[MIPS] Add Loongson 2K1000 proccessor support.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && ((CPU) != CPU_GS464 \
426 || (CPU) != CPU_GS464E \
427 || (CPU) != CPU_GS264E))
428
429 /* Return true if ISA supports move to/from high part of a 64-bit
430 floating-point register. */
431 #define ISA_HAS_MXHC1(ISA) \
432 ((ISA) == ISA_MIPS32R2 \
433 || (ISA) == ISA_MIPS32R3 \
434 || (ISA) == ISA_MIPS32R5 \
435 || (ISA) == ISA_MIPS32R6 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
439 || (ISA) == ISA_MIPS64R6)
440
441 /* Return true if ISA supports legacy NAN. */
442 #define ISA_HAS_LEGACY_NAN(ISA) \
443 ((ISA) == ISA_MIPS1 \
444 || (ISA) == ISA_MIPS2 \
445 || (ISA) == ISA_MIPS3 \
446 || (ISA) == ISA_MIPS4 \
447 || (ISA) == ISA_MIPS5 \
448 || (ISA) == ISA_MIPS32 \
449 || (ISA) == ISA_MIPS32R2 \
450 || (ISA) == ISA_MIPS32R3 \
451 || (ISA) == ISA_MIPS32R5 \
452 || (ISA) == ISA_MIPS64 \
453 || (ISA) == ISA_MIPS64R2 \
454 || (ISA) == ISA_MIPS64R3 \
455 || (ISA) == ISA_MIPS64R5)
456
457 #define GPR_SIZE \
458 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
459 ? 32 \
460 : mips_opts.gp)
461
462 #define FPR_SIZE \
463 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
464 ? 32 \
465 : mips_opts.fp)
466
467 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
468
469 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
470
471 /* True if relocations are stored in-place. */
472 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
473
474 /* The ABI-derived address size. */
475 #define HAVE_64BIT_ADDRESSES \
476 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
477 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
478
479 /* The size of symbolic constants (i.e., expressions of the form
480 "SYMBOL" or "SYMBOL + OFFSET"). */
481 #define HAVE_32BIT_SYMBOLS \
482 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
483 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
484
485 /* Addresses are loaded in different ways, depending on the address size
486 in use. The n32 ABI Documentation also mandates the use of additions
487 with overflow checking, but existing implementations don't follow it. */
488 #define ADDRESS_ADD_INSN \
489 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
490
491 #define ADDRESS_ADDI_INSN \
492 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
493
494 #define ADDRESS_LOAD_INSN \
495 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
496
497 #define ADDRESS_STORE_INSN \
498 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
499
500 /* Return true if the given CPU supports the MIPS16 ASE. */
501 #define CPU_HAS_MIPS16(cpu) \
502 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
503 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
504
505 /* Return true if the given CPU supports the microMIPS ASE. */
506 #define CPU_HAS_MICROMIPS(cpu) 0
507
508 /* True if CPU has a dror instruction. */
509 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
510
511 /* True if CPU has a ror instruction. */
512 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
513
514 /* True if CPU is in the Octeon family */
515 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
516 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
517
518 /* True if CPU has seq/sne and seqi/snei instructions. */
519 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
520
521 /* True, if CPU has support for ldc1 and sdc1. */
522 #define CPU_HAS_LDC1_SDC1(CPU) \
523 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
524
525 /* True if mflo and mfhi can be immediately followed by instructions
526 which write to the HI and LO registers.
527
528 According to MIPS specifications, MIPS ISAs I, II, and III need
529 (at least) two instructions between the reads of HI/LO and
530 instructions which write them, and later ISAs do not. Contradicting
531 the MIPS specifications, some MIPS IV processor user manuals (e.g.
532 the UM for the NEC Vr5000) document needing the instructions between
533 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
534 MIPS64 and later ISAs to have the interlocks, plus any specific
535 earlier-ISA CPUs for which CPU documentation declares that the
536 instructions are really interlocked. */
537 #define hilo_interlocks \
538 (mips_opts.isa == ISA_MIPS32 \
539 || mips_opts.isa == ISA_MIPS32R2 \
540 || mips_opts.isa == ISA_MIPS32R3 \
541 || mips_opts.isa == ISA_MIPS32R5 \
542 || mips_opts.isa == ISA_MIPS32R6 \
543 || mips_opts.isa == ISA_MIPS64 \
544 || mips_opts.isa == ISA_MIPS64R2 \
545 || mips_opts.isa == ISA_MIPS64R3 \
546 || mips_opts.isa == ISA_MIPS64R5 \
547 || mips_opts.isa == ISA_MIPS64R6 \
548 || mips_opts.arch == CPU_R4010 \
549 || mips_opts.arch == CPU_R5900 \
550 || mips_opts.arch == CPU_R10000 \
551 || mips_opts.arch == CPU_R12000 \
552 || mips_opts.arch == CPU_R14000 \
553 || mips_opts.arch == CPU_R16000 \
554 || mips_opts.arch == CPU_RM7000 \
555 || mips_opts.arch == CPU_VR5500 \
556 || mips_opts.micromips \
557 )
558
559 /* Whether the processor uses hardware interlocks to protect reads
560 from the GPRs after they are loaded from memory, and thus does not
561 require nops to be inserted. This applies to instructions marked
562 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
563 level I and microMIPS mode instructions are always interlocked. */
564 #define gpr_interlocks \
565 (mips_opts.isa != ISA_MIPS1 \
566 || mips_opts.arch == CPU_R3900 \
567 || mips_opts.arch == CPU_R5900 \
568 || mips_opts.micromips \
569 )
570
571 /* Whether the processor uses hardware interlocks to avoid delays
572 required by coprocessor instructions, and thus does not require
573 nops to be inserted. This applies to instructions marked
574 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
575 instructions marked INSN_WRITE_COND_CODE and ones marked
576 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
577 levels I, II, and III and microMIPS mode instructions are always
578 interlocked. */
579 /* Itbl support may require additional care here. */
580 #define cop_interlocks \
581 ((mips_opts.isa != ISA_MIPS1 \
582 && mips_opts.isa != ISA_MIPS2 \
583 && mips_opts.isa != ISA_MIPS3) \
584 || mips_opts.arch == CPU_R4300 \
585 || mips_opts.micromips \
586 )
587
588 /* Whether the processor uses hardware interlocks to protect reads
589 from coprocessor registers after they are loaded from memory, and
590 thus does not require nops to be inserted. This applies to
591 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
592 requires at MIPS ISA level I and microMIPS mode instructions are
593 always interlocked. */
594 #define cop_mem_interlocks \
595 (mips_opts.isa != ISA_MIPS1 \
596 || mips_opts.micromips \
597 )
598
599 /* Is this a mfhi or mflo instruction? */
600 #define MF_HILO_INSN(PINFO) \
601 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
602
603 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
604 has been selected. This implies, in particular, that addresses of text
605 labels have their LSB set. */
606 #define HAVE_CODE_COMPRESSION \
607 ((mips_opts.mips16 | mips_opts.micromips) != 0)
608
609 /* The minimum and maximum signed values that can be stored in a GPR. */
610 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
611 #define GPR_SMIN (-GPR_SMAX - 1)
612
613 /* MIPS PIC level. */
614
615 enum mips_pic_level mips_pic;
616
617 /* 1 if we should generate 32 bit offsets from the $gp register in
618 SVR4_PIC mode. Currently has no meaning in other modes. */
619 static int mips_big_got = 0;
620
621 /* 1 if trap instructions should used for overflow rather than break
622 instructions. */
623 static int mips_trap = 0;
624
625 /* 1 if double width floating point constants should not be constructed
626 by assembling two single width halves into two single width floating
627 point registers which just happen to alias the double width destination
628 register. On some architectures this aliasing can be disabled by a bit
629 in the status register, and the setting of this bit cannot be determined
630 automatically at assemble time. */
631 static int mips_disable_float_construction;
632
633 /* Non-zero if any .set noreorder directives were used. */
634
635 static int mips_any_noreorder;
636
637 /* Non-zero if nops should be inserted when the register referenced in
638 an mfhi/mflo instruction is read in the next two instructions. */
639 static int mips_7000_hilo_fix;
640
641 /* The size of objects in the small data section. */
642 static unsigned int g_switch_value = 8;
643 /* Whether the -G option was used. */
644 static int g_switch_seen = 0;
645
646 #define N_RMASK 0xc4
647 #define N_VFP 0xd4
648
649 /* If we can determine in advance that GP optimization won't be
650 possible, we can skip the relaxation stuff that tries to produce
651 GP-relative references. This makes delay slot optimization work
652 better.
653
654 This function can only provide a guess, but it seems to work for
655 gcc output. It needs to guess right for gcc, otherwise gcc
656 will put what it thinks is a GP-relative instruction in a branch
657 delay slot.
658
659 I don't know if a fix is needed for the SVR4_PIC mode. I've only
660 fixed it for the non-PIC mode. KR 95/04/07 */
661 static int nopic_need_relax (symbolS *, int);
662
663 /* handle of the OPCODE hash table */
664 static struct hash_control *op_hash = NULL;
665
666 /* The opcode hash table we use for the mips16. */
667 static struct hash_control *mips16_op_hash = NULL;
668
669 /* The opcode hash table we use for the microMIPS ASE. */
670 static struct hash_control *micromips_op_hash = NULL;
671
672 /* This array holds the chars that always start a comment. If the
673 pre-processor is disabled, these aren't very useful */
674 const char comment_chars[] = "#";
675
676 /* This array holds the chars that only start a comment at the beginning of
677 a line. If the line seems to have the form '# 123 filename'
678 .line and .file directives will appear in the pre-processed output */
679 /* Note that input_file.c hand checks for '#' at the beginning of the
680 first line of the input file. This is because the compiler outputs
681 #NO_APP at the beginning of its output. */
682 /* Also note that C style comments are always supported. */
683 const char line_comment_chars[] = "#";
684
685 /* This array holds machine specific line separator characters. */
686 const char line_separator_chars[] = ";";
687
688 /* Chars that can be used to separate mant from exp in floating point nums */
689 const char EXP_CHARS[] = "eE";
690
691 /* Chars that mean this number is a floating point constant */
692 /* As in 0f12.456 */
693 /* or 0d1.2345e12 */
694 const char FLT_CHARS[] = "rRsSfFdDxXpP";
695
696 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
697 changed in read.c . Ideally it shouldn't have to know about it at all,
698 but nothing is ideal around here.
699 */
700
701 /* Types of printf format used for instruction-related error messages.
702 "I" means int ("%d") and "S" means string ("%s"). */
703 enum mips_insn_error_format {
704 ERR_FMT_PLAIN,
705 ERR_FMT_I,
706 ERR_FMT_SS,
707 };
708
709 /* Information about an error that was found while assembling the current
710 instruction. */
711 struct mips_insn_error {
712 /* We sometimes need to match an instruction against more than one
713 opcode table entry. Errors found during this matching are reported
714 against a particular syntactic argument rather than against the
715 instruction as a whole. We grade these messages so that errors
716 against argument N have a greater priority than an error against
717 any argument < N, since the former implies that arguments up to N
718 were acceptable and that the opcode entry was therefore a closer match.
719 If several matches report an error against the same argument,
720 we only use that error if it is the same in all cases.
721
722 min_argnum is the minimum argument number for which an error message
723 should be accepted. It is 0 if MSG is against the instruction as
724 a whole. */
725 int min_argnum;
726
727 /* The printf()-style message, including its format and arguments. */
728 enum mips_insn_error_format format;
729 const char *msg;
730 union {
731 int i;
732 const char *ss[2];
733 } u;
734 };
735
736 /* The error that should be reported for the current instruction. */
737 static struct mips_insn_error insn_error;
738
739 static int auto_align = 1;
740
741 /* When outputting SVR4 PIC code, the assembler needs to know the
742 offset in the stack frame from which to restore the $gp register.
743 This is set by the .cprestore pseudo-op, and saved in this
744 variable. */
745 static offsetT mips_cprestore_offset = -1;
746
747 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
748 more optimizations, it can use a register value instead of a memory-saved
749 offset and even an other register than $gp as global pointer. */
750 static offsetT mips_cpreturn_offset = -1;
751 static int mips_cpreturn_register = -1;
752 static int mips_gp_register = GP;
753 static int mips_gprel_offset = 0;
754
755 /* Whether mips_cprestore_offset has been set in the current function
756 (or whether it has already been warned about, if not). */
757 static int mips_cprestore_valid = 0;
758
759 /* This is the register which holds the stack frame, as set by the
760 .frame pseudo-op. This is needed to implement .cprestore. */
761 static int mips_frame_reg = SP;
762
763 /* Whether mips_frame_reg has been set in the current function
764 (or whether it has already been warned about, if not). */
765 static int mips_frame_reg_valid = 0;
766
767 /* To output NOP instructions correctly, we need to keep information
768 about the previous two instructions. */
769
770 /* Whether we are optimizing. The default value of 2 means to remove
771 unneeded NOPs and swap branch instructions when possible. A value
772 of 1 means to not swap branches. A value of 0 means to always
773 insert NOPs. */
774 static int mips_optimize = 2;
775
776 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
777 equivalent to seeing no -g option at all. */
778 static int mips_debug = 0;
779
780 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
781 #define MAX_VR4130_NOPS 4
782
783 /* The maximum number of NOPs needed to fill delay slots. */
784 #define MAX_DELAY_NOPS 2
785
786 /* The maximum number of NOPs needed for any purpose. */
787 #define MAX_NOPS 4
788
789 /* A list of previous instructions, with index 0 being the most recent.
790 We need to look back MAX_NOPS instructions when filling delay slots
791 or working around processor errata. We need to look back one
792 instruction further if we're thinking about using history[0] to
793 fill a branch delay slot. */
794 static struct mips_cl_insn history[1 + MAX_NOPS];
795
796 /* Arrays of operands for each instruction. */
797 #define MAX_OPERANDS 6
798 struct mips_operand_array {
799 const struct mips_operand *operand[MAX_OPERANDS];
800 };
801 static struct mips_operand_array *mips_operands;
802 static struct mips_operand_array *mips16_operands;
803 static struct mips_operand_array *micromips_operands;
804
805 /* Nop instructions used by emit_nop. */
806 static struct mips_cl_insn nop_insn;
807 static struct mips_cl_insn mips16_nop_insn;
808 static struct mips_cl_insn micromips_nop16_insn;
809 static struct mips_cl_insn micromips_nop32_insn;
810
811 /* The appropriate nop for the current mode. */
812 #define NOP_INSN (mips_opts.mips16 \
813 ? &mips16_nop_insn \
814 : (mips_opts.micromips \
815 ? (mips_opts.insn32 \
816 ? &micromips_nop32_insn \
817 : &micromips_nop16_insn) \
818 : &nop_insn))
819
820 /* The size of NOP_INSN in bytes. */
821 #define NOP_INSN_SIZE ((mips_opts.mips16 \
822 || (mips_opts.micromips && !mips_opts.insn32)) \
823 ? 2 : 4)
824
825 /* If this is set, it points to a frag holding nop instructions which
826 were inserted before the start of a noreorder section. If those
827 nops turn out to be unnecessary, the size of the frag can be
828 decreased. */
829 static fragS *prev_nop_frag;
830
831 /* The number of nop instructions we created in prev_nop_frag. */
832 static int prev_nop_frag_holds;
833
834 /* The number of nop instructions that we know we need in
835 prev_nop_frag. */
836 static int prev_nop_frag_required;
837
838 /* The number of instructions we've seen since prev_nop_frag. */
839 static int prev_nop_frag_since;
840
841 /* Relocations against symbols are sometimes done in two parts, with a HI
842 relocation and a LO relocation. Each relocation has only 16 bits of
843 space to store an addend. This means that in order for the linker to
844 handle carries correctly, it must be able to locate both the HI and
845 the LO relocation. This means that the relocations must appear in
846 order in the relocation table.
847
848 In order to implement this, we keep track of each unmatched HI
849 relocation. We then sort them so that they immediately precede the
850 corresponding LO relocation. */
851
852 struct mips_hi_fixup
853 {
854 /* Next HI fixup. */
855 struct mips_hi_fixup *next;
856 /* This fixup. */
857 fixS *fixp;
858 /* The section this fixup is in. */
859 segT seg;
860 };
861
862 /* The list of unmatched HI relocs. */
863
864 static struct mips_hi_fixup *mips_hi_fixup_list;
865
866 /* The frag containing the last explicit relocation operator.
867 Null if explicit relocations have not been used. */
868
869 static fragS *prev_reloc_op_frag;
870
871 /* Map mips16 register numbers to normal MIPS register numbers. */
872
873 static const unsigned int mips16_to_32_reg_map[] =
874 {
875 16, 17, 2, 3, 4, 5, 6, 7
876 };
877
878 /* Map microMIPS register numbers to normal MIPS register numbers. */
879
880 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
881
882 /* The microMIPS registers with type h. */
883 static const unsigned int micromips_to_32_reg_h_map1[] =
884 {
885 5, 5, 6, 4, 4, 4, 4, 4
886 };
887 static const unsigned int micromips_to_32_reg_h_map2[] =
888 {
889 6, 7, 7, 21, 22, 5, 6, 7
890 };
891
892 /* The microMIPS registers with type m. */
893 static const unsigned int micromips_to_32_reg_m_map[] =
894 {
895 0, 17, 2, 3, 16, 18, 19, 20
896 };
897
898 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
899
900 /* Classifies the kind of instructions we're interested in when
901 implementing -mfix-vr4120. */
902 enum fix_vr4120_class
903 {
904 FIX_VR4120_MACC,
905 FIX_VR4120_DMACC,
906 FIX_VR4120_MULT,
907 FIX_VR4120_DMULT,
908 FIX_VR4120_DIV,
909 FIX_VR4120_MTHILO,
910 NUM_FIX_VR4120_CLASSES
911 };
912
913 /* ...likewise -mfix-loongson2f-jump. */
914 static bfd_boolean mips_fix_loongson2f_jump;
915
916 /* ...likewise -mfix-loongson2f-nop. */
917 static bfd_boolean mips_fix_loongson2f_nop;
918
919 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
920 static bfd_boolean mips_fix_loongson2f;
921
922 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
923 there must be at least one other instruction between an instruction
924 of type X and an instruction of type Y. */
925 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
926
927 /* True if -mfix-vr4120 is in force. */
928 static int mips_fix_vr4120;
929
930 /* ...likewise -mfix-vr4130. */
931 static int mips_fix_vr4130;
932
933 /* ...likewise -mfix-24k. */
934 static int mips_fix_24k;
935
936 /* ...likewise -mfix-rm7000 */
937 static int mips_fix_rm7000;
938
939 /* ...likewise -mfix-cn63xxp1 */
940 static bfd_boolean mips_fix_cn63xxp1;
941
942 /* We don't relax branches by default, since this causes us to expand
943 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
944 fail to compute the offset before expanding the macro to the most
945 efficient expansion. */
946
947 static int mips_relax_branch;
948
949 /* TRUE if checks are suppressed for invalid branches between ISA modes.
950 Needed for broken assembly produced by some GCC versions and some
951 sloppy code out there, where branches to data labels are present. */
952 static bfd_boolean mips_ignore_branch_isa;
953 \f
954 /* The expansion of many macros depends on the type of symbol that
955 they refer to. For example, when generating position-dependent code,
956 a macro that refers to a symbol may have two different expansions,
957 one which uses GP-relative addresses and one which uses absolute
958 addresses. When generating SVR4-style PIC, a macro may have
959 different expansions for local and global symbols.
960
961 We handle these situations by generating both sequences and putting
962 them in variant frags. In position-dependent code, the first sequence
963 will be the GP-relative one and the second sequence will be the
964 absolute one. In SVR4 PIC, the first sequence will be for global
965 symbols and the second will be for local symbols.
966
967 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
968 SECOND are the lengths of the two sequences in bytes. These fields
969 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
970 the subtype has the following flags:
971
972 RELAX_PIC
973 Set if generating PIC code.
974
975 RELAX_USE_SECOND
976 Set if it has been decided that we should use the second
977 sequence instead of the first.
978
979 RELAX_SECOND_LONGER
980 Set in the first variant frag if the macro's second implementation
981 is longer than its first. This refers to the macro as a whole,
982 not an individual relaxation.
983
984 RELAX_NOMACRO
985 Set in the first variant frag if the macro appeared in a .set nomacro
986 block and if one alternative requires a warning but the other does not.
987
988 RELAX_DELAY_SLOT
989 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
990 delay slot.
991
992 RELAX_DELAY_SLOT_16BIT
993 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
994 16-bit instruction.
995
996 RELAX_DELAY_SLOT_SIZE_FIRST
997 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
998 the macro is of the wrong size for the branch delay slot.
999
1000 RELAX_DELAY_SLOT_SIZE_SECOND
1001 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1002 the macro is of the wrong size for the branch delay slot.
1003
1004 The frag's "opcode" points to the first fixup for relaxable code.
1005
1006 Relaxable macros are generated using a sequence such as:
1007
1008 relax_start (SYMBOL);
1009 ... generate first expansion ...
1010 relax_switch ();
1011 ... generate second expansion ...
1012 relax_end ();
1013
1014 The code and fixups for the unwanted alternative are discarded
1015 by md_convert_frag. */
1016 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1017 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1018
1019 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1020 #define RELAX_SECOND(X) ((X) & 0xff)
1021 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1022 #define RELAX_USE_SECOND 0x20000
1023 #define RELAX_SECOND_LONGER 0x40000
1024 #define RELAX_NOMACRO 0x80000
1025 #define RELAX_DELAY_SLOT 0x100000
1026 #define RELAX_DELAY_SLOT_16BIT 0x200000
1027 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1028 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1029
1030 /* Branch without likely bit. If label is out of range, we turn:
1031
1032 beq reg1, reg2, label
1033 delay slot
1034
1035 into
1036
1037 bne reg1, reg2, 0f
1038 nop
1039 j label
1040 0: delay slot
1041
1042 with the following opcode replacements:
1043
1044 beq <-> bne
1045 blez <-> bgtz
1046 bltz <-> bgez
1047 bc1f <-> bc1t
1048
1049 bltzal <-> bgezal (with jal label instead of j label)
1050
1051 Even though keeping the delay slot instruction in the delay slot of
1052 the branch would be more efficient, it would be very tricky to do
1053 correctly, because we'd have to introduce a variable frag *after*
1054 the delay slot instruction, and expand that instead. Let's do it
1055 the easy way for now, even if the branch-not-taken case now costs
1056 one additional instruction. Out-of-range branches are not supposed
1057 to be common, anyway.
1058
1059 Branch likely. If label is out of range, we turn:
1060
1061 beql reg1, reg2, label
1062 delay slot (annulled if branch not taken)
1063
1064 into
1065
1066 beql reg1, reg2, 1f
1067 nop
1068 beql $0, $0, 2f
1069 nop
1070 1: j[al] label
1071 delay slot (executed only if branch taken)
1072 2:
1073
1074 It would be possible to generate a shorter sequence by losing the
1075 likely bit, generating something like:
1076
1077 bne reg1, reg2, 0f
1078 nop
1079 j[al] label
1080 delay slot (executed only if branch taken)
1081 0:
1082
1083 beql -> bne
1084 bnel -> beq
1085 blezl -> bgtz
1086 bgtzl -> blez
1087 bltzl -> bgez
1088 bgezl -> bltz
1089 bc1fl -> bc1t
1090 bc1tl -> bc1f
1091
1092 bltzall -> bgezal (with jal label instead of j label)
1093 bgezall -> bltzal (ditto)
1094
1095
1096 but it's not clear that it would actually improve performance. */
1097 #define RELAX_BRANCH_ENCODE(at, pic, \
1098 uncond, likely, link, toofar) \
1099 ((relax_substateT) \
1100 (0xc0000000 \
1101 | ((at) & 0x1f) \
1102 | ((pic) ? 0x20 : 0) \
1103 | ((toofar) ? 0x40 : 0) \
1104 | ((link) ? 0x80 : 0) \
1105 | ((likely) ? 0x100 : 0) \
1106 | ((uncond) ? 0x200 : 0)))
1107 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1108 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1109 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1110 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1111 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1112 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1113 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1114
1115 /* For mips16 code, we use an entirely different form of relaxation.
1116 mips16 supports two versions of most instructions which take
1117 immediate values: a small one which takes some small value, and a
1118 larger one which takes a 16 bit value. Since branches also follow
1119 this pattern, relaxing these values is required.
1120
1121 We can assemble both mips16 and normal MIPS code in a single
1122 object. Therefore, we need to support this type of relaxation at
1123 the same time that we support the relaxation described above. We
1124 use the high bit of the subtype field to distinguish these cases.
1125
1126 The information we store for this type of relaxation is the
1127 argument code found in the opcode file for this relocation, whether
1128 the user explicitly requested a small or extended form, and whether
1129 the relocation is in a jump or jal delay slot. That tells us the
1130 size of the value, and how it should be stored. We also store
1131 whether the fragment is considered to be extended or not. We also
1132 store whether this is known to be a branch to a different section,
1133 whether we have tried to relax this frag yet, and whether we have
1134 ever extended a PC relative fragment because of a shift count. */
1135 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1136 small, ext, \
1137 dslot, jal_dslot) \
1138 (0x80000000 \
1139 | ((type) & 0xff) \
1140 | ((e2) ? 0x100 : 0) \
1141 | ((pic) ? 0x200 : 0) \
1142 | ((sym32) ? 0x400 : 0) \
1143 | ((nomacro) ? 0x800 : 0) \
1144 | ((small) ? 0x1000 : 0) \
1145 | ((ext) ? 0x2000 : 0) \
1146 | ((dslot) ? 0x4000 : 0) \
1147 | ((jal_dslot) ? 0x8000 : 0))
1148
1149 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1150 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1151 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1152 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1153 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1154 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1155 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1156 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1157 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1158 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1159
1160 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1161 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1162 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1163 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1164 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1165 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1166 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1167 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1168 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1169
1170 /* For microMIPS code, we use relaxation similar to one we use for
1171 MIPS16 code. Some instructions that take immediate values support
1172 two encodings: a small one which takes some small value, and a
1173 larger one which takes a 16 bit value. As some branches also follow
1174 this pattern, relaxing these values is required.
1175
1176 We can assemble both microMIPS and normal MIPS code in a single
1177 object. Therefore, we need to support this type of relaxation at
1178 the same time that we support the relaxation described above. We
1179 use one of the high bits of the subtype field to distinguish these
1180 cases.
1181
1182 The information we store for this type of relaxation is the argument
1183 code found in the opcode file for this relocation, the register
1184 selected as the assembler temporary, whether in the 32-bit
1185 instruction mode, whether the branch is unconditional, whether it is
1186 compact, whether there is no delay-slot instruction available to fill
1187 in, whether it stores the link address implicitly in $ra, whether
1188 relaxation of out-of-range 32-bit branches to a sequence of
1189 instructions is enabled, and whether the displacement of a branch is
1190 too large to fit as an immediate argument of a 16-bit and a 32-bit
1191 branch, respectively. */
1192 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1193 uncond, compact, link, nods, \
1194 relax32, toofar16, toofar32) \
1195 (0x40000000 \
1196 | ((type) & 0xff) \
1197 | (((at) & 0x1f) << 8) \
1198 | ((insn32) ? 0x2000 : 0) \
1199 | ((pic) ? 0x4000 : 0) \
1200 | ((uncond) ? 0x8000 : 0) \
1201 | ((compact) ? 0x10000 : 0) \
1202 | ((link) ? 0x20000 : 0) \
1203 | ((nods) ? 0x40000 : 0) \
1204 | ((relax32) ? 0x80000 : 0) \
1205 | ((toofar16) ? 0x100000 : 0) \
1206 | ((toofar32) ? 0x200000 : 0))
1207 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1208 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1209 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1210 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1211 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1212 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1213 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1214 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1215 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1216 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1217
1218 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1219 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1220 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1221 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1222 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1223 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1224
1225 /* Sign-extend 16-bit value X. */
1226 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1227
1228 /* Is the given value a sign-extended 32-bit value? */
1229 #define IS_SEXT_32BIT_NUM(x) \
1230 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1231 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1232
1233 /* Is the given value a sign-extended 16-bit value? */
1234 #define IS_SEXT_16BIT_NUM(x) \
1235 (((x) &~ (offsetT) 0x7fff) == 0 \
1236 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1237
1238 /* Is the given value a sign-extended 12-bit value? */
1239 #define IS_SEXT_12BIT_NUM(x) \
1240 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1241
1242 /* Is the given value a sign-extended 9-bit value? */
1243 #define IS_SEXT_9BIT_NUM(x) \
1244 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1245
1246 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1247 #define IS_ZEXT_32BIT_NUM(x) \
1248 (((x) &~ (offsetT) 0xffffffff) == 0 \
1249 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1250
1251 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1252 SHIFT places. */
1253 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1254 (((STRUCT) >> (SHIFT)) & (MASK))
1255
1256 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1257 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1258 (!(MICROMIPS) \
1259 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1260 : EXTRACT_BITS ((INSN).insn_opcode, \
1261 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1262 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1263 EXTRACT_BITS ((INSN).insn_opcode, \
1264 MIPS16OP_MASK_##FIELD, \
1265 MIPS16OP_SH_##FIELD)
1266
1267 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1268 #define MIPS16_EXTEND (0xf000U << 16)
1269 \f
1270 /* Whether or not we are emitting a branch-likely macro. */
1271 static bfd_boolean emit_branch_likely_macro = FALSE;
1272
1273 /* Global variables used when generating relaxable macros. See the
1274 comment above RELAX_ENCODE for more details about how relaxation
1275 is used. */
1276 static struct {
1277 /* 0 if we're not emitting a relaxable macro.
1278 1 if we're emitting the first of the two relaxation alternatives.
1279 2 if we're emitting the second alternative. */
1280 int sequence;
1281
1282 /* The first relaxable fixup in the current frag. (In other words,
1283 the first fixup that refers to relaxable code.) */
1284 fixS *first_fixup;
1285
1286 /* sizes[0] says how many bytes of the first alternative are stored in
1287 the current frag. Likewise sizes[1] for the second alternative. */
1288 unsigned int sizes[2];
1289
1290 /* The symbol on which the choice of sequence depends. */
1291 symbolS *symbol;
1292 } mips_relax;
1293 \f
1294 /* Global variables used to decide whether a macro needs a warning. */
1295 static struct {
1296 /* True if the macro is in a branch delay slot. */
1297 bfd_boolean delay_slot_p;
1298
1299 /* Set to the length in bytes required if the macro is in a delay slot
1300 that requires a specific length of instruction, otherwise zero. */
1301 unsigned int delay_slot_length;
1302
1303 /* For relaxable macros, sizes[0] is the length of the first alternative
1304 in bytes and sizes[1] is the length of the second alternative.
1305 For non-relaxable macros, both elements give the length of the
1306 macro in bytes. */
1307 unsigned int sizes[2];
1308
1309 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1310 instruction of the first alternative in bytes and first_insn_sizes[1]
1311 is the length of the first instruction of the second alternative.
1312 For non-relaxable macros, both elements give the length of the first
1313 instruction in bytes.
1314
1315 Set to zero if we haven't yet seen the first instruction. */
1316 unsigned int first_insn_sizes[2];
1317
1318 /* For relaxable macros, insns[0] is the number of instructions for the
1319 first alternative and insns[1] is the number of instructions for the
1320 second alternative.
1321
1322 For non-relaxable macros, both elements give the number of
1323 instructions for the macro. */
1324 unsigned int insns[2];
1325
1326 /* The first variant frag for this macro. */
1327 fragS *first_frag;
1328 } mips_macro_warning;
1329 \f
1330 /* Prototypes for static functions. */
1331
1332 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1333
1334 static void append_insn
1335 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1336 bfd_boolean expansionp);
1337 static void mips_no_prev_insn (void);
1338 static void macro_build (expressionS *, const char *, const char *, ...);
1339 static void mips16_macro_build
1340 (expressionS *, const char *, const char *, va_list *);
1341 static void load_register (int, expressionS *, int);
1342 static void macro_start (void);
1343 static void macro_end (void);
1344 static void macro (struct mips_cl_insn *ip, char *str);
1345 static void mips16_macro (struct mips_cl_insn * ip);
1346 static void mips_ip (char *str, struct mips_cl_insn * ip);
1347 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1348 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1349 static void mips16_immed
1350 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1351 unsigned int, unsigned long *);
1352 static size_t my_getSmallExpression
1353 (expressionS *, bfd_reloc_code_real_type *, char *);
1354 static void my_getExpression (expressionS *, char *);
1355 static void s_align (int);
1356 static void s_change_sec (int);
1357 static void s_change_section (int);
1358 static void s_cons (int);
1359 static void s_float_cons (int);
1360 static void s_mips_globl (int);
1361 static void s_option (int);
1362 static void s_mipsset (int);
1363 static void s_abicalls (int);
1364 static void s_cpload (int);
1365 static void s_cpsetup (int);
1366 static void s_cplocal (int);
1367 static void s_cprestore (int);
1368 static void s_cpreturn (int);
1369 static void s_dtprelword (int);
1370 static void s_dtpreldword (int);
1371 static void s_tprelword (int);
1372 static void s_tpreldword (int);
1373 static void s_gpvalue (int);
1374 static void s_gpword (int);
1375 static void s_gpdword (int);
1376 static void s_ehword (int);
1377 static void s_cpadd (int);
1378 static void s_insn (int);
1379 static void s_nan (int);
1380 static void s_module (int);
1381 static void s_mips_ent (int);
1382 static void s_mips_end (int);
1383 static void s_mips_frame (int);
1384 static void s_mips_mask (int reg_type);
1385 static void s_mips_stab (int);
1386 static void s_mips_weakext (int);
1387 static void s_mips_file (int);
1388 static void s_mips_loc (int);
1389 static bfd_boolean pic_need_relax (symbolS *);
1390 static int relaxed_branch_length (fragS *, asection *, int);
1391 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1392 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1393 static void file_mips_check_options (void);
1394
1395 /* Table and functions used to map between CPU/ISA names, and
1396 ISA levels, and CPU numbers. */
1397
1398 struct mips_cpu_info
1399 {
1400 const char *name; /* CPU or ISA name. */
1401 int flags; /* MIPS_CPU_* flags. */
1402 int ase; /* Set of ASEs implemented by the CPU. */
1403 int isa; /* ISA level. */
1404 int cpu; /* CPU number (default CPU if ISA). */
1405 };
1406
1407 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1408
1409 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1410 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1411 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1412 \f
1413 /* Command-line options. */
1414 const char *md_shortopts = "O::g::G:";
1415
1416 enum options
1417 {
1418 OPTION_MARCH = OPTION_MD_BASE,
1419 OPTION_MTUNE,
1420 OPTION_MIPS1,
1421 OPTION_MIPS2,
1422 OPTION_MIPS3,
1423 OPTION_MIPS4,
1424 OPTION_MIPS5,
1425 OPTION_MIPS32,
1426 OPTION_MIPS64,
1427 OPTION_MIPS32R2,
1428 OPTION_MIPS32R3,
1429 OPTION_MIPS32R5,
1430 OPTION_MIPS32R6,
1431 OPTION_MIPS64R2,
1432 OPTION_MIPS64R3,
1433 OPTION_MIPS64R5,
1434 OPTION_MIPS64R6,
1435 OPTION_MIPS16,
1436 OPTION_NO_MIPS16,
1437 OPTION_MIPS3D,
1438 OPTION_NO_MIPS3D,
1439 OPTION_MDMX,
1440 OPTION_NO_MDMX,
1441 OPTION_DSP,
1442 OPTION_NO_DSP,
1443 OPTION_MT,
1444 OPTION_NO_MT,
1445 OPTION_VIRT,
1446 OPTION_NO_VIRT,
1447 OPTION_MSA,
1448 OPTION_NO_MSA,
1449 OPTION_SMARTMIPS,
1450 OPTION_NO_SMARTMIPS,
1451 OPTION_DSPR2,
1452 OPTION_NO_DSPR2,
1453 OPTION_DSPR3,
1454 OPTION_NO_DSPR3,
1455 OPTION_EVA,
1456 OPTION_NO_EVA,
1457 OPTION_XPA,
1458 OPTION_NO_XPA,
1459 OPTION_MICROMIPS,
1460 OPTION_NO_MICROMIPS,
1461 OPTION_MCU,
1462 OPTION_NO_MCU,
1463 OPTION_MIPS16E2,
1464 OPTION_NO_MIPS16E2,
1465 OPTION_CRC,
1466 OPTION_NO_CRC,
1467 OPTION_M4650,
1468 OPTION_NO_M4650,
1469 OPTION_M4010,
1470 OPTION_NO_M4010,
1471 OPTION_M4100,
1472 OPTION_NO_M4100,
1473 OPTION_M3900,
1474 OPTION_NO_M3900,
1475 OPTION_M7000_HILO_FIX,
1476 OPTION_MNO_7000_HILO_FIX,
1477 OPTION_FIX_24K,
1478 OPTION_NO_FIX_24K,
1479 OPTION_FIX_RM7000,
1480 OPTION_NO_FIX_RM7000,
1481 OPTION_FIX_LOONGSON2F_JUMP,
1482 OPTION_NO_FIX_LOONGSON2F_JUMP,
1483 OPTION_FIX_LOONGSON2F_NOP,
1484 OPTION_NO_FIX_LOONGSON2F_NOP,
1485 OPTION_FIX_VR4120,
1486 OPTION_NO_FIX_VR4120,
1487 OPTION_FIX_VR4130,
1488 OPTION_NO_FIX_VR4130,
1489 OPTION_FIX_CN63XXP1,
1490 OPTION_NO_FIX_CN63XXP1,
1491 OPTION_TRAP,
1492 OPTION_BREAK,
1493 OPTION_EB,
1494 OPTION_EL,
1495 OPTION_FP32,
1496 OPTION_GP32,
1497 OPTION_CONSTRUCT_FLOATS,
1498 OPTION_NO_CONSTRUCT_FLOATS,
1499 OPTION_FP64,
1500 OPTION_FPXX,
1501 OPTION_GP64,
1502 OPTION_RELAX_BRANCH,
1503 OPTION_NO_RELAX_BRANCH,
1504 OPTION_IGNORE_BRANCH_ISA,
1505 OPTION_NO_IGNORE_BRANCH_ISA,
1506 OPTION_INSN32,
1507 OPTION_NO_INSN32,
1508 OPTION_MSHARED,
1509 OPTION_MNO_SHARED,
1510 OPTION_MSYM32,
1511 OPTION_MNO_SYM32,
1512 OPTION_SOFT_FLOAT,
1513 OPTION_HARD_FLOAT,
1514 OPTION_SINGLE_FLOAT,
1515 OPTION_DOUBLE_FLOAT,
1516 OPTION_32,
1517 OPTION_CALL_SHARED,
1518 OPTION_CALL_NONPIC,
1519 OPTION_NON_SHARED,
1520 OPTION_XGOT,
1521 OPTION_MABI,
1522 OPTION_N32,
1523 OPTION_64,
1524 OPTION_MDEBUG,
1525 OPTION_NO_MDEBUG,
1526 OPTION_PDR,
1527 OPTION_NO_PDR,
1528 OPTION_MVXWORKS_PIC,
1529 OPTION_NAN,
1530 OPTION_ODD_SPREG,
1531 OPTION_NO_ODD_SPREG,
1532 OPTION_GINV,
1533 OPTION_NO_GINV,
1534 OPTION_LOONGSON_MMI,
1535 OPTION_NO_LOONGSON_MMI,
1536 OPTION_LOONGSON_CAM,
1537 OPTION_NO_LOONGSON_CAM,
1538 OPTION_LOONGSON_EXT,
1539 OPTION_NO_LOONGSON_EXT,
1540 OPTION_LOONGSON_EXT2,
1541 OPTION_NO_LOONGSON_EXT2,
1542 OPTION_END_OF_ENUM
1543 };
1544
1545 struct option md_longopts[] =
1546 {
1547 /* Options which specify architecture. */
1548 {"march", required_argument, NULL, OPTION_MARCH},
1549 {"mtune", required_argument, NULL, OPTION_MTUNE},
1550 {"mips0", no_argument, NULL, OPTION_MIPS1},
1551 {"mips1", no_argument, NULL, OPTION_MIPS1},
1552 {"mips2", no_argument, NULL, OPTION_MIPS2},
1553 {"mips3", no_argument, NULL, OPTION_MIPS3},
1554 {"mips4", no_argument, NULL, OPTION_MIPS4},
1555 {"mips5", no_argument, NULL, OPTION_MIPS5},
1556 {"mips32", no_argument, NULL, OPTION_MIPS32},
1557 {"mips64", no_argument, NULL, OPTION_MIPS64},
1558 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1559 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1560 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1561 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1562 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1563 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1564 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1565 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1566
1567 /* Options which specify Application Specific Extensions (ASEs). */
1568 {"mips16", no_argument, NULL, OPTION_MIPS16},
1569 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1570 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1571 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1572 {"mdmx", no_argument, NULL, OPTION_MDMX},
1573 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1574 {"mdsp", no_argument, NULL, OPTION_DSP},
1575 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1576 {"mmt", no_argument, NULL, OPTION_MT},
1577 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1578 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1579 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1580 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1581 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1582 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1583 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1584 {"meva", no_argument, NULL, OPTION_EVA},
1585 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1586 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1587 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1588 {"mmcu", no_argument, NULL, OPTION_MCU},
1589 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1590 {"mvirt", no_argument, NULL, OPTION_VIRT},
1591 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1592 {"mmsa", no_argument, NULL, OPTION_MSA},
1593 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1594 {"mxpa", no_argument, NULL, OPTION_XPA},
1595 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1596 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1597 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1598 {"mcrc", no_argument, NULL, OPTION_CRC},
1599 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1600 {"mginv", no_argument, NULL, OPTION_GINV},
1601 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1602 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1603 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1604 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1605 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1606 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1607 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1608 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1609 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1610
1611 /* Old-style architecture options. Don't add more of these. */
1612 {"m4650", no_argument, NULL, OPTION_M4650},
1613 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1614 {"m4010", no_argument, NULL, OPTION_M4010},
1615 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1616 {"m4100", no_argument, NULL, OPTION_M4100},
1617 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1618 {"m3900", no_argument, NULL, OPTION_M3900},
1619 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1620
1621 /* Options which enable bug fixes. */
1622 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1623 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1624 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1625 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1626 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1627 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1628 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1629 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1630 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1631 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1632 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1633 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1634 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1635 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1636 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1637 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1638 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1639
1640 /* Miscellaneous options. */
1641 {"trap", no_argument, NULL, OPTION_TRAP},
1642 {"no-break", no_argument, NULL, OPTION_TRAP},
1643 {"break", no_argument, NULL, OPTION_BREAK},
1644 {"no-trap", no_argument, NULL, OPTION_BREAK},
1645 {"EB", no_argument, NULL, OPTION_EB},
1646 {"EL", no_argument, NULL, OPTION_EL},
1647 {"mfp32", no_argument, NULL, OPTION_FP32},
1648 {"mgp32", no_argument, NULL, OPTION_GP32},
1649 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1650 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1651 {"mfp64", no_argument, NULL, OPTION_FP64},
1652 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1653 {"mgp64", no_argument, NULL, OPTION_GP64},
1654 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1655 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1656 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1657 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1658 {"minsn32", no_argument, NULL, OPTION_INSN32},
1659 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1660 {"mshared", no_argument, NULL, OPTION_MSHARED},
1661 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1662 {"msym32", no_argument, NULL, OPTION_MSYM32},
1663 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1664 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1665 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1666 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1667 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1668 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1669 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1670
1671 /* Strictly speaking this next option is ELF specific,
1672 but we allow it for other ports as well in order to
1673 make testing easier. */
1674 {"32", no_argument, NULL, OPTION_32},
1675
1676 /* ELF-specific options. */
1677 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1678 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1679 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1680 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1681 {"xgot", no_argument, NULL, OPTION_XGOT},
1682 {"mabi", required_argument, NULL, OPTION_MABI},
1683 {"n32", no_argument, NULL, OPTION_N32},
1684 {"64", no_argument, NULL, OPTION_64},
1685 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1686 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1687 {"mpdr", no_argument, NULL, OPTION_PDR},
1688 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1689 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1690 {"mnan", required_argument, NULL, OPTION_NAN},
1691
1692 {NULL, no_argument, NULL, 0}
1693 };
1694 size_t md_longopts_size = sizeof (md_longopts);
1695 \f
1696 /* Information about either an Application Specific Extension or an
1697 optional architecture feature that, for simplicity, we treat in the
1698 same way as an ASE. */
1699 struct mips_ase
1700 {
1701 /* The name of the ASE, used in both the command-line and .set options. */
1702 const char *name;
1703
1704 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1705 and 64-bit architectures, the flags here refer to the subset that
1706 is available on both. */
1707 unsigned int flags;
1708
1709 /* The ASE_* flag used for instructions that are available on 64-bit
1710 architectures but that are not included in FLAGS. */
1711 unsigned int flags64;
1712
1713 /* The command-line options that turn the ASE on and off. */
1714 int option_on;
1715 int option_off;
1716
1717 /* The minimum required architecture revisions for MIPS32, MIPS64,
1718 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1719 int mips32_rev;
1720 int mips64_rev;
1721 int micromips32_rev;
1722 int micromips64_rev;
1723
1724 /* The architecture where the ASE was removed or -1 if the extension has not
1725 been removed. */
1726 int rem_rev;
1727 };
1728
1729 /* A table of all supported ASEs. */
1730 static const struct mips_ase mips_ases[] = {
1731 { "dsp", ASE_DSP, ASE_DSP64,
1732 OPTION_DSP, OPTION_NO_DSP,
1733 2, 2, 2, 2,
1734 -1 },
1735
1736 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1737 OPTION_DSPR2, OPTION_NO_DSPR2,
1738 2, 2, 2, 2,
1739 -1 },
1740
1741 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1742 OPTION_DSPR3, OPTION_NO_DSPR3,
1743 6, 6, -1, -1,
1744 -1 },
1745
1746 { "eva", ASE_EVA, 0,
1747 OPTION_EVA, OPTION_NO_EVA,
1748 2, 2, 2, 2,
1749 -1 },
1750
1751 { "mcu", ASE_MCU, 0,
1752 OPTION_MCU, OPTION_NO_MCU,
1753 2, 2, 2, 2,
1754 -1 },
1755
1756 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1757 { "mdmx", ASE_MDMX, 0,
1758 OPTION_MDMX, OPTION_NO_MDMX,
1759 -1, 1, -1, -1,
1760 6 },
1761
1762 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1763 { "mips3d", ASE_MIPS3D, 0,
1764 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1765 2, 1, -1, -1,
1766 6 },
1767
1768 { "mt", ASE_MT, 0,
1769 OPTION_MT, OPTION_NO_MT,
1770 2, 2, -1, -1,
1771 -1 },
1772
1773 { "smartmips", ASE_SMARTMIPS, 0,
1774 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1775 1, -1, -1, -1,
1776 6 },
1777
1778 { "virt", ASE_VIRT, ASE_VIRT64,
1779 OPTION_VIRT, OPTION_NO_VIRT,
1780 2, 2, 2, 2,
1781 -1 },
1782
1783 { "msa", ASE_MSA, ASE_MSA64,
1784 OPTION_MSA, OPTION_NO_MSA,
1785 2, 2, 2, 2,
1786 -1 },
1787
1788 { "xpa", ASE_XPA, 0,
1789 OPTION_XPA, OPTION_NO_XPA,
1790 2, 2, 2, 2,
1791 -1 },
1792
1793 { "mips16e2", ASE_MIPS16E2, 0,
1794 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1795 2, 2, -1, -1,
1796 6 },
1797
1798 { "crc", ASE_CRC, ASE_CRC64,
1799 OPTION_CRC, OPTION_NO_CRC,
1800 6, 6, -1, -1,
1801 -1 },
1802
1803 { "ginv", ASE_GINV, 0,
1804 OPTION_GINV, OPTION_NO_GINV,
1805 6, 6, 6, 6,
1806 -1 },
1807
1808 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1809 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1810 0, 0, -1, -1,
1811 -1 },
1812
1813 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1814 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1815 0, 0, -1, -1,
1816 -1 },
1817
1818 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1819 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1820 0, 0, -1, -1,
1821 -1 },
1822
1823 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1824 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1825 0, 0, -1, -1,
1826 -1 },
1827 };
1828
1829 /* The set of ASEs that require -mfp64. */
1830 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1831
1832 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1833 static const unsigned int mips_ase_groups[] = {
1834 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1835 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1836 };
1837 \f
1838 /* Pseudo-op table.
1839
1840 The following pseudo-ops from the Kane and Heinrich MIPS book
1841 should be defined here, but are currently unsupported: .alias,
1842 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1843
1844 The following pseudo-ops from the Kane and Heinrich MIPS book are
1845 specific to the type of debugging information being generated, and
1846 should be defined by the object format: .aent, .begin, .bend,
1847 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1848 .vreg.
1849
1850 The following pseudo-ops from the Kane and Heinrich MIPS book are
1851 not MIPS CPU specific, but are also not specific to the object file
1852 format. This file is probably the best place to define them, but
1853 they are not currently supported: .asm0, .endr, .lab, .struct. */
1854
1855 static const pseudo_typeS mips_pseudo_table[] =
1856 {
1857 /* MIPS specific pseudo-ops. */
1858 {"option", s_option, 0},
1859 {"set", s_mipsset, 0},
1860 {"rdata", s_change_sec, 'r'},
1861 {"sdata", s_change_sec, 's'},
1862 {"livereg", s_ignore, 0},
1863 {"abicalls", s_abicalls, 0},
1864 {"cpload", s_cpload, 0},
1865 {"cpsetup", s_cpsetup, 0},
1866 {"cplocal", s_cplocal, 0},
1867 {"cprestore", s_cprestore, 0},
1868 {"cpreturn", s_cpreturn, 0},
1869 {"dtprelword", s_dtprelword, 0},
1870 {"dtpreldword", s_dtpreldword, 0},
1871 {"tprelword", s_tprelword, 0},
1872 {"tpreldword", s_tpreldword, 0},
1873 {"gpvalue", s_gpvalue, 0},
1874 {"gpword", s_gpword, 0},
1875 {"gpdword", s_gpdword, 0},
1876 {"ehword", s_ehword, 0},
1877 {"cpadd", s_cpadd, 0},
1878 {"insn", s_insn, 0},
1879 {"nan", s_nan, 0},
1880 {"module", s_module, 0},
1881
1882 /* Relatively generic pseudo-ops that happen to be used on MIPS
1883 chips. */
1884 {"asciiz", stringer, 8 + 1},
1885 {"bss", s_change_sec, 'b'},
1886 {"err", s_err, 0},
1887 {"half", s_cons, 1},
1888 {"dword", s_cons, 3},
1889 {"weakext", s_mips_weakext, 0},
1890 {"origin", s_org, 0},
1891 {"repeat", s_rept, 0},
1892
1893 /* For MIPS this is non-standard, but we define it for consistency. */
1894 {"sbss", s_change_sec, 'B'},
1895
1896 /* These pseudo-ops are defined in read.c, but must be overridden
1897 here for one reason or another. */
1898 {"align", s_align, 0},
1899 {"byte", s_cons, 0},
1900 {"data", s_change_sec, 'd'},
1901 {"double", s_float_cons, 'd'},
1902 {"float", s_float_cons, 'f'},
1903 {"globl", s_mips_globl, 0},
1904 {"global", s_mips_globl, 0},
1905 {"hword", s_cons, 1},
1906 {"int", s_cons, 2},
1907 {"long", s_cons, 2},
1908 {"octa", s_cons, 4},
1909 {"quad", s_cons, 3},
1910 {"section", s_change_section, 0},
1911 {"short", s_cons, 1},
1912 {"single", s_float_cons, 'f'},
1913 {"stabd", s_mips_stab, 'd'},
1914 {"stabn", s_mips_stab, 'n'},
1915 {"stabs", s_mips_stab, 's'},
1916 {"text", s_change_sec, 't'},
1917 {"word", s_cons, 2},
1918
1919 { "extern", ecoff_directive_extern, 0},
1920
1921 { NULL, NULL, 0 },
1922 };
1923
1924 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1925 {
1926 /* These pseudo-ops should be defined by the object file format.
1927 However, a.out doesn't support them, so we have versions here. */
1928 {"aent", s_mips_ent, 1},
1929 {"bgnb", s_ignore, 0},
1930 {"end", s_mips_end, 0},
1931 {"endb", s_ignore, 0},
1932 {"ent", s_mips_ent, 0},
1933 {"file", s_mips_file, 0},
1934 {"fmask", s_mips_mask, 'F'},
1935 {"frame", s_mips_frame, 0},
1936 {"loc", s_mips_loc, 0},
1937 {"mask", s_mips_mask, 'R'},
1938 {"verstamp", s_ignore, 0},
1939 { NULL, NULL, 0 },
1940 };
1941
1942 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1943 purpose of the `.dc.a' internal pseudo-op. */
1944
1945 int
1946 mips_address_bytes (void)
1947 {
1948 file_mips_check_options ();
1949 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1950 }
1951
1952 extern void pop_insert (const pseudo_typeS *);
1953
1954 void
1955 mips_pop_insert (void)
1956 {
1957 pop_insert (mips_pseudo_table);
1958 if (! ECOFF_DEBUGGING)
1959 pop_insert (mips_nonecoff_pseudo_table);
1960 }
1961 \f
1962 /* Symbols labelling the current insn. */
1963
1964 struct insn_label_list
1965 {
1966 struct insn_label_list *next;
1967 symbolS *label;
1968 };
1969
1970 static struct insn_label_list *free_insn_labels;
1971 #define label_list tc_segment_info_data.labels
1972
1973 static void mips_clear_insn_labels (void);
1974 static void mips_mark_labels (void);
1975 static void mips_compressed_mark_labels (void);
1976
1977 static inline void
1978 mips_clear_insn_labels (void)
1979 {
1980 struct insn_label_list **pl;
1981 segment_info_type *si;
1982
1983 if (now_seg)
1984 {
1985 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1986 ;
1987
1988 si = seg_info (now_seg);
1989 *pl = si->label_list;
1990 si->label_list = NULL;
1991 }
1992 }
1993
1994 /* Mark instruction labels in MIPS16/microMIPS mode. */
1995
1996 static inline void
1997 mips_mark_labels (void)
1998 {
1999 if (HAVE_CODE_COMPRESSION)
2000 mips_compressed_mark_labels ();
2001 }
2002 \f
2003 static char *expr_end;
2004
2005 /* An expression in a macro instruction. This is set by mips_ip and
2006 mips16_ip and when populated is always an O_constant. */
2007
2008 static expressionS imm_expr;
2009
2010 /* The relocatable field in an instruction and the relocs associated
2011 with it. These variables are used for instructions like LUI and
2012 JAL as well as true offsets. They are also used for address
2013 operands in macros. */
2014
2015 static expressionS offset_expr;
2016 static bfd_reloc_code_real_type offset_reloc[3]
2017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2018
2019 /* This is set to the resulting size of the instruction to be produced
2020 by mips16_ip if an explicit extension is used or by mips_ip if an
2021 explicit size is supplied. */
2022
2023 static unsigned int forced_insn_length;
2024
2025 /* True if we are assembling an instruction. All dot symbols defined during
2026 this time should be treated as code labels. */
2027
2028 static bfd_boolean mips_assembling_insn;
2029
2030 /* The pdr segment for per procedure frame/regmask info. Not used for
2031 ECOFF debugging. */
2032
2033 static segT pdr_seg;
2034
2035 /* The default target format to use. */
2036
2037 #if defined (TE_FreeBSD)
2038 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2039 #elif defined (TE_TMIPS)
2040 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2041 #else
2042 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2043 #endif
2044
2045 const char *
2046 mips_target_format (void)
2047 {
2048 switch (OUTPUT_FLAVOR)
2049 {
2050 case bfd_target_elf_flavour:
2051 #ifdef TE_VXWORKS
2052 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2053 return (target_big_endian
2054 ? "elf32-bigmips-vxworks"
2055 : "elf32-littlemips-vxworks");
2056 #endif
2057 return (target_big_endian
2058 ? (HAVE_64BIT_OBJECTS
2059 ? ELF_TARGET ("elf64-", "big")
2060 : (HAVE_NEWABI
2061 ? ELF_TARGET ("elf32-n", "big")
2062 : ELF_TARGET ("elf32-", "big")))
2063 : (HAVE_64BIT_OBJECTS
2064 ? ELF_TARGET ("elf64-", "little")
2065 : (HAVE_NEWABI
2066 ? ELF_TARGET ("elf32-n", "little")
2067 : ELF_TARGET ("elf32-", "little"))));
2068 default:
2069 abort ();
2070 return NULL;
2071 }
2072 }
2073
2074 /* Return the ISA revision that is currently in use, or 0 if we are
2075 generating code for MIPS V or below. */
2076
2077 static int
2078 mips_isa_rev (void)
2079 {
2080 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2081 return 2;
2082
2083 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2084 return 3;
2085
2086 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2087 return 5;
2088
2089 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2090 return 6;
2091
2092 /* microMIPS implies revision 2 or above. */
2093 if (mips_opts.micromips)
2094 return 2;
2095
2096 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2097 return 1;
2098
2099 return 0;
2100 }
2101
2102 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2103
2104 static unsigned int
2105 mips_ase_mask (unsigned int flags)
2106 {
2107 unsigned int i;
2108
2109 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2110 if (flags & mips_ase_groups[i])
2111 flags |= mips_ase_groups[i];
2112 return flags;
2113 }
2114
2115 /* Check whether the current ISA supports ASE. Issue a warning if
2116 appropriate. */
2117
2118 static void
2119 mips_check_isa_supports_ase (const struct mips_ase *ase)
2120 {
2121 const char *base;
2122 int min_rev, size;
2123 static unsigned int warned_isa;
2124 static unsigned int warned_fp32;
2125
2126 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2127 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2128 else
2129 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2130 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2131 && (warned_isa & ase->flags) != ase->flags)
2132 {
2133 warned_isa |= ase->flags;
2134 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2135 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2136 if (min_rev < 0)
2137 as_warn (_("the %d-bit %s architecture does not support the"
2138 " `%s' extension"), size, base, ase->name);
2139 else
2140 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2141 ase->name, base, size, min_rev);
2142 }
2143 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2144 && (warned_isa & ase->flags) != ase->flags)
2145 {
2146 warned_isa |= ase->flags;
2147 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2148 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2149 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2150 ase->name, base, size, ase->rem_rev);
2151 }
2152
2153 if ((ase->flags & FP64_ASES)
2154 && mips_opts.fp != 64
2155 && (warned_fp32 & ase->flags) != ase->flags)
2156 {
2157 warned_fp32 |= ase->flags;
2158 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2159 }
2160 }
2161
2162 /* Check all enabled ASEs to see whether they are supported by the
2163 chosen architecture. */
2164
2165 static void
2166 mips_check_isa_supports_ases (void)
2167 {
2168 unsigned int i, mask;
2169
2170 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2171 {
2172 mask = mips_ase_mask (mips_ases[i].flags);
2173 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2174 mips_check_isa_supports_ase (&mips_ases[i]);
2175 }
2176 }
2177
2178 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2179 that were affected. */
2180
2181 static unsigned int
2182 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2183 bfd_boolean enabled_p)
2184 {
2185 unsigned int mask;
2186
2187 mask = mips_ase_mask (ase->flags);
2188 opts->ase &= ~mask;
2189
2190 /* Clear combination ASE flags, which need to be recalculated based on
2191 updated regular ASE settings. */
2192 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2193
2194 if (enabled_p)
2195 opts->ase |= ase->flags;
2196
2197 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2198 instructions which are only valid when both ASEs are enabled.
2199 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2200 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2201 {
2202 opts->ase |= ASE_XPA_VIRT;
2203 mask |= ASE_XPA_VIRT;
2204 }
2205 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2206 {
2207 opts->ase |= ASE_MIPS16E2_MT;
2208 mask |= ASE_MIPS16E2_MT;
2209 }
2210
2211 return mask;
2212 }
2213
2214 /* Return the ASE called NAME, or null if none. */
2215
2216 static const struct mips_ase *
2217 mips_lookup_ase (const char *name)
2218 {
2219 unsigned int i;
2220
2221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2222 if (strcmp (name, mips_ases[i].name) == 0)
2223 return &mips_ases[i];
2224 return NULL;
2225 }
2226
2227 /* Return the length of a microMIPS instruction in bytes. If bits of
2228 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2229 otherwise it is a 32-bit instruction. */
2230
2231 static inline unsigned int
2232 micromips_insn_length (const struct mips_opcode *mo)
2233 {
2234 return mips_opcode_32bit_p (mo) ? 4 : 2;
2235 }
2236
2237 /* Return the length of MIPS16 instruction OPCODE. */
2238
2239 static inline unsigned int
2240 mips16_opcode_length (unsigned long opcode)
2241 {
2242 return (opcode >> 16) == 0 ? 2 : 4;
2243 }
2244
2245 /* Return the length of instruction INSN. */
2246
2247 static inline unsigned int
2248 insn_length (const struct mips_cl_insn *insn)
2249 {
2250 if (mips_opts.micromips)
2251 return micromips_insn_length (insn->insn_mo);
2252 else if (mips_opts.mips16)
2253 return mips16_opcode_length (insn->insn_opcode);
2254 else
2255 return 4;
2256 }
2257
2258 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2259
2260 static void
2261 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2262 {
2263 size_t i;
2264
2265 insn->insn_mo = mo;
2266 insn->insn_opcode = mo->match;
2267 insn->frag = NULL;
2268 insn->where = 0;
2269 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2270 insn->fixp[i] = NULL;
2271 insn->fixed_p = (mips_opts.noreorder > 0);
2272 insn->noreorder_p = (mips_opts.noreorder > 0);
2273 insn->mips16_absolute_jump_p = 0;
2274 insn->complete_p = 0;
2275 insn->cleared_p = 0;
2276 }
2277
2278 /* Get a list of all the operands in INSN. */
2279
2280 static const struct mips_operand_array *
2281 insn_operands (const struct mips_cl_insn *insn)
2282 {
2283 if (insn->insn_mo >= &mips_opcodes[0]
2284 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2285 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2286
2287 if (insn->insn_mo >= &mips16_opcodes[0]
2288 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2289 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2290
2291 if (insn->insn_mo >= &micromips_opcodes[0]
2292 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2293 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2294
2295 abort ();
2296 }
2297
2298 /* Get a description of operand OPNO of INSN. */
2299
2300 static const struct mips_operand *
2301 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2302 {
2303 const struct mips_operand_array *operands;
2304
2305 operands = insn_operands (insn);
2306 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2307 abort ();
2308 return operands->operand[opno];
2309 }
2310
2311 /* Install UVAL as the value of OPERAND in INSN. */
2312
2313 static inline void
2314 insn_insert_operand (struct mips_cl_insn *insn,
2315 const struct mips_operand *operand, unsigned int uval)
2316 {
2317 if (mips_opts.mips16
2318 && operand->type == OP_INT && operand->lsb == 0
2319 && mips_opcode_32bit_p (insn->insn_mo))
2320 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2321 else
2322 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2323 }
2324
2325 /* Extract the value of OPERAND from INSN. */
2326
2327 static inline unsigned
2328 insn_extract_operand (const struct mips_cl_insn *insn,
2329 const struct mips_operand *operand)
2330 {
2331 return mips_extract_operand (operand, insn->insn_opcode);
2332 }
2333
2334 /* Record the current MIPS16/microMIPS mode in now_seg. */
2335
2336 static void
2337 mips_record_compressed_mode (void)
2338 {
2339 segment_info_type *si;
2340
2341 si = seg_info (now_seg);
2342 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2343 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2344 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2345 si->tc_segment_info_data.micromips = mips_opts.micromips;
2346 }
2347
2348 /* Read a standard MIPS instruction from BUF. */
2349
2350 static unsigned long
2351 read_insn (char *buf)
2352 {
2353 if (target_big_endian)
2354 return bfd_getb32 ((bfd_byte *) buf);
2355 else
2356 return bfd_getl32 ((bfd_byte *) buf);
2357 }
2358
2359 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2360 the next byte. */
2361
2362 static char *
2363 write_insn (char *buf, unsigned int insn)
2364 {
2365 md_number_to_chars (buf, insn, 4);
2366 return buf + 4;
2367 }
2368
2369 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2370 has length LENGTH. */
2371
2372 static unsigned long
2373 read_compressed_insn (char *buf, unsigned int length)
2374 {
2375 unsigned long insn;
2376 unsigned int i;
2377
2378 insn = 0;
2379 for (i = 0; i < length; i += 2)
2380 {
2381 insn <<= 16;
2382 if (target_big_endian)
2383 insn |= bfd_getb16 ((char *) buf);
2384 else
2385 insn |= bfd_getl16 ((char *) buf);
2386 buf += 2;
2387 }
2388 return insn;
2389 }
2390
2391 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2392 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2393
2394 static char *
2395 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2396 {
2397 unsigned int i;
2398
2399 for (i = 0; i < length; i += 2)
2400 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2401 return buf + length;
2402 }
2403
2404 /* Install INSN at the location specified by its "frag" and "where" fields. */
2405
2406 static void
2407 install_insn (const struct mips_cl_insn *insn)
2408 {
2409 char *f = insn->frag->fr_literal + insn->where;
2410 if (HAVE_CODE_COMPRESSION)
2411 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2412 else
2413 write_insn (f, insn->insn_opcode);
2414 mips_record_compressed_mode ();
2415 }
2416
2417 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2418 and install the opcode in the new location. */
2419
2420 static void
2421 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2422 {
2423 size_t i;
2424
2425 insn->frag = frag;
2426 insn->where = where;
2427 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2428 if (insn->fixp[i] != NULL)
2429 {
2430 insn->fixp[i]->fx_frag = frag;
2431 insn->fixp[i]->fx_where = where;
2432 }
2433 install_insn (insn);
2434 }
2435
2436 /* Add INSN to the end of the output. */
2437
2438 static void
2439 add_fixed_insn (struct mips_cl_insn *insn)
2440 {
2441 char *f = frag_more (insn_length (insn));
2442 move_insn (insn, frag_now, f - frag_now->fr_literal);
2443 }
2444
2445 /* Start a variant frag and move INSN to the start of the variant part,
2446 marking it as fixed. The other arguments are as for frag_var. */
2447
2448 static void
2449 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2450 relax_substateT subtype, symbolS *symbol, offsetT offset)
2451 {
2452 frag_grow (max_chars);
2453 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2454 insn->fixed_p = 1;
2455 frag_var (rs_machine_dependent, max_chars, var,
2456 subtype, symbol, offset, NULL);
2457 }
2458
2459 /* Insert N copies of INSN into the history buffer, starting at
2460 position FIRST. Neither FIRST nor N need to be clipped. */
2461
2462 static void
2463 insert_into_history (unsigned int first, unsigned int n,
2464 const struct mips_cl_insn *insn)
2465 {
2466 if (mips_relax.sequence != 2)
2467 {
2468 unsigned int i;
2469
2470 for (i = ARRAY_SIZE (history); i-- > first;)
2471 if (i >= first + n)
2472 history[i] = history[i - n];
2473 else
2474 history[i] = *insn;
2475 }
2476 }
2477
2478 /* Clear the error in insn_error. */
2479
2480 static void
2481 clear_insn_error (void)
2482 {
2483 memset (&insn_error, 0, sizeof (insn_error));
2484 }
2485
2486 /* Possibly record error message MSG for the current instruction.
2487 If the error is about a particular argument, ARGNUM is the 1-based
2488 number of that argument, otherwise it is 0. FORMAT is the format
2489 of MSG. Return true if MSG was used, false if the current message
2490 was kept. */
2491
2492 static bfd_boolean
2493 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2494 const char *msg)
2495 {
2496 if (argnum == 0)
2497 {
2498 /* Give priority to errors against specific arguments, and to
2499 the first whole-instruction message. */
2500 if (insn_error.msg)
2501 return FALSE;
2502 }
2503 else
2504 {
2505 /* Keep insn_error if it is against a later argument. */
2506 if (argnum < insn_error.min_argnum)
2507 return FALSE;
2508
2509 /* If both errors are against the same argument but are different,
2510 give up on reporting a specific error for this argument.
2511 See the comment about mips_insn_error for details. */
2512 if (argnum == insn_error.min_argnum
2513 && insn_error.msg
2514 && strcmp (insn_error.msg, msg) != 0)
2515 {
2516 insn_error.msg = 0;
2517 insn_error.min_argnum += 1;
2518 return FALSE;
2519 }
2520 }
2521 insn_error.min_argnum = argnum;
2522 insn_error.format = format;
2523 insn_error.msg = msg;
2524 return TRUE;
2525 }
2526
2527 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2528 as for set_insn_error_format. */
2529
2530 static void
2531 set_insn_error (int argnum, const char *msg)
2532 {
2533 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2534 }
2535
2536 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2537 as for set_insn_error_format. */
2538
2539 static void
2540 set_insn_error_i (int argnum, const char *msg, int i)
2541 {
2542 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2543 insn_error.u.i = i;
2544 }
2545
2546 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2547 are as for set_insn_error_format. */
2548
2549 static void
2550 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2551 {
2552 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2553 {
2554 insn_error.u.ss[0] = s1;
2555 insn_error.u.ss[1] = s2;
2556 }
2557 }
2558
2559 /* Report the error in insn_error, which is against assembly code STR. */
2560
2561 static void
2562 report_insn_error (const char *str)
2563 {
2564 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2565
2566 switch (insn_error.format)
2567 {
2568 case ERR_FMT_PLAIN:
2569 as_bad (msg, str);
2570 break;
2571
2572 case ERR_FMT_I:
2573 as_bad (msg, insn_error.u.i, str);
2574 break;
2575
2576 case ERR_FMT_SS:
2577 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2578 break;
2579 }
2580
2581 free ((char *) msg);
2582 }
2583
2584 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2585 the idea is to make it obvious at a glance that each errata is
2586 included. */
2587
2588 static void
2589 init_vr4120_conflicts (void)
2590 {
2591 #define CONFLICT(FIRST, SECOND) \
2592 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2593
2594 /* Errata 21 - [D]DIV[U] after [D]MACC */
2595 CONFLICT (MACC, DIV);
2596 CONFLICT (DMACC, DIV);
2597
2598 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2599 CONFLICT (DMULT, DMULT);
2600 CONFLICT (DMULT, DMACC);
2601 CONFLICT (DMACC, DMULT);
2602 CONFLICT (DMACC, DMACC);
2603
2604 /* Errata 24 - MT{LO,HI} after [D]MACC */
2605 CONFLICT (MACC, MTHILO);
2606 CONFLICT (DMACC, MTHILO);
2607
2608 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2609 instruction is executed immediately after a MACC or DMACC
2610 instruction, the result of [either instruction] is incorrect." */
2611 CONFLICT (MACC, MULT);
2612 CONFLICT (MACC, DMULT);
2613 CONFLICT (DMACC, MULT);
2614 CONFLICT (DMACC, DMULT);
2615
2616 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2617 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2618 DDIV or DDIVU instruction, the result of the MACC or
2619 DMACC instruction is incorrect.". */
2620 CONFLICT (DMULT, MACC);
2621 CONFLICT (DMULT, DMACC);
2622 CONFLICT (DIV, MACC);
2623 CONFLICT (DIV, DMACC);
2624
2625 #undef CONFLICT
2626 }
2627
2628 struct regname {
2629 const char *name;
2630 unsigned int num;
2631 };
2632
2633 #define RNUM_MASK 0x00000ff
2634 #define RTYPE_MASK 0x0ffff00
2635 #define RTYPE_NUM 0x0000100
2636 #define RTYPE_FPU 0x0000200
2637 #define RTYPE_FCC 0x0000400
2638 #define RTYPE_VEC 0x0000800
2639 #define RTYPE_GP 0x0001000
2640 #define RTYPE_CP0 0x0002000
2641 #define RTYPE_PC 0x0004000
2642 #define RTYPE_ACC 0x0008000
2643 #define RTYPE_CCC 0x0010000
2644 #define RTYPE_VI 0x0020000
2645 #define RTYPE_VF 0x0040000
2646 #define RTYPE_R5900_I 0x0080000
2647 #define RTYPE_R5900_Q 0x0100000
2648 #define RTYPE_R5900_R 0x0200000
2649 #define RTYPE_R5900_ACC 0x0400000
2650 #define RTYPE_MSA 0x0800000
2651 #define RWARN 0x8000000
2652
2653 #define GENERIC_REGISTER_NUMBERS \
2654 {"$0", RTYPE_NUM | 0}, \
2655 {"$1", RTYPE_NUM | 1}, \
2656 {"$2", RTYPE_NUM | 2}, \
2657 {"$3", RTYPE_NUM | 3}, \
2658 {"$4", RTYPE_NUM | 4}, \
2659 {"$5", RTYPE_NUM | 5}, \
2660 {"$6", RTYPE_NUM | 6}, \
2661 {"$7", RTYPE_NUM | 7}, \
2662 {"$8", RTYPE_NUM | 8}, \
2663 {"$9", RTYPE_NUM | 9}, \
2664 {"$10", RTYPE_NUM | 10}, \
2665 {"$11", RTYPE_NUM | 11}, \
2666 {"$12", RTYPE_NUM | 12}, \
2667 {"$13", RTYPE_NUM | 13}, \
2668 {"$14", RTYPE_NUM | 14}, \
2669 {"$15", RTYPE_NUM | 15}, \
2670 {"$16", RTYPE_NUM | 16}, \
2671 {"$17", RTYPE_NUM | 17}, \
2672 {"$18", RTYPE_NUM | 18}, \
2673 {"$19", RTYPE_NUM | 19}, \
2674 {"$20", RTYPE_NUM | 20}, \
2675 {"$21", RTYPE_NUM | 21}, \
2676 {"$22", RTYPE_NUM | 22}, \
2677 {"$23", RTYPE_NUM | 23}, \
2678 {"$24", RTYPE_NUM | 24}, \
2679 {"$25", RTYPE_NUM | 25}, \
2680 {"$26", RTYPE_NUM | 26}, \
2681 {"$27", RTYPE_NUM | 27}, \
2682 {"$28", RTYPE_NUM | 28}, \
2683 {"$29", RTYPE_NUM | 29}, \
2684 {"$30", RTYPE_NUM | 30}, \
2685 {"$31", RTYPE_NUM | 31}
2686
2687 #define FPU_REGISTER_NAMES \
2688 {"$f0", RTYPE_FPU | 0}, \
2689 {"$f1", RTYPE_FPU | 1}, \
2690 {"$f2", RTYPE_FPU | 2}, \
2691 {"$f3", RTYPE_FPU | 3}, \
2692 {"$f4", RTYPE_FPU | 4}, \
2693 {"$f5", RTYPE_FPU | 5}, \
2694 {"$f6", RTYPE_FPU | 6}, \
2695 {"$f7", RTYPE_FPU | 7}, \
2696 {"$f8", RTYPE_FPU | 8}, \
2697 {"$f9", RTYPE_FPU | 9}, \
2698 {"$f10", RTYPE_FPU | 10}, \
2699 {"$f11", RTYPE_FPU | 11}, \
2700 {"$f12", RTYPE_FPU | 12}, \
2701 {"$f13", RTYPE_FPU | 13}, \
2702 {"$f14", RTYPE_FPU | 14}, \
2703 {"$f15", RTYPE_FPU | 15}, \
2704 {"$f16", RTYPE_FPU | 16}, \
2705 {"$f17", RTYPE_FPU | 17}, \
2706 {"$f18", RTYPE_FPU | 18}, \
2707 {"$f19", RTYPE_FPU | 19}, \
2708 {"$f20", RTYPE_FPU | 20}, \
2709 {"$f21", RTYPE_FPU | 21}, \
2710 {"$f22", RTYPE_FPU | 22}, \
2711 {"$f23", RTYPE_FPU | 23}, \
2712 {"$f24", RTYPE_FPU | 24}, \
2713 {"$f25", RTYPE_FPU | 25}, \
2714 {"$f26", RTYPE_FPU | 26}, \
2715 {"$f27", RTYPE_FPU | 27}, \
2716 {"$f28", RTYPE_FPU | 28}, \
2717 {"$f29", RTYPE_FPU | 29}, \
2718 {"$f30", RTYPE_FPU | 30}, \
2719 {"$f31", RTYPE_FPU | 31}
2720
2721 #define FPU_CONDITION_CODE_NAMES \
2722 {"$fcc0", RTYPE_FCC | 0}, \
2723 {"$fcc1", RTYPE_FCC | 1}, \
2724 {"$fcc2", RTYPE_FCC | 2}, \
2725 {"$fcc3", RTYPE_FCC | 3}, \
2726 {"$fcc4", RTYPE_FCC | 4}, \
2727 {"$fcc5", RTYPE_FCC | 5}, \
2728 {"$fcc6", RTYPE_FCC | 6}, \
2729 {"$fcc7", RTYPE_FCC | 7}
2730
2731 #define COPROC_CONDITION_CODE_NAMES \
2732 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2733 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2734 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2735 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2736 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2737 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2738 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2739 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2740
2741 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2742 {"$a4", RTYPE_GP | 8}, \
2743 {"$a5", RTYPE_GP | 9}, \
2744 {"$a6", RTYPE_GP | 10}, \
2745 {"$a7", RTYPE_GP | 11}, \
2746 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2747 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2748 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2749 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2750 {"$t0", RTYPE_GP | 12}, \
2751 {"$t1", RTYPE_GP | 13}, \
2752 {"$t2", RTYPE_GP | 14}, \
2753 {"$t3", RTYPE_GP | 15}
2754
2755 #define O32_SYMBOLIC_REGISTER_NAMES \
2756 {"$t0", RTYPE_GP | 8}, \
2757 {"$t1", RTYPE_GP | 9}, \
2758 {"$t2", RTYPE_GP | 10}, \
2759 {"$t3", RTYPE_GP | 11}, \
2760 {"$t4", RTYPE_GP | 12}, \
2761 {"$t5", RTYPE_GP | 13}, \
2762 {"$t6", RTYPE_GP | 14}, \
2763 {"$t7", RTYPE_GP | 15}, \
2764 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2765 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2766 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2767 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2768
2769 /* Remaining symbolic register names */
2770 #define SYMBOLIC_REGISTER_NAMES \
2771 {"$zero", RTYPE_GP | 0}, \
2772 {"$at", RTYPE_GP | 1}, \
2773 {"$AT", RTYPE_GP | 1}, \
2774 {"$v0", RTYPE_GP | 2}, \
2775 {"$v1", RTYPE_GP | 3}, \
2776 {"$a0", RTYPE_GP | 4}, \
2777 {"$a1", RTYPE_GP | 5}, \
2778 {"$a2", RTYPE_GP | 6}, \
2779 {"$a3", RTYPE_GP | 7}, \
2780 {"$s0", RTYPE_GP | 16}, \
2781 {"$s1", RTYPE_GP | 17}, \
2782 {"$s2", RTYPE_GP | 18}, \
2783 {"$s3", RTYPE_GP | 19}, \
2784 {"$s4", RTYPE_GP | 20}, \
2785 {"$s5", RTYPE_GP | 21}, \
2786 {"$s6", RTYPE_GP | 22}, \
2787 {"$s7", RTYPE_GP | 23}, \
2788 {"$t8", RTYPE_GP | 24}, \
2789 {"$t9", RTYPE_GP | 25}, \
2790 {"$k0", RTYPE_GP | 26}, \
2791 {"$kt0", RTYPE_GP | 26}, \
2792 {"$k1", RTYPE_GP | 27}, \
2793 {"$kt1", RTYPE_GP | 27}, \
2794 {"$gp", RTYPE_GP | 28}, \
2795 {"$sp", RTYPE_GP | 29}, \
2796 {"$s8", RTYPE_GP | 30}, \
2797 {"$fp", RTYPE_GP | 30}, \
2798 {"$ra", RTYPE_GP | 31}
2799
2800 #define MIPS16_SPECIAL_REGISTER_NAMES \
2801 {"$pc", RTYPE_PC | 0}
2802
2803 #define MDMX_VECTOR_REGISTER_NAMES \
2804 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2805 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2806 {"$v2", RTYPE_VEC | 2}, \
2807 {"$v3", RTYPE_VEC | 3}, \
2808 {"$v4", RTYPE_VEC | 4}, \
2809 {"$v5", RTYPE_VEC | 5}, \
2810 {"$v6", RTYPE_VEC | 6}, \
2811 {"$v7", RTYPE_VEC | 7}, \
2812 {"$v8", RTYPE_VEC | 8}, \
2813 {"$v9", RTYPE_VEC | 9}, \
2814 {"$v10", RTYPE_VEC | 10}, \
2815 {"$v11", RTYPE_VEC | 11}, \
2816 {"$v12", RTYPE_VEC | 12}, \
2817 {"$v13", RTYPE_VEC | 13}, \
2818 {"$v14", RTYPE_VEC | 14}, \
2819 {"$v15", RTYPE_VEC | 15}, \
2820 {"$v16", RTYPE_VEC | 16}, \
2821 {"$v17", RTYPE_VEC | 17}, \
2822 {"$v18", RTYPE_VEC | 18}, \
2823 {"$v19", RTYPE_VEC | 19}, \
2824 {"$v20", RTYPE_VEC | 20}, \
2825 {"$v21", RTYPE_VEC | 21}, \
2826 {"$v22", RTYPE_VEC | 22}, \
2827 {"$v23", RTYPE_VEC | 23}, \
2828 {"$v24", RTYPE_VEC | 24}, \
2829 {"$v25", RTYPE_VEC | 25}, \
2830 {"$v26", RTYPE_VEC | 26}, \
2831 {"$v27", RTYPE_VEC | 27}, \
2832 {"$v28", RTYPE_VEC | 28}, \
2833 {"$v29", RTYPE_VEC | 29}, \
2834 {"$v30", RTYPE_VEC | 30}, \
2835 {"$v31", RTYPE_VEC | 31}
2836
2837 #define R5900_I_NAMES \
2838 {"$I", RTYPE_R5900_I | 0}
2839
2840 #define R5900_Q_NAMES \
2841 {"$Q", RTYPE_R5900_Q | 0}
2842
2843 #define R5900_R_NAMES \
2844 {"$R", RTYPE_R5900_R | 0}
2845
2846 #define R5900_ACC_NAMES \
2847 {"$ACC", RTYPE_R5900_ACC | 0 }
2848
2849 #define MIPS_DSP_ACCUMULATOR_NAMES \
2850 {"$ac0", RTYPE_ACC | 0}, \
2851 {"$ac1", RTYPE_ACC | 1}, \
2852 {"$ac2", RTYPE_ACC | 2}, \
2853 {"$ac3", RTYPE_ACC | 3}
2854
2855 static const struct regname reg_names[] = {
2856 GENERIC_REGISTER_NUMBERS,
2857 FPU_REGISTER_NAMES,
2858 FPU_CONDITION_CODE_NAMES,
2859 COPROC_CONDITION_CODE_NAMES,
2860
2861 /* The $txx registers depends on the abi,
2862 these will be added later into the symbol table from
2863 one of the tables below once mips_abi is set after
2864 parsing of arguments from the command line. */
2865 SYMBOLIC_REGISTER_NAMES,
2866
2867 MIPS16_SPECIAL_REGISTER_NAMES,
2868 MDMX_VECTOR_REGISTER_NAMES,
2869 R5900_I_NAMES,
2870 R5900_Q_NAMES,
2871 R5900_R_NAMES,
2872 R5900_ACC_NAMES,
2873 MIPS_DSP_ACCUMULATOR_NAMES,
2874 {0, 0}
2875 };
2876
2877 static const struct regname reg_names_o32[] = {
2878 O32_SYMBOLIC_REGISTER_NAMES,
2879 {0, 0}
2880 };
2881
2882 static const struct regname reg_names_n32n64[] = {
2883 N32N64_SYMBOLIC_REGISTER_NAMES,
2884 {0, 0}
2885 };
2886
2887 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2888 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2889 of these register symbols, return the associated vector register,
2890 otherwise return SYMVAL itself. */
2891
2892 static unsigned int
2893 mips_prefer_vec_regno (unsigned int symval)
2894 {
2895 if ((symval & -2) == (RTYPE_GP | 2))
2896 return RTYPE_VEC | (symval & 1);
2897 return symval;
2898 }
2899
2900 /* Return true if string [S, E) is a valid register name, storing its
2901 symbol value in *SYMVAL_PTR if so. */
2902
2903 static bfd_boolean
2904 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2905 {
2906 char save_c;
2907 symbolS *symbol;
2908
2909 /* Terminate name. */
2910 save_c = *e;
2911 *e = '\0';
2912
2913 /* Look up the name. */
2914 symbol = symbol_find (s);
2915 *e = save_c;
2916
2917 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2918 return FALSE;
2919
2920 *symval_ptr = S_GET_VALUE (symbol);
2921 return TRUE;
2922 }
2923
2924 /* Return true if the string at *SPTR is a valid register name. Allow it
2925 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2926 is nonnull.
2927
2928 When returning true, move *SPTR past the register, store the
2929 register's symbol value in *SYMVAL_PTR and the channel mask in
2930 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2931 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2932 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2933
2934 static bfd_boolean
2935 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2936 unsigned int *channels_ptr)
2937 {
2938 char *s, *e, *m;
2939 const char *q;
2940 unsigned int channels, symval, bit;
2941
2942 /* Find end of name. */
2943 s = e = *sptr;
2944 if (is_name_beginner (*e))
2945 ++e;
2946 while (is_part_of_name (*e))
2947 ++e;
2948
2949 channels = 0;
2950 if (!mips_parse_register_1 (s, e, &symval))
2951 {
2952 if (!channels_ptr)
2953 return FALSE;
2954
2955 /* Eat characters from the end of the string that are valid
2956 channel suffixes. The preceding register must be $ACC or
2957 end with a digit, so there is no ambiguity. */
2958 bit = 1;
2959 m = e;
2960 for (q = "wzyx"; *q; q++, bit <<= 1)
2961 if (m > s && m[-1] == *q)
2962 {
2963 --m;
2964 channels |= bit;
2965 }
2966
2967 if (channels == 0
2968 || !mips_parse_register_1 (s, m, &symval)
2969 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2970 return FALSE;
2971 }
2972
2973 *sptr = e;
2974 *symval_ptr = symval;
2975 if (channels_ptr)
2976 *channels_ptr = channels;
2977 return TRUE;
2978 }
2979
2980 /* Check if SPTR points at a valid register specifier according to TYPES.
2981 If so, then return 1, advance S to consume the specifier and store
2982 the register's number in REGNOP, otherwise return 0. */
2983
2984 static int
2985 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2986 {
2987 unsigned int regno;
2988
2989 if (mips_parse_register (s, &regno, NULL))
2990 {
2991 if (types & RTYPE_VEC)
2992 regno = mips_prefer_vec_regno (regno);
2993 if (regno & types)
2994 regno &= RNUM_MASK;
2995 else
2996 regno = ~0;
2997 }
2998 else
2999 {
3000 if (types & RWARN)
3001 as_warn (_("unrecognized register name `%s'"), *s);
3002 regno = ~0;
3003 }
3004 if (regnop)
3005 *regnop = regno;
3006 return regno <= RNUM_MASK;
3007 }
3008
3009 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3010 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3011
3012 static char *
3013 mips_parse_vu0_channels (char *s, unsigned int *channels)
3014 {
3015 unsigned int i;
3016
3017 *channels = 0;
3018 for (i = 0; i < 4; i++)
3019 if (*s == "xyzw"[i])
3020 {
3021 *channels |= 1 << (3 - i);
3022 ++s;
3023 }
3024 return s;
3025 }
3026
3027 /* Token types for parsed operand lists. */
3028 enum mips_operand_token_type {
3029 /* A plain register, e.g. $f2. */
3030 OT_REG,
3031
3032 /* A 4-bit XYZW channel mask. */
3033 OT_CHANNELS,
3034
3035 /* A constant vector index, e.g. [1]. */
3036 OT_INTEGER_INDEX,
3037
3038 /* A register vector index, e.g. [$2]. */
3039 OT_REG_INDEX,
3040
3041 /* A continuous range of registers, e.g. $s0-$s4. */
3042 OT_REG_RANGE,
3043
3044 /* A (possibly relocated) expression. */
3045 OT_INTEGER,
3046
3047 /* A floating-point value. */
3048 OT_FLOAT,
3049
3050 /* A single character. This can be '(', ')' or ',', but '(' only appears
3051 before OT_REGs. */
3052 OT_CHAR,
3053
3054 /* A doubled character, either "--" or "++". */
3055 OT_DOUBLE_CHAR,
3056
3057 /* The end of the operand list. */
3058 OT_END
3059 };
3060
3061 /* A parsed operand token. */
3062 struct mips_operand_token
3063 {
3064 /* The type of token. */
3065 enum mips_operand_token_type type;
3066 union
3067 {
3068 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3069 unsigned int regno;
3070
3071 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3072 unsigned int channels;
3073
3074 /* The integer value of an OT_INTEGER_INDEX. */
3075 addressT index;
3076
3077 /* The two register symbol values involved in an OT_REG_RANGE. */
3078 struct {
3079 unsigned int regno1;
3080 unsigned int regno2;
3081 } reg_range;
3082
3083 /* The value of an OT_INTEGER. The value is represented as an
3084 expression and the relocation operators that were applied to
3085 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3086 relocation operators were used. */
3087 struct {
3088 expressionS value;
3089 bfd_reloc_code_real_type relocs[3];
3090 } integer;
3091
3092 /* The binary data for an OT_FLOAT constant, and the number of bytes
3093 in the constant. */
3094 struct {
3095 unsigned char data[8];
3096 int length;
3097 } flt;
3098
3099 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3100 char ch;
3101 } u;
3102 };
3103
3104 /* An obstack used to construct lists of mips_operand_tokens. */
3105 static struct obstack mips_operand_tokens;
3106
3107 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3108
3109 static void
3110 mips_add_token (struct mips_operand_token *token,
3111 enum mips_operand_token_type type)
3112 {
3113 token->type = type;
3114 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3115 }
3116
3117 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3118 and OT_REG tokens for them if so, and return a pointer to the first
3119 unconsumed character. Return null otherwise. */
3120
3121 static char *
3122 mips_parse_base_start (char *s)
3123 {
3124 struct mips_operand_token token;
3125 unsigned int regno, channels;
3126 bfd_boolean decrement_p;
3127
3128 if (*s != '(')
3129 return 0;
3130
3131 ++s;
3132 SKIP_SPACE_TABS (s);
3133
3134 /* Only match "--" as part of a base expression. In other contexts "--X"
3135 is a double negative. */
3136 decrement_p = (s[0] == '-' && s[1] == '-');
3137 if (decrement_p)
3138 {
3139 s += 2;
3140 SKIP_SPACE_TABS (s);
3141 }
3142
3143 /* Allow a channel specifier because that leads to better error messages
3144 than treating something like "$vf0x++" as an expression. */
3145 if (!mips_parse_register (&s, &regno, &channels))
3146 return 0;
3147
3148 token.u.ch = '(';
3149 mips_add_token (&token, OT_CHAR);
3150
3151 if (decrement_p)
3152 {
3153 token.u.ch = '-';
3154 mips_add_token (&token, OT_DOUBLE_CHAR);
3155 }
3156
3157 token.u.regno = regno;
3158 mips_add_token (&token, OT_REG);
3159
3160 if (channels)
3161 {
3162 token.u.channels = channels;
3163 mips_add_token (&token, OT_CHANNELS);
3164 }
3165
3166 /* For consistency, only match "++" as part of base expressions too. */
3167 SKIP_SPACE_TABS (s);
3168 if (s[0] == '+' && s[1] == '+')
3169 {
3170 s += 2;
3171 token.u.ch = '+';
3172 mips_add_token (&token, OT_DOUBLE_CHAR);
3173 }
3174
3175 return s;
3176 }
3177
3178 /* Parse one or more tokens from S. Return a pointer to the first
3179 unconsumed character on success. Return null if an error was found
3180 and store the error text in insn_error. FLOAT_FORMAT is as for
3181 mips_parse_arguments. */
3182
3183 static char *
3184 mips_parse_argument_token (char *s, char float_format)
3185 {
3186 char *end, *save_in;
3187 const char *err;
3188 unsigned int regno1, regno2, channels;
3189 struct mips_operand_token token;
3190
3191 /* First look for "($reg", since we want to treat that as an
3192 OT_CHAR and OT_REG rather than an expression. */
3193 end = mips_parse_base_start (s);
3194 if (end)
3195 return end;
3196
3197 /* Handle other characters that end up as OT_CHARs. */
3198 if (*s == ')' || *s == ',')
3199 {
3200 token.u.ch = *s;
3201 mips_add_token (&token, OT_CHAR);
3202 ++s;
3203 return s;
3204 }
3205
3206 /* Handle tokens that start with a register. */
3207 if (mips_parse_register (&s, &regno1, &channels))
3208 {
3209 if (channels)
3210 {
3211 /* A register and a VU0 channel suffix. */
3212 token.u.regno = regno1;
3213 mips_add_token (&token, OT_REG);
3214
3215 token.u.channels = channels;
3216 mips_add_token (&token, OT_CHANNELS);
3217 return s;
3218 }
3219
3220 SKIP_SPACE_TABS (s);
3221 if (*s == '-')
3222 {
3223 /* A register range. */
3224 ++s;
3225 SKIP_SPACE_TABS (s);
3226 if (!mips_parse_register (&s, &regno2, NULL))
3227 {
3228 set_insn_error (0, _("invalid register range"));
3229 return 0;
3230 }
3231
3232 token.u.reg_range.regno1 = regno1;
3233 token.u.reg_range.regno2 = regno2;
3234 mips_add_token (&token, OT_REG_RANGE);
3235 return s;
3236 }
3237
3238 /* Add the register itself. */
3239 token.u.regno = regno1;
3240 mips_add_token (&token, OT_REG);
3241
3242 /* Check for a vector index. */
3243 if (*s == '[')
3244 {
3245 ++s;
3246 SKIP_SPACE_TABS (s);
3247 if (mips_parse_register (&s, &token.u.regno, NULL))
3248 mips_add_token (&token, OT_REG_INDEX);
3249 else
3250 {
3251 expressionS element;
3252
3253 my_getExpression (&element, s);
3254 if (element.X_op != O_constant)
3255 {
3256 set_insn_error (0, _("vector element must be constant"));
3257 return 0;
3258 }
3259 s = expr_end;
3260 token.u.index = element.X_add_number;
3261 mips_add_token (&token, OT_INTEGER_INDEX);
3262 }
3263 SKIP_SPACE_TABS (s);
3264 if (*s != ']')
3265 {
3266 set_insn_error (0, _("missing `]'"));
3267 return 0;
3268 }
3269 ++s;
3270 }
3271 return s;
3272 }
3273
3274 if (float_format)
3275 {
3276 /* First try to treat expressions as floats. */
3277 save_in = input_line_pointer;
3278 input_line_pointer = s;
3279 err = md_atof (float_format, (char *) token.u.flt.data,
3280 &token.u.flt.length);
3281 end = input_line_pointer;
3282 input_line_pointer = save_in;
3283 if (err && *err)
3284 {
3285 set_insn_error (0, err);
3286 return 0;
3287 }
3288 if (s != end)
3289 {
3290 mips_add_token (&token, OT_FLOAT);
3291 return end;
3292 }
3293 }
3294
3295 /* Treat everything else as an integer expression. */
3296 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3297 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3298 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3299 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3300 s = expr_end;
3301 mips_add_token (&token, OT_INTEGER);
3302 return s;
3303 }
3304
3305 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3306 if expressions should be treated as 32-bit floating-point constants,
3307 'd' if they should be treated as 64-bit floating-point constants,
3308 or 0 if they should be treated as integer expressions (the usual case).
3309
3310 Return a list of tokens on success, otherwise return 0. The caller
3311 must obstack_free the list after use. */
3312
3313 static struct mips_operand_token *
3314 mips_parse_arguments (char *s, char float_format)
3315 {
3316 struct mips_operand_token token;
3317
3318 SKIP_SPACE_TABS (s);
3319 while (*s)
3320 {
3321 s = mips_parse_argument_token (s, float_format);
3322 if (!s)
3323 {
3324 obstack_free (&mips_operand_tokens,
3325 obstack_finish (&mips_operand_tokens));
3326 return 0;
3327 }
3328 SKIP_SPACE_TABS (s);
3329 }
3330 mips_add_token (&token, OT_END);
3331 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3332 }
3333
3334 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3335 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3336
3337 static bfd_boolean
3338 is_opcode_valid (const struct mips_opcode *mo)
3339 {
3340 int isa = mips_opts.isa;
3341 int ase = mips_opts.ase;
3342 int fp_s, fp_d;
3343 unsigned int i;
3344
3345 if (ISA_HAS_64BIT_REGS (isa))
3346 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3347 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3348 ase |= mips_ases[i].flags64;
3349
3350 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3351 return FALSE;
3352
3353 /* Check whether the instruction or macro requires single-precision or
3354 double-precision floating-point support. Note that this information is
3355 stored differently in the opcode table for insns and macros. */
3356 if (mo->pinfo == INSN_MACRO)
3357 {
3358 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3359 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3360 }
3361 else
3362 {
3363 fp_s = mo->pinfo & FP_S;
3364 fp_d = mo->pinfo & FP_D;
3365 }
3366
3367 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3368 return FALSE;
3369
3370 if (fp_s && mips_opts.soft_float)
3371 return FALSE;
3372
3373 return TRUE;
3374 }
3375
3376 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3377 selected ISA and architecture. */
3378
3379 static bfd_boolean
3380 is_opcode_valid_16 (const struct mips_opcode *mo)
3381 {
3382 int isa = mips_opts.isa;
3383 int ase = mips_opts.ase;
3384 unsigned int i;
3385
3386 if (ISA_HAS_64BIT_REGS (isa))
3387 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3388 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3389 ase |= mips_ases[i].flags64;
3390
3391 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3392 }
3393
3394 /* Return TRUE if the size of the microMIPS opcode MO matches one
3395 explicitly requested. Always TRUE in the standard MIPS mode.
3396 Use is_size_valid_16 for MIPS16 opcodes. */
3397
3398 static bfd_boolean
3399 is_size_valid (const struct mips_opcode *mo)
3400 {
3401 if (!mips_opts.micromips)
3402 return TRUE;
3403
3404 if (mips_opts.insn32)
3405 {
3406 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3407 return FALSE;
3408 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3409 return FALSE;
3410 }
3411 if (!forced_insn_length)
3412 return TRUE;
3413 if (mo->pinfo == INSN_MACRO)
3414 return FALSE;
3415 return forced_insn_length == micromips_insn_length (mo);
3416 }
3417
3418 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3419 explicitly requested. */
3420
3421 static bfd_boolean
3422 is_size_valid_16 (const struct mips_opcode *mo)
3423 {
3424 if (!forced_insn_length)
3425 return TRUE;
3426 if (mo->pinfo == INSN_MACRO)
3427 return FALSE;
3428 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3429 return FALSE;
3430 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3431 return FALSE;
3432 return TRUE;
3433 }
3434
3435 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3436 of the preceding instruction. Always TRUE in the standard MIPS mode.
3437
3438 We don't accept macros in 16-bit delay slots to avoid a case where
3439 a macro expansion fails because it relies on a preceding 32-bit real
3440 instruction to have matched and does not handle the operands correctly.
3441 The only macros that may expand to 16-bit instructions are JAL that
3442 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3443 and BGT (that likewise cannot be placed in a delay slot) that decay to
3444 a NOP. In all these cases the macros precede any corresponding real
3445 instruction definitions in the opcode table, so they will match in the
3446 second pass where the size of the delay slot is ignored and therefore
3447 produce correct code. */
3448
3449 static bfd_boolean
3450 is_delay_slot_valid (const struct mips_opcode *mo)
3451 {
3452 if (!mips_opts.micromips)
3453 return TRUE;
3454
3455 if (mo->pinfo == INSN_MACRO)
3456 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3457 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3458 && micromips_insn_length (mo) != 4)
3459 return FALSE;
3460 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3461 && micromips_insn_length (mo) != 2)
3462 return FALSE;
3463
3464 return TRUE;
3465 }
3466
3467 /* For consistency checking, verify that all bits of OPCODE are specified
3468 either by the match/mask part of the instruction definition, or by the
3469 operand list. Also build up a list of operands in OPERANDS.
3470
3471 INSN_BITS says which bits of the instruction are significant.
3472 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3473 provides the mips_operand description of each operand. DECODE_OPERAND
3474 is null for MIPS16 instructions. */
3475
3476 static int
3477 validate_mips_insn (const struct mips_opcode *opcode,
3478 unsigned long insn_bits,
3479 const struct mips_operand *(*decode_operand) (const char *),
3480 struct mips_operand_array *operands)
3481 {
3482 const char *s;
3483 unsigned long used_bits, doubled, undefined, opno, mask;
3484 const struct mips_operand *operand;
3485
3486 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3487 if ((mask & opcode->match) != opcode->match)
3488 {
3489 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3490 opcode->name, opcode->args);
3491 return 0;
3492 }
3493 used_bits = 0;
3494 opno = 0;
3495 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3496 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3497 for (s = opcode->args; *s; ++s)
3498 switch (*s)
3499 {
3500 case ',':
3501 case '(':
3502 case ')':
3503 break;
3504
3505 case '#':
3506 s++;
3507 break;
3508
3509 default:
3510 if (!decode_operand)
3511 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3512 else
3513 operand = decode_operand (s);
3514 if (!operand && opcode->pinfo != INSN_MACRO)
3515 {
3516 as_bad (_("internal: unknown operand type: %s %s"),
3517 opcode->name, opcode->args);
3518 return 0;
3519 }
3520 gas_assert (opno < MAX_OPERANDS);
3521 operands->operand[opno] = operand;
3522 if (!decode_operand && operand
3523 && operand->type == OP_INT && operand->lsb == 0
3524 && mips_opcode_32bit_p (opcode))
3525 used_bits |= mips16_immed_extend (-1, operand->size);
3526 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3527 {
3528 used_bits = mips_insert_operand (operand, used_bits, -1);
3529 if (operand->type == OP_MDMX_IMM_REG)
3530 /* Bit 5 is the format selector (OB vs QH). The opcode table
3531 has separate entries for each format. */
3532 used_bits &= ~(1 << (operand->lsb + 5));
3533 if (operand->type == OP_ENTRY_EXIT_LIST)
3534 used_bits &= ~(mask & 0x700);
3535 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3536 operand field that cannot be fully described with LSB/SIZE. */
3537 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3538 used_bits &= ~0x6000;
3539 }
3540 /* Skip prefix characters. */
3541 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3542 ++s;
3543 opno += 1;
3544 break;
3545 }
3546 doubled = used_bits & mask & insn_bits;
3547 if (doubled)
3548 {
3549 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3550 " %s %s"), doubled, opcode->name, opcode->args);
3551 return 0;
3552 }
3553 used_bits |= mask;
3554 undefined = ~used_bits & insn_bits;
3555 if (opcode->pinfo != INSN_MACRO && undefined)
3556 {
3557 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3558 undefined, opcode->name, opcode->args);
3559 return 0;
3560 }
3561 used_bits &= ~insn_bits;
3562 if (used_bits)
3563 {
3564 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3565 used_bits, opcode->name, opcode->args);
3566 return 0;
3567 }
3568 return 1;
3569 }
3570
3571 /* The MIPS16 version of validate_mips_insn. */
3572
3573 static int
3574 validate_mips16_insn (const struct mips_opcode *opcode,
3575 struct mips_operand_array *operands)
3576 {
3577 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3578
3579 return validate_mips_insn (opcode, insn_bits, 0, operands);
3580 }
3581
3582 /* The microMIPS version of validate_mips_insn. */
3583
3584 static int
3585 validate_micromips_insn (const struct mips_opcode *opc,
3586 struct mips_operand_array *operands)
3587 {
3588 unsigned long insn_bits;
3589 unsigned long major;
3590 unsigned int length;
3591
3592 if (opc->pinfo == INSN_MACRO)
3593 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3594 operands);
3595
3596 length = micromips_insn_length (opc);
3597 if (length != 2 && length != 4)
3598 {
3599 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3600 "%s %s"), length, opc->name, opc->args);
3601 return 0;
3602 }
3603 major = opc->match >> (10 + 8 * (length - 2));
3604 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3605 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3606 {
3607 as_bad (_("internal error: bad microMIPS opcode "
3608 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3609 return 0;
3610 }
3611
3612 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3613 insn_bits = 1 << 4 * length;
3614 insn_bits <<= 4 * length;
3615 insn_bits -= 1;
3616 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3617 operands);
3618 }
3619
3620 /* This function is called once, at assembler startup time. It should set up
3621 all the tables, etc. that the MD part of the assembler will need. */
3622
3623 void
3624 md_begin (void)
3625 {
3626 const char *retval = NULL;
3627 int i = 0;
3628 int broken = 0;
3629
3630 if (mips_pic != NO_PIC)
3631 {
3632 if (g_switch_seen && g_switch_value != 0)
3633 as_bad (_("-G may not be used in position-independent code"));
3634 g_switch_value = 0;
3635 }
3636 else if (mips_abicalls)
3637 {
3638 if (g_switch_seen && g_switch_value != 0)
3639 as_bad (_("-G may not be used with abicalls"));
3640 g_switch_value = 0;
3641 }
3642
3643 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3644 as_warn (_("could not set architecture and machine"));
3645
3646 op_hash = hash_new ();
3647
3648 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3649 for (i = 0; i < NUMOPCODES;)
3650 {
3651 const char *name = mips_opcodes[i].name;
3652
3653 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3654 if (retval != NULL)
3655 {
3656 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3657 mips_opcodes[i].name, retval);
3658 /* Probably a memory allocation problem? Give up now. */
3659 as_fatal (_("broken assembler, no assembly attempted"));
3660 }
3661 do
3662 {
3663 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3664 decode_mips_operand, &mips_operands[i]))
3665 broken = 1;
3666 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3667 {
3668 create_insn (&nop_insn, mips_opcodes + i);
3669 if (mips_fix_loongson2f_nop)
3670 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3671 nop_insn.fixed_p = 1;
3672 }
3673 ++i;
3674 }
3675 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3676 }
3677
3678 mips16_op_hash = hash_new ();
3679 mips16_operands = XCNEWVEC (struct mips_operand_array,
3680 bfd_mips16_num_opcodes);
3681
3682 i = 0;
3683 while (i < bfd_mips16_num_opcodes)
3684 {
3685 const char *name = mips16_opcodes[i].name;
3686
3687 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3688 if (retval != NULL)
3689 as_fatal (_("internal: can't hash `%s': %s"),
3690 mips16_opcodes[i].name, retval);
3691 do
3692 {
3693 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3694 broken = 1;
3695 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3696 {
3697 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3698 mips16_nop_insn.fixed_p = 1;
3699 }
3700 ++i;
3701 }
3702 while (i < bfd_mips16_num_opcodes
3703 && strcmp (mips16_opcodes[i].name, name) == 0);
3704 }
3705
3706 micromips_op_hash = hash_new ();
3707 micromips_operands = XCNEWVEC (struct mips_operand_array,
3708 bfd_micromips_num_opcodes);
3709
3710 i = 0;
3711 while (i < bfd_micromips_num_opcodes)
3712 {
3713 const char *name = micromips_opcodes[i].name;
3714
3715 retval = hash_insert (micromips_op_hash, name,
3716 (void *) &micromips_opcodes[i]);
3717 if (retval != NULL)
3718 as_fatal (_("internal: can't hash `%s': %s"),
3719 micromips_opcodes[i].name, retval);
3720 do
3721 {
3722 struct mips_cl_insn *micromips_nop_insn;
3723
3724 if (!validate_micromips_insn (&micromips_opcodes[i],
3725 &micromips_operands[i]))
3726 broken = 1;
3727
3728 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3729 {
3730 if (micromips_insn_length (micromips_opcodes + i) == 2)
3731 micromips_nop_insn = &micromips_nop16_insn;
3732 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3733 micromips_nop_insn = &micromips_nop32_insn;
3734 else
3735 continue;
3736
3737 if (micromips_nop_insn->insn_mo == NULL
3738 && strcmp (name, "nop") == 0)
3739 {
3740 create_insn (micromips_nop_insn, micromips_opcodes + i);
3741 micromips_nop_insn->fixed_p = 1;
3742 }
3743 }
3744 }
3745 while (++i < bfd_micromips_num_opcodes
3746 && strcmp (micromips_opcodes[i].name, name) == 0);
3747 }
3748
3749 if (broken)
3750 as_fatal (_("broken assembler, no assembly attempted"));
3751
3752 /* We add all the general register names to the symbol table. This
3753 helps us detect invalid uses of them. */
3754 for (i = 0; reg_names[i].name; i++)
3755 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3756 reg_names[i].num, /* & RNUM_MASK, */
3757 &zero_address_frag));
3758 if (HAVE_NEWABI)
3759 for (i = 0; reg_names_n32n64[i].name; i++)
3760 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3761 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3762 &zero_address_frag));
3763 else
3764 for (i = 0; reg_names_o32[i].name; i++)
3765 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3766 reg_names_o32[i].num, /* & RNUM_MASK, */
3767 &zero_address_frag));
3768
3769 for (i = 0; i < 32; i++)
3770 {
3771 char regname[6];
3772
3773 /* R5900 VU0 floating-point register. */
3774 sprintf (regname, "$vf%d", i);
3775 symbol_table_insert (symbol_new (regname, reg_section,
3776 RTYPE_VF | i, &zero_address_frag));
3777
3778 /* R5900 VU0 integer register. */
3779 sprintf (regname, "$vi%d", i);
3780 symbol_table_insert (symbol_new (regname, reg_section,
3781 RTYPE_VI | i, &zero_address_frag));
3782
3783 /* MSA register. */
3784 sprintf (regname, "$w%d", i);
3785 symbol_table_insert (symbol_new (regname, reg_section,
3786 RTYPE_MSA | i, &zero_address_frag));
3787 }
3788
3789 obstack_init (&mips_operand_tokens);
3790
3791 mips_no_prev_insn ();
3792
3793 mips_gprmask = 0;
3794 mips_cprmask[0] = 0;
3795 mips_cprmask[1] = 0;
3796 mips_cprmask[2] = 0;
3797 mips_cprmask[3] = 0;
3798
3799 /* set the default alignment for the text section (2**2) */
3800 record_alignment (text_section, 2);
3801
3802 bfd_set_gp_size (stdoutput, g_switch_value);
3803
3804 /* On a native system other than VxWorks, sections must be aligned
3805 to 16 byte boundaries. When configured for an embedded ELF
3806 target, we don't bother. */
3807 if (strncmp (TARGET_OS, "elf", 3) != 0
3808 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3809 {
3810 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3811 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3812 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3813 }
3814
3815 /* Create a .reginfo section for register masks and a .mdebug
3816 section for debugging information. */
3817 {
3818 segT seg;
3819 subsegT subseg;
3820 flagword flags;
3821 segT sec;
3822
3823 seg = now_seg;
3824 subseg = now_subseg;
3825
3826 /* The ABI says this section should be loaded so that the
3827 running program can access it. However, we don't load it
3828 if we are configured for an embedded target */
3829 flags = SEC_READONLY | SEC_DATA;
3830 if (strncmp (TARGET_OS, "elf", 3) != 0)
3831 flags |= SEC_ALLOC | SEC_LOAD;
3832
3833 if (mips_abi != N64_ABI)
3834 {
3835 sec = subseg_new (".reginfo", (subsegT) 0);
3836
3837 bfd_set_section_flags (stdoutput, sec, flags);
3838 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3839
3840 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3841 }
3842 else
3843 {
3844 /* The 64-bit ABI uses a .MIPS.options section rather than
3845 .reginfo section. */
3846 sec = subseg_new (".MIPS.options", (subsegT) 0);
3847 bfd_set_section_flags (stdoutput, sec, flags);
3848 bfd_set_section_alignment (stdoutput, sec, 3);
3849
3850 /* Set up the option header. */
3851 {
3852 Elf_Internal_Options opthdr;
3853 char *f;
3854
3855 opthdr.kind = ODK_REGINFO;
3856 opthdr.size = (sizeof (Elf_External_Options)
3857 + sizeof (Elf64_External_RegInfo));
3858 opthdr.section = 0;
3859 opthdr.info = 0;
3860 f = frag_more (sizeof (Elf_External_Options));
3861 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3862 (Elf_External_Options *) f);
3863
3864 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3865 }
3866 }
3867
3868 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3869 bfd_set_section_flags (stdoutput, sec,
3870 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3871 bfd_set_section_alignment (stdoutput, sec, 3);
3872 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3873
3874 if (ECOFF_DEBUGGING)
3875 {
3876 sec = subseg_new (".mdebug", (subsegT) 0);
3877 (void) bfd_set_section_flags (stdoutput, sec,
3878 SEC_HAS_CONTENTS | SEC_READONLY);
3879 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3880 }
3881 else if (mips_flag_pdr)
3882 {
3883 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3884 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3885 SEC_READONLY | SEC_RELOC
3886 | SEC_DEBUGGING);
3887 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3888 }
3889
3890 subseg_set (seg, subseg);
3891 }
3892
3893 if (mips_fix_vr4120)
3894 init_vr4120_conflicts ();
3895 }
3896
3897 static inline void
3898 fpabi_incompatible_with (int fpabi, const char *what)
3899 {
3900 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3901 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3902 }
3903
3904 static inline void
3905 fpabi_requires (int fpabi, const char *what)
3906 {
3907 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3908 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3909 }
3910
3911 /* Check -mabi and register sizes against the specified FP ABI. */
3912 static void
3913 check_fpabi (int fpabi)
3914 {
3915 switch (fpabi)
3916 {
3917 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3918 if (file_mips_opts.soft_float)
3919 fpabi_incompatible_with (fpabi, "softfloat");
3920 else if (file_mips_opts.single_float)
3921 fpabi_incompatible_with (fpabi, "singlefloat");
3922 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3923 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3924 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3925 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3926 break;
3927
3928 case Val_GNU_MIPS_ABI_FP_XX:
3929 if (mips_abi != O32_ABI)
3930 fpabi_requires (fpabi, "-mabi=32");
3931 else if (file_mips_opts.soft_float)
3932 fpabi_incompatible_with (fpabi, "softfloat");
3933 else if (file_mips_opts.single_float)
3934 fpabi_incompatible_with (fpabi, "singlefloat");
3935 else if (file_mips_opts.fp != 0)
3936 fpabi_requires (fpabi, "fp=xx");
3937 break;
3938
3939 case Val_GNU_MIPS_ABI_FP_64A:
3940 case Val_GNU_MIPS_ABI_FP_64:
3941 if (mips_abi != O32_ABI)
3942 fpabi_requires (fpabi, "-mabi=32");
3943 else if (file_mips_opts.soft_float)
3944 fpabi_incompatible_with (fpabi, "softfloat");
3945 else if (file_mips_opts.single_float)
3946 fpabi_incompatible_with (fpabi, "singlefloat");
3947 else if (file_mips_opts.fp != 64)
3948 fpabi_requires (fpabi, "fp=64");
3949 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3950 fpabi_incompatible_with (fpabi, "nooddspreg");
3951 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3952 fpabi_requires (fpabi, "nooddspreg");
3953 break;
3954
3955 case Val_GNU_MIPS_ABI_FP_SINGLE:
3956 if (file_mips_opts.soft_float)
3957 fpabi_incompatible_with (fpabi, "softfloat");
3958 else if (!file_mips_opts.single_float)
3959 fpabi_requires (fpabi, "singlefloat");
3960 break;
3961
3962 case Val_GNU_MIPS_ABI_FP_SOFT:
3963 if (!file_mips_opts.soft_float)
3964 fpabi_requires (fpabi, "softfloat");
3965 break;
3966
3967 case Val_GNU_MIPS_ABI_FP_OLD_64:
3968 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3969 Tag_GNU_MIPS_ABI_FP, fpabi);
3970 break;
3971
3972 case Val_GNU_MIPS_ABI_FP_NAN2008:
3973 /* Silently ignore compatibility value. */
3974 break;
3975
3976 default:
3977 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3978 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3979 break;
3980 }
3981 }
3982
3983 /* Perform consistency checks on the current options. */
3984
3985 static void
3986 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3987 {
3988 /* Check the size of integer registers agrees with the ABI and ISA. */
3989 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3990 as_bad (_("`gp=64' used with a 32-bit processor"));
3991 else if (abi_checks
3992 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3993 as_bad (_("`gp=32' used with a 64-bit ABI"));
3994 else if (abi_checks
3995 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3996 as_bad (_("`gp=64' used with a 32-bit ABI"));
3997
3998 /* Check the size of the float registers agrees with the ABI and ISA. */
3999 switch (opts->fp)
4000 {
4001 case 0:
4002 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4003 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4004 else if (opts->single_float == 1)
4005 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4006 break;
4007 case 64:
4008 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4009 as_bad (_("`fp=64' used with a 32-bit fpu"));
4010 else if (abi_checks
4011 && ABI_NEEDS_32BIT_REGS (mips_abi)
4012 && !ISA_HAS_MXHC1 (opts->isa))
4013 as_warn (_("`fp=64' used with a 32-bit ABI"));
4014 break;
4015 case 32:
4016 if (abi_checks
4017 && ABI_NEEDS_64BIT_REGS (mips_abi))
4018 as_warn (_("`fp=32' used with a 64-bit ABI"));
4019 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4020 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4021 break;
4022 default:
4023 as_bad (_("Unknown size of floating point registers"));
4024 break;
4025 }
4026
4027 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4028 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4029
4030 if (opts->micromips == 1 && opts->mips16 == 1)
4031 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4032 else if (ISA_IS_R6 (opts->isa)
4033 && (opts->micromips == 1
4034 || opts->mips16 == 1))
4035 as_fatal (_("`%s' cannot be used with `%s'"),
4036 opts->micromips ? "micromips" : "mips16",
4037 mips_cpu_info_from_isa (opts->isa)->name);
4038
4039 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4040 as_fatal (_("branch relaxation is not supported in `%s'"),
4041 mips_cpu_info_from_isa (opts->isa)->name);
4042 }
4043
4044 /* Perform consistency checks on the module level options exactly once.
4045 This is a deferred check that happens:
4046 at the first .set directive
4047 or, at the first pseudo op that generates code (inc .dc.a)
4048 or, at the first instruction
4049 or, at the end. */
4050
4051 static void
4052 file_mips_check_options (void)
4053 {
4054 const struct mips_cpu_info *arch_info = 0;
4055
4056 if (file_mips_opts_checked)
4057 return;
4058
4059 /* The following code determines the register size.
4060 Similar code was added to GCC 3.3 (see override_options() in
4061 config/mips/mips.c). The GAS and GCC code should be kept in sync
4062 as much as possible. */
4063
4064 if (file_mips_opts.gp < 0)
4065 {
4066 /* Infer the integer register size from the ABI and processor.
4067 Restrict ourselves to 32-bit registers if that's all the
4068 processor has, or if the ABI cannot handle 64-bit registers. */
4069 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4070 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4071 ? 32 : 64;
4072 }
4073
4074 if (file_mips_opts.fp < 0)
4075 {
4076 /* No user specified float register size.
4077 ??? GAS treats single-float processors as though they had 64-bit
4078 float registers (although it complains when double-precision
4079 instructions are used). As things stand, saying they have 32-bit
4080 registers would lead to spurious "register must be even" messages.
4081 So here we assume float registers are never smaller than the
4082 integer ones. */
4083 if (file_mips_opts.gp == 64)
4084 /* 64-bit integer registers implies 64-bit float registers. */
4085 file_mips_opts.fp = 64;
4086 else if ((file_mips_opts.ase & FP64_ASES)
4087 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4088 /* Handle ASEs that require 64-bit float registers, if possible. */
4089 file_mips_opts.fp = 64;
4090 else if (ISA_IS_R6 (mips_opts.isa))
4091 /* R6 implies 64-bit float registers. */
4092 file_mips_opts.fp = 64;
4093 else
4094 /* 32-bit float registers. */
4095 file_mips_opts.fp = 32;
4096 }
4097
4098 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4099
4100 /* Disable operations on odd-numbered floating-point registers by default
4101 when using the FPXX ABI. */
4102 if (file_mips_opts.oddspreg < 0)
4103 {
4104 if (file_mips_opts.fp == 0)
4105 file_mips_opts.oddspreg = 0;
4106 else
4107 file_mips_opts.oddspreg = 1;
4108 }
4109
4110 /* End of GCC-shared inference code. */
4111
4112 /* This flag is set when we have a 64-bit capable CPU but use only
4113 32-bit wide registers. Note that EABI does not use it. */
4114 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4115 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4116 || mips_abi == O32_ABI))
4117 mips_32bitmode = 1;
4118
4119 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4120 as_bad (_("trap exception not supported at ISA 1"));
4121
4122 /* If the selected architecture includes support for ASEs, enable
4123 generation of code for them. */
4124 if (file_mips_opts.mips16 == -1)
4125 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4126 if (file_mips_opts.micromips == -1)
4127 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4128 ? 1 : 0;
4129
4130 if (mips_nan2008 == -1)
4131 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4132 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4133 as_fatal (_("`%s' does not support legacy NaN"),
4134 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4135
4136 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4137 being selected implicitly. */
4138 if (file_mips_opts.fp != 64)
4139 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4140
4141 /* If the user didn't explicitly select or deselect a particular ASE,
4142 use the default setting for the CPU. */
4143 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4144
4145 /* Set up the current options. These may change throughout assembly. */
4146 mips_opts = file_mips_opts;
4147
4148 mips_check_isa_supports_ases ();
4149 mips_check_options (&file_mips_opts, TRUE);
4150 file_mips_opts_checked = TRUE;
4151
4152 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4153 as_warn (_("could not set architecture and machine"));
4154 }
4155
4156 void
4157 md_assemble (char *str)
4158 {
4159 struct mips_cl_insn insn;
4160 bfd_reloc_code_real_type unused_reloc[3]
4161 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4162
4163 file_mips_check_options ();
4164
4165 imm_expr.X_op = O_absent;
4166 offset_expr.X_op = O_absent;
4167 offset_reloc[0] = BFD_RELOC_UNUSED;
4168 offset_reloc[1] = BFD_RELOC_UNUSED;
4169 offset_reloc[2] = BFD_RELOC_UNUSED;
4170
4171 mips_mark_labels ();
4172 mips_assembling_insn = TRUE;
4173 clear_insn_error ();
4174
4175 if (mips_opts.mips16)
4176 mips16_ip (str, &insn);
4177 else
4178 {
4179 mips_ip (str, &insn);
4180 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4181 str, insn.insn_opcode));
4182 }
4183
4184 if (insn_error.msg)
4185 report_insn_error (str);
4186 else if (insn.insn_mo->pinfo == INSN_MACRO)
4187 {
4188 macro_start ();
4189 if (mips_opts.mips16)
4190 mips16_macro (&insn);
4191 else
4192 macro (&insn, str);
4193 macro_end ();
4194 }
4195 else
4196 {
4197 if (offset_expr.X_op != O_absent)
4198 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4199 else
4200 append_insn (&insn, NULL, unused_reloc, FALSE);
4201 }
4202
4203 mips_assembling_insn = FALSE;
4204 }
4205
4206 /* Convenience functions for abstracting away the differences between
4207 MIPS16 and non-MIPS16 relocations. */
4208
4209 static inline bfd_boolean
4210 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4211 {
4212 switch (reloc)
4213 {
4214 case BFD_RELOC_MIPS16_JMP:
4215 case BFD_RELOC_MIPS16_GPREL:
4216 case BFD_RELOC_MIPS16_GOT16:
4217 case BFD_RELOC_MIPS16_CALL16:
4218 case BFD_RELOC_MIPS16_HI16_S:
4219 case BFD_RELOC_MIPS16_HI16:
4220 case BFD_RELOC_MIPS16_LO16:
4221 case BFD_RELOC_MIPS16_16_PCREL_S1:
4222 return TRUE;
4223
4224 default:
4225 return FALSE;
4226 }
4227 }
4228
4229 static inline bfd_boolean
4230 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4231 {
4232 switch (reloc)
4233 {
4234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4237 case BFD_RELOC_MICROMIPS_GPREL16:
4238 case BFD_RELOC_MICROMIPS_JMP:
4239 case BFD_RELOC_MICROMIPS_HI16:
4240 case BFD_RELOC_MICROMIPS_HI16_S:
4241 case BFD_RELOC_MICROMIPS_LO16:
4242 case BFD_RELOC_MICROMIPS_LITERAL:
4243 case BFD_RELOC_MICROMIPS_GOT16:
4244 case BFD_RELOC_MICROMIPS_CALL16:
4245 case BFD_RELOC_MICROMIPS_GOT_HI16:
4246 case BFD_RELOC_MICROMIPS_GOT_LO16:
4247 case BFD_RELOC_MICROMIPS_CALL_HI16:
4248 case BFD_RELOC_MICROMIPS_CALL_LO16:
4249 case BFD_RELOC_MICROMIPS_SUB:
4250 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4251 case BFD_RELOC_MICROMIPS_GOT_OFST:
4252 case BFD_RELOC_MICROMIPS_GOT_DISP:
4253 case BFD_RELOC_MICROMIPS_HIGHEST:
4254 case BFD_RELOC_MICROMIPS_HIGHER:
4255 case BFD_RELOC_MICROMIPS_SCN_DISP:
4256 case BFD_RELOC_MICROMIPS_JALR:
4257 return TRUE;
4258
4259 default:
4260 return FALSE;
4261 }
4262 }
4263
4264 static inline bfd_boolean
4265 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4266 {
4267 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4268 }
4269
4270 static inline bfd_boolean
4271 b_reloc_p (bfd_reloc_code_real_type reloc)
4272 {
4273 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4274 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4275 || reloc == BFD_RELOC_16_PCREL_S2
4276 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4277 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4278 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4279 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4280 }
4281
4282 static inline bfd_boolean
4283 got16_reloc_p (bfd_reloc_code_real_type reloc)
4284 {
4285 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4286 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4287 }
4288
4289 static inline bfd_boolean
4290 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4291 {
4292 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4293 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4294 }
4295
4296 static inline bfd_boolean
4297 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4298 {
4299 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4300 || reloc == BFD_RELOC_MICROMIPS_LO16);
4301 }
4302
4303 static inline bfd_boolean
4304 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4305 {
4306 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4307 }
4308
4309 static inline bfd_boolean
4310 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4311 {
4312 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4313 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4314 }
4315
4316 /* Return true if RELOC is a PC-relative relocation that does not have
4317 full address range. */
4318
4319 static inline bfd_boolean
4320 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4321 {
4322 switch (reloc)
4323 {
4324 case BFD_RELOC_16_PCREL_S2:
4325 case BFD_RELOC_MIPS16_16_PCREL_S1:
4326 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4327 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4328 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4329 case BFD_RELOC_MIPS_21_PCREL_S2:
4330 case BFD_RELOC_MIPS_26_PCREL_S2:
4331 case BFD_RELOC_MIPS_18_PCREL_S3:
4332 case BFD_RELOC_MIPS_19_PCREL_S2:
4333 return TRUE;
4334
4335 case BFD_RELOC_32_PCREL:
4336 case BFD_RELOC_HI16_S_PCREL:
4337 case BFD_RELOC_LO16_PCREL:
4338 return HAVE_64BIT_ADDRESSES;
4339
4340 default:
4341 return FALSE;
4342 }
4343 }
4344
4345 /* Return true if the given relocation might need a matching %lo().
4346 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4347 need a matching %lo() when applied to local symbols. */
4348
4349 static inline bfd_boolean
4350 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4351 {
4352 return (HAVE_IN_PLACE_ADDENDS
4353 && (hi16_reloc_p (reloc)
4354 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4355 all GOT16 relocations evaluate to "G". */
4356 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4357 }
4358
4359 /* Return the type of %lo() reloc needed by RELOC, given that
4360 reloc_needs_lo_p. */
4361
4362 static inline bfd_reloc_code_real_type
4363 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4364 {
4365 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4366 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4367 : BFD_RELOC_LO16));
4368 }
4369
4370 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4371 relocation. */
4372
4373 static inline bfd_boolean
4374 fixup_has_matching_lo_p (fixS *fixp)
4375 {
4376 return (fixp->fx_next != NULL
4377 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4378 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4379 && fixp->fx_offset == fixp->fx_next->fx_offset);
4380 }
4381
4382 /* Move all labels in LABELS to the current insertion point. TEXT_P
4383 says whether the labels refer to text or data. */
4384
4385 static void
4386 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4387 {
4388 struct insn_label_list *l;
4389 valueT val;
4390
4391 for (l = labels; l != NULL; l = l->next)
4392 {
4393 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4394 symbol_set_frag (l->label, frag_now);
4395 val = (valueT) frag_now_fix ();
4396 /* MIPS16/microMIPS text labels are stored as odd. */
4397 if (text_p && HAVE_CODE_COMPRESSION)
4398 ++val;
4399 S_SET_VALUE (l->label, val);
4400 }
4401 }
4402
4403 /* Move all labels in insn_labels to the current insertion point
4404 and treat them as text labels. */
4405
4406 static void
4407 mips_move_text_labels (void)
4408 {
4409 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4410 }
4411
4412 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4413
4414 static bfd_boolean
4415 s_is_linkonce (symbolS *sym, segT from_seg)
4416 {
4417 bfd_boolean linkonce = FALSE;
4418 segT symseg = S_GET_SEGMENT (sym);
4419
4420 if (symseg != from_seg && !S_IS_LOCAL (sym))
4421 {
4422 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4423 linkonce = TRUE;
4424 /* The GNU toolchain uses an extension for ELF: a section
4425 beginning with the magic string .gnu.linkonce is a
4426 linkonce section. */
4427 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4428 sizeof ".gnu.linkonce" - 1) == 0)
4429 linkonce = TRUE;
4430 }
4431 return linkonce;
4432 }
4433
4434 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4435 linker to handle them specially, such as generating jalx instructions
4436 when needed. We also make them odd for the duration of the assembly,
4437 in order to generate the right sort of code. We will make them even
4438 in the adjust_symtab routine, while leaving them marked. This is
4439 convenient for the debugger and the disassembler. The linker knows
4440 to make them odd again. */
4441
4442 static void
4443 mips_compressed_mark_label (symbolS *label)
4444 {
4445 gas_assert (HAVE_CODE_COMPRESSION);
4446
4447 if (mips_opts.mips16)
4448 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4449 else
4450 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4451 if ((S_GET_VALUE (label) & 1) == 0
4452 /* Don't adjust the address if the label is global or weak, or
4453 in a link-once section, since we'll be emitting symbol reloc
4454 references to it which will be patched up by the linker, and
4455 the final value of the symbol may or may not be MIPS16/microMIPS. */
4456 && !S_IS_WEAK (label)
4457 && !S_IS_EXTERNAL (label)
4458 && !s_is_linkonce (label, now_seg))
4459 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4460 }
4461
4462 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4463
4464 static void
4465 mips_compressed_mark_labels (void)
4466 {
4467 struct insn_label_list *l;
4468
4469 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4470 mips_compressed_mark_label (l->label);
4471 }
4472
4473 /* End the current frag. Make it a variant frag and record the
4474 relaxation info. */
4475
4476 static void
4477 relax_close_frag (void)
4478 {
4479 mips_macro_warning.first_frag = frag_now;
4480 frag_var (rs_machine_dependent, 0, 0,
4481 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4482 mips_pic != NO_PIC),
4483 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4484
4485 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4486 mips_relax.first_fixup = 0;
4487 }
4488
4489 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4490 See the comment above RELAX_ENCODE for more details. */
4491
4492 static void
4493 relax_start (symbolS *symbol)
4494 {
4495 gas_assert (mips_relax.sequence == 0);
4496 mips_relax.sequence = 1;
4497 mips_relax.symbol = symbol;
4498 }
4499
4500 /* Start generating the second version of a relaxable sequence.
4501 See the comment above RELAX_ENCODE for more details. */
4502
4503 static void
4504 relax_switch (void)
4505 {
4506 gas_assert (mips_relax.sequence == 1);
4507 mips_relax.sequence = 2;
4508 }
4509
4510 /* End the current relaxable sequence. */
4511
4512 static void
4513 relax_end (void)
4514 {
4515 gas_assert (mips_relax.sequence == 2);
4516 relax_close_frag ();
4517 mips_relax.sequence = 0;
4518 }
4519
4520 /* Return true if IP is a delayed branch or jump. */
4521
4522 static inline bfd_boolean
4523 delayed_branch_p (const struct mips_cl_insn *ip)
4524 {
4525 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4526 | INSN_COND_BRANCH_DELAY
4527 | INSN_COND_BRANCH_LIKELY)) != 0;
4528 }
4529
4530 /* Return true if IP is a compact branch or jump. */
4531
4532 static inline bfd_boolean
4533 compact_branch_p (const struct mips_cl_insn *ip)
4534 {
4535 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4536 | INSN2_COND_BRANCH)) != 0;
4537 }
4538
4539 /* Return true if IP is an unconditional branch or jump. */
4540
4541 static inline bfd_boolean
4542 uncond_branch_p (const struct mips_cl_insn *ip)
4543 {
4544 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4545 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4546 }
4547
4548 /* Return true if IP is a branch-likely instruction. */
4549
4550 static inline bfd_boolean
4551 branch_likely_p (const struct mips_cl_insn *ip)
4552 {
4553 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4554 }
4555
4556 /* Return the type of nop that should be used to fill the delay slot
4557 of delayed branch IP. */
4558
4559 static struct mips_cl_insn *
4560 get_delay_slot_nop (const struct mips_cl_insn *ip)
4561 {
4562 if (mips_opts.micromips
4563 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4564 return &micromips_nop32_insn;
4565 return NOP_INSN;
4566 }
4567
4568 /* Return a mask that has bit N set if OPCODE reads the register(s)
4569 in operand N. */
4570
4571 static unsigned int
4572 insn_read_mask (const struct mips_opcode *opcode)
4573 {
4574 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4575 }
4576
4577 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4578 in operand N. */
4579
4580 static unsigned int
4581 insn_write_mask (const struct mips_opcode *opcode)
4582 {
4583 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4584 }
4585
4586 /* Return a mask of the registers specified by operand OPERAND of INSN.
4587 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4588 is set. */
4589
4590 static unsigned int
4591 operand_reg_mask (const struct mips_cl_insn *insn,
4592 const struct mips_operand *operand,
4593 unsigned int type_mask)
4594 {
4595 unsigned int uval, vsel;
4596
4597 switch (operand->type)
4598 {
4599 case OP_INT:
4600 case OP_MAPPED_INT:
4601 case OP_MSB:
4602 case OP_PCREL:
4603 case OP_PERF_REG:
4604 case OP_ADDIUSP_INT:
4605 case OP_ENTRY_EXIT_LIST:
4606 case OP_REPEAT_DEST_REG:
4607 case OP_REPEAT_PREV_REG:
4608 case OP_PC:
4609 case OP_VU0_SUFFIX:
4610 case OP_VU0_MATCH_SUFFIX:
4611 case OP_IMM_INDEX:
4612 abort ();
4613
4614 case OP_REG28:
4615 return 1 << 28;
4616
4617 case OP_REG:
4618 case OP_OPTIONAL_REG:
4619 {
4620 const struct mips_reg_operand *reg_op;
4621
4622 reg_op = (const struct mips_reg_operand *) operand;
4623 if (!(type_mask & (1 << reg_op->reg_type)))
4624 return 0;
4625 uval = insn_extract_operand (insn, operand);
4626 return 1 << mips_decode_reg_operand (reg_op, uval);
4627 }
4628
4629 case OP_REG_PAIR:
4630 {
4631 const struct mips_reg_pair_operand *pair_op;
4632
4633 pair_op = (const struct mips_reg_pair_operand *) operand;
4634 if (!(type_mask & (1 << pair_op->reg_type)))
4635 return 0;
4636 uval = insn_extract_operand (insn, operand);
4637 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4638 }
4639
4640 case OP_CLO_CLZ_DEST:
4641 if (!(type_mask & (1 << OP_REG_GP)))
4642 return 0;
4643 uval = insn_extract_operand (insn, operand);
4644 return (1 << (uval & 31)) | (1 << (uval >> 5));
4645
4646 case OP_SAME_RS_RT:
4647 if (!(type_mask & (1 << OP_REG_GP)))
4648 return 0;
4649 uval = insn_extract_operand (insn, operand);
4650 gas_assert ((uval & 31) == (uval >> 5));
4651 return 1 << (uval & 31);
4652
4653 case OP_CHECK_PREV:
4654 case OP_NON_ZERO_REG:
4655 if (!(type_mask & (1 << OP_REG_GP)))
4656 return 0;
4657 uval = insn_extract_operand (insn, operand);
4658 return 1 << (uval & 31);
4659
4660 case OP_LWM_SWM_LIST:
4661 abort ();
4662
4663 case OP_SAVE_RESTORE_LIST:
4664 abort ();
4665
4666 case OP_MDMX_IMM_REG:
4667 if (!(type_mask & (1 << OP_REG_VEC)))
4668 return 0;
4669 uval = insn_extract_operand (insn, operand);
4670 vsel = uval >> 5;
4671 if ((vsel & 0x18) == 0x18)
4672 return 0;
4673 return 1 << (uval & 31);
4674
4675 case OP_REG_INDEX:
4676 if (!(type_mask & (1 << OP_REG_GP)))
4677 return 0;
4678 return 1 << insn_extract_operand (insn, operand);
4679 }
4680 abort ();
4681 }
4682
4683 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4684 where bit N of OPNO_MASK is set if operand N should be included.
4685 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4686 is set. */
4687
4688 static unsigned int
4689 insn_reg_mask (const struct mips_cl_insn *insn,
4690 unsigned int type_mask, unsigned int opno_mask)
4691 {
4692 unsigned int opno, reg_mask;
4693
4694 opno = 0;
4695 reg_mask = 0;
4696 while (opno_mask != 0)
4697 {
4698 if (opno_mask & 1)
4699 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4700 opno_mask >>= 1;
4701 opno += 1;
4702 }
4703 return reg_mask;
4704 }
4705
4706 /* Return the mask of core registers that IP reads. */
4707
4708 static unsigned int
4709 gpr_read_mask (const struct mips_cl_insn *ip)
4710 {
4711 unsigned long pinfo, pinfo2;
4712 unsigned int mask;
4713
4714 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4715 pinfo = ip->insn_mo->pinfo;
4716 pinfo2 = ip->insn_mo->pinfo2;
4717 if (pinfo & INSN_UDI)
4718 {
4719 /* UDI instructions have traditionally been assumed to read RS
4720 and RT. */
4721 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4722 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4723 }
4724 if (pinfo & INSN_READ_GPR_24)
4725 mask |= 1 << 24;
4726 if (pinfo2 & INSN2_READ_GPR_16)
4727 mask |= 1 << 16;
4728 if (pinfo2 & INSN2_READ_SP)
4729 mask |= 1 << SP;
4730 if (pinfo2 & INSN2_READ_GPR_31)
4731 mask |= 1 << 31;
4732 /* Don't include register 0. */
4733 return mask & ~1;
4734 }
4735
4736 /* Return the mask of core registers that IP writes. */
4737
4738 static unsigned int
4739 gpr_write_mask (const struct mips_cl_insn *ip)
4740 {
4741 unsigned long pinfo, pinfo2;
4742 unsigned int mask;
4743
4744 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4745 pinfo = ip->insn_mo->pinfo;
4746 pinfo2 = ip->insn_mo->pinfo2;
4747 if (pinfo & INSN_WRITE_GPR_24)
4748 mask |= 1 << 24;
4749 if (pinfo & INSN_WRITE_GPR_31)
4750 mask |= 1 << 31;
4751 if (pinfo & INSN_UDI)
4752 /* UDI instructions have traditionally been assumed to write to RD. */
4753 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4754 if (pinfo2 & INSN2_WRITE_SP)
4755 mask |= 1 << SP;
4756 /* Don't include register 0. */
4757 return mask & ~1;
4758 }
4759
4760 /* Return the mask of floating-point registers that IP reads. */
4761
4762 static unsigned int
4763 fpr_read_mask (const struct mips_cl_insn *ip)
4764 {
4765 unsigned long pinfo;
4766 unsigned int mask;
4767
4768 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4769 | (1 << OP_REG_MSA)),
4770 insn_read_mask (ip->insn_mo));
4771 pinfo = ip->insn_mo->pinfo;
4772 /* Conservatively treat all operands to an FP_D instruction are doubles.
4773 (This is overly pessimistic for things like cvt.d.s.) */
4774 if (FPR_SIZE != 64 && (pinfo & FP_D))
4775 mask |= mask << 1;
4776 return mask;
4777 }
4778
4779 /* Return the mask of floating-point registers that IP writes. */
4780
4781 static unsigned int
4782 fpr_write_mask (const struct mips_cl_insn *ip)
4783 {
4784 unsigned long pinfo;
4785 unsigned int mask;
4786
4787 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4788 | (1 << OP_REG_MSA)),
4789 insn_write_mask (ip->insn_mo));
4790 pinfo = ip->insn_mo->pinfo;
4791 /* Conservatively treat all operands to an FP_D instruction are doubles.
4792 (This is overly pessimistic for things like cvt.s.d.) */
4793 if (FPR_SIZE != 64 && (pinfo & FP_D))
4794 mask |= mask << 1;
4795 return mask;
4796 }
4797
4798 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4799 Check whether that is allowed. */
4800
4801 static bfd_boolean
4802 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4803 {
4804 const char *s = insn->name;
4805 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4806 || FPR_SIZE == 64)
4807 && mips_opts.oddspreg;
4808
4809 if (insn->pinfo == INSN_MACRO)
4810 /* Let a macro pass, we'll catch it later when it is expanded. */
4811 return TRUE;
4812
4813 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4814 otherwise it depends on oddspreg. */
4815 if ((insn->pinfo & FP_S)
4816 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4817 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4818 return FPR_SIZE == 32 || oddspreg;
4819
4820 /* Allow odd registers for single-precision ops and double-precision if the
4821 floating-point registers are 64-bit wide. */
4822 switch (insn->pinfo & (FP_S | FP_D))
4823 {
4824 case FP_S:
4825 case 0:
4826 return oddspreg;
4827 case FP_D:
4828 return FPR_SIZE == 64;
4829 default:
4830 break;
4831 }
4832
4833 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4834 s = strchr (insn->name, '.');
4835 if (s != NULL && opnum == 2)
4836 s = strchr (s + 1, '.');
4837 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4838 return oddspreg;
4839
4840 return FPR_SIZE == 64;
4841 }
4842
4843 /* Information about an instruction argument that we're trying to match. */
4844 struct mips_arg_info
4845 {
4846 /* The instruction so far. */
4847 struct mips_cl_insn *insn;
4848
4849 /* The first unconsumed operand token. */
4850 struct mips_operand_token *token;
4851
4852 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4853 int opnum;
4854
4855 /* The 1-based argument number, for error reporting. This does not
4856 count elided optional registers, etc.. */
4857 int argnum;
4858
4859 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4860 unsigned int last_regno;
4861
4862 /* If the first operand was an OP_REG, this is the register that it
4863 specified, otherwise it is ILLEGAL_REG. */
4864 unsigned int dest_regno;
4865
4866 /* The value of the last OP_INT operand. Only used for OP_MSB,
4867 where it gives the lsb position. */
4868 unsigned int last_op_int;
4869
4870 /* If true, match routines should assume that no later instruction
4871 alternative matches and should therefore be as accommodating as
4872 possible. Match routines should not report errors if something
4873 is only invalid for !LAX_MATCH. */
4874 bfd_boolean lax_match;
4875
4876 /* True if a reference to the current AT register was seen. */
4877 bfd_boolean seen_at;
4878 };
4879
4880 /* Record that the argument is out of range. */
4881
4882 static void
4883 match_out_of_range (struct mips_arg_info *arg)
4884 {
4885 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4886 }
4887
4888 /* Record that the argument isn't constant but needs to be. */
4889
4890 static void
4891 match_not_constant (struct mips_arg_info *arg)
4892 {
4893 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4894 arg->argnum);
4895 }
4896
4897 /* Try to match an OT_CHAR token for character CH. Consume the token
4898 and return true on success, otherwise return false. */
4899
4900 static bfd_boolean
4901 match_char (struct mips_arg_info *arg, char ch)
4902 {
4903 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4904 {
4905 ++arg->token;
4906 if (ch == ',')
4907 arg->argnum += 1;
4908 return TRUE;
4909 }
4910 return FALSE;
4911 }
4912
4913 /* Try to get an expression from the next tokens in ARG. Consume the
4914 tokens and return true on success, storing the expression value in
4915 VALUE and relocation types in R. */
4916
4917 static bfd_boolean
4918 match_expression (struct mips_arg_info *arg, expressionS *value,
4919 bfd_reloc_code_real_type *r)
4920 {
4921 /* If the next token is a '(' that was parsed as being part of a base
4922 expression, assume we have an elided offset. The later match will fail
4923 if this turns out to be wrong. */
4924 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4925 {
4926 value->X_op = O_constant;
4927 value->X_add_number = 0;
4928 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4929 return TRUE;
4930 }
4931
4932 /* Reject register-based expressions such as "0+$2" and "(($2))".
4933 For plain registers the default error seems more appropriate. */
4934 if (arg->token->type == OT_INTEGER
4935 && arg->token->u.integer.value.X_op == O_register)
4936 {
4937 set_insn_error (arg->argnum, _("register value used as expression"));
4938 return FALSE;
4939 }
4940
4941 if (arg->token->type == OT_INTEGER)
4942 {
4943 *value = arg->token->u.integer.value;
4944 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4945 ++arg->token;
4946 return TRUE;
4947 }
4948
4949 set_insn_error_i
4950 (arg->argnum, _("operand %d must be an immediate expression"),
4951 arg->argnum);
4952 return FALSE;
4953 }
4954
4955 /* Try to get a constant expression from the next tokens in ARG. Consume
4956 the tokens and return true on success, storing the constant value
4957 in *VALUE. */
4958
4959 static bfd_boolean
4960 match_const_int (struct mips_arg_info *arg, offsetT *value)
4961 {
4962 expressionS ex;
4963 bfd_reloc_code_real_type r[3];
4964
4965 if (!match_expression (arg, &ex, r))
4966 return FALSE;
4967
4968 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4969 *value = ex.X_add_number;
4970 else
4971 {
4972 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4973 match_out_of_range (arg);
4974 else
4975 match_not_constant (arg);
4976 return FALSE;
4977 }
4978 return TRUE;
4979 }
4980
4981 /* Return the RTYPE_* flags for a register operand of type TYPE that
4982 appears in instruction OPCODE. */
4983
4984 static unsigned int
4985 convert_reg_type (const struct mips_opcode *opcode,
4986 enum mips_reg_operand_type type)
4987 {
4988 switch (type)
4989 {
4990 case OP_REG_GP:
4991 return RTYPE_NUM | RTYPE_GP;
4992
4993 case OP_REG_FP:
4994 /* Allow vector register names for MDMX if the instruction is a 64-bit
4995 FPR load, store or move (including moves to and from GPRs). */
4996 if ((mips_opts.ase & ASE_MDMX)
4997 && (opcode->pinfo & FP_D)
4998 && (opcode->pinfo & (INSN_COPROC_MOVE
4999 | INSN_COPROC_MEMORY_DELAY
5000 | INSN_LOAD_COPROC
5001 | INSN_LOAD_MEMORY
5002 | INSN_STORE_MEMORY)))
5003 return RTYPE_FPU | RTYPE_VEC;
5004 return RTYPE_FPU;
5005
5006 case OP_REG_CCC:
5007 if (opcode->pinfo & (FP_D | FP_S))
5008 return RTYPE_CCC | RTYPE_FCC;
5009 return RTYPE_CCC;
5010
5011 case OP_REG_VEC:
5012 if (opcode->membership & INSN_5400)
5013 return RTYPE_FPU;
5014 return RTYPE_FPU | RTYPE_VEC;
5015
5016 case OP_REG_ACC:
5017 return RTYPE_ACC;
5018
5019 case OP_REG_COPRO:
5020 if (opcode->name[strlen (opcode->name) - 1] == '0')
5021 return RTYPE_NUM | RTYPE_CP0;
5022 return RTYPE_NUM;
5023
5024 case OP_REG_HW:
5025 return RTYPE_NUM;
5026
5027 case OP_REG_VI:
5028 return RTYPE_NUM | RTYPE_VI;
5029
5030 case OP_REG_VF:
5031 return RTYPE_NUM | RTYPE_VF;
5032
5033 case OP_REG_R5900_I:
5034 return RTYPE_R5900_I;
5035
5036 case OP_REG_R5900_Q:
5037 return RTYPE_R5900_Q;
5038
5039 case OP_REG_R5900_R:
5040 return RTYPE_R5900_R;
5041
5042 case OP_REG_R5900_ACC:
5043 return RTYPE_R5900_ACC;
5044
5045 case OP_REG_MSA:
5046 return RTYPE_MSA;
5047
5048 case OP_REG_MSA_CTRL:
5049 return RTYPE_NUM;
5050 }
5051 abort ();
5052 }
5053
5054 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5055
5056 static void
5057 check_regno (struct mips_arg_info *arg,
5058 enum mips_reg_operand_type type, unsigned int regno)
5059 {
5060 if (AT && type == OP_REG_GP && regno == AT)
5061 arg->seen_at = TRUE;
5062
5063 if (type == OP_REG_FP
5064 && (regno & 1) != 0
5065 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5066 {
5067 /* This was a warning prior to introducing O32 FPXX and FP64 support
5068 so maintain a warning for FP32 but raise an error for the new
5069 cases. */
5070 if (FPR_SIZE == 32)
5071 as_warn (_("float register should be even, was %d"), regno);
5072 else
5073 as_bad (_("float register should be even, was %d"), regno);
5074 }
5075
5076 if (type == OP_REG_CCC)
5077 {
5078 const char *name;
5079 size_t length;
5080
5081 name = arg->insn->insn_mo->name;
5082 length = strlen (name);
5083 if ((regno & 1) != 0
5084 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5085 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5086 as_warn (_("condition code register should be even for %s, was %d"),
5087 name, regno);
5088
5089 if ((regno & 3) != 0
5090 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5091 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5092 name, regno);
5093 }
5094 }
5095
5096 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5097 a register of type TYPE. Return true on success, storing the register
5098 number in *REGNO and warning about any dubious uses. */
5099
5100 static bfd_boolean
5101 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5102 unsigned int symval, unsigned int *regno)
5103 {
5104 if (type == OP_REG_VEC)
5105 symval = mips_prefer_vec_regno (symval);
5106 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5107 return FALSE;
5108
5109 *regno = symval & RNUM_MASK;
5110 check_regno (arg, type, *regno);
5111 return TRUE;
5112 }
5113
5114 /* Try to interpret the next token in ARG as a register of type TYPE.
5115 Consume the token and return true on success, storing the register
5116 number in *REGNO. Return false on failure. */
5117
5118 static bfd_boolean
5119 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5120 unsigned int *regno)
5121 {
5122 if (arg->token->type == OT_REG
5123 && match_regno (arg, type, arg->token->u.regno, regno))
5124 {
5125 ++arg->token;
5126 return TRUE;
5127 }
5128 return FALSE;
5129 }
5130
5131 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5132 Consume the token and return true on success, storing the register numbers
5133 in *REGNO1 and *REGNO2. Return false on failure. */
5134
5135 static bfd_boolean
5136 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5137 unsigned int *regno1, unsigned int *regno2)
5138 {
5139 if (match_reg (arg, type, regno1))
5140 {
5141 *regno2 = *regno1;
5142 return TRUE;
5143 }
5144 if (arg->token->type == OT_REG_RANGE
5145 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5146 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5147 && *regno1 <= *regno2)
5148 {
5149 ++arg->token;
5150 return TRUE;
5151 }
5152 return FALSE;
5153 }
5154
5155 /* OP_INT matcher. */
5156
5157 static bfd_boolean
5158 match_int_operand (struct mips_arg_info *arg,
5159 const struct mips_operand *operand_base)
5160 {
5161 const struct mips_int_operand *operand;
5162 unsigned int uval;
5163 int min_val, max_val, factor;
5164 offsetT sval;
5165
5166 operand = (const struct mips_int_operand *) operand_base;
5167 factor = 1 << operand->shift;
5168 min_val = mips_int_operand_min (operand);
5169 max_val = mips_int_operand_max (operand);
5170
5171 if (operand_base->lsb == 0
5172 && operand_base->size == 16
5173 && operand->shift == 0
5174 && operand->bias == 0
5175 && (operand->max_val == 32767 || operand->max_val == 65535))
5176 {
5177 /* The operand can be relocated. */
5178 if (!match_expression (arg, &offset_expr, offset_reloc))
5179 return FALSE;
5180
5181 if (offset_expr.X_op == O_big)
5182 {
5183 match_out_of_range (arg);
5184 return FALSE;
5185 }
5186
5187 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5188 /* Relocation operators were used. Accept the argument and
5189 leave the relocation value in offset_expr and offset_relocs
5190 for the caller to process. */
5191 return TRUE;
5192
5193 if (offset_expr.X_op != O_constant)
5194 {
5195 /* Accept non-constant operands if no later alternative matches,
5196 leaving it for the caller to process. */
5197 if (!arg->lax_match)
5198 {
5199 match_not_constant (arg);
5200 return FALSE;
5201 }
5202 offset_reloc[0] = BFD_RELOC_LO16;
5203 return TRUE;
5204 }
5205
5206 /* Clear the global state; we're going to install the operand
5207 ourselves. */
5208 sval = offset_expr.X_add_number;
5209 offset_expr.X_op = O_absent;
5210
5211 /* For compatibility with older assemblers, we accept
5212 0x8000-0xffff as signed 16-bit numbers when only
5213 signed numbers are allowed. */
5214 if (sval > max_val)
5215 {
5216 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5217 if (!arg->lax_match && sval <= max_val)
5218 {
5219 match_out_of_range (arg);
5220 return FALSE;
5221 }
5222 }
5223 }
5224 else
5225 {
5226 if (!match_const_int (arg, &sval))
5227 return FALSE;
5228 }
5229
5230 arg->last_op_int = sval;
5231
5232 if (sval < min_val || sval > max_val || sval % factor)
5233 {
5234 match_out_of_range (arg);
5235 return FALSE;
5236 }
5237
5238 uval = (unsigned int) sval >> operand->shift;
5239 uval -= operand->bias;
5240
5241 /* Handle -mfix-cn63xxp1. */
5242 if (arg->opnum == 1
5243 && mips_fix_cn63xxp1
5244 && !mips_opts.micromips
5245 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5246 switch (uval)
5247 {
5248 case 5:
5249 case 25:
5250 case 26:
5251 case 27:
5252 case 28:
5253 case 29:
5254 case 30:
5255 case 31:
5256 /* These are ok. */
5257 break;
5258
5259 default:
5260 /* The rest must be changed to 28. */
5261 uval = 28;
5262 break;
5263 }
5264
5265 insn_insert_operand (arg->insn, operand_base, uval);
5266 return TRUE;
5267 }
5268
5269 /* OP_MAPPED_INT matcher. */
5270
5271 static bfd_boolean
5272 match_mapped_int_operand (struct mips_arg_info *arg,
5273 const struct mips_operand *operand_base)
5274 {
5275 const struct mips_mapped_int_operand *operand;
5276 unsigned int uval, num_vals;
5277 offsetT sval;
5278
5279 operand = (const struct mips_mapped_int_operand *) operand_base;
5280 if (!match_const_int (arg, &sval))
5281 return FALSE;
5282
5283 num_vals = 1 << operand_base->size;
5284 for (uval = 0; uval < num_vals; uval++)
5285 if (operand->int_map[uval] == sval)
5286 break;
5287 if (uval == num_vals)
5288 {
5289 match_out_of_range (arg);
5290 return FALSE;
5291 }
5292
5293 insn_insert_operand (arg->insn, operand_base, uval);
5294 return TRUE;
5295 }
5296
5297 /* OP_MSB matcher. */
5298
5299 static bfd_boolean
5300 match_msb_operand (struct mips_arg_info *arg,
5301 const struct mips_operand *operand_base)
5302 {
5303 const struct mips_msb_operand *operand;
5304 int min_val, max_val, max_high;
5305 offsetT size, sval, high;
5306
5307 operand = (const struct mips_msb_operand *) operand_base;
5308 min_val = operand->bias;
5309 max_val = min_val + (1 << operand_base->size) - 1;
5310 max_high = operand->opsize;
5311
5312 if (!match_const_int (arg, &size))
5313 return FALSE;
5314
5315 high = size + arg->last_op_int;
5316 sval = operand->add_lsb ? high : size;
5317
5318 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5319 {
5320 match_out_of_range (arg);
5321 return FALSE;
5322 }
5323 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5324 return TRUE;
5325 }
5326
5327 /* OP_REG matcher. */
5328
5329 static bfd_boolean
5330 match_reg_operand (struct mips_arg_info *arg,
5331 const struct mips_operand *operand_base)
5332 {
5333 const struct mips_reg_operand *operand;
5334 unsigned int regno, uval, num_vals;
5335
5336 operand = (const struct mips_reg_operand *) operand_base;
5337 if (!match_reg (arg, operand->reg_type, &regno))
5338 return FALSE;
5339
5340 if (operand->reg_map)
5341 {
5342 num_vals = 1 << operand->root.size;
5343 for (uval = 0; uval < num_vals; uval++)
5344 if (operand->reg_map[uval] == regno)
5345 break;
5346 if (num_vals == uval)
5347 return FALSE;
5348 }
5349 else
5350 uval = regno;
5351
5352 arg->last_regno = regno;
5353 if (arg->opnum == 1)
5354 arg->dest_regno = regno;
5355 insn_insert_operand (arg->insn, operand_base, uval);
5356 return TRUE;
5357 }
5358
5359 /* OP_REG_PAIR matcher. */
5360
5361 static bfd_boolean
5362 match_reg_pair_operand (struct mips_arg_info *arg,
5363 const struct mips_operand *operand_base)
5364 {
5365 const struct mips_reg_pair_operand *operand;
5366 unsigned int regno1, regno2, uval, num_vals;
5367
5368 operand = (const struct mips_reg_pair_operand *) operand_base;
5369 if (!match_reg (arg, operand->reg_type, &regno1)
5370 || !match_char (arg, ',')
5371 || !match_reg (arg, operand->reg_type, &regno2))
5372 return FALSE;
5373
5374 num_vals = 1 << operand_base->size;
5375 for (uval = 0; uval < num_vals; uval++)
5376 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5377 break;
5378 if (uval == num_vals)
5379 return FALSE;
5380
5381 insn_insert_operand (arg->insn, operand_base, uval);
5382 return TRUE;
5383 }
5384
5385 /* OP_PCREL matcher. The caller chooses the relocation type. */
5386
5387 static bfd_boolean
5388 match_pcrel_operand (struct mips_arg_info *arg)
5389 {
5390 bfd_reloc_code_real_type r[3];
5391
5392 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5393 }
5394
5395 /* OP_PERF_REG matcher. */
5396
5397 static bfd_boolean
5398 match_perf_reg_operand (struct mips_arg_info *arg,
5399 const struct mips_operand *operand)
5400 {
5401 offsetT sval;
5402
5403 if (!match_const_int (arg, &sval))
5404 return FALSE;
5405
5406 if (sval != 0
5407 && (sval != 1
5408 || (mips_opts.arch == CPU_R5900
5409 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5410 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5411 {
5412 set_insn_error (arg->argnum, _("invalid performance register"));
5413 return FALSE;
5414 }
5415
5416 insn_insert_operand (arg->insn, operand, sval);
5417 return TRUE;
5418 }
5419
5420 /* OP_ADDIUSP matcher. */
5421
5422 static bfd_boolean
5423 match_addiusp_operand (struct mips_arg_info *arg,
5424 const struct mips_operand *operand)
5425 {
5426 offsetT sval;
5427 unsigned int uval;
5428
5429 if (!match_const_int (arg, &sval))
5430 return FALSE;
5431
5432 if (sval % 4)
5433 {
5434 match_out_of_range (arg);
5435 return FALSE;
5436 }
5437
5438 sval /= 4;
5439 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5440 {
5441 match_out_of_range (arg);
5442 return FALSE;
5443 }
5444
5445 uval = (unsigned int) sval;
5446 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5447 insn_insert_operand (arg->insn, operand, uval);
5448 return TRUE;
5449 }
5450
5451 /* OP_CLO_CLZ_DEST matcher. */
5452
5453 static bfd_boolean
5454 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5455 const struct mips_operand *operand)
5456 {
5457 unsigned int regno;
5458
5459 if (!match_reg (arg, OP_REG_GP, &regno))
5460 return FALSE;
5461
5462 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5463 return TRUE;
5464 }
5465
5466 /* OP_CHECK_PREV matcher. */
5467
5468 static bfd_boolean
5469 match_check_prev_operand (struct mips_arg_info *arg,
5470 const struct mips_operand *operand_base)
5471 {
5472 const struct mips_check_prev_operand *operand;
5473 unsigned int regno;
5474
5475 operand = (const struct mips_check_prev_operand *) operand_base;
5476
5477 if (!match_reg (arg, OP_REG_GP, &regno))
5478 return FALSE;
5479
5480 if (!operand->zero_ok && regno == 0)
5481 return FALSE;
5482
5483 if ((operand->less_than_ok && regno < arg->last_regno)
5484 || (operand->greater_than_ok && regno > arg->last_regno)
5485 || (operand->equal_ok && regno == arg->last_regno))
5486 {
5487 arg->last_regno = regno;
5488 insn_insert_operand (arg->insn, operand_base, regno);
5489 return TRUE;
5490 }
5491
5492 return FALSE;
5493 }
5494
5495 /* OP_SAME_RS_RT matcher. */
5496
5497 static bfd_boolean
5498 match_same_rs_rt_operand (struct mips_arg_info *arg,
5499 const struct mips_operand *operand)
5500 {
5501 unsigned int regno;
5502
5503 if (!match_reg (arg, OP_REG_GP, &regno))
5504 return FALSE;
5505
5506 if (regno == 0)
5507 {
5508 set_insn_error (arg->argnum, _("the source register must not be $0"));
5509 return FALSE;
5510 }
5511
5512 arg->last_regno = regno;
5513
5514 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5515 return TRUE;
5516 }
5517
5518 /* OP_LWM_SWM_LIST matcher. */
5519
5520 static bfd_boolean
5521 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5522 const struct mips_operand *operand)
5523 {
5524 unsigned int reglist, sregs, ra, regno1, regno2;
5525 struct mips_arg_info reset;
5526
5527 reglist = 0;
5528 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5529 return FALSE;
5530 do
5531 {
5532 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5533 {
5534 reglist |= 1 << FP;
5535 regno2 = S7;
5536 }
5537 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5538 reset = *arg;
5539 }
5540 while (match_char (arg, ',')
5541 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5542 *arg = reset;
5543
5544 if (operand->size == 2)
5545 {
5546 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5547
5548 s0, ra
5549 s0, s1, ra, s2, s3
5550 s0-s2, ra
5551
5552 and any permutations of these. */
5553 if ((reglist & 0xfff1ffff) != 0x80010000)
5554 return FALSE;
5555
5556 sregs = (reglist >> 17) & 7;
5557 ra = 0;
5558 }
5559 else
5560 {
5561 /* The list must include at least one of ra and s0-sN,
5562 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5563 which are $23 and $30 respectively.) E.g.:
5564
5565 ra
5566 s0
5567 ra, s0, s1, s2
5568 s0-s8
5569 s0-s5, ra
5570
5571 and any permutations of these. */
5572 if ((reglist & 0x3f00ffff) != 0)
5573 return FALSE;
5574
5575 ra = (reglist >> 27) & 0x10;
5576 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5577 }
5578 sregs += 1;
5579 if ((sregs & -sregs) != sregs)
5580 return FALSE;
5581
5582 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5583 return TRUE;
5584 }
5585
5586 /* OP_ENTRY_EXIT_LIST matcher. */
5587
5588 static unsigned int
5589 match_entry_exit_operand (struct mips_arg_info *arg,
5590 const struct mips_operand *operand)
5591 {
5592 unsigned int mask;
5593 bfd_boolean is_exit;
5594
5595 /* The format is the same for both ENTRY and EXIT, but the constraints
5596 are different. */
5597 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5598 mask = (is_exit ? 7 << 3 : 0);
5599 do
5600 {
5601 unsigned int regno1, regno2;
5602 bfd_boolean is_freg;
5603
5604 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5605 is_freg = FALSE;
5606 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5607 is_freg = TRUE;
5608 else
5609 return FALSE;
5610
5611 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5612 {
5613 mask &= ~(7 << 3);
5614 mask |= (5 + regno2) << 3;
5615 }
5616 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5617 mask |= (regno2 - 3) << 3;
5618 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5619 mask |= (regno2 - 15) << 1;
5620 else if (regno1 == RA && regno2 == RA)
5621 mask |= 1;
5622 else
5623 return FALSE;
5624 }
5625 while (match_char (arg, ','));
5626
5627 insn_insert_operand (arg->insn, operand, mask);
5628 return TRUE;
5629 }
5630
5631 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5632 the argument register mask AMASK, the number of static registers
5633 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5634 respectively, and the frame size FRAME_SIZE. */
5635
5636 static unsigned int
5637 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5638 unsigned int ra, unsigned int s0, unsigned int s1,
5639 unsigned int frame_size)
5640 {
5641 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5642 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5643 }
5644
5645 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5646 argument register mask AMASK, the number of static registers saved
5647 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5648 respectively, and the frame size FRAME_SIZE. */
5649
5650 static unsigned int
5651 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5652 unsigned int ra, unsigned int s0, unsigned int s1,
5653 unsigned int frame_size)
5654 {
5655 unsigned int args;
5656
5657 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5658 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5659 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5660 | ((frame_size & 0xf0) << 16));
5661 return args;
5662 }
5663
5664 /* OP_SAVE_RESTORE_LIST matcher. */
5665
5666 static bfd_boolean
5667 match_save_restore_list_operand (struct mips_arg_info *arg)
5668 {
5669 unsigned int opcode, args, statics, sregs;
5670 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5671 unsigned int arg_mask, ra, s0, s1;
5672 offsetT frame_size;
5673
5674 opcode = arg->insn->insn_opcode;
5675 frame_size = 0;
5676 num_frame_sizes = 0;
5677 args = 0;
5678 statics = 0;
5679 sregs = 0;
5680 ra = 0;
5681 s0 = 0;
5682 s1 = 0;
5683 do
5684 {
5685 unsigned int regno1, regno2;
5686
5687 if (arg->token->type == OT_INTEGER)
5688 {
5689 /* Handle the frame size. */
5690 if (!match_const_int (arg, &frame_size))
5691 return FALSE;
5692 num_frame_sizes += 1;
5693 }
5694 else
5695 {
5696 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5697 return FALSE;
5698
5699 while (regno1 <= regno2)
5700 {
5701 if (regno1 >= 4 && regno1 <= 7)
5702 {
5703 if (num_frame_sizes == 0)
5704 /* args $a0-$a3 */
5705 args |= 1 << (regno1 - 4);
5706 else
5707 /* statics $a0-$a3 */
5708 statics |= 1 << (regno1 - 4);
5709 }
5710 else if (regno1 >= 16 && regno1 <= 23)
5711 /* $s0-$s7 */
5712 sregs |= 1 << (regno1 - 16);
5713 else if (regno1 == 30)
5714 /* $s8 */
5715 sregs |= 1 << 8;
5716 else if (regno1 == 31)
5717 /* Add $ra to insn. */
5718 ra = 1;
5719 else
5720 return FALSE;
5721 regno1 += 1;
5722 if (regno1 == 24)
5723 regno1 = 30;
5724 }
5725 }
5726 }
5727 while (match_char (arg, ','));
5728
5729 /* Encode args/statics combination. */
5730 if (args & statics)
5731 return FALSE;
5732 else if (args == 0xf)
5733 /* All $a0-$a3 are args. */
5734 arg_mask = MIPS_SVRS_ALL_ARGS;
5735 else if (statics == 0xf)
5736 /* All $a0-$a3 are statics. */
5737 arg_mask = MIPS_SVRS_ALL_STATICS;
5738 else
5739 {
5740 /* Count arg registers. */
5741 num_args = 0;
5742 while (args & 0x1)
5743 {
5744 args >>= 1;
5745 num_args += 1;
5746 }
5747 if (args != 0)
5748 return FALSE;
5749
5750 /* Count static registers. */
5751 num_statics = 0;
5752 while (statics & 0x8)
5753 {
5754 statics = (statics << 1) & 0xf;
5755 num_statics += 1;
5756 }
5757 if (statics != 0)
5758 return FALSE;
5759
5760 /* Encode args/statics. */
5761 arg_mask = (num_args << 2) | num_statics;
5762 }
5763
5764 /* Encode $s0/$s1. */
5765 if (sregs & (1 << 0)) /* $s0 */
5766 s0 = 1;
5767 if (sregs & (1 << 1)) /* $s1 */
5768 s1 = 1;
5769 sregs >>= 2;
5770
5771 /* Encode $s2-$s8. */
5772 num_sregs = 0;
5773 while (sregs & 1)
5774 {
5775 sregs >>= 1;
5776 num_sregs += 1;
5777 }
5778 if (sregs != 0)
5779 return FALSE;
5780
5781 /* Encode frame size. */
5782 if (num_frame_sizes == 0)
5783 {
5784 set_insn_error (arg->argnum, _("missing frame size"));
5785 return FALSE;
5786 }
5787 if (num_frame_sizes > 1)
5788 {
5789 set_insn_error (arg->argnum, _("frame size specified twice"));
5790 return FALSE;
5791 }
5792 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5793 {
5794 set_insn_error (arg->argnum, _("invalid frame size"));
5795 return FALSE;
5796 }
5797 frame_size /= 8;
5798
5799 /* Finally build the instruction. */
5800 if (mips_opts.mips16)
5801 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5802 frame_size);
5803 else if (!mips_opts.micromips)
5804 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5805 frame_size);
5806 else
5807 abort ();
5808
5809 arg->insn->insn_opcode = opcode;
5810 return TRUE;
5811 }
5812
5813 /* OP_MDMX_IMM_REG matcher. */
5814
5815 static bfd_boolean
5816 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5817 const struct mips_operand *operand)
5818 {
5819 unsigned int regno, uval;
5820 bfd_boolean is_qh;
5821 const struct mips_opcode *opcode;
5822
5823 /* The mips_opcode records whether this is an octobyte or quadhalf
5824 instruction. Start out with that bit in place. */
5825 opcode = arg->insn->insn_mo;
5826 uval = mips_extract_operand (operand, opcode->match);
5827 is_qh = (uval != 0);
5828
5829 if (arg->token->type == OT_REG)
5830 {
5831 if ((opcode->membership & INSN_5400)
5832 && strcmp (opcode->name, "rzu.ob") == 0)
5833 {
5834 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5835 arg->argnum);
5836 return FALSE;
5837 }
5838
5839 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5840 return FALSE;
5841 ++arg->token;
5842
5843 /* Check whether this is a vector register or a broadcast of
5844 a single element. */
5845 if (arg->token->type == OT_INTEGER_INDEX)
5846 {
5847 if (arg->token->u.index > (is_qh ? 3 : 7))
5848 {
5849 set_insn_error (arg->argnum, _("invalid element selector"));
5850 return FALSE;
5851 }
5852 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5853 ++arg->token;
5854 }
5855 else
5856 {
5857 /* A full vector. */
5858 if ((opcode->membership & INSN_5400)
5859 && (strcmp (opcode->name, "sll.ob") == 0
5860 || strcmp (opcode->name, "srl.ob") == 0))
5861 {
5862 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5863 arg->argnum);
5864 return FALSE;
5865 }
5866
5867 if (is_qh)
5868 uval |= MDMX_FMTSEL_VEC_QH << 5;
5869 else
5870 uval |= MDMX_FMTSEL_VEC_OB << 5;
5871 }
5872 uval |= regno;
5873 }
5874 else
5875 {
5876 offsetT sval;
5877
5878 if (!match_const_int (arg, &sval))
5879 return FALSE;
5880 if (sval < 0 || sval > 31)
5881 {
5882 match_out_of_range (arg);
5883 return FALSE;
5884 }
5885 uval |= (sval & 31);
5886 if (is_qh)
5887 uval |= MDMX_FMTSEL_IMM_QH << 5;
5888 else
5889 uval |= MDMX_FMTSEL_IMM_OB << 5;
5890 }
5891 insn_insert_operand (arg->insn, operand, uval);
5892 return TRUE;
5893 }
5894
5895 /* OP_IMM_INDEX matcher. */
5896
5897 static bfd_boolean
5898 match_imm_index_operand (struct mips_arg_info *arg,
5899 const struct mips_operand *operand)
5900 {
5901 unsigned int max_val;
5902
5903 if (arg->token->type != OT_INTEGER_INDEX)
5904 return FALSE;
5905
5906 max_val = (1 << operand->size) - 1;
5907 if (arg->token->u.index > max_val)
5908 {
5909 match_out_of_range (arg);
5910 return FALSE;
5911 }
5912 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5913 ++arg->token;
5914 return TRUE;
5915 }
5916
5917 /* OP_REG_INDEX matcher. */
5918
5919 static bfd_boolean
5920 match_reg_index_operand (struct mips_arg_info *arg,
5921 const struct mips_operand *operand)
5922 {
5923 unsigned int regno;
5924
5925 if (arg->token->type != OT_REG_INDEX)
5926 return FALSE;
5927
5928 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5929 return FALSE;
5930
5931 insn_insert_operand (arg->insn, operand, regno);
5932 ++arg->token;
5933 return TRUE;
5934 }
5935
5936 /* OP_PC matcher. */
5937
5938 static bfd_boolean
5939 match_pc_operand (struct mips_arg_info *arg)
5940 {
5941 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5942 {
5943 ++arg->token;
5944 return TRUE;
5945 }
5946 return FALSE;
5947 }
5948
5949 /* OP_REG28 matcher. */
5950
5951 static bfd_boolean
5952 match_reg28_operand (struct mips_arg_info *arg)
5953 {
5954 unsigned int regno;
5955
5956 if (arg->token->type == OT_REG
5957 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5958 && regno == GP)
5959 {
5960 ++arg->token;
5961 return TRUE;
5962 }
5963 return FALSE;
5964 }
5965
5966 /* OP_NON_ZERO_REG matcher. */
5967
5968 static bfd_boolean
5969 match_non_zero_reg_operand (struct mips_arg_info *arg,
5970 const struct mips_operand *operand)
5971 {
5972 unsigned int regno;
5973
5974 if (!match_reg (arg, OP_REG_GP, &regno))
5975 return FALSE;
5976
5977 if (regno == 0)
5978 return FALSE;
5979
5980 arg->last_regno = regno;
5981 insn_insert_operand (arg->insn, operand, regno);
5982 return TRUE;
5983 }
5984
5985 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5986 register that we need to match. */
5987
5988 static bfd_boolean
5989 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5990 {
5991 unsigned int regno;
5992
5993 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5994 }
5995
5996 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
5997 LENGTH is the length of the value in bytes (4 for float, 8 for double)
5998 and USING_GPRS says whether the destination is a GPR rather than an FPR.
5999
6000 Return the constant in IMM and OFFSET as follows:
6001
6002 - If the constant should be loaded via memory, set IMM to O_absent and
6003 OFFSET to the memory address.
6004
6005 - Otherwise, if the constant should be loaded into two 32-bit registers,
6006 set IMM to the O_constant to load into the high register and OFFSET
6007 to the corresponding value for the low register.
6008
6009 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6010
6011 These constants only appear as the last operand in an instruction,
6012 and every instruction that accepts them in any variant accepts them
6013 in all variants. This means we don't have to worry about backing out
6014 any changes if the instruction does not match. We just match
6015 unconditionally and report an error if the constant is invalid. */
6016
6017 static bfd_boolean
6018 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6019 expressionS *offset, int length, bfd_boolean using_gprs)
6020 {
6021 char *p;
6022 segT seg, new_seg;
6023 subsegT subseg;
6024 const char *newname;
6025 unsigned char *data;
6026
6027 /* Where the constant is placed is based on how the MIPS assembler
6028 does things:
6029
6030 length == 4 && using_gprs -- immediate value only
6031 length == 8 && using_gprs -- .rdata or immediate value
6032 length == 4 && !using_gprs -- .lit4 or immediate value
6033 length == 8 && !using_gprs -- .lit8 or immediate value
6034
6035 The .lit4 and .lit8 sections are only used if permitted by the
6036 -G argument. */
6037 if (arg->token->type != OT_FLOAT)
6038 {
6039 set_insn_error (arg->argnum, _("floating-point expression required"));
6040 return FALSE;
6041 }
6042
6043 gas_assert (arg->token->u.flt.length == length);
6044 data = arg->token->u.flt.data;
6045 ++arg->token;
6046
6047 /* Handle 32-bit constants for which an immediate value is best. */
6048 if (length == 4
6049 && (using_gprs
6050 || g_switch_value < 4
6051 || (data[0] == 0 && data[1] == 0)
6052 || (data[2] == 0 && data[3] == 0)))
6053 {
6054 imm->X_op = O_constant;
6055 if (!target_big_endian)
6056 imm->X_add_number = bfd_getl32 (data);
6057 else
6058 imm->X_add_number = bfd_getb32 (data);
6059 offset->X_op = O_absent;
6060 return TRUE;
6061 }
6062
6063 /* Handle 64-bit constants for which an immediate value is best. */
6064 if (length == 8
6065 && !mips_disable_float_construction
6066 /* Constants can only be constructed in GPRs and copied to FPRs if the
6067 GPRs are at least as wide as the FPRs or MTHC1 is available.
6068 Unlike most tests for 32-bit floating-point registers this check
6069 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6070 permit 64-bit moves without MXHC1.
6071 Force the constant into memory otherwise. */
6072 && (using_gprs
6073 || GPR_SIZE == 64
6074 || ISA_HAS_MXHC1 (mips_opts.isa)
6075 || FPR_SIZE == 32)
6076 && ((data[0] == 0 && data[1] == 0)
6077 || (data[2] == 0 && data[3] == 0))
6078 && ((data[4] == 0 && data[5] == 0)
6079 || (data[6] == 0 && data[7] == 0)))
6080 {
6081 /* The value is simple enough to load with a couple of instructions.
6082 If using 32-bit registers, set IMM to the high order 32 bits and
6083 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6084 64 bit constant. */
6085 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6086 {
6087 imm->X_op = O_constant;
6088 offset->X_op = O_constant;
6089 if (!target_big_endian)
6090 {
6091 imm->X_add_number = bfd_getl32 (data + 4);
6092 offset->X_add_number = bfd_getl32 (data);
6093 }
6094 else
6095 {
6096 imm->X_add_number = bfd_getb32 (data);
6097 offset->X_add_number = bfd_getb32 (data + 4);
6098 }
6099 if (offset->X_add_number == 0)
6100 offset->X_op = O_absent;
6101 }
6102 else
6103 {
6104 imm->X_op = O_constant;
6105 if (!target_big_endian)
6106 imm->X_add_number = bfd_getl64 (data);
6107 else
6108 imm->X_add_number = bfd_getb64 (data);
6109 offset->X_op = O_absent;
6110 }
6111 return TRUE;
6112 }
6113
6114 /* Switch to the right section. */
6115 seg = now_seg;
6116 subseg = now_subseg;
6117 if (length == 4)
6118 {
6119 gas_assert (!using_gprs && g_switch_value >= 4);
6120 newname = ".lit4";
6121 }
6122 else
6123 {
6124 if (using_gprs || g_switch_value < 8)
6125 newname = RDATA_SECTION_NAME;
6126 else
6127 newname = ".lit8";
6128 }
6129
6130 new_seg = subseg_new (newname, (subsegT) 0);
6131 bfd_set_section_flags (stdoutput, new_seg,
6132 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6133 frag_align (length == 4 ? 2 : 3, 0, 0);
6134 if (strncmp (TARGET_OS, "elf", 3) != 0)
6135 record_alignment (new_seg, 4);
6136 else
6137 record_alignment (new_seg, length == 4 ? 2 : 3);
6138 if (seg == now_seg)
6139 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6140
6141 /* Set the argument to the current address in the section. */
6142 imm->X_op = O_absent;
6143 offset->X_op = O_symbol;
6144 offset->X_add_symbol = symbol_temp_new_now ();
6145 offset->X_add_number = 0;
6146
6147 /* Put the floating point number into the section. */
6148 p = frag_more (length);
6149 memcpy (p, data, length);
6150
6151 /* Switch back to the original section. */
6152 subseg_set (seg, subseg);
6153 return TRUE;
6154 }
6155
6156 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6157 them. */
6158
6159 static bfd_boolean
6160 match_vu0_suffix_operand (struct mips_arg_info *arg,
6161 const struct mips_operand *operand,
6162 bfd_boolean match_p)
6163 {
6164 unsigned int uval;
6165
6166 /* The operand can be an XYZW mask or a single 2-bit channel index
6167 (with X being 0). */
6168 gas_assert (operand->size == 2 || operand->size == 4);
6169
6170 /* The suffix can be omitted when it is already part of the opcode. */
6171 if (arg->token->type != OT_CHANNELS)
6172 return match_p;
6173
6174 uval = arg->token->u.channels;
6175 if (operand->size == 2)
6176 {
6177 /* Check that a single bit is set and convert it into a 2-bit index. */
6178 if ((uval & -uval) != uval)
6179 return FALSE;
6180 uval = 4 - ffs (uval);
6181 }
6182
6183 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6184 return FALSE;
6185
6186 ++arg->token;
6187 if (!match_p)
6188 insn_insert_operand (arg->insn, operand, uval);
6189 return TRUE;
6190 }
6191
6192 /* Try to match a token from ARG against OPERAND. Consume the token
6193 and return true on success, otherwise return false. */
6194
6195 static bfd_boolean
6196 match_operand (struct mips_arg_info *arg,
6197 const struct mips_operand *operand)
6198 {
6199 switch (operand->type)
6200 {
6201 case OP_INT:
6202 return match_int_operand (arg, operand);
6203
6204 case OP_MAPPED_INT:
6205 return match_mapped_int_operand (arg, operand);
6206
6207 case OP_MSB:
6208 return match_msb_operand (arg, operand);
6209
6210 case OP_REG:
6211 case OP_OPTIONAL_REG:
6212 return match_reg_operand (arg, operand);
6213
6214 case OP_REG_PAIR:
6215 return match_reg_pair_operand (arg, operand);
6216
6217 case OP_PCREL:
6218 return match_pcrel_operand (arg);
6219
6220 case OP_PERF_REG:
6221 return match_perf_reg_operand (arg, operand);
6222
6223 case OP_ADDIUSP_INT:
6224 return match_addiusp_operand (arg, operand);
6225
6226 case OP_CLO_CLZ_DEST:
6227 return match_clo_clz_dest_operand (arg, operand);
6228
6229 case OP_LWM_SWM_LIST:
6230 return match_lwm_swm_list_operand (arg, operand);
6231
6232 case OP_ENTRY_EXIT_LIST:
6233 return match_entry_exit_operand (arg, operand);
6234
6235 case OP_SAVE_RESTORE_LIST:
6236 return match_save_restore_list_operand (arg);
6237
6238 case OP_MDMX_IMM_REG:
6239 return match_mdmx_imm_reg_operand (arg, operand);
6240
6241 case OP_REPEAT_DEST_REG:
6242 return match_tied_reg_operand (arg, arg->dest_regno);
6243
6244 case OP_REPEAT_PREV_REG:
6245 return match_tied_reg_operand (arg, arg->last_regno);
6246
6247 case OP_PC:
6248 return match_pc_operand (arg);
6249
6250 case OP_REG28:
6251 return match_reg28_operand (arg);
6252
6253 case OP_VU0_SUFFIX:
6254 return match_vu0_suffix_operand (arg, operand, FALSE);
6255
6256 case OP_VU0_MATCH_SUFFIX:
6257 return match_vu0_suffix_operand (arg, operand, TRUE);
6258
6259 case OP_IMM_INDEX:
6260 return match_imm_index_operand (arg, operand);
6261
6262 case OP_REG_INDEX:
6263 return match_reg_index_operand (arg, operand);
6264
6265 case OP_SAME_RS_RT:
6266 return match_same_rs_rt_operand (arg, operand);
6267
6268 case OP_CHECK_PREV:
6269 return match_check_prev_operand (arg, operand);
6270
6271 case OP_NON_ZERO_REG:
6272 return match_non_zero_reg_operand (arg, operand);
6273 }
6274 abort ();
6275 }
6276
6277 /* ARG is the state after successfully matching an instruction.
6278 Issue any queued-up warnings. */
6279
6280 static void
6281 check_completed_insn (struct mips_arg_info *arg)
6282 {
6283 if (arg->seen_at)
6284 {
6285 if (AT == ATREG)
6286 as_warn (_("used $at without \".set noat\""));
6287 else
6288 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6289 }
6290 }
6291
6292 /* Return true if modifying general-purpose register REG needs a delay. */
6293
6294 static bfd_boolean
6295 reg_needs_delay (unsigned int reg)
6296 {
6297 unsigned long prev_pinfo;
6298
6299 prev_pinfo = history[0].insn_mo->pinfo;
6300 if (!mips_opts.noreorder
6301 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6302 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6303 && (gpr_write_mask (&history[0]) & (1 << reg)))
6304 return TRUE;
6305
6306 return FALSE;
6307 }
6308
6309 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6310 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6311 by VR4120 errata. */
6312
6313 static unsigned int
6314 classify_vr4120_insn (const char *name)
6315 {
6316 if (strncmp (name, "macc", 4) == 0)
6317 return FIX_VR4120_MACC;
6318 if (strncmp (name, "dmacc", 5) == 0)
6319 return FIX_VR4120_DMACC;
6320 if (strncmp (name, "mult", 4) == 0)
6321 return FIX_VR4120_MULT;
6322 if (strncmp (name, "dmult", 5) == 0)
6323 return FIX_VR4120_DMULT;
6324 if (strstr (name, "div"))
6325 return FIX_VR4120_DIV;
6326 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6327 return FIX_VR4120_MTHILO;
6328 return NUM_FIX_VR4120_CLASSES;
6329 }
6330
6331 #define INSN_ERET 0x42000018
6332 #define INSN_DERET 0x4200001f
6333 #define INSN_DMULT 0x1c
6334 #define INSN_DMULTU 0x1d
6335
6336 /* Return the number of instructions that must separate INSN1 and INSN2,
6337 where INSN1 is the earlier instruction. Return the worst-case value
6338 for any INSN2 if INSN2 is null. */
6339
6340 static unsigned int
6341 insns_between (const struct mips_cl_insn *insn1,
6342 const struct mips_cl_insn *insn2)
6343 {
6344 unsigned long pinfo1, pinfo2;
6345 unsigned int mask;
6346
6347 /* If INFO2 is null, pessimistically assume that all flags are set for
6348 the second instruction. */
6349 pinfo1 = insn1->insn_mo->pinfo;
6350 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6351
6352 /* For most targets, write-after-read dependencies on the HI and LO
6353 registers must be separated by at least two instructions. */
6354 if (!hilo_interlocks)
6355 {
6356 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6357 return 2;
6358 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6359 return 2;
6360 }
6361
6362 /* If we're working around r7000 errata, there must be two instructions
6363 between an mfhi or mflo and any instruction that uses the result. */
6364 if (mips_7000_hilo_fix
6365 && !mips_opts.micromips
6366 && MF_HILO_INSN (pinfo1)
6367 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6368 return 2;
6369
6370 /* If we're working around 24K errata, one instruction is required
6371 if an ERET or DERET is followed by a branch instruction. */
6372 if (mips_fix_24k && !mips_opts.micromips)
6373 {
6374 if (insn1->insn_opcode == INSN_ERET
6375 || insn1->insn_opcode == INSN_DERET)
6376 {
6377 if (insn2 == NULL
6378 || insn2->insn_opcode == INSN_ERET
6379 || insn2->insn_opcode == INSN_DERET
6380 || delayed_branch_p (insn2))
6381 return 1;
6382 }
6383 }
6384
6385 /* If we're working around PMC RM7000 errata, there must be three
6386 nops between a dmult and a load instruction. */
6387 if (mips_fix_rm7000 && !mips_opts.micromips)
6388 {
6389 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6390 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6391 {
6392 if (pinfo2 & INSN_LOAD_MEMORY)
6393 return 3;
6394 }
6395 }
6396
6397 /* If working around VR4120 errata, check for combinations that need
6398 a single intervening instruction. */
6399 if (mips_fix_vr4120 && !mips_opts.micromips)
6400 {
6401 unsigned int class1, class2;
6402
6403 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6404 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6405 {
6406 if (insn2 == NULL)
6407 return 1;
6408 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6409 if (vr4120_conflicts[class1] & (1 << class2))
6410 return 1;
6411 }
6412 }
6413
6414 if (!HAVE_CODE_COMPRESSION)
6415 {
6416 /* Check for GPR or coprocessor load delays. All such delays
6417 are on the RT register. */
6418 /* Itbl support may require additional care here. */
6419 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6420 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6421 {
6422 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6423 return 1;
6424 }
6425
6426 /* Check for generic coprocessor hazards.
6427
6428 This case is not handled very well. There is no special
6429 knowledge of CP0 handling, and the coprocessors other than
6430 the floating point unit are not distinguished at all. */
6431 /* Itbl support may require additional care here. FIXME!
6432 Need to modify this to include knowledge about
6433 user specified delays! */
6434 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6435 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6436 {
6437 /* Handle cases where INSN1 writes to a known general coprocessor
6438 register. There must be a one instruction delay before INSN2
6439 if INSN2 reads that register, otherwise no delay is needed. */
6440 mask = fpr_write_mask (insn1);
6441 if (mask != 0)
6442 {
6443 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6444 return 1;
6445 }
6446 else
6447 {
6448 /* Read-after-write dependencies on the control registers
6449 require a two-instruction gap. */
6450 if ((pinfo1 & INSN_WRITE_COND_CODE)
6451 && (pinfo2 & INSN_READ_COND_CODE))
6452 return 2;
6453
6454 /* We don't know exactly what INSN1 does. If INSN2 is
6455 also a coprocessor instruction, assume there must be
6456 a one instruction gap. */
6457 if (pinfo2 & INSN_COP)
6458 return 1;
6459 }
6460 }
6461
6462 /* Check for read-after-write dependencies on the coprocessor
6463 control registers in cases where INSN1 does not need a general
6464 coprocessor delay. This means that INSN1 is a floating point
6465 comparison instruction. */
6466 /* Itbl support may require additional care here. */
6467 else if (!cop_interlocks
6468 && (pinfo1 & INSN_WRITE_COND_CODE)
6469 && (pinfo2 & INSN_READ_COND_CODE))
6470 return 1;
6471 }
6472
6473 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6474 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6475 and pause. */
6476 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6477 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6478 || (insn2 && delayed_branch_p (insn2))))
6479 return 1;
6480
6481 return 0;
6482 }
6483
6484 /* Return the number of nops that would be needed to work around the
6485 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6486 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6487 that are contained within the first IGNORE instructions of HIST. */
6488
6489 static int
6490 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6491 const struct mips_cl_insn *insn)
6492 {
6493 int i, j;
6494 unsigned int mask;
6495
6496 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6497 are not affected by the errata. */
6498 if (insn != 0
6499 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6500 || strcmp (insn->insn_mo->name, "mtlo") == 0
6501 || strcmp (insn->insn_mo->name, "mthi") == 0))
6502 return 0;
6503
6504 /* Search for the first MFLO or MFHI. */
6505 for (i = 0; i < MAX_VR4130_NOPS; i++)
6506 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6507 {
6508 /* Extract the destination register. */
6509 mask = gpr_write_mask (&hist[i]);
6510
6511 /* No nops are needed if INSN reads that register. */
6512 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6513 return 0;
6514
6515 /* ...or if any of the intervening instructions do. */
6516 for (j = 0; j < i; j++)
6517 if (gpr_read_mask (&hist[j]) & mask)
6518 return 0;
6519
6520 if (i >= ignore)
6521 return MAX_VR4130_NOPS - i;
6522 }
6523 return 0;
6524 }
6525
6526 #define BASE_REG_EQ(INSN1, INSN2) \
6527 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6528 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6529
6530 /* Return the minimum alignment for this store instruction. */
6531
6532 static int
6533 fix_24k_align_to (const struct mips_opcode *mo)
6534 {
6535 if (strcmp (mo->name, "sh") == 0)
6536 return 2;
6537
6538 if (strcmp (mo->name, "swc1") == 0
6539 || strcmp (mo->name, "swc2") == 0
6540 || strcmp (mo->name, "sw") == 0
6541 || strcmp (mo->name, "sc") == 0
6542 || strcmp (mo->name, "s.s") == 0)
6543 return 4;
6544
6545 if (strcmp (mo->name, "sdc1") == 0
6546 || strcmp (mo->name, "sdc2") == 0
6547 || strcmp (mo->name, "s.d") == 0)
6548 return 8;
6549
6550 /* sb, swl, swr */
6551 return 1;
6552 }
6553
6554 struct fix_24k_store_info
6555 {
6556 /* Immediate offset, if any, for this store instruction. */
6557 short off;
6558 /* Alignment required by this store instruction. */
6559 int align_to;
6560 /* True for register offsets. */
6561 int register_offset;
6562 };
6563
6564 /* Comparison function used by qsort. */
6565
6566 static int
6567 fix_24k_sort (const void *a, const void *b)
6568 {
6569 const struct fix_24k_store_info *pos1 = a;
6570 const struct fix_24k_store_info *pos2 = b;
6571
6572 return (pos1->off - pos2->off);
6573 }
6574
6575 /* INSN is a store instruction. Try to record the store information
6576 in STINFO. Return false if the information isn't known. */
6577
6578 static bfd_boolean
6579 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6580 const struct mips_cl_insn *insn)
6581 {
6582 /* The instruction must have a known offset. */
6583 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6584 return FALSE;
6585
6586 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6587 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6588 return TRUE;
6589 }
6590
6591 /* Return the number of nops that would be needed to work around the 24k
6592 "lost data on stores during refill" errata if instruction INSN
6593 immediately followed the 2 instructions described by HIST.
6594 Ignore hazards that are contained within the first IGNORE
6595 instructions of HIST.
6596
6597 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6598 for the data cache refills and store data. The following describes
6599 the scenario where the store data could be lost.
6600
6601 * A data cache miss, due to either a load or a store, causing fill
6602 data to be supplied by the memory subsystem
6603 * The first three doublewords of fill data are returned and written
6604 into the cache
6605 * A sequence of four stores occurs in consecutive cycles around the
6606 final doubleword of the fill:
6607 * Store A
6608 * Store B
6609 * Store C
6610 * Zero, One or more instructions
6611 * Store D
6612
6613 The four stores A-D must be to different doublewords of the line that
6614 is being filled. The fourth instruction in the sequence above permits
6615 the fill of the final doubleword to be transferred from the FSB into
6616 the cache. In the sequence above, the stores may be either integer
6617 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6618 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6619 different doublewords on the line. If the floating point unit is
6620 running in 1:2 mode, it is not possible to create the sequence above
6621 using only floating point store instructions.
6622
6623 In this case, the cache line being filled is incorrectly marked
6624 invalid, thereby losing the data from any store to the line that
6625 occurs between the original miss and the completion of the five
6626 cycle sequence shown above.
6627
6628 The workarounds are:
6629
6630 * Run the data cache in write-through mode.
6631 * Insert a non-store instruction between
6632 Store A and Store B or Store B and Store C. */
6633
6634 static int
6635 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6636 const struct mips_cl_insn *insn)
6637 {
6638 struct fix_24k_store_info pos[3];
6639 int align, i, base_offset;
6640
6641 if (ignore >= 2)
6642 return 0;
6643
6644 /* If the previous instruction wasn't a store, there's nothing to
6645 worry about. */
6646 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6647 return 0;
6648
6649 /* If the instructions after the previous one are unknown, we have
6650 to assume the worst. */
6651 if (!insn)
6652 return 1;
6653
6654 /* Check whether we are dealing with three consecutive stores. */
6655 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6656 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6657 return 0;
6658
6659 /* If we don't know the relationship between the store addresses,
6660 assume the worst. */
6661 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6662 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6663 return 1;
6664
6665 if (!fix_24k_record_store_info (&pos[0], insn)
6666 || !fix_24k_record_store_info (&pos[1], &hist[0])
6667 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6668 return 1;
6669
6670 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6671
6672 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6673 X bytes and such that the base register + X is known to be aligned
6674 to align bytes. */
6675
6676 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6677 align = 8;
6678 else
6679 {
6680 align = pos[0].align_to;
6681 base_offset = pos[0].off;
6682 for (i = 1; i < 3; i++)
6683 if (align < pos[i].align_to)
6684 {
6685 align = pos[i].align_to;
6686 base_offset = pos[i].off;
6687 }
6688 for (i = 0; i < 3; i++)
6689 pos[i].off -= base_offset;
6690 }
6691
6692 pos[0].off &= ~align + 1;
6693 pos[1].off &= ~align + 1;
6694 pos[2].off &= ~align + 1;
6695
6696 /* If any two stores write to the same chunk, they also write to the
6697 same doubleword. The offsets are still sorted at this point. */
6698 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6699 return 0;
6700
6701 /* A range of at least 9 bytes is needed for the stores to be in
6702 non-overlapping doublewords. */
6703 if (pos[2].off - pos[0].off <= 8)
6704 return 0;
6705
6706 if (pos[2].off - pos[1].off >= 24
6707 || pos[1].off - pos[0].off >= 24
6708 || pos[2].off - pos[0].off >= 32)
6709 return 0;
6710
6711 return 1;
6712 }
6713
6714 /* Return the number of nops that would be needed if instruction INSN
6715 immediately followed the MAX_NOPS instructions given by HIST,
6716 where HIST[0] is the most recent instruction. Ignore hazards
6717 between INSN and the first IGNORE instructions in HIST.
6718
6719 If INSN is null, return the worse-case number of nops for any
6720 instruction. */
6721
6722 static int
6723 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6724 const struct mips_cl_insn *insn)
6725 {
6726 int i, nops, tmp_nops;
6727
6728 nops = 0;
6729 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6730 {
6731 tmp_nops = insns_between (hist + i, insn) - i;
6732 if (tmp_nops > nops)
6733 nops = tmp_nops;
6734 }
6735
6736 if (mips_fix_vr4130 && !mips_opts.micromips)
6737 {
6738 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6739 if (tmp_nops > nops)
6740 nops = tmp_nops;
6741 }
6742
6743 if (mips_fix_24k && !mips_opts.micromips)
6744 {
6745 tmp_nops = nops_for_24k (ignore, hist, insn);
6746 if (tmp_nops > nops)
6747 nops = tmp_nops;
6748 }
6749
6750 return nops;
6751 }
6752
6753 /* The variable arguments provide NUM_INSNS extra instructions that
6754 might be added to HIST. Return the largest number of nops that
6755 would be needed after the extended sequence, ignoring hazards
6756 in the first IGNORE instructions. */
6757
6758 static int
6759 nops_for_sequence (int num_insns, int ignore,
6760 const struct mips_cl_insn *hist, ...)
6761 {
6762 va_list args;
6763 struct mips_cl_insn buffer[MAX_NOPS];
6764 struct mips_cl_insn *cursor;
6765 int nops;
6766
6767 va_start (args, hist);
6768 cursor = buffer + num_insns;
6769 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6770 while (cursor > buffer)
6771 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6772
6773 nops = nops_for_insn (ignore, buffer, NULL);
6774 va_end (args);
6775 return nops;
6776 }
6777
6778 /* Like nops_for_insn, but if INSN is a branch, take into account the
6779 worst-case delay for the branch target. */
6780
6781 static int
6782 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6783 const struct mips_cl_insn *insn)
6784 {
6785 int nops, tmp_nops;
6786
6787 nops = nops_for_insn (ignore, hist, insn);
6788 if (delayed_branch_p (insn))
6789 {
6790 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6791 hist, insn, get_delay_slot_nop (insn));
6792 if (tmp_nops > nops)
6793 nops = tmp_nops;
6794 }
6795 else if (compact_branch_p (insn))
6796 {
6797 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6798 if (tmp_nops > nops)
6799 nops = tmp_nops;
6800 }
6801 return nops;
6802 }
6803
6804 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6805
6806 static void
6807 fix_loongson2f_nop (struct mips_cl_insn * ip)
6808 {
6809 gas_assert (!HAVE_CODE_COMPRESSION);
6810 if (strcmp (ip->insn_mo->name, "nop") == 0)
6811 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6812 }
6813
6814 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6815 jr target pc &= 'hffff_ffff_cfff_ffff. */
6816
6817 static void
6818 fix_loongson2f_jump (struct mips_cl_insn * ip)
6819 {
6820 gas_assert (!HAVE_CODE_COMPRESSION);
6821 if (strcmp (ip->insn_mo->name, "j") == 0
6822 || strcmp (ip->insn_mo->name, "jr") == 0
6823 || strcmp (ip->insn_mo->name, "jalr") == 0)
6824 {
6825 int sreg;
6826 expressionS ep;
6827
6828 if (! mips_opts.at)
6829 return;
6830
6831 sreg = EXTRACT_OPERAND (0, RS, *ip);
6832 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6833 return;
6834
6835 ep.X_op = O_constant;
6836 ep.X_add_number = 0xcfff0000;
6837 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6838 ep.X_add_number = 0xffff;
6839 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6840 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6841 }
6842 }
6843
6844 static void
6845 fix_loongson2f (struct mips_cl_insn * ip)
6846 {
6847 if (mips_fix_loongson2f_nop)
6848 fix_loongson2f_nop (ip);
6849
6850 if (mips_fix_loongson2f_jump)
6851 fix_loongson2f_jump (ip);
6852 }
6853
6854 /* IP is a branch that has a delay slot, and we need to fill it
6855 automatically. Return true if we can do that by swapping IP
6856 with the previous instruction.
6857 ADDRESS_EXPR is an operand of the instruction to be used with
6858 RELOC_TYPE. */
6859
6860 static bfd_boolean
6861 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6862 bfd_reloc_code_real_type *reloc_type)
6863 {
6864 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6865 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6866 unsigned int fpr_read, prev_fpr_write;
6867
6868 /* -O2 and above is required for this optimization. */
6869 if (mips_optimize < 2)
6870 return FALSE;
6871
6872 /* If we have seen .set volatile or .set nomove, don't optimize. */
6873 if (mips_opts.nomove)
6874 return FALSE;
6875
6876 /* We can't swap if the previous instruction's position is fixed. */
6877 if (history[0].fixed_p)
6878 return FALSE;
6879
6880 /* If the previous previous insn was in a .set noreorder, we can't
6881 swap. Actually, the MIPS assembler will swap in this situation.
6882 However, gcc configured -with-gnu-as will generate code like
6883
6884 .set noreorder
6885 lw $4,XXX
6886 .set reorder
6887 INSN
6888 bne $4,$0,foo
6889
6890 in which we can not swap the bne and INSN. If gcc is not configured
6891 -with-gnu-as, it does not output the .set pseudo-ops. */
6892 if (history[1].noreorder_p)
6893 return FALSE;
6894
6895 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6896 This means that the previous instruction was a 4-byte one anyhow. */
6897 if (mips_opts.mips16 && history[0].fixp[0])
6898 return FALSE;
6899
6900 /* If the branch is itself the target of a branch, we can not swap.
6901 We cheat on this; all we check for is whether there is a label on
6902 this instruction. If there are any branches to anything other than
6903 a label, users must use .set noreorder. */
6904 if (seg_info (now_seg)->label_list)
6905 return FALSE;
6906
6907 /* If the previous instruction is in a variant frag other than this
6908 branch's one, we cannot do the swap. This does not apply to
6909 MIPS16 code, which uses variant frags for different purposes. */
6910 if (!mips_opts.mips16
6911 && history[0].frag
6912 && history[0].frag->fr_type == rs_machine_dependent)
6913 return FALSE;
6914
6915 /* We do not swap with instructions that cannot architecturally
6916 be placed in a branch delay slot, such as SYNC or ERET. We
6917 also refrain from swapping with a trap instruction, since it
6918 complicates trap handlers to have the trap instruction be in
6919 a delay slot. */
6920 prev_pinfo = history[0].insn_mo->pinfo;
6921 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6922 return FALSE;
6923
6924 /* Check for conflicts between the branch and the instructions
6925 before the candidate delay slot. */
6926 if (nops_for_insn (0, history + 1, ip) > 0)
6927 return FALSE;
6928
6929 /* Check for conflicts between the swapped sequence and the
6930 target of the branch. */
6931 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6932 return FALSE;
6933
6934 /* If the branch reads a register that the previous
6935 instruction sets, we can not swap. */
6936 gpr_read = gpr_read_mask (ip);
6937 prev_gpr_write = gpr_write_mask (&history[0]);
6938 if (gpr_read & prev_gpr_write)
6939 return FALSE;
6940
6941 fpr_read = fpr_read_mask (ip);
6942 prev_fpr_write = fpr_write_mask (&history[0]);
6943 if (fpr_read & prev_fpr_write)
6944 return FALSE;
6945
6946 /* If the branch writes a register that the previous
6947 instruction sets, we can not swap. */
6948 gpr_write = gpr_write_mask (ip);
6949 if (gpr_write & prev_gpr_write)
6950 return FALSE;
6951
6952 /* If the branch writes a register that the previous
6953 instruction reads, we can not swap. */
6954 prev_gpr_read = gpr_read_mask (&history[0]);
6955 if (gpr_write & prev_gpr_read)
6956 return FALSE;
6957
6958 /* If one instruction sets a condition code and the
6959 other one uses a condition code, we can not swap. */
6960 pinfo = ip->insn_mo->pinfo;
6961 if ((pinfo & INSN_READ_COND_CODE)
6962 && (prev_pinfo & INSN_WRITE_COND_CODE))
6963 return FALSE;
6964 if ((pinfo & INSN_WRITE_COND_CODE)
6965 && (prev_pinfo & INSN_READ_COND_CODE))
6966 return FALSE;
6967
6968 /* If the previous instruction uses the PC, we can not swap. */
6969 prev_pinfo2 = history[0].insn_mo->pinfo2;
6970 if (prev_pinfo2 & INSN2_READ_PC)
6971 return FALSE;
6972
6973 /* If the previous instruction has an incorrect size for a fixed
6974 branch delay slot in microMIPS mode, we cannot swap. */
6975 pinfo2 = ip->insn_mo->pinfo2;
6976 if (mips_opts.micromips
6977 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6978 && insn_length (history) != 2)
6979 return FALSE;
6980 if (mips_opts.micromips
6981 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6982 && insn_length (history) != 4)
6983 return FALSE;
6984
6985 /* On R5900 short loops need to be fixed by inserting a nop in
6986 the branch delay slots.
6987 A short loop can be terminated too early. */
6988 if (mips_opts.arch == CPU_R5900
6989 /* Check if instruction has a parameter, ignore "j $31". */
6990 && (address_expr != NULL)
6991 /* Parameter must be 16 bit. */
6992 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6993 /* Branch to same segment. */
6994 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6995 /* Branch to same code fragment. */
6996 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6997 /* Can only calculate branch offset if value is known. */
6998 && symbol_constant_p (address_expr->X_add_symbol)
6999 /* Check if branch is really conditional. */
7000 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7001 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7002 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7003 {
7004 int distance;
7005 /* Check if loop is shorter than 6 instructions including
7006 branch and delay slot. */
7007 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7008 if (distance <= 20)
7009 {
7010 int i;
7011 int rv;
7012
7013 rv = FALSE;
7014 /* When the loop includes branches or jumps,
7015 it is not a short loop. */
7016 for (i = 0; i < (distance / 4); i++)
7017 {
7018 if ((history[i].cleared_p)
7019 || delayed_branch_p (&history[i]))
7020 {
7021 rv = TRUE;
7022 break;
7023 }
7024 }
7025 if (!rv)
7026 {
7027 /* Insert nop after branch to fix short loop. */
7028 return FALSE;
7029 }
7030 }
7031 }
7032
7033 return TRUE;
7034 }
7035
7036 /* Decide how we should add IP to the instruction stream.
7037 ADDRESS_EXPR is an operand of the instruction to be used with
7038 RELOC_TYPE. */
7039
7040 static enum append_method
7041 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7042 bfd_reloc_code_real_type *reloc_type)
7043 {
7044 /* The relaxed version of a macro sequence must be inherently
7045 hazard-free. */
7046 if (mips_relax.sequence == 2)
7047 return APPEND_ADD;
7048
7049 /* We must not dabble with instructions in a ".set noreorder" block. */
7050 if (mips_opts.noreorder)
7051 return APPEND_ADD;
7052
7053 /* Otherwise, it's our responsibility to fill branch delay slots. */
7054 if (delayed_branch_p (ip))
7055 {
7056 if (!branch_likely_p (ip)
7057 && can_swap_branch_p (ip, address_expr, reloc_type))
7058 return APPEND_SWAP;
7059
7060 if (mips_opts.mips16
7061 && ISA_SUPPORTS_MIPS16E
7062 && gpr_read_mask (ip) != 0)
7063 return APPEND_ADD_COMPACT;
7064
7065 if (mips_opts.micromips
7066 && ((ip->insn_opcode & 0xffe0) == 0x4580
7067 || (!forced_insn_length
7068 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7069 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7070 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7071 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7072 return APPEND_ADD_COMPACT;
7073
7074 return APPEND_ADD_WITH_NOP;
7075 }
7076
7077 return APPEND_ADD;
7078 }
7079
7080 /* IP is an instruction whose opcode we have just changed, END points
7081 to the end of the opcode table processed. Point IP->insn_mo to the
7082 new opcode's definition. */
7083
7084 static void
7085 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7086 {
7087 const struct mips_opcode *mo;
7088
7089 for (mo = ip->insn_mo; mo < end; mo++)
7090 if (mo->pinfo != INSN_MACRO
7091 && (ip->insn_opcode & mo->mask) == mo->match)
7092 {
7093 ip->insn_mo = mo;
7094 return;
7095 }
7096 abort ();
7097 }
7098
7099 /* IP is a MIPS16 instruction whose opcode we have just changed.
7100 Point IP->insn_mo to the new opcode's definition. */
7101
7102 static void
7103 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7104 {
7105 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7106 }
7107
7108 /* IP is a microMIPS instruction whose opcode we have just changed.
7109 Point IP->insn_mo to the new opcode's definition. */
7110
7111 static void
7112 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7113 {
7114 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7115 }
7116
7117 /* For microMIPS macros, we need to generate a local number label
7118 as the target of branches. */
7119 #define MICROMIPS_LABEL_CHAR '\037'
7120 static unsigned long micromips_target_label;
7121 static char micromips_target_name[32];
7122
7123 static char *
7124 micromips_label_name (void)
7125 {
7126 char *p = micromips_target_name;
7127 char symbol_name_temporary[24];
7128 unsigned long l;
7129 int i;
7130
7131 if (*p)
7132 return p;
7133
7134 i = 0;
7135 l = micromips_target_label;
7136 #ifdef LOCAL_LABEL_PREFIX
7137 *p++ = LOCAL_LABEL_PREFIX;
7138 #endif
7139 *p++ = 'L';
7140 *p++ = MICROMIPS_LABEL_CHAR;
7141 do
7142 {
7143 symbol_name_temporary[i++] = l % 10 + '0';
7144 l /= 10;
7145 }
7146 while (l != 0);
7147 while (i > 0)
7148 *p++ = symbol_name_temporary[--i];
7149 *p = '\0';
7150
7151 return micromips_target_name;
7152 }
7153
7154 static void
7155 micromips_label_expr (expressionS *label_expr)
7156 {
7157 label_expr->X_op = O_symbol;
7158 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7159 label_expr->X_add_number = 0;
7160 }
7161
7162 static void
7163 micromips_label_inc (void)
7164 {
7165 micromips_target_label++;
7166 *micromips_target_name = '\0';
7167 }
7168
7169 static void
7170 micromips_add_label (void)
7171 {
7172 symbolS *s;
7173
7174 s = colon (micromips_label_name ());
7175 micromips_label_inc ();
7176 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7177 }
7178
7179 /* If assembling microMIPS code, then return the microMIPS reloc
7180 corresponding to the requested one if any. Otherwise return
7181 the reloc unchanged. */
7182
7183 static bfd_reloc_code_real_type
7184 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7185 {
7186 static const bfd_reloc_code_real_type relocs[][2] =
7187 {
7188 /* Keep sorted incrementally by the left-hand key. */
7189 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7190 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7191 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7192 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7193 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7194 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7195 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7196 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7197 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7198 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7199 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7200 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7201 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7202 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7203 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7204 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7205 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7206 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7207 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7208 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7209 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7210 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7211 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7212 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7213 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7214 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7215 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7216 };
7217 bfd_reloc_code_real_type r;
7218 size_t i;
7219
7220 if (!mips_opts.micromips)
7221 return reloc;
7222 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7223 {
7224 r = relocs[i][0];
7225 if (r > reloc)
7226 return reloc;
7227 if (r == reloc)
7228 return relocs[i][1];
7229 }
7230 return reloc;
7231 }
7232
7233 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7234 Return true on success, storing the resolved value in RESULT. */
7235
7236 static bfd_boolean
7237 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7238 offsetT *result)
7239 {
7240 switch (reloc)
7241 {
7242 case BFD_RELOC_MIPS_HIGHEST:
7243 case BFD_RELOC_MICROMIPS_HIGHEST:
7244 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7245 return TRUE;
7246
7247 case BFD_RELOC_MIPS_HIGHER:
7248 case BFD_RELOC_MICROMIPS_HIGHER:
7249 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7250 return TRUE;
7251
7252 case BFD_RELOC_HI16_S:
7253 case BFD_RELOC_HI16_S_PCREL:
7254 case BFD_RELOC_MICROMIPS_HI16_S:
7255 case BFD_RELOC_MIPS16_HI16_S:
7256 *result = ((operand + 0x8000) >> 16) & 0xffff;
7257 return TRUE;
7258
7259 case BFD_RELOC_HI16:
7260 case BFD_RELOC_MICROMIPS_HI16:
7261 case BFD_RELOC_MIPS16_HI16:
7262 *result = (operand >> 16) & 0xffff;
7263 return TRUE;
7264
7265 case BFD_RELOC_LO16:
7266 case BFD_RELOC_LO16_PCREL:
7267 case BFD_RELOC_MICROMIPS_LO16:
7268 case BFD_RELOC_MIPS16_LO16:
7269 *result = operand & 0xffff;
7270 return TRUE;
7271
7272 case BFD_RELOC_UNUSED:
7273 *result = operand;
7274 return TRUE;
7275
7276 default:
7277 return FALSE;
7278 }
7279 }
7280
7281 /* Output an instruction. IP is the instruction information.
7282 ADDRESS_EXPR is an operand of the instruction to be used with
7283 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7284 a macro expansion. */
7285
7286 static void
7287 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7288 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7289 {
7290 unsigned long prev_pinfo2, pinfo;
7291 bfd_boolean relaxed_branch = FALSE;
7292 enum append_method method;
7293 bfd_boolean relax32;
7294 int branch_disp;
7295
7296 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7297 fix_loongson2f (ip);
7298
7299 file_ase_mips16 |= mips_opts.mips16;
7300 file_ase_micromips |= mips_opts.micromips;
7301
7302 prev_pinfo2 = history[0].insn_mo->pinfo2;
7303 pinfo = ip->insn_mo->pinfo;
7304
7305 /* Don't raise alarm about `nods' frags as they'll fill in the right
7306 kind of nop in relaxation if required. */
7307 if (mips_opts.micromips
7308 && !expansionp
7309 && !(history[0].frag
7310 && history[0].frag->fr_type == rs_machine_dependent
7311 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7312 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7313 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7314 && micromips_insn_length (ip->insn_mo) != 2)
7315 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7316 && micromips_insn_length (ip->insn_mo) != 4)))
7317 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7318 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7319
7320 if (address_expr == NULL)
7321 ip->complete_p = 1;
7322 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7323 && reloc_type[1] == BFD_RELOC_UNUSED
7324 && reloc_type[2] == BFD_RELOC_UNUSED
7325 && address_expr->X_op == O_constant)
7326 {
7327 switch (*reloc_type)
7328 {
7329 case BFD_RELOC_MIPS_JMP:
7330 {
7331 int shift;
7332
7333 /* Shift is 2, unusually, for microMIPS JALX. */
7334 shift = (mips_opts.micromips
7335 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7336 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7337 as_bad (_("jump to misaligned address (0x%lx)"),
7338 (unsigned long) address_expr->X_add_number);
7339 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7340 & 0x3ffffff);
7341 ip->complete_p = 1;
7342 }
7343 break;
7344
7345 case BFD_RELOC_MIPS16_JMP:
7346 if ((address_expr->X_add_number & 3) != 0)
7347 as_bad (_("jump to misaligned address (0x%lx)"),
7348 (unsigned long) address_expr->X_add_number);
7349 ip->insn_opcode |=
7350 (((address_expr->X_add_number & 0x7c0000) << 3)
7351 | ((address_expr->X_add_number & 0xf800000) >> 7)
7352 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7353 ip->complete_p = 1;
7354 break;
7355
7356 case BFD_RELOC_16_PCREL_S2:
7357 {
7358 int shift;
7359
7360 shift = mips_opts.micromips ? 1 : 2;
7361 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7362 as_bad (_("branch to misaligned address (0x%lx)"),
7363 (unsigned long) address_expr->X_add_number);
7364 if (!mips_relax_branch)
7365 {
7366 if ((address_expr->X_add_number + (1 << (shift + 15)))
7367 & ~((1 << (shift + 16)) - 1))
7368 as_bad (_("branch address range overflow (0x%lx)"),
7369 (unsigned long) address_expr->X_add_number);
7370 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7371 & 0xffff);
7372 }
7373 }
7374 break;
7375
7376 case BFD_RELOC_MIPS_21_PCREL_S2:
7377 {
7378 int shift;
7379
7380 shift = 2;
7381 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7382 as_bad (_("branch to misaligned address (0x%lx)"),
7383 (unsigned long) address_expr->X_add_number);
7384 if ((address_expr->X_add_number + (1 << (shift + 20)))
7385 & ~((1 << (shift + 21)) - 1))
7386 as_bad (_("branch address range overflow (0x%lx)"),
7387 (unsigned long) address_expr->X_add_number);
7388 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7389 & 0x1fffff);
7390 }
7391 break;
7392
7393 case BFD_RELOC_MIPS_26_PCREL_S2:
7394 {
7395 int shift;
7396
7397 shift = 2;
7398 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7399 as_bad (_("branch to misaligned address (0x%lx)"),
7400 (unsigned long) address_expr->X_add_number);
7401 if ((address_expr->X_add_number + (1 << (shift + 25)))
7402 & ~((1 << (shift + 26)) - 1))
7403 as_bad (_("branch address range overflow (0x%lx)"),
7404 (unsigned long) address_expr->X_add_number);
7405 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7406 & 0x3ffffff);
7407 }
7408 break;
7409
7410 default:
7411 {
7412 offsetT value;
7413
7414 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7415 &value))
7416 {
7417 ip->insn_opcode |= value & 0xffff;
7418 ip->complete_p = 1;
7419 }
7420 }
7421 break;
7422 }
7423 }
7424
7425 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7426 {
7427 /* There are a lot of optimizations we could do that we don't.
7428 In particular, we do not, in general, reorder instructions.
7429 If you use gcc with optimization, it will reorder
7430 instructions and generally do much more optimization then we
7431 do here; repeating all that work in the assembler would only
7432 benefit hand written assembly code, and does not seem worth
7433 it. */
7434 int nops = (mips_optimize == 0
7435 ? nops_for_insn (0, history, NULL)
7436 : nops_for_insn_or_target (0, history, ip));
7437 if (nops > 0)
7438 {
7439 fragS *old_frag;
7440 unsigned long old_frag_offset;
7441 int i;
7442
7443 old_frag = frag_now;
7444 old_frag_offset = frag_now_fix ();
7445
7446 for (i = 0; i < nops; i++)
7447 add_fixed_insn (NOP_INSN);
7448 insert_into_history (0, nops, NOP_INSN);
7449
7450 if (listing)
7451 {
7452 listing_prev_line ();
7453 /* We may be at the start of a variant frag. In case we
7454 are, make sure there is enough space for the frag
7455 after the frags created by listing_prev_line. The
7456 argument to frag_grow here must be at least as large
7457 as the argument to all other calls to frag_grow in
7458 this file. We don't have to worry about being in the
7459 middle of a variant frag, because the variants insert
7460 all needed nop instructions themselves. */
7461 frag_grow (40);
7462 }
7463
7464 mips_move_text_labels ();
7465
7466 #ifndef NO_ECOFF_DEBUGGING
7467 if (ECOFF_DEBUGGING)
7468 ecoff_fix_loc (old_frag, old_frag_offset);
7469 #endif
7470 }
7471 }
7472 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7473 {
7474 int nops;
7475
7476 /* Work out how many nops in prev_nop_frag are needed by IP,
7477 ignoring hazards generated by the first prev_nop_frag_since
7478 instructions. */
7479 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7480 gas_assert (nops <= prev_nop_frag_holds);
7481
7482 /* Enforce NOPS as a minimum. */
7483 if (nops > prev_nop_frag_required)
7484 prev_nop_frag_required = nops;
7485
7486 if (prev_nop_frag_holds == prev_nop_frag_required)
7487 {
7488 /* Settle for the current number of nops. Update the history
7489 accordingly (for the benefit of any future .set reorder code). */
7490 prev_nop_frag = NULL;
7491 insert_into_history (prev_nop_frag_since,
7492 prev_nop_frag_holds, NOP_INSN);
7493 }
7494 else
7495 {
7496 /* Allow this instruction to replace one of the nops that was
7497 tentatively added to prev_nop_frag. */
7498 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7499 prev_nop_frag_holds--;
7500 prev_nop_frag_since++;
7501 }
7502 }
7503
7504 method = get_append_method (ip, address_expr, reloc_type);
7505 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7506
7507 dwarf2_emit_insn (0);
7508 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7509 so "move" the instruction address accordingly.
7510
7511 Also, it doesn't seem appropriate for the assembler to reorder .loc
7512 entries. If this instruction is a branch that we are going to swap
7513 with the previous instruction, the two instructions should be
7514 treated as a unit, and the debug information for both instructions
7515 should refer to the start of the branch sequence. Using the
7516 current position is certainly wrong when swapping a 32-bit branch
7517 and a 16-bit delay slot, since the current position would then be
7518 in the middle of a branch. */
7519 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7520
7521 relax32 = (mips_relax_branch
7522 /* Don't try branch relaxation within .set nomacro, or within
7523 .set noat if we use $at for PIC computations. If it turns
7524 out that the branch was out-of-range, we'll get an error. */
7525 && !mips_opts.warn_about_macros
7526 && (mips_opts.at || mips_pic == NO_PIC)
7527 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7528 as they have no complementing branches. */
7529 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7530
7531 if (!HAVE_CODE_COMPRESSION
7532 && address_expr
7533 && relax32
7534 && *reloc_type == BFD_RELOC_16_PCREL_S2
7535 && delayed_branch_p (ip))
7536 {
7537 relaxed_branch = TRUE;
7538 add_relaxed_insn (ip, (relaxed_branch_length
7539 (NULL, NULL,
7540 uncond_branch_p (ip) ? -1
7541 : branch_likely_p (ip) ? 1
7542 : 0)), 4,
7543 RELAX_BRANCH_ENCODE
7544 (AT, mips_pic != NO_PIC,
7545 uncond_branch_p (ip),
7546 branch_likely_p (ip),
7547 pinfo & INSN_WRITE_GPR_31,
7548 0),
7549 address_expr->X_add_symbol,
7550 address_expr->X_add_number);
7551 *reloc_type = BFD_RELOC_UNUSED;
7552 }
7553 else if (mips_opts.micromips
7554 && address_expr
7555 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7556 || *reloc_type > BFD_RELOC_UNUSED)
7557 && (delayed_branch_p (ip) || compact_branch_p (ip))
7558 /* Don't try branch relaxation when users specify
7559 16-bit/32-bit instructions. */
7560 && !forced_insn_length)
7561 {
7562 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7563 && *reloc_type > BFD_RELOC_UNUSED);
7564 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7565 int uncond = uncond_branch_p (ip) ? -1 : 0;
7566 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7567 int nods = method == APPEND_ADD_WITH_NOP;
7568 int al = pinfo & INSN_WRITE_GPR_31;
7569 int length32 = nods ? 8 : 4;
7570
7571 gas_assert (address_expr != NULL);
7572 gas_assert (!mips_relax.sequence);
7573
7574 relaxed_branch = TRUE;
7575 if (nods)
7576 method = APPEND_ADD;
7577 if (relax32)
7578 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7579 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7580 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7581 mips_pic != NO_PIC,
7582 uncond, compact, al, nods,
7583 relax32, 0, 0),
7584 address_expr->X_add_symbol,
7585 address_expr->X_add_number);
7586 *reloc_type = BFD_RELOC_UNUSED;
7587 }
7588 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7589 {
7590 bfd_boolean require_unextended;
7591 bfd_boolean require_extended;
7592 symbolS *symbol;
7593 offsetT offset;
7594
7595 if (forced_insn_length != 0)
7596 {
7597 require_unextended = forced_insn_length == 2;
7598 require_extended = forced_insn_length == 4;
7599 }
7600 else
7601 {
7602 require_unextended = (mips_opts.noautoextend
7603 && !mips_opcode_32bit_p (ip->insn_mo));
7604 require_extended = 0;
7605 }
7606
7607 /* We need to set up a variant frag. */
7608 gas_assert (address_expr != NULL);
7609 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7610 symbol created by `make_expr_symbol' may not get a necessary
7611 external relocation produced. */
7612 if (address_expr->X_op == O_symbol)
7613 {
7614 symbol = address_expr->X_add_symbol;
7615 offset = address_expr->X_add_number;
7616 }
7617 else
7618 {
7619 symbol = make_expr_symbol (address_expr);
7620 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7621 offset = 0;
7622 }
7623 add_relaxed_insn (ip, 12, 0,
7624 RELAX_MIPS16_ENCODE
7625 (*reloc_type - BFD_RELOC_UNUSED,
7626 mips_opts.ase & ASE_MIPS16E2,
7627 mips_pic != NO_PIC,
7628 HAVE_32BIT_SYMBOLS,
7629 mips_opts.warn_about_macros,
7630 require_unextended, require_extended,
7631 delayed_branch_p (&history[0]),
7632 history[0].mips16_absolute_jump_p),
7633 symbol, offset);
7634 }
7635 else if (mips_opts.mips16 && insn_length (ip) == 2)
7636 {
7637 if (!delayed_branch_p (ip))
7638 /* Make sure there is enough room to swap this instruction with
7639 a following jump instruction. */
7640 frag_grow (6);
7641 add_fixed_insn (ip);
7642 }
7643 else
7644 {
7645 if (mips_opts.mips16
7646 && mips_opts.noreorder
7647 && delayed_branch_p (&history[0]))
7648 as_warn (_("extended instruction in delay slot"));
7649
7650 if (mips_relax.sequence)
7651 {
7652 /* If we've reached the end of this frag, turn it into a variant
7653 frag and record the information for the instructions we've
7654 written so far. */
7655 if (frag_room () < 4)
7656 relax_close_frag ();
7657 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7658 }
7659
7660 if (mips_relax.sequence != 2)
7661 {
7662 if (mips_macro_warning.first_insn_sizes[0] == 0)
7663 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7664 mips_macro_warning.sizes[0] += insn_length (ip);
7665 mips_macro_warning.insns[0]++;
7666 }
7667 if (mips_relax.sequence != 1)
7668 {
7669 if (mips_macro_warning.first_insn_sizes[1] == 0)
7670 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7671 mips_macro_warning.sizes[1] += insn_length (ip);
7672 mips_macro_warning.insns[1]++;
7673 }
7674
7675 if (mips_opts.mips16)
7676 {
7677 ip->fixed_p = 1;
7678 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7679 }
7680 add_fixed_insn (ip);
7681 }
7682
7683 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7684 {
7685 bfd_reloc_code_real_type final_type[3];
7686 reloc_howto_type *howto0;
7687 reloc_howto_type *howto;
7688 int i;
7689
7690 /* Perform any necessary conversion to microMIPS relocations
7691 and find out how many relocations there actually are. */
7692 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7693 final_type[i] = micromips_map_reloc (reloc_type[i]);
7694
7695 /* In a compound relocation, it is the final (outermost)
7696 operator that determines the relocated field. */
7697 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7698 if (!howto)
7699 abort ();
7700
7701 if (i > 1)
7702 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7703 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7704 bfd_get_reloc_size (howto),
7705 address_expr,
7706 howto0 && howto0->pc_relative,
7707 final_type[0]);
7708 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7709 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7710
7711 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7712 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7713 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7714
7715 /* These relocations can have an addend that won't fit in
7716 4 octets for 64bit assembly. */
7717 if (GPR_SIZE == 64
7718 && ! howto->partial_inplace
7719 && (reloc_type[0] == BFD_RELOC_16
7720 || reloc_type[0] == BFD_RELOC_32
7721 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7722 || reloc_type[0] == BFD_RELOC_GPREL16
7723 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7724 || reloc_type[0] == BFD_RELOC_GPREL32
7725 || reloc_type[0] == BFD_RELOC_64
7726 || reloc_type[0] == BFD_RELOC_CTOR
7727 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7728 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7729 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7730 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7731 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7732 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7733 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7734 || hi16_reloc_p (reloc_type[0])
7735 || lo16_reloc_p (reloc_type[0])))
7736 ip->fixp[0]->fx_no_overflow = 1;
7737
7738 /* These relocations can have an addend that won't fit in 2 octets. */
7739 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7740 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7741 ip->fixp[0]->fx_no_overflow = 1;
7742
7743 if (mips_relax.sequence)
7744 {
7745 if (mips_relax.first_fixup == 0)
7746 mips_relax.first_fixup = ip->fixp[0];
7747 }
7748 else if (reloc_needs_lo_p (*reloc_type))
7749 {
7750 struct mips_hi_fixup *hi_fixup;
7751
7752 /* Reuse the last entry if it already has a matching %lo. */
7753 hi_fixup = mips_hi_fixup_list;
7754 if (hi_fixup == 0
7755 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7756 {
7757 hi_fixup = XNEW (struct mips_hi_fixup);
7758 hi_fixup->next = mips_hi_fixup_list;
7759 mips_hi_fixup_list = hi_fixup;
7760 }
7761 hi_fixup->fixp = ip->fixp[0];
7762 hi_fixup->seg = now_seg;
7763 }
7764
7765 /* Add fixups for the second and third relocations, if given.
7766 Note that the ABI allows the second relocation to be
7767 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7768 moment we only use RSS_UNDEF, but we could add support
7769 for the others if it ever becomes necessary. */
7770 for (i = 1; i < 3; i++)
7771 if (reloc_type[i] != BFD_RELOC_UNUSED)
7772 {
7773 ip->fixp[i] = fix_new (ip->frag, ip->where,
7774 ip->fixp[0]->fx_size, NULL, 0,
7775 FALSE, final_type[i]);
7776
7777 /* Use fx_tcbit to mark compound relocs. */
7778 ip->fixp[0]->fx_tcbit = 1;
7779 ip->fixp[i]->fx_tcbit = 1;
7780 }
7781 }
7782
7783 /* Update the register mask information. */
7784 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7785 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7786
7787 switch (method)
7788 {
7789 case APPEND_ADD:
7790 insert_into_history (0, 1, ip);
7791 break;
7792
7793 case APPEND_ADD_WITH_NOP:
7794 {
7795 struct mips_cl_insn *nop;
7796
7797 insert_into_history (0, 1, ip);
7798 nop = get_delay_slot_nop (ip);
7799 add_fixed_insn (nop);
7800 insert_into_history (0, 1, nop);
7801 if (mips_relax.sequence)
7802 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7803 }
7804 break;
7805
7806 case APPEND_ADD_COMPACT:
7807 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7808 if (mips_opts.mips16)
7809 {
7810 ip->insn_opcode |= 0x0080;
7811 find_altered_mips16_opcode (ip);
7812 }
7813 /* Convert microMIPS instructions. */
7814 else if (mips_opts.micromips)
7815 {
7816 /* jr16->jrc */
7817 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7818 ip->insn_opcode |= 0x0020;
7819 /* b16->bc */
7820 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7821 ip->insn_opcode = 0x40e00000;
7822 /* beqz16->beqzc, bnez16->bnezc */
7823 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7824 {
7825 unsigned long regno;
7826
7827 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7828 regno &= MICROMIPSOP_MASK_MD;
7829 regno = micromips_to_32_reg_d_map[regno];
7830 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7831 | (regno << MICROMIPSOP_SH_RS)
7832 | 0x40a00000) ^ 0x00400000;
7833 }
7834 /* beqz->beqzc, bnez->bnezc */
7835 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7836 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7837 | ((ip->insn_opcode >> 7) & 0x00400000)
7838 | 0x40a00000) ^ 0x00400000;
7839 /* beq $0->beqzc, bne $0->bnezc */
7840 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7841 ip->insn_opcode = (((ip->insn_opcode >>
7842 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7843 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7844 | ((ip->insn_opcode >> 7) & 0x00400000)
7845 | 0x40a00000) ^ 0x00400000;
7846 else
7847 abort ();
7848 find_altered_micromips_opcode (ip);
7849 }
7850 else
7851 abort ();
7852 install_insn (ip);
7853 insert_into_history (0, 1, ip);
7854 break;
7855
7856 case APPEND_SWAP:
7857 {
7858 struct mips_cl_insn delay = history[0];
7859
7860 if (relaxed_branch || delay.frag != ip->frag)
7861 {
7862 /* Add the delay slot instruction to the end of the
7863 current frag and shrink the fixed part of the
7864 original frag. If the branch occupies the tail of
7865 the latter, move it backwards to cover the gap. */
7866 delay.frag->fr_fix -= branch_disp;
7867 if (delay.frag == ip->frag)
7868 move_insn (ip, ip->frag, ip->where - branch_disp);
7869 add_fixed_insn (&delay);
7870 }
7871 else
7872 {
7873 /* If this is not a relaxed branch and we are in the
7874 same frag, then just swap the instructions. */
7875 move_insn (ip, delay.frag, delay.where);
7876 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7877 }
7878 history[0] = *ip;
7879 delay.fixed_p = 1;
7880 insert_into_history (0, 1, &delay);
7881 }
7882 break;
7883 }
7884
7885 /* If we have just completed an unconditional branch, clear the history. */
7886 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7887 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7888 {
7889 unsigned int i;
7890
7891 mips_no_prev_insn ();
7892
7893 for (i = 0; i < ARRAY_SIZE (history); i++)
7894 history[i].cleared_p = 1;
7895 }
7896
7897 /* We need to emit a label at the end of branch-likely macros. */
7898 if (emit_branch_likely_macro)
7899 {
7900 emit_branch_likely_macro = FALSE;
7901 micromips_add_label ();
7902 }
7903
7904 /* We just output an insn, so the next one doesn't have a label. */
7905 mips_clear_insn_labels ();
7906 }
7907
7908 /* Forget that there was any previous instruction or label.
7909 When BRANCH is true, the branch history is also flushed. */
7910
7911 static void
7912 mips_no_prev_insn (void)
7913 {
7914 prev_nop_frag = NULL;
7915 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7916 mips_clear_insn_labels ();
7917 }
7918
7919 /* This function must be called before we emit something other than
7920 instructions. It is like mips_no_prev_insn except that it inserts
7921 any NOPS that might be needed by previous instructions. */
7922
7923 void
7924 mips_emit_delays (void)
7925 {
7926 if (! mips_opts.noreorder)
7927 {
7928 int nops = nops_for_insn (0, history, NULL);
7929 if (nops > 0)
7930 {
7931 while (nops-- > 0)
7932 add_fixed_insn (NOP_INSN);
7933 mips_move_text_labels ();
7934 }
7935 }
7936 mips_no_prev_insn ();
7937 }
7938
7939 /* Start a (possibly nested) noreorder block. */
7940
7941 static void
7942 start_noreorder (void)
7943 {
7944 if (mips_opts.noreorder == 0)
7945 {
7946 unsigned int i;
7947 int nops;
7948
7949 /* None of the instructions before the .set noreorder can be moved. */
7950 for (i = 0; i < ARRAY_SIZE (history); i++)
7951 history[i].fixed_p = 1;
7952
7953 /* Insert any nops that might be needed between the .set noreorder
7954 block and the previous instructions. We will later remove any
7955 nops that turn out not to be needed. */
7956 nops = nops_for_insn (0, history, NULL);
7957 if (nops > 0)
7958 {
7959 if (mips_optimize != 0)
7960 {
7961 /* Record the frag which holds the nop instructions, so
7962 that we can remove them if we don't need them. */
7963 frag_grow (nops * NOP_INSN_SIZE);
7964 prev_nop_frag = frag_now;
7965 prev_nop_frag_holds = nops;
7966 prev_nop_frag_required = 0;
7967 prev_nop_frag_since = 0;
7968 }
7969
7970 for (; nops > 0; --nops)
7971 add_fixed_insn (NOP_INSN);
7972
7973 /* Move on to a new frag, so that it is safe to simply
7974 decrease the size of prev_nop_frag. */
7975 frag_wane (frag_now);
7976 frag_new (0);
7977 mips_move_text_labels ();
7978 }
7979 mips_mark_labels ();
7980 mips_clear_insn_labels ();
7981 }
7982 mips_opts.noreorder++;
7983 mips_any_noreorder = 1;
7984 }
7985
7986 /* End a nested noreorder block. */
7987
7988 static void
7989 end_noreorder (void)
7990 {
7991 mips_opts.noreorder--;
7992 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7993 {
7994 /* Commit to inserting prev_nop_frag_required nops and go back to
7995 handling nop insertion the .set reorder way. */
7996 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7997 * NOP_INSN_SIZE);
7998 insert_into_history (prev_nop_frag_since,
7999 prev_nop_frag_required, NOP_INSN);
8000 prev_nop_frag = NULL;
8001 }
8002 }
8003
8004 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8005 higher bits unset. */
8006
8007 static void
8008 normalize_constant_expr (expressionS *ex)
8009 {
8010 if (ex->X_op == O_constant
8011 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8012 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8013 - 0x80000000);
8014 }
8015
8016 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8017 all higher bits unset. */
8018
8019 static void
8020 normalize_address_expr (expressionS *ex)
8021 {
8022 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8023 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8024 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8025 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8026 - 0x80000000);
8027 }
8028
8029 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8030 Return true if the match was successful.
8031
8032 OPCODE_EXTRA is a value that should be ORed into the opcode
8033 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8034 there are more alternatives after OPCODE and SOFT_MATCH is
8035 as for mips_arg_info. */
8036
8037 static bfd_boolean
8038 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8039 struct mips_operand_token *tokens, unsigned int opcode_extra,
8040 bfd_boolean lax_match, bfd_boolean complete_p)
8041 {
8042 const char *args;
8043 struct mips_arg_info arg;
8044 const struct mips_operand *operand;
8045 char c;
8046
8047 imm_expr.X_op = O_absent;
8048 offset_expr.X_op = O_absent;
8049 offset_reloc[0] = BFD_RELOC_UNUSED;
8050 offset_reloc[1] = BFD_RELOC_UNUSED;
8051 offset_reloc[2] = BFD_RELOC_UNUSED;
8052
8053 create_insn (insn, opcode);
8054 /* When no opcode suffix is specified, assume ".xyzw". */
8055 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8056 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8057 else
8058 insn->insn_opcode |= opcode_extra;
8059 memset (&arg, 0, sizeof (arg));
8060 arg.insn = insn;
8061 arg.token = tokens;
8062 arg.argnum = 1;
8063 arg.last_regno = ILLEGAL_REG;
8064 arg.dest_regno = ILLEGAL_REG;
8065 arg.lax_match = lax_match;
8066 for (args = opcode->args;; ++args)
8067 {
8068 if (arg.token->type == OT_END)
8069 {
8070 /* Handle unary instructions in which only one operand is given.
8071 The source is then the same as the destination. */
8072 if (arg.opnum == 1 && *args == ',')
8073 {
8074 operand = (mips_opts.micromips
8075 ? decode_micromips_operand (args + 1)
8076 : decode_mips_operand (args + 1));
8077 if (operand && mips_optional_operand_p (operand))
8078 {
8079 arg.token = tokens;
8080 arg.argnum = 1;
8081 continue;
8082 }
8083 }
8084
8085 /* Treat elided base registers as $0. */
8086 if (strcmp (args, "(b)") == 0)
8087 args += 3;
8088
8089 if (args[0] == '+')
8090 switch (args[1])
8091 {
8092 case 'K':
8093 case 'N':
8094 /* The register suffix is optional. */
8095 args += 2;
8096 break;
8097 }
8098
8099 /* Fail the match if there were too few operands. */
8100 if (*args)
8101 return FALSE;
8102
8103 /* Successful match. */
8104 if (!complete_p)
8105 return TRUE;
8106 clear_insn_error ();
8107 if (arg.dest_regno == arg.last_regno
8108 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8109 {
8110 if (arg.opnum == 2)
8111 set_insn_error
8112 (0, _("source and destination must be different"));
8113 else if (arg.last_regno == 31)
8114 set_insn_error
8115 (0, _("a destination register must be supplied"));
8116 }
8117 else if (arg.last_regno == 31
8118 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8119 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8120 set_insn_error (0, _("the source register must not be $31"));
8121 check_completed_insn (&arg);
8122 return TRUE;
8123 }
8124
8125 /* Fail the match if the line has too many operands. */
8126 if (*args == 0)
8127 return FALSE;
8128
8129 /* Handle characters that need to match exactly. */
8130 if (*args == '(' || *args == ')' || *args == ',')
8131 {
8132 if (match_char (&arg, *args))
8133 continue;
8134 return FALSE;
8135 }
8136 if (*args == '#')
8137 {
8138 ++args;
8139 if (arg.token->type == OT_DOUBLE_CHAR
8140 && arg.token->u.ch == *args)
8141 {
8142 ++arg.token;
8143 continue;
8144 }
8145 return FALSE;
8146 }
8147
8148 /* Handle special macro operands. Work out the properties of
8149 other operands. */
8150 arg.opnum += 1;
8151 switch (*args)
8152 {
8153 case '-':
8154 switch (args[1])
8155 {
8156 case 'A':
8157 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8158 break;
8159
8160 case 'B':
8161 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8162 break;
8163 }
8164 break;
8165
8166 case '+':
8167 switch (args[1])
8168 {
8169 case 'i':
8170 *offset_reloc = BFD_RELOC_MIPS_JMP;
8171 break;
8172
8173 case '\'':
8174 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8175 break;
8176
8177 case '\"':
8178 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8179 break;
8180 }
8181 break;
8182
8183 case 'I':
8184 if (!match_const_int (&arg, &imm_expr.X_add_number))
8185 return FALSE;
8186 imm_expr.X_op = O_constant;
8187 if (GPR_SIZE == 32)
8188 normalize_constant_expr (&imm_expr);
8189 continue;
8190
8191 case 'A':
8192 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8193 {
8194 /* Assume that the offset has been elided and that what
8195 we saw was a base register. The match will fail later
8196 if that assumption turns out to be wrong. */
8197 offset_expr.X_op = O_constant;
8198 offset_expr.X_add_number = 0;
8199 }
8200 else
8201 {
8202 if (!match_expression (&arg, &offset_expr, offset_reloc))
8203 return FALSE;
8204 normalize_address_expr (&offset_expr);
8205 }
8206 continue;
8207
8208 case 'F':
8209 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8210 8, TRUE))
8211 return FALSE;
8212 continue;
8213
8214 case 'L':
8215 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8216 8, FALSE))
8217 return FALSE;
8218 continue;
8219
8220 case 'f':
8221 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8222 4, TRUE))
8223 return FALSE;
8224 continue;
8225
8226 case 'l':
8227 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8228 4, FALSE))
8229 return FALSE;
8230 continue;
8231
8232 case 'p':
8233 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8234 break;
8235
8236 case 'a':
8237 *offset_reloc = BFD_RELOC_MIPS_JMP;
8238 break;
8239
8240 case 'm':
8241 gas_assert (mips_opts.micromips);
8242 c = args[1];
8243 switch (c)
8244 {
8245 case 'D':
8246 case 'E':
8247 if (!forced_insn_length)
8248 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8249 else if (c == 'D')
8250 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8251 else
8252 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8253 break;
8254 }
8255 break;
8256 }
8257
8258 operand = (mips_opts.micromips
8259 ? decode_micromips_operand (args)
8260 : decode_mips_operand (args));
8261 if (!operand)
8262 abort ();
8263
8264 /* Skip prefixes. */
8265 if (*args == '+' || *args == 'm' || *args == '-')
8266 args++;
8267
8268 if (mips_optional_operand_p (operand)
8269 && args[1] == ','
8270 && (arg.token[0].type != OT_REG
8271 || arg.token[1].type == OT_END))
8272 {
8273 /* Assume that the register has been elided and is the
8274 same as the first operand. */
8275 arg.token = tokens;
8276 arg.argnum = 1;
8277 }
8278
8279 if (!match_operand (&arg, operand))
8280 return FALSE;
8281 }
8282 }
8283
8284 /* Like match_insn, but for MIPS16. */
8285
8286 static bfd_boolean
8287 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8288 struct mips_operand_token *tokens)
8289 {
8290 const char *args;
8291 const struct mips_operand *operand;
8292 const struct mips_operand *ext_operand;
8293 bfd_boolean pcrel = FALSE;
8294 int required_insn_length;
8295 struct mips_arg_info arg;
8296 int relax_char;
8297
8298 if (forced_insn_length)
8299 required_insn_length = forced_insn_length;
8300 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8301 required_insn_length = 2;
8302 else
8303 required_insn_length = 0;
8304
8305 create_insn (insn, opcode);
8306 imm_expr.X_op = O_absent;
8307 offset_expr.X_op = O_absent;
8308 offset_reloc[0] = BFD_RELOC_UNUSED;
8309 offset_reloc[1] = BFD_RELOC_UNUSED;
8310 offset_reloc[2] = BFD_RELOC_UNUSED;
8311 relax_char = 0;
8312
8313 memset (&arg, 0, sizeof (arg));
8314 arg.insn = insn;
8315 arg.token = tokens;
8316 arg.argnum = 1;
8317 arg.last_regno = ILLEGAL_REG;
8318 arg.dest_regno = ILLEGAL_REG;
8319 relax_char = 0;
8320 for (args = opcode->args;; ++args)
8321 {
8322 int c;
8323
8324 if (arg.token->type == OT_END)
8325 {
8326 offsetT value;
8327
8328 /* Handle unary instructions in which only one operand is given.
8329 The source is then the same as the destination. */
8330 if (arg.opnum == 1 && *args == ',')
8331 {
8332 operand = decode_mips16_operand (args[1], FALSE);
8333 if (operand && mips_optional_operand_p (operand))
8334 {
8335 arg.token = tokens;
8336 arg.argnum = 1;
8337 continue;
8338 }
8339 }
8340
8341 /* Fail the match if there were too few operands. */
8342 if (*args)
8343 return FALSE;
8344
8345 /* Successful match. Stuff the immediate value in now, if
8346 we can. */
8347 clear_insn_error ();
8348 if (opcode->pinfo == INSN_MACRO)
8349 {
8350 gas_assert (relax_char == 0 || relax_char == 'p');
8351 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8352 }
8353 else if (relax_char
8354 && offset_expr.X_op == O_constant
8355 && !pcrel
8356 && calculate_reloc (*offset_reloc,
8357 offset_expr.X_add_number,
8358 &value))
8359 {
8360 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8361 required_insn_length, &insn->insn_opcode);
8362 offset_expr.X_op = O_absent;
8363 *offset_reloc = BFD_RELOC_UNUSED;
8364 }
8365 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8366 {
8367 if (required_insn_length == 2)
8368 set_insn_error (0, _("invalid unextended operand value"));
8369 else if (!mips_opcode_32bit_p (opcode))
8370 {
8371 forced_insn_length = 4;
8372 insn->insn_opcode |= MIPS16_EXTEND;
8373 }
8374 }
8375 else if (relax_char)
8376 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8377
8378 check_completed_insn (&arg);
8379 return TRUE;
8380 }
8381
8382 /* Fail the match if the line has too many operands. */
8383 if (*args == 0)
8384 return FALSE;
8385
8386 /* Handle characters that need to match exactly. */
8387 if (*args == '(' || *args == ')' || *args == ',')
8388 {
8389 if (match_char (&arg, *args))
8390 continue;
8391 return FALSE;
8392 }
8393
8394 arg.opnum += 1;
8395 c = *args;
8396 switch (c)
8397 {
8398 case 'p':
8399 case 'q':
8400 case 'A':
8401 case 'B':
8402 case 'E':
8403 case 'V':
8404 case 'u':
8405 relax_char = c;
8406 break;
8407
8408 case 'I':
8409 if (!match_const_int (&arg, &imm_expr.X_add_number))
8410 return FALSE;
8411 imm_expr.X_op = O_constant;
8412 if (GPR_SIZE == 32)
8413 normalize_constant_expr (&imm_expr);
8414 continue;
8415
8416 case 'a':
8417 case 'i':
8418 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8419 break;
8420 }
8421
8422 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8423 if (!operand)
8424 abort ();
8425
8426 if (operand->type == OP_PCREL)
8427 pcrel = TRUE;
8428 else
8429 {
8430 ext_operand = decode_mips16_operand (c, TRUE);
8431 if (operand != ext_operand)
8432 {
8433 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8434 {
8435 offset_expr.X_op = O_constant;
8436 offset_expr.X_add_number = 0;
8437 relax_char = c;
8438 continue;
8439 }
8440
8441 if (!match_expression (&arg, &offset_expr, offset_reloc))
8442 return FALSE;
8443
8444 /* '8' is used for SLTI(U) and has traditionally not
8445 been allowed to take relocation operators. */
8446 if (offset_reloc[0] != BFD_RELOC_UNUSED
8447 && (ext_operand->size != 16 || c == '8'))
8448 {
8449 match_not_constant (&arg);
8450 return FALSE;
8451 }
8452
8453 if (offset_expr.X_op == O_big)
8454 {
8455 match_out_of_range (&arg);
8456 return FALSE;
8457 }
8458
8459 relax_char = c;
8460 continue;
8461 }
8462 }
8463
8464 if (mips_optional_operand_p (operand)
8465 && args[1] == ','
8466 && (arg.token[0].type != OT_REG
8467 || arg.token[1].type == OT_END))
8468 {
8469 /* Assume that the register has been elided and is the
8470 same as the first operand. */
8471 arg.token = tokens;
8472 arg.argnum = 1;
8473 }
8474
8475 if (!match_operand (&arg, operand))
8476 return FALSE;
8477 }
8478 }
8479
8480 /* Record that the current instruction is invalid for the current ISA. */
8481
8482 static void
8483 match_invalid_for_isa (void)
8484 {
8485 set_insn_error_ss
8486 (0, _("opcode not supported on this processor: %s (%s)"),
8487 mips_cpu_info_from_arch (mips_opts.arch)->name,
8488 mips_cpu_info_from_isa (mips_opts.isa)->name);
8489 }
8490
8491 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8492 Return true if a definite match or failure was found, storing any match
8493 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8494 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8495 tried and failed to match under normal conditions and now want to try a
8496 more relaxed match. */
8497
8498 static bfd_boolean
8499 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8500 const struct mips_opcode *past, struct mips_operand_token *tokens,
8501 int opcode_extra, bfd_boolean lax_match)
8502 {
8503 const struct mips_opcode *opcode;
8504 const struct mips_opcode *invalid_delay_slot;
8505 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8506
8507 /* Search for a match, ignoring alternatives that don't satisfy the
8508 current ISA or forced_length. */
8509 invalid_delay_slot = 0;
8510 seen_valid_for_isa = FALSE;
8511 seen_valid_for_size = FALSE;
8512 opcode = first;
8513 do
8514 {
8515 gas_assert (strcmp (opcode->name, first->name) == 0);
8516 if (is_opcode_valid (opcode))
8517 {
8518 seen_valid_for_isa = TRUE;
8519 if (is_size_valid (opcode))
8520 {
8521 bfd_boolean delay_slot_ok;
8522
8523 seen_valid_for_size = TRUE;
8524 delay_slot_ok = is_delay_slot_valid (opcode);
8525 if (match_insn (insn, opcode, tokens, opcode_extra,
8526 lax_match, delay_slot_ok))
8527 {
8528 if (!delay_slot_ok)
8529 {
8530 if (!invalid_delay_slot)
8531 invalid_delay_slot = opcode;
8532 }
8533 else
8534 return TRUE;
8535 }
8536 }
8537 }
8538 ++opcode;
8539 }
8540 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8541
8542 /* If the only matches we found had the wrong length for the delay slot,
8543 pick the first such match. We'll issue an appropriate warning later. */
8544 if (invalid_delay_slot)
8545 {
8546 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8547 lax_match, TRUE))
8548 return TRUE;
8549 abort ();
8550 }
8551
8552 /* Handle the case where we didn't try to match an instruction because
8553 all the alternatives were incompatible with the current ISA. */
8554 if (!seen_valid_for_isa)
8555 {
8556 match_invalid_for_isa ();
8557 return TRUE;
8558 }
8559
8560 /* Handle the case where we didn't try to match an instruction because
8561 all the alternatives were of the wrong size. */
8562 if (!seen_valid_for_size)
8563 {
8564 if (mips_opts.insn32)
8565 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8566 else
8567 set_insn_error_i
8568 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8569 8 * forced_insn_length);
8570 return TRUE;
8571 }
8572
8573 return FALSE;
8574 }
8575
8576 /* Like match_insns, but for MIPS16. */
8577
8578 static bfd_boolean
8579 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8580 struct mips_operand_token *tokens)
8581 {
8582 const struct mips_opcode *opcode;
8583 bfd_boolean seen_valid_for_isa;
8584 bfd_boolean seen_valid_for_size;
8585
8586 /* Search for a match, ignoring alternatives that don't satisfy the
8587 current ISA. There are no separate entries for extended forms so
8588 we deal with forced_length later. */
8589 seen_valid_for_isa = FALSE;
8590 seen_valid_for_size = FALSE;
8591 opcode = first;
8592 do
8593 {
8594 gas_assert (strcmp (opcode->name, first->name) == 0);
8595 if (is_opcode_valid_16 (opcode))
8596 {
8597 seen_valid_for_isa = TRUE;
8598 if (is_size_valid_16 (opcode))
8599 {
8600 seen_valid_for_size = TRUE;
8601 if (match_mips16_insn (insn, opcode, tokens))
8602 return TRUE;
8603 }
8604 }
8605 ++opcode;
8606 }
8607 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8608 && strcmp (opcode->name, first->name) == 0);
8609
8610 /* Handle the case where we didn't try to match an instruction because
8611 all the alternatives were incompatible with the current ISA. */
8612 if (!seen_valid_for_isa)
8613 {
8614 match_invalid_for_isa ();
8615 return TRUE;
8616 }
8617
8618 /* Handle the case where we didn't try to match an instruction because
8619 all the alternatives were of the wrong size. */
8620 if (!seen_valid_for_size)
8621 {
8622 if (forced_insn_length == 2)
8623 set_insn_error
8624 (0, _("unrecognized unextended version of MIPS16 opcode"));
8625 else
8626 set_insn_error
8627 (0, _("unrecognized extended version of MIPS16 opcode"));
8628 return TRUE;
8629 }
8630
8631 return FALSE;
8632 }
8633
8634 /* Set up global variables for the start of a new macro. */
8635
8636 static void
8637 macro_start (void)
8638 {
8639 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8640 memset (&mips_macro_warning.first_insn_sizes, 0,
8641 sizeof (mips_macro_warning.first_insn_sizes));
8642 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8643 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8644 && delayed_branch_p (&history[0]));
8645 if (history[0].frag
8646 && history[0].frag->fr_type == rs_machine_dependent
8647 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8648 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8649 mips_macro_warning.delay_slot_length = 0;
8650 else
8651 switch (history[0].insn_mo->pinfo2
8652 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8653 {
8654 case INSN2_BRANCH_DELAY_32BIT:
8655 mips_macro_warning.delay_slot_length = 4;
8656 break;
8657 case INSN2_BRANCH_DELAY_16BIT:
8658 mips_macro_warning.delay_slot_length = 2;
8659 break;
8660 default:
8661 mips_macro_warning.delay_slot_length = 0;
8662 break;
8663 }
8664 mips_macro_warning.first_frag = NULL;
8665 }
8666
8667 /* Given that a macro is longer than one instruction or of the wrong size,
8668 return the appropriate warning for it. Return null if no warning is
8669 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8670 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8671 and RELAX_NOMACRO. */
8672
8673 static const char *
8674 macro_warning (relax_substateT subtype)
8675 {
8676 if (subtype & RELAX_DELAY_SLOT)
8677 return _("macro instruction expanded into multiple instructions"
8678 " in a branch delay slot");
8679 else if (subtype & RELAX_NOMACRO)
8680 return _("macro instruction expanded into multiple instructions");
8681 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8682 | RELAX_DELAY_SLOT_SIZE_SECOND))
8683 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8684 ? _("macro instruction expanded into a wrong size instruction"
8685 " in a 16-bit branch delay slot")
8686 : _("macro instruction expanded into a wrong size instruction"
8687 " in a 32-bit branch delay slot"));
8688 else
8689 return 0;
8690 }
8691
8692 /* Finish up a macro. Emit warnings as appropriate. */
8693
8694 static void
8695 macro_end (void)
8696 {
8697 /* Relaxation warning flags. */
8698 relax_substateT subtype = 0;
8699
8700 /* Check delay slot size requirements. */
8701 if (mips_macro_warning.delay_slot_length == 2)
8702 subtype |= RELAX_DELAY_SLOT_16BIT;
8703 if (mips_macro_warning.delay_slot_length != 0)
8704 {
8705 if (mips_macro_warning.delay_slot_length
8706 != mips_macro_warning.first_insn_sizes[0])
8707 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8708 if (mips_macro_warning.delay_slot_length
8709 != mips_macro_warning.first_insn_sizes[1])
8710 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8711 }
8712
8713 /* Check instruction count requirements. */
8714 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8715 {
8716 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8717 subtype |= RELAX_SECOND_LONGER;
8718 if (mips_opts.warn_about_macros)
8719 subtype |= RELAX_NOMACRO;
8720 if (mips_macro_warning.delay_slot_p)
8721 subtype |= RELAX_DELAY_SLOT;
8722 }
8723
8724 /* If both alternatives fail to fill a delay slot correctly,
8725 emit the warning now. */
8726 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8727 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8728 {
8729 relax_substateT s;
8730 const char *msg;
8731
8732 s = subtype & (RELAX_DELAY_SLOT_16BIT
8733 | RELAX_DELAY_SLOT_SIZE_FIRST
8734 | RELAX_DELAY_SLOT_SIZE_SECOND);
8735 msg = macro_warning (s);
8736 if (msg != NULL)
8737 as_warn ("%s", msg);
8738 subtype &= ~s;
8739 }
8740
8741 /* If both implementations are longer than 1 instruction, then emit the
8742 warning now. */
8743 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8744 {
8745 relax_substateT s;
8746 const char *msg;
8747
8748 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8749 msg = macro_warning (s);
8750 if (msg != NULL)
8751 as_warn ("%s", msg);
8752 subtype &= ~s;
8753 }
8754
8755 /* If any flags still set, then one implementation might need a warning
8756 and the other either will need one of a different kind or none at all.
8757 Pass any remaining flags over to relaxation. */
8758 if (mips_macro_warning.first_frag != NULL)
8759 mips_macro_warning.first_frag->fr_subtype |= subtype;
8760 }
8761
8762 /* Instruction operand formats used in macros that vary between
8763 standard MIPS and microMIPS code. */
8764
8765 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8766 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8767 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8768 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8769 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8770 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8771 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8772 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8773
8774 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8775 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8776 : cop12_fmt[mips_opts.micromips])
8777 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8778 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8779 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8780 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8781 : mem12_fmt[mips_opts.micromips])
8782 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8783 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8784 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8785
8786 /* Read a macro's relocation codes from *ARGS and store them in *R.
8787 The first argument in *ARGS will be either the code for a single
8788 relocation or -1 followed by the three codes that make up a
8789 composite relocation. */
8790
8791 static void
8792 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8793 {
8794 int i, next;
8795
8796 next = va_arg (*args, int);
8797 if (next >= 0)
8798 r[0] = (bfd_reloc_code_real_type) next;
8799 else
8800 {
8801 for (i = 0; i < 3; i++)
8802 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8803 /* This function is only used for 16-bit relocation fields.
8804 To make the macro code simpler, treat an unrelocated value
8805 in the same way as BFD_RELOC_LO16. */
8806 if (r[0] == BFD_RELOC_UNUSED)
8807 r[0] = BFD_RELOC_LO16;
8808 }
8809 }
8810
8811 /* Build an instruction created by a macro expansion. This is passed
8812 a pointer to the count of instructions created so far, an
8813 expression, the name of the instruction to build, an operand format
8814 string, and corresponding arguments. */
8815
8816 static void
8817 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8818 {
8819 const struct mips_opcode *mo = NULL;
8820 bfd_reloc_code_real_type r[3];
8821 const struct mips_opcode *amo;
8822 const struct mips_operand *operand;
8823 struct hash_control *hash;
8824 struct mips_cl_insn insn;
8825 va_list args;
8826 unsigned int uval;
8827
8828 va_start (args, fmt);
8829
8830 if (mips_opts.mips16)
8831 {
8832 mips16_macro_build (ep, name, fmt, &args);
8833 va_end (args);
8834 return;
8835 }
8836
8837 r[0] = BFD_RELOC_UNUSED;
8838 r[1] = BFD_RELOC_UNUSED;
8839 r[2] = BFD_RELOC_UNUSED;
8840 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8841 amo = (struct mips_opcode *) hash_find (hash, name);
8842 gas_assert (amo);
8843 gas_assert (strcmp (name, amo->name) == 0);
8844
8845 do
8846 {
8847 /* Search until we get a match for NAME. It is assumed here that
8848 macros will never generate MDMX, MIPS-3D, or MT instructions.
8849 We try to match an instruction that fulfills the branch delay
8850 slot instruction length requirement (if any) of the previous
8851 instruction. While doing this we record the first instruction
8852 seen that matches all the other conditions and use it anyway
8853 if the requirement cannot be met; we will issue an appropriate
8854 warning later on. */
8855 if (strcmp (fmt, amo->args) == 0
8856 && amo->pinfo != INSN_MACRO
8857 && is_opcode_valid (amo)
8858 && is_size_valid (amo))
8859 {
8860 if (is_delay_slot_valid (amo))
8861 {
8862 mo = amo;
8863 break;
8864 }
8865 else if (!mo)
8866 mo = amo;
8867 }
8868
8869 ++amo;
8870 gas_assert (amo->name);
8871 }
8872 while (strcmp (name, amo->name) == 0);
8873
8874 gas_assert (mo);
8875 create_insn (&insn, mo);
8876 for (; *fmt; ++fmt)
8877 {
8878 switch (*fmt)
8879 {
8880 case ',':
8881 case '(':
8882 case ')':
8883 case 'z':
8884 break;
8885
8886 case 'i':
8887 case 'j':
8888 macro_read_relocs (&args, r);
8889 gas_assert (*r == BFD_RELOC_GPREL16
8890 || *r == BFD_RELOC_MIPS_HIGHER
8891 || *r == BFD_RELOC_HI16_S
8892 || *r == BFD_RELOC_LO16
8893 || *r == BFD_RELOC_MIPS_GOT_OFST
8894 || (mips_opts.micromips
8895 && (*r == BFD_RELOC_16
8896 || *r == BFD_RELOC_MIPS_GOT16
8897 || *r == BFD_RELOC_MIPS_CALL16
8898 || *r == BFD_RELOC_MIPS_GOT_HI16
8899 || *r == BFD_RELOC_MIPS_GOT_LO16
8900 || *r == BFD_RELOC_MIPS_CALL_HI16
8901 || *r == BFD_RELOC_MIPS_CALL_LO16
8902 || *r == BFD_RELOC_MIPS_SUB
8903 || *r == BFD_RELOC_MIPS_GOT_PAGE
8904 || *r == BFD_RELOC_MIPS_HIGHEST
8905 || *r == BFD_RELOC_MIPS_GOT_DISP
8906 || *r == BFD_RELOC_MIPS_TLS_GD
8907 || *r == BFD_RELOC_MIPS_TLS_LDM
8908 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
8909 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
8910 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
8911 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
8912 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
8913 break;
8914
8915 case 'o':
8916 macro_read_relocs (&args, r);
8917 break;
8918
8919 case 'u':
8920 macro_read_relocs (&args, r);
8921 gas_assert (ep != NULL
8922 && (ep->X_op == O_constant
8923 || (ep->X_op == O_symbol
8924 && (*r == BFD_RELOC_MIPS_HIGHEST
8925 || *r == BFD_RELOC_HI16_S
8926 || *r == BFD_RELOC_HI16
8927 || *r == BFD_RELOC_GPREL16
8928 || *r == BFD_RELOC_MIPS_GOT_HI16
8929 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8930 break;
8931
8932 case 'p':
8933 gas_assert (ep != NULL);
8934
8935 /*
8936 * This allows macro() to pass an immediate expression for
8937 * creating short branches without creating a symbol.
8938 *
8939 * We don't allow branch relaxation for these branches, as
8940 * they should only appear in ".set nomacro" anyway.
8941 */
8942 if (ep->X_op == O_constant)
8943 {
8944 /* For microMIPS we always use relocations for branches.
8945 So we should not resolve immediate values. */
8946 gas_assert (!mips_opts.micromips);
8947
8948 if ((ep->X_add_number & 3) != 0)
8949 as_bad (_("branch to misaligned address (0x%lx)"),
8950 (unsigned long) ep->X_add_number);
8951 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8952 as_bad (_("branch address range overflow (0x%lx)"),
8953 (unsigned long) ep->X_add_number);
8954 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8955 ep = NULL;
8956 }
8957 else
8958 *r = BFD_RELOC_16_PCREL_S2;
8959 break;
8960
8961 case 'a':
8962 gas_assert (ep != NULL);
8963 *r = BFD_RELOC_MIPS_JMP;
8964 break;
8965
8966 default:
8967 operand = (mips_opts.micromips
8968 ? decode_micromips_operand (fmt)
8969 : decode_mips_operand (fmt));
8970 if (!operand)
8971 abort ();
8972
8973 uval = va_arg (args, int);
8974 if (operand->type == OP_CLO_CLZ_DEST)
8975 uval |= (uval << 5);
8976 insn_insert_operand (&insn, operand, uval);
8977
8978 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8979 ++fmt;
8980 break;
8981 }
8982 }
8983 va_end (args);
8984 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8985
8986 append_insn (&insn, ep, r, TRUE);
8987 }
8988
8989 static void
8990 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8991 va_list *args)
8992 {
8993 struct mips_opcode *mo;
8994 struct mips_cl_insn insn;
8995 const struct mips_operand *operand;
8996 bfd_reloc_code_real_type r[3]
8997 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8998
8999 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9000 gas_assert (mo);
9001 gas_assert (strcmp (name, mo->name) == 0);
9002
9003 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9004 {
9005 ++mo;
9006 gas_assert (mo->name);
9007 gas_assert (strcmp (name, mo->name) == 0);
9008 }
9009
9010 create_insn (&insn, mo);
9011 for (; *fmt; ++fmt)
9012 {
9013 int c;
9014
9015 c = *fmt;
9016 switch (c)
9017 {
9018 case ',':
9019 case '(':
9020 case ')':
9021 break;
9022
9023 case '.':
9024 case 'S':
9025 case 'P':
9026 case 'R':
9027 break;
9028
9029 case '<':
9030 case '5':
9031 case 'F':
9032 case 'H':
9033 case 'W':
9034 case 'D':
9035 case 'j':
9036 case '8':
9037 case 'V':
9038 case 'C':
9039 case 'U':
9040 case 'k':
9041 case 'K':
9042 case 'p':
9043 case 'q':
9044 {
9045 offsetT value;
9046
9047 gas_assert (ep != NULL);
9048
9049 if (ep->X_op != O_constant)
9050 *r = (int) BFD_RELOC_UNUSED + c;
9051 else if (calculate_reloc (*r, ep->X_add_number, &value))
9052 {
9053 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9054 ep = NULL;
9055 *r = BFD_RELOC_UNUSED;
9056 }
9057 }
9058 break;
9059
9060 default:
9061 operand = decode_mips16_operand (c, FALSE);
9062 if (!operand)
9063 abort ();
9064
9065 insn_insert_operand (&insn, operand, va_arg (*args, int));
9066 break;
9067 }
9068 }
9069
9070 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9071
9072 append_insn (&insn, ep, r, TRUE);
9073 }
9074
9075 /*
9076 * Generate a "jalr" instruction with a relocation hint to the called
9077 * function. This occurs in NewABI PIC code.
9078 */
9079 static void
9080 macro_build_jalr (expressionS *ep, int cprestore)
9081 {
9082 static const bfd_reloc_code_real_type jalr_relocs[2]
9083 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9084 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9085 const char *jalr;
9086 char *f = NULL;
9087
9088 if (MIPS_JALR_HINT_P (ep))
9089 {
9090 frag_grow (8);
9091 f = frag_more (0);
9092 }
9093 if (mips_opts.micromips)
9094 {
9095 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9096 ? "jalr" : "jalrs");
9097 if (MIPS_JALR_HINT_P (ep)
9098 || mips_opts.insn32
9099 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9100 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9101 else
9102 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9103 }
9104 else
9105 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9106 if (MIPS_JALR_HINT_P (ep))
9107 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9108 }
9109
9110 /*
9111 * Generate a "lui" instruction.
9112 */
9113 static void
9114 macro_build_lui (expressionS *ep, int regnum)
9115 {
9116 gas_assert (! mips_opts.mips16);
9117
9118 if (ep->X_op != O_constant)
9119 {
9120 gas_assert (ep->X_op == O_symbol);
9121 /* _gp_disp is a special case, used from s_cpload.
9122 __gnu_local_gp is used if mips_no_shared. */
9123 gas_assert (mips_pic == NO_PIC
9124 || (! HAVE_NEWABI
9125 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9126 || (! mips_in_shared
9127 && strcmp (S_GET_NAME (ep->X_add_symbol),
9128 "__gnu_local_gp") == 0));
9129 }
9130
9131 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9132 }
9133
9134 /* Generate a sequence of instructions to do a load or store from a constant
9135 offset off of a base register (breg) into/from a target register (treg),
9136 using AT if necessary. */
9137 static void
9138 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9139 int treg, int breg, int dbl)
9140 {
9141 gas_assert (ep->X_op == O_constant);
9142
9143 /* Sign-extending 32-bit constants makes their handling easier. */
9144 if (!dbl)
9145 normalize_constant_expr (ep);
9146
9147 /* Right now, this routine can only handle signed 32-bit constants. */
9148 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9149 as_warn (_("operand overflow"));
9150
9151 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9152 {
9153 /* Signed 16-bit offset will fit in the op. Easy! */
9154 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9155 }
9156 else
9157 {
9158 /* 32-bit offset, need multiple instructions and AT, like:
9159 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9160 addu $tempreg,$tempreg,$breg
9161 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9162 to handle the complete offset. */
9163 macro_build_lui (ep, AT);
9164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9165 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9166
9167 if (!mips_opts.at)
9168 as_bad (_("macro used $at after \".set noat\""));
9169 }
9170 }
9171
9172 /* set_at()
9173 * Generates code to set the $at register to true (one)
9174 * if reg is less than the immediate expression.
9175 */
9176 static void
9177 set_at (int reg, int unsignedp)
9178 {
9179 if (imm_expr.X_add_number >= -0x8000
9180 && imm_expr.X_add_number < 0x8000)
9181 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9182 AT, reg, BFD_RELOC_LO16);
9183 else
9184 {
9185 load_register (AT, &imm_expr, GPR_SIZE == 64);
9186 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9187 }
9188 }
9189
9190 /* Count the leading zeroes by performing a binary chop. This is a
9191 bulky bit of source, but performance is a LOT better for the
9192 majority of values than a simple loop to count the bits:
9193 for (lcnt = 0; (lcnt < 32); lcnt++)
9194 if ((v) & (1 << (31 - lcnt)))
9195 break;
9196 However it is not code size friendly, and the gain will drop a bit
9197 on certain cached systems.
9198 */
9199 #define COUNT_TOP_ZEROES(v) \
9200 (((v) & ~0xffff) == 0 \
9201 ? ((v) & ~0xff) == 0 \
9202 ? ((v) & ~0xf) == 0 \
9203 ? ((v) & ~0x3) == 0 \
9204 ? ((v) & ~0x1) == 0 \
9205 ? !(v) \
9206 ? 32 \
9207 : 31 \
9208 : 30 \
9209 : ((v) & ~0x7) == 0 \
9210 ? 29 \
9211 : 28 \
9212 : ((v) & ~0x3f) == 0 \
9213 ? ((v) & ~0x1f) == 0 \
9214 ? 27 \
9215 : 26 \
9216 : ((v) & ~0x7f) == 0 \
9217 ? 25 \
9218 : 24 \
9219 : ((v) & ~0xfff) == 0 \
9220 ? ((v) & ~0x3ff) == 0 \
9221 ? ((v) & ~0x1ff) == 0 \
9222 ? 23 \
9223 : 22 \
9224 : ((v) & ~0x7ff) == 0 \
9225 ? 21 \
9226 : 20 \
9227 : ((v) & ~0x3fff) == 0 \
9228 ? ((v) & ~0x1fff) == 0 \
9229 ? 19 \
9230 : 18 \
9231 : ((v) & ~0x7fff) == 0 \
9232 ? 17 \
9233 : 16 \
9234 : ((v) & ~0xffffff) == 0 \
9235 ? ((v) & ~0xfffff) == 0 \
9236 ? ((v) & ~0x3ffff) == 0 \
9237 ? ((v) & ~0x1ffff) == 0 \
9238 ? 15 \
9239 : 14 \
9240 : ((v) & ~0x7ffff) == 0 \
9241 ? 13 \
9242 : 12 \
9243 : ((v) & ~0x3fffff) == 0 \
9244 ? ((v) & ~0x1fffff) == 0 \
9245 ? 11 \
9246 : 10 \
9247 : ((v) & ~0x7fffff) == 0 \
9248 ? 9 \
9249 : 8 \
9250 : ((v) & ~0xfffffff) == 0 \
9251 ? ((v) & ~0x3ffffff) == 0 \
9252 ? ((v) & ~0x1ffffff) == 0 \
9253 ? 7 \
9254 : 6 \
9255 : ((v) & ~0x7ffffff) == 0 \
9256 ? 5 \
9257 : 4 \
9258 : ((v) & ~0x3fffffff) == 0 \
9259 ? ((v) & ~0x1fffffff) == 0 \
9260 ? 3 \
9261 : 2 \
9262 : ((v) & ~0x7fffffff) == 0 \
9263 ? 1 \
9264 : 0)
9265
9266 /* load_register()
9267 * This routine generates the least number of instructions necessary to load
9268 * an absolute expression value into a register.
9269 */
9270 static void
9271 load_register (int reg, expressionS *ep, int dbl)
9272 {
9273 int freg;
9274 expressionS hi32, lo32;
9275
9276 if (ep->X_op != O_big)
9277 {
9278 gas_assert (ep->X_op == O_constant);
9279
9280 /* Sign-extending 32-bit constants makes their handling easier. */
9281 if (!dbl)
9282 normalize_constant_expr (ep);
9283
9284 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9285 {
9286 /* We can handle 16 bit signed values with an addiu to
9287 $zero. No need to ever use daddiu here, since $zero and
9288 the result are always correct in 32 bit mode. */
9289 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9290 return;
9291 }
9292 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9293 {
9294 /* We can handle 16 bit unsigned values with an ori to
9295 $zero. */
9296 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9297 return;
9298 }
9299 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9300 {
9301 /* 32 bit values require an lui. */
9302 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9303 if ((ep->X_add_number & 0xffff) != 0)
9304 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9305 return;
9306 }
9307 }
9308
9309 /* The value is larger than 32 bits. */
9310
9311 if (!dbl || GPR_SIZE == 32)
9312 {
9313 char value[32];
9314
9315 sprintf_vma (value, ep->X_add_number);
9316 as_bad (_("number (0x%s) larger than 32 bits"), value);
9317 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9318 return;
9319 }
9320
9321 if (ep->X_op != O_big)
9322 {
9323 hi32 = *ep;
9324 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9325 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9326 hi32.X_add_number &= 0xffffffff;
9327 lo32 = *ep;
9328 lo32.X_add_number &= 0xffffffff;
9329 }
9330 else
9331 {
9332 gas_assert (ep->X_add_number > 2);
9333 if (ep->X_add_number == 3)
9334 generic_bignum[3] = 0;
9335 else if (ep->X_add_number > 4)
9336 as_bad (_("number larger than 64 bits"));
9337 lo32.X_op = O_constant;
9338 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9339 hi32.X_op = O_constant;
9340 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9341 }
9342
9343 if (hi32.X_add_number == 0)
9344 freg = 0;
9345 else
9346 {
9347 int shift, bit;
9348 unsigned long hi, lo;
9349
9350 if (hi32.X_add_number == (offsetT) 0xffffffff)
9351 {
9352 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9353 {
9354 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9355 return;
9356 }
9357 if (lo32.X_add_number & 0x80000000)
9358 {
9359 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9360 if (lo32.X_add_number & 0xffff)
9361 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9362 return;
9363 }
9364 }
9365
9366 /* Check for 16bit shifted constant. We know that hi32 is
9367 non-zero, so start the mask on the first bit of the hi32
9368 value. */
9369 shift = 17;
9370 do
9371 {
9372 unsigned long himask, lomask;
9373
9374 if (shift < 32)
9375 {
9376 himask = 0xffff >> (32 - shift);
9377 lomask = (0xffff << shift) & 0xffffffff;
9378 }
9379 else
9380 {
9381 himask = 0xffff << (shift - 32);
9382 lomask = 0;
9383 }
9384 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9385 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9386 {
9387 expressionS tmp;
9388
9389 tmp.X_op = O_constant;
9390 if (shift < 32)
9391 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9392 | (lo32.X_add_number >> shift));
9393 else
9394 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9395 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9396 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9397 reg, reg, (shift >= 32) ? shift - 32 : shift);
9398 return;
9399 }
9400 ++shift;
9401 }
9402 while (shift <= (64 - 16));
9403
9404 /* Find the bit number of the lowest one bit, and store the
9405 shifted value in hi/lo. */
9406 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9407 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9408 if (lo != 0)
9409 {
9410 bit = 0;
9411 while ((lo & 1) == 0)
9412 {
9413 lo >>= 1;
9414 ++bit;
9415 }
9416 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9417 hi >>= bit;
9418 }
9419 else
9420 {
9421 bit = 32;
9422 while ((hi & 1) == 0)
9423 {
9424 hi >>= 1;
9425 ++bit;
9426 }
9427 lo = hi;
9428 hi = 0;
9429 }
9430
9431 /* Optimize if the shifted value is a (power of 2) - 1. */
9432 if ((hi == 0 && ((lo + 1) & lo) == 0)
9433 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9434 {
9435 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9436 if (shift != 0)
9437 {
9438 expressionS tmp;
9439
9440 /* This instruction will set the register to be all
9441 ones. */
9442 tmp.X_op = O_constant;
9443 tmp.X_add_number = (offsetT) -1;
9444 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9445 if (bit != 0)
9446 {
9447 bit += shift;
9448 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9449 reg, reg, (bit >= 32) ? bit - 32 : bit);
9450 }
9451 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9452 reg, reg, (shift >= 32) ? shift - 32 : shift);
9453 return;
9454 }
9455 }
9456
9457 /* Sign extend hi32 before calling load_register, because we can
9458 generally get better code when we load a sign extended value. */
9459 if ((hi32.X_add_number & 0x80000000) != 0)
9460 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9461 load_register (reg, &hi32, 0);
9462 freg = reg;
9463 }
9464 if ((lo32.X_add_number & 0xffff0000) == 0)
9465 {
9466 if (freg != 0)
9467 {
9468 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9469 freg = reg;
9470 }
9471 }
9472 else
9473 {
9474 expressionS mid16;
9475
9476 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9477 {
9478 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9479 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9480 return;
9481 }
9482
9483 if (freg != 0)
9484 {
9485 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9486 freg = reg;
9487 }
9488 mid16 = lo32;
9489 mid16.X_add_number >>= 16;
9490 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9491 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9492 freg = reg;
9493 }
9494 if ((lo32.X_add_number & 0xffff) != 0)
9495 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9496 }
9497
9498 static inline void
9499 load_delay_nop (void)
9500 {
9501 if (!gpr_interlocks)
9502 macro_build (NULL, "nop", "");
9503 }
9504
9505 /* Load an address into a register. */
9506
9507 static void
9508 load_address (int reg, expressionS *ep, int *used_at)
9509 {
9510 if (ep->X_op != O_constant
9511 && ep->X_op != O_symbol)
9512 {
9513 as_bad (_("expression too complex"));
9514 ep->X_op = O_constant;
9515 }
9516
9517 if (ep->X_op == O_constant)
9518 {
9519 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9520 return;
9521 }
9522
9523 if (mips_pic == NO_PIC)
9524 {
9525 /* If this is a reference to a GP relative symbol, we want
9526 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9527 Otherwise we want
9528 lui $reg,<sym> (BFD_RELOC_HI16_S)
9529 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9530 If we have an addend, we always use the latter form.
9531
9532 With 64bit address space and a usable $at we want
9533 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9534 lui $at,<sym> (BFD_RELOC_HI16_S)
9535 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9536 daddiu $at,<sym> (BFD_RELOC_LO16)
9537 dsll32 $reg,0
9538 daddu $reg,$reg,$at
9539
9540 If $at is already in use, we use a path which is suboptimal
9541 on superscalar processors.
9542 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9543 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9544 dsll $reg,16
9545 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9546 dsll $reg,16
9547 daddiu $reg,<sym> (BFD_RELOC_LO16)
9548
9549 For GP relative symbols in 64bit address space we can use
9550 the same sequence as in 32bit address space. */
9551 if (HAVE_64BIT_SYMBOLS)
9552 {
9553 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9554 && !nopic_need_relax (ep->X_add_symbol, 1))
9555 {
9556 relax_start (ep->X_add_symbol);
9557 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9558 mips_gp_register, BFD_RELOC_GPREL16);
9559 relax_switch ();
9560 }
9561
9562 if (*used_at == 0 && mips_opts.at)
9563 {
9564 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9565 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9566 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9567 BFD_RELOC_MIPS_HIGHER);
9568 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9569 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9570 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9571 *used_at = 1;
9572 }
9573 else
9574 {
9575 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9576 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9577 BFD_RELOC_MIPS_HIGHER);
9578 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9579 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9580 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9581 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9582 }
9583
9584 if (mips_relax.sequence)
9585 relax_end ();
9586 }
9587 else
9588 {
9589 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9590 && !nopic_need_relax (ep->X_add_symbol, 1))
9591 {
9592 relax_start (ep->X_add_symbol);
9593 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9594 mips_gp_register, BFD_RELOC_GPREL16);
9595 relax_switch ();
9596 }
9597 macro_build_lui (ep, reg);
9598 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9599 reg, reg, BFD_RELOC_LO16);
9600 if (mips_relax.sequence)
9601 relax_end ();
9602 }
9603 }
9604 else if (!mips_big_got)
9605 {
9606 expressionS ex;
9607
9608 /* If this is a reference to an external symbol, we want
9609 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9610 Otherwise we want
9611 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9612 nop
9613 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9614 If there is a constant, it must be added in after.
9615
9616 If we have NewABI, we want
9617 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9618 unless we're referencing a global symbol with a non-zero
9619 offset, in which case cst must be added separately. */
9620 if (HAVE_NEWABI)
9621 {
9622 if (ep->X_add_number)
9623 {
9624 ex.X_add_number = ep->X_add_number;
9625 ep->X_add_number = 0;
9626 relax_start (ep->X_add_symbol);
9627 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9628 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9629 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9630 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9631 ex.X_op = O_constant;
9632 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9633 reg, reg, BFD_RELOC_LO16);
9634 ep->X_add_number = ex.X_add_number;
9635 relax_switch ();
9636 }
9637 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9638 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9639 if (mips_relax.sequence)
9640 relax_end ();
9641 }
9642 else
9643 {
9644 ex.X_add_number = ep->X_add_number;
9645 ep->X_add_number = 0;
9646 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9647 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9648 load_delay_nop ();
9649 relax_start (ep->X_add_symbol);
9650 relax_switch ();
9651 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9652 BFD_RELOC_LO16);
9653 relax_end ();
9654
9655 if (ex.X_add_number != 0)
9656 {
9657 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9658 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9659 ex.X_op = O_constant;
9660 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9661 reg, reg, BFD_RELOC_LO16);
9662 }
9663 }
9664 }
9665 else if (mips_big_got)
9666 {
9667 expressionS ex;
9668
9669 /* This is the large GOT case. If this is a reference to an
9670 external symbol, we want
9671 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9672 addu $reg,$reg,$gp
9673 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9674
9675 Otherwise, for a reference to a local symbol in old ABI, we want
9676 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9677 nop
9678 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9679 If there is a constant, it must be added in after.
9680
9681 In the NewABI, for local symbols, with or without offsets, we want:
9682 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9683 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9684 */
9685 if (HAVE_NEWABI)
9686 {
9687 ex.X_add_number = ep->X_add_number;
9688 ep->X_add_number = 0;
9689 relax_start (ep->X_add_symbol);
9690 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9691 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9692 reg, reg, mips_gp_register);
9693 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9694 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9695 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9696 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9697 else if (ex.X_add_number)
9698 {
9699 ex.X_op = O_constant;
9700 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9701 BFD_RELOC_LO16);
9702 }
9703
9704 ep->X_add_number = ex.X_add_number;
9705 relax_switch ();
9706 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9707 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9708 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9709 BFD_RELOC_MIPS_GOT_OFST);
9710 relax_end ();
9711 }
9712 else
9713 {
9714 ex.X_add_number = ep->X_add_number;
9715 ep->X_add_number = 0;
9716 relax_start (ep->X_add_symbol);
9717 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9718 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9719 reg, reg, mips_gp_register);
9720 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9721 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9722 relax_switch ();
9723 if (reg_needs_delay (mips_gp_register))
9724 {
9725 /* We need a nop before loading from $gp. This special
9726 check is required because the lui which starts the main
9727 instruction stream does not refer to $gp, and so will not
9728 insert the nop which may be required. */
9729 macro_build (NULL, "nop", "");
9730 }
9731 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9732 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9733 load_delay_nop ();
9734 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9735 BFD_RELOC_LO16);
9736 relax_end ();
9737
9738 if (ex.X_add_number != 0)
9739 {
9740 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9741 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9742 ex.X_op = O_constant;
9743 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9744 BFD_RELOC_LO16);
9745 }
9746 }
9747 }
9748 else
9749 abort ();
9750
9751 if (!mips_opts.at && *used_at == 1)
9752 as_bad (_("macro used $at after \".set noat\""));
9753 }
9754
9755 /* Move the contents of register SOURCE into register DEST. */
9756
9757 static void
9758 move_register (int dest, int source)
9759 {
9760 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9761 instruction specifically requires a 32-bit one. */
9762 if (mips_opts.micromips
9763 && !mips_opts.insn32
9764 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9765 macro_build (NULL, "move", "mp,mj", dest, source);
9766 else
9767 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9768 }
9769
9770 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9771 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9772 The two alternatives are:
9773
9774 Global symbol Local symbol
9775 ------------- ------------
9776 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9777 ... ...
9778 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9779
9780 load_got_offset emits the first instruction and add_got_offset
9781 emits the second for a 16-bit offset or add_got_offset_hilo emits
9782 a sequence to add a 32-bit offset using a scratch register. */
9783
9784 static void
9785 load_got_offset (int dest, expressionS *local)
9786 {
9787 expressionS global;
9788
9789 global = *local;
9790 global.X_add_number = 0;
9791
9792 relax_start (local->X_add_symbol);
9793 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9794 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9795 relax_switch ();
9796 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9797 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9798 relax_end ();
9799 }
9800
9801 static void
9802 add_got_offset (int dest, expressionS *local)
9803 {
9804 expressionS global;
9805
9806 global.X_op = O_constant;
9807 global.X_op_symbol = NULL;
9808 global.X_add_symbol = NULL;
9809 global.X_add_number = local->X_add_number;
9810
9811 relax_start (local->X_add_symbol);
9812 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9813 dest, dest, BFD_RELOC_LO16);
9814 relax_switch ();
9815 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9816 relax_end ();
9817 }
9818
9819 static void
9820 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9821 {
9822 expressionS global;
9823 int hold_mips_optimize;
9824
9825 global.X_op = O_constant;
9826 global.X_op_symbol = NULL;
9827 global.X_add_symbol = NULL;
9828 global.X_add_number = local->X_add_number;
9829
9830 relax_start (local->X_add_symbol);
9831 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9832 relax_switch ();
9833 /* Set mips_optimize around the lui instruction to avoid
9834 inserting an unnecessary nop after the lw. */
9835 hold_mips_optimize = mips_optimize;
9836 mips_optimize = 2;
9837 macro_build_lui (&global, tmp);
9838 mips_optimize = hold_mips_optimize;
9839 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9840 relax_end ();
9841
9842 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9843 }
9844
9845 /* Emit a sequence of instructions to emulate a branch likely operation.
9846 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9847 is its complementing branch with the original condition negated.
9848 CALL is set if the original branch specified the link operation.
9849 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9850
9851 Code like this is produced in the noreorder mode:
9852
9853 BRNEG <args>, 1f
9854 nop
9855 b <sym>
9856 delay slot (executed only if branch taken)
9857 1:
9858
9859 or, if CALL is set:
9860
9861 BRNEG <args>, 1f
9862 nop
9863 bal <sym>
9864 delay slot (executed only if branch taken)
9865 1:
9866
9867 In the reorder mode the delay slot would be filled with a nop anyway,
9868 so code produced is simply:
9869
9870 BR <args>, <sym>
9871 nop
9872
9873 This function is used when producing code for the microMIPS ASE that
9874 does not implement branch likely instructions in hardware. */
9875
9876 static void
9877 macro_build_branch_likely (const char *br, const char *brneg,
9878 int call, expressionS *ep, const char *fmt,
9879 unsigned int sreg, unsigned int treg)
9880 {
9881 int noreorder = mips_opts.noreorder;
9882 expressionS expr1;
9883
9884 gas_assert (mips_opts.micromips);
9885 start_noreorder ();
9886 if (noreorder)
9887 {
9888 micromips_label_expr (&expr1);
9889 macro_build (&expr1, brneg, fmt, sreg, treg);
9890 macro_build (NULL, "nop", "");
9891 macro_build (ep, call ? "bal" : "b", "p");
9892
9893 /* Set to true so that append_insn adds a label. */
9894 emit_branch_likely_macro = TRUE;
9895 }
9896 else
9897 {
9898 macro_build (ep, br, fmt, sreg, treg);
9899 macro_build (NULL, "nop", "");
9900 }
9901 end_noreorder ();
9902 }
9903
9904 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9905 the condition code tested. EP specifies the branch target. */
9906
9907 static void
9908 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9909 {
9910 const int call = 0;
9911 const char *brneg;
9912 const char *br;
9913
9914 switch (type)
9915 {
9916 case M_BC1FL:
9917 br = "bc1f";
9918 brneg = "bc1t";
9919 break;
9920 case M_BC1TL:
9921 br = "bc1t";
9922 brneg = "bc1f";
9923 break;
9924 case M_BC2FL:
9925 br = "bc2f";
9926 brneg = "bc2t";
9927 break;
9928 case M_BC2TL:
9929 br = "bc2t";
9930 brneg = "bc2f";
9931 break;
9932 default:
9933 abort ();
9934 }
9935 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9936 }
9937
9938 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9939 the register tested. EP specifies the branch target. */
9940
9941 static void
9942 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9943 {
9944 const char *brneg = NULL;
9945 const char *br;
9946 int call = 0;
9947
9948 switch (type)
9949 {
9950 case M_BGEZ:
9951 br = "bgez";
9952 break;
9953 case M_BGEZL:
9954 br = mips_opts.micromips ? "bgez" : "bgezl";
9955 brneg = "bltz";
9956 break;
9957 case M_BGEZALL:
9958 gas_assert (mips_opts.micromips);
9959 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9960 brneg = "bltz";
9961 call = 1;
9962 break;
9963 case M_BGTZ:
9964 br = "bgtz";
9965 break;
9966 case M_BGTZL:
9967 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9968 brneg = "blez";
9969 break;
9970 case M_BLEZ:
9971 br = "blez";
9972 break;
9973 case M_BLEZL:
9974 br = mips_opts.micromips ? "blez" : "blezl";
9975 brneg = "bgtz";
9976 break;
9977 case M_BLTZ:
9978 br = "bltz";
9979 break;
9980 case M_BLTZL:
9981 br = mips_opts.micromips ? "bltz" : "bltzl";
9982 brneg = "bgez";
9983 break;
9984 case M_BLTZALL:
9985 gas_assert (mips_opts.micromips);
9986 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9987 brneg = "bgez";
9988 call = 1;
9989 break;
9990 default:
9991 abort ();
9992 }
9993 if (mips_opts.micromips && brneg)
9994 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9995 else
9996 macro_build (ep, br, "s,p", sreg);
9997 }
9998
9999 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10000 TREG as the registers tested. EP specifies the branch target. */
10001
10002 static void
10003 macro_build_branch_rsrt (int type, expressionS *ep,
10004 unsigned int sreg, unsigned int treg)
10005 {
10006 const char *brneg = NULL;
10007 const int call = 0;
10008 const char *br;
10009
10010 switch (type)
10011 {
10012 case M_BEQ:
10013 case M_BEQ_I:
10014 br = "beq";
10015 break;
10016 case M_BEQL:
10017 case M_BEQL_I:
10018 br = mips_opts.micromips ? "beq" : "beql";
10019 brneg = "bne";
10020 break;
10021 case M_BNE:
10022 case M_BNE_I:
10023 br = "bne";
10024 break;
10025 case M_BNEL:
10026 case M_BNEL_I:
10027 br = mips_opts.micromips ? "bne" : "bnel";
10028 brneg = "beq";
10029 break;
10030 default:
10031 abort ();
10032 }
10033 if (mips_opts.micromips && brneg)
10034 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10035 else
10036 macro_build (ep, br, "s,t,p", sreg, treg);
10037 }
10038
10039 /* Return the high part that should be loaded in order to make the low
10040 part of VALUE accessible using an offset of OFFBITS bits. */
10041
10042 static offsetT
10043 offset_high_part (offsetT value, unsigned int offbits)
10044 {
10045 offsetT bias;
10046 addressT low_mask;
10047
10048 if (offbits == 0)
10049 return value;
10050 bias = 1 << (offbits - 1);
10051 low_mask = bias * 2 - 1;
10052 return (value + bias) & ~low_mask;
10053 }
10054
10055 /* Return true if the value stored in offset_expr and offset_reloc
10056 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10057 amount that the caller wants to add without inducing overflow
10058 and ALIGN is the known alignment of the value in bytes. */
10059
10060 static bfd_boolean
10061 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10062 {
10063 if (offbits == 16)
10064 {
10065 /* Accept any relocation operator if overflow isn't a concern. */
10066 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10067 return TRUE;
10068
10069 /* These relocations are guaranteed not to overflow in correct links. */
10070 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10071 || gprel16_reloc_p (*offset_reloc))
10072 return TRUE;
10073 }
10074 if (offset_expr.X_op == O_constant
10075 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10076 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10077 return TRUE;
10078 return FALSE;
10079 }
10080
10081 /*
10082 * Build macros
10083 * This routine implements the seemingly endless macro or synthesized
10084 * instructions and addressing modes in the mips assembly language. Many
10085 * of these macros are simple and are similar to each other. These could
10086 * probably be handled by some kind of table or grammar approach instead of
10087 * this verbose method. Others are not simple macros but are more like
10088 * optimizing code generation.
10089 * One interesting optimization is when several store macros appear
10090 * consecutively that would load AT with the upper half of the same address.
10091 * The ensuing load upper instructions are omitted. This implies some kind
10092 * of global optimization. We currently only optimize within a single macro.
10093 * For many of the load and store macros if the address is specified as a
10094 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10095 * first load register 'at' with zero and use it as the base register. The
10096 * mips assembler simply uses register $zero. Just one tiny optimization
10097 * we're missing.
10098 */
10099 static void
10100 macro (struct mips_cl_insn *ip, char *str)
10101 {
10102 const struct mips_operand_array *operands;
10103 unsigned int breg, i;
10104 unsigned int tempreg;
10105 int mask;
10106 int used_at = 0;
10107 expressionS label_expr;
10108 expressionS expr1;
10109 expressionS *ep;
10110 const char *s;
10111 const char *s2;
10112 const char *fmt;
10113 int likely = 0;
10114 int coproc = 0;
10115 int offbits = 16;
10116 int call = 0;
10117 int jals = 0;
10118 int dbl = 0;
10119 int imm = 0;
10120 int ust = 0;
10121 int lp = 0;
10122 bfd_boolean large_offset;
10123 int off;
10124 int hold_mips_optimize;
10125 unsigned int align;
10126 unsigned int op[MAX_OPERANDS];
10127
10128 gas_assert (! mips_opts.mips16);
10129
10130 operands = insn_operands (ip);
10131 for (i = 0; i < MAX_OPERANDS; i++)
10132 if (operands->operand[i])
10133 op[i] = insn_extract_operand (ip, operands->operand[i]);
10134 else
10135 op[i] = -1;
10136
10137 mask = ip->insn_mo->mask;
10138
10139 label_expr.X_op = O_constant;
10140 label_expr.X_op_symbol = NULL;
10141 label_expr.X_add_symbol = NULL;
10142 label_expr.X_add_number = 0;
10143
10144 expr1.X_op = O_constant;
10145 expr1.X_op_symbol = NULL;
10146 expr1.X_add_symbol = NULL;
10147 expr1.X_add_number = 1;
10148 align = 1;
10149
10150 switch (mask)
10151 {
10152 case M_DABS:
10153 dbl = 1;
10154 /* Fall through. */
10155 case M_ABS:
10156 /* bgez $a0,1f
10157 move v0,$a0
10158 sub v0,$zero,$a0
10159 1:
10160 */
10161
10162 start_noreorder ();
10163
10164 if (mips_opts.micromips)
10165 micromips_label_expr (&label_expr);
10166 else
10167 label_expr.X_add_number = 8;
10168 macro_build (&label_expr, "bgez", "s,p", op[1]);
10169 if (op[0] == op[1])
10170 macro_build (NULL, "nop", "");
10171 else
10172 move_register (op[0], op[1]);
10173 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10174 if (mips_opts.micromips)
10175 micromips_add_label ();
10176
10177 end_noreorder ();
10178 break;
10179
10180 case M_ADD_I:
10181 s = "addi";
10182 s2 = "add";
10183 goto do_addi;
10184 case M_ADDU_I:
10185 s = "addiu";
10186 s2 = "addu";
10187 goto do_addi;
10188 case M_DADD_I:
10189 dbl = 1;
10190 s = "daddi";
10191 s2 = "dadd";
10192 if (!mips_opts.micromips)
10193 goto do_addi;
10194 if (imm_expr.X_add_number >= -0x200
10195 && imm_expr.X_add_number < 0x200)
10196 {
10197 macro_build (NULL, s, "t,r,.", op[0], op[1],
10198 (int) imm_expr.X_add_number);
10199 break;
10200 }
10201 goto do_addi_i;
10202 case M_DADDU_I:
10203 dbl = 1;
10204 s = "daddiu";
10205 s2 = "daddu";
10206 do_addi:
10207 if (imm_expr.X_add_number >= -0x8000
10208 && imm_expr.X_add_number < 0x8000)
10209 {
10210 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10211 break;
10212 }
10213 do_addi_i:
10214 used_at = 1;
10215 load_register (AT, &imm_expr, dbl);
10216 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10217 break;
10218
10219 case M_AND_I:
10220 s = "andi";
10221 s2 = "and";
10222 goto do_bit;
10223 case M_OR_I:
10224 s = "ori";
10225 s2 = "or";
10226 goto do_bit;
10227 case M_NOR_I:
10228 s = "";
10229 s2 = "nor";
10230 goto do_bit;
10231 case M_XOR_I:
10232 s = "xori";
10233 s2 = "xor";
10234 do_bit:
10235 if (imm_expr.X_add_number >= 0
10236 && imm_expr.X_add_number < 0x10000)
10237 {
10238 if (mask != M_NOR_I)
10239 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10240 else
10241 {
10242 macro_build (&imm_expr, "ori", "t,r,i",
10243 op[0], op[1], BFD_RELOC_LO16);
10244 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10245 }
10246 break;
10247 }
10248
10249 used_at = 1;
10250 load_register (AT, &imm_expr, GPR_SIZE == 64);
10251 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10252 break;
10253
10254 case M_BALIGN:
10255 switch (imm_expr.X_add_number)
10256 {
10257 case 0:
10258 macro_build (NULL, "nop", "");
10259 break;
10260 case 2:
10261 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10262 break;
10263 case 1:
10264 case 3:
10265 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10266 (int) imm_expr.X_add_number);
10267 break;
10268 default:
10269 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10270 (unsigned long) imm_expr.X_add_number);
10271 break;
10272 }
10273 break;
10274
10275 case M_BC1FL:
10276 case M_BC1TL:
10277 case M_BC2FL:
10278 case M_BC2TL:
10279 gas_assert (mips_opts.micromips);
10280 macro_build_branch_ccl (mask, &offset_expr,
10281 EXTRACT_OPERAND (1, BCC, *ip));
10282 break;
10283
10284 case M_BEQ_I:
10285 case M_BEQL_I:
10286 case M_BNE_I:
10287 case M_BNEL_I:
10288 if (imm_expr.X_add_number == 0)
10289 op[1] = 0;
10290 else
10291 {
10292 op[1] = AT;
10293 used_at = 1;
10294 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10295 }
10296 /* Fall through. */
10297 case M_BEQL:
10298 case M_BNEL:
10299 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10300 break;
10301
10302 case M_BGEL:
10303 likely = 1;
10304 /* Fall through. */
10305 case M_BGE:
10306 if (op[1] == 0)
10307 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10308 else if (op[0] == 0)
10309 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10310 else
10311 {
10312 used_at = 1;
10313 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10314 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10315 &offset_expr, AT, ZERO);
10316 }
10317 break;
10318
10319 case M_BGEZL:
10320 case M_BGEZALL:
10321 case M_BGTZL:
10322 case M_BLEZL:
10323 case M_BLTZL:
10324 case M_BLTZALL:
10325 macro_build_branch_rs (mask, &offset_expr, op[0]);
10326 break;
10327
10328 case M_BGTL_I:
10329 likely = 1;
10330 /* Fall through. */
10331 case M_BGT_I:
10332 /* Check for > max integer. */
10333 if (imm_expr.X_add_number >= GPR_SMAX)
10334 {
10335 do_false:
10336 /* Result is always false. */
10337 if (! likely)
10338 macro_build (NULL, "nop", "");
10339 else
10340 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10341 break;
10342 }
10343 ++imm_expr.X_add_number;
10344 /* FALLTHROUGH */
10345 case M_BGE_I:
10346 case M_BGEL_I:
10347 if (mask == M_BGEL_I)
10348 likely = 1;
10349 if (imm_expr.X_add_number == 0)
10350 {
10351 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10352 &offset_expr, op[0]);
10353 break;
10354 }
10355 if (imm_expr.X_add_number == 1)
10356 {
10357 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10358 &offset_expr, op[0]);
10359 break;
10360 }
10361 if (imm_expr.X_add_number <= GPR_SMIN)
10362 {
10363 do_true:
10364 /* result is always true */
10365 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10366 macro_build (&offset_expr, "b", "p");
10367 break;
10368 }
10369 used_at = 1;
10370 set_at (op[0], 0);
10371 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10372 &offset_expr, AT, ZERO);
10373 break;
10374
10375 case M_BGEUL:
10376 likely = 1;
10377 /* Fall through. */
10378 case M_BGEU:
10379 if (op[1] == 0)
10380 goto do_true;
10381 else if (op[0] == 0)
10382 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10383 &offset_expr, ZERO, op[1]);
10384 else
10385 {
10386 used_at = 1;
10387 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10388 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10389 &offset_expr, AT, ZERO);
10390 }
10391 break;
10392
10393 case M_BGTUL_I:
10394 likely = 1;
10395 /* Fall through. */
10396 case M_BGTU_I:
10397 if (op[0] == 0
10398 || (GPR_SIZE == 32
10399 && imm_expr.X_add_number == -1))
10400 goto do_false;
10401 ++imm_expr.X_add_number;
10402 /* FALLTHROUGH */
10403 case M_BGEU_I:
10404 case M_BGEUL_I:
10405 if (mask == M_BGEUL_I)
10406 likely = 1;
10407 if (imm_expr.X_add_number == 0)
10408 goto do_true;
10409 else if (imm_expr.X_add_number == 1)
10410 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10411 &offset_expr, op[0], ZERO);
10412 else
10413 {
10414 used_at = 1;
10415 set_at (op[0], 1);
10416 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10417 &offset_expr, AT, ZERO);
10418 }
10419 break;
10420
10421 case M_BGTL:
10422 likely = 1;
10423 /* Fall through. */
10424 case M_BGT:
10425 if (op[1] == 0)
10426 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10427 else if (op[0] == 0)
10428 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10429 else
10430 {
10431 used_at = 1;
10432 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10433 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10434 &offset_expr, AT, ZERO);
10435 }
10436 break;
10437
10438 case M_BGTUL:
10439 likely = 1;
10440 /* Fall through. */
10441 case M_BGTU:
10442 if (op[1] == 0)
10443 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10444 &offset_expr, op[0], ZERO);
10445 else if (op[0] == 0)
10446 goto do_false;
10447 else
10448 {
10449 used_at = 1;
10450 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10451 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10452 &offset_expr, AT, ZERO);
10453 }
10454 break;
10455
10456 case M_BLEL:
10457 likely = 1;
10458 /* Fall through. */
10459 case M_BLE:
10460 if (op[1] == 0)
10461 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10462 else if (op[0] == 0)
10463 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10464 else
10465 {
10466 used_at = 1;
10467 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10468 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10469 &offset_expr, AT, ZERO);
10470 }
10471 break;
10472
10473 case M_BLEL_I:
10474 likely = 1;
10475 /* Fall through. */
10476 case M_BLE_I:
10477 if (imm_expr.X_add_number >= GPR_SMAX)
10478 goto do_true;
10479 ++imm_expr.X_add_number;
10480 /* FALLTHROUGH */
10481 case M_BLT_I:
10482 case M_BLTL_I:
10483 if (mask == M_BLTL_I)
10484 likely = 1;
10485 if (imm_expr.X_add_number == 0)
10486 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10487 else if (imm_expr.X_add_number == 1)
10488 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10489 else
10490 {
10491 used_at = 1;
10492 set_at (op[0], 0);
10493 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10494 &offset_expr, AT, ZERO);
10495 }
10496 break;
10497
10498 case M_BLEUL:
10499 likely = 1;
10500 /* Fall through. */
10501 case M_BLEU:
10502 if (op[1] == 0)
10503 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10504 &offset_expr, op[0], ZERO);
10505 else if (op[0] == 0)
10506 goto do_true;
10507 else
10508 {
10509 used_at = 1;
10510 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10511 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10512 &offset_expr, AT, ZERO);
10513 }
10514 break;
10515
10516 case M_BLEUL_I:
10517 likely = 1;
10518 /* Fall through. */
10519 case M_BLEU_I:
10520 if (op[0] == 0
10521 || (GPR_SIZE == 32
10522 && imm_expr.X_add_number == -1))
10523 goto do_true;
10524 ++imm_expr.X_add_number;
10525 /* FALLTHROUGH */
10526 case M_BLTU_I:
10527 case M_BLTUL_I:
10528 if (mask == M_BLTUL_I)
10529 likely = 1;
10530 if (imm_expr.X_add_number == 0)
10531 goto do_false;
10532 else if (imm_expr.X_add_number == 1)
10533 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10534 &offset_expr, op[0], ZERO);
10535 else
10536 {
10537 used_at = 1;
10538 set_at (op[0], 1);
10539 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10540 &offset_expr, AT, ZERO);
10541 }
10542 break;
10543
10544 case M_BLTL:
10545 likely = 1;
10546 /* Fall through. */
10547 case M_BLT:
10548 if (op[1] == 0)
10549 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10550 else if (op[0] == 0)
10551 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10552 else
10553 {
10554 used_at = 1;
10555 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10556 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10557 &offset_expr, AT, ZERO);
10558 }
10559 break;
10560
10561 case M_BLTUL:
10562 likely = 1;
10563 /* Fall through. */
10564 case M_BLTU:
10565 if (op[1] == 0)
10566 goto do_false;
10567 else if (op[0] == 0)
10568 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10569 &offset_expr, ZERO, op[1]);
10570 else
10571 {
10572 used_at = 1;
10573 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10574 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10575 &offset_expr, AT, ZERO);
10576 }
10577 break;
10578
10579 case M_DDIV_3:
10580 dbl = 1;
10581 /* Fall through. */
10582 case M_DIV_3:
10583 s = "mflo";
10584 goto do_div3;
10585 case M_DREM_3:
10586 dbl = 1;
10587 /* Fall through. */
10588 case M_REM_3:
10589 s = "mfhi";
10590 do_div3:
10591 if (op[2] == 0)
10592 {
10593 as_warn (_("divide by zero"));
10594 if (mips_trap)
10595 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10596 else
10597 macro_build (NULL, "break", BRK_FMT, 7);
10598 break;
10599 }
10600
10601 start_noreorder ();
10602 if (mips_trap)
10603 {
10604 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10605 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10606 }
10607 else
10608 {
10609 if (mips_opts.micromips)
10610 micromips_label_expr (&label_expr);
10611 else
10612 label_expr.X_add_number = 8;
10613 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10614 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10615 macro_build (NULL, "break", BRK_FMT, 7);
10616 if (mips_opts.micromips)
10617 micromips_add_label ();
10618 }
10619 expr1.X_add_number = -1;
10620 used_at = 1;
10621 load_register (AT, &expr1, dbl);
10622 if (mips_opts.micromips)
10623 micromips_label_expr (&label_expr);
10624 else
10625 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10626 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10627 if (dbl)
10628 {
10629 expr1.X_add_number = 1;
10630 load_register (AT, &expr1, dbl);
10631 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10632 }
10633 else
10634 {
10635 expr1.X_add_number = 0x80000000;
10636 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10637 }
10638 if (mips_trap)
10639 {
10640 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10641 /* We want to close the noreorder block as soon as possible, so
10642 that later insns are available for delay slot filling. */
10643 end_noreorder ();
10644 }
10645 else
10646 {
10647 if (mips_opts.micromips)
10648 micromips_label_expr (&label_expr);
10649 else
10650 label_expr.X_add_number = 8;
10651 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10652 macro_build (NULL, "nop", "");
10653
10654 /* We want to close the noreorder block as soon as possible, so
10655 that later insns are available for delay slot filling. */
10656 end_noreorder ();
10657
10658 macro_build (NULL, "break", BRK_FMT, 6);
10659 }
10660 if (mips_opts.micromips)
10661 micromips_add_label ();
10662 macro_build (NULL, s, MFHL_FMT, op[0]);
10663 break;
10664
10665 case M_DIV_3I:
10666 s = "div";
10667 s2 = "mflo";
10668 goto do_divi;
10669 case M_DIVU_3I:
10670 s = "divu";
10671 s2 = "mflo";
10672 goto do_divi;
10673 case M_REM_3I:
10674 s = "div";
10675 s2 = "mfhi";
10676 goto do_divi;
10677 case M_REMU_3I:
10678 s = "divu";
10679 s2 = "mfhi";
10680 goto do_divi;
10681 case M_DDIV_3I:
10682 dbl = 1;
10683 s = "ddiv";
10684 s2 = "mflo";
10685 goto do_divi;
10686 case M_DDIVU_3I:
10687 dbl = 1;
10688 s = "ddivu";
10689 s2 = "mflo";
10690 goto do_divi;
10691 case M_DREM_3I:
10692 dbl = 1;
10693 s = "ddiv";
10694 s2 = "mfhi";
10695 goto do_divi;
10696 case M_DREMU_3I:
10697 dbl = 1;
10698 s = "ddivu";
10699 s2 = "mfhi";
10700 do_divi:
10701 if (imm_expr.X_add_number == 0)
10702 {
10703 as_warn (_("divide by zero"));
10704 if (mips_trap)
10705 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10706 else
10707 macro_build (NULL, "break", BRK_FMT, 7);
10708 break;
10709 }
10710 if (imm_expr.X_add_number == 1)
10711 {
10712 if (strcmp (s2, "mflo") == 0)
10713 move_register (op[0], op[1]);
10714 else
10715 move_register (op[0], ZERO);
10716 break;
10717 }
10718 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10719 {
10720 if (strcmp (s2, "mflo") == 0)
10721 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10722 else
10723 move_register (op[0], ZERO);
10724 break;
10725 }
10726
10727 used_at = 1;
10728 load_register (AT, &imm_expr, dbl);
10729 macro_build (NULL, s, "z,s,t", op[1], AT);
10730 macro_build (NULL, s2, MFHL_FMT, op[0]);
10731 break;
10732
10733 case M_DIVU_3:
10734 s = "divu";
10735 s2 = "mflo";
10736 goto do_divu3;
10737 case M_REMU_3:
10738 s = "divu";
10739 s2 = "mfhi";
10740 goto do_divu3;
10741 case M_DDIVU_3:
10742 s = "ddivu";
10743 s2 = "mflo";
10744 goto do_divu3;
10745 case M_DREMU_3:
10746 s = "ddivu";
10747 s2 = "mfhi";
10748 do_divu3:
10749 start_noreorder ();
10750 if (mips_trap)
10751 {
10752 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10753 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10754 /* We want to close the noreorder block as soon as possible, so
10755 that later insns are available for delay slot filling. */
10756 end_noreorder ();
10757 }
10758 else
10759 {
10760 if (mips_opts.micromips)
10761 micromips_label_expr (&label_expr);
10762 else
10763 label_expr.X_add_number = 8;
10764 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10765 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10766
10767 /* We want to close the noreorder block as soon as possible, so
10768 that later insns are available for delay slot filling. */
10769 end_noreorder ();
10770 macro_build (NULL, "break", BRK_FMT, 7);
10771 if (mips_opts.micromips)
10772 micromips_add_label ();
10773 }
10774 macro_build (NULL, s2, MFHL_FMT, op[0]);
10775 break;
10776
10777 case M_DLCA_AB:
10778 dbl = 1;
10779 /* Fall through. */
10780 case M_LCA_AB:
10781 call = 1;
10782 goto do_la;
10783 case M_DLA_AB:
10784 dbl = 1;
10785 /* Fall through. */
10786 case M_LA_AB:
10787 do_la:
10788 /* Load the address of a symbol into a register. If breg is not
10789 zero, we then add a base register to it. */
10790
10791 breg = op[2];
10792 if (dbl && GPR_SIZE == 32)
10793 as_warn (_("dla used to load 32-bit register; recommend using la "
10794 "instead"));
10795
10796 if (!dbl && HAVE_64BIT_OBJECTS)
10797 as_warn (_("la used to load 64-bit address; recommend using dla "
10798 "instead"));
10799
10800 if (small_offset_p (0, align, 16))
10801 {
10802 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10803 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10804 break;
10805 }
10806
10807 if (mips_opts.at && (op[0] == breg))
10808 {
10809 tempreg = AT;
10810 used_at = 1;
10811 }
10812 else
10813 tempreg = op[0];
10814
10815 if (offset_expr.X_op != O_symbol
10816 && offset_expr.X_op != O_constant)
10817 {
10818 as_bad (_("expression too complex"));
10819 offset_expr.X_op = O_constant;
10820 }
10821
10822 if (offset_expr.X_op == O_constant)
10823 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10824 else if (mips_pic == NO_PIC)
10825 {
10826 /* If this is a reference to a GP relative symbol, we want
10827 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10828 Otherwise we want
10829 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10830 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10831 If we have a constant, we need two instructions anyhow,
10832 so we may as well always use the latter form.
10833
10834 With 64bit address space and a usable $at we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10836 lui $at,<sym> (BFD_RELOC_HI16_S)
10837 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10838 daddiu $at,<sym> (BFD_RELOC_LO16)
10839 dsll32 $tempreg,0
10840 daddu $tempreg,$tempreg,$at
10841
10842 If $at is already in use, we use a path which is suboptimal
10843 on superscalar processors.
10844 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10845 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10846 dsll $tempreg,16
10847 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10848 dsll $tempreg,16
10849 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10850
10851 For GP relative symbols in 64bit address space we can use
10852 the same sequence as in 32bit address space. */
10853 if (HAVE_64BIT_SYMBOLS)
10854 {
10855 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10856 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10857 {
10858 relax_start (offset_expr.X_add_symbol);
10859 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10860 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10861 relax_switch ();
10862 }
10863
10864 if (used_at == 0 && mips_opts.at)
10865 {
10866 macro_build (&offset_expr, "lui", LUI_FMT,
10867 tempreg, BFD_RELOC_MIPS_HIGHEST);
10868 macro_build (&offset_expr, "lui", LUI_FMT,
10869 AT, BFD_RELOC_HI16_S);
10870 macro_build (&offset_expr, "daddiu", "t,r,j",
10871 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10872 macro_build (&offset_expr, "daddiu", "t,r,j",
10873 AT, AT, BFD_RELOC_LO16);
10874 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10875 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10876 used_at = 1;
10877 }
10878 else
10879 {
10880 macro_build (&offset_expr, "lui", LUI_FMT,
10881 tempreg, BFD_RELOC_MIPS_HIGHEST);
10882 macro_build (&offset_expr, "daddiu", "t,r,j",
10883 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10884 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10885 macro_build (&offset_expr, "daddiu", "t,r,j",
10886 tempreg, tempreg, BFD_RELOC_HI16_S);
10887 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10888 macro_build (&offset_expr, "daddiu", "t,r,j",
10889 tempreg, tempreg, BFD_RELOC_LO16);
10890 }
10891
10892 if (mips_relax.sequence)
10893 relax_end ();
10894 }
10895 else
10896 {
10897 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10898 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10899 {
10900 relax_start (offset_expr.X_add_symbol);
10901 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10902 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10903 relax_switch ();
10904 }
10905 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10906 as_bad (_("offset too large"));
10907 macro_build_lui (&offset_expr, tempreg);
10908 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10909 tempreg, tempreg, BFD_RELOC_LO16);
10910 if (mips_relax.sequence)
10911 relax_end ();
10912 }
10913 }
10914 else if (!mips_big_got && !HAVE_NEWABI)
10915 {
10916 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10917
10918 /* If this is a reference to an external symbol, and there
10919 is no constant, we want
10920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10921 or for lca or if tempreg is PIC_CALL_REG
10922 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10923 For a local symbol, we want
10924 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10925 nop
10926 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10927
10928 If we have a small constant, and this is a reference to
10929 an external symbol, we want
10930 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10931 nop
10932 addiu $tempreg,$tempreg,<constant>
10933 For a local symbol, we want the same instruction
10934 sequence, but we output a BFD_RELOC_LO16 reloc on the
10935 addiu instruction.
10936
10937 If we have a large constant, and this is a reference to
10938 an external symbol, we want
10939 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10940 lui $at,<hiconstant>
10941 addiu $at,$at,<loconstant>
10942 addu $tempreg,$tempreg,$at
10943 For a local symbol, we want the same instruction
10944 sequence, but we output a BFD_RELOC_LO16 reloc on the
10945 addiu instruction.
10946 */
10947
10948 if (offset_expr.X_add_number == 0)
10949 {
10950 if (mips_pic == SVR4_PIC
10951 && breg == 0
10952 && (call || tempreg == PIC_CALL_REG))
10953 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10954
10955 relax_start (offset_expr.X_add_symbol);
10956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10957 lw_reloc_type, mips_gp_register);
10958 if (breg != 0)
10959 {
10960 /* We're going to put in an addu instruction using
10961 tempreg, so we may as well insert the nop right
10962 now. */
10963 load_delay_nop ();
10964 }
10965 relax_switch ();
10966 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10967 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10968 load_delay_nop ();
10969 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10970 tempreg, tempreg, BFD_RELOC_LO16);
10971 relax_end ();
10972 /* FIXME: If breg == 0, and the next instruction uses
10973 $tempreg, then if this variant case is used an extra
10974 nop will be generated. */
10975 }
10976 else if (offset_expr.X_add_number >= -0x8000
10977 && offset_expr.X_add_number < 0x8000)
10978 {
10979 load_got_offset (tempreg, &offset_expr);
10980 load_delay_nop ();
10981 add_got_offset (tempreg, &offset_expr);
10982 }
10983 else
10984 {
10985 expr1.X_add_number = offset_expr.X_add_number;
10986 offset_expr.X_add_number =
10987 SEXT_16BIT (offset_expr.X_add_number);
10988 load_got_offset (tempreg, &offset_expr);
10989 offset_expr.X_add_number = expr1.X_add_number;
10990 /* If we are going to add in a base register, and the
10991 target register and the base register are the same,
10992 then we are using AT as a temporary register. Since
10993 we want to load the constant into AT, we add our
10994 current AT (from the global offset table) and the
10995 register into the register now, and pretend we were
10996 not using a base register. */
10997 if (breg == op[0])
10998 {
10999 load_delay_nop ();
11000 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11001 op[0], AT, breg);
11002 breg = 0;
11003 tempreg = op[0];
11004 }
11005 add_got_offset_hilo (tempreg, &offset_expr, AT);
11006 used_at = 1;
11007 }
11008 }
11009 else if (!mips_big_got && HAVE_NEWABI)
11010 {
11011 int add_breg_early = 0;
11012
11013 /* If this is a reference to an external, and there is no
11014 constant, or local symbol (*), with or without a
11015 constant, we want
11016 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11017 or for lca or if tempreg is PIC_CALL_REG
11018 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11019
11020 If we have a small constant, and this is a reference to
11021 an external symbol, we want
11022 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11023 addiu $tempreg,$tempreg,<constant>
11024
11025 If we have a large constant, and this is a reference to
11026 an external symbol, we want
11027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11028 lui $at,<hiconstant>
11029 addiu $at,$at,<loconstant>
11030 addu $tempreg,$tempreg,$at
11031
11032 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11033 local symbols, even though it introduces an additional
11034 instruction. */
11035
11036 if (offset_expr.X_add_number)
11037 {
11038 expr1.X_add_number = offset_expr.X_add_number;
11039 offset_expr.X_add_number = 0;
11040
11041 relax_start (offset_expr.X_add_symbol);
11042 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11043 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11044
11045 if (expr1.X_add_number >= -0x8000
11046 && expr1.X_add_number < 0x8000)
11047 {
11048 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11049 tempreg, tempreg, BFD_RELOC_LO16);
11050 }
11051 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11052 {
11053 unsigned int dreg;
11054
11055 /* If we are going to add in a base register, and the
11056 target register and the base register are the same,
11057 then we are using AT as a temporary register. Since
11058 we want to load the constant into AT, we add our
11059 current AT (from the global offset table) and the
11060 register into the register now, and pretend we were
11061 not using a base register. */
11062 if (breg != op[0])
11063 dreg = tempreg;
11064 else
11065 {
11066 gas_assert (tempreg == AT);
11067 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11068 op[0], AT, breg);
11069 dreg = op[0];
11070 add_breg_early = 1;
11071 }
11072
11073 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11074 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11075 dreg, dreg, AT);
11076
11077 used_at = 1;
11078 }
11079 else
11080 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11081
11082 relax_switch ();
11083 offset_expr.X_add_number = expr1.X_add_number;
11084
11085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11086 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11087 if (add_breg_early)
11088 {
11089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11090 op[0], tempreg, breg);
11091 breg = 0;
11092 tempreg = op[0];
11093 }
11094 relax_end ();
11095 }
11096 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11097 {
11098 relax_start (offset_expr.X_add_symbol);
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11100 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11101 relax_switch ();
11102 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11103 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11104 relax_end ();
11105 }
11106 else
11107 {
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11109 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11110 }
11111 }
11112 else if (mips_big_got && !HAVE_NEWABI)
11113 {
11114 int gpdelay;
11115 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11116 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11117 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11118
11119 /* This is the large GOT case. If this is a reference to an
11120 external symbol, and there is no constant, we want
11121 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11122 addu $tempreg,$tempreg,$gp
11123 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11124 or for lca or if tempreg is PIC_CALL_REG
11125 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11126 addu $tempreg,$tempreg,$gp
11127 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11128 For a local symbol, we want
11129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11130 nop
11131 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11132
11133 If we have a small constant, and this is a reference to
11134 an external symbol, we want
11135 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11136 addu $tempreg,$tempreg,$gp
11137 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11138 nop
11139 addiu $tempreg,$tempreg,<constant>
11140 For a local symbol, we want
11141 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11142 nop
11143 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11144
11145 If we have a large constant, and this is a reference to
11146 an external symbol, we want
11147 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11148 addu $tempreg,$tempreg,$gp
11149 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11150 lui $at,<hiconstant>
11151 addiu $at,$at,<loconstant>
11152 addu $tempreg,$tempreg,$at
11153 For a local symbol, we want
11154 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11155 lui $at,<hiconstant>
11156 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11157 addu $tempreg,$tempreg,$at
11158 */
11159
11160 expr1.X_add_number = offset_expr.X_add_number;
11161 offset_expr.X_add_number = 0;
11162 relax_start (offset_expr.X_add_symbol);
11163 gpdelay = reg_needs_delay (mips_gp_register);
11164 if (expr1.X_add_number == 0 && breg == 0
11165 && (call || tempreg == PIC_CALL_REG))
11166 {
11167 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11168 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11169 }
11170 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11171 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11172 tempreg, tempreg, mips_gp_register);
11173 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11174 tempreg, lw_reloc_type, tempreg);
11175 if (expr1.X_add_number == 0)
11176 {
11177 if (breg != 0)
11178 {
11179 /* We're going to put in an addu instruction using
11180 tempreg, so we may as well insert the nop right
11181 now. */
11182 load_delay_nop ();
11183 }
11184 }
11185 else if (expr1.X_add_number >= -0x8000
11186 && expr1.X_add_number < 0x8000)
11187 {
11188 load_delay_nop ();
11189 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11190 tempreg, tempreg, BFD_RELOC_LO16);
11191 }
11192 else
11193 {
11194 unsigned int dreg;
11195
11196 /* If we are going to add in a base register, and the
11197 target register and the base register are the same,
11198 then we are using AT as a temporary register. Since
11199 we want to load the constant into AT, we add our
11200 current AT (from the global offset table) and the
11201 register into the register now, and pretend we were
11202 not using a base register. */
11203 if (breg != op[0])
11204 dreg = tempreg;
11205 else
11206 {
11207 gas_assert (tempreg == AT);
11208 load_delay_nop ();
11209 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11210 op[0], AT, breg);
11211 dreg = op[0];
11212 }
11213
11214 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11215 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11216
11217 used_at = 1;
11218 }
11219 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11220 relax_switch ();
11221
11222 if (gpdelay)
11223 {
11224 /* This is needed because this instruction uses $gp, but
11225 the first instruction on the main stream does not. */
11226 macro_build (NULL, "nop", "");
11227 }
11228
11229 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11230 local_reloc_type, mips_gp_register);
11231 if (expr1.X_add_number >= -0x8000
11232 && expr1.X_add_number < 0x8000)
11233 {
11234 load_delay_nop ();
11235 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11236 tempreg, tempreg, BFD_RELOC_LO16);
11237 /* FIXME: If add_number is 0, and there was no base
11238 register, the external symbol case ended with a load,
11239 so if the symbol turns out to not be external, and
11240 the next instruction uses tempreg, an unnecessary nop
11241 will be inserted. */
11242 }
11243 else
11244 {
11245 if (breg == op[0])
11246 {
11247 /* We must add in the base register now, as in the
11248 external symbol case. */
11249 gas_assert (tempreg == AT);
11250 load_delay_nop ();
11251 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11252 op[0], AT, breg);
11253 tempreg = op[0];
11254 /* We set breg to 0 because we have arranged to add
11255 it in in both cases. */
11256 breg = 0;
11257 }
11258
11259 macro_build_lui (&expr1, AT);
11260 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11261 AT, AT, BFD_RELOC_LO16);
11262 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11263 tempreg, tempreg, AT);
11264 used_at = 1;
11265 }
11266 relax_end ();
11267 }
11268 else if (mips_big_got && HAVE_NEWABI)
11269 {
11270 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11271 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11272 int add_breg_early = 0;
11273
11274 /* This is the large GOT case. If this is a reference to an
11275 external symbol, and there is no constant, we want
11276 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11277 add $tempreg,$tempreg,$gp
11278 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11279 or for lca or if tempreg is PIC_CALL_REG
11280 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11281 add $tempreg,$tempreg,$gp
11282 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11283
11284 If we have a small constant, and this is a reference to
11285 an external symbol, we want
11286 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11287 add $tempreg,$tempreg,$gp
11288 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11289 addi $tempreg,$tempreg,<constant>
11290
11291 If we have a large constant, and this is a reference to
11292 an external symbol, we want
11293 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11294 addu $tempreg,$tempreg,$gp
11295 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11296 lui $at,<hiconstant>
11297 addi $at,$at,<loconstant>
11298 add $tempreg,$tempreg,$at
11299
11300 If we have NewABI, and we know it's a local symbol, we want
11301 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11302 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11303 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11304
11305 relax_start (offset_expr.X_add_symbol);
11306
11307 expr1.X_add_number = offset_expr.X_add_number;
11308 offset_expr.X_add_number = 0;
11309
11310 if (expr1.X_add_number == 0 && breg == 0
11311 && (call || tempreg == PIC_CALL_REG))
11312 {
11313 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11314 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11315 }
11316 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11317 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11318 tempreg, tempreg, mips_gp_register);
11319 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11320 tempreg, lw_reloc_type, tempreg);
11321
11322 if (expr1.X_add_number == 0)
11323 ;
11324 else if (expr1.X_add_number >= -0x8000
11325 && expr1.X_add_number < 0x8000)
11326 {
11327 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11328 tempreg, tempreg, BFD_RELOC_LO16);
11329 }
11330 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11331 {
11332 unsigned int dreg;
11333
11334 /* If we are going to add in a base register, and the
11335 target register and the base register are the same,
11336 then we are using AT as a temporary register. Since
11337 we want to load the constant into AT, we add our
11338 current AT (from the global offset table) and the
11339 register into the register now, and pretend we were
11340 not using a base register. */
11341 if (breg != op[0])
11342 dreg = tempreg;
11343 else
11344 {
11345 gas_assert (tempreg == AT);
11346 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11347 op[0], AT, breg);
11348 dreg = op[0];
11349 add_breg_early = 1;
11350 }
11351
11352 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11353 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11354
11355 used_at = 1;
11356 }
11357 else
11358 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11359
11360 relax_switch ();
11361 offset_expr.X_add_number = expr1.X_add_number;
11362 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11363 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11364 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11365 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11366 if (add_breg_early)
11367 {
11368 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11369 op[0], tempreg, breg);
11370 breg = 0;
11371 tempreg = op[0];
11372 }
11373 relax_end ();
11374 }
11375 else
11376 abort ();
11377
11378 if (breg != 0)
11379 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11380 break;
11381
11382 case M_MSGSND:
11383 gas_assert (!mips_opts.micromips);
11384 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11385 break;
11386
11387 case M_MSGLD:
11388 gas_assert (!mips_opts.micromips);
11389 macro_build (NULL, "c2", "C", 0x02);
11390 break;
11391
11392 case M_MSGLD_T:
11393 gas_assert (!mips_opts.micromips);
11394 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11395 break;
11396
11397 case M_MSGWAIT:
11398 gas_assert (!mips_opts.micromips);
11399 macro_build (NULL, "c2", "C", 3);
11400 break;
11401
11402 case M_MSGWAIT_T:
11403 gas_assert (!mips_opts.micromips);
11404 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11405 break;
11406
11407 case M_J_A:
11408 /* The j instruction may not be used in PIC code, since it
11409 requires an absolute address. We convert it to a b
11410 instruction. */
11411 if (mips_pic == NO_PIC)
11412 macro_build (&offset_expr, "j", "a");
11413 else
11414 macro_build (&offset_expr, "b", "p");
11415 break;
11416
11417 /* The jal instructions must be handled as macros because when
11418 generating PIC code they expand to multi-instruction
11419 sequences. Normally they are simple instructions. */
11420 case M_JALS_1:
11421 op[1] = op[0];
11422 op[0] = RA;
11423 /* Fall through. */
11424 case M_JALS_2:
11425 gas_assert (mips_opts.micromips);
11426 if (mips_opts.insn32)
11427 {
11428 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11429 break;
11430 }
11431 jals = 1;
11432 goto jal;
11433 case M_JAL_1:
11434 op[1] = op[0];
11435 op[0] = RA;
11436 /* Fall through. */
11437 case M_JAL_2:
11438 jal:
11439 if (mips_pic == NO_PIC)
11440 {
11441 s = jals ? "jalrs" : "jalr";
11442 if (mips_opts.micromips
11443 && !mips_opts.insn32
11444 && op[0] == RA
11445 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11446 macro_build (NULL, s, "mj", op[1]);
11447 else
11448 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11449 }
11450 else
11451 {
11452 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11453 && mips_cprestore_offset >= 0);
11454
11455 if (op[1] != PIC_CALL_REG)
11456 as_warn (_("MIPS PIC call to register other than $25"));
11457
11458 s = ((mips_opts.micromips
11459 && !mips_opts.insn32
11460 && (!mips_opts.noreorder || cprestore))
11461 ? "jalrs" : "jalr");
11462 if (mips_opts.micromips
11463 && !mips_opts.insn32
11464 && op[0] == RA
11465 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11466 macro_build (NULL, s, "mj", op[1]);
11467 else
11468 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11469 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11470 {
11471 if (mips_cprestore_offset < 0)
11472 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11473 else
11474 {
11475 if (!mips_frame_reg_valid)
11476 {
11477 as_warn (_("no .frame pseudo-op used in PIC code"));
11478 /* Quiet this warning. */
11479 mips_frame_reg_valid = 1;
11480 }
11481 if (!mips_cprestore_valid)
11482 {
11483 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11484 /* Quiet this warning. */
11485 mips_cprestore_valid = 1;
11486 }
11487 if (mips_opts.noreorder)
11488 macro_build (NULL, "nop", "");
11489 expr1.X_add_number = mips_cprestore_offset;
11490 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11491 mips_gp_register,
11492 mips_frame_reg,
11493 HAVE_64BIT_ADDRESSES);
11494 }
11495 }
11496 }
11497
11498 break;
11499
11500 case M_JALS_A:
11501 gas_assert (mips_opts.micromips);
11502 if (mips_opts.insn32)
11503 {
11504 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11505 break;
11506 }
11507 jals = 1;
11508 /* Fall through. */
11509 case M_JAL_A:
11510 if (mips_pic == NO_PIC)
11511 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11512 else if (mips_pic == SVR4_PIC)
11513 {
11514 /* If this is a reference to an external symbol, and we are
11515 using a small GOT, we want
11516 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11517 nop
11518 jalr $ra,$25
11519 nop
11520 lw $gp,cprestore($sp)
11521 The cprestore value is set using the .cprestore
11522 pseudo-op. If we are using a big GOT, we want
11523 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11524 addu $25,$25,$gp
11525 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11526 nop
11527 jalr $ra,$25
11528 nop
11529 lw $gp,cprestore($sp)
11530 If the symbol is not external, we want
11531 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11532 nop
11533 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11534 jalr $ra,$25
11535 nop
11536 lw $gp,cprestore($sp)
11537
11538 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11539 sequences above, minus nops, unless the symbol is local,
11540 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11541 GOT_DISP. */
11542 if (HAVE_NEWABI)
11543 {
11544 if (!mips_big_got)
11545 {
11546 relax_start (offset_expr.X_add_symbol);
11547 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11548 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11549 mips_gp_register);
11550 relax_switch ();
11551 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11552 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11553 mips_gp_register);
11554 relax_end ();
11555 }
11556 else
11557 {
11558 relax_start (offset_expr.X_add_symbol);
11559 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11560 BFD_RELOC_MIPS_CALL_HI16);
11561 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11562 PIC_CALL_REG, mips_gp_register);
11563 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11564 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11565 PIC_CALL_REG);
11566 relax_switch ();
11567 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11568 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11569 mips_gp_register);
11570 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11571 PIC_CALL_REG, PIC_CALL_REG,
11572 BFD_RELOC_MIPS_GOT_OFST);
11573 relax_end ();
11574 }
11575
11576 macro_build_jalr (&offset_expr, 0);
11577 }
11578 else
11579 {
11580 relax_start (offset_expr.X_add_symbol);
11581 if (!mips_big_got)
11582 {
11583 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11584 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11585 mips_gp_register);
11586 load_delay_nop ();
11587 relax_switch ();
11588 }
11589 else
11590 {
11591 int gpdelay;
11592
11593 gpdelay = reg_needs_delay (mips_gp_register);
11594 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11595 BFD_RELOC_MIPS_CALL_HI16);
11596 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11597 PIC_CALL_REG, mips_gp_register);
11598 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11599 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11600 PIC_CALL_REG);
11601 load_delay_nop ();
11602 relax_switch ();
11603 if (gpdelay)
11604 macro_build (NULL, "nop", "");
11605 }
11606 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11607 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11608 mips_gp_register);
11609 load_delay_nop ();
11610 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11611 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11612 relax_end ();
11613 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11614
11615 if (mips_cprestore_offset < 0)
11616 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11617 else
11618 {
11619 if (!mips_frame_reg_valid)
11620 {
11621 as_warn (_("no .frame pseudo-op used in PIC code"));
11622 /* Quiet this warning. */
11623 mips_frame_reg_valid = 1;
11624 }
11625 if (!mips_cprestore_valid)
11626 {
11627 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11628 /* Quiet this warning. */
11629 mips_cprestore_valid = 1;
11630 }
11631 if (mips_opts.noreorder)
11632 macro_build (NULL, "nop", "");
11633 expr1.X_add_number = mips_cprestore_offset;
11634 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11635 mips_gp_register,
11636 mips_frame_reg,
11637 HAVE_64BIT_ADDRESSES);
11638 }
11639 }
11640 }
11641 else if (mips_pic == VXWORKS_PIC)
11642 as_bad (_("non-PIC jump used in PIC library"));
11643 else
11644 abort ();
11645
11646 break;
11647
11648 case M_LBUE_AB:
11649 s = "lbue";
11650 fmt = "t,+j(b)";
11651 offbits = 9;
11652 goto ld_st;
11653 case M_LHUE_AB:
11654 s = "lhue";
11655 fmt = "t,+j(b)";
11656 offbits = 9;
11657 goto ld_st;
11658 case M_LBE_AB:
11659 s = "lbe";
11660 fmt = "t,+j(b)";
11661 offbits = 9;
11662 goto ld_st;
11663 case M_LHE_AB:
11664 s = "lhe";
11665 fmt = "t,+j(b)";
11666 offbits = 9;
11667 goto ld_st;
11668 case M_LLE_AB:
11669 s = "lle";
11670 fmt = "t,+j(b)";
11671 offbits = 9;
11672 goto ld_st;
11673 case M_LWE_AB:
11674 s = "lwe";
11675 fmt = "t,+j(b)";
11676 offbits = 9;
11677 goto ld_st;
11678 case M_LWLE_AB:
11679 s = "lwle";
11680 fmt = "t,+j(b)";
11681 offbits = 9;
11682 goto ld_st;
11683 case M_LWRE_AB:
11684 s = "lwre";
11685 fmt = "t,+j(b)";
11686 offbits = 9;
11687 goto ld_st;
11688 case M_SBE_AB:
11689 s = "sbe";
11690 fmt = "t,+j(b)";
11691 offbits = 9;
11692 goto ld_st;
11693 case M_SCE_AB:
11694 s = "sce";
11695 fmt = "t,+j(b)";
11696 offbits = 9;
11697 goto ld_st;
11698 case M_SHE_AB:
11699 s = "she";
11700 fmt = "t,+j(b)";
11701 offbits = 9;
11702 goto ld_st;
11703 case M_SWE_AB:
11704 s = "swe";
11705 fmt = "t,+j(b)";
11706 offbits = 9;
11707 goto ld_st;
11708 case M_SWLE_AB:
11709 s = "swle";
11710 fmt = "t,+j(b)";
11711 offbits = 9;
11712 goto ld_st;
11713 case M_SWRE_AB:
11714 s = "swre";
11715 fmt = "t,+j(b)";
11716 offbits = 9;
11717 goto ld_st;
11718 case M_ACLR_AB:
11719 s = "aclr";
11720 fmt = "\\,~(b)";
11721 offbits = 12;
11722 goto ld_st;
11723 case M_ASET_AB:
11724 s = "aset";
11725 fmt = "\\,~(b)";
11726 offbits = 12;
11727 goto ld_st;
11728 case M_LB_AB:
11729 s = "lb";
11730 fmt = "t,o(b)";
11731 goto ld;
11732 case M_LBU_AB:
11733 s = "lbu";
11734 fmt = "t,o(b)";
11735 goto ld;
11736 case M_LH_AB:
11737 s = "lh";
11738 fmt = "t,o(b)";
11739 goto ld;
11740 case M_LHU_AB:
11741 s = "lhu";
11742 fmt = "t,o(b)";
11743 goto ld;
11744 case M_LW_AB:
11745 s = "lw";
11746 fmt = "t,o(b)";
11747 goto ld;
11748 case M_LWC0_AB:
11749 gas_assert (!mips_opts.micromips);
11750 s = "lwc0";
11751 fmt = "E,o(b)";
11752 /* Itbl support may require additional care here. */
11753 coproc = 1;
11754 goto ld_st;
11755 case M_LWC1_AB:
11756 s = "lwc1";
11757 fmt = "T,o(b)";
11758 /* Itbl support may require additional care here. */
11759 coproc = 1;
11760 goto ld_st;
11761 case M_LWC2_AB:
11762 s = "lwc2";
11763 fmt = COP12_FMT;
11764 offbits = (mips_opts.micromips ? 12
11765 : ISA_IS_R6 (mips_opts.isa) ? 11
11766 : 16);
11767 /* Itbl support may require additional care here. */
11768 coproc = 1;
11769 goto ld_st;
11770 case M_LWC3_AB:
11771 gas_assert (!mips_opts.micromips);
11772 s = "lwc3";
11773 fmt = "E,o(b)";
11774 /* Itbl support may require additional care here. */
11775 coproc = 1;
11776 goto ld_st;
11777 case M_LWL_AB:
11778 s = "lwl";
11779 fmt = MEM12_FMT;
11780 offbits = (mips_opts.micromips ? 12 : 16);
11781 goto ld_st;
11782 case M_LWR_AB:
11783 s = "lwr";
11784 fmt = MEM12_FMT;
11785 offbits = (mips_opts.micromips ? 12 : 16);
11786 goto ld_st;
11787 case M_LDC1_AB:
11788 s = "ldc1";
11789 fmt = "T,o(b)";
11790 /* Itbl support may require additional care here. */
11791 coproc = 1;
11792 goto ld_st;
11793 case M_LDC2_AB:
11794 s = "ldc2";
11795 fmt = COP12_FMT;
11796 offbits = (mips_opts.micromips ? 12
11797 : ISA_IS_R6 (mips_opts.isa) ? 11
11798 : 16);
11799 /* Itbl support may require additional care here. */
11800 coproc = 1;
11801 goto ld_st;
11802 case M_LQC2_AB:
11803 s = "lqc2";
11804 fmt = "+7,o(b)";
11805 /* Itbl support may require additional care here. */
11806 coproc = 1;
11807 goto ld_st;
11808 case M_LDC3_AB:
11809 s = "ldc3";
11810 fmt = "E,o(b)";
11811 /* Itbl support may require additional care here. */
11812 coproc = 1;
11813 goto ld_st;
11814 case M_LDL_AB:
11815 s = "ldl";
11816 fmt = MEM12_FMT;
11817 offbits = (mips_opts.micromips ? 12 : 16);
11818 goto ld_st;
11819 case M_LDR_AB:
11820 s = "ldr";
11821 fmt = MEM12_FMT;
11822 offbits = (mips_opts.micromips ? 12 : 16);
11823 goto ld_st;
11824 case M_LL_AB:
11825 s = "ll";
11826 fmt = LL_SC_FMT;
11827 offbits = (mips_opts.micromips ? 12
11828 : ISA_IS_R6 (mips_opts.isa) ? 9
11829 : 16);
11830 goto ld;
11831 case M_LLD_AB:
11832 s = "lld";
11833 fmt = LL_SC_FMT;
11834 offbits = (mips_opts.micromips ? 12
11835 : ISA_IS_R6 (mips_opts.isa) ? 9
11836 : 16);
11837 goto ld;
11838 case M_LWU_AB:
11839 s = "lwu";
11840 fmt = MEM12_FMT;
11841 offbits = (mips_opts.micromips ? 12 : 16);
11842 goto ld;
11843 case M_LWP_AB:
11844 gas_assert (mips_opts.micromips);
11845 s = "lwp";
11846 fmt = "t,~(b)";
11847 offbits = 12;
11848 lp = 1;
11849 goto ld;
11850 case M_LDP_AB:
11851 gas_assert (mips_opts.micromips);
11852 s = "ldp";
11853 fmt = "t,~(b)";
11854 offbits = 12;
11855 lp = 1;
11856 goto ld;
11857 case M_LWM_AB:
11858 gas_assert (mips_opts.micromips);
11859 s = "lwm";
11860 fmt = "n,~(b)";
11861 offbits = 12;
11862 goto ld_st;
11863 case M_LDM_AB:
11864 gas_assert (mips_opts.micromips);
11865 s = "ldm";
11866 fmt = "n,~(b)";
11867 offbits = 12;
11868 goto ld_st;
11869
11870 ld:
11871 /* We don't want to use $0 as tempreg. */
11872 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11873 goto ld_st;
11874 else
11875 tempreg = op[0] + lp;
11876 goto ld_noat;
11877
11878 case M_SB_AB:
11879 s = "sb";
11880 fmt = "t,o(b)";
11881 goto ld_st;
11882 case M_SH_AB:
11883 s = "sh";
11884 fmt = "t,o(b)";
11885 goto ld_st;
11886 case M_SW_AB:
11887 s = "sw";
11888 fmt = "t,o(b)";
11889 goto ld_st;
11890 case M_SWC0_AB:
11891 gas_assert (!mips_opts.micromips);
11892 s = "swc0";
11893 fmt = "E,o(b)";
11894 /* Itbl support may require additional care here. */
11895 coproc = 1;
11896 goto ld_st;
11897 case M_SWC1_AB:
11898 s = "swc1";
11899 fmt = "T,o(b)";
11900 /* Itbl support may require additional care here. */
11901 coproc = 1;
11902 goto ld_st;
11903 case M_SWC2_AB:
11904 s = "swc2";
11905 fmt = COP12_FMT;
11906 offbits = (mips_opts.micromips ? 12
11907 : ISA_IS_R6 (mips_opts.isa) ? 11
11908 : 16);
11909 /* Itbl support may require additional care here. */
11910 coproc = 1;
11911 goto ld_st;
11912 case M_SWC3_AB:
11913 gas_assert (!mips_opts.micromips);
11914 s = "swc3";
11915 fmt = "E,o(b)";
11916 /* Itbl support may require additional care here. */
11917 coproc = 1;
11918 goto ld_st;
11919 case M_SWL_AB:
11920 s = "swl";
11921 fmt = MEM12_FMT;
11922 offbits = (mips_opts.micromips ? 12 : 16);
11923 goto ld_st;
11924 case M_SWR_AB:
11925 s = "swr";
11926 fmt = MEM12_FMT;
11927 offbits = (mips_opts.micromips ? 12 : 16);
11928 goto ld_st;
11929 case M_SC_AB:
11930 s = "sc";
11931 fmt = LL_SC_FMT;
11932 offbits = (mips_opts.micromips ? 12
11933 : ISA_IS_R6 (mips_opts.isa) ? 9
11934 : 16);
11935 goto ld_st;
11936 case M_SCD_AB:
11937 s = "scd";
11938 fmt = LL_SC_FMT;
11939 offbits = (mips_opts.micromips ? 12
11940 : ISA_IS_R6 (mips_opts.isa) ? 9
11941 : 16);
11942 goto ld_st;
11943 case M_CACHE_AB:
11944 s = "cache";
11945 fmt = (mips_opts.micromips ? "k,~(b)"
11946 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11947 : "k,o(b)");
11948 offbits = (mips_opts.micromips ? 12
11949 : ISA_IS_R6 (mips_opts.isa) ? 9
11950 : 16);
11951 goto ld_st;
11952 case M_CACHEE_AB:
11953 s = "cachee";
11954 fmt = "k,+j(b)";
11955 offbits = 9;
11956 goto ld_st;
11957 case M_PREF_AB:
11958 s = "pref";
11959 fmt = (mips_opts.micromips ? "k,~(b)"
11960 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11961 : "k,o(b)");
11962 offbits = (mips_opts.micromips ? 12
11963 : ISA_IS_R6 (mips_opts.isa) ? 9
11964 : 16);
11965 goto ld_st;
11966 case M_PREFE_AB:
11967 s = "prefe";
11968 fmt = "k,+j(b)";
11969 offbits = 9;
11970 goto ld_st;
11971 case M_SDC1_AB:
11972 s = "sdc1";
11973 fmt = "T,o(b)";
11974 coproc = 1;
11975 /* Itbl support may require additional care here. */
11976 goto ld_st;
11977 case M_SDC2_AB:
11978 s = "sdc2";
11979 fmt = COP12_FMT;
11980 offbits = (mips_opts.micromips ? 12
11981 : ISA_IS_R6 (mips_opts.isa) ? 11
11982 : 16);
11983 /* Itbl support may require additional care here. */
11984 coproc = 1;
11985 goto ld_st;
11986 case M_SQC2_AB:
11987 s = "sqc2";
11988 fmt = "+7,o(b)";
11989 /* Itbl support may require additional care here. */
11990 coproc = 1;
11991 goto ld_st;
11992 case M_SDC3_AB:
11993 gas_assert (!mips_opts.micromips);
11994 s = "sdc3";
11995 fmt = "E,o(b)";
11996 /* Itbl support may require additional care here. */
11997 coproc = 1;
11998 goto ld_st;
11999 case M_SDL_AB:
12000 s = "sdl";
12001 fmt = MEM12_FMT;
12002 offbits = (mips_opts.micromips ? 12 : 16);
12003 goto ld_st;
12004 case M_SDR_AB:
12005 s = "sdr";
12006 fmt = MEM12_FMT;
12007 offbits = (mips_opts.micromips ? 12 : 16);
12008 goto ld_st;
12009 case M_SWP_AB:
12010 gas_assert (mips_opts.micromips);
12011 s = "swp";
12012 fmt = "t,~(b)";
12013 offbits = 12;
12014 goto ld_st;
12015 case M_SDP_AB:
12016 gas_assert (mips_opts.micromips);
12017 s = "sdp";
12018 fmt = "t,~(b)";
12019 offbits = 12;
12020 goto ld_st;
12021 case M_SWM_AB:
12022 gas_assert (mips_opts.micromips);
12023 s = "swm";
12024 fmt = "n,~(b)";
12025 offbits = 12;
12026 goto ld_st;
12027 case M_SDM_AB:
12028 gas_assert (mips_opts.micromips);
12029 s = "sdm";
12030 fmt = "n,~(b)";
12031 offbits = 12;
12032
12033 ld_st:
12034 tempreg = AT;
12035 ld_noat:
12036 breg = op[2];
12037 if (small_offset_p (0, align, 16))
12038 {
12039 /* The first case exists for M_LD_AB and M_SD_AB, which are
12040 macros for o32 but which should act like normal instructions
12041 otherwise. */
12042 if (offbits == 16)
12043 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12044 offset_reloc[1], offset_reloc[2], breg);
12045 else if (small_offset_p (0, align, offbits))
12046 {
12047 if (offbits == 0)
12048 macro_build (NULL, s, fmt, op[0], breg);
12049 else
12050 macro_build (NULL, s, fmt, op[0],
12051 (int) offset_expr.X_add_number, breg);
12052 }
12053 else
12054 {
12055 if (tempreg == AT)
12056 used_at = 1;
12057 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12058 tempreg, breg, -1, offset_reloc[0],
12059 offset_reloc[1], offset_reloc[2]);
12060 if (offbits == 0)
12061 macro_build (NULL, s, fmt, op[0], tempreg);
12062 else
12063 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12064 }
12065 break;
12066 }
12067
12068 if (tempreg == AT)
12069 used_at = 1;
12070
12071 if (offset_expr.X_op != O_constant
12072 && offset_expr.X_op != O_symbol)
12073 {
12074 as_bad (_("expression too complex"));
12075 offset_expr.X_op = O_constant;
12076 }
12077
12078 if (HAVE_32BIT_ADDRESSES
12079 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12080 {
12081 char value [32];
12082
12083 sprintf_vma (value, offset_expr.X_add_number);
12084 as_bad (_("number (0x%s) larger than 32 bits"), value);
12085 }
12086
12087 /* A constant expression in PIC code can be handled just as it
12088 is in non PIC code. */
12089 if (offset_expr.X_op == O_constant)
12090 {
12091 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12092 offbits == 0 ? 16 : offbits);
12093 offset_expr.X_add_number -= expr1.X_add_number;
12094
12095 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12096 if (breg != 0)
12097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12098 tempreg, tempreg, breg);
12099 if (offbits == 0)
12100 {
12101 if (offset_expr.X_add_number != 0)
12102 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12103 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12104 macro_build (NULL, s, fmt, op[0], tempreg);
12105 }
12106 else if (offbits == 16)
12107 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12108 else
12109 macro_build (NULL, s, fmt, op[0],
12110 (int) offset_expr.X_add_number, tempreg);
12111 }
12112 else if (offbits != 16)
12113 {
12114 /* The offset field is too narrow to be used for a low-part
12115 relocation, so load the whole address into the auxiliary
12116 register. */
12117 load_address (tempreg, &offset_expr, &used_at);
12118 if (breg != 0)
12119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12120 tempreg, tempreg, breg);
12121 if (offbits == 0)
12122 macro_build (NULL, s, fmt, op[0], tempreg);
12123 else
12124 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12125 }
12126 else if (mips_pic == NO_PIC)
12127 {
12128 /* If this is a reference to a GP relative symbol, and there
12129 is no base register, we want
12130 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12131 Otherwise, if there is no base register, we want
12132 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12133 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12134 If we have a constant, we need two instructions anyhow,
12135 so we always use the latter form.
12136
12137 If we have a base register, and this is a reference to a
12138 GP relative symbol, we want
12139 addu $tempreg,$breg,$gp
12140 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12141 Otherwise we want
12142 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12143 addu $tempreg,$tempreg,$breg
12144 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12145 With a constant we always use the latter case.
12146
12147 With 64bit address space and no base register and $at usable,
12148 we want
12149 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12150 lui $at,<sym> (BFD_RELOC_HI16_S)
12151 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12152 dsll32 $tempreg,0
12153 daddu $tempreg,$at
12154 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12155 If we have a base register, we want
12156 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12157 lui $at,<sym> (BFD_RELOC_HI16_S)
12158 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12159 daddu $at,$breg
12160 dsll32 $tempreg,0
12161 daddu $tempreg,$at
12162 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12163
12164 Without $at we can't generate the optimal path for superscalar
12165 processors here since this would require two temporary registers.
12166 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12167 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12168 dsll $tempreg,16
12169 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12170 dsll $tempreg,16
12171 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12172 If we have a base register, we want
12173 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12174 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12175 dsll $tempreg,16
12176 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12177 dsll $tempreg,16
12178 daddu $tempreg,$tempreg,$breg
12179 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12180
12181 For GP relative symbols in 64bit address space we can use
12182 the same sequence as in 32bit address space. */
12183 if (HAVE_64BIT_SYMBOLS)
12184 {
12185 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12186 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12187 {
12188 relax_start (offset_expr.X_add_symbol);
12189 if (breg == 0)
12190 {
12191 macro_build (&offset_expr, s, fmt, op[0],
12192 BFD_RELOC_GPREL16, mips_gp_register);
12193 }
12194 else
12195 {
12196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12197 tempreg, breg, mips_gp_register);
12198 macro_build (&offset_expr, s, fmt, op[0],
12199 BFD_RELOC_GPREL16, tempreg);
12200 }
12201 relax_switch ();
12202 }
12203
12204 if (used_at == 0 && mips_opts.at)
12205 {
12206 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12207 BFD_RELOC_MIPS_HIGHEST);
12208 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12209 BFD_RELOC_HI16_S);
12210 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12211 tempreg, BFD_RELOC_MIPS_HIGHER);
12212 if (breg != 0)
12213 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12214 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12215 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12216 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12217 tempreg);
12218 used_at = 1;
12219 }
12220 else
12221 {
12222 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12223 BFD_RELOC_MIPS_HIGHEST);
12224 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12225 tempreg, BFD_RELOC_MIPS_HIGHER);
12226 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12227 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12228 tempreg, BFD_RELOC_HI16_S);
12229 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12230 if (breg != 0)
12231 macro_build (NULL, "daddu", "d,v,t",
12232 tempreg, tempreg, breg);
12233 macro_build (&offset_expr, s, fmt, op[0],
12234 BFD_RELOC_LO16, tempreg);
12235 }
12236
12237 if (mips_relax.sequence)
12238 relax_end ();
12239 break;
12240 }
12241
12242 if (breg == 0)
12243 {
12244 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12245 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12246 {
12247 relax_start (offset_expr.X_add_symbol);
12248 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12249 mips_gp_register);
12250 relax_switch ();
12251 }
12252 macro_build_lui (&offset_expr, tempreg);
12253 macro_build (&offset_expr, s, fmt, op[0],
12254 BFD_RELOC_LO16, tempreg);
12255 if (mips_relax.sequence)
12256 relax_end ();
12257 }
12258 else
12259 {
12260 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12261 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12262 {
12263 relax_start (offset_expr.X_add_symbol);
12264 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12265 tempreg, breg, mips_gp_register);
12266 macro_build (&offset_expr, s, fmt, op[0],
12267 BFD_RELOC_GPREL16, tempreg);
12268 relax_switch ();
12269 }
12270 macro_build_lui (&offset_expr, tempreg);
12271 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12272 tempreg, tempreg, breg);
12273 macro_build (&offset_expr, s, fmt, op[0],
12274 BFD_RELOC_LO16, tempreg);
12275 if (mips_relax.sequence)
12276 relax_end ();
12277 }
12278 }
12279 else if (!mips_big_got)
12280 {
12281 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12282
12283 /* If this is a reference to an external symbol, we want
12284 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12285 nop
12286 <op> op[0],0($tempreg)
12287 Otherwise we want
12288 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12289 nop
12290 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12291 <op> op[0],0($tempreg)
12292
12293 For NewABI, we want
12294 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12295 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12296
12297 If there is a base register, we add it to $tempreg before
12298 the <op>. If there is a constant, we stick it in the
12299 <op> instruction. We don't handle constants larger than
12300 16 bits, because we have no way to load the upper 16 bits
12301 (actually, we could handle them for the subset of cases
12302 in which we are not using $at). */
12303 gas_assert (offset_expr.X_op == O_symbol);
12304 if (HAVE_NEWABI)
12305 {
12306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12307 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12308 if (breg != 0)
12309 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12310 tempreg, tempreg, breg);
12311 macro_build (&offset_expr, s, fmt, op[0],
12312 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12313 break;
12314 }
12315 expr1.X_add_number = offset_expr.X_add_number;
12316 offset_expr.X_add_number = 0;
12317 if (expr1.X_add_number < -0x8000
12318 || expr1.X_add_number >= 0x8000)
12319 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12320 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12321 lw_reloc_type, mips_gp_register);
12322 load_delay_nop ();
12323 relax_start (offset_expr.X_add_symbol);
12324 relax_switch ();
12325 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12326 tempreg, BFD_RELOC_LO16);
12327 relax_end ();
12328 if (breg != 0)
12329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12330 tempreg, tempreg, breg);
12331 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12332 }
12333 else if (mips_big_got && !HAVE_NEWABI)
12334 {
12335 int gpdelay;
12336
12337 /* If this is a reference to an external symbol, we want
12338 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12339 addu $tempreg,$tempreg,$gp
12340 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12341 <op> op[0],0($tempreg)
12342 Otherwise we want
12343 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12344 nop
12345 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12346 <op> op[0],0($tempreg)
12347 If there is a base register, we add it to $tempreg before
12348 the <op>. If there is a constant, we stick it in the
12349 <op> instruction. We don't handle constants larger than
12350 16 bits, because we have no way to load the upper 16 bits
12351 (actually, we could handle them for the subset of cases
12352 in which we are not using $at). */
12353 gas_assert (offset_expr.X_op == O_symbol);
12354 expr1.X_add_number = offset_expr.X_add_number;
12355 offset_expr.X_add_number = 0;
12356 if (expr1.X_add_number < -0x8000
12357 || expr1.X_add_number >= 0x8000)
12358 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12359 gpdelay = reg_needs_delay (mips_gp_register);
12360 relax_start (offset_expr.X_add_symbol);
12361 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12362 BFD_RELOC_MIPS_GOT_HI16);
12363 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12364 mips_gp_register);
12365 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12366 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12367 relax_switch ();
12368 if (gpdelay)
12369 macro_build (NULL, "nop", "");
12370 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12371 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12372 load_delay_nop ();
12373 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12374 tempreg, BFD_RELOC_LO16);
12375 relax_end ();
12376
12377 if (breg != 0)
12378 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12379 tempreg, tempreg, breg);
12380 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12381 }
12382 else if (mips_big_got && HAVE_NEWABI)
12383 {
12384 /* If this is a reference to an external symbol, we want
12385 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12386 add $tempreg,$tempreg,$gp
12387 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12388 <op> op[0],<ofst>($tempreg)
12389 Otherwise, for local symbols, we want:
12390 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12391 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12392 gas_assert (offset_expr.X_op == O_symbol);
12393 expr1.X_add_number = offset_expr.X_add_number;
12394 offset_expr.X_add_number = 0;
12395 if (expr1.X_add_number < -0x8000
12396 || expr1.X_add_number >= 0x8000)
12397 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12398 relax_start (offset_expr.X_add_symbol);
12399 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12400 BFD_RELOC_MIPS_GOT_HI16);
12401 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12402 mips_gp_register);
12403 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12404 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12405 if (breg != 0)
12406 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12407 tempreg, tempreg, breg);
12408 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12409
12410 relax_switch ();
12411 offset_expr.X_add_number = expr1.X_add_number;
12412 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12413 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12414 if (breg != 0)
12415 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12416 tempreg, tempreg, breg);
12417 macro_build (&offset_expr, s, fmt, op[0],
12418 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12419 relax_end ();
12420 }
12421 else
12422 abort ();
12423
12424 break;
12425
12426 case M_JRADDIUSP:
12427 gas_assert (mips_opts.micromips);
12428 gas_assert (mips_opts.insn32);
12429 start_noreorder ();
12430 macro_build (NULL, "jr", "s", RA);
12431 expr1.X_add_number = op[0] << 2;
12432 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12433 end_noreorder ();
12434 break;
12435
12436 case M_JRC:
12437 gas_assert (mips_opts.micromips);
12438 gas_assert (mips_opts.insn32);
12439 macro_build (NULL, "jr", "s", op[0]);
12440 if (mips_opts.noreorder)
12441 macro_build (NULL, "nop", "");
12442 break;
12443
12444 case M_LI:
12445 case M_LI_S:
12446 load_register (op[0], &imm_expr, 0);
12447 break;
12448
12449 case M_DLI:
12450 load_register (op[0], &imm_expr, 1);
12451 break;
12452
12453 case M_LI_SS:
12454 if (imm_expr.X_op == O_constant)
12455 {
12456 used_at = 1;
12457 load_register (AT, &imm_expr, 0);
12458 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12459 break;
12460 }
12461 else
12462 {
12463 gas_assert (imm_expr.X_op == O_absent
12464 && offset_expr.X_op == O_symbol
12465 && strcmp (segment_name (S_GET_SEGMENT
12466 (offset_expr.X_add_symbol)),
12467 ".lit4") == 0
12468 && offset_expr.X_add_number == 0);
12469 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12470 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12471 break;
12472 }
12473
12474 case M_LI_D:
12475 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12476 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12477 order 32 bits of the value and the low order 32 bits are either
12478 zero or in OFFSET_EXPR. */
12479 if (imm_expr.X_op == O_constant)
12480 {
12481 if (GPR_SIZE == 64)
12482 load_register (op[0], &imm_expr, 1);
12483 else
12484 {
12485 int hreg, lreg;
12486
12487 if (target_big_endian)
12488 {
12489 hreg = op[0];
12490 lreg = op[0] + 1;
12491 }
12492 else
12493 {
12494 hreg = op[0] + 1;
12495 lreg = op[0];
12496 }
12497
12498 if (hreg <= 31)
12499 load_register (hreg, &imm_expr, 0);
12500 if (lreg <= 31)
12501 {
12502 if (offset_expr.X_op == O_absent)
12503 move_register (lreg, 0);
12504 else
12505 {
12506 gas_assert (offset_expr.X_op == O_constant);
12507 load_register (lreg, &offset_expr, 0);
12508 }
12509 }
12510 }
12511 break;
12512 }
12513 gas_assert (imm_expr.X_op == O_absent);
12514
12515 /* We know that sym is in the .rdata section. First we get the
12516 upper 16 bits of the address. */
12517 if (mips_pic == NO_PIC)
12518 {
12519 macro_build_lui (&offset_expr, AT);
12520 used_at = 1;
12521 }
12522 else
12523 {
12524 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12525 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12526 used_at = 1;
12527 }
12528
12529 /* Now we load the register(s). */
12530 if (GPR_SIZE == 64)
12531 {
12532 used_at = 1;
12533 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12534 BFD_RELOC_LO16, AT);
12535 }
12536 else
12537 {
12538 used_at = 1;
12539 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12540 BFD_RELOC_LO16, AT);
12541 if (op[0] != RA)
12542 {
12543 /* FIXME: How in the world do we deal with the possible
12544 overflow here? */
12545 offset_expr.X_add_number += 4;
12546 macro_build (&offset_expr, "lw", "t,o(b)",
12547 op[0] + 1, BFD_RELOC_LO16, AT);
12548 }
12549 }
12550 break;
12551
12552 case M_LI_DD:
12553 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12554 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12555 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12556 the value and the low order 32 bits are either zero or in
12557 OFFSET_EXPR. */
12558 if (imm_expr.X_op == O_constant)
12559 {
12560 used_at = 1;
12561 load_register (AT, &imm_expr, FPR_SIZE == 64);
12562 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12563 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12564 else
12565 {
12566 if (ISA_HAS_MXHC1 (mips_opts.isa))
12567 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12568 else if (FPR_SIZE != 32)
12569 as_bad (_("Unable to generate `%s' compliant code "
12570 "without mthc1"),
12571 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12572 else
12573 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12574 if (offset_expr.X_op == O_absent)
12575 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12576 else
12577 {
12578 gas_assert (offset_expr.X_op == O_constant);
12579 load_register (AT, &offset_expr, 0);
12580 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12581 }
12582 }
12583 break;
12584 }
12585
12586 gas_assert (imm_expr.X_op == O_absent
12587 && offset_expr.X_op == O_symbol
12588 && offset_expr.X_add_number == 0);
12589 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12590 if (strcmp (s, ".lit8") == 0)
12591 {
12592 op[2] = mips_gp_register;
12593 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12594 offset_reloc[1] = BFD_RELOC_UNUSED;
12595 offset_reloc[2] = BFD_RELOC_UNUSED;
12596 }
12597 else
12598 {
12599 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12600 used_at = 1;
12601 if (mips_pic != NO_PIC)
12602 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12603 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12604 else
12605 {
12606 /* FIXME: This won't work for a 64 bit address. */
12607 macro_build_lui (&offset_expr, AT);
12608 }
12609
12610 op[2] = AT;
12611 offset_reloc[0] = BFD_RELOC_LO16;
12612 offset_reloc[1] = BFD_RELOC_UNUSED;
12613 offset_reloc[2] = BFD_RELOC_UNUSED;
12614 }
12615 align = 8;
12616 /* Fall through */
12617
12618 case M_L_DAB:
12619 /*
12620 * The MIPS assembler seems to check for X_add_number not
12621 * being double aligned and generating:
12622 * lui at,%hi(foo+1)
12623 * addu at,at,v1
12624 * addiu at,at,%lo(foo+1)
12625 * lwc1 f2,0(at)
12626 * lwc1 f3,4(at)
12627 * But, the resulting address is the same after relocation so why
12628 * generate the extra instruction?
12629 */
12630 /* Itbl support may require additional care here. */
12631 coproc = 1;
12632 fmt = "T,o(b)";
12633 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12634 {
12635 s = "ldc1";
12636 goto ld_st;
12637 }
12638 s = "lwc1";
12639 goto ldd_std;
12640
12641 case M_S_DAB:
12642 gas_assert (!mips_opts.micromips);
12643 /* Itbl support may require additional care here. */
12644 coproc = 1;
12645 fmt = "T,o(b)";
12646 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12647 {
12648 s = "sdc1";
12649 goto ld_st;
12650 }
12651 s = "swc1";
12652 goto ldd_std;
12653
12654 case M_LQ_AB:
12655 fmt = "t,o(b)";
12656 s = "lq";
12657 goto ld;
12658
12659 case M_SQ_AB:
12660 fmt = "t,o(b)";
12661 s = "sq";
12662 goto ld_st;
12663
12664 case M_LD_AB:
12665 fmt = "t,o(b)";
12666 if (GPR_SIZE == 64)
12667 {
12668 s = "ld";
12669 goto ld;
12670 }
12671 s = "lw";
12672 goto ldd_std;
12673
12674 case M_SD_AB:
12675 fmt = "t,o(b)";
12676 if (GPR_SIZE == 64)
12677 {
12678 s = "sd";
12679 goto ld_st;
12680 }
12681 s = "sw";
12682
12683 ldd_std:
12684 /* Even on a big endian machine $fn comes before $fn+1. We have
12685 to adjust when loading from memory. We set coproc if we must
12686 load $fn+1 first. */
12687 /* Itbl support may require additional care here. */
12688 if (!target_big_endian)
12689 coproc = 0;
12690
12691 breg = op[2];
12692 if (small_offset_p (0, align, 16))
12693 {
12694 ep = &offset_expr;
12695 if (!small_offset_p (4, align, 16))
12696 {
12697 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12698 -1, offset_reloc[0], offset_reloc[1],
12699 offset_reloc[2]);
12700 expr1.X_add_number = 0;
12701 ep = &expr1;
12702 breg = AT;
12703 used_at = 1;
12704 offset_reloc[0] = BFD_RELOC_LO16;
12705 offset_reloc[1] = BFD_RELOC_UNUSED;
12706 offset_reloc[2] = BFD_RELOC_UNUSED;
12707 }
12708 if (strcmp (s, "lw") == 0 && op[0] == breg)
12709 {
12710 ep->X_add_number += 4;
12711 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12712 offset_reloc[1], offset_reloc[2], breg);
12713 ep->X_add_number -= 4;
12714 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12715 offset_reloc[1], offset_reloc[2], breg);
12716 }
12717 else
12718 {
12719 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12720 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12721 breg);
12722 ep->X_add_number += 4;
12723 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12724 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12725 breg);
12726 }
12727 break;
12728 }
12729
12730 if (offset_expr.X_op != O_symbol
12731 && offset_expr.X_op != O_constant)
12732 {
12733 as_bad (_("expression too complex"));
12734 offset_expr.X_op = O_constant;
12735 }
12736
12737 if (HAVE_32BIT_ADDRESSES
12738 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12739 {
12740 char value [32];
12741
12742 sprintf_vma (value, offset_expr.X_add_number);
12743 as_bad (_("number (0x%s) larger than 32 bits"), value);
12744 }
12745
12746 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12747 {
12748 /* If this is a reference to a GP relative symbol, we want
12749 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12750 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12751 If we have a base register, we use this
12752 addu $at,$breg,$gp
12753 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12754 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12755 If this is not a GP relative symbol, we want
12756 lui $at,<sym> (BFD_RELOC_HI16_S)
12757 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12758 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12759 If there is a base register, we add it to $at after the
12760 lui instruction. If there is a constant, we always use
12761 the last case. */
12762 if (offset_expr.X_op == O_symbol
12763 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12764 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12765 {
12766 relax_start (offset_expr.X_add_symbol);
12767 if (breg == 0)
12768 {
12769 tempreg = mips_gp_register;
12770 }
12771 else
12772 {
12773 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12774 AT, breg, mips_gp_register);
12775 tempreg = AT;
12776 used_at = 1;
12777 }
12778
12779 /* Itbl support may require additional care here. */
12780 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12781 BFD_RELOC_GPREL16, tempreg);
12782 offset_expr.X_add_number += 4;
12783
12784 /* Set mips_optimize to 2 to avoid inserting an
12785 undesired nop. */
12786 hold_mips_optimize = mips_optimize;
12787 mips_optimize = 2;
12788 /* Itbl support may require additional care here. */
12789 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12790 BFD_RELOC_GPREL16, tempreg);
12791 mips_optimize = hold_mips_optimize;
12792
12793 relax_switch ();
12794
12795 offset_expr.X_add_number -= 4;
12796 }
12797 used_at = 1;
12798 if (offset_high_part (offset_expr.X_add_number, 16)
12799 != offset_high_part (offset_expr.X_add_number + 4, 16))
12800 {
12801 load_address (AT, &offset_expr, &used_at);
12802 offset_expr.X_op = O_constant;
12803 offset_expr.X_add_number = 0;
12804 }
12805 else
12806 macro_build_lui (&offset_expr, AT);
12807 if (breg != 0)
12808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12809 /* Itbl support may require additional care here. */
12810 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12811 BFD_RELOC_LO16, AT);
12812 /* FIXME: How do we handle overflow here? */
12813 offset_expr.X_add_number += 4;
12814 /* Itbl support may require additional care here. */
12815 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12816 BFD_RELOC_LO16, AT);
12817 if (mips_relax.sequence)
12818 relax_end ();
12819 }
12820 else if (!mips_big_got)
12821 {
12822 /* If this is a reference to an external symbol, we want
12823 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12824 nop
12825 <op> op[0],0($at)
12826 <op> op[0]+1,4($at)
12827 Otherwise we want
12828 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12829 nop
12830 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12831 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12832 If there is a base register we add it to $at before the
12833 lwc1 instructions. If there is a constant we include it
12834 in the lwc1 instructions. */
12835 used_at = 1;
12836 expr1.X_add_number = offset_expr.X_add_number;
12837 if (expr1.X_add_number < -0x8000
12838 || expr1.X_add_number >= 0x8000 - 4)
12839 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12840 load_got_offset (AT, &offset_expr);
12841 load_delay_nop ();
12842 if (breg != 0)
12843 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12844
12845 /* Set mips_optimize to 2 to avoid inserting an undesired
12846 nop. */
12847 hold_mips_optimize = mips_optimize;
12848 mips_optimize = 2;
12849
12850 /* Itbl support may require additional care here. */
12851 relax_start (offset_expr.X_add_symbol);
12852 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12853 BFD_RELOC_LO16, AT);
12854 expr1.X_add_number += 4;
12855 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12856 BFD_RELOC_LO16, AT);
12857 relax_switch ();
12858 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12859 BFD_RELOC_LO16, AT);
12860 offset_expr.X_add_number += 4;
12861 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12862 BFD_RELOC_LO16, AT);
12863 relax_end ();
12864
12865 mips_optimize = hold_mips_optimize;
12866 }
12867 else if (mips_big_got)
12868 {
12869 int gpdelay;
12870
12871 /* If this is a reference to an external symbol, we want
12872 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12873 addu $at,$at,$gp
12874 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12875 nop
12876 <op> op[0],0($at)
12877 <op> op[0]+1,4($at)
12878 Otherwise we want
12879 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12880 nop
12881 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12882 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12883 If there is a base register we add it to $at before the
12884 lwc1 instructions. If there is a constant we include it
12885 in the lwc1 instructions. */
12886 used_at = 1;
12887 expr1.X_add_number = offset_expr.X_add_number;
12888 offset_expr.X_add_number = 0;
12889 if (expr1.X_add_number < -0x8000
12890 || expr1.X_add_number >= 0x8000 - 4)
12891 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12892 gpdelay = reg_needs_delay (mips_gp_register);
12893 relax_start (offset_expr.X_add_symbol);
12894 macro_build (&offset_expr, "lui", LUI_FMT,
12895 AT, BFD_RELOC_MIPS_GOT_HI16);
12896 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12897 AT, AT, mips_gp_register);
12898 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12899 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12900 load_delay_nop ();
12901 if (breg != 0)
12902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12903 /* Itbl support may require additional care here. */
12904 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12905 BFD_RELOC_LO16, AT);
12906 expr1.X_add_number += 4;
12907
12908 /* Set mips_optimize to 2 to avoid inserting an undesired
12909 nop. */
12910 hold_mips_optimize = mips_optimize;
12911 mips_optimize = 2;
12912 /* Itbl support may require additional care here. */
12913 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12914 BFD_RELOC_LO16, AT);
12915 mips_optimize = hold_mips_optimize;
12916 expr1.X_add_number -= 4;
12917
12918 relax_switch ();
12919 offset_expr.X_add_number = expr1.X_add_number;
12920 if (gpdelay)
12921 macro_build (NULL, "nop", "");
12922 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12923 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12924 load_delay_nop ();
12925 if (breg != 0)
12926 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12927 /* Itbl support may require additional care here. */
12928 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12929 BFD_RELOC_LO16, AT);
12930 offset_expr.X_add_number += 4;
12931
12932 /* Set mips_optimize to 2 to avoid inserting an undesired
12933 nop. */
12934 hold_mips_optimize = mips_optimize;
12935 mips_optimize = 2;
12936 /* Itbl support may require additional care here. */
12937 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12938 BFD_RELOC_LO16, AT);
12939 mips_optimize = hold_mips_optimize;
12940 relax_end ();
12941 }
12942 else
12943 abort ();
12944
12945 break;
12946
12947 case M_SAA_AB:
12948 s = "saa";
12949 goto saa_saad;
12950 case M_SAAD_AB:
12951 s = "saad";
12952 saa_saad:
12953 gas_assert (!mips_opts.micromips);
12954 offbits = 0;
12955 fmt = "t,(b)";
12956 goto ld_st;
12957
12958 /* New code added to support COPZ instructions.
12959 This code builds table entries out of the macros in mip_opcodes.
12960 R4000 uses interlocks to handle coproc delays.
12961 Other chips (like the R3000) require nops to be inserted for delays.
12962
12963 FIXME: Currently, we require that the user handle delays.
12964 In order to fill delay slots for non-interlocked chips,
12965 we must have a way to specify delays based on the coprocessor.
12966 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12967 What are the side-effects of the cop instruction?
12968 What cache support might we have and what are its effects?
12969 Both coprocessor & memory require delays. how long???
12970 What registers are read/set/modified?
12971
12972 If an itbl is provided to interpret cop instructions,
12973 this knowledge can be encoded in the itbl spec. */
12974
12975 case M_COP0:
12976 s = "c0";
12977 goto copz;
12978 case M_COP1:
12979 s = "c1";
12980 goto copz;
12981 case M_COP2:
12982 s = "c2";
12983 goto copz;
12984 case M_COP3:
12985 s = "c3";
12986 copz:
12987 gas_assert (!mips_opts.micromips);
12988 /* For now we just do C (same as Cz). The parameter will be
12989 stored in insn_opcode by mips_ip. */
12990 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12991 break;
12992
12993 case M_MOVE:
12994 move_register (op[0], op[1]);
12995 break;
12996
12997 case M_MOVEP:
12998 gas_assert (mips_opts.micromips);
12999 gas_assert (mips_opts.insn32);
13000 move_register (micromips_to_32_reg_h_map1[op[0]],
13001 micromips_to_32_reg_m_map[op[1]]);
13002 move_register (micromips_to_32_reg_h_map2[op[0]],
13003 micromips_to_32_reg_n_map[op[2]]);
13004 break;
13005
13006 case M_DMUL:
13007 dbl = 1;
13008 /* Fall through. */
13009 case M_MUL:
13010 if (mips_opts.arch == CPU_R5900)
13011 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13012 op[2]);
13013 else
13014 {
13015 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13016 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13017 }
13018 break;
13019
13020 case M_DMUL_I:
13021 dbl = 1;
13022 /* Fall through. */
13023 case M_MUL_I:
13024 /* The MIPS assembler some times generates shifts and adds. I'm
13025 not trying to be that fancy. GCC should do this for us
13026 anyway. */
13027 used_at = 1;
13028 load_register (AT, &imm_expr, dbl);
13029 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13030 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13031 break;
13032
13033 case M_DMULO_I:
13034 dbl = 1;
13035 /* Fall through. */
13036 case M_MULO_I:
13037 imm = 1;
13038 goto do_mulo;
13039
13040 case M_DMULO:
13041 dbl = 1;
13042 /* Fall through. */
13043 case M_MULO:
13044 do_mulo:
13045 start_noreorder ();
13046 used_at = 1;
13047 if (imm)
13048 load_register (AT, &imm_expr, dbl);
13049 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13050 op[1], imm ? AT : op[2]);
13051 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13052 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13053 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13054 if (mips_trap)
13055 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13056 else
13057 {
13058 if (mips_opts.micromips)
13059 micromips_label_expr (&label_expr);
13060 else
13061 label_expr.X_add_number = 8;
13062 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13063 macro_build (NULL, "nop", "");
13064 macro_build (NULL, "break", BRK_FMT, 6);
13065 if (mips_opts.micromips)
13066 micromips_add_label ();
13067 }
13068 end_noreorder ();
13069 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13070 break;
13071
13072 case M_DMULOU_I:
13073 dbl = 1;
13074 /* Fall through. */
13075 case M_MULOU_I:
13076 imm = 1;
13077 goto do_mulou;
13078
13079 case M_DMULOU:
13080 dbl = 1;
13081 /* Fall through. */
13082 case M_MULOU:
13083 do_mulou:
13084 start_noreorder ();
13085 used_at = 1;
13086 if (imm)
13087 load_register (AT, &imm_expr, dbl);
13088 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13089 op[1], imm ? AT : op[2]);
13090 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13091 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13092 if (mips_trap)
13093 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13094 else
13095 {
13096 if (mips_opts.micromips)
13097 micromips_label_expr (&label_expr);
13098 else
13099 label_expr.X_add_number = 8;
13100 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13101 macro_build (NULL, "nop", "");
13102 macro_build (NULL, "break", BRK_FMT, 6);
13103 if (mips_opts.micromips)
13104 micromips_add_label ();
13105 }
13106 end_noreorder ();
13107 break;
13108
13109 case M_DROL:
13110 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13111 {
13112 if (op[0] == op[1])
13113 {
13114 tempreg = AT;
13115 used_at = 1;
13116 }
13117 else
13118 tempreg = op[0];
13119 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13120 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13121 break;
13122 }
13123 used_at = 1;
13124 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13125 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13126 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13127 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13128 break;
13129
13130 case M_ROL:
13131 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13132 {
13133 if (op[0] == op[1])
13134 {
13135 tempreg = AT;
13136 used_at = 1;
13137 }
13138 else
13139 tempreg = op[0];
13140 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13141 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13142 break;
13143 }
13144 used_at = 1;
13145 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13146 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13147 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13148 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13149 break;
13150
13151 case M_DROL_I:
13152 {
13153 unsigned int rot;
13154 const char *l;
13155 const char *rr;
13156
13157 rot = imm_expr.X_add_number & 0x3f;
13158 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13159 {
13160 rot = (64 - rot) & 0x3f;
13161 if (rot >= 32)
13162 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13163 else
13164 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13165 break;
13166 }
13167 if (rot == 0)
13168 {
13169 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13170 break;
13171 }
13172 l = (rot < 0x20) ? "dsll" : "dsll32";
13173 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13174 rot &= 0x1f;
13175 used_at = 1;
13176 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13177 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13178 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13179 }
13180 break;
13181
13182 case M_ROL_I:
13183 {
13184 unsigned int rot;
13185
13186 rot = imm_expr.X_add_number & 0x1f;
13187 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13188 {
13189 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13190 (32 - rot) & 0x1f);
13191 break;
13192 }
13193 if (rot == 0)
13194 {
13195 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13196 break;
13197 }
13198 used_at = 1;
13199 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13200 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13201 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13202 }
13203 break;
13204
13205 case M_DROR:
13206 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13207 {
13208 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13209 break;
13210 }
13211 used_at = 1;
13212 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13213 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13214 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13215 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13216 break;
13217
13218 case M_ROR:
13219 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13220 {
13221 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13222 break;
13223 }
13224 used_at = 1;
13225 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13226 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13227 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13228 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13229 break;
13230
13231 case M_DROR_I:
13232 {
13233 unsigned int rot;
13234 const char *l;
13235 const char *rr;
13236
13237 rot = imm_expr.X_add_number & 0x3f;
13238 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13239 {
13240 if (rot >= 32)
13241 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13242 else
13243 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13244 break;
13245 }
13246 if (rot == 0)
13247 {
13248 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13249 break;
13250 }
13251 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13252 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13253 rot &= 0x1f;
13254 used_at = 1;
13255 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13256 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13257 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13258 }
13259 break;
13260
13261 case M_ROR_I:
13262 {
13263 unsigned int rot;
13264
13265 rot = imm_expr.X_add_number & 0x1f;
13266 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13267 {
13268 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13269 break;
13270 }
13271 if (rot == 0)
13272 {
13273 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13274 break;
13275 }
13276 used_at = 1;
13277 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13278 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13279 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13280 }
13281 break;
13282
13283 case M_SEQ:
13284 if (op[1] == 0)
13285 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13286 else if (op[2] == 0)
13287 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13288 else
13289 {
13290 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13291 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13292 }
13293 break;
13294
13295 case M_SEQ_I:
13296 if (imm_expr.X_add_number == 0)
13297 {
13298 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13299 break;
13300 }
13301 if (op[1] == 0)
13302 {
13303 as_warn (_("instruction %s: result is always false"),
13304 ip->insn_mo->name);
13305 move_register (op[0], 0);
13306 break;
13307 }
13308 if (CPU_HAS_SEQ (mips_opts.arch)
13309 && -512 <= imm_expr.X_add_number
13310 && imm_expr.X_add_number < 512)
13311 {
13312 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13313 (int) imm_expr.X_add_number);
13314 break;
13315 }
13316 if (imm_expr.X_add_number >= 0
13317 && imm_expr.X_add_number < 0x10000)
13318 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13319 else if (imm_expr.X_add_number > -0x8000
13320 && imm_expr.X_add_number < 0)
13321 {
13322 imm_expr.X_add_number = -imm_expr.X_add_number;
13323 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13324 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13325 }
13326 else if (CPU_HAS_SEQ (mips_opts.arch))
13327 {
13328 used_at = 1;
13329 load_register (AT, &imm_expr, GPR_SIZE == 64);
13330 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13331 break;
13332 }
13333 else
13334 {
13335 load_register (AT, &imm_expr, GPR_SIZE == 64);
13336 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13337 used_at = 1;
13338 }
13339 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13340 break;
13341
13342 case M_SGE: /* X >= Y <==> not (X < Y) */
13343 s = "slt";
13344 goto sge;
13345 case M_SGEU:
13346 s = "sltu";
13347 sge:
13348 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13349 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13350 break;
13351
13352 case M_SGE_I: /* X >= I <==> not (X < I) */
13353 case M_SGEU_I:
13354 if (imm_expr.X_add_number >= -0x8000
13355 && imm_expr.X_add_number < 0x8000)
13356 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13357 op[0], op[1], BFD_RELOC_LO16);
13358 else
13359 {
13360 load_register (AT, &imm_expr, GPR_SIZE == 64);
13361 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13362 op[0], op[1], AT);
13363 used_at = 1;
13364 }
13365 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13366 break;
13367
13368 case M_SGT: /* X > Y <==> Y < X */
13369 s = "slt";
13370 goto sgt;
13371 case M_SGTU:
13372 s = "sltu";
13373 sgt:
13374 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13375 break;
13376
13377 case M_SGT_I: /* X > I <==> I < X */
13378 s = "slt";
13379 goto sgti;
13380 case M_SGTU_I:
13381 s = "sltu";
13382 sgti:
13383 used_at = 1;
13384 load_register (AT, &imm_expr, GPR_SIZE == 64);
13385 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13386 break;
13387
13388 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13389 s = "slt";
13390 goto sle;
13391 case M_SLEU:
13392 s = "sltu";
13393 sle:
13394 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13395 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13396 break;
13397
13398 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13399 s = "slt";
13400 goto slei;
13401 case M_SLEU_I:
13402 s = "sltu";
13403 slei:
13404 used_at = 1;
13405 load_register (AT, &imm_expr, GPR_SIZE == 64);
13406 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13407 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13408 break;
13409
13410 case M_SLT_I:
13411 if (imm_expr.X_add_number >= -0x8000
13412 && imm_expr.X_add_number < 0x8000)
13413 {
13414 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13415 BFD_RELOC_LO16);
13416 break;
13417 }
13418 used_at = 1;
13419 load_register (AT, &imm_expr, GPR_SIZE == 64);
13420 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13421 break;
13422
13423 case M_SLTU_I:
13424 if (imm_expr.X_add_number >= -0x8000
13425 && imm_expr.X_add_number < 0x8000)
13426 {
13427 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13428 BFD_RELOC_LO16);
13429 break;
13430 }
13431 used_at = 1;
13432 load_register (AT, &imm_expr, GPR_SIZE == 64);
13433 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13434 break;
13435
13436 case M_SNE:
13437 if (op[1] == 0)
13438 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13439 else if (op[2] == 0)
13440 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13441 else
13442 {
13443 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13444 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13445 }
13446 break;
13447
13448 case M_SNE_I:
13449 if (imm_expr.X_add_number == 0)
13450 {
13451 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13452 break;
13453 }
13454 if (op[1] == 0)
13455 {
13456 as_warn (_("instruction %s: result is always true"),
13457 ip->insn_mo->name);
13458 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13459 op[0], 0, BFD_RELOC_LO16);
13460 break;
13461 }
13462 if (CPU_HAS_SEQ (mips_opts.arch)
13463 && -512 <= imm_expr.X_add_number
13464 && imm_expr.X_add_number < 512)
13465 {
13466 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13467 (int) imm_expr.X_add_number);
13468 break;
13469 }
13470 if (imm_expr.X_add_number >= 0
13471 && imm_expr.X_add_number < 0x10000)
13472 {
13473 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13474 BFD_RELOC_LO16);
13475 }
13476 else if (imm_expr.X_add_number > -0x8000
13477 && imm_expr.X_add_number < 0)
13478 {
13479 imm_expr.X_add_number = -imm_expr.X_add_number;
13480 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13481 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13482 }
13483 else if (CPU_HAS_SEQ (mips_opts.arch))
13484 {
13485 used_at = 1;
13486 load_register (AT, &imm_expr, GPR_SIZE == 64);
13487 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13488 break;
13489 }
13490 else
13491 {
13492 load_register (AT, &imm_expr, GPR_SIZE == 64);
13493 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13494 used_at = 1;
13495 }
13496 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13497 break;
13498
13499 case M_SUB_I:
13500 s = "addi";
13501 s2 = "sub";
13502 goto do_subi;
13503 case M_SUBU_I:
13504 s = "addiu";
13505 s2 = "subu";
13506 goto do_subi;
13507 case M_DSUB_I:
13508 dbl = 1;
13509 s = "daddi";
13510 s2 = "dsub";
13511 if (!mips_opts.micromips)
13512 goto do_subi;
13513 if (imm_expr.X_add_number > -0x200
13514 && imm_expr.X_add_number <= 0x200)
13515 {
13516 macro_build (NULL, s, "t,r,.", op[0], op[1],
13517 (int) -imm_expr.X_add_number);
13518 break;
13519 }
13520 goto do_subi_i;
13521 case M_DSUBU_I:
13522 dbl = 1;
13523 s = "daddiu";
13524 s2 = "dsubu";
13525 do_subi:
13526 if (imm_expr.X_add_number > -0x8000
13527 && imm_expr.X_add_number <= 0x8000)
13528 {
13529 imm_expr.X_add_number = -imm_expr.X_add_number;
13530 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13531 break;
13532 }
13533 do_subi_i:
13534 used_at = 1;
13535 load_register (AT, &imm_expr, dbl);
13536 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13537 break;
13538
13539 case M_TEQ_I:
13540 s = "teq";
13541 goto trap;
13542 case M_TGE_I:
13543 s = "tge";
13544 goto trap;
13545 case M_TGEU_I:
13546 s = "tgeu";
13547 goto trap;
13548 case M_TLT_I:
13549 s = "tlt";
13550 goto trap;
13551 case M_TLTU_I:
13552 s = "tltu";
13553 goto trap;
13554 case M_TNE_I:
13555 s = "tne";
13556 trap:
13557 used_at = 1;
13558 load_register (AT, &imm_expr, GPR_SIZE == 64);
13559 macro_build (NULL, s, "s,t", op[0], AT);
13560 break;
13561
13562 case M_TRUNCWS:
13563 case M_TRUNCWD:
13564 gas_assert (!mips_opts.micromips);
13565 gas_assert (mips_opts.isa == ISA_MIPS1);
13566 used_at = 1;
13567
13568 /*
13569 * Is the double cfc1 instruction a bug in the mips assembler;
13570 * or is there a reason for it?
13571 */
13572 start_noreorder ();
13573 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13574 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13575 macro_build (NULL, "nop", "");
13576 expr1.X_add_number = 3;
13577 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13578 expr1.X_add_number = 2;
13579 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13580 macro_build (NULL, "ctc1", "t,G", AT, RA);
13581 macro_build (NULL, "nop", "");
13582 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13583 op[0], op[1]);
13584 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13585 macro_build (NULL, "nop", "");
13586 end_noreorder ();
13587 break;
13588
13589 case M_ULH_AB:
13590 s = "lb";
13591 s2 = "lbu";
13592 off = 1;
13593 goto uld_st;
13594 case M_ULHU_AB:
13595 s = "lbu";
13596 s2 = "lbu";
13597 off = 1;
13598 goto uld_st;
13599 case M_ULW_AB:
13600 s = "lwl";
13601 s2 = "lwr";
13602 offbits = (mips_opts.micromips ? 12 : 16);
13603 off = 3;
13604 goto uld_st;
13605 case M_ULD_AB:
13606 s = "ldl";
13607 s2 = "ldr";
13608 offbits = (mips_opts.micromips ? 12 : 16);
13609 off = 7;
13610 goto uld_st;
13611 case M_USH_AB:
13612 s = "sb";
13613 s2 = "sb";
13614 off = 1;
13615 ust = 1;
13616 goto uld_st;
13617 case M_USW_AB:
13618 s = "swl";
13619 s2 = "swr";
13620 offbits = (mips_opts.micromips ? 12 : 16);
13621 off = 3;
13622 ust = 1;
13623 goto uld_st;
13624 case M_USD_AB:
13625 s = "sdl";
13626 s2 = "sdr";
13627 offbits = (mips_opts.micromips ? 12 : 16);
13628 off = 7;
13629 ust = 1;
13630
13631 uld_st:
13632 breg = op[2];
13633 large_offset = !small_offset_p (off, align, offbits);
13634 ep = &offset_expr;
13635 expr1.X_add_number = 0;
13636 if (large_offset)
13637 {
13638 used_at = 1;
13639 tempreg = AT;
13640 if (small_offset_p (0, align, 16))
13641 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13642 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13643 else
13644 {
13645 load_address (tempreg, ep, &used_at);
13646 if (breg != 0)
13647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13648 tempreg, tempreg, breg);
13649 }
13650 offset_reloc[0] = BFD_RELOC_LO16;
13651 offset_reloc[1] = BFD_RELOC_UNUSED;
13652 offset_reloc[2] = BFD_RELOC_UNUSED;
13653 breg = tempreg;
13654 tempreg = op[0];
13655 ep = &expr1;
13656 }
13657 else if (!ust && op[0] == breg)
13658 {
13659 used_at = 1;
13660 tempreg = AT;
13661 }
13662 else
13663 tempreg = op[0];
13664
13665 if (off == 1)
13666 goto ulh_sh;
13667
13668 if (!target_big_endian)
13669 ep->X_add_number += off;
13670 if (offbits == 12)
13671 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13672 else
13673 macro_build (ep, s, "t,o(b)", tempreg, -1,
13674 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13675
13676 if (!target_big_endian)
13677 ep->X_add_number -= off;
13678 else
13679 ep->X_add_number += off;
13680 if (offbits == 12)
13681 macro_build (NULL, s2, "t,~(b)",
13682 tempreg, (int) ep->X_add_number, breg);
13683 else
13684 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13685 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13686
13687 /* If necessary, move the result in tempreg to the final destination. */
13688 if (!ust && op[0] != tempreg)
13689 {
13690 /* Protect second load's delay slot. */
13691 load_delay_nop ();
13692 move_register (op[0], tempreg);
13693 }
13694 break;
13695
13696 ulh_sh:
13697 used_at = 1;
13698 if (target_big_endian == ust)
13699 ep->X_add_number += off;
13700 tempreg = ust || large_offset ? op[0] : AT;
13701 macro_build (ep, s, "t,o(b)", tempreg, -1,
13702 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13703
13704 /* For halfword transfers we need a temporary register to shuffle
13705 bytes. Unfortunately for M_USH_A we have none available before
13706 the next store as AT holds the base address. We deal with this
13707 case by clobbering TREG and then restoring it as with ULH. */
13708 tempreg = ust == large_offset ? op[0] : AT;
13709 if (ust)
13710 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13711
13712 if (target_big_endian == ust)
13713 ep->X_add_number -= off;
13714 else
13715 ep->X_add_number += off;
13716 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13717 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13718
13719 /* For M_USH_A re-retrieve the LSB. */
13720 if (ust && large_offset)
13721 {
13722 if (target_big_endian)
13723 ep->X_add_number += off;
13724 else
13725 ep->X_add_number -= off;
13726 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13727 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13728 }
13729 /* For ULH and M_USH_A OR the LSB in. */
13730 if (!ust || large_offset)
13731 {
13732 tempreg = !large_offset ? AT : op[0];
13733 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13734 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13735 }
13736 break;
13737
13738 default:
13739 /* FIXME: Check if this is one of the itbl macros, since they
13740 are added dynamically. */
13741 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13742 break;
13743 }
13744 if (!mips_opts.at && used_at)
13745 as_bad (_("macro used $at after \".set noat\""));
13746 }
13747
13748 /* Implement macros in mips16 mode. */
13749
13750 static void
13751 mips16_macro (struct mips_cl_insn *ip)
13752 {
13753 const struct mips_operand_array *operands;
13754 int mask;
13755 int tmp;
13756 expressionS expr1;
13757 int dbl;
13758 const char *s, *s2, *s3;
13759 unsigned int op[MAX_OPERANDS];
13760 unsigned int i;
13761
13762 mask = ip->insn_mo->mask;
13763
13764 operands = insn_operands (ip);
13765 for (i = 0; i < MAX_OPERANDS; i++)
13766 if (operands->operand[i])
13767 op[i] = insn_extract_operand (ip, operands->operand[i]);
13768 else
13769 op[i] = -1;
13770
13771 expr1.X_op = O_constant;
13772 expr1.X_op_symbol = NULL;
13773 expr1.X_add_symbol = NULL;
13774 expr1.X_add_number = 1;
13775
13776 dbl = 0;
13777
13778 switch (mask)
13779 {
13780 default:
13781 abort ();
13782
13783 case M_DDIV_3:
13784 dbl = 1;
13785 /* Fall through. */
13786 case M_DIV_3:
13787 s = "mflo";
13788 goto do_div3;
13789 case M_DREM_3:
13790 dbl = 1;
13791 /* Fall through. */
13792 case M_REM_3:
13793 s = "mfhi";
13794 do_div3:
13795 start_noreorder ();
13796 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13797 expr1.X_add_number = 2;
13798 macro_build (&expr1, "bnez", "x,p", op[2]);
13799 macro_build (NULL, "break", "6", 7);
13800
13801 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13802 since that causes an overflow. We should do that as well,
13803 but I don't see how to do the comparisons without a temporary
13804 register. */
13805 end_noreorder ();
13806 macro_build (NULL, s, "x", op[0]);
13807 break;
13808
13809 case M_DIVU_3:
13810 s = "divu";
13811 s2 = "mflo";
13812 goto do_divu3;
13813 case M_REMU_3:
13814 s = "divu";
13815 s2 = "mfhi";
13816 goto do_divu3;
13817 case M_DDIVU_3:
13818 s = "ddivu";
13819 s2 = "mflo";
13820 goto do_divu3;
13821 case M_DREMU_3:
13822 s = "ddivu";
13823 s2 = "mfhi";
13824 do_divu3:
13825 start_noreorder ();
13826 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13827 expr1.X_add_number = 2;
13828 macro_build (&expr1, "bnez", "x,p", op[2]);
13829 macro_build (NULL, "break", "6", 7);
13830 end_noreorder ();
13831 macro_build (NULL, s2, "x", op[0]);
13832 break;
13833
13834 case M_DMUL:
13835 dbl = 1;
13836 /* Fall through. */
13837 case M_MUL:
13838 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13839 macro_build (NULL, "mflo", "x", op[0]);
13840 break;
13841
13842 case M_DSUBU_I:
13843 dbl = 1;
13844 goto do_subu;
13845 case M_SUBU_I:
13846 do_subu:
13847 imm_expr.X_add_number = -imm_expr.X_add_number;
13848 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13849 break;
13850
13851 case M_SUBU_I_2:
13852 imm_expr.X_add_number = -imm_expr.X_add_number;
13853 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13854 break;
13855
13856 case M_DSUBU_I_2:
13857 imm_expr.X_add_number = -imm_expr.X_add_number;
13858 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13859 break;
13860
13861 case M_BEQ:
13862 s = "cmp";
13863 s2 = "bteqz";
13864 goto do_branch;
13865 case M_BNE:
13866 s = "cmp";
13867 s2 = "btnez";
13868 goto do_branch;
13869 case M_BLT:
13870 s = "slt";
13871 s2 = "btnez";
13872 goto do_branch;
13873 case M_BLTU:
13874 s = "sltu";
13875 s2 = "btnez";
13876 goto do_branch;
13877 case M_BLE:
13878 s = "slt";
13879 s2 = "bteqz";
13880 goto do_reverse_branch;
13881 case M_BLEU:
13882 s = "sltu";
13883 s2 = "bteqz";
13884 goto do_reverse_branch;
13885 case M_BGE:
13886 s = "slt";
13887 s2 = "bteqz";
13888 goto do_branch;
13889 case M_BGEU:
13890 s = "sltu";
13891 s2 = "bteqz";
13892 goto do_branch;
13893 case M_BGT:
13894 s = "slt";
13895 s2 = "btnez";
13896 goto do_reverse_branch;
13897 case M_BGTU:
13898 s = "sltu";
13899 s2 = "btnez";
13900
13901 do_reverse_branch:
13902 tmp = op[1];
13903 op[1] = op[0];
13904 op[0] = tmp;
13905
13906 do_branch:
13907 macro_build (NULL, s, "x,y", op[0], op[1]);
13908 macro_build (&offset_expr, s2, "p");
13909 break;
13910
13911 case M_BEQ_I:
13912 s = "cmpi";
13913 s2 = "bteqz";
13914 s3 = "x,U";
13915 goto do_branch_i;
13916 case M_BNE_I:
13917 s = "cmpi";
13918 s2 = "btnez";
13919 s3 = "x,U";
13920 goto do_branch_i;
13921 case M_BLT_I:
13922 s = "slti";
13923 s2 = "btnez";
13924 s3 = "x,8";
13925 goto do_branch_i;
13926 case M_BLTU_I:
13927 s = "sltiu";
13928 s2 = "btnez";
13929 s3 = "x,8";
13930 goto do_branch_i;
13931 case M_BLE_I:
13932 s = "slti";
13933 s2 = "btnez";
13934 s3 = "x,8";
13935 goto do_addone_branch_i;
13936 case M_BLEU_I:
13937 s = "sltiu";
13938 s2 = "btnez";
13939 s3 = "x,8";
13940 goto do_addone_branch_i;
13941 case M_BGE_I:
13942 s = "slti";
13943 s2 = "bteqz";
13944 s3 = "x,8";
13945 goto do_branch_i;
13946 case M_BGEU_I:
13947 s = "sltiu";
13948 s2 = "bteqz";
13949 s3 = "x,8";
13950 goto do_branch_i;
13951 case M_BGT_I:
13952 s = "slti";
13953 s2 = "bteqz";
13954 s3 = "x,8";
13955 goto do_addone_branch_i;
13956 case M_BGTU_I:
13957 s = "sltiu";
13958 s2 = "bteqz";
13959 s3 = "x,8";
13960
13961 do_addone_branch_i:
13962 ++imm_expr.X_add_number;
13963
13964 do_branch_i:
13965 macro_build (&imm_expr, s, s3, op[0]);
13966 macro_build (&offset_expr, s2, "p");
13967 break;
13968
13969 case M_ABS:
13970 expr1.X_add_number = 0;
13971 macro_build (&expr1, "slti", "x,8", op[1]);
13972 if (op[0] != op[1])
13973 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13974 expr1.X_add_number = 2;
13975 macro_build (&expr1, "bteqz", "p");
13976 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13977 break;
13978 }
13979 }
13980
13981 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13982 opcode bits in *OPCODE_EXTRA. */
13983
13984 static struct mips_opcode *
13985 mips_lookup_insn (struct hash_control *hash, const char *start,
13986 ssize_t length, unsigned int *opcode_extra)
13987 {
13988 char *name, *dot, *p;
13989 unsigned int mask, suffix;
13990 ssize_t opend;
13991 struct mips_opcode *insn;
13992
13993 /* Make a copy of the instruction so that we can fiddle with it. */
13994 name = xstrndup (start, length);
13995
13996 /* Look up the instruction as-is. */
13997 insn = (struct mips_opcode *) hash_find (hash, name);
13998 if (insn)
13999 goto end;
14000
14001 dot = strchr (name, '.');
14002 if (dot && dot[1])
14003 {
14004 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14005 p = mips_parse_vu0_channels (dot + 1, &mask);
14006 if (*p == 0 && mask != 0)
14007 {
14008 *dot = 0;
14009 insn = (struct mips_opcode *) hash_find (hash, name);
14010 *dot = '.';
14011 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14012 {
14013 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14014 goto end;
14015 }
14016 }
14017 }
14018
14019 if (mips_opts.micromips)
14020 {
14021 /* See if there's an instruction size override suffix,
14022 either `16' or `32', at the end of the mnemonic proper,
14023 that defines the operation, i.e. before the first `.'
14024 character if any. Strip it and retry. */
14025 opend = dot != NULL ? dot - name : length;
14026 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14027 suffix = 2;
14028 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14029 suffix = 4;
14030 else
14031 suffix = 0;
14032 if (suffix)
14033 {
14034 memmove (name + opend - 2, name + opend, length - opend + 1);
14035 insn = (struct mips_opcode *) hash_find (hash, name);
14036 if (insn)
14037 {
14038 forced_insn_length = suffix;
14039 goto end;
14040 }
14041 }
14042 }
14043
14044 insn = NULL;
14045 end:
14046 free (name);
14047 return insn;
14048 }
14049
14050 /* Assemble an instruction into its binary format. If the instruction
14051 is a macro, set imm_expr and offset_expr to the values associated
14052 with "I" and "A" operands respectively. Otherwise store the value
14053 of the relocatable field (if any) in offset_expr. In both cases
14054 set offset_reloc to the relocation operators applied to offset_expr. */
14055
14056 static void
14057 mips_ip (char *str, struct mips_cl_insn *insn)
14058 {
14059 const struct mips_opcode *first, *past;
14060 struct hash_control *hash;
14061 char format;
14062 size_t end;
14063 struct mips_operand_token *tokens;
14064 unsigned int opcode_extra;
14065
14066 if (mips_opts.micromips)
14067 {
14068 hash = micromips_op_hash;
14069 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14070 }
14071 else
14072 {
14073 hash = op_hash;
14074 past = &mips_opcodes[NUMOPCODES];
14075 }
14076 forced_insn_length = 0;
14077 opcode_extra = 0;
14078
14079 /* We first try to match an instruction up to a space or to the end. */
14080 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14081 continue;
14082
14083 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14084 if (first == NULL)
14085 {
14086 set_insn_error (0, _("unrecognized opcode"));
14087 return;
14088 }
14089
14090 if (strcmp (first->name, "li.s") == 0)
14091 format = 'f';
14092 else if (strcmp (first->name, "li.d") == 0)
14093 format = 'd';
14094 else
14095 format = 0;
14096 tokens = mips_parse_arguments (str + end, format);
14097 if (!tokens)
14098 return;
14099
14100 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14101 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14102 set_insn_error (0, _("invalid operands"));
14103
14104 obstack_free (&mips_operand_tokens, tokens);
14105 }
14106
14107 /* As for mips_ip, but used when assembling MIPS16 code.
14108 Also set forced_insn_length to the resulting instruction size in
14109 bytes if the user explicitly requested a small or extended instruction. */
14110
14111 static void
14112 mips16_ip (char *str, struct mips_cl_insn *insn)
14113 {
14114 char *end, *s, c;
14115 struct mips_opcode *first;
14116 struct mips_operand_token *tokens;
14117 unsigned int l;
14118
14119 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14120 ;
14121 end = s;
14122 c = *end;
14123
14124 l = 0;
14125 switch (c)
14126 {
14127 case '\0':
14128 break;
14129
14130 case ' ':
14131 s++;
14132 break;
14133
14134 case '.':
14135 s++;
14136 if (*s == 't')
14137 {
14138 l = 2;
14139 s++;
14140 }
14141 else if (*s == 'e')
14142 {
14143 l = 4;
14144 s++;
14145 }
14146 if (*s == '\0')
14147 break;
14148 else if (*s++ == ' ')
14149 break;
14150 set_insn_error (0, _("unrecognized opcode"));
14151 return;
14152 }
14153 forced_insn_length = l;
14154
14155 *end = 0;
14156 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14157 *end = c;
14158
14159 if (!first)
14160 {
14161 set_insn_error (0, _("unrecognized opcode"));
14162 return;
14163 }
14164
14165 tokens = mips_parse_arguments (s, 0);
14166 if (!tokens)
14167 return;
14168
14169 if (!match_mips16_insns (insn, first, tokens))
14170 set_insn_error (0, _("invalid operands"));
14171
14172 obstack_free (&mips_operand_tokens, tokens);
14173 }
14174
14175 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14176 NBITS is the number of significant bits in VAL. */
14177
14178 static unsigned long
14179 mips16_immed_extend (offsetT val, unsigned int nbits)
14180 {
14181 int extval;
14182
14183 extval = 0;
14184 val &= (1U << nbits) - 1;
14185 if (nbits == 16 || nbits == 9)
14186 {
14187 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14188 val &= 0x1f;
14189 }
14190 else if (nbits == 15)
14191 {
14192 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14193 val &= 0xf;
14194 }
14195 else if (nbits == 6)
14196 {
14197 extval = ((val & 0x1f) << 6) | (val & 0x20);
14198 val = 0;
14199 }
14200 return (extval << 16) | val;
14201 }
14202
14203 /* Like decode_mips16_operand, but require the operand to be defined and
14204 require it to be an integer. */
14205
14206 static const struct mips_int_operand *
14207 mips16_immed_operand (int type, bfd_boolean extended_p)
14208 {
14209 const struct mips_operand *operand;
14210
14211 operand = decode_mips16_operand (type, extended_p);
14212 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14213 abort ();
14214 return (const struct mips_int_operand *) operand;
14215 }
14216
14217 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14218
14219 static bfd_boolean
14220 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14221 bfd_reloc_code_real_type reloc, offsetT sval)
14222 {
14223 int min_val, max_val;
14224
14225 min_val = mips_int_operand_min (operand);
14226 max_val = mips_int_operand_max (operand);
14227 if (reloc != BFD_RELOC_UNUSED)
14228 {
14229 if (min_val < 0)
14230 sval = SEXT_16BIT (sval);
14231 else
14232 sval &= 0xffff;
14233 }
14234
14235 return (sval >= min_val
14236 && sval <= max_val
14237 && (sval & ((1 << operand->shift) - 1)) == 0);
14238 }
14239
14240 /* Install immediate value VAL into MIPS16 instruction *INSN,
14241 extending it if necessary. The instruction in *INSN may
14242 already be extended.
14243
14244 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14245 if none. In the former case, VAL is a 16-bit number with no
14246 defined signedness.
14247
14248 TYPE is the type of the immediate field. USER_INSN_LENGTH
14249 is the length that the user requested, or 0 if none. */
14250
14251 static void
14252 mips16_immed (const char *file, unsigned int line, int type,
14253 bfd_reloc_code_real_type reloc, offsetT val,
14254 unsigned int user_insn_length, unsigned long *insn)
14255 {
14256 const struct mips_int_operand *operand;
14257 unsigned int uval, length;
14258
14259 operand = mips16_immed_operand (type, FALSE);
14260 if (!mips16_immed_in_range_p (operand, reloc, val))
14261 {
14262 /* We need an extended instruction. */
14263 if (user_insn_length == 2)
14264 as_bad_where (file, line, _("invalid unextended operand value"));
14265 else
14266 *insn |= MIPS16_EXTEND;
14267 }
14268 else if (user_insn_length == 4)
14269 {
14270 /* The operand doesn't force an unextended instruction to be extended.
14271 Warn if the user wanted an extended instruction anyway. */
14272 *insn |= MIPS16_EXTEND;
14273 as_warn_where (file, line,
14274 _("extended operand requested but not required"));
14275 }
14276
14277 length = mips16_opcode_length (*insn);
14278 if (length == 4)
14279 {
14280 operand = mips16_immed_operand (type, TRUE);
14281 if (!mips16_immed_in_range_p (operand, reloc, val))
14282 as_bad_where (file, line,
14283 _("operand value out of range for instruction"));
14284 }
14285 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14286 if (length == 2 || operand->root.lsb != 0)
14287 *insn = mips_insert_operand (&operand->root, *insn, uval);
14288 else
14289 *insn |= mips16_immed_extend (uval, operand->root.size);
14290 }
14291 \f
14292 struct percent_op_match
14293 {
14294 const char *str;
14295 bfd_reloc_code_real_type reloc;
14296 };
14297
14298 static const struct percent_op_match mips_percent_op[] =
14299 {
14300 {"%lo", BFD_RELOC_LO16},
14301 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14302 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14303 {"%call16", BFD_RELOC_MIPS_CALL16},
14304 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14305 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14306 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14307 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14308 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14309 {"%got", BFD_RELOC_MIPS_GOT16},
14310 {"%gp_rel", BFD_RELOC_GPREL16},
14311 {"%gprel", BFD_RELOC_GPREL16},
14312 {"%half", BFD_RELOC_16},
14313 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14314 {"%higher", BFD_RELOC_MIPS_HIGHER},
14315 {"%neg", BFD_RELOC_MIPS_SUB},
14316 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14317 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14318 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14319 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14320 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14321 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14322 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14323 {"%hi", BFD_RELOC_HI16_S},
14324 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14325 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14326 };
14327
14328 static const struct percent_op_match mips16_percent_op[] =
14329 {
14330 {"%lo", BFD_RELOC_MIPS16_LO16},
14331 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14332 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14333 {"%got", BFD_RELOC_MIPS16_GOT16},
14334 {"%call16", BFD_RELOC_MIPS16_CALL16},
14335 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14336 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14337 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14338 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14339 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14340 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14341 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14342 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14343 };
14344
14345
14346 /* Return true if *STR points to a relocation operator. When returning true,
14347 move *STR over the operator and store its relocation code in *RELOC.
14348 Leave both *STR and *RELOC alone when returning false. */
14349
14350 static bfd_boolean
14351 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14352 {
14353 const struct percent_op_match *percent_op;
14354 size_t limit, i;
14355
14356 if (mips_opts.mips16)
14357 {
14358 percent_op = mips16_percent_op;
14359 limit = ARRAY_SIZE (mips16_percent_op);
14360 }
14361 else
14362 {
14363 percent_op = mips_percent_op;
14364 limit = ARRAY_SIZE (mips_percent_op);
14365 }
14366
14367 for (i = 0; i < limit; i++)
14368 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14369 {
14370 int len = strlen (percent_op[i].str);
14371
14372 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14373 continue;
14374
14375 *str += strlen (percent_op[i].str);
14376 *reloc = percent_op[i].reloc;
14377
14378 /* Check whether the output BFD supports this relocation.
14379 If not, issue an error and fall back on something safe. */
14380 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14381 {
14382 as_bad (_("relocation %s isn't supported by the current ABI"),
14383 percent_op[i].str);
14384 *reloc = BFD_RELOC_UNUSED;
14385 }
14386 return TRUE;
14387 }
14388 return FALSE;
14389 }
14390
14391
14392 /* Parse string STR as a 16-bit relocatable operand. Store the
14393 expression in *EP and the relocations in the array starting
14394 at RELOC. Return the number of relocation operators used.
14395
14396 On exit, EXPR_END points to the first character after the expression. */
14397
14398 static size_t
14399 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14400 char *str)
14401 {
14402 bfd_reloc_code_real_type reversed_reloc[3];
14403 size_t reloc_index, i;
14404 int crux_depth, str_depth;
14405 char *crux;
14406
14407 /* Search for the start of the main expression, recoding relocations
14408 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14409 of the main expression and with CRUX_DEPTH containing the number
14410 of open brackets at that point. */
14411 reloc_index = -1;
14412 str_depth = 0;
14413 do
14414 {
14415 reloc_index++;
14416 crux = str;
14417 crux_depth = str_depth;
14418
14419 /* Skip over whitespace and brackets, keeping count of the number
14420 of brackets. */
14421 while (*str == ' ' || *str == '\t' || *str == '(')
14422 if (*str++ == '(')
14423 str_depth++;
14424 }
14425 while (*str == '%'
14426 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14427 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14428
14429 my_getExpression (ep, crux);
14430 str = expr_end;
14431
14432 /* Match every open bracket. */
14433 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14434 if (*str++ == ')')
14435 crux_depth--;
14436
14437 if (crux_depth > 0)
14438 as_bad (_("unclosed '('"));
14439
14440 expr_end = str;
14441
14442 if (reloc_index != 0)
14443 {
14444 prev_reloc_op_frag = frag_now;
14445 for (i = 0; i < reloc_index; i++)
14446 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14447 }
14448
14449 return reloc_index;
14450 }
14451
14452 static void
14453 my_getExpression (expressionS *ep, char *str)
14454 {
14455 char *save_in;
14456
14457 save_in = input_line_pointer;
14458 input_line_pointer = str;
14459 expression (ep);
14460 expr_end = input_line_pointer;
14461 input_line_pointer = save_in;
14462 }
14463
14464 const char *
14465 md_atof (int type, char *litP, int *sizeP)
14466 {
14467 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14468 }
14469
14470 void
14471 md_number_to_chars (char *buf, valueT val, int n)
14472 {
14473 if (target_big_endian)
14474 number_to_chars_bigendian (buf, val, n);
14475 else
14476 number_to_chars_littleendian (buf, val, n);
14477 }
14478 \f
14479 static int support_64bit_objects(void)
14480 {
14481 const char **list, **l;
14482 int yes;
14483
14484 list = bfd_target_list ();
14485 for (l = list; *l != NULL; l++)
14486 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14487 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14488 break;
14489 yes = (*l != NULL);
14490 free (list);
14491 return yes;
14492 }
14493
14494 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14495 NEW_VALUE. Warn if another value was already specified. Note:
14496 we have to defer parsing the -march and -mtune arguments in order
14497 to handle 'from-abi' correctly, since the ABI might be specified
14498 in a later argument. */
14499
14500 static void
14501 mips_set_option_string (const char **string_ptr, const char *new_value)
14502 {
14503 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14504 as_warn (_("a different %s was already specified, is now %s"),
14505 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14506 new_value);
14507
14508 *string_ptr = new_value;
14509 }
14510
14511 int
14512 md_parse_option (int c, const char *arg)
14513 {
14514 unsigned int i;
14515
14516 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14517 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14518 {
14519 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14520 c == mips_ases[i].option_on);
14521 return 1;
14522 }
14523
14524 switch (c)
14525 {
14526 case OPTION_CONSTRUCT_FLOATS:
14527 mips_disable_float_construction = 0;
14528 break;
14529
14530 case OPTION_NO_CONSTRUCT_FLOATS:
14531 mips_disable_float_construction = 1;
14532 break;
14533
14534 case OPTION_TRAP:
14535 mips_trap = 1;
14536 break;
14537
14538 case OPTION_BREAK:
14539 mips_trap = 0;
14540 break;
14541
14542 case OPTION_EB:
14543 target_big_endian = 1;
14544 break;
14545
14546 case OPTION_EL:
14547 target_big_endian = 0;
14548 break;
14549
14550 case 'O':
14551 if (arg == NULL)
14552 mips_optimize = 1;
14553 else if (arg[0] == '0')
14554 mips_optimize = 0;
14555 else if (arg[0] == '1')
14556 mips_optimize = 1;
14557 else
14558 mips_optimize = 2;
14559 break;
14560
14561 case 'g':
14562 if (arg == NULL)
14563 mips_debug = 2;
14564 else
14565 mips_debug = atoi (arg);
14566 break;
14567
14568 case OPTION_MIPS1:
14569 file_mips_opts.isa = ISA_MIPS1;
14570 break;
14571
14572 case OPTION_MIPS2:
14573 file_mips_opts.isa = ISA_MIPS2;
14574 break;
14575
14576 case OPTION_MIPS3:
14577 file_mips_opts.isa = ISA_MIPS3;
14578 break;
14579
14580 case OPTION_MIPS4:
14581 file_mips_opts.isa = ISA_MIPS4;
14582 break;
14583
14584 case OPTION_MIPS5:
14585 file_mips_opts.isa = ISA_MIPS5;
14586 break;
14587
14588 case OPTION_MIPS32:
14589 file_mips_opts.isa = ISA_MIPS32;
14590 break;
14591
14592 case OPTION_MIPS32R2:
14593 file_mips_opts.isa = ISA_MIPS32R2;
14594 break;
14595
14596 case OPTION_MIPS32R3:
14597 file_mips_opts.isa = ISA_MIPS32R3;
14598 break;
14599
14600 case OPTION_MIPS32R5:
14601 file_mips_opts.isa = ISA_MIPS32R5;
14602 break;
14603
14604 case OPTION_MIPS32R6:
14605 file_mips_opts.isa = ISA_MIPS32R6;
14606 break;
14607
14608 case OPTION_MIPS64R2:
14609 file_mips_opts.isa = ISA_MIPS64R2;
14610 break;
14611
14612 case OPTION_MIPS64R3:
14613 file_mips_opts.isa = ISA_MIPS64R3;
14614 break;
14615
14616 case OPTION_MIPS64R5:
14617 file_mips_opts.isa = ISA_MIPS64R5;
14618 break;
14619
14620 case OPTION_MIPS64R6:
14621 file_mips_opts.isa = ISA_MIPS64R6;
14622 break;
14623
14624 case OPTION_MIPS64:
14625 file_mips_opts.isa = ISA_MIPS64;
14626 break;
14627
14628 case OPTION_MTUNE:
14629 mips_set_option_string (&mips_tune_string, arg);
14630 break;
14631
14632 case OPTION_MARCH:
14633 mips_set_option_string (&mips_arch_string, arg);
14634 break;
14635
14636 case OPTION_M4650:
14637 mips_set_option_string (&mips_arch_string, "4650");
14638 mips_set_option_string (&mips_tune_string, "4650");
14639 break;
14640
14641 case OPTION_NO_M4650:
14642 break;
14643
14644 case OPTION_M4010:
14645 mips_set_option_string (&mips_arch_string, "4010");
14646 mips_set_option_string (&mips_tune_string, "4010");
14647 break;
14648
14649 case OPTION_NO_M4010:
14650 break;
14651
14652 case OPTION_M4100:
14653 mips_set_option_string (&mips_arch_string, "4100");
14654 mips_set_option_string (&mips_tune_string, "4100");
14655 break;
14656
14657 case OPTION_NO_M4100:
14658 break;
14659
14660 case OPTION_M3900:
14661 mips_set_option_string (&mips_arch_string, "3900");
14662 mips_set_option_string (&mips_tune_string, "3900");
14663 break;
14664
14665 case OPTION_NO_M3900:
14666 break;
14667
14668 case OPTION_MICROMIPS:
14669 if (file_mips_opts.mips16 == 1)
14670 {
14671 as_bad (_("-mmicromips cannot be used with -mips16"));
14672 return 0;
14673 }
14674 file_mips_opts.micromips = 1;
14675 mips_no_prev_insn ();
14676 break;
14677
14678 case OPTION_NO_MICROMIPS:
14679 file_mips_opts.micromips = 0;
14680 mips_no_prev_insn ();
14681 break;
14682
14683 case OPTION_MIPS16:
14684 if (file_mips_opts.micromips == 1)
14685 {
14686 as_bad (_("-mips16 cannot be used with -micromips"));
14687 return 0;
14688 }
14689 file_mips_opts.mips16 = 1;
14690 mips_no_prev_insn ();
14691 break;
14692
14693 case OPTION_NO_MIPS16:
14694 file_mips_opts.mips16 = 0;
14695 mips_no_prev_insn ();
14696 break;
14697
14698 case OPTION_FIX_24K:
14699 mips_fix_24k = 1;
14700 break;
14701
14702 case OPTION_NO_FIX_24K:
14703 mips_fix_24k = 0;
14704 break;
14705
14706 case OPTION_FIX_RM7000:
14707 mips_fix_rm7000 = 1;
14708 break;
14709
14710 case OPTION_NO_FIX_RM7000:
14711 mips_fix_rm7000 = 0;
14712 break;
14713
14714 case OPTION_FIX_LOONGSON2F_JUMP:
14715 mips_fix_loongson2f_jump = TRUE;
14716 break;
14717
14718 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14719 mips_fix_loongson2f_jump = FALSE;
14720 break;
14721
14722 case OPTION_FIX_LOONGSON2F_NOP:
14723 mips_fix_loongson2f_nop = TRUE;
14724 break;
14725
14726 case OPTION_NO_FIX_LOONGSON2F_NOP:
14727 mips_fix_loongson2f_nop = FALSE;
14728 break;
14729
14730 case OPTION_FIX_VR4120:
14731 mips_fix_vr4120 = 1;
14732 break;
14733
14734 case OPTION_NO_FIX_VR4120:
14735 mips_fix_vr4120 = 0;
14736 break;
14737
14738 case OPTION_FIX_VR4130:
14739 mips_fix_vr4130 = 1;
14740 break;
14741
14742 case OPTION_NO_FIX_VR4130:
14743 mips_fix_vr4130 = 0;
14744 break;
14745
14746 case OPTION_FIX_CN63XXP1:
14747 mips_fix_cn63xxp1 = TRUE;
14748 break;
14749
14750 case OPTION_NO_FIX_CN63XXP1:
14751 mips_fix_cn63xxp1 = FALSE;
14752 break;
14753
14754 case OPTION_RELAX_BRANCH:
14755 mips_relax_branch = 1;
14756 break;
14757
14758 case OPTION_NO_RELAX_BRANCH:
14759 mips_relax_branch = 0;
14760 break;
14761
14762 case OPTION_IGNORE_BRANCH_ISA:
14763 mips_ignore_branch_isa = TRUE;
14764 break;
14765
14766 case OPTION_NO_IGNORE_BRANCH_ISA:
14767 mips_ignore_branch_isa = FALSE;
14768 break;
14769
14770 case OPTION_INSN32:
14771 file_mips_opts.insn32 = TRUE;
14772 break;
14773
14774 case OPTION_NO_INSN32:
14775 file_mips_opts.insn32 = FALSE;
14776 break;
14777
14778 case OPTION_MSHARED:
14779 mips_in_shared = TRUE;
14780 break;
14781
14782 case OPTION_MNO_SHARED:
14783 mips_in_shared = FALSE;
14784 break;
14785
14786 case OPTION_MSYM32:
14787 file_mips_opts.sym32 = TRUE;
14788 break;
14789
14790 case OPTION_MNO_SYM32:
14791 file_mips_opts.sym32 = FALSE;
14792 break;
14793
14794 /* When generating ELF code, we permit -KPIC and -call_shared to
14795 select SVR4_PIC, and -non_shared to select no PIC. This is
14796 intended to be compatible with Irix 5. */
14797 case OPTION_CALL_SHARED:
14798 mips_pic = SVR4_PIC;
14799 mips_abicalls = TRUE;
14800 break;
14801
14802 case OPTION_CALL_NONPIC:
14803 mips_pic = NO_PIC;
14804 mips_abicalls = TRUE;
14805 break;
14806
14807 case OPTION_NON_SHARED:
14808 mips_pic = NO_PIC;
14809 mips_abicalls = FALSE;
14810 break;
14811
14812 /* The -xgot option tells the assembler to use 32 bit offsets
14813 when accessing the got in SVR4_PIC mode. It is for Irix
14814 compatibility. */
14815 case OPTION_XGOT:
14816 mips_big_got = 1;
14817 break;
14818
14819 case 'G':
14820 g_switch_value = atoi (arg);
14821 g_switch_seen = 1;
14822 break;
14823
14824 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14825 and -mabi=64. */
14826 case OPTION_32:
14827 mips_abi = O32_ABI;
14828 break;
14829
14830 case OPTION_N32:
14831 mips_abi = N32_ABI;
14832 break;
14833
14834 case OPTION_64:
14835 mips_abi = N64_ABI;
14836 if (!support_64bit_objects())
14837 as_fatal (_("no compiled in support for 64 bit object file format"));
14838 break;
14839
14840 case OPTION_GP32:
14841 file_mips_opts.gp = 32;
14842 break;
14843
14844 case OPTION_GP64:
14845 file_mips_opts.gp = 64;
14846 break;
14847
14848 case OPTION_FP32:
14849 file_mips_opts.fp = 32;
14850 break;
14851
14852 case OPTION_FPXX:
14853 file_mips_opts.fp = 0;
14854 break;
14855
14856 case OPTION_FP64:
14857 file_mips_opts.fp = 64;
14858 break;
14859
14860 case OPTION_ODD_SPREG:
14861 file_mips_opts.oddspreg = 1;
14862 break;
14863
14864 case OPTION_NO_ODD_SPREG:
14865 file_mips_opts.oddspreg = 0;
14866 break;
14867
14868 case OPTION_SINGLE_FLOAT:
14869 file_mips_opts.single_float = 1;
14870 break;
14871
14872 case OPTION_DOUBLE_FLOAT:
14873 file_mips_opts.single_float = 0;
14874 break;
14875
14876 case OPTION_SOFT_FLOAT:
14877 file_mips_opts.soft_float = 1;
14878 break;
14879
14880 case OPTION_HARD_FLOAT:
14881 file_mips_opts.soft_float = 0;
14882 break;
14883
14884 case OPTION_MABI:
14885 if (strcmp (arg, "32") == 0)
14886 mips_abi = O32_ABI;
14887 else if (strcmp (arg, "o64") == 0)
14888 mips_abi = O64_ABI;
14889 else if (strcmp (arg, "n32") == 0)
14890 mips_abi = N32_ABI;
14891 else if (strcmp (arg, "64") == 0)
14892 {
14893 mips_abi = N64_ABI;
14894 if (! support_64bit_objects())
14895 as_fatal (_("no compiled in support for 64 bit object file "
14896 "format"));
14897 }
14898 else if (strcmp (arg, "eabi") == 0)
14899 mips_abi = EABI_ABI;
14900 else
14901 {
14902 as_fatal (_("invalid abi -mabi=%s"), arg);
14903 return 0;
14904 }
14905 break;
14906
14907 case OPTION_M7000_HILO_FIX:
14908 mips_7000_hilo_fix = TRUE;
14909 break;
14910
14911 case OPTION_MNO_7000_HILO_FIX:
14912 mips_7000_hilo_fix = FALSE;
14913 break;
14914
14915 case OPTION_MDEBUG:
14916 mips_flag_mdebug = TRUE;
14917 break;
14918
14919 case OPTION_NO_MDEBUG:
14920 mips_flag_mdebug = FALSE;
14921 break;
14922
14923 case OPTION_PDR:
14924 mips_flag_pdr = TRUE;
14925 break;
14926
14927 case OPTION_NO_PDR:
14928 mips_flag_pdr = FALSE;
14929 break;
14930
14931 case OPTION_MVXWORKS_PIC:
14932 mips_pic = VXWORKS_PIC;
14933 break;
14934
14935 case OPTION_NAN:
14936 if (strcmp (arg, "2008") == 0)
14937 mips_nan2008 = 1;
14938 else if (strcmp (arg, "legacy") == 0)
14939 mips_nan2008 = 0;
14940 else
14941 {
14942 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14943 return 0;
14944 }
14945 break;
14946
14947 default:
14948 return 0;
14949 }
14950
14951 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14952
14953 return 1;
14954 }
14955 \f
14956 /* Set up globals to tune for the ISA or processor described by INFO. */
14957
14958 static void
14959 mips_set_tune (const struct mips_cpu_info *info)
14960 {
14961 if (info != 0)
14962 mips_tune = info->cpu;
14963 }
14964
14965
14966 void
14967 mips_after_parse_args (void)
14968 {
14969 const struct mips_cpu_info *arch_info = 0;
14970 const struct mips_cpu_info *tune_info = 0;
14971
14972 /* GP relative stuff not working for PE */
14973 if (strncmp (TARGET_OS, "pe", 2) == 0)
14974 {
14975 if (g_switch_seen && g_switch_value != 0)
14976 as_bad (_("-G not supported in this configuration"));
14977 g_switch_value = 0;
14978 }
14979
14980 if (mips_abi == NO_ABI)
14981 mips_abi = MIPS_DEFAULT_ABI;
14982
14983 /* The following code determines the architecture.
14984 Similar code was added to GCC 3.3 (see override_options() in
14985 config/mips/mips.c). The GAS and GCC code should be kept in sync
14986 as much as possible. */
14987
14988 if (mips_arch_string != 0)
14989 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14990
14991 if (file_mips_opts.isa != ISA_UNKNOWN)
14992 {
14993 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14994 ISA level specified by -mipsN, while arch_info->isa contains
14995 the -march selection (if any). */
14996 if (arch_info != 0)
14997 {
14998 /* -march takes precedence over -mipsN, since it is more descriptive.
14999 There's no harm in specifying both as long as the ISA levels
15000 are the same. */
15001 if (file_mips_opts.isa != arch_info->isa)
15002 as_bad (_("-%s conflicts with the other architecture options,"
15003 " which imply -%s"),
15004 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15005 mips_cpu_info_from_isa (arch_info->isa)->name);
15006 }
15007 else
15008 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15009 }
15010
15011 if (arch_info == 0)
15012 {
15013 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15014 gas_assert (arch_info);
15015 }
15016
15017 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15018 as_bad (_("-march=%s is not compatible with the selected ABI"),
15019 arch_info->name);
15020
15021 file_mips_opts.arch = arch_info->cpu;
15022 file_mips_opts.isa = arch_info->isa;
15023
15024 /* Set up initial mips_opts state. */
15025 mips_opts = file_mips_opts;
15026
15027 /* The register size inference code is now placed in
15028 file_mips_check_options. */
15029
15030 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15031 processor. */
15032 if (mips_tune_string != 0)
15033 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15034
15035 if (tune_info == 0)
15036 mips_set_tune (arch_info);
15037 else
15038 mips_set_tune (tune_info);
15039
15040 if (mips_flag_mdebug < 0)
15041 mips_flag_mdebug = 0;
15042 }
15043 \f
15044 void
15045 mips_init_after_args (void)
15046 {
15047 /* initialize opcodes */
15048 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15049 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15050 }
15051
15052 long
15053 md_pcrel_from (fixS *fixP)
15054 {
15055 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15056 switch (fixP->fx_r_type)
15057 {
15058 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15059 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15060 /* Return the address of the delay slot. */
15061 return addr + 2;
15062
15063 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15064 case BFD_RELOC_MICROMIPS_JMP:
15065 case BFD_RELOC_MIPS16_16_PCREL_S1:
15066 case BFD_RELOC_16_PCREL_S2:
15067 case BFD_RELOC_MIPS_21_PCREL_S2:
15068 case BFD_RELOC_MIPS_26_PCREL_S2:
15069 case BFD_RELOC_MIPS_JMP:
15070 /* Return the address of the delay slot. */
15071 return addr + 4;
15072
15073 case BFD_RELOC_MIPS_18_PCREL_S3:
15074 /* Return the aligned address of the doubleword containing
15075 the instruction. */
15076 return addr & ~7;
15077
15078 default:
15079 return addr;
15080 }
15081 }
15082
15083 /* This is called before the symbol table is processed. In order to
15084 work with gcc when using mips-tfile, we must keep all local labels.
15085 However, in other cases, we want to discard them. If we were
15086 called with -g, but we didn't see any debugging information, it may
15087 mean that gcc is smuggling debugging information through to
15088 mips-tfile, in which case we must generate all local labels. */
15089
15090 void
15091 mips_frob_file_before_adjust (void)
15092 {
15093 #ifndef NO_ECOFF_DEBUGGING
15094 if (ECOFF_DEBUGGING
15095 && mips_debug != 0
15096 && ! ecoff_debugging_seen)
15097 flag_keep_locals = 1;
15098 #endif
15099 }
15100
15101 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15102 the corresponding LO16 reloc. This is called before md_apply_fix and
15103 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15104 relocation operators.
15105
15106 For our purposes, a %lo() expression matches a %got() or %hi()
15107 expression if:
15108
15109 (a) it refers to the same symbol; and
15110 (b) the offset applied in the %lo() expression is no lower than
15111 the offset applied in the %got() or %hi().
15112
15113 (b) allows us to cope with code like:
15114
15115 lui $4,%hi(foo)
15116 lh $4,%lo(foo+2)($4)
15117
15118 ...which is legal on RELA targets, and has a well-defined behaviour
15119 if the user knows that adding 2 to "foo" will not induce a carry to
15120 the high 16 bits.
15121
15122 When several %lo()s match a particular %got() or %hi(), we use the
15123 following rules to distinguish them:
15124
15125 (1) %lo()s with smaller offsets are a better match than %lo()s with
15126 higher offsets.
15127
15128 (2) %lo()s with no matching %got() or %hi() are better than those
15129 that already have a matching %got() or %hi().
15130
15131 (3) later %lo()s are better than earlier %lo()s.
15132
15133 These rules are applied in order.
15134
15135 (1) means, among other things, that %lo()s with identical offsets are
15136 chosen if they exist.
15137
15138 (2) means that we won't associate several high-part relocations with
15139 the same low-part relocation unless there's no alternative. Having
15140 several high parts for the same low part is a GNU extension; this rule
15141 allows careful users to avoid it.
15142
15143 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15144 with the last high-part relocation being at the front of the list.
15145 It therefore makes sense to choose the last matching low-part
15146 relocation, all other things being equal. It's also easier
15147 to code that way. */
15148
15149 void
15150 mips_frob_file (void)
15151 {
15152 struct mips_hi_fixup *l;
15153 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15154
15155 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15156 {
15157 segment_info_type *seginfo;
15158 bfd_boolean matched_lo_p;
15159 fixS **hi_pos, **lo_pos, **pos;
15160
15161 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15162
15163 /* If a GOT16 relocation turns out to be against a global symbol,
15164 there isn't supposed to be a matching LO. Ignore %gots against
15165 constants; we'll report an error for those later. */
15166 if (got16_reloc_p (l->fixp->fx_r_type)
15167 && !(l->fixp->fx_addsy
15168 && pic_need_relax (l->fixp->fx_addsy)))
15169 continue;
15170
15171 /* Check quickly whether the next fixup happens to be a matching %lo. */
15172 if (fixup_has_matching_lo_p (l->fixp))
15173 continue;
15174
15175 seginfo = seg_info (l->seg);
15176
15177 /* Set HI_POS to the position of this relocation in the chain.
15178 Set LO_POS to the position of the chosen low-part relocation.
15179 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15180 relocation that matches an immediately-preceding high-part
15181 relocation. */
15182 hi_pos = NULL;
15183 lo_pos = NULL;
15184 matched_lo_p = FALSE;
15185 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15186
15187 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15188 {
15189 if (*pos == l->fixp)
15190 hi_pos = pos;
15191
15192 if ((*pos)->fx_r_type == looking_for_rtype
15193 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15194 && (*pos)->fx_offset >= l->fixp->fx_offset
15195 && (lo_pos == NULL
15196 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15197 || (!matched_lo_p
15198 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15199 lo_pos = pos;
15200
15201 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15202 && fixup_has_matching_lo_p (*pos));
15203 }
15204
15205 /* If we found a match, remove the high-part relocation from its
15206 current position and insert it before the low-part relocation.
15207 Make the offsets match so that fixup_has_matching_lo_p()
15208 will return true.
15209
15210 We don't warn about unmatched high-part relocations since some
15211 versions of gcc have been known to emit dead "lui ...%hi(...)"
15212 instructions. */
15213 if (lo_pos != NULL)
15214 {
15215 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15216 if (l->fixp->fx_next != *lo_pos)
15217 {
15218 *hi_pos = l->fixp->fx_next;
15219 l->fixp->fx_next = *lo_pos;
15220 *lo_pos = l->fixp;
15221 }
15222 }
15223 }
15224 }
15225
15226 int
15227 mips_force_relocation (fixS *fixp)
15228 {
15229 if (generic_force_reloc (fixp))
15230 return 1;
15231
15232 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15233 so that the linker relaxation can update targets. */
15234 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15235 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15236 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15237 return 1;
15238
15239 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15240 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15241 microMIPS symbols so that we can do cross-mode branch diagnostics
15242 and BAL to JALX conversion by the linker. */
15243 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15244 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15245 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15246 && fixp->fx_addsy
15247 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15248 return 1;
15249
15250 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15251 if (ISA_IS_R6 (file_mips_opts.isa)
15252 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15253 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15254 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15255 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15256 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15257 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15258 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15259 return 1;
15260
15261 return 0;
15262 }
15263
15264 /* Implement TC_FORCE_RELOCATION_ABS. */
15265
15266 bfd_boolean
15267 mips_force_relocation_abs (fixS *fixp)
15268 {
15269 if (generic_force_reloc (fixp))
15270 return TRUE;
15271
15272 /* These relocations do not have enough bits in the in-place addend
15273 to hold an arbitrary absolute section's offset. */
15274 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15275 return TRUE;
15276
15277 return FALSE;
15278 }
15279
15280 /* Read the instruction associated with RELOC from BUF. */
15281
15282 static unsigned int
15283 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15284 {
15285 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15286 return read_compressed_insn (buf, 4);
15287 else
15288 return read_insn (buf);
15289 }
15290
15291 /* Write instruction INSN to BUF, given that it has been relocated
15292 by RELOC. */
15293
15294 static void
15295 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15296 unsigned long insn)
15297 {
15298 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15299 write_compressed_insn (buf, insn, 4);
15300 else
15301 write_insn (buf, insn);
15302 }
15303
15304 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15305 to a symbol in another ISA mode, which cannot be converted to JALX. */
15306
15307 static bfd_boolean
15308 fix_bad_cross_mode_jump_p (fixS *fixP)
15309 {
15310 unsigned long opcode;
15311 int other;
15312 char *buf;
15313
15314 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15315 return FALSE;
15316
15317 other = S_GET_OTHER (fixP->fx_addsy);
15318 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15319 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15320 switch (fixP->fx_r_type)
15321 {
15322 case BFD_RELOC_MIPS_JMP:
15323 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15324 case BFD_RELOC_MICROMIPS_JMP:
15325 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15326 default:
15327 return FALSE;
15328 }
15329 }
15330
15331 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15332 jump to a symbol in the same ISA mode. */
15333
15334 static bfd_boolean
15335 fix_bad_same_mode_jalx_p (fixS *fixP)
15336 {
15337 unsigned long opcode;
15338 int other;
15339 char *buf;
15340
15341 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15342 return FALSE;
15343
15344 other = S_GET_OTHER (fixP->fx_addsy);
15345 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15346 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15347 switch (fixP->fx_r_type)
15348 {
15349 case BFD_RELOC_MIPS_JMP:
15350 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15351 case BFD_RELOC_MIPS16_JMP:
15352 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15353 case BFD_RELOC_MICROMIPS_JMP:
15354 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15355 default:
15356 return FALSE;
15357 }
15358 }
15359
15360 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15361 to a symbol whose value plus addend is not aligned according to the
15362 ultimate (after linker relaxation) jump instruction's immediate field
15363 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15364 regular MIPS code, to (1 << 2). */
15365
15366 static bfd_boolean
15367 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15368 {
15369 bfd_boolean micro_to_mips_p;
15370 valueT val;
15371 int other;
15372
15373 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15374 return FALSE;
15375
15376 other = S_GET_OTHER (fixP->fx_addsy);
15377 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15378 val += fixP->fx_offset;
15379 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15380 && !ELF_ST_IS_MICROMIPS (other));
15381 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15382 != ELF_ST_IS_COMPRESSED (other));
15383 }
15384
15385 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15386 to a symbol whose annotation indicates another ISA mode. For absolute
15387 symbols check the ISA bit instead.
15388
15389 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15390 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15391 MIPS symbols and associated with BAL instructions as these instructions
15392 may be converted to JALX by the linker. */
15393
15394 static bfd_boolean
15395 fix_bad_cross_mode_branch_p (fixS *fixP)
15396 {
15397 bfd_boolean absolute_p;
15398 unsigned long opcode;
15399 asection *symsec;
15400 valueT val;
15401 int other;
15402 char *buf;
15403
15404 if (mips_ignore_branch_isa)
15405 return FALSE;
15406
15407 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15408 return FALSE;
15409
15410 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15411 absolute_p = bfd_is_abs_section (symsec);
15412
15413 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15414 other = S_GET_OTHER (fixP->fx_addsy);
15415
15416 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15417 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15418 switch (fixP->fx_r_type)
15419 {
15420 case BFD_RELOC_16_PCREL_S2:
15421 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15422 && opcode != 0x0411);
15423 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15424 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15425 && opcode != 0x4060);
15426 case BFD_RELOC_MIPS_21_PCREL_S2:
15427 case BFD_RELOC_MIPS_26_PCREL_S2:
15428 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15429 case BFD_RELOC_MIPS16_16_PCREL_S1:
15430 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15431 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15432 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15433 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15434 default:
15435 abort ();
15436 }
15437 }
15438
15439 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15440 branch instruction pointed to by FIXP is not aligned according to the
15441 branch instruction's immediate field requirement. We need the addend
15442 to preserve the ISA bit and also the sum must not have bit 2 set. We
15443 must explicitly OR in the ISA bit from symbol annotation as the bit
15444 won't be set in the symbol's value then. */
15445
15446 static bfd_boolean
15447 fix_bad_misaligned_branch_p (fixS *fixP)
15448 {
15449 bfd_boolean absolute_p;
15450 asection *symsec;
15451 valueT isa_bit;
15452 valueT val;
15453 valueT off;
15454 int other;
15455
15456 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15457 return FALSE;
15458
15459 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15460 absolute_p = bfd_is_abs_section (symsec);
15461
15462 val = S_GET_VALUE (fixP->fx_addsy);
15463 other = S_GET_OTHER (fixP->fx_addsy);
15464 off = fixP->fx_offset;
15465
15466 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15467 val |= ELF_ST_IS_COMPRESSED (other);
15468 val += off;
15469 return (val & 0x3) != isa_bit;
15470 }
15471
15472 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15473 and its calculated value VAL. */
15474
15475 static void
15476 fix_validate_branch (fixS *fixP, valueT val)
15477 {
15478 if (fixP->fx_done && (val & 0x3) != 0)
15479 as_bad_where (fixP->fx_file, fixP->fx_line,
15480 _("branch to misaligned address (0x%lx)"),
15481 (long) (val + md_pcrel_from (fixP)));
15482 else if (fix_bad_cross_mode_branch_p (fixP))
15483 as_bad_where (fixP->fx_file, fixP->fx_line,
15484 _("branch to a symbol in another ISA mode"));
15485 else if (fix_bad_misaligned_branch_p (fixP))
15486 as_bad_where (fixP->fx_file, fixP->fx_line,
15487 _("branch to misaligned address (0x%lx)"),
15488 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15489 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15490 as_bad_where (fixP->fx_file, fixP->fx_line,
15491 _("cannot encode misaligned addend "
15492 "in the relocatable field (0x%lx)"),
15493 (long) fixP->fx_offset);
15494 }
15495
15496 /* Apply a fixup to the object file. */
15497
15498 void
15499 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15500 {
15501 char *buf;
15502 unsigned long insn;
15503 reloc_howto_type *howto;
15504
15505 if (fixP->fx_pcrel)
15506 switch (fixP->fx_r_type)
15507 {
15508 case BFD_RELOC_16_PCREL_S2:
15509 case BFD_RELOC_MIPS16_16_PCREL_S1:
15510 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15511 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15512 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15513 case BFD_RELOC_32_PCREL:
15514 case BFD_RELOC_MIPS_21_PCREL_S2:
15515 case BFD_RELOC_MIPS_26_PCREL_S2:
15516 case BFD_RELOC_MIPS_18_PCREL_S3:
15517 case BFD_RELOC_MIPS_19_PCREL_S2:
15518 case BFD_RELOC_HI16_S_PCREL:
15519 case BFD_RELOC_LO16_PCREL:
15520 break;
15521
15522 case BFD_RELOC_32:
15523 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15524 break;
15525
15526 default:
15527 as_bad_where (fixP->fx_file, fixP->fx_line,
15528 _("PC-relative reference to a different section"));
15529 break;
15530 }
15531
15532 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15533 that have no MIPS ELF equivalent. */
15534 if (fixP->fx_r_type != BFD_RELOC_8)
15535 {
15536 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15537 if (!howto)
15538 return;
15539 }
15540
15541 gas_assert (fixP->fx_size == 2
15542 || fixP->fx_size == 4
15543 || fixP->fx_r_type == BFD_RELOC_8
15544 || fixP->fx_r_type == BFD_RELOC_16
15545 || fixP->fx_r_type == BFD_RELOC_64
15546 || fixP->fx_r_type == BFD_RELOC_CTOR
15547 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15548 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15549 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15550 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15551 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15552 || fixP->fx_r_type == BFD_RELOC_NONE);
15553
15554 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15555
15556 /* Don't treat parts of a composite relocation as done. There are two
15557 reasons for this:
15558
15559 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15560 should nevertheless be emitted if the first part is.
15561
15562 (2) In normal usage, composite relocations are never assembly-time
15563 constants. The easiest way of dealing with the pathological
15564 exceptions is to generate a relocation against STN_UNDEF and
15565 leave everything up to the linker. */
15566 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15567 fixP->fx_done = 1;
15568
15569 switch (fixP->fx_r_type)
15570 {
15571 case BFD_RELOC_MIPS_TLS_GD:
15572 case BFD_RELOC_MIPS_TLS_LDM:
15573 case BFD_RELOC_MIPS_TLS_DTPREL32:
15574 case BFD_RELOC_MIPS_TLS_DTPREL64:
15575 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15576 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15577 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15578 case BFD_RELOC_MIPS_TLS_TPREL32:
15579 case BFD_RELOC_MIPS_TLS_TPREL64:
15580 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15581 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15582 case BFD_RELOC_MICROMIPS_TLS_GD:
15583 case BFD_RELOC_MICROMIPS_TLS_LDM:
15584 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15585 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15586 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15587 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15588 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15589 case BFD_RELOC_MIPS16_TLS_GD:
15590 case BFD_RELOC_MIPS16_TLS_LDM:
15591 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15592 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15593 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15594 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15595 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15596 if (fixP->fx_addsy)
15597 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15598 else
15599 as_bad_where (fixP->fx_file, fixP->fx_line,
15600 _("TLS relocation against a constant"));
15601 break;
15602
15603 case BFD_RELOC_MIPS_JMP:
15604 case BFD_RELOC_MIPS16_JMP:
15605 case BFD_RELOC_MICROMIPS_JMP:
15606 {
15607 int shift;
15608
15609 gas_assert (!fixP->fx_done);
15610
15611 /* Shift is 2, unusually, for microMIPS JALX. */
15612 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15613 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15614 shift = 1;
15615 else
15616 shift = 2;
15617
15618 if (fix_bad_cross_mode_jump_p (fixP))
15619 as_bad_where (fixP->fx_file, fixP->fx_line,
15620 _("jump to a symbol in another ISA mode"));
15621 else if (fix_bad_same_mode_jalx_p (fixP))
15622 as_bad_where (fixP->fx_file, fixP->fx_line,
15623 _("JALX to a symbol in the same ISA mode"));
15624 else if (fix_bad_misaligned_jump_p (fixP, shift))
15625 as_bad_where (fixP->fx_file, fixP->fx_line,
15626 _("jump to misaligned address (0x%lx)"),
15627 (long) (S_GET_VALUE (fixP->fx_addsy)
15628 + fixP->fx_offset));
15629 else if (HAVE_IN_PLACE_ADDENDS
15630 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15631 as_bad_where (fixP->fx_file, fixP->fx_line,
15632 _("cannot encode misaligned addend "
15633 "in the relocatable field (0x%lx)"),
15634 (long) fixP->fx_offset);
15635 }
15636 /* Fall through. */
15637
15638 case BFD_RELOC_MIPS_SHIFT5:
15639 case BFD_RELOC_MIPS_SHIFT6:
15640 case BFD_RELOC_MIPS_GOT_DISP:
15641 case BFD_RELOC_MIPS_GOT_PAGE:
15642 case BFD_RELOC_MIPS_GOT_OFST:
15643 case BFD_RELOC_MIPS_SUB:
15644 case BFD_RELOC_MIPS_INSERT_A:
15645 case BFD_RELOC_MIPS_INSERT_B:
15646 case BFD_RELOC_MIPS_DELETE:
15647 case BFD_RELOC_MIPS_HIGHEST:
15648 case BFD_RELOC_MIPS_HIGHER:
15649 case BFD_RELOC_MIPS_SCN_DISP:
15650 case BFD_RELOC_MIPS_REL16:
15651 case BFD_RELOC_MIPS_RELGOT:
15652 case BFD_RELOC_MIPS_JALR:
15653 case BFD_RELOC_HI16:
15654 case BFD_RELOC_HI16_S:
15655 case BFD_RELOC_LO16:
15656 case BFD_RELOC_GPREL16:
15657 case BFD_RELOC_MIPS_LITERAL:
15658 case BFD_RELOC_MIPS_CALL16:
15659 case BFD_RELOC_MIPS_GOT16:
15660 case BFD_RELOC_GPREL32:
15661 case BFD_RELOC_MIPS_GOT_HI16:
15662 case BFD_RELOC_MIPS_GOT_LO16:
15663 case BFD_RELOC_MIPS_CALL_HI16:
15664 case BFD_RELOC_MIPS_CALL_LO16:
15665 case BFD_RELOC_HI16_S_PCREL:
15666 case BFD_RELOC_LO16_PCREL:
15667 case BFD_RELOC_MIPS16_GPREL:
15668 case BFD_RELOC_MIPS16_GOT16:
15669 case BFD_RELOC_MIPS16_CALL16:
15670 case BFD_RELOC_MIPS16_HI16:
15671 case BFD_RELOC_MIPS16_HI16_S:
15672 case BFD_RELOC_MIPS16_LO16:
15673 case BFD_RELOC_MICROMIPS_GOT_DISP:
15674 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15675 case BFD_RELOC_MICROMIPS_GOT_OFST:
15676 case BFD_RELOC_MICROMIPS_SUB:
15677 case BFD_RELOC_MICROMIPS_HIGHEST:
15678 case BFD_RELOC_MICROMIPS_HIGHER:
15679 case BFD_RELOC_MICROMIPS_SCN_DISP:
15680 case BFD_RELOC_MICROMIPS_JALR:
15681 case BFD_RELOC_MICROMIPS_HI16:
15682 case BFD_RELOC_MICROMIPS_HI16_S:
15683 case BFD_RELOC_MICROMIPS_LO16:
15684 case BFD_RELOC_MICROMIPS_GPREL16:
15685 case BFD_RELOC_MICROMIPS_LITERAL:
15686 case BFD_RELOC_MICROMIPS_CALL16:
15687 case BFD_RELOC_MICROMIPS_GOT16:
15688 case BFD_RELOC_MICROMIPS_GOT_HI16:
15689 case BFD_RELOC_MICROMIPS_GOT_LO16:
15690 case BFD_RELOC_MICROMIPS_CALL_HI16:
15691 case BFD_RELOC_MICROMIPS_CALL_LO16:
15692 case BFD_RELOC_MIPS_EH:
15693 if (fixP->fx_done)
15694 {
15695 offsetT value;
15696
15697 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15698 {
15699 insn = read_reloc_insn (buf, fixP->fx_r_type);
15700 if (mips16_reloc_p (fixP->fx_r_type))
15701 insn |= mips16_immed_extend (value, 16);
15702 else
15703 insn |= (value & 0xffff);
15704 write_reloc_insn (buf, fixP->fx_r_type, insn);
15705 }
15706 else
15707 as_bad_where (fixP->fx_file, fixP->fx_line,
15708 _("unsupported constant in relocation"));
15709 }
15710 break;
15711
15712 case BFD_RELOC_64:
15713 /* This is handled like BFD_RELOC_32, but we output a sign
15714 extended value if we are only 32 bits. */
15715 if (fixP->fx_done)
15716 {
15717 if (8 <= sizeof (valueT))
15718 md_number_to_chars (buf, *valP, 8);
15719 else
15720 {
15721 valueT hiv;
15722
15723 if ((*valP & 0x80000000) != 0)
15724 hiv = 0xffffffff;
15725 else
15726 hiv = 0;
15727 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15728 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15729 }
15730 }
15731 break;
15732
15733 case BFD_RELOC_RVA:
15734 case BFD_RELOC_32:
15735 case BFD_RELOC_32_PCREL:
15736 case BFD_RELOC_16:
15737 case BFD_RELOC_8:
15738 /* If we are deleting this reloc entry, we must fill in the
15739 value now. This can happen if we have a .word which is not
15740 resolved when it appears but is later defined. */
15741 if (fixP->fx_done)
15742 md_number_to_chars (buf, *valP, fixP->fx_size);
15743 break;
15744
15745 case BFD_RELOC_MIPS_21_PCREL_S2:
15746 fix_validate_branch (fixP, *valP);
15747 if (!fixP->fx_done)
15748 break;
15749
15750 if (*valP + 0x400000 <= 0x7fffff)
15751 {
15752 insn = read_insn (buf);
15753 insn |= (*valP >> 2) & 0x1fffff;
15754 write_insn (buf, insn);
15755 }
15756 else
15757 as_bad_where (fixP->fx_file, fixP->fx_line,
15758 _("branch out of range"));
15759 break;
15760
15761 case BFD_RELOC_MIPS_26_PCREL_S2:
15762 fix_validate_branch (fixP, *valP);
15763 if (!fixP->fx_done)
15764 break;
15765
15766 if (*valP + 0x8000000 <= 0xfffffff)
15767 {
15768 insn = read_insn (buf);
15769 insn |= (*valP >> 2) & 0x3ffffff;
15770 write_insn (buf, insn);
15771 }
15772 else
15773 as_bad_where (fixP->fx_file, fixP->fx_line,
15774 _("branch out of range"));
15775 break;
15776
15777 case BFD_RELOC_MIPS_18_PCREL_S3:
15778 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15779 as_bad_where (fixP->fx_file, fixP->fx_line,
15780 _("PC-relative access using misaligned symbol (%lx)"),
15781 (long) S_GET_VALUE (fixP->fx_addsy));
15782 if ((fixP->fx_offset & 0x7) != 0)
15783 as_bad_where (fixP->fx_file, fixP->fx_line,
15784 _("PC-relative access using misaligned offset (%lx)"),
15785 (long) fixP->fx_offset);
15786 if (!fixP->fx_done)
15787 break;
15788
15789 if (*valP + 0x100000 <= 0x1fffff)
15790 {
15791 insn = read_insn (buf);
15792 insn |= (*valP >> 3) & 0x3ffff;
15793 write_insn (buf, insn);
15794 }
15795 else
15796 as_bad_where (fixP->fx_file, fixP->fx_line,
15797 _("PC-relative access out of range"));
15798 break;
15799
15800 case BFD_RELOC_MIPS_19_PCREL_S2:
15801 if ((*valP & 0x3) != 0)
15802 as_bad_where (fixP->fx_file, fixP->fx_line,
15803 _("PC-relative access to misaligned address (%lx)"),
15804 (long) *valP);
15805 if (!fixP->fx_done)
15806 break;
15807
15808 if (*valP + 0x100000 <= 0x1fffff)
15809 {
15810 insn = read_insn (buf);
15811 insn |= (*valP >> 2) & 0x7ffff;
15812 write_insn (buf, insn);
15813 }
15814 else
15815 as_bad_where (fixP->fx_file, fixP->fx_line,
15816 _("PC-relative access out of range"));
15817 break;
15818
15819 case BFD_RELOC_16_PCREL_S2:
15820 fix_validate_branch (fixP, *valP);
15821
15822 /* We need to save the bits in the instruction since fixup_segment()
15823 might be deleting the relocation entry (i.e., a branch within
15824 the current segment). */
15825 if (! fixP->fx_done)
15826 break;
15827
15828 /* Update old instruction data. */
15829 insn = read_insn (buf);
15830
15831 if (*valP + 0x20000 <= 0x3ffff)
15832 {
15833 insn |= (*valP >> 2) & 0xffff;
15834 write_insn (buf, insn);
15835 }
15836 else if (fixP->fx_tcbit2
15837 && fixP->fx_done
15838 && fixP->fx_frag->fr_address >= text_section->vma
15839 && (fixP->fx_frag->fr_address
15840 < text_section->vma + bfd_get_section_size (text_section))
15841 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15842 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15843 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15844 {
15845 /* The branch offset is too large. If this is an
15846 unconditional branch, and we are not generating PIC code,
15847 we can convert it to an absolute jump instruction. */
15848 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15849 insn = 0x0c000000; /* jal */
15850 else
15851 insn = 0x08000000; /* j */
15852 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15853 fixP->fx_done = 0;
15854 fixP->fx_addsy = section_symbol (text_section);
15855 *valP += md_pcrel_from (fixP);
15856 write_insn (buf, insn);
15857 }
15858 else
15859 {
15860 /* If we got here, we have branch-relaxation disabled,
15861 and there's nothing we can do to fix this instruction
15862 without turning it into a longer sequence. */
15863 as_bad_where (fixP->fx_file, fixP->fx_line,
15864 _("branch out of range"));
15865 }
15866 break;
15867
15868 case BFD_RELOC_MIPS16_16_PCREL_S1:
15869 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15870 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15871 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15872 gas_assert (!fixP->fx_done);
15873 if (fix_bad_cross_mode_branch_p (fixP))
15874 as_bad_where (fixP->fx_file, fixP->fx_line,
15875 _("branch to a symbol in another ISA mode"));
15876 else if (fixP->fx_addsy
15877 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15878 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15879 && (fixP->fx_offset & 0x1) != 0)
15880 as_bad_where (fixP->fx_file, fixP->fx_line,
15881 _("branch to misaligned address (0x%lx)"),
15882 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15883 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15884 as_bad_where (fixP->fx_file, fixP->fx_line,
15885 _("cannot encode misaligned addend "
15886 "in the relocatable field (0x%lx)"),
15887 (long) fixP->fx_offset);
15888 break;
15889
15890 case BFD_RELOC_VTABLE_INHERIT:
15891 fixP->fx_done = 0;
15892 if (fixP->fx_addsy
15893 && !S_IS_DEFINED (fixP->fx_addsy)
15894 && !S_IS_WEAK (fixP->fx_addsy))
15895 S_SET_WEAK (fixP->fx_addsy);
15896 break;
15897
15898 case BFD_RELOC_NONE:
15899 case BFD_RELOC_VTABLE_ENTRY:
15900 fixP->fx_done = 0;
15901 break;
15902
15903 default:
15904 abort ();
15905 }
15906
15907 /* Remember value for tc_gen_reloc. */
15908 fixP->fx_addnumber = *valP;
15909 }
15910
15911 static symbolS *
15912 get_symbol (void)
15913 {
15914 int c;
15915 char *name;
15916 symbolS *p;
15917
15918 c = get_symbol_name (&name);
15919 p = (symbolS *) symbol_find_or_make (name);
15920 (void) restore_line_pointer (c);
15921 return p;
15922 }
15923
15924 /* Align the current frag to a given power of two. If a particular
15925 fill byte should be used, FILL points to an integer that contains
15926 that byte, otherwise FILL is null.
15927
15928 This function used to have the comment:
15929
15930 The MIPS assembler also automatically adjusts any preceding label.
15931
15932 The implementation therefore applied the adjustment to a maximum of
15933 one label. However, other label adjustments are applied to batches
15934 of labels, and adjusting just one caused problems when new labels
15935 were added for the sake of debugging or unwind information.
15936 We therefore adjust all preceding labels (given as LABELS) instead. */
15937
15938 static void
15939 mips_align (int to, int *fill, struct insn_label_list *labels)
15940 {
15941 mips_emit_delays ();
15942 mips_record_compressed_mode ();
15943 if (fill == NULL && subseg_text_p (now_seg))
15944 frag_align_code (to, 0);
15945 else
15946 frag_align (to, fill ? *fill : 0, 0);
15947 record_alignment (now_seg, to);
15948 mips_move_labels (labels, FALSE);
15949 }
15950
15951 /* Align to a given power of two. .align 0 turns off the automatic
15952 alignment used by the data creating pseudo-ops. */
15953
15954 static void
15955 s_align (int x ATTRIBUTE_UNUSED)
15956 {
15957 int temp, fill_value, *fill_ptr;
15958 long max_alignment = 28;
15959
15960 /* o Note that the assembler pulls down any immediately preceding label
15961 to the aligned address.
15962 o It's not documented but auto alignment is reinstated by
15963 a .align pseudo instruction.
15964 o Note also that after auto alignment is turned off the mips assembler
15965 issues an error on attempt to assemble an improperly aligned data item.
15966 We don't. */
15967
15968 temp = get_absolute_expression ();
15969 if (temp > max_alignment)
15970 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15971 else if (temp < 0)
15972 {
15973 as_warn (_("alignment negative, 0 assumed"));
15974 temp = 0;
15975 }
15976 if (*input_line_pointer == ',')
15977 {
15978 ++input_line_pointer;
15979 fill_value = get_absolute_expression ();
15980 fill_ptr = &fill_value;
15981 }
15982 else
15983 fill_ptr = 0;
15984 if (temp)
15985 {
15986 segment_info_type *si = seg_info (now_seg);
15987 struct insn_label_list *l = si->label_list;
15988 /* Auto alignment should be switched on by next section change. */
15989 auto_align = 1;
15990 mips_align (temp, fill_ptr, l);
15991 }
15992 else
15993 {
15994 auto_align = 0;
15995 }
15996
15997 demand_empty_rest_of_line ();
15998 }
15999
16000 static void
16001 s_change_sec (int sec)
16002 {
16003 segT seg;
16004
16005 /* The ELF backend needs to know that we are changing sections, so
16006 that .previous works correctly. We could do something like check
16007 for an obj_section_change_hook macro, but that might be confusing
16008 as it would not be appropriate to use it in the section changing
16009 functions in read.c, since obj-elf.c intercepts those. FIXME:
16010 This should be cleaner, somehow. */
16011 obj_elf_section_change_hook ();
16012
16013 mips_emit_delays ();
16014
16015 switch (sec)
16016 {
16017 case 't':
16018 s_text (0);
16019 break;
16020 case 'd':
16021 s_data (0);
16022 break;
16023 case 'b':
16024 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16025 demand_empty_rest_of_line ();
16026 break;
16027
16028 case 'r':
16029 seg = subseg_new (RDATA_SECTION_NAME,
16030 (subsegT) get_absolute_expression ());
16031 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16032 | SEC_READONLY | SEC_RELOC
16033 | SEC_DATA));
16034 if (strncmp (TARGET_OS, "elf", 3) != 0)
16035 record_alignment (seg, 4);
16036 demand_empty_rest_of_line ();
16037 break;
16038
16039 case 's':
16040 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16041 bfd_set_section_flags (stdoutput, seg,
16042 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16043 if (strncmp (TARGET_OS, "elf", 3) != 0)
16044 record_alignment (seg, 4);
16045 demand_empty_rest_of_line ();
16046 break;
16047
16048 case 'B':
16049 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16050 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16051 if (strncmp (TARGET_OS, "elf", 3) != 0)
16052 record_alignment (seg, 4);
16053 demand_empty_rest_of_line ();
16054 break;
16055 }
16056
16057 auto_align = 1;
16058 }
16059
16060 void
16061 s_change_section (int ignore ATTRIBUTE_UNUSED)
16062 {
16063 char *saved_ilp;
16064 char *section_name;
16065 char c, endc;
16066 char next_c = 0;
16067 int section_type;
16068 int section_flag;
16069 int section_entry_size;
16070 int section_alignment;
16071
16072 saved_ilp = input_line_pointer;
16073 endc = get_symbol_name (&section_name);
16074 c = (endc == '"' ? input_line_pointer[1] : endc);
16075 if (c)
16076 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16077
16078 /* Do we have .section Name<,"flags">? */
16079 if (c != ',' || (c == ',' && next_c == '"'))
16080 {
16081 /* Just after name is now '\0'. */
16082 (void) restore_line_pointer (endc);
16083 input_line_pointer = saved_ilp;
16084 obj_elf_section (ignore);
16085 return;
16086 }
16087
16088 section_name = xstrdup (section_name);
16089 c = restore_line_pointer (endc);
16090
16091 input_line_pointer++;
16092
16093 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16094 if (c == ',')
16095 section_type = get_absolute_expression ();
16096 else
16097 section_type = 0;
16098
16099 if (*input_line_pointer++ == ',')
16100 section_flag = get_absolute_expression ();
16101 else
16102 section_flag = 0;
16103
16104 if (*input_line_pointer++ == ',')
16105 section_entry_size = get_absolute_expression ();
16106 else
16107 section_entry_size = 0;
16108
16109 if (*input_line_pointer++ == ',')
16110 section_alignment = get_absolute_expression ();
16111 else
16112 section_alignment = 0;
16113
16114 /* FIXME: really ignore? */
16115 (void) section_alignment;
16116
16117 /* When using the generic form of .section (as implemented by obj-elf.c),
16118 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16119 traditionally had to fall back on the more common @progbits instead.
16120
16121 There's nothing really harmful in this, since bfd will correct
16122 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16123 means that, for backwards compatibility, the special_section entries
16124 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16125
16126 Even so, we shouldn't force users of the MIPS .section syntax to
16127 incorrectly label the sections as SHT_PROGBITS. The best compromise
16128 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16129 generic type-checking code. */
16130 if (section_type == SHT_MIPS_DWARF)
16131 section_type = SHT_PROGBITS;
16132
16133 obj_elf_change_section (section_name, section_type, 0, section_flag,
16134 section_entry_size, 0, 0, 0);
16135
16136 if (now_seg->name != section_name)
16137 free (section_name);
16138 }
16139
16140 void
16141 mips_enable_auto_align (void)
16142 {
16143 auto_align = 1;
16144 }
16145
16146 static void
16147 s_cons (int log_size)
16148 {
16149 segment_info_type *si = seg_info (now_seg);
16150 struct insn_label_list *l = si->label_list;
16151
16152 mips_emit_delays ();
16153 if (log_size > 0 && auto_align)
16154 mips_align (log_size, 0, l);
16155 cons (1 << log_size);
16156 mips_clear_insn_labels ();
16157 }
16158
16159 static void
16160 s_float_cons (int type)
16161 {
16162 segment_info_type *si = seg_info (now_seg);
16163 struct insn_label_list *l = si->label_list;
16164
16165 mips_emit_delays ();
16166
16167 if (auto_align)
16168 {
16169 if (type == 'd')
16170 mips_align (3, 0, l);
16171 else
16172 mips_align (2, 0, l);
16173 }
16174
16175 float_cons (type);
16176 mips_clear_insn_labels ();
16177 }
16178
16179 /* Handle .globl. We need to override it because on Irix 5 you are
16180 permitted to say
16181 .globl foo .text
16182 where foo is an undefined symbol, to mean that foo should be
16183 considered to be the address of a function. */
16184
16185 static void
16186 s_mips_globl (int x ATTRIBUTE_UNUSED)
16187 {
16188 char *name;
16189 int c;
16190 symbolS *symbolP;
16191 flagword flag;
16192
16193 do
16194 {
16195 c = get_symbol_name (&name);
16196 symbolP = symbol_find_or_make (name);
16197 S_SET_EXTERNAL (symbolP);
16198
16199 *input_line_pointer = c;
16200 SKIP_WHITESPACE_AFTER_NAME ();
16201
16202 /* On Irix 5, every global symbol that is not explicitly labelled as
16203 being a function is apparently labelled as being an object. */
16204 flag = BSF_OBJECT;
16205
16206 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16207 && (*input_line_pointer != ','))
16208 {
16209 char *secname;
16210 asection *sec;
16211
16212 c = get_symbol_name (&secname);
16213 sec = bfd_get_section_by_name (stdoutput, secname);
16214 if (sec == NULL)
16215 as_bad (_("%s: no such section"), secname);
16216 (void) restore_line_pointer (c);
16217
16218 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16219 flag = BSF_FUNCTION;
16220 }
16221
16222 symbol_get_bfdsym (symbolP)->flags |= flag;
16223
16224 c = *input_line_pointer;
16225 if (c == ',')
16226 {
16227 input_line_pointer++;
16228 SKIP_WHITESPACE ();
16229 if (is_end_of_line[(unsigned char) *input_line_pointer])
16230 c = '\n';
16231 }
16232 }
16233 while (c == ',');
16234
16235 demand_empty_rest_of_line ();
16236 }
16237
16238 static void
16239 s_option (int x ATTRIBUTE_UNUSED)
16240 {
16241 char *opt;
16242 char c;
16243
16244 c = get_symbol_name (&opt);
16245
16246 if (*opt == 'O')
16247 {
16248 /* FIXME: What does this mean? */
16249 }
16250 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16251 {
16252 int i;
16253
16254 i = atoi (opt + 3);
16255 if (i != 0 && i != 2)
16256 as_bad (_(".option pic%d not supported"), i);
16257 else if (mips_pic == VXWORKS_PIC)
16258 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16259 else if (i == 0)
16260 mips_pic = NO_PIC;
16261 else if (i == 2)
16262 {
16263 mips_pic = SVR4_PIC;
16264 mips_abicalls = TRUE;
16265 }
16266
16267 if (mips_pic == SVR4_PIC)
16268 {
16269 if (g_switch_seen && g_switch_value != 0)
16270 as_warn (_("-G may not be used with SVR4 PIC code"));
16271 g_switch_value = 0;
16272 bfd_set_gp_size (stdoutput, 0);
16273 }
16274 }
16275 else
16276 as_warn (_("unrecognized option \"%s\""), opt);
16277
16278 (void) restore_line_pointer (c);
16279 demand_empty_rest_of_line ();
16280 }
16281
16282 /* This structure is used to hold a stack of .set values. */
16283
16284 struct mips_option_stack
16285 {
16286 struct mips_option_stack *next;
16287 struct mips_set_options options;
16288 };
16289
16290 static struct mips_option_stack *mips_opts_stack;
16291
16292 /* Return status for .set/.module option handling. */
16293
16294 enum code_option_type
16295 {
16296 /* Unrecognized option. */
16297 OPTION_TYPE_BAD = -1,
16298
16299 /* Ordinary option. */
16300 OPTION_TYPE_NORMAL,
16301
16302 /* ISA changing option. */
16303 OPTION_TYPE_ISA
16304 };
16305
16306 /* Handle common .set/.module options. Return status indicating option
16307 type. */
16308
16309 static enum code_option_type
16310 parse_code_option (char * name)
16311 {
16312 bfd_boolean isa_set = FALSE;
16313 const struct mips_ase *ase;
16314
16315 if (strncmp (name, "at=", 3) == 0)
16316 {
16317 char *s = name + 3;
16318
16319 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16320 as_bad (_("unrecognized register name `%s'"), s);
16321 }
16322 else if (strcmp (name, "at") == 0)
16323 mips_opts.at = ATREG;
16324 else if (strcmp (name, "noat") == 0)
16325 mips_opts.at = ZERO;
16326 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16327 mips_opts.nomove = 0;
16328 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16329 mips_opts.nomove = 1;
16330 else if (strcmp (name, "bopt") == 0)
16331 mips_opts.nobopt = 0;
16332 else if (strcmp (name, "nobopt") == 0)
16333 mips_opts.nobopt = 1;
16334 else if (strcmp (name, "gp=32") == 0)
16335 mips_opts.gp = 32;
16336 else if (strcmp (name, "gp=64") == 0)
16337 mips_opts.gp = 64;
16338 else if (strcmp (name, "fp=32") == 0)
16339 mips_opts.fp = 32;
16340 else if (strcmp (name, "fp=xx") == 0)
16341 mips_opts.fp = 0;
16342 else if (strcmp (name, "fp=64") == 0)
16343 mips_opts.fp = 64;
16344 else if (strcmp (name, "softfloat") == 0)
16345 mips_opts.soft_float = 1;
16346 else if (strcmp (name, "hardfloat") == 0)
16347 mips_opts.soft_float = 0;
16348 else if (strcmp (name, "singlefloat") == 0)
16349 mips_opts.single_float = 1;
16350 else if (strcmp (name, "doublefloat") == 0)
16351 mips_opts.single_float = 0;
16352 else if (strcmp (name, "nooddspreg") == 0)
16353 mips_opts.oddspreg = 0;
16354 else if (strcmp (name, "oddspreg") == 0)
16355 mips_opts.oddspreg = 1;
16356 else if (strcmp (name, "mips16") == 0
16357 || strcmp (name, "MIPS-16") == 0)
16358 mips_opts.mips16 = 1;
16359 else if (strcmp (name, "nomips16") == 0
16360 || strcmp (name, "noMIPS-16") == 0)
16361 mips_opts.mips16 = 0;
16362 else if (strcmp (name, "micromips") == 0)
16363 mips_opts.micromips = 1;
16364 else if (strcmp (name, "nomicromips") == 0)
16365 mips_opts.micromips = 0;
16366 else if (name[0] == 'n'
16367 && name[1] == 'o'
16368 && (ase = mips_lookup_ase (name + 2)))
16369 mips_set_ase (ase, &mips_opts, FALSE);
16370 else if ((ase = mips_lookup_ase (name)))
16371 mips_set_ase (ase, &mips_opts, TRUE);
16372 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16373 {
16374 /* Permit the user to change the ISA and architecture on the fly.
16375 Needless to say, misuse can cause serious problems. */
16376 if (strncmp (name, "arch=", 5) == 0)
16377 {
16378 const struct mips_cpu_info *p;
16379
16380 p = mips_parse_cpu ("internal use", name + 5);
16381 if (!p)
16382 as_bad (_("unknown architecture %s"), name + 5);
16383 else
16384 {
16385 mips_opts.arch = p->cpu;
16386 mips_opts.isa = p->isa;
16387 isa_set = TRUE;
16388 }
16389 }
16390 else if (strncmp (name, "mips", 4) == 0)
16391 {
16392 const struct mips_cpu_info *p;
16393
16394 p = mips_parse_cpu ("internal use", name);
16395 if (!p)
16396 as_bad (_("unknown ISA level %s"), name + 4);
16397 else
16398 {
16399 mips_opts.arch = p->cpu;
16400 mips_opts.isa = p->isa;
16401 isa_set = TRUE;
16402 }
16403 }
16404 else
16405 as_bad (_("unknown ISA or architecture %s"), name);
16406 }
16407 else if (strcmp (name, "autoextend") == 0)
16408 mips_opts.noautoextend = 0;
16409 else if (strcmp (name, "noautoextend") == 0)
16410 mips_opts.noautoextend = 1;
16411 else if (strcmp (name, "insn32") == 0)
16412 mips_opts.insn32 = TRUE;
16413 else if (strcmp (name, "noinsn32") == 0)
16414 mips_opts.insn32 = FALSE;
16415 else if (strcmp (name, "sym32") == 0)
16416 mips_opts.sym32 = TRUE;
16417 else if (strcmp (name, "nosym32") == 0)
16418 mips_opts.sym32 = FALSE;
16419 else
16420 return OPTION_TYPE_BAD;
16421
16422 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16423 }
16424
16425 /* Handle the .set pseudo-op. */
16426
16427 static void
16428 s_mipsset (int x ATTRIBUTE_UNUSED)
16429 {
16430 enum code_option_type type = OPTION_TYPE_NORMAL;
16431 char *name = input_line_pointer, ch;
16432
16433 file_mips_check_options ();
16434
16435 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16436 ++input_line_pointer;
16437 ch = *input_line_pointer;
16438 *input_line_pointer = '\0';
16439
16440 if (strchr (name, ','))
16441 {
16442 /* Generic ".set" directive; use the generic handler. */
16443 *input_line_pointer = ch;
16444 input_line_pointer = name;
16445 s_set (0);
16446 return;
16447 }
16448
16449 if (strcmp (name, "reorder") == 0)
16450 {
16451 if (mips_opts.noreorder)
16452 end_noreorder ();
16453 }
16454 else if (strcmp (name, "noreorder") == 0)
16455 {
16456 if (!mips_opts.noreorder)
16457 start_noreorder ();
16458 }
16459 else if (strcmp (name, "macro") == 0)
16460 mips_opts.warn_about_macros = 0;
16461 else if (strcmp (name, "nomacro") == 0)
16462 {
16463 if (mips_opts.noreorder == 0)
16464 as_bad (_("`noreorder' must be set before `nomacro'"));
16465 mips_opts.warn_about_macros = 1;
16466 }
16467 else if (strcmp (name, "gp=default") == 0)
16468 mips_opts.gp = file_mips_opts.gp;
16469 else if (strcmp (name, "fp=default") == 0)
16470 mips_opts.fp = file_mips_opts.fp;
16471 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16472 {
16473 mips_opts.isa = file_mips_opts.isa;
16474 mips_opts.arch = file_mips_opts.arch;
16475 mips_opts.gp = file_mips_opts.gp;
16476 mips_opts.fp = file_mips_opts.fp;
16477 }
16478 else if (strcmp (name, "push") == 0)
16479 {
16480 struct mips_option_stack *s;
16481
16482 s = XNEW (struct mips_option_stack);
16483 s->next = mips_opts_stack;
16484 s->options = mips_opts;
16485 mips_opts_stack = s;
16486 }
16487 else if (strcmp (name, "pop") == 0)
16488 {
16489 struct mips_option_stack *s;
16490
16491 s = mips_opts_stack;
16492 if (s == NULL)
16493 as_bad (_(".set pop with no .set push"));
16494 else
16495 {
16496 /* If we're changing the reorder mode we need to handle
16497 delay slots correctly. */
16498 if (s->options.noreorder && ! mips_opts.noreorder)
16499 start_noreorder ();
16500 else if (! s->options.noreorder && mips_opts.noreorder)
16501 end_noreorder ();
16502
16503 mips_opts = s->options;
16504 mips_opts_stack = s->next;
16505 free (s);
16506 }
16507 }
16508 else
16509 {
16510 type = parse_code_option (name);
16511 if (type == OPTION_TYPE_BAD)
16512 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16513 }
16514
16515 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16516 registers based on what is supported by the arch/cpu. */
16517 if (type == OPTION_TYPE_ISA)
16518 {
16519 switch (mips_opts.isa)
16520 {
16521 case 0:
16522 break;
16523 case ISA_MIPS1:
16524 /* MIPS I cannot support FPXX. */
16525 mips_opts.fp = 32;
16526 /* fall-through. */
16527 case ISA_MIPS2:
16528 case ISA_MIPS32:
16529 case ISA_MIPS32R2:
16530 case ISA_MIPS32R3:
16531 case ISA_MIPS32R5:
16532 mips_opts.gp = 32;
16533 if (mips_opts.fp != 0)
16534 mips_opts.fp = 32;
16535 break;
16536 case ISA_MIPS32R6:
16537 mips_opts.gp = 32;
16538 mips_opts.fp = 64;
16539 break;
16540 case ISA_MIPS3:
16541 case ISA_MIPS4:
16542 case ISA_MIPS5:
16543 case ISA_MIPS64:
16544 case ISA_MIPS64R2:
16545 case ISA_MIPS64R3:
16546 case ISA_MIPS64R5:
16547 case ISA_MIPS64R6:
16548 mips_opts.gp = 64;
16549 if (mips_opts.fp != 0)
16550 {
16551 if (mips_opts.arch == CPU_R5900)
16552 mips_opts.fp = 32;
16553 else
16554 mips_opts.fp = 64;
16555 }
16556 break;
16557 default:
16558 as_bad (_("unknown ISA level %s"), name + 4);
16559 break;
16560 }
16561 }
16562
16563 mips_check_options (&mips_opts, FALSE);
16564
16565 mips_check_isa_supports_ases ();
16566 *input_line_pointer = ch;
16567 demand_empty_rest_of_line ();
16568 }
16569
16570 /* Handle the .module pseudo-op. */
16571
16572 static void
16573 s_module (int ignore ATTRIBUTE_UNUSED)
16574 {
16575 char *name = input_line_pointer, ch;
16576
16577 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16578 ++input_line_pointer;
16579 ch = *input_line_pointer;
16580 *input_line_pointer = '\0';
16581
16582 if (!file_mips_opts_checked)
16583 {
16584 if (parse_code_option (name) == OPTION_TYPE_BAD)
16585 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16586
16587 /* Update module level settings from mips_opts. */
16588 file_mips_opts = mips_opts;
16589 }
16590 else
16591 as_bad (_(".module is not permitted after generating code"));
16592
16593 *input_line_pointer = ch;
16594 demand_empty_rest_of_line ();
16595 }
16596
16597 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16598 .option pic2. It means to generate SVR4 PIC calls. */
16599
16600 static void
16601 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16602 {
16603 mips_pic = SVR4_PIC;
16604 mips_abicalls = TRUE;
16605
16606 if (g_switch_seen && g_switch_value != 0)
16607 as_warn (_("-G may not be used with SVR4 PIC code"));
16608 g_switch_value = 0;
16609
16610 bfd_set_gp_size (stdoutput, 0);
16611 demand_empty_rest_of_line ();
16612 }
16613
16614 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16615 PIC code. It sets the $gp register for the function based on the
16616 function address, which is in the register named in the argument.
16617 This uses a relocation against _gp_disp, which is handled specially
16618 by the linker. The result is:
16619 lui $gp,%hi(_gp_disp)
16620 addiu $gp,$gp,%lo(_gp_disp)
16621 addu $gp,$gp,.cpload argument
16622 The .cpload argument is normally $25 == $t9.
16623
16624 The -mno-shared option changes this to:
16625 lui $gp,%hi(__gnu_local_gp)
16626 addiu $gp,$gp,%lo(__gnu_local_gp)
16627 and the argument is ignored. This saves an instruction, but the
16628 resulting code is not position independent; it uses an absolute
16629 address for __gnu_local_gp. Thus code assembled with -mno-shared
16630 can go into an ordinary executable, but not into a shared library. */
16631
16632 static void
16633 s_cpload (int ignore ATTRIBUTE_UNUSED)
16634 {
16635 expressionS ex;
16636 int reg;
16637 int in_shared;
16638
16639 file_mips_check_options ();
16640
16641 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16642 .cpload is ignored. */
16643 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16644 {
16645 s_ignore (0);
16646 return;
16647 }
16648
16649 if (mips_opts.mips16)
16650 {
16651 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16652 ignore_rest_of_line ();
16653 return;
16654 }
16655
16656 /* .cpload should be in a .set noreorder section. */
16657 if (mips_opts.noreorder == 0)
16658 as_warn (_(".cpload not in noreorder section"));
16659
16660 reg = tc_get_register (0);
16661
16662 /* If we need to produce a 64-bit address, we are better off using
16663 the default instruction sequence. */
16664 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16665
16666 ex.X_op = O_symbol;
16667 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16668 "__gnu_local_gp");
16669 ex.X_op_symbol = NULL;
16670 ex.X_add_number = 0;
16671
16672 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16673 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16674
16675 mips_mark_labels ();
16676 mips_assembling_insn = TRUE;
16677
16678 macro_start ();
16679 macro_build_lui (&ex, mips_gp_register);
16680 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16681 mips_gp_register, BFD_RELOC_LO16);
16682 if (in_shared)
16683 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16684 mips_gp_register, reg);
16685 macro_end ();
16686
16687 mips_assembling_insn = FALSE;
16688 demand_empty_rest_of_line ();
16689 }
16690
16691 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16692 .cpsetup $reg1, offset|$reg2, label
16693
16694 If offset is given, this results in:
16695 sd $gp, offset($sp)
16696 lui $gp, %hi(%neg(%gp_rel(label)))
16697 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16698 daddu $gp, $gp, $reg1
16699
16700 If $reg2 is given, this results in:
16701 or $reg2, $gp, $0
16702 lui $gp, %hi(%neg(%gp_rel(label)))
16703 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16704 daddu $gp, $gp, $reg1
16705 $reg1 is normally $25 == $t9.
16706
16707 The -mno-shared option replaces the last three instructions with
16708 lui $gp,%hi(_gp)
16709 addiu $gp,$gp,%lo(_gp) */
16710
16711 static void
16712 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16713 {
16714 expressionS ex_off;
16715 expressionS ex_sym;
16716 int reg1;
16717
16718 file_mips_check_options ();
16719
16720 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16721 We also need NewABI support. */
16722 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16723 {
16724 s_ignore (0);
16725 return;
16726 }
16727
16728 if (mips_opts.mips16)
16729 {
16730 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16731 ignore_rest_of_line ();
16732 return;
16733 }
16734
16735 reg1 = tc_get_register (0);
16736 SKIP_WHITESPACE ();
16737 if (*input_line_pointer != ',')
16738 {
16739 as_bad (_("missing argument separator ',' for .cpsetup"));
16740 return;
16741 }
16742 else
16743 ++input_line_pointer;
16744 SKIP_WHITESPACE ();
16745 if (*input_line_pointer == '$')
16746 {
16747 mips_cpreturn_register = tc_get_register (0);
16748 mips_cpreturn_offset = -1;
16749 }
16750 else
16751 {
16752 mips_cpreturn_offset = get_absolute_expression ();
16753 mips_cpreturn_register = -1;
16754 }
16755 SKIP_WHITESPACE ();
16756 if (*input_line_pointer != ',')
16757 {
16758 as_bad (_("missing argument separator ',' for .cpsetup"));
16759 return;
16760 }
16761 else
16762 ++input_line_pointer;
16763 SKIP_WHITESPACE ();
16764 expression (&ex_sym);
16765
16766 mips_mark_labels ();
16767 mips_assembling_insn = TRUE;
16768
16769 macro_start ();
16770 if (mips_cpreturn_register == -1)
16771 {
16772 ex_off.X_op = O_constant;
16773 ex_off.X_add_symbol = NULL;
16774 ex_off.X_op_symbol = NULL;
16775 ex_off.X_add_number = mips_cpreturn_offset;
16776
16777 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16778 BFD_RELOC_LO16, SP);
16779 }
16780 else
16781 move_register (mips_cpreturn_register, mips_gp_register);
16782
16783 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16784 {
16785 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16786 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16787 BFD_RELOC_HI16_S);
16788
16789 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16790 mips_gp_register, -1, BFD_RELOC_GPREL16,
16791 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16792
16793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16794 mips_gp_register, reg1);
16795 }
16796 else
16797 {
16798 expressionS ex;
16799
16800 ex.X_op = O_symbol;
16801 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16802 ex.X_op_symbol = NULL;
16803 ex.X_add_number = 0;
16804
16805 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16806 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16807
16808 macro_build_lui (&ex, mips_gp_register);
16809 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16810 mips_gp_register, BFD_RELOC_LO16);
16811 }
16812
16813 macro_end ();
16814
16815 mips_assembling_insn = FALSE;
16816 demand_empty_rest_of_line ();
16817 }
16818
16819 static void
16820 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16821 {
16822 file_mips_check_options ();
16823
16824 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16825 .cplocal is ignored. */
16826 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16827 {
16828 s_ignore (0);
16829 return;
16830 }
16831
16832 if (mips_opts.mips16)
16833 {
16834 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16835 ignore_rest_of_line ();
16836 return;
16837 }
16838
16839 mips_gp_register = tc_get_register (0);
16840 demand_empty_rest_of_line ();
16841 }
16842
16843 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16844 offset from $sp. The offset is remembered, and after making a PIC
16845 call $gp is restored from that location. */
16846
16847 static void
16848 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16849 {
16850 expressionS ex;
16851
16852 file_mips_check_options ();
16853
16854 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16855 .cprestore is ignored. */
16856 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16857 {
16858 s_ignore (0);
16859 return;
16860 }
16861
16862 if (mips_opts.mips16)
16863 {
16864 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16865 ignore_rest_of_line ();
16866 return;
16867 }
16868
16869 mips_cprestore_offset = get_absolute_expression ();
16870 mips_cprestore_valid = 1;
16871
16872 ex.X_op = O_constant;
16873 ex.X_add_symbol = NULL;
16874 ex.X_op_symbol = NULL;
16875 ex.X_add_number = mips_cprestore_offset;
16876
16877 mips_mark_labels ();
16878 mips_assembling_insn = TRUE;
16879
16880 macro_start ();
16881 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16882 SP, HAVE_64BIT_ADDRESSES);
16883 macro_end ();
16884
16885 mips_assembling_insn = FALSE;
16886 demand_empty_rest_of_line ();
16887 }
16888
16889 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16890 was given in the preceding .cpsetup, it results in:
16891 ld $gp, offset($sp)
16892
16893 If a register $reg2 was given there, it results in:
16894 or $gp, $reg2, $0 */
16895
16896 static void
16897 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16898 {
16899 expressionS ex;
16900
16901 file_mips_check_options ();
16902
16903 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16904 We also need NewABI support. */
16905 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16906 {
16907 s_ignore (0);
16908 return;
16909 }
16910
16911 if (mips_opts.mips16)
16912 {
16913 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16914 ignore_rest_of_line ();
16915 return;
16916 }
16917
16918 mips_mark_labels ();
16919 mips_assembling_insn = TRUE;
16920
16921 macro_start ();
16922 if (mips_cpreturn_register == -1)
16923 {
16924 ex.X_op = O_constant;
16925 ex.X_add_symbol = NULL;
16926 ex.X_op_symbol = NULL;
16927 ex.X_add_number = mips_cpreturn_offset;
16928
16929 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16930 }
16931 else
16932 move_register (mips_gp_register, mips_cpreturn_register);
16933
16934 macro_end ();
16935
16936 mips_assembling_insn = FALSE;
16937 demand_empty_rest_of_line ();
16938 }
16939
16940 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16941 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16942 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16943 debug information or MIPS16 TLS. */
16944
16945 static void
16946 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16947 bfd_reloc_code_real_type rtype)
16948 {
16949 expressionS ex;
16950 char *p;
16951
16952 expression (&ex);
16953
16954 if (ex.X_op != O_symbol)
16955 {
16956 as_bad (_("unsupported use of %s"), dirstr);
16957 ignore_rest_of_line ();
16958 }
16959
16960 p = frag_more (bytes);
16961 md_number_to_chars (p, 0, bytes);
16962 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16963 demand_empty_rest_of_line ();
16964 mips_clear_insn_labels ();
16965 }
16966
16967 /* Handle .dtprelword. */
16968
16969 static void
16970 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16971 {
16972 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16973 }
16974
16975 /* Handle .dtpreldword. */
16976
16977 static void
16978 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16979 {
16980 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16981 }
16982
16983 /* Handle .tprelword. */
16984
16985 static void
16986 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16987 {
16988 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16989 }
16990
16991 /* Handle .tpreldword. */
16992
16993 static void
16994 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16995 {
16996 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16997 }
16998
16999 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17000 code. It sets the offset to use in gp_rel relocations. */
17001
17002 static void
17003 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17004 {
17005 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17006 We also need NewABI support. */
17007 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17008 {
17009 s_ignore (0);
17010 return;
17011 }
17012
17013 mips_gprel_offset = get_absolute_expression ();
17014
17015 demand_empty_rest_of_line ();
17016 }
17017
17018 /* Handle the .gpword pseudo-op. This is used when generating PIC
17019 code. It generates a 32 bit GP relative reloc. */
17020
17021 static void
17022 s_gpword (int ignore ATTRIBUTE_UNUSED)
17023 {
17024 segment_info_type *si;
17025 struct insn_label_list *l;
17026 expressionS ex;
17027 char *p;
17028
17029 /* When not generating PIC code, this is treated as .word. */
17030 if (mips_pic != SVR4_PIC)
17031 {
17032 s_cons (2);
17033 return;
17034 }
17035
17036 si = seg_info (now_seg);
17037 l = si->label_list;
17038 mips_emit_delays ();
17039 if (auto_align)
17040 mips_align (2, 0, l);
17041
17042 expression (&ex);
17043 mips_clear_insn_labels ();
17044
17045 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17046 {
17047 as_bad (_("unsupported use of .gpword"));
17048 ignore_rest_of_line ();
17049 }
17050
17051 p = frag_more (4);
17052 md_number_to_chars (p, 0, 4);
17053 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17054 BFD_RELOC_GPREL32);
17055
17056 demand_empty_rest_of_line ();
17057 }
17058
17059 static void
17060 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17061 {
17062 segment_info_type *si;
17063 struct insn_label_list *l;
17064 expressionS ex;
17065 char *p;
17066
17067 /* When not generating PIC code, this is treated as .dword. */
17068 if (mips_pic != SVR4_PIC)
17069 {
17070 s_cons (3);
17071 return;
17072 }
17073
17074 si = seg_info (now_seg);
17075 l = si->label_list;
17076 mips_emit_delays ();
17077 if (auto_align)
17078 mips_align (3, 0, l);
17079
17080 expression (&ex);
17081 mips_clear_insn_labels ();
17082
17083 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17084 {
17085 as_bad (_("unsupported use of .gpdword"));
17086 ignore_rest_of_line ();
17087 }
17088
17089 p = frag_more (8);
17090 md_number_to_chars (p, 0, 8);
17091 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17092 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17093
17094 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17095 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17096 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17097
17098 demand_empty_rest_of_line ();
17099 }
17100
17101 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17102 tables. It generates a R_MIPS_EH reloc. */
17103
17104 static void
17105 s_ehword (int ignore ATTRIBUTE_UNUSED)
17106 {
17107 expressionS ex;
17108 char *p;
17109
17110 mips_emit_delays ();
17111
17112 expression (&ex);
17113 mips_clear_insn_labels ();
17114
17115 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17116 {
17117 as_bad (_("unsupported use of .ehword"));
17118 ignore_rest_of_line ();
17119 }
17120
17121 p = frag_more (4);
17122 md_number_to_chars (p, 0, 4);
17123 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17124 BFD_RELOC_32_PCREL);
17125
17126 demand_empty_rest_of_line ();
17127 }
17128
17129 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17130 tables in SVR4 PIC code. */
17131
17132 static void
17133 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17134 {
17135 int reg;
17136
17137 file_mips_check_options ();
17138
17139 /* This is ignored when not generating SVR4 PIC code. */
17140 if (mips_pic != SVR4_PIC)
17141 {
17142 s_ignore (0);
17143 return;
17144 }
17145
17146 mips_mark_labels ();
17147 mips_assembling_insn = TRUE;
17148
17149 /* Add $gp to the register named as an argument. */
17150 macro_start ();
17151 reg = tc_get_register (0);
17152 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17153 macro_end ();
17154
17155 mips_assembling_insn = FALSE;
17156 demand_empty_rest_of_line ();
17157 }
17158
17159 /* Handle the .insn pseudo-op. This marks instruction labels in
17160 mips16/micromips mode. This permits the linker to handle them specially,
17161 such as generating jalx instructions when needed. We also make
17162 them odd for the duration of the assembly, in order to generate the
17163 right sort of code. We will make them even in the adjust_symtab
17164 routine, while leaving them marked. This is convenient for the
17165 debugger and the disassembler. The linker knows to make them odd
17166 again. */
17167
17168 static void
17169 s_insn (int ignore ATTRIBUTE_UNUSED)
17170 {
17171 file_mips_check_options ();
17172 file_ase_mips16 |= mips_opts.mips16;
17173 file_ase_micromips |= mips_opts.micromips;
17174
17175 mips_mark_labels ();
17176
17177 demand_empty_rest_of_line ();
17178 }
17179
17180 /* Handle the .nan pseudo-op. */
17181
17182 static void
17183 s_nan (int ignore ATTRIBUTE_UNUSED)
17184 {
17185 static const char str_legacy[] = "legacy";
17186 static const char str_2008[] = "2008";
17187 size_t i;
17188
17189 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17190
17191 if (i == sizeof (str_2008) - 1
17192 && memcmp (input_line_pointer, str_2008, i) == 0)
17193 mips_nan2008 = 1;
17194 else if (i == sizeof (str_legacy) - 1
17195 && memcmp (input_line_pointer, str_legacy, i) == 0)
17196 {
17197 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17198 mips_nan2008 = 0;
17199 else
17200 as_bad (_("`%s' does not support legacy NaN"),
17201 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17202 }
17203 else
17204 as_bad (_("bad .nan directive"));
17205
17206 input_line_pointer += i;
17207 demand_empty_rest_of_line ();
17208 }
17209
17210 /* Handle a .stab[snd] directive. Ideally these directives would be
17211 implemented in a transparent way, so that removing them would not
17212 have any effect on the generated instructions. However, s_stab
17213 internally changes the section, so in practice we need to decide
17214 now whether the preceding label marks compressed code. We do not
17215 support changing the compression mode of a label after a .stab*
17216 directive, such as in:
17217
17218 foo:
17219 .stabs ...
17220 .set mips16
17221
17222 so the current mode wins. */
17223
17224 static void
17225 s_mips_stab (int type)
17226 {
17227 file_mips_check_options ();
17228 mips_mark_labels ();
17229 s_stab (type);
17230 }
17231
17232 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17233
17234 static void
17235 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17236 {
17237 char *name;
17238 int c;
17239 symbolS *symbolP;
17240 expressionS exp;
17241
17242 c = get_symbol_name (&name);
17243 symbolP = symbol_find_or_make (name);
17244 S_SET_WEAK (symbolP);
17245 *input_line_pointer = c;
17246
17247 SKIP_WHITESPACE_AFTER_NAME ();
17248
17249 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17250 {
17251 if (S_IS_DEFINED (symbolP))
17252 {
17253 as_bad (_("ignoring attempt to redefine symbol %s"),
17254 S_GET_NAME (symbolP));
17255 ignore_rest_of_line ();
17256 return;
17257 }
17258
17259 if (*input_line_pointer == ',')
17260 {
17261 ++input_line_pointer;
17262 SKIP_WHITESPACE ();
17263 }
17264
17265 expression (&exp);
17266 if (exp.X_op != O_symbol)
17267 {
17268 as_bad (_("bad .weakext directive"));
17269 ignore_rest_of_line ();
17270 return;
17271 }
17272 symbol_set_value_expression (symbolP, &exp);
17273 }
17274
17275 demand_empty_rest_of_line ();
17276 }
17277
17278 /* Parse a register string into a number. Called from the ECOFF code
17279 to parse .frame. The argument is non-zero if this is the frame
17280 register, so that we can record it in mips_frame_reg. */
17281
17282 int
17283 tc_get_register (int frame)
17284 {
17285 unsigned int reg;
17286
17287 SKIP_WHITESPACE ();
17288 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17289 reg = 0;
17290 if (frame)
17291 {
17292 mips_frame_reg = reg != 0 ? reg : SP;
17293 mips_frame_reg_valid = 1;
17294 mips_cprestore_valid = 0;
17295 }
17296 return reg;
17297 }
17298
17299 valueT
17300 md_section_align (asection *seg, valueT addr)
17301 {
17302 int align = bfd_get_section_alignment (stdoutput, seg);
17303
17304 /* We don't need to align ELF sections to the full alignment.
17305 However, Irix 5 may prefer that we align them at least to a 16
17306 byte boundary. We don't bother to align the sections if we
17307 are targeted for an embedded system. */
17308 if (strncmp (TARGET_OS, "elf", 3) == 0)
17309 return addr;
17310 if (align > 4)
17311 align = 4;
17312
17313 return ((addr + (1 << align) - 1) & -(1 << align));
17314 }
17315
17316 /* Utility routine, called from above as well. If called while the
17317 input file is still being read, it's only an approximation. (For
17318 example, a symbol may later become defined which appeared to be
17319 undefined earlier.) */
17320
17321 static int
17322 nopic_need_relax (symbolS *sym, int before_relaxing)
17323 {
17324 if (sym == 0)
17325 return 0;
17326
17327 if (g_switch_value > 0)
17328 {
17329 const char *symname;
17330 int change;
17331
17332 /* Find out whether this symbol can be referenced off the $gp
17333 register. It can be if it is smaller than the -G size or if
17334 it is in the .sdata or .sbss section. Certain symbols can
17335 not be referenced off the $gp, although it appears as though
17336 they can. */
17337 symname = S_GET_NAME (sym);
17338 if (symname != (const char *) NULL
17339 && (strcmp (symname, "eprol") == 0
17340 || strcmp (symname, "etext") == 0
17341 || strcmp (symname, "_gp") == 0
17342 || strcmp (symname, "edata") == 0
17343 || strcmp (symname, "_fbss") == 0
17344 || strcmp (symname, "_fdata") == 0
17345 || strcmp (symname, "_ftext") == 0
17346 || strcmp (symname, "end") == 0
17347 || strcmp (symname, "_gp_disp") == 0))
17348 change = 1;
17349 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17350 && (0
17351 #ifndef NO_ECOFF_DEBUGGING
17352 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17353 && (symbol_get_obj (sym)->ecoff_extern_size
17354 <= g_switch_value))
17355 #endif
17356 /* We must defer this decision until after the whole
17357 file has been read, since there might be a .extern
17358 after the first use of this symbol. */
17359 || (before_relaxing
17360 #ifndef NO_ECOFF_DEBUGGING
17361 && symbol_get_obj (sym)->ecoff_extern_size == 0
17362 #endif
17363 && S_GET_VALUE (sym) == 0)
17364 || (S_GET_VALUE (sym) != 0
17365 && S_GET_VALUE (sym) <= g_switch_value)))
17366 change = 0;
17367 else
17368 {
17369 const char *segname;
17370
17371 segname = segment_name (S_GET_SEGMENT (sym));
17372 gas_assert (strcmp (segname, ".lit8") != 0
17373 && strcmp (segname, ".lit4") != 0);
17374 change = (strcmp (segname, ".sdata") != 0
17375 && strcmp (segname, ".sbss") != 0
17376 && strncmp (segname, ".sdata.", 7) != 0
17377 && strncmp (segname, ".sbss.", 6) != 0
17378 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17379 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17380 }
17381 return change;
17382 }
17383 else
17384 /* We are not optimizing for the $gp register. */
17385 return 1;
17386 }
17387
17388
17389 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17390
17391 static bfd_boolean
17392 pic_need_relax (symbolS *sym)
17393 {
17394 asection *symsec;
17395
17396 /* Handle the case of a symbol equated to another symbol. */
17397 while (symbol_equated_reloc_p (sym))
17398 {
17399 symbolS *n;
17400
17401 /* It's possible to get a loop here in a badly written program. */
17402 n = symbol_get_value_expression (sym)->X_add_symbol;
17403 if (n == sym)
17404 break;
17405 sym = n;
17406 }
17407
17408 if (symbol_section_p (sym))
17409 return TRUE;
17410
17411 symsec = S_GET_SEGMENT (sym);
17412
17413 /* This must duplicate the test in adjust_reloc_syms. */
17414 return (!bfd_is_und_section (symsec)
17415 && !bfd_is_abs_section (symsec)
17416 && !bfd_is_com_section (symsec)
17417 /* A global or weak symbol is treated as external. */
17418 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17419 }
17420 \f
17421 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17422 convert a section-relative value VAL to the equivalent PC-relative
17423 value. */
17424
17425 static offsetT
17426 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17427 offsetT val, long stretch)
17428 {
17429 fragS *sym_frag;
17430 addressT addr;
17431
17432 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17433
17434 sym_frag = symbol_get_frag (fragp->fr_symbol);
17435
17436 /* If the relax_marker of the symbol fragment differs from the
17437 relax_marker of this fragment, we have not yet adjusted the
17438 symbol fragment fr_address. We want to add in STRETCH in
17439 order to get a better estimate of the address. This
17440 particularly matters because of the shift bits. */
17441 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17442 {
17443 fragS *f;
17444
17445 /* Adjust stretch for any alignment frag. Note that if have
17446 been expanding the earlier code, the symbol may be
17447 defined in what appears to be an earlier frag. FIXME:
17448 This doesn't handle the fr_subtype field, which specifies
17449 a maximum number of bytes to skip when doing an
17450 alignment. */
17451 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17452 {
17453 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17454 {
17455 if (stretch < 0)
17456 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17457 else
17458 stretch &= ~((1 << (int) f->fr_offset) - 1);
17459 if (stretch == 0)
17460 break;
17461 }
17462 }
17463 if (f != NULL)
17464 val += stretch;
17465 }
17466
17467 addr = fragp->fr_address + fragp->fr_fix;
17468
17469 /* The base address rules are complicated. The base address of
17470 a branch is the following instruction. The base address of a
17471 PC relative load or add is the instruction itself, but if it
17472 is in a delay slot (in which case it can not be extended) use
17473 the address of the instruction whose delay slot it is in. */
17474 if (pcrel_op->include_isa_bit)
17475 {
17476 addr += 2;
17477
17478 /* If we are currently assuming that this frag should be
17479 extended, then the current address is two bytes higher. */
17480 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17481 addr += 2;
17482
17483 /* Ignore the low bit in the target, since it will be set
17484 for a text label. */
17485 val &= -2;
17486 }
17487 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17488 addr -= 4;
17489 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17490 addr -= 2;
17491
17492 val -= addr & -(1 << pcrel_op->align_log2);
17493
17494 return val;
17495 }
17496
17497 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17498 extended opcode. SEC is the section the frag is in. */
17499
17500 static int
17501 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17502 {
17503 const struct mips_int_operand *operand;
17504 offsetT val;
17505 segT symsec;
17506 int type;
17507
17508 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17509 return 0;
17510 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17511 return 1;
17512
17513 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17514 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17515 operand = mips16_immed_operand (type, FALSE);
17516 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17517 || (operand->root.type == OP_PCREL
17518 ? sec != symsec
17519 : !bfd_is_abs_section (symsec)))
17520 return 1;
17521
17522 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17523
17524 if (operand->root.type == OP_PCREL)
17525 {
17526 const struct mips_pcrel_operand *pcrel_op;
17527 offsetT maxtiny;
17528
17529 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17530 return 1;
17531
17532 pcrel_op = (const struct mips_pcrel_operand *) operand;
17533 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17534
17535 /* If any of the shifted bits are set, we must use an extended
17536 opcode. If the address depends on the size of this
17537 instruction, this can lead to a loop, so we arrange to always
17538 use an extended opcode. */
17539 if ((val & ((1 << operand->shift) - 1)) != 0)
17540 {
17541 fragp->fr_subtype =
17542 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17543 return 1;
17544 }
17545
17546 /* If we are about to mark a frag as extended because the value
17547 is precisely the next value above maxtiny, then there is a
17548 chance of an infinite loop as in the following code:
17549 la $4,foo
17550 .skip 1020
17551 .align 2
17552 foo:
17553 In this case when the la is extended, foo is 0x3fc bytes
17554 away, so the la can be shrunk, but then foo is 0x400 away, so
17555 the la must be extended. To avoid this loop, we mark the
17556 frag as extended if it was small, and is about to become
17557 extended with the next value above maxtiny. */
17558 maxtiny = mips_int_operand_max (operand);
17559 if (val == maxtiny + (1 << operand->shift)
17560 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17561 {
17562 fragp->fr_subtype =
17563 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17564 return 1;
17565 }
17566 }
17567
17568 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17569 }
17570
17571 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17572 macro expansion. SEC is the section the frag is in. We only
17573 support PC-relative instructions (LA, DLA, LW, LD) here, in
17574 non-PIC code using 32-bit addressing. */
17575
17576 static int
17577 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17578 {
17579 const struct mips_pcrel_operand *pcrel_op;
17580 const struct mips_int_operand *operand;
17581 offsetT val;
17582 segT symsec;
17583 int type;
17584
17585 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17586
17587 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17588 return 0;
17589 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17590 return 0;
17591
17592 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17593 switch (type)
17594 {
17595 case 'A':
17596 case 'B':
17597 case 'E':
17598 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17599 if (bfd_is_abs_section (symsec))
17600 return 1;
17601 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17602 return 0;
17603 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17604 return 1;
17605
17606 operand = mips16_immed_operand (type, TRUE);
17607 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17608 pcrel_op = (const struct mips_pcrel_operand *) operand;
17609 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17610
17611 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17612
17613 default:
17614 return 0;
17615 }
17616 }
17617
17618 /* Compute the length of a branch sequence, and adjust the
17619 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17620 worst-case length is computed, with UPDATE being used to indicate
17621 whether an unconditional (-1), branch-likely (+1) or regular (0)
17622 branch is to be computed. */
17623 static int
17624 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17625 {
17626 bfd_boolean toofar;
17627 int length;
17628
17629 if (fragp
17630 && S_IS_DEFINED (fragp->fr_symbol)
17631 && !S_IS_WEAK (fragp->fr_symbol)
17632 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17633 {
17634 addressT addr;
17635 offsetT val;
17636
17637 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17638
17639 addr = fragp->fr_address + fragp->fr_fix + 4;
17640
17641 val -= addr;
17642
17643 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17644 }
17645 else
17646 /* If the symbol is not defined or it's in a different segment,
17647 we emit the long sequence. */
17648 toofar = TRUE;
17649
17650 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17651 fragp->fr_subtype
17652 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17653 RELAX_BRANCH_PIC (fragp->fr_subtype),
17654 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17655 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17656 RELAX_BRANCH_LINK (fragp->fr_subtype),
17657 toofar);
17658
17659 length = 4;
17660 if (toofar)
17661 {
17662 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17663 length += 8;
17664
17665 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17666 {
17667 /* Additional space for PIC loading of target address. */
17668 length += 8;
17669 if (mips_opts.isa == ISA_MIPS1)
17670 /* Additional space for $at-stabilizing nop. */
17671 length += 4;
17672 }
17673
17674 /* If branch is conditional. */
17675 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17676 length += 8;
17677 }
17678
17679 return length;
17680 }
17681
17682 /* Get a FRAG's branch instruction delay slot size, either from the
17683 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17684 or SHORT_INSN_SIZE otherwise. */
17685
17686 static int
17687 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17688 {
17689 char *buf = fragp->fr_literal + fragp->fr_fix;
17690
17691 if (al)
17692 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17693 else
17694 return short_insn_size;
17695 }
17696
17697 /* Compute the length of a branch sequence, and adjust the
17698 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17699 worst-case length is computed, with UPDATE being used to indicate
17700 whether an unconditional (-1), or regular (0) branch is to be
17701 computed. */
17702
17703 static int
17704 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17705 {
17706 bfd_boolean insn32 = TRUE;
17707 bfd_boolean nods = TRUE;
17708 bfd_boolean pic = TRUE;
17709 bfd_boolean al = TRUE;
17710 int short_insn_size;
17711 bfd_boolean toofar;
17712 int length;
17713
17714 if (fragp)
17715 {
17716 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17717 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17718 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17719 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17720 }
17721 short_insn_size = insn32 ? 4 : 2;
17722
17723 if (fragp
17724 && S_IS_DEFINED (fragp->fr_symbol)
17725 && !S_IS_WEAK (fragp->fr_symbol)
17726 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17727 {
17728 addressT addr;
17729 offsetT val;
17730
17731 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17732 /* Ignore the low bit in the target, since it will be set
17733 for a text label. */
17734 if ((val & 1) != 0)
17735 --val;
17736
17737 addr = fragp->fr_address + fragp->fr_fix + 4;
17738
17739 val -= addr;
17740
17741 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17742 }
17743 else
17744 /* If the symbol is not defined or it's in a different segment,
17745 we emit the long sequence. */
17746 toofar = TRUE;
17747
17748 if (fragp && update
17749 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17750 fragp->fr_subtype = (toofar
17751 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17752 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17753
17754 length = 4;
17755 if (toofar)
17756 {
17757 bfd_boolean compact_known = fragp != NULL;
17758 bfd_boolean compact = FALSE;
17759 bfd_boolean uncond;
17760
17761 if (fragp)
17762 {
17763 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17764 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17765 }
17766 else
17767 uncond = update < 0;
17768
17769 /* If label is out of range, we turn branch <br>:
17770
17771 <br> label # 4 bytes
17772 0:
17773
17774 into:
17775
17776 j label # 4 bytes
17777 nop # 2/4 bytes if
17778 # compact && (!PIC || insn32)
17779 0:
17780 */
17781 if ((!pic || insn32) && (!compact_known || compact))
17782 length += short_insn_size;
17783
17784 /* If assembling PIC code, we further turn:
17785
17786 j label # 4 bytes
17787
17788 into:
17789
17790 lw/ld at, %got(label)(gp) # 4 bytes
17791 d/addiu at, %lo(label) # 4 bytes
17792 jr/c at # 2/4 bytes
17793 */
17794 if (pic)
17795 length += 4 + short_insn_size;
17796
17797 /* Add an extra nop if the jump has no compact form and we need
17798 to fill the delay slot. */
17799 if ((!pic || al) && nods)
17800 length += (fragp
17801 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17802 : short_insn_size);
17803
17804 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17805
17806 <brneg> 0f # 4 bytes
17807 nop # 2/4 bytes if !compact
17808 */
17809 if (!uncond)
17810 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17811 }
17812 else if (nods)
17813 {
17814 /* Add an extra nop to fill the delay slot. */
17815 gas_assert (fragp);
17816 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17817 }
17818
17819 return length;
17820 }
17821
17822 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17823 bit accordingly. */
17824
17825 static int
17826 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17827 {
17828 bfd_boolean toofar;
17829
17830 if (fragp
17831 && S_IS_DEFINED (fragp->fr_symbol)
17832 && !S_IS_WEAK (fragp->fr_symbol)
17833 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17834 {
17835 addressT addr;
17836 offsetT val;
17837 int type;
17838
17839 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17840 /* Ignore the low bit in the target, since it will be set
17841 for a text label. */
17842 if ((val & 1) != 0)
17843 --val;
17844
17845 /* Assume this is a 2-byte branch. */
17846 addr = fragp->fr_address + fragp->fr_fix + 2;
17847
17848 /* We try to avoid the infinite loop by not adding 2 more bytes for
17849 long branches. */
17850
17851 val -= addr;
17852
17853 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17854 if (type == 'D')
17855 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17856 else if (type == 'E')
17857 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17858 else
17859 abort ();
17860 }
17861 else
17862 /* If the symbol is not defined or it's in a different segment,
17863 we emit a normal 32-bit branch. */
17864 toofar = TRUE;
17865
17866 if (fragp && update
17867 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17868 fragp->fr_subtype
17869 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17870 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17871
17872 if (toofar)
17873 return 4;
17874
17875 return 2;
17876 }
17877
17878 /* Estimate the size of a frag before relaxing. Unless this is the
17879 mips16, we are not really relaxing here, and the final size is
17880 encoded in the subtype information. For the mips16, we have to
17881 decide whether we are using an extended opcode or not. */
17882
17883 int
17884 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17885 {
17886 int change;
17887
17888 if (RELAX_BRANCH_P (fragp->fr_subtype))
17889 {
17890
17891 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17892
17893 return fragp->fr_var;
17894 }
17895
17896 if (RELAX_MIPS16_P (fragp->fr_subtype))
17897 {
17898 /* We don't want to modify the EXTENDED bit here; it might get us
17899 into infinite loops. We change it only in mips_relax_frag(). */
17900 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17901 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17902 else
17903 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17904 }
17905
17906 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17907 {
17908 int length = 4;
17909
17910 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17911 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17912 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17913 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17914 fragp->fr_var = length;
17915
17916 return length;
17917 }
17918
17919 if (mips_pic == VXWORKS_PIC)
17920 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17921 change = 0;
17922 else if (RELAX_PIC (fragp->fr_subtype))
17923 change = pic_need_relax (fragp->fr_symbol);
17924 else
17925 change = nopic_need_relax (fragp->fr_symbol, 0);
17926
17927 if (change)
17928 {
17929 fragp->fr_subtype |= RELAX_USE_SECOND;
17930 return -RELAX_FIRST (fragp->fr_subtype);
17931 }
17932 else
17933 return -RELAX_SECOND (fragp->fr_subtype);
17934 }
17935
17936 /* This is called to see whether a reloc against a defined symbol
17937 should be converted into a reloc against a section. */
17938
17939 int
17940 mips_fix_adjustable (fixS *fixp)
17941 {
17942 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17943 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17944 return 0;
17945
17946 if (fixp->fx_addsy == NULL)
17947 return 1;
17948
17949 /* Allow relocs used for EH tables. */
17950 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17951 return 1;
17952
17953 /* If symbol SYM is in a mergeable section, relocations of the form
17954 SYM + 0 can usually be made section-relative. The mergeable data
17955 is then identified by the section offset rather than by the symbol.
17956
17957 However, if we're generating REL LO16 relocations, the offset is split
17958 between the LO16 and partnering high part relocation. The linker will
17959 need to recalculate the complete offset in order to correctly identify
17960 the merge data.
17961
17962 The linker has traditionally not looked for the partnering high part
17963 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17964 placed anywhere. Rather than break backwards compatibility by changing
17965 this, it seems better not to force the issue, and instead keep the
17966 original symbol. This will work with either linker behavior. */
17967 if ((lo16_reloc_p (fixp->fx_r_type)
17968 || reloc_needs_lo_p (fixp->fx_r_type))
17969 && HAVE_IN_PLACE_ADDENDS
17970 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17971 return 0;
17972
17973 /* There is no place to store an in-place offset for JALR relocations. */
17974 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17975 return 0;
17976
17977 /* Likewise an in-range offset of limited PC-relative relocations may
17978 overflow the in-place relocatable field if recalculated against the
17979 start address of the symbol's containing section.
17980
17981 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17982 section relative to allow linker relaxations to be performed later on. */
17983 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17984 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17985 return 0;
17986
17987 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17988 to a floating-point stub. The same is true for non-R_MIPS16_26
17989 relocations against MIPS16 functions; in this case, the stub becomes
17990 the function's canonical address.
17991
17992 Floating-point stubs are stored in unique .mips16.call.* or
17993 .mips16.fn.* sections. If a stub T for function F is in section S,
17994 the first relocation in section S must be against F; this is how the
17995 linker determines the target function. All relocations that might
17996 resolve to T must also be against F. We therefore have the following
17997 restrictions, which are given in an intentionally-redundant way:
17998
17999 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18000 symbols.
18001
18002 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18003 if that stub might be used.
18004
18005 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18006 symbols.
18007
18008 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18009 that stub might be used.
18010
18011 There is a further restriction:
18012
18013 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18014 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18015 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18016 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18017 against MIPS16 or microMIPS symbols because we need to keep the
18018 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18019 detection and JAL or BAL to JALX instruction conversion in the
18020 linker.
18021
18022 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18023 against a MIPS16 symbol. We deal with (5) by additionally leaving
18024 alone any jump and branch relocations against a microMIPS symbol.
18025
18026 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18027 relocation against some symbol R, no relocation against R may be
18028 reduced. (Note that this deals with (2) as well as (1) because
18029 relocations against global symbols will never be reduced on ELF
18030 targets.) This approach is a little simpler than trying to detect
18031 stub sections, and gives the "all or nothing" per-symbol consistency
18032 that we have for MIPS16 symbols. */
18033 if (fixp->fx_subsy == NULL
18034 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18035 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18036 && (jmp_reloc_p (fixp->fx_r_type)
18037 || b_reloc_p (fixp->fx_r_type)))
18038 || *symbol_get_tc (fixp->fx_addsy)))
18039 return 0;
18040
18041 return 1;
18042 }
18043
18044 /* Translate internal representation of relocation info to BFD target
18045 format. */
18046
18047 arelent **
18048 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18049 {
18050 static arelent *retval[4];
18051 arelent *reloc;
18052 bfd_reloc_code_real_type code;
18053
18054 memset (retval, 0, sizeof(retval));
18055 reloc = retval[0] = XCNEW (arelent);
18056 reloc->sym_ptr_ptr = XNEW (asymbol *);
18057 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18058 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18059
18060 if (fixp->fx_pcrel)
18061 {
18062 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18063 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18064 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18065 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18066 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18067 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18068 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18069 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18070 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18071 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18072 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18073 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18074
18075 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18076 Relocations want only the symbol offset. */
18077 switch (fixp->fx_r_type)
18078 {
18079 case BFD_RELOC_MIPS_18_PCREL_S3:
18080 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18081 break;
18082 default:
18083 reloc->addend = fixp->fx_addnumber + reloc->address;
18084 break;
18085 }
18086 }
18087 else if (HAVE_IN_PLACE_ADDENDS
18088 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18089 && (read_compressed_insn (fixp->fx_frag->fr_literal
18090 + fixp->fx_where, 4) >> 26) == 0x3c)
18091 {
18092 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18093 addend accordingly. */
18094 reloc->addend = fixp->fx_addnumber >> 1;
18095 }
18096 else
18097 reloc->addend = fixp->fx_addnumber;
18098
18099 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18100 entry to be used in the relocation's section offset. */
18101 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18102 {
18103 reloc->address = reloc->addend;
18104 reloc->addend = 0;
18105 }
18106
18107 code = fixp->fx_r_type;
18108
18109 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18110 if (reloc->howto == NULL)
18111 {
18112 as_bad_where (fixp->fx_file, fixp->fx_line,
18113 _("cannot represent %s relocation in this object file"
18114 " format"),
18115 bfd_get_reloc_code_name (code));
18116 retval[0] = NULL;
18117 }
18118
18119 return retval;
18120 }
18121
18122 /* Relax a machine dependent frag. This returns the amount by which
18123 the current size of the frag should change. */
18124
18125 int
18126 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18127 {
18128 if (RELAX_BRANCH_P (fragp->fr_subtype))
18129 {
18130 offsetT old_var = fragp->fr_var;
18131
18132 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18133
18134 return fragp->fr_var - old_var;
18135 }
18136
18137 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18138 {
18139 offsetT old_var = fragp->fr_var;
18140 offsetT new_var = 4;
18141
18142 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18143 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18144 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18145 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18146 fragp->fr_var = new_var;
18147
18148 return new_var - old_var;
18149 }
18150
18151 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18152 return 0;
18153
18154 if (!mips16_extended_frag (fragp, sec, stretch))
18155 {
18156 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18157 {
18158 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18159 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18160 }
18161 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18162 {
18163 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18164 return -2;
18165 }
18166 else
18167 return 0;
18168 }
18169 else if (!mips16_macro_frag (fragp, sec, stretch))
18170 {
18171 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18172 {
18173 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18174 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18175 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18176 }
18177 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18178 {
18179 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18180 return 2;
18181 }
18182 else
18183 return 0;
18184 }
18185 else
18186 {
18187 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18188 return 0;
18189 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18190 {
18191 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18192 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18193 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18194 }
18195 else
18196 {
18197 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18198 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18199 }
18200 }
18201
18202 return 0;
18203 }
18204
18205 /* Convert a machine dependent frag. */
18206
18207 void
18208 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18209 {
18210 if (RELAX_BRANCH_P (fragp->fr_subtype))
18211 {
18212 char *buf;
18213 unsigned long insn;
18214 fixS *fixp;
18215
18216 buf = fragp->fr_literal + fragp->fr_fix;
18217 insn = read_insn (buf);
18218
18219 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18220 {
18221 /* We generate a fixup instead of applying it right now
18222 because, if there are linker relaxations, we're going to
18223 need the relocations. */
18224 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18225 fragp->fr_symbol, fragp->fr_offset,
18226 TRUE, BFD_RELOC_16_PCREL_S2);
18227 fixp->fx_file = fragp->fr_file;
18228 fixp->fx_line = fragp->fr_line;
18229
18230 buf = write_insn (buf, insn);
18231 }
18232 else
18233 {
18234 int i;
18235
18236 as_warn_where (fragp->fr_file, fragp->fr_line,
18237 _("relaxed out-of-range branch into a jump"));
18238
18239 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18240 goto uncond;
18241
18242 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18243 {
18244 /* Reverse the branch. */
18245 switch ((insn >> 28) & 0xf)
18246 {
18247 case 4:
18248 if ((insn & 0xff000000) == 0x47000000
18249 || (insn & 0xff600000) == 0x45600000)
18250 {
18251 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18252 reversed by tweaking bit 23. */
18253 insn ^= 0x00800000;
18254 }
18255 else
18256 {
18257 /* bc[0-3][tf]l? instructions can have the condition
18258 reversed by tweaking a single TF bit, and their
18259 opcodes all have 0x4???????. */
18260 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18261 insn ^= 0x00010000;
18262 }
18263 break;
18264
18265 case 0:
18266 /* bltz 0x04000000 bgez 0x04010000
18267 bltzal 0x04100000 bgezal 0x04110000 */
18268 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18269 insn ^= 0x00010000;
18270 break;
18271
18272 case 1:
18273 /* beq 0x10000000 bne 0x14000000
18274 blez 0x18000000 bgtz 0x1c000000 */
18275 insn ^= 0x04000000;
18276 break;
18277
18278 default:
18279 abort ();
18280 }
18281 }
18282
18283 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18284 {
18285 /* Clear the and-link bit. */
18286 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18287
18288 /* bltzal 0x04100000 bgezal 0x04110000
18289 bltzall 0x04120000 bgezall 0x04130000 */
18290 insn &= ~0x00100000;
18291 }
18292
18293 /* Branch over the branch (if the branch was likely) or the
18294 full jump (not likely case). Compute the offset from the
18295 current instruction to branch to. */
18296 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18297 i = 16;
18298 else
18299 {
18300 /* How many bytes in instructions we've already emitted? */
18301 i = buf - fragp->fr_literal - fragp->fr_fix;
18302 /* How many bytes in instructions from here to the end? */
18303 i = fragp->fr_var - i;
18304 }
18305 /* Convert to instruction count. */
18306 i >>= 2;
18307 /* Branch counts from the next instruction. */
18308 i--;
18309 insn |= i;
18310 /* Branch over the jump. */
18311 buf = write_insn (buf, insn);
18312
18313 /* nop */
18314 buf = write_insn (buf, 0);
18315
18316 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18317 {
18318 /* beql $0, $0, 2f */
18319 insn = 0x50000000;
18320 /* Compute the PC offset from the current instruction to
18321 the end of the variable frag. */
18322 /* How many bytes in instructions we've already emitted? */
18323 i = buf - fragp->fr_literal - fragp->fr_fix;
18324 /* How many bytes in instructions from here to the end? */
18325 i = fragp->fr_var - i;
18326 /* Convert to instruction count. */
18327 i >>= 2;
18328 /* Don't decrement i, because we want to branch over the
18329 delay slot. */
18330 insn |= i;
18331
18332 buf = write_insn (buf, insn);
18333 buf = write_insn (buf, 0);
18334 }
18335
18336 uncond:
18337 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18338 {
18339 /* j or jal. */
18340 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18341 ? 0x0c000000 : 0x08000000);
18342
18343 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18344 fragp->fr_symbol, fragp->fr_offset,
18345 FALSE, BFD_RELOC_MIPS_JMP);
18346 fixp->fx_file = fragp->fr_file;
18347 fixp->fx_line = fragp->fr_line;
18348
18349 buf = write_insn (buf, insn);
18350 }
18351 else
18352 {
18353 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18354
18355 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18356 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18357 insn |= at << OP_SH_RT;
18358
18359 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18360 fragp->fr_symbol, fragp->fr_offset,
18361 FALSE, BFD_RELOC_MIPS_GOT16);
18362 fixp->fx_file = fragp->fr_file;
18363 fixp->fx_line = fragp->fr_line;
18364
18365 buf = write_insn (buf, insn);
18366
18367 if (mips_opts.isa == ISA_MIPS1)
18368 /* nop */
18369 buf = write_insn (buf, 0);
18370
18371 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18372 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18373 insn |= at << OP_SH_RS | at << OP_SH_RT;
18374
18375 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18376 fragp->fr_symbol, fragp->fr_offset,
18377 FALSE, BFD_RELOC_LO16);
18378 fixp->fx_file = fragp->fr_file;
18379 fixp->fx_line = fragp->fr_line;
18380
18381 buf = write_insn (buf, insn);
18382
18383 /* j(al)r $at. */
18384 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18385 insn = 0x0000f809;
18386 else
18387 insn = 0x00000008;
18388 insn |= at << OP_SH_RS;
18389
18390 buf = write_insn (buf, insn);
18391 }
18392 }
18393
18394 fragp->fr_fix += fragp->fr_var;
18395 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18396 return;
18397 }
18398
18399 /* Relax microMIPS branches. */
18400 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18401 {
18402 char *buf = fragp->fr_literal + fragp->fr_fix;
18403 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18404 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18405 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18406 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18407 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18408 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18409 bfd_boolean short_ds;
18410 unsigned long insn;
18411 fixS *fixp;
18412
18413 fragp->fr_fix += fragp->fr_var;
18414
18415 /* Handle 16-bit branches that fit or are forced to fit. */
18416 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18417 {
18418 /* We generate a fixup instead of applying it right now,
18419 because if there is linker relaxation, we're going to
18420 need the relocations. */
18421 switch (type)
18422 {
18423 case 'D':
18424 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18425 fragp->fr_symbol, fragp->fr_offset,
18426 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18427 break;
18428 case 'E':
18429 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18430 fragp->fr_symbol, fragp->fr_offset,
18431 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18432 break;
18433 default:
18434 abort ();
18435 }
18436
18437 fixp->fx_file = fragp->fr_file;
18438 fixp->fx_line = fragp->fr_line;
18439
18440 /* These relocations can have an addend that won't fit in
18441 2 octets. */
18442 fixp->fx_no_overflow = 1;
18443
18444 return;
18445 }
18446
18447 /* Handle 32-bit branches that fit or are forced to fit. */
18448 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18449 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18450 {
18451 /* We generate a fixup instead of applying it right now,
18452 because if there is linker relaxation, we're going to
18453 need the relocations. */
18454 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18455 fragp->fr_symbol, fragp->fr_offset,
18456 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18457 fixp->fx_file = fragp->fr_file;
18458 fixp->fx_line = fragp->fr_line;
18459
18460 if (type == 0)
18461 {
18462 insn = read_compressed_insn (buf, 4);
18463 buf += 4;
18464
18465 if (nods)
18466 {
18467 /* Check the short-delay-slot bit. */
18468 if (!al || (insn & 0x02000000) != 0)
18469 buf = write_compressed_insn (buf, 0x0c00, 2);
18470 else
18471 buf = write_compressed_insn (buf, 0x00000000, 4);
18472 }
18473
18474 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18475 return;
18476 }
18477 }
18478
18479 /* Relax 16-bit branches to 32-bit branches. */
18480 if (type != 0)
18481 {
18482 insn = read_compressed_insn (buf, 2);
18483
18484 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18485 insn = 0x94000000; /* beq */
18486 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18487 {
18488 unsigned long regno;
18489
18490 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18491 regno = micromips_to_32_reg_d_map [regno];
18492 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18493 insn |= regno << MICROMIPSOP_SH_RS;
18494 }
18495 else
18496 abort ();
18497
18498 /* Nothing else to do, just write it out. */
18499 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18500 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18501 {
18502 buf = write_compressed_insn (buf, insn, 4);
18503 if (nods)
18504 buf = write_compressed_insn (buf, 0x0c00, 2);
18505 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18506 return;
18507 }
18508 }
18509 else
18510 insn = read_compressed_insn (buf, 4);
18511
18512 /* Relax 32-bit branches to a sequence of instructions. */
18513 as_warn_where (fragp->fr_file, fragp->fr_line,
18514 _("relaxed out-of-range branch into a jump"));
18515
18516 /* Set the short-delay-slot bit. */
18517 short_ds = !al || (insn & 0x02000000) != 0;
18518
18519 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18520 {
18521 symbolS *l;
18522
18523 /* Reverse the branch. */
18524 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18525 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18526 insn ^= 0x20000000;
18527 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18528 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18529 || (insn & 0xffe00000) == 0x40800000 /* blez */
18530 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18531 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18532 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18533 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18534 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18535 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18536 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18537 insn ^= 0x00400000;
18538 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18539 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18540 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18541 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18542 insn ^= 0x00200000;
18543 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18544 BNZ.df */
18545 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18546 BNZ.V */
18547 insn ^= 0x00800000;
18548 else
18549 abort ();
18550
18551 if (al)
18552 {
18553 /* Clear the and-link and short-delay-slot bits. */
18554 gas_assert ((insn & 0xfda00000) == 0x40200000);
18555
18556 /* bltzal 0x40200000 bgezal 0x40600000 */
18557 /* bltzals 0x42200000 bgezals 0x42600000 */
18558 insn &= ~0x02200000;
18559 }
18560
18561 /* Make a label at the end for use with the branch. */
18562 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18563 micromips_label_inc ();
18564 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18565
18566 /* Refer to it. */
18567 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18568 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18569 fixp->fx_file = fragp->fr_file;
18570 fixp->fx_line = fragp->fr_line;
18571
18572 /* Branch over the jump. */
18573 buf = write_compressed_insn (buf, insn, 4);
18574
18575 if (!compact)
18576 {
18577 /* nop */
18578 if (insn32)
18579 buf = write_compressed_insn (buf, 0x00000000, 4);
18580 else
18581 buf = write_compressed_insn (buf, 0x0c00, 2);
18582 }
18583 }
18584
18585 if (!pic)
18586 {
18587 unsigned long jal = (short_ds || nods
18588 ? 0x74000000 : 0xf4000000); /* jal/s */
18589
18590 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18591 insn = al ? jal : 0xd4000000;
18592
18593 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18594 fragp->fr_symbol, fragp->fr_offset,
18595 FALSE, BFD_RELOC_MICROMIPS_JMP);
18596 fixp->fx_file = fragp->fr_file;
18597 fixp->fx_line = fragp->fr_line;
18598
18599 buf = write_compressed_insn (buf, insn, 4);
18600
18601 if (compact || nods)
18602 {
18603 /* nop */
18604 if (insn32)
18605 buf = write_compressed_insn (buf, 0x00000000, 4);
18606 else
18607 buf = write_compressed_insn (buf, 0x0c00, 2);
18608 }
18609 }
18610 else
18611 {
18612 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18613
18614 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18615 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18616 insn |= at << MICROMIPSOP_SH_RT;
18617
18618 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18619 fragp->fr_symbol, fragp->fr_offset,
18620 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18621 fixp->fx_file = fragp->fr_file;
18622 fixp->fx_line = fragp->fr_line;
18623
18624 buf = write_compressed_insn (buf, insn, 4);
18625
18626 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18627 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18628 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18629
18630 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18631 fragp->fr_symbol, fragp->fr_offset,
18632 FALSE, BFD_RELOC_MICROMIPS_LO16);
18633 fixp->fx_file = fragp->fr_file;
18634 fixp->fx_line = fragp->fr_line;
18635
18636 buf = write_compressed_insn (buf, insn, 4);
18637
18638 if (insn32)
18639 {
18640 /* jr/jalr $at */
18641 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18642 insn |= at << MICROMIPSOP_SH_RS;
18643
18644 buf = write_compressed_insn (buf, insn, 4);
18645
18646 if (compact || nods)
18647 /* nop */
18648 buf = write_compressed_insn (buf, 0x00000000, 4);
18649 }
18650 else
18651 {
18652 /* jr/jrc/jalr/jalrs $at */
18653 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18654 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18655
18656 insn = al ? jalr : jr;
18657 insn |= at << MICROMIPSOP_SH_MJ;
18658
18659 buf = write_compressed_insn (buf, insn, 2);
18660 if (al && nods)
18661 {
18662 /* nop */
18663 if (short_ds)
18664 buf = write_compressed_insn (buf, 0x0c00, 2);
18665 else
18666 buf = write_compressed_insn (buf, 0x00000000, 4);
18667 }
18668 }
18669 }
18670
18671 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18672 return;
18673 }
18674
18675 if (RELAX_MIPS16_P (fragp->fr_subtype))
18676 {
18677 int type;
18678 const struct mips_int_operand *operand;
18679 offsetT val;
18680 char *buf;
18681 unsigned int user_length;
18682 bfd_boolean need_reloc;
18683 unsigned long insn;
18684 bfd_boolean mac;
18685 bfd_boolean ext;
18686 segT symsec;
18687
18688 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18689 operand = mips16_immed_operand (type, FALSE);
18690
18691 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18692 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18693 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18694
18695 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18696 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18697 || (operand->root.type == OP_PCREL && !mac
18698 ? asec != symsec
18699 : !bfd_is_abs_section (symsec)));
18700
18701 if (operand->root.type == OP_PCREL && !mac)
18702 {
18703 const struct mips_pcrel_operand *pcrel_op;
18704
18705 pcrel_op = (const struct mips_pcrel_operand *) operand;
18706
18707 if (pcrel_op->include_isa_bit && !need_reloc)
18708 {
18709 if (!mips_ignore_branch_isa
18710 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18711 as_bad_where (fragp->fr_file, fragp->fr_line,
18712 _("branch to a symbol in another ISA mode"));
18713 else if ((fragp->fr_offset & 0x1) != 0)
18714 as_bad_where (fragp->fr_file, fragp->fr_line,
18715 _("branch to misaligned address (0x%lx)"),
18716 (long) val);
18717 }
18718
18719 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18720
18721 /* Make sure the section winds up with the alignment we have
18722 assumed. */
18723 if (operand->shift > 0)
18724 record_alignment (asec, operand->shift);
18725 }
18726
18727 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18728 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18729 {
18730 if (mac)
18731 as_warn_where (fragp->fr_file, fragp->fr_line,
18732 _("macro instruction expanded into multiple "
18733 "instructions in a branch delay slot"));
18734 else if (ext)
18735 as_warn_where (fragp->fr_file, fragp->fr_line,
18736 _("extended instruction in a branch delay slot"));
18737 }
18738 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18739 as_warn_where (fragp->fr_file, fragp->fr_line,
18740 _("macro instruction expanded into multiple "
18741 "instructions"));
18742
18743 buf = fragp->fr_literal + fragp->fr_fix;
18744
18745 insn = read_compressed_insn (buf, 2);
18746 if (ext)
18747 insn |= MIPS16_EXTEND;
18748
18749 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18750 user_length = 4;
18751 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18752 user_length = 2;
18753 else
18754 user_length = 0;
18755
18756 if (mac)
18757 {
18758 unsigned long reg;
18759 unsigned long new;
18760 unsigned long op;
18761 bfd_boolean e2;
18762
18763 gas_assert (type == 'A' || type == 'B' || type == 'E');
18764 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18765
18766 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18767
18768 if (need_reloc)
18769 {
18770 fixS *fixp;
18771
18772 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18773
18774 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18775 fragp->fr_symbol, fragp->fr_offset,
18776 FALSE, BFD_RELOC_MIPS16_HI16_S);
18777 fixp->fx_file = fragp->fr_file;
18778 fixp->fx_line = fragp->fr_line;
18779
18780 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18781 fragp->fr_symbol, fragp->fr_offset,
18782 FALSE, BFD_RELOC_MIPS16_LO16);
18783 fixp->fx_file = fragp->fr_file;
18784 fixp->fx_line = fragp->fr_line;
18785
18786 val = 0;
18787 }
18788
18789 switch (insn & 0xf800)
18790 {
18791 case 0x0800: /* ADDIU */
18792 reg = (insn >> 8) & 0x7;
18793 op = 0xf0004800 | (reg << 8);
18794 break;
18795 case 0xb000: /* LW */
18796 reg = (insn >> 8) & 0x7;
18797 op = 0xf0009800 | (reg << 8) | (reg << 5);
18798 break;
18799 case 0xf800: /* I64 */
18800 reg = (insn >> 5) & 0x7;
18801 switch (insn & 0x0700)
18802 {
18803 case 0x0400: /* LD */
18804 op = 0xf0003800 | (reg << 8) | (reg << 5);
18805 break;
18806 case 0x0600: /* DADDIU */
18807 op = 0xf000fd00 | (reg << 5);
18808 break;
18809 default:
18810 abort ();
18811 }
18812 break;
18813 default:
18814 abort ();
18815 }
18816
18817 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18818 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18819 buf = write_compressed_insn (buf, new, 4);
18820 if (!e2)
18821 {
18822 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18823 buf = write_compressed_insn (buf, new, 4);
18824 }
18825 op |= mips16_immed_extend (val, 16);
18826 buf = write_compressed_insn (buf, op, 4);
18827
18828 fragp->fr_fix += e2 ? 8 : 12;
18829 }
18830 else
18831 {
18832 unsigned int length = ext ? 4 : 2;
18833
18834 if (need_reloc)
18835 {
18836 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18837 fixS *fixp;
18838
18839 switch (type)
18840 {
18841 case 'p':
18842 case 'q':
18843 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18844 break;
18845 default:
18846 break;
18847 }
18848 if (mac || reloc == BFD_RELOC_NONE)
18849 as_bad_where (fragp->fr_file, fragp->fr_line,
18850 _("unsupported relocation"));
18851 else if (ext)
18852 {
18853 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18854 fragp->fr_symbol, fragp->fr_offset,
18855 TRUE, reloc);
18856 fixp->fx_file = fragp->fr_file;
18857 fixp->fx_line = fragp->fr_line;
18858 }
18859 else
18860 as_bad_where (fragp->fr_file, fragp->fr_line,
18861 _("invalid unextended operand value"));
18862 }
18863 else
18864 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18865 BFD_RELOC_UNUSED, val, user_length, &insn);
18866
18867 gas_assert (mips16_opcode_length (insn) == length);
18868 write_compressed_insn (buf, insn, length);
18869 fragp->fr_fix += length;
18870 }
18871 }
18872 else
18873 {
18874 relax_substateT subtype = fragp->fr_subtype;
18875 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18876 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18877 int first, second;
18878 fixS *fixp;
18879
18880 first = RELAX_FIRST (subtype);
18881 second = RELAX_SECOND (subtype);
18882 fixp = (fixS *) fragp->fr_opcode;
18883
18884 /* If the delay slot chosen does not match the size of the instruction,
18885 then emit a warning. */
18886 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18887 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18888 {
18889 relax_substateT s;
18890 const char *msg;
18891
18892 s = subtype & (RELAX_DELAY_SLOT_16BIT
18893 | RELAX_DELAY_SLOT_SIZE_FIRST
18894 | RELAX_DELAY_SLOT_SIZE_SECOND);
18895 msg = macro_warning (s);
18896 if (msg != NULL)
18897 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18898 subtype &= ~s;
18899 }
18900
18901 /* Possibly emit a warning if we've chosen the longer option. */
18902 if (use_second == second_longer)
18903 {
18904 relax_substateT s;
18905 const char *msg;
18906
18907 s = (subtype
18908 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18909 msg = macro_warning (s);
18910 if (msg != NULL)
18911 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18912 subtype &= ~s;
18913 }
18914
18915 /* Go through all the fixups for the first sequence. Disable them
18916 (by marking them as done) if we're going to use the second
18917 sequence instead. */
18918 while (fixp
18919 && fixp->fx_frag == fragp
18920 && fixp->fx_where < fragp->fr_fix - second)
18921 {
18922 if (subtype & RELAX_USE_SECOND)
18923 fixp->fx_done = 1;
18924 fixp = fixp->fx_next;
18925 }
18926
18927 /* Go through the fixups for the second sequence. Disable them if
18928 we're going to use the first sequence, otherwise adjust their
18929 addresses to account for the relaxation. */
18930 while (fixp && fixp->fx_frag == fragp)
18931 {
18932 if (subtype & RELAX_USE_SECOND)
18933 fixp->fx_where -= first;
18934 else
18935 fixp->fx_done = 1;
18936 fixp = fixp->fx_next;
18937 }
18938
18939 /* Now modify the frag contents. */
18940 if (subtype & RELAX_USE_SECOND)
18941 {
18942 char *start;
18943
18944 start = fragp->fr_literal + fragp->fr_fix - first - second;
18945 memmove (start, start + first, second);
18946 fragp->fr_fix -= first;
18947 }
18948 else
18949 fragp->fr_fix -= second;
18950 }
18951 }
18952
18953 /* This function is called after the relocs have been generated.
18954 We've been storing mips16 text labels as odd. Here we convert them
18955 back to even for the convenience of the debugger. */
18956
18957 void
18958 mips_frob_file_after_relocs (void)
18959 {
18960 asymbol **syms;
18961 unsigned int count, i;
18962
18963 syms = bfd_get_outsymbols (stdoutput);
18964 count = bfd_get_symcount (stdoutput);
18965 for (i = 0; i < count; i++, syms++)
18966 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18967 && ((*syms)->value & 1) != 0)
18968 {
18969 (*syms)->value &= ~1;
18970 /* If the symbol has an odd size, it was probably computed
18971 incorrectly, so adjust that as well. */
18972 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18973 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18974 }
18975 }
18976
18977 /* This function is called whenever a label is defined, including fake
18978 labels instantiated off the dot special symbol. It is used when
18979 handling branch delays; if a branch has a label, we assume we cannot
18980 move it. This also bumps the value of the symbol by 1 in compressed
18981 code. */
18982
18983 static void
18984 mips_record_label (symbolS *sym)
18985 {
18986 segment_info_type *si = seg_info (now_seg);
18987 struct insn_label_list *l;
18988
18989 if (free_insn_labels == NULL)
18990 l = XNEW (struct insn_label_list);
18991 else
18992 {
18993 l = free_insn_labels;
18994 free_insn_labels = l->next;
18995 }
18996
18997 l->label = sym;
18998 l->next = si->label_list;
18999 si->label_list = l;
19000 }
19001
19002 /* This function is called as tc_frob_label() whenever a label is defined
19003 and adds a DWARF-2 record we only want for true labels. */
19004
19005 void
19006 mips_define_label (symbolS *sym)
19007 {
19008 mips_record_label (sym);
19009 dwarf2_emit_label (sym);
19010 }
19011
19012 /* This function is called by tc_new_dot_label whenever a new dot symbol
19013 is defined. */
19014
19015 void
19016 mips_add_dot_label (symbolS *sym)
19017 {
19018 mips_record_label (sym);
19019 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19020 mips_compressed_mark_label (sym);
19021 }
19022 \f
19023 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19024 static unsigned int
19025 mips_convert_ase_flags (int ase)
19026 {
19027 unsigned int ext_ases = 0;
19028
19029 if (ase & ASE_DSP)
19030 ext_ases |= AFL_ASE_DSP;
19031 if (ase & ASE_DSPR2)
19032 ext_ases |= AFL_ASE_DSPR2;
19033 if (ase & ASE_DSPR3)
19034 ext_ases |= AFL_ASE_DSPR3;
19035 if (ase & ASE_EVA)
19036 ext_ases |= AFL_ASE_EVA;
19037 if (ase & ASE_MCU)
19038 ext_ases |= AFL_ASE_MCU;
19039 if (ase & ASE_MDMX)
19040 ext_ases |= AFL_ASE_MDMX;
19041 if (ase & ASE_MIPS3D)
19042 ext_ases |= AFL_ASE_MIPS3D;
19043 if (ase & ASE_MT)
19044 ext_ases |= AFL_ASE_MT;
19045 if (ase & ASE_SMARTMIPS)
19046 ext_ases |= AFL_ASE_SMARTMIPS;
19047 if (ase & ASE_VIRT)
19048 ext_ases |= AFL_ASE_VIRT;
19049 if (ase & ASE_MSA)
19050 ext_ases |= AFL_ASE_MSA;
19051 if (ase & ASE_XPA)
19052 ext_ases |= AFL_ASE_XPA;
19053 if (ase & ASE_MIPS16E2)
19054 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19055 if (ase & ASE_CRC)
19056 ext_ases |= AFL_ASE_CRC;
19057 if (ase & ASE_GINV)
19058 ext_ases |= AFL_ASE_GINV;
19059 if (ase & ASE_LOONGSON_MMI)
19060 ext_ases |= AFL_ASE_LOONGSON_MMI;
19061 if (ase & ASE_LOONGSON_CAM)
19062 ext_ases |= AFL_ASE_LOONGSON_CAM;
19063 if (ase & ASE_LOONGSON_EXT)
19064 ext_ases |= AFL_ASE_LOONGSON_EXT;
19065 if (ase & ASE_LOONGSON_EXT2)
19066 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19067
19068 return ext_ases;
19069 }
19070 /* Some special processing for a MIPS ELF file. */
19071
19072 void
19073 mips_elf_final_processing (void)
19074 {
19075 int fpabi;
19076 Elf_Internal_ABIFlags_v0 flags;
19077
19078 flags.version = 0;
19079 flags.isa_rev = 0;
19080 switch (file_mips_opts.isa)
19081 {
19082 case INSN_ISA1:
19083 flags.isa_level = 1;
19084 break;
19085 case INSN_ISA2:
19086 flags.isa_level = 2;
19087 break;
19088 case INSN_ISA3:
19089 flags.isa_level = 3;
19090 break;
19091 case INSN_ISA4:
19092 flags.isa_level = 4;
19093 break;
19094 case INSN_ISA5:
19095 flags.isa_level = 5;
19096 break;
19097 case INSN_ISA32:
19098 flags.isa_level = 32;
19099 flags.isa_rev = 1;
19100 break;
19101 case INSN_ISA32R2:
19102 flags.isa_level = 32;
19103 flags.isa_rev = 2;
19104 break;
19105 case INSN_ISA32R3:
19106 flags.isa_level = 32;
19107 flags.isa_rev = 3;
19108 break;
19109 case INSN_ISA32R5:
19110 flags.isa_level = 32;
19111 flags.isa_rev = 5;
19112 break;
19113 case INSN_ISA32R6:
19114 flags.isa_level = 32;
19115 flags.isa_rev = 6;
19116 break;
19117 case INSN_ISA64:
19118 flags.isa_level = 64;
19119 flags.isa_rev = 1;
19120 break;
19121 case INSN_ISA64R2:
19122 flags.isa_level = 64;
19123 flags.isa_rev = 2;
19124 break;
19125 case INSN_ISA64R3:
19126 flags.isa_level = 64;
19127 flags.isa_rev = 3;
19128 break;
19129 case INSN_ISA64R5:
19130 flags.isa_level = 64;
19131 flags.isa_rev = 5;
19132 break;
19133 case INSN_ISA64R6:
19134 flags.isa_level = 64;
19135 flags.isa_rev = 6;
19136 break;
19137 }
19138
19139 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19140 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19141 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19142 : (file_mips_opts.fp == 64) ? AFL_REG_64
19143 : AFL_REG_32;
19144 flags.cpr2_size = AFL_REG_NONE;
19145 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19146 Tag_GNU_MIPS_ABI_FP);
19147 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19148 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19149 if (file_ase_mips16)
19150 flags.ases |= AFL_ASE_MIPS16;
19151 if (file_ase_micromips)
19152 flags.ases |= AFL_ASE_MICROMIPS;
19153 flags.flags1 = 0;
19154 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19155 || file_mips_opts.fp == 64)
19156 && file_mips_opts.oddspreg)
19157 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19158 flags.flags2 = 0;
19159
19160 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19161 ((Elf_External_ABIFlags_v0 *)
19162 mips_flags_frag));
19163
19164 /* Write out the register information. */
19165 if (mips_abi != N64_ABI)
19166 {
19167 Elf32_RegInfo s;
19168
19169 s.ri_gprmask = mips_gprmask;
19170 s.ri_cprmask[0] = mips_cprmask[0];
19171 s.ri_cprmask[1] = mips_cprmask[1];
19172 s.ri_cprmask[2] = mips_cprmask[2];
19173 s.ri_cprmask[3] = mips_cprmask[3];
19174 /* The gp_value field is set by the MIPS ELF backend. */
19175
19176 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19177 ((Elf32_External_RegInfo *)
19178 mips_regmask_frag));
19179 }
19180 else
19181 {
19182 Elf64_Internal_RegInfo s;
19183
19184 s.ri_gprmask = mips_gprmask;
19185 s.ri_pad = 0;
19186 s.ri_cprmask[0] = mips_cprmask[0];
19187 s.ri_cprmask[1] = mips_cprmask[1];
19188 s.ri_cprmask[2] = mips_cprmask[2];
19189 s.ri_cprmask[3] = mips_cprmask[3];
19190 /* The gp_value field is set by the MIPS ELF backend. */
19191
19192 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19193 ((Elf64_External_RegInfo *)
19194 mips_regmask_frag));
19195 }
19196
19197 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19198 sort of BFD interface for this. */
19199 if (mips_any_noreorder)
19200 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19201 if (mips_pic != NO_PIC)
19202 {
19203 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19204 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19205 }
19206 if (mips_abicalls)
19207 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19208
19209 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19210 defined at present; this might need to change in future. */
19211 if (file_ase_mips16)
19212 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19213 if (file_ase_micromips)
19214 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19215 if (file_mips_opts.ase & ASE_MDMX)
19216 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19217
19218 /* Set the MIPS ELF ABI flags. */
19219 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19220 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19221 else if (mips_abi == O64_ABI)
19222 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19223 else if (mips_abi == EABI_ABI)
19224 {
19225 if (file_mips_opts.gp == 64)
19226 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19227 else
19228 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19229 }
19230
19231 /* Nothing to do for N32_ABI or N64_ABI. */
19232
19233 if (mips_32bitmode)
19234 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19235
19236 if (mips_nan2008 == 1)
19237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19238
19239 /* 32 bit code with 64 bit FP registers. */
19240 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19241 Tag_GNU_MIPS_ABI_FP);
19242 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19243 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19244 }
19245 \f
19246 typedef struct proc {
19247 symbolS *func_sym;
19248 symbolS *func_end_sym;
19249 unsigned long reg_mask;
19250 unsigned long reg_offset;
19251 unsigned long fpreg_mask;
19252 unsigned long fpreg_offset;
19253 unsigned long frame_offset;
19254 unsigned long frame_reg;
19255 unsigned long pc_reg;
19256 } procS;
19257
19258 static procS cur_proc;
19259 static procS *cur_proc_ptr;
19260 static int numprocs;
19261
19262 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19263 as "2", and a normal nop as "0". */
19264
19265 #define NOP_OPCODE_MIPS 0
19266 #define NOP_OPCODE_MIPS16 1
19267 #define NOP_OPCODE_MICROMIPS 2
19268
19269 char
19270 mips_nop_opcode (void)
19271 {
19272 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19273 return NOP_OPCODE_MICROMIPS;
19274 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19275 return NOP_OPCODE_MIPS16;
19276 else
19277 return NOP_OPCODE_MIPS;
19278 }
19279
19280 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19281 32-bit microMIPS NOPs here (if applicable). */
19282
19283 void
19284 mips_handle_align (fragS *fragp)
19285 {
19286 char nop_opcode;
19287 char *p;
19288 int bytes, size, excess;
19289 valueT opcode;
19290
19291 if (fragp->fr_type != rs_align_code)
19292 return;
19293
19294 p = fragp->fr_literal + fragp->fr_fix;
19295 nop_opcode = *p;
19296 switch (nop_opcode)
19297 {
19298 case NOP_OPCODE_MICROMIPS:
19299 opcode = micromips_nop32_insn.insn_opcode;
19300 size = 4;
19301 break;
19302 case NOP_OPCODE_MIPS16:
19303 opcode = mips16_nop_insn.insn_opcode;
19304 size = 2;
19305 break;
19306 case NOP_OPCODE_MIPS:
19307 default:
19308 opcode = nop_insn.insn_opcode;
19309 size = 4;
19310 break;
19311 }
19312
19313 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19314 excess = bytes % size;
19315
19316 /* Handle the leading part if we're not inserting a whole number of
19317 instructions, and make it the end of the fixed part of the frag.
19318 Try to fit in a short microMIPS NOP if applicable and possible,
19319 and use zeroes otherwise. */
19320 gas_assert (excess < 4);
19321 fragp->fr_fix += excess;
19322 switch (excess)
19323 {
19324 case 3:
19325 *p++ = '\0';
19326 /* Fall through. */
19327 case 2:
19328 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19329 {
19330 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19331 break;
19332 }
19333 *p++ = '\0';
19334 /* Fall through. */
19335 case 1:
19336 *p++ = '\0';
19337 /* Fall through. */
19338 case 0:
19339 break;
19340 }
19341
19342 md_number_to_chars (p, opcode, size);
19343 fragp->fr_var = size;
19344 }
19345
19346 static long
19347 get_number (void)
19348 {
19349 int negative = 0;
19350 long val = 0;
19351
19352 if (*input_line_pointer == '-')
19353 {
19354 ++input_line_pointer;
19355 negative = 1;
19356 }
19357 if (!ISDIGIT (*input_line_pointer))
19358 as_bad (_("expected simple number"));
19359 if (input_line_pointer[0] == '0')
19360 {
19361 if (input_line_pointer[1] == 'x')
19362 {
19363 input_line_pointer += 2;
19364 while (ISXDIGIT (*input_line_pointer))
19365 {
19366 val <<= 4;
19367 val |= hex_value (*input_line_pointer++);
19368 }
19369 return negative ? -val : val;
19370 }
19371 else
19372 {
19373 ++input_line_pointer;
19374 while (ISDIGIT (*input_line_pointer))
19375 {
19376 val <<= 3;
19377 val |= *input_line_pointer++ - '0';
19378 }
19379 return negative ? -val : val;
19380 }
19381 }
19382 if (!ISDIGIT (*input_line_pointer))
19383 {
19384 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19385 *input_line_pointer, *input_line_pointer);
19386 as_warn (_("invalid number"));
19387 return -1;
19388 }
19389 while (ISDIGIT (*input_line_pointer))
19390 {
19391 val *= 10;
19392 val += *input_line_pointer++ - '0';
19393 }
19394 return negative ? -val : val;
19395 }
19396
19397 /* The .file directive; just like the usual .file directive, but there
19398 is an initial number which is the ECOFF file index. In the non-ECOFF
19399 case .file implies DWARF-2. */
19400
19401 static void
19402 s_mips_file (int x ATTRIBUTE_UNUSED)
19403 {
19404 static int first_file_directive = 0;
19405
19406 if (ECOFF_DEBUGGING)
19407 {
19408 get_number ();
19409 s_app_file (0);
19410 }
19411 else
19412 {
19413 char *filename;
19414
19415 filename = dwarf2_directive_filename ();
19416
19417 /* Versions of GCC up to 3.1 start files with a ".file"
19418 directive even for stabs output. Make sure that this
19419 ".file" is handled. Note that you need a version of GCC
19420 after 3.1 in order to support DWARF-2 on MIPS. */
19421 if (filename != NULL && ! first_file_directive)
19422 {
19423 (void) new_logical_line (filename, -1);
19424 s_app_file_string (filename, 0);
19425 }
19426 first_file_directive = 1;
19427 }
19428 }
19429
19430 /* The .loc directive, implying DWARF-2. */
19431
19432 static void
19433 s_mips_loc (int x ATTRIBUTE_UNUSED)
19434 {
19435 if (!ECOFF_DEBUGGING)
19436 dwarf2_directive_loc (0);
19437 }
19438
19439 /* The .end directive. */
19440
19441 static void
19442 s_mips_end (int x ATTRIBUTE_UNUSED)
19443 {
19444 symbolS *p;
19445
19446 /* Following functions need their own .frame and .cprestore directives. */
19447 mips_frame_reg_valid = 0;
19448 mips_cprestore_valid = 0;
19449
19450 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19451 {
19452 p = get_symbol ();
19453 demand_empty_rest_of_line ();
19454 }
19455 else
19456 p = NULL;
19457
19458 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19459 as_warn (_(".end not in text section"));
19460
19461 if (!cur_proc_ptr)
19462 {
19463 as_warn (_(".end directive without a preceding .ent directive"));
19464 demand_empty_rest_of_line ();
19465 return;
19466 }
19467
19468 if (p != NULL)
19469 {
19470 gas_assert (S_GET_NAME (p));
19471 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19472 as_warn (_(".end symbol does not match .ent symbol"));
19473
19474 if (debug_type == DEBUG_STABS)
19475 stabs_generate_asm_endfunc (S_GET_NAME (p),
19476 S_GET_NAME (p));
19477 }
19478 else
19479 as_warn (_(".end directive missing or unknown symbol"));
19480
19481 /* Create an expression to calculate the size of the function. */
19482 if (p && cur_proc_ptr)
19483 {
19484 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19485 expressionS *exp = XNEW (expressionS);
19486
19487 obj->size = exp;
19488 exp->X_op = O_subtract;
19489 exp->X_add_symbol = symbol_temp_new_now ();
19490 exp->X_op_symbol = p;
19491 exp->X_add_number = 0;
19492
19493 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19494 }
19495
19496 #ifdef md_flush_pending_output
19497 md_flush_pending_output ();
19498 #endif
19499
19500 /* Generate a .pdr section. */
19501 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19502 {
19503 segT saved_seg = now_seg;
19504 subsegT saved_subseg = now_subseg;
19505 expressionS exp;
19506 char *fragp;
19507
19508 gas_assert (pdr_seg);
19509 subseg_set (pdr_seg, 0);
19510
19511 /* Write the symbol. */
19512 exp.X_op = O_symbol;
19513 exp.X_add_symbol = p;
19514 exp.X_add_number = 0;
19515 emit_expr (&exp, 4);
19516
19517 fragp = frag_more (7 * 4);
19518
19519 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19520 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19521 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19522 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19523 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19524 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19525 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19526
19527 subseg_set (saved_seg, saved_subseg);
19528 }
19529
19530 cur_proc_ptr = NULL;
19531 }
19532
19533 /* The .aent and .ent directives. */
19534
19535 static void
19536 s_mips_ent (int aent)
19537 {
19538 symbolS *symbolP;
19539
19540 symbolP = get_symbol ();
19541 if (*input_line_pointer == ',')
19542 ++input_line_pointer;
19543 SKIP_WHITESPACE ();
19544 if (ISDIGIT (*input_line_pointer)
19545 || *input_line_pointer == '-')
19546 get_number ();
19547
19548 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19549 as_warn (_(".ent or .aent not in text section"));
19550
19551 if (!aent && cur_proc_ptr)
19552 as_warn (_("missing .end"));
19553
19554 if (!aent)
19555 {
19556 /* This function needs its own .frame and .cprestore directives. */
19557 mips_frame_reg_valid = 0;
19558 mips_cprestore_valid = 0;
19559
19560 cur_proc_ptr = &cur_proc;
19561 memset (cur_proc_ptr, '\0', sizeof (procS));
19562
19563 cur_proc_ptr->func_sym = symbolP;
19564
19565 ++numprocs;
19566
19567 if (debug_type == DEBUG_STABS)
19568 stabs_generate_asm_func (S_GET_NAME (symbolP),
19569 S_GET_NAME (symbolP));
19570 }
19571
19572 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19573
19574 demand_empty_rest_of_line ();
19575 }
19576
19577 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19578 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19579 s_mips_frame is used so that we can set the PDR information correctly.
19580 We can't use the ecoff routines because they make reference to the ecoff
19581 symbol table (in the mdebug section). */
19582
19583 static void
19584 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19585 {
19586 if (ECOFF_DEBUGGING)
19587 s_ignore (ignore);
19588 else
19589 {
19590 long val;
19591
19592 if (cur_proc_ptr == (procS *) NULL)
19593 {
19594 as_warn (_(".frame outside of .ent"));
19595 demand_empty_rest_of_line ();
19596 return;
19597 }
19598
19599 cur_proc_ptr->frame_reg = tc_get_register (1);
19600
19601 SKIP_WHITESPACE ();
19602 if (*input_line_pointer++ != ','
19603 || get_absolute_expression_and_terminator (&val) != ',')
19604 {
19605 as_warn (_("bad .frame directive"));
19606 --input_line_pointer;
19607 demand_empty_rest_of_line ();
19608 return;
19609 }
19610
19611 cur_proc_ptr->frame_offset = val;
19612 cur_proc_ptr->pc_reg = tc_get_register (0);
19613
19614 demand_empty_rest_of_line ();
19615 }
19616 }
19617
19618 /* The .fmask and .mask directives. If the mdebug section is present
19619 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19620 embedded targets, s_mips_mask is used so that we can set the PDR
19621 information correctly. We can't use the ecoff routines because they
19622 make reference to the ecoff symbol table (in the mdebug section). */
19623
19624 static void
19625 s_mips_mask (int reg_type)
19626 {
19627 if (ECOFF_DEBUGGING)
19628 s_ignore (reg_type);
19629 else
19630 {
19631 long mask, off;
19632
19633 if (cur_proc_ptr == (procS *) NULL)
19634 {
19635 as_warn (_(".mask/.fmask outside of .ent"));
19636 demand_empty_rest_of_line ();
19637 return;
19638 }
19639
19640 if (get_absolute_expression_and_terminator (&mask) != ',')
19641 {
19642 as_warn (_("bad .mask/.fmask directive"));
19643 --input_line_pointer;
19644 demand_empty_rest_of_line ();
19645 return;
19646 }
19647
19648 off = get_absolute_expression ();
19649
19650 if (reg_type == 'F')
19651 {
19652 cur_proc_ptr->fpreg_mask = mask;
19653 cur_proc_ptr->fpreg_offset = off;
19654 }
19655 else
19656 {
19657 cur_proc_ptr->reg_mask = mask;
19658 cur_proc_ptr->reg_offset = off;
19659 }
19660
19661 demand_empty_rest_of_line ();
19662 }
19663 }
19664
19665 /* A table describing all the processors gas knows about. Names are
19666 matched in the order listed.
19667
19668 To ease comparison, please keep this table in the same order as
19669 gcc's mips_cpu_info_table[]. */
19670 static const struct mips_cpu_info mips_cpu_info_table[] =
19671 {
19672 /* Entries for generic ISAs */
19673 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19674 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19675 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19676 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19677 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19678 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19679 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19680 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19681 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19682 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19683 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19684 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19685 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19686 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19687 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19688
19689 /* MIPS I */
19690 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19691 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19692 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19693
19694 /* MIPS II */
19695 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19696
19697 /* MIPS III */
19698 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19699 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19700 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19701 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19702 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19703 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19704 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19705 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19706 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19707 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19708 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19709 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19710 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19711 /* ST Microelectronics Loongson 2E and 2F cores */
19712 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19713 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19714
19715 /* MIPS IV */
19716 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19717 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19718 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19719 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19720 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19721 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19722 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19723 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19724 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19725 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19726 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19727 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19728 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19729 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19730 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19731
19732 /* MIPS 32 */
19733 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19734 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19735 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19736 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19737
19738 /* MIPS 32 Release 2 */
19739 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19740 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19741 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19742 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19743 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19744 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19745 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19746 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19747 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19748 ISA_MIPS32R2, CPU_MIPS32R2 },
19749 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19750 ISA_MIPS32R2, CPU_MIPS32R2 },
19751 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19752 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19753 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19754 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19755 /* Deprecated forms of the above. */
19756 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19757 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19758 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19759 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19760 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19761 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19762 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19763 /* Deprecated forms of the above. */
19764 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19765 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19766 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19767 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19768 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19769 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19770 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19771 /* Deprecated forms of the above. */
19772 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19773 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19774 /* 34Kn is a 34kc without DSP. */
19775 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19776 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19777 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19778 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19779 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19780 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19781 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19782 /* Deprecated forms of the above. */
19783 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19784 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19785 /* 1004K cores are multiprocessor versions of the 34K. */
19786 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19787 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19788 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19789 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19790 /* interaptiv is the new name for 1004kf */
19791 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19792 { "interaptiv-mr2", 0,
19793 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19794 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19795 /* M5100 family */
19796 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19797 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19798 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19799 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19800
19801 /* MIPS 64 */
19802 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19803 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19804 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19805 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19806
19807 /* Broadcom SB-1 CPU core */
19808 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19809 /* Broadcom SB-1A CPU core */
19810 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19811
19812 /* MIPS 64 Release 2 */
19813 /* Loongson CPU core */
19814 /* -march=loongson3a is an alias of -march=gs464 for compatibility */
19815 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19816 ISA_MIPS64R2, CPU_GS464 },
19817 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19818 ISA_MIPS64R2, CPU_GS464 },
19819 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19820 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
19821 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19822 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
19823
19824 /* Cavium Networks Octeon CPU core */
19825 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19826 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19827 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19828 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19829
19830 /* RMI Xlr */
19831 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19832
19833 /* Broadcom XLP.
19834 XLP is mostly like XLR, with the prominent exception that it is
19835 MIPS64R2 rather than MIPS64. */
19836 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19837
19838 /* MIPS 64 Release 6 */
19839 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19840 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19841
19842 /* End marker */
19843 { NULL, 0, 0, 0, 0 }
19844 };
19845
19846
19847 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19848 with a final "000" replaced by "k". Ignore case.
19849
19850 Note: this function is shared between GCC and GAS. */
19851
19852 static bfd_boolean
19853 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19854 {
19855 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19856 given++, canonical++;
19857
19858 return ((*given == 0 && *canonical == 0)
19859 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19860 }
19861
19862
19863 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19864 CPU name. We've traditionally allowed a lot of variation here.
19865
19866 Note: this function is shared between GCC and GAS. */
19867
19868 static bfd_boolean
19869 mips_matching_cpu_name_p (const char *canonical, const char *given)
19870 {
19871 /* First see if the name matches exactly, or with a final "000"
19872 turned into "k". */
19873 if (mips_strict_matching_cpu_name_p (canonical, given))
19874 return TRUE;
19875
19876 /* If not, try comparing based on numerical designation alone.
19877 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19878 if (TOLOWER (*given) == 'r')
19879 given++;
19880 if (!ISDIGIT (*given))
19881 return FALSE;
19882
19883 /* Skip over some well-known prefixes in the canonical name,
19884 hoping to find a number there too. */
19885 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19886 canonical += 2;
19887 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19888 canonical += 2;
19889 else if (TOLOWER (canonical[0]) == 'r')
19890 canonical += 1;
19891
19892 return mips_strict_matching_cpu_name_p (canonical, given);
19893 }
19894
19895
19896 /* Parse an option that takes the name of a processor as its argument.
19897 OPTION is the name of the option and CPU_STRING is the argument.
19898 Return the corresponding processor enumeration if the CPU_STRING is
19899 recognized, otherwise report an error and return null.
19900
19901 A similar function exists in GCC. */
19902
19903 static const struct mips_cpu_info *
19904 mips_parse_cpu (const char *option, const char *cpu_string)
19905 {
19906 const struct mips_cpu_info *p;
19907
19908 /* 'from-abi' selects the most compatible architecture for the given
19909 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19910 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19911 version. Look first at the -mgp options, if given, otherwise base
19912 the choice on MIPS_DEFAULT_64BIT.
19913
19914 Treat NO_ABI like the EABIs. One reason to do this is that the
19915 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19916 architecture. This code picks MIPS I for 'mips' and MIPS III for
19917 'mips64', just as we did in the days before 'from-abi'. */
19918 if (strcasecmp (cpu_string, "from-abi") == 0)
19919 {
19920 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19921 return mips_cpu_info_from_isa (ISA_MIPS1);
19922
19923 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19924 return mips_cpu_info_from_isa (ISA_MIPS3);
19925
19926 if (file_mips_opts.gp >= 0)
19927 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19928 ? ISA_MIPS1 : ISA_MIPS3);
19929
19930 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19931 ? ISA_MIPS3
19932 : ISA_MIPS1);
19933 }
19934
19935 /* 'default' has traditionally been a no-op. Probably not very useful. */
19936 if (strcasecmp (cpu_string, "default") == 0)
19937 return 0;
19938
19939 for (p = mips_cpu_info_table; p->name != 0; p++)
19940 if (mips_matching_cpu_name_p (p->name, cpu_string))
19941 return p;
19942
19943 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19944 return 0;
19945 }
19946
19947 /* Return the canonical processor information for ISA (a member of the
19948 ISA_MIPS* enumeration). */
19949
19950 static const struct mips_cpu_info *
19951 mips_cpu_info_from_isa (int isa)
19952 {
19953 int i;
19954
19955 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19956 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19957 && isa == mips_cpu_info_table[i].isa)
19958 return (&mips_cpu_info_table[i]);
19959
19960 return NULL;
19961 }
19962
19963 static const struct mips_cpu_info *
19964 mips_cpu_info_from_arch (int arch)
19965 {
19966 int i;
19967
19968 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19969 if (arch == mips_cpu_info_table[i].cpu)
19970 return (&mips_cpu_info_table[i]);
19971
19972 return NULL;
19973 }
19974 \f
19975 static void
19976 show (FILE *stream, const char *string, int *col_p, int *first_p)
19977 {
19978 if (*first_p)
19979 {
19980 fprintf (stream, "%24s", "");
19981 *col_p = 24;
19982 }
19983 else
19984 {
19985 fprintf (stream, ", ");
19986 *col_p += 2;
19987 }
19988
19989 if (*col_p + strlen (string) > 72)
19990 {
19991 fprintf (stream, "\n%24s", "");
19992 *col_p = 24;
19993 }
19994
19995 fprintf (stream, "%s", string);
19996 *col_p += strlen (string);
19997
19998 *first_p = 0;
19999 }
20000
20001 void
20002 md_show_usage (FILE *stream)
20003 {
20004 int column, first;
20005 size_t i;
20006
20007 fprintf (stream, _("\
20008 MIPS options:\n\
20009 -EB generate big endian output\n\
20010 -EL generate little endian output\n\
20011 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20012 -G NUM allow referencing objects up to NUM bytes\n\
20013 implicitly with the gp register [default 8]\n"));
20014 fprintf (stream, _("\
20015 -mips1 generate MIPS ISA I instructions\n\
20016 -mips2 generate MIPS ISA II instructions\n\
20017 -mips3 generate MIPS ISA III instructions\n\
20018 -mips4 generate MIPS ISA IV instructions\n\
20019 -mips5 generate MIPS ISA V instructions\n\
20020 -mips32 generate MIPS32 ISA instructions\n\
20021 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20022 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20023 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20024 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20025 -mips64 generate MIPS64 ISA instructions\n\
20026 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20027 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20028 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20029 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20030 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20031
20032 first = 1;
20033
20034 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20035 show (stream, mips_cpu_info_table[i].name, &column, &first);
20036 show (stream, "from-abi", &column, &first);
20037 fputc ('\n', stream);
20038
20039 fprintf (stream, _("\
20040 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20041 -no-mCPU don't generate code specific to CPU.\n\
20042 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20043
20044 first = 1;
20045
20046 show (stream, "3900", &column, &first);
20047 show (stream, "4010", &column, &first);
20048 show (stream, "4100", &column, &first);
20049 show (stream, "4650", &column, &first);
20050 fputc ('\n', stream);
20051
20052 fprintf (stream, _("\
20053 -mips16 generate mips16 instructions\n\
20054 -no-mips16 do not generate mips16 instructions\n"));
20055 fprintf (stream, _("\
20056 -mmips16e2 generate MIPS16e2 instructions\n\
20057 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20058 fprintf (stream, _("\
20059 -mmicromips generate microMIPS instructions\n\
20060 -mno-micromips do not generate microMIPS instructions\n"));
20061 fprintf (stream, _("\
20062 -msmartmips generate smartmips instructions\n\
20063 -mno-smartmips do not generate smartmips instructions\n"));
20064 fprintf (stream, _("\
20065 -mdsp generate DSP instructions\n\
20066 -mno-dsp do not generate DSP instructions\n"));
20067 fprintf (stream, _("\
20068 -mdspr2 generate DSP R2 instructions\n\
20069 -mno-dspr2 do not generate DSP R2 instructions\n"));
20070 fprintf (stream, _("\
20071 -mdspr3 generate DSP R3 instructions\n\
20072 -mno-dspr3 do not generate DSP R3 instructions\n"));
20073 fprintf (stream, _("\
20074 -mmt generate MT instructions\n\
20075 -mno-mt do not generate MT instructions\n"));
20076 fprintf (stream, _("\
20077 -mmcu generate MCU instructions\n\
20078 -mno-mcu do not generate MCU instructions\n"));
20079 fprintf (stream, _("\
20080 -mmsa generate MSA instructions\n\
20081 -mno-msa do not generate MSA instructions\n"));
20082 fprintf (stream, _("\
20083 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20084 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20085 fprintf (stream, _("\
20086 -mvirt generate Virtualization instructions\n\
20087 -mno-virt do not generate Virtualization instructions\n"));
20088 fprintf (stream, _("\
20089 -mcrc generate CRC instructions\n\
20090 -mno-crc do not generate CRC instructions\n"));
20091 fprintf (stream, _("\
20092 -mginv generate Global INValidate (GINV) instructions\n\
20093 -mno-ginv do not generate Global INValidate instructions\n"));
20094 fprintf (stream, _("\
20095 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20096 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20097 fprintf (stream, _("\
20098 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20099 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20100 fprintf (stream, _("\
20101 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20102 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20103 fprintf (stream, _("\
20104 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20105 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20106 fprintf (stream, _("\
20107 -minsn32 only generate 32-bit microMIPS instructions\n\
20108 -mno-insn32 generate all microMIPS instructions\n"));
20109 fprintf (stream, _("\
20110 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20111 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20112 -mfix-vr4120 work around certain VR4120 errata\n\
20113 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20114 -mfix-24k insert a nop after ERET and DERET instructions\n\
20115 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20116 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20117 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20118 -msym32 assume all symbols have 32-bit values\n\
20119 -O0 do not remove unneeded NOPs, do not swap branches\n\
20120 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20121 -O2 remove unneeded NOPs and swap branches\n\
20122 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20123 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20124 fprintf (stream, _("\
20125 -mhard-float allow floating-point instructions\n\
20126 -msoft-float do not allow floating-point instructions\n\
20127 -msingle-float only allow 32-bit floating-point operations\n\
20128 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20129 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20130 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20131 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20132 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20133 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20134
20135 first = 1;
20136
20137 show (stream, "legacy", &column, &first);
20138 show (stream, "2008", &column, &first);
20139
20140 fputc ('\n', stream);
20141
20142 fprintf (stream, _("\
20143 -KPIC, -call_shared generate SVR4 position independent code\n\
20144 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20145 -mvxworks-pic generate VxWorks position independent code\n\
20146 -non_shared do not generate code that can operate with DSOs\n\
20147 -xgot assume a 32 bit GOT\n\
20148 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20149 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20150 position dependent (non shared) code\n\
20151 -mabi=ABI create ABI conformant object file for:\n"));
20152
20153 first = 1;
20154
20155 show (stream, "32", &column, &first);
20156 show (stream, "o64", &column, &first);
20157 show (stream, "n32", &column, &first);
20158 show (stream, "64", &column, &first);
20159 show (stream, "eabi", &column, &first);
20160
20161 fputc ('\n', stream);
20162
20163 fprintf (stream, _("\
20164 -32 create o32 ABI object file%s\n"),
20165 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20166 fprintf (stream, _("\
20167 -n32 create n32 ABI object file%s\n"),
20168 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20169 fprintf (stream, _("\
20170 -64 create 64 ABI object file%s\n"),
20171 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20172 }
20173
20174 #ifdef TE_IRIX
20175 enum dwarf2_format
20176 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20177 {
20178 if (HAVE_64BIT_SYMBOLS)
20179 return dwarf2_format_64bit_irix;
20180 else
20181 return dwarf2_format_32bit;
20182 }
20183 #endif
20184
20185 int
20186 mips_dwarf2_addr_size (void)
20187 {
20188 if (HAVE_64BIT_OBJECTS)
20189 return 8;
20190 else
20191 return 4;
20192 }
20193
20194 /* Standard calling conventions leave the CFA at SP on entry. */
20195 void
20196 mips_cfi_frame_initial_instructions (void)
20197 {
20198 cfi_add_CFA_def_cfa_register (SP);
20199 }
20200
20201 int
20202 tc_mips_regname_to_dw2regnum (char *regname)
20203 {
20204 unsigned int regnum = -1;
20205 unsigned int reg;
20206
20207 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20208 regnum = reg;
20209
20210 return regnum;
20211 }
20212
20213 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20214 Given a symbolic attribute NAME, return the proper integer value.
20215 Returns -1 if the attribute is not known. */
20216
20217 int
20218 mips_convert_symbolic_attribute (const char *name)
20219 {
20220 static const struct
20221 {
20222 const char * name;
20223 const int tag;
20224 }
20225 attribute_table[] =
20226 {
20227 #define T(tag) {#tag, tag}
20228 T (Tag_GNU_MIPS_ABI_FP),
20229 T (Tag_GNU_MIPS_ABI_MSA),
20230 #undef T
20231 };
20232 unsigned int i;
20233
20234 if (name == NULL)
20235 return -1;
20236
20237 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20238 if (streq (name, attribute_table[i].name))
20239 return attribute_table[i].tag;
20240
20241 return -1;
20242 }
20243
20244 void
20245 md_mips_end (void)
20246 {
20247 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20248
20249 mips_emit_delays ();
20250 if (cur_proc_ptr)
20251 as_warn (_("missing .end at end of assembly"));
20252
20253 /* Just in case no code was emitted, do the consistency check. */
20254 file_mips_check_options ();
20255
20256 /* Set a floating-point ABI if the user did not. */
20257 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20258 {
20259 /* Perform consistency checks on the floating-point ABI. */
20260 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20261 Tag_GNU_MIPS_ABI_FP);
20262 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20263 check_fpabi (fpabi);
20264 }
20265 else
20266 {
20267 /* Soft-float gets precedence over single-float, the two options should
20268 not be used together so this should not matter. */
20269 if (file_mips_opts.soft_float == 1)
20270 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20271 /* Single-float gets precedence over all double_float cases. */
20272 else if (file_mips_opts.single_float == 1)
20273 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20274 else
20275 {
20276 switch (file_mips_opts.fp)
20277 {
20278 case 32:
20279 if (file_mips_opts.gp == 32)
20280 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20281 break;
20282 case 0:
20283 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20284 break;
20285 case 64:
20286 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20287 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20288 else if (file_mips_opts.gp == 32)
20289 fpabi = Val_GNU_MIPS_ABI_FP_64;
20290 else
20291 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20292 break;
20293 }
20294 }
20295
20296 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20297 Tag_GNU_MIPS_ABI_FP, fpabi);
20298 }
20299 }
20300
20301 /* Returns the relocation type required for a particular CFI encoding. */
20302
20303 bfd_reloc_code_real_type
20304 mips_cfi_reloc_for_encoding (int encoding)
20305 {
20306 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20307 return BFD_RELOC_32_PCREL;
20308 else return BFD_RELOC_NONE;
20309 }
This page took 0.805991 seconds and 4 git commands to generate.