x86: Determine vector length from the last vector operand
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
847 CPU_ZNVER2_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
849 CPU_BTVER1_FLAGS, 0 },
850 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
851 CPU_BTVER2_FLAGS, 0 },
852 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
853 CPU_8087_FLAGS, 0 },
854 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
855 CPU_287_FLAGS, 0 },
856 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
857 CPU_387_FLAGS, 0 },
858 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
859 CPU_687_FLAGS, 0 },
860 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
861 CPU_MMX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
863 CPU_SSE_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
865 CPU_SSE2_FLAGS, 0 },
866 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
867 CPU_SSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
869 CPU_SSSE3_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_1_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
875 CPU_SSE4_2_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
877 CPU_AVX_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
879 CPU_AVX2_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
881 CPU_AVX512F_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
883 CPU_AVX512CD_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
885 CPU_AVX512ER_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
887 CPU_AVX512PF_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
889 CPU_AVX512DQ_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
891 CPU_AVX512BW_FLAGS, 0 },
892 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
893 CPU_AVX512VL_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
895 CPU_VMX_FLAGS, 0 },
896 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
897 CPU_VMFUNC_FLAGS, 0 },
898 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
899 CPU_SMX_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
901 CPU_XSAVE_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEOPT_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
905 CPU_XSAVEC_FLAGS, 0 },
906 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
907 CPU_XSAVES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
909 CPU_AES_FLAGS, 0 },
910 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 0 },
912 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
913 CPU_PCLMUL_FLAGS, 1 },
914 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
915 CPU_FSGSBASE_FLAGS, 0 },
916 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
917 CPU_RDRND_FLAGS, 0 },
918 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
919 CPU_F16C_FLAGS, 0 },
920 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
921 CPU_BMI2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
923 CPU_FMA_FLAGS, 0 },
924 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
925 CPU_FMA4_FLAGS, 0 },
926 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
927 CPU_XOP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
929 CPU_LWP_FLAGS, 0 },
930 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
931 CPU_MOVBE_FLAGS, 0 },
932 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
933 CPU_CX16_FLAGS, 0 },
934 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
935 CPU_EPT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
937 CPU_LZCNT_FLAGS, 0 },
938 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
939 CPU_HLE_FLAGS, 0 },
940 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
941 CPU_RTM_FLAGS, 0 },
942 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
943 CPU_INVPCID_FLAGS, 0 },
944 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
945 CPU_CLFLUSH_FLAGS, 0 },
946 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
947 CPU_NOP_FLAGS, 0 },
948 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
949 CPU_SYSCALL_FLAGS, 0 },
950 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
951 CPU_RDTSCP_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
953 CPU_3DNOW_FLAGS, 0 },
954 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
955 CPU_3DNOWA_FLAGS, 0 },
956 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
957 CPU_PADLOCK_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 1 },
960 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
961 CPU_SVME_FLAGS, 0 },
962 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
963 CPU_SSE4A_FLAGS, 0 },
964 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
965 CPU_ABM_FLAGS, 0 },
966 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
967 CPU_BMI_FLAGS, 0 },
968 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
969 CPU_TBM_FLAGS, 0 },
970 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
971 CPU_ADX_FLAGS, 0 },
972 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
973 CPU_RDSEED_FLAGS, 0 },
974 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
975 CPU_PRFCHW_FLAGS, 0 },
976 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
977 CPU_SMAP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
979 CPU_MPX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
981 CPU_SHA_FLAGS, 0 },
982 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
983 CPU_CLFLUSHOPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
985 CPU_PREFETCHWT1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
987 CPU_SE1_FLAGS, 0 },
988 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
989 CPU_CLWB_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
991 CPU_AVX512IFMA_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
993 CPU_AVX512VBMI_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4FMAPS_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4VNNIW_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VBMI2_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VNNI_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_BITALG_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1007 CPU_CLZERO_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1009 CPU_MWAITX_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1011 CPU_OSPKE_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1013 CPU_RDPID_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1015 CPU_PTWRITE_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1017 CPU_IBT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1019 CPU_SHSTK_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1021 CPU_GFNI_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1023 CPU_VAES_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1025 CPU_VPCLMULQDQ_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1027 CPU_WBNOINVD_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1029 CPU_PCONFIG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1031 CPU_WAITPKG_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1033 CPU_CLDEMOTE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIRI_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIR64B_FLAGS, 0 },
1038 };
1039
1040 static const noarch_entry cpu_noarch[] =
1041 {
1042 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1043 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1044 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1045 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1046 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1047 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1048 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1049 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1054 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1055 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1070 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1071 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1072 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1074 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1075 };
1076
1077 #ifdef I386COFF
1078 /* Like s_lcomm_internal in gas/read.c but the alignment string
1079 is allowed to be optional. */
1080
1081 static symbolS *
1082 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1083 {
1084 addressT align = 0;
1085
1086 SKIP_WHITESPACE ();
1087
1088 if (needs_align
1089 && *input_line_pointer == ',')
1090 {
1091 align = parse_align (needs_align - 1);
1092
1093 if (align == (addressT) -1)
1094 return NULL;
1095 }
1096 else
1097 {
1098 if (size >= 8)
1099 align = 3;
1100 else if (size >= 4)
1101 align = 2;
1102 else if (size >= 2)
1103 align = 1;
1104 else
1105 align = 0;
1106 }
1107
1108 bss_alloc (symbolP, size, align);
1109 return symbolP;
1110 }
1111
1112 static void
1113 pe_lcomm (int needs_align)
1114 {
1115 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1116 }
1117 #endif
1118
1119 const pseudo_typeS md_pseudo_table[] =
1120 {
1121 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1122 {"align", s_align_bytes, 0},
1123 #else
1124 {"align", s_align_ptwo, 0},
1125 #endif
1126 {"arch", set_cpu_arch, 0},
1127 #ifndef I386COFF
1128 {"bss", s_bss, 0},
1129 #else
1130 {"lcomm", pe_lcomm, 1},
1131 #endif
1132 {"ffloat", float_cons, 'f'},
1133 {"dfloat", float_cons, 'd'},
1134 {"tfloat", float_cons, 'x'},
1135 {"value", cons, 2},
1136 {"slong", signed_cons, 4},
1137 {"noopt", s_ignore, 0},
1138 {"optim", s_ignore, 0},
1139 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1140 {"code16", set_code_flag, CODE_16BIT},
1141 {"code32", set_code_flag, CODE_32BIT},
1142 #ifdef BFD64
1143 {"code64", set_code_flag, CODE_64BIT},
1144 #endif
1145 {"intel_syntax", set_intel_syntax, 1},
1146 {"att_syntax", set_intel_syntax, 0},
1147 {"intel_mnemonic", set_intel_mnemonic, 1},
1148 {"att_mnemonic", set_intel_mnemonic, 0},
1149 {"allow_index_reg", set_allow_index_reg, 1},
1150 {"disallow_index_reg", set_allow_index_reg, 0},
1151 {"sse_check", set_check, 0},
1152 {"operand_check", set_check, 1},
1153 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1154 {"largecomm", handle_large_common, 0},
1155 #else
1156 {"file", dwarf2_directive_file, 0},
1157 {"loc", dwarf2_directive_loc, 0},
1158 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1159 #endif
1160 #ifdef TE_PE
1161 {"secrel32", pe_directive_secrel, 0},
1162 #endif
1163 {0, 0, 0}
1164 };
1165
1166 /* For interface with expression (). */
1167 extern char *input_line_pointer;
1168
1169 /* Hash table for instruction mnemonic lookup. */
1170 static struct hash_control *op_hash;
1171
1172 /* Hash table for register lookup. */
1173 static struct hash_control *reg_hash;
1174 \f
1175 /* Various efficient no-op patterns for aligning code labels.
1176 Note: Don't try to assemble the instructions in the comments.
1177 0L and 0w are not legal. */
1178 static const unsigned char f32_1[] =
1179 {0x90}; /* nop */
1180 static const unsigned char f32_2[] =
1181 {0x66,0x90}; /* xchg %ax,%ax */
1182 static const unsigned char f32_3[] =
1183 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1184 static const unsigned char f32_4[] =
1185 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1186 static const unsigned char f32_6[] =
1187 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1188 static const unsigned char f32_7[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1190 static const unsigned char f16_3[] =
1191 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1192 static const unsigned char f16_4[] =
1193 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1194 static const unsigned char jump_disp8[] =
1195 {0xeb}; /* jmp disp8 */
1196 static const unsigned char jump32_disp32[] =
1197 {0xe9}; /* jmp disp32 */
1198 static const unsigned char jump16_disp32[] =
1199 {0x66,0xe9}; /* jmp disp32 */
1200 /* 32-bit NOPs patterns. */
1201 static const unsigned char *const f32_patt[] = {
1202 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1203 };
1204 /* 16-bit NOPs patterns. */
1205 static const unsigned char *const f16_patt[] = {
1206 f32_1, f32_2, f16_3, f16_4
1207 };
1208 /* nopl (%[re]ax) */
1209 static const unsigned char alt_3[] =
1210 {0x0f,0x1f,0x00};
1211 /* nopl 0(%[re]ax) */
1212 static const unsigned char alt_4[] =
1213 {0x0f,0x1f,0x40,0x00};
1214 /* nopl 0(%[re]ax,%[re]ax,1) */
1215 static const unsigned char alt_5[] =
1216 {0x0f,0x1f,0x44,0x00,0x00};
1217 /* nopw 0(%[re]ax,%[re]ax,1) */
1218 static const unsigned char alt_6[] =
1219 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1220 /* nopl 0L(%[re]ax) */
1221 static const unsigned char alt_7[] =
1222 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1223 /* nopl 0L(%[re]ax,%[re]ax,1) */
1224 static const unsigned char alt_8[] =
1225 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226 /* nopw 0L(%[re]ax,%[re]ax,1) */
1227 static const unsigned char alt_9[] =
1228 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1230 static const unsigned char alt_10[] =
1231 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1232 /* data16 nopw %cs:0L(%eax,%eax,1) */
1233 static const unsigned char alt_11[] =
1234 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1235 /* 32-bit and 64-bit NOPs patterns. */
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10, alt_11
1239 };
1240
1241 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1242 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1243
1244 static void
1245 i386_output_nops (char *where, const unsigned char *const *patt,
1246 int count, int max_single_nop_size)
1247
1248 {
1249 /* Place the longer NOP first. */
1250 int last;
1251 int offset;
1252 const unsigned char *nops = patt[max_single_nop_size - 1];
1253
1254 /* Use the smaller one if the requsted one isn't available. */
1255 if (nops == NULL)
1256 {
1257 max_single_nop_size--;
1258 nops = patt[max_single_nop_size - 1];
1259 }
1260
1261 last = count % max_single_nop_size;
1262
1263 count -= last;
1264 for (offset = 0; offset < count; offset += max_single_nop_size)
1265 memcpy (where + offset, nops, max_single_nop_size);
1266
1267 if (last)
1268 {
1269 nops = patt[last - 1];
1270 if (nops == NULL)
1271 {
1272 /* Use the smaller one plus one-byte NOP if the needed one
1273 isn't available. */
1274 last--;
1275 nops = patt[last - 1];
1276 memcpy (where + offset, nops, last);
1277 where[offset + last] = *patt[0];
1278 }
1279 else
1280 memcpy (where + offset, nops, last);
1281 }
1282 }
1283
1284 static INLINE int
1285 fits_in_imm7 (offsetT num)
1286 {
1287 return (num & 0x7f) == num;
1288 }
1289
1290 static INLINE int
1291 fits_in_imm31 (offsetT num)
1292 {
1293 return (num & 0x7fffffff) == num;
1294 }
1295
1296 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1297 single NOP instruction LIMIT. */
1298
1299 void
1300 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1301 {
1302 const unsigned char *const *patt = NULL;
1303 int max_single_nop_size;
1304 /* Maximum number of NOPs before switching to jump over NOPs. */
1305 int max_number_of_nops;
1306
1307 switch (fragP->fr_type)
1308 {
1309 case rs_fill_nop:
1310 case rs_align_code:
1311 break;
1312 default:
1313 return;
1314 }
1315
1316 /* We need to decide which NOP sequence to use for 32bit and
1317 64bit. When -mtune= is used:
1318
1319 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1320 PROCESSOR_GENERIC32, f32_patt will be used.
1321 2. For the rest, alt_patt will be used.
1322
1323 When -mtune= isn't used, alt_patt will be used if
1324 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1325 be used.
1326
1327 When -march= or .arch is used, we can't use anything beyond
1328 cpu_arch_isa_flags. */
1329
1330 if (flag_code == CODE_16BIT)
1331 {
1332 patt = f16_patt;
1333 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1334 /* Limit number of NOPs to 2 in 16-bit mode. */
1335 max_number_of_nops = 2;
1336 }
1337 else
1338 {
1339 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1340 {
1341 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1342 switch (cpu_arch_tune)
1343 {
1344 case PROCESSOR_UNKNOWN:
1345 /* We use cpu_arch_isa_flags to check if we SHOULD
1346 optimize with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1348 patt = alt_patt;
1349 else
1350 patt = f32_patt;
1351 break;
1352 case PROCESSOR_PENTIUM4:
1353 case PROCESSOR_NOCONA:
1354 case PROCESSOR_CORE:
1355 case PROCESSOR_CORE2:
1356 case PROCESSOR_COREI7:
1357 case PROCESSOR_L1OM:
1358 case PROCESSOR_K1OM:
1359 case PROCESSOR_GENERIC64:
1360 case PROCESSOR_K6:
1361 case PROCESSOR_ATHLON:
1362 case PROCESSOR_K8:
1363 case PROCESSOR_AMDFAM10:
1364 case PROCESSOR_BD:
1365 case PROCESSOR_ZNVER:
1366 case PROCESSOR_BT:
1367 patt = alt_patt;
1368 break;
1369 case PROCESSOR_I386:
1370 case PROCESSOR_I486:
1371 case PROCESSOR_PENTIUM:
1372 case PROCESSOR_PENTIUMPRO:
1373 case PROCESSOR_IAMCU:
1374 case PROCESSOR_GENERIC32:
1375 patt = f32_patt;
1376 break;
1377 }
1378 }
1379 else
1380 {
1381 switch (fragP->tc_frag_data.tune)
1382 {
1383 case PROCESSOR_UNKNOWN:
1384 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1385 PROCESSOR_UNKNOWN. */
1386 abort ();
1387 break;
1388
1389 case PROCESSOR_I386:
1390 case PROCESSOR_I486:
1391 case PROCESSOR_PENTIUM:
1392 case PROCESSOR_IAMCU:
1393 case PROCESSOR_K6:
1394 case PROCESSOR_ATHLON:
1395 case PROCESSOR_K8:
1396 case PROCESSOR_AMDFAM10:
1397 case PROCESSOR_BD:
1398 case PROCESSOR_ZNVER:
1399 case PROCESSOR_BT:
1400 case PROCESSOR_GENERIC32:
1401 /* We use cpu_arch_isa_flags to check if we CAN optimize
1402 with nops. */
1403 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1404 patt = alt_patt;
1405 else
1406 patt = f32_patt;
1407 break;
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_PENTIUM4:
1410 case PROCESSOR_NOCONA:
1411 case PROCESSOR_CORE:
1412 case PROCESSOR_CORE2:
1413 case PROCESSOR_COREI7:
1414 case PROCESSOR_L1OM:
1415 case PROCESSOR_K1OM:
1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1417 patt = alt_patt;
1418 else
1419 patt = f32_patt;
1420 break;
1421 case PROCESSOR_GENERIC64:
1422 patt = alt_patt;
1423 break;
1424 }
1425 }
1426
1427 if (patt == f32_patt)
1428 {
1429 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1430 /* Limit number of NOPs to 2 for older processors. */
1431 max_number_of_nops = 2;
1432 }
1433 else
1434 {
1435 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1436 /* Limit number of NOPs to 7 for newer processors. */
1437 max_number_of_nops = 7;
1438 }
1439 }
1440
1441 if (limit == 0)
1442 limit = max_single_nop_size;
1443
1444 if (fragP->fr_type == rs_fill_nop)
1445 {
1446 /* Output NOPs for .nop directive. */
1447 if (limit > max_single_nop_size)
1448 {
1449 as_bad_where (fragP->fr_file, fragP->fr_line,
1450 _("invalid single nop size: %d "
1451 "(expect within [0, %d])"),
1452 limit, max_single_nop_size);
1453 return;
1454 }
1455 }
1456 else
1457 fragP->fr_var = count;
1458
1459 if ((count / max_single_nop_size) > max_number_of_nops)
1460 {
1461 /* Generate jump over NOPs. */
1462 offsetT disp = count - 2;
1463 if (fits_in_imm7 (disp))
1464 {
1465 /* Use "jmp disp8" if possible. */
1466 count = disp;
1467 where[0] = jump_disp8[0];
1468 where[1] = count;
1469 where += 2;
1470 }
1471 else
1472 {
1473 unsigned int size_of_jump;
1474
1475 if (flag_code == CODE_16BIT)
1476 {
1477 where[0] = jump16_disp32[0];
1478 where[1] = jump16_disp32[1];
1479 size_of_jump = 2;
1480 }
1481 else
1482 {
1483 where[0] = jump32_disp32[0];
1484 size_of_jump = 1;
1485 }
1486
1487 count -= size_of_jump + 4;
1488 if (!fits_in_imm31 (count))
1489 {
1490 as_bad_where (fragP->fr_file, fragP->fr_line,
1491 _("jump over nop padding out of range"));
1492 return;
1493 }
1494
1495 md_number_to_chars (where + size_of_jump, count, 4);
1496 where += size_of_jump + 4;
1497 }
1498 }
1499
1500 /* Generate multiple NOPs. */
1501 i386_output_nops (where, patt, count, limit);
1502 }
1503
1504 static INLINE int
1505 operand_type_all_zero (const union i386_operand_type *x)
1506 {
1507 switch (ARRAY_SIZE(x->array))
1508 {
1509 case 3:
1510 if (x->array[2])
1511 return 0;
1512 /* Fall through. */
1513 case 2:
1514 if (x->array[1])
1515 return 0;
1516 /* Fall through. */
1517 case 1:
1518 return !x->array[0];
1519 default:
1520 abort ();
1521 }
1522 }
1523
1524 static INLINE void
1525 operand_type_set (union i386_operand_type *x, unsigned int v)
1526 {
1527 switch (ARRAY_SIZE(x->array))
1528 {
1529 case 3:
1530 x->array[2] = v;
1531 /* Fall through. */
1532 case 2:
1533 x->array[1] = v;
1534 /* Fall through. */
1535 case 1:
1536 x->array[0] = v;
1537 /* Fall through. */
1538 break;
1539 default:
1540 abort ();
1541 }
1542 }
1543
1544 static INLINE int
1545 operand_type_equal (const union i386_operand_type *x,
1546 const union i386_operand_type *y)
1547 {
1548 switch (ARRAY_SIZE(x->array))
1549 {
1550 case 3:
1551 if (x->array[2] != y->array[2])
1552 return 0;
1553 /* Fall through. */
1554 case 2:
1555 if (x->array[1] != y->array[1])
1556 return 0;
1557 /* Fall through. */
1558 case 1:
1559 return x->array[0] == y->array[0];
1560 break;
1561 default:
1562 abort ();
1563 }
1564 }
1565
1566 static INLINE int
1567 cpu_flags_all_zero (const union i386_cpu_flags *x)
1568 {
1569 switch (ARRAY_SIZE(x->array))
1570 {
1571 case 4:
1572 if (x->array[3])
1573 return 0;
1574 /* Fall through. */
1575 case 3:
1576 if (x->array[2])
1577 return 0;
1578 /* Fall through. */
1579 case 2:
1580 if (x->array[1])
1581 return 0;
1582 /* Fall through. */
1583 case 1:
1584 return !x->array[0];
1585 default:
1586 abort ();
1587 }
1588 }
1589
1590 static INLINE int
1591 cpu_flags_equal (const union i386_cpu_flags *x,
1592 const union i386_cpu_flags *y)
1593 {
1594 switch (ARRAY_SIZE(x->array))
1595 {
1596 case 4:
1597 if (x->array[3] != y->array[3])
1598 return 0;
1599 /* Fall through. */
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_check_cpu64 (i386_cpu_flags f)
1618 {
1619 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1620 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1621 }
1622
1623 static INLINE i386_cpu_flags
1624 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1625 {
1626 switch (ARRAY_SIZE (x.array))
1627 {
1628 case 4:
1629 x.array [3] &= y.array [3];
1630 /* Fall through. */
1631 case 3:
1632 x.array [2] &= y.array [2];
1633 /* Fall through. */
1634 case 2:
1635 x.array [1] &= y.array [1];
1636 /* Fall through. */
1637 case 1:
1638 x.array [0] &= y.array [0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 return x;
1644 }
1645
1646 static INLINE i386_cpu_flags
1647 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1648 {
1649 switch (ARRAY_SIZE (x.array))
1650 {
1651 case 4:
1652 x.array [3] |= y.array [3];
1653 /* Fall through. */
1654 case 3:
1655 x.array [2] |= y.array [2];
1656 /* Fall through. */
1657 case 2:
1658 x.array [1] |= y.array [1];
1659 /* Fall through. */
1660 case 1:
1661 x.array [0] |= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
1666 return x;
1667 }
1668
1669 static INLINE i386_cpu_flags
1670 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1671 {
1672 switch (ARRAY_SIZE (x.array))
1673 {
1674 case 4:
1675 x.array [3] &= ~y.array [3];
1676 /* Fall through. */
1677 case 3:
1678 x.array [2] &= ~y.array [2];
1679 /* Fall through. */
1680 case 2:
1681 x.array [1] &= ~y.array [1];
1682 /* Fall through. */
1683 case 1:
1684 x.array [0] &= ~y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690 }
1691
1692 #define CPU_FLAGS_ARCH_MATCH 0x1
1693 #define CPU_FLAGS_64BIT_MATCH 0x2
1694
1695 #define CPU_FLAGS_PERFECT_MATCH \
1696 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1697
1698 /* Return CPU flags match bits. */
1699
1700 static int
1701 cpu_flags_match (const insn_template *t)
1702 {
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
1709 if (cpu_flags_all_zero (&x))
1710 {
1711 /* This instruction is available on all archs. */
1712 match |= CPU_FLAGS_ARCH_MATCH;
1713 }
1714 else
1715 {
1716 /* This instruction is available only on some archs. */
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
1719 /* AVX512VL is no standalone feature - match it and then strip it. */
1720 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1721 return match;
1722 x.bitfield.cpuavx512vl = 0;
1723
1724 cpu = cpu_flags_and (x, cpu);
1725 if (!cpu_flags_all_zero (&cpu))
1726 {
1727 if (x.bitfield.cpuavx)
1728 {
1729 /* We need to check a few extra flags with AVX. */
1730 if (cpu.bitfield.cpuavx
1731 && (!t->opcode_modifier.sse2avx || sse2avx)
1732 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else if (x.bitfield.cpuavx512f)
1738 {
1739 /* We need to check a few extra flags with AVX512F. */
1740 if (cpu.bitfield.cpuavx512f
1741 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1742 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1743 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1744 match |= CPU_FLAGS_ARCH_MATCH;
1745 }
1746 else
1747 match |= CPU_FLAGS_ARCH_MATCH;
1748 }
1749 }
1750 return match;
1751 }
1752
1753 static INLINE i386_operand_type
1754 operand_type_and (i386_operand_type x, i386_operand_type y)
1755 {
1756 switch (ARRAY_SIZE (x.array))
1757 {
1758 case 3:
1759 x.array [2] &= y.array [2];
1760 /* Fall through. */
1761 case 2:
1762 x.array [1] &= y.array [1];
1763 /* Fall through. */
1764 case 1:
1765 x.array [0] &= y.array [0];
1766 break;
1767 default:
1768 abort ();
1769 }
1770 return x;
1771 }
1772
1773 static INLINE i386_operand_type
1774 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 3:
1779 x.array [2] &= ~y.array [2];
1780 /* Fall through. */
1781 case 2:
1782 x.array [1] &= ~y.array [1];
1783 /* Fall through. */
1784 case 1:
1785 x.array [0] &= ~y.array [0];
1786 break;
1787 default:
1788 abort ();
1789 }
1790 return x;
1791 }
1792
1793 static INLINE i386_operand_type
1794 operand_type_or (i386_operand_type x, i386_operand_type y)
1795 {
1796 switch (ARRAY_SIZE (x.array))
1797 {
1798 case 3:
1799 x.array [2] |= y.array [2];
1800 /* Fall through. */
1801 case 2:
1802 x.array [1] |= y.array [1];
1803 /* Fall through. */
1804 case 1:
1805 x.array [0] |= y.array [0];
1806 break;
1807 default:
1808 abort ();
1809 }
1810 return x;
1811 }
1812
1813 static INLINE i386_operand_type
1814 operand_type_xor (i386_operand_type x, i386_operand_type y)
1815 {
1816 switch (ARRAY_SIZE (x.array))
1817 {
1818 case 3:
1819 x.array [2] ^= y.array [2];
1820 /* Fall through. */
1821 case 2:
1822 x.array [1] ^= y.array [1];
1823 /* Fall through. */
1824 case 1:
1825 x.array [0] ^= y.array [0];
1826 break;
1827 default:
1828 abort ();
1829 }
1830 return x;
1831 }
1832
1833 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1834 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1835 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1836 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1837 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1838 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1839 static const i386_operand_type anydisp
1840 = OPERAND_TYPE_ANYDISP;
1841 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1842 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1843 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1844 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1845 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1846 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1847 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1848 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1849 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1850 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1851 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1852 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1853
1854 enum operand_type
1855 {
1856 reg,
1857 imm,
1858 disp,
1859 anymem
1860 };
1861
1862 static INLINE int
1863 operand_type_check (i386_operand_type t, enum operand_type c)
1864 {
1865 switch (c)
1866 {
1867 case reg:
1868 return t.bitfield.reg;
1869
1870 case imm:
1871 return (t.bitfield.imm8
1872 || t.bitfield.imm8s
1873 || t.bitfield.imm16
1874 || t.bitfield.imm32
1875 || t.bitfield.imm32s
1876 || t.bitfield.imm64);
1877
1878 case disp:
1879 return (t.bitfield.disp8
1880 || t.bitfield.disp16
1881 || t.bitfield.disp32
1882 || t.bitfield.disp32s
1883 || t.bitfield.disp64);
1884
1885 case anymem:
1886 return (t.bitfield.disp8
1887 || t.bitfield.disp16
1888 || t.bitfield.disp32
1889 || t.bitfield.disp32s
1890 || t.bitfield.disp64
1891 || t.bitfield.baseindex);
1892
1893 default:
1894 abort ();
1895 }
1896
1897 return 0;
1898 }
1899
1900 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1901 between operand GIVEN and opeand WANTED for instruction template T. */
1902
1903 static INLINE int
1904 match_operand_size (const insn_template *t, unsigned int wanted,
1905 unsigned int given)
1906 {
1907 return !((i.types[given].bitfield.byte
1908 && !t->operand_types[wanted].bitfield.byte)
1909 || (i.types[given].bitfield.word
1910 && !t->operand_types[wanted].bitfield.word)
1911 || (i.types[given].bitfield.dword
1912 && !t->operand_types[wanted].bitfield.dword)
1913 || (i.types[given].bitfield.qword
1914 && !t->operand_types[wanted].bitfield.qword)
1915 || (i.types[given].bitfield.tbyte
1916 && !t->operand_types[wanted].bitfield.tbyte));
1917 }
1918
1919 /* Return 1 if there is no conflict in SIMD register between operand
1920 GIVEN and opeand WANTED for instruction template T. */
1921
1922 static INLINE int
1923 match_simd_size (const insn_template *t, unsigned int wanted,
1924 unsigned int given)
1925 {
1926 return !((i.types[given].bitfield.xmmword
1927 && !t->operand_types[wanted].bitfield.xmmword)
1928 || (i.types[given].bitfield.ymmword
1929 && !t->operand_types[wanted].bitfield.ymmword)
1930 || (i.types[given].bitfield.zmmword
1931 && !t->operand_types[wanted].bitfield.zmmword));
1932 }
1933
1934 /* Return 1 if there is no conflict in any size between operand GIVEN
1935 and opeand WANTED for instruction template T. */
1936
1937 static INLINE int
1938 match_mem_size (const insn_template *t, unsigned int wanted,
1939 unsigned int given)
1940 {
1941 return (match_operand_size (t, wanted, given)
1942 && !((i.types[given].bitfield.unspecified
1943 && !i.broadcast
1944 && !t->operand_types[wanted].bitfield.unspecified)
1945 || (i.types[given].bitfield.fword
1946 && !t->operand_types[wanted].bitfield.fword)
1947 /* For scalar opcode templates to allow register and memory
1948 operands at the same time, some special casing is needed
1949 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1950 down-conversion vpmov*. */
1951 || ((t->operand_types[wanted].bitfield.regsimd
1952 && !t->opcode_modifier.broadcast
1953 && (t->operand_types[wanted].bitfield.byte
1954 || t->operand_types[wanted].bitfield.word
1955 || t->operand_types[wanted].bitfield.dword
1956 || t->operand_types[wanted].bitfield.qword))
1957 ? (i.types[given].bitfield.xmmword
1958 || i.types[given].bitfield.ymmword
1959 || i.types[given].bitfield.zmmword)
1960 : !match_simd_size(t, wanted, given))));
1961 }
1962
1963 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1964 operands for instruction template T, and it has MATCH_REVERSE set if there
1965 is no size conflict on any operands for the template with operands reversed
1966 (and the template allows for reversing in the first place). */
1967
1968 #define MATCH_STRAIGHT 1
1969 #define MATCH_REVERSE 2
1970
1971 static INLINE unsigned int
1972 operand_size_match (const insn_template *t)
1973 {
1974 unsigned int j, match = MATCH_STRAIGHT;
1975
1976 /* Don't check jump instructions. */
1977 if (t->opcode_modifier.jump
1978 || t->opcode_modifier.jumpbyte
1979 || t->opcode_modifier.jumpdword
1980 || t->opcode_modifier.jumpintersegment)
1981 return match;
1982
1983 /* Check memory and accumulator operand size. */
1984 for (j = 0; j < i.operands; j++)
1985 {
1986 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1987 && t->operand_types[j].bitfield.anysize)
1988 continue;
1989
1990 if (t->operand_types[j].bitfield.reg
1991 && !match_operand_size (t, j, j))
1992 {
1993 match = 0;
1994 break;
1995 }
1996
1997 if (t->operand_types[j].bitfield.regsimd
1998 && !match_simd_size (t, j, j))
1999 {
2000 match = 0;
2001 break;
2002 }
2003
2004 if (t->operand_types[j].bitfield.acc
2005 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2006 {
2007 match = 0;
2008 break;
2009 }
2010
2011 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
2012 {
2013 match = 0;
2014 break;
2015 }
2016 }
2017
2018 if (!t->opcode_modifier.d)
2019 {
2020 mismatch:
2021 if (!match)
2022 i.error = operand_size_mismatch;
2023 return match;
2024 }
2025
2026 /* Check reverse. */
2027 gas_assert (i.operands == 2);
2028
2029 for (j = 0; j < 2; j++)
2030 {
2031 if ((t->operand_types[j].bitfield.reg
2032 || t->operand_types[j].bitfield.acc)
2033 && !match_operand_size (t, j, !j))
2034 goto mismatch;
2035
2036 if (i.types[!j].bitfield.mem
2037 && !match_mem_size (t, j, !j))
2038 goto mismatch;
2039 }
2040
2041 return match | MATCH_REVERSE;
2042 }
2043
2044 static INLINE int
2045 operand_type_match (i386_operand_type overlap,
2046 i386_operand_type given)
2047 {
2048 i386_operand_type temp = overlap;
2049
2050 temp.bitfield.jumpabsolute = 0;
2051 temp.bitfield.unspecified = 0;
2052 temp.bitfield.byte = 0;
2053 temp.bitfield.word = 0;
2054 temp.bitfield.dword = 0;
2055 temp.bitfield.fword = 0;
2056 temp.bitfield.qword = 0;
2057 temp.bitfield.tbyte = 0;
2058 temp.bitfield.xmmword = 0;
2059 temp.bitfield.ymmword = 0;
2060 temp.bitfield.zmmword = 0;
2061 if (operand_type_all_zero (&temp))
2062 goto mismatch;
2063
2064 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2065 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2066 return 1;
2067
2068 mismatch:
2069 i.error = operand_type_mismatch;
2070 return 0;
2071 }
2072
2073 /* If given types g0 and g1 are registers they must be of the same type
2074 unless the expected operand type register overlap is null.
2075 Memory operand size of certain SIMD instructions is also being checked
2076 here. */
2077
2078 static INLINE int
2079 operand_type_register_match (i386_operand_type g0,
2080 i386_operand_type t0,
2081 i386_operand_type g1,
2082 i386_operand_type t1)
2083 {
2084 if (!g0.bitfield.reg
2085 && !g0.bitfield.regsimd
2086 && (!operand_type_check (g0, anymem)
2087 || g0.bitfield.unspecified
2088 || !t0.bitfield.regsimd))
2089 return 1;
2090
2091 if (!g1.bitfield.reg
2092 && !g1.bitfield.regsimd
2093 && (!operand_type_check (g1, anymem)
2094 || g1.bitfield.unspecified
2095 || !t1.bitfield.regsimd))
2096 return 1;
2097
2098 if (g0.bitfield.byte == g1.bitfield.byte
2099 && g0.bitfield.word == g1.bitfield.word
2100 && g0.bitfield.dword == g1.bitfield.dword
2101 && g0.bitfield.qword == g1.bitfield.qword
2102 && g0.bitfield.xmmword == g1.bitfield.xmmword
2103 && g0.bitfield.ymmword == g1.bitfield.ymmword
2104 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2105 return 1;
2106
2107 if (!(t0.bitfield.byte & t1.bitfield.byte)
2108 && !(t0.bitfield.word & t1.bitfield.word)
2109 && !(t0.bitfield.dword & t1.bitfield.dword)
2110 && !(t0.bitfield.qword & t1.bitfield.qword)
2111 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2112 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2113 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2114 return 1;
2115
2116 i.error = register_type_mismatch;
2117
2118 return 0;
2119 }
2120
2121 static INLINE unsigned int
2122 register_number (const reg_entry *r)
2123 {
2124 unsigned int nr = r->reg_num;
2125
2126 if (r->reg_flags & RegRex)
2127 nr += 8;
2128
2129 if (r->reg_flags & RegVRex)
2130 nr += 16;
2131
2132 return nr;
2133 }
2134
2135 static INLINE unsigned int
2136 mode_from_disp_size (i386_operand_type t)
2137 {
2138 if (t.bitfield.disp8)
2139 return 1;
2140 else if (t.bitfield.disp16
2141 || t.bitfield.disp32
2142 || t.bitfield.disp32s)
2143 return 2;
2144 else
2145 return 0;
2146 }
2147
2148 static INLINE int
2149 fits_in_signed_byte (addressT num)
2150 {
2151 return num + 0x80 <= 0xff;
2152 }
2153
2154 static INLINE int
2155 fits_in_unsigned_byte (addressT num)
2156 {
2157 return num <= 0xff;
2158 }
2159
2160 static INLINE int
2161 fits_in_unsigned_word (addressT num)
2162 {
2163 return num <= 0xffff;
2164 }
2165
2166 static INLINE int
2167 fits_in_signed_word (addressT num)
2168 {
2169 return num + 0x8000 <= 0xffff;
2170 }
2171
2172 static INLINE int
2173 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2174 {
2175 #ifndef BFD64
2176 return 1;
2177 #else
2178 return num + 0x80000000 <= 0xffffffff;
2179 #endif
2180 } /* fits_in_signed_long() */
2181
2182 static INLINE int
2183 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2184 {
2185 #ifndef BFD64
2186 return 1;
2187 #else
2188 return num <= 0xffffffff;
2189 #endif
2190 } /* fits_in_unsigned_long() */
2191
2192 static INLINE int
2193 fits_in_disp8 (offsetT num)
2194 {
2195 int shift = i.memshift;
2196 unsigned int mask;
2197
2198 if (shift == -1)
2199 abort ();
2200
2201 mask = (1 << shift) - 1;
2202
2203 /* Return 0 if NUM isn't properly aligned. */
2204 if ((num & mask))
2205 return 0;
2206
2207 /* Check if NUM will fit in 8bit after shift. */
2208 return fits_in_signed_byte (num >> shift);
2209 }
2210
2211 static INLINE int
2212 fits_in_imm4 (offsetT num)
2213 {
2214 return (num & 0xf) == num;
2215 }
2216
2217 static i386_operand_type
2218 smallest_imm_type (offsetT num)
2219 {
2220 i386_operand_type t;
2221
2222 operand_type_set (&t, 0);
2223 t.bitfield.imm64 = 1;
2224
2225 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2226 {
2227 /* This code is disabled on the 486 because all the Imm1 forms
2228 in the opcode table are slower on the i486. They're the
2229 versions with the implicitly specified single-position
2230 displacement, which has another syntax if you really want to
2231 use that form. */
2232 t.bitfield.imm1 = 1;
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_signed_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm8s = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_unsigned_byte (num))
2248 {
2249 t.bitfield.imm8 = 1;
2250 t.bitfield.imm16 = 1;
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2255 {
2256 t.bitfield.imm16 = 1;
2257 t.bitfield.imm32 = 1;
2258 t.bitfield.imm32s = 1;
2259 }
2260 else if (fits_in_signed_long (num))
2261 {
2262 t.bitfield.imm32 = 1;
2263 t.bitfield.imm32s = 1;
2264 }
2265 else if (fits_in_unsigned_long (num))
2266 t.bitfield.imm32 = 1;
2267
2268 return t;
2269 }
2270
2271 static offsetT
2272 offset_in_range (offsetT val, int size)
2273 {
2274 addressT mask;
2275
2276 switch (size)
2277 {
2278 case 1: mask = ((addressT) 1 << 8) - 1; break;
2279 case 2: mask = ((addressT) 1 << 16) - 1; break;
2280 case 4: mask = ((addressT) 2 << 31) - 1; break;
2281 #ifdef BFD64
2282 case 8: mask = ((addressT) 2 << 63) - 1; break;
2283 #endif
2284 default: abort ();
2285 }
2286
2287 #ifdef BFD64
2288 /* If BFD64, sign extend val for 32bit address mode. */
2289 if (flag_code != CODE_64BIT
2290 || i.prefix[ADDR_PREFIX])
2291 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2292 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2293 #endif
2294
2295 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2296 {
2297 char buf1[40], buf2[40];
2298
2299 sprint_value (buf1, val);
2300 sprint_value (buf2, val & mask);
2301 as_warn (_("%s shortened to %s"), buf1, buf2);
2302 }
2303 return val & mask;
2304 }
2305
2306 enum PREFIX_GROUP
2307 {
2308 PREFIX_EXIST = 0,
2309 PREFIX_LOCK,
2310 PREFIX_REP,
2311 PREFIX_DS,
2312 PREFIX_OTHER
2313 };
2314
2315 /* Returns
2316 a. PREFIX_EXIST if attempting to add a prefix where one from the
2317 same class already exists.
2318 b. PREFIX_LOCK if lock prefix is added.
2319 c. PREFIX_REP if rep/repne prefix is added.
2320 d. PREFIX_DS if ds prefix is added.
2321 e. PREFIX_OTHER if other prefix is added.
2322 */
2323
2324 static enum PREFIX_GROUP
2325 add_prefix (unsigned int prefix)
2326 {
2327 enum PREFIX_GROUP ret = PREFIX_OTHER;
2328 unsigned int q;
2329
2330 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2331 && flag_code == CODE_64BIT)
2332 {
2333 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2334 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2336 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2337 ret = PREFIX_EXIST;
2338 q = REX_PREFIX;
2339 }
2340 else
2341 {
2342 switch (prefix)
2343 {
2344 default:
2345 abort ();
2346
2347 case DS_PREFIX_OPCODE:
2348 ret = PREFIX_DS;
2349 /* Fall through. */
2350 case CS_PREFIX_OPCODE:
2351 case ES_PREFIX_OPCODE:
2352 case FS_PREFIX_OPCODE:
2353 case GS_PREFIX_OPCODE:
2354 case SS_PREFIX_OPCODE:
2355 q = SEG_PREFIX;
2356 break;
2357
2358 case REPNE_PREFIX_OPCODE:
2359 case REPE_PREFIX_OPCODE:
2360 q = REP_PREFIX;
2361 ret = PREFIX_REP;
2362 break;
2363
2364 case LOCK_PREFIX_OPCODE:
2365 q = LOCK_PREFIX;
2366 ret = PREFIX_LOCK;
2367 break;
2368
2369 case FWAIT_OPCODE:
2370 q = WAIT_PREFIX;
2371 break;
2372
2373 case ADDR_PREFIX_OPCODE:
2374 q = ADDR_PREFIX;
2375 break;
2376
2377 case DATA_PREFIX_OPCODE:
2378 q = DATA_PREFIX;
2379 break;
2380 }
2381 if (i.prefix[q] != 0)
2382 ret = PREFIX_EXIST;
2383 }
2384
2385 if (ret)
2386 {
2387 if (!i.prefix[q])
2388 ++i.prefixes;
2389 i.prefix[q] |= prefix;
2390 }
2391 else
2392 as_bad (_("same type of prefix used twice"));
2393
2394 return ret;
2395 }
2396
2397 static void
2398 update_code_flag (int value, int check)
2399 {
2400 PRINTF_LIKE ((*as_error));
2401
2402 flag_code = (enum flag_code) value;
2403 if (flag_code == CODE_64BIT)
2404 {
2405 cpu_arch_flags.bitfield.cpu64 = 1;
2406 cpu_arch_flags.bitfield.cpuno64 = 0;
2407 }
2408 else
2409 {
2410 cpu_arch_flags.bitfield.cpu64 = 0;
2411 cpu_arch_flags.bitfield.cpuno64 = 1;
2412 }
2413 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2414 {
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("64bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
2421 }
2422 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2423 {
2424 if (check)
2425 as_error = as_fatal;
2426 else
2427 as_error = as_bad;
2428 (*as_error) (_("32bit mode not supported on `%s'."),
2429 cpu_arch_name ? cpu_arch_name : default_arch);
2430 }
2431 stackop_size = '\0';
2432 }
2433
2434 static void
2435 set_code_flag (int value)
2436 {
2437 update_code_flag (value, 0);
2438 }
2439
2440 static void
2441 set_16bit_gcc_code_flag (int new_code_flag)
2442 {
2443 flag_code = (enum flag_code) new_code_flag;
2444 if (flag_code != CODE_16BIT)
2445 abort ();
2446 cpu_arch_flags.bitfield.cpu64 = 0;
2447 cpu_arch_flags.bitfield.cpuno64 = 1;
2448 stackop_size = LONG_MNEM_SUFFIX;
2449 }
2450
2451 static void
2452 set_intel_syntax (int syntax_flag)
2453 {
2454 /* Find out if register prefixing is specified. */
2455 int ask_naked_reg = 0;
2456
2457 SKIP_WHITESPACE ();
2458 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2459 {
2460 char *string;
2461 int e = get_symbol_name (&string);
2462
2463 if (strcmp (string, "prefix") == 0)
2464 ask_naked_reg = 1;
2465 else if (strcmp (string, "noprefix") == 0)
2466 ask_naked_reg = -1;
2467 else
2468 as_bad (_("bad argument to syntax directive."));
2469 (void) restore_line_pointer (e);
2470 }
2471 demand_empty_rest_of_line ();
2472
2473 intel_syntax = syntax_flag;
2474
2475 if (ask_naked_reg == 0)
2476 allow_naked_reg = (intel_syntax
2477 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2478 else
2479 allow_naked_reg = (ask_naked_reg < 0);
2480
2481 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2482
2483 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2484 identifier_chars['$'] = intel_syntax ? '$' : 0;
2485 register_prefix = allow_naked_reg ? "" : "%";
2486 }
2487
2488 static void
2489 set_intel_mnemonic (int mnemonic_flag)
2490 {
2491 intel_mnemonic = mnemonic_flag;
2492 }
2493
2494 static void
2495 set_allow_index_reg (int flag)
2496 {
2497 allow_index_reg = flag;
2498 }
2499
2500 static void
2501 set_check (int what)
2502 {
2503 enum check_kind *kind;
2504 const char *str;
2505
2506 if (what)
2507 {
2508 kind = &operand_check;
2509 str = "operand";
2510 }
2511 else
2512 {
2513 kind = &sse_check;
2514 str = "sse";
2515 }
2516
2517 SKIP_WHITESPACE ();
2518
2519 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2520 {
2521 char *string;
2522 int e = get_symbol_name (&string);
2523
2524 if (strcmp (string, "none") == 0)
2525 *kind = check_none;
2526 else if (strcmp (string, "warning") == 0)
2527 *kind = check_warning;
2528 else if (strcmp (string, "error") == 0)
2529 *kind = check_error;
2530 else
2531 as_bad (_("bad argument to %s_check directive."), str);
2532 (void) restore_line_pointer (e);
2533 }
2534 else
2535 as_bad (_("missing argument for %s_check directive"), str);
2536
2537 demand_empty_rest_of_line ();
2538 }
2539
2540 static void
2541 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2542 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2543 {
2544 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2545 static const char *arch;
2546
2547 /* Intel LIOM is only supported on ELF. */
2548 if (!IS_ELF)
2549 return;
2550
2551 if (!arch)
2552 {
2553 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2554 use default_arch. */
2555 arch = cpu_arch_name;
2556 if (!arch)
2557 arch = default_arch;
2558 }
2559
2560 /* If we are targeting Intel MCU, we must enable it. */
2561 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2562 || new_flag.bitfield.cpuiamcu)
2563 return;
2564
2565 /* If we are targeting Intel L1OM, we must enable it. */
2566 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2567 || new_flag.bitfield.cpul1om)
2568 return;
2569
2570 /* If we are targeting Intel K1OM, we must enable it. */
2571 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2572 || new_flag.bitfield.cpuk1om)
2573 return;
2574
2575 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2576 #endif
2577 }
2578
2579 static void
2580 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2581 {
2582 SKIP_WHITESPACE ();
2583
2584 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2585 {
2586 char *string;
2587 int e = get_symbol_name (&string);
2588 unsigned int j;
2589 i386_cpu_flags flags;
2590
2591 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2592 {
2593 if (strcmp (string, cpu_arch[j].name) == 0)
2594 {
2595 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2596
2597 if (*string != '.')
2598 {
2599 cpu_arch_name = cpu_arch[j].name;
2600 cpu_sub_arch_name = NULL;
2601 cpu_arch_flags = cpu_arch[j].flags;
2602 if (flag_code == CODE_64BIT)
2603 {
2604 cpu_arch_flags.bitfield.cpu64 = 1;
2605 cpu_arch_flags.bitfield.cpuno64 = 0;
2606 }
2607 else
2608 {
2609 cpu_arch_flags.bitfield.cpu64 = 0;
2610 cpu_arch_flags.bitfield.cpuno64 = 1;
2611 }
2612 cpu_arch_isa = cpu_arch[j].type;
2613 cpu_arch_isa_flags = cpu_arch[j].flags;
2614 if (!cpu_arch_tune_set)
2615 {
2616 cpu_arch_tune = cpu_arch_isa;
2617 cpu_arch_tune_flags = cpu_arch_isa_flags;
2618 }
2619 break;
2620 }
2621
2622 flags = cpu_flags_or (cpu_arch_flags,
2623 cpu_arch[j].flags);
2624
2625 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2626 {
2627 if (cpu_sub_arch_name)
2628 {
2629 char *name = cpu_sub_arch_name;
2630 cpu_sub_arch_name = concat (name,
2631 cpu_arch[j].name,
2632 (const char *) NULL);
2633 free (name);
2634 }
2635 else
2636 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2637 cpu_arch_flags = flags;
2638 cpu_arch_isa_flags = flags;
2639 }
2640 else
2641 cpu_arch_isa_flags
2642 = cpu_flags_or (cpu_arch_isa_flags,
2643 cpu_arch[j].flags);
2644 (void) restore_line_pointer (e);
2645 demand_empty_rest_of_line ();
2646 return;
2647 }
2648 }
2649
2650 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2651 {
2652 /* Disable an ISA extension. */
2653 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2654 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2655 {
2656 flags = cpu_flags_and_not (cpu_arch_flags,
2657 cpu_noarch[j].flags);
2658 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2659 {
2660 if (cpu_sub_arch_name)
2661 {
2662 char *name = cpu_sub_arch_name;
2663 cpu_sub_arch_name = concat (name, string,
2664 (const char *) NULL);
2665 free (name);
2666 }
2667 else
2668 cpu_sub_arch_name = xstrdup (string);
2669 cpu_arch_flags = flags;
2670 cpu_arch_isa_flags = flags;
2671 }
2672 (void) restore_line_pointer (e);
2673 demand_empty_rest_of_line ();
2674 return;
2675 }
2676
2677 j = ARRAY_SIZE (cpu_arch);
2678 }
2679
2680 if (j >= ARRAY_SIZE (cpu_arch))
2681 as_bad (_("no such architecture: `%s'"), string);
2682
2683 *input_line_pointer = e;
2684 }
2685 else
2686 as_bad (_("missing cpu architecture"));
2687
2688 no_cond_jump_promotion = 0;
2689 if (*input_line_pointer == ','
2690 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2691 {
2692 char *string;
2693 char e;
2694
2695 ++input_line_pointer;
2696 e = get_symbol_name (&string);
2697
2698 if (strcmp (string, "nojumps") == 0)
2699 no_cond_jump_promotion = 1;
2700 else if (strcmp (string, "jumps") == 0)
2701 ;
2702 else
2703 as_bad (_("no such architecture modifier: `%s'"), string);
2704
2705 (void) restore_line_pointer (e);
2706 }
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 enum bfd_architecture
2712 i386_arch (void)
2713 {
2714 if (cpu_arch_isa == PROCESSOR_L1OM)
2715 {
2716 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2717 || flag_code != CODE_64BIT)
2718 as_fatal (_("Intel L1OM is 64bit ELF only"));
2719 return bfd_arch_l1om;
2720 }
2721 else if (cpu_arch_isa == PROCESSOR_K1OM)
2722 {
2723 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2724 || flag_code != CODE_64BIT)
2725 as_fatal (_("Intel K1OM is 64bit ELF only"));
2726 return bfd_arch_k1om;
2727 }
2728 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2729 {
2730 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2731 || flag_code == CODE_64BIT)
2732 as_fatal (_("Intel MCU is 32bit ELF only"));
2733 return bfd_arch_iamcu;
2734 }
2735 else
2736 return bfd_arch_i386;
2737 }
2738
2739 unsigned long
2740 i386_mach (void)
2741 {
2742 if (!strncmp (default_arch, "x86_64", 6))
2743 {
2744 if (cpu_arch_isa == PROCESSOR_L1OM)
2745 {
2746 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2747 || default_arch[6] != '\0')
2748 as_fatal (_("Intel L1OM is 64bit ELF only"));
2749 return bfd_mach_l1om;
2750 }
2751 else if (cpu_arch_isa == PROCESSOR_K1OM)
2752 {
2753 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2754 || default_arch[6] != '\0')
2755 as_fatal (_("Intel K1OM is 64bit ELF only"));
2756 return bfd_mach_k1om;
2757 }
2758 else if (default_arch[6] == '\0')
2759 return bfd_mach_x86_64;
2760 else
2761 return bfd_mach_x64_32;
2762 }
2763 else if (!strcmp (default_arch, "i386")
2764 || !strcmp (default_arch, "iamcu"))
2765 {
2766 if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2769 as_fatal (_("Intel MCU is 32bit ELF only"));
2770 return bfd_mach_i386_iamcu;
2771 }
2772 else
2773 return bfd_mach_i386_i386;
2774 }
2775 else
2776 as_fatal (_("unknown architecture"));
2777 }
2778 \f
2779 void
2780 md_begin (void)
2781 {
2782 const char *hash_err;
2783
2784 /* Support pseudo prefixes like {disp32}. */
2785 lex_type ['{'] = LEX_BEGIN_NAME;
2786
2787 /* Initialize op_hash hash table. */
2788 op_hash = hash_new ();
2789
2790 {
2791 const insn_template *optab;
2792 templates *core_optab;
2793
2794 /* Setup for loop. */
2795 optab = i386_optab;
2796 core_optab = XNEW (templates);
2797 core_optab->start = optab;
2798
2799 while (1)
2800 {
2801 ++optab;
2802 if (optab->name == NULL
2803 || strcmp (optab->name, (optab - 1)->name) != 0)
2804 {
2805 /* different name --> ship out current template list;
2806 add to hash table; & begin anew. */
2807 core_optab->end = optab;
2808 hash_err = hash_insert (op_hash,
2809 (optab - 1)->name,
2810 (void *) core_optab);
2811 if (hash_err)
2812 {
2813 as_fatal (_("can't hash %s: %s"),
2814 (optab - 1)->name,
2815 hash_err);
2816 }
2817 if (optab->name == NULL)
2818 break;
2819 core_optab = XNEW (templates);
2820 core_optab->start = optab;
2821 }
2822 }
2823 }
2824
2825 /* Initialize reg_hash hash table. */
2826 reg_hash = hash_new ();
2827 {
2828 const reg_entry *regtab;
2829 unsigned int regtab_size = i386_regtab_size;
2830
2831 for (regtab = i386_regtab; regtab_size--; regtab++)
2832 {
2833 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2834 if (hash_err)
2835 as_fatal (_("can't hash %s: %s"),
2836 regtab->reg_name,
2837 hash_err);
2838 }
2839 }
2840
2841 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2842 {
2843 int c;
2844 char *p;
2845
2846 for (c = 0; c < 256; c++)
2847 {
2848 if (ISDIGIT (c))
2849 {
2850 digit_chars[c] = c;
2851 mnemonic_chars[c] = c;
2852 register_chars[c] = c;
2853 operand_chars[c] = c;
2854 }
2855 else if (ISLOWER (c))
2856 {
2857 mnemonic_chars[c] = c;
2858 register_chars[c] = c;
2859 operand_chars[c] = c;
2860 }
2861 else if (ISUPPER (c))
2862 {
2863 mnemonic_chars[c] = TOLOWER (c);
2864 register_chars[c] = mnemonic_chars[c];
2865 operand_chars[c] = c;
2866 }
2867 else if (c == '{' || c == '}')
2868 {
2869 mnemonic_chars[c] = c;
2870 operand_chars[c] = c;
2871 }
2872
2873 if (ISALPHA (c) || ISDIGIT (c))
2874 identifier_chars[c] = c;
2875 else if (c >= 128)
2876 {
2877 identifier_chars[c] = c;
2878 operand_chars[c] = c;
2879 }
2880 }
2881
2882 #ifdef LEX_AT
2883 identifier_chars['@'] = '@';
2884 #endif
2885 #ifdef LEX_QM
2886 identifier_chars['?'] = '?';
2887 operand_chars['?'] = '?';
2888 #endif
2889 digit_chars['-'] = '-';
2890 mnemonic_chars['_'] = '_';
2891 mnemonic_chars['-'] = '-';
2892 mnemonic_chars['.'] = '.';
2893 identifier_chars['_'] = '_';
2894 identifier_chars['.'] = '.';
2895
2896 for (p = operand_special_chars; *p != '\0'; p++)
2897 operand_chars[(unsigned char) *p] = *p;
2898 }
2899
2900 if (flag_code == CODE_64BIT)
2901 {
2902 #if defined (OBJ_COFF) && defined (TE_PE)
2903 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2904 ? 32 : 16);
2905 #else
2906 x86_dwarf2_return_column = 16;
2907 #endif
2908 x86_cie_data_alignment = -8;
2909 }
2910 else
2911 {
2912 x86_dwarf2_return_column = 8;
2913 x86_cie_data_alignment = -4;
2914 }
2915 }
2916
2917 void
2918 i386_print_statistics (FILE *file)
2919 {
2920 hash_print_statistics (file, "i386 opcode", op_hash);
2921 hash_print_statistics (file, "i386 register", reg_hash);
2922 }
2923 \f
2924 #ifdef DEBUG386
2925
2926 /* Debugging routines for md_assemble. */
2927 static void pte (insn_template *);
2928 static void pt (i386_operand_type);
2929 static void pe (expressionS *);
2930 static void ps (symbolS *);
2931
2932 static void
2933 pi (char *line, i386_insn *x)
2934 {
2935 unsigned int j;
2936
2937 fprintf (stdout, "%s: template ", line);
2938 pte (&x->tm);
2939 fprintf (stdout, " address: base %s index %s scale %x\n",
2940 x->base_reg ? x->base_reg->reg_name : "none",
2941 x->index_reg ? x->index_reg->reg_name : "none",
2942 x->log2_scale_factor);
2943 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2944 x->rm.mode, x->rm.reg, x->rm.regmem);
2945 fprintf (stdout, " sib: base %x index %x scale %x\n",
2946 x->sib.base, x->sib.index, x->sib.scale);
2947 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2948 (x->rex & REX_W) != 0,
2949 (x->rex & REX_R) != 0,
2950 (x->rex & REX_X) != 0,
2951 (x->rex & REX_B) != 0);
2952 for (j = 0; j < x->operands; j++)
2953 {
2954 fprintf (stdout, " #%d: ", j + 1);
2955 pt (x->types[j]);
2956 fprintf (stdout, "\n");
2957 if (x->types[j].bitfield.reg
2958 || x->types[j].bitfield.regmmx
2959 || x->types[j].bitfield.regsimd
2960 || x->types[j].bitfield.sreg2
2961 || x->types[j].bitfield.sreg3
2962 || x->types[j].bitfield.control
2963 || x->types[j].bitfield.debug
2964 || x->types[j].bitfield.test)
2965 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2966 if (operand_type_check (x->types[j], imm))
2967 pe (x->op[j].imms);
2968 if (operand_type_check (x->types[j], disp))
2969 pe (x->op[j].disps);
2970 }
2971 }
2972
2973 static void
2974 pte (insn_template *t)
2975 {
2976 unsigned int j;
2977 fprintf (stdout, " %d operands ", t->operands);
2978 fprintf (stdout, "opcode %x ", t->base_opcode);
2979 if (t->extension_opcode != None)
2980 fprintf (stdout, "ext %x ", t->extension_opcode);
2981 if (t->opcode_modifier.d)
2982 fprintf (stdout, "D");
2983 if (t->opcode_modifier.w)
2984 fprintf (stdout, "W");
2985 fprintf (stdout, "\n");
2986 for (j = 0; j < t->operands; j++)
2987 {
2988 fprintf (stdout, " #%d type ", j + 1);
2989 pt (t->operand_types[j]);
2990 fprintf (stdout, "\n");
2991 }
2992 }
2993
2994 static void
2995 pe (expressionS *e)
2996 {
2997 fprintf (stdout, " operation %d\n", e->X_op);
2998 fprintf (stdout, " add_number %ld (%lx)\n",
2999 (long) e->X_add_number, (long) e->X_add_number);
3000 if (e->X_add_symbol)
3001 {
3002 fprintf (stdout, " add_symbol ");
3003 ps (e->X_add_symbol);
3004 fprintf (stdout, "\n");
3005 }
3006 if (e->X_op_symbol)
3007 {
3008 fprintf (stdout, " op_symbol ");
3009 ps (e->X_op_symbol);
3010 fprintf (stdout, "\n");
3011 }
3012 }
3013
3014 static void
3015 ps (symbolS *s)
3016 {
3017 fprintf (stdout, "%s type %s%s",
3018 S_GET_NAME (s),
3019 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3020 segment_name (S_GET_SEGMENT (s)));
3021 }
3022
3023 static struct type_name
3024 {
3025 i386_operand_type mask;
3026 const char *name;
3027 }
3028 const type_names[] =
3029 {
3030 { OPERAND_TYPE_REG8, "r8" },
3031 { OPERAND_TYPE_REG16, "r16" },
3032 { OPERAND_TYPE_REG32, "r32" },
3033 { OPERAND_TYPE_REG64, "r64" },
3034 { OPERAND_TYPE_IMM8, "i8" },
3035 { OPERAND_TYPE_IMM8, "i8s" },
3036 { OPERAND_TYPE_IMM16, "i16" },
3037 { OPERAND_TYPE_IMM32, "i32" },
3038 { OPERAND_TYPE_IMM32S, "i32s" },
3039 { OPERAND_TYPE_IMM64, "i64" },
3040 { OPERAND_TYPE_IMM1, "i1" },
3041 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3042 { OPERAND_TYPE_DISP8, "d8" },
3043 { OPERAND_TYPE_DISP16, "d16" },
3044 { OPERAND_TYPE_DISP32, "d32" },
3045 { OPERAND_TYPE_DISP32S, "d32s" },
3046 { OPERAND_TYPE_DISP64, "d64" },
3047 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3048 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3049 { OPERAND_TYPE_CONTROL, "control reg" },
3050 { OPERAND_TYPE_TEST, "test reg" },
3051 { OPERAND_TYPE_DEBUG, "debug reg" },
3052 { OPERAND_TYPE_FLOATREG, "FReg" },
3053 { OPERAND_TYPE_FLOATACC, "FAcc" },
3054 { OPERAND_TYPE_SREG2, "SReg2" },
3055 { OPERAND_TYPE_SREG3, "SReg3" },
3056 { OPERAND_TYPE_ACC, "Acc" },
3057 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3058 { OPERAND_TYPE_REGMMX, "rMMX" },
3059 { OPERAND_TYPE_REGXMM, "rXMM" },
3060 { OPERAND_TYPE_REGYMM, "rYMM" },
3061 { OPERAND_TYPE_REGZMM, "rZMM" },
3062 { OPERAND_TYPE_REGMASK, "Mask reg" },
3063 { OPERAND_TYPE_ESSEG, "es" },
3064 };
3065
3066 static void
3067 pt (i386_operand_type t)
3068 {
3069 unsigned int j;
3070 i386_operand_type a;
3071
3072 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3073 {
3074 a = operand_type_and (t, type_names[j].mask);
3075 if (!operand_type_all_zero (&a))
3076 fprintf (stdout, "%s, ", type_names[j].name);
3077 }
3078 fflush (stdout);
3079 }
3080
3081 #endif /* DEBUG386 */
3082 \f
3083 static bfd_reloc_code_real_type
3084 reloc (unsigned int size,
3085 int pcrel,
3086 int sign,
3087 bfd_reloc_code_real_type other)
3088 {
3089 if (other != NO_RELOC)
3090 {
3091 reloc_howto_type *rel;
3092
3093 if (size == 8)
3094 switch (other)
3095 {
3096 case BFD_RELOC_X86_64_GOT32:
3097 return BFD_RELOC_X86_64_GOT64;
3098 break;
3099 case BFD_RELOC_X86_64_GOTPLT64:
3100 return BFD_RELOC_X86_64_GOTPLT64;
3101 break;
3102 case BFD_RELOC_X86_64_PLTOFF64:
3103 return BFD_RELOC_X86_64_PLTOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPC32:
3106 other = BFD_RELOC_X86_64_GOTPC64;
3107 break;
3108 case BFD_RELOC_X86_64_GOTPCREL:
3109 other = BFD_RELOC_X86_64_GOTPCREL64;
3110 break;
3111 case BFD_RELOC_X86_64_TPOFF32:
3112 other = BFD_RELOC_X86_64_TPOFF64;
3113 break;
3114 case BFD_RELOC_X86_64_DTPOFF32:
3115 other = BFD_RELOC_X86_64_DTPOFF64;
3116 break;
3117 default:
3118 break;
3119 }
3120
3121 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3122 if (other == BFD_RELOC_SIZE32)
3123 {
3124 if (size == 8)
3125 other = BFD_RELOC_SIZE64;
3126 if (pcrel)
3127 {
3128 as_bad (_("there are no pc-relative size relocations"));
3129 return NO_RELOC;
3130 }
3131 }
3132 #endif
3133
3134 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3135 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3136 sign = -1;
3137
3138 rel = bfd_reloc_type_lookup (stdoutput, other);
3139 if (!rel)
3140 as_bad (_("unknown relocation (%u)"), other);
3141 else if (size != bfd_get_reloc_size (rel))
3142 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3143 bfd_get_reloc_size (rel),
3144 size);
3145 else if (pcrel && !rel->pc_relative)
3146 as_bad (_("non-pc-relative relocation for pc-relative field"));
3147 else if ((rel->complain_on_overflow == complain_overflow_signed
3148 && !sign)
3149 || (rel->complain_on_overflow == complain_overflow_unsigned
3150 && sign > 0))
3151 as_bad (_("relocated field and relocation type differ in signedness"));
3152 else
3153 return other;
3154 return NO_RELOC;
3155 }
3156
3157 if (pcrel)
3158 {
3159 if (!sign)
3160 as_bad (_("there are no unsigned pc-relative relocations"));
3161 switch (size)
3162 {
3163 case 1: return BFD_RELOC_8_PCREL;
3164 case 2: return BFD_RELOC_16_PCREL;
3165 case 4: return BFD_RELOC_32_PCREL;
3166 case 8: return BFD_RELOC_64_PCREL;
3167 }
3168 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3169 }
3170 else
3171 {
3172 if (sign > 0)
3173 switch (size)
3174 {
3175 case 4: return BFD_RELOC_X86_64_32S;
3176 }
3177 else
3178 switch (size)
3179 {
3180 case 1: return BFD_RELOC_8;
3181 case 2: return BFD_RELOC_16;
3182 case 4: return BFD_RELOC_32;
3183 case 8: return BFD_RELOC_64;
3184 }
3185 as_bad (_("cannot do %s %u byte relocation"),
3186 sign > 0 ? "signed" : "unsigned", size);
3187 }
3188
3189 return NO_RELOC;
3190 }
3191
3192 /* Here we decide which fixups can be adjusted to make them relative to
3193 the beginning of the section instead of the symbol. Basically we need
3194 to make sure that the dynamic relocations are done correctly, so in
3195 some cases we force the original symbol to be used. */
3196
3197 int
3198 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3199 {
3200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3201 if (!IS_ELF)
3202 return 1;
3203
3204 /* Don't adjust pc-relative references to merge sections in 64-bit
3205 mode. */
3206 if (use_rela_relocations
3207 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3208 && fixP->fx_pcrel)
3209 return 0;
3210
3211 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3212 and changed later by validate_fix. */
3213 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3214 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3215 return 0;
3216
3217 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3218 for size relocations. */
3219 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3220 || fixP->fx_r_type == BFD_RELOC_SIZE64
3221 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3222 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3224 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3251 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3252 return 0;
3253 #endif
3254 return 1;
3255 }
3256
3257 static int
3258 intel_float_operand (const char *mnemonic)
3259 {
3260 /* Note that the value returned is meaningful only for opcodes with (memory)
3261 operands, hence the code here is free to improperly handle opcodes that
3262 have no operands (for better performance and smaller code). */
3263
3264 if (mnemonic[0] != 'f')
3265 return 0; /* non-math */
3266
3267 switch (mnemonic[1])
3268 {
3269 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3270 the fs segment override prefix not currently handled because no
3271 call path can make opcodes without operands get here */
3272 case 'i':
3273 return 2 /* integer op */;
3274 case 'l':
3275 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3276 return 3; /* fldcw/fldenv */
3277 break;
3278 case 'n':
3279 if (mnemonic[2] != 'o' /* fnop */)
3280 return 3; /* non-waiting control op */
3281 break;
3282 case 'r':
3283 if (mnemonic[2] == 's')
3284 return 3; /* frstor/frstpm */
3285 break;
3286 case 's':
3287 if (mnemonic[2] == 'a')
3288 return 3; /* fsave */
3289 if (mnemonic[2] == 't')
3290 {
3291 switch (mnemonic[3])
3292 {
3293 case 'c': /* fstcw */
3294 case 'd': /* fstdw */
3295 case 'e': /* fstenv */
3296 case 's': /* fsts[gw] */
3297 return 3;
3298 }
3299 }
3300 break;
3301 case 'x':
3302 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3303 return 0; /* fxsave/fxrstor are not really math ops */
3304 break;
3305 }
3306
3307 return 1;
3308 }
3309
3310 /* Build the VEX prefix. */
3311
3312 static void
3313 build_vex_prefix (const insn_template *t)
3314 {
3315 unsigned int register_specifier;
3316 unsigned int implied_prefix;
3317 unsigned int vector_length;
3318
3319 /* Check register specifier. */
3320 if (i.vex.register_specifier)
3321 {
3322 register_specifier =
3323 ~register_number (i.vex.register_specifier) & 0xf;
3324 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3325 }
3326 else
3327 register_specifier = 0xf;
3328
3329 /* Use 2-byte VEX prefix by swapping destination and source
3330 operand. */
3331 if (i.vec_encoding != vex_encoding_vex3
3332 && i.dir_encoding == dir_encoding_default
3333 && i.operands == i.reg_operands
3334 && i.tm.opcode_modifier.vexopcode == VEX0F
3335 && i.tm.opcode_modifier.load
3336 && i.rex == REX_B)
3337 {
3338 unsigned int xchg = i.operands - 1;
3339 union i386_op temp_op;
3340 i386_operand_type temp_type;
3341
3342 temp_type = i.types[xchg];
3343 i.types[xchg] = i.types[0];
3344 i.types[0] = temp_type;
3345 temp_op = i.op[xchg];
3346 i.op[xchg] = i.op[0];
3347 i.op[0] = temp_op;
3348
3349 gas_assert (i.rm.mode == 3);
3350
3351 i.rex = REX_R;
3352 xchg = i.rm.regmem;
3353 i.rm.regmem = i.rm.reg;
3354 i.rm.reg = xchg;
3355
3356 /* Use the next insn. */
3357 i.tm = t[1];
3358 }
3359
3360 if (i.tm.opcode_modifier.vex == VEXScalar)
3361 vector_length = avxscalar;
3362 else if (i.tm.opcode_modifier.vex == VEX256)
3363 vector_length = 1;
3364 else
3365 {
3366 int op;
3367
3368 /* Determine vector length from the last multi-length vector
3369 operand. */
3370 vector_length = 0;
3371 for (op = t->operands - 1; op >= 0; op--)
3372 if (t->operand_types[op].bitfield.xmmword
3373 && t->operand_types[op].bitfield.ymmword
3374 && i.types[op].bitfield.ymmword)
3375 {
3376 vector_length = 1;
3377 break;
3378 }
3379 }
3380
3381 switch ((i.tm.base_opcode >> 8) & 0xff)
3382 {
3383 case 0:
3384 implied_prefix = 0;
3385 break;
3386 case DATA_PREFIX_OPCODE:
3387 implied_prefix = 1;
3388 break;
3389 case REPE_PREFIX_OPCODE:
3390 implied_prefix = 2;
3391 break;
3392 case REPNE_PREFIX_OPCODE:
3393 implied_prefix = 3;
3394 break;
3395 default:
3396 abort ();
3397 }
3398
3399 /* Use 2-byte VEX prefix if possible. */
3400 if (i.vec_encoding != vex_encoding_vex3
3401 && i.tm.opcode_modifier.vexopcode == VEX0F
3402 && i.tm.opcode_modifier.vexw != VEXW1
3403 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3404 {
3405 /* 2-byte VEX prefix. */
3406 unsigned int r;
3407
3408 i.vex.length = 2;
3409 i.vex.bytes[0] = 0xc5;
3410
3411 /* Check the REX.R bit. */
3412 r = (i.rex & REX_R) ? 0 : 1;
3413 i.vex.bytes[1] = (r << 7
3414 | register_specifier << 3
3415 | vector_length << 2
3416 | implied_prefix);
3417 }
3418 else
3419 {
3420 /* 3-byte VEX prefix. */
3421 unsigned int m, w;
3422
3423 i.vex.length = 3;
3424
3425 switch (i.tm.opcode_modifier.vexopcode)
3426 {
3427 case VEX0F:
3428 m = 0x1;
3429 i.vex.bytes[0] = 0xc4;
3430 break;
3431 case VEX0F38:
3432 m = 0x2;
3433 i.vex.bytes[0] = 0xc4;
3434 break;
3435 case VEX0F3A:
3436 m = 0x3;
3437 i.vex.bytes[0] = 0xc4;
3438 break;
3439 case XOP08:
3440 m = 0x8;
3441 i.vex.bytes[0] = 0x8f;
3442 break;
3443 case XOP09:
3444 m = 0x9;
3445 i.vex.bytes[0] = 0x8f;
3446 break;
3447 case XOP0A:
3448 m = 0xa;
3449 i.vex.bytes[0] = 0x8f;
3450 break;
3451 default:
3452 abort ();
3453 }
3454
3455 /* The high 3 bits of the second VEX byte are 1's compliment
3456 of RXB bits from REX. */
3457 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3458
3459 /* Check the REX.W bit. */
3460 w = (i.rex & REX_W) ? 1 : 0;
3461 if (i.tm.opcode_modifier.vexw == VEXW1)
3462 w = 1;
3463
3464 i.vex.bytes[2] = (w << 7
3465 | register_specifier << 3
3466 | vector_length << 2
3467 | implied_prefix);
3468 }
3469 }
3470
3471 static INLINE bfd_boolean
3472 is_evex_encoding (const insn_template *t)
3473 {
3474 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3475 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3476 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3477 }
3478
3479 /* Build the EVEX prefix. */
3480
3481 static void
3482 build_evex_prefix (void)
3483 {
3484 unsigned int register_specifier;
3485 unsigned int implied_prefix;
3486 unsigned int m, w;
3487 rex_byte vrex_used = 0;
3488
3489 /* Check register specifier. */
3490 if (i.vex.register_specifier)
3491 {
3492 gas_assert ((i.vrex & REX_X) == 0);
3493
3494 register_specifier = i.vex.register_specifier->reg_num;
3495 if ((i.vex.register_specifier->reg_flags & RegRex))
3496 register_specifier += 8;
3497 /* The upper 16 registers are encoded in the fourth byte of the
3498 EVEX prefix. */
3499 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3500 i.vex.bytes[3] = 0x8;
3501 register_specifier = ~register_specifier & 0xf;
3502 }
3503 else
3504 {
3505 register_specifier = 0xf;
3506
3507 /* Encode upper 16 vector index register in the fourth byte of
3508 the EVEX prefix. */
3509 if (!(i.vrex & REX_X))
3510 i.vex.bytes[3] = 0x8;
3511 else
3512 vrex_used |= REX_X;
3513 }
3514
3515 switch ((i.tm.base_opcode >> 8) & 0xff)
3516 {
3517 case 0:
3518 implied_prefix = 0;
3519 break;
3520 case DATA_PREFIX_OPCODE:
3521 implied_prefix = 1;
3522 break;
3523 case REPE_PREFIX_OPCODE:
3524 implied_prefix = 2;
3525 break;
3526 case REPNE_PREFIX_OPCODE:
3527 implied_prefix = 3;
3528 break;
3529 default:
3530 abort ();
3531 }
3532
3533 /* 4 byte EVEX prefix. */
3534 i.vex.length = 4;
3535 i.vex.bytes[0] = 0x62;
3536
3537 /* mmmm bits. */
3538 switch (i.tm.opcode_modifier.vexopcode)
3539 {
3540 case VEX0F:
3541 m = 1;
3542 break;
3543 case VEX0F38:
3544 m = 2;
3545 break;
3546 case VEX0F3A:
3547 m = 3;
3548 break;
3549 default:
3550 abort ();
3551 break;
3552 }
3553
3554 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3555 bits from REX. */
3556 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3557
3558 /* The fifth bit of the second EVEX byte is 1's compliment of the
3559 REX_R bit in VREX. */
3560 if (!(i.vrex & REX_R))
3561 i.vex.bytes[1] |= 0x10;
3562 else
3563 vrex_used |= REX_R;
3564
3565 if ((i.reg_operands + i.imm_operands) == i.operands)
3566 {
3567 /* When all operands are registers, the REX_X bit in REX is not
3568 used. We reuse it to encode the upper 16 registers, which is
3569 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3570 as 1's compliment. */
3571 if ((i.vrex & REX_B))
3572 {
3573 vrex_used |= REX_B;
3574 i.vex.bytes[1] &= ~0x40;
3575 }
3576 }
3577
3578 /* EVEX instructions shouldn't need the REX prefix. */
3579 i.vrex &= ~vrex_used;
3580 gas_assert (i.vrex == 0);
3581
3582 /* Check the REX.W bit. */
3583 w = (i.rex & REX_W) ? 1 : 0;
3584 if (i.tm.opcode_modifier.vexw)
3585 {
3586 if (i.tm.opcode_modifier.vexw == VEXW1)
3587 w = 1;
3588 }
3589 /* If w is not set it means we are dealing with WIG instruction. */
3590 else if (!w)
3591 {
3592 if (evexwig == evexw1)
3593 w = 1;
3594 }
3595
3596 /* Encode the U bit. */
3597 implied_prefix |= 0x4;
3598
3599 /* The third byte of the EVEX prefix. */
3600 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3601
3602 /* The fourth byte of the EVEX prefix. */
3603 /* The zeroing-masking bit. */
3604 if (i.mask && i.mask->zeroing)
3605 i.vex.bytes[3] |= 0x80;
3606
3607 /* Don't always set the broadcast bit if there is no RC. */
3608 if (!i.rounding)
3609 {
3610 /* Encode the vector length. */
3611 unsigned int vec_length;
3612
3613 if (!i.tm.opcode_modifier.evex
3614 || i.tm.opcode_modifier.evex == EVEXDYN)
3615 {
3616 int op;
3617
3618 /* Determine vector length from the last multi-length vector
3619 operand. */
3620 vec_length = 0;
3621 for (op = i.operands - 1; op >= 0; op--)
3622 if (i.tm.operand_types[op].bitfield.xmmword
3623 + i.tm.operand_types[op].bitfield.ymmword
3624 + i.tm.operand_types[op].bitfield.zmmword > 1)
3625 {
3626 if (i.types[op].bitfield.zmmword)
3627 {
3628 i.tm.opcode_modifier.evex = EVEX512;
3629 break;
3630 }
3631 else if (i.types[op].bitfield.ymmword)
3632 {
3633 i.tm.opcode_modifier.evex = EVEX256;
3634 break;
3635 }
3636 else if (i.types[op].bitfield.xmmword)
3637 {
3638 i.tm.opcode_modifier.evex = EVEX128;
3639 break;
3640 }
3641 else if (i.broadcast && (int) op == i.broadcast->operand)
3642 {
3643 switch ((i.tm.operand_types[op].bitfield.dword ? 4 : 8)
3644 * i.broadcast->type)
3645 {
3646 case 64:
3647 i.tm.opcode_modifier.evex = EVEX512;
3648 break;
3649 case 32:
3650 i.tm.opcode_modifier.evex = EVEX256;
3651 break;
3652 case 16:
3653 i.tm.opcode_modifier.evex = EVEX128;
3654 break;
3655 default:
3656 abort ();
3657 }
3658 break;
3659 }
3660 }
3661
3662 if (op < 0)
3663 abort ();
3664 }
3665
3666 switch (i.tm.opcode_modifier.evex)
3667 {
3668 case EVEXLIG: /* LL' is ignored */
3669 vec_length = evexlig << 5;
3670 break;
3671 case EVEX128:
3672 vec_length = 0 << 5;
3673 break;
3674 case EVEX256:
3675 vec_length = 1 << 5;
3676 break;
3677 case EVEX512:
3678 vec_length = 2 << 5;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684 i.vex.bytes[3] |= vec_length;
3685 /* Encode the broadcast bit. */
3686 if (i.broadcast)
3687 i.vex.bytes[3] |= 0x10;
3688 }
3689 else
3690 {
3691 if (i.rounding->type != saeonly)
3692 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3693 else
3694 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3695 }
3696
3697 if (i.mask && i.mask->mask)
3698 i.vex.bytes[3] |= i.mask->mask->reg_num;
3699 }
3700
3701 static void
3702 process_immext (void)
3703 {
3704 expressionS *exp;
3705
3706 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3707 && i.operands > 0)
3708 {
3709 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3710 with an opcode suffix which is coded in the same place as an
3711 8-bit immediate field would be.
3712 Here we check those operands and remove them afterwards. */
3713 unsigned int x;
3714
3715 for (x = 0; x < i.operands; x++)
3716 if (register_number (i.op[x].regs) != x)
3717 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3718 register_prefix, i.op[x].regs->reg_name, x + 1,
3719 i.tm.name);
3720
3721 i.operands = 0;
3722 }
3723
3724 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3725 {
3726 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3727 suffix which is coded in the same place as an 8-bit immediate
3728 field would be.
3729 Here we check those operands and remove them afterwards. */
3730 unsigned int x;
3731
3732 if (i.operands != 3)
3733 abort();
3734
3735 for (x = 0; x < 2; x++)
3736 if (register_number (i.op[x].regs) != x)
3737 goto bad_register_operand;
3738
3739 /* Check for third operand for mwaitx/monitorx insn. */
3740 if (register_number (i.op[x].regs)
3741 != (x + (i.tm.extension_opcode == 0xfb)))
3742 {
3743 bad_register_operand:
3744 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3745 register_prefix, i.op[x].regs->reg_name, x+1,
3746 i.tm.name);
3747 }
3748
3749 i.operands = 0;
3750 }
3751
3752 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3753 which is coded in the same place as an 8-bit immediate field
3754 would be. Here we fake an 8-bit immediate operand from the
3755 opcode suffix stored in tm.extension_opcode.
3756
3757 AVX instructions also use this encoding, for some of
3758 3 argument instructions. */
3759
3760 gas_assert (i.imm_operands <= 1
3761 && (i.operands <= 2
3762 || ((i.tm.opcode_modifier.vex
3763 || i.tm.opcode_modifier.vexopcode
3764 || is_evex_encoding (&i.tm))
3765 && i.operands <= 4)));
3766
3767 exp = &im_expressions[i.imm_operands++];
3768 i.op[i.operands].imms = exp;
3769 i.types[i.operands] = imm8;
3770 i.operands++;
3771 exp->X_op = O_constant;
3772 exp->X_add_number = i.tm.extension_opcode;
3773 i.tm.extension_opcode = None;
3774 }
3775
3776
3777 static int
3778 check_hle (void)
3779 {
3780 switch (i.tm.opcode_modifier.hleprefixok)
3781 {
3782 default:
3783 abort ();
3784 case HLEPrefixNone:
3785 as_bad (_("invalid instruction `%s' after `%s'"),
3786 i.tm.name, i.hle_prefix);
3787 return 0;
3788 case HLEPrefixLock:
3789 if (i.prefix[LOCK_PREFIX])
3790 return 1;
3791 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3792 return 0;
3793 case HLEPrefixAny:
3794 return 1;
3795 case HLEPrefixRelease:
3796 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3797 {
3798 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3799 i.tm.name);
3800 return 0;
3801 }
3802 if (i.mem_operands == 0
3803 || !operand_type_check (i.types[i.operands - 1], anymem))
3804 {
3805 as_bad (_("memory destination needed for instruction `%s'"
3806 " after `xrelease'"), i.tm.name);
3807 return 0;
3808 }
3809 return 1;
3810 }
3811 }
3812
3813 /* Try the shortest encoding by shortening operand size. */
3814
3815 static void
3816 optimize_encoding (void)
3817 {
3818 int j;
3819
3820 if (optimize_for_space
3821 && i.reg_operands == 1
3822 && i.imm_operands == 1
3823 && !i.types[1].bitfield.byte
3824 && i.op[0].imms->X_op == O_constant
3825 && fits_in_imm7 (i.op[0].imms->X_add_number)
3826 && ((i.tm.base_opcode == 0xa8
3827 && i.tm.extension_opcode == None)
3828 || (i.tm.base_opcode == 0xf6
3829 && i.tm.extension_opcode == 0x0)))
3830 {
3831 /* Optimize: -Os:
3832 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3833 */
3834 unsigned int base_regnum = i.op[1].regs->reg_num;
3835 if (flag_code == CODE_64BIT || base_regnum < 4)
3836 {
3837 i.types[1].bitfield.byte = 1;
3838 /* Ignore the suffix. */
3839 i.suffix = 0;
3840 if (base_regnum >= 4
3841 && !(i.op[1].regs->reg_flags & RegRex))
3842 {
3843 /* Handle SP, BP, SI and DI registers. */
3844 if (i.types[1].bitfield.word)
3845 j = 16;
3846 else if (i.types[1].bitfield.dword)
3847 j = 32;
3848 else
3849 j = 48;
3850 i.op[1].regs -= j;
3851 }
3852 }
3853 }
3854 else if (flag_code == CODE_64BIT
3855 && ((i.types[1].bitfield.qword
3856 && i.reg_operands == 1
3857 && i.imm_operands == 1
3858 && i.op[0].imms->X_op == O_constant
3859 && ((i.tm.base_opcode == 0xb0
3860 && i.tm.extension_opcode == None
3861 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3862 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3863 && (((i.tm.base_opcode == 0x24
3864 || i.tm.base_opcode == 0xa8)
3865 && i.tm.extension_opcode == None)
3866 || (i.tm.base_opcode == 0x80
3867 && i.tm.extension_opcode == 0x4)
3868 || ((i.tm.base_opcode == 0xf6
3869 || i.tm.base_opcode == 0xc6)
3870 && i.tm.extension_opcode == 0x0)))))
3871 || (i.types[0].bitfield.qword
3872 && ((i.reg_operands == 2
3873 && i.op[0].regs == i.op[1].regs
3874 && ((i.tm.base_opcode == 0x30
3875 || i.tm.base_opcode == 0x28)
3876 && i.tm.extension_opcode == None))
3877 || (i.reg_operands == 1
3878 && i.operands == 1
3879 && i.tm.base_opcode == 0x30
3880 && i.tm.extension_opcode == None)))))
3881 {
3882 /* Optimize: -O:
3883 andq $imm31, %r64 -> andl $imm31, %r32
3884 testq $imm31, %r64 -> testl $imm31, %r32
3885 xorq %r64, %r64 -> xorl %r32, %r32
3886 subq %r64, %r64 -> subl %r32, %r32
3887 movq $imm31, %r64 -> movl $imm31, %r32
3888 movq $imm32, %r64 -> movl $imm32, %r32
3889 */
3890 i.tm.opcode_modifier.norex64 = 1;
3891 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3892 {
3893 /* Handle
3894 movq $imm31, %r64 -> movl $imm31, %r32
3895 movq $imm32, %r64 -> movl $imm32, %r32
3896 */
3897 i.tm.operand_types[0].bitfield.imm32 = 1;
3898 i.tm.operand_types[0].bitfield.imm32s = 0;
3899 i.tm.operand_types[0].bitfield.imm64 = 0;
3900 i.types[0].bitfield.imm32 = 1;
3901 i.types[0].bitfield.imm32s = 0;
3902 i.types[0].bitfield.imm64 = 0;
3903 i.types[1].bitfield.dword = 1;
3904 i.types[1].bitfield.qword = 0;
3905 if (i.tm.base_opcode == 0xc6)
3906 {
3907 /* Handle
3908 movq $imm31, %r64 -> movl $imm31, %r32
3909 */
3910 i.tm.base_opcode = 0xb0;
3911 i.tm.extension_opcode = None;
3912 i.tm.opcode_modifier.shortform = 1;
3913 i.tm.opcode_modifier.modrm = 0;
3914 }
3915 }
3916 }
3917 else if (optimize > 1
3918 && i.reg_operands == 3
3919 && i.op[0].regs == i.op[1].regs
3920 && !i.types[2].bitfield.xmmword
3921 && (i.tm.opcode_modifier.vex
3922 || ((!i.mask || i.mask->zeroing)
3923 && !i.rounding
3924 && is_evex_encoding (&i.tm)
3925 && (i.vec_encoding != vex_encoding_evex
3926 || i.tm.cpu_flags.bitfield.cpuavx512vl
3927 || (i.tm.operand_types[2].bitfield.zmmword
3928 && i.types[2].bitfield.ymmword)
3929 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3930 && ((i.tm.base_opcode == 0x55
3931 || i.tm.base_opcode == 0x6655
3932 || i.tm.base_opcode == 0x66df
3933 || i.tm.base_opcode == 0x57
3934 || i.tm.base_opcode == 0x6657
3935 || i.tm.base_opcode == 0x66ef
3936 || i.tm.base_opcode == 0x66f8
3937 || i.tm.base_opcode == 0x66f9
3938 || i.tm.base_opcode == 0x66fa
3939 || i.tm.base_opcode == 0x66fb)
3940 && i.tm.extension_opcode == None))
3941 {
3942 /* Optimize: -O2:
3943 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3944 vpsubq and vpsubw:
3945 EVEX VOP %zmmM, %zmmM, %zmmN
3946 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3947 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3948 EVEX VOP %ymmM, %ymmM, %ymmN
3949 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3950 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3951 VEX VOP %ymmM, %ymmM, %ymmN
3952 -> VEX VOP %xmmM, %xmmM, %xmmN
3953 VOP, one of vpandn and vpxor:
3954 VEX VOP %ymmM, %ymmM, %ymmN
3955 -> VEX VOP %xmmM, %xmmM, %xmmN
3956 VOP, one of vpandnd and vpandnq:
3957 EVEX VOP %zmmM, %zmmM, %zmmN
3958 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3959 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3960 EVEX VOP %ymmM, %ymmM, %ymmN
3961 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3962 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3963 VOP, one of vpxord and vpxorq:
3964 EVEX VOP %zmmM, %zmmM, %zmmN
3965 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3966 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3967 EVEX VOP %ymmM, %ymmM, %ymmN
3968 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3969 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3970 */
3971 if (is_evex_encoding (&i.tm))
3972 {
3973 if (i.vec_encoding == vex_encoding_evex)
3974 i.tm.opcode_modifier.evex = EVEX128;
3975 else
3976 {
3977 i.tm.opcode_modifier.vex = VEX128;
3978 i.tm.opcode_modifier.vexw = VEXW0;
3979 i.tm.opcode_modifier.evex = 0;
3980 }
3981 }
3982 else
3983 i.tm.opcode_modifier.vex = VEX128;
3984
3985 if (i.tm.opcode_modifier.vex)
3986 for (j = 0; j < 3; j++)
3987 {
3988 i.types[j].bitfield.xmmword = 1;
3989 i.types[j].bitfield.ymmword = 0;
3990 }
3991 }
3992 }
3993
3994 /* This is the guts of the machine-dependent assembler. LINE points to a
3995 machine dependent instruction. This function is supposed to emit
3996 the frags/bytes it assembles to. */
3997
3998 void
3999 md_assemble (char *line)
4000 {
4001 unsigned int j;
4002 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4003 const insn_template *t;
4004
4005 /* Initialize globals. */
4006 memset (&i, '\0', sizeof (i));
4007 for (j = 0; j < MAX_OPERANDS; j++)
4008 i.reloc[j] = NO_RELOC;
4009 memset (disp_expressions, '\0', sizeof (disp_expressions));
4010 memset (im_expressions, '\0', sizeof (im_expressions));
4011 save_stack_p = save_stack;
4012
4013 /* First parse an instruction mnemonic & call i386_operand for the operands.
4014 We assume that the scrubber has arranged it so that line[0] is the valid
4015 start of a (possibly prefixed) mnemonic. */
4016
4017 line = parse_insn (line, mnemonic);
4018 if (line == NULL)
4019 return;
4020 mnem_suffix = i.suffix;
4021
4022 line = parse_operands (line, mnemonic);
4023 this_operand = -1;
4024 xfree (i.memop1_string);
4025 i.memop1_string = NULL;
4026 if (line == NULL)
4027 return;
4028
4029 /* Now we've parsed the mnemonic into a set of templates, and have the
4030 operands at hand. */
4031
4032 /* All intel opcodes have reversed operands except for "bound" and
4033 "enter". We also don't reverse intersegment "jmp" and "call"
4034 instructions with 2 immediate operands so that the immediate segment
4035 precedes the offset, as it does when in AT&T mode. */
4036 if (intel_syntax
4037 && i.operands > 1
4038 && (strcmp (mnemonic, "bound") != 0)
4039 && (strcmp (mnemonic, "invlpga") != 0)
4040 && !(operand_type_check (i.types[0], imm)
4041 && operand_type_check (i.types[1], imm)))
4042 swap_operands ();
4043
4044 /* The order of the immediates should be reversed
4045 for 2 immediates extrq and insertq instructions */
4046 if (i.imm_operands == 2
4047 && (strcmp (mnemonic, "extrq") == 0
4048 || strcmp (mnemonic, "insertq") == 0))
4049 swap_2_operands (0, 1);
4050
4051 if (i.imm_operands)
4052 optimize_imm ();
4053
4054 /* Don't optimize displacement for movabs since it only takes 64bit
4055 displacement. */
4056 if (i.disp_operands
4057 && i.disp_encoding != disp_encoding_32bit
4058 && (flag_code != CODE_64BIT
4059 || strcmp (mnemonic, "movabs") != 0))
4060 optimize_disp ();
4061
4062 /* Next, we find a template that matches the given insn,
4063 making sure the overlap of the given operands types is consistent
4064 with the template operand types. */
4065
4066 if (!(t = match_template (mnem_suffix)))
4067 return;
4068
4069 if (sse_check != check_none
4070 && !i.tm.opcode_modifier.noavx
4071 && !i.tm.cpu_flags.bitfield.cpuavx
4072 && (i.tm.cpu_flags.bitfield.cpusse
4073 || i.tm.cpu_flags.bitfield.cpusse2
4074 || i.tm.cpu_flags.bitfield.cpusse3
4075 || i.tm.cpu_flags.bitfield.cpussse3
4076 || i.tm.cpu_flags.bitfield.cpusse4_1
4077 || i.tm.cpu_flags.bitfield.cpusse4_2
4078 || i.tm.cpu_flags.bitfield.cpupclmul
4079 || i.tm.cpu_flags.bitfield.cpuaes
4080 || i.tm.cpu_flags.bitfield.cpugfni))
4081 {
4082 (sse_check == check_warning
4083 ? as_warn
4084 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4085 }
4086
4087 /* Zap movzx and movsx suffix. The suffix has been set from
4088 "word ptr" or "byte ptr" on the source operand in Intel syntax
4089 or extracted from mnemonic in AT&T syntax. But we'll use
4090 the destination register to choose the suffix for encoding. */
4091 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4092 {
4093 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4094 there is no suffix, the default will be byte extension. */
4095 if (i.reg_operands != 2
4096 && !i.suffix
4097 && intel_syntax)
4098 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4099
4100 i.suffix = 0;
4101 }
4102
4103 if (i.tm.opcode_modifier.fwait)
4104 if (!add_prefix (FWAIT_OPCODE))
4105 return;
4106
4107 /* Check if REP prefix is OK. */
4108 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4109 {
4110 as_bad (_("invalid instruction `%s' after `%s'"),
4111 i.tm.name, i.rep_prefix);
4112 return;
4113 }
4114
4115 /* Check for lock without a lockable instruction. Destination operand
4116 must be memory unless it is xchg (0x86). */
4117 if (i.prefix[LOCK_PREFIX]
4118 && (!i.tm.opcode_modifier.islockable
4119 || i.mem_operands == 0
4120 || (i.tm.base_opcode != 0x86
4121 && !operand_type_check (i.types[i.operands - 1], anymem))))
4122 {
4123 as_bad (_("expecting lockable instruction after `lock'"));
4124 return;
4125 }
4126
4127 /* Check if HLE prefix is OK. */
4128 if (i.hle_prefix && !check_hle ())
4129 return;
4130
4131 /* Check BND prefix. */
4132 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4133 as_bad (_("expecting valid branch instruction after `bnd'"));
4134
4135 /* Check NOTRACK prefix. */
4136 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4137 as_bad (_("expecting indirect branch instruction after `notrack'"));
4138
4139 if (i.tm.cpu_flags.bitfield.cpumpx)
4140 {
4141 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4142 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4143 else if (flag_code != CODE_16BIT
4144 ? i.prefix[ADDR_PREFIX]
4145 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4146 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4147 }
4148
4149 /* Insert BND prefix. */
4150 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4151 {
4152 if (!i.prefix[BND_PREFIX])
4153 add_prefix (BND_PREFIX_OPCODE);
4154 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4155 {
4156 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4157 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4158 }
4159 }
4160
4161 /* Check string instruction segment overrides. */
4162 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4163 {
4164 if (!check_string ())
4165 return;
4166 i.disp_operands = 0;
4167 }
4168
4169 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4170 optimize_encoding ();
4171
4172 if (!process_suffix ())
4173 return;
4174
4175 /* Update operand types. */
4176 for (j = 0; j < i.operands; j++)
4177 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4178
4179 /* Make still unresolved immediate matches conform to size of immediate
4180 given in i.suffix. */
4181 if (!finalize_imm ())
4182 return;
4183
4184 if (i.types[0].bitfield.imm1)
4185 i.imm_operands = 0; /* kludge for shift insns. */
4186
4187 /* We only need to check those implicit registers for instructions
4188 with 3 operands or less. */
4189 if (i.operands <= 3)
4190 for (j = 0; j < i.operands; j++)
4191 if (i.types[j].bitfield.inoutportreg
4192 || i.types[j].bitfield.shiftcount
4193 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4194 i.reg_operands--;
4195
4196 /* ImmExt should be processed after SSE2AVX. */
4197 if (!i.tm.opcode_modifier.sse2avx
4198 && i.tm.opcode_modifier.immext)
4199 process_immext ();
4200
4201 /* For insns with operands there are more diddles to do to the opcode. */
4202 if (i.operands)
4203 {
4204 if (!process_operands ())
4205 return;
4206 }
4207 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4208 {
4209 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4210 as_warn (_("translating to `%sp'"), i.tm.name);
4211 }
4212
4213 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4214 || is_evex_encoding (&i.tm))
4215 {
4216 if (flag_code == CODE_16BIT)
4217 {
4218 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4219 i.tm.name);
4220 return;
4221 }
4222
4223 if (i.tm.opcode_modifier.vex)
4224 build_vex_prefix (t);
4225 else
4226 build_evex_prefix ();
4227 }
4228
4229 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4230 instructions may define INT_OPCODE as well, so avoid this corner
4231 case for those instructions that use MODRM. */
4232 if (i.tm.base_opcode == INT_OPCODE
4233 && !i.tm.opcode_modifier.modrm
4234 && i.op[0].imms->X_add_number == 3)
4235 {
4236 i.tm.base_opcode = INT3_OPCODE;
4237 i.imm_operands = 0;
4238 }
4239
4240 if ((i.tm.opcode_modifier.jump
4241 || i.tm.opcode_modifier.jumpbyte
4242 || i.tm.opcode_modifier.jumpdword)
4243 && i.op[0].disps->X_op == O_constant)
4244 {
4245 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4246 the absolute address given by the constant. Since ix86 jumps and
4247 calls are pc relative, we need to generate a reloc. */
4248 i.op[0].disps->X_add_symbol = &abs_symbol;
4249 i.op[0].disps->X_op = O_symbol;
4250 }
4251
4252 if (i.tm.opcode_modifier.rex64)
4253 i.rex |= REX_W;
4254
4255 /* For 8 bit registers we need an empty rex prefix. Also if the
4256 instruction already has a prefix, we need to convert old
4257 registers to new ones. */
4258
4259 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4260 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4261 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4262 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4263 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4264 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4265 && i.rex != 0))
4266 {
4267 int x;
4268
4269 i.rex |= REX_OPCODE;
4270 for (x = 0; x < 2; x++)
4271 {
4272 /* Look for 8 bit operand that uses old registers. */
4273 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4274 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4275 {
4276 /* In case it is "hi" register, give up. */
4277 if (i.op[x].regs->reg_num > 3)
4278 as_bad (_("can't encode register '%s%s' in an "
4279 "instruction requiring REX prefix."),
4280 register_prefix, i.op[x].regs->reg_name);
4281
4282 /* Otherwise it is equivalent to the extended register.
4283 Since the encoding doesn't change this is merely
4284 cosmetic cleanup for debug output. */
4285
4286 i.op[x].regs = i.op[x].regs + 8;
4287 }
4288 }
4289 }
4290
4291 if (i.rex == 0 && i.rex_encoding)
4292 {
4293 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4294 that uses legacy register. If it is "hi" register, don't add
4295 the REX_OPCODE byte. */
4296 int x;
4297 for (x = 0; x < 2; x++)
4298 if (i.types[x].bitfield.reg
4299 && i.types[x].bitfield.byte
4300 && (i.op[x].regs->reg_flags & RegRex64) == 0
4301 && i.op[x].regs->reg_num > 3)
4302 {
4303 i.rex_encoding = FALSE;
4304 break;
4305 }
4306
4307 if (i.rex_encoding)
4308 i.rex = REX_OPCODE;
4309 }
4310
4311 if (i.rex != 0)
4312 add_prefix (REX_OPCODE | i.rex);
4313
4314 /* We are ready to output the insn. */
4315 output_insn ();
4316 }
4317
4318 static char *
4319 parse_insn (char *line, char *mnemonic)
4320 {
4321 char *l = line;
4322 char *token_start = l;
4323 char *mnem_p;
4324 int supported;
4325 const insn_template *t;
4326 char *dot_p = NULL;
4327
4328 while (1)
4329 {
4330 mnem_p = mnemonic;
4331 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4332 {
4333 if (*mnem_p == '.')
4334 dot_p = mnem_p;
4335 mnem_p++;
4336 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4337 {
4338 as_bad (_("no such instruction: `%s'"), token_start);
4339 return NULL;
4340 }
4341 l++;
4342 }
4343 if (!is_space_char (*l)
4344 && *l != END_OF_INSN
4345 && (intel_syntax
4346 || (*l != PREFIX_SEPARATOR
4347 && *l != ',')))
4348 {
4349 as_bad (_("invalid character %s in mnemonic"),
4350 output_invalid (*l));
4351 return NULL;
4352 }
4353 if (token_start == l)
4354 {
4355 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4356 as_bad (_("expecting prefix; got nothing"));
4357 else
4358 as_bad (_("expecting mnemonic; got nothing"));
4359 return NULL;
4360 }
4361
4362 /* Look up instruction (or prefix) via hash table. */
4363 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4364
4365 if (*l != END_OF_INSN
4366 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4367 && current_templates
4368 && current_templates->start->opcode_modifier.isprefix)
4369 {
4370 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4371 {
4372 as_bad ((flag_code != CODE_64BIT
4373 ? _("`%s' is only supported in 64-bit mode")
4374 : _("`%s' is not supported in 64-bit mode")),
4375 current_templates->start->name);
4376 return NULL;
4377 }
4378 /* If we are in 16-bit mode, do not allow addr16 or data16.
4379 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4380 if ((current_templates->start->opcode_modifier.size16
4381 || current_templates->start->opcode_modifier.size32)
4382 && flag_code != CODE_64BIT
4383 && (current_templates->start->opcode_modifier.size32
4384 ^ (flag_code == CODE_16BIT)))
4385 {
4386 as_bad (_("redundant %s prefix"),
4387 current_templates->start->name);
4388 return NULL;
4389 }
4390 if (current_templates->start->opcode_length == 0)
4391 {
4392 /* Handle pseudo prefixes. */
4393 switch (current_templates->start->base_opcode)
4394 {
4395 case 0x0:
4396 /* {disp8} */
4397 i.disp_encoding = disp_encoding_8bit;
4398 break;
4399 case 0x1:
4400 /* {disp32} */
4401 i.disp_encoding = disp_encoding_32bit;
4402 break;
4403 case 0x2:
4404 /* {load} */
4405 i.dir_encoding = dir_encoding_load;
4406 break;
4407 case 0x3:
4408 /* {store} */
4409 i.dir_encoding = dir_encoding_store;
4410 break;
4411 case 0x4:
4412 /* {vex2} */
4413 i.vec_encoding = vex_encoding_vex2;
4414 break;
4415 case 0x5:
4416 /* {vex3} */
4417 i.vec_encoding = vex_encoding_vex3;
4418 break;
4419 case 0x6:
4420 /* {evex} */
4421 i.vec_encoding = vex_encoding_evex;
4422 break;
4423 case 0x7:
4424 /* {rex} */
4425 i.rex_encoding = TRUE;
4426 break;
4427 case 0x8:
4428 /* {nooptimize} */
4429 i.no_optimize = TRUE;
4430 break;
4431 default:
4432 abort ();
4433 }
4434 }
4435 else
4436 {
4437 /* Add prefix, checking for repeated prefixes. */
4438 switch (add_prefix (current_templates->start->base_opcode))
4439 {
4440 case PREFIX_EXIST:
4441 return NULL;
4442 case PREFIX_DS:
4443 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4444 i.notrack_prefix = current_templates->start->name;
4445 break;
4446 case PREFIX_REP:
4447 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4448 i.hle_prefix = current_templates->start->name;
4449 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4450 i.bnd_prefix = current_templates->start->name;
4451 else
4452 i.rep_prefix = current_templates->start->name;
4453 break;
4454 default:
4455 break;
4456 }
4457 }
4458 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4459 token_start = ++l;
4460 }
4461 else
4462 break;
4463 }
4464
4465 if (!current_templates)
4466 {
4467 /* Check if we should swap operand or force 32bit displacement in
4468 encoding. */
4469 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4470 i.dir_encoding = dir_encoding_store;
4471 else if (mnem_p - 3 == dot_p
4472 && dot_p[1] == 'd'
4473 && dot_p[2] == '8')
4474 i.disp_encoding = disp_encoding_8bit;
4475 else if (mnem_p - 4 == dot_p
4476 && dot_p[1] == 'd'
4477 && dot_p[2] == '3'
4478 && dot_p[3] == '2')
4479 i.disp_encoding = disp_encoding_32bit;
4480 else
4481 goto check_suffix;
4482 mnem_p = dot_p;
4483 *dot_p = '\0';
4484 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4485 }
4486
4487 if (!current_templates)
4488 {
4489 check_suffix:
4490 /* See if we can get a match by trimming off a suffix. */
4491 switch (mnem_p[-1])
4492 {
4493 case WORD_MNEM_SUFFIX:
4494 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4495 i.suffix = SHORT_MNEM_SUFFIX;
4496 else
4497 /* Fall through. */
4498 case BYTE_MNEM_SUFFIX:
4499 case QWORD_MNEM_SUFFIX:
4500 i.suffix = mnem_p[-1];
4501 mnem_p[-1] = '\0';
4502 current_templates = (const templates *) hash_find (op_hash,
4503 mnemonic);
4504 break;
4505 case SHORT_MNEM_SUFFIX:
4506 case LONG_MNEM_SUFFIX:
4507 if (!intel_syntax)
4508 {
4509 i.suffix = mnem_p[-1];
4510 mnem_p[-1] = '\0';
4511 current_templates = (const templates *) hash_find (op_hash,
4512 mnemonic);
4513 }
4514 break;
4515
4516 /* Intel Syntax. */
4517 case 'd':
4518 if (intel_syntax)
4519 {
4520 if (intel_float_operand (mnemonic) == 1)
4521 i.suffix = SHORT_MNEM_SUFFIX;
4522 else
4523 i.suffix = LONG_MNEM_SUFFIX;
4524 mnem_p[-1] = '\0';
4525 current_templates = (const templates *) hash_find (op_hash,
4526 mnemonic);
4527 }
4528 break;
4529 }
4530 if (!current_templates)
4531 {
4532 as_bad (_("no such instruction: `%s'"), token_start);
4533 return NULL;
4534 }
4535 }
4536
4537 if (current_templates->start->opcode_modifier.jump
4538 || current_templates->start->opcode_modifier.jumpbyte)
4539 {
4540 /* Check for a branch hint. We allow ",pt" and ",pn" for
4541 predict taken and predict not taken respectively.
4542 I'm not sure that branch hints actually do anything on loop
4543 and jcxz insns (JumpByte) for current Pentium4 chips. They
4544 may work in the future and it doesn't hurt to accept them
4545 now. */
4546 if (l[0] == ',' && l[1] == 'p')
4547 {
4548 if (l[2] == 't')
4549 {
4550 if (!add_prefix (DS_PREFIX_OPCODE))
4551 return NULL;
4552 l += 3;
4553 }
4554 else if (l[2] == 'n')
4555 {
4556 if (!add_prefix (CS_PREFIX_OPCODE))
4557 return NULL;
4558 l += 3;
4559 }
4560 }
4561 }
4562 /* Any other comma loses. */
4563 if (*l == ',')
4564 {
4565 as_bad (_("invalid character %s in mnemonic"),
4566 output_invalid (*l));
4567 return NULL;
4568 }
4569
4570 /* Check if instruction is supported on specified architecture. */
4571 supported = 0;
4572 for (t = current_templates->start; t < current_templates->end; ++t)
4573 {
4574 supported |= cpu_flags_match (t);
4575 if (supported == CPU_FLAGS_PERFECT_MATCH)
4576 {
4577 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4578 as_warn (_("use .code16 to ensure correct addressing mode"));
4579
4580 return l;
4581 }
4582 }
4583
4584 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4585 as_bad (flag_code == CODE_64BIT
4586 ? _("`%s' is not supported in 64-bit mode")
4587 : _("`%s' is only supported in 64-bit mode"),
4588 current_templates->start->name);
4589 else
4590 as_bad (_("`%s' is not supported on `%s%s'"),
4591 current_templates->start->name,
4592 cpu_arch_name ? cpu_arch_name : default_arch,
4593 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4594
4595 return NULL;
4596 }
4597
4598 static char *
4599 parse_operands (char *l, const char *mnemonic)
4600 {
4601 char *token_start;
4602
4603 /* 1 if operand is pending after ','. */
4604 unsigned int expecting_operand = 0;
4605
4606 /* Non-zero if operand parens not balanced. */
4607 unsigned int paren_not_balanced;
4608
4609 while (*l != END_OF_INSN)
4610 {
4611 /* Skip optional white space before operand. */
4612 if (is_space_char (*l))
4613 ++l;
4614 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4615 {
4616 as_bad (_("invalid character %s before operand %d"),
4617 output_invalid (*l),
4618 i.operands + 1);
4619 return NULL;
4620 }
4621 token_start = l; /* After white space. */
4622 paren_not_balanced = 0;
4623 while (paren_not_balanced || *l != ',')
4624 {
4625 if (*l == END_OF_INSN)
4626 {
4627 if (paren_not_balanced)
4628 {
4629 if (!intel_syntax)
4630 as_bad (_("unbalanced parenthesis in operand %d."),
4631 i.operands + 1);
4632 else
4633 as_bad (_("unbalanced brackets in operand %d."),
4634 i.operands + 1);
4635 return NULL;
4636 }
4637 else
4638 break; /* we are done */
4639 }
4640 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4641 {
4642 as_bad (_("invalid character %s in operand %d"),
4643 output_invalid (*l),
4644 i.operands + 1);
4645 return NULL;
4646 }
4647 if (!intel_syntax)
4648 {
4649 if (*l == '(')
4650 ++paren_not_balanced;
4651 if (*l == ')')
4652 --paren_not_balanced;
4653 }
4654 else
4655 {
4656 if (*l == '[')
4657 ++paren_not_balanced;
4658 if (*l == ']')
4659 --paren_not_balanced;
4660 }
4661 l++;
4662 }
4663 if (l != token_start)
4664 { /* Yes, we've read in another operand. */
4665 unsigned int operand_ok;
4666 this_operand = i.operands++;
4667 if (i.operands > MAX_OPERANDS)
4668 {
4669 as_bad (_("spurious operands; (%d operands/instruction max)"),
4670 MAX_OPERANDS);
4671 return NULL;
4672 }
4673 i.types[this_operand].bitfield.unspecified = 1;
4674 /* Now parse operand adding info to 'i' as we go along. */
4675 END_STRING_AND_SAVE (l);
4676
4677 if (intel_syntax)
4678 operand_ok =
4679 i386_intel_operand (token_start,
4680 intel_float_operand (mnemonic));
4681 else
4682 operand_ok = i386_att_operand (token_start);
4683
4684 RESTORE_END_STRING (l);
4685 if (!operand_ok)
4686 return NULL;
4687 }
4688 else
4689 {
4690 if (expecting_operand)
4691 {
4692 expecting_operand_after_comma:
4693 as_bad (_("expecting operand after ','; got nothing"));
4694 return NULL;
4695 }
4696 if (*l == ',')
4697 {
4698 as_bad (_("expecting operand before ','; got nothing"));
4699 return NULL;
4700 }
4701 }
4702
4703 /* Now *l must be either ',' or END_OF_INSN. */
4704 if (*l == ',')
4705 {
4706 if (*++l == END_OF_INSN)
4707 {
4708 /* Just skip it, if it's \n complain. */
4709 goto expecting_operand_after_comma;
4710 }
4711 expecting_operand = 1;
4712 }
4713 }
4714 return l;
4715 }
4716
4717 static void
4718 swap_2_operands (int xchg1, int xchg2)
4719 {
4720 union i386_op temp_op;
4721 i386_operand_type temp_type;
4722 enum bfd_reloc_code_real temp_reloc;
4723
4724 temp_type = i.types[xchg2];
4725 i.types[xchg2] = i.types[xchg1];
4726 i.types[xchg1] = temp_type;
4727 temp_op = i.op[xchg2];
4728 i.op[xchg2] = i.op[xchg1];
4729 i.op[xchg1] = temp_op;
4730 temp_reloc = i.reloc[xchg2];
4731 i.reloc[xchg2] = i.reloc[xchg1];
4732 i.reloc[xchg1] = temp_reloc;
4733
4734 if (i.mask)
4735 {
4736 if (i.mask->operand == xchg1)
4737 i.mask->operand = xchg2;
4738 else if (i.mask->operand == xchg2)
4739 i.mask->operand = xchg1;
4740 }
4741 if (i.broadcast)
4742 {
4743 if (i.broadcast->operand == xchg1)
4744 i.broadcast->operand = xchg2;
4745 else if (i.broadcast->operand == xchg2)
4746 i.broadcast->operand = xchg1;
4747 }
4748 if (i.rounding)
4749 {
4750 if (i.rounding->operand == xchg1)
4751 i.rounding->operand = xchg2;
4752 else if (i.rounding->operand == xchg2)
4753 i.rounding->operand = xchg1;
4754 }
4755 }
4756
4757 static void
4758 swap_operands (void)
4759 {
4760 switch (i.operands)
4761 {
4762 case 5:
4763 case 4:
4764 swap_2_operands (1, i.operands - 2);
4765 /* Fall through. */
4766 case 3:
4767 case 2:
4768 swap_2_operands (0, i.operands - 1);
4769 break;
4770 default:
4771 abort ();
4772 }
4773
4774 if (i.mem_operands == 2)
4775 {
4776 const seg_entry *temp_seg;
4777 temp_seg = i.seg[0];
4778 i.seg[0] = i.seg[1];
4779 i.seg[1] = temp_seg;
4780 }
4781 }
4782
4783 /* Try to ensure constant immediates are represented in the smallest
4784 opcode possible. */
4785 static void
4786 optimize_imm (void)
4787 {
4788 char guess_suffix = 0;
4789 int op;
4790
4791 if (i.suffix)
4792 guess_suffix = i.suffix;
4793 else if (i.reg_operands)
4794 {
4795 /* Figure out a suffix from the last register operand specified.
4796 We can't do this properly yet, ie. excluding InOutPortReg,
4797 but the following works for instructions with immediates.
4798 In any case, we can't set i.suffix yet. */
4799 for (op = i.operands; --op >= 0;)
4800 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4801 {
4802 guess_suffix = BYTE_MNEM_SUFFIX;
4803 break;
4804 }
4805 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4806 {
4807 guess_suffix = WORD_MNEM_SUFFIX;
4808 break;
4809 }
4810 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4811 {
4812 guess_suffix = LONG_MNEM_SUFFIX;
4813 break;
4814 }
4815 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4816 {
4817 guess_suffix = QWORD_MNEM_SUFFIX;
4818 break;
4819 }
4820 }
4821 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4822 guess_suffix = WORD_MNEM_SUFFIX;
4823
4824 for (op = i.operands; --op >= 0;)
4825 if (operand_type_check (i.types[op], imm))
4826 {
4827 switch (i.op[op].imms->X_op)
4828 {
4829 case O_constant:
4830 /* If a suffix is given, this operand may be shortened. */
4831 switch (guess_suffix)
4832 {
4833 case LONG_MNEM_SUFFIX:
4834 i.types[op].bitfield.imm32 = 1;
4835 i.types[op].bitfield.imm64 = 1;
4836 break;
4837 case WORD_MNEM_SUFFIX:
4838 i.types[op].bitfield.imm16 = 1;
4839 i.types[op].bitfield.imm32 = 1;
4840 i.types[op].bitfield.imm32s = 1;
4841 i.types[op].bitfield.imm64 = 1;
4842 break;
4843 case BYTE_MNEM_SUFFIX:
4844 i.types[op].bitfield.imm8 = 1;
4845 i.types[op].bitfield.imm8s = 1;
4846 i.types[op].bitfield.imm16 = 1;
4847 i.types[op].bitfield.imm32 = 1;
4848 i.types[op].bitfield.imm32s = 1;
4849 i.types[op].bitfield.imm64 = 1;
4850 break;
4851 }
4852
4853 /* If this operand is at most 16 bits, convert it
4854 to a signed 16 bit number before trying to see
4855 whether it will fit in an even smaller size.
4856 This allows a 16-bit operand such as $0xffe0 to
4857 be recognised as within Imm8S range. */
4858 if ((i.types[op].bitfield.imm16)
4859 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4860 {
4861 i.op[op].imms->X_add_number =
4862 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4863 }
4864 #ifdef BFD64
4865 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4866 if ((i.types[op].bitfield.imm32)
4867 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4868 == 0))
4869 {
4870 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4871 ^ ((offsetT) 1 << 31))
4872 - ((offsetT) 1 << 31));
4873 }
4874 #endif
4875 i.types[op]
4876 = operand_type_or (i.types[op],
4877 smallest_imm_type (i.op[op].imms->X_add_number));
4878
4879 /* We must avoid matching of Imm32 templates when 64bit
4880 only immediate is available. */
4881 if (guess_suffix == QWORD_MNEM_SUFFIX)
4882 i.types[op].bitfield.imm32 = 0;
4883 break;
4884
4885 case O_absent:
4886 case O_register:
4887 abort ();
4888
4889 /* Symbols and expressions. */
4890 default:
4891 /* Convert symbolic operand to proper sizes for matching, but don't
4892 prevent matching a set of insns that only supports sizes other
4893 than those matching the insn suffix. */
4894 {
4895 i386_operand_type mask, allowed;
4896 const insn_template *t;
4897
4898 operand_type_set (&mask, 0);
4899 operand_type_set (&allowed, 0);
4900
4901 for (t = current_templates->start;
4902 t < current_templates->end;
4903 ++t)
4904 allowed = operand_type_or (allowed,
4905 t->operand_types[op]);
4906 switch (guess_suffix)
4907 {
4908 case QWORD_MNEM_SUFFIX:
4909 mask.bitfield.imm64 = 1;
4910 mask.bitfield.imm32s = 1;
4911 break;
4912 case LONG_MNEM_SUFFIX:
4913 mask.bitfield.imm32 = 1;
4914 break;
4915 case WORD_MNEM_SUFFIX:
4916 mask.bitfield.imm16 = 1;
4917 break;
4918 case BYTE_MNEM_SUFFIX:
4919 mask.bitfield.imm8 = 1;
4920 break;
4921 default:
4922 break;
4923 }
4924 allowed = operand_type_and (mask, allowed);
4925 if (!operand_type_all_zero (&allowed))
4926 i.types[op] = operand_type_and (i.types[op], mask);
4927 }
4928 break;
4929 }
4930 }
4931 }
4932
4933 /* Try to use the smallest displacement type too. */
4934 static void
4935 optimize_disp (void)
4936 {
4937 int op;
4938
4939 for (op = i.operands; --op >= 0;)
4940 if (operand_type_check (i.types[op], disp))
4941 {
4942 if (i.op[op].disps->X_op == O_constant)
4943 {
4944 offsetT op_disp = i.op[op].disps->X_add_number;
4945
4946 if (i.types[op].bitfield.disp16
4947 && (op_disp & ~(offsetT) 0xffff) == 0)
4948 {
4949 /* If this operand is at most 16 bits, convert
4950 to a signed 16 bit number and don't use 64bit
4951 displacement. */
4952 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4953 i.types[op].bitfield.disp64 = 0;
4954 }
4955 #ifdef BFD64
4956 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4957 if (i.types[op].bitfield.disp32
4958 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4959 {
4960 /* If this operand is at most 32 bits, convert
4961 to a signed 32 bit number and don't use 64bit
4962 displacement. */
4963 op_disp &= (((offsetT) 2 << 31) - 1);
4964 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4965 i.types[op].bitfield.disp64 = 0;
4966 }
4967 #endif
4968 if (!op_disp && i.types[op].bitfield.baseindex)
4969 {
4970 i.types[op].bitfield.disp8 = 0;
4971 i.types[op].bitfield.disp16 = 0;
4972 i.types[op].bitfield.disp32 = 0;
4973 i.types[op].bitfield.disp32s = 0;
4974 i.types[op].bitfield.disp64 = 0;
4975 i.op[op].disps = 0;
4976 i.disp_operands--;
4977 }
4978 else if (flag_code == CODE_64BIT)
4979 {
4980 if (fits_in_signed_long (op_disp))
4981 {
4982 i.types[op].bitfield.disp64 = 0;
4983 i.types[op].bitfield.disp32s = 1;
4984 }
4985 if (i.prefix[ADDR_PREFIX]
4986 && fits_in_unsigned_long (op_disp))
4987 i.types[op].bitfield.disp32 = 1;
4988 }
4989 if ((i.types[op].bitfield.disp32
4990 || i.types[op].bitfield.disp32s
4991 || i.types[op].bitfield.disp16)
4992 && fits_in_disp8 (op_disp))
4993 i.types[op].bitfield.disp8 = 1;
4994 }
4995 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4996 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4997 {
4998 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4999 i.op[op].disps, 0, i.reloc[op]);
5000 i.types[op].bitfield.disp8 = 0;
5001 i.types[op].bitfield.disp16 = 0;
5002 i.types[op].bitfield.disp32 = 0;
5003 i.types[op].bitfield.disp32s = 0;
5004 i.types[op].bitfield.disp64 = 0;
5005 }
5006 else
5007 /* We only support 64bit displacement on constants. */
5008 i.types[op].bitfield.disp64 = 0;
5009 }
5010 }
5011
5012 /* Check if operands are valid for the instruction. */
5013
5014 static int
5015 check_VecOperands (const insn_template *t)
5016 {
5017 unsigned int op;
5018 i386_cpu_flags cpu;
5019 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5020
5021 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5022 any one operand are implicity requiring AVX512VL support if the actual
5023 operand size is YMMword or XMMword. Since this function runs after
5024 template matching, there's no need to check for YMMword/XMMword in
5025 the template. */
5026 cpu = cpu_flags_and (t->cpu_flags, avx512);
5027 if (!cpu_flags_all_zero (&cpu)
5028 && !t->cpu_flags.bitfield.cpuavx512vl
5029 && !cpu_arch_flags.bitfield.cpuavx512vl)
5030 {
5031 for (op = 0; op < t->operands; ++op)
5032 {
5033 if (t->operand_types[op].bitfield.zmmword
5034 && (i.types[op].bitfield.ymmword
5035 || i.types[op].bitfield.xmmword))
5036 {
5037 i.error = unsupported;
5038 return 1;
5039 }
5040 }
5041 }
5042
5043 /* Without VSIB byte, we can't have a vector register for index. */
5044 if (!t->opcode_modifier.vecsib
5045 && i.index_reg
5046 && (i.index_reg->reg_type.bitfield.xmmword
5047 || i.index_reg->reg_type.bitfield.ymmword
5048 || i.index_reg->reg_type.bitfield.zmmword))
5049 {
5050 i.error = unsupported_vector_index_register;
5051 return 1;
5052 }
5053
5054 /* Check if default mask is allowed. */
5055 if (t->opcode_modifier.nodefmask
5056 && (!i.mask || i.mask->mask->reg_num == 0))
5057 {
5058 i.error = no_default_mask;
5059 return 1;
5060 }
5061
5062 /* For VSIB byte, we need a vector register for index, and all vector
5063 registers must be distinct. */
5064 if (t->opcode_modifier.vecsib)
5065 {
5066 if (!i.index_reg
5067 || !((t->opcode_modifier.vecsib == VecSIB128
5068 && i.index_reg->reg_type.bitfield.xmmword)
5069 || (t->opcode_modifier.vecsib == VecSIB256
5070 && i.index_reg->reg_type.bitfield.ymmword)
5071 || (t->opcode_modifier.vecsib == VecSIB512
5072 && i.index_reg->reg_type.bitfield.zmmword)))
5073 {
5074 i.error = invalid_vsib_address;
5075 return 1;
5076 }
5077
5078 gas_assert (i.reg_operands == 2 || i.mask);
5079 if (i.reg_operands == 2 && !i.mask)
5080 {
5081 gas_assert (i.types[0].bitfield.regsimd);
5082 gas_assert (i.types[0].bitfield.xmmword
5083 || i.types[0].bitfield.ymmword);
5084 gas_assert (i.types[2].bitfield.regsimd);
5085 gas_assert (i.types[2].bitfield.xmmword
5086 || i.types[2].bitfield.ymmword);
5087 if (operand_check == check_none)
5088 return 0;
5089 if (register_number (i.op[0].regs)
5090 != register_number (i.index_reg)
5091 && register_number (i.op[2].regs)
5092 != register_number (i.index_reg)
5093 && register_number (i.op[0].regs)
5094 != register_number (i.op[2].regs))
5095 return 0;
5096 if (operand_check == check_error)
5097 {
5098 i.error = invalid_vector_register_set;
5099 return 1;
5100 }
5101 as_warn (_("mask, index, and destination registers should be distinct"));
5102 }
5103 else if (i.reg_operands == 1 && i.mask)
5104 {
5105 if (i.types[1].bitfield.regsimd
5106 && (i.types[1].bitfield.xmmword
5107 || i.types[1].bitfield.ymmword
5108 || i.types[1].bitfield.zmmword)
5109 && (register_number (i.op[1].regs)
5110 == register_number (i.index_reg)))
5111 {
5112 if (operand_check == check_error)
5113 {
5114 i.error = invalid_vector_register_set;
5115 return 1;
5116 }
5117 if (operand_check != check_none)
5118 as_warn (_("index and destination registers should be distinct"));
5119 }
5120 }
5121 }
5122
5123 /* Check if broadcast is supported by the instruction and is applied
5124 to the memory operand. */
5125 if (i.broadcast)
5126 {
5127 i386_operand_type type, overlap;
5128
5129 /* Check if specified broadcast is supported in this instruction,
5130 and it's applied to memory operand of DWORD or QWORD type. */
5131 op = i.broadcast->operand;
5132 if (!t->opcode_modifier.broadcast
5133 || !i.types[op].bitfield.mem
5134 || (!i.types[op].bitfield.unspecified
5135 && (t->operand_types[op].bitfield.dword
5136 ? !i.types[op].bitfield.dword
5137 : !i.types[op].bitfield.qword)))
5138 {
5139 bad_broadcast:
5140 i.error = unsupported_broadcast;
5141 return 1;
5142 }
5143
5144 operand_type_set (&type, 0);
5145 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5146 {
5147 case 8:
5148 type.bitfield.qword = 1;
5149 break;
5150 case 16:
5151 type.bitfield.xmmword = 1;
5152 break;
5153 case 32:
5154 type.bitfield.ymmword = 1;
5155 break;
5156 case 64:
5157 type.bitfield.zmmword = 1;
5158 break;
5159 default:
5160 goto bad_broadcast;
5161 }
5162
5163 overlap = operand_type_and (type, t->operand_types[op]);
5164 if (operand_type_all_zero (&overlap))
5165 goto bad_broadcast;
5166
5167 if (t->opcode_modifier.checkregsize)
5168 {
5169 unsigned int j;
5170
5171 type.bitfield.baseindex = 1;
5172 for (j = 0; j < i.operands; ++j)
5173 {
5174 if (j != op
5175 && !operand_type_register_match(i.types[j],
5176 t->operand_types[j],
5177 type,
5178 t->operand_types[op]))
5179 goto bad_broadcast;
5180 }
5181 }
5182 }
5183 /* If broadcast is supported in this instruction, we need to check if
5184 operand of one-element size isn't specified without broadcast. */
5185 else if (t->opcode_modifier.broadcast && i.mem_operands)
5186 {
5187 /* Find memory operand. */
5188 for (op = 0; op < i.operands; op++)
5189 if (operand_type_check (i.types[op], anymem))
5190 break;
5191 gas_assert (op < i.operands);
5192 /* Check size of the memory operand. */
5193 if (t->operand_types[op].bitfield.dword
5194 ? i.types[op].bitfield.dword
5195 : i.types[op].bitfield.qword)
5196 {
5197 i.error = broadcast_needed;
5198 return 1;
5199 }
5200 }
5201 else
5202 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5203
5204 /* Check if requested masking is supported. */
5205 if (i.mask
5206 && (!t->opcode_modifier.masking
5207 || (i.mask->zeroing
5208 && t->opcode_modifier.masking == MERGING_MASKING)))
5209 {
5210 i.error = unsupported_masking;
5211 return 1;
5212 }
5213
5214 /* Check if masking is applied to dest operand. */
5215 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5216 {
5217 i.error = mask_not_on_destination;
5218 return 1;
5219 }
5220
5221 /* Check RC/SAE. */
5222 if (i.rounding)
5223 {
5224 if ((i.rounding->type != saeonly
5225 && !t->opcode_modifier.staticrounding)
5226 || (i.rounding->type == saeonly
5227 && (t->opcode_modifier.staticrounding
5228 || !t->opcode_modifier.sae)))
5229 {
5230 i.error = unsupported_rc_sae;
5231 return 1;
5232 }
5233 /* If the instruction has several immediate operands and one of
5234 them is rounding, the rounding operand should be the last
5235 immediate operand. */
5236 if (i.imm_operands > 1
5237 && i.rounding->operand != (int) (i.imm_operands - 1))
5238 {
5239 i.error = rc_sae_operand_not_last_imm;
5240 return 1;
5241 }
5242 }
5243
5244 /* Check vector Disp8 operand. */
5245 if (t->opcode_modifier.disp8memshift
5246 && i.disp_encoding != disp_encoding_32bit)
5247 {
5248 if (i.broadcast)
5249 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5250 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5251 i.memshift = t->opcode_modifier.disp8memshift;
5252 else
5253 {
5254 const i386_operand_type *type = NULL;
5255
5256 i.memshift = 0;
5257 for (op = 0; op < i.operands; op++)
5258 if (operand_type_check (i.types[op], anymem))
5259 {
5260 if (t->operand_types[op].bitfield.xmmword
5261 + t->operand_types[op].bitfield.ymmword
5262 + t->operand_types[op].bitfield.zmmword <= 1)
5263 type = &t->operand_types[op];
5264 else if (!i.types[op].bitfield.unspecified)
5265 type = &i.types[op];
5266 }
5267 else if (i.types[op].bitfield.regsimd)
5268 {
5269 if (i.types[op].bitfield.zmmword)
5270 i.memshift = 6;
5271 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5272 i.memshift = 5;
5273 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5274 i.memshift = 4;
5275 }
5276
5277 if (type)
5278 {
5279 if (type->bitfield.zmmword)
5280 i.memshift = 6;
5281 else if (type->bitfield.ymmword)
5282 i.memshift = 5;
5283 else if (type->bitfield.xmmword)
5284 i.memshift = 4;
5285 }
5286
5287 /* For the check in fits_in_disp8(). */
5288 if (i.memshift == 0)
5289 i.memshift = -1;
5290 }
5291
5292 for (op = 0; op < i.operands; op++)
5293 if (operand_type_check (i.types[op], disp)
5294 && i.op[op].disps->X_op == O_constant)
5295 {
5296 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5297 {
5298 i.types[op].bitfield.disp8 = 1;
5299 return 0;
5300 }
5301 i.types[op].bitfield.disp8 = 0;
5302 }
5303 }
5304
5305 i.memshift = 0;
5306
5307 return 0;
5308 }
5309
5310 /* Check if operands are valid for the instruction. Update VEX
5311 operand types. */
5312
5313 static int
5314 VEX_check_operands (const insn_template *t)
5315 {
5316 if (i.vec_encoding == vex_encoding_evex)
5317 {
5318 /* This instruction must be encoded with EVEX prefix. */
5319 if (!is_evex_encoding (t))
5320 {
5321 i.error = unsupported;
5322 return 1;
5323 }
5324 return 0;
5325 }
5326
5327 if (!t->opcode_modifier.vex)
5328 {
5329 /* This instruction template doesn't have VEX prefix. */
5330 if (i.vec_encoding != vex_encoding_default)
5331 {
5332 i.error = unsupported;
5333 return 1;
5334 }
5335 return 0;
5336 }
5337
5338 /* Only check VEX_Imm4, which must be the first operand. */
5339 if (t->operand_types[0].bitfield.vec_imm4)
5340 {
5341 if (i.op[0].imms->X_op != O_constant
5342 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5343 {
5344 i.error = bad_imm4;
5345 return 1;
5346 }
5347
5348 /* Turn off Imm8 so that update_imm won't complain. */
5349 i.types[0] = vec_imm4;
5350 }
5351
5352 return 0;
5353 }
5354
5355 static const insn_template *
5356 match_template (char mnem_suffix)
5357 {
5358 /* Points to template once we've found it. */
5359 const insn_template *t;
5360 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5361 i386_operand_type overlap4;
5362 unsigned int found_reverse_match;
5363 i386_opcode_modifier suffix_check, mnemsuf_check;
5364 i386_operand_type operand_types [MAX_OPERANDS];
5365 int addr_prefix_disp;
5366 unsigned int j;
5367 unsigned int found_cpu_match, size_match;
5368 unsigned int check_register;
5369 enum i386_error specific_error = 0;
5370
5371 #if MAX_OPERANDS != 5
5372 # error "MAX_OPERANDS must be 5."
5373 #endif
5374
5375 found_reverse_match = 0;
5376 addr_prefix_disp = -1;
5377
5378 memset (&suffix_check, 0, sizeof (suffix_check));
5379 if (intel_syntax && i.broadcast)
5380 /* nothing */;
5381 else if (i.suffix == BYTE_MNEM_SUFFIX)
5382 suffix_check.no_bsuf = 1;
5383 else if (i.suffix == WORD_MNEM_SUFFIX)
5384 suffix_check.no_wsuf = 1;
5385 else if (i.suffix == SHORT_MNEM_SUFFIX)
5386 suffix_check.no_ssuf = 1;
5387 else if (i.suffix == LONG_MNEM_SUFFIX)
5388 suffix_check.no_lsuf = 1;
5389 else if (i.suffix == QWORD_MNEM_SUFFIX)
5390 suffix_check.no_qsuf = 1;
5391 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5392 suffix_check.no_ldsuf = 1;
5393
5394 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5395 if (intel_syntax)
5396 {
5397 switch (mnem_suffix)
5398 {
5399 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5400 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5401 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5402 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5403 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5404 }
5405 }
5406
5407 /* Must have right number of operands. */
5408 i.error = number_of_operands_mismatch;
5409
5410 for (t = current_templates->start; t < current_templates->end; t++)
5411 {
5412 addr_prefix_disp = -1;
5413
5414 if (i.operands != t->operands)
5415 continue;
5416
5417 /* Check processor support. */
5418 i.error = unsupported;
5419 found_cpu_match = (cpu_flags_match (t)
5420 == CPU_FLAGS_PERFECT_MATCH);
5421 if (!found_cpu_match)
5422 continue;
5423
5424 /* Check AT&T mnemonic. */
5425 i.error = unsupported_with_intel_mnemonic;
5426 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5427 continue;
5428
5429 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5430 i.error = unsupported_syntax;
5431 if ((intel_syntax && t->opcode_modifier.attsyntax)
5432 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5433 || (intel64 && t->opcode_modifier.amd64)
5434 || (!intel64 && t->opcode_modifier.intel64))
5435 continue;
5436
5437 /* Check the suffix, except for some instructions in intel mode. */
5438 i.error = invalid_instruction_suffix;
5439 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5440 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5441 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5442 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5443 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5444 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5445 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5446 continue;
5447 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5448 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5449 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5450 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5451 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5452 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5453 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5454 continue;
5455
5456 size_match = operand_size_match (t);
5457 if (!size_match)
5458 continue;
5459
5460 for (j = 0; j < MAX_OPERANDS; j++)
5461 operand_types[j] = t->operand_types[j];
5462
5463 /* In general, don't allow 64-bit operands in 32-bit mode. */
5464 if (i.suffix == QWORD_MNEM_SUFFIX
5465 && flag_code != CODE_64BIT
5466 && (intel_syntax
5467 ? (!t->opcode_modifier.ignoresize
5468 && !t->opcode_modifier.broadcast
5469 && !intel_float_operand (t->name))
5470 : intel_float_operand (t->name) != 2)
5471 && ((!operand_types[0].bitfield.regmmx
5472 && !operand_types[0].bitfield.regsimd)
5473 || (!operand_types[t->operands > 1].bitfield.regmmx
5474 && !operand_types[t->operands > 1].bitfield.regsimd))
5475 && (t->base_opcode != 0x0fc7
5476 || t->extension_opcode != 1 /* cmpxchg8b */))
5477 continue;
5478
5479 /* In general, don't allow 32-bit operands on pre-386. */
5480 else if (i.suffix == LONG_MNEM_SUFFIX
5481 && !cpu_arch_flags.bitfield.cpui386
5482 && (intel_syntax
5483 ? (!t->opcode_modifier.ignoresize
5484 && !intel_float_operand (t->name))
5485 : intel_float_operand (t->name) != 2)
5486 && ((!operand_types[0].bitfield.regmmx
5487 && !operand_types[0].bitfield.regsimd)
5488 || (!operand_types[t->operands > 1].bitfield.regmmx
5489 && !operand_types[t->operands > 1].bitfield.regsimd)))
5490 continue;
5491
5492 /* Do not verify operands when there are none. */
5493 else
5494 {
5495 if (!t->operands)
5496 /* We've found a match; break out of loop. */
5497 break;
5498 }
5499
5500 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5501 into Disp32/Disp16/Disp32 operand. */
5502 if (i.prefix[ADDR_PREFIX] != 0)
5503 {
5504 /* There should be only one Disp operand. */
5505 switch (flag_code)
5506 {
5507 case CODE_16BIT:
5508 for (j = 0; j < MAX_OPERANDS; j++)
5509 {
5510 if (operand_types[j].bitfield.disp16)
5511 {
5512 addr_prefix_disp = j;
5513 operand_types[j].bitfield.disp32 = 1;
5514 operand_types[j].bitfield.disp16 = 0;
5515 break;
5516 }
5517 }
5518 break;
5519 case CODE_32BIT:
5520 for (j = 0; j < MAX_OPERANDS; j++)
5521 {
5522 if (operand_types[j].bitfield.disp32)
5523 {
5524 addr_prefix_disp = j;
5525 operand_types[j].bitfield.disp32 = 0;
5526 operand_types[j].bitfield.disp16 = 1;
5527 break;
5528 }
5529 }
5530 break;
5531 case CODE_64BIT:
5532 for (j = 0; j < MAX_OPERANDS; j++)
5533 {
5534 if (operand_types[j].bitfield.disp64)
5535 {
5536 addr_prefix_disp = j;
5537 operand_types[j].bitfield.disp64 = 0;
5538 operand_types[j].bitfield.disp32 = 1;
5539 break;
5540 }
5541 }
5542 break;
5543 }
5544 }
5545
5546 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5547 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5548 continue;
5549
5550 /* We check register size if needed. */
5551 if (t->opcode_modifier.checkregsize)
5552 {
5553 check_register = (1 << t->operands) - 1;
5554 if (i.broadcast)
5555 check_register &= ~(1 << i.broadcast->operand);
5556 }
5557 else
5558 check_register = 0;
5559
5560 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5561 switch (t->operands)
5562 {
5563 case 1:
5564 if (!operand_type_match (overlap0, i.types[0]))
5565 continue;
5566 break;
5567 case 2:
5568 /* xchg %eax, %eax is a special case. It is an alias for nop
5569 only in 32bit mode and we can use opcode 0x90. In 64bit
5570 mode, we can't use 0x90 for xchg %eax, %eax since it should
5571 zero-extend %eax to %rax. */
5572 if (flag_code == CODE_64BIT
5573 && t->base_opcode == 0x90
5574 && operand_type_equal (&i.types [0], &acc32)
5575 && operand_type_equal (&i.types [1], &acc32))
5576 continue;
5577 /* xrelease mov %eax, <disp> is another special case. It must not
5578 match the accumulator-only encoding of mov. */
5579 if (flag_code != CODE_64BIT
5580 && i.hle_prefix
5581 && t->base_opcode == 0xa0
5582 && i.types[0].bitfield.acc
5583 && operand_type_check (i.types[1], anymem))
5584 continue;
5585 if (!(size_match & MATCH_STRAIGHT))
5586 goto check_reverse;
5587 /* If we want store form, we reverse direction of operands. */
5588 if (i.dir_encoding == dir_encoding_store
5589 && t->opcode_modifier.d)
5590 goto check_reverse;
5591 /* Fall through. */
5592
5593 case 3:
5594 /* If we want store form, we skip the current load. */
5595 if (i.dir_encoding == dir_encoding_store
5596 && i.mem_operands == 0
5597 && t->opcode_modifier.load)
5598 continue;
5599 /* Fall through. */
5600 case 4:
5601 case 5:
5602 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5603 if (!operand_type_match (overlap0, i.types[0])
5604 || !operand_type_match (overlap1, i.types[1])
5605 || ((check_register & 3) == 3
5606 && !operand_type_register_match (i.types[0],
5607 operand_types[0],
5608 i.types[1],
5609 operand_types[1])))
5610 {
5611 /* Check if other direction is valid ... */
5612 if (!t->opcode_modifier.d)
5613 continue;
5614
5615 check_reverse:
5616 if (!(size_match & MATCH_REVERSE))
5617 continue;
5618 /* Try reversing direction of operands. */
5619 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5620 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5621 if (!operand_type_match (overlap0, i.types[0])
5622 || !operand_type_match (overlap1, i.types[1])
5623 || (check_register
5624 && !operand_type_register_match (i.types[0],
5625 operand_types[1],
5626 i.types[1],
5627 operand_types[0])))
5628 {
5629 /* Does not match either direction. */
5630 continue;
5631 }
5632 /* found_reverse_match holds which of D or FloatR
5633 we've found. */
5634 if (!t->opcode_modifier.d)
5635 found_reverse_match = 0;
5636 else if (operand_types[0].bitfield.tbyte)
5637 found_reverse_match = Opcode_FloatD;
5638 else
5639 found_reverse_match = Opcode_D;
5640 if (t->opcode_modifier.floatr)
5641 found_reverse_match |= Opcode_FloatR;
5642 }
5643 else
5644 {
5645 /* Found a forward 2 operand match here. */
5646 switch (t->operands)
5647 {
5648 case 5:
5649 overlap4 = operand_type_and (i.types[4],
5650 operand_types[4]);
5651 /* Fall through. */
5652 case 4:
5653 overlap3 = operand_type_and (i.types[3],
5654 operand_types[3]);
5655 /* Fall through. */
5656 case 3:
5657 overlap2 = operand_type_and (i.types[2],
5658 operand_types[2]);
5659 break;
5660 }
5661
5662 switch (t->operands)
5663 {
5664 case 5:
5665 if (!operand_type_match (overlap4, i.types[4])
5666 || !operand_type_register_match (i.types[3],
5667 operand_types[3],
5668 i.types[4],
5669 operand_types[4]))
5670 continue;
5671 /* Fall through. */
5672 case 4:
5673 if (!operand_type_match (overlap3, i.types[3])
5674 || ((check_register & 0xa) == 0xa
5675 && !operand_type_register_match (i.types[1],
5676 operand_types[1],
5677 i.types[3],
5678 operand_types[3]))
5679 || ((check_register & 0xc) == 0xc
5680 && !operand_type_register_match (i.types[2],
5681 operand_types[2],
5682 i.types[3],
5683 operand_types[3])))
5684 continue;
5685 /* Fall through. */
5686 case 3:
5687 /* Here we make use of the fact that there are no
5688 reverse match 3 operand instructions. */
5689 if (!operand_type_match (overlap2, i.types[2])
5690 || ((check_register & 5) == 5
5691 && !operand_type_register_match (i.types[0],
5692 operand_types[0],
5693 i.types[2],
5694 operand_types[2]))
5695 || ((check_register & 6) == 6
5696 && !operand_type_register_match (i.types[1],
5697 operand_types[1],
5698 i.types[2],
5699 operand_types[2])))
5700 continue;
5701 break;
5702 }
5703 }
5704 /* Found either forward/reverse 2, 3 or 4 operand match here:
5705 slip through to break. */
5706 }
5707 if (!found_cpu_match)
5708 {
5709 found_reverse_match = 0;
5710 continue;
5711 }
5712
5713 /* Check if vector and VEX operands are valid. */
5714 if (check_VecOperands (t) || VEX_check_operands (t))
5715 {
5716 specific_error = i.error;
5717 continue;
5718 }
5719
5720 /* We've found a match; break out of loop. */
5721 break;
5722 }
5723
5724 if (t == current_templates->end)
5725 {
5726 /* We found no match. */
5727 const char *err_msg;
5728 switch (specific_error ? specific_error : i.error)
5729 {
5730 default:
5731 abort ();
5732 case operand_size_mismatch:
5733 err_msg = _("operand size mismatch");
5734 break;
5735 case operand_type_mismatch:
5736 err_msg = _("operand type mismatch");
5737 break;
5738 case register_type_mismatch:
5739 err_msg = _("register type mismatch");
5740 break;
5741 case number_of_operands_mismatch:
5742 err_msg = _("number of operands mismatch");
5743 break;
5744 case invalid_instruction_suffix:
5745 err_msg = _("invalid instruction suffix");
5746 break;
5747 case bad_imm4:
5748 err_msg = _("constant doesn't fit in 4 bits");
5749 break;
5750 case unsupported_with_intel_mnemonic:
5751 err_msg = _("unsupported with Intel mnemonic");
5752 break;
5753 case unsupported_syntax:
5754 err_msg = _("unsupported syntax");
5755 break;
5756 case unsupported:
5757 as_bad (_("unsupported instruction `%s'"),
5758 current_templates->start->name);
5759 return NULL;
5760 case invalid_vsib_address:
5761 err_msg = _("invalid VSIB address");
5762 break;
5763 case invalid_vector_register_set:
5764 err_msg = _("mask, index, and destination registers must be distinct");
5765 break;
5766 case unsupported_vector_index_register:
5767 err_msg = _("unsupported vector index register");
5768 break;
5769 case unsupported_broadcast:
5770 err_msg = _("unsupported broadcast");
5771 break;
5772 case broadcast_not_on_src_operand:
5773 err_msg = _("broadcast not on source memory operand");
5774 break;
5775 case broadcast_needed:
5776 err_msg = _("broadcast is needed for operand of such type");
5777 break;
5778 case unsupported_masking:
5779 err_msg = _("unsupported masking");
5780 break;
5781 case mask_not_on_destination:
5782 err_msg = _("mask not on destination operand");
5783 break;
5784 case no_default_mask:
5785 err_msg = _("default mask isn't allowed");
5786 break;
5787 case unsupported_rc_sae:
5788 err_msg = _("unsupported static rounding/sae");
5789 break;
5790 case rc_sae_operand_not_last_imm:
5791 if (intel_syntax)
5792 err_msg = _("RC/SAE operand must precede immediate operands");
5793 else
5794 err_msg = _("RC/SAE operand must follow immediate operands");
5795 break;
5796 case invalid_register_operand:
5797 err_msg = _("invalid register operand");
5798 break;
5799 }
5800 as_bad (_("%s for `%s'"), err_msg,
5801 current_templates->start->name);
5802 return NULL;
5803 }
5804
5805 if (!quiet_warnings)
5806 {
5807 if (!intel_syntax
5808 && (i.types[0].bitfield.jumpabsolute
5809 != operand_types[0].bitfield.jumpabsolute))
5810 {
5811 as_warn (_("indirect %s without `*'"), t->name);
5812 }
5813
5814 if (t->opcode_modifier.isprefix
5815 && t->opcode_modifier.ignoresize)
5816 {
5817 /* Warn them that a data or address size prefix doesn't
5818 affect assembly of the next line of code. */
5819 as_warn (_("stand-alone `%s' prefix"), t->name);
5820 }
5821 }
5822
5823 /* Copy the template we found. */
5824 i.tm = *t;
5825
5826 if (addr_prefix_disp != -1)
5827 i.tm.operand_types[addr_prefix_disp]
5828 = operand_types[addr_prefix_disp];
5829
5830 if (found_reverse_match)
5831 {
5832 /* If we found a reverse match we must alter the opcode
5833 direction bit. found_reverse_match holds bits to change
5834 (different for int & float insns). */
5835
5836 i.tm.base_opcode ^= found_reverse_match;
5837
5838 i.tm.operand_types[0] = operand_types[1];
5839 i.tm.operand_types[1] = operand_types[0];
5840 }
5841
5842 return t;
5843 }
5844
5845 static int
5846 check_string (void)
5847 {
5848 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5849 if (i.tm.operand_types[mem_op].bitfield.esseg)
5850 {
5851 if (i.seg[0] != NULL && i.seg[0] != &es)
5852 {
5853 as_bad (_("`%s' operand %d must use `%ses' segment"),
5854 i.tm.name,
5855 mem_op + 1,
5856 register_prefix);
5857 return 0;
5858 }
5859 /* There's only ever one segment override allowed per instruction.
5860 This instruction possibly has a legal segment override on the
5861 second operand, so copy the segment to where non-string
5862 instructions store it, allowing common code. */
5863 i.seg[0] = i.seg[1];
5864 }
5865 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5866 {
5867 if (i.seg[1] != NULL && i.seg[1] != &es)
5868 {
5869 as_bad (_("`%s' operand %d must use `%ses' segment"),
5870 i.tm.name,
5871 mem_op + 2,
5872 register_prefix);
5873 return 0;
5874 }
5875 }
5876 return 1;
5877 }
5878
5879 static int
5880 process_suffix (void)
5881 {
5882 /* If matched instruction specifies an explicit instruction mnemonic
5883 suffix, use it. */
5884 if (i.tm.opcode_modifier.size16)
5885 i.suffix = WORD_MNEM_SUFFIX;
5886 else if (i.tm.opcode_modifier.size32)
5887 i.suffix = LONG_MNEM_SUFFIX;
5888 else if (i.tm.opcode_modifier.size64)
5889 i.suffix = QWORD_MNEM_SUFFIX;
5890 else if (i.reg_operands)
5891 {
5892 /* If there's no instruction mnemonic suffix we try to invent one
5893 based on register operands. */
5894 if (!i.suffix)
5895 {
5896 /* We take i.suffix from the last register operand specified,
5897 Destination register type is more significant than source
5898 register type. crc32 in SSE4.2 prefers source register
5899 type. */
5900 if (i.tm.base_opcode == 0xf20f38f1)
5901 {
5902 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5903 i.suffix = WORD_MNEM_SUFFIX;
5904 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5905 i.suffix = LONG_MNEM_SUFFIX;
5906 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5907 i.suffix = QWORD_MNEM_SUFFIX;
5908 }
5909 else if (i.tm.base_opcode == 0xf20f38f0)
5910 {
5911 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5912 i.suffix = BYTE_MNEM_SUFFIX;
5913 }
5914
5915 if (!i.suffix)
5916 {
5917 int op;
5918
5919 if (i.tm.base_opcode == 0xf20f38f1
5920 || i.tm.base_opcode == 0xf20f38f0)
5921 {
5922 /* We have to know the operand size for crc32. */
5923 as_bad (_("ambiguous memory operand size for `%s`"),
5924 i.tm.name);
5925 return 0;
5926 }
5927
5928 for (op = i.operands; --op >= 0;)
5929 if (!i.tm.operand_types[op].bitfield.inoutportreg
5930 && !i.tm.operand_types[op].bitfield.shiftcount)
5931 {
5932 if (!i.types[op].bitfield.reg)
5933 continue;
5934 if (i.types[op].bitfield.byte)
5935 i.suffix = BYTE_MNEM_SUFFIX;
5936 else if (i.types[op].bitfield.word)
5937 i.suffix = WORD_MNEM_SUFFIX;
5938 else if (i.types[op].bitfield.dword)
5939 i.suffix = LONG_MNEM_SUFFIX;
5940 else if (i.types[op].bitfield.qword)
5941 i.suffix = QWORD_MNEM_SUFFIX;
5942 else
5943 continue;
5944 break;
5945 }
5946 }
5947 }
5948 else if (i.suffix == BYTE_MNEM_SUFFIX)
5949 {
5950 if (intel_syntax
5951 && i.tm.opcode_modifier.ignoresize
5952 && i.tm.opcode_modifier.no_bsuf)
5953 i.suffix = 0;
5954 else if (!check_byte_reg ())
5955 return 0;
5956 }
5957 else if (i.suffix == LONG_MNEM_SUFFIX)
5958 {
5959 if (intel_syntax
5960 && i.tm.opcode_modifier.ignoresize
5961 && i.tm.opcode_modifier.no_lsuf
5962 && !i.tm.opcode_modifier.todword
5963 && !i.tm.opcode_modifier.toqword)
5964 i.suffix = 0;
5965 else if (!check_long_reg ())
5966 return 0;
5967 }
5968 else if (i.suffix == QWORD_MNEM_SUFFIX)
5969 {
5970 if (intel_syntax
5971 && i.tm.opcode_modifier.ignoresize
5972 && i.tm.opcode_modifier.no_qsuf
5973 && !i.tm.opcode_modifier.todword
5974 && !i.tm.opcode_modifier.toqword)
5975 i.suffix = 0;
5976 else if (!check_qword_reg ())
5977 return 0;
5978 }
5979 else if (i.suffix == WORD_MNEM_SUFFIX)
5980 {
5981 if (intel_syntax
5982 && i.tm.opcode_modifier.ignoresize
5983 && i.tm.opcode_modifier.no_wsuf)
5984 i.suffix = 0;
5985 else if (!check_word_reg ())
5986 return 0;
5987 }
5988 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5989 /* Do nothing if the instruction is going to ignore the prefix. */
5990 ;
5991 else
5992 abort ();
5993 }
5994 else if (i.tm.opcode_modifier.defaultsize
5995 && !i.suffix
5996 /* exclude fldenv/frstor/fsave/fstenv */
5997 && i.tm.opcode_modifier.no_ssuf)
5998 {
5999 i.suffix = stackop_size;
6000 }
6001 else if (intel_syntax
6002 && !i.suffix
6003 && (i.tm.operand_types[0].bitfield.jumpabsolute
6004 || i.tm.opcode_modifier.jumpbyte
6005 || i.tm.opcode_modifier.jumpintersegment
6006 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6007 && i.tm.extension_opcode <= 3)))
6008 {
6009 switch (flag_code)
6010 {
6011 case CODE_64BIT:
6012 if (!i.tm.opcode_modifier.no_qsuf)
6013 {
6014 i.suffix = QWORD_MNEM_SUFFIX;
6015 break;
6016 }
6017 /* Fall through. */
6018 case CODE_32BIT:
6019 if (!i.tm.opcode_modifier.no_lsuf)
6020 i.suffix = LONG_MNEM_SUFFIX;
6021 break;
6022 case CODE_16BIT:
6023 if (!i.tm.opcode_modifier.no_wsuf)
6024 i.suffix = WORD_MNEM_SUFFIX;
6025 break;
6026 }
6027 }
6028
6029 if (!i.suffix)
6030 {
6031 if (!intel_syntax)
6032 {
6033 if (i.tm.opcode_modifier.w)
6034 {
6035 as_bad (_("no instruction mnemonic suffix given and "
6036 "no register operands; can't size instruction"));
6037 return 0;
6038 }
6039 }
6040 else
6041 {
6042 unsigned int suffixes;
6043
6044 suffixes = !i.tm.opcode_modifier.no_bsuf;
6045 if (!i.tm.opcode_modifier.no_wsuf)
6046 suffixes |= 1 << 1;
6047 if (!i.tm.opcode_modifier.no_lsuf)
6048 suffixes |= 1 << 2;
6049 if (!i.tm.opcode_modifier.no_ldsuf)
6050 suffixes |= 1 << 3;
6051 if (!i.tm.opcode_modifier.no_ssuf)
6052 suffixes |= 1 << 4;
6053 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6054 suffixes |= 1 << 5;
6055
6056 /* There are more than suffix matches. */
6057 if (i.tm.opcode_modifier.w
6058 || ((suffixes & (suffixes - 1))
6059 && !i.tm.opcode_modifier.defaultsize
6060 && !i.tm.opcode_modifier.ignoresize))
6061 {
6062 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6063 return 0;
6064 }
6065 }
6066 }
6067
6068 /* Change the opcode based on the operand size given by i.suffix. */
6069 switch (i.suffix)
6070 {
6071 /* Size floating point instruction. */
6072 case LONG_MNEM_SUFFIX:
6073 if (i.tm.opcode_modifier.floatmf)
6074 {
6075 i.tm.base_opcode ^= 4;
6076 break;
6077 }
6078 /* fall through */
6079 case WORD_MNEM_SUFFIX:
6080 case QWORD_MNEM_SUFFIX:
6081 /* It's not a byte, select word/dword operation. */
6082 if (i.tm.opcode_modifier.w)
6083 {
6084 if (i.tm.opcode_modifier.shortform)
6085 i.tm.base_opcode |= 8;
6086 else
6087 i.tm.base_opcode |= 1;
6088 }
6089 /* fall through */
6090 case SHORT_MNEM_SUFFIX:
6091 /* Now select between word & dword operations via the operand
6092 size prefix, except for instructions that will ignore this
6093 prefix anyway. */
6094 if (i.reg_operands > 0
6095 && i.types[0].bitfield.reg
6096 && i.tm.opcode_modifier.addrprefixopreg
6097 && (i.tm.opcode_modifier.immext
6098 || i.operands == 1))
6099 {
6100 /* The address size override prefix changes the size of the
6101 first operand. */
6102 if ((flag_code == CODE_32BIT
6103 && i.op[0].regs->reg_type.bitfield.word)
6104 || (flag_code != CODE_32BIT
6105 && i.op[0].regs->reg_type.bitfield.dword))
6106 if (!add_prefix (ADDR_PREFIX_OPCODE))
6107 return 0;
6108 }
6109 else if (i.suffix != QWORD_MNEM_SUFFIX
6110 && !i.tm.opcode_modifier.ignoresize
6111 && !i.tm.opcode_modifier.floatmf
6112 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6113 || (flag_code == CODE_64BIT
6114 && i.tm.opcode_modifier.jumpbyte)))
6115 {
6116 unsigned int prefix = DATA_PREFIX_OPCODE;
6117
6118 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6119 prefix = ADDR_PREFIX_OPCODE;
6120
6121 if (!add_prefix (prefix))
6122 return 0;
6123 }
6124
6125 /* Set mode64 for an operand. */
6126 if (i.suffix == QWORD_MNEM_SUFFIX
6127 && flag_code == CODE_64BIT
6128 && !i.tm.opcode_modifier.norex64
6129 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6130 need rex64. */
6131 && ! (i.operands == 2
6132 && i.tm.base_opcode == 0x90
6133 && i.tm.extension_opcode == None
6134 && operand_type_equal (&i.types [0], &acc64)
6135 && operand_type_equal (&i.types [1], &acc64)))
6136 i.rex |= REX_W;
6137
6138 break;
6139 }
6140
6141 if (i.reg_operands != 0
6142 && i.operands > 1
6143 && i.tm.opcode_modifier.addrprefixopreg
6144 && !i.tm.opcode_modifier.immext)
6145 {
6146 /* Check invalid register operand when the address size override
6147 prefix changes the size of register operands. */
6148 unsigned int op;
6149 enum { need_word, need_dword, need_qword } need;
6150
6151 if (flag_code == CODE_32BIT)
6152 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6153 else
6154 {
6155 if (i.prefix[ADDR_PREFIX])
6156 need = need_dword;
6157 else
6158 need = flag_code == CODE_64BIT ? need_qword : need_word;
6159 }
6160
6161 for (op = 0; op < i.operands; op++)
6162 if (i.types[op].bitfield.reg
6163 && ((need == need_word
6164 && !i.op[op].regs->reg_type.bitfield.word)
6165 || (need == need_dword
6166 && !i.op[op].regs->reg_type.bitfield.dword)
6167 || (need == need_qword
6168 && !i.op[op].regs->reg_type.bitfield.qword)))
6169 {
6170 as_bad (_("invalid register operand size for `%s'"),
6171 i.tm.name);
6172 return 0;
6173 }
6174 }
6175
6176 return 1;
6177 }
6178
6179 static int
6180 check_byte_reg (void)
6181 {
6182 int op;
6183
6184 for (op = i.operands; --op >= 0;)
6185 {
6186 /* Skip non-register operands. */
6187 if (!i.types[op].bitfield.reg)
6188 continue;
6189
6190 /* If this is an eight bit register, it's OK. If it's the 16 or
6191 32 bit version of an eight bit register, we will just use the
6192 low portion, and that's OK too. */
6193 if (i.types[op].bitfield.byte)
6194 continue;
6195
6196 /* I/O port address operands are OK too. */
6197 if (i.tm.operand_types[op].bitfield.inoutportreg)
6198 continue;
6199
6200 /* crc32 doesn't generate this warning. */
6201 if (i.tm.base_opcode == 0xf20f38f0)
6202 continue;
6203
6204 if ((i.types[op].bitfield.word
6205 || i.types[op].bitfield.dword
6206 || i.types[op].bitfield.qword)
6207 && i.op[op].regs->reg_num < 4
6208 /* Prohibit these changes in 64bit mode, since the lowering
6209 would be more complicated. */
6210 && flag_code != CODE_64BIT)
6211 {
6212 #if REGISTER_WARNINGS
6213 if (!quiet_warnings)
6214 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6215 register_prefix,
6216 (i.op[op].regs + (i.types[op].bitfield.word
6217 ? REGNAM_AL - REGNAM_AX
6218 : REGNAM_AL - REGNAM_EAX))->reg_name,
6219 register_prefix,
6220 i.op[op].regs->reg_name,
6221 i.suffix);
6222 #endif
6223 continue;
6224 }
6225 /* Any other register is bad. */
6226 if (i.types[op].bitfield.reg
6227 || i.types[op].bitfield.regmmx
6228 || i.types[op].bitfield.regsimd
6229 || i.types[op].bitfield.sreg2
6230 || i.types[op].bitfield.sreg3
6231 || i.types[op].bitfield.control
6232 || i.types[op].bitfield.debug
6233 || i.types[op].bitfield.test)
6234 {
6235 as_bad (_("`%s%s' not allowed with `%s%c'"),
6236 register_prefix,
6237 i.op[op].regs->reg_name,
6238 i.tm.name,
6239 i.suffix);
6240 return 0;
6241 }
6242 }
6243 return 1;
6244 }
6245
6246 static int
6247 check_long_reg (void)
6248 {
6249 int op;
6250
6251 for (op = i.operands; --op >= 0;)
6252 /* Skip non-register operands. */
6253 if (!i.types[op].bitfield.reg)
6254 continue;
6255 /* Reject eight bit registers, except where the template requires
6256 them. (eg. movzb) */
6257 else if (i.types[op].bitfield.byte
6258 && (i.tm.operand_types[op].bitfield.reg
6259 || i.tm.operand_types[op].bitfield.acc)
6260 && (i.tm.operand_types[op].bitfield.word
6261 || i.tm.operand_types[op].bitfield.dword))
6262 {
6263 as_bad (_("`%s%s' not allowed with `%s%c'"),
6264 register_prefix,
6265 i.op[op].regs->reg_name,
6266 i.tm.name,
6267 i.suffix);
6268 return 0;
6269 }
6270 /* Warn if the e prefix on a general reg is missing. */
6271 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6272 && i.types[op].bitfield.word
6273 && (i.tm.operand_types[op].bitfield.reg
6274 || i.tm.operand_types[op].bitfield.acc)
6275 && i.tm.operand_types[op].bitfield.dword)
6276 {
6277 /* Prohibit these changes in the 64bit mode, since the
6278 lowering is more complicated. */
6279 if (flag_code == CODE_64BIT)
6280 {
6281 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6282 register_prefix, i.op[op].regs->reg_name,
6283 i.suffix);
6284 return 0;
6285 }
6286 #if REGISTER_WARNINGS
6287 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6288 register_prefix,
6289 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6290 register_prefix, i.op[op].regs->reg_name, i.suffix);
6291 #endif
6292 }
6293 /* Warn if the r prefix on a general reg is present. */
6294 else if (i.types[op].bitfield.qword
6295 && (i.tm.operand_types[op].bitfield.reg
6296 || i.tm.operand_types[op].bitfield.acc)
6297 && i.tm.operand_types[op].bitfield.dword)
6298 {
6299 if (intel_syntax
6300 && i.tm.opcode_modifier.toqword
6301 && !i.types[0].bitfield.regsimd)
6302 {
6303 /* Convert to QWORD. We want REX byte. */
6304 i.suffix = QWORD_MNEM_SUFFIX;
6305 }
6306 else
6307 {
6308 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6309 register_prefix, i.op[op].regs->reg_name,
6310 i.suffix);
6311 return 0;
6312 }
6313 }
6314 return 1;
6315 }
6316
6317 static int
6318 check_qword_reg (void)
6319 {
6320 int op;
6321
6322 for (op = i.operands; --op >= 0; )
6323 /* Skip non-register operands. */
6324 if (!i.types[op].bitfield.reg)
6325 continue;
6326 /* Reject eight bit registers, except where the template requires
6327 them. (eg. movzb) */
6328 else if (i.types[op].bitfield.byte
6329 && (i.tm.operand_types[op].bitfield.reg
6330 || i.tm.operand_types[op].bitfield.acc)
6331 && (i.tm.operand_types[op].bitfield.word
6332 || i.tm.operand_types[op].bitfield.dword))
6333 {
6334 as_bad (_("`%s%s' not allowed with `%s%c'"),
6335 register_prefix,
6336 i.op[op].regs->reg_name,
6337 i.tm.name,
6338 i.suffix);
6339 return 0;
6340 }
6341 /* Warn if the r prefix on a general reg is missing. */
6342 else if ((i.types[op].bitfield.word
6343 || i.types[op].bitfield.dword)
6344 && (i.tm.operand_types[op].bitfield.reg
6345 || i.tm.operand_types[op].bitfield.acc)
6346 && i.tm.operand_types[op].bitfield.qword)
6347 {
6348 /* Prohibit these changes in the 64bit mode, since the
6349 lowering is more complicated. */
6350 if (intel_syntax
6351 && i.tm.opcode_modifier.todword
6352 && !i.types[0].bitfield.regsimd)
6353 {
6354 /* Convert to DWORD. We don't want REX byte. */
6355 i.suffix = LONG_MNEM_SUFFIX;
6356 }
6357 else
6358 {
6359 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6360 register_prefix, i.op[op].regs->reg_name,
6361 i.suffix);
6362 return 0;
6363 }
6364 }
6365 return 1;
6366 }
6367
6368 static int
6369 check_word_reg (void)
6370 {
6371 int op;
6372 for (op = i.operands; --op >= 0;)
6373 /* Skip non-register operands. */
6374 if (!i.types[op].bitfield.reg)
6375 continue;
6376 /* Reject eight bit registers, except where the template requires
6377 them. (eg. movzb) */
6378 else if (i.types[op].bitfield.byte
6379 && (i.tm.operand_types[op].bitfield.reg
6380 || i.tm.operand_types[op].bitfield.acc)
6381 && (i.tm.operand_types[op].bitfield.word
6382 || i.tm.operand_types[op].bitfield.dword))
6383 {
6384 as_bad (_("`%s%s' not allowed with `%s%c'"),
6385 register_prefix,
6386 i.op[op].regs->reg_name,
6387 i.tm.name,
6388 i.suffix);
6389 return 0;
6390 }
6391 /* Warn if the e or r prefix on a general reg is present. */
6392 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6393 && (i.types[op].bitfield.dword
6394 || i.types[op].bitfield.qword)
6395 && (i.tm.operand_types[op].bitfield.reg
6396 || i.tm.operand_types[op].bitfield.acc)
6397 && i.tm.operand_types[op].bitfield.word)
6398 {
6399 /* Prohibit these changes in the 64bit mode, since the
6400 lowering is more complicated. */
6401 if (flag_code == CODE_64BIT)
6402 {
6403 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6404 register_prefix, i.op[op].regs->reg_name,
6405 i.suffix);
6406 return 0;
6407 }
6408 #if REGISTER_WARNINGS
6409 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6410 register_prefix,
6411 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6412 register_prefix, i.op[op].regs->reg_name, i.suffix);
6413 #endif
6414 }
6415 return 1;
6416 }
6417
6418 static int
6419 update_imm (unsigned int j)
6420 {
6421 i386_operand_type overlap = i.types[j];
6422 if ((overlap.bitfield.imm8
6423 || overlap.bitfield.imm8s
6424 || overlap.bitfield.imm16
6425 || overlap.bitfield.imm32
6426 || overlap.bitfield.imm32s
6427 || overlap.bitfield.imm64)
6428 && !operand_type_equal (&overlap, &imm8)
6429 && !operand_type_equal (&overlap, &imm8s)
6430 && !operand_type_equal (&overlap, &imm16)
6431 && !operand_type_equal (&overlap, &imm32)
6432 && !operand_type_equal (&overlap, &imm32s)
6433 && !operand_type_equal (&overlap, &imm64))
6434 {
6435 if (i.suffix)
6436 {
6437 i386_operand_type temp;
6438
6439 operand_type_set (&temp, 0);
6440 if (i.suffix == BYTE_MNEM_SUFFIX)
6441 {
6442 temp.bitfield.imm8 = overlap.bitfield.imm8;
6443 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6444 }
6445 else if (i.suffix == WORD_MNEM_SUFFIX)
6446 temp.bitfield.imm16 = overlap.bitfield.imm16;
6447 else if (i.suffix == QWORD_MNEM_SUFFIX)
6448 {
6449 temp.bitfield.imm64 = overlap.bitfield.imm64;
6450 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6451 }
6452 else
6453 temp.bitfield.imm32 = overlap.bitfield.imm32;
6454 overlap = temp;
6455 }
6456 else if (operand_type_equal (&overlap, &imm16_32_32s)
6457 || operand_type_equal (&overlap, &imm16_32)
6458 || operand_type_equal (&overlap, &imm16_32s))
6459 {
6460 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6461 overlap = imm16;
6462 else
6463 overlap = imm32s;
6464 }
6465 if (!operand_type_equal (&overlap, &imm8)
6466 && !operand_type_equal (&overlap, &imm8s)
6467 && !operand_type_equal (&overlap, &imm16)
6468 && !operand_type_equal (&overlap, &imm32)
6469 && !operand_type_equal (&overlap, &imm32s)
6470 && !operand_type_equal (&overlap, &imm64))
6471 {
6472 as_bad (_("no instruction mnemonic suffix given; "
6473 "can't determine immediate size"));
6474 return 0;
6475 }
6476 }
6477 i.types[j] = overlap;
6478
6479 return 1;
6480 }
6481
6482 static int
6483 finalize_imm (void)
6484 {
6485 unsigned int j, n;
6486
6487 /* Update the first 2 immediate operands. */
6488 n = i.operands > 2 ? 2 : i.operands;
6489 if (n)
6490 {
6491 for (j = 0; j < n; j++)
6492 if (update_imm (j) == 0)
6493 return 0;
6494
6495 /* The 3rd operand can't be immediate operand. */
6496 gas_assert (operand_type_check (i.types[2], imm) == 0);
6497 }
6498
6499 return 1;
6500 }
6501
6502 static int
6503 process_operands (void)
6504 {
6505 /* Default segment register this instruction will use for memory
6506 accesses. 0 means unknown. This is only for optimizing out
6507 unnecessary segment overrides. */
6508 const seg_entry *default_seg = 0;
6509
6510 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6511 {
6512 unsigned int dupl = i.operands;
6513 unsigned int dest = dupl - 1;
6514 unsigned int j;
6515
6516 /* The destination must be an xmm register. */
6517 gas_assert (i.reg_operands
6518 && MAX_OPERANDS > dupl
6519 && operand_type_equal (&i.types[dest], &regxmm));
6520
6521 if (i.tm.operand_types[0].bitfield.acc
6522 && i.tm.operand_types[0].bitfield.xmmword)
6523 {
6524 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6525 {
6526 /* Keep xmm0 for instructions with VEX prefix and 3
6527 sources. */
6528 i.tm.operand_types[0].bitfield.acc = 0;
6529 i.tm.operand_types[0].bitfield.regsimd = 1;
6530 goto duplicate;
6531 }
6532 else
6533 {
6534 /* We remove the first xmm0 and keep the number of
6535 operands unchanged, which in fact duplicates the
6536 destination. */
6537 for (j = 1; j < i.operands; j++)
6538 {
6539 i.op[j - 1] = i.op[j];
6540 i.types[j - 1] = i.types[j];
6541 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6542 }
6543 }
6544 }
6545 else if (i.tm.opcode_modifier.implicit1stxmm0)
6546 {
6547 gas_assert ((MAX_OPERANDS - 1) > dupl
6548 && (i.tm.opcode_modifier.vexsources
6549 == VEX3SOURCES));
6550
6551 /* Add the implicit xmm0 for instructions with VEX prefix
6552 and 3 sources. */
6553 for (j = i.operands; j > 0; j--)
6554 {
6555 i.op[j] = i.op[j - 1];
6556 i.types[j] = i.types[j - 1];
6557 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6558 }
6559 i.op[0].regs
6560 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6561 i.types[0] = regxmm;
6562 i.tm.operand_types[0] = regxmm;
6563
6564 i.operands += 2;
6565 i.reg_operands += 2;
6566 i.tm.operands += 2;
6567
6568 dupl++;
6569 dest++;
6570 i.op[dupl] = i.op[dest];
6571 i.types[dupl] = i.types[dest];
6572 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6573 }
6574 else
6575 {
6576 duplicate:
6577 i.operands++;
6578 i.reg_operands++;
6579 i.tm.operands++;
6580
6581 i.op[dupl] = i.op[dest];
6582 i.types[dupl] = i.types[dest];
6583 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6584 }
6585
6586 if (i.tm.opcode_modifier.immext)
6587 process_immext ();
6588 }
6589 else if (i.tm.operand_types[0].bitfield.acc
6590 && i.tm.operand_types[0].bitfield.xmmword)
6591 {
6592 unsigned int j;
6593
6594 for (j = 1; j < i.operands; j++)
6595 {
6596 i.op[j - 1] = i.op[j];
6597 i.types[j - 1] = i.types[j];
6598
6599 /* We need to adjust fields in i.tm since they are used by
6600 build_modrm_byte. */
6601 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6602 }
6603
6604 i.operands--;
6605 i.reg_operands--;
6606 i.tm.operands--;
6607 }
6608 else if (i.tm.opcode_modifier.implicitquadgroup)
6609 {
6610 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6611
6612 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6613 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6614 regnum = register_number (i.op[1].regs);
6615 first_reg_in_group = regnum & ~3;
6616 last_reg_in_group = first_reg_in_group + 3;
6617 if (regnum != first_reg_in_group)
6618 as_warn (_("source register `%s%s' implicitly denotes"
6619 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6620 register_prefix, i.op[1].regs->reg_name,
6621 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6622 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6623 i.tm.name);
6624 }
6625 else if (i.tm.opcode_modifier.regkludge)
6626 {
6627 /* The imul $imm, %reg instruction is converted into
6628 imul $imm, %reg, %reg, and the clr %reg instruction
6629 is converted into xor %reg, %reg. */
6630
6631 unsigned int first_reg_op;
6632
6633 if (operand_type_check (i.types[0], reg))
6634 first_reg_op = 0;
6635 else
6636 first_reg_op = 1;
6637 /* Pretend we saw the extra register operand. */
6638 gas_assert (i.reg_operands == 1
6639 && i.op[first_reg_op + 1].regs == 0);
6640 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6641 i.types[first_reg_op + 1] = i.types[first_reg_op];
6642 i.operands++;
6643 i.reg_operands++;
6644 }
6645
6646 if (i.tm.opcode_modifier.shortform)
6647 {
6648 if (i.types[0].bitfield.sreg2
6649 || i.types[0].bitfield.sreg3)
6650 {
6651 if (i.tm.base_opcode == POP_SEG_SHORT
6652 && i.op[0].regs->reg_num == 1)
6653 {
6654 as_bad (_("you can't `pop %scs'"), register_prefix);
6655 return 0;
6656 }
6657 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6658 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6659 i.rex |= REX_B;
6660 }
6661 else
6662 {
6663 /* The register or float register operand is in operand
6664 0 or 1. */
6665 unsigned int op;
6666
6667 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6668 || operand_type_check (i.types[0], reg))
6669 op = 0;
6670 else
6671 op = 1;
6672 /* Register goes in low 3 bits of opcode. */
6673 i.tm.base_opcode |= i.op[op].regs->reg_num;
6674 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6675 i.rex |= REX_B;
6676 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6677 {
6678 /* Warn about some common errors, but press on regardless.
6679 The first case can be generated by gcc (<= 2.8.1). */
6680 if (i.operands == 2)
6681 {
6682 /* Reversed arguments on faddp, fsubp, etc. */
6683 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6684 register_prefix, i.op[!intel_syntax].regs->reg_name,
6685 register_prefix, i.op[intel_syntax].regs->reg_name);
6686 }
6687 else
6688 {
6689 /* Extraneous `l' suffix on fp insn. */
6690 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6691 register_prefix, i.op[0].regs->reg_name);
6692 }
6693 }
6694 }
6695 }
6696 else if (i.tm.opcode_modifier.modrm)
6697 {
6698 /* The opcode is completed (modulo i.tm.extension_opcode which
6699 must be put into the modrm byte). Now, we make the modrm and
6700 index base bytes based on all the info we've collected. */
6701
6702 default_seg = build_modrm_byte ();
6703 }
6704 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6705 {
6706 default_seg = &ds;
6707 }
6708 else if (i.tm.opcode_modifier.isstring)
6709 {
6710 /* For the string instructions that allow a segment override
6711 on one of their operands, the default segment is ds. */
6712 default_seg = &ds;
6713 }
6714
6715 if (i.tm.base_opcode == 0x8d /* lea */
6716 && i.seg[0]
6717 && !quiet_warnings)
6718 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6719
6720 /* If a segment was explicitly specified, and the specified segment
6721 is not the default, use an opcode prefix to select it. If we
6722 never figured out what the default segment is, then default_seg
6723 will be zero at this point, and the specified segment prefix will
6724 always be used. */
6725 if ((i.seg[0]) && (i.seg[0] != default_seg))
6726 {
6727 if (!add_prefix (i.seg[0]->seg_prefix))
6728 return 0;
6729 }
6730 return 1;
6731 }
6732
6733 static const seg_entry *
6734 build_modrm_byte (void)
6735 {
6736 const seg_entry *default_seg = 0;
6737 unsigned int source, dest;
6738 int vex_3_sources;
6739
6740 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6741 if (vex_3_sources)
6742 {
6743 unsigned int nds, reg_slot;
6744 expressionS *exp;
6745
6746 dest = i.operands - 1;
6747 nds = dest - 1;
6748
6749 /* There are 2 kinds of instructions:
6750 1. 5 operands: 4 register operands or 3 register operands
6751 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6752 VexW0 or VexW1. The destination must be either XMM, YMM or
6753 ZMM register.
6754 2. 4 operands: 4 register operands or 3 register operands
6755 plus 1 memory operand, with VexXDS. */
6756 gas_assert ((i.reg_operands == 4
6757 || (i.reg_operands == 3 && i.mem_operands == 1))
6758 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6759 && i.tm.opcode_modifier.vexw
6760 && i.tm.operand_types[dest].bitfield.regsimd);
6761
6762 /* If VexW1 is set, the first non-immediate operand is the source and
6763 the second non-immediate one is encoded in the immediate operand. */
6764 if (i.tm.opcode_modifier.vexw == VEXW1)
6765 {
6766 source = i.imm_operands;
6767 reg_slot = i.imm_operands + 1;
6768 }
6769 else
6770 {
6771 source = i.imm_operands + 1;
6772 reg_slot = i.imm_operands;
6773 }
6774
6775 if (i.imm_operands == 0)
6776 {
6777 /* When there is no immediate operand, generate an 8bit
6778 immediate operand to encode the first operand. */
6779 exp = &im_expressions[i.imm_operands++];
6780 i.op[i.operands].imms = exp;
6781 i.types[i.operands] = imm8;
6782 i.operands++;
6783
6784 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6785 exp->X_op = O_constant;
6786 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6787 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6788 }
6789 else
6790 {
6791 unsigned int imm_slot;
6792
6793 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6794
6795 if (i.tm.opcode_modifier.immext)
6796 {
6797 /* When ImmExt is set, the immediate byte is the last
6798 operand. */
6799 imm_slot = i.operands - 1;
6800 source--;
6801 reg_slot--;
6802 }
6803 else
6804 {
6805 imm_slot = 0;
6806
6807 /* Turn on Imm8 so that output_imm will generate it. */
6808 i.types[imm_slot].bitfield.imm8 = 1;
6809 }
6810
6811 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6812 i.op[imm_slot].imms->X_add_number
6813 |= register_number (i.op[reg_slot].regs) << 4;
6814 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6815 }
6816
6817 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6818 i.vex.register_specifier = i.op[nds].regs;
6819 }
6820 else
6821 source = dest = 0;
6822
6823 /* i.reg_operands MUST be the number of real register operands;
6824 implicit registers do not count. If there are 3 register
6825 operands, it must be a instruction with VexNDS. For a
6826 instruction with VexNDD, the destination register is encoded
6827 in VEX prefix. If there are 4 register operands, it must be
6828 a instruction with VEX prefix and 3 sources. */
6829 if (i.mem_operands == 0
6830 && ((i.reg_operands == 2
6831 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6832 || (i.reg_operands == 3
6833 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6834 || (i.reg_operands == 4 && vex_3_sources)))
6835 {
6836 switch (i.operands)
6837 {
6838 case 2:
6839 source = 0;
6840 break;
6841 case 3:
6842 /* When there are 3 operands, one of them may be immediate,
6843 which may be the first or the last operand. Otherwise,
6844 the first operand must be shift count register (cl) or it
6845 is an instruction with VexNDS. */
6846 gas_assert (i.imm_operands == 1
6847 || (i.imm_operands == 0
6848 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6849 || i.types[0].bitfield.shiftcount)));
6850 if (operand_type_check (i.types[0], imm)
6851 || i.types[0].bitfield.shiftcount)
6852 source = 1;
6853 else
6854 source = 0;
6855 break;
6856 case 4:
6857 /* When there are 4 operands, the first two must be 8bit
6858 immediate operands. The source operand will be the 3rd
6859 one.
6860
6861 For instructions with VexNDS, if the first operand
6862 an imm8, the source operand is the 2nd one. If the last
6863 operand is imm8, the source operand is the first one. */
6864 gas_assert ((i.imm_operands == 2
6865 && i.types[0].bitfield.imm8
6866 && i.types[1].bitfield.imm8)
6867 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6868 && i.imm_operands == 1
6869 && (i.types[0].bitfield.imm8
6870 || i.types[i.operands - 1].bitfield.imm8
6871 || i.rounding)));
6872 if (i.imm_operands == 2)
6873 source = 2;
6874 else
6875 {
6876 if (i.types[0].bitfield.imm8)
6877 source = 1;
6878 else
6879 source = 0;
6880 }
6881 break;
6882 case 5:
6883 if (is_evex_encoding (&i.tm))
6884 {
6885 /* For EVEX instructions, when there are 5 operands, the
6886 first one must be immediate operand. If the second one
6887 is immediate operand, the source operand is the 3th
6888 one. If the last one is immediate operand, the source
6889 operand is the 2nd one. */
6890 gas_assert (i.imm_operands == 2
6891 && i.tm.opcode_modifier.sae
6892 && operand_type_check (i.types[0], imm));
6893 if (operand_type_check (i.types[1], imm))
6894 source = 2;
6895 else if (operand_type_check (i.types[4], imm))
6896 source = 1;
6897 else
6898 abort ();
6899 }
6900 break;
6901 default:
6902 abort ();
6903 }
6904
6905 if (!vex_3_sources)
6906 {
6907 dest = source + 1;
6908
6909 /* RC/SAE operand could be between DEST and SRC. That happens
6910 when one operand is GPR and the other one is XMM/YMM/ZMM
6911 register. */
6912 if (i.rounding && i.rounding->operand == (int) dest)
6913 dest++;
6914
6915 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6916 {
6917 /* For instructions with VexNDS, the register-only source
6918 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6919 register. It is encoded in VEX prefix. We need to
6920 clear RegMem bit before calling operand_type_equal. */
6921
6922 i386_operand_type op;
6923 unsigned int vvvv;
6924
6925 /* Check register-only source operand when two source
6926 operands are swapped. */
6927 if (!i.tm.operand_types[source].bitfield.baseindex
6928 && i.tm.operand_types[dest].bitfield.baseindex)
6929 {
6930 vvvv = source;
6931 source = dest;
6932 }
6933 else
6934 vvvv = dest;
6935
6936 op = i.tm.operand_types[vvvv];
6937 op.bitfield.regmem = 0;
6938 if ((dest + 1) >= i.operands
6939 || ((!op.bitfield.reg
6940 || (!op.bitfield.dword && !op.bitfield.qword))
6941 && !op.bitfield.regsimd
6942 && !operand_type_equal (&op, &regmask)))
6943 abort ();
6944 i.vex.register_specifier = i.op[vvvv].regs;
6945 dest++;
6946 }
6947 }
6948
6949 i.rm.mode = 3;
6950 /* One of the register operands will be encoded in the i.tm.reg
6951 field, the other in the combined i.tm.mode and i.tm.regmem
6952 fields. If no form of this instruction supports a memory
6953 destination operand, then we assume the source operand may
6954 sometimes be a memory operand and so we need to store the
6955 destination in the i.rm.reg field. */
6956 if (!i.tm.operand_types[dest].bitfield.regmem
6957 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6958 {
6959 i.rm.reg = i.op[dest].regs->reg_num;
6960 i.rm.regmem = i.op[source].regs->reg_num;
6961 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6962 i.rex |= REX_R;
6963 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6964 i.vrex |= REX_R;
6965 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6966 i.rex |= REX_B;
6967 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6968 i.vrex |= REX_B;
6969 }
6970 else
6971 {
6972 i.rm.reg = i.op[source].regs->reg_num;
6973 i.rm.regmem = i.op[dest].regs->reg_num;
6974 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6975 i.rex |= REX_B;
6976 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6977 i.vrex |= REX_B;
6978 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6979 i.rex |= REX_R;
6980 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6981 i.vrex |= REX_R;
6982 }
6983 if (flag_code != CODE_64BIT && (i.rex & REX_R))
6984 {
6985 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
6986 abort ();
6987 i.rex &= ~REX_R;
6988 add_prefix (LOCK_PREFIX_OPCODE);
6989 }
6990 }
6991 else
6992 { /* If it's not 2 reg operands... */
6993 unsigned int mem;
6994
6995 if (i.mem_operands)
6996 {
6997 unsigned int fake_zero_displacement = 0;
6998 unsigned int op;
6999
7000 for (op = 0; op < i.operands; op++)
7001 if (operand_type_check (i.types[op], anymem))
7002 break;
7003 gas_assert (op < i.operands);
7004
7005 if (i.tm.opcode_modifier.vecsib)
7006 {
7007 if (i.index_reg->reg_num == RegEiz
7008 || i.index_reg->reg_num == RegRiz)
7009 abort ();
7010
7011 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7012 if (!i.base_reg)
7013 {
7014 i.sib.base = NO_BASE_REGISTER;
7015 i.sib.scale = i.log2_scale_factor;
7016 i.types[op].bitfield.disp8 = 0;
7017 i.types[op].bitfield.disp16 = 0;
7018 i.types[op].bitfield.disp64 = 0;
7019 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7020 {
7021 /* Must be 32 bit */
7022 i.types[op].bitfield.disp32 = 1;
7023 i.types[op].bitfield.disp32s = 0;
7024 }
7025 else
7026 {
7027 i.types[op].bitfield.disp32 = 0;
7028 i.types[op].bitfield.disp32s = 1;
7029 }
7030 }
7031 i.sib.index = i.index_reg->reg_num;
7032 if ((i.index_reg->reg_flags & RegRex) != 0)
7033 i.rex |= REX_X;
7034 if ((i.index_reg->reg_flags & RegVRex) != 0)
7035 i.vrex |= REX_X;
7036 }
7037
7038 default_seg = &ds;
7039
7040 if (i.base_reg == 0)
7041 {
7042 i.rm.mode = 0;
7043 if (!i.disp_operands)
7044 fake_zero_displacement = 1;
7045 if (i.index_reg == 0)
7046 {
7047 i386_operand_type newdisp;
7048
7049 gas_assert (!i.tm.opcode_modifier.vecsib);
7050 /* Operand is just <disp> */
7051 if (flag_code == CODE_64BIT)
7052 {
7053 /* 64bit mode overwrites the 32bit absolute
7054 addressing by RIP relative addressing and
7055 absolute addressing is encoded by one of the
7056 redundant SIB forms. */
7057 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7058 i.sib.base = NO_BASE_REGISTER;
7059 i.sib.index = NO_INDEX_REGISTER;
7060 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7061 }
7062 else if ((flag_code == CODE_16BIT)
7063 ^ (i.prefix[ADDR_PREFIX] != 0))
7064 {
7065 i.rm.regmem = NO_BASE_REGISTER_16;
7066 newdisp = disp16;
7067 }
7068 else
7069 {
7070 i.rm.regmem = NO_BASE_REGISTER;
7071 newdisp = disp32;
7072 }
7073 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7074 i.types[op] = operand_type_or (i.types[op], newdisp);
7075 }
7076 else if (!i.tm.opcode_modifier.vecsib)
7077 {
7078 /* !i.base_reg && i.index_reg */
7079 if (i.index_reg->reg_num == RegEiz
7080 || i.index_reg->reg_num == RegRiz)
7081 i.sib.index = NO_INDEX_REGISTER;
7082 else
7083 i.sib.index = i.index_reg->reg_num;
7084 i.sib.base = NO_BASE_REGISTER;
7085 i.sib.scale = i.log2_scale_factor;
7086 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7087 i.types[op].bitfield.disp8 = 0;
7088 i.types[op].bitfield.disp16 = 0;
7089 i.types[op].bitfield.disp64 = 0;
7090 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7091 {
7092 /* Must be 32 bit */
7093 i.types[op].bitfield.disp32 = 1;
7094 i.types[op].bitfield.disp32s = 0;
7095 }
7096 else
7097 {
7098 i.types[op].bitfield.disp32 = 0;
7099 i.types[op].bitfield.disp32s = 1;
7100 }
7101 if ((i.index_reg->reg_flags & RegRex) != 0)
7102 i.rex |= REX_X;
7103 }
7104 }
7105 /* RIP addressing for 64bit mode. */
7106 else if (i.base_reg->reg_num == RegRip ||
7107 i.base_reg->reg_num == RegEip)
7108 {
7109 gas_assert (!i.tm.opcode_modifier.vecsib);
7110 i.rm.regmem = NO_BASE_REGISTER;
7111 i.types[op].bitfield.disp8 = 0;
7112 i.types[op].bitfield.disp16 = 0;
7113 i.types[op].bitfield.disp32 = 0;
7114 i.types[op].bitfield.disp32s = 1;
7115 i.types[op].bitfield.disp64 = 0;
7116 i.flags[op] |= Operand_PCrel;
7117 if (! i.disp_operands)
7118 fake_zero_displacement = 1;
7119 }
7120 else if (i.base_reg->reg_type.bitfield.word)
7121 {
7122 gas_assert (!i.tm.opcode_modifier.vecsib);
7123 switch (i.base_reg->reg_num)
7124 {
7125 case 3: /* (%bx) */
7126 if (i.index_reg == 0)
7127 i.rm.regmem = 7;
7128 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7129 i.rm.regmem = i.index_reg->reg_num - 6;
7130 break;
7131 case 5: /* (%bp) */
7132 default_seg = &ss;
7133 if (i.index_reg == 0)
7134 {
7135 i.rm.regmem = 6;
7136 if (operand_type_check (i.types[op], disp) == 0)
7137 {
7138 /* fake (%bp) into 0(%bp) */
7139 i.types[op].bitfield.disp8 = 1;
7140 fake_zero_displacement = 1;
7141 }
7142 }
7143 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7144 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7145 break;
7146 default: /* (%si) -> 4 or (%di) -> 5 */
7147 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7148 }
7149 i.rm.mode = mode_from_disp_size (i.types[op]);
7150 }
7151 else /* i.base_reg and 32/64 bit mode */
7152 {
7153 if (flag_code == CODE_64BIT
7154 && operand_type_check (i.types[op], disp))
7155 {
7156 i.types[op].bitfield.disp16 = 0;
7157 i.types[op].bitfield.disp64 = 0;
7158 if (i.prefix[ADDR_PREFIX] == 0)
7159 {
7160 i.types[op].bitfield.disp32 = 0;
7161 i.types[op].bitfield.disp32s = 1;
7162 }
7163 else
7164 {
7165 i.types[op].bitfield.disp32 = 1;
7166 i.types[op].bitfield.disp32s = 0;
7167 }
7168 }
7169
7170 if (!i.tm.opcode_modifier.vecsib)
7171 i.rm.regmem = i.base_reg->reg_num;
7172 if ((i.base_reg->reg_flags & RegRex) != 0)
7173 i.rex |= REX_B;
7174 i.sib.base = i.base_reg->reg_num;
7175 /* x86-64 ignores REX prefix bit here to avoid decoder
7176 complications. */
7177 if (!(i.base_reg->reg_flags & RegRex)
7178 && (i.base_reg->reg_num == EBP_REG_NUM
7179 || i.base_reg->reg_num == ESP_REG_NUM))
7180 default_seg = &ss;
7181 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7182 {
7183 fake_zero_displacement = 1;
7184 i.types[op].bitfield.disp8 = 1;
7185 }
7186 i.sib.scale = i.log2_scale_factor;
7187 if (i.index_reg == 0)
7188 {
7189 gas_assert (!i.tm.opcode_modifier.vecsib);
7190 /* <disp>(%esp) becomes two byte modrm with no index
7191 register. We've already stored the code for esp
7192 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7193 Any base register besides %esp will not use the
7194 extra modrm byte. */
7195 i.sib.index = NO_INDEX_REGISTER;
7196 }
7197 else if (!i.tm.opcode_modifier.vecsib)
7198 {
7199 if (i.index_reg->reg_num == RegEiz
7200 || i.index_reg->reg_num == RegRiz)
7201 i.sib.index = NO_INDEX_REGISTER;
7202 else
7203 i.sib.index = i.index_reg->reg_num;
7204 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7205 if ((i.index_reg->reg_flags & RegRex) != 0)
7206 i.rex |= REX_X;
7207 }
7208
7209 if (i.disp_operands
7210 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7211 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7212 i.rm.mode = 0;
7213 else
7214 {
7215 if (!fake_zero_displacement
7216 && !i.disp_operands
7217 && i.disp_encoding)
7218 {
7219 fake_zero_displacement = 1;
7220 if (i.disp_encoding == disp_encoding_8bit)
7221 i.types[op].bitfield.disp8 = 1;
7222 else
7223 i.types[op].bitfield.disp32 = 1;
7224 }
7225 i.rm.mode = mode_from_disp_size (i.types[op]);
7226 }
7227 }
7228
7229 if (fake_zero_displacement)
7230 {
7231 /* Fakes a zero displacement assuming that i.types[op]
7232 holds the correct displacement size. */
7233 expressionS *exp;
7234
7235 gas_assert (i.op[op].disps == 0);
7236 exp = &disp_expressions[i.disp_operands++];
7237 i.op[op].disps = exp;
7238 exp->X_op = O_constant;
7239 exp->X_add_number = 0;
7240 exp->X_add_symbol = (symbolS *) 0;
7241 exp->X_op_symbol = (symbolS *) 0;
7242 }
7243
7244 mem = op;
7245 }
7246 else
7247 mem = ~0;
7248
7249 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7250 {
7251 if (operand_type_check (i.types[0], imm))
7252 i.vex.register_specifier = NULL;
7253 else
7254 {
7255 /* VEX.vvvv encodes one of the sources when the first
7256 operand is not an immediate. */
7257 if (i.tm.opcode_modifier.vexw == VEXW0)
7258 i.vex.register_specifier = i.op[0].regs;
7259 else
7260 i.vex.register_specifier = i.op[1].regs;
7261 }
7262
7263 /* Destination is a XMM register encoded in the ModRM.reg
7264 and VEX.R bit. */
7265 i.rm.reg = i.op[2].regs->reg_num;
7266 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7267 i.rex |= REX_R;
7268
7269 /* ModRM.rm and VEX.B encodes the other source. */
7270 if (!i.mem_operands)
7271 {
7272 i.rm.mode = 3;
7273
7274 if (i.tm.opcode_modifier.vexw == VEXW0)
7275 i.rm.regmem = i.op[1].regs->reg_num;
7276 else
7277 i.rm.regmem = i.op[0].regs->reg_num;
7278
7279 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7280 i.rex |= REX_B;
7281 }
7282 }
7283 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7284 {
7285 i.vex.register_specifier = i.op[2].regs;
7286 if (!i.mem_operands)
7287 {
7288 i.rm.mode = 3;
7289 i.rm.regmem = i.op[1].regs->reg_num;
7290 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7291 i.rex |= REX_B;
7292 }
7293 }
7294 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7295 (if any) based on i.tm.extension_opcode. Again, we must be
7296 careful to make sure that segment/control/debug/test/MMX
7297 registers are coded into the i.rm.reg field. */
7298 else if (i.reg_operands)
7299 {
7300 unsigned int op;
7301 unsigned int vex_reg = ~0;
7302
7303 for (op = 0; op < i.operands; op++)
7304 if (i.types[op].bitfield.reg
7305 || i.types[op].bitfield.regmmx
7306 || i.types[op].bitfield.regsimd
7307 || i.types[op].bitfield.regbnd
7308 || i.types[op].bitfield.regmask
7309 || i.types[op].bitfield.sreg2
7310 || i.types[op].bitfield.sreg3
7311 || i.types[op].bitfield.control
7312 || i.types[op].bitfield.debug
7313 || i.types[op].bitfield.test)
7314 break;
7315
7316 if (vex_3_sources)
7317 op = dest;
7318 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7319 {
7320 /* For instructions with VexNDS, the register-only
7321 source operand is encoded in VEX prefix. */
7322 gas_assert (mem != (unsigned int) ~0);
7323
7324 if (op > mem)
7325 {
7326 vex_reg = op++;
7327 gas_assert (op < i.operands);
7328 }
7329 else
7330 {
7331 /* Check register-only source operand when two source
7332 operands are swapped. */
7333 if (!i.tm.operand_types[op].bitfield.baseindex
7334 && i.tm.operand_types[op + 1].bitfield.baseindex)
7335 {
7336 vex_reg = op;
7337 op += 2;
7338 gas_assert (mem == (vex_reg + 1)
7339 && op < i.operands);
7340 }
7341 else
7342 {
7343 vex_reg = op + 1;
7344 gas_assert (vex_reg < i.operands);
7345 }
7346 }
7347 }
7348 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7349 {
7350 /* For instructions with VexNDD, the register destination
7351 is encoded in VEX prefix. */
7352 if (i.mem_operands == 0)
7353 {
7354 /* There is no memory operand. */
7355 gas_assert ((op + 2) == i.operands);
7356 vex_reg = op + 1;
7357 }
7358 else
7359 {
7360 /* There are only 2 non-immediate operands. */
7361 gas_assert (op < i.imm_operands + 2
7362 && i.operands == i.imm_operands + 2);
7363 vex_reg = i.imm_operands + 1;
7364 }
7365 }
7366 else
7367 gas_assert (op < i.operands);
7368
7369 if (vex_reg != (unsigned int) ~0)
7370 {
7371 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7372
7373 if ((!type->bitfield.reg
7374 || (!type->bitfield.dword && !type->bitfield.qword))
7375 && !type->bitfield.regsimd
7376 && !operand_type_equal (type, &regmask))
7377 abort ();
7378
7379 i.vex.register_specifier = i.op[vex_reg].regs;
7380 }
7381
7382 /* Don't set OP operand twice. */
7383 if (vex_reg != op)
7384 {
7385 /* If there is an extension opcode to put here, the
7386 register number must be put into the regmem field. */
7387 if (i.tm.extension_opcode != None)
7388 {
7389 i.rm.regmem = i.op[op].regs->reg_num;
7390 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7391 i.rex |= REX_B;
7392 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7393 i.vrex |= REX_B;
7394 }
7395 else
7396 {
7397 i.rm.reg = i.op[op].regs->reg_num;
7398 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7399 i.rex |= REX_R;
7400 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7401 i.vrex |= REX_R;
7402 }
7403 }
7404
7405 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7406 must set it to 3 to indicate this is a register operand
7407 in the regmem field. */
7408 if (!i.mem_operands)
7409 i.rm.mode = 3;
7410 }
7411
7412 /* Fill in i.rm.reg field with extension opcode (if any). */
7413 if (i.tm.extension_opcode != None)
7414 i.rm.reg = i.tm.extension_opcode;
7415 }
7416 return default_seg;
7417 }
7418
7419 static void
7420 output_branch (void)
7421 {
7422 char *p;
7423 int size;
7424 int code16;
7425 int prefix;
7426 relax_substateT subtype;
7427 symbolS *sym;
7428 offsetT off;
7429
7430 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7431 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7432
7433 prefix = 0;
7434 if (i.prefix[DATA_PREFIX] != 0)
7435 {
7436 prefix = 1;
7437 i.prefixes -= 1;
7438 code16 ^= CODE16;
7439 }
7440 /* Pentium4 branch hints. */
7441 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7442 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7443 {
7444 prefix++;
7445 i.prefixes--;
7446 }
7447 if (i.prefix[REX_PREFIX] != 0)
7448 {
7449 prefix++;
7450 i.prefixes--;
7451 }
7452
7453 /* BND prefixed jump. */
7454 if (i.prefix[BND_PREFIX] != 0)
7455 {
7456 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7457 i.prefixes -= 1;
7458 }
7459
7460 if (i.prefixes != 0 && !intel_syntax)
7461 as_warn (_("skipping prefixes on this instruction"));
7462
7463 /* It's always a symbol; End frag & setup for relax.
7464 Make sure there is enough room in this frag for the largest
7465 instruction we may generate in md_convert_frag. This is 2
7466 bytes for the opcode and room for the prefix and largest
7467 displacement. */
7468 frag_grow (prefix + 2 + 4);
7469 /* Prefix and 1 opcode byte go in fr_fix. */
7470 p = frag_more (prefix + 1);
7471 if (i.prefix[DATA_PREFIX] != 0)
7472 *p++ = DATA_PREFIX_OPCODE;
7473 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7474 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7475 *p++ = i.prefix[SEG_PREFIX];
7476 if (i.prefix[REX_PREFIX] != 0)
7477 *p++ = i.prefix[REX_PREFIX];
7478 *p = i.tm.base_opcode;
7479
7480 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7481 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7482 else if (cpu_arch_flags.bitfield.cpui386)
7483 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7484 else
7485 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7486 subtype |= code16;
7487
7488 sym = i.op[0].disps->X_add_symbol;
7489 off = i.op[0].disps->X_add_number;
7490
7491 if (i.op[0].disps->X_op != O_constant
7492 && i.op[0].disps->X_op != O_symbol)
7493 {
7494 /* Handle complex expressions. */
7495 sym = make_expr_symbol (i.op[0].disps);
7496 off = 0;
7497 }
7498
7499 /* 1 possible extra opcode + 4 byte displacement go in var part.
7500 Pass reloc in fr_var. */
7501 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7502 }
7503
7504 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7505 /* Return TRUE iff PLT32 relocation should be used for branching to
7506 symbol S. */
7507
7508 static bfd_boolean
7509 need_plt32_p (symbolS *s)
7510 {
7511 /* PLT32 relocation is ELF only. */
7512 if (!IS_ELF)
7513 return FALSE;
7514
7515 /* Since there is no need to prepare for PLT branch on x86-64, we
7516 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7517 be used as a marker for 32-bit PC-relative branches. */
7518 if (!object_64bit)
7519 return FALSE;
7520
7521 /* Weak or undefined symbol need PLT32 relocation. */
7522 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7523 return TRUE;
7524
7525 /* Non-global symbol doesn't need PLT32 relocation. */
7526 if (! S_IS_EXTERNAL (s))
7527 return FALSE;
7528
7529 /* Other global symbols need PLT32 relocation. NB: Symbol with
7530 non-default visibilities are treated as normal global symbol
7531 so that PLT32 relocation can be used as a marker for 32-bit
7532 PC-relative branches. It is useful for linker relaxation. */
7533 return TRUE;
7534 }
7535 #endif
7536
7537 static void
7538 output_jump (void)
7539 {
7540 char *p;
7541 int size;
7542 fixS *fixP;
7543 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7544
7545 if (i.tm.opcode_modifier.jumpbyte)
7546 {
7547 /* This is a loop or jecxz type instruction. */
7548 size = 1;
7549 if (i.prefix[ADDR_PREFIX] != 0)
7550 {
7551 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7552 i.prefixes -= 1;
7553 }
7554 /* Pentium4 branch hints. */
7555 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7556 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7557 {
7558 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7559 i.prefixes--;
7560 }
7561 }
7562 else
7563 {
7564 int code16;
7565
7566 code16 = 0;
7567 if (flag_code == CODE_16BIT)
7568 code16 = CODE16;
7569
7570 if (i.prefix[DATA_PREFIX] != 0)
7571 {
7572 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7573 i.prefixes -= 1;
7574 code16 ^= CODE16;
7575 }
7576
7577 size = 4;
7578 if (code16)
7579 size = 2;
7580 }
7581
7582 if (i.prefix[REX_PREFIX] != 0)
7583 {
7584 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7585 i.prefixes -= 1;
7586 }
7587
7588 /* BND prefixed jump. */
7589 if (i.prefix[BND_PREFIX] != 0)
7590 {
7591 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7592 i.prefixes -= 1;
7593 }
7594
7595 if (i.prefixes != 0 && !intel_syntax)
7596 as_warn (_("skipping prefixes on this instruction"));
7597
7598 p = frag_more (i.tm.opcode_length + size);
7599 switch (i.tm.opcode_length)
7600 {
7601 case 2:
7602 *p++ = i.tm.base_opcode >> 8;
7603 /* Fall through. */
7604 case 1:
7605 *p++ = i.tm.base_opcode;
7606 break;
7607 default:
7608 abort ();
7609 }
7610
7611 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7612 if (size == 4
7613 && jump_reloc == NO_RELOC
7614 && need_plt32_p (i.op[0].disps->X_add_symbol))
7615 jump_reloc = BFD_RELOC_X86_64_PLT32;
7616 #endif
7617
7618 jump_reloc = reloc (size, 1, 1, jump_reloc);
7619
7620 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7621 i.op[0].disps, 1, jump_reloc);
7622
7623 /* All jumps handled here are signed, but don't use a signed limit
7624 check for 32 and 16 bit jumps as we want to allow wrap around at
7625 4G and 64k respectively. */
7626 if (size == 1)
7627 fixP->fx_signed = 1;
7628 }
7629
7630 static void
7631 output_interseg_jump (void)
7632 {
7633 char *p;
7634 int size;
7635 int prefix;
7636 int code16;
7637
7638 code16 = 0;
7639 if (flag_code == CODE_16BIT)
7640 code16 = CODE16;
7641
7642 prefix = 0;
7643 if (i.prefix[DATA_PREFIX] != 0)
7644 {
7645 prefix = 1;
7646 i.prefixes -= 1;
7647 code16 ^= CODE16;
7648 }
7649 if (i.prefix[REX_PREFIX] != 0)
7650 {
7651 prefix++;
7652 i.prefixes -= 1;
7653 }
7654
7655 size = 4;
7656 if (code16)
7657 size = 2;
7658
7659 if (i.prefixes != 0 && !intel_syntax)
7660 as_warn (_("skipping prefixes on this instruction"));
7661
7662 /* 1 opcode; 2 segment; offset */
7663 p = frag_more (prefix + 1 + 2 + size);
7664
7665 if (i.prefix[DATA_PREFIX] != 0)
7666 *p++ = DATA_PREFIX_OPCODE;
7667
7668 if (i.prefix[REX_PREFIX] != 0)
7669 *p++ = i.prefix[REX_PREFIX];
7670
7671 *p++ = i.tm.base_opcode;
7672 if (i.op[1].imms->X_op == O_constant)
7673 {
7674 offsetT n = i.op[1].imms->X_add_number;
7675
7676 if (size == 2
7677 && !fits_in_unsigned_word (n)
7678 && !fits_in_signed_word (n))
7679 {
7680 as_bad (_("16-bit jump out of range"));
7681 return;
7682 }
7683 md_number_to_chars (p, n, size);
7684 }
7685 else
7686 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7687 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7688 if (i.op[0].imms->X_op != O_constant)
7689 as_bad (_("can't handle non absolute segment in `%s'"),
7690 i.tm.name);
7691 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7692 }
7693
7694 static void
7695 output_insn (void)
7696 {
7697 fragS *insn_start_frag;
7698 offsetT insn_start_off;
7699
7700 /* Tie dwarf2 debug info to the address at the start of the insn.
7701 We can't do this after the insn has been output as the current
7702 frag may have been closed off. eg. by frag_var. */
7703 dwarf2_emit_insn (0);
7704
7705 insn_start_frag = frag_now;
7706 insn_start_off = frag_now_fix ();
7707
7708 /* Output jumps. */
7709 if (i.tm.opcode_modifier.jump)
7710 output_branch ();
7711 else if (i.tm.opcode_modifier.jumpbyte
7712 || i.tm.opcode_modifier.jumpdword)
7713 output_jump ();
7714 else if (i.tm.opcode_modifier.jumpintersegment)
7715 output_interseg_jump ();
7716 else
7717 {
7718 /* Output normal instructions here. */
7719 char *p;
7720 unsigned char *q;
7721 unsigned int j;
7722 unsigned int prefix;
7723
7724 if (avoid_fence
7725 && i.tm.base_opcode == 0xfae
7726 && i.operands == 1
7727 && i.imm_operands == 1
7728 && (i.op[0].imms->X_add_number == 0xe8
7729 || i.op[0].imms->X_add_number == 0xf0
7730 || i.op[0].imms->X_add_number == 0xf8))
7731 {
7732 /* Encode lfence, mfence, and sfence as
7733 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7734 offsetT val = 0x240483f0ULL;
7735 p = frag_more (5);
7736 md_number_to_chars (p, val, 5);
7737 return;
7738 }
7739
7740 /* Some processors fail on LOCK prefix. This options makes
7741 assembler ignore LOCK prefix and serves as a workaround. */
7742 if (omit_lock_prefix)
7743 {
7744 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7745 return;
7746 i.prefix[LOCK_PREFIX] = 0;
7747 }
7748
7749 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7750 don't need the explicit prefix. */
7751 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7752 {
7753 switch (i.tm.opcode_length)
7754 {
7755 case 3:
7756 if (i.tm.base_opcode & 0xff000000)
7757 {
7758 prefix = (i.tm.base_opcode >> 24) & 0xff;
7759 add_prefix (prefix);
7760 }
7761 break;
7762 case 2:
7763 if ((i.tm.base_opcode & 0xff0000) != 0)
7764 {
7765 prefix = (i.tm.base_opcode >> 16) & 0xff;
7766 if (!i.tm.cpu_flags.bitfield.cpupadlock
7767 || prefix != REPE_PREFIX_OPCODE
7768 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7769 add_prefix (prefix);
7770 }
7771 break;
7772 case 1:
7773 break;
7774 case 0:
7775 /* Check for pseudo prefixes. */
7776 as_bad_where (insn_start_frag->fr_file,
7777 insn_start_frag->fr_line,
7778 _("pseudo prefix without instruction"));
7779 return;
7780 default:
7781 abort ();
7782 }
7783
7784 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7785 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7786 R_X86_64_GOTTPOFF relocation so that linker can safely
7787 perform IE->LE optimization. */
7788 if (x86_elf_abi == X86_64_X32_ABI
7789 && i.operands == 2
7790 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7791 && i.prefix[REX_PREFIX] == 0)
7792 add_prefix (REX_OPCODE);
7793 #endif
7794
7795 /* The prefix bytes. */
7796 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7797 if (*q)
7798 FRAG_APPEND_1_CHAR (*q);
7799 }
7800 else
7801 {
7802 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7803 if (*q)
7804 switch (j)
7805 {
7806 case REX_PREFIX:
7807 /* REX byte is encoded in VEX prefix. */
7808 break;
7809 case SEG_PREFIX:
7810 case ADDR_PREFIX:
7811 FRAG_APPEND_1_CHAR (*q);
7812 break;
7813 default:
7814 /* There should be no other prefixes for instructions
7815 with VEX prefix. */
7816 abort ();
7817 }
7818
7819 /* For EVEX instructions i.vrex should become 0 after
7820 build_evex_prefix. For VEX instructions upper 16 registers
7821 aren't available, so VREX should be 0. */
7822 if (i.vrex)
7823 abort ();
7824 /* Now the VEX prefix. */
7825 p = frag_more (i.vex.length);
7826 for (j = 0; j < i.vex.length; j++)
7827 p[j] = i.vex.bytes[j];
7828 }
7829
7830 /* Now the opcode; be careful about word order here! */
7831 if (i.tm.opcode_length == 1)
7832 {
7833 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7834 }
7835 else
7836 {
7837 switch (i.tm.opcode_length)
7838 {
7839 case 4:
7840 p = frag_more (4);
7841 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7842 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7843 break;
7844 case 3:
7845 p = frag_more (3);
7846 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7847 break;
7848 case 2:
7849 p = frag_more (2);
7850 break;
7851 default:
7852 abort ();
7853 break;
7854 }
7855
7856 /* Put out high byte first: can't use md_number_to_chars! */
7857 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7858 *p = i.tm.base_opcode & 0xff;
7859 }
7860
7861 /* Now the modrm byte and sib byte (if present). */
7862 if (i.tm.opcode_modifier.modrm)
7863 {
7864 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7865 | i.rm.reg << 3
7866 | i.rm.mode << 6));
7867 /* If i.rm.regmem == ESP (4)
7868 && i.rm.mode != (Register mode)
7869 && not 16 bit
7870 ==> need second modrm byte. */
7871 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7872 && i.rm.mode != 3
7873 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7874 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7875 | i.sib.index << 3
7876 | i.sib.scale << 6));
7877 }
7878
7879 if (i.disp_operands)
7880 output_disp (insn_start_frag, insn_start_off);
7881
7882 if (i.imm_operands)
7883 output_imm (insn_start_frag, insn_start_off);
7884 }
7885
7886 #ifdef DEBUG386
7887 if (flag_debug)
7888 {
7889 pi ("" /*line*/, &i);
7890 }
7891 #endif /* DEBUG386 */
7892 }
7893
7894 /* Return the size of the displacement operand N. */
7895
7896 static int
7897 disp_size (unsigned int n)
7898 {
7899 int size = 4;
7900
7901 if (i.types[n].bitfield.disp64)
7902 size = 8;
7903 else if (i.types[n].bitfield.disp8)
7904 size = 1;
7905 else if (i.types[n].bitfield.disp16)
7906 size = 2;
7907 return size;
7908 }
7909
7910 /* Return the size of the immediate operand N. */
7911
7912 static int
7913 imm_size (unsigned int n)
7914 {
7915 int size = 4;
7916 if (i.types[n].bitfield.imm64)
7917 size = 8;
7918 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7919 size = 1;
7920 else if (i.types[n].bitfield.imm16)
7921 size = 2;
7922 return size;
7923 }
7924
7925 static void
7926 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7927 {
7928 char *p;
7929 unsigned int n;
7930
7931 for (n = 0; n < i.operands; n++)
7932 {
7933 if (operand_type_check (i.types[n], disp))
7934 {
7935 if (i.op[n].disps->X_op == O_constant)
7936 {
7937 int size = disp_size (n);
7938 offsetT val = i.op[n].disps->X_add_number;
7939
7940 val = offset_in_range (val >> i.memshift, size);
7941 p = frag_more (size);
7942 md_number_to_chars (p, val, size);
7943 }
7944 else
7945 {
7946 enum bfd_reloc_code_real reloc_type;
7947 int size = disp_size (n);
7948 int sign = i.types[n].bitfield.disp32s;
7949 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7950 fixS *fixP;
7951
7952 /* We can't have 8 bit displacement here. */
7953 gas_assert (!i.types[n].bitfield.disp8);
7954
7955 /* The PC relative address is computed relative
7956 to the instruction boundary, so in case immediate
7957 fields follows, we need to adjust the value. */
7958 if (pcrel && i.imm_operands)
7959 {
7960 unsigned int n1;
7961 int sz = 0;
7962
7963 for (n1 = 0; n1 < i.operands; n1++)
7964 if (operand_type_check (i.types[n1], imm))
7965 {
7966 /* Only one immediate is allowed for PC
7967 relative address. */
7968 gas_assert (sz == 0);
7969 sz = imm_size (n1);
7970 i.op[n].disps->X_add_number -= sz;
7971 }
7972 /* We should find the immediate. */
7973 gas_assert (sz != 0);
7974 }
7975
7976 p = frag_more (size);
7977 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7978 if (GOT_symbol
7979 && GOT_symbol == i.op[n].disps->X_add_symbol
7980 && (((reloc_type == BFD_RELOC_32
7981 || reloc_type == BFD_RELOC_X86_64_32S
7982 || (reloc_type == BFD_RELOC_64
7983 && object_64bit))
7984 && (i.op[n].disps->X_op == O_symbol
7985 || (i.op[n].disps->X_op == O_add
7986 && ((symbol_get_value_expression
7987 (i.op[n].disps->X_op_symbol)->X_op)
7988 == O_subtract))))
7989 || reloc_type == BFD_RELOC_32_PCREL))
7990 {
7991 offsetT add;
7992
7993 if (insn_start_frag == frag_now)
7994 add = (p - frag_now->fr_literal) - insn_start_off;
7995 else
7996 {
7997 fragS *fr;
7998
7999 add = insn_start_frag->fr_fix - insn_start_off;
8000 for (fr = insn_start_frag->fr_next;
8001 fr && fr != frag_now; fr = fr->fr_next)
8002 add += fr->fr_fix;
8003 add += p - frag_now->fr_literal;
8004 }
8005
8006 if (!object_64bit)
8007 {
8008 reloc_type = BFD_RELOC_386_GOTPC;
8009 i.op[n].imms->X_add_number += add;
8010 }
8011 else if (reloc_type == BFD_RELOC_64)
8012 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8013 else
8014 /* Don't do the adjustment for x86-64, as there
8015 the pcrel addressing is relative to the _next_
8016 insn, and that is taken care of in other code. */
8017 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8018 }
8019 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8020 size, i.op[n].disps, pcrel,
8021 reloc_type);
8022 /* Check for "call/jmp *mem", "mov mem, %reg",
8023 "test %reg, mem" and "binop mem, %reg" where binop
8024 is one of adc, add, and, cmp, or, sbb, sub, xor
8025 instructions. Always generate R_386_GOT32X for
8026 "sym*GOT" operand in 32-bit mode. */
8027 if ((generate_relax_relocations
8028 || (!object_64bit
8029 && i.rm.mode == 0
8030 && i.rm.regmem == 5))
8031 && (i.rm.mode == 2
8032 || (i.rm.mode == 0 && i.rm.regmem == 5))
8033 && ((i.operands == 1
8034 && i.tm.base_opcode == 0xff
8035 && (i.rm.reg == 2 || i.rm.reg == 4))
8036 || (i.operands == 2
8037 && (i.tm.base_opcode == 0x8b
8038 || i.tm.base_opcode == 0x85
8039 || (i.tm.base_opcode & 0xc7) == 0x03))))
8040 {
8041 if (object_64bit)
8042 {
8043 fixP->fx_tcbit = i.rex != 0;
8044 if (i.base_reg
8045 && (i.base_reg->reg_num == RegRip
8046 || i.base_reg->reg_num == RegEip))
8047 fixP->fx_tcbit2 = 1;
8048 }
8049 else
8050 fixP->fx_tcbit2 = 1;
8051 }
8052 }
8053 }
8054 }
8055 }
8056
8057 static void
8058 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8059 {
8060 char *p;
8061 unsigned int n;
8062
8063 for (n = 0; n < i.operands; n++)
8064 {
8065 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8066 if (i.rounding && (int) n == i.rounding->operand)
8067 continue;
8068
8069 if (operand_type_check (i.types[n], imm))
8070 {
8071 if (i.op[n].imms->X_op == O_constant)
8072 {
8073 int size = imm_size (n);
8074 offsetT val;
8075
8076 val = offset_in_range (i.op[n].imms->X_add_number,
8077 size);
8078 p = frag_more (size);
8079 md_number_to_chars (p, val, size);
8080 }
8081 else
8082 {
8083 /* Not absolute_section.
8084 Need a 32-bit fixup (don't support 8bit
8085 non-absolute imms). Try to support other
8086 sizes ... */
8087 enum bfd_reloc_code_real reloc_type;
8088 int size = imm_size (n);
8089 int sign;
8090
8091 if (i.types[n].bitfield.imm32s
8092 && (i.suffix == QWORD_MNEM_SUFFIX
8093 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8094 sign = 1;
8095 else
8096 sign = 0;
8097
8098 p = frag_more (size);
8099 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8100
8101 /* This is tough to explain. We end up with this one if we
8102 * have operands that look like
8103 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8104 * obtain the absolute address of the GOT, and it is strongly
8105 * preferable from a performance point of view to avoid using
8106 * a runtime relocation for this. The actual sequence of
8107 * instructions often look something like:
8108 *
8109 * call .L66
8110 * .L66:
8111 * popl %ebx
8112 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8113 *
8114 * The call and pop essentially return the absolute address
8115 * of the label .L66 and store it in %ebx. The linker itself
8116 * will ultimately change the first operand of the addl so
8117 * that %ebx points to the GOT, but to keep things simple, the
8118 * .o file must have this operand set so that it generates not
8119 * the absolute address of .L66, but the absolute address of
8120 * itself. This allows the linker itself simply treat a GOTPC
8121 * relocation as asking for a pcrel offset to the GOT to be
8122 * added in, and the addend of the relocation is stored in the
8123 * operand field for the instruction itself.
8124 *
8125 * Our job here is to fix the operand so that it would add
8126 * the correct offset so that %ebx would point to itself. The
8127 * thing that is tricky is that .-.L66 will point to the
8128 * beginning of the instruction, so we need to further modify
8129 * the operand so that it will point to itself. There are
8130 * other cases where you have something like:
8131 *
8132 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8133 *
8134 * and here no correction would be required. Internally in
8135 * the assembler we treat operands of this form as not being
8136 * pcrel since the '.' is explicitly mentioned, and I wonder
8137 * whether it would simplify matters to do it this way. Who
8138 * knows. In earlier versions of the PIC patches, the
8139 * pcrel_adjust field was used to store the correction, but
8140 * since the expression is not pcrel, I felt it would be
8141 * confusing to do it this way. */
8142
8143 if ((reloc_type == BFD_RELOC_32
8144 || reloc_type == BFD_RELOC_X86_64_32S
8145 || reloc_type == BFD_RELOC_64)
8146 && GOT_symbol
8147 && GOT_symbol == i.op[n].imms->X_add_symbol
8148 && (i.op[n].imms->X_op == O_symbol
8149 || (i.op[n].imms->X_op == O_add
8150 && ((symbol_get_value_expression
8151 (i.op[n].imms->X_op_symbol)->X_op)
8152 == O_subtract))))
8153 {
8154 offsetT add;
8155
8156 if (insn_start_frag == frag_now)
8157 add = (p - frag_now->fr_literal) - insn_start_off;
8158 else
8159 {
8160 fragS *fr;
8161
8162 add = insn_start_frag->fr_fix - insn_start_off;
8163 for (fr = insn_start_frag->fr_next;
8164 fr && fr != frag_now; fr = fr->fr_next)
8165 add += fr->fr_fix;
8166 add += p - frag_now->fr_literal;
8167 }
8168
8169 if (!object_64bit)
8170 reloc_type = BFD_RELOC_386_GOTPC;
8171 else if (size == 4)
8172 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8173 else if (size == 8)
8174 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8175 i.op[n].imms->X_add_number += add;
8176 }
8177 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8178 i.op[n].imms, 0, reloc_type);
8179 }
8180 }
8181 }
8182 }
8183 \f
8184 /* x86_cons_fix_new is called via the expression parsing code when a
8185 reloc is needed. We use this hook to get the correct .got reloc. */
8186 static int cons_sign = -1;
8187
8188 void
8189 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8190 expressionS *exp, bfd_reloc_code_real_type r)
8191 {
8192 r = reloc (len, 0, cons_sign, r);
8193
8194 #ifdef TE_PE
8195 if (exp->X_op == O_secrel)
8196 {
8197 exp->X_op = O_symbol;
8198 r = BFD_RELOC_32_SECREL;
8199 }
8200 #endif
8201
8202 fix_new_exp (frag, off, len, exp, 0, r);
8203 }
8204
8205 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8206 purpose of the `.dc.a' internal pseudo-op. */
8207
8208 int
8209 x86_address_bytes (void)
8210 {
8211 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8212 return 4;
8213 return stdoutput->arch_info->bits_per_address / 8;
8214 }
8215
8216 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8217 || defined (LEX_AT)
8218 # define lex_got(reloc, adjust, types) NULL
8219 #else
8220 /* Parse operands of the form
8221 <symbol>@GOTOFF+<nnn>
8222 and similar .plt or .got references.
8223
8224 If we find one, set up the correct relocation in RELOC and copy the
8225 input string, minus the `@GOTOFF' into a malloc'd buffer for
8226 parsing by the calling routine. Return this buffer, and if ADJUST
8227 is non-null set it to the length of the string we removed from the
8228 input line. Otherwise return NULL. */
8229 static char *
8230 lex_got (enum bfd_reloc_code_real *rel,
8231 int *adjust,
8232 i386_operand_type *types)
8233 {
8234 /* Some of the relocations depend on the size of what field is to
8235 be relocated. But in our callers i386_immediate and i386_displacement
8236 we don't yet know the operand size (this will be set by insn
8237 matching). Hence we record the word32 relocation here,
8238 and adjust the reloc according to the real size in reloc(). */
8239 static const struct {
8240 const char *str;
8241 int len;
8242 const enum bfd_reloc_code_real rel[2];
8243 const i386_operand_type types64;
8244 } gotrel[] = {
8245 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8246 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8247 BFD_RELOC_SIZE32 },
8248 OPERAND_TYPE_IMM32_64 },
8249 #endif
8250 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8251 BFD_RELOC_X86_64_PLTOFF64 },
8252 OPERAND_TYPE_IMM64 },
8253 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8254 BFD_RELOC_X86_64_PLT32 },
8255 OPERAND_TYPE_IMM32_32S_DISP32 },
8256 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8257 BFD_RELOC_X86_64_GOTPLT64 },
8258 OPERAND_TYPE_IMM64_DISP64 },
8259 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8260 BFD_RELOC_X86_64_GOTOFF64 },
8261 OPERAND_TYPE_IMM64_DISP64 },
8262 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8263 BFD_RELOC_X86_64_GOTPCREL },
8264 OPERAND_TYPE_IMM32_32S_DISP32 },
8265 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8266 BFD_RELOC_X86_64_TLSGD },
8267 OPERAND_TYPE_IMM32_32S_DISP32 },
8268 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8269 _dummy_first_bfd_reloc_code_real },
8270 OPERAND_TYPE_NONE },
8271 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8272 BFD_RELOC_X86_64_TLSLD },
8273 OPERAND_TYPE_IMM32_32S_DISP32 },
8274 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8275 BFD_RELOC_X86_64_GOTTPOFF },
8276 OPERAND_TYPE_IMM32_32S_DISP32 },
8277 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8278 BFD_RELOC_X86_64_TPOFF32 },
8279 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8280 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8281 _dummy_first_bfd_reloc_code_real },
8282 OPERAND_TYPE_NONE },
8283 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8284 BFD_RELOC_X86_64_DTPOFF32 },
8285 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8286 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8287 _dummy_first_bfd_reloc_code_real },
8288 OPERAND_TYPE_NONE },
8289 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8290 _dummy_first_bfd_reloc_code_real },
8291 OPERAND_TYPE_NONE },
8292 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8293 BFD_RELOC_X86_64_GOT32 },
8294 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8295 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8296 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8297 OPERAND_TYPE_IMM32_32S_DISP32 },
8298 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8299 BFD_RELOC_X86_64_TLSDESC_CALL },
8300 OPERAND_TYPE_IMM32_32S_DISP32 },
8301 };
8302 char *cp;
8303 unsigned int j;
8304
8305 #if defined (OBJ_MAYBE_ELF)
8306 if (!IS_ELF)
8307 return NULL;
8308 #endif
8309
8310 for (cp = input_line_pointer; *cp != '@'; cp++)
8311 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8312 return NULL;
8313
8314 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8315 {
8316 int len = gotrel[j].len;
8317 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8318 {
8319 if (gotrel[j].rel[object_64bit] != 0)
8320 {
8321 int first, second;
8322 char *tmpbuf, *past_reloc;
8323
8324 *rel = gotrel[j].rel[object_64bit];
8325
8326 if (types)
8327 {
8328 if (flag_code != CODE_64BIT)
8329 {
8330 types->bitfield.imm32 = 1;
8331 types->bitfield.disp32 = 1;
8332 }
8333 else
8334 *types = gotrel[j].types64;
8335 }
8336
8337 if (j != 0 && GOT_symbol == NULL)
8338 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8339
8340 /* The length of the first part of our input line. */
8341 first = cp - input_line_pointer;
8342
8343 /* The second part goes from after the reloc token until
8344 (and including) an end_of_line char or comma. */
8345 past_reloc = cp + 1 + len;
8346 cp = past_reloc;
8347 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8348 ++cp;
8349 second = cp + 1 - past_reloc;
8350
8351 /* Allocate and copy string. The trailing NUL shouldn't
8352 be necessary, but be safe. */
8353 tmpbuf = XNEWVEC (char, first + second + 2);
8354 memcpy (tmpbuf, input_line_pointer, first);
8355 if (second != 0 && *past_reloc != ' ')
8356 /* Replace the relocation token with ' ', so that
8357 errors like foo@GOTOFF1 will be detected. */
8358 tmpbuf[first++] = ' ';
8359 else
8360 /* Increment length by 1 if the relocation token is
8361 removed. */
8362 len++;
8363 if (adjust)
8364 *adjust = len;
8365 memcpy (tmpbuf + first, past_reloc, second);
8366 tmpbuf[first + second] = '\0';
8367 return tmpbuf;
8368 }
8369
8370 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8371 gotrel[j].str, 1 << (5 + object_64bit));
8372 return NULL;
8373 }
8374 }
8375
8376 /* Might be a symbol version string. Don't as_bad here. */
8377 return NULL;
8378 }
8379 #endif
8380
8381 #ifdef TE_PE
8382 #ifdef lex_got
8383 #undef lex_got
8384 #endif
8385 /* Parse operands of the form
8386 <symbol>@SECREL32+<nnn>
8387
8388 If we find one, set up the correct relocation in RELOC and copy the
8389 input string, minus the `@SECREL32' into a malloc'd buffer for
8390 parsing by the calling routine. Return this buffer, and if ADJUST
8391 is non-null set it to the length of the string we removed from the
8392 input line. Otherwise return NULL.
8393
8394 This function is copied from the ELF version above adjusted for PE targets. */
8395
8396 static char *
8397 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8398 int *adjust ATTRIBUTE_UNUSED,
8399 i386_operand_type *types)
8400 {
8401 static const struct
8402 {
8403 const char *str;
8404 int len;
8405 const enum bfd_reloc_code_real rel[2];
8406 const i386_operand_type types64;
8407 }
8408 gotrel[] =
8409 {
8410 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8411 BFD_RELOC_32_SECREL },
8412 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8413 };
8414
8415 char *cp;
8416 unsigned j;
8417
8418 for (cp = input_line_pointer; *cp != '@'; cp++)
8419 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8420 return NULL;
8421
8422 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8423 {
8424 int len = gotrel[j].len;
8425
8426 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8427 {
8428 if (gotrel[j].rel[object_64bit] != 0)
8429 {
8430 int first, second;
8431 char *tmpbuf, *past_reloc;
8432
8433 *rel = gotrel[j].rel[object_64bit];
8434 if (adjust)
8435 *adjust = len;
8436
8437 if (types)
8438 {
8439 if (flag_code != CODE_64BIT)
8440 {
8441 types->bitfield.imm32 = 1;
8442 types->bitfield.disp32 = 1;
8443 }
8444 else
8445 *types = gotrel[j].types64;
8446 }
8447
8448 /* The length of the first part of our input line. */
8449 first = cp - input_line_pointer;
8450
8451 /* The second part goes from after the reloc token until
8452 (and including) an end_of_line char or comma. */
8453 past_reloc = cp + 1 + len;
8454 cp = past_reloc;
8455 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8456 ++cp;
8457 second = cp + 1 - past_reloc;
8458
8459 /* Allocate and copy string. The trailing NUL shouldn't
8460 be necessary, but be safe. */
8461 tmpbuf = XNEWVEC (char, first + second + 2);
8462 memcpy (tmpbuf, input_line_pointer, first);
8463 if (second != 0 && *past_reloc != ' ')
8464 /* Replace the relocation token with ' ', so that
8465 errors like foo@SECLREL321 will be detected. */
8466 tmpbuf[first++] = ' ';
8467 memcpy (tmpbuf + first, past_reloc, second);
8468 tmpbuf[first + second] = '\0';
8469 return tmpbuf;
8470 }
8471
8472 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8473 gotrel[j].str, 1 << (5 + object_64bit));
8474 return NULL;
8475 }
8476 }
8477
8478 /* Might be a symbol version string. Don't as_bad here. */
8479 return NULL;
8480 }
8481
8482 #endif /* TE_PE */
8483
8484 bfd_reloc_code_real_type
8485 x86_cons (expressionS *exp, int size)
8486 {
8487 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8488
8489 intel_syntax = -intel_syntax;
8490
8491 exp->X_md = 0;
8492 if (size == 4 || (object_64bit && size == 8))
8493 {
8494 /* Handle @GOTOFF and the like in an expression. */
8495 char *save;
8496 char *gotfree_input_line;
8497 int adjust = 0;
8498
8499 save = input_line_pointer;
8500 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8501 if (gotfree_input_line)
8502 input_line_pointer = gotfree_input_line;
8503
8504 expression (exp);
8505
8506 if (gotfree_input_line)
8507 {
8508 /* expression () has merrily parsed up to the end of line,
8509 or a comma - in the wrong buffer. Transfer how far
8510 input_line_pointer has moved to the right buffer. */
8511 input_line_pointer = (save
8512 + (input_line_pointer - gotfree_input_line)
8513 + adjust);
8514 free (gotfree_input_line);
8515 if (exp->X_op == O_constant
8516 || exp->X_op == O_absent
8517 || exp->X_op == O_illegal
8518 || exp->X_op == O_register
8519 || exp->X_op == O_big)
8520 {
8521 char c = *input_line_pointer;
8522 *input_line_pointer = 0;
8523 as_bad (_("missing or invalid expression `%s'"), save);
8524 *input_line_pointer = c;
8525 }
8526 }
8527 }
8528 else
8529 expression (exp);
8530
8531 intel_syntax = -intel_syntax;
8532
8533 if (intel_syntax)
8534 i386_intel_simplify (exp);
8535
8536 return got_reloc;
8537 }
8538
8539 static void
8540 signed_cons (int size)
8541 {
8542 if (flag_code == CODE_64BIT)
8543 cons_sign = 1;
8544 cons (size);
8545 cons_sign = -1;
8546 }
8547
8548 #ifdef TE_PE
8549 static void
8550 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8551 {
8552 expressionS exp;
8553
8554 do
8555 {
8556 expression (&exp);
8557 if (exp.X_op == O_symbol)
8558 exp.X_op = O_secrel;
8559
8560 emit_expr (&exp, 4);
8561 }
8562 while (*input_line_pointer++ == ',');
8563
8564 input_line_pointer--;
8565 demand_empty_rest_of_line ();
8566 }
8567 #endif
8568
8569 /* Handle Vector operations. */
8570
8571 static char *
8572 check_VecOperations (char *op_string, char *op_end)
8573 {
8574 const reg_entry *mask;
8575 const char *saved;
8576 char *end_op;
8577
8578 while (*op_string
8579 && (op_end == NULL || op_string < op_end))
8580 {
8581 saved = op_string;
8582 if (*op_string == '{')
8583 {
8584 op_string++;
8585
8586 /* Check broadcasts. */
8587 if (strncmp (op_string, "1to", 3) == 0)
8588 {
8589 int bcst_type;
8590
8591 if (i.broadcast)
8592 goto duplicated_vec_op;
8593
8594 op_string += 3;
8595 if (*op_string == '8')
8596 bcst_type = 8;
8597 else if (*op_string == '4')
8598 bcst_type = 4;
8599 else if (*op_string == '2')
8600 bcst_type = 2;
8601 else if (*op_string == '1'
8602 && *(op_string+1) == '6')
8603 {
8604 bcst_type = 16;
8605 op_string++;
8606 }
8607 else
8608 {
8609 as_bad (_("Unsupported broadcast: `%s'"), saved);
8610 return NULL;
8611 }
8612 op_string++;
8613
8614 broadcast_op.type = bcst_type;
8615 broadcast_op.operand = this_operand;
8616 i.broadcast = &broadcast_op;
8617 }
8618 /* Check masking operation. */
8619 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8620 {
8621 /* k0 can't be used for write mask. */
8622 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8623 {
8624 as_bad (_("`%s%s' can't be used for write mask"),
8625 register_prefix, mask->reg_name);
8626 return NULL;
8627 }
8628
8629 if (!i.mask)
8630 {
8631 mask_op.mask = mask;
8632 mask_op.zeroing = 0;
8633 mask_op.operand = this_operand;
8634 i.mask = &mask_op;
8635 }
8636 else
8637 {
8638 if (i.mask->mask)
8639 goto duplicated_vec_op;
8640
8641 i.mask->mask = mask;
8642
8643 /* Only "{z}" is allowed here. No need to check
8644 zeroing mask explicitly. */
8645 if (i.mask->operand != this_operand)
8646 {
8647 as_bad (_("invalid write mask `%s'"), saved);
8648 return NULL;
8649 }
8650 }
8651
8652 op_string = end_op;
8653 }
8654 /* Check zeroing-flag for masking operation. */
8655 else if (*op_string == 'z')
8656 {
8657 if (!i.mask)
8658 {
8659 mask_op.mask = NULL;
8660 mask_op.zeroing = 1;
8661 mask_op.operand = this_operand;
8662 i.mask = &mask_op;
8663 }
8664 else
8665 {
8666 if (i.mask->zeroing)
8667 {
8668 duplicated_vec_op:
8669 as_bad (_("duplicated `%s'"), saved);
8670 return NULL;
8671 }
8672
8673 i.mask->zeroing = 1;
8674
8675 /* Only "{%k}" is allowed here. No need to check mask
8676 register explicitly. */
8677 if (i.mask->operand != this_operand)
8678 {
8679 as_bad (_("invalid zeroing-masking `%s'"),
8680 saved);
8681 return NULL;
8682 }
8683 }
8684
8685 op_string++;
8686 }
8687 else
8688 goto unknown_vec_op;
8689
8690 if (*op_string != '}')
8691 {
8692 as_bad (_("missing `}' in `%s'"), saved);
8693 return NULL;
8694 }
8695 op_string++;
8696
8697 /* Strip whitespace since the addition of pseudo prefixes
8698 changed how the scrubber treats '{'. */
8699 if (is_space_char (*op_string))
8700 ++op_string;
8701
8702 continue;
8703 }
8704 unknown_vec_op:
8705 /* We don't know this one. */
8706 as_bad (_("unknown vector operation: `%s'"), saved);
8707 return NULL;
8708 }
8709
8710 if (i.mask && i.mask->zeroing && !i.mask->mask)
8711 {
8712 as_bad (_("zeroing-masking only allowed with write mask"));
8713 return NULL;
8714 }
8715
8716 return op_string;
8717 }
8718
8719 static int
8720 i386_immediate (char *imm_start)
8721 {
8722 char *save_input_line_pointer;
8723 char *gotfree_input_line;
8724 segT exp_seg = 0;
8725 expressionS *exp;
8726 i386_operand_type types;
8727
8728 operand_type_set (&types, ~0);
8729
8730 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8731 {
8732 as_bad (_("at most %d immediate operands are allowed"),
8733 MAX_IMMEDIATE_OPERANDS);
8734 return 0;
8735 }
8736
8737 exp = &im_expressions[i.imm_operands++];
8738 i.op[this_operand].imms = exp;
8739
8740 if (is_space_char (*imm_start))
8741 ++imm_start;
8742
8743 save_input_line_pointer = input_line_pointer;
8744 input_line_pointer = imm_start;
8745
8746 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8747 if (gotfree_input_line)
8748 input_line_pointer = gotfree_input_line;
8749
8750 exp_seg = expression (exp);
8751
8752 SKIP_WHITESPACE ();
8753
8754 /* Handle vector operations. */
8755 if (*input_line_pointer == '{')
8756 {
8757 input_line_pointer = check_VecOperations (input_line_pointer,
8758 NULL);
8759 if (input_line_pointer == NULL)
8760 return 0;
8761 }
8762
8763 if (*input_line_pointer)
8764 as_bad (_("junk `%s' after expression"), input_line_pointer);
8765
8766 input_line_pointer = save_input_line_pointer;
8767 if (gotfree_input_line)
8768 {
8769 free (gotfree_input_line);
8770
8771 if (exp->X_op == O_constant || exp->X_op == O_register)
8772 exp->X_op = O_illegal;
8773 }
8774
8775 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8776 }
8777
8778 static int
8779 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8780 i386_operand_type types, const char *imm_start)
8781 {
8782 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8783 {
8784 if (imm_start)
8785 as_bad (_("missing or invalid immediate expression `%s'"),
8786 imm_start);
8787 return 0;
8788 }
8789 else if (exp->X_op == O_constant)
8790 {
8791 /* Size it properly later. */
8792 i.types[this_operand].bitfield.imm64 = 1;
8793 /* If not 64bit, sign extend val. */
8794 if (flag_code != CODE_64BIT
8795 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8796 exp->X_add_number
8797 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8798 }
8799 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8800 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8801 && exp_seg != absolute_section
8802 && exp_seg != text_section
8803 && exp_seg != data_section
8804 && exp_seg != bss_section
8805 && exp_seg != undefined_section
8806 && !bfd_is_com_section (exp_seg))
8807 {
8808 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8809 return 0;
8810 }
8811 #endif
8812 else if (!intel_syntax && exp_seg == reg_section)
8813 {
8814 if (imm_start)
8815 as_bad (_("illegal immediate register operand %s"), imm_start);
8816 return 0;
8817 }
8818 else
8819 {
8820 /* This is an address. The size of the address will be
8821 determined later, depending on destination register,
8822 suffix, or the default for the section. */
8823 i.types[this_operand].bitfield.imm8 = 1;
8824 i.types[this_operand].bitfield.imm16 = 1;
8825 i.types[this_operand].bitfield.imm32 = 1;
8826 i.types[this_operand].bitfield.imm32s = 1;
8827 i.types[this_operand].bitfield.imm64 = 1;
8828 i.types[this_operand] = operand_type_and (i.types[this_operand],
8829 types);
8830 }
8831
8832 return 1;
8833 }
8834
8835 static char *
8836 i386_scale (char *scale)
8837 {
8838 offsetT val;
8839 char *save = input_line_pointer;
8840
8841 input_line_pointer = scale;
8842 val = get_absolute_expression ();
8843
8844 switch (val)
8845 {
8846 case 1:
8847 i.log2_scale_factor = 0;
8848 break;
8849 case 2:
8850 i.log2_scale_factor = 1;
8851 break;
8852 case 4:
8853 i.log2_scale_factor = 2;
8854 break;
8855 case 8:
8856 i.log2_scale_factor = 3;
8857 break;
8858 default:
8859 {
8860 char sep = *input_line_pointer;
8861
8862 *input_line_pointer = '\0';
8863 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8864 scale);
8865 *input_line_pointer = sep;
8866 input_line_pointer = save;
8867 return NULL;
8868 }
8869 }
8870 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8871 {
8872 as_warn (_("scale factor of %d without an index register"),
8873 1 << i.log2_scale_factor);
8874 i.log2_scale_factor = 0;
8875 }
8876 scale = input_line_pointer;
8877 input_line_pointer = save;
8878 return scale;
8879 }
8880
8881 static int
8882 i386_displacement (char *disp_start, char *disp_end)
8883 {
8884 expressionS *exp;
8885 segT exp_seg = 0;
8886 char *save_input_line_pointer;
8887 char *gotfree_input_line;
8888 int override;
8889 i386_operand_type bigdisp, types = anydisp;
8890 int ret;
8891
8892 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8893 {
8894 as_bad (_("at most %d displacement operands are allowed"),
8895 MAX_MEMORY_OPERANDS);
8896 return 0;
8897 }
8898
8899 operand_type_set (&bigdisp, 0);
8900 if ((i.types[this_operand].bitfield.jumpabsolute)
8901 || (!current_templates->start->opcode_modifier.jump
8902 && !current_templates->start->opcode_modifier.jumpdword))
8903 {
8904 bigdisp.bitfield.disp32 = 1;
8905 override = (i.prefix[ADDR_PREFIX] != 0);
8906 if (flag_code == CODE_64BIT)
8907 {
8908 if (!override)
8909 {
8910 bigdisp.bitfield.disp32s = 1;
8911 bigdisp.bitfield.disp64 = 1;
8912 }
8913 }
8914 else if ((flag_code == CODE_16BIT) ^ override)
8915 {
8916 bigdisp.bitfield.disp32 = 0;
8917 bigdisp.bitfield.disp16 = 1;
8918 }
8919 }
8920 else
8921 {
8922 /* For PC-relative branches, the width of the displacement
8923 is dependent upon data size, not address size. */
8924 override = (i.prefix[DATA_PREFIX] != 0);
8925 if (flag_code == CODE_64BIT)
8926 {
8927 if (override || i.suffix == WORD_MNEM_SUFFIX)
8928 bigdisp.bitfield.disp16 = 1;
8929 else
8930 {
8931 bigdisp.bitfield.disp32 = 1;
8932 bigdisp.bitfield.disp32s = 1;
8933 }
8934 }
8935 else
8936 {
8937 if (!override)
8938 override = (i.suffix == (flag_code != CODE_16BIT
8939 ? WORD_MNEM_SUFFIX
8940 : LONG_MNEM_SUFFIX));
8941 bigdisp.bitfield.disp32 = 1;
8942 if ((flag_code == CODE_16BIT) ^ override)
8943 {
8944 bigdisp.bitfield.disp32 = 0;
8945 bigdisp.bitfield.disp16 = 1;
8946 }
8947 }
8948 }
8949 i.types[this_operand] = operand_type_or (i.types[this_operand],
8950 bigdisp);
8951
8952 exp = &disp_expressions[i.disp_operands];
8953 i.op[this_operand].disps = exp;
8954 i.disp_operands++;
8955 save_input_line_pointer = input_line_pointer;
8956 input_line_pointer = disp_start;
8957 END_STRING_AND_SAVE (disp_end);
8958
8959 #ifndef GCC_ASM_O_HACK
8960 #define GCC_ASM_O_HACK 0
8961 #endif
8962 #if GCC_ASM_O_HACK
8963 END_STRING_AND_SAVE (disp_end + 1);
8964 if (i.types[this_operand].bitfield.baseIndex
8965 && displacement_string_end[-1] == '+')
8966 {
8967 /* This hack is to avoid a warning when using the "o"
8968 constraint within gcc asm statements.
8969 For instance:
8970
8971 #define _set_tssldt_desc(n,addr,limit,type) \
8972 __asm__ __volatile__ ( \
8973 "movw %w2,%0\n\t" \
8974 "movw %w1,2+%0\n\t" \
8975 "rorl $16,%1\n\t" \
8976 "movb %b1,4+%0\n\t" \
8977 "movb %4,5+%0\n\t" \
8978 "movb $0,6+%0\n\t" \
8979 "movb %h1,7+%0\n\t" \
8980 "rorl $16,%1" \
8981 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8982
8983 This works great except that the output assembler ends
8984 up looking a bit weird if it turns out that there is
8985 no offset. You end up producing code that looks like:
8986
8987 #APP
8988 movw $235,(%eax)
8989 movw %dx,2+(%eax)
8990 rorl $16,%edx
8991 movb %dl,4+(%eax)
8992 movb $137,5+(%eax)
8993 movb $0,6+(%eax)
8994 movb %dh,7+(%eax)
8995 rorl $16,%edx
8996 #NO_APP
8997
8998 So here we provide the missing zero. */
8999
9000 *displacement_string_end = '0';
9001 }
9002 #endif
9003 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9004 if (gotfree_input_line)
9005 input_line_pointer = gotfree_input_line;
9006
9007 exp_seg = expression (exp);
9008
9009 SKIP_WHITESPACE ();
9010 if (*input_line_pointer)
9011 as_bad (_("junk `%s' after expression"), input_line_pointer);
9012 #if GCC_ASM_O_HACK
9013 RESTORE_END_STRING (disp_end + 1);
9014 #endif
9015 input_line_pointer = save_input_line_pointer;
9016 if (gotfree_input_line)
9017 {
9018 free (gotfree_input_line);
9019
9020 if (exp->X_op == O_constant || exp->X_op == O_register)
9021 exp->X_op = O_illegal;
9022 }
9023
9024 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9025
9026 RESTORE_END_STRING (disp_end);
9027
9028 return ret;
9029 }
9030
9031 static int
9032 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9033 i386_operand_type types, const char *disp_start)
9034 {
9035 i386_operand_type bigdisp;
9036 int ret = 1;
9037
9038 /* We do this to make sure that the section symbol is in
9039 the symbol table. We will ultimately change the relocation
9040 to be relative to the beginning of the section. */
9041 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9042 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9043 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9044 {
9045 if (exp->X_op != O_symbol)
9046 goto inv_disp;
9047
9048 if (S_IS_LOCAL (exp->X_add_symbol)
9049 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9050 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9051 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9052 exp->X_op = O_subtract;
9053 exp->X_op_symbol = GOT_symbol;
9054 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9055 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9056 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9057 i.reloc[this_operand] = BFD_RELOC_64;
9058 else
9059 i.reloc[this_operand] = BFD_RELOC_32;
9060 }
9061
9062 else if (exp->X_op == O_absent
9063 || exp->X_op == O_illegal
9064 || exp->X_op == O_big)
9065 {
9066 inv_disp:
9067 as_bad (_("missing or invalid displacement expression `%s'"),
9068 disp_start);
9069 ret = 0;
9070 }
9071
9072 else if (flag_code == CODE_64BIT
9073 && !i.prefix[ADDR_PREFIX]
9074 && exp->X_op == O_constant)
9075 {
9076 /* Since displacement is signed extended to 64bit, don't allow
9077 disp32 and turn off disp32s if they are out of range. */
9078 i.types[this_operand].bitfield.disp32 = 0;
9079 if (!fits_in_signed_long (exp->X_add_number))
9080 {
9081 i.types[this_operand].bitfield.disp32s = 0;
9082 if (i.types[this_operand].bitfield.baseindex)
9083 {
9084 as_bad (_("0x%lx out range of signed 32bit displacement"),
9085 (long) exp->X_add_number);
9086 ret = 0;
9087 }
9088 }
9089 }
9090
9091 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9092 else if (exp->X_op != O_constant
9093 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9094 && exp_seg != absolute_section
9095 && exp_seg != text_section
9096 && exp_seg != data_section
9097 && exp_seg != bss_section
9098 && exp_seg != undefined_section
9099 && !bfd_is_com_section (exp_seg))
9100 {
9101 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9102 ret = 0;
9103 }
9104 #endif
9105
9106 /* Check if this is a displacement only operand. */
9107 bigdisp = i.types[this_operand];
9108 bigdisp.bitfield.disp8 = 0;
9109 bigdisp.bitfield.disp16 = 0;
9110 bigdisp.bitfield.disp32 = 0;
9111 bigdisp.bitfield.disp32s = 0;
9112 bigdisp.bitfield.disp64 = 0;
9113 if (operand_type_all_zero (&bigdisp))
9114 i.types[this_operand] = operand_type_and (i.types[this_operand],
9115 types);
9116
9117 return ret;
9118 }
9119
9120 /* Return the active addressing mode, taking address override and
9121 registers forming the address into consideration. Update the
9122 address override prefix if necessary. */
9123
9124 static enum flag_code
9125 i386_addressing_mode (void)
9126 {
9127 enum flag_code addr_mode;
9128
9129 if (i.prefix[ADDR_PREFIX])
9130 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9131 else
9132 {
9133 addr_mode = flag_code;
9134
9135 #if INFER_ADDR_PREFIX
9136 if (i.mem_operands == 0)
9137 {
9138 /* Infer address prefix from the first memory operand. */
9139 const reg_entry *addr_reg = i.base_reg;
9140
9141 if (addr_reg == NULL)
9142 addr_reg = i.index_reg;
9143
9144 if (addr_reg)
9145 {
9146 if (addr_reg->reg_num == RegEip
9147 || addr_reg->reg_num == RegEiz
9148 || addr_reg->reg_type.bitfield.dword)
9149 addr_mode = CODE_32BIT;
9150 else if (flag_code != CODE_64BIT
9151 && addr_reg->reg_type.bitfield.word)
9152 addr_mode = CODE_16BIT;
9153
9154 if (addr_mode != flag_code)
9155 {
9156 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9157 i.prefixes += 1;
9158 /* Change the size of any displacement too. At most one
9159 of Disp16 or Disp32 is set.
9160 FIXME. There doesn't seem to be any real need for
9161 separate Disp16 and Disp32 flags. The same goes for
9162 Imm16 and Imm32. Removing them would probably clean
9163 up the code quite a lot. */
9164 if (flag_code != CODE_64BIT
9165 && (i.types[this_operand].bitfield.disp16
9166 || i.types[this_operand].bitfield.disp32))
9167 i.types[this_operand]
9168 = operand_type_xor (i.types[this_operand], disp16_32);
9169 }
9170 }
9171 }
9172 #endif
9173 }
9174
9175 return addr_mode;
9176 }
9177
9178 /* Make sure the memory operand we've been dealt is valid.
9179 Return 1 on success, 0 on a failure. */
9180
9181 static int
9182 i386_index_check (const char *operand_string)
9183 {
9184 const char *kind = "base/index";
9185 enum flag_code addr_mode = i386_addressing_mode ();
9186
9187 if (current_templates->start->opcode_modifier.isstring
9188 && !current_templates->start->opcode_modifier.immext
9189 && (current_templates->end[-1].opcode_modifier.isstring
9190 || i.mem_operands))
9191 {
9192 /* Memory operands of string insns are special in that they only allow
9193 a single register (rDI, rSI, or rBX) as their memory address. */
9194 const reg_entry *expected_reg;
9195 static const char *di_si[][2] =
9196 {
9197 { "esi", "edi" },
9198 { "si", "di" },
9199 { "rsi", "rdi" }
9200 };
9201 static const char *bx[] = { "ebx", "bx", "rbx" };
9202
9203 kind = "string address";
9204
9205 if (current_templates->start->opcode_modifier.repprefixok)
9206 {
9207 i386_operand_type type = current_templates->end[-1].operand_types[0];
9208
9209 if (!type.bitfield.baseindex
9210 || ((!i.mem_operands != !intel_syntax)
9211 && current_templates->end[-1].operand_types[1]
9212 .bitfield.baseindex))
9213 type = current_templates->end[-1].operand_types[1];
9214 expected_reg = hash_find (reg_hash,
9215 di_si[addr_mode][type.bitfield.esseg]);
9216
9217 }
9218 else
9219 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9220
9221 if (i.base_reg != expected_reg
9222 || i.index_reg
9223 || operand_type_check (i.types[this_operand], disp))
9224 {
9225 /* The second memory operand must have the same size as
9226 the first one. */
9227 if (i.mem_operands
9228 && i.base_reg
9229 && !((addr_mode == CODE_64BIT
9230 && i.base_reg->reg_type.bitfield.qword)
9231 || (addr_mode == CODE_32BIT
9232 ? i.base_reg->reg_type.bitfield.dword
9233 : i.base_reg->reg_type.bitfield.word)))
9234 goto bad_address;
9235
9236 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9237 operand_string,
9238 intel_syntax ? '[' : '(',
9239 register_prefix,
9240 expected_reg->reg_name,
9241 intel_syntax ? ']' : ')');
9242 return 1;
9243 }
9244 else
9245 return 1;
9246
9247 bad_address:
9248 as_bad (_("`%s' is not a valid %s expression"),
9249 operand_string, kind);
9250 return 0;
9251 }
9252 else
9253 {
9254 if (addr_mode != CODE_16BIT)
9255 {
9256 /* 32-bit/64-bit checks. */
9257 if ((i.base_reg
9258 && (addr_mode == CODE_64BIT
9259 ? !i.base_reg->reg_type.bitfield.qword
9260 : !i.base_reg->reg_type.bitfield.dword)
9261 && (i.index_reg
9262 || (i.base_reg->reg_num
9263 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9264 || (i.index_reg
9265 && !i.index_reg->reg_type.bitfield.xmmword
9266 && !i.index_reg->reg_type.bitfield.ymmword
9267 && !i.index_reg->reg_type.bitfield.zmmword
9268 && ((addr_mode == CODE_64BIT
9269 ? !(i.index_reg->reg_type.bitfield.qword
9270 || i.index_reg->reg_num == RegRiz)
9271 : !(i.index_reg->reg_type.bitfield.dword
9272 || i.index_reg->reg_num == RegEiz))
9273 || !i.index_reg->reg_type.bitfield.baseindex)))
9274 goto bad_address;
9275
9276 /* bndmk, bndldx, and bndstx have special restrictions. */
9277 if (current_templates->start->base_opcode == 0xf30f1b
9278 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9279 {
9280 /* They cannot use RIP-relative addressing. */
9281 if (i.base_reg && i.base_reg->reg_num == RegRip)
9282 {
9283 as_bad (_("`%s' cannot be used here"), operand_string);
9284 return 0;
9285 }
9286
9287 /* bndldx and bndstx ignore their scale factor. */
9288 if (current_templates->start->base_opcode != 0xf30f1b
9289 && i.log2_scale_factor)
9290 as_warn (_("register scaling is being ignored here"));
9291 }
9292 }
9293 else
9294 {
9295 /* 16-bit checks. */
9296 if ((i.base_reg
9297 && (!i.base_reg->reg_type.bitfield.word
9298 || !i.base_reg->reg_type.bitfield.baseindex))
9299 || (i.index_reg
9300 && (!i.index_reg->reg_type.bitfield.word
9301 || !i.index_reg->reg_type.bitfield.baseindex
9302 || !(i.base_reg
9303 && i.base_reg->reg_num < 6
9304 && i.index_reg->reg_num >= 6
9305 && i.log2_scale_factor == 0))))
9306 goto bad_address;
9307 }
9308 }
9309 return 1;
9310 }
9311
9312 /* Handle vector immediates. */
9313
9314 static int
9315 RC_SAE_immediate (const char *imm_start)
9316 {
9317 unsigned int match_found, j;
9318 const char *pstr = imm_start;
9319 expressionS *exp;
9320
9321 if (*pstr != '{')
9322 return 0;
9323
9324 pstr++;
9325 match_found = 0;
9326 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9327 {
9328 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9329 {
9330 if (!i.rounding)
9331 {
9332 rc_op.type = RC_NamesTable[j].type;
9333 rc_op.operand = this_operand;
9334 i.rounding = &rc_op;
9335 }
9336 else
9337 {
9338 as_bad (_("duplicated `%s'"), imm_start);
9339 return 0;
9340 }
9341 pstr += RC_NamesTable[j].len;
9342 match_found = 1;
9343 break;
9344 }
9345 }
9346 if (!match_found)
9347 return 0;
9348
9349 if (*pstr++ != '}')
9350 {
9351 as_bad (_("Missing '}': '%s'"), imm_start);
9352 return 0;
9353 }
9354 /* RC/SAE immediate string should contain nothing more. */;
9355 if (*pstr != 0)
9356 {
9357 as_bad (_("Junk after '}': '%s'"), imm_start);
9358 return 0;
9359 }
9360
9361 exp = &im_expressions[i.imm_operands++];
9362 i.op[this_operand].imms = exp;
9363
9364 exp->X_op = O_constant;
9365 exp->X_add_number = 0;
9366 exp->X_add_symbol = (symbolS *) 0;
9367 exp->X_op_symbol = (symbolS *) 0;
9368
9369 i.types[this_operand].bitfield.imm8 = 1;
9370 return 1;
9371 }
9372
9373 /* Only string instructions can have a second memory operand, so
9374 reduce current_templates to just those if it contains any. */
9375 static int
9376 maybe_adjust_templates (void)
9377 {
9378 const insn_template *t;
9379
9380 gas_assert (i.mem_operands == 1);
9381
9382 for (t = current_templates->start; t < current_templates->end; ++t)
9383 if (t->opcode_modifier.isstring)
9384 break;
9385
9386 if (t < current_templates->end)
9387 {
9388 static templates aux_templates;
9389 bfd_boolean recheck;
9390
9391 aux_templates.start = t;
9392 for (; t < current_templates->end; ++t)
9393 if (!t->opcode_modifier.isstring)
9394 break;
9395 aux_templates.end = t;
9396
9397 /* Determine whether to re-check the first memory operand. */
9398 recheck = (aux_templates.start != current_templates->start
9399 || t != current_templates->end);
9400
9401 current_templates = &aux_templates;
9402
9403 if (recheck)
9404 {
9405 i.mem_operands = 0;
9406 if (i.memop1_string != NULL
9407 && i386_index_check (i.memop1_string) == 0)
9408 return 0;
9409 i.mem_operands = 1;
9410 }
9411 }
9412
9413 return 1;
9414 }
9415
9416 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9417 on error. */
9418
9419 static int
9420 i386_att_operand (char *operand_string)
9421 {
9422 const reg_entry *r;
9423 char *end_op;
9424 char *op_string = operand_string;
9425
9426 if (is_space_char (*op_string))
9427 ++op_string;
9428
9429 /* We check for an absolute prefix (differentiating,
9430 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9431 if (*op_string == ABSOLUTE_PREFIX)
9432 {
9433 ++op_string;
9434 if (is_space_char (*op_string))
9435 ++op_string;
9436 i.types[this_operand].bitfield.jumpabsolute = 1;
9437 }
9438
9439 /* Check if operand is a register. */
9440 if ((r = parse_register (op_string, &end_op)) != NULL)
9441 {
9442 i386_operand_type temp;
9443
9444 /* Check for a segment override by searching for ':' after a
9445 segment register. */
9446 op_string = end_op;
9447 if (is_space_char (*op_string))
9448 ++op_string;
9449 if (*op_string == ':'
9450 && (r->reg_type.bitfield.sreg2
9451 || r->reg_type.bitfield.sreg3))
9452 {
9453 switch (r->reg_num)
9454 {
9455 case 0:
9456 i.seg[i.mem_operands] = &es;
9457 break;
9458 case 1:
9459 i.seg[i.mem_operands] = &cs;
9460 break;
9461 case 2:
9462 i.seg[i.mem_operands] = &ss;
9463 break;
9464 case 3:
9465 i.seg[i.mem_operands] = &ds;
9466 break;
9467 case 4:
9468 i.seg[i.mem_operands] = &fs;
9469 break;
9470 case 5:
9471 i.seg[i.mem_operands] = &gs;
9472 break;
9473 }
9474
9475 /* Skip the ':' and whitespace. */
9476 ++op_string;
9477 if (is_space_char (*op_string))
9478 ++op_string;
9479
9480 if (!is_digit_char (*op_string)
9481 && !is_identifier_char (*op_string)
9482 && *op_string != '('
9483 && *op_string != ABSOLUTE_PREFIX)
9484 {
9485 as_bad (_("bad memory operand `%s'"), op_string);
9486 return 0;
9487 }
9488 /* Handle case of %es:*foo. */
9489 if (*op_string == ABSOLUTE_PREFIX)
9490 {
9491 ++op_string;
9492 if (is_space_char (*op_string))
9493 ++op_string;
9494 i.types[this_operand].bitfield.jumpabsolute = 1;
9495 }
9496 goto do_memory_reference;
9497 }
9498
9499 /* Handle vector operations. */
9500 if (*op_string == '{')
9501 {
9502 op_string = check_VecOperations (op_string, NULL);
9503 if (op_string == NULL)
9504 return 0;
9505 }
9506
9507 if (*op_string)
9508 {
9509 as_bad (_("junk `%s' after register"), op_string);
9510 return 0;
9511 }
9512 temp = r->reg_type;
9513 temp.bitfield.baseindex = 0;
9514 i.types[this_operand] = operand_type_or (i.types[this_operand],
9515 temp);
9516 i.types[this_operand].bitfield.unspecified = 0;
9517 i.op[this_operand].regs = r;
9518 i.reg_operands++;
9519 }
9520 else if (*op_string == REGISTER_PREFIX)
9521 {
9522 as_bad (_("bad register name `%s'"), op_string);
9523 return 0;
9524 }
9525 else if (*op_string == IMMEDIATE_PREFIX)
9526 {
9527 ++op_string;
9528 if (i.types[this_operand].bitfield.jumpabsolute)
9529 {
9530 as_bad (_("immediate operand illegal with absolute jump"));
9531 return 0;
9532 }
9533 if (!i386_immediate (op_string))
9534 return 0;
9535 }
9536 else if (RC_SAE_immediate (operand_string))
9537 {
9538 /* If it is a RC or SAE immediate, do nothing. */
9539 ;
9540 }
9541 else if (is_digit_char (*op_string)
9542 || is_identifier_char (*op_string)
9543 || *op_string == '"'
9544 || *op_string == '(')
9545 {
9546 /* This is a memory reference of some sort. */
9547 char *base_string;
9548
9549 /* Start and end of displacement string expression (if found). */
9550 char *displacement_string_start;
9551 char *displacement_string_end;
9552 char *vop_start;
9553
9554 do_memory_reference:
9555 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9556 return 0;
9557 if ((i.mem_operands == 1
9558 && !current_templates->start->opcode_modifier.isstring)
9559 || i.mem_operands == 2)
9560 {
9561 as_bad (_("too many memory references for `%s'"),
9562 current_templates->start->name);
9563 return 0;
9564 }
9565
9566 /* Check for base index form. We detect the base index form by
9567 looking for an ')' at the end of the operand, searching
9568 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9569 after the '('. */
9570 base_string = op_string + strlen (op_string);
9571
9572 /* Handle vector operations. */
9573 vop_start = strchr (op_string, '{');
9574 if (vop_start && vop_start < base_string)
9575 {
9576 if (check_VecOperations (vop_start, base_string) == NULL)
9577 return 0;
9578 base_string = vop_start;
9579 }
9580
9581 --base_string;
9582 if (is_space_char (*base_string))
9583 --base_string;
9584
9585 /* If we only have a displacement, set-up for it to be parsed later. */
9586 displacement_string_start = op_string;
9587 displacement_string_end = base_string + 1;
9588
9589 if (*base_string == ')')
9590 {
9591 char *temp_string;
9592 unsigned int parens_balanced = 1;
9593 /* We've already checked that the number of left & right ()'s are
9594 equal, so this loop will not be infinite. */
9595 do
9596 {
9597 base_string--;
9598 if (*base_string == ')')
9599 parens_balanced++;
9600 if (*base_string == '(')
9601 parens_balanced--;
9602 }
9603 while (parens_balanced);
9604
9605 temp_string = base_string;
9606
9607 /* Skip past '(' and whitespace. */
9608 ++base_string;
9609 if (is_space_char (*base_string))
9610 ++base_string;
9611
9612 if (*base_string == ','
9613 || ((i.base_reg = parse_register (base_string, &end_op))
9614 != NULL))
9615 {
9616 displacement_string_end = temp_string;
9617
9618 i.types[this_operand].bitfield.baseindex = 1;
9619
9620 if (i.base_reg)
9621 {
9622 base_string = end_op;
9623 if (is_space_char (*base_string))
9624 ++base_string;
9625 }
9626
9627 /* There may be an index reg or scale factor here. */
9628 if (*base_string == ',')
9629 {
9630 ++base_string;
9631 if (is_space_char (*base_string))
9632 ++base_string;
9633
9634 if ((i.index_reg = parse_register (base_string, &end_op))
9635 != NULL)
9636 {
9637 base_string = end_op;
9638 if (is_space_char (*base_string))
9639 ++base_string;
9640 if (*base_string == ',')
9641 {
9642 ++base_string;
9643 if (is_space_char (*base_string))
9644 ++base_string;
9645 }
9646 else if (*base_string != ')')
9647 {
9648 as_bad (_("expecting `,' or `)' "
9649 "after index register in `%s'"),
9650 operand_string);
9651 return 0;
9652 }
9653 }
9654 else if (*base_string == REGISTER_PREFIX)
9655 {
9656 end_op = strchr (base_string, ',');
9657 if (end_op)
9658 *end_op = '\0';
9659 as_bad (_("bad register name `%s'"), base_string);
9660 return 0;
9661 }
9662
9663 /* Check for scale factor. */
9664 if (*base_string != ')')
9665 {
9666 char *end_scale = i386_scale (base_string);
9667
9668 if (!end_scale)
9669 return 0;
9670
9671 base_string = end_scale;
9672 if (is_space_char (*base_string))
9673 ++base_string;
9674 if (*base_string != ')')
9675 {
9676 as_bad (_("expecting `)' "
9677 "after scale factor in `%s'"),
9678 operand_string);
9679 return 0;
9680 }
9681 }
9682 else if (!i.index_reg)
9683 {
9684 as_bad (_("expecting index register or scale factor "
9685 "after `,'; got '%c'"),
9686 *base_string);
9687 return 0;
9688 }
9689 }
9690 else if (*base_string != ')')
9691 {
9692 as_bad (_("expecting `,' or `)' "
9693 "after base register in `%s'"),
9694 operand_string);
9695 return 0;
9696 }
9697 }
9698 else if (*base_string == REGISTER_PREFIX)
9699 {
9700 end_op = strchr (base_string, ',');
9701 if (end_op)
9702 *end_op = '\0';
9703 as_bad (_("bad register name `%s'"), base_string);
9704 return 0;
9705 }
9706 }
9707
9708 /* If there's an expression beginning the operand, parse it,
9709 assuming displacement_string_start and
9710 displacement_string_end are meaningful. */
9711 if (displacement_string_start != displacement_string_end)
9712 {
9713 if (!i386_displacement (displacement_string_start,
9714 displacement_string_end))
9715 return 0;
9716 }
9717
9718 /* Special case for (%dx) while doing input/output op. */
9719 if (i.base_reg
9720 && i.base_reg->reg_type.bitfield.inoutportreg
9721 && i.index_reg == 0
9722 && i.log2_scale_factor == 0
9723 && i.seg[i.mem_operands] == 0
9724 && !operand_type_check (i.types[this_operand], disp))
9725 {
9726 i.types[this_operand] = i.base_reg->reg_type;
9727 return 1;
9728 }
9729
9730 if (i386_index_check (operand_string) == 0)
9731 return 0;
9732 i.types[this_operand].bitfield.mem = 1;
9733 if (i.mem_operands == 0)
9734 i.memop1_string = xstrdup (operand_string);
9735 i.mem_operands++;
9736 }
9737 else
9738 {
9739 /* It's not a memory operand; argh! */
9740 as_bad (_("invalid char %s beginning operand %d `%s'"),
9741 output_invalid (*op_string),
9742 this_operand + 1,
9743 op_string);
9744 return 0;
9745 }
9746 return 1; /* Normal return. */
9747 }
9748 \f
9749 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9750 that an rs_machine_dependent frag may reach. */
9751
9752 unsigned int
9753 i386_frag_max_var (fragS *frag)
9754 {
9755 /* The only relaxable frags are for jumps.
9756 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9757 gas_assert (frag->fr_type == rs_machine_dependent);
9758 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9759 }
9760
9761 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9762 static int
9763 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9764 {
9765 /* STT_GNU_IFUNC symbol must go through PLT. */
9766 if ((symbol_get_bfdsym (fr_symbol)->flags
9767 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9768 return 0;
9769
9770 if (!S_IS_EXTERNAL (fr_symbol))
9771 /* Symbol may be weak or local. */
9772 return !S_IS_WEAK (fr_symbol);
9773
9774 /* Global symbols with non-default visibility can't be preempted. */
9775 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9776 return 1;
9777
9778 if (fr_var != NO_RELOC)
9779 switch ((enum bfd_reloc_code_real) fr_var)
9780 {
9781 case BFD_RELOC_386_PLT32:
9782 case BFD_RELOC_X86_64_PLT32:
9783 /* Symbol with PLT relocation may be preempted. */
9784 return 0;
9785 default:
9786 abort ();
9787 }
9788
9789 /* Global symbols with default visibility in a shared library may be
9790 preempted by another definition. */
9791 return !shared;
9792 }
9793 #endif
9794
9795 /* md_estimate_size_before_relax()
9796
9797 Called just before relax() for rs_machine_dependent frags. The x86
9798 assembler uses these frags to handle variable size jump
9799 instructions.
9800
9801 Any symbol that is now undefined will not become defined.
9802 Return the correct fr_subtype in the frag.
9803 Return the initial "guess for variable size of frag" to caller.
9804 The guess is actually the growth beyond the fixed part. Whatever
9805 we do to grow the fixed or variable part contributes to our
9806 returned value. */
9807
9808 int
9809 md_estimate_size_before_relax (fragS *fragP, segT segment)
9810 {
9811 /* We've already got fragP->fr_subtype right; all we have to do is
9812 check for un-relaxable symbols. On an ELF system, we can't relax
9813 an externally visible symbol, because it may be overridden by a
9814 shared library. */
9815 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9817 || (IS_ELF
9818 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9819 fragP->fr_var))
9820 #endif
9821 #if defined (OBJ_COFF) && defined (TE_PE)
9822 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9823 && S_IS_WEAK (fragP->fr_symbol))
9824 #endif
9825 )
9826 {
9827 /* Symbol is undefined in this segment, or we need to keep a
9828 reloc so that weak symbols can be overridden. */
9829 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9830 enum bfd_reloc_code_real reloc_type;
9831 unsigned char *opcode;
9832 int old_fr_fix;
9833
9834 if (fragP->fr_var != NO_RELOC)
9835 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9836 else if (size == 2)
9837 reloc_type = BFD_RELOC_16_PCREL;
9838 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9839 else if (need_plt32_p (fragP->fr_symbol))
9840 reloc_type = BFD_RELOC_X86_64_PLT32;
9841 #endif
9842 else
9843 reloc_type = BFD_RELOC_32_PCREL;
9844
9845 old_fr_fix = fragP->fr_fix;
9846 opcode = (unsigned char *) fragP->fr_opcode;
9847
9848 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9849 {
9850 case UNCOND_JUMP:
9851 /* Make jmp (0xeb) a (d)word displacement jump. */
9852 opcode[0] = 0xe9;
9853 fragP->fr_fix += size;
9854 fix_new (fragP, old_fr_fix, size,
9855 fragP->fr_symbol,
9856 fragP->fr_offset, 1,
9857 reloc_type);
9858 break;
9859
9860 case COND_JUMP86:
9861 if (size == 2
9862 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9863 {
9864 /* Negate the condition, and branch past an
9865 unconditional jump. */
9866 opcode[0] ^= 1;
9867 opcode[1] = 3;
9868 /* Insert an unconditional jump. */
9869 opcode[2] = 0xe9;
9870 /* We added two extra opcode bytes, and have a two byte
9871 offset. */
9872 fragP->fr_fix += 2 + 2;
9873 fix_new (fragP, old_fr_fix + 2, 2,
9874 fragP->fr_symbol,
9875 fragP->fr_offset, 1,
9876 reloc_type);
9877 break;
9878 }
9879 /* Fall through. */
9880
9881 case COND_JUMP:
9882 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9883 {
9884 fixS *fixP;
9885
9886 fragP->fr_fix += 1;
9887 fixP = fix_new (fragP, old_fr_fix, 1,
9888 fragP->fr_symbol,
9889 fragP->fr_offset, 1,
9890 BFD_RELOC_8_PCREL);
9891 fixP->fx_signed = 1;
9892 break;
9893 }
9894
9895 /* This changes the byte-displacement jump 0x7N
9896 to the (d)word-displacement jump 0x0f,0x8N. */
9897 opcode[1] = opcode[0] + 0x10;
9898 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9899 /* We've added an opcode byte. */
9900 fragP->fr_fix += 1 + size;
9901 fix_new (fragP, old_fr_fix + 1, size,
9902 fragP->fr_symbol,
9903 fragP->fr_offset, 1,
9904 reloc_type);
9905 break;
9906
9907 default:
9908 BAD_CASE (fragP->fr_subtype);
9909 break;
9910 }
9911 frag_wane (fragP);
9912 return fragP->fr_fix - old_fr_fix;
9913 }
9914
9915 /* Guess size depending on current relax state. Initially the relax
9916 state will correspond to a short jump and we return 1, because
9917 the variable part of the frag (the branch offset) is one byte
9918 long. However, we can relax a section more than once and in that
9919 case we must either set fr_subtype back to the unrelaxed state,
9920 or return the value for the appropriate branch. */
9921 return md_relax_table[fragP->fr_subtype].rlx_length;
9922 }
9923
9924 /* Called after relax() is finished.
9925
9926 In: Address of frag.
9927 fr_type == rs_machine_dependent.
9928 fr_subtype is what the address relaxed to.
9929
9930 Out: Any fixSs and constants are set up.
9931 Caller will turn frag into a ".space 0". */
9932
9933 void
9934 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9935 fragS *fragP)
9936 {
9937 unsigned char *opcode;
9938 unsigned char *where_to_put_displacement = NULL;
9939 offsetT target_address;
9940 offsetT opcode_address;
9941 unsigned int extension = 0;
9942 offsetT displacement_from_opcode_start;
9943
9944 opcode = (unsigned char *) fragP->fr_opcode;
9945
9946 /* Address we want to reach in file space. */
9947 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9948
9949 /* Address opcode resides at in file space. */
9950 opcode_address = fragP->fr_address + fragP->fr_fix;
9951
9952 /* Displacement from opcode start to fill into instruction. */
9953 displacement_from_opcode_start = target_address - opcode_address;
9954
9955 if ((fragP->fr_subtype & BIG) == 0)
9956 {
9957 /* Don't have to change opcode. */
9958 extension = 1; /* 1 opcode + 1 displacement */
9959 where_to_put_displacement = &opcode[1];
9960 }
9961 else
9962 {
9963 if (no_cond_jump_promotion
9964 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9965 as_warn_where (fragP->fr_file, fragP->fr_line,
9966 _("long jump required"));
9967
9968 switch (fragP->fr_subtype)
9969 {
9970 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9971 extension = 4; /* 1 opcode + 4 displacement */
9972 opcode[0] = 0xe9;
9973 where_to_put_displacement = &opcode[1];
9974 break;
9975
9976 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9977 extension = 2; /* 1 opcode + 2 displacement */
9978 opcode[0] = 0xe9;
9979 where_to_put_displacement = &opcode[1];
9980 break;
9981
9982 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9983 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9984 extension = 5; /* 2 opcode + 4 displacement */
9985 opcode[1] = opcode[0] + 0x10;
9986 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9987 where_to_put_displacement = &opcode[2];
9988 break;
9989
9990 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9991 extension = 3; /* 2 opcode + 2 displacement */
9992 opcode[1] = opcode[0] + 0x10;
9993 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9994 where_to_put_displacement = &opcode[2];
9995 break;
9996
9997 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9998 extension = 4;
9999 opcode[0] ^= 1;
10000 opcode[1] = 3;
10001 opcode[2] = 0xe9;
10002 where_to_put_displacement = &opcode[3];
10003 break;
10004
10005 default:
10006 BAD_CASE (fragP->fr_subtype);
10007 break;
10008 }
10009 }
10010
10011 /* If size if less then four we are sure that the operand fits,
10012 but if it's 4, then it could be that the displacement is larger
10013 then -/+ 2GB. */
10014 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10015 && object_64bit
10016 && ((addressT) (displacement_from_opcode_start - extension
10017 + ((addressT) 1 << 31))
10018 > (((addressT) 2 << 31) - 1)))
10019 {
10020 as_bad_where (fragP->fr_file, fragP->fr_line,
10021 _("jump target out of range"));
10022 /* Make us emit 0. */
10023 displacement_from_opcode_start = extension;
10024 }
10025 /* Now put displacement after opcode. */
10026 md_number_to_chars ((char *) where_to_put_displacement,
10027 (valueT) (displacement_from_opcode_start - extension),
10028 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10029 fragP->fr_fix += extension;
10030 }
10031 \f
10032 /* Apply a fixup (fixP) to segment data, once it has been determined
10033 by our caller that we have all the info we need to fix it up.
10034
10035 Parameter valP is the pointer to the value of the bits.
10036
10037 On the 386, immediates, displacements, and data pointers are all in
10038 the same (little-endian) format, so we don't need to care about which
10039 we are handling. */
10040
10041 void
10042 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10043 {
10044 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10045 valueT value = *valP;
10046
10047 #if !defined (TE_Mach)
10048 if (fixP->fx_pcrel)
10049 {
10050 switch (fixP->fx_r_type)
10051 {
10052 default:
10053 break;
10054
10055 case BFD_RELOC_64:
10056 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10057 break;
10058 case BFD_RELOC_32:
10059 case BFD_RELOC_X86_64_32S:
10060 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10061 break;
10062 case BFD_RELOC_16:
10063 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10064 break;
10065 case BFD_RELOC_8:
10066 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10067 break;
10068 }
10069 }
10070
10071 if (fixP->fx_addsy != NULL
10072 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10073 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10074 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10075 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10076 && !use_rela_relocations)
10077 {
10078 /* This is a hack. There should be a better way to handle this.
10079 This covers for the fact that bfd_install_relocation will
10080 subtract the current location (for partial_inplace, PC relative
10081 relocations); see more below. */
10082 #ifndef OBJ_AOUT
10083 if (IS_ELF
10084 #ifdef TE_PE
10085 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10086 #endif
10087 )
10088 value += fixP->fx_where + fixP->fx_frag->fr_address;
10089 #endif
10090 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10091 if (IS_ELF)
10092 {
10093 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10094
10095 if ((sym_seg == seg
10096 || (symbol_section_p (fixP->fx_addsy)
10097 && sym_seg != absolute_section))
10098 && !generic_force_reloc (fixP))
10099 {
10100 /* Yes, we add the values in twice. This is because
10101 bfd_install_relocation subtracts them out again. I think
10102 bfd_install_relocation is broken, but I don't dare change
10103 it. FIXME. */
10104 value += fixP->fx_where + fixP->fx_frag->fr_address;
10105 }
10106 }
10107 #endif
10108 #if defined (OBJ_COFF) && defined (TE_PE)
10109 /* For some reason, the PE format does not store a
10110 section address offset for a PC relative symbol. */
10111 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10112 || S_IS_WEAK (fixP->fx_addsy))
10113 value += md_pcrel_from (fixP);
10114 #endif
10115 }
10116 #if defined (OBJ_COFF) && defined (TE_PE)
10117 if (fixP->fx_addsy != NULL
10118 && S_IS_WEAK (fixP->fx_addsy)
10119 /* PR 16858: Do not modify weak function references. */
10120 && ! fixP->fx_pcrel)
10121 {
10122 #if !defined (TE_PEP)
10123 /* For x86 PE weak function symbols are neither PC-relative
10124 nor do they set S_IS_FUNCTION. So the only reliable way
10125 to detect them is to check the flags of their containing
10126 section. */
10127 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10128 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10129 ;
10130 else
10131 #endif
10132 value -= S_GET_VALUE (fixP->fx_addsy);
10133 }
10134 #endif
10135
10136 /* Fix a few things - the dynamic linker expects certain values here,
10137 and we must not disappoint it. */
10138 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10139 if (IS_ELF && fixP->fx_addsy)
10140 switch (fixP->fx_r_type)
10141 {
10142 case BFD_RELOC_386_PLT32:
10143 case BFD_RELOC_X86_64_PLT32:
10144 /* Make the jump instruction point to the address of the operand. At
10145 runtime we merely add the offset to the actual PLT entry. */
10146 value = -4;
10147 break;
10148
10149 case BFD_RELOC_386_TLS_GD:
10150 case BFD_RELOC_386_TLS_LDM:
10151 case BFD_RELOC_386_TLS_IE_32:
10152 case BFD_RELOC_386_TLS_IE:
10153 case BFD_RELOC_386_TLS_GOTIE:
10154 case BFD_RELOC_386_TLS_GOTDESC:
10155 case BFD_RELOC_X86_64_TLSGD:
10156 case BFD_RELOC_X86_64_TLSLD:
10157 case BFD_RELOC_X86_64_GOTTPOFF:
10158 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10159 value = 0; /* Fully resolved at runtime. No addend. */
10160 /* Fallthrough */
10161 case BFD_RELOC_386_TLS_LE:
10162 case BFD_RELOC_386_TLS_LDO_32:
10163 case BFD_RELOC_386_TLS_LE_32:
10164 case BFD_RELOC_X86_64_DTPOFF32:
10165 case BFD_RELOC_X86_64_DTPOFF64:
10166 case BFD_RELOC_X86_64_TPOFF32:
10167 case BFD_RELOC_X86_64_TPOFF64:
10168 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10169 break;
10170
10171 case BFD_RELOC_386_TLS_DESC_CALL:
10172 case BFD_RELOC_X86_64_TLSDESC_CALL:
10173 value = 0; /* Fully resolved at runtime. No addend. */
10174 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10175 fixP->fx_done = 0;
10176 return;
10177
10178 case BFD_RELOC_VTABLE_INHERIT:
10179 case BFD_RELOC_VTABLE_ENTRY:
10180 fixP->fx_done = 0;
10181 return;
10182
10183 default:
10184 break;
10185 }
10186 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10187 *valP = value;
10188 #endif /* !defined (TE_Mach) */
10189
10190 /* Are we finished with this relocation now? */
10191 if (fixP->fx_addsy == NULL)
10192 fixP->fx_done = 1;
10193 #if defined (OBJ_COFF) && defined (TE_PE)
10194 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10195 {
10196 fixP->fx_done = 0;
10197 /* Remember value for tc_gen_reloc. */
10198 fixP->fx_addnumber = value;
10199 /* Clear out the frag for now. */
10200 value = 0;
10201 }
10202 #endif
10203 else if (use_rela_relocations)
10204 {
10205 fixP->fx_no_overflow = 1;
10206 /* Remember value for tc_gen_reloc. */
10207 fixP->fx_addnumber = value;
10208 value = 0;
10209 }
10210
10211 md_number_to_chars (p, value, fixP->fx_size);
10212 }
10213 \f
10214 const char *
10215 md_atof (int type, char *litP, int *sizeP)
10216 {
10217 /* This outputs the LITTLENUMs in REVERSE order;
10218 in accord with the bigendian 386. */
10219 return ieee_md_atof (type, litP, sizeP, FALSE);
10220 }
10221 \f
10222 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10223
10224 static char *
10225 output_invalid (int c)
10226 {
10227 if (ISPRINT (c))
10228 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10229 "'%c'", c);
10230 else
10231 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10232 "(0x%x)", (unsigned char) c);
10233 return output_invalid_buf;
10234 }
10235
10236 /* REG_STRING starts *before* REGISTER_PREFIX. */
10237
10238 static const reg_entry *
10239 parse_real_register (char *reg_string, char **end_op)
10240 {
10241 char *s = reg_string;
10242 char *p;
10243 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10244 const reg_entry *r;
10245
10246 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10247 if (*s == REGISTER_PREFIX)
10248 ++s;
10249
10250 if (is_space_char (*s))
10251 ++s;
10252
10253 p = reg_name_given;
10254 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10255 {
10256 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10257 return (const reg_entry *) NULL;
10258 s++;
10259 }
10260
10261 /* For naked regs, make sure that we are not dealing with an identifier.
10262 This prevents confusing an identifier like `eax_var' with register
10263 `eax'. */
10264 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10265 return (const reg_entry *) NULL;
10266
10267 *end_op = s;
10268
10269 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10270
10271 /* Handle floating point regs, allowing spaces in the (i) part. */
10272 if (r == i386_regtab /* %st is first entry of table */)
10273 {
10274 if (!cpu_arch_flags.bitfield.cpu8087
10275 && !cpu_arch_flags.bitfield.cpu287
10276 && !cpu_arch_flags.bitfield.cpu387)
10277 return (const reg_entry *) NULL;
10278
10279 if (is_space_char (*s))
10280 ++s;
10281 if (*s == '(')
10282 {
10283 ++s;
10284 if (is_space_char (*s))
10285 ++s;
10286 if (*s >= '0' && *s <= '7')
10287 {
10288 int fpr = *s - '0';
10289 ++s;
10290 if (is_space_char (*s))
10291 ++s;
10292 if (*s == ')')
10293 {
10294 *end_op = s + 1;
10295 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10296 know (r);
10297 return r + fpr;
10298 }
10299 }
10300 /* We have "%st(" then garbage. */
10301 return (const reg_entry *) NULL;
10302 }
10303 }
10304
10305 if (r == NULL || allow_pseudo_reg)
10306 return r;
10307
10308 if (operand_type_all_zero (&r->reg_type))
10309 return (const reg_entry *) NULL;
10310
10311 if ((r->reg_type.bitfield.dword
10312 || r->reg_type.bitfield.sreg3
10313 || r->reg_type.bitfield.control
10314 || r->reg_type.bitfield.debug
10315 || r->reg_type.bitfield.test)
10316 && !cpu_arch_flags.bitfield.cpui386)
10317 return (const reg_entry *) NULL;
10318
10319 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10320 return (const reg_entry *) NULL;
10321
10322 if (!cpu_arch_flags.bitfield.cpuavx512f)
10323 {
10324 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10325 return (const reg_entry *) NULL;
10326
10327 if (!cpu_arch_flags.bitfield.cpuavx)
10328 {
10329 if (r->reg_type.bitfield.ymmword)
10330 return (const reg_entry *) NULL;
10331
10332 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10333 return (const reg_entry *) NULL;
10334 }
10335 }
10336
10337 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10338 return (const reg_entry *) NULL;
10339
10340 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10341 if (!allow_index_reg
10342 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10343 return (const reg_entry *) NULL;
10344
10345 /* Upper 16 vector registers are only available with VREX in 64bit
10346 mode, and require EVEX encoding. */
10347 if (r->reg_flags & RegVRex)
10348 {
10349 if (!cpu_arch_flags.bitfield.cpuvrex
10350 || flag_code != CODE_64BIT)
10351 return (const reg_entry *) NULL;
10352
10353 i.vec_encoding = vex_encoding_evex;
10354 }
10355
10356 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10357 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10358 && flag_code != CODE_64BIT)
10359 return (const reg_entry *) NULL;
10360
10361 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10362 return (const reg_entry *) NULL;
10363
10364 return r;
10365 }
10366
10367 /* REG_STRING starts *before* REGISTER_PREFIX. */
10368
10369 static const reg_entry *
10370 parse_register (char *reg_string, char **end_op)
10371 {
10372 const reg_entry *r;
10373
10374 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10375 r = parse_real_register (reg_string, end_op);
10376 else
10377 r = NULL;
10378 if (!r)
10379 {
10380 char *save = input_line_pointer;
10381 char c;
10382 symbolS *symbolP;
10383
10384 input_line_pointer = reg_string;
10385 c = get_symbol_name (&reg_string);
10386 symbolP = symbol_find (reg_string);
10387 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10388 {
10389 const expressionS *e = symbol_get_value_expression (symbolP);
10390
10391 know (e->X_op == O_register);
10392 know (e->X_add_number >= 0
10393 && (valueT) e->X_add_number < i386_regtab_size);
10394 r = i386_regtab + e->X_add_number;
10395 if ((r->reg_flags & RegVRex))
10396 i.vec_encoding = vex_encoding_evex;
10397 *end_op = input_line_pointer;
10398 }
10399 *input_line_pointer = c;
10400 input_line_pointer = save;
10401 }
10402 return r;
10403 }
10404
10405 int
10406 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10407 {
10408 const reg_entry *r;
10409 char *end = input_line_pointer;
10410
10411 *end = *nextcharP;
10412 r = parse_register (name, &input_line_pointer);
10413 if (r && end <= input_line_pointer)
10414 {
10415 *nextcharP = *input_line_pointer;
10416 *input_line_pointer = 0;
10417 e->X_op = O_register;
10418 e->X_add_number = r - i386_regtab;
10419 return 1;
10420 }
10421 input_line_pointer = end;
10422 *end = 0;
10423 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10424 }
10425
10426 void
10427 md_operand (expressionS *e)
10428 {
10429 char *end;
10430 const reg_entry *r;
10431
10432 switch (*input_line_pointer)
10433 {
10434 case REGISTER_PREFIX:
10435 r = parse_real_register (input_line_pointer, &end);
10436 if (r)
10437 {
10438 e->X_op = O_register;
10439 e->X_add_number = r - i386_regtab;
10440 input_line_pointer = end;
10441 }
10442 break;
10443
10444 case '[':
10445 gas_assert (intel_syntax);
10446 end = input_line_pointer++;
10447 expression (e);
10448 if (*input_line_pointer == ']')
10449 {
10450 ++input_line_pointer;
10451 e->X_op_symbol = make_expr_symbol (e);
10452 e->X_add_symbol = NULL;
10453 e->X_add_number = 0;
10454 e->X_op = O_index;
10455 }
10456 else
10457 {
10458 e->X_op = O_absent;
10459 input_line_pointer = end;
10460 }
10461 break;
10462 }
10463 }
10464
10465 \f
10466 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10467 const char *md_shortopts = "kVQ:sqnO::";
10468 #else
10469 const char *md_shortopts = "qnO::";
10470 #endif
10471
10472 #define OPTION_32 (OPTION_MD_BASE + 0)
10473 #define OPTION_64 (OPTION_MD_BASE + 1)
10474 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10475 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10476 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10477 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10478 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10479 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10480 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10481 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10482 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10483 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10484 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10485 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10486 #define OPTION_X32 (OPTION_MD_BASE + 14)
10487 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10488 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10489 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10490 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10491 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10492 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10493 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10494 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10495 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10496 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10497
10498 struct option md_longopts[] =
10499 {
10500 {"32", no_argument, NULL, OPTION_32},
10501 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10502 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10503 {"64", no_argument, NULL, OPTION_64},
10504 #endif
10505 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10506 {"x32", no_argument, NULL, OPTION_X32},
10507 {"mshared", no_argument, NULL, OPTION_MSHARED},
10508 #endif
10509 {"divide", no_argument, NULL, OPTION_DIVIDE},
10510 {"march", required_argument, NULL, OPTION_MARCH},
10511 {"mtune", required_argument, NULL, OPTION_MTUNE},
10512 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10513 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10514 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10515 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10516 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10517 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10518 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10519 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10520 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10521 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10522 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10523 # if defined (TE_PE) || defined (TE_PEP)
10524 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10525 #endif
10526 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10527 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10528 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10529 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10530 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10531 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10532 {NULL, no_argument, NULL, 0}
10533 };
10534 size_t md_longopts_size = sizeof (md_longopts);
10535
10536 int
10537 md_parse_option (int c, const char *arg)
10538 {
10539 unsigned int j;
10540 char *arch, *next, *saved;
10541
10542 switch (c)
10543 {
10544 case 'n':
10545 optimize_align_code = 0;
10546 break;
10547
10548 case 'q':
10549 quiet_warnings = 1;
10550 break;
10551
10552 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10553 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10554 should be emitted or not. FIXME: Not implemented. */
10555 case 'Q':
10556 break;
10557
10558 /* -V: SVR4 argument to print version ID. */
10559 case 'V':
10560 print_version_id ();
10561 break;
10562
10563 /* -k: Ignore for FreeBSD compatibility. */
10564 case 'k':
10565 break;
10566
10567 case 's':
10568 /* -s: On i386 Solaris, this tells the native assembler to use
10569 .stab instead of .stab.excl. We always use .stab anyhow. */
10570 break;
10571
10572 case OPTION_MSHARED:
10573 shared = 1;
10574 break;
10575 #endif
10576 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10577 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10578 case OPTION_64:
10579 {
10580 const char **list, **l;
10581
10582 list = bfd_target_list ();
10583 for (l = list; *l != NULL; l++)
10584 if (CONST_STRNEQ (*l, "elf64-x86-64")
10585 || strcmp (*l, "coff-x86-64") == 0
10586 || strcmp (*l, "pe-x86-64") == 0
10587 || strcmp (*l, "pei-x86-64") == 0
10588 || strcmp (*l, "mach-o-x86-64") == 0)
10589 {
10590 default_arch = "x86_64";
10591 break;
10592 }
10593 if (*l == NULL)
10594 as_fatal (_("no compiled in support for x86_64"));
10595 free (list);
10596 }
10597 break;
10598 #endif
10599
10600 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10601 case OPTION_X32:
10602 if (IS_ELF)
10603 {
10604 const char **list, **l;
10605
10606 list = bfd_target_list ();
10607 for (l = list; *l != NULL; l++)
10608 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10609 {
10610 default_arch = "x86_64:32";
10611 break;
10612 }
10613 if (*l == NULL)
10614 as_fatal (_("no compiled in support for 32bit x86_64"));
10615 free (list);
10616 }
10617 else
10618 as_fatal (_("32bit x86_64 is only supported for ELF"));
10619 break;
10620 #endif
10621
10622 case OPTION_32:
10623 default_arch = "i386";
10624 break;
10625
10626 case OPTION_DIVIDE:
10627 #ifdef SVR4_COMMENT_CHARS
10628 {
10629 char *n, *t;
10630 const char *s;
10631
10632 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10633 t = n;
10634 for (s = i386_comment_chars; *s != '\0'; s++)
10635 if (*s != '/')
10636 *t++ = *s;
10637 *t = '\0';
10638 i386_comment_chars = n;
10639 }
10640 #endif
10641 break;
10642
10643 case OPTION_MARCH:
10644 saved = xstrdup (arg);
10645 arch = saved;
10646 /* Allow -march=+nosse. */
10647 if (*arch == '+')
10648 arch++;
10649 do
10650 {
10651 if (*arch == '.')
10652 as_fatal (_("invalid -march= option: `%s'"), arg);
10653 next = strchr (arch, '+');
10654 if (next)
10655 *next++ = '\0';
10656 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10657 {
10658 if (strcmp (arch, cpu_arch [j].name) == 0)
10659 {
10660 /* Processor. */
10661 if (! cpu_arch[j].flags.bitfield.cpui386)
10662 continue;
10663
10664 cpu_arch_name = cpu_arch[j].name;
10665 cpu_sub_arch_name = NULL;
10666 cpu_arch_flags = cpu_arch[j].flags;
10667 cpu_arch_isa = cpu_arch[j].type;
10668 cpu_arch_isa_flags = cpu_arch[j].flags;
10669 if (!cpu_arch_tune_set)
10670 {
10671 cpu_arch_tune = cpu_arch_isa;
10672 cpu_arch_tune_flags = cpu_arch_isa_flags;
10673 }
10674 break;
10675 }
10676 else if (*cpu_arch [j].name == '.'
10677 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10678 {
10679 /* ISA extension. */
10680 i386_cpu_flags flags;
10681
10682 flags = cpu_flags_or (cpu_arch_flags,
10683 cpu_arch[j].flags);
10684
10685 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10686 {
10687 if (cpu_sub_arch_name)
10688 {
10689 char *name = cpu_sub_arch_name;
10690 cpu_sub_arch_name = concat (name,
10691 cpu_arch[j].name,
10692 (const char *) NULL);
10693 free (name);
10694 }
10695 else
10696 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10697 cpu_arch_flags = flags;
10698 cpu_arch_isa_flags = flags;
10699 }
10700 else
10701 cpu_arch_isa_flags
10702 = cpu_flags_or (cpu_arch_isa_flags,
10703 cpu_arch[j].flags);
10704 break;
10705 }
10706 }
10707
10708 if (j >= ARRAY_SIZE (cpu_arch))
10709 {
10710 /* Disable an ISA extension. */
10711 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10712 if (strcmp (arch, cpu_noarch [j].name) == 0)
10713 {
10714 i386_cpu_flags flags;
10715
10716 flags = cpu_flags_and_not (cpu_arch_flags,
10717 cpu_noarch[j].flags);
10718 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10719 {
10720 if (cpu_sub_arch_name)
10721 {
10722 char *name = cpu_sub_arch_name;
10723 cpu_sub_arch_name = concat (arch,
10724 (const char *) NULL);
10725 free (name);
10726 }
10727 else
10728 cpu_sub_arch_name = xstrdup (arch);
10729 cpu_arch_flags = flags;
10730 cpu_arch_isa_flags = flags;
10731 }
10732 break;
10733 }
10734
10735 if (j >= ARRAY_SIZE (cpu_noarch))
10736 j = ARRAY_SIZE (cpu_arch);
10737 }
10738
10739 if (j >= ARRAY_SIZE (cpu_arch))
10740 as_fatal (_("invalid -march= option: `%s'"), arg);
10741
10742 arch = next;
10743 }
10744 while (next != NULL);
10745 free (saved);
10746 break;
10747
10748 case OPTION_MTUNE:
10749 if (*arg == '.')
10750 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10751 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10752 {
10753 if (strcmp (arg, cpu_arch [j].name) == 0)
10754 {
10755 cpu_arch_tune_set = 1;
10756 cpu_arch_tune = cpu_arch [j].type;
10757 cpu_arch_tune_flags = cpu_arch[j].flags;
10758 break;
10759 }
10760 }
10761 if (j >= ARRAY_SIZE (cpu_arch))
10762 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10763 break;
10764
10765 case OPTION_MMNEMONIC:
10766 if (strcasecmp (arg, "att") == 0)
10767 intel_mnemonic = 0;
10768 else if (strcasecmp (arg, "intel") == 0)
10769 intel_mnemonic = 1;
10770 else
10771 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10772 break;
10773
10774 case OPTION_MSYNTAX:
10775 if (strcasecmp (arg, "att") == 0)
10776 intel_syntax = 0;
10777 else if (strcasecmp (arg, "intel") == 0)
10778 intel_syntax = 1;
10779 else
10780 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10781 break;
10782
10783 case OPTION_MINDEX_REG:
10784 allow_index_reg = 1;
10785 break;
10786
10787 case OPTION_MNAKED_REG:
10788 allow_naked_reg = 1;
10789 break;
10790
10791 case OPTION_MSSE2AVX:
10792 sse2avx = 1;
10793 break;
10794
10795 case OPTION_MSSE_CHECK:
10796 if (strcasecmp (arg, "error") == 0)
10797 sse_check = check_error;
10798 else if (strcasecmp (arg, "warning") == 0)
10799 sse_check = check_warning;
10800 else if (strcasecmp (arg, "none") == 0)
10801 sse_check = check_none;
10802 else
10803 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10804 break;
10805
10806 case OPTION_MOPERAND_CHECK:
10807 if (strcasecmp (arg, "error") == 0)
10808 operand_check = check_error;
10809 else if (strcasecmp (arg, "warning") == 0)
10810 operand_check = check_warning;
10811 else if (strcasecmp (arg, "none") == 0)
10812 operand_check = check_none;
10813 else
10814 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10815 break;
10816
10817 case OPTION_MAVXSCALAR:
10818 if (strcasecmp (arg, "128") == 0)
10819 avxscalar = vex128;
10820 else if (strcasecmp (arg, "256") == 0)
10821 avxscalar = vex256;
10822 else
10823 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10824 break;
10825
10826 case OPTION_MADD_BND_PREFIX:
10827 add_bnd_prefix = 1;
10828 break;
10829
10830 case OPTION_MEVEXLIG:
10831 if (strcmp (arg, "128") == 0)
10832 evexlig = evexl128;
10833 else if (strcmp (arg, "256") == 0)
10834 evexlig = evexl256;
10835 else if (strcmp (arg, "512") == 0)
10836 evexlig = evexl512;
10837 else
10838 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10839 break;
10840
10841 case OPTION_MEVEXRCIG:
10842 if (strcmp (arg, "rne") == 0)
10843 evexrcig = rne;
10844 else if (strcmp (arg, "rd") == 0)
10845 evexrcig = rd;
10846 else if (strcmp (arg, "ru") == 0)
10847 evexrcig = ru;
10848 else if (strcmp (arg, "rz") == 0)
10849 evexrcig = rz;
10850 else
10851 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10852 break;
10853
10854 case OPTION_MEVEXWIG:
10855 if (strcmp (arg, "0") == 0)
10856 evexwig = evexw0;
10857 else if (strcmp (arg, "1") == 0)
10858 evexwig = evexw1;
10859 else
10860 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10861 break;
10862
10863 # if defined (TE_PE) || defined (TE_PEP)
10864 case OPTION_MBIG_OBJ:
10865 use_big_obj = 1;
10866 break;
10867 #endif
10868
10869 case OPTION_MOMIT_LOCK_PREFIX:
10870 if (strcasecmp (arg, "yes") == 0)
10871 omit_lock_prefix = 1;
10872 else if (strcasecmp (arg, "no") == 0)
10873 omit_lock_prefix = 0;
10874 else
10875 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10876 break;
10877
10878 case OPTION_MFENCE_AS_LOCK_ADD:
10879 if (strcasecmp (arg, "yes") == 0)
10880 avoid_fence = 1;
10881 else if (strcasecmp (arg, "no") == 0)
10882 avoid_fence = 0;
10883 else
10884 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10885 break;
10886
10887 case OPTION_MRELAX_RELOCATIONS:
10888 if (strcasecmp (arg, "yes") == 0)
10889 generate_relax_relocations = 1;
10890 else if (strcasecmp (arg, "no") == 0)
10891 generate_relax_relocations = 0;
10892 else
10893 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10894 break;
10895
10896 case OPTION_MAMD64:
10897 intel64 = 0;
10898 break;
10899
10900 case OPTION_MINTEL64:
10901 intel64 = 1;
10902 break;
10903
10904 case 'O':
10905 if (arg == NULL)
10906 {
10907 optimize = 1;
10908 /* Turn off -Os. */
10909 optimize_for_space = 0;
10910 }
10911 else if (*arg == 's')
10912 {
10913 optimize_for_space = 1;
10914 /* Turn on all encoding optimizations. */
10915 optimize = -1;
10916 }
10917 else
10918 {
10919 optimize = atoi (arg);
10920 /* Turn off -Os. */
10921 optimize_for_space = 0;
10922 }
10923 break;
10924
10925 default:
10926 return 0;
10927 }
10928 return 1;
10929 }
10930
10931 #define MESSAGE_TEMPLATE \
10932 " "
10933
10934 static char *
10935 output_message (FILE *stream, char *p, char *message, char *start,
10936 int *left_p, const char *name, int len)
10937 {
10938 int size = sizeof (MESSAGE_TEMPLATE);
10939 int left = *left_p;
10940
10941 /* Reserve 2 spaces for ", " or ",\0" */
10942 left -= len + 2;
10943
10944 /* Check if there is any room. */
10945 if (left >= 0)
10946 {
10947 if (p != start)
10948 {
10949 *p++ = ',';
10950 *p++ = ' ';
10951 }
10952 p = mempcpy (p, name, len);
10953 }
10954 else
10955 {
10956 /* Output the current message now and start a new one. */
10957 *p++ = ',';
10958 *p = '\0';
10959 fprintf (stream, "%s\n", message);
10960 p = start;
10961 left = size - (start - message) - len - 2;
10962
10963 gas_assert (left >= 0);
10964
10965 p = mempcpy (p, name, len);
10966 }
10967
10968 *left_p = left;
10969 return p;
10970 }
10971
10972 static void
10973 show_arch (FILE *stream, int ext, int check)
10974 {
10975 static char message[] = MESSAGE_TEMPLATE;
10976 char *start = message + 27;
10977 char *p;
10978 int size = sizeof (MESSAGE_TEMPLATE);
10979 int left;
10980 const char *name;
10981 int len;
10982 unsigned int j;
10983
10984 p = start;
10985 left = size - (start - message);
10986 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10987 {
10988 /* Should it be skipped? */
10989 if (cpu_arch [j].skip)
10990 continue;
10991
10992 name = cpu_arch [j].name;
10993 len = cpu_arch [j].len;
10994 if (*name == '.')
10995 {
10996 /* It is an extension. Skip if we aren't asked to show it. */
10997 if (ext)
10998 {
10999 name++;
11000 len--;
11001 }
11002 else
11003 continue;
11004 }
11005 else if (ext)
11006 {
11007 /* It is an processor. Skip if we show only extension. */
11008 continue;
11009 }
11010 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11011 {
11012 /* It is an impossible processor - skip. */
11013 continue;
11014 }
11015
11016 p = output_message (stream, p, message, start, &left, name, len);
11017 }
11018
11019 /* Display disabled extensions. */
11020 if (ext)
11021 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11022 {
11023 name = cpu_noarch [j].name;
11024 len = cpu_noarch [j].len;
11025 p = output_message (stream, p, message, start, &left, name,
11026 len);
11027 }
11028
11029 *p = '\0';
11030 fprintf (stream, "%s\n", message);
11031 }
11032
11033 void
11034 md_show_usage (FILE *stream)
11035 {
11036 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11037 fprintf (stream, _("\
11038 -Q ignored\n\
11039 -V print assembler version number\n\
11040 -k ignored\n"));
11041 #endif
11042 fprintf (stream, _("\
11043 -n Do not optimize code alignment\n\
11044 -q quieten some warnings\n"));
11045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11046 fprintf (stream, _("\
11047 -s ignored\n"));
11048 #endif
11049 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11050 || defined (TE_PE) || defined (TE_PEP))
11051 fprintf (stream, _("\
11052 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11053 #endif
11054 #ifdef SVR4_COMMENT_CHARS
11055 fprintf (stream, _("\
11056 --divide do not treat `/' as a comment character\n"));
11057 #else
11058 fprintf (stream, _("\
11059 --divide ignored\n"));
11060 #endif
11061 fprintf (stream, _("\
11062 -march=CPU[,+EXTENSION...]\n\
11063 generate code for CPU and EXTENSION, CPU is one of:\n"));
11064 show_arch (stream, 0, 1);
11065 fprintf (stream, _("\
11066 EXTENSION is combination of:\n"));
11067 show_arch (stream, 1, 0);
11068 fprintf (stream, _("\
11069 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11070 show_arch (stream, 0, 0);
11071 fprintf (stream, _("\
11072 -msse2avx encode SSE instructions with VEX prefix\n"));
11073 fprintf (stream, _("\
11074 -msse-check=[none|error|warning]\n\
11075 check SSE instructions\n"));
11076 fprintf (stream, _("\
11077 -moperand-check=[none|error|warning]\n\
11078 check operand combinations for validity\n"));
11079 fprintf (stream, _("\
11080 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11081 length\n"));
11082 fprintf (stream, _("\
11083 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11084 length\n"));
11085 fprintf (stream, _("\
11086 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11087 for EVEX.W bit ignored instructions\n"));
11088 fprintf (stream, _("\
11089 -mevexrcig=[rne|rd|ru|rz]\n\
11090 encode EVEX instructions with specific EVEX.RC value\n\
11091 for SAE-only ignored instructions\n"));
11092 fprintf (stream, _("\
11093 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11094 fprintf (stream, _("\
11095 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11096 fprintf (stream, _("\
11097 -mindex-reg support pseudo index registers\n"));
11098 fprintf (stream, _("\
11099 -mnaked-reg don't require `%%' prefix for registers\n"));
11100 fprintf (stream, _("\
11101 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11102 fprintf (stream, _("\
11103 -mshared disable branch optimization for shared code\n"));
11104 # if defined (TE_PE) || defined (TE_PEP)
11105 fprintf (stream, _("\
11106 -mbig-obj generate big object files\n"));
11107 #endif
11108 fprintf (stream, _("\
11109 -momit-lock-prefix=[no|yes]\n\
11110 strip all lock prefixes\n"));
11111 fprintf (stream, _("\
11112 -mfence-as-lock-add=[no|yes]\n\
11113 encode lfence, mfence and sfence as\n\
11114 lock addl $0x0, (%%{re}sp)\n"));
11115 fprintf (stream, _("\
11116 -mrelax-relocations=[no|yes]\n\
11117 generate relax relocations\n"));
11118 fprintf (stream, _("\
11119 -mamd64 accept only AMD64 ISA\n"));
11120 fprintf (stream, _("\
11121 -mintel64 accept only Intel64 ISA\n"));
11122 }
11123
11124 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11125 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11126 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11127
11128 /* Pick the target format to use. */
11129
11130 const char *
11131 i386_target_format (void)
11132 {
11133 if (!strncmp (default_arch, "x86_64", 6))
11134 {
11135 update_code_flag (CODE_64BIT, 1);
11136 if (default_arch[6] == '\0')
11137 x86_elf_abi = X86_64_ABI;
11138 else
11139 x86_elf_abi = X86_64_X32_ABI;
11140 }
11141 else if (!strcmp (default_arch, "i386"))
11142 update_code_flag (CODE_32BIT, 1);
11143 else if (!strcmp (default_arch, "iamcu"))
11144 {
11145 update_code_flag (CODE_32BIT, 1);
11146 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11147 {
11148 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11149 cpu_arch_name = "iamcu";
11150 cpu_sub_arch_name = NULL;
11151 cpu_arch_flags = iamcu_flags;
11152 cpu_arch_isa = PROCESSOR_IAMCU;
11153 cpu_arch_isa_flags = iamcu_flags;
11154 if (!cpu_arch_tune_set)
11155 {
11156 cpu_arch_tune = cpu_arch_isa;
11157 cpu_arch_tune_flags = cpu_arch_isa_flags;
11158 }
11159 }
11160 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11161 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11162 cpu_arch_name);
11163 }
11164 else
11165 as_fatal (_("unknown architecture"));
11166
11167 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11168 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11169 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11170 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11171
11172 switch (OUTPUT_FLAVOR)
11173 {
11174 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11175 case bfd_target_aout_flavour:
11176 return AOUT_TARGET_FORMAT;
11177 #endif
11178 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11179 # if defined (TE_PE) || defined (TE_PEP)
11180 case bfd_target_coff_flavour:
11181 if (flag_code == CODE_64BIT)
11182 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11183 else
11184 return "pe-i386";
11185 # elif defined (TE_GO32)
11186 case bfd_target_coff_flavour:
11187 return "coff-go32";
11188 # else
11189 case bfd_target_coff_flavour:
11190 return "coff-i386";
11191 # endif
11192 #endif
11193 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11194 case bfd_target_elf_flavour:
11195 {
11196 const char *format;
11197
11198 switch (x86_elf_abi)
11199 {
11200 default:
11201 format = ELF_TARGET_FORMAT;
11202 break;
11203 case X86_64_ABI:
11204 use_rela_relocations = 1;
11205 object_64bit = 1;
11206 format = ELF_TARGET_FORMAT64;
11207 break;
11208 case X86_64_X32_ABI:
11209 use_rela_relocations = 1;
11210 object_64bit = 1;
11211 disallow_64bit_reloc = 1;
11212 format = ELF_TARGET_FORMAT32;
11213 break;
11214 }
11215 if (cpu_arch_isa == PROCESSOR_L1OM)
11216 {
11217 if (x86_elf_abi != X86_64_ABI)
11218 as_fatal (_("Intel L1OM is 64bit only"));
11219 return ELF_TARGET_L1OM_FORMAT;
11220 }
11221 else if (cpu_arch_isa == PROCESSOR_K1OM)
11222 {
11223 if (x86_elf_abi != X86_64_ABI)
11224 as_fatal (_("Intel K1OM is 64bit only"));
11225 return ELF_TARGET_K1OM_FORMAT;
11226 }
11227 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11228 {
11229 if (x86_elf_abi != I386_ABI)
11230 as_fatal (_("Intel MCU is 32bit only"));
11231 return ELF_TARGET_IAMCU_FORMAT;
11232 }
11233 else
11234 return format;
11235 }
11236 #endif
11237 #if defined (OBJ_MACH_O)
11238 case bfd_target_mach_o_flavour:
11239 if (flag_code == CODE_64BIT)
11240 {
11241 use_rela_relocations = 1;
11242 object_64bit = 1;
11243 return "mach-o-x86-64";
11244 }
11245 else
11246 return "mach-o-i386";
11247 #endif
11248 default:
11249 abort ();
11250 return NULL;
11251 }
11252 }
11253
11254 #endif /* OBJ_MAYBE_ more than one */
11255 \f
11256 symbolS *
11257 md_undefined_symbol (char *name)
11258 {
11259 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11260 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11261 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11262 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11263 {
11264 if (!GOT_symbol)
11265 {
11266 if (symbol_find (name))
11267 as_bad (_("GOT already in symbol table"));
11268 GOT_symbol = symbol_new (name, undefined_section,
11269 (valueT) 0, &zero_address_frag);
11270 };
11271 return GOT_symbol;
11272 }
11273 return 0;
11274 }
11275
11276 /* Round up a section size to the appropriate boundary. */
11277
11278 valueT
11279 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11280 {
11281 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11282 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11283 {
11284 /* For a.out, force the section size to be aligned. If we don't do
11285 this, BFD will align it for us, but it will not write out the
11286 final bytes of the section. This may be a bug in BFD, but it is
11287 easier to fix it here since that is how the other a.out targets
11288 work. */
11289 int align;
11290
11291 align = bfd_get_section_alignment (stdoutput, segment);
11292 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11293 }
11294 #endif
11295
11296 return size;
11297 }
11298
11299 /* On the i386, PC-relative offsets are relative to the start of the
11300 next instruction. That is, the address of the offset, plus its
11301 size, since the offset is always the last part of the insn. */
11302
11303 long
11304 md_pcrel_from (fixS *fixP)
11305 {
11306 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11307 }
11308
11309 #ifndef I386COFF
11310
11311 static void
11312 s_bss (int ignore ATTRIBUTE_UNUSED)
11313 {
11314 int temp;
11315
11316 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11317 if (IS_ELF)
11318 obj_elf_section_change_hook ();
11319 #endif
11320 temp = get_absolute_expression ();
11321 subseg_set (bss_section, (subsegT) temp);
11322 demand_empty_rest_of_line ();
11323 }
11324
11325 #endif
11326
11327 void
11328 i386_validate_fix (fixS *fixp)
11329 {
11330 if (fixp->fx_subsy)
11331 {
11332 if (fixp->fx_subsy == GOT_symbol)
11333 {
11334 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11335 {
11336 if (!object_64bit)
11337 abort ();
11338 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11339 if (fixp->fx_tcbit2)
11340 fixp->fx_r_type = (fixp->fx_tcbit
11341 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11342 : BFD_RELOC_X86_64_GOTPCRELX);
11343 else
11344 #endif
11345 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11346 }
11347 else
11348 {
11349 if (!object_64bit)
11350 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11351 else
11352 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11353 }
11354 fixp->fx_subsy = 0;
11355 }
11356 }
11357 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11358 else if (!object_64bit)
11359 {
11360 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11361 && fixp->fx_tcbit2)
11362 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11363 }
11364 #endif
11365 }
11366
11367 arelent *
11368 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11369 {
11370 arelent *rel;
11371 bfd_reloc_code_real_type code;
11372
11373 switch (fixp->fx_r_type)
11374 {
11375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11376 case BFD_RELOC_SIZE32:
11377 case BFD_RELOC_SIZE64:
11378 if (S_IS_DEFINED (fixp->fx_addsy)
11379 && !S_IS_EXTERNAL (fixp->fx_addsy))
11380 {
11381 /* Resolve size relocation against local symbol to size of
11382 the symbol plus addend. */
11383 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11384 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11385 && !fits_in_unsigned_long (value))
11386 as_bad_where (fixp->fx_file, fixp->fx_line,
11387 _("symbol size computation overflow"));
11388 fixp->fx_addsy = NULL;
11389 fixp->fx_subsy = NULL;
11390 md_apply_fix (fixp, (valueT *) &value, NULL);
11391 return NULL;
11392 }
11393 #endif
11394 /* Fall through. */
11395
11396 case BFD_RELOC_X86_64_PLT32:
11397 case BFD_RELOC_X86_64_GOT32:
11398 case BFD_RELOC_X86_64_GOTPCREL:
11399 case BFD_RELOC_X86_64_GOTPCRELX:
11400 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11401 case BFD_RELOC_386_PLT32:
11402 case BFD_RELOC_386_GOT32:
11403 case BFD_RELOC_386_GOT32X:
11404 case BFD_RELOC_386_GOTOFF:
11405 case BFD_RELOC_386_GOTPC:
11406 case BFD_RELOC_386_TLS_GD:
11407 case BFD_RELOC_386_TLS_LDM:
11408 case BFD_RELOC_386_TLS_LDO_32:
11409 case BFD_RELOC_386_TLS_IE_32:
11410 case BFD_RELOC_386_TLS_IE:
11411 case BFD_RELOC_386_TLS_GOTIE:
11412 case BFD_RELOC_386_TLS_LE_32:
11413 case BFD_RELOC_386_TLS_LE:
11414 case BFD_RELOC_386_TLS_GOTDESC:
11415 case BFD_RELOC_386_TLS_DESC_CALL:
11416 case BFD_RELOC_X86_64_TLSGD:
11417 case BFD_RELOC_X86_64_TLSLD:
11418 case BFD_RELOC_X86_64_DTPOFF32:
11419 case BFD_RELOC_X86_64_DTPOFF64:
11420 case BFD_RELOC_X86_64_GOTTPOFF:
11421 case BFD_RELOC_X86_64_TPOFF32:
11422 case BFD_RELOC_X86_64_TPOFF64:
11423 case BFD_RELOC_X86_64_GOTOFF64:
11424 case BFD_RELOC_X86_64_GOTPC32:
11425 case BFD_RELOC_X86_64_GOT64:
11426 case BFD_RELOC_X86_64_GOTPCREL64:
11427 case BFD_RELOC_X86_64_GOTPC64:
11428 case BFD_RELOC_X86_64_GOTPLT64:
11429 case BFD_RELOC_X86_64_PLTOFF64:
11430 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11431 case BFD_RELOC_X86_64_TLSDESC_CALL:
11432 case BFD_RELOC_RVA:
11433 case BFD_RELOC_VTABLE_ENTRY:
11434 case BFD_RELOC_VTABLE_INHERIT:
11435 #ifdef TE_PE
11436 case BFD_RELOC_32_SECREL:
11437 #endif
11438 code = fixp->fx_r_type;
11439 break;
11440 case BFD_RELOC_X86_64_32S:
11441 if (!fixp->fx_pcrel)
11442 {
11443 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11444 code = fixp->fx_r_type;
11445 break;
11446 }
11447 /* Fall through. */
11448 default:
11449 if (fixp->fx_pcrel)
11450 {
11451 switch (fixp->fx_size)
11452 {
11453 default:
11454 as_bad_where (fixp->fx_file, fixp->fx_line,
11455 _("can not do %d byte pc-relative relocation"),
11456 fixp->fx_size);
11457 code = BFD_RELOC_32_PCREL;
11458 break;
11459 case 1: code = BFD_RELOC_8_PCREL; break;
11460 case 2: code = BFD_RELOC_16_PCREL; break;
11461 case 4: code = BFD_RELOC_32_PCREL; break;
11462 #ifdef BFD64
11463 case 8: code = BFD_RELOC_64_PCREL; break;
11464 #endif
11465 }
11466 }
11467 else
11468 {
11469 switch (fixp->fx_size)
11470 {
11471 default:
11472 as_bad_where (fixp->fx_file, fixp->fx_line,
11473 _("can not do %d byte relocation"),
11474 fixp->fx_size);
11475 code = BFD_RELOC_32;
11476 break;
11477 case 1: code = BFD_RELOC_8; break;
11478 case 2: code = BFD_RELOC_16; break;
11479 case 4: code = BFD_RELOC_32; break;
11480 #ifdef BFD64
11481 case 8: code = BFD_RELOC_64; break;
11482 #endif
11483 }
11484 }
11485 break;
11486 }
11487
11488 if ((code == BFD_RELOC_32
11489 || code == BFD_RELOC_32_PCREL
11490 || code == BFD_RELOC_X86_64_32S)
11491 && GOT_symbol
11492 && fixp->fx_addsy == GOT_symbol)
11493 {
11494 if (!object_64bit)
11495 code = BFD_RELOC_386_GOTPC;
11496 else
11497 code = BFD_RELOC_X86_64_GOTPC32;
11498 }
11499 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11500 && GOT_symbol
11501 && fixp->fx_addsy == GOT_symbol)
11502 {
11503 code = BFD_RELOC_X86_64_GOTPC64;
11504 }
11505
11506 rel = XNEW (arelent);
11507 rel->sym_ptr_ptr = XNEW (asymbol *);
11508 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11509
11510 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11511
11512 if (!use_rela_relocations)
11513 {
11514 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11515 vtable entry to be used in the relocation's section offset. */
11516 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11517 rel->address = fixp->fx_offset;
11518 #if defined (OBJ_COFF) && defined (TE_PE)
11519 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11520 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11521 else
11522 #endif
11523 rel->addend = 0;
11524 }
11525 /* Use the rela in 64bit mode. */
11526 else
11527 {
11528 if (disallow_64bit_reloc)
11529 switch (code)
11530 {
11531 case BFD_RELOC_X86_64_DTPOFF64:
11532 case BFD_RELOC_X86_64_TPOFF64:
11533 case BFD_RELOC_64_PCREL:
11534 case BFD_RELOC_X86_64_GOTOFF64:
11535 case BFD_RELOC_X86_64_GOT64:
11536 case BFD_RELOC_X86_64_GOTPCREL64:
11537 case BFD_RELOC_X86_64_GOTPC64:
11538 case BFD_RELOC_X86_64_GOTPLT64:
11539 case BFD_RELOC_X86_64_PLTOFF64:
11540 as_bad_where (fixp->fx_file, fixp->fx_line,
11541 _("cannot represent relocation type %s in x32 mode"),
11542 bfd_get_reloc_code_name (code));
11543 break;
11544 default:
11545 break;
11546 }
11547
11548 if (!fixp->fx_pcrel)
11549 rel->addend = fixp->fx_offset;
11550 else
11551 switch (code)
11552 {
11553 case BFD_RELOC_X86_64_PLT32:
11554 case BFD_RELOC_X86_64_GOT32:
11555 case BFD_RELOC_X86_64_GOTPCREL:
11556 case BFD_RELOC_X86_64_GOTPCRELX:
11557 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11558 case BFD_RELOC_X86_64_TLSGD:
11559 case BFD_RELOC_X86_64_TLSLD:
11560 case BFD_RELOC_X86_64_GOTTPOFF:
11561 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11562 case BFD_RELOC_X86_64_TLSDESC_CALL:
11563 rel->addend = fixp->fx_offset - fixp->fx_size;
11564 break;
11565 default:
11566 rel->addend = (section->vma
11567 - fixp->fx_size
11568 + fixp->fx_addnumber
11569 + md_pcrel_from (fixp));
11570 break;
11571 }
11572 }
11573
11574 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11575 if (rel->howto == NULL)
11576 {
11577 as_bad_where (fixp->fx_file, fixp->fx_line,
11578 _("cannot represent relocation type %s"),
11579 bfd_get_reloc_code_name (code));
11580 /* Set howto to a garbage value so that we can keep going. */
11581 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11582 gas_assert (rel->howto != NULL);
11583 }
11584
11585 return rel;
11586 }
11587
11588 #include "tc-i386-intel.c"
11589
11590 void
11591 tc_x86_parse_to_dw2regnum (expressionS *exp)
11592 {
11593 int saved_naked_reg;
11594 char saved_register_dot;
11595
11596 saved_naked_reg = allow_naked_reg;
11597 allow_naked_reg = 1;
11598 saved_register_dot = register_chars['.'];
11599 register_chars['.'] = '.';
11600 allow_pseudo_reg = 1;
11601 expression_and_evaluate (exp);
11602 allow_pseudo_reg = 0;
11603 register_chars['.'] = saved_register_dot;
11604 allow_naked_reg = saved_naked_reg;
11605
11606 if (exp->X_op == O_register && exp->X_add_number >= 0)
11607 {
11608 if ((addressT) exp->X_add_number < i386_regtab_size)
11609 {
11610 exp->X_op = O_constant;
11611 exp->X_add_number = i386_regtab[exp->X_add_number]
11612 .dw2_regnum[flag_code >> 1];
11613 }
11614 else
11615 exp->X_op = O_illegal;
11616 }
11617 }
11618
11619 void
11620 tc_x86_frame_initial_instructions (void)
11621 {
11622 static unsigned int sp_regno[2];
11623
11624 if (!sp_regno[flag_code >> 1])
11625 {
11626 char *saved_input = input_line_pointer;
11627 char sp[][4] = {"esp", "rsp"};
11628 expressionS exp;
11629
11630 input_line_pointer = sp[flag_code >> 1];
11631 tc_x86_parse_to_dw2regnum (&exp);
11632 gas_assert (exp.X_op == O_constant);
11633 sp_regno[flag_code >> 1] = exp.X_add_number;
11634 input_line_pointer = saved_input;
11635 }
11636
11637 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11638 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11639 }
11640
11641 int
11642 x86_dwarf2_addr_size (void)
11643 {
11644 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11645 if (x86_elf_abi == X86_64_X32_ABI)
11646 return 4;
11647 #endif
11648 return bfd_arch_bits_per_address (stdoutput) / 8;
11649 }
11650
11651 int
11652 i386_elf_section_type (const char *str, size_t len)
11653 {
11654 if (flag_code == CODE_64BIT
11655 && len == sizeof ("unwind") - 1
11656 && strncmp (str, "unwind", 6) == 0)
11657 return SHT_X86_64_UNWIND;
11658
11659 return -1;
11660 }
11661
11662 #ifdef TE_SOLARIS
11663 void
11664 i386_solaris_fix_up_eh_frame (segT sec)
11665 {
11666 if (flag_code == CODE_64BIT)
11667 elf_section_type (sec) = SHT_X86_64_UNWIND;
11668 }
11669 #endif
11670
11671 #ifdef TE_PE
11672 void
11673 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11674 {
11675 expressionS exp;
11676
11677 exp.X_op = O_secrel;
11678 exp.X_add_symbol = symbol;
11679 exp.X_add_number = 0;
11680 emit_expr (&exp, size);
11681 }
11682 #endif
11683
11684 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11685 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11686
11687 bfd_vma
11688 x86_64_section_letter (int letter, const char **ptr_msg)
11689 {
11690 if (flag_code == CODE_64BIT)
11691 {
11692 if (letter == 'l')
11693 return SHF_X86_64_LARGE;
11694
11695 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11696 }
11697 else
11698 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11699 return -1;
11700 }
11701
11702 bfd_vma
11703 x86_64_section_word (char *str, size_t len)
11704 {
11705 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11706 return SHF_X86_64_LARGE;
11707
11708 return -1;
11709 }
11710
11711 static void
11712 handle_large_common (int small ATTRIBUTE_UNUSED)
11713 {
11714 if (flag_code != CODE_64BIT)
11715 {
11716 s_comm_internal (0, elf_common_parse);
11717 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11718 }
11719 else
11720 {
11721 static segT lbss_section;
11722 asection *saved_com_section_ptr = elf_com_section_ptr;
11723 asection *saved_bss_section = bss_section;
11724
11725 if (lbss_section == NULL)
11726 {
11727 flagword applicable;
11728 segT seg = now_seg;
11729 subsegT subseg = now_subseg;
11730
11731 /* The .lbss section is for local .largecomm symbols. */
11732 lbss_section = subseg_new (".lbss", 0);
11733 applicable = bfd_applicable_section_flags (stdoutput);
11734 bfd_set_section_flags (stdoutput, lbss_section,
11735 applicable & SEC_ALLOC);
11736 seg_info (lbss_section)->bss = 1;
11737
11738 subseg_set (seg, subseg);
11739 }
11740
11741 elf_com_section_ptr = &_bfd_elf_large_com_section;
11742 bss_section = lbss_section;
11743
11744 s_comm_internal (0, elf_common_parse);
11745
11746 elf_com_section_ptr = saved_com_section_ptr;
11747 bss_section = saved_bss_section;
11748 }
11749 }
11750 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.285091 seconds and 5 git commands to generate.