1c96480224828ec845dfcdea1746ddc27ffb5996
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if we want to create R_MIPS_JALR for jalr $25. */
294 #ifdef TE_IRIX
295 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
296 #else
297 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
298 because there's no place for any addend, the only acceptable
299 expression is a bare symbol. */
300 #define MIPS_JALR_HINT_P(EXPR) \
301 (!HAVE_IN_PLACE_ADDENDS \
302 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
303 #endif
304
305 /* True if -mips3d was passed or implied by arguments passed on the
306 command line (e.g., by -march). */
307 static int file_ase_mips3d;
308
309 /* True if -mdmx was passed or implied by arguments passed on the
310 command line (e.g., by -march). */
311 static int file_ase_mdmx;
312
313 /* True if -msmartmips was passed or implied by arguments passed on the
314 command line (e.g., by -march). */
315 static int file_ase_smartmips;
316
317 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
318 || mips_opts.isa == ISA_MIPS32R2)
319
320 /* True if -mdsp was passed or implied by arguments passed on the
321 command line (e.g., by -march). */
322 static int file_ase_dsp;
323
324 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
325 || mips_opts.isa == ISA_MIPS64R2)
326
327 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
328
329 /* True if -mdspr2 was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_dspr2;
332
333 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
334 || mips_opts.isa == ISA_MIPS64R2)
335
336 /* True if -mmt was passed or implied by arguments passed on the
337 command line (e.g., by -march). */
338 static int file_ase_mt;
339
340 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
341 || mips_opts.isa == ISA_MIPS64R2)
342
343 /* The argument of the -march= flag. The architecture we are assembling. */
344 static int file_mips_arch = CPU_UNKNOWN;
345 static const char *mips_arch_string;
346
347 /* The argument of the -mtune= flag. The architecture for which we
348 are optimizing. */
349 static int mips_tune = CPU_UNKNOWN;
350 static const char *mips_tune_string;
351
352 /* True when generating 32-bit code for a 64-bit processor. */
353 static int mips_32bitmode = 0;
354
355 /* True if the given ABI requires 32-bit registers. */
356 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
357
358 /* Likewise 64-bit registers. */
359 #define ABI_NEEDS_64BIT_REGS(ABI) \
360 ((ABI) == N32_ABI \
361 || (ABI) == N64_ABI \
362 || (ABI) == O64_ABI)
363
364 /* Return true if ISA supports 64 bit wide gp registers. */
365 #define ISA_HAS_64BIT_REGS(ISA) \
366 ((ISA) == ISA_MIPS3 \
367 || (ISA) == ISA_MIPS4 \
368 || (ISA) == ISA_MIPS5 \
369 || (ISA) == ISA_MIPS64 \
370 || (ISA) == ISA_MIPS64R2)
371
372 /* Return true if ISA supports 64 bit wide float registers. */
373 #define ISA_HAS_64BIT_FPRS(ISA) \
374 ((ISA) == ISA_MIPS3 \
375 || (ISA) == ISA_MIPS4 \
376 || (ISA) == ISA_MIPS5 \
377 || (ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64 \
379 || (ISA) == ISA_MIPS64R2)
380
381 /* Return true if ISA supports 64-bit right rotate (dror et al.)
382 instructions. */
383 #define ISA_HAS_DROR(ISA) \
384 ((ISA) == ISA_MIPS64R2)
385
386 /* Return true if ISA supports 32-bit right rotate (ror et al.)
387 instructions. */
388 #define ISA_HAS_ROR(ISA) \
389 ((ISA) == ISA_MIPS32R2 \
390 || (ISA) == ISA_MIPS64R2 \
391 || mips_opts.ase_smartmips)
392
393 /* Return true if ISA supports single-precision floats in odd registers. */
394 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
395 ((ISA) == ISA_MIPS32 \
396 || (ISA) == ISA_MIPS32R2 \
397 || (ISA) == ISA_MIPS64 \
398 || (ISA) == ISA_MIPS64R2)
399
400 /* Return true if ISA supports move to/from high part of a 64-bit
401 floating-point register. */
402 #define ISA_HAS_MXHC1(ISA) \
403 ((ISA) == ISA_MIPS32R2 \
404 || (ISA) == ISA_MIPS64R2)
405
406 #define HAVE_32BIT_GPRS \
407 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
408
409 #define HAVE_32BIT_FPRS \
410 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
411
412 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
413 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
414
415 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
416
417 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
418
419 /* True if relocations are stored in-place. */
420 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
421
422 /* The ABI-derived address size. */
423 #define HAVE_64BIT_ADDRESSES \
424 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
425 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
426
427 /* The size of symbolic constants (i.e., expressions of the form
428 "SYMBOL" or "SYMBOL + OFFSET"). */
429 #define HAVE_32BIT_SYMBOLS \
430 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
431 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
432
433 /* Addresses are loaded in different ways, depending on the address size
434 in use. The n32 ABI Documentation also mandates the use of additions
435 with overflow checking, but existing implementations don't follow it. */
436 #define ADDRESS_ADD_INSN \
437 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
438
439 #define ADDRESS_ADDI_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
441
442 #define ADDRESS_LOAD_INSN \
443 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
444
445 #define ADDRESS_STORE_INSN \
446 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
447
448 /* Return true if the given CPU supports the MIPS16 ASE. */
449 #define CPU_HAS_MIPS16(cpu) \
450 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
451 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
452
453 /* True if CPU has a dror instruction. */
454 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
455
456 /* True if CPU has a ror instruction. */
457 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
458
459 /* True if CPU has seq/sne and seqi/snei instructions. */
460 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
461
462 /* True if CPU does not implement the all the coprocessor insns. For these
463 CPUs only those COP insns are accepted that are explicitly marked to be
464 available on the CPU. ISA membership for COP insns is ignored. */
465 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
466
467 /* True if mflo and mfhi can be immediately followed by instructions
468 which write to the HI and LO registers.
469
470 According to MIPS specifications, MIPS ISAs I, II, and III need
471 (at least) two instructions between the reads of HI/LO and
472 instructions which write them, and later ISAs do not. Contradicting
473 the MIPS specifications, some MIPS IV processor user manuals (e.g.
474 the UM for the NEC Vr5000) document needing the instructions between
475 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
476 MIPS64 and later ISAs to have the interlocks, plus any specific
477 earlier-ISA CPUs for which CPU documentation declares that the
478 instructions are really interlocked. */
479 #define hilo_interlocks \
480 (mips_opts.isa == ISA_MIPS32 \
481 || mips_opts.isa == ISA_MIPS32R2 \
482 || mips_opts.isa == ISA_MIPS64 \
483 || mips_opts.isa == ISA_MIPS64R2 \
484 || mips_opts.arch == CPU_R4010 \
485 || mips_opts.arch == CPU_R10000 \
486 || mips_opts.arch == CPU_R12000 \
487 || mips_opts.arch == CPU_R14000 \
488 || mips_opts.arch == CPU_R16000 \
489 || mips_opts.arch == CPU_RM7000 \
490 || mips_opts.arch == CPU_VR5500 \
491 )
492
493 /* Whether the processor uses hardware interlocks to protect reads
494 from the GPRs after they are loaded from memory, and thus does not
495 require nops to be inserted. This applies to instructions marked
496 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
497 level I. */
498 #define gpr_interlocks \
499 (mips_opts.isa != ISA_MIPS1 \
500 || mips_opts.arch == CPU_R3900)
501
502 /* Whether the processor uses hardware interlocks to avoid delays
503 required by coprocessor instructions, and thus does not require
504 nops to be inserted. This applies to instructions marked
505 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
506 between instructions marked INSN_WRITE_COND_CODE and ones marked
507 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
508 levels I, II, and III. */
509 /* Itbl support may require additional care here. */
510 #define cop_interlocks \
511 ((mips_opts.isa != ISA_MIPS1 \
512 && mips_opts.isa != ISA_MIPS2 \
513 && mips_opts.isa != ISA_MIPS3) \
514 || mips_opts.arch == CPU_R4300 \
515 )
516
517 /* Whether the processor uses hardware interlocks to protect reads
518 from coprocessor registers after they are loaded from memory, and
519 thus does not require nops to be inserted. This applies to
520 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
521 requires at MIPS ISA level I. */
522 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
523
524 /* Is this a mfhi or mflo instruction? */
525 #define MF_HILO_INSN(PINFO) \
526 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
527
528 /* Returns true for a (non floating-point) coprocessor instruction. Reading
529 or writing the condition code is only possible on the coprocessors and
530 these insns are not marked with INSN_COP. Thus for these insns use the
531 condition-code flags. */
532 #define COP_INSN(PINFO) \
533 (PINFO != INSN_MACRO \
534 && ((PINFO) & (FP_S | FP_D)) == 0 \
535 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
536
537 /* MIPS PIC level. */
538
539 enum mips_pic_level mips_pic;
540
541 /* 1 if we should generate 32 bit offsets from the $gp register in
542 SVR4_PIC mode. Currently has no meaning in other modes. */
543 static int mips_big_got = 0;
544
545 /* 1 if trap instructions should used for overflow rather than break
546 instructions. */
547 static int mips_trap = 0;
548
549 /* 1 if double width floating point constants should not be constructed
550 by assembling two single width halves into two single width floating
551 point registers which just happen to alias the double width destination
552 register. On some architectures this aliasing can be disabled by a bit
553 in the status register, and the setting of this bit cannot be determined
554 automatically at assemble time. */
555 static int mips_disable_float_construction;
556
557 /* Non-zero if any .set noreorder directives were used. */
558
559 static int mips_any_noreorder;
560
561 /* Non-zero if nops should be inserted when the register referenced in
562 an mfhi/mflo instruction is read in the next two instructions. */
563 static int mips_7000_hilo_fix;
564
565 /* The size of objects in the small data section. */
566 static unsigned int g_switch_value = 8;
567 /* Whether the -G option was used. */
568 static int g_switch_seen = 0;
569
570 #define N_RMASK 0xc4
571 #define N_VFP 0xd4
572
573 /* If we can determine in advance that GP optimization won't be
574 possible, we can skip the relaxation stuff that tries to produce
575 GP-relative references. This makes delay slot optimization work
576 better.
577
578 This function can only provide a guess, but it seems to work for
579 gcc output. It needs to guess right for gcc, otherwise gcc
580 will put what it thinks is a GP-relative instruction in a branch
581 delay slot.
582
583 I don't know if a fix is needed for the SVR4_PIC mode. I've only
584 fixed it for the non-PIC mode. KR 95/04/07 */
585 static int nopic_need_relax (symbolS *, int);
586
587 /* handle of the OPCODE hash table */
588 static struct hash_control *op_hash = NULL;
589
590 /* The opcode hash table we use for the mips16. */
591 static struct hash_control *mips16_op_hash = NULL;
592
593 /* This array holds the chars that always start a comment. If the
594 pre-processor is disabled, these aren't very useful */
595 const char comment_chars[] = "#";
596
597 /* This array holds the chars that only start a comment at the beginning of
598 a line. If the line seems to have the form '# 123 filename'
599 .line and .file directives will appear in the pre-processed output */
600 /* Note that input_file.c hand checks for '#' at the beginning of the
601 first line of the input file. This is because the compiler outputs
602 #NO_APP at the beginning of its output. */
603 /* Also note that C style comments are always supported. */
604 const char line_comment_chars[] = "#";
605
606 /* This array holds machine specific line separator characters. */
607 const char line_separator_chars[] = ";";
608
609 /* Chars that can be used to separate mant from exp in floating point nums */
610 const char EXP_CHARS[] = "eE";
611
612 /* Chars that mean this number is a floating point constant */
613 /* As in 0f12.456 */
614 /* or 0d1.2345e12 */
615 const char FLT_CHARS[] = "rRsSfFdDxXpP";
616
617 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
618 changed in read.c . Ideally it shouldn't have to know about it at all,
619 but nothing is ideal around here.
620 */
621
622 static char *insn_error;
623
624 static int auto_align = 1;
625
626 /* When outputting SVR4 PIC code, the assembler needs to know the
627 offset in the stack frame from which to restore the $gp register.
628 This is set by the .cprestore pseudo-op, and saved in this
629 variable. */
630 static offsetT mips_cprestore_offset = -1;
631
632 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
633 more optimizations, it can use a register value instead of a memory-saved
634 offset and even an other register than $gp as global pointer. */
635 static offsetT mips_cpreturn_offset = -1;
636 static int mips_cpreturn_register = -1;
637 static int mips_gp_register = GP;
638 static int mips_gprel_offset = 0;
639
640 /* Whether mips_cprestore_offset has been set in the current function
641 (or whether it has already been warned about, if not). */
642 static int mips_cprestore_valid = 0;
643
644 /* This is the register which holds the stack frame, as set by the
645 .frame pseudo-op. This is needed to implement .cprestore. */
646 static int mips_frame_reg = SP;
647
648 /* Whether mips_frame_reg has been set in the current function
649 (or whether it has already been warned about, if not). */
650 static int mips_frame_reg_valid = 0;
651
652 /* To output NOP instructions correctly, we need to keep information
653 about the previous two instructions. */
654
655 /* Whether we are optimizing. The default value of 2 means to remove
656 unneeded NOPs and swap branch instructions when possible. A value
657 of 1 means to not swap branches. A value of 0 means to always
658 insert NOPs. */
659 static int mips_optimize = 2;
660
661 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
662 equivalent to seeing no -g option at all. */
663 static int mips_debug = 0;
664
665 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
666 #define MAX_VR4130_NOPS 4
667
668 /* The maximum number of NOPs needed to fill delay slots. */
669 #define MAX_DELAY_NOPS 2
670
671 /* The maximum number of NOPs needed for any purpose. */
672 #define MAX_NOPS 4
673
674 /* A list of previous instructions, with index 0 being the most recent.
675 We need to look back MAX_NOPS instructions when filling delay slots
676 or working around processor errata. We need to look back one
677 instruction further if we're thinking about using history[0] to
678 fill a branch delay slot. */
679 static struct mips_cl_insn history[1 + MAX_NOPS];
680
681 /* Nop instructions used by emit_nop. */
682 static struct mips_cl_insn nop_insn, mips16_nop_insn;
683
684 /* The appropriate nop for the current mode. */
685 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* For ECOFF and ELF, relocations against symbols are done in two
704 parts, with a HI relocation and a LO relocation. Each relocation
705 has only 16 bits of space to store an addend. This means that in
706 order for the linker to handle carries correctly, it must be able
707 to locate both the HI and the LO relocation. This means that the
708 relocations must appear in order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Classifies the kind of instructions we're interested in when
753 implementing -mfix-vr4120. */
754 enum fix_vr4120_class {
755 FIX_VR4120_MACC,
756 FIX_VR4120_DMACC,
757 FIX_VR4120_MULT,
758 FIX_VR4120_DMULT,
759 FIX_VR4120_DIV,
760 FIX_VR4120_MTHILO,
761 NUM_FIX_VR4120_CLASSES
762 };
763
764 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
765 there must be at least one other instruction between an instruction
766 of type X and an instruction of type Y. */
767 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
768
769 /* True if -mfix-vr4120 is in force. */
770 static int mips_fix_vr4120;
771
772 /* ...likewise -mfix-vr4130. */
773 static int mips_fix_vr4130;
774
775 /* ...likewise -mfix-24k. */
776 static int mips_fix_24k;
777
778 /* We don't relax branches by default, since this causes us to expand
779 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
780 fail to compute the offset before expanding the macro to the most
781 efficient expansion. */
782
783 static int mips_relax_branch;
784 \f
785 /* The expansion of many macros depends on the type of symbol that
786 they refer to. For example, when generating position-dependent code,
787 a macro that refers to a symbol may have two different expansions,
788 one which uses GP-relative addresses and one which uses absolute
789 addresses. When generating SVR4-style PIC, a macro may have
790 different expansions for local and global symbols.
791
792 We handle these situations by generating both sequences and putting
793 them in variant frags. In position-dependent code, the first sequence
794 will be the GP-relative one and the second sequence will be the
795 absolute one. In SVR4 PIC, the first sequence will be for global
796 symbols and the second will be for local symbols.
797
798 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
799 SECOND are the lengths of the two sequences in bytes. These fields
800 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
801 the subtype has the following flags:
802
803 RELAX_USE_SECOND
804 Set if it has been decided that we should use the second
805 sequence instead of the first.
806
807 RELAX_SECOND_LONGER
808 Set in the first variant frag if the macro's second implementation
809 is longer than its first. This refers to the macro as a whole,
810 not an individual relaxation.
811
812 RELAX_NOMACRO
813 Set in the first variant frag if the macro appeared in a .set nomacro
814 block and if one alternative requires a warning but the other does not.
815
816 RELAX_DELAY_SLOT
817 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
818 delay slot.
819
820 The frag's "opcode" points to the first fixup for relaxable code.
821
822 Relaxable macros are generated using a sequence such as:
823
824 relax_start (SYMBOL);
825 ... generate first expansion ...
826 relax_switch ();
827 ... generate second expansion ...
828 relax_end ();
829
830 The code and fixups for the unwanted alternative are discarded
831 by md_convert_frag. */
832 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
833
834 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
835 #define RELAX_SECOND(X) ((X) & 0xff)
836 #define RELAX_USE_SECOND 0x10000
837 #define RELAX_SECOND_LONGER 0x20000
838 #define RELAX_NOMACRO 0x40000
839 #define RELAX_DELAY_SLOT 0x80000
840
841 /* Branch without likely bit. If label is out of range, we turn:
842
843 beq reg1, reg2, label
844 delay slot
845
846 into
847
848 bne reg1, reg2, 0f
849 nop
850 j label
851 0: delay slot
852
853 with the following opcode replacements:
854
855 beq <-> bne
856 blez <-> bgtz
857 bltz <-> bgez
858 bc1f <-> bc1t
859
860 bltzal <-> bgezal (with jal label instead of j label)
861
862 Even though keeping the delay slot instruction in the delay slot of
863 the branch would be more efficient, it would be very tricky to do
864 correctly, because we'd have to introduce a variable frag *after*
865 the delay slot instruction, and expand that instead. Let's do it
866 the easy way for now, even if the branch-not-taken case now costs
867 one additional instruction. Out-of-range branches are not supposed
868 to be common, anyway.
869
870 Branch likely. If label is out of range, we turn:
871
872 beql reg1, reg2, label
873 delay slot (annulled if branch not taken)
874
875 into
876
877 beql reg1, reg2, 1f
878 nop
879 beql $0, $0, 2f
880 nop
881 1: j[al] label
882 delay slot (executed only if branch taken)
883 2:
884
885 It would be possible to generate a shorter sequence by losing the
886 likely bit, generating something like:
887
888 bne reg1, reg2, 0f
889 nop
890 j[al] label
891 delay slot (executed only if branch taken)
892 0:
893
894 beql -> bne
895 bnel -> beq
896 blezl -> bgtz
897 bgtzl -> blez
898 bltzl -> bgez
899 bgezl -> bltz
900 bc1fl -> bc1t
901 bc1tl -> bc1f
902
903 bltzall -> bgezal (with jal label instead of j label)
904 bgezall -> bltzal (ditto)
905
906
907 but it's not clear that it would actually improve performance. */
908 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
909 ((relax_substateT) \
910 (0xc0000000 \
911 | ((toofar) ? 1 : 0) \
912 | ((link) ? 2 : 0) \
913 | ((likely) ? 4 : 0) \
914 | ((uncond) ? 8 : 0)))
915 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
916 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
917 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
918 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
919 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
920
921 /* For mips16 code, we use an entirely different form of relaxation.
922 mips16 supports two versions of most instructions which take
923 immediate values: a small one which takes some small value, and a
924 larger one which takes a 16 bit value. Since branches also follow
925 this pattern, relaxing these values is required.
926
927 We can assemble both mips16 and normal MIPS code in a single
928 object. Therefore, we need to support this type of relaxation at
929 the same time that we support the relaxation described above. We
930 use the high bit of the subtype field to distinguish these cases.
931
932 The information we store for this type of relaxation is the
933 argument code found in the opcode file for this relocation, whether
934 the user explicitly requested a small or extended form, and whether
935 the relocation is in a jump or jal delay slot. That tells us the
936 size of the value, and how it should be stored. We also store
937 whether the fragment is considered to be extended or not. We also
938 store whether this is known to be a branch to a different section,
939 whether we have tried to relax this frag yet, and whether we have
940 ever extended a PC relative fragment because of a shift count. */
941 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
942 (0x80000000 \
943 | ((type) & 0xff) \
944 | ((small) ? 0x100 : 0) \
945 | ((ext) ? 0x200 : 0) \
946 | ((dslot) ? 0x400 : 0) \
947 | ((jal_dslot) ? 0x800 : 0))
948 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
949 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
950 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
951 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
952 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
953 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
954 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
955 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
956 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
957 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
958 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
959 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
960
961 /* Is the given value a sign-extended 32-bit value? */
962 #define IS_SEXT_32BIT_NUM(x) \
963 (((x) &~ (offsetT) 0x7fffffff) == 0 \
964 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
965
966 /* Is the given value a sign-extended 16-bit value? */
967 #define IS_SEXT_16BIT_NUM(x) \
968 (((x) &~ (offsetT) 0x7fff) == 0 \
969 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
970
971 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
972 #define IS_ZEXT_32BIT_NUM(x) \
973 (((x) &~ (offsetT) 0xffffffff) == 0 \
974 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
975
976 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
977 VALUE << SHIFT. VALUE is evaluated exactly once. */
978 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
979 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
980 | (((VALUE) & (MASK)) << (SHIFT)))
981
982 /* Extract bits MASK << SHIFT from STRUCT and shift them right
983 SHIFT places. */
984 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
985 (((STRUCT) >> (SHIFT)) & (MASK))
986
987 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
988 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
989
990 include/opcode/mips.h specifies operand fields using the macros
991 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
992 with "MIPS16OP" instead of "OP". */
993 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
994 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
995 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
996 INSERT_BITS ((INSN).insn_opcode, VALUE, \
997 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
998
999 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1000 #define EXTRACT_OPERAND(FIELD, INSN) \
1001 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1002 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1003 EXTRACT_BITS ((INSN).insn_opcode, \
1004 MIPS16OP_MASK_##FIELD, \
1005 MIPS16OP_SH_##FIELD)
1006 \f
1007 /* Global variables used when generating relaxable macros. See the
1008 comment above RELAX_ENCODE for more details about how relaxation
1009 is used. */
1010 static struct {
1011 /* 0 if we're not emitting a relaxable macro.
1012 1 if we're emitting the first of the two relaxation alternatives.
1013 2 if we're emitting the second alternative. */
1014 int sequence;
1015
1016 /* The first relaxable fixup in the current frag. (In other words,
1017 the first fixup that refers to relaxable code.) */
1018 fixS *first_fixup;
1019
1020 /* sizes[0] says how many bytes of the first alternative are stored in
1021 the current frag. Likewise sizes[1] for the second alternative. */
1022 unsigned int sizes[2];
1023
1024 /* The symbol on which the choice of sequence depends. */
1025 symbolS *symbol;
1026 } mips_relax;
1027 \f
1028 /* Global variables used to decide whether a macro needs a warning. */
1029 static struct {
1030 /* True if the macro is in a branch delay slot. */
1031 bfd_boolean delay_slot_p;
1032
1033 /* For relaxable macros, sizes[0] is the length of the first alternative
1034 in bytes and sizes[1] is the length of the second alternative.
1035 For non-relaxable macros, both elements give the length of the
1036 macro in bytes. */
1037 unsigned int sizes[2];
1038
1039 /* The first variant frag for this macro. */
1040 fragS *first_frag;
1041 } mips_macro_warning;
1042 \f
1043 /* Prototypes for static functions. */
1044
1045 #define internalError() \
1046 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1047
1048 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1049
1050 static void append_insn
1051 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1052 static void mips_no_prev_insn (void);
1053 static void mips16_macro_build
1054 (expressionS *, const char *, const char *, va_list);
1055 static void load_register (int, expressionS *, int);
1056 static void macro_start (void);
1057 static void macro_end (void);
1058 static void macro (struct mips_cl_insn * ip);
1059 static void mips16_macro (struct mips_cl_insn * ip);
1060 #ifdef LOSING_COMPILER
1061 static void macro2 (struct mips_cl_insn * ip);
1062 #endif
1063 static void mips_ip (char *str, struct mips_cl_insn * ip);
1064 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1065 static void mips16_immed
1066 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1067 unsigned long *, bfd_boolean *, unsigned short *);
1068 static size_t my_getSmallExpression
1069 (expressionS *, bfd_reloc_code_real_type *, char *);
1070 static void my_getExpression (expressionS *, char *);
1071 static void s_align (int);
1072 static void s_change_sec (int);
1073 static void s_change_section (int);
1074 static void s_cons (int);
1075 static void s_float_cons (int);
1076 static void s_mips_globl (int);
1077 static void s_option (int);
1078 static void s_mipsset (int);
1079 static void s_abicalls (int);
1080 static void s_cpload (int);
1081 static void s_cpsetup (int);
1082 static void s_cplocal (int);
1083 static void s_cprestore (int);
1084 static void s_cpreturn (int);
1085 static void s_dtprelword (int);
1086 static void s_dtpreldword (int);
1087 static void s_gpvalue (int);
1088 static void s_gpword (int);
1089 static void s_gpdword (int);
1090 static void s_cpadd (int);
1091 static void s_insn (int);
1092 static void md_obj_begin (void);
1093 static void md_obj_end (void);
1094 static void s_mips_ent (int);
1095 static void s_mips_end (int);
1096 static void s_mips_frame (int);
1097 static void s_mips_mask (int reg_type);
1098 static void s_mips_stab (int);
1099 static void s_mips_weakext (int);
1100 static void s_mips_file (int);
1101 static void s_mips_loc (int);
1102 static bfd_boolean pic_need_relax (symbolS *, asection *);
1103 static int relaxed_branch_length (fragS *, asection *, int);
1104 static int validate_mips_insn (const struct mips_opcode *);
1105
1106 /* Table and functions used to map between CPU/ISA names, and
1107 ISA levels, and CPU numbers. */
1108
1109 struct mips_cpu_info
1110 {
1111 const char *name; /* CPU or ISA name. */
1112 int flags; /* ASEs available, or ISA flag. */
1113 int isa; /* ISA level. */
1114 int cpu; /* CPU number (default CPU if ISA). */
1115 };
1116
1117 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1118 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1119 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1120 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1121 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1122 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1123 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1124
1125 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1126 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1127 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1128 \f
1129 /* Pseudo-op table.
1130
1131 The following pseudo-ops from the Kane and Heinrich MIPS book
1132 should be defined here, but are currently unsupported: .alias,
1133 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1134
1135 The following pseudo-ops from the Kane and Heinrich MIPS book are
1136 specific to the type of debugging information being generated, and
1137 should be defined by the object format: .aent, .begin, .bend,
1138 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1139 .vreg.
1140
1141 The following pseudo-ops from the Kane and Heinrich MIPS book are
1142 not MIPS CPU specific, but are also not specific to the object file
1143 format. This file is probably the best place to define them, but
1144 they are not currently supported: .asm0, .endr, .lab, .struct. */
1145
1146 static const pseudo_typeS mips_pseudo_table[] =
1147 {
1148 /* MIPS specific pseudo-ops. */
1149 {"option", s_option, 0},
1150 {"set", s_mipsset, 0},
1151 {"rdata", s_change_sec, 'r'},
1152 {"sdata", s_change_sec, 's'},
1153 {"livereg", s_ignore, 0},
1154 {"abicalls", s_abicalls, 0},
1155 {"cpload", s_cpload, 0},
1156 {"cpsetup", s_cpsetup, 0},
1157 {"cplocal", s_cplocal, 0},
1158 {"cprestore", s_cprestore, 0},
1159 {"cpreturn", s_cpreturn, 0},
1160 {"dtprelword", s_dtprelword, 0},
1161 {"dtpreldword", s_dtpreldword, 0},
1162 {"gpvalue", s_gpvalue, 0},
1163 {"gpword", s_gpword, 0},
1164 {"gpdword", s_gpdword, 0},
1165 {"cpadd", s_cpadd, 0},
1166 {"insn", s_insn, 0},
1167
1168 /* Relatively generic pseudo-ops that happen to be used on MIPS
1169 chips. */
1170 {"asciiz", stringer, 8 + 1},
1171 {"bss", s_change_sec, 'b'},
1172 {"err", s_err, 0},
1173 {"half", s_cons, 1},
1174 {"dword", s_cons, 3},
1175 {"weakext", s_mips_weakext, 0},
1176 {"origin", s_org, 0},
1177 {"repeat", s_rept, 0},
1178
1179 /* These pseudo-ops are defined in read.c, but must be overridden
1180 here for one reason or another. */
1181 {"align", s_align, 0},
1182 {"byte", s_cons, 0},
1183 {"data", s_change_sec, 'd'},
1184 {"double", s_float_cons, 'd'},
1185 {"float", s_float_cons, 'f'},
1186 {"globl", s_mips_globl, 0},
1187 {"global", s_mips_globl, 0},
1188 {"hword", s_cons, 1},
1189 {"int", s_cons, 2},
1190 {"long", s_cons, 2},
1191 {"octa", s_cons, 4},
1192 {"quad", s_cons, 3},
1193 {"section", s_change_section, 0},
1194 {"short", s_cons, 1},
1195 {"single", s_float_cons, 'f'},
1196 {"stabn", s_mips_stab, 'n'},
1197 {"text", s_change_sec, 't'},
1198 {"word", s_cons, 2},
1199
1200 { "extern", ecoff_directive_extern, 0},
1201
1202 { NULL, NULL, 0 },
1203 };
1204
1205 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1206 {
1207 /* These pseudo-ops should be defined by the object file format.
1208 However, a.out doesn't support them, so we have versions here. */
1209 {"aent", s_mips_ent, 1},
1210 {"bgnb", s_ignore, 0},
1211 {"end", s_mips_end, 0},
1212 {"endb", s_ignore, 0},
1213 {"ent", s_mips_ent, 0},
1214 {"file", s_mips_file, 0},
1215 {"fmask", s_mips_mask, 'F'},
1216 {"frame", s_mips_frame, 0},
1217 {"loc", s_mips_loc, 0},
1218 {"mask", s_mips_mask, 'R'},
1219 {"verstamp", s_ignore, 0},
1220 { NULL, NULL, 0 },
1221 };
1222
1223 extern void pop_insert (const pseudo_typeS *);
1224
1225 void
1226 mips_pop_insert (void)
1227 {
1228 pop_insert (mips_pseudo_table);
1229 if (! ECOFF_DEBUGGING)
1230 pop_insert (mips_nonecoff_pseudo_table);
1231 }
1232 \f
1233 /* Symbols labelling the current insn. */
1234
1235 struct insn_label_list
1236 {
1237 struct insn_label_list *next;
1238 symbolS *label;
1239 };
1240
1241 static struct insn_label_list *free_insn_labels;
1242 #define label_list tc_segment_info_data.labels
1243
1244 static void mips_clear_insn_labels (void);
1245
1246 static inline void
1247 mips_clear_insn_labels (void)
1248 {
1249 register struct insn_label_list **pl;
1250 segment_info_type *si;
1251
1252 if (now_seg)
1253 {
1254 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1255 ;
1256
1257 si = seg_info (now_seg);
1258 *pl = si->label_list;
1259 si->label_list = NULL;
1260 }
1261 }
1262
1263 \f
1264 static char *expr_end;
1265
1266 /* Expressions which appear in instructions. These are set by
1267 mips_ip. */
1268
1269 static expressionS imm_expr;
1270 static expressionS imm2_expr;
1271 static expressionS offset_expr;
1272
1273 /* Relocs associated with imm_expr and offset_expr. */
1274
1275 static bfd_reloc_code_real_type imm_reloc[3]
1276 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1277 static bfd_reloc_code_real_type offset_reloc[3]
1278 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1279
1280 /* These are set by mips16_ip if an explicit extension is used. */
1281
1282 static bfd_boolean mips16_small, mips16_ext;
1283
1284 #ifdef OBJ_ELF
1285 /* The pdr segment for per procedure frame/regmask info. Not used for
1286 ECOFF debugging. */
1287
1288 static segT pdr_seg;
1289 #endif
1290
1291 /* The default target format to use. */
1292
1293 const char *
1294 mips_target_format (void)
1295 {
1296 switch (OUTPUT_FLAVOR)
1297 {
1298 case bfd_target_ecoff_flavour:
1299 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1300 case bfd_target_coff_flavour:
1301 return "pe-mips";
1302 case bfd_target_elf_flavour:
1303 #ifdef TE_VXWORKS
1304 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1305 return (target_big_endian
1306 ? "elf32-bigmips-vxworks"
1307 : "elf32-littlemips-vxworks");
1308 #endif
1309 #ifdef TE_TMIPS
1310 /* This is traditional mips. */
1311 return (target_big_endian
1312 ? (HAVE_64BIT_OBJECTS
1313 ? "elf64-tradbigmips"
1314 : (HAVE_NEWABI
1315 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1316 : (HAVE_64BIT_OBJECTS
1317 ? "elf64-tradlittlemips"
1318 : (HAVE_NEWABI
1319 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1320 #else
1321 return (target_big_endian
1322 ? (HAVE_64BIT_OBJECTS
1323 ? "elf64-bigmips"
1324 : (HAVE_NEWABI
1325 ? "elf32-nbigmips" : "elf32-bigmips"))
1326 : (HAVE_64BIT_OBJECTS
1327 ? "elf64-littlemips"
1328 : (HAVE_NEWABI
1329 ? "elf32-nlittlemips" : "elf32-littlemips")));
1330 #endif
1331 default:
1332 abort ();
1333 return NULL;
1334 }
1335 }
1336
1337 /* Return the length of instruction INSN. */
1338
1339 static inline unsigned int
1340 insn_length (const struct mips_cl_insn *insn)
1341 {
1342 if (!mips_opts.mips16)
1343 return 4;
1344 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1345 }
1346
1347 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1348
1349 static void
1350 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1351 {
1352 size_t i;
1353
1354 insn->insn_mo = mo;
1355 insn->use_extend = FALSE;
1356 insn->extend = 0;
1357 insn->insn_opcode = mo->match;
1358 insn->frag = NULL;
1359 insn->where = 0;
1360 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1361 insn->fixp[i] = NULL;
1362 insn->fixed_p = (mips_opts.noreorder > 0);
1363 insn->noreorder_p = (mips_opts.noreorder > 0);
1364 insn->mips16_absolute_jump_p = 0;
1365 }
1366
1367 /* Record the current MIPS16 mode in now_seg. */
1368
1369 static void
1370 mips_record_mips16_mode (void)
1371 {
1372 segment_info_type *si;
1373
1374 si = seg_info (now_seg);
1375 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1376 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1377 }
1378
1379 /* Install INSN at the location specified by its "frag" and "where" fields. */
1380
1381 static void
1382 install_insn (const struct mips_cl_insn *insn)
1383 {
1384 char *f = insn->frag->fr_literal + insn->where;
1385 if (!mips_opts.mips16)
1386 md_number_to_chars (f, insn->insn_opcode, 4);
1387 else if (insn->mips16_absolute_jump_p)
1388 {
1389 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1390 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1391 }
1392 else
1393 {
1394 if (insn->use_extend)
1395 {
1396 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1397 f += 2;
1398 }
1399 md_number_to_chars (f, insn->insn_opcode, 2);
1400 }
1401 mips_record_mips16_mode ();
1402 }
1403
1404 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1405 and install the opcode in the new location. */
1406
1407 static void
1408 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1409 {
1410 size_t i;
1411
1412 insn->frag = frag;
1413 insn->where = where;
1414 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1415 if (insn->fixp[i] != NULL)
1416 {
1417 insn->fixp[i]->fx_frag = frag;
1418 insn->fixp[i]->fx_where = where;
1419 }
1420 install_insn (insn);
1421 }
1422
1423 /* Add INSN to the end of the output. */
1424
1425 static void
1426 add_fixed_insn (struct mips_cl_insn *insn)
1427 {
1428 char *f = frag_more (insn_length (insn));
1429 move_insn (insn, frag_now, f - frag_now->fr_literal);
1430 }
1431
1432 /* Start a variant frag and move INSN to the start of the variant part,
1433 marking it as fixed. The other arguments are as for frag_var. */
1434
1435 static void
1436 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1437 relax_substateT subtype, symbolS *symbol, offsetT offset)
1438 {
1439 frag_grow (max_chars);
1440 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1441 insn->fixed_p = 1;
1442 frag_var (rs_machine_dependent, max_chars, var,
1443 subtype, symbol, offset, NULL);
1444 }
1445
1446 /* Insert N copies of INSN into the history buffer, starting at
1447 position FIRST. Neither FIRST nor N need to be clipped. */
1448
1449 static void
1450 insert_into_history (unsigned int first, unsigned int n,
1451 const struct mips_cl_insn *insn)
1452 {
1453 if (mips_relax.sequence != 2)
1454 {
1455 unsigned int i;
1456
1457 for (i = ARRAY_SIZE (history); i-- > first;)
1458 if (i >= first + n)
1459 history[i] = history[i - n];
1460 else
1461 history[i] = *insn;
1462 }
1463 }
1464
1465 /* Emit a nop instruction, recording it in the history buffer. */
1466
1467 static void
1468 emit_nop (void)
1469 {
1470 add_fixed_insn (NOP_INSN);
1471 insert_into_history (0, 1, NOP_INSN);
1472 }
1473
1474 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1475 the idea is to make it obvious at a glance that each errata is
1476 included. */
1477
1478 static void
1479 init_vr4120_conflicts (void)
1480 {
1481 #define CONFLICT(FIRST, SECOND) \
1482 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1483
1484 /* Errata 21 - [D]DIV[U] after [D]MACC */
1485 CONFLICT (MACC, DIV);
1486 CONFLICT (DMACC, DIV);
1487
1488 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1489 CONFLICT (DMULT, DMULT);
1490 CONFLICT (DMULT, DMACC);
1491 CONFLICT (DMACC, DMULT);
1492 CONFLICT (DMACC, DMACC);
1493
1494 /* Errata 24 - MT{LO,HI} after [D]MACC */
1495 CONFLICT (MACC, MTHILO);
1496 CONFLICT (DMACC, MTHILO);
1497
1498 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1499 instruction is executed immediately after a MACC or DMACC
1500 instruction, the result of [either instruction] is incorrect." */
1501 CONFLICT (MACC, MULT);
1502 CONFLICT (MACC, DMULT);
1503 CONFLICT (DMACC, MULT);
1504 CONFLICT (DMACC, DMULT);
1505
1506 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1507 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1508 DDIV or DDIVU instruction, the result of the MACC or
1509 DMACC instruction is incorrect.". */
1510 CONFLICT (DMULT, MACC);
1511 CONFLICT (DMULT, DMACC);
1512 CONFLICT (DIV, MACC);
1513 CONFLICT (DIV, DMACC);
1514
1515 #undef CONFLICT
1516 }
1517
1518 struct regname {
1519 const char *name;
1520 unsigned int num;
1521 };
1522
1523 #define RTYPE_MASK 0x1ff00
1524 #define RTYPE_NUM 0x00100
1525 #define RTYPE_FPU 0x00200
1526 #define RTYPE_FCC 0x00400
1527 #define RTYPE_VEC 0x00800
1528 #define RTYPE_GP 0x01000
1529 #define RTYPE_CP0 0x02000
1530 #define RTYPE_PC 0x04000
1531 #define RTYPE_ACC 0x08000
1532 #define RTYPE_CCC 0x10000
1533 #define RNUM_MASK 0x000ff
1534 #define RWARN 0x80000
1535
1536 #define GENERIC_REGISTER_NUMBERS \
1537 {"$0", RTYPE_NUM | 0}, \
1538 {"$1", RTYPE_NUM | 1}, \
1539 {"$2", RTYPE_NUM | 2}, \
1540 {"$3", RTYPE_NUM | 3}, \
1541 {"$4", RTYPE_NUM | 4}, \
1542 {"$5", RTYPE_NUM | 5}, \
1543 {"$6", RTYPE_NUM | 6}, \
1544 {"$7", RTYPE_NUM | 7}, \
1545 {"$8", RTYPE_NUM | 8}, \
1546 {"$9", RTYPE_NUM | 9}, \
1547 {"$10", RTYPE_NUM | 10}, \
1548 {"$11", RTYPE_NUM | 11}, \
1549 {"$12", RTYPE_NUM | 12}, \
1550 {"$13", RTYPE_NUM | 13}, \
1551 {"$14", RTYPE_NUM | 14}, \
1552 {"$15", RTYPE_NUM | 15}, \
1553 {"$16", RTYPE_NUM | 16}, \
1554 {"$17", RTYPE_NUM | 17}, \
1555 {"$18", RTYPE_NUM | 18}, \
1556 {"$19", RTYPE_NUM | 19}, \
1557 {"$20", RTYPE_NUM | 20}, \
1558 {"$21", RTYPE_NUM | 21}, \
1559 {"$22", RTYPE_NUM | 22}, \
1560 {"$23", RTYPE_NUM | 23}, \
1561 {"$24", RTYPE_NUM | 24}, \
1562 {"$25", RTYPE_NUM | 25}, \
1563 {"$26", RTYPE_NUM | 26}, \
1564 {"$27", RTYPE_NUM | 27}, \
1565 {"$28", RTYPE_NUM | 28}, \
1566 {"$29", RTYPE_NUM | 29}, \
1567 {"$30", RTYPE_NUM | 30}, \
1568 {"$31", RTYPE_NUM | 31}
1569
1570 #define FPU_REGISTER_NAMES \
1571 {"$f0", RTYPE_FPU | 0}, \
1572 {"$f1", RTYPE_FPU | 1}, \
1573 {"$f2", RTYPE_FPU | 2}, \
1574 {"$f3", RTYPE_FPU | 3}, \
1575 {"$f4", RTYPE_FPU | 4}, \
1576 {"$f5", RTYPE_FPU | 5}, \
1577 {"$f6", RTYPE_FPU | 6}, \
1578 {"$f7", RTYPE_FPU | 7}, \
1579 {"$f8", RTYPE_FPU | 8}, \
1580 {"$f9", RTYPE_FPU | 9}, \
1581 {"$f10", RTYPE_FPU | 10}, \
1582 {"$f11", RTYPE_FPU | 11}, \
1583 {"$f12", RTYPE_FPU | 12}, \
1584 {"$f13", RTYPE_FPU | 13}, \
1585 {"$f14", RTYPE_FPU | 14}, \
1586 {"$f15", RTYPE_FPU | 15}, \
1587 {"$f16", RTYPE_FPU | 16}, \
1588 {"$f17", RTYPE_FPU | 17}, \
1589 {"$f18", RTYPE_FPU | 18}, \
1590 {"$f19", RTYPE_FPU | 19}, \
1591 {"$f20", RTYPE_FPU | 20}, \
1592 {"$f21", RTYPE_FPU | 21}, \
1593 {"$f22", RTYPE_FPU | 22}, \
1594 {"$f23", RTYPE_FPU | 23}, \
1595 {"$f24", RTYPE_FPU | 24}, \
1596 {"$f25", RTYPE_FPU | 25}, \
1597 {"$f26", RTYPE_FPU | 26}, \
1598 {"$f27", RTYPE_FPU | 27}, \
1599 {"$f28", RTYPE_FPU | 28}, \
1600 {"$f29", RTYPE_FPU | 29}, \
1601 {"$f30", RTYPE_FPU | 30}, \
1602 {"$f31", RTYPE_FPU | 31}
1603
1604 #define FPU_CONDITION_CODE_NAMES \
1605 {"$fcc0", RTYPE_FCC | 0}, \
1606 {"$fcc1", RTYPE_FCC | 1}, \
1607 {"$fcc2", RTYPE_FCC | 2}, \
1608 {"$fcc3", RTYPE_FCC | 3}, \
1609 {"$fcc4", RTYPE_FCC | 4}, \
1610 {"$fcc5", RTYPE_FCC | 5}, \
1611 {"$fcc6", RTYPE_FCC | 6}, \
1612 {"$fcc7", RTYPE_FCC | 7}
1613
1614 #define COPROC_CONDITION_CODE_NAMES \
1615 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1616 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1617 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1618 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1619 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1620 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1621 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1622 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1623
1624 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1625 {"$a4", RTYPE_GP | 8}, \
1626 {"$a5", RTYPE_GP | 9}, \
1627 {"$a6", RTYPE_GP | 10}, \
1628 {"$a7", RTYPE_GP | 11}, \
1629 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1630 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1631 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1632 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1633 {"$t0", RTYPE_GP | 12}, \
1634 {"$t1", RTYPE_GP | 13}, \
1635 {"$t2", RTYPE_GP | 14}, \
1636 {"$t3", RTYPE_GP | 15}
1637
1638 #define O32_SYMBOLIC_REGISTER_NAMES \
1639 {"$t0", RTYPE_GP | 8}, \
1640 {"$t1", RTYPE_GP | 9}, \
1641 {"$t2", RTYPE_GP | 10}, \
1642 {"$t3", RTYPE_GP | 11}, \
1643 {"$t4", RTYPE_GP | 12}, \
1644 {"$t5", RTYPE_GP | 13}, \
1645 {"$t6", RTYPE_GP | 14}, \
1646 {"$t7", RTYPE_GP | 15}, \
1647 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1648 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1649 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1650 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1651
1652 /* Remaining symbolic register names */
1653 #define SYMBOLIC_REGISTER_NAMES \
1654 {"$zero", RTYPE_GP | 0}, \
1655 {"$at", RTYPE_GP | 1}, \
1656 {"$AT", RTYPE_GP | 1}, \
1657 {"$v0", RTYPE_GP | 2}, \
1658 {"$v1", RTYPE_GP | 3}, \
1659 {"$a0", RTYPE_GP | 4}, \
1660 {"$a1", RTYPE_GP | 5}, \
1661 {"$a2", RTYPE_GP | 6}, \
1662 {"$a3", RTYPE_GP | 7}, \
1663 {"$s0", RTYPE_GP | 16}, \
1664 {"$s1", RTYPE_GP | 17}, \
1665 {"$s2", RTYPE_GP | 18}, \
1666 {"$s3", RTYPE_GP | 19}, \
1667 {"$s4", RTYPE_GP | 20}, \
1668 {"$s5", RTYPE_GP | 21}, \
1669 {"$s6", RTYPE_GP | 22}, \
1670 {"$s7", RTYPE_GP | 23}, \
1671 {"$t8", RTYPE_GP | 24}, \
1672 {"$t9", RTYPE_GP | 25}, \
1673 {"$k0", RTYPE_GP | 26}, \
1674 {"$kt0", RTYPE_GP | 26}, \
1675 {"$k1", RTYPE_GP | 27}, \
1676 {"$kt1", RTYPE_GP | 27}, \
1677 {"$gp", RTYPE_GP | 28}, \
1678 {"$sp", RTYPE_GP | 29}, \
1679 {"$s8", RTYPE_GP | 30}, \
1680 {"$fp", RTYPE_GP | 30}, \
1681 {"$ra", RTYPE_GP | 31}
1682
1683 #define MIPS16_SPECIAL_REGISTER_NAMES \
1684 {"$pc", RTYPE_PC | 0}
1685
1686 #define MDMX_VECTOR_REGISTER_NAMES \
1687 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1688 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1689 {"$v2", RTYPE_VEC | 2}, \
1690 {"$v3", RTYPE_VEC | 3}, \
1691 {"$v4", RTYPE_VEC | 4}, \
1692 {"$v5", RTYPE_VEC | 5}, \
1693 {"$v6", RTYPE_VEC | 6}, \
1694 {"$v7", RTYPE_VEC | 7}, \
1695 {"$v8", RTYPE_VEC | 8}, \
1696 {"$v9", RTYPE_VEC | 9}, \
1697 {"$v10", RTYPE_VEC | 10}, \
1698 {"$v11", RTYPE_VEC | 11}, \
1699 {"$v12", RTYPE_VEC | 12}, \
1700 {"$v13", RTYPE_VEC | 13}, \
1701 {"$v14", RTYPE_VEC | 14}, \
1702 {"$v15", RTYPE_VEC | 15}, \
1703 {"$v16", RTYPE_VEC | 16}, \
1704 {"$v17", RTYPE_VEC | 17}, \
1705 {"$v18", RTYPE_VEC | 18}, \
1706 {"$v19", RTYPE_VEC | 19}, \
1707 {"$v20", RTYPE_VEC | 20}, \
1708 {"$v21", RTYPE_VEC | 21}, \
1709 {"$v22", RTYPE_VEC | 22}, \
1710 {"$v23", RTYPE_VEC | 23}, \
1711 {"$v24", RTYPE_VEC | 24}, \
1712 {"$v25", RTYPE_VEC | 25}, \
1713 {"$v26", RTYPE_VEC | 26}, \
1714 {"$v27", RTYPE_VEC | 27}, \
1715 {"$v28", RTYPE_VEC | 28}, \
1716 {"$v29", RTYPE_VEC | 29}, \
1717 {"$v30", RTYPE_VEC | 30}, \
1718 {"$v31", RTYPE_VEC | 31}
1719
1720 #define MIPS_DSP_ACCUMULATOR_NAMES \
1721 {"$ac0", RTYPE_ACC | 0}, \
1722 {"$ac1", RTYPE_ACC | 1}, \
1723 {"$ac2", RTYPE_ACC | 2}, \
1724 {"$ac3", RTYPE_ACC | 3}
1725
1726 static const struct regname reg_names[] = {
1727 GENERIC_REGISTER_NUMBERS,
1728 FPU_REGISTER_NAMES,
1729 FPU_CONDITION_CODE_NAMES,
1730 COPROC_CONDITION_CODE_NAMES,
1731
1732 /* The $txx registers depends on the abi,
1733 these will be added later into the symbol table from
1734 one of the tables below once mips_abi is set after
1735 parsing of arguments from the command line. */
1736 SYMBOLIC_REGISTER_NAMES,
1737
1738 MIPS16_SPECIAL_REGISTER_NAMES,
1739 MDMX_VECTOR_REGISTER_NAMES,
1740 MIPS_DSP_ACCUMULATOR_NAMES,
1741 {0, 0}
1742 };
1743
1744 static const struct regname reg_names_o32[] = {
1745 O32_SYMBOLIC_REGISTER_NAMES,
1746 {0, 0}
1747 };
1748
1749 static const struct regname reg_names_n32n64[] = {
1750 N32N64_SYMBOLIC_REGISTER_NAMES,
1751 {0, 0}
1752 };
1753
1754 static int
1755 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1756 {
1757 symbolS *symbolP;
1758 char *e;
1759 char save_c;
1760 int reg = -1;
1761
1762 /* Find end of name. */
1763 e = *s;
1764 if (is_name_beginner (*e))
1765 ++e;
1766 while (is_part_of_name (*e))
1767 ++e;
1768
1769 /* Terminate name. */
1770 save_c = *e;
1771 *e = '\0';
1772
1773 /* Look for a register symbol. */
1774 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1775 {
1776 int r = S_GET_VALUE (symbolP);
1777 if (r & types)
1778 reg = r & RNUM_MASK;
1779 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1780 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1781 reg = (r & RNUM_MASK) - 2;
1782 }
1783 /* Else see if this is a register defined in an itbl entry. */
1784 else if ((types & RTYPE_GP) && itbl_have_entries)
1785 {
1786 char *n = *s;
1787 unsigned long r;
1788
1789 if (*n == '$')
1790 ++n;
1791 if (itbl_get_reg_val (n, &r))
1792 reg = r & RNUM_MASK;
1793 }
1794
1795 /* Advance to next token if a register was recognised. */
1796 if (reg >= 0)
1797 *s = e;
1798 else if (types & RWARN)
1799 as_warn (_("Unrecognized register name `%s'"), *s);
1800
1801 *e = save_c;
1802 if (regnop)
1803 *regnop = reg;
1804 return reg >= 0;
1805 }
1806
1807 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1808 architecture. If EXPANSIONP is TRUE then this check is done while
1809 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1810
1811 static bfd_boolean
1812 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1813 {
1814 int isa = mips_opts.isa;
1815 int fp_s, fp_d;
1816
1817 if (mips_opts.ase_mdmx)
1818 isa |= INSN_MDMX;
1819 if (mips_opts.ase_dsp)
1820 isa |= INSN_DSP;
1821 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1822 isa |= INSN_DSP64;
1823 if (mips_opts.ase_dspr2)
1824 isa |= INSN_DSPR2;
1825 if (mips_opts.ase_mt)
1826 isa |= INSN_MT;
1827 if (mips_opts.ase_mips3d)
1828 isa |= INSN_MIPS3D;
1829 if (mips_opts.ase_smartmips)
1830 isa |= INSN_SMARTMIPS;
1831
1832 /* For user code we don't check for mips_opts.mips16 since we want
1833 to allow jalx if -mips16 was specified on the command line. */
1834 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1835 isa |= INSN_MIPS16;
1836
1837 /* Don't accept instructions based on the ISA if the CPU does not implement
1838 all the coprocessor insns. */
1839 if (NO_ISA_COP (mips_opts.arch)
1840 && COP_INSN (mo->pinfo))
1841 isa = 0;
1842
1843 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1844 return FALSE;
1845
1846 /* Check whether the instruction or macro requires single-precision or
1847 double-precision floating-point support. Note that this information is
1848 stored differently in the opcode table for insns and macros. */
1849 if (mo->pinfo == INSN_MACRO)
1850 {
1851 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1852 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1853 }
1854 else
1855 {
1856 fp_s = mo->pinfo & FP_S;
1857 fp_d = mo->pinfo & FP_D;
1858 }
1859
1860 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1861 return FALSE;
1862
1863 if (fp_s && mips_opts.soft_float)
1864 return FALSE;
1865
1866 return TRUE;
1867 }
1868
1869 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1870 selected ISA and architecture. */
1871
1872 static bfd_boolean
1873 is_opcode_valid_16 (const struct mips_opcode *mo)
1874 {
1875 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1876 }
1877
1878 /* This function is called once, at assembler startup time. It should set up
1879 all the tables, etc. that the MD part of the assembler will need. */
1880
1881 void
1882 md_begin (void)
1883 {
1884 const char *retval = NULL;
1885 int i = 0;
1886 int broken = 0;
1887
1888 if (mips_pic != NO_PIC)
1889 {
1890 if (g_switch_seen && g_switch_value != 0)
1891 as_bad (_("-G may not be used in position-independent code"));
1892 g_switch_value = 0;
1893 }
1894
1895 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1896 as_warn (_("Could not set architecture and machine"));
1897
1898 op_hash = hash_new ();
1899
1900 for (i = 0; i < NUMOPCODES;)
1901 {
1902 const char *name = mips_opcodes[i].name;
1903
1904 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1905 if (retval != NULL)
1906 {
1907 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1908 mips_opcodes[i].name, retval);
1909 /* Probably a memory allocation problem? Give up now. */
1910 as_fatal (_("Broken assembler. No assembly attempted."));
1911 }
1912 do
1913 {
1914 if (mips_opcodes[i].pinfo != INSN_MACRO)
1915 {
1916 if (!validate_mips_insn (&mips_opcodes[i]))
1917 broken = 1;
1918 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1919 {
1920 create_insn (&nop_insn, mips_opcodes + i);
1921 nop_insn.fixed_p = 1;
1922 }
1923 }
1924 ++i;
1925 }
1926 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1927 }
1928
1929 mips16_op_hash = hash_new ();
1930
1931 i = 0;
1932 while (i < bfd_mips16_num_opcodes)
1933 {
1934 const char *name = mips16_opcodes[i].name;
1935
1936 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1937 if (retval != NULL)
1938 as_fatal (_("internal: can't hash `%s': %s"),
1939 mips16_opcodes[i].name, retval);
1940 do
1941 {
1942 if (mips16_opcodes[i].pinfo != INSN_MACRO
1943 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1944 != mips16_opcodes[i].match))
1945 {
1946 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1947 mips16_opcodes[i].name, mips16_opcodes[i].args);
1948 broken = 1;
1949 }
1950 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1951 {
1952 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1953 mips16_nop_insn.fixed_p = 1;
1954 }
1955 ++i;
1956 }
1957 while (i < bfd_mips16_num_opcodes
1958 && strcmp (mips16_opcodes[i].name, name) == 0);
1959 }
1960
1961 if (broken)
1962 as_fatal (_("Broken assembler. No assembly attempted."));
1963
1964 /* We add all the general register names to the symbol table. This
1965 helps us detect invalid uses of them. */
1966 for (i = 0; reg_names[i].name; i++)
1967 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1968 reg_names[i].num, /* & RNUM_MASK, */
1969 &zero_address_frag));
1970 if (HAVE_NEWABI)
1971 for (i = 0; reg_names_n32n64[i].name; i++)
1972 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1973 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1974 &zero_address_frag));
1975 else
1976 for (i = 0; reg_names_o32[i].name; i++)
1977 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1978 reg_names_o32[i].num, /* & RNUM_MASK, */
1979 &zero_address_frag));
1980
1981 mips_no_prev_insn ();
1982
1983 mips_gprmask = 0;
1984 mips_cprmask[0] = 0;
1985 mips_cprmask[1] = 0;
1986 mips_cprmask[2] = 0;
1987 mips_cprmask[3] = 0;
1988
1989 /* set the default alignment for the text section (2**2) */
1990 record_alignment (text_section, 2);
1991
1992 bfd_set_gp_size (stdoutput, g_switch_value);
1993
1994 #ifdef OBJ_ELF
1995 if (IS_ELF)
1996 {
1997 /* On a native system other than VxWorks, sections must be aligned
1998 to 16 byte boundaries. When configured for an embedded ELF
1999 target, we don't bother. */
2000 if (strncmp (TARGET_OS, "elf", 3) != 0
2001 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2002 {
2003 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2004 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2005 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2006 }
2007
2008 /* Create a .reginfo section for register masks and a .mdebug
2009 section for debugging information. */
2010 {
2011 segT seg;
2012 subsegT subseg;
2013 flagword flags;
2014 segT sec;
2015
2016 seg = now_seg;
2017 subseg = now_subseg;
2018
2019 /* The ABI says this section should be loaded so that the
2020 running program can access it. However, we don't load it
2021 if we are configured for an embedded target */
2022 flags = SEC_READONLY | SEC_DATA;
2023 if (strncmp (TARGET_OS, "elf", 3) != 0)
2024 flags |= SEC_ALLOC | SEC_LOAD;
2025
2026 if (mips_abi != N64_ABI)
2027 {
2028 sec = subseg_new (".reginfo", (subsegT) 0);
2029
2030 bfd_set_section_flags (stdoutput, sec, flags);
2031 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2032
2033 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2034 }
2035 else
2036 {
2037 /* The 64-bit ABI uses a .MIPS.options section rather than
2038 .reginfo section. */
2039 sec = subseg_new (".MIPS.options", (subsegT) 0);
2040 bfd_set_section_flags (stdoutput, sec, flags);
2041 bfd_set_section_alignment (stdoutput, sec, 3);
2042
2043 /* Set up the option header. */
2044 {
2045 Elf_Internal_Options opthdr;
2046 char *f;
2047
2048 opthdr.kind = ODK_REGINFO;
2049 opthdr.size = (sizeof (Elf_External_Options)
2050 + sizeof (Elf64_External_RegInfo));
2051 opthdr.section = 0;
2052 opthdr.info = 0;
2053 f = frag_more (sizeof (Elf_External_Options));
2054 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2055 (Elf_External_Options *) f);
2056
2057 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2058 }
2059 }
2060
2061 if (ECOFF_DEBUGGING)
2062 {
2063 sec = subseg_new (".mdebug", (subsegT) 0);
2064 (void) bfd_set_section_flags (stdoutput, sec,
2065 SEC_HAS_CONTENTS | SEC_READONLY);
2066 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2067 }
2068 else if (mips_flag_pdr)
2069 {
2070 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2071 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2072 SEC_READONLY | SEC_RELOC
2073 | SEC_DEBUGGING);
2074 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2075 }
2076
2077 subseg_set (seg, subseg);
2078 }
2079 }
2080 #endif /* OBJ_ELF */
2081
2082 if (! ECOFF_DEBUGGING)
2083 md_obj_begin ();
2084
2085 if (mips_fix_vr4120)
2086 init_vr4120_conflicts ();
2087 }
2088
2089 void
2090 md_mips_end (void)
2091 {
2092 if (! ECOFF_DEBUGGING)
2093 md_obj_end ();
2094 }
2095
2096 void
2097 md_assemble (char *str)
2098 {
2099 struct mips_cl_insn insn;
2100 bfd_reloc_code_real_type unused_reloc[3]
2101 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2102
2103 imm_expr.X_op = O_absent;
2104 imm2_expr.X_op = O_absent;
2105 offset_expr.X_op = O_absent;
2106 imm_reloc[0] = BFD_RELOC_UNUSED;
2107 imm_reloc[1] = BFD_RELOC_UNUSED;
2108 imm_reloc[2] = BFD_RELOC_UNUSED;
2109 offset_reloc[0] = BFD_RELOC_UNUSED;
2110 offset_reloc[1] = BFD_RELOC_UNUSED;
2111 offset_reloc[2] = BFD_RELOC_UNUSED;
2112
2113 if (mips_opts.mips16)
2114 mips16_ip (str, &insn);
2115 else
2116 {
2117 mips_ip (str, &insn);
2118 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2119 str, insn.insn_opcode));
2120 }
2121
2122 if (insn_error)
2123 {
2124 as_bad ("%s `%s'", insn_error, str);
2125 return;
2126 }
2127
2128 if (insn.insn_mo->pinfo == INSN_MACRO)
2129 {
2130 macro_start ();
2131 if (mips_opts.mips16)
2132 mips16_macro (&insn);
2133 else
2134 macro (&insn);
2135 macro_end ();
2136 }
2137 else
2138 {
2139 if (imm_expr.X_op != O_absent)
2140 append_insn (&insn, &imm_expr, imm_reloc);
2141 else if (offset_expr.X_op != O_absent)
2142 append_insn (&insn, &offset_expr, offset_reloc);
2143 else
2144 append_insn (&insn, NULL, unused_reloc);
2145 }
2146 }
2147
2148 /* Convenience functions for abstracting away the differences between
2149 MIPS16 and non-MIPS16 relocations. */
2150
2151 static inline bfd_boolean
2152 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2153 {
2154 switch (reloc)
2155 {
2156 case BFD_RELOC_MIPS16_JMP:
2157 case BFD_RELOC_MIPS16_GPREL:
2158 case BFD_RELOC_MIPS16_GOT16:
2159 case BFD_RELOC_MIPS16_CALL16:
2160 case BFD_RELOC_MIPS16_HI16_S:
2161 case BFD_RELOC_MIPS16_HI16:
2162 case BFD_RELOC_MIPS16_LO16:
2163 return TRUE;
2164
2165 default:
2166 return FALSE;
2167 }
2168 }
2169
2170 static inline bfd_boolean
2171 got16_reloc_p (bfd_reloc_code_real_type reloc)
2172 {
2173 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2174 }
2175
2176 static inline bfd_boolean
2177 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2178 {
2179 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2180 }
2181
2182 static inline bfd_boolean
2183 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2184 {
2185 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2186 }
2187
2188 /* Return true if the given relocation might need a matching %lo().
2189 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2190 need a matching %lo() when applied to local symbols. */
2191
2192 static inline bfd_boolean
2193 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2194 {
2195 return (HAVE_IN_PLACE_ADDENDS
2196 && (hi16_reloc_p (reloc)
2197 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2198 all GOT16 relocations evaluate to "G". */
2199 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2200 }
2201
2202 /* Return the type of %lo() reloc needed by RELOC, given that
2203 reloc_needs_lo_p. */
2204
2205 static inline bfd_reloc_code_real_type
2206 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2207 {
2208 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2209 }
2210
2211 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2212 relocation. */
2213
2214 static inline bfd_boolean
2215 fixup_has_matching_lo_p (fixS *fixp)
2216 {
2217 return (fixp->fx_next != NULL
2218 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2219 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2220 && fixp->fx_offset == fixp->fx_next->fx_offset);
2221 }
2222
2223 /* See whether instruction IP reads register REG. CLASS is the type
2224 of register. */
2225
2226 static int
2227 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2228 enum mips_regclass regclass)
2229 {
2230 if (regclass == MIPS16_REG)
2231 {
2232 gas_assert (mips_opts.mips16);
2233 reg = mips16_to_32_reg_map[reg];
2234 regclass = MIPS_GR_REG;
2235 }
2236
2237 /* Don't report on general register ZERO, since it never changes. */
2238 if (regclass == MIPS_GR_REG && reg == ZERO)
2239 return 0;
2240
2241 if (regclass == MIPS_FP_REG)
2242 {
2243 gas_assert (! mips_opts.mips16);
2244 /* If we are called with either $f0 or $f1, we must check $f0.
2245 This is not optimal, because it will introduce an unnecessary
2246 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2247 need to distinguish reading both $f0 and $f1 or just one of
2248 them. Note that we don't have to check the other way,
2249 because there is no instruction that sets both $f0 and $f1
2250 and requires a delay. */
2251 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2252 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2253 == (reg &~ (unsigned) 1)))
2254 return 1;
2255 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2256 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2257 == (reg &~ (unsigned) 1)))
2258 return 1;
2259 }
2260 else if (! mips_opts.mips16)
2261 {
2262 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2263 && EXTRACT_OPERAND (RS, *ip) == reg)
2264 return 1;
2265 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2266 && EXTRACT_OPERAND (RT, *ip) == reg)
2267 return 1;
2268 }
2269 else
2270 {
2271 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2272 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2273 return 1;
2274 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2275 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2276 return 1;
2277 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2278 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2279 == reg))
2280 return 1;
2281 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2282 return 1;
2283 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2286 return 1;
2287 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2288 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2289 return 1;
2290 }
2291
2292 return 0;
2293 }
2294
2295 /* This function returns true if modifying a register requires a
2296 delay. */
2297
2298 static int
2299 reg_needs_delay (unsigned int reg)
2300 {
2301 unsigned long prev_pinfo;
2302
2303 prev_pinfo = history[0].insn_mo->pinfo;
2304 if (! mips_opts.noreorder
2305 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2306 && ! gpr_interlocks)
2307 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2308 && ! cop_interlocks)))
2309 {
2310 /* A load from a coprocessor or from memory. All load delays
2311 delay the use of general register rt for one instruction. */
2312 /* Itbl support may require additional care here. */
2313 know (prev_pinfo & INSN_WRITE_GPR_T);
2314 if (reg == EXTRACT_OPERAND (RT, history[0]))
2315 return 1;
2316 }
2317
2318 return 0;
2319 }
2320
2321 /* Move all labels in insn_labels to the current insertion point. */
2322
2323 static void
2324 mips_move_labels (void)
2325 {
2326 segment_info_type *si = seg_info (now_seg);
2327 struct insn_label_list *l;
2328 valueT val;
2329
2330 for (l = si->label_list; l != NULL; l = l->next)
2331 {
2332 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2333 symbol_set_frag (l->label, frag_now);
2334 val = (valueT) frag_now_fix ();
2335 /* mips16 text labels are stored as odd. */
2336 if (mips_opts.mips16)
2337 ++val;
2338 S_SET_VALUE (l->label, val);
2339 }
2340 }
2341
2342 static bfd_boolean
2343 s_is_linkonce (symbolS *sym, segT from_seg)
2344 {
2345 bfd_boolean linkonce = FALSE;
2346 segT symseg = S_GET_SEGMENT (sym);
2347
2348 if (symseg != from_seg && !S_IS_LOCAL (sym))
2349 {
2350 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2351 linkonce = TRUE;
2352 #ifdef OBJ_ELF
2353 /* The GNU toolchain uses an extension for ELF: a section
2354 beginning with the magic string .gnu.linkonce is a
2355 linkonce section. */
2356 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2357 sizeof ".gnu.linkonce" - 1) == 0)
2358 linkonce = TRUE;
2359 #endif
2360 }
2361 return linkonce;
2362 }
2363
2364 /* Mark instruction labels in mips16 mode. This permits the linker to
2365 handle them specially, such as generating jalx instructions when
2366 needed. We also make them odd for the duration of the assembly, in
2367 order to generate the right sort of code. We will make them even
2368 in the adjust_symtab routine, while leaving them marked. This is
2369 convenient for the debugger and the disassembler. The linker knows
2370 to make them odd again. */
2371
2372 static void
2373 mips16_mark_labels (void)
2374 {
2375 segment_info_type *si = seg_info (now_seg);
2376 struct insn_label_list *l;
2377
2378 if (!mips_opts.mips16)
2379 return;
2380
2381 for (l = si->label_list; l != NULL; l = l->next)
2382 {
2383 symbolS *label = l->label;
2384
2385 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2386 if (IS_ELF)
2387 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2388 #endif
2389 if ((S_GET_VALUE (label) & 1) == 0
2390 /* Don't adjust the address if the label is global or weak, or
2391 in a link-once section, since we'll be emitting symbol reloc
2392 references to it which will be patched up by the linker, and
2393 the final value of the symbol may or may not be MIPS16. */
2394 && ! S_IS_WEAK (label)
2395 && ! S_IS_EXTERNAL (label)
2396 && ! s_is_linkonce (label, now_seg))
2397 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2398 }
2399 }
2400
2401 /* End the current frag. Make it a variant frag and record the
2402 relaxation info. */
2403
2404 static void
2405 relax_close_frag (void)
2406 {
2407 mips_macro_warning.first_frag = frag_now;
2408 frag_var (rs_machine_dependent, 0, 0,
2409 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2410 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2411
2412 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2413 mips_relax.first_fixup = 0;
2414 }
2415
2416 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2417 See the comment above RELAX_ENCODE for more details. */
2418
2419 static void
2420 relax_start (symbolS *symbol)
2421 {
2422 gas_assert (mips_relax.sequence == 0);
2423 mips_relax.sequence = 1;
2424 mips_relax.symbol = symbol;
2425 }
2426
2427 /* Start generating the second version of a relaxable sequence.
2428 See the comment above RELAX_ENCODE for more details. */
2429
2430 static void
2431 relax_switch (void)
2432 {
2433 gas_assert (mips_relax.sequence == 1);
2434 mips_relax.sequence = 2;
2435 }
2436
2437 /* End the current relaxable sequence. */
2438
2439 static void
2440 relax_end (void)
2441 {
2442 gas_assert (mips_relax.sequence == 2);
2443 relax_close_frag ();
2444 mips_relax.sequence = 0;
2445 }
2446
2447 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2448 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2449 by VR4120 errata. */
2450
2451 static unsigned int
2452 classify_vr4120_insn (const char *name)
2453 {
2454 if (strncmp (name, "macc", 4) == 0)
2455 return FIX_VR4120_MACC;
2456 if (strncmp (name, "dmacc", 5) == 0)
2457 return FIX_VR4120_DMACC;
2458 if (strncmp (name, "mult", 4) == 0)
2459 return FIX_VR4120_MULT;
2460 if (strncmp (name, "dmult", 5) == 0)
2461 return FIX_VR4120_DMULT;
2462 if (strstr (name, "div"))
2463 return FIX_VR4120_DIV;
2464 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2465 return FIX_VR4120_MTHILO;
2466 return NUM_FIX_VR4120_CLASSES;
2467 }
2468
2469 #define INSN_ERET 0x42000018
2470 #define INSN_DERET 0x4200001f
2471
2472 /* Return the number of instructions that must separate INSN1 and INSN2,
2473 where INSN1 is the earlier instruction. Return the worst-case value
2474 for any INSN2 if INSN2 is null. */
2475
2476 static unsigned int
2477 insns_between (const struct mips_cl_insn *insn1,
2478 const struct mips_cl_insn *insn2)
2479 {
2480 unsigned long pinfo1, pinfo2;
2481
2482 /* This function needs to know which pinfo flags are set for INSN2
2483 and which registers INSN2 uses. The former is stored in PINFO2 and
2484 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2485 will have every flag set and INSN2_USES_REG will always return true. */
2486 pinfo1 = insn1->insn_mo->pinfo;
2487 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2488
2489 #define INSN2_USES_REG(REG, CLASS) \
2490 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2491
2492 /* For most targets, write-after-read dependencies on the HI and LO
2493 registers must be separated by at least two instructions. */
2494 if (!hilo_interlocks)
2495 {
2496 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2497 return 2;
2498 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2499 return 2;
2500 }
2501
2502 /* If we're working around r7000 errata, there must be two instructions
2503 between an mfhi or mflo and any instruction that uses the result. */
2504 if (mips_7000_hilo_fix
2505 && MF_HILO_INSN (pinfo1)
2506 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2507 return 2;
2508
2509 /* If we're working around 24K errata, one instruction is required
2510 if an ERET or DERET is followed by a branch instruction. */
2511 if (mips_fix_24k)
2512 {
2513 if (insn1->insn_opcode == INSN_ERET
2514 || insn1->insn_opcode == INSN_DERET)
2515 {
2516 if (insn2 == NULL
2517 || insn2->insn_opcode == INSN_ERET
2518 || insn2->insn_opcode == INSN_DERET
2519 || (insn2->insn_mo->pinfo
2520 & (INSN_UNCOND_BRANCH_DELAY
2521 | INSN_COND_BRANCH_DELAY
2522 | INSN_COND_BRANCH_LIKELY)) != 0)
2523 return 1;
2524 }
2525 }
2526
2527 /* If working around VR4120 errata, check for combinations that need
2528 a single intervening instruction. */
2529 if (mips_fix_vr4120)
2530 {
2531 unsigned int class1, class2;
2532
2533 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2534 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2535 {
2536 if (insn2 == NULL)
2537 return 1;
2538 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2539 if (vr4120_conflicts[class1] & (1 << class2))
2540 return 1;
2541 }
2542 }
2543
2544 if (!mips_opts.mips16)
2545 {
2546 /* Check for GPR or coprocessor load delays. All such delays
2547 are on the RT register. */
2548 /* Itbl support may require additional care here. */
2549 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2550 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2551 {
2552 know (pinfo1 & INSN_WRITE_GPR_T);
2553 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2554 return 1;
2555 }
2556
2557 /* Check for generic coprocessor hazards.
2558
2559 This case is not handled very well. There is no special
2560 knowledge of CP0 handling, and the coprocessors other than
2561 the floating point unit are not distinguished at all. */
2562 /* Itbl support may require additional care here. FIXME!
2563 Need to modify this to include knowledge about
2564 user specified delays! */
2565 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2566 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2567 {
2568 /* Handle cases where INSN1 writes to a known general coprocessor
2569 register. There must be a one instruction delay before INSN2
2570 if INSN2 reads that register, otherwise no delay is needed. */
2571 if (pinfo1 & INSN_WRITE_FPR_T)
2572 {
2573 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2574 return 1;
2575 }
2576 else if (pinfo1 & INSN_WRITE_FPR_S)
2577 {
2578 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2579 return 1;
2580 }
2581 else
2582 {
2583 /* Read-after-write dependencies on the control registers
2584 require a two-instruction gap. */
2585 if ((pinfo1 & INSN_WRITE_COND_CODE)
2586 && (pinfo2 & INSN_READ_COND_CODE))
2587 return 2;
2588
2589 /* We don't know exactly what INSN1 does. If INSN2 is
2590 also a coprocessor instruction, assume there must be
2591 a one instruction gap. */
2592 if (pinfo2 & INSN_COP)
2593 return 1;
2594 }
2595 }
2596
2597 /* Check for read-after-write dependencies on the coprocessor
2598 control registers in cases where INSN1 does not need a general
2599 coprocessor delay. This means that INSN1 is a floating point
2600 comparison instruction. */
2601 /* Itbl support may require additional care here. */
2602 else if (!cop_interlocks
2603 && (pinfo1 & INSN_WRITE_COND_CODE)
2604 && (pinfo2 & INSN_READ_COND_CODE))
2605 return 1;
2606 }
2607
2608 #undef INSN2_USES_REG
2609
2610 return 0;
2611 }
2612
2613 /* Return the number of nops that would be needed to work around the
2614 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2615 the MAX_VR4130_NOPS instructions described by HISTORY. */
2616
2617 static int
2618 nops_for_vr4130 (const struct mips_cl_insn *history,
2619 const struct mips_cl_insn *insn)
2620 {
2621 int i, j, reg;
2622
2623 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2624 are not affected by the errata. */
2625 if (insn != 0
2626 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2627 || strcmp (insn->insn_mo->name, "mtlo") == 0
2628 || strcmp (insn->insn_mo->name, "mthi") == 0))
2629 return 0;
2630
2631 /* Search for the first MFLO or MFHI. */
2632 for (i = 0; i < MAX_VR4130_NOPS; i++)
2633 if (MF_HILO_INSN (history[i].insn_mo->pinfo))
2634 {
2635 /* Extract the destination register. */
2636 if (mips_opts.mips16)
2637 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2638 else
2639 reg = EXTRACT_OPERAND (RD, history[i]);
2640
2641 /* No nops are needed if INSN reads that register. */
2642 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2643 return 0;
2644
2645 /* ...or if any of the intervening instructions do. */
2646 for (j = 0; j < i; j++)
2647 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2648 return 0;
2649
2650 return MAX_VR4130_NOPS - i;
2651 }
2652 return 0;
2653 }
2654
2655 /* Return the number of nops that would be needed if instruction INSN
2656 immediately followed the MAX_NOPS instructions given by HISTORY,
2657 where HISTORY[0] is the most recent instruction. If INSN is null,
2658 return the worse-case number of nops for any instruction. */
2659
2660 static int
2661 nops_for_insn (const struct mips_cl_insn *history,
2662 const struct mips_cl_insn *insn)
2663 {
2664 int i, nops, tmp_nops;
2665
2666 nops = 0;
2667 for (i = 0; i < MAX_DELAY_NOPS; i++)
2668 {
2669 tmp_nops = insns_between (history + i, insn) - i;
2670 if (tmp_nops > nops)
2671 nops = tmp_nops;
2672 }
2673
2674 if (mips_fix_vr4130)
2675 {
2676 tmp_nops = nops_for_vr4130 (history, insn);
2677 if (tmp_nops > nops)
2678 nops = tmp_nops;
2679 }
2680
2681 return nops;
2682 }
2683
2684 /* The variable arguments provide NUM_INSNS extra instructions that
2685 might be added to HISTORY. Return the largest number of nops that
2686 would be needed after the extended sequence. */
2687
2688 static int
2689 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2690 {
2691 va_list args;
2692 struct mips_cl_insn buffer[MAX_NOPS];
2693 struct mips_cl_insn *cursor;
2694 int nops;
2695
2696 va_start (args, history);
2697 cursor = buffer + num_insns;
2698 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2699 while (cursor > buffer)
2700 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2701
2702 nops = nops_for_insn (buffer, NULL);
2703 va_end (args);
2704 return nops;
2705 }
2706
2707 /* Like nops_for_insn, but if INSN is a branch, take into account the
2708 worst-case delay for the branch target. */
2709
2710 static int
2711 nops_for_insn_or_target (const struct mips_cl_insn *history,
2712 const struct mips_cl_insn *insn)
2713 {
2714 int nops, tmp_nops;
2715
2716 nops = nops_for_insn (history, insn);
2717 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2718 | INSN_COND_BRANCH_DELAY
2719 | INSN_COND_BRANCH_LIKELY))
2720 {
2721 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2722 if (tmp_nops > nops)
2723 nops = tmp_nops;
2724 }
2725 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2726 {
2727 tmp_nops = nops_for_sequence (1, history, insn);
2728 if (tmp_nops > nops)
2729 nops = tmp_nops;
2730 }
2731 return nops;
2732 }
2733
2734 /* Output an instruction. IP is the instruction information.
2735 ADDRESS_EXPR is an operand of the instruction to be used with
2736 RELOC_TYPE. */
2737
2738 static void
2739 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2740 bfd_reloc_code_real_type *reloc_type)
2741 {
2742 unsigned long prev_pinfo, pinfo;
2743 relax_stateT prev_insn_frag_type = 0;
2744 bfd_boolean relaxed_branch = FALSE;
2745 segment_info_type *si = seg_info (now_seg);
2746
2747 /* Mark instruction labels in mips16 mode. */
2748 mips16_mark_labels ();
2749
2750 prev_pinfo = history[0].insn_mo->pinfo;
2751 pinfo = ip->insn_mo->pinfo;
2752
2753 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2754 {
2755 /* There are a lot of optimizations we could do that we don't.
2756 In particular, we do not, in general, reorder instructions.
2757 If you use gcc with optimization, it will reorder
2758 instructions and generally do much more optimization then we
2759 do here; repeating all that work in the assembler would only
2760 benefit hand written assembly code, and does not seem worth
2761 it. */
2762 int nops = (mips_optimize == 0
2763 ? nops_for_insn (history, NULL)
2764 : nops_for_insn_or_target (history, ip));
2765 if (nops > 0)
2766 {
2767 fragS *old_frag;
2768 unsigned long old_frag_offset;
2769 int i;
2770
2771 old_frag = frag_now;
2772 old_frag_offset = frag_now_fix ();
2773
2774 for (i = 0; i < nops; i++)
2775 emit_nop ();
2776
2777 if (listing)
2778 {
2779 listing_prev_line ();
2780 /* We may be at the start of a variant frag. In case we
2781 are, make sure there is enough space for the frag
2782 after the frags created by listing_prev_line. The
2783 argument to frag_grow here must be at least as large
2784 as the argument to all other calls to frag_grow in
2785 this file. We don't have to worry about being in the
2786 middle of a variant frag, because the variants insert
2787 all needed nop instructions themselves. */
2788 frag_grow (40);
2789 }
2790
2791 mips_move_labels ();
2792
2793 #ifndef NO_ECOFF_DEBUGGING
2794 if (ECOFF_DEBUGGING)
2795 ecoff_fix_loc (old_frag, old_frag_offset);
2796 #endif
2797 }
2798 }
2799 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2800 {
2801 /* Work out how many nops in prev_nop_frag are needed by IP. */
2802 int nops = nops_for_insn_or_target (history, ip);
2803 gas_assert (nops <= prev_nop_frag_holds);
2804
2805 /* Enforce NOPS as a minimum. */
2806 if (nops > prev_nop_frag_required)
2807 prev_nop_frag_required = nops;
2808
2809 if (prev_nop_frag_holds == prev_nop_frag_required)
2810 {
2811 /* Settle for the current number of nops. Update the history
2812 accordingly (for the benefit of any future .set reorder code). */
2813 prev_nop_frag = NULL;
2814 insert_into_history (prev_nop_frag_since,
2815 prev_nop_frag_holds, NOP_INSN);
2816 }
2817 else
2818 {
2819 /* Allow this instruction to replace one of the nops that was
2820 tentatively added to prev_nop_frag. */
2821 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2822 prev_nop_frag_holds--;
2823 prev_nop_frag_since++;
2824 }
2825 }
2826
2827 #ifdef OBJ_ELF
2828 /* The value passed to dwarf2_emit_insn is the distance between
2829 the beginning of the current instruction and the address that
2830 should be recorded in the debug tables. For MIPS16 debug info
2831 we want to use ISA-encoded addresses, so we pass -1 for an
2832 address higher by one than the current. */
2833 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2834 #endif
2835
2836 /* Record the frag type before frag_var. */
2837 if (history[0].frag)
2838 prev_insn_frag_type = history[0].frag->fr_type;
2839
2840 if (address_expr
2841 && *reloc_type == BFD_RELOC_16_PCREL_S2
2842 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2843 || pinfo & INSN_COND_BRANCH_LIKELY)
2844 && mips_relax_branch
2845 /* Don't try branch relaxation within .set nomacro, or within
2846 .set noat if we use $at for PIC computations. If it turns
2847 out that the branch was out-of-range, we'll get an error. */
2848 && !mips_opts.warn_about_macros
2849 && (mips_opts.at || mips_pic == NO_PIC)
2850 && !mips_opts.mips16)
2851 {
2852 relaxed_branch = TRUE;
2853 add_relaxed_insn (ip, (relaxed_branch_length
2854 (NULL, NULL,
2855 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2856 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2857 : 0)), 4,
2858 RELAX_BRANCH_ENCODE
2859 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2860 pinfo & INSN_COND_BRANCH_LIKELY,
2861 pinfo & INSN_WRITE_GPR_31,
2862 0),
2863 address_expr->X_add_symbol,
2864 address_expr->X_add_number);
2865 *reloc_type = BFD_RELOC_UNUSED;
2866 }
2867 else if (*reloc_type > BFD_RELOC_UNUSED)
2868 {
2869 /* We need to set up a variant frag. */
2870 gas_assert (mips_opts.mips16 && address_expr != NULL);
2871 add_relaxed_insn (ip, 4, 0,
2872 RELAX_MIPS16_ENCODE
2873 (*reloc_type - BFD_RELOC_UNUSED,
2874 mips16_small, mips16_ext,
2875 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2876 history[0].mips16_absolute_jump_p),
2877 make_expr_symbol (address_expr), 0);
2878 }
2879 else if (mips_opts.mips16
2880 && ! ip->use_extend
2881 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2882 {
2883 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2884 /* Make sure there is enough room to swap this instruction with
2885 a following jump instruction. */
2886 frag_grow (6);
2887 add_fixed_insn (ip);
2888 }
2889 else
2890 {
2891 if (mips_opts.mips16
2892 && mips_opts.noreorder
2893 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2894 as_warn (_("extended instruction in delay slot"));
2895
2896 if (mips_relax.sequence)
2897 {
2898 /* If we've reached the end of this frag, turn it into a variant
2899 frag and record the information for the instructions we've
2900 written so far. */
2901 if (frag_room () < 4)
2902 relax_close_frag ();
2903 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2904 }
2905
2906 if (mips_relax.sequence != 2)
2907 mips_macro_warning.sizes[0] += 4;
2908 if (mips_relax.sequence != 1)
2909 mips_macro_warning.sizes[1] += 4;
2910
2911 if (mips_opts.mips16)
2912 {
2913 ip->fixed_p = 1;
2914 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2915 }
2916 add_fixed_insn (ip);
2917 }
2918
2919 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2920 {
2921 if (address_expr->X_op == O_constant)
2922 {
2923 unsigned int tmp;
2924
2925 switch (*reloc_type)
2926 {
2927 case BFD_RELOC_32:
2928 ip->insn_opcode |= address_expr->X_add_number;
2929 break;
2930
2931 case BFD_RELOC_MIPS_HIGHEST:
2932 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2933 ip->insn_opcode |= tmp & 0xffff;
2934 break;
2935
2936 case BFD_RELOC_MIPS_HIGHER:
2937 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2938 ip->insn_opcode |= tmp & 0xffff;
2939 break;
2940
2941 case BFD_RELOC_HI16_S:
2942 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2943 ip->insn_opcode |= tmp & 0xffff;
2944 break;
2945
2946 case BFD_RELOC_HI16:
2947 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2948 break;
2949
2950 case BFD_RELOC_UNUSED:
2951 case BFD_RELOC_LO16:
2952 case BFD_RELOC_MIPS_GOT_DISP:
2953 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2954 break;
2955
2956 case BFD_RELOC_MIPS_JMP:
2957 if ((address_expr->X_add_number & 3) != 0)
2958 as_bad (_("jump to misaligned address (0x%lx)"),
2959 (unsigned long) address_expr->X_add_number);
2960 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2961 break;
2962
2963 case BFD_RELOC_MIPS16_JMP:
2964 if ((address_expr->X_add_number & 3) != 0)
2965 as_bad (_("jump to misaligned address (0x%lx)"),
2966 (unsigned long) address_expr->X_add_number);
2967 ip->insn_opcode |=
2968 (((address_expr->X_add_number & 0x7c0000) << 3)
2969 | ((address_expr->X_add_number & 0xf800000) >> 7)
2970 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2971 break;
2972
2973 case BFD_RELOC_16_PCREL_S2:
2974 if ((address_expr->X_add_number & 3) != 0)
2975 as_bad (_("branch to misaligned address (0x%lx)"),
2976 (unsigned long) address_expr->X_add_number);
2977 if (mips_relax_branch)
2978 goto need_reloc;
2979 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2980 as_bad (_("branch address range overflow (0x%lx)"),
2981 (unsigned long) address_expr->X_add_number);
2982 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2983 break;
2984
2985 default:
2986 internalError ();
2987 }
2988 }
2989 else if (*reloc_type < BFD_RELOC_UNUSED)
2990 need_reloc:
2991 {
2992 reloc_howto_type *howto;
2993 int i;
2994
2995 /* In a compound relocation, it is the final (outermost)
2996 operator that determines the relocated field. */
2997 for (i = 1; i < 3; i++)
2998 if (reloc_type[i] == BFD_RELOC_UNUSED)
2999 break;
3000
3001 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3002 if (howto == NULL)
3003 {
3004 /* To reproduce this failure try assembling gas/testsuites/
3005 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3006 assembler. */
3007 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3008 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3009 }
3010
3011 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3012 bfd_get_reloc_size (howto),
3013 address_expr,
3014 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3015 reloc_type[0]);
3016
3017 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3018 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3019 && ip->fixp[0]->fx_addsy)
3020 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3021
3022 /* These relocations can have an addend that won't fit in
3023 4 octets for 64bit assembly. */
3024 if (HAVE_64BIT_GPRS
3025 && ! howto->partial_inplace
3026 && (reloc_type[0] == BFD_RELOC_16
3027 || reloc_type[0] == BFD_RELOC_32
3028 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3029 || reloc_type[0] == BFD_RELOC_GPREL16
3030 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3031 || reloc_type[0] == BFD_RELOC_GPREL32
3032 || reloc_type[0] == BFD_RELOC_64
3033 || reloc_type[0] == BFD_RELOC_CTOR
3034 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3035 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3036 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3037 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3038 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3039 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3040 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3041 || hi16_reloc_p (reloc_type[0])
3042 || lo16_reloc_p (reloc_type[0])))
3043 ip->fixp[0]->fx_no_overflow = 1;
3044
3045 if (mips_relax.sequence)
3046 {
3047 if (mips_relax.first_fixup == 0)
3048 mips_relax.first_fixup = ip->fixp[0];
3049 }
3050 else if (reloc_needs_lo_p (*reloc_type))
3051 {
3052 struct mips_hi_fixup *hi_fixup;
3053
3054 /* Reuse the last entry if it already has a matching %lo. */
3055 hi_fixup = mips_hi_fixup_list;
3056 if (hi_fixup == 0
3057 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3058 {
3059 hi_fixup = ((struct mips_hi_fixup *)
3060 xmalloc (sizeof (struct mips_hi_fixup)));
3061 hi_fixup->next = mips_hi_fixup_list;
3062 mips_hi_fixup_list = hi_fixup;
3063 }
3064 hi_fixup->fixp = ip->fixp[0];
3065 hi_fixup->seg = now_seg;
3066 }
3067
3068 /* Add fixups for the second and third relocations, if given.
3069 Note that the ABI allows the second relocation to be
3070 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3071 moment we only use RSS_UNDEF, but we could add support
3072 for the others if it ever becomes necessary. */
3073 for (i = 1; i < 3; i++)
3074 if (reloc_type[i] != BFD_RELOC_UNUSED)
3075 {
3076 ip->fixp[i] = fix_new (ip->frag, ip->where,
3077 ip->fixp[0]->fx_size, NULL, 0,
3078 FALSE, reloc_type[i]);
3079
3080 /* Use fx_tcbit to mark compound relocs. */
3081 ip->fixp[0]->fx_tcbit = 1;
3082 ip->fixp[i]->fx_tcbit = 1;
3083 }
3084 }
3085 }
3086 install_insn (ip);
3087
3088 /* Update the register mask information. */
3089 if (! mips_opts.mips16)
3090 {
3091 if (pinfo & INSN_WRITE_GPR_D)
3092 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3093 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3094 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3095 if (pinfo & INSN_READ_GPR_S)
3096 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3097 if (pinfo & INSN_WRITE_GPR_31)
3098 mips_gprmask |= 1 << RA;
3099 if (pinfo & INSN_WRITE_FPR_D)
3100 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3101 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3102 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3103 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3104 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3105 if ((pinfo & INSN_READ_FPR_R) != 0)
3106 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3107 if (pinfo & INSN_COP)
3108 {
3109 /* We don't keep enough information to sort these cases out.
3110 The itbl support does keep this information however, although
3111 we currently don't support itbl fprmats as part of the cop
3112 instruction. May want to add this support in the future. */
3113 }
3114 /* Never set the bit for $0, which is always zero. */
3115 mips_gprmask &= ~1 << 0;
3116 }
3117 else
3118 {
3119 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3120 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3121 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3122 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3123 if (pinfo & MIPS16_INSN_WRITE_Z)
3124 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3125 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3126 mips_gprmask |= 1 << TREG;
3127 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3128 mips_gprmask |= 1 << SP;
3129 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3130 mips_gprmask |= 1 << RA;
3131 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3132 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3133 if (pinfo & MIPS16_INSN_READ_Z)
3134 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3135 if (pinfo & MIPS16_INSN_READ_GPR_X)
3136 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3137 }
3138
3139 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3140 {
3141 /* Filling the branch delay slot is more complex. We try to
3142 switch the branch with the previous instruction, which we can
3143 do if the previous instruction does not set up a condition
3144 that the branch tests and if the branch is not itself the
3145 target of any branch. */
3146 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3147 || (pinfo & INSN_COND_BRANCH_DELAY))
3148 {
3149 if (mips_optimize < 2
3150 /* If we have seen .set volatile or .set nomove, don't
3151 optimize. */
3152 || mips_opts.nomove != 0
3153 /* We can't swap if the previous instruction's position
3154 is fixed. */
3155 || history[0].fixed_p
3156 /* If the previous previous insn was in a .set
3157 noreorder, we can't swap. Actually, the MIPS
3158 assembler will swap in this situation. However, gcc
3159 configured -with-gnu-as will generate code like
3160 .set noreorder
3161 lw $4,XXX
3162 .set reorder
3163 INSN
3164 bne $4,$0,foo
3165 in which we can not swap the bne and INSN. If gcc is
3166 not configured -with-gnu-as, it does not output the
3167 .set pseudo-ops. */
3168 || history[1].noreorder_p
3169 /* If the branch is itself the target of a branch, we
3170 can not swap. We cheat on this; all we check for is
3171 whether there is a label on this instruction. If
3172 there are any branches to anything other than a
3173 label, users must use .set noreorder. */
3174 || si->label_list != NULL
3175 /* If the previous instruction is in a variant frag
3176 other than this branch's one, we cannot do the swap.
3177 This does not apply to the mips16, which uses variant
3178 frags for different purposes. */
3179 || (! mips_opts.mips16
3180 && prev_insn_frag_type == rs_machine_dependent)
3181 /* Check for conflicts between the branch and the instructions
3182 before the candidate delay slot. */
3183 || nops_for_insn (history + 1, ip) > 0
3184 /* Check for conflicts between the swapped sequence and the
3185 target of the branch. */
3186 || nops_for_sequence (2, history + 1, ip, history) > 0
3187 /* We do not swap with a trap instruction, since it
3188 complicates trap handlers to have the trap
3189 instruction be in a delay slot. */
3190 || (prev_pinfo & INSN_TRAP)
3191 /* If the branch reads a register that the previous
3192 instruction sets, we can not swap. */
3193 || (! mips_opts.mips16
3194 && (prev_pinfo & INSN_WRITE_GPR_T)
3195 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3196 MIPS_GR_REG))
3197 || (! mips_opts.mips16
3198 && (prev_pinfo & INSN_WRITE_GPR_D)
3199 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3200 MIPS_GR_REG))
3201 || (mips_opts.mips16
3202 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3203 && (insn_uses_reg
3204 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3205 MIPS16_REG)))
3206 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3207 && (insn_uses_reg
3208 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3209 MIPS16_REG)))
3210 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3211 && (insn_uses_reg
3212 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3213 MIPS16_REG)))
3214 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3215 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3216 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3217 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3218 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3219 && insn_uses_reg (ip,
3220 MIPS16OP_EXTRACT_REG32R
3221 (history[0].insn_opcode),
3222 MIPS_GR_REG))))
3223 /* If the branch writes a register that the previous
3224 instruction sets, we can not swap (we know that
3225 branches write only to RD or to $31). */
3226 || (! mips_opts.mips16
3227 && (prev_pinfo & INSN_WRITE_GPR_T)
3228 && (((pinfo & INSN_WRITE_GPR_D)
3229 && (EXTRACT_OPERAND (RT, history[0])
3230 == EXTRACT_OPERAND (RD, *ip)))
3231 || ((pinfo & INSN_WRITE_GPR_31)
3232 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3233 || (! mips_opts.mips16
3234 && (prev_pinfo & INSN_WRITE_GPR_D)
3235 && (((pinfo & INSN_WRITE_GPR_D)
3236 && (EXTRACT_OPERAND (RD, history[0])
3237 == EXTRACT_OPERAND (RD, *ip)))
3238 || ((pinfo & INSN_WRITE_GPR_31)
3239 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3240 || (mips_opts.mips16
3241 && (pinfo & MIPS16_INSN_WRITE_31)
3242 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3243 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3244 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3245 == RA))))
3246 /* If the branch writes a register that the previous
3247 instruction reads, we can not swap (we know that
3248 branches only write to RD or to $31). */
3249 || (! mips_opts.mips16
3250 && (pinfo & INSN_WRITE_GPR_D)
3251 && insn_uses_reg (&history[0],
3252 EXTRACT_OPERAND (RD, *ip),
3253 MIPS_GR_REG))
3254 || (! mips_opts.mips16
3255 && (pinfo & INSN_WRITE_GPR_31)
3256 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3257 || (mips_opts.mips16
3258 && (pinfo & MIPS16_INSN_WRITE_31)
3259 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3260 /* If one instruction sets a condition code and the
3261 other one uses a condition code, we can not swap. */
3262 || ((pinfo & INSN_READ_COND_CODE)
3263 && (prev_pinfo & INSN_WRITE_COND_CODE))
3264 || ((pinfo & INSN_WRITE_COND_CODE)
3265 && (prev_pinfo & INSN_READ_COND_CODE))
3266 /* If the previous instruction uses the PC, we can not
3267 swap. */
3268 || (mips_opts.mips16
3269 && (prev_pinfo & MIPS16_INSN_READ_PC))
3270 /* If the previous instruction had a fixup in mips16
3271 mode, we can not swap. This normally means that the
3272 previous instruction was a 4 byte branch anyhow. */
3273 || (mips_opts.mips16 && history[0].fixp[0])
3274 /* If the previous instruction is a sync, sync.l, or
3275 sync.p, we can not swap. */
3276 || (prev_pinfo & INSN_SYNC)
3277 /* If the previous instruction is an ERET or
3278 DERET, avoid the swap. */
3279 || (history[0].insn_opcode == INSN_ERET)
3280 || (history[0].insn_opcode == INSN_DERET))
3281 {
3282 if (mips_opts.mips16
3283 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3284 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3285 && ISA_SUPPORTS_MIPS16E)
3286 {
3287 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3288 ip->insn_opcode |= 0x0080;
3289 install_insn (ip);
3290 insert_into_history (0, 1, ip);
3291 }
3292 else
3293 {
3294 /* We could do even better for unconditional branches to
3295 portions of this object file; we could pick up the
3296 instruction at the destination, put it in the delay
3297 slot, and bump the destination address. */
3298 insert_into_history (0, 1, ip);
3299 emit_nop ();
3300 }
3301
3302 if (mips_relax.sequence)
3303 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3304 }
3305 else
3306 {
3307 /* It looks like we can actually do the swap. */
3308 struct mips_cl_insn delay = history[0];
3309 if (mips_opts.mips16)
3310 {
3311 know (delay.frag == ip->frag);
3312 move_insn (ip, delay.frag, delay.where);
3313 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3314 }
3315 else if (relaxed_branch)
3316 {
3317 /* Add the delay slot instruction to the end of the
3318 current frag and shrink the fixed part of the
3319 original frag. If the branch occupies the tail of
3320 the latter, move it backwards to cover the gap. */
3321 delay.frag->fr_fix -= 4;
3322 if (delay.frag == ip->frag)
3323 move_insn (ip, ip->frag, ip->where - 4);
3324 add_fixed_insn (&delay);
3325 }
3326 else
3327 {
3328 move_insn (&delay, ip->frag, ip->where);
3329 move_insn (ip, history[0].frag, history[0].where);
3330 }
3331 history[0] = *ip;
3332 delay.fixed_p = 1;
3333 insert_into_history (0, 1, &delay);
3334 }
3335
3336 /* If that was an unconditional branch, forget the previous
3337 insn information. */
3338 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3339 {
3340 mips_no_prev_insn ();
3341 }
3342 }
3343 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3344 {
3345 /* We don't yet optimize a branch likely. What we should do
3346 is look at the target, copy the instruction found there
3347 into the delay slot, and increment the branch to jump to
3348 the next instruction. */
3349 insert_into_history (0, 1, ip);
3350 emit_nop ();
3351 }
3352 else
3353 insert_into_history (0, 1, ip);
3354 }
3355 else
3356 insert_into_history (0, 1, ip);
3357
3358 /* We just output an insn, so the next one doesn't have a label. */
3359 mips_clear_insn_labels ();
3360 }
3361
3362 /* Forget that there was any previous instruction or label. */
3363
3364 static void
3365 mips_no_prev_insn (void)
3366 {
3367 prev_nop_frag = NULL;
3368 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3369 mips_clear_insn_labels ();
3370 }
3371
3372 /* This function must be called before we emit something other than
3373 instructions. It is like mips_no_prev_insn except that it inserts
3374 any NOPS that might be needed by previous instructions. */
3375
3376 void
3377 mips_emit_delays (void)
3378 {
3379 if (! mips_opts.noreorder)
3380 {
3381 int nops = nops_for_insn (history, NULL);
3382 if (nops > 0)
3383 {
3384 while (nops-- > 0)
3385 add_fixed_insn (NOP_INSN);
3386 mips_move_labels ();
3387 }
3388 }
3389 mips_no_prev_insn ();
3390 }
3391
3392 /* Start a (possibly nested) noreorder block. */
3393
3394 static void
3395 start_noreorder (void)
3396 {
3397 if (mips_opts.noreorder == 0)
3398 {
3399 unsigned int i;
3400 int nops;
3401
3402 /* None of the instructions before the .set noreorder can be moved. */
3403 for (i = 0; i < ARRAY_SIZE (history); i++)
3404 history[i].fixed_p = 1;
3405
3406 /* Insert any nops that might be needed between the .set noreorder
3407 block and the previous instructions. We will later remove any
3408 nops that turn out not to be needed. */
3409 nops = nops_for_insn (history, NULL);
3410 if (nops > 0)
3411 {
3412 if (mips_optimize != 0)
3413 {
3414 /* Record the frag which holds the nop instructions, so
3415 that we can remove them if we don't need them. */
3416 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3417 prev_nop_frag = frag_now;
3418 prev_nop_frag_holds = nops;
3419 prev_nop_frag_required = 0;
3420 prev_nop_frag_since = 0;
3421 }
3422
3423 for (; nops > 0; --nops)
3424 add_fixed_insn (NOP_INSN);
3425
3426 /* Move on to a new frag, so that it is safe to simply
3427 decrease the size of prev_nop_frag. */
3428 frag_wane (frag_now);
3429 frag_new (0);
3430 mips_move_labels ();
3431 }
3432 mips16_mark_labels ();
3433 mips_clear_insn_labels ();
3434 }
3435 mips_opts.noreorder++;
3436 mips_any_noreorder = 1;
3437 }
3438
3439 /* End a nested noreorder block. */
3440
3441 static void
3442 end_noreorder (void)
3443 {
3444
3445 mips_opts.noreorder--;
3446 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3447 {
3448 /* Commit to inserting prev_nop_frag_required nops and go back to
3449 handling nop insertion the .set reorder way. */
3450 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3451 * (mips_opts.mips16 ? 2 : 4));
3452 insert_into_history (prev_nop_frag_since,
3453 prev_nop_frag_required, NOP_INSN);
3454 prev_nop_frag = NULL;
3455 }
3456 }
3457
3458 /* Set up global variables for the start of a new macro. */
3459
3460 static void
3461 macro_start (void)
3462 {
3463 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3464 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3465 && (history[0].insn_mo->pinfo
3466 & (INSN_UNCOND_BRANCH_DELAY
3467 | INSN_COND_BRANCH_DELAY
3468 | INSN_COND_BRANCH_LIKELY)) != 0);
3469 }
3470
3471 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3472 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3473 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3474
3475 static const char *
3476 macro_warning (relax_substateT subtype)
3477 {
3478 if (subtype & RELAX_DELAY_SLOT)
3479 return _("Macro instruction expanded into multiple instructions"
3480 " in a branch delay slot");
3481 else if (subtype & RELAX_NOMACRO)
3482 return _("Macro instruction expanded into multiple instructions");
3483 else
3484 return 0;
3485 }
3486
3487 /* Finish up a macro. Emit warnings as appropriate. */
3488
3489 static void
3490 macro_end (void)
3491 {
3492 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3493 {
3494 relax_substateT subtype;
3495
3496 /* Set up the relaxation warning flags. */
3497 subtype = 0;
3498 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3499 subtype |= RELAX_SECOND_LONGER;
3500 if (mips_opts.warn_about_macros)
3501 subtype |= RELAX_NOMACRO;
3502 if (mips_macro_warning.delay_slot_p)
3503 subtype |= RELAX_DELAY_SLOT;
3504
3505 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3506 {
3507 /* Either the macro has a single implementation or both
3508 implementations are longer than 4 bytes. Emit the
3509 warning now. */
3510 const char *msg = macro_warning (subtype);
3511 if (msg != 0)
3512 as_warn ("%s", msg);
3513 }
3514 else
3515 {
3516 /* One implementation might need a warning but the other
3517 definitely doesn't. */
3518 mips_macro_warning.first_frag->fr_subtype |= subtype;
3519 }
3520 }
3521 }
3522
3523 /* Read a macro's relocation codes from *ARGS and store them in *R.
3524 The first argument in *ARGS will be either the code for a single
3525 relocation or -1 followed by the three codes that make up a
3526 composite relocation. */
3527
3528 static void
3529 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3530 {
3531 int i, next;
3532
3533 next = va_arg (*args, int);
3534 if (next >= 0)
3535 r[0] = (bfd_reloc_code_real_type) next;
3536 else
3537 for (i = 0; i < 3; i++)
3538 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3539 }
3540
3541 /* Build an instruction created by a macro expansion. This is passed
3542 a pointer to the count of instructions created so far, an
3543 expression, the name of the instruction to build, an operand format
3544 string, and corresponding arguments. */
3545
3546 static void
3547 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3548 {
3549 const struct mips_opcode *mo;
3550 struct mips_cl_insn insn;
3551 bfd_reloc_code_real_type r[3];
3552 va_list args;
3553
3554 va_start (args, fmt);
3555
3556 if (mips_opts.mips16)
3557 {
3558 mips16_macro_build (ep, name, fmt, args);
3559 va_end (args);
3560 return;
3561 }
3562
3563 r[0] = BFD_RELOC_UNUSED;
3564 r[1] = BFD_RELOC_UNUSED;
3565 r[2] = BFD_RELOC_UNUSED;
3566 mo = (struct mips_opcode *) hash_find (op_hash, name);
3567 gas_assert (mo);
3568 gas_assert (strcmp (name, mo->name) == 0);
3569
3570 while (1)
3571 {
3572 /* Search until we get a match for NAME. It is assumed here that
3573 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3574 if (strcmp (fmt, mo->args) == 0
3575 && mo->pinfo != INSN_MACRO
3576 && is_opcode_valid (mo, TRUE))
3577 break;
3578
3579 ++mo;
3580 gas_assert (mo->name);
3581 gas_assert (strcmp (name, mo->name) == 0);
3582 }
3583
3584 create_insn (&insn, mo);
3585 for (;;)
3586 {
3587 switch (*fmt++)
3588 {
3589 case '\0':
3590 break;
3591
3592 case ',':
3593 case '(':
3594 case ')':
3595 continue;
3596
3597 case '+':
3598 switch (*fmt++)
3599 {
3600 case 'A':
3601 case 'E':
3602 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3603 continue;
3604
3605 case 'B':
3606 case 'F':
3607 /* Note that in the macro case, these arguments are already
3608 in MSB form. (When handling the instruction in the
3609 non-macro case, these arguments are sizes from which
3610 MSB values must be calculated.) */
3611 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3612 continue;
3613
3614 case 'C':
3615 case 'G':
3616 case 'H':
3617 /* Note that in the macro case, these arguments are already
3618 in MSBD form. (When handling the instruction in the
3619 non-macro case, these arguments are sizes from which
3620 MSBD values must be calculated.) */
3621 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3622 continue;
3623
3624 case 'Q':
3625 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3626 continue;
3627
3628 default:
3629 internalError ();
3630 }
3631 continue;
3632
3633 case '2':
3634 INSERT_OPERAND (BP, insn, va_arg (args, int));
3635 continue;
3636
3637 case 't':
3638 case 'w':
3639 case 'E':
3640 INSERT_OPERAND (RT, insn, va_arg (args, int));
3641 continue;
3642
3643 case 'c':
3644 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3645 continue;
3646
3647 case 'T':
3648 case 'W':
3649 INSERT_OPERAND (FT, insn, va_arg (args, int));
3650 continue;
3651
3652 case 'd':
3653 case 'G':
3654 case 'K':
3655 INSERT_OPERAND (RD, insn, va_arg (args, int));
3656 continue;
3657
3658 case 'U':
3659 {
3660 int tmp = va_arg (args, int);
3661
3662 INSERT_OPERAND (RT, insn, tmp);
3663 INSERT_OPERAND (RD, insn, tmp);
3664 continue;
3665 }
3666
3667 case 'V':
3668 case 'S':
3669 INSERT_OPERAND (FS, insn, va_arg (args, int));
3670 continue;
3671
3672 case 'z':
3673 continue;
3674
3675 case '<':
3676 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3677 continue;
3678
3679 case 'D':
3680 INSERT_OPERAND (FD, insn, va_arg (args, int));
3681 continue;
3682
3683 case 'B':
3684 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3685 continue;
3686
3687 case 'J':
3688 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3689 continue;
3690
3691 case 'q':
3692 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3693 continue;
3694
3695 case 'b':
3696 case 's':
3697 case 'r':
3698 case 'v':
3699 INSERT_OPERAND (RS, insn, va_arg (args, int));
3700 continue;
3701
3702 case 'i':
3703 case 'j':
3704 case 'o':
3705 macro_read_relocs (&args, r);
3706 gas_assert (*r == BFD_RELOC_GPREL16
3707 || *r == BFD_RELOC_MIPS_LITERAL
3708 || *r == BFD_RELOC_MIPS_HIGHER
3709 || *r == BFD_RELOC_HI16_S
3710 || *r == BFD_RELOC_LO16
3711 || *r == BFD_RELOC_MIPS_GOT16
3712 || *r == BFD_RELOC_MIPS_CALL16
3713 || *r == BFD_RELOC_MIPS_GOT_DISP
3714 || *r == BFD_RELOC_MIPS_GOT_PAGE
3715 || *r == BFD_RELOC_MIPS_GOT_OFST
3716 || *r == BFD_RELOC_MIPS_GOT_LO16
3717 || *r == BFD_RELOC_MIPS_CALL_LO16);
3718 continue;
3719
3720 case 'u':
3721 macro_read_relocs (&args, r);
3722 gas_assert (ep != NULL
3723 && (ep->X_op == O_constant
3724 || (ep->X_op == O_symbol
3725 && (*r == BFD_RELOC_MIPS_HIGHEST
3726 || *r == BFD_RELOC_HI16_S
3727 || *r == BFD_RELOC_HI16
3728 || *r == BFD_RELOC_GPREL16
3729 || *r == BFD_RELOC_MIPS_GOT_HI16
3730 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3731 continue;
3732
3733 case 'p':
3734 gas_assert (ep != NULL);
3735
3736 /*
3737 * This allows macro() to pass an immediate expression for
3738 * creating short branches without creating a symbol.
3739 *
3740 * We don't allow branch relaxation for these branches, as
3741 * they should only appear in ".set nomacro" anyway.
3742 */
3743 if (ep->X_op == O_constant)
3744 {
3745 if ((ep->X_add_number & 3) != 0)
3746 as_bad (_("branch to misaligned address (0x%lx)"),
3747 (unsigned long) ep->X_add_number);
3748 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3749 as_bad (_("branch address range overflow (0x%lx)"),
3750 (unsigned long) ep->X_add_number);
3751 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3752 ep = NULL;
3753 }
3754 else
3755 *r = BFD_RELOC_16_PCREL_S2;
3756 continue;
3757
3758 case 'a':
3759 gas_assert (ep != NULL);
3760 *r = BFD_RELOC_MIPS_JMP;
3761 continue;
3762
3763 case 'C':
3764 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3765 continue;
3766
3767 case 'k':
3768 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3769 continue;
3770
3771 default:
3772 internalError ();
3773 }
3774 break;
3775 }
3776 va_end (args);
3777 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3778
3779 append_insn (&insn, ep, r);
3780 }
3781
3782 static void
3783 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3784 va_list args)
3785 {
3786 struct mips_opcode *mo;
3787 struct mips_cl_insn insn;
3788 bfd_reloc_code_real_type r[3]
3789 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3790
3791 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3792 gas_assert (mo);
3793 gas_assert (strcmp (name, mo->name) == 0);
3794
3795 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3796 {
3797 ++mo;
3798 gas_assert (mo->name);
3799 gas_assert (strcmp (name, mo->name) == 0);
3800 }
3801
3802 create_insn (&insn, mo);
3803 for (;;)
3804 {
3805 int c;
3806
3807 c = *fmt++;
3808 switch (c)
3809 {
3810 case '\0':
3811 break;
3812
3813 case ',':
3814 case '(':
3815 case ')':
3816 continue;
3817
3818 case 'y':
3819 case 'w':
3820 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3821 continue;
3822
3823 case 'x':
3824 case 'v':
3825 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3826 continue;
3827
3828 case 'z':
3829 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3830 continue;
3831
3832 case 'Z':
3833 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3834 continue;
3835
3836 case '0':
3837 case 'S':
3838 case 'P':
3839 case 'R':
3840 continue;
3841
3842 case 'X':
3843 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3844 continue;
3845
3846 case 'Y':
3847 {
3848 int regno;
3849
3850 regno = va_arg (args, int);
3851 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3852 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3853 }
3854 continue;
3855
3856 case '<':
3857 case '>':
3858 case '4':
3859 case '5':
3860 case 'H':
3861 case 'W':
3862 case 'D':
3863 case 'j':
3864 case '8':
3865 case 'V':
3866 case 'C':
3867 case 'U':
3868 case 'k':
3869 case 'K':
3870 case 'p':
3871 case 'q':
3872 {
3873 gas_assert (ep != NULL);
3874
3875 if (ep->X_op != O_constant)
3876 *r = (int) BFD_RELOC_UNUSED + c;
3877 else
3878 {
3879 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3880 FALSE, &insn.insn_opcode, &insn.use_extend,
3881 &insn.extend);
3882 ep = NULL;
3883 *r = BFD_RELOC_UNUSED;
3884 }
3885 }
3886 continue;
3887
3888 case '6':
3889 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3890 continue;
3891 }
3892
3893 break;
3894 }
3895
3896 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3897
3898 append_insn (&insn, ep, r);
3899 }
3900
3901 /*
3902 * Sign-extend 32-bit mode constants that have bit 31 set and all
3903 * higher bits unset.
3904 */
3905 static void
3906 normalize_constant_expr (expressionS *ex)
3907 {
3908 if (ex->X_op == O_constant
3909 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3910 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3911 - 0x80000000);
3912 }
3913
3914 /*
3915 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3916 * all higher bits unset.
3917 */
3918 static void
3919 normalize_address_expr (expressionS *ex)
3920 {
3921 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3922 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3923 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3924 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3925 - 0x80000000);
3926 }
3927
3928 /*
3929 * Generate a "jalr" instruction with a relocation hint to the called
3930 * function. This occurs in NewABI PIC code.
3931 */
3932 static void
3933 macro_build_jalr (expressionS *ep)
3934 {
3935 char *f = NULL;
3936
3937 if (MIPS_JALR_HINT_P (ep))
3938 {
3939 frag_grow (8);
3940 f = frag_more (0);
3941 }
3942 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3943 if (MIPS_JALR_HINT_P (ep))
3944 fix_new_exp (frag_now, f - frag_now->fr_literal,
3945 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3946 }
3947
3948 /*
3949 * Generate a "lui" instruction.
3950 */
3951 static void
3952 macro_build_lui (expressionS *ep, int regnum)
3953 {
3954 expressionS high_expr;
3955 const struct mips_opcode *mo;
3956 struct mips_cl_insn insn;
3957 bfd_reloc_code_real_type r[3]
3958 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3959 const char *name = "lui";
3960 const char *fmt = "t,u";
3961
3962 gas_assert (! mips_opts.mips16);
3963
3964 high_expr = *ep;
3965
3966 if (high_expr.X_op == O_constant)
3967 {
3968 /* We can compute the instruction now without a relocation entry. */
3969 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3970 >> 16) & 0xffff;
3971 *r = BFD_RELOC_UNUSED;
3972 }
3973 else
3974 {
3975 gas_assert (ep->X_op == O_symbol);
3976 /* _gp_disp is a special case, used from s_cpload.
3977 __gnu_local_gp is used if mips_no_shared. */
3978 gas_assert (mips_pic == NO_PIC
3979 || (! HAVE_NEWABI
3980 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3981 || (! mips_in_shared
3982 && strcmp (S_GET_NAME (ep->X_add_symbol),
3983 "__gnu_local_gp") == 0));
3984 *r = BFD_RELOC_HI16_S;
3985 }
3986
3987 mo = hash_find (op_hash, name);
3988 gas_assert (strcmp (name, mo->name) == 0);
3989 gas_assert (strcmp (fmt, mo->args) == 0);
3990 create_insn (&insn, mo);
3991
3992 insn.insn_opcode = insn.insn_mo->match;
3993 INSERT_OPERAND (RT, insn, regnum);
3994 if (*r == BFD_RELOC_UNUSED)
3995 {
3996 insn.insn_opcode |= high_expr.X_add_number;
3997 append_insn (&insn, NULL, r);
3998 }
3999 else
4000 append_insn (&insn, &high_expr, r);
4001 }
4002
4003 /* Generate a sequence of instructions to do a load or store from a constant
4004 offset off of a base register (breg) into/from a target register (treg),
4005 using AT if necessary. */
4006 static void
4007 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4008 int treg, int breg, int dbl)
4009 {
4010 gas_assert (ep->X_op == O_constant);
4011
4012 /* Sign-extending 32-bit constants makes their handling easier. */
4013 if (!dbl)
4014 normalize_constant_expr (ep);
4015
4016 /* Right now, this routine can only handle signed 32-bit constants. */
4017 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4018 as_warn (_("operand overflow"));
4019
4020 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4021 {
4022 /* Signed 16-bit offset will fit in the op. Easy! */
4023 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4024 }
4025 else
4026 {
4027 /* 32-bit offset, need multiple instructions and AT, like:
4028 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4029 addu $tempreg,$tempreg,$breg
4030 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4031 to handle the complete offset. */
4032 macro_build_lui (ep, AT);
4033 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4034 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4035
4036 if (!mips_opts.at)
4037 as_bad (_("Macro used $at after \".set noat\""));
4038 }
4039 }
4040
4041 /* set_at()
4042 * Generates code to set the $at register to true (one)
4043 * if reg is less than the immediate expression.
4044 */
4045 static void
4046 set_at (int reg, int unsignedp)
4047 {
4048 if (imm_expr.X_op == O_constant
4049 && imm_expr.X_add_number >= -0x8000
4050 && imm_expr.X_add_number < 0x8000)
4051 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4052 AT, reg, BFD_RELOC_LO16);
4053 else
4054 {
4055 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4056 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4057 }
4058 }
4059
4060 /* Warn if an expression is not a constant. */
4061
4062 static void
4063 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4064 {
4065 if (ex->X_op == O_big)
4066 as_bad (_("unsupported large constant"));
4067 else if (ex->X_op != O_constant)
4068 as_bad (_("Instruction %s requires absolute expression"),
4069 ip->insn_mo->name);
4070
4071 if (HAVE_32BIT_GPRS)
4072 normalize_constant_expr (ex);
4073 }
4074
4075 /* Count the leading zeroes by performing a binary chop. This is a
4076 bulky bit of source, but performance is a LOT better for the
4077 majority of values than a simple loop to count the bits:
4078 for (lcnt = 0; (lcnt < 32); lcnt++)
4079 if ((v) & (1 << (31 - lcnt)))
4080 break;
4081 However it is not code size friendly, and the gain will drop a bit
4082 on certain cached systems.
4083 */
4084 #define COUNT_TOP_ZEROES(v) \
4085 (((v) & ~0xffff) == 0 \
4086 ? ((v) & ~0xff) == 0 \
4087 ? ((v) & ~0xf) == 0 \
4088 ? ((v) & ~0x3) == 0 \
4089 ? ((v) & ~0x1) == 0 \
4090 ? !(v) \
4091 ? 32 \
4092 : 31 \
4093 : 30 \
4094 : ((v) & ~0x7) == 0 \
4095 ? 29 \
4096 : 28 \
4097 : ((v) & ~0x3f) == 0 \
4098 ? ((v) & ~0x1f) == 0 \
4099 ? 27 \
4100 : 26 \
4101 : ((v) & ~0x7f) == 0 \
4102 ? 25 \
4103 : 24 \
4104 : ((v) & ~0xfff) == 0 \
4105 ? ((v) & ~0x3ff) == 0 \
4106 ? ((v) & ~0x1ff) == 0 \
4107 ? 23 \
4108 : 22 \
4109 : ((v) & ~0x7ff) == 0 \
4110 ? 21 \
4111 : 20 \
4112 : ((v) & ~0x3fff) == 0 \
4113 ? ((v) & ~0x1fff) == 0 \
4114 ? 19 \
4115 : 18 \
4116 : ((v) & ~0x7fff) == 0 \
4117 ? 17 \
4118 : 16 \
4119 : ((v) & ~0xffffff) == 0 \
4120 ? ((v) & ~0xfffff) == 0 \
4121 ? ((v) & ~0x3ffff) == 0 \
4122 ? ((v) & ~0x1ffff) == 0 \
4123 ? 15 \
4124 : 14 \
4125 : ((v) & ~0x7ffff) == 0 \
4126 ? 13 \
4127 : 12 \
4128 : ((v) & ~0x3fffff) == 0 \
4129 ? ((v) & ~0x1fffff) == 0 \
4130 ? 11 \
4131 : 10 \
4132 : ((v) & ~0x7fffff) == 0 \
4133 ? 9 \
4134 : 8 \
4135 : ((v) & ~0xfffffff) == 0 \
4136 ? ((v) & ~0x3ffffff) == 0 \
4137 ? ((v) & ~0x1ffffff) == 0 \
4138 ? 7 \
4139 : 6 \
4140 : ((v) & ~0x7ffffff) == 0 \
4141 ? 5 \
4142 : 4 \
4143 : ((v) & ~0x3fffffff) == 0 \
4144 ? ((v) & ~0x1fffffff) == 0 \
4145 ? 3 \
4146 : 2 \
4147 : ((v) & ~0x7fffffff) == 0 \
4148 ? 1 \
4149 : 0)
4150
4151 /* load_register()
4152 * This routine generates the least number of instructions necessary to load
4153 * an absolute expression value into a register.
4154 */
4155 static void
4156 load_register (int reg, expressionS *ep, int dbl)
4157 {
4158 int freg;
4159 expressionS hi32, lo32;
4160
4161 if (ep->X_op != O_big)
4162 {
4163 gas_assert (ep->X_op == O_constant);
4164
4165 /* Sign-extending 32-bit constants makes their handling easier. */
4166 if (!dbl)
4167 normalize_constant_expr (ep);
4168
4169 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4170 {
4171 /* We can handle 16 bit signed values with an addiu to
4172 $zero. No need to ever use daddiu here, since $zero and
4173 the result are always correct in 32 bit mode. */
4174 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4175 return;
4176 }
4177 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4178 {
4179 /* We can handle 16 bit unsigned values with an ori to
4180 $zero. */
4181 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4182 return;
4183 }
4184 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4185 {
4186 /* 32 bit values require an lui. */
4187 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4188 if ((ep->X_add_number & 0xffff) != 0)
4189 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4190 return;
4191 }
4192 }
4193
4194 /* The value is larger than 32 bits. */
4195
4196 if (!dbl || HAVE_32BIT_GPRS)
4197 {
4198 char value[32];
4199
4200 sprintf_vma (value, ep->X_add_number);
4201 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4202 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4203 return;
4204 }
4205
4206 if (ep->X_op != O_big)
4207 {
4208 hi32 = *ep;
4209 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4210 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4211 hi32.X_add_number &= 0xffffffff;
4212 lo32 = *ep;
4213 lo32.X_add_number &= 0xffffffff;
4214 }
4215 else
4216 {
4217 gas_assert (ep->X_add_number > 2);
4218 if (ep->X_add_number == 3)
4219 generic_bignum[3] = 0;
4220 else if (ep->X_add_number > 4)
4221 as_bad (_("Number larger than 64 bits"));
4222 lo32.X_op = O_constant;
4223 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4224 hi32.X_op = O_constant;
4225 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4226 }
4227
4228 if (hi32.X_add_number == 0)
4229 freg = 0;
4230 else
4231 {
4232 int shift, bit;
4233 unsigned long hi, lo;
4234
4235 if (hi32.X_add_number == (offsetT) 0xffffffff)
4236 {
4237 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4238 {
4239 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4240 return;
4241 }
4242 if (lo32.X_add_number & 0x80000000)
4243 {
4244 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4245 if (lo32.X_add_number & 0xffff)
4246 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4247 return;
4248 }
4249 }
4250
4251 /* Check for 16bit shifted constant. We know that hi32 is
4252 non-zero, so start the mask on the first bit of the hi32
4253 value. */
4254 shift = 17;
4255 do
4256 {
4257 unsigned long himask, lomask;
4258
4259 if (shift < 32)
4260 {
4261 himask = 0xffff >> (32 - shift);
4262 lomask = (0xffff << shift) & 0xffffffff;
4263 }
4264 else
4265 {
4266 himask = 0xffff << (shift - 32);
4267 lomask = 0;
4268 }
4269 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4270 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4271 {
4272 expressionS tmp;
4273
4274 tmp.X_op = O_constant;
4275 if (shift < 32)
4276 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4277 | (lo32.X_add_number >> shift));
4278 else
4279 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4280 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4281 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4282 reg, reg, (shift >= 32) ? shift - 32 : shift);
4283 return;
4284 }
4285 ++shift;
4286 }
4287 while (shift <= (64 - 16));
4288
4289 /* Find the bit number of the lowest one bit, and store the
4290 shifted value in hi/lo. */
4291 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4292 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4293 if (lo != 0)
4294 {
4295 bit = 0;
4296 while ((lo & 1) == 0)
4297 {
4298 lo >>= 1;
4299 ++bit;
4300 }
4301 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4302 hi >>= bit;
4303 }
4304 else
4305 {
4306 bit = 32;
4307 while ((hi & 1) == 0)
4308 {
4309 hi >>= 1;
4310 ++bit;
4311 }
4312 lo = hi;
4313 hi = 0;
4314 }
4315
4316 /* Optimize if the shifted value is a (power of 2) - 1. */
4317 if ((hi == 0 && ((lo + 1) & lo) == 0)
4318 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4319 {
4320 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4321 if (shift != 0)
4322 {
4323 expressionS tmp;
4324
4325 /* This instruction will set the register to be all
4326 ones. */
4327 tmp.X_op = O_constant;
4328 tmp.X_add_number = (offsetT) -1;
4329 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4330 if (bit != 0)
4331 {
4332 bit += shift;
4333 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4334 reg, reg, (bit >= 32) ? bit - 32 : bit);
4335 }
4336 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4337 reg, reg, (shift >= 32) ? shift - 32 : shift);
4338 return;
4339 }
4340 }
4341
4342 /* Sign extend hi32 before calling load_register, because we can
4343 generally get better code when we load a sign extended value. */
4344 if ((hi32.X_add_number & 0x80000000) != 0)
4345 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4346 load_register (reg, &hi32, 0);
4347 freg = reg;
4348 }
4349 if ((lo32.X_add_number & 0xffff0000) == 0)
4350 {
4351 if (freg != 0)
4352 {
4353 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4354 freg = reg;
4355 }
4356 }
4357 else
4358 {
4359 expressionS mid16;
4360
4361 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4362 {
4363 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4364 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4365 return;
4366 }
4367
4368 if (freg != 0)
4369 {
4370 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4371 freg = reg;
4372 }
4373 mid16 = lo32;
4374 mid16.X_add_number >>= 16;
4375 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4376 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4377 freg = reg;
4378 }
4379 if ((lo32.X_add_number & 0xffff) != 0)
4380 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4381 }
4382
4383 static inline void
4384 load_delay_nop (void)
4385 {
4386 if (!gpr_interlocks)
4387 macro_build (NULL, "nop", "");
4388 }
4389
4390 /* Load an address into a register. */
4391
4392 static void
4393 load_address (int reg, expressionS *ep, int *used_at)
4394 {
4395 if (ep->X_op != O_constant
4396 && ep->X_op != O_symbol)
4397 {
4398 as_bad (_("expression too complex"));
4399 ep->X_op = O_constant;
4400 }
4401
4402 if (ep->X_op == O_constant)
4403 {
4404 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4405 return;
4406 }
4407
4408 if (mips_pic == NO_PIC)
4409 {
4410 /* If this is a reference to a GP relative symbol, we want
4411 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4412 Otherwise we want
4413 lui $reg,<sym> (BFD_RELOC_HI16_S)
4414 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4415 If we have an addend, we always use the latter form.
4416
4417 With 64bit address space and a usable $at we want
4418 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4419 lui $at,<sym> (BFD_RELOC_HI16_S)
4420 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4421 daddiu $at,<sym> (BFD_RELOC_LO16)
4422 dsll32 $reg,0
4423 daddu $reg,$reg,$at
4424
4425 If $at is already in use, we use a path which is suboptimal
4426 on superscalar processors.
4427 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4428 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4429 dsll $reg,16
4430 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4431 dsll $reg,16
4432 daddiu $reg,<sym> (BFD_RELOC_LO16)
4433
4434 For GP relative symbols in 64bit address space we can use
4435 the same sequence as in 32bit address space. */
4436 if (HAVE_64BIT_SYMBOLS)
4437 {
4438 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4439 && !nopic_need_relax (ep->X_add_symbol, 1))
4440 {
4441 relax_start (ep->X_add_symbol);
4442 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4443 mips_gp_register, BFD_RELOC_GPREL16);
4444 relax_switch ();
4445 }
4446
4447 if (*used_at == 0 && mips_opts.at)
4448 {
4449 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4450 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4451 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4452 BFD_RELOC_MIPS_HIGHER);
4453 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4454 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4455 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4456 *used_at = 1;
4457 }
4458 else
4459 {
4460 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4461 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4462 BFD_RELOC_MIPS_HIGHER);
4463 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4464 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4465 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4466 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4467 }
4468
4469 if (mips_relax.sequence)
4470 relax_end ();
4471 }
4472 else
4473 {
4474 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4475 && !nopic_need_relax (ep->X_add_symbol, 1))
4476 {
4477 relax_start (ep->X_add_symbol);
4478 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4479 mips_gp_register, BFD_RELOC_GPREL16);
4480 relax_switch ();
4481 }
4482 macro_build_lui (ep, reg);
4483 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4484 reg, reg, BFD_RELOC_LO16);
4485 if (mips_relax.sequence)
4486 relax_end ();
4487 }
4488 }
4489 else if (!mips_big_got)
4490 {
4491 expressionS ex;
4492
4493 /* If this is a reference to an external symbol, we want
4494 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4495 Otherwise we want
4496 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4497 nop
4498 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4499 If there is a constant, it must be added in after.
4500
4501 If we have NewABI, we want
4502 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4503 unless we're referencing a global symbol with a non-zero
4504 offset, in which case cst must be added separately. */
4505 if (HAVE_NEWABI)
4506 {
4507 if (ep->X_add_number)
4508 {
4509 ex.X_add_number = ep->X_add_number;
4510 ep->X_add_number = 0;
4511 relax_start (ep->X_add_symbol);
4512 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4513 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4514 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4515 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4516 ex.X_op = O_constant;
4517 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4518 reg, reg, BFD_RELOC_LO16);
4519 ep->X_add_number = ex.X_add_number;
4520 relax_switch ();
4521 }
4522 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4523 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4524 if (mips_relax.sequence)
4525 relax_end ();
4526 }
4527 else
4528 {
4529 ex.X_add_number = ep->X_add_number;
4530 ep->X_add_number = 0;
4531 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4532 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4533 load_delay_nop ();
4534 relax_start (ep->X_add_symbol);
4535 relax_switch ();
4536 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4537 BFD_RELOC_LO16);
4538 relax_end ();
4539
4540 if (ex.X_add_number != 0)
4541 {
4542 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4543 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4544 ex.X_op = O_constant;
4545 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4546 reg, reg, BFD_RELOC_LO16);
4547 }
4548 }
4549 }
4550 else if (mips_big_got)
4551 {
4552 expressionS ex;
4553
4554 /* This is the large GOT case. If this is a reference to an
4555 external symbol, we want
4556 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4557 addu $reg,$reg,$gp
4558 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4559
4560 Otherwise, for a reference to a local symbol in old ABI, we want
4561 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4562 nop
4563 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4564 If there is a constant, it must be added in after.
4565
4566 In the NewABI, for local symbols, with or without offsets, we want:
4567 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4568 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4569 */
4570 if (HAVE_NEWABI)
4571 {
4572 ex.X_add_number = ep->X_add_number;
4573 ep->X_add_number = 0;
4574 relax_start (ep->X_add_symbol);
4575 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4576 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4577 reg, reg, mips_gp_register);
4578 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4579 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4580 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4581 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4582 else if (ex.X_add_number)
4583 {
4584 ex.X_op = O_constant;
4585 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4586 BFD_RELOC_LO16);
4587 }
4588
4589 ep->X_add_number = ex.X_add_number;
4590 relax_switch ();
4591 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4592 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4593 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4594 BFD_RELOC_MIPS_GOT_OFST);
4595 relax_end ();
4596 }
4597 else
4598 {
4599 ex.X_add_number = ep->X_add_number;
4600 ep->X_add_number = 0;
4601 relax_start (ep->X_add_symbol);
4602 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4603 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4604 reg, reg, mips_gp_register);
4605 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4606 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4607 relax_switch ();
4608 if (reg_needs_delay (mips_gp_register))
4609 {
4610 /* We need a nop before loading from $gp. This special
4611 check is required because the lui which starts the main
4612 instruction stream does not refer to $gp, and so will not
4613 insert the nop which may be required. */
4614 macro_build (NULL, "nop", "");
4615 }
4616 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4617 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4618 load_delay_nop ();
4619 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4620 BFD_RELOC_LO16);
4621 relax_end ();
4622
4623 if (ex.X_add_number != 0)
4624 {
4625 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4626 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4627 ex.X_op = O_constant;
4628 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4629 BFD_RELOC_LO16);
4630 }
4631 }
4632 }
4633 else
4634 abort ();
4635
4636 if (!mips_opts.at && *used_at == 1)
4637 as_bad (_("Macro used $at after \".set noat\""));
4638 }
4639
4640 /* Move the contents of register SOURCE into register DEST. */
4641
4642 static void
4643 move_register (int dest, int source)
4644 {
4645 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4646 dest, source, 0);
4647 }
4648
4649 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4650 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4651 The two alternatives are:
4652
4653 Global symbol Local sybmol
4654 ------------- ------------
4655 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4656 ... ...
4657 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4658
4659 load_got_offset emits the first instruction and add_got_offset
4660 emits the second for a 16-bit offset or add_got_offset_hilo emits
4661 a sequence to add a 32-bit offset using a scratch register. */
4662
4663 static void
4664 load_got_offset (int dest, expressionS *local)
4665 {
4666 expressionS global;
4667
4668 global = *local;
4669 global.X_add_number = 0;
4670
4671 relax_start (local->X_add_symbol);
4672 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4673 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4674 relax_switch ();
4675 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4676 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4677 relax_end ();
4678 }
4679
4680 static void
4681 add_got_offset (int dest, expressionS *local)
4682 {
4683 expressionS global;
4684
4685 global.X_op = O_constant;
4686 global.X_op_symbol = NULL;
4687 global.X_add_symbol = NULL;
4688 global.X_add_number = local->X_add_number;
4689
4690 relax_start (local->X_add_symbol);
4691 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4692 dest, dest, BFD_RELOC_LO16);
4693 relax_switch ();
4694 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4695 relax_end ();
4696 }
4697
4698 static void
4699 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4700 {
4701 expressionS global;
4702 int hold_mips_optimize;
4703
4704 global.X_op = O_constant;
4705 global.X_op_symbol = NULL;
4706 global.X_add_symbol = NULL;
4707 global.X_add_number = local->X_add_number;
4708
4709 relax_start (local->X_add_symbol);
4710 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4711 relax_switch ();
4712 /* Set mips_optimize around the lui instruction to avoid
4713 inserting an unnecessary nop after the lw. */
4714 hold_mips_optimize = mips_optimize;
4715 mips_optimize = 2;
4716 macro_build_lui (&global, tmp);
4717 mips_optimize = hold_mips_optimize;
4718 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4719 relax_end ();
4720
4721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4722 }
4723
4724 /*
4725 * Build macros
4726 * This routine implements the seemingly endless macro or synthesized
4727 * instructions and addressing modes in the mips assembly language. Many
4728 * of these macros are simple and are similar to each other. These could
4729 * probably be handled by some kind of table or grammar approach instead of
4730 * this verbose method. Others are not simple macros but are more like
4731 * optimizing code generation.
4732 * One interesting optimization is when several store macros appear
4733 * consecutively that would load AT with the upper half of the same address.
4734 * The ensuing load upper instructions are ommited. This implies some kind
4735 * of global optimization. We currently only optimize within a single macro.
4736 * For many of the load and store macros if the address is specified as a
4737 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4738 * first load register 'at' with zero and use it as the base register. The
4739 * mips assembler simply uses register $zero. Just one tiny optimization
4740 * we're missing.
4741 */
4742 static void
4743 macro (struct mips_cl_insn *ip)
4744 {
4745 unsigned int treg, sreg, dreg, breg;
4746 unsigned int tempreg;
4747 int mask;
4748 int used_at = 0;
4749 expressionS expr1;
4750 const char *s;
4751 const char *s2;
4752 const char *fmt;
4753 int likely = 0;
4754 int dbl = 0;
4755 int coproc = 0;
4756 int lr = 0;
4757 int imm = 0;
4758 int call = 0;
4759 int off;
4760 offsetT maxnum;
4761 bfd_reloc_code_real_type r;
4762 int hold_mips_optimize;
4763
4764 gas_assert (! mips_opts.mips16);
4765
4766 treg = (ip->insn_opcode >> 16) & 0x1f;
4767 dreg = (ip->insn_opcode >> 11) & 0x1f;
4768 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4769 mask = ip->insn_mo->mask;
4770
4771 expr1.X_op = O_constant;
4772 expr1.X_op_symbol = NULL;
4773 expr1.X_add_symbol = NULL;
4774 expr1.X_add_number = 1;
4775
4776 switch (mask)
4777 {
4778 case M_DABS:
4779 dbl = 1;
4780 case M_ABS:
4781 /* bgez $a0,.+12
4782 move v0,$a0
4783 sub v0,$zero,$a0
4784 */
4785
4786 start_noreorder ();
4787
4788 expr1.X_add_number = 8;
4789 macro_build (&expr1, "bgez", "s,p", sreg);
4790 if (dreg == sreg)
4791 macro_build (NULL, "nop", "", 0);
4792 else
4793 move_register (dreg, sreg);
4794 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4795
4796 end_noreorder ();
4797 break;
4798
4799 case M_ADD_I:
4800 s = "addi";
4801 s2 = "add";
4802 goto do_addi;
4803 case M_ADDU_I:
4804 s = "addiu";
4805 s2 = "addu";
4806 goto do_addi;
4807 case M_DADD_I:
4808 dbl = 1;
4809 s = "daddi";
4810 s2 = "dadd";
4811 goto do_addi;
4812 case M_DADDU_I:
4813 dbl = 1;
4814 s = "daddiu";
4815 s2 = "daddu";
4816 do_addi:
4817 if (imm_expr.X_op == O_constant
4818 && imm_expr.X_add_number >= -0x8000
4819 && imm_expr.X_add_number < 0x8000)
4820 {
4821 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4822 break;
4823 }
4824 used_at = 1;
4825 load_register (AT, &imm_expr, dbl);
4826 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4827 break;
4828
4829 case M_AND_I:
4830 s = "andi";
4831 s2 = "and";
4832 goto do_bit;
4833 case M_OR_I:
4834 s = "ori";
4835 s2 = "or";
4836 goto do_bit;
4837 case M_NOR_I:
4838 s = "";
4839 s2 = "nor";
4840 goto do_bit;
4841 case M_XOR_I:
4842 s = "xori";
4843 s2 = "xor";
4844 do_bit:
4845 if (imm_expr.X_op == O_constant
4846 && imm_expr.X_add_number >= 0
4847 && imm_expr.X_add_number < 0x10000)
4848 {
4849 if (mask != M_NOR_I)
4850 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4851 else
4852 {
4853 macro_build (&imm_expr, "ori", "t,r,i",
4854 treg, sreg, BFD_RELOC_LO16);
4855 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4856 }
4857 break;
4858 }
4859
4860 used_at = 1;
4861 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4862 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4863 break;
4864
4865 case M_BALIGN:
4866 switch (imm_expr.X_add_number)
4867 {
4868 case 0:
4869 macro_build (NULL, "nop", "");
4870 break;
4871 case 2:
4872 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4873 break;
4874 default:
4875 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4876 (int)imm_expr.X_add_number);
4877 break;
4878 }
4879 break;
4880
4881 case M_BEQ_I:
4882 s = "beq";
4883 goto beq_i;
4884 case M_BEQL_I:
4885 s = "beql";
4886 likely = 1;
4887 goto beq_i;
4888 case M_BNE_I:
4889 s = "bne";
4890 goto beq_i;
4891 case M_BNEL_I:
4892 s = "bnel";
4893 likely = 1;
4894 beq_i:
4895 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4896 {
4897 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4898 break;
4899 }
4900 used_at = 1;
4901 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4902 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4903 break;
4904
4905 case M_BGEL:
4906 likely = 1;
4907 case M_BGE:
4908 if (treg == 0)
4909 {
4910 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4911 break;
4912 }
4913 if (sreg == 0)
4914 {
4915 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4916 break;
4917 }
4918 used_at = 1;
4919 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4920 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4921 break;
4922
4923 case M_BGTL_I:
4924 likely = 1;
4925 case M_BGT_I:
4926 /* check for > max integer */
4927 maxnum = 0x7fffffff;
4928 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4929 {
4930 maxnum <<= 16;
4931 maxnum |= 0xffff;
4932 maxnum <<= 16;
4933 maxnum |= 0xffff;
4934 }
4935 if (imm_expr.X_op == O_constant
4936 && imm_expr.X_add_number >= maxnum
4937 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4938 {
4939 do_false:
4940 /* result is always false */
4941 if (! likely)
4942 macro_build (NULL, "nop", "", 0);
4943 else
4944 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4945 break;
4946 }
4947 if (imm_expr.X_op != O_constant)
4948 as_bad (_("Unsupported large constant"));
4949 ++imm_expr.X_add_number;
4950 /* FALLTHROUGH */
4951 case M_BGE_I:
4952 case M_BGEL_I:
4953 if (mask == M_BGEL_I)
4954 likely = 1;
4955 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4956 {
4957 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4958 break;
4959 }
4960 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4961 {
4962 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4963 break;
4964 }
4965 maxnum = 0x7fffffff;
4966 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4967 {
4968 maxnum <<= 16;
4969 maxnum |= 0xffff;
4970 maxnum <<= 16;
4971 maxnum |= 0xffff;
4972 }
4973 maxnum = - maxnum - 1;
4974 if (imm_expr.X_op == O_constant
4975 && imm_expr.X_add_number <= maxnum
4976 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4977 {
4978 do_true:
4979 /* result is always true */
4980 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4981 macro_build (&offset_expr, "b", "p");
4982 break;
4983 }
4984 used_at = 1;
4985 set_at (sreg, 0);
4986 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4987 break;
4988
4989 case M_BGEUL:
4990 likely = 1;
4991 case M_BGEU:
4992 if (treg == 0)
4993 goto do_true;
4994 if (sreg == 0)
4995 {
4996 macro_build (&offset_expr, likely ? "beql" : "beq",
4997 "s,t,p", 0, treg);
4998 break;
4999 }
5000 used_at = 1;
5001 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5002 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5003 break;
5004
5005 case M_BGTUL_I:
5006 likely = 1;
5007 case M_BGTU_I:
5008 if (sreg == 0
5009 || (HAVE_32BIT_GPRS
5010 && imm_expr.X_op == O_constant
5011 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5012 goto do_false;
5013 if (imm_expr.X_op != O_constant)
5014 as_bad (_("Unsupported large constant"));
5015 ++imm_expr.X_add_number;
5016 /* FALLTHROUGH */
5017 case M_BGEU_I:
5018 case M_BGEUL_I:
5019 if (mask == M_BGEUL_I)
5020 likely = 1;
5021 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5022 goto do_true;
5023 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5024 {
5025 macro_build (&offset_expr, likely ? "bnel" : "bne",
5026 "s,t,p", sreg, 0);
5027 break;
5028 }
5029 used_at = 1;
5030 set_at (sreg, 1);
5031 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5032 break;
5033
5034 case M_BGTL:
5035 likely = 1;
5036 case M_BGT:
5037 if (treg == 0)
5038 {
5039 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5040 break;
5041 }
5042 if (sreg == 0)
5043 {
5044 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5045 break;
5046 }
5047 used_at = 1;
5048 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5049 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5050 break;
5051
5052 case M_BGTUL:
5053 likely = 1;
5054 case M_BGTU:
5055 if (treg == 0)
5056 {
5057 macro_build (&offset_expr, likely ? "bnel" : "bne",
5058 "s,t,p", sreg, 0);
5059 break;
5060 }
5061 if (sreg == 0)
5062 goto do_false;
5063 used_at = 1;
5064 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5065 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5066 break;
5067
5068 case M_BLEL:
5069 likely = 1;
5070 case M_BLE:
5071 if (treg == 0)
5072 {
5073 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5074 break;
5075 }
5076 if (sreg == 0)
5077 {
5078 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5079 break;
5080 }
5081 used_at = 1;
5082 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5083 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5084 break;
5085
5086 case M_BLEL_I:
5087 likely = 1;
5088 case M_BLE_I:
5089 maxnum = 0x7fffffff;
5090 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5091 {
5092 maxnum <<= 16;
5093 maxnum |= 0xffff;
5094 maxnum <<= 16;
5095 maxnum |= 0xffff;
5096 }
5097 if (imm_expr.X_op == O_constant
5098 && imm_expr.X_add_number >= maxnum
5099 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5100 goto do_true;
5101 if (imm_expr.X_op != O_constant)
5102 as_bad (_("Unsupported large constant"));
5103 ++imm_expr.X_add_number;
5104 /* FALLTHROUGH */
5105 case M_BLT_I:
5106 case M_BLTL_I:
5107 if (mask == M_BLTL_I)
5108 likely = 1;
5109 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5110 {
5111 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5112 break;
5113 }
5114 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5115 {
5116 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5117 break;
5118 }
5119 used_at = 1;
5120 set_at (sreg, 0);
5121 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5122 break;
5123
5124 case M_BLEUL:
5125 likely = 1;
5126 case M_BLEU:
5127 if (treg == 0)
5128 {
5129 macro_build (&offset_expr, likely ? "beql" : "beq",
5130 "s,t,p", sreg, 0);
5131 break;
5132 }
5133 if (sreg == 0)
5134 goto do_true;
5135 used_at = 1;
5136 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5137 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5138 break;
5139
5140 case M_BLEUL_I:
5141 likely = 1;
5142 case M_BLEU_I:
5143 if (sreg == 0
5144 || (HAVE_32BIT_GPRS
5145 && imm_expr.X_op == O_constant
5146 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5147 goto do_true;
5148 if (imm_expr.X_op != O_constant)
5149 as_bad (_("Unsupported large constant"));
5150 ++imm_expr.X_add_number;
5151 /* FALLTHROUGH */
5152 case M_BLTU_I:
5153 case M_BLTUL_I:
5154 if (mask == M_BLTUL_I)
5155 likely = 1;
5156 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5157 goto do_false;
5158 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5159 {
5160 macro_build (&offset_expr, likely ? "beql" : "beq",
5161 "s,t,p", sreg, 0);
5162 break;
5163 }
5164 used_at = 1;
5165 set_at (sreg, 1);
5166 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5167 break;
5168
5169 case M_BLTL:
5170 likely = 1;
5171 case M_BLT:
5172 if (treg == 0)
5173 {
5174 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5175 break;
5176 }
5177 if (sreg == 0)
5178 {
5179 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5180 break;
5181 }
5182 used_at = 1;
5183 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5184 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5185 break;
5186
5187 case M_BLTUL:
5188 likely = 1;
5189 case M_BLTU:
5190 if (treg == 0)
5191 goto do_false;
5192 if (sreg == 0)
5193 {
5194 macro_build (&offset_expr, likely ? "bnel" : "bne",
5195 "s,t,p", 0, treg);
5196 break;
5197 }
5198 used_at = 1;
5199 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5200 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5201 break;
5202
5203 case M_DEXT:
5204 {
5205 unsigned long pos;
5206 unsigned long size;
5207
5208 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5209 {
5210 as_bad (_("Unsupported large constant"));
5211 pos = size = 1;
5212 }
5213 else
5214 {
5215 pos = (unsigned long) imm_expr.X_add_number;
5216 size = (unsigned long) imm2_expr.X_add_number;
5217 }
5218
5219 if (pos > 63)
5220 {
5221 as_bad (_("Improper position (%lu)"), pos);
5222 pos = 1;
5223 }
5224 if (size == 0 || size > 64
5225 || (pos + size - 1) > 63)
5226 {
5227 as_bad (_("Improper extract size (%lu, position %lu)"),
5228 size, pos);
5229 size = 1;
5230 }
5231
5232 if (size <= 32 && pos < 32)
5233 {
5234 s = "dext";
5235 fmt = "t,r,+A,+C";
5236 }
5237 else if (size <= 32)
5238 {
5239 s = "dextu";
5240 fmt = "t,r,+E,+H";
5241 }
5242 else
5243 {
5244 s = "dextm";
5245 fmt = "t,r,+A,+G";
5246 }
5247 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5248 }
5249 break;
5250
5251 case M_DINS:
5252 {
5253 unsigned long pos;
5254 unsigned long size;
5255
5256 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5257 {
5258 as_bad (_("Unsupported large constant"));
5259 pos = size = 1;
5260 }
5261 else
5262 {
5263 pos = (unsigned long) imm_expr.X_add_number;
5264 size = (unsigned long) imm2_expr.X_add_number;
5265 }
5266
5267 if (pos > 63)
5268 {
5269 as_bad (_("Improper position (%lu)"), pos);
5270 pos = 1;
5271 }
5272 if (size == 0 || size > 64
5273 || (pos + size - 1) > 63)
5274 {
5275 as_bad (_("Improper insert size (%lu, position %lu)"),
5276 size, pos);
5277 size = 1;
5278 }
5279
5280 if (pos < 32 && (pos + size - 1) < 32)
5281 {
5282 s = "dins";
5283 fmt = "t,r,+A,+B";
5284 }
5285 else if (pos >= 32)
5286 {
5287 s = "dinsu";
5288 fmt = "t,r,+E,+F";
5289 }
5290 else
5291 {
5292 s = "dinsm";
5293 fmt = "t,r,+A,+F";
5294 }
5295 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5296 (int) (pos + size - 1));
5297 }
5298 break;
5299
5300 case M_DDIV_3:
5301 dbl = 1;
5302 case M_DIV_3:
5303 s = "mflo";
5304 goto do_div3;
5305 case M_DREM_3:
5306 dbl = 1;
5307 case M_REM_3:
5308 s = "mfhi";
5309 do_div3:
5310 if (treg == 0)
5311 {
5312 as_warn (_("Divide by zero."));
5313 if (mips_trap)
5314 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5315 else
5316 macro_build (NULL, "break", "c", 7);
5317 break;
5318 }
5319
5320 start_noreorder ();
5321 if (mips_trap)
5322 {
5323 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5324 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5325 }
5326 else
5327 {
5328 expr1.X_add_number = 8;
5329 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5330 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5331 macro_build (NULL, "break", "c", 7);
5332 }
5333 expr1.X_add_number = -1;
5334 used_at = 1;
5335 load_register (AT, &expr1, dbl);
5336 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5337 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5338 if (dbl)
5339 {
5340 expr1.X_add_number = 1;
5341 load_register (AT, &expr1, dbl);
5342 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5343 }
5344 else
5345 {
5346 expr1.X_add_number = 0x80000000;
5347 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5348 }
5349 if (mips_trap)
5350 {
5351 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5352 /* We want to close the noreorder block as soon as possible, so
5353 that later insns are available for delay slot filling. */
5354 end_noreorder ();
5355 }
5356 else
5357 {
5358 expr1.X_add_number = 8;
5359 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5360 macro_build (NULL, "nop", "", 0);
5361
5362 /* We want to close the noreorder block as soon as possible, so
5363 that later insns are available for delay slot filling. */
5364 end_noreorder ();
5365
5366 macro_build (NULL, "break", "c", 6);
5367 }
5368 macro_build (NULL, s, "d", dreg);
5369 break;
5370
5371 case M_DIV_3I:
5372 s = "div";
5373 s2 = "mflo";
5374 goto do_divi;
5375 case M_DIVU_3I:
5376 s = "divu";
5377 s2 = "mflo";
5378 goto do_divi;
5379 case M_REM_3I:
5380 s = "div";
5381 s2 = "mfhi";
5382 goto do_divi;
5383 case M_REMU_3I:
5384 s = "divu";
5385 s2 = "mfhi";
5386 goto do_divi;
5387 case M_DDIV_3I:
5388 dbl = 1;
5389 s = "ddiv";
5390 s2 = "mflo";
5391 goto do_divi;
5392 case M_DDIVU_3I:
5393 dbl = 1;
5394 s = "ddivu";
5395 s2 = "mflo";
5396 goto do_divi;
5397 case M_DREM_3I:
5398 dbl = 1;
5399 s = "ddiv";
5400 s2 = "mfhi";
5401 goto do_divi;
5402 case M_DREMU_3I:
5403 dbl = 1;
5404 s = "ddivu";
5405 s2 = "mfhi";
5406 do_divi:
5407 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5408 {
5409 as_warn (_("Divide by zero."));
5410 if (mips_trap)
5411 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5412 else
5413 macro_build (NULL, "break", "c", 7);
5414 break;
5415 }
5416 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5417 {
5418 if (strcmp (s2, "mflo") == 0)
5419 move_register (dreg, sreg);
5420 else
5421 move_register (dreg, 0);
5422 break;
5423 }
5424 if (imm_expr.X_op == O_constant
5425 && imm_expr.X_add_number == -1
5426 && s[strlen (s) - 1] != 'u')
5427 {
5428 if (strcmp (s2, "mflo") == 0)
5429 {
5430 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5431 }
5432 else
5433 move_register (dreg, 0);
5434 break;
5435 }
5436
5437 used_at = 1;
5438 load_register (AT, &imm_expr, dbl);
5439 macro_build (NULL, s, "z,s,t", sreg, AT);
5440 macro_build (NULL, s2, "d", dreg);
5441 break;
5442
5443 case M_DIVU_3:
5444 s = "divu";
5445 s2 = "mflo";
5446 goto do_divu3;
5447 case M_REMU_3:
5448 s = "divu";
5449 s2 = "mfhi";
5450 goto do_divu3;
5451 case M_DDIVU_3:
5452 s = "ddivu";
5453 s2 = "mflo";
5454 goto do_divu3;
5455 case M_DREMU_3:
5456 s = "ddivu";
5457 s2 = "mfhi";
5458 do_divu3:
5459 start_noreorder ();
5460 if (mips_trap)
5461 {
5462 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5463 macro_build (NULL, s, "z,s,t", sreg, treg);
5464 /* We want to close the noreorder block as soon as possible, so
5465 that later insns are available for delay slot filling. */
5466 end_noreorder ();
5467 }
5468 else
5469 {
5470 expr1.X_add_number = 8;
5471 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5472 macro_build (NULL, s, "z,s,t", sreg, treg);
5473
5474 /* We want to close the noreorder block as soon as possible, so
5475 that later insns are available for delay slot filling. */
5476 end_noreorder ();
5477 macro_build (NULL, "break", "c", 7);
5478 }
5479 macro_build (NULL, s2, "d", dreg);
5480 break;
5481
5482 case M_DLCA_AB:
5483 dbl = 1;
5484 case M_LCA_AB:
5485 call = 1;
5486 goto do_la;
5487 case M_DLA_AB:
5488 dbl = 1;
5489 case M_LA_AB:
5490 do_la:
5491 /* Load the address of a symbol into a register. If breg is not
5492 zero, we then add a base register to it. */
5493
5494 if (dbl && HAVE_32BIT_GPRS)
5495 as_warn (_("dla used to load 32-bit register"));
5496
5497 if (! dbl && HAVE_64BIT_OBJECTS)
5498 as_warn (_("la used to load 64-bit address"));
5499
5500 if (offset_expr.X_op == O_constant
5501 && offset_expr.X_add_number >= -0x8000
5502 && offset_expr.X_add_number < 0x8000)
5503 {
5504 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5505 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5506 break;
5507 }
5508
5509 if (mips_opts.at && (treg == breg))
5510 {
5511 tempreg = AT;
5512 used_at = 1;
5513 }
5514 else
5515 {
5516 tempreg = treg;
5517 }
5518
5519 if (offset_expr.X_op != O_symbol
5520 && offset_expr.X_op != O_constant)
5521 {
5522 as_bad (_("expression too complex"));
5523 offset_expr.X_op = O_constant;
5524 }
5525
5526 if (offset_expr.X_op == O_constant)
5527 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5528 else if (mips_pic == NO_PIC)
5529 {
5530 /* If this is a reference to a GP relative symbol, we want
5531 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5532 Otherwise we want
5533 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5534 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5535 If we have a constant, we need two instructions anyhow,
5536 so we may as well always use the latter form.
5537
5538 With 64bit address space and a usable $at we want
5539 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5540 lui $at,<sym> (BFD_RELOC_HI16_S)
5541 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5542 daddiu $at,<sym> (BFD_RELOC_LO16)
5543 dsll32 $tempreg,0
5544 daddu $tempreg,$tempreg,$at
5545
5546 If $at is already in use, we use a path which is suboptimal
5547 on superscalar processors.
5548 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5549 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5550 dsll $tempreg,16
5551 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5552 dsll $tempreg,16
5553 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5554
5555 For GP relative symbols in 64bit address space we can use
5556 the same sequence as in 32bit address space. */
5557 if (HAVE_64BIT_SYMBOLS)
5558 {
5559 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5560 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5561 {
5562 relax_start (offset_expr.X_add_symbol);
5563 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5564 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5565 relax_switch ();
5566 }
5567
5568 if (used_at == 0 && mips_opts.at)
5569 {
5570 macro_build (&offset_expr, "lui", "t,u",
5571 tempreg, BFD_RELOC_MIPS_HIGHEST);
5572 macro_build (&offset_expr, "lui", "t,u",
5573 AT, BFD_RELOC_HI16_S);
5574 macro_build (&offset_expr, "daddiu", "t,r,j",
5575 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5576 macro_build (&offset_expr, "daddiu", "t,r,j",
5577 AT, AT, BFD_RELOC_LO16);
5578 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5579 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5580 used_at = 1;
5581 }
5582 else
5583 {
5584 macro_build (&offset_expr, "lui", "t,u",
5585 tempreg, BFD_RELOC_MIPS_HIGHEST);
5586 macro_build (&offset_expr, "daddiu", "t,r,j",
5587 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5588 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5589 macro_build (&offset_expr, "daddiu", "t,r,j",
5590 tempreg, tempreg, BFD_RELOC_HI16_S);
5591 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5592 macro_build (&offset_expr, "daddiu", "t,r,j",
5593 tempreg, tempreg, BFD_RELOC_LO16);
5594 }
5595
5596 if (mips_relax.sequence)
5597 relax_end ();
5598 }
5599 else
5600 {
5601 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5602 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5603 {
5604 relax_start (offset_expr.X_add_symbol);
5605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5606 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5607 relax_switch ();
5608 }
5609 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5610 as_bad (_("offset too large"));
5611 macro_build_lui (&offset_expr, tempreg);
5612 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5613 tempreg, tempreg, BFD_RELOC_LO16);
5614 if (mips_relax.sequence)
5615 relax_end ();
5616 }
5617 }
5618 else if (!mips_big_got && !HAVE_NEWABI)
5619 {
5620 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5621
5622 /* If this is a reference to an external symbol, and there
5623 is no constant, we want
5624 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5625 or for lca or if tempreg is PIC_CALL_REG
5626 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5627 For a local symbol, we want
5628 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5629 nop
5630 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5631
5632 If we have a small constant, and this is a reference to
5633 an external symbol, we want
5634 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5635 nop
5636 addiu $tempreg,$tempreg,<constant>
5637 For a local symbol, we want the same instruction
5638 sequence, but we output a BFD_RELOC_LO16 reloc on the
5639 addiu instruction.
5640
5641 If we have a large constant, and this is a reference to
5642 an external symbol, we want
5643 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5644 lui $at,<hiconstant>
5645 addiu $at,$at,<loconstant>
5646 addu $tempreg,$tempreg,$at
5647 For a local symbol, we want the same instruction
5648 sequence, but we output a BFD_RELOC_LO16 reloc on the
5649 addiu instruction.
5650 */
5651
5652 if (offset_expr.X_add_number == 0)
5653 {
5654 if (mips_pic == SVR4_PIC
5655 && breg == 0
5656 && (call || tempreg == PIC_CALL_REG))
5657 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5658
5659 relax_start (offset_expr.X_add_symbol);
5660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5661 lw_reloc_type, mips_gp_register);
5662 if (breg != 0)
5663 {
5664 /* We're going to put in an addu instruction using
5665 tempreg, so we may as well insert the nop right
5666 now. */
5667 load_delay_nop ();
5668 }
5669 relax_switch ();
5670 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5671 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5672 load_delay_nop ();
5673 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5674 tempreg, tempreg, BFD_RELOC_LO16);
5675 relax_end ();
5676 /* FIXME: If breg == 0, and the next instruction uses
5677 $tempreg, then if this variant case is used an extra
5678 nop will be generated. */
5679 }
5680 else if (offset_expr.X_add_number >= -0x8000
5681 && offset_expr.X_add_number < 0x8000)
5682 {
5683 load_got_offset (tempreg, &offset_expr);
5684 load_delay_nop ();
5685 add_got_offset (tempreg, &offset_expr);
5686 }
5687 else
5688 {
5689 expr1.X_add_number = offset_expr.X_add_number;
5690 offset_expr.X_add_number =
5691 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5692 load_got_offset (tempreg, &offset_expr);
5693 offset_expr.X_add_number = expr1.X_add_number;
5694 /* If we are going to add in a base register, and the
5695 target register and the base register are the same,
5696 then we are using AT as a temporary register. Since
5697 we want to load the constant into AT, we add our
5698 current AT (from the global offset table) and the
5699 register into the register now, and pretend we were
5700 not using a base register. */
5701 if (breg == treg)
5702 {
5703 load_delay_nop ();
5704 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5705 treg, AT, breg);
5706 breg = 0;
5707 tempreg = treg;
5708 }
5709 add_got_offset_hilo (tempreg, &offset_expr, AT);
5710 used_at = 1;
5711 }
5712 }
5713 else if (!mips_big_got && HAVE_NEWABI)
5714 {
5715 int add_breg_early = 0;
5716
5717 /* If this is a reference to an external, and there is no
5718 constant, or local symbol (*), with or without a
5719 constant, we want
5720 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5721 or for lca or if tempreg is PIC_CALL_REG
5722 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5723
5724 If we have a small constant, and this is a reference to
5725 an external symbol, we want
5726 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5727 addiu $tempreg,$tempreg,<constant>
5728
5729 If we have a large constant, and this is a reference to
5730 an external symbol, we want
5731 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5732 lui $at,<hiconstant>
5733 addiu $at,$at,<loconstant>
5734 addu $tempreg,$tempreg,$at
5735
5736 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5737 local symbols, even though it introduces an additional
5738 instruction. */
5739
5740 if (offset_expr.X_add_number)
5741 {
5742 expr1.X_add_number = offset_expr.X_add_number;
5743 offset_expr.X_add_number = 0;
5744
5745 relax_start (offset_expr.X_add_symbol);
5746 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5747 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5748
5749 if (expr1.X_add_number >= -0x8000
5750 && expr1.X_add_number < 0x8000)
5751 {
5752 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5753 tempreg, tempreg, BFD_RELOC_LO16);
5754 }
5755 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5756 {
5757 int dreg;
5758
5759 /* If we are going to add in a base register, and the
5760 target register and the base register are the same,
5761 then we are using AT as a temporary register. Since
5762 we want to load the constant into AT, we add our
5763 current AT (from the global offset table) and the
5764 register into the register now, and pretend we were
5765 not using a base register. */
5766 if (breg != treg)
5767 dreg = tempreg;
5768 else
5769 {
5770 gas_assert (tempreg == AT);
5771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5772 treg, AT, breg);
5773 dreg = treg;
5774 add_breg_early = 1;
5775 }
5776
5777 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5778 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5779 dreg, dreg, AT);
5780
5781 used_at = 1;
5782 }
5783 else
5784 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5785
5786 relax_switch ();
5787 offset_expr.X_add_number = expr1.X_add_number;
5788
5789 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5790 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5791 if (add_breg_early)
5792 {
5793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5794 treg, tempreg, breg);
5795 breg = 0;
5796 tempreg = treg;
5797 }
5798 relax_end ();
5799 }
5800 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5801 {
5802 relax_start (offset_expr.X_add_symbol);
5803 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5804 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5805 relax_switch ();
5806 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5807 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5808 relax_end ();
5809 }
5810 else
5811 {
5812 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5813 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5814 }
5815 }
5816 else if (mips_big_got && !HAVE_NEWABI)
5817 {
5818 int gpdelay;
5819 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5820 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5821 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5822
5823 /* This is the large GOT case. If this is a reference to an
5824 external symbol, and there is no constant, we want
5825 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5826 addu $tempreg,$tempreg,$gp
5827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5828 or for lca or if tempreg is PIC_CALL_REG
5829 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5830 addu $tempreg,$tempreg,$gp
5831 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5832 For a local symbol, we want
5833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5834 nop
5835 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5836
5837 If we have a small constant, and this is a reference to
5838 an external symbol, we want
5839 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5840 addu $tempreg,$tempreg,$gp
5841 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5842 nop
5843 addiu $tempreg,$tempreg,<constant>
5844 For a local symbol, we want
5845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5846 nop
5847 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5848
5849 If we have a large constant, and this is a reference to
5850 an external symbol, we want
5851 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5852 addu $tempreg,$tempreg,$gp
5853 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5854 lui $at,<hiconstant>
5855 addiu $at,$at,<loconstant>
5856 addu $tempreg,$tempreg,$at
5857 For a local symbol, we want
5858 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5859 lui $at,<hiconstant>
5860 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5861 addu $tempreg,$tempreg,$at
5862 */
5863
5864 expr1.X_add_number = offset_expr.X_add_number;
5865 offset_expr.X_add_number = 0;
5866 relax_start (offset_expr.X_add_symbol);
5867 gpdelay = reg_needs_delay (mips_gp_register);
5868 if (expr1.X_add_number == 0 && breg == 0
5869 && (call || tempreg == PIC_CALL_REG))
5870 {
5871 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5872 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5873 }
5874 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5876 tempreg, tempreg, mips_gp_register);
5877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5878 tempreg, lw_reloc_type, tempreg);
5879 if (expr1.X_add_number == 0)
5880 {
5881 if (breg != 0)
5882 {
5883 /* We're going to put in an addu instruction using
5884 tempreg, so we may as well insert the nop right
5885 now. */
5886 load_delay_nop ();
5887 }
5888 }
5889 else if (expr1.X_add_number >= -0x8000
5890 && expr1.X_add_number < 0x8000)
5891 {
5892 load_delay_nop ();
5893 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5894 tempreg, tempreg, BFD_RELOC_LO16);
5895 }
5896 else
5897 {
5898 int dreg;
5899
5900 /* If we are going to add in a base register, and the
5901 target register and the base register are the same,
5902 then we are using AT as a temporary register. Since
5903 we want to load the constant into AT, we add our
5904 current AT (from the global offset table) and the
5905 register into the register now, and pretend we were
5906 not using a base register. */
5907 if (breg != treg)
5908 dreg = tempreg;
5909 else
5910 {
5911 gas_assert (tempreg == AT);
5912 load_delay_nop ();
5913 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5914 treg, AT, breg);
5915 dreg = treg;
5916 }
5917
5918 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5919 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5920
5921 used_at = 1;
5922 }
5923 offset_expr.X_add_number =
5924 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5925 relax_switch ();
5926
5927 if (gpdelay)
5928 {
5929 /* This is needed because this instruction uses $gp, but
5930 the first instruction on the main stream does not. */
5931 macro_build (NULL, "nop", "");
5932 }
5933
5934 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5935 local_reloc_type, mips_gp_register);
5936 if (expr1.X_add_number >= -0x8000
5937 && expr1.X_add_number < 0x8000)
5938 {
5939 load_delay_nop ();
5940 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5941 tempreg, tempreg, BFD_RELOC_LO16);
5942 /* FIXME: If add_number is 0, and there was no base
5943 register, the external symbol case ended with a load,
5944 so if the symbol turns out to not be external, and
5945 the next instruction uses tempreg, an unnecessary nop
5946 will be inserted. */
5947 }
5948 else
5949 {
5950 if (breg == treg)
5951 {
5952 /* We must add in the base register now, as in the
5953 external symbol case. */
5954 gas_assert (tempreg == AT);
5955 load_delay_nop ();
5956 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5957 treg, AT, breg);
5958 tempreg = treg;
5959 /* We set breg to 0 because we have arranged to add
5960 it in in both cases. */
5961 breg = 0;
5962 }
5963
5964 macro_build_lui (&expr1, AT);
5965 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5966 AT, AT, BFD_RELOC_LO16);
5967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5968 tempreg, tempreg, AT);
5969 used_at = 1;
5970 }
5971 relax_end ();
5972 }
5973 else if (mips_big_got && HAVE_NEWABI)
5974 {
5975 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5976 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5977 int add_breg_early = 0;
5978
5979 /* This is the large GOT case. If this is a reference to an
5980 external symbol, and there is no constant, we want
5981 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5982 add $tempreg,$tempreg,$gp
5983 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5984 or for lca or if tempreg is PIC_CALL_REG
5985 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5986 add $tempreg,$tempreg,$gp
5987 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5988
5989 If we have a small constant, and this is a reference to
5990 an external symbol, we want
5991 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5992 add $tempreg,$tempreg,$gp
5993 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5994 addi $tempreg,$tempreg,<constant>
5995
5996 If we have a large constant, and this is a reference to
5997 an external symbol, we want
5998 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5999 addu $tempreg,$tempreg,$gp
6000 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6001 lui $at,<hiconstant>
6002 addi $at,$at,<loconstant>
6003 add $tempreg,$tempreg,$at
6004
6005 If we have NewABI, and we know it's a local symbol, we want
6006 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6007 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6008 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6009
6010 relax_start (offset_expr.X_add_symbol);
6011
6012 expr1.X_add_number = offset_expr.X_add_number;
6013 offset_expr.X_add_number = 0;
6014
6015 if (expr1.X_add_number == 0 && breg == 0
6016 && (call || tempreg == PIC_CALL_REG))
6017 {
6018 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6019 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6020 }
6021 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6022 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6023 tempreg, tempreg, mips_gp_register);
6024 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6025 tempreg, lw_reloc_type, tempreg);
6026
6027 if (expr1.X_add_number == 0)
6028 ;
6029 else if (expr1.X_add_number >= -0x8000
6030 && expr1.X_add_number < 0x8000)
6031 {
6032 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6033 tempreg, tempreg, BFD_RELOC_LO16);
6034 }
6035 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6036 {
6037 int dreg;
6038
6039 /* If we are going to add in a base register, and the
6040 target register and the base register are the same,
6041 then we are using AT as a temporary register. Since
6042 we want to load the constant into AT, we add our
6043 current AT (from the global offset table) and the
6044 register into the register now, and pretend we were
6045 not using a base register. */
6046 if (breg != treg)
6047 dreg = tempreg;
6048 else
6049 {
6050 gas_assert (tempreg == AT);
6051 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6052 treg, AT, breg);
6053 dreg = treg;
6054 add_breg_early = 1;
6055 }
6056
6057 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6058 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6059
6060 used_at = 1;
6061 }
6062 else
6063 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6064
6065 relax_switch ();
6066 offset_expr.X_add_number = expr1.X_add_number;
6067 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6068 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6069 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6070 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6071 if (add_breg_early)
6072 {
6073 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6074 treg, tempreg, breg);
6075 breg = 0;
6076 tempreg = treg;
6077 }
6078 relax_end ();
6079 }
6080 else
6081 abort ();
6082
6083 if (breg != 0)
6084 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6085 break;
6086
6087 case M_MSGSND:
6088 {
6089 unsigned long temp = (treg << 16) | (0x01);
6090 macro_build (NULL, "c2", "C", temp);
6091 }
6092 /* AT is not used, just return */
6093 return;
6094
6095 case M_MSGLD:
6096 {
6097 unsigned long temp = (0x02);
6098 macro_build (NULL, "c2", "C", temp);
6099 }
6100 /* AT is not used, just return */
6101 return;
6102
6103 case M_MSGLD_T:
6104 {
6105 unsigned long temp = (treg << 16) | (0x02);
6106 macro_build (NULL, "c2", "C", temp);
6107 }
6108 /* AT is not used, just return */
6109 return;
6110
6111 case M_MSGWAIT:
6112 macro_build (NULL, "c2", "C", 3);
6113 /* AT is not used, just return */
6114 return;
6115
6116 case M_MSGWAIT_T:
6117 {
6118 unsigned long temp = (treg << 16) | 0x03;
6119 macro_build (NULL, "c2", "C", temp);
6120 }
6121 /* AT is not used, just return */
6122 return;
6123
6124 case M_J_A:
6125 /* The j instruction may not be used in PIC code, since it
6126 requires an absolute address. We convert it to a b
6127 instruction. */
6128 if (mips_pic == NO_PIC)
6129 macro_build (&offset_expr, "j", "a");
6130 else
6131 macro_build (&offset_expr, "b", "p");
6132 break;
6133
6134 /* The jal instructions must be handled as macros because when
6135 generating PIC code they expand to multi-instruction
6136 sequences. Normally they are simple instructions. */
6137 case M_JAL_1:
6138 dreg = RA;
6139 /* Fall through. */
6140 case M_JAL_2:
6141 if (mips_pic == NO_PIC)
6142 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6143 else
6144 {
6145 if (sreg != PIC_CALL_REG)
6146 as_warn (_("MIPS PIC call to register other than $25"));
6147
6148 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6149 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6150 {
6151 if (mips_cprestore_offset < 0)
6152 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6153 else
6154 {
6155 if (! mips_frame_reg_valid)
6156 {
6157 as_warn (_("No .frame pseudo-op used in PIC code"));
6158 /* Quiet this warning. */
6159 mips_frame_reg_valid = 1;
6160 }
6161 if (! mips_cprestore_valid)
6162 {
6163 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6164 /* Quiet this warning. */
6165 mips_cprestore_valid = 1;
6166 }
6167 expr1.X_add_number = mips_cprestore_offset;
6168 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6169 mips_gp_register,
6170 mips_frame_reg,
6171 HAVE_64BIT_ADDRESSES);
6172 }
6173 }
6174 }
6175
6176 break;
6177
6178 case M_JAL_A:
6179 if (mips_pic == NO_PIC)
6180 macro_build (&offset_expr, "jal", "a");
6181 else if (mips_pic == SVR4_PIC)
6182 {
6183 /* If this is a reference to an external symbol, and we are
6184 using a small GOT, we want
6185 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6186 nop
6187 jalr $ra,$25
6188 nop
6189 lw $gp,cprestore($sp)
6190 The cprestore value is set using the .cprestore
6191 pseudo-op. If we are using a big GOT, we want
6192 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6193 addu $25,$25,$gp
6194 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6195 nop
6196 jalr $ra,$25
6197 nop
6198 lw $gp,cprestore($sp)
6199 If the symbol is not external, we want
6200 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6201 nop
6202 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6203 jalr $ra,$25
6204 nop
6205 lw $gp,cprestore($sp)
6206
6207 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6208 sequences above, minus nops, unless the symbol is local,
6209 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6210 GOT_DISP. */
6211 if (HAVE_NEWABI)
6212 {
6213 if (! mips_big_got)
6214 {
6215 relax_start (offset_expr.X_add_symbol);
6216 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6217 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6218 mips_gp_register);
6219 relax_switch ();
6220 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6221 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6222 mips_gp_register);
6223 relax_end ();
6224 }
6225 else
6226 {
6227 relax_start (offset_expr.X_add_symbol);
6228 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6229 BFD_RELOC_MIPS_CALL_HI16);
6230 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6231 PIC_CALL_REG, mips_gp_register);
6232 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6233 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6234 PIC_CALL_REG);
6235 relax_switch ();
6236 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6237 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6238 mips_gp_register);
6239 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6240 PIC_CALL_REG, PIC_CALL_REG,
6241 BFD_RELOC_MIPS_GOT_OFST);
6242 relax_end ();
6243 }
6244
6245 macro_build_jalr (&offset_expr);
6246 }
6247 else
6248 {
6249 relax_start (offset_expr.X_add_symbol);
6250 if (! mips_big_got)
6251 {
6252 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6253 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6254 mips_gp_register);
6255 load_delay_nop ();
6256 relax_switch ();
6257 }
6258 else
6259 {
6260 int gpdelay;
6261
6262 gpdelay = reg_needs_delay (mips_gp_register);
6263 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6264 BFD_RELOC_MIPS_CALL_HI16);
6265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6266 PIC_CALL_REG, mips_gp_register);
6267 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6268 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6269 PIC_CALL_REG);
6270 load_delay_nop ();
6271 relax_switch ();
6272 if (gpdelay)
6273 macro_build (NULL, "nop", "");
6274 }
6275 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6276 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6277 mips_gp_register);
6278 load_delay_nop ();
6279 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6280 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6281 relax_end ();
6282 macro_build_jalr (&offset_expr);
6283
6284 if (mips_cprestore_offset < 0)
6285 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6286 else
6287 {
6288 if (! mips_frame_reg_valid)
6289 {
6290 as_warn (_("No .frame pseudo-op used in PIC code"));
6291 /* Quiet this warning. */
6292 mips_frame_reg_valid = 1;
6293 }
6294 if (! mips_cprestore_valid)
6295 {
6296 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6297 /* Quiet this warning. */
6298 mips_cprestore_valid = 1;
6299 }
6300 if (mips_opts.noreorder)
6301 macro_build (NULL, "nop", "");
6302 expr1.X_add_number = mips_cprestore_offset;
6303 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6304 mips_gp_register,
6305 mips_frame_reg,
6306 HAVE_64BIT_ADDRESSES);
6307 }
6308 }
6309 }
6310 else if (mips_pic == VXWORKS_PIC)
6311 as_bad (_("Non-PIC jump used in PIC library"));
6312 else
6313 abort ();
6314
6315 break;
6316
6317 case M_LB_AB:
6318 s = "lb";
6319 goto ld;
6320 case M_LBU_AB:
6321 s = "lbu";
6322 goto ld;
6323 case M_LH_AB:
6324 s = "lh";
6325 goto ld;
6326 case M_LHU_AB:
6327 s = "lhu";
6328 goto ld;
6329 case M_LW_AB:
6330 s = "lw";
6331 goto ld;
6332 case M_LWC0_AB:
6333 s = "lwc0";
6334 /* Itbl support may require additional care here. */
6335 coproc = 1;
6336 goto ld;
6337 case M_LWC1_AB:
6338 s = "lwc1";
6339 /* Itbl support may require additional care here. */
6340 coproc = 1;
6341 goto ld;
6342 case M_LWC2_AB:
6343 s = "lwc2";
6344 /* Itbl support may require additional care here. */
6345 coproc = 1;
6346 goto ld;
6347 case M_LWC3_AB:
6348 s = "lwc3";
6349 /* Itbl support may require additional care here. */
6350 coproc = 1;
6351 goto ld;
6352 case M_LWL_AB:
6353 s = "lwl";
6354 lr = 1;
6355 goto ld;
6356 case M_LWR_AB:
6357 s = "lwr";
6358 lr = 1;
6359 goto ld;
6360 case M_LDC1_AB:
6361 s = "ldc1";
6362 /* Itbl support may require additional care here. */
6363 coproc = 1;
6364 goto ld;
6365 case M_LDC2_AB:
6366 s = "ldc2";
6367 /* Itbl support may require additional care here. */
6368 coproc = 1;
6369 goto ld;
6370 case M_LDC3_AB:
6371 s = "ldc3";
6372 /* Itbl support may require additional care here. */
6373 coproc = 1;
6374 goto ld;
6375 case M_LDL_AB:
6376 s = "ldl";
6377 lr = 1;
6378 goto ld;
6379 case M_LDR_AB:
6380 s = "ldr";
6381 lr = 1;
6382 goto ld;
6383 case M_LL_AB:
6384 s = "ll";
6385 goto ld;
6386 case M_LLD_AB:
6387 s = "lld";
6388 goto ld;
6389 case M_LWU_AB:
6390 s = "lwu";
6391 ld:
6392 if (breg == treg || coproc || lr)
6393 {
6394 tempreg = AT;
6395 used_at = 1;
6396 }
6397 else
6398 {
6399 tempreg = treg;
6400 }
6401 goto ld_st;
6402 case M_SB_AB:
6403 s = "sb";
6404 goto st;
6405 case M_SH_AB:
6406 s = "sh";
6407 goto st;
6408 case M_SW_AB:
6409 s = "sw";
6410 goto st;
6411 case M_SWC0_AB:
6412 s = "swc0";
6413 /* Itbl support may require additional care here. */
6414 coproc = 1;
6415 goto st;
6416 case M_SWC1_AB:
6417 s = "swc1";
6418 /* Itbl support may require additional care here. */
6419 coproc = 1;
6420 goto st;
6421 case M_SWC2_AB:
6422 s = "swc2";
6423 /* Itbl support may require additional care here. */
6424 coproc = 1;
6425 goto st;
6426 case M_SWC3_AB:
6427 s = "swc3";
6428 /* Itbl support may require additional care here. */
6429 coproc = 1;
6430 goto st;
6431 case M_SWL_AB:
6432 s = "swl";
6433 goto st;
6434 case M_SWR_AB:
6435 s = "swr";
6436 goto st;
6437 case M_SC_AB:
6438 s = "sc";
6439 goto st;
6440 case M_SCD_AB:
6441 s = "scd";
6442 goto st;
6443 case M_CACHE_AB:
6444 s = "cache";
6445 goto st;
6446 case M_SDC1_AB:
6447 s = "sdc1";
6448 coproc = 1;
6449 /* Itbl support may require additional care here. */
6450 goto st;
6451 case M_SDC2_AB:
6452 s = "sdc2";
6453 /* Itbl support may require additional care here. */
6454 coproc = 1;
6455 goto st;
6456 case M_SDC3_AB:
6457 s = "sdc3";
6458 /* Itbl support may require additional care here. */
6459 coproc = 1;
6460 goto st;
6461 case M_SDL_AB:
6462 s = "sdl";
6463 goto st;
6464 case M_SDR_AB:
6465 s = "sdr";
6466 st:
6467 tempreg = AT;
6468 used_at = 1;
6469 ld_st:
6470 if (coproc
6471 && NO_ISA_COP (mips_opts.arch)
6472 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6473 {
6474 as_bad (_("opcode not supported on this processor: %s"),
6475 mips_cpu_info_from_arch (mips_opts.arch)->name);
6476 break;
6477 }
6478
6479 /* Itbl support may require additional care here. */
6480 if (mask == M_LWC1_AB
6481 || mask == M_SWC1_AB
6482 || mask == M_LDC1_AB
6483 || mask == M_SDC1_AB
6484 || mask == M_L_DAB
6485 || mask == M_S_DAB)
6486 fmt = "T,o(b)";
6487 else if (mask == M_CACHE_AB)
6488 fmt = "k,o(b)";
6489 else if (coproc)
6490 fmt = "E,o(b)";
6491 else
6492 fmt = "t,o(b)";
6493
6494 if (offset_expr.X_op != O_constant
6495 && offset_expr.X_op != O_symbol)
6496 {
6497 as_bad (_("expression too complex"));
6498 offset_expr.X_op = O_constant;
6499 }
6500
6501 if (HAVE_32BIT_ADDRESSES
6502 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6503 {
6504 char value [32];
6505
6506 sprintf_vma (value, offset_expr.X_add_number);
6507 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6508 }
6509
6510 /* A constant expression in PIC code can be handled just as it
6511 is in non PIC code. */
6512 if (offset_expr.X_op == O_constant)
6513 {
6514 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6515 & ~(bfd_vma) 0xffff);
6516 normalize_address_expr (&expr1);
6517 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6518 if (breg != 0)
6519 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6520 tempreg, tempreg, breg);
6521 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6522 }
6523 else if (mips_pic == NO_PIC)
6524 {
6525 /* If this is a reference to a GP relative symbol, and there
6526 is no base register, we want
6527 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6528 Otherwise, if there is no base register, we want
6529 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6530 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6531 If we have a constant, we need two instructions anyhow,
6532 so we always use the latter form.
6533
6534 If we have a base register, and this is a reference to a
6535 GP relative symbol, we want
6536 addu $tempreg,$breg,$gp
6537 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6538 Otherwise we want
6539 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6540 addu $tempreg,$tempreg,$breg
6541 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6542 With a constant we always use the latter case.
6543
6544 With 64bit address space and no base register and $at usable,
6545 we want
6546 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6547 lui $at,<sym> (BFD_RELOC_HI16_S)
6548 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6549 dsll32 $tempreg,0
6550 daddu $tempreg,$at
6551 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6552 If we have a base register, we want
6553 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6554 lui $at,<sym> (BFD_RELOC_HI16_S)
6555 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6556 daddu $at,$breg
6557 dsll32 $tempreg,0
6558 daddu $tempreg,$at
6559 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6560
6561 Without $at we can't generate the optimal path for superscalar
6562 processors here since this would require two temporary registers.
6563 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6564 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6565 dsll $tempreg,16
6566 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6567 dsll $tempreg,16
6568 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6569 If we have a base register, we want
6570 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6571 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6572 dsll $tempreg,16
6573 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6574 dsll $tempreg,16
6575 daddu $tempreg,$tempreg,$breg
6576 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6577
6578 For GP relative symbols in 64bit address space we can use
6579 the same sequence as in 32bit address space. */
6580 if (HAVE_64BIT_SYMBOLS)
6581 {
6582 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6583 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6584 {
6585 relax_start (offset_expr.X_add_symbol);
6586 if (breg == 0)
6587 {
6588 macro_build (&offset_expr, s, fmt, treg,
6589 BFD_RELOC_GPREL16, mips_gp_register);
6590 }
6591 else
6592 {
6593 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6594 tempreg, breg, mips_gp_register);
6595 macro_build (&offset_expr, s, fmt, treg,
6596 BFD_RELOC_GPREL16, tempreg);
6597 }
6598 relax_switch ();
6599 }
6600
6601 if (used_at == 0 && mips_opts.at)
6602 {
6603 macro_build (&offset_expr, "lui", "t,u", tempreg,
6604 BFD_RELOC_MIPS_HIGHEST);
6605 macro_build (&offset_expr, "lui", "t,u", AT,
6606 BFD_RELOC_HI16_S);
6607 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6608 tempreg, BFD_RELOC_MIPS_HIGHER);
6609 if (breg != 0)
6610 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6611 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6612 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6613 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6614 tempreg);
6615 used_at = 1;
6616 }
6617 else
6618 {
6619 macro_build (&offset_expr, "lui", "t,u", tempreg,
6620 BFD_RELOC_MIPS_HIGHEST);
6621 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6622 tempreg, BFD_RELOC_MIPS_HIGHER);
6623 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6624 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6625 tempreg, BFD_RELOC_HI16_S);
6626 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6627 if (breg != 0)
6628 macro_build (NULL, "daddu", "d,v,t",
6629 tempreg, tempreg, breg);
6630 macro_build (&offset_expr, s, fmt, treg,
6631 BFD_RELOC_LO16, tempreg);
6632 }
6633
6634 if (mips_relax.sequence)
6635 relax_end ();
6636 break;
6637 }
6638
6639 if (breg == 0)
6640 {
6641 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6642 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6643 {
6644 relax_start (offset_expr.X_add_symbol);
6645 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6646 mips_gp_register);
6647 relax_switch ();
6648 }
6649 macro_build_lui (&offset_expr, tempreg);
6650 macro_build (&offset_expr, s, fmt, treg,
6651 BFD_RELOC_LO16, tempreg);
6652 if (mips_relax.sequence)
6653 relax_end ();
6654 }
6655 else
6656 {
6657 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6658 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6659 {
6660 relax_start (offset_expr.X_add_symbol);
6661 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6662 tempreg, breg, mips_gp_register);
6663 macro_build (&offset_expr, s, fmt, treg,
6664 BFD_RELOC_GPREL16, tempreg);
6665 relax_switch ();
6666 }
6667 macro_build_lui (&offset_expr, tempreg);
6668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6669 tempreg, tempreg, breg);
6670 macro_build (&offset_expr, s, fmt, treg,
6671 BFD_RELOC_LO16, tempreg);
6672 if (mips_relax.sequence)
6673 relax_end ();
6674 }
6675 }
6676 else if (!mips_big_got)
6677 {
6678 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6679
6680 /* If this is a reference to an external symbol, we want
6681 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6682 nop
6683 <op> $treg,0($tempreg)
6684 Otherwise we want
6685 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6686 nop
6687 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6688 <op> $treg,0($tempreg)
6689
6690 For NewABI, we want
6691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6692 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6693
6694 If there is a base register, we add it to $tempreg before
6695 the <op>. If there is a constant, we stick it in the
6696 <op> instruction. We don't handle constants larger than
6697 16 bits, because we have no way to load the upper 16 bits
6698 (actually, we could handle them for the subset of cases
6699 in which we are not using $at). */
6700 gas_assert (offset_expr.X_op == O_symbol);
6701 if (HAVE_NEWABI)
6702 {
6703 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6704 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6705 if (breg != 0)
6706 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6707 tempreg, tempreg, breg);
6708 macro_build (&offset_expr, s, fmt, treg,
6709 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6710 break;
6711 }
6712 expr1.X_add_number = offset_expr.X_add_number;
6713 offset_expr.X_add_number = 0;
6714 if (expr1.X_add_number < -0x8000
6715 || expr1.X_add_number >= 0x8000)
6716 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6717 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6718 lw_reloc_type, mips_gp_register);
6719 load_delay_nop ();
6720 relax_start (offset_expr.X_add_symbol);
6721 relax_switch ();
6722 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6723 tempreg, BFD_RELOC_LO16);
6724 relax_end ();
6725 if (breg != 0)
6726 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6727 tempreg, tempreg, breg);
6728 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6729 }
6730 else if (mips_big_got && !HAVE_NEWABI)
6731 {
6732 int gpdelay;
6733
6734 /* If this is a reference to an external symbol, we want
6735 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6736 addu $tempreg,$tempreg,$gp
6737 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6738 <op> $treg,0($tempreg)
6739 Otherwise we want
6740 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6741 nop
6742 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6743 <op> $treg,0($tempreg)
6744 If there is a base register, we add it to $tempreg before
6745 the <op>. If there is a constant, we stick it in the
6746 <op> instruction. We don't handle constants larger than
6747 16 bits, because we have no way to load the upper 16 bits
6748 (actually, we could handle them for the subset of cases
6749 in which we are not using $at). */
6750 gas_assert (offset_expr.X_op == O_symbol);
6751 expr1.X_add_number = offset_expr.X_add_number;
6752 offset_expr.X_add_number = 0;
6753 if (expr1.X_add_number < -0x8000
6754 || expr1.X_add_number >= 0x8000)
6755 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6756 gpdelay = reg_needs_delay (mips_gp_register);
6757 relax_start (offset_expr.X_add_symbol);
6758 macro_build (&offset_expr, "lui", "t,u", tempreg,
6759 BFD_RELOC_MIPS_GOT_HI16);
6760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6761 mips_gp_register);
6762 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6763 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6764 relax_switch ();
6765 if (gpdelay)
6766 macro_build (NULL, "nop", "");
6767 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6768 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6769 load_delay_nop ();
6770 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6771 tempreg, BFD_RELOC_LO16);
6772 relax_end ();
6773
6774 if (breg != 0)
6775 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6776 tempreg, tempreg, breg);
6777 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6778 }
6779 else if (mips_big_got && HAVE_NEWABI)
6780 {
6781 /* If this is a reference to an external symbol, we want
6782 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6783 add $tempreg,$tempreg,$gp
6784 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6785 <op> $treg,<ofst>($tempreg)
6786 Otherwise, for local symbols, we want:
6787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6788 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6789 gas_assert (offset_expr.X_op == O_symbol);
6790 expr1.X_add_number = offset_expr.X_add_number;
6791 offset_expr.X_add_number = 0;
6792 if (expr1.X_add_number < -0x8000
6793 || expr1.X_add_number >= 0x8000)
6794 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6795 relax_start (offset_expr.X_add_symbol);
6796 macro_build (&offset_expr, "lui", "t,u", tempreg,
6797 BFD_RELOC_MIPS_GOT_HI16);
6798 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6799 mips_gp_register);
6800 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6801 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6802 if (breg != 0)
6803 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6804 tempreg, tempreg, breg);
6805 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6806
6807 relax_switch ();
6808 offset_expr.X_add_number = expr1.X_add_number;
6809 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6810 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6811 if (breg != 0)
6812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6813 tempreg, tempreg, breg);
6814 macro_build (&offset_expr, s, fmt, treg,
6815 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6816 relax_end ();
6817 }
6818 else
6819 abort ();
6820
6821 break;
6822
6823 case M_LI:
6824 case M_LI_S:
6825 load_register (treg, &imm_expr, 0);
6826 break;
6827
6828 case M_DLI:
6829 load_register (treg, &imm_expr, 1);
6830 break;
6831
6832 case M_LI_SS:
6833 if (imm_expr.X_op == O_constant)
6834 {
6835 used_at = 1;
6836 load_register (AT, &imm_expr, 0);
6837 macro_build (NULL, "mtc1", "t,G", AT, treg);
6838 break;
6839 }
6840 else
6841 {
6842 gas_assert (offset_expr.X_op == O_symbol
6843 && strcmp (segment_name (S_GET_SEGMENT
6844 (offset_expr.X_add_symbol)),
6845 ".lit4") == 0
6846 && offset_expr.X_add_number == 0);
6847 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6848 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6849 break;
6850 }
6851
6852 case M_LI_D:
6853 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6854 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6855 order 32 bits of the value and the low order 32 bits are either
6856 zero or in OFFSET_EXPR. */
6857 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6858 {
6859 if (HAVE_64BIT_GPRS)
6860 load_register (treg, &imm_expr, 1);
6861 else
6862 {
6863 int hreg, lreg;
6864
6865 if (target_big_endian)
6866 {
6867 hreg = treg;
6868 lreg = treg + 1;
6869 }
6870 else
6871 {
6872 hreg = treg + 1;
6873 lreg = treg;
6874 }
6875
6876 if (hreg <= 31)
6877 load_register (hreg, &imm_expr, 0);
6878 if (lreg <= 31)
6879 {
6880 if (offset_expr.X_op == O_absent)
6881 move_register (lreg, 0);
6882 else
6883 {
6884 gas_assert (offset_expr.X_op == O_constant);
6885 load_register (lreg, &offset_expr, 0);
6886 }
6887 }
6888 }
6889 break;
6890 }
6891
6892 /* We know that sym is in the .rdata section. First we get the
6893 upper 16 bits of the address. */
6894 if (mips_pic == NO_PIC)
6895 {
6896 macro_build_lui (&offset_expr, AT);
6897 used_at = 1;
6898 }
6899 else
6900 {
6901 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6902 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6903 used_at = 1;
6904 }
6905
6906 /* Now we load the register(s). */
6907 if (HAVE_64BIT_GPRS)
6908 {
6909 used_at = 1;
6910 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6911 }
6912 else
6913 {
6914 used_at = 1;
6915 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6916 if (treg != RA)
6917 {
6918 /* FIXME: How in the world do we deal with the possible
6919 overflow here? */
6920 offset_expr.X_add_number += 4;
6921 macro_build (&offset_expr, "lw", "t,o(b)",
6922 treg + 1, BFD_RELOC_LO16, AT);
6923 }
6924 }
6925 break;
6926
6927 case M_LI_DD:
6928 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6929 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6930 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6931 the value and the low order 32 bits are either zero or in
6932 OFFSET_EXPR. */
6933 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6934 {
6935 used_at = 1;
6936 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6937 if (HAVE_64BIT_FPRS)
6938 {
6939 gas_assert (HAVE_64BIT_GPRS);
6940 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6941 }
6942 else
6943 {
6944 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6945 if (offset_expr.X_op == O_absent)
6946 macro_build (NULL, "mtc1", "t,G", 0, treg);
6947 else
6948 {
6949 gas_assert (offset_expr.X_op == O_constant);
6950 load_register (AT, &offset_expr, 0);
6951 macro_build (NULL, "mtc1", "t,G", AT, treg);
6952 }
6953 }
6954 break;
6955 }
6956
6957 gas_assert (offset_expr.X_op == O_symbol
6958 && offset_expr.X_add_number == 0);
6959 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6960 if (strcmp (s, ".lit8") == 0)
6961 {
6962 if (mips_opts.isa != ISA_MIPS1)
6963 {
6964 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6965 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6966 break;
6967 }
6968 breg = mips_gp_register;
6969 r = BFD_RELOC_MIPS_LITERAL;
6970 goto dob;
6971 }
6972 else
6973 {
6974 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6975 used_at = 1;
6976 if (mips_pic != NO_PIC)
6977 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6978 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6979 else
6980 {
6981 /* FIXME: This won't work for a 64 bit address. */
6982 macro_build_lui (&offset_expr, AT);
6983 }
6984
6985 if (mips_opts.isa != ISA_MIPS1)
6986 {
6987 macro_build (&offset_expr, "ldc1", "T,o(b)",
6988 treg, BFD_RELOC_LO16, AT);
6989 break;
6990 }
6991 breg = AT;
6992 r = BFD_RELOC_LO16;
6993 goto dob;
6994 }
6995
6996 case M_L_DOB:
6997 /* Even on a big endian machine $fn comes before $fn+1. We have
6998 to adjust when loading from memory. */
6999 r = BFD_RELOC_LO16;
7000 dob:
7001 gas_assert (mips_opts.isa == ISA_MIPS1);
7002 macro_build (&offset_expr, "lwc1", "T,o(b)",
7003 target_big_endian ? treg + 1 : treg, r, breg);
7004 /* FIXME: A possible overflow which I don't know how to deal
7005 with. */
7006 offset_expr.X_add_number += 4;
7007 macro_build (&offset_expr, "lwc1", "T,o(b)",
7008 target_big_endian ? treg : treg + 1, r, breg);
7009 break;
7010
7011 case M_L_DAB:
7012 /*
7013 * The MIPS assembler seems to check for X_add_number not
7014 * being double aligned and generating:
7015 * lui at,%hi(foo+1)
7016 * addu at,at,v1
7017 * addiu at,at,%lo(foo+1)
7018 * lwc1 f2,0(at)
7019 * lwc1 f3,4(at)
7020 * But, the resulting address is the same after relocation so why
7021 * generate the extra instruction?
7022 */
7023 /* Itbl support may require additional care here. */
7024 coproc = 1;
7025 if (mips_opts.isa != ISA_MIPS1)
7026 {
7027 s = "ldc1";
7028 goto ld;
7029 }
7030
7031 s = "lwc1";
7032 fmt = "T,o(b)";
7033 goto ldd_std;
7034
7035 case M_S_DAB:
7036 if (mips_opts.isa != ISA_MIPS1)
7037 {
7038 s = "sdc1";
7039 goto st;
7040 }
7041
7042 s = "swc1";
7043 fmt = "T,o(b)";
7044 /* Itbl support may require additional care here. */
7045 coproc = 1;
7046 goto ldd_std;
7047
7048 case M_LD_AB:
7049 if (HAVE_64BIT_GPRS)
7050 {
7051 s = "ld";
7052 goto ld;
7053 }
7054
7055 s = "lw";
7056 fmt = "t,o(b)";
7057 goto ldd_std;
7058
7059 case M_SD_AB:
7060 if (HAVE_64BIT_GPRS)
7061 {
7062 s = "sd";
7063 goto st;
7064 }
7065
7066 s = "sw";
7067 fmt = "t,o(b)";
7068
7069 ldd_std:
7070 if (offset_expr.X_op != O_symbol
7071 && offset_expr.X_op != O_constant)
7072 {
7073 as_bad (_("expression too complex"));
7074 offset_expr.X_op = O_constant;
7075 }
7076
7077 if (HAVE_32BIT_ADDRESSES
7078 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7079 {
7080 char value [32];
7081
7082 sprintf_vma (value, offset_expr.X_add_number);
7083 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7084 }
7085
7086 /* Even on a big endian machine $fn comes before $fn+1. We have
7087 to adjust when loading from memory. We set coproc if we must
7088 load $fn+1 first. */
7089 /* Itbl support may require additional care here. */
7090 if (! target_big_endian)
7091 coproc = 0;
7092
7093 if (mips_pic == NO_PIC
7094 || offset_expr.X_op == O_constant)
7095 {
7096 /* If this is a reference to a GP relative symbol, we want
7097 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7098 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7099 If we have a base register, we use this
7100 addu $at,$breg,$gp
7101 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7102 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7103 If this is not a GP relative symbol, we want
7104 lui $at,<sym> (BFD_RELOC_HI16_S)
7105 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7106 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7107 If there is a base register, we add it to $at after the
7108 lui instruction. If there is a constant, we always use
7109 the last case. */
7110 if (offset_expr.X_op == O_symbol
7111 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7112 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7113 {
7114 relax_start (offset_expr.X_add_symbol);
7115 if (breg == 0)
7116 {
7117 tempreg = mips_gp_register;
7118 }
7119 else
7120 {
7121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7122 AT, breg, mips_gp_register);
7123 tempreg = AT;
7124 used_at = 1;
7125 }
7126
7127 /* Itbl support may require additional care here. */
7128 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7129 BFD_RELOC_GPREL16, tempreg);
7130 offset_expr.X_add_number += 4;
7131
7132 /* Set mips_optimize to 2 to avoid inserting an
7133 undesired nop. */
7134 hold_mips_optimize = mips_optimize;
7135 mips_optimize = 2;
7136 /* Itbl support may require additional care here. */
7137 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7138 BFD_RELOC_GPREL16, tempreg);
7139 mips_optimize = hold_mips_optimize;
7140
7141 relax_switch ();
7142
7143 /* We just generated two relocs. When tc_gen_reloc
7144 handles this case, it will skip the first reloc and
7145 handle the second. The second reloc already has an
7146 extra addend of 4, which we added above. We must
7147 subtract it out, and then subtract another 4 to make
7148 the first reloc come out right. The second reloc
7149 will come out right because we are going to add 4 to
7150 offset_expr when we build its instruction below.
7151
7152 If we have a symbol, then we don't want to include
7153 the offset, because it will wind up being included
7154 when we generate the reloc. */
7155
7156 if (offset_expr.X_op == O_constant)
7157 offset_expr.X_add_number -= 8;
7158 else
7159 {
7160 offset_expr.X_add_number = -4;
7161 offset_expr.X_op = O_constant;
7162 }
7163 }
7164 used_at = 1;
7165 macro_build_lui (&offset_expr, AT);
7166 if (breg != 0)
7167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7168 /* Itbl support may require additional care here. */
7169 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7170 BFD_RELOC_LO16, AT);
7171 /* FIXME: How do we handle overflow here? */
7172 offset_expr.X_add_number += 4;
7173 /* Itbl support may require additional care here. */
7174 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7175 BFD_RELOC_LO16, AT);
7176 if (mips_relax.sequence)
7177 relax_end ();
7178 }
7179 else if (!mips_big_got)
7180 {
7181 /* If this is a reference to an external symbol, we want
7182 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7183 nop
7184 <op> $treg,0($at)
7185 <op> $treg+1,4($at)
7186 Otherwise we want
7187 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7188 nop
7189 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7190 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7191 If there is a base register we add it to $at before the
7192 lwc1 instructions. If there is a constant we include it
7193 in the lwc1 instructions. */
7194 used_at = 1;
7195 expr1.X_add_number = offset_expr.X_add_number;
7196 if (expr1.X_add_number < -0x8000
7197 || expr1.X_add_number >= 0x8000 - 4)
7198 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7199 load_got_offset (AT, &offset_expr);
7200 load_delay_nop ();
7201 if (breg != 0)
7202 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7203
7204 /* Set mips_optimize to 2 to avoid inserting an undesired
7205 nop. */
7206 hold_mips_optimize = mips_optimize;
7207 mips_optimize = 2;
7208
7209 /* Itbl support may require additional care here. */
7210 relax_start (offset_expr.X_add_symbol);
7211 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7212 BFD_RELOC_LO16, AT);
7213 expr1.X_add_number += 4;
7214 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7215 BFD_RELOC_LO16, AT);
7216 relax_switch ();
7217 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7218 BFD_RELOC_LO16, AT);
7219 offset_expr.X_add_number += 4;
7220 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7221 BFD_RELOC_LO16, AT);
7222 relax_end ();
7223
7224 mips_optimize = hold_mips_optimize;
7225 }
7226 else if (mips_big_got)
7227 {
7228 int gpdelay;
7229
7230 /* If this is a reference to an external symbol, we want
7231 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7232 addu $at,$at,$gp
7233 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7234 nop
7235 <op> $treg,0($at)
7236 <op> $treg+1,4($at)
7237 Otherwise we want
7238 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7239 nop
7240 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7241 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7242 If there is a base register we add it to $at before the
7243 lwc1 instructions. If there is a constant we include it
7244 in the lwc1 instructions. */
7245 used_at = 1;
7246 expr1.X_add_number = offset_expr.X_add_number;
7247 offset_expr.X_add_number = 0;
7248 if (expr1.X_add_number < -0x8000
7249 || expr1.X_add_number >= 0x8000 - 4)
7250 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7251 gpdelay = reg_needs_delay (mips_gp_register);
7252 relax_start (offset_expr.X_add_symbol);
7253 macro_build (&offset_expr, "lui", "t,u",
7254 AT, BFD_RELOC_MIPS_GOT_HI16);
7255 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7256 AT, AT, mips_gp_register);
7257 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7258 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7259 load_delay_nop ();
7260 if (breg != 0)
7261 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7262 /* Itbl support may require additional care here. */
7263 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7264 BFD_RELOC_LO16, AT);
7265 expr1.X_add_number += 4;
7266
7267 /* Set mips_optimize to 2 to avoid inserting an undesired
7268 nop. */
7269 hold_mips_optimize = mips_optimize;
7270 mips_optimize = 2;
7271 /* Itbl support may require additional care here. */
7272 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7273 BFD_RELOC_LO16, AT);
7274 mips_optimize = hold_mips_optimize;
7275 expr1.X_add_number -= 4;
7276
7277 relax_switch ();
7278 offset_expr.X_add_number = expr1.X_add_number;
7279 if (gpdelay)
7280 macro_build (NULL, "nop", "");
7281 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7282 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7283 load_delay_nop ();
7284 if (breg != 0)
7285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7286 /* Itbl support may require additional care here. */
7287 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7288 BFD_RELOC_LO16, AT);
7289 offset_expr.X_add_number += 4;
7290
7291 /* Set mips_optimize to 2 to avoid inserting an undesired
7292 nop. */
7293 hold_mips_optimize = mips_optimize;
7294 mips_optimize = 2;
7295 /* Itbl support may require additional care here. */
7296 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7297 BFD_RELOC_LO16, AT);
7298 mips_optimize = hold_mips_optimize;
7299 relax_end ();
7300 }
7301 else
7302 abort ();
7303
7304 break;
7305
7306 case M_LD_OB:
7307 s = "lw";
7308 goto sd_ob;
7309 case M_SD_OB:
7310 s = "sw";
7311 sd_ob:
7312 gas_assert (HAVE_32BIT_ADDRESSES);
7313 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7314 offset_expr.X_add_number += 4;
7315 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7316 break;
7317
7318 /* New code added to support COPZ instructions.
7319 This code builds table entries out of the macros in mip_opcodes.
7320 R4000 uses interlocks to handle coproc delays.
7321 Other chips (like the R3000) require nops to be inserted for delays.
7322
7323 FIXME: Currently, we require that the user handle delays.
7324 In order to fill delay slots for non-interlocked chips,
7325 we must have a way to specify delays based on the coprocessor.
7326 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7327 What are the side-effects of the cop instruction?
7328 What cache support might we have and what are its effects?
7329 Both coprocessor & memory require delays. how long???
7330 What registers are read/set/modified?
7331
7332 If an itbl is provided to interpret cop instructions,
7333 this knowledge can be encoded in the itbl spec. */
7334
7335 case M_COP0:
7336 s = "c0";
7337 goto copz;
7338 case M_COP1:
7339 s = "c1";
7340 goto copz;
7341 case M_COP2:
7342 s = "c2";
7343 goto copz;
7344 case M_COP3:
7345 s = "c3";
7346 copz:
7347 if (NO_ISA_COP (mips_opts.arch)
7348 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7349 {
7350 as_bad (_("opcode not supported on this processor: %s"),
7351 mips_cpu_info_from_arch (mips_opts.arch)->name);
7352 break;
7353 }
7354
7355 /* For now we just do C (same as Cz). The parameter will be
7356 stored in insn_opcode by mips_ip. */
7357 macro_build (NULL, s, "C", ip->insn_opcode);
7358 break;
7359
7360 case M_MOVE:
7361 move_register (dreg, sreg);
7362 break;
7363
7364 #ifdef LOSING_COMPILER
7365 default:
7366 /* Try and see if this is a new itbl instruction.
7367 This code builds table entries out of the macros in mip_opcodes.
7368 FIXME: For now we just assemble the expression and pass it's
7369 value along as a 32-bit immediate.
7370 We may want to have the assembler assemble this value,
7371 so that we gain the assembler's knowledge of delay slots,
7372 symbols, etc.
7373 Would it be more efficient to use mask (id) here? */
7374 if (itbl_have_entries
7375 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7376 {
7377 s = ip->insn_mo->name;
7378 s2 = "cop3";
7379 coproc = ITBL_DECODE_PNUM (immed_expr);;
7380 macro_build (&immed_expr, s, "C");
7381 break;
7382 }
7383 macro2 (ip);
7384 break;
7385 }
7386 if (!mips_opts.at && used_at)
7387 as_bad (_("Macro used $at after \".set noat\""));
7388 }
7389
7390 static void
7391 macro2 (struct mips_cl_insn *ip)
7392 {
7393 unsigned int treg, sreg, dreg, breg;
7394 unsigned int tempreg;
7395 int mask;
7396 int used_at;
7397 expressionS expr1;
7398 const char *s;
7399 const char *s2;
7400 const char *fmt;
7401 int likely = 0;
7402 int dbl = 0;
7403 int coproc = 0;
7404 int lr = 0;
7405 int imm = 0;
7406 int off;
7407 offsetT maxnum;
7408 bfd_reloc_code_real_type r;
7409
7410 treg = (ip->insn_opcode >> 16) & 0x1f;
7411 dreg = (ip->insn_opcode >> 11) & 0x1f;
7412 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7413 mask = ip->insn_mo->mask;
7414
7415 expr1.X_op = O_constant;
7416 expr1.X_op_symbol = NULL;
7417 expr1.X_add_symbol = NULL;
7418 expr1.X_add_number = 1;
7419
7420 switch (mask)
7421 {
7422 #endif /* LOSING_COMPILER */
7423
7424 case M_DMUL:
7425 dbl = 1;
7426 case M_MUL:
7427 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7428 macro_build (NULL, "mflo", "d", dreg);
7429 break;
7430
7431 case M_DMUL_I:
7432 dbl = 1;
7433 case M_MUL_I:
7434 /* The MIPS assembler some times generates shifts and adds. I'm
7435 not trying to be that fancy. GCC should do this for us
7436 anyway. */
7437 used_at = 1;
7438 load_register (AT, &imm_expr, dbl);
7439 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7440 macro_build (NULL, "mflo", "d", dreg);
7441 break;
7442
7443 case M_DMULO_I:
7444 dbl = 1;
7445 case M_MULO_I:
7446 imm = 1;
7447 goto do_mulo;
7448
7449 case M_DMULO:
7450 dbl = 1;
7451 case M_MULO:
7452 do_mulo:
7453 start_noreorder ();
7454 used_at = 1;
7455 if (imm)
7456 load_register (AT, &imm_expr, dbl);
7457 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7458 macro_build (NULL, "mflo", "d", dreg);
7459 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7460 macro_build (NULL, "mfhi", "d", AT);
7461 if (mips_trap)
7462 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7463 else
7464 {
7465 expr1.X_add_number = 8;
7466 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7467 macro_build (NULL, "nop", "", 0);
7468 macro_build (NULL, "break", "c", 6);
7469 }
7470 end_noreorder ();
7471 macro_build (NULL, "mflo", "d", dreg);
7472 break;
7473
7474 case M_DMULOU_I:
7475 dbl = 1;
7476 case M_MULOU_I:
7477 imm = 1;
7478 goto do_mulou;
7479
7480 case M_DMULOU:
7481 dbl = 1;
7482 case M_MULOU:
7483 do_mulou:
7484 start_noreorder ();
7485 used_at = 1;
7486 if (imm)
7487 load_register (AT, &imm_expr, dbl);
7488 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7489 sreg, imm ? AT : treg);
7490 macro_build (NULL, "mfhi", "d", AT);
7491 macro_build (NULL, "mflo", "d", dreg);
7492 if (mips_trap)
7493 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7494 else
7495 {
7496 expr1.X_add_number = 8;
7497 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7498 macro_build (NULL, "nop", "", 0);
7499 macro_build (NULL, "break", "c", 6);
7500 }
7501 end_noreorder ();
7502 break;
7503
7504 case M_DROL:
7505 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7506 {
7507 if (dreg == sreg)
7508 {
7509 tempreg = AT;
7510 used_at = 1;
7511 }
7512 else
7513 {
7514 tempreg = dreg;
7515 }
7516 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7517 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7518 break;
7519 }
7520 used_at = 1;
7521 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7522 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7523 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7524 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7525 break;
7526
7527 case M_ROL:
7528 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7529 {
7530 if (dreg == sreg)
7531 {
7532 tempreg = AT;
7533 used_at = 1;
7534 }
7535 else
7536 {
7537 tempreg = dreg;
7538 }
7539 macro_build (NULL, "negu", "d,w", tempreg, treg);
7540 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7541 break;
7542 }
7543 used_at = 1;
7544 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7545 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7546 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7547 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7548 break;
7549
7550 case M_DROL_I:
7551 {
7552 unsigned int rot;
7553 char *l, *r;
7554
7555 if (imm_expr.X_op != O_constant)
7556 as_bad (_("Improper rotate count"));
7557 rot = imm_expr.X_add_number & 0x3f;
7558 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7559 {
7560 rot = (64 - rot) & 0x3f;
7561 if (rot >= 32)
7562 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7563 else
7564 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7565 break;
7566 }
7567 if (rot == 0)
7568 {
7569 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7570 break;
7571 }
7572 l = (rot < 0x20) ? "dsll" : "dsll32";
7573 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7574 rot &= 0x1f;
7575 used_at = 1;
7576 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7577 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7578 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7579 }
7580 break;
7581
7582 case M_ROL_I:
7583 {
7584 unsigned int rot;
7585
7586 if (imm_expr.X_op != O_constant)
7587 as_bad (_("Improper rotate count"));
7588 rot = imm_expr.X_add_number & 0x1f;
7589 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7590 {
7591 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7592 break;
7593 }
7594 if (rot == 0)
7595 {
7596 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7597 break;
7598 }
7599 used_at = 1;
7600 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7601 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7602 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7603 }
7604 break;
7605
7606 case M_DROR:
7607 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7608 {
7609 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7610 break;
7611 }
7612 used_at = 1;
7613 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7614 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7615 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7616 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7617 break;
7618
7619 case M_ROR:
7620 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7621 {
7622 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7623 break;
7624 }
7625 used_at = 1;
7626 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7627 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7628 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7629 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7630 break;
7631
7632 case M_DROR_I:
7633 {
7634 unsigned int rot;
7635 char *l, *r;
7636
7637 if (imm_expr.X_op != O_constant)
7638 as_bad (_("Improper rotate count"));
7639 rot = imm_expr.X_add_number & 0x3f;
7640 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7641 {
7642 if (rot >= 32)
7643 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7644 else
7645 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7646 break;
7647 }
7648 if (rot == 0)
7649 {
7650 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7651 break;
7652 }
7653 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7654 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7655 rot &= 0x1f;
7656 used_at = 1;
7657 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7658 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7659 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7660 }
7661 break;
7662
7663 case M_ROR_I:
7664 {
7665 unsigned int rot;
7666
7667 if (imm_expr.X_op != O_constant)
7668 as_bad (_("Improper rotate count"));
7669 rot = imm_expr.X_add_number & 0x1f;
7670 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7671 {
7672 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7673 break;
7674 }
7675 if (rot == 0)
7676 {
7677 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7678 break;
7679 }
7680 used_at = 1;
7681 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7682 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7683 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7684 }
7685 break;
7686
7687 case M_S_DOB:
7688 gas_assert (mips_opts.isa == ISA_MIPS1);
7689 /* Even on a big endian machine $fn comes before $fn+1. We have
7690 to adjust when storing to memory. */
7691 macro_build (&offset_expr, "swc1", "T,o(b)",
7692 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7693 offset_expr.X_add_number += 4;
7694 macro_build (&offset_expr, "swc1", "T,o(b)",
7695 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7696 break;
7697
7698 case M_SEQ:
7699 if (sreg == 0)
7700 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7701 else if (treg == 0)
7702 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7703 else
7704 {
7705 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7706 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7707 }
7708 break;
7709
7710 case M_SEQ_I:
7711 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7712 {
7713 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7714 break;
7715 }
7716 if (sreg == 0)
7717 {
7718 as_warn (_("Instruction %s: result is always false"),
7719 ip->insn_mo->name);
7720 move_register (dreg, 0);
7721 break;
7722 }
7723 if (CPU_HAS_SEQ (mips_opts.arch)
7724 && -512 <= imm_expr.X_add_number
7725 && imm_expr.X_add_number < 512)
7726 {
7727 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7728 (int) imm_expr.X_add_number);
7729 break;
7730 }
7731 if (imm_expr.X_op == O_constant
7732 && imm_expr.X_add_number >= 0
7733 && imm_expr.X_add_number < 0x10000)
7734 {
7735 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7736 }
7737 else if (imm_expr.X_op == O_constant
7738 && imm_expr.X_add_number > -0x8000
7739 && imm_expr.X_add_number < 0)
7740 {
7741 imm_expr.X_add_number = -imm_expr.X_add_number;
7742 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7743 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7744 }
7745 else if (CPU_HAS_SEQ (mips_opts.arch))
7746 {
7747 used_at = 1;
7748 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7749 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7750 break;
7751 }
7752 else
7753 {
7754 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7755 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7756 used_at = 1;
7757 }
7758 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7759 break;
7760
7761 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7762 s = "slt";
7763 goto sge;
7764 case M_SGEU:
7765 s = "sltu";
7766 sge:
7767 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7768 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7769 break;
7770
7771 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7772 case M_SGEU_I:
7773 if (imm_expr.X_op == O_constant
7774 && imm_expr.X_add_number >= -0x8000
7775 && imm_expr.X_add_number < 0x8000)
7776 {
7777 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7778 dreg, sreg, BFD_RELOC_LO16);
7779 }
7780 else
7781 {
7782 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7783 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7784 dreg, sreg, AT);
7785 used_at = 1;
7786 }
7787 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7788 break;
7789
7790 case M_SGT: /* sreg > treg <==> treg < sreg */
7791 s = "slt";
7792 goto sgt;
7793 case M_SGTU:
7794 s = "sltu";
7795 sgt:
7796 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7797 break;
7798
7799 case M_SGT_I: /* sreg > I <==> I < sreg */
7800 s = "slt";
7801 goto sgti;
7802 case M_SGTU_I:
7803 s = "sltu";
7804 sgti:
7805 used_at = 1;
7806 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7807 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7808 break;
7809
7810 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7811 s = "slt";
7812 goto sle;
7813 case M_SLEU:
7814 s = "sltu";
7815 sle:
7816 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7817 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7818 break;
7819
7820 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7821 s = "slt";
7822 goto slei;
7823 case M_SLEU_I:
7824 s = "sltu";
7825 slei:
7826 used_at = 1;
7827 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7828 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7829 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7830 break;
7831
7832 case M_SLT_I:
7833 if (imm_expr.X_op == O_constant
7834 && imm_expr.X_add_number >= -0x8000
7835 && imm_expr.X_add_number < 0x8000)
7836 {
7837 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7838 break;
7839 }
7840 used_at = 1;
7841 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7842 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7843 break;
7844
7845 case M_SLTU_I:
7846 if (imm_expr.X_op == O_constant
7847 && imm_expr.X_add_number >= -0x8000
7848 && imm_expr.X_add_number < 0x8000)
7849 {
7850 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7851 BFD_RELOC_LO16);
7852 break;
7853 }
7854 used_at = 1;
7855 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7856 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7857 break;
7858
7859 case M_SNE:
7860 if (sreg == 0)
7861 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7862 else if (treg == 0)
7863 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7864 else
7865 {
7866 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7867 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7868 }
7869 break;
7870
7871 case M_SNE_I:
7872 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7873 {
7874 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7875 break;
7876 }
7877 if (sreg == 0)
7878 {
7879 as_warn (_("Instruction %s: result is always true"),
7880 ip->insn_mo->name);
7881 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7882 dreg, 0, BFD_RELOC_LO16);
7883 break;
7884 }
7885 if (CPU_HAS_SEQ (mips_opts.arch)
7886 && -512 <= imm_expr.X_add_number
7887 && imm_expr.X_add_number < 512)
7888 {
7889 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7890 (int) imm_expr.X_add_number);
7891 break;
7892 }
7893 if (imm_expr.X_op == O_constant
7894 && imm_expr.X_add_number >= 0
7895 && imm_expr.X_add_number < 0x10000)
7896 {
7897 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7898 }
7899 else if (imm_expr.X_op == O_constant
7900 && imm_expr.X_add_number > -0x8000
7901 && imm_expr.X_add_number < 0)
7902 {
7903 imm_expr.X_add_number = -imm_expr.X_add_number;
7904 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7905 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7906 }
7907 else if (CPU_HAS_SEQ (mips_opts.arch))
7908 {
7909 used_at = 1;
7910 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7911 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7912 break;
7913 }
7914 else
7915 {
7916 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7917 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7918 used_at = 1;
7919 }
7920 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7921 break;
7922
7923 case M_DSUB_I:
7924 dbl = 1;
7925 case M_SUB_I:
7926 if (imm_expr.X_op == O_constant
7927 && imm_expr.X_add_number > -0x8000
7928 && imm_expr.X_add_number <= 0x8000)
7929 {
7930 imm_expr.X_add_number = -imm_expr.X_add_number;
7931 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7932 dreg, sreg, BFD_RELOC_LO16);
7933 break;
7934 }
7935 used_at = 1;
7936 load_register (AT, &imm_expr, dbl);
7937 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7938 break;
7939
7940 case M_DSUBU_I:
7941 dbl = 1;
7942 case M_SUBU_I:
7943 if (imm_expr.X_op == O_constant
7944 && imm_expr.X_add_number > -0x8000
7945 && imm_expr.X_add_number <= 0x8000)
7946 {
7947 imm_expr.X_add_number = -imm_expr.X_add_number;
7948 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7949 dreg, sreg, BFD_RELOC_LO16);
7950 break;
7951 }
7952 used_at = 1;
7953 load_register (AT, &imm_expr, dbl);
7954 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7955 break;
7956
7957 case M_TEQ_I:
7958 s = "teq";
7959 goto trap;
7960 case M_TGE_I:
7961 s = "tge";
7962 goto trap;
7963 case M_TGEU_I:
7964 s = "tgeu";
7965 goto trap;
7966 case M_TLT_I:
7967 s = "tlt";
7968 goto trap;
7969 case M_TLTU_I:
7970 s = "tltu";
7971 goto trap;
7972 case M_TNE_I:
7973 s = "tne";
7974 trap:
7975 used_at = 1;
7976 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7977 macro_build (NULL, s, "s,t", sreg, AT);
7978 break;
7979
7980 case M_TRUNCWS:
7981 case M_TRUNCWD:
7982 gas_assert (mips_opts.isa == ISA_MIPS1);
7983 used_at = 1;
7984 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7985 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7986
7987 /*
7988 * Is the double cfc1 instruction a bug in the mips assembler;
7989 * or is there a reason for it?
7990 */
7991 start_noreorder ();
7992 macro_build (NULL, "cfc1", "t,G", treg, RA);
7993 macro_build (NULL, "cfc1", "t,G", treg, RA);
7994 macro_build (NULL, "nop", "");
7995 expr1.X_add_number = 3;
7996 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7997 expr1.X_add_number = 2;
7998 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7999 macro_build (NULL, "ctc1", "t,G", AT, RA);
8000 macro_build (NULL, "nop", "");
8001 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8002 dreg, sreg);
8003 macro_build (NULL, "ctc1", "t,G", treg, RA);
8004 macro_build (NULL, "nop", "");
8005 end_noreorder ();
8006 break;
8007
8008 case M_ULH:
8009 s = "lb";
8010 goto ulh;
8011 case M_ULHU:
8012 s = "lbu";
8013 ulh:
8014 used_at = 1;
8015 if (offset_expr.X_add_number >= 0x7fff)
8016 as_bad (_("operand overflow"));
8017 if (! target_big_endian)
8018 ++offset_expr.X_add_number;
8019 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8020 if (! target_big_endian)
8021 --offset_expr.X_add_number;
8022 else
8023 ++offset_expr.X_add_number;
8024 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8025 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8026 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8027 break;
8028
8029 case M_ULD:
8030 s = "ldl";
8031 s2 = "ldr";
8032 off = 7;
8033 goto ulw;
8034 case M_ULW:
8035 s = "lwl";
8036 s2 = "lwr";
8037 off = 3;
8038 ulw:
8039 if (offset_expr.X_add_number >= 0x8000 - off)
8040 as_bad (_("operand overflow"));
8041 if (treg != breg)
8042 tempreg = treg;
8043 else
8044 {
8045 used_at = 1;
8046 tempreg = AT;
8047 }
8048 if (! target_big_endian)
8049 offset_expr.X_add_number += off;
8050 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8051 if (! target_big_endian)
8052 offset_expr.X_add_number -= off;
8053 else
8054 offset_expr.X_add_number += off;
8055 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8056
8057 /* If necessary, move the result in tempreg the final destination. */
8058 if (treg == tempreg)
8059 break;
8060 /* Protect second load's delay slot. */
8061 load_delay_nop ();
8062 move_register (treg, tempreg);
8063 break;
8064
8065 case M_ULD_A:
8066 s = "ldl";
8067 s2 = "ldr";
8068 off = 7;
8069 goto ulwa;
8070 case M_ULW_A:
8071 s = "lwl";
8072 s2 = "lwr";
8073 off = 3;
8074 ulwa:
8075 used_at = 1;
8076 load_address (AT, &offset_expr, &used_at);
8077 if (breg != 0)
8078 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8079 if (! target_big_endian)
8080 expr1.X_add_number = off;
8081 else
8082 expr1.X_add_number = 0;
8083 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8084 if (! target_big_endian)
8085 expr1.X_add_number = 0;
8086 else
8087 expr1.X_add_number = off;
8088 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8089 break;
8090
8091 case M_ULH_A:
8092 case M_ULHU_A:
8093 used_at = 1;
8094 load_address (AT, &offset_expr, &used_at);
8095 if (breg != 0)
8096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8097 if (target_big_endian)
8098 expr1.X_add_number = 0;
8099 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8100 treg, BFD_RELOC_LO16, AT);
8101 if (target_big_endian)
8102 expr1.X_add_number = 1;
8103 else
8104 expr1.X_add_number = 0;
8105 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8106 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8107 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8108 break;
8109
8110 case M_USH:
8111 used_at = 1;
8112 if (offset_expr.X_add_number >= 0x7fff)
8113 as_bad (_("operand overflow"));
8114 if (target_big_endian)
8115 ++offset_expr.X_add_number;
8116 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8117 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8118 if (target_big_endian)
8119 --offset_expr.X_add_number;
8120 else
8121 ++offset_expr.X_add_number;
8122 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8123 break;
8124
8125 case M_USD:
8126 s = "sdl";
8127 s2 = "sdr";
8128 off = 7;
8129 goto usw;
8130 case M_USW:
8131 s = "swl";
8132 s2 = "swr";
8133 off = 3;
8134 usw:
8135 if (offset_expr.X_add_number >= 0x8000 - off)
8136 as_bad (_("operand overflow"));
8137 if (! target_big_endian)
8138 offset_expr.X_add_number += off;
8139 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8140 if (! target_big_endian)
8141 offset_expr.X_add_number -= off;
8142 else
8143 offset_expr.X_add_number += off;
8144 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8145 break;
8146
8147 case M_USD_A:
8148 s = "sdl";
8149 s2 = "sdr";
8150 off = 7;
8151 goto uswa;
8152 case M_USW_A:
8153 s = "swl";
8154 s2 = "swr";
8155 off = 3;
8156 uswa:
8157 used_at = 1;
8158 load_address (AT, &offset_expr, &used_at);
8159 if (breg != 0)
8160 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8161 if (! target_big_endian)
8162 expr1.X_add_number = off;
8163 else
8164 expr1.X_add_number = 0;
8165 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8166 if (! target_big_endian)
8167 expr1.X_add_number = 0;
8168 else
8169 expr1.X_add_number = off;
8170 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8171 break;
8172
8173 case M_USH_A:
8174 used_at = 1;
8175 load_address (AT, &offset_expr, &used_at);
8176 if (breg != 0)
8177 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8178 if (! target_big_endian)
8179 expr1.X_add_number = 0;
8180 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8181 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8182 if (! target_big_endian)
8183 expr1.X_add_number = 1;
8184 else
8185 expr1.X_add_number = 0;
8186 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8187 if (! target_big_endian)
8188 expr1.X_add_number = 0;
8189 else
8190 expr1.X_add_number = 1;
8191 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8192 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8193 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8194 break;
8195
8196 default:
8197 /* FIXME: Check if this is one of the itbl macros, since they
8198 are added dynamically. */
8199 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8200 break;
8201 }
8202 if (!mips_opts.at && used_at)
8203 as_bad (_("Macro used $at after \".set noat\""));
8204 }
8205
8206 /* Implement macros in mips16 mode. */
8207
8208 static void
8209 mips16_macro (struct mips_cl_insn *ip)
8210 {
8211 int mask;
8212 int xreg, yreg, zreg, tmp;
8213 expressionS expr1;
8214 int dbl;
8215 const char *s, *s2, *s3;
8216
8217 mask = ip->insn_mo->mask;
8218
8219 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8220 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8221 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8222
8223 expr1.X_op = O_constant;
8224 expr1.X_op_symbol = NULL;
8225 expr1.X_add_symbol = NULL;
8226 expr1.X_add_number = 1;
8227
8228 dbl = 0;
8229
8230 switch (mask)
8231 {
8232 default:
8233 internalError ();
8234
8235 case M_DDIV_3:
8236 dbl = 1;
8237 case M_DIV_3:
8238 s = "mflo";
8239 goto do_div3;
8240 case M_DREM_3:
8241 dbl = 1;
8242 case M_REM_3:
8243 s = "mfhi";
8244 do_div3:
8245 start_noreorder ();
8246 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8247 expr1.X_add_number = 2;
8248 macro_build (&expr1, "bnez", "x,p", yreg);
8249 macro_build (NULL, "break", "6", 7);
8250
8251 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8252 since that causes an overflow. We should do that as well,
8253 but I don't see how to do the comparisons without a temporary
8254 register. */
8255 end_noreorder ();
8256 macro_build (NULL, s, "x", zreg);
8257 break;
8258
8259 case M_DIVU_3:
8260 s = "divu";
8261 s2 = "mflo";
8262 goto do_divu3;
8263 case M_REMU_3:
8264 s = "divu";
8265 s2 = "mfhi";
8266 goto do_divu3;
8267 case M_DDIVU_3:
8268 s = "ddivu";
8269 s2 = "mflo";
8270 goto do_divu3;
8271 case M_DREMU_3:
8272 s = "ddivu";
8273 s2 = "mfhi";
8274 do_divu3:
8275 start_noreorder ();
8276 macro_build (NULL, s, "0,x,y", xreg, yreg);
8277 expr1.X_add_number = 2;
8278 macro_build (&expr1, "bnez", "x,p", yreg);
8279 macro_build (NULL, "break", "6", 7);
8280 end_noreorder ();
8281 macro_build (NULL, s2, "x", zreg);
8282 break;
8283
8284 case M_DMUL:
8285 dbl = 1;
8286 case M_MUL:
8287 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8288 macro_build (NULL, "mflo", "x", zreg);
8289 break;
8290
8291 case M_DSUBU_I:
8292 dbl = 1;
8293 goto do_subu;
8294 case M_SUBU_I:
8295 do_subu:
8296 if (imm_expr.X_op != O_constant)
8297 as_bad (_("Unsupported large constant"));
8298 imm_expr.X_add_number = -imm_expr.X_add_number;
8299 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8300 break;
8301
8302 case M_SUBU_I_2:
8303 if (imm_expr.X_op != O_constant)
8304 as_bad (_("Unsupported large constant"));
8305 imm_expr.X_add_number = -imm_expr.X_add_number;
8306 macro_build (&imm_expr, "addiu", "x,k", xreg);
8307 break;
8308
8309 case M_DSUBU_I_2:
8310 if (imm_expr.X_op != O_constant)
8311 as_bad (_("Unsupported large constant"));
8312 imm_expr.X_add_number = -imm_expr.X_add_number;
8313 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8314 break;
8315
8316 case M_BEQ:
8317 s = "cmp";
8318 s2 = "bteqz";
8319 goto do_branch;
8320 case M_BNE:
8321 s = "cmp";
8322 s2 = "btnez";
8323 goto do_branch;
8324 case M_BLT:
8325 s = "slt";
8326 s2 = "btnez";
8327 goto do_branch;
8328 case M_BLTU:
8329 s = "sltu";
8330 s2 = "btnez";
8331 goto do_branch;
8332 case M_BLE:
8333 s = "slt";
8334 s2 = "bteqz";
8335 goto do_reverse_branch;
8336 case M_BLEU:
8337 s = "sltu";
8338 s2 = "bteqz";
8339 goto do_reverse_branch;
8340 case M_BGE:
8341 s = "slt";
8342 s2 = "bteqz";
8343 goto do_branch;
8344 case M_BGEU:
8345 s = "sltu";
8346 s2 = "bteqz";
8347 goto do_branch;
8348 case M_BGT:
8349 s = "slt";
8350 s2 = "btnez";
8351 goto do_reverse_branch;
8352 case M_BGTU:
8353 s = "sltu";
8354 s2 = "btnez";
8355
8356 do_reverse_branch:
8357 tmp = xreg;
8358 xreg = yreg;
8359 yreg = tmp;
8360
8361 do_branch:
8362 macro_build (NULL, s, "x,y", xreg, yreg);
8363 macro_build (&offset_expr, s2, "p");
8364 break;
8365
8366 case M_BEQ_I:
8367 s = "cmpi";
8368 s2 = "bteqz";
8369 s3 = "x,U";
8370 goto do_branch_i;
8371 case M_BNE_I:
8372 s = "cmpi";
8373 s2 = "btnez";
8374 s3 = "x,U";
8375 goto do_branch_i;
8376 case M_BLT_I:
8377 s = "slti";
8378 s2 = "btnez";
8379 s3 = "x,8";
8380 goto do_branch_i;
8381 case M_BLTU_I:
8382 s = "sltiu";
8383 s2 = "btnez";
8384 s3 = "x,8";
8385 goto do_branch_i;
8386 case M_BLE_I:
8387 s = "slti";
8388 s2 = "btnez";
8389 s3 = "x,8";
8390 goto do_addone_branch_i;
8391 case M_BLEU_I:
8392 s = "sltiu";
8393 s2 = "btnez";
8394 s3 = "x,8";
8395 goto do_addone_branch_i;
8396 case M_BGE_I:
8397 s = "slti";
8398 s2 = "bteqz";
8399 s3 = "x,8";
8400 goto do_branch_i;
8401 case M_BGEU_I:
8402 s = "sltiu";
8403 s2 = "bteqz";
8404 s3 = "x,8";
8405 goto do_branch_i;
8406 case M_BGT_I:
8407 s = "slti";
8408 s2 = "bteqz";
8409 s3 = "x,8";
8410 goto do_addone_branch_i;
8411 case M_BGTU_I:
8412 s = "sltiu";
8413 s2 = "bteqz";
8414 s3 = "x,8";
8415
8416 do_addone_branch_i:
8417 if (imm_expr.X_op != O_constant)
8418 as_bad (_("Unsupported large constant"));
8419 ++imm_expr.X_add_number;
8420
8421 do_branch_i:
8422 macro_build (&imm_expr, s, s3, xreg);
8423 macro_build (&offset_expr, s2, "p");
8424 break;
8425
8426 case M_ABS:
8427 expr1.X_add_number = 0;
8428 macro_build (&expr1, "slti", "x,8", yreg);
8429 if (xreg != yreg)
8430 move_register (xreg, yreg);
8431 expr1.X_add_number = 2;
8432 macro_build (&expr1, "bteqz", "p");
8433 macro_build (NULL, "neg", "x,w", xreg, xreg);
8434 }
8435 }
8436
8437 /* For consistency checking, verify that all bits are specified either
8438 by the match/mask part of the instruction definition, or by the
8439 operand list. */
8440 static int
8441 validate_mips_insn (const struct mips_opcode *opc)
8442 {
8443 const char *p = opc->args;
8444 char c;
8445 unsigned long used_bits = opc->mask;
8446
8447 if ((used_bits & opc->match) != opc->match)
8448 {
8449 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8450 opc->name, opc->args);
8451 return 0;
8452 }
8453 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8454 while (*p)
8455 switch (c = *p++)
8456 {
8457 case ',': break;
8458 case '(': break;
8459 case ')': break;
8460 case '+':
8461 switch (c = *p++)
8462 {
8463 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8464 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8465 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8466 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8467 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8468 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8469 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8470 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8471 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8472 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8473 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8474 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8475 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8476 case 'I': break;
8477 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8478 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8479 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8480 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8481 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8482 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8483 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8484 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8485 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8486 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8487
8488 default:
8489 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8490 c, opc->name, opc->args);
8491 return 0;
8492 }
8493 break;
8494 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8495 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8496 case 'A': break;
8497 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8498 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8499 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8500 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8501 case 'F': break;
8502 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8503 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8504 case 'I': break;
8505 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8506 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8507 case 'L': break;
8508 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8509 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8510 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8511 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8512 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8513 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8514 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8515 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8516 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8517 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8518 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8519 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8520 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8521 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8522 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8523 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8524 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8525 case 'f': break;
8526 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8527 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8528 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8529 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8530 case 'l': break;
8531 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8532 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8533 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8534 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8535 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8536 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8537 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8538 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8539 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8540 case 'x': break;
8541 case 'z': break;
8542 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8543 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8544 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8545 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8546 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8547 case '[': break;
8548 case ']': break;
8549 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8550 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8551 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8552 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8553 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8554 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8555 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8556 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8557 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8558 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8559 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8560 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8561 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8562 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8563 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8564 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8565 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8566 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8567 default:
8568 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8569 c, opc->name, opc->args);
8570 return 0;
8571 }
8572 #undef USE_BITS
8573 if (used_bits != 0xffffffff)
8574 {
8575 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8576 ~used_bits & 0xffffffff, opc->name, opc->args);
8577 return 0;
8578 }
8579 return 1;
8580 }
8581
8582 /* UDI immediates. */
8583 struct mips_immed {
8584 char type;
8585 unsigned int shift;
8586 unsigned long mask;
8587 const char * desc;
8588 };
8589
8590 static const struct mips_immed mips_immed[] = {
8591 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8592 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8593 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8594 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8595 { 0,0,0,0 }
8596 };
8597
8598 /* Check whether an odd floating-point register is allowed. */
8599 static int
8600 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8601 {
8602 const char *s = insn->name;
8603
8604 if (insn->pinfo == INSN_MACRO)
8605 /* Let a macro pass, we'll catch it later when it is expanded. */
8606 return 1;
8607
8608 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8609 {
8610 /* Allow odd registers for single-precision ops. */
8611 switch (insn->pinfo & (FP_S | FP_D))
8612 {
8613 case FP_S:
8614 case 0:
8615 return 1; /* both single precision - ok */
8616 case FP_D:
8617 return 0; /* both double precision - fail */
8618 default:
8619 break;
8620 }
8621
8622 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8623 s = strchr (insn->name, '.');
8624 if (argnum == 2)
8625 s = s != NULL ? strchr (s + 1, '.') : NULL;
8626 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8627 }
8628
8629 /* Single-precision coprocessor loads and moves are OK too. */
8630 if ((insn->pinfo & FP_S)
8631 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8632 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8633 return 1;
8634
8635 return 0;
8636 }
8637
8638 /* This routine assembles an instruction into its binary format. As a
8639 side effect, it sets one of the global variables imm_reloc or
8640 offset_reloc to the type of relocation to do if one of the operands
8641 is an address expression. */
8642
8643 static void
8644 mips_ip (char *str, struct mips_cl_insn *ip)
8645 {
8646 char *s;
8647 const char *args;
8648 char c = 0;
8649 struct mips_opcode *insn;
8650 char *argsStart;
8651 unsigned int regno;
8652 unsigned int lastregno = 0;
8653 unsigned int lastpos = 0;
8654 unsigned int limlo, limhi;
8655 char *s_reset;
8656 char save_c = 0;
8657 offsetT min_range, max_range;
8658 int argnum;
8659 unsigned int rtype;
8660
8661 insn_error = NULL;
8662
8663 /* If the instruction contains a '.', we first try to match an instruction
8664 including the '.'. Then we try again without the '.'. */
8665 insn = NULL;
8666 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8667 continue;
8668
8669 /* If we stopped on whitespace, then replace the whitespace with null for
8670 the call to hash_find. Save the character we replaced just in case we
8671 have to re-parse the instruction. */
8672 if (ISSPACE (*s))
8673 {
8674 save_c = *s;
8675 *s++ = '\0';
8676 }
8677
8678 insn = (struct mips_opcode *) hash_find (op_hash, str);
8679
8680 /* If we didn't find the instruction in the opcode table, try again, but
8681 this time with just the instruction up to, but not including the
8682 first '.'. */
8683 if (insn == NULL)
8684 {
8685 /* Restore the character we overwrite above (if any). */
8686 if (save_c)
8687 *(--s) = save_c;
8688
8689 /* Scan up to the first '.' or whitespace. */
8690 for (s = str;
8691 *s != '\0' && *s != '.' && !ISSPACE (*s);
8692 ++s)
8693 continue;
8694
8695 /* If we did not find a '.', then we can quit now. */
8696 if (*s != '.')
8697 {
8698 insn_error = _("unrecognized opcode");
8699 return;
8700 }
8701
8702 /* Lookup the instruction in the hash table. */
8703 *s++ = '\0';
8704 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8705 {
8706 insn_error = _("unrecognized opcode");
8707 return;
8708 }
8709 }
8710
8711 argsStart = s;
8712 for (;;)
8713 {
8714 bfd_boolean ok;
8715
8716 gas_assert (strcmp (insn->name, str) == 0);
8717
8718 ok = is_opcode_valid (insn, FALSE);
8719 if (! ok)
8720 {
8721 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8722 && strcmp (insn->name, insn[1].name) == 0)
8723 {
8724 ++insn;
8725 continue;
8726 }
8727 else
8728 {
8729 if (!insn_error)
8730 {
8731 static char buf[100];
8732 sprintf (buf,
8733 _("opcode not supported on this processor: %s (%s)"),
8734 mips_cpu_info_from_arch (mips_opts.arch)->name,
8735 mips_cpu_info_from_isa (mips_opts.isa)->name);
8736 insn_error = buf;
8737 }
8738 if (save_c)
8739 *(--s) = save_c;
8740 return;
8741 }
8742 }
8743
8744 create_insn (ip, insn);
8745 insn_error = NULL;
8746 argnum = 1;
8747 lastregno = 0xffffffff;
8748 for (args = insn->args;; ++args)
8749 {
8750 int is_mdmx;
8751
8752 s += strspn (s, " \t");
8753 is_mdmx = 0;
8754 switch (*args)
8755 {
8756 case '\0': /* end of args */
8757 if (*s == '\0')
8758 return;
8759 break;
8760
8761 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8762 my_getExpression (&imm_expr, s);
8763 check_absolute_expr (ip, &imm_expr);
8764 if ((unsigned long) imm_expr.X_add_number != 1
8765 && (unsigned long) imm_expr.X_add_number != 3)
8766 {
8767 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8768 (unsigned long) imm_expr.X_add_number);
8769 }
8770 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8771 imm_expr.X_op = O_absent;
8772 s = expr_end;
8773 continue;
8774
8775 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8776 my_getExpression (&imm_expr, s);
8777 check_absolute_expr (ip, &imm_expr);
8778 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8779 {
8780 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8781 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8782 }
8783 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8784 imm_expr.X_op = O_absent;
8785 s = expr_end;
8786 continue;
8787
8788 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8789 my_getExpression (&imm_expr, s);
8790 check_absolute_expr (ip, &imm_expr);
8791 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8792 {
8793 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8794 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8795 }
8796 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8797 imm_expr.X_op = O_absent;
8798 s = expr_end;
8799 continue;
8800
8801 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8802 my_getExpression (&imm_expr, s);
8803 check_absolute_expr (ip, &imm_expr);
8804 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8805 {
8806 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8807 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8808 }
8809 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8810 imm_expr.X_op = O_absent;
8811 s = expr_end;
8812 continue;
8813
8814 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8815 my_getExpression (&imm_expr, s);
8816 check_absolute_expr (ip, &imm_expr);
8817 if (imm_expr.X_add_number & ~OP_MASK_RS)
8818 {
8819 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8820 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8821 }
8822 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8823 imm_expr.X_op = O_absent;
8824 s = expr_end;
8825 continue;
8826
8827 case '7': /* four dsp accumulators in bits 11,12 */
8828 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8829 s[3] >= '0' && s[3] <= '3')
8830 {
8831 regno = s[3] - '0';
8832 s += 4;
8833 INSERT_OPERAND (DSPACC, *ip, regno);
8834 continue;
8835 }
8836 else
8837 as_bad (_("Invalid dsp acc register"));
8838 break;
8839
8840 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8841 my_getExpression (&imm_expr, s);
8842 check_absolute_expr (ip, &imm_expr);
8843 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8844 {
8845 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8846 OP_MASK_WRDSP,
8847 (unsigned long) imm_expr.X_add_number);
8848 }
8849 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8850 imm_expr.X_op = O_absent;
8851 s = expr_end;
8852 continue;
8853
8854 case '9': /* four dsp accumulators in bits 21,22 */
8855 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8856 s[3] >= '0' && s[3] <= '3')
8857 {
8858 regno = s[3] - '0';
8859 s += 4;
8860 INSERT_OPERAND (DSPACC_S, *ip, regno);
8861 continue;
8862 }
8863 else
8864 as_bad (_("Invalid dsp acc register"));
8865 break;
8866
8867 case '0': /* dsp 6-bit signed immediate in bit 20 */
8868 my_getExpression (&imm_expr, s);
8869 check_absolute_expr (ip, &imm_expr);
8870 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8871 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8872 if (imm_expr.X_add_number < min_range ||
8873 imm_expr.X_add_number > max_range)
8874 {
8875 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8876 (long) min_range, (long) max_range,
8877 (long) imm_expr.X_add_number);
8878 }
8879 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8880 imm_expr.X_op = O_absent;
8881 s = expr_end;
8882 continue;
8883
8884 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8885 my_getExpression (&imm_expr, s);
8886 check_absolute_expr (ip, &imm_expr);
8887 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8888 {
8889 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8890 OP_MASK_RDDSP,
8891 (unsigned long) imm_expr.X_add_number);
8892 }
8893 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8894 imm_expr.X_op = O_absent;
8895 s = expr_end;
8896 continue;
8897
8898 case ':': /* dsp 7-bit signed immediate in bit 19 */
8899 my_getExpression (&imm_expr, s);
8900 check_absolute_expr (ip, &imm_expr);
8901 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8902 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8903 if (imm_expr.X_add_number < min_range ||
8904 imm_expr.X_add_number > max_range)
8905 {
8906 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8907 (long) min_range, (long) max_range,
8908 (long) imm_expr.X_add_number);
8909 }
8910 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8911 imm_expr.X_op = O_absent;
8912 s = expr_end;
8913 continue;
8914
8915 case '@': /* dsp 10-bit signed immediate in bit 16 */
8916 my_getExpression (&imm_expr, s);
8917 check_absolute_expr (ip, &imm_expr);
8918 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8919 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8920 if (imm_expr.X_add_number < min_range ||
8921 imm_expr.X_add_number > max_range)
8922 {
8923 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8924 (long) min_range, (long) max_range,
8925 (long) imm_expr.X_add_number);
8926 }
8927 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8928 imm_expr.X_op = O_absent;
8929 s = expr_end;
8930 continue;
8931
8932 case '!': /* MT usermode flag bit. */
8933 my_getExpression (&imm_expr, s);
8934 check_absolute_expr (ip, &imm_expr);
8935 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8936 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8937 (unsigned long) imm_expr.X_add_number);
8938 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8939 imm_expr.X_op = O_absent;
8940 s = expr_end;
8941 continue;
8942
8943 case '$': /* MT load high flag bit. */
8944 my_getExpression (&imm_expr, s);
8945 check_absolute_expr (ip, &imm_expr);
8946 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8947 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8948 (unsigned long) imm_expr.X_add_number);
8949 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8950 imm_expr.X_op = O_absent;
8951 s = expr_end;
8952 continue;
8953
8954 case '*': /* four dsp accumulators in bits 18,19 */
8955 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8956 s[3] >= '0' && s[3] <= '3')
8957 {
8958 regno = s[3] - '0';
8959 s += 4;
8960 INSERT_OPERAND (MTACC_T, *ip, regno);
8961 continue;
8962 }
8963 else
8964 as_bad (_("Invalid dsp/smartmips acc register"));
8965 break;
8966
8967 case '&': /* four dsp accumulators in bits 13,14 */
8968 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8969 s[3] >= '0' && s[3] <= '3')
8970 {
8971 regno = s[3] - '0';
8972 s += 4;
8973 INSERT_OPERAND (MTACC_D, *ip, regno);
8974 continue;
8975 }
8976 else
8977 as_bad (_("Invalid dsp/smartmips acc register"));
8978 break;
8979
8980 case ',':
8981 ++argnum;
8982 if (*s++ == *args)
8983 continue;
8984 s--;
8985 switch (*++args)
8986 {
8987 case 'r':
8988 case 'v':
8989 INSERT_OPERAND (RS, *ip, lastregno);
8990 continue;
8991
8992 case 'w':
8993 INSERT_OPERAND (RT, *ip, lastregno);
8994 continue;
8995
8996 case 'W':
8997 INSERT_OPERAND (FT, *ip, lastregno);
8998 continue;
8999
9000 case 'V':
9001 INSERT_OPERAND (FS, *ip, lastregno);
9002 continue;
9003 }
9004 break;
9005
9006 case '(':
9007 /* Handle optional base register.
9008 Either the base register is omitted or
9009 we must have a left paren. */
9010 /* This is dependent on the next operand specifier
9011 is a base register specification. */
9012 gas_assert (args[1] == 'b' || args[1] == '5'
9013 || args[1] == '-' || args[1] == '4');
9014 if (*s == '\0')
9015 return;
9016
9017 case ')': /* these must match exactly */
9018 case '[':
9019 case ']':
9020 if (*s++ == *args)
9021 continue;
9022 break;
9023
9024 case '+': /* Opcode extension character. */
9025 switch (*++args)
9026 {
9027 case '1': /* UDI immediates. */
9028 case '2':
9029 case '3':
9030 case '4':
9031 {
9032 const struct mips_immed *imm = mips_immed;
9033
9034 while (imm->type && imm->type != *args)
9035 ++imm;
9036 if (! imm->type)
9037 internalError ();
9038 my_getExpression (&imm_expr, s);
9039 check_absolute_expr (ip, &imm_expr);
9040 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9041 {
9042 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9043 imm->desc ? imm->desc : ip->insn_mo->name,
9044 (unsigned long) imm_expr.X_add_number,
9045 (unsigned long) imm_expr.X_add_number);
9046 imm_expr.X_add_number &= imm->mask;
9047 }
9048 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9049 << imm->shift);
9050 imm_expr.X_op = O_absent;
9051 s = expr_end;
9052 }
9053 continue;
9054
9055 case 'A': /* ins/ext position, becomes LSB. */
9056 limlo = 0;
9057 limhi = 31;
9058 goto do_lsb;
9059 case 'E':
9060 limlo = 32;
9061 limhi = 63;
9062 goto do_lsb;
9063 do_lsb:
9064 my_getExpression (&imm_expr, s);
9065 check_absolute_expr (ip, &imm_expr);
9066 if ((unsigned long) imm_expr.X_add_number < limlo
9067 || (unsigned long) imm_expr.X_add_number > limhi)
9068 {
9069 as_bad (_("Improper position (%lu)"),
9070 (unsigned long) imm_expr.X_add_number);
9071 imm_expr.X_add_number = limlo;
9072 }
9073 lastpos = imm_expr.X_add_number;
9074 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9075 imm_expr.X_op = O_absent;
9076 s = expr_end;
9077 continue;
9078
9079 case 'B': /* ins size, becomes MSB. */
9080 limlo = 1;
9081 limhi = 32;
9082 goto do_msb;
9083 case 'F':
9084 limlo = 33;
9085 limhi = 64;
9086 goto do_msb;
9087 do_msb:
9088 my_getExpression (&imm_expr, s);
9089 check_absolute_expr (ip, &imm_expr);
9090 /* Check for negative input so that small negative numbers
9091 will not succeed incorrectly. The checks against
9092 (pos+size) transitively check "size" itself,
9093 assuming that "pos" is reasonable. */
9094 if ((long) imm_expr.X_add_number < 0
9095 || ((unsigned long) imm_expr.X_add_number
9096 + lastpos) < limlo
9097 || ((unsigned long) imm_expr.X_add_number
9098 + lastpos) > limhi)
9099 {
9100 as_bad (_("Improper insert size (%lu, position %lu)"),
9101 (unsigned long) imm_expr.X_add_number,
9102 (unsigned long) lastpos);
9103 imm_expr.X_add_number = limlo - lastpos;
9104 }
9105 INSERT_OPERAND (INSMSB, *ip,
9106 lastpos + imm_expr.X_add_number - 1);
9107 imm_expr.X_op = O_absent;
9108 s = expr_end;
9109 continue;
9110
9111 case 'C': /* ext size, becomes MSBD. */
9112 limlo = 1;
9113 limhi = 32;
9114 goto do_msbd;
9115 case 'G':
9116 limlo = 33;
9117 limhi = 64;
9118 goto do_msbd;
9119 case 'H':
9120 limlo = 33;
9121 limhi = 64;
9122 goto do_msbd;
9123 do_msbd:
9124 my_getExpression (&imm_expr, s);
9125 check_absolute_expr (ip, &imm_expr);
9126 /* Check for negative input so that small negative numbers
9127 will not succeed incorrectly. The checks against
9128 (pos+size) transitively check "size" itself,
9129 assuming that "pos" is reasonable. */
9130 if ((long) imm_expr.X_add_number < 0
9131 || ((unsigned long) imm_expr.X_add_number
9132 + lastpos) < limlo
9133 || ((unsigned long) imm_expr.X_add_number
9134 + lastpos) > limhi)
9135 {
9136 as_bad (_("Improper extract size (%lu, position %lu)"),
9137 (unsigned long) imm_expr.X_add_number,
9138 (unsigned long) lastpos);
9139 imm_expr.X_add_number = limlo - lastpos;
9140 }
9141 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9142 imm_expr.X_op = O_absent;
9143 s = expr_end;
9144 continue;
9145
9146 case 'D':
9147 /* +D is for disassembly only; never match. */
9148 break;
9149
9150 case 'I':
9151 /* "+I" is like "I", except that imm2_expr is used. */
9152 my_getExpression (&imm2_expr, s);
9153 if (imm2_expr.X_op != O_big
9154 && imm2_expr.X_op != O_constant)
9155 insn_error = _("absolute expression required");
9156 if (HAVE_32BIT_GPRS)
9157 normalize_constant_expr (&imm2_expr);
9158 s = expr_end;
9159 continue;
9160
9161 case 'T': /* Coprocessor register. */
9162 /* +T is for disassembly only; never match. */
9163 break;
9164
9165 case 't': /* Coprocessor register number. */
9166 if (s[0] == '$' && ISDIGIT (s[1]))
9167 {
9168 ++s;
9169 regno = 0;
9170 do
9171 {
9172 regno *= 10;
9173 regno += *s - '0';
9174 ++s;
9175 }
9176 while (ISDIGIT (*s));
9177 if (regno > 31)
9178 as_bad (_("Invalid register number (%d)"), regno);
9179 else
9180 {
9181 INSERT_OPERAND (RT, *ip, regno);
9182 continue;
9183 }
9184 }
9185 else
9186 as_bad (_("Invalid coprocessor 0 register number"));
9187 break;
9188
9189 case 'x':
9190 /* bbit[01] and bbit[01]32 bit index. Give error if index
9191 is not in the valid range. */
9192 my_getExpression (&imm_expr, s);
9193 check_absolute_expr (ip, &imm_expr);
9194 if ((unsigned) imm_expr.X_add_number > 31)
9195 {
9196 as_bad (_("Improper bit index (%lu)"),
9197 (unsigned long) imm_expr.X_add_number);
9198 imm_expr.X_add_number = 0;
9199 }
9200 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9201 imm_expr.X_op = O_absent;
9202 s = expr_end;
9203 continue;
9204
9205 case 'X':
9206 /* bbit[01] bit index when bbit is used but we generate
9207 bbit[01]32 because the index is over 32. Move to the
9208 next candidate if index is not in the valid range. */
9209 my_getExpression (&imm_expr, s);
9210 check_absolute_expr (ip, &imm_expr);
9211 if ((unsigned) imm_expr.X_add_number < 32
9212 || (unsigned) imm_expr.X_add_number > 63)
9213 break;
9214 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9215 imm_expr.X_op = O_absent;
9216 s = expr_end;
9217 continue;
9218
9219 case 'p':
9220 /* cins, cins32, exts and exts32 position field. Give error
9221 if it's not in the valid range. */
9222 my_getExpression (&imm_expr, s);
9223 check_absolute_expr (ip, &imm_expr);
9224 if ((unsigned) imm_expr.X_add_number > 31)
9225 {
9226 as_bad (_("Improper position (%lu)"),
9227 (unsigned long) imm_expr.X_add_number);
9228 imm_expr.X_add_number = 0;
9229 }
9230 /* Make the pos explicit to simplify +S. */
9231 lastpos = imm_expr.X_add_number + 32;
9232 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9233 imm_expr.X_op = O_absent;
9234 s = expr_end;
9235 continue;
9236
9237 case 'P':
9238 /* cins, cins32, exts and exts32 position field. Move to
9239 the next candidate if it's not in the valid range. */
9240 my_getExpression (&imm_expr, s);
9241 check_absolute_expr (ip, &imm_expr);
9242 if ((unsigned) imm_expr.X_add_number < 32
9243 || (unsigned) imm_expr.X_add_number > 63)
9244 break;
9245 lastpos = imm_expr.X_add_number;
9246 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9247 imm_expr.X_op = O_absent;
9248 s = expr_end;
9249 continue;
9250
9251 case 's':
9252 /* cins and exts length-minus-one field. */
9253 my_getExpression (&imm_expr, s);
9254 check_absolute_expr (ip, &imm_expr);
9255 if ((unsigned long) imm_expr.X_add_number > 31)
9256 {
9257 as_bad (_("Improper size (%lu)"),
9258 (unsigned long) imm_expr.X_add_number);
9259 imm_expr.X_add_number = 0;
9260 }
9261 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9262 imm_expr.X_op = O_absent;
9263 s = expr_end;
9264 continue;
9265
9266 case 'S':
9267 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9268 length-minus-one field. */
9269 my_getExpression (&imm_expr, s);
9270 check_absolute_expr (ip, &imm_expr);
9271 if ((long) imm_expr.X_add_number < 0
9272 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9273 {
9274 as_bad (_("Improper size (%lu)"),
9275 (unsigned long) imm_expr.X_add_number);
9276 imm_expr.X_add_number = 0;
9277 }
9278 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9279 imm_expr.X_op = O_absent;
9280 s = expr_end;
9281 continue;
9282
9283 case 'Q':
9284 /* seqi/snei immediate field. */
9285 my_getExpression (&imm_expr, s);
9286 check_absolute_expr (ip, &imm_expr);
9287 if ((long) imm_expr.X_add_number < -512
9288 || (long) imm_expr.X_add_number >= 512)
9289 {
9290 as_bad (_("Improper immediate (%ld)"),
9291 (long) imm_expr.X_add_number);
9292 imm_expr.X_add_number = 0;
9293 }
9294 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9295 imm_expr.X_op = O_absent;
9296 s = expr_end;
9297 continue;
9298
9299 default:
9300 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9301 *args, insn->name, insn->args);
9302 /* Further processing is fruitless. */
9303 return;
9304 }
9305 break;
9306
9307 case '<': /* must be at least one digit */
9308 /*
9309 * According to the manual, if the shift amount is greater
9310 * than 31 or less than 0, then the shift amount should be
9311 * mod 32. In reality the mips assembler issues an error.
9312 * We issue a warning and mask out all but the low 5 bits.
9313 */
9314 my_getExpression (&imm_expr, s);
9315 check_absolute_expr (ip, &imm_expr);
9316 if ((unsigned long) imm_expr.X_add_number > 31)
9317 as_warn (_("Improper shift amount (%lu)"),
9318 (unsigned long) imm_expr.X_add_number);
9319 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9320 imm_expr.X_op = O_absent;
9321 s = expr_end;
9322 continue;
9323
9324 case '>': /* shift amount minus 32 */
9325 my_getExpression (&imm_expr, s);
9326 check_absolute_expr (ip, &imm_expr);
9327 if ((unsigned long) imm_expr.X_add_number < 32
9328 || (unsigned long) imm_expr.X_add_number > 63)
9329 break;
9330 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9331 imm_expr.X_op = O_absent;
9332 s = expr_end;
9333 continue;
9334
9335 case 'k': /* cache code */
9336 case 'h': /* prefx code */
9337 case '1': /* sync type */
9338 my_getExpression (&imm_expr, s);
9339 check_absolute_expr (ip, &imm_expr);
9340 if ((unsigned long) imm_expr.X_add_number > 31)
9341 as_warn (_("Invalid value for `%s' (%lu)"),
9342 ip->insn_mo->name,
9343 (unsigned long) imm_expr.X_add_number);
9344 if (*args == 'k')
9345 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9346 else if (*args == 'h')
9347 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9348 else
9349 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9350 imm_expr.X_op = O_absent;
9351 s = expr_end;
9352 continue;
9353
9354 case 'c': /* break code */
9355 my_getExpression (&imm_expr, s);
9356 check_absolute_expr (ip, &imm_expr);
9357 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9358 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9359 ip->insn_mo->name,
9360 (unsigned long) imm_expr.X_add_number);
9361 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9362 imm_expr.X_op = O_absent;
9363 s = expr_end;
9364 continue;
9365
9366 case 'q': /* lower break code */
9367 my_getExpression (&imm_expr, s);
9368 check_absolute_expr (ip, &imm_expr);
9369 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9370 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9371 ip->insn_mo->name,
9372 (unsigned long) imm_expr.X_add_number);
9373 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9374 imm_expr.X_op = O_absent;
9375 s = expr_end;
9376 continue;
9377
9378 case 'B': /* 20-bit syscall/break code. */
9379 my_getExpression (&imm_expr, s);
9380 check_absolute_expr (ip, &imm_expr);
9381 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9382 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9383 ip->insn_mo->name,
9384 (unsigned long) imm_expr.X_add_number);
9385 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9386 imm_expr.X_op = O_absent;
9387 s = expr_end;
9388 continue;
9389
9390 case 'C': /* Coprocessor code */
9391 my_getExpression (&imm_expr, s);
9392 check_absolute_expr (ip, &imm_expr);
9393 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9394 {
9395 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9396 (unsigned long) imm_expr.X_add_number);
9397 imm_expr.X_add_number &= OP_MASK_COPZ;
9398 }
9399 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9400 imm_expr.X_op = O_absent;
9401 s = expr_end;
9402 continue;
9403
9404 case 'J': /* 19-bit wait code. */
9405 my_getExpression (&imm_expr, s);
9406 check_absolute_expr (ip, &imm_expr);
9407 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9408 {
9409 as_warn (_("Illegal 19-bit code (%lu)"),
9410 (unsigned long) imm_expr.X_add_number);
9411 imm_expr.X_add_number &= OP_MASK_CODE19;
9412 }
9413 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9414 imm_expr.X_op = O_absent;
9415 s = expr_end;
9416 continue;
9417
9418 case 'P': /* Performance register. */
9419 my_getExpression (&imm_expr, s);
9420 check_absolute_expr (ip, &imm_expr);
9421 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9422 as_warn (_("Invalid performance register (%lu)"),
9423 (unsigned long) imm_expr.X_add_number);
9424 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9425 imm_expr.X_op = O_absent;
9426 s = expr_end;
9427 continue;
9428
9429 case 'G': /* Coprocessor destination register. */
9430 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9431 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9432 else
9433 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9434 INSERT_OPERAND (RD, *ip, regno);
9435 if (ok)
9436 {
9437 lastregno = regno;
9438 continue;
9439 }
9440 else
9441 break;
9442
9443 case 'b': /* base register */
9444 case 'd': /* destination register */
9445 case 's': /* source register */
9446 case 't': /* target register */
9447 case 'r': /* both target and source */
9448 case 'v': /* both dest and source */
9449 case 'w': /* both dest and target */
9450 case 'E': /* coprocessor target register */
9451 case 'K': /* 'rdhwr' destination register */
9452 case 'x': /* ignore register name */
9453 case 'z': /* must be zero register */
9454 case 'U': /* destination register (clo/clz). */
9455 case 'g': /* coprocessor destination register */
9456 s_reset = s;
9457 if (*args == 'E' || *args == 'K')
9458 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9459 else
9460 {
9461 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9462 if (regno == AT && mips_opts.at)
9463 {
9464 if (mips_opts.at == ATREG)
9465 as_warn (_("used $at without \".set noat\""));
9466 else
9467 as_warn (_("used $%u with \".set at=$%u\""),
9468 regno, mips_opts.at);
9469 }
9470 }
9471 if (ok)
9472 {
9473 c = *args;
9474 if (*s == ' ')
9475 ++s;
9476 if (args[1] != *s)
9477 {
9478 if (c == 'r' || c == 'v' || c == 'w')
9479 {
9480 regno = lastregno;
9481 s = s_reset;
9482 ++args;
9483 }
9484 }
9485 /* 'z' only matches $0. */
9486 if (c == 'z' && regno != 0)
9487 break;
9488
9489 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9490 {
9491 if (regno == lastregno)
9492 {
9493 insn_error = _("source and destination must be different");
9494 continue;
9495 }
9496 if (regno == 31 && lastregno == 0xffffffff)
9497 {
9498 insn_error = _("a destination register must be supplied");
9499 continue;
9500 }
9501 }
9502 /* Now that we have assembled one operand, we use the args string
9503 * to figure out where it goes in the instruction. */
9504 switch (c)
9505 {
9506 case 'r':
9507 case 's':
9508 case 'v':
9509 case 'b':
9510 INSERT_OPERAND (RS, *ip, regno);
9511 break;
9512 case 'd':
9513 case 'G':
9514 case 'K':
9515 case 'g':
9516 INSERT_OPERAND (RD, *ip, regno);
9517 break;
9518 case 'U':
9519 INSERT_OPERAND (RD, *ip, regno);
9520 INSERT_OPERAND (RT, *ip, regno);
9521 break;
9522 case 'w':
9523 case 't':
9524 case 'E':
9525 INSERT_OPERAND (RT, *ip, regno);
9526 break;
9527 case 'x':
9528 /* This case exists because on the r3000 trunc
9529 expands into a macro which requires a gp
9530 register. On the r6000 or r4000 it is
9531 assembled into a single instruction which
9532 ignores the register. Thus the insn version
9533 is MIPS_ISA2 and uses 'x', and the macro
9534 version is MIPS_ISA1 and uses 't'. */
9535 break;
9536 case 'z':
9537 /* This case is for the div instruction, which
9538 acts differently if the destination argument
9539 is $0. This only matches $0, and is checked
9540 outside the switch. */
9541 break;
9542 case 'D':
9543 /* Itbl operand; not yet implemented. FIXME ?? */
9544 break;
9545 /* What about all other operands like 'i', which
9546 can be specified in the opcode table? */
9547 }
9548 lastregno = regno;
9549 continue;
9550 }
9551 switch (*args++)
9552 {
9553 case 'r':
9554 case 'v':
9555 INSERT_OPERAND (RS, *ip, lastregno);
9556 continue;
9557 case 'w':
9558 INSERT_OPERAND (RT, *ip, lastregno);
9559 continue;
9560 }
9561 break;
9562
9563 case 'O': /* MDMX alignment immediate constant. */
9564 my_getExpression (&imm_expr, s);
9565 check_absolute_expr (ip, &imm_expr);
9566 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9567 as_warn (_("Improper align amount (%ld), using low bits"),
9568 (long) imm_expr.X_add_number);
9569 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9570 imm_expr.X_op = O_absent;
9571 s = expr_end;
9572 continue;
9573
9574 case 'Q': /* MDMX vector, element sel, or const. */
9575 if (s[0] != '$')
9576 {
9577 /* MDMX Immediate. */
9578 my_getExpression (&imm_expr, s);
9579 check_absolute_expr (ip, &imm_expr);
9580 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9581 as_warn (_("Invalid MDMX Immediate (%ld)"),
9582 (long) imm_expr.X_add_number);
9583 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9584 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9585 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9586 else
9587 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9588 imm_expr.X_op = O_absent;
9589 s = expr_end;
9590 continue;
9591 }
9592 /* Not MDMX Immediate. Fall through. */
9593 case 'X': /* MDMX destination register. */
9594 case 'Y': /* MDMX source register. */
9595 case 'Z': /* MDMX target register. */
9596 is_mdmx = 1;
9597 case 'D': /* floating point destination register */
9598 case 'S': /* floating point source register */
9599 case 'T': /* floating point target register */
9600 case 'R': /* floating point source register */
9601 case 'V':
9602 case 'W':
9603 rtype = RTYPE_FPU;
9604 if (is_mdmx
9605 || (mips_opts.ase_mdmx
9606 && (ip->insn_mo->pinfo & FP_D)
9607 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9608 | INSN_COPROC_MEMORY_DELAY
9609 | INSN_LOAD_COPROC_DELAY
9610 | INSN_LOAD_MEMORY_DELAY
9611 | INSN_STORE_MEMORY))))
9612 rtype |= RTYPE_VEC;
9613 s_reset = s;
9614 if (reg_lookup (&s, rtype, &regno))
9615 {
9616 if ((regno & 1) != 0
9617 && HAVE_32BIT_FPRS
9618 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9619 as_warn (_("Float register should be even, was %d"),
9620 regno);
9621
9622 c = *args;
9623 if (*s == ' ')
9624 ++s;
9625 if (args[1] != *s)
9626 {
9627 if (c == 'V' || c == 'W')
9628 {
9629 regno = lastregno;
9630 s = s_reset;
9631 ++args;
9632 }
9633 }
9634 switch (c)
9635 {
9636 case 'D':
9637 case 'X':
9638 INSERT_OPERAND (FD, *ip, regno);
9639 break;
9640 case 'V':
9641 case 'S':
9642 case 'Y':
9643 INSERT_OPERAND (FS, *ip, regno);
9644 break;
9645 case 'Q':
9646 /* This is like 'Z', but also needs to fix the MDMX
9647 vector/scalar select bits. Note that the
9648 scalar immediate case is handled above. */
9649 if (*s == '[')
9650 {
9651 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9652 int max_el = (is_qh ? 3 : 7);
9653 s++;
9654 my_getExpression(&imm_expr, s);
9655 check_absolute_expr (ip, &imm_expr);
9656 s = expr_end;
9657 if (imm_expr.X_add_number > max_el)
9658 as_bad (_("Bad element selector %ld"),
9659 (long) imm_expr.X_add_number);
9660 imm_expr.X_add_number &= max_el;
9661 ip->insn_opcode |= (imm_expr.X_add_number
9662 << (OP_SH_VSEL +
9663 (is_qh ? 2 : 1)));
9664 imm_expr.X_op = O_absent;
9665 if (*s != ']')
9666 as_warn (_("Expecting ']' found '%s'"), s);
9667 else
9668 s++;
9669 }
9670 else
9671 {
9672 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9673 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9674 << OP_SH_VSEL);
9675 else
9676 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9677 OP_SH_VSEL);
9678 }
9679 /* Fall through */
9680 case 'W':
9681 case 'T':
9682 case 'Z':
9683 INSERT_OPERAND (FT, *ip, regno);
9684 break;
9685 case 'R':
9686 INSERT_OPERAND (FR, *ip, regno);
9687 break;
9688 }
9689 lastregno = regno;
9690 continue;
9691 }
9692
9693 switch (*args++)
9694 {
9695 case 'V':
9696 INSERT_OPERAND (FS, *ip, lastregno);
9697 continue;
9698 case 'W':
9699 INSERT_OPERAND (FT, *ip, lastregno);
9700 continue;
9701 }
9702 break;
9703
9704 case 'I':
9705 my_getExpression (&imm_expr, s);
9706 if (imm_expr.X_op != O_big
9707 && imm_expr.X_op != O_constant)
9708 insn_error = _("absolute expression required");
9709 if (HAVE_32BIT_GPRS)
9710 normalize_constant_expr (&imm_expr);
9711 s = expr_end;
9712 continue;
9713
9714 case 'A':
9715 my_getExpression (&offset_expr, s);
9716 normalize_address_expr (&offset_expr);
9717 *imm_reloc = BFD_RELOC_32;
9718 s = expr_end;
9719 continue;
9720
9721 case 'F':
9722 case 'L':
9723 case 'f':
9724 case 'l':
9725 {
9726 int f64;
9727 int using_gprs;
9728 char *save_in;
9729 char *err;
9730 unsigned char temp[8];
9731 int len;
9732 unsigned int length;
9733 segT seg;
9734 subsegT subseg;
9735 char *p;
9736
9737 /* These only appear as the last operand in an
9738 instruction, and every instruction that accepts
9739 them in any variant accepts them in all variants.
9740 This means we don't have to worry about backing out
9741 any changes if the instruction does not match.
9742
9743 The difference between them is the size of the
9744 floating point constant and where it goes. For 'F'
9745 and 'L' the constant is 64 bits; for 'f' and 'l' it
9746 is 32 bits. Where the constant is placed is based
9747 on how the MIPS assembler does things:
9748 F -- .rdata
9749 L -- .lit8
9750 f -- immediate value
9751 l -- .lit4
9752
9753 The .lit4 and .lit8 sections are only used if
9754 permitted by the -G argument.
9755
9756 The code below needs to know whether the target register
9757 is 32 or 64 bits wide. It relies on the fact 'f' and
9758 'F' are used with GPR-based instructions and 'l' and
9759 'L' are used with FPR-based instructions. */
9760
9761 f64 = *args == 'F' || *args == 'L';
9762 using_gprs = *args == 'F' || *args == 'f';
9763
9764 save_in = input_line_pointer;
9765 input_line_pointer = s;
9766 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9767 length = len;
9768 s = input_line_pointer;
9769 input_line_pointer = save_in;
9770 if (err != NULL && *err != '\0')
9771 {
9772 as_bad (_("Bad floating point constant: %s"), err);
9773 memset (temp, '\0', sizeof temp);
9774 length = f64 ? 8 : 4;
9775 }
9776
9777 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9778
9779 if (*args == 'f'
9780 || (*args == 'l'
9781 && (g_switch_value < 4
9782 || (temp[0] == 0 && temp[1] == 0)
9783 || (temp[2] == 0 && temp[3] == 0))))
9784 {
9785 imm_expr.X_op = O_constant;
9786 if (! target_big_endian)
9787 imm_expr.X_add_number = bfd_getl32 (temp);
9788 else
9789 imm_expr.X_add_number = bfd_getb32 (temp);
9790 }
9791 else if (length > 4
9792 && ! mips_disable_float_construction
9793 /* Constants can only be constructed in GPRs and
9794 copied to FPRs if the GPRs are at least as wide
9795 as the FPRs. Force the constant into memory if
9796 we are using 64-bit FPRs but the GPRs are only
9797 32 bits wide. */
9798 && (using_gprs
9799 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9800 && ((temp[0] == 0 && temp[1] == 0)
9801 || (temp[2] == 0 && temp[3] == 0))
9802 && ((temp[4] == 0 && temp[5] == 0)
9803 || (temp[6] == 0 && temp[7] == 0)))
9804 {
9805 /* The value is simple enough to load with a couple of
9806 instructions. If using 32-bit registers, set
9807 imm_expr to the high order 32 bits and offset_expr to
9808 the low order 32 bits. Otherwise, set imm_expr to
9809 the entire 64 bit constant. */
9810 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9811 {
9812 imm_expr.X_op = O_constant;
9813 offset_expr.X_op = O_constant;
9814 if (! target_big_endian)
9815 {
9816 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9817 offset_expr.X_add_number = bfd_getl32 (temp);
9818 }
9819 else
9820 {
9821 imm_expr.X_add_number = bfd_getb32 (temp);
9822 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9823 }
9824 if (offset_expr.X_add_number == 0)
9825 offset_expr.X_op = O_absent;
9826 }
9827 else if (sizeof (imm_expr.X_add_number) > 4)
9828 {
9829 imm_expr.X_op = O_constant;
9830 if (! target_big_endian)
9831 imm_expr.X_add_number = bfd_getl64 (temp);
9832 else
9833 imm_expr.X_add_number = bfd_getb64 (temp);
9834 }
9835 else
9836 {
9837 imm_expr.X_op = O_big;
9838 imm_expr.X_add_number = 4;
9839 if (! target_big_endian)
9840 {
9841 generic_bignum[0] = bfd_getl16 (temp);
9842 generic_bignum[1] = bfd_getl16 (temp + 2);
9843 generic_bignum[2] = bfd_getl16 (temp + 4);
9844 generic_bignum[3] = bfd_getl16 (temp + 6);
9845 }
9846 else
9847 {
9848 generic_bignum[0] = bfd_getb16 (temp + 6);
9849 generic_bignum[1] = bfd_getb16 (temp + 4);
9850 generic_bignum[2] = bfd_getb16 (temp + 2);
9851 generic_bignum[3] = bfd_getb16 (temp);
9852 }
9853 }
9854 }
9855 else
9856 {
9857 const char *newname;
9858 segT new_seg;
9859
9860 /* Switch to the right section. */
9861 seg = now_seg;
9862 subseg = now_subseg;
9863 switch (*args)
9864 {
9865 default: /* unused default case avoids warnings. */
9866 case 'L':
9867 newname = RDATA_SECTION_NAME;
9868 if (g_switch_value >= 8)
9869 newname = ".lit8";
9870 break;
9871 case 'F':
9872 newname = RDATA_SECTION_NAME;
9873 break;
9874 case 'l':
9875 gas_assert (g_switch_value >= 4);
9876 newname = ".lit4";
9877 break;
9878 }
9879 new_seg = subseg_new (newname, (subsegT) 0);
9880 if (IS_ELF)
9881 bfd_set_section_flags (stdoutput, new_seg,
9882 (SEC_ALLOC
9883 | SEC_LOAD
9884 | SEC_READONLY
9885 | SEC_DATA));
9886 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9887 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9888 record_alignment (new_seg, 4);
9889 else
9890 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9891 if (seg == now_seg)
9892 as_bad (_("Can't use floating point insn in this section"));
9893
9894 /* Set the argument to the current address in the
9895 section. */
9896 offset_expr.X_op = O_symbol;
9897 offset_expr.X_add_symbol =
9898 symbol_new ("L0\001", now_seg,
9899 (valueT) frag_now_fix (), frag_now);
9900 offset_expr.X_add_number = 0;
9901
9902 /* Put the floating point number into the section. */
9903 p = frag_more ((int) length);
9904 memcpy (p, temp, length);
9905
9906 /* Switch back to the original section. */
9907 subseg_set (seg, subseg);
9908 }
9909 }
9910 continue;
9911
9912 case 'i': /* 16 bit unsigned immediate */
9913 case 'j': /* 16 bit signed immediate */
9914 *imm_reloc = BFD_RELOC_LO16;
9915 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9916 {
9917 int more;
9918 offsetT minval, maxval;
9919
9920 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9921 && strcmp (insn->name, insn[1].name) == 0);
9922
9923 /* If the expression was written as an unsigned number,
9924 only treat it as signed if there are no more
9925 alternatives. */
9926 if (more
9927 && *args == 'j'
9928 && sizeof (imm_expr.X_add_number) <= 4
9929 && imm_expr.X_op == O_constant
9930 && imm_expr.X_add_number < 0
9931 && imm_expr.X_unsigned
9932 && HAVE_64BIT_GPRS)
9933 break;
9934
9935 /* For compatibility with older assemblers, we accept
9936 0x8000-0xffff as signed 16-bit numbers when only
9937 signed numbers are allowed. */
9938 if (*args == 'i')
9939 minval = 0, maxval = 0xffff;
9940 else if (more)
9941 minval = -0x8000, maxval = 0x7fff;
9942 else
9943 minval = -0x8000, maxval = 0xffff;
9944
9945 if (imm_expr.X_op != O_constant
9946 || imm_expr.X_add_number < minval
9947 || imm_expr.X_add_number > maxval)
9948 {
9949 if (more)
9950 break;
9951 if (imm_expr.X_op == O_constant
9952 || imm_expr.X_op == O_big)
9953 as_bad (_("expression out of range"));
9954 }
9955 }
9956 s = expr_end;
9957 continue;
9958
9959 case 'o': /* 16 bit offset */
9960 /* Check whether there is only a single bracketed expression
9961 left. If so, it must be the base register and the
9962 constant must be zero. */
9963 if (*s == '(' && strchr (s + 1, '(') == 0)
9964 {
9965 offset_expr.X_op = O_constant;
9966 offset_expr.X_add_number = 0;
9967 continue;
9968 }
9969
9970 /* If this value won't fit into a 16 bit offset, then go
9971 find a macro that will generate the 32 bit offset
9972 code pattern. */
9973 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9974 && (offset_expr.X_op != O_constant
9975 || offset_expr.X_add_number >= 0x8000
9976 || offset_expr.X_add_number < -0x8000))
9977 break;
9978
9979 s = expr_end;
9980 continue;
9981
9982 case 'p': /* pc relative offset */
9983 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9984 my_getExpression (&offset_expr, s);
9985 s = expr_end;
9986 continue;
9987
9988 case 'u': /* upper 16 bits */
9989 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9990 && imm_expr.X_op == O_constant
9991 && (imm_expr.X_add_number < 0
9992 || imm_expr.X_add_number >= 0x10000))
9993 as_bad (_("lui expression not in range 0..65535"));
9994 s = expr_end;
9995 continue;
9996
9997 case 'a': /* 26 bit address */
9998 my_getExpression (&offset_expr, s);
9999 s = expr_end;
10000 *offset_reloc = BFD_RELOC_MIPS_JMP;
10001 continue;
10002
10003 case 'N': /* 3 bit branch condition code */
10004 case 'M': /* 3 bit compare condition code */
10005 rtype = RTYPE_CCC;
10006 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10007 rtype |= RTYPE_FCC;
10008 if (!reg_lookup (&s, rtype, &regno))
10009 break;
10010 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10011 || strcmp(str + strlen(str) - 5, "any2f") == 0
10012 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10013 && (regno & 1) != 0)
10014 as_warn (_("Condition code register should be even for %s, was %d"),
10015 str, regno);
10016 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10017 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10018 && (regno & 3) != 0)
10019 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10020 str, regno);
10021 if (*args == 'N')
10022 INSERT_OPERAND (BCC, *ip, regno);
10023 else
10024 INSERT_OPERAND (CCC, *ip, regno);
10025 continue;
10026
10027 case 'H':
10028 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10029 s += 2;
10030 if (ISDIGIT (*s))
10031 {
10032 c = 0;
10033 do
10034 {
10035 c *= 10;
10036 c += *s - '0';
10037 ++s;
10038 }
10039 while (ISDIGIT (*s));
10040 }
10041 else
10042 c = 8; /* Invalid sel value. */
10043
10044 if (c > 7)
10045 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10046 ip->insn_opcode |= c;
10047 continue;
10048
10049 case 'e':
10050 /* Must be at least one digit. */
10051 my_getExpression (&imm_expr, s);
10052 check_absolute_expr (ip, &imm_expr);
10053
10054 if ((unsigned long) imm_expr.X_add_number
10055 > (unsigned long) OP_MASK_VECBYTE)
10056 {
10057 as_bad (_("bad byte vector index (%ld)"),
10058 (long) imm_expr.X_add_number);
10059 imm_expr.X_add_number = 0;
10060 }
10061
10062 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10063 imm_expr.X_op = O_absent;
10064 s = expr_end;
10065 continue;
10066
10067 case '%':
10068 my_getExpression (&imm_expr, s);
10069 check_absolute_expr (ip, &imm_expr);
10070
10071 if ((unsigned long) imm_expr.X_add_number
10072 > (unsigned long) OP_MASK_VECALIGN)
10073 {
10074 as_bad (_("bad byte vector index (%ld)"),
10075 (long) imm_expr.X_add_number);
10076 imm_expr.X_add_number = 0;
10077 }
10078
10079 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10080 imm_expr.X_op = O_absent;
10081 s = expr_end;
10082 continue;
10083
10084 default:
10085 as_bad (_("bad char = '%c'\n"), *args);
10086 internalError ();
10087 }
10088 break;
10089 }
10090 /* Args don't match. */
10091 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10092 !strcmp (insn->name, insn[1].name))
10093 {
10094 ++insn;
10095 s = argsStart;
10096 insn_error = _("illegal operands");
10097 continue;
10098 }
10099 if (save_c)
10100 *(--argsStart) = save_c;
10101 insn_error = _("illegal operands");
10102 return;
10103 }
10104 }
10105
10106 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10107
10108 /* This routine assembles an instruction into its binary format when
10109 assembling for the mips16. As a side effect, it sets one of the
10110 global variables imm_reloc or offset_reloc to the type of
10111 relocation to do if one of the operands is an address expression.
10112 It also sets mips16_small and mips16_ext if the user explicitly
10113 requested a small or extended instruction. */
10114
10115 static void
10116 mips16_ip (char *str, struct mips_cl_insn *ip)
10117 {
10118 char *s;
10119 const char *args;
10120 struct mips_opcode *insn;
10121 char *argsstart;
10122 unsigned int regno;
10123 unsigned int lastregno = 0;
10124 char *s_reset;
10125 size_t i;
10126
10127 insn_error = NULL;
10128
10129 mips16_small = FALSE;
10130 mips16_ext = FALSE;
10131
10132 for (s = str; ISLOWER (*s); ++s)
10133 ;
10134 switch (*s)
10135 {
10136 case '\0':
10137 break;
10138
10139 case ' ':
10140 *s++ = '\0';
10141 break;
10142
10143 case '.':
10144 if (s[1] == 't' && s[2] == ' ')
10145 {
10146 *s = '\0';
10147 mips16_small = TRUE;
10148 s += 3;
10149 break;
10150 }
10151 else if (s[1] == 'e' && s[2] == ' ')
10152 {
10153 *s = '\0';
10154 mips16_ext = TRUE;
10155 s += 3;
10156 break;
10157 }
10158 /* Fall through. */
10159 default:
10160 insn_error = _("unknown opcode");
10161 return;
10162 }
10163
10164 if (mips_opts.noautoextend && ! mips16_ext)
10165 mips16_small = TRUE;
10166
10167 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10168 {
10169 insn_error = _("unrecognized opcode");
10170 return;
10171 }
10172
10173 argsstart = s;
10174 for (;;)
10175 {
10176 bfd_boolean ok;
10177
10178 gas_assert (strcmp (insn->name, str) == 0);
10179
10180 ok = is_opcode_valid_16 (insn);
10181 if (! ok)
10182 {
10183 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10184 && strcmp (insn->name, insn[1].name) == 0)
10185 {
10186 ++insn;
10187 continue;
10188 }
10189 else
10190 {
10191 if (!insn_error)
10192 {
10193 static char buf[100];
10194 sprintf (buf,
10195 _("opcode not supported on this processor: %s (%s)"),
10196 mips_cpu_info_from_arch (mips_opts.arch)->name,
10197 mips_cpu_info_from_isa (mips_opts.isa)->name);
10198 insn_error = buf;
10199 }
10200 return;
10201 }
10202 }
10203
10204 create_insn (ip, insn);
10205 imm_expr.X_op = O_absent;
10206 imm_reloc[0] = BFD_RELOC_UNUSED;
10207 imm_reloc[1] = BFD_RELOC_UNUSED;
10208 imm_reloc[2] = BFD_RELOC_UNUSED;
10209 imm2_expr.X_op = O_absent;
10210 offset_expr.X_op = O_absent;
10211 offset_reloc[0] = BFD_RELOC_UNUSED;
10212 offset_reloc[1] = BFD_RELOC_UNUSED;
10213 offset_reloc[2] = BFD_RELOC_UNUSED;
10214 for (args = insn->args; 1; ++args)
10215 {
10216 int c;
10217
10218 if (*s == ' ')
10219 ++s;
10220
10221 /* In this switch statement we call break if we did not find
10222 a match, continue if we did find a match, or return if we
10223 are done. */
10224
10225 c = *args;
10226 switch (c)
10227 {
10228 case '\0':
10229 if (*s == '\0')
10230 {
10231 /* Stuff the immediate value in now, if we can. */
10232 if (imm_expr.X_op == O_constant
10233 && *imm_reloc > BFD_RELOC_UNUSED
10234 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10235 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10236 && insn->pinfo != INSN_MACRO)
10237 {
10238 valueT tmp;
10239
10240 switch (*offset_reloc)
10241 {
10242 case BFD_RELOC_MIPS16_HI16_S:
10243 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10244 break;
10245
10246 case BFD_RELOC_MIPS16_HI16:
10247 tmp = imm_expr.X_add_number >> 16;
10248 break;
10249
10250 case BFD_RELOC_MIPS16_LO16:
10251 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10252 - 0x8000;
10253 break;
10254
10255 case BFD_RELOC_UNUSED:
10256 tmp = imm_expr.X_add_number;
10257 break;
10258
10259 default:
10260 internalError ();
10261 }
10262 *offset_reloc = BFD_RELOC_UNUSED;
10263
10264 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10265 tmp, TRUE, mips16_small,
10266 mips16_ext, &ip->insn_opcode,
10267 &ip->use_extend, &ip->extend);
10268 imm_expr.X_op = O_absent;
10269 *imm_reloc = BFD_RELOC_UNUSED;
10270 }
10271
10272 return;
10273 }
10274 break;
10275
10276 case ',':
10277 if (*s++ == c)
10278 continue;
10279 s--;
10280 switch (*++args)
10281 {
10282 case 'v':
10283 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10284 continue;
10285 case 'w':
10286 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10287 continue;
10288 }
10289 break;
10290
10291 case '(':
10292 case ')':
10293 if (*s++ == c)
10294 continue;
10295 break;
10296
10297 case 'v':
10298 case 'w':
10299 if (s[0] != '$')
10300 {
10301 if (c == 'v')
10302 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10303 else
10304 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10305 ++args;
10306 continue;
10307 }
10308 /* Fall through. */
10309 case 'x':
10310 case 'y':
10311 case 'z':
10312 case 'Z':
10313 case '0':
10314 case 'S':
10315 case 'R':
10316 case 'X':
10317 case 'Y':
10318 s_reset = s;
10319 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10320 {
10321 if (c == 'v' || c == 'w')
10322 {
10323 if (c == 'v')
10324 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10325 else
10326 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10327 ++args;
10328 continue;
10329 }
10330 break;
10331 }
10332
10333 if (*s == ' ')
10334 ++s;
10335 if (args[1] != *s)
10336 {
10337 if (c == 'v' || c == 'w')
10338 {
10339 regno = mips16_to_32_reg_map[lastregno];
10340 s = s_reset;
10341 ++args;
10342 }
10343 }
10344
10345 switch (c)
10346 {
10347 case 'x':
10348 case 'y':
10349 case 'z':
10350 case 'v':
10351 case 'w':
10352 case 'Z':
10353 regno = mips32_to_16_reg_map[regno];
10354 break;
10355
10356 case '0':
10357 if (regno != 0)
10358 regno = ILLEGAL_REG;
10359 break;
10360
10361 case 'S':
10362 if (regno != SP)
10363 regno = ILLEGAL_REG;
10364 break;
10365
10366 case 'R':
10367 if (regno != RA)
10368 regno = ILLEGAL_REG;
10369 break;
10370
10371 case 'X':
10372 case 'Y':
10373 if (regno == AT && mips_opts.at)
10374 {
10375 if (mips_opts.at == ATREG)
10376 as_warn (_("used $at without \".set noat\""));
10377 else
10378 as_warn (_("used $%u with \".set at=$%u\""),
10379 regno, mips_opts.at);
10380 }
10381 break;
10382
10383 default:
10384 internalError ();
10385 }
10386
10387 if (regno == ILLEGAL_REG)
10388 break;
10389
10390 switch (c)
10391 {
10392 case 'x':
10393 case 'v':
10394 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10395 break;
10396 case 'y':
10397 case 'w':
10398 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10399 break;
10400 case 'z':
10401 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10402 break;
10403 case 'Z':
10404 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10405 case '0':
10406 case 'S':
10407 case 'R':
10408 break;
10409 case 'X':
10410 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10411 break;
10412 case 'Y':
10413 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10414 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10415 break;
10416 default:
10417 internalError ();
10418 }
10419
10420 lastregno = regno;
10421 continue;
10422
10423 case 'P':
10424 if (strncmp (s, "$pc", 3) == 0)
10425 {
10426 s += 3;
10427 continue;
10428 }
10429 break;
10430
10431 case '5':
10432 case 'H':
10433 case 'W':
10434 case 'D':
10435 case 'j':
10436 case 'V':
10437 case 'C':
10438 case 'U':
10439 case 'k':
10440 case 'K':
10441 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10442 if (i > 0)
10443 {
10444 if (imm_expr.X_op != O_constant)
10445 {
10446 mips16_ext = TRUE;
10447 ip->use_extend = TRUE;
10448 ip->extend = 0;
10449 }
10450 else
10451 {
10452 /* We need to relax this instruction. */
10453 *offset_reloc = *imm_reloc;
10454 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10455 }
10456 s = expr_end;
10457 continue;
10458 }
10459 *imm_reloc = BFD_RELOC_UNUSED;
10460 /* Fall through. */
10461 case '<':
10462 case '>':
10463 case '[':
10464 case ']':
10465 case '4':
10466 case '8':
10467 my_getExpression (&imm_expr, s);
10468 if (imm_expr.X_op == O_register)
10469 {
10470 /* What we thought was an expression turned out to
10471 be a register. */
10472
10473 if (s[0] == '(' && args[1] == '(')
10474 {
10475 /* It looks like the expression was omitted
10476 before a register indirection, which means
10477 that the expression is implicitly zero. We
10478 still set up imm_expr, so that we handle
10479 explicit extensions correctly. */
10480 imm_expr.X_op = O_constant;
10481 imm_expr.X_add_number = 0;
10482 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10483 continue;
10484 }
10485
10486 break;
10487 }
10488
10489 /* We need to relax this instruction. */
10490 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10491 s = expr_end;
10492 continue;
10493
10494 case 'p':
10495 case 'q':
10496 case 'A':
10497 case 'B':
10498 case 'E':
10499 /* We use offset_reloc rather than imm_reloc for the PC
10500 relative operands. This lets macros with both
10501 immediate and address operands work correctly. */
10502 my_getExpression (&offset_expr, s);
10503
10504 if (offset_expr.X_op == O_register)
10505 break;
10506
10507 /* We need to relax this instruction. */
10508 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10509 s = expr_end;
10510 continue;
10511
10512 case '6': /* break code */
10513 my_getExpression (&imm_expr, s);
10514 check_absolute_expr (ip, &imm_expr);
10515 if ((unsigned long) imm_expr.X_add_number > 63)
10516 as_warn (_("Invalid value for `%s' (%lu)"),
10517 ip->insn_mo->name,
10518 (unsigned long) imm_expr.X_add_number);
10519 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10520 imm_expr.X_op = O_absent;
10521 s = expr_end;
10522 continue;
10523
10524 case 'a': /* 26 bit address */
10525 my_getExpression (&offset_expr, s);
10526 s = expr_end;
10527 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10528 ip->insn_opcode <<= 16;
10529 continue;
10530
10531 case 'l': /* register list for entry macro */
10532 case 'L': /* register list for exit macro */
10533 {
10534 int mask;
10535
10536 if (c == 'l')
10537 mask = 0;
10538 else
10539 mask = 7 << 3;
10540 while (*s != '\0')
10541 {
10542 unsigned int freg, reg1, reg2;
10543
10544 while (*s == ' ' || *s == ',')
10545 ++s;
10546 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10547 freg = 0;
10548 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10549 freg = 1;
10550 else
10551 {
10552 as_bad (_("can't parse register list"));
10553 break;
10554 }
10555 if (*s == ' ')
10556 ++s;
10557 if (*s != '-')
10558 reg2 = reg1;
10559 else
10560 {
10561 ++s;
10562 if (!reg_lookup (&s, freg ? RTYPE_FPU
10563 : (RTYPE_GP | RTYPE_NUM), &reg2))
10564 {
10565 as_bad (_("invalid register list"));
10566 break;
10567 }
10568 }
10569 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10570 {
10571 mask &= ~ (7 << 3);
10572 mask |= 5 << 3;
10573 }
10574 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10575 {
10576 mask &= ~ (7 << 3);
10577 mask |= 6 << 3;
10578 }
10579 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10580 mask |= (reg2 - 3) << 3;
10581 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10582 mask |= (reg2 - 15) << 1;
10583 else if (reg1 == RA && reg2 == RA)
10584 mask |= 1;
10585 else
10586 {
10587 as_bad (_("invalid register list"));
10588 break;
10589 }
10590 }
10591 /* The mask is filled in in the opcode table for the
10592 benefit of the disassembler. We remove it before
10593 applying the actual mask. */
10594 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10595 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10596 }
10597 continue;
10598
10599 case 'm': /* Register list for save insn. */
10600 case 'M': /* Register list for restore insn. */
10601 {
10602 int opcode = 0;
10603 int framesz = 0, seen_framesz = 0;
10604 int args = 0, statics = 0, sregs = 0;
10605
10606 while (*s != '\0')
10607 {
10608 unsigned int reg1, reg2;
10609
10610 SKIP_SPACE_TABS (s);
10611 while (*s == ',')
10612 ++s;
10613 SKIP_SPACE_TABS (s);
10614
10615 my_getExpression (&imm_expr, s);
10616 if (imm_expr.X_op == O_constant)
10617 {
10618 /* Handle the frame size. */
10619 if (seen_framesz)
10620 {
10621 as_bad (_("more than one frame size in list"));
10622 break;
10623 }
10624 seen_framesz = 1;
10625 framesz = imm_expr.X_add_number;
10626 imm_expr.X_op = O_absent;
10627 s = expr_end;
10628 continue;
10629 }
10630
10631 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10632 {
10633 as_bad (_("can't parse register list"));
10634 break;
10635 }
10636
10637 while (*s == ' ')
10638 ++s;
10639
10640 if (*s != '-')
10641 reg2 = reg1;
10642 else
10643 {
10644 ++s;
10645 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10646 || reg2 < reg1)
10647 {
10648 as_bad (_("can't parse register list"));
10649 break;
10650 }
10651 }
10652
10653 while (reg1 <= reg2)
10654 {
10655 if (reg1 >= 4 && reg1 <= 7)
10656 {
10657 if (!seen_framesz)
10658 /* args $a0-$a3 */
10659 args |= 1 << (reg1 - 4);
10660 else
10661 /* statics $a0-$a3 */
10662 statics |= 1 << (reg1 - 4);
10663 }
10664 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10665 {
10666 /* $s0-$s8 */
10667 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10668 }
10669 else if (reg1 == 31)
10670 {
10671 /* Add $ra to insn. */
10672 opcode |= 0x40;
10673 }
10674 else
10675 {
10676 as_bad (_("unexpected register in list"));
10677 break;
10678 }
10679 if (++reg1 == 24)
10680 reg1 = 30;
10681 }
10682 }
10683
10684 /* Encode args/statics combination. */
10685 if (args & statics)
10686 as_bad (_("arg/static registers overlap"));
10687 else if (args == 0xf)
10688 /* All $a0-$a3 are args. */
10689 opcode |= MIPS16_ALL_ARGS << 16;
10690 else if (statics == 0xf)
10691 /* All $a0-$a3 are statics. */
10692 opcode |= MIPS16_ALL_STATICS << 16;
10693 else
10694 {
10695 int narg = 0, nstat = 0;
10696
10697 /* Count arg registers. */
10698 while (args & 0x1)
10699 {
10700 args >>= 1;
10701 narg++;
10702 }
10703 if (args != 0)
10704 as_bad (_("invalid arg register list"));
10705
10706 /* Count static registers. */
10707 while (statics & 0x8)
10708 {
10709 statics = (statics << 1) & 0xf;
10710 nstat++;
10711 }
10712 if (statics != 0)
10713 as_bad (_("invalid static register list"));
10714
10715 /* Encode args/statics. */
10716 opcode |= ((narg << 2) | nstat) << 16;
10717 }
10718
10719 /* Encode $s0/$s1. */
10720 if (sregs & (1 << 0)) /* $s0 */
10721 opcode |= 0x20;
10722 if (sregs & (1 << 1)) /* $s1 */
10723 opcode |= 0x10;
10724 sregs >>= 2;
10725
10726 if (sregs != 0)
10727 {
10728 /* Count regs $s2-$s8. */
10729 int nsreg = 0;
10730 while (sregs & 1)
10731 {
10732 sregs >>= 1;
10733 nsreg++;
10734 }
10735 if (sregs != 0)
10736 as_bad (_("invalid static register list"));
10737 /* Encode $s2-$s8. */
10738 opcode |= nsreg << 24;
10739 }
10740
10741 /* Encode frame size. */
10742 if (!seen_framesz)
10743 as_bad (_("missing frame size"));
10744 else if ((framesz & 7) != 0 || framesz < 0
10745 || framesz > 0xff * 8)
10746 as_bad (_("invalid frame size"));
10747 else if (framesz != 128 || (opcode >> 16) != 0)
10748 {
10749 framesz /= 8;
10750 opcode |= (((framesz & 0xf0) << 16)
10751 | (framesz & 0x0f));
10752 }
10753
10754 /* Finally build the instruction. */
10755 if ((opcode >> 16) != 0 || framesz == 0)
10756 {
10757 ip->use_extend = TRUE;
10758 ip->extend = opcode >> 16;
10759 }
10760 ip->insn_opcode |= opcode & 0x7f;
10761 }
10762 continue;
10763
10764 case 'e': /* extend code */
10765 my_getExpression (&imm_expr, s);
10766 check_absolute_expr (ip, &imm_expr);
10767 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10768 {
10769 as_warn (_("Invalid value for `%s' (%lu)"),
10770 ip->insn_mo->name,
10771 (unsigned long) imm_expr.X_add_number);
10772 imm_expr.X_add_number &= 0x7ff;
10773 }
10774 ip->insn_opcode |= imm_expr.X_add_number;
10775 imm_expr.X_op = O_absent;
10776 s = expr_end;
10777 continue;
10778
10779 default:
10780 internalError ();
10781 }
10782 break;
10783 }
10784
10785 /* Args don't match. */
10786 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10787 strcmp (insn->name, insn[1].name) == 0)
10788 {
10789 ++insn;
10790 s = argsstart;
10791 continue;
10792 }
10793
10794 insn_error = _("illegal operands");
10795
10796 return;
10797 }
10798 }
10799
10800 /* This structure holds information we know about a mips16 immediate
10801 argument type. */
10802
10803 struct mips16_immed_operand
10804 {
10805 /* The type code used in the argument string in the opcode table. */
10806 int type;
10807 /* The number of bits in the short form of the opcode. */
10808 int nbits;
10809 /* The number of bits in the extended form of the opcode. */
10810 int extbits;
10811 /* The amount by which the short form is shifted when it is used;
10812 for example, the sw instruction has a shift count of 2. */
10813 int shift;
10814 /* The amount by which the short form is shifted when it is stored
10815 into the instruction code. */
10816 int op_shift;
10817 /* Non-zero if the short form is unsigned. */
10818 int unsp;
10819 /* Non-zero if the extended form is unsigned. */
10820 int extu;
10821 /* Non-zero if the value is PC relative. */
10822 int pcrel;
10823 };
10824
10825 /* The mips16 immediate operand types. */
10826
10827 static const struct mips16_immed_operand mips16_immed_operands[] =
10828 {
10829 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10830 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10831 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10832 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10833 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10834 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10835 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10836 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10837 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10838 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10839 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10840 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10841 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10842 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10843 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10844 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10845 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10846 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10847 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10848 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10849 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10850 };
10851
10852 #define MIPS16_NUM_IMMED \
10853 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10854
10855 /* Handle a mips16 instruction with an immediate value. This or's the
10856 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10857 whether an extended value is needed; if one is needed, it sets
10858 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10859 If SMALL is true, an unextended opcode was explicitly requested.
10860 If EXT is true, an extended opcode was explicitly requested. If
10861 WARN is true, warn if EXT does not match reality. */
10862
10863 static void
10864 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10865 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10866 unsigned long *insn, bfd_boolean *use_extend,
10867 unsigned short *extend)
10868 {
10869 const struct mips16_immed_operand *op;
10870 int mintiny, maxtiny;
10871 bfd_boolean needext;
10872
10873 op = mips16_immed_operands;
10874 while (op->type != type)
10875 {
10876 ++op;
10877 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10878 }
10879
10880 if (op->unsp)
10881 {
10882 if (type == '<' || type == '>' || type == '[' || type == ']')
10883 {
10884 mintiny = 1;
10885 maxtiny = 1 << op->nbits;
10886 }
10887 else
10888 {
10889 mintiny = 0;
10890 maxtiny = (1 << op->nbits) - 1;
10891 }
10892 }
10893 else
10894 {
10895 mintiny = - (1 << (op->nbits - 1));
10896 maxtiny = (1 << (op->nbits - 1)) - 1;
10897 }
10898
10899 /* Branch offsets have an implicit 0 in the lowest bit. */
10900 if (type == 'p' || type == 'q')
10901 val /= 2;
10902
10903 if ((val & ((1 << op->shift) - 1)) != 0
10904 || val < (mintiny << op->shift)
10905 || val > (maxtiny << op->shift))
10906 needext = TRUE;
10907 else
10908 needext = FALSE;
10909
10910 if (warn && ext && ! needext)
10911 as_warn_where (file, line,
10912 _("extended operand requested but not required"));
10913 if (small && needext)
10914 as_bad_where (file, line, _("invalid unextended operand value"));
10915
10916 if (small || (! ext && ! needext))
10917 {
10918 int insnval;
10919
10920 *use_extend = FALSE;
10921 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10922 insnval <<= op->op_shift;
10923 *insn |= insnval;
10924 }
10925 else
10926 {
10927 long minext, maxext;
10928 int extval;
10929
10930 if (op->extu)
10931 {
10932 minext = 0;
10933 maxext = (1 << op->extbits) - 1;
10934 }
10935 else
10936 {
10937 minext = - (1 << (op->extbits - 1));
10938 maxext = (1 << (op->extbits - 1)) - 1;
10939 }
10940 if (val < minext || val > maxext)
10941 as_bad_where (file, line,
10942 _("operand value out of range for instruction"));
10943
10944 *use_extend = TRUE;
10945 if (op->extbits == 16)
10946 {
10947 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10948 val &= 0x1f;
10949 }
10950 else if (op->extbits == 15)
10951 {
10952 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10953 val &= 0xf;
10954 }
10955 else
10956 {
10957 extval = ((val & 0x1f) << 6) | (val & 0x20);
10958 val = 0;
10959 }
10960
10961 *extend = (unsigned short) extval;
10962 *insn |= val;
10963 }
10964 }
10965 \f
10966 struct percent_op_match
10967 {
10968 const char *str;
10969 bfd_reloc_code_real_type reloc;
10970 };
10971
10972 static const struct percent_op_match mips_percent_op[] =
10973 {
10974 {"%lo", BFD_RELOC_LO16},
10975 #ifdef OBJ_ELF
10976 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10977 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10978 {"%call16", BFD_RELOC_MIPS_CALL16},
10979 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10980 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10981 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10982 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10983 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10984 {"%got", BFD_RELOC_MIPS_GOT16},
10985 {"%gp_rel", BFD_RELOC_GPREL16},
10986 {"%half", BFD_RELOC_16},
10987 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10988 {"%higher", BFD_RELOC_MIPS_HIGHER},
10989 {"%neg", BFD_RELOC_MIPS_SUB},
10990 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10991 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10992 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10993 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10994 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10995 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10996 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10997 #endif
10998 {"%hi", BFD_RELOC_HI16_S}
10999 };
11000
11001 static const struct percent_op_match mips16_percent_op[] =
11002 {
11003 {"%lo", BFD_RELOC_MIPS16_LO16},
11004 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11005 {"%got", BFD_RELOC_MIPS16_GOT16},
11006 {"%call16", BFD_RELOC_MIPS16_CALL16},
11007 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11008 };
11009
11010
11011 /* Return true if *STR points to a relocation operator. When returning true,
11012 move *STR over the operator and store its relocation code in *RELOC.
11013 Leave both *STR and *RELOC alone when returning false. */
11014
11015 static bfd_boolean
11016 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11017 {
11018 const struct percent_op_match *percent_op;
11019 size_t limit, i;
11020
11021 if (mips_opts.mips16)
11022 {
11023 percent_op = mips16_percent_op;
11024 limit = ARRAY_SIZE (mips16_percent_op);
11025 }
11026 else
11027 {
11028 percent_op = mips_percent_op;
11029 limit = ARRAY_SIZE (mips_percent_op);
11030 }
11031
11032 for (i = 0; i < limit; i++)
11033 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11034 {
11035 int len = strlen (percent_op[i].str);
11036
11037 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11038 continue;
11039
11040 *str += strlen (percent_op[i].str);
11041 *reloc = percent_op[i].reloc;
11042
11043 /* Check whether the output BFD supports this relocation.
11044 If not, issue an error and fall back on something safe. */
11045 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11046 {
11047 as_bad (_("relocation %s isn't supported by the current ABI"),
11048 percent_op[i].str);
11049 *reloc = BFD_RELOC_UNUSED;
11050 }
11051 return TRUE;
11052 }
11053 return FALSE;
11054 }
11055
11056
11057 /* Parse string STR as a 16-bit relocatable operand. Store the
11058 expression in *EP and the relocations in the array starting
11059 at RELOC. Return the number of relocation operators used.
11060
11061 On exit, EXPR_END points to the first character after the expression. */
11062
11063 static size_t
11064 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11065 char *str)
11066 {
11067 bfd_reloc_code_real_type reversed_reloc[3];
11068 size_t reloc_index, i;
11069 int crux_depth, str_depth;
11070 char *crux;
11071
11072 /* Search for the start of the main expression, recoding relocations
11073 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11074 of the main expression and with CRUX_DEPTH containing the number
11075 of open brackets at that point. */
11076 reloc_index = -1;
11077 str_depth = 0;
11078 do
11079 {
11080 reloc_index++;
11081 crux = str;
11082 crux_depth = str_depth;
11083
11084 /* Skip over whitespace and brackets, keeping count of the number
11085 of brackets. */
11086 while (*str == ' ' || *str == '\t' || *str == '(')
11087 if (*str++ == '(')
11088 str_depth++;
11089 }
11090 while (*str == '%'
11091 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11092 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11093
11094 my_getExpression (ep, crux);
11095 str = expr_end;
11096
11097 /* Match every open bracket. */
11098 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11099 if (*str++ == ')')
11100 crux_depth--;
11101
11102 if (crux_depth > 0)
11103 as_bad (_("unclosed '('"));
11104
11105 expr_end = str;
11106
11107 if (reloc_index != 0)
11108 {
11109 prev_reloc_op_frag = frag_now;
11110 for (i = 0; i < reloc_index; i++)
11111 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11112 }
11113
11114 return reloc_index;
11115 }
11116
11117 static void
11118 my_getExpression (expressionS *ep, char *str)
11119 {
11120 char *save_in;
11121 valueT val;
11122
11123 save_in = input_line_pointer;
11124 input_line_pointer = str;
11125 expression (ep);
11126 expr_end = input_line_pointer;
11127 input_line_pointer = save_in;
11128
11129 /* If we are in mips16 mode, and this is an expression based on `.',
11130 then we bump the value of the symbol by 1 since that is how other
11131 text symbols are handled. We don't bother to handle complex
11132 expressions, just `.' plus or minus a constant. */
11133 if (mips_opts.mips16
11134 && ep->X_op == O_symbol
11135 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11136 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11137 && symbol_get_frag (ep->X_add_symbol) == frag_now
11138 && symbol_constant_p (ep->X_add_symbol)
11139 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11140 S_SET_VALUE (ep->X_add_symbol, val + 1);
11141 }
11142
11143 char *
11144 md_atof (int type, char *litP, int *sizeP)
11145 {
11146 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11147 }
11148
11149 void
11150 md_number_to_chars (char *buf, valueT val, int n)
11151 {
11152 if (target_big_endian)
11153 number_to_chars_bigendian (buf, val, n);
11154 else
11155 number_to_chars_littleendian (buf, val, n);
11156 }
11157 \f
11158 #ifdef OBJ_ELF
11159 static int support_64bit_objects(void)
11160 {
11161 const char **list, **l;
11162 int yes;
11163
11164 list = bfd_target_list ();
11165 for (l = list; *l != NULL; l++)
11166 #ifdef TE_TMIPS
11167 /* This is traditional mips */
11168 if (strcmp (*l, "elf64-tradbigmips") == 0
11169 || strcmp (*l, "elf64-tradlittlemips") == 0)
11170 #else
11171 if (strcmp (*l, "elf64-bigmips") == 0
11172 || strcmp (*l, "elf64-littlemips") == 0)
11173 #endif
11174 break;
11175 yes = (*l != NULL);
11176 free (list);
11177 return yes;
11178 }
11179 #endif /* OBJ_ELF */
11180
11181 const char *md_shortopts = "O::g::G:";
11182
11183 enum options
11184 {
11185 OPTION_MARCH = OPTION_MD_BASE,
11186 OPTION_MTUNE,
11187 OPTION_MIPS1,
11188 OPTION_MIPS2,
11189 OPTION_MIPS3,
11190 OPTION_MIPS4,
11191 OPTION_MIPS5,
11192 OPTION_MIPS32,
11193 OPTION_MIPS64,
11194 OPTION_MIPS32R2,
11195 OPTION_MIPS64R2,
11196 OPTION_MIPS16,
11197 OPTION_NO_MIPS16,
11198 OPTION_MIPS3D,
11199 OPTION_NO_MIPS3D,
11200 OPTION_MDMX,
11201 OPTION_NO_MDMX,
11202 OPTION_DSP,
11203 OPTION_NO_DSP,
11204 OPTION_MT,
11205 OPTION_NO_MT,
11206 OPTION_SMARTMIPS,
11207 OPTION_NO_SMARTMIPS,
11208 OPTION_DSPR2,
11209 OPTION_NO_DSPR2,
11210 OPTION_COMPAT_ARCH_BASE,
11211 OPTION_M4650,
11212 OPTION_NO_M4650,
11213 OPTION_M4010,
11214 OPTION_NO_M4010,
11215 OPTION_M4100,
11216 OPTION_NO_M4100,
11217 OPTION_M3900,
11218 OPTION_NO_M3900,
11219 OPTION_M7000_HILO_FIX,
11220 OPTION_MNO_7000_HILO_FIX,
11221 OPTION_FIX_24K,
11222 OPTION_NO_FIX_24K,
11223 OPTION_FIX_VR4120,
11224 OPTION_NO_FIX_VR4120,
11225 OPTION_FIX_VR4130,
11226 OPTION_NO_FIX_VR4130,
11227 OPTION_TRAP,
11228 OPTION_BREAK,
11229 OPTION_EB,
11230 OPTION_EL,
11231 OPTION_FP32,
11232 OPTION_GP32,
11233 OPTION_CONSTRUCT_FLOATS,
11234 OPTION_NO_CONSTRUCT_FLOATS,
11235 OPTION_FP64,
11236 OPTION_GP64,
11237 OPTION_RELAX_BRANCH,
11238 OPTION_NO_RELAX_BRANCH,
11239 OPTION_MSHARED,
11240 OPTION_MNO_SHARED,
11241 OPTION_MSYM32,
11242 OPTION_MNO_SYM32,
11243 OPTION_SOFT_FLOAT,
11244 OPTION_HARD_FLOAT,
11245 OPTION_SINGLE_FLOAT,
11246 OPTION_DOUBLE_FLOAT,
11247 OPTION_32,
11248 #ifdef OBJ_ELF
11249 OPTION_CALL_SHARED,
11250 OPTION_CALL_NONPIC,
11251 OPTION_NON_SHARED,
11252 OPTION_XGOT,
11253 OPTION_MABI,
11254 OPTION_N32,
11255 OPTION_64,
11256 OPTION_MDEBUG,
11257 OPTION_NO_MDEBUG,
11258 OPTION_PDR,
11259 OPTION_NO_PDR,
11260 OPTION_MVXWORKS_PIC,
11261 #endif /* OBJ_ELF */
11262 OPTION_END_OF_ENUM
11263 };
11264
11265 struct option md_longopts[] =
11266 {
11267 /* Options which specify architecture. */
11268 {"march", required_argument, NULL, OPTION_MARCH},
11269 {"mtune", required_argument, NULL, OPTION_MTUNE},
11270 {"mips0", no_argument, NULL, OPTION_MIPS1},
11271 {"mips1", no_argument, NULL, OPTION_MIPS1},
11272 {"mips2", no_argument, NULL, OPTION_MIPS2},
11273 {"mips3", no_argument, NULL, OPTION_MIPS3},
11274 {"mips4", no_argument, NULL, OPTION_MIPS4},
11275 {"mips5", no_argument, NULL, OPTION_MIPS5},
11276 {"mips32", no_argument, NULL, OPTION_MIPS32},
11277 {"mips64", no_argument, NULL, OPTION_MIPS64},
11278 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11279 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11280
11281 /* Options which specify Application Specific Extensions (ASEs). */
11282 {"mips16", no_argument, NULL, OPTION_MIPS16},
11283 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11284 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11285 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11286 {"mdmx", no_argument, NULL, OPTION_MDMX},
11287 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11288 {"mdsp", no_argument, NULL, OPTION_DSP},
11289 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11290 {"mmt", no_argument, NULL, OPTION_MT},
11291 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11292 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11293 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11294 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11295 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11296
11297 /* Old-style architecture options. Don't add more of these. */
11298 {"m4650", no_argument, NULL, OPTION_M4650},
11299 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11300 {"m4010", no_argument, NULL, OPTION_M4010},
11301 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11302 {"m4100", no_argument, NULL, OPTION_M4100},
11303 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11304 {"m3900", no_argument, NULL, OPTION_M3900},
11305 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11306
11307 /* Options which enable bug fixes. */
11308 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11309 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11310 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11311 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11312 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11313 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11314 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11315 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11316 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11317
11318 /* Miscellaneous options. */
11319 {"trap", no_argument, NULL, OPTION_TRAP},
11320 {"no-break", no_argument, NULL, OPTION_TRAP},
11321 {"break", no_argument, NULL, OPTION_BREAK},
11322 {"no-trap", no_argument, NULL, OPTION_BREAK},
11323 {"EB", no_argument, NULL, OPTION_EB},
11324 {"EL", no_argument, NULL, OPTION_EL},
11325 {"mfp32", no_argument, NULL, OPTION_FP32},
11326 {"mgp32", no_argument, NULL, OPTION_GP32},
11327 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11328 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11329 {"mfp64", no_argument, NULL, OPTION_FP64},
11330 {"mgp64", no_argument, NULL, OPTION_GP64},
11331 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11332 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11333 {"mshared", no_argument, NULL, OPTION_MSHARED},
11334 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11335 {"msym32", no_argument, NULL, OPTION_MSYM32},
11336 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11337 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11338 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11339 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11340 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11341
11342 /* Strictly speaking this next option is ELF specific,
11343 but we allow it for other ports as well in order to
11344 make testing easier. */
11345 {"32", no_argument, NULL, OPTION_32},
11346
11347 /* ELF-specific options. */
11348 #ifdef OBJ_ELF
11349 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11350 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11351 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11352 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11353 {"xgot", no_argument, NULL, OPTION_XGOT},
11354 {"mabi", required_argument, NULL, OPTION_MABI},
11355 {"n32", no_argument, NULL, OPTION_N32},
11356 {"64", no_argument, NULL, OPTION_64},
11357 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11358 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11359 {"mpdr", no_argument, NULL, OPTION_PDR},
11360 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11361 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11362 #endif /* OBJ_ELF */
11363
11364 {NULL, no_argument, NULL, 0}
11365 };
11366 size_t md_longopts_size = sizeof (md_longopts);
11367
11368 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11369 NEW_VALUE. Warn if another value was already specified. Note:
11370 we have to defer parsing the -march and -mtune arguments in order
11371 to handle 'from-abi' correctly, since the ABI might be specified
11372 in a later argument. */
11373
11374 static void
11375 mips_set_option_string (const char **string_ptr, const char *new_value)
11376 {
11377 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11378 as_warn (_("A different %s was already specified, is now %s"),
11379 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11380 new_value);
11381
11382 *string_ptr = new_value;
11383 }
11384
11385 int
11386 md_parse_option (int c, char *arg)
11387 {
11388 switch (c)
11389 {
11390 case OPTION_CONSTRUCT_FLOATS:
11391 mips_disable_float_construction = 0;
11392 break;
11393
11394 case OPTION_NO_CONSTRUCT_FLOATS:
11395 mips_disable_float_construction = 1;
11396 break;
11397
11398 case OPTION_TRAP:
11399 mips_trap = 1;
11400 break;
11401
11402 case OPTION_BREAK:
11403 mips_trap = 0;
11404 break;
11405
11406 case OPTION_EB:
11407 target_big_endian = 1;
11408 break;
11409
11410 case OPTION_EL:
11411 target_big_endian = 0;
11412 break;
11413
11414 case 'O':
11415 if (arg == NULL)
11416 mips_optimize = 1;
11417 else if (arg[0] == '0')
11418 mips_optimize = 0;
11419 else if (arg[0] == '1')
11420 mips_optimize = 1;
11421 else
11422 mips_optimize = 2;
11423 break;
11424
11425 case 'g':
11426 if (arg == NULL)
11427 mips_debug = 2;
11428 else
11429 mips_debug = atoi (arg);
11430 break;
11431
11432 case OPTION_MIPS1:
11433 file_mips_isa = ISA_MIPS1;
11434 break;
11435
11436 case OPTION_MIPS2:
11437 file_mips_isa = ISA_MIPS2;
11438 break;
11439
11440 case OPTION_MIPS3:
11441 file_mips_isa = ISA_MIPS3;
11442 break;
11443
11444 case OPTION_MIPS4:
11445 file_mips_isa = ISA_MIPS4;
11446 break;
11447
11448 case OPTION_MIPS5:
11449 file_mips_isa = ISA_MIPS5;
11450 break;
11451
11452 case OPTION_MIPS32:
11453 file_mips_isa = ISA_MIPS32;
11454 break;
11455
11456 case OPTION_MIPS32R2:
11457 file_mips_isa = ISA_MIPS32R2;
11458 break;
11459
11460 case OPTION_MIPS64R2:
11461 file_mips_isa = ISA_MIPS64R2;
11462 break;
11463
11464 case OPTION_MIPS64:
11465 file_mips_isa = ISA_MIPS64;
11466 break;
11467
11468 case OPTION_MTUNE:
11469 mips_set_option_string (&mips_tune_string, arg);
11470 break;
11471
11472 case OPTION_MARCH:
11473 mips_set_option_string (&mips_arch_string, arg);
11474 break;
11475
11476 case OPTION_M4650:
11477 mips_set_option_string (&mips_arch_string, "4650");
11478 mips_set_option_string (&mips_tune_string, "4650");
11479 break;
11480
11481 case OPTION_NO_M4650:
11482 break;
11483
11484 case OPTION_M4010:
11485 mips_set_option_string (&mips_arch_string, "4010");
11486 mips_set_option_string (&mips_tune_string, "4010");
11487 break;
11488
11489 case OPTION_NO_M4010:
11490 break;
11491
11492 case OPTION_M4100:
11493 mips_set_option_string (&mips_arch_string, "4100");
11494 mips_set_option_string (&mips_tune_string, "4100");
11495 break;
11496
11497 case OPTION_NO_M4100:
11498 break;
11499
11500 case OPTION_M3900:
11501 mips_set_option_string (&mips_arch_string, "3900");
11502 mips_set_option_string (&mips_tune_string, "3900");
11503 break;
11504
11505 case OPTION_NO_M3900:
11506 break;
11507
11508 case OPTION_MDMX:
11509 mips_opts.ase_mdmx = 1;
11510 break;
11511
11512 case OPTION_NO_MDMX:
11513 mips_opts.ase_mdmx = 0;
11514 break;
11515
11516 case OPTION_DSP:
11517 mips_opts.ase_dsp = 1;
11518 mips_opts.ase_dspr2 = 0;
11519 break;
11520
11521 case OPTION_NO_DSP:
11522 mips_opts.ase_dsp = 0;
11523 mips_opts.ase_dspr2 = 0;
11524 break;
11525
11526 case OPTION_DSPR2:
11527 mips_opts.ase_dspr2 = 1;
11528 mips_opts.ase_dsp = 1;
11529 break;
11530
11531 case OPTION_NO_DSPR2:
11532 mips_opts.ase_dspr2 = 0;
11533 mips_opts.ase_dsp = 0;
11534 break;
11535
11536 case OPTION_MT:
11537 mips_opts.ase_mt = 1;
11538 break;
11539
11540 case OPTION_NO_MT:
11541 mips_opts.ase_mt = 0;
11542 break;
11543
11544 case OPTION_MIPS16:
11545 mips_opts.mips16 = 1;
11546 mips_no_prev_insn ();
11547 break;
11548
11549 case OPTION_NO_MIPS16:
11550 mips_opts.mips16 = 0;
11551 mips_no_prev_insn ();
11552 break;
11553
11554 case OPTION_MIPS3D:
11555 mips_opts.ase_mips3d = 1;
11556 break;
11557
11558 case OPTION_NO_MIPS3D:
11559 mips_opts.ase_mips3d = 0;
11560 break;
11561
11562 case OPTION_SMARTMIPS:
11563 mips_opts.ase_smartmips = 1;
11564 break;
11565
11566 case OPTION_NO_SMARTMIPS:
11567 mips_opts.ase_smartmips = 0;
11568 break;
11569
11570 case OPTION_FIX_24K:
11571 mips_fix_24k = 1;
11572 break;
11573
11574 case OPTION_NO_FIX_24K:
11575 mips_fix_24k = 0;
11576 break;
11577
11578 case OPTION_FIX_VR4120:
11579 mips_fix_vr4120 = 1;
11580 break;
11581
11582 case OPTION_NO_FIX_VR4120:
11583 mips_fix_vr4120 = 0;
11584 break;
11585
11586 case OPTION_FIX_VR4130:
11587 mips_fix_vr4130 = 1;
11588 break;
11589
11590 case OPTION_NO_FIX_VR4130:
11591 mips_fix_vr4130 = 0;
11592 break;
11593
11594 case OPTION_RELAX_BRANCH:
11595 mips_relax_branch = 1;
11596 break;
11597
11598 case OPTION_NO_RELAX_BRANCH:
11599 mips_relax_branch = 0;
11600 break;
11601
11602 case OPTION_MSHARED:
11603 mips_in_shared = TRUE;
11604 break;
11605
11606 case OPTION_MNO_SHARED:
11607 mips_in_shared = FALSE;
11608 break;
11609
11610 case OPTION_MSYM32:
11611 mips_opts.sym32 = TRUE;
11612 break;
11613
11614 case OPTION_MNO_SYM32:
11615 mips_opts.sym32 = FALSE;
11616 break;
11617
11618 #ifdef OBJ_ELF
11619 /* When generating ELF code, we permit -KPIC and -call_shared to
11620 select SVR4_PIC, and -non_shared to select no PIC. This is
11621 intended to be compatible with Irix 5. */
11622 case OPTION_CALL_SHARED:
11623 if (!IS_ELF)
11624 {
11625 as_bad (_("-call_shared is supported only for ELF format"));
11626 return 0;
11627 }
11628 mips_pic = SVR4_PIC;
11629 mips_abicalls = TRUE;
11630 break;
11631
11632 case OPTION_CALL_NONPIC:
11633 if (!IS_ELF)
11634 {
11635 as_bad (_("-call_nonpic is supported only for ELF format"));
11636 return 0;
11637 }
11638 mips_pic = NO_PIC;
11639 mips_abicalls = TRUE;
11640 break;
11641
11642 case OPTION_NON_SHARED:
11643 if (!IS_ELF)
11644 {
11645 as_bad (_("-non_shared is supported only for ELF format"));
11646 return 0;
11647 }
11648 mips_pic = NO_PIC;
11649 mips_abicalls = FALSE;
11650 break;
11651
11652 /* The -xgot option tells the assembler to use 32 bit offsets
11653 when accessing the got in SVR4_PIC mode. It is for Irix
11654 compatibility. */
11655 case OPTION_XGOT:
11656 mips_big_got = 1;
11657 break;
11658 #endif /* OBJ_ELF */
11659
11660 case 'G':
11661 g_switch_value = atoi (arg);
11662 g_switch_seen = 1;
11663 break;
11664
11665 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11666 and -mabi=64. */
11667 case OPTION_32:
11668 if (IS_ELF)
11669 mips_abi = O32_ABI;
11670 /* We silently ignore -32 for non-ELF targets. This greatly
11671 simplifies the construction of the MIPS GAS test cases. */
11672 break;
11673
11674 #ifdef OBJ_ELF
11675 case OPTION_N32:
11676 if (!IS_ELF)
11677 {
11678 as_bad (_("-n32 is supported for ELF format only"));
11679 return 0;
11680 }
11681 mips_abi = N32_ABI;
11682 break;
11683
11684 case OPTION_64:
11685 if (!IS_ELF)
11686 {
11687 as_bad (_("-64 is supported for ELF format only"));
11688 return 0;
11689 }
11690 mips_abi = N64_ABI;
11691 if (!support_64bit_objects())
11692 as_fatal (_("No compiled in support for 64 bit object file format"));
11693 break;
11694 #endif /* OBJ_ELF */
11695
11696 case OPTION_GP32:
11697 file_mips_gp32 = 1;
11698 break;
11699
11700 case OPTION_GP64:
11701 file_mips_gp32 = 0;
11702 break;
11703
11704 case OPTION_FP32:
11705 file_mips_fp32 = 1;
11706 break;
11707
11708 case OPTION_FP64:
11709 file_mips_fp32 = 0;
11710 break;
11711
11712 case OPTION_SINGLE_FLOAT:
11713 file_mips_single_float = 1;
11714 break;
11715
11716 case OPTION_DOUBLE_FLOAT:
11717 file_mips_single_float = 0;
11718 break;
11719
11720 case OPTION_SOFT_FLOAT:
11721 file_mips_soft_float = 1;
11722 break;
11723
11724 case OPTION_HARD_FLOAT:
11725 file_mips_soft_float = 0;
11726 break;
11727
11728 #ifdef OBJ_ELF
11729 case OPTION_MABI:
11730 if (!IS_ELF)
11731 {
11732 as_bad (_("-mabi is supported for ELF format only"));
11733 return 0;
11734 }
11735 if (strcmp (arg, "32") == 0)
11736 mips_abi = O32_ABI;
11737 else if (strcmp (arg, "o64") == 0)
11738 mips_abi = O64_ABI;
11739 else if (strcmp (arg, "n32") == 0)
11740 mips_abi = N32_ABI;
11741 else if (strcmp (arg, "64") == 0)
11742 {
11743 mips_abi = N64_ABI;
11744 if (! support_64bit_objects())
11745 as_fatal (_("No compiled in support for 64 bit object file "
11746 "format"));
11747 }
11748 else if (strcmp (arg, "eabi") == 0)
11749 mips_abi = EABI_ABI;
11750 else
11751 {
11752 as_fatal (_("invalid abi -mabi=%s"), arg);
11753 return 0;
11754 }
11755 break;
11756 #endif /* OBJ_ELF */
11757
11758 case OPTION_M7000_HILO_FIX:
11759 mips_7000_hilo_fix = TRUE;
11760 break;
11761
11762 case OPTION_MNO_7000_HILO_FIX:
11763 mips_7000_hilo_fix = FALSE;
11764 break;
11765
11766 #ifdef OBJ_ELF
11767 case OPTION_MDEBUG:
11768 mips_flag_mdebug = TRUE;
11769 break;
11770
11771 case OPTION_NO_MDEBUG:
11772 mips_flag_mdebug = FALSE;
11773 break;
11774
11775 case OPTION_PDR:
11776 mips_flag_pdr = TRUE;
11777 break;
11778
11779 case OPTION_NO_PDR:
11780 mips_flag_pdr = FALSE;
11781 break;
11782
11783 case OPTION_MVXWORKS_PIC:
11784 mips_pic = VXWORKS_PIC;
11785 break;
11786 #endif /* OBJ_ELF */
11787
11788 default:
11789 return 0;
11790 }
11791
11792 return 1;
11793 }
11794 \f
11795 /* Set up globals to generate code for the ISA or processor
11796 described by INFO. */
11797
11798 static void
11799 mips_set_architecture (const struct mips_cpu_info *info)
11800 {
11801 if (info != 0)
11802 {
11803 file_mips_arch = info->cpu;
11804 mips_opts.arch = info->cpu;
11805 mips_opts.isa = info->isa;
11806 }
11807 }
11808
11809
11810 /* Likewise for tuning. */
11811
11812 static void
11813 mips_set_tune (const struct mips_cpu_info *info)
11814 {
11815 if (info != 0)
11816 mips_tune = info->cpu;
11817 }
11818
11819
11820 void
11821 mips_after_parse_args (void)
11822 {
11823 const struct mips_cpu_info *arch_info = 0;
11824 const struct mips_cpu_info *tune_info = 0;
11825
11826 /* GP relative stuff not working for PE */
11827 if (strncmp (TARGET_OS, "pe", 2) == 0)
11828 {
11829 if (g_switch_seen && g_switch_value != 0)
11830 as_bad (_("-G not supported in this configuration."));
11831 g_switch_value = 0;
11832 }
11833
11834 if (mips_abi == NO_ABI)
11835 mips_abi = MIPS_DEFAULT_ABI;
11836
11837 /* The following code determines the architecture and register size.
11838 Similar code was added to GCC 3.3 (see override_options() in
11839 config/mips/mips.c). The GAS and GCC code should be kept in sync
11840 as much as possible. */
11841
11842 if (mips_arch_string != 0)
11843 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11844
11845 if (file_mips_isa != ISA_UNKNOWN)
11846 {
11847 /* Handle -mipsN. At this point, file_mips_isa contains the
11848 ISA level specified by -mipsN, while arch_info->isa contains
11849 the -march selection (if any). */
11850 if (arch_info != 0)
11851 {
11852 /* -march takes precedence over -mipsN, since it is more descriptive.
11853 There's no harm in specifying both as long as the ISA levels
11854 are the same. */
11855 if (file_mips_isa != arch_info->isa)
11856 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11857 mips_cpu_info_from_isa (file_mips_isa)->name,
11858 mips_cpu_info_from_isa (arch_info->isa)->name);
11859 }
11860 else
11861 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11862 }
11863
11864 if (arch_info == 0)
11865 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11866
11867 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11868 as_bad (_("-march=%s is not compatible with the selected ABI"),
11869 arch_info->name);
11870
11871 mips_set_architecture (arch_info);
11872
11873 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11874 if (mips_tune_string != 0)
11875 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11876
11877 if (tune_info == 0)
11878 mips_set_tune (arch_info);
11879 else
11880 mips_set_tune (tune_info);
11881
11882 if (file_mips_gp32 >= 0)
11883 {
11884 /* The user specified the size of the integer registers. Make sure
11885 it agrees with the ABI and ISA. */
11886 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11887 as_bad (_("-mgp64 used with a 32-bit processor"));
11888 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11889 as_bad (_("-mgp32 used with a 64-bit ABI"));
11890 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11891 as_bad (_("-mgp64 used with a 32-bit ABI"));
11892 }
11893 else
11894 {
11895 /* Infer the integer register size from the ABI and processor.
11896 Restrict ourselves to 32-bit registers if that's all the
11897 processor has, or if the ABI cannot handle 64-bit registers. */
11898 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11899 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11900 }
11901
11902 switch (file_mips_fp32)
11903 {
11904 default:
11905 case -1:
11906 /* No user specified float register size.
11907 ??? GAS treats single-float processors as though they had 64-bit
11908 float registers (although it complains when double-precision
11909 instructions are used). As things stand, saying they have 32-bit
11910 registers would lead to spurious "register must be even" messages.
11911 So here we assume float registers are never smaller than the
11912 integer ones. */
11913 if (file_mips_gp32 == 0)
11914 /* 64-bit integer registers implies 64-bit float registers. */
11915 file_mips_fp32 = 0;
11916 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11917 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11918 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11919 file_mips_fp32 = 0;
11920 else
11921 /* 32-bit float registers. */
11922 file_mips_fp32 = 1;
11923 break;
11924
11925 /* The user specified the size of the float registers. Check if it
11926 agrees with the ABI and ISA. */
11927 case 0:
11928 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11929 as_bad (_("-mfp64 used with a 32-bit fpu"));
11930 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11931 && !ISA_HAS_MXHC1 (mips_opts.isa))
11932 as_warn (_("-mfp64 used with a 32-bit ABI"));
11933 break;
11934 case 1:
11935 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11936 as_warn (_("-mfp32 used with a 64-bit ABI"));
11937 break;
11938 }
11939
11940 /* End of GCC-shared inference code. */
11941
11942 /* This flag is set when we have a 64-bit capable CPU but use only
11943 32-bit wide registers. Note that EABI does not use it. */
11944 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11945 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11946 || mips_abi == O32_ABI))
11947 mips_32bitmode = 1;
11948
11949 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11950 as_bad (_("trap exception not supported at ISA 1"));
11951
11952 /* If the selected architecture includes support for ASEs, enable
11953 generation of code for them. */
11954 if (mips_opts.mips16 == -1)
11955 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11956 if (mips_opts.ase_mips3d == -1)
11957 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
11958 && file_mips_fp32 == 0) ? 1 : 0;
11959 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
11960 as_bad (_("-mfp32 used with -mips3d"));
11961
11962 if (mips_opts.ase_mdmx == -1)
11963 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
11964 && file_mips_fp32 == 0) ? 1 : 0;
11965 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
11966 as_bad (_("-mfp32 used with -mdmx"));
11967
11968 if (mips_opts.ase_smartmips == -1)
11969 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
11970 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
11971 as_warn (_("%s ISA does not support SmartMIPS"),
11972 mips_cpu_info_from_isa (mips_opts.isa)->name);
11973
11974 if (mips_opts.ase_dsp == -1)
11975 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11976 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
11977 as_warn (_("%s ISA does not support DSP ASE"),
11978 mips_cpu_info_from_isa (mips_opts.isa)->name);
11979
11980 if (mips_opts.ase_dspr2 == -1)
11981 {
11982 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
11983 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11984 }
11985 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
11986 as_warn (_("%s ISA does not support DSP R2 ASE"),
11987 mips_cpu_info_from_isa (mips_opts.isa)->name);
11988
11989 if (mips_opts.ase_mt == -1)
11990 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
11991 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
11992 as_warn (_("%s ISA does not support MT ASE"),
11993 mips_cpu_info_from_isa (mips_opts.isa)->name);
11994
11995 file_mips_isa = mips_opts.isa;
11996 file_ase_mips16 = mips_opts.mips16;
11997 file_ase_mips3d = mips_opts.ase_mips3d;
11998 file_ase_mdmx = mips_opts.ase_mdmx;
11999 file_ase_smartmips = mips_opts.ase_smartmips;
12000 file_ase_dsp = mips_opts.ase_dsp;
12001 file_ase_dspr2 = mips_opts.ase_dspr2;
12002 file_ase_mt = mips_opts.ase_mt;
12003 mips_opts.gp32 = file_mips_gp32;
12004 mips_opts.fp32 = file_mips_fp32;
12005 mips_opts.soft_float = file_mips_soft_float;
12006 mips_opts.single_float = file_mips_single_float;
12007
12008 if (mips_flag_mdebug < 0)
12009 {
12010 #ifdef OBJ_MAYBE_ECOFF
12011 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12012 mips_flag_mdebug = 1;
12013 else
12014 #endif /* OBJ_MAYBE_ECOFF */
12015 mips_flag_mdebug = 0;
12016 }
12017 }
12018 \f
12019 void
12020 mips_init_after_args (void)
12021 {
12022 /* initialize opcodes */
12023 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12024 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12025 }
12026
12027 long
12028 md_pcrel_from (fixS *fixP)
12029 {
12030 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12031 switch (fixP->fx_r_type)
12032 {
12033 case BFD_RELOC_16_PCREL_S2:
12034 case BFD_RELOC_MIPS_JMP:
12035 /* Return the address of the delay slot. */
12036 return addr + 4;
12037 default:
12038 /* We have no relocation type for PC relative MIPS16 instructions. */
12039 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12040 as_bad_where (fixP->fx_file, fixP->fx_line,
12041 _("PC relative MIPS16 instruction references a different section"));
12042 return addr;
12043 }
12044 }
12045
12046 /* This is called before the symbol table is processed. In order to
12047 work with gcc when using mips-tfile, we must keep all local labels.
12048 However, in other cases, we want to discard them. If we were
12049 called with -g, but we didn't see any debugging information, it may
12050 mean that gcc is smuggling debugging information through to
12051 mips-tfile, in which case we must generate all local labels. */
12052
12053 void
12054 mips_frob_file_before_adjust (void)
12055 {
12056 #ifndef NO_ECOFF_DEBUGGING
12057 if (ECOFF_DEBUGGING
12058 && mips_debug != 0
12059 && ! ecoff_debugging_seen)
12060 flag_keep_locals = 1;
12061 #endif
12062 }
12063
12064 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12065 the corresponding LO16 reloc. This is called before md_apply_fix and
12066 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12067 relocation operators.
12068
12069 For our purposes, a %lo() expression matches a %got() or %hi()
12070 expression if:
12071
12072 (a) it refers to the same symbol; and
12073 (b) the offset applied in the %lo() expression is no lower than
12074 the offset applied in the %got() or %hi().
12075
12076 (b) allows us to cope with code like:
12077
12078 lui $4,%hi(foo)
12079 lh $4,%lo(foo+2)($4)
12080
12081 ...which is legal on RELA targets, and has a well-defined behaviour
12082 if the user knows that adding 2 to "foo" will not induce a carry to
12083 the high 16 bits.
12084
12085 When several %lo()s match a particular %got() or %hi(), we use the
12086 following rules to distinguish them:
12087
12088 (1) %lo()s with smaller offsets are a better match than %lo()s with
12089 higher offsets.
12090
12091 (2) %lo()s with no matching %got() or %hi() are better than those
12092 that already have a matching %got() or %hi().
12093
12094 (3) later %lo()s are better than earlier %lo()s.
12095
12096 These rules are applied in order.
12097
12098 (1) means, among other things, that %lo()s with identical offsets are
12099 chosen if they exist.
12100
12101 (2) means that we won't associate several high-part relocations with
12102 the same low-part relocation unless there's no alternative. Having
12103 several high parts for the same low part is a GNU extension; this rule
12104 allows careful users to avoid it.
12105
12106 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12107 with the last high-part relocation being at the front of the list.
12108 It therefore makes sense to choose the last matching low-part
12109 relocation, all other things being equal. It's also easier
12110 to code that way. */
12111
12112 void
12113 mips_frob_file (void)
12114 {
12115 struct mips_hi_fixup *l;
12116 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12117
12118 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12119 {
12120 segment_info_type *seginfo;
12121 bfd_boolean matched_lo_p;
12122 fixS **hi_pos, **lo_pos, **pos;
12123
12124 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12125
12126 /* If a GOT16 relocation turns out to be against a global symbol,
12127 there isn't supposed to be a matching LO. */
12128 if (got16_reloc_p (l->fixp->fx_r_type)
12129 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12130 continue;
12131
12132 /* Check quickly whether the next fixup happens to be a matching %lo. */
12133 if (fixup_has_matching_lo_p (l->fixp))
12134 continue;
12135
12136 seginfo = seg_info (l->seg);
12137
12138 /* Set HI_POS to the position of this relocation in the chain.
12139 Set LO_POS to the position of the chosen low-part relocation.
12140 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12141 relocation that matches an immediately-preceding high-part
12142 relocation. */
12143 hi_pos = NULL;
12144 lo_pos = NULL;
12145 matched_lo_p = FALSE;
12146 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12147
12148 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12149 {
12150 if (*pos == l->fixp)
12151 hi_pos = pos;
12152
12153 if ((*pos)->fx_r_type == looking_for_rtype
12154 && (*pos)->fx_addsy == l->fixp->fx_addsy
12155 && (*pos)->fx_offset >= l->fixp->fx_offset
12156 && (lo_pos == NULL
12157 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12158 || (!matched_lo_p
12159 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12160 lo_pos = pos;
12161
12162 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12163 && fixup_has_matching_lo_p (*pos));
12164 }
12165
12166 /* If we found a match, remove the high-part relocation from its
12167 current position and insert it before the low-part relocation.
12168 Make the offsets match so that fixup_has_matching_lo_p()
12169 will return true.
12170
12171 We don't warn about unmatched high-part relocations since some
12172 versions of gcc have been known to emit dead "lui ...%hi(...)"
12173 instructions. */
12174 if (lo_pos != NULL)
12175 {
12176 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12177 if (l->fixp->fx_next != *lo_pos)
12178 {
12179 *hi_pos = l->fixp->fx_next;
12180 l->fixp->fx_next = *lo_pos;
12181 *lo_pos = l->fixp;
12182 }
12183 }
12184 }
12185 }
12186
12187 /* We may have combined relocations without symbols in the N32/N64 ABI.
12188 We have to prevent gas from dropping them. */
12189
12190 int
12191 mips_force_relocation (fixS *fixp)
12192 {
12193 if (generic_force_reloc (fixp))
12194 return 1;
12195
12196 if (HAVE_NEWABI
12197 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12198 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12199 || hi16_reloc_p (fixp->fx_r_type)
12200 || lo16_reloc_p (fixp->fx_r_type)))
12201 return 1;
12202
12203 return 0;
12204 }
12205
12206 /* Apply a fixup to the object file. */
12207
12208 void
12209 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12210 {
12211 bfd_byte *buf;
12212 long insn;
12213 reloc_howto_type *howto;
12214
12215 /* We ignore generic BFD relocations we don't know about. */
12216 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12217 if (! howto)
12218 return;
12219
12220 gas_assert (fixP->fx_size == 4
12221 || fixP->fx_r_type == BFD_RELOC_16
12222 || fixP->fx_r_type == BFD_RELOC_64
12223 || fixP->fx_r_type == BFD_RELOC_CTOR
12224 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12225 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12226 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12227 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12228
12229 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12230
12231 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12232
12233 /* Don't treat parts of a composite relocation as done. There are two
12234 reasons for this:
12235
12236 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12237 should nevertheless be emitted if the first part is.
12238
12239 (2) In normal usage, composite relocations are never assembly-time
12240 constants. The easiest way of dealing with the pathological
12241 exceptions is to generate a relocation against STN_UNDEF and
12242 leave everything up to the linker. */
12243 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12244 fixP->fx_done = 1;
12245
12246 switch (fixP->fx_r_type)
12247 {
12248 case BFD_RELOC_MIPS_TLS_GD:
12249 case BFD_RELOC_MIPS_TLS_LDM:
12250 case BFD_RELOC_MIPS_TLS_DTPREL32:
12251 case BFD_RELOC_MIPS_TLS_DTPREL64:
12252 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12253 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12254 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12255 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12256 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12257 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12258 /* fall through */
12259
12260 case BFD_RELOC_MIPS_JMP:
12261 case BFD_RELOC_MIPS_SHIFT5:
12262 case BFD_RELOC_MIPS_SHIFT6:
12263 case BFD_RELOC_MIPS_GOT_DISP:
12264 case BFD_RELOC_MIPS_GOT_PAGE:
12265 case BFD_RELOC_MIPS_GOT_OFST:
12266 case BFD_RELOC_MIPS_SUB:
12267 case BFD_RELOC_MIPS_INSERT_A:
12268 case BFD_RELOC_MIPS_INSERT_B:
12269 case BFD_RELOC_MIPS_DELETE:
12270 case BFD_RELOC_MIPS_HIGHEST:
12271 case BFD_RELOC_MIPS_HIGHER:
12272 case BFD_RELOC_MIPS_SCN_DISP:
12273 case BFD_RELOC_MIPS_REL16:
12274 case BFD_RELOC_MIPS_RELGOT:
12275 case BFD_RELOC_MIPS_JALR:
12276 case BFD_RELOC_HI16:
12277 case BFD_RELOC_HI16_S:
12278 case BFD_RELOC_GPREL16:
12279 case BFD_RELOC_MIPS_LITERAL:
12280 case BFD_RELOC_MIPS_CALL16:
12281 case BFD_RELOC_MIPS_GOT16:
12282 case BFD_RELOC_GPREL32:
12283 case BFD_RELOC_MIPS_GOT_HI16:
12284 case BFD_RELOC_MIPS_GOT_LO16:
12285 case BFD_RELOC_MIPS_CALL_HI16:
12286 case BFD_RELOC_MIPS_CALL_LO16:
12287 case BFD_RELOC_MIPS16_GPREL:
12288 case BFD_RELOC_MIPS16_GOT16:
12289 case BFD_RELOC_MIPS16_CALL16:
12290 case BFD_RELOC_MIPS16_HI16:
12291 case BFD_RELOC_MIPS16_HI16_S:
12292 case BFD_RELOC_MIPS16_JMP:
12293 /* Nothing needed to do. The value comes from the reloc entry. */
12294 break;
12295
12296 case BFD_RELOC_64:
12297 /* This is handled like BFD_RELOC_32, but we output a sign
12298 extended value if we are only 32 bits. */
12299 if (fixP->fx_done)
12300 {
12301 if (8 <= sizeof (valueT))
12302 md_number_to_chars ((char *) buf, *valP, 8);
12303 else
12304 {
12305 valueT hiv;
12306
12307 if ((*valP & 0x80000000) != 0)
12308 hiv = 0xffffffff;
12309 else
12310 hiv = 0;
12311 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12312 *valP, 4);
12313 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12314 hiv, 4);
12315 }
12316 }
12317 break;
12318
12319 case BFD_RELOC_RVA:
12320 case BFD_RELOC_32:
12321 case BFD_RELOC_16:
12322 /* If we are deleting this reloc entry, we must fill in the
12323 value now. This can happen if we have a .word which is not
12324 resolved when it appears but is later defined. */
12325 if (fixP->fx_done)
12326 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12327 break;
12328
12329 case BFD_RELOC_LO16:
12330 case BFD_RELOC_MIPS16_LO16:
12331 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12332 may be safe to remove, but if so it's not obvious. */
12333 /* When handling an embedded PIC switch statement, we can wind
12334 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12335 if (fixP->fx_done)
12336 {
12337 if (*valP + 0x8000 > 0xffff)
12338 as_bad_where (fixP->fx_file, fixP->fx_line,
12339 _("relocation overflow"));
12340 if (target_big_endian)
12341 buf += 2;
12342 md_number_to_chars ((char *) buf, *valP, 2);
12343 }
12344 break;
12345
12346 case BFD_RELOC_16_PCREL_S2:
12347 if ((*valP & 0x3) != 0)
12348 as_bad_where (fixP->fx_file, fixP->fx_line,
12349 _("Branch to misaligned address (%lx)"), (long) *valP);
12350
12351 /* We need to save the bits in the instruction since fixup_segment()
12352 might be deleting the relocation entry (i.e., a branch within
12353 the current segment). */
12354 if (! fixP->fx_done)
12355 break;
12356
12357 /* Update old instruction data. */
12358 if (target_big_endian)
12359 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12360 else
12361 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12362
12363 if (*valP + 0x20000 <= 0x3ffff)
12364 {
12365 insn |= (*valP >> 2) & 0xffff;
12366 md_number_to_chars ((char *) buf, insn, 4);
12367 }
12368 else if (mips_pic == NO_PIC
12369 && fixP->fx_done
12370 && fixP->fx_frag->fr_address >= text_section->vma
12371 && (fixP->fx_frag->fr_address
12372 < text_section->vma + bfd_get_section_size (text_section))
12373 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12374 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12375 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12376 {
12377 /* The branch offset is too large. If this is an
12378 unconditional branch, and we are not generating PIC code,
12379 we can convert it to an absolute jump instruction. */
12380 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12381 insn = 0x0c000000; /* jal */
12382 else
12383 insn = 0x08000000; /* j */
12384 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12385 fixP->fx_done = 0;
12386 fixP->fx_addsy = section_symbol (text_section);
12387 *valP += md_pcrel_from (fixP);
12388 md_number_to_chars ((char *) buf, insn, 4);
12389 }
12390 else
12391 {
12392 /* If we got here, we have branch-relaxation disabled,
12393 and there's nothing we can do to fix this instruction
12394 without turning it into a longer sequence. */
12395 as_bad_where (fixP->fx_file, fixP->fx_line,
12396 _("Branch out of range"));
12397 }
12398 break;
12399
12400 case BFD_RELOC_VTABLE_INHERIT:
12401 fixP->fx_done = 0;
12402 if (fixP->fx_addsy
12403 && !S_IS_DEFINED (fixP->fx_addsy)
12404 && !S_IS_WEAK (fixP->fx_addsy))
12405 S_SET_WEAK (fixP->fx_addsy);
12406 break;
12407
12408 case BFD_RELOC_VTABLE_ENTRY:
12409 fixP->fx_done = 0;
12410 break;
12411
12412 default:
12413 internalError ();
12414 }
12415
12416 /* Remember value for tc_gen_reloc. */
12417 fixP->fx_addnumber = *valP;
12418 }
12419
12420 static symbolS *
12421 get_symbol (void)
12422 {
12423 int c;
12424 char *name;
12425 symbolS *p;
12426
12427 name = input_line_pointer;
12428 c = get_symbol_end ();
12429 p = (symbolS *) symbol_find_or_make (name);
12430 *input_line_pointer = c;
12431 return p;
12432 }
12433
12434 /* Align the current frag to a given power of two. If a particular
12435 fill byte should be used, FILL points to an integer that contains
12436 that byte, otherwise FILL is null.
12437
12438 The MIPS assembler also automatically adjusts any preceding
12439 label. */
12440
12441 static void
12442 mips_align (int to, int *fill, symbolS *label)
12443 {
12444 mips_emit_delays ();
12445 mips_record_mips16_mode ();
12446 if (fill == NULL && subseg_text_p (now_seg))
12447 frag_align_code (to, 0);
12448 else
12449 frag_align (to, fill ? *fill : 0, 0);
12450 record_alignment (now_seg, to);
12451 if (label != NULL)
12452 {
12453 gas_assert (S_GET_SEGMENT (label) == now_seg);
12454 symbol_set_frag (label, frag_now);
12455 S_SET_VALUE (label, (valueT) frag_now_fix ());
12456 }
12457 }
12458
12459 /* Align to a given power of two. .align 0 turns off the automatic
12460 alignment used by the data creating pseudo-ops. */
12461
12462 static void
12463 s_align (int x ATTRIBUTE_UNUSED)
12464 {
12465 int temp, fill_value, *fill_ptr;
12466 long max_alignment = 28;
12467
12468 /* o Note that the assembler pulls down any immediately preceding label
12469 to the aligned address.
12470 o It's not documented but auto alignment is reinstated by
12471 a .align pseudo instruction.
12472 o Note also that after auto alignment is turned off the mips assembler
12473 issues an error on attempt to assemble an improperly aligned data item.
12474 We don't. */
12475
12476 temp = get_absolute_expression ();
12477 if (temp > max_alignment)
12478 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12479 else if (temp < 0)
12480 {
12481 as_warn (_("Alignment negative: 0 assumed."));
12482 temp = 0;
12483 }
12484 if (*input_line_pointer == ',')
12485 {
12486 ++input_line_pointer;
12487 fill_value = get_absolute_expression ();
12488 fill_ptr = &fill_value;
12489 }
12490 else
12491 fill_ptr = 0;
12492 if (temp)
12493 {
12494 segment_info_type *si = seg_info (now_seg);
12495 struct insn_label_list *l = si->label_list;
12496 /* Auto alignment should be switched on by next section change. */
12497 auto_align = 1;
12498 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12499 }
12500 else
12501 {
12502 auto_align = 0;
12503 }
12504
12505 demand_empty_rest_of_line ();
12506 }
12507
12508 static void
12509 s_change_sec (int sec)
12510 {
12511 segT seg;
12512
12513 #ifdef OBJ_ELF
12514 /* The ELF backend needs to know that we are changing sections, so
12515 that .previous works correctly. We could do something like check
12516 for an obj_section_change_hook macro, but that might be confusing
12517 as it would not be appropriate to use it in the section changing
12518 functions in read.c, since obj-elf.c intercepts those. FIXME:
12519 This should be cleaner, somehow. */
12520 if (IS_ELF)
12521 obj_elf_section_change_hook ();
12522 #endif
12523
12524 mips_emit_delays ();
12525
12526 switch (sec)
12527 {
12528 case 't':
12529 s_text (0);
12530 break;
12531 case 'd':
12532 s_data (0);
12533 break;
12534 case 'b':
12535 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12536 demand_empty_rest_of_line ();
12537 break;
12538
12539 case 'r':
12540 seg = subseg_new (RDATA_SECTION_NAME,
12541 (subsegT) get_absolute_expression ());
12542 if (IS_ELF)
12543 {
12544 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12545 | SEC_READONLY | SEC_RELOC
12546 | SEC_DATA));
12547 if (strncmp (TARGET_OS, "elf", 3) != 0)
12548 record_alignment (seg, 4);
12549 }
12550 demand_empty_rest_of_line ();
12551 break;
12552
12553 case 's':
12554 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12555 if (IS_ELF)
12556 {
12557 bfd_set_section_flags (stdoutput, seg,
12558 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12559 if (strncmp (TARGET_OS, "elf", 3) != 0)
12560 record_alignment (seg, 4);
12561 }
12562 demand_empty_rest_of_line ();
12563 break;
12564 }
12565
12566 auto_align = 1;
12567 }
12568
12569 void
12570 s_change_section (int ignore ATTRIBUTE_UNUSED)
12571 {
12572 #ifdef OBJ_ELF
12573 char *section_name;
12574 char c;
12575 char next_c = 0;
12576 int section_type;
12577 int section_flag;
12578 int section_entry_size;
12579 int section_alignment;
12580
12581 if (!IS_ELF)
12582 return;
12583
12584 section_name = input_line_pointer;
12585 c = get_symbol_end ();
12586 if (c)
12587 next_c = *(input_line_pointer + 1);
12588
12589 /* Do we have .section Name<,"flags">? */
12590 if (c != ',' || (c == ',' && next_c == '"'))
12591 {
12592 /* just after name is now '\0'. */
12593 *input_line_pointer = c;
12594 input_line_pointer = section_name;
12595 obj_elf_section (ignore);
12596 return;
12597 }
12598 input_line_pointer++;
12599
12600 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12601 if (c == ',')
12602 section_type = get_absolute_expression ();
12603 else
12604 section_type = 0;
12605 if (*input_line_pointer++ == ',')
12606 section_flag = get_absolute_expression ();
12607 else
12608 section_flag = 0;
12609 if (*input_line_pointer++ == ',')
12610 section_entry_size = get_absolute_expression ();
12611 else
12612 section_entry_size = 0;
12613 if (*input_line_pointer++ == ',')
12614 section_alignment = get_absolute_expression ();
12615 else
12616 section_alignment = 0;
12617
12618 section_name = xstrdup (section_name);
12619
12620 /* When using the generic form of .section (as implemented by obj-elf.c),
12621 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12622 traditionally had to fall back on the more common @progbits instead.
12623
12624 There's nothing really harmful in this, since bfd will correct
12625 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12626 means that, for backwards compatibility, the special_section entries
12627 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12628
12629 Even so, we shouldn't force users of the MIPS .section syntax to
12630 incorrectly label the sections as SHT_PROGBITS. The best compromise
12631 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12632 generic type-checking code. */
12633 if (section_type == SHT_MIPS_DWARF)
12634 section_type = SHT_PROGBITS;
12635
12636 obj_elf_change_section (section_name, section_type, section_flag,
12637 section_entry_size, 0, 0, 0);
12638
12639 if (now_seg->name != section_name)
12640 free (section_name);
12641 #endif /* OBJ_ELF */
12642 }
12643
12644 void
12645 mips_enable_auto_align (void)
12646 {
12647 auto_align = 1;
12648 }
12649
12650 static void
12651 s_cons (int log_size)
12652 {
12653 segment_info_type *si = seg_info (now_seg);
12654 struct insn_label_list *l = si->label_list;
12655 symbolS *label;
12656
12657 label = l != NULL ? l->label : NULL;
12658 mips_emit_delays ();
12659 if (log_size > 0 && auto_align)
12660 mips_align (log_size, 0, label);
12661 mips_clear_insn_labels ();
12662 cons (1 << log_size);
12663 }
12664
12665 static void
12666 s_float_cons (int type)
12667 {
12668 segment_info_type *si = seg_info (now_seg);
12669 struct insn_label_list *l = si->label_list;
12670 symbolS *label;
12671
12672 label = l != NULL ? l->label : NULL;
12673
12674 mips_emit_delays ();
12675
12676 if (auto_align)
12677 {
12678 if (type == 'd')
12679 mips_align (3, 0, label);
12680 else
12681 mips_align (2, 0, label);
12682 }
12683
12684 mips_clear_insn_labels ();
12685
12686 float_cons (type);
12687 }
12688
12689 /* Handle .globl. We need to override it because on Irix 5 you are
12690 permitted to say
12691 .globl foo .text
12692 where foo is an undefined symbol, to mean that foo should be
12693 considered to be the address of a function. */
12694
12695 static void
12696 s_mips_globl (int x ATTRIBUTE_UNUSED)
12697 {
12698 char *name;
12699 int c;
12700 symbolS *symbolP;
12701 flagword flag;
12702
12703 do
12704 {
12705 name = input_line_pointer;
12706 c = get_symbol_end ();
12707 symbolP = symbol_find_or_make (name);
12708 S_SET_EXTERNAL (symbolP);
12709
12710 *input_line_pointer = c;
12711 SKIP_WHITESPACE ();
12712
12713 /* On Irix 5, every global symbol that is not explicitly labelled as
12714 being a function is apparently labelled as being an object. */
12715 flag = BSF_OBJECT;
12716
12717 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12718 && (*input_line_pointer != ','))
12719 {
12720 char *secname;
12721 asection *sec;
12722
12723 secname = input_line_pointer;
12724 c = get_symbol_end ();
12725 sec = bfd_get_section_by_name (stdoutput, secname);
12726 if (sec == NULL)
12727 as_bad (_("%s: no such section"), secname);
12728 *input_line_pointer = c;
12729
12730 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12731 flag = BSF_FUNCTION;
12732 }
12733
12734 symbol_get_bfdsym (symbolP)->flags |= flag;
12735
12736 c = *input_line_pointer;
12737 if (c == ',')
12738 {
12739 input_line_pointer++;
12740 SKIP_WHITESPACE ();
12741 if (is_end_of_line[(unsigned char) *input_line_pointer])
12742 c = '\n';
12743 }
12744 }
12745 while (c == ',');
12746
12747 demand_empty_rest_of_line ();
12748 }
12749
12750 static void
12751 s_option (int x ATTRIBUTE_UNUSED)
12752 {
12753 char *opt;
12754 char c;
12755
12756 opt = input_line_pointer;
12757 c = get_symbol_end ();
12758
12759 if (*opt == 'O')
12760 {
12761 /* FIXME: What does this mean? */
12762 }
12763 else if (strncmp (opt, "pic", 3) == 0)
12764 {
12765 int i;
12766
12767 i = atoi (opt + 3);
12768 if (i == 0)
12769 mips_pic = NO_PIC;
12770 else if (i == 2)
12771 {
12772 mips_pic = SVR4_PIC;
12773 mips_abicalls = TRUE;
12774 }
12775 else
12776 as_bad (_(".option pic%d not supported"), i);
12777
12778 if (mips_pic == SVR4_PIC)
12779 {
12780 if (g_switch_seen && g_switch_value != 0)
12781 as_warn (_("-G may not be used with SVR4 PIC code"));
12782 g_switch_value = 0;
12783 bfd_set_gp_size (stdoutput, 0);
12784 }
12785 }
12786 else
12787 as_warn (_("Unrecognized option \"%s\""), opt);
12788
12789 *input_line_pointer = c;
12790 demand_empty_rest_of_line ();
12791 }
12792
12793 /* This structure is used to hold a stack of .set values. */
12794
12795 struct mips_option_stack
12796 {
12797 struct mips_option_stack *next;
12798 struct mips_set_options options;
12799 };
12800
12801 static struct mips_option_stack *mips_opts_stack;
12802
12803 /* Handle the .set pseudo-op. */
12804
12805 static void
12806 s_mipsset (int x ATTRIBUTE_UNUSED)
12807 {
12808 char *name = input_line_pointer, ch;
12809
12810 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12811 ++input_line_pointer;
12812 ch = *input_line_pointer;
12813 *input_line_pointer = '\0';
12814
12815 if (strcmp (name, "reorder") == 0)
12816 {
12817 if (mips_opts.noreorder)
12818 end_noreorder ();
12819 }
12820 else if (strcmp (name, "noreorder") == 0)
12821 {
12822 if (!mips_opts.noreorder)
12823 start_noreorder ();
12824 }
12825 else if (strncmp (name, "at=", 3) == 0)
12826 {
12827 char *s = name + 3;
12828
12829 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12830 as_bad (_("Unrecognized register name `%s'"), s);
12831 }
12832 else if (strcmp (name, "at") == 0)
12833 {
12834 mips_opts.at = ATREG;
12835 }
12836 else if (strcmp (name, "noat") == 0)
12837 {
12838 mips_opts.at = ZERO;
12839 }
12840 else if (strcmp (name, "macro") == 0)
12841 {
12842 mips_opts.warn_about_macros = 0;
12843 }
12844 else if (strcmp (name, "nomacro") == 0)
12845 {
12846 if (mips_opts.noreorder == 0)
12847 as_bad (_("`noreorder' must be set before `nomacro'"));
12848 mips_opts.warn_about_macros = 1;
12849 }
12850 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12851 {
12852 mips_opts.nomove = 0;
12853 }
12854 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12855 {
12856 mips_opts.nomove = 1;
12857 }
12858 else if (strcmp (name, "bopt") == 0)
12859 {
12860 mips_opts.nobopt = 0;
12861 }
12862 else if (strcmp (name, "nobopt") == 0)
12863 {
12864 mips_opts.nobopt = 1;
12865 }
12866 else if (strcmp (name, "gp=default") == 0)
12867 mips_opts.gp32 = file_mips_gp32;
12868 else if (strcmp (name, "gp=32") == 0)
12869 mips_opts.gp32 = 1;
12870 else if (strcmp (name, "gp=64") == 0)
12871 {
12872 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12873 as_warn (_("%s isa does not support 64-bit registers"),
12874 mips_cpu_info_from_isa (mips_opts.isa)->name);
12875 mips_opts.gp32 = 0;
12876 }
12877 else if (strcmp (name, "fp=default") == 0)
12878 mips_opts.fp32 = file_mips_fp32;
12879 else if (strcmp (name, "fp=32") == 0)
12880 mips_opts.fp32 = 1;
12881 else if (strcmp (name, "fp=64") == 0)
12882 {
12883 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12884 as_warn (_("%s isa does not support 64-bit floating point registers"),
12885 mips_cpu_info_from_isa (mips_opts.isa)->name);
12886 mips_opts.fp32 = 0;
12887 }
12888 else if (strcmp (name, "softfloat") == 0)
12889 mips_opts.soft_float = 1;
12890 else if (strcmp (name, "hardfloat") == 0)
12891 mips_opts.soft_float = 0;
12892 else if (strcmp (name, "singlefloat") == 0)
12893 mips_opts.single_float = 1;
12894 else if (strcmp (name, "doublefloat") == 0)
12895 mips_opts.single_float = 0;
12896 else if (strcmp (name, "mips16") == 0
12897 || strcmp (name, "MIPS-16") == 0)
12898 mips_opts.mips16 = 1;
12899 else if (strcmp (name, "nomips16") == 0
12900 || strcmp (name, "noMIPS-16") == 0)
12901 mips_opts.mips16 = 0;
12902 else if (strcmp (name, "smartmips") == 0)
12903 {
12904 if (!ISA_SUPPORTS_SMARTMIPS)
12905 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12906 mips_cpu_info_from_isa (mips_opts.isa)->name);
12907 mips_opts.ase_smartmips = 1;
12908 }
12909 else if (strcmp (name, "nosmartmips") == 0)
12910 mips_opts.ase_smartmips = 0;
12911 else if (strcmp (name, "mips3d") == 0)
12912 mips_opts.ase_mips3d = 1;
12913 else if (strcmp (name, "nomips3d") == 0)
12914 mips_opts.ase_mips3d = 0;
12915 else if (strcmp (name, "mdmx") == 0)
12916 mips_opts.ase_mdmx = 1;
12917 else if (strcmp (name, "nomdmx") == 0)
12918 mips_opts.ase_mdmx = 0;
12919 else if (strcmp (name, "dsp") == 0)
12920 {
12921 if (!ISA_SUPPORTS_DSP_ASE)
12922 as_warn (_("%s ISA does not support DSP ASE"),
12923 mips_cpu_info_from_isa (mips_opts.isa)->name);
12924 mips_opts.ase_dsp = 1;
12925 mips_opts.ase_dspr2 = 0;
12926 }
12927 else if (strcmp (name, "nodsp") == 0)
12928 {
12929 mips_opts.ase_dsp = 0;
12930 mips_opts.ase_dspr2 = 0;
12931 }
12932 else if (strcmp (name, "dspr2") == 0)
12933 {
12934 if (!ISA_SUPPORTS_DSPR2_ASE)
12935 as_warn (_("%s ISA does not support DSP R2 ASE"),
12936 mips_cpu_info_from_isa (mips_opts.isa)->name);
12937 mips_opts.ase_dspr2 = 1;
12938 mips_opts.ase_dsp = 1;
12939 }
12940 else if (strcmp (name, "nodspr2") == 0)
12941 {
12942 mips_opts.ase_dspr2 = 0;
12943 mips_opts.ase_dsp = 0;
12944 }
12945 else if (strcmp (name, "mt") == 0)
12946 {
12947 if (!ISA_SUPPORTS_MT_ASE)
12948 as_warn (_("%s ISA does not support MT ASE"),
12949 mips_cpu_info_from_isa (mips_opts.isa)->name);
12950 mips_opts.ase_mt = 1;
12951 }
12952 else if (strcmp (name, "nomt") == 0)
12953 mips_opts.ase_mt = 0;
12954 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12955 {
12956 int reset = 0;
12957
12958 /* Permit the user to change the ISA and architecture on the fly.
12959 Needless to say, misuse can cause serious problems. */
12960 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12961 {
12962 reset = 1;
12963 mips_opts.isa = file_mips_isa;
12964 mips_opts.arch = file_mips_arch;
12965 }
12966 else if (strncmp (name, "arch=", 5) == 0)
12967 {
12968 const struct mips_cpu_info *p;
12969
12970 p = mips_parse_cpu("internal use", name + 5);
12971 if (!p)
12972 as_bad (_("unknown architecture %s"), name + 5);
12973 else
12974 {
12975 mips_opts.arch = p->cpu;
12976 mips_opts.isa = p->isa;
12977 }
12978 }
12979 else if (strncmp (name, "mips", 4) == 0)
12980 {
12981 const struct mips_cpu_info *p;
12982
12983 p = mips_parse_cpu("internal use", name);
12984 if (!p)
12985 as_bad (_("unknown ISA level %s"), name + 4);
12986 else
12987 {
12988 mips_opts.arch = p->cpu;
12989 mips_opts.isa = p->isa;
12990 }
12991 }
12992 else
12993 as_bad (_("unknown ISA or architecture %s"), name);
12994
12995 switch (mips_opts.isa)
12996 {
12997 case 0:
12998 break;
12999 case ISA_MIPS1:
13000 case ISA_MIPS2:
13001 case ISA_MIPS32:
13002 case ISA_MIPS32R2:
13003 mips_opts.gp32 = 1;
13004 mips_opts.fp32 = 1;
13005 break;
13006 case ISA_MIPS3:
13007 case ISA_MIPS4:
13008 case ISA_MIPS5:
13009 case ISA_MIPS64:
13010 case ISA_MIPS64R2:
13011 mips_opts.gp32 = 0;
13012 mips_opts.fp32 = 0;
13013 break;
13014 default:
13015 as_bad (_("unknown ISA level %s"), name + 4);
13016 break;
13017 }
13018 if (reset)
13019 {
13020 mips_opts.gp32 = file_mips_gp32;
13021 mips_opts.fp32 = file_mips_fp32;
13022 }
13023 }
13024 else if (strcmp (name, "autoextend") == 0)
13025 mips_opts.noautoextend = 0;
13026 else if (strcmp (name, "noautoextend") == 0)
13027 mips_opts.noautoextend = 1;
13028 else if (strcmp (name, "push") == 0)
13029 {
13030 struct mips_option_stack *s;
13031
13032 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13033 s->next = mips_opts_stack;
13034 s->options = mips_opts;
13035 mips_opts_stack = s;
13036 }
13037 else if (strcmp (name, "pop") == 0)
13038 {
13039 struct mips_option_stack *s;
13040
13041 s = mips_opts_stack;
13042 if (s == NULL)
13043 as_bad (_(".set pop with no .set push"));
13044 else
13045 {
13046 /* If we're changing the reorder mode we need to handle
13047 delay slots correctly. */
13048 if (s->options.noreorder && ! mips_opts.noreorder)
13049 start_noreorder ();
13050 else if (! s->options.noreorder && mips_opts.noreorder)
13051 end_noreorder ();
13052
13053 mips_opts = s->options;
13054 mips_opts_stack = s->next;
13055 free (s);
13056 }
13057 }
13058 else if (strcmp (name, "sym32") == 0)
13059 mips_opts.sym32 = TRUE;
13060 else if (strcmp (name, "nosym32") == 0)
13061 mips_opts.sym32 = FALSE;
13062 else if (strchr (name, ','))
13063 {
13064 /* Generic ".set" directive; use the generic handler. */
13065 *input_line_pointer = ch;
13066 input_line_pointer = name;
13067 s_set (0);
13068 return;
13069 }
13070 else
13071 {
13072 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13073 }
13074 *input_line_pointer = ch;
13075 demand_empty_rest_of_line ();
13076 }
13077
13078 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13079 .option pic2. It means to generate SVR4 PIC calls. */
13080
13081 static void
13082 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13083 {
13084 mips_pic = SVR4_PIC;
13085 mips_abicalls = TRUE;
13086
13087 if (g_switch_seen && g_switch_value != 0)
13088 as_warn (_("-G may not be used with SVR4 PIC code"));
13089 g_switch_value = 0;
13090
13091 bfd_set_gp_size (stdoutput, 0);
13092 demand_empty_rest_of_line ();
13093 }
13094
13095 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13096 PIC code. It sets the $gp register for the function based on the
13097 function address, which is in the register named in the argument.
13098 This uses a relocation against _gp_disp, which is handled specially
13099 by the linker. The result is:
13100 lui $gp,%hi(_gp_disp)
13101 addiu $gp,$gp,%lo(_gp_disp)
13102 addu $gp,$gp,.cpload argument
13103 The .cpload argument is normally $25 == $t9.
13104
13105 The -mno-shared option changes this to:
13106 lui $gp,%hi(__gnu_local_gp)
13107 addiu $gp,$gp,%lo(__gnu_local_gp)
13108 and the argument is ignored. This saves an instruction, but the
13109 resulting code is not position independent; it uses an absolute
13110 address for __gnu_local_gp. Thus code assembled with -mno-shared
13111 can go into an ordinary executable, but not into a shared library. */
13112
13113 static void
13114 s_cpload (int ignore ATTRIBUTE_UNUSED)
13115 {
13116 expressionS ex;
13117 int reg;
13118 int in_shared;
13119
13120 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13121 .cpload is ignored. */
13122 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13123 {
13124 s_ignore (0);
13125 return;
13126 }
13127
13128 /* .cpload should be in a .set noreorder section. */
13129 if (mips_opts.noreorder == 0)
13130 as_warn (_(".cpload not in noreorder section"));
13131
13132 reg = tc_get_register (0);
13133
13134 /* If we need to produce a 64-bit address, we are better off using
13135 the default instruction sequence. */
13136 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13137
13138 ex.X_op = O_symbol;
13139 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13140 "__gnu_local_gp");
13141 ex.X_op_symbol = NULL;
13142 ex.X_add_number = 0;
13143
13144 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13145 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13146
13147 macro_start ();
13148 macro_build_lui (&ex, mips_gp_register);
13149 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13150 mips_gp_register, BFD_RELOC_LO16);
13151 if (in_shared)
13152 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13153 mips_gp_register, reg);
13154 macro_end ();
13155
13156 demand_empty_rest_of_line ();
13157 }
13158
13159 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13160 .cpsetup $reg1, offset|$reg2, label
13161
13162 If offset is given, this results in:
13163 sd $gp, offset($sp)
13164 lui $gp, %hi(%neg(%gp_rel(label)))
13165 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13166 daddu $gp, $gp, $reg1
13167
13168 If $reg2 is given, this results in:
13169 daddu $reg2, $gp, $0
13170 lui $gp, %hi(%neg(%gp_rel(label)))
13171 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13172 daddu $gp, $gp, $reg1
13173 $reg1 is normally $25 == $t9.
13174
13175 The -mno-shared option replaces the last three instructions with
13176 lui $gp,%hi(_gp)
13177 addiu $gp,$gp,%lo(_gp) */
13178
13179 static void
13180 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13181 {
13182 expressionS ex_off;
13183 expressionS ex_sym;
13184 int reg1;
13185
13186 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13187 We also need NewABI support. */
13188 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13189 {
13190 s_ignore (0);
13191 return;
13192 }
13193
13194 reg1 = tc_get_register (0);
13195 SKIP_WHITESPACE ();
13196 if (*input_line_pointer != ',')
13197 {
13198 as_bad (_("missing argument separator ',' for .cpsetup"));
13199 return;
13200 }
13201 else
13202 ++input_line_pointer;
13203 SKIP_WHITESPACE ();
13204 if (*input_line_pointer == '$')
13205 {
13206 mips_cpreturn_register = tc_get_register (0);
13207 mips_cpreturn_offset = -1;
13208 }
13209 else
13210 {
13211 mips_cpreturn_offset = get_absolute_expression ();
13212 mips_cpreturn_register = -1;
13213 }
13214 SKIP_WHITESPACE ();
13215 if (*input_line_pointer != ',')
13216 {
13217 as_bad (_("missing argument separator ',' for .cpsetup"));
13218 return;
13219 }
13220 else
13221 ++input_line_pointer;
13222 SKIP_WHITESPACE ();
13223 expression (&ex_sym);
13224
13225 macro_start ();
13226 if (mips_cpreturn_register == -1)
13227 {
13228 ex_off.X_op = O_constant;
13229 ex_off.X_add_symbol = NULL;
13230 ex_off.X_op_symbol = NULL;
13231 ex_off.X_add_number = mips_cpreturn_offset;
13232
13233 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13234 BFD_RELOC_LO16, SP);
13235 }
13236 else
13237 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13238 mips_gp_register, 0);
13239
13240 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13241 {
13242 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13243 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13244 BFD_RELOC_HI16_S);
13245
13246 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13247 mips_gp_register, -1, BFD_RELOC_GPREL16,
13248 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13249
13250 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13251 mips_gp_register, reg1);
13252 }
13253 else
13254 {
13255 expressionS ex;
13256
13257 ex.X_op = O_symbol;
13258 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13259 ex.X_op_symbol = NULL;
13260 ex.X_add_number = 0;
13261
13262 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13263 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13264
13265 macro_build_lui (&ex, mips_gp_register);
13266 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13267 mips_gp_register, BFD_RELOC_LO16);
13268 }
13269
13270 macro_end ();
13271
13272 demand_empty_rest_of_line ();
13273 }
13274
13275 static void
13276 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13277 {
13278 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13279 .cplocal is ignored. */
13280 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13281 {
13282 s_ignore (0);
13283 return;
13284 }
13285
13286 mips_gp_register = tc_get_register (0);
13287 demand_empty_rest_of_line ();
13288 }
13289
13290 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13291 offset from $sp. The offset is remembered, and after making a PIC
13292 call $gp is restored from that location. */
13293
13294 static void
13295 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13296 {
13297 expressionS ex;
13298
13299 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13300 .cprestore is ignored. */
13301 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13302 {
13303 s_ignore (0);
13304 return;
13305 }
13306
13307 mips_cprestore_offset = get_absolute_expression ();
13308 mips_cprestore_valid = 1;
13309
13310 ex.X_op = O_constant;
13311 ex.X_add_symbol = NULL;
13312 ex.X_op_symbol = NULL;
13313 ex.X_add_number = mips_cprestore_offset;
13314
13315 macro_start ();
13316 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13317 SP, HAVE_64BIT_ADDRESSES);
13318 macro_end ();
13319
13320 demand_empty_rest_of_line ();
13321 }
13322
13323 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13324 was given in the preceding .cpsetup, it results in:
13325 ld $gp, offset($sp)
13326
13327 If a register $reg2 was given there, it results in:
13328 daddu $gp, $reg2, $0 */
13329
13330 static void
13331 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13332 {
13333 expressionS ex;
13334
13335 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13336 We also need NewABI support. */
13337 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13338 {
13339 s_ignore (0);
13340 return;
13341 }
13342
13343 macro_start ();
13344 if (mips_cpreturn_register == -1)
13345 {
13346 ex.X_op = O_constant;
13347 ex.X_add_symbol = NULL;
13348 ex.X_op_symbol = NULL;
13349 ex.X_add_number = mips_cpreturn_offset;
13350
13351 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13352 }
13353 else
13354 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13355 mips_cpreturn_register, 0);
13356 macro_end ();
13357
13358 demand_empty_rest_of_line ();
13359 }
13360
13361 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13362 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13363 use in DWARF debug information. */
13364
13365 static void
13366 s_dtprel_internal (size_t bytes)
13367 {
13368 expressionS ex;
13369 char *p;
13370
13371 expression (&ex);
13372
13373 if (ex.X_op != O_symbol)
13374 {
13375 as_bad (_("Unsupported use of %s"), (bytes == 8
13376 ? ".dtpreldword"
13377 : ".dtprelword"));
13378 ignore_rest_of_line ();
13379 }
13380
13381 p = frag_more (bytes);
13382 md_number_to_chars (p, 0, bytes);
13383 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13384 (bytes == 8
13385 ? BFD_RELOC_MIPS_TLS_DTPREL64
13386 : BFD_RELOC_MIPS_TLS_DTPREL32));
13387
13388 demand_empty_rest_of_line ();
13389 }
13390
13391 /* Handle .dtprelword. */
13392
13393 static void
13394 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13395 {
13396 s_dtprel_internal (4);
13397 }
13398
13399 /* Handle .dtpreldword. */
13400
13401 static void
13402 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13403 {
13404 s_dtprel_internal (8);
13405 }
13406
13407 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13408 code. It sets the offset to use in gp_rel relocations. */
13409
13410 static void
13411 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13412 {
13413 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13414 We also need NewABI support. */
13415 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13416 {
13417 s_ignore (0);
13418 return;
13419 }
13420
13421 mips_gprel_offset = get_absolute_expression ();
13422
13423 demand_empty_rest_of_line ();
13424 }
13425
13426 /* Handle the .gpword pseudo-op. This is used when generating PIC
13427 code. It generates a 32 bit GP relative reloc. */
13428
13429 static void
13430 s_gpword (int ignore ATTRIBUTE_UNUSED)
13431 {
13432 segment_info_type *si;
13433 struct insn_label_list *l;
13434 symbolS *label;
13435 expressionS ex;
13436 char *p;
13437
13438 /* When not generating PIC code, this is treated as .word. */
13439 if (mips_pic != SVR4_PIC)
13440 {
13441 s_cons (2);
13442 return;
13443 }
13444
13445 si = seg_info (now_seg);
13446 l = si->label_list;
13447 label = l != NULL ? l->label : NULL;
13448 mips_emit_delays ();
13449 if (auto_align)
13450 mips_align (2, 0, label);
13451 mips_clear_insn_labels ();
13452
13453 expression (&ex);
13454
13455 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13456 {
13457 as_bad (_("Unsupported use of .gpword"));
13458 ignore_rest_of_line ();
13459 }
13460
13461 p = frag_more (4);
13462 md_number_to_chars (p, 0, 4);
13463 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13464 BFD_RELOC_GPREL32);
13465
13466 demand_empty_rest_of_line ();
13467 }
13468
13469 static void
13470 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13471 {
13472 segment_info_type *si;
13473 struct insn_label_list *l;
13474 symbolS *label;
13475 expressionS ex;
13476 char *p;
13477
13478 /* When not generating PIC code, this is treated as .dword. */
13479 if (mips_pic != SVR4_PIC)
13480 {
13481 s_cons (3);
13482 return;
13483 }
13484
13485 si = seg_info (now_seg);
13486 l = si->label_list;
13487 label = l != NULL ? l->label : NULL;
13488 mips_emit_delays ();
13489 if (auto_align)
13490 mips_align (3, 0, label);
13491 mips_clear_insn_labels ();
13492
13493 expression (&ex);
13494
13495 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13496 {
13497 as_bad (_("Unsupported use of .gpdword"));
13498 ignore_rest_of_line ();
13499 }
13500
13501 p = frag_more (8);
13502 md_number_to_chars (p, 0, 8);
13503 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13504 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13505
13506 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13507 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13508 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13509
13510 demand_empty_rest_of_line ();
13511 }
13512
13513 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13514 tables in SVR4 PIC code. */
13515
13516 static void
13517 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13518 {
13519 int reg;
13520
13521 /* This is ignored when not generating SVR4 PIC code. */
13522 if (mips_pic != SVR4_PIC)
13523 {
13524 s_ignore (0);
13525 return;
13526 }
13527
13528 /* Add $gp to the register named as an argument. */
13529 macro_start ();
13530 reg = tc_get_register (0);
13531 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13532 macro_end ();
13533
13534 demand_empty_rest_of_line ();
13535 }
13536
13537 /* Handle the .insn pseudo-op. This marks instruction labels in
13538 mips16 mode. This permits the linker to handle them specially,
13539 such as generating jalx instructions when needed. We also make
13540 them odd for the duration of the assembly, in order to generate the
13541 right sort of code. We will make them even in the adjust_symtab
13542 routine, while leaving them marked. This is convenient for the
13543 debugger and the disassembler. The linker knows to make them odd
13544 again. */
13545
13546 static void
13547 s_insn (int ignore ATTRIBUTE_UNUSED)
13548 {
13549 mips16_mark_labels ();
13550
13551 demand_empty_rest_of_line ();
13552 }
13553
13554 /* Handle a .stabn directive. We need these in order to mark a label
13555 as being a mips16 text label correctly. Sometimes the compiler
13556 will emit a label, followed by a .stabn, and then switch sections.
13557 If the label and .stabn are in mips16 mode, then the label is
13558 really a mips16 text label. */
13559
13560 static void
13561 s_mips_stab (int type)
13562 {
13563 if (type == 'n')
13564 mips16_mark_labels ();
13565
13566 s_stab (type);
13567 }
13568
13569 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13570
13571 static void
13572 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13573 {
13574 char *name;
13575 int c;
13576 symbolS *symbolP;
13577 expressionS exp;
13578
13579 name = input_line_pointer;
13580 c = get_symbol_end ();
13581 symbolP = symbol_find_or_make (name);
13582 S_SET_WEAK (symbolP);
13583 *input_line_pointer = c;
13584
13585 SKIP_WHITESPACE ();
13586
13587 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13588 {
13589 if (S_IS_DEFINED (symbolP))
13590 {
13591 as_bad (_("ignoring attempt to redefine symbol %s"),
13592 S_GET_NAME (symbolP));
13593 ignore_rest_of_line ();
13594 return;
13595 }
13596
13597 if (*input_line_pointer == ',')
13598 {
13599 ++input_line_pointer;
13600 SKIP_WHITESPACE ();
13601 }
13602
13603 expression (&exp);
13604 if (exp.X_op != O_symbol)
13605 {
13606 as_bad (_("bad .weakext directive"));
13607 ignore_rest_of_line ();
13608 return;
13609 }
13610 symbol_set_value_expression (symbolP, &exp);
13611 }
13612
13613 demand_empty_rest_of_line ();
13614 }
13615
13616 /* Parse a register string into a number. Called from the ECOFF code
13617 to parse .frame. The argument is non-zero if this is the frame
13618 register, so that we can record it in mips_frame_reg. */
13619
13620 int
13621 tc_get_register (int frame)
13622 {
13623 unsigned int reg;
13624
13625 SKIP_WHITESPACE ();
13626 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13627 reg = 0;
13628 if (frame)
13629 {
13630 mips_frame_reg = reg != 0 ? reg : SP;
13631 mips_frame_reg_valid = 1;
13632 mips_cprestore_valid = 0;
13633 }
13634 return reg;
13635 }
13636
13637 valueT
13638 md_section_align (asection *seg, valueT addr)
13639 {
13640 int align = bfd_get_section_alignment (stdoutput, seg);
13641
13642 if (IS_ELF)
13643 {
13644 /* We don't need to align ELF sections to the full alignment.
13645 However, Irix 5 may prefer that we align them at least to a 16
13646 byte boundary. We don't bother to align the sections if we
13647 are targeted for an embedded system. */
13648 if (strncmp (TARGET_OS, "elf", 3) == 0)
13649 return addr;
13650 if (align > 4)
13651 align = 4;
13652 }
13653
13654 return ((addr + (1 << align) - 1) & (-1 << align));
13655 }
13656
13657 /* Utility routine, called from above as well. If called while the
13658 input file is still being read, it's only an approximation. (For
13659 example, a symbol may later become defined which appeared to be
13660 undefined earlier.) */
13661
13662 static int
13663 nopic_need_relax (symbolS *sym, int before_relaxing)
13664 {
13665 if (sym == 0)
13666 return 0;
13667
13668 if (g_switch_value > 0)
13669 {
13670 const char *symname;
13671 int change;
13672
13673 /* Find out whether this symbol can be referenced off the $gp
13674 register. It can be if it is smaller than the -G size or if
13675 it is in the .sdata or .sbss section. Certain symbols can
13676 not be referenced off the $gp, although it appears as though
13677 they can. */
13678 symname = S_GET_NAME (sym);
13679 if (symname != (const char *) NULL
13680 && (strcmp (symname, "eprol") == 0
13681 || strcmp (symname, "etext") == 0
13682 || strcmp (symname, "_gp") == 0
13683 || strcmp (symname, "edata") == 0
13684 || strcmp (symname, "_fbss") == 0
13685 || strcmp (symname, "_fdata") == 0
13686 || strcmp (symname, "_ftext") == 0
13687 || strcmp (symname, "end") == 0
13688 || strcmp (symname, "_gp_disp") == 0))
13689 change = 1;
13690 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13691 && (0
13692 #ifndef NO_ECOFF_DEBUGGING
13693 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13694 && (symbol_get_obj (sym)->ecoff_extern_size
13695 <= g_switch_value))
13696 #endif
13697 /* We must defer this decision until after the whole
13698 file has been read, since there might be a .extern
13699 after the first use of this symbol. */
13700 || (before_relaxing
13701 #ifndef NO_ECOFF_DEBUGGING
13702 && symbol_get_obj (sym)->ecoff_extern_size == 0
13703 #endif
13704 && S_GET_VALUE (sym) == 0)
13705 || (S_GET_VALUE (sym) != 0
13706 && S_GET_VALUE (sym) <= g_switch_value)))
13707 change = 0;
13708 else
13709 {
13710 const char *segname;
13711
13712 segname = segment_name (S_GET_SEGMENT (sym));
13713 gas_assert (strcmp (segname, ".lit8") != 0
13714 && strcmp (segname, ".lit4") != 0);
13715 change = (strcmp (segname, ".sdata") != 0
13716 && strcmp (segname, ".sbss") != 0
13717 && strncmp (segname, ".sdata.", 7) != 0
13718 && strncmp (segname, ".sbss.", 6) != 0
13719 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13720 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13721 }
13722 return change;
13723 }
13724 else
13725 /* We are not optimizing for the $gp register. */
13726 return 1;
13727 }
13728
13729
13730 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13731
13732 static bfd_boolean
13733 pic_need_relax (symbolS *sym, asection *segtype)
13734 {
13735 asection *symsec;
13736
13737 /* Handle the case of a symbol equated to another symbol. */
13738 while (symbol_equated_reloc_p (sym))
13739 {
13740 symbolS *n;
13741
13742 /* It's possible to get a loop here in a badly written program. */
13743 n = symbol_get_value_expression (sym)->X_add_symbol;
13744 if (n == sym)
13745 break;
13746 sym = n;
13747 }
13748
13749 if (symbol_section_p (sym))
13750 return TRUE;
13751
13752 symsec = S_GET_SEGMENT (sym);
13753
13754 /* This must duplicate the test in adjust_reloc_syms. */
13755 return (symsec != &bfd_und_section
13756 && symsec != &bfd_abs_section
13757 && !bfd_is_com_section (symsec)
13758 && !s_is_linkonce (sym, segtype)
13759 #ifdef OBJ_ELF
13760 /* A global or weak symbol is treated as external. */
13761 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13762 #endif
13763 );
13764 }
13765
13766
13767 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13768 extended opcode. SEC is the section the frag is in. */
13769
13770 static int
13771 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13772 {
13773 int type;
13774 const struct mips16_immed_operand *op;
13775 offsetT val;
13776 int mintiny, maxtiny;
13777 segT symsec;
13778 fragS *sym_frag;
13779
13780 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13781 return 0;
13782 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13783 return 1;
13784
13785 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13786 op = mips16_immed_operands;
13787 while (op->type != type)
13788 {
13789 ++op;
13790 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13791 }
13792
13793 if (op->unsp)
13794 {
13795 if (type == '<' || type == '>' || type == '[' || type == ']')
13796 {
13797 mintiny = 1;
13798 maxtiny = 1 << op->nbits;
13799 }
13800 else
13801 {
13802 mintiny = 0;
13803 maxtiny = (1 << op->nbits) - 1;
13804 }
13805 }
13806 else
13807 {
13808 mintiny = - (1 << (op->nbits - 1));
13809 maxtiny = (1 << (op->nbits - 1)) - 1;
13810 }
13811
13812 sym_frag = symbol_get_frag (fragp->fr_symbol);
13813 val = S_GET_VALUE (fragp->fr_symbol);
13814 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13815
13816 if (op->pcrel)
13817 {
13818 addressT addr;
13819
13820 /* We won't have the section when we are called from
13821 mips_relax_frag. However, we will always have been called
13822 from md_estimate_size_before_relax first. If this is a
13823 branch to a different section, we mark it as such. If SEC is
13824 NULL, and the frag is not marked, then it must be a branch to
13825 the same section. */
13826 if (sec == NULL)
13827 {
13828 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13829 return 1;
13830 }
13831 else
13832 {
13833 /* Must have been called from md_estimate_size_before_relax. */
13834 if (symsec != sec)
13835 {
13836 fragp->fr_subtype =
13837 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13838
13839 /* FIXME: We should support this, and let the linker
13840 catch branches and loads that are out of range. */
13841 as_bad_where (fragp->fr_file, fragp->fr_line,
13842 _("unsupported PC relative reference to different section"));
13843
13844 return 1;
13845 }
13846 if (fragp != sym_frag && sym_frag->fr_address == 0)
13847 /* Assume non-extended on the first relaxation pass.
13848 The address we have calculated will be bogus if this is
13849 a forward branch to another frag, as the forward frag
13850 will have fr_address == 0. */
13851 return 0;
13852 }
13853
13854 /* In this case, we know for sure that the symbol fragment is in
13855 the same section. If the relax_marker of the symbol fragment
13856 differs from the relax_marker of this fragment, we have not
13857 yet adjusted the symbol fragment fr_address. We want to add
13858 in STRETCH in order to get a better estimate of the address.
13859 This particularly matters because of the shift bits. */
13860 if (stretch != 0
13861 && sym_frag->relax_marker != fragp->relax_marker)
13862 {
13863 fragS *f;
13864
13865 /* Adjust stretch for any alignment frag. Note that if have
13866 been expanding the earlier code, the symbol may be
13867 defined in what appears to be an earlier frag. FIXME:
13868 This doesn't handle the fr_subtype field, which specifies
13869 a maximum number of bytes to skip when doing an
13870 alignment. */
13871 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13872 {
13873 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13874 {
13875 if (stretch < 0)
13876 stretch = - ((- stretch)
13877 & ~ ((1 << (int) f->fr_offset) - 1));
13878 else
13879 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13880 if (stretch == 0)
13881 break;
13882 }
13883 }
13884 if (f != NULL)
13885 val += stretch;
13886 }
13887
13888 addr = fragp->fr_address + fragp->fr_fix;
13889
13890 /* The base address rules are complicated. The base address of
13891 a branch is the following instruction. The base address of a
13892 PC relative load or add is the instruction itself, but if it
13893 is in a delay slot (in which case it can not be extended) use
13894 the address of the instruction whose delay slot it is in. */
13895 if (type == 'p' || type == 'q')
13896 {
13897 addr += 2;
13898
13899 /* If we are currently assuming that this frag should be
13900 extended, then, the current address is two bytes
13901 higher. */
13902 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13903 addr += 2;
13904
13905 /* Ignore the low bit in the target, since it will be set
13906 for a text label. */
13907 if ((val & 1) != 0)
13908 --val;
13909 }
13910 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13911 addr -= 4;
13912 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13913 addr -= 2;
13914
13915 val -= addr & ~ ((1 << op->shift) - 1);
13916
13917 /* Branch offsets have an implicit 0 in the lowest bit. */
13918 if (type == 'p' || type == 'q')
13919 val /= 2;
13920
13921 /* If any of the shifted bits are set, we must use an extended
13922 opcode. If the address depends on the size of this
13923 instruction, this can lead to a loop, so we arrange to always
13924 use an extended opcode. We only check this when we are in
13925 the main relaxation loop, when SEC is NULL. */
13926 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13927 {
13928 fragp->fr_subtype =
13929 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13930 return 1;
13931 }
13932
13933 /* If we are about to mark a frag as extended because the value
13934 is precisely maxtiny + 1, then there is a chance of an
13935 infinite loop as in the following code:
13936 la $4,foo
13937 .skip 1020
13938 .align 2
13939 foo:
13940 In this case when the la is extended, foo is 0x3fc bytes
13941 away, so the la can be shrunk, but then foo is 0x400 away, so
13942 the la must be extended. To avoid this loop, we mark the
13943 frag as extended if it was small, and is about to become
13944 extended with a value of maxtiny + 1. */
13945 if (val == ((maxtiny + 1) << op->shift)
13946 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13947 && sec == NULL)
13948 {
13949 fragp->fr_subtype =
13950 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13951 return 1;
13952 }
13953 }
13954 else if (symsec != absolute_section && sec != NULL)
13955 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13956
13957 if ((val & ((1 << op->shift) - 1)) != 0
13958 || val < (mintiny << op->shift)
13959 || val > (maxtiny << op->shift))
13960 return 1;
13961 else
13962 return 0;
13963 }
13964
13965 /* Compute the length of a branch sequence, and adjust the
13966 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13967 worst-case length is computed, with UPDATE being used to indicate
13968 whether an unconditional (-1), branch-likely (+1) or regular (0)
13969 branch is to be computed. */
13970 static int
13971 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13972 {
13973 bfd_boolean toofar;
13974 int length;
13975
13976 if (fragp
13977 && S_IS_DEFINED (fragp->fr_symbol)
13978 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13979 {
13980 addressT addr;
13981 offsetT val;
13982
13983 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13984
13985 addr = fragp->fr_address + fragp->fr_fix + 4;
13986
13987 val -= addr;
13988
13989 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13990 }
13991 else if (fragp)
13992 /* If the symbol is not defined or it's in a different segment,
13993 assume the user knows what's going on and emit a short
13994 branch. */
13995 toofar = FALSE;
13996 else
13997 toofar = TRUE;
13998
13999 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14000 fragp->fr_subtype
14001 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14002 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14003 RELAX_BRANCH_LINK (fragp->fr_subtype),
14004 toofar);
14005
14006 length = 4;
14007 if (toofar)
14008 {
14009 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14010 length += 8;
14011
14012 if (mips_pic != NO_PIC)
14013 {
14014 /* Additional space for PIC loading of target address. */
14015 length += 8;
14016 if (mips_opts.isa == ISA_MIPS1)
14017 /* Additional space for $at-stabilizing nop. */
14018 length += 4;
14019 }
14020
14021 /* If branch is conditional. */
14022 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14023 length += 8;
14024 }
14025
14026 return length;
14027 }
14028
14029 /* Estimate the size of a frag before relaxing. Unless this is the
14030 mips16, we are not really relaxing here, and the final size is
14031 encoded in the subtype information. For the mips16, we have to
14032 decide whether we are using an extended opcode or not. */
14033
14034 int
14035 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14036 {
14037 int change;
14038
14039 if (RELAX_BRANCH_P (fragp->fr_subtype))
14040 {
14041
14042 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14043
14044 return fragp->fr_var;
14045 }
14046
14047 if (RELAX_MIPS16_P (fragp->fr_subtype))
14048 /* We don't want to modify the EXTENDED bit here; it might get us
14049 into infinite loops. We change it only in mips_relax_frag(). */
14050 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14051
14052 if (mips_pic == NO_PIC)
14053 change = nopic_need_relax (fragp->fr_symbol, 0);
14054 else if (mips_pic == SVR4_PIC)
14055 change = pic_need_relax (fragp->fr_symbol, segtype);
14056 else if (mips_pic == VXWORKS_PIC)
14057 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14058 change = 0;
14059 else
14060 abort ();
14061
14062 if (change)
14063 {
14064 fragp->fr_subtype |= RELAX_USE_SECOND;
14065 return -RELAX_FIRST (fragp->fr_subtype);
14066 }
14067 else
14068 return -RELAX_SECOND (fragp->fr_subtype);
14069 }
14070
14071 /* This is called to see whether a reloc against a defined symbol
14072 should be converted into a reloc against a section. */
14073
14074 int
14075 mips_fix_adjustable (fixS *fixp)
14076 {
14077 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14078 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14079 return 0;
14080
14081 if (fixp->fx_addsy == NULL)
14082 return 1;
14083
14084 /* If symbol SYM is in a mergeable section, relocations of the form
14085 SYM + 0 can usually be made section-relative. The mergeable data
14086 is then identified by the section offset rather than by the symbol.
14087
14088 However, if we're generating REL LO16 relocations, the offset is split
14089 between the LO16 and parterning high part relocation. The linker will
14090 need to recalculate the complete offset in order to correctly identify
14091 the merge data.
14092
14093 The linker has traditionally not looked for the parterning high part
14094 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14095 placed anywhere. Rather than break backwards compatibility by changing
14096 this, it seems better not to force the issue, and instead keep the
14097 original symbol. This will work with either linker behavior. */
14098 if ((lo16_reloc_p (fixp->fx_r_type)
14099 || reloc_needs_lo_p (fixp->fx_r_type))
14100 && HAVE_IN_PLACE_ADDENDS
14101 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14102 return 0;
14103
14104 /* There is no place to store an in-place offset for JALR relocations. */
14105 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14106 return 0;
14107
14108 #ifdef OBJ_ELF
14109 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14110 to a floating-point stub. The same is true for non-R_MIPS16_26
14111 relocations against MIPS16 functions; in this case, the stub becomes
14112 the function's canonical address.
14113
14114 Floating-point stubs are stored in unique .mips16.call.* or
14115 .mips16.fn.* sections. If a stub T for function F is in section S,
14116 the first relocation in section S must be against F; this is how the
14117 linker determines the target function. All relocations that might
14118 resolve to T must also be against F. We therefore have the following
14119 restrictions, which are given in an intentionally-redundant way:
14120
14121 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14122 symbols.
14123
14124 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14125 if that stub might be used.
14126
14127 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14128 symbols.
14129
14130 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14131 that stub might be used.
14132
14133 There is a further restriction:
14134
14135 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14136 on targets with in-place addends; the relocation field cannot
14137 encode the low bit.
14138
14139 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14140 against a MIPS16 symbol.
14141
14142 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14143 relocation against some symbol R, no relocation against R may be
14144 reduced. (Note that this deals with (2) as well as (1) because
14145 relocations against global symbols will never be reduced on ELF
14146 targets.) This approach is a little simpler than trying to detect
14147 stub sections, and gives the "all or nothing" per-symbol consistency
14148 that we have for MIPS16 symbols. */
14149 if (IS_ELF
14150 && fixp->fx_subsy == NULL
14151 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14152 || *symbol_get_tc (fixp->fx_addsy)))
14153 return 0;
14154 #endif
14155
14156 return 1;
14157 }
14158
14159 /* Translate internal representation of relocation info to BFD target
14160 format. */
14161
14162 arelent **
14163 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14164 {
14165 static arelent *retval[4];
14166 arelent *reloc;
14167 bfd_reloc_code_real_type code;
14168
14169 memset (retval, 0, sizeof(retval));
14170 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14171 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14172 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14173 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14174
14175 if (fixp->fx_pcrel)
14176 {
14177 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14178
14179 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14180 Relocations want only the symbol offset. */
14181 reloc->addend = fixp->fx_addnumber + reloc->address;
14182 if (!IS_ELF)
14183 {
14184 /* A gruesome hack which is a result of the gruesome gas
14185 reloc handling. What's worse, for COFF (as opposed to
14186 ECOFF), we might need yet another copy of reloc->address.
14187 See bfd_install_relocation. */
14188 reloc->addend += reloc->address;
14189 }
14190 }
14191 else
14192 reloc->addend = fixp->fx_addnumber;
14193
14194 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14195 entry to be used in the relocation's section offset. */
14196 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14197 {
14198 reloc->address = reloc->addend;
14199 reloc->addend = 0;
14200 }
14201
14202 code = fixp->fx_r_type;
14203
14204 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14205 if (reloc->howto == NULL)
14206 {
14207 as_bad_where (fixp->fx_file, fixp->fx_line,
14208 _("Can not represent %s relocation in this object file format"),
14209 bfd_get_reloc_code_name (code));
14210 retval[0] = NULL;
14211 }
14212
14213 return retval;
14214 }
14215
14216 /* Relax a machine dependent frag. This returns the amount by which
14217 the current size of the frag should change. */
14218
14219 int
14220 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14221 {
14222 if (RELAX_BRANCH_P (fragp->fr_subtype))
14223 {
14224 offsetT old_var = fragp->fr_var;
14225
14226 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14227
14228 return fragp->fr_var - old_var;
14229 }
14230
14231 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14232 return 0;
14233
14234 if (mips16_extended_frag (fragp, NULL, stretch))
14235 {
14236 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14237 return 0;
14238 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14239 return 2;
14240 }
14241 else
14242 {
14243 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14244 return 0;
14245 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14246 return -2;
14247 }
14248
14249 return 0;
14250 }
14251
14252 /* Convert a machine dependent frag. */
14253
14254 void
14255 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14256 {
14257 if (RELAX_BRANCH_P (fragp->fr_subtype))
14258 {
14259 bfd_byte *buf;
14260 unsigned long insn;
14261 expressionS exp;
14262 fixS *fixp;
14263
14264 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14265
14266 if (target_big_endian)
14267 insn = bfd_getb32 (buf);
14268 else
14269 insn = bfd_getl32 (buf);
14270
14271 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14272 {
14273 /* We generate a fixup instead of applying it right now
14274 because, if there are linker relaxations, we're going to
14275 need the relocations. */
14276 exp.X_op = O_symbol;
14277 exp.X_add_symbol = fragp->fr_symbol;
14278 exp.X_add_number = fragp->fr_offset;
14279
14280 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14281 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14282 fixp->fx_file = fragp->fr_file;
14283 fixp->fx_line = fragp->fr_line;
14284
14285 md_number_to_chars ((char *) buf, insn, 4);
14286 buf += 4;
14287 }
14288 else
14289 {
14290 int i;
14291
14292 as_warn_where (fragp->fr_file, fragp->fr_line,
14293 _("relaxed out-of-range branch into a jump"));
14294
14295 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14296 goto uncond;
14297
14298 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14299 {
14300 /* Reverse the branch. */
14301 switch ((insn >> 28) & 0xf)
14302 {
14303 case 4:
14304 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14305 have the condition reversed by tweaking a single
14306 bit, and their opcodes all have 0x4???????. */
14307 gas_assert ((insn & 0xf1000000) == 0x41000000);
14308 insn ^= 0x00010000;
14309 break;
14310
14311 case 0:
14312 /* bltz 0x04000000 bgez 0x04010000
14313 bltzal 0x04100000 bgezal 0x04110000 */
14314 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14315 insn ^= 0x00010000;
14316 break;
14317
14318 case 1:
14319 /* beq 0x10000000 bne 0x14000000
14320 blez 0x18000000 bgtz 0x1c000000 */
14321 insn ^= 0x04000000;
14322 break;
14323
14324 default:
14325 abort ();
14326 }
14327 }
14328
14329 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14330 {
14331 /* Clear the and-link bit. */
14332 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14333
14334 /* bltzal 0x04100000 bgezal 0x04110000
14335 bltzall 0x04120000 bgezall 0x04130000 */
14336 insn &= ~0x00100000;
14337 }
14338
14339 /* Branch over the branch (if the branch was likely) or the
14340 full jump (not likely case). Compute the offset from the
14341 current instruction to branch to. */
14342 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14343 i = 16;
14344 else
14345 {
14346 /* How many bytes in instructions we've already emitted? */
14347 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14348 /* How many bytes in instructions from here to the end? */
14349 i = fragp->fr_var - i;
14350 }
14351 /* Convert to instruction count. */
14352 i >>= 2;
14353 /* Branch counts from the next instruction. */
14354 i--;
14355 insn |= i;
14356 /* Branch over the jump. */
14357 md_number_to_chars ((char *) buf, insn, 4);
14358 buf += 4;
14359
14360 /* nop */
14361 md_number_to_chars ((char *) buf, 0, 4);
14362 buf += 4;
14363
14364 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14365 {
14366 /* beql $0, $0, 2f */
14367 insn = 0x50000000;
14368 /* Compute the PC offset from the current instruction to
14369 the end of the variable frag. */
14370 /* How many bytes in instructions we've already emitted? */
14371 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14372 /* How many bytes in instructions from here to the end? */
14373 i = fragp->fr_var - i;
14374 /* Convert to instruction count. */
14375 i >>= 2;
14376 /* Don't decrement i, because we want to branch over the
14377 delay slot. */
14378
14379 insn |= i;
14380 md_number_to_chars ((char *) buf, insn, 4);
14381 buf += 4;
14382
14383 md_number_to_chars ((char *) buf, 0, 4);
14384 buf += 4;
14385 }
14386
14387 uncond:
14388 if (mips_pic == NO_PIC)
14389 {
14390 /* j or jal. */
14391 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14392 ? 0x0c000000 : 0x08000000);
14393 exp.X_op = O_symbol;
14394 exp.X_add_symbol = fragp->fr_symbol;
14395 exp.X_add_number = fragp->fr_offset;
14396
14397 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14398 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14399 fixp->fx_file = fragp->fr_file;
14400 fixp->fx_line = fragp->fr_line;
14401
14402 md_number_to_chars ((char *) buf, insn, 4);
14403 buf += 4;
14404 }
14405 else
14406 {
14407 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14408 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14409 exp.X_op = O_symbol;
14410 exp.X_add_symbol = fragp->fr_symbol;
14411 exp.X_add_number = fragp->fr_offset;
14412
14413 if (fragp->fr_offset)
14414 {
14415 exp.X_add_symbol = make_expr_symbol (&exp);
14416 exp.X_add_number = 0;
14417 }
14418
14419 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14420 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14421 fixp->fx_file = fragp->fr_file;
14422 fixp->fx_line = fragp->fr_line;
14423
14424 md_number_to_chars ((char *) buf, insn, 4);
14425 buf += 4;
14426
14427 if (mips_opts.isa == ISA_MIPS1)
14428 {
14429 /* nop */
14430 md_number_to_chars ((char *) buf, 0, 4);
14431 buf += 4;
14432 }
14433
14434 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14435 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14436
14437 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14438 4, &exp, FALSE, BFD_RELOC_LO16);
14439 fixp->fx_file = fragp->fr_file;
14440 fixp->fx_line = fragp->fr_line;
14441
14442 md_number_to_chars ((char *) buf, insn, 4);
14443 buf += 4;
14444
14445 /* j(al)r $at. */
14446 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14447 insn = 0x0020f809;
14448 else
14449 insn = 0x00200008;
14450
14451 md_number_to_chars ((char *) buf, insn, 4);
14452 buf += 4;
14453 }
14454 }
14455
14456 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14457 + fragp->fr_fix + fragp->fr_var);
14458
14459 fragp->fr_fix += fragp->fr_var;
14460
14461 return;
14462 }
14463
14464 if (RELAX_MIPS16_P (fragp->fr_subtype))
14465 {
14466 int type;
14467 const struct mips16_immed_operand *op;
14468 bfd_boolean small, ext;
14469 offsetT val;
14470 bfd_byte *buf;
14471 unsigned long insn;
14472 bfd_boolean use_extend;
14473 unsigned short extend;
14474
14475 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14476 op = mips16_immed_operands;
14477 while (op->type != type)
14478 ++op;
14479
14480 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14481 {
14482 small = FALSE;
14483 ext = TRUE;
14484 }
14485 else
14486 {
14487 small = TRUE;
14488 ext = FALSE;
14489 }
14490
14491 resolve_symbol_value (fragp->fr_symbol);
14492 val = S_GET_VALUE (fragp->fr_symbol);
14493 if (op->pcrel)
14494 {
14495 addressT addr;
14496
14497 addr = fragp->fr_address + fragp->fr_fix;
14498
14499 /* The rules for the base address of a PC relative reloc are
14500 complicated; see mips16_extended_frag. */
14501 if (type == 'p' || type == 'q')
14502 {
14503 addr += 2;
14504 if (ext)
14505 addr += 2;
14506 /* Ignore the low bit in the target, since it will be
14507 set for a text label. */
14508 if ((val & 1) != 0)
14509 --val;
14510 }
14511 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14512 addr -= 4;
14513 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14514 addr -= 2;
14515
14516 addr &= ~ (addressT) ((1 << op->shift) - 1);
14517 val -= addr;
14518
14519 /* Make sure the section winds up with the alignment we have
14520 assumed. */
14521 if (op->shift > 0)
14522 record_alignment (asec, op->shift);
14523 }
14524
14525 if (ext
14526 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14527 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14528 as_warn_where (fragp->fr_file, fragp->fr_line,
14529 _("extended instruction in delay slot"));
14530
14531 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14532
14533 if (target_big_endian)
14534 insn = bfd_getb16 (buf);
14535 else
14536 insn = bfd_getl16 (buf);
14537
14538 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14539 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14540 small, ext, &insn, &use_extend, &extend);
14541
14542 if (use_extend)
14543 {
14544 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14545 fragp->fr_fix += 2;
14546 buf += 2;
14547 }
14548
14549 md_number_to_chars ((char *) buf, insn, 2);
14550 fragp->fr_fix += 2;
14551 buf += 2;
14552 }
14553 else
14554 {
14555 int first, second;
14556 fixS *fixp;
14557
14558 first = RELAX_FIRST (fragp->fr_subtype);
14559 second = RELAX_SECOND (fragp->fr_subtype);
14560 fixp = (fixS *) fragp->fr_opcode;
14561
14562 /* Possibly emit a warning if we've chosen the longer option. */
14563 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14564 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14565 {
14566 const char *msg = macro_warning (fragp->fr_subtype);
14567 if (msg != 0)
14568 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14569 }
14570
14571 /* Go through all the fixups for the first sequence. Disable them
14572 (by marking them as done) if we're going to use the second
14573 sequence instead. */
14574 while (fixp
14575 && fixp->fx_frag == fragp
14576 && fixp->fx_where < fragp->fr_fix - second)
14577 {
14578 if (fragp->fr_subtype & RELAX_USE_SECOND)
14579 fixp->fx_done = 1;
14580 fixp = fixp->fx_next;
14581 }
14582
14583 /* Go through the fixups for the second sequence. Disable them if
14584 we're going to use the first sequence, otherwise adjust their
14585 addresses to account for the relaxation. */
14586 while (fixp && fixp->fx_frag == fragp)
14587 {
14588 if (fragp->fr_subtype & RELAX_USE_SECOND)
14589 fixp->fx_where -= first;
14590 else
14591 fixp->fx_done = 1;
14592 fixp = fixp->fx_next;
14593 }
14594
14595 /* Now modify the frag contents. */
14596 if (fragp->fr_subtype & RELAX_USE_SECOND)
14597 {
14598 char *start;
14599
14600 start = fragp->fr_literal + fragp->fr_fix - first - second;
14601 memmove (start, start + first, second);
14602 fragp->fr_fix -= first;
14603 }
14604 else
14605 fragp->fr_fix -= second;
14606 }
14607 }
14608
14609 #ifdef OBJ_ELF
14610
14611 /* This function is called after the relocs have been generated.
14612 We've been storing mips16 text labels as odd. Here we convert them
14613 back to even for the convenience of the debugger. */
14614
14615 void
14616 mips_frob_file_after_relocs (void)
14617 {
14618 asymbol **syms;
14619 unsigned int count, i;
14620
14621 if (!IS_ELF)
14622 return;
14623
14624 syms = bfd_get_outsymbols (stdoutput);
14625 count = bfd_get_symcount (stdoutput);
14626 for (i = 0; i < count; i++, syms++)
14627 {
14628 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14629 && ((*syms)->value & 1) != 0)
14630 {
14631 (*syms)->value &= ~1;
14632 /* If the symbol has an odd size, it was probably computed
14633 incorrectly, so adjust that as well. */
14634 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14635 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14636 }
14637 }
14638 }
14639
14640 #endif
14641
14642 /* This function is called whenever a label is defined. It is used
14643 when handling branch delays; if a branch has a label, we assume we
14644 can not move it. */
14645
14646 void
14647 mips_define_label (symbolS *sym)
14648 {
14649 segment_info_type *si = seg_info (now_seg);
14650 struct insn_label_list *l;
14651
14652 if (free_insn_labels == NULL)
14653 l = (struct insn_label_list *) xmalloc (sizeof *l);
14654 else
14655 {
14656 l = free_insn_labels;
14657 free_insn_labels = l->next;
14658 }
14659
14660 l->label = sym;
14661 l->next = si->label_list;
14662 si->label_list = l;
14663
14664 #ifdef OBJ_ELF
14665 dwarf2_emit_label (sym);
14666 #endif
14667 }
14668 \f
14669 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14670
14671 /* Some special processing for a MIPS ELF file. */
14672
14673 void
14674 mips_elf_final_processing (void)
14675 {
14676 /* Write out the register information. */
14677 if (mips_abi != N64_ABI)
14678 {
14679 Elf32_RegInfo s;
14680
14681 s.ri_gprmask = mips_gprmask;
14682 s.ri_cprmask[0] = mips_cprmask[0];
14683 s.ri_cprmask[1] = mips_cprmask[1];
14684 s.ri_cprmask[2] = mips_cprmask[2];
14685 s.ri_cprmask[3] = mips_cprmask[3];
14686 /* The gp_value field is set by the MIPS ELF backend. */
14687
14688 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14689 ((Elf32_External_RegInfo *)
14690 mips_regmask_frag));
14691 }
14692 else
14693 {
14694 Elf64_Internal_RegInfo s;
14695
14696 s.ri_gprmask = mips_gprmask;
14697 s.ri_pad = 0;
14698 s.ri_cprmask[0] = mips_cprmask[0];
14699 s.ri_cprmask[1] = mips_cprmask[1];
14700 s.ri_cprmask[2] = mips_cprmask[2];
14701 s.ri_cprmask[3] = mips_cprmask[3];
14702 /* The gp_value field is set by the MIPS ELF backend. */
14703
14704 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14705 ((Elf64_External_RegInfo *)
14706 mips_regmask_frag));
14707 }
14708
14709 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14710 sort of BFD interface for this. */
14711 if (mips_any_noreorder)
14712 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14713 if (mips_pic != NO_PIC)
14714 {
14715 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14716 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14717 }
14718 if (mips_abicalls)
14719 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14720
14721 /* Set MIPS ELF flags for ASEs. */
14722 /* We may need to define a new flag for DSP ASE, and set this flag when
14723 file_ase_dsp is true. */
14724 /* Same for DSP R2. */
14725 /* We may need to define a new flag for MT ASE, and set this flag when
14726 file_ase_mt is true. */
14727 if (file_ase_mips16)
14728 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14729 #if 0 /* XXX FIXME */
14730 if (file_ase_mips3d)
14731 elf_elfheader (stdoutput)->e_flags |= ???;
14732 #endif
14733 if (file_ase_mdmx)
14734 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14735
14736 /* Set the MIPS ELF ABI flags. */
14737 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14738 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14739 else if (mips_abi == O64_ABI)
14740 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14741 else if (mips_abi == EABI_ABI)
14742 {
14743 if (!file_mips_gp32)
14744 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14745 else
14746 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14747 }
14748 else if (mips_abi == N32_ABI)
14749 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14750
14751 /* Nothing to do for N64_ABI. */
14752
14753 if (mips_32bitmode)
14754 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14755
14756 #if 0 /* XXX FIXME */
14757 /* 32 bit code with 64 bit FP registers. */
14758 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14759 elf_elfheader (stdoutput)->e_flags |= ???;
14760 #endif
14761 }
14762
14763 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14764 \f
14765 typedef struct proc {
14766 symbolS *func_sym;
14767 symbolS *func_end_sym;
14768 unsigned long reg_mask;
14769 unsigned long reg_offset;
14770 unsigned long fpreg_mask;
14771 unsigned long fpreg_offset;
14772 unsigned long frame_offset;
14773 unsigned long frame_reg;
14774 unsigned long pc_reg;
14775 } procS;
14776
14777 static procS cur_proc;
14778 static procS *cur_proc_ptr;
14779 static int numprocs;
14780
14781 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14782 nop as "0". */
14783
14784 char
14785 mips_nop_opcode (void)
14786 {
14787 return seg_info (now_seg)->tc_segment_info_data.mips16;
14788 }
14789
14790 /* Fill in an rs_align_code fragment. This only needs to do something
14791 for MIPS16 code, where 0 is not a nop. */
14792
14793 void
14794 mips_handle_align (fragS *fragp)
14795 {
14796 char *p;
14797
14798 if (fragp->fr_type != rs_align_code)
14799 return;
14800
14801 p = fragp->fr_literal + fragp->fr_fix;
14802 if (*p)
14803 {
14804 int bytes;
14805
14806 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14807 if (bytes & 1)
14808 {
14809 *p++ = 0;
14810 fragp->fr_fix++;
14811 }
14812 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14813 fragp->fr_var = 2;
14814 }
14815 }
14816
14817 static void
14818 md_obj_begin (void)
14819 {
14820 }
14821
14822 static void
14823 md_obj_end (void)
14824 {
14825 /* Check for premature end, nesting errors, etc. */
14826 if (cur_proc_ptr)
14827 as_warn (_("missing .end at end of assembly"));
14828 }
14829
14830 static long
14831 get_number (void)
14832 {
14833 int negative = 0;
14834 long val = 0;
14835
14836 if (*input_line_pointer == '-')
14837 {
14838 ++input_line_pointer;
14839 negative = 1;
14840 }
14841 if (!ISDIGIT (*input_line_pointer))
14842 as_bad (_("expected simple number"));
14843 if (input_line_pointer[0] == '0')
14844 {
14845 if (input_line_pointer[1] == 'x')
14846 {
14847 input_line_pointer += 2;
14848 while (ISXDIGIT (*input_line_pointer))
14849 {
14850 val <<= 4;
14851 val |= hex_value (*input_line_pointer++);
14852 }
14853 return negative ? -val : val;
14854 }
14855 else
14856 {
14857 ++input_line_pointer;
14858 while (ISDIGIT (*input_line_pointer))
14859 {
14860 val <<= 3;
14861 val |= *input_line_pointer++ - '0';
14862 }
14863 return negative ? -val : val;
14864 }
14865 }
14866 if (!ISDIGIT (*input_line_pointer))
14867 {
14868 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14869 *input_line_pointer, *input_line_pointer);
14870 as_warn (_("invalid number"));
14871 return -1;
14872 }
14873 while (ISDIGIT (*input_line_pointer))
14874 {
14875 val *= 10;
14876 val += *input_line_pointer++ - '0';
14877 }
14878 return negative ? -val : val;
14879 }
14880
14881 /* The .file directive; just like the usual .file directive, but there
14882 is an initial number which is the ECOFF file index. In the non-ECOFF
14883 case .file implies DWARF-2. */
14884
14885 static void
14886 s_mips_file (int x ATTRIBUTE_UNUSED)
14887 {
14888 static int first_file_directive = 0;
14889
14890 if (ECOFF_DEBUGGING)
14891 {
14892 get_number ();
14893 s_app_file (0);
14894 }
14895 else
14896 {
14897 char *filename;
14898
14899 filename = dwarf2_directive_file (0);
14900
14901 /* Versions of GCC up to 3.1 start files with a ".file"
14902 directive even for stabs output. Make sure that this
14903 ".file" is handled. Note that you need a version of GCC
14904 after 3.1 in order to support DWARF-2 on MIPS. */
14905 if (filename != NULL && ! first_file_directive)
14906 {
14907 (void) new_logical_line (filename, -1);
14908 s_app_file_string (filename, 0);
14909 }
14910 first_file_directive = 1;
14911 }
14912 }
14913
14914 /* The .loc directive, implying DWARF-2. */
14915
14916 static void
14917 s_mips_loc (int x ATTRIBUTE_UNUSED)
14918 {
14919 if (!ECOFF_DEBUGGING)
14920 dwarf2_directive_loc (0);
14921 }
14922
14923 /* The .end directive. */
14924
14925 static void
14926 s_mips_end (int x ATTRIBUTE_UNUSED)
14927 {
14928 symbolS *p;
14929
14930 /* Following functions need their own .frame and .cprestore directives. */
14931 mips_frame_reg_valid = 0;
14932 mips_cprestore_valid = 0;
14933
14934 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14935 {
14936 p = get_symbol ();
14937 demand_empty_rest_of_line ();
14938 }
14939 else
14940 p = NULL;
14941
14942 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14943 as_warn (_(".end not in text section"));
14944
14945 if (!cur_proc_ptr)
14946 {
14947 as_warn (_(".end directive without a preceding .ent directive."));
14948 demand_empty_rest_of_line ();
14949 return;
14950 }
14951
14952 if (p != NULL)
14953 {
14954 gas_assert (S_GET_NAME (p));
14955 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14956 as_warn (_(".end symbol does not match .ent symbol."));
14957
14958 if (debug_type == DEBUG_STABS)
14959 stabs_generate_asm_endfunc (S_GET_NAME (p),
14960 S_GET_NAME (p));
14961 }
14962 else
14963 as_warn (_(".end directive missing or unknown symbol"));
14964
14965 #ifdef OBJ_ELF
14966 /* Create an expression to calculate the size of the function. */
14967 if (p && cur_proc_ptr)
14968 {
14969 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14970 expressionS *exp = xmalloc (sizeof (expressionS));
14971
14972 obj->size = exp;
14973 exp->X_op = O_subtract;
14974 exp->X_add_symbol = symbol_temp_new_now ();
14975 exp->X_op_symbol = p;
14976 exp->X_add_number = 0;
14977
14978 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14979 }
14980
14981 /* Generate a .pdr section. */
14982 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
14983 {
14984 segT saved_seg = now_seg;
14985 subsegT saved_subseg = now_subseg;
14986 valueT dot;
14987 expressionS exp;
14988 char *fragp;
14989
14990 dot = frag_now_fix ();
14991
14992 #ifdef md_flush_pending_output
14993 md_flush_pending_output ();
14994 #endif
14995
14996 gas_assert (pdr_seg);
14997 subseg_set (pdr_seg, 0);
14998
14999 /* Write the symbol. */
15000 exp.X_op = O_symbol;
15001 exp.X_add_symbol = p;
15002 exp.X_add_number = 0;
15003 emit_expr (&exp, 4);
15004
15005 fragp = frag_more (7 * 4);
15006
15007 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15008 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15009 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15010 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15011 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15012 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15013 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15014
15015 subseg_set (saved_seg, saved_subseg);
15016 }
15017 #endif /* OBJ_ELF */
15018
15019 cur_proc_ptr = NULL;
15020 }
15021
15022 /* The .aent and .ent directives. */
15023
15024 static void
15025 s_mips_ent (int aent)
15026 {
15027 symbolS *symbolP;
15028
15029 symbolP = get_symbol ();
15030 if (*input_line_pointer == ',')
15031 ++input_line_pointer;
15032 SKIP_WHITESPACE ();
15033 if (ISDIGIT (*input_line_pointer)
15034 || *input_line_pointer == '-')
15035 get_number ();
15036
15037 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15038 as_warn (_(".ent or .aent not in text section."));
15039
15040 if (!aent && cur_proc_ptr)
15041 as_warn (_("missing .end"));
15042
15043 if (!aent)
15044 {
15045 /* This function needs its own .frame and .cprestore directives. */
15046 mips_frame_reg_valid = 0;
15047 mips_cprestore_valid = 0;
15048
15049 cur_proc_ptr = &cur_proc;
15050 memset (cur_proc_ptr, '\0', sizeof (procS));
15051
15052 cur_proc_ptr->func_sym = symbolP;
15053
15054 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15055
15056 ++numprocs;
15057
15058 if (debug_type == DEBUG_STABS)
15059 stabs_generate_asm_func (S_GET_NAME (symbolP),
15060 S_GET_NAME (symbolP));
15061 }
15062
15063 demand_empty_rest_of_line ();
15064 }
15065
15066 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15067 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15068 s_mips_frame is used so that we can set the PDR information correctly.
15069 We can't use the ecoff routines because they make reference to the ecoff
15070 symbol table (in the mdebug section). */
15071
15072 static void
15073 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15074 {
15075 #ifdef OBJ_ELF
15076 if (IS_ELF && !ECOFF_DEBUGGING)
15077 {
15078 long val;
15079
15080 if (cur_proc_ptr == (procS *) NULL)
15081 {
15082 as_warn (_(".frame outside of .ent"));
15083 demand_empty_rest_of_line ();
15084 return;
15085 }
15086
15087 cur_proc_ptr->frame_reg = tc_get_register (1);
15088
15089 SKIP_WHITESPACE ();
15090 if (*input_line_pointer++ != ','
15091 || get_absolute_expression_and_terminator (&val) != ',')
15092 {
15093 as_warn (_("Bad .frame directive"));
15094 --input_line_pointer;
15095 demand_empty_rest_of_line ();
15096 return;
15097 }
15098
15099 cur_proc_ptr->frame_offset = val;
15100 cur_proc_ptr->pc_reg = tc_get_register (0);
15101
15102 demand_empty_rest_of_line ();
15103 }
15104 else
15105 #endif /* OBJ_ELF */
15106 s_ignore (ignore);
15107 }
15108
15109 /* The .fmask and .mask directives. If the mdebug section is present
15110 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15111 embedded targets, s_mips_mask is used so that we can set the PDR
15112 information correctly. We can't use the ecoff routines because they
15113 make reference to the ecoff symbol table (in the mdebug section). */
15114
15115 static void
15116 s_mips_mask (int reg_type)
15117 {
15118 #ifdef OBJ_ELF
15119 if (IS_ELF && !ECOFF_DEBUGGING)
15120 {
15121 long mask, off;
15122
15123 if (cur_proc_ptr == (procS *) NULL)
15124 {
15125 as_warn (_(".mask/.fmask outside of .ent"));
15126 demand_empty_rest_of_line ();
15127 return;
15128 }
15129
15130 if (get_absolute_expression_and_terminator (&mask) != ',')
15131 {
15132 as_warn (_("Bad .mask/.fmask directive"));
15133 --input_line_pointer;
15134 demand_empty_rest_of_line ();
15135 return;
15136 }
15137
15138 off = get_absolute_expression ();
15139
15140 if (reg_type == 'F')
15141 {
15142 cur_proc_ptr->fpreg_mask = mask;
15143 cur_proc_ptr->fpreg_offset = off;
15144 }
15145 else
15146 {
15147 cur_proc_ptr->reg_mask = mask;
15148 cur_proc_ptr->reg_offset = off;
15149 }
15150
15151 demand_empty_rest_of_line ();
15152 }
15153 else
15154 #endif /* OBJ_ELF */
15155 s_ignore (reg_type);
15156 }
15157
15158 /* A table describing all the processors gas knows about. Names are
15159 matched in the order listed.
15160
15161 To ease comparison, please keep this table in the same order as
15162 gcc's mips_cpu_info_table[]. */
15163 static const struct mips_cpu_info mips_cpu_info_table[] =
15164 {
15165 /* Entries for generic ISAs */
15166 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15167 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15168 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15169 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15170 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15171 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15172 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15173 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15174 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15175
15176 /* MIPS I */
15177 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15178 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15179 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15180
15181 /* MIPS II */
15182 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15183
15184 /* MIPS III */
15185 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15186 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15187 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15188 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15189 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15190 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15191 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15192 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15193 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15194 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15195 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15196 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15197 /* ST Microelectronics Loongson 2E and 2F cores */
15198 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15199 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15200
15201 /* MIPS IV */
15202 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15203 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15204 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15205 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15206 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15207 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15208 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15209 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15210 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15211 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15212 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15213 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15214 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15215 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15216 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15217
15218 /* MIPS 32 */
15219 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15220 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15221 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15222 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15223
15224 /* MIPS 32 Release 2 */
15225 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15226 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15227 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15228 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15229 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15230 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15231 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15232 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15233 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15234 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15235 /* Deprecated forms of the above. */
15236 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15237 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15238 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15239 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15240 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15241 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15242 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15243 /* Deprecated forms of the above. */
15244 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15245 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15246 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15247 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15248 ISA_MIPS32R2, CPU_MIPS32R2 },
15249 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15250 ISA_MIPS32R2, CPU_MIPS32R2 },
15251 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15252 ISA_MIPS32R2, CPU_MIPS32R2 },
15253 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15254 ISA_MIPS32R2, CPU_MIPS32R2 },
15255 /* Deprecated forms of the above. */
15256 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15257 ISA_MIPS32R2, CPU_MIPS32R2 },
15258 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15259 ISA_MIPS32R2, CPU_MIPS32R2 },
15260 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15261 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15262 ISA_MIPS32R2, CPU_MIPS32R2 },
15263 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15264 ISA_MIPS32R2, CPU_MIPS32R2 },
15265 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15266 ISA_MIPS32R2, CPU_MIPS32R2 },
15267 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15268 ISA_MIPS32R2, CPU_MIPS32R2 },
15269 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15270 ISA_MIPS32R2, CPU_MIPS32R2 },
15271 /* Deprecated forms of the above. */
15272 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15273 ISA_MIPS32R2, CPU_MIPS32R2 },
15274 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15275 ISA_MIPS32R2, CPU_MIPS32R2 },
15276 /* 1004K cores are multiprocessor versions of the 34K. */
15277 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15278 ISA_MIPS32R2, CPU_MIPS32R2 },
15279 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15280 ISA_MIPS32R2, CPU_MIPS32R2 },
15281 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15282 ISA_MIPS32R2, CPU_MIPS32R2 },
15283 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15284 ISA_MIPS32R2, CPU_MIPS32R2 },
15285
15286 /* MIPS 64 */
15287 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15288 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15289 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15290 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15291
15292 /* Broadcom SB-1 CPU core */
15293 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15294 ISA_MIPS64, CPU_SB1 },
15295 /* Broadcom SB-1A CPU core */
15296 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15297 ISA_MIPS64, CPU_SB1 },
15298
15299 /* MIPS 64 Release 2 */
15300
15301 /* Cavium Networks Octeon CPU core */
15302 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15303
15304 /* RMI Xlr */
15305 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15306
15307 /* End marker */
15308 { NULL, 0, 0, 0 }
15309 };
15310
15311
15312 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15313 with a final "000" replaced by "k". Ignore case.
15314
15315 Note: this function is shared between GCC and GAS. */
15316
15317 static bfd_boolean
15318 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15319 {
15320 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15321 given++, canonical++;
15322
15323 return ((*given == 0 && *canonical == 0)
15324 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15325 }
15326
15327
15328 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15329 CPU name. We've traditionally allowed a lot of variation here.
15330
15331 Note: this function is shared between GCC and GAS. */
15332
15333 static bfd_boolean
15334 mips_matching_cpu_name_p (const char *canonical, const char *given)
15335 {
15336 /* First see if the name matches exactly, or with a final "000"
15337 turned into "k". */
15338 if (mips_strict_matching_cpu_name_p (canonical, given))
15339 return TRUE;
15340
15341 /* If not, try comparing based on numerical designation alone.
15342 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15343 if (TOLOWER (*given) == 'r')
15344 given++;
15345 if (!ISDIGIT (*given))
15346 return FALSE;
15347
15348 /* Skip over some well-known prefixes in the canonical name,
15349 hoping to find a number there too. */
15350 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15351 canonical += 2;
15352 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15353 canonical += 2;
15354 else if (TOLOWER (canonical[0]) == 'r')
15355 canonical += 1;
15356
15357 return mips_strict_matching_cpu_name_p (canonical, given);
15358 }
15359
15360
15361 /* Parse an option that takes the name of a processor as its argument.
15362 OPTION is the name of the option and CPU_STRING is the argument.
15363 Return the corresponding processor enumeration if the CPU_STRING is
15364 recognized, otherwise report an error and return null.
15365
15366 A similar function exists in GCC. */
15367
15368 static const struct mips_cpu_info *
15369 mips_parse_cpu (const char *option, const char *cpu_string)
15370 {
15371 const struct mips_cpu_info *p;
15372
15373 /* 'from-abi' selects the most compatible architecture for the given
15374 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15375 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15376 version. Look first at the -mgp options, if given, otherwise base
15377 the choice on MIPS_DEFAULT_64BIT.
15378
15379 Treat NO_ABI like the EABIs. One reason to do this is that the
15380 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15381 architecture. This code picks MIPS I for 'mips' and MIPS III for
15382 'mips64', just as we did in the days before 'from-abi'. */
15383 if (strcasecmp (cpu_string, "from-abi") == 0)
15384 {
15385 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15386 return mips_cpu_info_from_isa (ISA_MIPS1);
15387
15388 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15389 return mips_cpu_info_from_isa (ISA_MIPS3);
15390
15391 if (file_mips_gp32 >= 0)
15392 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15393
15394 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15395 ? ISA_MIPS3
15396 : ISA_MIPS1);
15397 }
15398
15399 /* 'default' has traditionally been a no-op. Probably not very useful. */
15400 if (strcasecmp (cpu_string, "default") == 0)
15401 return 0;
15402
15403 for (p = mips_cpu_info_table; p->name != 0; p++)
15404 if (mips_matching_cpu_name_p (p->name, cpu_string))
15405 return p;
15406
15407 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15408 return 0;
15409 }
15410
15411 /* Return the canonical processor information for ISA (a member of the
15412 ISA_MIPS* enumeration). */
15413
15414 static const struct mips_cpu_info *
15415 mips_cpu_info_from_isa (int isa)
15416 {
15417 int i;
15418
15419 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15420 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15421 && isa == mips_cpu_info_table[i].isa)
15422 return (&mips_cpu_info_table[i]);
15423
15424 return NULL;
15425 }
15426
15427 static const struct mips_cpu_info *
15428 mips_cpu_info_from_arch (int arch)
15429 {
15430 int i;
15431
15432 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15433 if (arch == mips_cpu_info_table[i].cpu)
15434 return (&mips_cpu_info_table[i]);
15435
15436 return NULL;
15437 }
15438 \f
15439 static void
15440 show (FILE *stream, const char *string, int *col_p, int *first_p)
15441 {
15442 if (*first_p)
15443 {
15444 fprintf (stream, "%24s", "");
15445 *col_p = 24;
15446 }
15447 else
15448 {
15449 fprintf (stream, ", ");
15450 *col_p += 2;
15451 }
15452
15453 if (*col_p + strlen (string) > 72)
15454 {
15455 fprintf (stream, "\n%24s", "");
15456 *col_p = 24;
15457 }
15458
15459 fprintf (stream, "%s", string);
15460 *col_p += strlen (string);
15461
15462 *first_p = 0;
15463 }
15464
15465 void
15466 md_show_usage (FILE *stream)
15467 {
15468 int column, first;
15469 size_t i;
15470
15471 fprintf (stream, _("\
15472 MIPS options:\n\
15473 -EB generate big endian output\n\
15474 -EL generate little endian output\n\
15475 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15476 -G NUM allow referencing objects up to NUM bytes\n\
15477 implicitly with the gp register [default 8]\n"));
15478 fprintf (stream, _("\
15479 -mips1 generate MIPS ISA I instructions\n\
15480 -mips2 generate MIPS ISA II instructions\n\
15481 -mips3 generate MIPS ISA III instructions\n\
15482 -mips4 generate MIPS ISA IV instructions\n\
15483 -mips5 generate MIPS ISA V instructions\n\
15484 -mips32 generate MIPS32 ISA instructions\n\
15485 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15486 -mips64 generate MIPS64 ISA instructions\n\
15487 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15488 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15489
15490 first = 1;
15491
15492 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15493 show (stream, mips_cpu_info_table[i].name, &column, &first);
15494 show (stream, "from-abi", &column, &first);
15495 fputc ('\n', stream);
15496
15497 fprintf (stream, _("\
15498 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15499 -no-mCPU don't generate code specific to CPU.\n\
15500 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15501
15502 first = 1;
15503
15504 show (stream, "3900", &column, &first);
15505 show (stream, "4010", &column, &first);
15506 show (stream, "4100", &column, &first);
15507 show (stream, "4650", &column, &first);
15508 fputc ('\n', stream);
15509
15510 fprintf (stream, _("\
15511 -mips16 generate mips16 instructions\n\
15512 -no-mips16 do not generate mips16 instructions\n"));
15513 fprintf (stream, _("\
15514 -msmartmips generate smartmips instructions\n\
15515 -mno-smartmips do not generate smartmips instructions\n"));
15516 fprintf (stream, _("\
15517 -mdsp generate DSP instructions\n\
15518 -mno-dsp do not generate DSP instructions\n"));
15519 fprintf (stream, _("\
15520 -mdspr2 generate DSP R2 instructions\n\
15521 -mno-dspr2 do not generate DSP R2 instructions\n"));
15522 fprintf (stream, _("\
15523 -mmt generate MT instructions\n\
15524 -mno-mt do not generate MT instructions\n"));
15525 fprintf (stream, _("\
15526 -mfix-vr4120 work around certain VR4120 errata\n\
15527 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15528 -mfix-24k insert a nop after ERET and DERET instructions\n\
15529 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15530 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15531 -msym32 assume all symbols have 32-bit values\n\
15532 -O0 remove unneeded NOPs, do not swap branches\n\
15533 -O remove unneeded NOPs and swap branches\n\
15534 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15535 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15536 fprintf (stream, _("\
15537 -mhard-float allow floating-point instructions\n\
15538 -msoft-float do not allow floating-point instructions\n\
15539 -msingle-float only allow 32-bit floating-point operations\n\
15540 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15541 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15542 ));
15543 #ifdef OBJ_ELF
15544 fprintf (stream, _("\
15545 -KPIC, -call_shared generate SVR4 position independent code\n\
15546 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15547 -mvxworks-pic generate VxWorks position independent code\n\
15548 -non_shared do not generate code that can operate with DSOs\n\
15549 -xgot assume a 32 bit GOT\n\
15550 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15551 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15552 position dependent (non shared) code\n\
15553 -mabi=ABI create ABI conformant object file for:\n"));
15554
15555 first = 1;
15556
15557 show (stream, "32", &column, &first);
15558 show (stream, "o64", &column, &first);
15559 show (stream, "n32", &column, &first);
15560 show (stream, "64", &column, &first);
15561 show (stream, "eabi", &column, &first);
15562
15563 fputc ('\n', stream);
15564
15565 fprintf (stream, _("\
15566 -32 create o32 ABI object file (default)\n\
15567 -n32 create n32 ABI object file\n\
15568 -64 create 64 ABI object file\n"));
15569 #endif
15570 }
15571
15572 enum dwarf2_format
15573 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15574 {
15575 if (HAVE_64BIT_SYMBOLS)
15576 {
15577 #ifdef TE_IRIX
15578 return dwarf2_format_64bit_irix;
15579 #else
15580 return dwarf2_format_64bit;
15581 #endif
15582 }
15583 else
15584 return dwarf2_format_32bit;
15585 }
15586
15587 int
15588 mips_dwarf2_addr_size (void)
15589 {
15590 if (HAVE_64BIT_OBJECTS)
15591 return 8;
15592 else
15593 return 4;
15594 }
15595
15596 /* Standard calling conventions leave the CFA at SP on entry. */
15597 void
15598 mips_cfi_frame_initial_instructions (void)
15599 {
15600 cfi_add_CFA_def_cfa_register (SP);
15601 }
15602
15603 int
15604 tc_mips_regname_to_dw2regnum (char *regname)
15605 {
15606 unsigned int regnum = -1;
15607 unsigned int reg;
15608
15609 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15610 regnum = reg;
15611
15612 return regnum;
15613 }
This page took 0.330634 seconds and 3 git commands to generate.