Enable Intel MOVDIRI, MOVDIR64B instructions
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
847 CPU_BTVER1_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
849 CPU_BTVER2_FLAGS, 0 },
850 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
851 CPU_8087_FLAGS, 0 },
852 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
853 CPU_287_FLAGS, 0 },
854 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
855 CPU_387_FLAGS, 0 },
856 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
857 CPU_687_FLAGS, 0 },
858 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
859 CPU_MMX_FLAGS, 0 },
860 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
861 CPU_SSE_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
863 CPU_SSE2_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
865 CPU_SSE3_FLAGS, 0 },
866 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
867 CPU_SSSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
869 CPU_SSE4_1_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_2_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
875 CPU_AVX_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
877 CPU_AVX2_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
879 CPU_AVX512F_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
881 CPU_AVX512CD_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
883 CPU_AVX512ER_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
885 CPU_AVX512PF_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
887 CPU_AVX512DQ_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
889 CPU_AVX512BW_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
891 CPU_AVX512VL_FLAGS, 0 },
892 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
893 CPU_VMX_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
895 CPU_VMFUNC_FLAGS, 0 },
896 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
897 CPU_SMX_FLAGS, 0 },
898 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
899 CPU_XSAVE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
901 CPU_XSAVEOPT_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEC_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
905 CPU_XSAVES_FLAGS, 0 },
906 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
907 CPU_AES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
909 CPU_PCLMUL_FLAGS, 0 },
910 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 1 },
912 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
913 CPU_FSGSBASE_FLAGS, 0 },
914 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
915 CPU_RDRND_FLAGS, 0 },
916 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
917 CPU_F16C_FLAGS, 0 },
918 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
919 CPU_BMI2_FLAGS, 0 },
920 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
921 CPU_FMA_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
923 CPU_FMA4_FLAGS, 0 },
924 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
925 CPU_XOP_FLAGS, 0 },
926 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
927 CPU_LWP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
929 CPU_MOVBE_FLAGS, 0 },
930 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
931 CPU_CX16_FLAGS, 0 },
932 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
933 CPU_EPT_FLAGS, 0 },
934 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
935 CPU_LZCNT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
937 CPU_HLE_FLAGS, 0 },
938 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
939 CPU_RTM_FLAGS, 0 },
940 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
941 CPU_INVPCID_FLAGS, 0 },
942 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
943 CPU_CLFLUSH_FLAGS, 0 },
944 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
945 CPU_NOP_FLAGS, 0 },
946 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
947 CPU_SYSCALL_FLAGS, 0 },
948 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
949 CPU_RDTSCP_FLAGS, 0 },
950 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
951 CPU_3DNOW_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
953 CPU_3DNOWA_FLAGS, 0 },
954 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
955 CPU_PADLOCK_FLAGS, 0 },
956 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
957 CPU_SVME_FLAGS, 1 },
958 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 0 },
960 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
961 CPU_SSE4A_FLAGS, 0 },
962 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
963 CPU_ABM_FLAGS, 0 },
964 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
965 CPU_BMI_FLAGS, 0 },
966 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
967 CPU_TBM_FLAGS, 0 },
968 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
969 CPU_ADX_FLAGS, 0 },
970 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
971 CPU_RDSEED_FLAGS, 0 },
972 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
973 CPU_PRFCHW_FLAGS, 0 },
974 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
975 CPU_SMAP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
977 CPU_MPX_FLAGS, 0 },
978 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
979 CPU_SHA_FLAGS, 0 },
980 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
981 CPU_CLFLUSHOPT_FLAGS, 0 },
982 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
983 CPU_PREFETCHWT1_FLAGS, 0 },
984 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
985 CPU_SE1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
987 CPU_CLWB_FLAGS, 0 },
988 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
989 CPU_AVX512IFMA_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
991 CPU_AVX512VBMI_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
993 CPU_AVX512_4FMAPS_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4VNNIW_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VBMI2_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VNNI_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_BITALG_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1005 CPU_CLZERO_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1007 CPU_MWAITX_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1009 CPU_OSPKE_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1011 CPU_RDPID_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1013 CPU_PTWRITE_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1015 CPU_IBT_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1017 CPU_SHSTK_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1019 CPU_GFNI_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1021 CPU_VAES_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1023 CPU_VPCLMULQDQ_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1025 CPU_WBNOINVD_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1027 CPU_PCONFIG_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1029 CPU_WAITPKG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1031 CPU_CLDEMOTE_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1033 CPU_MOVDIRI_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIR64B_FLAGS, 0 },
1036 };
1037
1038 static const noarch_entry cpu_noarch[] =
1039 {
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1071 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1072 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1073 };
1074
1075 #ifdef I386COFF
1076 /* Like s_lcomm_internal in gas/read.c but the alignment string
1077 is allowed to be optional. */
1078
1079 static symbolS *
1080 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1081 {
1082 addressT align = 0;
1083
1084 SKIP_WHITESPACE ();
1085
1086 if (needs_align
1087 && *input_line_pointer == ',')
1088 {
1089 align = parse_align (needs_align - 1);
1090
1091 if (align == (addressT) -1)
1092 return NULL;
1093 }
1094 else
1095 {
1096 if (size >= 8)
1097 align = 3;
1098 else if (size >= 4)
1099 align = 2;
1100 else if (size >= 2)
1101 align = 1;
1102 else
1103 align = 0;
1104 }
1105
1106 bss_alloc (symbolP, size, align);
1107 return symbolP;
1108 }
1109
1110 static void
1111 pe_lcomm (int needs_align)
1112 {
1113 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1114 }
1115 #endif
1116
1117 const pseudo_typeS md_pseudo_table[] =
1118 {
1119 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1120 {"align", s_align_bytes, 0},
1121 #else
1122 {"align", s_align_ptwo, 0},
1123 #endif
1124 {"arch", set_cpu_arch, 0},
1125 #ifndef I386COFF
1126 {"bss", s_bss, 0},
1127 #else
1128 {"lcomm", pe_lcomm, 1},
1129 #endif
1130 {"ffloat", float_cons, 'f'},
1131 {"dfloat", float_cons, 'd'},
1132 {"tfloat", float_cons, 'x'},
1133 {"value", cons, 2},
1134 {"slong", signed_cons, 4},
1135 {"noopt", s_ignore, 0},
1136 {"optim", s_ignore, 0},
1137 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1138 {"code16", set_code_flag, CODE_16BIT},
1139 {"code32", set_code_flag, CODE_32BIT},
1140 #ifdef BFD64
1141 {"code64", set_code_flag, CODE_64BIT},
1142 #endif
1143 {"intel_syntax", set_intel_syntax, 1},
1144 {"att_syntax", set_intel_syntax, 0},
1145 {"intel_mnemonic", set_intel_mnemonic, 1},
1146 {"att_mnemonic", set_intel_mnemonic, 0},
1147 {"allow_index_reg", set_allow_index_reg, 1},
1148 {"disallow_index_reg", set_allow_index_reg, 0},
1149 {"sse_check", set_check, 0},
1150 {"operand_check", set_check, 1},
1151 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1152 {"largecomm", handle_large_common, 0},
1153 #else
1154 {"file", dwarf2_directive_file, 0},
1155 {"loc", dwarf2_directive_loc, 0},
1156 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1157 #endif
1158 #ifdef TE_PE
1159 {"secrel32", pe_directive_secrel, 0},
1160 #endif
1161 {0, 0, 0}
1162 };
1163
1164 /* For interface with expression (). */
1165 extern char *input_line_pointer;
1166
1167 /* Hash table for instruction mnemonic lookup. */
1168 static struct hash_control *op_hash;
1169
1170 /* Hash table for register lookup. */
1171 static struct hash_control *reg_hash;
1172 \f
1173 /* Various efficient no-op patterns for aligning code labels.
1174 Note: Don't try to assemble the instructions in the comments.
1175 0L and 0w are not legal. */
1176 static const unsigned char f32_1[] =
1177 {0x90}; /* nop */
1178 static const unsigned char f32_2[] =
1179 {0x66,0x90}; /* xchg %ax,%ax */
1180 static const unsigned char f32_3[] =
1181 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1182 static const unsigned char f32_4[] =
1183 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1184 static const unsigned char f32_6[] =
1185 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1186 static const unsigned char f32_7[] =
1187 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1188 static const unsigned char f16_3[] =
1189 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1190 static const unsigned char f16_4[] =
1191 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1192 static const unsigned char jump_disp8[] =
1193 {0xeb}; /* jmp disp8 */
1194 static const unsigned char jump32_disp32[] =
1195 {0xe9}; /* jmp disp32 */
1196 static const unsigned char jump16_disp32[] =
1197 {0x66,0xe9}; /* jmp disp32 */
1198 /* 32-bit NOPs patterns. */
1199 static const unsigned char *const f32_patt[] = {
1200 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1201 };
1202 /* 16-bit NOPs patterns. */
1203 static const unsigned char *const f16_patt[] = {
1204 f32_1, f32_2, f16_3, f16_4
1205 };
1206 /* nopl (%[re]ax) */
1207 static const unsigned char alt_3[] =
1208 {0x0f,0x1f,0x00};
1209 /* nopl 0(%[re]ax) */
1210 static const unsigned char alt_4[] =
1211 {0x0f,0x1f,0x40,0x00};
1212 /* nopl 0(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_5[] =
1214 {0x0f,0x1f,0x44,0x00,0x00};
1215 /* nopw 0(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_6[] =
1217 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1218 /* nopl 0L(%[re]ax) */
1219 static const unsigned char alt_7[] =
1220 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1221 /* nopl 0L(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_8[] =
1223 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* nopw 0L(%[re]ax,%[re]ax,1) */
1225 static const unsigned char alt_9[] =
1226 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1227 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1228 static const unsigned char alt_10[] =
1229 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1230 /* data16 nopw %cs:0L(%eax,%eax,1) */
1231 static const unsigned char alt_11[] =
1232 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1233 /* 32-bit and 64-bit NOPs patterns. */
1234 static const unsigned char *const alt_patt[] = {
1235 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1236 alt_9, alt_10, alt_11
1237 };
1238
1239 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1240 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1241
1242 static void
1243 i386_output_nops (char *where, const unsigned char *const *patt,
1244 int count, int max_single_nop_size)
1245
1246 {
1247 /* Place the longer NOP first. */
1248 int last;
1249 int offset;
1250 const unsigned char *nops = patt[max_single_nop_size - 1];
1251
1252 /* Use the smaller one if the requsted one isn't available. */
1253 if (nops == NULL)
1254 {
1255 max_single_nop_size--;
1256 nops = patt[max_single_nop_size - 1];
1257 }
1258
1259 last = count % max_single_nop_size;
1260
1261 count -= last;
1262 for (offset = 0; offset < count; offset += max_single_nop_size)
1263 memcpy (where + offset, nops, max_single_nop_size);
1264
1265 if (last)
1266 {
1267 nops = patt[last - 1];
1268 if (nops == NULL)
1269 {
1270 /* Use the smaller one plus one-byte NOP if the needed one
1271 isn't available. */
1272 last--;
1273 nops = patt[last - 1];
1274 memcpy (where + offset, nops, last);
1275 where[offset + last] = *patt[0];
1276 }
1277 else
1278 memcpy (where + offset, nops, last);
1279 }
1280 }
1281
1282 static INLINE int
1283 fits_in_imm7 (offsetT num)
1284 {
1285 return (num & 0x7f) == num;
1286 }
1287
1288 static INLINE int
1289 fits_in_imm31 (offsetT num)
1290 {
1291 return (num & 0x7fffffff) == num;
1292 }
1293
1294 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1295 single NOP instruction LIMIT. */
1296
1297 void
1298 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1299 {
1300 const unsigned char *const *patt = NULL;
1301 int max_single_nop_size;
1302 /* Maximum number of NOPs before switching to jump over NOPs. */
1303 int max_number_of_nops;
1304
1305 switch (fragP->fr_type)
1306 {
1307 case rs_fill_nop:
1308 case rs_align_code:
1309 break;
1310 default:
1311 return;
1312 }
1313
1314 /* We need to decide which NOP sequence to use for 32bit and
1315 64bit. When -mtune= is used:
1316
1317 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1318 PROCESSOR_GENERIC32, f32_patt will be used.
1319 2. For the rest, alt_patt will be used.
1320
1321 When -mtune= isn't used, alt_patt will be used if
1322 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1323 be used.
1324
1325 When -march= or .arch is used, we can't use anything beyond
1326 cpu_arch_isa_flags. */
1327
1328 if (flag_code == CODE_16BIT)
1329 {
1330 patt = f16_patt;
1331 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1332 /* Limit number of NOPs to 2 in 16-bit mode. */
1333 max_number_of_nops = 2;
1334 }
1335 else
1336 {
1337 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1338 {
1339 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1340 switch (cpu_arch_tune)
1341 {
1342 case PROCESSOR_UNKNOWN:
1343 /* We use cpu_arch_isa_flags to check if we SHOULD
1344 optimize with nops. */
1345 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1346 patt = alt_patt;
1347 else
1348 patt = f32_patt;
1349 break;
1350 case PROCESSOR_PENTIUM4:
1351 case PROCESSOR_NOCONA:
1352 case PROCESSOR_CORE:
1353 case PROCESSOR_CORE2:
1354 case PROCESSOR_COREI7:
1355 case PROCESSOR_L1OM:
1356 case PROCESSOR_K1OM:
1357 case PROCESSOR_GENERIC64:
1358 case PROCESSOR_K6:
1359 case PROCESSOR_ATHLON:
1360 case PROCESSOR_K8:
1361 case PROCESSOR_AMDFAM10:
1362 case PROCESSOR_BD:
1363 case PROCESSOR_ZNVER:
1364 case PROCESSOR_BT:
1365 patt = alt_patt;
1366 break;
1367 case PROCESSOR_I386:
1368 case PROCESSOR_I486:
1369 case PROCESSOR_PENTIUM:
1370 case PROCESSOR_PENTIUMPRO:
1371 case PROCESSOR_IAMCU:
1372 case PROCESSOR_GENERIC32:
1373 patt = f32_patt;
1374 break;
1375 }
1376 }
1377 else
1378 {
1379 switch (fragP->tc_frag_data.tune)
1380 {
1381 case PROCESSOR_UNKNOWN:
1382 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1383 PROCESSOR_UNKNOWN. */
1384 abort ();
1385 break;
1386
1387 case PROCESSOR_I386:
1388 case PROCESSOR_I486:
1389 case PROCESSOR_PENTIUM:
1390 case PROCESSOR_IAMCU:
1391 case PROCESSOR_K6:
1392 case PROCESSOR_ATHLON:
1393 case PROCESSOR_K8:
1394 case PROCESSOR_AMDFAM10:
1395 case PROCESSOR_BD:
1396 case PROCESSOR_ZNVER:
1397 case PROCESSOR_BT:
1398 case PROCESSOR_GENERIC32:
1399 /* We use cpu_arch_isa_flags to check if we CAN optimize
1400 with nops. */
1401 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1402 patt = alt_patt;
1403 else
1404 patt = f32_patt;
1405 break;
1406 case PROCESSOR_PENTIUMPRO:
1407 case PROCESSOR_PENTIUM4:
1408 case PROCESSOR_NOCONA:
1409 case PROCESSOR_CORE:
1410 case PROCESSOR_CORE2:
1411 case PROCESSOR_COREI7:
1412 case PROCESSOR_L1OM:
1413 case PROCESSOR_K1OM:
1414 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1415 patt = alt_patt;
1416 else
1417 patt = f32_patt;
1418 break;
1419 case PROCESSOR_GENERIC64:
1420 patt = alt_patt;
1421 break;
1422 }
1423 }
1424
1425 if (patt == f32_patt)
1426 {
1427 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1428 /* Limit number of NOPs to 2 for older processors. */
1429 max_number_of_nops = 2;
1430 }
1431 else
1432 {
1433 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1434 /* Limit number of NOPs to 7 for newer processors. */
1435 max_number_of_nops = 7;
1436 }
1437 }
1438
1439 if (limit == 0)
1440 limit = max_single_nop_size;
1441
1442 if (fragP->fr_type == rs_fill_nop)
1443 {
1444 /* Output NOPs for .nop directive. */
1445 if (limit > max_single_nop_size)
1446 {
1447 as_bad_where (fragP->fr_file, fragP->fr_line,
1448 _("invalid single nop size: %d "
1449 "(expect within [0, %d])"),
1450 limit, max_single_nop_size);
1451 return;
1452 }
1453 }
1454 else
1455 fragP->fr_var = count;
1456
1457 if ((count / max_single_nop_size) > max_number_of_nops)
1458 {
1459 /* Generate jump over NOPs. */
1460 offsetT disp = count - 2;
1461 if (fits_in_imm7 (disp))
1462 {
1463 /* Use "jmp disp8" if possible. */
1464 count = disp;
1465 where[0] = jump_disp8[0];
1466 where[1] = count;
1467 where += 2;
1468 }
1469 else
1470 {
1471 unsigned int size_of_jump;
1472
1473 if (flag_code == CODE_16BIT)
1474 {
1475 where[0] = jump16_disp32[0];
1476 where[1] = jump16_disp32[1];
1477 size_of_jump = 2;
1478 }
1479 else
1480 {
1481 where[0] = jump32_disp32[0];
1482 size_of_jump = 1;
1483 }
1484
1485 count -= size_of_jump + 4;
1486 if (!fits_in_imm31 (count))
1487 {
1488 as_bad_where (fragP->fr_file, fragP->fr_line,
1489 _("jump over nop padding out of range"));
1490 return;
1491 }
1492
1493 md_number_to_chars (where + size_of_jump, count, 4);
1494 where += size_of_jump + 4;
1495 }
1496 }
1497
1498 /* Generate multiple NOPs. */
1499 i386_output_nops (where, patt, count, limit);
1500 }
1501
1502 static INLINE int
1503 operand_type_all_zero (const union i386_operand_type *x)
1504 {
1505 switch (ARRAY_SIZE(x->array))
1506 {
1507 case 3:
1508 if (x->array[2])
1509 return 0;
1510 /* Fall through. */
1511 case 2:
1512 if (x->array[1])
1513 return 0;
1514 /* Fall through. */
1515 case 1:
1516 return !x->array[0];
1517 default:
1518 abort ();
1519 }
1520 }
1521
1522 static INLINE void
1523 operand_type_set (union i386_operand_type *x, unsigned int v)
1524 {
1525 switch (ARRAY_SIZE(x->array))
1526 {
1527 case 3:
1528 x->array[2] = v;
1529 /* Fall through. */
1530 case 2:
1531 x->array[1] = v;
1532 /* Fall through. */
1533 case 1:
1534 x->array[0] = v;
1535 /* Fall through. */
1536 break;
1537 default:
1538 abort ();
1539 }
1540 }
1541
1542 static INLINE int
1543 operand_type_equal (const union i386_operand_type *x,
1544 const union i386_operand_type *y)
1545 {
1546 switch (ARRAY_SIZE(x->array))
1547 {
1548 case 3:
1549 if (x->array[2] != y->array[2])
1550 return 0;
1551 /* Fall through. */
1552 case 2:
1553 if (x->array[1] != y->array[1])
1554 return 0;
1555 /* Fall through. */
1556 case 1:
1557 return x->array[0] == y->array[0];
1558 break;
1559 default:
1560 abort ();
1561 }
1562 }
1563
1564 static INLINE int
1565 cpu_flags_all_zero (const union i386_cpu_flags *x)
1566 {
1567 switch (ARRAY_SIZE(x->array))
1568 {
1569 case 4:
1570 if (x->array[3])
1571 return 0;
1572 /* Fall through. */
1573 case 3:
1574 if (x->array[2])
1575 return 0;
1576 /* Fall through. */
1577 case 2:
1578 if (x->array[1])
1579 return 0;
1580 /* Fall through. */
1581 case 1:
1582 return !x->array[0];
1583 default:
1584 abort ();
1585 }
1586 }
1587
1588 static INLINE int
1589 cpu_flags_equal (const union i386_cpu_flags *x,
1590 const union i386_cpu_flags *y)
1591 {
1592 switch (ARRAY_SIZE(x->array))
1593 {
1594 case 4:
1595 if (x->array[3] != y->array[3])
1596 return 0;
1597 /* Fall through. */
1598 case 3:
1599 if (x->array[2] != y->array[2])
1600 return 0;
1601 /* Fall through. */
1602 case 2:
1603 if (x->array[1] != y->array[1])
1604 return 0;
1605 /* Fall through. */
1606 case 1:
1607 return x->array[0] == y->array[0];
1608 break;
1609 default:
1610 abort ();
1611 }
1612 }
1613
1614 static INLINE int
1615 cpu_flags_check_cpu64 (i386_cpu_flags f)
1616 {
1617 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1618 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1619 }
1620
1621 static INLINE i386_cpu_flags
1622 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1623 {
1624 switch (ARRAY_SIZE (x.array))
1625 {
1626 case 4:
1627 x.array [3] &= y.array [3];
1628 /* Fall through. */
1629 case 3:
1630 x.array [2] &= y.array [2];
1631 /* Fall through. */
1632 case 2:
1633 x.array [1] &= y.array [1];
1634 /* Fall through. */
1635 case 1:
1636 x.array [0] &= y.array [0];
1637 break;
1638 default:
1639 abort ();
1640 }
1641 return x;
1642 }
1643
1644 static INLINE i386_cpu_flags
1645 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1646 {
1647 switch (ARRAY_SIZE (x.array))
1648 {
1649 case 4:
1650 x.array [3] |= y.array [3];
1651 /* Fall through. */
1652 case 3:
1653 x.array [2] |= y.array [2];
1654 /* Fall through. */
1655 case 2:
1656 x.array [1] |= y.array [1];
1657 /* Fall through. */
1658 case 1:
1659 x.array [0] |= y.array [0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 return x;
1665 }
1666
1667 static INLINE i386_cpu_flags
1668 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1669 {
1670 switch (ARRAY_SIZE (x.array))
1671 {
1672 case 4:
1673 x.array [3] &= ~y.array [3];
1674 /* Fall through. */
1675 case 3:
1676 x.array [2] &= ~y.array [2];
1677 /* Fall through. */
1678 case 2:
1679 x.array [1] &= ~y.array [1];
1680 /* Fall through. */
1681 case 1:
1682 x.array [0] &= ~y.array [0];
1683 break;
1684 default:
1685 abort ();
1686 }
1687 return x;
1688 }
1689
1690 #define CPU_FLAGS_ARCH_MATCH 0x1
1691 #define CPU_FLAGS_64BIT_MATCH 0x2
1692
1693 #define CPU_FLAGS_PERFECT_MATCH \
1694 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1695
1696 /* Return CPU flags match bits. */
1697
1698 static int
1699 cpu_flags_match (const insn_template *t)
1700 {
1701 i386_cpu_flags x = t->cpu_flags;
1702 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1703
1704 x.bitfield.cpu64 = 0;
1705 x.bitfield.cpuno64 = 0;
1706
1707 if (cpu_flags_all_zero (&x))
1708 {
1709 /* This instruction is available on all archs. */
1710 match |= CPU_FLAGS_ARCH_MATCH;
1711 }
1712 else
1713 {
1714 /* This instruction is available only on some archs. */
1715 i386_cpu_flags cpu = cpu_arch_flags;
1716
1717 /* AVX512VL is no standalone feature - match it and then strip it. */
1718 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1719 return match;
1720 x.bitfield.cpuavx512vl = 0;
1721
1722 cpu = cpu_flags_and (x, cpu);
1723 if (!cpu_flags_all_zero (&cpu))
1724 {
1725 if (x.bitfield.cpuavx)
1726 {
1727 /* We need to check a few extra flags with AVX. */
1728 if (cpu.bitfield.cpuavx
1729 && (!t->opcode_modifier.sse2avx || sse2avx)
1730 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1731 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1732 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else if (x.bitfield.cpuavx512f)
1736 {
1737 /* We need to check a few extra flags with AVX512F. */
1738 if (cpu.bitfield.cpuavx512f
1739 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1740 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1741 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1742 match |= CPU_FLAGS_ARCH_MATCH;
1743 }
1744 else
1745 match |= CPU_FLAGS_ARCH_MATCH;
1746 }
1747 }
1748 return match;
1749 }
1750
1751 static INLINE i386_operand_type
1752 operand_type_and (i386_operand_type x, i386_operand_type y)
1753 {
1754 switch (ARRAY_SIZE (x.array))
1755 {
1756 case 3:
1757 x.array [2] &= y.array [2];
1758 /* Fall through. */
1759 case 2:
1760 x.array [1] &= y.array [1];
1761 /* Fall through. */
1762 case 1:
1763 x.array [0] &= y.array [0];
1764 break;
1765 default:
1766 abort ();
1767 }
1768 return x;
1769 }
1770
1771 static INLINE i386_operand_type
1772 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1773 {
1774 switch (ARRAY_SIZE (x.array))
1775 {
1776 case 3:
1777 x.array [2] &= ~y.array [2];
1778 /* Fall through. */
1779 case 2:
1780 x.array [1] &= ~y.array [1];
1781 /* Fall through. */
1782 case 1:
1783 x.array [0] &= ~y.array [0];
1784 break;
1785 default:
1786 abort ();
1787 }
1788 return x;
1789 }
1790
1791 static INLINE i386_operand_type
1792 operand_type_or (i386_operand_type x, i386_operand_type y)
1793 {
1794 switch (ARRAY_SIZE (x.array))
1795 {
1796 case 3:
1797 x.array [2] |= y.array [2];
1798 /* Fall through. */
1799 case 2:
1800 x.array [1] |= y.array [1];
1801 /* Fall through. */
1802 case 1:
1803 x.array [0] |= y.array [0];
1804 break;
1805 default:
1806 abort ();
1807 }
1808 return x;
1809 }
1810
1811 static INLINE i386_operand_type
1812 operand_type_xor (i386_operand_type x, i386_operand_type y)
1813 {
1814 switch (ARRAY_SIZE (x.array))
1815 {
1816 case 3:
1817 x.array [2] ^= y.array [2];
1818 /* Fall through. */
1819 case 2:
1820 x.array [1] ^= y.array [1];
1821 /* Fall through. */
1822 case 1:
1823 x.array [0] ^= y.array [0];
1824 break;
1825 default:
1826 abort ();
1827 }
1828 return x;
1829 }
1830
1831 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1832 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1833 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1834 static const i386_operand_type inoutportreg
1835 = OPERAND_TYPE_INOUTPORTREG;
1836 static const i386_operand_type reg16_inoutportreg
1837 = OPERAND_TYPE_REG16_INOUTPORTREG;
1838 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1839 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1840 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1841 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1842 static const i386_operand_type anydisp
1843 = OPERAND_TYPE_ANYDISP;
1844 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1845 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1846 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1847 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1848 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1849 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1850 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1851 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1852 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1853 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1854 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1855 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1856
1857 enum operand_type
1858 {
1859 reg,
1860 imm,
1861 disp,
1862 anymem
1863 };
1864
1865 static INLINE int
1866 operand_type_check (i386_operand_type t, enum operand_type c)
1867 {
1868 switch (c)
1869 {
1870 case reg:
1871 return t.bitfield.reg;
1872
1873 case imm:
1874 return (t.bitfield.imm8
1875 || t.bitfield.imm8s
1876 || t.bitfield.imm16
1877 || t.bitfield.imm32
1878 || t.bitfield.imm32s
1879 || t.bitfield.imm64);
1880
1881 case disp:
1882 return (t.bitfield.disp8
1883 || t.bitfield.disp16
1884 || t.bitfield.disp32
1885 || t.bitfield.disp32s
1886 || t.bitfield.disp64);
1887
1888 case anymem:
1889 return (t.bitfield.disp8
1890 || t.bitfield.disp16
1891 || t.bitfield.disp32
1892 || t.bitfield.disp32s
1893 || t.bitfield.disp64
1894 || t.bitfield.baseindex);
1895
1896 default:
1897 abort ();
1898 }
1899
1900 return 0;
1901 }
1902
1903 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1904 operand J for instruction template T. */
1905
1906 static INLINE int
1907 match_reg_size (const insn_template *t, unsigned int j)
1908 {
1909 return !((i.types[j].bitfield.byte
1910 && !t->operand_types[j].bitfield.byte)
1911 || (i.types[j].bitfield.word
1912 && !t->operand_types[j].bitfield.word)
1913 || (i.types[j].bitfield.dword
1914 && !t->operand_types[j].bitfield.dword)
1915 || (i.types[j].bitfield.qword
1916 && !t->operand_types[j].bitfield.qword)
1917 || (i.types[j].bitfield.tbyte
1918 && !t->operand_types[j].bitfield.tbyte));
1919 }
1920
1921 /* Return 1 if there is no conflict in SIMD register on
1922 operand J for instruction template T. */
1923
1924 static INLINE int
1925 match_simd_size (const insn_template *t, unsigned int j)
1926 {
1927 return !((i.types[j].bitfield.xmmword
1928 && !t->operand_types[j].bitfield.xmmword)
1929 || (i.types[j].bitfield.ymmword
1930 && !t->operand_types[j].bitfield.ymmword)
1931 || (i.types[j].bitfield.zmmword
1932 && !t->operand_types[j].bitfield.zmmword));
1933 }
1934
1935 /* Return 1 if there is no conflict in any size on operand J for
1936 instruction template T. */
1937
1938 static INLINE int
1939 match_mem_size (const insn_template *t, unsigned int j)
1940 {
1941 return (match_reg_size (t, j)
1942 && !((i.types[j].bitfield.unspecified
1943 && !i.broadcast
1944 && !t->operand_types[j].bitfield.unspecified)
1945 || (i.types[j].bitfield.fword
1946 && !t->operand_types[j].bitfield.fword)
1947 /* For scalar opcode templates to allow register and memory
1948 operands at the same time, some special casing is needed
1949 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1950 down-conversion vpmov*. */
1951 || ((t->operand_types[j].bitfield.regsimd
1952 && !t->opcode_modifier.broadcast
1953 && (t->operand_types[j].bitfield.byte
1954 || t->operand_types[j].bitfield.word
1955 || t->operand_types[j].bitfield.dword
1956 || t->operand_types[j].bitfield.qword))
1957 ? (i.types[j].bitfield.xmmword
1958 || i.types[j].bitfield.ymmword
1959 || i.types[j].bitfield.zmmword)
1960 : !match_simd_size(t, j))));
1961 }
1962
1963 /* Return 1 if there is no size conflict on any operands for
1964 instruction template T. */
1965
1966 static INLINE int
1967 operand_size_match (const insn_template *t)
1968 {
1969 unsigned int j;
1970 int match = 1;
1971
1972 /* Don't check jump instructions. */
1973 if (t->opcode_modifier.jump
1974 || t->opcode_modifier.jumpbyte
1975 || t->opcode_modifier.jumpdword
1976 || t->opcode_modifier.jumpintersegment)
1977 return match;
1978
1979 /* Check memory and accumulator operand size. */
1980 for (j = 0; j < i.operands; j++)
1981 {
1982 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1983 && t->operand_types[j].bitfield.anysize)
1984 continue;
1985
1986 if (t->operand_types[j].bitfield.reg
1987 && !match_reg_size (t, j))
1988 {
1989 match = 0;
1990 break;
1991 }
1992
1993 if (t->operand_types[j].bitfield.regsimd
1994 && !match_simd_size (t, j))
1995 {
1996 match = 0;
1997 break;
1998 }
1999
2000 if (t->operand_types[j].bitfield.acc
2001 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
2002 {
2003 match = 0;
2004 break;
2005 }
2006
2007 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2008 {
2009 match = 0;
2010 break;
2011 }
2012 }
2013
2014 if (match)
2015 return match;
2016 else if (!t->opcode_modifier.d)
2017 {
2018 mismatch:
2019 i.error = operand_size_mismatch;
2020 return 0;
2021 }
2022
2023 /* Check reverse. */
2024 gas_assert (i.operands == 2);
2025
2026 match = 1;
2027 for (j = 0; j < 2; j++)
2028 {
2029 if ((t->operand_types[j].bitfield.reg
2030 || t->operand_types[j].bitfield.acc)
2031 && !match_reg_size (t, j ? 0 : 1))
2032 goto mismatch;
2033
2034 if (i.types[j].bitfield.mem
2035 && !match_mem_size (t, j ? 0 : 1))
2036 goto mismatch;
2037 }
2038
2039 return match;
2040 }
2041
2042 static INLINE int
2043 operand_type_match (i386_operand_type overlap,
2044 i386_operand_type given)
2045 {
2046 i386_operand_type temp = overlap;
2047
2048 temp.bitfield.jumpabsolute = 0;
2049 temp.bitfield.unspecified = 0;
2050 temp.bitfield.byte = 0;
2051 temp.bitfield.word = 0;
2052 temp.bitfield.dword = 0;
2053 temp.bitfield.fword = 0;
2054 temp.bitfield.qword = 0;
2055 temp.bitfield.tbyte = 0;
2056 temp.bitfield.xmmword = 0;
2057 temp.bitfield.ymmword = 0;
2058 temp.bitfield.zmmword = 0;
2059 if (operand_type_all_zero (&temp))
2060 goto mismatch;
2061
2062 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2063 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2064 return 1;
2065
2066 mismatch:
2067 i.error = operand_type_mismatch;
2068 return 0;
2069 }
2070
2071 /* If given types g0 and g1 are registers they must be of the same type
2072 unless the expected operand type register overlap is null.
2073 Memory operand size of certain SIMD instructions is also being checked
2074 here. */
2075
2076 static INLINE int
2077 operand_type_register_match (i386_operand_type g0,
2078 i386_operand_type t0,
2079 i386_operand_type g1,
2080 i386_operand_type t1)
2081 {
2082 if (!g0.bitfield.reg
2083 && !g0.bitfield.regsimd
2084 && (!operand_type_check (g0, anymem)
2085 || g0.bitfield.unspecified
2086 || !t0.bitfield.regsimd))
2087 return 1;
2088
2089 if (!g1.bitfield.reg
2090 && !g1.bitfield.regsimd
2091 && (!operand_type_check (g1, anymem)
2092 || g1.bitfield.unspecified
2093 || !t1.bitfield.regsimd))
2094 return 1;
2095
2096 if (g0.bitfield.byte == g1.bitfield.byte
2097 && g0.bitfield.word == g1.bitfield.word
2098 && g0.bitfield.dword == g1.bitfield.dword
2099 && g0.bitfield.qword == g1.bitfield.qword
2100 && g0.bitfield.xmmword == g1.bitfield.xmmword
2101 && g0.bitfield.ymmword == g1.bitfield.ymmword
2102 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2103 return 1;
2104
2105 if (!(t0.bitfield.byte & t1.bitfield.byte)
2106 && !(t0.bitfield.word & t1.bitfield.word)
2107 && !(t0.bitfield.dword & t1.bitfield.dword)
2108 && !(t0.bitfield.qword & t1.bitfield.qword)
2109 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2110 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2111 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2112 return 1;
2113
2114 i.error = register_type_mismatch;
2115
2116 return 0;
2117 }
2118
2119 static INLINE unsigned int
2120 register_number (const reg_entry *r)
2121 {
2122 unsigned int nr = r->reg_num;
2123
2124 if (r->reg_flags & RegRex)
2125 nr += 8;
2126
2127 if (r->reg_flags & RegVRex)
2128 nr += 16;
2129
2130 return nr;
2131 }
2132
2133 static INLINE unsigned int
2134 mode_from_disp_size (i386_operand_type t)
2135 {
2136 if (t.bitfield.disp8)
2137 return 1;
2138 else if (t.bitfield.disp16
2139 || t.bitfield.disp32
2140 || t.bitfield.disp32s)
2141 return 2;
2142 else
2143 return 0;
2144 }
2145
2146 static INLINE int
2147 fits_in_signed_byte (addressT num)
2148 {
2149 return num + 0x80 <= 0xff;
2150 }
2151
2152 static INLINE int
2153 fits_in_unsigned_byte (addressT num)
2154 {
2155 return num <= 0xff;
2156 }
2157
2158 static INLINE int
2159 fits_in_unsigned_word (addressT num)
2160 {
2161 return num <= 0xffff;
2162 }
2163
2164 static INLINE int
2165 fits_in_signed_word (addressT num)
2166 {
2167 return num + 0x8000 <= 0xffff;
2168 }
2169
2170 static INLINE int
2171 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2172 {
2173 #ifndef BFD64
2174 return 1;
2175 #else
2176 return num + 0x80000000 <= 0xffffffff;
2177 #endif
2178 } /* fits_in_signed_long() */
2179
2180 static INLINE int
2181 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2182 {
2183 #ifndef BFD64
2184 return 1;
2185 #else
2186 return num <= 0xffffffff;
2187 #endif
2188 } /* fits_in_unsigned_long() */
2189
2190 static INLINE int
2191 fits_in_disp8 (offsetT num)
2192 {
2193 int shift = i.memshift;
2194 unsigned int mask;
2195
2196 if (shift == -1)
2197 abort ();
2198
2199 mask = (1 << shift) - 1;
2200
2201 /* Return 0 if NUM isn't properly aligned. */
2202 if ((num & mask))
2203 return 0;
2204
2205 /* Check if NUM will fit in 8bit after shift. */
2206 return fits_in_signed_byte (num >> shift);
2207 }
2208
2209 static INLINE int
2210 fits_in_imm4 (offsetT num)
2211 {
2212 return (num & 0xf) == num;
2213 }
2214
2215 static i386_operand_type
2216 smallest_imm_type (offsetT num)
2217 {
2218 i386_operand_type t;
2219
2220 operand_type_set (&t, 0);
2221 t.bitfield.imm64 = 1;
2222
2223 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2224 {
2225 /* This code is disabled on the 486 because all the Imm1 forms
2226 in the opcode table are slower on the i486. They're the
2227 versions with the implicitly specified single-position
2228 displacement, which has another syntax if you really want to
2229 use that form. */
2230 t.bitfield.imm1 = 1;
2231 t.bitfield.imm8 = 1;
2232 t.bitfield.imm8s = 1;
2233 t.bitfield.imm16 = 1;
2234 t.bitfield.imm32 = 1;
2235 t.bitfield.imm32s = 1;
2236 }
2237 else if (fits_in_signed_byte (num))
2238 {
2239 t.bitfield.imm8 = 1;
2240 t.bitfield.imm8s = 1;
2241 t.bitfield.imm16 = 1;
2242 t.bitfield.imm32 = 1;
2243 t.bitfield.imm32s = 1;
2244 }
2245 else if (fits_in_unsigned_byte (num))
2246 {
2247 t.bitfield.imm8 = 1;
2248 t.bitfield.imm16 = 1;
2249 t.bitfield.imm32 = 1;
2250 t.bitfield.imm32s = 1;
2251 }
2252 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2253 {
2254 t.bitfield.imm16 = 1;
2255 t.bitfield.imm32 = 1;
2256 t.bitfield.imm32s = 1;
2257 }
2258 else if (fits_in_signed_long (num))
2259 {
2260 t.bitfield.imm32 = 1;
2261 t.bitfield.imm32s = 1;
2262 }
2263 else if (fits_in_unsigned_long (num))
2264 t.bitfield.imm32 = 1;
2265
2266 return t;
2267 }
2268
2269 static offsetT
2270 offset_in_range (offsetT val, int size)
2271 {
2272 addressT mask;
2273
2274 switch (size)
2275 {
2276 case 1: mask = ((addressT) 1 << 8) - 1; break;
2277 case 2: mask = ((addressT) 1 << 16) - 1; break;
2278 case 4: mask = ((addressT) 2 << 31) - 1; break;
2279 #ifdef BFD64
2280 case 8: mask = ((addressT) 2 << 63) - 1; break;
2281 #endif
2282 default: abort ();
2283 }
2284
2285 #ifdef BFD64
2286 /* If BFD64, sign extend val for 32bit address mode. */
2287 if (flag_code != CODE_64BIT
2288 || i.prefix[ADDR_PREFIX])
2289 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2290 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2291 #endif
2292
2293 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2294 {
2295 char buf1[40], buf2[40];
2296
2297 sprint_value (buf1, val);
2298 sprint_value (buf2, val & mask);
2299 as_warn (_("%s shortened to %s"), buf1, buf2);
2300 }
2301 return val & mask;
2302 }
2303
2304 enum PREFIX_GROUP
2305 {
2306 PREFIX_EXIST = 0,
2307 PREFIX_LOCK,
2308 PREFIX_REP,
2309 PREFIX_DS,
2310 PREFIX_OTHER
2311 };
2312
2313 /* Returns
2314 a. PREFIX_EXIST if attempting to add a prefix where one from the
2315 same class already exists.
2316 b. PREFIX_LOCK if lock prefix is added.
2317 c. PREFIX_REP if rep/repne prefix is added.
2318 d. PREFIX_DS if ds prefix is added.
2319 e. PREFIX_OTHER if other prefix is added.
2320 */
2321
2322 static enum PREFIX_GROUP
2323 add_prefix (unsigned int prefix)
2324 {
2325 enum PREFIX_GROUP ret = PREFIX_OTHER;
2326 unsigned int q;
2327
2328 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2329 && flag_code == CODE_64BIT)
2330 {
2331 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2332 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2333 && (prefix & (REX_R | REX_X | REX_B))))
2334 ret = PREFIX_EXIST;
2335 q = REX_PREFIX;
2336 }
2337 else
2338 {
2339 switch (prefix)
2340 {
2341 default:
2342 abort ();
2343
2344 case DS_PREFIX_OPCODE:
2345 ret = PREFIX_DS;
2346 /* Fall through. */
2347 case CS_PREFIX_OPCODE:
2348 case ES_PREFIX_OPCODE:
2349 case FS_PREFIX_OPCODE:
2350 case GS_PREFIX_OPCODE:
2351 case SS_PREFIX_OPCODE:
2352 q = SEG_PREFIX;
2353 break;
2354
2355 case REPNE_PREFIX_OPCODE:
2356 case REPE_PREFIX_OPCODE:
2357 q = REP_PREFIX;
2358 ret = PREFIX_REP;
2359 break;
2360
2361 case LOCK_PREFIX_OPCODE:
2362 q = LOCK_PREFIX;
2363 ret = PREFIX_LOCK;
2364 break;
2365
2366 case FWAIT_OPCODE:
2367 q = WAIT_PREFIX;
2368 break;
2369
2370 case ADDR_PREFIX_OPCODE:
2371 q = ADDR_PREFIX;
2372 break;
2373
2374 case DATA_PREFIX_OPCODE:
2375 q = DATA_PREFIX;
2376 break;
2377 }
2378 if (i.prefix[q] != 0)
2379 ret = PREFIX_EXIST;
2380 }
2381
2382 if (ret)
2383 {
2384 if (!i.prefix[q])
2385 ++i.prefixes;
2386 i.prefix[q] |= prefix;
2387 }
2388 else
2389 as_bad (_("same type of prefix used twice"));
2390
2391 return ret;
2392 }
2393
2394 static void
2395 update_code_flag (int value, int check)
2396 {
2397 PRINTF_LIKE ((*as_error));
2398
2399 flag_code = (enum flag_code) value;
2400 if (flag_code == CODE_64BIT)
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 1;
2403 cpu_arch_flags.bitfield.cpuno64 = 0;
2404 }
2405 else
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 0;
2408 cpu_arch_flags.bitfield.cpuno64 = 1;
2409 }
2410 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("64bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2420 {
2421 if (check)
2422 as_error = as_fatal;
2423 else
2424 as_error = as_bad;
2425 (*as_error) (_("32bit mode not supported on `%s'."),
2426 cpu_arch_name ? cpu_arch_name : default_arch);
2427 }
2428 stackop_size = '\0';
2429 }
2430
2431 static void
2432 set_code_flag (int value)
2433 {
2434 update_code_flag (value, 0);
2435 }
2436
2437 static void
2438 set_16bit_gcc_code_flag (int new_code_flag)
2439 {
2440 flag_code = (enum flag_code) new_code_flag;
2441 if (flag_code != CODE_16BIT)
2442 abort ();
2443 cpu_arch_flags.bitfield.cpu64 = 0;
2444 cpu_arch_flags.bitfield.cpuno64 = 1;
2445 stackop_size = LONG_MNEM_SUFFIX;
2446 }
2447
2448 static void
2449 set_intel_syntax (int syntax_flag)
2450 {
2451 /* Find out if register prefixing is specified. */
2452 int ask_naked_reg = 0;
2453
2454 SKIP_WHITESPACE ();
2455 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2456 {
2457 char *string;
2458 int e = get_symbol_name (&string);
2459
2460 if (strcmp (string, "prefix") == 0)
2461 ask_naked_reg = 1;
2462 else if (strcmp (string, "noprefix") == 0)
2463 ask_naked_reg = -1;
2464 else
2465 as_bad (_("bad argument to syntax directive."));
2466 (void) restore_line_pointer (e);
2467 }
2468 demand_empty_rest_of_line ();
2469
2470 intel_syntax = syntax_flag;
2471
2472 if (ask_naked_reg == 0)
2473 allow_naked_reg = (intel_syntax
2474 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2475 else
2476 allow_naked_reg = (ask_naked_reg < 0);
2477
2478 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2479
2480 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2481 identifier_chars['$'] = intel_syntax ? '$' : 0;
2482 register_prefix = allow_naked_reg ? "" : "%";
2483 }
2484
2485 static void
2486 set_intel_mnemonic (int mnemonic_flag)
2487 {
2488 intel_mnemonic = mnemonic_flag;
2489 }
2490
2491 static void
2492 set_allow_index_reg (int flag)
2493 {
2494 allow_index_reg = flag;
2495 }
2496
2497 static void
2498 set_check (int what)
2499 {
2500 enum check_kind *kind;
2501 const char *str;
2502
2503 if (what)
2504 {
2505 kind = &operand_check;
2506 str = "operand";
2507 }
2508 else
2509 {
2510 kind = &sse_check;
2511 str = "sse";
2512 }
2513
2514 SKIP_WHITESPACE ();
2515
2516 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2517 {
2518 char *string;
2519 int e = get_symbol_name (&string);
2520
2521 if (strcmp (string, "none") == 0)
2522 *kind = check_none;
2523 else if (strcmp (string, "warning") == 0)
2524 *kind = check_warning;
2525 else if (strcmp (string, "error") == 0)
2526 *kind = check_error;
2527 else
2528 as_bad (_("bad argument to %s_check directive."), str);
2529 (void) restore_line_pointer (e);
2530 }
2531 else
2532 as_bad (_("missing argument for %s_check directive"), str);
2533
2534 demand_empty_rest_of_line ();
2535 }
2536
2537 static void
2538 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2539 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2540 {
2541 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2542 static const char *arch;
2543
2544 /* Intel LIOM is only supported on ELF. */
2545 if (!IS_ELF)
2546 return;
2547
2548 if (!arch)
2549 {
2550 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2551 use default_arch. */
2552 arch = cpu_arch_name;
2553 if (!arch)
2554 arch = default_arch;
2555 }
2556
2557 /* If we are targeting Intel MCU, we must enable it. */
2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2559 || new_flag.bitfield.cpuiamcu)
2560 return;
2561
2562 /* If we are targeting Intel L1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2564 || new_flag.bitfield.cpul1om)
2565 return;
2566
2567 /* If we are targeting Intel K1OM, we must enable it. */
2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2569 || new_flag.bitfield.cpuk1om)
2570 return;
2571
2572 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2573 #endif
2574 }
2575
2576 static void
2577 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2578 {
2579 SKIP_WHITESPACE ();
2580
2581 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2582 {
2583 char *string;
2584 int e = get_symbol_name (&string);
2585 unsigned int j;
2586 i386_cpu_flags flags;
2587
2588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2589 {
2590 if (strcmp (string, cpu_arch[j].name) == 0)
2591 {
2592 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2593
2594 if (*string != '.')
2595 {
2596 cpu_arch_name = cpu_arch[j].name;
2597 cpu_sub_arch_name = NULL;
2598 cpu_arch_flags = cpu_arch[j].flags;
2599 if (flag_code == CODE_64BIT)
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 1;
2602 cpu_arch_flags.bitfield.cpuno64 = 0;
2603 }
2604 else
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 0;
2607 cpu_arch_flags.bitfield.cpuno64 = 1;
2608 }
2609 cpu_arch_isa = cpu_arch[j].type;
2610 cpu_arch_isa_flags = cpu_arch[j].flags;
2611 if (!cpu_arch_tune_set)
2612 {
2613 cpu_arch_tune = cpu_arch_isa;
2614 cpu_arch_tune_flags = cpu_arch_isa_flags;
2615 }
2616 break;
2617 }
2618
2619 flags = cpu_flags_or (cpu_arch_flags,
2620 cpu_arch[j].flags);
2621
2622 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2623 {
2624 if (cpu_sub_arch_name)
2625 {
2626 char *name = cpu_sub_arch_name;
2627 cpu_sub_arch_name = concat (name,
2628 cpu_arch[j].name,
2629 (const char *) NULL);
2630 free (name);
2631 }
2632 else
2633 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2634 cpu_arch_flags = flags;
2635 cpu_arch_isa_flags = flags;
2636 }
2637 else
2638 cpu_arch_isa_flags
2639 = cpu_flags_or (cpu_arch_isa_flags,
2640 cpu_arch[j].flags);
2641 (void) restore_line_pointer (e);
2642 demand_empty_rest_of_line ();
2643 return;
2644 }
2645 }
2646
2647 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2648 {
2649 /* Disable an ISA extension. */
2650 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2651 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2652 {
2653 flags = cpu_flags_and_not (cpu_arch_flags,
2654 cpu_noarch[j].flags);
2655 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2656 {
2657 if (cpu_sub_arch_name)
2658 {
2659 char *name = cpu_sub_arch_name;
2660 cpu_sub_arch_name = concat (name, string,
2661 (const char *) NULL);
2662 free (name);
2663 }
2664 else
2665 cpu_sub_arch_name = xstrdup (string);
2666 cpu_arch_flags = flags;
2667 cpu_arch_isa_flags = flags;
2668 }
2669 (void) restore_line_pointer (e);
2670 demand_empty_rest_of_line ();
2671 return;
2672 }
2673
2674 j = ARRAY_SIZE (cpu_arch);
2675 }
2676
2677 if (j >= ARRAY_SIZE (cpu_arch))
2678 as_bad (_("no such architecture: `%s'"), string);
2679
2680 *input_line_pointer = e;
2681 }
2682 else
2683 as_bad (_("missing cpu architecture"));
2684
2685 no_cond_jump_promotion = 0;
2686 if (*input_line_pointer == ','
2687 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2688 {
2689 char *string;
2690 char e;
2691
2692 ++input_line_pointer;
2693 e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "nojumps") == 0)
2696 no_cond_jump_promotion = 1;
2697 else if (strcmp (string, "jumps") == 0)
2698 ;
2699 else
2700 as_bad (_("no such architecture modifier: `%s'"), string);
2701
2702 (void) restore_line_pointer (e);
2703 }
2704
2705 demand_empty_rest_of_line ();
2706 }
2707
2708 enum bfd_architecture
2709 i386_arch (void)
2710 {
2711 if (cpu_arch_isa == PROCESSOR_L1OM)
2712 {
2713 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2714 || flag_code != CODE_64BIT)
2715 as_fatal (_("Intel L1OM is 64bit ELF only"));
2716 return bfd_arch_l1om;
2717 }
2718 else if (cpu_arch_isa == PROCESSOR_K1OM)
2719 {
2720 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2721 || flag_code != CODE_64BIT)
2722 as_fatal (_("Intel K1OM is 64bit ELF only"));
2723 return bfd_arch_k1om;
2724 }
2725 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2726 {
2727 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2728 || flag_code == CODE_64BIT)
2729 as_fatal (_("Intel MCU is 32bit ELF only"));
2730 return bfd_arch_iamcu;
2731 }
2732 else
2733 return bfd_arch_i386;
2734 }
2735
2736 unsigned long
2737 i386_mach (void)
2738 {
2739 if (!strncmp (default_arch, "x86_64", 6))
2740 {
2741 if (cpu_arch_isa == PROCESSOR_L1OM)
2742 {
2743 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2744 || default_arch[6] != '\0')
2745 as_fatal (_("Intel L1OM is 64bit ELF only"));
2746 return bfd_mach_l1om;
2747 }
2748 else if (cpu_arch_isa == PROCESSOR_K1OM)
2749 {
2750 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2751 || default_arch[6] != '\0')
2752 as_fatal (_("Intel K1OM is 64bit ELF only"));
2753 return bfd_mach_k1om;
2754 }
2755 else if (default_arch[6] == '\0')
2756 return bfd_mach_x86_64;
2757 else
2758 return bfd_mach_x64_32;
2759 }
2760 else if (!strcmp (default_arch, "i386")
2761 || !strcmp (default_arch, "iamcu"))
2762 {
2763 if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2766 as_fatal (_("Intel MCU is 32bit ELF only"));
2767 return bfd_mach_i386_iamcu;
2768 }
2769 else
2770 return bfd_mach_i386_i386;
2771 }
2772 else
2773 as_fatal (_("unknown architecture"));
2774 }
2775 \f
2776 void
2777 md_begin (void)
2778 {
2779 const char *hash_err;
2780
2781 /* Support pseudo prefixes like {disp32}. */
2782 lex_type ['{'] = LEX_BEGIN_NAME;
2783
2784 /* Initialize op_hash hash table. */
2785 op_hash = hash_new ();
2786
2787 {
2788 const insn_template *optab;
2789 templates *core_optab;
2790
2791 /* Setup for loop. */
2792 optab = i386_optab;
2793 core_optab = XNEW (templates);
2794 core_optab->start = optab;
2795
2796 while (1)
2797 {
2798 ++optab;
2799 if (optab->name == NULL
2800 || strcmp (optab->name, (optab - 1)->name) != 0)
2801 {
2802 /* different name --> ship out current template list;
2803 add to hash table; & begin anew. */
2804 core_optab->end = optab;
2805 hash_err = hash_insert (op_hash,
2806 (optab - 1)->name,
2807 (void *) core_optab);
2808 if (hash_err)
2809 {
2810 as_fatal (_("can't hash %s: %s"),
2811 (optab - 1)->name,
2812 hash_err);
2813 }
2814 if (optab->name == NULL)
2815 break;
2816 core_optab = XNEW (templates);
2817 core_optab->start = optab;
2818 }
2819 }
2820 }
2821
2822 /* Initialize reg_hash hash table. */
2823 reg_hash = hash_new ();
2824 {
2825 const reg_entry *regtab;
2826 unsigned int regtab_size = i386_regtab_size;
2827
2828 for (regtab = i386_regtab; regtab_size--; regtab++)
2829 {
2830 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2831 if (hash_err)
2832 as_fatal (_("can't hash %s: %s"),
2833 regtab->reg_name,
2834 hash_err);
2835 }
2836 }
2837
2838 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2839 {
2840 int c;
2841 char *p;
2842
2843 for (c = 0; c < 256; c++)
2844 {
2845 if (ISDIGIT (c))
2846 {
2847 digit_chars[c] = c;
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
2852 else if (ISLOWER (c))
2853 {
2854 mnemonic_chars[c] = c;
2855 register_chars[c] = c;
2856 operand_chars[c] = c;
2857 }
2858 else if (ISUPPER (c))
2859 {
2860 mnemonic_chars[c] = TOLOWER (c);
2861 register_chars[c] = mnemonic_chars[c];
2862 operand_chars[c] = c;
2863 }
2864 else if (c == '{' || c == '}')
2865 {
2866 mnemonic_chars[c] = c;
2867 operand_chars[c] = c;
2868 }
2869
2870 if (ISALPHA (c) || ISDIGIT (c))
2871 identifier_chars[c] = c;
2872 else if (c >= 128)
2873 {
2874 identifier_chars[c] = c;
2875 operand_chars[c] = c;
2876 }
2877 }
2878
2879 #ifdef LEX_AT
2880 identifier_chars['@'] = '@';
2881 #endif
2882 #ifdef LEX_QM
2883 identifier_chars['?'] = '?';
2884 operand_chars['?'] = '?';
2885 #endif
2886 digit_chars['-'] = '-';
2887 mnemonic_chars['_'] = '_';
2888 mnemonic_chars['-'] = '-';
2889 mnemonic_chars['.'] = '.';
2890 identifier_chars['_'] = '_';
2891 identifier_chars['.'] = '.';
2892
2893 for (p = operand_special_chars; *p != '\0'; p++)
2894 operand_chars[(unsigned char) *p] = *p;
2895 }
2896
2897 if (flag_code == CODE_64BIT)
2898 {
2899 #if defined (OBJ_COFF) && defined (TE_PE)
2900 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2901 ? 32 : 16);
2902 #else
2903 x86_dwarf2_return_column = 16;
2904 #endif
2905 x86_cie_data_alignment = -8;
2906 }
2907 else
2908 {
2909 x86_dwarf2_return_column = 8;
2910 x86_cie_data_alignment = -4;
2911 }
2912 }
2913
2914 void
2915 i386_print_statistics (FILE *file)
2916 {
2917 hash_print_statistics (file, "i386 opcode", op_hash);
2918 hash_print_statistics (file, "i386 register", reg_hash);
2919 }
2920 \f
2921 #ifdef DEBUG386
2922
2923 /* Debugging routines for md_assemble. */
2924 static void pte (insn_template *);
2925 static void pt (i386_operand_type);
2926 static void pe (expressionS *);
2927 static void ps (symbolS *);
2928
2929 static void
2930 pi (char *line, i386_insn *x)
2931 {
2932 unsigned int j;
2933
2934 fprintf (stdout, "%s: template ", line);
2935 pte (&x->tm);
2936 fprintf (stdout, " address: base %s index %s scale %x\n",
2937 x->base_reg ? x->base_reg->reg_name : "none",
2938 x->index_reg ? x->index_reg->reg_name : "none",
2939 x->log2_scale_factor);
2940 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2941 x->rm.mode, x->rm.reg, x->rm.regmem);
2942 fprintf (stdout, " sib: base %x index %x scale %x\n",
2943 x->sib.base, x->sib.index, x->sib.scale);
2944 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2945 (x->rex & REX_W) != 0,
2946 (x->rex & REX_R) != 0,
2947 (x->rex & REX_X) != 0,
2948 (x->rex & REX_B) != 0);
2949 for (j = 0; j < x->operands; j++)
2950 {
2951 fprintf (stdout, " #%d: ", j + 1);
2952 pt (x->types[j]);
2953 fprintf (stdout, "\n");
2954 if (x->types[j].bitfield.reg
2955 || x->types[j].bitfield.regmmx
2956 || x->types[j].bitfield.regsimd
2957 || x->types[j].bitfield.sreg2
2958 || x->types[j].bitfield.sreg3
2959 || x->types[j].bitfield.control
2960 || x->types[j].bitfield.debug
2961 || x->types[j].bitfield.test)
2962 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2963 if (operand_type_check (x->types[j], imm))
2964 pe (x->op[j].imms);
2965 if (operand_type_check (x->types[j], disp))
2966 pe (x->op[j].disps);
2967 }
2968 }
2969
2970 static void
2971 pte (insn_template *t)
2972 {
2973 unsigned int j;
2974 fprintf (stdout, " %d operands ", t->operands);
2975 fprintf (stdout, "opcode %x ", t->base_opcode);
2976 if (t->extension_opcode != None)
2977 fprintf (stdout, "ext %x ", t->extension_opcode);
2978 if (t->opcode_modifier.d)
2979 fprintf (stdout, "D");
2980 if (t->opcode_modifier.w)
2981 fprintf (stdout, "W");
2982 fprintf (stdout, "\n");
2983 for (j = 0; j < t->operands; j++)
2984 {
2985 fprintf (stdout, " #%d type ", j + 1);
2986 pt (t->operand_types[j]);
2987 fprintf (stdout, "\n");
2988 }
2989 }
2990
2991 static void
2992 pe (expressionS *e)
2993 {
2994 fprintf (stdout, " operation %d\n", e->X_op);
2995 fprintf (stdout, " add_number %ld (%lx)\n",
2996 (long) e->X_add_number, (long) e->X_add_number);
2997 if (e->X_add_symbol)
2998 {
2999 fprintf (stdout, " add_symbol ");
3000 ps (e->X_add_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 if (e->X_op_symbol)
3004 {
3005 fprintf (stdout, " op_symbol ");
3006 ps (e->X_op_symbol);
3007 fprintf (stdout, "\n");
3008 }
3009 }
3010
3011 static void
3012 ps (symbolS *s)
3013 {
3014 fprintf (stdout, "%s type %s%s",
3015 S_GET_NAME (s),
3016 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3017 segment_name (S_GET_SEGMENT (s)));
3018 }
3019
3020 static struct type_name
3021 {
3022 i386_operand_type mask;
3023 const char *name;
3024 }
3025 const type_names[] =
3026 {
3027 { OPERAND_TYPE_REG8, "r8" },
3028 { OPERAND_TYPE_REG16, "r16" },
3029 { OPERAND_TYPE_REG32, "r32" },
3030 { OPERAND_TYPE_REG64, "r64" },
3031 { OPERAND_TYPE_IMM8, "i8" },
3032 { OPERAND_TYPE_IMM8, "i8s" },
3033 { OPERAND_TYPE_IMM16, "i16" },
3034 { OPERAND_TYPE_IMM32, "i32" },
3035 { OPERAND_TYPE_IMM32S, "i32s" },
3036 { OPERAND_TYPE_IMM64, "i64" },
3037 { OPERAND_TYPE_IMM1, "i1" },
3038 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3039 { OPERAND_TYPE_DISP8, "d8" },
3040 { OPERAND_TYPE_DISP16, "d16" },
3041 { OPERAND_TYPE_DISP32, "d32" },
3042 { OPERAND_TYPE_DISP32S, "d32s" },
3043 { OPERAND_TYPE_DISP64, "d64" },
3044 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3045 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3046 { OPERAND_TYPE_CONTROL, "control reg" },
3047 { OPERAND_TYPE_TEST, "test reg" },
3048 { OPERAND_TYPE_DEBUG, "debug reg" },
3049 { OPERAND_TYPE_FLOATREG, "FReg" },
3050 { OPERAND_TYPE_FLOATACC, "FAcc" },
3051 { OPERAND_TYPE_SREG2, "SReg2" },
3052 { OPERAND_TYPE_SREG3, "SReg3" },
3053 { OPERAND_TYPE_ACC, "Acc" },
3054 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3055 { OPERAND_TYPE_REGMMX, "rMMX" },
3056 { OPERAND_TYPE_REGXMM, "rXMM" },
3057 { OPERAND_TYPE_REGYMM, "rYMM" },
3058 { OPERAND_TYPE_REGZMM, "rZMM" },
3059 { OPERAND_TYPE_REGMASK, "Mask reg" },
3060 { OPERAND_TYPE_ESSEG, "es" },
3061 };
3062
3063 static void
3064 pt (i386_operand_type t)
3065 {
3066 unsigned int j;
3067 i386_operand_type a;
3068
3069 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3070 {
3071 a = operand_type_and (t, type_names[j].mask);
3072 if (!operand_type_all_zero (&a))
3073 fprintf (stdout, "%s, ", type_names[j].name);
3074 }
3075 fflush (stdout);
3076 }
3077
3078 #endif /* DEBUG386 */
3079 \f
3080 static bfd_reloc_code_real_type
3081 reloc (unsigned int size,
3082 int pcrel,
3083 int sign,
3084 bfd_reloc_code_real_type other)
3085 {
3086 if (other != NO_RELOC)
3087 {
3088 reloc_howto_type *rel;
3089
3090 if (size == 8)
3091 switch (other)
3092 {
3093 case BFD_RELOC_X86_64_GOT32:
3094 return BFD_RELOC_X86_64_GOT64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPLT64:
3097 return BFD_RELOC_X86_64_GOTPLT64;
3098 break;
3099 case BFD_RELOC_X86_64_PLTOFF64:
3100 return BFD_RELOC_X86_64_PLTOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_GOTPC32:
3103 other = BFD_RELOC_X86_64_GOTPC64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPCREL:
3106 other = BFD_RELOC_X86_64_GOTPCREL64;
3107 break;
3108 case BFD_RELOC_X86_64_TPOFF32:
3109 other = BFD_RELOC_X86_64_TPOFF64;
3110 break;
3111 case BFD_RELOC_X86_64_DTPOFF32:
3112 other = BFD_RELOC_X86_64_DTPOFF64;
3113 break;
3114 default:
3115 break;
3116 }
3117
3118 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3119 if (other == BFD_RELOC_SIZE32)
3120 {
3121 if (size == 8)
3122 other = BFD_RELOC_SIZE64;
3123 if (pcrel)
3124 {
3125 as_bad (_("there are no pc-relative size relocations"));
3126 return NO_RELOC;
3127 }
3128 }
3129 #endif
3130
3131 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3132 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3133 sign = -1;
3134
3135 rel = bfd_reloc_type_lookup (stdoutput, other);
3136 if (!rel)
3137 as_bad (_("unknown relocation (%u)"), other);
3138 else if (size != bfd_get_reloc_size (rel))
3139 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3140 bfd_get_reloc_size (rel),
3141 size);
3142 else if (pcrel && !rel->pc_relative)
3143 as_bad (_("non-pc-relative relocation for pc-relative field"));
3144 else if ((rel->complain_on_overflow == complain_overflow_signed
3145 && !sign)
3146 || (rel->complain_on_overflow == complain_overflow_unsigned
3147 && sign > 0))
3148 as_bad (_("relocated field and relocation type differ in signedness"));
3149 else
3150 return other;
3151 return NO_RELOC;
3152 }
3153
3154 if (pcrel)
3155 {
3156 if (!sign)
3157 as_bad (_("there are no unsigned pc-relative relocations"));
3158 switch (size)
3159 {
3160 case 1: return BFD_RELOC_8_PCREL;
3161 case 2: return BFD_RELOC_16_PCREL;
3162 case 4: return BFD_RELOC_32_PCREL;
3163 case 8: return BFD_RELOC_64_PCREL;
3164 }
3165 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3166 }
3167 else
3168 {
3169 if (sign > 0)
3170 switch (size)
3171 {
3172 case 4: return BFD_RELOC_X86_64_32S;
3173 }
3174 else
3175 switch (size)
3176 {
3177 case 1: return BFD_RELOC_8;
3178 case 2: return BFD_RELOC_16;
3179 case 4: return BFD_RELOC_32;
3180 case 8: return BFD_RELOC_64;
3181 }
3182 as_bad (_("cannot do %s %u byte relocation"),
3183 sign > 0 ? "signed" : "unsigned", size);
3184 }
3185
3186 return NO_RELOC;
3187 }
3188
3189 /* Here we decide which fixups can be adjusted to make them relative to
3190 the beginning of the section instead of the symbol. Basically we need
3191 to make sure that the dynamic relocations are done correctly, so in
3192 some cases we force the original symbol to be used. */
3193
3194 int
3195 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3196 {
3197 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3198 if (!IS_ELF)
3199 return 1;
3200
3201 /* Don't adjust pc-relative references to merge sections in 64-bit
3202 mode. */
3203 if (use_rela_relocations
3204 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3205 && fixP->fx_pcrel)
3206 return 0;
3207
3208 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3209 and changed later by validate_fix. */
3210 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3211 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3212 return 0;
3213
3214 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3215 for size relocations. */
3216 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3217 || fixP->fx_r_type == BFD_RELOC_SIZE64
3218 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3219 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3220 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3221 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3247 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3248 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3249 return 0;
3250 #endif
3251 return 1;
3252 }
3253
3254 static int
3255 intel_float_operand (const char *mnemonic)
3256 {
3257 /* Note that the value returned is meaningful only for opcodes with (memory)
3258 operands, hence the code here is free to improperly handle opcodes that
3259 have no operands (for better performance and smaller code). */
3260
3261 if (mnemonic[0] != 'f')
3262 return 0; /* non-math */
3263
3264 switch (mnemonic[1])
3265 {
3266 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3267 the fs segment override prefix not currently handled because no
3268 call path can make opcodes without operands get here */
3269 case 'i':
3270 return 2 /* integer op */;
3271 case 'l':
3272 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3273 return 3; /* fldcw/fldenv */
3274 break;
3275 case 'n':
3276 if (mnemonic[2] != 'o' /* fnop */)
3277 return 3; /* non-waiting control op */
3278 break;
3279 case 'r':
3280 if (mnemonic[2] == 's')
3281 return 3; /* frstor/frstpm */
3282 break;
3283 case 's':
3284 if (mnemonic[2] == 'a')
3285 return 3; /* fsave */
3286 if (mnemonic[2] == 't')
3287 {
3288 switch (mnemonic[3])
3289 {
3290 case 'c': /* fstcw */
3291 case 'd': /* fstdw */
3292 case 'e': /* fstenv */
3293 case 's': /* fsts[gw] */
3294 return 3;
3295 }
3296 }
3297 break;
3298 case 'x':
3299 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3300 return 0; /* fxsave/fxrstor are not really math ops */
3301 break;
3302 }
3303
3304 return 1;
3305 }
3306
3307 /* Build the VEX prefix. */
3308
3309 static void
3310 build_vex_prefix (const insn_template *t)
3311 {
3312 unsigned int register_specifier;
3313 unsigned int implied_prefix;
3314 unsigned int vector_length;
3315
3316 /* Check register specifier. */
3317 if (i.vex.register_specifier)
3318 {
3319 register_specifier =
3320 ~register_number (i.vex.register_specifier) & 0xf;
3321 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3322 }
3323 else
3324 register_specifier = 0xf;
3325
3326 /* Use 2-byte VEX prefix by swapping destination and source
3327 operand. */
3328 if (i.vec_encoding != vex_encoding_vex3
3329 && i.dir_encoding == dir_encoding_default
3330 && i.operands == i.reg_operands
3331 && i.tm.opcode_modifier.vexopcode == VEX0F
3332 && i.tm.opcode_modifier.load
3333 && i.rex == REX_B)
3334 {
3335 unsigned int xchg = i.operands - 1;
3336 union i386_op temp_op;
3337 i386_operand_type temp_type;
3338
3339 temp_type = i.types[xchg];
3340 i.types[xchg] = i.types[0];
3341 i.types[0] = temp_type;
3342 temp_op = i.op[xchg];
3343 i.op[xchg] = i.op[0];
3344 i.op[0] = temp_op;
3345
3346 gas_assert (i.rm.mode == 3);
3347
3348 i.rex = REX_R;
3349 xchg = i.rm.regmem;
3350 i.rm.regmem = i.rm.reg;
3351 i.rm.reg = xchg;
3352
3353 /* Use the next insn. */
3354 i.tm = t[1];
3355 }
3356
3357 if (i.tm.opcode_modifier.vex == VEXScalar)
3358 vector_length = avxscalar;
3359 else if (i.tm.opcode_modifier.vex == VEX256)
3360 vector_length = 1;
3361 else
3362 {
3363 unsigned int op;
3364
3365 vector_length = 0;
3366 for (op = 0; op < t->operands; ++op)
3367 if (t->operand_types[op].bitfield.xmmword
3368 && t->operand_types[op].bitfield.ymmword
3369 && i.types[op].bitfield.ymmword)
3370 {
3371 vector_length = 1;
3372 break;
3373 }
3374 }
3375
3376 switch ((i.tm.base_opcode >> 8) & 0xff)
3377 {
3378 case 0:
3379 implied_prefix = 0;
3380 break;
3381 case DATA_PREFIX_OPCODE:
3382 implied_prefix = 1;
3383 break;
3384 case REPE_PREFIX_OPCODE:
3385 implied_prefix = 2;
3386 break;
3387 case REPNE_PREFIX_OPCODE:
3388 implied_prefix = 3;
3389 break;
3390 default:
3391 abort ();
3392 }
3393
3394 /* Use 2-byte VEX prefix if possible. */
3395 if (i.vec_encoding != vex_encoding_vex3
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
3397 && i.tm.opcode_modifier.vexw != VEXW1
3398 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3399 {
3400 /* 2-byte VEX prefix. */
3401 unsigned int r;
3402
3403 i.vex.length = 2;
3404 i.vex.bytes[0] = 0xc5;
3405
3406 /* Check the REX.R bit. */
3407 r = (i.rex & REX_R) ? 0 : 1;
3408 i.vex.bytes[1] = (r << 7
3409 | register_specifier << 3
3410 | vector_length << 2
3411 | implied_prefix);
3412 }
3413 else
3414 {
3415 /* 3-byte VEX prefix. */
3416 unsigned int m, w;
3417
3418 i.vex.length = 3;
3419
3420 switch (i.tm.opcode_modifier.vexopcode)
3421 {
3422 case VEX0F:
3423 m = 0x1;
3424 i.vex.bytes[0] = 0xc4;
3425 break;
3426 case VEX0F38:
3427 m = 0x2;
3428 i.vex.bytes[0] = 0xc4;
3429 break;
3430 case VEX0F3A:
3431 m = 0x3;
3432 i.vex.bytes[0] = 0xc4;
3433 break;
3434 case XOP08:
3435 m = 0x8;
3436 i.vex.bytes[0] = 0x8f;
3437 break;
3438 case XOP09:
3439 m = 0x9;
3440 i.vex.bytes[0] = 0x8f;
3441 break;
3442 case XOP0A:
3443 m = 0xa;
3444 i.vex.bytes[0] = 0x8f;
3445 break;
3446 default:
3447 abort ();
3448 }
3449
3450 /* The high 3 bits of the second VEX byte are 1's compliment
3451 of RXB bits from REX. */
3452 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3453
3454 /* Check the REX.W bit. */
3455 w = (i.rex & REX_W) ? 1 : 0;
3456 if (i.tm.opcode_modifier.vexw == VEXW1)
3457 w = 1;
3458
3459 i.vex.bytes[2] = (w << 7
3460 | register_specifier << 3
3461 | vector_length << 2
3462 | implied_prefix);
3463 }
3464 }
3465
3466 static INLINE bfd_boolean
3467 is_evex_encoding (const insn_template *t)
3468 {
3469 return t->opcode_modifier.evex
3470 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3471 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3472 }
3473
3474 /* Build the EVEX prefix. */
3475
3476 static void
3477 build_evex_prefix (void)
3478 {
3479 unsigned int register_specifier;
3480 unsigned int implied_prefix;
3481 unsigned int m, w;
3482 rex_byte vrex_used = 0;
3483
3484 /* Check register specifier. */
3485 if (i.vex.register_specifier)
3486 {
3487 gas_assert ((i.vrex & REX_X) == 0);
3488
3489 register_specifier = i.vex.register_specifier->reg_num;
3490 if ((i.vex.register_specifier->reg_flags & RegRex))
3491 register_specifier += 8;
3492 /* The upper 16 registers are encoded in the fourth byte of the
3493 EVEX prefix. */
3494 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3495 i.vex.bytes[3] = 0x8;
3496 register_specifier = ~register_specifier & 0xf;
3497 }
3498 else
3499 {
3500 register_specifier = 0xf;
3501
3502 /* Encode upper 16 vector index register in the fourth byte of
3503 the EVEX prefix. */
3504 if (!(i.vrex & REX_X))
3505 i.vex.bytes[3] = 0x8;
3506 else
3507 vrex_used |= REX_X;
3508 }
3509
3510 switch ((i.tm.base_opcode >> 8) & 0xff)
3511 {
3512 case 0:
3513 implied_prefix = 0;
3514 break;
3515 case DATA_PREFIX_OPCODE:
3516 implied_prefix = 1;
3517 break;
3518 case REPE_PREFIX_OPCODE:
3519 implied_prefix = 2;
3520 break;
3521 case REPNE_PREFIX_OPCODE:
3522 implied_prefix = 3;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* 4 byte EVEX prefix. */
3529 i.vex.length = 4;
3530 i.vex.bytes[0] = 0x62;
3531
3532 /* mmmm bits. */
3533 switch (i.tm.opcode_modifier.vexopcode)
3534 {
3535 case VEX0F:
3536 m = 1;
3537 break;
3538 case VEX0F38:
3539 m = 2;
3540 break;
3541 case VEX0F3A:
3542 m = 3;
3543 break;
3544 default:
3545 abort ();
3546 break;
3547 }
3548
3549 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3550 bits from REX. */
3551 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3552
3553 /* The fifth bit of the second EVEX byte is 1's compliment of the
3554 REX_R bit in VREX. */
3555 if (!(i.vrex & REX_R))
3556 i.vex.bytes[1] |= 0x10;
3557 else
3558 vrex_used |= REX_R;
3559
3560 if ((i.reg_operands + i.imm_operands) == i.operands)
3561 {
3562 /* When all operands are registers, the REX_X bit in REX is not
3563 used. We reuse it to encode the upper 16 registers, which is
3564 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3565 as 1's compliment. */
3566 if ((i.vrex & REX_B))
3567 {
3568 vrex_used |= REX_B;
3569 i.vex.bytes[1] &= ~0x40;
3570 }
3571 }
3572
3573 /* EVEX instructions shouldn't need the REX prefix. */
3574 i.vrex &= ~vrex_used;
3575 gas_assert (i.vrex == 0);
3576
3577 /* Check the REX.W bit. */
3578 w = (i.rex & REX_W) ? 1 : 0;
3579 if (i.tm.opcode_modifier.vexw)
3580 {
3581 if (i.tm.opcode_modifier.vexw == VEXW1)
3582 w = 1;
3583 }
3584 /* If w is not set it means we are dealing with WIG instruction. */
3585 else if (!w)
3586 {
3587 if (evexwig == evexw1)
3588 w = 1;
3589 }
3590
3591 /* Encode the U bit. */
3592 implied_prefix |= 0x4;
3593
3594 /* The third byte of the EVEX prefix. */
3595 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3596
3597 /* The fourth byte of the EVEX prefix. */
3598 /* The zeroing-masking bit. */
3599 if (i.mask && i.mask->zeroing)
3600 i.vex.bytes[3] |= 0x80;
3601
3602 /* Don't always set the broadcast bit if there is no RC. */
3603 if (!i.rounding)
3604 {
3605 /* Encode the vector length. */
3606 unsigned int vec_length;
3607
3608 if (!i.tm.opcode_modifier.evex
3609 || i.tm.opcode_modifier.evex == EVEXDYN)
3610 {
3611 unsigned int op;
3612
3613 vec_length = 0;
3614 for (op = 0; op < i.tm.operands; ++op)
3615 if (i.tm.operand_types[op].bitfield.xmmword
3616 + i.tm.operand_types[op].bitfield.ymmword
3617 + i.tm.operand_types[op].bitfield.zmmword > 1)
3618 {
3619 if (i.types[op].bitfield.zmmword)
3620 i.tm.opcode_modifier.evex = EVEX512;
3621 else if (i.types[op].bitfield.ymmword)
3622 i.tm.opcode_modifier.evex = EVEX256;
3623 else if (i.types[op].bitfield.xmmword)
3624 i.tm.opcode_modifier.evex = EVEX128;
3625 else
3626 continue;
3627 break;
3628 }
3629 }
3630
3631 switch (i.tm.opcode_modifier.evex)
3632 {
3633 case EVEXLIG: /* LL' is ignored */
3634 vec_length = evexlig << 5;
3635 break;
3636 case EVEX128:
3637 vec_length = 0 << 5;
3638 break;
3639 case EVEX256:
3640 vec_length = 1 << 5;
3641 break;
3642 case EVEX512:
3643 vec_length = 2 << 5;
3644 break;
3645 default:
3646 abort ();
3647 break;
3648 }
3649 i.vex.bytes[3] |= vec_length;
3650 /* Encode the broadcast bit. */
3651 if (i.broadcast)
3652 i.vex.bytes[3] |= 0x10;
3653 }
3654 else
3655 {
3656 if (i.rounding->type != saeonly)
3657 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3658 else
3659 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3660 }
3661
3662 if (i.mask && i.mask->mask)
3663 i.vex.bytes[3] |= i.mask->mask->reg_num;
3664 }
3665
3666 static void
3667 process_immext (void)
3668 {
3669 expressionS *exp;
3670
3671 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3672 && i.operands > 0)
3673 {
3674 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3675 with an opcode suffix which is coded in the same place as an
3676 8-bit immediate field would be.
3677 Here we check those operands and remove them afterwards. */
3678 unsigned int x;
3679
3680 for (x = 0; x < i.operands; x++)
3681 if (register_number (i.op[x].regs) != x)
3682 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3683 register_prefix, i.op[x].regs->reg_name, x + 1,
3684 i.tm.name);
3685
3686 i.operands = 0;
3687 }
3688
3689 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3690 {
3691 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3692 suffix which is coded in the same place as an 8-bit immediate
3693 field would be.
3694 Here we check those operands and remove them afterwards. */
3695 unsigned int x;
3696
3697 if (i.operands != 3)
3698 abort();
3699
3700 for (x = 0; x < 2; x++)
3701 if (register_number (i.op[x].regs) != x)
3702 goto bad_register_operand;
3703
3704 /* Check for third operand for mwaitx/monitorx insn. */
3705 if (register_number (i.op[x].regs)
3706 != (x + (i.tm.extension_opcode == 0xfb)))
3707 {
3708 bad_register_operand:
3709 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3710 register_prefix, i.op[x].regs->reg_name, x+1,
3711 i.tm.name);
3712 }
3713
3714 i.operands = 0;
3715 }
3716
3717 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3718 which is coded in the same place as an 8-bit immediate field
3719 would be. Here we fake an 8-bit immediate operand from the
3720 opcode suffix stored in tm.extension_opcode.
3721
3722 AVX instructions also use this encoding, for some of
3723 3 argument instructions. */
3724
3725 gas_assert (i.imm_operands <= 1
3726 && (i.operands <= 2
3727 || ((i.tm.opcode_modifier.vex
3728 || i.tm.opcode_modifier.vexopcode
3729 || is_evex_encoding (&i.tm))
3730 && i.operands <= 4)));
3731
3732 exp = &im_expressions[i.imm_operands++];
3733 i.op[i.operands].imms = exp;
3734 i.types[i.operands] = imm8;
3735 i.operands++;
3736 exp->X_op = O_constant;
3737 exp->X_add_number = i.tm.extension_opcode;
3738 i.tm.extension_opcode = None;
3739 }
3740
3741
3742 static int
3743 check_hle (void)
3744 {
3745 switch (i.tm.opcode_modifier.hleprefixok)
3746 {
3747 default:
3748 abort ();
3749 case HLEPrefixNone:
3750 as_bad (_("invalid instruction `%s' after `%s'"),
3751 i.tm.name, i.hle_prefix);
3752 return 0;
3753 case HLEPrefixLock:
3754 if (i.prefix[LOCK_PREFIX])
3755 return 1;
3756 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3757 return 0;
3758 case HLEPrefixAny:
3759 return 1;
3760 case HLEPrefixRelease:
3761 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3762 {
3763 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3764 i.tm.name);
3765 return 0;
3766 }
3767 if (i.mem_operands == 0
3768 || !operand_type_check (i.types[i.operands - 1], anymem))
3769 {
3770 as_bad (_("memory destination needed for instruction `%s'"
3771 " after `xrelease'"), i.tm.name);
3772 return 0;
3773 }
3774 return 1;
3775 }
3776 }
3777
3778 /* Try the shortest encoding by shortening operand size. */
3779
3780 static void
3781 optimize_encoding (void)
3782 {
3783 int j;
3784
3785 if (optimize_for_space
3786 && i.reg_operands == 1
3787 && i.imm_operands == 1
3788 && !i.types[1].bitfield.byte
3789 && i.op[0].imms->X_op == O_constant
3790 && fits_in_imm7 (i.op[0].imms->X_add_number)
3791 && ((i.tm.base_opcode == 0xa8
3792 && i.tm.extension_opcode == None)
3793 || (i.tm.base_opcode == 0xf6
3794 && i.tm.extension_opcode == 0x0)))
3795 {
3796 /* Optimize: -Os:
3797 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3798 */
3799 unsigned int base_regnum = i.op[1].regs->reg_num;
3800 if (flag_code == CODE_64BIT || base_regnum < 4)
3801 {
3802 i.types[1].bitfield.byte = 1;
3803 /* Ignore the suffix. */
3804 i.suffix = 0;
3805 if (base_regnum >= 4
3806 && !(i.op[1].regs->reg_flags & RegRex))
3807 {
3808 /* Handle SP, BP, SI and DI registers. */
3809 if (i.types[1].bitfield.word)
3810 j = 16;
3811 else if (i.types[1].bitfield.dword)
3812 j = 32;
3813 else
3814 j = 48;
3815 i.op[1].regs -= j;
3816 }
3817 }
3818 }
3819 else if (flag_code == CODE_64BIT
3820 && ((i.types[1].bitfield.qword
3821 && i.reg_operands == 1
3822 && i.imm_operands == 1
3823 && i.op[0].imms->X_op == O_constant
3824 && ((i.tm.base_opcode == 0xb0
3825 && i.tm.extension_opcode == None
3826 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3827 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3828 && (((i.tm.base_opcode == 0x24
3829 || i.tm.base_opcode == 0xa8)
3830 && i.tm.extension_opcode == None)
3831 || (i.tm.base_opcode == 0x80
3832 && i.tm.extension_opcode == 0x4)
3833 || ((i.tm.base_opcode == 0xf6
3834 || i.tm.base_opcode == 0xc6)
3835 && i.tm.extension_opcode == 0x0)))))
3836 || (i.types[0].bitfield.qword
3837 && ((i.reg_operands == 2
3838 && i.op[0].regs == i.op[1].regs
3839 && ((i.tm.base_opcode == 0x30
3840 || i.tm.base_opcode == 0x28)
3841 && i.tm.extension_opcode == None))
3842 || (i.reg_operands == 1
3843 && i.operands == 1
3844 && i.tm.base_opcode == 0x30
3845 && i.tm.extension_opcode == None)))))
3846 {
3847 /* Optimize: -O:
3848 andq $imm31, %r64 -> andl $imm31, %r32
3849 testq $imm31, %r64 -> testl $imm31, %r32
3850 xorq %r64, %r64 -> xorl %r32, %r32
3851 subq %r64, %r64 -> subl %r32, %r32
3852 movq $imm31, %r64 -> movl $imm31, %r32
3853 movq $imm32, %r64 -> movl $imm32, %r32
3854 */
3855 i.tm.opcode_modifier.norex64 = 1;
3856 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3857 {
3858 /* Handle
3859 movq $imm31, %r64 -> movl $imm31, %r32
3860 movq $imm32, %r64 -> movl $imm32, %r32
3861 */
3862 i.tm.operand_types[0].bitfield.imm32 = 1;
3863 i.tm.operand_types[0].bitfield.imm32s = 0;
3864 i.tm.operand_types[0].bitfield.imm64 = 0;
3865 i.types[0].bitfield.imm32 = 1;
3866 i.types[0].bitfield.imm32s = 0;
3867 i.types[0].bitfield.imm64 = 0;
3868 i.types[1].bitfield.dword = 1;
3869 i.types[1].bitfield.qword = 0;
3870 if (i.tm.base_opcode == 0xc6)
3871 {
3872 /* Handle
3873 movq $imm31, %r64 -> movl $imm31, %r32
3874 */
3875 i.tm.base_opcode = 0xb0;
3876 i.tm.extension_opcode = None;
3877 i.tm.opcode_modifier.shortform = 1;
3878 i.tm.opcode_modifier.modrm = 0;
3879 }
3880 }
3881 }
3882 else if (optimize > 1
3883 && i.reg_operands == 3
3884 && i.op[0].regs == i.op[1].regs
3885 && !i.types[2].bitfield.xmmword
3886 && (i.tm.opcode_modifier.vex
3887 || ((!i.mask || i.mask->zeroing)
3888 && !i.rounding
3889 && is_evex_encoding (&i.tm)
3890 && (i.vec_encoding != vex_encoding_evex
3891 || i.tm.cpu_flags.bitfield.cpuavx512vl
3892 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3893 && ((i.tm.base_opcode == 0x55
3894 || i.tm.base_opcode == 0x6655
3895 || i.tm.base_opcode == 0x66df
3896 || i.tm.base_opcode == 0x57
3897 || i.tm.base_opcode == 0x6657
3898 || i.tm.base_opcode == 0x66ef
3899 || i.tm.base_opcode == 0x66f8
3900 || i.tm.base_opcode == 0x66f9
3901 || i.tm.base_opcode == 0x66fa
3902 || i.tm.base_opcode == 0x66fb)
3903 && i.tm.extension_opcode == None))
3904 {
3905 /* Optimize: -O2:
3906 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3907 vpsubq and vpsubw:
3908 EVEX VOP %zmmM, %zmmM, %zmmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3910 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3911 EVEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 VEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX VOP %xmmM, %xmmM, %xmmN
3916 VOP, one of vpandn and vpxor:
3917 VEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX VOP %xmmM, %xmmM, %xmmN
3919 VOP, one of vpandnd and vpandnq:
3920 EVEX VOP %zmmM, %zmmM, %zmmN
3921 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3922 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3923 EVEX VOP %ymmM, %ymmM, %ymmN
3924 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3925 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3926 VOP, one of vpxord and vpxorq:
3927 EVEX VOP %zmmM, %zmmM, %zmmN
3928 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3929 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3930 EVEX VOP %ymmM, %ymmM, %ymmN
3931 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3932 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3933 */
3934 if (is_evex_encoding (&i.tm))
3935 {
3936 if (i.vec_encoding == vex_encoding_evex)
3937 i.tm.opcode_modifier.evex = EVEX128;
3938 else
3939 {
3940 i.tm.opcode_modifier.vex = VEX128;
3941 i.tm.opcode_modifier.vexw = VEXW0;
3942 i.tm.opcode_modifier.evex = 0;
3943 }
3944 }
3945 else
3946 i.tm.opcode_modifier.vex = VEX128;
3947
3948 if (i.tm.opcode_modifier.vex)
3949 for (j = 0; j < 3; j++)
3950 {
3951 i.types[j].bitfield.xmmword = 1;
3952 i.types[j].bitfield.ymmword = 0;
3953 }
3954 }
3955 }
3956
3957 /* This is the guts of the machine-dependent assembler. LINE points to a
3958 machine dependent instruction. This function is supposed to emit
3959 the frags/bytes it assembles to. */
3960
3961 void
3962 md_assemble (char *line)
3963 {
3964 unsigned int j;
3965 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3966 const insn_template *t;
3967
3968 /* Initialize globals. */
3969 memset (&i, '\0', sizeof (i));
3970 for (j = 0; j < MAX_OPERANDS; j++)
3971 i.reloc[j] = NO_RELOC;
3972 memset (disp_expressions, '\0', sizeof (disp_expressions));
3973 memset (im_expressions, '\0', sizeof (im_expressions));
3974 save_stack_p = save_stack;
3975
3976 /* First parse an instruction mnemonic & call i386_operand for the operands.
3977 We assume that the scrubber has arranged it so that line[0] is the valid
3978 start of a (possibly prefixed) mnemonic. */
3979
3980 line = parse_insn (line, mnemonic);
3981 if (line == NULL)
3982 return;
3983 mnem_suffix = i.suffix;
3984
3985 line = parse_operands (line, mnemonic);
3986 this_operand = -1;
3987 xfree (i.memop1_string);
3988 i.memop1_string = NULL;
3989 if (line == NULL)
3990 return;
3991
3992 /* Now we've parsed the mnemonic into a set of templates, and have the
3993 operands at hand. */
3994
3995 /* All intel opcodes have reversed operands except for "bound" and
3996 "enter". We also don't reverse intersegment "jmp" and "call"
3997 instructions with 2 immediate operands so that the immediate segment
3998 precedes the offset, as it does when in AT&T mode. */
3999 if (intel_syntax
4000 && i.operands > 1
4001 && (strcmp (mnemonic, "bound") != 0)
4002 && (strcmp (mnemonic, "invlpga") != 0)
4003 && !(operand_type_check (i.types[0], imm)
4004 && operand_type_check (i.types[1], imm)))
4005 swap_operands ();
4006
4007 /* The order of the immediates should be reversed
4008 for 2 immediates extrq and insertq instructions */
4009 if (i.imm_operands == 2
4010 && (strcmp (mnemonic, "extrq") == 0
4011 || strcmp (mnemonic, "insertq") == 0))
4012 swap_2_operands (0, 1);
4013
4014 if (i.imm_operands)
4015 optimize_imm ();
4016
4017 /* Don't optimize displacement for movabs since it only takes 64bit
4018 displacement. */
4019 if (i.disp_operands
4020 && i.disp_encoding != disp_encoding_32bit
4021 && (flag_code != CODE_64BIT
4022 || strcmp (mnemonic, "movabs") != 0))
4023 optimize_disp ();
4024
4025 /* Next, we find a template that matches the given insn,
4026 making sure the overlap of the given operands types is consistent
4027 with the template operand types. */
4028
4029 if (!(t = match_template (mnem_suffix)))
4030 return;
4031
4032 if (sse_check != check_none
4033 && !i.tm.opcode_modifier.noavx
4034 && !i.tm.cpu_flags.bitfield.cpuavx
4035 && (i.tm.cpu_flags.bitfield.cpusse
4036 || i.tm.cpu_flags.bitfield.cpusse2
4037 || i.tm.cpu_flags.bitfield.cpusse3
4038 || i.tm.cpu_flags.bitfield.cpussse3
4039 || i.tm.cpu_flags.bitfield.cpusse4_1
4040 || i.tm.cpu_flags.bitfield.cpusse4_2
4041 || i.tm.cpu_flags.bitfield.cpupclmul
4042 || i.tm.cpu_flags.bitfield.cpuaes
4043 || i.tm.cpu_flags.bitfield.cpugfni))
4044 {
4045 (sse_check == check_warning
4046 ? as_warn
4047 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4048 }
4049
4050 /* Zap movzx and movsx suffix. The suffix has been set from
4051 "word ptr" or "byte ptr" on the source operand in Intel syntax
4052 or extracted from mnemonic in AT&T syntax. But we'll use
4053 the destination register to choose the suffix for encoding. */
4054 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4055 {
4056 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4057 there is no suffix, the default will be byte extension. */
4058 if (i.reg_operands != 2
4059 && !i.suffix
4060 && intel_syntax)
4061 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4062
4063 i.suffix = 0;
4064 }
4065
4066 if (i.tm.opcode_modifier.fwait)
4067 if (!add_prefix (FWAIT_OPCODE))
4068 return;
4069
4070 /* Check if REP prefix is OK. */
4071 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4072 {
4073 as_bad (_("invalid instruction `%s' after `%s'"),
4074 i.tm.name, i.rep_prefix);
4075 return;
4076 }
4077
4078 /* Check for lock without a lockable instruction. Destination operand
4079 must be memory unless it is xchg (0x86). */
4080 if (i.prefix[LOCK_PREFIX]
4081 && (!i.tm.opcode_modifier.islockable
4082 || i.mem_operands == 0
4083 || (i.tm.base_opcode != 0x86
4084 && !operand_type_check (i.types[i.operands - 1], anymem))))
4085 {
4086 as_bad (_("expecting lockable instruction after `lock'"));
4087 return;
4088 }
4089
4090 /* Check if HLE prefix is OK. */
4091 if (i.hle_prefix && !check_hle ())
4092 return;
4093
4094 /* Check BND prefix. */
4095 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4096 as_bad (_("expecting valid branch instruction after `bnd'"));
4097
4098 /* Check NOTRACK prefix. */
4099 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4100 as_bad (_("expecting indirect branch instruction after `notrack'"));
4101
4102 if (i.tm.cpu_flags.bitfield.cpumpx)
4103 {
4104 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4105 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4106 else if (flag_code != CODE_16BIT
4107 ? i.prefix[ADDR_PREFIX]
4108 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4109 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4110 }
4111
4112 /* Insert BND prefix. */
4113 if (add_bnd_prefix
4114 && i.tm.opcode_modifier.bndprefixok
4115 && !i.prefix[BND_PREFIX])
4116 add_prefix (BND_PREFIX_OPCODE);
4117
4118 /* Check string instruction segment overrides. */
4119 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4120 {
4121 if (!check_string ())
4122 return;
4123 i.disp_operands = 0;
4124 }
4125
4126 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4127 optimize_encoding ();
4128
4129 if (!process_suffix ())
4130 return;
4131
4132 /* Update operand types. */
4133 for (j = 0; j < i.operands; j++)
4134 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4135
4136 /* Make still unresolved immediate matches conform to size of immediate
4137 given in i.suffix. */
4138 if (!finalize_imm ())
4139 return;
4140
4141 if (i.types[0].bitfield.imm1)
4142 i.imm_operands = 0; /* kludge for shift insns. */
4143
4144 /* We only need to check those implicit registers for instructions
4145 with 3 operands or less. */
4146 if (i.operands <= 3)
4147 for (j = 0; j < i.operands; j++)
4148 if (i.types[j].bitfield.inoutportreg
4149 || i.types[j].bitfield.shiftcount
4150 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4151 i.reg_operands--;
4152
4153 /* ImmExt should be processed after SSE2AVX. */
4154 if (!i.tm.opcode_modifier.sse2avx
4155 && i.tm.opcode_modifier.immext)
4156 process_immext ();
4157
4158 /* For insns with operands there are more diddles to do to the opcode. */
4159 if (i.operands)
4160 {
4161 if (!process_operands ())
4162 return;
4163 }
4164 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4165 {
4166 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4167 as_warn (_("translating to `%sp'"), i.tm.name);
4168 }
4169
4170 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4171 || is_evex_encoding (&i.tm))
4172 {
4173 if (flag_code == CODE_16BIT)
4174 {
4175 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4176 i.tm.name);
4177 return;
4178 }
4179
4180 if (i.tm.opcode_modifier.vex)
4181 build_vex_prefix (t);
4182 else
4183 build_evex_prefix ();
4184 }
4185
4186 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4187 instructions may define INT_OPCODE as well, so avoid this corner
4188 case for those instructions that use MODRM. */
4189 if (i.tm.base_opcode == INT_OPCODE
4190 && !i.tm.opcode_modifier.modrm
4191 && i.op[0].imms->X_add_number == 3)
4192 {
4193 i.tm.base_opcode = INT3_OPCODE;
4194 i.imm_operands = 0;
4195 }
4196
4197 if ((i.tm.opcode_modifier.jump
4198 || i.tm.opcode_modifier.jumpbyte
4199 || i.tm.opcode_modifier.jumpdword)
4200 && i.op[0].disps->X_op == O_constant)
4201 {
4202 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4203 the absolute address given by the constant. Since ix86 jumps and
4204 calls are pc relative, we need to generate a reloc. */
4205 i.op[0].disps->X_add_symbol = &abs_symbol;
4206 i.op[0].disps->X_op = O_symbol;
4207 }
4208
4209 if (i.tm.opcode_modifier.rex64)
4210 i.rex |= REX_W;
4211
4212 /* For 8 bit registers we need an empty rex prefix. Also if the
4213 instruction already has a prefix, we need to convert old
4214 registers to new ones. */
4215
4216 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4217 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4218 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4219 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4220 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4221 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4222 && i.rex != 0))
4223 {
4224 int x;
4225
4226 i.rex |= REX_OPCODE;
4227 for (x = 0; x < 2; x++)
4228 {
4229 /* Look for 8 bit operand that uses old registers. */
4230 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4231 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4232 {
4233 /* In case it is "hi" register, give up. */
4234 if (i.op[x].regs->reg_num > 3)
4235 as_bad (_("can't encode register '%s%s' in an "
4236 "instruction requiring REX prefix."),
4237 register_prefix, i.op[x].regs->reg_name);
4238
4239 /* Otherwise it is equivalent to the extended register.
4240 Since the encoding doesn't change this is merely
4241 cosmetic cleanup for debug output. */
4242
4243 i.op[x].regs = i.op[x].regs + 8;
4244 }
4245 }
4246 }
4247
4248 if (i.rex == 0 && i.rex_encoding)
4249 {
4250 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4251 that uses legacy register. If it is "hi" register, don't add
4252 the REX_OPCODE byte. */
4253 int x;
4254 for (x = 0; x < 2; x++)
4255 if (i.types[x].bitfield.reg
4256 && i.types[x].bitfield.byte
4257 && (i.op[x].regs->reg_flags & RegRex64) == 0
4258 && i.op[x].regs->reg_num > 3)
4259 {
4260 i.rex_encoding = FALSE;
4261 break;
4262 }
4263
4264 if (i.rex_encoding)
4265 i.rex = REX_OPCODE;
4266 }
4267
4268 if (i.rex != 0)
4269 add_prefix (REX_OPCODE | i.rex);
4270
4271 /* We are ready to output the insn. */
4272 output_insn ();
4273 }
4274
4275 static char *
4276 parse_insn (char *line, char *mnemonic)
4277 {
4278 char *l = line;
4279 char *token_start = l;
4280 char *mnem_p;
4281 int supported;
4282 const insn_template *t;
4283 char *dot_p = NULL;
4284
4285 while (1)
4286 {
4287 mnem_p = mnemonic;
4288 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4289 {
4290 if (*mnem_p == '.')
4291 dot_p = mnem_p;
4292 mnem_p++;
4293 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4294 {
4295 as_bad (_("no such instruction: `%s'"), token_start);
4296 return NULL;
4297 }
4298 l++;
4299 }
4300 if (!is_space_char (*l)
4301 && *l != END_OF_INSN
4302 && (intel_syntax
4303 || (*l != PREFIX_SEPARATOR
4304 && *l != ',')))
4305 {
4306 as_bad (_("invalid character %s in mnemonic"),
4307 output_invalid (*l));
4308 return NULL;
4309 }
4310 if (token_start == l)
4311 {
4312 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4313 as_bad (_("expecting prefix; got nothing"));
4314 else
4315 as_bad (_("expecting mnemonic; got nothing"));
4316 return NULL;
4317 }
4318
4319 /* Look up instruction (or prefix) via hash table. */
4320 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4321
4322 if (*l != END_OF_INSN
4323 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4324 && current_templates
4325 && current_templates->start->opcode_modifier.isprefix)
4326 {
4327 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4328 {
4329 as_bad ((flag_code != CODE_64BIT
4330 ? _("`%s' is only supported in 64-bit mode")
4331 : _("`%s' is not supported in 64-bit mode")),
4332 current_templates->start->name);
4333 return NULL;
4334 }
4335 /* If we are in 16-bit mode, do not allow addr16 or data16.
4336 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4337 if ((current_templates->start->opcode_modifier.size16
4338 || current_templates->start->opcode_modifier.size32)
4339 && flag_code != CODE_64BIT
4340 && (current_templates->start->opcode_modifier.size32
4341 ^ (flag_code == CODE_16BIT)))
4342 {
4343 as_bad (_("redundant %s prefix"),
4344 current_templates->start->name);
4345 return NULL;
4346 }
4347 if (current_templates->start->opcode_length == 0)
4348 {
4349 /* Handle pseudo prefixes. */
4350 switch (current_templates->start->base_opcode)
4351 {
4352 case 0x0:
4353 /* {disp8} */
4354 i.disp_encoding = disp_encoding_8bit;
4355 break;
4356 case 0x1:
4357 /* {disp32} */
4358 i.disp_encoding = disp_encoding_32bit;
4359 break;
4360 case 0x2:
4361 /* {load} */
4362 i.dir_encoding = dir_encoding_load;
4363 break;
4364 case 0x3:
4365 /* {store} */
4366 i.dir_encoding = dir_encoding_store;
4367 break;
4368 case 0x4:
4369 /* {vex2} */
4370 i.vec_encoding = vex_encoding_vex2;
4371 break;
4372 case 0x5:
4373 /* {vex3} */
4374 i.vec_encoding = vex_encoding_vex3;
4375 break;
4376 case 0x6:
4377 /* {evex} */
4378 i.vec_encoding = vex_encoding_evex;
4379 break;
4380 case 0x7:
4381 /* {rex} */
4382 i.rex_encoding = TRUE;
4383 break;
4384 case 0x8:
4385 /* {nooptimize} */
4386 i.no_optimize = TRUE;
4387 break;
4388 default:
4389 abort ();
4390 }
4391 }
4392 else
4393 {
4394 /* Add prefix, checking for repeated prefixes. */
4395 switch (add_prefix (current_templates->start->base_opcode))
4396 {
4397 case PREFIX_EXIST:
4398 return NULL;
4399 case PREFIX_DS:
4400 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4401 i.notrack_prefix = current_templates->start->name;
4402 break;
4403 case PREFIX_REP:
4404 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4405 i.hle_prefix = current_templates->start->name;
4406 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4407 i.bnd_prefix = current_templates->start->name;
4408 else
4409 i.rep_prefix = current_templates->start->name;
4410 break;
4411 default:
4412 break;
4413 }
4414 }
4415 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4416 token_start = ++l;
4417 }
4418 else
4419 break;
4420 }
4421
4422 if (!current_templates)
4423 {
4424 /* Check if we should swap operand or force 32bit displacement in
4425 encoding. */
4426 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4427 i.dir_encoding = dir_encoding_store;
4428 else if (mnem_p - 3 == dot_p
4429 && dot_p[1] == 'd'
4430 && dot_p[2] == '8')
4431 i.disp_encoding = disp_encoding_8bit;
4432 else if (mnem_p - 4 == dot_p
4433 && dot_p[1] == 'd'
4434 && dot_p[2] == '3'
4435 && dot_p[3] == '2')
4436 i.disp_encoding = disp_encoding_32bit;
4437 else
4438 goto check_suffix;
4439 mnem_p = dot_p;
4440 *dot_p = '\0';
4441 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4442 }
4443
4444 if (!current_templates)
4445 {
4446 check_suffix:
4447 /* See if we can get a match by trimming off a suffix. */
4448 switch (mnem_p[-1])
4449 {
4450 case WORD_MNEM_SUFFIX:
4451 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4452 i.suffix = SHORT_MNEM_SUFFIX;
4453 else
4454 /* Fall through. */
4455 case BYTE_MNEM_SUFFIX:
4456 case QWORD_MNEM_SUFFIX:
4457 i.suffix = mnem_p[-1];
4458 mnem_p[-1] = '\0';
4459 current_templates = (const templates *) hash_find (op_hash,
4460 mnemonic);
4461 break;
4462 case SHORT_MNEM_SUFFIX:
4463 case LONG_MNEM_SUFFIX:
4464 if (!intel_syntax)
4465 {
4466 i.suffix = mnem_p[-1];
4467 mnem_p[-1] = '\0';
4468 current_templates = (const templates *) hash_find (op_hash,
4469 mnemonic);
4470 }
4471 break;
4472
4473 /* Intel Syntax. */
4474 case 'd':
4475 if (intel_syntax)
4476 {
4477 if (intel_float_operand (mnemonic) == 1)
4478 i.suffix = SHORT_MNEM_SUFFIX;
4479 else
4480 i.suffix = LONG_MNEM_SUFFIX;
4481 mnem_p[-1] = '\0';
4482 current_templates = (const templates *) hash_find (op_hash,
4483 mnemonic);
4484 }
4485 break;
4486 }
4487 if (!current_templates)
4488 {
4489 as_bad (_("no such instruction: `%s'"), token_start);
4490 return NULL;
4491 }
4492 }
4493
4494 if (current_templates->start->opcode_modifier.jump
4495 || current_templates->start->opcode_modifier.jumpbyte)
4496 {
4497 /* Check for a branch hint. We allow ",pt" and ",pn" for
4498 predict taken and predict not taken respectively.
4499 I'm not sure that branch hints actually do anything on loop
4500 and jcxz insns (JumpByte) for current Pentium4 chips. They
4501 may work in the future and it doesn't hurt to accept them
4502 now. */
4503 if (l[0] == ',' && l[1] == 'p')
4504 {
4505 if (l[2] == 't')
4506 {
4507 if (!add_prefix (DS_PREFIX_OPCODE))
4508 return NULL;
4509 l += 3;
4510 }
4511 else if (l[2] == 'n')
4512 {
4513 if (!add_prefix (CS_PREFIX_OPCODE))
4514 return NULL;
4515 l += 3;
4516 }
4517 }
4518 }
4519 /* Any other comma loses. */
4520 if (*l == ',')
4521 {
4522 as_bad (_("invalid character %s in mnemonic"),
4523 output_invalid (*l));
4524 return NULL;
4525 }
4526
4527 /* Check if instruction is supported on specified architecture. */
4528 supported = 0;
4529 for (t = current_templates->start; t < current_templates->end; ++t)
4530 {
4531 supported |= cpu_flags_match (t);
4532 if (supported == CPU_FLAGS_PERFECT_MATCH)
4533 {
4534 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4535 as_warn (_("use .code16 to ensure correct addressing mode"));
4536
4537 return l;
4538 }
4539 }
4540
4541 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4542 as_bad (flag_code == CODE_64BIT
4543 ? _("`%s' is not supported in 64-bit mode")
4544 : _("`%s' is only supported in 64-bit mode"),
4545 current_templates->start->name);
4546 else
4547 as_bad (_("`%s' is not supported on `%s%s'"),
4548 current_templates->start->name,
4549 cpu_arch_name ? cpu_arch_name : default_arch,
4550 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4551
4552 return NULL;
4553 }
4554
4555 static char *
4556 parse_operands (char *l, const char *mnemonic)
4557 {
4558 char *token_start;
4559
4560 /* 1 if operand is pending after ','. */
4561 unsigned int expecting_operand = 0;
4562
4563 /* Non-zero if operand parens not balanced. */
4564 unsigned int paren_not_balanced;
4565
4566 while (*l != END_OF_INSN)
4567 {
4568 /* Skip optional white space before operand. */
4569 if (is_space_char (*l))
4570 ++l;
4571 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4572 {
4573 as_bad (_("invalid character %s before operand %d"),
4574 output_invalid (*l),
4575 i.operands + 1);
4576 return NULL;
4577 }
4578 token_start = l; /* After white space. */
4579 paren_not_balanced = 0;
4580 while (paren_not_balanced || *l != ',')
4581 {
4582 if (*l == END_OF_INSN)
4583 {
4584 if (paren_not_balanced)
4585 {
4586 if (!intel_syntax)
4587 as_bad (_("unbalanced parenthesis in operand %d."),
4588 i.operands + 1);
4589 else
4590 as_bad (_("unbalanced brackets in operand %d."),
4591 i.operands + 1);
4592 return NULL;
4593 }
4594 else
4595 break; /* we are done */
4596 }
4597 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4598 {
4599 as_bad (_("invalid character %s in operand %d"),
4600 output_invalid (*l),
4601 i.operands + 1);
4602 return NULL;
4603 }
4604 if (!intel_syntax)
4605 {
4606 if (*l == '(')
4607 ++paren_not_balanced;
4608 if (*l == ')')
4609 --paren_not_balanced;
4610 }
4611 else
4612 {
4613 if (*l == '[')
4614 ++paren_not_balanced;
4615 if (*l == ']')
4616 --paren_not_balanced;
4617 }
4618 l++;
4619 }
4620 if (l != token_start)
4621 { /* Yes, we've read in another operand. */
4622 unsigned int operand_ok;
4623 this_operand = i.operands++;
4624 if (i.operands > MAX_OPERANDS)
4625 {
4626 as_bad (_("spurious operands; (%d operands/instruction max)"),
4627 MAX_OPERANDS);
4628 return NULL;
4629 }
4630 i.types[this_operand].bitfield.unspecified = 1;
4631 /* Now parse operand adding info to 'i' as we go along. */
4632 END_STRING_AND_SAVE (l);
4633
4634 if (intel_syntax)
4635 operand_ok =
4636 i386_intel_operand (token_start,
4637 intel_float_operand (mnemonic));
4638 else
4639 operand_ok = i386_att_operand (token_start);
4640
4641 RESTORE_END_STRING (l);
4642 if (!operand_ok)
4643 return NULL;
4644 }
4645 else
4646 {
4647 if (expecting_operand)
4648 {
4649 expecting_operand_after_comma:
4650 as_bad (_("expecting operand after ','; got nothing"));
4651 return NULL;
4652 }
4653 if (*l == ',')
4654 {
4655 as_bad (_("expecting operand before ','; got nothing"));
4656 return NULL;
4657 }
4658 }
4659
4660 /* Now *l must be either ',' or END_OF_INSN. */
4661 if (*l == ',')
4662 {
4663 if (*++l == END_OF_INSN)
4664 {
4665 /* Just skip it, if it's \n complain. */
4666 goto expecting_operand_after_comma;
4667 }
4668 expecting_operand = 1;
4669 }
4670 }
4671 return l;
4672 }
4673
4674 static void
4675 swap_2_operands (int xchg1, int xchg2)
4676 {
4677 union i386_op temp_op;
4678 i386_operand_type temp_type;
4679 enum bfd_reloc_code_real temp_reloc;
4680
4681 temp_type = i.types[xchg2];
4682 i.types[xchg2] = i.types[xchg1];
4683 i.types[xchg1] = temp_type;
4684 temp_op = i.op[xchg2];
4685 i.op[xchg2] = i.op[xchg1];
4686 i.op[xchg1] = temp_op;
4687 temp_reloc = i.reloc[xchg2];
4688 i.reloc[xchg2] = i.reloc[xchg1];
4689 i.reloc[xchg1] = temp_reloc;
4690
4691 if (i.mask)
4692 {
4693 if (i.mask->operand == xchg1)
4694 i.mask->operand = xchg2;
4695 else if (i.mask->operand == xchg2)
4696 i.mask->operand = xchg1;
4697 }
4698 if (i.broadcast)
4699 {
4700 if (i.broadcast->operand == xchg1)
4701 i.broadcast->operand = xchg2;
4702 else if (i.broadcast->operand == xchg2)
4703 i.broadcast->operand = xchg1;
4704 }
4705 if (i.rounding)
4706 {
4707 if (i.rounding->operand == xchg1)
4708 i.rounding->operand = xchg2;
4709 else if (i.rounding->operand == xchg2)
4710 i.rounding->operand = xchg1;
4711 }
4712 }
4713
4714 static void
4715 swap_operands (void)
4716 {
4717 switch (i.operands)
4718 {
4719 case 5:
4720 case 4:
4721 swap_2_operands (1, i.operands - 2);
4722 /* Fall through. */
4723 case 3:
4724 case 2:
4725 swap_2_operands (0, i.operands - 1);
4726 break;
4727 default:
4728 abort ();
4729 }
4730
4731 if (i.mem_operands == 2)
4732 {
4733 const seg_entry *temp_seg;
4734 temp_seg = i.seg[0];
4735 i.seg[0] = i.seg[1];
4736 i.seg[1] = temp_seg;
4737 }
4738 }
4739
4740 /* Try to ensure constant immediates are represented in the smallest
4741 opcode possible. */
4742 static void
4743 optimize_imm (void)
4744 {
4745 char guess_suffix = 0;
4746 int op;
4747
4748 if (i.suffix)
4749 guess_suffix = i.suffix;
4750 else if (i.reg_operands)
4751 {
4752 /* Figure out a suffix from the last register operand specified.
4753 We can't do this properly yet, ie. excluding InOutPortReg,
4754 but the following works for instructions with immediates.
4755 In any case, we can't set i.suffix yet. */
4756 for (op = i.operands; --op >= 0;)
4757 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4758 {
4759 guess_suffix = BYTE_MNEM_SUFFIX;
4760 break;
4761 }
4762 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4763 {
4764 guess_suffix = WORD_MNEM_SUFFIX;
4765 break;
4766 }
4767 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4768 {
4769 guess_suffix = LONG_MNEM_SUFFIX;
4770 break;
4771 }
4772 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4773 {
4774 guess_suffix = QWORD_MNEM_SUFFIX;
4775 break;
4776 }
4777 }
4778 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4779 guess_suffix = WORD_MNEM_SUFFIX;
4780
4781 for (op = i.operands; --op >= 0;)
4782 if (operand_type_check (i.types[op], imm))
4783 {
4784 switch (i.op[op].imms->X_op)
4785 {
4786 case O_constant:
4787 /* If a suffix is given, this operand may be shortened. */
4788 switch (guess_suffix)
4789 {
4790 case LONG_MNEM_SUFFIX:
4791 i.types[op].bitfield.imm32 = 1;
4792 i.types[op].bitfield.imm64 = 1;
4793 break;
4794 case WORD_MNEM_SUFFIX:
4795 i.types[op].bitfield.imm16 = 1;
4796 i.types[op].bitfield.imm32 = 1;
4797 i.types[op].bitfield.imm32s = 1;
4798 i.types[op].bitfield.imm64 = 1;
4799 break;
4800 case BYTE_MNEM_SUFFIX:
4801 i.types[op].bitfield.imm8 = 1;
4802 i.types[op].bitfield.imm8s = 1;
4803 i.types[op].bitfield.imm16 = 1;
4804 i.types[op].bitfield.imm32 = 1;
4805 i.types[op].bitfield.imm32s = 1;
4806 i.types[op].bitfield.imm64 = 1;
4807 break;
4808 }
4809
4810 /* If this operand is at most 16 bits, convert it
4811 to a signed 16 bit number before trying to see
4812 whether it will fit in an even smaller size.
4813 This allows a 16-bit operand such as $0xffe0 to
4814 be recognised as within Imm8S range. */
4815 if ((i.types[op].bitfield.imm16)
4816 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4817 {
4818 i.op[op].imms->X_add_number =
4819 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4820 }
4821 #ifdef BFD64
4822 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4823 if ((i.types[op].bitfield.imm32)
4824 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4825 == 0))
4826 {
4827 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4828 ^ ((offsetT) 1 << 31))
4829 - ((offsetT) 1 << 31));
4830 }
4831 #endif
4832 i.types[op]
4833 = operand_type_or (i.types[op],
4834 smallest_imm_type (i.op[op].imms->X_add_number));
4835
4836 /* We must avoid matching of Imm32 templates when 64bit
4837 only immediate is available. */
4838 if (guess_suffix == QWORD_MNEM_SUFFIX)
4839 i.types[op].bitfield.imm32 = 0;
4840 break;
4841
4842 case O_absent:
4843 case O_register:
4844 abort ();
4845
4846 /* Symbols and expressions. */
4847 default:
4848 /* Convert symbolic operand to proper sizes for matching, but don't
4849 prevent matching a set of insns that only supports sizes other
4850 than those matching the insn suffix. */
4851 {
4852 i386_operand_type mask, allowed;
4853 const insn_template *t;
4854
4855 operand_type_set (&mask, 0);
4856 operand_type_set (&allowed, 0);
4857
4858 for (t = current_templates->start;
4859 t < current_templates->end;
4860 ++t)
4861 allowed = operand_type_or (allowed,
4862 t->operand_types[op]);
4863 switch (guess_suffix)
4864 {
4865 case QWORD_MNEM_SUFFIX:
4866 mask.bitfield.imm64 = 1;
4867 mask.bitfield.imm32s = 1;
4868 break;
4869 case LONG_MNEM_SUFFIX:
4870 mask.bitfield.imm32 = 1;
4871 break;
4872 case WORD_MNEM_SUFFIX:
4873 mask.bitfield.imm16 = 1;
4874 break;
4875 case BYTE_MNEM_SUFFIX:
4876 mask.bitfield.imm8 = 1;
4877 break;
4878 default:
4879 break;
4880 }
4881 allowed = operand_type_and (mask, allowed);
4882 if (!operand_type_all_zero (&allowed))
4883 i.types[op] = operand_type_and (i.types[op], mask);
4884 }
4885 break;
4886 }
4887 }
4888 }
4889
4890 /* Try to use the smallest displacement type too. */
4891 static void
4892 optimize_disp (void)
4893 {
4894 int op;
4895
4896 for (op = i.operands; --op >= 0;)
4897 if (operand_type_check (i.types[op], disp))
4898 {
4899 if (i.op[op].disps->X_op == O_constant)
4900 {
4901 offsetT op_disp = i.op[op].disps->X_add_number;
4902
4903 if (i.types[op].bitfield.disp16
4904 && (op_disp & ~(offsetT) 0xffff) == 0)
4905 {
4906 /* If this operand is at most 16 bits, convert
4907 to a signed 16 bit number and don't use 64bit
4908 displacement. */
4909 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4910 i.types[op].bitfield.disp64 = 0;
4911 }
4912 #ifdef BFD64
4913 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4914 if (i.types[op].bitfield.disp32
4915 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4916 {
4917 /* If this operand is at most 32 bits, convert
4918 to a signed 32 bit number and don't use 64bit
4919 displacement. */
4920 op_disp &= (((offsetT) 2 << 31) - 1);
4921 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4922 i.types[op].bitfield.disp64 = 0;
4923 }
4924 #endif
4925 if (!op_disp && i.types[op].bitfield.baseindex)
4926 {
4927 i.types[op].bitfield.disp8 = 0;
4928 i.types[op].bitfield.disp16 = 0;
4929 i.types[op].bitfield.disp32 = 0;
4930 i.types[op].bitfield.disp32s = 0;
4931 i.types[op].bitfield.disp64 = 0;
4932 i.op[op].disps = 0;
4933 i.disp_operands--;
4934 }
4935 else if (flag_code == CODE_64BIT)
4936 {
4937 if (fits_in_signed_long (op_disp))
4938 {
4939 i.types[op].bitfield.disp64 = 0;
4940 i.types[op].bitfield.disp32s = 1;
4941 }
4942 if (i.prefix[ADDR_PREFIX]
4943 && fits_in_unsigned_long (op_disp))
4944 i.types[op].bitfield.disp32 = 1;
4945 }
4946 if ((i.types[op].bitfield.disp32
4947 || i.types[op].bitfield.disp32s
4948 || i.types[op].bitfield.disp16)
4949 && fits_in_disp8 (op_disp))
4950 i.types[op].bitfield.disp8 = 1;
4951 }
4952 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4953 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4954 {
4955 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4956 i.op[op].disps, 0, i.reloc[op]);
4957 i.types[op].bitfield.disp8 = 0;
4958 i.types[op].bitfield.disp16 = 0;
4959 i.types[op].bitfield.disp32 = 0;
4960 i.types[op].bitfield.disp32s = 0;
4961 i.types[op].bitfield.disp64 = 0;
4962 }
4963 else
4964 /* We only support 64bit displacement on constants. */
4965 i.types[op].bitfield.disp64 = 0;
4966 }
4967 }
4968
4969 /* Check if operands are valid for the instruction. */
4970
4971 static int
4972 check_VecOperands (const insn_template *t)
4973 {
4974 unsigned int op;
4975 i386_cpu_flags cpu;
4976 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
4977
4978 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
4979 any one operand are implicity requiring AVX512VL support if the actual
4980 operand size is YMMword or XMMword. Since this function runs after
4981 template matching, there's no need to check for YMMword/XMMword in
4982 the template. */
4983 cpu = cpu_flags_and (t->cpu_flags, avx512);
4984 if (!cpu_flags_all_zero (&cpu)
4985 && !t->cpu_flags.bitfield.cpuavx512vl
4986 && !cpu_arch_flags.bitfield.cpuavx512vl)
4987 {
4988 for (op = 0; op < t->operands; ++op)
4989 {
4990 if (t->operand_types[op].bitfield.zmmword
4991 && (i.types[op].bitfield.ymmword
4992 || i.types[op].bitfield.xmmword))
4993 {
4994 i.error = unsupported;
4995 return 1;
4996 }
4997 }
4998 }
4999
5000 /* Without VSIB byte, we can't have a vector register for index. */
5001 if (!t->opcode_modifier.vecsib
5002 && i.index_reg
5003 && (i.index_reg->reg_type.bitfield.xmmword
5004 || i.index_reg->reg_type.bitfield.ymmword
5005 || i.index_reg->reg_type.bitfield.zmmword))
5006 {
5007 i.error = unsupported_vector_index_register;
5008 return 1;
5009 }
5010
5011 /* Check if default mask is allowed. */
5012 if (t->opcode_modifier.nodefmask
5013 && (!i.mask || i.mask->mask->reg_num == 0))
5014 {
5015 i.error = no_default_mask;
5016 return 1;
5017 }
5018
5019 /* For VSIB byte, we need a vector register for index, and all vector
5020 registers must be distinct. */
5021 if (t->opcode_modifier.vecsib)
5022 {
5023 if (!i.index_reg
5024 || !((t->opcode_modifier.vecsib == VecSIB128
5025 && i.index_reg->reg_type.bitfield.xmmword)
5026 || (t->opcode_modifier.vecsib == VecSIB256
5027 && i.index_reg->reg_type.bitfield.ymmword)
5028 || (t->opcode_modifier.vecsib == VecSIB512
5029 && i.index_reg->reg_type.bitfield.zmmword)))
5030 {
5031 i.error = invalid_vsib_address;
5032 return 1;
5033 }
5034
5035 gas_assert (i.reg_operands == 2 || i.mask);
5036 if (i.reg_operands == 2 && !i.mask)
5037 {
5038 gas_assert (i.types[0].bitfield.regsimd);
5039 gas_assert (i.types[0].bitfield.xmmword
5040 || i.types[0].bitfield.ymmword);
5041 gas_assert (i.types[2].bitfield.regsimd);
5042 gas_assert (i.types[2].bitfield.xmmword
5043 || i.types[2].bitfield.ymmword);
5044 if (operand_check == check_none)
5045 return 0;
5046 if (register_number (i.op[0].regs)
5047 != register_number (i.index_reg)
5048 && register_number (i.op[2].regs)
5049 != register_number (i.index_reg)
5050 && register_number (i.op[0].regs)
5051 != register_number (i.op[2].regs))
5052 return 0;
5053 if (operand_check == check_error)
5054 {
5055 i.error = invalid_vector_register_set;
5056 return 1;
5057 }
5058 as_warn (_("mask, index, and destination registers should be distinct"));
5059 }
5060 else if (i.reg_operands == 1 && i.mask)
5061 {
5062 if (i.types[1].bitfield.regsimd
5063 && (i.types[1].bitfield.xmmword
5064 || i.types[1].bitfield.ymmword
5065 || i.types[1].bitfield.zmmword)
5066 && (register_number (i.op[1].regs)
5067 == register_number (i.index_reg)))
5068 {
5069 if (operand_check == check_error)
5070 {
5071 i.error = invalid_vector_register_set;
5072 return 1;
5073 }
5074 if (operand_check != check_none)
5075 as_warn (_("index and destination registers should be distinct"));
5076 }
5077 }
5078 }
5079
5080 /* Check if broadcast is supported by the instruction and is applied
5081 to the memory operand. */
5082 if (i.broadcast)
5083 {
5084 i386_operand_type type, overlap;
5085
5086 /* Check if specified broadcast is supported in this instruction,
5087 and it's applied to memory operand of DWORD or QWORD type. */
5088 op = i.broadcast->operand;
5089 if (!t->opcode_modifier.broadcast
5090 || !i.types[op].bitfield.mem
5091 || (!i.types[op].bitfield.unspecified
5092 && (t->operand_types[op].bitfield.dword
5093 ? !i.types[op].bitfield.dword
5094 : !i.types[op].bitfield.qword)))
5095 {
5096 bad_broadcast:
5097 i.error = unsupported_broadcast;
5098 return 1;
5099 }
5100
5101 operand_type_set (&type, 0);
5102 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5103 {
5104 case 8:
5105 type.bitfield.qword = 1;
5106 break;
5107 case 16:
5108 type.bitfield.xmmword = 1;
5109 break;
5110 case 32:
5111 type.bitfield.ymmword = 1;
5112 break;
5113 case 64:
5114 type.bitfield.zmmword = 1;
5115 break;
5116 default:
5117 goto bad_broadcast;
5118 }
5119
5120 overlap = operand_type_and (type, t->operand_types[op]);
5121 if (operand_type_all_zero (&overlap))
5122 goto bad_broadcast;
5123
5124 if (t->opcode_modifier.checkregsize)
5125 {
5126 unsigned int j;
5127
5128 type.bitfield.baseindex = 1;
5129 for (j = 0; j < i.operands; ++j)
5130 {
5131 if (j != op
5132 && !operand_type_register_match(i.types[j],
5133 t->operand_types[j],
5134 type,
5135 t->operand_types[op]))
5136 goto bad_broadcast;
5137 }
5138 }
5139 }
5140 /* If broadcast is supported in this instruction, we need to check if
5141 operand of one-element size isn't specified without broadcast. */
5142 else if (t->opcode_modifier.broadcast && i.mem_operands)
5143 {
5144 /* Find memory operand. */
5145 for (op = 0; op < i.operands; op++)
5146 if (operand_type_check (i.types[op], anymem))
5147 break;
5148 gas_assert (op < i.operands);
5149 /* Check size of the memory operand. */
5150 if (t->operand_types[op].bitfield.dword
5151 ? i.types[op].bitfield.dword
5152 : i.types[op].bitfield.qword)
5153 {
5154 i.error = broadcast_needed;
5155 return 1;
5156 }
5157 }
5158 else
5159 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5160
5161 /* Check if requested masking is supported. */
5162 if (i.mask
5163 && (!t->opcode_modifier.masking
5164 || (i.mask->zeroing
5165 && t->opcode_modifier.masking == MERGING_MASKING)))
5166 {
5167 i.error = unsupported_masking;
5168 return 1;
5169 }
5170
5171 /* Check if masking is applied to dest operand. */
5172 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5173 {
5174 i.error = mask_not_on_destination;
5175 return 1;
5176 }
5177
5178 /* Check RC/SAE. */
5179 if (i.rounding)
5180 {
5181 if ((i.rounding->type != saeonly
5182 && !t->opcode_modifier.staticrounding)
5183 || (i.rounding->type == saeonly
5184 && (t->opcode_modifier.staticrounding
5185 || !t->opcode_modifier.sae)))
5186 {
5187 i.error = unsupported_rc_sae;
5188 return 1;
5189 }
5190 /* If the instruction has several immediate operands and one of
5191 them is rounding, the rounding operand should be the last
5192 immediate operand. */
5193 if (i.imm_operands > 1
5194 && i.rounding->operand != (int) (i.imm_operands - 1))
5195 {
5196 i.error = rc_sae_operand_not_last_imm;
5197 return 1;
5198 }
5199 }
5200
5201 /* Check vector Disp8 operand. */
5202 if (t->opcode_modifier.disp8memshift
5203 && i.disp_encoding != disp_encoding_32bit)
5204 {
5205 if (i.broadcast)
5206 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5207 else
5208 i.memshift = t->opcode_modifier.disp8memshift;
5209
5210 for (op = 0; op < i.operands; op++)
5211 if (operand_type_check (i.types[op], disp)
5212 && i.op[op].disps->X_op == O_constant)
5213 {
5214 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5215 {
5216 i.types[op].bitfield.disp8 = 1;
5217 return 0;
5218 }
5219 i.types[op].bitfield.disp8 = 0;
5220 }
5221 }
5222
5223 i.memshift = 0;
5224
5225 return 0;
5226 }
5227
5228 /* Check if operands are valid for the instruction. Update VEX
5229 operand types. */
5230
5231 static int
5232 VEX_check_operands (const insn_template *t)
5233 {
5234 if (i.vec_encoding == vex_encoding_evex)
5235 {
5236 /* This instruction must be encoded with EVEX prefix. */
5237 if (!is_evex_encoding (t))
5238 {
5239 i.error = unsupported;
5240 return 1;
5241 }
5242 return 0;
5243 }
5244
5245 if (!t->opcode_modifier.vex)
5246 {
5247 /* This instruction template doesn't have VEX prefix. */
5248 if (i.vec_encoding != vex_encoding_default)
5249 {
5250 i.error = unsupported;
5251 return 1;
5252 }
5253 return 0;
5254 }
5255
5256 /* Only check VEX_Imm4, which must be the first operand. */
5257 if (t->operand_types[0].bitfield.vec_imm4)
5258 {
5259 if (i.op[0].imms->X_op != O_constant
5260 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5261 {
5262 i.error = bad_imm4;
5263 return 1;
5264 }
5265
5266 /* Turn off Imm8 so that update_imm won't complain. */
5267 i.types[0] = vec_imm4;
5268 }
5269
5270 return 0;
5271 }
5272
5273 static const insn_template *
5274 match_template (char mnem_suffix)
5275 {
5276 /* Points to template once we've found it. */
5277 const insn_template *t;
5278 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5279 i386_operand_type overlap4;
5280 unsigned int found_reverse_match;
5281 i386_opcode_modifier suffix_check, mnemsuf_check;
5282 i386_operand_type operand_types [MAX_OPERANDS];
5283 int addr_prefix_disp;
5284 unsigned int j;
5285 unsigned int found_cpu_match;
5286 unsigned int check_register;
5287 enum i386_error specific_error = 0;
5288
5289 #if MAX_OPERANDS != 5
5290 # error "MAX_OPERANDS must be 5."
5291 #endif
5292
5293 found_reverse_match = 0;
5294 addr_prefix_disp = -1;
5295
5296 memset (&suffix_check, 0, sizeof (suffix_check));
5297 if (intel_syntax && i.broadcast)
5298 /* nothing */;
5299 else if (i.suffix == BYTE_MNEM_SUFFIX)
5300 suffix_check.no_bsuf = 1;
5301 else if (i.suffix == WORD_MNEM_SUFFIX)
5302 suffix_check.no_wsuf = 1;
5303 else if (i.suffix == SHORT_MNEM_SUFFIX)
5304 suffix_check.no_ssuf = 1;
5305 else if (i.suffix == LONG_MNEM_SUFFIX)
5306 suffix_check.no_lsuf = 1;
5307 else if (i.suffix == QWORD_MNEM_SUFFIX)
5308 suffix_check.no_qsuf = 1;
5309 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5310 suffix_check.no_ldsuf = 1;
5311
5312 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5313 if (intel_syntax)
5314 {
5315 switch (mnem_suffix)
5316 {
5317 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5318 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5319 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5320 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5321 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5322 }
5323 }
5324
5325 /* Must have right number of operands. */
5326 i.error = number_of_operands_mismatch;
5327
5328 for (t = current_templates->start; t < current_templates->end; t++)
5329 {
5330 addr_prefix_disp = -1;
5331
5332 if (i.operands != t->operands)
5333 continue;
5334
5335 /* Check processor support. */
5336 i.error = unsupported;
5337 found_cpu_match = (cpu_flags_match (t)
5338 == CPU_FLAGS_PERFECT_MATCH);
5339 if (!found_cpu_match)
5340 continue;
5341
5342 /* Check AT&T mnemonic. */
5343 i.error = unsupported_with_intel_mnemonic;
5344 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5345 continue;
5346
5347 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5348 i.error = unsupported_syntax;
5349 if ((intel_syntax && t->opcode_modifier.attsyntax)
5350 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5351 || (intel64 && t->opcode_modifier.amd64)
5352 || (!intel64 && t->opcode_modifier.intel64))
5353 continue;
5354
5355 /* Check the suffix, except for some instructions in intel mode. */
5356 i.error = invalid_instruction_suffix;
5357 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5358 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5359 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5360 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5361 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5362 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5363 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5364 continue;
5365 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5366 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5367 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5368 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5369 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5370 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5371 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5372 continue;
5373
5374 if (!operand_size_match (t))
5375 continue;
5376
5377 for (j = 0; j < MAX_OPERANDS; j++)
5378 operand_types[j] = t->operand_types[j];
5379
5380 /* In general, don't allow 64-bit operands in 32-bit mode. */
5381 if (i.suffix == QWORD_MNEM_SUFFIX
5382 && flag_code != CODE_64BIT
5383 && (intel_syntax
5384 ? (!t->opcode_modifier.ignoresize
5385 && !intel_float_operand (t->name))
5386 : intel_float_operand (t->name) != 2)
5387 && ((!operand_types[0].bitfield.regmmx
5388 && !operand_types[0].bitfield.regsimd)
5389 || (!operand_types[t->operands > 1].bitfield.regmmx
5390 && !operand_types[t->operands > 1].bitfield.regsimd))
5391 && (t->base_opcode != 0x0fc7
5392 || t->extension_opcode != 1 /* cmpxchg8b */))
5393 continue;
5394
5395 /* In general, don't allow 32-bit operands on pre-386. */
5396 else if (i.suffix == LONG_MNEM_SUFFIX
5397 && !cpu_arch_flags.bitfield.cpui386
5398 && (intel_syntax
5399 ? (!t->opcode_modifier.ignoresize
5400 && !intel_float_operand (t->name))
5401 : intel_float_operand (t->name) != 2)
5402 && ((!operand_types[0].bitfield.regmmx
5403 && !operand_types[0].bitfield.regsimd)
5404 || (!operand_types[t->operands > 1].bitfield.regmmx
5405 && !operand_types[t->operands > 1].bitfield.regsimd)))
5406 continue;
5407
5408 /* Do not verify operands when there are none. */
5409 else
5410 {
5411 if (!t->operands)
5412 /* We've found a match; break out of loop. */
5413 break;
5414 }
5415
5416 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5417 into Disp32/Disp16/Disp32 operand. */
5418 if (i.prefix[ADDR_PREFIX] != 0)
5419 {
5420 /* There should be only one Disp operand. */
5421 switch (flag_code)
5422 {
5423 case CODE_16BIT:
5424 for (j = 0; j < MAX_OPERANDS; j++)
5425 {
5426 if (operand_types[j].bitfield.disp16)
5427 {
5428 addr_prefix_disp = j;
5429 operand_types[j].bitfield.disp32 = 1;
5430 operand_types[j].bitfield.disp16 = 0;
5431 break;
5432 }
5433 }
5434 break;
5435 case CODE_32BIT:
5436 for (j = 0; j < MAX_OPERANDS; j++)
5437 {
5438 if (operand_types[j].bitfield.disp32)
5439 {
5440 addr_prefix_disp = j;
5441 operand_types[j].bitfield.disp32 = 0;
5442 operand_types[j].bitfield.disp16 = 1;
5443 break;
5444 }
5445 }
5446 break;
5447 case CODE_64BIT:
5448 for (j = 0; j < MAX_OPERANDS; j++)
5449 {
5450 if (operand_types[j].bitfield.disp64)
5451 {
5452 addr_prefix_disp = j;
5453 operand_types[j].bitfield.disp64 = 0;
5454 operand_types[j].bitfield.disp32 = 1;
5455 break;
5456 }
5457 }
5458 break;
5459 }
5460 }
5461
5462 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5463 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5464 continue;
5465
5466 /* We check register size if needed. */
5467 if (t->opcode_modifier.checkregsize)
5468 {
5469 check_register = (1 << t->operands) - 1;
5470 if (i.broadcast)
5471 check_register &= ~(1 << i.broadcast->operand);
5472 }
5473 else
5474 check_register = 0;
5475
5476 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5477 switch (t->operands)
5478 {
5479 case 1:
5480 if (!operand_type_match (overlap0, i.types[0]))
5481 continue;
5482 break;
5483 case 2:
5484 /* xchg %eax, %eax is a special case. It is an alias for nop
5485 only in 32bit mode and we can use opcode 0x90. In 64bit
5486 mode, we can't use 0x90 for xchg %eax, %eax since it should
5487 zero-extend %eax to %rax. */
5488 if (flag_code == CODE_64BIT
5489 && t->base_opcode == 0x90
5490 && operand_type_equal (&i.types [0], &acc32)
5491 && operand_type_equal (&i.types [1], &acc32))
5492 continue;
5493 /* xrelease mov %eax, <disp> is another special case. It must not
5494 match the accumulator-only encoding of mov. */
5495 if (flag_code != CODE_64BIT
5496 && i.hle_prefix
5497 && t->base_opcode == 0xa0
5498 && i.types[0].bitfield.acc
5499 && operand_type_check (i.types[1], anymem))
5500 continue;
5501 /* If we want store form, we reverse direction of operands. */
5502 if (i.dir_encoding == dir_encoding_store
5503 && t->opcode_modifier.d)
5504 goto check_reverse;
5505 /* Fall through. */
5506
5507 case 3:
5508 /* If we want store form, we skip the current load. */
5509 if (i.dir_encoding == dir_encoding_store
5510 && i.mem_operands == 0
5511 && t->opcode_modifier.load)
5512 continue;
5513 /* Fall through. */
5514 case 4:
5515 case 5:
5516 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5517 if (!operand_type_match (overlap0, i.types[0])
5518 || !operand_type_match (overlap1, i.types[1])
5519 || ((check_register & 3) == 3
5520 && !operand_type_register_match (i.types[0],
5521 operand_types[0],
5522 i.types[1],
5523 operand_types[1])))
5524 {
5525 /* Check if other direction is valid ... */
5526 if (!t->opcode_modifier.d)
5527 continue;
5528
5529 check_reverse:
5530 /* Try reversing direction of operands. */
5531 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5532 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5533 if (!operand_type_match (overlap0, i.types[0])
5534 || !operand_type_match (overlap1, i.types[1])
5535 || (check_register
5536 && !operand_type_register_match (i.types[0],
5537 operand_types[1],
5538 i.types[1],
5539 operand_types[0])))
5540 {
5541 /* Does not match either direction. */
5542 continue;
5543 }
5544 /* found_reverse_match holds which of D or FloatR
5545 we've found. */
5546 if (!t->opcode_modifier.d)
5547 found_reverse_match = 0;
5548 else if (operand_types[0].bitfield.tbyte)
5549 found_reverse_match = Opcode_FloatD;
5550 else
5551 found_reverse_match = Opcode_D;
5552 if (t->opcode_modifier.floatr)
5553 found_reverse_match |= Opcode_FloatR;
5554 }
5555 else
5556 {
5557 /* Found a forward 2 operand match here. */
5558 switch (t->operands)
5559 {
5560 case 5:
5561 overlap4 = operand_type_and (i.types[4],
5562 operand_types[4]);
5563 /* Fall through. */
5564 case 4:
5565 overlap3 = operand_type_and (i.types[3],
5566 operand_types[3]);
5567 /* Fall through. */
5568 case 3:
5569 overlap2 = operand_type_and (i.types[2],
5570 operand_types[2]);
5571 break;
5572 }
5573
5574 switch (t->operands)
5575 {
5576 case 5:
5577 if (!operand_type_match (overlap4, i.types[4])
5578 || !operand_type_register_match (i.types[3],
5579 operand_types[3],
5580 i.types[4],
5581 operand_types[4]))
5582 continue;
5583 /* Fall through. */
5584 case 4:
5585 if (!operand_type_match (overlap3, i.types[3])
5586 || ((check_register & 0xa) == 0xa
5587 && !operand_type_register_match (i.types[1],
5588 operand_types[1],
5589 i.types[3],
5590 operand_types[3]))
5591 || ((check_register & 0xc) == 0xc
5592 && !operand_type_register_match (i.types[2],
5593 operand_types[2],
5594 i.types[3],
5595 operand_types[3])))
5596 continue;
5597 /* Fall through. */
5598 case 3:
5599 /* Here we make use of the fact that there are no
5600 reverse match 3 operand instructions. */
5601 if (!operand_type_match (overlap2, i.types[2])
5602 || ((check_register & 5) == 5
5603 && !operand_type_register_match (i.types[0],
5604 operand_types[0],
5605 i.types[2],
5606 operand_types[2]))
5607 || ((check_register & 6) == 6
5608 && !operand_type_register_match (i.types[1],
5609 operand_types[1],
5610 i.types[2],
5611 operand_types[2])))
5612 continue;
5613 break;
5614 }
5615 }
5616 /* Found either forward/reverse 2, 3 or 4 operand match here:
5617 slip through to break. */
5618 }
5619 if (!found_cpu_match)
5620 {
5621 found_reverse_match = 0;
5622 continue;
5623 }
5624
5625 /* Check if vector and VEX operands are valid. */
5626 if (check_VecOperands (t) || VEX_check_operands (t))
5627 {
5628 specific_error = i.error;
5629 continue;
5630 }
5631
5632 /* We've found a match; break out of loop. */
5633 break;
5634 }
5635
5636 if (t == current_templates->end)
5637 {
5638 /* We found no match. */
5639 const char *err_msg;
5640 switch (specific_error ? specific_error : i.error)
5641 {
5642 default:
5643 abort ();
5644 case operand_size_mismatch:
5645 err_msg = _("operand size mismatch");
5646 break;
5647 case operand_type_mismatch:
5648 err_msg = _("operand type mismatch");
5649 break;
5650 case register_type_mismatch:
5651 err_msg = _("register type mismatch");
5652 break;
5653 case number_of_operands_mismatch:
5654 err_msg = _("number of operands mismatch");
5655 break;
5656 case invalid_instruction_suffix:
5657 err_msg = _("invalid instruction suffix");
5658 break;
5659 case bad_imm4:
5660 err_msg = _("constant doesn't fit in 4 bits");
5661 break;
5662 case unsupported_with_intel_mnemonic:
5663 err_msg = _("unsupported with Intel mnemonic");
5664 break;
5665 case unsupported_syntax:
5666 err_msg = _("unsupported syntax");
5667 break;
5668 case unsupported:
5669 as_bad (_("unsupported instruction `%s'"),
5670 current_templates->start->name);
5671 return NULL;
5672 case invalid_vsib_address:
5673 err_msg = _("invalid VSIB address");
5674 break;
5675 case invalid_vector_register_set:
5676 err_msg = _("mask, index, and destination registers must be distinct");
5677 break;
5678 case unsupported_vector_index_register:
5679 err_msg = _("unsupported vector index register");
5680 break;
5681 case unsupported_broadcast:
5682 err_msg = _("unsupported broadcast");
5683 break;
5684 case broadcast_not_on_src_operand:
5685 err_msg = _("broadcast not on source memory operand");
5686 break;
5687 case broadcast_needed:
5688 err_msg = _("broadcast is needed for operand of such type");
5689 break;
5690 case unsupported_masking:
5691 err_msg = _("unsupported masking");
5692 break;
5693 case mask_not_on_destination:
5694 err_msg = _("mask not on destination operand");
5695 break;
5696 case no_default_mask:
5697 err_msg = _("default mask isn't allowed");
5698 break;
5699 case unsupported_rc_sae:
5700 err_msg = _("unsupported static rounding/sae");
5701 break;
5702 case rc_sae_operand_not_last_imm:
5703 if (intel_syntax)
5704 err_msg = _("RC/SAE operand must precede immediate operands");
5705 else
5706 err_msg = _("RC/SAE operand must follow immediate operands");
5707 break;
5708 case invalid_register_operand:
5709 err_msg = _("invalid register operand");
5710 break;
5711 }
5712 as_bad (_("%s for `%s'"), err_msg,
5713 current_templates->start->name);
5714 return NULL;
5715 }
5716
5717 if (!quiet_warnings)
5718 {
5719 if (!intel_syntax
5720 && (i.types[0].bitfield.jumpabsolute
5721 != operand_types[0].bitfield.jumpabsolute))
5722 {
5723 as_warn (_("indirect %s without `*'"), t->name);
5724 }
5725
5726 if (t->opcode_modifier.isprefix
5727 && t->opcode_modifier.ignoresize)
5728 {
5729 /* Warn them that a data or address size prefix doesn't
5730 affect assembly of the next line of code. */
5731 as_warn (_("stand-alone `%s' prefix"), t->name);
5732 }
5733 }
5734
5735 /* Copy the template we found. */
5736 i.tm = *t;
5737
5738 if (addr_prefix_disp != -1)
5739 i.tm.operand_types[addr_prefix_disp]
5740 = operand_types[addr_prefix_disp];
5741
5742 if (found_reverse_match)
5743 {
5744 /* If we found a reverse match we must alter the opcode
5745 direction bit. found_reverse_match holds bits to change
5746 (different for int & float insns). */
5747
5748 i.tm.base_opcode ^= found_reverse_match;
5749
5750 i.tm.operand_types[0] = operand_types[1];
5751 i.tm.operand_types[1] = operand_types[0];
5752 }
5753
5754 return t;
5755 }
5756
5757 static int
5758 check_string (void)
5759 {
5760 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5761 if (i.tm.operand_types[mem_op].bitfield.esseg)
5762 {
5763 if (i.seg[0] != NULL && i.seg[0] != &es)
5764 {
5765 as_bad (_("`%s' operand %d must use `%ses' segment"),
5766 i.tm.name,
5767 mem_op + 1,
5768 register_prefix);
5769 return 0;
5770 }
5771 /* There's only ever one segment override allowed per instruction.
5772 This instruction possibly has a legal segment override on the
5773 second operand, so copy the segment to where non-string
5774 instructions store it, allowing common code. */
5775 i.seg[0] = i.seg[1];
5776 }
5777 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5778 {
5779 if (i.seg[1] != NULL && i.seg[1] != &es)
5780 {
5781 as_bad (_("`%s' operand %d must use `%ses' segment"),
5782 i.tm.name,
5783 mem_op + 2,
5784 register_prefix);
5785 return 0;
5786 }
5787 }
5788 return 1;
5789 }
5790
5791 static int
5792 process_suffix (void)
5793 {
5794 /* If matched instruction specifies an explicit instruction mnemonic
5795 suffix, use it. */
5796 if (i.tm.opcode_modifier.size16)
5797 i.suffix = WORD_MNEM_SUFFIX;
5798 else if (i.tm.opcode_modifier.size32)
5799 i.suffix = LONG_MNEM_SUFFIX;
5800 else if (i.tm.opcode_modifier.size64)
5801 i.suffix = QWORD_MNEM_SUFFIX;
5802 else if (i.reg_operands)
5803 {
5804 /* If there's no instruction mnemonic suffix we try to invent one
5805 based on register operands. */
5806 if (!i.suffix)
5807 {
5808 /* We take i.suffix from the last register operand specified,
5809 Destination register type is more significant than source
5810 register type. crc32 in SSE4.2 prefers source register
5811 type. */
5812 if (i.tm.base_opcode == 0xf20f38f1)
5813 {
5814 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5815 i.suffix = WORD_MNEM_SUFFIX;
5816 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5817 i.suffix = LONG_MNEM_SUFFIX;
5818 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5819 i.suffix = QWORD_MNEM_SUFFIX;
5820 }
5821 else if (i.tm.base_opcode == 0xf20f38f0)
5822 {
5823 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5824 i.suffix = BYTE_MNEM_SUFFIX;
5825 }
5826
5827 if (!i.suffix)
5828 {
5829 int op;
5830
5831 if (i.tm.base_opcode == 0xf20f38f1
5832 || i.tm.base_opcode == 0xf20f38f0)
5833 {
5834 /* We have to know the operand size for crc32. */
5835 as_bad (_("ambiguous memory operand size for `%s`"),
5836 i.tm.name);
5837 return 0;
5838 }
5839
5840 for (op = i.operands; --op >= 0;)
5841 if (!i.tm.operand_types[op].bitfield.inoutportreg
5842 && !i.tm.operand_types[op].bitfield.shiftcount)
5843 {
5844 if (!i.types[op].bitfield.reg)
5845 continue;
5846 if (i.types[op].bitfield.byte)
5847 i.suffix = BYTE_MNEM_SUFFIX;
5848 else if (i.types[op].bitfield.word)
5849 i.suffix = WORD_MNEM_SUFFIX;
5850 else if (i.types[op].bitfield.dword)
5851 i.suffix = LONG_MNEM_SUFFIX;
5852 else if (i.types[op].bitfield.qword)
5853 i.suffix = QWORD_MNEM_SUFFIX;
5854 else
5855 continue;
5856 break;
5857 }
5858 }
5859 }
5860 else if (i.suffix == BYTE_MNEM_SUFFIX)
5861 {
5862 if (intel_syntax
5863 && i.tm.opcode_modifier.ignoresize
5864 && i.tm.opcode_modifier.no_bsuf)
5865 i.suffix = 0;
5866 else if (!check_byte_reg ())
5867 return 0;
5868 }
5869 else if (i.suffix == LONG_MNEM_SUFFIX)
5870 {
5871 if (intel_syntax
5872 && i.tm.opcode_modifier.ignoresize
5873 && i.tm.opcode_modifier.no_lsuf
5874 && !i.tm.opcode_modifier.todword
5875 && !i.tm.opcode_modifier.toqword)
5876 i.suffix = 0;
5877 else if (!check_long_reg ())
5878 return 0;
5879 }
5880 else if (i.suffix == QWORD_MNEM_SUFFIX)
5881 {
5882 if (intel_syntax
5883 && i.tm.opcode_modifier.ignoresize
5884 && i.tm.opcode_modifier.no_qsuf
5885 && !i.tm.opcode_modifier.todword
5886 && !i.tm.opcode_modifier.toqword)
5887 i.suffix = 0;
5888 else if (!check_qword_reg ())
5889 return 0;
5890 }
5891 else if (i.suffix == WORD_MNEM_SUFFIX)
5892 {
5893 if (intel_syntax
5894 && i.tm.opcode_modifier.ignoresize
5895 && i.tm.opcode_modifier.no_wsuf)
5896 i.suffix = 0;
5897 else if (!check_word_reg ())
5898 return 0;
5899 }
5900 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5901 /* Do nothing if the instruction is going to ignore the prefix. */
5902 ;
5903 else
5904 abort ();
5905 }
5906 else if (i.tm.opcode_modifier.defaultsize
5907 && !i.suffix
5908 /* exclude fldenv/frstor/fsave/fstenv */
5909 && i.tm.opcode_modifier.no_ssuf)
5910 {
5911 i.suffix = stackop_size;
5912 }
5913 else if (intel_syntax
5914 && !i.suffix
5915 && (i.tm.operand_types[0].bitfield.jumpabsolute
5916 || i.tm.opcode_modifier.jumpbyte
5917 || i.tm.opcode_modifier.jumpintersegment
5918 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5919 && i.tm.extension_opcode <= 3)))
5920 {
5921 switch (flag_code)
5922 {
5923 case CODE_64BIT:
5924 if (!i.tm.opcode_modifier.no_qsuf)
5925 {
5926 i.suffix = QWORD_MNEM_SUFFIX;
5927 break;
5928 }
5929 /* Fall through. */
5930 case CODE_32BIT:
5931 if (!i.tm.opcode_modifier.no_lsuf)
5932 i.suffix = LONG_MNEM_SUFFIX;
5933 break;
5934 case CODE_16BIT:
5935 if (!i.tm.opcode_modifier.no_wsuf)
5936 i.suffix = WORD_MNEM_SUFFIX;
5937 break;
5938 }
5939 }
5940
5941 if (!i.suffix)
5942 {
5943 if (!intel_syntax)
5944 {
5945 if (i.tm.opcode_modifier.w)
5946 {
5947 as_bad (_("no instruction mnemonic suffix given and "
5948 "no register operands; can't size instruction"));
5949 return 0;
5950 }
5951 }
5952 else
5953 {
5954 unsigned int suffixes;
5955
5956 suffixes = !i.tm.opcode_modifier.no_bsuf;
5957 if (!i.tm.opcode_modifier.no_wsuf)
5958 suffixes |= 1 << 1;
5959 if (!i.tm.opcode_modifier.no_lsuf)
5960 suffixes |= 1 << 2;
5961 if (!i.tm.opcode_modifier.no_ldsuf)
5962 suffixes |= 1 << 3;
5963 if (!i.tm.opcode_modifier.no_ssuf)
5964 suffixes |= 1 << 4;
5965 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5966 suffixes |= 1 << 5;
5967
5968 /* There are more than suffix matches. */
5969 if (i.tm.opcode_modifier.w
5970 || ((suffixes & (suffixes - 1))
5971 && !i.tm.opcode_modifier.defaultsize
5972 && !i.tm.opcode_modifier.ignoresize))
5973 {
5974 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5975 return 0;
5976 }
5977 }
5978 }
5979
5980 /* Change the opcode based on the operand size given by i.suffix. */
5981 switch (i.suffix)
5982 {
5983 /* Size floating point instruction. */
5984 case LONG_MNEM_SUFFIX:
5985 if (i.tm.opcode_modifier.floatmf)
5986 {
5987 i.tm.base_opcode ^= 4;
5988 break;
5989 }
5990 /* fall through */
5991 case WORD_MNEM_SUFFIX:
5992 case QWORD_MNEM_SUFFIX:
5993 /* It's not a byte, select word/dword operation. */
5994 if (i.tm.opcode_modifier.w)
5995 {
5996 if (i.tm.opcode_modifier.shortform)
5997 i.tm.base_opcode |= 8;
5998 else
5999 i.tm.base_opcode |= 1;
6000 }
6001 /* fall through */
6002 case SHORT_MNEM_SUFFIX:
6003 /* Now select between word & dword operations via the operand
6004 size prefix, except for instructions that will ignore this
6005 prefix anyway. */
6006 if (i.reg_operands > 0
6007 && i.types[0].bitfield.reg
6008 && i.tm.opcode_modifier.addrprefixopreg
6009 && (i.tm.opcode_modifier.immext
6010 || i.operands == 1))
6011 {
6012 /* The address size override prefix changes the size of the
6013 first operand. */
6014 if ((flag_code == CODE_32BIT
6015 && i.op[0].regs->reg_type.bitfield.word)
6016 || (flag_code != CODE_32BIT
6017 && i.op[0].regs->reg_type.bitfield.dword))
6018 if (!add_prefix (ADDR_PREFIX_OPCODE))
6019 return 0;
6020 }
6021 else if (i.suffix != QWORD_MNEM_SUFFIX
6022 && !i.tm.opcode_modifier.ignoresize
6023 && !i.tm.opcode_modifier.floatmf
6024 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6025 || (flag_code == CODE_64BIT
6026 && i.tm.opcode_modifier.jumpbyte)))
6027 {
6028 unsigned int prefix = DATA_PREFIX_OPCODE;
6029
6030 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6031 prefix = ADDR_PREFIX_OPCODE;
6032
6033 if (!add_prefix (prefix))
6034 return 0;
6035 }
6036
6037 /* Set mode64 for an operand. */
6038 if (i.suffix == QWORD_MNEM_SUFFIX
6039 && flag_code == CODE_64BIT
6040 && !i.tm.opcode_modifier.norex64
6041 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6042 need rex64. */
6043 && ! (i.operands == 2
6044 && i.tm.base_opcode == 0x90
6045 && i.tm.extension_opcode == None
6046 && operand_type_equal (&i.types [0], &acc64)
6047 && operand_type_equal (&i.types [1], &acc64)))
6048 i.rex |= REX_W;
6049
6050 break;
6051 }
6052
6053 if (i.reg_operands != 0
6054 && i.operands > 1
6055 && i.tm.opcode_modifier.addrprefixopreg
6056 && !i.tm.opcode_modifier.immext)
6057 {
6058 /* Check invalid register operand when the address size override
6059 prefix changes the size of register operands. */
6060 unsigned int op;
6061 enum { need_word, need_dword, need_qword } need;
6062
6063 if (flag_code == CODE_32BIT)
6064 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6065 else
6066 {
6067 if (i.prefix[ADDR_PREFIX])
6068 need = need_dword;
6069 else
6070 need = flag_code == CODE_64BIT ? need_qword : need_word;
6071 }
6072
6073 for (op = 0; op < i.operands; op++)
6074 if (i.types[op].bitfield.reg
6075 && ((need == need_word
6076 && !i.op[op].regs->reg_type.bitfield.word)
6077 || (need == need_dword
6078 && !i.op[op].regs->reg_type.bitfield.dword)
6079 || (need == need_qword
6080 && !i.op[op].regs->reg_type.bitfield.qword)))
6081 {
6082 as_bad (_("invalid register operand size for `%s'"),
6083 i.tm.name);
6084 return 0;
6085 }
6086 }
6087
6088 return 1;
6089 }
6090
6091 static int
6092 check_byte_reg (void)
6093 {
6094 int op;
6095
6096 for (op = i.operands; --op >= 0;)
6097 {
6098 /* Skip non-register operands. */
6099 if (!i.types[op].bitfield.reg)
6100 continue;
6101
6102 /* If this is an eight bit register, it's OK. If it's the 16 or
6103 32 bit version of an eight bit register, we will just use the
6104 low portion, and that's OK too. */
6105 if (i.types[op].bitfield.byte)
6106 continue;
6107
6108 /* I/O port address operands are OK too. */
6109 if (i.tm.operand_types[op].bitfield.inoutportreg)
6110 continue;
6111
6112 /* crc32 doesn't generate this warning. */
6113 if (i.tm.base_opcode == 0xf20f38f0)
6114 continue;
6115
6116 if ((i.types[op].bitfield.word
6117 || i.types[op].bitfield.dword
6118 || i.types[op].bitfield.qword)
6119 && i.op[op].regs->reg_num < 4
6120 /* Prohibit these changes in 64bit mode, since the lowering
6121 would be more complicated. */
6122 && flag_code != CODE_64BIT)
6123 {
6124 #if REGISTER_WARNINGS
6125 if (!quiet_warnings)
6126 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6127 register_prefix,
6128 (i.op[op].regs + (i.types[op].bitfield.word
6129 ? REGNAM_AL - REGNAM_AX
6130 : REGNAM_AL - REGNAM_EAX))->reg_name,
6131 register_prefix,
6132 i.op[op].regs->reg_name,
6133 i.suffix);
6134 #endif
6135 continue;
6136 }
6137 /* Any other register is bad. */
6138 if (i.types[op].bitfield.reg
6139 || i.types[op].bitfield.regmmx
6140 || i.types[op].bitfield.regsimd
6141 || i.types[op].bitfield.sreg2
6142 || i.types[op].bitfield.sreg3
6143 || i.types[op].bitfield.control
6144 || i.types[op].bitfield.debug
6145 || i.types[op].bitfield.test)
6146 {
6147 as_bad (_("`%s%s' not allowed with `%s%c'"),
6148 register_prefix,
6149 i.op[op].regs->reg_name,
6150 i.tm.name,
6151 i.suffix);
6152 return 0;
6153 }
6154 }
6155 return 1;
6156 }
6157
6158 static int
6159 check_long_reg (void)
6160 {
6161 int op;
6162
6163 for (op = i.operands; --op >= 0;)
6164 /* Skip non-register operands. */
6165 if (!i.types[op].bitfield.reg)
6166 continue;
6167 /* Reject eight bit registers, except where the template requires
6168 them. (eg. movzb) */
6169 else if (i.types[op].bitfield.byte
6170 && (i.tm.operand_types[op].bitfield.reg
6171 || i.tm.operand_types[op].bitfield.acc)
6172 && (i.tm.operand_types[op].bitfield.word
6173 || i.tm.operand_types[op].bitfield.dword))
6174 {
6175 as_bad (_("`%s%s' not allowed with `%s%c'"),
6176 register_prefix,
6177 i.op[op].regs->reg_name,
6178 i.tm.name,
6179 i.suffix);
6180 return 0;
6181 }
6182 /* Warn if the e prefix on a general reg is missing. */
6183 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6184 && i.types[op].bitfield.word
6185 && (i.tm.operand_types[op].bitfield.reg
6186 || i.tm.operand_types[op].bitfield.acc)
6187 && i.tm.operand_types[op].bitfield.dword)
6188 {
6189 /* Prohibit these changes in the 64bit mode, since the
6190 lowering is more complicated. */
6191 if (flag_code == CODE_64BIT)
6192 {
6193 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6194 register_prefix, i.op[op].regs->reg_name,
6195 i.suffix);
6196 return 0;
6197 }
6198 #if REGISTER_WARNINGS
6199 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6200 register_prefix,
6201 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6202 register_prefix, i.op[op].regs->reg_name, i.suffix);
6203 #endif
6204 }
6205 /* Warn if the r prefix on a general reg is present. */
6206 else if (i.types[op].bitfield.qword
6207 && (i.tm.operand_types[op].bitfield.reg
6208 || i.tm.operand_types[op].bitfield.acc)
6209 && i.tm.operand_types[op].bitfield.dword)
6210 {
6211 if (intel_syntax
6212 && i.tm.opcode_modifier.toqword
6213 && !i.types[0].bitfield.regsimd)
6214 {
6215 /* Convert to QWORD. We want REX byte. */
6216 i.suffix = QWORD_MNEM_SUFFIX;
6217 }
6218 else
6219 {
6220 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6221 register_prefix, i.op[op].regs->reg_name,
6222 i.suffix);
6223 return 0;
6224 }
6225 }
6226 return 1;
6227 }
6228
6229 static int
6230 check_qword_reg (void)
6231 {
6232 int op;
6233
6234 for (op = i.operands; --op >= 0; )
6235 /* Skip non-register operands. */
6236 if (!i.types[op].bitfield.reg)
6237 continue;
6238 /* Reject eight bit registers, except where the template requires
6239 them. (eg. movzb) */
6240 else if (i.types[op].bitfield.byte
6241 && (i.tm.operand_types[op].bitfield.reg
6242 || i.tm.operand_types[op].bitfield.acc)
6243 && (i.tm.operand_types[op].bitfield.word
6244 || i.tm.operand_types[op].bitfield.dword))
6245 {
6246 as_bad (_("`%s%s' not allowed with `%s%c'"),
6247 register_prefix,
6248 i.op[op].regs->reg_name,
6249 i.tm.name,
6250 i.suffix);
6251 return 0;
6252 }
6253 /* Warn if the r prefix on a general reg is missing. */
6254 else if ((i.types[op].bitfield.word
6255 || i.types[op].bitfield.dword)
6256 && (i.tm.operand_types[op].bitfield.reg
6257 || i.tm.operand_types[op].bitfield.acc)
6258 && i.tm.operand_types[op].bitfield.qword)
6259 {
6260 /* Prohibit these changes in the 64bit mode, since the
6261 lowering is more complicated. */
6262 if (intel_syntax
6263 && i.tm.opcode_modifier.todword
6264 && !i.types[0].bitfield.regsimd)
6265 {
6266 /* Convert to DWORD. We don't want REX byte. */
6267 i.suffix = LONG_MNEM_SUFFIX;
6268 }
6269 else
6270 {
6271 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6272 register_prefix, i.op[op].regs->reg_name,
6273 i.suffix);
6274 return 0;
6275 }
6276 }
6277 return 1;
6278 }
6279
6280 static int
6281 check_word_reg (void)
6282 {
6283 int op;
6284 for (op = i.operands; --op >= 0;)
6285 /* Skip non-register operands. */
6286 if (!i.types[op].bitfield.reg)
6287 continue;
6288 /* Reject eight bit registers, except where the template requires
6289 them. (eg. movzb) */
6290 else if (i.types[op].bitfield.byte
6291 && (i.tm.operand_types[op].bitfield.reg
6292 || i.tm.operand_types[op].bitfield.acc)
6293 && (i.tm.operand_types[op].bitfield.word
6294 || i.tm.operand_types[op].bitfield.dword))
6295 {
6296 as_bad (_("`%s%s' not allowed with `%s%c'"),
6297 register_prefix,
6298 i.op[op].regs->reg_name,
6299 i.tm.name,
6300 i.suffix);
6301 return 0;
6302 }
6303 /* Warn if the e or r prefix on a general reg is present. */
6304 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6305 && (i.types[op].bitfield.dword
6306 || i.types[op].bitfield.qword)
6307 && (i.tm.operand_types[op].bitfield.reg
6308 || i.tm.operand_types[op].bitfield.acc)
6309 && i.tm.operand_types[op].bitfield.word)
6310 {
6311 /* Prohibit these changes in the 64bit mode, since the
6312 lowering is more complicated. */
6313 if (flag_code == CODE_64BIT)
6314 {
6315 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6316 register_prefix, i.op[op].regs->reg_name,
6317 i.suffix);
6318 return 0;
6319 }
6320 #if REGISTER_WARNINGS
6321 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6322 register_prefix,
6323 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6324 register_prefix, i.op[op].regs->reg_name, i.suffix);
6325 #endif
6326 }
6327 return 1;
6328 }
6329
6330 static int
6331 update_imm (unsigned int j)
6332 {
6333 i386_operand_type overlap = i.types[j];
6334 if ((overlap.bitfield.imm8
6335 || overlap.bitfield.imm8s
6336 || overlap.bitfield.imm16
6337 || overlap.bitfield.imm32
6338 || overlap.bitfield.imm32s
6339 || overlap.bitfield.imm64)
6340 && !operand_type_equal (&overlap, &imm8)
6341 && !operand_type_equal (&overlap, &imm8s)
6342 && !operand_type_equal (&overlap, &imm16)
6343 && !operand_type_equal (&overlap, &imm32)
6344 && !operand_type_equal (&overlap, &imm32s)
6345 && !operand_type_equal (&overlap, &imm64))
6346 {
6347 if (i.suffix)
6348 {
6349 i386_operand_type temp;
6350
6351 operand_type_set (&temp, 0);
6352 if (i.suffix == BYTE_MNEM_SUFFIX)
6353 {
6354 temp.bitfield.imm8 = overlap.bitfield.imm8;
6355 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6356 }
6357 else if (i.suffix == WORD_MNEM_SUFFIX)
6358 temp.bitfield.imm16 = overlap.bitfield.imm16;
6359 else if (i.suffix == QWORD_MNEM_SUFFIX)
6360 {
6361 temp.bitfield.imm64 = overlap.bitfield.imm64;
6362 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6363 }
6364 else
6365 temp.bitfield.imm32 = overlap.bitfield.imm32;
6366 overlap = temp;
6367 }
6368 else if (operand_type_equal (&overlap, &imm16_32_32s)
6369 || operand_type_equal (&overlap, &imm16_32)
6370 || operand_type_equal (&overlap, &imm16_32s))
6371 {
6372 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6373 overlap = imm16;
6374 else
6375 overlap = imm32s;
6376 }
6377 if (!operand_type_equal (&overlap, &imm8)
6378 && !operand_type_equal (&overlap, &imm8s)
6379 && !operand_type_equal (&overlap, &imm16)
6380 && !operand_type_equal (&overlap, &imm32)
6381 && !operand_type_equal (&overlap, &imm32s)
6382 && !operand_type_equal (&overlap, &imm64))
6383 {
6384 as_bad (_("no instruction mnemonic suffix given; "
6385 "can't determine immediate size"));
6386 return 0;
6387 }
6388 }
6389 i.types[j] = overlap;
6390
6391 return 1;
6392 }
6393
6394 static int
6395 finalize_imm (void)
6396 {
6397 unsigned int j, n;
6398
6399 /* Update the first 2 immediate operands. */
6400 n = i.operands > 2 ? 2 : i.operands;
6401 if (n)
6402 {
6403 for (j = 0; j < n; j++)
6404 if (update_imm (j) == 0)
6405 return 0;
6406
6407 /* The 3rd operand can't be immediate operand. */
6408 gas_assert (operand_type_check (i.types[2], imm) == 0);
6409 }
6410
6411 return 1;
6412 }
6413
6414 static int
6415 process_operands (void)
6416 {
6417 /* Default segment register this instruction will use for memory
6418 accesses. 0 means unknown. This is only for optimizing out
6419 unnecessary segment overrides. */
6420 const seg_entry *default_seg = 0;
6421
6422 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6423 {
6424 unsigned int dupl = i.operands;
6425 unsigned int dest = dupl - 1;
6426 unsigned int j;
6427
6428 /* The destination must be an xmm register. */
6429 gas_assert (i.reg_operands
6430 && MAX_OPERANDS > dupl
6431 && operand_type_equal (&i.types[dest], &regxmm));
6432
6433 if (i.tm.operand_types[0].bitfield.acc
6434 && i.tm.operand_types[0].bitfield.xmmword)
6435 {
6436 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6437 {
6438 /* Keep xmm0 for instructions with VEX prefix and 3
6439 sources. */
6440 i.tm.operand_types[0].bitfield.acc = 0;
6441 i.tm.operand_types[0].bitfield.regsimd = 1;
6442 goto duplicate;
6443 }
6444 else
6445 {
6446 /* We remove the first xmm0 and keep the number of
6447 operands unchanged, which in fact duplicates the
6448 destination. */
6449 for (j = 1; j < i.operands; j++)
6450 {
6451 i.op[j - 1] = i.op[j];
6452 i.types[j - 1] = i.types[j];
6453 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6454 }
6455 }
6456 }
6457 else if (i.tm.opcode_modifier.implicit1stxmm0)
6458 {
6459 gas_assert ((MAX_OPERANDS - 1) > dupl
6460 && (i.tm.opcode_modifier.vexsources
6461 == VEX3SOURCES));
6462
6463 /* Add the implicit xmm0 for instructions with VEX prefix
6464 and 3 sources. */
6465 for (j = i.operands; j > 0; j--)
6466 {
6467 i.op[j] = i.op[j - 1];
6468 i.types[j] = i.types[j - 1];
6469 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6470 }
6471 i.op[0].regs
6472 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6473 i.types[0] = regxmm;
6474 i.tm.operand_types[0] = regxmm;
6475
6476 i.operands += 2;
6477 i.reg_operands += 2;
6478 i.tm.operands += 2;
6479
6480 dupl++;
6481 dest++;
6482 i.op[dupl] = i.op[dest];
6483 i.types[dupl] = i.types[dest];
6484 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6485 }
6486 else
6487 {
6488 duplicate:
6489 i.operands++;
6490 i.reg_operands++;
6491 i.tm.operands++;
6492
6493 i.op[dupl] = i.op[dest];
6494 i.types[dupl] = i.types[dest];
6495 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6496 }
6497
6498 if (i.tm.opcode_modifier.immext)
6499 process_immext ();
6500 }
6501 else if (i.tm.operand_types[0].bitfield.acc
6502 && i.tm.operand_types[0].bitfield.xmmword)
6503 {
6504 unsigned int j;
6505
6506 for (j = 1; j < i.operands; j++)
6507 {
6508 i.op[j - 1] = i.op[j];
6509 i.types[j - 1] = i.types[j];
6510
6511 /* We need to adjust fields in i.tm since they are used by
6512 build_modrm_byte. */
6513 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6514 }
6515
6516 i.operands--;
6517 i.reg_operands--;
6518 i.tm.operands--;
6519 }
6520 else if (i.tm.opcode_modifier.implicitquadgroup)
6521 {
6522 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6523
6524 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6525 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6526 regnum = register_number (i.op[1].regs);
6527 first_reg_in_group = regnum & ~3;
6528 last_reg_in_group = first_reg_in_group + 3;
6529 if (regnum != first_reg_in_group)
6530 as_warn (_("source register `%s%s' implicitly denotes"
6531 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6532 register_prefix, i.op[1].regs->reg_name,
6533 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6534 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6535 i.tm.name);
6536 }
6537 else if (i.tm.opcode_modifier.regkludge)
6538 {
6539 /* The imul $imm, %reg instruction is converted into
6540 imul $imm, %reg, %reg, and the clr %reg instruction
6541 is converted into xor %reg, %reg. */
6542
6543 unsigned int first_reg_op;
6544
6545 if (operand_type_check (i.types[0], reg))
6546 first_reg_op = 0;
6547 else
6548 first_reg_op = 1;
6549 /* Pretend we saw the extra register operand. */
6550 gas_assert (i.reg_operands == 1
6551 && i.op[first_reg_op + 1].regs == 0);
6552 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6553 i.types[first_reg_op + 1] = i.types[first_reg_op];
6554 i.operands++;
6555 i.reg_operands++;
6556 }
6557
6558 if (i.tm.opcode_modifier.shortform)
6559 {
6560 if (i.types[0].bitfield.sreg2
6561 || i.types[0].bitfield.sreg3)
6562 {
6563 if (i.tm.base_opcode == POP_SEG_SHORT
6564 && i.op[0].regs->reg_num == 1)
6565 {
6566 as_bad (_("you can't `pop %scs'"), register_prefix);
6567 return 0;
6568 }
6569 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6570 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6571 i.rex |= REX_B;
6572 }
6573 else
6574 {
6575 /* The register or float register operand is in operand
6576 0 or 1. */
6577 unsigned int op;
6578
6579 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6580 || operand_type_check (i.types[0], reg))
6581 op = 0;
6582 else
6583 op = 1;
6584 /* Register goes in low 3 bits of opcode. */
6585 i.tm.base_opcode |= i.op[op].regs->reg_num;
6586 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6587 i.rex |= REX_B;
6588 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6589 {
6590 /* Warn about some common errors, but press on regardless.
6591 The first case can be generated by gcc (<= 2.8.1). */
6592 if (i.operands == 2)
6593 {
6594 /* Reversed arguments on faddp, fsubp, etc. */
6595 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6596 register_prefix, i.op[!intel_syntax].regs->reg_name,
6597 register_prefix, i.op[intel_syntax].regs->reg_name);
6598 }
6599 else
6600 {
6601 /* Extraneous `l' suffix on fp insn. */
6602 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6603 register_prefix, i.op[0].regs->reg_name);
6604 }
6605 }
6606 }
6607 }
6608 else if (i.tm.opcode_modifier.modrm)
6609 {
6610 /* The opcode is completed (modulo i.tm.extension_opcode which
6611 must be put into the modrm byte). Now, we make the modrm and
6612 index base bytes based on all the info we've collected. */
6613
6614 default_seg = build_modrm_byte ();
6615 }
6616 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6617 {
6618 default_seg = &ds;
6619 }
6620 else if (i.tm.opcode_modifier.isstring)
6621 {
6622 /* For the string instructions that allow a segment override
6623 on one of their operands, the default segment is ds. */
6624 default_seg = &ds;
6625 }
6626
6627 if (i.tm.base_opcode == 0x8d /* lea */
6628 && i.seg[0]
6629 && !quiet_warnings)
6630 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6631
6632 /* If a segment was explicitly specified, and the specified segment
6633 is not the default, use an opcode prefix to select it. If we
6634 never figured out what the default segment is, then default_seg
6635 will be zero at this point, and the specified segment prefix will
6636 always be used. */
6637 if ((i.seg[0]) && (i.seg[0] != default_seg))
6638 {
6639 if (!add_prefix (i.seg[0]->seg_prefix))
6640 return 0;
6641 }
6642 return 1;
6643 }
6644
6645 static const seg_entry *
6646 build_modrm_byte (void)
6647 {
6648 const seg_entry *default_seg = 0;
6649 unsigned int source, dest;
6650 int vex_3_sources;
6651
6652 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6653 if (vex_3_sources)
6654 {
6655 unsigned int nds, reg_slot;
6656 expressionS *exp;
6657
6658 dest = i.operands - 1;
6659 nds = dest - 1;
6660
6661 /* There are 2 kinds of instructions:
6662 1. 5 operands: 4 register operands or 3 register operands
6663 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6664 VexW0 or VexW1. The destination must be either XMM, YMM or
6665 ZMM register.
6666 2. 4 operands: 4 register operands or 3 register operands
6667 plus 1 memory operand, with VexXDS. */
6668 gas_assert ((i.reg_operands == 4
6669 || (i.reg_operands == 3 && i.mem_operands == 1))
6670 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6671 && i.tm.opcode_modifier.vexw
6672 && i.tm.operand_types[dest].bitfield.regsimd);
6673
6674 /* If VexW1 is set, the first non-immediate operand is the source and
6675 the second non-immediate one is encoded in the immediate operand. */
6676 if (i.tm.opcode_modifier.vexw == VEXW1)
6677 {
6678 source = i.imm_operands;
6679 reg_slot = i.imm_operands + 1;
6680 }
6681 else
6682 {
6683 source = i.imm_operands + 1;
6684 reg_slot = i.imm_operands;
6685 }
6686
6687 if (i.imm_operands == 0)
6688 {
6689 /* When there is no immediate operand, generate an 8bit
6690 immediate operand to encode the first operand. */
6691 exp = &im_expressions[i.imm_operands++];
6692 i.op[i.operands].imms = exp;
6693 i.types[i.operands] = imm8;
6694 i.operands++;
6695
6696 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6697 exp->X_op = O_constant;
6698 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6699 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6700 }
6701 else
6702 {
6703 unsigned int imm_slot;
6704
6705 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6706
6707 if (i.tm.opcode_modifier.immext)
6708 {
6709 /* When ImmExt is set, the immediate byte is the last
6710 operand. */
6711 imm_slot = i.operands - 1;
6712 source--;
6713 reg_slot--;
6714 }
6715 else
6716 {
6717 imm_slot = 0;
6718
6719 /* Turn on Imm8 so that output_imm will generate it. */
6720 i.types[imm_slot].bitfield.imm8 = 1;
6721 }
6722
6723 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6724 i.op[imm_slot].imms->X_add_number
6725 |= register_number (i.op[reg_slot].regs) << 4;
6726 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6727 }
6728
6729 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6730 i.vex.register_specifier = i.op[nds].regs;
6731 }
6732 else
6733 source = dest = 0;
6734
6735 /* i.reg_operands MUST be the number of real register operands;
6736 implicit registers do not count. If there are 3 register
6737 operands, it must be a instruction with VexNDS. For a
6738 instruction with VexNDD, the destination register is encoded
6739 in VEX prefix. If there are 4 register operands, it must be
6740 a instruction with VEX prefix and 3 sources. */
6741 if (i.mem_operands == 0
6742 && ((i.reg_operands == 2
6743 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6744 || (i.reg_operands == 3
6745 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6746 || (i.reg_operands == 4 && vex_3_sources)))
6747 {
6748 switch (i.operands)
6749 {
6750 case 2:
6751 source = 0;
6752 break;
6753 case 3:
6754 /* When there are 3 operands, one of them may be immediate,
6755 which may be the first or the last operand. Otherwise,
6756 the first operand must be shift count register (cl) or it
6757 is an instruction with VexNDS. */
6758 gas_assert (i.imm_operands == 1
6759 || (i.imm_operands == 0
6760 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6761 || i.types[0].bitfield.shiftcount)));
6762 if (operand_type_check (i.types[0], imm)
6763 || i.types[0].bitfield.shiftcount)
6764 source = 1;
6765 else
6766 source = 0;
6767 break;
6768 case 4:
6769 /* When there are 4 operands, the first two must be 8bit
6770 immediate operands. The source operand will be the 3rd
6771 one.
6772
6773 For instructions with VexNDS, if the first operand
6774 an imm8, the source operand is the 2nd one. If the last
6775 operand is imm8, the source operand is the first one. */
6776 gas_assert ((i.imm_operands == 2
6777 && i.types[0].bitfield.imm8
6778 && i.types[1].bitfield.imm8)
6779 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6780 && i.imm_operands == 1
6781 && (i.types[0].bitfield.imm8
6782 || i.types[i.operands - 1].bitfield.imm8
6783 || i.rounding)));
6784 if (i.imm_operands == 2)
6785 source = 2;
6786 else
6787 {
6788 if (i.types[0].bitfield.imm8)
6789 source = 1;
6790 else
6791 source = 0;
6792 }
6793 break;
6794 case 5:
6795 if (is_evex_encoding (&i.tm))
6796 {
6797 /* For EVEX instructions, when there are 5 operands, the
6798 first one must be immediate operand. If the second one
6799 is immediate operand, the source operand is the 3th
6800 one. If the last one is immediate operand, the source
6801 operand is the 2nd one. */
6802 gas_assert (i.imm_operands == 2
6803 && i.tm.opcode_modifier.sae
6804 && operand_type_check (i.types[0], imm));
6805 if (operand_type_check (i.types[1], imm))
6806 source = 2;
6807 else if (operand_type_check (i.types[4], imm))
6808 source = 1;
6809 else
6810 abort ();
6811 }
6812 break;
6813 default:
6814 abort ();
6815 }
6816
6817 if (!vex_3_sources)
6818 {
6819 dest = source + 1;
6820
6821 /* RC/SAE operand could be between DEST and SRC. That happens
6822 when one operand is GPR and the other one is XMM/YMM/ZMM
6823 register. */
6824 if (i.rounding && i.rounding->operand == (int) dest)
6825 dest++;
6826
6827 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6828 {
6829 /* For instructions with VexNDS, the register-only source
6830 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6831 register. It is encoded in VEX prefix. We need to
6832 clear RegMem bit before calling operand_type_equal. */
6833
6834 i386_operand_type op;
6835 unsigned int vvvv;
6836
6837 /* Check register-only source operand when two source
6838 operands are swapped. */
6839 if (!i.tm.operand_types[source].bitfield.baseindex
6840 && i.tm.operand_types[dest].bitfield.baseindex)
6841 {
6842 vvvv = source;
6843 source = dest;
6844 }
6845 else
6846 vvvv = dest;
6847
6848 op = i.tm.operand_types[vvvv];
6849 op.bitfield.regmem = 0;
6850 if ((dest + 1) >= i.operands
6851 || ((!op.bitfield.reg
6852 || (!op.bitfield.dword && !op.bitfield.qword))
6853 && !op.bitfield.regsimd
6854 && !operand_type_equal (&op, &regmask)))
6855 abort ();
6856 i.vex.register_specifier = i.op[vvvv].regs;
6857 dest++;
6858 }
6859 }
6860
6861 i.rm.mode = 3;
6862 /* One of the register operands will be encoded in the i.tm.reg
6863 field, the other in the combined i.tm.mode and i.tm.regmem
6864 fields. If no form of this instruction supports a memory
6865 destination operand, then we assume the source operand may
6866 sometimes be a memory operand and so we need to store the
6867 destination in the i.rm.reg field. */
6868 if (!i.tm.operand_types[dest].bitfield.regmem
6869 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6870 {
6871 i.rm.reg = i.op[dest].regs->reg_num;
6872 i.rm.regmem = i.op[source].regs->reg_num;
6873 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6874 i.rex |= REX_R;
6875 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6876 i.vrex |= REX_R;
6877 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6878 i.rex |= REX_B;
6879 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6880 i.vrex |= REX_B;
6881 }
6882 else
6883 {
6884 i.rm.reg = i.op[source].regs->reg_num;
6885 i.rm.regmem = i.op[dest].regs->reg_num;
6886 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6887 i.rex |= REX_B;
6888 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6889 i.vrex |= REX_B;
6890 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6891 i.rex |= REX_R;
6892 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6893 i.vrex |= REX_R;
6894 }
6895 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6896 {
6897 if (!i.types[0].bitfield.control
6898 && !i.types[1].bitfield.control)
6899 abort ();
6900 i.rex &= ~(REX_R | REX_B);
6901 add_prefix (LOCK_PREFIX_OPCODE);
6902 }
6903 }
6904 else
6905 { /* If it's not 2 reg operands... */
6906 unsigned int mem;
6907
6908 if (i.mem_operands)
6909 {
6910 unsigned int fake_zero_displacement = 0;
6911 unsigned int op;
6912
6913 for (op = 0; op < i.operands; op++)
6914 if (operand_type_check (i.types[op], anymem))
6915 break;
6916 gas_assert (op < i.operands);
6917
6918 if (i.tm.opcode_modifier.vecsib)
6919 {
6920 if (i.index_reg->reg_num == RegEiz
6921 || i.index_reg->reg_num == RegRiz)
6922 abort ();
6923
6924 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6925 if (!i.base_reg)
6926 {
6927 i.sib.base = NO_BASE_REGISTER;
6928 i.sib.scale = i.log2_scale_factor;
6929 i.types[op].bitfield.disp8 = 0;
6930 i.types[op].bitfield.disp16 = 0;
6931 i.types[op].bitfield.disp64 = 0;
6932 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6933 {
6934 /* Must be 32 bit */
6935 i.types[op].bitfield.disp32 = 1;
6936 i.types[op].bitfield.disp32s = 0;
6937 }
6938 else
6939 {
6940 i.types[op].bitfield.disp32 = 0;
6941 i.types[op].bitfield.disp32s = 1;
6942 }
6943 }
6944 i.sib.index = i.index_reg->reg_num;
6945 if ((i.index_reg->reg_flags & RegRex) != 0)
6946 i.rex |= REX_X;
6947 if ((i.index_reg->reg_flags & RegVRex) != 0)
6948 i.vrex |= REX_X;
6949 }
6950
6951 default_seg = &ds;
6952
6953 if (i.base_reg == 0)
6954 {
6955 i.rm.mode = 0;
6956 if (!i.disp_operands)
6957 fake_zero_displacement = 1;
6958 if (i.index_reg == 0)
6959 {
6960 i386_operand_type newdisp;
6961
6962 gas_assert (!i.tm.opcode_modifier.vecsib);
6963 /* Operand is just <disp> */
6964 if (flag_code == CODE_64BIT)
6965 {
6966 /* 64bit mode overwrites the 32bit absolute
6967 addressing by RIP relative addressing and
6968 absolute addressing is encoded by one of the
6969 redundant SIB forms. */
6970 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6971 i.sib.base = NO_BASE_REGISTER;
6972 i.sib.index = NO_INDEX_REGISTER;
6973 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6974 }
6975 else if ((flag_code == CODE_16BIT)
6976 ^ (i.prefix[ADDR_PREFIX] != 0))
6977 {
6978 i.rm.regmem = NO_BASE_REGISTER_16;
6979 newdisp = disp16;
6980 }
6981 else
6982 {
6983 i.rm.regmem = NO_BASE_REGISTER;
6984 newdisp = disp32;
6985 }
6986 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6987 i.types[op] = operand_type_or (i.types[op], newdisp);
6988 }
6989 else if (!i.tm.opcode_modifier.vecsib)
6990 {
6991 /* !i.base_reg && i.index_reg */
6992 if (i.index_reg->reg_num == RegEiz
6993 || i.index_reg->reg_num == RegRiz)
6994 i.sib.index = NO_INDEX_REGISTER;
6995 else
6996 i.sib.index = i.index_reg->reg_num;
6997 i.sib.base = NO_BASE_REGISTER;
6998 i.sib.scale = i.log2_scale_factor;
6999 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7000 i.types[op].bitfield.disp8 = 0;
7001 i.types[op].bitfield.disp16 = 0;
7002 i.types[op].bitfield.disp64 = 0;
7003 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7004 {
7005 /* Must be 32 bit */
7006 i.types[op].bitfield.disp32 = 1;
7007 i.types[op].bitfield.disp32s = 0;
7008 }
7009 else
7010 {
7011 i.types[op].bitfield.disp32 = 0;
7012 i.types[op].bitfield.disp32s = 1;
7013 }
7014 if ((i.index_reg->reg_flags & RegRex) != 0)
7015 i.rex |= REX_X;
7016 }
7017 }
7018 /* RIP addressing for 64bit mode. */
7019 else if (i.base_reg->reg_num == RegRip ||
7020 i.base_reg->reg_num == RegEip)
7021 {
7022 gas_assert (!i.tm.opcode_modifier.vecsib);
7023 i.rm.regmem = NO_BASE_REGISTER;
7024 i.types[op].bitfield.disp8 = 0;
7025 i.types[op].bitfield.disp16 = 0;
7026 i.types[op].bitfield.disp32 = 0;
7027 i.types[op].bitfield.disp32s = 1;
7028 i.types[op].bitfield.disp64 = 0;
7029 i.flags[op] |= Operand_PCrel;
7030 if (! i.disp_operands)
7031 fake_zero_displacement = 1;
7032 }
7033 else if (i.base_reg->reg_type.bitfield.word)
7034 {
7035 gas_assert (!i.tm.opcode_modifier.vecsib);
7036 switch (i.base_reg->reg_num)
7037 {
7038 case 3: /* (%bx) */
7039 if (i.index_reg == 0)
7040 i.rm.regmem = 7;
7041 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7042 i.rm.regmem = i.index_reg->reg_num - 6;
7043 break;
7044 case 5: /* (%bp) */
7045 default_seg = &ss;
7046 if (i.index_reg == 0)
7047 {
7048 i.rm.regmem = 6;
7049 if (operand_type_check (i.types[op], disp) == 0)
7050 {
7051 /* fake (%bp) into 0(%bp) */
7052 i.types[op].bitfield.disp8 = 1;
7053 fake_zero_displacement = 1;
7054 }
7055 }
7056 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7057 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7058 break;
7059 default: /* (%si) -> 4 or (%di) -> 5 */
7060 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7061 }
7062 i.rm.mode = mode_from_disp_size (i.types[op]);
7063 }
7064 else /* i.base_reg and 32/64 bit mode */
7065 {
7066 if (flag_code == CODE_64BIT
7067 && operand_type_check (i.types[op], disp))
7068 {
7069 i.types[op].bitfield.disp16 = 0;
7070 i.types[op].bitfield.disp64 = 0;
7071 if (i.prefix[ADDR_PREFIX] == 0)
7072 {
7073 i.types[op].bitfield.disp32 = 0;
7074 i.types[op].bitfield.disp32s = 1;
7075 }
7076 else
7077 {
7078 i.types[op].bitfield.disp32 = 1;
7079 i.types[op].bitfield.disp32s = 0;
7080 }
7081 }
7082
7083 if (!i.tm.opcode_modifier.vecsib)
7084 i.rm.regmem = i.base_reg->reg_num;
7085 if ((i.base_reg->reg_flags & RegRex) != 0)
7086 i.rex |= REX_B;
7087 i.sib.base = i.base_reg->reg_num;
7088 /* x86-64 ignores REX prefix bit here to avoid decoder
7089 complications. */
7090 if (!(i.base_reg->reg_flags & RegRex)
7091 && (i.base_reg->reg_num == EBP_REG_NUM
7092 || i.base_reg->reg_num == ESP_REG_NUM))
7093 default_seg = &ss;
7094 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7095 {
7096 fake_zero_displacement = 1;
7097 i.types[op].bitfield.disp8 = 1;
7098 }
7099 i.sib.scale = i.log2_scale_factor;
7100 if (i.index_reg == 0)
7101 {
7102 gas_assert (!i.tm.opcode_modifier.vecsib);
7103 /* <disp>(%esp) becomes two byte modrm with no index
7104 register. We've already stored the code for esp
7105 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7106 Any base register besides %esp will not use the
7107 extra modrm byte. */
7108 i.sib.index = NO_INDEX_REGISTER;
7109 }
7110 else if (!i.tm.opcode_modifier.vecsib)
7111 {
7112 if (i.index_reg->reg_num == RegEiz
7113 || i.index_reg->reg_num == RegRiz)
7114 i.sib.index = NO_INDEX_REGISTER;
7115 else
7116 i.sib.index = i.index_reg->reg_num;
7117 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7118 if ((i.index_reg->reg_flags & RegRex) != 0)
7119 i.rex |= REX_X;
7120 }
7121
7122 if (i.disp_operands
7123 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7124 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7125 i.rm.mode = 0;
7126 else
7127 {
7128 if (!fake_zero_displacement
7129 && !i.disp_operands
7130 && i.disp_encoding)
7131 {
7132 fake_zero_displacement = 1;
7133 if (i.disp_encoding == disp_encoding_8bit)
7134 i.types[op].bitfield.disp8 = 1;
7135 else
7136 i.types[op].bitfield.disp32 = 1;
7137 }
7138 i.rm.mode = mode_from_disp_size (i.types[op]);
7139 }
7140 }
7141
7142 if (fake_zero_displacement)
7143 {
7144 /* Fakes a zero displacement assuming that i.types[op]
7145 holds the correct displacement size. */
7146 expressionS *exp;
7147
7148 gas_assert (i.op[op].disps == 0);
7149 exp = &disp_expressions[i.disp_operands++];
7150 i.op[op].disps = exp;
7151 exp->X_op = O_constant;
7152 exp->X_add_number = 0;
7153 exp->X_add_symbol = (symbolS *) 0;
7154 exp->X_op_symbol = (symbolS *) 0;
7155 }
7156
7157 mem = op;
7158 }
7159 else
7160 mem = ~0;
7161
7162 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7163 {
7164 if (operand_type_check (i.types[0], imm))
7165 i.vex.register_specifier = NULL;
7166 else
7167 {
7168 /* VEX.vvvv encodes one of the sources when the first
7169 operand is not an immediate. */
7170 if (i.tm.opcode_modifier.vexw == VEXW0)
7171 i.vex.register_specifier = i.op[0].regs;
7172 else
7173 i.vex.register_specifier = i.op[1].regs;
7174 }
7175
7176 /* Destination is a XMM register encoded in the ModRM.reg
7177 and VEX.R bit. */
7178 i.rm.reg = i.op[2].regs->reg_num;
7179 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7180 i.rex |= REX_R;
7181
7182 /* ModRM.rm and VEX.B encodes the other source. */
7183 if (!i.mem_operands)
7184 {
7185 i.rm.mode = 3;
7186
7187 if (i.tm.opcode_modifier.vexw == VEXW0)
7188 i.rm.regmem = i.op[1].regs->reg_num;
7189 else
7190 i.rm.regmem = i.op[0].regs->reg_num;
7191
7192 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7193 i.rex |= REX_B;
7194 }
7195 }
7196 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7197 {
7198 i.vex.register_specifier = i.op[2].regs;
7199 if (!i.mem_operands)
7200 {
7201 i.rm.mode = 3;
7202 i.rm.regmem = i.op[1].regs->reg_num;
7203 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7204 i.rex |= REX_B;
7205 }
7206 }
7207 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7208 (if any) based on i.tm.extension_opcode. Again, we must be
7209 careful to make sure that segment/control/debug/test/MMX
7210 registers are coded into the i.rm.reg field. */
7211 else if (i.reg_operands)
7212 {
7213 unsigned int op;
7214 unsigned int vex_reg = ~0;
7215
7216 for (op = 0; op < i.operands; op++)
7217 if (i.types[op].bitfield.reg
7218 || i.types[op].bitfield.regmmx
7219 || i.types[op].bitfield.regsimd
7220 || i.types[op].bitfield.regbnd
7221 || i.types[op].bitfield.regmask
7222 || i.types[op].bitfield.sreg2
7223 || i.types[op].bitfield.sreg3
7224 || i.types[op].bitfield.control
7225 || i.types[op].bitfield.debug
7226 || i.types[op].bitfield.test)
7227 break;
7228
7229 if (vex_3_sources)
7230 op = dest;
7231 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7232 {
7233 /* For instructions with VexNDS, the register-only
7234 source operand is encoded in VEX prefix. */
7235 gas_assert (mem != (unsigned int) ~0);
7236
7237 if (op > mem)
7238 {
7239 vex_reg = op++;
7240 gas_assert (op < i.operands);
7241 }
7242 else
7243 {
7244 /* Check register-only source operand when two source
7245 operands are swapped. */
7246 if (!i.tm.operand_types[op].bitfield.baseindex
7247 && i.tm.operand_types[op + 1].bitfield.baseindex)
7248 {
7249 vex_reg = op;
7250 op += 2;
7251 gas_assert (mem == (vex_reg + 1)
7252 && op < i.operands);
7253 }
7254 else
7255 {
7256 vex_reg = op + 1;
7257 gas_assert (vex_reg < i.operands);
7258 }
7259 }
7260 }
7261 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7262 {
7263 /* For instructions with VexNDD, the register destination
7264 is encoded in VEX prefix. */
7265 if (i.mem_operands == 0)
7266 {
7267 /* There is no memory operand. */
7268 gas_assert ((op + 2) == i.operands);
7269 vex_reg = op + 1;
7270 }
7271 else
7272 {
7273 /* There are only 2 non-immediate operands. */
7274 gas_assert (op < i.imm_operands + 2
7275 && i.operands == i.imm_operands + 2);
7276 vex_reg = i.imm_operands + 1;
7277 }
7278 }
7279 else
7280 gas_assert (op < i.operands);
7281
7282 if (vex_reg != (unsigned int) ~0)
7283 {
7284 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7285
7286 if ((!type->bitfield.reg
7287 || (!type->bitfield.dword && !type->bitfield.qword))
7288 && !type->bitfield.regsimd
7289 && !operand_type_equal (type, &regmask))
7290 abort ();
7291
7292 i.vex.register_specifier = i.op[vex_reg].regs;
7293 }
7294
7295 /* Don't set OP operand twice. */
7296 if (vex_reg != op)
7297 {
7298 /* If there is an extension opcode to put here, the
7299 register number must be put into the regmem field. */
7300 if (i.tm.extension_opcode != None)
7301 {
7302 i.rm.regmem = i.op[op].regs->reg_num;
7303 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7304 i.rex |= REX_B;
7305 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7306 i.vrex |= REX_B;
7307 }
7308 else
7309 {
7310 i.rm.reg = i.op[op].regs->reg_num;
7311 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7312 i.rex |= REX_R;
7313 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7314 i.vrex |= REX_R;
7315 }
7316 }
7317
7318 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7319 must set it to 3 to indicate this is a register operand
7320 in the regmem field. */
7321 if (!i.mem_operands)
7322 i.rm.mode = 3;
7323 }
7324
7325 /* Fill in i.rm.reg field with extension opcode (if any). */
7326 if (i.tm.extension_opcode != None)
7327 i.rm.reg = i.tm.extension_opcode;
7328 }
7329 return default_seg;
7330 }
7331
7332 static void
7333 output_branch (void)
7334 {
7335 char *p;
7336 int size;
7337 int code16;
7338 int prefix;
7339 relax_substateT subtype;
7340 symbolS *sym;
7341 offsetT off;
7342
7343 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7344 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7345
7346 prefix = 0;
7347 if (i.prefix[DATA_PREFIX] != 0)
7348 {
7349 prefix = 1;
7350 i.prefixes -= 1;
7351 code16 ^= CODE16;
7352 }
7353 /* Pentium4 branch hints. */
7354 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7355 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7356 {
7357 prefix++;
7358 i.prefixes--;
7359 }
7360 if (i.prefix[REX_PREFIX] != 0)
7361 {
7362 prefix++;
7363 i.prefixes--;
7364 }
7365
7366 /* BND prefixed jump. */
7367 if (i.prefix[BND_PREFIX] != 0)
7368 {
7369 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7370 i.prefixes -= 1;
7371 }
7372
7373 if (i.prefixes != 0 && !intel_syntax)
7374 as_warn (_("skipping prefixes on this instruction"));
7375
7376 /* It's always a symbol; End frag & setup for relax.
7377 Make sure there is enough room in this frag for the largest
7378 instruction we may generate in md_convert_frag. This is 2
7379 bytes for the opcode and room for the prefix and largest
7380 displacement. */
7381 frag_grow (prefix + 2 + 4);
7382 /* Prefix and 1 opcode byte go in fr_fix. */
7383 p = frag_more (prefix + 1);
7384 if (i.prefix[DATA_PREFIX] != 0)
7385 *p++ = DATA_PREFIX_OPCODE;
7386 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7387 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7388 *p++ = i.prefix[SEG_PREFIX];
7389 if (i.prefix[REX_PREFIX] != 0)
7390 *p++ = i.prefix[REX_PREFIX];
7391 *p = i.tm.base_opcode;
7392
7393 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7394 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7395 else if (cpu_arch_flags.bitfield.cpui386)
7396 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7397 else
7398 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7399 subtype |= code16;
7400
7401 sym = i.op[0].disps->X_add_symbol;
7402 off = i.op[0].disps->X_add_number;
7403
7404 if (i.op[0].disps->X_op != O_constant
7405 && i.op[0].disps->X_op != O_symbol)
7406 {
7407 /* Handle complex expressions. */
7408 sym = make_expr_symbol (i.op[0].disps);
7409 off = 0;
7410 }
7411
7412 /* 1 possible extra opcode + 4 byte displacement go in var part.
7413 Pass reloc in fr_var. */
7414 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7415 }
7416
7417 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7418 /* Return TRUE iff PLT32 relocation should be used for branching to
7419 symbol S. */
7420
7421 static bfd_boolean
7422 need_plt32_p (symbolS *s)
7423 {
7424 /* PLT32 relocation is ELF only. */
7425 if (!IS_ELF)
7426 return FALSE;
7427
7428 /* Since there is no need to prepare for PLT branch on x86-64, we
7429 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7430 be used as a marker for 32-bit PC-relative branches. */
7431 if (!object_64bit)
7432 return FALSE;
7433
7434 /* Weak or undefined symbol need PLT32 relocation. */
7435 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7436 return TRUE;
7437
7438 /* Non-global symbol doesn't need PLT32 relocation. */
7439 if (! S_IS_EXTERNAL (s))
7440 return FALSE;
7441
7442 /* Other global symbols need PLT32 relocation. NB: Symbol with
7443 non-default visibilities are treated as normal global symbol
7444 so that PLT32 relocation can be used as a marker for 32-bit
7445 PC-relative branches. It is useful for linker relaxation. */
7446 return TRUE;
7447 }
7448 #endif
7449
7450 static void
7451 output_jump (void)
7452 {
7453 char *p;
7454 int size;
7455 fixS *fixP;
7456 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7457
7458 if (i.tm.opcode_modifier.jumpbyte)
7459 {
7460 /* This is a loop or jecxz type instruction. */
7461 size = 1;
7462 if (i.prefix[ADDR_PREFIX] != 0)
7463 {
7464 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7465 i.prefixes -= 1;
7466 }
7467 /* Pentium4 branch hints. */
7468 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7469 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7470 {
7471 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7472 i.prefixes--;
7473 }
7474 }
7475 else
7476 {
7477 int code16;
7478
7479 code16 = 0;
7480 if (flag_code == CODE_16BIT)
7481 code16 = CODE16;
7482
7483 if (i.prefix[DATA_PREFIX] != 0)
7484 {
7485 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7486 i.prefixes -= 1;
7487 code16 ^= CODE16;
7488 }
7489
7490 size = 4;
7491 if (code16)
7492 size = 2;
7493 }
7494
7495 if (i.prefix[REX_PREFIX] != 0)
7496 {
7497 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7498 i.prefixes -= 1;
7499 }
7500
7501 /* BND prefixed jump. */
7502 if (i.prefix[BND_PREFIX] != 0)
7503 {
7504 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7505 i.prefixes -= 1;
7506 }
7507
7508 if (i.prefixes != 0 && !intel_syntax)
7509 as_warn (_("skipping prefixes on this instruction"));
7510
7511 p = frag_more (i.tm.opcode_length + size);
7512 switch (i.tm.opcode_length)
7513 {
7514 case 2:
7515 *p++ = i.tm.base_opcode >> 8;
7516 /* Fall through. */
7517 case 1:
7518 *p++ = i.tm.base_opcode;
7519 break;
7520 default:
7521 abort ();
7522 }
7523
7524 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7525 if (size == 4
7526 && jump_reloc == NO_RELOC
7527 && need_plt32_p (i.op[0].disps->X_add_symbol))
7528 jump_reloc = BFD_RELOC_X86_64_PLT32;
7529 #endif
7530
7531 jump_reloc = reloc (size, 1, 1, jump_reloc);
7532
7533 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7534 i.op[0].disps, 1, jump_reloc);
7535
7536 /* All jumps handled here are signed, but don't use a signed limit
7537 check for 32 and 16 bit jumps as we want to allow wrap around at
7538 4G and 64k respectively. */
7539 if (size == 1)
7540 fixP->fx_signed = 1;
7541 }
7542
7543 static void
7544 output_interseg_jump (void)
7545 {
7546 char *p;
7547 int size;
7548 int prefix;
7549 int code16;
7550
7551 code16 = 0;
7552 if (flag_code == CODE_16BIT)
7553 code16 = CODE16;
7554
7555 prefix = 0;
7556 if (i.prefix[DATA_PREFIX] != 0)
7557 {
7558 prefix = 1;
7559 i.prefixes -= 1;
7560 code16 ^= CODE16;
7561 }
7562 if (i.prefix[REX_PREFIX] != 0)
7563 {
7564 prefix++;
7565 i.prefixes -= 1;
7566 }
7567
7568 size = 4;
7569 if (code16)
7570 size = 2;
7571
7572 if (i.prefixes != 0 && !intel_syntax)
7573 as_warn (_("skipping prefixes on this instruction"));
7574
7575 /* 1 opcode; 2 segment; offset */
7576 p = frag_more (prefix + 1 + 2 + size);
7577
7578 if (i.prefix[DATA_PREFIX] != 0)
7579 *p++ = DATA_PREFIX_OPCODE;
7580
7581 if (i.prefix[REX_PREFIX] != 0)
7582 *p++ = i.prefix[REX_PREFIX];
7583
7584 *p++ = i.tm.base_opcode;
7585 if (i.op[1].imms->X_op == O_constant)
7586 {
7587 offsetT n = i.op[1].imms->X_add_number;
7588
7589 if (size == 2
7590 && !fits_in_unsigned_word (n)
7591 && !fits_in_signed_word (n))
7592 {
7593 as_bad (_("16-bit jump out of range"));
7594 return;
7595 }
7596 md_number_to_chars (p, n, size);
7597 }
7598 else
7599 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7600 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7601 if (i.op[0].imms->X_op != O_constant)
7602 as_bad (_("can't handle non absolute segment in `%s'"),
7603 i.tm.name);
7604 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7605 }
7606
7607 static void
7608 output_insn (void)
7609 {
7610 fragS *insn_start_frag;
7611 offsetT insn_start_off;
7612
7613 /* Tie dwarf2 debug info to the address at the start of the insn.
7614 We can't do this after the insn has been output as the current
7615 frag may have been closed off. eg. by frag_var. */
7616 dwarf2_emit_insn (0);
7617
7618 insn_start_frag = frag_now;
7619 insn_start_off = frag_now_fix ();
7620
7621 /* Output jumps. */
7622 if (i.tm.opcode_modifier.jump)
7623 output_branch ();
7624 else if (i.tm.opcode_modifier.jumpbyte
7625 || i.tm.opcode_modifier.jumpdword)
7626 output_jump ();
7627 else if (i.tm.opcode_modifier.jumpintersegment)
7628 output_interseg_jump ();
7629 else
7630 {
7631 /* Output normal instructions here. */
7632 char *p;
7633 unsigned char *q;
7634 unsigned int j;
7635 unsigned int prefix;
7636
7637 if (avoid_fence
7638 && i.tm.base_opcode == 0xfae
7639 && i.operands == 1
7640 && i.imm_operands == 1
7641 && (i.op[0].imms->X_add_number == 0xe8
7642 || i.op[0].imms->X_add_number == 0xf0
7643 || i.op[0].imms->X_add_number == 0xf8))
7644 {
7645 /* Encode lfence, mfence, and sfence as
7646 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7647 offsetT val = 0x240483f0ULL;
7648 p = frag_more (5);
7649 md_number_to_chars (p, val, 5);
7650 return;
7651 }
7652
7653 /* Some processors fail on LOCK prefix. This options makes
7654 assembler ignore LOCK prefix and serves as a workaround. */
7655 if (omit_lock_prefix)
7656 {
7657 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7658 return;
7659 i.prefix[LOCK_PREFIX] = 0;
7660 }
7661
7662 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7663 don't need the explicit prefix. */
7664 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7665 {
7666 switch (i.tm.opcode_length)
7667 {
7668 case 3:
7669 if (i.tm.base_opcode & 0xff000000)
7670 {
7671 prefix = (i.tm.base_opcode >> 24) & 0xff;
7672 goto check_prefix;
7673 }
7674 break;
7675 case 2:
7676 if ((i.tm.base_opcode & 0xff0000) != 0)
7677 {
7678 prefix = (i.tm.base_opcode >> 16) & 0xff;
7679 if (i.tm.cpu_flags.bitfield.cpupadlock)
7680 {
7681 check_prefix:
7682 if (prefix != REPE_PREFIX_OPCODE
7683 || (i.prefix[REP_PREFIX]
7684 != REPE_PREFIX_OPCODE))
7685 add_prefix (prefix);
7686 }
7687 else
7688 add_prefix (prefix);
7689 }
7690 break;
7691 case 1:
7692 break;
7693 case 0:
7694 /* Check for pseudo prefixes. */
7695 as_bad_where (insn_start_frag->fr_file,
7696 insn_start_frag->fr_line,
7697 _("pseudo prefix without instruction"));
7698 return;
7699 default:
7700 abort ();
7701 }
7702
7703 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7704 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7705 R_X86_64_GOTTPOFF relocation so that linker can safely
7706 perform IE->LE optimization. */
7707 if (x86_elf_abi == X86_64_X32_ABI
7708 && i.operands == 2
7709 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7710 && i.prefix[REX_PREFIX] == 0)
7711 add_prefix (REX_OPCODE);
7712 #endif
7713
7714 /* The prefix bytes. */
7715 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7716 if (*q)
7717 FRAG_APPEND_1_CHAR (*q);
7718 }
7719 else
7720 {
7721 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7722 if (*q)
7723 switch (j)
7724 {
7725 case REX_PREFIX:
7726 /* REX byte is encoded in VEX prefix. */
7727 break;
7728 case SEG_PREFIX:
7729 case ADDR_PREFIX:
7730 FRAG_APPEND_1_CHAR (*q);
7731 break;
7732 default:
7733 /* There should be no other prefixes for instructions
7734 with VEX prefix. */
7735 abort ();
7736 }
7737
7738 /* For EVEX instructions i.vrex should become 0 after
7739 build_evex_prefix. For VEX instructions upper 16 registers
7740 aren't available, so VREX should be 0. */
7741 if (i.vrex)
7742 abort ();
7743 /* Now the VEX prefix. */
7744 p = frag_more (i.vex.length);
7745 for (j = 0; j < i.vex.length; j++)
7746 p[j] = i.vex.bytes[j];
7747 }
7748
7749 /* Now the opcode; be careful about word order here! */
7750 if (i.tm.opcode_length == 1)
7751 {
7752 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7753 }
7754 else
7755 {
7756 switch (i.tm.opcode_length)
7757 {
7758 case 4:
7759 p = frag_more (4);
7760 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7761 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7762 break;
7763 case 3:
7764 p = frag_more (3);
7765 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7766 break;
7767 case 2:
7768 p = frag_more (2);
7769 break;
7770 default:
7771 abort ();
7772 break;
7773 }
7774
7775 /* Put out high byte first: can't use md_number_to_chars! */
7776 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7777 *p = i.tm.base_opcode & 0xff;
7778 }
7779
7780 /* Now the modrm byte and sib byte (if present). */
7781 if (i.tm.opcode_modifier.modrm)
7782 {
7783 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7784 | i.rm.reg << 3
7785 | i.rm.mode << 6));
7786 /* If i.rm.regmem == ESP (4)
7787 && i.rm.mode != (Register mode)
7788 && not 16 bit
7789 ==> need second modrm byte. */
7790 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7791 && i.rm.mode != 3
7792 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7793 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7794 | i.sib.index << 3
7795 | i.sib.scale << 6));
7796 }
7797
7798 if (i.disp_operands)
7799 output_disp (insn_start_frag, insn_start_off);
7800
7801 if (i.imm_operands)
7802 output_imm (insn_start_frag, insn_start_off);
7803 }
7804
7805 #ifdef DEBUG386
7806 if (flag_debug)
7807 {
7808 pi ("" /*line*/, &i);
7809 }
7810 #endif /* DEBUG386 */
7811 }
7812
7813 /* Return the size of the displacement operand N. */
7814
7815 static int
7816 disp_size (unsigned int n)
7817 {
7818 int size = 4;
7819
7820 if (i.types[n].bitfield.disp64)
7821 size = 8;
7822 else if (i.types[n].bitfield.disp8)
7823 size = 1;
7824 else if (i.types[n].bitfield.disp16)
7825 size = 2;
7826 return size;
7827 }
7828
7829 /* Return the size of the immediate operand N. */
7830
7831 static int
7832 imm_size (unsigned int n)
7833 {
7834 int size = 4;
7835 if (i.types[n].bitfield.imm64)
7836 size = 8;
7837 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7838 size = 1;
7839 else if (i.types[n].bitfield.imm16)
7840 size = 2;
7841 return size;
7842 }
7843
7844 static void
7845 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7846 {
7847 char *p;
7848 unsigned int n;
7849
7850 for (n = 0; n < i.operands; n++)
7851 {
7852 if (operand_type_check (i.types[n], disp))
7853 {
7854 if (i.op[n].disps->X_op == O_constant)
7855 {
7856 int size = disp_size (n);
7857 offsetT val = i.op[n].disps->X_add_number;
7858
7859 val = offset_in_range (val >> i.memshift, size);
7860 p = frag_more (size);
7861 md_number_to_chars (p, val, size);
7862 }
7863 else
7864 {
7865 enum bfd_reloc_code_real reloc_type;
7866 int size = disp_size (n);
7867 int sign = i.types[n].bitfield.disp32s;
7868 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7869 fixS *fixP;
7870
7871 /* We can't have 8 bit displacement here. */
7872 gas_assert (!i.types[n].bitfield.disp8);
7873
7874 /* The PC relative address is computed relative
7875 to the instruction boundary, so in case immediate
7876 fields follows, we need to adjust the value. */
7877 if (pcrel && i.imm_operands)
7878 {
7879 unsigned int n1;
7880 int sz = 0;
7881
7882 for (n1 = 0; n1 < i.operands; n1++)
7883 if (operand_type_check (i.types[n1], imm))
7884 {
7885 /* Only one immediate is allowed for PC
7886 relative address. */
7887 gas_assert (sz == 0);
7888 sz = imm_size (n1);
7889 i.op[n].disps->X_add_number -= sz;
7890 }
7891 /* We should find the immediate. */
7892 gas_assert (sz != 0);
7893 }
7894
7895 p = frag_more (size);
7896 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7897 if (GOT_symbol
7898 && GOT_symbol == i.op[n].disps->X_add_symbol
7899 && (((reloc_type == BFD_RELOC_32
7900 || reloc_type == BFD_RELOC_X86_64_32S
7901 || (reloc_type == BFD_RELOC_64
7902 && object_64bit))
7903 && (i.op[n].disps->X_op == O_symbol
7904 || (i.op[n].disps->X_op == O_add
7905 && ((symbol_get_value_expression
7906 (i.op[n].disps->X_op_symbol)->X_op)
7907 == O_subtract))))
7908 || reloc_type == BFD_RELOC_32_PCREL))
7909 {
7910 offsetT add;
7911
7912 if (insn_start_frag == frag_now)
7913 add = (p - frag_now->fr_literal) - insn_start_off;
7914 else
7915 {
7916 fragS *fr;
7917
7918 add = insn_start_frag->fr_fix - insn_start_off;
7919 for (fr = insn_start_frag->fr_next;
7920 fr && fr != frag_now; fr = fr->fr_next)
7921 add += fr->fr_fix;
7922 add += p - frag_now->fr_literal;
7923 }
7924
7925 if (!object_64bit)
7926 {
7927 reloc_type = BFD_RELOC_386_GOTPC;
7928 i.op[n].imms->X_add_number += add;
7929 }
7930 else if (reloc_type == BFD_RELOC_64)
7931 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7932 else
7933 /* Don't do the adjustment for x86-64, as there
7934 the pcrel addressing is relative to the _next_
7935 insn, and that is taken care of in other code. */
7936 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7937 }
7938 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7939 size, i.op[n].disps, pcrel,
7940 reloc_type);
7941 /* Check for "call/jmp *mem", "mov mem, %reg",
7942 "test %reg, mem" and "binop mem, %reg" where binop
7943 is one of adc, add, and, cmp, or, sbb, sub, xor
7944 instructions. Always generate R_386_GOT32X for
7945 "sym*GOT" operand in 32-bit mode. */
7946 if ((generate_relax_relocations
7947 || (!object_64bit
7948 && i.rm.mode == 0
7949 && i.rm.regmem == 5))
7950 && (i.rm.mode == 2
7951 || (i.rm.mode == 0 && i.rm.regmem == 5))
7952 && ((i.operands == 1
7953 && i.tm.base_opcode == 0xff
7954 && (i.rm.reg == 2 || i.rm.reg == 4))
7955 || (i.operands == 2
7956 && (i.tm.base_opcode == 0x8b
7957 || i.tm.base_opcode == 0x85
7958 || (i.tm.base_opcode & 0xc7) == 0x03))))
7959 {
7960 if (object_64bit)
7961 {
7962 fixP->fx_tcbit = i.rex != 0;
7963 if (i.base_reg
7964 && (i.base_reg->reg_num == RegRip
7965 || i.base_reg->reg_num == RegEip))
7966 fixP->fx_tcbit2 = 1;
7967 }
7968 else
7969 fixP->fx_tcbit2 = 1;
7970 }
7971 }
7972 }
7973 }
7974 }
7975
7976 static void
7977 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7978 {
7979 char *p;
7980 unsigned int n;
7981
7982 for (n = 0; n < i.operands; n++)
7983 {
7984 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7985 if (i.rounding && (int) n == i.rounding->operand)
7986 continue;
7987
7988 if (operand_type_check (i.types[n], imm))
7989 {
7990 if (i.op[n].imms->X_op == O_constant)
7991 {
7992 int size = imm_size (n);
7993 offsetT val;
7994
7995 val = offset_in_range (i.op[n].imms->X_add_number,
7996 size);
7997 p = frag_more (size);
7998 md_number_to_chars (p, val, size);
7999 }
8000 else
8001 {
8002 /* Not absolute_section.
8003 Need a 32-bit fixup (don't support 8bit
8004 non-absolute imms). Try to support other
8005 sizes ... */
8006 enum bfd_reloc_code_real reloc_type;
8007 int size = imm_size (n);
8008 int sign;
8009
8010 if (i.types[n].bitfield.imm32s
8011 && (i.suffix == QWORD_MNEM_SUFFIX
8012 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8013 sign = 1;
8014 else
8015 sign = 0;
8016
8017 p = frag_more (size);
8018 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8019
8020 /* This is tough to explain. We end up with this one if we
8021 * have operands that look like
8022 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8023 * obtain the absolute address of the GOT, and it is strongly
8024 * preferable from a performance point of view to avoid using
8025 * a runtime relocation for this. The actual sequence of
8026 * instructions often look something like:
8027 *
8028 * call .L66
8029 * .L66:
8030 * popl %ebx
8031 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8032 *
8033 * The call and pop essentially return the absolute address
8034 * of the label .L66 and store it in %ebx. The linker itself
8035 * will ultimately change the first operand of the addl so
8036 * that %ebx points to the GOT, but to keep things simple, the
8037 * .o file must have this operand set so that it generates not
8038 * the absolute address of .L66, but the absolute address of
8039 * itself. This allows the linker itself simply treat a GOTPC
8040 * relocation as asking for a pcrel offset to the GOT to be
8041 * added in, and the addend of the relocation is stored in the
8042 * operand field for the instruction itself.
8043 *
8044 * Our job here is to fix the operand so that it would add
8045 * the correct offset so that %ebx would point to itself. The
8046 * thing that is tricky is that .-.L66 will point to the
8047 * beginning of the instruction, so we need to further modify
8048 * the operand so that it will point to itself. There are
8049 * other cases where you have something like:
8050 *
8051 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8052 *
8053 * and here no correction would be required. Internally in
8054 * the assembler we treat operands of this form as not being
8055 * pcrel since the '.' is explicitly mentioned, and I wonder
8056 * whether it would simplify matters to do it this way. Who
8057 * knows. In earlier versions of the PIC patches, the
8058 * pcrel_adjust field was used to store the correction, but
8059 * since the expression is not pcrel, I felt it would be
8060 * confusing to do it this way. */
8061
8062 if ((reloc_type == BFD_RELOC_32
8063 || reloc_type == BFD_RELOC_X86_64_32S
8064 || reloc_type == BFD_RELOC_64)
8065 && GOT_symbol
8066 && GOT_symbol == i.op[n].imms->X_add_symbol
8067 && (i.op[n].imms->X_op == O_symbol
8068 || (i.op[n].imms->X_op == O_add
8069 && ((symbol_get_value_expression
8070 (i.op[n].imms->X_op_symbol)->X_op)
8071 == O_subtract))))
8072 {
8073 offsetT add;
8074
8075 if (insn_start_frag == frag_now)
8076 add = (p - frag_now->fr_literal) - insn_start_off;
8077 else
8078 {
8079 fragS *fr;
8080
8081 add = insn_start_frag->fr_fix - insn_start_off;
8082 for (fr = insn_start_frag->fr_next;
8083 fr && fr != frag_now; fr = fr->fr_next)
8084 add += fr->fr_fix;
8085 add += p - frag_now->fr_literal;
8086 }
8087
8088 if (!object_64bit)
8089 reloc_type = BFD_RELOC_386_GOTPC;
8090 else if (size == 4)
8091 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8092 else if (size == 8)
8093 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8094 i.op[n].imms->X_add_number += add;
8095 }
8096 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8097 i.op[n].imms, 0, reloc_type);
8098 }
8099 }
8100 }
8101 }
8102 \f
8103 /* x86_cons_fix_new is called via the expression parsing code when a
8104 reloc is needed. We use this hook to get the correct .got reloc. */
8105 static int cons_sign = -1;
8106
8107 void
8108 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8109 expressionS *exp, bfd_reloc_code_real_type r)
8110 {
8111 r = reloc (len, 0, cons_sign, r);
8112
8113 #ifdef TE_PE
8114 if (exp->X_op == O_secrel)
8115 {
8116 exp->X_op = O_symbol;
8117 r = BFD_RELOC_32_SECREL;
8118 }
8119 #endif
8120
8121 fix_new_exp (frag, off, len, exp, 0, r);
8122 }
8123
8124 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8125 purpose of the `.dc.a' internal pseudo-op. */
8126
8127 int
8128 x86_address_bytes (void)
8129 {
8130 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8131 return 4;
8132 return stdoutput->arch_info->bits_per_address / 8;
8133 }
8134
8135 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8136 || defined (LEX_AT)
8137 # define lex_got(reloc, adjust, types) NULL
8138 #else
8139 /* Parse operands of the form
8140 <symbol>@GOTOFF+<nnn>
8141 and similar .plt or .got references.
8142
8143 If we find one, set up the correct relocation in RELOC and copy the
8144 input string, minus the `@GOTOFF' into a malloc'd buffer for
8145 parsing by the calling routine. Return this buffer, and if ADJUST
8146 is non-null set it to the length of the string we removed from the
8147 input line. Otherwise return NULL. */
8148 static char *
8149 lex_got (enum bfd_reloc_code_real *rel,
8150 int *adjust,
8151 i386_operand_type *types)
8152 {
8153 /* Some of the relocations depend on the size of what field is to
8154 be relocated. But in our callers i386_immediate and i386_displacement
8155 we don't yet know the operand size (this will be set by insn
8156 matching). Hence we record the word32 relocation here,
8157 and adjust the reloc according to the real size in reloc(). */
8158 static const struct {
8159 const char *str;
8160 int len;
8161 const enum bfd_reloc_code_real rel[2];
8162 const i386_operand_type types64;
8163 } gotrel[] = {
8164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8165 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8166 BFD_RELOC_SIZE32 },
8167 OPERAND_TYPE_IMM32_64 },
8168 #endif
8169 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8170 BFD_RELOC_X86_64_PLTOFF64 },
8171 OPERAND_TYPE_IMM64 },
8172 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8173 BFD_RELOC_X86_64_PLT32 },
8174 OPERAND_TYPE_IMM32_32S_DISP32 },
8175 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8176 BFD_RELOC_X86_64_GOTPLT64 },
8177 OPERAND_TYPE_IMM64_DISP64 },
8178 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8179 BFD_RELOC_X86_64_GOTOFF64 },
8180 OPERAND_TYPE_IMM64_DISP64 },
8181 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8182 BFD_RELOC_X86_64_GOTPCREL },
8183 OPERAND_TYPE_IMM32_32S_DISP32 },
8184 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8185 BFD_RELOC_X86_64_TLSGD },
8186 OPERAND_TYPE_IMM32_32S_DISP32 },
8187 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8188 _dummy_first_bfd_reloc_code_real },
8189 OPERAND_TYPE_NONE },
8190 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8191 BFD_RELOC_X86_64_TLSLD },
8192 OPERAND_TYPE_IMM32_32S_DISP32 },
8193 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8194 BFD_RELOC_X86_64_GOTTPOFF },
8195 OPERAND_TYPE_IMM32_32S_DISP32 },
8196 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8197 BFD_RELOC_X86_64_TPOFF32 },
8198 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8199 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8200 _dummy_first_bfd_reloc_code_real },
8201 OPERAND_TYPE_NONE },
8202 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8203 BFD_RELOC_X86_64_DTPOFF32 },
8204 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8205 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8206 _dummy_first_bfd_reloc_code_real },
8207 OPERAND_TYPE_NONE },
8208 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8209 _dummy_first_bfd_reloc_code_real },
8210 OPERAND_TYPE_NONE },
8211 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8212 BFD_RELOC_X86_64_GOT32 },
8213 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8214 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8215 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8216 OPERAND_TYPE_IMM32_32S_DISP32 },
8217 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8218 BFD_RELOC_X86_64_TLSDESC_CALL },
8219 OPERAND_TYPE_IMM32_32S_DISP32 },
8220 };
8221 char *cp;
8222 unsigned int j;
8223
8224 #if defined (OBJ_MAYBE_ELF)
8225 if (!IS_ELF)
8226 return NULL;
8227 #endif
8228
8229 for (cp = input_line_pointer; *cp != '@'; cp++)
8230 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8231 return NULL;
8232
8233 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8234 {
8235 int len = gotrel[j].len;
8236 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8237 {
8238 if (gotrel[j].rel[object_64bit] != 0)
8239 {
8240 int first, second;
8241 char *tmpbuf, *past_reloc;
8242
8243 *rel = gotrel[j].rel[object_64bit];
8244
8245 if (types)
8246 {
8247 if (flag_code != CODE_64BIT)
8248 {
8249 types->bitfield.imm32 = 1;
8250 types->bitfield.disp32 = 1;
8251 }
8252 else
8253 *types = gotrel[j].types64;
8254 }
8255
8256 if (j != 0 && GOT_symbol == NULL)
8257 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8258
8259 /* The length of the first part of our input line. */
8260 first = cp - input_line_pointer;
8261
8262 /* The second part goes from after the reloc token until
8263 (and including) an end_of_line char or comma. */
8264 past_reloc = cp + 1 + len;
8265 cp = past_reloc;
8266 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8267 ++cp;
8268 second = cp + 1 - past_reloc;
8269
8270 /* Allocate and copy string. The trailing NUL shouldn't
8271 be necessary, but be safe. */
8272 tmpbuf = XNEWVEC (char, first + second + 2);
8273 memcpy (tmpbuf, input_line_pointer, first);
8274 if (second != 0 && *past_reloc != ' ')
8275 /* Replace the relocation token with ' ', so that
8276 errors like foo@GOTOFF1 will be detected. */
8277 tmpbuf[first++] = ' ';
8278 else
8279 /* Increment length by 1 if the relocation token is
8280 removed. */
8281 len++;
8282 if (adjust)
8283 *adjust = len;
8284 memcpy (tmpbuf + first, past_reloc, second);
8285 tmpbuf[first + second] = '\0';
8286 return tmpbuf;
8287 }
8288
8289 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8290 gotrel[j].str, 1 << (5 + object_64bit));
8291 return NULL;
8292 }
8293 }
8294
8295 /* Might be a symbol version string. Don't as_bad here. */
8296 return NULL;
8297 }
8298 #endif
8299
8300 #ifdef TE_PE
8301 #ifdef lex_got
8302 #undef lex_got
8303 #endif
8304 /* Parse operands of the form
8305 <symbol>@SECREL32+<nnn>
8306
8307 If we find one, set up the correct relocation in RELOC and copy the
8308 input string, minus the `@SECREL32' into a malloc'd buffer for
8309 parsing by the calling routine. Return this buffer, and if ADJUST
8310 is non-null set it to the length of the string we removed from the
8311 input line. Otherwise return NULL.
8312
8313 This function is copied from the ELF version above adjusted for PE targets. */
8314
8315 static char *
8316 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8317 int *adjust ATTRIBUTE_UNUSED,
8318 i386_operand_type *types)
8319 {
8320 static const struct
8321 {
8322 const char *str;
8323 int len;
8324 const enum bfd_reloc_code_real rel[2];
8325 const i386_operand_type types64;
8326 }
8327 gotrel[] =
8328 {
8329 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8330 BFD_RELOC_32_SECREL },
8331 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8332 };
8333
8334 char *cp;
8335 unsigned j;
8336
8337 for (cp = input_line_pointer; *cp != '@'; cp++)
8338 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8339 return NULL;
8340
8341 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8342 {
8343 int len = gotrel[j].len;
8344
8345 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8346 {
8347 if (gotrel[j].rel[object_64bit] != 0)
8348 {
8349 int first, second;
8350 char *tmpbuf, *past_reloc;
8351
8352 *rel = gotrel[j].rel[object_64bit];
8353 if (adjust)
8354 *adjust = len;
8355
8356 if (types)
8357 {
8358 if (flag_code != CODE_64BIT)
8359 {
8360 types->bitfield.imm32 = 1;
8361 types->bitfield.disp32 = 1;
8362 }
8363 else
8364 *types = gotrel[j].types64;
8365 }
8366
8367 /* The length of the first part of our input line. */
8368 first = cp - input_line_pointer;
8369
8370 /* The second part goes from after the reloc token until
8371 (and including) an end_of_line char or comma. */
8372 past_reloc = cp + 1 + len;
8373 cp = past_reloc;
8374 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8375 ++cp;
8376 second = cp + 1 - past_reloc;
8377
8378 /* Allocate and copy string. The trailing NUL shouldn't
8379 be necessary, but be safe. */
8380 tmpbuf = XNEWVEC (char, first + second + 2);
8381 memcpy (tmpbuf, input_line_pointer, first);
8382 if (second != 0 && *past_reloc != ' ')
8383 /* Replace the relocation token with ' ', so that
8384 errors like foo@SECLREL321 will be detected. */
8385 tmpbuf[first++] = ' ';
8386 memcpy (tmpbuf + first, past_reloc, second);
8387 tmpbuf[first + second] = '\0';
8388 return tmpbuf;
8389 }
8390
8391 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8392 gotrel[j].str, 1 << (5 + object_64bit));
8393 return NULL;
8394 }
8395 }
8396
8397 /* Might be a symbol version string. Don't as_bad here. */
8398 return NULL;
8399 }
8400
8401 #endif /* TE_PE */
8402
8403 bfd_reloc_code_real_type
8404 x86_cons (expressionS *exp, int size)
8405 {
8406 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8407
8408 intel_syntax = -intel_syntax;
8409
8410 exp->X_md = 0;
8411 if (size == 4 || (object_64bit && size == 8))
8412 {
8413 /* Handle @GOTOFF and the like in an expression. */
8414 char *save;
8415 char *gotfree_input_line;
8416 int adjust = 0;
8417
8418 save = input_line_pointer;
8419 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8420 if (gotfree_input_line)
8421 input_line_pointer = gotfree_input_line;
8422
8423 expression (exp);
8424
8425 if (gotfree_input_line)
8426 {
8427 /* expression () has merrily parsed up to the end of line,
8428 or a comma - in the wrong buffer. Transfer how far
8429 input_line_pointer has moved to the right buffer. */
8430 input_line_pointer = (save
8431 + (input_line_pointer - gotfree_input_line)
8432 + adjust);
8433 free (gotfree_input_line);
8434 if (exp->X_op == O_constant
8435 || exp->X_op == O_absent
8436 || exp->X_op == O_illegal
8437 || exp->X_op == O_register
8438 || exp->X_op == O_big)
8439 {
8440 char c = *input_line_pointer;
8441 *input_line_pointer = 0;
8442 as_bad (_("missing or invalid expression `%s'"), save);
8443 *input_line_pointer = c;
8444 }
8445 }
8446 }
8447 else
8448 expression (exp);
8449
8450 intel_syntax = -intel_syntax;
8451
8452 if (intel_syntax)
8453 i386_intel_simplify (exp);
8454
8455 return got_reloc;
8456 }
8457
8458 static void
8459 signed_cons (int size)
8460 {
8461 if (flag_code == CODE_64BIT)
8462 cons_sign = 1;
8463 cons (size);
8464 cons_sign = -1;
8465 }
8466
8467 #ifdef TE_PE
8468 static void
8469 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8470 {
8471 expressionS exp;
8472
8473 do
8474 {
8475 expression (&exp);
8476 if (exp.X_op == O_symbol)
8477 exp.X_op = O_secrel;
8478
8479 emit_expr (&exp, 4);
8480 }
8481 while (*input_line_pointer++ == ',');
8482
8483 input_line_pointer--;
8484 demand_empty_rest_of_line ();
8485 }
8486 #endif
8487
8488 /* Handle Vector operations. */
8489
8490 static char *
8491 check_VecOperations (char *op_string, char *op_end)
8492 {
8493 const reg_entry *mask;
8494 const char *saved;
8495 char *end_op;
8496
8497 while (*op_string
8498 && (op_end == NULL || op_string < op_end))
8499 {
8500 saved = op_string;
8501 if (*op_string == '{')
8502 {
8503 op_string++;
8504
8505 /* Check broadcasts. */
8506 if (strncmp (op_string, "1to", 3) == 0)
8507 {
8508 int bcst_type;
8509
8510 if (i.broadcast)
8511 goto duplicated_vec_op;
8512
8513 op_string += 3;
8514 if (*op_string == '8')
8515 bcst_type = 8;
8516 else if (*op_string == '4')
8517 bcst_type = 4;
8518 else if (*op_string == '2')
8519 bcst_type = 2;
8520 else if (*op_string == '1'
8521 && *(op_string+1) == '6')
8522 {
8523 bcst_type = 16;
8524 op_string++;
8525 }
8526 else
8527 {
8528 as_bad (_("Unsupported broadcast: `%s'"), saved);
8529 return NULL;
8530 }
8531 op_string++;
8532
8533 broadcast_op.type = bcst_type;
8534 broadcast_op.operand = this_operand;
8535 i.broadcast = &broadcast_op;
8536 }
8537 /* Check masking operation. */
8538 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8539 {
8540 /* k0 can't be used for write mask. */
8541 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8542 {
8543 as_bad (_("`%s%s' can't be used for write mask"),
8544 register_prefix, mask->reg_name);
8545 return NULL;
8546 }
8547
8548 if (!i.mask)
8549 {
8550 mask_op.mask = mask;
8551 mask_op.zeroing = 0;
8552 mask_op.operand = this_operand;
8553 i.mask = &mask_op;
8554 }
8555 else
8556 {
8557 if (i.mask->mask)
8558 goto duplicated_vec_op;
8559
8560 i.mask->mask = mask;
8561
8562 /* Only "{z}" is allowed here. No need to check
8563 zeroing mask explicitly. */
8564 if (i.mask->operand != this_operand)
8565 {
8566 as_bad (_("invalid write mask `%s'"), saved);
8567 return NULL;
8568 }
8569 }
8570
8571 op_string = end_op;
8572 }
8573 /* Check zeroing-flag for masking operation. */
8574 else if (*op_string == 'z')
8575 {
8576 if (!i.mask)
8577 {
8578 mask_op.mask = NULL;
8579 mask_op.zeroing = 1;
8580 mask_op.operand = this_operand;
8581 i.mask = &mask_op;
8582 }
8583 else
8584 {
8585 if (i.mask->zeroing)
8586 {
8587 duplicated_vec_op:
8588 as_bad (_("duplicated `%s'"), saved);
8589 return NULL;
8590 }
8591
8592 i.mask->zeroing = 1;
8593
8594 /* Only "{%k}" is allowed here. No need to check mask
8595 register explicitly. */
8596 if (i.mask->operand != this_operand)
8597 {
8598 as_bad (_("invalid zeroing-masking `%s'"),
8599 saved);
8600 return NULL;
8601 }
8602 }
8603
8604 op_string++;
8605 }
8606 else
8607 goto unknown_vec_op;
8608
8609 if (*op_string != '}')
8610 {
8611 as_bad (_("missing `}' in `%s'"), saved);
8612 return NULL;
8613 }
8614 op_string++;
8615
8616 /* Strip whitespace since the addition of pseudo prefixes
8617 changed how the scrubber treats '{'. */
8618 if (is_space_char (*op_string))
8619 ++op_string;
8620
8621 continue;
8622 }
8623 unknown_vec_op:
8624 /* We don't know this one. */
8625 as_bad (_("unknown vector operation: `%s'"), saved);
8626 return NULL;
8627 }
8628
8629 if (i.mask && i.mask->zeroing && !i.mask->mask)
8630 {
8631 as_bad (_("zeroing-masking only allowed with write mask"));
8632 return NULL;
8633 }
8634
8635 return op_string;
8636 }
8637
8638 static int
8639 i386_immediate (char *imm_start)
8640 {
8641 char *save_input_line_pointer;
8642 char *gotfree_input_line;
8643 segT exp_seg = 0;
8644 expressionS *exp;
8645 i386_operand_type types;
8646
8647 operand_type_set (&types, ~0);
8648
8649 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8650 {
8651 as_bad (_("at most %d immediate operands are allowed"),
8652 MAX_IMMEDIATE_OPERANDS);
8653 return 0;
8654 }
8655
8656 exp = &im_expressions[i.imm_operands++];
8657 i.op[this_operand].imms = exp;
8658
8659 if (is_space_char (*imm_start))
8660 ++imm_start;
8661
8662 save_input_line_pointer = input_line_pointer;
8663 input_line_pointer = imm_start;
8664
8665 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8666 if (gotfree_input_line)
8667 input_line_pointer = gotfree_input_line;
8668
8669 exp_seg = expression (exp);
8670
8671 SKIP_WHITESPACE ();
8672
8673 /* Handle vector operations. */
8674 if (*input_line_pointer == '{')
8675 {
8676 input_line_pointer = check_VecOperations (input_line_pointer,
8677 NULL);
8678 if (input_line_pointer == NULL)
8679 return 0;
8680 }
8681
8682 if (*input_line_pointer)
8683 as_bad (_("junk `%s' after expression"), input_line_pointer);
8684
8685 input_line_pointer = save_input_line_pointer;
8686 if (gotfree_input_line)
8687 {
8688 free (gotfree_input_line);
8689
8690 if (exp->X_op == O_constant || exp->X_op == O_register)
8691 exp->X_op = O_illegal;
8692 }
8693
8694 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8695 }
8696
8697 static int
8698 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8699 i386_operand_type types, const char *imm_start)
8700 {
8701 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8702 {
8703 if (imm_start)
8704 as_bad (_("missing or invalid immediate expression `%s'"),
8705 imm_start);
8706 return 0;
8707 }
8708 else if (exp->X_op == O_constant)
8709 {
8710 /* Size it properly later. */
8711 i.types[this_operand].bitfield.imm64 = 1;
8712 /* If not 64bit, sign extend val. */
8713 if (flag_code != CODE_64BIT
8714 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8715 exp->X_add_number
8716 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8717 }
8718 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8719 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8720 && exp_seg != absolute_section
8721 && exp_seg != text_section
8722 && exp_seg != data_section
8723 && exp_seg != bss_section
8724 && exp_seg != undefined_section
8725 && !bfd_is_com_section (exp_seg))
8726 {
8727 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8728 return 0;
8729 }
8730 #endif
8731 else if (!intel_syntax && exp_seg == reg_section)
8732 {
8733 if (imm_start)
8734 as_bad (_("illegal immediate register operand %s"), imm_start);
8735 return 0;
8736 }
8737 else
8738 {
8739 /* This is an address. The size of the address will be
8740 determined later, depending on destination register,
8741 suffix, or the default for the section. */
8742 i.types[this_operand].bitfield.imm8 = 1;
8743 i.types[this_operand].bitfield.imm16 = 1;
8744 i.types[this_operand].bitfield.imm32 = 1;
8745 i.types[this_operand].bitfield.imm32s = 1;
8746 i.types[this_operand].bitfield.imm64 = 1;
8747 i.types[this_operand] = operand_type_and (i.types[this_operand],
8748 types);
8749 }
8750
8751 return 1;
8752 }
8753
8754 static char *
8755 i386_scale (char *scale)
8756 {
8757 offsetT val;
8758 char *save = input_line_pointer;
8759
8760 input_line_pointer = scale;
8761 val = get_absolute_expression ();
8762
8763 switch (val)
8764 {
8765 case 1:
8766 i.log2_scale_factor = 0;
8767 break;
8768 case 2:
8769 i.log2_scale_factor = 1;
8770 break;
8771 case 4:
8772 i.log2_scale_factor = 2;
8773 break;
8774 case 8:
8775 i.log2_scale_factor = 3;
8776 break;
8777 default:
8778 {
8779 char sep = *input_line_pointer;
8780
8781 *input_line_pointer = '\0';
8782 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8783 scale);
8784 *input_line_pointer = sep;
8785 input_line_pointer = save;
8786 return NULL;
8787 }
8788 }
8789 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8790 {
8791 as_warn (_("scale factor of %d without an index register"),
8792 1 << i.log2_scale_factor);
8793 i.log2_scale_factor = 0;
8794 }
8795 scale = input_line_pointer;
8796 input_line_pointer = save;
8797 return scale;
8798 }
8799
8800 static int
8801 i386_displacement (char *disp_start, char *disp_end)
8802 {
8803 expressionS *exp;
8804 segT exp_seg = 0;
8805 char *save_input_line_pointer;
8806 char *gotfree_input_line;
8807 int override;
8808 i386_operand_type bigdisp, types = anydisp;
8809 int ret;
8810
8811 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8812 {
8813 as_bad (_("at most %d displacement operands are allowed"),
8814 MAX_MEMORY_OPERANDS);
8815 return 0;
8816 }
8817
8818 operand_type_set (&bigdisp, 0);
8819 if ((i.types[this_operand].bitfield.jumpabsolute)
8820 || (!current_templates->start->opcode_modifier.jump
8821 && !current_templates->start->opcode_modifier.jumpdword))
8822 {
8823 bigdisp.bitfield.disp32 = 1;
8824 override = (i.prefix[ADDR_PREFIX] != 0);
8825 if (flag_code == CODE_64BIT)
8826 {
8827 if (!override)
8828 {
8829 bigdisp.bitfield.disp32s = 1;
8830 bigdisp.bitfield.disp64 = 1;
8831 }
8832 }
8833 else if ((flag_code == CODE_16BIT) ^ override)
8834 {
8835 bigdisp.bitfield.disp32 = 0;
8836 bigdisp.bitfield.disp16 = 1;
8837 }
8838 }
8839 else
8840 {
8841 /* For PC-relative branches, the width of the displacement
8842 is dependent upon data size, not address size. */
8843 override = (i.prefix[DATA_PREFIX] != 0);
8844 if (flag_code == CODE_64BIT)
8845 {
8846 if (override || i.suffix == WORD_MNEM_SUFFIX)
8847 bigdisp.bitfield.disp16 = 1;
8848 else
8849 {
8850 bigdisp.bitfield.disp32 = 1;
8851 bigdisp.bitfield.disp32s = 1;
8852 }
8853 }
8854 else
8855 {
8856 if (!override)
8857 override = (i.suffix == (flag_code != CODE_16BIT
8858 ? WORD_MNEM_SUFFIX
8859 : LONG_MNEM_SUFFIX));
8860 bigdisp.bitfield.disp32 = 1;
8861 if ((flag_code == CODE_16BIT) ^ override)
8862 {
8863 bigdisp.bitfield.disp32 = 0;
8864 bigdisp.bitfield.disp16 = 1;
8865 }
8866 }
8867 }
8868 i.types[this_operand] = operand_type_or (i.types[this_operand],
8869 bigdisp);
8870
8871 exp = &disp_expressions[i.disp_operands];
8872 i.op[this_operand].disps = exp;
8873 i.disp_operands++;
8874 save_input_line_pointer = input_line_pointer;
8875 input_line_pointer = disp_start;
8876 END_STRING_AND_SAVE (disp_end);
8877
8878 #ifndef GCC_ASM_O_HACK
8879 #define GCC_ASM_O_HACK 0
8880 #endif
8881 #if GCC_ASM_O_HACK
8882 END_STRING_AND_SAVE (disp_end + 1);
8883 if (i.types[this_operand].bitfield.baseIndex
8884 && displacement_string_end[-1] == '+')
8885 {
8886 /* This hack is to avoid a warning when using the "o"
8887 constraint within gcc asm statements.
8888 For instance:
8889
8890 #define _set_tssldt_desc(n,addr,limit,type) \
8891 __asm__ __volatile__ ( \
8892 "movw %w2,%0\n\t" \
8893 "movw %w1,2+%0\n\t" \
8894 "rorl $16,%1\n\t" \
8895 "movb %b1,4+%0\n\t" \
8896 "movb %4,5+%0\n\t" \
8897 "movb $0,6+%0\n\t" \
8898 "movb %h1,7+%0\n\t" \
8899 "rorl $16,%1" \
8900 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8901
8902 This works great except that the output assembler ends
8903 up looking a bit weird if it turns out that there is
8904 no offset. You end up producing code that looks like:
8905
8906 #APP
8907 movw $235,(%eax)
8908 movw %dx,2+(%eax)
8909 rorl $16,%edx
8910 movb %dl,4+(%eax)
8911 movb $137,5+(%eax)
8912 movb $0,6+(%eax)
8913 movb %dh,7+(%eax)
8914 rorl $16,%edx
8915 #NO_APP
8916
8917 So here we provide the missing zero. */
8918
8919 *displacement_string_end = '0';
8920 }
8921 #endif
8922 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8923 if (gotfree_input_line)
8924 input_line_pointer = gotfree_input_line;
8925
8926 exp_seg = expression (exp);
8927
8928 SKIP_WHITESPACE ();
8929 if (*input_line_pointer)
8930 as_bad (_("junk `%s' after expression"), input_line_pointer);
8931 #if GCC_ASM_O_HACK
8932 RESTORE_END_STRING (disp_end + 1);
8933 #endif
8934 input_line_pointer = save_input_line_pointer;
8935 if (gotfree_input_line)
8936 {
8937 free (gotfree_input_line);
8938
8939 if (exp->X_op == O_constant || exp->X_op == O_register)
8940 exp->X_op = O_illegal;
8941 }
8942
8943 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8944
8945 RESTORE_END_STRING (disp_end);
8946
8947 return ret;
8948 }
8949
8950 static int
8951 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8952 i386_operand_type types, const char *disp_start)
8953 {
8954 i386_operand_type bigdisp;
8955 int ret = 1;
8956
8957 /* We do this to make sure that the section symbol is in
8958 the symbol table. We will ultimately change the relocation
8959 to be relative to the beginning of the section. */
8960 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8961 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8962 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8963 {
8964 if (exp->X_op != O_symbol)
8965 goto inv_disp;
8966
8967 if (S_IS_LOCAL (exp->X_add_symbol)
8968 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8969 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8970 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8971 exp->X_op = O_subtract;
8972 exp->X_op_symbol = GOT_symbol;
8973 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8974 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8975 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8976 i.reloc[this_operand] = BFD_RELOC_64;
8977 else
8978 i.reloc[this_operand] = BFD_RELOC_32;
8979 }
8980
8981 else if (exp->X_op == O_absent
8982 || exp->X_op == O_illegal
8983 || exp->X_op == O_big)
8984 {
8985 inv_disp:
8986 as_bad (_("missing or invalid displacement expression `%s'"),
8987 disp_start);
8988 ret = 0;
8989 }
8990
8991 else if (flag_code == CODE_64BIT
8992 && !i.prefix[ADDR_PREFIX]
8993 && exp->X_op == O_constant)
8994 {
8995 /* Since displacement is signed extended to 64bit, don't allow
8996 disp32 and turn off disp32s if they are out of range. */
8997 i.types[this_operand].bitfield.disp32 = 0;
8998 if (!fits_in_signed_long (exp->X_add_number))
8999 {
9000 i.types[this_operand].bitfield.disp32s = 0;
9001 if (i.types[this_operand].bitfield.baseindex)
9002 {
9003 as_bad (_("0x%lx out range of signed 32bit displacement"),
9004 (long) exp->X_add_number);
9005 ret = 0;
9006 }
9007 }
9008 }
9009
9010 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9011 else if (exp->X_op != O_constant
9012 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9013 && exp_seg != absolute_section
9014 && exp_seg != text_section
9015 && exp_seg != data_section
9016 && exp_seg != bss_section
9017 && exp_seg != undefined_section
9018 && !bfd_is_com_section (exp_seg))
9019 {
9020 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9021 ret = 0;
9022 }
9023 #endif
9024
9025 /* Check if this is a displacement only operand. */
9026 bigdisp = i.types[this_operand];
9027 bigdisp.bitfield.disp8 = 0;
9028 bigdisp.bitfield.disp16 = 0;
9029 bigdisp.bitfield.disp32 = 0;
9030 bigdisp.bitfield.disp32s = 0;
9031 bigdisp.bitfield.disp64 = 0;
9032 if (operand_type_all_zero (&bigdisp))
9033 i.types[this_operand] = operand_type_and (i.types[this_operand],
9034 types);
9035
9036 return ret;
9037 }
9038
9039 /* Return the active addressing mode, taking address override and
9040 registers forming the address into consideration. Update the
9041 address override prefix if necessary. */
9042
9043 static enum flag_code
9044 i386_addressing_mode (void)
9045 {
9046 enum flag_code addr_mode;
9047
9048 if (i.prefix[ADDR_PREFIX])
9049 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9050 else
9051 {
9052 addr_mode = flag_code;
9053
9054 #if INFER_ADDR_PREFIX
9055 if (i.mem_operands == 0)
9056 {
9057 /* Infer address prefix from the first memory operand. */
9058 const reg_entry *addr_reg = i.base_reg;
9059
9060 if (addr_reg == NULL)
9061 addr_reg = i.index_reg;
9062
9063 if (addr_reg)
9064 {
9065 if (addr_reg->reg_num == RegEip
9066 || addr_reg->reg_num == RegEiz
9067 || addr_reg->reg_type.bitfield.dword)
9068 addr_mode = CODE_32BIT;
9069 else if (flag_code != CODE_64BIT
9070 && addr_reg->reg_type.bitfield.word)
9071 addr_mode = CODE_16BIT;
9072
9073 if (addr_mode != flag_code)
9074 {
9075 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9076 i.prefixes += 1;
9077 /* Change the size of any displacement too. At most one
9078 of Disp16 or Disp32 is set.
9079 FIXME. There doesn't seem to be any real need for
9080 separate Disp16 and Disp32 flags. The same goes for
9081 Imm16 and Imm32. Removing them would probably clean
9082 up the code quite a lot. */
9083 if (flag_code != CODE_64BIT
9084 && (i.types[this_operand].bitfield.disp16
9085 || i.types[this_operand].bitfield.disp32))
9086 i.types[this_operand]
9087 = operand_type_xor (i.types[this_operand], disp16_32);
9088 }
9089 }
9090 }
9091 #endif
9092 }
9093
9094 return addr_mode;
9095 }
9096
9097 /* Make sure the memory operand we've been dealt is valid.
9098 Return 1 on success, 0 on a failure. */
9099
9100 static int
9101 i386_index_check (const char *operand_string)
9102 {
9103 const char *kind = "base/index";
9104 enum flag_code addr_mode = i386_addressing_mode ();
9105
9106 if (current_templates->start->opcode_modifier.isstring
9107 && !current_templates->start->opcode_modifier.immext
9108 && (current_templates->end[-1].opcode_modifier.isstring
9109 || i.mem_operands))
9110 {
9111 /* Memory operands of string insns are special in that they only allow
9112 a single register (rDI, rSI, or rBX) as their memory address. */
9113 const reg_entry *expected_reg;
9114 static const char *di_si[][2] =
9115 {
9116 { "esi", "edi" },
9117 { "si", "di" },
9118 { "rsi", "rdi" }
9119 };
9120 static const char *bx[] = { "ebx", "bx", "rbx" };
9121
9122 kind = "string address";
9123
9124 if (current_templates->start->opcode_modifier.repprefixok)
9125 {
9126 i386_operand_type type = current_templates->end[-1].operand_types[0];
9127
9128 if (!type.bitfield.baseindex
9129 || ((!i.mem_operands != !intel_syntax)
9130 && current_templates->end[-1].operand_types[1]
9131 .bitfield.baseindex))
9132 type = current_templates->end[-1].operand_types[1];
9133 expected_reg = hash_find (reg_hash,
9134 di_si[addr_mode][type.bitfield.esseg]);
9135
9136 }
9137 else
9138 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9139
9140 if (i.base_reg != expected_reg
9141 || i.index_reg
9142 || operand_type_check (i.types[this_operand], disp))
9143 {
9144 /* The second memory operand must have the same size as
9145 the first one. */
9146 if (i.mem_operands
9147 && i.base_reg
9148 && !((addr_mode == CODE_64BIT
9149 && i.base_reg->reg_type.bitfield.qword)
9150 || (addr_mode == CODE_32BIT
9151 ? i.base_reg->reg_type.bitfield.dword
9152 : i.base_reg->reg_type.bitfield.word)))
9153 goto bad_address;
9154
9155 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9156 operand_string,
9157 intel_syntax ? '[' : '(',
9158 register_prefix,
9159 expected_reg->reg_name,
9160 intel_syntax ? ']' : ')');
9161 return 1;
9162 }
9163 else
9164 return 1;
9165
9166 bad_address:
9167 as_bad (_("`%s' is not a valid %s expression"),
9168 operand_string, kind);
9169 return 0;
9170 }
9171 else
9172 {
9173 if (addr_mode != CODE_16BIT)
9174 {
9175 /* 32-bit/64-bit checks. */
9176 if ((i.base_reg
9177 && (addr_mode == CODE_64BIT
9178 ? !i.base_reg->reg_type.bitfield.qword
9179 : !i.base_reg->reg_type.bitfield.dword)
9180 && (i.index_reg
9181 || (i.base_reg->reg_num
9182 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9183 || (i.index_reg
9184 && !i.index_reg->reg_type.bitfield.xmmword
9185 && !i.index_reg->reg_type.bitfield.ymmword
9186 && !i.index_reg->reg_type.bitfield.zmmword
9187 && ((addr_mode == CODE_64BIT
9188 ? !(i.index_reg->reg_type.bitfield.qword
9189 || i.index_reg->reg_num == RegRiz)
9190 : !(i.index_reg->reg_type.bitfield.dword
9191 || i.index_reg->reg_num == RegEiz))
9192 || !i.index_reg->reg_type.bitfield.baseindex)))
9193 goto bad_address;
9194
9195 /* bndmk, bndldx, and bndstx have special restrictions. */
9196 if (current_templates->start->base_opcode == 0xf30f1b
9197 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9198 {
9199 /* They cannot use RIP-relative addressing. */
9200 if (i.base_reg && i.base_reg->reg_num == RegRip)
9201 {
9202 as_bad (_("`%s' cannot be used here"), operand_string);
9203 return 0;
9204 }
9205
9206 /* bndldx and bndstx ignore their scale factor. */
9207 if (current_templates->start->base_opcode != 0xf30f1b
9208 && i.log2_scale_factor)
9209 as_warn (_("register scaling is being ignored here"));
9210 }
9211 }
9212 else
9213 {
9214 /* 16-bit checks. */
9215 if ((i.base_reg
9216 && (!i.base_reg->reg_type.bitfield.word
9217 || !i.base_reg->reg_type.bitfield.baseindex))
9218 || (i.index_reg
9219 && (!i.index_reg->reg_type.bitfield.word
9220 || !i.index_reg->reg_type.bitfield.baseindex
9221 || !(i.base_reg
9222 && i.base_reg->reg_num < 6
9223 && i.index_reg->reg_num >= 6
9224 && i.log2_scale_factor == 0))))
9225 goto bad_address;
9226 }
9227 }
9228 return 1;
9229 }
9230
9231 /* Handle vector immediates. */
9232
9233 static int
9234 RC_SAE_immediate (const char *imm_start)
9235 {
9236 unsigned int match_found, j;
9237 const char *pstr = imm_start;
9238 expressionS *exp;
9239
9240 if (*pstr != '{')
9241 return 0;
9242
9243 pstr++;
9244 match_found = 0;
9245 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9246 {
9247 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9248 {
9249 if (!i.rounding)
9250 {
9251 rc_op.type = RC_NamesTable[j].type;
9252 rc_op.operand = this_operand;
9253 i.rounding = &rc_op;
9254 }
9255 else
9256 {
9257 as_bad (_("duplicated `%s'"), imm_start);
9258 return 0;
9259 }
9260 pstr += RC_NamesTable[j].len;
9261 match_found = 1;
9262 break;
9263 }
9264 }
9265 if (!match_found)
9266 return 0;
9267
9268 if (*pstr++ != '}')
9269 {
9270 as_bad (_("Missing '}': '%s'"), imm_start);
9271 return 0;
9272 }
9273 /* RC/SAE immediate string should contain nothing more. */;
9274 if (*pstr != 0)
9275 {
9276 as_bad (_("Junk after '}': '%s'"), imm_start);
9277 return 0;
9278 }
9279
9280 exp = &im_expressions[i.imm_operands++];
9281 i.op[this_operand].imms = exp;
9282
9283 exp->X_op = O_constant;
9284 exp->X_add_number = 0;
9285 exp->X_add_symbol = (symbolS *) 0;
9286 exp->X_op_symbol = (symbolS *) 0;
9287
9288 i.types[this_operand].bitfield.imm8 = 1;
9289 return 1;
9290 }
9291
9292 /* Only string instructions can have a second memory operand, so
9293 reduce current_templates to just those if it contains any. */
9294 static int
9295 maybe_adjust_templates (void)
9296 {
9297 const insn_template *t;
9298
9299 gas_assert (i.mem_operands == 1);
9300
9301 for (t = current_templates->start; t < current_templates->end; ++t)
9302 if (t->opcode_modifier.isstring)
9303 break;
9304
9305 if (t < current_templates->end)
9306 {
9307 static templates aux_templates;
9308 bfd_boolean recheck;
9309
9310 aux_templates.start = t;
9311 for (; t < current_templates->end; ++t)
9312 if (!t->opcode_modifier.isstring)
9313 break;
9314 aux_templates.end = t;
9315
9316 /* Determine whether to re-check the first memory operand. */
9317 recheck = (aux_templates.start != current_templates->start
9318 || t != current_templates->end);
9319
9320 current_templates = &aux_templates;
9321
9322 if (recheck)
9323 {
9324 i.mem_operands = 0;
9325 if (i.memop1_string != NULL
9326 && i386_index_check (i.memop1_string) == 0)
9327 return 0;
9328 i.mem_operands = 1;
9329 }
9330 }
9331
9332 return 1;
9333 }
9334
9335 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9336 on error. */
9337
9338 static int
9339 i386_att_operand (char *operand_string)
9340 {
9341 const reg_entry *r;
9342 char *end_op;
9343 char *op_string = operand_string;
9344
9345 if (is_space_char (*op_string))
9346 ++op_string;
9347
9348 /* We check for an absolute prefix (differentiating,
9349 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9350 if (*op_string == ABSOLUTE_PREFIX)
9351 {
9352 ++op_string;
9353 if (is_space_char (*op_string))
9354 ++op_string;
9355 i.types[this_operand].bitfield.jumpabsolute = 1;
9356 }
9357
9358 /* Check if operand is a register. */
9359 if ((r = parse_register (op_string, &end_op)) != NULL)
9360 {
9361 i386_operand_type temp;
9362
9363 /* Check for a segment override by searching for ':' after a
9364 segment register. */
9365 op_string = end_op;
9366 if (is_space_char (*op_string))
9367 ++op_string;
9368 if (*op_string == ':'
9369 && (r->reg_type.bitfield.sreg2
9370 || r->reg_type.bitfield.sreg3))
9371 {
9372 switch (r->reg_num)
9373 {
9374 case 0:
9375 i.seg[i.mem_operands] = &es;
9376 break;
9377 case 1:
9378 i.seg[i.mem_operands] = &cs;
9379 break;
9380 case 2:
9381 i.seg[i.mem_operands] = &ss;
9382 break;
9383 case 3:
9384 i.seg[i.mem_operands] = &ds;
9385 break;
9386 case 4:
9387 i.seg[i.mem_operands] = &fs;
9388 break;
9389 case 5:
9390 i.seg[i.mem_operands] = &gs;
9391 break;
9392 }
9393
9394 /* Skip the ':' and whitespace. */
9395 ++op_string;
9396 if (is_space_char (*op_string))
9397 ++op_string;
9398
9399 if (!is_digit_char (*op_string)
9400 && !is_identifier_char (*op_string)
9401 && *op_string != '('
9402 && *op_string != ABSOLUTE_PREFIX)
9403 {
9404 as_bad (_("bad memory operand `%s'"), op_string);
9405 return 0;
9406 }
9407 /* Handle case of %es:*foo. */
9408 if (*op_string == ABSOLUTE_PREFIX)
9409 {
9410 ++op_string;
9411 if (is_space_char (*op_string))
9412 ++op_string;
9413 i.types[this_operand].bitfield.jumpabsolute = 1;
9414 }
9415 goto do_memory_reference;
9416 }
9417
9418 /* Handle vector operations. */
9419 if (*op_string == '{')
9420 {
9421 op_string = check_VecOperations (op_string, NULL);
9422 if (op_string == NULL)
9423 return 0;
9424 }
9425
9426 if (*op_string)
9427 {
9428 as_bad (_("junk `%s' after register"), op_string);
9429 return 0;
9430 }
9431 temp = r->reg_type;
9432 temp.bitfield.baseindex = 0;
9433 i.types[this_operand] = operand_type_or (i.types[this_operand],
9434 temp);
9435 i.types[this_operand].bitfield.unspecified = 0;
9436 i.op[this_operand].regs = r;
9437 i.reg_operands++;
9438 }
9439 else if (*op_string == REGISTER_PREFIX)
9440 {
9441 as_bad (_("bad register name `%s'"), op_string);
9442 return 0;
9443 }
9444 else if (*op_string == IMMEDIATE_PREFIX)
9445 {
9446 ++op_string;
9447 if (i.types[this_operand].bitfield.jumpabsolute)
9448 {
9449 as_bad (_("immediate operand illegal with absolute jump"));
9450 return 0;
9451 }
9452 if (!i386_immediate (op_string))
9453 return 0;
9454 }
9455 else if (RC_SAE_immediate (operand_string))
9456 {
9457 /* If it is a RC or SAE immediate, do nothing. */
9458 ;
9459 }
9460 else if (is_digit_char (*op_string)
9461 || is_identifier_char (*op_string)
9462 || *op_string == '"'
9463 || *op_string == '(')
9464 {
9465 /* This is a memory reference of some sort. */
9466 char *base_string;
9467
9468 /* Start and end of displacement string expression (if found). */
9469 char *displacement_string_start;
9470 char *displacement_string_end;
9471 char *vop_start;
9472
9473 do_memory_reference:
9474 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9475 return 0;
9476 if ((i.mem_operands == 1
9477 && !current_templates->start->opcode_modifier.isstring)
9478 || i.mem_operands == 2)
9479 {
9480 as_bad (_("too many memory references for `%s'"),
9481 current_templates->start->name);
9482 return 0;
9483 }
9484
9485 /* Check for base index form. We detect the base index form by
9486 looking for an ')' at the end of the operand, searching
9487 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9488 after the '('. */
9489 base_string = op_string + strlen (op_string);
9490
9491 /* Handle vector operations. */
9492 vop_start = strchr (op_string, '{');
9493 if (vop_start && vop_start < base_string)
9494 {
9495 if (check_VecOperations (vop_start, base_string) == NULL)
9496 return 0;
9497 base_string = vop_start;
9498 }
9499
9500 --base_string;
9501 if (is_space_char (*base_string))
9502 --base_string;
9503
9504 /* If we only have a displacement, set-up for it to be parsed later. */
9505 displacement_string_start = op_string;
9506 displacement_string_end = base_string + 1;
9507
9508 if (*base_string == ')')
9509 {
9510 char *temp_string;
9511 unsigned int parens_balanced = 1;
9512 /* We've already checked that the number of left & right ()'s are
9513 equal, so this loop will not be infinite. */
9514 do
9515 {
9516 base_string--;
9517 if (*base_string == ')')
9518 parens_balanced++;
9519 if (*base_string == '(')
9520 parens_balanced--;
9521 }
9522 while (parens_balanced);
9523
9524 temp_string = base_string;
9525
9526 /* Skip past '(' and whitespace. */
9527 ++base_string;
9528 if (is_space_char (*base_string))
9529 ++base_string;
9530
9531 if (*base_string == ','
9532 || ((i.base_reg = parse_register (base_string, &end_op))
9533 != NULL))
9534 {
9535 displacement_string_end = temp_string;
9536
9537 i.types[this_operand].bitfield.baseindex = 1;
9538
9539 if (i.base_reg)
9540 {
9541 base_string = end_op;
9542 if (is_space_char (*base_string))
9543 ++base_string;
9544 }
9545
9546 /* There may be an index reg or scale factor here. */
9547 if (*base_string == ',')
9548 {
9549 ++base_string;
9550 if (is_space_char (*base_string))
9551 ++base_string;
9552
9553 if ((i.index_reg = parse_register (base_string, &end_op))
9554 != NULL)
9555 {
9556 base_string = end_op;
9557 if (is_space_char (*base_string))
9558 ++base_string;
9559 if (*base_string == ',')
9560 {
9561 ++base_string;
9562 if (is_space_char (*base_string))
9563 ++base_string;
9564 }
9565 else if (*base_string != ')')
9566 {
9567 as_bad (_("expecting `,' or `)' "
9568 "after index register in `%s'"),
9569 operand_string);
9570 return 0;
9571 }
9572 }
9573 else if (*base_string == REGISTER_PREFIX)
9574 {
9575 end_op = strchr (base_string, ',');
9576 if (end_op)
9577 *end_op = '\0';
9578 as_bad (_("bad register name `%s'"), base_string);
9579 return 0;
9580 }
9581
9582 /* Check for scale factor. */
9583 if (*base_string != ')')
9584 {
9585 char *end_scale = i386_scale (base_string);
9586
9587 if (!end_scale)
9588 return 0;
9589
9590 base_string = end_scale;
9591 if (is_space_char (*base_string))
9592 ++base_string;
9593 if (*base_string != ')')
9594 {
9595 as_bad (_("expecting `)' "
9596 "after scale factor in `%s'"),
9597 operand_string);
9598 return 0;
9599 }
9600 }
9601 else if (!i.index_reg)
9602 {
9603 as_bad (_("expecting index register or scale factor "
9604 "after `,'; got '%c'"),
9605 *base_string);
9606 return 0;
9607 }
9608 }
9609 else if (*base_string != ')')
9610 {
9611 as_bad (_("expecting `,' or `)' "
9612 "after base register in `%s'"),
9613 operand_string);
9614 return 0;
9615 }
9616 }
9617 else if (*base_string == REGISTER_PREFIX)
9618 {
9619 end_op = strchr (base_string, ',');
9620 if (end_op)
9621 *end_op = '\0';
9622 as_bad (_("bad register name `%s'"), base_string);
9623 return 0;
9624 }
9625 }
9626
9627 /* If there's an expression beginning the operand, parse it,
9628 assuming displacement_string_start and
9629 displacement_string_end are meaningful. */
9630 if (displacement_string_start != displacement_string_end)
9631 {
9632 if (!i386_displacement (displacement_string_start,
9633 displacement_string_end))
9634 return 0;
9635 }
9636
9637 /* Special case for (%dx) while doing input/output op. */
9638 if (i.base_reg
9639 && operand_type_equal (&i.base_reg->reg_type,
9640 &reg16_inoutportreg)
9641 && i.index_reg == 0
9642 && i.log2_scale_factor == 0
9643 && i.seg[i.mem_operands] == 0
9644 && !operand_type_check (i.types[this_operand], disp))
9645 {
9646 i.types[this_operand] = inoutportreg;
9647 return 1;
9648 }
9649
9650 if (i386_index_check (operand_string) == 0)
9651 return 0;
9652 i.types[this_operand].bitfield.mem = 1;
9653 if (i.mem_operands == 0)
9654 i.memop1_string = xstrdup (operand_string);
9655 i.mem_operands++;
9656 }
9657 else
9658 {
9659 /* It's not a memory operand; argh! */
9660 as_bad (_("invalid char %s beginning operand %d `%s'"),
9661 output_invalid (*op_string),
9662 this_operand + 1,
9663 op_string);
9664 return 0;
9665 }
9666 return 1; /* Normal return. */
9667 }
9668 \f
9669 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9670 that an rs_machine_dependent frag may reach. */
9671
9672 unsigned int
9673 i386_frag_max_var (fragS *frag)
9674 {
9675 /* The only relaxable frags are for jumps.
9676 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9677 gas_assert (frag->fr_type == rs_machine_dependent);
9678 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9679 }
9680
9681 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9682 static int
9683 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9684 {
9685 /* STT_GNU_IFUNC symbol must go through PLT. */
9686 if ((symbol_get_bfdsym (fr_symbol)->flags
9687 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9688 return 0;
9689
9690 if (!S_IS_EXTERNAL (fr_symbol))
9691 /* Symbol may be weak or local. */
9692 return !S_IS_WEAK (fr_symbol);
9693
9694 /* Global symbols with non-default visibility can't be preempted. */
9695 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9696 return 1;
9697
9698 if (fr_var != NO_RELOC)
9699 switch ((enum bfd_reloc_code_real) fr_var)
9700 {
9701 case BFD_RELOC_386_PLT32:
9702 case BFD_RELOC_X86_64_PLT32:
9703 /* Symbol with PLT relocation may be preempted. */
9704 return 0;
9705 default:
9706 abort ();
9707 }
9708
9709 /* Global symbols with default visibility in a shared library may be
9710 preempted by another definition. */
9711 return !shared;
9712 }
9713 #endif
9714
9715 /* md_estimate_size_before_relax()
9716
9717 Called just before relax() for rs_machine_dependent frags. The x86
9718 assembler uses these frags to handle variable size jump
9719 instructions.
9720
9721 Any symbol that is now undefined will not become defined.
9722 Return the correct fr_subtype in the frag.
9723 Return the initial "guess for variable size of frag" to caller.
9724 The guess is actually the growth beyond the fixed part. Whatever
9725 we do to grow the fixed or variable part contributes to our
9726 returned value. */
9727
9728 int
9729 md_estimate_size_before_relax (fragS *fragP, segT segment)
9730 {
9731 /* We've already got fragP->fr_subtype right; all we have to do is
9732 check for un-relaxable symbols. On an ELF system, we can't relax
9733 an externally visible symbol, because it may be overridden by a
9734 shared library. */
9735 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9736 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9737 || (IS_ELF
9738 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9739 fragP->fr_var))
9740 #endif
9741 #if defined (OBJ_COFF) && defined (TE_PE)
9742 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9743 && S_IS_WEAK (fragP->fr_symbol))
9744 #endif
9745 )
9746 {
9747 /* Symbol is undefined in this segment, or we need to keep a
9748 reloc so that weak symbols can be overridden. */
9749 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9750 enum bfd_reloc_code_real reloc_type;
9751 unsigned char *opcode;
9752 int old_fr_fix;
9753
9754 if (fragP->fr_var != NO_RELOC)
9755 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9756 else if (size == 2)
9757 reloc_type = BFD_RELOC_16_PCREL;
9758 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9759 else if (need_plt32_p (fragP->fr_symbol))
9760 reloc_type = BFD_RELOC_X86_64_PLT32;
9761 #endif
9762 else
9763 reloc_type = BFD_RELOC_32_PCREL;
9764
9765 old_fr_fix = fragP->fr_fix;
9766 opcode = (unsigned char *) fragP->fr_opcode;
9767
9768 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9769 {
9770 case UNCOND_JUMP:
9771 /* Make jmp (0xeb) a (d)word displacement jump. */
9772 opcode[0] = 0xe9;
9773 fragP->fr_fix += size;
9774 fix_new (fragP, old_fr_fix, size,
9775 fragP->fr_symbol,
9776 fragP->fr_offset, 1,
9777 reloc_type);
9778 break;
9779
9780 case COND_JUMP86:
9781 if (size == 2
9782 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9783 {
9784 /* Negate the condition, and branch past an
9785 unconditional jump. */
9786 opcode[0] ^= 1;
9787 opcode[1] = 3;
9788 /* Insert an unconditional jump. */
9789 opcode[2] = 0xe9;
9790 /* We added two extra opcode bytes, and have a two byte
9791 offset. */
9792 fragP->fr_fix += 2 + 2;
9793 fix_new (fragP, old_fr_fix + 2, 2,
9794 fragP->fr_symbol,
9795 fragP->fr_offset, 1,
9796 reloc_type);
9797 break;
9798 }
9799 /* Fall through. */
9800
9801 case COND_JUMP:
9802 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9803 {
9804 fixS *fixP;
9805
9806 fragP->fr_fix += 1;
9807 fixP = fix_new (fragP, old_fr_fix, 1,
9808 fragP->fr_symbol,
9809 fragP->fr_offset, 1,
9810 BFD_RELOC_8_PCREL);
9811 fixP->fx_signed = 1;
9812 break;
9813 }
9814
9815 /* This changes the byte-displacement jump 0x7N
9816 to the (d)word-displacement jump 0x0f,0x8N. */
9817 opcode[1] = opcode[0] + 0x10;
9818 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9819 /* We've added an opcode byte. */
9820 fragP->fr_fix += 1 + size;
9821 fix_new (fragP, old_fr_fix + 1, size,
9822 fragP->fr_symbol,
9823 fragP->fr_offset, 1,
9824 reloc_type);
9825 break;
9826
9827 default:
9828 BAD_CASE (fragP->fr_subtype);
9829 break;
9830 }
9831 frag_wane (fragP);
9832 return fragP->fr_fix - old_fr_fix;
9833 }
9834
9835 /* Guess size depending on current relax state. Initially the relax
9836 state will correspond to a short jump and we return 1, because
9837 the variable part of the frag (the branch offset) is one byte
9838 long. However, we can relax a section more than once and in that
9839 case we must either set fr_subtype back to the unrelaxed state,
9840 or return the value for the appropriate branch. */
9841 return md_relax_table[fragP->fr_subtype].rlx_length;
9842 }
9843
9844 /* Called after relax() is finished.
9845
9846 In: Address of frag.
9847 fr_type == rs_machine_dependent.
9848 fr_subtype is what the address relaxed to.
9849
9850 Out: Any fixSs and constants are set up.
9851 Caller will turn frag into a ".space 0". */
9852
9853 void
9854 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9855 fragS *fragP)
9856 {
9857 unsigned char *opcode;
9858 unsigned char *where_to_put_displacement = NULL;
9859 offsetT target_address;
9860 offsetT opcode_address;
9861 unsigned int extension = 0;
9862 offsetT displacement_from_opcode_start;
9863
9864 opcode = (unsigned char *) fragP->fr_opcode;
9865
9866 /* Address we want to reach in file space. */
9867 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9868
9869 /* Address opcode resides at in file space. */
9870 opcode_address = fragP->fr_address + fragP->fr_fix;
9871
9872 /* Displacement from opcode start to fill into instruction. */
9873 displacement_from_opcode_start = target_address - opcode_address;
9874
9875 if ((fragP->fr_subtype & BIG) == 0)
9876 {
9877 /* Don't have to change opcode. */
9878 extension = 1; /* 1 opcode + 1 displacement */
9879 where_to_put_displacement = &opcode[1];
9880 }
9881 else
9882 {
9883 if (no_cond_jump_promotion
9884 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9885 as_warn_where (fragP->fr_file, fragP->fr_line,
9886 _("long jump required"));
9887
9888 switch (fragP->fr_subtype)
9889 {
9890 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9891 extension = 4; /* 1 opcode + 4 displacement */
9892 opcode[0] = 0xe9;
9893 where_to_put_displacement = &opcode[1];
9894 break;
9895
9896 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9897 extension = 2; /* 1 opcode + 2 displacement */
9898 opcode[0] = 0xe9;
9899 where_to_put_displacement = &opcode[1];
9900 break;
9901
9902 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9903 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9904 extension = 5; /* 2 opcode + 4 displacement */
9905 opcode[1] = opcode[0] + 0x10;
9906 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9907 where_to_put_displacement = &opcode[2];
9908 break;
9909
9910 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9911 extension = 3; /* 2 opcode + 2 displacement */
9912 opcode[1] = opcode[0] + 0x10;
9913 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9914 where_to_put_displacement = &opcode[2];
9915 break;
9916
9917 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9918 extension = 4;
9919 opcode[0] ^= 1;
9920 opcode[1] = 3;
9921 opcode[2] = 0xe9;
9922 where_to_put_displacement = &opcode[3];
9923 break;
9924
9925 default:
9926 BAD_CASE (fragP->fr_subtype);
9927 break;
9928 }
9929 }
9930
9931 /* If size if less then four we are sure that the operand fits,
9932 but if it's 4, then it could be that the displacement is larger
9933 then -/+ 2GB. */
9934 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9935 && object_64bit
9936 && ((addressT) (displacement_from_opcode_start - extension
9937 + ((addressT) 1 << 31))
9938 > (((addressT) 2 << 31) - 1)))
9939 {
9940 as_bad_where (fragP->fr_file, fragP->fr_line,
9941 _("jump target out of range"));
9942 /* Make us emit 0. */
9943 displacement_from_opcode_start = extension;
9944 }
9945 /* Now put displacement after opcode. */
9946 md_number_to_chars ((char *) where_to_put_displacement,
9947 (valueT) (displacement_from_opcode_start - extension),
9948 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9949 fragP->fr_fix += extension;
9950 }
9951 \f
9952 /* Apply a fixup (fixP) to segment data, once it has been determined
9953 by our caller that we have all the info we need to fix it up.
9954
9955 Parameter valP is the pointer to the value of the bits.
9956
9957 On the 386, immediates, displacements, and data pointers are all in
9958 the same (little-endian) format, so we don't need to care about which
9959 we are handling. */
9960
9961 void
9962 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9963 {
9964 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9965 valueT value = *valP;
9966
9967 #if !defined (TE_Mach)
9968 if (fixP->fx_pcrel)
9969 {
9970 switch (fixP->fx_r_type)
9971 {
9972 default:
9973 break;
9974
9975 case BFD_RELOC_64:
9976 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9977 break;
9978 case BFD_RELOC_32:
9979 case BFD_RELOC_X86_64_32S:
9980 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9981 break;
9982 case BFD_RELOC_16:
9983 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9984 break;
9985 case BFD_RELOC_8:
9986 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9987 break;
9988 }
9989 }
9990
9991 if (fixP->fx_addsy != NULL
9992 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9993 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9994 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9995 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9996 && !use_rela_relocations)
9997 {
9998 /* This is a hack. There should be a better way to handle this.
9999 This covers for the fact that bfd_install_relocation will
10000 subtract the current location (for partial_inplace, PC relative
10001 relocations); see more below. */
10002 #ifndef OBJ_AOUT
10003 if (IS_ELF
10004 #ifdef TE_PE
10005 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10006 #endif
10007 )
10008 value += fixP->fx_where + fixP->fx_frag->fr_address;
10009 #endif
10010 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10011 if (IS_ELF)
10012 {
10013 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10014
10015 if ((sym_seg == seg
10016 || (symbol_section_p (fixP->fx_addsy)
10017 && sym_seg != absolute_section))
10018 && !generic_force_reloc (fixP))
10019 {
10020 /* Yes, we add the values in twice. This is because
10021 bfd_install_relocation subtracts them out again. I think
10022 bfd_install_relocation is broken, but I don't dare change
10023 it. FIXME. */
10024 value += fixP->fx_where + fixP->fx_frag->fr_address;
10025 }
10026 }
10027 #endif
10028 #if defined (OBJ_COFF) && defined (TE_PE)
10029 /* For some reason, the PE format does not store a
10030 section address offset for a PC relative symbol. */
10031 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10032 || S_IS_WEAK (fixP->fx_addsy))
10033 value += md_pcrel_from (fixP);
10034 #endif
10035 }
10036 #if defined (OBJ_COFF) && defined (TE_PE)
10037 if (fixP->fx_addsy != NULL
10038 && S_IS_WEAK (fixP->fx_addsy)
10039 /* PR 16858: Do not modify weak function references. */
10040 && ! fixP->fx_pcrel)
10041 {
10042 #if !defined (TE_PEP)
10043 /* For x86 PE weak function symbols are neither PC-relative
10044 nor do they set S_IS_FUNCTION. So the only reliable way
10045 to detect them is to check the flags of their containing
10046 section. */
10047 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10048 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10049 ;
10050 else
10051 #endif
10052 value -= S_GET_VALUE (fixP->fx_addsy);
10053 }
10054 #endif
10055
10056 /* Fix a few things - the dynamic linker expects certain values here,
10057 and we must not disappoint it. */
10058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10059 if (IS_ELF && fixP->fx_addsy)
10060 switch (fixP->fx_r_type)
10061 {
10062 case BFD_RELOC_386_PLT32:
10063 case BFD_RELOC_X86_64_PLT32:
10064 /* Make the jump instruction point to the address of the operand. At
10065 runtime we merely add the offset to the actual PLT entry. */
10066 value = -4;
10067 break;
10068
10069 case BFD_RELOC_386_TLS_GD:
10070 case BFD_RELOC_386_TLS_LDM:
10071 case BFD_RELOC_386_TLS_IE_32:
10072 case BFD_RELOC_386_TLS_IE:
10073 case BFD_RELOC_386_TLS_GOTIE:
10074 case BFD_RELOC_386_TLS_GOTDESC:
10075 case BFD_RELOC_X86_64_TLSGD:
10076 case BFD_RELOC_X86_64_TLSLD:
10077 case BFD_RELOC_X86_64_GOTTPOFF:
10078 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10079 value = 0; /* Fully resolved at runtime. No addend. */
10080 /* Fallthrough */
10081 case BFD_RELOC_386_TLS_LE:
10082 case BFD_RELOC_386_TLS_LDO_32:
10083 case BFD_RELOC_386_TLS_LE_32:
10084 case BFD_RELOC_X86_64_DTPOFF32:
10085 case BFD_RELOC_X86_64_DTPOFF64:
10086 case BFD_RELOC_X86_64_TPOFF32:
10087 case BFD_RELOC_X86_64_TPOFF64:
10088 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10089 break;
10090
10091 case BFD_RELOC_386_TLS_DESC_CALL:
10092 case BFD_RELOC_X86_64_TLSDESC_CALL:
10093 value = 0; /* Fully resolved at runtime. No addend. */
10094 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10095 fixP->fx_done = 0;
10096 return;
10097
10098 case BFD_RELOC_VTABLE_INHERIT:
10099 case BFD_RELOC_VTABLE_ENTRY:
10100 fixP->fx_done = 0;
10101 return;
10102
10103 default:
10104 break;
10105 }
10106 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10107 *valP = value;
10108 #endif /* !defined (TE_Mach) */
10109
10110 /* Are we finished with this relocation now? */
10111 if (fixP->fx_addsy == NULL)
10112 fixP->fx_done = 1;
10113 #if defined (OBJ_COFF) && defined (TE_PE)
10114 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10115 {
10116 fixP->fx_done = 0;
10117 /* Remember value for tc_gen_reloc. */
10118 fixP->fx_addnumber = value;
10119 /* Clear out the frag for now. */
10120 value = 0;
10121 }
10122 #endif
10123 else if (use_rela_relocations)
10124 {
10125 fixP->fx_no_overflow = 1;
10126 /* Remember value for tc_gen_reloc. */
10127 fixP->fx_addnumber = value;
10128 value = 0;
10129 }
10130
10131 md_number_to_chars (p, value, fixP->fx_size);
10132 }
10133 \f
10134 const char *
10135 md_atof (int type, char *litP, int *sizeP)
10136 {
10137 /* This outputs the LITTLENUMs in REVERSE order;
10138 in accord with the bigendian 386. */
10139 return ieee_md_atof (type, litP, sizeP, FALSE);
10140 }
10141 \f
10142 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10143
10144 static char *
10145 output_invalid (int c)
10146 {
10147 if (ISPRINT (c))
10148 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10149 "'%c'", c);
10150 else
10151 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10152 "(0x%x)", (unsigned char) c);
10153 return output_invalid_buf;
10154 }
10155
10156 /* REG_STRING starts *before* REGISTER_PREFIX. */
10157
10158 static const reg_entry *
10159 parse_real_register (char *reg_string, char **end_op)
10160 {
10161 char *s = reg_string;
10162 char *p;
10163 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10164 const reg_entry *r;
10165
10166 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10167 if (*s == REGISTER_PREFIX)
10168 ++s;
10169
10170 if (is_space_char (*s))
10171 ++s;
10172
10173 p = reg_name_given;
10174 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10175 {
10176 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10177 return (const reg_entry *) NULL;
10178 s++;
10179 }
10180
10181 /* For naked regs, make sure that we are not dealing with an identifier.
10182 This prevents confusing an identifier like `eax_var' with register
10183 `eax'. */
10184 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10185 return (const reg_entry *) NULL;
10186
10187 *end_op = s;
10188
10189 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10190
10191 /* Handle floating point regs, allowing spaces in the (i) part. */
10192 if (r == i386_regtab /* %st is first entry of table */)
10193 {
10194 if (!cpu_arch_flags.bitfield.cpu8087
10195 && !cpu_arch_flags.bitfield.cpu287
10196 && !cpu_arch_flags.bitfield.cpu387)
10197 return (const reg_entry *) NULL;
10198
10199 if (is_space_char (*s))
10200 ++s;
10201 if (*s == '(')
10202 {
10203 ++s;
10204 if (is_space_char (*s))
10205 ++s;
10206 if (*s >= '0' && *s <= '7')
10207 {
10208 int fpr = *s - '0';
10209 ++s;
10210 if (is_space_char (*s))
10211 ++s;
10212 if (*s == ')')
10213 {
10214 *end_op = s + 1;
10215 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10216 know (r);
10217 return r + fpr;
10218 }
10219 }
10220 /* We have "%st(" then garbage. */
10221 return (const reg_entry *) NULL;
10222 }
10223 }
10224
10225 if (r == NULL || allow_pseudo_reg)
10226 return r;
10227
10228 if (operand_type_all_zero (&r->reg_type))
10229 return (const reg_entry *) NULL;
10230
10231 if ((r->reg_type.bitfield.dword
10232 || r->reg_type.bitfield.sreg3
10233 || r->reg_type.bitfield.control
10234 || r->reg_type.bitfield.debug
10235 || r->reg_type.bitfield.test)
10236 && !cpu_arch_flags.bitfield.cpui386)
10237 return (const reg_entry *) NULL;
10238
10239 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10240 return (const reg_entry *) NULL;
10241
10242 if (!cpu_arch_flags.bitfield.cpuavx512f)
10243 {
10244 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10245 return (const reg_entry *) NULL;
10246
10247 if (!cpu_arch_flags.bitfield.cpuavx)
10248 {
10249 if (r->reg_type.bitfield.ymmword)
10250 return (const reg_entry *) NULL;
10251
10252 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10253 return (const reg_entry *) NULL;
10254 }
10255 }
10256
10257 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10258 return (const reg_entry *) NULL;
10259
10260 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10261 if (!allow_index_reg
10262 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10263 return (const reg_entry *) NULL;
10264
10265 /* Upper 16 vector registers are only available with VREX in 64bit
10266 mode, and require EVEX encoding. */
10267 if (r->reg_flags & RegVRex)
10268 {
10269 if (!cpu_arch_flags.bitfield.cpuvrex
10270 || flag_code != CODE_64BIT)
10271 return (const reg_entry *) NULL;
10272
10273 i.vec_encoding = vex_encoding_evex;
10274 }
10275
10276 if (((r->reg_flags & (RegRex64 | RegRex))
10277 || r->reg_type.bitfield.qword)
10278 && (!cpu_arch_flags.bitfield.cpulm
10279 || !operand_type_equal (&r->reg_type, &control))
10280 && flag_code != CODE_64BIT)
10281 return (const reg_entry *) NULL;
10282
10283 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10284 return (const reg_entry *) NULL;
10285
10286 return r;
10287 }
10288
10289 /* REG_STRING starts *before* REGISTER_PREFIX. */
10290
10291 static const reg_entry *
10292 parse_register (char *reg_string, char **end_op)
10293 {
10294 const reg_entry *r;
10295
10296 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10297 r = parse_real_register (reg_string, end_op);
10298 else
10299 r = NULL;
10300 if (!r)
10301 {
10302 char *save = input_line_pointer;
10303 char c;
10304 symbolS *symbolP;
10305
10306 input_line_pointer = reg_string;
10307 c = get_symbol_name (&reg_string);
10308 symbolP = symbol_find (reg_string);
10309 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10310 {
10311 const expressionS *e = symbol_get_value_expression (symbolP);
10312
10313 know (e->X_op == O_register);
10314 know (e->X_add_number >= 0
10315 && (valueT) e->X_add_number < i386_regtab_size);
10316 r = i386_regtab + e->X_add_number;
10317 if ((r->reg_flags & RegVRex))
10318 i.vec_encoding = vex_encoding_evex;
10319 *end_op = input_line_pointer;
10320 }
10321 *input_line_pointer = c;
10322 input_line_pointer = save;
10323 }
10324 return r;
10325 }
10326
10327 int
10328 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10329 {
10330 const reg_entry *r;
10331 char *end = input_line_pointer;
10332
10333 *end = *nextcharP;
10334 r = parse_register (name, &input_line_pointer);
10335 if (r && end <= input_line_pointer)
10336 {
10337 *nextcharP = *input_line_pointer;
10338 *input_line_pointer = 0;
10339 e->X_op = O_register;
10340 e->X_add_number = r - i386_regtab;
10341 return 1;
10342 }
10343 input_line_pointer = end;
10344 *end = 0;
10345 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10346 }
10347
10348 void
10349 md_operand (expressionS *e)
10350 {
10351 char *end;
10352 const reg_entry *r;
10353
10354 switch (*input_line_pointer)
10355 {
10356 case REGISTER_PREFIX:
10357 r = parse_real_register (input_line_pointer, &end);
10358 if (r)
10359 {
10360 e->X_op = O_register;
10361 e->X_add_number = r - i386_regtab;
10362 input_line_pointer = end;
10363 }
10364 break;
10365
10366 case '[':
10367 gas_assert (intel_syntax);
10368 end = input_line_pointer++;
10369 expression (e);
10370 if (*input_line_pointer == ']')
10371 {
10372 ++input_line_pointer;
10373 e->X_op_symbol = make_expr_symbol (e);
10374 e->X_add_symbol = NULL;
10375 e->X_add_number = 0;
10376 e->X_op = O_index;
10377 }
10378 else
10379 {
10380 e->X_op = O_absent;
10381 input_line_pointer = end;
10382 }
10383 break;
10384 }
10385 }
10386
10387 \f
10388 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10389 const char *md_shortopts = "kVQ:sqnO::";
10390 #else
10391 const char *md_shortopts = "qnO::";
10392 #endif
10393
10394 #define OPTION_32 (OPTION_MD_BASE + 0)
10395 #define OPTION_64 (OPTION_MD_BASE + 1)
10396 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10397 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10398 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10399 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10400 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10401 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10402 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10403 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10404 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10405 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10406 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10407 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10408 #define OPTION_X32 (OPTION_MD_BASE + 14)
10409 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10410 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10411 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10412 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10413 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10414 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10415 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10416 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10417 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10418 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10419
10420 struct option md_longopts[] =
10421 {
10422 {"32", no_argument, NULL, OPTION_32},
10423 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10424 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10425 {"64", no_argument, NULL, OPTION_64},
10426 #endif
10427 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10428 {"x32", no_argument, NULL, OPTION_X32},
10429 {"mshared", no_argument, NULL, OPTION_MSHARED},
10430 #endif
10431 {"divide", no_argument, NULL, OPTION_DIVIDE},
10432 {"march", required_argument, NULL, OPTION_MARCH},
10433 {"mtune", required_argument, NULL, OPTION_MTUNE},
10434 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10435 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10436 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10437 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10438 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10439 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10440 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10441 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10442 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10443 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10444 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10445 # if defined (TE_PE) || defined (TE_PEP)
10446 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10447 #endif
10448 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10449 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10450 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10451 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10452 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10453 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10454 {NULL, no_argument, NULL, 0}
10455 };
10456 size_t md_longopts_size = sizeof (md_longopts);
10457
10458 int
10459 md_parse_option (int c, const char *arg)
10460 {
10461 unsigned int j;
10462 char *arch, *next, *saved;
10463
10464 switch (c)
10465 {
10466 case 'n':
10467 optimize_align_code = 0;
10468 break;
10469
10470 case 'q':
10471 quiet_warnings = 1;
10472 break;
10473
10474 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10475 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10476 should be emitted or not. FIXME: Not implemented. */
10477 case 'Q':
10478 break;
10479
10480 /* -V: SVR4 argument to print version ID. */
10481 case 'V':
10482 print_version_id ();
10483 break;
10484
10485 /* -k: Ignore for FreeBSD compatibility. */
10486 case 'k':
10487 break;
10488
10489 case 's':
10490 /* -s: On i386 Solaris, this tells the native assembler to use
10491 .stab instead of .stab.excl. We always use .stab anyhow. */
10492 break;
10493
10494 case OPTION_MSHARED:
10495 shared = 1;
10496 break;
10497 #endif
10498 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10499 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10500 case OPTION_64:
10501 {
10502 const char **list, **l;
10503
10504 list = bfd_target_list ();
10505 for (l = list; *l != NULL; l++)
10506 if (CONST_STRNEQ (*l, "elf64-x86-64")
10507 || strcmp (*l, "coff-x86-64") == 0
10508 || strcmp (*l, "pe-x86-64") == 0
10509 || strcmp (*l, "pei-x86-64") == 0
10510 || strcmp (*l, "mach-o-x86-64") == 0)
10511 {
10512 default_arch = "x86_64";
10513 break;
10514 }
10515 if (*l == NULL)
10516 as_fatal (_("no compiled in support for x86_64"));
10517 free (list);
10518 }
10519 break;
10520 #endif
10521
10522 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10523 case OPTION_X32:
10524 if (IS_ELF)
10525 {
10526 const char **list, **l;
10527
10528 list = bfd_target_list ();
10529 for (l = list; *l != NULL; l++)
10530 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10531 {
10532 default_arch = "x86_64:32";
10533 break;
10534 }
10535 if (*l == NULL)
10536 as_fatal (_("no compiled in support for 32bit x86_64"));
10537 free (list);
10538 }
10539 else
10540 as_fatal (_("32bit x86_64 is only supported for ELF"));
10541 break;
10542 #endif
10543
10544 case OPTION_32:
10545 default_arch = "i386";
10546 break;
10547
10548 case OPTION_DIVIDE:
10549 #ifdef SVR4_COMMENT_CHARS
10550 {
10551 char *n, *t;
10552 const char *s;
10553
10554 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10555 t = n;
10556 for (s = i386_comment_chars; *s != '\0'; s++)
10557 if (*s != '/')
10558 *t++ = *s;
10559 *t = '\0';
10560 i386_comment_chars = n;
10561 }
10562 #endif
10563 break;
10564
10565 case OPTION_MARCH:
10566 saved = xstrdup (arg);
10567 arch = saved;
10568 /* Allow -march=+nosse. */
10569 if (*arch == '+')
10570 arch++;
10571 do
10572 {
10573 if (*arch == '.')
10574 as_fatal (_("invalid -march= option: `%s'"), arg);
10575 next = strchr (arch, '+');
10576 if (next)
10577 *next++ = '\0';
10578 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10579 {
10580 if (strcmp (arch, cpu_arch [j].name) == 0)
10581 {
10582 /* Processor. */
10583 if (! cpu_arch[j].flags.bitfield.cpui386)
10584 continue;
10585
10586 cpu_arch_name = cpu_arch[j].name;
10587 cpu_sub_arch_name = NULL;
10588 cpu_arch_flags = cpu_arch[j].flags;
10589 cpu_arch_isa = cpu_arch[j].type;
10590 cpu_arch_isa_flags = cpu_arch[j].flags;
10591 if (!cpu_arch_tune_set)
10592 {
10593 cpu_arch_tune = cpu_arch_isa;
10594 cpu_arch_tune_flags = cpu_arch_isa_flags;
10595 }
10596 break;
10597 }
10598 else if (*cpu_arch [j].name == '.'
10599 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10600 {
10601 /* ISA extension. */
10602 i386_cpu_flags flags;
10603
10604 flags = cpu_flags_or (cpu_arch_flags,
10605 cpu_arch[j].flags);
10606
10607 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10608 {
10609 if (cpu_sub_arch_name)
10610 {
10611 char *name = cpu_sub_arch_name;
10612 cpu_sub_arch_name = concat (name,
10613 cpu_arch[j].name,
10614 (const char *) NULL);
10615 free (name);
10616 }
10617 else
10618 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10619 cpu_arch_flags = flags;
10620 cpu_arch_isa_flags = flags;
10621 }
10622 else
10623 cpu_arch_isa_flags
10624 = cpu_flags_or (cpu_arch_isa_flags,
10625 cpu_arch[j].flags);
10626 break;
10627 }
10628 }
10629
10630 if (j >= ARRAY_SIZE (cpu_arch))
10631 {
10632 /* Disable an ISA extension. */
10633 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10634 if (strcmp (arch, cpu_noarch [j].name) == 0)
10635 {
10636 i386_cpu_flags flags;
10637
10638 flags = cpu_flags_and_not (cpu_arch_flags,
10639 cpu_noarch[j].flags);
10640 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10641 {
10642 if (cpu_sub_arch_name)
10643 {
10644 char *name = cpu_sub_arch_name;
10645 cpu_sub_arch_name = concat (arch,
10646 (const char *) NULL);
10647 free (name);
10648 }
10649 else
10650 cpu_sub_arch_name = xstrdup (arch);
10651 cpu_arch_flags = flags;
10652 cpu_arch_isa_flags = flags;
10653 }
10654 break;
10655 }
10656
10657 if (j >= ARRAY_SIZE (cpu_noarch))
10658 j = ARRAY_SIZE (cpu_arch);
10659 }
10660
10661 if (j >= ARRAY_SIZE (cpu_arch))
10662 as_fatal (_("invalid -march= option: `%s'"), arg);
10663
10664 arch = next;
10665 }
10666 while (next != NULL);
10667 free (saved);
10668 break;
10669
10670 case OPTION_MTUNE:
10671 if (*arg == '.')
10672 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10673 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10674 {
10675 if (strcmp (arg, cpu_arch [j].name) == 0)
10676 {
10677 cpu_arch_tune_set = 1;
10678 cpu_arch_tune = cpu_arch [j].type;
10679 cpu_arch_tune_flags = cpu_arch[j].flags;
10680 break;
10681 }
10682 }
10683 if (j >= ARRAY_SIZE (cpu_arch))
10684 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10685 break;
10686
10687 case OPTION_MMNEMONIC:
10688 if (strcasecmp (arg, "att") == 0)
10689 intel_mnemonic = 0;
10690 else if (strcasecmp (arg, "intel") == 0)
10691 intel_mnemonic = 1;
10692 else
10693 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10694 break;
10695
10696 case OPTION_MSYNTAX:
10697 if (strcasecmp (arg, "att") == 0)
10698 intel_syntax = 0;
10699 else if (strcasecmp (arg, "intel") == 0)
10700 intel_syntax = 1;
10701 else
10702 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10703 break;
10704
10705 case OPTION_MINDEX_REG:
10706 allow_index_reg = 1;
10707 break;
10708
10709 case OPTION_MNAKED_REG:
10710 allow_naked_reg = 1;
10711 break;
10712
10713 case OPTION_MSSE2AVX:
10714 sse2avx = 1;
10715 break;
10716
10717 case OPTION_MSSE_CHECK:
10718 if (strcasecmp (arg, "error") == 0)
10719 sse_check = check_error;
10720 else if (strcasecmp (arg, "warning") == 0)
10721 sse_check = check_warning;
10722 else if (strcasecmp (arg, "none") == 0)
10723 sse_check = check_none;
10724 else
10725 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10726 break;
10727
10728 case OPTION_MOPERAND_CHECK:
10729 if (strcasecmp (arg, "error") == 0)
10730 operand_check = check_error;
10731 else if (strcasecmp (arg, "warning") == 0)
10732 operand_check = check_warning;
10733 else if (strcasecmp (arg, "none") == 0)
10734 operand_check = check_none;
10735 else
10736 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10737 break;
10738
10739 case OPTION_MAVXSCALAR:
10740 if (strcasecmp (arg, "128") == 0)
10741 avxscalar = vex128;
10742 else if (strcasecmp (arg, "256") == 0)
10743 avxscalar = vex256;
10744 else
10745 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10746 break;
10747
10748 case OPTION_MADD_BND_PREFIX:
10749 add_bnd_prefix = 1;
10750 break;
10751
10752 case OPTION_MEVEXLIG:
10753 if (strcmp (arg, "128") == 0)
10754 evexlig = evexl128;
10755 else if (strcmp (arg, "256") == 0)
10756 evexlig = evexl256;
10757 else if (strcmp (arg, "512") == 0)
10758 evexlig = evexl512;
10759 else
10760 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10761 break;
10762
10763 case OPTION_MEVEXRCIG:
10764 if (strcmp (arg, "rne") == 0)
10765 evexrcig = rne;
10766 else if (strcmp (arg, "rd") == 0)
10767 evexrcig = rd;
10768 else if (strcmp (arg, "ru") == 0)
10769 evexrcig = ru;
10770 else if (strcmp (arg, "rz") == 0)
10771 evexrcig = rz;
10772 else
10773 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10774 break;
10775
10776 case OPTION_MEVEXWIG:
10777 if (strcmp (arg, "0") == 0)
10778 evexwig = evexw0;
10779 else if (strcmp (arg, "1") == 0)
10780 evexwig = evexw1;
10781 else
10782 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10783 break;
10784
10785 # if defined (TE_PE) || defined (TE_PEP)
10786 case OPTION_MBIG_OBJ:
10787 use_big_obj = 1;
10788 break;
10789 #endif
10790
10791 case OPTION_MOMIT_LOCK_PREFIX:
10792 if (strcasecmp (arg, "yes") == 0)
10793 omit_lock_prefix = 1;
10794 else if (strcasecmp (arg, "no") == 0)
10795 omit_lock_prefix = 0;
10796 else
10797 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10798 break;
10799
10800 case OPTION_MFENCE_AS_LOCK_ADD:
10801 if (strcasecmp (arg, "yes") == 0)
10802 avoid_fence = 1;
10803 else if (strcasecmp (arg, "no") == 0)
10804 avoid_fence = 0;
10805 else
10806 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10807 break;
10808
10809 case OPTION_MRELAX_RELOCATIONS:
10810 if (strcasecmp (arg, "yes") == 0)
10811 generate_relax_relocations = 1;
10812 else if (strcasecmp (arg, "no") == 0)
10813 generate_relax_relocations = 0;
10814 else
10815 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10816 break;
10817
10818 case OPTION_MAMD64:
10819 intel64 = 0;
10820 break;
10821
10822 case OPTION_MINTEL64:
10823 intel64 = 1;
10824 break;
10825
10826 case 'O':
10827 if (arg == NULL)
10828 {
10829 optimize = 1;
10830 /* Turn off -Os. */
10831 optimize_for_space = 0;
10832 }
10833 else if (*arg == 's')
10834 {
10835 optimize_for_space = 1;
10836 /* Turn on all encoding optimizations. */
10837 optimize = -1;
10838 }
10839 else
10840 {
10841 optimize = atoi (arg);
10842 /* Turn off -Os. */
10843 optimize_for_space = 0;
10844 }
10845 break;
10846
10847 default:
10848 return 0;
10849 }
10850 return 1;
10851 }
10852
10853 #define MESSAGE_TEMPLATE \
10854 " "
10855
10856 static char *
10857 output_message (FILE *stream, char *p, char *message, char *start,
10858 int *left_p, const char *name, int len)
10859 {
10860 int size = sizeof (MESSAGE_TEMPLATE);
10861 int left = *left_p;
10862
10863 /* Reserve 2 spaces for ", " or ",\0" */
10864 left -= len + 2;
10865
10866 /* Check if there is any room. */
10867 if (left >= 0)
10868 {
10869 if (p != start)
10870 {
10871 *p++ = ',';
10872 *p++ = ' ';
10873 }
10874 p = mempcpy (p, name, len);
10875 }
10876 else
10877 {
10878 /* Output the current message now and start a new one. */
10879 *p++ = ',';
10880 *p = '\0';
10881 fprintf (stream, "%s\n", message);
10882 p = start;
10883 left = size - (start - message) - len - 2;
10884
10885 gas_assert (left >= 0);
10886
10887 p = mempcpy (p, name, len);
10888 }
10889
10890 *left_p = left;
10891 return p;
10892 }
10893
10894 static void
10895 show_arch (FILE *stream, int ext, int check)
10896 {
10897 static char message[] = MESSAGE_TEMPLATE;
10898 char *start = message + 27;
10899 char *p;
10900 int size = sizeof (MESSAGE_TEMPLATE);
10901 int left;
10902 const char *name;
10903 int len;
10904 unsigned int j;
10905
10906 p = start;
10907 left = size - (start - message);
10908 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10909 {
10910 /* Should it be skipped? */
10911 if (cpu_arch [j].skip)
10912 continue;
10913
10914 name = cpu_arch [j].name;
10915 len = cpu_arch [j].len;
10916 if (*name == '.')
10917 {
10918 /* It is an extension. Skip if we aren't asked to show it. */
10919 if (ext)
10920 {
10921 name++;
10922 len--;
10923 }
10924 else
10925 continue;
10926 }
10927 else if (ext)
10928 {
10929 /* It is an processor. Skip if we show only extension. */
10930 continue;
10931 }
10932 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10933 {
10934 /* It is an impossible processor - skip. */
10935 continue;
10936 }
10937
10938 p = output_message (stream, p, message, start, &left, name, len);
10939 }
10940
10941 /* Display disabled extensions. */
10942 if (ext)
10943 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10944 {
10945 name = cpu_noarch [j].name;
10946 len = cpu_noarch [j].len;
10947 p = output_message (stream, p, message, start, &left, name,
10948 len);
10949 }
10950
10951 *p = '\0';
10952 fprintf (stream, "%s\n", message);
10953 }
10954
10955 void
10956 md_show_usage (FILE *stream)
10957 {
10958 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10959 fprintf (stream, _("\
10960 -Q ignored\n\
10961 -V print assembler version number\n\
10962 -k ignored\n"));
10963 #endif
10964 fprintf (stream, _("\
10965 -n Do not optimize code alignment\n\
10966 -q quieten some warnings\n"));
10967 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10968 fprintf (stream, _("\
10969 -s ignored\n"));
10970 #endif
10971 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10972 || defined (TE_PE) || defined (TE_PEP))
10973 fprintf (stream, _("\
10974 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10975 #endif
10976 #ifdef SVR4_COMMENT_CHARS
10977 fprintf (stream, _("\
10978 --divide do not treat `/' as a comment character\n"));
10979 #else
10980 fprintf (stream, _("\
10981 --divide ignored\n"));
10982 #endif
10983 fprintf (stream, _("\
10984 -march=CPU[,+EXTENSION...]\n\
10985 generate code for CPU and EXTENSION, CPU is one of:\n"));
10986 show_arch (stream, 0, 1);
10987 fprintf (stream, _("\
10988 EXTENSION is combination of:\n"));
10989 show_arch (stream, 1, 0);
10990 fprintf (stream, _("\
10991 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10992 show_arch (stream, 0, 0);
10993 fprintf (stream, _("\
10994 -msse2avx encode SSE instructions with VEX prefix\n"));
10995 fprintf (stream, _("\
10996 -msse-check=[none|error|warning]\n\
10997 check SSE instructions\n"));
10998 fprintf (stream, _("\
10999 -moperand-check=[none|error|warning]\n\
11000 check operand combinations for validity\n"));
11001 fprintf (stream, _("\
11002 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11003 length\n"));
11004 fprintf (stream, _("\
11005 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11006 length\n"));
11007 fprintf (stream, _("\
11008 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11009 for EVEX.W bit ignored instructions\n"));
11010 fprintf (stream, _("\
11011 -mevexrcig=[rne|rd|ru|rz]\n\
11012 encode EVEX instructions with specific EVEX.RC value\n\
11013 for SAE-only ignored instructions\n"));
11014 fprintf (stream, _("\
11015 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11016 fprintf (stream, _("\
11017 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11018 fprintf (stream, _("\
11019 -mindex-reg support pseudo index registers\n"));
11020 fprintf (stream, _("\
11021 -mnaked-reg don't require `%%' prefix for registers\n"));
11022 fprintf (stream, _("\
11023 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11024 fprintf (stream, _("\
11025 -mshared disable branch optimization for shared code\n"));
11026 # if defined (TE_PE) || defined (TE_PEP)
11027 fprintf (stream, _("\
11028 -mbig-obj generate big object files\n"));
11029 #endif
11030 fprintf (stream, _("\
11031 -momit-lock-prefix=[no|yes]\n\
11032 strip all lock prefixes\n"));
11033 fprintf (stream, _("\
11034 -mfence-as-lock-add=[no|yes]\n\
11035 encode lfence, mfence and sfence as\n\
11036 lock addl $0x0, (%%{re}sp)\n"));
11037 fprintf (stream, _("\
11038 -mrelax-relocations=[no|yes]\n\
11039 generate relax relocations\n"));
11040 fprintf (stream, _("\
11041 -mamd64 accept only AMD64 ISA\n"));
11042 fprintf (stream, _("\
11043 -mintel64 accept only Intel64 ISA\n"));
11044 }
11045
11046 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11047 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11048 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11049
11050 /* Pick the target format to use. */
11051
11052 const char *
11053 i386_target_format (void)
11054 {
11055 if (!strncmp (default_arch, "x86_64", 6))
11056 {
11057 update_code_flag (CODE_64BIT, 1);
11058 if (default_arch[6] == '\0')
11059 x86_elf_abi = X86_64_ABI;
11060 else
11061 x86_elf_abi = X86_64_X32_ABI;
11062 }
11063 else if (!strcmp (default_arch, "i386"))
11064 update_code_flag (CODE_32BIT, 1);
11065 else if (!strcmp (default_arch, "iamcu"))
11066 {
11067 update_code_flag (CODE_32BIT, 1);
11068 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11069 {
11070 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11071 cpu_arch_name = "iamcu";
11072 cpu_sub_arch_name = NULL;
11073 cpu_arch_flags = iamcu_flags;
11074 cpu_arch_isa = PROCESSOR_IAMCU;
11075 cpu_arch_isa_flags = iamcu_flags;
11076 if (!cpu_arch_tune_set)
11077 {
11078 cpu_arch_tune = cpu_arch_isa;
11079 cpu_arch_tune_flags = cpu_arch_isa_flags;
11080 }
11081 }
11082 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11083 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11084 cpu_arch_name);
11085 }
11086 else
11087 as_fatal (_("unknown architecture"));
11088
11089 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11090 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11091 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11092 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11093
11094 switch (OUTPUT_FLAVOR)
11095 {
11096 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11097 case bfd_target_aout_flavour:
11098 return AOUT_TARGET_FORMAT;
11099 #endif
11100 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11101 # if defined (TE_PE) || defined (TE_PEP)
11102 case bfd_target_coff_flavour:
11103 if (flag_code == CODE_64BIT)
11104 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11105 else
11106 return "pe-i386";
11107 # elif defined (TE_GO32)
11108 case bfd_target_coff_flavour:
11109 return "coff-go32";
11110 # else
11111 case bfd_target_coff_flavour:
11112 return "coff-i386";
11113 # endif
11114 #endif
11115 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11116 case bfd_target_elf_flavour:
11117 {
11118 const char *format;
11119
11120 switch (x86_elf_abi)
11121 {
11122 default:
11123 format = ELF_TARGET_FORMAT;
11124 break;
11125 case X86_64_ABI:
11126 use_rela_relocations = 1;
11127 object_64bit = 1;
11128 format = ELF_TARGET_FORMAT64;
11129 break;
11130 case X86_64_X32_ABI:
11131 use_rela_relocations = 1;
11132 object_64bit = 1;
11133 disallow_64bit_reloc = 1;
11134 format = ELF_TARGET_FORMAT32;
11135 break;
11136 }
11137 if (cpu_arch_isa == PROCESSOR_L1OM)
11138 {
11139 if (x86_elf_abi != X86_64_ABI)
11140 as_fatal (_("Intel L1OM is 64bit only"));
11141 return ELF_TARGET_L1OM_FORMAT;
11142 }
11143 else if (cpu_arch_isa == PROCESSOR_K1OM)
11144 {
11145 if (x86_elf_abi != X86_64_ABI)
11146 as_fatal (_("Intel K1OM is 64bit only"));
11147 return ELF_TARGET_K1OM_FORMAT;
11148 }
11149 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11150 {
11151 if (x86_elf_abi != I386_ABI)
11152 as_fatal (_("Intel MCU is 32bit only"));
11153 return ELF_TARGET_IAMCU_FORMAT;
11154 }
11155 else
11156 return format;
11157 }
11158 #endif
11159 #if defined (OBJ_MACH_O)
11160 case bfd_target_mach_o_flavour:
11161 if (flag_code == CODE_64BIT)
11162 {
11163 use_rela_relocations = 1;
11164 object_64bit = 1;
11165 return "mach-o-x86-64";
11166 }
11167 else
11168 return "mach-o-i386";
11169 #endif
11170 default:
11171 abort ();
11172 return NULL;
11173 }
11174 }
11175
11176 #endif /* OBJ_MAYBE_ more than one */
11177 \f
11178 symbolS *
11179 md_undefined_symbol (char *name)
11180 {
11181 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11182 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11183 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11184 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11185 {
11186 if (!GOT_symbol)
11187 {
11188 if (symbol_find (name))
11189 as_bad (_("GOT already in symbol table"));
11190 GOT_symbol = symbol_new (name, undefined_section,
11191 (valueT) 0, &zero_address_frag);
11192 };
11193 return GOT_symbol;
11194 }
11195 return 0;
11196 }
11197
11198 /* Round up a section size to the appropriate boundary. */
11199
11200 valueT
11201 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11202 {
11203 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11204 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11205 {
11206 /* For a.out, force the section size to be aligned. If we don't do
11207 this, BFD will align it for us, but it will not write out the
11208 final bytes of the section. This may be a bug in BFD, but it is
11209 easier to fix it here since that is how the other a.out targets
11210 work. */
11211 int align;
11212
11213 align = bfd_get_section_alignment (stdoutput, segment);
11214 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11215 }
11216 #endif
11217
11218 return size;
11219 }
11220
11221 /* On the i386, PC-relative offsets are relative to the start of the
11222 next instruction. That is, the address of the offset, plus its
11223 size, since the offset is always the last part of the insn. */
11224
11225 long
11226 md_pcrel_from (fixS *fixP)
11227 {
11228 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11229 }
11230
11231 #ifndef I386COFF
11232
11233 static void
11234 s_bss (int ignore ATTRIBUTE_UNUSED)
11235 {
11236 int temp;
11237
11238 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11239 if (IS_ELF)
11240 obj_elf_section_change_hook ();
11241 #endif
11242 temp = get_absolute_expression ();
11243 subseg_set (bss_section, (subsegT) temp);
11244 demand_empty_rest_of_line ();
11245 }
11246
11247 #endif
11248
11249 void
11250 i386_validate_fix (fixS *fixp)
11251 {
11252 if (fixp->fx_subsy)
11253 {
11254 if (fixp->fx_subsy == GOT_symbol)
11255 {
11256 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11257 {
11258 if (!object_64bit)
11259 abort ();
11260 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11261 if (fixp->fx_tcbit2)
11262 fixp->fx_r_type = (fixp->fx_tcbit
11263 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11264 : BFD_RELOC_X86_64_GOTPCRELX);
11265 else
11266 #endif
11267 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11268 }
11269 else
11270 {
11271 if (!object_64bit)
11272 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11273 else
11274 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11275 }
11276 fixp->fx_subsy = 0;
11277 }
11278 }
11279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11280 else if (!object_64bit)
11281 {
11282 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11283 && fixp->fx_tcbit2)
11284 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11285 }
11286 #endif
11287 }
11288
11289 arelent *
11290 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11291 {
11292 arelent *rel;
11293 bfd_reloc_code_real_type code;
11294
11295 switch (fixp->fx_r_type)
11296 {
11297 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11298 case BFD_RELOC_SIZE32:
11299 case BFD_RELOC_SIZE64:
11300 if (S_IS_DEFINED (fixp->fx_addsy)
11301 && !S_IS_EXTERNAL (fixp->fx_addsy))
11302 {
11303 /* Resolve size relocation against local symbol to size of
11304 the symbol plus addend. */
11305 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11306 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11307 && !fits_in_unsigned_long (value))
11308 as_bad_where (fixp->fx_file, fixp->fx_line,
11309 _("symbol size computation overflow"));
11310 fixp->fx_addsy = NULL;
11311 fixp->fx_subsy = NULL;
11312 md_apply_fix (fixp, (valueT *) &value, NULL);
11313 return NULL;
11314 }
11315 #endif
11316 /* Fall through. */
11317
11318 case BFD_RELOC_X86_64_PLT32:
11319 case BFD_RELOC_X86_64_GOT32:
11320 case BFD_RELOC_X86_64_GOTPCREL:
11321 case BFD_RELOC_X86_64_GOTPCRELX:
11322 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11323 case BFD_RELOC_386_PLT32:
11324 case BFD_RELOC_386_GOT32:
11325 case BFD_RELOC_386_GOT32X:
11326 case BFD_RELOC_386_GOTOFF:
11327 case BFD_RELOC_386_GOTPC:
11328 case BFD_RELOC_386_TLS_GD:
11329 case BFD_RELOC_386_TLS_LDM:
11330 case BFD_RELOC_386_TLS_LDO_32:
11331 case BFD_RELOC_386_TLS_IE_32:
11332 case BFD_RELOC_386_TLS_IE:
11333 case BFD_RELOC_386_TLS_GOTIE:
11334 case BFD_RELOC_386_TLS_LE_32:
11335 case BFD_RELOC_386_TLS_LE:
11336 case BFD_RELOC_386_TLS_GOTDESC:
11337 case BFD_RELOC_386_TLS_DESC_CALL:
11338 case BFD_RELOC_X86_64_TLSGD:
11339 case BFD_RELOC_X86_64_TLSLD:
11340 case BFD_RELOC_X86_64_DTPOFF32:
11341 case BFD_RELOC_X86_64_DTPOFF64:
11342 case BFD_RELOC_X86_64_GOTTPOFF:
11343 case BFD_RELOC_X86_64_TPOFF32:
11344 case BFD_RELOC_X86_64_TPOFF64:
11345 case BFD_RELOC_X86_64_GOTOFF64:
11346 case BFD_RELOC_X86_64_GOTPC32:
11347 case BFD_RELOC_X86_64_GOT64:
11348 case BFD_RELOC_X86_64_GOTPCREL64:
11349 case BFD_RELOC_X86_64_GOTPC64:
11350 case BFD_RELOC_X86_64_GOTPLT64:
11351 case BFD_RELOC_X86_64_PLTOFF64:
11352 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11353 case BFD_RELOC_X86_64_TLSDESC_CALL:
11354 case BFD_RELOC_RVA:
11355 case BFD_RELOC_VTABLE_ENTRY:
11356 case BFD_RELOC_VTABLE_INHERIT:
11357 #ifdef TE_PE
11358 case BFD_RELOC_32_SECREL:
11359 #endif
11360 code = fixp->fx_r_type;
11361 break;
11362 case BFD_RELOC_X86_64_32S:
11363 if (!fixp->fx_pcrel)
11364 {
11365 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11366 code = fixp->fx_r_type;
11367 break;
11368 }
11369 /* Fall through. */
11370 default:
11371 if (fixp->fx_pcrel)
11372 {
11373 switch (fixp->fx_size)
11374 {
11375 default:
11376 as_bad_where (fixp->fx_file, fixp->fx_line,
11377 _("can not do %d byte pc-relative relocation"),
11378 fixp->fx_size);
11379 code = BFD_RELOC_32_PCREL;
11380 break;
11381 case 1: code = BFD_RELOC_8_PCREL; break;
11382 case 2: code = BFD_RELOC_16_PCREL; break;
11383 case 4: code = BFD_RELOC_32_PCREL; break;
11384 #ifdef BFD64
11385 case 8: code = BFD_RELOC_64_PCREL; break;
11386 #endif
11387 }
11388 }
11389 else
11390 {
11391 switch (fixp->fx_size)
11392 {
11393 default:
11394 as_bad_where (fixp->fx_file, fixp->fx_line,
11395 _("can not do %d byte relocation"),
11396 fixp->fx_size);
11397 code = BFD_RELOC_32;
11398 break;
11399 case 1: code = BFD_RELOC_8; break;
11400 case 2: code = BFD_RELOC_16; break;
11401 case 4: code = BFD_RELOC_32; break;
11402 #ifdef BFD64
11403 case 8: code = BFD_RELOC_64; break;
11404 #endif
11405 }
11406 }
11407 break;
11408 }
11409
11410 if ((code == BFD_RELOC_32
11411 || code == BFD_RELOC_32_PCREL
11412 || code == BFD_RELOC_X86_64_32S)
11413 && GOT_symbol
11414 && fixp->fx_addsy == GOT_symbol)
11415 {
11416 if (!object_64bit)
11417 code = BFD_RELOC_386_GOTPC;
11418 else
11419 code = BFD_RELOC_X86_64_GOTPC32;
11420 }
11421 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11422 && GOT_symbol
11423 && fixp->fx_addsy == GOT_symbol)
11424 {
11425 code = BFD_RELOC_X86_64_GOTPC64;
11426 }
11427
11428 rel = XNEW (arelent);
11429 rel->sym_ptr_ptr = XNEW (asymbol *);
11430 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11431
11432 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11433
11434 if (!use_rela_relocations)
11435 {
11436 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11437 vtable entry to be used in the relocation's section offset. */
11438 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11439 rel->address = fixp->fx_offset;
11440 #if defined (OBJ_COFF) && defined (TE_PE)
11441 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11442 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11443 else
11444 #endif
11445 rel->addend = 0;
11446 }
11447 /* Use the rela in 64bit mode. */
11448 else
11449 {
11450 if (disallow_64bit_reloc)
11451 switch (code)
11452 {
11453 case BFD_RELOC_X86_64_DTPOFF64:
11454 case BFD_RELOC_X86_64_TPOFF64:
11455 case BFD_RELOC_64_PCREL:
11456 case BFD_RELOC_X86_64_GOTOFF64:
11457 case BFD_RELOC_X86_64_GOT64:
11458 case BFD_RELOC_X86_64_GOTPCREL64:
11459 case BFD_RELOC_X86_64_GOTPC64:
11460 case BFD_RELOC_X86_64_GOTPLT64:
11461 case BFD_RELOC_X86_64_PLTOFF64:
11462 as_bad_where (fixp->fx_file, fixp->fx_line,
11463 _("cannot represent relocation type %s in x32 mode"),
11464 bfd_get_reloc_code_name (code));
11465 break;
11466 default:
11467 break;
11468 }
11469
11470 if (!fixp->fx_pcrel)
11471 rel->addend = fixp->fx_offset;
11472 else
11473 switch (code)
11474 {
11475 case BFD_RELOC_X86_64_PLT32:
11476 case BFD_RELOC_X86_64_GOT32:
11477 case BFD_RELOC_X86_64_GOTPCREL:
11478 case BFD_RELOC_X86_64_GOTPCRELX:
11479 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11480 case BFD_RELOC_X86_64_TLSGD:
11481 case BFD_RELOC_X86_64_TLSLD:
11482 case BFD_RELOC_X86_64_GOTTPOFF:
11483 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11484 case BFD_RELOC_X86_64_TLSDESC_CALL:
11485 rel->addend = fixp->fx_offset - fixp->fx_size;
11486 break;
11487 default:
11488 rel->addend = (section->vma
11489 - fixp->fx_size
11490 + fixp->fx_addnumber
11491 + md_pcrel_from (fixp));
11492 break;
11493 }
11494 }
11495
11496 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11497 if (rel->howto == NULL)
11498 {
11499 as_bad_where (fixp->fx_file, fixp->fx_line,
11500 _("cannot represent relocation type %s"),
11501 bfd_get_reloc_code_name (code));
11502 /* Set howto to a garbage value so that we can keep going. */
11503 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11504 gas_assert (rel->howto != NULL);
11505 }
11506
11507 return rel;
11508 }
11509
11510 #include "tc-i386-intel.c"
11511
11512 void
11513 tc_x86_parse_to_dw2regnum (expressionS *exp)
11514 {
11515 int saved_naked_reg;
11516 char saved_register_dot;
11517
11518 saved_naked_reg = allow_naked_reg;
11519 allow_naked_reg = 1;
11520 saved_register_dot = register_chars['.'];
11521 register_chars['.'] = '.';
11522 allow_pseudo_reg = 1;
11523 expression_and_evaluate (exp);
11524 allow_pseudo_reg = 0;
11525 register_chars['.'] = saved_register_dot;
11526 allow_naked_reg = saved_naked_reg;
11527
11528 if (exp->X_op == O_register && exp->X_add_number >= 0)
11529 {
11530 if ((addressT) exp->X_add_number < i386_regtab_size)
11531 {
11532 exp->X_op = O_constant;
11533 exp->X_add_number = i386_regtab[exp->X_add_number]
11534 .dw2_regnum[flag_code >> 1];
11535 }
11536 else
11537 exp->X_op = O_illegal;
11538 }
11539 }
11540
11541 void
11542 tc_x86_frame_initial_instructions (void)
11543 {
11544 static unsigned int sp_regno[2];
11545
11546 if (!sp_regno[flag_code >> 1])
11547 {
11548 char *saved_input = input_line_pointer;
11549 char sp[][4] = {"esp", "rsp"};
11550 expressionS exp;
11551
11552 input_line_pointer = sp[flag_code >> 1];
11553 tc_x86_parse_to_dw2regnum (&exp);
11554 gas_assert (exp.X_op == O_constant);
11555 sp_regno[flag_code >> 1] = exp.X_add_number;
11556 input_line_pointer = saved_input;
11557 }
11558
11559 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11560 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11561 }
11562
11563 int
11564 x86_dwarf2_addr_size (void)
11565 {
11566 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11567 if (x86_elf_abi == X86_64_X32_ABI)
11568 return 4;
11569 #endif
11570 return bfd_arch_bits_per_address (stdoutput) / 8;
11571 }
11572
11573 int
11574 i386_elf_section_type (const char *str, size_t len)
11575 {
11576 if (flag_code == CODE_64BIT
11577 && len == sizeof ("unwind") - 1
11578 && strncmp (str, "unwind", 6) == 0)
11579 return SHT_X86_64_UNWIND;
11580
11581 return -1;
11582 }
11583
11584 #ifdef TE_SOLARIS
11585 void
11586 i386_solaris_fix_up_eh_frame (segT sec)
11587 {
11588 if (flag_code == CODE_64BIT)
11589 elf_section_type (sec) = SHT_X86_64_UNWIND;
11590 }
11591 #endif
11592
11593 #ifdef TE_PE
11594 void
11595 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11596 {
11597 expressionS exp;
11598
11599 exp.X_op = O_secrel;
11600 exp.X_add_symbol = symbol;
11601 exp.X_add_number = 0;
11602 emit_expr (&exp, size);
11603 }
11604 #endif
11605
11606 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11607 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11608
11609 bfd_vma
11610 x86_64_section_letter (int letter, const char **ptr_msg)
11611 {
11612 if (flag_code == CODE_64BIT)
11613 {
11614 if (letter == 'l')
11615 return SHF_X86_64_LARGE;
11616
11617 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11618 }
11619 else
11620 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11621 return -1;
11622 }
11623
11624 bfd_vma
11625 x86_64_section_word (char *str, size_t len)
11626 {
11627 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11628 return SHF_X86_64_LARGE;
11629
11630 return -1;
11631 }
11632
11633 static void
11634 handle_large_common (int small ATTRIBUTE_UNUSED)
11635 {
11636 if (flag_code != CODE_64BIT)
11637 {
11638 s_comm_internal (0, elf_common_parse);
11639 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11640 }
11641 else
11642 {
11643 static segT lbss_section;
11644 asection *saved_com_section_ptr = elf_com_section_ptr;
11645 asection *saved_bss_section = bss_section;
11646
11647 if (lbss_section == NULL)
11648 {
11649 flagword applicable;
11650 segT seg = now_seg;
11651 subsegT subseg = now_subseg;
11652
11653 /* The .lbss section is for local .largecomm symbols. */
11654 lbss_section = subseg_new (".lbss", 0);
11655 applicable = bfd_applicable_section_flags (stdoutput);
11656 bfd_set_section_flags (stdoutput, lbss_section,
11657 applicable & SEC_ALLOC);
11658 seg_info (lbss_section)->bss = 1;
11659
11660 subseg_set (seg, subseg);
11661 }
11662
11663 elf_com_section_ptr = &_bfd_elf_large_com_section;
11664 bss_section = lbss_section;
11665
11666 s_comm_internal (0, elf_common_parse);
11667
11668 elf_com_section_ptr = saved_com_section_ptr;
11669 bss_section = saved_bss_section;
11670 }
11671 }
11672 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.259994 seconds and 5 git commands to generate.