gas/
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
136 };
137
138 enum dynreg_type
139 {
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
144 };
145
146 enum operand_match_result
147 {
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
151 };
152
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
158 {
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predicatable. */
231 expressionS qp;
232
233 /* Optimize for which CPU. */
234 enum
235 {
236 itanium1,
237 itanium2
238 } tune;
239
240 /* What to do when hint.b is used. */
241 enum
242 {
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
247
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
257
258 /* What to do when something is wrong with unwind directives. */
259 enum
260 {
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
264
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
271 {
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
284 {
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
289 }
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
299 }
300 slot[NUM_SLOTS];
301
302 segT last_text_seg;
303
304 struct dynreg
305 {
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
310 }
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
312
313 flagword flags; /* ELF-header flags */
314
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
320
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
326
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
329
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_PFS 64
370 #define AR_LC 65
371 #define AR_EC 66
372
373 static const struct
374 {
375 const char *name;
376 unsigned int regnum;
377 }
378 ar[] =
379 {
380 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
381 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
382 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
383 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
384 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
385 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
386 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
387 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
388 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
389 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
390 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
391 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
392 {"ar.pfs", AR_PFS}, {"ar.lc", AR_LC},
393 {"ar.ec", AR_EC},
394 };
395
396 /* control registers: */
397
398 #define CR_DCR 0
399 #define CR_ITM 1
400 #define CR_IVA 2
401 #define CR_PTA 8
402 #define CR_GPTA 9
403 #define CR_IPSR 16
404 #define CR_ISR 17
405 #define CR_IIP 19
406 #define CR_IFA 20
407 #define CR_ITIR 21
408 #define CR_IIPA 22
409 #define CR_IFS 23
410 #define CR_IIM 24
411 #define CR_IHA 25
412 #define CR_LID 64
413 #define CR_IVR 65
414 #define CR_TPR 66
415 #define CR_EOI 67
416 #define CR_IRR0 68
417 #define CR_IRR3 71
418 #define CR_ITV 72
419 #define CR_PMV 73
420 #define CR_CMCV 74
421 #define CR_LRR0 80
422 #define CR_LRR1 81
423
424 static const struct
425 {
426 const char *name;
427 unsigned int regnum;
428 }
429 cr[] =
430 {
431 {"cr.dcr", CR_DCR},
432 {"cr.itm", CR_ITM},
433 {"cr.iva", CR_IVA},
434 {"cr.pta", CR_PTA},
435 {"cr.gpta", CR_GPTA},
436 {"cr.ipsr", CR_IPSR},
437 {"cr.isr", CR_ISR},
438 {"cr.iip", CR_IIP},
439 {"cr.ifa", CR_IFA},
440 {"cr.itir", CR_ITIR},
441 {"cr.iipa", CR_IIPA},
442 {"cr.ifs", CR_IFS},
443 {"cr.iim", CR_IIM},
444 {"cr.iha", CR_IHA},
445 {"cr.lid", CR_LID},
446 {"cr.ivr", CR_IVR},
447 {"cr.tpr", CR_TPR},
448 {"cr.eoi", CR_EOI},
449 {"cr.irr0", CR_IRR0},
450 {"cr.irr1", CR_IRR0 + 1},
451 {"cr.irr2", CR_IRR0 + 2},
452 {"cr.irr3", CR_IRR3},
453 {"cr.itv", CR_ITV},
454 {"cr.pmv", CR_PMV},
455 {"cr.cmcv", CR_CMCV},
456 {"cr.lrr0", CR_LRR0},
457 {"cr.lrr1", CR_LRR1}
458 };
459
460 #define PSR_MFL 4
461 #define PSR_IC 13
462 #define PSR_DFL 18
463 #define PSR_CPL 32
464
465 static const struct const_desc
466 {
467 const char *name;
468 valueT value;
469 }
470 const_bits[] =
471 {
472 /* PSR constant masks: */
473
474 /* 0: reserved */
475 {"psr.be", ((valueT) 1) << 1},
476 {"psr.up", ((valueT) 1) << 2},
477 {"psr.ac", ((valueT) 1) << 3},
478 {"psr.mfl", ((valueT) 1) << 4},
479 {"psr.mfh", ((valueT) 1) << 5},
480 /* 6-12: reserved */
481 {"psr.ic", ((valueT) 1) << 13},
482 {"psr.i", ((valueT) 1) << 14},
483 {"psr.pk", ((valueT) 1) << 15},
484 /* 16: reserved */
485 {"psr.dt", ((valueT) 1) << 17},
486 {"psr.dfl", ((valueT) 1) << 18},
487 {"psr.dfh", ((valueT) 1) << 19},
488 {"psr.sp", ((valueT) 1) << 20},
489 {"psr.pp", ((valueT) 1) << 21},
490 {"psr.di", ((valueT) 1) << 22},
491 {"psr.si", ((valueT) 1) << 23},
492 {"psr.db", ((valueT) 1) << 24},
493 {"psr.lp", ((valueT) 1) << 25},
494 {"psr.tb", ((valueT) 1) << 26},
495 {"psr.rt", ((valueT) 1) << 27},
496 /* 28-31: reserved */
497 /* 32-33: cpl (current privilege level) */
498 {"psr.is", ((valueT) 1) << 34},
499 {"psr.mc", ((valueT) 1) << 35},
500 {"psr.it", ((valueT) 1) << 36},
501 {"psr.id", ((valueT) 1) << 37},
502 {"psr.da", ((valueT) 1) << 38},
503 {"psr.dd", ((valueT) 1) << 39},
504 {"psr.ss", ((valueT) 1) << 40},
505 /* 41-42: ri (restart instruction) */
506 {"psr.ed", ((valueT) 1) << 43},
507 {"psr.bn", ((valueT) 1) << 44},
508 };
509
510 /* indirect register-sets/memory: */
511
512 static const struct
513 {
514 const char *name;
515 unsigned int regnum;
516 }
517 indirect_reg[] =
518 {
519 { "CPUID", IND_CPUID },
520 { "cpuid", IND_CPUID },
521 { "dbr", IND_DBR },
522 { "dtr", IND_DTR },
523 { "itr", IND_ITR },
524 { "ibr", IND_IBR },
525 { "msr", IND_MSR },
526 { "pkr", IND_PKR },
527 { "pmc", IND_PMC },
528 { "pmd", IND_PMD },
529 { "rr", IND_RR },
530 };
531
532 /* Pseudo functions used to indicate relocation types (these functions
533 start with an at sign (@). */
534 static struct
535 {
536 const char *name;
537 enum pseudo_type
538 {
539 PSEUDO_FUNC_NONE,
540 PSEUDO_FUNC_RELOC,
541 PSEUDO_FUNC_CONST,
542 PSEUDO_FUNC_REG,
543 PSEUDO_FUNC_FLOAT
544 }
545 type;
546 union
547 {
548 unsigned long ival;
549 symbolS *sym;
550 }
551 u;
552 }
553 pseudo_func[] =
554 {
555 /* reloc pseudo functions (these must come first!): */
556 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
557 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
558 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
559 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
560 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
562 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
564 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
565 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
568 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
572 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
573
574 /* mbtype4 constants: */
575 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
576 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
577 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
578 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
579 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
580
581 /* fclass constants: */
582 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
583 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
584 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
585 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
586 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
587 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
588 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
589 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
590 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
591
592 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
593
594 /* hint constants: */
595 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
596
597 /* unwind-related constants: */
598 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
599 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
600 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
601 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
602 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
603 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
604 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
605
606 /* unwind-related registers: */
607 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
608 };
609
610 /* 41-bit nop opcodes (one per unit): */
611 static const bfd_vma nop[IA64_NUM_UNITS] =
612 {
613 0x0000000000LL, /* NIL => break 0 */
614 0x0008000000LL, /* I-unit nop */
615 0x0008000000LL, /* M-unit nop */
616 0x4000000000LL, /* B-unit nop */
617 0x0008000000LL, /* F-unit nop */
618 0x0000000000LL, /* L-"unit" nop immediate */
619 0x0008000000LL, /* X-unit nop */
620 };
621
622 /* Can't be `const' as it's passed to input routines (which have the
623 habit of setting temporary sentinels. */
624 static char special_section_name[][20] =
625 {
626 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
627 {".IA_64.unwind"}, {".IA_64.unwind_info"},
628 {".init_array"}, {".fini_array"}
629 };
630
631 /* The best template for a particular sequence of up to three
632 instructions: */
633 #define N IA64_NUM_TYPES
634 static unsigned char best_template[N][N][N];
635 #undef N
636
637 /* Resource dependencies currently in effect */
638 static struct rsrc {
639 int depind; /* dependency index */
640 const struct ia64_dependency *dependency; /* actual dependency */
641 unsigned specific:1, /* is this a specific bit/regno? */
642 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
643 int index; /* specific regno/bit within dependency */
644 int note; /* optional qualifying note (0 if none) */
645 #define STATE_NONE 0
646 #define STATE_STOP 1
647 #define STATE_SRLZ 2
648 int insn_srlz; /* current insn serialization state */
649 int data_srlz; /* current data serialization state */
650 int qp_regno; /* qualifying predicate for this usage */
651 char *file; /* what file marked this dependency */
652 unsigned int line; /* what line marked this dependency */
653 struct mem_offset mem_offset; /* optional memory offset hint */
654 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
655 int path; /* corresponding code entry index */
656 } *regdeps = NULL;
657 static int regdepslen = 0;
658 static int regdepstotlen = 0;
659 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
660 static const char *dv_sem[] = { "none", "implied", "impliedf",
661 "data", "instr", "specific", "stop", "other" };
662 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
663
664 /* Current state of PR mutexation */
665 static struct qpmutex {
666 valueT prmask;
667 int path;
668 } *qp_mutexes = NULL; /* QP mutex bitmasks */
669 static int qp_mutexeslen = 0;
670 static int qp_mutexestotlen = 0;
671 static valueT qp_safe_across_calls = 0;
672
673 /* Current state of PR implications */
674 static struct qp_imply {
675 unsigned p1:6;
676 unsigned p2:6;
677 unsigned p2_branched:1;
678 int path;
679 } *qp_implies = NULL;
680 static int qp_implieslen = 0;
681 static int qp_impliestotlen = 0;
682
683 /* Keep track of static GR values so that indirect register usage can
684 sometimes be tracked. */
685 static struct gr {
686 unsigned known:1;
687 int path;
688 valueT value;
689 } gr_values[128] = {
690 {
691 1,
692 #ifdef INT_MAX
693 INT_MAX,
694 #else
695 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
696 #endif
697 0
698 }
699 };
700
701 /* Remember the alignment frag. */
702 static fragS *align_frag;
703
704 /* These are the routines required to output the various types of
705 unwind records. */
706
707 /* A slot_number is a frag address plus the slot index (0-2). We use the
708 frag address here so that if there is a section switch in the middle of
709 a function, then instructions emitted to a different section are not
710 counted. Since there may be more than one frag for a function, this
711 means we also need to keep track of which frag this address belongs to
712 so we can compute inter-frag distances. This also nicely solves the
713 problem with nops emitted for align directives, which can't easily be
714 counted, but can easily be derived from frag sizes. */
715
716 typedef struct unw_rec_list {
717 unwind_record r;
718 unsigned long slot_number;
719 fragS *slot_frag;
720 struct unw_rec_list *next;
721 } unw_rec_list;
722
723 #define SLOT_NUM_NOT_SET (unsigned)-1
724
725 /* Linked list of saved prologue counts. A very poor
726 implementation of a map from label numbers to prologue counts. */
727 typedef struct label_prologue_count
728 {
729 struct label_prologue_count *next;
730 unsigned long label_number;
731 unsigned int prologue_count;
732 } label_prologue_count;
733
734 typedef struct proc_pending
735 {
736 symbolS *sym;
737 struct proc_pending *next;
738 } proc_pending;
739
740 static struct
741 {
742 /* Maintain a list of unwind entries for the current function. */
743 unw_rec_list *list;
744 unw_rec_list *tail;
745
746 /* Any unwind entires that should be attached to the current slot
747 that an insn is being constructed for. */
748 unw_rec_list *current_entry;
749
750 /* These are used to create the unwind table entry for this function. */
751 proc_pending proc_pending;
752 symbolS *info; /* pointer to unwind info */
753 symbolS *personality_routine;
754 segT saved_text_seg;
755 subsegT saved_text_subseg;
756 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
757
758 /* TRUE if processing unwind directives in a prologue region. */
759 unsigned int prologue : 1;
760 unsigned int prologue_mask : 4;
761 unsigned int prologue_gr : 7;
762 unsigned int body : 1;
763 unsigned int insn : 1;
764 unsigned int prologue_count; /* number of .prologues seen so far */
765 /* Prologue counts at previous .label_state directives. */
766 struct label_prologue_count * saved_prologue_counts;
767
768 /* List of split up .save-s. */
769 unw_p_record *pending_saves;
770 } unwind;
771
772 /* The input value is a negated offset from psp, and specifies an address
773 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
774 must add 16 and divide by 4 to get the encoded value. */
775
776 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
777
778 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
779
780 /* Forward declarations: */
781 static void set_section PARAMS ((char *name));
782 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
783 unsigned int, unsigned int));
784 static void dot_align (int);
785 static void dot_radix PARAMS ((int));
786 static void dot_special_section PARAMS ((int));
787 static void dot_proc PARAMS ((int));
788 static void dot_fframe PARAMS ((int));
789 static void dot_vframe PARAMS ((int));
790 static void dot_vframesp PARAMS ((int));
791 static void dot_save PARAMS ((int));
792 static void dot_restore PARAMS ((int));
793 static void dot_restorereg PARAMS ((int));
794 static void dot_handlerdata PARAMS ((int));
795 static void dot_unwentry PARAMS ((int));
796 static void dot_altrp PARAMS ((int));
797 static void dot_savemem PARAMS ((int));
798 static void dot_saveg PARAMS ((int));
799 static void dot_savef PARAMS ((int));
800 static void dot_saveb PARAMS ((int));
801 static void dot_savegf PARAMS ((int));
802 static void dot_spill PARAMS ((int));
803 static void dot_spillreg PARAMS ((int));
804 static void dot_spillmem PARAMS ((int));
805 static void dot_label_state PARAMS ((int));
806 static void dot_copy_state PARAMS ((int));
807 static void dot_unwabi PARAMS ((int));
808 static void dot_personality PARAMS ((int));
809 static void dot_body PARAMS ((int));
810 static void dot_prologue PARAMS ((int));
811 static void dot_endp PARAMS ((int));
812 static void dot_template PARAMS ((int));
813 static void dot_regstk PARAMS ((int));
814 static void dot_rot PARAMS ((int));
815 static void dot_byteorder PARAMS ((int));
816 static void dot_psr PARAMS ((int));
817 static void dot_alias PARAMS ((int));
818 static void dot_ln PARAMS ((int));
819 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
820 static void dot_xdata PARAMS ((int));
821 static void stmt_float_cons PARAMS ((int));
822 static void stmt_cons_ua PARAMS ((int));
823 static void dot_xfloat_cons PARAMS ((int));
824 static void dot_xstringer PARAMS ((int));
825 static void dot_xdata_ua PARAMS ((int));
826 static void dot_xfloat_cons_ua PARAMS ((int));
827 static void print_prmask PARAMS ((valueT mask));
828 static void dot_pred_rel PARAMS ((int));
829 static void dot_reg_val PARAMS ((int));
830 static void dot_serialize PARAMS ((int));
831 static void dot_dv_mode PARAMS ((int));
832 static void dot_entry PARAMS ((int));
833 static void dot_mem_offset PARAMS ((int));
834 static void add_unwind_entry PARAMS((unw_rec_list *, int));
835 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
836 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
837 static unsigned int operand_width PARAMS ((enum ia64_opnd));
838 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
839 int index,
840 expressionS *e));
841 static int parse_operand PARAMS ((expressionS *, int));
842 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
843 static void build_insn PARAMS ((struct slot *, bfd_vma *));
844 static void emit_one_bundle PARAMS ((void));
845 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
846 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
847 bfd_reloc_code_real_type r_type));
848 static void insn_group_break PARAMS ((int, int, int));
849 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
850 struct rsrc *, int depind, int path));
851 static void add_qp_mutex PARAMS((valueT mask));
852 static void add_qp_imply PARAMS((int p1, int p2));
853 static void clear_qp_branch_flag PARAMS((valueT mask));
854 static void clear_qp_mutex PARAMS((valueT mask));
855 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
856 static int has_suffix_p PARAMS((const char *, const char *));
857 static void clear_register_values PARAMS ((void));
858 static void print_dependency PARAMS ((const char *action, int depind));
859 static void instruction_serialization PARAMS ((void));
860 static void data_serialization PARAMS ((void));
861 static void remove_marked_resource PARAMS ((struct rsrc *));
862 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
863 static int is_taken_branch PARAMS ((struct ia64_opcode *));
864 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
865 static int depends_on PARAMS ((int, struct ia64_opcode *));
866 static int specify_resource PARAMS ((const struct ia64_dependency *,
867 struct ia64_opcode *, int, struct rsrc [], int, int));
868 static int check_dv PARAMS((struct ia64_opcode *idesc));
869 static void check_dependencies PARAMS((struct ia64_opcode *));
870 static void mark_resources PARAMS((struct ia64_opcode *));
871 static void update_dependencies PARAMS((struct ia64_opcode *));
872 static void note_register_values PARAMS((struct ia64_opcode *));
873 static int qp_mutex PARAMS ((int, int, int));
874 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
875 static void output_vbyte_mem PARAMS ((int, char *, char *));
876 static void count_output PARAMS ((int, char *, char *));
877 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
878 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
879 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
880 static void output_P1_format PARAMS ((vbyte_func, int));
881 static void output_P2_format PARAMS ((vbyte_func, int, int));
882 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
883 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
884 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
885 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
886 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
887 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
888 static void output_P9_format PARAMS ((vbyte_func, int, int));
889 static void output_P10_format PARAMS ((vbyte_func, int, int));
890 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
891 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
892 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
894 static char format_ab_reg PARAMS ((int, int));
895 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
896 unsigned long));
897 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
898 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
899 unsigned long));
900 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
901 static unw_rec_list *output_endp PARAMS ((void));
902 static unw_rec_list *output_prologue PARAMS ((void));
903 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_body PARAMS ((void));
905 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
906 static unw_rec_list *output_mem_stack_v PARAMS ((void));
907 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
908 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_rp_when PARAMS ((void));
910 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
914 static unw_rec_list *output_pfs_when PARAMS ((void));
915 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_preds_when PARAMS ((void));
919 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
923 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
924 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
926 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
928 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
929 static unw_rec_list *output_unat_when PARAMS ((void));
930 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_lc_when PARAMS ((void));
934 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_fpsr_when PARAMS ((void));
938 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
939 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
941 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
942 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
943 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
944 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
946 static unw_rec_list *output_bsp_when PARAMS ((void));
947 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
948 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bspstore_when PARAMS ((void));
951 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
952 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
954 static unw_rec_list *output_rnat_when PARAMS ((void));
955 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
956 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
958 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
959 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
960 static unw_rec_list *output_label_state PARAMS ((unsigned long));
961 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
962 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
963 unsigned int));
964 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
965 unsigned int));
966 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
967 unsigned int, unsigned int));
968 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
969 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
970 static int calc_record_size PARAMS ((unw_rec_list *));
971 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
972 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
973 unsigned long, fragS *,
974 int));
975 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
976 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
977 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
978 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
979 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
981 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
982 static void free_saved_prologue_counts PARAMS ((void));
983
984 /* Determine if application register REGNUM resides only in the integer
985 unit (as opposed to the memory unit). */
986 static int
987 ar_is_only_in_integer_unit (int reg)
988 {
989 reg -= REG_AR;
990 return reg >= 64 && reg <= 111;
991 }
992
993 /* Determine if application register REGNUM resides only in the memory
994 unit (as opposed to the integer unit). */
995 static int
996 ar_is_only_in_memory_unit (int reg)
997 {
998 reg -= REG_AR;
999 return reg >= 0 && reg <= 47;
1000 }
1001
1002 /* Switch to section NAME and create section if necessary. It's
1003 rather ugly that we have to manipulate input_line_pointer but I
1004 don't see any other way to accomplish the same thing without
1005 changing obj-elf.c (which may be the Right Thing, in the end). */
1006 static void
1007 set_section (name)
1008 char *name;
1009 {
1010 char *saved_input_line_pointer;
1011
1012 saved_input_line_pointer = input_line_pointer;
1013 input_line_pointer = name;
1014 obj_elf_section (0);
1015 input_line_pointer = saved_input_line_pointer;
1016 }
1017
1018 /* Map 's' to SHF_IA_64_SHORT. */
1019
1020 int
1021 ia64_elf_section_letter (letter, ptr_msg)
1022 int letter;
1023 char **ptr_msg;
1024 {
1025 if (letter == 's')
1026 return SHF_IA_64_SHORT;
1027 else if (letter == 'o')
1028 return SHF_LINK_ORDER;
1029
1030 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1031 return -1;
1032 }
1033
1034 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1035
1036 flagword
1037 ia64_elf_section_flags (flags, attr, type)
1038 flagword flags;
1039 int attr, type ATTRIBUTE_UNUSED;
1040 {
1041 if (attr & SHF_IA_64_SHORT)
1042 flags |= SEC_SMALL_DATA;
1043 return flags;
1044 }
1045
1046 int
1047 ia64_elf_section_type (str, len)
1048 const char *str;
1049 size_t len;
1050 {
1051 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1052
1053 if (STREQ (ELF_STRING_ia64_unwind_info))
1054 return SHT_PROGBITS;
1055
1056 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1057 return SHT_PROGBITS;
1058
1059 if (STREQ (ELF_STRING_ia64_unwind))
1060 return SHT_IA_64_UNWIND;
1061
1062 if (STREQ (ELF_STRING_ia64_unwind_once))
1063 return SHT_IA_64_UNWIND;
1064
1065 if (STREQ ("unwind"))
1066 return SHT_IA_64_UNWIND;
1067
1068 return -1;
1069 #undef STREQ
1070 }
1071
1072 static unsigned int
1073 set_regstack (ins, locs, outs, rots)
1074 unsigned int ins, locs, outs, rots;
1075 {
1076 /* Size of frame. */
1077 unsigned int sof;
1078
1079 sof = ins + locs + outs;
1080 if (sof > 96)
1081 {
1082 as_bad ("Size of frame exceeds maximum of 96 registers");
1083 return 0;
1084 }
1085 if (rots > sof)
1086 {
1087 as_warn ("Size of rotating registers exceeds frame size");
1088 return 0;
1089 }
1090 md.in.base = REG_GR + 32;
1091 md.loc.base = md.in.base + ins;
1092 md.out.base = md.loc.base + locs;
1093
1094 md.in.num_regs = ins;
1095 md.loc.num_regs = locs;
1096 md.out.num_regs = outs;
1097 md.rot.num_regs = rots;
1098 return sof;
1099 }
1100
1101 void
1102 ia64_flush_insns ()
1103 {
1104 struct label_fix *lfix;
1105 segT saved_seg;
1106 subsegT saved_subseg;
1107 unw_rec_list *ptr;
1108 bfd_boolean mark;
1109
1110 if (!md.last_text_seg)
1111 return;
1112
1113 saved_seg = now_seg;
1114 saved_subseg = now_subseg;
1115
1116 subseg_set (md.last_text_seg, 0);
1117
1118 while (md.num_slots_in_use > 0)
1119 emit_one_bundle (); /* force out queued instructions */
1120
1121 /* In case there are labels following the last instruction, resolve
1122 those now. */
1123 mark = FALSE;
1124 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1125 {
1126 symbol_set_value_now (lfix->sym);
1127 mark |= lfix->dw2_mark_labels;
1128 }
1129 if (mark)
1130 {
1131 dwarf2_where (&CURR_SLOT.debug_line);
1132 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1133 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1134 }
1135 CURR_SLOT.label_fixups = 0;
1136
1137 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1138 symbol_set_value_now (lfix->sym);
1139 CURR_SLOT.tag_fixups = 0;
1140
1141 /* In case there are unwind directives following the last instruction,
1142 resolve those now. We only handle prologue, body, and endp directives
1143 here. Give an error for others. */
1144 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1145 {
1146 switch (ptr->r.type)
1147 {
1148 case prologue:
1149 case prologue_gr:
1150 case body:
1151 case endp:
1152 ptr->slot_number = (unsigned long) frag_more (0);
1153 ptr->slot_frag = frag_now;
1154 break;
1155
1156 /* Allow any record which doesn't have a "t" field (i.e.,
1157 doesn't relate to a particular instruction). */
1158 case unwabi:
1159 case br_gr:
1160 case copy_state:
1161 case fr_mem:
1162 case frgr_mem:
1163 case gr_gr:
1164 case gr_mem:
1165 case label_state:
1166 case rp_br:
1167 case spill_base:
1168 case spill_mask:
1169 /* nothing */
1170 break;
1171
1172 default:
1173 as_bad (_("Unwind directive not followed by an instruction."));
1174 break;
1175 }
1176 }
1177 unwind.current_entry = NULL;
1178
1179 subseg_set (saved_seg, saved_subseg);
1180
1181 if (md.qp.X_op == O_register)
1182 as_bad ("qualifying predicate not followed by instruction");
1183 }
1184
1185 static void
1186 ia64_do_align (int nbytes)
1187 {
1188 char *saved_input_line_pointer = input_line_pointer;
1189
1190 input_line_pointer = "";
1191 s_align_bytes (nbytes);
1192 input_line_pointer = saved_input_line_pointer;
1193 }
1194
1195 void
1196 ia64_cons_align (nbytes)
1197 int nbytes;
1198 {
1199 if (md.auto_align)
1200 {
1201 char *saved_input_line_pointer = input_line_pointer;
1202 input_line_pointer = "";
1203 s_align_bytes (nbytes);
1204 input_line_pointer = saved_input_line_pointer;
1205 }
1206 }
1207
1208 /* Output COUNT bytes to a memory location. */
1209 static char *vbyte_mem_ptr = NULL;
1210
1211 void
1212 output_vbyte_mem (count, ptr, comment)
1213 int count;
1214 char *ptr;
1215 char *comment ATTRIBUTE_UNUSED;
1216 {
1217 int x;
1218 if (vbyte_mem_ptr == NULL)
1219 abort ();
1220
1221 if (count == 0)
1222 return;
1223 for (x = 0; x < count; x++)
1224 *(vbyte_mem_ptr++) = ptr[x];
1225 }
1226
1227 /* Count the number of bytes required for records. */
1228 static int vbyte_count = 0;
1229 void
1230 count_output (count, ptr, comment)
1231 int count;
1232 char *ptr ATTRIBUTE_UNUSED;
1233 char *comment ATTRIBUTE_UNUSED;
1234 {
1235 vbyte_count += count;
1236 }
1237
1238 static void
1239 output_R1_format (f, rtype, rlen)
1240 vbyte_func f;
1241 unw_record_type rtype;
1242 int rlen;
1243 {
1244 int r = 0;
1245 char byte;
1246 if (rlen > 0x1f)
1247 {
1248 output_R3_format (f, rtype, rlen);
1249 return;
1250 }
1251
1252 if (rtype == body)
1253 r = 1;
1254 else if (rtype != prologue)
1255 as_bad ("record type is not valid");
1256
1257 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1258 (*f) (1, &byte, NULL);
1259 }
1260
1261 static void
1262 output_R2_format (f, mask, grsave, rlen)
1263 vbyte_func f;
1264 int mask, grsave;
1265 unsigned long rlen;
1266 {
1267 char bytes[20];
1268 int count = 2;
1269 mask = (mask & 0x0f);
1270 grsave = (grsave & 0x7f);
1271
1272 bytes[0] = (UNW_R2 | (mask >> 1));
1273 bytes[1] = (((mask & 0x01) << 7) | grsave);
1274 count += output_leb128 (bytes + 2, rlen, 0);
1275 (*f) (count, bytes, NULL);
1276 }
1277
1278 static void
1279 output_R3_format (f, rtype, rlen)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 unsigned long rlen;
1283 {
1284 int r = 0, count;
1285 char bytes[20];
1286 if (rlen <= 0x1f)
1287 {
1288 output_R1_format (f, rtype, rlen);
1289 return;
1290 }
1291
1292 if (rtype == body)
1293 r = 1;
1294 else if (rtype != prologue)
1295 as_bad ("record type is not valid");
1296 bytes[0] = (UNW_R3 | r);
1297 count = output_leb128 (bytes + 1, rlen, 0);
1298 (*f) (count + 1, bytes, NULL);
1299 }
1300
1301 static void
1302 output_P1_format (f, brmask)
1303 vbyte_func f;
1304 int brmask;
1305 {
1306 char byte;
1307 byte = UNW_P1 | (brmask & 0x1f);
1308 (*f) (1, &byte, NULL);
1309 }
1310
1311 static void
1312 output_P2_format (f, brmask, gr)
1313 vbyte_func f;
1314 int brmask;
1315 int gr;
1316 {
1317 char bytes[2];
1318 brmask = (brmask & 0x1f);
1319 bytes[0] = UNW_P2 | (brmask >> 1);
1320 bytes[1] = (((brmask & 1) << 7) | gr);
1321 (*f) (2, bytes, NULL);
1322 }
1323
1324 static void
1325 output_P3_format (f, rtype, reg)
1326 vbyte_func f;
1327 unw_record_type rtype;
1328 int reg;
1329 {
1330 char bytes[2];
1331 int r = 0;
1332 reg = (reg & 0x7f);
1333 switch (rtype)
1334 {
1335 case psp_gr:
1336 r = 0;
1337 break;
1338 case rp_gr:
1339 r = 1;
1340 break;
1341 case pfs_gr:
1342 r = 2;
1343 break;
1344 case preds_gr:
1345 r = 3;
1346 break;
1347 case unat_gr:
1348 r = 4;
1349 break;
1350 case lc_gr:
1351 r = 5;
1352 break;
1353 case rp_br:
1354 r = 6;
1355 break;
1356 case rnat_gr:
1357 r = 7;
1358 break;
1359 case bsp_gr:
1360 r = 8;
1361 break;
1362 case bspstore_gr:
1363 r = 9;
1364 break;
1365 case fpsr_gr:
1366 r = 10;
1367 break;
1368 case priunat_gr:
1369 r = 11;
1370 break;
1371 default:
1372 as_bad ("Invalid record type for P3 format.");
1373 }
1374 bytes[0] = (UNW_P3 | (r >> 1));
1375 bytes[1] = (((r & 1) << 7) | reg);
1376 (*f) (2, bytes, NULL);
1377 }
1378
1379 static void
1380 output_P4_format (f, imask, imask_size)
1381 vbyte_func f;
1382 unsigned char *imask;
1383 unsigned long imask_size;
1384 {
1385 imask[0] = UNW_P4;
1386 (*f) (imask_size, (char *) imask, NULL);
1387 }
1388
1389 static void
1390 output_P5_format (f, grmask, frmask)
1391 vbyte_func f;
1392 int grmask;
1393 unsigned long frmask;
1394 {
1395 char bytes[4];
1396 grmask = (grmask & 0x0f);
1397
1398 bytes[0] = UNW_P5;
1399 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1400 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1401 bytes[3] = (frmask & 0x000000ff);
1402 (*f) (4, bytes, NULL);
1403 }
1404
1405 static void
1406 output_P6_format (f, rtype, rmask)
1407 vbyte_func f;
1408 unw_record_type rtype;
1409 int rmask;
1410 {
1411 char byte;
1412 int r = 0;
1413
1414 if (rtype == gr_mem)
1415 r = 1;
1416 else if (rtype != fr_mem)
1417 as_bad ("Invalid record type for format P6");
1418 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1419 (*f) (1, &byte, NULL);
1420 }
1421
1422 static void
1423 output_P7_format (f, rtype, w1, w2)
1424 vbyte_func f;
1425 unw_record_type rtype;
1426 unsigned long w1;
1427 unsigned long w2;
1428 {
1429 char bytes[20];
1430 int count = 1;
1431 int r = 0;
1432 count += output_leb128 (bytes + 1, w1, 0);
1433 switch (rtype)
1434 {
1435 case mem_stack_f:
1436 r = 0;
1437 count += output_leb128 (bytes + count, w2 >> 4, 0);
1438 break;
1439 case mem_stack_v:
1440 r = 1;
1441 break;
1442 case spill_base:
1443 r = 2;
1444 break;
1445 case psp_sprel:
1446 r = 3;
1447 break;
1448 case rp_when:
1449 r = 4;
1450 break;
1451 case rp_psprel:
1452 r = 5;
1453 break;
1454 case pfs_when:
1455 r = 6;
1456 break;
1457 case pfs_psprel:
1458 r = 7;
1459 break;
1460 case preds_when:
1461 r = 8;
1462 break;
1463 case preds_psprel:
1464 r = 9;
1465 break;
1466 case lc_when:
1467 r = 10;
1468 break;
1469 case lc_psprel:
1470 r = 11;
1471 break;
1472 case unat_when:
1473 r = 12;
1474 break;
1475 case unat_psprel:
1476 r = 13;
1477 break;
1478 case fpsr_when:
1479 r = 14;
1480 break;
1481 case fpsr_psprel:
1482 r = 15;
1483 break;
1484 default:
1485 break;
1486 }
1487 bytes[0] = (UNW_P7 | r);
1488 (*f) (count, bytes, NULL);
1489 }
1490
1491 static void
1492 output_P8_format (f, rtype, t)
1493 vbyte_func f;
1494 unw_record_type rtype;
1495 unsigned long t;
1496 {
1497 char bytes[20];
1498 int r = 0;
1499 int count = 2;
1500 bytes[0] = UNW_P8;
1501 switch (rtype)
1502 {
1503 case rp_sprel:
1504 r = 1;
1505 break;
1506 case pfs_sprel:
1507 r = 2;
1508 break;
1509 case preds_sprel:
1510 r = 3;
1511 break;
1512 case lc_sprel:
1513 r = 4;
1514 break;
1515 case unat_sprel:
1516 r = 5;
1517 break;
1518 case fpsr_sprel:
1519 r = 6;
1520 break;
1521 case bsp_when:
1522 r = 7;
1523 break;
1524 case bsp_psprel:
1525 r = 8;
1526 break;
1527 case bsp_sprel:
1528 r = 9;
1529 break;
1530 case bspstore_when:
1531 r = 10;
1532 break;
1533 case bspstore_psprel:
1534 r = 11;
1535 break;
1536 case bspstore_sprel:
1537 r = 12;
1538 break;
1539 case rnat_when:
1540 r = 13;
1541 break;
1542 case rnat_psprel:
1543 r = 14;
1544 break;
1545 case rnat_sprel:
1546 r = 15;
1547 break;
1548 case priunat_when_gr:
1549 r = 16;
1550 break;
1551 case priunat_psprel:
1552 r = 17;
1553 break;
1554 case priunat_sprel:
1555 r = 18;
1556 break;
1557 case priunat_when_mem:
1558 r = 19;
1559 break;
1560 default:
1561 break;
1562 }
1563 bytes[1] = r;
1564 count += output_leb128 (bytes + 2, t, 0);
1565 (*f) (count, bytes, NULL);
1566 }
1567
1568 static void
1569 output_P9_format (f, grmask, gr)
1570 vbyte_func f;
1571 int grmask;
1572 int gr;
1573 {
1574 char bytes[3];
1575 bytes[0] = UNW_P9;
1576 bytes[1] = (grmask & 0x0f);
1577 bytes[2] = (gr & 0x7f);
1578 (*f) (3, bytes, NULL);
1579 }
1580
1581 static void
1582 output_P10_format (f, abi, context)
1583 vbyte_func f;
1584 int abi;
1585 int context;
1586 {
1587 char bytes[3];
1588 bytes[0] = UNW_P10;
1589 bytes[1] = (abi & 0xff);
1590 bytes[2] = (context & 0xff);
1591 (*f) (3, bytes, NULL);
1592 }
1593
1594 static void
1595 output_B1_format (f, rtype, label)
1596 vbyte_func f;
1597 unw_record_type rtype;
1598 unsigned long label;
1599 {
1600 char byte;
1601 int r = 0;
1602 if (label > 0x1f)
1603 {
1604 output_B4_format (f, rtype, label);
1605 return;
1606 }
1607 if (rtype == copy_state)
1608 r = 1;
1609 else if (rtype != label_state)
1610 as_bad ("Invalid record type for format B1");
1611
1612 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1613 (*f) (1, &byte, NULL);
1614 }
1615
1616 static void
1617 output_B2_format (f, ecount, t)
1618 vbyte_func f;
1619 unsigned long ecount;
1620 unsigned long t;
1621 {
1622 char bytes[20];
1623 int count = 1;
1624 if (ecount > 0x1f)
1625 {
1626 output_B3_format (f, ecount, t);
1627 return;
1628 }
1629 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1630 count += output_leb128 (bytes + 1, t, 0);
1631 (*f) (count, bytes, NULL);
1632 }
1633
1634 static void
1635 output_B3_format (f, ecount, t)
1636 vbyte_func f;
1637 unsigned long ecount;
1638 unsigned long t;
1639 {
1640 char bytes[20];
1641 int count = 1;
1642 if (ecount <= 0x1f)
1643 {
1644 output_B2_format (f, ecount, t);
1645 return;
1646 }
1647 bytes[0] = UNW_B3;
1648 count += output_leb128 (bytes + 1, t, 0);
1649 count += output_leb128 (bytes + count, ecount, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_B4_format (f, rtype, label)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 unsigned long label;
1658 {
1659 char bytes[20];
1660 int r = 0;
1661 int count = 1;
1662 if (label <= 0x1f)
1663 {
1664 output_B1_format (f, rtype, label);
1665 return;
1666 }
1667
1668 if (rtype == copy_state)
1669 r = 1;
1670 else if (rtype != label_state)
1671 as_bad ("Invalid record type for format B1");
1672
1673 bytes[0] = (UNW_B4 | (r << 3));
1674 count += output_leb128 (bytes + 1, label, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static char
1679 format_ab_reg (ab, reg)
1680 int ab;
1681 int reg;
1682 {
1683 int ret;
1684 ab = (ab & 3);
1685 reg = (reg & 0x1f);
1686 ret = (ab << 5) | reg;
1687 return ret;
1688 }
1689
1690 static void
1691 output_X1_format (f, rtype, ab, reg, t, w1)
1692 vbyte_func f;
1693 unw_record_type rtype;
1694 int ab, reg;
1695 unsigned long t;
1696 unsigned long w1;
1697 {
1698 char bytes[20];
1699 int r = 0;
1700 int count = 2;
1701 bytes[0] = UNW_X1;
1702
1703 if (rtype == spill_sprel)
1704 r = 1;
1705 else if (rtype != spill_psprel)
1706 as_bad ("Invalid record type for format X1");
1707 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1708 count += output_leb128 (bytes + 2, t, 0);
1709 count += output_leb128 (bytes + count, w1, 0);
1710 (*f) (count, bytes, NULL);
1711 }
1712
1713 static void
1714 output_X2_format (f, ab, reg, x, y, treg, t)
1715 vbyte_func f;
1716 int ab, reg;
1717 int x, y, treg;
1718 unsigned long t;
1719 {
1720 char bytes[20];
1721 int count = 3;
1722 bytes[0] = UNW_X2;
1723 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1724 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1725 count += output_leb128 (bytes + 3, t, 0);
1726 (*f) (count, bytes, NULL);
1727 }
1728
1729 static void
1730 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1731 vbyte_func f;
1732 unw_record_type rtype;
1733 int qp;
1734 int ab, reg;
1735 unsigned long t;
1736 unsigned long w1;
1737 {
1738 char bytes[20];
1739 int r = 0;
1740 int count = 3;
1741 bytes[0] = UNW_X3;
1742
1743 if (rtype == spill_sprel_p)
1744 r = 1;
1745 else if (rtype != spill_psprel_p)
1746 as_bad ("Invalid record type for format X3");
1747 bytes[1] = ((r << 7) | (qp & 0x3f));
1748 bytes[2] = format_ab_reg (ab, reg);
1749 count += output_leb128 (bytes + 3, t, 0);
1750 count += output_leb128 (bytes + count, w1, 0);
1751 (*f) (count, bytes, NULL);
1752 }
1753
1754 static void
1755 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1756 vbyte_func f;
1757 int qp;
1758 int ab, reg;
1759 int x, y, treg;
1760 unsigned long t;
1761 {
1762 char bytes[20];
1763 int count = 4;
1764 bytes[0] = UNW_X4;
1765 bytes[1] = (qp & 0x3f);
1766 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1767 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1768 count += output_leb128 (bytes + 4, t, 0);
1769 (*f) (count, bytes, NULL);
1770 }
1771
1772 /* This function checks whether there are any outstanding .save-s and
1773 discards them if so. */
1774
1775 static void
1776 check_pending_save (void)
1777 {
1778 if (unwind.pending_saves)
1779 {
1780 unw_rec_list *cur, *prev;
1781
1782 as_warn ("Previous .save incomplete");
1783 for (cur = unwind.list, prev = NULL; cur; )
1784 if (&cur->r.record.p == unwind.pending_saves)
1785 {
1786 if (prev)
1787 prev->next = cur->next;
1788 else
1789 unwind.list = cur->next;
1790 if (cur == unwind.tail)
1791 unwind.tail = prev;
1792 if (cur == unwind.current_entry)
1793 unwind.current_entry = cur->next;
1794 /* Don't free the first discarded record, it's being used as
1795 terminator for (currently) br_gr and gr_gr processing, and
1796 also prevents leaving a dangling pointer to it in its
1797 predecessor. */
1798 cur->r.record.p.grmask = 0;
1799 cur->r.record.p.brmask = 0;
1800 cur->r.record.p.frmask = 0;
1801 prev = cur->r.record.p.next;
1802 cur->r.record.p.next = NULL;
1803 cur = prev;
1804 break;
1805 }
1806 else
1807 {
1808 prev = cur;
1809 cur = cur->next;
1810 }
1811 while (cur)
1812 {
1813 prev = cur;
1814 cur = cur->r.record.p.next;
1815 free (prev);
1816 }
1817 unwind.pending_saves = NULL;
1818 }
1819 }
1820
1821 /* This function allocates a record list structure, and initializes fields. */
1822
1823 static unw_rec_list *
1824 alloc_record (unw_record_type t)
1825 {
1826 unw_rec_list *ptr;
1827 ptr = xmalloc (sizeof (*ptr));
1828 memset (ptr, 0, sizeof (*ptr));
1829 ptr->slot_number = SLOT_NUM_NOT_SET;
1830 ptr->r.type = t;
1831 return ptr;
1832 }
1833
1834 /* Dummy unwind record used for calculating the length of the last prologue or
1835 body region. */
1836
1837 static unw_rec_list *
1838 output_endp ()
1839 {
1840 unw_rec_list *ptr = alloc_record (endp);
1841 return ptr;
1842 }
1843
1844 static unw_rec_list *
1845 output_prologue ()
1846 {
1847 unw_rec_list *ptr = alloc_record (prologue);
1848 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1849 return ptr;
1850 }
1851
1852 static unw_rec_list *
1853 output_prologue_gr (saved_mask, reg)
1854 unsigned int saved_mask;
1855 unsigned int reg;
1856 {
1857 unw_rec_list *ptr = alloc_record (prologue_gr);
1858 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1859 ptr->r.record.r.grmask = saved_mask;
1860 ptr->r.record.r.grsave = reg;
1861 return ptr;
1862 }
1863
1864 static unw_rec_list *
1865 output_body ()
1866 {
1867 unw_rec_list *ptr = alloc_record (body);
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_mem_stack_f (size)
1873 unsigned int size;
1874 {
1875 unw_rec_list *ptr = alloc_record (mem_stack_f);
1876 ptr->r.record.p.size = size;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_mem_stack_v ()
1882 {
1883 unw_rec_list *ptr = alloc_record (mem_stack_v);
1884 return ptr;
1885 }
1886
1887 static unw_rec_list *
1888 output_psp_gr (gr)
1889 unsigned int gr;
1890 {
1891 unw_rec_list *ptr = alloc_record (psp_gr);
1892 ptr->r.record.p.r.gr = gr;
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_psp_sprel (offset)
1898 unsigned int offset;
1899 {
1900 unw_rec_list *ptr = alloc_record (psp_sprel);
1901 ptr->r.record.p.off.sp = offset / 4;
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_rp_when ()
1907 {
1908 unw_rec_list *ptr = alloc_record (rp_when);
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
1913 output_rp_gr (gr)
1914 unsigned int gr;
1915 {
1916 unw_rec_list *ptr = alloc_record (rp_gr);
1917 ptr->r.record.p.r.gr = gr;
1918 return ptr;
1919 }
1920
1921 static unw_rec_list *
1922 output_rp_br (br)
1923 unsigned int br;
1924 {
1925 unw_rec_list *ptr = alloc_record (rp_br);
1926 ptr->r.record.p.r.br = br;
1927 return ptr;
1928 }
1929
1930 static unw_rec_list *
1931 output_rp_psprel (offset)
1932 unsigned int offset;
1933 {
1934 unw_rec_list *ptr = alloc_record (rp_psprel);
1935 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1936 return ptr;
1937 }
1938
1939 static unw_rec_list *
1940 output_rp_sprel (offset)
1941 unsigned int offset;
1942 {
1943 unw_rec_list *ptr = alloc_record (rp_sprel);
1944 ptr->r.record.p.off.sp = offset / 4;
1945 return ptr;
1946 }
1947
1948 static unw_rec_list *
1949 output_pfs_when ()
1950 {
1951 unw_rec_list *ptr = alloc_record (pfs_when);
1952 return ptr;
1953 }
1954
1955 static unw_rec_list *
1956 output_pfs_gr (gr)
1957 unsigned int gr;
1958 {
1959 unw_rec_list *ptr = alloc_record (pfs_gr);
1960 ptr->r.record.p.r.gr = gr;
1961 return ptr;
1962 }
1963
1964 static unw_rec_list *
1965 output_pfs_psprel (offset)
1966 unsigned int offset;
1967 {
1968 unw_rec_list *ptr = alloc_record (pfs_psprel);
1969 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1970 return ptr;
1971 }
1972
1973 static unw_rec_list *
1974 output_pfs_sprel (offset)
1975 unsigned int offset;
1976 {
1977 unw_rec_list *ptr = alloc_record (pfs_sprel);
1978 ptr->r.record.p.off.sp = offset / 4;
1979 return ptr;
1980 }
1981
1982 static unw_rec_list *
1983 output_preds_when ()
1984 {
1985 unw_rec_list *ptr = alloc_record (preds_when);
1986 return ptr;
1987 }
1988
1989 static unw_rec_list *
1990 output_preds_gr (gr)
1991 unsigned int gr;
1992 {
1993 unw_rec_list *ptr = alloc_record (preds_gr);
1994 ptr->r.record.p.r.gr = gr;
1995 return ptr;
1996 }
1997
1998 static unw_rec_list *
1999 output_preds_psprel (offset)
2000 unsigned int offset;
2001 {
2002 unw_rec_list *ptr = alloc_record (preds_psprel);
2003 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2004 return ptr;
2005 }
2006
2007 static unw_rec_list *
2008 output_preds_sprel (offset)
2009 unsigned int offset;
2010 {
2011 unw_rec_list *ptr = alloc_record (preds_sprel);
2012 ptr->r.record.p.off.sp = offset / 4;
2013 return ptr;
2014 }
2015
2016 static unw_rec_list *
2017 output_fr_mem (mask)
2018 unsigned int mask;
2019 {
2020 unw_rec_list *ptr = alloc_record (fr_mem);
2021 unw_rec_list *cur = ptr;
2022
2023 ptr->r.record.p.frmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2026 {
2027 unw_rec_list *prev = cur;
2028
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (fr_mem);
2034 cur->r.record.p.frmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.frmask ^= mask;
2037 prev->r.record.p.next = cur;
2038 }
2039 }
2040
2041 static unw_rec_list *
2042 output_frgr_mem (gr_mask, fr_mask)
2043 unsigned int gr_mask;
2044 unsigned int fr_mask;
2045 {
2046 unw_rec_list *ptr = alloc_record (frgr_mem);
2047 unw_rec_list *cur = ptr;
2048
2049 unwind.pending_saves = &cur->r.record.p;
2050 cur->r.record.p.frmask = fr_mask;
2051 while (fr_mask)
2052 {
2053 unw_rec_list *prev = cur;
2054
2055 /* Clear least significant set bit. */
2056 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2057 if (!gr_mask && !fr_mask)
2058 return ptr;
2059 cur = alloc_record (frgr_mem);
2060 cur->r.record.p.frmask = fr_mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.frmask ^= fr_mask;
2063 prev->r.record.p.next = cur;
2064 }
2065 cur->r.record.p.grmask = gr_mask;
2066 for (;;)
2067 {
2068 unw_rec_list *prev = cur;
2069
2070 /* Clear least significant set bit. */
2071 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2072 if (!gr_mask)
2073 return ptr;
2074 cur = alloc_record (frgr_mem);
2075 cur->r.record.p.grmask = gr_mask;
2076 /* Retain only least significant bit. */
2077 prev->r.record.p.grmask ^= gr_mask;
2078 prev->r.record.p.next = cur;
2079 }
2080 }
2081
2082 static unw_rec_list *
2083 output_gr_gr (mask, reg)
2084 unsigned int mask;
2085 unsigned int reg;
2086 {
2087 unw_rec_list *ptr = alloc_record (gr_gr);
2088 unw_rec_list *cur = ptr;
2089
2090 ptr->r.record.p.grmask = mask;
2091 ptr->r.record.p.r.gr = reg;
2092 unwind.pending_saves = &ptr->r.record.p;
2093 for (;;)
2094 {
2095 unw_rec_list *prev = cur;
2096
2097 /* Clear least significant set bit. */
2098 mask &= ~(mask & (~mask + 1));
2099 if (!mask)
2100 return ptr;
2101 cur = alloc_record (gr_gr);
2102 cur->r.record.p.grmask = mask;
2103 /* Indicate this record shouldn't be output. */
2104 cur->r.record.p.r.gr = REG_NUM;
2105 /* Retain only least significant bit. */
2106 prev->r.record.p.grmask ^= mask;
2107 prev->r.record.p.next = cur;
2108 }
2109 }
2110
2111 static unw_rec_list *
2112 output_gr_mem (mask)
2113 unsigned int mask;
2114 {
2115 unw_rec_list *ptr = alloc_record (gr_mem);
2116 unw_rec_list *cur = ptr;
2117
2118 ptr->r.record.p.grmask = mask;
2119 unwind.pending_saves = &ptr->r.record.p;
2120 for (;;)
2121 {
2122 unw_rec_list *prev = cur;
2123
2124 /* Clear least significant set bit. */
2125 mask &= ~(mask & (~mask + 1));
2126 if (!mask)
2127 return ptr;
2128 cur = alloc_record (gr_mem);
2129 cur->r.record.p.grmask = mask;
2130 /* Retain only least significant bit. */
2131 prev->r.record.p.grmask ^= mask;
2132 prev->r.record.p.next = cur;
2133 }
2134 }
2135
2136 static unw_rec_list *
2137 output_br_mem (unsigned int mask)
2138 {
2139 unw_rec_list *ptr = alloc_record (br_mem);
2140 unw_rec_list *cur = ptr;
2141
2142 ptr->r.record.p.brmask = mask;
2143 unwind.pending_saves = &ptr->r.record.p;
2144 for (;;)
2145 {
2146 unw_rec_list *prev = cur;
2147
2148 /* Clear least significant set bit. */
2149 mask &= ~(mask & (~mask + 1));
2150 if (!mask)
2151 return ptr;
2152 cur = alloc_record (br_mem);
2153 cur->r.record.p.brmask = mask;
2154 /* Retain only least significant bit. */
2155 prev->r.record.p.brmask ^= mask;
2156 prev->r.record.p.next = cur;
2157 }
2158 }
2159
2160 static unw_rec_list *
2161 output_br_gr (mask, reg)
2162 unsigned int mask;
2163 unsigned int reg;
2164 {
2165 unw_rec_list *ptr = alloc_record (br_gr);
2166 unw_rec_list *cur = ptr;
2167
2168 ptr->r.record.p.brmask = mask;
2169 ptr->r.record.p.r.gr = reg;
2170 unwind.pending_saves = &ptr->r.record.p;
2171 for (;;)
2172 {
2173 unw_rec_list *prev = cur;
2174
2175 /* Clear least significant set bit. */
2176 mask &= ~(mask & (~mask + 1));
2177 if (!mask)
2178 return ptr;
2179 cur = alloc_record (br_gr);
2180 cur->r.record.p.brmask = mask;
2181 /* Indicate this record shouldn't be output. */
2182 cur->r.record.p.r.gr = REG_NUM;
2183 /* Retain only least significant bit. */
2184 prev->r.record.p.brmask ^= mask;
2185 prev->r.record.p.next = cur;
2186 }
2187 }
2188
2189 static unw_rec_list *
2190 output_spill_base (offset)
2191 unsigned int offset;
2192 {
2193 unw_rec_list *ptr = alloc_record (spill_base);
2194 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2195 return ptr;
2196 }
2197
2198 static unw_rec_list *
2199 output_unat_when ()
2200 {
2201 unw_rec_list *ptr = alloc_record (unat_when);
2202 return ptr;
2203 }
2204
2205 static unw_rec_list *
2206 output_unat_gr (gr)
2207 unsigned int gr;
2208 {
2209 unw_rec_list *ptr = alloc_record (unat_gr);
2210 ptr->r.record.p.r.gr = gr;
2211 return ptr;
2212 }
2213
2214 static unw_rec_list *
2215 output_unat_psprel (offset)
2216 unsigned int offset;
2217 {
2218 unw_rec_list *ptr = alloc_record (unat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2221 }
2222
2223 static unw_rec_list *
2224 output_unat_sprel (offset)
2225 unsigned int offset;
2226 {
2227 unw_rec_list *ptr = alloc_record (unat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
2233 output_lc_when ()
2234 {
2235 unw_rec_list *ptr = alloc_record (lc_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_lc_gr (gr)
2241 unsigned int gr;
2242 {
2243 unw_rec_list *ptr = alloc_record (lc_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2246 }
2247
2248 static unw_rec_list *
2249 output_lc_psprel (offset)
2250 unsigned int offset;
2251 {
2252 unw_rec_list *ptr = alloc_record (lc_psprel);
2253 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2254 return ptr;
2255 }
2256
2257 static unw_rec_list *
2258 output_lc_sprel (offset)
2259 unsigned int offset;
2260 {
2261 unw_rec_list *ptr = alloc_record (lc_sprel);
2262 ptr->r.record.p.off.sp = offset / 4;
2263 return ptr;
2264 }
2265
2266 static unw_rec_list *
2267 output_fpsr_when ()
2268 {
2269 unw_rec_list *ptr = alloc_record (fpsr_when);
2270 return ptr;
2271 }
2272
2273 static unw_rec_list *
2274 output_fpsr_gr (gr)
2275 unsigned int gr;
2276 {
2277 unw_rec_list *ptr = alloc_record (fpsr_gr);
2278 ptr->r.record.p.r.gr = gr;
2279 return ptr;
2280 }
2281
2282 static unw_rec_list *
2283 output_fpsr_psprel (offset)
2284 unsigned int offset;
2285 {
2286 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2287 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2288 return ptr;
2289 }
2290
2291 static unw_rec_list *
2292 output_fpsr_sprel (offset)
2293 unsigned int offset;
2294 {
2295 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2296 ptr->r.record.p.off.sp = offset / 4;
2297 return ptr;
2298 }
2299
2300 static unw_rec_list *
2301 output_priunat_when_gr ()
2302 {
2303 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2304 return ptr;
2305 }
2306
2307 static unw_rec_list *
2308 output_priunat_when_mem ()
2309 {
2310 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2311 return ptr;
2312 }
2313
2314 static unw_rec_list *
2315 output_priunat_gr (gr)
2316 unsigned int gr;
2317 {
2318 unw_rec_list *ptr = alloc_record (priunat_gr);
2319 ptr->r.record.p.r.gr = gr;
2320 return ptr;
2321 }
2322
2323 static unw_rec_list *
2324 output_priunat_psprel (offset)
2325 unsigned int offset;
2326 {
2327 unw_rec_list *ptr = alloc_record (priunat_psprel);
2328 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2329 return ptr;
2330 }
2331
2332 static unw_rec_list *
2333 output_priunat_sprel (offset)
2334 unsigned int offset;
2335 {
2336 unw_rec_list *ptr = alloc_record (priunat_sprel);
2337 ptr->r.record.p.off.sp = offset / 4;
2338 return ptr;
2339 }
2340
2341 static unw_rec_list *
2342 output_bsp_when ()
2343 {
2344 unw_rec_list *ptr = alloc_record (bsp_when);
2345 return ptr;
2346 }
2347
2348 static unw_rec_list *
2349 output_bsp_gr (gr)
2350 unsigned int gr;
2351 {
2352 unw_rec_list *ptr = alloc_record (bsp_gr);
2353 ptr->r.record.p.r.gr = gr;
2354 return ptr;
2355 }
2356
2357 static unw_rec_list *
2358 output_bsp_psprel (offset)
2359 unsigned int offset;
2360 {
2361 unw_rec_list *ptr = alloc_record (bsp_psprel);
2362 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2363 return ptr;
2364 }
2365
2366 static unw_rec_list *
2367 output_bsp_sprel (offset)
2368 unsigned int offset;
2369 {
2370 unw_rec_list *ptr = alloc_record (bsp_sprel);
2371 ptr->r.record.p.off.sp = offset / 4;
2372 return ptr;
2373 }
2374
2375 static unw_rec_list *
2376 output_bspstore_when ()
2377 {
2378 unw_rec_list *ptr = alloc_record (bspstore_when);
2379 return ptr;
2380 }
2381
2382 static unw_rec_list *
2383 output_bspstore_gr (gr)
2384 unsigned int gr;
2385 {
2386 unw_rec_list *ptr = alloc_record (bspstore_gr);
2387 ptr->r.record.p.r.gr = gr;
2388 return ptr;
2389 }
2390
2391 static unw_rec_list *
2392 output_bspstore_psprel (offset)
2393 unsigned int offset;
2394 {
2395 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2396 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2397 return ptr;
2398 }
2399
2400 static unw_rec_list *
2401 output_bspstore_sprel (offset)
2402 unsigned int offset;
2403 {
2404 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2405 ptr->r.record.p.off.sp = offset / 4;
2406 return ptr;
2407 }
2408
2409 static unw_rec_list *
2410 output_rnat_when ()
2411 {
2412 unw_rec_list *ptr = alloc_record (rnat_when);
2413 return ptr;
2414 }
2415
2416 static unw_rec_list *
2417 output_rnat_gr (gr)
2418 unsigned int gr;
2419 {
2420 unw_rec_list *ptr = alloc_record (rnat_gr);
2421 ptr->r.record.p.r.gr = gr;
2422 return ptr;
2423 }
2424
2425 static unw_rec_list *
2426 output_rnat_psprel (offset)
2427 unsigned int offset;
2428 {
2429 unw_rec_list *ptr = alloc_record (rnat_psprel);
2430 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2431 return ptr;
2432 }
2433
2434 static unw_rec_list *
2435 output_rnat_sprel (offset)
2436 unsigned int offset;
2437 {
2438 unw_rec_list *ptr = alloc_record (rnat_sprel);
2439 ptr->r.record.p.off.sp = offset / 4;
2440 return ptr;
2441 }
2442
2443 static unw_rec_list *
2444 output_unwabi (abi, context)
2445 unsigned long abi;
2446 unsigned long context;
2447 {
2448 unw_rec_list *ptr = alloc_record (unwabi);
2449 ptr->r.record.p.abi = abi;
2450 ptr->r.record.p.context = context;
2451 return ptr;
2452 }
2453
2454 static unw_rec_list *
2455 output_epilogue (unsigned long ecount)
2456 {
2457 unw_rec_list *ptr = alloc_record (epilogue);
2458 ptr->r.record.b.ecount = ecount;
2459 return ptr;
2460 }
2461
2462 static unw_rec_list *
2463 output_label_state (unsigned long label)
2464 {
2465 unw_rec_list *ptr = alloc_record (label_state);
2466 ptr->r.record.b.label = label;
2467 return ptr;
2468 }
2469
2470 static unw_rec_list *
2471 output_copy_state (unsigned long label)
2472 {
2473 unw_rec_list *ptr = alloc_record (copy_state);
2474 ptr->r.record.b.label = label;
2475 return ptr;
2476 }
2477
2478 static unw_rec_list *
2479 output_spill_psprel (ab, reg, offset, predicate)
2480 unsigned int ab;
2481 unsigned int reg;
2482 unsigned int offset;
2483 unsigned int predicate;
2484 {
2485 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2486 ptr->r.record.x.ab = ab;
2487 ptr->r.record.x.reg = reg;
2488 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2489 ptr->r.record.x.qp = predicate;
2490 return ptr;
2491 }
2492
2493 static unw_rec_list *
2494 output_spill_sprel (ab, reg, offset, predicate)
2495 unsigned int ab;
2496 unsigned int reg;
2497 unsigned int offset;
2498 unsigned int predicate;
2499 {
2500 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2501 ptr->r.record.x.ab = ab;
2502 ptr->r.record.x.reg = reg;
2503 ptr->r.record.x.where.spoff = offset / 4;
2504 ptr->r.record.x.qp = predicate;
2505 return ptr;
2506 }
2507
2508 static unw_rec_list *
2509 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2510 unsigned int ab;
2511 unsigned int reg;
2512 unsigned int targ_reg;
2513 unsigned int xy;
2514 unsigned int predicate;
2515 {
2516 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2517 ptr->r.record.x.ab = ab;
2518 ptr->r.record.x.reg = reg;
2519 ptr->r.record.x.where.reg = targ_reg;
2520 ptr->r.record.x.xy = xy;
2521 ptr->r.record.x.qp = predicate;
2522 return ptr;
2523 }
2524
2525 /* Given a unw_rec_list process the correct format with the
2526 specified function. */
2527
2528 static void
2529 process_one_record (ptr, f)
2530 unw_rec_list *ptr;
2531 vbyte_func f;
2532 {
2533 unsigned int fr_mask, gr_mask;
2534
2535 switch (ptr->r.type)
2536 {
2537 /* This is a dummy record that takes up no space in the output. */
2538 case endp:
2539 break;
2540
2541 case gr_mem:
2542 case fr_mem:
2543 case br_mem:
2544 case frgr_mem:
2545 /* These are taken care of by prologue/prologue_gr. */
2546 break;
2547
2548 case prologue_gr:
2549 case prologue:
2550 if (ptr->r.type == prologue_gr)
2551 output_R2_format (f, ptr->r.record.r.grmask,
2552 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2553 else
2554 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2555
2556 /* Output descriptor(s) for union of register spills (if any). */
2557 gr_mask = ptr->r.record.r.mask.gr_mem;
2558 fr_mask = ptr->r.record.r.mask.fr_mem;
2559 if (fr_mask)
2560 {
2561 if ((fr_mask & ~0xfUL) == 0)
2562 output_P6_format (f, fr_mem, fr_mask);
2563 else
2564 {
2565 output_P5_format (f, gr_mask, fr_mask);
2566 gr_mask = 0;
2567 }
2568 }
2569 if (gr_mask)
2570 output_P6_format (f, gr_mem, gr_mask);
2571 if (ptr->r.record.r.mask.br_mem)
2572 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2573
2574 /* output imask descriptor if necessary: */
2575 if (ptr->r.record.r.mask.i)
2576 output_P4_format (f, ptr->r.record.r.mask.i,
2577 ptr->r.record.r.imask_size);
2578 break;
2579
2580 case body:
2581 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2582 break;
2583 case mem_stack_f:
2584 case mem_stack_v:
2585 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2586 ptr->r.record.p.size);
2587 break;
2588 case psp_gr:
2589 case rp_gr:
2590 case pfs_gr:
2591 case preds_gr:
2592 case unat_gr:
2593 case lc_gr:
2594 case fpsr_gr:
2595 case priunat_gr:
2596 case bsp_gr:
2597 case bspstore_gr:
2598 case rnat_gr:
2599 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2600 break;
2601 case rp_br:
2602 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2603 break;
2604 case psp_sprel:
2605 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2606 break;
2607 case rp_when:
2608 case pfs_when:
2609 case preds_when:
2610 case unat_when:
2611 case lc_when:
2612 case fpsr_when:
2613 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2614 break;
2615 case rp_psprel:
2616 case pfs_psprel:
2617 case preds_psprel:
2618 case unat_psprel:
2619 case lc_psprel:
2620 case fpsr_psprel:
2621 case spill_base:
2622 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2623 break;
2624 case rp_sprel:
2625 case pfs_sprel:
2626 case preds_sprel:
2627 case unat_sprel:
2628 case lc_sprel:
2629 case fpsr_sprel:
2630 case priunat_sprel:
2631 case bsp_sprel:
2632 case bspstore_sprel:
2633 case rnat_sprel:
2634 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2635 break;
2636 case gr_gr:
2637 if (ptr->r.record.p.r.gr < REG_NUM)
2638 {
2639 const unw_rec_list *cur = ptr;
2640
2641 gr_mask = cur->r.record.p.grmask;
2642 while ((cur = cur->r.record.p.next) != NULL)
2643 gr_mask |= cur->r.record.p.grmask;
2644 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2645 }
2646 break;
2647 case br_gr:
2648 if (ptr->r.record.p.r.gr < REG_NUM)
2649 {
2650 const unw_rec_list *cur = ptr;
2651
2652 gr_mask = cur->r.record.p.brmask;
2653 while ((cur = cur->r.record.p.next) != NULL)
2654 gr_mask |= cur->r.record.p.brmask;
2655 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2656 }
2657 break;
2658 case spill_mask:
2659 as_bad ("spill_mask record unimplemented.");
2660 break;
2661 case priunat_when_gr:
2662 case priunat_when_mem:
2663 case bsp_when:
2664 case bspstore_when:
2665 case rnat_when:
2666 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2667 break;
2668 case priunat_psprel:
2669 case bsp_psprel:
2670 case bspstore_psprel:
2671 case rnat_psprel:
2672 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2673 break;
2674 case unwabi:
2675 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2676 break;
2677 case epilogue:
2678 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2679 break;
2680 case label_state:
2681 case copy_state:
2682 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2683 break;
2684 case spill_psprel:
2685 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2686 ptr->r.record.x.reg, ptr->r.record.x.t,
2687 ptr->r.record.x.where.pspoff);
2688 break;
2689 case spill_sprel:
2690 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2691 ptr->r.record.x.reg, ptr->r.record.x.t,
2692 ptr->r.record.x.where.spoff);
2693 break;
2694 case spill_reg:
2695 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2696 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2697 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2698 break;
2699 case spill_psprel_p:
2700 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2701 ptr->r.record.x.ab, ptr->r.record.x.reg,
2702 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2703 break;
2704 case spill_sprel_p:
2705 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2706 ptr->r.record.x.ab, ptr->r.record.x.reg,
2707 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2708 break;
2709 case spill_reg_p:
2710 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2711 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2712 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2713 ptr->r.record.x.t);
2714 break;
2715 default:
2716 as_bad ("record_type_not_valid");
2717 break;
2718 }
2719 }
2720
2721 /* Given a unw_rec_list list, process all the records with
2722 the specified function. */
2723 static void
2724 process_unw_records (list, f)
2725 unw_rec_list *list;
2726 vbyte_func f;
2727 {
2728 unw_rec_list *ptr;
2729 for (ptr = list; ptr; ptr = ptr->next)
2730 process_one_record (ptr, f);
2731 }
2732
2733 /* Determine the size of a record list in bytes. */
2734 static int
2735 calc_record_size (list)
2736 unw_rec_list *list;
2737 {
2738 vbyte_count = 0;
2739 process_unw_records (list, count_output);
2740 return vbyte_count;
2741 }
2742
2743 /* Return the number of bits set in the input value.
2744 Perhaps this has a better place... */
2745 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2746 # define popcount __builtin_popcount
2747 #else
2748 static int
2749 popcount (unsigned x)
2750 {
2751 static const unsigned char popcnt[16] =
2752 {
2753 0, 1, 1, 2,
2754 1, 2, 2, 3,
2755 1, 2, 2, 3,
2756 2, 3, 3, 4
2757 };
2758
2759 if (x < NELEMS (popcnt))
2760 return popcnt[x];
2761 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2762 }
2763 #endif
2764
2765 /* Update IMASK bitmask to reflect the fact that one or more registers
2766 of type TYPE are saved starting at instruction with index T. If N
2767 bits are set in REGMASK, it is assumed that instructions T through
2768 T+N-1 save these registers.
2769
2770 TYPE values:
2771 0: no save
2772 1: instruction saves next fp reg
2773 2: instruction saves next general reg
2774 3: instruction saves next branch reg */
2775 static void
2776 set_imask (region, regmask, t, type)
2777 unw_rec_list *region;
2778 unsigned long regmask;
2779 unsigned long t;
2780 unsigned int type;
2781 {
2782 unsigned char *imask;
2783 unsigned long imask_size;
2784 unsigned int i;
2785 int pos;
2786
2787 imask = region->r.record.r.mask.i;
2788 imask_size = region->r.record.r.imask_size;
2789 if (!imask)
2790 {
2791 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2792 imask = xmalloc (imask_size);
2793 memset (imask, 0, imask_size);
2794
2795 region->r.record.r.imask_size = imask_size;
2796 region->r.record.r.mask.i = imask;
2797 }
2798
2799 i = (t / 4) + 1;
2800 pos = 2 * (3 - t % 4);
2801 while (regmask)
2802 {
2803 if (i >= imask_size)
2804 {
2805 as_bad ("Ignoring attempt to spill beyond end of region");
2806 return;
2807 }
2808
2809 imask[i] |= (type & 0x3) << pos;
2810
2811 regmask &= (regmask - 1);
2812 pos -= 2;
2813 if (pos < 0)
2814 {
2815 pos = 0;
2816 ++i;
2817 }
2818 }
2819 }
2820
2821 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2822 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2823 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2824 for frag sizes. */
2825
2826 unsigned long
2827 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2828 unsigned long slot_addr;
2829 fragS *slot_frag;
2830 unsigned long first_addr;
2831 fragS *first_frag;
2832 int before_relax;
2833 {
2834 unsigned long index = 0;
2835
2836 /* First time we are called, the initial address and frag are invalid. */
2837 if (first_addr == 0)
2838 return 0;
2839
2840 /* If the two addresses are in different frags, then we need to add in
2841 the remaining size of this frag, and then the entire size of intermediate
2842 frags. */
2843 while (slot_frag != first_frag)
2844 {
2845 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2846
2847 if (! before_relax)
2848 {
2849 /* We can get the final addresses only during and after
2850 relaxation. */
2851 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2852 index += 3 * ((first_frag->fr_next->fr_address
2853 - first_frag->fr_address
2854 - first_frag->fr_fix) >> 4);
2855 }
2856 else
2857 /* We don't know what the final addresses will be. We try our
2858 best to estimate. */
2859 switch (first_frag->fr_type)
2860 {
2861 default:
2862 break;
2863
2864 case rs_space:
2865 as_fatal ("only constant space allocation is supported");
2866 break;
2867
2868 case rs_align:
2869 case rs_align_code:
2870 case rs_align_test:
2871 /* Take alignment into account. Assume the worst case
2872 before relaxation. */
2873 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2874 break;
2875
2876 case rs_org:
2877 if (first_frag->fr_symbol)
2878 {
2879 as_fatal ("only constant offsets are supported");
2880 break;
2881 }
2882 case rs_fill:
2883 index += 3 * (first_frag->fr_offset >> 4);
2884 break;
2885 }
2886
2887 /* Add in the full size of the frag converted to instruction slots. */
2888 index += 3 * (first_frag->fr_fix >> 4);
2889 /* Subtract away the initial part before first_addr. */
2890 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2891 + ((first_addr & 0x3) - (start_addr & 0x3)));
2892
2893 /* Move to the beginning of the next frag. */
2894 first_frag = first_frag->fr_next;
2895 first_addr = (unsigned long) &first_frag->fr_literal;
2896
2897 /* This can happen if there is section switching in the middle of a
2898 function, causing the frag chain for the function to be broken. */
2899 if (first_frag == NULL)
2900 {
2901 /* We get six warnings for one problem, because of the loop in
2902 fixup_unw_records, and because fixup_unw_records is called 3
2903 times: once before creating the variant frag, once to estimate
2904 its size, and once to relax it. This is unreasonable, so we use
2905 a static var to make sure we only emit the warning once. */
2906 static int warned = 0;
2907
2908 if (!warned)
2909 {
2910 as_warn ("Corrupted unwind info due to unsupported section switching");
2911 warned = 1;
2912 }
2913
2914 return index;
2915 }
2916 }
2917
2918 /* Add in the used part of the last frag. */
2919 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2920 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2921 return index;
2922 }
2923
2924 /* Optimize unwind record directives. */
2925
2926 static unw_rec_list *
2927 optimize_unw_records (list)
2928 unw_rec_list *list;
2929 {
2930 if (!list)
2931 return NULL;
2932
2933 /* If the only unwind record is ".prologue" or ".prologue" followed
2934 by ".body", then we can optimize the unwind directives away. */
2935 if (list->r.type == prologue
2936 && (list->next->r.type == endp
2937 || (list->next->r.type == body && list->next->next->r.type == endp)))
2938 return NULL;
2939
2940 return list;
2941 }
2942
2943 /* Given a complete record list, process any records which have
2944 unresolved fields, (ie length counts for a prologue). After
2945 this has been run, all necessary information should be available
2946 within each record to generate an image. */
2947
2948 static void
2949 fixup_unw_records (list, before_relax)
2950 unw_rec_list *list;
2951 int before_relax;
2952 {
2953 unw_rec_list *ptr, *region = 0;
2954 unsigned long first_addr = 0, rlen = 0, t;
2955 fragS *first_frag = 0;
2956
2957 for (ptr = list; ptr; ptr = ptr->next)
2958 {
2959 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2960 as_bad (" Insn slot not set in unwind record.");
2961 t = slot_index (ptr->slot_number, ptr->slot_frag,
2962 first_addr, first_frag, before_relax);
2963 switch (ptr->r.type)
2964 {
2965 case prologue:
2966 case prologue_gr:
2967 case body:
2968 {
2969 unw_rec_list *last;
2970 int size;
2971 unsigned long last_addr = 0;
2972 fragS *last_frag = NULL;
2973
2974 first_addr = ptr->slot_number;
2975 first_frag = ptr->slot_frag;
2976 /* Find either the next body/prologue start, or the end of
2977 the function, and determine the size of the region. */
2978 for (last = ptr->next; last != NULL; last = last->next)
2979 if (last->r.type == prologue || last->r.type == prologue_gr
2980 || last->r.type == body || last->r.type == endp)
2981 {
2982 last_addr = last->slot_number;
2983 last_frag = last->slot_frag;
2984 break;
2985 }
2986 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2987 before_relax);
2988 rlen = ptr->r.record.r.rlen = size;
2989 if (ptr->r.type == body)
2990 /* End of region. */
2991 region = 0;
2992 else
2993 region = ptr;
2994 break;
2995 }
2996 case epilogue:
2997 if (t < rlen)
2998 ptr->r.record.b.t = rlen - 1 - t;
2999 else
3000 /* This happens when a memory-stack-less procedure uses a
3001 ".restore sp" directive at the end of a region to pop
3002 the frame state. */
3003 ptr->r.record.b.t = 0;
3004 break;
3005
3006 case mem_stack_f:
3007 case mem_stack_v:
3008 case rp_when:
3009 case pfs_when:
3010 case preds_when:
3011 case unat_when:
3012 case lc_when:
3013 case fpsr_when:
3014 case priunat_when_gr:
3015 case priunat_when_mem:
3016 case bsp_when:
3017 case bspstore_when:
3018 case rnat_when:
3019 ptr->r.record.p.t = t;
3020 break;
3021
3022 case spill_reg:
3023 case spill_sprel:
3024 case spill_psprel:
3025 case spill_reg_p:
3026 case spill_sprel_p:
3027 case spill_psprel_p:
3028 ptr->r.record.x.t = t;
3029 break;
3030
3031 case frgr_mem:
3032 if (!region)
3033 {
3034 as_bad ("frgr_mem record before region record!");
3035 return;
3036 }
3037 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3038 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3039 set_imask (region, ptr->r.record.p.frmask, t, 1);
3040 set_imask (region, ptr->r.record.p.grmask, t, 2);
3041 break;
3042 case fr_mem:
3043 if (!region)
3044 {
3045 as_bad ("fr_mem record before region record!");
3046 return;
3047 }
3048 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3049 set_imask (region, ptr->r.record.p.frmask, t, 1);
3050 break;
3051 case gr_mem:
3052 if (!region)
3053 {
3054 as_bad ("gr_mem record before region record!");
3055 return;
3056 }
3057 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3058 set_imask (region, ptr->r.record.p.grmask, t, 2);
3059 break;
3060 case br_mem:
3061 if (!region)
3062 {
3063 as_bad ("br_mem record before region record!");
3064 return;
3065 }
3066 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3067 set_imask (region, ptr->r.record.p.brmask, t, 3);
3068 break;
3069
3070 case gr_gr:
3071 if (!region)
3072 {
3073 as_bad ("gr_gr record before region record!");
3074 return;
3075 }
3076 set_imask (region, ptr->r.record.p.grmask, t, 2);
3077 break;
3078 case br_gr:
3079 if (!region)
3080 {
3081 as_bad ("br_gr record before region record!");
3082 return;
3083 }
3084 set_imask (region, ptr->r.record.p.brmask, t, 3);
3085 break;
3086
3087 default:
3088 break;
3089 }
3090 }
3091 }
3092
3093 /* Estimate the size of a frag before relaxing. We only have one type of frag
3094 to handle here, which is the unwind info frag. */
3095
3096 int
3097 ia64_estimate_size_before_relax (fragS *frag,
3098 asection *segtype ATTRIBUTE_UNUSED)
3099 {
3100 unw_rec_list *list;
3101 int len, size, pad;
3102
3103 /* ??? This code is identical to the first part of ia64_convert_frag. */
3104 list = (unw_rec_list *) frag->fr_opcode;
3105 fixup_unw_records (list, 0);
3106
3107 len = calc_record_size (list);
3108 /* pad to pointer-size boundary. */
3109 pad = len % md.pointer_size;
3110 if (pad != 0)
3111 len += md.pointer_size - pad;
3112 /* Add 8 for the header. */
3113 size = len + 8;
3114 /* Add a pointer for the personality offset. */
3115 if (frag->fr_offset)
3116 size += md.pointer_size;
3117
3118 /* fr_var carries the max_chars that we created the fragment with.
3119 We must, of course, have allocated enough memory earlier. */
3120 assert (frag->fr_var >= size);
3121
3122 return frag->fr_fix + size;
3123 }
3124
3125 /* This function converts a rs_machine_dependent variant frag into a
3126 normal fill frag with the unwind image from the the record list. */
3127 void
3128 ia64_convert_frag (fragS *frag)
3129 {
3130 unw_rec_list *list;
3131 int len, size, pad;
3132 valueT flag_value;
3133
3134 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3135 list = (unw_rec_list *) frag->fr_opcode;
3136 fixup_unw_records (list, 0);
3137
3138 len = calc_record_size (list);
3139 /* pad to pointer-size boundary. */
3140 pad = len % md.pointer_size;
3141 if (pad != 0)
3142 len += md.pointer_size - pad;
3143 /* Add 8 for the header. */
3144 size = len + 8;
3145 /* Add a pointer for the personality offset. */
3146 if (frag->fr_offset)
3147 size += md.pointer_size;
3148
3149 /* fr_var carries the max_chars that we created the fragment with.
3150 We must, of course, have allocated enough memory earlier. */
3151 assert (frag->fr_var >= size);
3152
3153 /* Initialize the header area. fr_offset is initialized with
3154 unwind.personality_routine. */
3155 if (frag->fr_offset)
3156 {
3157 if (md.flags & EF_IA_64_ABI64)
3158 flag_value = (bfd_vma) 3 << 32;
3159 else
3160 /* 32-bit unwind info block. */
3161 flag_value = (bfd_vma) 0x1003 << 32;
3162 }
3163 else
3164 flag_value = 0;
3165
3166 md_number_to_chars (frag->fr_literal,
3167 (((bfd_vma) 1 << 48) /* Version. */
3168 | flag_value /* U & E handler flags. */
3169 | (len / md.pointer_size)), /* Length. */
3170 8);
3171
3172 /* Skip the header. */
3173 vbyte_mem_ptr = frag->fr_literal + 8;
3174 process_unw_records (list, output_vbyte_mem);
3175
3176 /* Fill the padding bytes with zeros. */
3177 if (pad != 0)
3178 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3179 md.pointer_size - pad);
3180
3181 frag->fr_fix += size;
3182 frag->fr_type = rs_fill;
3183 frag->fr_var = 0;
3184 frag->fr_offset = 0;
3185 }
3186
3187 static int
3188 parse_predicate_and_operand (e, qp, po)
3189 expressionS * e;
3190 unsigned * qp;
3191 const char * po;
3192 {
3193 int sep = parse_operand (e, ',');
3194
3195 *qp = e->X_add_number - REG_P;
3196 if (e->X_op != O_register || *qp > 63)
3197 {
3198 as_bad ("First operand to .%s must be a predicate", po);
3199 *qp = 0;
3200 }
3201 else if (*qp == 0)
3202 as_warn ("Pointless use of p0 as first operand to .%s", po);
3203 if (sep == ',')
3204 sep = parse_operand (e, ',');
3205 else
3206 e->X_op = O_absent;
3207 return sep;
3208 }
3209
3210 static void
3211 convert_expr_to_ab_reg (e, ab, regp, po, n)
3212 const expressionS *e;
3213 unsigned int *ab;
3214 unsigned int *regp;
3215 const char * po;
3216 int n;
3217 {
3218 unsigned int reg = e->X_add_number;
3219
3220 *ab = *regp = 0; /* Anything valid is good here. */
3221
3222 if (e->X_op != O_register)
3223 reg = REG_GR; /* Anything invalid is good here. */
3224
3225 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3226 {
3227 *ab = 0;
3228 *regp = reg - REG_GR;
3229 }
3230 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3231 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3232 {
3233 *ab = 1;
3234 *regp = reg - REG_FR;
3235 }
3236 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3237 {
3238 *ab = 2;
3239 *regp = reg - REG_BR;
3240 }
3241 else
3242 {
3243 *ab = 3;
3244 switch (reg)
3245 {
3246 case REG_PR: *regp = 0; break;
3247 case REG_PSP: *regp = 1; break;
3248 case REG_PRIUNAT: *regp = 2; break;
3249 case REG_BR + 0: *regp = 3; break;
3250 case REG_AR + AR_BSP: *regp = 4; break;
3251 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3252 case REG_AR + AR_RNAT: *regp = 6; break;
3253 case REG_AR + AR_UNAT: *regp = 7; break;
3254 case REG_AR + AR_FPSR: *regp = 8; break;
3255 case REG_AR + AR_PFS: *regp = 9; break;
3256 case REG_AR + AR_LC: *regp = 10; break;
3257
3258 default:
3259 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3260 break;
3261 }
3262 }
3263 }
3264
3265 static void
3266 convert_expr_to_xy_reg (e, xy, regp, po, n)
3267 const expressionS *e;
3268 unsigned int *xy;
3269 unsigned int *regp;
3270 const char * po;
3271 int n;
3272 {
3273 unsigned int reg = e->X_add_number;
3274
3275 *xy = *regp = 0; /* Anything valid is good here. */
3276
3277 if (e->X_op != O_register)
3278 reg = REG_GR; /* Anything invalid is good here. */
3279
3280 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3281 {
3282 *xy = 0;
3283 *regp = reg - REG_GR;
3284 }
3285 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3286 {
3287 *xy = 1;
3288 *regp = reg - REG_FR;
3289 }
3290 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3291 {
3292 *xy = 2;
3293 *regp = reg - REG_BR;
3294 }
3295 else
3296 as_bad ("Operand %d to .%s must be a writable register", n, po);
3297 }
3298
3299 static void
3300 dot_align (int arg)
3301 {
3302 /* The current frag is an alignment frag. */
3303 align_frag = frag_now;
3304 s_align_bytes (arg);
3305 }
3306
3307 static void
3308 dot_radix (dummy)
3309 int dummy ATTRIBUTE_UNUSED;
3310 {
3311 char *radix;
3312 int ch;
3313
3314 SKIP_WHITESPACE ();
3315
3316 if (is_it_end_of_statement ())
3317 return;
3318 radix = input_line_pointer;
3319 ch = get_symbol_end ();
3320 ia64_canonicalize_symbol_name (radix);
3321 if (strcasecmp (radix, "C"))
3322 as_bad ("Radix `%s' unsupported or invalid", radix);
3323 *input_line_pointer = ch;
3324 demand_empty_rest_of_line ();
3325 }
3326
3327 /* Helper function for .loc directives. If the assembler is not generating
3328 line number info, then we need to remember which instructions have a .loc
3329 directive, and only call dwarf2_gen_line_info for those instructions. */
3330
3331 static void
3332 dot_loc (int x)
3333 {
3334 CURR_SLOT.loc_directive_seen = 1;
3335 dwarf2_directive_loc (x);
3336 }
3337
3338 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3339 static void
3340 dot_special_section (which)
3341 int which;
3342 {
3343 set_section ((char *) special_section_name[which]);
3344 }
3345
3346 /* Return -1 for warning and 0 for error. */
3347
3348 static int
3349 unwind_diagnostic (const char * region, const char *directive)
3350 {
3351 if (md.unwind_check == unwind_check_warning)
3352 {
3353 as_warn (".%s outside of %s", directive, region);
3354 return -1;
3355 }
3356 else
3357 {
3358 as_bad (".%s outside of %s", directive, region);
3359 ignore_rest_of_line ();
3360 return 0;
3361 }
3362 }
3363
3364 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3365 a procedure but the unwind directive check is set to warning, 0 if
3366 a directive isn't in a procedure and the unwind directive check is set
3367 to error. */
3368
3369 static int
3370 in_procedure (const char *directive)
3371 {
3372 if (unwind.proc_pending.sym
3373 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3374 return 1;
3375 return unwind_diagnostic ("procedure", directive);
3376 }
3377
3378 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3379 a prologue but the unwind directive check is set to warning, 0 if
3380 a directive isn't in a prologue and the unwind directive check is set
3381 to error. */
3382
3383 static int
3384 in_prologue (const char *directive)
3385 {
3386 int in = in_procedure (directive);
3387
3388 if (in > 0 && !unwind.prologue)
3389 in = unwind_diagnostic ("prologue", directive);
3390 check_pending_save ();
3391 return in;
3392 }
3393
3394 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3395 a body but the unwind directive check is set to warning, 0 if
3396 a directive isn't in a body and the unwind directive check is set
3397 to error. */
3398
3399 static int
3400 in_body (const char *directive)
3401 {
3402 int in = in_procedure (directive);
3403
3404 if (in > 0 && !unwind.body)
3405 in = unwind_diagnostic ("body region", directive);
3406 return in;
3407 }
3408
3409 static void
3410 add_unwind_entry (ptr, sep)
3411 unw_rec_list *ptr;
3412 int sep;
3413 {
3414 if (ptr)
3415 {
3416 if (unwind.tail)
3417 unwind.tail->next = ptr;
3418 else
3419 unwind.list = ptr;
3420 unwind.tail = ptr;
3421
3422 /* The current entry can in fact be a chain of unwind entries. */
3423 if (unwind.current_entry == NULL)
3424 unwind.current_entry = ptr;
3425 }
3426
3427 /* The current entry can in fact be a chain of unwind entries. */
3428 if (unwind.current_entry == NULL)
3429 unwind.current_entry = ptr;
3430
3431 if (sep == ',')
3432 {
3433 /* Parse a tag permitted for the current directive. */
3434 int ch;
3435
3436 SKIP_WHITESPACE ();
3437 ch = get_symbol_end ();
3438 /* FIXME: For now, just issue a warning that this isn't implemented. */
3439 {
3440 static int warned;
3441
3442 if (!warned)
3443 {
3444 warned = 1;
3445 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3446 }
3447 }
3448 *input_line_pointer = ch;
3449 }
3450 if (sep != NOT_A_CHAR)
3451 demand_empty_rest_of_line ();
3452 }
3453
3454 static void
3455 dot_fframe (dummy)
3456 int dummy ATTRIBUTE_UNUSED;
3457 {
3458 expressionS e;
3459 int sep;
3460
3461 if (!in_prologue ("fframe"))
3462 return;
3463
3464 sep = parse_operand (&e, ',');
3465
3466 if (e.X_op != O_constant)
3467 {
3468 as_bad ("First operand to .fframe must be a constant");
3469 e.X_add_number = 0;
3470 }
3471 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3472 }
3473
3474 static void
3475 dot_vframe (dummy)
3476 int dummy ATTRIBUTE_UNUSED;
3477 {
3478 expressionS e;
3479 unsigned reg;
3480 int sep;
3481
3482 if (!in_prologue ("vframe"))
3483 return;
3484
3485 sep = parse_operand (&e, ',');
3486 reg = e.X_add_number - REG_GR;
3487 if (e.X_op != O_register || reg > 127)
3488 {
3489 as_bad ("First operand to .vframe must be a general register");
3490 reg = 0;
3491 }
3492 add_unwind_entry (output_mem_stack_v (), sep);
3493 if (! (unwind.prologue_mask & 2))
3494 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3495 else if (reg != unwind.prologue_gr
3496 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3497 as_warn ("Operand of .vframe contradicts .prologue");
3498 }
3499
3500 static void
3501 dot_vframesp (psp)
3502 int psp;
3503 {
3504 expressionS e;
3505 int sep;
3506
3507 if (psp)
3508 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3509
3510 if (!in_prologue ("vframesp"))
3511 return;
3512
3513 sep = parse_operand (&e, ',');
3514 if (e.X_op != O_constant)
3515 {
3516 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3517 e.X_add_number = 0;
3518 }
3519 add_unwind_entry (output_mem_stack_v (), sep);
3520 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3521 }
3522
3523 static void
3524 dot_save (dummy)
3525 int dummy ATTRIBUTE_UNUSED;
3526 {
3527 expressionS e1, e2;
3528 unsigned reg1, reg2;
3529 int sep;
3530
3531 if (!in_prologue ("save"))
3532 return;
3533
3534 sep = parse_operand (&e1, ',');
3535 if (sep == ',')
3536 sep = parse_operand (&e2, ',');
3537 else
3538 e2.X_op = O_absent;
3539
3540 reg1 = e1.X_add_number;
3541 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3542 if (e1.X_op != O_register)
3543 {
3544 as_bad ("First operand to .save not a register");
3545 reg1 = REG_PR; /* Anything valid is good here. */
3546 }
3547 reg2 = e2.X_add_number - REG_GR;
3548 if (e2.X_op != O_register || reg2 > 127)
3549 {
3550 as_bad ("Second operand to .save not a valid register");
3551 reg2 = 0;
3552 }
3553 switch (reg1)
3554 {
3555 case REG_AR + AR_BSP:
3556 add_unwind_entry (output_bsp_when (), sep);
3557 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3558 break;
3559 case REG_AR + AR_BSPSTORE:
3560 add_unwind_entry (output_bspstore_when (), sep);
3561 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3562 break;
3563 case REG_AR + AR_RNAT:
3564 add_unwind_entry (output_rnat_when (), sep);
3565 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3566 break;
3567 case REG_AR + AR_UNAT:
3568 add_unwind_entry (output_unat_when (), sep);
3569 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3570 break;
3571 case REG_AR + AR_FPSR:
3572 add_unwind_entry (output_fpsr_when (), sep);
3573 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3574 break;
3575 case REG_AR + AR_PFS:
3576 add_unwind_entry (output_pfs_when (), sep);
3577 if (! (unwind.prologue_mask & 4))
3578 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3579 else if (reg2 != unwind.prologue_gr
3580 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3581 as_warn ("Second operand of .save contradicts .prologue");
3582 break;
3583 case REG_AR + AR_LC:
3584 add_unwind_entry (output_lc_when (), sep);
3585 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3586 break;
3587 case REG_BR:
3588 add_unwind_entry (output_rp_when (), sep);
3589 if (! (unwind.prologue_mask & 8))
3590 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3591 else if (reg2 != unwind.prologue_gr)
3592 as_warn ("Second operand of .save contradicts .prologue");
3593 break;
3594 case REG_PR:
3595 add_unwind_entry (output_preds_when (), sep);
3596 if (! (unwind.prologue_mask & 1))
3597 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3598 else if (reg2 != unwind.prologue_gr
3599 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3600 as_warn ("Second operand of .save contradicts .prologue");
3601 break;
3602 case REG_PRIUNAT:
3603 add_unwind_entry (output_priunat_when_gr (), sep);
3604 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3605 break;
3606 default:
3607 as_bad ("First operand to .save not a valid register");
3608 add_unwind_entry (NULL, sep);
3609 break;
3610 }
3611 }
3612
3613 static void
3614 dot_restore (dummy)
3615 int dummy ATTRIBUTE_UNUSED;
3616 {
3617 expressionS e1;
3618 unsigned long ecount; /* # of _additional_ regions to pop */
3619 int sep;
3620
3621 if (!in_body ("restore"))
3622 return;
3623
3624 sep = parse_operand (&e1, ',');
3625 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3626 as_bad ("First operand to .restore must be stack pointer (sp)");
3627
3628 if (sep == ',')
3629 {
3630 expressionS e2;
3631
3632 sep = parse_operand (&e2, ',');
3633 if (e2.X_op != O_constant || e2.X_add_number < 0)
3634 {
3635 as_bad ("Second operand to .restore must be a constant >= 0");
3636 e2.X_add_number = 0;
3637 }
3638 ecount = e2.X_add_number;
3639 }
3640 else
3641 ecount = unwind.prologue_count - 1;
3642
3643 if (ecount >= unwind.prologue_count)
3644 {
3645 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3646 ecount + 1, unwind.prologue_count);
3647 ecount = 0;
3648 }
3649
3650 add_unwind_entry (output_epilogue (ecount), sep);
3651
3652 if (ecount < unwind.prologue_count)
3653 unwind.prologue_count -= ecount + 1;
3654 else
3655 unwind.prologue_count = 0;
3656 }
3657
3658 static void
3659 dot_restorereg (pred)
3660 int pred;
3661 {
3662 unsigned int qp, ab, reg;
3663 expressionS e;
3664 int sep;
3665 const char * const po = pred ? "restorereg.p" : "restorereg";
3666
3667 if (!in_procedure (po))
3668 return;
3669
3670 if (pred)
3671 sep = parse_predicate_and_operand (&e, &qp, po);
3672 else
3673 {
3674 sep = parse_operand (&e, ',');
3675 qp = 0;
3676 }
3677 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3678
3679 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3680 }
3681
3682 static char *special_linkonce_name[] =
3683 {
3684 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3685 };
3686
3687 static void
3688 start_unwind_section (const segT text_seg, int sec_index)
3689 {
3690 /*
3691 Use a slightly ugly scheme to derive the unwind section names from
3692 the text section name:
3693
3694 text sect. unwind table sect.
3695 name: name: comments:
3696 ---------- ----------------- --------------------------------
3697 .text .IA_64.unwind
3698 .text.foo .IA_64.unwind.text.foo
3699 .foo .IA_64.unwind.foo
3700 .gnu.linkonce.t.foo
3701 .gnu.linkonce.ia64unw.foo
3702 _info .IA_64.unwind_info gas issues error message (ditto)
3703 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3704
3705 This mapping is done so that:
3706
3707 (a) An object file with unwind info only in .text will use
3708 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3709 This follows the letter of the ABI and also ensures backwards
3710 compatibility with older toolchains.
3711
3712 (b) An object file with unwind info in multiple text sections
3713 will use separate unwind sections for each text section.
3714 This allows us to properly set the "sh_info" and "sh_link"
3715 fields in SHT_IA_64_UNWIND as required by the ABI and also
3716 lets GNU ld support programs with multiple segments
3717 containing unwind info (as might be the case for certain
3718 embedded applications).
3719
3720 (c) An error is issued if there would be a name clash.
3721 */
3722
3723 const char *text_name, *sec_text_name;
3724 char *sec_name;
3725 const char *prefix = special_section_name [sec_index];
3726 const char *suffix;
3727 size_t prefix_len, suffix_len, sec_name_len;
3728
3729 sec_text_name = segment_name (text_seg);
3730 text_name = sec_text_name;
3731 if (strncmp (text_name, "_info", 5) == 0)
3732 {
3733 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3734 text_name);
3735 ignore_rest_of_line ();
3736 return;
3737 }
3738 if (strcmp (text_name, ".text") == 0)
3739 text_name = "";
3740
3741 /* Build the unwind section name by appending the (possibly stripped)
3742 text section name to the unwind prefix. */
3743 suffix = text_name;
3744 if (strncmp (text_name, ".gnu.linkonce.t.",
3745 sizeof (".gnu.linkonce.t.") - 1) == 0)
3746 {
3747 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3748 suffix += sizeof (".gnu.linkonce.t.") - 1;
3749 }
3750
3751 prefix_len = strlen (prefix);
3752 suffix_len = strlen (suffix);
3753 sec_name_len = prefix_len + suffix_len;
3754 sec_name = alloca (sec_name_len + 1);
3755 memcpy (sec_name, prefix, prefix_len);
3756 memcpy (sec_name + prefix_len, suffix, suffix_len);
3757 sec_name [sec_name_len] = '\0';
3758
3759 /* Handle COMDAT group. */
3760 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3761 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3762 {
3763 char *section;
3764 size_t len, group_name_len;
3765 const char *group_name = elf_group_name (text_seg);
3766
3767 if (group_name == NULL)
3768 {
3769 as_bad ("Group section `%s' has no group signature",
3770 sec_text_name);
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774 /* We have to construct a fake section directive. */
3775 group_name_len = strlen (group_name);
3776 len = (sec_name_len
3777 + 16 /* ,"aG",@progbits, */
3778 + group_name_len /* ,group_name */
3779 + 7); /* ,comdat */
3780
3781 section = alloca (len + 1);
3782 memcpy (section, sec_name, sec_name_len);
3783 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3784 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3785 memcpy (section + len - 7, ",comdat", 7);
3786 section [len] = '\0';
3787 set_section (section);
3788 }
3789 else
3790 {
3791 set_section (sec_name);
3792 bfd_set_section_flags (stdoutput, now_seg,
3793 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3794 }
3795
3796 elf_linked_to_section (now_seg) = text_seg;
3797 }
3798
3799 static void
3800 generate_unwind_image (const segT text_seg)
3801 {
3802 int size, pad;
3803 unw_rec_list *list;
3804
3805 /* Mark the end of the unwind info, so that we can compute the size of the
3806 last unwind region. */
3807 add_unwind_entry (output_endp (), NOT_A_CHAR);
3808
3809 /* Force out pending instructions, to make sure all unwind records have
3810 a valid slot_number field. */
3811 ia64_flush_insns ();
3812
3813 /* Generate the unwind record. */
3814 list = optimize_unw_records (unwind.list);
3815 fixup_unw_records (list, 1);
3816 size = calc_record_size (list);
3817
3818 if (size > 0 || unwind.force_unwind_entry)
3819 {
3820 unwind.force_unwind_entry = 0;
3821 /* pad to pointer-size boundary. */
3822 pad = size % md.pointer_size;
3823 if (pad != 0)
3824 size += md.pointer_size - pad;
3825 /* Add 8 for the header. */
3826 size += 8;
3827 /* Add a pointer for the personality offset. */
3828 if (unwind.personality_routine)
3829 size += md.pointer_size;
3830 }
3831
3832 /* If there are unwind records, switch sections, and output the info. */
3833 if (size != 0)
3834 {
3835 expressionS exp;
3836 bfd_reloc_code_real_type reloc;
3837
3838 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3839
3840 /* Make sure the section has 4 byte alignment for ILP32 and
3841 8 byte alignment for LP64. */
3842 frag_align (md.pointer_size_shift, 0, 0);
3843 record_alignment (now_seg, md.pointer_size_shift);
3844
3845 /* Set expression which points to start of unwind descriptor area. */
3846 unwind.info = expr_build_dot ();
3847
3848 frag_var (rs_machine_dependent, size, size, 0, 0,
3849 (offsetT) (long) unwind.personality_routine,
3850 (char *) list);
3851
3852 /* Add the personality address to the image. */
3853 if (unwind.personality_routine != 0)
3854 {
3855 exp.X_op = O_symbol;
3856 exp.X_add_symbol = unwind.personality_routine;
3857 exp.X_add_number = 0;
3858
3859 if (md.flags & EF_IA_64_BE)
3860 {
3861 if (md.flags & EF_IA_64_ABI64)
3862 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3863 else
3864 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3865 }
3866 else
3867 {
3868 if (md.flags & EF_IA_64_ABI64)
3869 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3870 else
3871 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3872 }
3873
3874 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3875 md.pointer_size, &exp, 0, reloc);
3876 unwind.personality_routine = 0;
3877 }
3878 }
3879
3880 free_saved_prologue_counts ();
3881 unwind.list = unwind.tail = unwind.current_entry = NULL;
3882 }
3883
3884 static void
3885 dot_handlerdata (dummy)
3886 int dummy ATTRIBUTE_UNUSED;
3887 {
3888 if (!in_procedure ("handlerdata"))
3889 return;
3890 unwind.force_unwind_entry = 1;
3891
3892 /* Remember which segment we're in so we can switch back after .endp */
3893 unwind.saved_text_seg = now_seg;
3894 unwind.saved_text_subseg = now_subseg;
3895
3896 /* Generate unwind info into unwind-info section and then leave that
3897 section as the currently active one so dataXX directives go into
3898 the language specific data area of the unwind info block. */
3899 generate_unwind_image (now_seg);
3900 demand_empty_rest_of_line ();
3901 }
3902
3903 static void
3904 dot_unwentry (dummy)
3905 int dummy ATTRIBUTE_UNUSED;
3906 {
3907 if (!in_procedure ("unwentry"))
3908 return;
3909 unwind.force_unwind_entry = 1;
3910 demand_empty_rest_of_line ();
3911 }
3912
3913 static void
3914 dot_altrp (dummy)
3915 int dummy ATTRIBUTE_UNUSED;
3916 {
3917 expressionS e;
3918 unsigned reg;
3919
3920 if (!in_prologue ("altrp"))
3921 return;
3922
3923 parse_operand (&e, 0);
3924 reg = e.X_add_number - REG_BR;
3925 if (e.X_op != O_register || reg > 7)
3926 {
3927 as_bad ("First operand to .altrp not a valid branch register");
3928 reg = 0;
3929 }
3930 add_unwind_entry (output_rp_br (reg), 0);
3931 }
3932
3933 static void
3934 dot_savemem (psprel)
3935 int psprel;
3936 {
3937 expressionS e1, e2;
3938 int sep;
3939 int reg1, val;
3940 const char * const po = psprel ? "savepsp" : "savesp";
3941
3942 if (!in_prologue (po))
3943 return;
3944
3945 sep = parse_operand (&e1, ',');
3946 if (sep == ',')
3947 sep = parse_operand (&e2, ',');
3948 else
3949 e2.X_op = O_absent;
3950
3951 reg1 = e1.X_add_number;
3952 val = e2.X_add_number;
3953
3954 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3955 if (e1.X_op != O_register)
3956 {
3957 as_bad ("First operand to .%s not a register", po);
3958 reg1 = REG_PR; /* Anything valid is good here. */
3959 }
3960 if (e2.X_op != O_constant)
3961 {
3962 as_bad ("Second operand to .%s not a constant", po);
3963 val = 0;
3964 }
3965
3966 switch (reg1)
3967 {
3968 case REG_AR + AR_BSP:
3969 add_unwind_entry (output_bsp_when (), sep);
3970 add_unwind_entry ((psprel
3971 ? output_bsp_psprel
3972 : output_bsp_sprel) (val), NOT_A_CHAR);
3973 break;
3974 case REG_AR + AR_BSPSTORE:
3975 add_unwind_entry (output_bspstore_when (), sep);
3976 add_unwind_entry ((psprel
3977 ? output_bspstore_psprel
3978 : output_bspstore_sprel) (val), NOT_A_CHAR);
3979 break;
3980 case REG_AR + AR_RNAT:
3981 add_unwind_entry (output_rnat_when (), sep);
3982 add_unwind_entry ((psprel
3983 ? output_rnat_psprel
3984 : output_rnat_sprel) (val), NOT_A_CHAR);
3985 break;
3986 case REG_AR + AR_UNAT:
3987 add_unwind_entry (output_unat_when (), sep);
3988 add_unwind_entry ((psprel
3989 ? output_unat_psprel
3990 : output_unat_sprel) (val), NOT_A_CHAR);
3991 break;
3992 case REG_AR + AR_FPSR:
3993 add_unwind_entry (output_fpsr_when (), sep);
3994 add_unwind_entry ((psprel
3995 ? output_fpsr_psprel
3996 : output_fpsr_sprel) (val), NOT_A_CHAR);
3997 break;
3998 case REG_AR + AR_PFS:
3999 add_unwind_entry (output_pfs_when (), sep);
4000 add_unwind_entry ((psprel
4001 ? output_pfs_psprel
4002 : output_pfs_sprel) (val), NOT_A_CHAR);
4003 break;
4004 case REG_AR + AR_LC:
4005 add_unwind_entry (output_lc_when (), sep);
4006 add_unwind_entry ((psprel
4007 ? output_lc_psprel
4008 : output_lc_sprel) (val), NOT_A_CHAR);
4009 break;
4010 case REG_BR:
4011 add_unwind_entry (output_rp_when (), sep);
4012 add_unwind_entry ((psprel
4013 ? output_rp_psprel
4014 : output_rp_sprel) (val), NOT_A_CHAR);
4015 break;
4016 case REG_PR:
4017 add_unwind_entry (output_preds_when (), sep);
4018 add_unwind_entry ((psprel
4019 ? output_preds_psprel
4020 : output_preds_sprel) (val), NOT_A_CHAR);
4021 break;
4022 case REG_PRIUNAT:
4023 add_unwind_entry (output_priunat_when_mem (), sep);
4024 add_unwind_entry ((psprel
4025 ? output_priunat_psprel
4026 : output_priunat_sprel) (val), NOT_A_CHAR);
4027 break;
4028 default:
4029 as_bad ("First operand to .%s not a valid register", po);
4030 add_unwind_entry (NULL, sep);
4031 break;
4032 }
4033 }
4034
4035 static void
4036 dot_saveg (dummy)
4037 int dummy ATTRIBUTE_UNUSED;
4038 {
4039 expressionS e;
4040 unsigned grmask;
4041 int sep;
4042
4043 if (!in_prologue ("save.g"))
4044 return;
4045
4046 sep = parse_operand (&e, ',');
4047
4048 grmask = e.X_add_number;
4049 if (e.X_op != O_constant
4050 || e.X_add_number <= 0
4051 || e.X_add_number > 0xf)
4052 {
4053 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4054 grmask = 0;
4055 }
4056
4057 if (sep == ',')
4058 {
4059 unsigned reg;
4060 int n = popcount (grmask);
4061
4062 parse_operand (&e, 0);
4063 reg = e.X_add_number - REG_GR;
4064 if (e.X_op != O_register || reg > 127)
4065 {
4066 as_bad ("Second operand to .save.g must be a general register");
4067 reg = 0;
4068 }
4069 else if (reg > 128U - n)
4070 {
4071 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4072 reg = 0;
4073 }
4074 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4075 }
4076 else
4077 add_unwind_entry (output_gr_mem (grmask), 0);
4078 }
4079
4080 static void
4081 dot_savef (dummy)
4082 int dummy ATTRIBUTE_UNUSED;
4083 {
4084 expressionS e;
4085
4086 if (!in_prologue ("save.f"))
4087 return;
4088
4089 parse_operand (&e, 0);
4090
4091 if (e.X_op != O_constant
4092 || e.X_add_number <= 0
4093 || e.X_add_number > 0xfffff)
4094 {
4095 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4096 e.X_add_number = 0;
4097 }
4098 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4099 }
4100
4101 static void
4102 dot_saveb (dummy)
4103 int dummy ATTRIBUTE_UNUSED;
4104 {
4105 expressionS e;
4106 unsigned brmask;
4107 int sep;
4108
4109 if (!in_prologue ("save.b"))
4110 return;
4111
4112 sep = parse_operand (&e, ',');
4113
4114 brmask = e.X_add_number;
4115 if (e.X_op != O_constant
4116 || e.X_add_number <= 0
4117 || e.X_add_number > 0x1f)
4118 {
4119 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4120 brmask = 0;
4121 }
4122
4123 if (sep == ',')
4124 {
4125 unsigned reg;
4126 int n = popcount (brmask);
4127
4128 parse_operand (&e, 0);
4129 reg = e.X_add_number - REG_GR;
4130 if (e.X_op != O_register || reg > 127)
4131 {
4132 as_bad ("Second operand to .save.b must be a general register");
4133 reg = 0;
4134 }
4135 else if (reg > 128U - n)
4136 {
4137 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4138 reg = 0;
4139 }
4140 add_unwind_entry (output_br_gr (brmask, reg), 0);
4141 }
4142 else
4143 add_unwind_entry (output_br_mem (brmask), 0);
4144 }
4145
4146 static void
4147 dot_savegf (dummy)
4148 int dummy ATTRIBUTE_UNUSED;
4149 {
4150 expressionS e1, e2;
4151
4152 if (!in_prologue ("save.gf"))
4153 return;
4154
4155 if (parse_operand (&e1, ',') == ',')
4156 parse_operand (&e2, 0);
4157 else
4158 e2.X_op = O_absent;
4159
4160 if (e1.X_op != O_constant
4161 || e1.X_add_number < 0
4162 || e1.X_add_number > 0xf)
4163 {
4164 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4165 e1.X_op = O_absent;
4166 e1.X_add_number = 0;
4167 }
4168 if (e2.X_op != O_constant
4169 || e2.X_add_number < 0
4170 || e2.X_add_number > 0xfffff)
4171 {
4172 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4173 e2.X_op = O_absent;
4174 e2.X_add_number = 0;
4175 }
4176 if (e1.X_op == O_constant
4177 && e2.X_op == O_constant
4178 && e1.X_add_number == 0
4179 && e2.X_add_number == 0)
4180 as_bad ("Operands to .save.gf may not be both zero");
4181
4182 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4183 }
4184
4185 static void
4186 dot_spill (dummy)
4187 int dummy ATTRIBUTE_UNUSED;
4188 {
4189 expressionS e;
4190
4191 if (!in_prologue ("spill"))
4192 return;
4193
4194 parse_operand (&e, 0);
4195
4196 if (e.X_op != O_constant)
4197 {
4198 as_bad ("Operand to .spill must be a constant");
4199 e.X_add_number = 0;
4200 }
4201 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4202 }
4203
4204 static void
4205 dot_spillreg (pred)
4206 int pred;
4207 {
4208 int sep;
4209 unsigned int qp, ab, xy, reg, treg;
4210 expressionS e;
4211 const char * const po = pred ? "spillreg.p" : "spillreg";
4212
4213 if (!in_procedure (po))
4214 return;
4215
4216 if (pred)
4217 sep = parse_predicate_and_operand (&e, &qp, po);
4218 else
4219 {
4220 sep = parse_operand (&e, ',');
4221 qp = 0;
4222 }
4223 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4224
4225 if (sep == ',')
4226 sep = parse_operand (&e, ',');
4227 else
4228 e.X_op = O_absent;
4229 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4230
4231 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4232 }
4233
4234 static void
4235 dot_spillmem (psprel)
4236 int psprel;
4237 {
4238 expressionS e;
4239 int pred = (psprel < 0), sep;
4240 unsigned int qp, ab, reg;
4241 const char * po;
4242
4243 if (pred)
4244 {
4245 psprel = ~psprel;
4246 po = psprel ? "spillpsp.p" : "spillsp.p";
4247 }
4248 else
4249 po = psprel ? "spillpsp" : "spillsp";
4250
4251 if (!in_procedure (po))
4252 return;
4253
4254 if (pred)
4255 sep = parse_predicate_and_operand (&e, &qp, po);
4256 else
4257 {
4258 sep = parse_operand (&e, ',');
4259 qp = 0;
4260 }
4261 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4262
4263 if (sep == ',')
4264 sep = parse_operand (&e, ',');
4265 else
4266 e.X_op = O_absent;
4267 if (e.X_op != O_constant)
4268 {
4269 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4270 e.X_add_number = 0;
4271 }
4272
4273 if (psprel)
4274 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4275 else
4276 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4277 }
4278
4279 static unsigned int
4280 get_saved_prologue_count (lbl)
4281 unsigned long lbl;
4282 {
4283 label_prologue_count *lpc = unwind.saved_prologue_counts;
4284
4285 while (lpc != NULL && lpc->label_number != lbl)
4286 lpc = lpc->next;
4287
4288 if (lpc != NULL)
4289 return lpc->prologue_count;
4290
4291 as_bad ("Missing .label_state %ld", lbl);
4292 return 1;
4293 }
4294
4295 static void
4296 save_prologue_count (lbl, count)
4297 unsigned long lbl;
4298 unsigned int count;
4299 {
4300 label_prologue_count *lpc = unwind.saved_prologue_counts;
4301
4302 while (lpc != NULL && lpc->label_number != lbl)
4303 lpc = lpc->next;
4304
4305 if (lpc != NULL)
4306 lpc->prologue_count = count;
4307 else
4308 {
4309 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4310
4311 new_lpc->next = unwind.saved_prologue_counts;
4312 new_lpc->label_number = lbl;
4313 new_lpc->prologue_count = count;
4314 unwind.saved_prologue_counts = new_lpc;
4315 }
4316 }
4317
4318 static void
4319 free_saved_prologue_counts ()
4320 {
4321 label_prologue_count *lpc = unwind.saved_prologue_counts;
4322 label_prologue_count *next;
4323
4324 while (lpc != NULL)
4325 {
4326 next = lpc->next;
4327 free (lpc);
4328 lpc = next;
4329 }
4330
4331 unwind.saved_prologue_counts = NULL;
4332 }
4333
4334 static void
4335 dot_label_state (dummy)
4336 int dummy ATTRIBUTE_UNUSED;
4337 {
4338 expressionS e;
4339
4340 if (!in_body ("label_state"))
4341 return;
4342
4343 parse_operand (&e, 0);
4344 if (e.X_op == O_constant)
4345 save_prologue_count (e.X_add_number, unwind.prologue_count);
4346 else
4347 {
4348 as_bad ("Operand to .label_state must be a constant");
4349 e.X_add_number = 0;
4350 }
4351 add_unwind_entry (output_label_state (e.X_add_number), 0);
4352 }
4353
4354 static void
4355 dot_copy_state (dummy)
4356 int dummy ATTRIBUTE_UNUSED;
4357 {
4358 expressionS e;
4359
4360 if (!in_body ("copy_state"))
4361 return;
4362
4363 parse_operand (&e, 0);
4364 if (e.X_op == O_constant)
4365 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4366 else
4367 {
4368 as_bad ("Operand to .copy_state must be a constant");
4369 e.X_add_number = 0;
4370 }
4371 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4372 }
4373
4374 static void
4375 dot_unwabi (dummy)
4376 int dummy ATTRIBUTE_UNUSED;
4377 {
4378 expressionS e1, e2;
4379 unsigned char sep;
4380
4381 if (!in_prologue ("unwabi"))
4382 return;
4383
4384 sep = parse_operand (&e1, ',');
4385 if (sep == ',')
4386 parse_operand (&e2, 0);
4387 else
4388 e2.X_op = O_absent;
4389
4390 if (e1.X_op != O_constant)
4391 {
4392 as_bad ("First operand to .unwabi must be a constant");
4393 e1.X_add_number = 0;
4394 }
4395
4396 if (e2.X_op != O_constant)
4397 {
4398 as_bad ("Second operand to .unwabi must be a constant");
4399 e2.X_add_number = 0;
4400 }
4401
4402 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4403 }
4404
4405 static void
4406 dot_personality (dummy)
4407 int dummy ATTRIBUTE_UNUSED;
4408 {
4409 char *name, *p, c;
4410 if (!in_procedure ("personality"))
4411 return;
4412 SKIP_WHITESPACE ();
4413 name = input_line_pointer;
4414 c = get_symbol_end ();
4415 p = input_line_pointer;
4416 unwind.personality_routine = symbol_find_or_make (name);
4417 unwind.force_unwind_entry = 1;
4418 *p = c;
4419 SKIP_WHITESPACE ();
4420 demand_empty_rest_of_line ();
4421 }
4422
4423 static void
4424 dot_proc (dummy)
4425 int dummy ATTRIBUTE_UNUSED;
4426 {
4427 char *name, *p, c;
4428 symbolS *sym;
4429 proc_pending *pending, *last_pending;
4430
4431 if (unwind.proc_pending.sym)
4432 {
4433 (md.unwind_check == unwind_check_warning
4434 ? as_warn
4435 : as_bad) ("Missing .endp after previous .proc");
4436 while (unwind.proc_pending.next)
4437 {
4438 pending = unwind.proc_pending.next;
4439 unwind.proc_pending.next = pending->next;
4440 free (pending);
4441 }
4442 }
4443 last_pending = NULL;
4444
4445 /* Parse names of main and alternate entry points and mark them as
4446 function symbols: */
4447 while (1)
4448 {
4449 SKIP_WHITESPACE ();
4450 name = input_line_pointer;
4451 c = get_symbol_end ();
4452 p = input_line_pointer;
4453 if (!*name)
4454 as_bad ("Empty argument of .proc");
4455 else
4456 {
4457 sym = symbol_find_or_make (name);
4458 if (S_IS_DEFINED (sym))
4459 as_bad ("`%s' was already defined", name);
4460 else if (!last_pending)
4461 {
4462 unwind.proc_pending.sym = sym;
4463 last_pending = &unwind.proc_pending;
4464 }
4465 else
4466 {
4467 pending = xmalloc (sizeof (*pending));
4468 pending->sym = sym;
4469 last_pending = last_pending->next = pending;
4470 }
4471 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4472 }
4473 *p = c;
4474 SKIP_WHITESPACE ();
4475 if (*input_line_pointer != ',')
4476 break;
4477 ++input_line_pointer;
4478 }
4479 if (!last_pending)
4480 {
4481 unwind.proc_pending.sym = expr_build_dot ();
4482 last_pending = &unwind.proc_pending;
4483 }
4484 last_pending->next = NULL;
4485 demand_empty_rest_of_line ();
4486 ia64_do_align (16);
4487
4488 unwind.prologue = 0;
4489 unwind.prologue_count = 0;
4490 unwind.body = 0;
4491 unwind.insn = 0;
4492 unwind.list = unwind.tail = unwind.current_entry = NULL;
4493 unwind.personality_routine = 0;
4494 }
4495
4496 static void
4497 dot_body (dummy)
4498 int dummy ATTRIBUTE_UNUSED;
4499 {
4500 if (!in_procedure ("body"))
4501 return;
4502 if (!unwind.prologue && !unwind.body && unwind.insn)
4503 as_warn ("Initial .body should precede any instructions");
4504 check_pending_save ();
4505
4506 unwind.prologue = 0;
4507 unwind.prologue_mask = 0;
4508 unwind.body = 1;
4509
4510 add_unwind_entry (output_body (), 0);
4511 }
4512
4513 static void
4514 dot_prologue (dummy)
4515 int dummy ATTRIBUTE_UNUSED;
4516 {
4517 unsigned mask = 0, grsave = 0;
4518
4519 if (!in_procedure ("prologue"))
4520 return;
4521 if (unwind.prologue)
4522 {
4523 as_bad (".prologue within prologue");
4524 ignore_rest_of_line ();
4525 return;
4526 }
4527 if (!unwind.body && unwind.insn)
4528 as_warn ("Initial .prologue should precede any instructions");
4529
4530 if (!is_it_end_of_statement ())
4531 {
4532 expressionS e;
4533 int n, sep = parse_operand (&e, ',');
4534
4535 if (e.X_op != O_constant
4536 || e.X_add_number < 0
4537 || e.X_add_number > 0xf)
4538 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4539 else if (e.X_add_number == 0)
4540 as_warn ("Pointless use of zero first operand to .prologue");
4541 else
4542 mask = e.X_add_number;
4543 n = popcount (mask);
4544
4545 if (sep == ',')
4546 parse_operand (&e, 0);
4547 else
4548 e.X_op = O_absent;
4549 if (e.X_op == O_constant
4550 && e.X_add_number >= 0
4551 && e.X_add_number < 128)
4552 {
4553 if (md.unwind_check == unwind_check_error)
4554 as_warn ("Using a constant as second operand to .prologue is deprecated");
4555 grsave = e.X_add_number;
4556 }
4557 else if (e.X_op != O_register
4558 || (grsave = e.X_add_number - REG_GR) > 127)
4559 {
4560 as_bad ("Second operand to .prologue must be a general register");
4561 grsave = 0;
4562 }
4563 else if (grsave > 128U - n)
4564 {
4565 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4566 grsave = 0;
4567 }
4568
4569 }
4570
4571 if (mask)
4572 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4573 else
4574 add_unwind_entry (output_prologue (), 0);
4575
4576 unwind.prologue = 1;
4577 unwind.prologue_mask = mask;
4578 unwind.prologue_gr = grsave;
4579 unwind.body = 0;
4580 ++unwind.prologue_count;
4581 }
4582
4583 static void
4584 dot_endp (dummy)
4585 int dummy ATTRIBUTE_UNUSED;
4586 {
4587 expressionS e;
4588 int bytes_per_address;
4589 long where;
4590 segT saved_seg;
4591 subsegT saved_subseg;
4592 proc_pending *pending;
4593 int unwind_check = md.unwind_check;
4594
4595 md.unwind_check = unwind_check_error;
4596 if (!in_procedure ("endp"))
4597 return;
4598 md.unwind_check = unwind_check;
4599
4600 if (unwind.saved_text_seg)
4601 {
4602 saved_seg = unwind.saved_text_seg;
4603 saved_subseg = unwind.saved_text_subseg;
4604 unwind.saved_text_seg = NULL;
4605 }
4606 else
4607 {
4608 saved_seg = now_seg;
4609 saved_subseg = now_subseg;
4610 }
4611
4612 insn_group_break (1, 0, 0);
4613
4614 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4615 if (!unwind.info)
4616 generate_unwind_image (saved_seg);
4617
4618 if (unwind.info || unwind.force_unwind_entry)
4619 {
4620 symbolS *proc_end;
4621
4622 subseg_set (md.last_text_seg, 0);
4623 proc_end = expr_build_dot ();
4624
4625 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4626
4627 /* Make sure that section has 4 byte alignment for ILP32 and
4628 8 byte alignment for LP64. */
4629 record_alignment (now_seg, md.pointer_size_shift);
4630
4631 /* Need space for 3 pointers for procedure start, procedure end,
4632 and unwind info. */
4633 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4634 where = frag_now_fix () - (3 * md.pointer_size);
4635 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4636
4637 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4638 e.X_op = O_pseudo_fixup;
4639 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4640 e.X_add_number = 0;
4641 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4642 && S_IS_DEFINED (unwind.proc_pending.sym))
4643 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4644 S_GET_VALUE (unwind.proc_pending.sym),
4645 symbol_get_frag (unwind.proc_pending.sym));
4646 else
4647 e.X_add_symbol = unwind.proc_pending.sym;
4648 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4649
4650 e.X_op = O_pseudo_fixup;
4651 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4652 e.X_add_number = 0;
4653 e.X_add_symbol = proc_end;
4654 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4655 bytes_per_address, &e);
4656
4657 if (unwind.info)
4658 {
4659 e.X_op = O_pseudo_fixup;
4660 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4661 e.X_add_number = 0;
4662 e.X_add_symbol = unwind.info;
4663 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4664 bytes_per_address, &e);
4665 }
4666 }
4667 subseg_set (saved_seg, saved_subseg);
4668
4669 /* Set symbol sizes. */
4670 pending = &unwind.proc_pending;
4671 if (S_GET_NAME (pending->sym))
4672 {
4673 do
4674 {
4675 symbolS *sym = pending->sym;
4676
4677 if (!S_IS_DEFINED (sym))
4678 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4679 else if (S_GET_SIZE (sym) == 0
4680 && symbol_get_obj (sym)->size == NULL)
4681 {
4682 fragS *frag = symbol_get_frag (sym);
4683
4684 if (frag)
4685 {
4686 if (frag == frag_now && SEG_NORMAL (now_seg))
4687 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4688 else
4689 {
4690 symbol_get_obj (sym)->size =
4691 (expressionS *) xmalloc (sizeof (expressionS));
4692 symbol_get_obj (sym)->size->X_op = O_subtract;
4693 symbol_get_obj (sym)->size->X_add_symbol
4694 = symbol_new (FAKE_LABEL_NAME, now_seg,
4695 frag_now_fix (), frag_now);
4696 symbol_get_obj (sym)->size->X_op_symbol = sym;
4697 symbol_get_obj (sym)->size->X_add_number = 0;
4698 }
4699 }
4700 }
4701 } while ((pending = pending->next) != NULL);
4702 }
4703
4704 /* Parse names of main and alternate entry points. */
4705 while (1)
4706 {
4707 char *name, *p, c;
4708
4709 SKIP_WHITESPACE ();
4710 name = input_line_pointer;
4711 c = get_symbol_end ();
4712 p = input_line_pointer;
4713 if (!*name)
4714 (md.unwind_check == unwind_check_warning
4715 ? as_warn
4716 : as_bad) ("Empty argument of .endp");
4717 else
4718 {
4719 symbolS *sym = symbol_find (name);
4720
4721 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4722 {
4723 if (sym == pending->sym)
4724 {
4725 pending->sym = NULL;
4726 break;
4727 }
4728 }
4729 if (!sym || !pending)
4730 as_warn ("`%s' was not specified with previous .proc", name);
4731 }
4732 *p = c;
4733 SKIP_WHITESPACE ();
4734 if (*input_line_pointer != ',')
4735 break;
4736 ++input_line_pointer;
4737 }
4738 demand_empty_rest_of_line ();
4739
4740 /* Deliberately only checking for the main entry point here; the
4741 language spec even says all arguments to .endp are ignored. */
4742 if (unwind.proc_pending.sym
4743 && S_GET_NAME (unwind.proc_pending.sym)
4744 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4745 as_warn ("`%s' should be an operand to this .endp",
4746 S_GET_NAME (unwind.proc_pending.sym));
4747 while (unwind.proc_pending.next)
4748 {
4749 pending = unwind.proc_pending.next;
4750 unwind.proc_pending.next = pending->next;
4751 free (pending);
4752 }
4753 unwind.proc_pending.sym = unwind.info = NULL;
4754 }
4755
4756 static void
4757 dot_template (template)
4758 int template;
4759 {
4760 CURR_SLOT.user_template = template;
4761 }
4762
4763 static void
4764 dot_regstk (dummy)
4765 int dummy ATTRIBUTE_UNUSED;
4766 {
4767 int ins, locs, outs, rots;
4768
4769 if (is_it_end_of_statement ())
4770 ins = locs = outs = rots = 0;
4771 else
4772 {
4773 ins = get_absolute_expression ();
4774 if (*input_line_pointer++ != ',')
4775 goto err;
4776 locs = get_absolute_expression ();
4777 if (*input_line_pointer++ != ',')
4778 goto err;
4779 outs = get_absolute_expression ();
4780 if (*input_line_pointer++ != ',')
4781 goto err;
4782 rots = get_absolute_expression ();
4783 }
4784 set_regstack (ins, locs, outs, rots);
4785 return;
4786
4787 err:
4788 as_bad ("Comma expected");
4789 ignore_rest_of_line ();
4790 }
4791
4792 static void
4793 dot_rot (type)
4794 int type;
4795 {
4796 offsetT num_regs;
4797 valueT num_alloced = 0;
4798 struct dynreg **drpp, *dr;
4799 int ch, base_reg = 0;
4800 char *name, *start;
4801 size_t len;
4802
4803 switch (type)
4804 {
4805 case DYNREG_GR: base_reg = REG_GR + 32; break;
4806 case DYNREG_FR: base_reg = REG_FR + 32; break;
4807 case DYNREG_PR: base_reg = REG_P + 16; break;
4808 default: break;
4809 }
4810
4811 /* First, remove existing names from hash table. */
4812 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4813 {
4814 hash_delete (md.dynreg_hash, dr->name);
4815 /* FIXME: Free dr->name. */
4816 dr->num_regs = 0;
4817 }
4818
4819 drpp = &md.dynreg[type];
4820 while (1)
4821 {
4822 start = input_line_pointer;
4823 ch = get_symbol_end ();
4824 len = strlen (ia64_canonicalize_symbol_name (start));
4825 *input_line_pointer = ch;
4826
4827 SKIP_WHITESPACE ();
4828 if (*input_line_pointer != '[')
4829 {
4830 as_bad ("Expected '['");
4831 goto err;
4832 }
4833 ++input_line_pointer; /* skip '[' */
4834
4835 num_regs = get_absolute_expression ();
4836
4837 if (*input_line_pointer++ != ']')
4838 {
4839 as_bad ("Expected ']'");
4840 goto err;
4841 }
4842 if (num_regs <= 0)
4843 {
4844 as_bad ("Number of elements must be positive");
4845 goto err;
4846 }
4847 SKIP_WHITESPACE ();
4848
4849 num_alloced += num_regs;
4850 switch (type)
4851 {
4852 case DYNREG_GR:
4853 if (num_alloced > md.rot.num_regs)
4854 {
4855 as_bad ("Used more than the declared %d rotating registers",
4856 md.rot.num_regs);
4857 goto err;
4858 }
4859 break;
4860 case DYNREG_FR:
4861 if (num_alloced > 96)
4862 {
4863 as_bad ("Used more than the available 96 rotating registers");
4864 goto err;
4865 }
4866 break;
4867 case DYNREG_PR:
4868 if (num_alloced > 48)
4869 {
4870 as_bad ("Used more than the available 48 rotating registers");
4871 goto err;
4872 }
4873 break;
4874
4875 default:
4876 break;
4877 }
4878
4879 if (!*drpp)
4880 {
4881 *drpp = obstack_alloc (&notes, sizeof (*dr));
4882 memset (*drpp, 0, sizeof (*dr));
4883 }
4884
4885 name = obstack_alloc (&notes, len + 1);
4886 memcpy (name, start, len);
4887 name[len] = '\0';
4888
4889 dr = *drpp;
4890 dr->name = name;
4891 dr->num_regs = num_regs;
4892 dr->base = base_reg;
4893 drpp = &dr->next;
4894 base_reg += num_regs;
4895
4896 if (hash_insert (md.dynreg_hash, name, dr))
4897 {
4898 as_bad ("Attempt to redefine register set `%s'", name);
4899 obstack_free (&notes, name);
4900 goto err;
4901 }
4902
4903 if (*input_line_pointer != ',')
4904 break;
4905 ++input_line_pointer; /* skip comma */
4906 SKIP_WHITESPACE ();
4907 }
4908 demand_empty_rest_of_line ();
4909 return;
4910
4911 err:
4912 ignore_rest_of_line ();
4913 }
4914
4915 static void
4916 dot_byteorder (byteorder)
4917 int byteorder;
4918 {
4919 segment_info_type *seginfo = seg_info (now_seg);
4920
4921 if (byteorder == -1)
4922 {
4923 if (seginfo->tc_segment_info_data.endian == 0)
4924 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4925 byteorder = seginfo->tc_segment_info_data.endian == 1;
4926 }
4927 else
4928 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4929
4930 if (target_big_endian != byteorder)
4931 {
4932 target_big_endian = byteorder;
4933 if (target_big_endian)
4934 {
4935 ia64_number_to_chars = number_to_chars_bigendian;
4936 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4937 }
4938 else
4939 {
4940 ia64_number_to_chars = number_to_chars_littleendian;
4941 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4942 }
4943 }
4944 }
4945
4946 static void
4947 dot_psr (dummy)
4948 int dummy ATTRIBUTE_UNUSED;
4949 {
4950 char *option;
4951 int ch;
4952
4953 while (1)
4954 {
4955 option = input_line_pointer;
4956 ch = get_symbol_end ();
4957 if (strcmp (option, "lsb") == 0)
4958 md.flags &= ~EF_IA_64_BE;
4959 else if (strcmp (option, "msb") == 0)
4960 md.flags |= EF_IA_64_BE;
4961 else if (strcmp (option, "abi32") == 0)
4962 md.flags &= ~EF_IA_64_ABI64;
4963 else if (strcmp (option, "abi64") == 0)
4964 md.flags |= EF_IA_64_ABI64;
4965 else
4966 as_bad ("Unknown psr option `%s'", option);
4967 *input_line_pointer = ch;
4968
4969 SKIP_WHITESPACE ();
4970 if (*input_line_pointer != ',')
4971 break;
4972
4973 ++input_line_pointer;
4974 SKIP_WHITESPACE ();
4975 }
4976 demand_empty_rest_of_line ();
4977 }
4978
4979 static void
4980 dot_ln (dummy)
4981 int dummy ATTRIBUTE_UNUSED;
4982 {
4983 new_logical_line (0, get_absolute_expression ());
4984 demand_empty_rest_of_line ();
4985 }
4986
4987 static void
4988 cross_section (ref, cons, ua)
4989 int ref;
4990 void (*cons) PARAMS((int));
4991 int ua;
4992 {
4993 char *start, *end;
4994 int saved_auto_align;
4995 unsigned int section_count;
4996
4997 SKIP_WHITESPACE ();
4998 start = input_line_pointer;
4999 if (*start == '"')
5000 {
5001 int len;
5002 char *name;
5003
5004 name = demand_copy_C_string (&len);
5005 obstack_free(&notes, name);
5006 if (!name)
5007 {
5008 ignore_rest_of_line ();
5009 return;
5010 }
5011 }
5012 else
5013 {
5014 char c = get_symbol_end ();
5015
5016 if (input_line_pointer == start)
5017 {
5018 as_bad ("Missing section name");
5019 ignore_rest_of_line ();
5020 return;
5021 }
5022 *input_line_pointer = c;
5023 }
5024 end = input_line_pointer;
5025 SKIP_WHITESPACE ();
5026 if (*input_line_pointer != ',')
5027 {
5028 as_bad ("Comma expected after section name");
5029 ignore_rest_of_line ();
5030 return;
5031 }
5032 *end = '\0';
5033 end = input_line_pointer + 1; /* skip comma */
5034 input_line_pointer = start;
5035 md.keep_pending_output = 1;
5036 section_count = bfd_count_sections(stdoutput);
5037 obj_elf_section (0);
5038 if (section_count != bfd_count_sections(stdoutput))
5039 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5040 input_line_pointer = end;
5041 saved_auto_align = md.auto_align;
5042 if (ua)
5043 md.auto_align = 0;
5044 (*cons) (ref);
5045 if (ua)
5046 md.auto_align = saved_auto_align;
5047 obj_elf_previous (0);
5048 md.keep_pending_output = 0;
5049 }
5050
5051 static void
5052 dot_xdata (size)
5053 int size;
5054 {
5055 cross_section (size, cons, 0);
5056 }
5057
5058 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5059
5060 static void
5061 stmt_float_cons (kind)
5062 int kind;
5063 {
5064 size_t alignment;
5065
5066 switch (kind)
5067 {
5068 case 'd':
5069 alignment = 8;
5070 break;
5071
5072 case 'x':
5073 case 'X':
5074 alignment = 16;
5075 break;
5076
5077 case 'f':
5078 default:
5079 alignment = 4;
5080 break;
5081 }
5082 ia64_do_align (alignment);
5083 float_cons (kind);
5084 }
5085
5086 static void
5087 stmt_cons_ua (size)
5088 int size;
5089 {
5090 int saved_auto_align = md.auto_align;
5091
5092 md.auto_align = 0;
5093 cons (size);
5094 md.auto_align = saved_auto_align;
5095 }
5096
5097 static void
5098 dot_xfloat_cons (kind)
5099 int kind;
5100 {
5101 cross_section (kind, stmt_float_cons, 0);
5102 }
5103
5104 static void
5105 dot_xstringer (zero)
5106 int zero;
5107 {
5108 cross_section (zero, stringer, 0);
5109 }
5110
5111 static void
5112 dot_xdata_ua (size)
5113 int size;
5114 {
5115 cross_section (size, cons, 1);
5116 }
5117
5118 static void
5119 dot_xfloat_cons_ua (kind)
5120 int kind;
5121 {
5122 cross_section (kind, float_cons, 1);
5123 }
5124
5125 /* .reg.val <regname>,value */
5126
5127 static void
5128 dot_reg_val (dummy)
5129 int dummy ATTRIBUTE_UNUSED;
5130 {
5131 expressionS reg;
5132
5133 expression_and_evaluate (&reg);
5134 if (reg.X_op != O_register)
5135 {
5136 as_bad (_("Register name expected"));
5137 ignore_rest_of_line ();
5138 }
5139 else if (*input_line_pointer++ != ',')
5140 {
5141 as_bad (_("Comma expected"));
5142 ignore_rest_of_line ();
5143 }
5144 else
5145 {
5146 valueT value = get_absolute_expression ();
5147 int regno = reg.X_add_number;
5148 if (regno <= REG_GR || regno > REG_GR + 127)
5149 as_warn (_("Register value annotation ignored"));
5150 else
5151 {
5152 gr_values[regno - REG_GR].known = 1;
5153 gr_values[regno - REG_GR].value = value;
5154 gr_values[regno - REG_GR].path = md.path;
5155 }
5156 }
5157 demand_empty_rest_of_line ();
5158 }
5159
5160 /*
5161 .serialize.data
5162 .serialize.instruction
5163 */
5164 static void
5165 dot_serialize (type)
5166 int type;
5167 {
5168 insn_group_break (0, 0, 0);
5169 if (type)
5170 instruction_serialization ();
5171 else
5172 data_serialization ();
5173 insn_group_break (0, 0, 0);
5174 demand_empty_rest_of_line ();
5175 }
5176
5177 /* select dv checking mode
5178 .auto
5179 .explicit
5180 .default
5181
5182 A stop is inserted when changing modes
5183 */
5184
5185 static void
5186 dot_dv_mode (type)
5187 int type;
5188 {
5189 if (md.manual_bundling)
5190 as_warn (_("Directive invalid within a bundle"));
5191
5192 if (type == 'E' || type == 'A')
5193 md.mode_explicitly_set = 0;
5194 else
5195 md.mode_explicitly_set = 1;
5196
5197 md.detect_dv = 1;
5198 switch (type)
5199 {
5200 case 'A':
5201 case 'a':
5202 if (md.explicit_mode)
5203 insn_group_break (1, 0, 0);
5204 md.explicit_mode = 0;
5205 break;
5206 case 'E':
5207 case 'e':
5208 if (!md.explicit_mode)
5209 insn_group_break (1, 0, 0);
5210 md.explicit_mode = 1;
5211 break;
5212 default:
5213 case 'd':
5214 if (md.explicit_mode != md.default_explicit_mode)
5215 insn_group_break (1, 0, 0);
5216 md.explicit_mode = md.default_explicit_mode;
5217 md.mode_explicitly_set = 0;
5218 break;
5219 }
5220 }
5221
5222 static void
5223 print_prmask (mask)
5224 valueT mask;
5225 {
5226 int regno;
5227 char *comma = "";
5228 for (regno = 0; regno < 64; regno++)
5229 {
5230 if (mask & ((valueT) 1 << regno))
5231 {
5232 fprintf (stderr, "%s p%d", comma, regno);
5233 comma = ",";
5234 }
5235 }
5236 }
5237
5238 /*
5239 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5240 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5241 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5242 .pred.safe_across_calls p1 [, p2 [,...]]
5243 */
5244
5245 static void
5246 dot_pred_rel (type)
5247 int type;
5248 {
5249 valueT mask = 0;
5250 int count = 0;
5251 int p1 = -1, p2 = -1;
5252
5253 if (type == 0)
5254 {
5255 if (*input_line_pointer == '"')
5256 {
5257 int len;
5258 char *form = demand_copy_C_string (&len);
5259
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 obstack_free (&notes, form);
5267 }
5268 else if (*input_line_pointer == '@')
5269 {
5270 char *form = ++input_line_pointer;
5271 char c = get_symbol_end();
5272
5273 if (strcmp (form, "mutex") == 0)
5274 type = 'm';
5275 else if (strcmp (form, "clear") == 0)
5276 type = 'c';
5277 else if (strcmp (form, "imply") == 0)
5278 type = 'i';
5279 *input_line_pointer = c;
5280 }
5281 else
5282 {
5283 as_bad (_("Missing predicate relation type"));
5284 ignore_rest_of_line ();
5285 return;
5286 }
5287 if (type == 0)
5288 {
5289 as_bad (_("Unrecognized predicate relation type"));
5290 ignore_rest_of_line ();
5291 return;
5292 }
5293 if (*input_line_pointer == ',')
5294 ++input_line_pointer;
5295 SKIP_WHITESPACE ();
5296 }
5297
5298 SKIP_WHITESPACE ();
5299 while (1)
5300 {
5301 valueT bits = 1;
5302 int regno;
5303 expressionS pr, *pr1, *pr2;
5304
5305 expression_and_evaluate (&pr);
5306 if (pr.X_op == O_register
5307 && pr.X_add_number >= REG_P
5308 && pr.X_add_number <= REG_P + 63)
5309 {
5310 regno = pr.X_add_number - REG_P;
5311 bits <<= regno;
5312 count++;
5313 if (p1 == -1)
5314 p1 = regno;
5315 else if (p2 == -1)
5316 p2 = regno;
5317 }
5318 else if (type != 'i'
5319 && pr.X_op == O_subtract
5320 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5321 && pr1->X_op == O_register
5322 && pr1->X_add_number >= REG_P
5323 && pr1->X_add_number <= REG_P + 63
5324 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5325 && pr2->X_op == O_register
5326 && pr2->X_add_number >= REG_P
5327 && pr2->X_add_number <= REG_P + 63)
5328 {
5329 /* It's a range. */
5330 int stop;
5331
5332 regno = pr1->X_add_number - REG_P;
5333 stop = pr2->X_add_number - REG_P;
5334 if (regno >= stop)
5335 {
5336 as_bad (_("Bad register range"));
5337 ignore_rest_of_line ();
5338 return;
5339 }
5340 bits = ((bits << stop) << 1) - (bits << regno);
5341 count += stop - regno + 1;
5342 }
5343 else
5344 {
5345 as_bad (_("Predicate register expected"));
5346 ignore_rest_of_line ();
5347 return;
5348 }
5349 if (mask & bits)
5350 as_warn (_("Duplicate predicate register ignored"));
5351 mask |= bits;
5352 if (*input_line_pointer != ',')
5353 break;
5354 ++input_line_pointer;
5355 SKIP_WHITESPACE ();
5356 }
5357
5358 switch (type)
5359 {
5360 case 'c':
5361 if (count == 0)
5362 mask = ~(valueT) 0;
5363 clear_qp_mutex (mask);
5364 clear_qp_implies (mask, (valueT) 0);
5365 break;
5366 case 'i':
5367 if (count != 2 || p1 == -1 || p2 == -1)
5368 as_bad (_("Predicate source and target required"));
5369 else if (p1 == 0 || p2 == 0)
5370 as_bad (_("Use of p0 is not valid in this context"));
5371 else
5372 add_qp_imply (p1, p2);
5373 break;
5374 case 'm':
5375 if (count < 2)
5376 {
5377 as_bad (_("At least two PR arguments expected"));
5378 break;
5379 }
5380 else if (mask & 1)
5381 {
5382 as_bad (_("Use of p0 is not valid in this context"));
5383 break;
5384 }
5385 add_qp_mutex (mask);
5386 break;
5387 case 's':
5388 /* note that we don't override any existing relations */
5389 if (count == 0)
5390 {
5391 as_bad (_("At least one PR argument expected"));
5392 break;
5393 }
5394 if (md.debug_dv)
5395 {
5396 fprintf (stderr, "Safe across calls: ");
5397 print_prmask (mask);
5398 fprintf (stderr, "\n");
5399 }
5400 qp_safe_across_calls = mask;
5401 break;
5402 }
5403 demand_empty_rest_of_line ();
5404 }
5405
5406 /* .entry label [, label [, ...]]
5407 Hint to DV code that the given labels are to be considered entry points.
5408 Otherwise, only global labels are considered entry points. */
5409
5410 static void
5411 dot_entry (dummy)
5412 int dummy ATTRIBUTE_UNUSED;
5413 {
5414 const char *err;
5415 char *name;
5416 int c;
5417 symbolS *symbolP;
5418
5419 do
5420 {
5421 name = input_line_pointer;
5422 c = get_symbol_end ();
5423 symbolP = symbol_find_or_make (name);
5424
5425 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5426 if (err)
5427 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5428 name, err);
5429
5430 *input_line_pointer = c;
5431 SKIP_WHITESPACE ();
5432 c = *input_line_pointer;
5433 if (c == ',')
5434 {
5435 input_line_pointer++;
5436 SKIP_WHITESPACE ();
5437 if (*input_line_pointer == '\n')
5438 c = '\n';
5439 }
5440 }
5441 while (c == ',');
5442
5443 demand_empty_rest_of_line ();
5444 }
5445
5446 /* .mem.offset offset, base
5447 "base" is used to distinguish between offsets from a different base. */
5448
5449 static void
5450 dot_mem_offset (dummy)
5451 int dummy ATTRIBUTE_UNUSED;
5452 {
5453 md.mem_offset.hint = 1;
5454 md.mem_offset.offset = get_absolute_expression ();
5455 if (*input_line_pointer != ',')
5456 {
5457 as_bad (_("Comma expected"));
5458 ignore_rest_of_line ();
5459 return;
5460 }
5461 ++input_line_pointer;
5462 md.mem_offset.base = get_absolute_expression ();
5463 demand_empty_rest_of_line ();
5464 }
5465
5466 /* ia64-specific pseudo-ops: */
5467 const pseudo_typeS md_pseudo_table[] =
5468 {
5469 { "radix", dot_radix, 0 },
5470 { "lcomm", s_lcomm_bytes, 1 },
5471 { "loc", dot_loc, 0 },
5472 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5473 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5474 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5475 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5476 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5477 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5478 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5479 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5480 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5481 { "proc", dot_proc, 0 },
5482 { "body", dot_body, 0 },
5483 { "prologue", dot_prologue, 0 },
5484 { "endp", dot_endp, 0 },
5485
5486 { "fframe", dot_fframe, 0 },
5487 { "vframe", dot_vframe, 0 },
5488 { "vframesp", dot_vframesp, 0 },
5489 { "vframepsp", dot_vframesp, 1 },
5490 { "save", dot_save, 0 },
5491 { "restore", dot_restore, 0 },
5492 { "restorereg", dot_restorereg, 0 },
5493 { "restorereg.p", dot_restorereg, 1 },
5494 { "handlerdata", dot_handlerdata, 0 },
5495 { "unwentry", dot_unwentry, 0 },
5496 { "altrp", dot_altrp, 0 },
5497 { "savesp", dot_savemem, 0 },
5498 { "savepsp", dot_savemem, 1 },
5499 { "save.g", dot_saveg, 0 },
5500 { "save.f", dot_savef, 0 },
5501 { "save.b", dot_saveb, 0 },
5502 { "save.gf", dot_savegf, 0 },
5503 { "spill", dot_spill, 0 },
5504 { "spillreg", dot_spillreg, 0 },
5505 { "spillsp", dot_spillmem, 0 },
5506 { "spillpsp", dot_spillmem, 1 },
5507 { "spillreg.p", dot_spillreg, 1 },
5508 { "spillsp.p", dot_spillmem, ~0 },
5509 { "spillpsp.p", dot_spillmem, ~1 },
5510 { "label_state", dot_label_state, 0 },
5511 { "copy_state", dot_copy_state, 0 },
5512 { "unwabi", dot_unwabi, 0 },
5513 { "personality", dot_personality, 0 },
5514 { "mii", dot_template, 0x0 },
5515 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5516 { "mlx", dot_template, 0x2 },
5517 { "mmi", dot_template, 0x4 },
5518 { "mfi", dot_template, 0x6 },
5519 { "mmf", dot_template, 0x7 },
5520 { "mib", dot_template, 0x8 },
5521 { "mbb", dot_template, 0x9 },
5522 { "bbb", dot_template, 0xb },
5523 { "mmb", dot_template, 0xc },
5524 { "mfb", dot_template, 0xe },
5525 { "align", dot_align, 0 },
5526 { "regstk", dot_regstk, 0 },
5527 { "rotr", dot_rot, DYNREG_GR },
5528 { "rotf", dot_rot, DYNREG_FR },
5529 { "rotp", dot_rot, DYNREG_PR },
5530 { "lsb", dot_byteorder, 0 },
5531 { "msb", dot_byteorder, 1 },
5532 { "psr", dot_psr, 0 },
5533 { "alias", dot_alias, 0 },
5534 { "secalias", dot_alias, 1 },
5535 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5536
5537 { "xdata1", dot_xdata, 1 },
5538 { "xdata2", dot_xdata, 2 },
5539 { "xdata4", dot_xdata, 4 },
5540 { "xdata8", dot_xdata, 8 },
5541 { "xdata16", dot_xdata, 16 },
5542 { "xreal4", dot_xfloat_cons, 'f' },
5543 { "xreal8", dot_xfloat_cons, 'd' },
5544 { "xreal10", dot_xfloat_cons, 'x' },
5545 { "xreal16", dot_xfloat_cons, 'X' },
5546 { "xstring", dot_xstringer, 0 },
5547 { "xstringz", dot_xstringer, 1 },
5548
5549 /* unaligned versions: */
5550 { "xdata2.ua", dot_xdata_ua, 2 },
5551 { "xdata4.ua", dot_xdata_ua, 4 },
5552 { "xdata8.ua", dot_xdata_ua, 8 },
5553 { "xdata16.ua", dot_xdata_ua, 16 },
5554 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5555 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5556 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5557 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5558
5559 /* annotations/DV checking support */
5560 { "entry", dot_entry, 0 },
5561 { "mem.offset", dot_mem_offset, 0 },
5562 { "pred.rel", dot_pred_rel, 0 },
5563 { "pred.rel.clear", dot_pred_rel, 'c' },
5564 { "pred.rel.imply", dot_pred_rel, 'i' },
5565 { "pred.rel.mutex", dot_pred_rel, 'm' },
5566 { "pred.safe_across_calls", dot_pred_rel, 's' },
5567 { "reg.val", dot_reg_val, 0 },
5568 { "serialize.data", dot_serialize, 0 },
5569 { "serialize.instruction", dot_serialize, 1 },
5570 { "auto", dot_dv_mode, 'a' },
5571 { "explicit", dot_dv_mode, 'e' },
5572 { "default", dot_dv_mode, 'd' },
5573
5574 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5575 IA-64 aligns data allocation pseudo-ops by default, so we have to
5576 tell it that these ones are supposed to be unaligned. Long term,
5577 should rewrite so that only IA-64 specific data allocation pseudo-ops
5578 are aligned by default. */
5579 {"2byte", stmt_cons_ua, 2},
5580 {"4byte", stmt_cons_ua, 4},
5581 {"8byte", stmt_cons_ua, 8},
5582
5583 { NULL, 0, 0 }
5584 };
5585
5586 static const struct pseudo_opcode
5587 {
5588 const char *name;
5589 void (*handler) (int);
5590 int arg;
5591 }
5592 pseudo_opcode[] =
5593 {
5594 /* these are more like pseudo-ops, but don't start with a dot */
5595 { "data1", cons, 1 },
5596 { "data2", cons, 2 },
5597 { "data4", cons, 4 },
5598 { "data8", cons, 8 },
5599 { "data16", cons, 16 },
5600 { "real4", stmt_float_cons, 'f' },
5601 { "real8", stmt_float_cons, 'd' },
5602 { "real10", stmt_float_cons, 'x' },
5603 { "real16", stmt_float_cons, 'X' },
5604 { "string", stringer, 0 },
5605 { "stringz", stringer, 1 },
5606
5607 /* unaligned versions: */
5608 { "data2.ua", stmt_cons_ua, 2 },
5609 { "data4.ua", stmt_cons_ua, 4 },
5610 { "data8.ua", stmt_cons_ua, 8 },
5611 { "data16.ua", stmt_cons_ua, 16 },
5612 { "real4.ua", float_cons, 'f' },
5613 { "real8.ua", float_cons, 'd' },
5614 { "real10.ua", float_cons, 'x' },
5615 { "real16.ua", float_cons, 'X' },
5616 };
5617
5618 /* Declare a register by creating a symbol for it and entering it in
5619 the symbol table. */
5620
5621 static symbolS *
5622 declare_register (name, regnum)
5623 const char *name;
5624 unsigned int regnum;
5625 {
5626 const char *err;
5627 symbolS *sym;
5628
5629 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5630
5631 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5632 if (err)
5633 as_fatal ("Inserting \"%s\" into register table failed: %s",
5634 name, err);
5635
5636 return sym;
5637 }
5638
5639 static void
5640 declare_register_set (prefix, num_regs, base_regnum)
5641 const char *prefix;
5642 unsigned int num_regs;
5643 unsigned int base_regnum;
5644 {
5645 char name[8];
5646 unsigned int i;
5647
5648 for (i = 0; i < num_regs; ++i)
5649 {
5650 sprintf (name, "%s%u", prefix, i);
5651 declare_register (name, base_regnum + i);
5652 }
5653 }
5654
5655 static unsigned int
5656 operand_width (opnd)
5657 enum ia64_opnd opnd;
5658 {
5659 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5660 unsigned int bits = 0;
5661 int i;
5662
5663 bits = 0;
5664 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5665 bits += odesc->field[i].bits;
5666
5667 return bits;
5668 }
5669
5670 static enum operand_match_result
5671 operand_match (idesc, index, e)
5672 const struct ia64_opcode *idesc;
5673 int index;
5674 expressionS *e;
5675 {
5676 enum ia64_opnd opnd = idesc->operands[index];
5677 int bits, relocatable = 0;
5678 struct insn_fix *fix;
5679 bfd_signed_vma val;
5680
5681 switch (opnd)
5682 {
5683 /* constants: */
5684
5685 case IA64_OPND_AR_CCV:
5686 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5687 return OPERAND_MATCH;
5688 break;
5689
5690 case IA64_OPND_AR_CSD:
5691 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5692 return OPERAND_MATCH;
5693 break;
5694
5695 case IA64_OPND_AR_PFS:
5696 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5697 return OPERAND_MATCH;
5698 break;
5699
5700 case IA64_OPND_GR0:
5701 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5702 return OPERAND_MATCH;
5703 break;
5704
5705 case IA64_OPND_IP:
5706 if (e->X_op == O_register && e->X_add_number == REG_IP)
5707 return OPERAND_MATCH;
5708 break;
5709
5710 case IA64_OPND_PR:
5711 if (e->X_op == O_register && e->X_add_number == REG_PR)
5712 return OPERAND_MATCH;
5713 break;
5714
5715 case IA64_OPND_PR_ROT:
5716 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5717 return OPERAND_MATCH;
5718 break;
5719
5720 case IA64_OPND_PSR:
5721 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5722 return OPERAND_MATCH;
5723 break;
5724
5725 case IA64_OPND_PSR_L:
5726 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5727 return OPERAND_MATCH;
5728 break;
5729
5730 case IA64_OPND_PSR_UM:
5731 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5732 return OPERAND_MATCH;
5733 break;
5734
5735 case IA64_OPND_C1:
5736 if (e->X_op == O_constant)
5737 {
5738 if (e->X_add_number == 1)
5739 return OPERAND_MATCH;
5740 else
5741 return OPERAND_OUT_OF_RANGE;
5742 }
5743 break;
5744
5745 case IA64_OPND_C8:
5746 if (e->X_op == O_constant)
5747 {
5748 if (e->X_add_number == 8)
5749 return OPERAND_MATCH;
5750 else
5751 return OPERAND_OUT_OF_RANGE;
5752 }
5753 break;
5754
5755 case IA64_OPND_C16:
5756 if (e->X_op == O_constant)
5757 {
5758 if (e->X_add_number == 16)
5759 return OPERAND_MATCH;
5760 else
5761 return OPERAND_OUT_OF_RANGE;
5762 }
5763 break;
5764
5765 /* register operands: */
5766
5767 case IA64_OPND_AR3:
5768 if (e->X_op == O_register && e->X_add_number >= REG_AR
5769 && e->X_add_number < REG_AR + 128)
5770 return OPERAND_MATCH;
5771 break;
5772
5773 case IA64_OPND_B1:
5774 case IA64_OPND_B2:
5775 if (e->X_op == O_register && e->X_add_number >= REG_BR
5776 && e->X_add_number < REG_BR + 8)
5777 return OPERAND_MATCH;
5778 break;
5779
5780 case IA64_OPND_CR3:
5781 if (e->X_op == O_register && e->X_add_number >= REG_CR
5782 && e->X_add_number < REG_CR + 128)
5783 return OPERAND_MATCH;
5784 break;
5785
5786 case IA64_OPND_F1:
5787 case IA64_OPND_F2:
5788 case IA64_OPND_F3:
5789 case IA64_OPND_F4:
5790 if (e->X_op == O_register && e->X_add_number >= REG_FR
5791 && e->X_add_number < REG_FR + 128)
5792 return OPERAND_MATCH;
5793 break;
5794
5795 case IA64_OPND_P1:
5796 case IA64_OPND_P2:
5797 if (e->X_op == O_register && e->X_add_number >= REG_P
5798 && e->X_add_number < REG_P + 64)
5799 return OPERAND_MATCH;
5800 break;
5801
5802 case IA64_OPND_R1:
5803 case IA64_OPND_R2:
5804 case IA64_OPND_R3:
5805 if (e->X_op == O_register && e->X_add_number >= REG_GR
5806 && e->X_add_number < REG_GR + 128)
5807 return OPERAND_MATCH;
5808 break;
5809
5810 case IA64_OPND_R3_2:
5811 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5812 {
5813 if (e->X_add_number < REG_GR + 4)
5814 return OPERAND_MATCH;
5815 else if (e->X_add_number < REG_GR + 128)
5816 return OPERAND_OUT_OF_RANGE;
5817 }
5818 break;
5819
5820 /* indirect operands: */
5821 case IA64_OPND_CPUID_R3:
5822 case IA64_OPND_DBR_R3:
5823 case IA64_OPND_DTR_R3:
5824 case IA64_OPND_ITR_R3:
5825 case IA64_OPND_IBR_R3:
5826 case IA64_OPND_MSR_R3:
5827 case IA64_OPND_PKR_R3:
5828 case IA64_OPND_PMC_R3:
5829 case IA64_OPND_PMD_R3:
5830 case IA64_OPND_RR_R3:
5831 if (e->X_op == O_index && e->X_op_symbol
5832 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5833 == opnd - IA64_OPND_CPUID_R3))
5834 return OPERAND_MATCH;
5835 break;
5836
5837 case IA64_OPND_MR3:
5838 if (e->X_op == O_index && !e->X_op_symbol)
5839 return OPERAND_MATCH;
5840 break;
5841
5842 /* immediate operands: */
5843 case IA64_OPND_CNT2a:
5844 case IA64_OPND_LEN4:
5845 case IA64_OPND_LEN6:
5846 bits = operand_width (idesc->operands[index]);
5847 if (e->X_op == O_constant)
5848 {
5849 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5850 return OPERAND_MATCH;
5851 else
5852 return OPERAND_OUT_OF_RANGE;
5853 }
5854 break;
5855
5856 case IA64_OPND_CNT2b:
5857 if (e->X_op == O_constant)
5858 {
5859 if ((bfd_vma) (e->X_add_number - 1) < 3)
5860 return OPERAND_MATCH;
5861 else
5862 return OPERAND_OUT_OF_RANGE;
5863 }
5864 break;
5865
5866 case IA64_OPND_CNT2c:
5867 val = e->X_add_number;
5868 if (e->X_op == O_constant)
5869 {
5870 if ((val == 0 || val == 7 || val == 15 || val == 16))
5871 return OPERAND_MATCH;
5872 else
5873 return OPERAND_OUT_OF_RANGE;
5874 }
5875 break;
5876
5877 case IA64_OPND_SOR:
5878 /* SOR must be an integer multiple of 8 */
5879 if (e->X_op == O_constant && e->X_add_number & 0x7)
5880 return OPERAND_OUT_OF_RANGE;
5881 case IA64_OPND_SOF:
5882 case IA64_OPND_SOL:
5883 if (e->X_op == O_constant)
5884 {
5885 if ((bfd_vma) e->X_add_number <= 96)
5886 return OPERAND_MATCH;
5887 else
5888 return OPERAND_OUT_OF_RANGE;
5889 }
5890 break;
5891
5892 case IA64_OPND_IMMU62:
5893 if (e->X_op == O_constant)
5894 {
5895 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5896 return OPERAND_MATCH;
5897 else
5898 return OPERAND_OUT_OF_RANGE;
5899 }
5900 else
5901 {
5902 /* FIXME -- need 62-bit relocation type */
5903 as_bad (_("62-bit relocation not yet implemented"));
5904 }
5905 break;
5906
5907 case IA64_OPND_IMMU64:
5908 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5909 || e->X_op == O_subtract)
5910 {
5911 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5912 fix->code = BFD_RELOC_IA64_IMM64;
5913 if (e->X_op != O_subtract)
5914 {
5915 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5916 if (e->X_op == O_pseudo_fixup)
5917 e->X_op = O_symbol;
5918 }
5919
5920 fix->opnd = idesc->operands[index];
5921 fix->expr = *e;
5922 fix->is_pcrel = 0;
5923 ++CURR_SLOT.num_fixups;
5924 return OPERAND_MATCH;
5925 }
5926 else if (e->X_op == O_constant)
5927 return OPERAND_MATCH;
5928 break;
5929
5930 case IA64_OPND_CCNT5:
5931 case IA64_OPND_CNT5:
5932 case IA64_OPND_CNT6:
5933 case IA64_OPND_CPOS6a:
5934 case IA64_OPND_CPOS6b:
5935 case IA64_OPND_CPOS6c:
5936 case IA64_OPND_IMMU2:
5937 case IA64_OPND_IMMU7a:
5938 case IA64_OPND_IMMU7b:
5939 case IA64_OPND_IMMU21:
5940 case IA64_OPND_IMMU24:
5941 case IA64_OPND_MBTYPE4:
5942 case IA64_OPND_MHTYPE8:
5943 case IA64_OPND_POS6:
5944 bits = operand_width (idesc->operands[index]);
5945 if (e->X_op == O_constant)
5946 {
5947 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5948 return OPERAND_MATCH;
5949 else
5950 return OPERAND_OUT_OF_RANGE;
5951 }
5952 break;
5953
5954 case IA64_OPND_IMMU9:
5955 bits = operand_width (idesc->operands[index]);
5956 if (e->X_op == O_constant)
5957 {
5958 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5959 {
5960 int lobits = e->X_add_number & 0x3;
5961 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5962 e->X_add_number |= (bfd_vma) 0x3;
5963 return OPERAND_MATCH;
5964 }
5965 else
5966 return OPERAND_OUT_OF_RANGE;
5967 }
5968 break;
5969
5970 case IA64_OPND_IMM44:
5971 /* least 16 bits must be zero */
5972 if ((e->X_add_number & 0xffff) != 0)
5973 /* XXX technically, this is wrong: we should not be issuing warning
5974 messages until we're sure this instruction pattern is going to
5975 be used! */
5976 as_warn (_("lower 16 bits of mask ignored"));
5977
5978 if (e->X_op == O_constant)
5979 {
5980 if (((e->X_add_number >= 0
5981 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5982 || (e->X_add_number < 0
5983 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5984 {
5985 /* sign-extend */
5986 if (e->X_add_number >= 0
5987 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5988 {
5989 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5990 }
5991 return OPERAND_MATCH;
5992 }
5993 else
5994 return OPERAND_OUT_OF_RANGE;
5995 }
5996 break;
5997
5998 case IA64_OPND_IMM17:
5999 /* bit 0 is a don't care (pr0 is hardwired to 1) */
6000 if (e->X_op == O_constant)
6001 {
6002 if (((e->X_add_number >= 0
6003 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
6004 || (e->X_add_number < 0
6005 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
6006 {
6007 /* sign-extend */
6008 if (e->X_add_number >= 0
6009 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
6010 {
6011 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6012 }
6013 return OPERAND_MATCH;
6014 }
6015 else
6016 return OPERAND_OUT_OF_RANGE;
6017 }
6018 break;
6019
6020 case IA64_OPND_IMM14:
6021 case IA64_OPND_IMM22:
6022 relocatable = 1;
6023 case IA64_OPND_IMM1:
6024 case IA64_OPND_IMM8:
6025 case IA64_OPND_IMM8U4:
6026 case IA64_OPND_IMM8M1:
6027 case IA64_OPND_IMM8M1U4:
6028 case IA64_OPND_IMM8M1U8:
6029 case IA64_OPND_IMM9a:
6030 case IA64_OPND_IMM9b:
6031 bits = operand_width (idesc->operands[index]);
6032 if (relocatable && (e->X_op == O_symbol
6033 || e->X_op == O_subtract
6034 || e->X_op == O_pseudo_fixup))
6035 {
6036 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6037
6038 if (idesc->operands[index] == IA64_OPND_IMM14)
6039 fix->code = BFD_RELOC_IA64_IMM14;
6040 else
6041 fix->code = BFD_RELOC_IA64_IMM22;
6042
6043 if (e->X_op != O_subtract)
6044 {
6045 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6046 if (e->X_op == O_pseudo_fixup)
6047 e->X_op = O_symbol;
6048 }
6049
6050 fix->opnd = idesc->operands[index];
6051 fix->expr = *e;
6052 fix->is_pcrel = 0;
6053 ++CURR_SLOT.num_fixups;
6054 return OPERAND_MATCH;
6055 }
6056 else if (e->X_op != O_constant
6057 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6058 return OPERAND_MISMATCH;
6059
6060 if (opnd == IA64_OPND_IMM8M1U4)
6061 {
6062 /* Zero is not valid for unsigned compares that take an adjusted
6063 constant immediate range. */
6064 if (e->X_add_number == 0)
6065 return OPERAND_OUT_OF_RANGE;
6066
6067 /* Sign-extend 32-bit unsigned numbers, so that the following range
6068 checks will work. */
6069 val = e->X_add_number;
6070 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6071 && ((val & ((bfd_vma) 1 << 31)) != 0))
6072 val = ((val << 32) >> 32);
6073
6074 /* Check for 0x100000000. This is valid because
6075 0x100000000-1 is the same as ((uint32_t) -1). */
6076 if (val == ((bfd_signed_vma) 1 << 32))
6077 return OPERAND_MATCH;
6078
6079 val = val - 1;
6080 }
6081 else if (opnd == IA64_OPND_IMM8M1U8)
6082 {
6083 /* Zero is not valid for unsigned compares that take an adjusted
6084 constant immediate range. */
6085 if (e->X_add_number == 0)
6086 return OPERAND_OUT_OF_RANGE;
6087
6088 /* Check for 0x10000000000000000. */
6089 if (e->X_op == O_big)
6090 {
6091 if (generic_bignum[0] == 0
6092 && generic_bignum[1] == 0
6093 && generic_bignum[2] == 0
6094 && generic_bignum[3] == 0
6095 && generic_bignum[4] == 1)
6096 return OPERAND_MATCH;
6097 else
6098 return OPERAND_OUT_OF_RANGE;
6099 }
6100 else
6101 val = e->X_add_number - 1;
6102 }
6103 else if (opnd == IA64_OPND_IMM8M1)
6104 val = e->X_add_number - 1;
6105 else if (opnd == IA64_OPND_IMM8U4)
6106 {
6107 /* Sign-extend 32-bit unsigned numbers, so that the following range
6108 checks will work. */
6109 val = e->X_add_number;
6110 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6111 && ((val & ((bfd_vma) 1 << 31)) != 0))
6112 val = ((val << 32) >> 32);
6113 }
6114 else
6115 val = e->X_add_number;
6116
6117 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6118 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6119 return OPERAND_MATCH;
6120 else
6121 return OPERAND_OUT_OF_RANGE;
6122
6123 case IA64_OPND_INC3:
6124 /* +/- 1, 4, 8, 16 */
6125 val = e->X_add_number;
6126 if (val < 0)
6127 val = -val;
6128 if (e->X_op == O_constant)
6129 {
6130 if ((val == 1 || val == 4 || val == 8 || val == 16))
6131 return OPERAND_MATCH;
6132 else
6133 return OPERAND_OUT_OF_RANGE;
6134 }
6135 break;
6136
6137 case IA64_OPND_TGT25:
6138 case IA64_OPND_TGT25b:
6139 case IA64_OPND_TGT25c:
6140 case IA64_OPND_TGT64:
6141 if (e->X_op == O_symbol)
6142 {
6143 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6144 if (opnd == IA64_OPND_TGT25)
6145 fix->code = BFD_RELOC_IA64_PCREL21F;
6146 else if (opnd == IA64_OPND_TGT25b)
6147 fix->code = BFD_RELOC_IA64_PCREL21M;
6148 else if (opnd == IA64_OPND_TGT25c)
6149 fix->code = BFD_RELOC_IA64_PCREL21B;
6150 else if (opnd == IA64_OPND_TGT64)
6151 fix->code = BFD_RELOC_IA64_PCREL60B;
6152 else
6153 abort ();
6154
6155 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6156 fix->opnd = idesc->operands[index];
6157 fix->expr = *e;
6158 fix->is_pcrel = 1;
6159 ++CURR_SLOT.num_fixups;
6160 return OPERAND_MATCH;
6161 }
6162 case IA64_OPND_TAG13:
6163 case IA64_OPND_TAG13b:
6164 switch (e->X_op)
6165 {
6166 case O_constant:
6167 return OPERAND_MATCH;
6168
6169 case O_symbol:
6170 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6171 /* There are no external relocs for TAG13/TAG13b fields, so we
6172 create a dummy reloc. This will not live past md_apply_fix. */
6173 fix->code = BFD_RELOC_UNUSED;
6174 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6175 fix->opnd = idesc->operands[index];
6176 fix->expr = *e;
6177 fix->is_pcrel = 1;
6178 ++CURR_SLOT.num_fixups;
6179 return OPERAND_MATCH;
6180
6181 default:
6182 break;
6183 }
6184 break;
6185
6186 case IA64_OPND_LDXMOV:
6187 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6188 fix->code = BFD_RELOC_IA64_LDXMOV;
6189 fix->opnd = idesc->operands[index];
6190 fix->expr = *e;
6191 fix->is_pcrel = 0;
6192 ++CURR_SLOT.num_fixups;
6193 return OPERAND_MATCH;
6194
6195 default:
6196 break;
6197 }
6198 return OPERAND_MISMATCH;
6199 }
6200
6201 static int
6202 parse_operand (e, more)
6203 expressionS *e;
6204 int more;
6205 {
6206 int sep = '\0';
6207
6208 memset (e, 0, sizeof (*e));
6209 e->X_op = O_absent;
6210 SKIP_WHITESPACE ();
6211 expression_and_evaluate (e);
6212 sep = *input_line_pointer;
6213 if (more && (sep == ',' || sep == more))
6214 ++input_line_pointer;
6215 return sep;
6216 }
6217
6218 /* Returns the next entry in the opcode table that matches the one in
6219 IDESC, and frees the entry in IDESC. If no matching entry is
6220 found, NULL is returned instead. */
6221
6222 static struct ia64_opcode *
6223 get_next_opcode (struct ia64_opcode *idesc)
6224 {
6225 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6226 ia64_free_opcode (idesc);
6227 return next;
6228 }
6229
6230 /* Parse the operands for the opcode and find the opcode variant that
6231 matches the specified operands, or NULL if no match is possible. */
6232
6233 static struct ia64_opcode *
6234 parse_operands (idesc)
6235 struct ia64_opcode *idesc;
6236 {
6237 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6238 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6239 int reg1, reg2;
6240 char reg_class;
6241 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6242 enum operand_match_result result;
6243 char mnemonic[129];
6244 char *first_arg = 0, *end, *saved_input_pointer;
6245 unsigned int sof;
6246
6247 assert (strlen (idesc->name) <= 128);
6248
6249 strcpy (mnemonic, idesc->name);
6250 if (idesc->operands[2] == IA64_OPND_SOF
6251 || idesc->operands[1] == IA64_OPND_SOF)
6252 {
6253 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6254 can't parse the first operand until we have parsed the
6255 remaining operands of the "alloc" instruction. */
6256 SKIP_WHITESPACE ();
6257 first_arg = input_line_pointer;
6258 end = strchr (input_line_pointer, '=');
6259 if (!end)
6260 {
6261 as_bad ("Expected separator `='");
6262 return 0;
6263 }
6264 input_line_pointer = end + 1;
6265 ++i;
6266 ++num_outputs;
6267 }
6268
6269 for (; ; ++i)
6270 {
6271 if (i < NELEMS (CURR_SLOT.opnd))
6272 {
6273 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6274 if (CURR_SLOT.opnd[i].X_op == O_absent)
6275 break;
6276 }
6277 else
6278 {
6279 expressionS dummy;
6280
6281 sep = parse_operand (&dummy, '=');
6282 if (dummy.X_op == O_absent)
6283 break;
6284 }
6285
6286 ++num_operands;
6287
6288 if (sep != '=' && sep != ',')
6289 break;
6290
6291 if (sep == '=')
6292 {
6293 if (num_outputs > 0)
6294 as_bad ("Duplicate equal sign (=) in instruction");
6295 else
6296 num_outputs = i + 1;
6297 }
6298 }
6299 if (sep != '\0')
6300 {
6301 as_bad ("Illegal operand separator `%c'", sep);
6302 return 0;
6303 }
6304
6305 if (idesc->operands[2] == IA64_OPND_SOF
6306 || idesc->operands[1] == IA64_OPND_SOF)
6307 {
6308 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6309 Note, however, that due to that mapping operand numbers in error
6310 messages for any of the constant operands will not be correct. */
6311 know (strcmp (idesc->name, "alloc") == 0);
6312 /* The first operand hasn't been parsed/initialized, yet (but
6313 num_operands intentionally doesn't account for that). */
6314 i = num_operands > 4 ? 2 : 1;
6315 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6316 ? CURR_SLOT.opnd[n].X_add_number \
6317 : 0)
6318 sof = set_regstack (FORCE_CONST(i),
6319 FORCE_CONST(i + 1),
6320 FORCE_CONST(i + 2),
6321 FORCE_CONST(i + 3));
6322 #undef FORCE_CONST
6323
6324 /* now we can parse the first arg: */
6325 saved_input_pointer = input_line_pointer;
6326 input_line_pointer = first_arg;
6327 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6328 if (sep != '=')
6329 --num_outputs; /* force error */
6330 input_line_pointer = saved_input_pointer;
6331
6332 CURR_SLOT.opnd[i].X_add_number = sof;
6333 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6334 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6335 CURR_SLOT.opnd[i + 1].X_add_number
6336 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6337 else
6338 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6339 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6340 }
6341
6342 highest_unmatched_operand = -4;
6343 curr_out_of_range_pos = -1;
6344 error_pos = 0;
6345 for (; idesc; idesc = get_next_opcode (idesc))
6346 {
6347 if (num_outputs != idesc->num_outputs)
6348 continue; /* mismatch in # of outputs */
6349 if (highest_unmatched_operand < 0)
6350 highest_unmatched_operand |= 1;
6351 if (num_operands > NELEMS (idesc->operands)
6352 || (num_operands < NELEMS (idesc->operands)
6353 && idesc->operands[num_operands])
6354 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6355 continue; /* mismatch in number of arguments */
6356 if (highest_unmatched_operand < 0)
6357 highest_unmatched_operand |= 2;
6358
6359 CURR_SLOT.num_fixups = 0;
6360
6361 /* Try to match all operands. If we see an out-of-range operand,
6362 then continue trying to match the rest of the operands, since if
6363 the rest match, then this idesc will give the best error message. */
6364
6365 out_of_range_pos = -1;
6366 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6367 {
6368 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6369 if (result != OPERAND_MATCH)
6370 {
6371 if (result != OPERAND_OUT_OF_RANGE)
6372 break;
6373 if (out_of_range_pos < 0)
6374 /* remember position of the first out-of-range operand: */
6375 out_of_range_pos = i;
6376 }
6377 }
6378
6379 /* If we did not match all operands, or if at least one operand was
6380 out-of-range, then this idesc does not match. Keep track of which
6381 idesc matched the most operands before failing. If we have two
6382 idescs that failed at the same position, and one had an out-of-range
6383 operand, then prefer the out-of-range operand. Thus if we have
6384 "add r0=0x1000000,r1" we get an error saying the constant is out
6385 of range instead of an error saying that the constant should have been
6386 a register. */
6387
6388 if (i != num_operands || out_of_range_pos >= 0)
6389 {
6390 if (i > highest_unmatched_operand
6391 || (i == highest_unmatched_operand
6392 && out_of_range_pos > curr_out_of_range_pos))
6393 {
6394 highest_unmatched_operand = i;
6395 if (out_of_range_pos >= 0)
6396 {
6397 expected_operand = idesc->operands[out_of_range_pos];
6398 error_pos = out_of_range_pos;
6399 }
6400 else
6401 {
6402 expected_operand = idesc->operands[i];
6403 error_pos = i;
6404 }
6405 curr_out_of_range_pos = out_of_range_pos;
6406 }
6407 continue;
6408 }
6409
6410 break;
6411 }
6412 if (!idesc)
6413 {
6414 if (expected_operand)
6415 as_bad ("Operand %u of `%s' should be %s",
6416 error_pos + 1, mnemonic,
6417 elf64_ia64_operands[expected_operand].desc);
6418 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6419 as_bad ("Wrong number of output operands");
6420 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6421 as_bad ("Wrong number of input operands");
6422 else
6423 as_bad ("Operand mismatch");
6424 return 0;
6425 }
6426
6427 /* Check that the instruction doesn't use
6428 - r0, f0, or f1 as output operands
6429 - the same predicate twice as output operands
6430 - r0 as address of a base update load or store
6431 - the same GR as output and address of a base update load
6432 - two even- or two odd-numbered FRs as output operands of a floating
6433 point parallel load.
6434 At most two (conflicting) output (or output-like) operands can exist,
6435 (floating point parallel loads have three outputs, but the base register,
6436 if updated, cannot conflict with the actual outputs). */
6437 reg2 = reg1 = -1;
6438 for (i = 0; i < num_operands; ++i)
6439 {
6440 int regno = 0;
6441
6442 reg_class = 0;
6443 switch (idesc->operands[i])
6444 {
6445 case IA64_OPND_R1:
6446 case IA64_OPND_R2:
6447 case IA64_OPND_R3:
6448 if (i < num_outputs)
6449 {
6450 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6451 reg_class = 'r';
6452 else if (reg1 < 0)
6453 reg1 = CURR_SLOT.opnd[i].X_add_number;
6454 else if (reg2 < 0)
6455 reg2 = CURR_SLOT.opnd[i].X_add_number;
6456 }
6457 break;
6458 case IA64_OPND_P1:
6459 case IA64_OPND_P2:
6460 if (i < num_outputs)
6461 {
6462 if (reg1 < 0)
6463 reg1 = CURR_SLOT.opnd[i].X_add_number;
6464 else if (reg2 < 0)
6465 reg2 = CURR_SLOT.opnd[i].X_add_number;
6466 }
6467 break;
6468 case IA64_OPND_F1:
6469 case IA64_OPND_F2:
6470 case IA64_OPND_F3:
6471 case IA64_OPND_F4:
6472 if (i < num_outputs)
6473 {
6474 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6475 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6476 {
6477 reg_class = 'f';
6478 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6479 }
6480 else if (reg1 < 0)
6481 reg1 = CURR_SLOT.opnd[i].X_add_number;
6482 else if (reg2 < 0)
6483 reg2 = CURR_SLOT.opnd[i].X_add_number;
6484 }
6485 break;
6486 case IA64_OPND_MR3:
6487 if (idesc->flags & IA64_OPCODE_POSTINC)
6488 {
6489 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6490 reg_class = 'm';
6491 else if (reg1 < 0)
6492 reg1 = CURR_SLOT.opnd[i].X_add_number;
6493 else if (reg2 < 0)
6494 reg2 = CURR_SLOT.opnd[i].X_add_number;
6495 }
6496 break;
6497 default:
6498 break;
6499 }
6500 switch (reg_class)
6501 {
6502 case 0:
6503 break;
6504 default:
6505 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6506 break;
6507 case 'm':
6508 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6509 break;
6510 }
6511 }
6512 if (reg1 == reg2)
6513 {
6514 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6515 {
6516 reg1 -= REG_GR;
6517 reg_class = 'r';
6518 }
6519 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6520 {
6521 reg1 -= REG_P;
6522 reg_class = 'p';
6523 }
6524 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6525 {
6526 reg1 -= REG_FR;
6527 reg_class = 'f';
6528 }
6529 else
6530 reg_class = 0;
6531 if (reg_class)
6532 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6533 }
6534 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6535 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6536 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6537 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6538 && ! ((reg1 ^ reg2) & 1))
6539 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6540 reg1 - REG_FR, reg2 - REG_FR);
6541 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6542 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6543 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6544 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6545 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6546 reg1 - REG_FR, reg2 - REG_FR);
6547 return idesc;
6548 }
6549
6550 static void
6551 build_insn (slot, insnp)
6552 struct slot *slot;
6553 bfd_vma *insnp;
6554 {
6555 const struct ia64_operand *odesc, *o2desc;
6556 struct ia64_opcode *idesc = slot->idesc;
6557 bfd_vma insn;
6558 bfd_signed_vma val;
6559 const char *err;
6560 int i;
6561
6562 insn = idesc->opcode | slot->qp_regno;
6563
6564 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6565 {
6566 if (slot->opnd[i].X_op == O_register
6567 || slot->opnd[i].X_op == O_constant
6568 || slot->opnd[i].X_op == O_index)
6569 val = slot->opnd[i].X_add_number;
6570 else if (slot->opnd[i].X_op == O_big)
6571 {
6572 /* This must be the value 0x10000000000000000. */
6573 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6574 val = 0;
6575 }
6576 else
6577 val = 0;
6578
6579 switch (idesc->operands[i])
6580 {
6581 case IA64_OPND_IMMU64:
6582 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6583 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6584 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6585 | (((val >> 63) & 0x1) << 36));
6586 continue;
6587
6588 case IA64_OPND_IMMU62:
6589 val &= 0x3fffffffffffffffULL;
6590 if (val != slot->opnd[i].X_add_number)
6591 as_warn (_("Value truncated to 62 bits"));
6592 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6593 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6594 continue;
6595
6596 case IA64_OPND_TGT64:
6597 val >>= 4;
6598 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6599 insn |= ((((val >> 59) & 0x1) << 36)
6600 | (((val >> 0) & 0xfffff) << 13));
6601 continue;
6602
6603 case IA64_OPND_AR3:
6604 val -= REG_AR;
6605 break;
6606
6607 case IA64_OPND_B1:
6608 case IA64_OPND_B2:
6609 val -= REG_BR;
6610 break;
6611
6612 case IA64_OPND_CR3:
6613 val -= REG_CR;
6614 break;
6615
6616 case IA64_OPND_F1:
6617 case IA64_OPND_F2:
6618 case IA64_OPND_F3:
6619 case IA64_OPND_F4:
6620 val -= REG_FR;
6621 break;
6622
6623 case IA64_OPND_P1:
6624 case IA64_OPND_P2:
6625 val -= REG_P;
6626 break;
6627
6628 case IA64_OPND_R1:
6629 case IA64_OPND_R2:
6630 case IA64_OPND_R3:
6631 case IA64_OPND_R3_2:
6632 case IA64_OPND_CPUID_R3:
6633 case IA64_OPND_DBR_R3:
6634 case IA64_OPND_DTR_R3:
6635 case IA64_OPND_ITR_R3:
6636 case IA64_OPND_IBR_R3:
6637 case IA64_OPND_MR3:
6638 case IA64_OPND_MSR_R3:
6639 case IA64_OPND_PKR_R3:
6640 case IA64_OPND_PMC_R3:
6641 case IA64_OPND_PMD_R3:
6642 case IA64_OPND_RR_R3:
6643 val -= REG_GR;
6644 break;
6645
6646 default:
6647 break;
6648 }
6649
6650 odesc = elf64_ia64_operands + idesc->operands[i];
6651 err = (*odesc->insert) (odesc, val, &insn);
6652 if (err)
6653 as_bad_where (slot->src_file, slot->src_line,
6654 "Bad operand value: %s", err);
6655 if (idesc->flags & IA64_OPCODE_PSEUDO)
6656 {
6657 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6658 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6659 {
6660 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6661 (*o2desc->insert) (o2desc, val, &insn);
6662 }
6663 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6664 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6665 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6666 {
6667 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6668 (*o2desc->insert) (o2desc, 64 - val, &insn);
6669 }
6670 }
6671 }
6672 *insnp = insn;
6673 }
6674
6675 static void
6676 emit_one_bundle ()
6677 {
6678 int manual_bundling_off = 0, manual_bundling = 0;
6679 enum ia64_unit required_unit, insn_unit = 0;
6680 enum ia64_insn_type type[3], insn_type;
6681 unsigned int template, orig_template;
6682 bfd_vma insn[3] = { -1, -1, -1 };
6683 struct ia64_opcode *idesc;
6684 int end_of_insn_group = 0, user_template = -1;
6685 int n, i, j, first, curr, last_slot;
6686 bfd_vma t0 = 0, t1 = 0;
6687 struct label_fix *lfix;
6688 bfd_boolean mark_label;
6689 struct insn_fix *ifix;
6690 char mnemonic[16];
6691 fixS *fix;
6692 char *f;
6693 int addr_mod;
6694
6695 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6696 know (first >= 0 & first < NUM_SLOTS);
6697 n = MIN (3, md.num_slots_in_use);
6698
6699 /* Determine template: user user_template if specified, best match
6700 otherwise: */
6701
6702 if (md.slot[first].user_template >= 0)
6703 user_template = template = md.slot[first].user_template;
6704 else
6705 {
6706 /* Auto select appropriate template. */
6707 memset (type, 0, sizeof (type));
6708 curr = first;
6709 for (i = 0; i < n; ++i)
6710 {
6711 if (md.slot[curr].label_fixups && i != 0)
6712 break;
6713 type[i] = md.slot[curr].idesc->type;
6714 curr = (curr + 1) % NUM_SLOTS;
6715 }
6716 template = best_template[type[0]][type[1]][type[2]];
6717 }
6718
6719 /* initialize instructions with appropriate nops: */
6720 for (i = 0; i < 3; ++i)
6721 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6722
6723 f = frag_more (16);
6724
6725 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6726 from the start of the frag. */
6727 addr_mod = frag_now_fix () & 15;
6728 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6729 as_bad (_("instruction address is not a multiple of 16"));
6730 frag_now->insn_addr = addr_mod;
6731 frag_now->has_code = 1;
6732
6733 /* now fill in slots with as many insns as possible: */
6734 curr = first;
6735 idesc = md.slot[curr].idesc;
6736 end_of_insn_group = 0;
6737 last_slot = -1;
6738 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6739 {
6740 /* If we have unwind records, we may need to update some now. */
6741 unw_rec_list *ptr = md.slot[curr].unwind_record;
6742 unw_rec_list *end_ptr = NULL;
6743
6744 if (ptr)
6745 {
6746 /* Find the last prologue/body record in the list for the current
6747 insn, and set the slot number for all records up to that point.
6748 This needs to be done now, because prologue/body records refer to
6749 the current point, not the point after the instruction has been
6750 issued. This matters because there may have been nops emitted
6751 meanwhile. Any non-prologue non-body record followed by a
6752 prologue/body record must also refer to the current point. */
6753 unw_rec_list *last_ptr;
6754
6755 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6756 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6757 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6758 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6759 || ptr->r.type == body)
6760 last_ptr = ptr;
6761 if (last_ptr)
6762 {
6763 /* Make last_ptr point one after the last prologue/body
6764 record. */
6765 last_ptr = last_ptr->next;
6766 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6767 ptr = ptr->next)
6768 {
6769 ptr->slot_number = (unsigned long) f + i;
6770 ptr->slot_frag = frag_now;
6771 }
6772 /* Remove the initialized records, so that we won't accidentally
6773 update them again if we insert a nop and continue. */
6774 md.slot[curr].unwind_record = last_ptr;
6775 }
6776 }
6777
6778 manual_bundling_off = md.slot[curr].manual_bundling_off;
6779 if (md.slot[curr].manual_bundling_on)
6780 {
6781 if (curr == first)
6782 manual_bundling = 1;
6783 else
6784 break; /* Need to start a new bundle. */
6785 }
6786
6787 /* If this instruction specifies a template, then it must be the first
6788 instruction of a bundle. */
6789 if (curr != first && md.slot[curr].user_template >= 0)
6790 break;
6791
6792 if (idesc->flags & IA64_OPCODE_SLOT2)
6793 {
6794 if (manual_bundling && !manual_bundling_off)
6795 {
6796 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6797 "`%s' must be last in bundle", idesc->name);
6798 if (i < 2)
6799 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6800 }
6801 i = 2;
6802 }
6803 if (idesc->flags & IA64_OPCODE_LAST)
6804 {
6805 int required_slot;
6806 unsigned int required_template;
6807
6808 /* If we need a stop bit after an M slot, our only choice is
6809 template 5 (M;;MI). If we need a stop bit after a B
6810 slot, our only choice is to place it at the end of the
6811 bundle, because the only available templates are MIB,
6812 MBB, BBB, MMB, and MFB. We don't handle anything other
6813 than M and B slots because these are the only kind of
6814 instructions that can have the IA64_OPCODE_LAST bit set. */
6815 required_template = template;
6816 switch (idesc->type)
6817 {
6818 case IA64_TYPE_M:
6819 required_slot = 0;
6820 required_template = 5;
6821 break;
6822
6823 case IA64_TYPE_B:
6824 required_slot = 2;
6825 break;
6826
6827 default:
6828 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6829 "Internal error: don't know how to force %s to end"
6830 "of instruction group", idesc->name);
6831 required_slot = i;
6832 break;
6833 }
6834 if (manual_bundling
6835 && (i > required_slot
6836 || (required_slot == 2 && !manual_bundling_off)
6837 || (user_template >= 0
6838 /* Changing from MMI to M;MI is OK. */
6839 && (template ^ required_template) > 1)))
6840 {
6841 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6842 "`%s' must be last in instruction group",
6843 idesc->name);
6844 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6845 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6846 }
6847 if (required_slot < i)
6848 /* Can't fit this instruction. */
6849 break;
6850
6851 i = required_slot;
6852 if (required_template != template)
6853 {
6854 /* If we switch the template, we need to reset the NOPs
6855 after slot i. The slot-types of the instructions ahead
6856 of i never change, so we don't need to worry about
6857 changing NOPs in front of this slot. */
6858 for (j = i; j < 3; ++j)
6859 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6860 }
6861 template = required_template;
6862 }
6863 if (curr != first && md.slot[curr].label_fixups)
6864 {
6865 if (manual_bundling)
6866 {
6867 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6868 "Label must be first in a bundle");
6869 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6870 }
6871 /* This insn must go into the first slot of a bundle. */
6872 break;
6873 }
6874
6875 if (end_of_insn_group && md.num_slots_in_use >= 1)
6876 {
6877 /* We need an instruction group boundary in the middle of a
6878 bundle. See if we can switch to an other template with
6879 an appropriate boundary. */
6880
6881 orig_template = template;
6882 if (i == 1 && (user_template == 4
6883 || (user_template < 0
6884 && (ia64_templ_desc[template].exec_unit[0]
6885 == IA64_UNIT_M))))
6886 {
6887 template = 5;
6888 end_of_insn_group = 0;
6889 }
6890 else if (i == 2 && (user_template == 0
6891 || (user_template < 0
6892 && (ia64_templ_desc[template].exec_unit[1]
6893 == IA64_UNIT_I)))
6894 /* This test makes sure we don't switch the template if
6895 the next instruction is one that needs to be first in
6896 an instruction group. Since all those instructions are
6897 in the M group, there is no way such an instruction can
6898 fit in this bundle even if we switch the template. The
6899 reason we have to check for this is that otherwise we
6900 may end up generating "MI;;I M.." which has the deadly
6901 effect that the second M instruction is no longer the
6902 first in the group! --davidm 99/12/16 */
6903 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6904 {
6905 template = 1;
6906 end_of_insn_group = 0;
6907 }
6908 else if (i == 1
6909 && user_template == 0
6910 && !(idesc->flags & IA64_OPCODE_FIRST))
6911 /* Use the next slot. */
6912 continue;
6913 else if (curr != first)
6914 /* can't fit this insn */
6915 break;
6916
6917 if (template != orig_template)
6918 /* if we switch the template, we need to reset the NOPs
6919 after slot i. The slot-types of the instructions ahead
6920 of i never change, so we don't need to worry about
6921 changing NOPs in front of this slot. */
6922 for (j = i; j < 3; ++j)
6923 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6924 }
6925 required_unit = ia64_templ_desc[template].exec_unit[i];
6926
6927 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6928 if (idesc->type == IA64_TYPE_DYN)
6929 {
6930 enum ia64_opnd opnd1, opnd2;
6931
6932 if ((strcmp (idesc->name, "nop") == 0)
6933 || (strcmp (idesc->name, "break") == 0))
6934 insn_unit = required_unit;
6935 else if (strcmp (idesc->name, "hint") == 0)
6936 {
6937 insn_unit = required_unit;
6938 if (required_unit == IA64_UNIT_B)
6939 {
6940 switch (md.hint_b)
6941 {
6942 case hint_b_ok:
6943 break;
6944 case hint_b_warning:
6945 as_warn ("hint in B unit may be treated as nop");
6946 break;
6947 case hint_b_error:
6948 /* When manual bundling is off and there is no
6949 user template, we choose a different unit so
6950 that hint won't go into the current slot. We
6951 will fill the current bundle with nops and
6952 try to put hint into the next bundle. */
6953 if (!manual_bundling && user_template < 0)
6954 insn_unit = IA64_UNIT_I;
6955 else
6956 as_bad ("hint in B unit can't be used");
6957 break;
6958 }
6959 }
6960 }
6961 else if (strcmp (idesc->name, "chk.s") == 0
6962 || strcmp (idesc->name, "mov") == 0)
6963 {
6964 insn_unit = IA64_UNIT_M;
6965 if (required_unit == IA64_UNIT_I
6966 || (required_unit == IA64_UNIT_F && template == 6))
6967 insn_unit = IA64_UNIT_I;
6968 }
6969 else
6970 as_fatal ("emit_one_bundle: unexpected dynamic op");
6971
6972 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6973 opnd1 = idesc->operands[0];
6974 opnd2 = idesc->operands[1];
6975 ia64_free_opcode (idesc);
6976 idesc = ia64_find_opcode (mnemonic);
6977 /* moves to/from ARs have collisions */
6978 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6979 {
6980 while (idesc != NULL
6981 && (idesc->operands[0] != opnd1
6982 || idesc->operands[1] != opnd2))
6983 idesc = get_next_opcode (idesc);
6984 }
6985 md.slot[curr].idesc = idesc;
6986 }
6987 else
6988 {
6989 insn_type = idesc->type;
6990 insn_unit = IA64_UNIT_NIL;
6991 switch (insn_type)
6992 {
6993 case IA64_TYPE_A:
6994 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6995 insn_unit = required_unit;
6996 break;
6997 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6998 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6999 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
7000 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
7001 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
7002 default: break;
7003 }
7004 }
7005
7006 if (insn_unit != required_unit)
7007 continue; /* Try next slot. */
7008
7009 /* Now is a good time to fix up the labels for this insn. */
7010 mark_label = FALSE;
7011 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7012 {
7013 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7014 symbol_set_frag (lfix->sym, frag_now);
7015 mark_label |= lfix->dw2_mark_labels;
7016 }
7017 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7018 {
7019 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7020 symbol_set_frag (lfix->sym, frag_now);
7021 }
7022
7023 if (debug_type == DEBUG_DWARF2
7024 || md.slot[curr].loc_directive_seen
7025 || mark_label)
7026 {
7027 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7028
7029 md.slot[curr].loc_directive_seen = 0;
7030 if (mark_label)
7031 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7032
7033 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7034 }
7035
7036 build_insn (md.slot + curr, insn + i);
7037
7038 ptr = md.slot[curr].unwind_record;
7039 if (ptr)
7040 {
7041 /* Set slot numbers for all remaining unwind records belonging to the
7042 current insn. There can not be any prologue/body unwind records
7043 here. */
7044 for (; ptr != end_ptr; ptr = ptr->next)
7045 {
7046 ptr->slot_number = (unsigned long) f + i;
7047 ptr->slot_frag = frag_now;
7048 }
7049 md.slot[curr].unwind_record = NULL;
7050 }
7051
7052 if (required_unit == IA64_UNIT_L)
7053 {
7054 know (i == 1);
7055 /* skip one slot for long/X-unit instructions */
7056 ++i;
7057 }
7058 --md.num_slots_in_use;
7059 last_slot = i;
7060
7061 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7062 {
7063 ifix = md.slot[curr].fixup + j;
7064 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7065 &ifix->expr, ifix->is_pcrel, ifix->code);
7066 fix->tc_fix_data.opnd = ifix->opnd;
7067 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
7068 fix->fx_file = md.slot[curr].src_file;
7069 fix->fx_line = md.slot[curr].src_line;
7070 }
7071
7072 end_of_insn_group = md.slot[curr].end_of_insn_group;
7073
7074 /* clear slot: */
7075 ia64_free_opcode (md.slot[curr].idesc);
7076 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7077 md.slot[curr].user_template = -1;
7078
7079 if (manual_bundling_off)
7080 {
7081 manual_bundling = 0;
7082 break;
7083 }
7084 curr = (curr + 1) % NUM_SLOTS;
7085 idesc = md.slot[curr].idesc;
7086 }
7087 if (manual_bundling > 0)
7088 {
7089 if (md.num_slots_in_use > 0)
7090 {
7091 if (last_slot >= 2)
7092 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7093 "`%s' does not fit into bundle", idesc->name);
7094 else if (last_slot < 0)
7095 {
7096 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7097 "`%s' does not fit into %s template",
7098 idesc->name, ia64_templ_desc[template].name);
7099 /* Drop first insn so we don't livelock. */
7100 --md.num_slots_in_use;
7101 know (curr == first);
7102 ia64_free_opcode (md.slot[curr].idesc);
7103 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7104 md.slot[curr].user_template = -1;
7105 }
7106 else
7107 {
7108 const char *where;
7109
7110 if (template == 2)
7111 where = "X slot";
7112 else if (last_slot == 0)
7113 where = "slots 2 or 3";
7114 else
7115 where = "slot 3";
7116 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7117 "`%s' can't go in %s of %s template",
7118 idesc->name, where, ia64_templ_desc[template].name);
7119 }
7120 }
7121 else
7122 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7123 "Missing '}' at end of file");
7124 }
7125 know (md.num_slots_in_use < NUM_SLOTS);
7126
7127 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7128 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7129
7130 number_to_chars_littleendian (f + 0, t0, 8);
7131 number_to_chars_littleendian (f + 8, t1, 8);
7132 }
7133
7134 int
7135 md_parse_option (c, arg)
7136 int c;
7137 char *arg;
7138 {
7139
7140 switch (c)
7141 {
7142 /* Switches from the Intel assembler. */
7143 case 'm':
7144 if (strcmp (arg, "ilp64") == 0
7145 || strcmp (arg, "lp64") == 0
7146 || strcmp (arg, "p64") == 0)
7147 {
7148 md.flags |= EF_IA_64_ABI64;
7149 }
7150 else if (strcmp (arg, "ilp32") == 0)
7151 {
7152 md.flags &= ~EF_IA_64_ABI64;
7153 }
7154 else if (strcmp (arg, "le") == 0)
7155 {
7156 md.flags &= ~EF_IA_64_BE;
7157 default_big_endian = 0;
7158 }
7159 else if (strcmp (arg, "be") == 0)
7160 {
7161 md.flags |= EF_IA_64_BE;
7162 default_big_endian = 1;
7163 }
7164 else if (strncmp (arg, "unwind-check=", 13) == 0)
7165 {
7166 arg += 13;
7167 if (strcmp (arg, "warning") == 0)
7168 md.unwind_check = unwind_check_warning;
7169 else if (strcmp (arg, "error") == 0)
7170 md.unwind_check = unwind_check_error;
7171 else
7172 return 0;
7173 }
7174 else if (strncmp (arg, "hint.b=", 7) == 0)
7175 {
7176 arg += 7;
7177 if (strcmp (arg, "ok") == 0)
7178 md.hint_b = hint_b_ok;
7179 else if (strcmp (arg, "warning") == 0)
7180 md.hint_b = hint_b_warning;
7181 else if (strcmp (arg, "error") == 0)
7182 md.hint_b = hint_b_error;
7183 else
7184 return 0;
7185 }
7186 else if (strncmp (arg, "tune=", 5) == 0)
7187 {
7188 arg += 5;
7189 if (strcmp (arg, "itanium1") == 0)
7190 md.tune = itanium1;
7191 else if (strcmp (arg, "itanium2") == 0)
7192 md.tune = itanium2;
7193 else
7194 return 0;
7195 }
7196 else
7197 return 0;
7198 break;
7199
7200 case 'N':
7201 if (strcmp (arg, "so") == 0)
7202 {
7203 /* Suppress signon message. */
7204 }
7205 else if (strcmp (arg, "pi") == 0)
7206 {
7207 /* Reject privileged instructions. FIXME */
7208 }
7209 else if (strcmp (arg, "us") == 0)
7210 {
7211 /* Allow union of signed and unsigned range. FIXME */
7212 }
7213 else if (strcmp (arg, "close_fcalls") == 0)
7214 {
7215 /* Do not resolve global function calls. */
7216 }
7217 else
7218 return 0;
7219 break;
7220
7221 case 'C':
7222 /* temp[="prefix"] Insert temporary labels into the object file
7223 symbol table prefixed by "prefix".
7224 Default prefix is ":temp:".
7225 */
7226 break;
7227
7228 case 'a':
7229 /* indirect=<tgt> Assume unannotated indirect branches behavior
7230 according to <tgt> --
7231 exit: branch out from the current context (default)
7232 labels: all labels in context may be branch targets
7233 */
7234 if (strncmp (arg, "indirect=", 9) != 0)
7235 return 0;
7236 break;
7237
7238 case 'x':
7239 /* -X conflicts with an ignored option, use -x instead */
7240 md.detect_dv = 1;
7241 if (!arg || strcmp (arg, "explicit") == 0)
7242 {
7243 /* set default mode to explicit */
7244 md.default_explicit_mode = 1;
7245 break;
7246 }
7247 else if (strcmp (arg, "auto") == 0)
7248 {
7249 md.default_explicit_mode = 0;
7250 }
7251 else if (strcmp (arg, "none") == 0)
7252 {
7253 md.detect_dv = 0;
7254 }
7255 else if (strcmp (arg, "debug") == 0)
7256 {
7257 md.debug_dv = 1;
7258 }
7259 else if (strcmp (arg, "debugx") == 0)
7260 {
7261 md.default_explicit_mode = 1;
7262 md.debug_dv = 1;
7263 }
7264 else if (strcmp (arg, "debugn") == 0)
7265 {
7266 md.debug_dv = 1;
7267 md.detect_dv = 0;
7268 }
7269 else
7270 {
7271 as_bad (_("Unrecognized option '-x%s'"), arg);
7272 }
7273 break;
7274
7275 case 'S':
7276 /* nops Print nops statistics. */
7277 break;
7278
7279 /* GNU specific switches for gcc. */
7280 case OPTION_MCONSTANT_GP:
7281 md.flags |= EF_IA_64_CONS_GP;
7282 break;
7283
7284 case OPTION_MAUTO_PIC:
7285 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7286 break;
7287
7288 default:
7289 return 0;
7290 }
7291
7292 return 1;
7293 }
7294
7295 void
7296 md_show_usage (stream)
7297 FILE *stream;
7298 {
7299 fputs (_("\
7300 IA-64 options:\n\
7301 --mconstant-gp mark output file as using the constant-GP model\n\
7302 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7303 --mauto-pic mark output file as using the constant-GP model\n\
7304 without function descriptors (sets ELF header flag\n\
7305 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7306 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7307 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7308 -mtune=[itanium1|itanium2]\n\
7309 tune for a specific CPU (default -mtune=itanium2)\n\
7310 -munwind-check=[warning|error]\n\
7311 unwind directive check (default -munwind-check=warning)\n\
7312 -mhint.b=[ok|warning|error]\n\
7313 hint.b check (default -mhint.b=error)\n\
7314 -x | -xexplicit turn on dependency violation checking\n\
7315 -xauto automagically remove dependency violations (default)\n\
7316 -xnone turn off dependency violation checking\n\
7317 -xdebug debug dependency violation checker\n\
7318 -xdebugn debug dependency violation checker but turn off\n\
7319 dependency violation checking\n\
7320 -xdebugx debug dependency violation checker and turn on\n\
7321 dependency violation checking\n"),
7322 stream);
7323 }
7324
7325 void
7326 ia64_after_parse_args ()
7327 {
7328 if (debug_type == DEBUG_STABS)
7329 as_fatal (_("--gstabs is not supported for ia64"));
7330 }
7331
7332 /* Return true if TYPE fits in TEMPL at SLOT. */
7333
7334 static int
7335 match (int templ, int type, int slot)
7336 {
7337 enum ia64_unit unit;
7338 int result;
7339
7340 unit = ia64_templ_desc[templ].exec_unit[slot];
7341 switch (type)
7342 {
7343 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7344 case IA64_TYPE_A:
7345 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7346 break;
7347 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7348 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7349 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7350 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7351 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7352 default: result = 0; break;
7353 }
7354 return result;
7355 }
7356
7357 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7358 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7359 type M or I would fit in TEMPL at SLOT. */
7360
7361 static inline int
7362 extra_goodness (int templ, int slot)
7363 {
7364 switch (md.tune)
7365 {
7366 case itanium1:
7367 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7368 return 2;
7369 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7370 return 1;
7371 else
7372 return 0;
7373 break;
7374 case itanium2:
7375 if (match (templ, IA64_TYPE_M, slot)
7376 || match (templ, IA64_TYPE_I, slot))
7377 /* Favor M- and I-unit NOPs. We definitely want to avoid
7378 F-unit and B-unit may cause split-issue or less-than-optimal
7379 branch-prediction. */
7380 return 2;
7381 else
7382 return 0;
7383 break;
7384 default:
7385 abort ();
7386 return 0;
7387 }
7388 }
7389
7390 /* This function is called once, at assembler startup time. It sets
7391 up all the tables, etc. that the MD part of the assembler will need
7392 that can be determined before arguments are parsed. */
7393 void
7394 md_begin ()
7395 {
7396 int i, j, k, t, goodness, best, ok;
7397 const char *err;
7398 char name[8];
7399
7400 md.auto_align = 1;
7401 md.explicit_mode = md.default_explicit_mode;
7402
7403 bfd_set_section_alignment (stdoutput, text_section, 4);
7404
7405 /* Make sure function pointers get initialized. */
7406 target_big_endian = -1;
7407 dot_byteorder (default_big_endian);
7408
7409 alias_hash = hash_new ();
7410 alias_name_hash = hash_new ();
7411 secalias_hash = hash_new ();
7412 secalias_name_hash = hash_new ();
7413
7414 pseudo_func[FUNC_DTP_MODULE].u.sym =
7415 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7416 &zero_address_frag);
7417
7418 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7419 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7420 &zero_address_frag);
7421
7422 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7423 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7424 &zero_address_frag);
7425
7426 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7427 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7428 &zero_address_frag);
7429
7430 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7431 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7432 &zero_address_frag);
7433
7434 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7435 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7436 &zero_address_frag);
7437
7438 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7439 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7440 &zero_address_frag);
7441
7442 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7443 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7444 &zero_address_frag);
7445
7446 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7447 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7448 &zero_address_frag);
7449
7450 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7451 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7452 &zero_address_frag);
7453
7454 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7455 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7456 &zero_address_frag);
7457
7458 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7459 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7460 &zero_address_frag);
7461
7462 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7463 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7464 &zero_address_frag);
7465
7466 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7467 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7468 &zero_address_frag);
7469
7470 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7471 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7472 &zero_address_frag);
7473
7474 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7475 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7476 &zero_address_frag);
7477
7478 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7479 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7480 &zero_address_frag);
7481
7482 if (md.tune != itanium1)
7483 {
7484 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7485 le_nop[0] = 0x8;
7486 le_nop_stop[0] = 0x9;
7487 }
7488
7489 /* Compute the table of best templates. We compute goodness as a
7490 base 4 value, in which each match counts for 3. Match-failures
7491 result in NOPs and we use extra_goodness() to pick the execution
7492 units that are best suited for issuing the NOP. */
7493 for (i = 0; i < IA64_NUM_TYPES; ++i)
7494 for (j = 0; j < IA64_NUM_TYPES; ++j)
7495 for (k = 0; k < IA64_NUM_TYPES; ++k)
7496 {
7497 best = 0;
7498 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7499 {
7500 goodness = 0;
7501 if (match (t, i, 0))
7502 {
7503 if (match (t, j, 1))
7504 {
7505 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7506 goodness = 3 + 3 + 3;
7507 else
7508 goodness = 3 + 3 + extra_goodness (t, 2);
7509 }
7510 else if (match (t, j, 2))
7511 goodness = 3 + 3 + extra_goodness (t, 1);
7512 else
7513 {
7514 goodness = 3;
7515 goodness += extra_goodness (t, 1);
7516 goodness += extra_goodness (t, 2);
7517 }
7518 }
7519 else if (match (t, i, 1))
7520 {
7521 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7522 goodness = 3 + 3;
7523 else
7524 goodness = 3 + extra_goodness (t, 2);
7525 }
7526 else if (match (t, i, 2))
7527 goodness = 3 + extra_goodness (t, 1);
7528
7529 if (goodness > best)
7530 {
7531 best = goodness;
7532 best_template[i][j][k] = t;
7533 }
7534 }
7535 }
7536
7537 #ifdef DEBUG_TEMPLATES
7538 /* For debugging changes to the best_template calculations. We don't care
7539 about combinations with invalid instructions, so start the loops at 1. */
7540 for (i = 0; i < IA64_NUM_TYPES; ++i)
7541 for (j = 0; j < IA64_NUM_TYPES; ++j)
7542 for (k = 0; k < IA64_NUM_TYPES; ++k)
7543 {
7544 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7545 'x', 'd' };
7546 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7547 type_letter[k],
7548 ia64_templ_desc[best_template[i][j][k]].name);
7549 }
7550 #endif
7551
7552 for (i = 0; i < NUM_SLOTS; ++i)
7553 md.slot[i].user_template = -1;
7554
7555 md.pseudo_hash = hash_new ();
7556 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7557 {
7558 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7559 (void *) (pseudo_opcode + i));
7560 if (err)
7561 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7562 pseudo_opcode[i].name, err);
7563 }
7564
7565 md.reg_hash = hash_new ();
7566 md.dynreg_hash = hash_new ();
7567 md.const_hash = hash_new ();
7568 md.entry_hash = hash_new ();
7569
7570 /* general registers: */
7571 declare_register_set ("r", 128, REG_GR);
7572 declare_register ("gp", REG_GR + 1);
7573 declare_register ("sp", REG_GR + 12);
7574 declare_register ("tp", REG_GR + 13);
7575 declare_register_set ("ret", 4, REG_GR + 8);
7576
7577 /* floating point registers: */
7578 declare_register_set ("f", 128, REG_FR);
7579 declare_register_set ("farg", 8, REG_FR + 8);
7580 declare_register_set ("fret", 8, REG_FR + 8);
7581
7582 /* branch registers: */
7583 declare_register_set ("b", 8, REG_BR);
7584 declare_register ("rp", REG_BR + 0);
7585
7586 /* predicate registers: */
7587 declare_register_set ("p", 64, REG_P);
7588 declare_register ("pr", REG_PR);
7589 declare_register ("pr.rot", REG_PR_ROT);
7590
7591 /* application registers: */
7592 declare_register_set ("ar", 128, REG_AR);
7593 for (i = 0; i < NELEMS (ar); ++i)
7594 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7595
7596 /* control registers: */
7597 declare_register_set ("cr", 128, REG_CR);
7598 for (i = 0; i < NELEMS (cr); ++i)
7599 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7600
7601 declare_register ("ip", REG_IP);
7602 declare_register ("cfm", REG_CFM);
7603 declare_register ("psr", REG_PSR);
7604 declare_register ("psr.l", REG_PSR_L);
7605 declare_register ("psr.um", REG_PSR_UM);
7606
7607 for (i = 0; i < NELEMS (indirect_reg); ++i)
7608 {
7609 unsigned int regnum = indirect_reg[i].regnum;
7610
7611 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7612 }
7613
7614 /* pseudo-registers used to specify unwind info: */
7615 declare_register ("psp", REG_PSP);
7616
7617 for (i = 0; i < NELEMS (const_bits); ++i)
7618 {
7619 err = hash_insert (md.const_hash, const_bits[i].name,
7620 (PTR) (const_bits + i));
7621 if (err)
7622 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7623 name, err);
7624 }
7625
7626 /* Set the architecture and machine depending on defaults and command line
7627 options. */
7628 if (md.flags & EF_IA_64_ABI64)
7629 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7630 else
7631 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7632
7633 if (! ok)
7634 as_warn (_("Could not set architecture and machine"));
7635
7636 /* Set the pointer size and pointer shift size depending on md.flags */
7637
7638 if (md.flags & EF_IA_64_ABI64)
7639 {
7640 md.pointer_size = 8; /* pointers are 8 bytes */
7641 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7642 }
7643 else
7644 {
7645 md.pointer_size = 4; /* pointers are 4 bytes */
7646 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7647 }
7648
7649 md.mem_offset.hint = 0;
7650 md.path = 0;
7651 md.maxpaths = 0;
7652 md.entry_labels = NULL;
7653 }
7654
7655 /* Set the default options in md. Cannot do this in md_begin because
7656 that is called after md_parse_option which is where we set the
7657 options in md based on command line options. */
7658
7659 void
7660 ia64_init (argc, argv)
7661 int argc ATTRIBUTE_UNUSED;
7662 char **argv ATTRIBUTE_UNUSED;
7663 {
7664 md.flags = MD_FLAGS_DEFAULT;
7665 md.detect_dv = 1;
7666 /* FIXME: We should change it to unwind_check_error someday. */
7667 md.unwind_check = unwind_check_warning;
7668 md.hint_b = hint_b_error;
7669 md.tune = itanium2;
7670 }
7671
7672 /* Return a string for the target object file format. */
7673
7674 const char *
7675 ia64_target_format ()
7676 {
7677 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7678 {
7679 if (md.flags & EF_IA_64_BE)
7680 {
7681 if (md.flags & EF_IA_64_ABI64)
7682 #if defined(TE_AIX50)
7683 return "elf64-ia64-aix-big";
7684 #elif defined(TE_HPUX)
7685 return "elf64-ia64-hpux-big";
7686 #else
7687 return "elf64-ia64-big";
7688 #endif
7689 else
7690 #if defined(TE_AIX50)
7691 return "elf32-ia64-aix-big";
7692 #elif defined(TE_HPUX)
7693 return "elf32-ia64-hpux-big";
7694 #else
7695 return "elf32-ia64-big";
7696 #endif
7697 }
7698 else
7699 {
7700 if (md.flags & EF_IA_64_ABI64)
7701 #ifdef TE_AIX50
7702 return "elf64-ia64-aix-little";
7703 #else
7704 return "elf64-ia64-little";
7705 #endif
7706 else
7707 #ifdef TE_AIX50
7708 return "elf32-ia64-aix-little";
7709 #else
7710 return "elf32-ia64-little";
7711 #endif
7712 }
7713 }
7714 else
7715 return "unknown-format";
7716 }
7717
7718 void
7719 ia64_end_of_source ()
7720 {
7721 /* terminate insn group upon reaching end of file: */
7722 insn_group_break (1, 0, 0);
7723
7724 /* emits slots we haven't written yet: */
7725 ia64_flush_insns ();
7726
7727 bfd_set_private_flags (stdoutput, md.flags);
7728
7729 md.mem_offset.hint = 0;
7730 }
7731
7732 void
7733 ia64_start_line ()
7734 {
7735 static int first;
7736
7737 if (!first) {
7738 /* Make sure we don't reference input_line_pointer[-1] when that's
7739 not valid. */
7740 first = 1;
7741 return;
7742 }
7743
7744 if (md.qp.X_op == O_register)
7745 as_bad ("qualifying predicate not followed by instruction");
7746 md.qp.X_op = O_absent;
7747
7748 if (ignore_input ())
7749 return;
7750
7751 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7752 {
7753 if (md.detect_dv && !md.explicit_mode)
7754 {
7755 static int warned;
7756
7757 if (!warned)
7758 {
7759 warned = 1;
7760 as_warn (_("Explicit stops are ignored in auto mode"));
7761 }
7762 }
7763 else
7764 insn_group_break (1, 0, 0);
7765 }
7766 else if (input_line_pointer[-1] == '{')
7767 {
7768 if (md.manual_bundling)
7769 as_warn ("Found '{' when manual bundling is already turned on");
7770 else
7771 CURR_SLOT.manual_bundling_on = 1;
7772 md.manual_bundling = 1;
7773
7774 /* Bundling is only acceptable in explicit mode
7775 or when in default automatic mode. */
7776 if (md.detect_dv && !md.explicit_mode)
7777 {
7778 if (!md.mode_explicitly_set
7779 && !md.default_explicit_mode)
7780 dot_dv_mode ('E');
7781 else
7782 as_warn (_("Found '{' after explicit switch to automatic mode"));
7783 }
7784 }
7785 else if (input_line_pointer[-1] == '}')
7786 {
7787 if (!md.manual_bundling)
7788 as_warn ("Found '}' when manual bundling is off");
7789 else
7790 PREV_SLOT.manual_bundling_off = 1;
7791 md.manual_bundling = 0;
7792
7793 /* switch back to automatic mode, if applicable */
7794 if (md.detect_dv
7795 && md.explicit_mode
7796 && !md.mode_explicitly_set
7797 && !md.default_explicit_mode)
7798 dot_dv_mode ('A');
7799 }
7800 }
7801
7802 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7803 labels. */
7804 static int defining_tag = 0;
7805
7806 int
7807 ia64_unrecognized_line (ch)
7808 int ch;
7809 {
7810 switch (ch)
7811 {
7812 case '(':
7813 expression_and_evaluate (&md.qp);
7814 if (*input_line_pointer++ != ')')
7815 {
7816 as_bad ("Expected ')'");
7817 return 0;
7818 }
7819 if (md.qp.X_op != O_register)
7820 {
7821 as_bad ("Qualifying predicate expected");
7822 return 0;
7823 }
7824 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7825 {
7826 as_bad ("Predicate register expected");
7827 return 0;
7828 }
7829 return 1;
7830
7831 case '[':
7832 {
7833 char *s;
7834 char c;
7835 symbolS *tag;
7836 int temp;
7837
7838 if (md.qp.X_op == O_register)
7839 {
7840 as_bad ("Tag must come before qualifying predicate.");
7841 return 0;
7842 }
7843
7844 /* This implements just enough of read_a_source_file in read.c to
7845 recognize labels. */
7846 if (is_name_beginner (*input_line_pointer))
7847 {
7848 s = input_line_pointer;
7849 c = get_symbol_end ();
7850 }
7851 else if (LOCAL_LABELS_FB
7852 && ISDIGIT (*input_line_pointer))
7853 {
7854 temp = 0;
7855 while (ISDIGIT (*input_line_pointer))
7856 temp = (temp * 10) + *input_line_pointer++ - '0';
7857 fb_label_instance_inc (temp);
7858 s = fb_label_name (temp, 0);
7859 c = *input_line_pointer;
7860 }
7861 else
7862 {
7863 s = NULL;
7864 c = '\0';
7865 }
7866 if (c != ':')
7867 {
7868 /* Put ':' back for error messages' sake. */
7869 *input_line_pointer++ = ':';
7870 as_bad ("Expected ':'");
7871 return 0;
7872 }
7873
7874 defining_tag = 1;
7875 tag = colon (s);
7876 defining_tag = 0;
7877 /* Put ':' back for error messages' sake. */
7878 *input_line_pointer++ = ':';
7879 if (*input_line_pointer++ != ']')
7880 {
7881 as_bad ("Expected ']'");
7882 return 0;
7883 }
7884 if (! tag)
7885 {
7886 as_bad ("Tag name expected");
7887 return 0;
7888 }
7889 return 1;
7890 }
7891
7892 default:
7893 break;
7894 }
7895
7896 /* Not a valid line. */
7897 return 0;
7898 }
7899
7900 void
7901 ia64_frob_label (sym)
7902 struct symbol *sym;
7903 {
7904 struct label_fix *fix;
7905
7906 /* Tags need special handling since they are not bundle breaks like
7907 labels. */
7908 if (defining_tag)
7909 {
7910 fix = obstack_alloc (&notes, sizeof (*fix));
7911 fix->sym = sym;
7912 fix->next = CURR_SLOT.tag_fixups;
7913 fix->dw2_mark_labels = FALSE;
7914 CURR_SLOT.tag_fixups = fix;
7915
7916 return;
7917 }
7918
7919 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7920 {
7921 md.last_text_seg = now_seg;
7922 fix = obstack_alloc (&notes, sizeof (*fix));
7923 fix->sym = sym;
7924 fix->next = CURR_SLOT.label_fixups;
7925 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7926 CURR_SLOT.label_fixups = fix;
7927
7928 /* Keep track of how many code entry points we've seen. */
7929 if (md.path == md.maxpaths)
7930 {
7931 md.maxpaths += 20;
7932 md.entry_labels = (const char **)
7933 xrealloc ((void *) md.entry_labels,
7934 md.maxpaths * sizeof (char *));
7935 }
7936 md.entry_labels[md.path++] = S_GET_NAME (sym);
7937 }
7938 }
7939
7940 #ifdef TE_HPUX
7941 /* The HP-UX linker will give unresolved symbol errors for symbols
7942 that are declared but unused. This routine removes declared,
7943 unused symbols from an object. */
7944 int
7945 ia64_frob_symbol (sym)
7946 struct symbol *sym;
7947 {
7948 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7949 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7950 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7951 && ! S_IS_EXTERNAL (sym)))
7952 return 1;
7953 return 0;
7954 }
7955 #endif
7956
7957 void
7958 ia64_flush_pending_output ()
7959 {
7960 if (!md.keep_pending_output
7961 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7962 {
7963 /* ??? This causes many unnecessary stop bits to be emitted.
7964 Unfortunately, it isn't clear if it is safe to remove this. */
7965 insn_group_break (1, 0, 0);
7966 ia64_flush_insns ();
7967 }
7968 }
7969
7970 /* Do ia64-specific expression optimization. All that's done here is
7971 to transform index expressions that are either due to the indexing
7972 of rotating registers or due to the indexing of indirect register
7973 sets. */
7974 int
7975 ia64_optimize_expr (l, op, r)
7976 expressionS *l;
7977 operatorT op;
7978 expressionS *r;
7979 {
7980 if (op != O_index)
7981 return 0;
7982 resolve_expression (l);
7983 if (l->X_op == O_register)
7984 {
7985 unsigned num_regs = l->X_add_number >> 16;
7986
7987 resolve_expression (r);
7988 if (num_regs)
7989 {
7990 /* Left side is a .rotX-allocated register. */
7991 if (r->X_op != O_constant)
7992 {
7993 as_bad ("Rotating register index must be a non-negative constant");
7994 r->X_add_number = 0;
7995 }
7996 else if ((valueT) r->X_add_number >= num_regs)
7997 {
7998 as_bad ("Index out of range 0..%u", num_regs - 1);
7999 r->X_add_number = 0;
8000 }
8001 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
8002 return 1;
8003 }
8004 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
8005 {
8006 if (r->X_op != O_register
8007 || r->X_add_number < REG_GR
8008 || r->X_add_number > REG_GR + 127)
8009 {
8010 as_bad ("Indirect register index must be a general register");
8011 r->X_add_number = REG_GR;
8012 }
8013 l->X_op = O_index;
8014 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8015 l->X_add_number = r->X_add_number;
8016 return 1;
8017 }
8018 }
8019 as_bad ("Index can only be applied to rotating or indirect registers");
8020 /* Fall back to some register use of which has as little as possible
8021 side effects, to minimize subsequent error messages. */
8022 l->X_op = O_register;
8023 l->X_add_number = REG_GR + 3;
8024 return 1;
8025 }
8026
8027 int
8028 ia64_parse_name (name, e, nextcharP)
8029 char *name;
8030 expressionS *e;
8031 char *nextcharP;
8032 {
8033 struct const_desc *cdesc;
8034 struct dynreg *dr = 0;
8035 unsigned int idx;
8036 struct symbol *sym;
8037 char *end;
8038
8039 if (*name == '@')
8040 {
8041 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8042
8043 /* Find what relocation pseudo-function we're dealing with. */
8044 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8045 if (pseudo_func[idx].name
8046 && pseudo_func[idx].name[0] == name[1]
8047 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8048 {
8049 pseudo_type = pseudo_func[idx].type;
8050 break;
8051 }
8052 switch (pseudo_type)
8053 {
8054 case PSEUDO_FUNC_RELOC:
8055 end = input_line_pointer;
8056 if (*nextcharP != '(')
8057 {
8058 as_bad ("Expected '('");
8059 break;
8060 }
8061 /* Skip '('. */
8062 ++input_line_pointer;
8063 expression (e);
8064 if (*input_line_pointer != ')')
8065 {
8066 as_bad ("Missing ')'");
8067 goto done;
8068 }
8069 /* Skip ')'. */
8070 ++input_line_pointer;
8071 if (e->X_op != O_symbol)
8072 {
8073 if (e->X_op != O_pseudo_fixup)
8074 {
8075 as_bad ("Not a symbolic expression");
8076 goto done;
8077 }
8078 if (idx != FUNC_LT_RELATIVE)
8079 {
8080 as_bad ("Illegal combination of relocation functions");
8081 goto done;
8082 }
8083 switch (S_GET_VALUE (e->X_op_symbol))
8084 {
8085 case FUNC_FPTR_RELATIVE:
8086 idx = FUNC_LT_FPTR_RELATIVE; break;
8087 case FUNC_DTP_MODULE:
8088 idx = FUNC_LT_DTP_MODULE; break;
8089 case FUNC_DTP_RELATIVE:
8090 idx = FUNC_LT_DTP_RELATIVE; break;
8091 case FUNC_TP_RELATIVE:
8092 idx = FUNC_LT_TP_RELATIVE; break;
8093 default:
8094 as_bad ("Illegal combination of relocation functions");
8095 goto done;
8096 }
8097 }
8098 /* Make sure gas doesn't get rid of local symbols that are used
8099 in relocs. */
8100 e->X_op = O_pseudo_fixup;
8101 e->X_op_symbol = pseudo_func[idx].u.sym;
8102 done:
8103 *nextcharP = *input_line_pointer;
8104 break;
8105
8106 case PSEUDO_FUNC_CONST:
8107 e->X_op = O_constant;
8108 e->X_add_number = pseudo_func[idx].u.ival;
8109 break;
8110
8111 case PSEUDO_FUNC_REG:
8112 e->X_op = O_register;
8113 e->X_add_number = pseudo_func[idx].u.ival;
8114 break;
8115
8116 default:
8117 return 0;
8118 }
8119 return 1;
8120 }
8121
8122 /* first see if NAME is a known register name: */
8123 sym = hash_find (md.reg_hash, name);
8124 if (sym)
8125 {
8126 e->X_op = O_register;
8127 e->X_add_number = S_GET_VALUE (sym);
8128 return 1;
8129 }
8130
8131 cdesc = hash_find (md.const_hash, name);
8132 if (cdesc)
8133 {
8134 e->X_op = O_constant;
8135 e->X_add_number = cdesc->value;
8136 return 1;
8137 }
8138
8139 /* check for inN, locN, or outN: */
8140 idx = 0;
8141 switch (name[0])
8142 {
8143 case 'i':
8144 if (name[1] == 'n' && ISDIGIT (name[2]))
8145 {
8146 dr = &md.in;
8147 idx = 2;
8148 }
8149 break;
8150
8151 case 'l':
8152 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8153 {
8154 dr = &md.loc;
8155 idx = 3;
8156 }
8157 break;
8158
8159 case 'o':
8160 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8161 {
8162 dr = &md.out;
8163 idx = 3;
8164 }
8165 break;
8166
8167 default:
8168 break;
8169 }
8170
8171 /* Ignore register numbers with leading zeroes, except zero itself. */
8172 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8173 {
8174 unsigned long regnum;
8175
8176 /* The name is inN, locN, or outN; parse the register number. */
8177 regnum = strtoul (name + idx, &end, 10);
8178 if (end > name + idx && *end == '\0' && regnum < 96)
8179 {
8180 if (regnum >= dr->num_regs)
8181 {
8182 if (!dr->num_regs)
8183 as_bad ("No current frame");
8184 else
8185 as_bad ("Register number out of range 0..%u",
8186 dr->num_regs - 1);
8187 regnum = 0;
8188 }
8189 e->X_op = O_register;
8190 e->X_add_number = dr->base + regnum;
8191 return 1;
8192 }
8193 }
8194
8195 end = alloca (strlen (name) + 1);
8196 strcpy (end, name);
8197 name = ia64_canonicalize_symbol_name (end);
8198 if ((dr = hash_find (md.dynreg_hash, name)))
8199 {
8200 /* We've got ourselves the name of a rotating register set.
8201 Store the base register number in the low 16 bits of
8202 X_add_number and the size of the register set in the top 16
8203 bits. */
8204 e->X_op = O_register;
8205 e->X_add_number = dr->base | (dr->num_regs << 16);
8206 return 1;
8207 }
8208 return 0;
8209 }
8210
8211 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8212
8213 char *
8214 ia64_canonicalize_symbol_name (name)
8215 char *name;
8216 {
8217 size_t len = strlen (name), full = len;
8218
8219 while (len > 0 && name[len - 1] == '#')
8220 --len;
8221 if (len <= 0)
8222 {
8223 if (full > 0)
8224 as_bad ("Standalone `#' is illegal");
8225 }
8226 else if (len < full - 1)
8227 as_warn ("Redundant `#' suffix operators");
8228 name[len] = '\0';
8229 return name;
8230 }
8231
8232 /* Return true if idesc is a conditional branch instruction. This excludes
8233 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8234 because they always read/write resources regardless of the value of the
8235 qualifying predicate. br.ia must always use p0, and hence is always
8236 taken. Thus this function returns true for branches which can fall
8237 through, and which use no resources if they do fall through. */
8238
8239 static int
8240 is_conditional_branch (idesc)
8241 struct ia64_opcode *idesc;
8242 {
8243 /* br is a conditional branch. Everything that starts with br. except
8244 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8245 Everything that starts with brl is a conditional branch. */
8246 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8247 && (idesc->name[2] == '\0'
8248 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8249 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8250 || idesc->name[2] == 'l'
8251 /* br.cond, br.call, br.clr */
8252 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8253 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8254 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8255 }
8256
8257 /* Return whether the given opcode is a taken branch. If there's any doubt,
8258 returns zero. */
8259
8260 static int
8261 is_taken_branch (idesc)
8262 struct ia64_opcode *idesc;
8263 {
8264 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8265 || strncmp (idesc->name, "br.ia", 5) == 0);
8266 }
8267
8268 /* Return whether the given opcode is an interruption or rfi. If there's any
8269 doubt, returns zero. */
8270
8271 static int
8272 is_interruption_or_rfi (idesc)
8273 struct ia64_opcode *idesc;
8274 {
8275 if (strcmp (idesc->name, "rfi") == 0)
8276 return 1;
8277 return 0;
8278 }
8279
8280 /* Returns the index of the given dependency in the opcode's list of chks, or
8281 -1 if there is no dependency. */
8282
8283 static int
8284 depends_on (depind, idesc)
8285 int depind;
8286 struct ia64_opcode *idesc;
8287 {
8288 int i;
8289 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8290 for (i = 0; i < dep->nchks; i++)
8291 {
8292 if (depind == DEP (dep->chks[i]))
8293 return i;
8294 }
8295 return -1;
8296 }
8297
8298 /* Determine a set of specific resources used for a particular resource
8299 class. Returns the number of specific resources identified For those
8300 cases which are not determinable statically, the resource returned is
8301 marked nonspecific.
8302
8303 Meanings of value in 'NOTE':
8304 1) only read/write when the register number is explicitly encoded in the
8305 insn.
8306 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8307 accesses CFM when qualifying predicate is in the rotating region.
8308 3) general register value is used to specify an indirect register; not
8309 determinable statically.
8310 4) only read the given resource when bits 7:0 of the indirect index
8311 register value does not match the register number of the resource; not
8312 determinable statically.
8313 5) all rules are implementation specific.
8314 6) only when both the index specified by the reader and the index specified
8315 by the writer have the same value in bits 63:61; not determinable
8316 statically.
8317 7) only access the specified resource when the corresponding mask bit is
8318 set
8319 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8320 only read when these insns reference FR2-31
8321 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8322 written when these insns write FR32-127
8323 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8324 instruction
8325 11) The target predicates are written independently of PR[qp], but source
8326 registers are only read if PR[qp] is true. Since the state of PR[qp]
8327 cannot statically be determined, all source registers are marked used.
8328 12) This insn only reads the specified predicate register when that
8329 register is the PR[qp].
8330 13) This reference to ld-c only applies to teh GR whose value is loaded
8331 with data returned from memory, not the post-incremented address register.
8332 14) The RSE resource includes the implementation-specific RSE internal
8333 state resources. At least one (and possibly more) of these resources are
8334 read by each instruction listed in IC:rse-readers. At least one (and
8335 possibly more) of these resources are written by each insn listed in
8336 IC:rse-writers.
8337 15+16) Represents reserved instructions, which the assembler does not
8338 generate.
8339
8340 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8341 this code; there are no dependency violations based on memory access.
8342 */
8343
8344 #define MAX_SPECS 256
8345 #define DV_CHK 1
8346 #define DV_REG 0
8347
8348 static int
8349 specify_resource (dep, idesc, type, specs, note, path)
8350 const struct ia64_dependency *dep;
8351 struct ia64_opcode *idesc;
8352 int type; /* is this a DV chk or a DV reg? */
8353 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8354 int note; /* resource note for this insn's usage */
8355 int path; /* which execution path to examine */
8356 {
8357 int count = 0;
8358 int i;
8359 int rsrc_write = 0;
8360 struct rsrc tmpl;
8361
8362 if (dep->mode == IA64_DV_WAW
8363 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8364 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8365 rsrc_write = 1;
8366
8367 /* template for any resources we identify */
8368 tmpl.dependency = dep;
8369 tmpl.note = note;
8370 tmpl.insn_srlz = tmpl.data_srlz = 0;
8371 tmpl.qp_regno = CURR_SLOT.qp_regno;
8372 tmpl.link_to_qp_branch = 1;
8373 tmpl.mem_offset.hint = 0;
8374 tmpl.mem_offset.offset = 0;
8375 tmpl.mem_offset.base = 0;
8376 tmpl.specific = 1;
8377 tmpl.index = -1;
8378 tmpl.cmp_type = CMP_NONE;
8379 tmpl.depind = 0;
8380 tmpl.file = NULL;
8381 tmpl.line = 0;
8382 tmpl.path = 0;
8383
8384 #define UNHANDLED \
8385 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8386 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8387 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8388
8389 /* we don't need to track these */
8390 if (dep->semantics == IA64_DVS_NONE)
8391 return 0;
8392
8393 switch (dep->specifier)
8394 {
8395 case IA64_RS_AR_K:
8396 if (note == 1)
8397 {
8398 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8399 {
8400 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8401 if (regno >= 0 && regno <= 7)
8402 {
8403 specs[count] = tmpl;
8404 specs[count++].index = regno;
8405 }
8406 }
8407 }
8408 else if (note == 0)
8409 {
8410 for (i = 0; i < 8; i++)
8411 {
8412 specs[count] = tmpl;
8413 specs[count++].index = i;
8414 }
8415 }
8416 else
8417 {
8418 UNHANDLED;
8419 }
8420 break;
8421
8422 case IA64_RS_AR_UNAT:
8423 /* This is a mov =AR or mov AR= instruction. */
8424 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8425 {
8426 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8427 if (regno == AR_UNAT)
8428 {
8429 specs[count++] = tmpl;
8430 }
8431 }
8432 else
8433 {
8434 /* This is a spill/fill, or other instruction that modifies the
8435 unat register. */
8436
8437 /* Unless we can determine the specific bits used, mark the whole
8438 thing; bits 8:3 of the memory address indicate the bit used in
8439 UNAT. The .mem.offset hint may be used to eliminate a small
8440 subset of conflicts. */
8441 specs[count] = tmpl;
8442 if (md.mem_offset.hint)
8443 {
8444 if (md.debug_dv)
8445 fprintf (stderr, " Using hint for spill/fill\n");
8446 /* The index isn't actually used, just set it to something
8447 approximating the bit index. */
8448 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8449 specs[count].mem_offset.hint = 1;
8450 specs[count].mem_offset.offset = md.mem_offset.offset;
8451 specs[count++].mem_offset.base = md.mem_offset.base;
8452 }
8453 else
8454 {
8455 specs[count++].specific = 0;
8456 }
8457 }
8458 break;
8459
8460 case IA64_RS_AR:
8461 if (note == 1)
8462 {
8463 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8464 {
8465 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8466 if ((regno >= 8 && regno <= 15)
8467 || (regno >= 20 && regno <= 23)
8468 || (regno >= 31 && regno <= 39)
8469 || (regno >= 41 && regno <= 47)
8470 || (regno >= 67 && regno <= 111))
8471 {
8472 specs[count] = tmpl;
8473 specs[count++].index = regno;
8474 }
8475 }
8476 }
8477 else
8478 {
8479 UNHANDLED;
8480 }
8481 break;
8482
8483 case IA64_RS_ARb:
8484 if (note == 1)
8485 {
8486 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8487 {
8488 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8489 if ((regno >= 48 && regno <= 63)
8490 || (regno >= 112 && regno <= 127))
8491 {
8492 specs[count] = tmpl;
8493 specs[count++].index = regno;
8494 }
8495 }
8496 }
8497 else if (note == 0)
8498 {
8499 for (i = 48; i < 64; i++)
8500 {
8501 specs[count] = tmpl;
8502 specs[count++].index = i;
8503 }
8504 for (i = 112; i < 128; i++)
8505 {
8506 specs[count] = tmpl;
8507 specs[count++].index = i;
8508 }
8509 }
8510 else
8511 {
8512 UNHANDLED;
8513 }
8514 break;
8515
8516 case IA64_RS_BR:
8517 if (note != 1)
8518 {
8519 UNHANDLED;
8520 }
8521 else
8522 {
8523 if (rsrc_write)
8524 {
8525 for (i = 0; i < idesc->num_outputs; i++)
8526 if (idesc->operands[i] == IA64_OPND_B1
8527 || idesc->operands[i] == IA64_OPND_B2)
8528 {
8529 specs[count] = tmpl;
8530 specs[count++].index =
8531 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8532 }
8533 }
8534 else
8535 {
8536 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8537 if (idesc->operands[i] == IA64_OPND_B1
8538 || idesc->operands[i] == IA64_OPND_B2)
8539 {
8540 specs[count] = tmpl;
8541 specs[count++].index =
8542 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8543 }
8544 }
8545 }
8546 break;
8547
8548 case IA64_RS_CPUID: /* four or more registers */
8549 if (note == 3)
8550 {
8551 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8552 {
8553 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8554 if (regno >= 0 && regno < NELEMS (gr_values)
8555 && KNOWN (regno))
8556 {
8557 specs[count] = tmpl;
8558 specs[count++].index = gr_values[regno].value & 0xFF;
8559 }
8560 else
8561 {
8562 specs[count] = tmpl;
8563 specs[count++].specific = 0;
8564 }
8565 }
8566 }
8567 else
8568 {
8569 UNHANDLED;
8570 }
8571 break;
8572
8573 case IA64_RS_DBR: /* four or more registers */
8574 if (note == 3)
8575 {
8576 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8577 {
8578 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8579 if (regno >= 0 && regno < NELEMS (gr_values)
8580 && KNOWN (regno))
8581 {
8582 specs[count] = tmpl;
8583 specs[count++].index = gr_values[regno].value & 0xFF;
8584 }
8585 else
8586 {
8587 specs[count] = tmpl;
8588 specs[count++].specific = 0;
8589 }
8590 }
8591 }
8592 else if (note == 0 && !rsrc_write)
8593 {
8594 specs[count] = tmpl;
8595 specs[count++].specific = 0;
8596 }
8597 else
8598 {
8599 UNHANDLED;
8600 }
8601 break;
8602
8603 case IA64_RS_IBR: /* four or more registers */
8604 if (note == 3)
8605 {
8606 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8607 {
8608 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8609 if (regno >= 0 && regno < NELEMS (gr_values)
8610 && KNOWN (regno))
8611 {
8612 specs[count] = tmpl;
8613 specs[count++].index = gr_values[regno].value & 0xFF;
8614 }
8615 else
8616 {
8617 specs[count] = tmpl;
8618 specs[count++].specific = 0;
8619 }
8620 }
8621 }
8622 else
8623 {
8624 UNHANDLED;
8625 }
8626 break;
8627
8628 case IA64_RS_MSR:
8629 if (note == 5)
8630 {
8631 /* These are implementation specific. Force all references to
8632 conflict with all other references. */
8633 specs[count] = tmpl;
8634 specs[count++].specific = 0;
8635 }
8636 else
8637 {
8638 UNHANDLED;
8639 }
8640 break;
8641
8642 case IA64_RS_PKR: /* 16 or more registers */
8643 if (note == 3 || note == 4)
8644 {
8645 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8646 {
8647 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8648 if (regno >= 0 && regno < NELEMS (gr_values)
8649 && KNOWN (regno))
8650 {
8651 if (note == 3)
8652 {
8653 specs[count] = tmpl;
8654 specs[count++].index = gr_values[regno].value & 0xFF;
8655 }
8656 else
8657 for (i = 0; i < NELEMS (gr_values); i++)
8658 {
8659 /* Uses all registers *except* the one in R3. */
8660 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8661 {
8662 specs[count] = tmpl;
8663 specs[count++].index = i;
8664 }
8665 }
8666 }
8667 else
8668 {
8669 specs[count] = tmpl;
8670 specs[count++].specific = 0;
8671 }
8672 }
8673 }
8674 else if (note == 0)
8675 {
8676 /* probe et al. */
8677 specs[count] = tmpl;
8678 specs[count++].specific = 0;
8679 }
8680 break;
8681
8682 case IA64_RS_PMC: /* four or more registers */
8683 if (note == 3)
8684 {
8685 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8686 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8687
8688 {
8689 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8690 ? 1 : !rsrc_write);
8691 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8692 if (regno >= 0 && regno < NELEMS (gr_values)
8693 && KNOWN (regno))
8694 {
8695 specs[count] = tmpl;
8696 specs[count++].index = gr_values[regno].value & 0xFF;
8697 }
8698 else
8699 {
8700 specs[count] = tmpl;
8701 specs[count++].specific = 0;
8702 }
8703 }
8704 }
8705 else
8706 {
8707 UNHANDLED;
8708 }
8709 break;
8710
8711 case IA64_RS_PMD: /* four or more registers */
8712 if (note == 3)
8713 {
8714 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8715 {
8716 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8717 if (regno >= 0 && regno < NELEMS (gr_values)
8718 && KNOWN (regno))
8719 {
8720 specs[count] = tmpl;
8721 specs[count++].index = gr_values[regno].value & 0xFF;
8722 }
8723 else
8724 {
8725 specs[count] = tmpl;
8726 specs[count++].specific = 0;
8727 }
8728 }
8729 }
8730 else
8731 {
8732 UNHANDLED;
8733 }
8734 break;
8735
8736 case IA64_RS_RR: /* eight registers */
8737 if (note == 6)
8738 {
8739 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8740 {
8741 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8742 if (regno >= 0 && regno < NELEMS (gr_values)
8743 && KNOWN (regno))
8744 {
8745 specs[count] = tmpl;
8746 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8747 }
8748 else
8749 {
8750 specs[count] = tmpl;
8751 specs[count++].specific = 0;
8752 }
8753 }
8754 }
8755 else if (note == 0 && !rsrc_write)
8756 {
8757 specs[count] = tmpl;
8758 specs[count++].specific = 0;
8759 }
8760 else
8761 {
8762 UNHANDLED;
8763 }
8764 break;
8765
8766 case IA64_RS_CR_IRR:
8767 if (note == 0)
8768 {
8769 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8770 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8771 if (rsrc_write
8772 && idesc->operands[1] == IA64_OPND_CR3
8773 && regno == CR_IVR)
8774 {
8775 for (i = 0; i < 4; i++)
8776 {
8777 specs[count] = tmpl;
8778 specs[count++].index = CR_IRR0 + i;
8779 }
8780 }
8781 }
8782 else if (note == 1)
8783 {
8784 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8785 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8786 && regno >= CR_IRR0
8787 && regno <= CR_IRR3)
8788 {
8789 specs[count] = tmpl;
8790 specs[count++].index = regno;
8791 }
8792 }
8793 else
8794 {
8795 UNHANDLED;
8796 }
8797 break;
8798
8799 case IA64_RS_CR_LRR:
8800 if (note != 1)
8801 {
8802 UNHANDLED;
8803 }
8804 else
8805 {
8806 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8807 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8808 && (regno == CR_LRR0 || regno == CR_LRR1))
8809 {
8810 specs[count] = tmpl;
8811 specs[count++].index = regno;
8812 }
8813 }
8814 break;
8815
8816 case IA64_RS_CR:
8817 if (note == 1)
8818 {
8819 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8820 {
8821 specs[count] = tmpl;
8822 specs[count++].index =
8823 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8824 }
8825 }
8826 else
8827 {
8828 UNHANDLED;
8829 }
8830 break;
8831
8832 case IA64_RS_FR:
8833 case IA64_RS_FRb:
8834 if (note != 1)
8835 {
8836 UNHANDLED;
8837 }
8838 else if (rsrc_write)
8839 {
8840 if (dep->specifier == IA64_RS_FRb
8841 && idesc->operands[0] == IA64_OPND_F1)
8842 {
8843 specs[count] = tmpl;
8844 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8845 }
8846 }
8847 else
8848 {
8849 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8850 {
8851 if (idesc->operands[i] == IA64_OPND_F2
8852 || idesc->operands[i] == IA64_OPND_F3
8853 || idesc->operands[i] == IA64_OPND_F4)
8854 {
8855 specs[count] = tmpl;
8856 specs[count++].index =
8857 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8858 }
8859 }
8860 }
8861 break;
8862
8863 case IA64_RS_GR:
8864 if (note == 13)
8865 {
8866 /* This reference applies only to the GR whose value is loaded with
8867 data returned from memory. */
8868 specs[count] = tmpl;
8869 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8870 }
8871 else if (note == 1)
8872 {
8873 if (rsrc_write)
8874 {
8875 for (i = 0; i < idesc->num_outputs; i++)
8876 if (idesc->operands[i] == IA64_OPND_R1
8877 || idesc->operands[i] == IA64_OPND_R2
8878 || idesc->operands[i] == IA64_OPND_R3)
8879 {
8880 specs[count] = tmpl;
8881 specs[count++].index =
8882 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8883 }
8884 if (idesc->flags & IA64_OPCODE_POSTINC)
8885 for (i = 0; i < NELEMS (idesc->operands); i++)
8886 if (idesc->operands[i] == IA64_OPND_MR3)
8887 {
8888 specs[count] = tmpl;
8889 specs[count++].index =
8890 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8891 }
8892 }
8893 else
8894 {
8895 /* Look for anything that reads a GR. */
8896 for (i = 0; i < NELEMS (idesc->operands); i++)
8897 {
8898 if (idesc->operands[i] == IA64_OPND_MR3
8899 || idesc->operands[i] == IA64_OPND_CPUID_R3
8900 || idesc->operands[i] == IA64_OPND_DBR_R3
8901 || idesc->operands[i] == IA64_OPND_IBR_R3
8902 || idesc->operands[i] == IA64_OPND_MSR_R3
8903 || idesc->operands[i] == IA64_OPND_PKR_R3
8904 || idesc->operands[i] == IA64_OPND_PMC_R3
8905 || idesc->operands[i] == IA64_OPND_PMD_R3
8906 || idesc->operands[i] == IA64_OPND_RR_R3
8907 || ((i >= idesc->num_outputs)
8908 && (idesc->operands[i] == IA64_OPND_R1
8909 || idesc->operands[i] == IA64_OPND_R2
8910 || idesc->operands[i] == IA64_OPND_R3
8911 /* addl source register. */
8912 || idesc->operands[i] == IA64_OPND_R3_2)))
8913 {
8914 specs[count] = tmpl;
8915 specs[count++].index =
8916 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8917 }
8918 }
8919 }
8920 }
8921 else
8922 {
8923 UNHANDLED;
8924 }
8925 break;
8926
8927 /* This is the same as IA64_RS_PRr, except that the register range is
8928 from 1 - 15, and there are no rotating register reads/writes here. */
8929 case IA64_RS_PR:
8930 if (note == 0)
8931 {
8932 for (i = 1; i < 16; i++)
8933 {
8934 specs[count] = tmpl;
8935 specs[count++].index = i;
8936 }
8937 }
8938 else if (note == 7)
8939 {
8940 valueT mask = 0;
8941 /* Mark only those registers indicated by the mask. */
8942 if (rsrc_write)
8943 {
8944 mask = CURR_SLOT.opnd[2].X_add_number;
8945 for (i = 1; i < 16; i++)
8946 if (mask & ((valueT) 1 << i))
8947 {
8948 specs[count] = tmpl;
8949 specs[count++].index = i;
8950 }
8951 }
8952 else
8953 {
8954 UNHANDLED;
8955 }
8956 }
8957 else if (note == 11) /* note 11 implies note 1 as well */
8958 {
8959 if (rsrc_write)
8960 {
8961 for (i = 0; i < idesc->num_outputs; i++)
8962 {
8963 if (idesc->operands[i] == IA64_OPND_P1
8964 || idesc->operands[i] == IA64_OPND_P2)
8965 {
8966 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8967 if (regno >= 1 && regno < 16)
8968 {
8969 specs[count] = tmpl;
8970 specs[count++].index = regno;
8971 }
8972 }
8973 }
8974 }
8975 else
8976 {
8977 UNHANDLED;
8978 }
8979 }
8980 else if (note == 12)
8981 {
8982 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8983 {
8984 specs[count] = tmpl;
8985 specs[count++].index = CURR_SLOT.qp_regno;
8986 }
8987 }
8988 else if (note == 1)
8989 {
8990 if (rsrc_write)
8991 {
8992 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8993 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8994 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8995 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8996
8997 if ((idesc->operands[0] == IA64_OPND_P1
8998 || idesc->operands[0] == IA64_OPND_P2)
8999 && p1 >= 1 && p1 < 16)
9000 {
9001 specs[count] = tmpl;
9002 specs[count].cmp_type =
9003 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9004 specs[count++].index = p1;
9005 }
9006 if ((idesc->operands[1] == IA64_OPND_P1
9007 || idesc->operands[1] == IA64_OPND_P2)
9008 && p2 >= 1 && p2 < 16)
9009 {
9010 specs[count] = tmpl;
9011 specs[count].cmp_type =
9012 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9013 specs[count++].index = p2;
9014 }
9015 }
9016 else
9017 {
9018 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9019 {
9020 specs[count] = tmpl;
9021 specs[count++].index = CURR_SLOT.qp_regno;
9022 }
9023 if (idesc->operands[1] == IA64_OPND_PR)
9024 {
9025 for (i = 1; i < 16; i++)
9026 {
9027 specs[count] = tmpl;
9028 specs[count++].index = i;
9029 }
9030 }
9031 }
9032 }
9033 else
9034 {
9035 UNHANDLED;
9036 }
9037 break;
9038
9039 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9040 simplified cases of this. */
9041 case IA64_RS_PRr:
9042 if (note == 0)
9043 {
9044 for (i = 16; i < 63; i++)
9045 {
9046 specs[count] = tmpl;
9047 specs[count++].index = i;
9048 }
9049 }
9050 else if (note == 7)
9051 {
9052 valueT mask = 0;
9053 /* Mark only those registers indicated by the mask. */
9054 if (rsrc_write
9055 && idesc->operands[0] == IA64_OPND_PR)
9056 {
9057 mask = CURR_SLOT.opnd[2].X_add_number;
9058 if (mask & ((valueT) 1 << 16))
9059 for (i = 16; i < 63; i++)
9060 {
9061 specs[count] = tmpl;
9062 specs[count++].index = i;
9063 }
9064 }
9065 else if (rsrc_write
9066 && idesc->operands[0] == IA64_OPND_PR_ROT)
9067 {
9068 for (i = 16; i < 63; i++)
9069 {
9070 specs[count] = tmpl;
9071 specs[count++].index = i;
9072 }
9073 }
9074 else
9075 {
9076 UNHANDLED;
9077 }
9078 }
9079 else if (note == 11) /* note 11 implies note 1 as well */
9080 {
9081 if (rsrc_write)
9082 {
9083 for (i = 0; i < idesc->num_outputs; i++)
9084 {
9085 if (idesc->operands[i] == IA64_OPND_P1
9086 || idesc->operands[i] == IA64_OPND_P2)
9087 {
9088 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9089 if (regno >= 16 && regno < 63)
9090 {
9091 specs[count] = tmpl;
9092 specs[count++].index = regno;
9093 }
9094 }
9095 }
9096 }
9097 else
9098 {
9099 UNHANDLED;
9100 }
9101 }
9102 else if (note == 12)
9103 {
9104 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9105 {
9106 specs[count] = tmpl;
9107 specs[count++].index = CURR_SLOT.qp_regno;
9108 }
9109 }
9110 else if (note == 1)
9111 {
9112 if (rsrc_write)
9113 {
9114 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9115 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9116 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9117 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9118
9119 if ((idesc->operands[0] == IA64_OPND_P1
9120 || idesc->operands[0] == IA64_OPND_P2)
9121 && p1 >= 16 && p1 < 63)
9122 {
9123 specs[count] = tmpl;
9124 specs[count].cmp_type =
9125 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9126 specs[count++].index = p1;
9127 }
9128 if ((idesc->operands[1] == IA64_OPND_P1
9129 || idesc->operands[1] == IA64_OPND_P2)
9130 && p2 >= 16 && p2 < 63)
9131 {
9132 specs[count] = tmpl;
9133 specs[count].cmp_type =
9134 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9135 specs[count++].index = p2;
9136 }
9137 }
9138 else
9139 {
9140 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9141 {
9142 specs[count] = tmpl;
9143 specs[count++].index = CURR_SLOT.qp_regno;
9144 }
9145 if (idesc->operands[1] == IA64_OPND_PR)
9146 {
9147 for (i = 16; i < 63; i++)
9148 {
9149 specs[count] = tmpl;
9150 specs[count++].index = i;
9151 }
9152 }
9153 }
9154 }
9155 else
9156 {
9157 UNHANDLED;
9158 }
9159 break;
9160
9161 case IA64_RS_PSR:
9162 /* Verify that the instruction is using the PSR bit indicated in
9163 dep->regindex. */
9164 if (note == 0)
9165 {
9166 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9167 {
9168 if (dep->regindex < 6)
9169 {
9170 specs[count++] = tmpl;
9171 }
9172 }
9173 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9174 {
9175 if (dep->regindex < 32
9176 || dep->regindex == 35
9177 || dep->regindex == 36
9178 || (!rsrc_write && dep->regindex == PSR_CPL))
9179 {
9180 specs[count++] = tmpl;
9181 }
9182 }
9183 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9184 {
9185 if (dep->regindex < 32
9186 || dep->regindex == 35
9187 || dep->regindex == 36
9188 || (rsrc_write && dep->regindex == PSR_CPL))
9189 {
9190 specs[count++] = tmpl;
9191 }
9192 }
9193 else
9194 {
9195 /* Several PSR bits have very specific dependencies. */
9196 switch (dep->regindex)
9197 {
9198 default:
9199 specs[count++] = tmpl;
9200 break;
9201 case PSR_IC:
9202 if (rsrc_write)
9203 {
9204 specs[count++] = tmpl;
9205 }
9206 else
9207 {
9208 /* Only certain CR accesses use PSR.ic */
9209 if (idesc->operands[0] == IA64_OPND_CR3
9210 || idesc->operands[1] == IA64_OPND_CR3)
9211 {
9212 int index =
9213 ((idesc->operands[0] == IA64_OPND_CR3)
9214 ? 0 : 1);
9215 int regno =
9216 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9217
9218 switch (regno)
9219 {
9220 default:
9221 break;
9222 case CR_ITIR:
9223 case CR_IFS:
9224 case CR_IIM:
9225 case CR_IIP:
9226 case CR_IPSR:
9227 case CR_ISR:
9228 case CR_IFA:
9229 case CR_IHA:
9230 case CR_IIPA:
9231 specs[count++] = tmpl;
9232 break;
9233 }
9234 }
9235 }
9236 break;
9237 case PSR_CPL:
9238 if (rsrc_write)
9239 {
9240 specs[count++] = tmpl;
9241 }
9242 else
9243 {
9244 /* Only some AR accesses use cpl */
9245 if (idesc->operands[0] == IA64_OPND_AR3
9246 || idesc->operands[1] == IA64_OPND_AR3)
9247 {
9248 int index =
9249 ((idesc->operands[0] == IA64_OPND_AR3)
9250 ? 0 : 1);
9251 int regno =
9252 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9253
9254 if (regno == AR_ITC
9255 || (index == 0
9256 && (regno == AR_ITC
9257 || regno == AR_RSC
9258 || (regno >= AR_K0
9259 && regno <= AR_K7))))
9260 {
9261 specs[count++] = tmpl;
9262 }
9263 }
9264 else
9265 {
9266 specs[count++] = tmpl;
9267 }
9268 break;
9269 }
9270 }
9271 }
9272 }
9273 else if (note == 7)
9274 {
9275 valueT mask = 0;
9276 if (idesc->operands[0] == IA64_OPND_IMMU24)
9277 {
9278 mask = CURR_SLOT.opnd[0].X_add_number;
9279 }
9280 else
9281 {
9282 UNHANDLED;
9283 }
9284 if (mask & ((valueT) 1 << dep->regindex))
9285 {
9286 specs[count++] = tmpl;
9287 }
9288 }
9289 else if (note == 8)
9290 {
9291 int min = dep->regindex == PSR_DFL ? 2 : 32;
9292 int max = dep->regindex == PSR_DFL ? 31 : 127;
9293 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9294 for (i = 0; i < NELEMS (idesc->operands); i++)
9295 {
9296 if (idesc->operands[i] == IA64_OPND_F1
9297 || idesc->operands[i] == IA64_OPND_F2
9298 || idesc->operands[i] == IA64_OPND_F3
9299 || idesc->operands[i] == IA64_OPND_F4)
9300 {
9301 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9302 if (reg >= min && reg <= max)
9303 {
9304 specs[count++] = tmpl;
9305 }
9306 }
9307 }
9308 }
9309 else if (note == 9)
9310 {
9311 int min = dep->regindex == PSR_MFL ? 2 : 32;
9312 int max = dep->regindex == PSR_MFL ? 31 : 127;
9313 /* mfh is read on writes to FR32-127; mfl is read on writes to
9314 FR2-31 */
9315 for (i = 0; i < idesc->num_outputs; i++)
9316 {
9317 if (idesc->operands[i] == IA64_OPND_F1)
9318 {
9319 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9320 if (reg >= min && reg <= max)
9321 {
9322 specs[count++] = tmpl;
9323 }
9324 }
9325 }
9326 }
9327 else if (note == 10)
9328 {
9329 for (i = 0; i < NELEMS (idesc->operands); i++)
9330 {
9331 if (idesc->operands[i] == IA64_OPND_R1
9332 || idesc->operands[i] == IA64_OPND_R2
9333 || idesc->operands[i] == IA64_OPND_R3)
9334 {
9335 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9336 if (regno >= 16 && regno <= 31)
9337 {
9338 specs[count++] = tmpl;
9339 }
9340 }
9341 }
9342 }
9343 else
9344 {
9345 UNHANDLED;
9346 }
9347 break;
9348
9349 case IA64_RS_AR_FPSR:
9350 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9351 {
9352 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9353 if (regno == AR_FPSR)
9354 {
9355 specs[count++] = tmpl;
9356 }
9357 }
9358 else
9359 {
9360 specs[count++] = tmpl;
9361 }
9362 break;
9363
9364 case IA64_RS_ARX:
9365 /* Handle all AR[REG] resources */
9366 if (note == 0 || note == 1)
9367 {
9368 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9369 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9370 && regno == dep->regindex)
9371 {
9372 specs[count++] = tmpl;
9373 }
9374 /* other AR[REG] resources may be affected by AR accesses */
9375 else if (idesc->operands[0] == IA64_OPND_AR3)
9376 {
9377 /* AR[] writes */
9378 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9379 switch (dep->regindex)
9380 {
9381 default:
9382 break;
9383 case AR_BSP:
9384 case AR_RNAT:
9385 if (regno == AR_BSPSTORE)
9386 {
9387 specs[count++] = tmpl;
9388 }
9389 case AR_RSC:
9390 if (!rsrc_write &&
9391 (regno == AR_BSPSTORE
9392 || regno == AR_RNAT))
9393 {
9394 specs[count++] = tmpl;
9395 }
9396 break;
9397 }
9398 }
9399 else if (idesc->operands[1] == IA64_OPND_AR3)
9400 {
9401 /* AR[] reads */
9402 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9403 switch (dep->regindex)
9404 {
9405 default:
9406 break;
9407 case AR_RSC:
9408 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9409 {
9410 specs[count++] = tmpl;
9411 }
9412 break;
9413 }
9414 }
9415 else
9416 {
9417 specs[count++] = tmpl;
9418 }
9419 }
9420 else
9421 {
9422 UNHANDLED;
9423 }
9424 break;
9425
9426 case IA64_RS_CRX:
9427 /* Handle all CR[REG] resources */
9428 if (note == 0 || note == 1)
9429 {
9430 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9431 {
9432 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9433 if (regno == dep->regindex)
9434 {
9435 specs[count++] = tmpl;
9436 }
9437 else if (!rsrc_write)
9438 {
9439 /* Reads from CR[IVR] affect other resources. */
9440 if (regno == CR_IVR)
9441 {
9442 if ((dep->regindex >= CR_IRR0
9443 && dep->regindex <= CR_IRR3)
9444 || dep->regindex == CR_TPR)
9445 {
9446 specs[count++] = tmpl;
9447 }
9448 }
9449 }
9450 }
9451 else
9452 {
9453 specs[count++] = tmpl;
9454 }
9455 }
9456 else
9457 {
9458 UNHANDLED;
9459 }
9460 break;
9461
9462 case IA64_RS_INSERVICE:
9463 /* look for write of EOI (67) or read of IVR (65) */
9464 if ((idesc->operands[0] == IA64_OPND_CR3
9465 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9466 || (idesc->operands[1] == IA64_OPND_CR3
9467 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9468 {
9469 specs[count++] = tmpl;
9470 }
9471 break;
9472
9473 case IA64_RS_GR0:
9474 if (note == 1)
9475 {
9476 specs[count++] = tmpl;
9477 }
9478 else
9479 {
9480 UNHANDLED;
9481 }
9482 break;
9483
9484 case IA64_RS_CFM:
9485 if (note != 2)
9486 {
9487 specs[count++] = tmpl;
9488 }
9489 else
9490 {
9491 /* Check if any of the registers accessed are in the rotating region.
9492 mov to/from pr accesses CFM only when qp_regno is in the rotating
9493 region */
9494 for (i = 0; i < NELEMS (idesc->operands); i++)
9495 {
9496 if (idesc->operands[i] == IA64_OPND_R1
9497 || idesc->operands[i] == IA64_OPND_R2
9498 || idesc->operands[i] == IA64_OPND_R3)
9499 {
9500 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9501 /* Assumes that md.rot.num_regs is always valid */
9502 if (md.rot.num_regs > 0
9503 && num > 31
9504 && num < 31 + md.rot.num_regs)
9505 {
9506 specs[count] = tmpl;
9507 specs[count++].specific = 0;
9508 }
9509 }
9510 else if (idesc->operands[i] == IA64_OPND_F1
9511 || idesc->operands[i] == IA64_OPND_F2
9512 || idesc->operands[i] == IA64_OPND_F3
9513 || idesc->operands[i] == IA64_OPND_F4)
9514 {
9515 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9516 if (num > 31)
9517 {
9518 specs[count] = tmpl;
9519 specs[count++].specific = 0;
9520 }
9521 }
9522 else if (idesc->operands[i] == IA64_OPND_P1
9523 || idesc->operands[i] == IA64_OPND_P2)
9524 {
9525 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9526 if (num > 15)
9527 {
9528 specs[count] = tmpl;
9529 specs[count++].specific = 0;
9530 }
9531 }
9532 }
9533 if (CURR_SLOT.qp_regno > 15)
9534 {
9535 specs[count] = tmpl;
9536 specs[count++].specific = 0;
9537 }
9538 }
9539 break;
9540
9541 /* This is the same as IA64_RS_PRr, except simplified to account for
9542 the fact that there is only one register. */
9543 case IA64_RS_PR63:
9544 if (note == 0)
9545 {
9546 specs[count++] = tmpl;
9547 }
9548 else if (note == 7)
9549 {
9550 valueT mask = 0;
9551 if (idesc->operands[2] == IA64_OPND_IMM17)
9552 mask = CURR_SLOT.opnd[2].X_add_number;
9553 if (mask & ((valueT) 1 << 63))
9554 specs[count++] = tmpl;
9555 }
9556 else if (note == 11)
9557 {
9558 if ((idesc->operands[0] == IA64_OPND_P1
9559 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9560 || (idesc->operands[1] == IA64_OPND_P2
9561 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9562 {
9563 specs[count++] = tmpl;
9564 }
9565 }
9566 else if (note == 12)
9567 {
9568 if (CURR_SLOT.qp_regno == 63)
9569 {
9570 specs[count++] = tmpl;
9571 }
9572 }
9573 else if (note == 1)
9574 {
9575 if (rsrc_write)
9576 {
9577 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9578 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9579 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9580 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9581
9582 if (p1 == 63
9583 && (idesc->operands[0] == IA64_OPND_P1
9584 || idesc->operands[0] == IA64_OPND_P2))
9585 {
9586 specs[count] = tmpl;
9587 specs[count++].cmp_type =
9588 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9589 }
9590 if (p2 == 63
9591 && (idesc->operands[1] == IA64_OPND_P1
9592 || idesc->operands[1] == IA64_OPND_P2))
9593 {
9594 specs[count] = tmpl;
9595 specs[count++].cmp_type =
9596 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9597 }
9598 }
9599 else
9600 {
9601 if (CURR_SLOT.qp_regno == 63)
9602 {
9603 specs[count++] = tmpl;
9604 }
9605 }
9606 }
9607 else
9608 {
9609 UNHANDLED;
9610 }
9611 break;
9612
9613 case IA64_RS_RSE:
9614 /* FIXME we can identify some individual RSE written resources, but RSE
9615 read resources have not yet been completely identified, so for now
9616 treat RSE as a single resource */
9617 if (strncmp (idesc->name, "mov", 3) == 0)
9618 {
9619 if (rsrc_write)
9620 {
9621 if (idesc->operands[0] == IA64_OPND_AR3
9622 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9623 {
9624 specs[count++] = tmpl;
9625 }
9626 }
9627 else
9628 {
9629 if (idesc->operands[0] == IA64_OPND_AR3)
9630 {
9631 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9632 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9633 {
9634 specs[count++] = tmpl;
9635 }
9636 }
9637 else if (idesc->operands[1] == IA64_OPND_AR3)
9638 {
9639 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9640 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9641 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9642 {
9643 specs[count++] = tmpl;
9644 }
9645 }
9646 }
9647 }
9648 else
9649 {
9650 specs[count++] = tmpl;
9651 }
9652 break;
9653
9654 case IA64_RS_ANY:
9655 /* FIXME -- do any of these need to be non-specific? */
9656 specs[count++] = tmpl;
9657 break;
9658
9659 default:
9660 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9661 break;
9662 }
9663
9664 return count;
9665 }
9666
9667 /* Clear branch flags on marked resources. This breaks the link between the
9668 QP of the marking instruction and a subsequent branch on the same QP. */
9669
9670 static void
9671 clear_qp_branch_flag (mask)
9672 valueT mask;
9673 {
9674 int i;
9675 for (i = 0; i < regdepslen; i++)
9676 {
9677 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9678 if ((bit & mask) != 0)
9679 {
9680 regdeps[i].link_to_qp_branch = 0;
9681 }
9682 }
9683 }
9684
9685 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9686 any mutexes which contain one of the PRs and create new ones when
9687 needed. */
9688
9689 static int
9690 update_qp_mutex (valueT mask)
9691 {
9692 int i;
9693 int add = 0;
9694
9695 i = 0;
9696 while (i < qp_mutexeslen)
9697 {
9698 if ((qp_mutexes[i].prmask & mask) != 0)
9699 {
9700 /* If it destroys and creates the same mutex, do nothing. */
9701 if (qp_mutexes[i].prmask == mask
9702 && qp_mutexes[i].path == md.path)
9703 {
9704 i++;
9705 add = -1;
9706 }
9707 else
9708 {
9709 int keep = 0;
9710
9711 if (md.debug_dv)
9712 {
9713 fprintf (stderr, " Clearing mutex relation");
9714 print_prmask (qp_mutexes[i].prmask);
9715 fprintf (stderr, "\n");
9716 }
9717
9718 /* Deal with the old mutex with more than 3+ PRs only if
9719 the new mutex on the same execution path with it.
9720
9721 FIXME: The 3+ mutex support is incomplete.
9722 dot_pred_rel () may be a better place to fix it. */
9723 if (qp_mutexes[i].path == md.path)
9724 {
9725 /* If it is a proper subset of the mutex, create a
9726 new mutex. */
9727 if (add == 0
9728 && (qp_mutexes[i].prmask & mask) == mask)
9729 add = 1;
9730
9731 qp_mutexes[i].prmask &= ~mask;
9732 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9733 {
9734 /* Modify the mutex if there are more than one
9735 PR left. */
9736 keep = 1;
9737 i++;
9738 }
9739 }
9740
9741 if (keep == 0)
9742 /* Remove the mutex. */
9743 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9744 }
9745 }
9746 else
9747 ++i;
9748 }
9749
9750 if (add == 1)
9751 add_qp_mutex (mask);
9752
9753 return add;
9754 }
9755
9756 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9757
9758 Any changes to a PR clears the mutex relations which include that PR. */
9759
9760 static void
9761 clear_qp_mutex (mask)
9762 valueT mask;
9763 {
9764 int i;
9765
9766 i = 0;
9767 while (i < qp_mutexeslen)
9768 {
9769 if ((qp_mutexes[i].prmask & mask) != 0)
9770 {
9771 if (md.debug_dv)
9772 {
9773 fprintf (stderr, " Clearing mutex relation");
9774 print_prmask (qp_mutexes[i].prmask);
9775 fprintf (stderr, "\n");
9776 }
9777 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9778 }
9779 else
9780 ++i;
9781 }
9782 }
9783
9784 /* Clear implies relations which contain PRs in the given masks.
9785 P1_MASK indicates the source of the implies relation, while P2_MASK
9786 indicates the implied PR. */
9787
9788 static void
9789 clear_qp_implies (p1_mask, p2_mask)
9790 valueT p1_mask;
9791 valueT p2_mask;
9792 {
9793 int i;
9794
9795 i = 0;
9796 while (i < qp_implieslen)
9797 {
9798 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9799 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9800 {
9801 if (md.debug_dv)
9802 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9803 qp_implies[i].p1, qp_implies[i].p2);
9804 qp_implies[i] = qp_implies[--qp_implieslen];
9805 }
9806 else
9807 ++i;
9808 }
9809 }
9810
9811 /* Add the PRs specified to the list of implied relations. */
9812
9813 static void
9814 add_qp_imply (p1, p2)
9815 int p1, p2;
9816 {
9817 valueT mask;
9818 valueT bit;
9819 int i;
9820
9821 /* p0 is not meaningful here. */
9822 if (p1 == 0 || p2 == 0)
9823 abort ();
9824
9825 if (p1 == p2)
9826 return;
9827
9828 /* If it exists already, ignore it. */
9829 for (i = 0; i < qp_implieslen; i++)
9830 {
9831 if (qp_implies[i].p1 == p1
9832 && qp_implies[i].p2 == p2
9833 && qp_implies[i].path == md.path
9834 && !qp_implies[i].p2_branched)
9835 return;
9836 }
9837
9838 if (qp_implieslen == qp_impliestotlen)
9839 {
9840 qp_impliestotlen += 20;
9841 qp_implies = (struct qp_imply *)
9842 xrealloc ((void *) qp_implies,
9843 qp_impliestotlen * sizeof (struct qp_imply));
9844 }
9845 if (md.debug_dv)
9846 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9847 qp_implies[qp_implieslen].p1 = p1;
9848 qp_implies[qp_implieslen].p2 = p2;
9849 qp_implies[qp_implieslen].path = md.path;
9850 qp_implies[qp_implieslen++].p2_branched = 0;
9851
9852 /* Add in the implied transitive relations; for everything that p2 implies,
9853 make p1 imply that, too; for everything that implies p1, make it imply p2
9854 as well. */
9855 for (i = 0; i < qp_implieslen; i++)
9856 {
9857 if (qp_implies[i].p1 == p2)
9858 add_qp_imply (p1, qp_implies[i].p2);
9859 if (qp_implies[i].p2 == p1)
9860 add_qp_imply (qp_implies[i].p1, p2);
9861 }
9862 /* Add in mutex relations implied by this implies relation; for each mutex
9863 relation containing p2, duplicate it and replace p2 with p1. */
9864 bit = (valueT) 1 << p1;
9865 mask = (valueT) 1 << p2;
9866 for (i = 0; i < qp_mutexeslen; i++)
9867 {
9868 if (qp_mutexes[i].prmask & mask)
9869 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9870 }
9871 }
9872
9873 /* Add the PRs specified in the mask to the mutex list; this means that only
9874 one of the PRs can be true at any time. PR0 should never be included in
9875 the mask. */
9876
9877 static void
9878 add_qp_mutex (mask)
9879 valueT mask;
9880 {
9881 if (mask & 0x1)
9882 abort ();
9883
9884 if (qp_mutexeslen == qp_mutexestotlen)
9885 {
9886 qp_mutexestotlen += 20;
9887 qp_mutexes = (struct qpmutex *)
9888 xrealloc ((void *) qp_mutexes,
9889 qp_mutexestotlen * sizeof (struct qpmutex));
9890 }
9891 if (md.debug_dv)
9892 {
9893 fprintf (stderr, " Registering mutex on");
9894 print_prmask (mask);
9895 fprintf (stderr, "\n");
9896 }
9897 qp_mutexes[qp_mutexeslen].path = md.path;
9898 qp_mutexes[qp_mutexeslen++].prmask = mask;
9899 }
9900
9901 static int
9902 has_suffix_p (name, suffix)
9903 const char *name;
9904 const char *suffix;
9905 {
9906 size_t namelen = strlen (name);
9907 size_t sufflen = strlen (suffix);
9908
9909 if (namelen <= sufflen)
9910 return 0;
9911 return strcmp (name + namelen - sufflen, suffix) == 0;
9912 }
9913
9914 static void
9915 clear_register_values ()
9916 {
9917 int i;
9918 if (md.debug_dv)
9919 fprintf (stderr, " Clearing register values\n");
9920 for (i = 1; i < NELEMS (gr_values); i++)
9921 gr_values[i].known = 0;
9922 }
9923
9924 /* Keep track of register values/changes which affect DV tracking.
9925
9926 optimization note: should add a flag to classes of insns where otherwise we
9927 have to examine a group of strings to identify them. */
9928
9929 static void
9930 note_register_values (idesc)
9931 struct ia64_opcode *idesc;
9932 {
9933 valueT qp_changemask = 0;
9934 int i;
9935
9936 /* Invalidate values for registers being written to. */
9937 for (i = 0; i < idesc->num_outputs; i++)
9938 {
9939 if (idesc->operands[i] == IA64_OPND_R1
9940 || idesc->operands[i] == IA64_OPND_R2
9941 || idesc->operands[i] == IA64_OPND_R3)
9942 {
9943 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9944 if (regno > 0 && regno < NELEMS (gr_values))
9945 gr_values[regno].known = 0;
9946 }
9947 else if (idesc->operands[i] == IA64_OPND_R3_2)
9948 {
9949 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9950 if (regno > 0 && regno < 4)
9951 gr_values[regno].known = 0;
9952 }
9953 else if (idesc->operands[i] == IA64_OPND_P1
9954 || idesc->operands[i] == IA64_OPND_P2)
9955 {
9956 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9957 qp_changemask |= (valueT) 1 << regno;
9958 }
9959 else if (idesc->operands[i] == IA64_OPND_PR)
9960 {
9961 if (idesc->operands[2] & (valueT) 0x10000)
9962 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9963 else
9964 qp_changemask = idesc->operands[2];
9965 break;
9966 }
9967 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9968 {
9969 if (idesc->operands[1] & ((valueT) 1 << 43))
9970 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9971 else
9972 qp_changemask = idesc->operands[1];
9973 qp_changemask &= ~(valueT) 0xFFFF;
9974 break;
9975 }
9976 }
9977
9978 /* Always clear qp branch flags on any PR change. */
9979 /* FIXME there may be exceptions for certain compares. */
9980 clear_qp_branch_flag (qp_changemask);
9981
9982 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9983 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9984 {
9985 qp_changemask |= ~(valueT) 0xFFFF;
9986 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9987 {
9988 for (i = 32; i < 32 + md.rot.num_regs; i++)
9989 gr_values[i].known = 0;
9990 }
9991 clear_qp_mutex (qp_changemask);
9992 clear_qp_implies (qp_changemask, qp_changemask);
9993 }
9994 /* After a call, all register values are undefined, except those marked
9995 as "safe". */
9996 else if (strncmp (idesc->name, "br.call", 6) == 0
9997 || strncmp (idesc->name, "brl.call", 7) == 0)
9998 {
9999 /* FIXME keep GR values which are marked as "safe_across_calls" */
10000 clear_register_values ();
10001 clear_qp_mutex (~qp_safe_across_calls);
10002 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
10003 clear_qp_branch_flag (~qp_safe_across_calls);
10004 }
10005 else if (is_interruption_or_rfi (idesc)
10006 || is_taken_branch (idesc))
10007 {
10008 clear_register_values ();
10009 clear_qp_mutex (~(valueT) 0);
10010 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10011 }
10012 /* Look for mutex and implies relations. */
10013 else if ((idesc->operands[0] == IA64_OPND_P1
10014 || idesc->operands[0] == IA64_OPND_P2)
10015 && (idesc->operands[1] == IA64_OPND_P1
10016 || idesc->operands[1] == IA64_OPND_P2))
10017 {
10018 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10019 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10020 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10021 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10022
10023 /* If both PRs are PR0, we can't really do anything. */
10024 if (p1 == 0 && p2 == 0)
10025 {
10026 if (md.debug_dv)
10027 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10028 }
10029 /* In general, clear mutexes and implies which include P1 or P2,
10030 with the following exceptions. */
10031 else if (has_suffix_p (idesc->name, ".or.andcm")
10032 || has_suffix_p (idesc->name, ".and.orcm"))
10033 {
10034 clear_qp_implies (p2mask, p1mask);
10035 }
10036 else if (has_suffix_p (idesc->name, ".andcm")
10037 || has_suffix_p (idesc->name, ".and"))
10038 {
10039 clear_qp_implies (0, p1mask | p2mask);
10040 }
10041 else if (has_suffix_p (idesc->name, ".orcm")
10042 || has_suffix_p (idesc->name, ".or"))
10043 {
10044 clear_qp_mutex (p1mask | p2mask);
10045 clear_qp_implies (p1mask | p2mask, 0);
10046 }
10047 else
10048 {
10049 int added = 0;
10050
10051 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10052
10053 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10054 if (p1 == 0 || p2 == 0)
10055 clear_qp_mutex (p1mask | p2mask);
10056 else
10057 added = update_qp_mutex (p1mask | p2mask);
10058
10059 if (CURR_SLOT.qp_regno == 0
10060 || has_suffix_p (idesc->name, ".unc"))
10061 {
10062 if (added == 0 && p1 && p2)
10063 add_qp_mutex (p1mask | p2mask);
10064 if (CURR_SLOT.qp_regno != 0)
10065 {
10066 if (p1)
10067 add_qp_imply (p1, CURR_SLOT.qp_regno);
10068 if (p2)
10069 add_qp_imply (p2, CURR_SLOT.qp_regno);
10070 }
10071 }
10072 }
10073 }
10074 /* Look for mov imm insns into GRs. */
10075 else if (idesc->operands[0] == IA64_OPND_R1
10076 && (idesc->operands[1] == IA64_OPND_IMM22
10077 || idesc->operands[1] == IA64_OPND_IMMU64)
10078 && CURR_SLOT.opnd[1].X_op == O_constant
10079 && (strcmp (idesc->name, "mov") == 0
10080 || strcmp (idesc->name, "movl") == 0))
10081 {
10082 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10083 if (regno > 0 && regno < NELEMS (gr_values))
10084 {
10085 gr_values[regno].known = 1;
10086 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10087 gr_values[regno].path = md.path;
10088 if (md.debug_dv)
10089 {
10090 fprintf (stderr, " Know gr%d = ", regno);
10091 fprintf_vma (stderr, gr_values[regno].value);
10092 fputs ("\n", stderr);
10093 }
10094 }
10095 }
10096 /* Look for dep.z imm insns. */
10097 else if (idesc->operands[0] == IA64_OPND_R1
10098 && idesc->operands[1] == IA64_OPND_IMM8
10099 && strcmp (idesc->name, "dep.z") == 0)
10100 {
10101 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10102 if (regno > 0 && regno < NELEMS (gr_values))
10103 {
10104 valueT value = CURR_SLOT.opnd[1].X_add_number;
10105
10106 if (CURR_SLOT.opnd[3].X_add_number < 64)
10107 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10108 value <<= CURR_SLOT.opnd[2].X_add_number;
10109 gr_values[regno].known = 1;
10110 gr_values[regno].value = value;
10111 gr_values[regno].path = md.path;
10112 if (md.debug_dv)
10113 {
10114 fprintf (stderr, " Know gr%d = ", regno);
10115 fprintf_vma (stderr, gr_values[regno].value);
10116 fputs ("\n", stderr);
10117 }
10118 }
10119 }
10120 else
10121 {
10122 clear_qp_mutex (qp_changemask);
10123 clear_qp_implies (qp_changemask, qp_changemask);
10124 }
10125 }
10126
10127 /* Return whether the given predicate registers are currently mutex. */
10128
10129 static int
10130 qp_mutex (p1, p2, path)
10131 int p1;
10132 int p2;
10133 int path;
10134 {
10135 int i;
10136 valueT mask;
10137
10138 if (p1 != p2)
10139 {
10140 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10141 for (i = 0; i < qp_mutexeslen; i++)
10142 {
10143 if (qp_mutexes[i].path >= path
10144 && (qp_mutexes[i].prmask & mask) == mask)
10145 return 1;
10146 }
10147 }
10148 return 0;
10149 }
10150
10151 /* Return whether the given resource is in the given insn's list of chks
10152 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10153 conflict. */
10154
10155 static int
10156 resources_match (rs, idesc, note, qp_regno, path)
10157 struct rsrc *rs;
10158 struct ia64_opcode *idesc;
10159 int note;
10160 int qp_regno;
10161 int path;
10162 {
10163 struct rsrc specs[MAX_SPECS];
10164 int count;
10165
10166 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10167 we don't need to check. One exception is note 11, which indicates that
10168 target predicates are written regardless of PR[qp]. */
10169 if (qp_mutex (rs->qp_regno, qp_regno, path)
10170 && note != 11)
10171 return 0;
10172
10173 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10174 while (count-- > 0)
10175 {
10176 /* UNAT checking is a bit more specific than other resources */
10177 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10178 && specs[count].mem_offset.hint
10179 && rs->mem_offset.hint)
10180 {
10181 if (rs->mem_offset.base == specs[count].mem_offset.base)
10182 {
10183 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10184 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10185 return 1;
10186 else
10187 continue;
10188 }
10189 }
10190
10191 /* Skip apparent PR write conflicts where both writes are an AND or both
10192 writes are an OR. */
10193 if (rs->dependency->specifier == IA64_RS_PR
10194 || rs->dependency->specifier == IA64_RS_PRr
10195 || rs->dependency->specifier == IA64_RS_PR63)
10196 {
10197 if (specs[count].cmp_type != CMP_NONE
10198 && specs[count].cmp_type == rs->cmp_type)
10199 {
10200 if (md.debug_dv)
10201 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10202 dv_mode[rs->dependency->mode],
10203 rs->dependency->specifier != IA64_RS_PR63 ?
10204 specs[count].index : 63);
10205 continue;
10206 }
10207 if (md.debug_dv)
10208 fprintf (stderr,
10209 " %s on parallel compare conflict %s vs %s on PR%d\n",
10210 dv_mode[rs->dependency->mode],
10211 dv_cmp_type[rs->cmp_type],
10212 dv_cmp_type[specs[count].cmp_type],
10213 rs->dependency->specifier != IA64_RS_PR63 ?
10214 specs[count].index : 63);
10215
10216 }
10217
10218 /* If either resource is not specific, conservatively assume a conflict
10219 */
10220 if (!specs[count].specific || !rs->specific)
10221 return 2;
10222 else if (specs[count].index == rs->index)
10223 return 1;
10224 }
10225
10226 return 0;
10227 }
10228
10229 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10230 insert a stop to create the break. Update all resource dependencies
10231 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10232 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10233 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10234 instruction. */
10235
10236 static void
10237 insn_group_break (insert_stop, qp_regno, save_current)
10238 int insert_stop;
10239 int qp_regno;
10240 int save_current;
10241 {
10242 int i;
10243
10244 if (insert_stop && md.num_slots_in_use > 0)
10245 PREV_SLOT.end_of_insn_group = 1;
10246
10247 if (md.debug_dv)
10248 {
10249 fprintf (stderr, " Insn group break%s",
10250 (insert_stop ? " (w/stop)" : ""));
10251 if (qp_regno != 0)
10252 fprintf (stderr, " effective for QP=%d", qp_regno);
10253 fprintf (stderr, "\n");
10254 }
10255
10256 i = 0;
10257 while (i < regdepslen)
10258 {
10259 const struct ia64_dependency *dep = regdeps[i].dependency;
10260
10261 if (qp_regno != 0
10262 && regdeps[i].qp_regno != qp_regno)
10263 {
10264 ++i;
10265 continue;
10266 }
10267
10268 if (save_current
10269 && CURR_SLOT.src_file == regdeps[i].file
10270 && CURR_SLOT.src_line == regdeps[i].line)
10271 {
10272 ++i;
10273 continue;
10274 }
10275
10276 /* clear dependencies which are automatically cleared by a stop, or
10277 those that have reached the appropriate state of insn serialization */
10278 if (dep->semantics == IA64_DVS_IMPLIED
10279 || dep->semantics == IA64_DVS_IMPLIEDF
10280 || regdeps[i].insn_srlz == STATE_SRLZ)
10281 {
10282 print_dependency ("Removing", i);
10283 regdeps[i] = regdeps[--regdepslen];
10284 }
10285 else
10286 {
10287 if (dep->semantics == IA64_DVS_DATA
10288 || dep->semantics == IA64_DVS_INSTR
10289 || dep->semantics == IA64_DVS_SPECIFIC)
10290 {
10291 if (regdeps[i].insn_srlz == STATE_NONE)
10292 regdeps[i].insn_srlz = STATE_STOP;
10293 if (regdeps[i].data_srlz == STATE_NONE)
10294 regdeps[i].data_srlz = STATE_STOP;
10295 }
10296 ++i;
10297 }
10298 }
10299 }
10300
10301 /* Add the given resource usage spec to the list of active dependencies. */
10302
10303 static void
10304 mark_resource (idesc, dep, spec, depind, path)
10305 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10306 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10307 struct rsrc *spec;
10308 int depind;
10309 int path;
10310 {
10311 if (regdepslen == regdepstotlen)
10312 {
10313 regdepstotlen += 20;
10314 regdeps = (struct rsrc *)
10315 xrealloc ((void *) regdeps,
10316 regdepstotlen * sizeof (struct rsrc));
10317 }
10318
10319 regdeps[regdepslen] = *spec;
10320 regdeps[regdepslen].depind = depind;
10321 regdeps[regdepslen].path = path;
10322 regdeps[regdepslen].file = CURR_SLOT.src_file;
10323 regdeps[regdepslen].line = CURR_SLOT.src_line;
10324
10325 print_dependency ("Adding", regdepslen);
10326
10327 ++regdepslen;
10328 }
10329
10330 static void
10331 print_dependency (action, depind)
10332 const char *action;
10333 int depind;
10334 {
10335 if (md.debug_dv)
10336 {
10337 fprintf (stderr, " %s %s '%s'",
10338 action, dv_mode[(regdeps[depind].dependency)->mode],
10339 (regdeps[depind].dependency)->name);
10340 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10341 fprintf (stderr, " (%d)", regdeps[depind].index);
10342 if (regdeps[depind].mem_offset.hint)
10343 {
10344 fputs (" ", stderr);
10345 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10346 fputs ("+", stderr);
10347 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10348 }
10349 fprintf (stderr, "\n");
10350 }
10351 }
10352
10353 static void
10354 instruction_serialization ()
10355 {
10356 int i;
10357 if (md.debug_dv)
10358 fprintf (stderr, " Instruction serialization\n");
10359 for (i = 0; i < regdepslen; i++)
10360 if (regdeps[i].insn_srlz == STATE_STOP)
10361 regdeps[i].insn_srlz = STATE_SRLZ;
10362 }
10363
10364 static void
10365 data_serialization ()
10366 {
10367 int i = 0;
10368 if (md.debug_dv)
10369 fprintf (stderr, " Data serialization\n");
10370 while (i < regdepslen)
10371 {
10372 if (regdeps[i].data_srlz == STATE_STOP
10373 /* Note: as of 991210, all "other" dependencies are cleared by a
10374 data serialization. This might change with new tables */
10375 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10376 {
10377 print_dependency ("Removing", i);
10378 regdeps[i] = regdeps[--regdepslen];
10379 }
10380 else
10381 ++i;
10382 }
10383 }
10384
10385 /* Insert stops and serializations as needed to avoid DVs. */
10386
10387 static void
10388 remove_marked_resource (rs)
10389 struct rsrc *rs;
10390 {
10391 switch (rs->dependency->semantics)
10392 {
10393 case IA64_DVS_SPECIFIC:
10394 if (md.debug_dv)
10395 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10396 /* ...fall through... */
10397 case IA64_DVS_INSTR:
10398 if (md.debug_dv)
10399 fprintf (stderr, "Inserting instr serialization\n");
10400 if (rs->insn_srlz < STATE_STOP)
10401 insn_group_break (1, 0, 0);
10402 if (rs->insn_srlz < STATE_SRLZ)
10403 {
10404 struct slot oldslot = CURR_SLOT;
10405 /* Manually jam a srlz.i insn into the stream */
10406 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10407 CURR_SLOT.user_template = -1;
10408 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10409 instruction_serialization ();
10410 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10411 if (++md.num_slots_in_use >= NUM_SLOTS)
10412 emit_one_bundle ();
10413 CURR_SLOT = oldslot;
10414 }
10415 insn_group_break (1, 0, 0);
10416 break;
10417 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10418 "other" types of DV are eliminated
10419 by a data serialization */
10420 case IA64_DVS_DATA:
10421 if (md.debug_dv)
10422 fprintf (stderr, "Inserting data serialization\n");
10423 if (rs->data_srlz < STATE_STOP)
10424 insn_group_break (1, 0, 0);
10425 {
10426 struct slot oldslot = CURR_SLOT;
10427 /* Manually jam a srlz.d insn into the stream */
10428 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10429 CURR_SLOT.user_template = -1;
10430 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10431 data_serialization ();
10432 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10433 if (++md.num_slots_in_use >= NUM_SLOTS)
10434 emit_one_bundle ();
10435 CURR_SLOT = oldslot;
10436 }
10437 break;
10438 case IA64_DVS_IMPLIED:
10439 case IA64_DVS_IMPLIEDF:
10440 if (md.debug_dv)
10441 fprintf (stderr, "Inserting stop\n");
10442 insn_group_break (1, 0, 0);
10443 break;
10444 default:
10445 break;
10446 }
10447 }
10448
10449 /* Check the resources used by the given opcode against the current dependency
10450 list.
10451
10452 The check is run once for each execution path encountered. In this case,
10453 a unique execution path is the sequence of instructions following a code
10454 entry point, e.g. the following has three execution paths, one starting
10455 at L0, one at L1, and one at L2.
10456
10457 L0: nop
10458 L1: add
10459 L2: add
10460 br.ret
10461 */
10462
10463 static void
10464 check_dependencies (idesc)
10465 struct ia64_opcode *idesc;
10466 {
10467 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10468 int path;
10469 int i;
10470
10471 /* Note that the number of marked resources may change within the
10472 loop if in auto mode. */
10473 i = 0;
10474 while (i < regdepslen)
10475 {
10476 struct rsrc *rs = &regdeps[i];
10477 const struct ia64_dependency *dep = rs->dependency;
10478 int chkind;
10479 int note;
10480 int start_over = 0;
10481
10482 if (dep->semantics == IA64_DVS_NONE
10483 || (chkind = depends_on (rs->depind, idesc)) == -1)
10484 {
10485 ++i;
10486 continue;
10487 }
10488
10489 note = NOTE (opdeps->chks[chkind]);
10490
10491 /* Check this resource against each execution path seen thus far. */
10492 for (path = 0; path <= md.path; path++)
10493 {
10494 int matchtype;
10495
10496 /* If the dependency wasn't on the path being checked, ignore it. */
10497 if (rs->path < path)
10498 continue;
10499
10500 /* If the QP for this insn implies a QP which has branched, don't
10501 bother checking. Ed. NOTE: I don't think this check is terribly
10502 useful; what's the point of generating code which will only be
10503 reached if its QP is zero?
10504 This code was specifically inserted to handle the following code,
10505 based on notes from Intel's DV checking code, where p1 implies p2.
10506
10507 mov r4 = 2
10508 (p2) br.cond L
10509 (p1) mov r4 = 7
10510 */
10511 if (CURR_SLOT.qp_regno != 0)
10512 {
10513 int skip = 0;
10514 int implies;
10515 for (implies = 0; implies < qp_implieslen; implies++)
10516 {
10517 if (qp_implies[implies].path >= path
10518 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10519 && qp_implies[implies].p2_branched)
10520 {
10521 skip = 1;
10522 break;
10523 }
10524 }
10525 if (skip)
10526 continue;
10527 }
10528
10529 if ((matchtype = resources_match (rs, idesc, note,
10530 CURR_SLOT.qp_regno, path)) != 0)
10531 {
10532 char msg[1024];
10533 char pathmsg[256] = "";
10534 char indexmsg[256] = "";
10535 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10536
10537 if (path != 0)
10538 sprintf (pathmsg, " when entry is at label '%s'",
10539 md.entry_labels[path - 1]);
10540 if (matchtype == 1 && rs->index >= 0)
10541 sprintf (indexmsg, ", specific resource number is %d",
10542 rs->index);
10543 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10544 idesc->name,
10545 (certain ? "violates" : "may violate"),
10546 dv_mode[dep->mode], dep->name,
10547 dv_sem[dep->semantics],
10548 pathmsg, indexmsg);
10549
10550 if (md.explicit_mode)
10551 {
10552 as_warn ("%s", msg);
10553 if (path < md.path)
10554 as_warn (_("Only the first path encountering the conflict "
10555 "is reported"));
10556 as_warn_where (rs->file, rs->line,
10557 _("This is the location of the "
10558 "conflicting usage"));
10559 /* Don't bother checking other paths, to avoid duplicating
10560 the same warning */
10561 break;
10562 }
10563 else
10564 {
10565 if (md.debug_dv)
10566 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10567
10568 remove_marked_resource (rs);
10569
10570 /* since the set of dependencies has changed, start over */
10571 /* FIXME -- since we're removing dvs as we go, we
10572 probably don't really need to start over... */
10573 start_over = 1;
10574 break;
10575 }
10576 }
10577 }
10578 if (start_over)
10579 i = 0;
10580 else
10581 ++i;
10582 }
10583 }
10584
10585 /* Register new dependencies based on the given opcode. */
10586
10587 static void
10588 mark_resources (idesc)
10589 struct ia64_opcode *idesc;
10590 {
10591 int i;
10592 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10593 int add_only_qp_reads = 0;
10594
10595 /* A conditional branch only uses its resources if it is taken; if it is
10596 taken, we stop following that path. The other branch types effectively
10597 *always* write their resources. If it's not taken, register only QP
10598 reads. */
10599 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10600 {
10601 add_only_qp_reads = 1;
10602 }
10603
10604 if (md.debug_dv)
10605 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10606
10607 for (i = 0; i < opdeps->nregs; i++)
10608 {
10609 const struct ia64_dependency *dep;
10610 struct rsrc specs[MAX_SPECS];
10611 int note;
10612 int path;
10613 int count;
10614
10615 dep = ia64_find_dependency (opdeps->regs[i]);
10616 note = NOTE (opdeps->regs[i]);
10617
10618 if (add_only_qp_reads
10619 && !(dep->mode == IA64_DV_WAR
10620 && (dep->specifier == IA64_RS_PR
10621 || dep->specifier == IA64_RS_PRr
10622 || dep->specifier == IA64_RS_PR63)))
10623 continue;
10624
10625 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10626
10627 while (count-- > 0)
10628 {
10629 mark_resource (idesc, dep, &specs[count],
10630 DEP (opdeps->regs[i]), md.path);
10631 }
10632
10633 /* The execution path may affect register values, which may in turn
10634 affect which indirect-access resources are accessed. */
10635 switch (dep->specifier)
10636 {
10637 default:
10638 break;
10639 case IA64_RS_CPUID:
10640 case IA64_RS_DBR:
10641 case IA64_RS_IBR:
10642 case IA64_RS_MSR:
10643 case IA64_RS_PKR:
10644 case IA64_RS_PMC:
10645 case IA64_RS_PMD:
10646 case IA64_RS_RR:
10647 for (path = 0; path < md.path; path++)
10648 {
10649 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10650 while (count-- > 0)
10651 mark_resource (idesc, dep, &specs[count],
10652 DEP (opdeps->regs[i]), path);
10653 }
10654 break;
10655 }
10656 }
10657 }
10658
10659 /* Remove dependencies when they no longer apply. */
10660
10661 static void
10662 update_dependencies (idesc)
10663 struct ia64_opcode *idesc;
10664 {
10665 int i;
10666
10667 if (strcmp (idesc->name, "srlz.i") == 0)
10668 {
10669 instruction_serialization ();
10670 }
10671 else if (strcmp (idesc->name, "srlz.d") == 0)
10672 {
10673 data_serialization ();
10674 }
10675 else if (is_interruption_or_rfi (idesc)
10676 || is_taken_branch (idesc))
10677 {
10678 /* Although technically the taken branch doesn't clear dependencies
10679 which require a srlz.[id], we don't follow the branch; the next
10680 instruction is assumed to start with a clean slate. */
10681 regdepslen = 0;
10682 md.path = 0;
10683 }
10684 else if (is_conditional_branch (idesc)
10685 && CURR_SLOT.qp_regno != 0)
10686 {
10687 int is_call = strstr (idesc->name, ".call") != NULL;
10688
10689 for (i = 0; i < qp_implieslen; i++)
10690 {
10691 /* If the conditional branch's predicate is implied by the predicate
10692 in an existing dependency, remove that dependency. */
10693 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10694 {
10695 int depind = 0;
10696 /* Note that this implied predicate takes a branch so that if
10697 a later insn generates a DV but its predicate implies this
10698 one, we can avoid the false DV warning. */
10699 qp_implies[i].p2_branched = 1;
10700 while (depind < regdepslen)
10701 {
10702 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10703 {
10704 print_dependency ("Removing", depind);
10705 regdeps[depind] = regdeps[--regdepslen];
10706 }
10707 else
10708 ++depind;
10709 }
10710 }
10711 }
10712 /* Any marked resources which have this same predicate should be
10713 cleared, provided that the QP hasn't been modified between the
10714 marking instruction and the branch. */
10715 if (is_call)
10716 {
10717 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10718 }
10719 else
10720 {
10721 i = 0;
10722 while (i < regdepslen)
10723 {
10724 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10725 && regdeps[i].link_to_qp_branch
10726 && (regdeps[i].file != CURR_SLOT.src_file
10727 || regdeps[i].line != CURR_SLOT.src_line))
10728 {
10729 /* Treat like a taken branch */
10730 print_dependency ("Removing", i);
10731 regdeps[i] = regdeps[--regdepslen];
10732 }
10733 else
10734 ++i;
10735 }
10736 }
10737 }
10738 }
10739
10740 /* Examine the current instruction for dependency violations. */
10741
10742 static int
10743 check_dv (idesc)
10744 struct ia64_opcode *idesc;
10745 {
10746 if (md.debug_dv)
10747 {
10748 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10749 idesc->name, CURR_SLOT.src_line,
10750 idesc->dependencies->nchks,
10751 idesc->dependencies->nregs);
10752 }
10753
10754 /* Look through the list of currently marked resources; if the current
10755 instruction has the dependency in its chks list which uses that resource,
10756 check against the specific resources used. */
10757 check_dependencies (idesc);
10758
10759 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10760 then add them to the list of marked resources. */
10761 mark_resources (idesc);
10762
10763 /* There are several types of dependency semantics, and each has its own
10764 requirements for being cleared
10765
10766 Instruction serialization (insns separated by interruption, rfi, or
10767 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10768
10769 Data serialization (instruction serialization, or writer + srlz.d +
10770 reader, where writer and srlz.d are in separate groups) clears
10771 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10772 always be the case).
10773
10774 Instruction group break (groups separated by stop, taken branch,
10775 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10776 */
10777 update_dependencies (idesc);
10778
10779 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10780 warning. Keep track of as many as possible that are useful. */
10781 note_register_values (idesc);
10782
10783 /* We don't need or want this anymore. */
10784 md.mem_offset.hint = 0;
10785
10786 return 0;
10787 }
10788
10789 /* Translate one line of assembly. Pseudo ops and labels do not show
10790 here. */
10791 void
10792 md_assemble (str)
10793 char *str;
10794 {
10795 char *saved_input_line_pointer, *mnemonic;
10796 const struct pseudo_opcode *pdesc;
10797 struct ia64_opcode *idesc;
10798 unsigned char qp_regno;
10799 unsigned int flags;
10800 int ch;
10801
10802 saved_input_line_pointer = input_line_pointer;
10803 input_line_pointer = str;
10804
10805 /* extract the opcode (mnemonic): */
10806
10807 mnemonic = input_line_pointer;
10808 ch = get_symbol_end ();
10809 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10810 if (pdesc)
10811 {
10812 *input_line_pointer = ch;
10813 (*pdesc->handler) (pdesc->arg);
10814 goto done;
10815 }
10816
10817 /* Find the instruction descriptor matching the arguments. */
10818
10819 idesc = ia64_find_opcode (mnemonic);
10820 *input_line_pointer = ch;
10821 if (!idesc)
10822 {
10823 as_bad ("Unknown opcode `%s'", mnemonic);
10824 goto done;
10825 }
10826
10827 idesc = parse_operands (idesc);
10828 if (!idesc)
10829 goto done;
10830
10831 /* Handle the dynamic ops we can handle now: */
10832 if (idesc->type == IA64_TYPE_DYN)
10833 {
10834 if (strcmp (idesc->name, "add") == 0)
10835 {
10836 if (CURR_SLOT.opnd[2].X_op == O_register
10837 && CURR_SLOT.opnd[2].X_add_number < 4)
10838 mnemonic = "addl";
10839 else
10840 mnemonic = "adds";
10841 ia64_free_opcode (idesc);
10842 idesc = ia64_find_opcode (mnemonic);
10843 }
10844 else if (strcmp (idesc->name, "mov") == 0)
10845 {
10846 enum ia64_opnd opnd1, opnd2;
10847 int rop;
10848
10849 opnd1 = idesc->operands[0];
10850 opnd2 = idesc->operands[1];
10851 if (opnd1 == IA64_OPND_AR3)
10852 rop = 0;
10853 else if (opnd2 == IA64_OPND_AR3)
10854 rop = 1;
10855 else
10856 abort ();
10857 if (CURR_SLOT.opnd[rop].X_op == O_register)
10858 {
10859 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10860 mnemonic = "mov.i";
10861 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10862 mnemonic = "mov.m";
10863 else
10864 rop = -1;
10865 }
10866 else
10867 abort ();
10868 if (rop >= 0)
10869 {
10870 ia64_free_opcode (idesc);
10871 idesc = ia64_find_opcode (mnemonic);
10872 while (idesc != NULL
10873 && (idesc->operands[0] != opnd1
10874 || idesc->operands[1] != opnd2))
10875 idesc = get_next_opcode (idesc);
10876 }
10877 }
10878 }
10879 else if (strcmp (idesc->name, "mov.i") == 0
10880 || strcmp (idesc->name, "mov.m") == 0)
10881 {
10882 enum ia64_opnd opnd1, opnd2;
10883 int rop;
10884
10885 opnd1 = idesc->operands[0];
10886 opnd2 = idesc->operands[1];
10887 if (opnd1 == IA64_OPND_AR3)
10888 rop = 0;
10889 else if (opnd2 == IA64_OPND_AR3)
10890 rop = 1;
10891 else
10892 abort ();
10893 if (CURR_SLOT.opnd[rop].X_op == O_register)
10894 {
10895 char unit = 'a';
10896 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10897 unit = 'i';
10898 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10899 unit = 'm';
10900 if (unit != 'a' && unit != idesc->name [4])
10901 as_bad ("AR %d can only be accessed by %c-unit",
10902 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10903 TOUPPER (unit));
10904 }
10905 }
10906 else if (strcmp (idesc->name, "hint.b") == 0)
10907 {
10908 switch (md.hint_b)
10909 {
10910 case hint_b_ok:
10911 break;
10912 case hint_b_warning:
10913 as_warn ("hint.b may be treated as nop");
10914 break;
10915 case hint_b_error:
10916 as_bad ("hint.b shouldn't be used");
10917 break;
10918 }
10919 }
10920
10921 qp_regno = 0;
10922 if (md.qp.X_op == O_register)
10923 {
10924 qp_regno = md.qp.X_add_number - REG_P;
10925 md.qp.X_op = O_absent;
10926 }
10927
10928 flags = idesc->flags;
10929
10930 if ((flags & IA64_OPCODE_FIRST) != 0)
10931 {
10932 /* The alignment frag has to end with a stop bit only if the
10933 next instruction after the alignment directive has to be
10934 the first instruction in an instruction group. */
10935 if (align_frag)
10936 {
10937 while (align_frag->fr_type != rs_align_code)
10938 {
10939 align_frag = align_frag->fr_next;
10940 if (!align_frag)
10941 break;
10942 }
10943 /* align_frag can be NULL if there are directives in
10944 between. */
10945 if (align_frag && align_frag->fr_next == frag_now)
10946 align_frag->tc_frag_data = 1;
10947 }
10948
10949 insn_group_break (1, 0, 0);
10950 }
10951 align_frag = NULL;
10952
10953 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10954 {
10955 as_bad ("`%s' cannot be predicated", idesc->name);
10956 goto done;
10957 }
10958
10959 /* Build the instruction. */
10960 CURR_SLOT.qp_regno = qp_regno;
10961 CURR_SLOT.idesc = idesc;
10962 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10963 dwarf2_where (&CURR_SLOT.debug_line);
10964
10965 /* Add unwind entries, if there are any. */
10966 if (unwind.current_entry)
10967 {
10968 CURR_SLOT.unwind_record = unwind.current_entry;
10969 unwind.current_entry = NULL;
10970 }
10971 if (unwind.pending_saves)
10972 {
10973 if (unwind.pending_saves->next)
10974 {
10975 /* Attach the next pending save to the next slot so that its
10976 slot number will get set correctly. */
10977 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10978 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10979 }
10980 else
10981 unwind.pending_saves = NULL;
10982 }
10983 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10984 unwind.insn = 1;
10985
10986 /* Check for dependency violations. */
10987 if (md.detect_dv)
10988 check_dv (idesc);
10989
10990 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10991 if (++md.num_slots_in_use >= NUM_SLOTS)
10992 emit_one_bundle ();
10993
10994 if ((flags & IA64_OPCODE_LAST) != 0)
10995 insn_group_break (1, 0, 0);
10996
10997 md.last_text_seg = now_seg;
10998
10999 done:
11000 input_line_pointer = saved_input_line_pointer;
11001 }
11002
11003 /* Called when symbol NAME cannot be found in the symbol table.
11004 Should be used for dynamic valued symbols only. */
11005
11006 symbolS *
11007 md_undefined_symbol (name)
11008 char *name ATTRIBUTE_UNUSED;
11009 {
11010 return 0;
11011 }
11012
11013 /* Called for any expression that can not be recognized. When the
11014 function is called, `input_line_pointer' will point to the start of
11015 the expression. */
11016
11017 void
11018 md_operand (e)
11019 expressionS *e;
11020 {
11021 switch (*input_line_pointer)
11022 {
11023 case '[':
11024 ++input_line_pointer;
11025 expression_and_evaluate (e);
11026 if (*input_line_pointer != ']')
11027 {
11028 as_bad ("Closing bracket missing");
11029 goto err;
11030 }
11031 else
11032 {
11033 if (e->X_op != O_register
11034 || e->X_add_number < REG_GR
11035 || e->X_add_number > REG_GR + 127)
11036 {
11037 as_bad ("Index must be a general register");
11038 e->X_add_number = REG_GR;
11039 }
11040
11041 ++input_line_pointer;
11042 e->X_op = O_index;
11043 }
11044 break;
11045
11046 default:
11047 break;
11048 }
11049 return;
11050
11051 err:
11052 ignore_rest_of_line ();
11053 }
11054
11055 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11056 a section symbol plus some offset. For relocs involving @fptr(),
11057 directives we don't want such adjustments since we need to have the
11058 original symbol's name in the reloc. */
11059 int
11060 ia64_fix_adjustable (fix)
11061 fixS *fix;
11062 {
11063 /* Prevent all adjustments to global symbols */
11064 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11065 return 0;
11066
11067 switch (fix->fx_r_type)
11068 {
11069 case BFD_RELOC_IA64_FPTR64I:
11070 case BFD_RELOC_IA64_FPTR32MSB:
11071 case BFD_RELOC_IA64_FPTR32LSB:
11072 case BFD_RELOC_IA64_FPTR64MSB:
11073 case BFD_RELOC_IA64_FPTR64LSB:
11074 case BFD_RELOC_IA64_LTOFF_FPTR22:
11075 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11076 return 0;
11077 default:
11078 break;
11079 }
11080
11081 return 1;
11082 }
11083
11084 int
11085 ia64_force_relocation (fix)
11086 fixS *fix;
11087 {
11088 switch (fix->fx_r_type)
11089 {
11090 case BFD_RELOC_IA64_FPTR64I:
11091 case BFD_RELOC_IA64_FPTR32MSB:
11092 case BFD_RELOC_IA64_FPTR32LSB:
11093 case BFD_RELOC_IA64_FPTR64MSB:
11094 case BFD_RELOC_IA64_FPTR64LSB:
11095
11096 case BFD_RELOC_IA64_LTOFF22:
11097 case BFD_RELOC_IA64_LTOFF64I:
11098 case BFD_RELOC_IA64_LTOFF_FPTR22:
11099 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11100 case BFD_RELOC_IA64_PLTOFF22:
11101 case BFD_RELOC_IA64_PLTOFF64I:
11102 case BFD_RELOC_IA64_PLTOFF64MSB:
11103 case BFD_RELOC_IA64_PLTOFF64LSB:
11104
11105 case BFD_RELOC_IA64_LTOFF22X:
11106 case BFD_RELOC_IA64_LDXMOV:
11107 return 1;
11108
11109 default:
11110 break;
11111 }
11112
11113 return generic_force_reloc (fix);
11114 }
11115
11116 /* Decide from what point a pc-relative relocation is relative to,
11117 relative to the pc-relative fixup. Er, relatively speaking. */
11118 long
11119 ia64_pcrel_from_section (fix, sec)
11120 fixS *fix;
11121 segT sec;
11122 {
11123 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11124
11125 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11126 off &= ~0xfUL;
11127
11128 return off;
11129 }
11130
11131
11132 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11133 void
11134 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11135 {
11136 expressionS expr;
11137
11138 expr.X_op = O_pseudo_fixup;
11139 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11140 expr.X_add_number = 0;
11141 expr.X_add_symbol = symbol;
11142 emit_expr (&expr, size);
11143 }
11144
11145 /* This is called whenever some data item (not an instruction) needs a
11146 fixup. We pick the right reloc code depending on the byteorder
11147 currently in effect. */
11148 void
11149 ia64_cons_fix_new (f, where, nbytes, exp)
11150 fragS *f;
11151 int where;
11152 int nbytes;
11153 expressionS *exp;
11154 {
11155 bfd_reloc_code_real_type code;
11156 fixS *fix;
11157
11158 switch (nbytes)
11159 {
11160 /* There are no reloc for 8 and 16 bit quantities, but we allow
11161 them here since they will work fine as long as the expression
11162 is fully defined at the end of the pass over the source file. */
11163 case 1: code = BFD_RELOC_8; break;
11164 case 2: code = BFD_RELOC_16; break;
11165 case 4:
11166 if (target_big_endian)
11167 code = BFD_RELOC_IA64_DIR32MSB;
11168 else
11169 code = BFD_RELOC_IA64_DIR32LSB;
11170 break;
11171
11172 case 8:
11173 /* In 32-bit mode, data8 could mean function descriptors too. */
11174 if (exp->X_op == O_pseudo_fixup
11175 && exp->X_op_symbol
11176 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11177 && !(md.flags & EF_IA_64_ABI64))
11178 {
11179 if (target_big_endian)
11180 code = BFD_RELOC_IA64_IPLTMSB;
11181 else
11182 code = BFD_RELOC_IA64_IPLTLSB;
11183 exp->X_op = O_symbol;
11184 break;
11185 }
11186 else
11187 {
11188 if (target_big_endian)
11189 code = BFD_RELOC_IA64_DIR64MSB;
11190 else
11191 code = BFD_RELOC_IA64_DIR64LSB;
11192 break;
11193 }
11194
11195 case 16:
11196 if (exp->X_op == O_pseudo_fixup
11197 && exp->X_op_symbol
11198 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11199 {
11200 if (target_big_endian)
11201 code = BFD_RELOC_IA64_IPLTMSB;
11202 else
11203 code = BFD_RELOC_IA64_IPLTLSB;
11204 exp->X_op = O_symbol;
11205 break;
11206 }
11207 /* FALLTHRU */
11208
11209 default:
11210 as_bad ("Unsupported fixup size %d", nbytes);
11211 ignore_rest_of_line ();
11212 return;
11213 }
11214
11215 if (exp->X_op == O_pseudo_fixup)
11216 {
11217 exp->X_op = O_symbol;
11218 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11219 /* ??? If code unchanged, unsupported. */
11220 }
11221
11222 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11223 /* We need to store the byte order in effect in case we're going
11224 to fix an 8 or 16 bit relocation (for which there no real
11225 relocs available). See md_apply_fix(). */
11226 fix->tc_fix_data.bigendian = target_big_endian;
11227 }
11228
11229 /* Return the actual relocation we wish to associate with the pseudo
11230 reloc described by SYM and R_TYPE. SYM should be one of the
11231 symbols in the pseudo_func array, or NULL. */
11232
11233 static bfd_reloc_code_real_type
11234 ia64_gen_real_reloc_type (sym, r_type)
11235 struct symbol *sym;
11236 bfd_reloc_code_real_type r_type;
11237 {
11238 bfd_reloc_code_real_type new = 0;
11239 const char *type = NULL, *suffix = "";
11240
11241 if (sym == NULL)
11242 {
11243 return r_type;
11244 }
11245
11246 switch (S_GET_VALUE (sym))
11247 {
11248 case FUNC_FPTR_RELATIVE:
11249 switch (r_type)
11250 {
11251 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11252 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11253 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11254 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11255 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11256 default: type = "FPTR"; break;
11257 }
11258 break;
11259
11260 case FUNC_GP_RELATIVE:
11261 switch (r_type)
11262 {
11263 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11264 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11265 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11266 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11267 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11268 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11269 default: type = "GPREL"; break;
11270 }
11271 break;
11272
11273 case FUNC_LT_RELATIVE:
11274 switch (r_type)
11275 {
11276 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11277 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11278 default: type = "LTOFF"; break;
11279 }
11280 break;
11281
11282 case FUNC_LT_RELATIVE_X:
11283 switch (r_type)
11284 {
11285 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11286 default: type = "LTOFF"; suffix = "X"; break;
11287 }
11288 break;
11289
11290 case FUNC_PC_RELATIVE:
11291 switch (r_type)
11292 {
11293 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11294 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11295 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11296 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11297 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11298 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11299 default: type = "PCREL"; break;
11300 }
11301 break;
11302
11303 case FUNC_PLT_RELATIVE:
11304 switch (r_type)
11305 {
11306 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11307 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11308 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11309 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11310 default: type = "PLTOFF"; break;
11311 }
11312 break;
11313
11314 case FUNC_SEC_RELATIVE:
11315 switch (r_type)
11316 {
11317 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11318 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11319 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11320 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11321 default: type = "SECREL"; break;
11322 }
11323 break;
11324
11325 case FUNC_SEG_RELATIVE:
11326 switch (r_type)
11327 {
11328 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11329 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11330 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11331 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11332 default: type = "SEGREL"; break;
11333 }
11334 break;
11335
11336 case FUNC_LTV_RELATIVE:
11337 switch (r_type)
11338 {
11339 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11340 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11341 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11342 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11343 default: type = "LTV"; break;
11344 }
11345 break;
11346
11347 case FUNC_LT_FPTR_RELATIVE:
11348 switch (r_type)
11349 {
11350 case BFD_RELOC_IA64_IMM22:
11351 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11352 case BFD_RELOC_IA64_IMM64:
11353 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11354 case BFD_RELOC_IA64_DIR32MSB:
11355 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11356 case BFD_RELOC_IA64_DIR32LSB:
11357 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11358 case BFD_RELOC_IA64_DIR64MSB:
11359 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11360 case BFD_RELOC_IA64_DIR64LSB:
11361 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11362 default:
11363 type = "LTOFF_FPTR"; break;
11364 }
11365 break;
11366
11367 case FUNC_TP_RELATIVE:
11368 switch (r_type)
11369 {
11370 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11371 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11372 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11373 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11374 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11375 default: type = "TPREL"; break;
11376 }
11377 break;
11378
11379 case FUNC_LT_TP_RELATIVE:
11380 switch (r_type)
11381 {
11382 case BFD_RELOC_IA64_IMM22:
11383 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11384 default:
11385 type = "LTOFF_TPREL"; break;
11386 }
11387 break;
11388
11389 case FUNC_DTP_MODULE:
11390 switch (r_type)
11391 {
11392 case BFD_RELOC_IA64_DIR64MSB:
11393 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11394 case BFD_RELOC_IA64_DIR64LSB:
11395 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11396 default:
11397 type = "DTPMOD"; break;
11398 }
11399 break;
11400
11401 case FUNC_LT_DTP_MODULE:
11402 switch (r_type)
11403 {
11404 case BFD_RELOC_IA64_IMM22:
11405 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11406 default:
11407 type = "LTOFF_DTPMOD"; break;
11408 }
11409 break;
11410
11411 case FUNC_DTP_RELATIVE:
11412 switch (r_type)
11413 {
11414 case BFD_RELOC_IA64_DIR32MSB:
11415 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11416 case BFD_RELOC_IA64_DIR32LSB:
11417 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11418 case BFD_RELOC_IA64_DIR64MSB:
11419 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11420 case BFD_RELOC_IA64_DIR64LSB:
11421 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11422 case BFD_RELOC_IA64_IMM14:
11423 new = BFD_RELOC_IA64_DTPREL14; break;
11424 case BFD_RELOC_IA64_IMM22:
11425 new = BFD_RELOC_IA64_DTPREL22; break;
11426 case BFD_RELOC_IA64_IMM64:
11427 new = BFD_RELOC_IA64_DTPREL64I; break;
11428 default:
11429 type = "DTPREL"; break;
11430 }
11431 break;
11432
11433 case FUNC_LT_DTP_RELATIVE:
11434 switch (r_type)
11435 {
11436 case BFD_RELOC_IA64_IMM22:
11437 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11438 default:
11439 type = "LTOFF_DTPREL"; break;
11440 }
11441 break;
11442
11443 case FUNC_IPLT_RELOC:
11444 switch (r_type)
11445 {
11446 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11447 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11448 default: type = "IPLT"; break;
11449 }
11450 break;
11451
11452 default:
11453 abort ();
11454 }
11455
11456 if (new)
11457 return new;
11458 else
11459 {
11460 int width;
11461
11462 if (!type)
11463 abort ();
11464 switch (r_type)
11465 {
11466 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11467 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11468 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11469 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11470 case BFD_RELOC_UNUSED: width = 13; break;
11471 case BFD_RELOC_IA64_IMM14: width = 14; break;
11472 case BFD_RELOC_IA64_IMM22: width = 22; break;
11473 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11474 default: abort ();
11475 }
11476
11477 /* This should be an error, but since previously there wasn't any
11478 diagnostic here, dont't make it fail because of this for now. */
11479 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11480 return r_type;
11481 }
11482 }
11483
11484 /* Here is where generate the appropriate reloc for pseudo relocation
11485 functions. */
11486 void
11487 ia64_validate_fix (fix)
11488 fixS *fix;
11489 {
11490 switch (fix->fx_r_type)
11491 {
11492 case BFD_RELOC_IA64_FPTR64I:
11493 case BFD_RELOC_IA64_FPTR32MSB:
11494 case BFD_RELOC_IA64_FPTR64LSB:
11495 case BFD_RELOC_IA64_LTOFF_FPTR22:
11496 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11497 if (fix->fx_offset != 0)
11498 as_bad_where (fix->fx_file, fix->fx_line,
11499 "No addend allowed in @fptr() relocation");
11500 break;
11501 default:
11502 break;
11503 }
11504 }
11505
11506 static void
11507 fix_insn (fix, odesc, value)
11508 fixS *fix;
11509 const struct ia64_operand *odesc;
11510 valueT value;
11511 {
11512 bfd_vma insn[3], t0, t1, control_bits;
11513 const char *err;
11514 char *fixpos;
11515 long slot;
11516
11517 slot = fix->fx_where & 0x3;
11518 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11519
11520 /* Bundles are always in little-endian byte order */
11521 t0 = bfd_getl64 (fixpos);
11522 t1 = bfd_getl64 (fixpos + 8);
11523 control_bits = t0 & 0x1f;
11524 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11525 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11526 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11527
11528 err = NULL;
11529 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11530 {
11531 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11532 insn[2] |= (((value & 0x7f) << 13)
11533 | (((value >> 7) & 0x1ff) << 27)
11534 | (((value >> 16) & 0x1f) << 22)
11535 | (((value >> 21) & 0x1) << 21)
11536 | (((value >> 63) & 0x1) << 36));
11537 }
11538 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11539 {
11540 if (value & ~0x3fffffffffffffffULL)
11541 err = "integer operand out of range";
11542 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11543 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11544 }
11545 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11546 {
11547 value >>= 4;
11548 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11549 insn[2] |= ((((value >> 59) & 0x1) << 36)
11550 | (((value >> 0) & 0xfffff) << 13));
11551 }
11552 else
11553 err = (*odesc->insert) (odesc, value, insn + slot);
11554
11555 if (err)
11556 as_bad_where (fix->fx_file, fix->fx_line, err);
11557
11558 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11559 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11560 number_to_chars_littleendian (fixpos + 0, t0, 8);
11561 number_to_chars_littleendian (fixpos + 8, t1, 8);
11562 }
11563
11564 /* Attempt to simplify or even eliminate a fixup. The return value is
11565 ignored; perhaps it was once meaningful, but now it is historical.
11566 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11567
11568 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11569 (if possible). */
11570
11571 void
11572 md_apply_fix (fix, valP, seg)
11573 fixS *fix;
11574 valueT *valP;
11575 segT seg ATTRIBUTE_UNUSED;
11576 {
11577 char *fixpos;
11578 valueT value = *valP;
11579
11580 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11581
11582 if (fix->fx_pcrel)
11583 {
11584 switch (fix->fx_r_type)
11585 {
11586 case BFD_RELOC_IA64_PCREL21B: break;
11587 case BFD_RELOC_IA64_PCREL21BI: break;
11588 case BFD_RELOC_IA64_PCREL21F: break;
11589 case BFD_RELOC_IA64_PCREL21M: break;
11590 case BFD_RELOC_IA64_PCREL60B: break;
11591 case BFD_RELOC_IA64_PCREL22: break;
11592 case BFD_RELOC_IA64_PCREL64I: break;
11593 case BFD_RELOC_IA64_PCREL32MSB: break;
11594 case BFD_RELOC_IA64_PCREL32LSB: break;
11595 case BFD_RELOC_IA64_PCREL64MSB: break;
11596 case BFD_RELOC_IA64_PCREL64LSB: break;
11597 default:
11598 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11599 fix->fx_r_type);
11600 break;
11601 }
11602 }
11603 if (fix->fx_addsy)
11604 {
11605 switch (fix->fx_r_type)
11606 {
11607 case BFD_RELOC_UNUSED:
11608 /* This must be a TAG13 or TAG13b operand. There are no external
11609 relocs defined for them, so we must give an error. */
11610 as_bad_where (fix->fx_file, fix->fx_line,
11611 "%s must have a constant value",
11612 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11613 fix->fx_done = 1;
11614 return;
11615
11616 case BFD_RELOC_IA64_TPREL14:
11617 case BFD_RELOC_IA64_TPREL22:
11618 case BFD_RELOC_IA64_TPREL64I:
11619 case BFD_RELOC_IA64_LTOFF_TPREL22:
11620 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11621 case BFD_RELOC_IA64_DTPREL14:
11622 case BFD_RELOC_IA64_DTPREL22:
11623 case BFD_RELOC_IA64_DTPREL64I:
11624 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11625 S_SET_THREAD_LOCAL (fix->fx_addsy);
11626 break;
11627
11628 default:
11629 break;
11630 }
11631 }
11632 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11633 {
11634 if (fix->tc_fix_data.bigendian)
11635 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11636 else
11637 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11638 fix->fx_done = 1;
11639 }
11640 else
11641 {
11642 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11643 fix->fx_done = 1;
11644 }
11645 }
11646
11647 /* Generate the BFD reloc to be stuck in the object file from the
11648 fixup used internally in the assembler. */
11649
11650 arelent *
11651 tc_gen_reloc (sec, fixp)
11652 asection *sec ATTRIBUTE_UNUSED;
11653 fixS *fixp;
11654 {
11655 arelent *reloc;
11656
11657 reloc = xmalloc (sizeof (*reloc));
11658 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11659 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11660 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11661 reloc->addend = fixp->fx_offset;
11662 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11663
11664 if (!reloc->howto)
11665 {
11666 as_bad_where (fixp->fx_file, fixp->fx_line,
11667 "Cannot represent %s relocation in object file",
11668 bfd_get_reloc_code_name (fixp->fx_r_type));
11669 }
11670 return reloc;
11671 }
11672
11673 /* Turn a string in input_line_pointer into a floating point constant
11674 of type TYPE, and store the appropriate bytes in *LIT. The number
11675 of LITTLENUMS emitted is stored in *SIZE. An error message is
11676 returned, or NULL on OK. */
11677
11678 #define MAX_LITTLENUMS 5
11679
11680 char *
11681 md_atof (type, lit, size)
11682 int type;
11683 char *lit;
11684 int *size;
11685 {
11686 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11687 char *t;
11688 int prec;
11689
11690 switch (type)
11691 {
11692 /* IEEE floats */
11693 case 'f':
11694 case 'F':
11695 case 's':
11696 case 'S':
11697 prec = 2;
11698 break;
11699
11700 case 'd':
11701 case 'D':
11702 case 'r':
11703 case 'R':
11704 prec = 4;
11705 break;
11706
11707 case 'x':
11708 case 'X':
11709 case 'p':
11710 case 'P':
11711 prec = 5;
11712 break;
11713
11714 default:
11715 *size = 0;
11716 return "Bad call to MD_ATOF()";
11717 }
11718 t = atof_ieee (input_line_pointer, type, words);
11719 if (t)
11720 input_line_pointer = t;
11721
11722 (*ia64_float_to_chars) (lit, words, prec);
11723
11724 if (type == 'X')
11725 {
11726 /* It is 10 byte floating point with 6 byte padding. */
11727 memset (&lit [10], 0, 6);
11728 *size = 8 * sizeof (LITTLENUM_TYPE);
11729 }
11730 else
11731 *size = prec * sizeof (LITTLENUM_TYPE);
11732
11733 return 0;
11734 }
11735
11736 /* Handle ia64 specific semantics of the align directive. */
11737
11738 void
11739 ia64_md_do_align (n, fill, len, max)
11740 int n ATTRIBUTE_UNUSED;
11741 const char *fill ATTRIBUTE_UNUSED;
11742 int len ATTRIBUTE_UNUSED;
11743 int max ATTRIBUTE_UNUSED;
11744 {
11745 if (subseg_text_p (now_seg))
11746 ia64_flush_insns ();
11747 }
11748
11749 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11750 of an rs_align_code fragment. */
11751
11752 void
11753 ia64_handle_align (fragp)
11754 fragS *fragp;
11755 {
11756 int bytes;
11757 char *p;
11758 const unsigned char *nop;
11759
11760 if (fragp->fr_type != rs_align_code)
11761 return;
11762
11763 /* Check if this frag has to end with a stop bit. */
11764 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11765
11766 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11767 p = fragp->fr_literal + fragp->fr_fix;
11768
11769 /* If no paddings are needed, we check if we need a stop bit. */
11770 if (!bytes && fragp->tc_frag_data)
11771 {
11772 if (fragp->fr_fix < 16)
11773 #if 1
11774 /* FIXME: It won't work with
11775 .align 16
11776 alloc r32=ar.pfs,1,2,4,0
11777 */
11778 ;
11779 #else
11780 as_bad_where (fragp->fr_file, fragp->fr_line,
11781 _("Can't add stop bit to mark end of instruction group"));
11782 #endif
11783 else
11784 /* Bundles are always in little-endian byte order. Make sure
11785 the previous bundle has the stop bit. */
11786 *(p - 16) |= 1;
11787 }
11788
11789 /* Make sure we are on a 16-byte boundary, in case someone has been
11790 putting data into a text section. */
11791 if (bytes & 15)
11792 {
11793 int fix = bytes & 15;
11794 memset (p, 0, fix);
11795 p += fix;
11796 bytes -= fix;
11797 fragp->fr_fix += fix;
11798 }
11799
11800 /* Instruction bundles are always little-endian. */
11801 memcpy (p, nop, 16);
11802 fragp->fr_var = 16;
11803 }
11804
11805 static void
11806 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11807 int prec)
11808 {
11809 while (prec--)
11810 {
11811 number_to_chars_bigendian (lit, (long) (*words++),
11812 sizeof (LITTLENUM_TYPE));
11813 lit += sizeof (LITTLENUM_TYPE);
11814 }
11815 }
11816
11817 static void
11818 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11819 int prec)
11820 {
11821 while (prec--)
11822 {
11823 number_to_chars_littleendian (lit, (long) (words[prec]),
11824 sizeof (LITTLENUM_TYPE));
11825 lit += sizeof (LITTLENUM_TYPE);
11826 }
11827 }
11828
11829 void
11830 ia64_elf_section_change_hook (void)
11831 {
11832 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11833 && elf_linked_to_section (now_seg) == NULL)
11834 elf_linked_to_section (now_seg) = text_section;
11835 dot_byteorder (-1);
11836 }
11837
11838 /* Check if a label should be made global. */
11839 void
11840 ia64_check_label (symbolS *label)
11841 {
11842 if (*input_line_pointer == ':')
11843 {
11844 S_SET_EXTERNAL (label);
11845 input_line_pointer++;
11846 }
11847 }
11848
11849 /* Used to remember where .alias and .secalias directives are seen. We
11850 will rename symbol and section names when we are about to output
11851 the relocatable file. */
11852 struct alias
11853 {
11854 char *file; /* The file where the directive is seen. */
11855 unsigned int line; /* The line number the directive is at. */
11856 const char *name; /* The orignale name of the symbol. */
11857 };
11858
11859 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11860 .secalias. Otherwise, it is .alias. */
11861 static void
11862 dot_alias (int section)
11863 {
11864 char *name, *alias;
11865 char delim;
11866 char *end_name;
11867 int len;
11868 const char *error_string;
11869 struct alias *h;
11870 const char *a;
11871 struct hash_control *ahash, *nhash;
11872 const char *kind;
11873
11874 name = input_line_pointer;
11875 delim = get_symbol_end ();
11876 end_name = input_line_pointer;
11877 *end_name = delim;
11878
11879 if (name == end_name)
11880 {
11881 as_bad (_("expected symbol name"));
11882 ignore_rest_of_line ();
11883 return;
11884 }
11885
11886 SKIP_WHITESPACE ();
11887
11888 if (*input_line_pointer != ',')
11889 {
11890 *end_name = 0;
11891 as_bad (_("expected comma after \"%s\""), name);
11892 *end_name = delim;
11893 ignore_rest_of_line ();
11894 return;
11895 }
11896
11897 input_line_pointer++;
11898 *end_name = 0;
11899 ia64_canonicalize_symbol_name (name);
11900
11901 /* We call demand_copy_C_string to check if alias string is valid.
11902 There should be a closing `"' and no `\0' in the string. */
11903 alias = demand_copy_C_string (&len);
11904 if (alias == NULL)
11905 {
11906 ignore_rest_of_line ();
11907 return;
11908 }
11909
11910 /* Make a copy of name string. */
11911 len = strlen (name) + 1;
11912 obstack_grow (&notes, name, len);
11913 name = obstack_finish (&notes);
11914
11915 if (section)
11916 {
11917 kind = "section";
11918 ahash = secalias_hash;
11919 nhash = secalias_name_hash;
11920 }
11921 else
11922 {
11923 kind = "symbol";
11924 ahash = alias_hash;
11925 nhash = alias_name_hash;
11926 }
11927
11928 /* Check if alias has been used before. */
11929 h = (struct alias *) hash_find (ahash, alias);
11930 if (h)
11931 {
11932 if (strcmp (h->name, name))
11933 as_bad (_("`%s' is already the alias of %s `%s'"),
11934 alias, kind, h->name);
11935 goto out;
11936 }
11937
11938 /* Check if name already has an alias. */
11939 a = (const char *) hash_find (nhash, name);
11940 if (a)
11941 {
11942 if (strcmp (a, alias))
11943 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11944 goto out;
11945 }
11946
11947 h = (struct alias *) xmalloc (sizeof (struct alias));
11948 as_where (&h->file, &h->line);
11949 h->name = name;
11950
11951 error_string = hash_jam (ahash, alias, (PTR) h);
11952 if (error_string)
11953 {
11954 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11955 alias, kind, error_string);
11956 goto out;
11957 }
11958
11959 error_string = hash_jam (nhash, name, (PTR) alias);
11960 if (error_string)
11961 {
11962 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11963 alias, kind, error_string);
11964 out:
11965 obstack_free (&notes, name);
11966 obstack_free (&notes, alias);
11967 }
11968
11969 demand_empty_rest_of_line ();
11970 }
11971
11972 /* It renames the original symbol name to its alias. */
11973 static void
11974 do_alias (const char *alias, PTR value)
11975 {
11976 struct alias *h = (struct alias *) value;
11977 symbolS *sym = symbol_find (h->name);
11978
11979 if (sym == NULL)
11980 as_warn_where (h->file, h->line,
11981 _("symbol `%s' aliased to `%s' is not used"),
11982 h->name, alias);
11983 else
11984 S_SET_NAME (sym, (char *) alias);
11985 }
11986
11987 /* Called from write_object_file. */
11988 void
11989 ia64_adjust_symtab (void)
11990 {
11991 hash_traverse (alias_hash, do_alias);
11992 }
11993
11994 /* It renames the original section name to its alias. */
11995 static void
11996 do_secalias (const char *alias, PTR value)
11997 {
11998 struct alias *h = (struct alias *) value;
11999 segT sec = bfd_get_section_by_name (stdoutput, h->name);
12000
12001 if (sec == NULL)
12002 as_warn_where (h->file, h->line,
12003 _("section `%s' aliased to `%s' is not used"),
12004 h->name, alias);
12005 else
12006 sec->name = alias;
12007 }
12008
12009 /* Called from write_object_file. */
12010 void
12011 ia64_frob_file (void)
12012 {
12013 hash_traverse (secalias_hash, do_secalias);
12014 }
This page took 0.380457 seconds and 5 git commands to generate.