Add Intel Itanium Series 9500 support
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53 #include "bfdver.h"
54 #include <time.h>
55
56 #ifdef HAVE_LIMITS_H
57 #include <limits.h>
58 #endif
59
60 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
61
62 /* Some systems define MIN in, e.g., param.h. */
63 #undef MIN
64 #define MIN(a,b) ((a) < (b) ? (a) : (b))
65
66 #define NUM_SLOTS 4
67 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
68 #define CURR_SLOT md.slot[md.curr_slot]
69
70 #define O_pseudo_fixup (O_max + 1)
71
72 enum special_section
73 {
74 /* IA-64 ABI section pseudo-ops. */
75 SPECIAL_SECTION_BSS = 0,
76 SPECIAL_SECTION_SBSS,
77 SPECIAL_SECTION_SDATA,
78 SPECIAL_SECTION_RODATA,
79 SPECIAL_SECTION_COMMENT,
80 SPECIAL_SECTION_UNWIND,
81 SPECIAL_SECTION_UNWIND_INFO,
82 /* HPUX specific section pseudo-ops. */
83 SPECIAL_SECTION_INIT_ARRAY,
84 SPECIAL_SECTION_FINI_ARRAY,
85 };
86
87 enum reloc_func
88 {
89 FUNC_DTP_MODULE,
90 FUNC_DTP_RELATIVE,
91 FUNC_FPTR_RELATIVE,
92 FUNC_GP_RELATIVE,
93 FUNC_LT_RELATIVE,
94 FUNC_LT_RELATIVE_X,
95 FUNC_PC_RELATIVE,
96 FUNC_PLT_RELATIVE,
97 FUNC_SEC_RELATIVE,
98 FUNC_SEG_RELATIVE,
99 FUNC_TP_RELATIVE,
100 FUNC_LTV_RELATIVE,
101 FUNC_LT_FPTR_RELATIVE,
102 FUNC_LT_DTP_MODULE,
103 FUNC_LT_DTP_RELATIVE,
104 FUNC_LT_TP_RELATIVE,
105 FUNC_IPLT_RELOC,
106 #ifdef TE_VMS
107 FUNC_SLOTCOUNT_RELOC,
108 #endif
109 };
110
111 enum reg_symbol
112 {
113 REG_GR = 0,
114 REG_FR = (REG_GR + 128),
115 REG_AR = (REG_FR + 128),
116 REG_CR = (REG_AR + 128),
117 REG_DAHR = (REG_CR + 128),
118 REG_P = (REG_DAHR + 8),
119 REG_BR = (REG_P + 64),
120 REG_IP = (REG_BR + 8),
121 REG_CFM,
122 REG_PR,
123 REG_PR_ROT,
124 REG_PSR,
125 REG_PSR_L,
126 REG_PSR_UM,
127 /* The following are pseudo-registers for use by gas only. */
128 IND_CPUID,
129 IND_DBR,
130 IND_DTR,
131 IND_ITR,
132 IND_IBR,
133 IND_MSR,
134 IND_PKR,
135 IND_PMC,
136 IND_PMD,
137 IND_DAHR,
138 IND_RR,
139 /* The following pseudo-registers are used for unwind directives only: */
140 REG_PSP,
141 REG_PRIUNAT,
142 REG_NUM
143 };
144
145 enum dynreg_type
146 {
147 DYNREG_GR = 0, /* dynamic general purpose register */
148 DYNREG_FR, /* dynamic floating point register */
149 DYNREG_PR, /* dynamic predicate register */
150 DYNREG_NUM_TYPES
151 };
152
153 enum operand_match_result
154 {
155 OPERAND_MATCH,
156 OPERAND_OUT_OF_RANGE,
157 OPERAND_MISMATCH
158 };
159
160 /* On the ia64, we can't know the address of a text label until the
161 instructions are packed into a bundle. To handle this, we keep
162 track of the list of labels that appear in front of each
163 instruction. */
164 struct label_fix
165 {
166 struct label_fix *next;
167 struct symbol *sym;
168 bfd_boolean dw2_mark_labels;
169 };
170
171 #ifdef TE_VMS
172 /* An internally used relocation. */
173 #define DUMMY_RELOC_IA64_SLOTCOUNT (BFD_RELOC_UNUSED + 1)
174 #endif
175
176 /* This is the endianness of the current section. */
177 extern int target_big_endian;
178
179 /* This is the default endianness. */
180 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
181
182 void (*ia64_number_to_chars) (char *, valueT, int);
183
184 static void ia64_float_to_chars_bigendian (char *, LITTLENUM_TYPE *, int);
185 static void ia64_float_to_chars_littleendian (char *, LITTLENUM_TYPE *, int);
186
187 static void (*ia64_float_to_chars) (char *, LITTLENUM_TYPE *, int);
188
189 static struct hash_control *alias_hash;
190 static struct hash_control *alias_name_hash;
191 static struct hash_control *secalias_hash;
192 static struct hash_control *secalias_name_hash;
193
194 /* List of chars besides those in app.c:symbol_chars that can start an
195 operand. Used to prevent the scrubber eating vital white-space. */
196 const char ia64_symbol_chars[] = "@?";
197
198 /* Characters which always start a comment. */
199 const char comment_chars[] = "";
200
201 /* Characters which start a comment at the beginning of a line. */
202 const char line_comment_chars[] = "#";
203
204 /* Characters which may be used to separate multiple commands on a
205 single line. */
206 const char line_separator_chars[] = ";{}";
207
208 /* Characters which are used to indicate an exponent in a floating
209 point number. */
210 const char EXP_CHARS[] = "eE";
211
212 /* Characters which mean that a number is a floating point constant,
213 as in 0d1.0. */
214 const char FLT_CHARS[] = "rRsSfFdDxXpP";
215
216 /* ia64-specific option processing: */
217
218 const char *md_shortopts = "m:N:x::";
219
220 struct option md_longopts[] =
221 {
222 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
223 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
224 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
225 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
226 };
227
228 size_t md_longopts_size = sizeof (md_longopts);
229
230 static struct
231 {
232 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
233 struct hash_control *reg_hash; /* register name hash table */
234 struct hash_control *dynreg_hash; /* dynamic register hash table */
235 struct hash_control *const_hash; /* constant hash table */
236 struct hash_control *entry_hash; /* code entry hint hash table */
237
238 /* If X_op is != O_absent, the registername for the instruction's
239 qualifying predicate. If NULL, p0 is assumed for instructions
240 that are predictable. */
241 expressionS qp;
242
243 /* Optimize for which CPU. */
244 enum
245 {
246 itanium1,
247 itanium2
248 } tune;
249
250 /* What to do when hint.b is used. */
251 enum
252 {
253 hint_b_error,
254 hint_b_warning,
255 hint_b_ok
256 } hint_b;
257
258 unsigned int
259 manual_bundling : 1,
260 debug_dv: 1,
261 detect_dv: 1,
262 explicit_mode : 1, /* which mode we're in */
263 default_explicit_mode : 1, /* which mode is the default */
264 mode_explicitly_set : 1, /* was the current mode explicitly set? */
265 auto_align : 1,
266 keep_pending_output : 1;
267
268 /* What to do when something is wrong with unwind directives. */
269 enum
270 {
271 unwind_check_warning,
272 unwind_check_error
273 } unwind_check;
274
275 /* Each bundle consists of up to three instructions. We keep
276 track of four most recent instructions so we can correctly set
277 the end_of_insn_group for the last instruction in a bundle. */
278 int curr_slot;
279 int num_slots_in_use;
280 struct slot
281 {
282 unsigned int
283 end_of_insn_group : 1,
284 manual_bundling_on : 1,
285 manual_bundling_off : 1,
286 loc_directive_seen : 1;
287 signed char user_template; /* user-selected template, if any */
288 unsigned char qp_regno; /* qualifying predicate */
289 /* This duplicates a good fraction of "struct fix" but we
290 can't use a "struct fix" instead since we can't call
291 fix_new_exp() until we know the address of the instruction. */
292 int num_fixups;
293 struct insn_fix
294 {
295 bfd_reloc_code_real_type code;
296 enum ia64_opnd opnd; /* type of operand in need of fix */
297 unsigned int is_pcrel : 1; /* is operand pc-relative? */
298 expressionS expr; /* the value to be inserted */
299 }
300 fixup[2]; /* at most two fixups per insn */
301 struct ia64_opcode *idesc;
302 struct label_fix *label_fixups;
303 struct label_fix *tag_fixups;
304 struct unw_rec_list *unwind_record; /* Unwind directive. */
305 expressionS opnd[6];
306 char *src_file;
307 unsigned int src_line;
308 struct dwarf2_line_info debug_line;
309 }
310 slot[NUM_SLOTS];
311
312 segT last_text_seg;
313
314 struct dynreg
315 {
316 struct dynreg *next; /* next dynamic register */
317 const char *name;
318 unsigned short base; /* the base register number */
319 unsigned short num_regs; /* # of registers in this set */
320 }
321 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
322
323 flagword flags; /* ELF-header flags */
324
325 struct mem_offset {
326 unsigned hint:1; /* is this hint currently valid? */
327 bfd_vma offset; /* mem.offset offset */
328 bfd_vma base; /* mem.offset base */
329 } mem_offset;
330
331 int path; /* number of alt. entry points seen */
332 const char **entry_labels; /* labels of all alternate paths in
333 the current DV-checking block. */
334 int maxpaths; /* size currently allocated for
335 entry_labels */
336
337 int pointer_size; /* size in bytes of a pointer */
338 int pointer_size_shift; /* shift size of a pointer for alignment */
339
340 symbolS *indregsym[IND_RR - IND_CPUID + 1];
341 }
342 md;
343
344 /* These are not const, because they are modified to MMI for non-itanium1
345 targets below. */
346 /* MFI bundle of nops. */
347 static unsigned char le_nop[16] =
348 {
349 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
350 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
351 };
352 /* MFI bundle of nops with stop-bit. */
353 static unsigned char le_nop_stop[16] =
354 {
355 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
356 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
357 };
358
359 /* application registers: */
360
361 #define AR_K0 0
362 #define AR_K7 7
363 #define AR_RSC 16
364 #define AR_BSP 17
365 #define AR_BSPSTORE 18
366 #define AR_RNAT 19
367 #define AR_FCR 21
368 #define AR_EFLAG 24
369 #define AR_CSD 25
370 #define AR_SSD 26
371 #define AR_CFLG 27
372 #define AR_FSR 28
373 #define AR_FIR 29
374 #define AR_FDR 30
375 #define AR_CCV 32
376 #define AR_UNAT 36
377 #define AR_FPSR 40
378 #define AR_ITC 44
379 #define AR_RUC 45
380 #define AR_PFS 64
381 #define AR_LC 65
382 #define AR_EC 66
383
384 static const struct
385 {
386 const char *name;
387 unsigned int regnum;
388 }
389 ar[] =
390 {
391 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
392 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
393 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
394 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
395 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
396 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
397 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
398 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
399 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
400 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
401 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
402 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
403 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
404 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
405 };
406
407 /* control registers: */
408
409 #define CR_DCR 0
410 #define CR_ITM 1
411 #define CR_IVA 2
412 #define CR_PTA 8
413 #define CR_GPTA 9
414 #define CR_IPSR 16
415 #define CR_ISR 17
416 #define CR_IIP 19
417 #define CR_IFA 20
418 #define CR_ITIR 21
419 #define CR_IIPA 22
420 #define CR_IFS 23
421 #define CR_IIM 24
422 #define CR_IHA 25
423 #define CR_IIB0 26
424 #define CR_IIB1 27
425 #define CR_LID 64
426 #define CR_IVR 65
427 #define CR_TPR 66
428 #define CR_EOI 67
429 #define CR_IRR0 68
430 #define CR_IRR3 71
431 #define CR_ITV 72
432 #define CR_PMV 73
433 #define CR_CMCV 74
434 #define CR_LRR0 80
435 #define CR_LRR1 81
436
437 static const struct
438 {
439 const char *name;
440 unsigned int regnum;
441 }
442 cr[] =
443 {
444 {"cr.dcr", CR_DCR},
445 {"cr.itm", CR_ITM},
446 {"cr.iva", CR_IVA},
447 {"cr.pta", CR_PTA},
448 {"cr.gpta", CR_GPTA},
449 {"cr.ipsr", CR_IPSR},
450 {"cr.isr", CR_ISR},
451 {"cr.iip", CR_IIP},
452 {"cr.ifa", CR_IFA},
453 {"cr.itir", CR_ITIR},
454 {"cr.iipa", CR_IIPA},
455 {"cr.ifs", CR_IFS},
456 {"cr.iim", CR_IIM},
457 {"cr.iha", CR_IHA},
458 {"cr.iib0", CR_IIB0},
459 {"cr.iib1", CR_IIB1},
460 {"cr.lid", CR_LID},
461 {"cr.ivr", CR_IVR},
462 {"cr.tpr", CR_TPR},
463 {"cr.eoi", CR_EOI},
464 {"cr.irr0", CR_IRR0},
465 {"cr.irr1", CR_IRR0 + 1},
466 {"cr.irr2", CR_IRR0 + 2},
467 {"cr.irr3", CR_IRR3},
468 {"cr.itv", CR_ITV},
469 {"cr.pmv", CR_PMV},
470 {"cr.cmcv", CR_CMCV},
471 {"cr.lrr0", CR_LRR0},
472 {"cr.lrr1", CR_LRR1}
473 };
474
475 #define PSR_MFL 4
476 #define PSR_IC 13
477 #define PSR_DFL 18
478 #define PSR_CPL 32
479
480 static const struct const_desc
481 {
482 const char *name;
483 valueT value;
484 }
485 const_bits[] =
486 {
487 /* PSR constant masks: */
488
489 /* 0: reserved */
490 {"psr.be", ((valueT) 1) << 1},
491 {"psr.up", ((valueT) 1) << 2},
492 {"psr.ac", ((valueT) 1) << 3},
493 {"psr.mfl", ((valueT) 1) << 4},
494 {"psr.mfh", ((valueT) 1) << 5},
495 /* 6-12: reserved */
496 {"psr.ic", ((valueT) 1) << 13},
497 {"psr.i", ((valueT) 1) << 14},
498 {"psr.pk", ((valueT) 1) << 15},
499 /* 16: reserved */
500 {"psr.dt", ((valueT) 1) << 17},
501 {"psr.dfl", ((valueT) 1) << 18},
502 {"psr.dfh", ((valueT) 1) << 19},
503 {"psr.sp", ((valueT) 1) << 20},
504 {"psr.pp", ((valueT) 1) << 21},
505 {"psr.di", ((valueT) 1) << 22},
506 {"psr.si", ((valueT) 1) << 23},
507 {"psr.db", ((valueT) 1) << 24},
508 {"psr.lp", ((valueT) 1) << 25},
509 {"psr.tb", ((valueT) 1) << 26},
510 {"psr.rt", ((valueT) 1) << 27},
511 /* 28-31: reserved */
512 /* 32-33: cpl (current privilege level) */
513 {"psr.is", ((valueT) 1) << 34},
514 {"psr.mc", ((valueT) 1) << 35},
515 {"psr.it", ((valueT) 1) << 36},
516 {"psr.id", ((valueT) 1) << 37},
517 {"psr.da", ((valueT) 1) << 38},
518 {"psr.dd", ((valueT) 1) << 39},
519 {"psr.ss", ((valueT) 1) << 40},
520 /* 41-42: ri (restart instruction) */
521 {"psr.ed", ((valueT) 1) << 43},
522 {"psr.bn", ((valueT) 1) << 44},
523 };
524
525 /* indirect register-sets/memory: */
526
527 static const struct
528 {
529 const char *name;
530 unsigned int regnum;
531 }
532 indirect_reg[] =
533 {
534 { "CPUID", IND_CPUID },
535 { "cpuid", IND_CPUID },
536 { "dbr", IND_DBR },
537 { "dtr", IND_DTR },
538 { "itr", IND_ITR },
539 { "ibr", IND_IBR },
540 { "msr", IND_MSR },
541 { "pkr", IND_PKR },
542 { "pmc", IND_PMC },
543 { "pmd", IND_PMD },
544 { "dahr", IND_DAHR },
545 { "rr", IND_RR },
546 };
547
548 /* Pseudo functions used to indicate relocation types (these functions
549 start with an at sign (@). */
550 static struct
551 {
552 const char *name;
553 enum pseudo_type
554 {
555 PSEUDO_FUNC_NONE,
556 PSEUDO_FUNC_RELOC,
557 PSEUDO_FUNC_CONST,
558 PSEUDO_FUNC_REG,
559 PSEUDO_FUNC_FLOAT
560 }
561 type;
562 union
563 {
564 unsigned long ival;
565 symbolS *sym;
566 }
567 u;
568 }
569 pseudo_func[] =
570 {
571 /* reloc pseudo functions (these must come first!): */
572 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
573 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
574 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
575 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
576 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
577 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
578 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
579 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
580 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
581 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
582 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
583 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
584 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
585 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
586 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
587 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
588 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
589 #ifdef TE_VMS
590 { "slotcount", PSEUDO_FUNC_RELOC, { 0 } },
591 #endif
592
593 /* mbtype4 constants: */
594 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
595 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
596 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
597 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
598 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
599
600 /* fclass constants: */
601 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
602 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
603 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
604 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
605 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
606 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
607 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
608 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
609 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
610
611 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
612
613 /* hint constants: */
614 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
615 { "priority", PSEUDO_FUNC_CONST, { 0x1 } },
616
617 /* tf constants: */
618 { "clz", PSEUDO_FUNC_CONST, { 32 } },
619 { "mpy", PSEUDO_FUNC_CONST, { 33 } },
620 { "datahints", PSEUDO_FUNC_CONST, { 34 } },
621
622 /* unwind-related constants: */
623 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
624 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
625 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
626 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_GNU } },
627 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
628 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
629 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
630
631 /* unwind-related registers: */
632 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
633 };
634
635 /* 41-bit nop opcodes (one per unit): */
636 static const bfd_vma nop[IA64_NUM_UNITS] =
637 {
638 0x0000000000LL, /* NIL => break 0 */
639 0x0008000000LL, /* I-unit nop */
640 0x0008000000LL, /* M-unit nop */
641 0x4000000000LL, /* B-unit nop */
642 0x0008000000LL, /* F-unit nop */
643 0x0000000000LL, /* L-"unit" nop immediate */
644 0x0008000000LL, /* X-unit nop */
645 };
646
647 /* Can't be `const' as it's passed to input routines (which have the
648 habit of setting temporary sentinels. */
649 static char special_section_name[][20] =
650 {
651 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
652 {".IA_64.unwind"}, {".IA_64.unwind_info"},
653 {".init_array"}, {".fini_array"}
654 };
655
656 /* The best template for a particular sequence of up to three
657 instructions: */
658 #define N IA64_NUM_TYPES
659 static unsigned char best_template[N][N][N];
660 #undef N
661
662 /* Resource dependencies currently in effect */
663 static struct rsrc {
664 int depind; /* dependency index */
665 const struct ia64_dependency *dependency; /* actual dependency */
666 unsigned specific:1, /* is this a specific bit/regno? */
667 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
668 int index; /* specific regno/bit within dependency */
669 int note; /* optional qualifying note (0 if none) */
670 #define STATE_NONE 0
671 #define STATE_STOP 1
672 #define STATE_SRLZ 2
673 int insn_srlz; /* current insn serialization state */
674 int data_srlz; /* current data serialization state */
675 int qp_regno; /* qualifying predicate for this usage */
676 char *file; /* what file marked this dependency */
677 unsigned int line; /* what line marked this dependency */
678 struct mem_offset mem_offset; /* optional memory offset hint */
679 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
680 int path; /* corresponding code entry index */
681 } *regdeps = NULL;
682 static int regdepslen = 0;
683 static int regdepstotlen = 0;
684 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
685 static const char *dv_sem[] = { "none", "implied", "impliedf",
686 "data", "instr", "specific", "stop", "other" };
687 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
688
689 /* Current state of PR mutexation */
690 static struct qpmutex {
691 valueT prmask;
692 int path;
693 } *qp_mutexes = NULL; /* QP mutex bitmasks */
694 static int qp_mutexeslen = 0;
695 static int qp_mutexestotlen = 0;
696 static valueT qp_safe_across_calls = 0;
697
698 /* Current state of PR implications */
699 static struct qp_imply {
700 unsigned p1:6;
701 unsigned p2:6;
702 unsigned p2_branched:1;
703 int path;
704 } *qp_implies = NULL;
705 static int qp_implieslen = 0;
706 static int qp_impliestotlen = 0;
707
708 /* Keep track of static GR values so that indirect register usage can
709 sometimes be tracked. */
710 static struct gr {
711 unsigned known:1;
712 int path;
713 valueT value;
714 } gr_values[128] = {
715 {
716 1,
717 #ifdef INT_MAX
718 INT_MAX,
719 #else
720 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
721 #endif
722 0
723 }
724 };
725
726 /* Remember the alignment frag. */
727 static fragS *align_frag;
728
729 /* These are the routines required to output the various types of
730 unwind records. */
731
732 /* A slot_number is a frag address plus the slot index (0-2). We use the
733 frag address here so that if there is a section switch in the middle of
734 a function, then instructions emitted to a different section are not
735 counted. Since there may be more than one frag for a function, this
736 means we also need to keep track of which frag this address belongs to
737 so we can compute inter-frag distances. This also nicely solves the
738 problem with nops emitted for align directives, which can't easily be
739 counted, but can easily be derived from frag sizes. */
740
741 typedef struct unw_rec_list {
742 unwind_record r;
743 unsigned long slot_number;
744 fragS *slot_frag;
745 struct unw_rec_list *next;
746 } unw_rec_list;
747
748 #define SLOT_NUM_NOT_SET (unsigned)-1
749
750 /* Linked list of saved prologue counts. A very poor
751 implementation of a map from label numbers to prologue counts. */
752 typedef struct label_prologue_count
753 {
754 struct label_prologue_count *next;
755 unsigned long label_number;
756 unsigned int prologue_count;
757 } label_prologue_count;
758
759 typedef struct proc_pending
760 {
761 symbolS *sym;
762 struct proc_pending *next;
763 } proc_pending;
764
765 static struct
766 {
767 /* Maintain a list of unwind entries for the current function. */
768 unw_rec_list *list;
769 unw_rec_list *tail;
770
771 /* Any unwind entries that should be attached to the current slot
772 that an insn is being constructed for. */
773 unw_rec_list *current_entry;
774
775 /* These are used to create the unwind table entry for this function. */
776 proc_pending proc_pending;
777 symbolS *info; /* pointer to unwind info */
778 symbolS *personality_routine;
779 segT saved_text_seg;
780 subsegT saved_text_subseg;
781 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
782
783 /* TRUE if processing unwind directives in a prologue region. */
784 unsigned int prologue : 1;
785 unsigned int prologue_mask : 4;
786 unsigned int prologue_gr : 7;
787 unsigned int body : 1;
788 unsigned int insn : 1;
789 unsigned int prologue_count; /* number of .prologues seen so far */
790 /* Prologue counts at previous .label_state directives. */
791 struct label_prologue_count * saved_prologue_counts;
792
793 /* List of split up .save-s. */
794 unw_p_record *pending_saves;
795 } unwind;
796
797 /* The input value is a negated offset from psp, and specifies an address
798 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
799 must add 16 and divide by 4 to get the encoded value. */
800
801 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
802
803 typedef void (*vbyte_func) (int, char *, char *);
804
805 /* Forward declarations: */
806 static void dot_alias (int);
807 static int parse_operand_and_eval (expressionS *, int);
808 static void emit_one_bundle (void);
809 static bfd_reloc_code_real_type ia64_gen_real_reloc_type (struct symbol *,
810 bfd_reloc_code_real_type);
811 static void insn_group_break (int, int, int);
812 static void add_qp_mutex (valueT);
813 static void add_qp_imply (int, int);
814 static void clear_qp_mutex (valueT);
815 static void clear_qp_implies (valueT, valueT);
816 static void print_dependency (const char *, int);
817 static void instruction_serialization (void);
818 static void data_serialization (void);
819 static void output_R3_format (vbyte_func, unw_record_type, unsigned long);
820 static void output_B3_format (vbyte_func, unsigned long, unsigned long);
821 static void output_B4_format (vbyte_func, unw_record_type, unsigned long);
822 static void free_saved_prologue_counts (void);
823
824 /* Determine if application register REGNUM resides only in the integer
825 unit (as opposed to the memory unit). */
826 static int
827 ar_is_only_in_integer_unit (int reg)
828 {
829 reg -= REG_AR;
830 return reg >= 64 && reg <= 111;
831 }
832
833 /* Determine if application register REGNUM resides only in the memory
834 unit (as opposed to the integer unit). */
835 static int
836 ar_is_only_in_memory_unit (int reg)
837 {
838 reg -= REG_AR;
839 return reg >= 0 && reg <= 47;
840 }
841
842 /* Switch to section NAME and create section if necessary. It's
843 rather ugly that we have to manipulate input_line_pointer but I
844 don't see any other way to accomplish the same thing without
845 changing obj-elf.c (which may be the Right Thing, in the end). */
846 static void
847 set_section (char *name)
848 {
849 char *saved_input_line_pointer;
850
851 saved_input_line_pointer = input_line_pointer;
852 input_line_pointer = name;
853 obj_elf_section (0);
854 input_line_pointer = saved_input_line_pointer;
855 }
856
857 /* Map 's' to SHF_IA_64_SHORT. */
858
859 bfd_vma
860 ia64_elf_section_letter (int letter, char **ptr_msg)
861 {
862 if (letter == 's')
863 return SHF_IA_64_SHORT;
864 else if (letter == 'o')
865 return SHF_LINK_ORDER;
866 #ifdef TE_VMS
867 else if (letter == 'O')
868 return SHF_IA_64_VMS_OVERLAID;
869 else if (letter == 'g')
870 return SHF_IA_64_VMS_GLOBAL;
871 #endif
872
873 *ptr_msg = _("bad .section directive: want a,o,s,w,x,M,S,G,T in string");
874 return -1;
875 }
876
877 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
878
879 flagword
880 ia64_elf_section_flags (flagword flags,
881 bfd_vma attr,
882 int type ATTRIBUTE_UNUSED)
883 {
884 if (attr & SHF_IA_64_SHORT)
885 flags |= SEC_SMALL_DATA;
886 return flags;
887 }
888
889 int
890 ia64_elf_section_type (const char *str, size_t len)
891 {
892 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
893
894 if (STREQ (ELF_STRING_ia64_unwind_info))
895 return SHT_PROGBITS;
896
897 if (STREQ (ELF_STRING_ia64_unwind_info_once))
898 return SHT_PROGBITS;
899
900 if (STREQ (ELF_STRING_ia64_unwind))
901 return SHT_IA_64_UNWIND;
902
903 if (STREQ (ELF_STRING_ia64_unwind_once))
904 return SHT_IA_64_UNWIND;
905
906 if (STREQ ("unwind"))
907 return SHT_IA_64_UNWIND;
908
909 return -1;
910 #undef STREQ
911 }
912
913 static unsigned int
914 set_regstack (unsigned int ins,
915 unsigned int locs,
916 unsigned int outs,
917 unsigned int rots)
918 {
919 /* Size of frame. */
920 unsigned int sof;
921
922 sof = ins + locs + outs;
923 if (sof > 96)
924 {
925 as_bad (_("Size of frame exceeds maximum of 96 registers"));
926 return 0;
927 }
928 if (rots > sof)
929 {
930 as_warn (_("Size of rotating registers exceeds frame size"));
931 return 0;
932 }
933 md.in.base = REG_GR + 32;
934 md.loc.base = md.in.base + ins;
935 md.out.base = md.loc.base + locs;
936
937 md.in.num_regs = ins;
938 md.loc.num_regs = locs;
939 md.out.num_regs = outs;
940 md.rot.num_regs = rots;
941 return sof;
942 }
943
944 void
945 ia64_flush_insns (void)
946 {
947 struct label_fix *lfix;
948 segT saved_seg;
949 subsegT saved_subseg;
950 unw_rec_list *ptr;
951 bfd_boolean mark;
952
953 if (!md.last_text_seg)
954 return;
955
956 saved_seg = now_seg;
957 saved_subseg = now_subseg;
958
959 subseg_set (md.last_text_seg, 0);
960
961 while (md.num_slots_in_use > 0)
962 emit_one_bundle (); /* force out queued instructions */
963
964 /* In case there are labels following the last instruction, resolve
965 those now. */
966 mark = FALSE;
967 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
968 {
969 symbol_set_value_now (lfix->sym);
970 mark |= lfix->dw2_mark_labels;
971 }
972 if (mark)
973 {
974 dwarf2_where (&CURR_SLOT.debug_line);
975 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
976 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
977 dwarf2_consume_line_info ();
978 }
979 CURR_SLOT.label_fixups = 0;
980
981 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
982 symbol_set_value_now (lfix->sym);
983 CURR_SLOT.tag_fixups = 0;
984
985 /* In case there are unwind directives following the last instruction,
986 resolve those now. We only handle prologue, body, and endp directives
987 here. Give an error for others. */
988 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
989 {
990 switch (ptr->r.type)
991 {
992 case prologue:
993 case prologue_gr:
994 case body:
995 case endp:
996 ptr->slot_number = (unsigned long) frag_more (0);
997 ptr->slot_frag = frag_now;
998 break;
999
1000 /* Allow any record which doesn't have a "t" field (i.e.,
1001 doesn't relate to a particular instruction). */
1002 case unwabi:
1003 case br_gr:
1004 case copy_state:
1005 case fr_mem:
1006 case frgr_mem:
1007 case gr_gr:
1008 case gr_mem:
1009 case label_state:
1010 case rp_br:
1011 case spill_base:
1012 case spill_mask:
1013 /* nothing */
1014 break;
1015
1016 default:
1017 as_bad (_("Unwind directive not followed by an instruction."));
1018 break;
1019 }
1020 }
1021 unwind.current_entry = NULL;
1022
1023 subseg_set (saved_seg, saved_subseg);
1024
1025 if (md.qp.X_op == O_register)
1026 as_bad (_("qualifying predicate not followed by instruction"));
1027 }
1028
1029 static void
1030 ia64_do_align (int nbytes)
1031 {
1032 char *saved_input_line_pointer = input_line_pointer;
1033
1034 input_line_pointer = "";
1035 s_align_bytes (nbytes);
1036 input_line_pointer = saved_input_line_pointer;
1037 }
1038
1039 void
1040 ia64_cons_align (int nbytes)
1041 {
1042 if (md.auto_align)
1043 {
1044 char *saved_input_line_pointer = input_line_pointer;
1045 input_line_pointer = "";
1046 s_align_bytes (nbytes);
1047 input_line_pointer = saved_input_line_pointer;
1048 }
1049 }
1050
1051 #ifdef TE_VMS
1052
1053 /* .vms_common section, symbol, size, alignment */
1054
1055 static void
1056 obj_elf_vms_common (int ignore ATTRIBUTE_UNUSED)
1057 {
1058 char *sec_name;
1059 char *sym_name;
1060 char c;
1061 offsetT size;
1062 offsetT cur_size;
1063 offsetT temp;
1064 symbolS *symbolP;
1065 segT current_seg = now_seg;
1066 subsegT current_subseg = now_subseg;
1067 offsetT log_align;
1068
1069 /* Section name. */
1070 sec_name = obj_elf_section_name ();
1071 if (sec_name == NULL)
1072 return;
1073
1074 /* Symbol name. */
1075 SKIP_WHITESPACE ();
1076 if (*input_line_pointer == ',')
1077 {
1078 input_line_pointer++;
1079 SKIP_WHITESPACE ();
1080 }
1081 else
1082 {
1083 as_bad (_("expected ',' after section name"));
1084 ignore_rest_of_line ();
1085 return;
1086 }
1087
1088 sym_name = input_line_pointer;
1089 c = get_symbol_end ();
1090
1091 if (input_line_pointer == sym_name)
1092 {
1093 *input_line_pointer = c;
1094 as_bad (_("expected symbol name"));
1095 ignore_rest_of_line ();
1096 return;
1097 }
1098
1099 symbolP = symbol_find_or_make (sym_name);
1100 *input_line_pointer = c;
1101
1102 if ((S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP))
1103 && !S_IS_COMMON (symbolP))
1104 {
1105 as_bad (_("Ignoring attempt to re-define symbol"));
1106 ignore_rest_of_line ();
1107 return;
1108 }
1109
1110 /* Symbol size. */
1111 SKIP_WHITESPACE ();
1112 if (*input_line_pointer == ',')
1113 {
1114 input_line_pointer++;
1115 SKIP_WHITESPACE ();
1116 }
1117 else
1118 {
1119 as_bad (_("expected ',' after symbol name"));
1120 ignore_rest_of_line ();
1121 return;
1122 }
1123
1124 temp = get_absolute_expression ();
1125 size = temp;
1126 size &= ((offsetT) 2 << (stdoutput->arch_info->bits_per_address - 1)) - 1;
1127 if (temp != size)
1128 {
1129 as_warn (_("size (%ld) out of range, ignored"), (long) temp);
1130 ignore_rest_of_line ();
1131 return;
1132 }
1133
1134 /* Alignment. */
1135 SKIP_WHITESPACE ();
1136 if (*input_line_pointer == ',')
1137 {
1138 input_line_pointer++;
1139 SKIP_WHITESPACE ();
1140 }
1141 else
1142 {
1143 as_bad (_("expected ',' after symbol size"));
1144 ignore_rest_of_line ();
1145 return;
1146 }
1147
1148 log_align = get_absolute_expression ();
1149
1150 demand_empty_rest_of_line ();
1151
1152 obj_elf_change_section
1153 (sec_name, SHT_NOBITS,
1154 SHF_ALLOC | SHF_WRITE | SHF_IA_64_VMS_OVERLAID | SHF_IA_64_VMS_GLOBAL,
1155 0, NULL, 1, 0);
1156
1157 S_SET_VALUE (symbolP, 0);
1158 S_SET_SIZE (symbolP, size);
1159 S_SET_EXTERNAL (symbolP);
1160 S_SET_SEGMENT (symbolP, now_seg);
1161
1162 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1163
1164 record_alignment (now_seg, log_align);
1165
1166 cur_size = bfd_section_size (stdoutput, now_seg);
1167 if ((int) size > cur_size)
1168 {
1169 char *pfrag
1170 = frag_var (rs_fill, 1, 1, (relax_substateT)0, NULL,
1171 (valueT)size - (valueT)cur_size, NULL);
1172 *pfrag = 0;
1173 bfd_section_size (stdoutput, now_seg) = size;
1174 }
1175
1176 /* Switch back to current segment. */
1177 subseg_set (current_seg, current_subseg);
1178
1179 #ifdef md_elf_section_change_hook
1180 md_elf_section_change_hook ();
1181 #endif
1182 }
1183
1184 #endif /* TE_VMS */
1185
1186 /* Output COUNT bytes to a memory location. */
1187 static char *vbyte_mem_ptr = NULL;
1188
1189 static void
1190 output_vbyte_mem (int count, char *ptr, char *comment ATTRIBUTE_UNUSED)
1191 {
1192 int x;
1193 if (vbyte_mem_ptr == NULL)
1194 abort ();
1195
1196 if (count == 0)
1197 return;
1198 for (x = 0; x < count; x++)
1199 *(vbyte_mem_ptr++) = ptr[x];
1200 }
1201
1202 /* Count the number of bytes required for records. */
1203 static int vbyte_count = 0;
1204 static void
1205 count_output (int count,
1206 char *ptr ATTRIBUTE_UNUSED,
1207 char *comment ATTRIBUTE_UNUSED)
1208 {
1209 vbyte_count += count;
1210 }
1211
1212 static void
1213 output_R1_format (vbyte_func f, unw_record_type rtype, int rlen)
1214 {
1215 int r = 0;
1216 char byte;
1217 if (rlen > 0x1f)
1218 {
1219 output_R3_format (f, rtype, rlen);
1220 return;
1221 }
1222
1223 if (rtype == body)
1224 r = 1;
1225 else if (rtype != prologue)
1226 as_bad (_("record type is not valid"));
1227
1228 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1229 (*f) (1, &byte, NULL);
1230 }
1231
1232 static void
1233 output_R2_format (vbyte_func f, int mask, int grsave, unsigned long rlen)
1234 {
1235 char bytes[20];
1236 int count = 2;
1237 mask = (mask & 0x0f);
1238 grsave = (grsave & 0x7f);
1239
1240 bytes[0] = (UNW_R2 | (mask >> 1));
1241 bytes[1] = (((mask & 0x01) << 7) | grsave);
1242 count += output_leb128 (bytes + 2, rlen, 0);
1243 (*f) (count, bytes, NULL);
1244 }
1245
1246 static void
1247 output_R3_format (vbyte_func f, unw_record_type rtype, unsigned long rlen)
1248 {
1249 int r = 0, count;
1250 char bytes[20];
1251 if (rlen <= 0x1f)
1252 {
1253 output_R1_format (f, rtype, rlen);
1254 return;
1255 }
1256
1257 if (rtype == body)
1258 r = 1;
1259 else if (rtype != prologue)
1260 as_bad (_("record type is not valid"));
1261 bytes[0] = (UNW_R3 | r);
1262 count = output_leb128 (bytes + 1, rlen, 0);
1263 (*f) (count + 1, bytes, NULL);
1264 }
1265
1266 static void
1267 output_P1_format (vbyte_func f, int brmask)
1268 {
1269 char byte;
1270 byte = UNW_P1 | (brmask & 0x1f);
1271 (*f) (1, &byte, NULL);
1272 }
1273
1274 static void
1275 output_P2_format (vbyte_func f, int brmask, int gr)
1276 {
1277 char bytes[2];
1278 brmask = (brmask & 0x1f);
1279 bytes[0] = UNW_P2 | (brmask >> 1);
1280 bytes[1] = (((brmask & 1) << 7) | gr);
1281 (*f) (2, bytes, NULL);
1282 }
1283
1284 static void
1285 output_P3_format (vbyte_func f, unw_record_type rtype, int reg)
1286 {
1287 char bytes[2];
1288 int r = 0;
1289 reg = (reg & 0x7f);
1290 switch (rtype)
1291 {
1292 case psp_gr:
1293 r = 0;
1294 break;
1295 case rp_gr:
1296 r = 1;
1297 break;
1298 case pfs_gr:
1299 r = 2;
1300 break;
1301 case preds_gr:
1302 r = 3;
1303 break;
1304 case unat_gr:
1305 r = 4;
1306 break;
1307 case lc_gr:
1308 r = 5;
1309 break;
1310 case rp_br:
1311 r = 6;
1312 break;
1313 case rnat_gr:
1314 r = 7;
1315 break;
1316 case bsp_gr:
1317 r = 8;
1318 break;
1319 case bspstore_gr:
1320 r = 9;
1321 break;
1322 case fpsr_gr:
1323 r = 10;
1324 break;
1325 case priunat_gr:
1326 r = 11;
1327 break;
1328 default:
1329 as_bad (_("Invalid record type for P3 format."));
1330 }
1331 bytes[0] = (UNW_P3 | (r >> 1));
1332 bytes[1] = (((r & 1) << 7) | reg);
1333 (*f) (2, bytes, NULL);
1334 }
1335
1336 static void
1337 output_P4_format (vbyte_func f, unsigned char *imask, unsigned long imask_size)
1338 {
1339 imask[0] = UNW_P4;
1340 (*f) (imask_size, (char *) imask, NULL);
1341 }
1342
1343 static void
1344 output_P5_format (vbyte_func f, int grmask, unsigned long frmask)
1345 {
1346 char bytes[4];
1347 grmask = (grmask & 0x0f);
1348
1349 bytes[0] = UNW_P5;
1350 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1351 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1352 bytes[3] = (frmask & 0x000000ff);
1353 (*f) (4, bytes, NULL);
1354 }
1355
1356 static void
1357 output_P6_format (vbyte_func f, unw_record_type rtype, int rmask)
1358 {
1359 char byte;
1360 int r = 0;
1361
1362 if (rtype == gr_mem)
1363 r = 1;
1364 else if (rtype != fr_mem)
1365 as_bad (_("Invalid record type for format P6"));
1366 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1367 (*f) (1, &byte, NULL);
1368 }
1369
1370 static void
1371 output_P7_format (vbyte_func f,
1372 unw_record_type rtype,
1373 unsigned long w1,
1374 unsigned long w2)
1375 {
1376 char bytes[20];
1377 int count = 1;
1378 int r = 0;
1379 count += output_leb128 (bytes + 1, w1, 0);
1380 switch (rtype)
1381 {
1382 case mem_stack_f:
1383 r = 0;
1384 count += output_leb128 (bytes + count, w2 >> 4, 0);
1385 break;
1386 case mem_stack_v:
1387 r = 1;
1388 break;
1389 case spill_base:
1390 r = 2;
1391 break;
1392 case psp_sprel:
1393 r = 3;
1394 break;
1395 case rp_when:
1396 r = 4;
1397 break;
1398 case rp_psprel:
1399 r = 5;
1400 break;
1401 case pfs_when:
1402 r = 6;
1403 break;
1404 case pfs_psprel:
1405 r = 7;
1406 break;
1407 case preds_when:
1408 r = 8;
1409 break;
1410 case preds_psprel:
1411 r = 9;
1412 break;
1413 case lc_when:
1414 r = 10;
1415 break;
1416 case lc_psprel:
1417 r = 11;
1418 break;
1419 case unat_when:
1420 r = 12;
1421 break;
1422 case unat_psprel:
1423 r = 13;
1424 break;
1425 case fpsr_when:
1426 r = 14;
1427 break;
1428 case fpsr_psprel:
1429 r = 15;
1430 break;
1431 default:
1432 break;
1433 }
1434 bytes[0] = (UNW_P7 | r);
1435 (*f) (count, bytes, NULL);
1436 }
1437
1438 static void
1439 output_P8_format (vbyte_func f, unw_record_type rtype, unsigned long t)
1440 {
1441 char bytes[20];
1442 int r = 0;
1443 int count = 2;
1444 bytes[0] = UNW_P8;
1445 switch (rtype)
1446 {
1447 case rp_sprel:
1448 r = 1;
1449 break;
1450 case pfs_sprel:
1451 r = 2;
1452 break;
1453 case preds_sprel:
1454 r = 3;
1455 break;
1456 case lc_sprel:
1457 r = 4;
1458 break;
1459 case unat_sprel:
1460 r = 5;
1461 break;
1462 case fpsr_sprel:
1463 r = 6;
1464 break;
1465 case bsp_when:
1466 r = 7;
1467 break;
1468 case bsp_psprel:
1469 r = 8;
1470 break;
1471 case bsp_sprel:
1472 r = 9;
1473 break;
1474 case bspstore_when:
1475 r = 10;
1476 break;
1477 case bspstore_psprel:
1478 r = 11;
1479 break;
1480 case bspstore_sprel:
1481 r = 12;
1482 break;
1483 case rnat_when:
1484 r = 13;
1485 break;
1486 case rnat_psprel:
1487 r = 14;
1488 break;
1489 case rnat_sprel:
1490 r = 15;
1491 break;
1492 case priunat_when_gr:
1493 r = 16;
1494 break;
1495 case priunat_psprel:
1496 r = 17;
1497 break;
1498 case priunat_sprel:
1499 r = 18;
1500 break;
1501 case priunat_when_mem:
1502 r = 19;
1503 break;
1504 default:
1505 break;
1506 }
1507 bytes[1] = r;
1508 count += output_leb128 (bytes + 2, t, 0);
1509 (*f) (count, bytes, NULL);
1510 }
1511
1512 static void
1513 output_P9_format (vbyte_func f, int grmask, int gr)
1514 {
1515 char bytes[3];
1516 bytes[0] = UNW_P9;
1517 bytes[1] = (grmask & 0x0f);
1518 bytes[2] = (gr & 0x7f);
1519 (*f) (3, bytes, NULL);
1520 }
1521
1522 static void
1523 output_P10_format (vbyte_func f, int abi, int context)
1524 {
1525 char bytes[3];
1526 bytes[0] = UNW_P10;
1527 bytes[1] = (abi & 0xff);
1528 bytes[2] = (context & 0xff);
1529 (*f) (3, bytes, NULL);
1530 }
1531
1532 static void
1533 output_B1_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1534 {
1535 char byte;
1536 int r = 0;
1537 if (label > 0x1f)
1538 {
1539 output_B4_format (f, rtype, label);
1540 return;
1541 }
1542 if (rtype == copy_state)
1543 r = 1;
1544 else if (rtype != label_state)
1545 as_bad (_("Invalid record type for format B1"));
1546
1547 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1548 (*f) (1, &byte, NULL);
1549 }
1550
1551 static void
1552 output_B2_format (vbyte_func f, unsigned long ecount, unsigned long t)
1553 {
1554 char bytes[20];
1555 int count = 1;
1556 if (ecount > 0x1f)
1557 {
1558 output_B3_format (f, ecount, t);
1559 return;
1560 }
1561 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1562 count += output_leb128 (bytes + 1, t, 0);
1563 (*f) (count, bytes, NULL);
1564 }
1565
1566 static void
1567 output_B3_format (vbyte_func f, unsigned long ecount, unsigned long t)
1568 {
1569 char bytes[20];
1570 int count = 1;
1571 if (ecount <= 0x1f)
1572 {
1573 output_B2_format (f, ecount, t);
1574 return;
1575 }
1576 bytes[0] = UNW_B3;
1577 count += output_leb128 (bytes + 1, t, 0);
1578 count += output_leb128 (bytes + count, ecount, 0);
1579 (*f) (count, bytes, NULL);
1580 }
1581
1582 static void
1583 output_B4_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1584 {
1585 char bytes[20];
1586 int r = 0;
1587 int count = 1;
1588 if (label <= 0x1f)
1589 {
1590 output_B1_format (f, rtype, label);
1591 return;
1592 }
1593
1594 if (rtype == copy_state)
1595 r = 1;
1596 else if (rtype != label_state)
1597 as_bad (_("Invalid record type for format B1"));
1598
1599 bytes[0] = (UNW_B4 | (r << 3));
1600 count += output_leb128 (bytes + 1, label, 0);
1601 (*f) (count, bytes, NULL);
1602 }
1603
1604 static char
1605 format_ab_reg (int ab, int reg)
1606 {
1607 int ret;
1608 ab = (ab & 3);
1609 reg = (reg & 0x1f);
1610 ret = (ab << 5) | reg;
1611 return ret;
1612 }
1613
1614 static void
1615 output_X1_format (vbyte_func f,
1616 unw_record_type rtype,
1617 int ab,
1618 int reg,
1619 unsigned long t,
1620 unsigned long w1)
1621 {
1622 char bytes[20];
1623 int r = 0;
1624 int count = 2;
1625 bytes[0] = UNW_X1;
1626
1627 if (rtype == spill_sprel)
1628 r = 1;
1629 else if (rtype != spill_psprel)
1630 as_bad (_("Invalid record type for format X1"));
1631 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1632 count += output_leb128 (bytes + 2, t, 0);
1633 count += output_leb128 (bytes + count, w1, 0);
1634 (*f) (count, bytes, NULL);
1635 }
1636
1637 static void
1638 output_X2_format (vbyte_func f,
1639 int ab,
1640 int reg,
1641 int x,
1642 int y,
1643 int treg,
1644 unsigned long t)
1645 {
1646 char bytes[20];
1647 int count = 3;
1648 bytes[0] = UNW_X2;
1649 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1650 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1651 count += output_leb128 (bytes + 3, t, 0);
1652 (*f) (count, bytes, NULL);
1653 }
1654
1655 static void
1656 output_X3_format (vbyte_func f,
1657 unw_record_type rtype,
1658 int qp,
1659 int ab,
1660 int reg,
1661 unsigned long t,
1662 unsigned long w1)
1663 {
1664 char bytes[20];
1665 int r = 0;
1666 int count = 3;
1667 bytes[0] = UNW_X3;
1668
1669 if (rtype == spill_sprel_p)
1670 r = 1;
1671 else if (rtype != spill_psprel_p)
1672 as_bad (_("Invalid record type for format X3"));
1673 bytes[1] = ((r << 7) | (qp & 0x3f));
1674 bytes[2] = format_ab_reg (ab, reg);
1675 count += output_leb128 (bytes + 3, t, 0);
1676 count += output_leb128 (bytes + count, w1, 0);
1677 (*f) (count, bytes, NULL);
1678 }
1679
1680 static void
1681 output_X4_format (vbyte_func f,
1682 int qp,
1683 int ab,
1684 int reg,
1685 int x,
1686 int y,
1687 int treg,
1688 unsigned long t)
1689 {
1690 char bytes[20];
1691 int count = 4;
1692 bytes[0] = UNW_X4;
1693 bytes[1] = (qp & 0x3f);
1694 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1695 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1696 count += output_leb128 (bytes + 4, t, 0);
1697 (*f) (count, bytes, NULL);
1698 }
1699
1700 /* This function checks whether there are any outstanding .save-s and
1701 discards them if so. */
1702
1703 static void
1704 check_pending_save (void)
1705 {
1706 if (unwind.pending_saves)
1707 {
1708 unw_rec_list *cur, *prev;
1709
1710 as_warn (_("Previous .save incomplete"));
1711 for (cur = unwind.list, prev = NULL; cur; )
1712 if (&cur->r.record.p == unwind.pending_saves)
1713 {
1714 if (prev)
1715 prev->next = cur->next;
1716 else
1717 unwind.list = cur->next;
1718 if (cur == unwind.tail)
1719 unwind.tail = prev;
1720 if (cur == unwind.current_entry)
1721 unwind.current_entry = cur->next;
1722 /* Don't free the first discarded record, it's being used as
1723 terminator for (currently) br_gr and gr_gr processing, and
1724 also prevents leaving a dangling pointer to it in its
1725 predecessor. */
1726 cur->r.record.p.grmask = 0;
1727 cur->r.record.p.brmask = 0;
1728 cur->r.record.p.frmask = 0;
1729 prev = cur->r.record.p.next;
1730 cur->r.record.p.next = NULL;
1731 cur = prev;
1732 break;
1733 }
1734 else
1735 {
1736 prev = cur;
1737 cur = cur->next;
1738 }
1739 while (cur)
1740 {
1741 prev = cur;
1742 cur = cur->r.record.p.next;
1743 free (prev);
1744 }
1745 unwind.pending_saves = NULL;
1746 }
1747 }
1748
1749 /* This function allocates a record list structure, and initializes fields. */
1750
1751 static unw_rec_list *
1752 alloc_record (unw_record_type t)
1753 {
1754 unw_rec_list *ptr;
1755 ptr = xmalloc (sizeof (*ptr));
1756 memset (ptr, 0, sizeof (*ptr));
1757 ptr->slot_number = SLOT_NUM_NOT_SET;
1758 ptr->r.type = t;
1759 return ptr;
1760 }
1761
1762 /* Dummy unwind record used for calculating the length of the last prologue or
1763 body region. */
1764
1765 static unw_rec_list *
1766 output_endp (void)
1767 {
1768 unw_rec_list *ptr = alloc_record (endp);
1769 return ptr;
1770 }
1771
1772 static unw_rec_list *
1773 output_prologue (void)
1774 {
1775 unw_rec_list *ptr = alloc_record (prologue);
1776 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1777 return ptr;
1778 }
1779
1780 static unw_rec_list *
1781 output_prologue_gr (unsigned int saved_mask, unsigned int reg)
1782 {
1783 unw_rec_list *ptr = alloc_record (prologue_gr);
1784 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1785 ptr->r.record.r.grmask = saved_mask;
1786 ptr->r.record.r.grsave = reg;
1787 return ptr;
1788 }
1789
1790 static unw_rec_list *
1791 output_body (void)
1792 {
1793 unw_rec_list *ptr = alloc_record (body);
1794 return ptr;
1795 }
1796
1797 static unw_rec_list *
1798 output_mem_stack_f (unsigned int size)
1799 {
1800 unw_rec_list *ptr = alloc_record (mem_stack_f);
1801 ptr->r.record.p.size = size;
1802 return ptr;
1803 }
1804
1805 static unw_rec_list *
1806 output_mem_stack_v (void)
1807 {
1808 unw_rec_list *ptr = alloc_record (mem_stack_v);
1809 return ptr;
1810 }
1811
1812 static unw_rec_list *
1813 output_psp_gr (unsigned int gr)
1814 {
1815 unw_rec_list *ptr = alloc_record (psp_gr);
1816 ptr->r.record.p.r.gr = gr;
1817 return ptr;
1818 }
1819
1820 static unw_rec_list *
1821 output_psp_sprel (unsigned int offset)
1822 {
1823 unw_rec_list *ptr = alloc_record (psp_sprel);
1824 ptr->r.record.p.off.sp = offset / 4;
1825 return ptr;
1826 }
1827
1828 static unw_rec_list *
1829 output_rp_when (void)
1830 {
1831 unw_rec_list *ptr = alloc_record (rp_when);
1832 return ptr;
1833 }
1834
1835 static unw_rec_list *
1836 output_rp_gr (unsigned int gr)
1837 {
1838 unw_rec_list *ptr = alloc_record (rp_gr);
1839 ptr->r.record.p.r.gr = gr;
1840 return ptr;
1841 }
1842
1843 static unw_rec_list *
1844 output_rp_br (unsigned int br)
1845 {
1846 unw_rec_list *ptr = alloc_record (rp_br);
1847 ptr->r.record.p.r.br = br;
1848 return ptr;
1849 }
1850
1851 static unw_rec_list *
1852 output_rp_psprel (unsigned int offset)
1853 {
1854 unw_rec_list *ptr = alloc_record (rp_psprel);
1855 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_rp_sprel (unsigned int offset)
1861 {
1862 unw_rec_list *ptr = alloc_record (rp_sprel);
1863 ptr->r.record.p.off.sp = offset / 4;
1864 return ptr;
1865 }
1866
1867 static unw_rec_list *
1868 output_pfs_when (void)
1869 {
1870 unw_rec_list *ptr = alloc_record (pfs_when);
1871 return ptr;
1872 }
1873
1874 static unw_rec_list *
1875 output_pfs_gr (unsigned int gr)
1876 {
1877 unw_rec_list *ptr = alloc_record (pfs_gr);
1878 ptr->r.record.p.r.gr = gr;
1879 return ptr;
1880 }
1881
1882 static unw_rec_list *
1883 output_pfs_psprel (unsigned int offset)
1884 {
1885 unw_rec_list *ptr = alloc_record (pfs_psprel);
1886 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1887 return ptr;
1888 }
1889
1890 static unw_rec_list *
1891 output_pfs_sprel (unsigned int offset)
1892 {
1893 unw_rec_list *ptr = alloc_record (pfs_sprel);
1894 ptr->r.record.p.off.sp = offset / 4;
1895 return ptr;
1896 }
1897
1898 static unw_rec_list *
1899 output_preds_when (void)
1900 {
1901 unw_rec_list *ptr = alloc_record (preds_when);
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_preds_gr (unsigned int gr)
1907 {
1908 unw_rec_list *ptr = alloc_record (preds_gr);
1909 ptr->r.record.p.r.gr = gr;
1910 return ptr;
1911 }
1912
1913 static unw_rec_list *
1914 output_preds_psprel (unsigned int offset)
1915 {
1916 unw_rec_list *ptr = alloc_record (preds_psprel);
1917 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1918 return ptr;
1919 }
1920
1921 static unw_rec_list *
1922 output_preds_sprel (unsigned int offset)
1923 {
1924 unw_rec_list *ptr = alloc_record (preds_sprel);
1925 ptr->r.record.p.off.sp = offset / 4;
1926 return ptr;
1927 }
1928
1929 static unw_rec_list *
1930 output_fr_mem (unsigned int mask)
1931 {
1932 unw_rec_list *ptr = alloc_record (fr_mem);
1933 unw_rec_list *cur = ptr;
1934
1935 ptr->r.record.p.frmask = mask;
1936 unwind.pending_saves = &ptr->r.record.p;
1937 for (;;)
1938 {
1939 unw_rec_list *prev = cur;
1940
1941 /* Clear least significant set bit. */
1942 mask &= ~(mask & (~mask + 1));
1943 if (!mask)
1944 return ptr;
1945 cur = alloc_record (fr_mem);
1946 cur->r.record.p.frmask = mask;
1947 /* Retain only least significant bit. */
1948 prev->r.record.p.frmask ^= mask;
1949 prev->r.record.p.next = cur;
1950 }
1951 }
1952
1953 static unw_rec_list *
1954 output_frgr_mem (unsigned int gr_mask, unsigned int fr_mask)
1955 {
1956 unw_rec_list *ptr = alloc_record (frgr_mem);
1957 unw_rec_list *cur = ptr;
1958
1959 unwind.pending_saves = &cur->r.record.p;
1960 cur->r.record.p.frmask = fr_mask;
1961 while (fr_mask)
1962 {
1963 unw_rec_list *prev = cur;
1964
1965 /* Clear least significant set bit. */
1966 fr_mask &= ~(fr_mask & (~fr_mask + 1));
1967 if (!gr_mask && !fr_mask)
1968 return ptr;
1969 cur = alloc_record (frgr_mem);
1970 cur->r.record.p.frmask = fr_mask;
1971 /* Retain only least significant bit. */
1972 prev->r.record.p.frmask ^= fr_mask;
1973 prev->r.record.p.next = cur;
1974 }
1975 cur->r.record.p.grmask = gr_mask;
1976 for (;;)
1977 {
1978 unw_rec_list *prev = cur;
1979
1980 /* Clear least significant set bit. */
1981 gr_mask &= ~(gr_mask & (~gr_mask + 1));
1982 if (!gr_mask)
1983 return ptr;
1984 cur = alloc_record (frgr_mem);
1985 cur->r.record.p.grmask = gr_mask;
1986 /* Retain only least significant bit. */
1987 prev->r.record.p.grmask ^= gr_mask;
1988 prev->r.record.p.next = cur;
1989 }
1990 }
1991
1992 static unw_rec_list *
1993 output_gr_gr (unsigned int mask, unsigned int reg)
1994 {
1995 unw_rec_list *ptr = alloc_record (gr_gr);
1996 unw_rec_list *cur = ptr;
1997
1998 ptr->r.record.p.grmask = mask;
1999 ptr->r.record.p.r.gr = reg;
2000 unwind.pending_saves = &ptr->r.record.p;
2001 for (;;)
2002 {
2003 unw_rec_list *prev = cur;
2004
2005 /* Clear least significant set bit. */
2006 mask &= ~(mask & (~mask + 1));
2007 if (!mask)
2008 return ptr;
2009 cur = alloc_record (gr_gr);
2010 cur->r.record.p.grmask = mask;
2011 /* Indicate this record shouldn't be output. */
2012 cur->r.record.p.r.gr = REG_NUM;
2013 /* Retain only least significant bit. */
2014 prev->r.record.p.grmask ^= mask;
2015 prev->r.record.p.next = cur;
2016 }
2017 }
2018
2019 static unw_rec_list *
2020 output_gr_mem (unsigned int mask)
2021 {
2022 unw_rec_list *ptr = alloc_record (gr_mem);
2023 unw_rec_list *cur = ptr;
2024
2025 ptr->r.record.p.grmask = mask;
2026 unwind.pending_saves = &ptr->r.record.p;
2027 for (;;)
2028 {
2029 unw_rec_list *prev = cur;
2030
2031 /* Clear least significant set bit. */
2032 mask &= ~(mask & (~mask + 1));
2033 if (!mask)
2034 return ptr;
2035 cur = alloc_record (gr_mem);
2036 cur->r.record.p.grmask = mask;
2037 /* Retain only least significant bit. */
2038 prev->r.record.p.grmask ^= mask;
2039 prev->r.record.p.next = cur;
2040 }
2041 }
2042
2043 static unw_rec_list *
2044 output_br_mem (unsigned int mask)
2045 {
2046 unw_rec_list *ptr = alloc_record (br_mem);
2047 unw_rec_list *cur = ptr;
2048
2049 ptr->r.record.p.brmask = mask;
2050 unwind.pending_saves = &ptr->r.record.p;
2051 for (;;)
2052 {
2053 unw_rec_list *prev = cur;
2054
2055 /* Clear least significant set bit. */
2056 mask &= ~(mask & (~mask + 1));
2057 if (!mask)
2058 return ptr;
2059 cur = alloc_record (br_mem);
2060 cur->r.record.p.brmask = mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.brmask ^= mask;
2063 prev->r.record.p.next = cur;
2064 }
2065 }
2066
2067 static unw_rec_list *
2068 output_br_gr (unsigned int mask, unsigned int reg)
2069 {
2070 unw_rec_list *ptr = alloc_record (br_gr);
2071 unw_rec_list *cur = ptr;
2072
2073 ptr->r.record.p.brmask = mask;
2074 ptr->r.record.p.r.gr = reg;
2075 unwind.pending_saves = &ptr->r.record.p;
2076 for (;;)
2077 {
2078 unw_rec_list *prev = cur;
2079
2080 /* Clear least significant set bit. */
2081 mask &= ~(mask & (~mask + 1));
2082 if (!mask)
2083 return ptr;
2084 cur = alloc_record (br_gr);
2085 cur->r.record.p.brmask = mask;
2086 /* Indicate this record shouldn't be output. */
2087 cur->r.record.p.r.gr = REG_NUM;
2088 /* Retain only least significant bit. */
2089 prev->r.record.p.brmask ^= mask;
2090 prev->r.record.p.next = cur;
2091 }
2092 }
2093
2094 static unw_rec_list *
2095 output_spill_base (unsigned int offset)
2096 {
2097 unw_rec_list *ptr = alloc_record (spill_base);
2098 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2099 return ptr;
2100 }
2101
2102 static unw_rec_list *
2103 output_unat_when (void)
2104 {
2105 unw_rec_list *ptr = alloc_record (unat_when);
2106 return ptr;
2107 }
2108
2109 static unw_rec_list *
2110 output_unat_gr (unsigned int gr)
2111 {
2112 unw_rec_list *ptr = alloc_record (unat_gr);
2113 ptr->r.record.p.r.gr = gr;
2114 return ptr;
2115 }
2116
2117 static unw_rec_list *
2118 output_unat_psprel (unsigned int offset)
2119 {
2120 unw_rec_list *ptr = alloc_record (unat_psprel);
2121 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2122 return ptr;
2123 }
2124
2125 static unw_rec_list *
2126 output_unat_sprel (unsigned int offset)
2127 {
2128 unw_rec_list *ptr = alloc_record (unat_sprel);
2129 ptr->r.record.p.off.sp = offset / 4;
2130 return ptr;
2131 }
2132
2133 static unw_rec_list *
2134 output_lc_when (void)
2135 {
2136 unw_rec_list *ptr = alloc_record (lc_when);
2137 return ptr;
2138 }
2139
2140 static unw_rec_list *
2141 output_lc_gr (unsigned int gr)
2142 {
2143 unw_rec_list *ptr = alloc_record (lc_gr);
2144 ptr->r.record.p.r.gr = gr;
2145 return ptr;
2146 }
2147
2148 static unw_rec_list *
2149 output_lc_psprel (unsigned int offset)
2150 {
2151 unw_rec_list *ptr = alloc_record (lc_psprel);
2152 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2153 return ptr;
2154 }
2155
2156 static unw_rec_list *
2157 output_lc_sprel (unsigned int offset)
2158 {
2159 unw_rec_list *ptr = alloc_record (lc_sprel);
2160 ptr->r.record.p.off.sp = offset / 4;
2161 return ptr;
2162 }
2163
2164 static unw_rec_list *
2165 output_fpsr_when (void)
2166 {
2167 unw_rec_list *ptr = alloc_record (fpsr_when);
2168 return ptr;
2169 }
2170
2171 static unw_rec_list *
2172 output_fpsr_gr (unsigned int gr)
2173 {
2174 unw_rec_list *ptr = alloc_record (fpsr_gr);
2175 ptr->r.record.p.r.gr = gr;
2176 return ptr;
2177 }
2178
2179 static unw_rec_list *
2180 output_fpsr_psprel (unsigned int offset)
2181 {
2182 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2183 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2184 return ptr;
2185 }
2186
2187 static unw_rec_list *
2188 output_fpsr_sprel (unsigned int offset)
2189 {
2190 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2191 ptr->r.record.p.off.sp = offset / 4;
2192 return ptr;
2193 }
2194
2195 static unw_rec_list *
2196 output_priunat_when_gr (void)
2197 {
2198 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2199 return ptr;
2200 }
2201
2202 static unw_rec_list *
2203 output_priunat_when_mem (void)
2204 {
2205 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2206 return ptr;
2207 }
2208
2209 static unw_rec_list *
2210 output_priunat_gr (unsigned int gr)
2211 {
2212 unw_rec_list *ptr = alloc_record (priunat_gr);
2213 ptr->r.record.p.r.gr = gr;
2214 return ptr;
2215 }
2216
2217 static unw_rec_list *
2218 output_priunat_psprel (unsigned int offset)
2219 {
2220 unw_rec_list *ptr = alloc_record (priunat_psprel);
2221 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2222 return ptr;
2223 }
2224
2225 static unw_rec_list *
2226 output_priunat_sprel (unsigned int offset)
2227 {
2228 unw_rec_list *ptr = alloc_record (priunat_sprel);
2229 ptr->r.record.p.off.sp = offset / 4;
2230 return ptr;
2231 }
2232
2233 static unw_rec_list *
2234 output_bsp_when (void)
2235 {
2236 unw_rec_list *ptr = alloc_record (bsp_when);
2237 return ptr;
2238 }
2239
2240 static unw_rec_list *
2241 output_bsp_gr (unsigned int gr)
2242 {
2243 unw_rec_list *ptr = alloc_record (bsp_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2246 }
2247
2248 static unw_rec_list *
2249 output_bsp_psprel (unsigned int offset)
2250 {
2251 unw_rec_list *ptr = alloc_record (bsp_psprel);
2252 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2253 return ptr;
2254 }
2255
2256 static unw_rec_list *
2257 output_bsp_sprel (unsigned int offset)
2258 {
2259 unw_rec_list *ptr = alloc_record (bsp_sprel);
2260 ptr->r.record.p.off.sp = offset / 4;
2261 return ptr;
2262 }
2263
2264 static unw_rec_list *
2265 output_bspstore_when (void)
2266 {
2267 unw_rec_list *ptr = alloc_record (bspstore_when);
2268 return ptr;
2269 }
2270
2271 static unw_rec_list *
2272 output_bspstore_gr (unsigned int gr)
2273 {
2274 unw_rec_list *ptr = alloc_record (bspstore_gr);
2275 ptr->r.record.p.r.gr = gr;
2276 return ptr;
2277 }
2278
2279 static unw_rec_list *
2280 output_bspstore_psprel (unsigned int offset)
2281 {
2282 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2283 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2284 return ptr;
2285 }
2286
2287 static unw_rec_list *
2288 output_bspstore_sprel (unsigned int offset)
2289 {
2290 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2291 ptr->r.record.p.off.sp = offset / 4;
2292 return ptr;
2293 }
2294
2295 static unw_rec_list *
2296 output_rnat_when (void)
2297 {
2298 unw_rec_list *ptr = alloc_record (rnat_when);
2299 return ptr;
2300 }
2301
2302 static unw_rec_list *
2303 output_rnat_gr (unsigned int gr)
2304 {
2305 unw_rec_list *ptr = alloc_record (rnat_gr);
2306 ptr->r.record.p.r.gr = gr;
2307 return ptr;
2308 }
2309
2310 static unw_rec_list *
2311 output_rnat_psprel (unsigned int offset)
2312 {
2313 unw_rec_list *ptr = alloc_record (rnat_psprel);
2314 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2315 return ptr;
2316 }
2317
2318 static unw_rec_list *
2319 output_rnat_sprel (unsigned int offset)
2320 {
2321 unw_rec_list *ptr = alloc_record (rnat_sprel);
2322 ptr->r.record.p.off.sp = offset / 4;
2323 return ptr;
2324 }
2325
2326 static unw_rec_list *
2327 output_unwabi (unsigned long abi, unsigned long context)
2328 {
2329 unw_rec_list *ptr = alloc_record (unwabi);
2330 ptr->r.record.p.abi = abi;
2331 ptr->r.record.p.context = context;
2332 return ptr;
2333 }
2334
2335 static unw_rec_list *
2336 output_epilogue (unsigned long ecount)
2337 {
2338 unw_rec_list *ptr = alloc_record (epilogue);
2339 ptr->r.record.b.ecount = ecount;
2340 return ptr;
2341 }
2342
2343 static unw_rec_list *
2344 output_label_state (unsigned long label)
2345 {
2346 unw_rec_list *ptr = alloc_record (label_state);
2347 ptr->r.record.b.label = label;
2348 return ptr;
2349 }
2350
2351 static unw_rec_list *
2352 output_copy_state (unsigned long label)
2353 {
2354 unw_rec_list *ptr = alloc_record (copy_state);
2355 ptr->r.record.b.label = label;
2356 return ptr;
2357 }
2358
2359 static unw_rec_list *
2360 output_spill_psprel (unsigned int ab,
2361 unsigned int reg,
2362 unsigned int offset,
2363 unsigned int predicate)
2364 {
2365 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2366 ptr->r.record.x.ab = ab;
2367 ptr->r.record.x.reg = reg;
2368 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2369 ptr->r.record.x.qp = predicate;
2370 return ptr;
2371 }
2372
2373 static unw_rec_list *
2374 output_spill_sprel (unsigned int ab,
2375 unsigned int reg,
2376 unsigned int offset,
2377 unsigned int predicate)
2378 {
2379 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2380 ptr->r.record.x.ab = ab;
2381 ptr->r.record.x.reg = reg;
2382 ptr->r.record.x.where.spoff = offset / 4;
2383 ptr->r.record.x.qp = predicate;
2384 return ptr;
2385 }
2386
2387 static unw_rec_list *
2388 output_spill_reg (unsigned int ab,
2389 unsigned int reg,
2390 unsigned int targ_reg,
2391 unsigned int xy,
2392 unsigned int predicate)
2393 {
2394 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2395 ptr->r.record.x.ab = ab;
2396 ptr->r.record.x.reg = reg;
2397 ptr->r.record.x.where.reg = targ_reg;
2398 ptr->r.record.x.xy = xy;
2399 ptr->r.record.x.qp = predicate;
2400 return ptr;
2401 }
2402
2403 /* Given a unw_rec_list process the correct format with the
2404 specified function. */
2405
2406 static void
2407 process_one_record (unw_rec_list *ptr, vbyte_func f)
2408 {
2409 unsigned int fr_mask, gr_mask;
2410
2411 switch (ptr->r.type)
2412 {
2413 /* This is a dummy record that takes up no space in the output. */
2414 case endp:
2415 break;
2416
2417 case gr_mem:
2418 case fr_mem:
2419 case br_mem:
2420 case frgr_mem:
2421 /* These are taken care of by prologue/prologue_gr. */
2422 break;
2423
2424 case prologue_gr:
2425 case prologue:
2426 if (ptr->r.type == prologue_gr)
2427 output_R2_format (f, ptr->r.record.r.grmask,
2428 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2429 else
2430 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2431
2432 /* Output descriptor(s) for union of register spills (if any). */
2433 gr_mask = ptr->r.record.r.mask.gr_mem;
2434 fr_mask = ptr->r.record.r.mask.fr_mem;
2435 if (fr_mask)
2436 {
2437 if ((fr_mask & ~0xfUL) == 0)
2438 output_P6_format (f, fr_mem, fr_mask);
2439 else
2440 {
2441 output_P5_format (f, gr_mask, fr_mask);
2442 gr_mask = 0;
2443 }
2444 }
2445 if (gr_mask)
2446 output_P6_format (f, gr_mem, gr_mask);
2447 if (ptr->r.record.r.mask.br_mem)
2448 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2449
2450 /* output imask descriptor if necessary: */
2451 if (ptr->r.record.r.mask.i)
2452 output_P4_format (f, ptr->r.record.r.mask.i,
2453 ptr->r.record.r.imask_size);
2454 break;
2455
2456 case body:
2457 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2458 break;
2459 case mem_stack_f:
2460 case mem_stack_v:
2461 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2462 ptr->r.record.p.size);
2463 break;
2464 case psp_gr:
2465 case rp_gr:
2466 case pfs_gr:
2467 case preds_gr:
2468 case unat_gr:
2469 case lc_gr:
2470 case fpsr_gr:
2471 case priunat_gr:
2472 case bsp_gr:
2473 case bspstore_gr:
2474 case rnat_gr:
2475 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2476 break;
2477 case rp_br:
2478 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2479 break;
2480 case psp_sprel:
2481 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2482 break;
2483 case rp_when:
2484 case pfs_when:
2485 case preds_when:
2486 case unat_when:
2487 case lc_when:
2488 case fpsr_when:
2489 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2490 break;
2491 case rp_psprel:
2492 case pfs_psprel:
2493 case preds_psprel:
2494 case unat_psprel:
2495 case lc_psprel:
2496 case fpsr_psprel:
2497 case spill_base:
2498 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2499 break;
2500 case rp_sprel:
2501 case pfs_sprel:
2502 case preds_sprel:
2503 case unat_sprel:
2504 case lc_sprel:
2505 case fpsr_sprel:
2506 case priunat_sprel:
2507 case bsp_sprel:
2508 case bspstore_sprel:
2509 case rnat_sprel:
2510 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2511 break;
2512 case gr_gr:
2513 if (ptr->r.record.p.r.gr < REG_NUM)
2514 {
2515 const unw_rec_list *cur = ptr;
2516
2517 gr_mask = cur->r.record.p.grmask;
2518 while ((cur = cur->r.record.p.next) != NULL)
2519 gr_mask |= cur->r.record.p.grmask;
2520 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2521 }
2522 break;
2523 case br_gr:
2524 if (ptr->r.record.p.r.gr < REG_NUM)
2525 {
2526 const unw_rec_list *cur = ptr;
2527
2528 gr_mask = cur->r.record.p.brmask;
2529 while ((cur = cur->r.record.p.next) != NULL)
2530 gr_mask |= cur->r.record.p.brmask;
2531 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2532 }
2533 break;
2534 case spill_mask:
2535 as_bad (_("spill_mask record unimplemented."));
2536 break;
2537 case priunat_when_gr:
2538 case priunat_when_mem:
2539 case bsp_when:
2540 case bspstore_when:
2541 case rnat_when:
2542 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2543 break;
2544 case priunat_psprel:
2545 case bsp_psprel:
2546 case bspstore_psprel:
2547 case rnat_psprel:
2548 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2549 break;
2550 case unwabi:
2551 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2552 break;
2553 case epilogue:
2554 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2555 break;
2556 case label_state:
2557 case copy_state:
2558 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2559 break;
2560 case spill_psprel:
2561 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2562 ptr->r.record.x.reg, ptr->r.record.x.t,
2563 ptr->r.record.x.where.pspoff);
2564 break;
2565 case spill_sprel:
2566 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2567 ptr->r.record.x.reg, ptr->r.record.x.t,
2568 ptr->r.record.x.where.spoff);
2569 break;
2570 case spill_reg:
2571 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2572 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2573 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2574 break;
2575 case spill_psprel_p:
2576 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2577 ptr->r.record.x.ab, ptr->r.record.x.reg,
2578 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2579 break;
2580 case spill_sprel_p:
2581 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2582 ptr->r.record.x.ab, ptr->r.record.x.reg,
2583 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2584 break;
2585 case spill_reg_p:
2586 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2587 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2588 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2589 ptr->r.record.x.t);
2590 break;
2591 default:
2592 as_bad (_("record_type_not_valid"));
2593 break;
2594 }
2595 }
2596
2597 /* Given a unw_rec_list list, process all the records with
2598 the specified function. */
2599 static void
2600 process_unw_records (unw_rec_list *list, vbyte_func f)
2601 {
2602 unw_rec_list *ptr;
2603 for (ptr = list; ptr; ptr = ptr->next)
2604 process_one_record (ptr, f);
2605 }
2606
2607 /* Determine the size of a record list in bytes. */
2608 static int
2609 calc_record_size (unw_rec_list *list)
2610 {
2611 vbyte_count = 0;
2612 process_unw_records (list, count_output);
2613 return vbyte_count;
2614 }
2615
2616 /* Return the number of bits set in the input value.
2617 Perhaps this has a better place... */
2618 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2619 # define popcount __builtin_popcount
2620 #else
2621 static int
2622 popcount (unsigned x)
2623 {
2624 static const unsigned char popcnt[16] =
2625 {
2626 0, 1, 1, 2,
2627 1, 2, 2, 3,
2628 1, 2, 2, 3,
2629 2, 3, 3, 4
2630 };
2631
2632 if (x < NELEMS (popcnt))
2633 return popcnt[x];
2634 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2635 }
2636 #endif
2637
2638 /* Update IMASK bitmask to reflect the fact that one or more registers
2639 of type TYPE are saved starting at instruction with index T. If N
2640 bits are set in REGMASK, it is assumed that instructions T through
2641 T+N-1 save these registers.
2642
2643 TYPE values:
2644 0: no save
2645 1: instruction saves next fp reg
2646 2: instruction saves next general reg
2647 3: instruction saves next branch reg */
2648 static void
2649 set_imask (unw_rec_list *region,
2650 unsigned long regmask,
2651 unsigned long t,
2652 unsigned int type)
2653 {
2654 unsigned char *imask;
2655 unsigned long imask_size;
2656 unsigned int i;
2657 int pos;
2658
2659 imask = region->r.record.r.mask.i;
2660 imask_size = region->r.record.r.imask_size;
2661 if (!imask)
2662 {
2663 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2664 imask = xmalloc (imask_size);
2665 memset (imask, 0, imask_size);
2666
2667 region->r.record.r.imask_size = imask_size;
2668 region->r.record.r.mask.i = imask;
2669 }
2670
2671 i = (t / 4) + 1;
2672 pos = 2 * (3 - t % 4);
2673 while (regmask)
2674 {
2675 if (i >= imask_size)
2676 {
2677 as_bad (_("Ignoring attempt to spill beyond end of region"));
2678 return;
2679 }
2680
2681 imask[i] |= (type & 0x3) << pos;
2682
2683 regmask &= (regmask - 1);
2684 pos -= 2;
2685 if (pos < 0)
2686 {
2687 pos = 0;
2688 ++i;
2689 }
2690 }
2691 }
2692
2693 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2694 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2695 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2696 for frag sizes. */
2697
2698 static unsigned long
2699 slot_index (unsigned long slot_addr,
2700 fragS *slot_frag,
2701 unsigned long first_addr,
2702 fragS *first_frag,
2703 int before_relax)
2704 {
2705 unsigned long s_index = 0;
2706
2707 /* First time we are called, the initial address and frag are invalid. */
2708 if (first_addr == 0)
2709 return 0;
2710
2711 /* If the two addresses are in different frags, then we need to add in
2712 the remaining size of this frag, and then the entire size of intermediate
2713 frags. */
2714 while (slot_frag != first_frag)
2715 {
2716 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2717
2718 if (! before_relax)
2719 {
2720 /* We can get the final addresses only during and after
2721 relaxation. */
2722 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2723 s_index += 3 * ((first_frag->fr_next->fr_address
2724 - first_frag->fr_address
2725 - first_frag->fr_fix) >> 4);
2726 }
2727 else
2728 /* We don't know what the final addresses will be. We try our
2729 best to estimate. */
2730 switch (first_frag->fr_type)
2731 {
2732 default:
2733 break;
2734
2735 case rs_space:
2736 as_fatal (_("Only constant space allocation is supported"));
2737 break;
2738
2739 case rs_align:
2740 case rs_align_code:
2741 case rs_align_test:
2742 /* Take alignment into account. Assume the worst case
2743 before relaxation. */
2744 s_index += 3 * ((1 << first_frag->fr_offset) >> 4);
2745 break;
2746
2747 case rs_org:
2748 if (first_frag->fr_symbol)
2749 {
2750 as_fatal (_("Only constant offsets are supported"));
2751 break;
2752 }
2753 case rs_fill:
2754 s_index += 3 * (first_frag->fr_offset >> 4);
2755 break;
2756 }
2757
2758 /* Add in the full size of the frag converted to instruction slots. */
2759 s_index += 3 * (first_frag->fr_fix >> 4);
2760 /* Subtract away the initial part before first_addr. */
2761 s_index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2762 + ((first_addr & 0x3) - (start_addr & 0x3)));
2763
2764 /* Move to the beginning of the next frag. */
2765 first_frag = first_frag->fr_next;
2766 first_addr = (unsigned long) &first_frag->fr_literal;
2767
2768 /* This can happen if there is section switching in the middle of a
2769 function, causing the frag chain for the function to be broken.
2770 It is too difficult to recover safely from this problem, so we just
2771 exit with an error. */
2772 if (first_frag == NULL)
2773 as_fatal (_("Section switching in code is not supported."));
2774 }
2775
2776 /* Add in the used part of the last frag. */
2777 s_index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2778 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2779 return s_index;
2780 }
2781
2782 /* Optimize unwind record directives. */
2783
2784 static unw_rec_list *
2785 optimize_unw_records (unw_rec_list *list)
2786 {
2787 if (!list)
2788 return NULL;
2789
2790 /* If the only unwind record is ".prologue" or ".prologue" followed
2791 by ".body", then we can optimize the unwind directives away. */
2792 if (list->r.type == prologue
2793 && (list->next->r.type == endp
2794 || (list->next->r.type == body && list->next->next->r.type == endp)))
2795 return NULL;
2796
2797 return list;
2798 }
2799
2800 /* Given a complete record list, process any records which have
2801 unresolved fields, (ie length counts for a prologue). After
2802 this has been run, all necessary information should be available
2803 within each record to generate an image. */
2804
2805 static void
2806 fixup_unw_records (unw_rec_list *list, int before_relax)
2807 {
2808 unw_rec_list *ptr, *region = 0;
2809 unsigned long first_addr = 0, rlen = 0, t;
2810 fragS *first_frag = 0;
2811
2812 for (ptr = list; ptr; ptr = ptr->next)
2813 {
2814 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2815 as_bad (_(" Insn slot not set in unwind record."));
2816 t = slot_index (ptr->slot_number, ptr->slot_frag,
2817 first_addr, first_frag, before_relax);
2818 switch (ptr->r.type)
2819 {
2820 case prologue:
2821 case prologue_gr:
2822 case body:
2823 {
2824 unw_rec_list *last;
2825 int size;
2826 unsigned long last_addr = 0;
2827 fragS *last_frag = NULL;
2828
2829 first_addr = ptr->slot_number;
2830 first_frag = ptr->slot_frag;
2831 /* Find either the next body/prologue start, or the end of
2832 the function, and determine the size of the region. */
2833 for (last = ptr->next; last != NULL; last = last->next)
2834 if (last->r.type == prologue || last->r.type == prologue_gr
2835 || last->r.type == body || last->r.type == endp)
2836 {
2837 last_addr = last->slot_number;
2838 last_frag = last->slot_frag;
2839 break;
2840 }
2841 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2842 before_relax);
2843 rlen = ptr->r.record.r.rlen = size;
2844 if (ptr->r.type == body)
2845 /* End of region. */
2846 region = 0;
2847 else
2848 region = ptr;
2849 break;
2850 }
2851 case epilogue:
2852 if (t < rlen)
2853 ptr->r.record.b.t = rlen - 1 - t;
2854 else
2855 /* This happens when a memory-stack-less procedure uses a
2856 ".restore sp" directive at the end of a region to pop
2857 the frame state. */
2858 ptr->r.record.b.t = 0;
2859 break;
2860
2861 case mem_stack_f:
2862 case mem_stack_v:
2863 case rp_when:
2864 case pfs_when:
2865 case preds_when:
2866 case unat_when:
2867 case lc_when:
2868 case fpsr_when:
2869 case priunat_when_gr:
2870 case priunat_when_mem:
2871 case bsp_when:
2872 case bspstore_when:
2873 case rnat_when:
2874 ptr->r.record.p.t = t;
2875 break;
2876
2877 case spill_reg:
2878 case spill_sprel:
2879 case spill_psprel:
2880 case spill_reg_p:
2881 case spill_sprel_p:
2882 case spill_psprel_p:
2883 ptr->r.record.x.t = t;
2884 break;
2885
2886 case frgr_mem:
2887 if (!region)
2888 {
2889 as_bad (_("frgr_mem record before region record!"));
2890 return;
2891 }
2892 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2893 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2894 set_imask (region, ptr->r.record.p.frmask, t, 1);
2895 set_imask (region, ptr->r.record.p.grmask, t, 2);
2896 break;
2897 case fr_mem:
2898 if (!region)
2899 {
2900 as_bad (_("fr_mem record before region record!"));
2901 return;
2902 }
2903 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2904 set_imask (region, ptr->r.record.p.frmask, t, 1);
2905 break;
2906 case gr_mem:
2907 if (!region)
2908 {
2909 as_bad (_("gr_mem record before region record!"));
2910 return;
2911 }
2912 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2913 set_imask (region, ptr->r.record.p.grmask, t, 2);
2914 break;
2915 case br_mem:
2916 if (!region)
2917 {
2918 as_bad (_("br_mem record before region record!"));
2919 return;
2920 }
2921 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2922 set_imask (region, ptr->r.record.p.brmask, t, 3);
2923 break;
2924
2925 case gr_gr:
2926 if (!region)
2927 {
2928 as_bad (_("gr_gr record before region record!"));
2929 return;
2930 }
2931 set_imask (region, ptr->r.record.p.grmask, t, 2);
2932 break;
2933 case br_gr:
2934 if (!region)
2935 {
2936 as_bad (_("br_gr record before region record!"));
2937 return;
2938 }
2939 set_imask (region, ptr->r.record.p.brmask, t, 3);
2940 break;
2941
2942 default:
2943 break;
2944 }
2945 }
2946 }
2947
2948 /* Estimate the size of a frag before relaxing. We only have one type of frag
2949 to handle here, which is the unwind info frag. */
2950
2951 int
2952 ia64_estimate_size_before_relax (fragS *frag,
2953 asection *segtype ATTRIBUTE_UNUSED)
2954 {
2955 unw_rec_list *list;
2956 int len, size, pad;
2957
2958 /* ??? This code is identical to the first part of ia64_convert_frag. */
2959 list = (unw_rec_list *) frag->fr_opcode;
2960 fixup_unw_records (list, 0);
2961
2962 len = calc_record_size (list);
2963 /* pad to pointer-size boundary. */
2964 pad = len % md.pointer_size;
2965 if (pad != 0)
2966 len += md.pointer_size - pad;
2967 /* Add 8 for the header. */
2968 size = len + 8;
2969 /* Add a pointer for the personality offset. */
2970 if (frag->fr_offset)
2971 size += md.pointer_size;
2972
2973 /* fr_var carries the max_chars that we created the fragment with.
2974 We must, of course, have allocated enough memory earlier. */
2975 gas_assert (frag->fr_var >= size);
2976
2977 return frag->fr_fix + size;
2978 }
2979
2980 /* This function converts a rs_machine_dependent variant frag into a
2981 normal fill frag with the unwind image from the the record list. */
2982 void
2983 ia64_convert_frag (fragS *frag)
2984 {
2985 unw_rec_list *list;
2986 int len, size, pad;
2987 valueT flag_value;
2988
2989 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2990 list = (unw_rec_list *) frag->fr_opcode;
2991 fixup_unw_records (list, 0);
2992
2993 len = calc_record_size (list);
2994 /* pad to pointer-size boundary. */
2995 pad = len % md.pointer_size;
2996 if (pad != 0)
2997 len += md.pointer_size - pad;
2998 /* Add 8 for the header. */
2999 size = len + 8;
3000 /* Add a pointer for the personality offset. */
3001 if (frag->fr_offset)
3002 size += md.pointer_size;
3003
3004 /* fr_var carries the max_chars that we created the fragment with.
3005 We must, of course, have allocated enough memory earlier. */
3006 gas_assert (frag->fr_var >= size);
3007
3008 /* Initialize the header area. fr_offset is initialized with
3009 unwind.personality_routine. */
3010 if (frag->fr_offset)
3011 {
3012 if (md.flags & EF_IA_64_ABI64)
3013 flag_value = (bfd_vma) 3 << 32;
3014 else
3015 /* 32-bit unwind info block. */
3016 flag_value = (bfd_vma) 0x1003 << 32;
3017 }
3018 else
3019 flag_value = 0;
3020
3021 md_number_to_chars (frag->fr_literal,
3022 (((bfd_vma) 1 << 48) /* Version. */
3023 | flag_value /* U & E handler flags. */
3024 | (len / md.pointer_size)), /* Length. */
3025 8);
3026
3027 /* Skip the header. */
3028 vbyte_mem_ptr = frag->fr_literal + 8;
3029 process_unw_records (list, output_vbyte_mem);
3030
3031 /* Fill the padding bytes with zeros. */
3032 if (pad != 0)
3033 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3034 md.pointer_size - pad);
3035 /* Fill the unwind personality with zeros. */
3036 if (frag->fr_offset)
3037 md_number_to_chars (frag->fr_literal + size - md.pointer_size, 0,
3038 md.pointer_size);
3039
3040 frag->fr_fix += size;
3041 frag->fr_type = rs_fill;
3042 frag->fr_var = 0;
3043 frag->fr_offset = 0;
3044 }
3045
3046 static int
3047 parse_predicate_and_operand (expressionS *e, unsigned *qp, const char *po)
3048 {
3049 int sep = parse_operand_and_eval (e, ',');
3050
3051 *qp = e->X_add_number - REG_P;
3052 if (e->X_op != O_register || *qp > 63)
3053 {
3054 as_bad (_("First operand to .%s must be a predicate"), po);
3055 *qp = 0;
3056 }
3057 else if (*qp == 0)
3058 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3059 if (sep == ',')
3060 sep = parse_operand_and_eval (e, ',');
3061 else
3062 e->X_op = O_absent;
3063 return sep;
3064 }
3065
3066 static void
3067 convert_expr_to_ab_reg (const expressionS *e,
3068 unsigned int *ab,
3069 unsigned int *regp,
3070 const char *po,
3071 int n)
3072 {
3073 unsigned int reg = e->X_add_number;
3074
3075 *ab = *regp = 0; /* Anything valid is good here. */
3076
3077 if (e->X_op != O_register)
3078 reg = REG_GR; /* Anything invalid is good here. */
3079
3080 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3081 {
3082 *ab = 0;
3083 *regp = reg - REG_GR;
3084 }
3085 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3086 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3087 {
3088 *ab = 1;
3089 *regp = reg - REG_FR;
3090 }
3091 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3092 {
3093 *ab = 2;
3094 *regp = reg - REG_BR;
3095 }
3096 else
3097 {
3098 *ab = 3;
3099 switch (reg)
3100 {
3101 case REG_PR: *regp = 0; break;
3102 case REG_PSP: *regp = 1; break;
3103 case REG_PRIUNAT: *regp = 2; break;
3104 case REG_BR + 0: *regp = 3; break;
3105 case REG_AR + AR_BSP: *regp = 4; break;
3106 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3107 case REG_AR + AR_RNAT: *regp = 6; break;
3108 case REG_AR + AR_UNAT: *regp = 7; break;
3109 case REG_AR + AR_FPSR: *regp = 8; break;
3110 case REG_AR + AR_PFS: *regp = 9; break;
3111 case REG_AR + AR_LC: *regp = 10; break;
3112
3113 default:
3114 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3115 break;
3116 }
3117 }
3118 }
3119
3120 static void
3121 convert_expr_to_xy_reg (const expressionS *e,
3122 unsigned int *xy,
3123 unsigned int *regp,
3124 const char *po,
3125 int n)
3126 {
3127 unsigned int reg = e->X_add_number;
3128
3129 *xy = *regp = 0; /* Anything valid is good here. */
3130
3131 if (e->X_op != O_register)
3132 reg = REG_GR; /* Anything invalid is good here. */
3133
3134 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3135 {
3136 *xy = 0;
3137 *regp = reg - REG_GR;
3138 }
3139 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3140 {
3141 *xy = 1;
3142 *regp = reg - REG_FR;
3143 }
3144 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3145 {
3146 *xy = 2;
3147 *regp = reg - REG_BR;
3148 }
3149 else
3150 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3151 }
3152
3153 static void
3154 dot_align (int arg)
3155 {
3156 /* The current frag is an alignment frag. */
3157 align_frag = frag_now;
3158 s_align_bytes (arg);
3159 }
3160
3161 static void
3162 dot_radix (int dummy ATTRIBUTE_UNUSED)
3163 {
3164 char *radix;
3165 int ch;
3166
3167 SKIP_WHITESPACE ();
3168
3169 if (is_it_end_of_statement ())
3170 return;
3171 radix = input_line_pointer;
3172 ch = get_symbol_end ();
3173 ia64_canonicalize_symbol_name (radix);
3174 if (strcasecmp (radix, "C"))
3175 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3176 *input_line_pointer = ch;
3177 demand_empty_rest_of_line ();
3178 }
3179
3180 /* Helper function for .loc directives. If the assembler is not generating
3181 line number info, then we need to remember which instructions have a .loc
3182 directive, and only call dwarf2_gen_line_info for those instructions. */
3183
3184 static void
3185 dot_loc (int x)
3186 {
3187 CURR_SLOT.loc_directive_seen = 1;
3188 dwarf2_directive_loc (x);
3189 }
3190
3191 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3192 static void
3193 dot_special_section (int which)
3194 {
3195 set_section ((char *) special_section_name[which]);
3196 }
3197
3198 /* Return -1 for warning and 0 for error. */
3199
3200 static int
3201 unwind_diagnostic (const char * region, const char *directive)
3202 {
3203 if (md.unwind_check == unwind_check_warning)
3204 {
3205 as_warn (_(".%s outside of %s"), directive, region);
3206 return -1;
3207 }
3208 else
3209 {
3210 as_bad (_(".%s outside of %s"), directive, region);
3211 ignore_rest_of_line ();
3212 return 0;
3213 }
3214 }
3215
3216 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3217 a procedure but the unwind directive check is set to warning, 0 if
3218 a directive isn't in a procedure and the unwind directive check is set
3219 to error. */
3220
3221 static int
3222 in_procedure (const char *directive)
3223 {
3224 if (unwind.proc_pending.sym
3225 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3226 return 1;
3227 return unwind_diagnostic ("procedure", directive);
3228 }
3229
3230 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3231 a prologue but the unwind directive check is set to warning, 0 if
3232 a directive isn't in a prologue and the unwind directive check is set
3233 to error. */
3234
3235 static int
3236 in_prologue (const char *directive)
3237 {
3238 int in = in_procedure (directive);
3239
3240 if (in > 0 && !unwind.prologue)
3241 in = unwind_diagnostic ("prologue", directive);
3242 check_pending_save ();
3243 return in;
3244 }
3245
3246 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3247 a body but the unwind directive check is set to warning, 0 if
3248 a directive isn't in a body and the unwind directive check is set
3249 to error. */
3250
3251 static int
3252 in_body (const char *directive)
3253 {
3254 int in = in_procedure (directive);
3255
3256 if (in > 0 && !unwind.body)
3257 in = unwind_diagnostic ("body region", directive);
3258 return in;
3259 }
3260
3261 static void
3262 add_unwind_entry (unw_rec_list *ptr, int sep)
3263 {
3264 if (ptr)
3265 {
3266 if (unwind.tail)
3267 unwind.tail->next = ptr;
3268 else
3269 unwind.list = ptr;
3270 unwind.tail = ptr;
3271
3272 /* The current entry can in fact be a chain of unwind entries. */
3273 if (unwind.current_entry == NULL)
3274 unwind.current_entry = ptr;
3275 }
3276
3277 /* The current entry can in fact be a chain of unwind entries. */
3278 if (unwind.current_entry == NULL)
3279 unwind.current_entry = ptr;
3280
3281 if (sep == ',')
3282 {
3283 /* Parse a tag permitted for the current directive. */
3284 int ch;
3285
3286 SKIP_WHITESPACE ();
3287 ch = get_symbol_end ();
3288 /* FIXME: For now, just issue a warning that this isn't implemented. */
3289 {
3290 static int warned;
3291
3292 if (!warned)
3293 {
3294 warned = 1;
3295 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3296 }
3297 }
3298 *input_line_pointer = ch;
3299 }
3300 if (sep != NOT_A_CHAR)
3301 demand_empty_rest_of_line ();
3302 }
3303
3304 static void
3305 dot_fframe (int dummy ATTRIBUTE_UNUSED)
3306 {
3307 expressionS e;
3308 int sep;
3309
3310 if (!in_prologue ("fframe"))
3311 return;
3312
3313 sep = parse_operand_and_eval (&e, ',');
3314
3315 if (e.X_op != O_constant)
3316 {
3317 as_bad (_("First operand to .fframe must be a constant"));
3318 e.X_add_number = 0;
3319 }
3320 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3321 }
3322
3323 static void
3324 dot_vframe (int dummy ATTRIBUTE_UNUSED)
3325 {
3326 expressionS e;
3327 unsigned reg;
3328 int sep;
3329
3330 if (!in_prologue ("vframe"))
3331 return;
3332
3333 sep = parse_operand_and_eval (&e, ',');
3334 reg = e.X_add_number - REG_GR;
3335 if (e.X_op != O_register || reg > 127)
3336 {
3337 as_bad (_("First operand to .vframe must be a general register"));
3338 reg = 0;
3339 }
3340 add_unwind_entry (output_mem_stack_v (), sep);
3341 if (! (unwind.prologue_mask & 2))
3342 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3343 else if (reg != unwind.prologue_gr
3344 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3345 as_warn (_("Operand of .vframe contradicts .prologue"));
3346 }
3347
3348 static void
3349 dot_vframesp (int psp)
3350 {
3351 expressionS e;
3352 int sep;
3353
3354 if (psp)
3355 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3356
3357 if (!in_prologue ("vframesp"))
3358 return;
3359
3360 sep = parse_operand_and_eval (&e, ',');
3361 if (e.X_op != O_constant)
3362 {
3363 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3364 e.X_add_number = 0;
3365 }
3366 add_unwind_entry (output_mem_stack_v (), sep);
3367 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3368 }
3369
3370 static void
3371 dot_save (int dummy ATTRIBUTE_UNUSED)
3372 {
3373 expressionS e1, e2;
3374 unsigned reg1, reg2;
3375 int sep;
3376
3377 if (!in_prologue ("save"))
3378 return;
3379
3380 sep = parse_operand_and_eval (&e1, ',');
3381 if (sep == ',')
3382 sep = parse_operand_and_eval (&e2, ',');
3383 else
3384 e2.X_op = O_absent;
3385
3386 reg1 = e1.X_add_number;
3387 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3388 if (e1.X_op != O_register)
3389 {
3390 as_bad (_("First operand to .save not a register"));
3391 reg1 = REG_PR; /* Anything valid is good here. */
3392 }
3393 reg2 = e2.X_add_number - REG_GR;
3394 if (e2.X_op != O_register || reg2 > 127)
3395 {
3396 as_bad (_("Second operand to .save not a valid register"));
3397 reg2 = 0;
3398 }
3399 switch (reg1)
3400 {
3401 case REG_AR + AR_BSP:
3402 add_unwind_entry (output_bsp_when (), sep);
3403 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3404 break;
3405 case REG_AR + AR_BSPSTORE:
3406 add_unwind_entry (output_bspstore_when (), sep);
3407 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3408 break;
3409 case REG_AR + AR_RNAT:
3410 add_unwind_entry (output_rnat_when (), sep);
3411 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3412 break;
3413 case REG_AR + AR_UNAT:
3414 add_unwind_entry (output_unat_when (), sep);
3415 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3416 break;
3417 case REG_AR + AR_FPSR:
3418 add_unwind_entry (output_fpsr_when (), sep);
3419 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3420 break;
3421 case REG_AR + AR_PFS:
3422 add_unwind_entry (output_pfs_when (), sep);
3423 if (! (unwind.prologue_mask & 4))
3424 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3425 else if (reg2 != unwind.prologue_gr
3426 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3427 as_warn (_("Second operand of .save contradicts .prologue"));
3428 break;
3429 case REG_AR + AR_LC:
3430 add_unwind_entry (output_lc_when (), sep);
3431 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3432 break;
3433 case REG_BR:
3434 add_unwind_entry (output_rp_when (), sep);
3435 if (! (unwind.prologue_mask & 8))
3436 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3437 else if (reg2 != unwind.prologue_gr)
3438 as_warn (_("Second operand of .save contradicts .prologue"));
3439 break;
3440 case REG_PR:
3441 add_unwind_entry (output_preds_when (), sep);
3442 if (! (unwind.prologue_mask & 1))
3443 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3444 else if (reg2 != unwind.prologue_gr
3445 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3446 as_warn (_("Second operand of .save contradicts .prologue"));
3447 break;
3448 case REG_PRIUNAT:
3449 add_unwind_entry (output_priunat_when_gr (), sep);
3450 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3451 break;
3452 default:
3453 as_bad (_("First operand to .save not a valid register"));
3454 add_unwind_entry (NULL, sep);
3455 break;
3456 }
3457 }
3458
3459 static void
3460 dot_restore (int dummy ATTRIBUTE_UNUSED)
3461 {
3462 expressionS e1;
3463 unsigned long ecount; /* # of _additional_ regions to pop */
3464 int sep;
3465
3466 if (!in_body ("restore"))
3467 return;
3468
3469 sep = parse_operand_and_eval (&e1, ',');
3470 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3471 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3472
3473 if (sep == ',')
3474 {
3475 expressionS e2;
3476
3477 sep = parse_operand_and_eval (&e2, ',');
3478 if (e2.X_op != O_constant || e2.X_add_number < 0)
3479 {
3480 as_bad (_("Second operand to .restore must be a constant >= 0"));
3481 e2.X_add_number = 0;
3482 }
3483 ecount = e2.X_add_number;
3484 }
3485 else
3486 ecount = unwind.prologue_count - 1;
3487
3488 if (ecount >= unwind.prologue_count)
3489 {
3490 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3491 ecount + 1, unwind.prologue_count);
3492 ecount = 0;
3493 }
3494
3495 add_unwind_entry (output_epilogue (ecount), sep);
3496
3497 if (ecount < unwind.prologue_count)
3498 unwind.prologue_count -= ecount + 1;
3499 else
3500 unwind.prologue_count = 0;
3501 }
3502
3503 static void
3504 dot_restorereg (int pred)
3505 {
3506 unsigned int qp, ab, reg;
3507 expressionS e;
3508 int sep;
3509 const char * const po = pred ? "restorereg.p" : "restorereg";
3510
3511 if (!in_procedure (po))
3512 return;
3513
3514 if (pred)
3515 sep = parse_predicate_and_operand (&e, &qp, po);
3516 else
3517 {
3518 sep = parse_operand_and_eval (&e, ',');
3519 qp = 0;
3520 }
3521 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3522
3523 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3524 }
3525
3526 static char *special_linkonce_name[] =
3527 {
3528 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3529 };
3530
3531 static void
3532 start_unwind_section (const segT text_seg, int sec_index)
3533 {
3534 /*
3535 Use a slightly ugly scheme to derive the unwind section names from
3536 the text section name:
3537
3538 text sect. unwind table sect.
3539 name: name: comments:
3540 ---------- ----------------- --------------------------------
3541 .text .IA_64.unwind
3542 .text.foo .IA_64.unwind.text.foo
3543 .foo .IA_64.unwind.foo
3544 .gnu.linkonce.t.foo
3545 .gnu.linkonce.ia64unw.foo
3546 _info .IA_64.unwind_info gas issues error message (ditto)
3547 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3548
3549 This mapping is done so that:
3550
3551 (a) An object file with unwind info only in .text will use
3552 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3553 This follows the letter of the ABI and also ensures backwards
3554 compatibility with older toolchains.
3555
3556 (b) An object file with unwind info in multiple text sections
3557 will use separate unwind sections for each text section.
3558 This allows us to properly set the "sh_info" and "sh_link"
3559 fields in SHT_IA_64_UNWIND as required by the ABI and also
3560 lets GNU ld support programs with multiple segments
3561 containing unwind info (as might be the case for certain
3562 embedded applications).
3563
3564 (c) An error is issued if there would be a name clash.
3565 */
3566
3567 const char *text_name, *sec_text_name;
3568 char *sec_name;
3569 const char *prefix = special_section_name [sec_index];
3570 const char *suffix;
3571 size_t prefix_len, suffix_len, sec_name_len;
3572
3573 sec_text_name = segment_name (text_seg);
3574 text_name = sec_text_name;
3575 if (strncmp (text_name, "_info", 5) == 0)
3576 {
3577 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3578 text_name);
3579 ignore_rest_of_line ();
3580 return;
3581 }
3582 if (strcmp (text_name, ".text") == 0)
3583 text_name = "";
3584
3585 /* Build the unwind section name by appending the (possibly stripped)
3586 text section name to the unwind prefix. */
3587 suffix = text_name;
3588 if (strncmp (text_name, ".gnu.linkonce.t.",
3589 sizeof (".gnu.linkonce.t.") - 1) == 0)
3590 {
3591 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3592 suffix += sizeof (".gnu.linkonce.t.") - 1;
3593 }
3594
3595 prefix_len = strlen (prefix);
3596 suffix_len = strlen (suffix);
3597 sec_name_len = prefix_len + suffix_len;
3598 sec_name = alloca (sec_name_len + 1);
3599 memcpy (sec_name, prefix, prefix_len);
3600 memcpy (sec_name + prefix_len, suffix, suffix_len);
3601 sec_name [sec_name_len] = '\0';
3602
3603 /* Handle COMDAT group. */
3604 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3605 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3606 {
3607 char *section;
3608 size_t len, group_name_len;
3609 const char *group_name = elf_group_name (text_seg);
3610
3611 if (group_name == NULL)
3612 {
3613 as_bad (_("Group section `%s' has no group signature"),
3614 sec_text_name);
3615 ignore_rest_of_line ();
3616 return;
3617 }
3618 /* We have to construct a fake section directive. */
3619 group_name_len = strlen (group_name);
3620 len = (sec_name_len
3621 + 16 /* ,"aG",@progbits, */
3622 + group_name_len /* ,group_name */
3623 + 7); /* ,comdat */
3624
3625 section = alloca (len + 1);
3626 memcpy (section, sec_name, sec_name_len);
3627 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3628 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3629 memcpy (section + len - 7, ",comdat", 7);
3630 section [len] = '\0';
3631 set_section (section);
3632 }
3633 else
3634 {
3635 set_section (sec_name);
3636 bfd_set_section_flags (stdoutput, now_seg,
3637 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3638 }
3639
3640 elf_linked_to_section (now_seg) = text_seg;
3641 }
3642
3643 static void
3644 generate_unwind_image (const segT text_seg)
3645 {
3646 int size, pad;
3647 unw_rec_list *list;
3648
3649 /* Mark the end of the unwind info, so that we can compute the size of the
3650 last unwind region. */
3651 add_unwind_entry (output_endp (), NOT_A_CHAR);
3652
3653 /* Force out pending instructions, to make sure all unwind records have
3654 a valid slot_number field. */
3655 ia64_flush_insns ();
3656
3657 /* Generate the unwind record. */
3658 list = optimize_unw_records (unwind.list);
3659 fixup_unw_records (list, 1);
3660 size = calc_record_size (list);
3661
3662 if (size > 0 || unwind.force_unwind_entry)
3663 {
3664 unwind.force_unwind_entry = 0;
3665 /* pad to pointer-size boundary. */
3666 pad = size % md.pointer_size;
3667 if (pad != 0)
3668 size += md.pointer_size - pad;
3669 /* Add 8 for the header. */
3670 size += 8;
3671 /* Add a pointer for the personality offset. */
3672 if (unwind.personality_routine)
3673 size += md.pointer_size;
3674 }
3675
3676 /* If there are unwind records, switch sections, and output the info. */
3677 if (size != 0)
3678 {
3679 expressionS exp;
3680 bfd_reloc_code_real_type reloc;
3681
3682 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3683
3684 /* Make sure the section has 4 byte alignment for ILP32 and
3685 8 byte alignment for LP64. */
3686 frag_align (md.pointer_size_shift, 0, 0);
3687 record_alignment (now_seg, md.pointer_size_shift);
3688
3689 /* Set expression which points to start of unwind descriptor area. */
3690 unwind.info = expr_build_dot ();
3691
3692 frag_var (rs_machine_dependent, size, size, 0, 0,
3693 (offsetT) (long) unwind.personality_routine,
3694 (char *) list);
3695
3696 /* Add the personality address to the image. */
3697 if (unwind.personality_routine != 0)
3698 {
3699 exp.X_op = O_symbol;
3700 exp.X_add_symbol = unwind.personality_routine;
3701 exp.X_add_number = 0;
3702
3703 if (md.flags & EF_IA_64_BE)
3704 {
3705 if (md.flags & EF_IA_64_ABI64)
3706 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3707 else
3708 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3709 }
3710 else
3711 {
3712 if (md.flags & EF_IA_64_ABI64)
3713 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3714 else
3715 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3716 }
3717
3718 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3719 md.pointer_size, &exp, 0, reloc);
3720 unwind.personality_routine = 0;
3721 }
3722 }
3723
3724 free_saved_prologue_counts ();
3725 unwind.list = unwind.tail = unwind.current_entry = NULL;
3726 }
3727
3728 static void
3729 dot_handlerdata (int dummy ATTRIBUTE_UNUSED)
3730 {
3731 if (!in_procedure ("handlerdata"))
3732 return;
3733 unwind.force_unwind_entry = 1;
3734
3735 /* Remember which segment we're in so we can switch back after .endp */
3736 unwind.saved_text_seg = now_seg;
3737 unwind.saved_text_subseg = now_subseg;
3738
3739 /* Generate unwind info into unwind-info section and then leave that
3740 section as the currently active one so dataXX directives go into
3741 the language specific data area of the unwind info block. */
3742 generate_unwind_image (now_seg);
3743 demand_empty_rest_of_line ();
3744 }
3745
3746 static void
3747 dot_unwentry (int dummy ATTRIBUTE_UNUSED)
3748 {
3749 if (!in_procedure ("unwentry"))
3750 return;
3751 unwind.force_unwind_entry = 1;
3752 demand_empty_rest_of_line ();
3753 }
3754
3755 static void
3756 dot_altrp (int dummy ATTRIBUTE_UNUSED)
3757 {
3758 expressionS e;
3759 unsigned reg;
3760
3761 if (!in_prologue ("altrp"))
3762 return;
3763
3764 parse_operand_and_eval (&e, 0);
3765 reg = e.X_add_number - REG_BR;
3766 if (e.X_op != O_register || reg > 7)
3767 {
3768 as_bad (_("First operand to .altrp not a valid branch register"));
3769 reg = 0;
3770 }
3771 add_unwind_entry (output_rp_br (reg), 0);
3772 }
3773
3774 static void
3775 dot_savemem (int psprel)
3776 {
3777 expressionS e1, e2;
3778 int sep;
3779 int reg1, val;
3780 const char * const po = psprel ? "savepsp" : "savesp";
3781
3782 if (!in_prologue (po))
3783 return;
3784
3785 sep = parse_operand_and_eval (&e1, ',');
3786 if (sep == ',')
3787 sep = parse_operand_and_eval (&e2, ',');
3788 else
3789 e2.X_op = O_absent;
3790
3791 reg1 = e1.X_add_number;
3792 val = e2.X_add_number;
3793
3794 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3795 if (e1.X_op != O_register)
3796 {
3797 as_bad (_("First operand to .%s not a register"), po);
3798 reg1 = REG_PR; /* Anything valid is good here. */
3799 }
3800 if (e2.X_op != O_constant)
3801 {
3802 as_bad (_("Second operand to .%s not a constant"), po);
3803 val = 0;
3804 }
3805
3806 switch (reg1)
3807 {
3808 case REG_AR + AR_BSP:
3809 add_unwind_entry (output_bsp_when (), sep);
3810 add_unwind_entry ((psprel
3811 ? output_bsp_psprel
3812 : output_bsp_sprel) (val), NOT_A_CHAR);
3813 break;
3814 case REG_AR + AR_BSPSTORE:
3815 add_unwind_entry (output_bspstore_when (), sep);
3816 add_unwind_entry ((psprel
3817 ? output_bspstore_psprel
3818 : output_bspstore_sprel) (val), NOT_A_CHAR);
3819 break;
3820 case REG_AR + AR_RNAT:
3821 add_unwind_entry (output_rnat_when (), sep);
3822 add_unwind_entry ((psprel
3823 ? output_rnat_psprel
3824 : output_rnat_sprel) (val), NOT_A_CHAR);
3825 break;
3826 case REG_AR + AR_UNAT:
3827 add_unwind_entry (output_unat_when (), sep);
3828 add_unwind_entry ((psprel
3829 ? output_unat_psprel
3830 : output_unat_sprel) (val), NOT_A_CHAR);
3831 break;
3832 case REG_AR + AR_FPSR:
3833 add_unwind_entry (output_fpsr_when (), sep);
3834 add_unwind_entry ((psprel
3835 ? output_fpsr_psprel
3836 : output_fpsr_sprel) (val), NOT_A_CHAR);
3837 break;
3838 case REG_AR + AR_PFS:
3839 add_unwind_entry (output_pfs_when (), sep);
3840 add_unwind_entry ((psprel
3841 ? output_pfs_psprel
3842 : output_pfs_sprel) (val), NOT_A_CHAR);
3843 break;
3844 case REG_AR + AR_LC:
3845 add_unwind_entry (output_lc_when (), sep);
3846 add_unwind_entry ((psprel
3847 ? output_lc_psprel
3848 : output_lc_sprel) (val), NOT_A_CHAR);
3849 break;
3850 case REG_BR:
3851 add_unwind_entry (output_rp_when (), sep);
3852 add_unwind_entry ((psprel
3853 ? output_rp_psprel
3854 : output_rp_sprel) (val), NOT_A_CHAR);
3855 break;
3856 case REG_PR:
3857 add_unwind_entry (output_preds_when (), sep);
3858 add_unwind_entry ((psprel
3859 ? output_preds_psprel
3860 : output_preds_sprel) (val), NOT_A_CHAR);
3861 break;
3862 case REG_PRIUNAT:
3863 add_unwind_entry (output_priunat_when_mem (), sep);
3864 add_unwind_entry ((psprel
3865 ? output_priunat_psprel
3866 : output_priunat_sprel) (val), NOT_A_CHAR);
3867 break;
3868 default:
3869 as_bad (_("First operand to .%s not a valid register"), po);
3870 add_unwind_entry (NULL, sep);
3871 break;
3872 }
3873 }
3874
3875 static void
3876 dot_saveg (int dummy ATTRIBUTE_UNUSED)
3877 {
3878 expressionS e;
3879 unsigned grmask;
3880 int sep;
3881
3882 if (!in_prologue ("save.g"))
3883 return;
3884
3885 sep = parse_operand_and_eval (&e, ',');
3886
3887 grmask = e.X_add_number;
3888 if (e.X_op != O_constant
3889 || e.X_add_number <= 0
3890 || e.X_add_number > 0xf)
3891 {
3892 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
3893 grmask = 0;
3894 }
3895
3896 if (sep == ',')
3897 {
3898 unsigned reg;
3899 int n = popcount (grmask);
3900
3901 parse_operand_and_eval (&e, 0);
3902 reg = e.X_add_number - REG_GR;
3903 if (e.X_op != O_register || reg > 127)
3904 {
3905 as_bad (_("Second operand to .save.g must be a general register"));
3906 reg = 0;
3907 }
3908 else if (reg > 128U - n)
3909 {
3910 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
3911 reg = 0;
3912 }
3913 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3914 }
3915 else
3916 add_unwind_entry (output_gr_mem (grmask), 0);
3917 }
3918
3919 static void
3920 dot_savef (int dummy ATTRIBUTE_UNUSED)
3921 {
3922 expressionS e;
3923
3924 if (!in_prologue ("save.f"))
3925 return;
3926
3927 parse_operand_and_eval (&e, 0);
3928
3929 if (e.X_op != O_constant
3930 || e.X_add_number <= 0
3931 || e.X_add_number > 0xfffff)
3932 {
3933 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
3934 e.X_add_number = 0;
3935 }
3936 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3937 }
3938
3939 static void
3940 dot_saveb (int dummy ATTRIBUTE_UNUSED)
3941 {
3942 expressionS e;
3943 unsigned brmask;
3944 int sep;
3945
3946 if (!in_prologue ("save.b"))
3947 return;
3948
3949 sep = parse_operand_and_eval (&e, ',');
3950
3951 brmask = e.X_add_number;
3952 if (e.X_op != O_constant
3953 || e.X_add_number <= 0
3954 || e.X_add_number > 0x1f)
3955 {
3956 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
3957 brmask = 0;
3958 }
3959
3960 if (sep == ',')
3961 {
3962 unsigned reg;
3963 int n = popcount (brmask);
3964
3965 parse_operand_and_eval (&e, 0);
3966 reg = e.X_add_number - REG_GR;
3967 if (e.X_op != O_register || reg > 127)
3968 {
3969 as_bad (_("Second operand to .save.b must be a general register"));
3970 reg = 0;
3971 }
3972 else if (reg > 128U - n)
3973 {
3974 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
3975 reg = 0;
3976 }
3977 add_unwind_entry (output_br_gr (brmask, reg), 0);
3978 }
3979 else
3980 add_unwind_entry (output_br_mem (brmask), 0);
3981 }
3982
3983 static void
3984 dot_savegf (int dummy ATTRIBUTE_UNUSED)
3985 {
3986 expressionS e1, e2;
3987
3988 if (!in_prologue ("save.gf"))
3989 return;
3990
3991 if (parse_operand_and_eval (&e1, ',') == ',')
3992 parse_operand_and_eval (&e2, 0);
3993 else
3994 e2.X_op = O_absent;
3995
3996 if (e1.X_op != O_constant
3997 || e1.X_add_number < 0
3998 || e1.X_add_number > 0xf)
3999 {
4000 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
4001 e1.X_op = O_absent;
4002 e1.X_add_number = 0;
4003 }
4004 if (e2.X_op != O_constant
4005 || e2.X_add_number < 0
4006 || e2.X_add_number > 0xfffff)
4007 {
4008 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
4009 e2.X_op = O_absent;
4010 e2.X_add_number = 0;
4011 }
4012 if (e1.X_op == O_constant
4013 && e2.X_op == O_constant
4014 && e1.X_add_number == 0
4015 && e2.X_add_number == 0)
4016 as_bad (_("Operands to .save.gf may not be both zero"));
4017
4018 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4019 }
4020
4021 static void
4022 dot_spill (int dummy ATTRIBUTE_UNUSED)
4023 {
4024 expressionS e;
4025
4026 if (!in_prologue ("spill"))
4027 return;
4028
4029 parse_operand_and_eval (&e, 0);
4030
4031 if (e.X_op != O_constant)
4032 {
4033 as_bad (_("Operand to .spill must be a constant"));
4034 e.X_add_number = 0;
4035 }
4036 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4037 }
4038
4039 static void
4040 dot_spillreg (int pred)
4041 {
4042 int sep;
4043 unsigned int qp, ab, xy, reg, treg;
4044 expressionS e;
4045 const char * const po = pred ? "spillreg.p" : "spillreg";
4046
4047 if (!in_procedure (po))
4048 return;
4049
4050 if (pred)
4051 sep = parse_predicate_and_operand (&e, &qp, po);
4052 else
4053 {
4054 sep = parse_operand_and_eval (&e, ',');
4055 qp = 0;
4056 }
4057 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4058
4059 if (sep == ',')
4060 sep = parse_operand_and_eval (&e, ',');
4061 else
4062 e.X_op = O_absent;
4063 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4064
4065 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4066 }
4067
4068 static void
4069 dot_spillmem (int psprel)
4070 {
4071 expressionS e;
4072 int pred = (psprel < 0), sep;
4073 unsigned int qp, ab, reg;
4074 const char * po;
4075
4076 if (pred)
4077 {
4078 psprel = ~psprel;
4079 po = psprel ? "spillpsp.p" : "spillsp.p";
4080 }
4081 else
4082 po = psprel ? "spillpsp" : "spillsp";
4083
4084 if (!in_procedure (po))
4085 return;
4086
4087 if (pred)
4088 sep = parse_predicate_and_operand (&e, &qp, po);
4089 else
4090 {
4091 sep = parse_operand_and_eval (&e, ',');
4092 qp = 0;
4093 }
4094 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4095
4096 if (sep == ',')
4097 sep = parse_operand_and_eval (&e, ',');
4098 else
4099 e.X_op = O_absent;
4100 if (e.X_op != O_constant)
4101 {
4102 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4103 e.X_add_number = 0;
4104 }
4105
4106 if (psprel)
4107 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4108 else
4109 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4110 }
4111
4112 static unsigned int
4113 get_saved_prologue_count (unsigned long lbl)
4114 {
4115 label_prologue_count *lpc = unwind.saved_prologue_counts;
4116
4117 while (lpc != NULL && lpc->label_number != lbl)
4118 lpc = lpc->next;
4119
4120 if (lpc != NULL)
4121 return lpc->prologue_count;
4122
4123 as_bad (_("Missing .label_state %ld"), lbl);
4124 return 1;
4125 }
4126
4127 static void
4128 save_prologue_count (unsigned long lbl, unsigned int count)
4129 {
4130 label_prologue_count *lpc = unwind.saved_prologue_counts;
4131
4132 while (lpc != NULL && lpc->label_number != lbl)
4133 lpc = lpc->next;
4134
4135 if (lpc != NULL)
4136 lpc->prologue_count = count;
4137 else
4138 {
4139 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4140
4141 new_lpc->next = unwind.saved_prologue_counts;
4142 new_lpc->label_number = lbl;
4143 new_lpc->prologue_count = count;
4144 unwind.saved_prologue_counts = new_lpc;
4145 }
4146 }
4147
4148 static void
4149 free_saved_prologue_counts ()
4150 {
4151 label_prologue_count *lpc = unwind.saved_prologue_counts;
4152 label_prologue_count *next;
4153
4154 while (lpc != NULL)
4155 {
4156 next = lpc->next;
4157 free (lpc);
4158 lpc = next;
4159 }
4160
4161 unwind.saved_prologue_counts = NULL;
4162 }
4163
4164 static void
4165 dot_label_state (int dummy ATTRIBUTE_UNUSED)
4166 {
4167 expressionS e;
4168
4169 if (!in_body ("label_state"))
4170 return;
4171
4172 parse_operand_and_eval (&e, 0);
4173 if (e.X_op == O_constant)
4174 save_prologue_count (e.X_add_number, unwind.prologue_count);
4175 else
4176 {
4177 as_bad (_("Operand to .label_state must be a constant"));
4178 e.X_add_number = 0;
4179 }
4180 add_unwind_entry (output_label_state (e.X_add_number), 0);
4181 }
4182
4183 static void
4184 dot_copy_state (int dummy ATTRIBUTE_UNUSED)
4185 {
4186 expressionS e;
4187
4188 if (!in_body ("copy_state"))
4189 return;
4190
4191 parse_operand_and_eval (&e, 0);
4192 if (e.X_op == O_constant)
4193 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4194 else
4195 {
4196 as_bad (_("Operand to .copy_state must be a constant"));
4197 e.X_add_number = 0;
4198 }
4199 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4200 }
4201
4202 static void
4203 dot_unwabi (int dummy ATTRIBUTE_UNUSED)
4204 {
4205 expressionS e1, e2;
4206 unsigned char sep;
4207
4208 if (!in_prologue ("unwabi"))
4209 return;
4210
4211 sep = parse_operand_and_eval (&e1, ',');
4212 if (sep == ',')
4213 parse_operand_and_eval (&e2, 0);
4214 else
4215 e2.X_op = O_absent;
4216
4217 if (e1.X_op != O_constant)
4218 {
4219 as_bad (_("First operand to .unwabi must be a constant"));
4220 e1.X_add_number = 0;
4221 }
4222
4223 if (e2.X_op != O_constant)
4224 {
4225 as_bad (_("Second operand to .unwabi must be a constant"));
4226 e2.X_add_number = 0;
4227 }
4228
4229 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4230 }
4231
4232 static void
4233 dot_personality (int dummy ATTRIBUTE_UNUSED)
4234 {
4235 char *name, *p, c;
4236 if (!in_procedure ("personality"))
4237 return;
4238 SKIP_WHITESPACE ();
4239 name = input_line_pointer;
4240 c = get_symbol_end ();
4241 p = input_line_pointer;
4242 unwind.personality_routine = symbol_find_or_make (name);
4243 unwind.force_unwind_entry = 1;
4244 *p = c;
4245 SKIP_WHITESPACE ();
4246 demand_empty_rest_of_line ();
4247 }
4248
4249 static void
4250 dot_proc (int dummy ATTRIBUTE_UNUSED)
4251 {
4252 char *name, *p, c;
4253 symbolS *sym;
4254 proc_pending *pending, *last_pending;
4255
4256 if (unwind.proc_pending.sym)
4257 {
4258 (md.unwind_check == unwind_check_warning
4259 ? as_warn
4260 : as_bad) (_("Missing .endp after previous .proc"));
4261 while (unwind.proc_pending.next)
4262 {
4263 pending = unwind.proc_pending.next;
4264 unwind.proc_pending.next = pending->next;
4265 free (pending);
4266 }
4267 }
4268 last_pending = NULL;
4269
4270 /* Parse names of main and alternate entry points and mark them as
4271 function symbols: */
4272 while (1)
4273 {
4274 SKIP_WHITESPACE ();
4275 name = input_line_pointer;
4276 c = get_symbol_end ();
4277 p = input_line_pointer;
4278 if (!*name)
4279 as_bad (_("Empty argument of .proc"));
4280 else
4281 {
4282 sym = symbol_find_or_make (name);
4283 if (S_IS_DEFINED (sym))
4284 as_bad (_("`%s' was already defined"), name);
4285 else if (!last_pending)
4286 {
4287 unwind.proc_pending.sym = sym;
4288 last_pending = &unwind.proc_pending;
4289 }
4290 else
4291 {
4292 pending = xmalloc (sizeof (*pending));
4293 pending->sym = sym;
4294 last_pending = last_pending->next = pending;
4295 }
4296 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4297 }
4298 *p = c;
4299 SKIP_WHITESPACE ();
4300 if (*input_line_pointer != ',')
4301 break;
4302 ++input_line_pointer;
4303 }
4304 if (!last_pending)
4305 {
4306 unwind.proc_pending.sym = expr_build_dot ();
4307 last_pending = &unwind.proc_pending;
4308 }
4309 last_pending->next = NULL;
4310 demand_empty_rest_of_line ();
4311 ia64_do_align (16);
4312
4313 unwind.prologue = 0;
4314 unwind.prologue_count = 0;
4315 unwind.body = 0;
4316 unwind.insn = 0;
4317 unwind.list = unwind.tail = unwind.current_entry = NULL;
4318 unwind.personality_routine = 0;
4319 }
4320
4321 static void
4322 dot_body (int dummy ATTRIBUTE_UNUSED)
4323 {
4324 if (!in_procedure ("body"))
4325 return;
4326 if (!unwind.prologue && !unwind.body && unwind.insn)
4327 as_warn (_("Initial .body should precede any instructions"));
4328 check_pending_save ();
4329
4330 unwind.prologue = 0;
4331 unwind.prologue_mask = 0;
4332 unwind.body = 1;
4333
4334 add_unwind_entry (output_body (), 0);
4335 }
4336
4337 static void
4338 dot_prologue (int dummy ATTRIBUTE_UNUSED)
4339 {
4340 unsigned mask = 0, grsave = 0;
4341
4342 if (!in_procedure ("prologue"))
4343 return;
4344 if (unwind.prologue)
4345 {
4346 as_bad (_(".prologue within prologue"));
4347 ignore_rest_of_line ();
4348 return;
4349 }
4350 if (!unwind.body && unwind.insn)
4351 as_warn (_("Initial .prologue should precede any instructions"));
4352
4353 if (!is_it_end_of_statement ())
4354 {
4355 expressionS e;
4356 int n, sep = parse_operand_and_eval (&e, ',');
4357
4358 if (e.X_op != O_constant
4359 || e.X_add_number < 0
4360 || e.X_add_number > 0xf)
4361 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4362 else if (e.X_add_number == 0)
4363 as_warn (_("Pointless use of zero first operand to .prologue"));
4364 else
4365 mask = e.X_add_number;
4366 n = popcount (mask);
4367
4368 if (sep == ',')
4369 parse_operand_and_eval (&e, 0);
4370 else
4371 e.X_op = O_absent;
4372 if (e.X_op == O_constant
4373 && e.X_add_number >= 0
4374 && e.X_add_number < 128)
4375 {
4376 if (md.unwind_check == unwind_check_error)
4377 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4378 grsave = e.X_add_number;
4379 }
4380 else if (e.X_op != O_register
4381 || (grsave = e.X_add_number - REG_GR) > 127)
4382 {
4383 as_bad (_("Second operand to .prologue must be a general register"));
4384 grsave = 0;
4385 }
4386 else if (grsave > 128U - n)
4387 {
4388 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4389 grsave = 0;
4390 }
4391
4392 }
4393
4394 if (mask)
4395 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4396 else
4397 add_unwind_entry (output_prologue (), 0);
4398
4399 unwind.prologue = 1;
4400 unwind.prologue_mask = mask;
4401 unwind.prologue_gr = grsave;
4402 unwind.body = 0;
4403 ++unwind.prologue_count;
4404 }
4405
4406 static void
4407 dot_endp (int dummy ATTRIBUTE_UNUSED)
4408 {
4409 expressionS e;
4410 int bytes_per_address;
4411 long where;
4412 segT saved_seg;
4413 subsegT saved_subseg;
4414 proc_pending *pending;
4415 int unwind_check = md.unwind_check;
4416
4417 md.unwind_check = unwind_check_error;
4418 if (!in_procedure ("endp"))
4419 return;
4420 md.unwind_check = unwind_check;
4421
4422 if (unwind.saved_text_seg)
4423 {
4424 saved_seg = unwind.saved_text_seg;
4425 saved_subseg = unwind.saved_text_subseg;
4426 unwind.saved_text_seg = NULL;
4427 }
4428 else
4429 {
4430 saved_seg = now_seg;
4431 saved_subseg = now_subseg;
4432 }
4433
4434 insn_group_break (1, 0, 0);
4435
4436 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4437 if (!unwind.info)
4438 generate_unwind_image (saved_seg);
4439
4440 if (unwind.info || unwind.force_unwind_entry)
4441 {
4442 symbolS *proc_end;
4443
4444 subseg_set (md.last_text_seg, 0);
4445 proc_end = expr_build_dot ();
4446
4447 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4448
4449 /* Make sure that section has 4 byte alignment for ILP32 and
4450 8 byte alignment for LP64. */
4451 record_alignment (now_seg, md.pointer_size_shift);
4452
4453 /* Need space for 3 pointers for procedure start, procedure end,
4454 and unwind info. */
4455 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4456 where = frag_now_fix () - (3 * md.pointer_size);
4457 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4458
4459 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4460 e.X_op = O_pseudo_fixup;
4461 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4462 e.X_add_number = 0;
4463 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4464 && S_IS_DEFINED (unwind.proc_pending.sym))
4465 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4466 S_GET_VALUE (unwind.proc_pending.sym),
4467 symbol_get_frag (unwind.proc_pending.sym));
4468 else
4469 e.X_add_symbol = unwind.proc_pending.sym;
4470 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4471
4472 e.X_op = O_pseudo_fixup;
4473 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4474 e.X_add_number = 0;
4475 e.X_add_symbol = proc_end;
4476 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4477 bytes_per_address, &e);
4478
4479 if (unwind.info)
4480 {
4481 e.X_op = O_pseudo_fixup;
4482 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4483 e.X_add_number = 0;
4484 e.X_add_symbol = unwind.info;
4485 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4486 bytes_per_address, &e);
4487 }
4488 }
4489 subseg_set (saved_seg, saved_subseg);
4490
4491 /* Set symbol sizes. */
4492 pending = &unwind.proc_pending;
4493 if (S_GET_NAME (pending->sym))
4494 {
4495 do
4496 {
4497 symbolS *sym = pending->sym;
4498
4499 if (!S_IS_DEFINED (sym))
4500 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4501 else if (S_GET_SIZE (sym) == 0
4502 && symbol_get_obj (sym)->size == NULL)
4503 {
4504 fragS *frag = symbol_get_frag (sym);
4505
4506 if (frag)
4507 {
4508 if (frag == frag_now && SEG_NORMAL (now_seg))
4509 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4510 else
4511 {
4512 symbol_get_obj (sym)->size =
4513 (expressionS *) xmalloc (sizeof (expressionS));
4514 symbol_get_obj (sym)->size->X_op = O_subtract;
4515 symbol_get_obj (sym)->size->X_add_symbol
4516 = symbol_new (FAKE_LABEL_NAME, now_seg,
4517 frag_now_fix (), frag_now);
4518 symbol_get_obj (sym)->size->X_op_symbol = sym;
4519 symbol_get_obj (sym)->size->X_add_number = 0;
4520 }
4521 }
4522 }
4523 } while ((pending = pending->next) != NULL);
4524 }
4525
4526 /* Parse names of main and alternate entry points. */
4527 while (1)
4528 {
4529 char *name, *p, c;
4530
4531 SKIP_WHITESPACE ();
4532 name = input_line_pointer;
4533 c = get_symbol_end ();
4534 p = input_line_pointer;
4535 if (!*name)
4536 (md.unwind_check == unwind_check_warning
4537 ? as_warn
4538 : as_bad) (_("Empty argument of .endp"));
4539 else
4540 {
4541 symbolS *sym = symbol_find (name);
4542
4543 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4544 {
4545 if (sym == pending->sym)
4546 {
4547 pending->sym = NULL;
4548 break;
4549 }
4550 }
4551 if (!sym || !pending)
4552 as_warn (_("`%s' was not specified with previous .proc"), name);
4553 }
4554 *p = c;
4555 SKIP_WHITESPACE ();
4556 if (*input_line_pointer != ',')
4557 break;
4558 ++input_line_pointer;
4559 }
4560 demand_empty_rest_of_line ();
4561
4562 /* Deliberately only checking for the main entry point here; the
4563 language spec even says all arguments to .endp are ignored. */
4564 if (unwind.proc_pending.sym
4565 && S_GET_NAME (unwind.proc_pending.sym)
4566 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4567 as_warn (_("`%s' should be an operand to this .endp"),
4568 S_GET_NAME (unwind.proc_pending.sym));
4569 while (unwind.proc_pending.next)
4570 {
4571 pending = unwind.proc_pending.next;
4572 unwind.proc_pending.next = pending->next;
4573 free (pending);
4574 }
4575 unwind.proc_pending.sym = unwind.info = NULL;
4576 }
4577
4578 static void
4579 dot_template (int template_val)
4580 {
4581 CURR_SLOT.user_template = template_val;
4582 }
4583
4584 static void
4585 dot_regstk (int dummy ATTRIBUTE_UNUSED)
4586 {
4587 int ins, locs, outs, rots;
4588
4589 if (is_it_end_of_statement ())
4590 ins = locs = outs = rots = 0;
4591 else
4592 {
4593 ins = get_absolute_expression ();
4594 if (*input_line_pointer++ != ',')
4595 goto err;
4596 locs = get_absolute_expression ();
4597 if (*input_line_pointer++ != ',')
4598 goto err;
4599 outs = get_absolute_expression ();
4600 if (*input_line_pointer++ != ',')
4601 goto err;
4602 rots = get_absolute_expression ();
4603 }
4604 set_regstack (ins, locs, outs, rots);
4605 return;
4606
4607 err:
4608 as_bad (_("Comma expected"));
4609 ignore_rest_of_line ();
4610 }
4611
4612 static void
4613 dot_rot (int type)
4614 {
4615 offsetT num_regs;
4616 valueT num_alloced = 0;
4617 struct dynreg **drpp, *dr;
4618 int ch, base_reg = 0;
4619 char *name, *start;
4620 size_t len;
4621
4622 switch (type)
4623 {
4624 case DYNREG_GR: base_reg = REG_GR + 32; break;
4625 case DYNREG_FR: base_reg = REG_FR + 32; break;
4626 case DYNREG_PR: base_reg = REG_P + 16; break;
4627 default: break;
4628 }
4629
4630 /* First, remove existing names from hash table. */
4631 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4632 {
4633 hash_delete (md.dynreg_hash, dr->name, FALSE);
4634 /* FIXME: Free dr->name. */
4635 dr->num_regs = 0;
4636 }
4637
4638 drpp = &md.dynreg[type];
4639 while (1)
4640 {
4641 start = input_line_pointer;
4642 ch = get_symbol_end ();
4643 len = strlen (ia64_canonicalize_symbol_name (start));
4644 *input_line_pointer = ch;
4645
4646 SKIP_WHITESPACE ();
4647 if (*input_line_pointer != '[')
4648 {
4649 as_bad (_("Expected '['"));
4650 goto err;
4651 }
4652 ++input_line_pointer; /* skip '[' */
4653
4654 num_regs = get_absolute_expression ();
4655
4656 if (*input_line_pointer++ != ']')
4657 {
4658 as_bad (_("Expected ']'"));
4659 goto err;
4660 }
4661 if (num_regs <= 0)
4662 {
4663 as_bad (_("Number of elements must be positive"));
4664 goto err;
4665 }
4666 SKIP_WHITESPACE ();
4667
4668 num_alloced += num_regs;
4669 switch (type)
4670 {
4671 case DYNREG_GR:
4672 if (num_alloced > md.rot.num_regs)
4673 {
4674 as_bad (_("Used more than the declared %d rotating registers"),
4675 md.rot.num_regs);
4676 goto err;
4677 }
4678 break;
4679 case DYNREG_FR:
4680 if (num_alloced > 96)
4681 {
4682 as_bad (_("Used more than the available 96 rotating registers"));
4683 goto err;
4684 }
4685 break;
4686 case DYNREG_PR:
4687 if (num_alloced > 48)
4688 {
4689 as_bad (_("Used more than the available 48 rotating registers"));
4690 goto err;
4691 }
4692 break;
4693
4694 default:
4695 break;
4696 }
4697
4698 if (!*drpp)
4699 {
4700 *drpp = obstack_alloc (&notes, sizeof (*dr));
4701 memset (*drpp, 0, sizeof (*dr));
4702 }
4703
4704 name = obstack_alloc (&notes, len + 1);
4705 memcpy (name, start, len);
4706 name[len] = '\0';
4707
4708 dr = *drpp;
4709 dr->name = name;
4710 dr->num_regs = num_regs;
4711 dr->base = base_reg;
4712 drpp = &dr->next;
4713 base_reg += num_regs;
4714
4715 if (hash_insert (md.dynreg_hash, name, dr))
4716 {
4717 as_bad (_("Attempt to redefine register set `%s'"), name);
4718 obstack_free (&notes, name);
4719 goto err;
4720 }
4721
4722 if (*input_line_pointer != ',')
4723 break;
4724 ++input_line_pointer; /* skip comma */
4725 SKIP_WHITESPACE ();
4726 }
4727 demand_empty_rest_of_line ();
4728 return;
4729
4730 err:
4731 ignore_rest_of_line ();
4732 }
4733
4734 static void
4735 dot_byteorder (int byteorder)
4736 {
4737 segment_info_type *seginfo = seg_info (now_seg);
4738
4739 if (byteorder == -1)
4740 {
4741 if (seginfo->tc_segment_info_data.endian == 0)
4742 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4743 byteorder = seginfo->tc_segment_info_data.endian == 1;
4744 }
4745 else
4746 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4747
4748 if (target_big_endian != byteorder)
4749 {
4750 target_big_endian = byteorder;
4751 if (target_big_endian)
4752 {
4753 ia64_number_to_chars = number_to_chars_bigendian;
4754 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4755 }
4756 else
4757 {
4758 ia64_number_to_chars = number_to_chars_littleendian;
4759 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4760 }
4761 }
4762 }
4763
4764 static void
4765 dot_psr (int dummy ATTRIBUTE_UNUSED)
4766 {
4767 char *option;
4768 int ch;
4769
4770 while (1)
4771 {
4772 option = input_line_pointer;
4773 ch = get_symbol_end ();
4774 if (strcmp (option, "lsb") == 0)
4775 md.flags &= ~EF_IA_64_BE;
4776 else if (strcmp (option, "msb") == 0)
4777 md.flags |= EF_IA_64_BE;
4778 else if (strcmp (option, "abi32") == 0)
4779 md.flags &= ~EF_IA_64_ABI64;
4780 else if (strcmp (option, "abi64") == 0)
4781 md.flags |= EF_IA_64_ABI64;
4782 else
4783 as_bad (_("Unknown psr option `%s'"), option);
4784 *input_line_pointer = ch;
4785
4786 SKIP_WHITESPACE ();
4787 if (*input_line_pointer != ',')
4788 break;
4789
4790 ++input_line_pointer;
4791 SKIP_WHITESPACE ();
4792 }
4793 demand_empty_rest_of_line ();
4794 }
4795
4796 static void
4797 dot_ln (int dummy ATTRIBUTE_UNUSED)
4798 {
4799 new_logical_line (0, get_absolute_expression ());
4800 demand_empty_rest_of_line ();
4801 }
4802
4803 static void
4804 cross_section (int ref, void (*builder) (int), int ua)
4805 {
4806 char *start, *end;
4807 int saved_auto_align;
4808 unsigned int section_count;
4809
4810 SKIP_WHITESPACE ();
4811 start = input_line_pointer;
4812 if (*start == '"')
4813 {
4814 int len;
4815 char *name;
4816
4817 name = demand_copy_C_string (&len);
4818 obstack_free(&notes, name);
4819 if (!name)
4820 {
4821 ignore_rest_of_line ();
4822 return;
4823 }
4824 }
4825 else
4826 {
4827 char c = get_symbol_end ();
4828
4829 if (input_line_pointer == start)
4830 {
4831 as_bad (_("Missing section name"));
4832 ignore_rest_of_line ();
4833 return;
4834 }
4835 *input_line_pointer = c;
4836 }
4837 end = input_line_pointer;
4838 SKIP_WHITESPACE ();
4839 if (*input_line_pointer != ',')
4840 {
4841 as_bad (_("Comma expected after section name"));
4842 ignore_rest_of_line ();
4843 return;
4844 }
4845 *end = '\0';
4846 end = input_line_pointer + 1; /* skip comma */
4847 input_line_pointer = start;
4848 md.keep_pending_output = 1;
4849 section_count = bfd_count_sections (stdoutput);
4850 obj_elf_section (0);
4851 if (section_count != bfd_count_sections (stdoutput))
4852 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
4853 input_line_pointer = end;
4854 saved_auto_align = md.auto_align;
4855 if (ua)
4856 md.auto_align = 0;
4857 (*builder) (ref);
4858 if (ua)
4859 md.auto_align = saved_auto_align;
4860 obj_elf_previous (0);
4861 md.keep_pending_output = 0;
4862 }
4863
4864 static void
4865 dot_xdata (int size)
4866 {
4867 cross_section (size, cons, 0);
4868 }
4869
4870 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4871
4872 static void
4873 stmt_float_cons (int kind)
4874 {
4875 size_t alignment;
4876
4877 switch (kind)
4878 {
4879 case 'd':
4880 alignment = 8;
4881 break;
4882
4883 case 'x':
4884 case 'X':
4885 alignment = 16;
4886 break;
4887
4888 case 'f':
4889 default:
4890 alignment = 4;
4891 break;
4892 }
4893 ia64_do_align (alignment);
4894 float_cons (kind);
4895 }
4896
4897 static void
4898 stmt_cons_ua (int size)
4899 {
4900 int saved_auto_align = md.auto_align;
4901
4902 md.auto_align = 0;
4903 cons (size);
4904 md.auto_align = saved_auto_align;
4905 }
4906
4907 static void
4908 dot_xfloat_cons (int kind)
4909 {
4910 cross_section (kind, stmt_float_cons, 0);
4911 }
4912
4913 static void
4914 dot_xstringer (int zero)
4915 {
4916 cross_section (zero, stringer, 0);
4917 }
4918
4919 static void
4920 dot_xdata_ua (int size)
4921 {
4922 cross_section (size, cons, 1);
4923 }
4924
4925 static void
4926 dot_xfloat_cons_ua (int kind)
4927 {
4928 cross_section (kind, float_cons, 1);
4929 }
4930
4931 /* .reg.val <regname>,value */
4932
4933 static void
4934 dot_reg_val (int dummy ATTRIBUTE_UNUSED)
4935 {
4936 expressionS reg;
4937
4938 expression_and_evaluate (&reg);
4939 if (reg.X_op != O_register)
4940 {
4941 as_bad (_("Register name expected"));
4942 ignore_rest_of_line ();
4943 }
4944 else if (*input_line_pointer++ != ',')
4945 {
4946 as_bad (_("Comma expected"));
4947 ignore_rest_of_line ();
4948 }
4949 else
4950 {
4951 valueT value = get_absolute_expression ();
4952 int regno = reg.X_add_number;
4953 if (regno <= REG_GR || regno > REG_GR + 127)
4954 as_warn (_("Register value annotation ignored"));
4955 else
4956 {
4957 gr_values[regno - REG_GR].known = 1;
4958 gr_values[regno - REG_GR].value = value;
4959 gr_values[regno - REG_GR].path = md.path;
4960 }
4961 }
4962 demand_empty_rest_of_line ();
4963 }
4964
4965 /*
4966 .serialize.data
4967 .serialize.instruction
4968 */
4969 static void
4970 dot_serialize (int type)
4971 {
4972 insn_group_break (0, 0, 0);
4973 if (type)
4974 instruction_serialization ();
4975 else
4976 data_serialization ();
4977 insn_group_break (0, 0, 0);
4978 demand_empty_rest_of_line ();
4979 }
4980
4981 /* select dv checking mode
4982 .auto
4983 .explicit
4984 .default
4985
4986 A stop is inserted when changing modes
4987 */
4988
4989 static void
4990 dot_dv_mode (int type)
4991 {
4992 if (md.manual_bundling)
4993 as_warn (_("Directive invalid within a bundle"));
4994
4995 if (type == 'E' || type == 'A')
4996 md.mode_explicitly_set = 0;
4997 else
4998 md.mode_explicitly_set = 1;
4999
5000 md.detect_dv = 1;
5001 switch (type)
5002 {
5003 case 'A':
5004 case 'a':
5005 if (md.explicit_mode)
5006 insn_group_break (1, 0, 0);
5007 md.explicit_mode = 0;
5008 break;
5009 case 'E':
5010 case 'e':
5011 if (!md.explicit_mode)
5012 insn_group_break (1, 0, 0);
5013 md.explicit_mode = 1;
5014 break;
5015 default:
5016 case 'd':
5017 if (md.explicit_mode != md.default_explicit_mode)
5018 insn_group_break (1, 0, 0);
5019 md.explicit_mode = md.default_explicit_mode;
5020 md.mode_explicitly_set = 0;
5021 break;
5022 }
5023 }
5024
5025 static void
5026 print_prmask (valueT mask)
5027 {
5028 int regno;
5029 char *comma = "";
5030 for (regno = 0; regno < 64; regno++)
5031 {
5032 if (mask & ((valueT) 1 << regno))
5033 {
5034 fprintf (stderr, "%s p%d", comma, regno);
5035 comma = ",";
5036 }
5037 }
5038 }
5039
5040 /*
5041 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5042 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5043 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5044 .pred.safe_across_calls p1 [, p2 [,...]]
5045 */
5046
5047 static void
5048 dot_pred_rel (int type)
5049 {
5050 valueT mask = 0;
5051 int count = 0;
5052 int p1 = -1, p2 = -1;
5053
5054 if (type == 0)
5055 {
5056 if (*input_line_pointer == '"')
5057 {
5058 int len;
5059 char *form = demand_copy_C_string (&len);
5060
5061 if (strcmp (form, "mutex") == 0)
5062 type = 'm';
5063 else if (strcmp (form, "clear") == 0)
5064 type = 'c';
5065 else if (strcmp (form, "imply") == 0)
5066 type = 'i';
5067 obstack_free (&notes, form);
5068 }
5069 else if (*input_line_pointer == '@')
5070 {
5071 char *form = ++input_line_pointer;
5072 char c = get_symbol_end();
5073
5074 if (strcmp (form, "mutex") == 0)
5075 type = 'm';
5076 else if (strcmp (form, "clear") == 0)
5077 type = 'c';
5078 else if (strcmp (form, "imply") == 0)
5079 type = 'i';
5080 *input_line_pointer = c;
5081 }
5082 else
5083 {
5084 as_bad (_("Missing predicate relation type"));
5085 ignore_rest_of_line ();
5086 return;
5087 }
5088 if (type == 0)
5089 {
5090 as_bad (_("Unrecognized predicate relation type"));
5091 ignore_rest_of_line ();
5092 return;
5093 }
5094 if (*input_line_pointer == ',')
5095 ++input_line_pointer;
5096 SKIP_WHITESPACE ();
5097 }
5098
5099 while (1)
5100 {
5101 valueT bits = 1;
5102 int sep, regno;
5103 expressionS pr, *pr1, *pr2;
5104
5105 sep = parse_operand_and_eval (&pr, ',');
5106 if (pr.X_op == O_register
5107 && pr.X_add_number >= REG_P
5108 && pr.X_add_number <= REG_P + 63)
5109 {
5110 regno = pr.X_add_number - REG_P;
5111 bits <<= regno;
5112 count++;
5113 if (p1 == -1)
5114 p1 = regno;
5115 else if (p2 == -1)
5116 p2 = regno;
5117 }
5118 else if (type != 'i'
5119 && pr.X_op == O_subtract
5120 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5121 && pr1->X_op == O_register
5122 && pr1->X_add_number >= REG_P
5123 && pr1->X_add_number <= REG_P + 63
5124 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5125 && pr2->X_op == O_register
5126 && pr2->X_add_number >= REG_P
5127 && pr2->X_add_number <= REG_P + 63)
5128 {
5129 /* It's a range. */
5130 int stop;
5131
5132 regno = pr1->X_add_number - REG_P;
5133 stop = pr2->X_add_number - REG_P;
5134 if (regno >= stop)
5135 {
5136 as_bad (_("Bad register range"));
5137 ignore_rest_of_line ();
5138 return;
5139 }
5140 bits = ((bits << stop) << 1) - (bits << regno);
5141 count += stop - regno + 1;
5142 }
5143 else
5144 {
5145 as_bad (_("Predicate register expected"));
5146 ignore_rest_of_line ();
5147 return;
5148 }
5149 if (mask & bits)
5150 as_warn (_("Duplicate predicate register ignored"));
5151 mask |= bits;
5152 if (sep != ',')
5153 break;
5154 }
5155
5156 switch (type)
5157 {
5158 case 'c':
5159 if (count == 0)
5160 mask = ~(valueT) 0;
5161 clear_qp_mutex (mask);
5162 clear_qp_implies (mask, (valueT) 0);
5163 break;
5164 case 'i':
5165 if (count != 2 || p1 == -1 || p2 == -1)
5166 as_bad (_("Predicate source and target required"));
5167 else if (p1 == 0 || p2 == 0)
5168 as_bad (_("Use of p0 is not valid in this context"));
5169 else
5170 add_qp_imply (p1, p2);
5171 break;
5172 case 'm':
5173 if (count < 2)
5174 {
5175 as_bad (_("At least two PR arguments expected"));
5176 break;
5177 }
5178 else if (mask & 1)
5179 {
5180 as_bad (_("Use of p0 is not valid in this context"));
5181 break;
5182 }
5183 add_qp_mutex (mask);
5184 break;
5185 case 's':
5186 /* note that we don't override any existing relations */
5187 if (count == 0)
5188 {
5189 as_bad (_("At least one PR argument expected"));
5190 break;
5191 }
5192 if (md.debug_dv)
5193 {
5194 fprintf (stderr, "Safe across calls: ");
5195 print_prmask (mask);
5196 fprintf (stderr, "\n");
5197 }
5198 qp_safe_across_calls = mask;
5199 break;
5200 }
5201 demand_empty_rest_of_line ();
5202 }
5203
5204 /* .entry label [, label [, ...]]
5205 Hint to DV code that the given labels are to be considered entry points.
5206 Otherwise, only global labels are considered entry points. */
5207
5208 static void
5209 dot_entry (int dummy ATTRIBUTE_UNUSED)
5210 {
5211 const char *err;
5212 char *name;
5213 int c;
5214 symbolS *symbolP;
5215
5216 do
5217 {
5218 name = input_line_pointer;
5219 c = get_symbol_end ();
5220 symbolP = symbol_find_or_make (name);
5221
5222 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (void *) symbolP);
5223 if (err)
5224 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5225 name, err);
5226
5227 *input_line_pointer = c;
5228 SKIP_WHITESPACE ();
5229 c = *input_line_pointer;
5230 if (c == ',')
5231 {
5232 input_line_pointer++;
5233 SKIP_WHITESPACE ();
5234 if (*input_line_pointer == '\n')
5235 c = '\n';
5236 }
5237 }
5238 while (c == ',');
5239
5240 demand_empty_rest_of_line ();
5241 }
5242
5243 /* .mem.offset offset, base
5244 "base" is used to distinguish between offsets from a different base. */
5245
5246 static void
5247 dot_mem_offset (int dummy ATTRIBUTE_UNUSED)
5248 {
5249 md.mem_offset.hint = 1;
5250 md.mem_offset.offset = get_absolute_expression ();
5251 if (*input_line_pointer != ',')
5252 {
5253 as_bad (_("Comma expected"));
5254 ignore_rest_of_line ();
5255 return;
5256 }
5257 ++input_line_pointer;
5258 md.mem_offset.base = get_absolute_expression ();
5259 demand_empty_rest_of_line ();
5260 }
5261
5262 /* ia64-specific pseudo-ops: */
5263 const pseudo_typeS md_pseudo_table[] =
5264 {
5265 { "radix", dot_radix, 0 },
5266 { "lcomm", s_lcomm_bytes, 1 },
5267 { "loc", dot_loc, 0 },
5268 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5269 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5270 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5271 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5272 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5273 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5274 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5275 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5276 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5277 { "proc", dot_proc, 0 },
5278 { "body", dot_body, 0 },
5279 { "prologue", dot_prologue, 0 },
5280 { "endp", dot_endp, 0 },
5281
5282 { "fframe", dot_fframe, 0 },
5283 { "vframe", dot_vframe, 0 },
5284 { "vframesp", dot_vframesp, 0 },
5285 { "vframepsp", dot_vframesp, 1 },
5286 { "save", dot_save, 0 },
5287 { "restore", dot_restore, 0 },
5288 { "restorereg", dot_restorereg, 0 },
5289 { "restorereg.p", dot_restorereg, 1 },
5290 { "handlerdata", dot_handlerdata, 0 },
5291 { "unwentry", dot_unwentry, 0 },
5292 { "altrp", dot_altrp, 0 },
5293 { "savesp", dot_savemem, 0 },
5294 { "savepsp", dot_savemem, 1 },
5295 { "save.g", dot_saveg, 0 },
5296 { "save.f", dot_savef, 0 },
5297 { "save.b", dot_saveb, 0 },
5298 { "save.gf", dot_savegf, 0 },
5299 { "spill", dot_spill, 0 },
5300 { "spillreg", dot_spillreg, 0 },
5301 { "spillsp", dot_spillmem, 0 },
5302 { "spillpsp", dot_spillmem, 1 },
5303 { "spillreg.p", dot_spillreg, 1 },
5304 { "spillsp.p", dot_spillmem, ~0 },
5305 { "spillpsp.p", dot_spillmem, ~1 },
5306 { "label_state", dot_label_state, 0 },
5307 { "copy_state", dot_copy_state, 0 },
5308 { "unwabi", dot_unwabi, 0 },
5309 { "personality", dot_personality, 0 },
5310 { "mii", dot_template, 0x0 },
5311 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5312 { "mlx", dot_template, 0x2 },
5313 { "mmi", dot_template, 0x4 },
5314 { "mfi", dot_template, 0x6 },
5315 { "mmf", dot_template, 0x7 },
5316 { "mib", dot_template, 0x8 },
5317 { "mbb", dot_template, 0x9 },
5318 { "bbb", dot_template, 0xb },
5319 { "mmb", dot_template, 0xc },
5320 { "mfb", dot_template, 0xe },
5321 { "align", dot_align, 0 },
5322 { "regstk", dot_regstk, 0 },
5323 { "rotr", dot_rot, DYNREG_GR },
5324 { "rotf", dot_rot, DYNREG_FR },
5325 { "rotp", dot_rot, DYNREG_PR },
5326 { "lsb", dot_byteorder, 0 },
5327 { "msb", dot_byteorder, 1 },
5328 { "psr", dot_psr, 0 },
5329 { "alias", dot_alias, 0 },
5330 { "secalias", dot_alias, 1 },
5331 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5332
5333 { "xdata1", dot_xdata, 1 },
5334 { "xdata2", dot_xdata, 2 },
5335 { "xdata4", dot_xdata, 4 },
5336 { "xdata8", dot_xdata, 8 },
5337 { "xdata16", dot_xdata, 16 },
5338 { "xreal4", dot_xfloat_cons, 'f' },
5339 { "xreal8", dot_xfloat_cons, 'd' },
5340 { "xreal10", dot_xfloat_cons, 'x' },
5341 { "xreal16", dot_xfloat_cons, 'X' },
5342 { "xstring", dot_xstringer, 8 + 0 },
5343 { "xstringz", dot_xstringer, 8 + 1 },
5344
5345 /* unaligned versions: */
5346 { "xdata2.ua", dot_xdata_ua, 2 },
5347 { "xdata4.ua", dot_xdata_ua, 4 },
5348 { "xdata8.ua", dot_xdata_ua, 8 },
5349 { "xdata16.ua", dot_xdata_ua, 16 },
5350 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5351 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5352 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5353 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5354
5355 /* annotations/DV checking support */
5356 { "entry", dot_entry, 0 },
5357 { "mem.offset", dot_mem_offset, 0 },
5358 { "pred.rel", dot_pred_rel, 0 },
5359 { "pred.rel.clear", dot_pred_rel, 'c' },
5360 { "pred.rel.imply", dot_pred_rel, 'i' },
5361 { "pred.rel.mutex", dot_pred_rel, 'm' },
5362 { "pred.safe_across_calls", dot_pred_rel, 's' },
5363 { "reg.val", dot_reg_val, 0 },
5364 { "serialize.data", dot_serialize, 0 },
5365 { "serialize.instruction", dot_serialize, 1 },
5366 { "auto", dot_dv_mode, 'a' },
5367 { "explicit", dot_dv_mode, 'e' },
5368 { "default", dot_dv_mode, 'd' },
5369
5370 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5371 IA-64 aligns data allocation pseudo-ops by default, so we have to
5372 tell it that these ones are supposed to be unaligned. Long term,
5373 should rewrite so that only IA-64 specific data allocation pseudo-ops
5374 are aligned by default. */
5375 {"2byte", stmt_cons_ua, 2},
5376 {"4byte", stmt_cons_ua, 4},
5377 {"8byte", stmt_cons_ua, 8},
5378
5379 #ifdef TE_VMS
5380 {"vms_common", obj_elf_vms_common, 0},
5381 #endif
5382
5383 { NULL, 0, 0 }
5384 };
5385
5386 static const struct pseudo_opcode
5387 {
5388 const char *name;
5389 void (*handler) (int);
5390 int arg;
5391 }
5392 pseudo_opcode[] =
5393 {
5394 /* these are more like pseudo-ops, but don't start with a dot */
5395 { "data1", cons, 1 },
5396 { "data2", cons, 2 },
5397 { "data4", cons, 4 },
5398 { "data8", cons, 8 },
5399 { "data16", cons, 16 },
5400 { "real4", stmt_float_cons, 'f' },
5401 { "real8", stmt_float_cons, 'd' },
5402 { "real10", stmt_float_cons, 'x' },
5403 { "real16", stmt_float_cons, 'X' },
5404 { "string", stringer, 8 + 0 },
5405 { "stringz", stringer, 8 + 1 },
5406
5407 /* unaligned versions: */
5408 { "data2.ua", stmt_cons_ua, 2 },
5409 { "data4.ua", stmt_cons_ua, 4 },
5410 { "data8.ua", stmt_cons_ua, 8 },
5411 { "data16.ua", stmt_cons_ua, 16 },
5412 { "real4.ua", float_cons, 'f' },
5413 { "real8.ua", float_cons, 'd' },
5414 { "real10.ua", float_cons, 'x' },
5415 { "real16.ua", float_cons, 'X' },
5416 };
5417
5418 /* Declare a register by creating a symbol for it and entering it in
5419 the symbol table. */
5420
5421 static symbolS *
5422 declare_register (const char *name, unsigned int regnum)
5423 {
5424 const char *err;
5425 symbolS *sym;
5426
5427 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5428
5429 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (void *) sym);
5430 if (err)
5431 as_fatal ("Inserting \"%s\" into register table failed: %s",
5432 name, err);
5433
5434 return sym;
5435 }
5436
5437 static void
5438 declare_register_set (const char *prefix,
5439 unsigned int num_regs,
5440 unsigned int base_regnum)
5441 {
5442 char name[8];
5443 unsigned int i;
5444
5445 for (i = 0; i < num_regs; ++i)
5446 {
5447 snprintf (name, sizeof (name), "%s%u", prefix, i);
5448 declare_register (name, base_regnum + i);
5449 }
5450 }
5451
5452 static unsigned int
5453 operand_width (enum ia64_opnd opnd)
5454 {
5455 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5456 unsigned int bits = 0;
5457 int i;
5458
5459 bits = 0;
5460 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5461 bits += odesc->field[i].bits;
5462
5463 return bits;
5464 }
5465
5466 static enum operand_match_result
5467 operand_match (const struct ia64_opcode *idesc, int res_index, expressionS *e)
5468 {
5469 enum ia64_opnd opnd = idesc->operands[res_index];
5470 int bits, relocatable = 0;
5471 struct insn_fix *fix;
5472 bfd_signed_vma val;
5473
5474 switch (opnd)
5475 {
5476 /* constants: */
5477
5478 case IA64_OPND_AR_CCV:
5479 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5480 return OPERAND_MATCH;
5481 break;
5482
5483 case IA64_OPND_AR_CSD:
5484 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5485 return OPERAND_MATCH;
5486 break;
5487
5488 case IA64_OPND_AR_PFS:
5489 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5490 return OPERAND_MATCH;
5491 break;
5492
5493 case IA64_OPND_GR0:
5494 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5495 return OPERAND_MATCH;
5496 break;
5497
5498 case IA64_OPND_IP:
5499 if (e->X_op == O_register && e->X_add_number == REG_IP)
5500 return OPERAND_MATCH;
5501 break;
5502
5503 case IA64_OPND_PR:
5504 if (e->X_op == O_register && e->X_add_number == REG_PR)
5505 return OPERAND_MATCH;
5506 break;
5507
5508 case IA64_OPND_PR_ROT:
5509 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5510 return OPERAND_MATCH;
5511 break;
5512
5513 case IA64_OPND_PSR:
5514 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5515 return OPERAND_MATCH;
5516 break;
5517
5518 case IA64_OPND_PSR_L:
5519 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5520 return OPERAND_MATCH;
5521 break;
5522
5523 case IA64_OPND_PSR_UM:
5524 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5525 return OPERAND_MATCH;
5526 break;
5527
5528 case IA64_OPND_C1:
5529 if (e->X_op == O_constant)
5530 {
5531 if (e->X_add_number == 1)
5532 return OPERAND_MATCH;
5533 else
5534 return OPERAND_OUT_OF_RANGE;
5535 }
5536 break;
5537
5538 case IA64_OPND_C8:
5539 if (e->X_op == O_constant)
5540 {
5541 if (e->X_add_number == 8)
5542 return OPERAND_MATCH;
5543 else
5544 return OPERAND_OUT_OF_RANGE;
5545 }
5546 break;
5547
5548 case IA64_OPND_C16:
5549 if (e->X_op == O_constant)
5550 {
5551 if (e->X_add_number == 16)
5552 return OPERAND_MATCH;
5553 else
5554 return OPERAND_OUT_OF_RANGE;
5555 }
5556 break;
5557
5558 /* register operands: */
5559
5560 case IA64_OPND_AR3:
5561 if (e->X_op == O_register && e->X_add_number >= REG_AR
5562 && e->X_add_number < REG_AR + 128)
5563 return OPERAND_MATCH;
5564 break;
5565
5566 case IA64_OPND_B1:
5567 case IA64_OPND_B2:
5568 if (e->X_op == O_register && e->X_add_number >= REG_BR
5569 && e->X_add_number < REG_BR + 8)
5570 return OPERAND_MATCH;
5571 break;
5572
5573 case IA64_OPND_CR3:
5574 if (e->X_op == O_register && e->X_add_number >= REG_CR
5575 && e->X_add_number < REG_CR + 128)
5576 return OPERAND_MATCH;
5577 break;
5578
5579 case IA64_OPND_DAHR3:
5580 if (e->X_op == O_register && e->X_add_number >= REG_DAHR
5581 && e->X_add_number < REG_DAHR + 8)
5582 return OPERAND_MATCH;
5583 break;
5584
5585 case IA64_OPND_F1:
5586 case IA64_OPND_F2:
5587 case IA64_OPND_F3:
5588 case IA64_OPND_F4:
5589 if (e->X_op == O_register && e->X_add_number >= REG_FR
5590 && e->X_add_number < REG_FR + 128)
5591 return OPERAND_MATCH;
5592 break;
5593
5594 case IA64_OPND_P1:
5595 case IA64_OPND_P2:
5596 if (e->X_op == O_register && e->X_add_number >= REG_P
5597 && e->X_add_number < REG_P + 64)
5598 return OPERAND_MATCH;
5599 break;
5600
5601 case IA64_OPND_R1:
5602 case IA64_OPND_R2:
5603 case IA64_OPND_R3:
5604 if (e->X_op == O_register && e->X_add_number >= REG_GR
5605 && e->X_add_number < REG_GR + 128)
5606 return OPERAND_MATCH;
5607 break;
5608
5609 case IA64_OPND_R3_2:
5610 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5611 {
5612 if (e->X_add_number < REG_GR + 4)
5613 return OPERAND_MATCH;
5614 else if (e->X_add_number < REG_GR + 128)
5615 return OPERAND_OUT_OF_RANGE;
5616 }
5617 break;
5618
5619 /* indirect operands: */
5620 case IA64_OPND_CPUID_R3:
5621 case IA64_OPND_DBR_R3:
5622 case IA64_OPND_DTR_R3:
5623 case IA64_OPND_ITR_R3:
5624 case IA64_OPND_IBR_R3:
5625 case IA64_OPND_MSR_R3:
5626 case IA64_OPND_PKR_R3:
5627 case IA64_OPND_PMC_R3:
5628 case IA64_OPND_PMD_R3:
5629 case IA64_OPND_DAHR_R3:
5630 case IA64_OPND_RR_R3:
5631 if (e->X_op == O_index && e->X_op_symbol
5632 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5633 == opnd - IA64_OPND_CPUID_R3))
5634 return OPERAND_MATCH;
5635 break;
5636
5637 case IA64_OPND_MR3:
5638 if (e->X_op == O_index && !e->X_op_symbol)
5639 return OPERAND_MATCH;
5640 break;
5641
5642 /* immediate operands: */
5643 case IA64_OPND_CNT2a:
5644 case IA64_OPND_LEN4:
5645 case IA64_OPND_LEN6:
5646 bits = operand_width (idesc->operands[res_index]);
5647 if (e->X_op == O_constant)
5648 {
5649 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5650 return OPERAND_MATCH;
5651 else
5652 return OPERAND_OUT_OF_RANGE;
5653 }
5654 break;
5655
5656 case IA64_OPND_CNT2b:
5657 if (e->X_op == O_constant)
5658 {
5659 if ((bfd_vma) (e->X_add_number - 1) < 3)
5660 return OPERAND_MATCH;
5661 else
5662 return OPERAND_OUT_OF_RANGE;
5663 }
5664 break;
5665
5666 case IA64_OPND_CNT2c:
5667 val = e->X_add_number;
5668 if (e->X_op == O_constant)
5669 {
5670 if ((val == 0 || val == 7 || val == 15 || val == 16))
5671 return OPERAND_MATCH;
5672 else
5673 return OPERAND_OUT_OF_RANGE;
5674 }
5675 break;
5676
5677 case IA64_OPND_SOR:
5678 /* SOR must be an integer multiple of 8 */
5679 if (e->X_op == O_constant && e->X_add_number & 0x7)
5680 return OPERAND_OUT_OF_RANGE;
5681 case IA64_OPND_SOF:
5682 case IA64_OPND_SOL:
5683 if (e->X_op == O_constant)
5684 {
5685 if ((bfd_vma) e->X_add_number <= 96)
5686 return OPERAND_MATCH;
5687 else
5688 return OPERAND_OUT_OF_RANGE;
5689 }
5690 break;
5691
5692 case IA64_OPND_IMMU62:
5693 if (e->X_op == O_constant)
5694 {
5695 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5696 return OPERAND_MATCH;
5697 else
5698 return OPERAND_OUT_OF_RANGE;
5699 }
5700 else
5701 {
5702 /* FIXME -- need 62-bit relocation type */
5703 as_bad (_("62-bit relocation not yet implemented"));
5704 }
5705 break;
5706
5707 case IA64_OPND_IMMU64:
5708 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5709 || e->X_op == O_subtract)
5710 {
5711 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5712 fix->code = BFD_RELOC_IA64_IMM64;
5713 if (e->X_op != O_subtract)
5714 {
5715 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5716 if (e->X_op == O_pseudo_fixup)
5717 e->X_op = O_symbol;
5718 }
5719
5720 fix->opnd = idesc->operands[res_index];
5721 fix->expr = *e;
5722 fix->is_pcrel = 0;
5723 ++CURR_SLOT.num_fixups;
5724 return OPERAND_MATCH;
5725 }
5726 else if (e->X_op == O_constant)
5727 return OPERAND_MATCH;
5728 break;
5729
5730 case IA64_OPND_IMMU5b:
5731 if (e->X_op == O_constant)
5732 {
5733 val = e->X_add_number;
5734 if (val >= 32 && val <= 63)
5735 return OPERAND_MATCH;
5736 else
5737 return OPERAND_OUT_OF_RANGE;
5738 }
5739 break;
5740
5741 case IA64_OPND_CCNT5:
5742 case IA64_OPND_CNT5:
5743 case IA64_OPND_CNT6:
5744 case IA64_OPND_CPOS6a:
5745 case IA64_OPND_CPOS6b:
5746 case IA64_OPND_CPOS6c:
5747 case IA64_OPND_IMMU2:
5748 case IA64_OPND_IMMU7a:
5749 case IA64_OPND_IMMU7b:
5750 case IA64_OPND_IMMU16:
5751 case IA64_OPND_IMMU19:
5752 case IA64_OPND_IMMU21:
5753 case IA64_OPND_IMMU24:
5754 case IA64_OPND_MBTYPE4:
5755 case IA64_OPND_MHTYPE8:
5756 case IA64_OPND_POS6:
5757 bits = operand_width (idesc->operands[res_index]);
5758 if (e->X_op == O_constant)
5759 {
5760 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5761 return OPERAND_MATCH;
5762 else
5763 return OPERAND_OUT_OF_RANGE;
5764 }
5765 break;
5766
5767 case IA64_OPND_IMMU9:
5768 bits = operand_width (idesc->operands[res_index]);
5769 if (e->X_op == O_constant)
5770 {
5771 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5772 {
5773 int lobits = e->X_add_number & 0x3;
5774 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5775 e->X_add_number |= (bfd_vma) 0x3;
5776 return OPERAND_MATCH;
5777 }
5778 else
5779 return OPERAND_OUT_OF_RANGE;
5780 }
5781 break;
5782
5783 case IA64_OPND_IMM44:
5784 /* least 16 bits must be zero */
5785 if ((e->X_add_number & 0xffff) != 0)
5786 /* XXX technically, this is wrong: we should not be issuing warning
5787 messages until we're sure this instruction pattern is going to
5788 be used! */
5789 as_warn (_("lower 16 bits of mask ignored"));
5790
5791 if (e->X_op == O_constant)
5792 {
5793 if (((e->X_add_number >= 0
5794 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5795 || (e->X_add_number < 0
5796 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5797 {
5798 /* sign-extend */
5799 if (e->X_add_number >= 0
5800 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5801 {
5802 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5803 }
5804 return OPERAND_MATCH;
5805 }
5806 else
5807 return OPERAND_OUT_OF_RANGE;
5808 }
5809 break;
5810
5811 case IA64_OPND_IMM17:
5812 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5813 if (e->X_op == O_constant)
5814 {
5815 if (((e->X_add_number >= 0
5816 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5817 || (e->X_add_number < 0
5818 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5819 {
5820 /* sign-extend */
5821 if (e->X_add_number >= 0
5822 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5823 {
5824 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5825 }
5826 return OPERAND_MATCH;
5827 }
5828 else
5829 return OPERAND_OUT_OF_RANGE;
5830 }
5831 break;
5832
5833 case IA64_OPND_IMM14:
5834 case IA64_OPND_IMM22:
5835 relocatable = 1;
5836 case IA64_OPND_IMM1:
5837 case IA64_OPND_IMM8:
5838 case IA64_OPND_IMM8U4:
5839 case IA64_OPND_IMM8M1:
5840 case IA64_OPND_IMM8M1U4:
5841 case IA64_OPND_IMM8M1U8:
5842 case IA64_OPND_IMM9a:
5843 case IA64_OPND_IMM9b:
5844 bits = operand_width (idesc->operands[res_index]);
5845 if (relocatable && (e->X_op == O_symbol
5846 || e->X_op == O_subtract
5847 || e->X_op == O_pseudo_fixup))
5848 {
5849 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5850
5851 if (idesc->operands[res_index] == IA64_OPND_IMM14)
5852 fix->code = BFD_RELOC_IA64_IMM14;
5853 else
5854 fix->code = BFD_RELOC_IA64_IMM22;
5855
5856 if (e->X_op != O_subtract)
5857 {
5858 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5859 if (e->X_op == O_pseudo_fixup)
5860 e->X_op = O_symbol;
5861 }
5862
5863 fix->opnd = idesc->operands[res_index];
5864 fix->expr = *e;
5865 fix->is_pcrel = 0;
5866 ++CURR_SLOT.num_fixups;
5867 return OPERAND_MATCH;
5868 }
5869 else if (e->X_op != O_constant
5870 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5871 return OPERAND_MISMATCH;
5872
5873 if (opnd == IA64_OPND_IMM8M1U4)
5874 {
5875 /* Zero is not valid for unsigned compares that take an adjusted
5876 constant immediate range. */
5877 if (e->X_add_number == 0)
5878 return OPERAND_OUT_OF_RANGE;
5879
5880 /* Sign-extend 32-bit unsigned numbers, so that the following range
5881 checks will work. */
5882 val = e->X_add_number;
5883 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5884 && ((val & ((bfd_vma) 1 << 31)) != 0))
5885 val = ((val << 32) >> 32);
5886
5887 /* Check for 0x100000000. This is valid because
5888 0x100000000-1 is the same as ((uint32_t) -1). */
5889 if (val == ((bfd_signed_vma) 1 << 32))
5890 return OPERAND_MATCH;
5891
5892 val = val - 1;
5893 }
5894 else if (opnd == IA64_OPND_IMM8M1U8)
5895 {
5896 /* Zero is not valid for unsigned compares that take an adjusted
5897 constant immediate range. */
5898 if (e->X_add_number == 0)
5899 return OPERAND_OUT_OF_RANGE;
5900
5901 /* Check for 0x10000000000000000. */
5902 if (e->X_op == O_big)
5903 {
5904 if (generic_bignum[0] == 0
5905 && generic_bignum[1] == 0
5906 && generic_bignum[2] == 0
5907 && generic_bignum[3] == 0
5908 && generic_bignum[4] == 1)
5909 return OPERAND_MATCH;
5910 else
5911 return OPERAND_OUT_OF_RANGE;
5912 }
5913 else
5914 val = e->X_add_number - 1;
5915 }
5916 else if (opnd == IA64_OPND_IMM8M1)
5917 val = e->X_add_number - 1;
5918 else if (opnd == IA64_OPND_IMM8U4)
5919 {
5920 /* Sign-extend 32-bit unsigned numbers, so that the following range
5921 checks will work. */
5922 val = e->X_add_number;
5923 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5924 && ((val & ((bfd_vma) 1 << 31)) != 0))
5925 val = ((val << 32) >> 32);
5926 }
5927 else
5928 val = e->X_add_number;
5929
5930 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5931 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5932 return OPERAND_MATCH;
5933 else
5934 return OPERAND_OUT_OF_RANGE;
5935
5936 case IA64_OPND_INC3:
5937 /* +/- 1, 4, 8, 16 */
5938 val = e->X_add_number;
5939 if (val < 0)
5940 val = -val;
5941 if (e->X_op == O_constant)
5942 {
5943 if ((val == 1 || val == 4 || val == 8 || val == 16))
5944 return OPERAND_MATCH;
5945 else
5946 return OPERAND_OUT_OF_RANGE;
5947 }
5948 break;
5949
5950 case IA64_OPND_TGT25:
5951 case IA64_OPND_TGT25b:
5952 case IA64_OPND_TGT25c:
5953 case IA64_OPND_TGT64:
5954 if (e->X_op == O_symbol)
5955 {
5956 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5957 if (opnd == IA64_OPND_TGT25)
5958 fix->code = BFD_RELOC_IA64_PCREL21F;
5959 else if (opnd == IA64_OPND_TGT25b)
5960 fix->code = BFD_RELOC_IA64_PCREL21M;
5961 else if (opnd == IA64_OPND_TGT25c)
5962 fix->code = BFD_RELOC_IA64_PCREL21B;
5963 else if (opnd == IA64_OPND_TGT64)
5964 fix->code = BFD_RELOC_IA64_PCREL60B;
5965 else
5966 abort ();
5967
5968 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5969 fix->opnd = idesc->operands[res_index];
5970 fix->expr = *e;
5971 fix->is_pcrel = 1;
5972 ++CURR_SLOT.num_fixups;
5973 return OPERAND_MATCH;
5974 }
5975 case IA64_OPND_TAG13:
5976 case IA64_OPND_TAG13b:
5977 switch (e->X_op)
5978 {
5979 case O_constant:
5980 return OPERAND_MATCH;
5981
5982 case O_symbol:
5983 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5984 /* There are no external relocs for TAG13/TAG13b fields, so we
5985 create a dummy reloc. This will not live past md_apply_fix. */
5986 fix->code = BFD_RELOC_UNUSED;
5987 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5988 fix->opnd = idesc->operands[res_index];
5989 fix->expr = *e;
5990 fix->is_pcrel = 1;
5991 ++CURR_SLOT.num_fixups;
5992 return OPERAND_MATCH;
5993
5994 default:
5995 break;
5996 }
5997 break;
5998
5999 case IA64_OPND_LDXMOV:
6000 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6001 fix->code = BFD_RELOC_IA64_LDXMOV;
6002 fix->opnd = idesc->operands[res_index];
6003 fix->expr = *e;
6004 fix->is_pcrel = 0;
6005 ++CURR_SLOT.num_fixups;
6006 return OPERAND_MATCH;
6007
6008 case IA64_OPND_STRD5b:
6009 if (e->X_op == O_constant)
6010 {
6011 /* 5-bit signed scaled by 64 */
6012 if ((e->X_add_number <= ( 0xf << 6 ))
6013 && (e->X_add_number >= -( 0x10 << 6 )))
6014 {
6015
6016 /* Must be a multiple of 64 */
6017 if ((e->X_add_number & 0x3f) != 0)
6018 as_warn (_("stride must be a multiple of 64; lower 6 bits ignored"));
6019
6020 e->X_add_number &= ~ 0x3f;
6021 return OPERAND_MATCH;
6022 }
6023 else
6024 return OPERAND_OUT_OF_RANGE;
6025 }
6026 break;
6027 case IA64_OPND_CNT6a:
6028 if (e->X_op == O_constant)
6029 {
6030 /* 6-bit unsigned biased by 1 -- count 0 is meaningless */
6031 if ((e->X_add_number <= 64)
6032 && (e->X_add_number > 0) )
6033 {
6034 return OPERAND_MATCH;
6035 }
6036 else
6037 return OPERAND_OUT_OF_RANGE;
6038 }
6039 break;
6040
6041 default:
6042 break;
6043 }
6044 return OPERAND_MISMATCH;
6045 }
6046
6047 static int
6048 parse_operand (expressionS *e, int more)
6049 {
6050 int sep = '\0';
6051
6052 memset (e, 0, sizeof (*e));
6053 e->X_op = O_absent;
6054 SKIP_WHITESPACE ();
6055 expression (e);
6056 sep = *input_line_pointer;
6057 if (more && (sep == ',' || sep == more))
6058 ++input_line_pointer;
6059 return sep;
6060 }
6061
6062 static int
6063 parse_operand_and_eval (expressionS *e, int more)
6064 {
6065 int sep = parse_operand (e, more);
6066 resolve_expression (e);
6067 return sep;
6068 }
6069
6070 static int
6071 parse_operand_maybe_eval (expressionS *e, int more, enum ia64_opnd op)
6072 {
6073 int sep = parse_operand (e, more);
6074 switch (op)
6075 {
6076 case IA64_OPND_IMM14:
6077 case IA64_OPND_IMM22:
6078 case IA64_OPND_IMMU64:
6079 case IA64_OPND_TGT25:
6080 case IA64_OPND_TGT25b:
6081 case IA64_OPND_TGT25c:
6082 case IA64_OPND_TGT64:
6083 case IA64_OPND_TAG13:
6084 case IA64_OPND_TAG13b:
6085 case IA64_OPND_LDXMOV:
6086 break;
6087 default:
6088 resolve_expression (e);
6089 break;
6090 }
6091 return sep;
6092 }
6093
6094 /* Returns the next entry in the opcode table that matches the one in
6095 IDESC, and frees the entry in IDESC. If no matching entry is
6096 found, NULL is returned instead. */
6097
6098 static struct ia64_opcode *
6099 get_next_opcode (struct ia64_opcode *idesc)
6100 {
6101 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6102 ia64_free_opcode (idesc);
6103 return next;
6104 }
6105
6106 /* Parse the operands for the opcode and find the opcode variant that
6107 matches the specified operands, or NULL if no match is possible. */
6108
6109 static struct ia64_opcode *
6110 parse_operands (struct ia64_opcode *idesc)
6111 {
6112 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6113 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6114 int reg1, reg2;
6115 char reg_class;
6116 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6117 enum operand_match_result result;
6118 char mnemonic[129];
6119 char *first_arg = 0, *end, *saved_input_pointer;
6120 unsigned int sof;
6121
6122 gas_assert (strlen (idesc->name) <= 128);
6123
6124 strcpy (mnemonic, idesc->name);
6125 if (idesc->operands[2] == IA64_OPND_SOF
6126 || idesc->operands[1] == IA64_OPND_SOF)
6127 {
6128 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6129 can't parse the first operand until we have parsed the
6130 remaining operands of the "alloc" instruction. */
6131 SKIP_WHITESPACE ();
6132 first_arg = input_line_pointer;
6133 end = strchr (input_line_pointer, '=');
6134 if (!end)
6135 {
6136 as_bad (_("Expected separator `='"));
6137 return 0;
6138 }
6139 input_line_pointer = end + 1;
6140 ++i;
6141 ++num_outputs;
6142 }
6143
6144 for (; ; ++i)
6145 {
6146 if (i < NELEMS (CURR_SLOT.opnd))
6147 {
6148 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + i, '=',
6149 idesc->operands[i]);
6150 if (CURR_SLOT.opnd[i].X_op == O_absent)
6151 break;
6152 }
6153 else
6154 {
6155 expressionS dummy;
6156
6157 sep = parse_operand (&dummy, '=');
6158 if (dummy.X_op == O_absent)
6159 break;
6160 }
6161
6162 ++num_operands;
6163
6164 if (sep != '=' && sep != ',')
6165 break;
6166
6167 if (sep == '=')
6168 {
6169 if (num_outputs > 0)
6170 as_bad (_("Duplicate equal sign (=) in instruction"));
6171 else
6172 num_outputs = i + 1;
6173 }
6174 }
6175 if (sep != '\0')
6176 {
6177 as_bad (_("Illegal operand separator `%c'"), sep);
6178 return 0;
6179 }
6180
6181 if (idesc->operands[2] == IA64_OPND_SOF
6182 || idesc->operands[1] == IA64_OPND_SOF)
6183 {
6184 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6185 Note, however, that due to that mapping operand numbers in error
6186 messages for any of the constant operands will not be correct. */
6187 know (strcmp (idesc->name, "alloc") == 0);
6188 /* The first operand hasn't been parsed/initialized, yet (but
6189 num_operands intentionally doesn't account for that). */
6190 i = num_operands > 4 ? 2 : 1;
6191 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6192 ? CURR_SLOT.opnd[n].X_add_number \
6193 : 0)
6194 sof = set_regstack (FORCE_CONST(i),
6195 FORCE_CONST(i + 1),
6196 FORCE_CONST(i + 2),
6197 FORCE_CONST(i + 3));
6198 #undef FORCE_CONST
6199
6200 /* now we can parse the first arg: */
6201 saved_input_pointer = input_line_pointer;
6202 input_line_pointer = first_arg;
6203 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + 0, '=',
6204 idesc->operands[0]);
6205 if (sep != '=')
6206 --num_outputs; /* force error */
6207 input_line_pointer = saved_input_pointer;
6208
6209 CURR_SLOT.opnd[i].X_add_number = sof;
6210 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6211 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6212 CURR_SLOT.opnd[i + 1].X_add_number
6213 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6214 else
6215 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6216 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6217 }
6218
6219 highest_unmatched_operand = -4;
6220 curr_out_of_range_pos = -1;
6221 error_pos = 0;
6222 for (; idesc; idesc = get_next_opcode (idesc))
6223 {
6224 if (num_outputs != idesc->num_outputs)
6225 continue; /* mismatch in # of outputs */
6226 if (highest_unmatched_operand < 0)
6227 highest_unmatched_operand |= 1;
6228 if (num_operands > NELEMS (idesc->operands)
6229 || (num_operands < NELEMS (idesc->operands)
6230 && idesc->operands[num_operands])
6231 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6232 continue; /* mismatch in number of arguments */
6233 if (highest_unmatched_operand < 0)
6234 highest_unmatched_operand |= 2;
6235
6236 CURR_SLOT.num_fixups = 0;
6237
6238 /* Try to match all operands. If we see an out-of-range operand,
6239 then continue trying to match the rest of the operands, since if
6240 the rest match, then this idesc will give the best error message. */
6241
6242 out_of_range_pos = -1;
6243 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6244 {
6245 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6246 if (result != OPERAND_MATCH)
6247 {
6248 if (result != OPERAND_OUT_OF_RANGE)
6249 break;
6250 if (out_of_range_pos < 0)
6251 /* remember position of the first out-of-range operand: */
6252 out_of_range_pos = i;
6253 }
6254 }
6255
6256 /* If we did not match all operands, or if at least one operand was
6257 out-of-range, then this idesc does not match. Keep track of which
6258 idesc matched the most operands before failing. If we have two
6259 idescs that failed at the same position, and one had an out-of-range
6260 operand, then prefer the out-of-range operand. Thus if we have
6261 "add r0=0x1000000,r1" we get an error saying the constant is out
6262 of range instead of an error saying that the constant should have been
6263 a register. */
6264
6265 if (i != num_operands || out_of_range_pos >= 0)
6266 {
6267 if (i > highest_unmatched_operand
6268 || (i == highest_unmatched_operand
6269 && out_of_range_pos > curr_out_of_range_pos))
6270 {
6271 highest_unmatched_operand = i;
6272 if (out_of_range_pos >= 0)
6273 {
6274 expected_operand = idesc->operands[out_of_range_pos];
6275 error_pos = out_of_range_pos;
6276 }
6277 else
6278 {
6279 expected_operand = idesc->operands[i];
6280 error_pos = i;
6281 }
6282 curr_out_of_range_pos = out_of_range_pos;
6283 }
6284 continue;
6285 }
6286
6287 break;
6288 }
6289 if (!idesc)
6290 {
6291 if (expected_operand)
6292 as_bad (_("Operand %u of `%s' should be %s"),
6293 error_pos + 1, mnemonic,
6294 elf64_ia64_operands[expected_operand].desc);
6295 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6296 as_bad (_("Wrong number of output operands"));
6297 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6298 as_bad (_("Wrong number of input operands"));
6299 else
6300 as_bad (_("Operand mismatch"));
6301 return 0;
6302 }
6303
6304 /* Check that the instruction doesn't use
6305 - r0, f0, or f1 as output operands
6306 - the same predicate twice as output operands
6307 - r0 as address of a base update load or store
6308 - the same GR as output and address of a base update load
6309 - two even- or two odd-numbered FRs as output operands of a floating
6310 point parallel load.
6311 At most two (conflicting) output (or output-like) operands can exist,
6312 (floating point parallel loads have three outputs, but the base register,
6313 if updated, cannot conflict with the actual outputs). */
6314 reg2 = reg1 = -1;
6315 for (i = 0; i < num_operands; ++i)
6316 {
6317 int regno = 0;
6318
6319 reg_class = 0;
6320 switch (idesc->operands[i])
6321 {
6322 case IA64_OPND_R1:
6323 case IA64_OPND_R2:
6324 case IA64_OPND_R3:
6325 if (i < num_outputs)
6326 {
6327 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6328 reg_class = 'r';
6329 else if (reg1 < 0)
6330 reg1 = CURR_SLOT.opnd[i].X_add_number;
6331 else if (reg2 < 0)
6332 reg2 = CURR_SLOT.opnd[i].X_add_number;
6333 }
6334 break;
6335 case IA64_OPND_P1:
6336 case IA64_OPND_P2:
6337 if (i < num_outputs)
6338 {
6339 if (reg1 < 0)
6340 reg1 = CURR_SLOT.opnd[i].X_add_number;
6341 else if (reg2 < 0)
6342 reg2 = CURR_SLOT.opnd[i].X_add_number;
6343 }
6344 break;
6345 case IA64_OPND_F1:
6346 case IA64_OPND_F2:
6347 case IA64_OPND_F3:
6348 case IA64_OPND_F4:
6349 if (i < num_outputs)
6350 {
6351 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6352 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6353 {
6354 reg_class = 'f';
6355 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6356 }
6357 else if (reg1 < 0)
6358 reg1 = CURR_SLOT.opnd[i].X_add_number;
6359 else if (reg2 < 0)
6360 reg2 = CURR_SLOT.opnd[i].X_add_number;
6361 }
6362 break;
6363 case IA64_OPND_MR3:
6364 if (idesc->flags & IA64_OPCODE_POSTINC)
6365 {
6366 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6367 reg_class = 'm';
6368 else if (reg1 < 0)
6369 reg1 = CURR_SLOT.opnd[i].X_add_number;
6370 else if (reg2 < 0)
6371 reg2 = CURR_SLOT.opnd[i].X_add_number;
6372 }
6373 break;
6374 default:
6375 break;
6376 }
6377 switch (reg_class)
6378 {
6379 case 0:
6380 break;
6381 default:
6382 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6383 break;
6384 case 'm':
6385 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6386 break;
6387 }
6388 }
6389 if (reg1 == reg2)
6390 {
6391 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6392 {
6393 reg1 -= REG_GR;
6394 reg_class = 'r';
6395 }
6396 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6397 {
6398 reg1 -= REG_P;
6399 reg_class = 'p';
6400 }
6401 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6402 {
6403 reg1 -= REG_FR;
6404 reg_class = 'f';
6405 }
6406 else
6407 reg_class = 0;
6408 if (reg_class)
6409 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6410 }
6411 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6412 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6413 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6414 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6415 && ! ((reg1 ^ reg2) & 1))
6416 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6417 reg1 - REG_FR, reg2 - REG_FR);
6418 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6419 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6420 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6421 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6422 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6423 reg1 - REG_FR, reg2 - REG_FR);
6424 return idesc;
6425 }
6426
6427 static void
6428 build_insn (struct slot *slot, bfd_vma *insnp)
6429 {
6430 const struct ia64_operand *odesc, *o2desc;
6431 struct ia64_opcode *idesc = slot->idesc;
6432 bfd_vma insn;
6433 bfd_signed_vma val;
6434 const char *err;
6435 int i;
6436
6437 insn = idesc->opcode | slot->qp_regno;
6438
6439 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6440 {
6441 if (slot->opnd[i].X_op == O_register
6442 || slot->opnd[i].X_op == O_constant
6443 || slot->opnd[i].X_op == O_index)
6444 val = slot->opnd[i].X_add_number;
6445 else if (slot->opnd[i].X_op == O_big)
6446 {
6447 /* This must be the value 0x10000000000000000. */
6448 gas_assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6449 val = 0;
6450 }
6451 else
6452 val = 0;
6453
6454 switch (idesc->operands[i])
6455 {
6456 case IA64_OPND_IMMU64:
6457 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6458 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6459 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6460 | (((val >> 63) & 0x1) << 36));
6461 continue;
6462
6463 case IA64_OPND_IMMU62:
6464 val &= 0x3fffffffffffffffULL;
6465 if (val != slot->opnd[i].X_add_number)
6466 as_warn (_("Value truncated to 62 bits"));
6467 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6468 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6469 continue;
6470
6471 case IA64_OPND_TGT64:
6472 val >>= 4;
6473 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6474 insn |= ((((val >> 59) & 0x1) << 36)
6475 | (((val >> 0) & 0xfffff) << 13));
6476 continue;
6477
6478 case IA64_OPND_AR3:
6479 val -= REG_AR;
6480 break;
6481
6482 case IA64_OPND_B1:
6483 case IA64_OPND_B2:
6484 val -= REG_BR;
6485 break;
6486
6487 case IA64_OPND_CR3:
6488 val -= REG_CR;
6489 break;
6490
6491 case IA64_OPND_DAHR3:
6492 val -= REG_DAHR;
6493 break;
6494
6495 case IA64_OPND_F1:
6496 case IA64_OPND_F2:
6497 case IA64_OPND_F3:
6498 case IA64_OPND_F4:
6499 val -= REG_FR;
6500 break;
6501
6502 case IA64_OPND_P1:
6503 case IA64_OPND_P2:
6504 val -= REG_P;
6505 break;
6506
6507 case IA64_OPND_R1:
6508 case IA64_OPND_R2:
6509 case IA64_OPND_R3:
6510 case IA64_OPND_R3_2:
6511 case IA64_OPND_CPUID_R3:
6512 case IA64_OPND_DBR_R3:
6513 case IA64_OPND_DTR_R3:
6514 case IA64_OPND_ITR_R3:
6515 case IA64_OPND_IBR_R3:
6516 case IA64_OPND_MR3:
6517 case IA64_OPND_MSR_R3:
6518 case IA64_OPND_PKR_R3:
6519 case IA64_OPND_PMC_R3:
6520 case IA64_OPND_PMD_R3:
6521 case IA64_OPND_DAHR_R3:
6522 case IA64_OPND_RR_R3:
6523 val -= REG_GR;
6524 break;
6525
6526 default:
6527 break;
6528 }
6529
6530 odesc = elf64_ia64_operands + idesc->operands[i];
6531 err = (*odesc->insert) (odesc, val, &insn);
6532 if (err)
6533 as_bad_where (slot->src_file, slot->src_line,
6534 _("Bad operand value: %s"), err);
6535 if (idesc->flags & IA64_OPCODE_PSEUDO)
6536 {
6537 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6538 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6539 {
6540 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6541 (*o2desc->insert) (o2desc, val, &insn);
6542 }
6543 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6544 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6545 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6546 {
6547 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6548 (*o2desc->insert) (o2desc, 64 - val, &insn);
6549 }
6550 }
6551 }
6552 *insnp = insn;
6553 }
6554
6555 static void
6556 emit_one_bundle (void)
6557 {
6558 int manual_bundling_off = 0, manual_bundling = 0;
6559 enum ia64_unit required_unit, insn_unit = 0;
6560 enum ia64_insn_type type[3], insn_type;
6561 unsigned int template_val, orig_template;
6562 bfd_vma insn[3] = { -1, -1, -1 };
6563 struct ia64_opcode *idesc;
6564 int end_of_insn_group = 0, user_template = -1;
6565 int n, i, j, first, curr, last_slot;
6566 bfd_vma t0 = 0, t1 = 0;
6567 struct label_fix *lfix;
6568 bfd_boolean mark_label;
6569 struct insn_fix *ifix;
6570 char mnemonic[16];
6571 fixS *fix;
6572 char *f;
6573 int addr_mod;
6574
6575 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6576 know (first >= 0 && first < NUM_SLOTS);
6577 n = MIN (3, md.num_slots_in_use);
6578
6579 /* Determine template: user user_template if specified, best match
6580 otherwise: */
6581
6582 if (md.slot[first].user_template >= 0)
6583 user_template = template_val = md.slot[first].user_template;
6584 else
6585 {
6586 /* Auto select appropriate template. */
6587 memset (type, 0, sizeof (type));
6588 curr = first;
6589 for (i = 0; i < n; ++i)
6590 {
6591 if (md.slot[curr].label_fixups && i != 0)
6592 break;
6593 type[i] = md.slot[curr].idesc->type;
6594 curr = (curr + 1) % NUM_SLOTS;
6595 }
6596 template_val = best_template[type[0]][type[1]][type[2]];
6597 }
6598
6599 /* initialize instructions with appropriate nops: */
6600 for (i = 0; i < 3; ++i)
6601 insn[i] = nop[ia64_templ_desc[template_val].exec_unit[i]];
6602
6603 f = frag_more (16);
6604
6605 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6606 from the start of the frag. */
6607 addr_mod = frag_now_fix () & 15;
6608 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6609 as_bad (_("instruction address is not a multiple of 16"));
6610 frag_now->insn_addr = addr_mod;
6611 frag_now->has_code = 1;
6612
6613 /* now fill in slots with as many insns as possible: */
6614 curr = first;
6615 idesc = md.slot[curr].idesc;
6616 end_of_insn_group = 0;
6617 last_slot = -1;
6618 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6619 {
6620 /* If we have unwind records, we may need to update some now. */
6621 unw_rec_list *ptr = md.slot[curr].unwind_record;
6622 unw_rec_list *end_ptr = NULL;
6623
6624 if (ptr)
6625 {
6626 /* Find the last prologue/body record in the list for the current
6627 insn, and set the slot number for all records up to that point.
6628 This needs to be done now, because prologue/body records refer to
6629 the current point, not the point after the instruction has been
6630 issued. This matters because there may have been nops emitted
6631 meanwhile. Any non-prologue non-body record followed by a
6632 prologue/body record must also refer to the current point. */
6633 unw_rec_list *last_ptr;
6634
6635 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6636 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6637 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6638 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6639 || ptr->r.type == body)
6640 last_ptr = ptr;
6641 if (last_ptr)
6642 {
6643 /* Make last_ptr point one after the last prologue/body
6644 record. */
6645 last_ptr = last_ptr->next;
6646 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6647 ptr = ptr->next)
6648 {
6649 ptr->slot_number = (unsigned long) f + i;
6650 ptr->slot_frag = frag_now;
6651 }
6652 /* Remove the initialized records, so that we won't accidentally
6653 update them again if we insert a nop and continue. */
6654 md.slot[curr].unwind_record = last_ptr;
6655 }
6656 }
6657
6658 manual_bundling_off = md.slot[curr].manual_bundling_off;
6659 if (md.slot[curr].manual_bundling_on)
6660 {
6661 if (curr == first)
6662 manual_bundling = 1;
6663 else
6664 break; /* Need to start a new bundle. */
6665 }
6666
6667 /* If this instruction specifies a template, then it must be the first
6668 instruction of a bundle. */
6669 if (curr != first && md.slot[curr].user_template >= 0)
6670 break;
6671
6672 if (idesc->flags & IA64_OPCODE_SLOT2)
6673 {
6674 if (manual_bundling && !manual_bundling_off)
6675 {
6676 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6677 _("`%s' must be last in bundle"), idesc->name);
6678 if (i < 2)
6679 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6680 }
6681 i = 2;
6682 }
6683 if (idesc->flags & IA64_OPCODE_LAST)
6684 {
6685 int required_slot;
6686 unsigned int required_template;
6687
6688 /* If we need a stop bit after an M slot, our only choice is
6689 template 5 (M;;MI). If we need a stop bit after a B
6690 slot, our only choice is to place it at the end of the
6691 bundle, because the only available templates are MIB,
6692 MBB, BBB, MMB, and MFB. We don't handle anything other
6693 than M and B slots because these are the only kind of
6694 instructions that can have the IA64_OPCODE_LAST bit set. */
6695 required_template = template_val;
6696 switch (idesc->type)
6697 {
6698 case IA64_TYPE_M:
6699 required_slot = 0;
6700 required_template = 5;
6701 break;
6702
6703 case IA64_TYPE_B:
6704 required_slot = 2;
6705 break;
6706
6707 default:
6708 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6709 _("Internal error: don't know how to force %s to end of instruction group"),
6710 idesc->name);
6711 required_slot = i;
6712 break;
6713 }
6714 if (manual_bundling
6715 && (i > required_slot
6716 || (required_slot == 2 && !manual_bundling_off)
6717 || (user_template >= 0
6718 /* Changing from MMI to M;MI is OK. */
6719 && (template_val ^ required_template) > 1)))
6720 {
6721 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6722 _("`%s' must be last in instruction group"),
6723 idesc->name);
6724 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6725 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6726 }
6727 if (required_slot < i)
6728 /* Can't fit this instruction. */
6729 break;
6730
6731 i = required_slot;
6732 if (required_template != template_val)
6733 {
6734 /* If we switch the template, we need to reset the NOPs
6735 after slot i. The slot-types of the instructions ahead
6736 of i never change, so we don't need to worry about
6737 changing NOPs in front of this slot. */
6738 for (j = i; j < 3; ++j)
6739 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6740
6741 /* We just picked a template that includes the stop bit in the
6742 middle, so we don't need another one emitted later. */
6743 md.slot[curr].end_of_insn_group = 0;
6744 }
6745 template_val = required_template;
6746 }
6747 if (curr != first && md.slot[curr].label_fixups)
6748 {
6749 if (manual_bundling)
6750 {
6751 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6752 _("Label must be first in a bundle"));
6753 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6754 }
6755 /* This insn must go into the first slot of a bundle. */
6756 break;
6757 }
6758
6759 if (end_of_insn_group && md.num_slots_in_use >= 1)
6760 {
6761 /* We need an instruction group boundary in the middle of a
6762 bundle. See if we can switch to an other template with
6763 an appropriate boundary. */
6764
6765 orig_template = template_val;
6766 if (i == 1 && (user_template == 4
6767 || (user_template < 0
6768 && (ia64_templ_desc[template_val].exec_unit[0]
6769 == IA64_UNIT_M))))
6770 {
6771 template_val = 5;
6772 end_of_insn_group = 0;
6773 }
6774 else if (i == 2 && (user_template == 0
6775 || (user_template < 0
6776 && (ia64_templ_desc[template_val].exec_unit[1]
6777 == IA64_UNIT_I)))
6778 /* This test makes sure we don't switch the template if
6779 the next instruction is one that needs to be first in
6780 an instruction group. Since all those instructions are
6781 in the M group, there is no way such an instruction can
6782 fit in this bundle even if we switch the template. The
6783 reason we have to check for this is that otherwise we
6784 may end up generating "MI;;I M.." which has the deadly
6785 effect that the second M instruction is no longer the
6786 first in the group! --davidm 99/12/16 */
6787 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6788 {
6789 template_val = 1;
6790 end_of_insn_group = 0;
6791 }
6792 else if (i == 1
6793 && user_template == 0
6794 && !(idesc->flags & IA64_OPCODE_FIRST))
6795 /* Use the next slot. */
6796 continue;
6797 else if (curr != first)
6798 /* can't fit this insn */
6799 break;
6800
6801 if (template_val != orig_template)
6802 /* if we switch the template, we need to reset the NOPs
6803 after slot i. The slot-types of the instructions ahead
6804 of i never change, so we don't need to worry about
6805 changing NOPs in front of this slot. */
6806 for (j = i; j < 3; ++j)
6807 insn[j] = nop[ia64_templ_desc[template_val].exec_unit[j]];
6808 }
6809 required_unit = ia64_templ_desc[template_val].exec_unit[i];
6810
6811 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6812 if (idesc->type == IA64_TYPE_DYN)
6813 {
6814 enum ia64_opnd opnd1, opnd2;
6815
6816 if ((strcmp (idesc->name, "nop") == 0)
6817 || (strcmp (idesc->name, "break") == 0))
6818 insn_unit = required_unit;
6819 else if (strcmp (idesc->name, "hint") == 0)
6820 {
6821 insn_unit = required_unit;
6822 if (required_unit == IA64_UNIT_B)
6823 {
6824 switch (md.hint_b)
6825 {
6826 case hint_b_ok:
6827 break;
6828 case hint_b_warning:
6829 as_warn (_("hint in B unit may be treated as nop"));
6830 break;
6831 case hint_b_error:
6832 /* When manual bundling is off and there is no
6833 user template, we choose a different unit so
6834 that hint won't go into the current slot. We
6835 will fill the current bundle with nops and
6836 try to put hint into the next bundle. */
6837 if (!manual_bundling && user_template < 0)
6838 insn_unit = IA64_UNIT_I;
6839 else
6840 as_bad (_("hint in B unit can't be used"));
6841 break;
6842 }
6843 }
6844 }
6845 else if (strcmp (idesc->name, "chk.s") == 0
6846 || strcmp (idesc->name, "mov") == 0)
6847 {
6848 insn_unit = IA64_UNIT_M;
6849 if (required_unit == IA64_UNIT_I
6850 || (required_unit == IA64_UNIT_F && template_val == 6))
6851 insn_unit = IA64_UNIT_I;
6852 }
6853 else
6854 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6855
6856 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6857 idesc->name, "?imbfxx"[insn_unit]);
6858 opnd1 = idesc->operands[0];
6859 opnd2 = idesc->operands[1];
6860 ia64_free_opcode (idesc);
6861 idesc = ia64_find_opcode (mnemonic);
6862 /* moves to/from ARs have collisions */
6863 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6864 {
6865 while (idesc != NULL
6866 && (idesc->operands[0] != opnd1
6867 || idesc->operands[1] != opnd2))
6868 idesc = get_next_opcode (idesc);
6869 }
6870 md.slot[curr].idesc = idesc;
6871 }
6872 else
6873 {
6874 insn_type = idesc->type;
6875 insn_unit = IA64_UNIT_NIL;
6876 switch (insn_type)
6877 {
6878 case IA64_TYPE_A:
6879 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6880 insn_unit = required_unit;
6881 break;
6882 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6883 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6884 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6885 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6886 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6887 default: break;
6888 }
6889 }
6890
6891 if (insn_unit != required_unit)
6892 continue; /* Try next slot. */
6893
6894 /* Now is a good time to fix up the labels for this insn. */
6895 mark_label = FALSE;
6896 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6897 {
6898 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6899 symbol_set_frag (lfix->sym, frag_now);
6900 mark_label |= lfix->dw2_mark_labels;
6901 }
6902 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6903 {
6904 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6905 symbol_set_frag (lfix->sym, frag_now);
6906 }
6907
6908 if (debug_type == DEBUG_DWARF2
6909 || md.slot[curr].loc_directive_seen
6910 || mark_label)
6911 {
6912 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6913
6914 md.slot[curr].loc_directive_seen = 0;
6915 if (mark_label)
6916 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
6917
6918 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6919 }
6920
6921 build_insn (md.slot + curr, insn + i);
6922
6923 ptr = md.slot[curr].unwind_record;
6924 if (ptr)
6925 {
6926 /* Set slot numbers for all remaining unwind records belonging to the
6927 current insn. There can not be any prologue/body unwind records
6928 here. */
6929 for (; ptr != end_ptr; ptr = ptr->next)
6930 {
6931 ptr->slot_number = (unsigned long) f + i;
6932 ptr->slot_frag = frag_now;
6933 }
6934 md.slot[curr].unwind_record = NULL;
6935 }
6936
6937 if (required_unit == IA64_UNIT_L)
6938 {
6939 know (i == 1);
6940 /* skip one slot for long/X-unit instructions */
6941 ++i;
6942 }
6943 --md.num_slots_in_use;
6944 last_slot = i;
6945
6946 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6947 {
6948 ifix = md.slot[curr].fixup + j;
6949 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6950 &ifix->expr, ifix->is_pcrel, ifix->code);
6951 fix->tc_fix_data.opnd = ifix->opnd;
6952 fix->fx_file = md.slot[curr].src_file;
6953 fix->fx_line = md.slot[curr].src_line;
6954 }
6955
6956 end_of_insn_group = md.slot[curr].end_of_insn_group;
6957
6958 /* clear slot: */
6959 ia64_free_opcode (md.slot[curr].idesc);
6960 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6961 md.slot[curr].user_template = -1;
6962
6963 if (manual_bundling_off)
6964 {
6965 manual_bundling = 0;
6966 break;
6967 }
6968 curr = (curr + 1) % NUM_SLOTS;
6969 idesc = md.slot[curr].idesc;
6970 }
6971
6972 /* A user template was specified, but the first following instruction did
6973 not fit. This can happen with or without manual bundling. */
6974 if (md.num_slots_in_use > 0 && last_slot < 0)
6975 {
6976 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6977 _("`%s' does not fit into %s template"),
6978 idesc->name, ia64_templ_desc[template_val].name);
6979 /* Drop first insn so we don't livelock. */
6980 --md.num_slots_in_use;
6981 know (curr == first);
6982 ia64_free_opcode (md.slot[curr].idesc);
6983 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6984 md.slot[curr].user_template = -1;
6985 }
6986 else if (manual_bundling > 0)
6987 {
6988 if (md.num_slots_in_use > 0)
6989 {
6990 if (last_slot >= 2)
6991 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6992 _("`%s' does not fit into bundle"), idesc->name);
6993 else
6994 {
6995 const char *where;
6996
6997 if (template_val == 2)
6998 where = "X slot";
6999 else if (last_slot == 0)
7000 where = "slots 2 or 3";
7001 else
7002 where = "slot 3";
7003 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7004 _("`%s' can't go in %s of %s template"),
7005 idesc->name, where, ia64_templ_desc[template_val].name);
7006 }
7007 }
7008 else
7009 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7010 _("Missing '}' at end of file"));
7011 }
7012
7013 know (md.num_slots_in_use < NUM_SLOTS);
7014
7015 t0 = end_of_insn_group | (template_val << 1) | (insn[0] << 5) | (insn[1] << 46);
7016 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7017
7018 number_to_chars_littleendian (f + 0, t0, 8);
7019 number_to_chars_littleendian (f + 8, t1, 8);
7020 }
7021
7022 int
7023 md_parse_option (int c, char *arg)
7024 {
7025
7026 switch (c)
7027 {
7028 /* Switches from the Intel assembler. */
7029 case 'm':
7030 if (strcmp (arg, "ilp64") == 0
7031 || strcmp (arg, "lp64") == 0
7032 || strcmp (arg, "p64") == 0)
7033 {
7034 md.flags |= EF_IA_64_ABI64;
7035 }
7036 else if (strcmp (arg, "ilp32") == 0)
7037 {
7038 md.flags &= ~EF_IA_64_ABI64;
7039 }
7040 else if (strcmp (arg, "le") == 0)
7041 {
7042 md.flags &= ~EF_IA_64_BE;
7043 default_big_endian = 0;
7044 }
7045 else if (strcmp (arg, "be") == 0)
7046 {
7047 md.flags |= EF_IA_64_BE;
7048 default_big_endian = 1;
7049 }
7050 else if (strncmp (arg, "unwind-check=", 13) == 0)
7051 {
7052 arg += 13;
7053 if (strcmp (arg, "warning") == 0)
7054 md.unwind_check = unwind_check_warning;
7055 else if (strcmp (arg, "error") == 0)
7056 md.unwind_check = unwind_check_error;
7057 else
7058 return 0;
7059 }
7060 else if (strncmp (arg, "hint.b=", 7) == 0)
7061 {
7062 arg += 7;
7063 if (strcmp (arg, "ok") == 0)
7064 md.hint_b = hint_b_ok;
7065 else if (strcmp (arg, "warning") == 0)
7066 md.hint_b = hint_b_warning;
7067 else if (strcmp (arg, "error") == 0)
7068 md.hint_b = hint_b_error;
7069 else
7070 return 0;
7071 }
7072 else if (strncmp (arg, "tune=", 5) == 0)
7073 {
7074 arg += 5;
7075 if (strcmp (arg, "itanium1") == 0)
7076 md.tune = itanium1;
7077 else if (strcmp (arg, "itanium2") == 0)
7078 md.tune = itanium2;
7079 else
7080 return 0;
7081 }
7082 else
7083 return 0;
7084 break;
7085
7086 case 'N':
7087 if (strcmp (arg, "so") == 0)
7088 {
7089 /* Suppress signon message. */
7090 }
7091 else if (strcmp (arg, "pi") == 0)
7092 {
7093 /* Reject privileged instructions. FIXME */
7094 }
7095 else if (strcmp (arg, "us") == 0)
7096 {
7097 /* Allow union of signed and unsigned range. FIXME */
7098 }
7099 else if (strcmp (arg, "close_fcalls") == 0)
7100 {
7101 /* Do not resolve global function calls. */
7102 }
7103 else
7104 return 0;
7105 break;
7106
7107 case 'C':
7108 /* temp[="prefix"] Insert temporary labels into the object file
7109 symbol table prefixed by "prefix".
7110 Default prefix is ":temp:".
7111 */
7112 break;
7113
7114 case 'a':
7115 /* indirect=<tgt> Assume unannotated indirect branches behavior
7116 according to <tgt> --
7117 exit: branch out from the current context (default)
7118 labels: all labels in context may be branch targets
7119 */
7120 if (strncmp (arg, "indirect=", 9) != 0)
7121 return 0;
7122 break;
7123
7124 case 'x':
7125 /* -X conflicts with an ignored option, use -x instead */
7126 md.detect_dv = 1;
7127 if (!arg || strcmp (arg, "explicit") == 0)
7128 {
7129 /* set default mode to explicit */
7130 md.default_explicit_mode = 1;
7131 break;
7132 }
7133 else if (strcmp (arg, "auto") == 0)
7134 {
7135 md.default_explicit_mode = 0;
7136 }
7137 else if (strcmp (arg, "none") == 0)
7138 {
7139 md.detect_dv = 0;
7140 }
7141 else if (strcmp (arg, "debug") == 0)
7142 {
7143 md.debug_dv = 1;
7144 }
7145 else if (strcmp (arg, "debugx") == 0)
7146 {
7147 md.default_explicit_mode = 1;
7148 md.debug_dv = 1;
7149 }
7150 else if (strcmp (arg, "debugn") == 0)
7151 {
7152 md.debug_dv = 1;
7153 md.detect_dv = 0;
7154 }
7155 else
7156 {
7157 as_bad (_("Unrecognized option '-x%s'"), arg);
7158 }
7159 break;
7160
7161 case 'S':
7162 /* nops Print nops statistics. */
7163 break;
7164
7165 /* GNU specific switches for gcc. */
7166 case OPTION_MCONSTANT_GP:
7167 md.flags |= EF_IA_64_CONS_GP;
7168 break;
7169
7170 case OPTION_MAUTO_PIC:
7171 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7172 break;
7173
7174 default:
7175 return 0;
7176 }
7177
7178 return 1;
7179 }
7180
7181 void
7182 md_show_usage (FILE *stream)
7183 {
7184 fputs (_("\
7185 IA-64 options:\n\
7186 --mconstant-gp mark output file as using the constant-GP model\n\
7187 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7188 --mauto-pic mark output file as using the constant-GP model\n\
7189 without function descriptors (sets ELF header flag\n\
7190 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7191 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7192 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7193 -mtune=[itanium1|itanium2]\n\
7194 tune for a specific CPU (default -mtune=itanium2)\n\
7195 -munwind-check=[warning|error]\n\
7196 unwind directive check (default -munwind-check=warning)\n\
7197 -mhint.b=[ok|warning|error]\n\
7198 hint.b check (default -mhint.b=error)\n\
7199 -x | -xexplicit turn on dependency violation checking\n"), stream);
7200 /* Note for translators: "automagically" can be translated as "automatically" here. */
7201 fputs (_("\
7202 -xauto automagically remove dependency violations (default)\n\
7203 -xnone turn off dependency violation checking\n\
7204 -xdebug debug dependency violation checker\n\
7205 -xdebugn debug dependency violation checker but turn off\n\
7206 dependency violation checking\n\
7207 -xdebugx debug dependency violation checker and turn on\n\
7208 dependency violation checking\n"),
7209 stream);
7210 }
7211
7212 void
7213 ia64_after_parse_args (void)
7214 {
7215 if (debug_type == DEBUG_STABS)
7216 as_fatal (_("--gstabs is not supported for ia64"));
7217 }
7218
7219 /* Return true if TYPE fits in TEMPL at SLOT. */
7220
7221 static int
7222 match (int templ, int type, int slot)
7223 {
7224 enum ia64_unit unit;
7225 int result;
7226
7227 unit = ia64_templ_desc[templ].exec_unit[slot];
7228 switch (type)
7229 {
7230 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7231 case IA64_TYPE_A:
7232 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7233 break;
7234 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7235 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7236 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7237 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7238 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7239 default: result = 0; break;
7240 }
7241 return result;
7242 }
7243
7244 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7245 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7246 type M or I would fit in TEMPL at SLOT. */
7247
7248 static inline int
7249 extra_goodness (int templ, int slot)
7250 {
7251 switch (md.tune)
7252 {
7253 case itanium1:
7254 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7255 return 2;
7256 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7257 return 1;
7258 else
7259 return 0;
7260 break;
7261 case itanium2:
7262 if (match (templ, IA64_TYPE_M, slot)
7263 || match (templ, IA64_TYPE_I, slot))
7264 /* Favor M- and I-unit NOPs. We definitely want to avoid
7265 F-unit and B-unit may cause split-issue or less-than-optimal
7266 branch-prediction. */
7267 return 2;
7268 else
7269 return 0;
7270 break;
7271 default:
7272 abort ();
7273 return 0;
7274 }
7275 }
7276
7277 /* This function is called once, at assembler startup time. It sets
7278 up all the tables, etc. that the MD part of the assembler will need
7279 that can be determined before arguments are parsed. */
7280 void
7281 md_begin (void)
7282 {
7283 int i, j, k, t, goodness, best, ok;
7284 const char *err;
7285 char name[8];
7286
7287 md.auto_align = 1;
7288 md.explicit_mode = md.default_explicit_mode;
7289
7290 bfd_set_section_alignment (stdoutput, text_section, 4);
7291
7292 /* Make sure function pointers get initialized. */
7293 target_big_endian = -1;
7294 dot_byteorder (default_big_endian);
7295
7296 alias_hash = hash_new ();
7297 alias_name_hash = hash_new ();
7298 secalias_hash = hash_new ();
7299 secalias_name_hash = hash_new ();
7300
7301 pseudo_func[FUNC_DTP_MODULE].u.sym =
7302 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7303 &zero_address_frag);
7304
7305 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7306 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7307 &zero_address_frag);
7308
7309 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7310 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7311 &zero_address_frag);
7312
7313 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7314 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7315 &zero_address_frag);
7316
7317 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7318 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7319 &zero_address_frag);
7320
7321 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7322 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7323 &zero_address_frag);
7324
7325 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7326 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7327 &zero_address_frag);
7328
7329 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7330 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7331 &zero_address_frag);
7332
7333 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7334 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7335 &zero_address_frag);
7336
7337 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7338 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7339 &zero_address_frag);
7340
7341 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7342 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7343 &zero_address_frag);
7344
7345 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7346 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7347 &zero_address_frag);
7348
7349 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7350 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7351 &zero_address_frag);
7352
7353 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7354 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7355 &zero_address_frag);
7356
7357 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7358 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7359 &zero_address_frag);
7360
7361 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7362 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7363 &zero_address_frag);
7364
7365 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7366 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7367 &zero_address_frag);
7368
7369 #ifdef TE_VMS
7370 pseudo_func[FUNC_SLOTCOUNT_RELOC].u.sym =
7371 symbol_new (".<slotcount>", undefined_section, FUNC_SLOTCOUNT_RELOC,
7372 &zero_address_frag);
7373 #endif
7374
7375 if (md.tune != itanium1)
7376 {
7377 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7378 le_nop[0] = 0x8;
7379 le_nop_stop[0] = 0x9;
7380 }
7381
7382 /* Compute the table of best templates. We compute goodness as a
7383 base 4 value, in which each match counts for 3. Match-failures
7384 result in NOPs and we use extra_goodness() to pick the execution
7385 units that are best suited for issuing the NOP. */
7386 for (i = 0; i < IA64_NUM_TYPES; ++i)
7387 for (j = 0; j < IA64_NUM_TYPES; ++j)
7388 for (k = 0; k < IA64_NUM_TYPES; ++k)
7389 {
7390 best = 0;
7391 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7392 {
7393 goodness = 0;
7394 if (match (t, i, 0))
7395 {
7396 if (match (t, j, 1))
7397 {
7398 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7399 goodness = 3 + 3 + 3;
7400 else
7401 goodness = 3 + 3 + extra_goodness (t, 2);
7402 }
7403 else if (match (t, j, 2))
7404 goodness = 3 + 3 + extra_goodness (t, 1);
7405 else
7406 {
7407 goodness = 3;
7408 goodness += extra_goodness (t, 1);
7409 goodness += extra_goodness (t, 2);
7410 }
7411 }
7412 else if (match (t, i, 1))
7413 {
7414 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7415 goodness = 3 + 3;
7416 else
7417 goodness = 3 + extra_goodness (t, 2);
7418 }
7419 else if (match (t, i, 2))
7420 goodness = 3 + extra_goodness (t, 1);
7421
7422 if (goodness > best)
7423 {
7424 best = goodness;
7425 best_template[i][j][k] = t;
7426 }
7427 }
7428 }
7429
7430 #ifdef DEBUG_TEMPLATES
7431 /* For debugging changes to the best_template calculations. We don't care
7432 about combinations with invalid instructions, so start the loops at 1. */
7433 for (i = 0; i < IA64_NUM_TYPES; ++i)
7434 for (j = 0; j < IA64_NUM_TYPES; ++j)
7435 for (k = 0; k < IA64_NUM_TYPES; ++k)
7436 {
7437 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7438 'x', 'd' };
7439 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7440 type_letter[k],
7441 ia64_templ_desc[best_template[i][j][k]].name);
7442 }
7443 #endif
7444
7445 for (i = 0; i < NUM_SLOTS; ++i)
7446 md.slot[i].user_template = -1;
7447
7448 md.pseudo_hash = hash_new ();
7449 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7450 {
7451 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7452 (void *) (pseudo_opcode + i));
7453 if (err)
7454 as_fatal (_("ia64.md_begin: can't hash `%s': %s"),
7455 pseudo_opcode[i].name, err);
7456 }
7457
7458 md.reg_hash = hash_new ();
7459 md.dynreg_hash = hash_new ();
7460 md.const_hash = hash_new ();
7461 md.entry_hash = hash_new ();
7462
7463 /* general registers: */
7464 declare_register_set ("r", 128, REG_GR);
7465 declare_register ("gp", REG_GR + 1);
7466 declare_register ("sp", REG_GR + 12);
7467 declare_register ("tp", REG_GR + 13);
7468 declare_register_set ("ret", 4, REG_GR + 8);
7469
7470 /* floating point registers: */
7471 declare_register_set ("f", 128, REG_FR);
7472 declare_register_set ("farg", 8, REG_FR + 8);
7473 declare_register_set ("fret", 8, REG_FR + 8);
7474
7475 /* branch registers: */
7476 declare_register_set ("b", 8, REG_BR);
7477 declare_register ("rp", REG_BR + 0);
7478
7479 /* predicate registers: */
7480 declare_register_set ("p", 64, REG_P);
7481 declare_register ("pr", REG_PR);
7482 declare_register ("pr.rot", REG_PR_ROT);
7483
7484 /* application registers: */
7485 declare_register_set ("ar", 128, REG_AR);
7486 for (i = 0; i < NELEMS (ar); ++i)
7487 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7488
7489 /* control registers: */
7490 declare_register_set ("cr", 128, REG_CR);
7491 for (i = 0; i < NELEMS (cr); ++i)
7492 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7493
7494 /* dahr registers: */
7495 declare_register_set ("dahr", 8, REG_DAHR);
7496
7497 declare_register ("ip", REG_IP);
7498 declare_register ("cfm", REG_CFM);
7499 declare_register ("psr", REG_PSR);
7500 declare_register ("psr.l", REG_PSR_L);
7501 declare_register ("psr.um", REG_PSR_UM);
7502
7503 for (i = 0; i < NELEMS (indirect_reg); ++i)
7504 {
7505 unsigned int regnum = indirect_reg[i].regnum;
7506
7507 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7508 }
7509
7510 /* pseudo-registers used to specify unwind info: */
7511 declare_register ("psp", REG_PSP);
7512
7513 for (i = 0; i < NELEMS (const_bits); ++i)
7514 {
7515 err = hash_insert (md.const_hash, const_bits[i].name,
7516 (void *) (const_bits + i));
7517 if (err)
7518 as_fatal (_("Inserting \"%s\" into constant hash table failed: %s"),
7519 name, err);
7520 }
7521
7522 /* Set the architecture and machine depending on defaults and command line
7523 options. */
7524 if (md.flags & EF_IA_64_ABI64)
7525 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7526 else
7527 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7528
7529 if (! ok)
7530 as_warn (_("Could not set architecture and machine"));
7531
7532 /* Set the pointer size and pointer shift size depending on md.flags */
7533
7534 if (md.flags & EF_IA_64_ABI64)
7535 {
7536 md.pointer_size = 8; /* pointers are 8 bytes */
7537 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7538 }
7539 else
7540 {
7541 md.pointer_size = 4; /* pointers are 4 bytes */
7542 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7543 }
7544
7545 md.mem_offset.hint = 0;
7546 md.path = 0;
7547 md.maxpaths = 0;
7548 md.entry_labels = NULL;
7549 }
7550
7551 /* Set the default options in md. Cannot do this in md_begin because
7552 that is called after md_parse_option which is where we set the
7553 options in md based on command line options. */
7554
7555 void
7556 ia64_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
7557 {
7558 md.flags = MD_FLAGS_DEFAULT;
7559 #ifndef TE_VMS
7560 /* Don't turn on dependency checking for VMS, doesn't work. */
7561 md.detect_dv = 1;
7562 #endif
7563 /* FIXME: We should change it to unwind_check_error someday. */
7564 md.unwind_check = unwind_check_warning;
7565 md.hint_b = hint_b_error;
7566 md.tune = itanium2;
7567 }
7568
7569 /* Return a string for the target object file format. */
7570
7571 const char *
7572 ia64_target_format (void)
7573 {
7574 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7575 {
7576 if (md.flags & EF_IA_64_BE)
7577 {
7578 if (md.flags & EF_IA_64_ABI64)
7579 #if defined(TE_AIX50)
7580 return "elf64-ia64-aix-big";
7581 #elif defined(TE_HPUX)
7582 return "elf64-ia64-hpux-big";
7583 #else
7584 return "elf64-ia64-big";
7585 #endif
7586 else
7587 #if defined(TE_AIX50)
7588 return "elf32-ia64-aix-big";
7589 #elif defined(TE_HPUX)
7590 return "elf32-ia64-hpux-big";
7591 #else
7592 return "elf32-ia64-big";
7593 #endif
7594 }
7595 else
7596 {
7597 if (md.flags & EF_IA_64_ABI64)
7598 #if defined (TE_AIX50)
7599 return "elf64-ia64-aix-little";
7600 #elif defined (TE_VMS)
7601 {
7602 md.flags |= EF_IA_64_ARCHVER_1;
7603 return "elf64-ia64-vms";
7604 }
7605 #else
7606 return "elf64-ia64-little";
7607 #endif
7608 else
7609 #ifdef TE_AIX50
7610 return "elf32-ia64-aix-little";
7611 #else
7612 return "elf32-ia64-little";
7613 #endif
7614 }
7615 }
7616 else
7617 return "unknown-format";
7618 }
7619
7620 void
7621 ia64_end_of_source (void)
7622 {
7623 /* terminate insn group upon reaching end of file: */
7624 insn_group_break (1, 0, 0);
7625
7626 /* emits slots we haven't written yet: */
7627 ia64_flush_insns ();
7628
7629 bfd_set_private_flags (stdoutput, md.flags);
7630
7631 md.mem_offset.hint = 0;
7632 }
7633
7634 void
7635 ia64_start_line (void)
7636 {
7637 static int first;
7638
7639 if (!first) {
7640 /* Make sure we don't reference input_line_pointer[-1] when that's
7641 not valid. */
7642 first = 1;
7643 return;
7644 }
7645
7646 if (md.qp.X_op == O_register)
7647 as_bad (_("qualifying predicate not followed by instruction"));
7648 md.qp.X_op = O_absent;
7649
7650 if (ignore_input ())
7651 return;
7652
7653 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7654 {
7655 if (md.detect_dv && !md.explicit_mode)
7656 {
7657 static int warned;
7658
7659 if (!warned)
7660 {
7661 warned = 1;
7662 as_warn (_("Explicit stops are ignored in auto mode"));
7663 }
7664 }
7665 else
7666 insn_group_break (1, 0, 0);
7667 }
7668 else if (input_line_pointer[-1] == '{')
7669 {
7670 if (md.manual_bundling)
7671 as_warn (_("Found '{' when manual bundling is already turned on"));
7672 else
7673 CURR_SLOT.manual_bundling_on = 1;
7674 md.manual_bundling = 1;
7675
7676 /* Bundling is only acceptable in explicit mode
7677 or when in default automatic mode. */
7678 if (md.detect_dv && !md.explicit_mode)
7679 {
7680 if (!md.mode_explicitly_set
7681 && !md.default_explicit_mode)
7682 dot_dv_mode ('E');
7683 else
7684 as_warn (_("Found '{' after explicit switch to automatic mode"));
7685 }
7686 }
7687 else if (input_line_pointer[-1] == '}')
7688 {
7689 if (!md.manual_bundling)
7690 as_warn (_("Found '}' when manual bundling is off"));
7691 else
7692 PREV_SLOT.manual_bundling_off = 1;
7693 md.manual_bundling = 0;
7694
7695 /* switch back to automatic mode, if applicable */
7696 if (md.detect_dv
7697 && md.explicit_mode
7698 && !md.mode_explicitly_set
7699 && !md.default_explicit_mode)
7700 dot_dv_mode ('A');
7701 }
7702 }
7703
7704 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7705 labels. */
7706 static int defining_tag = 0;
7707
7708 int
7709 ia64_unrecognized_line (int ch)
7710 {
7711 switch (ch)
7712 {
7713 case '(':
7714 expression_and_evaluate (&md.qp);
7715 if (*input_line_pointer++ != ')')
7716 {
7717 as_bad (_("Expected ')'"));
7718 return 0;
7719 }
7720 if (md.qp.X_op != O_register)
7721 {
7722 as_bad (_("Qualifying predicate expected"));
7723 return 0;
7724 }
7725 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7726 {
7727 as_bad (_("Predicate register expected"));
7728 return 0;
7729 }
7730 return 1;
7731
7732 case '[':
7733 {
7734 char *s;
7735 char c;
7736 symbolS *tag;
7737 int temp;
7738
7739 if (md.qp.X_op == O_register)
7740 {
7741 as_bad (_("Tag must come before qualifying predicate."));
7742 return 0;
7743 }
7744
7745 /* This implements just enough of read_a_source_file in read.c to
7746 recognize labels. */
7747 if (is_name_beginner (*input_line_pointer))
7748 {
7749 s = input_line_pointer;
7750 c = get_symbol_end ();
7751 }
7752 else if (LOCAL_LABELS_FB
7753 && ISDIGIT (*input_line_pointer))
7754 {
7755 temp = 0;
7756 while (ISDIGIT (*input_line_pointer))
7757 temp = (temp * 10) + *input_line_pointer++ - '0';
7758 fb_label_instance_inc (temp);
7759 s = fb_label_name (temp, 0);
7760 c = *input_line_pointer;
7761 }
7762 else
7763 {
7764 s = NULL;
7765 c = '\0';
7766 }
7767 if (c != ':')
7768 {
7769 /* Put ':' back for error messages' sake. */
7770 *input_line_pointer++ = ':';
7771 as_bad (_("Expected ':'"));
7772 return 0;
7773 }
7774
7775 defining_tag = 1;
7776 tag = colon (s);
7777 defining_tag = 0;
7778 /* Put ':' back for error messages' sake. */
7779 *input_line_pointer++ = ':';
7780 if (*input_line_pointer++ != ']')
7781 {
7782 as_bad (_("Expected ']'"));
7783 return 0;
7784 }
7785 if (! tag)
7786 {
7787 as_bad (_("Tag name expected"));
7788 return 0;
7789 }
7790 return 1;
7791 }
7792
7793 default:
7794 break;
7795 }
7796
7797 /* Not a valid line. */
7798 return 0;
7799 }
7800
7801 void
7802 ia64_frob_label (struct symbol *sym)
7803 {
7804 struct label_fix *fix;
7805
7806 /* Tags need special handling since they are not bundle breaks like
7807 labels. */
7808 if (defining_tag)
7809 {
7810 fix = obstack_alloc (&notes, sizeof (*fix));
7811 fix->sym = sym;
7812 fix->next = CURR_SLOT.tag_fixups;
7813 fix->dw2_mark_labels = FALSE;
7814 CURR_SLOT.tag_fixups = fix;
7815
7816 return;
7817 }
7818
7819 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7820 {
7821 md.last_text_seg = now_seg;
7822 fix = obstack_alloc (&notes, sizeof (*fix));
7823 fix->sym = sym;
7824 fix->next = CURR_SLOT.label_fixups;
7825 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7826 CURR_SLOT.label_fixups = fix;
7827
7828 /* Keep track of how many code entry points we've seen. */
7829 if (md.path == md.maxpaths)
7830 {
7831 md.maxpaths += 20;
7832 md.entry_labels = (const char **)
7833 xrealloc ((void *) md.entry_labels,
7834 md.maxpaths * sizeof (char *));
7835 }
7836 md.entry_labels[md.path++] = S_GET_NAME (sym);
7837 }
7838 }
7839
7840 #ifdef TE_HPUX
7841 /* The HP-UX linker will give unresolved symbol errors for symbols
7842 that are declared but unused. This routine removes declared,
7843 unused symbols from an object. */
7844 int
7845 ia64_frob_symbol (struct symbol *sym)
7846 {
7847 if ((S_GET_SEGMENT (sym) == bfd_und_section_ptr && ! symbol_used_p (sym) &&
7848 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7849 || (S_GET_SEGMENT (sym) == bfd_abs_section_ptr
7850 && ! S_IS_EXTERNAL (sym)))
7851 return 1;
7852 return 0;
7853 }
7854 #endif
7855
7856 void
7857 ia64_flush_pending_output (void)
7858 {
7859 if (!md.keep_pending_output
7860 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7861 {
7862 /* ??? This causes many unnecessary stop bits to be emitted.
7863 Unfortunately, it isn't clear if it is safe to remove this. */
7864 insn_group_break (1, 0, 0);
7865 ia64_flush_insns ();
7866 }
7867 }
7868
7869 /* Do ia64-specific expression optimization. All that's done here is
7870 to transform index expressions that are either due to the indexing
7871 of rotating registers or due to the indexing of indirect register
7872 sets. */
7873 int
7874 ia64_optimize_expr (expressionS *l, operatorT op, expressionS *r)
7875 {
7876 if (op != O_index)
7877 return 0;
7878 resolve_expression (l);
7879 if (l->X_op == O_register)
7880 {
7881 unsigned num_regs = l->X_add_number >> 16;
7882
7883 resolve_expression (r);
7884 if (num_regs)
7885 {
7886 /* Left side is a .rotX-allocated register. */
7887 if (r->X_op != O_constant)
7888 {
7889 as_bad (_("Rotating register index must be a non-negative constant"));
7890 r->X_add_number = 0;
7891 }
7892 else if ((valueT) r->X_add_number >= num_regs)
7893 {
7894 as_bad (_("Index out of range 0..%u"), num_regs - 1);
7895 r->X_add_number = 0;
7896 }
7897 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7898 return 1;
7899 }
7900 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7901 {
7902 if (r->X_op != O_register
7903 || r->X_add_number < REG_GR
7904 || r->X_add_number > REG_GR + 127)
7905 {
7906 as_bad (_("Indirect register index must be a general register"));
7907 r->X_add_number = REG_GR;
7908 }
7909 l->X_op = O_index;
7910 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
7911 l->X_add_number = r->X_add_number;
7912 return 1;
7913 }
7914 }
7915 as_bad (_("Index can only be applied to rotating or indirect registers"));
7916 /* Fall back to some register use of which has as little as possible
7917 side effects, to minimize subsequent error messages. */
7918 l->X_op = O_register;
7919 l->X_add_number = REG_GR + 3;
7920 return 1;
7921 }
7922
7923 int
7924 ia64_parse_name (char *name, expressionS *e, char *nextcharP)
7925 {
7926 struct const_desc *cdesc;
7927 struct dynreg *dr = 0;
7928 unsigned int idx;
7929 struct symbol *sym;
7930 char *end;
7931
7932 if (*name == '@')
7933 {
7934 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7935
7936 /* Find what relocation pseudo-function we're dealing with. */
7937 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7938 if (pseudo_func[idx].name
7939 && pseudo_func[idx].name[0] == name[1]
7940 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7941 {
7942 pseudo_type = pseudo_func[idx].type;
7943 break;
7944 }
7945 switch (pseudo_type)
7946 {
7947 case PSEUDO_FUNC_RELOC:
7948 end = input_line_pointer;
7949 if (*nextcharP != '(')
7950 {
7951 as_bad (_("Expected '('"));
7952 break;
7953 }
7954 /* Skip '('. */
7955 ++input_line_pointer;
7956 expression (e);
7957 if (*input_line_pointer != ')')
7958 {
7959 as_bad (_("Missing ')'"));
7960 goto done;
7961 }
7962 /* Skip ')'. */
7963 ++input_line_pointer;
7964 #ifdef TE_VMS
7965 if (idx == FUNC_SLOTCOUNT_RELOC)
7966 {
7967 /* @slotcount can accept any expression. Canonicalize. */
7968 e->X_add_symbol = make_expr_symbol (e);
7969 e->X_op = O_symbol;
7970 e->X_add_number = 0;
7971 }
7972 #endif
7973 if (e->X_op != O_symbol)
7974 {
7975 if (e->X_op != O_pseudo_fixup)
7976 {
7977 as_bad (_("Not a symbolic expression"));
7978 goto done;
7979 }
7980 if (idx != FUNC_LT_RELATIVE)
7981 {
7982 as_bad (_("Illegal combination of relocation functions"));
7983 goto done;
7984 }
7985 switch (S_GET_VALUE (e->X_op_symbol))
7986 {
7987 case FUNC_FPTR_RELATIVE:
7988 idx = FUNC_LT_FPTR_RELATIVE; break;
7989 case FUNC_DTP_MODULE:
7990 idx = FUNC_LT_DTP_MODULE; break;
7991 case FUNC_DTP_RELATIVE:
7992 idx = FUNC_LT_DTP_RELATIVE; break;
7993 case FUNC_TP_RELATIVE:
7994 idx = FUNC_LT_TP_RELATIVE; break;
7995 default:
7996 as_bad (_("Illegal combination of relocation functions"));
7997 goto done;
7998 }
7999 }
8000 /* Make sure gas doesn't get rid of local symbols that are used
8001 in relocs. */
8002 e->X_op = O_pseudo_fixup;
8003 e->X_op_symbol = pseudo_func[idx].u.sym;
8004 done:
8005 *nextcharP = *input_line_pointer;
8006 break;
8007
8008 case PSEUDO_FUNC_CONST:
8009 e->X_op = O_constant;
8010 e->X_add_number = pseudo_func[idx].u.ival;
8011 break;
8012
8013 case PSEUDO_FUNC_REG:
8014 e->X_op = O_register;
8015 e->X_add_number = pseudo_func[idx].u.ival;
8016 break;
8017
8018 default:
8019 return 0;
8020 }
8021 return 1;
8022 }
8023
8024 /* first see if NAME is a known register name: */
8025 sym = hash_find (md.reg_hash, name);
8026 if (sym)
8027 {
8028 e->X_op = O_register;
8029 e->X_add_number = S_GET_VALUE (sym);
8030 return 1;
8031 }
8032
8033 cdesc = hash_find (md.const_hash, name);
8034 if (cdesc)
8035 {
8036 e->X_op = O_constant;
8037 e->X_add_number = cdesc->value;
8038 return 1;
8039 }
8040
8041 /* check for inN, locN, or outN: */
8042 idx = 0;
8043 switch (name[0])
8044 {
8045 case 'i':
8046 if (name[1] == 'n' && ISDIGIT (name[2]))
8047 {
8048 dr = &md.in;
8049 idx = 2;
8050 }
8051 break;
8052
8053 case 'l':
8054 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8055 {
8056 dr = &md.loc;
8057 idx = 3;
8058 }
8059 break;
8060
8061 case 'o':
8062 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8063 {
8064 dr = &md.out;
8065 idx = 3;
8066 }
8067 break;
8068
8069 default:
8070 break;
8071 }
8072
8073 /* Ignore register numbers with leading zeroes, except zero itself. */
8074 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8075 {
8076 unsigned long regnum;
8077
8078 /* The name is inN, locN, or outN; parse the register number. */
8079 regnum = strtoul (name + idx, &end, 10);
8080 if (end > name + idx && *end == '\0' && regnum < 96)
8081 {
8082 if (regnum >= dr->num_regs)
8083 {
8084 if (!dr->num_regs)
8085 as_bad (_("No current frame"));
8086 else
8087 as_bad (_("Register number out of range 0..%u"),
8088 dr->num_regs - 1);
8089 regnum = 0;
8090 }
8091 e->X_op = O_register;
8092 e->X_add_number = dr->base + regnum;
8093 return 1;
8094 }
8095 }
8096
8097 end = alloca (strlen (name) + 1);
8098 strcpy (end, name);
8099 name = ia64_canonicalize_symbol_name (end);
8100 if ((dr = hash_find (md.dynreg_hash, name)))
8101 {
8102 /* We've got ourselves the name of a rotating register set.
8103 Store the base register number in the low 16 bits of
8104 X_add_number and the size of the register set in the top 16
8105 bits. */
8106 e->X_op = O_register;
8107 e->X_add_number = dr->base | (dr->num_regs << 16);
8108 return 1;
8109 }
8110 return 0;
8111 }
8112
8113 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8114
8115 char *
8116 ia64_canonicalize_symbol_name (char *name)
8117 {
8118 size_t len = strlen (name), full = len;
8119
8120 while (len > 0 && name[len - 1] == '#')
8121 --len;
8122 if (len <= 0)
8123 {
8124 if (full > 0)
8125 as_bad (_("Standalone `#' is illegal"));
8126 }
8127 else if (len < full - 1)
8128 as_warn (_("Redundant `#' suffix operators"));
8129 name[len] = '\0';
8130 return name;
8131 }
8132
8133 /* Return true if idesc is a conditional branch instruction. This excludes
8134 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8135 because they always read/write resources regardless of the value of the
8136 qualifying predicate. br.ia must always use p0, and hence is always
8137 taken. Thus this function returns true for branches which can fall
8138 through, and which use no resources if they do fall through. */
8139
8140 static int
8141 is_conditional_branch (struct ia64_opcode *idesc)
8142 {
8143 /* br is a conditional branch. Everything that starts with br. except
8144 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8145 Everything that starts with brl is a conditional branch. */
8146 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8147 && (idesc->name[2] == '\0'
8148 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8149 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8150 || idesc->name[2] == 'l'
8151 /* br.cond, br.call, br.clr */
8152 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8153 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8154 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8155 }
8156
8157 /* Return whether the given opcode is a taken branch. If there's any doubt,
8158 returns zero. */
8159
8160 static int
8161 is_taken_branch (struct ia64_opcode *idesc)
8162 {
8163 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8164 || strncmp (idesc->name, "br.ia", 5) == 0);
8165 }
8166
8167 /* Return whether the given opcode is an interruption or rfi. If there's any
8168 doubt, returns zero. */
8169
8170 static int
8171 is_interruption_or_rfi (struct ia64_opcode *idesc)
8172 {
8173 if (strcmp (idesc->name, "rfi") == 0)
8174 return 1;
8175 return 0;
8176 }
8177
8178 /* Returns the index of the given dependency in the opcode's list of chks, or
8179 -1 if there is no dependency. */
8180
8181 static int
8182 depends_on (int depind, struct ia64_opcode *idesc)
8183 {
8184 int i;
8185 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8186 for (i = 0; i < dep->nchks; i++)
8187 {
8188 if (depind == DEP (dep->chks[i]))
8189 return i;
8190 }
8191 return -1;
8192 }
8193
8194 /* Determine a set of specific resources used for a particular resource
8195 class. Returns the number of specific resources identified For those
8196 cases which are not determinable statically, the resource returned is
8197 marked nonspecific.
8198
8199 Meanings of value in 'NOTE':
8200 1) only read/write when the register number is explicitly encoded in the
8201 insn.
8202 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8203 accesses CFM when qualifying predicate is in the rotating region.
8204 3) general register value is used to specify an indirect register; not
8205 determinable statically.
8206 4) only read the given resource when bits 7:0 of the indirect index
8207 register value does not match the register number of the resource; not
8208 determinable statically.
8209 5) all rules are implementation specific.
8210 6) only when both the index specified by the reader and the index specified
8211 by the writer have the same value in bits 63:61; not determinable
8212 statically.
8213 7) only access the specified resource when the corresponding mask bit is
8214 set
8215 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8216 only read when these insns reference FR2-31
8217 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8218 written when these insns write FR32-127
8219 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8220 instruction
8221 11) The target predicates are written independently of PR[qp], but source
8222 registers are only read if PR[qp] is true. Since the state of PR[qp]
8223 cannot statically be determined, all source registers are marked used.
8224 12) This insn only reads the specified predicate register when that
8225 register is the PR[qp].
8226 13) This reference to ld-c only applies to the GR whose value is loaded
8227 with data returned from memory, not the post-incremented address register.
8228 14) The RSE resource includes the implementation-specific RSE internal
8229 state resources. At least one (and possibly more) of these resources are
8230 read by each instruction listed in IC:rse-readers. At least one (and
8231 possibly more) of these resources are written by each insn listed in
8232 IC:rse-writers.
8233 15+16) Represents reserved instructions, which the assembler does not
8234 generate.
8235 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8236 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8237
8238 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8239 this code; there are no dependency violations based on memory access.
8240 */
8241
8242 #define MAX_SPECS 256
8243 #define DV_CHK 1
8244 #define DV_REG 0
8245
8246 static int
8247 specify_resource (const struct ia64_dependency *dep,
8248 struct ia64_opcode *idesc,
8249 /* is this a DV chk or a DV reg? */
8250 int type,
8251 /* returned specific resources */
8252 struct rsrc specs[MAX_SPECS],
8253 /* resource note for this insn's usage */
8254 int note,
8255 /* which execution path to examine */
8256 int path)
8257 {
8258 int count = 0;
8259 int i;
8260 int rsrc_write = 0;
8261 struct rsrc tmpl;
8262
8263 if (dep->mode == IA64_DV_WAW
8264 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8265 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8266 rsrc_write = 1;
8267
8268 /* template for any resources we identify */
8269 tmpl.dependency = dep;
8270 tmpl.note = note;
8271 tmpl.insn_srlz = tmpl.data_srlz = 0;
8272 tmpl.qp_regno = CURR_SLOT.qp_regno;
8273 tmpl.link_to_qp_branch = 1;
8274 tmpl.mem_offset.hint = 0;
8275 tmpl.mem_offset.offset = 0;
8276 tmpl.mem_offset.base = 0;
8277 tmpl.specific = 1;
8278 tmpl.index = -1;
8279 tmpl.cmp_type = CMP_NONE;
8280 tmpl.depind = 0;
8281 tmpl.file = NULL;
8282 tmpl.line = 0;
8283 tmpl.path = 0;
8284
8285 #define UNHANDLED \
8286 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8287 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8288 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8289
8290 /* we don't need to track these */
8291 if (dep->semantics == IA64_DVS_NONE)
8292 return 0;
8293
8294 switch (dep->specifier)
8295 {
8296 case IA64_RS_AR_K:
8297 if (note == 1)
8298 {
8299 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8300 {
8301 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8302 if (regno >= 0 && regno <= 7)
8303 {
8304 specs[count] = tmpl;
8305 specs[count++].index = regno;
8306 }
8307 }
8308 }
8309 else if (note == 0)
8310 {
8311 for (i = 0; i < 8; i++)
8312 {
8313 specs[count] = tmpl;
8314 specs[count++].index = i;
8315 }
8316 }
8317 else
8318 {
8319 UNHANDLED;
8320 }
8321 break;
8322
8323 case IA64_RS_AR_UNAT:
8324 /* This is a mov =AR or mov AR= instruction. */
8325 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8326 {
8327 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8328 if (regno == AR_UNAT)
8329 {
8330 specs[count++] = tmpl;
8331 }
8332 }
8333 else
8334 {
8335 /* This is a spill/fill, or other instruction that modifies the
8336 unat register. */
8337
8338 /* Unless we can determine the specific bits used, mark the whole
8339 thing; bits 8:3 of the memory address indicate the bit used in
8340 UNAT. The .mem.offset hint may be used to eliminate a small
8341 subset of conflicts. */
8342 specs[count] = tmpl;
8343 if (md.mem_offset.hint)
8344 {
8345 if (md.debug_dv)
8346 fprintf (stderr, " Using hint for spill/fill\n");
8347 /* The index isn't actually used, just set it to something
8348 approximating the bit index. */
8349 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8350 specs[count].mem_offset.hint = 1;
8351 specs[count].mem_offset.offset = md.mem_offset.offset;
8352 specs[count++].mem_offset.base = md.mem_offset.base;
8353 }
8354 else
8355 {
8356 specs[count++].specific = 0;
8357 }
8358 }
8359 break;
8360
8361 case IA64_RS_AR:
8362 if (note == 1)
8363 {
8364 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8365 {
8366 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8367 if ((regno >= 8 && regno <= 15)
8368 || (regno >= 20 && regno <= 23)
8369 || (regno >= 31 && regno <= 39)
8370 || (regno >= 41 && regno <= 47)
8371 || (regno >= 67 && regno <= 111))
8372 {
8373 specs[count] = tmpl;
8374 specs[count++].index = regno;
8375 }
8376 }
8377 }
8378 else
8379 {
8380 UNHANDLED;
8381 }
8382 break;
8383
8384 case IA64_RS_ARb:
8385 if (note == 1)
8386 {
8387 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8388 {
8389 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8390 if ((regno >= 48 && regno <= 63)
8391 || (regno >= 112 && regno <= 127))
8392 {
8393 specs[count] = tmpl;
8394 specs[count++].index = regno;
8395 }
8396 }
8397 }
8398 else if (note == 0)
8399 {
8400 for (i = 48; i < 64; i++)
8401 {
8402 specs[count] = tmpl;
8403 specs[count++].index = i;
8404 }
8405 for (i = 112; i < 128; i++)
8406 {
8407 specs[count] = tmpl;
8408 specs[count++].index = i;
8409 }
8410 }
8411 else
8412 {
8413 UNHANDLED;
8414 }
8415 break;
8416
8417 case IA64_RS_BR:
8418 if (note != 1)
8419 {
8420 UNHANDLED;
8421 }
8422 else
8423 {
8424 if (rsrc_write)
8425 {
8426 for (i = 0; i < idesc->num_outputs; i++)
8427 if (idesc->operands[i] == IA64_OPND_B1
8428 || idesc->operands[i] == IA64_OPND_B2)
8429 {
8430 specs[count] = tmpl;
8431 specs[count++].index =
8432 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8433 }
8434 }
8435 else
8436 {
8437 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8438 if (idesc->operands[i] == IA64_OPND_B1
8439 || idesc->operands[i] == IA64_OPND_B2)
8440 {
8441 specs[count] = tmpl;
8442 specs[count++].index =
8443 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8444 }
8445 }
8446 }
8447 break;
8448
8449 case IA64_RS_CPUID: /* four or more registers */
8450 if (note == 3)
8451 {
8452 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8453 {
8454 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8455 if (regno >= 0 && regno < NELEMS (gr_values)
8456 && KNOWN (regno))
8457 {
8458 specs[count] = tmpl;
8459 specs[count++].index = gr_values[regno].value & 0xFF;
8460 }
8461 else
8462 {
8463 specs[count] = tmpl;
8464 specs[count++].specific = 0;
8465 }
8466 }
8467 }
8468 else
8469 {
8470 UNHANDLED;
8471 }
8472 break;
8473
8474 case IA64_RS_DBR: /* four or more registers */
8475 if (note == 3)
8476 {
8477 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8478 {
8479 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8480 if (regno >= 0 && regno < NELEMS (gr_values)
8481 && KNOWN (regno))
8482 {
8483 specs[count] = tmpl;
8484 specs[count++].index = gr_values[regno].value & 0xFF;
8485 }
8486 else
8487 {
8488 specs[count] = tmpl;
8489 specs[count++].specific = 0;
8490 }
8491 }
8492 }
8493 else if (note == 0 && !rsrc_write)
8494 {
8495 specs[count] = tmpl;
8496 specs[count++].specific = 0;
8497 }
8498 else
8499 {
8500 UNHANDLED;
8501 }
8502 break;
8503
8504 case IA64_RS_IBR: /* four or more registers */
8505 if (note == 3)
8506 {
8507 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8508 {
8509 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8510 if (regno >= 0 && regno < NELEMS (gr_values)
8511 && KNOWN (regno))
8512 {
8513 specs[count] = tmpl;
8514 specs[count++].index = gr_values[regno].value & 0xFF;
8515 }
8516 else
8517 {
8518 specs[count] = tmpl;
8519 specs[count++].specific = 0;
8520 }
8521 }
8522 }
8523 else
8524 {
8525 UNHANDLED;
8526 }
8527 break;
8528
8529 case IA64_RS_MSR:
8530 if (note == 5)
8531 {
8532 /* These are implementation specific. Force all references to
8533 conflict with all other references. */
8534 specs[count] = tmpl;
8535 specs[count++].specific = 0;
8536 }
8537 else
8538 {
8539 UNHANDLED;
8540 }
8541 break;
8542
8543 case IA64_RS_PKR: /* 16 or more registers */
8544 if (note == 3 || note == 4)
8545 {
8546 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8547 {
8548 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8549 if (regno >= 0 && regno < NELEMS (gr_values)
8550 && KNOWN (regno))
8551 {
8552 if (note == 3)
8553 {
8554 specs[count] = tmpl;
8555 specs[count++].index = gr_values[regno].value & 0xFF;
8556 }
8557 else
8558 for (i = 0; i < NELEMS (gr_values); i++)
8559 {
8560 /* Uses all registers *except* the one in R3. */
8561 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8562 {
8563 specs[count] = tmpl;
8564 specs[count++].index = i;
8565 }
8566 }
8567 }
8568 else
8569 {
8570 specs[count] = tmpl;
8571 specs[count++].specific = 0;
8572 }
8573 }
8574 }
8575 else if (note == 0)
8576 {
8577 /* probe et al. */
8578 specs[count] = tmpl;
8579 specs[count++].specific = 0;
8580 }
8581 break;
8582
8583 case IA64_RS_PMC: /* four or more registers */
8584 if (note == 3)
8585 {
8586 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8587 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8588
8589 {
8590 int reg_index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8591 ? 1 : !rsrc_write);
8592 int regno = CURR_SLOT.opnd[reg_index].X_add_number - REG_GR;
8593 if (regno >= 0 && regno < NELEMS (gr_values)
8594 && KNOWN (regno))
8595 {
8596 specs[count] = tmpl;
8597 specs[count++].index = gr_values[regno].value & 0xFF;
8598 }
8599 else
8600 {
8601 specs[count] = tmpl;
8602 specs[count++].specific = 0;
8603 }
8604 }
8605 }
8606 else
8607 {
8608 UNHANDLED;
8609 }
8610 break;
8611
8612 case IA64_RS_PMD: /* four or more registers */
8613 if (note == 3)
8614 {
8615 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8616 {
8617 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8618 if (regno >= 0 && regno < NELEMS (gr_values)
8619 && KNOWN (regno))
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].index = gr_values[regno].value & 0xFF;
8623 }
8624 else
8625 {
8626 specs[count] = tmpl;
8627 specs[count++].specific = 0;
8628 }
8629 }
8630 }
8631 else
8632 {
8633 UNHANDLED;
8634 }
8635 break;
8636
8637 case IA64_RS_RR: /* eight registers */
8638 if (note == 6)
8639 {
8640 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8641 {
8642 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8643 if (regno >= 0 && regno < NELEMS (gr_values)
8644 && KNOWN (regno))
8645 {
8646 specs[count] = tmpl;
8647 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8648 }
8649 else
8650 {
8651 specs[count] = tmpl;
8652 specs[count++].specific = 0;
8653 }
8654 }
8655 }
8656 else if (note == 0 && !rsrc_write)
8657 {
8658 specs[count] = tmpl;
8659 specs[count++].specific = 0;
8660 }
8661 else
8662 {
8663 UNHANDLED;
8664 }
8665 break;
8666
8667 case IA64_RS_CR_IRR:
8668 if (note == 0)
8669 {
8670 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8671 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8672 if (rsrc_write
8673 && idesc->operands[1] == IA64_OPND_CR3
8674 && regno == CR_IVR)
8675 {
8676 for (i = 0; i < 4; i++)
8677 {
8678 specs[count] = tmpl;
8679 specs[count++].index = CR_IRR0 + i;
8680 }
8681 }
8682 }
8683 else if (note == 1)
8684 {
8685 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8686 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8687 && regno >= CR_IRR0
8688 && regno <= CR_IRR3)
8689 {
8690 specs[count] = tmpl;
8691 specs[count++].index = regno;
8692 }
8693 }
8694 else
8695 {
8696 UNHANDLED;
8697 }
8698 break;
8699
8700 case IA64_RS_CR_IIB:
8701 if (note != 0)
8702 {
8703 UNHANDLED;
8704 }
8705 else
8706 {
8707 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8708 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8709 && (regno == CR_IIB0 || regno == CR_IIB1))
8710 {
8711 specs[count] = tmpl;
8712 specs[count++].index = regno;
8713 }
8714 }
8715 break;
8716
8717 case IA64_RS_CR_LRR:
8718 if (note != 1)
8719 {
8720 UNHANDLED;
8721 }
8722 else
8723 {
8724 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8725 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8726 && (regno == CR_LRR0 || regno == CR_LRR1))
8727 {
8728 specs[count] = tmpl;
8729 specs[count++].index = regno;
8730 }
8731 }
8732 break;
8733
8734 case IA64_RS_CR:
8735 if (note == 1)
8736 {
8737 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8738 {
8739 specs[count] = tmpl;
8740 specs[count++].index =
8741 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8742 }
8743 }
8744 else
8745 {
8746 UNHANDLED;
8747 }
8748 break;
8749
8750 case IA64_RS_DAHR:
8751 if (note == 0)
8752 {
8753 if (idesc->operands[!rsrc_write] == IA64_OPND_DAHR3)
8754 {
8755 specs[count] = tmpl;
8756 specs[count++].index =
8757 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_DAHR;
8758 }
8759 }
8760 else
8761 {
8762 UNHANDLED;
8763 }
8764 break;
8765
8766 case IA64_RS_FR:
8767 case IA64_RS_FRb:
8768 if (note != 1)
8769 {
8770 UNHANDLED;
8771 }
8772 else if (rsrc_write)
8773 {
8774 if (dep->specifier == IA64_RS_FRb
8775 && idesc->operands[0] == IA64_OPND_F1)
8776 {
8777 specs[count] = tmpl;
8778 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8779 }
8780 }
8781 else
8782 {
8783 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8784 {
8785 if (idesc->operands[i] == IA64_OPND_F2
8786 || idesc->operands[i] == IA64_OPND_F3
8787 || idesc->operands[i] == IA64_OPND_F4)
8788 {
8789 specs[count] = tmpl;
8790 specs[count++].index =
8791 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8792 }
8793 }
8794 }
8795 break;
8796
8797 case IA64_RS_GR:
8798 if (note == 13)
8799 {
8800 /* This reference applies only to the GR whose value is loaded with
8801 data returned from memory. */
8802 specs[count] = tmpl;
8803 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8804 }
8805 else if (note == 1)
8806 {
8807 if (rsrc_write)
8808 {
8809 for (i = 0; i < idesc->num_outputs; i++)
8810 if (idesc->operands[i] == IA64_OPND_R1
8811 || idesc->operands[i] == IA64_OPND_R2
8812 || idesc->operands[i] == IA64_OPND_R3)
8813 {
8814 specs[count] = tmpl;
8815 specs[count++].index =
8816 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8817 }
8818 if (idesc->flags & IA64_OPCODE_POSTINC)
8819 for (i = 0; i < NELEMS (idesc->operands); i++)
8820 if (idesc->operands[i] == IA64_OPND_MR3)
8821 {
8822 specs[count] = tmpl;
8823 specs[count++].index =
8824 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8825 }
8826 }
8827 else
8828 {
8829 /* Look for anything that reads a GR. */
8830 for (i = 0; i < NELEMS (idesc->operands); i++)
8831 {
8832 if (idesc->operands[i] == IA64_OPND_MR3
8833 || idesc->operands[i] == IA64_OPND_CPUID_R3
8834 || idesc->operands[i] == IA64_OPND_DBR_R3
8835 || idesc->operands[i] == IA64_OPND_IBR_R3
8836 || idesc->operands[i] == IA64_OPND_MSR_R3
8837 || idesc->operands[i] == IA64_OPND_PKR_R3
8838 || idesc->operands[i] == IA64_OPND_PMC_R3
8839 || idesc->operands[i] == IA64_OPND_PMD_R3
8840 || idesc->operands[i] == IA64_OPND_DAHR_R3
8841 || idesc->operands[i] == IA64_OPND_RR_R3
8842 || ((i >= idesc->num_outputs)
8843 && (idesc->operands[i] == IA64_OPND_R1
8844 || idesc->operands[i] == IA64_OPND_R2
8845 || idesc->operands[i] == IA64_OPND_R3
8846 /* addl source register. */
8847 || idesc->operands[i] == IA64_OPND_R3_2)))
8848 {
8849 specs[count] = tmpl;
8850 specs[count++].index =
8851 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8852 }
8853 }
8854 }
8855 }
8856 else
8857 {
8858 UNHANDLED;
8859 }
8860 break;
8861
8862 /* This is the same as IA64_RS_PRr, except that the register range is
8863 from 1 - 15, and there are no rotating register reads/writes here. */
8864 case IA64_RS_PR:
8865 if (note == 0)
8866 {
8867 for (i = 1; i < 16; i++)
8868 {
8869 specs[count] = tmpl;
8870 specs[count++].index = i;
8871 }
8872 }
8873 else if (note == 7)
8874 {
8875 valueT mask = 0;
8876 /* Mark only those registers indicated by the mask. */
8877 if (rsrc_write)
8878 {
8879 mask = CURR_SLOT.opnd[2].X_add_number;
8880 for (i = 1; i < 16; i++)
8881 if (mask & ((valueT) 1 << i))
8882 {
8883 specs[count] = tmpl;
8884 specs[count++].index = i;
8885 }
8886 }
8887 else
8888 {
8889 UNHANDLED;
8890 }
8891 }
8892 else if (note == 11) /* note 11 implies note 1 as well */
8893 {
8894 if (rsrc_write)
8895 {
8896 for (i = 0; i < idesc->num_outputs; i++)
8897 {
8898 if (idesc->operands[i] == IA64_OPND_P1
8899 || idesc->operands[i] == IA64_OPND_P2)
8900 {
8901 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8902 if (regno >= 1 && regno < 16)
8903 {
8904 specs[count] = tmpl;
8905 specs[count++].index = regno;
8906 }
8907 }
8908 }
8909 }
8910 else
8911 {
8912 UNHANDLED;
8913 }
8914 }
8915 else if (note == 12)
8916 {
8917 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8918 {
8919 specs[count] = tmpl;
8920 specs[count++].index = CURR_SLOT.qp_regno;
8921 }
8922 }
8923 else if (note == 1)
8924 {
8925 if (rsrc_write)
8926 {
8927 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8928 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8929 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8930 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8931
8932 if ((idesc->operands[0] == IA64_OPND_P1
8933 || idesc->operands[0] == IA64_OPND_P2)
8934 && p1 >= 1 && p1 < 16)
8935 {
8936 specs[count] = tmpl;
8937 specs[count].cmp_type =
8938 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8939 specs[count++].index = p1;
8940 }
8941 if ((idesc->operands[1] == IA64_OPND_P1
8942 || idesc->operands[1] == IA64_OPND_P2)
8943 && p2 >= 1 && p2 < 16)
8944 {
8945 specs[count] = tmpl;
8946 specs[count].cmp_type =
8947 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8948 specs[count++].index = p2;
8949 }
8950 }
8951 else
8952 {
8953 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8954 {
8955 specs[count] = tmpl;
8956 specs[count++].index = CURR_SLOT.qp_regno;
8957 }
8958 if (idesc->operands[1] == IA64_OPND_PR)
8959 {
8960 for (i = 1; i < 16; i++)
8961 {
8962 specs[count] = tmpl;
8963 specs[count++].index = i;
8964 }
8965 }
8966 }
8967 }
8968 else
8969 {
8970 UNHANDLED;
8971 }
8972 break;
8973
8974 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8975 simplified cases of this. */
8976 case IA64_RS_PRr:
8977 if (note == 0)
8978 {
8979 for (i = 16; i < 63; i++)
8980 {
8981 specs[count] = tmpl;
8982 specs[count++].index = i;
8983 }
8984 }
8985 else if (note == 7)
8986 {
8987 valueT mask = 0;
8988 /* Mark only those registers indicated by the mask. */
8989 if (rsrc_write
8990 && idesc->operands[0] == IA64_OPND_PR)
8991 {
8992 mask = CURR_SLOT.opnd[2].X_add_number;
8993 if (mask & ((valueT) 1 << 16))
8994 for (i = 16; i < 63; i++)
8995 {
8996 specs[count] = tmpl;
8997 specs[count++].index = i;
8998 }
8999 }
9000 else if (rsrc_write
9001 && idesc->operands[0] == IA64_OPND_PR_ROT)
9002 {
9003 for (i = 16; i < 63; i++)
9004 {
9005 specs[count] = tmpl;
9006 specs[count++].index = i;
9007 }
9008 }
9009 else
9010 {
9011 UNHANDLED;
9012 }
9013 }
9014 else if (note == 11) /* note 11 implies note 1 as well */
9015 {
9016 if (rsrc_write)
9017 {
9018 for (i = 0; i < idesc->num_outputs; i++)
9019 {
9020 if (idesc->operands[i] == IA64_OPND_P1
9021 || idesc->operands[i] == IA64_OPND_P2)
9022 {
9023 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9024 if (regno >= 16 && regno < 63)
9025 {
9026 specs[count] = tmpl;
9027 specs[count++].index = regno;
9028 }
9029 }
9030 }
9031 }
9032 else
9033 {
9034 UNHANDLED;
9035 }
9036 }
9037 else if (note == 12)
9038 {
9039 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9040 {
9041 specs[count] = tmpl;
9042 specs[count++].index = CURR_SLOT.qp_regno;
9043 }
9044 }
9045 else if (note == 1)
9046 {
9047 if (rsrc_write)
9048 {
9049 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9050 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9051 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9052 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9053
9054 if ((idesc->operands[0] == IA64_OPND_P1
9055 || idesc->operands[0] == IA64_OPND_P2)
9056 && p1 >= 16 && p1 < 63)
9057 {
9058 specs[count] = tmpl;
9059 specs[count].cmp_type =
9060 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9061 specs[count++].index = p1;
9062 }
9063 if ((idesc->operands[1] == IA64_OPND_P1
9064 || idesc->operands[1] == IA64_OPND_P2)
9065 && p2 >= 16 && p2 < 63)
9066 {
9067 specs[count] = tmpl;
9068 specs[count].cmp_type =
9069 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9070 specs[count++].index = p2;
9071 }
9072 }
9073 else
9074 {
9075 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9076 {
9077 specs[count] = tmpl;
9078 specs[count++].index = CURR_SLOT.qp_regno;
9079 }
9080 if (idesc->operands[1] == IA64_OPND_PR)
9081 {
9082 for (i = 16; i < 63; i++)
9083 {
9084 specs[count] = tmpl;
9085 specs[count++].index = i;
9086 }
9087 }
9088 }
9089 }
9090 else
9091 {
9092 UNHANDLED;
9093 }
9094 break;
9095
9096 case IA64_RS_PSR:
9097 /* Verify that the instruction is using the PSR bit indicated in
9098 dep->regindex. */
9099 if (note == 0)
9100 {
9101 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9102 {
9103 if (dep->regindex < 6)
9104 {
9105 specs[count++] = tmpl;
9106 }
9107 }
9108 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9109 {
9110 if (dep->regindex < 32
9111 || dep->regindex == 35
9112 || dep->regindex == 36
9113 || (!rsrc_write && dep->regindex == PSR_CPL))
9114 {
9115 specs[count++] = tmpl;
9116 }
9117 }
9118 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9119 {
9120 if (dep->regindex < 32
9121 || dep->regindex == 35
9122 || dep->regindex == 36
9123 || (rsrc_write && dep->regindex == PSR_CPL))
9124 {
9125 specs[count++] = tmpl;
9126 }
9127 }
9128 else
9129 {
9130 /* Several PSR bits have very specific dependencies. */
9131 switch (dep->regindex)
9132 {
9133 default:
9134 specs[count++] = tmpl;
9135 break;
9136 case PSR_IC:
9137 if (rsrc_write)
9138 {
9139 specs[count++] = tmpl;
9140 }
9141 else
9142 {
9143 /* Only certain CR accesses use PSR.ic */
9144 if (idesc->operands[0] == IA64_OPND_CR3
9145 || idesc->operands[1] == IA64_OPND_CR3)
9146 {
9147 int reg_index =
9148 ((idesc->operands[0] == IA64_OPND_CR3)
9149 ? 0 : 1);
9150 int regno =
9151 CURR_SLOT.opnd[reg_index].X_add_number - REG_CR;
9152
9153 switch (regno)
9154 {
9155 default:
9156 break;
9157 case CR_ITIR:
9158 case CR_IFS:
9159 case CR_IIM:
9160 case CR_IIP:
9161 case CR_IPSR:
9162 case CR_ISR:
9163 case CR_IFA:
9164 case CR_IHA:
9165 case CR_IIB0:
9166 case CR_IIB1:
9167 case CR_IIPA:
9168 specs[count++] = tmpl;
9169 break;
9170 }
9171 }
9172 }
9173 break;
9174 case PSR_CPL:
9175 if (rsrc_write)
9176 {
9177 specs[count++] = tmpl;
9178 }
9179 else
9180 {
9181 /* Only some AR accesses use cpl */
9182 if (idesc->operands[0] == IA64_OPND_AR3
9183 || idesc->operands[1] == IA64_OPND_AR3)
9184 {
9185 int reg_index =
9186 ((idesc->operands[0] == IA64_OPND_AR3)
9187 ? 0 : 1);
9188 int regno =
9189 CURR_SLOT.opnd[reg_index].X_add_number - REG_AR;
9190
9191 if (regno == AR_ITC
9192 || regno == AR_RUC
9193 || (reg_index == 0
9194 && (regno == AR_RSC
9195 || (regno >= AR_K0
9196 && regno <= AR_K7))))
9197 {
9198 specs[count++] = tmpl;
9199 }
9200 }
9201 else
9202 {
9203 specs[count++] = tmpl;
9204 }
9205 break;
9206 }
9207 }
9208 }
9209 }
9210 else if (note == 7)
9211 {
9212 valueT mask = 0;
9213 if (idesc->operands[0] == IA64_OPND_IMMU24)
9214 {
9215 mask = CURR_SLOT.opnd[0].X_add_number;
9216 }
9217 else
9218 {
9219 UNHANDLED;
9220 }
9221 if (mask & ((valueT) 1 << dep->regindex))
9222 {
9223 specs[count++] = tmpl;
9224 }
9225 }
9226 else if (note == 8)
9227 {
9228 int min = dep->regindex == PSR_DFL ? 2 : 32;
9229 int max = dep->regindex == PSR_DFL ? 31 : 127;
9230 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9231 for (i = 0; i < NELEMS (idesc->operands); i++)
9232 {
9233 if (idesc->operands[i] == IA64_OPND_F1
9234 || idesc->operands[i] == IA64_OPND_F2
9235 || idesc->operands[i] == IA64_OPND_F3
9236 || idesc->operands[i] == IA64_OPND_F4)
9237 {
9238 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9239 if (reg >= min && reg <= max)
9240 {
9241 specs[count++] = tmpl;
9242 }
9243 }
9244 }
9245 }
9246 else if (note == 9)
9247 {
9248 int min = dep->regindex == PSR_MFL ? 2 : 32;
9249 int max = dep->regindex == PSR_MFL ? 31 : 127;
9250 /* mfh is read on writes to FR32-127; mfl is read on writes to
9251 FR2-31 */
9252 for (i = 0; i < idesc->num_outputs; i++)
9253 {
9254 if (idesc->operands[i] == IA64_OPND_F1)
9255 {
9256 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9257 if (reg >= min && reg <= max)
9258 {
9259 specs[count++] = tmpl;
9260 }
9261 }
9262 }
9263 }
9264 else if (note == 10)
9265 {
9266 for (i = 0; i < NELEMS (idesc->operands); i++)
9267 {
9268 if (idesc->operands[i] == IA64_OPND_R1
9269 || idesc->operands[i] == IA64_OPND_R2
9270 || idesc->operands[i] == IA64_OPND_R3)
9271 {
9272 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9273 if (regno >= 16 && regno <= 31)
9274 {
9275 specs[count++] = tmpl;
9276 }
9277 }
9278 }
9279 }
9280 else
9281 {
9282 UNHANDLED;
9283 }
9284 break;
9285
9286 case IA64_RS_AR_FPSR:
9287 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9288 {
9289 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9290 if (regno == AR_FPSR)
9291 {
9292 specs[count++] = tmpl;
9293 }
9294 }
9295 else
9296 {
9297 specs[count++] = tmpl;
9298 }
9299 break;
9300
9301 case IA64_RS_ARX:
9302 /* Handle all AR[REG] resources */
9303 if (note == 0 || note == 1)
9304 {
9305 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9306 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9307 && regno == dep->regindex)
9308 {
9309 specs[count++] = tmpl;
9310 }
9311 /* other AR[REG] resources may be affected by AR accesses */
9312 else if (idesc->operands[0] == IA64_OPND_AR3)
9313 {
9314 /* AR[] writes */
9315 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9316 switch (dep->regindex)
9317 {
9318 default:
9319 break;
9320 case AR_BSP:
9321 case AR_RNAT:
9322 if (regno == AR_BSPSTORE)
9323 {
9324 specs[count++] = tmpl;
9325 }
9326 case AR_RSC:
9327 if (!rsrc_write &&
9328 (regno == AR_BSPSTORE
9329 || regno == AR_RNAT))
9330 {
9331 specs[count++] = tmpl;
9332 }
9333 break;
9334 }
9335 }
9336 else if (idesc->operands[1] == IA64_OPND_AR3)
9337 {
9338 /* AR[] reads */
9339 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9340 switch (dep->regindex)
9341 {
9342 default:
9343 break;
9344 case AR_RSC:
9345 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9346 {
9347 specs[count++] = tmpl;
9348 }
9349 break;
9350 }
9351 }
9352 else
9353 {
9354 specs[count++] = tmpl;
9355 }
9356 }
9357 else
9358 {
9359 UNHANDLED;
9360 }
9361 break;
9362
9363 case IA64_RS_CRX:
9364 /* Handle all CR[REG] resources.
9365 ??? FIXME: The rule 17 isn't really handled correctly. */
9366 if (note == 0 || note == 1 || note == 17)
9367 {
9368 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9369 {
9370 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9371 if (regno == dep->regindex)
9372 {
9373 specs[count++] = tmpl;
9374 }
9375 else if (!rsrc_write)
9376 {
9377 /* Reads from CR[IVR] affect other resources. */
9378 if (regno == CR_IVR)
9379 {
9380 if ((dep->regindex >= CR_IRR0
9381 && dep->regindex <= CR_IRR3)
9382 || dep->regindex == CR_TPR)
9383 {
9384 specs[count++] = tmpl;
9385 }
9386 }
9387 }
9388 }
9389 else
9390 {
9391 specs[count++] = tmpl;
9392 }
9393 }
9394 else
9395 {
9396 UNHANDLED;
9397 }
9398 break;
9399
9400 case IA64_RS_INSERVICE:
9401 /* look for write of EOI (67) or read of IVR (65) */
9402 if ((idesc->operands[0] == IA64_OPND_CR3
9403 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9404 || (idesc->operands[1] == IA64_OPND_CR3
9405 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9406 {
9407 specs[count++] = tmpl;
9408 }
9409 break;
9410
9411 case IA64_RS_GR0:
9412 if (note == 1)
9413 {
9414 specs[count++] = tmpl;
9415 }
9416 else
9417 {
9418 UNHANDLED;
9419 }
9420 break;
9421
9422 case IA64_RS_CFM:
9423 if (note != 2)
9424 {
9425 specs[count++] = tmpl;
9426 }
9427 else
9428 {
9429 /* Check if any of the registers accessed are in the rotating region.
9430 mov to/from pr accesses CFM only when qp_regno is in the rotating
9431 region */
9432 for (i = 0; i < NELEMS (idesc->operands); i++)
9433 {
9434 if (idesc->operands[i] == IA64_OPND_R1
9435 || idesc->operands[i] == IA64_OPND_R2
9436 || idesc->operands[i] == IA64_OPND_R3)
9437 {
9438 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9439 /* Assumes that md.rot.num_regs is always valid */
9440 if (md.rot.num_regs > 0
9441 && num > 31
9442 && num < 31 + md.rot.num_regs)
9443 {
9444 specs[count] = tmpl;
9445 specs[count++].specific = 0;
9446 }
9447 }
9448 else if (idesc->operands[i] == IA64_OPND_F1
9449 || idesc->operands[i] == IA64_OPND_F2
9450 || idesc->operands[i] == IA64_OPND_F3
9451 || idesc->operands[i] == IA64_OPND_F4)
9452 {
9453 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9454 if (num > 31)
9455 {
9456 specs[count] = tmpl;
9457 specs[count++].specific = 0;
9458 }
9459 }
9460 else if (idesc->operands[i] == IA64_OPND_P1
9461 || idesc->operands[i] == IA64_OPND_P2)
9462 {
9463 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9464 if (num > 15)
9465 {
9466 specs[count] = tmpl;
9467 specs[count++].specific = 0;
9468 }
9469 }
9470 }
9471 if (CURR_SLOT.qp_regno > 15)
9472 {
9473 specs[count] = tmpl;
9474 specs[count++].specific = 0;
9475 }
9476 }
9477 break;
9478
9479 /* This is the same as IA64_RS_PRr, except simplified to account for
9480 the fact that there is only one register. */
9481 case IA64_RS_PR63:
9482 if (note == 0)
9483 {
9484 specs[count++] = tmpl;
9485 }
9486 else if (note == 7)
9487 {
9488 valueT mask = 0;
9489 if (idesc->operands[2] == IA64_OPND_IMM17)
9490 mask = CURR_SLOT.opnd[2].X_add_number;
9491 if (mask & ((valueT) 1 << 63))
9492 specs[count++] = tmpl;
9493 }
9494 else if (note == 11)
9495 {
9496 if ((idesc->operands[0] == IA64_OPND_P1
9497 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9498 || (idesc->operands[1] == IA64_OPND_P2
9499 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9500 {
9501 specs[count++] = tmpl;
9502 }
9503 }
9504 else if (note == 12)
9505 {
9506 if (CURR_SLOT.qp_regno == 63)
9507 {
9508 specs[count++] = tmpl;
9509 }
9510 }
9511 else if (note == 1)
9512 {
9513 if (rsrc_write)
9514 {
9515 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9516 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9517 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9518 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9519
9520 if (p1 == 63
9521 && (idesc->operands[0] == IA64_OPND_P1
9522 || idesc->operands[0] == IA64_OPND_P2))
9523 {
9524 specs[count] = tmpl;
9525 specs[count++].cmp_type =
9526 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9527 }
9528 if (p2 == 63
9529 && (idesc->operands[1] == IA64_OPND_P1
9530 || idesc->operands[1] == IA64_OPND_P2))
9531 {
9532 specs[count] = tmpl;
9533 specs[count++].cmp_type =
9534 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9535 }
9536 }
9537 else
9538 {
9539 if (CURR_SLOT.qp_regno == 63)
9540 {
9541 specs[count++] = tmpl;
9542 }
9543 }
9544 }
9545 else
9546 {
9547 UNHANDLED;
9548 }
9549 break;
9550
9551 case IA64_RS_RSE:
9552 /* FIXME we can identify some individual RSE written resources, but RSE
9553 read resources have not yet been completely identified, so for now
9554 treat RSE as a single resource */
9555 if (strncmp (idesc->name, "mov", 3) == 0)
9556 {
9557 if (rsrc_write)
9558 {
9559 if (idesc->operands[0] == IA64_OPND_AR3
9560 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9561 {
9562 specs[count++] = tmpl;
9563 }
9564 }
9565 else
9566 {
9567 if (idesc->operands[0] == IA64_OPND_AR3)
9568 {
9569 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9570 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9571 {
9572 specs[count++] = tmpl;
9573 }
9574 }
9575 else if (idesc->operands[1] == IA64_OPND_AR3)
9576 {
9577 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9578 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9579 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9580 {
9581 specs[count++] = tmpl;
9582 }
9583 }
9584 }
9585 }
9586 else
9587 {
9588 specs[count++] = tmpl;
9589 }
9590 break;
9591
9592 case IA64_RS_ANY:
9593 /* FIXME -- do any of these need to be non-specific? */
9594 specs[count++] = tmpl;
9595 break;
9596
9597 default:
9598 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9599 break;
9600 }
9601
9602 return count;
9603 }
9604
9605 /* Clear branch flags on marked resources. This breaks the link between the
9606 QP of the marking instruction and a subsequent branch on the same QP. */
9607
9608 static void
9609 clear_qp_branch_flag (valueT mask)
9610 {
9611 int i;
9612 for (i = 0; i < regdepslen; i++)
9613 {
9614 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9615 if ((bit & mask) != 0)
9616 {
9617 regdeps[i].link_to_qp_branch = 0;
9618 }
9619 }
9620 }
9621
9622 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9623 any mutexes which contain one of the PRs and create new ones when
9624 needed. */
9625
9626 static int
9627 update_qp_mutex (valueT mask)
9628 {
9629 int i;
9630 int add = 0;
9631
9632 i = 0;
9633 while (i < qp_mutexeslen)
9634 {
9635 if ((qp_mutexes[i].prmask & mask) != 0)
9636 {
9637 /* If it destroys and creates the same mutex, do nothing. */
9638 if (qp_mutexes[i].prmask == mask
9639 && qp_mutexes[i].path == md.path)
9640 {
9641 i++;
9642 add = -1;
9643 }
9644 else
9645 {
9646 int keep = 0;
9647
9648 if (md.debug_dv)
9649 {
9650 fprintf (stderr, " Clearing mutex relation");
9651 print_prmask (qp_mutexes[i].prmask);
9652 fprintf (stderr, "\n");
9653 }
9654
9655 /* Deal with the old mutex with more than 3+ PRs only if
9656 the new mutex on the same execution path with it.
9657
9658 FIXME: The 3+ mutex support is incomplete.
9659 dot_pred_rel () may be a better place to fix it. */
9660 if (qp_mutexes[i].path == md.path)
9661 {
9662 /* If it is a proper subset of the mutex, create a
9663 new mutex. */
9664 if (add == 0
9665 && (qp_mutexes[i].prmask & mask) == mask)
9666 add = 1;
9667
9668 qp_mutexes[i].prmask &= ~mask;
9669 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9670 {
9671 /* Modify the mutex if there are more than one
9672 PR left. */
9673 keep = 1;
9674 i++;
9675 }
9676 }
9677
9678 if (keep == 0)
9679 /* Remove the mutex. */
9680 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9681 }
9682 }
9683 else
9684 ++i;
9685 }
9686
9687 if (add == 1)
9688 add_qp_mutex (mask);
9689
9690 return add;
9691 }
9692
9693 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9694
9695 Any changes to a PR clears the mutex relations which include that PR. */
9696
9697 static void
9698 clear_qp_mutex (valueT mask)
9699 {
9700 int i;
9701
9702 i = 0;
9703 while (i < qp_mutexeslen)
9704 {
9705 if ((qp_mutexes[i].prmask & mask) != 0)
9706 {
9707 if (md.debug_dv)
9708 {
9709 fprintf (stderr, " Clearing mutex relation");
9710 print_prmask (qp_mutexes[i].prmask);
9711 fprintf (stderr, "\n");
9712 }
9713 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9714 }
9715 else
9716 ++i;
9717 }
9718 }
9719
9720 /* Clear implies relations which contain PRs in the given masks.
9721 P1_MASK indicates the source of the implies relation, while P2_MASK
9722 indicates the implied PR. */
9723
9724 static void
9725 clear_qp_implies (valueT p1_mask, valueT p2_mask)
9726 {
9727 int i;
9728
9729 i = 0;
9730 while (i < qp_implieslen)
9731 {
9732 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9733 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9734 {
9735 if (md.debug_dv)
9736 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9737 qp_implies[i].p1, qp_implies[i].p2);
9738 qp_implies[i] = qp_implies[--qp_implieslen];
9739 }
9740 else
9741 ++i;
9742 }
9743 }
9744
9745 /* Add the PRs specified to the list of implied relations. */
9746
9747 static void
9748 add_qp_imply (int p1, int p2)
9749 {
9750 valueT mask;
9751 valueT bit;
9752 int i;
9753
9754 /* p0 is not meaningful here. */
9755 if (p1 == 0 || p2 == 0)
9756 abort ();
9757
9758 if (p1 == p2)
9759 return;
9760
9761 /* If it exists already, ignore it. */
9762 for (i = 0; i < qp_implieslen; i++)
9763 {
9764 if (qp_implies[i].p1 == p1
9765 && qp_implies[i].p2 == p2
9766 && qp_implies[i].path == md.path
9767 && !qp_implies[i].p2_branched)
9768 return;
9769 }
9770
9771 if (qp_implieslen == qp_impliestotlen)
9772 {
9773 qp_impliestotlen += 20;
9774 qp_implies = (struct qp_imply *)
9775 xrealloc ((void *) qp_implies,
9776 qp_impliestotlen * sizeof (struct qp_imply));
9777 }
9778 if (md.debug_dv)
9779 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9780 qp_implies[qp_implieslen].p1 = p1;
9781 qp_implies[qp_implieslen].p2 = p2;
9782 qp_implies[qp_implieslen].path = md.path;
9783 qp_implies[qp_implieslen++].p2_branched = 0;
9784
9785 /* Add in the implied transitive relations; for everything that p2 implies,
9786 make p1 imply that, too; for everything that implies p1, make it imply p2
9787 as well. */
9788 for (i = 0; i < qp_implieslen; i++)
9789 {
9790 if (qp_implies[i].p1 == p2)
9791 add_qp_imply (p1, qp_implies[i].p2);
9792 if (qp_implies[i].p2 == p1)
9793 add_qp_imply (qp_implies[i].p1, p2);
9794 }
9795 /* Add in mutex relations implied by this implies relation; for each mutex
9796 relation containing p2, duplicate it and replace p2 with p1. */
9797 bit = (valueT) 1 << p1;
9798 mask = (valueT) 1 << p2;
9799 for (i = 0; i < qp_mutexeslen; i++)
9800 {
9801 if (qp_mutexes[i].prmask & mask)
9802 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9803 }
9804 }
9805
9806 /* Add the PRs specified in the mask to the mutex list; this means that only
9807 one of the PRs can be true at any time. PR0 should never be included in
9808 the mask. */
9809
9810 static void
9811 add_qp_mutex (valueT mask)
9812 {
9813 if (mask & 0x1)
9814 abort ();
9815
9816 if (qp_mutexeslen == qp_mutexestotlen)
9817 {
9818 qp_mutexestotlen += 20;
9819 qp_mutexes = (struct qpmutex *)
9820 xrealloc ((void *) qp_mutexes,
9821 qp_mutexestotlen * sizeof (struct qpmutex));
9822 }
9823 if (md.debug_dv)
9824 {
9825 fprintf (stderr, " Registering mutex on");
9826 print_prmask (mask);
9827 fprintf (stderr, "\n");
9828 }
9829 qp_mutexes[qp_mutexeslen].path = md.path;
9830 qp_mutexes[qp_mutexeslen++].prmask = mask;
9831 }
9832
9833 static int
9834 has_suffix_p (const char *name, const char *suffix)
9835 {
9836 size_t namelen = strlen (name);
9837 size_t sufflen = strlen (suffix);
9838
9839 if (namelen <= sufflen)
9840 return 0;
9841 return strcmp (name + namelen - sufflen, suffix) == 0;
9842 }
9843
9844 static void
9845 clear_register_values (void)
9846 {
9847 int i;
9848 if (md.debug_dv)
9849 fprintf (stderr, " Clearing register values\n");
9850 for (i = 1; i < NELEMS (gr_values); i++)
9851 gr_values[i].known = 0;
9852 }
9853
9854 /* Keep track of register values/changes which affect DV tracking.
9855
9856 optimization note: should add a flag to classes of insns where otherwise we
9857 have to examine a group of strings to identify them. */
9858
9859 static void
9860 note_register_values (struct ia64_opcode *idesc)
9861 {
9862 valueT qp_changemask = 0;
9863 int i;
9864
9865 /* Invalidate values for registers being written to. */
9866 for (i = 0; i < idesc->num_outputs; i++)
9867 {
9868 if (idesc->operands[i] == IA64_OPND_R1
9869 || idesc->operands[i] == IA64_OPND_R2
9870 || idesc->operands[i] == IA64_OPND_R3)
9871 {
9872 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9873 if (regno > 0 && regno < NELEMS (gr_values))
9874 gr_values[regno].known = 0;
9875 }
9876 else if (idesc->operands[i] == IA64_OPND_R3_2)
9877 {
9878 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9879 if (regno > 0 && regno < 4)
9880 gr_values[regno].known = 0;
9881 }
9882 else if (idesc->operands[i] == IA64_OPND_P1
9883 || idesc->operands[i] == IA64_OPND_P2)
9884 {
9885 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9886 qp_changemask |= (valueT) 1 << regno;
9887 }
9888 else if (idesc->operands[i] == IA64_OPND_PR)
9889 {
9890 if (idesc->operands[2] & (valueT) 0x10000)
9891 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9892 else
9893 qp_changemask = idesc->operands[2];
9894 break;
9895 }
9896 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9897 {
9898 if (idesc->operands[1] & ((valueT) 1 << 43))
9899 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9900 else
9901 qp_changemask = idesc->operands[1];
9902 qp_changemask &= ~(valueT) 0xFFFF;
9903 break;
9904 }
9905 }
9906
9907 /* Always clear qp branch flags on any PR change. */
9908 /* FIXME there may be exceptions for certain compares. */
9909 clear_qp_branch_flag (qp_changemask);
9910
9911 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9912 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9913 {
9914 qp_changemask |= ~(valueT) 0xFFFF;
9915 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9916 {
9917 for (i = 32; i < 32 + md.rot.num_regs; i++)
9918 gr_values[i].known = 0;
9919 }
9920 clear_qp_mutex (qp_changemask);
9921 clear_qp_implies (qp_changemask, qp_changemask);
9922 }
9923 /* After a call, all register values are undefined, except those marked
9924 as "safe". */
9925 else if (strncmp (idesc->name, "br.call", 6) == 0
9926 || strncmp (idesc->name, "brl.call", 7) == 0)
9927 {
9928 /* FIXME keep GR values which are marked as "safe_across_calls" */
9929 clear_register_values ();
9930 clear_qp_mutex (~qp_safe_across_calls);
9931 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9932 clear_qp_branch_flag (~qp_safe_across_calls);
9933 }
9934 else if (is_interruption_or_rfi (idesc)
9935 || is_taken_branch (idesc))
9936 {
9937 clear_register_values ();
9938 clear_qp_mutex (~(valueT) 0);
9939 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9940 }
9941 /* Look for mutex and implies relations. */
9942 else if ((idesc->operands[0] == IA64_OPND_P1
9943 || idesc->operands[0] == IA64_OPND_P2)
9944 && (idesc->operands[1] == IA64_OPND_P1
9945 || idesc->operands[1] == IA64_OPND_P2))
9946 {
9947 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9948 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9949 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9950 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9951
9952 /* If both PRs are PR0, we can't really do anything. */
9953 if (p1 == 0 && p2 == 0)
9954 {
9955 if (md.debug_dv)
9956 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9957 }
9958 /* In general, clear mutexes and implies which include P1 or P2,
9959 with the following exceptions. */
9960 else if (has_suffix_p (idesc->name, ".or.andcm")
9961 || has_suffix_p (idesc->name, ".and.orcm"))
9962 {
9963 clear_qp_implies (p2mask, p1mask);
9964 }
9965 else if (has_suffix_p (idesc->name, ".andcm")
9966 || has_suffix_p (idesc->name, ".and"))
9967 {
9968 clear_qp_implies (0, p1mask | p2mask);
9969 }
9970 else if (has_suffix_p (idesc->name, ".orcm")
9971 || has_suffix_p (idesc->name, ".or"))
9972 {
9973 clear_qp_mutex (p1mask | p2mask);
9974 clear_qp_implies (p1mask | p2mask, 0);
9975 }
9976 else
9977 {
9978 int added = 0;
9979
9980 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9981
9982 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9983 if (p1 == 0 || p2 == 0)
9984 clear_qp_mutex (p1mask | p2mask);
9985 else
9986 added = update_qp_mutex (p1mask | p2mask);
9987
9988 if (CURR_SLOT.qp_regno == 0
9989 || has_suffix_p (idesc->name, ".unc"))
9990 {
9991 if (added == 0 && p1 && p2)
9992 add_qp_mutex (p1mask | p2mask);
9993 if (CURR_SLOT.qp_regno != 0)
9994 {
9995 if (p1)
9996 add_qp_imply (p1, CURR_SLOT.qp_regno);
9997 if (p2)
9998 add_qp_imply (p2, CURR_SLOT.qp_regno);
9999 }
10000 }
10001 }
10002 }
10003 /* Look for mov imm insns into GRs. */
10004 else if (idesc->operands[0] == IA64_OPND_R1
10005 && (idesc->operands[1] == IA64_OPND_IMM22
10006 || idesc->operands[1] == IA64_OPND_IMMU64)
10007 && CURR_SLOT.opnd[1].X_op == O_constant
10008 && (strcmp (idesc->name, "mov") == 0
10009 || strcmp (idesc->name, "movl") == 0))
10010 {
10011 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10012 if (regno > 0 && regno < NELEMS (gr_values))
10013 {
10014 gr_values[regno].known = 1;
10015 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10016 gr_values[regno].path = md.path;
10017 if (md.debug_dv)
10018 {
10019 fprintf (stderr, " Know gr%d = ", regno);
10020 fprintf_vma (stderr, gr_values[regno].value);
10021 fputs ("\n", stderr);
10022 }
10023 }
10024 }
10025 /* Look for dep.z imm insns. */
10026 else if (idesc->operands[0] == IA64_OPND_R1
10027 && idesc->operands[1] == IA64_OPND_IMM8
10028 && strcmp (idesc->name, "dep.z") == 0)
10029 {
10030 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10031 if (regno > 0 && regno < NELEMS (gr_values))
10032 {
10033 valueT value = CURR_SLOT.opnd[1].X_add_number;
10034
10035 if (CURR_SLOT.opnd[3].X_add_number < 64)
10036 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10037 value <<= CURR_SLOT.opnd[2].X_add_number;
10038 gr_values[regno].known = 1;
10039 gr_values[regno].value = value;
10040 gr_values[regno].path = md.path;
10041 if (md.debug_dv)
10042 {
10043 fprintf (stderr, " Know gr%d = ", regno);
10044 fprintf_vma (stderr, gr_values[regno].value);
10045 fputs ("\n", stderr);
10046 }
10047 }
10048 }
10049 else
10050 {
10051 clear_qp_mutex (qp_changemask);
10052 clear_qp_implies (qp_changemask, qp_changemask);
10053 }
10054 }
10055
10056 /* Return whether the given predicate registers are currently mutex. */
10057
10058 static int
10059 qp_mutex (int p1, int p2, int path)
10060 {
10061 int i;
10062 valueT mask;
10063
10064 if (p1 != p2)
10065 {
10066 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10067 for (i = 0; i < qp_mutexeslen; i++)
10068 {
10069 if (qp_mutexes[i].path >= path
10070 && (qp_mutexes[i].prmask & mask) == mask)
10071 return 1;
10072 }
10073 }
10074 return 0;
10075 }
10076
10077 /* Return whether the given resource is in the given insn's list of chks
10078 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10079 conflict. */
10080
10081 static int
10082 resources_match (struct rsrc *rs,
10083 struct ia64_opcode *idesc,
10084 int note,
10085 int qp_regno,
10086 int path)
10087 {
10088 struct rsrc specs[MAX_SPECS];
10089 int count;
10090
10091 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10092 we don't need to check. One exception is note 11, which indicates that
10093 target predicates are written regardless of PR[qp]. */
10094 if (qp_mutex (rs->qp_regno, qp_regno, path)
10095 && note != 11)
10096 return 0;
10097
10098 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10099 while (count-- > 0)
10100 {
10101 /* UNAT checking is a bit more specific than other resources */
10102 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10103 && specs[count].mem_offset.hint
10104 && rs->mem_offset.hint)
10105 {
10106 if (rs->mem_offset.base == specs[count].mem_offset.base)
10107 {
10108 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10109 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10110 return 1;
10111 else
10112 continue;
10113 }
10114 }
10115
10116 /* Skip apparent PR write conflicts where both writes are an AND or both
10117 writes are an OR. */
10118 if (rs->dependency->specifier == IA64_RS_PR
10119 || rs->dependency->specifier == IA64_RS_PRr
10120 || rs->dependency->specifier == IA64_RS_PR63)
10121 {
10122 if (specs[count].cmp_type != CMP_NONE
10123 && specs[count].cmp_type == rs->cmp_type)
10124 {
10125 if (md.debug_dv)
10126 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10127 dv_mode[rs->dependency->mode],
10128 rs->dependency->specifier != IA64_RS_PR63 ?
10129 specs[count].index : 63);
10130 continue;
10131 }
10132 if (md.debug_dv)
10133 fprintf (stderr,
10134 " %s on parallel compare conflict %s vs %s on PR%d\n",
10135 dv_mode[rs->dependency->mode],
10136 dv_cmp_type[rs->cmp_type],
10137 dv_cmp_type[specs[count].cmp_type],
10138 rs->dependency->specifier != IA64_RS_PR63 ?
10139 specs[count].index : 63);
10140
10141 }
10142
10143 /* If either resource is not specific, conservatively assume a conflict
10144 */
10145 if (!specs[count].specific || !rs->specific)
10146 return 2;
10147 else if (specs[count].index == rs->index)
10148 return 1;
10149 }
10150
10151 return 0;
10152 }
10153
10154 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10155 insert a stop to create the break. Update all resource dependencies
10156 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10157 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10158 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10159 instruction. */
10160
10161 static void
10162 insn_group_break (int insert_stop, int qp_regno, int save_current)
10163 {
10164 int i;
10165
10166 if (insert_stop && md.num_slots_in_use > 0)
10167 PREV_SLOT.end_of_insn_group = 1;
10168
10169 if (md.debug_dv)
10170 {
10171 fprintf (stderr, " Insn group break%s",
10172 (insert_stop ? " (w/stop)" : ""));
10173 if (qp_regno != 0)
10174 fprintf (stderr, " effective for QP=%d", qp_regno);
10175 fprintf (stderr, "\n");
10176 }
10177
10178 i = 0;
10179 while (i < regdepslen)
10180 {
10181 const struct ia64_dependency *dep = regdeps[i].dependency;
10182
10183 if (qp_regno != 0
10184 && regdeps[i].qp_regno != qp_regno)
10185 {
10186 ++i;
10187 continue;
10188 }
10189
10190 if (save_current
10191 && CURR_SLOT.src_file == regdeps[i].file
10192 && CURR_SLOT.src_line == regdeps[i].line)
10193 {
10194 ++i;
10195 continue;
10196 }
10197
10198 /* clear dependencies which are automatically cleared by a stop, or
10199 those that have reached the appropriate state of insn serialization */
10200 if (dep->semantics == IA64_DVS_IMPLIED
10201 || dep->semantics == IA64_DVS_IMPLIEDF
10202 || regdeps[i].insn_srlz == STATE_SRLZ)
10203 {
10204 print_dependency ("Removing", i);
10205 regdeps[i] = regdeps[--regdepslen];
10206 }
10207 else
10208 {
10209 if (dep->semantics == IA64_DVS_DATA
10210 || dep->semantics == IA64_DVS_INSTR
10211 || dep->semantics == IA64_DVS_SPECIFIC)
10212 {
10213 if (regdeps[i].insn_srlz == STATE_NONE)
10214 regdeps[i].insn_srlz = STATE_STOP;
10215 if (regdeps[i].data_srlz == STATE_NONE)
10216 regdeps[i].data_srlz = STATE_STOP;
10217 }
10218 ++i;
10219 }
10220 }
10221 }
10222
10223 /* Add the given resource usage spec to the list of active dependencies. */
10224
10225 static void
10226 mark_resource (struct ia64_opcode *idesc ATTRIBUTE_UNUSED,
10227 const struct ia64_dependency *dep ATTRIBUTE_UNUSED,
10228 struct rsrc *spec,
10229 int depind,
10230 int path)
10231 {
10232 if (regdepslen == regdepstotlen)
10233 {
10234 regdepstotlen += 20;
10235 regdeps = (struct rsrc *)
10236 xrealloc ((void *) regdeps,
10237 regdepstotlen * sizeof (struct rsrc));
10238 }
10239
10240 regdeps[regdepslen] = *spec;
10241 regdeps[regdepslen].depind = depind;
10242 regdeps[regdepslen].path = path;
10243 regdeps[regdepslen].file = CURR_SLOT.src_file;
10244 regdeps[regdepslen].line = CURR_SLOT.src_line;
10245
10246 print_dependency ("Adding", regdepslen);
10247
10248 ++regdepslen;
10249 }
10250
10251 static void
10252 print_dependency (const char *action, int depind)
10253 {
10254 if (md.debug_dv)
10255 {
10256 fprintf (stderr, " %s %s '%s'",
10257 action, dv_mode[(regdeps[depind].dependency)->mode],
10258 (regdeps[depind].dependency)->name);
10259 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10260 fprintf (stderr, " (%d)", regdeps[depind].index);
10261 if (regdeps[depind].mem_offset.hint)
10262 {
10263 fputs (" ", stderr);
10264 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10265 fputs ("+", stderr);
10266 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10267 }
10268 fprintf (stderr, "\n");
10269 }
10270 }
10271
10272 static void
10273 instruction_serialization (void)
10274 {
10275 int i;
10276 if (md.debug_dv)
10277 fprintf (stderr, " Instruction serialization\n");
10278 for (i = 0; i < regdepslen; i++)
10279 if (regdeps[i].insn_srlz == STATE_STOP)
10280 regdeps[i].insn_srlz = STATE_SRLZ;
10281 }
10282
10283 static void
10284 data_serialization (void)
10285 {
10286 int i = 0;
10287 if (md.debug_dv)
10288 fprintf (stderr, " Data serialization\n");
10289 while (i < regdepslen)
10290 {
10291 if (regdeps[i].data_srlz == STATE_STOP
10292 /* Note: as of 991210, all "other" dependencies are cleared by a
10293 data serialization. This might change with new tables */
10294 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10295 {
10296 print_dependency ("Removing", i);
10297 regdeps[i] = regdeps[--regdepslen];
10298 }
10299 else
10300 ++i;
10301 }
10302 }
10303
10304 /* Insert stops and serializations as needed to avoid DVs. */
10305
10306 static void
10307 remove_marked_resource (struct rsrc *rs)
10308 {
10309 switch (rs->dependency->semantics)
10310 {
10311 case IA64_DVS_SPECIFIC:
10312 if (md.debug_dv)
10313 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10314 /* ...fall through... */
10315 case IA64_DVS_INSTR:
10316 if (md.debug_dv)
10317 fprintf (stderr, "Inserting instr serialization\n");
10318 if (rs->insn_srlz < STATE_STOP)
10319 insn_group_break (1, 0, 0);
10320 if (rs->insn_srlz < STATE_SRLZ)
10321 {
10322 struct slot oldslot = CURR_SLOT;
10323 /* Manually jam a srlz.i insn into the stream */
10324 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10325 CURR_SLOT.user_template = -1;
10326 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10327 instruction_serialization ();
10328 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10329 if (++md.num_slots_in_use >= NUM_SLOTS)
10330 emit_one_bundle ();
10331 CURR_SLOT = oldslot;
10332 }
10333 insn_group_break (1, 0, 0);
10334 break;
10335 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10336 "other" types of DV are eliminated
10337 by a data serialization */
10338 case IA64_DVS_DATA:
10339 if (md.debug_dv)
10340 fprintf (stderr, "Inserting data serialization\n");
10341 if (rs->data_srlz < STATE_STOP)
10342 insn_group_break (1, 0, 0);
10343 {
10344 struct slot oldslot = CURR_SLOT;
10345 /* Manually jam a srlz.d insn into the stream */
10346 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10347 CURR_SLOT.user_template = -1;
10348 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10349 data_serialization ();
10350 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10351 if (++md.num_slots_in_use >= NUM_SLOTS)
10352 emit_one_bundle ();
10353 CURR_SLOT = oldslot;
10354 }
10355 break;
10356 case IA64_DVS_IMPLIED:
10357 case IA64_DVS_IMPLIEDF:
10358 if (md.debug_dv)
10359 fprintf (stderr, "Inserting stop\n");
10360 insn_group_break (1, 0, 0);
10361 break;
10362 default:
10363 break;
10364 }
10365 }
10366
10367 /* Check the resources used by the given opcode against the current dependency
10368 list.
10369
10370 The check is run once for each execution path encountered. In this case,
10371 a unique execution path is the sequence of instructions following a code
10372 entry point, e.g. the following has three execution paths, one starting
10373 at L0, one at L1, and one at L2.
10374
10375 L0: nop
10376 L1: add
10377 L2: add
10378 br.ret
10379 */
10380
10381 static void
10382 check_dependencies (struct ia64_opcode *idesc)
10383 {
10384 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10385 int path;
10386 int i;
10387
10388 /* Note that the number of marked resources may change within the
10389 loop if in auto mode. */
10390 i = 0;
10391 while (i < regdepslen)
10392 {
10393 struct rsrc *rs = &regdeps[i];
10394 const struct ia64_dependency *dep = rs->dependency;
10395 int chkind;
10396 int note;
10397 int start_over = 0;
10398
10399 if (dep->semantics == IA64_DVS_NONE
10400 || (chkind = depends_on (rs->depind, idesc)) == -1)
10401 {
10402 ++i;
10403 continue;
10404 }
10405
10406 note = NOTE (opdeps->chks[chkind]);
10407
10408 /* Check this resource against each execution path seen thus far. */
10409 for (path = 0; path <= md.path; path++)
10410 {
10411 int matchtype;
10412
10413 /* If the dependency wasn't on the path being checked, ignore it. */
10414 if (rs->path < path)
10415 continue;
10416
10417 /* If the QP for this insn implies a QP which has branched, don't
10418 bother checking. Ed. NOTE: I don't think this check is terribly
10419 useful; what's the point of generating code which will only be
10420 reached if its QP is zero?
10421 This code was specifically inserted to handle the following code,
10422 based on notes from Intel's DV checking code, where p1 implies p2.
10423
10424 mov r4 = 2
10425 (p2) br.cond L
10426 (p1) mov r4 = 7
10427 */
10428 if (CURR_SLOT.qp_regno != 0)
10429 {
10430 int skip = 0;
10431 int implies;
10432 for (implies = 0; implies < qp_implieslen; implies++)
10433 {
10434 if (qp_implies[implies].path >= path
10435 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10436 && qp_implies[implies].p2_branched)
10437 {
10438 skip = 1;
10439 break;
10440 }
10441 }
10442 if (skip)
10443 continue;
10444 }
10445
10446 if ((matchtype = resources_match (rs, idesc, note,
10447 CURR_SLOT.qp_regno, path)) != 0)
10448 {
10449 char msg[1024];
10450 char pathmsg[256] = "";
10451 char indexmsg[256] = "";
10452 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10453
10454 if (path != 0)
10455 snprintf (pathmsg, sizeof (pathmsg),
10456 " when entry is at label '%s'",
10457 md.entry_labels[path - 1]);
10458 if (matchtype == 1 && rs->index >= 0)
10459 snprintf (indexmsg, sizeof (indexmsg),
10460 ", specific resource number is %d",
10461 rs->index);
10462 snprintf (msg, sizeof (msg),
10463 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10464 idesc->name,
10465 (certain ? "violates" : "may violate"),
10466 dv_mode[dep->mode], dep->name,
10467 dv_sem[dep->semantics],
10468 pathmsg, indexmsg);
10469
10470 if (md.explicit_mode)
10471 {
10472 as_warn ("%s", msg);
10473 if (path < md.path)
10474 as_warn (_("Only the first path encountering the conflict is reported"));
10475 as_warn_where (rs->file, rs->line,
10476 _("This is the location of the conflicting usage"));
10477 /* Don't bother checking other paths, to avoid duplicating
10478 the same warning */
10479 break;
10480 }
10481 else
10482 {
10483 if (md.debug_dv)
10484 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10485
10486 remove_marked_resource (rs);
10487
10488 /* since the set of dependencies has changed, start over */
10489 /* FIXME -- since we're removing dvs as we go, we
10490 probably don't really need to start over... */
10491 start_over = 1;
10492 break;
10493 }
10494 }
10495 }
10496 if (start_over)
10497 i = 0;
10498 else
10499 ++i;
10500 }
10501 }
10502
10503 /* Register new dependencies based on the given opcode. */
10504
10505 static void
10506 mark_resources (struct ia64_opcode *idesc)
10507 {
10508 int i;
10509 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10510 int add_only_qp_reads = 0;
10511
10512 /* A conditional branch only uses its resources if it is taken; if it is
10513 taken, we stop following that path. The other branch types effectively
10514 *always* write their resources. If it's not taken, register only QP
10515 reads. */
10516 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10517 {
10518 add_only_qp_reads = 1;
10519 }
10520
10521 if (md.debug_dv)
10522 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10523
10524 for (i = 0; i < opdeps->nregs; i++)
10525 {
10526 const struct ia64_dependency *dep;
10527 struct rsrc specs[MAX_SPECS];
10528 int note;
10529 int path;
10530 int count;
10531
10532 dep = ia64_find_dependency (opdeps->regs[i]);
10533 note = NOTE (opdeps->regs[i]);
10534
10535 if (add_only_qp_reads
10536 && !(dep->mode == IA64_DV_WAR
10537 && (dep->specifier == IA64_RS_PR
10538 || dep->specifier == IA64_RS_PRr
10539 || dep->specifier == IA64_RS_PR63)))
10540 continue;
10541
10542 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10543
10544 while (count-- > 0)
10545 {
10546 mark_resource (idesc, dep, &specs[count],
10547 DEP (opdeps->regs[i]), md.path);
10548 }
10549
10550 /* The execution path may affect register values, which may in turn
10551 affect which indirect-access resources are accessed. */
10552 switch (dep->specifier)
10553 {
10554 default:
10555 break;
10556 case IA64_RS_CPUID:
10557 case IA64_RS_DBR:
10558 case IA64_RS_IBR:
10559 case IA64_RS_MSR:
10560 case IA64_RS_PKR:
10561 case IA64_RS_PMC:
10562 case IA64_RS_PMD:
10563 case IA64_RS_RR:
10564 for (path = 0; path < md.path; path++)
10565 {
10566 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10567 while (count-- > 0)
10568 mark_resource (idesc, dep, &specs[count],
10569 DEP (opdeps->regs[i]), path);
10570 }
10571 break;
10572 }
10573 }
10574 }
10575
10576 /* Remove dependencies when they no longer apply. */
10577
10578 static void
10579 update_dependencies (struct ia64_opcode *idesc)
10580 {
10581 int i;
10582
10583 if (strcmp (idesc->name, "srlz.i") == 0)
10584 {
10585 instruction_serialization ();
10586 }
10587 else if (strcmp (idesc->name, "srlz.d") == 0)
10588 {
10589 data_serialization ();
10590 }
10591 else if (is_interruption_or_rfi (idesc)
10592 || is_taken_branch (idesc))
10593 {
10594 /* Although technically the taken branch doesn't clear dependencies
10595 which require a srlz.[id], we don't follow the branch; the next
10596 instruction is assumed to start with a clean slate. */
10597 regdepslen = 0;
10598 md.path = 0;
10599 }
10600 else if (is_conditional_branch (idesc)
10601 && CURR_SLOT.qp_regno != 0)
10602 {
10603 int is_call = strstr (idesc->name, ".call") != NULL;
10604
10605 for (i = 0; i < qp_implieslen; i++)
10606 {
10607 /* If the conditional branch's predicate is implied by the predicate
10608 in an existing dependency, remove that dependency. */
10609 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10610 {
10611 int depind = 0;
10612 /* Note that this implied predicate takes a branch so that if
10613 a later insn generates a DV but its predicate implies this
10614 one, we can avoid the false DV warning. */
10615 qp_implies[i].p2_branched = 1;
10616 while (depind < regdepslen)
10617 {
10618 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10619 {
10620 print_dependency ("Removing", depind);
10621 regdeps[depind] = regdeps[--regdepslen];
10622 }
10623 else
10624 ++depind;
10625 }
10626 }
10627 }
10628 /* Any marked resources which have this same predicate should be
10629 cleared, provided that the QP hasn't been modified between the
10630 marking instruction and the branch. */
10631 if (is_call)
10632 {
10633 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10634 }
10635 else
10636 {
10637 i = 0;
10638 while (i < regdepslen)
10639 {
10640 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10641 && regdeps[i].link_to_qp_branch
10642 && (regdeps[i].file != CURR_SLOT.src_file
10643 || regdeps[i].line != CURR_SLOT.src_line))
10644 {
10645 /* Treat like a taken branch */
10646 print_dependency ("Removing", i);
10647 regdeps[i] = regdeps[--regdepslen];
10648 }
10649 else
10650 ++i;
10651 }
10652 }
10653 }
10654 }
10655
10656 /* Examine the current instruction for dependency violations. */
10657
10658 static int
10659 check_dv (struct ia64_opcode *idesc)
10660 {
10661 if (md.debug_dv)
10662 {
10663 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10664 idesc->name, CURR_SLOT.src_line,
10665 idesc->dependencies->nchks,
10666 idesc->dependencies->nregs);
10667 }
10668
10669 /* Look through the list of currently marked resources; if the current
10670 instruction has the dependency in its chks list which uses that resource,
10671 check against the specific resources used. */
10672 check_dependencies (idesc);
10673
10674 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10675 then add them to the list of marked resources. */
10676 mark_resources (idesc);
10677
10678 /* There are several types of dependency semantics, and each has its own
10679 requirements for being cleared
10680
10681 Instruction serialization (insns separated by interruption, rfi, or
10682 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10683
10684 Data serialization (instruction serialization, or writer + srlz.d +
10685 reader, where writer and srlz.d are in separate groups) clears
10686 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10687 always be the case).
10688
10689 Instruction group break (groups separated by stop, taken branch,
10690 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10691 */
10692 update_dependencies (idesc);
10693
10694 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10695 warning. Keep track of as many as possible that are useful. */
10696 note_register_values (idesc);
10697
10698 /* We don't need or want this anymore. */
10699 md.mem_offset.hint = 0;
10700
10701 return 0;
10702 }
10703
10704 /* Translate one line of assembly. Pseudo ops and labels do not show
10705 here. */
10706 void
10707 md_assemble (char *str)
10708 {
10709 char *saved_input_line_pointer, *mnemonic;
10710 const struct pseudo_opcode *pdesc;
10711 struct ia64_opcode *idesc;
10712 unsigned char qp_regno;
10713 unsigned int flags;
10714 int ch;
10715
10716 saved_input_line_pointer = input_line_pointer;
10717 input_line_pointer = str;
10718
10719 /* extract the opcode (mnemonic): */
10720
10721 mnemonic = input_line_pointer;
10722 ch = get_symbol_end ();
10723 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10724 if (pdesc)
10725 {
10726 *input_line_pointer = ch;
10727 (*pdesc->handler) (pdesc->arg);
10728 goto done;
10729 }
10730
10731 /* Find the instruction descriptor matching the arguments. */
10732
10733 idesc = ia64_find_opcode (mnemonic);
10734 *input_line_pointer = ch;
10735 if (!idesc)
10736 {
10737 as_bad (_("Unknown opcode `%s'"), mnemonic);
10738 goto done;
10739 }
10740
10741 idesc = parse_operands (idesc);
10742 if (!idesc)
10743 goto done;
10744
10745 /* Handle the dynamic ops we can handle now: */
10746 if (idesc->type == IA64_TYPE_DYN)
10747 {
10748 if (strcmp (idesc->name, "add") == 0)
10749 {
10750 if (CURR_SLOT.opnd[2].X_op == O_register
10751 && CURR_SLOT.opnd[2].X_add_number < 4)
10752 mnemonic = "addl";
10753 else
10754 mnemonic = "adds";
10755 ia64_free_opcode (idesc);
10756 idesc = ia64_find_opcode (mnemonic);
10757 }
10758 else if (strcmp (idesc->name, "mov") == 0)
10759 {
10760 enum ia64_opnd opnd1, opnd2;
10761 int rop;
10762
10763 opnd1 = idesc->operands[0];
10764 opnd2 = idesc->operands[1];
10765 if (opnd1 == IA64_OPND_AR3)
10766 rop = 0;
10767 else if (opnd2 == IA64_OPND_AR3)
10768 rop = 1;
10769 else
10770 abort ();
10771 if (CURR_SLOT.opnd[rop].X_op == O_register)
10772 {
10773 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10774 mnemonic = "mov.i";
10775 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10776 mnemonic = "mov.m";
10777 else
10778 rop = -1;
10779 }
10780 else
10781 abort ();
10782 if (rop >= 0)
10783 {
10784 ia64_free_opcode (idesc);
10785 idesc = ia64_find_opcode (mnemonic);
10786 while (idesc != NULL
10787 && (idesc->operands[0] != opnd1
10788 || idesc->operands[1] != opnd2))
10789 idesc = get_next_opcode (idesc);
10790 }
10791 }
10792 }
10793 else if (strcmp (idesc->name, "mov.i") == 0
10794 || strcmp (idesc->name, "mov.m") == 0)
10795 {
10796 enum ia64_opnd opnd1, opnd2;
10797 int rop;
10798
10799 opnd1 = idesc->operands[0];
10800 opnd2 = idesc->operands[1];
10801 if (opnd1 == IA64_OPND_AR3)
10802 rop = 0;
10803 else if (opnd2 == IA64_OPND_AR3)
10804 rop = 1;
10805 else
10806 abort ();
10807 if (CURR_SLOT.opnd[rop].X_op == O_register)
10808 {
10809 char unit = 'a';
10810 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10811 unit = 'i';
10812 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10813 unit = 'm';
10814 if (unit != 'a' && unit != idesc->name [4])
10815 as_bad (_("AR %d can only be accessed by %c-unit"),
10816 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10817 TOUPPER (unit));
10818 }
10819 }
10820 else if (strcmp (idesc->name, "hint.b") == 0)
10821 {
10822 switch (md.hint_b)
10823 {
10824 case hint_b_ok:
10825 break;
10826 case hint_b_warning:
10827 as_warn (_("hint.b may be treated as nop"));
10828 break;
10829 case hint_b_error:
10830 as_bad (_("hint.b shouldn't be used"));
10831 break;
10832 }
10833 }
10834
10835 qp_regno = 0;
10836 if (md.qp.X_op == O_register)
10837 {
10838 qp_regno = md.qp.X_add_number - REG_P;
10839 md.qp.X_op = O_absent;
10840 }
10841
10842 flags = idesc->flags;
10843
10844 if ((flags & IA64_OPCODE_FIRST) != 0)
10845 {
10846 /* The alignment frag has to end with a stop bit only if the
10847 next instruction after the alignment directive has to be
10848 the first instruction in an instruction group. */
10849 if (align_frag)
10850 {
10851 while (align_frag->fr_type != rs_align_code)
10852 {
10853 align_frag = align_frag->fr_next;
10854 if (!align_frag)
10855 break;
10856 }
10857 /* align_frag can be NULL if there are directives in
10858 between. */
10859 if (align_frag && align_frag->fr_next == frag_now)
10860 align_frag->tc_frag_data = 1;
10861 }
10862
10863 insn_group_break (1, 0, 0);
10864 }
10865 align_frag = NULL;
10866
10867 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10868 {
10869 as_bad (_("`%s' cannot be predicated"), idesc->name);
10870 goto done;
10871 }
10872
10873 /* Build the instruction. */
10874 CURR_SLOT.qp_regno = qp_regno;
10875 CURR_SLOT.idesc = idesc;
10876 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10877 dwarf2_where (&CURR_SLOT.debug_line);
10878 dwarf2_consume_line_info ();
10879
10880 /* Add unwind entries, if there are any. */
10881 if (unwind.current_entry)
10882 {
10883 CURR_SLOT.unwind_record = unwind.current_entry;
10884 unwind.current_entry = NULL;
10885 }
10886 if (unwind.pending_saves)
10887 {
10888 if (unwind.pending_saves->next)
10889 {
10890 /* Attach the next pending save to the next slot so that its
10891 slot number will get set correctly. */
10892 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10893 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10894 }
10895 else
10896 unwind.pending_saves = NULL;
10897 }
10898 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10899 unwind.insn = 1;
10900
10901 /* Check for dependency violations. */
10902 if (md.detect_dv)
10903 check_dv (idesc);
10904
10905 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10906 if (++md.num_slots_in_use >= NUM_SLOTS)
10907 emit_one_bundle ();
10908
10909 if ((flags & IA64_OPCODE_LAST) != 0)
10910 insn_group_break (1, 0, 0);
10911
10912 md.last_text_seg = now_seg;
10913
10914 done:
10915 input_line_pointer = saved_input_line_pointer;
10916 }
10917
10918 /* Called when symbol NAME cannot be found in the symbol table.
10919 Should be used for dynamic valued symbols only. */
10920
10921 symbolS *
10922 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
10923 {
10924 return 0;
10925 }
10926
10927 /* Called for any expression that can not be recognized. When the
10928 function is called, `input_line_pointer' will point to the start of
10929 the expression. */
10930
10931 void
10932 md_operand (expressionS *e)
10933 {
10934 switch (*input_line_pointer)
10935 {
10936 case '[':
10937 ++input_line_pointer;
10938 expression_and_evaluate (e);
10939 if (*input_line_pointer != ']')
10940 {
10941 as_bad (_("Closing bracket missing"));
10942 goto err;
10943 }
10944 else
10945 {
10946 if (e->X_op != O_register
10947 || e->X_add_number < REG_GR
10948 || e->X_add_number > REG_GR + 127)
10949 {
10950 as_bad (_("Index must be a general register"));
10951 e->X_add_number = REG_GR;
10952 }
10953
10954 ++input_line_pointer;
10955 e->X_op = O_index;
10956 }
10957 break;
10958
10959 default:
10960 break;
10961 }
10962 return;
10963
10964 err:
10965 ignore_rest_of_line ();
10966 }
10967
10968 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10969 a section symbol plus some offset. For relocs involving @fptr(),
10970 directives we don't want such adjustments since we need to have the
10971 original symbol's name in the reloc. */
10972 int
10973 ia64_fix_adjustable (fixS *fix)
10974 {
10975 /* Prevent all adjustments to global symbols */
10976 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10977 return 0;
10978
10979 switch (fix->fx_r_type)
10980 {
10981 case BFD_RELOC_IA64_FPTR64I:
10982 case BFD_RELOC_IA64_FPTR32MSB:
10983 case BFD_RELOC_IA64_FPTR32LSB:
10984 case BFD_RELOC_IA64_FPTR64MSB:
10985 case BFD_RELOC_IA64_FPTR64LSB:
10986 case BFD_RELOC_IA64_LTOFF_FPTR22:
10987 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10988 return 0;
10989 default:
10990 break;
10991 }
10992
10993 return 1;
10994 }
10995
10996 int
10997 ia64_force_relocation (fixS *fix)
10998 {
10999 switch (fix->fx_r_type)
11000 {
11001 case BFD_RELOC_IA64_FPTR64I:
11002 case BFD_RELOC_IA64_FPTR32MSB:
11003 case BFD_RELOC_IA64_FPTR32LSB:
11004 case BFD_RELOC_IA64_FPTR64MSB:
11005 case BFD_RELOC_IA64_FPTR64LSB:
11006
11007 case BFD_RELOC_IA64_LTOFF22:
11008 case BFD_RELOC_IA64_LTOFF64I:
11009 case BFD_RELOC_IA64_LTOFF_FPTR22:
11010 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11011 case BFD_RELOC_IA64_PLTOFF22:
11012 case BFD_RELOC_IA64_PLTOFF64I:
11013 case BFD_RELOC_IA64_PLTOFF64MSB:
11014 case BFD_RELOC_IA64_PLTOFF64LSB:
11015
11016 case BFD_RELOC_IA64_LTOFF22X:
11017 case BFD_RELOC_IA64_LDXMOV:
11018 return 1;
11019
11020 default:
11021 break;
11022 }
11023
11024 return generic_force_reloc (fix);
11025 }
11026
11027 /* Decide from what point a pc-relative relocation is relative to,
11028 relative to the pc-relative fixup. Er, relatively speaking. */
11029 long
11030 ia64_pcrel_from_section (fixS *fix, segT sec)
11031 {
11032 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11033
11034 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11035 off &= ~0xfUL;
11036
11037 return off;
11038 }
11039
11040
11041 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11042 void
11043 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11044 {
11045 expressionS exp;
11046
11047 exp.X_op = O_pseudo_fixup;
11048 exp.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11049 exp.X_add_number = 0;
11050 exp.X_add_symbol = symbol;
11051 emit_expr (&exp, size);
11052 }
11053
11054 /* This is called whenever some data item (not an instruction) needs a
11055 fixup. We pick the right reloc code depending on the byteorder
11056 currently in effect. */
11057 void
11058 ia64_cons_fix_new (fragS *f, int where, int nbytes, expressionS *exp)
11059 {
11060 bfd_reloc_code_real_type code;
11061 fixS *fix;
11062
11063 switch (nbytes)
11064 {
11065 /* There are no reloc for 8 and 16 bit quantities, but we allow
11066 them here since they will work fine as long as the expression
11067 is fully defined at the end of the pass over the source file. */
11068 case 1: code = BFD_RELOC_8; break;
11069 case 2: code = BFD_RELOC_16; break;
11070 case 4:
11071 if (target_big_endian)
11072 code = BFD_RELOC_IA64_DIR32MSB;
11073 else
11074 code = BFD_RELOC_IA64_DIR32LSB;
11075 break;
11076
11077 case 8:
11078 /* In 32-bit mode, data8 could mean function descriptors too. */
11079 if (exp->X_op == O_pseudo_fixup
11080 && exp->X_op_symbol
11081 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11082 && !(md.flags & EF_IA_64_ABI64))
11083 {
11084 if (target_big_endian)
11085 code = BFD_RELOC_IA64_IPLTMSB;
11086 else
11087 code = BFD_RELOC_IA64_IPLTLSB;
11088 exp->X_op = O_symbol;
11089 break;
11090 }
11091 else
11092 {
11093 if (target_big_endian)
11094 code = BFD_RELOC_IA64_DIR64MSB;
11095 else
11096 code = BFD_RELOC_IA64_DIR64LSB;
11097 break;
11098 }
11099
11100 case 16:
11101 if (exp->X_op == O_pseudo_fixup
11102 && exp->X_op_symbol
11103 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11104 {
11105 if (target_big_endian)
11106 code = BFD_RELOC_IA64_IPLTMSB;
11107 else
11108 code = BFD_RELOC_IA64_IPLTLSB;
11109 exp->X_op = O_symbol;
11110 break;
11111 }
11112 /* FALLTHRU */
11113
11114 default:
11115 as_bad (_("Unsupported fixup size %d"), nbytes);
11116 ignore_rest_of_line ();
11117 return;
11118 }
11119
11120 if (exp->X_op == O_pseudo_fixup)
11121 {
11122 exp->X_op = O_symbol;
11123 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11124 /* ??? If code unchanged, unsupported. */
11125 }
11126
11127 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11128 /* We need to store the byte order in effect in case we're going
11129 to fix an 8 or 16 bit relocation (for which there no real
11130 relocs available). See md_apply_fix(). */
11131 fix->tc_fix_data.bigendian = target_big_endian;
11132 }
11133
11134 /* Return the actual relocation we wish to associate with the pseudo
11135 reloc described by SYM and R_TYPE. SYM should be one of the
11136 symbols in the pseudo_func array, or NULL. */
11137
11138 static bfd_reloc_code_real_type
11139 ia64_gen_real_reloc_type (struct symbol *sym, bfd_reloc_code_real_type r_type)
11140 {
11141 bfd_reloc_code_real_type newr = 0;
11142 const char *type = NULL, *suffix = "";
11143
11144 if (sym == NULL)
11145 {
11146 return r_type;
11147 }
11148
11149 switch (S_GET_VALUE (sym))
11150 {
11151 case FUNC_FPTR_RELATIVE:
11152 switch (r_type)
11153 {
11154 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_FPTR64I; break;
11155 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_FPTR32MSB; break;
11156 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_FPTR32LSB; break;
11157 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_FPTR64MSB; break;
11158 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_FPTR64LSB; break;
11159 default: type = "FPTR"; break;
11160 }
11161 break;
11162
11163 case FUNC_GP_RELATIVE:
11164 switch (r_type)
11165 {
11166 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_GPREL22; break;
11167 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_GPREL64I; break;
11168 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_GPREL32MSB; break;
11169 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_GPREL32LSB; break;
11170 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_GPREL64MSB; break;
11171 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_GPREL64LSB; break;
11172 default: type = "GPREL"; break;
11173 }
11174 break;
11175
11176 case FUNC_LT_RELATIVE:
11177 switch (r_type)
11178 {
11179 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22; break;
11180 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_LTOFF64I; break;
11181 default: type = "LTOFF"; break;
11182 }
11183 break;
11184
11185 case FUNC_LT_RELATIVE_X:
11186 switch (r_type)
11187 {
11188 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22X; break;
11189 default: type = "LTOFF"; suffix = "X"; break;
11190 }
11191 break;
11192
11193 case FUNC_PC_RELATIVE:
11194 switch (r_type)
11195 {
11196 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PCREL22; break;
11197 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PCREL64I; break;
11198 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_PCREL32MSB; break;
11199 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_PCREL32LSB; break;
11200 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PCREL64MSB; break;
11201 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PCREL64LSB; break;
11202 default: type = "PCREL"; break;
11203 }
11204 break;
11205
11206 case FUNC_PLT_RELATIVE:
11207 switch (r_type)
11208 {
11209 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PLTOFF22; break;
11210 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PLTOFF64I; break;
11211 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PLTOFF64MSB;break;
11212 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PLTOFF64LSB;break;
11213 default: type = "PLTOFF"; break;
11214 }
11215 break;
11216
11217 case FUNC_SEC_RELATIVE:
11218 switch (r_type)
11219 {
11220 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SECREL32MSB;break;
11221 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SECREL32LSB;break;
11222 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SECREL64MSB;break;
11223 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SECREL64LSB;break;
11224 default: type = "SECREL"; break;
11225 }
11226 break;
11227
11228 case FUNC_SEG_RELATIVE:
11229 switch (r_type)
11230 {
11231 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SEGREL32MSB;break;
11232 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SEGREL32LSB;break;
11233 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SEGREL64MSB;break;
11234 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SEGREL64LSB;break;
11235 default: type = "SEGREL"; break;
11236 }
11237 break;
11238
11239 case FUNC_LTV_RELATIVE:
11240 switch (r_type)
11241 {
11242 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_LTV32MSB; break;
11243 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_LTV32LSB; break;
11244 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_LTV64MSB; break;
11245 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_LTV64LSB; break;
11246 default: type = "LTV"; break;
11247 }
11248 break;
11249
11250 case FUNC_LT_FPTR_RELATIVE:
11251 switch (r_type)
11252 {
11253 case BFD_RELOC_IA64_IMM22:
11254 newr = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11255 case BFD_RELOC_IA64_IMM64:
11256 newr = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11257 case BFD_RELOC_IA64_DIR32MSB:
11258 newr = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11259 case BFD_RELOC_IA64_DIR32LSB:
11260 newr = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11261 case BFD_RELOC_IA64_DIR64MSB:
11262 newr = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11263 case BFD_RELOC_IA64_DIR64LSB:
11264 newr = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11265 default:
11266 type = "LTOFF_FPTR"; break;
11267 }
11268 break;
11269
11270 case FUNC_TP_RELATIVE:
11271 switch (r_type)
11272 {
11273 case BFD_RELOC_IA64_IMM14: newr = BFD_RELOC_IA64_TPREL14; break;
11274 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_TPREL22; break;
11275 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_TPREL64I; break;
11276 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_TPREL64MSB; break;
11277 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_TPREL64LSB; break;
11278 default: type = "TPREL"; break;
11279 }
11280 break;
11281
11282 case FUNC_LT_TP_RELATIVE:
11283 switch (r_type)
11284 {
11285 case BFD_RELOC_IA64_IMM22:
11286 newr = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11287 default:
11288 type = "LTOFF_TPREL"; break;
11289 }
11290 break;
11291
11292 case FUNC_DTP_MODULE:
11293 switch (r_type)
11294 {
11295 case BFD_RELOC_IA64_DIR64MSB:
11296 newr = BFD_RELOC_IA64_DTPMOD64MSB; break;
11297 case BFD_RELOC_IA64_DIR64LSB:
11298 newr = BFD_RELOC_IA64_DTPMOD64LSB; break;
11299 default:
11300 type = "DTPMOD"; break;
11301 }
11302 break;
11303
11304 case FUNC_LT_DTP_MODULE:
11305 switch (r_type)
11306 {
11307 case BFD_RELOC_IA64_IMM22:
11308 newr = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11309 default:
11310 type = "LTOFF_DTPMOD"; break;
11311 }
11312 break;
11313
11314 case FUNC_DTP_RELATIVE:
11315 switch (r_type)
11316 {
11317 case BFD_RELOC_IA64_DIR32MSB:
11318 newr = BFD_RELOC_IA64_DTPREL32MSB; break;
11319 case BFD_RELOC_IA64_DIR32LSB:
11320 newr = BFD_RELOC_IA64_DTPREL32LSB; break;
11321 case BFD_RELOC_IA64_DIR64MSB:
11322 newr = BFD_RELOC_IA64_DTPREL64MSB; break;
11323 case BFD_RELOC_IA64_DIR64LSB:
11324 newr = BFD_RELOC_IA64_DTPREL64LSB; break;
11325 case BFD_RELOC_IA64_IMM14:
11326 newr = BFD_RELOC_IA64_DTPREL14; break;
11327 case BFD_RELOC_IA64_IMM22:
11328 newr = BFD_RELOC_IA64_DTPREL22; break;
11329 case BFD_RELOC_IA64_IMM64:
11330 newr = BFD_RELOC_IA64_DTPREL64I; break;
11331 default:
11332 type = "DTPREL"; break;
11333 }
11334 break;
11335
11336 case FUNC_LT_DTP_RELATIVE:
11337 switch (r_type)
11338 {
11339 case BFD_RELOC_IA64_IMM22:
11340 newr = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11341 default:
11342 type = "LTOFF_DTPREL"; break;
11343 }
11344 break;
11345
11346 case FUNC_IPLT_RELOC:
11347 switch (r_type)
11348 {
11349 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11350 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11351 default: type = "IPLT"; break;
11352 }
11353 break;
11354
11355 #ifdef TE_VMS
11356 case FUNC_SLOTCOUNT_RELOC:
11357 return DUMMY_RELOC_IA64_SLOTCOUNT;
11358 #endif
11359
11360 default:
11361 abort ();
11362 }
11363
11364 if (newr)
11365 return newr;
11366 else
11367 {
11368 int width;
11369
11370 if (!type)
11371 abort ();
11372 switch (r_type)
11373 {
11374 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11375 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11376 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11377 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11378 case BFD_RELOC_UNUSED: width = 13; break;
11379 case BFD_RELOC_IA64_IMM14: width = 14; break;
11380 case BFD_RELOC_IA64_IMM22: width = 22; break;
11381 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11382 default: abort ();
11383 }
11384
11385 /* This should be an error, but since previously there wasn't any
11386 diagnostic here, don't make it fail because of this for now. */
11387 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11388 return r_type;
11389 }
11390 }
11391
11392 /* Here is where generate the appropriate reloc for pseudo relocation
11393 functions. */
11394 void
11395 ia64_validate_fix (fixS *fix)
11396 {
11397 switch (fix->fx_r_type)
11398 {
11399 case BFD_RELOC_IA64_FPTR64I:
11400 case BFD_RELOC_IA64_FPTR32MSB:
11401 case BFD_RELOC_IA64_FPTR64LSB:
11402 case BFD_RELOC_IA64_LTOFF_FPTR22:
11403 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11404 if (fix->fx_offset != 0)
11405 as_bad_where (fix->fx_file, fix->fx_line,
11406 _("No addend allowed in @fptr() relocation"));
11407 break;
11408 default:
11409 break;
11410 }
11411 }
11412
11413 static void
11414 fix_insn (fixS *fix, const struct ia64_operand *odesc, valueT value)
11415 {
11416 bfd_vma insn[3], t0, t1, control_bits;
11417 const char *err;
11418 char *fixpos;
11419 long slot;
11420
11421 slot = fix->fx_where & 0x3;
11422 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11423
11424 /* Bundles are always in little-endian byte order */
11425 t0 = bfd_getl64 (fixpos);
11426 t1 = bfd_getl64 (fixpos + 8);
11427 control_bits = t0 & 0x1f;
11428 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11429 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11430 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11431
11432 err = NULL;
11433 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11434 {
11435 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11436 insn[2] |= (((value & 0x7f) << 13)
11437 | (((value >> 7) & 0x1ff) << 27)
11438 | (((value >> 16) & 0x1f) << 22)
11439 | (((value >> 21) & 0x1) << 21)
11440 | (((value >> 63) & 0x1) << 36));
11441 }
11442 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11443 {
11444 if (value & ~0x3fffffffffffffffULL)
11445 err = _("integer operand out of range");
11446 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11447 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11448 }
11449 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11450 {
11451 value >>= 4;
11452 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11453 insn[2] |= ((((value >> 59) & 0x1) << 36)
11454 | (((value >> 0) & 0xfffff) << 13));
11455 }
11456 else
11457 err = (*odesc->insert) (odesc, value, insn + slot);
11458
11459 if (err)
11460 as_bad_where (fix->fx_file, fix->fx_line, "%s", err);
11461
11462 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11463 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11464 number_to_chars_littleendian (fixpos + 0, t0, 8);
11465 number_to_chars_littleendian (fixpos + 8, t1, 8);
11466 }
11467
11468 /* Attempt to simplify or even eliminate a fixup. The return value is
11469 ignored; perhaps it was once meaningful, but now it is historical.
11470 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11471
11472 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11473 (if possible). */
11474
11475 void
11476 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11477 {
11478 char *fixpos;
11479 valueT value = *valP;
11480
11481 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11482
11483 if (fix->fx_pcrel)
11484 {
11485 switch (fix->fx_r_type)
11486 {
11487 case BFD_RELOC_IA64_PCREL21B: break;
11488 case BFD_RELOC_IA64_PCREL21BI: break;
11489 case BFD_RELOC_IA64_PCREL21F: break;
11490 case BFD_RELOC_IA64_PCREL21M: break;
11491 case BFD_RELOC_IA64_PCREL60B: break;
11492 case BFD_RELOC_IA64_PCREL22: break;
11493 case BFD_RELOC_IA64_PCREL64I: break;
11494 case BFD_RELOC_IA64_PCREL32MSB: break;
11495 case BFD_RELOC_IA64_PCREL32LSB: break;
11496 case BFD_RELOC_IA64_PCREL64MSB: break;
11497 case BFD_RELOC_IA64_PCREL64LSB: break;
11498 default:
11499 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11500 fix->fx_r_type);
11501 break;
11502 }
11503 }
11504 if (fix->fx_addsy)
11505 {
11506 switch ((unsigned) fix->fx_r_type)
11507 {
11508 case BFD_RELOC_UNUSED:
11509 /* This must be a TAG13 or TAG13b operand. There are no external
11510 relocs defined for them, so we must give an error. */
11511 as_bad_where (fix->fx_file, fix->fx_line,
11512 _("%s must have a constant value"),
11513 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11514 fix->fx_done = 1;
11515 return;
11516
11517 case BFD_RELOC_IA64_TPREL14:
11518 case BFD_RELOC_IA64_TPREL22:
11519 case BFD_RELOC_IA64_TPREL64I:
11520 case BFD_RELOC_IA64_LTOFF_TPREL22:
11521 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11522 case BFD_RELOC_IA64_DTPREL14:
11523 case BFD_RELOC_IA64_DTPREL22:
11524 case BFD_RELOC_IA64_DTPREL64I:
11525 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11526 S_SET_THREAD_LOCAL (fix->fx_addsy);
11527 break;
11528
11529 #ifdef TE_VMS
11530 case DUMMY_RELOC_IA64_SLOTCOUNT:
11531 as_bad_where (fix->fx_file, fix->fx_line,
11532 _("cannot resolve @slotcount parameter"));
11533 fix->fx_done = 1;
11534 return;
11535 #endif
11536
11537 default:
11538 break;
11539 }
11540 }
11541 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11542 {
11543 #ifdef TE_VMS
11544 if (fix->fx_r_type == DUMMY_RELOC_IA64_SLOTCOUNT)
11545 {
11546 /* For @slotcount, convert an addresses difference to a slots
11547 difference. */
11548 valueT v;
11549
11550 v = (value >> 4) * 3;
11551 switch (value & 0x0f)
11552 {
11553 case 0:
11554 case 1:
11555 case 2:
11556 v += value & 0x0f;
11557 break;
11558 case 0x0f:
11559 v += 2;
11560 break;
11561 case 0x0e:
11562 v += 1;
11563 break;
11564 default:
11565 as_bad (_("invalid @slotcount value"));
11566 }
11567 value = v;
11568 }
11569 #endif
11570
11571 if (fix->tc_fix_data.bigendian)
11572 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11573 else
11574 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11575 fix->fx_done = 1;
11576 }
11577 else
11578 {
11579 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11580 fix->fx_done = 1;
11581 }
11582 }
11583
11584 /* Generate the BFD reloc to be stuck in the object file from the
11585 fixup used internally in the assembler. */
11586
11587 arelent *
11588 tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED, fixS *fixp)
11589 {
11590 arelent *reloc;
11591
11592 reloc = xmalloc (sizeof (*reloc));
11593 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11594 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11595 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11596 reloc->addend = fixp->fx_offset;
11597 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11598
11599 if (!reloc->howto)
11600 {
11601 as_bad_where (fixp->fx_file, fixp->fx_line,
11602 _("Cannot represent %s relocation in object file"),
11603 bfd_get_reloc_code_name (fixp->fx_r_type));
11604 free (reloc);
11605 return NULL;
11606 }
11607 return reloc;
11608 }
11609
11610 /* Turn a string in input_line_pointer into a floating point constant
11611 of type TYPE, and store the appropriate bytes in *LIT. The number
11612 of LITTLENUMS emitted is stored in *SIZE. An error message is
11613 returned, or NULL on OK. */
11614
11615 #define MAX_LITTLENUMS 5
11616
11617 char *
11618 md_atof (int type, char *lit, int *size)
11619 {
11620 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11621 char *t;
11622 int prec;
11623
11624 switch (type)
11625 {
11626 /* IEEE floats */
11627 case 'f':
11628 case 'F':
11629 case 's':
11630 case 'S':
11631 prec = 2;
11632 break;
11633
11634 case 'd':
11635 case 'D':
11636 case 'r':
11637 case 'R':
11638 prec = 4;
11639 break;
11640
11641 case 'x':
11642 case 'X':
11643 case 'p':
11644 case 'P':
11645 prec = 5;
11646 break;
11647
11648 default:
11649 *size = 0;
11650 return _("Unrecognized or unsupported floating point constant");
11651 }
11652 t = atof_ieee (input_line_pointer, type, words);
11653 if (t)
11654 input_line_pointer = t;
11655
11656 (*ia64_float_to_chars) (lit, words, prec);
11657
11658 if (type == 'X')
11659 {
11660 /* It is 10 byte floating point with 6 byte padding. */
11661 memset (&lit [10], 0, 6);
11662 *size = 8 * sizeof (LITTLENUM_TYPE);
11663 }
11664 else
11665 *size = prec * sizeof (LITTLENUM_TYPE);
11666
11667 return NULL;
11668 }
11669
11670 /* Handle ia64 specific semantics of the align directive. */
11671
11672 void
11673 ia64_md_do_align (int n ATTRIBUTE_UNUSED,
11674 const char *fill ATTRIBUTE_UNUSED,
11675 int len ATTRIBUTE_UNUSED,
11676 int max ATTRIBUTE_UNUSED)
11677 {
11678 if (subseg_text_p (now_seg))
11679 ia64_flush_insns ();
11680 }
11681
11682 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11683 of an rs_align_code fragment. */
11684
11685 void
11686 ia64_handle_align (fragS *fragp)
11687 {
11688 int bytes;
11689 char *p;
11690 const unsigned char *nop_type;
11691
11692 if (fragp->fr_type != rs_align_code)
11693 return;
11694
11695 /* Check if this frag has to end with a stop bit. */
11696 nop_type = fragp->tc_frag_data ? le_nop_stop : le_nop;
11697
11698 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11699 p = fragp->fr_literal + fragp->fr_fix;
11700
11701 /* If no paddings are needed, we check if we need a stop bit. */
11702 if (!bytes && fragp->tc_frag_data)
11703 {
11704 if (fragp->fr_fix < 16)
11705 #if 1
11706 /* FIXME: It won't work with
11707 .align 16
11708 alloc r32=ar.pfs,1,2,4,0
11709 */
11710 ;
11711 #else
11712 as_bad_where (fragp->fr_file, fragp->fr_line,
11713 _("Can't add stop bit to mark end of instruction group"));
11714 #endif
11715 else
11716 /* Bundles are always in little-endian byte order. Make sure
11717 the previous bundle has the stop bit. */
11718 *(p - 16) |= 1;
11719 }
11720
11721 /* Make sure we are on a 16-byte boundary, in case someone has been
11722 putting data into a text section. */
11723 if (bytes & 15)
11724 {
11725 int fix = bytes & 15;
11726 memset (p, 0, fix);
11727 p += fix;
11728 bytes -= fix;
11729 fragp->fr_fix += fix;
11730 }
11731
11732 /* Instruction bundles are always little-endian. */
11733 memcpy (p, nop_type, 16);
11734 fragp->fr_var = 16;
11735 }
11736
11737 static void
11738 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11739 int prec)
11740 {
11741 while (prec--)
11742 {
11743 number_to_chars_bigendian (lit, (long) (*words++),
11744 sizeof (LITTLENUM_TYPE));
11745 lit += sizeof (LITTLENUM_TYPE);
11746 }
11747 }
11748
11749 static void
11750 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11751 int prec)
11752 {
11753 while (prec--)
11754 {
11755 number_to_chars_littleendian (lit, (long) (words[prec]),
11756 sizeof (LITTLENUM_TYPE));
11757 lit += sizeof (LITTLENUM_TYPE);
11758 }
11759 }
11760
11761 void
11762 ia64_elf_section_change_hook (void)
11763 {
11764 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11765 && elf_linked_to_section (now_seg) == NULL)
11766 elf_linked_to_section (now_seg) = text_section;
11767 dot_byteorder (-1);
11768 }
11769
11770 /* Check if a label should be made global. */
11771 void
11772 ia64_check_label (symbolS *label)
11773 {
11774 if (*input_line_pointer == ':')
11775 {
11776 S_SET_EXTERNAL (label);
11777 input_line_pointer++;
11778 }
11779 }
11780
11781 /* Used to remember where .alias and .secalias directives are seen. We
11782 will rename symbol and section names when we are about to output
11783 the relocatable file. */
11784 struct alias
11785 {
11786 char *file; /* The file where the directive is seen. */
11787 unsigned int line; /* The line number the directive is at. */
11788 const char *name; /* The original name of the symbol. */
11789 };
11790
11791 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11792 .secalias. Otherwise, it is .alias. */
11793 static void
11794 dot_alias (int section)
11795 {
11796 char *name, *alias;
11797 char delim;
11798 char *end_name;
11799 int len;
11800 const char *error_string;
11801 struct alias *h;
11802 const char *a;
11803 struct hash_control *ahash, *nhash;
11804 const char *kind;
11805
11806 name = input_line_pointer;
11807 delim = get_symbol_end ();
11808 end_name = input_line_pointer;
11809 *end_name = delim;
11810
11811 if (name == end_name)
11812 {
11813 as_bad (_("expected symbol name"));
11814 ignore_rest_of_line ();
11815 return;
11816 }
11817
11818 SKIP_WHITESPACE ();
11819
11820 if (*input_line_pointer != ',')
11821 {
11822 *end_name = 0;
11823 as_bad (_("expected comma after \"%s\""), name);
11824 *end_name = delim;
11825 ignore_rest_of_line ();
11826 return;
11827 }
11828
11829 input_line_pointer++;
11830 *end_name = 0;
11831 ia64_canonicalize_symbol_name (name);
11832
11833 /* We call demand_copy_C_string to check if alias string is valid.
11834 There should be a closing `"' and no `\0' in the string. */
11835 alias = demand_copy_C_string (&len);
11836 if (alias == NULL)
11837 {
11838 ignore_rest_of_line ();
11839 return;
11840 }
11841
11842 /* Make a copy of name string. */
11843 len = strlen (name) + 1;
11844 obstack_grow (&notes, name, len);
11845 name = obstack_finish (&notes);
11846
11847 if (section)
11848 {
11849 kind = "section";
11850 ahash = secalias_hash;
11851 nhash = secalias_name_hash;
11852 }
11853 else
11854 {
11855 kind = "symbol";
11856 ahash = alias_hash;
11857 nhash = alias_name_hash;
11858 }
11859
11860 /* Check if alias has been used before. */
11861 h = (struct alias *) hash_find (ahash, alias);
11862 if (h)
11863 {
11864 if (strcmp (h->name, name))
11865 as_bad (_("`%s' is already the alias of %s `%s'"),
11866 alias, kind, h->name);
11867 goto out;
11868 }
11869
11870 /* Check if name already has an alias. */
11871 a = (const char *) hash_find (nhash, name);
11872 if (a)
11873 {
11874 if (strcmp (a, alias))
11875 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11876 goto out;
11877 }
11878
11879 h = (struct alias *) xmalloc (sizeof (struct alias));
11880 as_where (&h->file, &h->line);
11881 h->name = name;
11882
11883 error_string = hash_jam (ahash, alias, (void *) h);
11884 if (error_string)
11885 {
11886 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11887 alias, kind, error_string);
11888 goto out;
11889 }
11890
11891 error_string = hash_jam (nhash, name, (void *) alias);
11892 if (error_string)
11893 {
11894 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11895 alias, kind, error_string);
11896 out:
11897 obstack_free (&notes, name);
11898 obstack_free (&notes, alias);
11899 }
11900
11901 demand_empty_rest_of_line ();
11902 }
11903
11904 /* It renames the original symbol name to its alias. */
11905 static void
11906 do_alias (const char *alias, void *value)
11907 {
11908 struct alias *h = (struct alias *) value;
11909 symbolS *sym = symbol_find (h->name);
11910
11911 if (sym == NULL)
11912 {
11913 #ifdef TE_VMS
11914 /* Uses .alias extensively to alias CRTL functions to same with
11915 decc$ prefix. Sometimes function gets optimized away and a
11916 warning results, which should be suppressed. */
11917 if (strncmp (alias, "decc$", 5) != 0)
11918 #endif
11919 as_warn_where (h->file, h->line,
11920 _("symbol `%s' aliased to `%s' is not used"),
11921 h->name, alias);
11922 }
11923 else
11924 S_SET_NAME (sym, (char *) alias);
11925 }
11926
11927 /* Called from write_object_file. */
11928 void
11929 ia64_adjust_symtab (void)
11930 {
11931 hash_traverse (alias_hash, do_alias);
11932 }
11933
11934 /* It renames the original section name to its alias. */
11935 static void
11936 do_secalias (const char *alias, void *value)
11937 {
11938 struct alias *h = (struct alias *) value;
11939 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11940
11941 if (sec == NULL)
11942 as_warn_where (h->file, h->line,
11943 _("section `%s' aliased to `%s' is not used"),
11944 h->name, alias);
11945 else
11946 sec->name = alias;
11947 }
11948
11949 /* Called from write_object_file. */
11950 void
11951 ia64_frob_file (void)
11952 {
11953 hash_traverse (secalias_hash, do_secalias);
11954 }
11955
11956 #ifdef TE_VMS
11957 #define NT_VMS_MHD 1
11958 #define NT_VMS_LNM 2
11959
11960 /* Integrity VMS 8.x identifies it's ELF modules with a standard ELF
11961 .note section. */
11962
11963 /* Manufacture a VMS-like time string. */
11964 static void
11965 get_vms_time (char *Now)
11966 {
11967 char *pnt;
11968 time_t timeb;
11969
11970 time (&timeb);
11971 pnt = ctime (&timeb);
11972 pnt[3] = 0;
11973 pnt[7] = 0;
11974 pnt[10] = 0;
11975 pnt[16] = 0;
11976 pnt[24] = 0;
11977 sprintf (Now, "%2s-%3s-%s %s", pnt + 8, pnt + 4, pnt + 20, pnt + 11);
11978 }
11979
11980 void
11981 ia64_vms_note (void)
11982 {
11983 char *p;
11984 asection *seg = now_seg;
11985 subsegT subseg = now_subseg;
11986 asection *secp = NULL;
11987 char *bname;
11988 char buf [256];
11989 symbolS *sym;
11990
11991 /* Create the .note section. */
11992
11993 secp = subseg_new (".note", 0);
11994 bfd_set_section_flags (stdoutput,
11995 secp,
11996 SEC_HAS_CONTENTS | SEC_READONLY);
11997
11998 /* Module header note (MHD). */
11999 bname = xstrdup (lbasename (out_file_name));
12000 if ((p = strrchr (bname, '.')))
12001 *p = '\0';
12002
12003 /* VMS note header is 24 bytes long. */
12004 p = frag_more (8 + 8 + 8);
12005 number_to_chars_littleendian (p + 0, 8, 8);
12006 number_to_chars_littleendian (p + 8, 40 + strlen (bname), 8);
12007 number_to_chars_littleendian (p + 16, NT_VMS_MHD, 8);
12008
12009 p = frag_more (8);
12010 strcpy (p, "IPF/VMS");
12011
12012 p = frag_more (17 + 17 + strlen (bname) + 1 + 5);
12013 get_vms_time (p);
12014 strcpy (p + 17, "24-FEB-2005 15:00");
12015 p += 17 + 17;
12016 strcpy (p, bname);
12017 p += strlen (bname) + 1;
12018 free (bname);
12019 strcpy (p, "V1.0");
12020
12021 frag_align (3, 0, 0);
12022
12023 /* Language processor name note. */
12024 sprintf (buf, "GNU assembler version %s (%s) using BFD version %s",
12025 VERSION, TARGET_ALIAS, BFD_VERSION_STRING);
12026
12027 p = frag_more (8 + 8 + 8);
12028 number_to_chars_littleendian (p + 0, 8, 8);
12029 number_to_chars_littleendian (p + 8, strlen (buf) + 1, 8);
12030 number_to_chars_littleendian (p + 16, NT_VMS_LNM, 8);
12031
12032 p = frag_more (8);
12033 strcpy (p, "IPF/VMS");
12034
12035 p = frag_more (strlen (buf) + 1);
12036 strcpy (p, buf);
12037
12038 frag_align (3, 0, 0);
12039
12040 secp = subseg_new (".vms_display_name_info", 0);
12041 bfd_set_section_flags (stdoutput,
12042 secp,
12043 SEC_HAS_CONTENTS | SEC_READONLY);
12044
12045 /* This symbol should be passed on the command line and be variable
12046 according to language. */
12047 sym = symbol_new ("__gnat_vms_display_name@gnat_demangler_rtl",
12048 absolute_section, 0, &zero_address_frag);
12049 symbol_table_insert (sym);
12050 symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING | BSF_DYNAMIC;
12051
12052 p = frag_more (4);
12053 /* Format 3 of VMS demangler Spec. */
12054 number_to_chars_littleendian (p, 3, 4);
12055
12056 p = frag_more (4);
12057 /* Place holder for symbol table index of above symbol. */
12058 number_to_chars_littleendian (p, -1, 4);
12059
12060 frag_align (3, 0, 0);
12061
12062 /* We probably can't restore the current segment, for there likely
12063 isn't one yet... */
12064 if (seg && subseg)
12065 subseg_set (seg, subseg);
12066 }
12067
12068 #endif /* TE_VMS */
This page took 0.258594 seconds and 5 git commands to generate.