gas/
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
136 };
137
138 enum dynreg_type
139 {
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
144 };
145
146 enum operand_match_result
147 {
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
151 };
152
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
158 {
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predictable. */
231 expressionS qp;
232
233 /* Optimize for which CPU. */
234 enum
235 {
236 itanium1,
237 itanium2
238 } tune;
239
240 /* What to do when hint.b is used. */
241 enum
242 {
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
247
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
257
258 /* What to do when something is wrong with unwind directives. */
259 enum
260 {
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
264
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
271 {
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
284 {
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
289 }
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
299 }
300 slot[NUM_SLOTS];
301
302 segT last_text_seg;
303
304 struct dynreg
305 {
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
310 }
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
312
313 flagword flags; /* ELF-header flags */
314
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
320
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
326
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
329
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_RUC 45
370 #define AR_PFS 64
371 #define AR_LC 65
372 #define AR_EC 66
373
374 static const struct
375 {
376 const char *name;
377 unsigned int regnum;
378 }
379 ar[] =
380 {
381 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
382 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
383 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
384 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
385 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
386 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
387 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
388 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
389 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
390 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
391 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
392 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
393 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
394 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
395 };
396
397 /* control registers: */
398
399 #define CR_DCR 0
400 #define CR_ITM 1
401 #define CR_IVA 2
402 #define CR_PTA 8
403 #define CR_GPTA 9
404 #define CR_IPSR 16
405 #define CR_ISR 17
406 #define CR_IIP 19
407 #define CR_IFA 20
408 #define CR_ITIR 21
409 #define CR_IIPA 22
410 #define CR_IFS 23
411 #define CR_IIM 24
412 #define CR_IHA 25
413 #define CR_LID 64
414 #define CR_IVR 65
415 #define CR_TPR 66
416 #define CR_EOI 67
417 #define CR_IRR0 68
418 #define CR_IRR3 71
419 #define CR_ITV 72
420 #define CR_PMV 73
421 #define CR_CMCV 74
422 #define CR_LRR0 80
423 #define CR_LRR1 81
424
425 static const struct
426 {
427 const char *name;
428 unsigned int regnum;
429 }
430 cr[] =
431 {
432 {"cr.dcr", CR_DCR},
433 {"cr.itm", CR_ITM},
434 {"cr.iva", CR_IVA},
435 {"cr.pta", CR_PTA},
436 {"cr.gpta", CR_GPTA},
437 {"cr.ipsr", CR_IPSR},
438 {"cr.isr", CR_ISR},
439 {"cr.iip", CR_IIP},
440 {"cr.ifa", CR_IFA},
441 {"cr.itir", CR_ITIR},
442 {"cr.iipa", CR_IIPA},
443 {"cr.ifs", CR_IFS},
444 {"cr.iim", CR_IIM},
445 {"cr.iha", CR_IHA},
446 {"cr.lid", CR_LID},
447 {"cr.ivr", CR_IVR},
448 {"cr.tpr", CR_TPR},
449 {"cr.eoi", CR_EOI},
450 {"cr.irr0", CR_IRR0},
451 {"cr.irr1", CR_IRR0 + 1},
452 {"cr.irr2", CR_IRR0 + 2},
453 {"cr.irr3", CR_IRR3},
454 {"cr.itv", CR_ITV},
455 {"cr.pmv", CR_PMV},
456 {"cr.cmcv", CR_CMCV},
457 {"cr.lrr0", CR_LRR0},
458 {"cr.lrr1", CR_LRR1}
459 };
460
461 #define PSR_MFL 4
462 #define PSR_IC 13
463 #define PSR_DFL 18
464 #define PSR_CPL 32
465
466 static const struct const_desc
467 {
468 const char *name;
469 valueT value;
470 }
471 const_bits[] =
472 {
473 /* PSR constant masks: */
474
475 /* 0: reserved */
476 {"psr.be", ((valueT) 1) << 1},
477 {"psr.up", ((valueT) 1) << 2},
478 {"psr.ac", ((valueT) 1) << 3},
479 {"psr.mfl", ((valueT) 1) << 4},
480 {"psr.mfh", ((valueT) 1) << 5},
481 /* 6-12: reserved */
482 {"psr.ic", ((valueT) 1) << 13},
483 {"psr.i", ((valueT) 1) << 14},
484 {"psr.pk", ((valueT) 1) << 15},
485 /* 16: reserved */
486 {"psr.dt", ((valueT) 1) << 17},
487 {"psr.dfl", ((valueT) 1) << 18},
488 {"psr.dfh", ((valueT) 1) << 19},
489 {"psr.sp", ((valueT) 1) << 20},
490 {"psr.pp", ((valueT) 1) << 21},
491 {"psr.di", ((valueT) 1) << 22},
492 {"psr.si", ((valueT) 1) << 23},
493 {"psr.db", ((valueT) 1) << 24},
494 {"psr.lp", ((valueT) 1) << 25},
495 {"psr.tb", ((valueT) 1) << 26},
496 {"psr.rt", ((valueT) 1) << 27},
497 /* 28-31: reserved */
498 /* 32-33: cpl (current privilege level) */
499 {"psr.is", ((valueT) 1) << 34},
500 {"psr.mc", ((valueT) 1) << 35},
501 {"psr.it", ((valueT) 1) << 36},
502 {"psr.id", ((valueT) 1) << 37},
503 {"psr.da", ((valueT) 1) << 38},
504 {"psr.dd", ((valueT) 1) << 39},
505 {"psr.ss", ((valueT) 1) << 40},
506 /* 41-42: ri (restart instruction) */
507 {"psr.ed", ((valueT) 1) << 43},
508 {"psr.bn", ((valueT) 1) << 44},
509 };
510
511 /* indirect register-sets/memory: */
512
513 static const struct
514 {
515 const char *name;
516 unsigned int regnum;
517 }
518 indirect_reg[] =
519 {
520 { "CPUID", IND_CPUID },
521 { "cpuid", IND_CPUID },
522 { "dbr", IND_DBR },
523 { "dtr", IND_DTR },
524 { "itr", IND_ITR },
525 { "ibr", IND_IBR },
526 { "msr", IND_MSR },
527 { "pkr", IND_PKR },
528 { "pmc", IND_PMC },
529 { "pmd", IND_PMD },
530 { "rr", IND_RR },
531 };
532
533 /* Pseudo functions used to indicate relocation types (these functions
534 start with an at sign (@). */
535 static struct
536 {
537 const char *name;
538 enum pseudo_type
539 {
540 PSEUDO_FUNC_NONE,
541 PSEUDO_FUNC_RELOC,
542 PSEUDO_FUNC_CONST,
543 PSEUDO_FUNC_REG,
544 PSEUDO_FUNC_FLOAT
545 }
546 type;
547 union
548 {
549 unsigned long ival;
550 symbolS *sym;
551 }
552 u;
553 }
554 pseudo_func[] =
555 {
556 /* reloc pseudo functions (these must come first!): */
557 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
558 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
559 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
560 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
562 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
564 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
565 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
568 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
572 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
573 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
574
575 /* mbtype4 constants: */
576 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
577 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
578 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
579 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
580 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
581
582 /* fclass constants: */
583 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
584 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
585 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
586 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
587 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
588 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
589 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
590 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
591 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
592
593 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
594
595 /* hint constants: */
596 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
597
598 /* unwind-related constants: */
599 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
600 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
601 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
602 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
603 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
604 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
605 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
606
607 /* unwind-related registers: */
608 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
609 };
610
611 /* 41-bit nop opcodes (one per unit): */
612 static const bfd_vma nop[IA64_NUM_UNITS] =
613 {
614 0x0000000000LL, /* NIL => break 0 */
615 0x0008000000LL, /* I-unit nop */
616 0x0008000000LL, /* M-unit nop */
617 0x4000000000LL, /* B-unit nop */
618 0x0008000000LL, /* F-unit nop */
619 0x0000000000LL, /* L-"unit" nop immediate */
620 0x0008000000LL, /* X-unit nop */
621 };
622
623 /* Can't be `const' as it's passed to input routines (which have the
624 habit of setting temporary sentinels. */
625 static char special_section_name[][20] =
626 {
627 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
628 {".IA_64.unwind"}, {".IA_64.unwind_info"},
629 {".init_array"}, {".fini_array"}
630 };
631
632 /* The best template for a particular sequence of up to three
633 instructions: */
634 #define N IA64_NUM_TYPES
635 static unsigned char best_template[N][N][N];
636 #undef N
637
638 /* Resource dependencies currently in effect */
639 static struct rsrc {
640 int depind; /* dependency index */
641 const struct ia64_dependency *dependency; /* actual dependency */
642 unsigned specific:1, /* is this a specific bit/regno? */
643 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
644 int index; /* specific regno/bit within dependency */
645 int note; /* optional qualifying note (0 if none) */
646 #define STATE_NONE 0
647 #define STATE_STOP 1
648 #define STATE_SRLZ 2
649 int insn_srlz; /* current insn serialization state */
650 int data_srlz; /* current data serialization state */
651 int qp_regno; /* qualifying predicate for this usage */
652 char *file; /* what file marked this dependency */
653 unsigned int line; /* what line marked this dependency */
654 struct mem_offset mem_offset; /* optional memory offset hint */
655 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
656 int path; /* corresponding code entry index */
657 } *regdeps = NULL;
658 static int regdepslen = 0;
659 static int regdepstotlen = 0;
660 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
661 static const char *dv_sem[] = { "none", "implied", "impliedf",
662 "data", "instr", "specific", "stop", "other" };
663 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
664
665 /* Current state of PR mutexation */
666 static struct qpmutex {
667 valueT prmask;
668 int path;
669 } *qp_mutexes = NULL; /* QP mutex bitmasks */
670 static int qp_mutexeslen = 0;
671 static int qp_mutexestotlen = 0;
672 static valueT qp_safe_across_calls = 0;
673
674 /* Current state of PR implications */
675 static struct qp_imply {
676 unsigned p1:6;
677 unsigned p2:6;
678 unsigned p2_branched:1;
679 int path;
680 } *qp_implies = NULL;
681 static int qp_implieslen = 0;
682 static int qp_impliestotlen = 0;
683
684 /* Keep track of static GR values so that indirect register usage can
685 sometimes be tracked. */
686 static struct gr {
687 unsigned known:1;
688 int path;
689 valueT value;
690 } gr_values[128] = {
691 {
692 1,
693 #ifdef INT_MAX
694 INT_MAX,
695 #else
696 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
697 #endif
698 0
699 }
700 };
701
702 /* Remember the alignment frag. */
703 static fragS *align_frag;
704
705 /* These are the routines required to output the various types of
706 unwind records. */
707
708 /* A slot_number is a frag address plus the slot index (0-2). We use the
709 frag address here so that if there is a section switch in the middle of
710 a function, then instructions emitted to a different section are not
711 counted. Since there may be more than one frag for a function, this
712 means we also need to keep track of which frag this address belongs to
713 so we can compute inter-frag distances. This also nicely solves the
714 problem with nops emitted for align directives, which can't easily be
715 counted, but can easily be derived from frag sizes. */
716
717 typedef struct unw_rec_list {
718 unwind_record r;
719 unsigned long slot_number;
720 fragS *slot_frag;
721 struct unw_rec_list *next;
722 } unw_rec_list;
723
724 #define SLOT_NUM_NOT_SET (unsigned)-1
725
726 /* Linked list of saved prologue counts. A very poor
727 implementation of a map from label numbers to prologue counts. */
728 typedef struct label_prologue_count
729 {
730 struct label_prologue_count *next;
731 unsigned long label_number;
732 unsigned int prologue_count;
733 } label_prologue_count;
734
735 typedef struct proc_pending
736 {
737 symbolS *sym;
738 struct proc_pending *next;
739 } proc_pending;
740
741 static struct
742 {
743 /* Maintain a list of unwind entries for the current function. */
744 unw_rec_list *list;
745 unw_rec_list *tail;
746
747 /* Any unwind entries that should be attached to the current slot
748 that an insn is being constructed for. */
749 unw_rec_list *current_entry;
750
751 /* These are used to create the unwind table entry for this function. */
752 proc_pending proc_pending;
753 symbolS *info; /* pointer to unwind info */
754 symbolS *personality_routine;
755 segT saved_text_seg;
756 subsegT saved_text_subseg;
757 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
758
759 /* TRUE if processing unwind directives in a prologue region. */
760 unsigned int prologue : 1;
761 unsigned int prologue_mask : 4;
762 unsigned int prologue_gr : 7;
763 unsigned int body : 1;
764 unsigned int insn : 1;
765 unsigned int prologue_count; /* number of .prologues seen so far */
766 /* Prologue counts at previous .label_state directives. */
767 struct label_prologue_count * saved_prologue_counts;
768
769 /* List of split up .save-s. */
770 unw_p_record *pending_saves;
771 } unwind;
772
773 /* The input value is a negated offset from psp, and specifies an address
774 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
775 must add 16 and divide by 4 to get the encoded value. */
776
777 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
778
779 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
780
781 /* Forward declarations: */
782 static void set_section PARAMS ((char *name));
783 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
784 unsigned int, unsigned int));
785 static void dot_align (int);
786 static void dot_radix PARAMS ((int));
787 static void dot_special_section PARAMS ((int));
788 static void dot_proc PARAMS ((int));
789 static void dot_fframe PARAMS ((int));
790 static void dot_vframe PARAMS ((int));
791 static void dot_vframesp PARAMS ((int));
792 static void dot_save PARAMS ((int));
793 static void dot_restore PARAMS ((int));
794 static void dot_restorereg PARAMS ((int));
795 static void dot_handlerdata PARAMS ((int));
796 static void dot_unwentry PARAMS ((int));
797 static void dot_altrp PARAMS ((int));
798 static void dot_savemem PARAMS ((int));
799 static void dot_saveg PARAMS ((int));
800 static void dot_savef PARAMS ((int));
801 static void dot_saveb PARAMS ((int));
802 static void dot_savegf PARAMS ((int));
803 static void dot_spill PARAMS ((int));
804 static void dot_spillreg PARAMS ((int));
805 static void dot_spillmem PARAMS ((int));
806 static void dot_label_state PARAMS ((int));
807 static void dot_copy_state PARAMS ((int));
808 static void dot_unwabi PARAMS ((int));
809 static void dot_personality PARAMS ((int));
810 static void dot_body PARAMS ((int));
811 static void dot_prologue PARAMS ((int));
812 static void dot_endp PARAMS ((int));
813 static void dot_template PARAMS ((int));
814 static void dot_regstk PARAMS ((int));
815 static void dot_rot PARAMS ((int));
816 static void dot_byteorder PARAMS ((int));
817 static void dot_psr PARAMS ((int));
818 static void dot_alias PARAMS ((int));
819 static void dot_ln PARAMS ((int));
820 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
821 static void dot_xdata PARAMS ((int));
822 static void stmt_float_cons PARAMS ((int));
823 static void stmt_cons_ua PARAMS ((int));
824 static void dot_xfloat_cons PARAMS ((int));
825 static void dot_xstringer PARAMS ((int));
826 static void dot_xdata_ua PARAMS ((int));
827 static void dot_xfloat_cons_ua PARAMS ((int));
828 static void print_prmask PARAMS ((valueT mask));
829 static void dot_pred_rel PARAMS ((int));
830 static void dot_reg_val PARAMS ((int));
831 static void dot_serialize PARAMS ((int));
832 static void dot_dv_mode PARAMS ((int));
833 static void dot_entry PARAMS ((int));
834 static void dot_mem_offset PARAMS ((int));
835 static void add_unwind_entry PARAMS((unw_rec_list *, int));
836 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
837 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
838 static unsigned int operand_width PARAMS ((enum ia64_opnd));
839 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
840 int index,
841 expressionS *e));
842 static int parse_operand PARAMS ((expressionS *, int));
843 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
844 static void build_insn PARAMS ((struct slot *, bfd_vma *));
845 static void emit_one_bundle PARAMS ((void));
846 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
847 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
848 bfd_reloc_code_real_type r_type));
849 static void insn_group_break PARAMS ((int, int, int));
850 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
851 struct rsrc *, int depind, int path));
852 static void add_qp_mutex PARAMS((valueT mask));
853 static void add_qp_imply PARAMS((int p1, int p2));
854 static void clear_qp_branch_flag PARAMS((valueT mask));
855 static void clear_qp_mutex PARAMS((valueT mask));
856 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
857 static int has_suffix_p PARAMS((const char *, const char *));
858 static void clear_register_values PARAMS ((void));
859 static void print_dependency PARAMS ((const char *action, int depind));
860 static void instruction_serialization PARAMS ((void));
861 static void data_serialization PARAMS ((void));
862 static void remove_marked_resource PARAMS ((struct rsrc *));
863 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
864 static int is_taken_branch PARAMS ((struct ia64_opcode *));
865 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
866 static int depends_on PARAMS ((int, struct ia64_opcode *));
867 static int specify_resource PARAMS ((const struct ia64_dependency *,
868 struct ia64_opcode *, int, struct rsrc [], int, int));
869 static int check_dv PARAMS((struct ia64_opcode *idesc));
870 static void check_dependencies PARAMS((struct ia64_opcode *));
871 static void mark_resources PARAMS((struct ia64_opcode *));
872 static void update_dependencies PARAMS((struct ia64_opcode *));
873 static void note_register_values PARAMS((struct ia64_opcode *));
874 static int qp_mutex PARAMS ((int, int, int));
875 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
876 static void output_vbyte_mem PARAMS ((int, char *, char *));
877 static void count_output PARAMS ((int, char *, char *));
878 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
879 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
880 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
881 static void output_P1_format PARAMS ((vbyte_func, int));
882 static void output_P2_format PARAMS ((vbyte_func, int, int));
883 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
884 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
885 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
886 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
887 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
888 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
889 static void output_P9_format PARAMS ((vbyte_func, int, int));
890 static void output_P10_format PARAMS ((vbyte_func, int, int));
891 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
892 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
894 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
895 static char format_ab_reg PARAMS ((int, int));
896 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
897 unsigned long));
898 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
899 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
900 unsigned long));
901 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
902 static unw_rec_list *output_endp PARAMS ((void));
903 static unw_rec_list *output_prologue PARAMS ((void));
904 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
905 static unw_rec_list *output_body PARAMS ((void));
906 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
907 static unw_rec_list *output_mem_stack_v PARAMS ((void));
908 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
909 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
910 static unw_rec_list *output_rp_when PARAMS ((void));
911 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
914 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
915 static unw_rec_list *output_pfs_when PARAMS ((void));
916 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
918 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
919 static unw_rec_list *output_preds_when PARAMS ((void));
920 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
922 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
923 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
924 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
926 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
928 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
929 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
930 static unw_rec_list *output_unat_when PARAMS ((void));
931 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
933 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
934 static unw_rec_list *output_lc_when PARAMS ((void));
935 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
937 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
938 static unw_rec_list *output_fpsr_when PARAMS ((void));
939 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
941 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
942 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
943 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
944 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
946 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
947 static unw_rec_list *output_bsp_when PARAMS ((void));
948 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
951 static unw_rec_list *output_bspstore_when PARAMS ((void));
952 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
954 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
955 static unw_rec_list *output_rnat_when PARAMS ((void));
956 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
958 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
959 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
960 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
961 static unw_rec_list *output_label_state PARAMS ((unsigned long));
962 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
963 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
964 unsigned int));
965 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
966 unsigned int));
967 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
968 unsigned int, unsigned int));
969 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
970 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
971 static int calc_record_size PARAMS ((unw_rec_list *));
972 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
973 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
974 unsigned long, fragS *,
975 int));
976 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
977 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
978 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
979 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
981 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
982 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
983 static void free_saved_prologue_counts PARAMS ((void));
984
985 /* Determine if application register REGNUM resides only in the integer
986 unit (as opposed to the memory unit). */
987 static int
988 ar_is_only_in_integer_unit (int reg)
989 {
990 reg -= REG_AR;
991 return reg >= 64 && reg <= 111;
992 }
993
994 /* Determine if application register REGNUM resides only in the memory
995 unit (as opposed to the integer unit). */
996 static int
997 ar_is_only_in_memory_unit (int reg)
998 {
999 reg -= REG_AR;
1000 return reg >= 0 && reg <= 47;
1001 }
1002
1003 /* Switch to section NAME and create section if necessary. It's
1004 rather ugly that we have to manipulate input_line_pointer but I
1005 don't see any other way to accomplish the same thing without
1006 changing obj-elf.c (which may be the Right Thing, in the end). */
1007 static void
1008 set_section (name)
1009 char *name;
1010 {
1011 char *saved_input_line_pointer;
1012
1013 saved_input_line_pointer = input_line_pointer;
1014 input_line_pointer = name;
1015 obj_elf_section (0);
1016 input_line_pointer = saved_input_line_pointer;
1017 }
1018
1019 /* Map 's' to SHF_IA_64_SHORT. */
1020
1021 int
1022 ia64_elf_section_letter (letter, ptr_msg)
1023 int letter;
1024 char **ptr_msg;
1025 {
1026 if (letter == 's')
1027 return SHF_IA_64_SHORT;
1028 else if (letter == 'o')
1029 return SHF_LINK_ORDER;
1030
1031 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1032 return -1;
1033 }
1034
1035 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1036
1037 flagword
1038 ia64_elf_section_flags (flags, attr, type)
1039 flagword flags;
1040 int attr, type ATTRIBUTE_UNUSED;
1041 {
1042 if (attr & SHF_IA_64_SHORT)
1043 flags |= SEC_SMALL_DATA;
1044 return flags;
1045 }
1046
1047 int
1048 ia64_elf_section_type (str, len)
1049 const char *str;
1050 size_t len;
1051 {
1052 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1053
1054 if (STREQ (ELF_STRING_ia64_unwind_info))
1055 return SHT_PROGBITS;
1056
1057 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1058 return SHT_PROGBITS;
1059
1060 if (STREQ (ELF_STRING_ia64_unwind))
1061 return SHT_IA_64_UNWIND;
1062
1063 if (STREQ (ELF_STRING_ia64_unwind_once))
1064 return SHT_IA_64_UNWIND;
1065
1066 if (STREQ ("unwind"))
1067 return SHT_IA_64_UNWIND;
1068
1069 return -1;
1070 #undef STREQ
1071 }
1072
1073 static unsigned int
1074 set_regstack (ins, locs, outs, rots)
1075 unsigned int ins, locs, outs, rots;
1076 {
1077 /* Size of frame. */
1078 unsigned int sof;
1079
1080 sof = ins + locs + outs;
1081 if (sof > 96)
1082 {
1083 as_bad (_("Size of frame exceeds maximum of 96 registers"));
1084 return 0;
1085 }
1086 if (rots > sof)
1087 {
1088 as_warn (_("Size of rotating registers exceeds frame size"));
1089 return 0;
1090 }
1091 md.in.base = REG_GR + 32;
1092 md.loc.base = md.in.base + ins;
1093 md.out.base = md.loc.base + locs;
1094
1095 md.in.num_regs = ins;
1096 md.loc.num_regs = locs;
1097 md.out.num_regs = outs;
1098 md.rot.num_regs = rots;
1099 return sof;
1100 }
1101
1102 void
1103 ia64_flush_insns ()
1104 {
1105 struct label_fix *lfix;
1106 segT saved_seg;
1107 subsegT saved_subseg;
1108 unw_rec_list *ptr;
1109 bfd_boolean mark;
1110
1111 if (!md.last_text_seg)
1112 return;
1113
1114 saved_seg = now_seg;
1115 saved_subseg = now_subseg;
1116
1117 subseg_set (md.last_text_seg, 0);
1118
1119 while (md.num_slots_in_use > 0)
1120 emit_one_bundle (); /* force out queued instructions */
1121
1122 /* In case there are labels following the last instruction, resolve
1123 those now. */
1124 mark = FALSE;
1125 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1126 {
1127 symbol_set_value_now (lfix->sym);
1128 mark |= lfix->dw2_mark_labels;
1129 }
1130 if (mark)
1131 {
1132 dwarf2_where (&CURR_SLOT.debug_line);
1133 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1134 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1135 }
1136 CURR_SLOT.label_fixups = 0;
1137
1138 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1139 symbol_set_value_now (lfix->sym);
1140 CURR_SLOT.tag_fixups = 0;
1141
1142 /* In case there are unwind directives following the last instruction,
1143 resolve those now. We only handle prologue, body, and endp directives
1144 here. Give an error for others. */
1145 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1146 {
1147 switch (ptr->r.type)
1148 {
1149 case prologue:
1150 case prologue_gr:
1151 case body:
1152 case endp:
1153 ptr->slot_number = (unsigned long) frag_more (0);
1154 ptr->slot_frag = frag_now;
1155 break;
1156
1157 /* Allow any record which doesn't have a "t" field (i.e.,
1158 doesn't relate to a particular instruction). */
1159 case unwabi:
1160 case br_gr:
1161 case copy_state:
1162 case fr_mem:
1163 case frgr_mem:
1164 case gr_gr:
1165 case gr_mem:
1166 case label_state:
1167 case rp_br:
1168 case spill_base:
1169 case spill_mask:
1170 /* nothing */
1171 break;
1172
1173 default:
1174 as_bad (_("Unwind directive not followed by an instruction."));
1175 break;
1176 }
1177 }
1178 unwind.current_entry = NULL;
1179
1180 subseg_set (saved_seg, saved_subseg);
1181
1182 if (md.qp.X_op == O_register)
1183 as_bad (_("qualifying predicate not followed by instruction"));
1184 }
1185
1186 static void
1187 ia64_do_align (int nbytes)
1188 {
1189 char *saved_input_line_pointer = input_line_pointer;
1190
1191 input_line_pointer = "";
1192 s_align_bytes (nbytes);
1193 input_line_pointer = saved_input_line_pointer;
1194 }
1195
1196 void
1197 ia64_cons_align (nbytes)
1198 int nbytes;
1199 {
1200 if (md.auto_align)
1201 {
1202 char *saved_input_line_pointer = input_line_pointer;
1203 input_line_pointer = "";
1204 s_align_bytes (nbytes);
1205 input_line_pointer = saved_input_line_pointer;
1206 }
1207 }
1208
1209 /* Output COUNT bytes to a memory location. */
1210 static char *vbyte_mem_ptr = NULL;
1211
1212 void
1213 output_vbyte_mem (count, ptr, comment)
1214 int count;
1215 char *ptr;
1216 char *comment ATTRIBUTE_UNUSED;
1217 {
1218 int x;
1219 if (vbyte_mem_ptr == NULL)
1220 abort ();
1221
1222 if (count == 0)
1223 return;
1224 for (x = 0; x < count; x++)
1225 *(vbyte_mem_ptr++) = ptr[x];
1226 }
1227
1228 /* Count the number of bytes required for records. */
1229 static int vbyte_count = 0;
1230 void
1231 count_output (count, ptr, comment)
1232 int count;
1233 char *ptr ATTRIBUTE_UNUSED;
1234 char *comment ATTRIBUTE_UNUSED;
1235 {
1236 vbyte_count += count;
1237 }
1238
1239 static void
1240 output_R1_format (f, rtype, rlen)
1241 vbyte_func f;
1242 unw_record_type rtype;
1243 int rlen;
1244 {
1245 int r = 0;
1246 char byte;
1247 if (rlen > 0x1f)
1248 {
1249 output_R3_format (f, rtype, rlen);
1250 return;
1251 }
1252
1253 if (rtype == body)
1254 r = 1;
1255 else if (rtype != prologue)
1256 as_bad (_("record type is not valid"));
1257
1258 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1259 (*f) (1, &byte, NULL);
1260 }
1261
1262 static void
1263 output_R2_format (f, mask, grsave, rlen)
1264 vbyte_func f;
1265 int mask, grsave;
1266 unsigned long rlen;
1267 {
1268 char bytes[20];
1269 int count = 2;
1270 mask = (mask & 0x0f);
1271 grsave = (grsave & 0x7f);
1272
1273 bytes[0] = (UNW_R2 | (mask >> 1));
1274 bytes[1] = (((mask & 0x01) << 7) | grsave);
1275 count += output_leb128 (bytes + 2, rlen, 0);
1276 (*f) (count, bytes, NULL);
1277 }
1278
1279 static void
1280 output_R3_format (f, rtype, rlen)
1281 vbyte_func f;
1282 unw_record_type rtype;
1283 unsigned long rlen;
1284 {
1285 int r = 0, count;
1286 char bytes[20];
1287 if (rlen <= 0x1f)
1288 {
1289 output_R1_format (f, rtype, rlen);
1290 return;
1291 }
1292
1293 if (rtype == body)
1294 r = 1;
1295 else if (rtype != prologue)
1296 as_bad (_("record type is not valid"));
1297 bytes[0] = (UNW_R3 | r);
1298 count = output_leb128 (bytes + 1, rlen, 0);
1299 (*f) (count + 1, bytes, NULL);
1300 }
1301
1302 static void
1303 output_P1_format (f, brmask)
1304 vbyte_func f;
1305 int brmask;
1306 {
1307 char byte;
1308 byte = UNW_P1 | (brmask & 0x1f);
1309 (*f) (1, &byte, NULL);
1310 }
1311
1312 static void
1313 output_P2_format (f, brmask, gr)
1314 vbyte_func f;
1315 int brmask;
1316 int gr;
1317 {
1318 char bytes[2];
1319 brmask = (brmask & 0x1f);
1320 bytes[0] = UNW_P2 | (brmask >> 1);
1321 bytes[1] = (((brmask & 1) << 7) | gr);
1322 (*f) (2, bytes, NULL);
1323 }
1324
1325 static void
1326 output_P3_format (f, rtype, reg)
1327 vbyte_func f;
1328 unw_record_type rtype;
1329 int reg;
1330 {
1331 char bytes[2];
1332 int r = 0;
1333 reg = (reg & 0x7f);
1334 switch (rtype)
1335 {
1336 case psp_gr:
1337 r = 0;
1338 break;
1339 case rp_gr:
1340 r = 1;
1341 break;
1342 case pfs_gr:
1343 r = 2;
1344 break;
1345 case preds_gr:
1346 r = 3;
1347 break;
1348 case unat_gr:
1349 r = 4;
1350 break;
1351 case lc_gr:
1352 r = 5;
1353 break;
1354 case rp_br:
1355 r = 6;
1356 break;
1357 case rnat_gr:
1358 r = 7;
1359 break;
1360 case bsp_gr:
1361 r = 8;
1362 break;
1363 case bspstore_gr:
1364 r = 9;
1365 break;
1366 case fpsr_gr:
1367 r = 10;
1368 break;
1369 case priunat_gr:
1370 r = 11;
1371 break;
1372 default:
1373 as_bad (_("Invalid record type for P3 format."));
1374 }
1375 bytes[0] = (UNW_P3 | (r >> 1));
1376 bytes[1] = (((r & 1) << 7) | reg);
1377 (*f) (2, bytes, NULL);
1378 }
1379
1380 static void
1381 output_P4_format (f, imask, imask_size)
1382 vbyte_func f;
1383 unsigned char *imask;
1384 unsigned long imask_size;
1385 {
1386 imask[0] = UNW_P4;
1387 (*f) (imask_size, (char *) imask, NULL);
1388 }
1389
1390 static void
1391 output_P5_format (f, grmask, frmask)
1392 vbyte_func f;
1393 int grmask;
1394 unsigned long frmask;
1395 {
1396 char bytes[4];
1397 grmask = (grmask & 0x0f);
1398
1399 bytes[0] = UNW_P5;
1400 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1401 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1402 bytes[3] = (frmask & 0x000000ff);
1403 (*f) (4, bytes, NULL);
1404 }
1405
1406 static void
1407 output_P6_format (f, rtype, rmask)
1408 vbyte_func f;
1409 unw_record_type rtype;
1410 int rmask;
1411 {
1412 char byte;
1413 int r = 0;
1414
1415 if (rtype == gr_mem)
1416 r = 1;
1417 else if (rtype != fr_mem)
1418 as_bad (_("Invalid record type for format P6"));
1419 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1420 (*f) (1, &byte, NULL);
1421 }
1422
1423 static void
1424 output_P7_format (f, rtype, w1, w2)
1425 vbyte_func f;
1426 unw_record_type rtype;
1427 unsigned long w1;
1428 unsigned long w2;
1429 {
1430 char bytes[20];
1431 int count = 1;
1432 int r = 0;
1433 count += output_leb128 (bytes + 1, w1, 0);
1434 switch (rtype)
1435 {
1436 case mem_stack_f:
1437 r = 0;
1438 count += output_leb128 (bytes + count, w2 >> 4, 0);
1439 break;
1440 case mem_stack_v:
1441 r = 1;
1442 break;
1443 case spill_base:
1444 r = 2;
1445 break;
1446 case psp_sprel:
1447 r = 3;
1448 break;
1449 case rp_when:
1450 r = 4;
1451 break;
1452 case rp_psprel:
1453 r = 5;
1454 break;
1455 case pfs_when:
1456 r = 6;
1457 break;
1458 case pfs_psprel:
1459 r = 7;
1460 break;
1461 case preds_when:
1462 r = 8;
1463 break;
1464 case preds_psprel:
1465 r = 9;
1466 break;
1467 case lc_when:
1468 r = 10;
1469 break;
1470 case lc_psprel:
1471 r = 11;
1472 break;
1473 case unat_when:
1474 r = 12;
1475 break;
1476 case unat_psprel:
1477 r = 13;
1478 break;
1479 case fpsr_when:
1480 r = 14;
1481 break;
1482 case fpsr_psprel:
1483 r = 15;
1484 break;
1485 default:
1486 break;
1487 }
1488 bytes[0] = (UNW_P7 | r);
1489 (*f) (count, bytes, NULL);
1490 }
1491
1492 static void
1493 output_P8_format (f, rtype, t)
1494 vbyte_func f;
1495 unw_record_type rtype;
1496 unsigned long t;
1497 {
1498 char bytes[20];
1499 int r = 0;
1500 int count = 2;
1501 bytes[0] = UNW_P8;
1502 switch (rtype)
1503 {
1504 case rp_sprel:
1505 r = 1;
1506 break;
1507 case pfs_sprel:
1508 r = 2;
1509 break;
1510 case preds_sprel:
1511 r = 3;
1512 break;
1513 case lc_sprel:
1514 r = 4;
1515 break;
1516 case unat_sprel:
1517 r = 5;
1518 break;
1519 case fpsr_sprel:
1520 r = 6;
1521 break;
1522 case bsp_when:
1523 r = 7;
1524 break;
1525 case bsp_psprel:
1526 r = 8;
1527 break;
1528 case bsp_sprel:
1529 r = 9;
1530 break;
1531 case bspstore_when:
1532 r = 10;
1533 break;
1534 case bspstore_psprel:
1535 r = 11;
1536 break;
1537 case bspstore_sprel:
1538 r = 12;
1539 break;
1540 case rnat_when:
1541 r = 13;
1542 break;
1543 case rnat_psprel:
1544 r = 14;
1545 break;
1546 case rnat_sprel:
1547 r = 15;
1548 break;
1549 case priunat_when_gr:
1550 r = 16;
1551 break;
1552 case priunat_psprel:
1553 r = 17;
1554 break;
1555 case priunat_sprel:
1556 r = 18;
1557 break;
1558 case priunat_when_mem:
1559 r = 19;
1560 break;
1561 default:
1562 break;
1563 }
1564 bytes[1] = r;
1565 count += output_leb128 (bytes + 2, t, 0);
1566 (*f) (count, bytes, NULL);
1567 }
1568
1569 static void
1570 output_P9_format (f, grmask, gr)
1571 vbyte_func f;
1572 int grmask;
1573 int gr;
1574 {
1575 char bytes[3];
1576 bytes[0] = UNW_P9;
1577 bytes[1] = (grmask & 0x0f);
1578 bytes[2] = (gr & 0x7f);
1579 (*f) (3, bytes, NULL);
1580 }
1581
1582 static void
1583 output_P10_format (f, abi, context)
1584 vbyte_func f;
1585 int abi;
1586 int context;
1587 {
1588 char bytes[3];
1589 bytes[0] = UNW_P10;
1590 bytes[1] = (abi & 0xff);
1591 bytes[2] = (context & 0xff);
1592 (*f) (3, bytes, NULL);
1593 }
1594
1595 static void
1596 output_B1_format (f, rtype, label)
1597 vbyte_func f;
1598 unw_record_type rtype;
1599 unsigned long label;
1600 {
1601 char byte;
1602 int r = 0;
1603 if (label > 0x1f)
1604 {
1605 output_B4_format (f, rtype, label);
1606 return;
1607 }
1608 if (rtype == copy_state)
1609 r = 1;
1610 else if (rtype != label_state)
1611 as_bad (_("Invalid record type for format B1"));
1612
1613 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1614 (*f) (1, &byte, NULL);
1615 }
1616
1617 static void
1618 output_B2_format (f, ecount, t)
1619 vbyte_func f;
1620 unsigned long ecount;
1621 unsigned long t;
1622 {
1623 char bytes[20];
1624 int count = 1;
1625 if (ecount > 0x1f)
1626 {
1627 output_B3_format (f, ecount, t);
1628 return;
1629 }
1630 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1631 count += output_leb128 (bytes + 1, t, 0);
1632 (*f) (count, bytes, NULL);
1633 }
1634
1635 static void
1636 output_B3_format (f, ecount, t)
1637 vbyte_func f;
1638 unsigned long ecount;
1639 unsigned long t;
1640 {
1641 char bytes[20];
1642 int count = 1;
1643 if (ecount <= 0x1f)
1644 {
1645 output_B2_format (f, ecount, t);
1646 return;
1647 }
1648 bytes[0] = UNW_B3;
1649 count += output_leb128 (bytes + 1, t, 0);
1650 count += output_leb128 (bytes + count, ecount, 0);
1651 (*f) (count, bytes, NULL);
1652 }
1653
1654 static void
1655 output_B4_format (f, rtype, label)
1656 vbyte_func f;
1657 unw_record_type rtype;
1658 unsigned long label;
1659 {
1660 char bytes[20];
1661 int r = 0;
1662 int count = 1;
1663 if (label <= 0x1f)
1664 {
1665 output_B1_format (f, rtype, label);
1666 return;
1667 }
1668
1669 if (rtype == copy_state)
1670 r = 1;
1671 else if (rtype != label_state)
1672 as_bad (_("Invalid record type for format B1"));
1673
1674 bytes[0] = (UNW_B4 | (r << 3));
1675 count += output_leb128 (bytes + 1, label, 0);
1676 (*f) (count, bytes, NULL);
1677 }
1678
1679 static char
1680 format_ab_reg (ab, reg)
1681 int ab;
1682 int reg;
1683 {
1684 int ret;
1685 ab = (ab & 3);
1686 reg = (reg & 0x1f);
1687 ret = (ab << 5) | reg;
1688 return ret;
1689 }
1690
1691 static void
1692 output_X1_format (f, rtype, ab, reg, t, w1)
1693 vbyte_func f;
1694 unw_record_type rtype;
1695 int ab, reg;
1696 unsigned long t;
1697 unsigned long w1;
1698 {
1699 char bytes[20];
1700 int r = 0;
1701 int count = 2;
1702 bytes[0] = UNW_X1;
1703
1704 if (rtype == spill_sprel)
1705 r = 1;
1706 else if (rtype != spill_psprel)
1707 as_bad (_("Invalid record type for format X1"));
1708 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1709 count += output_leb128 (bytes + 2, t, 0);
1710 count += output_leb128 (bytes + count, w1, 0);
1711 (*f) (count, bytes, NULL);
1712 }
1713
1714 static void
1715 output_X2_format (f, ab, reg, x, y, treg, t)
1716 vbyte_func f;
1717 int ab, reg;
1718 int x, y, treg;
1719 unsigned long t;
1720 {
1721 char bytes[20];
1722 int count = 3;
1723 bytes[0] = UNW_X2;
1724 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1725 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1726 count += output_leb128 (bytes + 3, t, 0);
1727 (*f) (count, bytes, NULL);
1728 }
1729
1730 static void
1731 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1732 vbyte_func f;
1733 unw_record_type rtype;
1734 int qp;
1735 int ab, reg;
1736 unsigned long t;
1737 unsigned long w1;
1738 {
1739 char bytes[20];
1740 int r = 0;
1741 int count = 3;
1742 bytes[0] = UNW_X3;
1743
1744 if (rtype == spill_sprel_p)
1745 r = 1;
1746 else if (rtype != spill_psprel_p)
1747 as_bad (_("Invalid record type for format X3"));
1748 bytes[1] = ((r << 7) | (qp & 0x3f));
1749 bytes[2] = format_ab_reg (ab, reg);
1750 count += output_leb128 (bytes + 3, t, 0);
1751 count += output_leb128 (bytes + count, w1, 0);
1752 (*f) (count, bytes, NULL);
1753 }
1754
1755 static void
1756 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1757 vbyte_func f;
1758 int qp;
1759 int ab, reg;
1760 int x, y, treg;
1761 unsigned long t;
1762 {
1763 char bytes[20];
1764 int count = 4;
1765 bytes[0] = UNW_X4;
1766 bytes[1] = (qp & 0x3f);
1767 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1768 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1769 count += output_leb128 (bytes + 4, t, 0);
1770 (*f) (count, bytes, NULL);
1771 }
1772
1773 /* This function checks whether there are any outstanding .save-s and
1774 discards them if so. */
1775
1776 static void
1777 check_pending_save (void)
1778 {
1779 if (unwind.pending_saves)
1780 {
1781 unw_rec_list *cur, *prev;
1782
1783 as_warn (_("Previous .save incomplete"));
1784 for (cur = unwind.list, prev = NULL; cur; )
1785 if (&cur->r.record.p == unwind.pending_saves)
1786 {
1787 if (prev)
1788 prev->next = cur->next;
1789 else
1790 unwind.list = cur->next;
1791 if (cur == unwind.tail)
1792 unwind.tail = prev;
1793 if (cur == unwind.current_entry)
1794 unwind.current_entry = cur->next;
1795 /* Don't free the first discarded record, it's being used as
1796 terminator for (currently) br_gr and gr_gr processing, and
1797 also prevents leaving a dangling pointer to it in its
1798 predecessor. */
1799 cur->r.record.p.grmask = 0;
1800 cur->r.record.p.brmask = 0;
1801 cur->r.record.p.frmask = 0;
1802 prev = cur->r.record.p.next;
1803 cur->r.record.p.next = NULL;
1804 cur = prev;
1805 break;
1806 }
1807 else
1808 {
1809 prev = cur;
1810 cur = cur->next;
1811 }
1812 while (cur)
1813 {
1814 prev = cur;
1815 cur = cur->r.record.p.next;
1816 free (prev);
1817 }
1818 unwind.pending_saves = NULL;
1819 }
1820 }
1821
1822 /* This function allocates a record list structure, and initializes fields. */
1823
1824 static unw_rec_list *
1825 alloc_record (unw_record_type t)
1826 {
1827 unw_rec_list *ptr;
1828 ptr = xmalloc (sizeof (*ptr));
1829 memset (ptr, 0, sizeof (*ptr));
1830 ptr->slot_number = SLOT_NUM_NOT_SET;
1831 ptr->r.type = t;
1832 return ptr;
1833 }
1834
1835 /* Dummy unwind record used for calculating the length of the last prologue or
1836 body region. */
1837
1838 static unw_rec_list *
1839 output_endp ()
1840 {
1841 unw_rec_list *ptr = alloc_record (endp);
1842 return ptr;
1843 }
1844
1845 static unw_rec_list *
1846 output_prologue ()
1847 {
1848 unw_rec_list *ptr = alloc_record (prologue);
1849 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1850 return ptr;
1851 }
1852
1853 static unw_rec_list *
1854 output_prologue_gr (saved_mask, reg)
1855 unsigned int saved_mask;
1856 unsigned int reg;
1857 {
1858 unw_rec_list *ptr = alloc_record (prologue_gr);
1859 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1860 ptr->r.record.r.grmask = saved_mask;
1861 ptr->r.record.r.grsave = reg;
1862 return ptr;
1863 }
1864
1865 static unw_rec_list *
1866 output_body ()
1867 {
1868 unw_rec_list *ptr = alloc_record (body);
1869 return ptr;
1870 }
1871
1872 static unw_rec_list *
1873 output_mem_stack_f (size)
1874 unsigned int size;
1875 {
1876 unw_rec_list *ptr = alloc_record (mem_stack_f);
1877 ptr->r.record.p.size = size;
1878 return ptr;
1879 }
1880
1881 static unw_rec_list *
1882 output_mem_stack_v ()
1883 {
1884 unw_rec_list *ptr = alloc_record (mem_stack_v);
1885 return ptr;
1886 }
1887
1888 static unw_rec_list *
1889 output_psp_gr (gr)
1890 unsigned int gr;
1891 {
1892 unw_rec_list *ptr = alloc_record (psp_gr);
1893 ptr->r.record.p.r.gr = gr;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_psp_sprel (offset)
1899 unsigned int offset;
1900 {
1901 unw_rec_list *ptr = alloc_record (psp_sprel);
1902 ptr->r.record.p.off.sp = offset / 4;
1903 return ptr;
1904 }
1905
1906 static unw_rec_list *
1907 output_rp_when ()
1908 {
1909 unw_rec_list *ptr = alloc_record (rp_when);
1910 return ptr;
1911 }
1912
1913 static unw_rec_list *
1914 output_rp_gr (gr)
1915 unsigned int gr;
1916 {
1917 unw_rec_list *ptr = alloc_record (rp_gr);
1918 ptr->r.record.p.r.gr = gr;
1919 return ptr;
1920 }
1921
1922 static unw_rec_list *
1923 output_rp_br (br)
1924 unsigned int br;
1925 {
1926 unw_rec_list *ptr = alloc_record (rp_br);
1927 ptr->r.record.p.r.br = br;
1928 return ptr;
1929 }
1930
1931 static unw_rec_list *
1932 output_rp_psprel (offset)
1933 unsigned int offset;
1934 {
1935 unw_rec_list *ptr = alloc_record (rp_psprel);
1936 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1937 return ptr;
1938 }
1939
1940 static unw_rec_list *
1941 output_rp_sprel (offset)
1942 unsigned int offset;
1943 {
1944 unw_rec_list *ptr = alloc_record (rp_sprel);
1945 ptr->r.record.p.off.sp = offset / 4;
1946 return ptr;
1947 }
1948
1949 static unw_rec_list *
1950 output_pfs_when ()
1951 {
1952 unw_rec_list *ptr = alloc_record (pfs_when);
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_pfs_gr (gr)
1958 unsigned int gr;
1959 {
1960 unw_rec_list *ptr = alloc_record (pfs_gr);
1961 ptr->r.record.p.r.gr = gr;
1962 return ptr;
1963 }
1964
1965 static unw_rec_list *
1966 output_pfs_psprel (offset)
1967 unsigned int offset;
1968 {
1969 unw_rec_list *ptr = alloc_record (pfs_psprel);
1970 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1971 return ptr;
1972 }
1973
1974 static unw_rec_list *
1975 output_pfs_sprel (offset)
1976 unsigned int offset;
1977 {
1978 unw_rec_list *ptr = alloc_record (pfs_sprel);
1979 ptr->r.record.p.off.sp = offset / 4;
1980 return ptr;
1981 }
1982
1983 static unw_rec_list *
1984 output_preds_when ()
1985 {
1986 unw_rec_list *ptr = alloc_record (preds_when);
1987 return ptr;
1988 }
1989
1990 static unw_rec_list *
1991 output_preds_gr (gr)
1992 unsigned int gr;
1993 {
1994 unw_rec_list *ptr = alloc_record (preds_gr);
1995 ptr->r.record.p.r.gr = gr;
1996 return ptr;
1997 }
1998
1999 static unw_rec_list *
2000 output_preds_psprel (offset)
2001 unsigned int offset;
2002 {
2003 unw_rec_list *ptr = alloc_record (preds_psprel);
2004 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2005 return ptr;
2006 }
2007
2008 static unw_rec_list *
2009 output_preds_sprel (offset)
2010 unsigned int offset;
2011 {
2012 unw_rec_list *ptr = alloc_record (preds_sprel);
2013 ptr->r.record.p.off.sp = offset / 4;
2014 return ptr;
2015 }
2016
2017 static unw_rec_list *
2018 output_fr_mem (mask)
2019 unsigned int mask;
2020 {
2021 unw_rec_list *ptr = alloc_record (fr_mem);
2022 unw_rec_list *cur = ptr;
2023
2024 ptr->r.record.p.frmask = mask;
2025 unwind.pending_saves = &ptr->r.record.p;
2026 for (;;)
2027 {
2028 unw_rec_list *prev = cur;
2029
2030 /* Clear least significant set bit. */
2031 mask &= ~(mask & (~mask + 1));
2032 if (!mask)
2033 return ptr;
2034 cur = alloc_record (fr_mem);
2035 cur->r.record.p.frmask = mask;
2036 /* Retain only least significant bit. */
2037 prev->r.record.p.frmask ^= mask;
2038 prev->r.record.p.next = cur;
2039 }
2040 }
2041
2042 static unw_rec_list *
2043 output_frgr_mem (gr_mask, fr_mask)
2044 unsigned int gr_mask;
2045 unsigned int fr_mask;
2046 {
2047 unw_rec_list *ptr = alloc_record (frgr_mem);
2048 unw_rec_list *cur = ptr;
2049
2050 unwind.pending_saves = &cur->r.record.p;
2051 cur->r.record.p.frmask = fr_mask;
2052 while (fr_mask)
2053 {
2054 unw_rec_list *prev = cur;
2055
2056 /* Clear least significant set bit. */
2057 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2058 if (!gr_mask && !fr_mask)
2059 return ptr;
2060 cur = alloc_record (frgr_mem);
2061 cur->r.record.p.frmask = fr_mask;
2062 /* Retain only least significant bit. */
2063 prev->r.record.p.frmask ^= fr_mask;
2064 prev->r.record.p.next = cur;
2065 }
2066 cur->r.record.p.grmask = gr_mask;
2067 for (;;)
2068 {
2069 unw_rec_list *prev = cur;
2070
2071 /* Clear least significant set bit. */
2072 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2073 if (!gr_mask)
2074 return ptr;
2075 cur = alloc_record (frgr_mem);
2076 cur->r.record.p.grmask = gr_mask;
2077 /* Retain only least significant bit. */
2078 prev->r.record.p.grmask ^= gr_mask;
2079 prev->r.record.p.next = cur;
2080 }
2081 }
2082
2083 static unw_rec_list *
2084 output_gr_gr (mask, reg)
2085 unsigned int mask;
2086 unsigned int reg;
2087 {
2088 unw_rec_list *ptr = alloc_record (gr_gr);
2089 unw_rec_list *cur = ptr;
2090
2091 ptr->r.record.p.grmask = mask;
2092 ptr->r.record.p.r.gr = reg;
2093 unwind.pending_saves = &ptr->r.record.p;
2094 for (;;)
2095 {
2096 unw_rec_list *prev = cur;
2097
2098 /* Clear least significant set bit. */
2099 mask &= ~(mask & (~mask + 1));
2100 if (!mask)
2101 return ptr;
2102 cur = alloc_record (gr_gr);
2103 cur->r.record.p.grmask = mask;
2104 /* Indicate this record shouldn't be output. */
2105 cur->r.record.p.r.gr = REG_NUM;
2106 /* Retain only least significant bit. */
2107 prev->r.record.p.grmask ^= mask;
2108 prev->r.record.p.next = cur;
2109 }
2110 }
2111
2112 static unw_rec_list *
2113 output_gr_mem (mask)
2114 unsigned int mask;
2115 {
2116 unw_rec_list *ptr = alloc_record (gr_mem);
2117 unw_rec_list *cur = ptr;
2118
2119 ptr->r.record.p.grmask = mask;
2120 unwind.pending_saves = &ptr->r.record.p;
2121 for (;;)
2122 {
2123 unw_rec_list *prev = cur;
2124
2125 /* Clear least significant set bit. */
2126 mask &= ~(mask & (~mask + 1));
2127 if (!mask)
2128 return ptr;
2129 cur = alloc_record (gr_mem);
2130 cur->r.record.p.grmask = mask;
2131 /* Retain only least significant bit. */
2132 prev->r.record.p.grmask ^= mask;
2133 prev->r.record.p.next = cur;
2134 }
2135 }
2136
2137 static unw_rec_list *
2138 output_br_mem (unsigned int mask)
2139 {
2140 unw_rec_list *ptr = alloc_record (br_mem);
2141 unw_rec_list *cur = ptr;
2142
2143 ptr->r.record.p.brmask = mask;
2144 unwind.pending_saves = &ptr->r.record.p;
2145 for (;;)
2146 {
2147 unw_rec_list *prev = cur;
2148
2149 /* Clear least significant set bit. */
2150 mask &= ~(mask & (~mask + 1));
2151 if (!mask)
2152 return ptr;
2153 cur = alloc_record (br_mem);
2154 cur->r.record.p.brmask = mask;
2155 /* Retain only least significant bit. */
2156 prev->r.record.p.brmask ^= mask;
2157 prev->r.record.p.next = cur;
2158 }
2159 }
2160
2161 static unw_rec_list *
2162 output_br_gr (mask, reg)
2163 unsigned int mask;
2164 unsigned int reg;
2165 {
2166 unw_rec_list *ptr = alloc_record (br_gr);
2167 unw_rec_list *cur = ptr;
2168
2169 ptr->r.record.p.brmask = mask;
2170 ptr->r.record.p.r.gr = reg;
2171 unwind.pending_saves = &ptr->r.record.p;
2172 for (;;)
2173 {
2174 unw_rec_list *prev = cur;
2175
2176 /* Clear least significant set bit. */
2177 mask &= ~(mask & (~mask + 1));
2178 if (!mask)
2179 return ptr;
2180 cur = alloc_record (br_gr);
2181 cur->r.record.p.brmask = mask;
2182 /* Indicate this record shouldn't be output. */
2183 cur->r.record.p.r.gr = REG_NUM;
2184 /* Retain only least significant bit. */
2185 prev->r.record.p.brmask ^= mask;
2186 prev->r.record.p.next = cur;
2187 }
2188 }
2189
2190 static unw_rec_list *
2191 output_spill_base (offset)
2192 unsigned int offset;
2193 {
2194 unw_rec_list *ptr = alloc_record (spill_base);
2195 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2196 return ptr;
2197 }
2198
2199 static unw_rec_list *
2200 output_unat_when ()
2201 {
2202 unw_rec_list *ptr = alloc_record (unat_when);
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_unat_gr (gr)
2208 unsigned int gr;
2209 {
2210 unw_rec_list *ptr = alloc_record (unat_gr);
2211 ptr->r.record.p.r.gr = gr;
2212 return ptr;
2213 }
2214
2215 static unw_rec_list *
2216 output_unat_psprel (offset)
2217 unsigned int offset;
2218 {
2219 unw_rec_list *ptr = alloc_record (unat_psprel);
2220 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2221 return ptr;
2222 }
2223
2224 static unw_rec_list *
2225 output_unat_sprel (offset)
2226 unsigned int offset;
2227 {
2228 unw_rec_list *ptr = alloc_record (unat_sprel);
2229 ptr->r.record.p.off.sp = offset / 4;
2230 return ptr;
2231 }
2232
2233 static unw_rec_list *
2234 output_lc_when ()
2235 {
2236 unw_rec_list *ptr = alloc_record (lc_when);
2237 return ptr;
2238 }
2239
2240 static unw_rec_list *
2241 output_lc_gr (gr)
2242 unsigned int gr;
2243 {
2244 unw_rec_list *ptr = alloc_record (lc_gr);
2245 ptr->r.record.p.r.gr = gr;
2246 return ptr;
2247 }
2248
2249 static unw_rec_list *
2250 output_lc_psprel (offset)
2251 unsigned int offset;
2252 {
2253 unw_rec_list *ptr = alloc_record (lc_psprel);
2254 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2255 return ptr;
2256 }
2257
2258 static unw_rec_list *
2259 output_lc_sprel (offset)
2260 unsigned int offset;
2261 {
2262 unw_rec_list *ptr = alloc_record (lc_sprel);
2263 ptr->r.record.p.off.sp = offset / 4;
2264 return ptr;
2265 }
2266
2267 static unw_rec_list *
2268 output_fpsr_when ()
2269 {
2270 unw_rec_list *ptr = alloc_record (fpsr_when);
2271 return ptr;
2272 }
2273
2274 static unw_rec_list *
2275 output_fpsr_gr (gr)
2276 unsigned int gr;
2277 {
2278 unw_rec_list *ptr = alloc_record (fpsr_gr);
2279 ptr->r.record.p.r.gr = gr;
2280 return ptr;
2281 }
2282
2283 static unw_rec_list *
2284 output_fpsr_psprel (offset)
2285 unsigned int offset;
2286 {
2287 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2288 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2289 return ptr;
2290 }
2291
2292 static unw_rec_list *
2293 output_fpsr_sprel (offset)
2294 unsigned int offset;
2295 {
2296 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2297 ptr->r.record.p.off.sp = offset / 4;
2298 return ptr;
2299 }
2300
2301 static unw_rec_list *
2302 output_priunat_when_gr ()
2303 {
2304 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2305 return ptr;
2306 }
2307
2308 static unw_rec_list *
2309 output_priunat_when_mem ()
2310 {
2311 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2312 return ptr;
2313 }
2314
2315 static unw_rec_list *
2316 output_priunat_gr (gr)
2317 unsigned int gr;
2318 {
2319 unw_rec_list *ptr = alloc_record (priunat_gr);
2320 ptr->r.record.p.r.gr = gr;
2321 return ptr;
2322 }
2323
2324 static unw_rec_list *
2325 output_priunat_psprel (offset)
2326 unsigned int offset;
2327 {
2328 unw_rec_list *ptr = alloc_record (priunat_psprel);
2329 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2330 return ptr;
2331 }
2332
2333 static unw_rec_list *
2334 output_priunat_sprel (offset)
2335 unsigned int offset;
2336 {
2337 unw_rec_list *ptr = alloc_record (priunat_sprel);
2338 ptr->r.record.p.off.sp = offset / 4;
2339 return ptr;
2340 }
2341
2342 static unw_rec_list *
2343 output_bsp_when ()
2344 {
2345 unw_rec_list *ptr = alloc_record (bsp_when);
2346 return ptr;
2347 }
2348
2349 static unw_rec_list *
2350 output_bsp_gr (gr)
2351 unsigned int gr;
2352 {
2353 unw_rec_list *ptr = alloc_record (bsp_gr);
2354 ptr->r.record.p.r.gr = gr;
2355 return ptr;
2356 }
2357
2358 static unw_rec_list *
2359 output_bsp_psprel (offset)
2360 unsigned int offset;
2361 {
2362 unw_rec_list *ptr = alloc_record (bsp_psprel);
2363 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2364 return ptr;
2365 }
2366
2367 static unw_rec_list *
2368 output_bsp_sprel (offset)
2369 unsigned int offset;
2370 {
2371 unw_rec_list *ptr = alloc_record (bsp_sprel);
2372 ptr->r.record.p.off.sp = offset / 4;
2373 return ptr;
2374 }
2375
2376 static unw_rec_list *
2377 output_bspstore_when ()
2378 {
2379 unw_rec_list *ptr = alloc_record (bspstore_when);
2380 return ptr;
2381 }
2382
2383 static unw_rec_list *
2384 output_bspstore_gr (gr)
2385 unsigned int gr;
2386 {
2387 unw_rec_list *ptr = alloc_record (bspstore_gr);
2388 ptr->r.record.p.r.gr = gr;
2389 return ptr;
2390 }
2391
2392 static unw_rec_list *
2393 output_bspstore_psprel (offset)
2394 unsigned int offset;
2395 {
2396 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2397 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2398 return ptr;
2399 }
2400
2401 static unw_rec_list *
2402 output_bspstore_sprel (offset)
2403 unsigned int offset;
2404 {
2405 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2406 ptr->r.record.p.off.sp = offset / 4;
2407 return ptr;
2408 }
2409
2410 static unw_rec_list *
2411 output_rnat_when ()
2412 {
2413 unw_rec_list *ptr = alloc_record (rnat_when);
2414 return ptr;
2415 }
2416
2417 static unw_rec_list *
2418 output_rnat_gr (gr)
2419 unsigned int gr;
2420 {
2421 unw_rec_list *ptr = alloc_record (rnat_gr);
2422 ptr->r.record.p.r.gr = gr;
2423 return ptr;
2424 }
2425
2426 static unw_rec_list *
2427 output_rnat_psprel (offset)
2428 unsigned int offset;
2429 {
2430 unw_rec_list *ptr = alloc_record (rnat_psprel);
2431 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2432 return ptr;
2433 }
2434
2435 static unw_rec_list *
2436 output_rnat_sprel (offset)
2437 unsigned int offset;
2438 {
2439 unw_rec_list *ptr = alloc_record (rnat_sprel);
2440 ptr->r.record.p.off.sp = offset / 4;
2441 return ptr;
2442 }
2443
2444 static unw_rec_list *
2445 output_unwabi (abi, context)
2446 unsigned long abi;
2447 unsigned long context;
2448 {
2449 unw_rec_list *ptr = alloc_record (unwabi);
2450 ptr->r.record.p.abi = abi;
2451 ptr->r.record.p.context = context;
2452 return ptr;
2453 }
2454
2455 static unw_rec_list *
2456 output_epilogue (unsigned long ecount)
2457 {
2458 unw_rec_list *ptr = alloc_record (epilogue);
2459 ptr->r.record.b.ecount = ecount;
2460 return ptr;
2461 }
2462
2463 static unw_rec_list *
2464 output_label_state (unsigned long label)
2465 {
2466 unw_rec_list *ptr = alloc_record (label_state);
2467 ptr->r.record.b.label = label;
2468 return ptr;
2469 }
2470
2471 static unw_rec_list *
2472 output_copy_state (unsigned long label)
2473 {
2474 unw_rec_list *ptr = alloc_record (copy_state);
2475 ptr->r.record.b.label = label;
2476 return ptr;
2477 }
2478
2479 static unw_rec_list *
2480 output_spill_psprel (ab, reg, offset, predicate)
2481 unsigned int ab;
2482 unsigned int reg;
2483 unsigned int offset;
2484 unsigned int predicate;
2485 {
2486 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2487 ptr->r.record.x.ab = ab;
2488 ptr->r.record.x.reg = reg;
2489 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2490 ptr->r.record.x.qp = predicate;
2491 return ptr;
2492 }
2493
2494 static unw_rec_list *
2495 output_spill_sprel (ab, reg, offset, predicate)
2496 unsigned int ab;
2497 unsigned int reg;
2498 unsigned int offset;
2499 unsigned int predicate;
2500 {
2501 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2502 ptr->r.record.x.ab = ab;
2503 ptr->r.record.x.reg = reg;
2504 ptr->r.record.x.where.spoff = offset / 4;
2505 ptr->r.record.x.qp = predicate;
2506 return ptr;
2507 }
2508
2509 static unw_rec_list *
2510 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2511 unsigned int ab;
2512 unsigned int reg;
2513 unsigned int targ_reg;
2514 unsigned int xy;
2515 unsigned int predicate;
2516 {
2517 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2518 ptr->r.record.x.ab = ab;
2519 ptr->r.record.x.reg = reg;
2520 ptr->r.record.x.where.reg = targ_reg;
2521 ptr->r.record.x.xy = xy;
2522 ptr->r.record.x.qp = predicate;
2523 return ptr;
2524 }
2525
2526 /* Given a unw_rec_list process the correct format with the
2527 specified function. */
2528
2529 static void
2530 process_one_record (ptr, f)
2531 unw_rec_list *ptr;
2532 vbyte_func f;
2533 {
2534 unsigned int fr_mask, gr_mask;
2535
2536 switch (ptr->r.type)
2537 {
2538 /* This is a dummy record that takes up no space in the output. */
2539 case endp:
2540 break;
2541
2542 case gr_mem:
2543 case fr_mem:
2544 case br_mem:
2545 case frgr_mem:
2546 /* These are taken care of by prologue/prologue_gr. */
2547 break;
2548
2549 case prologue_gr:
2550 case prologue:
2551 if (ptr->r.type == prologue_gr)
2552 output_R2_format (f, ptr->r.record.r.grmask,
2553 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2554 else
2555 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2556
2557 /* Output descriptor(s) for union of register spills (if any). */
2558 gr_mask = ptr->r.record.r.mask.gr_mem;
2559 fr_mask = ptr->r.record.r.mask.fr_mem;
2560 if (fr_mask)
2561 {
2562 if ((fr_mask & ~0xfUL) == 0)
2563 output_P6_format (f, fr_mem, fr_mask);
2564 else
2565 {
2566 output_P5_format (f, gr_mask, fr_mask);
2567 gr_mask = 0;
2568 }
2569 }
2570 if (gr_mask)
2571 output_P6_format (f, gr_mem, gr_mask);
2572 if (ptr->r.record.r.mask.br_mem)
2573 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2574
2575 /* output imask descriptor if necessary: */
2576 if (ptr->r.record.r.mask.i)
2577 output_P4_format (f, ptr->r.record.r.mask.i,
2578 ptr->r.record.r.imask_size);
2579 break;
2580
2581 case body:
2582 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2583 break;
2584 case mem_stack_f:
2585 case mem_stack_v:
2586 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2587 ptr->r.record.p.size);
2588 break;
2589 case psp_gr:
2590 case rp_gr:
2591 case pfs_gr:
2592 case preds_gr:
2593 case unat_gr:
2594 case lc_gr:
2595 case fpsr_gr:
2596 case priunat_gr:
2597 case bsp_gr:
2598 case bspstore_gr:
2599 case rnat_gr:
2600 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2601 break;
2602 case rp_br:
2603 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2604 break;
2605 case psp_sprel:
2606 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2607 break;
2608 case rp_when:
2609 case pfs_when:
2610 case preds_when:
2611 case unat_when:
2612 case lc_when:
2613 case fpsr_when:
2614 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2615 break;
2616 case rp_psprel:
2617 case pfs_psprel:
2618 case preds_psprel:
2619 case unat_psprel:
2620 case lc_psprel:
2621 case fpsr_psprel:
2622 case spill_base:
2623 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2624 break;
2625 case rp_sprel:
2626 case pfs_sprel:
2627 case preds_sprel:
2628 case unat_sprel:
2629 case lc_sprel:
2630 case fpsr_sprel:
2631 case priunat_sprel:
2632 case bsp_sprel:
2633 case bspstore_sprel:
2634 case rnat_sprel:
2635 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2636 break;
2637 case gr_gr:
2638 if (ptr->r.record.p.r.gr < REG_NUM)
2639 {
2640 const unw_rec_list *cur = ptr;
2641
2642 gr_mask = cur->r.record.p.grmask;
2643 while ((cur = cur->r.record.p.next) != NULL)
2644 gr_mask |= cur->r.record.p.grmask;
2645 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2646 }
2647 break;
2648 case br_gr:
2649 if (ptr->r.record.p.r.gr < REG_NUM)
2650 {
2651 const unw_rec_list *cur = ptr;
2652
2653 gr_mask = cur->r.record.p.brmask;
2654 while ((cur = cur->r.record.p.next) != NULL)
2655 gr_mask |= cur->r.record.p.brmask;
2656 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2657 }
2658 break;
2659 case spill_mask:
2660 as_bad (_("spill_mask record unimplemented."));
2661 break;
2662 case priunat_when_gr:
2663 case priunat_when_mem:
2664 case bsp_when:
2665 case bspstore_when:
2666 case rnat_when:
2667 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2668 break;
2669 case priunat_psprel:
2670 case bsp_psprel:
2671 case bspstore_psprel:
2672 case rnat_psprel:
2673 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2674 break;
2675 case unwabi:
2676 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2677 break;
2678 case epilogue:
2679 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2680 break;
2681 case label_state:
2682 case copy_state:
2683 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2684 break;
2685 case spill_psprel:
2686 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2687 ptr->r.record.x.reg, ptr->r.record.x.t,
2688 ptr->r.record.x.where.pspoff);
2689 break;
2690 case spill_sprel:
2691 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2692 ptr->r.record.x.reg, ptr->r.record.x.t,
2693 ptr->r.record.x.where.spoff);
2694 break;
2695 case spill_reg:
2696 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2697 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2698 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2699 break;
2700 case spill_psprel_p:
2701 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2702 ptr->r.record.x.ab, ptr->r.record.x.reg,
2703 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2704 break;
2705 case spill_sprel_p:
2706 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2707 ptr->r.record.x.ab, ptr->r.record.x.reg,
2708 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2709 break;
2710 case spill_reg_p:
2711 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2712 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2713 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2714 ptr->r.record.x.t);
2715 break;
2716 default:
2717 as_bad (_("record_type_not_valid"));
2718 break;
2719 }
2720 }
2721
2722 /* Given a unw_rec_list list, process all the records with
2723 the specified function. */
2724 static void
2725 process_unw_records (list, f)
2726 unw_rec_list *list;
2727 vbyte_func f;
2728 {
2729 unw_rec_list *ptr;
2730 for (ptr = list; ptr; ptr = ptr->next)
2731 process_one_record (ptr, f);
2732 }
2733
2734 /* Determine the size of a record list in bytes. */
2735 static int
2736 calc_record_size (list)
2737 unw_rec_list *list;
2738 {
2739 vbyte_count = 0;
2740 process_unw_records (list, count_output);
2741 return vbyte_count;
2742 }
2743
2744 /* Return the number of bits set in the input value.
2745 Perhaps this has a better place... */
2746 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2747 # define popcount __builtin_popcount
2748 #else
2749 static int
2750 popcount (unsigned x)
2751 {
2752 static const unsigned char popcnt[16] =
2753 {
2754 0, 1, 1, 2,
2755 1, 2, 2, 3,
2756 1, 2, 2, 3,
2757 2, 3, 3, 4
2758 };
2759
2760 if (x < NELEMS (popcnt))
2761 return popcnt[x];
2762 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2763 }
2764 #endif
2765
2766 /* Update IMASK bitmask to reflect the fact that one or more registers
2767 of type TYPE are saved starting at instruction with index T. If N
2768 bits are set in REGMASK, it is assumed that instructions T through
2769 T+N-1 save these registers.
2770
2771 TYPE values:
2772 0: no save
2773 1: instruction saves next fp reg
2774 2: instruction saves next general reg
2775 3: instruction saves next branch reg */
2776 static void
2777 set_imask (region, regmask, t, type)
2778 unw_rec_list *region;
2779 unsigned long regmask;
2780 unsigned long t;
2781 unsigned int type;
2782 {
2783 unsigned char *imask;
2784 unsigned long imask_size;
2785 unsigned int i;
2786 int pos;
2787
2788 imask = region->r.record.r.mask.i;
2789 imask_size = region->r.record.r.imask_size;
2790 if (!imask)
2791 {
2792 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2793 imask = xmalloc (imask_size);
2794 memset (imask, 0, imask_size);
2795
2796 region->r.record.r.imask_size = imask_size;
2797 region->r.record.r.mask.i = imask;
2798 }
2799
2800 i = (t / 4) + 1;
2801 pos = 2 * (3 - t % 4);
2802 while (regmask)
2803 {
2804 if (i >= imask_size)
2805 {
2806 as_bad (_("Ignoring attempt to spill beyond end of region"));
2807 return;
2808 }
2809
2810 imask[i] |= (type & 0x3) << pos;
2811
2812 regmask &= (regmask - 1);
2813 pos -= 2;
2814 if (pos < 0)
2815 {
2816 pos = 0;
2817 ++i;
2818 }
2819 }
2820 }
2821
2822 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2823 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2824 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2825 for frag sizes. */
2826
2827 unsigned long
2828 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2829 unsigned long slot_addr;
2830 fragS *slot_frag;
2831 unsigned long first_addr;
2832 fragS *first_frag;
2833 int before_relax;
2834 {
2835 unsigned long index = 0;
2836
2837 /* First time we are called, the initial address and frag are invalid. */
2838 if (first_addr == 0)
2839 return 0;
2840
2841 /* If the two addresses are in different frags, then we need to add in
2842 the remaining size of this frag, and then the entire size of intermediate
2843 frags. */
2844 while (slot_frag != first_frag)
2845 {
2846 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2847
2848 if (! before_relax)
2849 {
2850 /* We can get the final addresses only during and after
2851 relaxation. */
2852 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2853 index += 3 * ((first_frag->fr_next->fr_address
2854 - first_frag->fr_address
2855 - first_frag->fr_fix) >> 4);
2856 }
2857 else
2858 /* We don't know what the final addresses will be. We try our
2859 best to estimate. */
2860 switch (first_frag->fr_type)
2861 {
2862 default:
2863 break;
2864
2865 case rs_space:
2866 as_fatal (_("Only constant space allocation is supported"));
2867 break;
2868
2869 case rs_align:
2870 case rs_align_code:
2871 case rs_align_test:
2872 /* Take alignment into account. Assume the worst case
2873 before relaxation. */
2874 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2875 break;
2876
2877 case rs_org:
2878 if (first_frag->fr_symbol)
2879 {
2880 as_fatal (_("Only constant offsets are supported"));
2881 break;
2882 }
2883 case rs_fill:
2884 index += 3 * (first_frag->fr_offset >> 4);
2885 break;
2886 }
2887
2888 /* Add in the full size of the frag converted to instruction slots. */
2889 index += 3 * (first_frag->fr_fix >> 4);
2890 /* Subtract away the initial part before first_addr. */
2891 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2892 + ((first_addr & 0x3) - (start_addr & 0x3)));
2893
2894 /* Move to the beginning of the next frag. */
2895 first_frag = first_frag->fr_next;
2896 first_addr = (unsigned long) &first_frag->fr_literal;
2897
2898 /* This can happen if there is section switching in the middle of a
2899 function, causing the frag chain for the function to be broken.
2900 It is too difficult to recover safely from this problem, so we just
2901 exit with an error. */
2902 if (first_frag == NULL)
2903 as_fatal (_("Section switching in code is not supported."));
2904 }
2905
2906 /* Add in the used part of the last frag. */
2907 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2908 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2909 return index;
2910 }
2911
2912 /* Optimize unwind record directives. */
2913
2914 static unw_rec_list *
2915 optimize_unw_records (list)
2916 unw_rec_list *list;
2917 {
2918 if (!list)
2919 return NULL;
2920
2921 /* If the only unwind record is ".prologue" or ".prologue" followed
2922 by ".body", then we can optimize the unwind directives away. */
2923 if (list->r.type == prologue
2924 && (list->next->r.type == endp
2925 || (list->next->r.type == body && list->next->next->r.type == endp)))
2926 return NULL;
2927
2928 return list;
2929 }
2930
2931 /* Given a complete record list, process any records which have
2932 unresolved fields, (ie length counts for a prologue). After
2933 this has been run, all necessary information should be available
2934 within each record to generate an image. */
2935
2936 static void
2937 fixup_unw_records (list, before_relax)
2938 unw_rec_list *list;
2939 int before_relax;
2940 {
2941 unw_rec_list *ptr, *region = 0;
2942 unsigned long first_addr = 0, rlen = 0, t;
2943 fragS *first_frag = 0;
2944
2945 for (ptr = list; ptr; ptr = ptr->next)
2946 {
2947 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2948 as_bad (_(" Insn slot not set in unwind record."));
2949 t = slot_index (ptr->slot_number, ptr->slot_frag,
2950 first_addr, first_frag, before_relax);
2951 switch (ptr->r.type)
2952 {
2953 case prologue:
2954 case prologue_gr:
2955 case body:
2956 {
2957 unw_rec_list *last;
2958 int size;
2959 unsigned long last_addr = 0;
2960 fragS *last_frag = NULL;
2961
2962 first_addr = ptr->slot_number;
2963 first_frag = ptr->slot_frag;
2964 /* Find either the next body/prologue start, or the end of
2965 the function, and determine the size of the region. */
2966 for (last = ptr->next; last != NULL; last = last->next)
2967 if (last->r.type == prologue || last->r.type == prologue_gr
2968 || last->r.type == body || last->r.type == endp)
2969 {
2970 last_addr = last->slot_number;
2971 last_frag = last->slot_frag;
2972 break;
2973 }
2974 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2975 before_relax);
2976 rlen = ptr->r.record.r.rlen = size;
2977 if (ptr->r.type == body)
2978 /* End of region. */
2979 region = 0;
2980 else
2981 region = ptr;
2982 break;
2983 }
2984 case epilogue:
2985 if (t < rlen)
2986 ptr->r.record.b.t = rlen - 1 - t;
2987 else
2988 /* This happens when a memory-stack-less procedure uses a
2989 ".restore sp" directive at the end of a region to pop
2990 the frame state. */
2991 ptr->r.record.b.t = 0;
2992 break;
2993
2994 case mem_stack_f:
2995 case mem_stack_v:
2996 case rp_when:
2997 case pfs_when:
2998 case preds_when:
2999 case unat_when:
3000 case lc_when:
3001 case fpsr_when:
3002 case priunat_when_gr:
3003 case priunat_when_mem:
3004 case bsp_when:
3005 case bspstore_when:
3006 case rnat_when:
3007 ptr->r.record.p.t = t;
3008 break;
3009
3010 case spill_reg:
3011 case spill_sprel:
3012 case spill_psprel:
3013 case spill_reg_p:
3014 case spill_sprel_p:
3015 case spill_psprel_p:
3016 ptr->r.record.x.t = t;
3017 break;
3018
3019 case frgr_mem:
3020 if (!region)
3021 {
3022 as_bad (_("frgr_mem record before region record!"));
3023 return;
3024 }
3025 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3026 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3027 set_imask (region, ptr->r.record.p.frmask, t, 1);
3028 set_imask (region, ptr->r.record.p.grmask, t, 2);
3029 break;
3030 case fr_mem:
3031 if (!region)
3032 {
3033 as_bad (_("fr_mem record before region record!"));
3034 return;
3035 }
3036 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3037 set_imask (region, ptr->r.record.p.frmask, t, 1);
3038 break;
3039 case gr_mem:
3040 if (!region)
3041 {
3042 as_bad (_("gr_mem record before region record!"));
3043 return;
3044 }
3045 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3046 set_imask (region, ptr->r.record.p.grmask, t, 2);
3047 break;
3048 case br_mem:
3049 if (!region)
3050 {
3051 as_bad (_("br_mem record before region record!"));
3052 return;
3053 }
3054 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3055 set_imask (region, ptr->r.record.p.brmask, t, 3);
3056 break;
3057
3058 case gr_gr:
3059 if (!region)
3060 {
3061 as_bad (_("gr_gr record before region record!"));
3062 return;
3063 }
3064 set_imask (region, ptr->r.record.p.grmask, t, 2);
3065 break;
3066 case br_gr:
3067 if (!region)
3068 {
3069 as_bad (_("br_gr record before region record!"));
3070 return;
3071 }
3072 set_imask (region, ptr->r.record.p.brmask, t, 3);
3073 break;
3074
3075 default:
3076 break;
3077 }
3078 }
3079 }
3080
3081 /* Estimate the size of a frag before relaxing. We only have one type of frag
3082 to handle here, which is the unwind info frag. */
3083
3084 int
3085 ia64_estimate_size_before_relax (fragS *frag,
3086 asection *segtype ATTRIBUTE_UNUSED)
3087 {
3088 unw_rec_list *list;
3089 int len, size, pad;
3090
3091 /* ??? This code is identical to the first part of ia64_convert_frag. */
3092 list = (unw_rec_list *) frag->fr_opcode;
3093 fixup_unw_records (list, 0);
3094
3095 len = calc_record_size (list);
3096 /* pad to pointer-size boundary. */
3097 pad = len % md.pointer_size;
3098 if (pad != 0)
3099 len += md.pointer_size - pad;
3100 /* Add 8 for the header. */
3101 size = len + 8;
3102 /* Add a pointer for the personality offset. */
3103 if (frag->fr_offset)
3104 size += md.pointer_size;
3105
3106 /* fr_var carries the max_chars that we created the fragment with.
3107 We must, of course, have allocated enough memory earlier. */
3108 assert (frag->fr_var >= size);
3109
3110 return frag->fr_fix + size;
3111 }
3112
3113 /* This function converts a rs_machine_dependent variant frag into a
3114 normal fill frag with the unwind image from the the record list. */
3115 void
3116 ia64_convert_frag (fragS *frag)
3117 {
3118 unw_rec_list *list;
3119 int len, size, pad;
3120 valueT flag_value;
3121
3122 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3123 list = (unw_rec_list *) frag->fr_opcode;
3124 fixup_unw_records (list, 0);
3125
3126 len = calc_record_size (list);
3127 /* pad to pointer-size boundary. */
3128 pad = len % md.pointer_size;
3129 if (pad != 0)
3130 len += md.pointer_size - pad;
3131 /* Add 8 for the header. */
3132 size = len + 8;
3133 /* Add a pointer for the personality offset. */
3134 if (frag->fr_offset)
3135 size += md.pointer_size;
3136
3137 /* fr_var carries the max_chars that we created the fragment with.
3138 We must, of course, have allocated enough memory earlier. */
3139 assert (frag->fr_var >= size);
3140
3141 /* Initialize the header area. fr_offset is initialized with
3142 unwind.personality_routine. */
3143 if (frag->fr_offset)
3144 {
3145 if (md.flags & EF_IA_64_ABI64)
3146 flag_value = (bfd_vma) 3 << 32;
3147 else
3148 /* 32-bit unwind info block. */
3149 flag_value = (bfd_vma) 0x1003 << 32;
3150 }
3151 else
3152 flag_value = 0;
3153
3154 md_number_to_chars (frag->fr_literal,
3155 (((bfd_vma) 1 << 48) /* Version. */
3156 | flag_value /* U & E handler flags. */
3157 | (len / md.pointer_size)), /* Length. */
3158 8);
3159
3160 /* Skip the header. */
3161 vbyte_mem_ptr = frag->fr_literal + 8;
3162 process_unw_records (list, output_vbyte_mem);
3163
3164 /* Fill the padding bytes with zeros. */
3165 if (pad != 0)
3166 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3167 md.pointer_size - pad);
3168
3169 frag->fr_fix += size;
3170 frag->fr_type = rs_fill;
3171 frag->fr_var = 0;
3172 frag->fr_offset = 0;
3173 }
3174
3175 static int
3176 parse_predicate_and_operand (e, qp, po)
3177 expressionS * e;
3178 unsigned * qp;
3179 const char * po;
3180 {
3181 int sep = parse_operand (e, ',');
3182
3183 *qp = e->X_add_number - REG_P;
3184 if (e->X_op != O_register || *qp > 63)
3185 {
3186 as_bad (_("First operand to .%s must be a predicate"), po);
3187 *qp = 0;
3188 }
3189 else if (*qp == 0)
3190 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3191 if (sep == ',')
3192 sep = parse_operand (e, ',');
3193 else
3194 e->X_op = O_absent;
3195 return sep;
3196 }
3197
3198 static void
3199 convert_expr_to_ab_reg (e, ab, regp, po, n)
3200 const expressionS *e;
3201 unsigned int *ab;
3202 unsigned int *regp;
3203 const char * po;
3204 int n;
3205 {
3206 unsigned int reg = e->X_add_number;
3207
3208 *ab = *regp = 0; /* Anything valid is good here. */
3209
3210 if (e->X_op != O_register)
3211 reg = REG_GR; /* Anything invalid is good here. */
3212
3213 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3214 {
3215 *ab = 0;
3216 *regp = reg - REG_GR;
3217 }
3218 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3219 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3220 {
3221 *ab = 1;
3222 *regp = reg - REG_FR;
3223 }
3224 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3225 {
3226 *ab = 2;
3227 *regp = reg - REG_BR;
3228 }
3229 else
3230 {
3231 *ab = 3;
3232 switch (reg)
3233 {
3234 case REG_PR: *regp = 0; break;
3235 case REG_PSP: *regp = 1; break;
3236 case REG_PRIUNAT: *regp = 2; break;
3237 case REG_BR + 0: *regp = 3; break;
3238 case REG_AR + AR_BSP: *regp = 4; break;
3239 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3240 case REG_AR + AR_RNAT: *regp = 6; break;
3241 case REG_AR + AR_UNAT: *regp = 7; break;
3242 case REG_AR + AR_FPSR: *regp = 8; break;
3243 case REG_AR + AR_PFS: *regp = 9; break;
3244 case REG_AR + AR_LC: *regp = 10; break;
3245
3246 default:
3247 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3248 break;
3249 }
3250 }
3251 }
3252
3253 static void
3254 convert_expr_to_xy_reg (e, xy, regp, po, n)
3255 const expressionS *e;
3256 unsigned int *xy;
3257 unsigned int *regp;
3258 const char * po;
3259 int n;
3260 {
3261 unsigned int reg = e->X_add_number;
3262
3263 *xy = *regp = 0; /* Anything valid is good here. */
3264
3265 if (e->X_op != O_register)
3266 reg = REG_GR; /* Anything invalid is good here. */
3267
3268 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3269 {
3270 *xy = 0;
3271 *regp = reg - REG_GR;
3272 }
3273 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3274 {
3275 *xy = 1;
3276 *regp = reg - REG_FR;
3277 }
3278 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3279 {
3280 *xy = 2;
3281 *regp = reg - REG_BR;
3282 }
3283 else
3284 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3285 }
3286
3287 static void
3288 dot_align (int arg)
3289 {
3290 /* The current frag is an alignment frag. */
3291 align_frag = frag_now;
3292 s_align_bytes (arg);
3293 }
3294
3295 static void
3296 dot_radix (dummy)
3297 int dummy ATTRIBUTE_UNUSED;
3298 {
3299 char *radix;
3300 int ch;
3301
3302 SKIP_WHITESPACE ();
3303
3304 if (is_it_end_of_statement ())
3305 return;
3306 radix = input_line_pointer;
3307 ch = get_symbol_end ();
3308 ia64_canonicalize_symbol_name (radix);
3309 if (strcasecmp (radix, "C"))
3310 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3311 *input_line_pointer = ch;
3312 demand_empty_rest_of_line ();
3313 }
3314
3315 /* Helper function for .loc directives. If the assembler is not generating
3316 line number info, then we need to remember which instructions have a .loc
3317 directive, and only call dwarf2_gen_line_info for those instructions. */
3318
3319 static void
3320 dot_loc (int x)
3321 {
3322 CURR_SLOT.loc_directive_seen = 1;
3323 dwarf2_directive_loc (x);
3324 }
3325
3326 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3327 static void
3328 dot_special_section (which)
3329 int which;
3330 {
3331 set_section ((char *) special_section_name[which]);
3332 }
3333
3334 /* Return -1 for warning and 0 for error. */
3335
3336 static int
3337 unwind_diagnostic (const char * region, const char *directive)
3338 {
3339 if (md.unwind_check == unwind_check_warning)
3340 {
3341 as_warn (_(".%s outside of %s"), directive, region);
3342 return -1;
3343 }
3344 else
3345 {
3346 as_bad (_(".%s outside of %s"), directive, region);
3347 ignore_rest_of_line ();
3348 return 0;
3349 }
3350 }
3351
3352 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3353 a procedure but the unwind directive check is set to warning, 0 if
3354 a directive isn't in a procedure and the unwind directive check is set
3355 to error. */
3356
3357 static int
3358 in_procedure (const char *directive)
3359 {
3360 if (unwind.proc_pending.sym
3361 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3362 return 1;
3363 return unwind_diagnostic ("procedure", directive);
3364 }
3365
3366 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3367 a prologue but the unwind directive check is set to warning, 0 if
3368 a directive isn't in a prologue and the unwind directive check is set
3369 to error. */
3370
3371 static int
3372 in_prologue (const char *directive)
3373 {
3374 int in = in_procedure (directive);
3375
3376 if (in > 0 && !unwind.prologue)
3377 in = unwind_diagnostic ("prologue", directive);
3378 check_pending_save ();
3379 return in;
3380 }
3381
3382 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3383 a body but the unwind directive check is set to warning, 0 if
3384 a directive isn't in a body and the unwind directive check is set
3385 to error. */
3386
3387 static int
3388 in_body (const char *directive)
3389 {
3390 int in = in_procedure (directive);
3391
3392 if (in > 0 && !unwind.body)
3393 in = unwind_diagnostic ("body region", directive);
3394 return in;
3395 }
3396
3397 static void
3398 add_unwind_entry (ptr, sep)
3399 unw_rec_list *ptr;
3400 int sep;
3401 {
3402 if (ptr)
3403 {
3404 if (unwind.tail)
3405 unwind.tail->next = ptr;
3406 else
3407 unwind.list = ptr;
3408 unwind.tail = ptr;
3409
3410 /* The current entry can in fact be a chain of unwind entries. */
3411 if (unwind.current_entry == NULL)
3412 unwind.current_entry = ptr;
3413 }
3414
3415 /* The current entry can in fact be a chain of unwind entries. */
3416 if (unwind.current_entry == NULL)
3417 unwind.current_entry = ptr;
3418
3419 if (sep == ',')
3420 {
3421 /* Parse a tag permitted for the current directive. */
3422 int ch;
3423
3424 SKIP_WHITESPACE ();
3425 ch = get_symbol_end ();
3426 /* FIXME: For now, just issue a warning that this isn't implemented. */
3427 {
3428 static int warned;
3429
3430 if (!warned)
3431 {
3432 warned = 1;
3433 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3434 }
3435 }
3436 *input_line_pointer = ch;
3437 }
3438 if (sep != NOT_A_CHAR)
3439 demand_empty_rest_of_line ();
3440 }
3441
3442 static void
3443 dot_fframe (dummy)
3444 int dummy ATTRIBUTE_UNUSED;
3445 {
3446 expressionS e;
3447 int sep;
3448
3449 if (!in_prologue ("fframe"))
3450 return;
3451
3452 sep = parse_operand (&e, ',');
3453
3454 if (e.X_op != O_constant)
3455 {
3456 as_bad (_("First operand to .fframe must be a constant"));
3457 e.X_add_number = 0;
3458 }
3459 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3460 }
3461
3462 static void
3463 dot_vframe (dummy)
3464 int dummy ATTRIBUTE_UNUSED;
3465 {
3466 expressionS e;
3467 unsigned reg;
3468 int sep;
3469
3470 if (!in_prologue ("vframe"))
3471 return;
3472
3473 sep = parse_operand (&e, ',');
3474 reg = e.X_add_number - REG_GR;
3475 if (e.X_op != O_register || reg > 127)
3476 {
3477 as_bad (_("First operand to .vframe must be a general register"));
3478 reg = 0;
3479 }
3480 add_unwind_entry (output_mem_stack_v (), sep);
3481 if (! (unwind.prologue_mask & 2))
3482 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3483 else if (reg != unwind.prologue_gr
3484 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3485 as_warn (_("Operand of .vframe contradicts .prologue"));
3486 }
3487
3488 static void
3489 dot_vframesp (psp)
3490 int psp;
3491 {
3492 expressionS e;
3493 int sep;
3494
3495 if (psp)
3496 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3497
3498 if (!in_prologue ("vframesp"))
3499 return;
3500
3501 sep = parse_operand (&e, ',');
3502 if (e.X_op != O_constant)
3503 {
3504 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3505 e.X_add_number = 0;
3506 }
3507 add_unwind_entry (output_mem_stack_v (), sep);
3508 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3509 }
3510
3511 static void
3512 dot_save (dummy)
3513 int dummy ATTRIBUTE_UNUSED;
3514 {
3515 expressionS e1, e2;
3516 unsigned reg1, reg2;
3517 int sep;
3518
3519 if (!in_prologue ("save"))
3520 return;
3521
3522 sep = parse_operand (&e1, ',');
3523 if (sep == ',')
3524 sep = parse_operand (&e2, ',');
3525 else
3526 e2.X_op = O_absent;
3527
3528 reg1 = e1.X_add_number;
3529 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3530 if (e1.X_op != O_register)
3531 {
3532 as_bad (_("First operand to .save not a register"));
3533 reg1 = REG_PR; /* Anything valid is good here. */
3534 }
3535 reg2 = e2.X_add_number - REG_GR;
3536 if (e2.X_op != O_register || reg2 > 127)
3537 {
3538 as_bad (_("Second operand to .save not a valid register"));
3539 reg2 = 0;
3540 }
3541 switch (reg1)
3542 {
3543 case REG_AR + AR_BSP:
3544 add_unwind_entry (output_bsp_when (), sep);
3545 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3546 break;
3547 case REG_AR + AR_BSPSTORE:
3548 add_unwind_entry (output_bspstore_when (), sep);
3549 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3550 break;
3551 case REG_AR + AR_RNAT:
3552 add_unwind_entry (output_rnat_when (), sep);
3553 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3554 break;
3555 case REG_AR + AR_UNAT:
3556 add_unwind_entry (output_unat_when (), sep);
3557 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3558 break;
3559 case REG_AR + AR_FPSR:
3560 add_unwind_entry (output_fpsr_when (), sep);
3561 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3562 break;
3563 case REG_AR + AR_PFS:
3564 add_unwind_entry (output_pfs_when (), sep);
3565 if (! (unwind.prologue_mask & 4))
3566 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3567 else if (reg2 != unwind.prologue_gr
3568 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3569 as_warn (_("Second operand of .save contradicts .prologue"));
3570 break;
3571 case REG_AR + AR_LC:
3572 add_unwind_entry (output_lc_when (), sep);
3573 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3574 break;
3575 case REG_BR:
3576 add_unwind_entry (output_rp_when (), sep);
3577 if (! (unwind.prologue_mask & 8))
3578 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3579 else if (reg2 != unwind.prologue_gr)
3580 as_warn (_("Second operand of .save contradicts .prologue"));
3581 break;
3582 case REG_PR:
3583 add_unwind_entry (output_preds_when (), sep);
3584 if (! (unwind.prologue_mask & 1))
3585 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3586 else if (reg2 != unwind.prologue_gr
3587 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3588 as_warn (_("Second operand of .save contradicts .prologue"));
3589 break;
3590 case REG_PRIUNAT:
3591 add_unwind_entry (output_priunat_when_gr (), sep);
3592 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3593 break;
3594 default:
3595 as_bad (_("First operand to .save not a valid register"));
3596 add_unwind_entry (NULL, sep);
3597 break;
3598 }
3599 }
3600
3601 static void
3602 dot_restore (dummy)
3603 int dummy ATTRIBUTE_UNUSED;
3604 {
3605 expressionS e1;
3606 unsigned long ecount; /* # of _additional_ regions to pop */
3607 int sep;
3608
3609 if (!in_body ("restore"))
3610 return;
3611
3612 sep = parse_operand (&e1, ',');
3613 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3614 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3615
3616 if (sep == ',')
3617 {
3618 expressionS e2;
3619
3620 sep = parse_operand (&e2, ',');
3621 if (e2.X_op != O_constant || e2.X_add_number < 0)
3622 {
3623 as_bad (_("Second operand to .restore must be a constant >= 0"));
3624 e2.X_add_number = 0;
3625 }
3626 ecount = e2.X_add_number;
3627 }
3628 else
3629 ecount = unwind.prologue_count - 1;
3630
3631 if (ecount >= unwind.prologue_count)
3632 {
3633 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3634 ecount + 1, unwind.prologue_count);
3635 ecount = 0;
3636 }
3637
3638 add_unwind_entry (output_epilogue (ecount), sep);
3639
3640 if (ecount < unwind.prologue_count)
3641 unwind.prologue_count -= ecount + 1;
3642 else
3643 unwind.prologue_count = 0;
3644 }
3645
3646 static void
3647 dot_restorereg (pred)
3648 int pred;
3649 {
3650 unsigned int qp, ab, reg;
3651 expressionS e;
3652 int sep;
3653 const char * const po = pred ? "restorereg.p" : "restorereg";
3654
3655 if (!in_procedure (po))
3656 return;
3657
3658 if (pred)
3659 sep = parse_predicate_and_operand (&e, &qp, po);
3660 else
3661 {
3662 sep = parse_operand (&e, ',');
3663 qp = 0;
3664 }
3665 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3666
3667 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3668 }
3669
3670 static char *special_linkonce_name[] =
3671 {
3672 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3673 };
3674
3675 static void
3676 start_unwind_section (const segT text_seg, int sec_index)
3677 {
3678 /*
3679 Use a slightly ugly scheme to derive the unwind section names from
3680 the text section name:
3681
3682 text sect. unwind table sect.
3683 name: name: comments:
3684 ---------- ----------------- --------------------------------
3685 .text .IA_64.unwind
3686 .text.foo .IA_64.unwind.text.foo
3687 .foo .IA_64.unwind.foo
3688 .gnu.linkonce.t.foo
3689 .gnu.linkonce.ia64unw.foo
3690 _info .IA_64.unwind_info gas issues error message (ditto)
3691 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3692
3693 This mapping is done so that:
3694
3695 (a) An object file with unwind info only in .text will use
3696 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3697 This follows the letter of the ABI and also ensures backwards
3698 compatibility with older toolchains.
3699
3700 (b) An object file with unwind info in multiple text sections
3701 will use separate unwind sections for each text section.
3702 This allows us to properly set the "sh_info" and "sh_link"
3703 fields in SHT_IA_64_UNWIND as required by the ABI and also
3704 lets GNU ld support programs with multiple segments
3705 containing unwind info (as might be the case for certain
3706 embedded applications).
3707
3708 (c) An error is issued if there would be a name clash.
3709 */
3710
3711 const char *text_name, *sec_text_name;
3712 char *sec_name;
3713 const char *prefix = special_section_name [sec_index];
3714 const char *suffix;
3715 size_t prefix_len, suffix_len, sec_name_len;
3716
3717 sec_text_name = segment_name (text_seg);
3718 text_name = sec_text_name;
3719 if (strncmp (text_name, "_info", 5) == 0)
3720 {
3721 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3722 text_name);
3723 ignore_rest_of_line ();
3724 return;
3725 }
3726 if (strcmp (text_name, ".text") == 0)
3727 text_name = "";
3728
3729 /* Build the unwind section name by appending the (possibly stripped)
3730 text section name to the unwind prefix. */
3731 suffix = text_name;
3732 if (strncmp (text_name, ".gnu.linkonce.t.",
3733 sizeof (".gnu.linkonce.t.") - 1) == 0)
3734 {
3735 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3736 suffix += sizeof (".gnu.linkonce.t.") - 1;
3737 }
3738
3739 prefix_len = strlen (prefix);
3740 suffix_len = strlen (suffix);
3741 sec_name_len = prefix_len + suffix_len;
3742 sec_name = alloca (sec_name_len + 1);
3743 memcpy (sec_name, prefix, prefix_len);
3744 memcpy (sec_name + prefix_len, suffix, suffix_len);
3745 sec_name [sec_name_len] = '\0';
3746
3747 /* Handle COMDAT group. */
3748 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3749 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3750 {
3751 char *section;
3752 size_t len, group_name_len;
3753 const char *group_name = elf_group_name (text_seg);
3754
3755 if (group_name == NULL)
3756 {
3757 as_bad (_("Group section `%s' has no group signature"),
3758 sec_text_name);
3759 ignore_rest_of_line ();
3760 return;
3761 }
3762 /* We have to construct a fake section directive. */
3763 group_name_len = strlen (group_name);
3764 len = (sec_name_len
3765 + 16 /* ,"aG",@progbits, */
3766 + group_name_len /* ,group_name */
3767 + 7); /* ,comdat */
3768
3769 section = alloca (len + 1);
3770 memcpy (section, sec_name, sec_name_len);
3771 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3772 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3773 memcpy (section + len - 7, ",comdat", 7);
3774 section [len] = '\0';
3775 set_section (section);
3776 }
3777 else
3778 {
3779 set_section (sec_name);
3780 bfd_set_section_flags (stdoutput, now_seg,
3781 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3782 }
3783
3784 elf_linked_to_section (now_seg) = text_seg;
3785 }
3786
3787 static void
3788 generate_unwind_image (const segT text_seg)
3789 {
3790 int size, pad;
3791 unw_rec_list *list;
3792
3793 /* Mark the end of the unwind info, so that we can compute the size of the
3794 last unwind region. */
3795 add_unwind_entry (output_endp (), NOT_A_CHAR);
3796
3797 /* Force out pending instructions, to make sure all unwind records have
3798 a valid slot_number field. */
3799 ia64_flush_insns ();
3800
3801 /* Generate the unwind record. */
3802 list = optimize_unw_records (unwind.list);
3803 fixup_unw_records (list, 1);
3804 size = calc_record_size (list);
3805
3806 if (size > 0 || unwind.force_unwind_entry)
3807 {
3808 unwind.force_unwind_entry = 0;
3809 /* pad to pointer-size boundary. */
3810 pad = size % md.pointer_size;
3811 if (pad != 0)
3812 size += md.pointer_size - pad;
3813 /* Add 8 for the header. */
3814 size += 8;
3815 /* Add a pointer for the personality offset. */
3816 if (unwind.personality_routine)
3817 size += md.pointer_size;
3818 }
3819
3820 /* If there are unwind records, switch sections, and output the info. */
3821 if (size != 0)
3822 {
3823 expressionS exp;
3824 bfd_reloc_code_real_type reloc;
3825
3826 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3827
3828 /* Make sure the section has 4 byte alignment for ILP32 and
3829 8 byte alignment for LP64. */
3830 frag_align (md.pointer_size_shift, 0, 0);
3831 record_alignment (now_seg, md.pointer_size_shift);
3832
3833 /* Set expression which points to start of unwind descriptor area. */
3834 unwind.info = expr_build_dot ();
3835
3836 frag_var (rs_machine_dependent, size, size, 0, 0,
3837 (offsetT) (long) unwind.personality_routine,
3838 (char *) list);
3839
3840 /* Add the personality address to the image. */
3841 if (unwind.personality_routine != 0)
3842 {
3843 exp.X_op = O_symbol;
3844 exp.X_add_symbol = unwind.personality_routine;
3845 exp.X_add_number = 0;
3846
3847 if (md.flags & EF_IA_64_BE)
3848 {
3849 if (md.flags & EF_IA_64_ABI64)
3850 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3851 else
3852 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3853 }
3854 else
3855 {
3856 if (md.flags & EF_IA_64_ABI64)
3857 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3858 else
3859 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3860 }
3861
3862 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3863 md.pointer_size, &exp, 0, reloc);
3864 unwind.personality_routine = 0;
3865 }
3866 }
3867
3868 free_saved_prologue_counts ();
3869 unwind.list = unwind.tail = unwind.current_entry = NULL;
3870 }
3871
3872 static void
3873 dot_handlerdata (dummy)
3874 int dummy ATTRIBUTE_UNUSED;
3875 {
3876 if (!in_procedure ("handlerdata"))
3877 return;
3878 unwind.force_unwind_entry = 1;
3879
3880 /* Remember which segment we're in so we can switch back after .endp */
3881 unwind.saved_text_seg = now_seg;
3882 unwind.saved_text_subseg = now_subseg;
3883
3884 /* Generate unwind info into unwind-info section and then leave that
3885 section as the currently active one so dataXX directives go into
3886 the language specific data area of the unwind info block. */
3887 generate_unwind_image (now_seg);
3888 demand_empty_rest_of_line ();
3889 }
3890
3891 static void
3892 dot_unwentry (dummy)
3893 int dummy ATTRIBUTE_UNUSED;
3894 {
3895 if (!in_procedure ("unwentry"))
3896 return;
3897 unwind.force_unwind_entry = 1;
3898 demand_empty_rest_of_line ();
3899 }
3900
3901 static void
3902 dot_altrp (dummy)
3903 int dummy ATTRIBUTE_UNUSED;
3904 {
3905 expressionS e;
3906 unsigned reg;
3907
3908 if (!in_prologue ("altrp"))
3909 return;
3910
3911 parse_operand (&e, 0);
3912 reg = e.X_add_number - REG_BR;
3913 if (e.X_op != O_register || reg > 7)
3914 {
3915 as_bad (_("First operand to .altrp not a valid branch register"));
3916 reg = 0;
3917 }
3918 add_unwind_entry (output_rp_br (reg), 0);
3919 }
3920
3921 static void
3922 dot_savemem (psprel)
3923 int psprel;
3924 {
3925 expressionS e1, e2;
3926 int sep;
3927 int reg1, val;
3928 const char * const po = psprel ? "savepsp" : "savesp";
3929
3930 if (!in_prologue (po))
3931 return;
3932
3933 sep = parse_operand (&e1, ',');
3934 if (sep == ',')
3935 sep = parse_operand (&e2, ',');
3936 else
3937 e2.X_op = O_absent;
3938
3939 reg1 = e1.X_add_number;
3940 val = e2.X_add_number;
3941
3942 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3943 if (e1.X_op != O_register)
3944 {
3945 as_bad (_("First operand to .%s not a register"), po);
3946 reg1 = REG_PR; /* Anything valid is good here. */
3947 }
3948 if (e2.X_op != O_constant)
3949 {
3950 as_bad (_("Second operand to .%s not a constant"), po);
3951 val = 0;
3952 }
3953
3954 switch (reg1)
3955 {
3956 case REG_AR + AR_BSP:
3957 add_unwind_entry (output_bsp_when (), sep);
3958 add_unwind_entry ((psprel
3959 ? output_bsp_psprel
3960 : output_bsp_sprel) (val), NOT_A_CHAR);
3961 break;
3962 case REG_AR + AR_BSPSTORE:
3963 add_unwind_entry (output_bspstore_when (), sep);
3964 add_unwind_entry ((psprel
3965 ? output_bspstore_psprel
3966 : output_bspstore_sprel) (val), NOT_A_CHAR);
3967 break;
3968 case REG_AR + AR_RNAT:
3969 add_unwind_entry (output_rnat_when (), sep);
3970 add_unwind_entry ((psprel
3971 ? output_rnat_psprel
3972 : output_rnat_sprel) (val), NOT_A_CHAR);
3973 break;
3974 case REG_AR + AR_UNAT:
3975 add_unwind_entry (output_unat_when (), sep);
3976 add_unwind_entry ((psprel
3977 ? output_unat_psprel
3978 : output_unat_sprel) (val), NOT_A_CHAR);
3979 break;
3980 case REG_AR + AR_FPSR:
3981 add_unwind_entry (output_fpsr_when (), sep);
3982 add_unwind_entry ((psprel
3983 ? output_fpsr_psprel
3984 : output_fpsr_sprel) (val), NOT_A_CHAR);
3985 break;
3986 case REG_AR + AR_PFS:
3987 add_unwind_entry (output_pfs_when (), sep);
3988 add_unwind_entry ((psprel
3989 ? output_pfs_psprel
3990 : output_pfs_sprel) (val), NOT_A_CHAR);
3991 break;
3992 case REG_AR + AR_LC:
3993 add_unwind_entry (output_lc_when (), sep);
3994 add_unwind_entry ((psprel
3995 ? output_lc_psprel
3996 : output_lc_sprel) (val), NOT_A_CHAR);
3997 break;
3998 case REG_BR:
3999 add_unwind_entry (output_rp_when (), sep);
4000 add_unwind_entry ((psprel
4001 ? output_rp_psprel
4002 : output_rp_sprel) (val), NOT_A_CHAR);
4003 break;
4004 case REG_PR:
4005 add_unwind_entry (output_preds_when (), sep);
4006 add_unwind_entry ((psprel
4007 ? output_preds_psprel
4008 : output_preds_sprel) (val), NOT_A_CHAR);
4009 break;
4010 case REG_PRIUNAT:
4011 add_unwind_entry (output_priunat_when_mem (), sep);
4012 add_unwind_entry ((psprel
4013 ? output_priunat_psprel
4014 : output_priunat_sprel) (val), NOT_A_CHAR);
4015 break;
4016 default:
4017 as_bad (_("First operand to .%s not a valid register"), po);
4018 add_unwind_entry (NULL, sep);
4019 break;
4020 }
4021 }
4022
4023 static void
4024 dot_saveg (dummy)
4025 int dummy ATTRIBUTE_UNUSED;
4026 {
4027 expressionS e;
4028 unsigned grmask;
4029 int sep;
4030
4031 if (!in_prologue ("save.g"))
4032 return;
4033
4034 sep = parse_operand (&e, ',');
4035
4036 grmask = e.X_add_number;
4037 if (e.X_op != O_constant
4038 || e.X_add_number <= 0
4039 || e.X_add_number > 0xf)
4040 {
4041 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
4042 grmask = 0;
4043 }
4044
4045 if (sep == ',')
4046 {
4047 unsigned reg;
4048 int n = popcount (grmask);
4049
4050 parse_operand (&e, 0);
4051 reg = e.X_add_number - REG_GR;
4052 if (e.X_op != O_register || reg > 127)
4053 {
4054 as_bad (_("Second operand to .save.g must be a general register"));
4055 reg = 0;
4056 }
4057 else if (reg > 128U - n)
4058 {
4059 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
4060 reg = 0;
4061 }
4062 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4063 }
4064 else
4065 add_unwind_entry (output_gr_mem (grmask), 0);
4066 }
4067
4068 static void
4069 dot_savef (dummy)
4070 int dummy ATTRIBUTE_UNUSED;
4071 {
4072 expressionS e;
4073
4074 if (!in_prologue ("save.f"))
4075 return;
4076
4077 parse_operand (&e, 0);
4078
4079 if (e.X_op != O_constant
4080 || e.X_add_number <= 0
4081 || e.X_add_number > 0xfffff)
4082 {
4083 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
4084 e.X_add_number = 0;
4085 }
4086 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4087 }
4088
4089 static void
4090 dot_saveb (dummy)
4091 int dummy ATTRIBUTE_UNUSED;
4092 {
4093 expressionS e;
4094 unsigned brmask;
4095 int sep;
4096
4097 if (!in_prologue ("save.b"))
4098 return;
4099
4100 sep = parse_operand (&e, ',');
4101
4102 brmask = e.X_add_number;
4103 if (e.X_op != O_constant
4104 || e.X_add_number <= 0
4105 || e.X_add_number > 0x1f)
4106 {
4107 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
4108 brmask = 0;
4109 }
4110
4111 if (sep == ',')
4112 {
4113 unsigned reg;
4114 int n = popcount (brmask);
4115
4116 parse_operand (&e, 0);
4117 reg = e.X_add_number - REG_GR;
4118 if (e.X_op != O_register || reg > 127)
4119 {
4120 as_bad (_("Second operand to .save.b must be a general register"));
4121 reg = 0;
4122 }
4123 else if (reg > 128U - n)
4124 {
4125 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
4126 reg = 0;
4127 }
4128 add_unwind_entry (output_br_gr (brmask, reg), 0);
4129 }
4130 else
4131 add_unwind_entry (output_br_mem (brmask), 0);
4132 }
4133
4134 static void
4135 dot_savegf (dummy)
4136 int dummy ATTRIBUTE_UNUSED;
4137 {
4138 expressionS e1, e2;
4139
4140 if (!in_prologue ("save.gf"))
4141 return;
4142
4143 if (parse_operand (&e1, ',') == ',')
4144 parse_operand (&e2, 0);
4145 else
4146 e2.X_op = O_absent;
4147
4148 if (e1.X_op != O_constant
4149 || e1.X_add_number < 0
4150 || e1.X_add_number > 0xf)
4151 {
4152 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
4153 e1.X_op = O_absent;
4154 e1.X_add_number = 0;
4155 }
4156 if (e2.X_op != O_constant
4157 || e2.X_add_number < 0
4158 || e2.X_add_number > 0xfffff)
4159 {
4160 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
4161 e2.X_op = O_absent;
4162 e2.X_add_number = 0;
4163 }
4164 if (e1.X_op == O_constant
4165 && e2.X_op == O_constant
4166 && e1.X_add_number == 0
4167 && e2.X_add_number == 0)
4168 as_bad (_("Operands to .save.gf may not be both zero"));
4169
4170 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4171 }
4172
4173 static void
4174 dot_spill (dummy)
4175 int dummy ATTRIBUTE_UNUSED;
4176 {
4177 expressionS e;
4178
4179 if (!in_prologue ("spill"))
4180 return;
4181
4182 parse_operand (&e, 0);
4183
4184 if (e.X_op != O_constant)
4185 {
4186 as_bad (_("Operand to .spill must be a constant"));
4187 e.X_add_number = 0;
4188 }
4189 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4190 }
4191
4192 static void
4193 dot_spillreg (pred)
4194 int pred;
4195 {
4196 int sep;
4197 unsigned int qp, ab, xy, reg, treg;
4198 expressionS e;
4199 const char * const po = pred ? "spillreg.p" : "spillreg";
4200
4201 if (!in_procedure (po))
4202 return;
4203
4204 if (pred)
4205 sep = parse_predicate_and_operand (&e, &qp, po);
4206 else
4207 {
4208 sep = parse_operand (&e, ',');
4209 qp = 0;
4210 }
4211 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4212
4213 if (sep == ',')
4214 sep = parse_operand (&e, ',');
4215 else
4216 e.X_op = O_absent;
4217 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4218
4219 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4220 }
4221
4222 static void
4223 dot_spillmem (psprel)
4224 int psprel;
4225 {
4226 expressionS e;
4227 int pred = (psprel < 0), sep;
4228 unsigned int qp, ab, reg;
4229 const char * po;
4230
4231 if (pred)
4232 {
4233 psprel = ~psprel;
4234 po = psprel ? "spillpsp.p" : "spillsp.p";
4235 }
4236 else
4237 po = psprel ? "spillpsp" : "spillsp";
4238
4239 if (!in_procedure (po))
4240 return;
4241
4242 if (pred)
4243 sep = parse_predicate_and_operand (&e, &qp, po);
4244 else
4245 {
4246 sep = parse_operand (&e, ',');
4247 qp = 0;
4248 }
4249 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4250
4251 if (sep == ',')
4252 sep = parse_operand (&e, ',');
4253 else
4254 e.X_op = O_absent;
4255 if (e.X_op != O_constant)
4256 {
4257 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4258 e.X_add_number = 0;
4259 }
4260
4261 if (psprel)
4262 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4263 else
4264 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4265 }
4266
4267 static unsigned int
4268 get_saved_prologue_count (lbl)
4269 unsigned long lbl;
4270 {
4271 label_prologue_count *lpc = unwind.saved_prologue_counts;
4272
4273 while (lpc != NULL && lpc->label_number != lbl)
4274 lpc = lpc->next;
4275
4276 if (lpc != NULL)
4277 return lpc->prologue_count;
4278
4279 as_bad (_("Missing .label_state %ld"), lbl);
4280 return 1;
4281 }
4282
4283 static void
4284 save_prologue_count (lbl, count)
4285 unsigned long lbl;
4286 unsigned int count;
4287 {
4288 label_prologue_count *lpc = unwind.saved_prologue_counts;
4289
4290 while (lpc != NULL && lpc->label_number != lbl)
4291 lpc = lpc->next;
4292
4293 if (lpc != NULL)
4294 lpc->prologue_count = count;
4295 else
4296 {
4297 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4298
4299 new_lpc->next = unwind.saved_prologue_counts;
4300 new_lpc->label_number = lbl;
4301 new_lpc->prologue_count = count;
4302 unwind.saved_prologue_counts = new_lpc;
4303 }
4304 }
4305
4306 static void
4307 free_saved_prologue_counts ()
4308 {
4309 label_prologue_count *lpc = unwind.saved_prologue_counts;
4310 label_prologue_count *next;
4311
4312 while (lpc != NULL)
4313 {
4314 next = lpc->next;
4315 free (lpc);
4316 lpc = next;
4317 }
4318
4319 unwind.saved_prologue_counts = NULL;
4320 }
4321
4322 static void
4323 dot_label_state (dummy)
4324 int dummy ATTRIBUTE_UNUSED;
4325 {
4326 expressionS e;
4327
4328 if (!in_body ("label_state"))
4329 return;
4330
4331 parse_operand (&e, 0);
4332 if (e.X_op == O_constant)
4333 save_prologue_count (e.X_add_number, unwind.prologue_count);
4334 else
4335 {
4336 as_bad (_("Operand to .label_state must be a constant"));
4337 e.X_add_number = 0;
4338 }
4339 add_unwind_entry (output_label_state (e.X_add_number), 0);
4340 }
4341
4342 static void
4343 dot_copy_state (dummy)
4344 int dummy ATTRIBUTE_UNUSED;
4345 {
4346 expressionS e;
4347
4348 if (!in_body ("copy_state"))
4349 return;
4350
4351 parse_operand (&e, 0);
4352 if (e.X_op == O_constant)
4353 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4354 else
4355 {
4356 as_bad (_("Operand to .copy_state must be a constant"));
4357 e.X_add_number = 0;
4358 }
4359 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4360 }
4361
4362 static void
4363 dot_unwabi (dummy)
4364 int dummy ATTRIBUTE_UNUSED;
4365 {
4366 expressionS e1, e2;
4367 unsigned char sep;
4368
4369 if (!in_prologue ("unwabi"))
4370 return;
4371
4372 sep = parse_operand (&e1, ',');
4373 if (sep == ',')
4374 parse_operand (&e2, 0);
4375 else
4376 e2.X_op = O_absent;
4377
4378 if (e1.X_op != O_constant)
4379 {
4380 as_bad (_("First operand to .unwabi must be a constant"));
4381 e1.X_add_number = 0;
4382 }
4383
4384 if (e2.X_op != O_constant)
4385 {
4386 as_bad (_("Second operand to .unwabi must be a constant"));
4387 e2.X_add_number = 0;
4388 }
4389
4390 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4391 }
4392
4393 static void
4394 dot_personality (dummy)
4395 int dummy ATTRIBUTE_UNUSED;
4396 {
4397 char *name, *p, c;
4398 if (!in_procedure ("personality"))
4399 return;
4400 SKIP_WHITESPACE ();
4401 name = input_line_pointer;
4402 c = get_symbol_end ();
4403 p = input_line_pointer;
4404 unwind.personality_routine = symbol_find_or_make (name);
4405 unwind.force_unwind_entry = 1;
4406 *p = c;
4407 SKIP_WHITESPACE ();
4408 demand_empty_rest_of_line ();
4409 }
4410
4411 static void
4412 dot_proc (dummy)
4413 int dummy ATTRIBUTE_UNUSED;
4414 {
4415 char *name, *p, c;
4416 symbolS *sym;
4417 proc_pending *pending, *last_pending;
4418
4419 if (unwind.proc_pending.sym)
4420 {
4421 (md.unwind_check == unwind_check_warning
4422 ? as_warn
4423 : as_bad) (_("Missing .endp after previous .proc"));
4424 while (unwind.proc_pending.next)
4425 {
4426 pending = unwind.proc_pending.next;
4427 unwind.proc_pending.next = pending->next;
4428 free (pending);
4429 }
4430 }
4431 last_pending = NULL;
4432
4433 /* Parse names of main and alternate entry points and mark them as
4434 function symbols: */
4435 while (1)
4436 {
4437 SKIP_WHITESPACE ();
4438 name = input_line_pointer;
4439 c = get_symbol_end ();
4440 p = input_line_pointer;
4441 if (!*name)
4442 as_bad (_("Empty argument of .proc"));
4443 else
4444 {
4445 sym = symbol_find_or_make (name);
4446 if (S_IS_DEFINED (sym))
4447 as_bad (_("`%s' was already defined"), name);
4448 else if (!last_pending)
4449 {
4450 unwind.proc_pending.sym = sym;
4451 last_pending = &unwind.proc_pending;
4452 }
4453 else
4454 {
4455 pending = xmalloc (sizeof (*pending));
4456 pending->sym = sym;
4457 last_pending = last_pending->next = pending;
4458 }
4459 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4460 }
4461 *p = c;
4462 SKIP_WHITESPACE ();
4463 if (*input_line_pointer != ',')
4464 break;
4465 ++input_line_pointer;
4466 }
4467 if (!last_pending)
4468 {
4469 unwind.proc_pending.sym = expr_build_dot ();
4470 last_pending = &unwind.proc_pending;
4471 }
4472 last_pending->next = NULL;
4473 demand_empty_rest_of_line ();
4474 ia64_do_align (16);
4475
4476 unwind.prologue = 0;
4477 unwind.prologue_count = 0;
4478 unwind.body = 0;
4479 unwind.insn = 0;
4480 unwind.list = unwind.tail = unwind.current_entry = NULL;
4481 unwind.personality_routine = 0;
4482 }
4483
4484 static void
4485 dot_body (dummy)
4486 int dummy ATTRIBUTE_UNUSED;
4487 {
4488 if (!in_procedure ("body"))
4489 return;
4490 if (!unwind.prologue && !unwind.body && unwind.insn)
4491 as_warn (_("Initial .body should precede any instructions"));
4492 check_pending_save ();
4493
4494 unwind.prologue = 0;
4495 unwind.prologue_mask = 0;
4496 unwind.body = 1;
4497
4498 add_unwind_entry (output_body (), 0);
4499 }
4500
4501 static void
4502 dot_prologue (dummy)
4503 int dummy ATTRIBUTE_UNUSED;
4504 {
4505 unsigned mask = 0, grsave = 0;
4506
4507 if (!in_procedure ("prologue"))
4508 return;
4509 if (unwind.prologue)
4510 {
4511 as_bad (_(".prologue within prologue"));
4512 ignore_rest_of_line ();
4513 return;
4514 }
4515 if (!unwind.body && unwind.insn)
4516 as_warn (_("Initial .prologue should precede any instructions"));
4517
4518 if (!is_it_end_of_statement ())
4519 {
4520 expressionS e;
4521 int n, sep = parse_operand (&e, ',');
4522
4523 if (e.X_op != O_constant
4524 || e.X_add_number < 0
4525 || e.X_add_number > 0xf)
4526 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4527 else if (e.X_add_number == 0)
4528 as_warn (_("Pointless use of zero first operand to .prologue"));
4529 else
4530 mask = e.X_add_number;
4531 n = popcount (mask);
4532
4533 if (sep == ',')
4534 parse_operand (&e, 0);
4535 else
4536 e.X_op = O_absent;
4537 if (e.X_op == O_constant
4538 && e.X_add_number >= 0
4539 && e.X_add_number < 128)
4540 {
4541 if (md.unwind_check == unwind_check_error)
4542 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4543 grsave = e.X_add_number;
4544 }
4545 else if (e.X_op != O_register
4546 || (grsave = e.X_add_number - REG_GR) > 127)
4547 {
4548 as_bad (_("Second operand to .prologue must be a general register"));
4549 grsave = 0;
4550 }
4551 else if (grsave > 128U - n)
4552 {
4553 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4554 grsave = 0;
4555 }
4556
4557 }
4558
4559 if (mask)
4560 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4561 else
4562 add_unwind_entry (output_prologue (), 0);
4563
4564 unwind.prologue = 1;
4565 unwind.prologue_mask = mask;
4566 unwind.prologue_gr = grsave;
4567 unwind.body = 0;
4568 ++unwind.prologue_count;
4569 }
4570
4571 static void
4572 dot_endp (dummy)
4573 int dummy ATTRIBUTE_UNUSED;
4574 {
4575 expressionS e;
4576 int bytes_per_address;
4577 long where;
4578 segT saved_seg;
4579 subsegT saved_subseg;
4580 proc_pending *pending;
4581 int unwind_check = md.unwind_check;
4582
4583 md.unwind_check = unwind_check_error;
4584 if (!in_procedure ("endp"))
4585 return;
4586 md.unwind_check = unwind_check;
4587
4588 if (unwind.saved_text_seg)
4589 {
4590 saved_seg = unwind.saved_text_seg;
4591 saved_subseg = unwind.saved_text_subseg;
4592 unwind.saved_text_seg = NULL;
4593 }
4594 else
4595 {
4596 saved_seg = now_seg;
4597 saved_subseg = now_subseg;
4598 }
4599
4600 insn_group_break (1, 0, 0);
4601
4602 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4603 if (!unwind.info)
4604 generate_unwind_image (saved_seg);
4605
4606 if (unwind.info || unwind.force_unwind_entry)
4607 {
4608 symbolS *proc_end;
4609
4610 subseg_set (md.last_text_seg, 0);
4611 proc_end = expr_build_dot ();
4612
4613 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4614
4615 /* Make sure that section has 4 byte alignment for ILP32 and
4616 8 byte alignment for LP64. */
4617 record_alignment (now_seg, md.pointer_size_shift);
4618
4619 /* Need space for 3 pointers for procedure start, procedure end,
4620 and unwind info. */
4621 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4622 where = frag_now_fix () - (3 * md.pointer_size);
4623 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4624
4625 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4626 e.X_op = O_pseudo_fixup;
4627 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4628 e.X_add_number = 0;
4629 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4630 && S_IS_DEFINED (unwind.proc_pending.sym))
4631 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4632 S_GET_VALUE (unwind.proc_pending.sym),
4633 symbol_get_frag (unwind.proc_pending.sym));
4634 else
4635 e.X_add_symbol = unwind.proc_pending.sym;
4636 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4637
4638 e.X_op = O_pseudo_fixup;
4639 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4640 e.X_add_number = 0;
4641 e.X_add_symbol = proc_end;
4642 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4643 bytes_per_address, &e);
4644
4645 if (unwind.info)
4646 {
4647 e.X_op = O_pseudo_fixup;
4648 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4649 e.X_add_number = 0;
4650 e.X_add_symbol = unwind.info;
4651 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4652 bytes_per_address, &e);
4653 }
4654 }
4655 subseg_set (saved_seg, saved_subseg);
4656
4657 /* Set symbol sizes. */
4658 pending = &unwind.proc_pending;
4659 if (S_GET_NAME (pending->sym))
4660 {
4661 do
4662 {
4663 symbolS *sym = pending->sym;
4664
4665 if (!S_IS_DEFINED (sym))
4666 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4667 else if (S_GET_SIZE (sym) == 0
4668 && symbol_get_obj (sym)->size == NULL)
4669 {
4670 fragS *frag = symbol_get_frag (sym);
4671
4672 if (frag)
4673 {
4674 if (frag == frag_now && SEG_NORMAL (now_seg))
4675 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4676 else
4677 {
4678 symbol_get_obj (sym)->size =
4679 (expressionS *) xmalloc (sizeof (expressionS));
4680 symbol_get_obj (sym)->size->X_op = O_subtract;
4681 symbol_get_obj (sym)->size->X_add_symbol
4682 = symbol_new (FAKE_LABEL_NAME, now_seg,
4683 frag_now_fix (), frag_now);
4684 symbol_get_obj (sym)->size->X_op_symbol = sym;
4685 symbol_get_obj (sym)->size->X_add_number = 0;
4686 }
4687 }
4688 }
4689 } while ((pending = pending->next) != NULL);
4690 }
4691
4692 /* Parse names of main and alternate entry points. */
4693 while (1)
4694 {
4695 char *name, *p, c;
4696
4697 SKIP_WHITESPACE ();
4698 name = input_line_pointer;
4699 c = get_symbol_end ();
4700 p = input_line_pointer;
4701 if (!*name)
4702 (md.unwind_check == unwind_check_warning
4703 ? as_warn
4704 : as_bad) (_("Empty argument of .endp"));
4705 else
4706 {
4707 symbolS *sym = symbol_find (name);
4708
4709 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4710 {
4711 if (sym == pending->sym)
4712 {
4713 pending->sym = NULL;
4714 break;
4715 }
4716 }
4717 if (!sym || !pending)
4718 as_warn (_("`%s' was not specified with previous .proc"), name);
4719 }
4720 *p = c;
4721 SKIP_WHITESPACE ();
4722 if (*input_line_pointer != ',')
4723 break;
4724 ++input_line_pointer;
4725 }
4726 demand_empty_rest_of_line ();
4727
4728 /* Deliberately only checking for the main entry point here; the
4729 language spec even says all arguments to .endp are ignored. */
4730 if (unwind.proc_pending.sym
4731 && S_GET_NAME (unwind.proc_pending.sym)
4732 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4733 as_warn (_("`%s' should be an operand to this .endp"),
4734 S_GET_NAME (unwind.proc_pending.sym));
4735 while (unwind.proc_pending.next)
4736 {
4737 pending = unwind.proc_pending.next;
4738 unwind.proc_pending.next = pending->next;
4739 free (pending);
4740 }
4741 unwind.proc_pending.sym = unwind.info = NULL;
4742 }
4743
4744 static void
4745 dot_template (template)
4746 int template;
4747 {
4748 CURR_SLOT.user_template = template;
4749 }
4750
4751 static void
4752 dot_regstk (dummy)
4753 int dummy ATTRIBUTE_UNUSED;
4754 {
4755 int ins, locs, outs, rots;
4756
4757 if (is_it_end_of_statement ())
4758 ins = locs = outs = rots = 0;
4759 else
4760 {
4761 ins = get_absolute_expression ();
4762 if (*input_line_pointer++ != ',')
4763 goto err;
4764 locs = get_absolute_expression ();
4765 if (*input_line_pointer++ != ',')
4766 goto err;
4767 outs = get_absolute_expression ();
4768 if (*input_line_pointer++ != ',')
4769 goto err;
4770 rots = get_absolute_expression ();
4771 }
4772 set_regstack (ins, locs, outs, rots);
4773 return;
4774
4775 err:
4776 as_bad (_("Comma expected"));
4777 ignore_rest_of_line ();
4778 }
4779
4780 static void
4781 dot_rot (type)
4782 int type;
4783 {
4784 offsetT num_regs;
4785 valueT num_alloced = 0;
4786 struct dynreg **drpp, *dr;
4787 int ch, base_reg = 0;
4788 char *name, *start;
4789 size_t len;
4790
4791 switch (type)
4792 {
4793 case DYNREG_GR: base_reg = REG_GR + 32; break;
4794 case DYNREG_FR: base_reg = REG_FR + 32; break;
4795 case DYNREG_PR: base_reg = REG_P + 16; break;
4796 default: break;
4797 }
4798
4799 /* First, remove existing names from hash table. */
4800 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4801 {
4802 hash_delete (md.dynreg_hash, dr->name);
4803 /* FIXME: Free dr->name. */
4804 dr->num_regs = 0;
4805 }
4806
4807 drpp = &md.dynreg[type];
4808 while (1)
4809 {
4810 start = input_line_pointer;
4811 ch = get_symbol_end ();
4812 len = strlen (ia64_canonicalize_symbol_name (start));
4813 *input_line_pointer = ch;
4814
4815 SKIP_WHITESPACE ();
4816 if (*input_line_pointer != '[')
4817 {
4818 as_bad (_("Expected '['"));
4819 goto err;
4820 }
4821 ++input_line_pointer; /* skip '[' */
4822
4823 num_regs = get_absolute_expression ();
4824
4825 if (*input_line_pointer++ != ']')
4826 {
4827 as_bad (_("Expected ']'"));
4828 goto err;
4829 }
4830 if (num_regs <= 0)
4831 {
4832 as_bad (_("Number of elements must be positive"));
4833 goto err;
4834 }
4835 SKIP_WHITESPACE ();
4836
4837 num_alloced += num_regs;
4838 switch (type)
4839 {
4840 case DYNREG_GR:
4841 if (num_alloced > md.rot.num_regs)
4842 {
4843 as_bad (_("Used more than the declared %d rotating registers"),
4844 md.rot.num_regs);
4845 goto err;
4846 }
4847 break;
4848 case DYNREG_FR:
4849 if (num_alloced > 96)
4850 {
4851 as_bad (_("Used more than the available 96 rotating registers"));
4852 goto err;
4853 }
4854 break;
4855 case DYNREG_PR:
4856 if (num_alloced > 48)
4857 {
4858 as_bad (_("Used more than the available 48 rotating registers"));
4859 goto err;
4860 }
4861 break;
4862
4863 default:
4864 break;
4865 }
4866
4867 if (!*drpp)
4868 {
4869 *drpp = obstack_alloc (&notes, sizeof (*dr));
4870 memset (*drpp, 0, sizeof (*dr));
4871 }
4872
4873 name = obstack_alloc (&notes, len + 1);
4874 memcpy (name, start, len);
4875 name[len] = '\0';
4876
4877 dr = *drpp;
4878 dr->name = name;
4879 dr->num_regs = num_regs;
4880 dr->base = base_reg;
4881 drpp = &dr->next;
4882 base_reg += num_regs;
4883
4884 if (hash_insert (md.dynreg_hash, name, dr))
4885 {
4886 as_bad (_("Attempt to redefine register set `%s'"), name);
4887 obstack_free (&notes, name);
4888 goto err;
4889 }
4890
4891 if (*input_line_pointer != ',')
4892 break;
4893 ++input_line_pointer; /* skip comma */
4894 SKIP_WHITESPACE ();
4895 }
4896 demand_empty_rest_of_line ();
4897 return;
4898
4899 err:
4900 ignore_rest_of_line ();
4901 }
4902
4903 static void
4904 dot_byteorder (byteorder)
4905 int byteorder;
4906 {
4907 segment_info_type *seginfo = seg_info (now_seg);
4908
4909 if (byteorder == -1)
4910 {
4911 if (seginfo->tc_segment_info_data.endian == 0)
4912 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4913 byteorder = seginfo->tc_segment_info_data.endian == 1;
4914 }
4915 else
4916 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4917
4918 if (target_big_endian != byteorder)
4919 {
4920 target_big_endian = byteorder;
4921 if (target_big_endian)
4922 {
4923 ia64_number_to_chars = number_to_chars_bigendian;
4924 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4925 }
4926 else
4927 {
4928 ia64_number_to_chars = number_to_chars_littleendian;
4929 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4930 }
4931 }
4932 }
4933
4934 static void
4935 dot_psr (dummy)
4936 int dummy ATTRIBUTE_UNUSED;
4937 {
4938 char *option;
4939 int ch;
4940
4941 while (1)
4942 {
4943 option = input_line_pointer;
4944 ch = get_symbol_end ();
4945 if (strcmp (option, "lsb") == 0)
4946 md.flags &= ~EF_IA_64_BE;
4947 else if (strcmp (option, "msb") == 0)
4948 md.flags |= EF_IA_64_BE;
4949 else if (strcmp (option, "abi32") == 0)
4950 md.flags &= ~EF_IA_64_ABI64;
4951 else if (strcmp (option, "abi64") == 0)
4952 md.flags |= EF_IA_64_ABI64;
4953 else
4954 as_bad (_("Unknown psr option `%s'"), option);
4955 *input_line_pointer = ch;
4956
4957 SKIP_WHITESPACE ();
4958 if (*input_line_pointer != ',')
4959 break;
4960
4961 ++input_line_pointer;
4962 SKIP_WHITESPACE ();
4963 }
4964 demand_empty_rest_of_line ();
4965 }
4966
4967 static void
4968 dot_ln (dummy)
4969 int dummy ATTRIBUTE_UNUSED;
4970 {
4971 new_logical_line (0, get_absolute_expression ());
4972 demand_empty_rest_of_line ();
4973 }
4974
4975 static void
4976 cross_section (ref, cons, ua)
4977 int ref;
4978 void (*cons) PARAMS((int));
4979 int ua;
4980 {
4981 char *start, *end;
4982 int saved_auto_align;
4983 unsigned int section_count;
4984
4985 SKIP_WHITESPACE ();
4986 start = input_line_pointer;
4987 if (*start == '"')
4988 {
4989 int len;
4990 char *name;
4991
4992 name = demand_copy_C_string (&len);
4993 obstack_free(&notes, name);
4994 if (!name)
4995 {
4996 ignore_rest_of_line ();
4997 return;
4998 }
4999 }
5000 else
5001 {
5002 char c = get_symbol_end ();
5003
5004 if (input_line_pointer == start)
5005 {
5006 as_bad (_("Missing section name"));
5007 ignore_rest_of_line ();
5008 return;
5009 }
5010 *input_line_pointer = c;
5011 }
5012 end = input_line_pointer;
5013 SKIP_WHITESPACE ();
5014 if (*input_line_pointer != ',')
5015 {
5016 as_bad (_("Comma expected after section name"));
5017 ignore_rest_of_line ();
5018 return;
5019 }
5020 *end = '\0';
5021 end = input_line_pointer + 1; /* skip comma */
5022 input_line_pointer = start;
5023 md.keep_pending_output = 1;
5024 section_count = bfd_count_sections(stdoutput);
5025 obj_elf_section (0);
5026 if (section_count != bfd_count_sections(stdoutput))
5027 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
5028 input_line_pointer = end;
5029 saved_auto_align = md.auto_align;
5030 if (ua)
5031 md.auto_align = 0;
5032 (*cons) (ref);
5033 if (ua)
5034 md.auto_align = saved_auto_align;
5035 obj_elf_previous (0);
5036 md.keep_pending_output = 0;
5037 }
5038
5039 static void
5040 dot_xdata (size)
5041 int size;
5042 {
5043 cross_section (size, cons, 0);
5044 }
5045
5046 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5047
5048 static void
5049 stmt_float_cons (kind)
5050 int kind;
5051 {
5052 size_t alignment;
5053
5054 switch (kind)
5055 {
5056 case 'd':
5057 alignment = 8;
5058 break;
5059
5060 case 'x':
5061 case 'X':
5062 alignment = 16;
5063 break;
5064
5065 case 'f':
5066 default:
5067 alignment = 4;
5068 break;
5069 }
5070 ia64_do_align (alignment);
5071 float_cons (kind);
5072 }
5073
5074 static void
5075 stmt_cons_ua (size)
5076 int size;
5077 {
5078 int saved_auto_align = md.auto_align;
5079
5080 md.auto_align = 0;
5081 cons (size);
5082 md.auto_align = saved_auto_align;
5083 }
5084
5085 static void
5086 dot_xfloat_cons (kind)
5087 int kind;
5088 {
5089 cross_section (kind, stmt_float_cons, 0);
5090 }
5091
5092 static void
5093 dot_xstringer (int zero)
5094 {
5095 cross_section (zero, stringer, 0);
5096 }
5097
5098 static void
5099 dot_xdata_ua (size)
5100 int size;
5101 {
5102 cross_section (size, cons, 1);
5103 }
5104
5105 static void
5106 dot_xfloat_cons_ua (kind)
5107 int kind;
5108 {
5109 cross_section (kind, float_cons, 1);
5110 }
5111
5112 /* .reg.val <regname>,value */
5113
5114 static void
5115 dot_reg_val (dummy)
5116 int dummy ATTRIBUTE_UNUSED;
5117 {
5118 expressionS reg;
5119
5120 expression_and_evaluate (&reg);
5121 if (reg.X_op != O_register)
5122 {
5123 as_bad (_("Register name expected"));
5124 ignore_rest_of_line ();
5125 }
5126 else if (*input_line_pointer++ != ',')
5127 {
5128 as_bad (_("Comma expected"));
5129 ignore_rest_of_line ();
5130 }
5131 else
5132 {
5133 valueT value = get_absolute_expression ();
5134 int regno = reg.X_add_number;
5135 if (regno <= REG_GR || regno > REG_GR + 127)
5136 as_warn (_("Register value annotation ignored"));
5137 else
5138 {
5139 gr_values[regno - REG_GR].known = 1;
5140 gr_values[regno - REG_GR].value = value;
5141 gr_values[regno - REG_GR].path = md.path;
5142 }
5143 }
5144 demand_empty_rest_of_line ();
5145 }
5146
5147 /*
5148 .serialize.data
5149 .serialize.instruction
5150 */
5151 static void
5152 dot_serialize (type)
5153 int type;
5154 {
5155 insn_group_break (0, 0, 0);
5156 if (type)
5157 instruction_serialization ();
5158 else
5159 data_serialization ();
5160 insn_group_break (0, 0, 0);
5161 demand_empty_rest_of_line ();
5162 }
5163
5164 /* select dv checking mode
5165 .auto
5166 .explicit
5167 .default
5168
5169 A stop is inserted when changing modes
5170 */
5171
5172 static void
5173 dot_dv_mode (type)
5174 int type;
5175 {
5176 if (md.manual_bundling)
5177 as_warn (_("Directive invalid within a bundle"));
5178
5179 if (type == 'E' || type == 'A')
5180 md.mode_explicitly_set = 0;
5181 else
5182 md.mode_explicitly_set = 1;
5183
5184 md.detect_dv = 1;
5185 switch (type)
5186 {
5187 case 'A':
5188 case 'a':
5189 if (md.explicit_mode)
5190 insn_group_break (1, 0, 0);
5191 md.explicit_mode = 0;
5192 break;
5193 case 'E':
5194 case 'e':
5195 if (!md.explicit_mode)
5196 insn_group_break (1, 0, 0);
5197 md.explicit_mode = 1;
5198 break;
5199 default:
5200 case 'd':
5201 if (md.explicit_mode != md.default_explicit_mode)
5202 insn_group_break (1, 0, 0);
5203 md.explicit_mode = md.default_explicit_mode;
5204 md.mode_explicitly_set = 0;
5205 break;
5206 }
5207 }
5208
5209 static void
5210 print_prmask (mask)
5211 valueT mask;
5212 {
5213 int regno;
5214 char *comma = "";
5215 for (regno = 0; regno < 64; regno++)
5216 {
5217 if (mask & ((valueT) 1 << regno))
5218 {
5219 fprintf (stderr, "%s p%d", comma, regno);
5220 comma = ",";
5221 }
5222 }
5223 }
5224
5225 /*
5226 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5227 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5228 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5229 .pred.safe_across_calls p1 [, p2 [,...]]
5230 */
5231
5232 static void
5233 dot_pred_rel (type)
5234 int type;
5235 {
5236 valueT mask = 0;
5237 int count = 0;
5238 int p1 = -1, p2 = -1;
5239
5240 if (type == 0)
5241 {
5242 if (*input_line_pointer == '"')
5243 {
5244 int len;
5245 char *form = demand_copy_C_string (&len);
5246
5247 if (strcmp (form, "mutex") == 0)
5248 type = 'm';
5249 else if (strcmp (form, "clear") == 0)
5250 type = 'c';
5251 else if (strcmp (form, "imply") == 0)
5252 type = 'i';
5253 obstack_free (&notes, form);
5254 }
5255 else if (*input_line_pointer == '@')
5256 {
5257 char *form = ++input_line_pointer;
5258 char c = get_symbol_end();
5259
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 *input_line_pointer = c;
5267 }
5268 else
5269 {
5270 as_bad (_("Missing predicate relation type"));
5271 ignore_rest_of_line ();
5272 return;
5273 }
5274 if (type == 0)
5275 {
5276 as_bad (_("Unrecognized predicate relation type"));
5277 ignore_rest_of_line ();
5278 return;
5279 }
5280 if (*input_line_pointer == ',')
5281 ++input_line_pointer;
5282 SKIP_WHITESPACE ();
5283 }
5284
5285 while (1)
5286 {
5287 valueT bits = 1;
5288 int sep, regno;
5289 expressionS pr, *pr1, *pr2;
5290
5291 sep = parse_operand (&pr, ',');
5292 if (pr.X_op == O_register
5293 && pr.X_add_number >= REG_P
5294 && pr.X_add_number <= REG_P + 63)
5295 {
5296 regno = pr.X_add_number - REG_P;
5297 bits <<= regno;
5298 count++;
5299 if (p1 == -1)
5300 p1 = regno;
5301 else if (p2 == -1)
5302 p2 = regno;
5303 }
5304 else if (type != 'i'
5305 && pr.X_op == O_subtract
5306 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5307 && pr1->X_op == O_register
5308 && pr1->X_add_number >= REG_P
5309 && pr1->X_add_number <= REG_P + 63
5310 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5311 && pr2->X_op == O_register
5312 && pr2->X_add_number >= REG_P
5313 && pr2->X_add_number <= REG_P + 63)
5314 {
5315 /* It's a range. */
5316 int stop;
5317
5318 regno = pr1->X_add_number - REG_P;
5319 stop = pr2->X_add_number - REG_P;
5320 if (regno >= stop)
5321 {
5322 as_bad (_("Bad register range"));
5323 ignore_rest_of_line ();
5324 return;
5325 }
5326 bits = ((bits << stop) << 1) - (bits << regno);
5327 count += stop - regno + 1;
5328 }
5329 else
5330 {
5331 as_bad (_("Predicate register expected"));
5332 ignore_rest_of_line ();
5333 return;
5334 }
5335 if (mask & bits)
5336 as_warn (_("Duplicate predicate register ignored"));
5337 mask |= bits;
5338 if (sep != ',')
5339 break;
5340 }
5341
5342 switch (type)
5343 {
5344 case 'c':
5345 if (count == 0)
5346 mask = ~(valueT) 0;
5347 clear_qp_mutex (mask);
5348 clear_qp_implies (mask, (valueT) 0);
5349 break;
5350 case 'i':
5351 if (count != 2 || p1 == -1 || p2 == -1)
5352 as_bad (_("Predicate source and target required"));
5353 else if (p1 == 0 || p2 == 0)
5354 as_bad (_("Use of p0 is not valid in this context"));
5355 else
5356 add_qp_imply (p1, p2);
5357 break;
5358 case 'm':
5359 if (count < 2)
5360 {
5361 as_bad (_("At least two PR arguments expected"));
5362 break;
5363 }
5364 else if (mask & 1)
5365 {
5366 as_bad (_("Use of p0 is not valid in this context"));
5367 break;
5368 }
5369 add_qp_mutex (mask);
5370 break;
5371 case 's':
5372 /* note that we don't override any existing relations */
5373 if (count == 0)
5374 {
5375 as_bad (_("At least one PR argument expected"));
5376 break;
5377 }
5378 if (md.debug_dv)
5379 {
5380 fprintf (stderr, "Safe across calls: ");
5381 print_prmask (mask);
5382 fprintf (stderr, "\n");
5383 }
5384 qp_safe_across_calls = mask;
5385 break;
5386 }
5387 demand_empty_rest_of_line ();
5388 }
5389
5390 /* .entry label [, label [, ...]]
5391 Hint to DV code that the given labels are to be considered entry points.
5392 Otherwise, only global labels are considered entry points. */
5393
5394 static void
5395 dot_entry (dummy)
5396 int dummy ATTRIBUTE_UNUSED;
5397 {
5398 const char *err;
5399 char *name;
5400 int c;
5401 symbolS *symbolP;
5402
5403 do
5404 {
5405 name = input_line_pointer;
5406 c = get_symbol_end ();
5407 symbolP = symbol_find_or_make (name);
5408
5409 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5410 if (err)
5411 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5412 name, err);
5413
5414 *input_line_pointer = c;
5415 SKIP_WHITESPACE ();
5416 c = *input_line_pointer;
5417 if (c == ',')
5418 {
5419 input_line_pointer++;
5420 SKIP_WHITESPACE ();
5421 if (*input_line_pointer == '\n')
5422 c = '\n';
5423 }
5424 }
5425 while (c == ',');
5426
5427 demand_empty_rest_of_line ();
5428 }
5429
5430 /* .mem.offset offset, base
5431 "base" is used to distinguish between offsets from a different base. */
5432
5433 static void
5434 dot_mem_offset (dummy)
5435 int dummy ATTRIBUTE_UNUSED;
5436 {
5437 md.mem_offset.hint = 1;
5438 md.mem_offset.offset = get_absolute_expression ();
5439 if (*input_line_pointer != ',')
5440 {
5441 as_bad (_("Comma expected"));
5442 ignore_rest_of_line ();
5443 return;
5444 }
5445 ++input_line_pointer;
5446 md.mem_offset.base = get_absolute_expression ();
5447 demand_empty_rest_of_line ();
5448 }
5449
5450 /* ia64-specific pseudo-ops: */
5451 const pseudo_typeS md_pseudo_table[] =
5452 {
5453 { "radix", dot_radix, 0 },
5454 { "lcomm", s_lcomm_bytes, 1 },
5455 { "loc", dot_loc, 0 },
5456 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5457 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5458 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5459 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5460 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5461 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5462 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5463 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5464 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5465 { "proc", dot_proc, 0 },
5466 { "body", dot_body, 0 },
5467 { "prologue", dot_prologue, 0 },
5468 { "endp", dot_endp, 0 },
5469
5470 { "fframe", dot_fframe, 0 },
5471 { "vframe", dot_vframe, 0 },
5472 { "vframesp", dot_vframesp, 0 },
5473 { "vframepsp", dot_vframesp, 1 },
5474 { "save", dot_save, 0 },
5475 { "restore", dot_restore, 0 },
5476 { "restorereg", dot_restorereg, 0 },
5477 { "restorereg.p", dot_restorereg, 1 },
5478 { "handlerdata", dot_handlerdata, 0 },
5479 { "unwentry", dot_unwentry, 0 },
5480 { "altrp", dot_altrp, 0 },
5481 { "savesp", dot_savemem, 0 },
5482 { "savepsp", dot_savemem, 1 },
5483 { "save.g", dot_saveg, 0 },
5484 { "save.f", dot_savef, 0 },
5485 { "save.b", dot_saveb, 0 },
5486 { "save.gf", dot_savegf, 0 },
5487 { "spill", dot_spill, 0 },
5488 { "spillreg", dot_spillreg, 0 },
5489 { "spillsp", dot_spillmem, 0 },
5490 { "spillpsp", dot_spillmem, 1 },
5491 { "spillreg.p", dot_spillreg, 1 },
5492 { "spillsp.p", dot_spillmem, ~0 },
5493 { "spillpsp.p", dot_spillmem, ~1 },
5494 { "label_state", dot_label_state, 0 },
5495 { "copy_state", dot_copy_state, 0 },
5496 { "unwabi", dot_unwabi, 0 },
5497 { "personality", dot_personality, 0 },
5498 { "mii", dot_template, 0x0 },
5499 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5500 { "mlx", dot_template, 0x2 },
5501 { "mmi", dot_template, 0x4 },
5502 { "mfi", dot_template, 0x6 },
5503 { "mmf", dot_template, 0x7 },
5504 { "mib", dot_template, 0x8 },
5505 { "mbb", dot_template, 0x9 },
5506 { "bbb", dot_template, 0xb },
5507 { "mmb", dot_template, 0xc },
5508 { "mfb", dot_template, 0xe },
5509 { "align", dot_align, 0 },
5510 { "regstk", dot_regstk, 0 },
5511 { "rotr", dot_rot, DYNREG_GR },
5512 { "rotf", dot_rot, DYNREG_FR },
5513 { "rotp", dot_rot, DYNREG_PR },
5514 { "lsb", dot_byteorder, 0 },
5515 { "msb", dot_byteorder, 1 },
5516 { "psr", dot_psr, 0 },
5517 { "alias", dot_alias, 0 },
5518 { "secalias", dot_alias, 1 },
5519 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5520
5521 { "xdata1", dot_xdata, 1 },
5522 { "xdata2", dot_xdata, 2 },
5523 { "xdata4", dot_xdata, 4 },
5524 { "xdata8", dot_xdata, 8 },
5525 { "xdata16", dot_xdata, 16 },
5526 { "xreal4", dot_xfloat_cons, 'f' },
5527 { "xreal8", dot_xfloat_cons, 'd' },
5528 { "xreal10", dot_xfloat_cons, 'x' },
5529 { "xreal16", dot_xfloat_cons, 'X' },
5530 { "xstring", dot_xstringer, 8 + 0 },
5531 { "xstringz", dot_xstringer, 8 + 1 },
5532
5533 /* unaligned versions: */
5534 { "xdata2.ua", dot_xdata_ua, 2 },
5535 { "xdata4.ua", dot_xdata_ua, 4 },
5536 { "xdata8.ua", dot_xdata_ua, 8 },
5537 { "xdata16.ua", dot_xdata_ua, 16 },
5538 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5539 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5540 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5541 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5542
5543 /* annotations/DV checking support */
5544 { "entry", dot_entry, 0 },
5545 { "mem.offset", dot_mem_offset, 0 },
5546 { "pred.rel", dot_pred_rel, 0 },
5547 { "pred.rel.clear", dot_pred_rel, 'c' },
5548 { "pred.rel.imply", dot_pred_rel, 'i' },
5549 { "pred.rel.mutex", dot_pred_rel, 'm' },
5550 { "pred.safe_across_calls", dot_pred_rel, 's' },
5551 { "reg.val", dot_reg_val, 0 },
5552 { "serialize.data", dot_serialize, 0 },
5553 { "serialize.instruction", dot_serialize, 1 },
5554 { "auto", dot_dv_mode, 'a' },
5555 { "explicit", dot_dv_mode, 'e' },
5556 { "default", dot_dv_mode, 'd' },
5557
5558 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5559 IA-64 aligns data allocation pseudo-ops by default, so we have to
5560 tell it that these ones are supposed to be unaligned. Long term,
5561 should rewrite so that only IA-64 specific data allocation pseudo-ops
5562 are aligned by default. */
5563 {"2byte", stmt_cons_ua, 2},
5564 {"4byte", stmt_cons_ua, 4},
5565 {"8byte", stmt_cons_ua, 8},
5566
5567 { NULL, 0, 0 }
5568 };
5569
5570 static const struct pseudo_opcode
5571 {
5572 const char *name;
5573 void (*handler) (int);
5574 int arg;
5575 }
5576 pseudo_opcode[] =
5577 {
5578 /* these are more like pseudo-ops, but don't start with a dot */
5579 { "data1", cons, 1 },
5580 { "data2", cons, 2 },
5581 { "data4", cons, 4 },
5582 { "data8", cons, 8 },
5583 { "data16", cons, 16 },
5584 { "real4", stmt_float_cons, 'f' },
5585 { "real8", stmt_float_cons, 'd' },
5586 { "real10", stmt_float_cons, 'x' },
5587 { "real16", stmt_float_cons, 'X' },
5588 { "string", stringer, 8 + 0 },
5589 { "stringz", stringer, 8 + 1 },
5590
5591 /* unaligned versions: */
5592 { "data2.ua", stmt_cons_ua, 2 },
5593 { "data4.ua", stmt_cons_ua, 4 },
5594 { "data8.ua", stmt_cons_ua, 8 },
5595 { "data16.ua", stmt_cons_ua, 16 },
5596 { "real4.ua", float_cons, 'f' },
5597 { "real8.ua", float_cons, 'd' },
5598 { "real10.ua", float_cons, 'x' },
5599 { "real16.ua", float_cons, 'X' },
5600 };
5601
5602 /* Declare a register by creating a symbol for it and entering it in
5603 the symbol table. */
5604
5605 static symbolS *
5606 declare_register (name, regnum)
5607 const char *name;
5608 unsigned int regnum;
5609 {
5610 const char *err;
5611 symbolS *sym;
5612
5613 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5614
5615 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5616 if (err)
5617 as_fatal ("Inserting \"%s\" into register table failed: %s",
5618 name, err);
5619
5620 return sym;
5621 }
5622
5623 static void
5624 declare_register_set (prefix, num_regs, base_regnum)
5625 const char *prefix;
5626 unsigned int num_regs;
5627 unsigned int base_regnum;
5628 {
5629 char name[8];
5630 unsigned int i;
5631
5632 for (i = 0; i < num_regs; ++i)
5633 {
5634 snprintf (name, sizeof (name), "%s%u", prefix, i);
5635 declare_register (name, base_regnum + i);
5636 }
5637 }
5638
5639 static unsigned int
5640 operand_width (opnd)
5641 enum ia64_opnd opnd;
5642 {
5643 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5644 unsigned int bits = 0;
5645 int i;
5646
5647 bits = 0;
5648 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5649 bits += odesc->field[i].bits;
5650
5651 return bits;
5652 }
5653
5654 static enum operand_match_result
5655 operand_match (idesc, index, e)
5656 const struct ia64_opcode *idesc;
5657 int index;
5658 expressionS *e;
5659 {
5660 enum ia64_opnd opnd = idesc->operands[index];
5661 int bits, relocatable = 0;
5662 struct insn_fix *fix;
5663 bfd_signed_vma val;
5664
5665 switch (opnd)
5666 {
5667 /* constants: */
5668
5669 case IA64_OPND_AR_CCV:
5670 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5671 return OPERAND_MATCH;
5672 break;
5673
5674 case IA64_OPND_AR_CSD:
5675 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5676 return OPERAND_MATCH;
5677 break;
5678
5679 case IA64_OPND_AR_PFS:
5680 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5681 return OPERAND_MATCH;
5682 break;
5683
5684 case IA64_OPND_GR0:
5685 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5686 return OPERAND_MATCH;
5687 break;
5688
5689 case IA64_OPND_IP:
5690 if (e->X_op == O_register && e->X_add_number == REG_IP)
5691 return OPERAND_MATCH;
5692 break;
5693
5694 case IA64_OPND_PR:
5695 if (e->X_op == O_register && e->X_add_number == REG_PR)
5696 return OPERAND_MATCH;
5697 break;
5698
5699 case IA64_OPND_PR_ROT:
5700 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5701 return OPERAND_MATCH;
5702 break;
5703
5704 case IA64_OPND_PSR:
5705 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5706 return OPERAND_MATCH;
5707 break;
5708
5709 case IA64_OPND_PSR_L:
5710 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5711 return OPERAND_MATCH;
5712 break;
5713
5714 case IA64_OPND_PSR_UM:
5715 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5716 return OPERAND_MATCH;
5717 break;
5718
5719 case IA64_OPND_C1:
5720 if (e->X_op == O_constant)
5721 {
5722 if (e->X_add_number == 1)
5723 return OPERAND_MATCH;
5724 else
5725 return OPERAND_OUT_OF_RANGE;
5726 }
5727 break;
5728
5729 case IA64_OPND_C8:
5730 if (e->X_op == O_constant)
5731 {
5732 if (e->X_add_number == 8)
5733 return OPERAND_MATCH;
5734 else
5735 return OPERAND_OUT_OF_RANGE;
5736 }
5737 break;
5738
5739 case IA64_OPND_C16:
5740 if (e->X_op == O_constant)
5741 {
5742 if (e->X_add_number == 16)
5743 return OPERAND_MATCH;
5744 else
5745 return OPERAND_OUT_OF_RANGE;
5746 }
5747 break;
5748
5749 /* register operands: */
5750
5751 case IA64_OPND_AR3:
5752 if (e->X_op == O_register && e->X_add_number >= REG_AR
5753 && e->X_add_number < REG_AR + 128)
5754 return OPERAND_MATCH;
5755 break;
5756
5757 case IA64_OPND_B1:
5758 case IA64_OPND_B2:
5759 if (e->X_op == O_register && e->X_add_number >= REG_BR
5760 && e->X_add_number < REG_BR + 8)
5761 return OPERAND_MATCH;
5762 break;
5763
5764 case IA64_OPND_CR3:
5765 if (e->X_op == O_register && e->X_add_number >= REG_CR
5766 && e->X_add_number < REG_CR + 128)
5767 return OPERAND_MATCH;
5768 break;
5769
5770 case IA64_OPND_F1:
5771 case IA64_OPND_F2:
5772 case IA64_OPND_F3:
5773 case IA64_OPND_F4:
5774 if (e->X_op == O_register && e->X_add_number >= REG_FR
5775 && e->X_add_number < REG_FR + 128)
5776 return OPERAND_MATCH;
5777 break;
5778
5779 case IA64_OPND_P1:
5780 case IA64_OPND_P2:
5781 if (e->X_op == O_register && e->X_add_number >= REG_P
5782 && e->X_add_number < REG_P + 64)
5783 return OPERAND_MATCH;
5784 break;
5785
5786 case IA64_OPND_R1:
5787 case IA64_OPND_R2:
5788 case IA64_OPND_R3:
5789 if (e->X_op == O_register && e->X_add_number >= REG_GR
5790 && e->X_add_number < REG_GR + 128)
5791 return OPERAND_MATCH;
5792 break;
5793
5794 case IA64_OPND_R3_2:
5795 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5796 {
5797 if (e->X_add_number < REG_GR + 4)
5798 return OPERAND_MATCH;
5799 else if (e->X_add_number < REG_GR + 128)
5800 return OPERAND_OUT_OF_RANGE;
5801 }
5802 break;
5803
5804 /* indirect operands: */
5805 case IA64_OPND_CPUID_R3:
5806 case IA64_OPND_DBR_R3:
5807 case IA64_OPND_DTR_R3:
5808 case IA64_OPND_ITR_R3:
5809 case IA64_OPND_IBR_R3:
5810 case IA64_OPND_MSR_R3:
5811 case IA64_OPND_PKR_R3:
5812 case IA64_OPND_PMC_R3:
5813 case IA64_OPND_PMD_R3:
5814 case IA64_OPND_RR_R3:
5815 if (e->X_op == O_index && e->X_op_symbol
5816 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5817 == opnd - IA64_OPND_CPUID_R3))
5818 return OPERAND_MATCH;
5819 break;
5820
5821 case IA64_OPND_MR3:
5822 if (e->X_op == O_index && !e->X_op_symbol)
5823 return OPERAND_MATCH;
5824 break;
5825
5826 /* immediate operands: */
5827 case IA64_OPND_CNT2a:
5828 case IA64_OPND_LEN4:
5829 case IA64_OPND_LEN6:
5830 bits = operand_width (idesc->operands[index]);
5831 if (e->X_op == O_constant)
5832 {
5833 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5834 return OPERAND_MATCH;
5835 else
5836 return OPERAND_OUT_OF_RANGE;
5837 }
5838 break;
5839
5840 case IA64_OPND_CNT2b:
5841 if (e->X_op == O_constant)
5842 {
5843 if ((bfd_vma) (e->X_add_number - 1) < 3)
5844 return OPERAND_MATCH;
5845 else
5846 return OPERAND_OUT_OF_RANGE;
5847 }
5848 break;
5849
5850 case IA64_OPND_CNT2c:
5851 val = e->X_add_number;
5852 if (e->X_op == O_constant)
5853 {
5854 if ((val == 0 || val == 7 || val == 15 || val == 16))
5855 return OPERAND_MATCH;
5856 else
5857 return OPERAND_OUT_OF_RANGE;
5858 }
5859 break;
5860
5861 case IA64_OPND_SOR:
5862 /* SOR must be an integer multiple of 8 */
5863 if (e->X_op == O_constant && e->X_add_number & 0x7)
5864 return OPERAND_OUT_OF_RANGE;
5865 case IA64_OPND_SOF:
5866 case IA64_OPND_SOL:
5867 if (e->X_op == O_constant)
5868 {
5869 if ((bfd_vma) e->X_add_number <= 96)
5870 return OPERAND_MATCH;
5871 else
5872 return OPERAND_OUT_OF_RANGE;
5873 }
5874 break;
5875
5876 case IA64_OPND_IMMU62:
5877 if (e->X_op == O_constant)
5878 {
5879 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5880 return OPERAND_MATCH;
5881 else
5882 return OPERAND_OUT_OF_RANGE;
5883 }
5884 else
5885 {
5886 /* FIXME -- need 62-bit relocation type */
5887 as_bad (_("62-bit relocation not yet implemented"));
5888 }
5889 break;
5890
5891 case IA64_OPND_IMMU64:
5892 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5893 || e->X_op == O_subtract)
5894 {
5895 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5896 fix->code = BFD_RELOC_IA64_IMM64;
5897 if (e->X_op != O_subtract)
5898 {
5899 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5900 if (e->X_op == O_pseudo_fixup)
5901 e->X_op = O_symbol;
5902 }
5903
5904 fix->opnd = idesc->operands[index];
5905 fix->expr = *e;
5906 fix->is_pcrel = 0;
5907 ++CURR_SLOT.num_fixups;
5908 return OPERAND_MATCH;
5909 }
5910 else if (e->X_op == O_constant)
5911 return OPERAND_MATCH;
5912 break;
5913
5914 case IA64_OPND_IMMU5b:
5915 if (e->X_op == O_constant)
5916 {
5917 val = e->X_add_number;
5918 if (val >= 32 && val <= 63)
5919 return OPERAND_MATCH;
5920 else
5921 return OPERAND_OUT_OF_RANGE;
5922 }
5923 break;
5924
5925 case IA64_OPND_CCNT5:
5926 case IA64_OPND_CNT5:
5927 case IA64_OPND_CNT6:
5928 case IA64_OPND_CPOS6a:
5929 case IA64_OPND_CPOS6b:
5930 case IA64_OPND_CPOS6c:
5931 case IA64_OPND_IMMU2:
5932 case IA64_OPND_IMMU7a:
5933 case IA64_OPND_IMMU7b:
5934 case IA64_OPND_IMMU21:
5935 case IA64_OPND_IMMU24:
5936 case IA64_OPND_MBTYPE4:
5937 case IA64_OPND_MHTYPE8:
5938 case IA64_OPND_POS6:
5939 bits = operand_width (idesc->operands[index]);
5940 if (e->X_op == O_constant)
5941 {
5942 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5943 return OPERAND_MATCH;
5944 else
5945 return OPERAND_OUT_OF_RANGE;
5946 }
5947 break;
5948
5949 case IA64_OPND_IMMU9:
5950 bits = operand_width (idesc->operands[index]);
5951 if (e->X_op == O_constant)
5952 {
5953 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5954 {
5955 int lobits = e->X_add_number & 0x3;
5956 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5957 e->X_add_number |= (bfd_vma) 0x3;
5958 return OPERAND_MATCH;
5959 }
5960 else
5961 return OPERAND_OUT_OF_RANGE;
5962 }
5963 break;
5964
5965 case IA64_OPND_IMM44:
5966 /* least 16 bits must be zero */
5967 if ((e->X_add_number & 0xffff) != 0)
5968 /* XXX technically, this is wrong: we should not be issuing warning
5969 messages until we're sure this instruction pattern is going to
5970 be used! */
5971 as_warn (_("lower 16 bits of mask ignored"));
5972
5973 if (e->X_op == O_constant)
5974 {
5975 if (((e->X_add_number >= 0
5976 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5977 || (e->X_add_number < 0
5978 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5979 {
5980 /* sign-extend */
5981 if (e->X_add_number >= 0
5982 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5983 {
5984 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5985 }
5986 return OPERAND_MATCH;
5987 }
5988 else
5989 return OPERAND_OUT_OF_RANGE;
5990 }
5991 break;
5992
5993 case IA64_OPND_IMM17:
5994 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5995 if (e->X_op == O_constant)
5996 {
5997 if (((e->X_add_number >= 0
5998 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5999 || (e->X_add_number < 0
6000 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
6001 {
6002 /* sign-extend */
6003 if (e->X_add_number >= 0
6004 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
6005 {
6006 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6007 }
6008 return OPERAND_MATCH;
6009 }
6010 else
6011 return OPERAND_OUT_OF_RANGE;
6012 }
6013 break;
6014
6015 case IA64_OPND_IMM14:
6016 case IA64_OPND_IMM22:
6017 relocatable = 1;
6018 case IA64_OPND_IMM1:
6019 case IA64_OPND_IMM8:
6020 case IA64_OPND_IMM8U4:
6021 case IA64_OPND_IMM8M1:
6022 case IA64_OPND_IMM8M1U4:
6023 case IA64_OPND_IMM8M1U8:
6024 case IA64_OPND_IMM9a:
6025 case IA64_OPND_IMM9b:
6026 bits = operand_width (idesc->operands[index]);
6027 if (relocatable && (e->X_op == O_symbol
6028 || e->X_op == O_subtract
6029 || e->X_op == O_pseudo_fixup))
6030 {
6031 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6032
6033 if (idesc->operands[index] == IA64_OPND_IMM14)
6034 fix->code = BFD_RELOC_IA64_IMM14;
6035 else
6036 fix->code = BFD_RELOC_IA64_IMM22;
6037
6038 if (e->X_op != O_subtract)
6039 {
6040 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6041 if (e->X_op == O_pseudo_fixup)
6042 e->X_op = O_symbol;
6043 }
6044
6045 fix->opnd = idesc->operands[index];
6046 fix->expr = *e;
6047 fix->is_pcrel = 0;
6048 ++CURR_SLOT.num_fixups;
6049 return OPERAND_MATCH;
6050 }
6051 else if (e->X_op != O_constant
6052 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6053 return OPERAND_MISMATCH;
6054
6055 if (opnd == IA64_OPND_IMM8M1U4)
6056 {
6057 /* Zero is not valid for unsigned compares that take an adjusted
6058 constant immediate range. */
6059 if (e->X_add_number == 0)
6060 return OPERAND_OUT_OF_RANGE;
6061
6062 /* Sign-extend 32-bit unsigned numbers, so that the following range
6063 checks will work. */
6064 val = e->X_add_number;
6065 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6066 && ((val & ((bfd_vma) 1 << 31)) != 0))
6067 val = ((val << 32) >> 32);
6068
6069 /* Check for 0x100000000. This is valid because
6070 0x100000000-1 is the same as ((uint32_t) -1). */
6071 if (val == ((bfd_signed_vma) 1 << 32))
6072 return OPERAND_MATCH;
6073
6074 val = val - 1;
6075 }
6076 else if (opnd == IA64_OPND_IMM8M1U8)
6077 {
6078 /* Zero is not valid for unsigned compares that take an adjusted
6079 constant immediate range. */
6080 if (e->X_add_number == 0)
6081 return OPERAND_OUT_OF_RANGE;
6082
6083 /* Check for 0x10000000000000000. */
6084 if (e->X_op == O_big)
6085 {
6086 if (generic_bignum[0] == 0
6087 && generic_bignum[1] == 0
6088 && generic_bignum[2] == 0
6089 && generic_bignum[3] == 0
6090 && generic_bignum[4] == 1)
6091 return OPERAND_MATCH;
6092 else
6093 return OPERAND_OUT_OF_RANGE;
6094 }
6095 else
6096 val = e->X_add_number - 1;
6097 }
6098 else if (opnd == IA64_OPND_IMM8M1)
6099 val = e->X_add_number - 1;
6100 else if (opnd == IA64_OPND_IMM8U4)
6101 {
6102 /* Sign-extend 32-bit unsigned numbers, so that the following range
6103 checks will work. */
6104 val = e->X_add_number;
6105 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6106 && ((val & ((bfd_vma) 1 << 31)) != 0))
6107 val = ((val << 32) >> 32);
6108 }
6109 else
6110 val = e->X_add_number;
6111
6112 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6113 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6114 return OPERAND_MATCH;
6115 else
6116 return OPERAND_OUT_OF_RANGE;
6117
6118 case IA64_OPND_INC3:
6119 /* +/- 1, 4, 8, 16 */
6120 val = e->X_add_number;
6121 if (val < 0)
6122 val = -val;
6123 if (e->X_op == O_constant)
6124 {
6125 if ((val == 1 || val == 4 || val == 8 || val == 16))
6126 return OPERAND_MATCH;
6127 else
6128 return OPERAND_OUT_OF_RANGE;
6129 }
6130 break;
6131
6132 case IA64_OPND_TGT25:
6133 case IA64_OPND_TGT25b:
6134 case IA64_OPND_TGT25c:
6135 case IA64_OPND_TGT64:
6136 if (e->X_op == O_symbol)
6137 {
6138 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6139 if (opnd == IA64_OPND_TGT25)
6140 fix->code = BFD_RELOC_IA64_PCREL21F;
6141 else if (opnd == IA64_OPND_TGT25b)
6142 fix->code = BFD_RELOC_IA64_PCREL21M;
6143 else if (opnd == IA64_OPND_TGT25c)
6144 fix->code = BFD_RELOC_IA64_PCREL21B;
6145 else if (opnd == IA64_OPND_TGT64)
6146 fix->code = BFD_RELOC_IA64_PCREL60B;
6147 else
6148 abort ();
6149
6150 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6151 fix->opnd = idesc->operands[index];
6152 fix->expr = *e;
6153 fix->is_pcrel = 1;
6154 ++CURR_SLOT.num_fixups;
6155 return OPERAND_MATCH;
6156 }
6157 case IA64_OPND_TAG13:
6158 case IA64_OPND_TAG13b:
6159 switch (e->X_op)
6160 {
6161 case O_constant:
6162 return OPERAND_MATCH;
6163
6164 case O_symbol:
6165 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6166 /* There are no external relocs for TAG13/TAG13b fields, so we
6167 create a dummy reloc. This will not live past md_apply_fix. */
6168 fix->code = BFD_RELOC_UNUSED;
6169 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6170 fix->opnd = idesc->operands[index];
6171 fix->expr = *e;
6172 fix->is_pcrel = 1;
6173 ++CURR_SLOT.num_fixups;
6174 return OPERAND_MATCH;
6175
6176 default:
6177 break;
6178 }
6179 break;
6180
6181 case IA64_OPND_LDXMOV:
6182 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6183 fix->code = BFD_RELOC_IA64_LDXMOV;
6184 fix->opnd = idesc->operands[index];
6185 fix->expr = *e;
6186 fix->is_pcrel = 0;
6187 ++CURR_SLOT.num_fixups;
6188 return OPERAND_MATCH;
6189
6190 default:
6191 break;
6192 }
6193 return OPERAND_MISMATCH;
6194 }
6195
6196 static int
6197 parse_operand (e, more)
6198 expressionS *e;
6199 int more;
6200 {
6201 int sep = '\0';
6202
6203 memset (e, 0, sizeof (*e));
6204 e->X_op = O_absent;
6205 SKIP_WHITESPACE ();
6206 expression_and_evaluate (e);
6207 sep = *input_line_pointer;
6208 if (more && (sep == ',' || sep == more))
6209 ++input_line_pointer;
6210 return sep;
6211 }
6212
6213 /* Returns the next entry in the opcode table that matches the one in
6214 IDESC, and frees the entry in IDESC. If no matching entry is
6215 found, NULL is returned instead. */
6216
6217 static struct ia64_opcode *
6218 get_next_opcode (struct ia64_opcode *idesc)
6219 {
6220 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6221 ia64_free_opcode (idesc);
6222 return next;
6223 }
6224
6225 /* Parse the operands for the opcode and find the opcode variant that
6226 matches the specified operands, or NULL if no match is possible. */
6227
6228 static struct ia64_opcode *
6229 parse_operands (idesc)
6230 struct ia64_opcode *idesc;
6231 {
6232 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6233 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6234 int reg1, reg2;
6235 char reg_class;
6236 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6237 enum operand_match_result result;
6238 char mnemonic[129];
6239 char *first_arg = 0, *end, *saved_input_pointer;
6240 unsigned int sof;
6241
6242 assert (strlen (idesc->name) <= 128);
6243
6244 strcpy (mnemonic, idesc->name);
6245 if (idesc->operands[2] == IA64_OPND_SOF
6246 || idesc->operands[1] == IA64_OPND_SOF)
6247 {
6248 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6249 can't parse the first operand until we have parsed the
6250 remaining operands of the "alloc" instruction. */
6251 SKIP_WHITESPACE ();
6252 first_arg = input_line_pointer;
6253 end = strchr (input_line_pointer, '=');
6254 if (!end)
6255 {
6256 as_bad (_("Expected separator `='"));
6257 return 0;
6258 }
6259 input_line_pointer = end + 1;
6260 ++i;
6261 ++num_outputs;
6262 }
6263
6264 for (; ; ++i)
6265 {
6266 if (i < NELEMS (CURR_SLOT.opnd))
6267 {
6268 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6269 if (CURR_SLOT.opnd[i].X_op == O_absent)
6270 break;
6271 }
6272 else
6273 {
6274 expressionS dummy;
6275
6276 sep = parse_operand (&dummy, '=');
6277 if (dummy.X_op == O_absent)
6278 break;
6279 }
6280
6281 ++num_operands;
6282
6283 if (sep != '=' && sep != ',')
6284 break;
6285
6286 if (sep == '=')
6287 {
6288 if (num_outputs > 0)
6289 as_bad (_("Duplicate equal sign (=) in instruction"));
6290 else
6291 num_outputs = i + 1;
6292 }
6293 }
6294 if (sep != '\0')
6295 {
6296 as_bad (_("Illegal operand separator `%c'"), sep);
6297 return 0;
6298 }
6299
6300 if (idesc->operands[2] == IA64_OPND_SOF
6301 || idesc->operands[1] == IA64_OPND_SOF)
6302 {
6303 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6304 Note, however, that due to that mapping operand numbers in error
6305 messages for any of the constant operands will not be correct. */
6306 know (strcmp (idesc->name, "alloc") == 0);
6307 /* The first operand hasn't been parsed/initialized, yet (but
6308 num_operands intentionally doesn't account for that). */
6309 i = num_operands > 4 ? 2 : 1;
6310 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6311 ? CURR_SLOT.opnd[n].X_add_number \
6312 : 0)
6313 sof = set_regstack (FORCE_CONST(i),
6314 FORCE_CONST(i + 1),
6315 FORCE_CONST(i + 2),
6316 FORCE_CONST(i + 3));
6317 #undef FORCE_CONST
6318
6319 /* now we can parse the first arg: */
6320 saved_input_pointer = input_line_pointer;
6321 input_line_pointer = first_arg;
6322 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6323 if (sep != '=')
6324 --num_outputs; /* force error */
6325 input_line_pointer = saved_input_pointer;
6326
6327 CURR_SLOT.opnd[i].X_add_number = sof;
6328 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6329 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6330 CURR_SLOT.opnd[i + 1].X_add_number
6331 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6332 else
6333 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6334 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6335 }
6336
6337 highest_unmatched_operand = -4;
6338 curr_out_of_range_pos = -1;
6339 error_pos = 0;
6340 for (; idesc; idesc = get_next_opcode (idesc))
6341 {
6342 if (num_outputs != idesc->num_outputs)
6343 continue; /* mismatch in # of outputs */
6344 if (highest_unmatched_operand < 0)
6345 highest_unmatched_operand |= 1;
6346 if (num_operands > NELEMS (idesc->operands)
6347 || (num_operands < NELEMS (idesc->operands)
6348 && idesc->operands[num_operands])
6349 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6350 continue; /* mismatch in number of arguments */
6351 if (highest_unmatched_operand < 0)
6352 highest_unmatched_operand |= 2;
6353
6354 CURR_SLOT.num_fixups = 0;
6355
6356 /* Try to match all operands. If we see an out-of-range operand,
6357 then continue trying to match the rest of the operands, since if
6358 the rest match, then this idesc will give the best error message. */
6359
6360 out_of_range_pos = -1;
6361 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6362 {
6363 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6364 if (result != OPERAND_MATCH)
6365 {
6366 if (result != OPERAND_OUT_OF_RANGE)
6367 break;
6368 if (out_of_range_pos < 0)
6369 /* remember position of the first out-of-range operand: */
6370 out_of_range_pos = i;
6371 }
6372 }
6373
6374 /* If we did not match all operands, or if at least one operand was
6375 out-of-range, then this idesc does not match. Keep track of which
6376 idesc matched the most operands before failing. If we have two
6377 idescs that failed at the same position, and one had an out-of-range
6378 operand, then prefer the out-of-range operand. Thus if we have
6379 "add r0=0x1000000,r1" we get an error saying the constant is out
6380 of range instead of an error saying that the constant should have been
6381 a register. */
6382
6383 if (i != num_operands || out_of_range_pos >= 0)
6384 {
6385 if (i > highest_unmatched_operand
6386 || (i == highest_unmatched_operand
6387 && out_of_range_pos > curr_out_of_range_pos))
6388 {
6389 highest_unmatched_operand = i;
6390 if (out_of_range_pos >= 0)
6391 {
6392 expected_operand = idesc->operands[out_of_range_pos];
6393 error_pos = out_of_range_pos;
6394 }
6395 else
6396 {
6397 expected_operand = idesc->operands[i];
6398 error_pos = i;
6399 }
6400 curr_out_of_range_pos = out_of_range_pos;
6401 }
6402 continue;
6403 }
6404
6405 break;
6406 }
6407 if (!idesc)
6408 {
6409 if (expected_operand)
6410 as_bad (_("Operand %u of `%s' should be %s"),
6411 error_pos + 1, mnemonic,
6412 elf64_ia64_operands[expected_operand].desc);
6413 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6414 as_bad (_("Wrong number of output operands"));
6415 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6416 as_bad (_("Wrong number of input operands"));
6417 else
6418 as_bad (_("Operand mismatch"));
6419 return 0;
6420 }
6421
6422 /* Check that the instruction doesn't use
6423 - r0, f0, or f1 as output operands
6424 - the same predicate twice as output operands
6425 - r0 as address of a base update load or store
6426 - the same GR as output and address of a base update load
6427 - two even- or two odd-numbered FRs as output operands of a floating
6428 point parallel load.
6429 At most two (conflicting) output (or output-like) operands can exist,
6430 (floating point parallel loads have three outputs, but the base register,
6431 if updated, cannot conflict with the actual outputs). */
6432 reg2 = reg1 = -1;
6433 for (i = 0; i < num_operands; ++i)
6434 {
6435 int regno = 0;
6436
6437 reg_class = 0;
6438 switch (idesc->operands[i])
6439 {
6440 case IA64_OPND_R1:
6441 case IA64_OPND_R2:
6442 case IA64_OPND_R3:
6443 if (i < num_outputs)
6444 {
6445 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6446 reg_class = 'r';
6447 else if (reg1 < 0)
6448 reg1 = CURR_SLOT.opnd[i].X_add_number;
6449 else if (reg2 < 0)
6450 reg2 = CURR_SLOT.opnd[i].X_add_number;
6451 }
6452 break;
6453 case IA64_OPND_P1:
6454 case IA64_OPND_P2:
6455 if (i < num_outputs)
6456 {
6457 if (reg1 < 0)
6458 reg1 = CURR_SLOT.opnd[i].X_add_number;
6459 else if (reg2 < 0)
6460 reg2 = CURR_SLOT.opnd[i].X_add_number;
6461 }
6462 break;
6463 case IA64_OPND_F1:
6464 case IA64_OPND_F2:
6465 case IA64_OPND_F3:
6466 case IA64_OPND_F4:
6467 if (i < num_outputs)
6468 {
6469 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6470 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6471 {
6472 reg_class = 'f';
6473 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6474 }
6475 else if (reg1 < 0)
6476 reg1 = CURR_SLOT.opnd[i].X_add_number;
6477 else if (reg2 < 0)
6478 reg2 = CURR_SLOT.opnd[i].X_add_number;
6479 }
6480 break;
6481 case IA64_OPND_MR3:
6482 if (idesc->flags & IA64_OPCODE_POSTINC)
6483 {
6484 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6485 reg_class = 'm';
6486 else if (reg1 < 0)
6487 reg1 = CURR_SLOT.opnd[i].X_add_number;
6488 else if (reg2 < 0)
6489 reg2 = CURR_SLOT.opnd[i].X_add_number;
6490 }
6491 break;
6492 default:
6493 break;
6494 }
6495 switch (reg_class)
6496 {
6497 case 0:
6498 break;
6499 default:
6500 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6501 break;
6502 case 'm':
6503 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6504 break;
6505 }
6506 }
6507 if (reg1 == reg2)
6508 {
6509 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6510 {
6511 reg1 -= REG_GR;
6512 reg_class = 'r';
6513 }
6514 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6515 {
6516 reg1 -= REG_P;
6517 reg_class = 'p';
6518 }
6519 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6520 {
6521 reg1 -= REG_FR;
6522 reg_class = 'f';
6523 }
6524 else
6525 reg_class = 0;
6526 if (reg_class)
6527 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6528 }
6529 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6530 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6531 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6532 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6533 && ! ((reg1 ^ reg2) & 1))
6534 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6535 reg1 - REG_FR, reg2 - REG_FR);
6536 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6537 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6538 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6539 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6540 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6541 reg1 - REG_FR, reg2 - REG_FR);
6542 return idesc;
6543 }
6544
6545 static void
6546 build_insn (slot, insnp)
6547 struct slot *slot;
6548 bfd_vma *insnp;
6549 {
6550 const struct ia64_operand *odesc, *o2desc;
6551 struct ia64_opcode *idesc = slot->idesc;
6552 bfd_vma insn;
6553 bfd_signed_vma val;
6554 const char *err;
6555 int i;
6556
6557 insn = idesc->opcode | slot->qp_regno;
6558
6559 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6560 {
6561 if (slot->opnd[i].X_op == O_register
6562 || slot->opnd[i].X_op == O_constant
6563 || slot->opnd[i].X_op == O_index)
6564 val = slot->opnd[i].X_add_number;
6565 else if (slot->opnd[i].X_op == O_big)
6566 {
6567 /* This must be the value 0x10000000000000000. */
6568 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6569 val = 0;
6570 }
6571 else
6572 val = 0;
6573
6574 switch (idesc->operands[i])
6575 {
6576 case IA64_OPND_IMMU64:
6577 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6578 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6579 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6580 | (((val >> 63) & 0x1) << 36));
6581 continue;
6582
6583 case IA64_OPND_IMMU62:
6584 val &= 0x3fffffffffffffffULL;
6585 if (val != slot->opnd[i].X_add_number)
6586 as_warn (_("Value truncated to 62 bits"));
6587 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6588 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6589 continue;
6590
6591 case IA64_OPND_TGT64:
6592 val >>= 4;
6593 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6594 insn |= ((((val >> 59) & 0x1) << 36)
6595 | (((val >> 0) & 0xfffff) << 13));
6596 continue;
6597
6598 case IA64_OPND_AR3:
6599 val -= REG_AR;
6600 break;
6601
6602 case IA64_OPND_B1:
6603 case IA64_OPND_B2:
6604 val -= REG_BR;
6605 break;
6606
6607 case IA64_OPND_CR3:
6608 val -= REG_CR;
6609 break;
6610
6611 case IA64_OPND_F1:
6612 case IA64_OPND_F2:
6613 case IA64_OPND_F3:
6614 case IA64_OPND_F4:
6615 val -= REG_FR;
6616 break;
6617
6618 case IA64_OPND_P1:
6619 case IA64_OPND_P2:
6620 val -= REG_P;
6621 break;
6622
6623 case IA64_OPND_R1:
6624 case IA64_OPND_R2:
6625 case IA64_OPND_R3:
6626 case IA64_OPND_R3_2:
6627 case IA64_OPND_CPUID_R3:
6628 case IA64_OPND_DBR_R3:
6629 case IA64_OPND_DTR_R3:
6630 case IA64_OPND_ITR_R3:
6631 case IA64_OPND_IBR_R3:
6632 case IA64_OPND_MR3:
6633 case IA64_OPND_MSR_R3:
6634 case IA64_OPND_PKR_R3:
6635 case IA64_OPND_PMC_R3:
6636 case IA64_OPND_PMD_R3:
6637 case IA64_OPND_RR_R3:
6638 val -= REG_GR;
6639 break;
6640
6641 default:
6642 break;
6643 }
6644
6645 odesc = elf64_ia64_operands + idesc->operands[i];
6646 err = (*odesc->insert) (odesc, val, &insn);
6647 if (err)
6648 as_bad_where (slot->src_file, slot->src_line,
6649 _("Bad operand value: %s"), err);
6650 if (idesc->flags & IA64_OPCODE_PSEUDO)
6651 {
6652 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6653 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6654 {
6655 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6656 (*o2desc->insert) (o2desc, val, &insn);
6657 }
6658 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6659 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6660 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6661 {
6662 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6663 (*o2desc->insert) (o2desc, 64 - val, &insn);
6664 }
6665 }
6666 }
6667 *insnp = insn;
6668 }
6669
6670 static void
6671 emit_one_bundle ()
6672 {
6673 int manual_bundling_off = 0, manual_bundling = 0;
6674 enum ia64_unit required_unit, insn_unit = 0;
6675 enum ia64_insn_type type[3], insn_type;
6676 unsigned int template, orig_template;
6677 bfd_vma insn[3] = { -1, -1, -1 };
6678 struct ia64_opcode *idesc;
6679 int end_of_insn_group = 0, user_template = -1;
6680 int n, i, j, first, curr, last_slot;
6681 bfd_vma t0 = 0, t1 = 0;
6682 struct label_fix *lfix;
6683 bfd_boolean mark_label;
6684 struct insn_fix *ifix;
6685 char mnemonic[16];
6686 fixS *fix;
6687 char *f;
6688 int addr_mod;
6689
6690 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6691 know (first >= 0 && first < NUM_SLOTS);
6692 n = MIN (3, md.num_slots_in_use);
6693
6694 /* Determine template: user user_template if specified, best match
6695 otherwise: */
6696
6697 if (md.slot[first].user_template >= 0)
6698 user_template = template = md.slot[first].user_template;
6699 else
6700 {
6701 /* Auto select appropriate template. */
6702 memset (type, 0, sizeof (type));
6703 curr = first;
6704 for (i = 0; i < n; ++i)
6705 {
6706 if (md.slot[curr].label_fixups && i != 0)
6707 break;
6708 type[i] = md.slot[curr].idesc->type;
6709 curr = (curr + 1) % NUM_SLOTS;
6710 }
6711 template = best_template[type[0]][type[1]][type[2]];
6712 }
6713
6714 /* initialize instructions with appropriate nops: */
6715 for (i = 0; i < 3; ++i)
6716 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6717
6718 f = frag_more (16);
6719
6720 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6721 from the start of the frag. */
6722 addr_mod = frag_now_fix () & 15;
6723 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6724 as_bad (_("instruction address is not a multiple of 16"));
6725 frag_now->insn_addr = addr_mod;
6726 frag_now->has_code = 1;
6727
6728 /* now fill in slots with as many insns as possible: */
6729 curr = first;
6730 idesc = md.slot[curr].idesc;
6731 end_of_insn_group = 0;
6732 last_slot = -1;
6733 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6734 {
6735 /* If we have unwind records, we may need to update some now. */
6736 unw_rec_list *ptr = md.slot[curr].unwind_record;
6737 unw_rec_list *end_ptr = NULL;
6738
6739 if (ptr)
6740 {
6741 /* Find the last prologue/body record in the list for the current
6742 insn, and set the slot number for all records up to that point.
6743 This needs to be done now, because prologue/body records refer to
6744 the current point, not the point after the instruction has been
6745 issued. This matters because there may have been nops emitted
6746 meanwhile. Any non-prologue non-body record followed by a
6747 prologue/body record must also refer to the current point. */
6748 unw_rec_list *last_ptr;
6749
6750 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6751 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6752 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6753 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6754 || ptr->r.type == body)
6755 last_ptr = ptr;
6756 if (last_ptr)
6757 {
6758 /* Make last_ptr point one after the last prologue/body
6759 record. */
6760 last_ptr = last_ptr->next;
6761 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6762 ptr = ptr->next)
6763 {
6764 ptr->slot_number = (unsigned long) f + i;
6765 ptr->slot_frag = frag_now;
6766 }
6767 /* Remove the initialized records, so that we won't accidentally
6768 update them again if we insert a nop and continue. */
6769 md.slot[curr].unwind_record = last_ptr;
6770 }
6771 }
6772
6773 manual_bundling_off = md.slot[curr].manual_bundling_off;
6774 if (md.slot[curr].manual_bundling_on)
6775 {
6776 if (curr == first)
6777 manual_bundling = 1;
6778 else
6779 break; /* Need to start a new bundle. */
6780 }
6781
6782 /* If this instruction specifies a template, then it must be the first
6783 instruction of a bundle. */
6784 if (curr != first && md.slot[curr].user_template >= 0)
6785 break;
6786
6787 if (idesc->flags & IA64_OPCODE_SLOT2)
6788 {
6789 if (manual_bundling && !manual_bundling_off)
6790 {
6791 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6792 _("`%s' must be last in bundle"), idesc->name);
6793 if (i < 2)
6794 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6795 }
6796 i = 2;
6797 }
6798 if (idesc->flags & IA64_OPCODE_LAST)
6799 {
6800 int required_slot;
6801 unsigned int required_template;
6802
6803 /* If we need a stop bit after an M slot, our only choice is
6804 template 5 (M;;MI). If we need a stop bit after a B
6805 slot, our only choice is to place it at the end of the
6806 bundle, because the only available templates are MIB,
6807 MBB, BBB, MMB, and MFB. We don't handle anything other
6808 than M and B slots because these are the only kind of
6809 instructions that can have the IA64_OPCODE_LAST bit set. */
6810 required_template = template;
6811 switch (idesc->type)
6812 {
6813 case IA64_TYPE_M:
6814 required_slot = 0;
6815 required_template = 5;
6816 break;
6817
6818 case IA64_TYPE_B:
6819 required_slot = 2;
6820 break;
6821
6822 default:
6823 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6824 _("Internal error: don't know how to force %s to end of instruction group"),
6825 idesc->name);
6826 required_slot = i;
6827 break;
6828 }
6829 if (manual_bundling
6830 && (i > required_slot
6831 || (required_slot == 2 && !manual_bundling_off)
6832 || (user_template >= 0
6833 /* Changing from MMI to M;MI is OK. */
6834 && (template ^ required_template) > 1)))
6835 {
6836 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6837 _("`%s' must be last in instruction group"),
6838 idesc->name);
6839 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6840 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6841 }
6842 if (required_slot < i)
6843 /* Can't fit this instruction. */
6844 break;
6845
6846 i = required_slot;
6847 if (required_template != template)
6848 {
6849 /* If we switch the template, we need to reset the NOPs
6850 after slot i. The slot-types of the instructions ahead
6851 of i never change, so we don't need to worry about
6852 changing NOPs in front of this slot. */
6853 for (j = i; j < 3; ++j)
6854 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6855
6856 /* We just picked a template that includes the stop bit in the
6857 middle, so we don't need another one emitted later. */
6858 md.slot[curr].end_of_insn_group = 0;
6859 }
6860 template = required_template;
6861 }
6862 if (curr != first && md.slot[curr].label_fixups)
6863 {
6864 if (manual_bundling)
6865 {
6866 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6867 _("Label must be first in a bundle"));
6868 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6869 }
6870 /* This insn must go into the first slot of a bundle. */
6871 break;
6872 }
6873
6874 if (end_of_insn_group && md.num_slots_in_use >= 1)
6875 {
6876 /* We need an instruction group boundary in the middle of a
6877 bundle. See if we can switch to an other template with
6878 an appropriate boundary. */
6879
6880 orig_template = template;
6881 if (i == 1 && (user_template == 4
6882 || (user_template < 0
6883 && (ia64_templ_desc[template].exec_unit[0]
6884 == IA64_UNIT_M))))
6885 {
6886 template = 5;
6887 end_of_insn_group = 0;
6888 }
6889 else if (i == 2 && (user_template == 0
6890 || (user_template < 0
6891 && (ia64_templ_desc[template].exec_unit[1]
6892 == IA64_UNIT_I)))
6893 /* This test makes sure we don't switch the template if
6894 the next instruction is one that needs to be first in
6895 an instruction group. Since all those instructions are
6896 in the M group, there is no way such an instruction can
6897 fit in this bundle even if we switch the template. The
6898 reason we have to check for this is that otherwise we
6899 may end up generating "MI;;I M.." which has the deadly
6900 effect that the second M instruction is no longer the
6901 first in the group! --davidm 99/12/16 */
6902 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6903 {
6904 template = 1;
6905 end_of_insn_group = 0;
6906 }
6907 else if (i == 1
6908 && user_template == 0
6909 && !(idesc->flags & IA64_OPCODE_FIRST))
6910 /* Use the next slot. */
6911 continue;
6912 else if (curr != first)
6913 /* can't fit this insn */
6914 break;
6915
6916 if (template != orig_template)
6917 /* if we switch the template, we need to reset the NOPs
6918 after slot i. The slot-types of the instructions ahead
6919 of i never change, so we don't need to worry about
6920 changing NOPs in front of this slot. */
6921 for (j = i; j < 3; ++j)
6922 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6923 }
6924 required_unit = ia64_templ_desc[template].exec_unit[i];
6925
6926 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6927 if (idesc->type == IA64_TYPE_DYN)
6928 {
6929 enum ia64_opnd opnd1, opnd2;
6930
6931 if ((strcmp (idesc->name, "nop") == 0)
6932 || (strcmp (idesc->name, "break") == 0))
6933 insn_unit = required_unit;
6934 else if (strcmp (idesc->name, "hint") == 0)
6935 {
6936 insn_unit = required_unit;
6937 if (required_unit == IA64_UNIT_B)
6938 {
6939 switch (md.hint_b)
6940 {
6941 case hint_b_ok:
6942 break;
6943 case hint_b_warning:
6944 as_warn (_("hint in B unit may be treated as nop"));
6945 break;
6946 case hint_b_error:
6947 /* When manual bundling is off and there is no
6948 user template, we choose a different unit so
6949 that hint won't go into the current slot. We
6950 will fill the current bundle with nops and
6951 try to put hint into the next bundle. */
6952 if (!manual_bundling && user_template < 0)
6953 insn_unit = IA64_UNIT_I;
6954 else
6955 as_bad (_("hint in B unit can't be used"));
6956 break;
6957 }
6958 }
6959 }
6960 else if (strcmp (idesc->name, "chk.s") == 0
6961 || strcmp (idesc->name, "mov") == 0)
6962 {
6963 insn_unit = IA64_UNIT_M;
6964 if (required_unit == IA64_UNIT_I
6965 || (required_unit == IA64_UNIT_F && template == 6))
6966 insn_unit = IA64_UNIT_I;
6967 }
6968 else
6969 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6970
6971 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6972 idesc->name, "?imbfxx"[insn_unit]);
6973 opnd1 = idesc->operands[0];
6974 opnd2 = idesc->operands[1];
6975 ia64_free_opcode (idesc);
6976 idesc = ia64_find_opcode (mnemonic);
6977 /* moves to/from ARs have collisions */
6978 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6979 {
6980 while (idesc != NULL
6981 && (idesc->operands[0] != opnd1
6982 || idesc->operands[1] != opnd2))
6983 idesc = get_next_opcode (idesc);
6984 }
6985 md.slot[curr].idesc = idesc;
6986 }
6987 else
6988 {
6989 insn_type = idesc->type;
6990 insn_unit = IA64_UNIT_NIL;
6991 switch (insn_type)
6992 {
6993 case IA64_TYPE_A:
6994 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6995 insn_unit = required_unit;
6996 break;
6997 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6998 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6999 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
7000 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
7001 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
7002 default: break;
7003 }
7004 }
7005
7006 if (insn_unit != required_unit)
7007 continue; /* Try next slot. */
7008
7009 /* Now is a good time to fix up the labels for this insn. */
7010 mark_label = FALSE;
7011 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7012 {
7013 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7014 symbol_set_frag (lfix->sym, frag_now);
7015 mark_label |= lfix->dw2_mark_labels;
7016 }
7017 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7018 {
7019 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7020 symbol_set_frag (lfix->sym, frag_now);
7021 }
7022
7023 if (debug_type == DEBUG_DWARF2
7024 || md.slot[curr].loc_directive_seen
7025 || mark_label)
7026 {
7027 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7028
7029 md.slot[curr].loc_directive_seen = 0;
7030 if (mark_label)
7031 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7032
7033 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7034 }
7035
7036 build_insn (md.slot + curr, insn + i);
7037
7038 ptr = md.slot[curr].unwind_record;
7039 if (ptr)
7040 {
7041 /* Set slot numbers for all remaining unwind records belonging to the
7042 current insn. There can not be any prologue/body unwind records
7043 here. */
7044 for (; ptr != end_ptr; ptr = ptr->next)
7045 {
7046 ptr->slot_number = (unsigned long) f + i;
7047 ptr->slot_frag = frag_now;
7048 }
7049 md.slot[curr].unwind_record = NULL;
7050 }
7051
7052 if (required_unit == IA64_UNIT_L)
7053 {
7054 know (i == 1);
7055 /* skip one slot for long/X-unit instructions */
7056 ++i;
7057 }
7058 --md.num_slots_in_use;
7059 last_slot = i;
7060
7061 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7062 {
7063 ifix = md.slot[curr].fixup + j;
7064 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7065 &ifix->expr, ifix->is_pcrel, ifix->code);
7066 fix->tc_fix_data.opnd = ifix->opnd;
7067 fix->fx_file = md.slot[curr].src_file;
7068 fix->fx_line = md.slot[curr].src_line;
7069 }
7070
7071 end_of_insn_group = md.slot[curr].end_of_insn_group;
7072
7073 /* clear slot: */
7074 ia64_free_opcode (md.slot[curr].idesc);
7075 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7076 md.slot[curr].user_template = -1;
7077
7078 if (manual_bundling_off)
7079 {
7080 manual_bundling = 0;
7081 break;
7082 }
7083 curr = (curr + 1) % NUM_SLOTS;
7084 idesc = md.slot[curr].idesc;
7085 }
7086
7087 /* A user template was specified, but the first following instruction did
7088 not fit. This can happen with or without manual bundling. */
7089 if (md.num_slots_in_use > 0 && last_slot < 0)
7090 {
7091 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7092 _("`%s' does not fit into %s template"),
7093 idesc->name, ia64_templ_desc[template].name);
7094 /* Drop first insn so we don't livelock. */
7095 --md.num_slots_in_use;
7096 know (curr == first);
7097 ia64_free_opcode (md.slot[curr].idesc);
7098 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7099 md.slot[curr].user_template = -1;
7100 }
7101 else if (manual_bundling > 0)
7102 {
7103 if (md.num_slots_in_use > 0)
7104 {
7105 if (last_slot >= 2)
7106 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7107 _("`%s' does not fit into bundle"), idesc->name);
7108 else
7109 {
7110 const char *where;
7111
7112 if (template == 2)
7113 where = "X slot";
7114 else if (last_slot == 0)
7115 where = "slots 2 or 3";
7116 else
7117 where = "slot 3";
7118 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7119 _("`%s' can't go in %s of %s template"),
7120 idesc->name, where, ia64_templ_desc[template].name);
7121 }
7122 }
7123 else
7124 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7125 _("Missing '}' at end of file"));
7126 }
7127
7128 know (md.num_slots_in_use < NUM_SLOTS);
7129
7130 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7131 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7132
7133 number_to_chars_littleendian (f + 0, t0, 8);
7134 number_to_chars_littleendian (f + 8, t1, 8);
7135 }
7136
7137 int
7138 md_parse_option (c, arg)
7139 int c;
7140 char *arg;
7141 {
7142
7143 switch (c)
7144 {
7145 /* Switches from the Intel assembler. */
7146 case 'm':
7147 if (strcmp (arg, "ilp64") == 0
7148 || strcmp (arg, "lp64") == 0
7149 || strcmp (arg, "p64") == 0)
7150 {
7151 md.flags |= EF_IA_64_ABI64;
7152 }
7153 else if (strcmp (arg, "ilp32") == 0)
7154 {
7155 md.flags &= ~EF_IA_64_ABI64;
7156 }
7157 else if (strcmp (arg, "le") == 0)
7158 {
7159 md.flags &= ~EF_IA_64_BE;
7160 default_big_endian = 0;
7161 }
7162 else if (strcmp (arg, "be") == 0)
7163 {
7164 md.flags |= EF_IA_64_BE;
7165 default_big_endian = 1;
7166 }
7167 else if (strncmp (arg, "unwind-check=", 13) == 0)
7168 {
7169 arg += 13;
7170 if (strcmp (arg, "warning") == 0)
7171 md.unwind_check = unwind_check_warning;
7172 else if (strcmp (arg, "error") == 0)
7173 md.unwind_check = unwind_check_error;
7174 else
7175 return 0;
7176 }
7177 else if (strncmp (arg, "hint.b=", 7) == 0)
7178 {
7179 arg += 7;
7180 if (strcmp (arg, "ok") == 0)
7181 md.hint_b = hint_b_ok;
7182 else if (strcmp (arg, "warning") == 0)
7183 md.hint_b = hint_b_warning;
7184 else if (strcmp (arg, "error") == 0)
7185 md.hint_b = hint_b_error;
7186 else
7187 return 0;
7188 }
7189 else if (strncmp (arg, "tune=", 5) == 0)
7190 {
7191 arg += 5;
7192 if (strcmp (arg, "itanium1") == 0)
7193 md.tune = itanium1;
7194 else if (strcmp (arg, "itanium2") == 0)
7195 md.tune = itanium2;
7196 else
7197 return 0;
7198 }
7199 else
7200 return 0;
7201 break;
7202
7203 case 'N':
7204 if (strcmp (arg, "so") == 0)
7205 {
7206 /* Suppress signon message. */
7207 }
7208 else if (strcmp (arg, "pi") == 0)
7209 {
7210 /* Reject privileged instructions. FIXME */
7211 }
7212 else if (strcmp (arg, "us") == 0)
7213 {
7214 /* Allow union of signed and unsigned range. FIXME */
7215 }
7216 else if (strcmp (arg, "close_fcalls") == 0)
7217 {
7218 /* Do not resolve global function calls. */
7219 }
7220 else
7221 return 0;
7222 break;
7223
7224 case 'C':
7225 /* temp[="prefix"] Insert temporary labels into the object file
7226 symbol table prefixed by "prefix".
7227 Default prefix is ":temp:".
7228 */
7229 break;
7230
7231 case 'a':
7232 /* indirect=<tgt> Assume unannotated indirect branches behavior
7233 according to <tgt> --
7234 exit: branch out from the current context (default)
7235 labels: all labels in context may be branch targets
7236 */
7237 if (strncmp (arg, "indirect=", 9) != 0)
7238 return 0;
7239 break;
7240
7241 case 'x':
7242 /* -X conflicts with an ignored option, use -x instead */
7243 md.detect_dv = 1;
7244 if (!arg || strcmp (arg, "explicit") == 0)
7245 {
7246 /* set default mode to explicit */
7247 md.default_explicit_mode = 1;
7248 break;
7249 }
7250 else if (strcmp (arg, "auto") == 0)
7251 {
7252 md.default_explicit_mode = 0;
7253 }
7254 else if (strcmp (arg, "none") == 0)
7255 {
7256 md.detect_dv = 0;
7257 }
7258 else if (strcmp (arg, "debug") == 0)
7259 {
7260 md.debug_dv = 1;
7261 }
7262 else if (strcmp (arg, "debugx") == 0)
7263 {
7264 md.default_explicit_mode = 1;
7265 md.debug_dv = 1;
7266 }
7267 else if (strcmp (arg, "debugn") == 0)
7268 {
7269 md.debug_dv = 1;
7270 md.detect_dv = 0;
7271 }
7272 else
7273 {
7274 as_bad (_("Unrecognized option '-x%s'"), arg);
7275 }
7276 break;
7277
7278 case 'S':
7279 /* nops Print nops statistics. */
7280 break;
7281
7282 /* GNU specific switches for gcc. */
7283 case OPTION_MCONSTANT_GP:
7284 md.flags |= EF_IA_64_CONS_GP;
7285 break;
7286
7287 case OPTION_MAUTO_PIC:
7288 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7289 break;
7290
7291 default:
7292 return 0;
7293 }
7294
7295 return 1;
7296 }
7297
7298 void
7299 md_show_usage (stream)
7300 FILE *stream;
7301 {
7302 fputs (_("\
7303 IA-64 options:\n\
7304 --mconstant-gp mark output file as using the constant-GP model\n\
7305 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7306 --mauto-pic mark output file as using the constant-GP model\n\
7307 without function descriptors (sets ELF header flag\n\
7308 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7309 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7310 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7311 -mtune=[itanium1|itanium2]\n\
7312 tune for a specific CPU (default -mtune=itanium2)\n\
7313 -munwind-check=[warning|error]\n\
7314 unwind directive check (default -munwind-check=warning)\n\
7315 -mhint.b=[ok|warning|error]\n\
7316 hint.b check (default -mhint.b=error)\n\
7317 -x | -xexplicit turn on dependency violation checking\n\
7318 -xauto automagically remove dependency violations (default)\n\
7319 -xnone turn off dependency violation checking\n\
7320 -xdebug debug dependency violation checker\n\
7321 -xdebugn debug dependency violation checker but turn off\n\
7322 dependency violation checking\n\
7323 -xdebugx debug dependency violation checker and turn on\n\
7324 dependency violation checking\n"),
7325 stream);
7326 }
7327
7328 void
7329 ia64_after_parse_args ()
7330 {
7331 if (debug_type == DEBUG_STABS)
7332 as_fatal (_("--gstabs is not supported for ia64"));
7333 }
7334
7335 /* Return true if TYPE fits in TEMPL at SLOT. */
7336
7337 static int
7338 match (int templ, int type, int slot)
7339 {
7340 enum ia64_unit unit;
7341 int result;
7342
7343 unit = ia64_templ_desc[templ].exec_unit[slot];
7344 switch (type)
7345 {
7346 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7347 case IA64_TYPE_A:
7348 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7349 break;
7350 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7351 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7352 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7353 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7354 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7355 default: result = 0; break;
7356 }
7357 return result;
7358 }
7359
7360 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7361 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7362 type M or I would fit in TEMPL at SLOT. */
7363
7364 static inline int
7365 extra_goodness (int templ, int slot)
7366 {
7367 switch (md.tune)
7368 {
7369 case itanium1:
7370 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7371 return 2;
7372 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7373 return 1;
7374 else
7375 return 0;
7376 break;
7377 case itanium2:
7378 if (match (templ, IA64_TYPE_M, slot)
7379 || match (templ, IA64_TYPE_I, slot))
7380 /* Favor M- and I-unit NOPs. We definitely want to avoid
7381 F-unit and B-unit may cause split-issue or less-than-optimal
7382 branch-prediction. */
7383 return 2;
7384 else
7385 return 0;
7386 break;
7387 default:
7388 abort ();
7389 return 0;
7390 }
7391 }
7392
7393 /* This function is called once, at assembler startup time. It sets
7394 up all the tables, etc. that the MD part of the assembler will need
7395 that can be determined before arguments are parsed. */
7396 void
7397 md_begin ()
7398 {
7399 int i, j, k, t, goodness, best, ok;
7400 const char *err;
7401 char name[8];
7402
7403 md.auto_align = 1;
7404 md.explicit_mode = md.default_explicit_mode;
7405
7406 bfd_set_section_alignment (stdoutput, text_section, 4);
7407
7408 /* Make sure function pointers get initialized. */
7409 target_big_endian = -1;
7410 dot_byteorder (default_big_endian);
7411
7412 alias_hash = hash_new ();
7413 alias_name_hash = hash_new ();
7414 secalias_hash = hash_new ();
7415 secalias_name_hash = hash_new ();
7416
7417 pseudo_func[FUNC_DTP_MODULE].u.sym =
7418 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7419 &zero_address_frag);
7420
7421 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7422 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7423 &zero_address_frag);
7424
7425 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7426 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7427 &zero_address_frag);
7428
7429 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7430 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7431 &zero_address_frag);
7432
7433 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7434 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7435 &zero_address_frag);
7436
7437 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7438 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7439 &zero_address_frag);
7440
7441 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7442 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7443 &zero_address_frag);
7444
7445 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7446 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7447 &zero_address_frag);
7448
7449 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7450 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7451 &zero_address_frag);
7452
7453 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7454 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7455 &zero_address_frag);
7456
7457 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7458 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7459 &zero_address_frag);
7460
7461 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7462 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7463 &zero_address_frag);
7464
7465 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7466 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7467 &zero_address_frag);
7468
7469 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7470 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7471 &zero_address_frag);
7472
7473 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7474 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7475 &zero_address_frag);
7476
7477 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7478 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7479 &zero_address_frag);
7480
7481 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7482 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7483 &zero_address_frag);
7484
7485 if (md.tune != itanium1)
7486 {
7487 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7488 le_nop[0] = 0x8;
7489 le_nop_stop[0] = 0x9;
7490 }
7491
7492 /* Compute the table of best templates. We compute goodness as a
7493 base 4 value, in which each match counts for 3. Match-failures
7494 result in NOPs and we use extra_goodness() to pick the execution
7495 units that are best suited for issuing the NOP. */
7496 for (i = 0; i < IA64_NUM_TYPES; ++i)
7497 for (j = 0; j < IA64_NUM_TYPES; ++j)
7498 for (k = 0; k < IA64_NUM_TYPES; ++k)
7499 {
7500 best = 0;
7501 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7502 {
7503 goodness = 0;
7504 if (match (t, i, 0))
7505 {
7506 if (match (t, j, 1))
7507 {
7508 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7509 goodness = 3 + 3 + 3;
7510 else
7511 goodness = 3 + 3 + extra_goodness (t, 2);
7512 }
7513 else if (match (t, j, 2))
7514 goodness = 3 + 3 + extra_goodness (t, 1);
7515 else
7516 {
7517 goodness = 3;
7518 goodness += extra_goodness (t, 1);
7519 goodness += extra_goodness (t, 2);
7520 }
7521 }
7522 else if (match (t, i, 1))
7523 {
7524 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7525 goodness = 3 + 3;
7526 else
7527 goodness = 3 + extra_goodness (t, 2);
7528 }
7529 else if (match (t, i, 2))
7530 goodness = 3 + extra_goodness (t, 1);
7531
7532 if (goodness > best)
7533 {
7534 best = goodness;
7535 best_template[i][j][k] = t;
7536 }
7537 }
7538 }
7539
7540 #ifdef DEBUG_TEMPLATES
7541 /* For debugging changes to the best_template calculations. We don't care
7542 about combinations with invalid instructions, so start the loops at 1. */
7543 for (i = 0; i < IA64_NUM_TYPES; ++i)
7544 for (j = 0; j < IA64_NUM_TYPES; ++j)
7545 for (k = 0; k < IA64_NUM_TYPES; ++k)
7546 {
7547 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7548 'x', 'd' };
7549 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7550 type_letter[k],
7551 ia64_templ_desc[best_template[i][j][k]].name);
7552 }
7553 #endif
7554
7555 for (i = 0; i < NUM_SLOTS; ++i)
7556 md.slot[i].user_template = -1;
7557
7558 md.pseudo_hash = hash_new ();
7559 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7560 {
7561 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7562 (void *) (pseudo_opcode + i));
7563 if (err)
7564 as_fatal (_("ia64.md_begin: can't hash `%s': %s"),
7565 pseudo_opcode[i].name, err);
7566 }
7567
7568 md.reg_hash = hash_new ();
7569 md.dynreg_hash = hash_new ();
7570 md.const_hash = hash_new ();
7571 md.entry_hash = hash_new ();
7572
7573 /* general registers: */
7574 declare_register_set ("r", 128, REG_GR);
7575 declare_register ("gp", REG_GR + 1);
7576 declare_register ("sp", REG_GR + 12);
7577 declare_register ("tp", REG_GR + 13);
7578 declare_register_set ("ret", 4, REG_GR + 8);
7579
7580 /* floating point registers: */
7581 declare_register_set ("f", 128, REG_FR);
7582 declare_register_set ("farg", 8, REG_FR + 8);
7583 declare_register_set ("fret", 8, REG_FR + 8);
7584
7585 /* branch registers: */
7586 declare_register_set ("b", 8, REG_BR);
7587 declare_register ("rp", REG_BR + 0);
7588
7589 /* predicate registers: */
7590 declare_register_set ("p", 64, REG_P);
7591 declare_register ("pr", REG_PR);
7592 declare_register ("pr.rot", REG_PR_ROT);
7593
7594 /* application registers: */
7595 declare_register_set ("ar", 128, REG_AR);
7596 for (i = 0; i < NELEMS (ar); ++i)
7597 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7598
7599 /* control registers: */
7600 declare_register_set ("cr", 128, REG_CR);
7601 for (i = 0; i < NELEMS (cr); ++i)
7602 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7603
7604 declare_register ("ip", REG_IP);
7605 declare_register ("cfm", REG_CFM);
7606 declare_register ("psr", REG_PSR);
7607 declare_register ("psr.l", REG_PSR_L);
7608 declare_register ("psr.um", REG_PSR_UM);
7609
7610 for (i = 0; i < NELEMS (indirect_reg); ++i)
7611 {
7612 unsigned int regnum = indirect_reg[i].regnum;
7613
7614 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7615 }
7616
7617 /* pseudo-registers used to specify unwind info: */
7618 declare_register ("psp", REG_PSP);
7619
7620 for (i = 0; i < NELEMS (const_bits); ++i)
7621 {
7622 err = hash_insert (md.const_hash, const_bits[i].name,
7623 (PTR) (const_bits + i));
7624 if (err)
7625 as_fatal (_("Inserting \"%s\" into constant hash table failed: %s"),
7626 name, err);
7627 }
7628
7629 /* Set the architecture and machine depending on defaults and command line
7630 options. */
7631 if (md.flags & EF_IA_64_ABI64)
7632 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7633 else
7634 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7635
7636 if (! ok)
7637 as_warn (_("Could not set architecture and machine"));
7638
7639 /* Set the pointer size and pointer shift size depending on md.flags */
7640
7641 if (md.flags & EF_IA_64_ABI64)
7642 {
7643 md.pointer_size = 8; /* pointers are 8 bytes */
7644 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7645 }
7646 else
7647 {
7648 md.pointer_size = 4; /* pointers are 4 bytes */
7649 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7650 }
7651
7652 md.mem_offset.hint = 0;
7653 md.path = 0;
7654 md.maxpaths = 0;
7655 md.entry_labels = NULL;
7656 }
7657
7658 /* Set the default options in md. Cannot do this in md_begin because
7659 that is called after md_parse_option which is where we set the
7660 options in md based on command line options. */
7661
7662 void
7663 ia64_init (argc, argv)
7664 int argc ATTRIBUTE_UNUSED;
7665 char **argv ATTRIBUTE_UNUSED;
7666 {
7667 md.flags = MD_FLAGS_DEFAULT;
7668 md.detect_dv = 1;
7669 /* FIXME: We should change it to unwind_check_error someday. */
7670 md.unwind_check = unwind_check_warning;
7671 md.hint_b = hint_b_error;
7672 md.tune = itanium2;
7673 }
7674
7675 /* Return a string for the target object file format. */
7676
7677 const char *
7678 ia64_target_format ()
7679 {
7680 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7681 {
7682 if (md.flags & EF_IA_64_BE)
7683 {
7684 if (md.flags & EF_IA_64_ABI64)
7685 #if defined(TE_AIX50)
7686 return "elf64-ia64-aix-big";
7687 #elif defined(TE_HPUX)
7688 return "elf64-ia64-hpux-big";
7689 #else
7690 return "elf64-ia64-big";
7691 #endif
7692 else
7693 #if defined(TE_AIX50)
7694 return "elf32-ia64-aix-big";
7695 #elif defined(TE_HPUX)
7696 return "elf32-ia64-hpux-big";
7697 #else
7698 return "elf32-ia64-big";
7699 #endif
7700 }
7701 else
7702 {
7703 if (md.flags & EF_IA_64_ABI64)
7704 #ifdef TE_AIX50
7705 return "elf64-ia64-aix-little";
7706 #else
7707 return "elf64-ia64-little";
7708 #endif
7709 else
7710 #ifdef TE_AIX50
7711 return "elf32-ia64-aix-little";
7712 #else
7713 return "elf32-ia64-little";
7714 #endif
7715 }
7716 }
7717 else
7718 return "unknown-format";
7719 }
7720
7721 void
7722 ia64_end_of_source ()
7723 {
7724 /* terminate insn group upon reaching end of file: */
7725 insn_group_break (1, 0, 0);
7726
7727 /* emits slots we haven't written yet: */
7728 ia64_flush_insns ();
7729
7730 bfd_set_private_flags (stdoutput, md.flags);
7731
7732 md.mem_offset.hint = 0;
7733 }
7734
7735 void
7736 ia64_start_line ()
7737 {
7738 static int first;
7739
7740 if (!first) {
7741 /* Make sure we don't reference input_line_pointer[-1] when that's
7742 not valid. */
7743 first = 1;
7744 return;
7745 }
7746
7747 if (md.qp.X_op == O_register)
7748 as_bad (_("qualifying predicate not followed by instruction"));
7749 md.qp.X_op = O_absent;
7750
7751 if (ignore_input ())
7752 return;
7753
7754 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7755 {
7756 if (md.detect_dv && !md.explicit_mode)
7757 {
7758 static int warned;
7759
7760 if (!warned)
7761 {
7762 warned = 1;
7763 as_warn (_("Explicit stops are ignored in auto mode"));
7764 }
7765 }
7766 else
7767 insn_group_break (1, 0, 0);
7768 }
7769 else if (input_line_pointer[-1] == '{')
7770 {
7771 if (md.manual_bundling)
7772 as_warn (_("Found '{' when manual bundling is already turned on"));
7773 else
7774 CURR_SLOT.manual_bundling_on = 1;
7775 md.manual_bundling = 1;
7776
7777 /* Bundling is only acceptable in explicit mode
7778 or when in default automatic mode. */
7779 if (md.detect_dv && !md.explicit_mode)
7780 {
7781 if (!md.mode_explicitly_set
7782 && !md.default_explicit_mode)
7783 dot_dv_mode ('E');
7784 else
7785 as_warn (_("Found '{' after explicit switch to automatic mode"));
7786 }
7787 }
7788 else if (input_line_pointer[-1] == '}')
7789 {
7790 if (!md.manual_bundling)
7791 as_warn (_("Found '}' when manual bundling is off"));
7792 else
7793 PREV_SLOT.manual_bundling_off = 1;
7794 md.manual_bundling = 0;
7795
7796 /* switch back to automatic mode, if applicable */
7797 if (md.detect_dv
7798 && md.explicit_mode
7799 && !md.mode_explicitly_set
7800 && !md.default_explicit_mode)
7801 dot_dv_mode ('A');
7802 }
7803 }
7804
7805 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7806 labels. */
7807 static int defining_tag = 0;
7808
7809 int
7810 ia64_unrecognized_line (ch)
7811 int ch;
7812 {
7813 switch (ch)
7814 {
7815 case '(':
7816 expression_and_evaluate (&md.qp);
7817 if (*input_line_pointer++ != ')')
7818 {
7819 as_bad (_("Expected ')'"));
7820 return 0;
7821 }
7822 if (md.qp.X_op != O_register)
7823 {
7824 as_bad (_("Qualifying predicate expected"));
7825 return 0;
7826 }
7827 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7828 {
7829 as_bad (_("Predicate register expected"));
7830 return 0;
7831 }
7832 return 1;
7833
7834 case '[':
7835 {
7836 char *s;
7837 char c;
7838 symbolS *tag;
7839 int temp;
7840
7841 if (md.qp.X_op == O_register)
7842 {
7843 as_bad (_("Tag must come before qualifying predicate."));
7844 return 0;
7845 }
7846
7847 /* This implements just enough of read_a_source_file in read.c to
7848 recognize labels. */
7849 if (is_name_beginner (*input_line_pointer))
7850 {
7851 s = input_line_pointer;
7852 c = get_symbol_end ();
7853 }
7854 else if (LOCAL_LABELS_FB
7855 && ISDIGIT (*input_line_pointer))
7856 {
7857 temp = 0;
7858 while (ISDIGIT (*input_line_pointer))
7859 temp = (temp * 10) + *input_line_pointer++ - '0';
7860 fb_label_instance_inc (temp);
7861 s = fb_label_name (temp, 0);
7862 c = *input_line_pointer;
7863 }
7864 else
7865 {
7866 s = NULL;
7867 c = '\0';
7868 }
7869 if (c != ':')
7870 {
7871 /* Put ':' back for error messages' sake. */
7872 *input_line_pointer++ = ':';
7873 as_bad (_("Expected ':'"));
7874 return 0;
7875 }
7876
7877 defining_tag = 1;
7878 tag = colon (s);
7879 defining_tag = 0;
7880 /* Put ':' back for error messages' sake. */
7881 *input_line_pointer++ = ':';
7882 if (*input_line_pointer++ != ']')
7883 {
7884 as_bad (_("Expected ']'"));
7885 return 0;
7886 }
7887 if (! tag)
7888 {
7889 as_bad (_("Tag name expected"));
7890 return 0;
7891 }
7892 return 1;
7893 }
7894
7895 default:
7896 break;
7897 }
7898
7899 /* Not a valid line. */
7900 return 0;
7901 }
7902
7903 void
7904 ia64_frob_label (sym)
7905 struct symbol *sym;
7906 {
7907 struct label_fix *fix;
7908
7909 /* Tags need special handling since they are not bundle breaks like
7910 labels. */
7911 if (defining_tag)
7912 {
7913 fix = obstack_alloc (&notes, sizeof (*fix));
7914 fix->sym = sym;
7915 fix->next = CURR_SLOT.tag_fixups;
7916 fix->dw2_mark_labels = FALSE;
7917 CURR_SLOT.tag_fixups = fix;
7918
7919 return;
7920 }
7921
7922 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7923 {
7924 md.last_text_seg = now_seg;
7925 fix = obstack_alloc (&notes, sizeof (*fix));
7926 fix->sym = sym;
7927 fix->next = CURR_SLOT.label_fixups;
7928 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7929 CURR_SLOT.label_fixups = fix;
7930
7931 /* Keep track of how many code entry points we've seen. */
7932 if (md.path == md.maxpaths)
7933 {
7934 md.maxpaths += 20;
7935 md.entry_labels = (const char **)
7936 xrealloc ((void *) md.entry_labels,
7937 md.maxpaths * sizeof (char *));
7938 }
7939 md.entry_labels[md.path++] = S_GET_NAME (sym);
7940 }
7941 }
7942
7943 #ifdef TE_HPUX
7944 /* The HP-UX linker will give unresolved symbol errors for symbols
7945 that are declared but unused. This routine removes declared,
7946 unused symbols from an object. */
7947 int
7948 ia64_frob_symbol (sym)
7949 struct symbol *sym;
7950 {
7951 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7952 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7953 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7954 && ! S_IS_EXTERNAL (sym)))
7955 return 1;
7956 return 0;
7957 }
7958 #endif
7959
7960 void
7961 ia64_flush_pending_output ()
7962 {
7963 if (!md.keep_pending_output
7964 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7965 {
7966 /* ??? This causes many unnecessary stop bits to be emitted.
7967 Unfortunately, it isn't clear if it is safe to remove this. */
7968 insn_group_break (1, 0, 0);
7969 ia64_flush_insns ();
7970 }
7971 }
7972
7973 /* Do ia64-specific expression optimization. All that's done here is
7974 to transform index expressions that are either due to the indexing
7975 of rotating registers or due to the indexing of indirect register
7976 sets. */
7977 int
7978 ia64_optimize_expr (l, op, r)
7979 expressionS *l;
7980 operatorT op;
7981 expressionS *r;
7982 {
7983 if (op != O_index)
7984 return 0;
7985 resolve_expression (l);
7986 if (l->X_op == O_register)
7987 {
7988 unsigned num_regs = l->X_add_number >> 16;
7989
7990 resolve_expression (r);
7991 if (num_regs)
7992 {
7993 /* Left side is a .rotX-allocated register. */
7994 if (r->X_op != O_constant)
7995 {
7996 as_bad (_("Rotating register index must be a non-negative constant"));
7997 r->X_add_number = 0;
7998 }
7999 else if ((valueT) r->X_add_number >= num_regs)
8000 {
8001 as_bad (_("Index out of range 0..%u"), num_regs - 1);
8002 r->X_add_number = 0;
8003 }
8004 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
8005 return 1;
8006 }
8007 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
8008 {
8009 if (r->X_op != O_register
8010 || r->X_add_number < REG_GR
8011 || r->X_add_number > REG_GR + 127)
8012 {
8013 as_bad (_("Indirect register index must be a general register"));
8014 r->X_add_number = REG_GR;
8015 }
8016 l->X_op = O_index;
8017 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8018 l->X_add_number = r->X_add_number;
8019 return 1;
8020 }
8021 }
8022 as_bad (_("Index can only be applied to rotating or indirect registers"));
8023 /* Fall back to some register use of which has as little as possible
8024 side effects, to minimize subsequent error messages. */
8025 l->X_op = O_register;
8026 l->X_add_number = REG_GR + 3;
8027 return 1;
8028 }
8029
8030 int
8031 ia64_parse_name (name, e, nextcharP)
8032 char *name;
8033 expressionS *e;
8034 char *nextcharP;
8035 {
8036 struct const_desc *cdesc;
8037 struct dynreg *dr = 0;
8038 unsigned int idx;
8039 struct symbol *sym;
8040 char *end;
8041
8042 if (*name == '@')
8043 {
8044 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8045
8046 /* Find what relocation pseudo-function we're dealing with. */
8047 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8048 if (pseudo_func[idx].name
8049 && pseudo_func[idx].name[0] == name[1]
8050 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8051 {
8052 pseudo_type = pseudo_func[idx].type;
8053 break;
8054 }
8055 switch (pseudo_type)
8056 {
8057 case PSEUDO_FUNC_RELOC:
8058 end = input_line_pointer;
8059 if (*nextcharP != '(')
8060 {
8061 as_bad (_("Expected '('"));
8062 break;
8063 }
8064 /* Skip '('. */
8065 ++input_line_pointer;
8066 expression (e);
8067 if (*input_line_pointer != ')')
8068 {
8069 as_bad (_("Missing ')'"));
8070 goto done;
8071 }
8072 /* Skip ')'. */
8073 ++input_line_pointer;
8074 if (e->X_op != O_symbol)
8075 {
8076 if (e->X_op != O_pseudo_fixup)
8077 {
8078 as_bad (_("Not a symbolic expression"));
8079 goto done;
8080 }
8081 if (idx != FUNC_LT_RELATIVE)
8082 {
8083 as_bad (_("Illegal combination of relocation functions"));
8084 goto done;
8085 }
8086 switch (S_GET_VALUE (e->X_op_symbol))
8087 {
8088 case FUNC_FPTR_RELATIVE:
8089 idx = FUNC_LT_FPTR_RELATIVE; break;
8090 case FUNC_DTP_MODULE:
8091 idx = FUNC_LT_DTP_MODULE; break;
8092 case FUNC_DTP_RELATIVE:
8093 idx = FUNC_LT_DTP_RELATIVE; break;
8094 case FUNC_TP_RELATIVE:
8095 idx = FUNC_LT_TP_RELATIVE; break;
8096 default:
8097 as_bad (_("Illegal combination of relocation functions"));
8098 goto done;
8099 }
8100 }
8101 /* Make sure gas doesn't get rid of local symbols that are used
8102 in relocs. */
8103 e->X_op = O_pseudo_fixup;
8104 e->X_op_symbol = pseudo_func[idx].u.sym;
8105 done:
8106 *nextcharP = *input_line_pointer;
8107 break;
8108
8109 case PSEUDO_FUNC_CONST:
8110 e->X_op = O_constant;
8111 e->X_add_number = pseudo_func[idx].u.ival;
8112 break;
8113
8114 case PSEUDO_FUNC_REG:
8115 e->X_op = O_register;
8116 e->X_add_number = pseudo_func[idx].u.ival;
8117 break;
8118
8119 default:
8120 return 0;
8121 }
8122 return 1;
8123 }
8124
8125 /* first see if NAME is a known register name: */
8126 sym = hash_find (md.reg_hash, name);
8127 if (sym)
8128 {
8129 e->X_op = O_register;
8130 e->X_add_number = S_GET_VALUE (sym);
8131 return 1;
8132 }
8133
8134 cdesc = hash_find (md.const_hash, name);
8135 if (cdesc)
8136 {
8137 e->X_op = O_constant;
8138 e->X_add_number = cdesc->value;
8139 return 1;
8140 }
8141
8142 /* check for inN, locN, or outN: */
8143 idx = 0;
8144 switch (name[0])
8145 {
8146 case 'i':
8147 if (name[1] == 'n' && ISDIGIT (name[2]))
8148 {
8149 dr = &md.in;
8150 idx = 2;
8151 }
8152 break;
8153
8154 case 'l':
8155 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8156 {
8157 dr = &md.loc;
8158 idx = 3;
8159 }
8160 break;
8161
8162 case 'o':
8163 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8164 {
8165 dr = &md.out;
8166 idx = 3;
8167 }
8168 break;
8169
8170 default:
8171 break;
8172 }
8173
8174 /* Ignore register numbers with leading zeroes, except zero itself. */
8175 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8176 {
8177 unsigned long regnum;
8178
8179 /* The name is inN, locN, or outN; parse the register number. */
8180 regnum = strtoul (name + idx, &end, 10);
8181 if (end > name + idx && *end == '\0' && regnum < 96)
8182 {
8183 if (regnum >= dr->num_regs)
8184 {
8185 if (!dr->num_regs)
8186 as_bad (_("No current frame"));
8187 else
8188 as_bad (_("Register number out of range 0..%u"),
8189 dr->num_regs - 1);
8190 regnum = 0;
8191 }
8192 e->X_op = O_register;
8193 e->X_add_number = dr->base + regnum;
8194 return 1;
8195 }
8196 }
8197
8198 end = alloca (strlen (name) + 1);
8199 strcpy (end, name);
8200 name = ia64_canonicalize_symbol_name (end);
8201 if ((dr = hash_find (md.dynreg_hash, name)))
8202 {
8203 /* We've got ourselves the name of a rotating register set.
8204 Store the base register number in the low 16 bits of
8205 X_add_number and the size of the register set in the top 16
8206 bits. */
8207 e->X_op = O_register;
8208 e->X_add_number = dr->base | (dr->num_regs << 16);
8209 return 1;
8210 }
8211 return 0;
8212 }
8213
8214 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8215
8216 char *
8217 ia64_canonicalize_symbol_name (name)
8218 char *name;
8219 {
8220 size_t len = strlen (name), full = len;
8221
8222 while (len > 0 && name[len - 1] == '#')
8223 --len;
8224 if (len <= 0)
8225 {
8226 if (full > 0)
8227 as_bad (_("Standalone `#' is illegal"));
8228 }
8229 else if (len < full - 1)
8230 as_warn (_("Redundant `#' suffix operators"));
8231 name[len] = '\0';
8232 return name;
8233 }
8234
8235 /* Return true if idesc is a conditional branch instruction. This excludes
8236 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8237 because they always read/write resources regardless of the value of the
8238 qualifying predicate. br.ia must always use p0, and hence is always
8239 taken. Thus this function returns true for branches which can fall
8240 through, and which use no resources if they do fall through. */
8241
8242 static int
8243 is_conditional_branch (idesc)
8244 struct ia64_opcode *idesc;
8245 {
8246 /* br is a conditional branch. Everything that starts with br. except
8247 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8248 Everything that starts with brl is a conditional branch. */
8249 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8250 && (idesc->name[2] == '\0'
8251 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8252 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8253 || idesc->name[2] == 'l'
8254 /* br.cond, br.call, br.clr */
8255 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8256 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8257 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8258 }
8259
8260 /* Return whether the given opcode is a taken branch. If there's any doubt,
8261 returns zero. */
8262
8263 static int
8264 is_taken_branch (idesc)
8265 struct ia64_opcode *idesc;
8266 {
8267 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8268 || strncmp (idesc->name, "br.ia", 5) == 0);
8269 }
8270
8271 /* Return whether the given opcode is an interruption or rfi. If there's any
8272 doubt, returns zero. */
8273
8274 static int
8275 is_interruption_or_rfi (idesc)
8276 struct ia64_opcode *idesc;
8277 {
8278 if (strcmp (idesc->name, "rfi") == 0)
8279 return 1;
8280 return 0;
8281 }
8282
8283 /* Returns the index of the given dependency in the opcode's list of chks, or
8284 -1 if there is no dependency. */
8285
8286 static int
8287 depends_on (depind, idesc)
8288 int depind;
8289 struct ia64_opcode *idesc;
8290 {
8291 int i;
8292 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8293 for (i = 0; i < dep->nchks; i++)
8294 {
8295 if (depind == DEP (dep->chks[i]))
8296 return i;
8297 }
8298 return -1;
8299 }
8300
8301 /* Determine a set of specific resources used for a particular resource
8302 class. Returns the number of specific resources identified For those
8303 cases which are not determinable statically, the resource returned is
8304 marked nonspecific.
8305
8306 Meanings of value in 'NOTE':
8307 1) only read/write when the register number is explicitly encoded in the
8308 insn.
8309 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8310 accesses CFM when qualifying predicate is in the rotating region.
8311 3) general register value is used to specify an indirect register; not
8312 determinable statically.
8313 4) only read the given resource when bits 7:0 of the indirect index
8314 register value does not match the register number of the resource; not
8315 determinable statically.
8316 5) all rules are implementation specific.
8317 6) only when both the index specified by the reader and the index specified
8318 by the writer have the same value in bits 63:61; not determinable
8319 statically.
8320 7) only access the specified resource when the corresponding mask bit is
8321 set
8322 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8323 only read when these insns reference FR2-31
8324 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8325 written when these insns write FR32-127
8326 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8327 instruction
8328 11) The target predicates are written independently of PR[qp], but source
8329 registers are only read if PR[qp] is true. Since the state of PR[qp]
8330 cannot statically be determined, all source registers are marked used.
8331 12) This insn only reads the specified predicate register when that
8332 register is the PR[qp].
8333 13) This reference to ld-c only applies to the GR whose value is loaded
8334 with data returned from memory, not the post-incremented address register.
8335 14) The RSE resource includes the implementation-specific RSE internal
8336 state resources. At least one (and possibly more) of these resources are
8337 read by each instruction listed in IC:rse-readers. At least one (and
8338 possibly more) of these resources are written by each insn listed in
8339 IC:rse-writers.
8340 15+16) Represents reserved instructions, which the assembler does not
8341 generate.
8342 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8343 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8344
8345 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8346 this code; there are no dependency violations based on memory access.
8347 */
8348
8349 #define MAX_SPECS 256
8350 #define DV_CHK 1
8351 #define DV_REG 0
8352
8353 static int
8354 specify_resource (dep, idesc, type, specs, note, path)
8355 const struct ia64_dependency *dep;
8356 struct ia64_opcode *idesc;
8357 int type; /* is this a DV chk or a DV reg? */
8358 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8359 int note; /* resource note for this insn's usage */
8360 int path; /* which execution path to examine */
8361 {
8362 int count = 0;
8363 int i;
8364 int rsrc_write = 0;
8365 struct rsrc tmpl;
8366
8367 if (dep->mode == IA64_DV_WAW
8368 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8369 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8370 rsrc_write = 1;
8371
8372 /* template for any resources we identify */
8373 tmpl.dependency = dep;
8374 tmpl.note = note;
8375 tmpl.insn_srlz = tmpl.data_srlz = 0;
8376 tmpl.qp_regno = CURR_SLOT.qp_regno;
8377 tmpl.link_to_qp_branch = 1;
8378 tmpl.mem_offset.hint = 0;
8379 tmpl.mem_offset.offset = 0;
8380 tmpl.mem_offset.base = 0;
8381 tmpl.specific = 1;
8382 tmpl.index = -1;
8383 tmpl.cmp_type = CMP_NONE;
8384 tmpl.depind = 0;
8385 tmpl.file = NULL;
8386 tmpl.line = 0;
8387 tmpl.path = 0;
8388
8389 #define UNHANDLED \
8390 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8391 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8392 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8393
8394 /* we don't need to track these */
8395 if (dep->semantics == IA64_DVS_NONE)
8396 return 0;
8397
8398 switch (dep->specifier)
8399 {
8400 case IA64_RS_AR_K:
8401 if (note == 1)
8402 {
8403 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8404 {
8405 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8406 if (regno >= 0 && regno <= 7)
8407 {
8408 specs[count] = tmpl;
8409 specs[count++].index = regno;
8410 }
8411 }
8412 }
8413 else if (note == 0)
8414 {
8415 for (i = 0; i < 8; i++)
8416 {
8417 specs[count] = tmpl;
8418 specs[count++].index = i;
8419 }
8420 }
8421 else
8422 {
8423 UNHANDLED;
8424 }
8425 break;
8426
8427 case IA64_RS_AR_UNAT:
8428 /* This is a mov =AR or mov AR= instruction. */
8429 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8430 {
8431 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8432 if (regno == AR_UNAT)
8433 {
8434 specs[count++] = tmpl;
8435 }
8436 }
8437 else
8438 {
8439 /* This is a spill/fill, or other instruction that modifies the
8440 unat register. */
8441
8442 /* Unless we can determine the specific bits used, mark the whole
8443 thing; bits 8:3 of the memory address indicate the bit used in
8444 UNAT. The .mem.offset hint may be used to eliminate a small
8445 subset of conflicts. */
8446 specs[count] = tmpl;
8447 if (md.mem_offset.hint)
8448 {
8449 if (md.debug_dv)
8450 fprintf (stderr, " Using hint for spill/fill\n");
8451 /* The index isn't actually used, just set it to something
8452 approximating the bit index. */
8453 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8454 specs[count].mem_offset.hint = 1;
8455 specs[count].mem_offset.offset = md.mem_offset.offset;
8456 specs[count++].mem_offset.base = md.mem_offset.base;
8457 }
8458 else
8459 {
8460 specs[count++].specific = 0;
8461 }
8462 }
8463 break;
8464
8465 case IA64_RS_AR:
8466 if (note == 1)
8467 {
8468 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8469 {
8470 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8471 if ((regno >= 8 && regno <= 15)
8472 || (regno >= 20 && regno <= 23)
8473 || (regno >= 31 && regno <= 39)
8474 || (regno >= 41 && regno <= 47)
8475 || (regno >= 67 && regno <= 111))
8476 {
8477 specs[count] = tmpl;
8478 specs[count++].index = regno;
8479 }
8480 }
8481 }
8482 else
8483 {
8484 UNHANDLED;
8485 }
8486 break;
8487
8488 case IA64_RS_ARb:
8489 if (note == 1)
8490 {
8491 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8492 {
8493 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8494 if ((regno >= 48 && regno <= 63)
8495 || (regno >= 112 && regno <= 127))
8496 {
8497 specs[count] = tmpl;
8498 specs[count++].index = regno;
8499 }
8500 }
8501 }
8502 else if (note == 0)
8503 {
8504 for (i = 48; i < 64; i++)
8505 {
8506 specs[count] = tmpl;
8507 specs[count++].index = i;
8508 }
8509 for (i = 112; i < 128; i++)
8510 {
8511 specs[count] = tmpl;
8512 specs[count++].index = i;
8513 }
8514 }
8515 else
8516 {
8517 UNHANDLED;
8518 }
8519 break;
8520
8521 case IA64_RS_BR:
8522 if (note != 1)
8523 {
8524 UNHANDLED;
8525 }
8526 else
8527 {
8528 if (rsrc_write)
8529 {
8530 for (i = 0; i < idesc->num_outputs; i++)
8531 if (idesc->operands[i] == IA64_OPND_B1
8532 || idesc->operands[i] == IA64_OPND_B2)
8533 {
8534 specs[count] = tmpl;
8535 specs[count++].index =
8536 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8537 }
8538 }
8539 else
8540 {
8541 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8542 if (idesc->operands[i] == IA64_OPND_B1
8543 || idesc->operands[i] == IA64_OPND_B2)
8544 {
8545 specs[count] = tmpl;
8546 specs[count++].index =
8547 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8548 }
8549 }
8550 }
8551 break;
8552
8553 case IA64_RS_CPUID: /* four or more registers */
8554 if (note == 3)
8555 {
8556 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8557 {
8558 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8559 if (regno >= 0 && regno < NELEMS (gr_values)
8560 && KNOWN (regno))
8561 {
8562 specs[count] = tmpl;
8563 specs[count++].index = gr_values[regno].value & 0xFF;
8564 }
8565 else
8566 {
8567 specs[count] = tmpl;
8568 specs[count++].specific = 0;
8569 }
8570 }
8571 }
8572 else
8573 {
8574 UNHANDLED;
8575 }
8576 break;
8577
8578 case IA64_RS_DBR: /* four or more registers */
8579 if (note == 3)
8580 {
8581 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8582 {
8583 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8584 if (regno >= 0 && regno < NELEMS (gr_values)
8585 && KNOWN (regno))
8586 {
8587 specs[count] = tmpl;
8588 specs[count++].index = gr_values[regno].value & 0xFF;
8589 }
8590 else
8591 {
8592 specs[count] = tmpl;
8593 specs[count++].specific = 0;
8594 }
8595 }
8596 }
8597 else if (note == 0 && !rsrc_write)
8598 {
8599 specs[count] = tmpl;
8600 specs[count++].specific = 0;
8601 }
8602 else
8603 {
8604 UNHANDLED;
8605 }
8606 break;
8607
8608 case IA64_RS_IBR: /* four or more registers */
8609 if (note == 3)
8610 {
8611 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8612 {
8613 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8614 if (regno >= 0 && regno < NELEMS (gr_values)
8615 && KNOWN (regno))
8616 {
8617 specs[count] = tmpl;
8618 specs[count++].index = gr_values[regno].value & 0xFF;
8619 }
8620 else
8621 {
8622 specs[count] = tmpl;
8623 specs[count++].specific = 0;
8624 }
8625 }
8626 }
8627 else
8628 {
8629 UNHANDLED;
8630 }
8631 break;
8632
8633 case IA64_RS_MSR:
8634 if (note == 5)
8635 {
8636 /* These are implementation specific. Force all references to
8637 conflict with all other references. */
8638 specs[count] = tmpl;
8639 specs[count++].specific = 0;
8640 }
8641 else
8642 {
8643 UNHANDLED;
8644 }
8645 break;
8646
8647 case IA64_RS_PKR: /* 16 or more registers */
8648 if (note == 3 || note == 4)
8649 {
8650 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8651 {
8652 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8653 if (regno >= 0 && regno < NELEMS (gr_values)
8654 && KNOWN (regno))
8655 {
8656 if (note == 3)
8657 {
8658 specs[count] = tmpl;
8659 specs[count++].index = gr_values[regno].value & 0xFF;
8660 }
8661 else
8662 for (i = 0; i < NELEMS (gr_values); i++)
8663 {
8664 /* Uses all registers *except* the one in R3. */
8665 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8666 {
8667 specs[count] = tmpl;
8668 specs[count++].index = i;
8669 }
8670 }
8671 }
8672 else
8673 {
8674 specs[count] = tmpl;
8675 specs[count++].specific = 0;
8676 }
8677 }
8678 }
8679 else if (note == 0)
8680 {
8681 /* probe et al. */
8682 specs[count] = tmpl;
8683 specs[count++].specific = 0;
8684 }
8685 break;
8686
8687 case IA64_RS_PMC: /* four or more registers */
8688 if (note == 3)
8689 {
8690 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8691 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8692
8693 {
8694 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8695 ? 1 : !rsrc_write);
8696 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8697 if (regno >= 0 && regno < NELEMS (gr_values)
8698 && KNOWN (regno))
8699 {
8700 specs[count] = tmpl;
8701 specs[count++].index = gr_values[regno].value & 0xFF;
8702 }
8703 else
8704 {
8705 specs[count] = tmpl;
8706 specs[count++].specific = 0;
8707 }
8708 }
8709 }
8710 else
8711 {
8712 UNHANDLED;
8713 }
8714 break;
8715
8716 case IA64_RS_PMD: /* four or more registers */
8717 if (note == 3)
8718 {
8719 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8720 {
8721 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8722 if (regno >= 0 && regno < NELEMS (gr_values)
8723 && KNOWN (regno))
8724 {
8725 specs[count] = tmpl;
8726 specs[count++].index = gr_values[regno].value & 0xFF;
8727 }
8728 else
8729 {
8730 specs[count] = tmpl;
8731 specs[count++].specific = 0;
8732 }
8733 }
8734 }
8735 else
8736 {
8737 UNHANDLED;
8738 }
8739 break;
8740
8741 case IA64_RS_RR: /* eight registers */
8742 if (note == 6)
8743 {
8744 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8745 {
8746 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8747 if (regno >= 0 && regno < NELEMS (gr_values)
8748 && KNOWN (regno))
8749 {
8750 specs[count] = tmpl;
8751 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8752 }
8753 else
8754 {
8755 specs[count] = tmpl;
8756 specs[count++].specific = 0;
8757 }
8758 }
8759 }
8760 else if (note == 0 && !rsrc_write)
8761 {
8762 specs[count] = tmpl;
8763 specs[count++].specific = 0;
8764 }
8765 else
8766 {
8767 UNHANDLED;
8768 }
8769 break;
8770
8771 case IA64_RS_CR_IRR:
8772 if (note == 0)
8773 {
8774 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8775 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8776 if (rsrc_write
8777 && idesc->operands[1] == IA64_OPND_CR3
8778 && regno == CR_IVR)
8779 {
8780 for (i = 0; i < 4; i++)
8781 {
8782 specs[count] = tmpl;
8783 specs[count++].index = CR_IRR0 + i;
8784 }
8785 }
8786 }
8787 else if (note == 1)
8788 {
8789 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8790 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8791 && regno >= CR_IRR0
8792 && regno <= CR_IRR3)
8793 {
8794 specs[count] = tmpl;
8795 specs[count++].index = regno;
8796 }
8797 }
8798 else
8799 {
8800 UNHANDLED;
8801 }
8802 break;
8803
8804 case IA64_RS_CR_LRR:
8805 if (note != 1)
8806 {
8807 UNHANDLED;
8808 }
8809 else
8810 {
8811 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8812 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8813 && (regno == CR_LRR0 || regno == CR_LRR1))
8814 {
8815 specs[count] = tmpl;
8816 specs[count++].index = regno;
8817 }
8818 }
8819 break;
8820
8821 case IA64_RS_CR:
8822 if (note == 1)
8823 {
8824 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8825 {
8826 specs[count] = tmpl;
8827 specs[count++].index =
8828 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8829 }
8830 }
8831 else
8832 {
8833 UNHANDLED;
8834 }
8835 break;
8836
8837 case IA64_RS_FR:
8838 case IA64_RS_FRb:
8839 if (note != 1)
8840 {
8841 UNHANDLED;
8842 }
8843 else if (rsrc_write)
8844 {
8845 if (dep->specifier == IA64_RS_FRb
8846 && idesc->operands[0] == IA64_OPND_F1)
8847 {
8848 specs[count] = tmpl;
8849 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8850 }
8851 }
8852 else
8853 {
8854 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8855 {
8856 if (idesc->operands[i] == IA64_OPND_F2
8857 || idesc->operands[i] == IA64_OPND_F3
8858 || idesc->operands[i] == IA64_OPND_F4)
8859 {
8860 specs[count] = tmpl;
8861 specs[count++].index =
8862 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8863 }
8864 }
8865 }
8866 break;
8867
8868 case IA64_RS_GR:
8869 if (note == 13)
8870 {
8871 /* This reference applies only to the GR whose value is loaded with
8872 data returned from memory. */
8873 specs[count] = tmpl;
8874 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8875 }
8876 else if (note == 1)
8877 {
8878 if (rsrc_write)
8879 {
8880 for (i = 0; i < idesc->num_outputs; i++)
8881 if (idesc->operands[i] == IA64_OPND_R1
8882 || idesc->operands[i] == IA64_OPND_R2
8883 || idesc->operands[i] == IA64_OPND_R3)
8884 {
8885 specs[count] = tmpl;
8886 specs[count++].index =
8887 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8888 }
8889 if (idesc->flags & IA64_OPCODE_POSTINC)
8890 for (i = 0; i < NELEMS (idesc->operands); i++)
8891 if (idesc->operands[i] == IA64_OPND_MR3)
8892 {
8893 specs[count] = tmpl;
8894 specs[count++].index =
8895 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8896 }
8897 }
8898 else
8899 {
8900 /* Look for anything that reads a GR. */
8901 for (i = 0; i < NELEMS (idesc->operands); i++)
8902 {
8903 if (idesc->operands[i] == IA64_OPND_MR3
8904 || idesc->operands[i] == IA64_OPND_CPUID_R3
8905 || idesc->operands[i] == IA64_OPND_DBR_R3
8906 || idesc->operands[i] == IA64_OPND_IBR_R3
8907 || idesc->operands[i] == IA64_OPND_MSR_R3
8908 || idesc->operands[i] == IA64_OPND_PKR_R3
8909 || idesc->operands[i] == IA64_OPND_PMC_R3
8910 || idesc->operands[i] == IA64_OPND_PMD_R3
8911 || idesc->operands[i] == IA64_OPND_RR_R3
8912 || ((i >= idesc->num_outputs)
8913 && (idesc->operands[i] == IA64_OPND_R1
8914 || idesc->operands[i] == IA64_OPND_R2
8915 || idesc->operands[i] == IA64_OPND_R3
8916 /* addl source register. */
8917 || idesc->operands[i] == IA64_OPND_R3_2)))
8918 {
8919 specs[count] = tmpl;
8920 specs[count++].index =
8921 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8922 }
8923 }
8924 }
8925 }
8926 else
8927 {
8928 UNHANDLED;
8929 }
8930 break;
8931
8932 /* This is the same as IA64_RS_PRr, except that the register range is
8933 from 1 - 15, and there are no rotating register reads/writes here. */
8934 case IA64_RS_PR:
8935 if (note == 0)
8936 {
8937 for (i = 1; i < 16; i++)
8938 {
8939 specs[count] = tmpl;
8940 specs[count++].index = i;
8941 }
8942 }
8943 else if (note == 7)
8944 {
8945 valueT mask = 0;
8946 /* Mark only those registers indicated by the mask. */
8947 if (rsrc_write)
8948 {
8949 mask = CURR_SLOT.opnd[2].X_add_number;
8950 for (i = 1; i < 16; i++)
8951 if (mask & ((valueT) 1 << i))
8952 {
8953 specs[count] = tmpl;
8954 specs[count++].index = i;
8955 }
8956 }
8957 else
8958 {
8959 UNHANDLED;
8960 }
8961 }
8962 else if (note == 11) /* note 11 implies note 1 as well */
8963 {
8964 if (rsrc_write)
8965 {
8966 for (i = 0; i < idesc->num_outputs; i++)
8967 {
8968 if (idesc->operands[i] == IA64_OPND_P1
8969 || idesc->operands[i] == IA64_OPND_P2)
8970 {
8971 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8972 if (regno >= 1 && regno < 16)
8973 {
8974 specs[count] = tmpl;
8975 specs[count++].index = regno;
8976 }
8977 }
8978 }
8979 }
8980 else
8981 {
8982 UNHANDLED;
8983 }
8984 }
8985 else if (note == 12)
8986 {
8987 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8988 {
8989 specs[count] = tmpl;
8990 specs[count++].index = CURR_SLOT.qp_regno;
8991 }
8992 }
8993 else if (note == 1)
8994 {
8995 if (rsrc_write)
8996 {
8997 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8998 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8999 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9000 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9001
9002 if ((idesc->operands[0] == IA64_OPND_P1
9003 || idesc->operands[0] == IA64_OPND_P2)
9004 && p1 >= 1 && p1 < 16)
9005 {
9006 specs[count] = tmpl;
9007 specs[count].cmp_type =
9008 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9009 specs[count++].index = p1;
9010 }
9011 if ((idesc->operands[1] == IA64_OPND_P1
9012 || idesc->operands[1] == IA64_OPND_P2)
9013 && p2 >= 1 && p2 < 16)
9014 {
9015 specs[count] = tmpl;
9016 specs[count].cmp_type =
9017 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9018 specs[count++].index = p2;
9019 }
9020 }
9021 else
9022 {
9023 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9024 {
9025 specs[count] = tmpl;
9026 specs[count++].index = CURR_SLOT.qp_regno;
9027 }
9028 if (idesc->operands[1] == IA64_OPND_PR)
9029 {
9030 for (i = 1; i < 16; i++)
9031 {
9032 specs[count] = tmpl;
9033 specs[count++].index = i;
9034 }
9035 }
9036 }
9037 }
9038 else
9039 {
9040 UNHANDLED;
9041 }
9042 break;
9043
9044 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9045 simplified cases of this. */
9046 case IA64_RS_PRr:
9047 if (note == 0)
9048 {
9049 for (i = 16; i < 63; i++)
9050 {
9051 specs[count] = tmpl;
9052 specs[count++].index = i;
9053 }
9054 }
9055 else if (note == 7)
9056 {
9057 valueT mask = 0;
9058 /* Mark only those registers indicated by the mask. */
9059 if (rsrc_write
9060 && idesc->operands[0] == IA64_OPND_PR)
9061 {
9062 mask = CURR_SLOT.opnd[2].X_add_number;
9063 if (mask & ((valueT) 1 << 16))
9064 for (i = 16; i < 63; i++)
9065 {
9066 specs[count] = tmpl;
9067 specs[count++].index = i;
9068 }
9069 }
9070 else if (rsrc_write
9071 && idesc->operands[0] == IA64_OPND_PR_ROT)
9072 {
9073 for (i = 16; i < 63; i++)
9074 {
9075 specs[count] = tmpl;
9076 specs[count++].index = i;
9077 }
9078 }
9079 else
9080 {
9081 UNHANDLED;
9082 }
9083 }
9084 else if (note == 11) /* note 11 implies note 1 as well */
9085 {
9086 if (rsrc_write)
9087 {
9088 for (i = 0; i < idesc->num_outputs; i++)
9089 {
9090 if (idesc->operands[i] == IA64_OPND_P1
9091 || idesc->operands[i] == IA64_OPND_P2)
9092 {
9093 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9094 if (regno >= 16 && regno < 63)
9095 {
9096 specs[count] = tmpl;
9097 specs[count++].index = regno;
9098 }
9099 }
9100 }
9101 }
9102 else
9103 {
9104 UNHANDLED;
9105 }
9106 }
9107 else if (note == 12)
9108 {
9109 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9110 {
9111 specs[count] = tmpl;
9112 specs[count++].index = CURR_SLOT.qp_regno;
9113 }
9114 }
9115 else if (note == 1)
9116 {
9117 if (rsrc_write)
9118 {
9119 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9120 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9121 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9122 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9123
9124 if ((idesc->operands[0] == IA64_OPND_P1
9125 || idesc->operands[0] == IA64_OPND_P2)
9126 && p1 >= 16 && p1 < 63)
9127 {
9128 specs[count] = tmpl;
9129 specs[count].cmp_type =
9130 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9131 specs[count++].index = p1;
9132 }
9133 if ((idesc->operands[1] == IA64_OPND_P1
9134 || idesc->operands[1] == IA64_OPND_P2)
9135 && p2 >= 16 && p2 < 63)
9136 {
9137 specs[count] = tmpl;
9138 specs[count].cmp_type =
9139 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9140 specs[count++].index = p2;
9141 }
9142 }
9143 else
9144 {
9145 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9146 {
9147 specs[count] = tmpl;
9148 specs[count++].index = CURR_SLOT.qp_regno;
9149 }
9150 if (idesc->operands[1] == IA64_OPND_PR)
9151 {
9152 for (i = 16; i < 63; i++)
9153 {
9154 specs[count] = tmpl;
9155 specs[count++].index = i;
9156 }
9157 }
9158 }
9159 }
9160 else
9161 {
9162 UNHANDLED;
9163 }
9164 break;
9165
9166 case IA64_RS_PSR:
9167 /* Verify that the instruction is using the PSR bit indicated in
9168 dep->regindex. */
9169 if (note == 0)
9170 {
9171 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9172 {
9173 if (dep->regindex < 6)
9174 {
9175 specs[count++] = tmpl;
9176 }
9177 }
9178 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9179 {
9180 if (dep->regindex < 32
9181 || dep->regindex == 35
9182 || dep->regindex == 36
9183 || (!rsrc_write && dep->regindex == PSR_CPL))
9184 {
9185 specs[count++] = tmpl;
9186 }
9187 }
9188 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9189 {
9190 if (dep->regindex < 32
9191 || dep->regindex == 35
9192 || dep->regindex == 36
9193 || (rsrc_write && dep->regindex == PSR_CPL))
9194 {
9195 specs[count++] = tmpl;
9196 }
9197 }
9198 else
9199 {
9200 /* Several PSR bits have very specific dependencies. */
9201 switch (dep->regindex)
9202 {
9203 default:
9204 specs[count++] = tmpl;
9205 break;
9206 case PSR_IC:
9207 if (rsrc_write)
9208 {
9209 specs[count++] = tmpl;
9210 }
9211 else
9212 {
9213 /* Only certain CR accesses use PSR.ic */
9214 if (idesc->operands[0] == IA64_OPND_CR3
9215 || idesc->operands[1] == IA64_OPND_CR3)
9216 {
9217 int index =
9218 ((idesc->operands[0] == IA64_OPND_CR3)
9219 ? 0 : 1);
9220 int regno =
9221 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9222
9223 switch (regno)
9224 {
9225 default:
9226 break;
9227 case CR_ITIR:
9228 case CR_IFS:
9229 case CR_IIM:
9230 case CR_IIP:
9231 case CR_IPSR:
9232 case CR_ISR:
9233 case CR_IFA:
9234 case CR_IHA:
9235 case CR_IIPA:
9236 specs[count++] = tmpl;
9237 break;
9238 }
9239 }
9240 }
9241 break;
9242 case PSR_CPL:
9243 if (rsrc_write)
9244 {
9245 specs[count++] = tmpl;
9246 }
9247 else
9248 {
9249 /* Only some AR accesses use cpl */
9250 if (idesc->operands[0] == IA64_OPND_AR3
9251 || idesc->operands[1] == IA64_OPND_AR3)
9252 {
9253 int index =
9254 ((idesc->operands[0] == IA64_OPND_AR3)
9255 ? 0 : 1);
9256 int regno =
9257 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9258
9259 if (regno == AR_ITC
9260 || regno == AR_RUC
9261 || (index == 0
9262 && (regno == AR_RSC
9263 || (regno >= AR_K0
9264 && regno <= AR_K7))))
9265 {
9266 specs[count++] = tmpl;
9267 }
9268 }
9269 else
9270 {
9271 specs[count++] = tmpl;
9272 }
9273 break;
9274 }
9275 }
9276 }
9277 }
9278 else if (note == 7)
9279 {
9280 valueT mask = 0;
9281 if (idesc->operands[0] == IA64_OPND_IMMU24)
9282 {
9283 mask = CURR_SLOT.opnd[0].X_add_number;
9284 }
9285 else
9286 {
9287 UNHANDLED;
9288 }
9289 if (mask & ((valueT) 1 << dep->regindex))
9290 {
9291 specs[count++] = tmpl;
9292 }
9293 }
9294 else if (note == 8)
9295 {
9296 int min = dep->regindex == PSR_DFL ? 2 : 32;
9297 int max = dep->regindex == PSR_DFL ? 31 : 127;
9298 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9299 for (i = 0; i < NELEMS (idesc->operands); i++)
9300 {
9301 if (idesc->operands[i] == IA64_OPND_F1
9302 || idesc->operands[i] == IA64_OPND_F2
9303 || idesc->operands[i] == IA64_OPND_F3
9304 || idesc->operands[i] == IA64_OPND_F4)
9305 {
9306 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9307 if (reg >= min && reg <= max)
9308 {
9309 specs[count++] = tmpl;
9310 }
9311 }
9312 }
9313 }
9314 else if (note == 9)
9315 {
9316 int min = dep->regindex == PSR_MFL ? 2 : 32;
9317 int max = dep->regindex == PSR_MFL ? 31 : 127;
9318 /* mfh is read on writes to FR32-127; mfl is read on writes to
9319 FR2-31 */
9320 for (i = 0; i < idesc->num_outputs; i++)
9321 {
9322 if (idesc->operands[i] == IA64_OPND_F1)
9323 {
9324 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9325 if (reg >= min && reg <= max)
9326 {
9327 specs[count++] = tmpl;
9328 }
9329 }
9330 }
9331 }
9332 else if (note == 10)
9333 {
9334 for (i = 0; i < NELEMS (idesc->operands); i++)
9335 {
9336 if (idesc->operands[i] == IA64_OPND_R1
9337 || idesc->operands[i] == IA64_OPND_R2
9338 || idesc->operands[i] == IA64_OPND_R3)
9339 {
9340 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9341 if (regno >= 16 && regno <= 31)
9342 {
9343 specs[count++] = tmpl;
9344 }
9345 }
9346 }
9347 }
9348 else
9349 {
9350 UNHANDLED;
9351 }
9352 break;
9353
9354 case IA64_RS_AR_FPSR:
9355 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9356 {
9357 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9358 if (regno == AR_FPSR)
9359 {
9360 specs[count++] = tmpl;
9361 }
9362 }
9363 else
9364 {
9365 specs[count++] = tmpl;
9366 }
9367 break;
9368
9369 case IA64_RS_ARX:
9370 /* Handle all AR[REG] resources */
9371 if (note == 0 || note == 1)
9372 {
9373 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9374 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9375 && regno == dep->regindex)
9376 {
9377 specs[count++] = tmpl;
9378 }
9379 /* other AR[REG] resources may be affected by AR accesses */
9380 else if (idesc->operands[0] == IA64_OPND_AR3)
9381 {
9382 /* AR[] writes */
9383 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9384 switch (dep->regindex)
9385 {
9386 default:
9387 break;
9388 case AR_BSP:
9389 case AR_RNAT:
9390 if (regno == AR_BSPSTORE)
9391 {
9392 specs[count++] = tmpl;
9393 }
9394 case AR_RSC:
9395 if (!rsrc_write &&
9396 (regno == AR_BSPSTORE
9397 || regno == AR_RNAT))
9398 {
9399 specs[count++] = tmpl;
9400 }
9401 break;
9402 }
9403 }
9404 else if (idesc->operands[1] == IA64_OPND_AR3)
9405 {
9406 /* AR[] reads */
9407 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9408 switch (dep->regindex)
9409 {
9410 default:
9411 break;
9412 case AR_RSC:
9413 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9414 {
9415 specs[count++] = tmpl;
9416 }
9417 break;
9418 }
9419 }
9420 else
9421 {
9422 specs[count++] = tmpl;
9423 }
9424 }
9425 else
9426 {
9427 UNHANDLED;
9428 }
9429 break;
9430
9431 case IA64_RS_CRX:
9432 /* Handle all CR[REG] resources.
9433 ??? FIXME: The rule 17 isn't really handled correctly. */
9434 if (note == 0 || note == 1 || note == 17)
9435 {
9436 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9437 {
9438 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9439 if (regno == dep->regindex)
9440 {
9441 specs[count++] = tmpl;
9442 }
9443 else if (!rsrc_write)
9444 {
9445 /* Reads from CR[IVR] affect other resources. */
9446 if (regno == CR_IVR)
9447 {
9448 if ((dep->regindex >= CR_IRR0
9449 && dep->regindex <= CR_IRR3)
9450 || dep->regindex == CR_TPR)
9451 {
9452 specs[count++] = tmpl;
9453 }
9454 }
9455 }
9456 }
9457 else
9458 {
9459 specs[count++] = tmpl;
9460 }
9461 }
9462 else
9463 {
9464 UNHANDLED;
9465 }
9466 break;
9467
9468 case IA64_RS_INSERVICE:
9469 /* look for write of EOI (67) or read of IVR (65) */
9470 if ((idesc->operands[0] == IA64_OPND_CR3
9471 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9472 || (idesc->operands[1] == IA64_OPND_CR3
9473 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9474 {
9475 specs[count++] = tmpl;
9476 }
9477 break;
9478
9479 case IA64_RS_GR0:
9480 if (note == 1)
9481 {
9482 specs[count++] = tmpl;
9483 }
9484 else
9485 {
9486 UNHANDLED;
9487 }
9488 break;
9489
9490 case IA64_RS_CFM:
9491 if (note != 2)
9492 {
9493 specs[count++] = tmpl;
9494 }
9495 else
9496 {
9497 /* Check if any of the registers accessed are in the rotating region.
9498 mov to/from pr accesses CFM only when qp_regno is in the rotating
9499 region */
9500 for (i = 0; i < NELEMS (idesc->operands); i++)
9501 {
9502 if (idesc->operands[i] == IA64_OPND_R1
9503 || idesc->operands[i] == IA64_OPND_R2
9504 || idesc->operands[i] == IA64_OPND_R3)
9505 {
9506 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9507 /* Assumes that md.rot.num_regs is always valid */
9508 if (md.rot.num_regs > 0
9509 && num > 31
9510 && num < 31 + md.rot.num_regs)
9511 {
9512 specs[count] = tmpl;
9513 specs[count++].specific = 0;
9514 }
9515 }
9516 else if (idesc->operands[i] == IA64_OPND_F1
9517 || idesc->operands[i] == IA64_OPND_F2
9518 || idesc->operands[i] == IA64_OPND_F3
9519 || idesc->operands[i] == IA64_OPND_F4)
9520 {
9521 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9522 if (num > 31)
9523 {
9524 specs[count] = tmpl;
9525 specs[count++].specific = 0;
9526 }
9527 }
9528 else if (idesc->operands[i] == IA64_OPND_P1
9529 || idesc->operands[i] == IA64_OPND_P2)
9530 {
9531 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9532 if (num > 15)
9533 {
9534 specs[count] = tmpl;
9535 specs[count++].specific = 0;
9536 }
9537 }
9538 }
9539 if (CURR_SLOT.qp_regno > 15)
9540 {
9541 specs[count] = tmpl;
9542 specs[count++].specific = 0;
9543 }
9544 }
9545 break;
9546
9547 /* This is the same as IA64_RS_PRr, except simplified to account for
9548 the fact that there is only one register. */
9549 case IA64_RS_PR63:
9550 if (note == 0)
9551 {
9552 specs[count++] = tmpl;
9553 }
9554 else if (note == 7)
9555 {
9556 valueT mask = 0;
9557 if (idesc->operands[2] == IA64_OPND_IMM17)
9558 mask = CURR_SLOT.opnd[2].X_add_number;
9559 if (mask & ((valueT) 1 << 63))
9560 specs[count++] = tmpl;
9561 }
9562 else if (note == 11)
9563 {
9564 if ((idesc->operands[0] == IA64_OPND_P1
9565 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9566 || (idesc->operands[1] == IA64_OPND_P2
9567 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9568 {
9569 specs[count++] = tmpl;
9570 }
9571 }
9572 else if (note == 12)
9573 {
9574 if (CURR_SLOT.qp_regno == 63)
9575 {
9576 specs[count++] = tmpl;
9577 }
9578 }
9579 else if (note == 1)
9580 {
9581 if (rsrc_write)
9582 {
9583 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9584 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9585 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9586 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9587
9588 if (p1 == 63
9589 && (idesc->operands[0] == IA64_OPND_P1
9590 || idesc->operands[0] == IA64_OPND_P2))
9591 {
9592 specs[count] = tmpl;
9593 specs[count++].cmp_type =
9594 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9595 }
9596 if (p2 == 63
9597 && (idesc->operands[1] == IA64_OPND_P1
9598 || idesc->operands[1] == IA64_OPND_P2))
9599 {
9600 specs[count] = tmpl;
9601 specs[count++].cmp_type =
9602 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9603 }
9604 }
9605 else
9606 {
9607 if (CURR_SLOT.qp_regno == 63)
9608 {
9609 specs[count++] = tmpl;
9610 }
9611 }
9612 }
9613 else
9614 {
9615 UNHANDLED;
9616 }
9617 break;
9618
9619 case IA64_RS_RSE:
9620 /* FIXME we can identify some individual RSE written resources, but RSE
9621 read resources have not yet been completely identified, so for now
9622 treat RSE as a single resource */
9623 if (strncmp (idesc->name, "mov", 3) == 0)
9624 {
9625 if (rsrc_write)
9626 {
9627 if (idesc->operands[0] == IA64_OPND_AR3
9628 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9629 {
9630 specs[count++] = tmpl;
9631 }
9632 }
9633 else
9634 {
9635 if (idesc->operands[0] == IA64_OPND_AR3)
9636 {
9637 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9638 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9639 {
9640 specs[count++] = tmpl;
9641 }
9642 }
9643 else if (idesc->operands[1] == IA64_OPND_AR3)
9644 {
9645 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9646 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9647 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9648 {
9649 specs[count++] = tmpl;
9650 }
9651 }
9652 }
9653 }
9654 else
9655 {
9656 specs[count++] = tmpl;
9657 }
9658 break;
9659
9660 case IA64_RS_ANY:
9661 /* FIXME -- do any of these need to be non-specific? */
9662 specs[count++] = tmpl;
9663 break;
9664
9665 default:
9666 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9667 break;
9668 }
9669
9670 return count;
9671 }
9672
9673 /* Clear branch flags on marked resources. This breaks the link between the
9674 QP of the marking instruction and a subsequent branch on the same QP. */
9675
9676 static void
9677 clear_qp_branch_flag (mask)
9678 valueT mask;
9679 {
9680 int i;
9681 for (i = 0; i < regdepslen; i++)
9682 {
9683 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9684 if ((bit & mask) != 0)
9685 {
9686 regdeps[i].link_to_qp_branch = 0;
9687 }
9688 }
9689 }
9690
9691 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9692 any mutexes which contain one of the PRs and create new ones when
9693 needed. */
9694
9695 static int
9696 update_qp_mutex (valueT mask)
9697 {
9698 int i;
9699 int add = 0;
9700
9701 i = 0;
9702 while (i < qp_mutexeslen)
9703 {
9704 if ((qp_mutexes[i].prmask & mask) != 0)
9705 {
9706 /* If it destroys and creates the same mutex, do nothing. */
9707 if (qp_mutexes[i].prmask == mask
9708 && qp_mutexes[i].path == md.path)
9709 {
9710 i++;
9711 add = -1;
9712 }
9713 else
9714 {
9715 int keep = 0;
9716
9717 if (md.debug_dv)
9718 {
9719 fprintf (stderr, " Clearing mutex relation");
9720 print_prmask (qp_mutexes[i].prmask);
9721 fprintf (stderr, "\n");
9722 }
9723
9724 /* Deal with the old mutex with more than 3+ PRs only if
9725 the new mutex on the same execution path with it.
9726
9727 FIXME: The 3+ mutex support is incomplete.
9728 dot_pred_rel () may be a better place to fix it. */
9729 if (qp_mutexes[i].path == md.path)
9730 {
9731 /* If it is a proper subset of the mutex, create a
9732 new mutex. */
9733 if (add == 0
9734 && (qp_mutexes[i].prmask & mask) == mask)
9735 add = 1;
9736
9737 qp_mutexes[i].prmask &= ~mask;
9738 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9739 {
9740 /* Modify the mutex if there are more than one
9741 PR left. */
9742 keep = 1;
9743 i++;
9744 }
9745 }
9746
9747 if (keep == 0)
9748 /* Remove the mutex. */
9749 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9750 }
9751 }
9752 else
9753 ++i;
9754 }
9755
9756 if (add == 1)
9757 add_qp_mutex (mask);
9758
9759 return add;
9760 }
9761
9762 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9763
9764 Any changes to a PR clears the mutex relations which include that PR. */
9765
9766 static void
9767 clear_qp_mutex (mask)
9768 valueT mask;
9769 {
9770 int i;
9771
9772 i = 0;
9773 while (i < qp_mutexeslen)
9774 {
9775 if ((qp_mutexes[i].prmask & mask) != 0)
9776 {
9777 if (md.debug_dv)
9778 {
9779 fprintf (stderr, " Clearing mutex relation");
9780 print_prmask (qp_mutexes[i].prmask);
9781 fprintf (stderr, "\n");
9782 }
9783 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9784 }
9785 else
9786 ++i;
9787 }
9788 }
9789
9790 /* Clear implies relations which contain PRs in the given masks.
9791 P1_MASK indicates the source of the implies relation, while P2_MASK
9792 indicates the implied PR. */
9793
9794 static void
9795 clear_qp_implies (p1_mask, p2_mask)
9796 valueT p1_mask;
9797 valueT p2_mask;
9798 {
9799 int i;
9800
9801 i = 0;
9802 while (i < qp_implieslen)
9803 {
9804 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9805 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9806 {
9807 if (md.debug_dv)
9808 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9809 qp_implies[i].p1, qp_implies[i].p2);
9810 qp_implies[i] = qp_implies[--qp_implieslen];
9811 }
9812 else
9813 ++i;
9814 }
9815 }
9816
9817 /* Add the PRs specified to the list of implied relations. */
9818
9819 static void
9820 add_qp_imply (p1, p2)
9821 int p1, p2;
9822 {
9823 valueT mask;
9824 valueT bit;
9825 int i;
9826
9827 /* p0 is not meaningful here. */
9828 if (p1 == 0 || p2 == 0)
9829 abort ();
9830
9831 if (p1 == p2)
9832 return;
9833
9834 /* If it exists already, ignore it. */
9835 for (i = 0; i < qp_implieslen; i++)
9836 {
9837 if (qp_implies[i].p1 == p1
9838 && qp_implies[i].p2 == p2
9839 && qp_implies[i].path == md.path
9840 && !qp_implies[i].p2_branched)
9841 return;
9842 }
9843
9844 if (qp_implieslen == qp_impliestotlen)
9845 {
9846 qp_impliestotlen += 20;
9847 qp_implies = (struct qp_imply *)
9848 xrealloc ((void *) qp_implies,
9849 qp_impliestotlen * sizeof (struct qp_imply));
9850 }
9851 if (md.debug_dv)
9852 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9853 qp_implies[qp_implieslen].p1 = p1;
9854 qp_implies[qp_implieslen].p2 = p2;
9855 qp_implies[qp_implieslen].path = md.path;
9856 qp_implies[qp_implieslen++].p2_branched = 0;
9857
9858 /* Add in the implied transitive relations; for everything that p2 implies,
9859 make p1 imply that, too; for everything that implies p1, make it imply p2
9860 as well. */
9861 for (i = 0; i < qp_implieslen; i++)
9862 {
9863 if (qp_implies[i].p1 == p2)
9864 add_qp_imply (p1, qp_implies[i].p2);
9865 if (qp_implies[i].p2 == p1)
9866 add_qp_imply (qp_implies[i].p1, p2);
9867 }
9868 /* Add in mutex relations implied by this implies relation; for each mutex
9869 relation containing p2, duplicate it and replace p2 with p1. */
9870 bit = (valueT) 1 << p1;
9871 mask = (valueT) 1 << p2;
9872 for (i = 0; i < qp_mutexeslen; i++)
9873 {
9874 if (qp_mutexes[i].prmask & mask)
9875 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9876 }
9877 }
9878
9879 /* Add the PRs specified in the mask to the mutex list; this means that only
9880 one of the PRs can be true at any time. PR0 should never be included in
9881 the mask. */
9882
9883 static void
9884 add_qp_mutex (mask)
9885 valueT mask;
9886 {
9887 if (mask & 0x1)
9888 abort ();
9889
9890 if (qp_mutexeslen == qp_mutexestotlen)
9891 {
9892 qp_mutexestotlen += 20;
9893 qp_mutexes = (struct qpmutex *)
9894 xrealloc ((void *) qp_mutexes,
9895 qp_mutexestotlen * sizeof (struct qpmutex));
9896 }
9897 if (md.debug_dv)
9898 {
9899 fprintf (stderr, " Registering mutex on");
9900 print_prmask (mask);
9901 fprintf (stderr, "\n");
9902 }
9903 qp_mutexes[qp_mutexeslen].path = md.path;
9904 qp_mutexes[qp_mutexeslen++].prmask = mask;
9905 }
9906
9907 static int
9908 has_suffix_p (name, suffix)
9909 const char *name;
9910 const char *suffix;
9911 {
9912 size_t namelen = strlen (name);
9913 size_t sufflen = strlen (suffix);
9914
9915 if (namelen <= sufflen)
9916 return 0;
9917 return strcmp (name + namelen - sufflen, suffix) == 0;
9918 }
9919
9920 static void
9921 clear_register_values ()
9922 {
9923 int i;
9924 if (md.debug_dv)
9925 fprintf (stderr, " Clearing register values\n");
9926 for (i = 1; i < NELEMS (gr_values); i++)
9927 gr_values[i].known = 0;
9928 }
9929
9930 /* Keep track of register values/changes which affect DV tracking.
9931
9932 optimization note: should add a flag to classes of insns where otherwise we
9933 have to examine a group of strings to identify them. */
9934
9935 static void
9936 note_register_values (idesc)
9937 struct ia64_opcode *idesc;
9938 {
9939 valueT qp_changemask = 0;
9940 int i;
9941
9942 /* Invalidate values for registers being written to. */
9943 for (i = 0; i < idesc->num_outputs; i++)
9944 {
9945 if (idesc->operands[i] == IA64_OPND_R1
9946 || idesc->operands[i] == IA64_OPND_R2
9947 || idesc->operands[i] == IA64_OPND_R3)
9948 {
9949 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9950 if (regno > 0 && regno < NELEMS (gr_values))
9951 gr_values[regno].known = 0;
9952 }
9953 else if (idesc->operands[i] == IA64_OPND_R3_2)
9954 {
9955 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9956 if (regno > 0 && regno < 4)
9957 gr_values[regno].known = 0;
9958 }
9959 else if (idesc->operands[i] == IA64_OPND_P1
9960 || idesc->operands[i] == IA64_OPND_P2)
9961 {
9962 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9963 qp_changemask |= (valueT) 1 << regno;
9964 }
9965 else if (idesc->operands[i] == IA64_OPND_PR)
9966 {
9967 if (idesc->operands[2] & (valueT) 0x10000)
9968 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9969 else
9970 qp_changemask = idesc->operands[2];
9971 break;
9972 }
9973 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9974 {
9975 if (idesc->operands[1] & ((valueT) 1 << 43))
9976 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9977 else
9978 qp_changemask = idesc->operands[1];
9979 qp_changemask &= ~(valueT) 0xFFFF;
9980 break;
9981 }
9982 }
9983
9984 /* Always clear qp branch flags on any PR change. */
9985 /* FIXME there may be exceptions for certain compares. */
9986 clear_qp_branch_flag (qp_changemask);
9987
9988 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9989 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9990 {
9991 qp_changemask |= ~(valueT) 0xFFFF;
9992 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9993 {
9994 for (i = 32; i < 32 + md.rot.num_regs; i++)
9995 gr_values[i].known = 0;
9996 }
9997 clear_qp_mutex (qp_changemask);
9998 clear_qp_implies (qp_changemask, qp_changemask);
9999 }
10000 /* After a call, all register values are undefined, except those marked
10001 as "safe". */
10002 else if (strncmp (idesc->name, "br.call", 6) == 0
10003 || strncmp (idesc->name, "brl.call", 7) == 0)
10004 {
10005 /* FIXME keep GR values which are marked as "safe_across_calls" */
10006 clear_register_values ();
10007 clear_qp_mutex (~qp_safe_across_calls);
10008 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
10009 clear_qp_branch_flag (~qp_safe_across_calls);
10010 }
10011 else if (is_interruption_or_rfi (idesc)
10012 || is_taken_branch (idesc))
10013 {
10014 clear_register_values ();
10015 clear_qp_mutex (~(valueT) 0);
10016 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10017 }
10018 /* Look for mutex and implies relations. */
10019 else if ((idesc->operands[0] == IA64_OPND_P1
10020 || idesc->operands[0] == IA64_OPND_P2)
10021 && (idesc->operands[1] == IA64_OPND_P1
10022 || idesc->operands[1] == IA64_OPND_P2))
10023 {
10024 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10025 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10026 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10027 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10028
10029 /* If both PRs are PR0, we can't really do anything. */
10030 if (p1 == 0 && p2 == 0)
10031 {
10032 if (md.debug_dv)
10033 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10034 }
10035 /* In general, clear mutexes and implies which include P1 or P2,
10036 with the following exceptions. */
10037 else if (has_suffix_p (idesc->name, ".or.andcm")
10038 || has_suffix_p (idesc->name, ".and.orcm"))
10039 {
10040 clear_qp_implies (p2mask, p1mask);
10041 }
10042 else if (has_suffix_p (idesc->name, ".andcm")
10043 || has_suffix_p (idesc->name, ".and"))
10044 {
10045 clear_qp_implies (0, p1mask | p2mask);
10046 }
10047 else if (has_suffix_p (idesc->name, ".orcm")
10048 || has_suffix_p (idesc->name, ".or"))
10049 {
10050 clear_qp_mutex (p1mask | p2mask);
10051 clear_qp_implies (p1mask | p2mask, 0);
10052 }
10053 else
10054 {
10055 int added = 0;
10056
10057 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10058
10059 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10060 if (p1 == 0 || p2 == 0)
10061 clear_qp_mutex (p1mask | p2mask);
10062 else
10063 added = update_qp_mutex (p1mask | p2mask);
10064
10065 if (CURR_SLOT.qp_regno == 0
10066 || has_suffix_p (idesc->name, ".unc"))
10067 {
10068 if (added == 0 && p1 && p2)
10069 add_qp_mutex (p1mask | p2mask);
10070 if (CURR_SLOT.qp_regno != 0)
10071 {
10072 if (p1)
10073 add_qp_imply (p1, CURR_SLOT.qp_regno);
10074 if (p2)
10075 add_qp_imply (p2, CURR_SLOT.qp_regno);
10076 }
10077 }
10078 }
10079 }
10080 /* Look for mov imm insns into GRs. */
10081 else if (idesc->operands[0] == IA64_OPND_R1
10082 && (idesc->operands[1] == IA64_OPND_IMM22
10083 || idesc->operands[1] == IA64_OPND_IMMU64)
10084 && CURR_SLOT.opnd[1].X_op == O_constant
10085 && (strcmp (idesc->name, "mov") == 0
10086 || strcmp (idesc->name, "movl") == 0))
10087 {
10088 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10089 if (regno > 0 && regno < NELEMS (gr_values))
10090 {
10091 gr_values[regno].known = 1;
10092 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10093 gr_values[regno].path = md.path;
10094 if (md.debug_dv)
10095 {
10096 fprintf (stderr, " Know gr%d = ", regno);
10097 fprintf_vma (stderr, gr_values[regno].value);
10098 fputs ("\n", stderr);
10099 }
10100 }
10101 }
10102 /* Look for dep.z imm insns. */
10103 else if (idesc->operands[0] == IA64_OPND_R1
10104 && idesc->operands[1] == IA64_OPND_IMM8
10105 && strcmp (idesc->name, "dep.z") == 0)
10106 {
10107 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10108 if (regno > 0 && regno < NELEMS (gr_values))
10109 {
10110 valueT value = CURR_SLOT.opnd[1].X_add_number;
10111
10112 if (CURR_SLOT.opnd[3].X_add_number < 64)
10113 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10114 value <<= CURR_SLOT.opnd[2].X_add_number;
10115 gr_values[regno].known = 1;
10116 gr_values[regno].value = value;
10117 gr_values[regno].path = md.path;
10118 if (md.debug_dv)
10119 {
10120 fprintf (stderr, " Know gr%d = ", regno);
10121 fprintf_vma (stderr, gr_values[regno].value);
10122 fputs ("\n", stderr);
10123 }
10124 }
10125 }
10126 else
10127 {
10128 clear_qp_mutex (qp_changemask);
10129 clear_qp_implies (qp_changemask, qp_changemask);
10130 }
10131 }
10132
10133 /* Return whether the given predicate registers are currently mutex. */
10134
10135 static int
10136 qp_mutex (p1, p2, path)
10137 int p1;
10138 int p2;
10139 int path;
10140 {
10141 int i;
10142 valueT mask;
10143
10144 if (p1 != p2)
10145 {
10146 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10147 for (i = 0; i < qp_mutexeslen; i++)
10148 {
10149 if (qp_mutexes[i].path >= path
10150 && (qp_mutexes[i].prmask & mask) == mask)
10151 return 1;
10152 }
10153 }
10154 return 0;
10155 }
10156
10157 /* Return whether the given resource is in the given insn's list of chks
10158 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10159 conflict. */
10160
10161 static int
10162 resources_match (rs, idesc, note, qp_regno, path)
10163 struct rsrc *rs;
10164 struct ia64_opcode *idesc;
10165 int note;
10166 int qp_regno;
10167 int path;
10168 {
10169 struct rsrc specs[MAX_SPECS];
10170 int count;
10171
10172 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10173 we don't need to check. One exception is note 11, which indicates that
10174 target predicates are written regardless of PR[qp]. */
10175 if (qp_mutex (rs->qp_regno, qp_regno, path)
10176 && note != 11)
10177 return 0;
10178
10179 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10180 while (count-- > 0)
10181 {
10182 /* UNAT checking is a bit more specific than other resources */
10183 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10184 && specs[count].mem_offset.hint
10185 && rs->mem_offset.hint)
10186 {
10187 if (rs->mem_offset.base == specs[count].mem_offset.base)
10188 {
10189 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10190 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10191 return 1;
10192 else
10193 continue;
10194 }
10195 }
10196
10197 /* Skip apparent PR write conflicts where both writes are an AND or both
10198 writes are an OR. */
10199 if (rs->dependency->specifier == IA64_RS_PR
10200 || rs->dependency->specifier == IA64_RS_PRr
10201 || rs->dependency->specifier == IA64_RS_PR63)
10202 {
10203 if (specs[count].cmp_type != CMP_NONE
10204 && specs[count].cmp_type == rs->cmp_type)
10205 {
10206 if (md.debug_dv)
10207 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10208 dv_mode[rs->dependency->mode],
10209 rs->dependency->specifier != IA64_RS_PR63 ?
10210 specs[count].index : 63);
10211 continue;
10212 }
10213 if (md.debug_dv)
10214 fprintf (stderr,
10215 " %s on parallel compare conflict %s vs %s on PR%d\n",
10216 dv_mode[rs->dependency->mode],
10217 dv_cmp_type[rs->cmp_type],
10218 dv_cmp_type[specs[count].cmp_type],
10219 rs->dependency->specifier != IA64_RS_PR63 ?
10220 specs[count].index : 63);
10221
10222 }
10223
10224 /* If either resource is not specific, conservatively assume a conflict
10225 */
10226 if (!specs[count].specific || !rs->specific)
10227 return 2;
10228 else if (specs[count].index == rs->index)
10229 return 1;
10230 }
10231
10232 return 0;
10233 }
10234
10235 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10236 insert a stop to create the break. Update all resource dependencies
10237 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10238 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10239 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10240 instruction. */
10241
10242 static void
10243 insn_group_break (insert_stop, qp_regno, save_current)
10244 int insert_stop;
10245 int qp_regno;
10246 int save_current;
10247 {
10248 int i;
10249
10250 if (insert_stop && md.num_slots_in_use > 0)
10251 PREV_SLOT.end_of_insn_group = 1;
10252
10253 if (md.debug_dv)
10254 {
10255 fprintf (stderr, " Insn group break%s",
10256 (insert_stop ? " (w/stop)" : ""));
10257 if (qp_regno != 0)
10258 fprintf (stderr, " effective for QP=%d", qp_regno);
10259 fprintf (stderr, "\n");
10260 }
10261
10262 i = 0;
10263 while (i < regdepslen)
10264 {
10265 const struct ia64_dependency *dep = regdeps[i].dependency;
10266
10267 if (qp_regno != 0
10268 && regdeps[i].qp_regno != qp_regno)
10269 {
10270 ++i;
10271 continue;
10272 }
10273
10274 if (save_current
10275 && CURR_SLOT.src_file == regdeps[i].file
10276 && CURR_SLOT.src_line == regdeps[i].line)
10277 {
10278 ++i;
10279 continue;
10280 }
10281
10282 /* clear dependencies which are automatically cleared by a stop, or
10283 those that have reached the appropriate state of insn serialization */
10284 if (dep->semantics == IA64_DVS_IMPLIED
10285 || dep->semantics == IA64_DVS_IMPLIEDF
10286 || regdeps[i].insn_srlz == STATE_SRLZ)
10287 {
10288 print_dependency ("Removing", i);
10289 regdeps[i] = regdeps[--regdepslen];
10290 }
10291 else
10292 {
10293 if (dep->semantics == IA64_DVS_DATA
10294 || dep->semantics == IA64_DVS_INSTR
10295 || dep->semantics == IA64_DVS_SPECIFIC)
10296 {
10297 if (regdeps[i].insn_srlz == STATE_NONE)
10298 regdeps[i].insn_srlz = STATE_STOP;
10299 if (regdeps[i].data_srlz == STATE_NONE)
10300 regdeps[i].data_srlz = STATE_STOP;
10301 }
10302 ++i;
10303 }
10304 }
10305 }
10306
10307 /* Add the given resource usage spec to the list of active dependencies. */
10308
10309 static void
10310 mark_resource (idesc, dep, spec, depind, path)
10311 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10312 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10313 struct rsrc *spec;
10314 int depind;
10315 int path;
10316 {
10317 if (regdepslen == regdepstotlen)
10318 {
10319 regdepstotlen += 20;
10320 regdeps = (struct rsrc *)
10321 xrealloc ((void *) regdeps,
10322 regdepstotlen * sizeof (struct rsrc));
10323 }
10324
10325 regdeps[regdepslen] = *spec;
10326 regdeps[regdepslen].depind = depind;
10327 regdeps[regdepslen].path = path;
10328 regdeps[regdepslen].file = CURR_SLOT.src_file;
10329 regdeps[regdepslen].line = CURR_SLOT.src_line;
10330
10331 print_dependency ("Adding", regdepslen);
10332
10333 ++regdepslen;
10334 }
10335
10336 static void
10337 print_dependency (action, depind)
10338 const char *action;
10339 int depind;
10340 {
10341 if (md.debug_dv)
10342 {
10343 fprintf (stderr, " %s %s '%s'",
10344 action, dv_mode[(regdeps[depind].dependency)->mode],
10345 (regdeps[depind].dependency)->name);
10346 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10347 fprintf (stderr, " (%d)", regdeps[depind].index);
10348 if (regdeps[depind].mem_offset.hint)
10349 {
10350 fputs (" ", stderr);
10351 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10352 fputs ("+", stderr);
10353 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10354 }
10355 fprintf (stderr, "\n");
10356 }
10357 }
10358
10359 static void
10360 instruction_serialization ()
10361 {
10362 int i;
10363 if (md.debug_dv)
10364 fprintf (stderr, " Instruction serialization\n");
10365 for (i = 0; i < regdepslen; i++)
10366 if (regdeps[i].insn_srlz == STATE_STOP)
10367 regdeps[i].insn_srlz = STATE_SRLZ;
10368 }
10369
10370 static void
10371 data_serialization ()
10372 {
10373 int i = 0;
10374 if (md.debug_dv)
10375 fprintf (stderr, " Data serialization\n");
10376 while (i < regdepslen)
10377 {
10378 if (regdeps[i].data_srlz == STATE_STOP
10379 /* Note: as of 991210, all "other" dependencies are cleared by a
10380 data serialization. This might change with new tables */
10381 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10382 {
10383 print_dependency ("Removing", i);
10384 regdeps[i] = regdeps[--regdepslen];
10385 }
10386 else
10387 ++i;
10388 }
10389 }
10390
10391 /* Insert stops and serializations as needed to avoid DVs. */
10392
10393 static void
10394 remove_marked_resource (rs)
10395 struct rsrc *rs;
10396 {
10397 switch (rs->dependency->semantics)
10398 {
10399 case IA64_DVS_SPECIFIC:
10400 if (md.debug_dv)
10401 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10402 /* ...fall through... */
10403 case IA64_DVS_INSTR:
10404 if (md.debug_dv)
10405 fprintf (stderr, "Inserting instr serialization\n");
10406 if (rs->insn_srlz < STATE_STOP)
10407 insn_group_break (1, 0, 0);
10408 if (rs->insn_srlz < STATE_SRLZ)
10409 {
10410 struct slot oldslot = CURR_SLOT;
10411 /* Manually jam a srlz.i insn into the stream */
10412 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10413 CURR_SLOT.user_template = -1;
10414 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10415 instruction_serialization ();
10416 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10417 if (++md.num_slots_in_use >= NUM_SLOTS)
10418 emit_one_bundle ();
10419 CURR_SLOT = oldslot;
10420 }
10421 insn_group_break (1, 0, 0);
10422 break;
10423 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10424 "other" types of DV are eliminated
10425 by a data serialization */
10426 case IA64_DVS_DATA:
10427 if (md.debug_dv)
10428 fprintf (stderr, "Inserting data serialization\n");
10429 if (rs->data_srlz < STATE_STOP)
10430 insn_group_break (1, 0, 0);
10431 {
10432 struct slot oldslot = CURR_SLOT;
10433 /* Manually jam a srlz.d insn into the stream */
10434 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10435 CURR_SLOT.user_template = -1;
10436 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10437 data_serialization ();
10438 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10439 if (++md.num_slots_in_use >= NUM_SLOTS)
10440 emit_one_bundle ();
10441 CURR_SLOT = oldslot;
10442 }
10443 break;
10444 case IA64_DVS_IMPLIED:
10445 case IA64_DVS_IMPLIEDF:
10446 if (md.debug_dv)
10447 fprintf (stderr, "Inserting stop\n");
10448 insn_group_break (1, 0, 0);
10449 break;
10450 default:
10451 break;
10452 }
10453 }
10454
10455 /* Check the resources used by the given opcode against the current dependency
10456 list.
10457
10458 The check is run once for each execution path encountered. In this case,
10459 a unique execution path is the sequence of instructions following a code
10460 entry point, e.g. the following has three execution paths, one starting
10461 at L0, one at L1, and one at L2.
10462
10463 L0: nop
10464 L1: add
10465 L2: add
10466 br.ret
10467 */
10468
10469 static void
10470 check_dependencies (idesc)
10471 struct ia64_opcode *idesc;
10472 {
10473 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10474 int path;
10475 int i;
10476
10477 /* Note that the number of marked resources may change within the
10478 loop if in auto mode. */
10479 i = 0;
10480 while (i < regdepslen)
10481 {
10482 struct rsrc *rs = &regdeps[i];
10483 const struct ia64_dependency *dep = rs->dependency;
10484 int chkind;
10485 int note;
10486 int start_over = 0;
10487
10488 if (dep->semantics == IA64_DVS_NONE
10489 || (chkind = depends_on (rs->depind, idesc)) == -1)
10490 {
10491 ++i;
10492 continue;
10493 }
10494
10495 note = NOTE (opdeps->chks[chkind]);
10496
10497 /* Check this resource against each execution path seen thus far. */
10498 for (path = 0; path <= md.path; path++)
10499 {
10500 int matchtype;
10501
10502 /* If the dependency wasn't on the path being checked, ignore it. */
10503 if (rs->path < path)
10504 continue;
10505
10506 /* If the QP for this insn implies a QP which has branched, don't
10507 bother checking. Ed. NOTE: I don't think this check is terribly
10508 useful; what's the point of generating code which will only be
10509 reached if its QP is zero?
10510 This code was specifically inserted to handle the following code,
10511 based on notes from Intel's DV checking code, where p1 implies p2.
10512
10513 mov r4 = 2
10514 (p2) br.cond L
10515 (p1) mov r4 = 7
10516 */
10517 if (CURR_SLOT.qp_regno != 0)
10518 {
10519 int skip = 0;
10520 int implies;
10521 for (implies = 0; implies < qp_implieslen; implies++)
10522 {
10523 if (qp_implies[implies].path >= path
10524 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10525 && qp_implies[implies].p2_branched)
10526 {
10527 skip = 1;
10528 break;
10529 }
10530 }
10531 if (skip)
10532 continue;
10533 }
10534
10535 if ((matchtype = resources_match (rs, idesc, note,
10536 CURR_SLOT.qp_regno, path)) != 0)
10537 {
10538 char msg[1024];
10539 char pathmsg[256] = "";
10540 char indexmsg[256] = "";
10541 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10542
10543 if (path != 0)
10544 snprintf (pathmsg, sizeof (pathmsg),
10545 " when entry is at label '%s'",
10546 md.entry_labels[path - 1]);
10547 if (matchtype == 1 && rs->index >= 0)
10548 snprintf (indexmsg, sizeof (indexmsg),
10549 ", specific resource number is %d",
10550 rs->index);
10551 snprintf (msg, sizeof (msg),
10552 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10553 idesc->name,
10554 (certain ? "violates" : "may violate"),
10555 dv_mode[dep->mode], dep->name,
10556 dv_sem[dep->semantics],
10557 pathmsg, indexmsg);
10558
10559 if (md.explicit_mode)
10560 {
10561 as_warn ("%s", msg);
10562 if (path < md.path)
10563 as_warn (_("Only the first path encountering the conflict is reported"));
10564 as_warn_where (rs->file, rs->line,
10565 _("This is the location of the conflicting usage"));
10566 /* Don't bother checking other paths, to avoid duplicating
10567 the same warning */
10568 break;
10569 }
10570 else
10571 {
10572 if (md.debug_dv)
10573 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10574
10575 remove_marked_resource (rs);
10576
10577 /* since the set of dependencies has changed, start over */
10578 /* FIXME -- since we're removing dvs as we go, we
10579 probably don't really need to start over... */
10580 start_over = 1;
10581 break;
10582 }
10583 }
10584 }
10585 if (start_over)
10586 i = 0;
10587 else
10588 ++i;
10589 }
10590 }
10591
10592 /* Register new dependencies based on the given opcode. */
10593
10594 static void
10595 mark_resources (idesc)
10596 struct ia64_opcode *idesc;
10597 {
10598 int i;
10599 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10600 int add_only_qp_reads = 0;
10601
10602 /* A conditional branch only uses its resources if it is taken; if it is
10603 taken, we stop following that path. The other branch types effectively
10604 *always* write their resources. If it's not taken, register only QP
10605 reads. */
10606 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10607 {
10608 add_only_qp_reads = 1;
10609 }
10610
10611 if (md.debug_dv)
10612 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10613
10614 for (i = 0; i < opdeps->nregs; i++)
10615 {
10616 const struct ia64_dependency *dep;
10617 struct rsrc specs[MAX_SPECS];
10618 int note;
10619 int path;
10620 int count;
10621
10622 dep = ia64_find_dependency (opdeps->regs[i]);
10623 note = NOTE (opdeps->regs[i]);
10624
10625 if (add_only_qp_reads
10626 && !(dep->mode == IA64_DV_WAR
10627 && (dep->specifier == IA64_RS_PR
10628 || dep->specifier == IA64_RS_PRr
10629 || dep->specifier == IA64_RS_PR63)))
10630 continue;
10631
10632 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10633
10634 while (count-- > 0)
10635 {
10636 mark_resource (idesc, dep, &specs[count],
10637 DEP (opdeps->regs[i]), md.path);
10638 }
10639
10640 /* The execution path may affect register values, which may in turn
10641 affect which indirect-access resources are accessed. */
10642 switch (dep->specifier)
10643 {
10644 default:
10645 break;
10646 case IA64_RS_CPUID:
10647 case IA64_RS_DBR:
10648 case IA64_RS_IBR:
10649 case IA64_RS_MSR:
10650 case IA64_RS_PKR:
10651 case IA64_RS_PMC:
10652 case IA64_RS_PMD:
10653 case IA64_RS_RR:
10654 for (path = 0; path < md.path; path++)
10655 {
10656 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10657 while (count-- > 0)
10658 mark_resource (idesc, dep, &specs[count],
10659 DEP (opdeps->regs[i]), path);
10660 }
10661 break;
10662 }
10663 }
10664 }
10665
10666 /* Remove dependencies when they no longer apply. */
10667
10668 static void
10669 update_dependencies (idesc)
10670 struct ia64_opcode *idesc;
10671 {
10672 int i;
10673
10674 if (strcmp (idesc->name, "srlz.i") == 0)
10675 {
10676 instruction_serialization ();
10677 }
10678 else if (strcmp (idesc->name, "srlz.d") == 0)
10679 {
10680 data_serialization ();
10681 }
10682 else if (is_interruption_or_rfi (idesc)
10683 || is_taken_branch (idesc))
10684 {
10685 /* Although technically the taken branch doesn't clear dependencies
10686 which require a srlz.[id], we don't follow the branch; the next
10687 instruction is assumed to start with a clean slate. */
10688 regdepslen = 0;
10689 md.path = 0;
10690 }
10691 else if (is_conditional_branch (idesc)
10692 && CURR_SLOT.qp_regno != 0)
10693 {
10694 int is_call = strstr (idesc->name, ".call") != NULL;
10695
10696 for (i = 0; i < qp_implieslen; i++)
10697 {
10698 /* If the conditional branch's predicate is implied by the predicate
10699 in an existing dependency, remove that dependency. */
10700 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10701 {
10702 int depind = 0;
10703 /* Note that this implied predicate takes a branch so that if
10704 a later insn generates a DV but its predicate implies this
10705 one, we can avoid the false DV warning. */
10706 qp_implies[i].p2_branched = 1;
10707 while (depind < regdepslen)
10708 {
10709 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10710 {
10711 print_dependency ("Removing", depind);
10712 regdeps[depind] = regdeps[--regdepslen];
10713 }
10714 else
10715 ++depind;
10716 }
10717 }
10718 }
10719 /* Any marked resources which have this same predicate should be
10720 cleared, provided that the QP hasn't been modified between the
10721 marking instruction and the branch. */
10722 if (is_call)
10723 {
10724 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10725 }
10726 else
10727 {
10728 i = 0;
10729 while (i < regdepslen)
10730 {
10731 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10732 && regdeps[i].link_to_qp_branch
10733 && (regdeps[i].file != CURR_SLOT.src_file
10734 || regdeps[i].line != CURR_SLOT.src_line))
10735 {
10736 /* Treat like a taken branch */
10737 print_dependency ("Removing", i);
10738 regdeps[i] = regdeps[--regdepslen];
10739 }
10740 else
10741 ++i;
10742 }
10743 }
10744 }
10745 }
10746
10747 /* Examine the current instruction for dependency violations. */
10748
10749 static int
10750 check_dv (idesc)
10751 struct ia64_opcode *idesc;
10752 {
10753 if (md.debug_dv)
10754 {
10755 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10756 idesc->name, CURR_SLOT.src_line,
10757 idesc->dependencies->nchks,
10758 idesc->dependencies->nregs);
10759 }
10760
10761 /* Look through the list of currently marked resources; if the current
10762 instruction has the dependency in its chks list which uses that resource,
10763 check against the specific resources used. */
10764 check_dependencies (idesc);
10765
10766 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10767 then add them to the list of marked resources. */
10768 mark_resources (idesc);
10769
10770 /* There are several types of dependency semantics, and each has its own
10771 requirements for being cleared
10772
10773 Instruction serialization (insns separated by interruption, rfi, or
10774 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10775
10776 Data serialization (instruction serialization, or writer + srlz.d +
10777 reader, where writer and srlz.d are in separate groups) clears
10778 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10779 always be the case).
10780
10781 Instruction group break (groups separated by stop, taken branch,
10782 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10783 */
10784 update_dependencies (idesc);
10785
10786 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10787 warning. Keep track of as many as possible that are useful. */
10788 note_register_values (idesc);
10789
10790 /* We don't need or want this anymore. */
10791 md.mem_offset.hint = 0;
10792
10793 return 0;
10794 }
10795
10796 /* Translate one line of assembly. Pseudo ops and labels do not show
10797 here. */
10798 void
10799 md_assemble (str)
10800 char *str;
10801 {
10802 char *saved_input_line_pointer, *mnemonic;
10803 const struct pseudo_opcode *pdesc;
10804 struct ia64_opcode *idesc;
10805 unsigned char qp_regno;
10806 unsigned int flags;
10807 int ch;
10808
10809 saved_input_line_pointer = input_line_pointer;
10810 input_line_pointer = str;
10811
10812 /* extract the opcode (mnemonic): */
10813
10814 mnemonic = input_line_pointer;
10815 ch = get_symbol_end ();
10816 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10817 if (pdesc)
10818 {
10819 *input_line_pointer = ch;
10820 (*pdesc->handler) (pdesc->arg);
10821 goto done;
10822 }
10823
10824 /* Find the instruction descriptor matching the arguments. */
10825
10826 idesc = ia64_find_opcode (mnemonic);
10827 *input_line_pointer = ch;
10828 if (!idesc)
10829 {
10830 as_bad (_("Unknown opcode `%s'"), mnemonic);
10831 goto done;
10832 }
10833
10834 idesc = parse_operands (idesc);
10835 if (!idesc)
10836 goto done;
10837
10838 /* Handle the dynamic ops we can handle now: */
10839 if (idesc->type == IA64_TYPE_DYN)
10840 {
10841 if (strcmp (idesc->name, "add") == 0)
10842 {
10843 if (CURR_SLOT.opnd[2].X_op == O_register
10844 && CURR_SLOT.opnd[2].X_add_number < 4)
10845 mnemonic = "addl";
10846 else
10847 mnemonic = "adds";
10848 ia64_free_opcode (idesc);
10849 idesc = ia64_find_opcode (mnemonic);
10850 }
10851 else if (strcmp (idesc->name, "mov") == 0)
10852 {
10853 enum ia64_opnd opnd1, opnd2;
10854 int rop;
10855
10856 opnd1 = idesc->operands[0];
10857 opnd2 = idesc->operands[1];
10858 if (opnd1 == IA64_OPND_AR3)
10859 rop = 0;
10860 else if (opnd2 == IA64_OPND_AR3)
10861 rop = 1;
10862 else
10863 abort ();
10864 if (CURR_SLOT.opnd[rop].X_op == O_register)
10865 {
10866 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10867 mnemonic = "mov.i";
10868 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10869 mnemonic = "mov.m";
10870 else
10871 rop = -1;
10872 }
10873 else
10874 abort ();
10875 if (rop >= 0)
10876 {
10877 ia64_free_opcode (idesc);
10878 idesc = ia64_find_opcode (mnemonic);
10879 while (idesc != NULL
10880 && (idesc->operands[0] != opnd1
10881 || idesc->operands[1] != opnd2))
10882 idesc = get_next_opcode (idesc);
10883 }
10884 }
10885 }
10886 else if (strcmp (idesc->name, "mov.i") == 0
10887 || strcmp (idesc->name, "mov.m") == 0)
10888 {
10889 enum ia64_opnd opnd1, opnd2;
10890 int rop;
10891
10892 opnd1 = idesc->operands[0];
10893 opnd2 = idesc->operands[1];
10894 if (opnd1 == IA64_OPND_AR3)
10895 rop = 0;
10896 else if (opnd2 == IA64_OPND_AR3)
10897 rop = 1;
10898 else
10899 abort ();
10900 if (CURR_SLOT.opnd[rop].X_op == O_register)
10901 {
10902 char unit = 'a';
10903 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10904 unit = 'i';
10905 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10906 unit = 'm';
10907 if (unit != 'a' && unit != idesc->name [4])
10908 as_bad (_("AR %d can only be accessed by %c-unit"),
10909 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10910 TOUPPER (unit));
10911 }
10912 }
10913 else if (strcmp (idesc->name, "hint.b") == 0)
10914 {
10915 switch (md.hint_b)
10916 {
10917 case hint_b_ok:
10918 break;
10919 case hint_b_warning:
10920 as_warn (_("hint.b may be treated as nop"));
10921 break;
10922 case hint_b_error:
10923 as_bad (_("hint.b shouldn't be used"));
10924 break;
10925 }
10926 }
10927
10928 qp_regno = 0;
10929 if (md.qp.X_op == O_register)
10930 {
10931 qp_regno = md.qp.X_add_number - REG_P;
10932 md.qp.X_op = O_absent;
10933 }
10934
10935 flags = idesc->flags;
10936
10937 if ((flags & IA64_OPCODE_FIRST) != 0)
10938 {
10939 /* The alignment frag has to end with a stop bit only if the
10940 next instruction after the alignment directive has to be
10941 the first instruction in an instruction group. */
10942 if (align_frag)
10943 {
10944 while (align_frag->fr_type != rs_align_code)
10945 {
10946 align_frag = align_frag->fr_next;
10947 if (!align_frag)
10948 break;
10949 }
10950 /* align_frag can be NULL if there are directives in
10951 between. */
10952 if (align_frag && align_frag->fr_next == frag_now)
10953 align_frag->tc_frag_data = 1;
10954 }
10955
10956 insn_group_break (1, 0, 0);
10957 }
10958 align_frag = NULL;
10959
10960 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10961 {
10962 as_bad (_("`%s' cannot be predicated"), idesc->name);
10963 goto done;
10964 }
10965
10966 /* Build the instruction. */
10967 CURR_SLOT.qp_regno = qp_regno;
10968 CURR_SLOT.idesc = idesc;
10969 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10970 dwarf2_where (&CURR_SLOT.debug_line);
10971
10972 /* Add unwind entries, if there are any. */
10973 if (unwind.current_entry)
10974 {
10975 CURR_SLOT.unwind_record = unwind.current_entry;
10976 unwind.current_entry = NULL;
10977 }
10978 if (unwind.pending_saves)
10979 {
10980 if (unwind.pending_saves->next)
10981 {
10982 /* Attach the next pending save to the next slot so that its
10983 slot number will get set correctly. */
10984 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10985 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10986 }
10987 else
10988 unwind.pending_saves = NULL;
10989 }
10990 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10991 unwind.insn = 1;
10992
10993 /* Check for dependency violations. */
10994 if (md.detect_dv)
10995 check_dv (idesc);
10996
10997 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10998 if (++md.num_slots_in_use >= NUM_SLOTS)
10999 emit_one_bundle ();
11000
11001 if ((flags & IA64_OPCODE_LAST) != 0)
11002 insn_group_break (1, 0, 0);
11003
11004 md.last_text_seg = now_seg;
11005
11006 done:
11007 input_line_pointer = saved_input_line_pointer;
11008 }
11009
11010 /* Called when symbol NAME cannot be found in the symbol table.
11011 Should be used for dynamic valued symbols only. */
11012
11013 symbolS *
11014 md_undefined_symbol (name)
11015 char *name ATTRIBUTE_UNUSED;
11016 {
11017 return 0;
11018 }
11019
11020 /* Called for any expression that can not be recognized. When the
11021 function is called, `input_line_pointer' will point to the start of
11022 the expression. */
11023
11024 void
11025 md_operand (e)
11026 expressionS *e;
11027 {
11028 switch (*input_line_pointer)
11029 {
11030 case '[':
11031 ++input_line_pointer;
11032 expression_and_evaluate (e);
11033 if (*input_line_pointer != ']')
11034 {
11035 as_bad (_("Closing bracket missing"));
11036 goto err;
11037 }
11038 else
11039 {
11040 if (e->X_op != O_register
11041 || e->X_add_number < REG_GR
11042 || e->X_add_number > REG_GR + 127)
11043 {
11044 as_bad (_("Index must be a general register"));
11045 e->X_add_number = REG_GR;
11046 }
11047
11048 ++input_line_pointer;
11049 e->X_op = O_index;
11050 }
11051 break;
11052
11053 default:
11054 break;
11055 }
11056 return;
11057
11058 err:
11059 ignore_rest_of_line ();
11060 }
11061
11062 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11063 a section symbol plus some offset. For relocs involving @fptr(),
11064 directives we don't want such adjustments since we need to have the
11065 original symbol's name in the reloc. */
11066 int
11067 ia64_fix_adjustable (fix)
11068 fixS *fix;
11069 {
11070 /* Prevent all adjustments to global symbols */
11071 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11072 return 0;
11073
11074 switch (fix->fx_r_type)
11075 {
11076 case BFD_RELOC_IA64_FPTR64I:
11077 case BFD_RELOC_IA64_FPTR32MSB:
11078 case BFD_RELOC_IA64_FPTR32LSB:
11079 case BFD_RELOC_IA64_FPTR64MSB:
11080 case BFD_RELOC_IA64_FPTR64LSB:
11081 case BFD_RELOC_IA64_LTOFF_FPTR22:
11082 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11083 return 0;
11084 default:
11085 break;
11086 }
11087
11088 return 1;
11089 }
11090
11091 int
11092 ia64_force_relocation (fix)
11093 fixS *fix;
11094 {
11095 switch (fix->fx_r_type)
11096 {
11097 case BFD_RELOC_IA64_FPTR64I:
11098 case BFD_RELOC_IA64_FPTR32MSB:
11099 case BFD_RELOC_IA64_FPTR32LSB:
11100 case BFD_RELOC_IA64_FPTR64MSB:
11101 case BFD_RELOC_IA64_FPTR64LSB:
11102
11103 case BFD_RELOC_IA64_LTOFF22:
11104 case BFD_RELOC_IA64_LTOFF64I:
11105 case BFD_RELOC_IA64_LTOFF_FPTR22:
11106 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11107 case BFD_RELOC_IA64_PLTOFF22:
11108 case BFD_RELOC_IA64_PLTOFF64I:
11109 case BFD_RELOC_IA64_PLTOFF64MSB:
11110 case BFD_RELOC_IA64_PLTOFF64LSB:
11111
11112 case BFD_RELOC_IA64_LTOFF22X:
11113 case BFD_RELOC_IA64_LDXMOV:
11114 return 1;
11115
11116 default:
11117 break;
11118 }
11119
11120 return generic_force_reloc (fix);
11121 }
11122
11123 /* Decide from what point a pc-relative relocation is relative to,
11124 relative to the pc-relative fixup. Er, relatively speaking. */
11125 long
11126 ia64_pcrel_from_section (fix, sec)
11127 fixS *fix;
11128 segT sec;
11129 {
11130 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11131
11132 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11133 off &= ~0xfUL;
11134
11135 return off;
11136 }
11137
11138
11139 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11140 void
11141 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11142 {
11143 expressionS expr;
11144
11145 expr.X_op = O_pseudo_fixup;
11146 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11147 expr.X_add_number = 0;
11148 expr.X_add_symbol = symbol;
11149 emit_expr (&expr, size);
11150 }
11151
11152 /* This is called whenever some data item (not an instruction) needs a
11153 fixup. We pick the right reloc code depending on the byteorder
11154 currently in effect. */
11155 void
11156 ia64_cons_fix_new (f, where, nbytes, exp)
11157 fragS *f;
11158 int where;
11159 int nbytes;
11160 expressionS *exp;
11161 {
11162 bfd_reloc_code_real_type code;
11163 fixS *fix;
11164
11165 switch (nbytes)
11166 {
11167 /* There are no reloc for 8 and 16 bit quantities, but we allow
11168 them here since they will work fine as long as the expression
11169 is fully defined at the end of the pass over the source file. */
11170 case 1: code = BFD_RELOC_8; break;
11171 case 2: code = BFD_RELOC_16; break;
11172 case 4:
11173 if (target_big_endian)
11174 code = BFD_RELOC_IA64_DIR32MSB;
11175 else
11176 code = BFD_RELOC_IA64_DIR32LSB;
11177 break;
11178
11179 case 8:
11180 /* In 32-bit mode, data8 could mean function descriptors too. */
11181 if (exp->X_op == O_pseudo_fixup
11182 && exp->X_op_symbol
11183 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11184 && !(md.flags & EF_IA_64_ABI64))
11185 {
11186 if (target_big_endian)
11187 code = BFD_RELOC_IA64_IPLTMSB;
11188 else
11189 code = BFD_RELOC_IA64_IPLTLSB;
11190 exp->X_op = O_symbol;
11191 break;
11192 }
11193 else
11194 {
11195 if (target_big_endian)
11196 code = BFD_RELOC_IA64_DIR64MSB;
11197 else
11198 code = BFD_RELOC_IA64_DIR64LSB;
11199 break;
11200 }
11201
11202 case 16:
11203 if (exp->X_op == O_pseudo_fixup
11204 && exp->X_op_symbol
11205 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11206 {
11207 if (target_big_endian)
11208 code = BFD_RELOC_IA64_IPLTMSB;
11209 else
11210 code = BFD_RELOC_IA64_IPLTLSB;
11211 exp->X_op = O_symbol;
11212 break;
11213 }
11214 /* FALLTHRU */
11215
11216 default:
11217 as_bad (_("Unsupported fixup size %d"), nbytes);
11218 ignore_rest_of_line ();
11219 return;
11220 }
11221
11222 if (exp->X_op == O_pseudo_fixup)
11223 {
11224 exp->X_op = O_symbol;
11225 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11226 /* ??? If code unchanged, unsupported. */
11227 }
11228
11229 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11230 /* We need to store the byte order in effect in case we're going
11231 to fix an 8 or 16 bit relocation (for which there no real
11232 relocs available). See md_apply_fix(). */
11233 fix->tc_fix_data.bigendian = target_big_endian;
11234 }
11235
11236 /* Return the actual relocation we wish to associate with the pseudo
11237 reloc described by SYM and R_TYPE. SYM should be one of the
11238 symbols in the pseudo_func array, or NULL. */
11239
11240 static bfd_reloc_code_real_type
11241 ia64_gen_real_reloc_type (sym, r_type)
11242 struct symbol *sym;
11243 bfd_reloc_code_real_type r_type;
11244 {
11245 bfd_reloc_code_real_type new = 0;
11246 const char *type = NULL, *suffix = "";
11247
11248 if (sym == NULL)
11249 {
11250 return r_type;
11251 }
11252
11253 switch (S_GET_VALUE (sym))
11254 {
11255 case FUNC_FPTR_RELATIVE:
11256 switch (r_type)
11257 {
11258 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11259 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11260 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11261 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11262 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11263 default: type = "FPTR"; break;
11264 }
11265 break;
11266
11267 case FUNC_GP_RELATIVE:
11268 switch (r_type)
11269 {
11270 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11271 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11272 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11273 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11274 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11275 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11276 default: type = "GPREL"; break;
11277 }
11278 break;
11279
11280 case FUNC_LT_RELATIVE:
11281 switch (r_type)
11282 {
11283 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11284 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11285 default: type = "LTOFF"; break;
11286 }
11287 break;
11288
11289 case FUNC_LT_RELATIVE_X:
11290 switch (r_type)
11291 {
11292 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11293 default: type = "LTOFF"; suffix = "X"; break;
11294 }
11295 break;
11296
11297 case FUNC_PC_RELATIVE:
11298 switch (r_type)
11299 {
11300 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11301 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11302 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11303 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11304 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11305 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11306 default: type = "PCREL"; break;
11307 }
11308 break;
11309
11310 case FUNC_PLT_RELATIVE:
11311 switch (r_type)
11312 {
11313 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11314 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11315 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11316 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11317 default: type = "PLTOFF"; break;
11318 }
11319 break;
11320
11321 case FUNC_SEC_RELATIVE:
11322 switch (r_type)
11323 {
11324 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11325 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11326 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11327 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11328 default: type = "SECREL"; break;
11329 }
11330 break;
11331
11332 case FUNC_SEG_RELATIVE:
11333 switch (r_type)
11334 {
11335 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11336 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11337 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11338 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11339 default: type = "SEGREL"; break;
11340 }
11341 break;
11342
11343 case FUNC_LTV_RELATIVE:
11344 switch (r_type)
11345 {
11346 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11347 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11348 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11349 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11350 default: type = "LTV"; break;
11351 }
11352 break;
11353
11354 case FUNC_LT_FPTR_RELATIVE:
11355 switch (r_type)
11356 {
11357 case BFD_RELOC_IA64_IMM22:
11358 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11359 case BFD_RELOC_IA64_IMM64:
11360 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11361 case BFD_RELOC_IA64_DIR32MSB:
11362 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11363 case BFD_RELOC_IA64_DIR32LSB:
11364 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11365 case BFD_RELOC_IA64_DIR64MSB:
11366 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11367 case BFD_RELOC_IA64_DIR64LSB:
11368 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11369 default:
11370 type = "LTOFF_FPTR"; break;
11371 }
11372 break;
11373
11374 case FUNC_TP_RELATIVE:
11375 switch (r_type)
11376 {
11377 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11378 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11379 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11380 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11381 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11382 default: type = "TPREL"; break;
11383 }
11384 break;
11385
11386 case FUNC_LT_TP_RELATIVE:
11387 switch (r_type)
11388 {
11389 case BFD_RELOC_IA64_IMM22:
11390 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11391 default:
11392 type = "LTOFF_TPREL"; break;
11393 }
11394 break;
11395
11396 case FUNC_DTP_MODULE:
11397 switch (r_type)
11398 {
11399 case BFD_RELOC_IA64_DIR64MSB:
11400 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11401 case BFD_RELOC_IA64_DIR64LSB:
11402 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11403 default:
11404 type = "DTPMOD"; break;
11405 }
11406 break;
11407
11408 case FUNC_LT_DTP_MODULE:
11409 switch (r_type)
11410 {
11411 case BFD_RELOC_IA64_IMM22:
11412 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11413 default:
11414 type = "LTOFF_DTPMOD"; break;
11415 }
11416 break;
11417
11418 case FUNC_DTP_RELATIVE:
11419 switch (r_type)
11420 {
11421 case BFD_RELOC_IA64_DIR32MSB:
11422 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11423 case BFD_RELOC_IA64_DIR32LSB:
11424 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11425 case BFD_RELOC_IA64_DIR64MSB:
11426 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11427 case BFD_RELOC_IA64_DIR64LSB:
11428 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11429 case BFD_RELOC_IA64_IMM14:
11430 new = BFD_RELOC_IA64_DTPREL14; break;
11431 case BFD_RELOC_IA64_IMM22:
11432 new = BFD_RELOC_IA64_DTPREL22; break;
11433 case BFD_RELOC_IA64_IMM64:
11434 new = BFD_RELOC_IA64_DTPREL64I; break;
11435 default:
11436 type = "DTPREL"; break;
11437 }
11438 break;
11439
11440 case FUNC_LT_DTP_RELATIVE:
11441 switch (r_type)
11442 {
11443 case BFD_RELOC_IA64_IMM22:
11444 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11445 default:
11446 type = "LTOFF_DTPREL"; break;
11447 }
11448 break;
11449
11450 case FUNC_IPLT_RELOC:
11451 switch (r_type)
11452 {
11453 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11454 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11455 default: type = "IPLT"; break;
11456 }
11457 break;
11458
11459 default:
11460 abort ();
11461 }
11462
11463 if (new)
11464 return new;
11465 else
11466 {
11467 int width;
11468
11469 if (!type)
11470 abort ();
11471 switch (r_type)
11472 {
11473 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11474 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11475 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11476 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11477 case BFD_RELOC_UNUSED: width = 13; break;
11478 case BFD_RELOC_IA64_IMM14: width = 14; break;
11479 case BFD_RELOC_IA64_IMM22: width = 22; break;
11480 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11481 default: abort ();
11482 }
11483
11484 /* This should be an error, but since previously there wasn't any
11485 diagnostic here, don't make it fail because of this for now. */
11486 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11487 return r_type;
11488 }
11489 }
11490
11491 /* Here is where generate the appropriate reloc for pseudo relocation
11492 functions. */
11493 void
11494 ia64_validate_fix (fix)
11495 fixS *fix;
11496 {
11497 switch (fix->fx_r_type)
11498 {
11499 case BFD_RELOC_IA64_FPTR64I:
11500 case BFD_RELOC_IA64_FPTR32MSB:
11501 case BFD_RELOC_IA64_FPTR64LSB:
11502 case BFD_RELOC_IA64_LTOFF_FPTR22:
11503 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11504 if (fix->fx_offset != 0)
11505 as_bad_where (fix->fx_file, fix->fx_line,
11506 _("No addend allowed in @fptr() relocation"));
11507 break;
11508 default:
11509 break;
11510 }
11511 }
11512
11513 static void
11514 fix_insn (fix, odesc, value)
11515 fixS *fix;
11516 const struct ia64_operand *odesc;
11517 valueT value;
11518 {
11519 bfd_vma insn[3], t0, t1, control_bits;
11520 const char *err;
11521 char *fixpos;
11522 long slot;
11523
11524 slot = fix->fx_where & 0x3;
11525 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11526
11527 /* Bundles are always in little-endian byte order */
11528 t0 = bfd_getl64 (fixpos);
11529 t1 = bfd_getl64 (fixpos + 8);
11530 control_bits = t0 & 0x1f;
11531 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11532 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11533 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11534
11535 err = NULL;
11536 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11537 {
11538 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11539 insn[2] |= (((value & 0x7f) << 13)
11540 | (((value >> 7) & 0x1ff) << 27)
11541 | (((value >> 16) & 0x1f) << 22)
11542 | (((value >> 21) & 0x1) << 21)
11543 | (((value >> 63) & 0x1) << 36));
11544 }
11545 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11546 {
11547 if (value & ~0x3fffffffffffffffULL)
11548 err = "integer operand out of range";
11549 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11550 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11551 }
11552 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11553 {
11554 value >>= 4;
11555 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11556 insn[2] |= ((((value >> 59) & 0x1) << 36)
11557 | (((value >> 0) & 0xfffff) << 13));
11558 }
11559 else
11560 err = (*odesc->insert) (odesc, value, insn + slot);
11561
11562 if (err)
11563 as_bad_where (fix->fx_file, fix->fx_line, err);
11564
11565 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11566 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11567 number_to_chars_littleendian (fixpos + 0, t0, 8);
11568 number_to_chars_littleendian (fixpos + 8, t1, 8);
11569 }
11570
11571 /* Attempt to simplify or even eliminate a fixup. The return value is
11572 ignored; perhaps it was once meaningful, but now it is historical.
11573 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11574
11575 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11576 (if possible). */
11577
11578 void
11579 md_apply_fix (fix, valP, seg)
11580 fixS *fix;
11581 valueT *valP;
11582 segT seg ATTRIBUTE_UNUSED;
11583 {
11584 char *fixpos;
11585 valueT value = *valP;
11586
11587 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11588
11589 if (fix->fx_pcrel)
11590 {
11591 switch (fix->fx_r_type)
11592 {
11593 case BFD_RELOC_IA64_PCREL21B: break;
11594 case BFD_RELOC_IA64_PCREL21BI: break;
11595 case BFD_RELOC_IA64_PCREL21F: break;
11596 case BFD_RELOC_IA64_PCREL21M: break;
11597 case BFD_RELOC_IA64_PCREL60B: break;
11598 case BFD_RELOC_IA64_PCREL22: break;
11599 case BFD_RELOC_IA64_PCREL64I: break;
11600 case BFD_RELOC_IA64_PCREL32MSB: break;
11601 case BFD_RELOC_IA64_PCREL32LSB: break;
11602 case BFD_RELOC_IA64_PCREL64MSB: break;
11603 case BFD_RELOC_IA64_PCREL64LSB: break;
11604 default:
11605 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11606 fix->fx_r_type);
11607 break;
11608 }
11609 }
11610 if (fix->fx_addsy)
11611 {
11612 switch (fix->fx_r_type)
11613 {
11614 case BFD_RELOC_UNUSED:
11615 /* This must be a TAG13 or TAG13b operand. There are no external
11616 relocs defined for them, so we must give an error. */
11617 as_bad_where (fix->fx_file, fix->fx_line,
11618 _("%s must have a constant value"),
11619 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11620 fix->fx_done = 1;
11621 return;
11622
11623 case BFD_RELOC_IA64_TPREL14:
11624 case BFD_RELOC_IA64_TPREL22:
11625 case BFD_RELOC_IA64_TPREL64I:
11626 case BFD_RELOC_IA64_LTOFF_TPREL22:
11627 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11628 case BFD_RELOC_IA64_DTPREL14:
11629 case BFD_RELOC_IA64_DTPREL22:
11630 case BFD_RELOC_IA64_DTPREL64I:
11631 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11632 S_SET_THREAD_LOCAL (fix->fx_addsy);
11633 break;
11634
11635 default:
11636 break;
11637 }
11638 }
11639 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11640 {
11641 if (fix->tc_fix_data.bigendian)
11642 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11643 else
11644 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11645 fix->fx_done = 1;
11646 }
11647 else
11648 {
11649 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11650 fix->fx_done = 1;
11651 }
11652 }
11653
11654 /* Generate the BFD reloc to be stuck in the object file from the
11655 fixup used internally in the assembler. */
11656
11657 arelent *
11658 tc_gen_reloc (sec, fixp)
11659 asection *sec ATTRIBUTE_UNUSED;
11660 fixS *fixp;
11661 {
11662 arelent *reloc;
11663
11664 reloc = xmalloc (sizeof (*reloc));
11665 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11666 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11667 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11668 reloc->addend = fixp->fx_offset;
11669 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11670
11671 if (!reloc->howto)
11672 {
11673 as_bad_where (fixp->fx_file, fixp->fx_line,
11674 _("Cannot represent %s relocation in object file"),
11675 bfd_get_reloc_code_name (fixp->fx_r_type));
11676 free (reloc);
11677 return NULL;
11678 }
11679 return reloc;
11680 }
11681
11682 /* Turn a string in input_line_pointer into a floating point constant
11683 of type TYPE, and store the appropriate bytes in *LIT. The number
11684 of LITTLENUMS emitted is stored in *SIZE. An error message is
11685 returned, or NULL on OK. */
11686
11687 #define MAX_LITTLENUMS 5
11688
11689 char *
11690 md_atof (int type, char *lit, int *size)
11691 {
11692 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11693 char *t;
11694 int prec;
11695
11696 switch (type)
11697 {
11698 /* IEEE floats */
11699 case 'f':
11700 case 'F':
11701 case 's':
11702 case 'S':
11703 prec = 2;
11704 break;
11705
11706 case 'd':
11707 case 'D':
11708 case 'r':
11709 case 'R':
11710 prec = 4;
11711 break;
11712
11713 case 'x':
11714 case 'X':
11715 case 'p':
11716 case 'P':
11717 prec = 5;
11718 break;
11719
11720 default:
11721 *size = 0;
11722 return _("Unrecognized or unsupported floating point constant");
11723 }
11724 t = atof_ieee (input_line_pointer, type, words);
11725 if (t)
11726 input_line_pointer = t;
11727
11728 (*ia64_float_to_chars) (lit, words, prec);
11729
11730 if (type == 'X')
11731 {
11732 /* It is 10 byte floating point with 6 byte padding. */
11733 memset (&lit [10], 0, 6);
11734 *size = 8 * sizeof (LITTLENUM_TYPE);
11735 }
11736 else
11737 *size = prec * sizeof (LITTLENUM_TYPE);
11738
11739 return NULL;
11740 }
11741
11742 /* Handle ia64 specific semantics of the align directive. */
11743
11744 void
11745 ia64_md_do_align (n, fill, len, max)
11746 int n ATTRIBUTE_UNUSED;
11747 const char *fill ATTRIBUTE_UNUSED;
11748 int len ATTRIBUTE_UNUSED;
11749 int max ATTRIBUTE_UNUSED;
11750 {
11751 if (subseg_text_p (now_seg))
11752 ia64_flush_insns ();
11753 }
11754
11755 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11756 of an rs_align_code fragment. */
11757
11758 void
11759 ia64_handle_align (fragp)
11760 fragS *fragp;
11761 {
11762 int bytes;
11763 char *p;
11764 const unsigned char *nop;
11765
11766 if (fragp->fr_type != rs_align_code)
11767 return;
11768
11769 /* Check if this frag has to end with a stop bit. */
11770 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11771
11772 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11773 p = fragp->fr_literal + fragp->fr_fix;
11774
11775 /* If no paddings are needed, we check if we need a stop bit. */
11776 if (!bytes && fragp->tc_frag_data)
11777 {
11778 if (fragp->fr_fix < 16)
11779 #if 1
11780 /* FIXME: It won't work with
11781 .align 16
11782 alloc r32=ar.pfs,1,2,4,0
11783 */
11784 ;
11785 #else
11786 as_bad_where (fragp->fr_file, fragp->fr_line,
11787 _("Can't add stop bit to mark end of instruction group"));
11788 #endif
11789 else
11790 /* Bundles are always in little-endian byte order. Make sure
11791 the previous bundle has the stop bit. */
11792 *(p - 16) |= 1;
11793 }
11794
11795 /* Make sure we are on a 16-byte boundary, in case someone has been
11796 putting data into a text section. */
11797 if (bytes & 15)
11798 {
11799 int fix = bytes & 15;
11800 memset (p, 0, fix);
11801 p += fix;
11802 bytes -= fix;
11803 fragp->fr_fix += fix;
11804 }
11805
11806 /* Instruction bundles are always little-endian. */
11807 memcpy (p, nop, 16);
11808 fragp->fr_var = 16;
11809 }
11810
11811 static void
11812 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11813 int prec)
11814 {
11815 while (prec--)
11816 {
11817 number_to_chars_bigendian (lit, (long) (*words++),
11818 sizeof (LITTLENUM_TYPE));
11819 lit += sizeof (LITTLENUM_TYPE);
11820 }
11821 }
11822
11823 static void
11824 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11825 int prec)
11826 {
11827 while (prec--)
11828 {
11829 number_to_chars_littleendian (lit, (long) (words[prec]),
11830 sizeof (LITTLENUM_TYPE));
11831 lit += sizeof (LITTLENUM_TYPE);
11832 }
11833 }
11834
11835 void
11836 ia64_elf_section_change_hook (void)
11837 {
11838 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11839 && elf_linked_to_section (now_seg) == NULL)
11840 elf_linked_to_section (now_seg) = text_section;
11841 dot_byteorder (-1);
11842 }
11843
11844 /* Check if a label should be made global. */
11845 void
11846 ia64_check_label (symbolS *label)
11847 {
11848 if (*input_line_pointer == ':')
11849 {
11850 S_SET_EXTERNAL (label);
11851 input_line_pointer++;
11852 }
11853 }
11854
11855 /* Used to remember where .alias and .secalias directives are seen. We
11856 will rename symbol and section names when we are about to output
11857 the relocatable file. */
11858 struct alias
11859 {
11860 char *file; /* The file where the directive is seen. */
11861 unsigned int line; /* The line number the directive is at. */
11862 const char *name; /* The original name of the symbol. */
11863 };
11864
11865 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11866 .secalias. Otherwise, it is .alias. */
11867 static void
11868 dot_alias (int section)
11869 {
11870 char *name, *alias;
11871 char delim;
11872 char *end_name;
11873 int len;
11874 const char *error_string;
11875 struct alias *h;
11876 const char *a;
11877 struct hash_control *ahash, *nhash;
11878 const char *kind;
11879
11880 name = input_line_pointer;
11881 delim = get_symbol_end ();
11882 end_name = input_line_pointer;
11883 *end_name = delim;
11884
11885 if (name == end_name)
11886 {
11887 as_bad (_("expected symbol name"));
11888 ignore_rest_of_line ();
11889 return;
11890 }
11891
11892 SKIP_WHITESPACE ();
11893
11894 if (*input_line_pointer != ',')
11895 {
11896 *end_name = 0;
11897 as_bad (_("expected comma after \"%s\""), name);
11898 *end_name = delim;
11899 ignore_rest_of_line ();
11900 return;
11901 }
11902
11903 input_line_pointer++;
11904 *end_name = 0;
11905 ia64_canonicalize_symbol_name (name);
11906
11907 /* We call demand_copy_C_string to check if alias string is valid.
11908 There should be a closing `"' and no `\0' in the string. */
11909 alias = demand_copy_C_string (&len);
11910 if (alias == NULL)
11911 {
11912 ignore_rest_of_line ();
11913 return;
11914 }
11915
11916 /* Make a copy of name string. */
11917 len = strlen (name) + 1;
11918 obstack_grow (&notes, name, len);
11919 name = obstack_finish (&notes);
11920
11921 if (section)
11922 {
11923 kind = "section";
11924 ahash = secalias_hash;
11925 nhash = secalias_name_hash;
11926 }
11927 else
11928 {
11929 kind = "symbol";
11930 ahash = alias_hash;
11931 nhash = alias_name_hash;
11932 }
11933
11934 /* Check if alias has been used before. */
11935 h = (struct alias *) hash_find (ahash, alias);
11936 if (h)
11937 {
11938 if (strcmp (h->name, name))
11939 as_bad (_("`%s' is already the alias of %s `%s'"),
11940 alias, kind, h->name);
11941 goto out;
11942 }
11943
11944 /* Check if name already has an alias. */
11945 a = (const char *) hash_find (nhash, name);
11946 if (a)
11947 {
11948 if (strcmp (a, alias))
11949 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11950 goto out;
11951 }
11952
11953 h = (struct alias *) xmalloc (sizeof (struct alias));
11954 as_where (&h->file, &h->line);
11955 h->name = name;
11956
11957 error_string = hash_jam (ahash, alias, (PTR) h);
11958 if (error_string)
11959 {
11960 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11961 alias, kind, error_string);
11962 goto out;
11963 }
11964
11965 error_string = hash_jam (nhash, name, (PTR) alias);
11966 if (error_string)
11967 {
11968 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11969 alias, kind, error_string);
11970 out:
11971 obstack_free (&notes, name);
11972 obstack_free (&notes, alias);
11973 }
11974
11975 demand_empty_rest_of_line ();
11976 }
11977
11978 /* It renames the original symbol name to its alias. */
11979 static void
11980 do_alias (const char *alias, PTR value)
11981 {
11982 struct alias *h = (struct alias *) value;
11983 symbolS *sym = symbol_find (h->name);
11984
11985 if (sym == NULL)
11986 as_warn_where (h->file, h->line,
11987 _("symbol `%s' aliased to `%s' is not used"),
11988 h->name, alias);
11989 else
11990 S_SET_NAME (sym, (char *) alias);
11991 }
11992
11993 /* Called from write_object_file. */
11994 void
11995 ia64_adjust_symtab (void)
11996 {
11997 hash_traverse (alias_hash, do_alias);
11998 }
11999
12000 /* It renames the original section name to its alias. */
12001 static void
12002 do_secalias (const char *alias, PTR value)
12003 {
12004 struct alias *h = (struct alias *) value;
12005 segT sec = bfd_get_section_by_name (stdoutput, h->name);
12006
12007 if (sec == NULL)
12008 as_warn_where (h->file, h->line,
12009 _("section `%s' aliased to `%s' is not used"),
12010 h->name, alias);
12011 else
12012 sec->name = alias;
12013 }
12014
12015 /* Called from write_object_file. */
12016 void
12017 ia64_frob_file (void)
12018 {
12019 hash_traverse (secalias_hash, do_secalias);
12020 }
This page took 0.268452 seconds and 5 git commands to generate.