 if (t->opcode_modifier.disp8memshift
5211 && i.disp_encoding != disp_encoding_32bit)
5212 {
5213 if (i.broadcast)
5214 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5215 else
5216 i.memshift = t->opcode_modifier.disp8memshift;
5217
5218 for (op = 0; op < i.operands; op++)
5219 if (operand_type_check (i.types[op], disp)
5220 && i.op[op].disps->X_op == O_constant)
5221 {
5222 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5223 {
5224 i.types[op].bitfield.disp8 = 1;
5225 return 0;
5226 }
5227 i.types[op].bitfield.disp8 = 0;
5228 }
5229 }
5230
5231 i.memshift = 0;
5232
5233 return 0;
5234 }
5235
5236 /* Check if operands are valid for the instruction. Update VEX
5237 operand types. */
5238
5239 static int
5240 VEX_check_operands (const insn_template *t)
5241 {
5242 if (i.vec_encoding == vex_encoding_evex)
5243 {
5244 /* This instruction must be encoded with EVEX prefix. */
5245 if (!is_evex_encoding (t))
5246 {
5247 i.error = unsupported;
5248 return 1;
5249 }
5250 return 0;
5251 }
5252
5253 if (!t->opcode_modifier.vex)
5254 {
5255 /* This instruction template doesn't have VEX prefix. */
5256 if (i.vec_encoding != vex_encoding_default)
5257 {
5258 i.error = unsupported;
5259 return 1;
5260 }
5261 return 0;
5262 }
5263
5264 /* Only check VEX_Imm4, which must be the first operand. */
5265 if (t->operand_types[0].bitfield.vec_imm4)
5266 {
5267 if (i.op[0].imms->X_op != O_constant
5268 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5269 {
5270 i.error = bad_imm4;
5271 return 1;
5272 }
5273
5274 /* Turn off Imm8 so that update_imm won't complain. */
5275 i.types[0] = vec_imm4;
5276 }
5277
5278 return 0;
5279 }
5280
5281 static const insn_template *
5282 match_template (char mnem_suffix)
5283 {
5284 /* Points to template once we've found it. */
5285 const insn_template *t;
5286 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5287 i386_operand_type overlap4;
5288 unsigned int found_reverse_match;
5289 i386_opcode_modifier suffix_check, mnemsuf_check;
5290 i386_operand_type operand_types [MAX_OPERANDS];
5291 int addr_prefix_disp;
5292 unsigned int j;
5293 unsigned int found_cpu_match;
5294 unsigned int check_register;
5295 enum i386_error specific_error = 0;
5296
5297 #if MAX_OPERANDS != 5
5298 # error "MAX_OPERANDS must be 5."
5299 #endif
5300
5301 found_reverse_match = 0;
5302 addr_prefix_disp = -1;
5303
5304 memset (&suffix_check, 0, sizeof (suffix_check));
5305 if (intel_syntax && i.broadcast)
5306 /* nothing */;
5307 else if (i.suffix == BYTE_MNEM_SUFFIX)
5308 suffix_check.no_bsuf = 1;
5309 else if (i.suffix == WORD_MNEM_SUFFIX)
5310 suffix_check.no_wsuf = 1;
5311 else if (i.suffix == SHORT_MNEM_SUFFIX)
5312 suffix_check.no_ssuf = 1;
5313 else if (i.suffix == LONG_MNEM_SUFFIX)
5314 suffix_check.no_lsuf = 1;
5315 else if (i.suffix == QWORD_MNEM_SUFFIX)
5316 suffix_check.no_qsuf = 1;
5317 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5318 suffix_check.no_ldsuf = 1;
5319
5320 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5321 if (intel_syntax)
5322 {
5323 switch (mnem_suffix)
5324 {
5325 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5326 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5327 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5328 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5329 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5330 }
5331 }
5332
5333 /* Must have right number of operands. */
5334 i.error = number_of_operands_mismatch;
5335
5336 for (t = current_templates->start; t < current_templates->end; t++)
5337 {
5338 addr_prefix_disp = -1;
5339
5340 if (i.operands != t->operands)
5341 continue;
5342
5343 /* Check processor support. */
5344 i.error = unsupported;
5345 found_cpu_match = (cpu_flags_match (t)
5346 == CPU_FLAGS_PERFECT_MATCH);
5347 if (!found_cpu_match)
5348 continue;
5349
5350 /* Check AT&T mnemonic. */
5351 i.error = unsupported_with_intel_mnemonic;
5352 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5353 continue;
5354
5355 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5356 i.error = unsupported_syntax;
5357 if ((intel_syntax && t->opcode_modifier.attsyntax)
5358 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5359 || (intel64 && t->opcode_modifier.amd64)
5360 || (!intel64 && t->opcode_modifier.intel64))
5361 continue;
5362
5363 /* Check the suffix, except for some instructions in intel mode. */
5364 i.error = invalid_instruction_suffix;
5365 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5366 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5367 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5368 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5369 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5370 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5371 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5372 continue;
5373 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5374 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5375 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5376 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5377 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5378 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5379 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5380 continue;
5381
5382 if (!operand_size_match (t))
5383 continue;
5384
5385 for (j = 0; j < MAX_OPERANDS; j++)
5386 operand_types[j] = t->operand_types[j];
5387
5388 /* In general, don't allow 64-bit operands in 32-bit mode. */
5389 if (i.suffix == QWORD_MNEM_SUFFIX
5390 && flag_code != CODE_64BIT
5391 && (intel_syntax
5392 ? (!t->opcode_modifier.ignoresize
5393 && !intel_float_operand (t->name))
5394 : intel_float_operand (t->name) != 2)
5395 && ((!operand_types[0].bitfield.regmmx
5396 && !operand_types[0].bitfield.regsimd)
5397 || (!operand_types[t->operands > 1].bitfield.regmmx
5398 && !operand_types[t->operands > 1].bitfield.regsimd))
5399 && (t->base_opcode != 0x0fc7
5400 || t->extension_opcode != 1 /* cmpxchg8b */))
5401 continue;
5402
5403 /* In general, don't allow 32-bit operands on pre-386. */
5404 else if (i.suffix == LONG_MNEM_SUFFIX
5405 && !cpu_arch_flags.bitfield.cpui386
5406 && (intel_syntax
5407 ? (!t->opcode_modifier.ignoresize
5408 && !intel_float_operand (t->name))
5409 : intel_float_operand (t->name) != 2)
5410 && ((!operand_types[0].bitfield.regmmx
5411 && !operand_types[0].bitfield.regsimd)
5412 || (!operand_types[t->operands > 1].bitfield.regmmx
5413 && !operand_types[t->operands > 1].bitfield.regsimd)))
5414 continue;
5415
5416 /* Do not verify operands when there are none. */
5417 else
5418 {
5419 if (!t->operands)
5420 /* We've found a match; break out of loop. */
5421 break;
5422 }
5423
5424 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5425 into Disp32/Disp16/Disp32 operand. */
5426 if (i.prefix[ADDR_PREFIX] != 0)
5427 {
5428 /* There should be only one Disp operand. */
5429 switch (flag_code)
5430 {
5431 case CODE_16BIT:
5432 for (j = 0; j < MAX_OPERANDS; j++)
5433 {
5434 if (operand_types[j].bitfield.disp16)
5435 {
5436 addr_prefix_disp = j;
5437 operand_types[j].bitfield.disp32 = 1;
5438 operand_types[j].bitfield.disp16 = 0;
5439 break;
5440 }
5441 }
5442 break;
5443 case CODE_32BIT:
5444 for (j = 0; j < MAX_OPERANDS; j++)
5445 {
5446 if (operand_types[j].bitfield.disp32)
5447 {
5448 addr_prefix_disp = j;
5449 operand_types[j].bitfield.disp32 = 0;
5450 operand_types[j].bitfield.disp16 = 1;
5451 break;
5452 }
5453 }
5454 break;
5455 case CODE_64BIT:
5456 for (j = 0; j < MAX_OPERANDS; j++)
5457 {
5458 if (operand_types[j].bitfield.disp64)
5459 {
5460 addr_prefix_disp = j;
5461 operand_types[j].bitfield.disp64 = 0;
5462 operand_types[j].bitfield.disp32 = 1;
5463 break;
5464 }
5465 }
5466 break;
5467 }
5468 }
5469
5470 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5471 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5472 continue;
5473
5474 /* We check register size if needed. */
5475 if (t->opcode_modifier.checkregsize)
5476 {
5477 check_register = (1 << t->operands) - 1;
5478 if (i.broadcast)
5479 check_register &= ~(1 << i.broadcast->operand);
5480 }
5481 else
5482 check_register = 0;
5483
5484 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5485 switch (t->operands)
5486 {
5487 case 1:
5488 if (!operand_type_match (overlap0, i.types[0]))
5489 continue;
5490 break;
5491 case 2:
5492 /* xchg %eax, %eax is a special case. It is an alias for nop
5493 only in 32bit mode and we can use opcode 0x90. In 64bit
5494 mode, we can't use 0x90 for xchg %eax, %eax since it should
5495 zero-extend %eax to %rax. */
5496 if (flag_code == CODE_64BIT
5497 && t->base_opcode == 0x90
5498 && operand_type_equal (&i.types [0], &acc32)
5499 && operand_type_equal (&i.types [1], &acc32))
5500 continue;
5501 /* xrelease mov %eax, <disp> is another special case. It must not
5502 match the accumulator-only encoding of mov. */
5503 if (flag_code != CODE_64BIT
5504 && i.hle_prefix
5505 && t->base_opcode == 0xa0
5506 && i.types[0].bitfield.acc
5507 && operand_type_check (i.types[1], anymem))
5508 continue;
5509 /* If we want store form, we reverse direction of operands. */
5510 if (i.dir_encoding == dir_encoding_store
5511 && t->opcode_modifier.d)
5512 goto check_reverse;
5513 /* Fall through. */
5514
5515 case 3:
5516 /* If we want store form, we skip the current load. */
5517 if (i.dir_encoding == dir_encoding_store
5518 && i.mem_operands == 0
5519 && t->opcode_modifier.load)
5520 continue;
5521 /* Fall through. */
5522 case 4:
5523 case 5:
5524 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5525 if (!operand_type_match (overlap0, i.types[0])
5526 || !operand_type_match (overlap1, i.types[1])
5527 || ((check_register & 3) == 3
5528 && !operand_type_register_match (i.types[0],
5529 operand_types[0],
5530 i.types[1],
5531 operand_types[1])))
5532 {
5533 /* Check if other direction is valid ... */
5534 if (!t->opcode_modifier.d)
5535 continue;
5536
5537 check_reverse:
5538 /* Try reversing direction of operands. */
5539 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5540 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5541 if (!operand_type_match (overlap0, i.types[0])
5542 || !operand_type_match (overlap1, i.types[1])
5543 || (check_register
5544 && !operand_type_register_match (i.types[0],
5545 operand_types[1],
5546 i.types[1],
5547 operand_types[0])))
5548 {
5549 /* Does not match either direction. */
5550 continue;
5551 }
5552 /* found_reverse_match holds which of D or FloatR
5553 we've found. */
5554 if (!t->opcode_modifier.d)
5555 found_reverse_match = 0;
5556 else if (operand_types[0].bitfield.tbyte)
5557 found_reverse_match = Opcode_FloatD;
5558 else
5559 found_reverse_match = Opcode_D;
5560 if (t->opcode_modifier.floatr)
5561 found_reverse_match |= Opcode_FloatR;
5562 }
5563 else
5564 {
5565 /* Found a forward 2 operand match here. */
5566 switch (t->operands)
5567 {
5568 case 5:
5569 overlap4 = operand_type_and (i.types[4],
5570 operand_types[4]);
5571 /* Fall through. */
5572 case 4:
5573 overlap3 = operand_type_and (i.types[3],
5574 operand_types[3]);
5575 /* Fall through. */
5576 case 3:
5577 overlap2 = operand_type_and (i.types[2],
5578 operand_types[2]);
5579 break;
5580 }
5581
5582 switch (t->operands)
5583 {
5584 case 5:
5585 if (!operand_type_match (overlap4, i.types[4])
5586 || !operand_type_register_match (i.types[3],
5587 operand_types[3],
5588 i.types[4],
5589 operand_types[4]))
5590 continue;
5591 /* Fall through. */
5592 case 4:
5593 if (!operand_type_match (overlap3, i.types[3])
5594 || ((check_register & 0xa) == 0xa
5595 && !operand_type_register_match (i.types[1],
5596 operand_types[1],
5597 i.types[3],
5598 operand_types[3]))
5599 || ((check_register & 0xc) == 0xc
5600 && !operand_type_register_match (i.types[2],
5601 operand_types[2],
5602 i.types[3],
5603 operand_types[3])))
5604 continue;
5605 /* Fall through. */
5606 case 3:
5607 /* Here we make use of the fact that there are no
5608 reverse match 3 operand instructions. */
5609 if (!operand_type_match (overlap2, i.types[2])
5610 || ((check_register & 5) == 5
5611 && !operand_type_register_match (i.types[0],
5612 operand_types[0],
5613 i.types[2],
5614 operand_types[2]))
5615 || ((check_register & 6) == 6
5616 && !operand_type_register_match (i.types[1],
5617 operand_types[1],
5618 i.types[2],
5619 operand_types[2])))
5620 continue;
5621 break;
5622 }
5623 }
5624 /* Found either forward/reverse 2, 3 or 4 operand match here:
5625 slip through to break. */
5626 }
5627 if (!found_cpu_match)
5628 {
5629 found_reverse_match = 0;
5630 continue;
5631 }
5632
5633 /* Check if vector and VEX operands are valid. */
5634 if (check_VecOperands (t) || VEX_check_operands (t))
5635 {
5636 specific_error = i.error;
5637 continue;
5638 }
5639
5640 /* We've found a match; break out of loop. */
5641 break;
5642 }
5643
5644 if (t == current_templates->end)
5645 {
5646 /* We found no match. */
5647 const char *err_msg;
5648 switch (specific_error ? specific_error : i.error)
5649 {
5650 default:
5651 abort ();
5652 case operand_size_mismatch:
5653 err_msg = _("operand size mismatch");
5654 break;
5655 case operand_type_mismatch:
5656 err_msg = _("operand type mismatch");
5657 break;
5658 case register_type_mismatch:
5659 err_msg = _("register type mismatch");
5660 break;
5661 case number_of_operands_mismatch:
5662 err_msg = _("number of operands mismatch");
5663 break;
5664 case invalid_instruction_suffix:
5665 err_msg = _("invalid instruction suffix");
5666 break;
5667 case bad_imm4:
5668 err_msg = _("constant doesn't fit in 4 bits");
5669 break;
5670 case unsupported_with_intel_mnemonic:
5671 err_msg = _("unsupported with Intel mnemonic");
5672 break;
5673 case unsupported_syntax:
5674 err_msg = _("unsupported syntax");
5675 break;
5676 case unsupported:
5677 as_bad (_("unsupported instruction `%s'"),
5678 current_templates->start->name);
5679 return NULL;
5680 case invalid_vsib_address:
5681 err_msg = _("invalid VSIB address");
5682 break;
5683 case invalid_vector_register_set:
5684 err_msg = _("mask, index, and destination registers must be distinct");
5685 break;
5686 case unsupported_vector_index_register:
5687 err_msg = _("unsupported vector index register");
5688 break;
5689 case unsupported_broadcast:
5690 err_msg = _("unsupported broadcast");
5691 break;
5692 case broadcast_not_on_src_operand:
5693 err_msg = _("broadcast not on source memory operand");
5694 break;
5695 case broadcast_needed:
5696 err_msg = _("broadcast is needed for operand of such type");
5697 break;
5698 case unsupported_masking:
5699 err_msg = _("unsupported masking");
5700 break;
5701 case mask_not_on_destination:
5702 err_msg = _("mask not on destination operand");
5703 break;
5704 case no_default_mask:
5705 err_msg = _("default mask isn't allowed");
5706 break;
5707 case unsupported_rc_sae:
5708 err_msg = _("unsupported static rounding/sae");
5709 break;
5710 case rc_sae_operand_not_last_imm:
5711 if (intel_syntax)
5712 err_msg = _("RC/SAE operand must precede immediate operands");
5713 else
5714 err_msg = _("RC/SAE operand must follow immediate operands");
5715 break;
5716 case invalid_register_operand:
5717 err_msg = _("invalid register operand");
5718 break;
5719 }
5720 as_bad (_("%s for `%s'"), err_msg,
5721 current_templates->start->name);
5722 return NULL;
5723 }
5724
5725 if (!quiet_warnings)
5726 {
5727 if (!intel_syntax
5728 && (i.types[0].bitfield.jumpabsolute
5729 != operand_types[0].bitfield.jumpabsolute))
5730 {
5731 as_warn (_("indirect %s without `*'"), t->name);
5732 }
5733
5734 if (t->opcode_modifier.isprefix
5735 && t->opcode_modifier.ignoresize)
5736 {
5737 /* Warn them that a data or address size prefix doesn't
5738 affect assembly of the next line of code. */
5739 as_warn (_("stand-alone `%s' prefix"), t->name);
5740 }
5741 }
5742
5743 /* Copy the template we found. */
5744 i.tm = *t;
5745
5746 if (addr_prefix_disp != -1)
5747 i.tm.operand_types[addr_prefix_disp]
5748 = operand_types[addr_prefix_disp];
5749
5750 if (found_reverse_match)
5751 {
5752 /* If we found a reverse match we must alter the opcode
5753 direction bit. found_reverse_match holds bits to change
5754 (different for int & float insns). */
5755
5756 i.tm.base_opcode ^= found_reverse_match;
5757
5758 i.tm.operand_types[0] = operand_types[1];
5759 i.tm.operand_types[1] = operand_types[0];
5760 }
5761
5762 return t;
5763 }
5764
5765 static int
5766 check_string (void)
5767 {
5768 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5769 if (i.tm.operand_types[mem_op].bitfield.esseg)
5770 {
5771 if (i.seg[0] != NULL && i.seg[0] != &es)
5772 {
5773 as_bad (_("`%s' operand %d must use `%ses' segment"),
5774 i.tm.name,
5775 mem_op + 1,
5776 register_prefix);
5777 return 0;
5778 }
5779 /* There's only ever one segment override allowed per instruction.
5780 This instruction possibly has a legal segment override on the
5781 second operand, so copy the segment to where non-string
5782 instructions store it, allowing common code. */
5783 i.seg[0] = i.seg[1];
5784 }
5785 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5786 {
5787 if (i.seg[1] != NULL && i.seg[1] != &es)
5788 {
5789 as_bad (_("`%s' operand %d must use `%ses' segment"),
5790 i.tm.name,
5791 mem_op + 2,
5792 register_prefix);
5793 return 0;
5794 }
5795 }
5796 return 1;
5797 }
5798
5799 static int
5800 process_suffix (void)
5801 {
5802 /* If matched instruction specifies an explicit instruction mnemonic
5803 suffix, use it. */
5804 if (i.tm.opcode_modifier.size16)
5805 i.suffix = WORD_MNEM_SUFFIX;
5806 else if (i.tm.opcode_modifier.size32)
5807 i.suffix = LONG_MNEM_SUFFIX;
5808 else if (i.tm.opcode_modifier.size64)
5809 i.suffix = QWORD_MNEM_SUFFIX;
5810 else if (i.reg_operands)
5811 {
5812 /* If there's no instruction mnemonic suffix we try to invent one
5813 based on register operands. */
5814 if (!i.suffix)
5815 {
5816 /* We take i.suffix from the last register operand specified,
5817 Destination register type is more significant than source
5818 register type. crc32 in SSE4.2 prefers source register
5819 type. */
5820 if (i.tm.base_opcode == 0xf20f38f1)
5821 {
5822 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5823 i.suffix = WORD_MNEM_SUFFIX;
5824 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5825 i.suffix = LONG_MNEM_SUFFIX;
5826 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5827 i.suffix = QWORD_MNEM_SUFFIX;
5828 }
5829 else if (i.tm.base_opcode == 0xf20f38f0)
5830 {
5831 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5832 i.suffix = BYTE_MNEM_SUFFIX;
5833 }
5834
5835 if (!i.suffix)
5836 {
5837 int op;
5838
5839 if (i.tm.base_opcode == 0xf20f38f1
5840 || i.tm.base_opcode == 0xf20f38f0)
5841 {
5842 /* We have to know the operand size for crc32. */
5843 as_bad (_("ambiguous memory operand size for `%s`"),
5844 i.tm.name);
5845 return 0;
5846 }
5847
5848 for (op = i.operands; --op >= 0;)
5849 if (!i.tm.operand_types[op].bitfield.inoutportreg
5850 && !i.tm.operand_types[op].bitfield.shiftcount)
5851 {
5852 if (!i.types[op].bitfield.reg)
5853 continue;
5854 if (i.types[op].bitfield.byte)
5855 i.suffix = BYTE_MNEM_SUFFIX;
5856 else if (i.types[op].bitfield.word)
5857 i.suffix = WORD_MNEM_SUFFIX;
5858 else if (i.types[op].bitfield.dword)
5859 i.suffix = LONG_MNEM_SUFFIX;
5860 else if (i.types[op].bitfield.qword)
5861 i.suffix = QWORD_MNEM_SUFFIX;
5862 else
5863 continue;
5864 break;
5865 }
5866 }
5867 }
5868 else if (i.suffix == BYTE_MNEM_SUFFIX)
5869 {
5870 if (intel_syntax
5871 && i.tm.opcode_modifier.ignoresize
5872 && i.tm.opcode_modifier.no_bsuf)
5873 i.suffix = 0;
5874 else if (!check_byte_reg ())
5875 return 0;
5876 }
5877 else if (i.suffix == LONG_MNEM_SUFFIX)
5878 {
5879 if (intel_syntax
5880 && i.tm.opcode_modifier.ignoresize
5881 && i.tm.opcode_modifier.no_lsuf
5882 && !i.tm.opcode_modifier.todword
5883 && !i.tm.opcode_modifier.toqword)
5884 i.suffix = 0;
5885 else if (!check_long_reg ())
5886 return 0;
5887 }
5888 else if (i.suffix == QWORD_MNEM_SUFFIX)
5889 {
5890 if (intel_syntax
5891 && i.tm.opcode_modifier.ignoresize
5892 && i.tm.opcode_modifier.no_qsuf
5893 && !i.tm.opcode_modifier.todword
5894 && !i.tm.opcode_modifier.toqword)
5895 i.suffix = 0;
5896 else if (!check_qword_reg ())
5897 return 0;
5898 }
5899 else if (i.suffix == WORD_MNEM_SUFFIX)
5900 {
5901 if (intel_syntax
5902 && i.tm.opcode_modifier.ignoresize
5903 && i.tm.opcode_modifier.no_wsuf)
5904 i.suffix = 0;
5905 else if (!check_word_reg ())
5906 return 0;
5907 }
5908 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5909 /* Do nothing if the instruction is going to ignore the prefix. */
5910 ;
5911 else
5912 abort ();
5913 }
5914 else if (i.tm.opcode_modifier.defaultsize
5915 && !i.suffix
5916 /* exclude fldenv/frstor/fsave/fstenv */
5917 && i.tm.opcode_modifier.no_ssuf)
5918 {
5919 i.suffix = stackop_size;
5920 }
5921 else if (intel_syntax
5922 && !i.suffix
5923 && (i.tm.operand_types[0].bitfield.jumpabsolute
5924 || i.tm.opcode_modifier.jumpbyte
5925 || i.tm.opcode_modifier.jumpintersegment
5926 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5927 && i.tm.extension_opcode <= 3)))
5928 {
5929 switch (flag_code)
5930 {
5931 case CODE_64BIT:
5932 if (!i.tm.opcode_modifier.no_qsuf)
5933 {
5934 i.suffix = QWORD_MNEM_SUFFIX;
5935 break;
5936 }
5937 /* Fall through. */
5938 case CODE_32BIT:
5939 if (!i.tm.opcode_modifier.no_lsuf)
5940 i.suffix = LONG_MNEM_SUFFIX;
5941 break;
5942 case CODE_16BIT:
5943 if (!i.tm.opcode_modifier.no_wsuf)
5944 i.suffix = WORD_MNEM_SUFFIX;
5945 break;
5946 }
5947 }
5948
5949 if (!i.suffix)
5950 {
5951 if (!intel_syntax)
5952 {
5953 if (i.tm.opcode_modifier.w)
5954 {
5955 as_bad (_("no instruction mnemonic suffix given and "
5956 "no register operands; can't size instruction"));
5957 return 0;
5958 }
5959 }
5960 else
5961 {
5962 unsigned int suffixes;
5963
5964 suffixes = !i.tm.opcode_modifier.no_bsuf;
5965 if (!i.tm.opcode_modifier.no_wsuf)
5966 suffixes |= 1 << 1;
5967 if (!i.tm.opcode_modifier.no_lsuf)
5968 suffixes |= 1 << 2;
5969 if (!i.tm.opcode_modifier.no_ldsuf)
5970 suffixes |= 1 << 3;
5971 if (!i.tm.opcode_modifier.no_ssuf)
5972 suffixes |= 1 << 4;
5973 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5974 suffixes |= 1 << 5;
5975
5976 /* There are more than suffix matches. */
5977 if (i.tm.opcode_modifier.w
5978 || ((suffixes & (suffixes - 1))
5979 && !i.tm.opcode_modifier.defaultsize
5980 && !i.tm.opcode_modifier.ignoresize))
5981 {
5982 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5983 return 0;
5984 }
5985 }
5986 }
5987
5988 /* Change the opcode based on the operand size given by i.suffix. */
5989 switch (i.suffix)
5990 {
5991 /* Size floating point instruction. */
5992 case LONG_MNEM_SUFFIX:
5993 if (i.tm.opcode_modifier.floatmf)
5994 {
5995 i.tm.base_opcode ^= 4;
5996 break;
5997 }
5998 /* fall through */
5999 case WORD_MNEM_SUFFIX:
6000 case QWORD_MNEM_SUFFIX:
6001 /* It's not a byte, select word/dword operation. */
6002 if (i.tm.opcode_modifier.w)
6003 {
6004 if (i.tm.opcode_modifier.shortform)
6005 i.tm.base_opcode |= 8;
6006 else
6007 i.tm.base_opcode |= 1;
6008 }
6009 /* fall through */
6010 case SHORT_MNEM_SUFFIX:
6011 /* Now select between word & dword operations via the operand
6012 size prefix, except for instructions that will ignore this
6013 prefix anyway. */
6014 if (i.reg_operands > 0
6015 && i.types[0].bitfield.reg
6016 && i.tm.opcode_modifier.addrprefixopreg
6017 && (i.tm.opcode_modifier.immext
6018 || i.operands == 1))
6019 {
6020 /* The address size override prefix changes the size of the
6021 first operand. */
6022 if ((flag_code == CODE_32BIT
6023 && i.op[0].regs->reg_type.bitfield.word)
6024 || (flag_code != CODE_32BIT
6025 && i.op[0].regs->reg_type.bitfield.dword))
6026 if (!add_prefix (ADDR_PREFIX_OPCODE))
6027 return 0;
6028 }
6029 else if (i.suffix != QWORD_MNEM_SUFFIX
6030 && !i.tm.opcode_modifier.ignoresize
6031 && !i.tm.opcode_modifier.floatmf
6032 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6033 || (flag_code == CODE_64BIT
6034 && i.tm.opcode_modifier.jumpbyte)))
6035 {
6036 unsigned int prefix = DATA_PREFIX_OPCODE;
6037
6038 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6039 prefix = ADDR_PREFIX_OPCODE;
6040
6041 if (!add_prefix (prefix))
6042 return 0;
6043 }
6044
6045 /* Set mode64 for an operand. */
6046 if (i.suffix == QWORD_MNEM_SUFFIX
6047 && flag_code == CODE_64BIT
6048 && !i.tm.opcode_modifier.norex64
6049 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6050 need rex64. */
6051 && ! (i.operands == 2
6052 && i.tm.base_opcode == 0x90
6053 && i.tm.extension_opcode == None
6054 && operand_type_equal (&i.types [0], &acc64)
6055 && operand_type_equal (&i.types [1], &acc64)))
6056 i.rex |= REX_W;
6057
6058 break;
6059 }
6060
6061 if (i.reg_operands != 0
6062 && i.operands > 1
6063 && i.tm.opcode_modifier.addrprefixopreg
6064 && !i.tm.opcode_modifier.immext)
6065 {
6066 /* Check invalid register operand when the address size override
6067 prefix changes the size of register operands. */
6068 unsigned int op;
6069 enum { need_word, need_dword, need_qword } need;
6070
6071 if (flag_code == CODE_32BIT)
6072 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6073 else
6074 {
6075 if (i.prefix[ADDR_PREFIX])
6076 need = need_dword;
6077 else
6078 need = flag_code == CODE_64BIT ? need_qword : need_word;
6079 }
6080
6081 for (op = 0; op < i.operands; op++)
6082 if (i.types[op].bitfield.reg
6083 && ((need == need_word
6084 && !i.op[op].regs->reg_type.bitfield.word)
6085 || (need == need_dword
6086 && !i.op[op].regs->reg_type.bitfield.dword)
6087 || (need == need_qword
6088 && !i.op[op].regs->reg_type.bitfield.qword)))
6089 {
6090 as_bad (_("invalid register operand size for `%s'"),
6091 i.tm.name);
6092 return 0;
6093 }
6094 }
6095
6096 return 1;
6097 }
6098
6099 static int
6100 check_byte_reg (void)
6101 {
6102 int op;
6103
6104 for (op = i.operands; --op >= 0;)
6105 {
6106 /* Skip non-register operands. */
6107 if (!i.types[op].bitfield.reg)
6108 continue;
6109
6110 /* If this is an eight bit register, it's OK. If it's the 16 or
6111 32 bit version of an eight bit register, we will just use the
6112 low portion, and that's OK too. */
6113 if (i.types[op].bitfield.byte)
6114 continue;
6115
6116 /* I/O port address operands are OK too. */
6117 if (i.tm.operand_types[op].bitfield.inoutportreg)
6118 continue;
6119
6120 /* crc32 doesn't generate this warning. */
6121 if (i.tm.base_opcode == 0xf20f38f0)
6122 continue;
6123
6124 if ((i.types[op].bitfield.word
6125 || i.types[op].bitfield.dword
6126 || i.types[op].bitfield.qword)
6127 && i.op[op].regs->reg_num < 4
6128 /* Prohibit these changes in 64bit mode, since the lowering
6129 would be more complicated. */
6130 && flag_code != CODE_64BIT)
6131 {
6132 #if REGISTER_WARNINGS
6133 if (!quiet_warnings)
6134 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6135 register_prefix,
6136 (i.op[op].regs + (i.types[op].bitfield.word
6137 ? REGNAM_AL - REGNAM_AX
6138 : REGNAM_AL - REGNAM_EAX))->reg_name,
6139 register_prefix,
6140 i.op[op].regs->reg_name,
6141 i.suffix);
6142 #endif
6143 continue;
6144 }
6145 /* Any other register is bad. */
6146 if (i.types[op].bitfield.reg
6147 || i.types[op].bitfield.regmmx
6148 || i.types[op].bitfield.regsimd
6149 || i.types[op].bitfield.sreg2
6150 || i.types[op].bitfield.sreg3
6151 || i.types[op].bitfield.control
6152 || i.types[op].bitfield.debug
6153 || i.types[op].bitfield.test)
6154 {
6155 as_bad (_("`%s%s' not allowed with `%s%c'"),
6156 register_prefix,
6157 i.op[op].regs->reg_name,
6158 i.tm.name,
6159 i.suffix);
6160 return 0;
6161 }
6162 }
6163 return 1;
6164 }
6165
6166 static int
6167 check_long_reg (void)
6168 {
6169 int op;
6170
6171 for (op = i.operands; --op >= 0;)
6172 /* Skip non-register operands. */
6173 if (!i.types[op].bitfield.reg)
6174 continue;
6175 /* Reject eight bit registers, except where the template requires
6176 them. (eg. movzb) */
6177 else if (i.types[op].bitfield.byte
6178 && (i.tm.operand_types[op].bitfield.reg
6179 || i.tm.operand_types[op].bitfield.acc)
6180 && (i.tm.operand_types[op].bitfield.word
6181 || i.tm.operand_types[op].bitfield.dword))
6182 {
6183 as_bad (_("`%s%s' not allowed with `%s%c'"),
6184 register_prefix,
6185 i.op[op].regs->reg_name,
6186 i.tm.name,
6187 i.suffix);
6188 return 0;
6189 }
6190 /* Warn if the e prefix on a general reg is missing. */
6191 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6192 && i.types[op].bitfield.word
6193 && (i.tm.operand_types[op].bitfield.reg
6194 || i.tm.operand_types[op].bitfield.acc)
6195 && i.tm.operand_types[op].bitfield.dword)
6196 {
6197 /* Prohibit these changes in the 64bit mode, since the
6198 lowering is more complicated. */
6199 if (flag_code == CODE_64BIT)
6200 {
6201 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6202 register_prefix, i.op[op].regs->reg_name,
6203 i.suffix);
6204 return 0;
6205 }
6206 #if REGISTER_WARNINGS
6207 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6208 register_prefix,
6209 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6210 register_prefix, i.op[op].regs->reg_name, i.suffix);
6211 #endif
6212 }
6213 /* Warn if the r prefix on a general reg is present. */
6214 else if (i.types[op].bitfield.qword
6215 && (i.tm.operand_types[op].bitfield.reg
6216 || i.tm.operand_types[op].bitfield.acc)
6217 && i.tm.operand_types[op].bitfield.dword)
6218 {
6219 if (intel_syntax
6220 && i.tm.opcode_modifier.toqword
6221 && !i.types[0].bitfield.regsimd)
6222 {
6223 /* Convert to QWORD. We want REX byte. */
6224 i.suffix = QWORD_MNEM_SUFFIX;
6225 }
6226 else
6227 {
6228 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6229 register_prefix, i.op[op].regs->reg_name,
6230 i.suffix);
6231 return 0;
6232 }
6233 }
6234 return 1;
6235 }
6236
6237 static int
6238 check_qword_reg (void)
6239 {
6240 int op;
6241
6242 for (op = i.operands; --op >= 0; )
6243 /* Skip non-register operands. */
6244 if (!i.types[op].bitfield.reg)
6245 continue;
6246 /* Reject eight bit registers, except where the template requires
6247 them. (eg. movzb) */
6248 else if (i.types[op].bitfield.byte
6249 && (i.tm.operand_types[op].bitfield.reg
6250 || i.tm.operand_types[op].bitfield.acc)
6251 && (i.tm.operand_types[op].bitfield.word
6252 || i.tm.operand_types[op].bitfield.dword))
6253 {
6254 as_bad (_("`%s%s' not allowed with `%s%c'"),
6255 register_prefix,
6256 i.op[op].regs->reg_name,
6257 i.tm.name,
6258 i.suffix);
6259 return 0;
6260 }
6261 /* Warn if the r prefix on a general reg is missing. */
6262 else if ((i.types[op].bitfield.word
6263 || i.types[op].bitfield.dword)
6264 && (i.tm.operand_types[op].bitfield.reg
6265 || i.tm.operand_types[op].bitfield.acc)
6266 && i.tm.operand_types[op].bitfield.qword)
6267 {
6268 /* Prohibit these changes in the 64bit mode, since the
6269 lowering is more complicated. */
6270 if (intel_syntax
6271 && i.tm.opcode_modifier.todword
6272 && !i.types[0].bitfield.regsimd)
6273 {
6274 /* Convert to DWORD. We don't want REX byte. */
6275 i.suffix = LONG_MNEM_SUFFIX;
6276 }
6277 else
6278 {
6279 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6280 register_prefix, i.op[op].regs->reg_name,
6281 i.suffix);
6282 return 0;
6283 }
6284 }
6285 return 1;
6286 }
6287
6288 static int
6289 check_word_reg (void)
6290 {
6291 int op;
6292 for (op = i.operands; --op >= 0;)
6293 /* Skip non-register operands. */
6294 if (!i.types[op].bitfield.reg)
6295 continue;
6296 /* Reject eight bit registers, except where the template requires
6297 them. (eg. movzb) */
6298 else if (i.types[op].bitfield.byte
6299 && (i.tm.operand_types[op].bitfield.reg
6300 || i.tm.operand_types[op].bitfield.acc)
6301 && (i.tm.operand_types[op].bitfield.word
6302 || i.tm.operand_types[op].bitfield.dword))
6303 {
6304 as_bad (_("`%s%s' not allowed with `%s%c'"),
6305 register_prefix,
6306 i.op[op].regs->reg_name,
6307 i.tm.name,
6308 i.suffix);
6309 return 0;
6310 }
6311 /* Warn if the e or r prefix on a general reg is present. */
6312 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6313 && (i.types[op].bitfield.dword
6314 || i.types[op].bitfield.qword)
6315 && (i.tm.operand_types[op].bitfield.reg
6316 || i.tm.operand_types[op].bitfield.acc)
6317 && i.tm.operand_types[op].bitfield.word)
6318 {
6319 /* Prohibit these changes in the 64bit mode, since the
6320 lowering is more complicated. */
6321 if (flag_code == CODE_64BIT)
6322 {
6323 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6324 register_prefix, i.op[op].regs->reg_name,
6325 i.suffix);
6326 return 0;
6327 }
6328 #if REGISTER_WARNINGS
6329 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6330 register_prefix,
6331 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6332 register_prefix, i.op[op].regs->reg_name, i.suffix);
6333 #endif
6334 }
6335 return 1;
6336 }
6337
6338 static int
6339 update_imm (unsigned int j)
6340 {
6341 i386_operand_type overlap = i.types[j];
6342 if ((overlap.bitfield.imm8
6343 || overlap.bitfield.imm8s
6344 || overlap.bitfield.imm16
6345 || overlap.bitfield.imm32
6346 || overlap.bitfield.imm32s
6347 || overlap.bitfield.imm64)
6348 && !operand_type_equal (&overlap, &imm8)
6349 && !operand_type_equal (&overlap, &imm8s)
6350 && !operand_type_equal (&overlap, &imm16)
6351 && !operand_type_equal (&overlap, &imm32)
6352 && !operand_type_equal (&overlap, &imm32s)
6353 && !operand_type_equal (&overlap, &imm64))
6354 {
6355 if (i.suffix)
6356 {
6357 i386_operand_type temp;
6358
6359 operand_type_set (&temp, 0);
6360 if (i.suffix == BYTE_MNEM_SUFFIX)
6361 {
6362 temp.bitfield.imm8 = overlap.bitfield.imm8;
6363 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6364 }
6365 else if (i.suffix == WORD_MNEM_SUFFIX)
6366 temp.bitfield.imm16 = overlap.bitfield.imm16;
6367 else if (i.suffix == QWORD_MNEM_SUFFIX)
6368 {
6369 temp.bitfield.imm64 = overlap.bitfield.imm64;
6370 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6371 }
6372 else
6373 temp.bitfield.imm32 = overlap.bitfield.imm32;
6374 overlap = temp;
6375 }
6376 else if (operand_type_equal (&overlap, &imm16_32_32s)
6377 || operand_type_equal (&overlap, &imm16_32)
6378 || operand_type_equal (&overlap, &imm16_32s))
6379 {
6380 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6381 overlap = imm16;
6382 else
6383 overlap = imm32s;
6384 }
6385 if (!operand_type_equal (&overlap, &imm8)
6386 && !operand_type_equal (&overlap, &imm8s)
6387 && !operand_type_equal (&overlap, &imm16)
6388 && !operand_type_equal (&overlap, &imm32)
6389 && !operand_type_equal (&overlap, &imm32s)
6390 && !operand_type_equal (&overlap, &imm64))
6391 {
6392 as_bad (_("no instruction mnemonic suffix given; "
6393 "can't determine immediate size"));
6394 return 0;
6395 }
6396 }
6397 i.types[j] = overlap;
6398
6399 return 1;
6400 }
6401
6402 static int
6403 finalize_imm (void)
6404 {
6405 unsigned int j, n;
6406
6407 /* Update the first 2 immediate operands. */
6408 n = i.operands > 2 ? 2 : i.operands;
6409 if (n)
6410 {
6411 for (j = 0; j < n; j++)
6412 if (update_imm (j) == 0)
6413 return 0;
6414
6415 /* The 3rd operand can't be immediate operand. */
6416 gas_assert (operand_type_check (i.types[2], imm) == 0);
6417 }
6418
6419 return 1;
6420 }
6421
6422 static int
6423 process_operands (void)
6424 {
6425 /* Default segment register this instruction will use for memory
6426 accesses. 0 means unknown. This is only for optimizing out
6427 unnecessary segment overrides. */
6428 const seg_entry *default_seg = 0;
6429
6430 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6431 {
6432 unsigned int dupl = i.operands;
6433 unsigned int dest = dupl - 1;
6434 unsigned int j;
6435
6436 /* The destination must be an xmm register. */
6437 gas_assert (i.reg_operands
6438 && MAX_OPERANDS > dupl
6439 && operand_type_equal (&i.types[dest], &regxmm));
6440
6441 if (i.tm.operand_types[0].bitfield.acc
6442 && i.tm.operand_types[0].bitfield.xmmword)
6443 {
6444 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6445 {
6446 /* Keep xmm0 for instructions with VEX prefix and 3
6447 sources. */
6448 i.tm.operand_types[0].bitfield.acc = 0;
6449 i.tm.operand_types[0].bitfield.regsimd = 1;
6450 goto duplicate;
6451 }
6452 else
6453 {
6454 /* We remove the first xmm0 and keep the number of
6455 operands unchanged, which in fact duplicates the
6456 destination. */
6457 for (j = 1; j < i.operands; j++)
6458 {
6459 i.op[j - 1] = i.op[j];
6460 i.types[j - 1] = i.types[j];
6461 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6462 }
6463 }
6464 }
6465 else if (i.tm.opcode_modifier.implicit1stxmm0)
6466 {
6467 gas_assert ((MAX_OPERANDS - 1) > dupl
6468 && (i.tm.opcode_modifier.vexsources
6469 == VEX3SOURCES));
6470
6471 /* Add the implicit xmm0 for instructions with VEX prefix
6472 and 3 sources. */
6473 for (j = i.operands; j > 0; j--)
6474 {
6475 i.op[j] = i.op[j - 1];
6476 i.types[j] = i.types[j - 1];
6477 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6478 }
6479 i.op[0].regs
6480 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6481 i.types[0] = regxmm;
6482 i.tm.operand_types[0] = regxmm;
6483
6484 i.operands += 2;
6485 i.reg_operands += 2;
6486 i.tm.operands += 2;
6487
6488 dupl++;
6489 dest++;
6490 i.op[dupl] = i.op[dest];
6491 i.types[dupl] = i.types[dest];
6492 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6493 }
6494 else
6495 {
6496 duplicate:
6497 i.operands++;
6498 i.reg_operands++;
6499 i.tm.operands++;
6500
6501 i.op[dupl] = i.op[dest];
6502 i.types[dupl] = i.types[dest];
6503 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6504 }
6505
6506 if (i.tm.opcode_modifier.immext)
6507 process_immext ();
6508 }
6509 else if (i.tm.operand_types[0].bitfield.acc
6510 && i.tm.operand_types[0].bitfield.xmmword)
6511 {
6512 unsigned int j;
6513
6514 for (j = 1; j < i.operands; j++)
6515 {
6516 i.op[j - 1] = i.op[j];
6517 i.types[j - 1] = i.types[j];
6518
6519 /* We need to adjust fields in i.tm since they are used by
6520 build_modrm_byte. */
6521 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6522 }
6523
6524 i.operands--;
6525 i.reg_operands--;
6526 i.tm.operands--;
6527 }
6528 else if (i.tm.opcode_modifier.implicitquadgroup)
6529 {
6530 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6531
6532 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6533 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6534 regnum = register_number (i.op[1].regs);
6535 first_reg_in_group = regnum & ~3;
6536 last_reg_in_group = first_reg_in_group + 3;
6537 if (regnum != first_reg_in_group)
6538 as_warn (_("source register `%s%s' implicitly denotes"
6539 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6540 register_prefix, i.op[1].regs->reg_name,
6541 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6542 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6543 i.tm.name);
6544 }
6545 else if (i.tm.opcode_modifier.regkludge)
6546 {
6547 /* The imul $imm, %reg instruction is converted into
6548 imul $imm, %reg, %reg, and the clr %reg instruction
6549 is converted into xor %reg, %reg. */
6550
6551 unsigned int first_reg_op;
6552
6553 if (operand_type_check (i.types[0], reg))
6554 first_reg_op = 0;
6555 else
6556 first_reg_op = 1;
6557 /* Pretend we saw the extra register operand. */
6558 gas_assert (i.reg_operands == 1
6559 && i.op[first_reg_op + 1].regs == 0);
6560 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6561 i.types[first_reg_op + 1] = i.types[first_reg_op];
6562 i.operands++;
6563 i.reg_operands++;
6564 }
6565
6566 if (i.tm.opcode_modifier.shortform)
6567 {
6568 if (i.types[0].bitfield.sreg2
6569 || i.types[0].bitfield.sreg3)
6570 {
6571 if (i.tm.base_opcode == POP_SEG_SHORT
6572 && i.op[0].regs->reg_num == 1)
6573 {
6574 as_bad (_("you can't `pop %scs'"), register_prefix);
6575 return 0;
6576 }
6577 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6578 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6579 i.rex |= REX_B;
6580 }
6581 else
6582 {
6583 /* The register or float register operand is in operand
6584 0 or 1. */
6585 unsigned int op;
6586
6587 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6588 || operand_type_check (i.types[0], reg))
6589 op = 0;
6590 else
6591 op = 1;
6592 /* Register goes in low 3 bits of opcode. */
6593 i.tm.base_opcode |= i.op[op].regs->reg_num;
6594 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6595 i.rex |= REX_B;
6596 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6597 {
6598 /* Warn about some common errors, but press on regardless.
6599 The first case can be generated by gcc (<= 2.8.1). */
6600 if (i.operands == 2)
6601 {
6602 /* Reversed arguments on faddp, fsubp, etc. */
6603 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6604 register_prefix, i.op[!intel_syntax].regs->reg_name,
6605 register_prefix, i.op[intel_syntax].regs->reg_name);
6606 }
6607 else
6608 {
6609 /* Extraneous `l' suffix on fp insn. */
6610 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6611 register_prefix, i.op[0].regs->reg_name);
6612 }
6613 }
6614 }
6615 }
6616 else if (i.tm.opcode_modifier.modrm)
6617 {
6618 /* The opcode is completed (modulo i.tm.extension_opcode which
6619 must be put into the modrm byte). Now, we make the modrm and
6620 index base bytes based on all the info we've collected. */
6621
6622 default_seg = build_modrm_byte ();
6623 }
6624 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6625 {
6626 default_seg = &ds;
6627 }
6628 else if (i.tm.opcode_modifier.isstring)
6629 {
6630 /* For the string instructions that allow a segment override
6631 on one of their operands, the default segment is ds. */
6632 default_seg = &ds;
6633 }
6634
6635 if (i.tm.base_opcode == 0x8d /* lea */
6636 && i.seg[0]
6637 && !quiet_warnings)
6638 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6639
6640 /* If a segment was explicitly specified, and the specified segment
6641 is not the default, use an opcode prefix to select it. If we
6642 never figured out what the default segment is, then default_seg
6643 will be zero at this point, and the specified segment prefix will
6644 always be used. */
6645 if ((i.seg[0]) && (i.seg[0] != default_seg))
6646 {
6647 if (!add_prefix (i.seg[0]->seg_prefix))
6648 return 0;
6649 }
6650 return 1;
6651 }
6652
6653 static const seg_entry *
6654 build_modrm_byte (void)
6655 {
6656 const seg_entry *default_seg = 0;
6657 unsigned int source, dest;
6658 int vex_3_sources;
6659
6660 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6661 if (vex_3_sources)
6662 {
6663 unsigned int nds, reg_slot;
6664 expressionS *exp;
6665
6666 dest = i.operands - 1;
6667 nds = dest - 1;
6668
6669 /* There are 2 kinds of instructions:
6670 1. 5 operands: 4 register operands or 3 register operands
6671 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6672 VexW0 or VexW1. The destination must be either XMM, YMM or
6673 ZMM register.
6674 2. 4 operands: 4 register operands or 3 register operands
6675 plus 1 memory operand, with VexXDS. */
6676 gas_assert ((i.reg_operands == 4
6677 || (i.reg_operands == 3 && i.mem_operands == 1))
6678 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6679 && i.tm.opcode_modifier.vexw
6680 && i.tm.operand_types[dest].bitfield.regsimd);
6681
6682 /* If VexW1 is set, the first non-immediate operand is the source and
6683 the second non-immediate one is encoded in the immediate operand. */
6684 if (i.tm.opcode_modifier.vexw == VEXW1)
6685 {
6686 source = i.imm_operands;
6687 reg_slot = i.imm_operands + 1;
6688 }
6689 else
6690 {
6691 source = i.imm_operands + 1;
6692 reg_slot = i.imm_operands;
6693 }
6694
6695 if (i.imm_operands == 0)
6696 {
6697 /* When there is no immediate operand, generate an 8bit
6698 immediate operand to encode the first operand. */
6699 exp = &im_expressions[i.imm_operands++];
6700 i.op[i.operands].imms = exp;
6701 i.types[i.operands] = imm8;
6702 i.operands++;
6703
6704 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6705 exp->X_op = O_constant;
6706 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6707 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6708 }
6709 else
6710 {
6711 unsigned int imm_slot;
6712
6713 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6714
6715 if (i.tm.opcode_modifier.immext)
6716 {
6717 /* When ImmExt is set, the immediate byte is the last
6718 operand. */
6719 imm_slot = i.operands - 1;
6720 source--;
6721 reg_slot--;
6722 }
6723 else
6724 {
6725 imm_slot = 0;
6726
6727 /* Turn on Imm8 so that output_imm will generate it. */
6728 i.types[imm_slot].bitfield.imm8 = 1;
6729 }
6730
6731 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6732 i.op[imm_slot].imms->X_add_number
6733 |= register_number (i.op[reg_slot].regs) << 4;
6734 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6735 }
6736
6737 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6738 i.vex.register_specifier = i.op[nds].regs;
6739 }
6740 else
6741 source = dest = 0;
6742
6743 /* i.reg_operands MUST be the number of real register operands;
6744 implicit registers do not count. If there are 3 register
6745 operands, it must be a instruction with VexNDS. For a
6746 instruction with VexNDD, the destination register is encoded
6747 in VEX prefix. If there are 4 register operands, it must be
6748 a instruction with VEX prefix and 3 sources. */
6749 if (i.mem_operands == 0
6750 && ((i.reg_operands == 2
6751 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6752 || (i.reg_operands == 3
6753 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6754 || (i.reg_operands == 4 && vex_3_sources)))
6755 {
6756 switch (i.operands)
6757 {
6758 case 2:
6759 source = 0;
6760 break;
6761 case 3:
6762 /* When there are 3 operands, one of them may be immediate,
6763 which may be the first or the last operand. Otherwise,
6764 the first operand must be shift count register (cl) or it
6765 is an instruction with VexNDS. */
6766 gas_assert (i.imm_operands == 1
6767 || (i.imm_operands == 0
6768 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6769 || i.types[0].bitfield.shiftcount)));
6770 if (operand_type_check (i.types[0], imm)
6771 || i.types[0].bitfield.shiftcount)
6772 source = 1;
6773 else
6774 source = 0;
6775 break;
6776 case 4:
6777 /* When there are 4 operands, the first two must be 8bit
6778 immediate operands. The source operand will be the 3rd
6779 one.
6780
6781 For instructions with VexNDS, if the first operand
6782 an imm8, the source operand is the 2nd one. If the last
6783 operand is imm8, the source operand is the first one. */
6784 gas_assert ((i.imm_operands == 2
6785 && i.types[0].bitfield.imm8
6786 && i.types[1].bitfield.imm8)
6787 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6788 && i.imm_operands == 1
6789 && (i.types[0].bitfield.imm8
6790 || i.types[i.operands - 1].bitfield.imm8
6791 || i.rounding)));
6792 if (i.imm_operands == 2)
6793 source = 2;
6794 else
6795 {
6796 if (i.types[0].bitfield.imm8)
6797 source = 1;
6798 else
6799 source = 0;
6800 }
6801 break;
6802 case 5:
6803 if (is_evex_encoding (&i.tm))
6804 {
6805 /* For EVEX instructions, when there are 5 operands, the
6806 first one must be immediate operand. If the second one
6807 is immediate operand, the source operand is the 3th
6808 one. If the last one is immediate operand, the source
6809 operand is the 2nd one. */
6810 gas_assert (i.imm_operands == 2
6811 && i.tm.opcode_modifier.sae
6812 && operand_type_check (i.types[0], imm));
6813 if (operand_type_check (i.types[1], imm))
6814 source = 2;
6815 else if (operand_type_check (i.types[4], imm))
6816 source = 1;
6817 else
6818 abort ();
6819 }
6820 break;
6821 default:
6822 abort ();
6823 }
6824
6825 if (!vex_3_sources)
6826 {
6827 dest = source + 1;
6828
6829 /* RC/SAE operand could be between DEST and SRC. That happens
6830 when one operand is GPR and the other one is XMM/YMM/ZMM
6831 register. */
6832 if (i.rounding && i.rounding->operand == (int) dest)
6833 dest++;
6834
6835 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6836 {
6837 /* For instructions with VexNDS, the register-only source
6838 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6839 register. It is encoded in VEX prefix. We need to
6840 clear RegMem bit before calling operand_type_equal. */
6841
6842 i386_operand_type op;
6843 unsigned int vvvv;
6844
6845 /* Check register-only source operand when two source
6846 operands are swapped. */
6847 if (!i.tm.operand_types[source].bitfield.baseindex
6848 && i.tm.operand_types[dest].bitfield.baseindex)
6849 {
6850 vvvv = source;
6851 source = dest;
6852 }
6853 else
6854 vvvv = dest;
6855
6856 op = i.tm.operand_types[vvvv];
6857 op.bitfield.regmem = 0;
6858 if ((dest + 1) >= i.operands
6859 || ((!op.bitfield.reg
6860 || (!op.bitfield.dword && !op.bitfield.qword))
6861 && !op.bitfield.regsimd
6862 && !operand_type_equal (&op, &regmask)))
6863 abort ();
6864 i.vex.register_specifier = i.op[vvvv].regs;
6865 dest++;
6866 }
6867 }
6868
6869 i.rm.mode = 3;
6870 /* One of the register operands will be encoded in the i.tm.reg
6871 field, the other in the combined i.tm.mode and i.tm.regmem
6872 fields. If no form of this instruction supports a memory
6873 destination operand, then we assume the source operand may
6874 sometimes be a memory operand and so we need to store the
6875 destination in the i.rm.reg field. */
6876 if (!i.tm.operand_types[dest].bitfield.regmem
6877 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6878 {
6879 i.rm.reg = i.op[dest].regs->reg_num;
6880 i.rm.regmem = i.op[source].regs->reg_num;
6881 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6882 i.rex |= REX_R;
6883 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6884 i.vrex |= REX_R;
6885 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6886 i.rex |= REX_B;
6887 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6888 i.vrex |= REX_B;
6889 }
6890 else
6891 {
6892 i.rm.reg = i.op[source].regs->reg_num;
6893 i.rm.regmem = i.op[dest].regs->reg_num;
6894 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6895 i.rex |= REX_B;
6896 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6897 i.vrex |= REX_B;
6898 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6899 i.rex |= REX_R;
6900 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6901 i.vrex |= REX_R;
6902 }
6903 if (flag_code != CODE_64BIT && (i.rex & REX_R))
6904 {
6905 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
6906 abort ();
6907 i.rex &= ~REX_R;
6908 add_prefix (LOCK_PREFIX_OPCODE);
6909 }
6910 }
6911 else
6912 { /* If it's not 2 reg operands... */
6913 unsigned int mem;
6914
6915 if (i.mem_operands)
6916 {
6917 unsigned int fake_zero_displacement = 0;
6918 unsigned int op;
6919
6920 for (op = 0; op < i.operands; op++)
6921 if (operand_type_check (i.types[op], anymem))
6922 break;
6923 gas_assert (op < i.operands);
6924
6925 if (i.tm.opcode_modifier.vecsib)
6926 {
6927 if (i.index_reg->reg_num == RegEiz
6928 || i.index_reg->reg_num == RegRiz)
6929 abort ();
6930
6931 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6932 if (!i.base_reg)
6933 {
6934 i.sib.base = NO_BASE_REGISTER;
6935 i.sib.scale = i.log2_scale_factor;
6936 i.types[op].bitfield.disp8 = 0;
6937 i.types[op].bitfield.disp16 = 0;
6938 i.types[op].bitfield.disp64 = 0;
6939 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6940 {
6941 /* Must be 32 bit */
6942 i.types[op].bitfield.disp32 = 1;
6943 i.types[op].bitfield.disp32s = 0;
6944 }
6945 else
6946 {
6947 i.types[op].bitfield.disp32 = 0;
6948 i.types[op].bitfield.disp32s = 1;
6949 }
6950 }
6951 i.sib.index = i.index_reg->reg_num;
6952 if ((i.index_reg->reg_flags & RegRex) != 0)
6953 i.rex |= REX_X;
6954 if ((i.index_reg->reg_flags & RegVRex) != 0)
6955 i.vrex |= REX_X;
6956 }
6957
6958 default_seg = &ds;
6959
6960 if (i.base_reg == 0)
6961 {
6962 i.rm.mode = 0;
6963 if (!i.disp_operands)
6964 fake_zero_displacement = 1;
6965 if (i.index_reg == 0)
6966 {
6967 i386_operand_type newdisp;
6968
6969 gas_assert (!i.tm.opcode_modifier.vecsib);
6970 /* Operand is just <disp> */
6971 if (flag_code == CODE_64BIT)
6972 {
6973 /* 64bit mode overwrites the 32bit absolute
6974 addressing by RIP relative addressing and
6975 absolute addressing is encoded by one of the
6976 redundant SIB forms. */
6977 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6978 i.sib.base = NO_BASE_REGISTER;
6979 i.sib.index = NO_INDEX_REGISTER;
6980 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6981 }
6982 else if ((flag_code == CODE_16BIT)
6983 ^ (i.prefix[ADDR_PREFIX] != 0))
6984 {
6985 i.rm.regmem = NO_BASE_REGISTER_16;
6986 newdisp = disp16;
6987 }
6988 else
6989 {
6990 i.rm.regmem = NO_BASE_REGISTER;
6991 newdisp = disp32;
6992 }
6993 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6994 i.types[op] = operand_type_or (i.types[op], newdisp);
6995 }
6996 else if (!i.tm.opcode_modifier.vecsib)
6997 {
6998 /* !i.base_reg && i.index_reg */
6999 if (i.index_reg->reg_num == RegEiz
7000 || i.index_reg->reg_num == RegRiz)
7001 i.sib.index = NO_INDEX_REGISTER;
7002 else
7003 i.sib.index = i.index_reg->reg_num;
7004 i.sib.base = NO_BASE_REGISTER;
7005 i.sib.scale = i.log2_scale_factor;
7006 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7007 i.types[op].bitfield.disp8 = 0;
7008 i.types[op].bitfield.disp16 = 0;
7009 i.types[op].bitfield.disp64 = 0;
7010 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7011 {
7012 /* Must be 32 bit */
7013 i.types[op].bitfield.disp32 = 1;
7014 i.types[op].bitfield.disp32s = 0;
7015 }
7016 else
7017 {
7018 i.types[op].bitfield.disp32 = 0;
7019 i.types[op].bitfield.disp32s = 1;
7020 }
7021 if ((i.index_reg->reg_flags & RegRex) != 0)
7022 i.rex |= REX_X;
7023 }
7024 }
7025 /* RIP addressing for 64bit mode. */
7026 else if (i.base_reg->reg_num == RegRip ||
7027 i.base_reg->reg_num == RegEip)
7028 {
7029 gas_assert (!i.tm.opcode_modifier.vecsib);
7030 i.rm.regmem = NO_BASE_REGISTER;
7031 i.types[op].bitfield.disp8 = 0;
7032 i.types[op].bitfield.disp16 = 0;
7033 i.types[op].bitfield.disp32 = 0;
7034 i.types[op].bitfield.disp32s = 1;
7035 i.types[op].bitfield.disp64 = 0;
7036 i.flags[op] |= Operand_PCrel;
7037 if (! i.disp_operands)
7038 fake_zero_displacement = 1;
7039 }
7040 else if (i.base_reg->reg_type.bitfield.word)
7041 {
7042 gas_assert (!i.tm.opcode_modifier.vecsib);
7043 switch (i.base_reg->reg_num)
7044 {
7045 case 3: /* (%bx) */
7046 if (i.index_reg == 0)
7047 i.rm.regmem = 7;
7048 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7049 i.rm.regmem = i.index_reg->reg_num - 6;
7050 break;
7051 case 5: /* (%bp) */
7052 default_seg = &ss;
7053 if (i.index_reg == 0)
7054 {
7055 i.rm.regmem = 6;
7056 if (operand_type_check (i.types[op], disp) == 0)
7057 {
7058 /* fake (%bp) into 0(%bp) */
7059 i.types[op].bitfield.disp8 = 1;
7060 fake_zero_displacement = 1;
7061 }
7062 }
7063 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7064 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7065 break;
7066 default: /* (%si) -> 4 or (%di) -> 5 */
7067 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7068 }
7069 i.rm.mode = mode_from_disp_size (i.types[op]);
7070 }
7071 else /* i.base_reg and 32/64 bit mode */
7072 {
7073 if (flag_code == CODE_64BIT
7074 && operand_type_check (i.types[op], disp))
7075 {
7076 i.types[op].bitfield.disp16 = 0;
7077 i.types[op].bitfield.disp64 = 0;
7078 if (i.prefix[ADDR_PREFIX] == 0)
7079 {
7080 i.types[op].bitfield.disp32 = 0;
7081 i.types[op].bitfield.disp32s = 1;
7082 }
7083 else
7084 {
7085 i.types[op].bitfield.disp32 = 1;
7086 i.types[op].bitfield.disp32s = 0;
7087 }
7088 }
7089
7090 if (!i.tm.opcode_modifier.vecsib)
7091 i.rm.regmem = i.base_reg->reg_num;
7092 if ((i.base_reg->reg_flags & RegRex) != 0)
7093 i.rex |= REX_B;
7094 i.sib.base = i.base_reg->reg_num;
7095 /* x86-64 ignores REX prefix bit here to avoid decoder
7096 complications. */
7097 if (!(i.base_reg->reg_flags & RegRex)
7098 && (i.base_reg->reg_num == EBP_REG_NUM
7099 || i.base_reg->reg_num == ESP_REG_NUM))
7100 default_seg = &ss;
7101 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7102 {
7103 fake_zero_displacement = 1;
7104 i.types[op].bitfield.disp8 = 1;
7105 }
7106 i.sib.scale = i.log2_scale_factor;
7107 if (i.index_reg == 0)
7108 {
7109 gas_assert (!i.tm.opcode_modifier.vecsib);
7110 /* <disp>(%esp) becomes two byte modrm with no index
7111 register. We've already stored the code for esp
7112 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7113 Any base register besides %esp will not use the
7114 extra modrm byte. */
7115 i.sib.index = NO_INDEX_REGISTER;
7116 }
7117 else if (!i.tm.opcode_modifier.vecsib)
7118 {
7119 if (i.index_reg->reg_num == RegEiz
7120 || i.index_reg->reg_num == RegRiz)
7121 i.sib.index = NO_INDEX_REGISTER;
7122 else
7123 i.sib.index = i.index_reg->reg_num;
7124 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7125 if ((i.index_reg->reg_flags & RegRex) != 0)
7126 i.rex |= REX_X;
7127 }
7128
7129 if (i.disp_operands
7130 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7131 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7132 i.rm.mode = 0;
7133 else
7134 {
7135 if (!fake_zero_displacement
7136 && !i.disp_operands
7137 && i.disp_encoding)
7138 {
7139 fake_zero_displacement = 1;
7140 if (i.disp_encoding == disp_encoding_8bit)
7141 i.types[op].bitfield.disp8 = 1;
7142 else
7143 i.types[op].bitfield.disp32 = 1;
7144 }
7145 i.rm.mode = mode_from_disp_size (i.types[op]);
7146 }
7147 }
7148
7149 if (fake_zero_displacement)
7150 {
7151 /* Fakes a zero displacement assuming that i.types[op]
7152 holds the correct displacement size. */
7153 expressionS *exp;
7154
7155 gas_assert (i.op[op].disps == 0);
7156 exp = &disp_expressions[i.disp_operands++];
7157 i.op[op].disps = exp;
7158 exp->X_op = O_constant;
7159 exp->X_add_number = 0;
7160 exp->X_add_symbol = (symbolS *) 0;
7161 exp->X_op_symbol = (symbolS *) 0;
7162 }
7163
7164 mem = op;
7165 }
7166 else
7167 mem = ~0;
7168
7169 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7170 {
7171 if (operand_type_check (i.types[0], imm))
7172 i.vex.register_specifier = NULL;
7173 else
7174 {
7175 /* VEX.vvvv encodes one of the sources when the first
7176 operand is not an immediate. */
7177 if (i.tm.opcode_modifier.vexw == VEXW0)
7178 i.vex.register_specifier = i.op[0].regs;
7179 else
7180 i.vex.register_specifier = i.op[1].regs;
7181 }
7182
7183 /* Destination is a XMM register encoded in the ModRM.reg
7184 and VEX.R bit. */
7185 i.rm.reg = i.op[2].regs->reg_num;
7186 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7187 i.rex |= REX_R;
7188
7189 /* ModRM.rm and VEX.B encodes the other source. */
7190 if (!i.mem_operands)
7191 {
7192 i.rm.mode = 3;
7193
7194 if (i.tm.opcode_modifier.vexw == VEXW0)
7195 i.rm.regmem = i.op[1].regs->reg_num;
7196 else
7197 i.rm.regmem = i.op[0].regs->reg_num;
7198
7199 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7200 i.rex |= REX_B;
7201 }
7202 }
7203 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7204 {
7205 i.vex.register_specifier = i.op[2].regs;
7206 if (!i.mem_operands)
7207 {
7208 i.rm.mode = 3;
7209 i.rm.regmem = i.op[1].regs->reg_num;
7210 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7211 i.rex |= REX_B;
7212 }
7213 }
7214 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7215 (if any) based on i.tm.extension_opcode. Again, we must be
7216 careful to make sure that segment/control/debug/test/MMX
7217 registers are coded into the i.rm.reg field. */
7218 else if (i.reg_operands)
7219 {
7220 unsigned int op;
7221 unsigned int vex_reg = ~0;
7222
7223 for (op = 0; op < i.operands; op++)
7224 if (i.types[op].bitfield.reg
7225 || i.types[op].bitfield.regmmx
7226 || i.types[op].bitfield.regsimd
7227 || i.types[op].bitfield.regbnd
7228 || i.types[op].bitfield.regmask
7229 || i.types[op].bitfield.sreg2
7230 || i.types[op].bitfield.sreg3
7231 || i.types[op].bitfield.control
7232 || i.types[op].bitfield.debug
7233 || i.types[op].bitfield.test)
7234 break;
7235
7236 if (vex_3_sources)
7237 op = dest;
7238 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7239 {
7240 /* For instructions with VexNDS, the register-only
7241 source operand is encoded in VEX prefix. */
7242 gas_assert (mem != (unsigned int) ~0);
7243
7244 if (op > mem)
7245 {
7246 vex_reg = op++;
7247 gas_assert (op < i.operands);
7248 }
7249 else
7250 {
7251 /* Check register-only source operand when two source
7252 operands are swapped. */
7253 if (!i.tm.operand_types[op].bitfield.baseindex
7254 && i.tm.operand_types[op + 1].bitfield.baseindex)
7255 {
7256 vex_reg = op;
7257 op += 2;
7258 gas_assert (mem == (vex_reg + 1)
7259 && op < i.operands);
7260 }
7261 else
7262 {
7263 vex_reg = op + 1;
7264 gas_assert (vex_reg < i.operands);
7265 }
7266 }
7267 }
7268 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7269 {
7270 /* For instructions with VexNDD, the register destination
7271 is encoded in VEX prefix. */
7272 if (i.mem_operands == 0)
7273 {
7274 /* There is no memory operand. */
7275 gas_assert ((op + 2) == i.operands);
7276 vex_reg = op + 1;
7277 }
7278 else
7279 {
7280 /* There are only 2 non-immediate operands. */
7281 gas_assert (op < i.imm_operands + 2
7282 && i.operands == i.imm_operands + 2);
7283 vex_reg = i.imm_operands + 1;
7284 }
7285 }
7286 else
7287 gas_assert (op < i.operands);
7288
7289 if (vex_reg != (unsigned int) ~0)
7290 {
7291 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7292
7293 if ((!type->bitfield.reg
7294 || (!type->bitfield.dword && !type->bitfield.qword))
7295 && !type->bitfield.regsimd
7296 && !operand_type_equal (type, &regmask))
7297 abort ();
7298
7299 i.vex.register_specifier = i.op[vex_reg].regs;
7300 }
7301
7302 /* Don't set OP operand twice. */
7303 if (vex_reg != op)
7304 {
7305 /* If there is an extension opcode to put here, the
7306 register number must be put into the regmem field. */
7307 if (i.tm.extension_opcode != None)
7308 {
7309 i.rm.regmem = i.op[op].regs->reg_num;
7310 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7311 i.rex |= REX_B;
7312 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7313 i.vrex |= REX_B;
7314 }
7315 else
7316 {
7317 i.rm.reg = i.op[op].regs->reg_num;
7318 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7319 i.rex |= REX_R;
7320 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7321 i.vrex |= REX_R;
7322 }
7323 }
7324
7325 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7326 must set it to 3 to indicate this is a register operand
7327 in the regmem field. */
7328 if (!i.mem_operands)
7329 i.rm.mode = 3;
7330 }
7331
7332 /* Fill in i.rm.reg field with extension opcode (if any). */
7333 if (i.tm.extension_opcode != None)
7334 i.rm.reg = i.tm.extension_opcode;
7335 }
7336 return default_seg;
7337 }
7338
7339 static void
7340 output_branch (void)
7341 {
7342 char *p;
7343 int size;
7344 int code16;
7345 int prefix;
7346 relax_substateT subtype;
7347 symbolS *sym;
7348 offsetT off;
7349
7350 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7351 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7352
7353 prefix = 0;
7354 if (i.prefix[DATA_PREFIX] != 0)
7355 {
7356 prefix = 1;
7357 i.prefixes -= 1;
7358 code16 ^= CODE16;
7359 }
7360 /* Pentium4 branch hints. */
7361 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7362 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7363 {
7364 prefix++;
7365 i.prefixes--;
7366 }
7367 if (i.prefix[REX_PREFIX] != 0)
7368 {
7369 prefix++;
7370 i.prefixes--;
7371 }
7372
7373 /* BND prefixed jump. */
7374 if (i.prefix[BND_PREFIX] != 0)
7375 {
7376 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7377 i.prefixes -= 1;
7378 }
7379
7380 if (i.prefixes != 0 && !intel_syntax)
7381 as_warn (_("skipping prefixes on this instruction"));
7382
7383 /* It's always a symbol; End frag & setup for relax.
7384 Make sure there is enough room in this frag for the largest
7385 instruction we may generate in md_convert_frag. This is 2
7386 bytes for the opcode and room for the prefix and largest
7387 displacement. */
7388 frag_grow (prefix + 2 + 4);
7389 /* Prefix and 1 opcode byte go in fr_fix. */
7390 p = frag_more (prefix + 1);
7391 if (i.prefix[DATA_PREFIX] != 0)
7392 *p++ = DATA_PREFIX_OPCODE;
7393 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7394 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7395 *p++ = i.prefix[SEG_PREFIX];
7396 if (i.prefix[REX_PREFIX] != 0)
7397 *p++ = i.prefix[REX_PREFIX];
7398 *p = i.tm.base_opcode;
7399
7400 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7401 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7402 else if (cpu_arch_flags.bitfield.cpui386)
7403 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7404 else
7405 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7406 subtype |= code16;
7407
7408 sym = i.op[0].disps->X_add_symbol;
7409 off = i.op[0].disps->X_add_number;
7410
7411 if (i.op[0].disps->X_op != O_constant
7412 && i.op[0].disps->X_op != O_symbol)
7413 {
7414 /* Handle complex expressions. */
7415 sym = make_expr_symbol (i.op[0].disps);
7416 off = 0;
7417 }
7418
7419 /* 1 possible extra opcode + 4 byte displacement go in var part.
7420 Pass reloc in fr_var. */
7421 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7422 }
7423
7424 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7425 /* Return TRUE iff PLT32 relocation should be used for branching to
7426 symbol S. */
7427
7428 static bfd_boolean
7429 need_plt32_p (symbolS *s)
7430 {
7431 /* PLT32 relocation is ELF only. */
7432 if (!IS_ELF)
7433 return FALSE;
7434
7435 /* Since there is no need to prepare for PLT branch on x86-64, we
7436 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7437 be used as a marker for 32-bit PC-relative branches. */
7438 if (!object_64bit)
7439 return FALSE;
7440
7441 /* Weak or undefined symbol need PLT32 relocation. */
7442 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7443 return TRUE;
7444
7445 /* Non-global symbol doesn't need PLT32 relocation. */
7446 if (! S_IS_EXTERNAL (s))
7447 return FALSE;
7448
7449 /* Other global symbols need PLT32 relocation. NB: Symbol with
7450 non-default visibilities are treated as normal global symbol
7451 so that PLT32 relocation can be used as a marker for 32-bit
7452 PC-relative branches. It is useful for linker relaxation. */
7453 return TRUE;
7454 }
7455 #endif
7456
7457 static void
7458 output_jump (void)
7459 {
7460 char *p;
7461 int size;
7462 fixS *fixP;
7463 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7464
7465 if (i.tm.opcode_modifier.jumpbyte)
7466 {
7467 /* This is a loop or jecxz type instruction. */
7468 size = 1;
7469 if (i.prefix[ADDR_PREFIX] != 0)
7470 {
7471 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7472 i.prefixes -= 1;
7473 }
7474 /* Pentium4 branch hints. */
7475 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7476 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7477 {
7478 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7479 i.prefixes--;
7480 }
7481 }
7482 else
7483 {
7484 int code16;
7485
7486 code16 = 0;
7487 if (flag_code == CODE_16BIT)
7488 code16 = CODE16;
7489
7490 if (i.prefix[DATA_PREFIX] != 0)
7491 {
7492 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7493 i.prefixes -= 1;
7494 code16 ^= CODE16;
7495 }
7496
7497 size = 4;
7498 if (code16)
7499 size = 2;
7500 }
7501
7502 if (i.prefix[REX_PREFIX] != 0)
7503 {
7504 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7505 i.prefixes -= 1;
7506 }
7507
7508 /* BND prefixed jump. */
7509 if (i.prefix[BND_PREFIX] != 0)
7510 {
7511 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7512 i.prefixes -= 1;
7513 }
7514
7515 if (i.prefixes != 0 && !intel_syntax)
7516 as_warn (_("skipping prefixes on this instruction"));
7517
7518 p = frag_more (i.tm.opcode_length + size);
7519 switch (i.tm.opcode_length)
7520 {
7521 case 2:
7522 *p++ = i.tm.base_opcode >> 8;
7523 /* Fall through. */
7524 case 1:
7525 *p++ = i.tm.base_opcode;
7526 break;
7527 default:
7528 abort ();
7529 }
7530
7531 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7532 if (size == 4
7533 && jump_reloc == NO_RELOC
7534 && need_plt32_p (i.op[0].disps->X_add_symbol))
7535 jump_reloc = BFD_RELOC_X86_64_PLT32;
7536 #endif
7537
7538 jump_reloc = reloc (size, 1, 1, jump_reloc);
7539
7540 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7541 i.op[0].disps, 1, jump_reloc);
7542
7543 /* All jumps handled here are signed, but don't use a signed limit
7544 check for 32 and 16 bit jumps as we want to allow wrap around at
7545 4G and 64k respectively. */
7546 if (size == 1)
7547 fixP->fx_signed = 1;
7548 }
7549
7550 static void
7551 output_interseg_jump (void)
7552 {
7553 char *p;
7554 int size;
7555 int prefix;
7556 int code16;
7557
7558 code16 = 0;
7559 if (flag_code == CODE_16BIT)
7560 code16 = CODE16;
7561
7562 prefix = 0;
7563 if (i.prefix[DATA_PREFIX] != 0)
7564 {
7565 prefix = 1;
7566 i.prefixes -= 1;
7567 code16 ^= CODE16;
7568 }
7569 if (i.prefix[REX_PREFIX] != 0)
7570 {
7571 prefix++;
7572 i.prefixes -= 1;
7573 }
7574
7575 size = 4;
7576 if (code16)
7577 size = 2;
7578
7579 if (i.prefixes != 0 && !intel_syntax)
7580 as_warn (_("skipping prefixes on this instruction"));
7581
7582 /* 1 opcode; 2 segment; offset */
7583 p = frag_more (prefix + 1 + 2 + size);
7584
7585 if (i.prefix[DATA_PREFIX] != 0)
7586 *p++ = DATA_PREFIX_OPCODE;
7587
7588 if (i.prefix[REX_PREFIX] != 0)
7589 *p++ = i.prefix[REX_PREFIX];
7590
7591 *p++ = i.tm.base_opcode;
7592 if (i.op[1].imms->X_op == O_constant)
7593 {
7594 offsetT n = i.op[1].imms->X_add_number;
7595
7596 if (size == 2
7597 && !fits_in_unsigned_word (n)
7598 && !fits_in_signed_word (n))
7599 {
7600 as_bad (_("16-bit jump out of range"));
7601 return;
7602 }
7603 md_number_to_chars (p, n, size);
7604 }
7605 else
7606 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7607 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7608 if (i.op[0].imms->X_op != O_constant)
7609 as_bad (_("can't handle non absolute segment in `%s'"),
7610 i.tm.name);
7611 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7612 }
7613
7614 static void
7615 output_insn (void)
7616 {
7617 fragS *insn_start_frag;
7618 offsetT insn_start_off;
7619
7620 /* Tie dwarf2 debug info to the address at the start of the insn.
7621 We can't do this after the insn has been output as the current
7622 frag may have been closed off. eg. by frag_var. */
7623 dwarf2_emit_insn (0);
7624
7625 insn_start_frag = frag_now;
7626 insn_start_off = frag_now_fix ();
7627
7628 /* Output jumps. */
7629 if (i.tm.opcode_modifier.jump)
7630 output_branch ();
7631 else if (i.tm.opcode_modifier.jumpbyte
7632 || i.tm.opcode_modifier.jumpdword)
7633 output_jump ();
7634 else if (i.tm.opcode_modifier.jumpintersegment)
7635 output_interseg_jump ();
7636 else
7637 {
7638 /* Output normal instructions here. */
7639 char *p;
7640 unsigned char *q;
7641 unsigned int j;
7642 unsigned int prefix;
7643
7644 if (avoid_fence
7645 && i.tm.base_opcode == 0xfae
7646 && i.operands == 1
7647 && i.imm_operands == 1
7648 && (i.op[0].imms->X_add_number == 0xe8
7649 || i.op[0].imms->X_add_number == 0xf0
7650 || i.op[0].imms->X_add_number == 0xf8))
7651 {
7652 /* Encode lfence, mfence, and sfence as
7653 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7654 offsetT val = 0x240483f0ULL;
7655 p = frag_more (5);
7656 md_number_to_chars (p, val, 5);
7657 return;
7658 }
7659
7660 /* Some processors fail on LOCK prefix. This options makes
7661 assembler ignore LOCK prefix and serves as a workaround. */
7662 if (omit_lock_prefix)
7663 {
7664 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7665 return;
7666 i.prefix[LOCK_PREFIX] = 0;
7667 }
7668
7669 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7670 don't need the explicit prefix. */
7671 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7672 {
7673 switch (i.tm.opcode_length)
7674 {
7675 case 3:
7676 if (i.tm.base_opcode & 0xff000000)
7677 {
7678 prefix = (i.tm.base_opcode >> 24) & 0xff;
7679 add_prefix (prefix);
7680 }
7681 break;
7682 case 2:
7683 if ((i.tm.base_opcode & 0xff0000) != 0)
7684 {
7685 prefix = (i.tm.base_opcode >> 16) & 0xff;
7686 if (!i.tm.cpu_flags.bitfield.cpupadlock
7687 || prefix != REPE_PREFIX_OPCODE
7688 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7689 add_prefix (prefix);
7690 }
7691 break;
7692 case 1:
7693 break;
7694 case 0:
7695 /* Check for pseudo prefixes. */
7696 as_bad_where (insn_start_frag->fr_file,
7697 insn_start_frag->fr_line,
7698 _("pseudo prefix without instruction"));
7699 return;
7700 default:
7701 abort ();
7702 }
7703
7704 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7705 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7706 R_X86_64_GOTTPOFF relocation so that linker can safely
7707 perform IE->LE optimization. */
7708 if (x86_elf_abi == X86_64_X32_ABI
7709 && i.operands == 2
7710 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7711 && i.prefix[REX_PREFIX] == 0)
7712 add_prefix (REX_OPCODE);
7713 #endif
7714
7715 /* The prefix bytes. */
7716 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7717 if (*q)
7718 FRAG_APPEND_1_CHAR (*q);
7719 }
7720 else
7721 {
7722 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7723 if (*q)
7724 switch (j)
7725 {
7726 case REX_PREFIX:
7727 /* REX byte is encoded in VEX prefix. */
7728 break;
7729 case SEG_PREFIX:
7730 case ADDR_PREFIX:
7731 FRAG_APPEND_1_CHAR (*q);
7732 break;
7733 default:
7734 /* There should be no other prefixes for instructions
7735 with VEX prefix. */
7736 abort ();
7737 }
7738
7739 /* For EVEX instructions i.vrex should become 0 after
7740 build_evex_prefix. For VEX instructions upper 16 registers
7741 aren't available, so VREX should be 0. */
7742 if (i.vrex)
7743 abort ();
7744 /* Now the VEX prefix. */
7745 p = frag_more (i.vex.length);
7746 for (j = 0; j < i.vex.length; j++)
7747 p[j] = i.vex.bytes[j];
7748 }
7749
7750 /* Now the opcode; be careful about word order here! */
7751 if (i.tm.opcode_length == 1)
7752 {
7753 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7754 }
7755 else
7756 {
7757 switch (i.tm.opcode_length)
7758 {
7759 case 4:
7760 p = frag_more (4);
7761 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7762 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7763 break;
7764 case 3:
7765 p = frag_more (3);
7766 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7767 break;
7768 case 2:
7769 p = frag_more (2);
7770 break;
7771 default:
7772 abort ();
7773 break;
7774 }
7775
7776 /* Put out high byte first: can't use md_number_to_chars! */
7777 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7778 *p = i.tm.base_opcode & 0xff;
7779 }
7780
7781 /* Now the modrm byte and sib byte (if present). */
7782 if (i.tm.opcode_modifier.modrm)
7783 {
7784 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7785 | i.rm.reg << 3
7786 | i.rm.mode << 6));
7787 /* If i.rm.regmem == ESP (4)
7788 && i.rm.mode != (Register mode)
7789 && not 16 bit
7790 ==> need second modrm byte. */
7791 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7792 && i.rm.mode != 3
7793 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7794 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7795 | i.sib.index << 3
7796 | i.sib.scale << 6));
7797 }
7798
7799 if (i.disp_operands)
7800 output_disp (insn_start_frag, insn_start_off);
7801
7802 if (i.imm_operands)
7803 output_imm (insn_start_frag, insn_start_off);
7804 }
7805
7806 #ifdef DEBUG386
7807 if (flag_debug)
7808 {
7809 pi ("" /*line*/, &i);
7810 }
7811 #endif /* DEBUG386 */
7812 }
7813
7814 /* Return the size of the displacement operand N. */
7815
7816 static int
7817 disp_size (unsigned int n)
7818 {
7819 int size = 4;
7820
7821 if (i.types[n].bitfield.disp64)
7822 size = 8;
7823 else if (i.types[n].bitfield.disp8)
7824 size = 1;
7825 else if (i.types[n].bitfield.disp16)
7826 size = 2;
7827 return size;
7828 }
7829
7830 /* Return the size of the immediate operand N. */
7831
7832 static int
7833 imm_size (unsigned int n)
7834 {
7835 int size = 4;
7836 if (i.types[n].bitfield.imm64)
7837 size = 8;
7838 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7839 size = 1;
7840 else if (i.types[n].bitfield.imm16)
7841 size = 2;
7842 return size;
7843 }
7844
7845 static void
7846 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7847 {
7848 char *p;
7849 unsigned int n;
7850
7851 for (n = 0; n < i.operands; n++)
7852 {
7853 if (operand_type_check (i.types[n], disp))
7854 {
7855 if (i.op[n].disps->X_op == O_constant)
7856 {
7857 int size = disp_size (n);
7858 offsetT val = i.op[n].disps->X_add_number;
7859
7860 val = offset_in_range (val >> i.memshift, size);
7861 p = frag_more (size);
7862 md_number_to_chars (p, val, size);
7863 }
7864 else
7865 {
7866 enum bfd_reloc_code_real reloc_type;
7867 int size = disp_size (n);
7868 int sign = i.types[n].bitfield.disp32s;
7869 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7870 fixS *fixP;
7871
7872 /* We can't have 8 bit displacement here. */
7873 gas_assert (!i.types[n].bitfield.disp8);
7874
7875 /* The PC relative address is computed relative
7876 to the instruction boundary, so in case immediate
7877 fields follows, we need to adjust the value. */
7878 if (pcrel && i.imm_operands)
7879 {
7880 unsigned int n1;
7881 int sz = 0;
7882
7883 for (n1 = 0; n1 < i.operands; n1++)
7884 if (operand_type_check (i.types[n1], imm))
7885 {
7886 /* Only one immediate is allowed for PC
7887 relative address. */
7888 gas_assert (sz == 0);
7889 sz = imm_size (n1);
7890 i.op[n].disps->X_add_number -= sz;
7891 }
7892 /* We should find the immediate. */
7893 gas_assert (sz != 0);
7894 }
7895
7896 p = frag_more (size);
7897 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7898 if (GOT_symbol
7899 && GOT_symbol == i.op[n].disps->X_add_symbol
7900 && (((reloc_type == BFD_RELOC_32
7901 || reloc_type == BFD_RELOC_X86_64_32S
7902 || (reloc_type == BFD_RELOC_64
7903 && object_64bit))
7904 && (i.op[n].disps->X_op == O_symbol
7905 || (i.op[n].disps->X_op == O_add
7906 && ((symbol_get_value_expression
7907 (i.op[n].disps->X_op_symbol)->X_op)
7908 == O_subtract))))
7909 || reloc_type == BFD_RELOC_32_PCREL))
7910 {
7911 offsetT add;
7912
7913 if (insn_start_frag == frag_now)
7914 add = (p - frag_now->fr_literal) - insn_start_off;
7915 else
7916 {
7917 fragS *fr;
7918
7919 add = insn_start_frag->fr_fix - insn_start_off;
7920 for (fr = insn_start_frag->fr_next;
7921 fr && fr != frag_now; fr = fr->fr_next)
7922 add += fr->fr_fix;
7923 add += p - frag_now->fr_literal;
7924 }
7925
7926 if (!object_64bit)
7927 {
7928 reloc_type = BFD_RELOC_386_GOTPC;
7929 i.op[n].imms->X_add_number += add;
7930 }
7931 else if (reloc_type == BFD_RELOC_64)
7932 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7933 else
7934 /* Don't do the adjustment for x86-64, as there
7935 the pcrel addressing is relative to the _next_
7936 insn, and that is taken care of in other code. */
7937 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7938 }
7939 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7940 size, i.op[n].disps, pcrel,
7941 reloc_type);
7942 /* Check for "call/jmp *mem", "mov mem, %reg",
7943 "test %reg, mem" and "binop mem, %reg" where binop
7944 is one of adc, add, and, cmp, or, sbb, sub, xor
7945 instructions. Always generate R_386_GOT32X for
7946 "sym*GOT" operand in 32-bit mode. */
7947 if ((generate_relax_relocations
7948 || (!object_64bit
7949 && i.rm.mode == 0
7950 && i.rm.regmem == 5))
7951 && (i.rm.mode == 2
7952 || (i.rm.mode == 0 && i.rm.regmem == 5))
7953 && ((i.operands == 1
7954 && i.tm.base_opcode == 0xff
7955 && (i.rm.reg == 2 || i.rm.reg == 4))
7956 || (i.operands == 2
7957 && (i.tm.base_opcode == 0x8b
7958 || i.tm.base_opcode == 0x85
7959 || (i.tm.base_opcode & 0xc7) == 0x03))))
7960 {
7961 if (object_64bit)
7962 {
7963 fixP->fx_tcbit = i.rex != 0;
7964 if (i.base_reg
7965 && (i.base_reg->reg_num == RegRip
7966 || i.base_reg->reg_num == RegEip))
7967 fixP->fx_tcbit2 = 1;
7968 }
7969 else
7970 fixP->fx_tcbit2 = 1;
7971 }
7972 }
7973 }
7974 }
7975 }
7976
7977 static void
7978 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7979 {
7980 char *p;
7981 unsigned int n;
7982
7983 for (n = 0; n < i.operands; n++)
7984 {
7985 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7986 if (i.rounding && (int) n == i.rounding->operand)
7987 continue;
7988
7989 if (operand_type_check (i.types[n], imm))
7990 {
7991 if (i.op[n].imms->X_op == O_constant)
7992 {
7993 int size = imm_size (n);
7994 offsetT val;
7995
7996 val = offset_in_range (i.op[n].imms->X_add_number,
7997 size);
7998 p = frag_more (size);
7999 md_number_to_chars (p, val, size);
8000 }
8001 else
8002 {
8003 /* Not absolute_section.
8004 Need a 32-bit fixup (don't support 8bit
8005 non-absolute imms). Try to support other
8006 sizes ... */
8007 enum bfd_reloc_code_real reloc_type;
8008 int size = imm_size (n);
8009 int sign;
8010
8011 if (i.types[n].bitfield.imm32s
8012 && (i.suffix == QWORD_MNEM_SUFFIX
8013 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8014 sign = 1;
8015 else
8016 sign = 0;
8017
8018 p = frag_more (size);
8019 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8020
8021 /* This is tough to explain. We end up with this one if we
8022 * have operands that look like
8023 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8024 * obtain the absolute address of the GOT, and it is strongly
8025 * preferable from a performance point of view to avoid using
8026 * a runtime relocation for this. The actual sequence of
8027 * instructions often look something like:
8028 *
8029 * call .L66
8030 * .L66:
8031 * popl %ebx
8032 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8033 *
8034 * The call and pop essentially return the absolute address
8035 * of the label .L66 and store it in %ebx. The linker itself
8036 * will ultimately change the first operand of the addl so
8037 * that %ebx points to the GOT, but to keep things simple, the
8038 * .o file must have this operand set so that it generates not
8039 * the absolute address of .L66, but the absolute address of
8040 * itself. This allows the linker itself simply treat a GOTPC
8041 * relocation as asking for a pcrel offset to the GOT to be
8042 * added in, and the addend of the relocation is stored in the
8043 * operand field for the instruction itself.
8044 *
8045 * Our job here is to fix the operand so that it would add
8046 * the correct offset so that %ebx would point to itself. The
8047 * thing that is tricky is that .-.L66 will point to the
8048 * beginning of the instruction, so we need to further modify
8049 * the operand so that it will point to itself. There are
8050 * other cases where you have something like:
8051 *
8052 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8053 *
8054 * and here no correction would be required. Internally in
8055 * the assembler we treat operands of this form as not being
8056 * pcrel since the '.' is explicitly mentioned, and I wonder
8057 * whether it would simplify matters to do it this way. Who
8058 * knows. In earlier versions of the PIC patches, the
8059 * pcrel_adjust field was used to store the correction, but
8060 * since the expression is not pcrel, I felt it would be
8061 * confusing to do it this way. */
8062
8063 if ((reloc_type == BFD_RELOC_32
8064 || reloc_type == BFD_RELOC_X86_64_32S
8065 || reloc_type == BFD_RELOC_64)
8066 && GOT_symbol
8067 && GOT_symbol == i.op[n].imms->X_add_symbol
8068 && (i.op[n].imms->X_op == O_symbol
8069 || (i.op[n].imms->X_op == O_add
8070 && ((symbol_get_value_expression
8071 (i.op[n].imms->X_op_symbol)->X_op)
8072 == O_subtract))))
8073 {
8074 offsetT add;
8075
8076 if (insn_start_frag == frag_now)
8077 add = (p - frag_now->fr_literal) - insn_start_off;
8078 else
8079 {
8080 fragS *fr;
8081
8082 add = insn_start_frag->fr_fix - insn_start_off;
8083 for (fr = insn_start_frag->fr_next;
8084 fr && fr != frag_now; fr = fr->fr_next)
8085 add += fr->fr_fix;
8086 add += p - frag_now->fr_literal;
8087 }
8088
8089 if (!object_64bit)
8090 reloc_type = BFD_RELOC_386_GOTPC;
8091 else if (size == 4)
8092 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8093 else if (size == 8)
8094 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8095 i.op[n].imms->X_add_number += add;
8096 }
8097 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8098 i.op[n].imms, 0, reloc_type);
8099 }
8100 }
8101 }
8102 }
8103 \f
8104 /* x86_cons_fix_new is called via the expression parsing code when a
8105 reloc is needed. We use this hook to get the correct .got reloc. */
8106 static int cons_sign = -1;
8107
8108 void
8109 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8110 expressionS *exp, bfd_reloc_code_real_type r)
8111 {
8112 r = reloc (len, 0, cons_sign, r);
8113
8114 #ifdef TE_PE
8115 if (exp->X_op == O_secrel)
8116 {
8117 exp->X_op = O_symbol;
8118 r = BFD_RELOC_32_SECREL;
8119 }
8120 #endif
8121
8122 fix_new_exp (frag, off, len, exp, 0, r);
8123 }
8124
8125 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8126 purpose of the `.dc.a' internal pseudo-op. */
8127
8128 int
8129 x86_address_bytes (void)
8130 {
8131 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8132 return 4;
8133 return stdoutput->arch_info->bits_per_address / 8;
8134 }
8135
8136 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8137 || defined (LEX_AT)
8138 # define lex_got(reloc, adjust, types) NULL
8139 #else
8140 /* Parse operands of the form
8141 <symbol>@GOTOFF+<nnn>
8142 and similar .plt or .got references.
8143
8144 If we find one, set up the correct relocation in RELOC and copy the
8145 input string, minus the `@GOTOFF' into a malloc'd buffer for
8146 parsing by the calling routine. Return this buffer, and if ADJUST
8147 is non-null set it to the length of the string we removed from the
8148 input line. Otherwise return NULL. */
8149 static char *
8150 lex_got (enum bfd_reloc_code_real *rel,
8151 int *adjust,
8152 i386_operand_type *types)
8153 {
8154 /* Some of the relocations depend on the size of what field is to
8155 be relocated. But in our callers i386_immediate and i386_displacement
8156 we don't yet know the operand size (this will be set by insn
8157 matching). Hence we record the word32 relocation here,
8158 and adjust the reloc according to the real size in reloc(). */
8159 static const struct {
8160 const char *str;
8161 int len;
8162 const enum bfd_reloc_code_real rel[2];
8163 const i386_operand_type types64;
8164 } gotrel[] = {
8165 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8166 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8167 BFD_RELOC_SIZE32 },
8168 OPERAND_TYPE_IMM32_64 },
8169 #endif
8170 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8171 BFD_RELOC_X86_64_PLTOFF64 },
8172 OPERAND_TYPE_IMM64 },
8173 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8174 BFD_RELOC_X86_64_PLT32 },
8175 OPERAND_TYPE_IMM32_32S_DISP32 },
8176 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8177 BFD_RELOC_X86_64_GOTPLT64 },
8178 OPERAND_TYPE_IMM64_DISP64 },
8179 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8180 BFD_RELOC_X86_64_GOTOFF64 },
8181 OPERAND_TYPE_IMM64_DISP64 },
8182 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8183 BFD_RELOC_X86_64_GOTPCREL },
8184 OPERAND_TYPE_IMM32_32S_DISP32 },
8185 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8186 BFD_RELOC_X86_64_TLSGD },
8187 OPERAND_TYPE_IMM32_32S_DISP32 },
8188 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8189 _dummy_first_bfd_reloc_code_real },
8190 OPERAND_TYPE_NONE },
8191 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8192 BFD_RELOC_X86_64_TLSLD },
8193 OPERAND_TYPE_IMM32_32S_DISP32 },
8194 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8195 BFD_RELOC_X86_64_GOTTPOFF },
8196 OPERAND_TYPE_IMM32_32S_DISP32 },
8197 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8198 BFD_RELOC_X86_64_TPOFF32 },
8199 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8200 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8201 _dummy_first_bfd_reloc_code_real },
8202 OPERAND_TYPE_NONE },
8203 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8204 BFD_RELOC_X86_64_DTPOFF32 },
8205 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8206 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8207 _dummy_first_bfd_reloc_code_real },
8208 OPERAND_TYPE_NONE },
8209 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8210 _dummy_first_bfd_reloc_code_real },
8211 OPERAND_TYPE_NONE },
8212 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8213 BFD_RELOC_X86_64_GOT32 },
8214 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8215 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8216 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8217 OPERAND_TYPE_IMM32_32S_DISP32 },
8218 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8219 BFD_RELOC_X86_64_TLSDESC_CALL },
8220 OPERAND_TYPE_IMM32_32S_DISP32 },
8221 };
8222 char *cp;
8223 unsigned int j;
8224
8225 #if defined (OBJ_MAYBE_ELF)
8226 if (!IS_ELF)
8227 return NULL;
8228 #endif
8229
8230 for (cp = input_line_pointer; *cp != '@'; cp++)
8231 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8232 return NULL;
8233
8234 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8235 {
8236 int len = gotrel[j].len;
8237 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8238 {
8239 if (gotrel[j].rel[object_64bit] != 0)
8240 {
8241 int first, second;
8242 char *tmpbuf, *past_reloc;
8243
8244 *rel = gotrel[j].rel[object_64bit];
8245
8246 if (types)
8247 {
8248 if (flag_code != CODE_64BIT)
8249 {
8250 types->bitfield.imm32 = 1;
8251 types->bitfield.disp32 = 1;
8252 }
8253 else
8254 *types = gotrel[j].types64;
8255 }
8256
8257 if (j != 0 && GOT_symbol == NULL)
8258 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8259
8260 /* The length of the first part of our input line. */
8261 first = cp - input_line_pointer;
8262
8263 /* The second part goes from after the reloc token until
8264 (and including) an end_of_line char or comma. */
8265 past_reloc = cp + 1 + len;
8266 cp = past_reloc;
8267 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8268 ++cp;
8269 second = cp + 1 - past_reloc;
8270
8271 /* Allocate and copy string. The trailing NUL shouldn't
8272 be necessary, but be safe. */
8273 tmpbuf = XNEWVEC (char, first + second + 2);
8274 memcpy (tmpbuf, input_line_pointer, first);
8275 if (second != 0 && *past_reloc != ' ')
8276 /* Replace the relocation token with ' ', so that
8277 errors like foo@GOTOFF1 will be detected. */
8278 tmpbuf[first++] = ' ';
8279 else
8280 /* Increment length by 1 if the relocation token is
8281 removed. */
8282 len++;
8283 if (adjust)
8284 *adjust = len;
8285 memcpy (tmpbuf + first, past_reloc, second);
8286 tmpbuf[first + second] = '\0';
8287 return tmpbuf;
8288 }
8289
8290 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8291 gotrel[j].str, 1 << (5 + object_64bit));
8292 return NULL;
8293 }
8294 }
8295
8296 /* Might be a symbol version string. Don't as_bad here. */
8297 return NULL;
8298 }
8299 #endif
8300
8301 #ifdef TE_PE
8302 #ifdef lex_got
8303 #undef lex_got
8304 #endif
8305 /* Parse operands of the form
8306 <symbol>@SECREL32+<nnn>
8307
8308 If we find one, set up the correct relocation in RELOC and copy the
8309 input string, minus the `@SECREL32' into a malloc'd buffer for
8310 parsing by the calling routine. Return this buffer, and if ADJUST
8311 is non-null set it to the length of the string we removed from the
8312 input line. Otherwise return NULL.
8313
8314 This function is copied from the ELF version above adjusted for PE targets. */
8315
8316 static char *
8317 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8318 int *adjust ATTRIBUTE_UNUSED,
8319 i386_operand_type *types)
8320 {
8321 static const struct
8322 {
8323 const char *str;
8324 int len;
8325 const enum bfd_reloc_code_real rel[2];
8326 const i386_operand_type types64;
8327 }
8328 gotrel[] =
8329 {
8330 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8331 BFD_RELOC_32_SECREL },
8332 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8333 };
8334
8335 char *cp;
8336 unsigned j;
8337
8338 for (cp = input_line_pointer; *cp != '@'; cp++)
8339 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8340 return NULL;
8341
8342 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8343 {
8344 int len = gotrel[j].len;
8345
8346 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8347 {
8348 if (gotrel[j].rel[object_64bit] != 0)
8349 {
8350 int first, second;
8351 char *tmpbuf, *past_reloc;
8352
8353 *rel = gotrel[j].rel[object_64bit];
8354 if (adjust)
8355 *adjust = len;
8356
8357 if (types)
8358 {
8359 if (flag_code != CODE_64BIT)
8360 {
8361 types->bitfield.imm32 = 1;
8362 types->bitfield.disp32 = 1;
8363 }
8364 else
8365 *types = gotrel[j].types64;
8366 }
8367
8368 /* The length of the first part of our input line. */
8369 first = cp - input_line_pointer;
8370
8371 /* The second part goes from after the reloc token until
8372 (and including) an end_of_line char or comma. */
8373 past_reloc = cp + 1 + len;
8374 cp = past_reloc;
8375 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8376 ++cp;
8377 second = cp + 1 - past_reloc;
8378
8379 /* Allocate and copy string. The trailing NUL shouldn't
8380 be necessary, but be safe. */
8381 tmpbuf = XNEWVEC (char, first + second + 2);
8382 memcpy (tmpbuf, input_line_pointer, first);
8383 if (second != 0 && *past_reloc != ' ')
8384 /* Replace the relocation token with ' ', so that
8385 errors like foo@SECLREL321 will be detected. */
8386 tmpbuf[first++] = ' ';
8387 memcpy (tmpbuf + first, past_reloc, second);
8388 tmpbuf[first + second] = '\0';
8389 return tmpbuf;
8390 }
8391
8392 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8393 gotrel[j].str, 1 << (5 + object_64bit));
8394 return NULL;
8395 }
8396 }
8397
8398 /* Might be a symbol version string. Don't as_bad here. */
8399 return NULL;
8400 }
8401
8402 #endif /* TE_PE */
8403
8404 bfd_reloc_code_real_type
8405 x86_cons (expressionS *exp, int size)
8406 {
8407 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8408
8409 intel_syntax = -intel_syntax;
8410
8411 exp->X_md = 0;
8412 if (size == 4 || (object_64bit && size == 8))
8413 {
8414 /* Handle @GOTOFF and the like in an expression. */
8415 char *save;
8416 char *gotfree_input_line;
8417 int adjust = 0;
8418
8419 save = input_line_pointer;
8420 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8421 if (gotfree_input_line)
8422 input_line_pointer = gotfree_input_line;
8423
8424 expression (exp);
8425
8426 if (gotfree_input_line)
8427 {
8428 /* expression () has merrily parsed up to the end of line,
8429 or a comma - in the wrong buffer. Transfer how far
8430 input_line_pointer has moved to the right buffer. */
8431 input_line_pointer = (save
8432 + (input_line_pointer - gotfree_input_line)
8433 + adjust);
8434 free (gotfree_input_line);
8435 if (exp->X_op == O_constant
8436 || exp->X_op == O_absent
8437 || exp->X_op == O_illegal
8438 || exp->X_op == O_register
8439 || exp->X_op == O_big)
8440 {
8441 char c = *input_line_pointer;
8442 *input_line_pointer = 0;
8443 as_bad (_("missing or invalid expression `%s'"), save);
8444 *input_line_pointer = c;
8445 }
8446 }
8447 }
8448 else
8449 expression (exp);
8450
8451 intel_syntax = -intel_syntax;
8452
8453 if (intel_syntax)
8454 i386_intel_simplify (exp);
8455
8456 return got_reloc;
8457 }
8458
8459 static void
8460 signed_cons (int size)
8461 {
8462 if (flag_code == CODE_64BIT)
8463 cons_sign = 1;
8464 cons (size);
8465 cons_sign = -1;
8466 }
8467
8468 #ifdef TE_PE
8469 static void
8470 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8471 {
8472 expressionS exp;
8473
8474 do
8475 {
8476 expression (&exp);
8477 if (exp.X_op == O_symbol)
8478 exp.X_op = O_secrel;
8479
8480 emit_expr (&exp, 4);
8481 }
8482 while (*input_line_pointer++ == ',');
8483
8484 input_line_pointer--;
8485 demand_empty_rest_of_line ();
8486 }
8487 #endif
8488
8489 /* Handle Vector operations. */
8490
8491 static char *
8492 check_VecOperations (char *op_string, char *op_end)
8493 {
8494 const reg_entry *mask;
8495 const char *saved;
8496 char *end_op;
8497
8498 while (*op_string
8499 && (op_end == NULL || op_string < op_end))
8500 {
8501 saved = op_string;
8502 if (*op_string == '{')
8503 {
8504 op_string++;
8505
8506 /* Check broadcasts. */
8507 if (strncmp (op_string, "1to", 3) == 0)
8508 {
8509 int bcst_type;
8510
8511 if (i.broadcast)
8512 goto duplicated_vec_op;
8513
8514 op_string += 3;
8515 if (*op_string == '8')
8516 bcst_type = 8;
8517 else if (*op_string == '4')
8518 bcst_type = 4;
8519 else if (*op_string == '2')
8520 bcst_type = 2;
8521 else if (*op_string == '1'
8522 && *(op_string+1) == '6')
8523 {
8524 bcst_type = 16;
8525 op_string++;
8526 }
8527 else
8528 {
8529 as_bad (_("Unsupported broadcast: `%s'"), saved);
8530 return NULL;
8531 }
8532 op_string++;
8533
8534 broadcast_op.type = bcst_type;
8535 broadcast_op.operand = this_operand;
8536 i.broadcast = &broadcast_op;
8537 }
8538 /* Check masking operation. */
8539 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8540 {
8541 /* k0 can't be used for write mask. */
8542 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8543 {
8544 as_bad (_("`%s%s' can't be used for write mask"),
8545 register_prefix, mask->reg_name);
8546 return NULL;
8547 }
8548
8549 if (!i.mask)
8550 {
8551 mask_op.mask = mask;
8552 mask_op.zeroing = 0;
8553 mask_op.operand = this_operand;
8554 i.mask = &mask_op;
8555 }
8556 else
8557 {
8558 if (i.mask->mask)
8559 goto duplicated_vec_op;
8560
8561 i.mask->mask = mask;
8562
8563 /* Only "{z}" is allowed here. No need to check
8564 zeroing mask explicitly. */
8565 if (i.mask->operand != this_operand)
8566 {
8567 as_bad (_("invalid write mask `%s'"), saved);
8568 return NULL;
8569 }
8570 }
8571
8572 op_string = end_op;
8573 }
8574 /* Check zeroing-flag for masking operation. */
8575 else if (*op_string == 'z')
8576 {
8577 if (!i.mask)
8578 {
8579 mask_op.mask = NULL;
8580 mask_op.zeroing = 1;
8581 mask_op.operand = this_operand;
8582 i.mask = &mask_op;
8583 }
8584 else
8585 {
8586 if (i.mask->zeroing)
8587 {
8588 duplicated_vec_op:
8589 as_bad (_("duplicated `%s'"), saved);
8590 return NULL;
8591 }
8592
8593 i.mask->zeroing = 1;
8594
8595 /* Only "{%k}" is allowed here. No need to check mask
8596 register explicitly. */
8597 if (i.mask->operand != this_operand)
8598 {
8599 as_bad (_("invalid zeroing-masking `%s'"),
8600 saved);
8601 return NULL;
8602 }
8603 }
8604
8605 op_string++;
8606 }
8607 else
8608 goto unknown_vec_op;
8609
8610 if (*op_string != '}')
8611 {
8612 as_bad (_("missing `}' in `%s'"), saved);
8613 return NULL;
8614 }
8615 op_string++;
8616
8617 /* Strip whitespace since the addition of pseudo prefixes
8618 changed how the scrubber treats '{'. */
8619 if (is_space_char (*op_string))
8620 ++op_string;
8621
8622 continue;
8623 }
8624 unknown_vec_op:
8625 /* We don't know this one. */
8626 as_bad (_("unknown vector operation: `%s'"), saved);
8627 return NULL;
8628 }
8629
8630 if (i.mask && i.mask->zeroing && !i.mask->mask)
8631 {
8632 as_bad (_("zeroing-masking only allowed with write mask"));
8633 return NULL;
8634 }
8635
8636 return op_string;
8637 }
8638
8639 static int
8640 i386_immediate (char *imm_start)
8641 {
8642 char *save_input_line_pointer;
8643 char *gotfree_input_line;
8644 segT exp_seg = 0;
8645 expressionS *exp;
8646 i386_operand_type types;
8647
8648 operand_type_set (&types, ~0);
8649
8650 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8651 {
8652 as_bad (_("at most %d immediate operands are allowed"),
8653 MAX_IMMEDIATE_OPERANDS);
8654 return 0;
8655 }
8656
8657 exp = &im_expressions[i.imm_operands++];
8658 i.op[this_operand].imms = exp;
8659
8660 if (is_space_char (*imm_start))
8661 ++imm_start;
8662
8663 save_input_line_pointer = input_line_pointer;
8664 input_line_pointer = imm_start;
8665
8666 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8667 if (gotfree_input_line)
8668 input_line_pointer = gotfree_input_line;
8669
8670 exp_seg = expression (exp);
8671
8672 SKIP_WHITESPACE ();
8673
8674 /* Handle vector operations. */
8675 if (*input_line_pointer == '{')
8676 {
8677 input_line_pointer = check_VecOperations (input_line_pointer,
8678 NULL);
8679 if (input_line_pointer == NULL)
8680 return 0;
8681 }
8682
8683 if (*input_line_pointer)
8684 as_bad (_("junk `%s' after expression"), input_line_pointer);
8685
8686 input_line_pointer = save_input_line_pointer;
8687 if (gotfree_input_line)
8688 {
8689 free (gotfree_input_line);
8690
8691 if (exp->X_op == O_constant || exp->X_op == O_register)
8692 exp->X_op = O_illegal;
8693 }
8694
8695 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8696 }
8697
8698 static int
8699 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8700 i386_operand_type types, const char *imm_start)
8701 {
8702 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8703 {
8704 if (imm_start)
8705 as_bad (_("missing or invalid immediate expression `%s'"),
8706 imm_start);
8707 return 0;
8708 }
8709 else if (exp->X_op == O_constant)
8710 {
8711 /* Size it properly later. */
8712 i.types[this_operand].bitfield.imm64 = 1;
8713 /* If not 64bit, sign extend val. */
8714 if (flag_code != CODE_64BIT
8715 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8716 exp->X_add_number
8717 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8718 }
8719 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8720 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8721 && exp_seg != absolute_section
8722 && exp_seg != text_section
8723 && exp_seg != data_section
8724 && exp_seg != bss_section
8725 && exp_seg != undefined_section
8726 && !bfd_is_com_section (exp_seg))
8727 {
8728 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8729 return 0;
8730 }
8731 #endif
8732 else if (!intel_syntax && exp_seg == reg_section)
8733 {
8734 if (imm_start)
8735 as_bad (_("illegal immediate register operand %s"), imm_start);
8736 return 0;
8737 }
8738 else
8739 {
8740 /* This is an address. The size of the address will be
8741 determined later, depending on destination register,
8742 suffix, or the default for the section. */
8743 i.types[this_operand].bitfield.imm8 = 1;
8744 i.types[this_operand].bitfield.imm16 = 1;
8745 i.types[this_operand].bitfield.imm32 = 1;
8746 i.types[this_operand].bitfield.imm32s = 1;
8747 i.types[this_operand].bitfield.imm64 = 1;
8748 i.types[this_operand] = operand_type_and (i.types[this_operand],
8749 types);
8750 }
8751
8752 return 1;
8753 }
8754
8755 static char *
8756 i386_scale (char *scale)
8757 {
8758 offsetT val;
8759 char *save = input_line_pointer;
8760
8761 input_line_pointer = scale;
8762 val = get_absolute_expression ();
8763
8764 switch (val)
8765 {
8766 case 1:
8767 i.log2_scale_factor = 0;
8768 break;
8769 case 2:
8770 i.log2_scale_factor = 1;
8771 break;
8772 case 4:
8773 i.log2_scale_factor = 2;
8774 break;
8775 case 8:
8776 i.log2_scale_factor = 3;
8777 break;
8778 default:
8779 {
8780 char sep = *input_line_pointer;
8781
8782 *input_line_pointer = '\0';
8783 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8784 scale);
8785 *input_line_pointer = sep;
8786 input_line_pointer = save;
8787 return NULL;
8788 }
8789 }
8790 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8791 {
8792 as_warn (_("scale factor of %d without an index register"),
8793 1 << i.log2_scale_factor);
8794 i.log2_scale_factor = 0;
8795 }
8796 scale = input_line_pointer;
8797 input_line_pointer = save;
8798 return scale;
8799 }
8800
8801 static int
8802 i386_displacement (char *disp_start, char *disp_end)
8803 {
8804 expressionS *exp;
8805 segT exp_seg = 0;
8806 char *save_input_line_pointer;
8807 char *gotfree_input_line;
8808 int override;
8809 i386_operand_type bigdisp, types = anydisp;
8810 int ret;
8811
8812 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8813 {
8814 as_bad (_("at most %d displacement operands are allowed"),
8815 MAX_MEMORY_OPERANDS);
8816 return 0;
8817 }
8818
8819 operand_type_set (&bigdisp, 0);
8820 if ((i.types[this_operand].bitfield.jumpabsolute)
8821 || (!current_templates->start->opcode_modifier.jump
8822 && !current_templates->start->opcode_modifier.jumpdword))
8823 {
8824 bigdisp.bitfield.disp32 = 1;
8825 override = (i.prefix[ADDR_PREFIX] != 0);
8826 if (flag_code == CODE_64BIT)
8827 {
8828 if (!override)
8829 {
8830 bigdisp.bitfield.disp32s = 1;
8831 bigdisp.bitfield.disp64 = 1;
8832 }
8833 }
8834 else if ((flag_code == CODE_16BIT) ^ override)
8835 {
8836 bigdisp.bitfield.disp32 = 0;
8837 bigdisp.bitfield.disp16 = 1;
8838 }
8839 }
8840 else
8841 {
8842 /* For PC-relative branches, the width of the displacement
8843 is dependent upon data size, not address size. */
8844 override = (i.prefix[DATA_PREFIX] != 0);
8845 if (flag_code == CODE_64BIT)
8846 {
8847 if (override || i.suffix == WORD_MNEM_SUFFIX)
8848 bigdisp.bitfield.disp16 = 1;
8849 else
8850 {
8851 bigdisp.bitfield.disp32 = 1;
8852 bigdisp.bitfield.disp32s = 1;
8853 }
8854 }
8855 else
8856 {
8857 if (!override)
8858 override = (i.suffix == (flag_code != CODE_16BIT
8859 ? WORD_MNEM_SUFFIX
8860 : LONG_MNEM_SUFFIX));
8861 bigdisp.bitfield.disp32 = 1;
8862 if ((flag_code == CODE_16BIT) ^ override)
8863 {
8864 bigdisp.bitfield.disp32 = 0;
8865 bigdisp.bitfield.disp16 = 1;
8866 }
8867 }
8868 }
8869 i.types[this_operand] = operand_type_or (i.types[this_operand],
8870 bigdisp);
8871
8872 exp = &disp_expressions[i.disp_operands];
8873 i.op[this_operand].disps = exp;
8874 i.disp_operands++;
8875 save_input_line_pointer = input_line_pointer;
8876 input_line_pointer = disp_start;
8877 END_STRING_AND_SAVE (disp_end);
8878
8879 #ifndef GCC_ASM_O_HACK
8880 #define GCC_ASM_O_HACK 0
8881 #endif
8882 #if GCC_ASM_O_HACK
8883 END_STRING_AND_SAVE (disp_end + 1);
8884 if (i.types[this_operand].bitfield.baseIndex
8885 && displacement_string_end[-1] == '+')
8886 {
8887 /* This hack is to avoid a warning when using the "o"
8888 constraint within gcc asm statements.
8889 For instance:
8890
8891 #define _set_tssldt_desc(n,addr,limit,type) \
8892 __asm__ __volatile__ ( \
8893 "movw %w2,%0\n\t" \
8894 "movw %w1,2+%0\n\t" \
8895 "rorl $16,%1\n\t" \
8896 "movb %b1,4+%0\n\t" \
8897 "movb %4,5+%0\n\t" \
8898 "movb $0,6+%0\n\t" \
8899 "movb %h1,7+%0\n\t" \
8900 "rorl $16,%1" \
8901 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8902
8903 This works great except that the output assembler ends
8904 up looking a bit weird if it turns out that there is
8905 no offset. You end up producing code that looks like:
8906
8907 #APP
8908 movw $235,(%eax)
8909 movw %dx,2+(%eax)
8910 rorl $16,%edx
8911 movb %dl,4+(%eax)
8912 movb $137,5+(%eax)
8913 movb $0,6+(%eax)
8914 movb %dh,7+(%eax)
8915 rorl $16,%edx
8916 #NO_APP
8917
8918 So here we provide the missing zero. */
8919
8920 *displacement_string_end = '0';
8921 }
8922 #endif
8923 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8924 if (gotfree_input_line)
8925 input_line_pointer = gotfree_input_line;
8926
8927 exp_seg = expression (exp);
8928
8929 SKIP_WHITESPACE ();
8930 if (*input_line_pointer)
8931 as_bad (_("junk `%s' after expression"), input_line_pointer);
8932 #if GCC_ASM_O_HACK
8933 RESTORE_END_STRING (disp_end + 1);
8934 #endif
8935 input_line_pointer = save_input_line_pointer;
8936 if (gotfree_input_line)
8937 {
8938 free (gotfree_input_line);
8939
8940 if (exp->X_op == O_constant || exp->X_op == O_register)
8941 exp->X_op = O_illegal;
8942 }
8943
8944 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8945
8946 RESTORE_END_STRING (disp_end);
8947
8948 return ret;
8949 }
8950
8951 static int
8952 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8953 i386_operand_type types, const char *disp_start)
8954 {
8955 i386_operand_type bigdisp;
8956 int ret = 1;
8957
8958 /* We do this to make sure that the section symbol is in
8959 the symbol table. We will ultimately change the relocation
8960 to be relative to the beginning of the section. */
8961 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8962 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8963 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8964 {
8965 if (exp->X_op != O_symbol)
8966 goto inv_disp;
8967
8968 if (S_IS_LOCAL (exp->X_add_symbol)
8969 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8970 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8971 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8972 exp->X_op = O_subtract;
8973 exp->X_op_symbol = GOT_symbol;
8974 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8975 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8976 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8977 i.reloc[this_operand] = BFD_RELOC_64;
8978 else
8979 i.reloc[this_operand] = BFD_RELOC_32;
8980 }
8981
8982 else if (exp->X_op == O_absent
8983 || exp->X_op == O_illegal
8984 || exp->X_op == O_big)
8985 {
8986 inv_disp:
8987 as_bad (_("missing or invalid displacement expression `%s'"),
8988 disp_start);
8989 ret = 0;
8990 }
8991
8992 else if (flag_code == CODE_64BIT
8993 && !i.prefix[ADDR_PREFIX]
8994 && exp->X_op == O_constant)
8995 {
8996 /* Since displacement is signed extended to 64bit, don't allow
8997 disp32 and turn off disp32s if they are out of range. */
8998 i.types[this_operand].bitfield.disp32 = 0;
8999 if (!fits_in_signed_long (exp->X_add_number))
9000 {
9001 i.types[this_operand].bitfield.disp32s = 0;
9002 if (i.types[this_operand].bitfield.baseindex)
9003 {
9004 as_bad (_("0x%lx out range of signed 32bit displacement"),
9005 (long) exp->X_add_number);
9006 ret = 0;
9007 }
9008 }
9009 }
9010
9011 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9012 else if (exp->X_op != O_constant
9013 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9014 && exp_seg != absolute_section
9015 && exp_seg != text_section
9016 && exp_seg != data_section
9017 && exp_seg != bss_section
9018 && exp_seg != undefined_section
9019 && !bfd_is_com_section (exp_seg))
9020 {
9021 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9022 ret = 0;
9023 }
9024 #endif
9025
9026 /* Check if this is a displacement only operand. */
9027 bigdisp = i.types[this_operand];
9028 bigdisp.bitfield.disp8 = 0;
9029 bigdisp.bitfield.disp16 = 0;
9030 bigdisp.bitfield.disp32 = 0;
9031 bigdisp.bitfield.disp32s = 0;
9032 bigdisp.bitfield.disp64 = 0;
9033 if (operand_type_all_zero (&bigdisp))
9034 i.types[this_operand] = operand_type_and (i.types[this_operand],
9035 types);
9036
9037 return ret;
9038 }
9039
9040 /* Return the active addressing mode, taking address override and
9041 registers forming the address into consideration. Update the
9042 address override prefix if necessary. */
9043
9044 static enum flag_code
9045 i386_addressing_mode (void)
9046 {
9047 enum flag_code addr_mode;
9048
9049 if (i.prefix[ADDR_PREFIX])
9050 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9051 else
9052 {
9053 addr_mode = flag_code;
9054
9055 #if INFER_ADDR_PREFIX
9056 if (i.mem_operands == 0)
9057 {
9058 /* Infer address prefix from the first memory operand. */
9059 const reg_entry *addr_reg = i.base_reg;
9060
9061 if (addr_reg == NULL)
9062 addr_reg = i.index_reg;
9063
9064 if (addr_reg)
9065 {
9066 if (addr_reg->reg_num == RegEip
9067 || addr_reg->reg_num == RegEiz
9068 || addr_reg->reg_type.bitfield.dword)
9069 addr_mode = CODE_32BIT;
9070 else if (flag_code != CODE_64BIT
9071 && addr_reg->reg_type.bitfield.word)
9072 addr_mode = CODE_16BIT;
9073
9074 if (addr_mode != flag_code)
9075 {
9076 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9077 i.prefixes += 1;
9078 /* Change the size of any displacement too. At most one
9079 of Disp16 or Disp32 is set.
9080 FIXME. There doesn't seem to be any real need for
9081 separate Disp16 and Disp32 flags. The same goes for
9082 Imm16 and Imm32. Removing them would probably clean
9083 up the code quite a lot. */
9084 if (flag_code != CODE_64BIT
9085 && (i.types[this_operand].bitfield.disp16
9086 || i.types[this_operand].bitfield.disp32))
9087 i.types[this_operand]
9088 = operand_type_xor (i.types[this_operand], disp16_32);
9089 }
9090 }
9091 }
9092 #endif
9093 }
9094
9095 return addr_mode;
9096 }
9097
9098 /* Make sure the memory operand we've been dealt is valid.
9099 Return 1 on success, 0 on a failure. */
9100
9101 static int
9102 i386_index_check (const char *operand_string)
9103 {
9104 const char *kind = "base/index";
9105 enum flag_code addr_mode = i386_addressing_mode ();
9106
9107 if (current_templates->start->opcode_modifier.isstring
9108 && !current_templates->start->opcode_modifier.immext
9109 && (current_templates->end[-1].opcode_modifier.isstring
9110 || i.mem_operands))
9111 {
9112 /* Memory operands of string insns are special in that they only allow
9113 a single register (rDI, rSI, or rBX) as their memory address. */
9114 const reg_entry *expected_reg;
9115 static const char *di_si[][2] =
9116 {
9117 { "esi", "edi" },
9118 { "si", "di" },
9119 { "rsi", "rdi" }
9120 };
9121 static const char *bx[] = { "ebx", "bx", "rbx" };
9122
9123 kind = "string address";
9124
9125 if (current_templates->start->opcode_modifier.repprefixok)
9126 {
9127 i386_operand_type type = current_templates->end[-1].operand_types[0];
9128
9129 if (!type.bitfield.baseindex
9130 || ((!i.mem_operands != !intel_syntax)
9131 && current_templates->end[-1].operand_types[1]
9132 .bitfield.baseindex))
9133 type = current_templates->end[-1].operand_types[1];
9134 expected_reg = hash_find (reg_hash,
9135 di_si[addr_mode][type.bitfield.esseg]);
9136
9137 }
9138 else
9139 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9140
9141 if (i.base_reg != expected_reg
9142 || i.index_reg
9143 || operand_type_check (i.types[this_operand], disp))
9144 {
9145 /* The second memory operand must have the same size as
9146 the first one. */
9147 if (i.mem_operands
9148 && i.base_reg
9149 && !((addr_mode == CODE_64BIT
9150 && i.base_reg->reg_type.bitfield.qword)
9151 || (addr_mode == CODE_32BIT
9152 ? i.base_reg->reg_type.bitfield.dword
9153 : i.base_reg->reg_type.bitfield.word)))
9154 goto bad_address;
9155
9156 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9157 operand_string,
9158 intel_syntax ? '[' : '(',
9159 register_prefix,
9160 expected_reg->reg_name,
9161 intel_syntax ? ']' : ')');
9162 return 1;
9163 }
9164 else
9165 return 1;
9166
9167 bad_address:
9168 as_bad (_("`%s' is not a valid %s expression"),
9169 operand_string, kind);
9170 return 0;
9171 }
9172 else
9173 {
9174 if (addr_mode != CODE_16BIT)
9175 {
9176 /* 32-bit/64-bit checks. */
9177 if ((i.base_reg
9178 && (addr_mode == CODE_64BIT
9179 ? !i.base_reg->reg_type.bitfield.qword
9180 : !i.base_reg->reg_type.bitfield.dword)
9181 && (i.index_reg
9182 || (i.base_reg->reg_num
9183 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9184 || (i.index_reg
9185 && !i.index_reg->reg_type.bitfield.xmmword
9186 && !i.index_reg->reg_type.bitfield.ymmword
9187 && !i.index_reg->reg_type.bitfield.zmmword
9188 && ((addr_mode == CODE_64BIT
9189 ? !(i.index_reg->reg_type.bitfield.qword
9190 || i.index_reg->reg_num == RegRiz)
9191 : !(i.index_reg->reg_type.bitfield.dword
9192 || i.index_reg->reg_num == RegEiz))
9193 || !i.index_reg->reg_type.bitfield.baseindex)))
9194 goto bad_address;
9195
9196 /* bndmk, bndldx, and bndstx have special restrictions. */
9197 if (current_templates->start->base_opcode == 0xf30f1b
9198 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9199 {
9200 /* They cannot use RIP-relative addressing. */
9201 if (i.base_reg && i.base_reg->reg_num == RegRip)
9202 {
9203 as_bad (_("`%s' cannot be used here"), operand_string);
9204 return 0;
9205 }
9206
9207 /* bndldx and bndstx ignore their scale factor. */
9208 if (current_templates->start->base_opcode != 0xf30f1b
9209 && i.log2_scale_factor)
9210 as_warn (_("register scaling is being ignored here"));
9211 }
9212 }
9213 else
9214 {
9215 /* 16-bit checks. */
9216 if ((i.base_reg
9217 && (!i.base_reg->reg_type.bitfield.word
9218 || !i.base_reg->reg_type.bitfield.baseindex))
9219 || (i.index_reg
9220 && (!i.index_reg->reg_type.bitfield.word
9221 || !i.index_reg->reg_type.bitfield.baseindex
9222 || !(i.base_reg
9223 && i.base_reg->reg_num < 6
9224 && i.index_reg->reg_num >= 6
9225 && i.log2_scale_factor == 0))))
9226 goto bad_address;
9227 }
9228 }
9229 return 1;
9230 }
9231
9232 /* Handle vector immediates. */
9233
9234 static int
9235 RC_SAE_immediate (const char *imm_start)
9236 {
9237 unsigned int match_found, j;
9238 const char *pstr = imm_start;
9239 expressionS *exp;
9240
9241 if (*pstr != '{')
9242 return 0;
9243
9244 pstr++;
9245 match_found = 0;
9246 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9247 {
9248 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9249 {
9250 if (!i.rounding)
9251 {
9252 rc_op.type = RC_NamesTable[j].type;
9253 rc_op.operand = this_operand;
9254 i.rounding = &rc_op;
9255 }
9256 else
9257 {
9258 as_bad (_("duplicated `%s'"), imm_start);
9259 return 0;
9260 }
9261 pstr += RC_NamesTable[j].len;
9262 match_found = 1;
9263 break;
9264 }
9265 }
9266 if (!match_found)
9267 return 0;
9268
9269 if (*pstr++ != '}')
9270 {
9271 as_bad (_("Missing '}': '%s'"), imm_start);
9272 return 0;
9273 }
9274 /* RC/SAE immediate string should contain nothing more. */;
9275 if (*pstr != 0)
9276 {
9277 as_bad (_("Junk after '}': '%s'"), imm_start);
9278 return 0;
9279 }
9280
9281 exp = &im_expressions[i.imm_operands++];
9282 i.op[this_operand].imms = exp;
9283
9284 exp->X_op = O_constant;
9285 exp->X_add_number = 0;
9286 exp->X_add_symbol = (symbolS *) 0;
9287 exp->X_op_symbol = (symbolS *) 0;
9288
9289 i.types[this_operand].bitfield.imm8 = 1;
9290 return 1;
9291 }
9292
9293 /* Only string instructions can have a second memory operand, so
9294 reduce current_templates to just those if it contains any. */
9295 static int
9296 maybe_adjust_templates (void)
9297 {
9298 const insn_template *t;
9299
9300 gas_assert (i.mem_operands == 1);
9301
9302 for (t = current_templates->start; t < current_templates->end; ++t)
9303 if (t->opcode_modifier.isstring)
9304 break;
9305
9306 if (t < current_templates->end)
9307 {
9308 static templates aux_templates;
9309 bfd_boolean recheck;
9310
9311 aux_templates.start = t;
9312 for (; t < current_templates->end; ++t)
9313 if (!t->opcode_modifier.isstring)
9314 break;
9315 aux_templates.end = t;
9316
9317 /* Determine whether to re-check the first memory operand. */
9318 recheck = (aux_templates.start != current_templates->start
9319 || t != current_templates->end);
9320
9321 current_templates = &aux_templates;
9322
9323 if (recheck)
9324 {
9325 i.mem_operands = 0;
9326 if (i.memop1_string != NULL
9327 && i386_index_check (i.memop1_string) == 0)
9328 return 0;
9329 i.mem_operands = 1;
9330 }
9331 }
9332
9333 return 1;
9334 }
9335
9336 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9337 on error. */
9338
9339 static int
9340 i386_att_operand (char *operand_string)
9341 {
9342 const reg_entry *r;
9343 char *end_op;
9344 char *op_string = operand_string;
9345
9346 if (is_space_char (*op_string))
9347 ++op_string;
9348
9349 /* We check for an absolute prefix (differentiating,
9350 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9351 if (*op_string == ABSOLUTE_PREFIX)
9352 {
9353 ++op_string;
9354 if (is_space_char (*op_string))
9355 ++op_string;
9356 i.types[this_operand].bitfield.jumpabsolute = 1;
9357 }
9358
9359 /* Check if operand is a register. */
9360 if ((r = parse_register (op_string, &end_op)) != NULL)
9361 {
9362 i386_operand_type temp;
9363
9364 /* Check for a segment override by searching for ':' after a
9365 segment register. */
9366 op_string = end_op;
9367 if (is_space_char (*op_string))
9368 ++op_string;
9369 if (*op_string == ':'
9370 && (r->reg_type.bitfield.sreg2
9371 || r->reg_type.bitfield.sreg3))
9372 {
9373 switch (r->reg_num)
9374 {
9375 case 0:
9376 i.seg[i.mem_operands] = &es;
9377 break;
9378 case 1:
9379 i.seg[i.mem_operands] = &cs;
9380 break;
9381 case 2:
9382 i.seg[i.mem_operands] = &ss;
9383 break;
9384 case 3:
9385 i.seg[i.mem_operands] = &ds;
9386 break;
9387 case 4:
9388 i.seg[i.mem_operands] = &fs;
9389 break;
9390 case 5:
9391 i.seg[i.mem_operands] = &gs;
9392 break;
9393 }
9394
9395 /* Skip the ':' and whitespace. */
9396 ++op_string;
9397 if (is_space_char (*op_string))
9398 ++op_string;
9399
9400 if (!is_digit_char (*op_string)
9401 && !is_identifier_char (*op_string)
9402 && *op_string != '('
9403 && *op_string != ABSOLUTE_PREFIX)
9404 {
9405 as_bad (_("bad memory operand `%s'"), op_string);
9406 return 0;
9407 }
9408 /* Handle case of %es:*foo. */
9409 if (*op_string == ABSOLUTE_PREFIX)
9410 {
9411 ++op_string;
9412 if (is_space_char (*op_string))
9413 ++op_string;
9414 i.types[this_operand].bitfield.jumpabsolute = 1;
9415 }
9416 goto do_memory_reference;
9417 }
9418
9419 /* Handle vector operations. */
9420 if (*op_string == '{')
9421 {
9422 op_string = check_VecOperations (op_string, NULL);
9423 if (op_string == NULL)
9424 return 0;
9425 }
9426
9427 if (*op_string)
9428 {
9429 as_bad (_("junk `%s' after register"), op_string);
9430 return 0;
9431 }
9432 temp = r->reg_type;
9433 temp.bitfield.baseindex = 0;
9434 i.types[this_operand] = operand_type_or (i.types[this_operand],
9435 temp);
9436 i.types[this_operand].bitfield.unspecified = 0;
9437 i.op[this_operand].regs = r;
9438 i.reg_operands++;
9439 }
9440 else if (*op_string == REGISTER_PREFIX)
9441 {
9442 as_bad (_("bad register name `%s'"), op_string);
9443 return 0;
9444 }
9445 else if (*op_string == IMMEDIATE_PREFIX)
9446 {
9447 ++op_string;
9448 if (i.types[this_operand].bitfield.jumpabsolute)
9449 {
9450 as_bad (_("immediate operand illegal with absolute jump"));
9451 return 0;
9452 }
9453 if (!i386_immediate (op_string))
9454 return 0;
9455 }
9456 else if (RC_SAE_immediate (operand_string))
9457 {
9458 /* If it is a RC or SAE immediate, do nothing. */
9459 ;
9460 }
9461 else if (is_digit_char (*op_string)
9462 || is_identifier_char (*op_string)
9463 || *op_string == '"'
9464 || *op_string == '(')
9465 {
9466 /* This is a memory reference of some sort. */
9467 char *base_string;
9468
9469 /* Start and end of displacement string expression (if found). */
9470 char *displacement_string_start;
9471 char *displacement_string_end;
9472 char *vop_start;
9473
9474 do_memory_reference:
9475 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9476 return 0;
9477 if ((i.mem_operands == 1
9478 && !current_templates->start->opcode_modifier.isstring)
9479 || i.mem_operands == 2)
9480 {
9481 as_bad (_("too many memory references for `%s'"),
9482 current_templates->start->name);
9483 return 0;
9484 }
9485
9486 /* Check for base index form. We detect the base index form by
9487 looking for an ')' at the end of the operand, searching
9488 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9489 after the '('. */
9490 base_string = op_string + strlen (op_string);
9491
9492 /* Handle vector operations. */
9493 vop_start = strchr (op_string, '{');
9494 if (vop_start && vop_start < base_string)
9495 {
9496 if (check_VecOperations (vop_start, base_string) == NULL)
9497 return 0;
9498 base_string = vop_start;
9499 }
9500
9501 --base_string;
9502 if (is_space_char (*base_string))
9503 --base_string;
9504
9505 /* If we only have a displacement, set-up for it to be parsed later. */
9506 displacement_string_start = op_string;
9507 displacement_string_end = base_string + 1;
9508
9509 if (*base_string == ')')
9510 {
9511 char *temp_string;
9512 unsigned int parens_balanced = 1;
9513 /* We've already checked that the number of left & right ()'s are
9514 equal, so this loop will not be infinite. */
9515 do
9516 {
9517 base_string--;
9518 if (*base_string == ')')
9519 parens_balanced++;
9520 if (*base_string == '(')
9521 parens_balanced--;
9522 }
9523 while (parens_balanced);
9524
9525 temp_string = base_string;
9526
9527 /* Skip past '(' and whitespace. */
9528 ++base_string;
9529 if (is_space_char (*base_string))
9530 ++base_string;
9531
9532 if (*base_string == ','
9533 || ((i.base_reg = parse_register (base_string, &end_op))
9534 != NULL))
9535 {
9536 displacement_string_end = temp_string;
9537
9538 i.types[this_operand].bitfield.baseindex = 1;
9539
9540 if (i.base_reg)
9541 {
9542 base_string = end_op;
9543 if (is_space_char (*base_string))
9544 ++base_string;
9545 }
9546
9547 /* There may be an index reg or scale factor here. */
9548 if (*base_string == ',')
9549 {
9550 ++base_string;
9551 if (is_space_char (*base_string))
9552 ++base_string;
9553
9554 if ((i.index_reg = parse_register (base_string, &end_op))
9555 != NULL)
9556 {
9557 base_string = end_op;
9558 if (is_space_char (*base_string))
9559 ++base_string;
9560 if (*base_string == ',')
9561 {
9562 ++base_string;
9563 if (is_space_char (*base_string))
9564 ++base_string;
9565 }
9566 else if (*base_string != ')')
9567 {
9568 as_bad (_("expecting `,' or `)' "
9569 "after index register in `%s'"),
9570 operand_string);
9571 return 0;
9572 }
9573 }
9574 else if (*base_string == REGISTER_PREFIX)
9575 {
9576 end_op = strchr (base_string, ',');
9577 if (end_op)
9578 *end_op = '\0';
9579 as_bad (_("bad register name `%s'"), base_string);
9580 return 0;
9581 }
9582
9583 /* Check for scale factor. */
9584 if (*base_string != ')')
9585 {
9586 char *end_scale = i386_scale (base_string);
9587
9588 if (!end_scale)
9589 return 0;
9590
9591 base_string = end_scale;
9592 if (is_space_char (*base_string))
9593 ++base_string;
9594 if (*base_string != ')')
9595 {
9596 as_bad (_("expecting `)' "
9597 "after scale factor in `%s'"),
9598 operand_string);
9599 return 0;
9600 }
9601 }
9602 else if (!i.index_reg)
9603 {
9604 as_bad (_("expecting index register or scale factor "
9605 "after `,'; got '%c'"),
9606 *base_string);
9607 return 0;
9608 }
9609 }
9610 else if (*base_string != ')')
9611 {
9612 as_bad (_("expecting `,' or `)' "
9613 "after base register in `%s'"),
9614 operand_string);
9615 return 0;
9616 }
9617 }
9618 else if (*base_string == REGISTER_PREFIX)
9619 {
9620 end_op = strchr (base_string, ',');
9621 if (end_op)
9622 *end_op = '\0';
9623 as_bad (_("bad register name `%s'"), base_string);
9624 return 0;
9625 }
9626 }
9627
9628 /* If there's an expression beginning the operand, parse it,
9629 assuming displacement_string_start and
9630 displacement_string_end are meaningful. */
9631 if (displacement_string_start != displacement_string_end)
9632 {
9633 if (!i386_displacement (displacement_string_start,
9634 displacement_string_end))
9635 return 0;
9636 }
9637
9638 /* Special case for (%dx) while doing input/output op. */
9639 if (i.base_reg
9640 && operand_type_equal (&i.base_reg->reg_type,
9641 &reg16_inoutportreg)
9642 && i.index_reg == 0
9643 && i.log2_scale_factor == 0
9644 && i.seg[i.mem_operands] == 0
9645 && !operand_type_check (i.types[this_operand], disp))
9646 {
9647 i.types[this_operand] = inoutportreg;
9648 return 1;
9649 }
9650
9651 if (i386_index_check (operand_string) == 0)
9652 return 0;
9653 i.types[this_operand].bitfield.mem = 1;
9654 if (i.mem_operands == 0)
9655 i.memop1_string = xstrdup (operand_string);
9656 i.mem_operands++;
9657 }
9658 else
9659 {
9660 /* It's not a memory operand; argh! */
9661 as_bad (_("invalid char %s beginning operand %d `%s'"),
9662 output_invalid (*op_string),
9663 this_operand + 1,
9664 op_string);
9665 return 0;
9666 }
9667 return 1; /* Normal return. */
9668 }
9669 \f
9670 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9671 that an rs_machine_dependent frag may reach. */
9672
9673 unsigned int
9674 i386_frag_max_var (fragS *frag)
9675 {
9676 /* The only relaxable frags are for jumps.
9677 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9678 gas_assert (frag->fr_type == rs_machine_dependent);
9679 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9680 }
9681
9682 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9683 static int
9684 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9685 {
9686 /* STT_GNU_IFUNC symbol must go through PLT. */
9687 if ((symbol_get_bfdsym (fr_symbol)->flags
9688 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9689 return 0;
9690
9691 if (!S_IS_EXTERNAL (fr_symbol))
9692 /* Symbol may be weak or local. */
9693 return !S_IS_WEAK (fr_symbol);
9694
9695 /* Global symbols with non-default visibility can't be preempted. */
9696 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9697 return 1;
9698
9699 if (fr_var != NO_RELOC)
9700 switch ((enum bfd_reloc_code_real) fr_var)
9701 {
9702 case BFD_RELOC_386_PLT32:
9703 case BFD_RELOC_X86_64_PLT32:
9704 /* Symbol with PLT relocation may be preempted. */
9705 return 0;
9706 default:
9707 abort ();
9708 }
9709
9710 /* Global symbols with default visibility in a shared library may be
9711 preempted by another definition. */
9712 return !shared;
9713 }
9714 #endif
9715
9716 /* md_estimate_size_before_relax()
9717
9718 Called just before relax() for rs_machine_dependent frags. The x86
9719 assembler uses these frags to handle variable size jump
9720 instructions.
9721
9722 Any symbol that is now undefined will not become defined.
9723 Return the correct fr_subtype in the frag.
9724 Return the initial "guess for variable size of frag" to caller.
9725 The guess is actually the growth beyond the fixed part. Whatever
9726 we do to grow the fixed or variable part contributes to our
9727 returned value. */
9728
9729 int
9730 md_estimate_size_before_relax (fragS *fragP, segT segment)
9731 {
9732 /* We've already got fragP->fr_subtype right; all we have to do is
9733 check for un-relaxable symbols. On an ELF system, we can't relax
9734 an externally visible symbol, because it may be overridden by a
9735 shared library. */
9736 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9737 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9738 || (IS_ELF
9739 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9740 fragP->fr_var))
9741 #endif
9742 #if defined (OBJ_COFF) && defined (TE_PE)
9743 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9744 && S_IS_WEAK (fragP->fr_symbol))
9745 #endif
9746 )
9747 {
9748 /* Symbol is undefined in this segment, or we need to keep a
9749 reloc so that weak symbols can be overridden. */
9750 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9751 enum bfd_reloc_code_real reloc_type;
9752 unsigned char *opcode;
9753 int old_fr_fix;
9754
9755 if (fragP->fr_var != NO_RELOC)
9756 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9757 else if (size == 2)
9758 reloc_type = BFD_RELOC_16_PCREL;
9759 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9760 else if (need_plt32_p (fragP->fr_symbol))
9761 reloc_type = BFD_RELOC_X86_64_PLT32;
9762 #endif
9763 else
9764 reloc_type = BFD_RELOC_32_PCREL;
9765
9766 old_fr_fix = fragP->fr_fix;
9767 opcode = (unsigned char *) fragP->fr_opcode;
9768
9769 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9770 {
9771 case UNCOND_JUMP:
9772 /* Make jmp (0xeb) a (d)word displacement jump. */
9773 opcode[0] = 0xe9;
9774 fragP->fr_fix += size;
9775 fix_new (fragP, old_fr_fix, size,
9776 fragP->fr_symbol,
9777 fragP->fr_offset, 1,
9778 reloc_type);
9779 break;
9780
9781 case COND_JUMP86:
9782 if (size == 2
9783 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9784 {
9785 /* Negate the condition, and branch past an
9786 unconditional jump. */
9787 opcode[0] ^= 1;
9788 opcode[1] = 3;
9789 /* Insert an unconditional jump. */
9790 opcode[2] = 0xe9;
9791 /* We added two extra opcode bytes, and have a two byte
9792 offset. */
9793 fragP->fr_fix += 2 + 2;
9794 fix_new (fragP, old_fr_fix + 2, 2,
9795 fragP->fr_symbol,
9796 fragP->fr_offset, 1,
9797 reloc_type);
9798 break;
9799 }
9800 /* Fall through. */
9801
9802 case COND_JUMP:
9803 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9804 {
9805 fixS *fixP;
9806
9807 fragP->fr_fix += 1;
9808 fixP = fix_new (fragP, old_fr_fix, 1,
9809 fragP->fr_symbol,
9810 fragP->fr_offset, 1,
9811 BFD_RELOC_8_PCREL);
9812 fixP->fx_signed = 1;
9813 break;
9814 }
9815
9816 /* This changes the byte-displacement jump 0x7N
9817 to the (d)word-displacement jump 0x0f,0x8N. */
9818 opcode[1] = opcode[0] + 0x10;
9819 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9820 /* We've added an opcode byte. */
9821 fragP->fr_fix += 1 + size;
9822 fix_new (fragP, old_fr_fix + 1, size,
9823 fragP->fr_symbol,
9824 fragP->fr_offset, 1,
9825 reloc_type);
9826 break;
9827
9828 default:
9829 BAD_CASE (fragP->fr_subtype);
9830 break;
9831 }
9832 frag_wane (fragP);
9833 return fragP->fr_fix - old_fr_fix;
9834 }
9835
9836 /* Guess size depending on current relax state. Initially the relax
9837 state will correspond to a short jump and we return 1, because
9838 the variable part of the frag (the branch offset) is one byte
9839 long. However, we can relax a section more than once and in that
9840 case we must either set fr_subtype back to the unrelaxed state,
9841 or return the value for the appropriate branch. */
9842 return md_relax_table[fragP->fr_subtype].rlx_length;
9843 }
9844
9845 /* Called after relax() is finished.
9846
9847 In: Address of frag.
9848 fr_type == rs_machine_dependent.
9849 fr_subtype is what the address relaxed to.
9850
9851 Out: Any fixSs and constants are set up.
9852 Caller will turn frag into a ".space 0". */
9853
9854 void
9855 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9856 fragS *fragP)
9857 {
9858 unsigned char *opcode;
9859 unsigned char *where_to_put_displacement = NULL;
9860 offsetT target_address;
9861 offsetT opcode_address;
9862 unsigned int extension = 0;
9863 offsetT displacement_from_opcode_start;
9864
9865 opcode = (unsigned char *) fragP->fr_opcode;
9866
9867 /* Address we want to reach in file space. */
9868 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9869
9870 /* Address opcode resides at in file space. */
9871 opcode_address = fragP->fr_address + fragP->fr_fix;
9872
9873 /* Displacement from opcode start to fill into instruction. */
9874 displacement_from_opcode_start = target_address - opcode_address;
9875
9876 if ((fragP->fr_subtype & BIG) == 0)
9877 {
9878 /* Don't have to change opcode. */
9879 extension = 1; /* 1 opcode + 1 displacement */
9880 where_to_put_displacement = &opcode[1];
9881 }
9882 else
9883 {
9884 if (no_cond_jump_promotion
9885 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9886 as_warn_where (fragP->fr_file, fragP->fr_line,
9887 _("long jump required"));
9888
9889 switch (fragP->fr_subtype)
9890 {
9891 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9892 extension = 4; /* 1 opcode + 4 displacement */
9893 opcode[0] = 0xe9;
9894 where_to_put_displacement = &opcode[1];
9895 break;
9896
9897 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9898 extension = 2; /* 1 opcode + 2 displacement */
9899 opcode[0] = 0xe9;
9900 where_to_put_displacement = &opcode[1];
9901 break;
9902
9903 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9904 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9905 extension = 5; /* 2 opcode + 4 displacement */
9906 opcode[1] = opcode[0] + 0x10;
9907 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9908 where_to_put_displacement = &opcode[2];
9909 break;
9910
9911 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9912 extension = 3; /* 2 opcode + 2 displacement */
9913 opcode[1] = opcode[0] + 0x10;
9914 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9915 where_to_put_displacement = &opcode[2];
9916 break;
9917
9918 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9919 extension = 4;
9920 opcode[0] ^= 1;
9921 opcode[1] = 3;
9922 opcode[2] = 0xe9;
9923 where_to_put_displacement = &opcode[3];
9924 break;
9925
9926 default:
9927 BAD_CASE (fragP->fr_subtype);
9928 break;
9929 }
9930 }
9931
9932 /* If size if less then four we are sure that the operand fits,
9933 but if it's 4, then it could be that the displacement is larger
9934 then -/+ 2GB. */
9935 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9936 && object_64bit
9937 && ((addressT) (displacement_from_opcode_start - extension
9938 + ((addressT) 1 << 31))
9939 > (((addressT) 2 << 31) - 1)))
9940 {
9941 as_bad_where (fragP->fr_file, fragP->fr_line,
9942 _("jump target out of range"));
9943 /* Make us emit 0. */
9944 displacement_from_opcode_start = extension;
9945 }
9946 /* Now put displacement after opcode. */
9947 md_number_to_chars ((char *) where_to_put_displacement,
9948 (valueT) (displacement_from_opcode_start - extension),
9949 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9950 fragP->fr_fix += extension;
9951 }
9952 \f
9953 /* Apply a fixup (fixP) to segment data, once it has been determined
9954 by our caller that we have all the info we need to fix it up.
9955
9956 Parameter valP is the pointer to the value of the bits.
9957
9958 On the 386, immediates, displacements, and data pointers are all in
9959 the same (little-endian) format, so we don't need to care about which
9960 we are handling. */
9961
9962 void
9963 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9964 {
9965 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9966 valueT value = *valP;
9967
9968 #if !defined (TE_Mach)
9969 if (fixP->fx_pcrel)
9970 {
9971 switch (fixP->fx_r_type)
9972 {
9973 default:
9974 break;
9975
9976 case BFD_RELOC_64:
9977 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9978 break;
9979 case BFD_RELOC_32:
9980 case BFD_RELOC_X86_64_32S:
9981 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9982 break;
9983 case BFD_RELOC_16:
9984 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9985 break;
9986 case BFD_RELOC_8:
9987 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9988 break;
9989 }
9990 }
9991
9992 if (fixP->fx_addsy != NULL
9993 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9994 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9995 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9996 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9997 && !use_rela_relocations)
9998 {
9999 /* This is a hack. There should be a better way to handle this.
10000 This covers for the fact that bfd_install_relocation will
10001 subtract the current location (for partial_inplace, PC relative
10002 relocations); see more below. */
10003 #ifndef OBJ_AOUT
10004 if (IS_ELF
10005 #ifdef TE_PE
10006 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10007 #endif
10008 )
10009 value += fixP->fx_where + fixP->fx_frag->fr_address;
10010 #endif
10011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10012 if (IS_ELF)
10013 {
10014 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10015
10016 if ((sym_seg == seg
10017 || (symbol_section_p (fixP->fx_addsy)
10018 && sym_seg != absolute_section))
10019 && !generic_force_reloc (fixP))
10020 {
10021 /* Yes, we add the values in twice. This is because
10022 bfd_install_relocation subtracts them out again. I think
10023 bfd_install_relocation is broken, but I don't dare change
10024 it. FIXME. */
10025 value += fixP->fx_where + fixP->fx_frag->fr_address;
10026 }
10027 }
10028 #endif
10029 #if defined (OBJ_COFF) && defined (TE_PE)
10030 /* For some reason, the PE format does not store a
10031 section address offset for a PC relative symbol. */
10032 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10033 || S_IS_WEAK (fixP->fx_addsy))
10034 value += md_pcrel_from (fixP);
10035 #endif
10036 }
10037 #if defined (OBJ_COFF) && defined (TE_PE)
10038 if (fixP->fx_addsy != NULL
10039 && S_IS_WEAK (fixP->fx_addsy)
10040 /* PR 16858: Do not modify weak function references. */
10041 && ! fixP->fx_pcrel)
10042 {
10043 #if !defined (TE_PEP)
10044 /* For x86 PE weak function symbols are neither PC-relative
10045 nor do they set S_IS_FUNCTION. So the only reliable way
10046 to detect them is to check the flags of their containing
10047 section. */
10048 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10049 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10050 ;
10051 else
10052 #endif
10053 value -= S_GET_VALUE (fixP->fx_addsy);
10054 }
10055 #endif
10056
10057 /* Fix a few things - the dynamic linker expects certain values here,
10058 and we must not disappoint it. */
10059 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10060 if (IS_ELF && fixP->fx_addsy)
10061 switch (fixP->fx_r_type)
10062 {
10063 case BFD_RELOC_386_PLT32:
10064 case BFD_RELOC_X86_64_PLT32:
10065 /* Make the jump instruction point to the address of the operand. At
10066 runtime we merely add the offset to the actual PLT entry. */
10067 value = -4;
10068 break;
10069
10070 case BFD_RELOC_386_TLS_GD:
10071 case BFD_RELOC_386_TLS_LDM:
10072 case BFD_RELOC_386_TLS_IE_32:
10073 case BFD_RELOC_386_TLS_IE:
10074 case BFD_RELOC_386_TLS_GOTIE:
10075 case BFD_RELOC_386_TLS_GOTDESC:
10076 case BFD_RELOC_X86_64_TLSGD:
10077 case BFD_RELOC_X86_64_TLSLD:
10078 case BFD_RELOC_X86_64_GOTTPOFF:
10079 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10080 value = 0; /* Fully resolved at runtime. No addend. */
10081 /* Fallthrough */
10082 case BFD_RELOC_386_TLS_LE:
10083 case BFD_RELOC_386_TLS_LDO_32:
10084 case BFD_RELOC_386_TLS_LE_32:
10085 case BFD_RELOC_X86_64_DTPOFF32:
10086 case BFD_RELOC_X86_64_DTPOFF64:
10087 case BFD_RELOC_X86_64_TPOFF32:
10088 case BFD_RELOC_X86_64_TPOFF64:
10089 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10090 break;
10091
10092 case BFD_RELOC_386_TLS_DESC_CALL:
10093 case BFD_RELOC_X86_64_TLSDESC_CALL:
10094 value = 0; /* Fully resolved at runtime. No addend. */
10095 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10096 fixP->fx_done = 0;
10097 return;
10098
10099 case BFD_RELOC_VTABLE_INHERIT:
10100 case BFD_RELOC_VTABLE_ENTRY:
10101 fixP->fx_done = 0;
10102 return;
10103
10104 default:
10105 break;
10106 }
10107 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10108 *valP = value;
10109 #endif /* !defined (TE_Mach) */
10110
10111 /* Are we finished with this relocation now? */
10112 if (fixP->fx_addsy == NULL)
10113 fixP->fx_done = 1;
10114 #if defined (OBJ_COFF) && defined (TE_PE)
10115 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10116 {
10117 fixP->fx_done = 0;
10118 /* Remember value for tc_gen_reloc. */
10119 fixP->fx_addnumber = value;
10120 /* Clear out the frag for now. */
10121 value = 0;
10122 }
10123 #endif
10124 else if (use_rela_relocations)
10125 {
10126 fixP->fx_no_overflow = 1;
10127 /* Remember value for tc_gen_reloc. */
10128 fixP->fx_addnumber = value;
10129 value = 0;
10130 }
10131
10132 md_number_to_chars (p, value, fixP->fx_size);
10133 }
10134 \f
10135 const char *
10136 md_atof (int type, char *litP, int *sizeP)
10137 {
10138 /* This outputs the LITTLENUMs in REVERSE order;
10139 in accord with the bigendian 386. */
10140 return ieee_md_atof (type, litP, sizeP, FALSE);
10141 }
10142 \f
10143 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10144
10145 static char *
10146 output_invalid (int c)
10147 {
10148 if (ISPRINT (c))
10149 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10150 "'%c'", c);
10151 else
10152 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10153 "(0x%x)", (unsigned char) c);
10154 return output_invalid_buf;
10155 }
10156
10157 /* REG_STRING starts *before* REGISTER_PREFIX. */
10158
10159 static const reg_entry *
10160 parse_real_register (char *reg_string, char **end_op)
10161 {
10162 char *s = reg_string;
10163 char *p;
10164 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10165 const reg_entry *r;
10166
10167 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10168 if (*s == REGISTER_PREFIX)
10169 ++s;
10170
10171 if (is_space_char (*s))
10172 ++s;
10173
10174 p = reg_name_given;
10175 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10176 {
10177 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10178 return (const reg_entry *) NULL;
10179 s++;
10180 }
10181
10182 /* For naked regs, make sure that we are not dealing with an identifier.
10183 This prevents confusing an identifier like `eax_var' with register
10184 `eax'. */
10185 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10186 return (const reg_entry *) NULL;
10187
10188 *end_op = s;
10189
10190 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10191
10192 /* Handle floating point regs, allowing spaces in the (i) part. */
10193 if (r == i386_regtab /* %st is first entry of table */)
10194 {
10195 if (!cpu_arch_flags.bitfield.cpu8087
10196 && !cpu_arch_flags.bitfield.cpu287
10197 && !cpu_arch_flags.bitfield.cpu387)
10198 return (const reg_entry *) NULL;
10199
10200 if (is_space_char (*s))
10201 ++s;
10202 if (*s == '(')
10203 {
10204 ++s;
10205 if (is_space_char (*s))
10206 ++s;
10207 if (*s >= '0' && *s <= '7')
10208 {
10209 int fpr = *s - '0';
10210 ++s;
10211 if (is_space_char (*s))
10212 ++s;
10213 if (*s == ')')
10214 {
10215 *end_op = s + 1;
10216 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10217 know (r);
10218 return r + fpr;
10219 }
10220 }
10221 /* We have "%st(" then garbage. */
10222 return (const reg_entry *) NULL;
10223 }
10224 }
10225
10226 if (r == NULL || allow_pseudo_reg)
10227 return r;
10228
10229 if (operand_type_all_zero (&r->reg_type))
10230 return (const reg_entry *) NULL;
10231
10232 if ((r->reg_type.bitfield.dword
10233 || r->reg_type.bitfield.sreg3
10234 || r->reg_type.bitfield.control
10235 || r->reg_type.bitfield.debug
10236 || r->reg_type.bitfield.test)
10237 && !cpu_arch_flags.bitfield.cpui386)
10238 return (const reg_entry *) NULL;
10239
10240 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10241 return (const reg_entry *) NULL;
10242
10243 if (!cpu_arch_flags.bitfield.cpuavx512f)
10244 {
10245 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10246 return (const reg_entry *) NULL;
10247
10248 if (!cpu_arch_flags.bitfield.cpuavx)
10249 {
10250 if (r->reg_type.bitfield.ymmword)
10251 return (const reg_entry *) NULL;
10252
10253 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10254 return (const reg_entry *) NULL;
10255 }
10256 }
10257
10258 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10259 return (const reg_entry *) NULL;
10260
10261 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10262 if (!allow_index_reg
10263 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10264 return (const reg_entry *) NULL;
10265
10266 /* Upper 16 vector registers are only available with VREX in 64bit
10267 mode, and require EVEX encoding. */
10268 if (r->reg_flags & RegVRex)
10269 {
10270 if (!cpu_arch_flags.bitfield.cpuvrex
10271 || flag_code != CODE_64BIT)
10272 return (const reg_entry *) NULL;
10273
10274 i.vec_encoding = vex_encoding_evex;
10275 }
10276
10277 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10278 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10279 && flag_code != CODE_64BIT)
10280 return (const reg_entry *) NULL;
10281
10282 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10283 return (const reg_entry *) NULL;
10284
10285 return r;
10286 }
10287
10288 /* REG_STRING starts *before* REGISTER_PREFIX. */
10289
10290 static const reg_entry *
10291 parse_register (char *reg_string, char **end_op)
10292 {
10293 const reg_entry *r;
10294
10295 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10296 r = parse_real_register (reg_string, end_op);
10297 else
10298 r = NULL;
10299 if (!r)
10300 {
10301 char *save = input_line_pointer;
10302 char c;
10303 symbolS *symbolP;
10304
10305 input_line_pointer = reg_string;
10306 c = get_symbol_name (&reg_string);
10307 symbolP = symbol_find (reg_string);
10308 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10309 {
10310 const expressionS *e = symbol_get_value_expression (symbolP);
10311
10312 know (e->X_op == O_register);
10313 know (e->X_add_number >= 0
10314 && (valueT) e->X_add_number < i386_regtab_size);
10315 r = i386_regtab + e->X_add_number;
10316 if ((r->reg_flags & RegVRex))
10317 i.vec_encoding = vex_encoding_evex;
10318 *end_op = input_line_pointer;
10319 }
10320 *input_line_pointer = c;
10321 input_line_pointer = save;
10322 }
10323 return r;
10324 }
10325
10326 int
10327 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10328 {
10329 const reg_entry *r;
10330 char *end = input_line_pointer;
10331
10332 *end = *nextcharP;
10333 r = parse_register (name, &input_line_pointer);
10334 if (r && end <= input_line_pointer)
10335 {
10336 *nextcharP = *input_line_pointer;
10337 *input_line_pointer = 0;
10338 e->X_op = O_register;
10339 e->X_add_number = r - i386_regtab;
10340 return 1;
10341 }
10342 input_line_pointer = end;
10343 *end = 0;
10344 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10345 }
10346
10347 void
10348 md_operand (expressionS *e)
10349 {
10350 char *end;
10351 const reg_entry *r;
10352
10353 switch (*input_line_pointer)
10354 {
10355 case REGISTER_PREFIX:
10356 r = parse_real_register (input_line_pointer, &end);
10357 if (r)
10358 {
10359 e->X_op = O_register;
10360 e->X_add_number = r - i386_regtab;
10361 input_line_pointer = end;
10362 }
10363 break;
10364
10365 case '[':
10366 gas_assert (intel_syntax);
10367 end = input_line_pointer++;
10368 expression (e);
10369 if (*input_line_pointer == ']')
10370 {
10371 ++input_line_pointer;
10372 e->X_op_symbol = make_expr_symbol (e);
10373 e->X_add_symbol = NULL;
10374 e->X_add_number = 0;
10375 e->X_op = O_index;
10376 }
10377 else
10378 {
10379 e->X_op = O_absent;
10380 input_line_pointer = end;
10381 }
10382 break;
10383 }
10384 }
10385
10386 \f
10387 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10388 const char *md_shortopts = "kVQ:sqnO::";
10389 #else
10390 const char *md_shortopts = "qnO::";
10391 #endif
10392
10393 #define OPTION_32 (OPTION_MD_BASE + 0)
10394 #define OPTION_64 (OPTION_MD_BASE + 1)
10395 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10396 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10397 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10398 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10399 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10400 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10401 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10402 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10403 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10404 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10405 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10406 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10407 #define OPTION_X32 (OPTION_MD_BASE + 14)
10408 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10409 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10410 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10411 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10412 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10413 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10414 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10415 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10416 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10417 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10418
10419 struct option md_longopts[] =
10420 {
10421 {"32", no_argument, NULL, OPTION_32},
10422 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10423 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10424 {"64", no_argument, NULL, OPTION_64},
10425 #endif
10426 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10427 {"x32", no_argument, NULL, OPTION_X32},
10428 {"mshared", no_argument, NULL, OPTION_MSHARED},
10429 #endif
10430 {"divide", no_argument, NULL, OPTION_DIVIDE},
10431 {"march", required_argument, NULL, OPTION_MARCH},
10432 {"mtune", required_argument, NULL, OPTION_MTUNE},
10433 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10434 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10435 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10436 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10437 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10438 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10439 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10440 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10441 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10442 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10443 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10444 # if defined (TE_PE) || defined (TE_PEP)
10445 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10446 #endif
10447 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10448 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10449 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10450 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10451 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10452 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10453 {NULL, no_argument, NULL, 0}
10454 };
10455 size_t md_longopts_size = sizeof (md_longopts);
10456
10457 int
10458 md_parse_option (int c, const char *arg)
10459 {
10460 unsigned int j;
10461 char *arch, *next, *saved;
10462
10463 switch (c)
10464 {
10465 case 'n':
10466 optimize_align_code = 0;
10467 break;
10468
10469 case 'q':
10470 quiet_warnings = 1;
10471 break;
10472
10473 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10474 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10475 should be emitted or not. FIXME: Not implemented. */
10476 case 'Q':
10477 break;
10478
10479 /* -V: SVR4 argument to print version ID. */
10480 case 'V':
10481 print_version_id ();
10482 break;
10483
10484 /* -k: Ignore for FreeBSD compatibility. */
10485 case 'k':
10486 break;
10487
10488 case 's':
10489 /* -s: On i386 Solaris, this tells the native assembler to use
10490 .stab instead of .stab.excl. We always use .stab anyhow. */
10491 break;
10492
10493 case OPTION_MSHARED:
10494 shared = 1;
10495 break;
10496 #endif
10497 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10498 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10499 case OPTION_64:
10500 {
10501 const char **list, **l;
10502
10503 list = bfd_target_list ();
10504 for (l = list; *l != NULL; l++)
10505 if (CONST_STRNEQ (*l, "elf64-x86-64")
10506 || strcmp (*l, "coff-x86-64") == 0
10507 || strcmp (*l, "pe-x86-64") == 0
10508 || strcmp (*l, "pei-x86-64") == 0
10509 || strcmp (*l, "mach-o-x86-64") == 0)
10510 {
10511 default_arch = "x86_64";
10512 break;
10513 }
10514 if (*l == NULL)
10515 as_fatal (_("no compiled in support for x86_64"));
10516 free (list);
10517 }
10518 break;
10519 #endif
10520
10521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10522 case OPTION_X32:
10523 if (IS_ELF)
10524 {
10525 const char **list, **l;
10526
10527 list = bfd_target_list ();
10528 for (l = list; *l != NULL; l++)
10529 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10530 {
10531 default_arch = "x86_64:32";
10532 break;
10533 }
10534 if (*l == NULL)
10535 as_fatal (_("no compiled in support for 32bit x86_64"));
10536 free (list);
10537 }
10538 else
10539 as_fatal (_("32bit x86_64 is only supported for ELF"));
10540 break;
10541 #endif
10542
10543 case OPTION_32:
10544 default_arch = "i386";
10545 break;
10546
10547 case OPTION_DIVIDE:
10548 #ifdef SVR4_COMMENT_CHARS
10549 {
10550 char *n, *t;
10551 const char *s;
10552
10553 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10554 t = n;
10555 for (s = i386_comment_chars; *s != '\0'; s++)
10556 if (*s != '/')
10557 *t++ = *s;
10558 *t = '\0';
10559 i386_comment_chars = n;
10560 }
10561 #endif
10562 break;
10563
10564 case OPTION_MARCH:
10565 saved = xstrdup (arg);
10566 arch = saved;
10567 /* Allow -march=+nosse. */
10568 if (*arch == '+')
10569 arch++;
10570 do
10571 {
10572 if (*arch == '.')
10573 as_fatal (_("invalid -march= option: `%s'"), arg);
10574 next = strchr (arch, '+');
10575 if (next)
10576 *next++ = '\0';
10577 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10578 {
10579 if (strcmp (arch, cpu_arch [j].name) == 0)
10580 {
10581 /* Processor. */
10582 if (! cpu_arch[j].flags.bitfield.cpui386)
10583 continue;
10584
10585 cpu_arch_name = cpu_arch[j].name;
10586 cpu_sub_arch_name = NULL;
10587 cpu_arch_flags = cpu_arch[j].flags;
10588 cpu_arch_isa = cpu_arch[j].type;
10589 cpu_arch_isa_flags = cpu_arch[j].flags;
10590 if (!cpu_arch_tune_set)
10591 {
10592 cpu_arch_tune = cpu_arch_isa;
10593 cpu_arch_tune_flags = cpu_arch_isa_flags;
10594 }
10595 break;
10596 }
10597 else if (*cpu_arch [j].name == '.'
10598 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10599 {
10600 /* ISA extension. */
10601 i386_cpu_flags flags;
10602
10603 flags = cpu_flags_or (cpu_arch_flags,
10604 cpu_arch[j].flags);
10605
10606 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10607 {
10608 if (cpu_sub_arch_name)
10609 {
10610 char *name = cpu_sub_arch_name;
10611 cpu_sub_arch_name = concat (name,
10612 cpu_arch[j].name,
10613 (const char *) NULL);
10614 free (name);
10615 }
10616 else
10617 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10618 cpu_arch_flags = flags;
10619 cpu_arch_isa_flags = flags;
10620 }
10621 else
10622 cpu_arch_isa_flags
10623 = cpu_flags_or (cpu_arch_isa_flags,
10624 cpu_arch[j].flags);
10625 break;
10626 }
10627 }
10628
10629 if (j >= ARRAY_SIZE (cpu_arch))
10630 {
10631 /* Disable an ISA extension. */
10632 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10633 if (strcmp (arch, cpu_noarch [j].name) == 0)
10634 {
10635 i386_cpu_flags flags;
10636
10637 flags = cpu_flags_and_not (cpu_arch_flags,
10638 cpu_noarch[j].flags);
10639 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10640 {
10641 if (cpu_sub_arch_name)
10642 {
10643 char *name = cpu_sub_arch_name;
10644 cpu_sub_arch_name = concat (arch,
10645 (const char *) NULL);
10646 free (name);
10647 }
10648 else
10649 cpu_sub_arch_name = xstrdup (arch);
10650 cpu_arch_flags = flags;
10651 cpu_arch_isa_flags = flags;
10652 }
10653 break;
10654 }
10655
10656 if (j >= ARRAY_SIZE (cpu_noarch))
10657 j = ARRAY_SIZE (cpu_arch);
10658 }
10659
10660 if (j >= ARRAY_SIZE (cpu_arch))
10661 as_fatal (_("invalid -march= option: `%s'"), arg);
10662
10663 arch = next;
10664 }
10665 while (next != NULL);
10666 free (saved);
10667 break;
10668
10669 case OPTION_MTUNE:
10670 if (*arg == '.')
10671 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10672 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10673 {
10674 if (strcmp (arg, cpu_arch [j].name) == 0)
10675 {
10676 cpu_arch_tune_set = 1;
10677 cpu_arch_tune = cpu_arch [j].type;
10678 cpu_arch_tune_flags = cpu_arch[j].flags;
10679 break;
10680 }
10681 }
10682 if (j >= ARRAY_SIZE (cpu_arch))
10683 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10684 break;
10685
10686 case OPTION_MMNEMONIC:
10687 if (strcasecmp (arg, "att") == 0)
10688 intel_mnemonic = 0;
10689 else if (strcasecmp (arg, "intel") == 0)
10690 intel_mnemonic = 1;
10691 else
10692 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10693 break;
10694
10695 case OPTION_MSYNTAX:
10696 if (strcasecmp (arg, "att") == 0)
10697 intel_syntax = 0;
10698 else if (strcasecmp (arg, "intel") == 0)
10699 intel_syntax = 1;
10700 else
10701 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10702 break;
10703
10704 case OPTION_MINDEX_REG:
10705 allow_index_reg = 1;
10706 break;
10707
10708 case OPTION_MNAKED_REG:
10709 allow_naked_reg = 1;
10710 break;
10711
10712 case OPTION_MSSE2AVX:
10713 sse2avx = 1;
10714 break;
10715
10716 case OPTION_MSSE_CHECK:
10717 if (strcasecmp (arg, "error") == 0)
10718 sse_check = check_error;
10719 else if (strcasecmp (arg, "warning") == 0)
10720 sse_check = check_warning;
10721 else if (strcasecmp (arg, "none") == 0)
10722 sse_check = check_none;
10723 else
10724 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10725 break;
10726
10727 case OPTION_MOPERAND_CHECK:
10728 if (strcasecmp (arg, "error") == 0)
10729 operand_check = check_error;
10730 else if (strcasecmp (arg, "warning") == 0)
10731 operand_check = check_warning;
10732 else if (strcasecmp (arg, "none") == 0)
10733 operand_check = check_none;
10734 else
10735 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10736 break;
10737
10738 case OPTION_MAVXSCALAR:
10739 if (strcasecmp (arg, "128") == 0)
10740 avxscalar = vex128;
10741 else if (strcasecmp (arg, "256") == 0)
10742 avxscalar = vex256;
10743 else
10744 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10745 break;
10746
10747 case OPTION_MADD_BND_PREFIX:
10748 add_bnd_prefix = 1;
10749 break;
10750
10751 case OPTION_MEVEXLIG:
10752 if (strcmp (arg, "128") == 0)
10753 evexlig = evexl128;
10754 else if (strcmp (arg, "256") == 0)
10755 evexlig = evexl256;
10756 else if (strcmp (arg, "512") == 0)
10757 evexlig = evexl512;
10758 else
10759 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10760 break;
10761
10762 case OPTION_MEVEXRCIG:
10763 if (strcmp (arg, "rne") == 0)
10764 evexrcig = rne;
10765 else if (strcmp (arg, "rd") == 0)
10766 evexrcig = rd;
10767 else if (strcmp (arg, "ru") == 0)
10768 evexrcig = ru;
10769 else if (strcmp (arg, "rz") == 0)
10770 evexrcig = rz;
10771 else
10772 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10773 break;
10774
10775 case OPTION_MEVEXWIG:
10776 if (strcmp (arg, "0") == 0)
10777 evexwig = evexw0;
10778 else if (strcmp (arg, "1") == 0)
10779 evexwig = evexw1;
10780 else
10781 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10782 break;
10783
10784 # if defined (TE_PE) || defined (TE_PEP)
10785 case OPTION_MBIG_OBJ:
10786 use_big_obj = 1;
10787 break;
10788 #endif
10789
10790 case OPTION_MOMIT_LOCK_PREFIX:
10791 if (strcasecmp (arg, "yes") == 0)
10792 omit_lock_prefix = 1;
10793 else if (strcasecmp (arg, "no") == 0)
10794 omit_lock_prefix = 0;
10795 else
10796 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10797 break;
10798
10799 case OPTION_MFENCE_AS_LOCK_ADD:
10800 if (strcasecmp (arg, "yes") == 0)
10801 avoid_fence = 1;
10802 else if (strcasecmp (arg, "no") == 0)
10803 avoid_fence = 0;
10804 else
10805 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10806 break;
10807
10808 case OPTION_MRELAX_RELOCATIONS:
10809 if (strcasecmp (arg, "yes") == 0)
10810 generate_relax_relocations = 1;
10811 else if (strcasecmp (arg, "no") == 0)
10812 generate_relax_relocations = 0;
10813 else
10814 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10815 break;
10816
10817 case OPTION_MAMD64:
10818 intel64 = 0;
10819 break;
10820
10821 case OPTION_MINTEL64:
10822 intel64 = 1;
10823 break;
10824
10825 case 'O':
10826 if (arg == NULL)
10827 {
10828 optimize = 1;
10829 /* Turn off -Os. */
10830 optimize_for_space = 0;
10831 }
10832 else if (*arg == 's')
10833 {
10834 optimize_for_space = 1;
10835 /* Turn on all encoding optimizations. */
10836 optimize = -1;
10837 }
10838 else
10839 {
10840 optimize = atoi (arg);
10841 /* Turn off -Os. */
10842 optimize_for_space = 0;
10843 }
10844 break;
10845
10846 default:
10847 return 0;
10848 }
10849 return 1;
10850 }
10851
10852 #define MESSAGE_TEMPLATE \
10853 " "
10854
10855 static char *
10856 output_message (FILE *stream, char *p, char *message, char *start,
10857 int *left_p, const char *name, int len)
10858 {
10859 int size = sizeof (MESSAGE_TEMPLATE);
10860 int left = *left_p;
10861
10862 /* Reserve 2 spaces for ", " or ",\0" */
10863 left -= len + 2;
10864
10865 /* Check if there is any room. */
10866 if (left >= 0)
10867 {
10868 if (p != start)
10869 {
10870 *p++ = ',';
10871 *p++ = ' ';
10872 }
10873 p = mempcpy (p, name, len);
10874 }
10875 else
10876 {
10877 /* Output the current message now and start a new one. */
10878 *p++ = ',';
10879 *p = '\0';
10880 fprintf (stream, "%s\n", message);
10881 p = start;
10882 left = size - (start - message) - len - 2;
10883
10884 gas_assert (left >= 0);
10885
10886 p = mempcpy (p, name, len);
10887 }
10888
10889 *left_p = left;
10890 return p;
10891 }
10892
10893 static void
10894 show_arch (FILE *stream, int ext, int check)
10895 {
10896 static char message[] = MESSAGE_TEMPLATE;
10897 char *start = message + 27;
10898 char *p;
10899 int size = sizeof (MESSAGE_TEMPLATE);
10900 int left;
10901 const char *name;
10902 int len;
10903 unsigned int j;
10904
10905 p = start;
10906 left = size - (start - message);
10907 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10908 {
10909 /* Should it be skipped? */
10910 if (cpu_arch [j].skip)
10911 continue;
10912
10913 name = cpu_arch [j].name;
10914 len = cpu_arch [j].len;
10915 if (*name == '.')
10916 {
10917 /* It is an extension. Skip if we aren't asked to show it. */
10918 if (ext)
10919 {
10920 name++;
10921 len--;
10922 }
10923 else
10924 continue;
10925 }
10926 else if (ext)
10927 {
10928 /* It is an processor. Skip if we show only extension. */
10929 continue;
10930 }
10931 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10932 {
10933 /* It is an impossible processor - skip. */
10934 continue;
10935 }
10936
10937 p = output_message (stream, p, message, start, &left, name, len);
10938 }
10939
10940 /* Display disabled extensions. */
10941 if (ext)
10942 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10943 {
10944 name = cpu_noarch [j].name;
10945 len = cpu_noarch [j].len;
10946 p = output_message (stream, p, message, start, &left, name,
10947 len);
10948 }
10949
10950 *p = '\0';
10951 fprintf (stream, "%s\n", message);
10952 }
10953
10954 void
10955 md_show_usage (FILE *stream)
10956 {
10957 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10958 fprintf (stream, _("\
10959 -Q ignored\n\
10960 -V print assembler version number\n\
10961 -k ignored\n"));
10962 #endif
10963 fprintf (stream, _("\
10964 -n Do not optimize code alignment\n\
10965 -q quieten some warnings\n"));
10966 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10967 fprintf (stream, _("\
10968 -s ignored\n"));
10969 #endif
10970 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10971 || defined (TE_PE) || defined (TE_PEP))
10972 fprintf (stream, _("\
10973 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10974 #endif
10975 #ifdef SVR4_COMMENT_CHARS
10976 fprintf (stream, _("\
10977 --divide do not treat `/' as a comment character\n"));
10978 #else
10979 fprintf (stream, _("\
10980 --divide ignored\n"));
10981 #endif
10982 fprintf (stream, _("\
10983 -march=CPU[,+EXTENSION...]\n\
10984 generate code for CPU and EXTENSION, CPU is one of:\n"));
10985 show_arch (stream, 0, 1);
10986 fprintf (stream, _("\
10987 EXTENSION is combination of:\n"));
10988 show_arch (stream, 1, 0);
10989 fprintf (stream, _("\
10990 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10991 show_arch (stream, 0, 0);
10992 fprintf (stream, _("\
10993 -msse2avx encode SSE instructions with VEX prefix\n"));
10994 fprintf (stream, _("\
10995 -msse-check=[none|error|warning]\n\
10996 check SSE instructions\n"));
10997 fprintf (stream, _("\
10998 -moperand-check=[none|error|warning]\n\
10999 check operand combinations for validity\n"));
11000 fprintf (stream, _("\
11001 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11002 length\n"));
11003 fprintf (stream, _("\
11004 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11005 length\n"));
11006 fprintf (stream, _("\
11007 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11008 for EVEX.W bit ignored instructions\n"));
11009 fprintf (stream, _("\
11010 -mevexrcig=[rne|rd|ru|rz]\n\
11011 encode EVEX instructions with specific EVEX.RC value\n\
11012 for SAE-only ignored instructions\n"));
11013 fprintf (stream, _("\
11014 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11015 fprintf (stream, _("\
11016 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11017 fprintf (stream, _("\
11018 -mindex-reg support pseudo index registers\n"));
11019 fprintf (stream, _("\
11020 -mnaked-reg don't require `%%' prefix for registers\n"));
11021 fprintf (stream, _("\
11022 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11023 fprintf (stream, _("\
11024 -mshared disable branch optimization for shared code\n"));
11025 # if defined (TE_PE) || defined (TE_PEP)
11026 fprintf (stream, _("\
11027 -mbig-obj generate big object files\n"));
11028 #endif
11029 fprintf (stream, _("\
11030 -momit-lock-prefix=[no|yes]\n\
11031 strip all lock prefixes\n"));
11032 fprintf (stream, _("\
11033 -mfence-as-lock-add=[no|yes]\n\
11034 encode lfence, mfence and sfence as\n\
11035 lock addl $0x0, (%%{re}sp)\n"));
11036 fprintf (stream, _("\
11037 -mrelax-relocations=[no|yes]\n\
11038 generate relax relocations\n"));
11039 fprintf (stream, _("\
11040 -mamd64 accept only AMD64 ISA\n"));
11041 fprintf (stream, _("\
11042 -mintel64 accept only Intel64 ISA\n"));
11043 }
11044
11045 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11046 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11047 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11048
11049 /* Pick the target format to use. */
11050
11051 const char *
11052 i386_target_format (void)
11053 {
11054 if (!strncmp (default_arch, "x86_64", 6))
11055 {
11056 update_code_flag (CODE_64BIT, 1);
11057 if (default_arch[6] == '\0')
11058 x86_elf_abi = X86_64_ABI;
11059 else
11060 x86_elf_abi = X86_64_X32_ABI;
11061 }
11062 else if (!strcmp (default_arch, "i386"))
11063 update_code_flag (CODE_32BIT, 1);
11064 else if (!strcmp (default_arch, "iamcu"))
11065 {
11066 update_code_flag (CODE_32BIT, 1);
11067 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11068 {
11069 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11070 cpu_arch_name = "iamcu";
11071 cpu_sub_arch_name = NULL;
11072 cpu_arch_flags = iamcu_flags;
11073 cpu_arch_isa = PROCESSOR_IAMCU;
11074 cpu_arch_isa_flags = iamcu_flags;
11075 if (!cpu_arch_tune_set)
11076 {
11077 cpu_arch_tune = cpu_arch_isa;
11078 cpu_arch_tune_flags = cpu_arch_isa_flags;
11079 }
11080 }
11081 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11082 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11083 cpu_arch_name);
11084 }
11085 else
11086 as_fatal (_("unknown architecture"));
11087
11088 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11089 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11090 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11091 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11092
11093 switch (OUTPUT_FLAVOR)
11094 {
11095 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11096 case bfd_target_aout_flavour:
11097 return AOUT_TARGET_FORMAT;
11098 #endif
11099 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11100 # if defined (TE_PE) || defined (TE_PEP)
11101 case bfd_target_coff_flavour:
11102 if (flag_code == CODE_64BIT)
11103 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11104 else
11105 return "pe-i386";
11106 # elif defined (TE_GO32)
11107 case bfd_target_coff_flavour:
11108 return "coff-go32";
11109 # else
11110 case bfd_target_coff_flavour:
11111 return "coff-i386";
11112 # endif
11113 #endif
11114 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11115 case bfd_target_elf_flavour:
11116 {
11117 const char *format;
11118
11119 switch (x86_elf_abi)
11120 {
11121 default:
11122 format = ELF_TARGET_FORMAT;
11123 break;
11124 case X86_64_ABI:
11125 use_rela_relocations = 1;
11126 object_64bit = 1;
11127 format = ELF_TARGET_FORMAT64;
11128 break;
11129 case X86_64_X32_ABI:
11130 use_rela_relocations = 1;
11131 object_64bit = 1;
11132 disallow_64bit_reloc = 1;
11133 format = ELF_TARGET_FORMAT32;
11134 break;
11135 }
11136 if (cpu_arch_isa == PROCESSOR_L1OM)
11137 {
11138 if (x86_elf_abi != X86_64_ABI)
11139 as_fatal (_("Intel L1OM is 64bit only"));
11140 return ELF_TARGET_L1OM_FORMAT;
11141 }
11142 else if (cpu_arch_isa == PROCESSOR_K1OM)
11143 {
11144 if (x86_elf_abi != X86_64_ABI)
11145 as_fatal (_("Intel K1OM is 64bit only"));
11146 return ELF_TARGET_K1OM_FORMAT;
11147 }
11148 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11149 {
11150 if (x86_elf_abi != I386_ABI)
11151 as_fatal (_("Intel MCU is 32bit only"));
11152 return ELF_TARGET_IAMCU_FORMAT;
11153 }
11154 else
11155 return format;
11156 }
11157 #endif
11158 #if defined (OBJ_MACH_O)
11159 case bfd_target_mach_o_flavour:
11160 if (flag_code == CODE_64BIT)
11161 {
11162 use_rela_relocations = 1;
11163 object_64bit = 1;
11164 return "mach-o-x86-64";
11165 }
11166 else
11167 return "mach-o-i386";
11168 #endif
11169 default:
11170 abort ();
11171 return NULL;
11172 }
11173 }
11174
11175 #endif /* OBJ_MAYBE_ more than one */
11176 \f
11177 symbolS *
11178 md_undefined_symbol (char *name)
11179 {
11180 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11181 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11182 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11183 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11184 {
11185 if (!GOT_symbol)
11186 {
11187 if (symbol_find (name))
11188 as_bad (_("GOT already in symbol table"));
11189 GOT_symbol = symbol_new (name, undefined_section,
11190 (valueT) 0, &zero_address_frag);
11191 };
11192 return GOT_symbol;
11193 }
11194 return 0;
11195 }
11196
11197 /* Round up a section size to the appropriate boundary. */
11198
11199 valueT
11200 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11201 {
11202 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11203 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11204 {
11205 /* For a.out, force the section size to be aligned. If we don't do
11206 this, BFD will align it for us, but it will not write out the
11207 final bytes of the section. This may be a bug in BFD, but it is
11208 easier to fix it here since that is how the other a.out targets
11209 work. */
11210 int align;
11211
11212 align = bfd_get_section_alignment (stdoutput, segment);
11213 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11214 }
11215 #endif
11216
11217 return size;
11218 }
11219
11220 /* On the i386, PC-relative offsets are relative to the start of the
11221 next instruction. That is, the address of the offset, plus its
11222 size, since the offset is always the last part of the insn. */
11223
11224 long
11225 md_pcrel_from (fixS *fixP)
11226 {
11227 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11228 }
11229
11230 #ifndef I386COFF
11231
11232 static void
11233 s_bss (int ignore ATTRIBUTE_UNUSED)
11234 {
11235 int temp;
11236
11237 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11238 if (IS_ELF)
11239 obj_elf_section_change_hook ();
11240 #endif
11241 temp = get_absolute_expression ();
11242 subseg_set (bss_section, (subsegT) temp);
11243 demand_empty_rest_of_line ();
11244 }
11245
11246 #endif
11247
11248 void
11249 i386_validate_fix (fixS *fixp)
11250 {
11251 if (fixp->fx_subsy)
11252 {
11253 if (fixp->fx_subsy == GOT_symbol)
11254 {
11255 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11256 {
11257 if (!object_64bit)
11258 abort ();
11259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11260 if (fixp->fx_tcbit2)
11261 fixp->fx_r_type = (fixp->fx_tcbit
11262 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11263 : BFD_RELOC_X86_64_GOTPCRELX);
11264 else
11265 #endif
11266 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11267 }
11268 else
11269 {
11270 if (!object_64bit)
11271 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11272 else
11273 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11274 }
11275 fixp->fx_subsy = 0;
11276 }
11277 }
11278 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11279 else if (!object_64bit)
11280 {
11281 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11282 && fixp->fx_tcbit2)
11283 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11284 }
11285 #endif
11286 }
11287
11288 arelent *
11289 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11290 {
11291 arelent *rel;
11292 bfd_reloc_code_real_type code;
11293
11294 switch (fixp->fx_r_type)
11295 {
11296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11297 case BFD_RELOC_SIZE32:
11298 case BFD_RELOC_SIZE64:
11299 if (S_IS_DEFINED (fixp->fx_addsy)
11300 && !S_IS_EXTERNAL (fixp->fx_addsy))
11301 {
11302 /* Resolve size relocation against local symbol to size of
11303 the symbol plus addend. */
11304 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11305 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11306 && !fits_in_unsigned_long (value))
11307 as_bad_where (fixp->fx_file, fixp->fx_line,
11308 _("symbol size computation overflow"));
11309 fixp->fx_addsy = NULL;
11310 fixp->fx_subsy = NULL;
11311 md_apply_fix (fixp, (valueT *) &value, NULL);
11312 return NULL;
11313 }
11314 #endif
11315 /* Fall through. */
11316
11317 case BFD_RELOC_X86_64_PLT32:
11318 case BFD_RELOC_X86_64_GOT32:
11319 case BFD_RELOC_X86_64_GOTPCREL:
11320 case BFD_RELOC_X86_64_GOTPCRELX:
11321 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11322 case BFD_RELOC_386_PLT32:
11323 case BFD_RELOC_386_GOT32:
11324 case BFD_RELOC_386_GOT32X:
11325 case BFD_RELOC_386_GOTOFF:
11326 case BFD_RELOC_386_GOTPC:
11327 case BFD_RELOC_386_TLS_GD:
11328 case BFD_RELOC_386_TLS_LDM:
11329 case BFD_RELOC_386_TLS_LDO_32:
11330 case BFD_RELOC_386_TLS_IE_32:
11331 case BFD_RELOC_386_TLS_IE:
11332 case BFD_RELOC_386_TLS_GOTIE:
11333 case BFD_RELOC_386_TLS_LE_32:
11334 case BFD_RELOC_386_TLS_LE:
11335 case BFD_RELOC_386_TLS_GOTDESC:
11336 case BFD_RELOC_386_TLS_DESC_CALL:
11337 case BFD_RELOC_X86_64_TLSGD:
11338 case BFD_RELOC_X86_64_TLSLD:
11339 case BFD_RELOC_X86_64_DTPOFF32:
11340 case BFD_RELOC_X86_64_DTPOFF64:
11341 case BFD_RELOC_X86_64_GOTTPOFF:
11342 case BFD_RELOC_X86_64_TPOFF32:
11343 case BFD_RELOC_X86_64_TPOFF64:
11344 case BFD_RELOC_X86_64_GOTOFF64:
11345 case BFD_RELOC_X86_64_GOTPC32:
11346 case BFD_RELOC_X86_64_GOT64:
11347 case BFD_RELOC_X86_64_GOTPCREL64:
11348 case BFD_RELOC_X86_64_GOTPC64:
11349 case BFD_RELOC_X86_64_GOTPLT64:
11350 case BFD_RELOC_X86_64_PLTOFF64:
11351 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11352 case BFD_RELOC_X86_64_TLSDESC_CALL:
11353 case BFD_RELOC_RVA:
11354 case BFD_RELOC_VTABLE_ENTRY:
11355 case BFD_RELOC_VTABLE_INHERIT:
11356 #ifdef TE_PE
11357 case BFD_RELOC_32_SECREL:
11358 #endif
11359 code = fixp->fx_r_type;
11360 break;
11361 case BFD_RELOC_X86_64_32S:
11362 if (!fixp->fx_pcrel)
11363 {
11364 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11365 code = fixp->fx_r_type;
11366 break;
11367 }
11368 /* Fall through. */
11369 default:
11370 if (fixp->fx_pcrel)
11371 {
11372 switch (fixp->fx_size)
11373 {
11374 default:
11375 as_bad_where (fixp->fx_file, fixp->fx_line,
11376 _("can not do %d byte pc-relative relocation"),
11377 fixp->fx_size);
11378 code = BFD_RELOC_32_PCREL;
11379 break;
11380 case 1: code = BFD_RELOC_8_PCREL; break;
11381 case 2: code = BFD_RELOC_16_PCREL; break;
11382 case 4: code = BFD_RELOC_32_PCREL; break;
11383 #ifdef BFD64
11384 case 8: code = BFD_RELOC_64_PCREL; break;
11385 #endif
11386 }
11387 }
11388 else
11389 {
11390 switch (fixp->fx_size)
11391 {
11392 default:
11393 as_bad_where (fixp->fx_file, fixp->fx_line,
11394 _("can not do %d byte relocation"),
11395 fixp->fx_size);
11396 code = BFD_RELOC_32;
11397 break;
11398 case 1: code = BFD_RELOC_8; break;
11399 case 2: code = BFD_RELOC_16; break;
11400 case 4: code = BFD_RELOC_32; break;
11401 #ifdef BFD64
11402 case 8: code = BFD_RELOC_64; break;
11403 #endif
11404 }
11405 }
11406 break;
11407 }
11408
11409 if ((code == BFD_RELOC_32
11410 || code == BFD_RELOC_32_PCREL
11411 || code == BFD_RELOC_X86_64_32S)
11412 && GOT_symbol
11413 && fixp->fx_addsy == GOT_symbol)
11414 {
11415 if (!object_64bit)
11416 code = BFD_RELOC_386_GOTPC;
11417 else
11418 code = BFD_RELOC_X86_64_GOTPC32;
11419 }
11420 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11421 && GOT_symbol
11422 && fixp->fx_addsy == GOT_symbol)
11423 {
11424 code = BFD_RELOC_X86_64_GOTPC64;
11425 }
11426
11427 rel = XNEW (arelent);
11428 rel->sym_ptr_ptr = XNEW (asymbol *);
11429 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11430
11431 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11432
11433 if (!use_rela_relocations)
11434 {
11435 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11436 vtable entry to be used in the relocation's section offset. */
11437 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11438 rel->address = fixp->fx_offset;
11439 #if defined (OBJ_COFF) && defined (TE_PE)
11440 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11441 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11442 else
11443 #endif
11444 rel->addend = 0;
11445 }
11446 /* Use the rela in 64bit mode. */
11447 else
11448 {
11449 if (disallow_64bit_reloc)
11450 switch (code)
11451 {
11452 case BFD_RELOC_X86_64_DTPOFF64:
11453 case BFD_RELOC_X86_64_TPOFF64:
11454 case BFD_RELOC_64_PCREL:
11455 case BFD_RELOC_X86_64_GOTOFF64:
11456 case BFD_RELOC_X86_64_GOT64:
11457 case BFD_RELOC_X86_64_GOTPCREL64:
11458 case BFD_RELOC_X86_64_GOTPC64:
11459 case BFD_RELOC_X86_64_GOTPLT64:
11460 case BFD_RELOC_X86_64_PLTOFF64:
11461 as_bad_where (fixp->fx_file, fixp->fx_line,
11462 _("cannot represent relocation type %s in x32 mode"),
11463 bfd_get_reloc_code_name (code));
11464 break;
11465 default:
11466 break;
11467 }
11468
11469 if (!fixp->fx_pcrel)
11470 rel->addend = fixp->fx_offset;
11471 else
11472 switch (code)
11473 {
11474 case BFD_RELOC_X86_64_PLT32:
11475 case BFD_RELOC_X86_64_GOT32:
11476 case BFD_RELOC_X86_64_GOTPCREL:
11477 case BFD_RELOC_X86_64_GOTPCRELX:
11478 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11479 case BFD_RELOC_X86_64_TLSGD:
11480 case BFD_RELOC_X86_64_TLSLD:
11481 case BFD_RELOC_X86_64_GOTTPOFF:
11482 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11483 case BFD_RELOC_X86_64_TLSDESC_CALL:
11484 rel->addend = fixp->fx_offset - fixp->fx_size;
11485 break;
11486 default:
11487 rel->addend = (section->vma
11488 - fixp->fx_size
11489 + fixp->fx_addnumber
11490 + md_pcrel_from (fixp));
11491 break;
11492 }
11493 }
11494
11495 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11496 if (rel->howto == NULL)
11497 {
11498 as_bad_where (fixp->fx_file, fixp->fx_line,
11499 _("cannot represent relocation type %s"),
11500 bfd_get_reloc_code_name (code));
11501 /* Set howto to a garbage value so that we can keep going. */
11502 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11503 gas_assert (rel->howto != NULL);
11504 }
11505
11506 return rel;
11507 }
11508
11509 #include "tc-i386-intel.c"
11510
11511 void
11512 tc_x86_parse_to_dw2regnum (expressionS *exp)
11513 {
11514 int saved_naked_reg;
11515 char saved_register_dot;
11516
11517 saved_naked_reg = allow_naked_reg;
11518 allow_naked_reg = 1;
11519 saved_register_dot = register_chars['.'];
11520 register_chars['.'] = '.';
11521 allow_pseudo_reg = 1;
11522 expression_and_evaluate (exp);
11523 allow_pseudo_reg = 0;
11524 register_chars['.'] = saved_register_dot;
11525 allow_naked_reg = saved_naked_reg;
11526
11527 if (exp->X_op == O_register && exp->X_add_number >= 0)
11528 {
11529 if ((addressT) exp->X_add_number < i386_regtab_size)
11530 {
11531 exp->X_op = O_constant;
11532 exp->X_add_number = i386_regtab[exp->X_add_number]
11533 .dw2_regnum[flag_code >> 1];
11534 }
11535 else
11536 exp->X_op = O_illegal;
11537 }
11538 }
11539
11540 void
11541 tc_x86_frame_initial_instructions (void)
11542 {
11543 static unsigned int sp_regno[2];
11544
11545 if (!sp_regno[flag_code >> 1])
11546 {
11547 char *saved_input = input_line_pointer;
11548 char sp[][4] = {"esp", "rsp"};
11549 expressionS exp;
11550
11551 input_line_pointer = sp[flag_code >> 1];
11552 tc_x86_parse_to_dw2regnum (&exp);
11553 gas_assert (exp.X_op == O_constant);
11554 sp_regno[flag_code >> 1] = exp.X_add_number;
11555 input_line_pointer = saved_input;
11556 }
11557
11558 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11559 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11560 }
11561
11562 int
11563 x86_dwarf2_addr_size (void)
11564 {
11565 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11566 if (x86_elf_abi == X86_64_X32_ABI)
11567 return 4;
11568 #endif
11569 return bfd_arch_bits_per_address (stdoutput) / 8;
11570 }
11571
11572 int
11573 i386_elf_section_type (const char *str, size_t len)
11574 {
11575 if (flag_code == CODE_64BIT
11576 && len == sizeof ("unwind") - 1
11577 && strncmp (str, "unwind", 6) == 0)
11578 return SHT_X86_64_UNWIND;
11579
11580 return -1;
11581 }
11582
11583 #ifdef TE_SOLARIS
11584 void
11585 i386_solaris_fix_up_eh_frame (segT sec)
11586 {
11587 if (flag_code == CODE_64BIT)
11588 elf_section_type (sec) = SHT_X86_64_UNWIND;
11589 }
11590 #endif
11591
11592 #ifdef TE_PE
11593 void
11594 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11595 {
11596 expressionS exp;
11597
11598 exp.X_op = O_secrel;
11599 exp.X_add_symbol = symbol;
11600 exp.X_add_number = 0;
11601 emit_expr (&exp, size);
11602 }
11603 #endif
11604
11605 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11606 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11607
11608 bfd_vma
11609 x86_64_section_letter (int letter, const char **ptr_msg)
11610 {
11611 if (flag_code == CODE_64BIT)
11612 {
11613 if (letter == 'l')
11614 return SHF_X86_64_LARGE;
11615
11616 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11617 }
11618 else
11619 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11620 return -1;
11621 }
11622
11623 bfd_vma
11624 x86_64_section_word (char *str, size_t len)
11625 {
11626 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11627 return SHF_X86_64_LARGE;
11628
11629 return -1;
11630 }
11631
11632 static void
11633 handle_large_common (int small ATTRIBUTE_UNUSED)
11634 {
11635 if (flag_code != CODE_64BIT)
11636 {
11637 s_comm_internal (0, elf_common_parse);
11638 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11639 }
11640 else
11641 {
11642 static segT lbss_section;
11643 asection *saved_com_section_ptr = elf_com_section_ptr;
11644 asection *saved_bss_section = bss_section;
11645
11646 if (lbss_section == NULL)
11647 {
11648 flagword applicable;
11649 segT seg = now_seg;
11650 subsegT subseg = now_subseg;
11651
11652 /* The .lbss section is for local .largecomm symbols. */
11653 lbss_section = subseg_new (".lbss", 0);
11654 applicable = bfd_applicable_section_flags (stdoutput);
11655 bfd_set_section_flags (stdoutput, lbss_section,
11656 applicable & SEC_ALLOC);
11657 seg_info (lbss_section)->bss = 1;
11658
11659 subseg_set (seg, subseg);
11660 }
11661
11662 elf_com_section_ptr = &_bfd_elf_large_com_section;
11663 bss_section = lbss_section;
11664
11665 s_comm_internal (0, elf_common_parse);
11666
11667 elf_com_section_ptr = saved_com_section_ptr;
11668 bss_section = saved_bss_section;
11669 }
11670 }
11671 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.290467 seconds and 5 git commands to generate.