* config/tc-xtensa.c (xg_assemble_vliw_tokens): Record loop target
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include <string.h>
22 #include <limits.h>
23 #include "as.h"
24 #include "sb.h"
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
27 #include "frags.h"
28 #include "subsegs.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
34
35 #ifndef uint32
36 #define uint32 unsigned int
37 #endif
38 #ifndef int32
39 #define int32 signed int
40 #endif
41
42 /* Notes:
43
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = "#";
63 const char line_separator_chars[] = ";";
64 const char EXP_CHARS[] = "eE";
65 const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
70
71 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
72 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
80
81 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
85 back end. */
86 static bfd_boolean past_xtensa_end = FALSE;
87
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
91
92
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
108
109 typedef struct lit_state_struct
110 {
111 const char *lit_seg_name;
112 const char *lit4_seg_name;
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
116 segT lit4_seg;
117 segT init_lit_seg;
118 segT fini_lit_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136 static seg_list init_literal_head_h;
137 static seg_list *init_literal_head = &init_literal_head_h;
138 static seg_list fini_literal_head_h;
139 static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148 typedef struct sym_list_struct
149 {
150 struct sym_list_struct *next;
151 symbolS *sym;
152 } sym_list;
153
154 static sym_list *insn_labels = NULL;
155 static sym_list *free_insn_labels = NULL;
156 static sym_list *saved_insn_labels = NULL;
157
158 static sym_list *literal_syms;
159
160
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16 = 0;
164 int prefer_l32r = 0;
165
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals = 0;
168
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206 */
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236 #define XTENSA_PROP_ALIGN 0x00000800
237
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255 typedef struct frag_flags_struct frag_flags;
256
257 struct frag_flags_struct
258 {
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286 };
287
288
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
292 {
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298 };
299
300
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
303 {
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308 } emit_state;
309
310
311 /* Opcode placement information */
312
313 typedef unsigned long long bitfield;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318 #define MAX_FORMATS 32
319
320 typedef struct op_placement_info_struct
321 {
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
328 format. */
329 int issuef;
330 xtensa_format narrowest;
331 char narrowest_size;
332 char narrowest_slot;
333
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
336 bitfield formats;
337
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots[MAX_FORMATS];
341
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format[MAX_FORMATS];
345
346 } op_placement_info, *op_placement_info_table;
347
348 op_placement_info_table op_placement_table;
349
350
351 /* Extra expression types. */
352
353 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
356
357
358 /* Directives. */
359
360 typedef enum
361 {
362 directive_none = 0,
363 directive_literal,
364 directive_density,
365 directive_transform,
366 directive_freeregs,
367 directive_longcalls,
368 directive_literal_prefix,
369 directive_schedule,
370 directive_absolute_literals,
371 directive_last_directive
372 } directiveE;
373
374 typedef struct
375 {
376 const char *name;
377 bfd_boolean can_be_negated;
378 } directive_infoS;
379
380 const directive_infoS directive_info[] =
381 {
382 { "none", FALSE },
383 { "literal", FALSE },
384 { "density", TRUE },
385 { "transform", TRUE },
386 { "freeregs", FALSE },
387 { "longcalls", TRUE },
388 { "literal_prefix", FALSE },
389 { "schedule", TRUE },
390 { "absolute-literals", TRUE }
391 };
392
393 bfd_boolean directive_state[] =
394 {
395 FALSE, /* none */
396 FALSE, /* literal */
397 #if !XCHAL_HAVE_DENSITY
398 FALSE, /* density */
399 #else
400 TRUE, /* density */
401 #endif
402 TRUE, /* transform */
403 FALSE, /* freeregs */
404 FALSE, /* longcalls */
405 FALSE, /* literal_prefix */
406 TRUE, /* schedule */
407 #if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE /* absolute_literals */
409 #else
410 FALSE /* absolute_literals */
411 #endif
412 };
413
414
415 /* Directive functions. */
416
417 static void xtensa_begin_directive (int);
418 static void xtensa_end_directive (int);
419 static void xtensa_literal_prefix (char const *, int);
420 static void xtensa_literal_position (int);
421 static void xtensa_literal_pseudo (int);
422 static void xtensa_frequency_pseudo (int);
423 static void xtensa_elf_cons (int);
424
425 /* Parsing and Idiom Translation. */
426
427 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
428
429 /* Various Other Internal Functions. */
430
431 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
432 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
433 static void xtensa_mark_literal_pool_location (void);
434 static addressT get_expanded_loop_offset (xtensa_opcode);
435 static fragS *get_literal_pool_location (segT);
436 static void set_literal_pool_location (segT, fragS *);
437 static void xtensa_set_frag_assembly_state (fragS *);
438 static void finish_vinsn (vliw_insn *);
439 static bfd_boolean emit_single_op (TInsn *);
440 static int total_frag_text_expansion (fragS *);
441
442 /* Alignment Functions. */
443
444 static int get_text_align_power (unsigned);
445 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
446 static int branch_align_power (segT);
447
448 /* Helpers for xtensa_relax_frag(). */
449
450 static long relax_frag_add_nop (fragS *);
451
452 /* Accessors for additional per-subsegment information. */
453
454 static unsigned get_last_insn_flags (segT, subsegT);
455 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
456 static float get_subseg_total_freq (segT, subsegT);
457 static float get_subseg_target_freq (segT, subsegT);
458 static void set_subseg_freq (segT, subsegT, float, float);
459
460 /* Segment list functions. */
461
462 static void xtensa_move_literals (void);
463 static void xtensa_reorder_segments (void);
464 static void xtensa_switch_to_literal_fragment (emit_state *);
465 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
466 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
467 static void xtensa_restore_emit_state (emit_state *);
468 static void cache_literal_section
469 (seg_list *, const char *, segT *, bfd_boolean);
470
471 /* Import from elf32-xtensa.c in BFD library. */
472
473 extern char *xtensa_get_property_section_name (asection *, const char *);
474
475 /* op_placement_info functions. */
476
477 static void init_op_placement_info_table (void);
478 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
479 static int xg_get_single_size (xtensa_opcode);
480 static xtensa_format xg_get_single_format (xtensa_opcode);
481 static int xg_get_single_slot (xtensa_opcode);
482
483 /* TInsn and IStack functions. */
484
485 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
486 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
487 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
488 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
489 static bfd_boolean tinsn_check_arguments (const TInsn *);
490 static void tinsn_from_chars (TInsn *, char *, int);
491 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
492 static int get_num_stack_text_bytes (IStack *);
493 static int get_num_stack_literal_bytes (IStack *);
494
495 /* vliw_insn functions. */
496
497 static void xg_init_vinsn (vliw_insn *);
498 static void xg_clear_vinsn (vliw_insn *);
499 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
500 static void xg_free_vinsn (vliw_insn *);
501 static bfd_boolean vinsn_to_insnbuf
502 (vliw_insn *, char *, fragS *, bfd_boolean);
503 static void vinsn_from_chars (vliw_insn *, char *);
504
505 /* Expression Utilities. */
506
507 bfd_boolean expr_is_const (const expressionS *);
508 offsetT get_expr_const (const expressionS *);
509 void set_expr_const (expressionS *, offsetT);
510 bfd_boolean expr_is_register (const expressionS *);
511 offsetT get_expr_register (const expressionS *);
512 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
513 bfd_boolean expr_is_equal (expressionS *, expressionS *);
514 static void copy_expr (expressionS *, const expressionS *);
515
516 /* Section renaming. */
517
518 static void build_section_rename (const char *);
519
520
521 /* ISA imported from bfd. */
522 extern xtensa_isa xtensa_default_isa;
523
524 extern int target_big_endian;
525
526 static xtensa_opcode xtensa_addi_opcode;
527 static xtensa_opcode xtensa_addmi_opcode;
528 static xtensa_opcode xtensa_call0_opcode;
529 static xtensa_opcode xtensa_call4_opcode;
530 static xtensa_opcode xtensa_call8_opcode;
531 static xtensa_opcode xtensa_call12_opcode;
532 static xtensa_opcode xtensa_callx0_opcode;
533 static xtensa_opcode xtensa_callx4_opcode;
534 static xtensa_opcode xtensa_callx8_opcode;
535 static xtensa_opcode xtensa_callx12_opcode;
536 static xtensa_opcode xtensa_const16_opcode;
537 static xtensa_opcode xtensa_entry_opcode;
538 static xtensa_opcode xtensa_movi_opcode;
539 static xtensa_opcode xtensa_movi_n_opcode;
540 static xtensa_opcode xtensa_isync_opcode;
541 static xtensa_opcode xtensa_jx_opcode;
542 static xtensa_opcode xtensa_l32r_opcode;
543 static xtensa_opcode xtensa_loop_opcode;
544 static xtensa_opcode xtensa_loopnez_opcode;
545 static xtensa_opcode xtensa_loopgtz_opcode;
546 static xtensa_opcode xtensa_nop_opcode;
547 static xtensa_opcode xtensa_nop_n_opcode;
548 static xtensa_opcode xtensa_or_opcode;
549 static xtensa_opcode xtensa_ret_opcode;
550 static xtensa_opcode xtensa_ret_n_opcode;
551 static xtensa_opcode xtensa_retw_opcode;
552 static xtensa_opcode xtensa_retw_n_opcode;
553 static xtensa_opcode xtensa_rsr_lcount_opcode;
554 static xtensa_opcode xtensa_waiti_opcode;
555
556 \f
557 /* Command-line Options. */
558
559 bfd_boolean use_literal_section = TRUE;
560 static bfd_boolean align_targets = TRUE;
561 static bfd_boolean warn_unaligned_branch_targets = FALSE;
562 static bfd_boolean has_a0_b_retw = FALSE;
563 static bfd_boolean workaround_a0_b_retw = FALSE;
564 static bfd_boolean workaround_b_j_loop_end = FALSE;
565 static bfd_boolean workaround_short_loop = FALSE;
566 static bfd_boolean maybe_has_short_loop = FALSE;
567 static bfd_boolean workaround_close_loop_end = FALSE;
568 static bfd_boolean maybe_has_close_loop_end = FALSE;
569 static bfd_boolean enforce_three_byte_loop_align = FALSE;
570
571 /* When workaround_short_loops is TRUE, all loops with early exits must
572 have at least 3 instructions. workaround_all_short_loops is a modifier
573 to the workaround_short_loop flag. In addition to the
574 workaround_short_loop actions, all straightline loopgtz and loopnez
575 must have at least 3 instructions. */
576
577 static bfd_boolean workaround_all_short_loops = FALSE;
578
579
580 static void
581 xtensa_setup_hw_workarounds (int earliest, int latest)
582 {
583 if (earliest > latest)
584 as_fatal (_("illegal range of target hardware versions"));
585
586 /* Enable all workarounds for pre-T1050.0 hardware. */
587 if (earliest < 105000 || latest < 105000)
588 {
589 workaround_a0_b_retw |= TRUE;
590 workaround_b_j_loop_end |= TRUE;
591 workaround_short_loop |= TRUE;
592 workaround_close_loop_end |= TRUE;
593 workaround_all_short_loops |= TRUE;
594 enforce_three_byte_loop_align = TRUE;
595 }
596 }
597
598
599 enum
600 {
601 option_density = OPTION_MD_BASE,
602 option_no_density,
603
604 option_relax,
605 option_no_relax,
606
607 option_link_relax,
608 option_no_link_relax,
609
610 option_generics,
611 option_no_generics,
612
613 option_transform,
614 option_no_transform,
615
616 option_text_section_literals,
617 option_no_text_section_literals,
618
619 option_absolute_literals,
620 option_no_absolute_literals,
621
622 option_align_targets,
623 option_no_align_targets,
624
625 option_warn_unaligned_targets,
626
627 option_longcalls,
628 option_no_longcalls,
629
630 option_workaround_a0_b_retw,
631 option_no_workaround_a0_b_retw,
632
633 option_workaround_b_j_loop_end,
634 option_no_workaround_b_j_loop_end,
635
636 option_workaround_short_loop,
637 option_no_workaround_short_loop,
638
639 option_workaround_all_short_loops,
640 option_no_workaround_all_short_loops,
641
642 option_workaround_close_loop_end,
643 option_no_workaround_close_loop_end,
644
645 option_no_workarounds,
646
647 option_rename_section_name,
648
649 option_prefer_l32r,
650 option_prefer_const16,
651
652 option_target_hardware
653 };
654
655 const char *md_shortopts = "";
656
657 struct option md_longopts[] =
658 {
659 { "density", no_argument, NULL, option_density },
660 { "no-density", no_argument, NULL, option_no_density },
661
662 /* Both "relax" and "generics" are deprecated and treated as equivalent
663 to the "transform" option. */
664 { "relax", no_argument, NULL, option_relax },
665 { "no-relax", no_argument, NULL, option_no_relax },
666 { "generics", no_argument, NULL, option_generics },
667 { "no-generics", no_argument, NULL, option_no_generics },
668
669 { "transform", no_argument, NULL, option_transform },
670 { "no-transform", no_argument, NULL, option_no_transform },
671 { "text-section-literals", no_argument, NULL, option_text_section_literals },
672 { "no-text-section-literals", no_argument, NULL,
673 option_no_text_section_literals },
674 { "absolute-literals", no_argument, NULL, option_absolute_literals },
675 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
676 /* This option was changed from -align-target to -target-align
677 because it conflicted with the "-al" option. */
678 { "target-align", no_argument, NULL, option_align_targets },
679 { "no-target-align", no_argument, NULL, option_no_align_targets },
680 { "warn-unaligned-targets", no_argument, NULL,
681 option_warn_unaligned_targets },
682 { "longcalls", no_argument, NULL, option_longcalls },
683 { "no-longcalls", no_argument, NULL, option_no_longcalls },
684
685 { "no-workaround-a0-b-retw", no_argument, NULL,
686 option_no_workaround_a0_b_retw },
687 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
688
689 { "no-workaround-b-j-loop-end", no_argument, NULL,
690 option_no_workaround_b_j_loop_end },
691 { "workaround-b-j-loop-end", no_argument, NULL,
692 option_workaround_b_j_loop_end },
693
694 { "no-workaround-short-loops", no_argument, NULL,
695 option_no_workaround_short_loop },
696 { "workaround-short-loops", no_argument, NULL,
697 option_workaround_short_loop },
698
699 { "no-workaround-all-short-loops", no_argument, NULL,
700 option_no_workaround_all_short_loops },
701 { "workaround-all-short-loop", no_argument, NULL,
702 option_workaround_all_short_loops },
703
704 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
705 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
706
707 { "no-workarounds", no_argument, NULL, option_no_workarounds },
708
709 { "no-workaround-close-loop-end", no_argument, NULL,
710 option_no_workaround_close_loop_end },
711 { "workaround-close-loop-end", no_argument, NULL,
712 option_workaround_close_loop_end },
713
714 { "rename-section", required_argument, NULL, option_rename_section_name },
715
716 { "link-relax", no_argument, NULL, option_link_relax },
717 { "no-link-relax", no_argument, NULL, option_no_link_relax },
718
719 { "target-hardware", required_argument, NULL, option_target_hardware },
720
721 { NULL, no_argument, NULL, 0 }
722 };
723
724 size_t md_longopts_size = sizeof md_longopts;
725
726
727 int
728 md_parse_option (int c, char *arg)
729 {
730 switch (c)
731 {
732 case option_density:
733 as_warn (_("--density option is ignored"));
734 return 1;
735 case option_no_density:
736 as_warn (_("--no-density option is ignored"));
737 return 1;
738 case option_link_relax:
739 linkrelax = 1;
740 return 1;
741 case option_no_link_relax:
742 linkrelax = 0;
743 return 1;
744 case option_generics:
745 as_warn (_("--generics is deprecated; use --transform instead"));
746 return md_parse_option (option_transform, arg);
747 case option_no_generics:
748 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
749 return md_parse_option (option_no_transform, arg);
750 case option_relax:
751 as_warn (_("--relax is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_relax:
754 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
756 case option_longcalls:
757 directive_state[directive_longcalls] = TRUE;
758 return 1;
759 case option_no_longcalls:
760 directive_state[directive_longcalls] = FALSE;
761 return 1;
762 case option_text_section_literals:
763 use_literal_section = FALSE;
764 return 1;
765 case option_no_text_section_literals:
766 use_literal_section = TRUE;
767 return 1;
768 case option_absolute_literals:
769 if (!absolute_literals_supported)
770 {
771 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
772 return 0;
773 }
774 directive_state[directive_absolute_literals] = TRUE;
775 return 1;
776 case option_no_absolute_literals:
777 directive_state[directive_absolute_literals] = FALSE;
778 return 1;
779
780 case option_workaround_a0_b_retw:
781 workaround_a0_b_retw = TRUE;
782 return 1;
783 case option_no_workaround_a0_b_retw:
784 workaround_a0_b_retw = FALSE;
785 return 1;
786 case option_workaround_b_j_loop_end:
787 workaround_b_j_loop_end = TRUE;
788 return 1;
789 case option_no_workaround_b_j_loop_end:
790 workaround_b_j_loop_end = FALSE;
791 return 1;
792
793 case option_workaround_short_loop:
794 workaround_short_loop = TRUE;
795 return 1;
796 case option_no_workaround_short_loop:
797 workaround_short_loop = FALSE;
798 return 1;
799
800 case option_workaround_all_short_loops:
801 workaround_all_short_loops = TRUE;
802 return 1;
803 case option_no_workaround_all_short_loops:
804 workaround_all_short_loops = FALSE;
805 return 1;
806
807 case option_workaround_close_loop_end:
808 workaround_close_loop_end = TRUE;
809 return 1;
810 case option_no_workaround_close_loop_end:
811 workaround_close_loop_end = FALSE;
812 return 1;
813
814 case option_no_workarounds:
815 workaround_a0_b_retw = FALSE;
816 workaround_b_j_loop_end = FALSE;
817 workaround_short_loop = FALSE;
818 workaround_all_short_loops = FALSE;
819 workaround_close_loop_end = FALSE;
820 return 1;
821
822 case option_align_targets:
823 align_targets = TRUE;
824 return 1;
825 case option_no_align_targets:
826 align_targets = FALSE;
827 return 1;
828
829 case option_warn_unaligned_targets:
830 warn_unaligned_branch_targets = TRUE;
831 return 1;
832
833 case option_rename_section_name:
834 build_section_rename (arg);
835 return 1;
836
837 case 'Q':
838 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
839 should be emitted or not. FIXME: Not implemented. */
840 return 1;
841
842 case option_prefer_l32r:
843 if (prefer_const16)
844 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
845 prefer_l32r = 1;
846 return 1;
847
848 case option_prefer_const16:
849 if (prefer_l32r)
850 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
851 prefer_const16 = 1;
852 return 1;
853
854 case option_target_hardware:
855 {
856 int earliest, latest = 0;
857 if (*arg == 0 || *arg == '-')
858 as_fatal (_("invalid target hardware version"));
859
860 earliest = strtol (arg, &arg, 0);
861
862 if (*arg == 0)
863 latest = earliest;
864 else if (*arg == '-')
865 {
866 if (*++arg == 0)
867 as_fatal (_("invalid target hardware version"));
868 latest = strtol (arg, &arg, 0);
869 }
870 if (*arg != 0)
871 as_fatal (_("invalid target hardware version"));
872
873 xtensa_setup_hw_workarounds (earliest, latest);
874 return 1;
875 }
876
877 case option_transform:
878 /* This option has no affect other than to use the defaults,
879 which are already set. */
880 return 1;
881
882 case option_no_transform:
883 /* This option turns off all transformations of any kind.
884 However, because we want to preserve the state of other
885 directives, we only change its own field. Thus, before
886 you perform any transformation, always check if transform
887 is available. If you use the functions we provide for this
888 purpose, you will be ok. */
889 directive_state[directive_transform] = FALSE;
890 return 1;
891
892 default:
893 return 0;
894 }
895 }
896
897
898 void
899 md_show_usage (FILE *stream)
900 {
901 fputs ("\n\
902 Xtensa options:\n\
903 --[no-]text-section-literals\n\
904 [Do not] put literals in the text section\n\
905 --[no-]absolute-literals\n\
906 [Do not] default to use non-PC-relative literals\n\
907 --[no-]target-align [Do not] try to align branch targets\n\
908 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
909 --[no-]transform [Do not] transform instructions\n\
910 --rename-section old=new Rename section 'old' to 'new'\n", stream);
911 }
912
913 \f
914 /* Functions related to the list of current label symbols. */
915
916 static void
917 xtensa_add_insn_label (symbolS *sym)
918 {
919 sym_list *l;
920
921 if (!free_insn_labels)
922 l = (sym_list *) xmalloc (sizeof (sym_list));
923 else
924 {
925 l = free_insn_labels;
926 free_insn_labels = l->next;
927 }
928
929 l->sym = sym;
930 l->next = insn_labels;
931 insn_labels = l;
932 }
933
934
935 static void
936 xtensa_clear_insn_labels (void)
937 {
938 sym_list **pl;
939
940 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
941 ;
942 *pl = insn_labels;
943 insn_labels = NULL;
944 }
945
946
947 /* The "loops_ok" argument is provided to allow ignoring labels that
948 define loop ends. This fixes a bug where the NOPs to align a
949 loop opcode were included in a previous zero-cost loop:
950
951 loop a0, loopend
952 <loop1 body>
953 loopend:
954
955 loop a2, loopend2
956 <loop2 body>
957
958 would become:
959
960 loop a0, loopend
961 <loop1 body>
962 nop.n <===== bad!
963 loopend:
964
965 loop a2, loopend2
966 <loop2 body>
967
968 This argument is used to prevent moving the NOP to before the
969 loop-end label, which is what you want in this special case. */
970
971 static void
972 xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
973 {
974 sym_list *lit;
975
976 for (lit = insn_labels; lit; lit = lit->next)
977 {
978 symbolS *lit_sym = lit->sym;
979 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
980 {
981 S_SET_VALUE (lit_sym, new_offset);
982 symbol_set_frag (lit_sym, new_frag);
983 }
984 }
985 }
986
987 \f
988 /* Directive data and functions. */
989
990 typedef struct state_stackS_struct
991 {
992 directiveE directive;
993 bfd_boolean negated;
994 bfd_boolean old_state;
995 const char *file;
996 unsigned int line;
997 const void *datum;
998 struct state_stackS_struct *prev;
999 } state_stackS;
1000
1001 state_stackS *directive_state_stack;
1002
1003 const pseudo_typeS md_pseudo_table[] =
1004 {
1005 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1006 { "literal_position", xtensa_literal_position, 0 },
1007 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1008 { "long", xtensa_elf_cons, 4 },
1009 { "word", xtensa_elf_cons, 4 },
1010 { "short", xtensa_elf_cons, 2 },
1011 { "begin", xtensa_begin_directive, 0 },
1012 { "end", xtensa_end_directive, 0 },
1013 { "literal", xtensa_literal_pseudo, 0 },
1014 { "frequency", xtensa_frequency_pseudo, 0 },
1015 { NULL, 0, 0 },
1016 };
1017
1018
1019 static bfd_boolean
1020 use_transform (void)
1021 {
1022 /* After md_end, you should be checking frag by frag, rather
1023 than state directives. */
1024 assert (!past_xtensa_end);
1025 return directive_state[directive_transform];
1026 }
1027
1028
1029 static bfd_boolean
1030 do_align_targets (void)
1031 {
1032 /* Do not use this function after md_end; just look at align_targets
1033 instead. There is no target-align directive, so alignment is either
1034 enabled for all frags or not done at all. */
1035 assert (!past_xtensa_end);
1036 return align_targets && use_transform ();
1037 }
1038
1039
1040 static void
1041 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1042 {
1043 char *file;
1044 unsigned int line;
1045 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1046
1047 as_where (&file, &line);
1048
1049 stack->directive = directive;
1050 stack->negated = negated;
1051 stack->old_state = directive_state[directive];
1052 stack->file = file;
1053 stack->line = line;
1054 stack->datum = datum;
1055 stack->prev = directive_state_stack;
1056 directive_state_stack = stack;
1057
1058 directive_state[directive] = !negated;
1059 }
1060
1061
1062 static void
1063 directive_pop (directiveE *directive,
1064 bfd_boolean *negated,
1065 const char **file,
1066 unsigned int *line,
1067 const void **datum)
1068 {
1069 state_stackS *top = directive_state_stack;
1070
1071 if (!directive_state_stack)
1072 {
1073 as_bad (_("unmatched end directive"));
1074 *directive = directive_none;
1075 return;
1076 }
1077
1078 directive_state[directive_state_stack->directive] = top->old_state;
1079 *directive = top->directive;
1080 *negated = top->negated;
1081 *file = top->file;
1082 *line = top->line;
1083 *datum = top->datum;
1084 directive_state_stack = top->prev;
1085 free (top);
1086 }
1087
1088
1089 static void
1090 directive_balance (void)
1091 {
1092 while (directive_state_stack)
1093 {
1094 directiveE directive;
1095 bfd_boolean negated;
1096 const char *file;
1097 unsigned int line;
1098 const void *datum;
1099
1100 directive_pop (&directive, &negated, &file, &line, &datum);
1101 as_warn_where ((char *) file, line,
1102 _(".begin directive with no matching .end directive"));
1103 }
1104 }
1105
1106
1107 static bfd_boolean
1108 inside_directive (directiveE dir)
1109 {
1110 state_stackS *top = directive_state_stack;
1111
1112 while (top && top->directive != dir)
1113 top = top->prev;
1114
1115 return (top != NULL);
1116 }
1117
1118
1119 static void
1120 get_directive (directiveE *directive, bfd_boolean *negated)
1121 {
1122 int len;
1123 unsigned i;
1124 char *directive_string;
1125
1126 if (strncmp (input_line_pointer, "no-", 3) != 0)
1127 *negated = FALSE;
1128 else
1129 {
1130 *negated = TRUE;
1131 input_line_pointer += 3;
1132 }
1133
1134 len = strspn (input_line_pointer,
1135 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1136
1137 /* This code is a hack to make .begin [no-][generics|relax] exactly
1138 equivalent to .begin [no-]transform. We should remove it when
1139 we stop accepting those options. */
1140
1141 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1142 {
1143 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1144 directive_string = "transform";
1145 }
1146 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1147 {
1148 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1149 directive_string = "transform";
1150 }
1151 else
1152 directive_string = input_line_pointer;
1153
1154 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1155 {
1156 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1157 {
1158 input_line_pointer += len;
1159 *directive = (directiveE) i;
1160 if (*negated && !directive_info[i].can_be_negated)
1161 as_bad (_("directive %s cannot be negated"),
1162 directive_info[i].name);
1163 return;
1164 }
1165 }
1166
1167 as_bad (_("unknown directive"));
1168 *directive = (directiveE) XTENSA_UNDEFINED;
1169 }
1170
1171
1172 static void
1173 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1174 {
1175 directiveE directive;
1176 bfd_boolean negated;
1177 emit_state *state;
1178 int len;
1179 lit_state *ls;
1180
1181 get_directive (&directive, &negated);
1182 if (directive == (directiveE) XTENSA_UNDEFINED)
1183 {
1184 discard_rest_of_line ();
1185 return;
1186 }
1187
1188 if (cur_vinsn.inside_bundle)
1189 as_bad (_("directives are not valid inside bundles"));
1190
1191 switch (directive)
1192 {
1193 case directive_literal:
1194 if (!inside_directive (directive_literal))
1195 {
1196 /* Previous labels go with whatever follows this directive, not with
1197 the literal, so save them now. */
1198 saved_insn_labels = insn_labels;
1199 insn_labels = NULL;
1200 }
1201 as_warn (_(".begin literal is deprecated; use .literal instead"));
1202 state = (emit_state *) xmalloc (sizeof (emit_state));
1203 xtensa_switch_to_literal_fragment (state);
1204 directive_push (directive_literal, negated, state);
1205 break;
1206
1207 case directive_literal_prefix:
1208 /* Have to flush pending output because a movi relaxed to an l32r
1209 might produce a literal. */
1210 md_flush_pending_output ();
1211 /* Check to see if the current fragment is a literal
1212 fragment. If it is, then this operation is not allowed. */
1213 if (generating_literals)
1214 {
1215 as_bad (_("cannot set literal_prefix inside literal fragment"));
1216 return;
1217 }
1218
1219 /* Allocate the literal state for this section and push
1220 onto the directive stack. */
1221 ls = xmalloc (sizeof (lit_state));
1222 assert (ls);
1223
1224 *ls = default_lit_sections;
1225
1226 directive_push (directive_literal_prefix, negated, ls);
1227
1228 /* Parse the new prefix from the input_line_pointer. */
1229 SKIP_WHITESPACE ();
1230 len = strspn (input_line_pointer,
1231 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1232 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1233
1234 /* Process the new prefix. */
1235 xtensa_literal_prefix (input_line_pointer, len);
1236
1237 /* Skip the name in the input line. */
1238 input_line_pointer += len;
1239 break;
1240
1241 case directive_freeregs:
1242 /* This information is currently unused, but we'll accept the statement
1243 and just discard the rest of the line. This won't check the syntax,
1244 but it will accept every correct freeregs directive. */
1245 input_line_pointer += strcspn (input_line_pointer, "\n");
1246 directive_push (directive_freeregs, negated, 0);
1247 break;
1248
1249 case directive_schedule:
1250 md_flush_pending_output ();
1251 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1252 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1253 directive_push (directive_schedule, negated, 0);
1254 xtensa_set_frag_assembly_state (frag_now);
1255 break;
1256
1257 case directive_density:
1258 as_warn (_(".begin [no-]density is ignored"));
1259 break;
1260
1261 case directive_absolute_literals:
1262 md_flush_pending_output ();
1263 if (!absolute_literals_supported && !negated)
1264 {
1265 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1266 break;
1267 }
1268 xtensa_set_frag_assembly_state (frag_now);
1269 directive_push (directive, negated, 0);
1270 break;
1271
1272 default:
1273 md_flush_pending_output ();
1274 xtensa_set_frag_assembly_state (frag_now);
1275 directive_push (directive, negated, 0);
1276 break;
1277 }
1278
1279 demand_empty_rest_of_line ();
1280 }
1281
1282
1283 static void
1284 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1285 {
1286 directiveE begin_directive, end_directive;
1287 bfd_boolean begin_negated, end_negated;
1288 const char *file;
1289 unsigned int line;
1290 emit_state *state;
1291 emit_state **state_ptr;
1292 lit_state *s;
1293
1294 if (cur_vinsn.inside_bundle)
1295 as_bad (_("directives are not valid inside bundles"));
1296
1297 get_directive (&end_directive, &end_negated);
1298
1299 md_flush_pending_output ();
1300
1301 switch (end_directive)
1302 {
1303 case (directiveE) XTENSA_UNDEFINED:
1304 discard_rest_of_line ();
1305 return;
1306
1307 case directive_density:
1308 as_warn (_(".end [no-]density is ignored"));
1309 demand_empty_rest_of_line ();
1310 break;
1311
1312 case directive_absolute_literals:
1313 if (!absolute_literals_supported && !end_negated)
1314 {
1315 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1316 demand_empty_rest_of_line ();
1317 return;
1318 }
1319 break;
1320
1321 default:
1322 break;
1323 }
1324
1325 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1326 directive_pop (&begin_directive, &begin_negated, &file, &line,
1327 (const void **) state_ptr);
1328
1329 if (begin_directive != directive_none)
1330 {
1331 if (begin_directive != end_directive || begin_negated != end_negated)
1332 {
1333 as_bad (_("does not match begin %s%s at %s:%d"),
1334 begin_negated ? "no-" : "",
1335 directive_info[begin_directive].name, file, line);
1336 }
1337 else
1338 {
1339 switch (end_directive)
1340 {
1341 case directive_literal:
1342 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1343 xtensa_restore_emit_state (state);
1344 xtensa_set_frag_assembly_state (frag_now);
1345 free (state);
1346 if (!inside_directive (directive_literal))
1347 {
1348 /* Restore the list of current labels. */
1349 xtensa_clear_insn_labels ();
1350 insn_labels = saved_insn_labels;
1351 }
1352 break;
1353
1354 case directive_literal_prefix:
1355 /* Restore the default collection sections from saved state. */
1356 s = (lit_state *) state;
1357 assert (s);
1358
1359 default_lit_sections = *s;
1360
1361 /* free the state storage */
1362 free (s);
1363 break;
1364
1365 case directive_schedule:
1366 case directive_freeregs:
1367 break;
1368
1369 default:
1370 xtensa_set_frag_assembly_state (frag_now);
1371 break;
1372 }
1373 }
1374 }
1375
1376 demand_empty_rest_of_line ();
1377 }
1378
1379
1380 /* Place an aligned literal fragment at the current location. */
1381
1382 static void
1383 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1384 {
1385 md_flush_pending_output ();
1386
1387 if (inside_directive (directive_literal))
1388 as_warn (_(".literal_position inside literal directive; ignoring"));
1389 xtensa_mark_literal_pool_location ();
1390
1391 demand_empty_rest_of_line ();
1392 xtensa_clear_insn_labels ();
1393 }
1394
1395
1396 /* Support .literal label, expr, ... */
1397
1398 static void
1399 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1400 {
1401 emit_state state;
1402 char *p, *base_name;
1403 char c;
1404 segT dest_seg;
1405
1406 if (inside_directive (directive_literal))
1407 {
1408 as_bad (_(".literal not allowed inside .begin literal region"));
1409 ignore_rest_of_line ();
1410 return;
1411 }
1412
1413 md_flush_pending_output ();
1414
1415 /* Previous labels go with whatever follows this directive, not with
1416 the literal, so save them now. */
1417 saved_insn_labels = insn_labels;
1418 insn_labels = NULL;
1419
1420 /* If we are using text-section literals, then this is the right value... */
1421 dest_seg = now_seg;
1422
1423 base_name = input_line_pointer;
1424
1425 xtensa_switch_to_literal_fragment (&state);
1426
1427 /* ...but if we aren't using text-section-literals, then we
1428 need to put them in the section we just switched to. */
1429 if (use_literal_section || directive_state[directive_absolute_literals])
1430 dest_seg = now_seg;
1431
1432 /* All literals are aligned to four-byte boundaries. */
1433 frag_align (2, 0, 0);
1434 record_alignment (now_seg, 2);
1435
1436 c = get_symbol_end ();
1437 /* Just after name is now '\0'. */
1438 p = input_line_pointer;
1439 *p = c;
1440 SKIP_WHITESPACE ();
1441
1442 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1443 {
1444 as_bad (_("expected comma or colon after symbol name; "
1445 "rest of line ignored"));
1446 ignore_rest_of_line ();
1447 xtensa_restore_emit_state (&state);
1448 return;
1449 }
1450 *p = 0;
1451
1452 colon (base_name);
1453
1454 *p = c;
1455 input_line_pointer++; /* skip ',' or ':' */
1456
1457 xtensa_elf_cons (4);
1458
1459 xtensa_restore_emit_state (&state);
1460
1461 /* Restore the list of current labels. */
1462 xtensa_clear_insn_labels ();
1463 insn_labels = saved_insn_labels;
1464 }
1465
1466
1467 static void
1468 xtensa_literal_prefix (char const *start, int len)
1469 {
1470 char *name, *linkonce_suffix;
1471 char *newname, *newname4;
1472 size_t linkonce_len;
1473
1474 /* Get a null-terminated copy of the name. */
1475 name = xmalloc (len + 1);
1476 assert (name);
1477
1478 strncpy (name, start, len);
1479 name[len] = 0;
1480
1481 /* Allocate the sections (interesting note: the memory pointing to
1482 the name is actually used for the name by the new section). */
1483
1484 newname = xmalloc (len + strlen (".literal") + 1);
1485 newname4 = xmalloc (len + strlen (".lit4") + 1);
1486
1487 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1488 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1489 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1490 {
1491 strcpy (newname, ".gnu.linkonce.literal");
1492 strcpy (newname4, ".gnu.linkonce.lit4");
1493
1494 strcat (newname, linkonce_suffix);
1495 strcat (newname4, linkonce_suffix);
1496 }
1497 else
1498 {
1499 int suffix_pos = len;
1500
1501 /* If the section name ends with ".text", then replace that suffix
1502 instead of appending an additional suffix. */
1503 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1504 suffix_pos -= 5;
1505
1506 strcpy (newname, name);
1507 strcpy (newname4, name);
1508
1509 strcpy (newname + suffix_pos, ".literal");
1510 strcpy (newname4 + suffix_pos, ".lit4");
1511 }
1512
1513 /* Note that cache_literal_section does not create a segment if
1514 it already exists. */
1515 default_lit_sections.lit_seg = NULL;
1516 default_lit_sections.lit4_seg = NULL;
1517
1518 /* Canonicalizing section names allows renaming literal
1519 sections to occur correctly. */
1520 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1521 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
1522
1523 free (name);
1524 }
1525
1526
1527 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1528
1529 static void
1530 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1531 {
1532 float fall_through_f, target_f;
1533
1534 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (fall_through_f < 0)
1536 {
1537 as_bad (_("fall through frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1543 if (target_f < 0)
1544 {
1545 as_bad (_("branch target frequency must be greater than 0"));
1546 ignore_rest_of_line ();
1547 return;
1548 }
1549
1550 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1551
1552 demand_empty_rest_of_line ();
1553 }
1554
1555
1556 /* Like normal .long/.short/.word, except support @plt, etc.
1557 Clobbers input_line_pointer, checks end-of-line. */
1558
1559 static void
1560 xtensa_elf_cons (int nbytes)
1561 {
1562 expressionS exp;
1563 bfd_reloc_code_real_type reloc;
1564
1565 md_flush_pending_output ();
1566
1567 if (cur_vinsn.inside_bundle)
1568 as_bad (_("directives are not valid inside bundles"));
1569
1570 if (is_it_end_of_statement ())
1571 {
1572 demand_empty_rest_of_line ();
1573 return;
1574 }
1575
1576 do
1577 {
1578 expression (&exp);
1579 if (exp.X_op == O_symbol
1580 && *input_line_pointer == '@'
1581 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1582 != BFD_RELOC_NONE))
1583 {
1584 reloc_howto_type *reloc_howto =
1585 bfd_reloc_type_lookup (stdoutput, reloc);
1586
1587 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1588 as_bad (_("unsupported relocation"));
1589 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1590 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1591 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1592 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1593 as_bad (_("opcode-specific %s relocation used outside "
1594 "an instruction"), reloc_howto->name);
1595 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1596 as_bad (_("%s relocations do not fit in %d bytes"),
1597 reloc_howto->name, nbytes);
1598 else
1599 {
1600 char *p = frag_more ((int) nbytes);
1601 xtensa_set_frag_assembly_state (frag_now);
1602 fix_new_exp (frag_now, p - frag_now->fr_literal,
1603 nbytes, &exp, 0, reloc);
1604 }
1605 }
1606 else
1607 emit_expr (&exp, (unsigned int) nbytes);
1608 }
1609 while (*input_line_pointer++ == ',');
1610
1611 input_line_pointer--; /* Put terminator back into stream. */
1612 demand_empty_rest_of_line ();
1613 }
1614
1615 \f
1616 /* Parsing and Idiom Translation. */
1617
1618 /* Parse @plt, etc. and return the desired relocation. */
1619 static bfd_reloc_code_real_type
1620 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1621 {
1622 struct map_bfd
1623 {
1624 char *string;
1625 int length;
1626 bfd_reloc_code_real_type reloc;
1627 };
1628
1629 char ident[20];
1630 char *str = *str_p;
1631 char *str2;
1632 int ch;
1633 int len;
1634 struct map_bfd *ptr;
1635
1636 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1637
1638 static struct map_bfd mapping[] =
1639 {
1640 MAP ("l", BFD_RELOC_LO16),
1641 MAP ("h", BFD_RELOC_HI16),
1642 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1643 { (char *) 0, 0, BFD_RELOC_UNUSED }
1644 };
1645
1646 if (*str++ != '@')
1647 return BFD_RELOC_NONE;
1648
1649 for (ch = *str, str2 = ident;
1650 (str2 < ident + sizeof (ident) - 1
1651 && (ISALNUM (ch) || ch == '@'));
1652 ch = *++str)
1653 {
1654 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1655 }
1656
1657 *str2 = '\0';
1658 len = str2 - ident;
1659
1660 ch = ident[0];
1661 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1662 if (ch == ptr->string[0]
1663 && len == ptr->length
1664 && memcmp (ident, ptr->string, ptr->length) == 0)
1665 {
1666 /* Now check for "identifier@suffix+constant". */
1667 if (*str == '-' || *str == '+')
1668 {
1669 char *orig_line = input_line_pointer;
1670 expressionS new_exp;
1671
1672 input_line_pointer = str;
1673 expression (&new_exp);
1674 if (new_exp.X_op == O_constant)
1675 {
1676 exp_p->X_add_number += new_exp.X_add_number;
1677 str = input_line_pointer;
1678 }
1679
1680 if (&input_line_pointer != str_p)
1681 input_line_pointer = orig_line;
1682 }
1683
1684 *str_p = str;
1685 return ptr->reloc;
1686 }
1687
1688 return BFD_RELOC_UNUSED;
1689 }
1690
1691
1692 static const char *
1693 expression_end (const char *name)
1694 {
1695 while (1)
1696 {
1697 switch (*name)
1698 {
1699 case '}':
1700 case ';':
1701 case '\0':
1702 case ',':
1703 case ':':
1704 return name;
1705 case ' ':
1706 case '\t':
1707 ++name;
1708 continue;
1709 default:
1710 return 0;
1711 }
1712 }
1713 }
1714
1715
1716 #define ERROR_REG_NUM ((unsigned) -1)
1717
1718 static unsigned
1719 tc_get_register (const char *prefix)
1720 {
1721 unsigned reg;
1722 const char *next_expr;
1723 const char *old_line_pointer;
1724
1725 SKIP_WHITESPACE ();
1726 old_line_pointer = input_line_pointer;
1727
1728 if (*input_line_pointer == '$')
1729 ++input_line_pointer;
1730
1731 /* Accept "sp" as a synonym for "a1". */
1732 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1733 && expression_end (input_line_pointer + 2))
1734 {
1735 input_line_pointer += 2;
1736 return 1; /* AR[1] */
1737 }
1738
1739 while (*input_line_pointer++ == *prefix++)
1740 ;
1741 --input_line_pointer;
1742 --prefix;
1743
1744 if (*prefix)
1745 {
1746 as_bad (_("bad register name: %s"), old_line_pointer);
1747 return ERROR_REG_NUM;
1748 }
1749
1750 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1751 {
1752 as_bad (_("bad register number: %s"), input_line_pointer);
1753 return ERROR_REG_NUM;
1754 }
1755
1756 reg = 0;
1757
1758 while (ISDIGIT ((int) *input_line_pointer))
1759 reg = reg * 10 + *input_line_pointer++ - '0';
1760
1761 if (!(next_expr = expression_end (input_line_pointer)))
1762 {
1763 as_bad (_("bad register name: %s"), old_line_pointer);
1764 return ERROR_REG_NUM;
1765 }
1766
1767 input_line_pointer = (char *) next_expr;
1768
1769 return reg;
1770 }
1771
1772
1773 static void
1774 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1775 {
1776 xtensa_isa isa = xtensa_default_isa;
1777
1778 /* Check if this is an immediate operand. */
1779 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1780 {
1781 bfd_reloc_code_real_type reloc;
1782 segT t = expression (tok);
1783 if (t == absolute_section
1784 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1785 {
1786 assert (tok->X_op == O_constant);
1787 tok->X_op = O_symbol;
1788 tok->X_add_symbol = &abs_symbol;
1789 }
1790
1791 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1792 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1793 && (reloc != BFD_RELOC_NONE))
1794 {
1795 switch (reloc)
1796 {
1797 default:
1798 case BFD_RELOC_UNUSED:
1799 as_bad (_("unsupported relocation"));
1800 break;
1801
1802 case BFD_RELOC_XTENSA_PLT:
1803 tok->X_op = O_pltrel;
1804 break;
1805
1806 case BFD_RELOC_LO16:
1807 if (tok->X_op == O_constant)
1808 tok->X_add_number &= 0xffff;
1809 else
1810 tok->X_op = O_lo16;
1811 break;
1812
1813 case BFD_RELOC_HI16:
1814 if (tok->X_op == O_constant)
1815 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1816 else
1817 tok->X_op = O_hi16;
1818 break;
1819 }
1820 }
1821 }
1822 else
1823 {
1824 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1825 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1826
1827 if (reg != ERROR_REG_NUM) /* Already errored */
1828 {
1829 uint32 buf = reg;
1830 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1831 as_bad (_("register number out of range"));
1832 }
1833
1834 tok->X_op = O_register;
1835 tok->X_add_symbol = 0;
1836 tok->X_add_number = reg;
1837 }
1838 }
1839
1840
1841 /* Split up the arguments for an opcode or pseudo-op. */
1842
1843 static int
1844 tokenize_arguments (char **args, char *str)
1845 {
1846 char *old_input_line_pointer;
1847 bfd_boolean saw_comma = FALSE;
1848 bfd_boolean saw_arg = FALSE;
1849 bfd_boolean saw_colon = FALSE;
1850 int num_args = 0;
1851 char *arg_end, *arg;
1852 int arg_len;
1853
1854 /* Save and restore input_line_pointer around this function. */
1855 old_input_line_pointer = input_line_pointer;
1856 input_line_pointer = str;
1857
1858 while (*input_line_pointer)
1859 {
1860 SKIP_WHITESPACE ();
1861 switch (*input_line_pointer)
1862 {
1863 case '\0':
1864 case '}':
1865 goto fini;
1866
1867 case ':':
1868 input_line_pointer++;
1869 if (saw_comma || saw_colon || !saw_arg)
1870 goto err;
1871 saw_colon = TRUE;
1872 break;
1873
1874 case ',':
1875 input_line_pointer++;
1876 if (saw_comma || saw_colon || !saw_arg)
1877 goto err;
1878 saw_comma = TRUE;
1879 break;
1880
1881 default:
1882 if (!saw_comma && !saw_colon && saw_arg)
1883 goto err;
1884
1885 arg_end = input_line_pointer + 1;
1886 while (!expression_end (arg_end))
1887 arg_end += 1;
1888
1889 arg_len = arg_end - input_line_pointer;
1890 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1891 args[num_args] = arg;
1892
1893 if (saw_colon)
1894 *arg++ = ':';
1895 strncpy (arg, input_line_pointer, arg_len);
1896 arg[arg_len] = '\0';
1897
1898 input_line_pointer = arg_end;
1899 num_args += 1;
1900 saw_comma = FALSE;
1901 saw_colon = FALSE;
1902 saw_arg = TRUE;
1903 break;
1904 }
1905 }
1906
1907 fini:
1908 if (saw_comma || saw_colon)
1909 goto err;
1910 input_line_pointer = old_input_line_pointer;
1911 return num_args;
1912
1913 err:
1914 if (saw_comma)
1915 as_bad (_("extra comma"));
1916 else if (saw_colon)
1917 as_bad (_("extra colon"));
1918 else if (!saw_arg)
1919 as_bad (_("missing argument"));
1920 else
1921 as_bad (_("missing comma or colon"));
1922 input_line_pointer = old_input_line_pointer;
1923 return -1;
1924 }
1925
1926
1927 /* Parse the arguments to an opcode. Return TRUE on error. */
1928
1929 static bfd_boolean
1930 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1931 {
1932 expressionS *tok, *last_tok;
1933 xtensa_opcode opcode = insn->opcode;
1934 bfd_boolean had_error = TRUE;
1935 xtensa_isa isa = xtensa_default_isa;
1936 int n, num_regs = 0;
1937 int opcode_operand_count;
1938 int opnd_cnt, last_opnd_cnt;
1939 unsigned int next_reg = 0;
1940 char *old_input_line_pointer;
1941
1942 if (insn->insn_type == ITYPE_LITERAL)
1943 opcode_operand_count = 1;
1944 else
1945 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1946
1947 tok = insn->tok;
1948 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1949
1950 /* Save and restore input_line_pointer around this function. */
1951 old_input_line_pointer = input_line_pointer;
1952
1953 last_tok = 0;
1954 last_opnd_cnt = -1;
1955 opnd_cnt = 0;
1956
1957 /* Skip invisible operands. */
1958 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1959 {
1960 opnd_cnt += 1;
1961 tok++;
1962 }
1963
1964 for (n = 0; n < num_args; n++)
1965 {
1966 input_line_pointer = arg_strings[n];
1967 if (*input_line_pointer == ':')
1968 {
1969 xtensa_regfile opnd_rf;
1970 input_line_pointer++;
1971 if (num_regs == 0)
1972 goto err;
1973 assert (opnd_cnt > 0);
1974 num_regs--;
1975 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
1976 if (next_reg
1977 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
1978 as_warn (_("incorrect register number, ignoring"));
1979 next_reg++;
1980 }
1981 else
1982 {
1983 if (opnd_cnt >= opcode_operand_count)
1984 {
1985 as_warn (_("too many arguments"));
1986 goto err;
1987 }
1988 assert (opnd_cnt < MAX_INSN_ARGS);
1989
1990 expression_maybe_register (opcode, opnd_cnt, tok);
1991 next_reg = tok->X_add_number + 1;
1992
1993 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1994 goto err;
1995 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
1996 {
1997 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
1998 /* minus 1 because we are seeing one right now */
1999 }
2000 else
2001 num_regs = 0;
2002
2003 last_tok = tok;
2004 last_opnd_cnt = opnd_cnt;
2005
2006 do
2007 {
2008 opnd_cnt += 1;
2009 tok++;
2010 }
2011 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2012 }
2013 }
2014
2015 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2016 goto err;
2017
2018 insn->ntok = tok - insn->tok;
2019 had_error = FALSE;
2020
2021 err:
2022 input_line_pointer = old_input_line_pointer;
2023 return had_error;
2024 }
2025
2026
2027 static int
2028 get_invisible_operands (TInsn *insn)
2029 {
2030 xtensa_isa isa = xtensa_default_isa;
2031 static xtensa_insnbuf slotbuf = NULL;
2032 xtensa_format fmt;
2033 xtensa_opcode opc = insn->opcode;
2034 int slot, opnd, fmt_found;
2035 unsigned val;
2036
2037 if (!slotbuf)
2038 slotbuf = xtensa_insnbuf_alloc (isa);
2039
2040 /* Find format/slot where this can be encoded. */
2041 fmt_found = 0;
2042 slot = 0;
2043 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2044 {
2045 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2046 {
2047 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2048 {
2049 fmt_found = 1;
2050 break;
2051 }
2052 }
2053 if (fmt_found) break;
2054 }
2055
2056 if (!fmt_found)
2057 {
2058 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2059 return -1;
2060 }
2061
2062 /* First encode all the visible operands
2063 (to deal with shared field operands). */
2064 for (opnd = 0; opnd < insn->ntok; opnd++)
2065 {
2066 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2067 && (insn->tok[opnd].X_op == O_register
2068 || insn->tok[opnd].X_op == O_constant))
2069 {
2070 val = insn->tok[opnd].X_add_number;
2071 xtensa_operand_encode (isa, opc, opnd, &val);
2072 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2073 }
2074 }
2075
2076 /* Then pull out the values for the invisible ones. */
2077 for (opnd = 0; opnd < insn->ntok; opnd++)
2078 {
2079 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2080 {
2081 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2082 xtensa_operand_decode (isa, opc, opnd, &val);
2083 insn->tok[opnd].X_add_number = val;
2084 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2085 insn->tok[opnd].X_op = O_register;
2086 else
2087 insn->tok[opnd].X_op = O_constant;
2088 }
2089 }
2090
2091 return 0;
2092 }
2093
2094
2095 static void
2096 xg_reverse_shift_count (char **cnt_argp)
2097 {
2098 char *cnt_arg, *new_arg;
2099 cnt_arg = *cnt_argp;
2100
2101 /* replace the argument with "31-(argument)" */
2102 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2103 sprintf (new_arg, "31-(%s)", cnt_arg);
2104
2105 free (cnt_arg);
2106 *cnt_argp = new_arg;
2107 }
2108
2109
2110 /* If "arg" is a constant expression, return non-zero with the value
2111 in *valp. */
2112
2113 static int
2114 xg_arg_is_constant (char *arg, offsetT *valp)
2115 {
2116 expressionS exp;
2117 char *save_ptr = input_line_pointer;
2118
2119 input_line_pointer = arg;
2120 expression (&exp);
2121 input_line_pointer = save_ptr;
2122
2123 if (exp.X_op == O_constant)
2124 {
2125 *valp = exp.X_add_number;
2126 return 1;
2127 }
2128
2129 return 0;
2130 }
2131
2132
2133 static void
2134 xg_replace_opname (char **popname, char *newop)
2135 {
2136 free (*popname);
2137 *popname = (char *) xmalloc (strlen (newop) + 1);
2138 strcpy (*popname, newop);
2139 }
2140
2141
2142 static int
2143 xg_check_num_args (int *pnum_args,
2144 int expected_num,
2145 char *opname,
2146 char **arg_strings)
2147 {
2148 int num_args = *pnum_args;
2149
2150 if (num_args < expected_num)
2151 {
2152 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2153 num_args, opname, expected_num);
2154 return -1;
2155 }
2156
2157 if (num_args > expected_num)
2158 {
2159 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2160 num_args, opname, expected_num);
2161 while (num_args-- > expected_num)
2162 {
2163 free (arg_strings[num_args]);
2164 arg_strings[num_args] = 0;
2165 }
2166 *pnum_args = expected_num;
2167 return -1;
2168 }
2169
2170 return 0;
2171 }
2172
2173
2174 /* If the register is not specified as part of the opcode,
2175 then get it from the operand and move it to the opcode. */
2176
2177 static int
2178 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2179 {
2180 xtensa_isa isa = xtensa_default_isa;
2181 xtensa_sysreg sr;
2182 char *opname, *new_opname;
2183 const char *sr_name;
2184 int is_user, is_write;
2185
2186 opname = *popname;
2187 if (*opname == '_')
2188 opname += 1;
2189 is_user = (opname[1] == 'u');
2190 is_write = (opname[0] == 'w');
2191
2192 /* Opname == [rw]ur or [rwx]sr... */
2193
2194 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2195 return -1;
2196
2197 /* Check if the argument is a symbolic register name. */
2198 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2199 /* Handle WSR to "INTSET" as a special case. */
2200 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2201 && !strcasecmp (arg_strings[1], "intset"))
2202 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2203 if (sr == XTENSA_UNDEFINED
2204 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2205 {
2206 /* Maybe it's a register number.... */
2207 offsetT val;
2208 if (!xg_arg_is_constant (arg_strings[1], &val))
2209 {
2210 as_bad (_("invalid register '%s' for '%s' instruction"),
2211 arg_strings[1], opname);
2212 return -1;
2213 }
2214 sr = xtensa_sysreg_lookup (isa, val, is_user);
2215 if (sr == XTENSA_UNDEFINED)
2216 {
2217 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2218 (long) val, opname);
2219 return -1;
2220 }
2221 }
2222
2223 /* Remove the last argument, which is now part of the opcode. */
2224 free (arg_strings[1]);
2225 arg_strings[1] = 0;
2226 *pnum_args = 1;
2227
2228 /* Translate the opcode. */
2229 sr_name = xtensa_sysreg_name (isa, sr);
2230 /* Another special case for "WSR.INTSET".... */
2231 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2232 sr_name = "intset";
2233 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2234 sprintf (new_opname, "%s.%s", *popname, sr_name);
2235 free (*popname);
2236 *popname = new_opname;
2237
2238 return 0;
2239 }
2240
2241
2242 static int
2243 xtensa_translate_old_userreg_ops (char **popname)
2244 {
2245 xtensa_isa isa = xtensa_default_isa;
2246 xtensa_sysreg sr;
2247 char *opname, *new_opname;
2248 const char *sr_name;
2249 bfd_boolean has_underbar = FALSE;
2250
2251 opname = *popname;
2252 if (opname[0] == '_')
2253 {
2254 has_underbar = TRUE;
2255 opname += 1;
2256 }
2257
2258 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2259 if (sr != XTENSA_UNDEFINED)
2260 {
2261 /* The new default name ("nnn") is different from the old default
2262 name ("URnnn"). The old default is handled below, and we don't
2263 want to recognize [RW]nnn, so do nothing if the name is the (new)
2264 default. */
2265 static char namebuf[10];
2266 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2267 if (strcmp (namebuf, opname + 1) == 0)
2268 return 0;
2269 }
2270 else
2271 {
2272 offsetT val;
2273 char *end;
2274
2275 /* Only continue if the reg name is "URnnn". */
2276 if (opname[1] != 'u' || opname[2] != 'r')
2277 return 0;
2278 val = strtoul (opname + 3, &end, 10);
2279 if (*end != '\0')
2280 return 0;
2281
2282 sr = xtensa_sysreg_lookup (isa, val, 1);
2283 if (sr == XTENSA_UNDEFINED)
2284 {
2285 as_bad (_("invalid register number (%ld) for '%s'"),
2286 (long) val, opname);
2287 return -1;
2288 }
2289 }
2290
2291 /* Translate the opcode. */
2292 sr_name = xtensa_sysreg_name (isa, sr);
2293 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2294 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2295 opname[0], sr_name);
2296 free (*popname);
2297 *popname = new_opname;
2298
2299 return 0;
2300 }
2301
2302
2303 static int
2304 xtensa_translate_zero_immed (char *old_op,
2305 char *new_op,
2306 char **popname,
2307 int *pnum_args,
2308 char **arg_strings)
2309 {
2310 char *opname;
2311 offsetT val;
2312
2313 opname = *popname;
2314 assert (opname[0] != '_');
2315
2316 if (strcmp (opname, old_op) != 0)
2317 return 0;
2318
2319 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2320 return -1;
2321 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2322 {
2323 xg_replace_opname (popname, new_op);
2324 free (arg_strings[1]);
2325 arg_strings[1] = arg_strings[2];
2326 arg_strings[2] = 0;
2327 *pnum_args = 2;
2328 }
2329
2330 return 0;
2331 }
2332
2333
2334 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2335 Returns non-zero if an error was found. */
2336
2337 static int
2338 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2339 {
2340 char *opname = *popname;
2341 bfd_boolean has_underbar = FALSE;
2342
2343 if (cur_vinsn.inside_bundle)
2344 return 0;
2345
2346 if (*opname == '_')
2347 {
2348 has_underbar = TRUE;
2349 opname += 1;
2350 }
2351
2352 if (strcmp (opname, "mov") == 0)
2353 {
2354 if (use_transform () && !has_underbar && density_supported)
2355 xg_replace_opname (popname, "mov.n");
2356 else
2357 {
2358 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2359 return -1;
2360 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2361 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2362 strcpy (arg_strings[2], arg_strings[1]);
2363 *pnum_args = 3;
2364 }
2365 return 0;
2366 }
2367
2368 if (strcmp (opname, "bbsi.l") == 0)
2369 {
2370 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2371 return -1;
2372 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2373 if (target_big_endian)
2374 xg_reverse_shift_count (&arg_strings[1]);
2375 return 0;
2376 }
2377
2378 if (strcmp (opname, "bbci.l") == 0)
2379 {
2380 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2381 return -1;
2382 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2383 if (target_big_endian)
2384 xg_reverse_shift_count (&arg_strings[1]);
2385 return 0;
2386 }
2387
2388 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2389 && strcmp (opname, "nop") == 0)
2390 {
2391 if (use_transform () && !has_underbar && density_supported)
2392 xg_replace_opname (popname, "nop.n");
2393 else
2394 {
2395 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2396 return -1;
2397 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2398 arg_strings[0] = (char *) xmalloc (3);
2399 arg_strings[1] = (char *) xmalloc (3);
2400 arg_strings[2] = (char *) xmalloc (3);
2401 strcpy (arg_strings[0], "a1");
2402 strcpy (arg_strings[1], "a1");
2403 strcpy (arg_strings[2], "a1");
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
2409 /* Recognize [RW]UR and [RWX]SR. */
2410 if ((((opname[0] == 'r' || opname[0] == 'w')
2411 && (opname[1] == 'u' || opname[1] == 's'))
2412 || (opname[0] == 'x' && opname[1] == 's'))
2413 && opname[2] == 'r'
2414 && opname[3] == '\0')
2415 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2416
2417 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2418 [RW]<name> if <name> is the non-default name of a user register. */
2419 if ((opname[0] == 'r' || opname[0] == 'w')
2420 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2421 return xtensa_translate_old_userreg_ops (popname);
2422
2423 /* Relax branches that don't allow comparisons against an immediate value
2424 of zero to the corresponding branches with implicit zero immediates. */
2425 if (!has_underbar && use_transform ())
2426 {
2427 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2428 pnum_args, arg_strings))
2429 return -1;
2430
2431 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2432 pnum_args, arg_strings))
2433 return -1;
2434
2435 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2436 pnum_args, arg_strings))
2437 return -1;
2438
2439 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2440 pnum_args, arg_strings))
2441 return -1;
2442 }
2443
2444 return 0;
2445 }
2446
2447 \f
2448 /* Functions for dealing with the Xtensa ISA. */
2449
2450 /* Currently the assembler only allows us to use a single target per
2451 fragment. Because of this, only one operand for a given
2452 instruction may be symbolic. If there is a PC-relative operand,
2453 the last one is chosen. Otherwise, the result is the number of the
2454 last immediate operand, and if there are none of those, we fail and
2455 return -1. */
2456
2457 static int
2458 get_relaxable_immed (xtensa_opcode opcode)
2459 {
2460 int last_immed = -1;
2461 int noperands, opi;
2462
2463 if (opcode == XTENSA_UNDEFINED)
2464 return -1;
2465
2466 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2467 for (opi = noperands - 1; opi >= 0; opi--)
2468 {
2469 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2470 continue;
2471 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2472 return opi;
2473 if (last_immed == -1
2474 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2475 last_immed = opi;
2476 }
2477 return last_immed;
2478 }
2479
2480
2481 static xtensa_opcode
2482 get_opcode_from_buf (const char *buf, int slot)
2483 {
2484 static xtensa_insnbuf insnbuf = NULL;
2485 static xtensa_insnbuf slotbuf = NULL;
2486 xtensa_isa isa = xtensa_default_isa;
2487 xtensa_format fmt;
2488
2489 if (!insnbuf)
2490 {
2491 insnbuf = xtensa_insnbuf_alloc (isa);
2492 slotbuf = xtensa_insnbuf_alloc (isa);
2493 }
2494
2495 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2496 fmt = xtensa_format_decode (isa, insnbuf);
2497 if (fmt == XTENSA_UNDEFINED)
2498 return XTENSA_UNDEFINED;
2499
2500 if (slot >= xtensa_format_num_slots (isa, fmt))
2501 return XTENSA_UNDEFINED;
2502
2503 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2504 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2505 }
2506
2507
2508 #ifdef TENSILICA_DEBUG
2509
2510 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2511
2512 static void
2513 xtensa_print_insn_table (void)
2514 {
2515 int num_opcodes, num_operands;
2516 xtensa_opcode opcode;
2517 xtensa_isa isa = xtensa_default_isa;
2518
2519 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2520 for (opcode = 0; opcode < num_opcodes; opcode++)
2521 {
2522 int opn;
2523 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2524 num_operands = xtensa_opcode_num_operands (isa, opcode);
2525 for (opn = 0; opn < num_operands; opn++)
2526 {
2527 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2528 continue;
2529 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2530 {
2531 xtensa_regfile opnd_rf =
2532 xtensa_operand_regfile (isa, opcode, opn);
2533 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2534 }
2535 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2536 fputs ("[lLr] ", stderr);
2537 else
2538 fputs ("i ", stderr);
2539 }
2540 fprintf (stderr, "\n");
2541 }
2542 }
2543
2544
2545 static void
2546 print_vliw_insn (xtensa_insnbuf vbuf)
2547 {
2548 xtensa_isa isa = xtensa_default_isa;
2549 xtensa_format f = xtensa_format_decode (isa, vbuf);
2550 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2551 int op;
2552
2553 fprintf (stderr, "format = %d\n", f);
2554
2555 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2556 {
2557 xtensa_opcode opcode;
2558 const char *opname;
2559 int operands;
2560
2561 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2562 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2563 opname = xtensa_opcode_name (isa, opcode);
2564
2565 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2566 fprintf (stderr, " operands = ");
2567 for (operands = 0;
2568 operands < xtensa_opcode_num_operands (isa, opcode);
2569 operands++)
2570 {
2571 unsigned int val;
2572 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2573 continue;
2574 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2575 xtensa_operand_decode (isa, opcode, operands, &val);
2576 fprintf (stderr, "%d ", val);
2577 }
2578 fprintf (stderr, "\n");
2579 }
2580 xtensa_insnbuf_free (isa, sbuf);
2581 }
2582
2583 #endif /* TENSILICA_DEBUG */
2584
2585
2586 static bfd_boolean
2587 is_direct_call_opcode (xtensa_opcode opcode)
2588 {
2589 xtensa_isa isa = xtensa_default_isa;
2590 int n, num_operands;
2591
2592 if (xtensa_opcode_is_call (isa, opcode) == 0)
2593 return FALSE;
2594
2595 num_operands = xtensa_opcode_num_operands (isa, opcode);
2596 for (n = 0; n < num_operands; n++)
2597 {
2598 if (xtensa_operand_is_register (isa, opcode, n) == 0
2599 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2600 return TRUE;
2601 }
2602 return FALSE;
2603 }
2604
2605
2606 /* Convert from BFD relocation type code to slot and operand number.
2607 Returns non-zero on failure. */
2608
2609 static int
2610 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2611 {
2612 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2613 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2614 {
2615 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2616 *is_alt = FALSE;
2617 }
2618 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2619 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2620 {
2621 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2622 *is_alt = TRUE;
2623 }
2624 else
2625 return -1;
2626
2627 return 0;
2628 }
2629
2630
2631 /* Convert from slot number to BFD relocation type code for the
2632 standard PC-relative relocations. Return BFD_RELOC_NONE on
2633 failure. */
2634
2635 static bfd_reloc_code_real_type
2636 encode_reloc (int slot)
2637 {
2638 if (slot < 0 || slot > 14)
2639 return BFD_RELOC_NONE;
2640
2641 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2642 }
2643
2644
2645 /* Convert from slot numbers to BFD relocation type code for the
2646 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2647
2648 static bfd_reloc_code_real_type
2649 encode_alt_reloc (int slot)
2650 {
2651 if (slot < 0 || slot > 14)
2652 return BFD_RELOC_NONE;
2653
2654 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2655 }
2656
2657
2658 static void
2659 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2660 xtensa_format fmt,
2661 int slot,
2662 xtensa_opcode opcode,
2663 int operand,
2664 uint32 value,
2665 const char *file,
2666 unsigned int line)
2667 {
2668 uint32 valbuf = value;
2669
2670 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2671 {
2672 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2673 == 1)
2674 as_bad_where ((char *) file, line,
2675 _("operand %d of '%s' has out of range value '%u'"),
2676 operand + 1,
2677 xtensa_opcode_name (xtensa_default_isa, opcode),
2678 value);
2679 else
2680 as_bad_where ((char *) file, line,
2681 _("operand %d of '%s' has invalid value '%u'"),
2682 operand + 1,
2683 xtensa_opcode_name (xtensa_default_isa, opcode),
2684 value);
2685 return;
2686 }
2687
2688 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2689 slotbuf, valbuf);
2690 }
2691
2692
2693 static uint32
2694 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int opnum)
2699 {
2700 uint32 val = 0;
2701 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2702 fmt, slot, slotbuf, &val);
2703 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2704 return val;
2705 }
2706
2707 \f
2708 /* Checks for rules from xtensa-relax tables. */
2709
2710 /* The routine xg_instruction_matches_option_term must return TRUE
2711 when a given option term is true. The meaning of all of the option
2712 terms is given interpretation by this function. This is needed when
2713 an option depends on the state of a directive, but there are no such
2714 options in use right now. */
2715
2716 static bfd_boolean
2717 xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2718 const ReqOrOption *option)
2719 {
2720 if (strcmp (option->option_name, "realnop") == 0
2721 || strncmp (option->option_name, "IsaUse", 6) == 0)
2722 {
2723 /* These conditions were evaluated statically when building the
2724 relaxation table. There's no need to reevaluate them now. */
2725 return TRUE;
2726 }
2727 else
2728 {
2729 as_fatal (_("internal error: unknown option name '%s'"),
2730 option->option_name);
2731 }
2732 }
2733
2734
2735 static bfd_boolean
2736 xg_instruction_matches_or_options (TInsn *insn,
2737 const ReqOrOptionList *or_option)
2738 {
2739 const ReqOrOption *option;
2740 /* Must match each of the AND terms. */
2741 for (option = or_option; option != NULL; option = option->next)
2742 {
2743 if (xg_instruction_matches_option_term (insn, option))
2744 return TRUE;
2745 }
2746 return FALSE;
2747 }
2748
2749
2750 static bfd_boolean
2751 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2752 {
2753 const ReqOption *req_options;
2754 /* Must match each of the AND terms. */
2755 for (req_options = options;
2756 req_options != NULL;
2757 req_options = req_options->next)
2758 {
2759 /* Must match one of the OR clauses. */
2760 if (!xg_instruction_matches_or_options (insn,
2761 req_options->or_option_terms))
2762 return FALSE;
2763 }
2764 return TRUE;
2765 }
2766
2767
2768 /* Return the transition rule that matches or NULL if none matches. */
2769
2770 static bfd_boolean
2771 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2772 {
2773 PreconditionList *condition_l;
2774
2775 if (rule->opcode != insn->opcode)
2776 return FALSE;
2777
2778 for (condition_l = rule->conditions;
2779 condition_l != NULL;
2780 condition_l = condition_l->next)
2781 {
2782 expressionS *exp1;
2783 expressionS *exp2;
2784 Precondition *cond = condition_l->precond;
2785
2786 switch (cond->typ)
2787 {
2788 case OP_CONSTANT:
2789 /* The expression must be the constant. */
2790 assert (cond->op_num < insn->ntok);
2791 exp1 = &insn->tok[cond->op_num];
2792 if (expr_is_const (exp1))
2793 {
2794 switch (cond->cmp)
2795 {
2796 case OP_EQUAL:
2797 if (get_expr_const (exp1) != cond->op_data)
2798 return FALSE;
2799 break;
2800 case OP_NOTEQUAL:
2801 if (get_expr_const (exp1) == cond->op_data)
2802 return FALSE;
2803 break;
2804 default:
2805 return FALSE;
2806 }
2807 }
2808 else if (expr_is_register (exp1))
2809 {
2810 switch (cond->cmp)
2811 {
2812 case OP_EQUAL:
2813 if (get_expr_register (exp1) != cond->op_data)
2814 return FALSE;
2815 break;
2816 case OP_NOTEQUAL:
2817 if (get_expr_register (exp1) == cond->op_data)
2818 return FALSE;
2819 break;
2820 default:
2821 return FALSE;
2822 }
2823 }
2824 else
2825 return FALSE;
2826 break;
2827
2828 case OP_OPERAND:
2829 assert (cond->op_num < insn->ntok);
2830 assert (cond->op_data < insn->ntok);
2831 exp1 = &insn->tok[cond->op_num];
2832 exp2 = &insn->tok[cond->op_data];
2833
2834 switch (cond->cmp)
2835 {
2836 case OP_EQUAL:
2837 if (!expr_is_equal (exp1, exp2))
2838 return FALSE;
2839 break;
2840 case OP_NOTEQUAL:
2841 if (expr_is_equal (exp1, exp2))
2842 return FALSE;
2843 break;
2844 }
2845 break;
2846
2847 case OP_LITERAL:
2848 case OP_LABEL:
2849 default:
2850 return FALSE;
2851 }
2852 }
2853 if (!xg_instruction_matches_options (insn, rule->options))
2854 return FALSE;
2855
2856 return TRUE;
2857 }
2858
2859
2860 static int
2861 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2862 {
2863 bfd_boolean a_greater = FALSE;
2864 bfd_boolean b_greater = FALSE;
2865
2866 ReqOptionList *l_a = a->options;
2867 ReqOptionList *l_b = b->options;
2868
2869 /* We only care if they both are the same except for
2870 a const16 vs. an l32r. */
2871
2872 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2873 {
2874 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2875 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2876 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2877 {
2878 if (l_or_a->is_true != l_or_b->is_true)
2879 return 0;
2880 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2881 {
2882 /* This is the case we care about. */
2883 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2884 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2885 {
2886 if (prefer_const16)
2887 a_greater = TRUE;
2888 else
2889 b_greater = TRUE;
2890 }
2891 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2892 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2893 {
2894 if (prefer_const16)
2895 b_greater = TRUE;
2896 else
2897 a_greater = TRUE;
2898 }
2899 else
2900 return 0;
2901 }
2902 l_or_a = l_or_a->next;
2903 l_or_b = l_or_b->next;
2904 }
2905 if (l_or_a || l_or_b)
2906 return 0;
2907
2908 l_a = l_a->next;
2909 l_b = l_b->next;
2910 }
2911 if (l_a || l_b)
2912 return 0;
2913
2914 /* Incomparable if the substitution was used differently in two cases. */
2915 if (a_greater && b_greater)
2916 return 0;
2917
2918 if (b_greater)
2919 return 1;
2920 if (a_greater)
2921 return -1;
2922
2923 return 0;
2924 }
2925
2926
2927 static TransitionRule *
2928 xg_instruction_match (TInsn *insn)
2929 {
2930 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2931 TransitionList *l;
2932 assert (insn->opcode < table->num_opcodes);
2933
2934 /* Walk through all of the possible transitions. */
2935 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2936 {
2937 TransitionRule *rule = l->rule;
2938 if (xg_instruction_matches_rule (insn, rule))
2939 return rule;
2940 }
2941 return NULL;
2942 }
2943
2944 \f
2945 /* Various Other Internal Functions. */
2946
2947 static bfd_boolean
2948 is_unique_insn_expansion (TransitionRule *r)
2949 {
2950 if (!r->to_instr || r->to_instr->next != NULL)
2951 return FALSE;
2952 if (r->to_instr->typ != INSTR_INSTR)
2953 return FALSE;
2954 return TRUE;
2955 }
2956
2957
2958 /* Check if there is exactly one relaxation for INSN that converts it to
2959 another instruction of equal or larger size. If so, and if TARG is
2960 non-null, go ahead and generate the relaxed instruction into TARG. If
2961 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2962 instruction, i.e., ignore relaxations that convert to an instruction of
2963 equal size. In some contexts where this function is used, only
2964 a single widening is allowed and the NARROW_ONLY argument is used to
2965 exclude cases like ADDI being "widened" to an ADDMI, which may
2966 later be relaxed to an ADDMI/ADDI pair. */
2967
2968 bfd_boolean
2969 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
2970 {
2971 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
2972 TransitionList *l;
2973 TransitionRule *match = 0;
2974
2975 assert (insn->insn_type == ITYPE_INSN);
2976 assert (insn->opcode < table->num_opcodes);
2977
2978 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2979 {
2980 TransitionRule *rule = l->rule;
2981
2982 if (xg_instruction_matches_rule (insn, rule)
2983 && is_unique_insn_expansion (rule)
2984 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
2985 <= xg_get_single_size (rule->to_instr->opcode)))
2986 {
2987 if (match)
2988 return FALSE;
2989 match = rule;
2990 }
2991 }
2992 if (!match)
2993 return FALSE;
2994
2995 if (targ)
2996 xg_build_to_insn (targ, insn, match->to_instr);
2997 return TRUE;
2998 }
2999
3000
3001 /* Return the maximum number of bytes this opcode can expand to. */
3002
3003 static int
3004 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3005 {
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
3008 int max_size = xg_get_single_size (opcode);
3009
3010 assert (opcode < table->num_opcodes);
3011
3012 for (l = table->table[opcode]; l != NULL; l = l->next)
3013 {
3014 TransitionRule *rule = l->rule;
3015 BuildInstr *build_list;
3016 int this_size = 0;
3017
3018 if (!rule)
3019 continue;
3020 build_list = rule->to_instr;
3021 if (is_unique_insn_expansion (rule))
3022 {
3023 assert (build_list->typ == INSTR_INSTR);
3024 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3025 }
3026 else
3027 for (; build_list != NULL; build_list = build_list->next)
3028 {
3029 switch (build_list->typ)
3030 {
3031 case INSTR_INSTR:
3032 this_size += xg_get_single_size (build_list->opcode);
3033 break;
3034 case INSTR_LITERAL_DEF:
3035 case INSTR_LABEL_DEF:
3036 default:
3037 break;
3038 }
3039 }
3040 if (this_size > max_size)
3041 max_size = this_size;
3042 }
3043 return max_size;
3044 }
3045
3046
3047 /* Return the maximum number of literal bytes this opcode can generate. */
3048
3049 static int
3050 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3051 {
3052 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3053 TransitionList *l;
3054 int max_size = 0;
3055
3056 assert (opcode < table->num_opcodes);
3057
3058 for (l = table->table[opcode]; l != NULL; l = l->next)
3059 {
3060 TransitionRule *rule = l->rule;
3061 BuildInstr *build_list;
3062 int this_size = 0;
3063
3064 if (!rule)
3065 continue;
3066 build_list = rule->to_instr;
3067 if (is_unique_insn_expansion (rule))
3068 {
3069 assert (build_list->typ == INSTR_INSTR);
3070 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3071 }
3072 else
3073 for (; build_list != NULL; build_list = build_list->next)
3074 {
3075 switch (build_list->typ)
3076 {
3077 case INSTR_LITERAL_DEF:
3078 /* Hard-coded 4-byte literal. */
3079 this_size += 4;
3080 break;
3081 case INSTR_INSTR:
3082 case INSTR_LABEL_DEF:
3083 default:
3084 break;
3085 }
3086 }
3087 if (this_size > max_size)
3088 max_size = this_size;
3089 }
3090 return max_size;
3091 }
3092
3093
3094 static bfd_boolean
3095 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3096 {
3097 int steps_taken = 0;
3098 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3099 TransitionList *l;
3100
3101 assert (insn->insn_type == ITYPE_INSN);
3102 assert (insn->opcode < table->num_opcodes);
3103
3104 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3105 {
3106 TransitionRule *rule = l->rule;
3107
3108 if (xg_instruction_matches_rule (insn, rule))
3109 {
3110 if (steps_taken == lateral_steps)
3111 return TRUE;
3112 steps_taken++;
3113 }
3114 }
3115 return FALSE;
3116 }
3117
3118
3119 static symbolS *
3120 get_special_literal_symbol (void)
3121 {
3122 static symbolS *sym = NULL;
3123
3124 if (sym == NULL)
3125 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3126 return sym;
3127 }
3128
3129
3130 static symbolS *
3131 get_special_label_symbol (void)
3132 {
3133 static symbolS *sym = NULL;
3134
3135 if (sym == NULL)
3136 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3137 return sym;
3138 }
3139
3140
3141 static bfd_boolean
3142 xg_valid_literal_expression (const expressionS *exp)
3143 {
3144 switch (exp->X_op)
3145 {
3146 case O_constant:
3147 case O_symbol:
3148 case O_big:
3149 case O_uminus:
3150 case O_subtract:
3151 case O_pltrel:
3152 return TRUE;
3153 default:
3154 return FALSE;
3155 }
3156 }
3157
3158
3159 /* This will check to see if the value can be converted into the
3160 operand type. It will return TRUE if it does not fit. */
3161
3162 static bfd_boolean
3163 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3164 {
3165 uint32 valbuf = value;
3166 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3167 return TRUE;
3168 return FALSE;
3169 }
3170
3171
3172 /* Assumes: All immeds are constants. Check that all constants fit
3173 into their immeds; return FALSE if not. */
3174
3175 static bfd_boolean
3176 xg_immeds_fit (const TInsn *insn)
3177 {
3178 xtensa_isa isa = xtensa_default_isa;
3179 int i;
3180
3181 int n = insn->ntok;
3182 assert (insn->insn_type == ITYPE_INSN);
3183 for (i = 0; i < n; ++i)
3184 {
3185 const expressionS *expr = &insn->tok[i];
3186 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3187 continue;
3188
3189 switch (expr->X_op)
3190 {
3191 case O_register:
3192 case O_constant:
3193 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3194 return FALSE;
3195 break;
3196
3197 default:
3198 /* The symbol should have a fixup associated with it. */
3199 assert (FALSE);
3200 break;
3201 }
3202 }
3203 return TRUE;
3204 }
3205
3206
3207 /* This should only be called after we have an initial
3208 estimate of the addresses. */
3209
3210 static bfd_boolean
3211 xg_symbolic_immeds_fit (const TInsn *insn,
3212 segT pc_seg,
3213 fragS *pc_frag,
3214 offsetT pc_offset,
3215 long stretch)
3216 {
3217 xtensa_isa isa = xtensa_default_isa;
3218 symbolS *symbolP;
3219 fragS *sym_frag;
3220 offsetT target, pc;
3221 uint32 new_offset;
3222 int i;
3223 int n = insn->ntok;
3224
3225 assert (insn->insn_type == ITYPE_INSN);
3226
3227 for (i = 0; i < n; ++i)
3228 {
3229 const expressionS *expr = &insn->tok[i];
3230 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3231 continue;
3232
3233 switch (expr->X_op)
3234 {
3235 case O_register:
3236 case O_constant:
3237 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3238 return FALSE;
3239 break;
3240
3241 case O_lo16:
3242 case O_hi16:
3243 /* Check for the worst case. */
3244 if (xg_check_operand (0xffff, insn->opcode, i))
3245 return FALSE;
3246 break;
3247
3248 case O_symbol:
3249 /* We only allow symbols for PC-relative references.
3250 If pc_frag == 0, then we don't have frag locations yet. */
3251 if (pc_frag == 0
3252 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3253 return FALSE;
3254
3255 /* If it is a weak symbol, then assume it won't reach. */
3256 if (S_IS_WEAK (expr->X_add_symbol))
3257 return FALSE;
3258
3259 if (is_direct_call_opcode (insn->opcode)
3260 && ! pc_frag->tc_frag_data.use_longcalls)
3261 {
3262 /* If callee is undefined or in a different segment, be
3263 optimistic and assume it will be in range. */
3264 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3265 return TRUE;
3266 }
3267
3268 /* Only references within a segment can be known to fit in the
3269 operands at assembly time. */
3270 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3271 return FALSE;
3272
3273 symbolP = expr->X_add_symbol;
3274 sym_frag = symbol_get_frag (symbolP);
3275 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3276 pc = pc_frag->fr_address + pc_offset;
3277
3278 /* If frag has yet to be reached on this pass, assume it
3279 will move by STRETCH just as we did. If this is not so,
3280 it will be because some frag between grows, and that will
3281 force another pass. Beware zero-length frags. There
3282 should be a faster way to do this. */
3283
3284 if (stretch != 0
3285 && sym_frag->relax_marker != pc_frag->relax_marker
3286 && S_GET_SEGMENT (symbolP) == pc_seg)
3287 {
3288 target += stretch;
3289 }
3290
3291 new_offset = target;
3292 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3293 if (xg_check_operand (new_offset, insn->opcode, i))
3294 return FALSE;
3295 break;
3296
3297 default:
3298 /* The symbol should have a fixup associated with it. */
3299 return FALSE;
3300 }
3301 }
3302
3303 return TRUE;
3304 }
3305
3306
3307 /* Return TRUE on success. */
3308
3309 static bfd_boolean
3310 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3311 {
3312 BuildOp *op;
3313 symbolS *sym;
3314
3315 memset (targ, 0, sizeof (TInsn));
3316 targ->linenum = insn->linenum;
3317 switch (bi->typ)
3318 {
3319 case INSTR_INSTR:
3320 op = bi->ops;
3321 targ->opcode = bi->opcode;
3322 targ->insn_type = ITYPE_INSN;
3323 targ->is_specific_opcode = FALSE;
3324
3325 for (; op != NULL; op = op->next)
3326 {
3327 int op_num = op->op_num;
3328 int op_data = op->op_data;
3329
3330 assert (op->op_num < MAX_INSN_ARGS);
3331
3332 if (targ->ntok <= op_num)
3333 targ->ntok = op_num + 1;
3334
3335 switch (op->typ)
3336 {
3337 case OP_CONSTANT:
3338 set_expr_const (&targ->tok[op_num], op_data);
3339 break;
3340 case OP_OPERAND:
3341 assert (op_data < insn->ntok);
3342 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3343 break;
3344 case OP_LITERAL:
3345 sym = get_special_literal_symbol ();
3346 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3347 break;
3348 case OP_LABEL:
3349 sym = get_special_label_symbol ();
3350 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3351 break;
3352 case OP_OPERAND_HI16U:
3353 case OP_OPERAND_LOW16U:
3354 assert (op_data < insn->ntok);
3355 if (expr_is_const (&insn->tok[op_data]))
3356 {
3357 long val;
3358 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3359 val = xg_apply_userdef_op_fn (op->typ,
3360 targ->tok[op_num].
3361 X_add_number);
3362 targ->tok[op_num].X_add_number = val;
3363 }
3364 else
3365 {
3366 /* For const16 we can create relocations for these. */
3367 if (targ->opcode == XTENSA_UNDEFINED
3368 || (targ->opcode != xtensa_const16_opcode))
3369 return FALSE;
3370 assert (op_data < insn->ntok);
3371 /* Need to build a O_lo16 or O_hi16. */
3372 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3373 if (targ->tok[op_num].X_op == O_symbol)
3374 {
3375 if (op->typ == OP_OPERAND_HI16U)
3376 targ->tok[op_num].X_op = O_hi16;
3377 else if (op->typ == OP_OPERAND_LOW16U)
3378 targ->tok[op_num].X_op = O_lo16;
3379 else
3380 return FALSE;
3381 }
3382 }
3383 break;
3384 default:
3385 /* currently handles:
3386 OP_OPERAND_LOW8
3387 OP_OPERAND_HI24S
3388 OP_OPERAND_F32MINUS */
3389 if (xg_has_userdef_op_fn (op->typ))
3390 {
3391 assert (op_data < insn->ntok);
3392 if (expr_is_const (&insn->tok[op_data]))
3393 {
3394 long val;
3395 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3396 val = xg_apply_userdef_op_fn (op->typ,
3397 targ->tok[op_num].
3398 X_add_number);
3399 targ->tok[op_num].X_add_number = val;
3400 }
3401 else
3402 return FALSE; /* We cannot use a relocation for this. */
3403 break;
3404 }
3405 assert (0);
3406 break;
3407 }
3408 }
3409 break;
3410
3411 case INSTR_LITERAL_DEF:
3412 op = bi->ops;
3413 targ->opcode = XTENSA_UNDEFINED;
3414 targ->insn_type = ITYPE_LITERAL;
3415 targ->is_specific_opcode = FALSE;
3416 for (; op != NULL; op = op->next)
3417 {
3418 int op_num = op->op_num;
3419 int op_data = op->op_data;
3420 assert (op->op_num < MAX_INSN_ARGS);
3421
3422 if (targ->ntok <= op_num)
3423 targ->ntok = op_num + 1;
3424
3425 switch (op->typ)
3426 {
3427 case OP_OPERAND:
3428 assert (op_data < insn->ntok);
3429 /* We can only pass resolvable literals through. */
3430 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3431 return FALSE;
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 break;
3434 case OP_LITERAL:
3435 case OP_CONSTANT:
3436 case OP_LABEL:
3437 default:
3438 assert (0);
3439 break;
3440 }
3441 }
3442 break;
3443
3444 case INSTR_LABEL_DEF:
3445 op = bi->ops;
3446 targ->opcode = XTENSA_UNDEFINED;
3447 targ->insn_type = ITYPE_LABEL;
3448 targ->is_specific_opcode = FALSE;
3449 /* Literal with no ops is a label? */
3450 assert (op == NULL);
3451 break;
3452
3453 default:
3454 assert (0);
3455 }
3456
3457 return TRUE;
3458 }
3459
3460
3461 /* Return TRUE on success. */
3462
3463 static bfd_boolean
3464 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3465 {
3466 for (; bi != NULL; bi = bi->next)
3467 {
3468 TInsn *next_insn = istack_push_space (istack);
3469
3470 if (!xg_build_to_insn (next_insn, insn, bi))
3471 return FALSE;
3472 }
3473 return TRUE;
3474 }
3475
3476
3477 /* Return TRUE on valid expansion. */
3478
3479 static bfd_boolean
3480 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3481 {
3482 int stack_size = istack->ninsn;
3483 int steps_taken = 0;
3484 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3485 TransitionList *l;
3486
3487 assert (insn->insn_type == ITYPE_INSN);
3488 assert (insn->opcode < table->num_opcodes);
3489
3490 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3491 {
3492 TransitionRule *rule = l->rule;
3493
3494 if (xg_instruction_matches_rule (insn, rule))
3495 {
3496 if (lateral_steps == steps_taken)
3497 {
3498 int i;
3499
3500 /* This is it. Expand the rule to the stack. */
3501 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3502 return FALSE;
3503
3504 /* Check to see if it fits. */
3505 for (i = stack_size; i < istack->ninsn; i++)
3506 {
3507 TInsn *insn = &istack->insn[i];
3508
3509 if (insn->insn_type == ITYPE_INSN
3510 && !tinsn_has_symbolic_operands (insn)
3511 && !xg_immeds_fit (insn))
3512 {
3513 istack->ninsn = stack_size;
3514 return FALSE;
3515 }
3516 }
3517 return TRUE;
3518 }
3519 steps_taken++;
3520 }
3521 }
3522 return FALSE;
3523 }
3524
3525 \f
3526 /* Relax the assembly instruction at least "min_steps".
3527 Return the number of steps taken. */
3528
3529 static int
3530 xg_assembly_relax (IStack *istack,
3531 TInsn *insn,
3532 segT pc_seg,
3533 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3534 offsetT pc_offset, /* offset in fragment */
3535 int min_steps, /* minimum conversion steps */
3536 long stretch) /* number of bytes stretched so far */
3537 {
3538 int steps_taken = 0;
3539
3540 /* assert (has no symbolic operands)
3541 Some of its immeds don't fit.
3542 Try to build a relaxed version.
3543 This may go through a couple of stages
3544 of single instruction transformations before
3545 we get there. */
3546
3547 TInsn single_target;
3548 TInsn current_insn;
3549 int lateral_steps = 0;
3550 int istack_size = istack->ninsn;
3551
3552 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3553 && steps_taken >= min_steps)
3554 {
3555 istack_push (istack, insn);
3556 return steps_taken;
3557 }
3558 current_insn = *insn;
3559
3560 /* Walk through all of the single instruction expansions. */
3561 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3562 {
3563 steps_taken++;
3564 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3565 stretch))
3566 {
3567 if (steps_taken >= min_steps)
3568 {
3569 istack_push (istack, &single_target);
3570 return steps_taken;
3571 }
3572 }
3573 current_insn = single_target;
3574 }
3575
3576 /* Now check for a multi-instruction expansion. */
3577 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3578 {
3579 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3580 stretch))
3581 {
3582 if (steps_taken >= min_steps)
3583 {
3584 istack_push (istack, &current_insn);
3585 return steps_taken;
3586 }
3587 }
3588 steps_taken++;
3589 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3590 {
3591 if (steps_taken >= min_steps)
3592 return steps_taken;
3593 }
3594 lateral_steps++;
3595 istack->ninsn = istack_size;
3596 }
3597
3598 /* It's not going to work -- use the original. */
3599 istack_push (istack, insn);
3600 return steps_taken;
3601 }
3602
3603
3604 static void
3605 xg_force_frag_space (int size)
3606 {
3607 /* This may have the side effect of creating a new fragment for the
3608 space to go into. I just do not like the name of the "frag"
3609 functions. */
3610 frag_grow (size);
3611 }
3612
3613
3614 static void
3615 xg_finish_frag (char *last_insn,
3616 enum xtensa_relax_statesE frag_state,
3617 enum xtensa_relax_statesE slot0_state,
3618 int max_growth,
3619 bfd_boolean is_insn)
3620 {
3621 /* Finish off this fragment so that it has at LEAST the desired
3622 max_growth. If it doesn't fit in this fragment, close this one
3623 and start a new one. In either case, return a pointer to the
3624 beginning of the growth area. */
3625
3626 fragS *old_frag;
3627
3628 xg_force_frag_space (max_growth);
3629
3630 old_frag = frag_now;
3631
3632 frag_now->fr_opcode = last_insn;
3633 if (is_insn)
3634 frag_now->tc_frag_data.is_insn = TRUE;
3635
3636 frag_var (rs_machine_dependent, max_growth, max_growth,
3637 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3638
3639 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3640 xtensa_set_frag_assembly_state (frag_now);
3641
3642 /* Just to make sure that we did not split it up. */
3643 assert (old_frag->fr_next == frag_now);
3644 }
3645
3646
3647 /* Return TRUE if the target frag is one of the next non-empty frags. */
3648
3649 static bfd_boolean
3650 is_next_frag_target (const fragS *fragP, const fragS *target)
3651 {
3652 if (fragP == NULL)
3653 return FALSE;
3654
3655 for (; fragP; fragP = fragP->fr_next)
3656 {
3657 if (fragP == target)
3658 return TRUE;
3659 if (fragP->fr_fix != 0)
3660 return FALSE;
3661 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3662 return FALSE;
3663 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3664 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3665 return FALSE;
3666 if (fragP->fr_type == rs_space)
3667 return FALSE;
3668 }
3669 return FALSE;
3670 }
3671
3672
3673 static bfd_boolean
3674 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3675 {
3676 xtensa_isa isa = xtensa_default_isa;
3677 int i;
3678 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3679 int target_op = -1;
3680 symbolS *sym;
3681 fragS *target_frag;
3682
3683 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3684 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
3685 return FALSE;
3686
3687 for (i = 0; i < num_ops; i++)
3688 {
3689 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3690 {
3691 target_op = i;
3692 break;
3693 }
3694 }
3695 if (target_op == -1)
3696 return FALSE;
3697
3698 if (insn->ntok <= target_op)
3699 return FALSE;
3700
3701 if (insn->tok[target_op].X_op != O_symbol)
3702 return FALSE;
3703
3704 sym = insn->tok[target_op].X_add_symbol;
3705 if (sym == NULL)
3706 return FALSE;
3707
3708 if (insn->tok[target_op].X_add_number != 0)
3709 return FALSE;
3710
3711 target_frag = symbol_get_frag (sym);
3712 if (target_frag == NULL)
3713 return FALSE;
3714
3715 if (is_next_frag_target (fragP->fr_next, target_frag)
3716 && S_GET_VALUE (sym) == target_frag->fr_address)
3717 return TRUE;
3718
3719 return FALSE;
3720 }
3721
3722
3723 static void
3724 xg_add_branch_and_loop_targets (TInsn *insn)
3725 {
3726 xtensa_isa isa = xtensa_default_isa;
3727 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3728
3729 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3730 {
3731 int i = 1;
3732 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3733 && insn->tok[i].X_op == O_symbol)
3734 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3735 return;
3736 }
3737
3738 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3739 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3740 {
3741 int i;
3742
3743 for (i = 0; i < insn->ntok && i < num_ops; i++)
3744 {
3745 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3746 && insn->tok[i].X_op == O_symbol)
3747 {
3748 symbolS *sym = insn->tok[i].X_add_symbol;
3749 symbol_get_tc (sym)->is_branch_target = TRUE;
3750 if (S_IS_DEFINED (sym))
3751 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3752 }
3753 }
3754 }
3755 }
3756
3757
3758 /* Return FALSE if no error. */
3759
3760 static bfd_boolean
3761 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3762 {
3763 int num_ops = 0;
3764 BuildOp *b_op;
3765
3766 switch (instr_spec->typ)
3767 {
3768 case INSTR_INSTR:
3769 new_insn->insn_type = ITYPE_INSN;
3770 new_insn->opcode = instr_spec->opcode;
3771 new_insn->is_specific_opcode = FALSE;
3772 new_insn->linenum = old_insn->linenum;
3773 break;
3774 case INSTR_LITERAL_DEF:
3775 new_insn->insn_type = ITYPE_LITERAL;
3776 new_insn->opcode = XTENSA_UNDEFINED;
3777 new_insn->is_specific_opcode = FALSE;
3778 new_insn->linenum = old_insn->linenum;
3779 break;
3780 case INSTR_LABEL_DEF:
3781 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3782 break;
3783 }
3784
3785 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3786 {
3787 expressionS *exp;
3788 const expressionS *src_exp;
3789
3790 num_ops++;
3791 switch (b_op->typ)
3792 {
3793 case OP_CONSTANT:
3794 /* The expression must be the constant. */
3795 assert (b_op->op_num < MAX_INSN_ARGS);
3796 exp = &new_insn->tok[b_op->op_num];
3797 set_expr_const (exp, b_op->op_data);
3798 break;
3799
3800 case OP_OPERAND:
3801 assert (b_op->op_num < MAX_INSN_ARGS);
3802 assert (b_op->op_data < (unsigned) old_insn->ntok);
3803 src_exp = &old_insn->tok[b_op->op_data];
3804 exp = &new_insn->tok[b_op->op_num];
3805 copy_expr (exp, src_exp);
3806 break;
3807
3808 case OP_LITERAL:
3809 case OP_LABEL:
3810 as_bad (_("can't handle generation of literal/labels yet"));
3811 assert (0);
3812
3813 default:
3814 as_bad (_("can't handle undefined OP TYPE"));
3815 assert (0);
3816 }
3817 }
3818
3819 new_insn->ntok = num_ops;
3820 return FALSE;
3821 }
3822
3823
3824 /* Return TRUE if it was simplified. */
3825
3826 static bfd_boolean
3827 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3828 {
3829 TransitionRule *rule;
3830 BuildInstr *insn_spec;
3831
3832 if (old_insn->is_specific_opcode || !density_supported)
3833 return FALSE;
3834
3835 rule = xg_instruction_match (old_insn);
3836 if (rule == NULL)
3837 return FALSE;
3838
3839 insn_spec = rule->to_instr;
3840 /* There should only be one. */
3841 assert (insn_spec != NULL);
3842 assert (insn_spec->next == NULL);
3843 if (insn_spec->next != NULL)
3844 return FALSE;
3845
3846 xg_build_token_insn (insn_spec, old_insn, new_insn);
3847
3848 return TRUE;
3849 }
3850
3851
3852 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3853 l32i.n. (2) Check the number of operands. (3) Place the instruction
3854 tokens into the stack or relax it and place multiple
3855 instructions/literals onto the stack. Return FALSE if no error. */
3856
3857 static bfd_boolean
3858 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3859 {
3860 int noperands;
3861 TInsn new_insn;
3862 bfd_boolean do_expand;
3863
3864 memset (&new_insn, 0, sizeof (TInsn));
3865
3866 /* Narrow it if we can. xg_simplify_insn now does all the
3867 appropriate checking (e.g., for the density option). */
3868 if (xg_simplify_insn (orig_insn, &new_insn))
3869 orig_insn = &new_insn;
3870
3871 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3872 orig_insn->opcode);
3873 if (orig_insn->ntok < noperands)
3874 {
3875 as_bad (_("found %d operands for '%s': Expected %d"),
3876 orig_insn->ntok,
3877 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3878 noperands);
3879 return TRUE;
3880 }
3881 if (orig_insn->ntok > noperands)
3882 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3883 orig_insn->ntok,
3884 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3885 noperands);
3886
3887 /* If there are not enough operands, we will assert above. If there
3888 are too many, just cut out the extras here. */
3889 orig_insn->ntok = noperands;
3890
3891 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3892 return TRUE;
3893
3894 /* If the instruction will definitely need to be relaxed, it is better
3895 to expand it now for better scheduling. Decide whether to expand
3896 now.... */
3897 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3898
3899 /* Calls should be expanded to longcalls only in the backend relaxation
3900 so that the assembly scheduler will keep the L32R/CALLX instructions
3901 adjacent. */
3902 if (is_direct_call_opcode (orig_insn->opcode))
3903 do_expand = FALSE;
3904
3905 if (tinsn_has_symbolic_operands (orig_insn))
3906 {
3907 /* The values of symbolic operands are not known yet, so only expand
3908 now if an operand is "complex" (e.g., difference of symbols) and
3909 will have to be stored as a literal regardless of the value. */
3910 if (!tinsn_has_complex_operands (orig_insn))
3911 do_expand = FALSE;
3912 }
3913 else if (xg_immeds_fit (orig_insn))
3914 do_expand = FALSE;
3915
3916 if (do_expand)
3917 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3918 else
3919 istack_push (istack, orig_insn);
3920
3921 return FALSE;
3922 }
3923
3924
3925 /* Return TRUE if the section flags are marked linkonce
3926 or the name is .gnu.linkonce*. */
3927
3928 static bfd_boolean
3929 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3930 {
3931 flagword flags, link_once_flags;
3932
3933 flags = bfd_get_section_flags (abfd, sec);
3934 link_once_flags = (flags & SEC_LINK_ONCE);
3935
3936 /* Flags might not be set yet. */
3937 if (!link_once_flags)
3938 {
3939 static size_t len = sizeof ".gnu.linkonce.t.";
3940
3941 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3942 link_once_flags = SEC_LINK_ONCE;
3943 }
3944 return (link_once_flags != 0);
3945 }
3946
3947
3948 static void
3949 xtensa_add_literal_sym (symbolS *sym)
3950 {
3951 sym_list *l;
3952
3953 l = (sym_list *) xmalloc (sizeof (sym_list));
3954 l->sym = sym;
3955 l->next = literal_syms;
3956 literal_syms = l;
3957 }
3958
3959
3960 static symbolS *
3961 xtensa_create_literal_symbol (segT sec, fragS *frag)
3962 {
3963 static int lit_num = 0;
3964 static char name[256];
3965 symbolS *symbolP;
3966
3967 sprintf (name, ".L_lit_sym%d", lit_num);
3968
3969 /* Create a local symbol. If it is in a linkonce section, we have to
3970 be careful to make sure that if it is used in a relocation that the
3971 symbol will be in the output file. */
3972 if (get_is_linkonce_section (stdoutput, sec))
3973 {
3974 symbolP = symbol_new (name, sec, 0, frag);
3975 S_CLEAR_EXTERNAL (symbolP);
3976 /* symbolP->local = 1; */
3977 }
3978 else
3979 symbolP = symbol_new (name, sec, 0, frag);
3980
3981 xtensa_add_literal_sym (symbolP);
3982
3983 frag->tc_frag_data.is_literal = TRUE;
3984 lit_num++;
3985 return symbolP;
3986 }
3987
3988
3989 /* Currently all literals that are generated here are 32-bit L32R targets. */
3990
3991 static symbolS *
3992 xg_assemble_literal (/* const */ TInsn *insn)
3993 {
3994 emit_state state;
3995 symbolS *lit_sym = NULL;
3996
3997 /* size = 4 for L32R. It could easily be larger when we move to
3998 larger constants. Add a parameter later. */
3999 offsetT litsize = 4;
4000 offsetT litalign = 2; /* 2^2 = 4 */
4001 expressionS saved_loc;
4002 expressionS * emit_val;
4003
4004 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4005
4006 assert (insn->insn_type == ITYPE_LITERAL);
4007 assert (insn->ntok == 1); /* must be only one token here */
4008
4009 xtensa_switch_to_literal_fragment (&state);
4010
4011 emit_val = &insn->tok[0];
4012 if (emit_val->X_op == O_big)
4013 {
4014 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4015 if (size > litsize)
4016 {
4017 /* This happens when someone writes a "movi a2, big_number". */
4018 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4019 _("invalid immediate"));
4020 xtensa_restore_emit_state (&state);
4021 return NULL;
4022 }
4023 }
4024
4025 /* Force a 4-byte align here. Note that this opens a new frag, so all
4026 literals done with this function have a frag to themselves. That's
4027 important for the way text section literals work. */
4028 frag_align (litalign, 0, 0);
4029 record_alignment (now_seg, litalign);
4030
4031 if (emit_val->X_op == O_pltrel)
4032 {
4033 char *p = frag_more (litsize);
4034 xtensa_set_frag_assembly_state (frag_now);
4035 if (emit_val->X_add_symbol)
4036 emit_val->X_op = O_symbol;
4037 else
4038 emit_val->X_op = O_constant;
4039 fix_new_exp (frag_now, p - frag_now->fr_literal,
4040 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4041 }
4042 else
4043 emit_expr (emit_val, litsize);
4044
4045 assert (frag_now->tc_frag_data.literal_frag == NULL);
4046 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4047 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4048 lit_sym = frag_now->fr_symbol;
4049 frag_now->tc_frag_data.is_literal = TRUE;
4050
4051 /* Go back. */
4052 xtensa_restore_emit_state (&state);
4053 return lit_sym;
4054 }
4055
4056
4057 static void
4058 xg_assemble_literal_space (/* const */ int size, int slot)
4059 {
4060 emit_state state;
4061 /* We might have to do something about this alignment. It only
4062 takes effect if something is placed here. */
4063 offsetT litalign = 2; /* 2^2 = 4 */
4064 fragS *lit_saved_frag;
4065
4066 assert (size % 4 == 0);
4067
4068 xtensa_switch_to_literal_fragment (&state);
4069
4070 /* Force a 4-byte align here. */
4071 frag_align (litalign, 0, 0);
4072 record_alignment (now_seg, litalign);
4073
4074 xg_force_frag_space (size);
4075
4076 lit_saved_frag = frag_now;
4077 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4078 frag_now->tc_frag_data.is_literal = TRUE;
4079 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4080 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4081
4082 /* Go back. */
4083 xtensa_restore_emit_state (&state);
4084 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4085 }
4086
4087
4088 /* Put in a fixup record based on the opcode.
4089 Return TRUE on success. */
4090
4091 static bfd_boolean
4092 xg_add_opcode_fix (TInsn *tinsn,
4093 int opnum,
4094 xtensa_format fmt,
4095 int slot,
4096 expressionS *expr,
4097 fragS *fragP,
4098 offsetT offset)
4099 {
4100 xtensa_opcode opcode = tinsn->opcode;
4101 bfd_reloc_code_real_type reloc;
4102 reloc_howto_type *howto;
4103 int fmt_length;
4104 fixS *the_fix;
4105
4106 reloc = BFD_RELOC_NONE;
4107
4108 /* First try the special cases for "alternate" relocs. */
4109 if (opcode == xtensa_l32r_opcode)
4110 {
4111 if (fragP->tc_frag_data.use_absolute_literals)
4112 reloc = encode_alt_reloc (slot);
4113 }
4114 else if (opcode == xtensa_const16_opcode)
4115 {
4116 if (expr->X_op == O_lo16)
4117 {
4118 reloc = encode_reloc (slot);
4119 expr->X_op = O_symbol;
4120 }
4121 else if (expr->X_op == O_hi16)
4122 {
4123 reloc = encode_alt_reloc (slot);
4124 expr->X_op = O_symbol;
4125 }
4126 }
4127
4128 if (opnum != get_relaxable_immed (opcode))
4129 {
4130 as_bad (_("invalid relocation for operand %i of '%s'"),
4131 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4132 return FALSE;
4133 }
4134
4135 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4136 into the symbol table where the generic portions of the assembler
4137 won't know what to do with them. */
4138 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4139 {
4140 as_bad (_("invalid expression for operand %i of '%s'"),
4141 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4142 return FALSE;
4143 }
4144
4145 /* Next try the generic relocs. */
4146 if (reloc == BFD_RELOC_NONE)
4147 reloc = encode_reloc (slot);
4148 if (reloc == BFD_RELOC_NONE)
4149 {
4150 as_bad (_("invalid relocation in instruction slot %i"), slot);
4151 return FALSE;
4152 }
4153
4154 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4155 if (!howto)
4156 {
4157 as_bad (_("undefined symbol for opcode \"%s\""),
4158 xtensa_opcode_name (xtensa_default_isa, opcode));
4159 return FALSE;
4160 }
4161
4162 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4163 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4164 howto->pc_relative, reloc);
4165 the_fix->fx_no_overflow = 1;
4166
4167 if (expr->X_add_symbol
4168 && (S_IS_EXTERNAL (expr->X_add_symbol)
4169 || S_IS_WEAK (expr->X_add_symbol)))
4170 the_fix->fx_plt = TRUE;
4171
4172 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4173 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4174 the_fix->tc_fix_data.slot = slot;
4175
4176 return TRUE;
4177 }
4178
4179
4180 static bfd_boolean
4181 xg_emit_insn_to_buf (TInsn *tinsn,
4182 char *buf,
4183 fragS *fragP,
4184 offsetT offset,
4185 bfd_boolean build_fix)
4186 {
4187 static xtensa_insnbuf insnbuf = NULL;
4188 bfd_boolean has_symbolic_immed = FALSE;
4189 bfd_boolean ok = TRUE;
4190
4191 if (!insnbuf)
4192 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4193
4194 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4195 if (has_symbolic_immed && build_fix)
4196 {
4197 /* Add a fixup. */
4198 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4199 int slot = xg_get_single_slot (tinsn->opcode);
4200 int opnum = get_relaxable_immed (tinsn->opcode);
4201 expressionS *exp = &tinsn->tok[opnum];
4202
4203 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4204 ok = FALSE;
4205 }
4206 fragP->tc_frag_data.is_insn = TRUE;
4207 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4208 (unsigned char *) buf, 0);
4209 return ok;
4210 }
4211
4212
4213 static void
4214 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4215 {
4216 symbolS *sym = get_special_literal_symbol ();
4217 int i;
4218 if (lit_sym == 0)
4219 return;
4220 assert (insn->insn_type == ITYPE_INSN);
4221 for (i = 0; i < insn->ntok; i++)
4222 if (insn->tok[i].X_add_symbol == sym)
4223 insn->tok[i].X_add_symbol = lit_sym;
4224
4225 }
4226
4227
4228 static void
4229 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4230 {
4231 symbolS *sym = get_special_label_symbol ();
4232 int i;
4233 /* assert (!insn->is_literal); */
4234 for (i = 0; i < insn->ntok; i++)
4235 if (insn->tok[i].X_add_symbol == sym)
4236 insn->tok[i].X_add_symbol = label_sym;
4237
4238 }
4239
4240
4241 /* Return TRUE if the instruction can write to the specified
4242 integer register. */
4243
4244 static bfd_boolean
4245 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4246 {
4247 int i;
4248 int num_ops;
4249 xtensa_isa isa = xtensa_default_isa;
4250
4251 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4252
4253 for (i = 0; i < num_ops; i++)
4254 {
4255 char inout;
4256 inout = xtensa_operand_inout (isa, insn->opcode, i);
4257 if ((inout == 'o' || inout == 'm')
4258 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4259 {
4260 xtensa_regfile opnd_rf =
4261 xtensa_operand_regfile (isa, insn->opcode, i);
4262 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4263 {
4264 if ((insn->tok[i].X_op == O_register)
4265 && (insn->tok[i].X_add_number == regnum))
4266 return TRUE;
4267 }
4268 }
4269 }
4270 return FALSE;
4271 }
4272
4273
4274 static bfd_boolean
4275 is_bad_loopend_opcode (const TInsn *tinsn)
4276 {
4277 xtensa_opcode opcode = tinsn->opcode;
4278
4279 if (opcode == XTENSA_UNDEFINED)
4280 return FALSE;
4281
4282 if (opcode == xtensa_call0_opcode
4283 || opcode == xtensa_callx0_opcode
4284 || opcode == xtensa_call4_opcode
4285 || opcode == xtensa_callx4_opcode
4286 || opcode == xtensa_call8_opcode
4287 || opcode == xtensa_callx8_opcode
4288 || opcode == xtensa_call12_opcode
4289 || opcode == xtensa_callx12_opcode
4290 || opcode == xtensa_isync_opcode
4291 || opcode == xtensa_ret_opcode
4292 || opcode == xtensa_ret_n_opcode
4293 || opcode == xtensa_retw_opcode
4294 || opcode == xtensa_retw_n_opcode
4295 || opcode == xtensa_waiti_opcode
4296 || opcode == xtensa_rsr_lcount_opcode)
4297 return TRUE;
4298
4299 return FALSE;
4300 }
4301
4302
4303 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4304 This allows the debugger to add unaligned labels.
4305 Also, the assembler generates stabs labels that need
4306 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4307
4308 static bfd_boolean
4309 is_unaligned_label (symbolS *sym)
4310 {
4311 const char *name = S_GET_NAME (sym);
4312 static size_t fake_size = 0;
4313
4314 if (name
4315 && name[0] == '.'
4316 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4317 return TRUE;
4318
4319 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4320 if (fake_size == 0)
4321 fake_size = strlen (FAKE_LABEL_NAME);
4322
4323 if (name
4324 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4325 && (name[fake_size] == 'F'
4326 || name[fake_size] == 'L'
4327 || (name[fake_size] == 'e'
4328 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4329 return TRUE;
4330
4331 return FALSE;
4332 }
4333
4334
4335 static fragS *
4336 next_non_empty_frag (const fragS *fragP)
4337 {
4338 fragS *next_fragP = fragP->fr_next;
4339
4340 /* Sometimes an empty will end up here due storage allocation issues.
4341 So we have to skip until we find something legit. */
4342 while (next_fragP && next_fragP->fr_fix == 0)
4343 next_fragP = next_fragP->fr_next;
4344
4345 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4346 return NULL;
4347
4348 return next_fragP;
4349 }
4350
4351
4352 static bfd_boolean
4353 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4354 {
4355 xtensa_opcode out_opcode;
4356 const fragS *next_fragP = next_non_empty_frag (fragP);
4357
4358 if (next_fragP == NULL)
4359 return FALSE;
4360
4361 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4362 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4363 {
4364 *opcode = out_opcode;
4365 return TRUE;
4366 }
4367 return FALSE;
4368 }
4369
4370
4371 static int
4372 frag_format_size (const fragS *fragP)
4373 {
4374 static xtensa_insnbuf insnbuf = NULL;
4375 xtensa_isa isa = xtensa_default_isa;
4376 xtensa_format fmt;
4377 int fmt_size;
4378
4379 if (!insnbuf)
4380 insnbuf = xtensa_insnbuf_alloc (isa);
4381
4382 if (fragP == NULL)
4383 return XTENSA_UNDEFINED;
4384
4385 xtensa_insnbuf_from_chars (isa, insnbuf,
4386 (unsigned char *) fragP->fr_literal, 0);
4387
4388 fmt = xtensa_format_decode (isa, insnbuf);
4389 if (fmt == XTENSA_UNDEFINED)
4390 return XTENSA_UNDEFINED;
4391 fmt_size = xtensa_format_length (isa, fmt);
4392
4393 /* If the next format won't be changing due to relaxation, just
4394 return the length of the first format. */
4395 if (fragP->fr_opcode != fragP->fr_literal)
4396 return fmt_size;
4397
4398 /* If during relaxation we have to pull an instruction out of a
4399 multi-slot instruction, we will return the more conservative
4400 number. This works because alignment on bigger instructions
4401 is more restrictive than alignment on smaller instructions.
4402 This is more conservative than we would like, but it happens
4403 infrequently. */
4404
4405 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4406 return fmt_size;
4407
4408 /* If we aren't doing one of our own relaxations or it isn't
4409 slot-based, then the insn size won't change. */
4410 if (fragP->fr_type != rs_machine_dependent)
4411 return fmt_size;
4412 if (fragP->fr_subtype != RELAX_SLOTS)
4413 return fmt_size;
4414
4415 /* If an instruction is about to grow, return the longer size. */
4416 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4417 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4418 return 3;
4419
4420 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4421 return 2 + fragP->tc_frag_data.text_expansion[0];
4422
4423 return fmt_size;
4424 }
4425
4426
4427 static int
4428 next_frag_format_size (const fragS *fragP)
4429 {
4430 const fragS *next_fragP = next_non_empty_frag (fragP);
4431 return frag_format_size (next_fragP);
4432 }
4433
4434
4435 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4436 required two-byte instructions to be treated as three-byte instructions
4437 for loop instruction alignment. This restriction was removed beginning
4438 with Xtensa LX. Now the only requirement on loop instruction alignment
4439 is that the first instruction of the loop must appear at an address that
4440 does not cross a fetch boundary. */
4441
4442 static int
4443 get_loop_align_size (int insn_size)
4444 {
4445 if (insn_size == XTENSA_UNDEFINED)
4446 return xtensa_fetch_width;
4447
4448 if (enforce_three_byte_loop_align && insn_size == 2)
4449 return 3;
4450
4451 return insn_size;
4452 }
4453
4454
4455 /* If the next legit fragment is an end-of-loop marker,
4456 switch its state so it will instantiate a NOP. */
4457
4458 static void
4459 update_next_frag_state (fragS *fragP)
4460 {
4461 fragS *next_fragP = fragP->fr_next;
4462 fragS *new_target = NULL;
4463
4464 if (align_targets)
4465 {
4466 /* We are guaranteed there will be one of these... */
4467 while (!(next_fragP->fr_type == rs_machine_dependent
4468 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4469 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4470 next_fragP = next_fragP->fr_next;
4471
4472 assert (next_fragP->fr_type == rs_machine_dependent
4473 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4474 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4475
4476 /* ...and one of these. */
4477 new_target = next_fragP->fr_next;
4478 while (!(new_target->fr_type == rs_machine_dependent
4479 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4480 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4481 new_target = new_target->fr_next;
4482
4483 assert (new_target->fr_type == rs_machine_dependent
4484 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4485 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4486 }
4487
4488 while (next_fragP && next_fragP->fr_fix == 0)
4489 {
4490 if (next_fragP->fr_type == rs_machine_dependent
4491 && next_fragP->fr_subtype == RELAX_LOOP_END)
4492 {
4493 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4494 return;
4495 }
4496
4497 next_fragP = next_fragP->fr_next;
4498 }
4499 }
4500
4501
4502 static bfd_boolean
4503 next_frag_is_branch_target (const fragS *fragP)
4504 {
4505 /* Sometimes an empty will end up here due to storage allocation issues,
4506 so we have to skip until we find something legit. */
4507 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4508 {
4509 if (fragP->tc_frag_data.is_branch_target)
4510 return TRUE;
4511 if (fragP->fr_fix != 0)
4512 break;
4513 }
4514 return FALSE;
4515 }
4516
4517
4518 static bfd_boolean
4519 next_frag_is_loop_target (const fragS *fragP)
4520 {
4521 /* Sometimes an empty will end up here due storage allocation issues.
4522 So we have to skip until we find something legit. */
4523 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4524 {
4525 if (fragP->tc_frag_data.is_loop_target)
4526 return TRUE;
4527 if (fragP->fr_fix != 0)
4528 break;
4529 }
4530 return FALSE;
4531 }
4532
4533
4534 static addressT
4535 next_frag_pre_opcode_bytes (const fragS *fragp)
4536 {
4537 const fragS *next_fragp = fragp->fr_next;
4538 xtensa_opcode next_opcode;
4539
4540 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4541 return 0;
4542
4543 /* Sometimes an empty will end up here due to storage allocation issues,
4544 so we have to skip until we find something legit. */
4545 while (next_fragp->fr_fix == 0)
4546 next_fragp = next_fragp->fr_next;
4547
4548 if (next_fragp->fr_type != rs_machine_dependent)
4549 return 0;
4550
4551 /* There is some implicit knowledge encoded in here.
4552 The LOOP instructions that are NOT RELAX_IMMED have
4553 been relaxed. Note that we can assume that the LOOP
4554 instruction is in slot 0 because loops aren't bundleable. */
4555 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4556 return get_expanded_loop_offset (next_opcode);
4557
4558 return 0;
4559 }
4560
4561
4562 /* Mark a location where we can later insert literal frags. Update
4563 the section's literal_pool_loc, so subsequent literals can be
4564 placed nearest to their use. */
4565
4566 static void
4567 xtensa_mark_literal_pool_location (void)
4568 {
4569 /* Any labels pointing to the current location need
4570 to be adjusted to after the literal pool. */
4571 emit_state s;
4572 fragS *pool_location;
4573
4574 if (use_literal_section && !directive_state[directive_absolute_literals])
4575 return;
4576
4577 frag_align (2, 0, 0);
4578 record_alignment (now_seg, 2);
4579
4580 /* We stash info in these frags so we can later move the literal's
4581 fixes into this frchain's fix list. */
4582 pool_location = frag_now;
4583 frag_now->tc_frag_data.lit_frchain = frchain_now;
4584 frag_variant (rs_machine_dependent, 0, 0,
4585 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4586 xtensa_set_frag_assembly_state (frag_now);
4587 frag_now->tc_frag_data.lit_seg = now_seg;
4588 frag_variant (rs_machine_dependent, 0, 0,
4589 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4590 xtensa_set_frag_assembly_state (frag_now);
4591
4592 /* Now put a frag into the literal pool that points to this location. */
4593 set_literal_pool_location (now_seg, pool_location);
4594 xtensa_switch_to_non_abs_literal_fragment (&s);
4595 frag_align (2, 0, 0);
4596 record_alignment (now_seg, 2);
4597
4598 /* Close whatever frag is there. */
4599 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4600 xtensa_set_frag_assembly_state (frag_now);
4601 frag_now->tc_frag_data.literal_frag = pool_location;
4602 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4603 xtensa_restore_emit_state (&s);
4604 xtensa_set_frag_assembly_state (frag_now);
4605 }
4606
4607
4608 /* Build a nop of the correct size into tinsn. */
4609
4610 static void
4611 build_nop (TInsn *tinsn, int size)
4612 {
4613 tinsn_init (tinsn);
4614 switch (size)
4615 {
4616 case 2:
4617 tinsn->opcode = xtensa_nop_n_opcode;
4618 tinsn->ntok = 0;
4619 if (tinsn->opcode == XTENSA_UNDEFINED)
4620 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4621 break;
4622
4623 case 3:
4624 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4625 {
4626 tinsn->opcode = xtensa_or_opcode;
4627 set_expr_const (&tinsn->tok[0], 1);
4628 set_expr_const (&tinsn->tok[1], 1);
4629 set_expr_const (&tinsn->tok[2], 1);
4630 tinsn->ntok = 3;
4631 }
4632 else
4633 tinsn->opcode = xtensa_nop_opcode;
4634
4635 assert (tinsn->opcode != XTENSA_UNDEFINED);
4636 }
4637 }
4638
4639
4640 /* Assemble a NOP of the requested size in the buffer. User must have
4641 allocated "buf" with at least "size" bytes. */
4642
4643 static void
4644 assemble_nop (int size, char *buf)
4645 {
4646 static xtensa_insnbuf insnbuf = NULL;
4647 TInsn tinsn;
4648
4649 build_nop (&tinsn, size);
4650
4651 if (!insnbuf)
4652 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4653
4654 tinsn_to_insnbuf (&tinsn, insnbuf);
4655 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4656 (unsigned char *) buf, 0);
4657 }
4658
4659
4660 /* Return the number of bytes for the offset of the expanded loop
4661 instruction. This should be incorporated into the relaxation
4662 specification but is hard-coded here. This is used to auto-align
4663 the loop instruction. It is invalid to call this function if the
4664 configuration does not have loops or if the opcode is not a loop
4665 opcode. */
4666
4667 static addressT
4668 get_expanded_loop_offset (xtensa_opcode opcode)
4669 {
4670 /* This is the OFFSET of the loop instruction in the expanded loop.
4671 This MUST correspond directly to the specification of the loop
4672 expansion. It will be validated on fragment conversion. */
4673 assert (opcode != XTENSA_UNDEFINED);
4674 if (opcode == xtensa_loop_opcode)
4675 return 0;
4676 if (opcode == xtensa_loopnez_opcode)
4677 return 3;
4678 if (opcode == xtensa_loopgtz_opcode)
4679 return 6;
4680 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4681 return 0;
4682 }
4683
4684
4685 static fragS *
4686 get_literal_pool_location (segT seg)
4687 {
4688 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4689 }
4690
4691
4692 static void
4693 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4694 {
4695 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4696 }
4697
4698
4699 /* Set frag assembly state should be called when a new frag is
4700 opened and after a frag has been closed. */
4701
4702 static void
4703 xtensa_set_frag_assembly_state (fragS *fragP)
4704 {
4705 if (!density_supported)
4706 fragP->tc_frag_data.is_no_density = TRUE;
4707
4708 /* This function is called from subsegs_finish, which is called
4709 after xtensa_end, so we can't use "use_transform" or
4710 "use_schedule" here. */
4711 if (!directive_state[directive_transform])
4712 fragP->tc_frag_data.is_no_transform = TRUE;
4713 if (directive_state[directive_longcalls])
4714 fragP->tc_frag_data.use_longcalls = TRUE;
4715 fragP->tc_frag_data.use_absolute_literals =
4716 directive_state[directive_absolute_literals];
4717 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4718 }
4719
4720
4721 static bfd_boolean
4722 relaxable_section (asection *sec)
4723 {
4724 return (sec->flags & SEC_DEBUGGING) == 0;
4725 }
4726
4727
4728 static void
4729 xtensa_find_unmarked_state_frags (void)
4730 {
4731 segT *seclist;
4732
4733 /* Walk over each fragment of all of the current segments. For each
4734 unmarked fragment, mark it with the same info as the previous
4735 fragment. */
4736 for (seclist = &stdoutput->sections;
4737 seclist && *seclist;
4738 seclist = &(*seclist)->next)
4739 {
4740 segT sec = *seclist;
4741 segment_info_type *seginfo;
4742 fragS *fragP;
4743 flagword flags;
4744 flags = bfd_get_section_flags (stdoutput, sec);
4745 if (flags & SEC_DEBUGGING)
4746 continue;
4747 if (!(flags & SEC_ALLOC))
4748 continue;
4749
4750 seginfo = seg_info (sec);
4751 if (seginfo && seginfo->frchainP)
4752 {
4753 fragS *last_fragP = 0;
4754 for (fragP = seginfo->frchainP->frch_root; fragP;
4755 fragP = fragP->fr_next)
4756 {
4757 if (fragP->fr_fix != 0
4758 && !fragP->tc_frag_data.is_assembly_state_set)
4759 {
4760 if (last_fragP == 0)
4761 {
4762 as_warn_where (fragP->fr_file, fragP->fr_line,
4763 _("assembly state not set for first frag in section %s"),
4764 sec->name);
4765 }
4766 else
4767 {
4768 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4769 fragP->tc_frag_data.is_no_density =
4770 last_fragP->tc_frag_data.is_no_density;
4771 fragP->tc_frag_data.is_no_transform =
4772 last_fragP->tc_frag_data.is_no_transform;
4773 fragP->tc_frag_data.use_longcalls =
4774 last_fragP->tc_frag_data.use_longcalls;
4775 fragP->tc_frag_data.use_absolute_literals =
4776 last_fragP->tc_frag_data.use_absolute_literals;
4777 }
4778 }
4779 if (fragP->tc_frag_data.is_assembly_state_set)
4780 last_fragP = fragP;
4781 }
4782 }
4783 }
4784 }
4785
4786
4787 static void
4788 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4789 asection *sec,
4790 void *unused ATTRIBUTE_UNUSED)
4791 {
4792 flagword flags = bfd_get_section_flags (abfd, sec);
4793 segment_info_type *seginfo = seg_info (sec);
4794 fragS *frag = seginfo->frchainP->frch_root;
4795
4796 if (flags & SEC_CODE)
4797 {
4798 xtensa_isa isa = xtensa_default_isa;
4799 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4800 while (frag != NULL)
4801 {
4802 if (frag->tc_frag_data.is_branch_target)
4803 {
4804 int op_size;
4805 addressT branch_align, frag_addr;
4806 xtensa_format fmt;
4807
4808 xtensa_insnbuf_from_chars
4809 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4810 fmt = xtensa_format_decode (isa, insnbuf);
4811 op_size = xtensa_format_length (isa, fmt);
4812 branch_align = 1 << branch_align_power (sec);
4813 frag_addr = frag->fr_address % branch_align;
4814 if (frag_addr + op_size > branch_align)
4815 as_warn_where (frag->fr_file, frag->fr_line,
4816 _("unaligned branch target: %d bytes at 0x%lx"),
4817 op_size, (long) frag->fr_address);
4818 }
4819 frag = frag->fr_next;
4820 }
4821 xtensa_insnbuf_free (isa, insnbuf);
4822 }
4823 }
4824
4825
4826 static void
4827 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4828 asection *sec,
4829 void *unused ATTRIBUTE_UNUSED)
4830 {
4831 flagword flags = bfd_get_section_flags (abfd, sec);
4832 segment_info_type *seginfo = seg_info (sec);
4833 fragS *frag = seginfo->frchainP->frch_root;
4834 xtensa_isa isa = xtensa_default_isa;
4835
4836 if (flags & SEC_CODE)
4837 {
4838 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4839 while (frag != NULL)
4840 {
4841 if (frag->tc_frag_data.is_first_loop_insn)
4842 {
4843 int op_size;
4844 addressT frag_addr;
4845 xtensa_format fmt;
4846
4847 xtensa_insnbuf_from_chars
4848 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4849 fmt = xtensa_format_decode (isa, insnbuf);
4850 op_size = xtensa_format_length (isa, fmt);
4851 frag_addr = frag->fr_address % xtensa_fetch_width;
4852
4853 if (frag_addr + op_size > xtensa_fetch_width)
4854 as_warn_where (frag->fr_file, frag->fr_line,
4855 _("unaligned loop: %d bytes at 0x%lx"),
4856 op_size, (long) frag->fr_address);
4857 }
4858 frag = frag->fr_next;
4859 }
4860 xtensa_insnbuf_free (isa, insnbuf);
4861 }
4862 }
4863
4864
4865 static int
4866 xg_apply_fix_value (fixS *fixP, valueT val)
4867 {
4868 xtensa_isa isa = xtensa_default_isa;
4869 static xtensa_insnbuf insnbuf = NULL;
4870 static xtensa_insnbuf slotbuf = NULL;
4871 xtensa_format fmt;
4872 int slot;
4873 bfd_boolean alt_reloc;
4874 xtensa_opcode opcode;
4875 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4876
4877 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4878 if (alt_reloc)
4879 as_fatal (_("unexpected fix"));
4880
4881 if (!insnbuf)
4882 {
4883 insnbuf = xtensa_insnbuf_alloc (isa);
4884 slotbuf = xtensa_insnbuf_alloc (isa);
4885 }
4886
4887 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4888 fmt = xtensa_format_decode (isa, insnbuf);
4889 if (fmt == XTENSA_UNDEFINED)
4890 as_fatal (_("undecodable fix"));
4891 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4892 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4893 if (opcode == XTENSA_UNDEFINED)
4894 as_fatal (_("undecodable fix"));
4895
4896 /* CONST16 immediates are not PC-relative, despite the fact that we
4897 reuse the normal PC-relative operand relocations for the low part
4898 of a CONST16 operand. */
4899 if (opcode == xtensa_const16_opcode)
4900 return 0;
4901
4902 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4903 get_relaxable_immed (opcode), val,
4904 fixP->fx_file, fixP->fx_line);
4905
4906 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
4907 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4908
4909 return 1;
4910 }
4911
4912 \f
4913 /* External Functions and Other GAS Hooks. */
4914
4915 const char *
4916 xtensa_target_format (void)
4917 {
4918 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4919 }
4920
4921
4922 void
4923 xtensa_file_arch_init (bfd *abfd)
4924 {
4925 bfd_set_private_flags (abfd, 0x100 | 0x200);
4926 }
4927
4928
4929 void
4930 md_number_to_chars (char *buf, valueT val, int n)
4931 {
4932 if (target_big_endian)
4933 number_to_chars_bigendian (buf, val, n);
4934 else
4935 number_to_chars_littleendian (buf, val, n);
4936 }
4937
4938
4939 /* This function is called once, at assembler startup time. It should
4940 set up all the tables, etc. that the MD part of the assembler will
4941 need. */
4942
4943 void
4944 md_begin (void)
4945 {
4946 segT current_section = now_seg;
4947 int current_subsec = now_subseg;
4948 xtensa_isa isa;
4949
4950 xtensa_default_isa = xtensa_isa_init (0, 0);
4951 isa = xtensa_default_isa;
4952
4953 linkrelax = 1;
4954
4955 /* Set up the .literal, .fini.literal and .init.literal sections. */
4956 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4957 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4958 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4959 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
4960 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
4961
4962 subseg_set (current_section, current_subsec);
4963
4964 xg_init_vinsn (&cur_vinsn);
4965
4966 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4967 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4968 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4969 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4970 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4971 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4972 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4973 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4974 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4975 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
4976 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
4977 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
4978 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4979 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
4980 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
4981 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
4982 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
4983 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4984 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4985 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
4986 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
4987 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4988 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4989 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4990 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4991 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4992 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
4993 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
4994 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
4995
4996 init_op_placement_info_table ();
4997
4998 /* Set up the assembly state. */
4999 if (!frag_now->tc_frag_data.is_assembly_state_set)
5000 xtensa_set_frag_assembly_state (frag_now);
5001 }
5002
5003
5004 /* TC_INIT_FIX_DATA hook */
5005
5006 void
5007 xtensa_init_fix_data (fixS *x)
5008 {
5009 x->tc_fix_data.slot = 0;
5010 x->tc_fix_data.X_add_symbol = NULL;
5011 x->tc_fix_data.X_add_number = 0;
5012 }
5013
5014
5015 /* tc_frob_label hook */
5016
5017 void
5018 xtensa_frob_label (symbolS *sym)
5019 {
5020 float freq;
5021
5022 if (cur_vinsn.inside_bundle)
5023 {
5024 as_bad (_("labels are not valid inside bundles"));
5025 return;
5026 }
5027
5028 freq = get_subseg_target_freq (now_seg, now_subseg);
5029
5030 /* Since the label was already attached to a frag associated with the
5031 previous basic block, it now needs to be reset to the current frag. */
5032 symbol_set_frag (sym, frag_now);
5033 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5034
5035 if (generating_literals)
5036 xtensa_add_literal_sym (sym);
5037 else
5038 xtensa_add_insn_label (sym);
5039
5040 if (symbol_get_tc (sym)->is_loop_target)
5041 {
5042 if ((get_last_insn_flags (now_seg, now_subseg)
5043 & FLAG_IS_BAD_LOOPEND) != 0)
5044 as_bad (_("invalid last instruction for a zero-overhead loop"));
5045
5046 xtensa_set_frag_assembly_state (frag_now);
5047 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5048 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5049
5050 xtensa_set_frag_assembly_state (frag_now);
5051 xtensa_move_labels (frag_now, 0, TRUE);
5052 }
5053
5054 /* No target aligning in the absolute section. */
5055 if (now_seg != absolute_section
5056 && do_align_targets ()
5057 && !is_unaligned_label (sym)
5058 && !generating_literals)
5059 {
5060 xtensa_set_frag_assembly_state (frag_now);
5061
5062 frag_var (rs_machine_dependent,
5063 0, (int) freq,
5064 RELAX_DESIRE_ALIGN_IF_TARGET,
5065 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5066 xtensa_set_frag_assembly_state (frag_now);
5067 xtensa_move_labels (frag_now, 0, TRUE);
5068 }
5069
5070 /* We need to mark the following properties even if we aren't aligning. */
5071
5072 /* If the label is already known to be a branch target, i.e., a
5073 forward branch, mark the frag accordingly. Backward branches
5074 are handled by xg_add_branch_and_loop_targets. */
5075 if (symbol_get_tc (sym)->is_branch_target)
5076 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5077
5078 /* Loops only go forward, so they can be identified here. */
5079 if (symbol_get_tc (sym)->is_loop_target)
5080 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5081
5082 dwarf2_emit_label (sym);
5083 }
5084
5085
5086 /* tc_unrecognized_line hook */
5087
5088 int
5089 xtensa_unrecognized_line (int ch)
5090 {
5091 switch (ch)
5092 {
5093 case '{' :
5094 if (cur_vinsn.inside_bundle == 0)
5095 {
5096 /* PR8110: Cannot emit line number info inside a FLIX bundle
5097 when using --gstabs. Temporarily disable debug info. */
5098 generate_lineno_debug ();
5099 if (debug_type == DEBUG_STABS)
5100 {
5101 xt_saved_debug_type = debug_type;
5102 debug_type = DEBUG_NONE;
5103 }
5104
5105 cur_vinsn.inside_bundle = 1;
5106 }
5107 else
5108 {
5109 as_bad (_("extra opening brace"));
5110 return 0;
5111 }
5112 break;
5113
5114 case '}' :
5115 if (cur_vinsn.inside_bundle)
5116 finish_vinsn (&cur_vinsn);
5117 else
5118 {
5119 as_bad (_("extra closing brace"));
5120 return 0;
5121 }
5122 break;
5123 default:
5124 as_bad (_("syntax error"));
5125 return 0;
5126 }
5127 return 1;
5128 }
5129
5130
5131 /* md_flush_pending_output hook */
5132
5133 void
5134 xtensa_flush_pending_output (void)
5135 {
5136 if (cur_vinsn.inside_bundle)
5137 as_bad (_("missing closing brace"));
5138
5139 /* If there is a non-zero instruction fragment, close it. */
5140 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5141 {
5142 frag_wane (frag_now);
5143 frag_new (0);
5144 xtensa_set_frag_assembly_state (frag_now);
5145 }
5146 frag_now->tc_frag_data.is_insn = FALSE;
5147
5148 xtensa_clear_insn_labels ();
5149 }
5150
5151
5152 /* We had an error while parsing an instruction. The string might look
5153 like this: "insn arg1, arg2 }". If so, we need to see the closing
5154 brace and reset some fields. Otherwise, the vinsn never gets closed
5155 and the num_slots field will grow past the end of the array of slots,
5156 and bad things happen. */
5157
5158 static void
5159 error_reset_cur_vinsn (void)
5160 {
5161 if (cur_vinsn.inside_bundle)
5162 {
5163 if (*input_line_pointer == '}'
5164 || *(input_line_pointer - 1) == '}'
5165 || *(input_line_pointer - 2) == '}')
5166 xg_clear_vinsn (&cur_vinsn);
5167 }
5168 }
5169
5170
5171 void
5172 md_assemble (char *str)
5173 {
5174 xtensa_isa isa = xtensa_default_isa;
5175 char *opname, *file_name;
5176 unsigned opnamelen;
5177 bfd_boolean has_underbar = FALSE;
5178 char *arg_strings[MAX_INSN_ARGS];
5179 int num_args;
5180 TInsn orig_insn; /* Original instruction from the input. */
5181
5182 tinsn_init (&orig_insn);
5183
5184 /* Split off the opcode. */
5185 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5186 opname = xmalloc (opnamelen + 1);
5187 memcpy (opname, str, opnamelen);
5188 opname[opnamelen] = '\0';
5189
5190 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5191 if (num_args == -1)
5192 {
5193 as_bad (_("syntax error"));
5194 return;
5195 }
5196
5197 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5198 return;
5199
5200 /* Check for an underbar prefix. */
5201 if (*opname == '_')
5202 {
5203 has_underbar = TRUE;
5204 opname += 1;
5205 }
5206
5207 orig_insn.insn_type = ITYPE_INSN;
5208 orig_insn.ntok = 0;
5209 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5210
5211 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5212 if (orig_insn.opcode == XTENSA_UNDEFINED)
5213 {
5214 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5215 if (fmt == XTENSA_UNDEFINED)
5216 {
5217 as_bad (_("unknown opcode or format name '%s'"), opname);
5218 error_reset_cur_vinsn ();
5219 return;
5220 }
5221 if (!cur_vinsn.inside_bundle)
5222 {
5223 as_bad (_("format names only valid inside bundles"));
5224 error_reset_cur_vinsn ();
5225 return;
5226 }
5227 if (cur_vinsn.format != XTENSA_UNDEFINED)
5228 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5229 opname);
5230 cur_vinsn.format = fmt;
5231 free (has_underbar ? opname - 1 : opname);
5232 error_reset_cur_vinsn ();
5233 return;
5234 }
5235
5236 /* Parse the arguments. */
5237 if (parse_arguments (&orig_insn, num_args, arg_strings))
5238 {
5239 as_bad (_("syntax error"));
5240 error_reset_cur_vinsn ();
5241 return;
5242 }
5243
5244 /* Free the opcode and argument strings, now that they've been parsed. */
5245 free (has_underbar ? opname - 1 : opname);
5246 opname = 0;
5247 while (num_args-- > 0)
5248 free (arg_strings[num_args]);
5249
5250 /* Get expressions for invisible operands. */
5251 if (get_invisible_operands (&orig_insn))
5252 {
5253 error_reset_cur_vinsn ();
5254 return;
5255 }
5256
5257 /* Check for the right number and type of arguments. */
5258 if (tinsn_check_arguments (&orig_insn))
5259 {
5260 error_reset_cur_vinsn ();
5261 return;
5262 }
5263
5264 /* A FLIX bundle may be spread across multiple input lines. We want to
5265 report the first such line in the debug information. Record the line
5266 number for each TInsn (assume the file name doesn't change), so the
5267 first line can be found later. */
5268 as_where (&file_name, &orig_insn.linenum);
5269
5270 xg_add_branch_and_loop_targets (&orig_insn);
5271
5272 /* Check that immediate value for ENTRY is >= 16. */
5273 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5274 {
5275 expressionS *exp = &orig_insn.tok[2];
5276 if (exp->X_op == O_constant && exp->X_add_number < 16)
5277 as_warn (_("entry instruction with stack decrement < 16"));
5278 }
5279
5280 /* Finish it off:
5281 assemble_tokens (opcode, tok, ntok);
5282 expand the tokens from the orig_insn into the
5283 stack of instructions that will not expand
5284 unless required at relaxation time. */
5285
5286 if (!cur_vinsn.inside_bundle)
5287 emit_single_op (&orig_insn);
5288 else /* We are inside a bundle. */
5289 {
5290 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5291 cur_vinsn.num_slots++;
5292 if (*input_line_pointer == '}'
5293 || *(input_line_pointer - 1) == '}'
5294 || *(input_line_pointer - 2) == '}')
5295 finish_vinsn (&cur_vinsn);
5296 }
5297
5298 /* We've just emitted a new instruction so clear the list of labels. */
5299 xtensa_clear_insn_labels ();
5300 }
5301
5302
5303 /* HANDLE_ALIGN hook */
5304
5305 /* For a .align directive, we mark the previous block with the alignment
5306 information. This will be placed in the object file in the
5307 property section corresponding to this section. */
5308
5309 void
5310 xtensa_handle_align (fragS *fragP)
5311 {
5312 if (linkrelax
5313 && ! fragP->tc_frag_data.is_literal
5314 && (fragP->fr_type == rs_align
5315 || fragP->fr_type == rs_align_code)
5316 && fragP->fr_address + fragP->fr_fix > 0
5317 && fragP->fr_offset > 0
5318 && now_seg != bss_section)
5319 {
5320 fragP->tc_frag_data.is_align = TRUE;
5321 fragP->tc_frag_data.alignment = fragP->fr_offset;
5322 }
5323
5324 if (fragP->fr_type == rs_align_test)
5325 {
5326 int count;
5327 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5328 if (count != 0)
5329 as_bad_where (fragP->fr_file, fragP->fr_line,
5330 _("unaligned entry instruction"));
5331 }
5332 }
5333
5334
5335 /* TC_FRAG_INIT hook */
5336
5337 void
5338 xtensa_frag_init (fragS *frag)
5339 {
5340 xtensa_set_frag_assembly_state (frag);
5341 }
5342
5343
5344 symbolS *
5345 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5346 {
5347 return NULL;
5348 }
5349
5350
5351 /* Round up a section size to the appropriate boundary. */
5352
5353 valueT
5354 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5355 {
5356 return size; /* Byte alignment is fine. */
5357 }
5358
5359
5360 long
5361 md_pcrel_from (fixS *fixP)
5362 {
5363 char *insn_p;
5364 static xtensa_insnbuf insnbuf = NULL;
5365 static xtensa_insnbuf slotbuf = NULL;
5366 int opnum;
5367 uint32 opnd_value;
5368 xtensa_opcode opcode;
5369 xtensa_format fmt;
5370 int slot;
5371 xtensa_isa isa = xtensa_default_isa;
5372 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5373 bfd_boolean alt_reloc;
5374
5375 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5376 return 0;
5377
5378 if (!insnbuf)
5379 {
5380 insnbuf = xtensa_insnbuf_alloc (isa);
5381 slotbuf = xtensa_insnbuf_alloc (isa);
5382 }
5383
5384 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5385 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5386 fmt = xtensa_format_decode (isa, insnbuf);
5387
5388 if (fmt == XTENSA_UNDEFINED)
5389 as_fatal (_("bad instruction format"));
5390
5391 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5392 as_fatal (_("invalid relocation"));
5393
5394 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5395 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5396
5397 /* Check for "alternate" relocations (operand not specified). None
5398 of the current uses for these are really PC-relative. */
5399 if (alt_reloc || opcode == xtensa_const16_opcode)
5400 {
5401 if (opcode != xtensa_l32r_opcode
5402 && opcode != xtensa_const16_opcode)
5403 as_fatal (_("invalid relocation for '%s' instruction"),
5404 xtensa_opcode_name (isa, opcode));
5405 return 0;
5406 }
5407
5408 opnum = get_relaxable_immed (opcode);
5409 opnd_value = 0;
5410 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5411 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5412 {
5413 as_bad_where (fixP->fx_file,
5414 fixP->fx_line,
5415 _("invalid relocation for operand %d of '%s'"),
5416 opnum, xtensa_opcode_name (isa, opcode));
5417 return 0;
5418 }
5419 return 0 - opnd_value;
5420 }
5421
5422
5423 /* TC_FORCE_RELOCATION hook */
5424
5425 int
5426 xtensa_force_relocation (fixS *fix)
5427 {
5428 switch (fix->fx_r_type)
5429 {
5430 case BFD_RELOC_XTENSA_ASM_EXPAND:
5431 case BFD_RELOC_XTENSA_SLOT0_ALT:
5432 case BFD_RELOC_XTENSA_SLOT1_ALT:
5433 case BFD_RELOC_XTENSA_SLOT2_ALT:
5434 case BFD_RELOC_XTENSA_SLOT3_ALT:
5435 case BFD_RELOC_XTENSA_SLOT4_ALT:
5436 case BFD_RELOC_XTENSA_SLOT5_ALT:
5437 case BFD_RELOC_XTENSA_SLOT6_ALT:
5438 case BFD_RELOC_XTENSA_SLOT7_ALT:
5439 case BFD_RELOC_XTENSA_SLOT8_ALT:
5440 case BFD_RELOC_XTENSA_SLOT9_ALT:
5441 case BFD_RELOC_XTENSA_SLOT10_ALT:
5442 case BFD_RELOC_XTENSA_SLOT11_ALT:
5443 case BFD_RELOC_XTENSA_SLOT12_ALT:
5444 case BFD_RELOC_XTENSA_SLOT13_ALT:
5445 case BFD_RELOC_XTENSA_SLOT14_ALT:
5446 return 1;
5447 default:
5448 break;
5449 }
5450
5451 if (linkrelax && fix->fx_addsy
5452 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5453 return 1;
5454
5455 return generic_force_reloc (fix);
5456 }
5457
5458
5459 /* TC_VALIDATE_FIX_SUB hook */
5460
5461 int
5462 xtensa_validate_fix_sub (fixS *fix)
5463 {
5464 segT add_symbol_segment, sub_symbol_segment;
5465
5466 /* The difference of two symbols should be resolved by the assembler when
5467 linkrelax is not set. If the linker may relax the section containing
5468 the symbols, then an Xtensa DIFF relocation must be generated so that
5469 the linker knows to adjust the difference value. */
5470 if (!linkrelax || fix->fx_addsy == NULL)
5471 return 0;
5472
5473 /* Make sure both symbols are in the same segment, and that segment is
5474 "normal" and relaxable. If the segment is not "normal", then the
5475 fix is not valid. If the segment is not "relaxable", then the fix
5476 should have been handled earlier. */
5477 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5478 if (! SEG_NORMAL (add_symbol_segment) ||
5479 ! relaxable_section (add_symbol_segment))
5480 return 0;
5481 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5482 return (sub_symbol_segment == add_symbol_segment);
5483 }
5484
5485
5486 /* NO_PSEUDO_DOT hook */
5487
5488 /* This function has nothing to do with pseudo dots, but this is the
5489 nearest macro to where the check needs to take place. FIXME: This
5490 seems wrong. */
5491
5492 bfd_boolean
5493 xtensa_check_inside_bundle (void)
5494 {
5495 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5496 as_bad (_("directives are not valid inside bundles"));
5497
5498 /* This function must always return FALSE because it is called via a
5499 macro that has nothing to do with bundling. */
5500 return FALSE;
5501 }
5502
5503
5504 /* md_elf_section_change_hook */
5505
5506 void
5507 xtensa_elf_section_change_hook (void)
5508 {
5509 /* Set up the assembly state. */
5510 if (!frag_now->tc_frag_data.is_assembly_state_set)
5511 xtensa_set_frag_assembly_state (frag_now);
5512 }
5513
5514
5515 /* tc_fix_adjustable hook */
5516
5517 bfd_boolean
5518 xtensa_fix_adjustable (fixS *fixP)
5519 {
5520 /* An offset is not allowed in combination with the difference of two
5521 symbols, but that cannot be easily detected after a local symbol
5522 has been adjusted to a (section+offset) form. Return 0 so that such
5523 an fix will not be adjusted. */
5524 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5525 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5526 return 0;
5527
5528 /* We need the symbol name for the VTABLE entries. */
5529 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5530 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5531 return 0;
5532
5533 return 1;
5534 }
5535
5536
5537 void
5538 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5539 {
5540 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5541 valueT val = 0;
5542
5543 /* Subtracted symbols are only allowed for a few relocation types, and
5544 unless linkrelax is enabled, they should not make it to this point. */
5545 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5546 || fixP->fx_r_type == BFD_RELOC_16
5547 || fixP->fx_r_type == BFD_RELOC_8)))
5548 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5549
5550 switch (fixP->fx_r_type)
5551 {
5552 case BFD_RELOC_32:
5553 case BFD_RELOC_16:
5554 case BFD_RELOC_8:
5555 if (fixP->fx_subsy)
5556 {
5557 switch (fixP->fx_r_type)
5558 {
5559 case BFD_RELOC_8:
5560 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5561 break;
5562 case BFD_RELOC_16:
5563 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5564 break;
5565 case BFD_RELOC_32:
5566 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5567 break;
5568 default:
5569 break;
5570 }
5571
5572 /* An offset is only allowed when it results from adjusting a
5573 local symbol into a section-relative offset. If the offset
5574 came from the original expression, tc_fix_adjustable will have
5575 prevented the fix from being converted to a section-relative
5576 form so that we can flag the error here. */
5577 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5578 as_bad_where (fixP->fx_file, fixP->fx_line,
5579 _("cannot represent subtraction with an offset"));
5580
5581 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5582 - S_GET_VALUE (fixP->fx_subsy));
5583
5584 /* The difference value gets written out, and the DIFF reloc
5585 identifies the address of the subtracted symbol (i.e., the one
5586 with the lowest address). */
5587 *valP = val;
5588 fixP->fx_offset -= val;
5589 fixP->fx_subsy = NULL;
5590 }
5591 else if (! fixP->fx_addsy)
5592 {
5593 val = *valP;
5594 fixP->fx_done = 1;
5595 }
5596 /* fall through */
5597
5598 case BFD_RELOC_XTENSA_PLT:
5599 md_number_to_chars (fixpos, val, fixP->fx_size);
5600 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5601 break;
5602
5603 case BFD_RELOC_XTENSA_SLOT0_OP:
5604 case BFD_RELOC_XTENSA_SLOT1_OP:
5605 case BFD_RELOC_XTENSA_SLOT2_OP:
5606 case BFD_RELOC_XTENSA_SLOT3_OP:
5607 case BFD_RELOC_XTENSA_SLOT4_OP:
5608 case BFD_RELOC_XTENSA_SLOT5_OP:
5609 case BFD_RELOC_XTENSA_SLOT6_OP:
5610 case BFD_RELOC_XTENSA_SLOT7_OP:
5611 case BFD_RELOC_XTENSA_SLOT8_OP:
5612 case BFD_RELOC_XTENSA_SLOT9_OP:
5613 case BFD_RELOC_XTENSA_SLOT10_OP:
5614 case BFD_RELOC_XTENSA_SLOT11_OP:
5615 case BFD_RELOC_XTENSA_SLOT12_OP:
5616 case BFD_RELOC_XTENSA_SLOT13_OP:
5617 case BFD_RELOC_XTENSA_SLOT14_OP:
5618 if (linkrelax)
5619 {
5620 /* Write the tentative value of a PC-relative relocation to a
5621 local symbol into the instruction. The value will be ignored
5622 by the linker, and it makes the object file disassembly
5623 readable when all branch targets are encoded in relocations. */
5624
5625 assert (fixP->fx_addsy);
5626 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5627 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5628 {
5629 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5630 - md_pcrel_from (fixP));
5631 (void) xg_apply_fix_value (fixP, val);
5632 }
5633 }
5634 else if (! fixP->fx_addsy)
5635 {
5636 val = *valP;
5637 if (xg_apply_fix_value (fixP, val))
5638 fixP->fx_done = 1;
5639 }
5640 break;
5641
5642 case BFD_RELOC_XTENSA_ASM_EXPAND:
5643 case BFD_RELOC_XTENSA_SLOT0_ALT:
5644 case BFD_RELOC_XTENSA_SLOT1_ALT:
5645 case BFD_RELOC_XTENSA_SLOT2_ALT:
5646 case BFD_RELOC_XTENSA_SLOT3_ALT:
5647 case BFD_RELOC_XTENSA_SLOT4_ALT:
5648 case BFD_RELOC_XTENSA_SLOT5_ALT:
5649 case BFD_RELOC_XTENSA_SLOT6_ALT:
5650 case BFD_RELOC_XTENSA_SLOT7_ALT:
5651 case BFD_RELOC_XTENSA_SLOT8_ALT:
5652 case BFD_RELOC_XTENSA_SLOT9_ALT:
5653 case BFD_RELOC_XTENSA_SLOT10_ALT:
5654 case BFD_RELOC_XTENSA_SLOT11_ALT:
5655 case BFD_RELOC_XTENSA_SLOT12_ALT:
5656 case BFD_RELOC_XTENSA_SLOT13_ALT:
5657 case BFD_RELOC_XTENSA_SLOT14_ALT:
5658 /* These all need to be resolved at link-time. Do nothing now. */
5659 break;
5660
5661 case BFD_RELOC_VTABLE_INHERIT:
5662 case BFD_RELOC_VTABLE_ENTRY:
5663 fixP->fx_done = 0;
5664 break;
5665
5666 default:
5667 as_bad (_("unhandled local relocation fix %s"),
5668 bfd_get_reloc_code_name (fixP->fx_r_type));
5669 }
5670 }
5671
5672
5673 char *
5674 md_atof (int type, char *litP, int *sizeP)
5675 {
5676 int prec;
5677 LITTLENUM_TYPE words[4];
5678 char *t;
5679 int i;
5680
5681 switch (type)
5682 {
5683 case 'f':
5684 prec = 2;
5685 break;
5686
5687 case 'd':
5688 prec = 4;
5689 break;
5690
5691 default:
5692 *sizeP = 0;
5693 return "bad call to md_atof";
5694 }
5695
5696 t = atof_ieee (input_line_pointer, type, words);
5697 if (t)
5698 input_line_pointer = t;
5699
5700 *sizeP = prec * 2;
5701
5702 for (i = prec - 1; i >= 0; i--)
5703 {
5704 int idx = i;
5705 if (target_big_endian)
5706 idx = (prec - 1 - i);
5707
5708 md_number_to_chars (litP, (valueT) words[idx], 2);
5709 litP += 2;
5710 }
5711
5712 return NULL;
5713 }
5714
5715
5716 int
5717 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5718 {
5719 return total_frag_text_expansion (fragP);
5720 }
5721
5722
5723 /* Translate internal representation of relocation info to BFD target
5724 format. */
5725
5726 arelent *
5727 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5728 {
5729 arelent *reloc;
5730
5731 reloc = (arelent *) xmalloc (sizeof (arelent));
5732 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5733 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5734 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5735
5736 /* Make sure none of our internal relocations make it this far.
5737 They'd better have been fully resolved by this point. */
5738 assert ((int) fixp->fx_r_type > 0);
5739
5740 reloc->addend = fixp->fx_offset;
5741
5742 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5743 if (reloc->howto == NULL)
5744 {
5745 as_bad_where (fixp->fx_file, fixp->fx_line,
5746 _("cannot represent `%s' relocation in object file"),
5747 bfd_get_reloc_code_name (fixp->fx_r_type));
5748 free (reloc->sym_ptr_ptr);
5749 free (reloc);
5750 return NULL;
5751 }
5752
5753 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5754 as_fatal (_("internal error? cannot generate `%s' relocation"),
5755 bfd_get_reloc_code_name (fixp->fx_r_type));
5756
5757 return reloc;
5758 }
5759
5760 \f
5761 /* Checks for resource conflicts between instructions. */
5762
5763 /* The func unit stuff could be implemented as bit-vectors rather
5764 than the iterative approach here. If it ends up being too
5765 slow, we will switch it. */
5766
5767 resource_table *
5768 new_resource_table (void *data,
5769 int cycles,
5770 int nu,
5771 unit_num_copies_func uncf,
5772 opcode_num_units_func onuf,
5773 opcode_funcUnit_use_unit_func ouuf,
5774 opcode_funcUnit_use_stage_func ousf)
5775 {
5776 int i;
5777 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5778 rt->data = data;
5779 rt->cycles = cycles;
5780 rt->allocated_cycles = cycles;
5781 rt->num_units = nu;
5782 rt->unit_num_copies = uncf;
5783 rt->opcode_num_units = onuf;
5784 rt->opcode_unit_use = ouuf;
5785 rt->opcode_unit_stage = ousf;
5786
5787 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
5788 for (i = 0; i < cycles; i++)
5789 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
5790
5791 return rt;
5792 }
5793
5794
5795 void
5796 clear_resource_table (resource_table *rt)
5797 {
5798 int i, j;
5799 for (i = 0; i < rt->allocated_cycles; i++)
5800 for (j = 0; j < rt->num_units; j++)
5801 rt->units[i][j] = 0;
5802 }
5803
5804
5805 /* We never shrink it, just fake it into thinking so. */
5806
5807 void
5808 resize_resource_table (resource_table *rt, int cycles)
5809 {
5810 int i, old_cycles;
5811
5812 rt->cycles = cycles;
5813 if (cycles <= rt->allocated_cycles)
5814 return;
5815
5816 old_cycles = rt->allocated_cycles;
5817 rt->allocated_cycles = cycles;
5818
5819 rt->units = xrealloc (rt->units,
5820 rt->allocated_cycles * sizeof (unsigned char *));
5821 for (i = 0; i < old_cycles; i++)
5822 rt->units[i] = xrealloc (rt->units[i],
5823 rt->num_units * sizeof (unsigned char));
5824 for (i = old_cycles; i < cycles; i++)
5825 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
5826 }
5827
5828
5829 bfd_boolean
5830 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5831 {
5832 int i;
5833 int uses = (rt->opcode_num_units) (rt->data, opcode);
5834
5835 for (i = 0; i < uses; i++)
5836 {
5837 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5838 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5839 int copies_in_use = rt->units[stage + cycle][unit];
5840 int copies = (rt->unit_num_copies) (rt->data, unit);
5841 if (copies_in_use >= copies)
5842 return FALSE;
5843 }
5844 return TRUE;
5845 }
5846
5847
5848 void
5849 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5850 {
5851 int i;
5852 int uses = (rt->opcode_num_units) (rt->data, opcode);
5853
5854 for (i = 0; i < uses; i++)
5855 {
5856 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5857 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5858 /* Note that this allows resources to be oversubscribed. That's
5859 essential to the way the optional scheduler works.
5860 resources_available reports when a resource is over-subscribed,
5861 so it's easy to tell. */
5862 rt->units[stage + cycle][unit]++;
5863 }
5864 }
5865
5866
5867 void
5868 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5869 {
5870 int i;
5871 int uses = (rt->opcode_num_units) (rt->data, opcode);
5872
5873 for (i = 0; i < uses; i++)
5874 {
5875 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5876 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5877 assert (rt->units[stage + cycle][unit] > 0);
5878 rt->units[stage + cycle][unit]--;
5879 }
5880 }
5881
5882
5883 /* Wrapper functions make parameterized resource reservation
5884 more convenient. */
5885
5886 int
5887 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5888 {
5889 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5890 return use->unit;
5891 }
5892
5893
5894 int
5895 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5896 {
5897 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5898 return use->stage;
5899 }
5900
5901
5902 /* Note that this function does not check issue constraints, but
5903 solely whether the hardware is available to execute the given
5904 instructions together. It also doesn't check if the tinsns
5905 write the same state, or access the same tieports. That is
5906 checked by check_t1_t2_reads_and_writes. */
5907
5908 static bfd_boolean
5909 resources_conflict (vliw_insn *vinsn)
5910 {
5911 int i;
5912 static resource_table *rt = NULL;
5913
5914 /* This is the most common case by far. Optimize it. */
5915 if (vinsn->num_slots == 1)
5916 return FALSE;
5917
5918 if (rt == NULL)
5919 {
5920 xtensa_isa isa = xtensa_default_isa;
5921 rt = new_resource_table
5922 (isa, xtensa_isa_num_pipe_stages (isa),
5923 xtensa_isa_num_funcUnits (isa),
5924 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5925 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5926 opcode_funcUnit_use_unit,
5927 opcode_funcUnit_use_stage);
5928 }
5929
5930 clear_resource_table (rt);
5931
5932 for (i = 0; i < vinsn->num_slots; i++)
5933 {
5934 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5935 return TRUE;
5936 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5937 }
5938
5939 return FALSE;
5940 }
5941
5942 \f
5943 /* finish_vinsn, emit_single_op and helper functions. */
5944
5945 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5946 static xtensa_format xg_find_narrowest_format (vliw_insn *);
5947 static void xg_assemble_vliw_tokens (vliw_insn *);
5948
5949
5950 /* We have reached the end of a bundle; emit into the frag. */
5951
5952 static void
5953 finish_vinsn (vliw_insn *vinsn)
5954 {
5955 IStack slotstack;
5956 int i;
5957 char *file_name;
5958 unsigned line;
5959
5960 if (find_vinsn_conflicts (vinsn))
5961 {
5962 xg_clear_vinsn (vinsn);
5963 return;
5964 }
5965
5966 /* First, find a format that works. */
5967 if (vinsn->format == XTENSA_UNDEFINED)
5968 vinsn->format = xg_find_narrowest_format (vinsn);
5969
5970 if (vinsn->format == XTENSA_UNDEFINED)
5971 {
5972 as_where (&file_name, &line);
5973 as_bad_where (file_name, line,
5974 _("couldn't find a valid instruction format"));
5975 fprintf (stderr, _(" ops were: "));
5976 for (i = 0; i < vinsn->num_slots; i++)
5977 fprintf (stderr, _(" %s;"),
5978 xtensa_opcode_name (xtensa_default_isa,
5979 vinsn->slots[i].opcode));
5980 fprintf (stderr, _("\n"));
5981 xg_clear_vinsn (vinsn);
5982 return;
5983 }
5984
5985 if (vinsn->num_slots
5986 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
5987 {
5988 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5989 xtensa_format_name (xtensa_default_isa, vinsn->format),
5990 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5991 vinsn->num_slots);
5992 xg_clear_vinsn (vinsn);
5993 return;
5994 }
5995
5996 if (resources_conflict (vinsn))
5997 {
5998 as_where (&file_name, &line);
5999 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6000 fprintf (stderr, " ops were: ");
6001 for (i = 0; i < vinsn->num_slots; i++)
6002 fprintf (stderr, " %s;",
6003 xtensa_opcode_name (xtensa_default_isa,
6004 vinsn->slots[i].opcode));
6005 fprintf (stderr, "\n");
6006 xg_clear_vinsn (vinsn);
6007 return;
6008 }
6009
6010 for (i = 0; i < vinsn->num_slots; i++)
6011 {
6012 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6013 {
6014 symbolS *lit_sym = NULL;
6015 int j;
6016 bfd_boolean e = FALSE;
6017 bfd_boolean saved_density = density_supported;
6018
6019 /* We don't want to narrow ops inside multi-slot bundles. */
6020 if (vinsn->num_slots > 1)
6021 density_supported = FALSE;
6022
6023 istack_init (&slotstack);
6024 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6025 {
6026 vinsn->slots[i].opcode =
6027 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6028 vinsn->format, i);
6029 vinsn->slots[i].ntok = 0;
6030 }
6031
6032 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6033 {
6034 e = TRUE;
6035 continue;
6036 }
6037
6038 density_supported = saved_density;
6039
6040 if (e)
6041 {
6042 xg_clear_vinsn (vinsn);
6043 return;
6044 }
6045
6046 for (j = 0; j < slotstack.ninsn; j++)
6047 {
6048 TInsn *insn = &slotstack.insn[j];
6049 if (insn->insn_type == ITYPE_LITERAL)
6050 {
6051 assert (lit_sym == NULL);
6052 lit_sym = xg_assemble_literal (insn);
6053 }
6054 else
6055 {
6056 assert (insn->insn_type == ITYPE_INSN);
6057 if (lit_sym)
6058 xg_resolve_literals (insn, lit_sym);
6059 if (j != slotstack.ninsn - 1)
6060 emit_single_op (insn);
6061 }
6062 }
6063
6064 if (vinsn->num_slots > 1)
6065 {
6066 if (opcode_fits_format_slot
6067 (slotstack.insn[slotstack.ninsn - 1].opcode,
6068 vinsn->format, i))
6069 {
6070 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6071 }
6072 else
6073 {
6074 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6075 if (vinsn->format == XTENSA_UNDEFINED)
6076 vinsn->slots[i].opcode = xtensa_nop_opcode;
6077 else
6078 vinsn->slots[i].opcode
6079 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6080 vinsn->format, i);
6081
6082 vinsn->slots[i].ntok = 0;
6083 }
6084 }
6085 else
6086 {
6087 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6088 vinsn->format = XTENSA_UNDEFINED;
6089 }
6090 }
6091 }
6092
6093 /* Now check resource conflicts on the modified bundle. */
6094 if (resources_conflict (vinsn))
6095 {
6096 as_where (&file_name, &line);
6097 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6098 fprintf (stderr, " ops were: ");
6099 for (i = 0; i < vinsn->num_slots; i++)
6100 fprintf (stderr, " %s;",
6101 xtensa_opcode_name (xtensa_default_isa,
6102 vinsn->slots[i].opcode));
6103 fprintf (stderr, "\n");
6104 xg_clear_vinsn (vinsn);
6105 return;
6106 }
6107
6108 /* First, find a format that works. */
6109 if (vinsn->format == XTENSA_UNDEFINED)
6110 vinsn->format = xg_find_narrowest_format (vinsn);
6111
6112 xg_assemble_vliw_tokens (vinsn);
6113
6114 xg_clear_vinsn (vinsn);
6115 }
6116
6117
6118 /* Given an vliw instruction, what conflicts are there in register
6119 usage and in writes to states and queues?
6120
6121 This function does two things:
6122 1. Reports an error when a vinsn contains illegal combinations
6123 of writes to registers states or queues.
6124 2. Marks individual tinsns as not relaxable if the combination
6125 contains antidependencies.
6126
6127 Job 2 handles things like swap semantics in instructions that need
6128 to be relaxed. For example,
6129
6130 addi a0, a1, 100000
6131
6132 normally would be relaxed to
6133
6134 l32r a0, some_label
6135 add a0, a1, a0
6136
6137 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6138
6139 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6140
6141 then we can't relax it into
6142
6143 l32r a0, some_label
6144 { add a0, a1, a0 ; add a2, a0, a4 ; }
6145
6146 because the value of a0 is trashed before the second add can read it. */
6147
6148 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6149
6150 static bfd_boolean
6151 find_vinsn_conflicts (vliw_insn *vinsn)
6152 {
6153 int i, j;
6154 int branches = 0;
6155 xtensa_isa isa = xtensa_default_isa;
6156
6157 assert (!past_xtensa_end);
6158
6159 for (i = 0 ; i < vinsn->num_slots; i++)
6160 {
6161 TInsn *op1 = &vinsn->slots[i];
6162 if (op1->is_specific_opcode)
6163 op1->keep_wide = TRUE;
6164 else
6165 op1->keep_wide = FALSE;
6166 }
6167
6168 for (i = 0 ; i < vinsn->num_slots; i++)
6169 {
6170 TInsn *op1 = &vinsn->slots[i];
6171
6172 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6173 branches++;
6174
6175 for (j = 0; j < vinsn->num_slots; j++)
6176 {
6177 if (i != j)
6178 {
6179 TInsn *op2 = &vinsn->slots[j];
6180 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6181 switch (conflict_type)
6182 {
6183 case 'c':
6184 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6185 xtensa_opcode_name (isa, op1->opcode), i,
6186 xtensa_opcode_name (isa, op2->opcode), j);
6187 return TRUE;
6188 case 'd':
6189 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6190 xtensa_opcode_name (isa, op1->opcode), i,
6191 xtensa_opcode_name (isa, op2->opcode), j);
6192 return TRUE;
6193 case 'e':
6194 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6195 xtensa_opcode_name (isa, op1->opcode), i,
6196 xtensa_opcode_name (isa, op2->opcode), j);
6197 return TRUE;
6198 case 'f':
6199 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6200 xtensa_opcode_name (isa, op1->opcode), i,
6201 xtensa_opcode_name (isa, op2->opcode), j);
6202 return TRUE;
6203 default:
6204 /* Everything is OK. */
6205 break;
6206 }
6207 op2->is_specific_opcode = (op2->is_specific_opcode
6208 || conflict_type == 'a');
6209 }
6210 }
6211 }
6212
6213 if (branches > 1)
6214 {
6215 as_bad (_("multiple branches or jumps in the same bundle"));
6216 return TRUE;
6217 }
6218
6219 return FALSE;
6220 }
6221
6222
6223 /* Check how the state used by t1 and t2 relate.
6224 Cases found are:
6225
6226 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6227 case B: no relationship between what is read and written (both could
6228 read the same reg though)
6229 case C: t1 writes a register t2 writes (a register conflict within a
6230 bundle)
6231 case D: t1 writes a state that t2 also writes
6232 case E: t1 writes a tie queue that t2 also writes
6233 case F: two volatile queue accesses
6234 */
6235
6236 static char
6237 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6238 {
6239 xtensa_isa isa = xtensa_default_isa;
6240 xtensa_regfile t1_regfile, t2_regfile;
6241 int t1_reg, t2_reg;
6242 int t1_base_reg, t1_last_reg;
6243 int t2_base_reg, t2_last_reg;
6244 char t1_inout, t2_inout;
6245 int i, j;
6246 char conflict = 'b';
6247 int t1_states;
6248 int t2_states;
6249 int t1_interfaces;
6250 int t2_interfaces;
6251 bfd_boolean t1_volatile = FALSE;
6252 bfd_boolean t2_volatile = FALSE;
6253
6254 /* Check registers. */
6255 for (j = 0; j < t2->ntok; j++)
6256 {
6257 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6258 continue;
6259
6260 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6261 t2_base_reg = t2->tok[j].X_add_number;
6262 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6263
6264 for (i = 0; i < t1->ntok; i++)
6265 {
6266 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6267 continue;
6268
6269 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6270
6271 if (t1_regfile != t2_regfile)
6272 continue;
6273
6274 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6275 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6276
6277 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6278 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6279 {
6280 if (t1_inout == 'm' || t1_inout == 'o'
6281 || t2_inout == 'm' || t2_inout == 'o')
6282 {
6283 conflict = 'a';
6284 continue;
6285 }
6286 }
6287
6288 t1_base_reg = t1->tok[i].X_add_number;
6289 t1_last_reg = (t1_base_reg
6290 + xtensa_operand_num_regs (isa, t1->opcode, i));
6291
6292 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6293 {
6294 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6295 {
6296 if (t1_reg != t2_reg)
6297 continue;
6298
6299 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6300 {
6301 conflict = 'a';
6302 continue;
6303 }
6304
6305 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6306 {
6307 conflict = 'a';
6308 continue;
6309 }
6310
6311 if (t1_inout != 'i' && t2_inout != 'i')
6312 return 'c';
6313 }
6314 }
6315 }
6316 }
6317
6318 /* Check states. */
6319 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6320 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6321 for (j = 0; j < t2_states; j++)
6322 {
6323 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6324 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6325 for (i = 0; i < t1_states; i++)
6326 {
6327 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6328 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6329 if (t1_so != t2_so)
6330 continue;
6331
6332 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6333 {
6334 conflict = 'a';
6335 continue;
6336 }
6337
6338 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6339 {
6340 conflict = 'a';
6341 continue;
6342 }
6343
6344 if (t1_inout != 'i' && t2_inout != 'i')
6345 return 'd';
6346 }
6347 }
6348
6349 /* Check tieports. */
6350 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6351 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6352 for (j = 0; j < t2_interfaces; j++)
6353 {
6354 xtensa_interface t2_int
6355 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6356 int t2_class = xtensa_interface_class_id (isa, t2_int);
6357
6358 t2_inout = xtensa_interface_inout (isa, t2_int);
6359 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6360 t2_volatile = TRUE;
6361
6362 for (i = 0; i < t1_interfaces; i++)
6363 {
6364 xtensa_interface t1_int
6365 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6366 int t1_class = xtensa_interface_class_id (isa, t1_int);
6367
6368 t1_inout = xtensa_interface_inout (isa, t1_int);
6369 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6370 t1_volatile = TRUE;
6371
6372 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6373 return 'f';
6374
6375 if (t1_int != t2_int)
6376 continue;
6377
6378 if (t2_inout == 'i' && t1_inout == 'o')
6379 {
6380 conflict = 'a';
6381 continue;
6382 }
6383
6384 if (t1_inout == 'i' && t2_inout == 'o')
6385 {
6386 conflict = 'a';
6387 continue;
6388 }
6389
6390 if (t1_inout != 'i' && t2_inout != 'i')
6391 return 'e';
6392 }
6393 }
6394
6395 return conflict;
6396 }
6397
6398
6399 static xtensa_format
6400 xg_find_narrowest_format (vliw_insn *vinsn)
6401 {
6402 /* Right now we assume that the ops within the vinsn are properly
6403 ordered for the slots that the programmer wanted them in. In
6404 other words, we don't rearrange the ops in hopes of finding a
6405 better format. The scheduler handles that. */
6406
6407 xtensa_isa isa = xtensa_default_isa;
6408 xtensa_format format;
6409 vliw_insn v_copy = *vinsn;
6410 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6411
6412 if (vinsn->num_slots == 1)
6413 return xg_get_single_format (vinsn->slots[0].opcode);
6414
6415 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6416 {
6417 v_copy = *vinsn;
6418 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6419 {
6420 int slot;
6421 int fit = 0;
6422 for (slot = 0; slot < v_copy.num_slots; slot++)
6423 {
6424 if (v_copy.slots[slot].opcode == nop_opcode)
6425 {
6426 v_copy.slots[slot].opcode =
6427 xtensa_format_slot_nop_opcode (isa, format, slot);
6428 v_copy.slots[slot].ntok = 0;
6429 }
6430
6431 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6432 format, slot))
6433 fit++;
6434 else if (v_copy.num_slots > 1)
6435 {
6436 TInsn widened;
6437 /* Try the widened version. */
6438 if (!v_copy.slots[slot].keep_wide
6439 && !v_copy.slots[slot].is_specific_opcode
6440 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6441 &widened, TRUE)
6442 && opcode_fits_format_slot (widened.opcode,
6443 format, slot))
6444 {
6445 v_copy.slots[slot] = widened;
6446 fit++;
6447 }
6448 }
6449 }
6450 if (fit == v_copy.num_slots)
6451 {
6452 *vinsn = v_copy;
6453 xtensa_format_encode (isa, format, vinsn->insnbuf);
6454 vinsn->format = format;
6455 break;
6456 }
6457 }
6458 }
6459
6460 if (format == xtensa_isa_num_formats (isa))
6461 return XTENSA_UNDEFINED;
6462
6463 return format;
6464 }
6465
6466
6467 /* Return the additional space needed in a frag
6468 for possible relaxations of any ops in a VLIW insn.
6469 Also fill out the relaxations that might be required of
6470 each tinsn in the vinsn. */
6471
6472 static int
6473 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6474 {
6475 bfd_boolean finish_frag = FALSE;
6476 int extra_space = 0;
6477 int slot;
6478
6479 for (slot = 0; slot < vinsn->num_slots; slot++)
6480 {
6481 TInsn *tinsn = &vinsn->slots[slot];
6482 if (!tinsn_has_symbolic_operands (tinsn))
6483 {
6484 /* A narrow instruction could be widened later to help
6485 alignment issues. */
6486 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6487 && !tinsn->is_specific_opcode
6488 && vinsn->num_slots == 1)
6489 {
6490 /* Difference in bytes between narrow and wide insns... */
6491 extra_space += 1;
6492 tinsn->subtype = RELAX_NARROW;
6493 }
6494 }
6495 else
6496 {
6497 if (workaround_b_j_loop_end
6498 && tinsn->opcode == xtensa_jx_opcode
6499 && use_transform ())
6500 {
6501 /* Add 2 of these. */
6502 extra_space += 3; /* for the nop size */
6503 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6504 }
6505
6506 /* Need to assemble it with space for the relocation. */
6507 if (xg_is_relaxable_insn (tinsn, 0)
6508 && !tinsn->is_specific_opcode)
6509 {
6510 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6511 int max_literal_size =
6512 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6513
6514 tinsn->literal_space = max_literal_size;
6515
6516 tinsn->subtype = RELAX_IMMED;
6517 extra_space += max_size;
6518 }
6519 else
6520 {
6521 /* A fix record will be added for this instruction prior
6522 to relaxation, so make it end the frag. */
6523 finish_frag = TRUE;
6524 }
6525 }
6526 }
6527 *pfinish_frag = finish_frag;
6528 return extra_space;
6529 }
6530
6531
6532 static void
6533 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6534 {
6535 xtensa_isa isa = xtensa_default_isa;
6536 int slot, chosen_slot;
6537
6538 vinsn->format = xg_get_single_format (tinsn->opcode);
6539 assert (vinsn->format != XTENSA_UNDEFINED);
6540 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6541
6542 chosen_slot = xg_get_single_slot (tinsn->opcode);
6543 for (slot = 0; slot < vinsn->num_slots; slot++)
6544 {
6545 if (slot == chosen_slot)
6546 vinsn->slots[slot] = *tinsn;
6547 else
6548 {
6549 vinsn->slots[slot].opcode =
6550 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6551 vinsn->slots[slot].ntok = 0;
6552 vinsn->slots[slot].insn_type = ITYPE_INSN;
6553 }
6554 }
6555 }
6556
6557
6558 static bfd_boolean
6559 emit_single_op (TInsn *orig_insn)
6560 {
6561 int i;
6562 IStack istack; /* put instructions into here */
6563 symbolS *lit_sym = NULL;
6564 symbolS *label_sym = NULL;
6565
6566 istack_init (&istack);
6567
6568 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6569 Because the scheduling and bundling characteristics of movi and
6570 l32r or const16 are so different, we can do much better if we relax
6571 it prior to scheduling and bundling, rather than after. */
6572 if ((orig_insn->opcode == xtensa_movi_opcode
6573 || orig_insn->opcode == xtensa_movi_n_opcode)
6574 && !cur_vinsn.inside_bundle
6575 && (orig_insn->tok[1].X_op == O_symbol
6576 || orig_insn->tok[1].X_op == O_pltrel))
6577 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6578 else
6579 if (xg_expand_assembly_insn (&istack, orig_insn))
6580 return TRUE;
6581
6582 for (i = 0; i < istack.ninsn; i++)
6583 {
6584 TInsn *insn = &istack.insn[i];
6585 switch (insn->insn_type)
6586 {
6587 case ITYPE_LITERAL:
6588 assert (lit_sym == NULL);
6589 lit_sym = xg_assemble_literal (insn);
6590 break;
6591 case ITYPE_LABEL:
6592 {
6593 static int relaxed_sym_idx = 0;
6594 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6595 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6596 colon (label);
6597 assert (label_sym == NULL);
6598 label_sym = symbol_find_or_make (label);
6599 assert (label_sym);
6600 free (label);
6601 }
6602 break;
6603 case ITYPE_INSN:
6604 {
6605 vliw_insn v;
6606 if (lit_sym)
6607 xg_resolve_literals (insn, lit_sym);
6608 if (label_sym)
6609 xg_resolve_labels (insn, label_sym);
6610 xg_init_vinsn (&v);
6611 bundle_tinsn (insn, &v);
6612 finish_vinsn (&v);
6613 xg_free_vinsn (&v);
6614 }
6615 break;
6616 default:
6617 assert (0);
6618 break;
6619 }
6620 }
6621 return FALSE;
6622 }
6623
6624
6625 static int
6626 total_frag_text_expansion (fragS *fragP)
6627 {
6628 int slot;
6629 int total_expansion = 0;
6630
6631 for (slot = 0; slot < MAX_SLOTS; slot++)
6632 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6633
6634 return total_expansion;
6635 }
6636
6637
6638 /* Emit a vliw instruction to the current fragment. */
6639
6640 static void
6641 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6642 {
6643 bfd_boolean finish_frag;
6644 bfd_boolean is_jump = FALSE;
6645 bfd_boolean is_branch = FALSE;
6646 xtensa_isa isa = xtensa_default_isa;
6647 int i;
6648 int insn_size;
6649 int extra_space;
6650 char *f = NULL;
6651 int slot;
6652 unsigned current_line, best_linenum;
6653 char *current_file;
6654
6655 best_linenum = UINT_MAX;
6656
6657 if (generating_literals)
6658 {
6659 static int reported = 0;
6660 if (reported < 4)
6661 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6662 _("cannot assemble into a literal fragment"));
6663 if (reported == 3)
6664 as_bad (_("..."));
6665 reported++;
6666 return;
6667 }
6668
6669 if (frag_now_fix () != 0
6670 && (! frag_now->tc_frag_data.is_insn
6671 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6672 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6673 || (directive_state[directive_longcalls]
6674 != frag_now->tc_frag_data.use_longcalls)
6675 || (directive_state[directive_absolute_literals]
6676 != frag_now->tc_frag_data.use_absolute_literals)))
6677 {
6678 frag_wane (frag_now);
6679 frag_new (0);
6680 xtensa_set_frag_assembly_state (frag_now);
6681 }
6682
6683 if (workaround_a0_b_retw
6684 && vinsn->num_slots == 1
6685 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6686 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6687 && use_transform ())
6688 {
6689 has_a0_b_retw = TRUE;
6690
6691 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6692 After the first assembly pass we will check all of them and
6693 add a nop if needed. */
6694 frag_now->tc_frag_data.is_insn = TRUE;
6695 frag_var (rs_machine_dependent, 4, 4,
6696 RELAX_ADD_NOP_IF_A0_B_RETW,
6697 frag_now->fr_symbol,
6698 frag_now->fr_offset,
6699 NULL);
6700 xtensa_set_frag_assembly_state (frag_now);
6701 frag_now->tc_frag_data.is_insn = TRUE;
6702 frag_var (rs_machine_dependent, 4, 4,
6703 RELAX_ADD_NOP_IF_A0_B_RETW,
6704 frag_now->fr_symbol,
6705 frag_now->fr_offset,
6706 NULL);
6707 xtensa_set_frag_assembly_state (frag_now);
6708 }
6709
6710 for (i = 0; i < vinsn->num_slots; i++)
6711 {
6712 /* See if the instruction implies an aligned section. */
6713 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6714 record_alignment (now_seg, 2);
6715
6716 /* Also determine the best line number for debug info. */
6717 best_linenum = vinsn->slots[i].linenum < best_linenum
6718 ? vinsn->slots[i].linenum : best_linenum;
6719 }
6720
6721 /* Special cases for instructions that force an alignment... */
6722 /* None of these opcodes are bundle-able. */
6723 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6724 {
6725 int max_fill;
6726
6727 /* Remember the symbol that marks the end of the loop in the frag
6728 that marks the start of the loop. This way we can easily find
6729 the end of the loop at the beginning, without adding special code
6730 to mark the loop instructions themselves. */
6731 symbolS *target_sym = NULL;
6732 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6733 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6734
6735 xtensa_set_frag_assembly_state (frag_now);
6736 frag_now->tc_frag_data.is_insn = TRUE;
6737
6738 max_fill = get_text_align_max_fill_size
6739 (get_text_align_power (xtensa_fetch_width),
6740 TRUE, frag_now->tc_frag_data.is_no_density);
6741
6742 if (use_transform ())
6743 frag_var (rs_machine_dependent, max_fill, max_fill,
6744 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6745 else
6746 frag_var (rs_machine_dependent, 0, 0,
6747 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6748 xtensa_set_frag_assembly_state (frag_now);
6749
6750 xtensa_move_labels (frag_now, 0, FALSE);
6751 }
6752
6753 if (vinsn->slots[0].opcode == xtensa_entry_opcode
6754 && !vinsn->slots[0].is_specific_opcode)
6755 {
6756 xtensa_mark_literal_pool_location ();
6757 xtensa_move_labels (frag_now, 0, TRUE);
6758 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6759 }
6760
6761 if (vinsn->num_slots == 1)
6762 {
6763 if (workaround_a0_b_retw && use_transform ())
6764 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6765 is_register_writer (&vinsn->slots[0], "a", 0));
6766
6767 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6768 is_bad_loopend_opcode (&vinsn->slots[0]));
6769 }
6770 else
6771 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6772
6773 insn_size = xtensa_format_length (isa, vinsn->format);
6774
6775 extra_space = relaxation_requirements (vinsn, &finish_frag);
6776
6777 /* vinsn_to_insnbuf will produce the error. */
6778 if (vinsn->format != XTENSA_UNDEFINED)
6779 {
6780 f = frag_more (insn_size + extra_space);
6781 xtensa_set_frag_assembly_state (frag_now);
6782 frag_now->tc_frag_data.is_insn = TRUE;
6783 }
6784
6785 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
6786 if (vinsn->format == XTENSA_UNDEFINED)
6787 return;
6788
6789 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
6790
6791 /* Temporarily set the logical line number to the one we want to appear
6792 in the debug information. */
6793 as_where (&current_file, &current_line);
6794 new_logical_line (current_file, best_linenum);
6795 dwarf2_emit_insn (insn_size + extra_space);
6796 new_logical_line (current_file, current_line);
6797
6798 for (slot = 0; slot < vinsn->num_slots; slot++)
6799 {
6800 TInsn *tinsn = &vinsn->slots[slot];
6801 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
6802 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6803 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
6804 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6805 if (tinsn->literal_space != 0)
6806 xg_assemble_literal_space (tinsn->literal_space, slot);
6807
6808 if (tinsn->subtype == RELAX_NARROW)
6809 assert (vinsn->num_slots == 1);
6810 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6811 is_jump = TRUE;
6812 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6813 is_branch = TRUE;
6814
6815 if (tinsn->subtype || tinsn->symbol || tinsn->offset
6816 || tinsn->literal_frag || is_jump || is_branch)
6817 finish_frag = TRUE;
6818 }
6819
6820 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6821 frag_now->tc_frag_data.is_specific_opcode = TRUE;
6822
6823 if (finish_frag)
6824 {
6825 frag_variant (rs_machine_dependent,
6826 extra_space, extra_space, RELAX_SLOTS,
6827 frag_now->fr_symbol, frag_now->fr_offset, f);
6828 xtensa_set_frag_assembly_state (frag_now);
6829 }
6830
6831 /* Special cases for loops:
6832 close_loop_end should be inserted AFTER short_loop.
6833 Make sure that CLOSE loops are processed BEFORE short_loops
6834 when converting them. */
6835
6836 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6837 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6838 && !vinsn->slots[0].is_specific_opcode)
6839 {
6840 if (workaround_short_loop && use_transform ())
6841 {
6842 maybe_has_short_loop = TRUE;
6843 frag_now->tc_frag_data.is_insn = TRUE;
6844 frag_var (rs_machine_dependent, 4, 4,
6845 RELAX_ADD_NOP_IF_SHORT_LOOP,
6846 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6847 frag_now->tc_frag_data.is_insn = TRUE;
6848 frag_var (rs_machine_dependent, 4, 4,
6849 RELAX_ADD_NOP_IF_SHORT_LOOP,
6850 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6851 }
6852
6853 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6854 loop at least 12 bytes away from another loop's end. */
6855 if (workaround_close_loop_end && use_transform ())
6856 {
6857 maybe_has_close_loop_end = TRUE;
6858 frag_now->tc_frag_data.is_insn = TRUE;
6859 frag_var (rs_machine_dependent, 12, 12,
6860 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6861 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6862 }
6863 }
6864
6865 if (use_transform ())
6866 {
6867 if (is_jump)
6868 {
6869 assert (finish_frag);
6870 frag_var (rs_machine_dependent,
6871 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6872 RELAX_UNREACHABLE,
6873 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6874 xtensa_set_frag_assembly_state (frag_now);
6875 }
6876 else if (is_branch && do_align_targets ())
6877 {
6878 assert (finish_frag);
6879 frag_var (rs_machine_dependent,
6880 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6881 RELAX_MAYBE_UNREACHABLE,
6882 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6883 xtensa_set_frag_assembly_state (frag_now);
6884 frag_var (rs_machine_dependent,
6885 0, 0,
6886 RELAX_MAYBE_DESIRE_ALIGN,
6887 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6888 xtensa_set_frag_assembly_state (frag_now);
6889 }
6890 }
6891
6892 /* Now, if the original opcode was a call... */
6893 if (do_align_targets ()
6894 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6895 {
6896 float freq = get_subseg_total_freq (now_seg, now_subseg);
6897 frag_now->tc_frag_data.is_insn = TRUE;
6898 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6899 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6900 xtensa_set_frag_assembly_state (frag_now);
6901 }
6902
6903 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6904 {
6905 frag_wane (frag_now);
6906 frag_new (0);
6907 xtensa_set_frag_assembly_state (frag_now);
6908 }
6909 }
6910
6911 \f
6912 /* xtensa_end and helper functions. */
6913
6914 static void xtensa_cleanup_align_frags (void);
6915 static void xtensa_fix_target_frags (void);
6916 static void xtensa_mark_narrow_branches (void);
6917 static void xtensa_mark_zcl_first_insns (void);
6918 static void xtensa_fix_a0_b_retw_frags (void);
6919 static void xtensa_fix_b_j_loop_end_frags (void);
6920 static void xtensa_fix_close_loop_end_frags (void);
6921 static void xtensa_fix_short_loop_frags (void);
6922 static void xtensa_sanity_check (void);
6923
6924 void
6925 xtensa_end (void)
6926 {
6927 directive_balance ();
6928 xtensa_flush_pending_output ();
6929
6930 past_xtensa_end = TRUE;
6931
6932 xtensa_move_literals ();
6933
6934 xtensa_reorder_segments ();
6935 xtensa_cleanup_align_frags ();
6936 xtensa_fix_target_frags ();
6937 if (workaround_a0_b_retw && has_a0_b_retw)
6938 xtensa_fix_a0_b_retw_frags ();
6939 if (workaround_b_j_loop_end)
6940 xtensa_fix_b_j_loop_end_frags ();
6941
6942 /* "close_loop_end" should be processed BEFORE "short_loop". */
6943 if (workaround_close_loop_end && maybe_has_close_loop_end)
6944 xtensa_fix_close_loop_end_frags ();
6945
6946 if (workaround_short_loop && maybe_has_short_loop)
6947 xtensa_fix_short_loop_frags ();
6948 if (align_targets)
6949 xtensa_mark_narrow_branches ();
6950 xtensa_mark_zcl_first_insns ();
6951
6952 xtensa_sanity_check ();
6953 }
6954
6955
6956 static void
6957 xtensa_cleanup_align_frags (void)
6958 {
6959 frchainS *frchP;
6960
6961 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6962 {
6963 fragS *fragP;
6964 /* Walk over all of the fragments in a subsection. */
6965 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6966 {
6967 if ((fragP->fr_type == rs_align
6968 || fragP->fr_type == rs_align_code
6969 || (fragP->fr_type == rs_machine_dependent
6970 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6971 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6972 && fragP->fr_fix == 0)
6973 {
6974 fragS *next = fragP->fr_next;
6975
6976 while (next
6977 && next->fr_fix == 0
6978 && next->fr_type == rs_machine_dependent
6979 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6980 {
6981 frag_wane (next);
6982 next = next->fr_next;
6983 }
6984 }
6985 /* If we don't widen branch targets, then they
6986 will be easier to align. */
6987 if (fragP->tc_frag_data.is_branch_target
6988 && fragP->fr_opcode == fragP->fr_literal
6989 && fragP->fr_type == rs_machine_dependent
6990 && fragP->fr_subtype == RELAX_SLOTS
6991 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6992 frag_wane (fragP);
6993 if (fragP->fr_type == rs_machine_dependent
6994 && fragP->fr_subtype == RELAX_UNREACHABLE)
6995 fragP->tc_frag_data.is_unreachable = TRUE;
6996 }
6997 }
6998 }
6999
7000
7001 /* Re-process all of the fragments looking to convert all of the
7002 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7003 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7004 Otherwise, convert to a .fill 0. */
7005
7006 static void
7007 xtensa_fix_target_frags (void)
7008 {
7009 frchainS *frchP;
7010
7011 /* When this routine is called, all of the subsections are still intact
7012 so we walk over subsections instead of sections. */
7013 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7014 {
7015 fragS *fragP;
7016
7017 /* Walk over all of the fragments in a subsection. */
7018 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7019 {
7020 if (fragP->fr_type == rs_machine_dependent
7021 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7022 {
7023 if (next_frag_is_branch_target (fragP))
7024 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7025 else
7026 frag_wane (fragP);
7027 }
7028 }
7029 }
7030 }
7031
7032
7033 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7034
7035 static void
7036 xtensa_mark_narrow_branches (void)
7037 {
7038 frchainS *frchP;
7039
7040 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7041 {
7042 fragS *fragP;
7043 /* Walk over all of the fragments in a subsection. */
7044 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7045 {
7046 if (fragP->fr_type == rs_machine_dependent
7047 && fragP->fr_subtype == RELAX_SLOTS
7048 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7049 {
7050 vliw_insn vinsn;
7051
7052 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7053 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7054
7055 if (vinsn.num_slots == 1
7056 && xtensa_opcode_is_branch (xtensa_default_isa,
7057 vinsn.slots[0].opcode)
7058 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7059 && is_narrow_branch_guaranteed_in_range (fragP,
7060 &vinsn.slots[0]))
7061 {
7062 fragP->fr_subtype = RELAX_SLOTS;
7063 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7064 fragP->tc_frag_data.is_aligning_branch = 1;
7065 }
7066 }
7067 }
7068 }
7069 }
7070
7071
7072 /* A branch is typically widened only when its target is out of
7073 range. However, we would like to widen them to align a subsequent
7074 branch target when possible.
7075
7076 Because the branch relaxation code is so convoluted, the optimal solution
7077 (combining the two cases) is difficult to get right in all circumstances.
7078 We therefore go with an "almost as good" solution, where we only
7079 use for alignment narrow branches that definitely will not expand to a
7080 jump and a branch. These functions find and mark these cases. */
7081
7082 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7083 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7084 We start counting beginning with the frag after the 2-byte branch, so the
7085 maximum offset is (4 - 2) + 63 = 65. */
7086 #define MAX_IMMED6 65
7087
7088 static offsetT unrelaxed_frag_max_size (fragS *);
7089
7090 static bfd_boolean
7091 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7092 {
7093 const expressionS *expr = &tinsn->tok[1];
7094 symbolS *symbolP = expr->X_add_symbol;
7095 offsetT max_distance = expr->X_add_number;
7096 fragS *target_frag;
7097
7098 if (expr->X_op != O_symbol)
7099 return FALSE;
7100
7101 target_frag = symbol_get_frag (symbolP);
7102
7103 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7104 if (is_branch_jmp_to_next (tinsn, fragP))
7105 return FALSE;
7106
7107 /* The branch doesn't branch over it's own frag,
7108 but over the subsequent ones. */
7109 fragP = fragP->fr_next;
7110 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7111 {
7112 max_distance += unrelaxed_frag_max_size (fragP);
7113 fragP = fragP->fr_next;
7114 }
7115 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7116 return TRUE;
7117 return FALSE;
7118 }
7119
7120
7121 static void
7122 xtensa_mark_zcl_first_insns (void)
7123 {
7124 frchainS *frchP;
7125
7126 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7127 {
7128 fragS *fragP;
7129 /* Walk over all of the fragments in a subsection. */
7130 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7131 {
7132 if (fragP->fr_type == rs_machine_dependent
7133 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7134 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7135 {
7136 /* Find the loop frag. */
7137 fragS *targ_frag = next_non_empty_frag (fragP);
7138 /* Find the first insn frag. */
7139 targ_frag = next_non_empty_frag (targ_frag);
7140
7141 /* Of course, sometimes (mostly for toy test cases) a
7142 zero-cost loop instruction is the last in a section. */
7143 if (targ_frag)
7144 {
7145 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7146 /* Do not widen a frag that is the first instruction of a
7147 zero-cost loop. It makes that loop harder to align. */
7148 if (targ_frag->fr_type == rs_machine_dependent
7149 && targ_frag->fr_subtype == RELAX_SLOTS
7150 && (targ_frag->tc_frag_data.slot_subtypes[0]
7151 == RELAX_NARROW))
7152 {
7153 if (targ_frag->tc_frag_data.is_aligning_branch)
7154 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7155 else
7156 {
7157 frag_wane (targ_frag);
7158 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7159 }
7160 }
7161 }
7162 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7163 frag_wane (fragP);
7164 }
7165 }
7166 }
7167 }
7168
7169
7170 /* Re-process all of the fragments looking to convert all of the
7171 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7172 conditional branch or a retw/retw.n, convert this frag to one that
7173 will generate a NOP. In any case close it off with a .fill 0. */
7174
7175 static bfd_boolean next_instrs_are_b_retw (fragS *);
7176
7177 static void
7178 xtensa_fix_a0_b_retw_frags (void)
7179 {
7180 frchainS *frchP;
7181
7182 /* When this routine is called, all of the subsections are still intact
7183 so we walk over subsections instead of sections. */
7184 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7185 {
7186 fragS *fragP;
7187
7188 /* Walk over all of the fragments in a subsection. */
7189 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7190 {
7191 if (fragP->fr_type == rs_machine_dependent
7192 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7193 {
7194 if (next_instrs_are_b_retw (fragP))
7195 {
7196 if (fragP->tc_frag_data.is_no_transform)
7197 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7198 else
7199 relax_frag_add_nop (fragP);
7200 }
7201 frag_wane (fragP);
7202 }
7203 }
7204 }
7205 }
7206
7207
7208 static bfd_boolean
7209 next_instrs_are_b_retw (fragS *fragP)
7210 {
7211 xtensa_opcode opcode;
7212 xtensa_format fmt;
7213 const fragS *next_fragP = next_non_empty_frag (fragP);
7214 static xtensa_insnbuf insnbuf = NULL;
7215 static xtensa_insnbuf slotbuf = NULL;
7216 xtensa_isa isa = xtensa_default_isa;
7217 int offset = 0;
7218 int slot;
7219 bfd_boolean branch_seen = FALSE;
7220
7221 if (!insnbuf)
7222 {
7223 insnbuf = xtensa_insnbuf_alloc (isa);
7224 slotbuf = xtensa_insnbuf_alloc (isa);
7225 }
7226
7227 if (next_fragP == NULL)
7228 return FALSE;
7229
7230 /* Check for the conditional branch. */
7231 xtensa_insnbuf_from_chars
7232 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7233 fmt = xtensa_format_decode (isa, insnbuf);
7234 if (fmt == XTENSA_UNDEFINED)
7235 return FALSE;
7236
7237 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7238 {
7239 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7240 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7241
7242 branch_seen = (branch_seen
7243 || xtensa_opcode_is_branch (isa, opcode) == 1);
7244 }
7245
7246 if (!branch_seen)
7247 return FALSE;
7248
7249 offset += xtensa_format_length (isa, fmt);
7250 if (offset == next_fragP->fr_fix)
7251 {
7252 next_fragP = next_non_empty_frag (next_fragP);
7253 offset = 0;
7254 }
7255
7256 if (next_fragP == NULL)
7257 return FALSE;
7258
7259 /* Check for the retw/retw.n. */
7260 xtensa_insnbuf_from_chars
7261 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7262 fmt = xtensa_format_decode (isa, insnbuf);
7263
7264 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7265 have no problems. */
7266 if (fmt == XTENSA_UNDEFINED
7267 || xtensa_format_num_slots (isa, fmt) != 1)
7268 return FALSE;
7269
7270 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7271 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7272
7273 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7274 return TRUE;
7275
7276 return FALSE;
7277 }
7278
7279
7280 /* Re-process all of the fragments looking to convert all of the
7281 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7282 loop end label, convert this frag to one that will generate a NOP.
7283 In any case close it off with a .fill 0. */
7284
7285 static bfd_boolean next_instr_is_loop_end (fragS *);
7286
7287 static void
7288 xtensa_fix_b_j_loop_end_frags (void)
7289 {
7290 frchainS *frchP;
7291
7292 /* When this routine is called, all of the subsections are still intact
7293 so we walk over subsections instead of sections. */
7294 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7295 {
7296 fragS *fragP;
7297
7298 /* Walk over all of the fragments in a subsection. */
7299 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7300 {
7301 if (fragP->fr_type == rs_machine_dependent
7302 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7303 {
7304 if (next_instr_is_loop_end (fragP))
7305 {
7306 if (fragP->tc_frag_data.is_no_transform)
7307 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7308 else
7309 relax_frag_add_nop (fragP);
7310 }
7311 frag_wane (fragP);
7312 }
7313 }
7314 }
7315 }
7316
7317
7318 static bfd_boolean
7319 next_instr_is_loop_end (fragS *fragP)
7320 {
7321 const fragS *next_fragP;
7322
7323 if (next_frag_is_loop_target (fragP))
7324 return FALSE;
7325
7326 next_fragP = next_non_empty_frag (fragP);
7327 if (next_fragP == NULL)
7328 return FALSE;
7329
7330 if (!next_frag_is_loop_target (next_fragP))
7331 return FALSE;
7332
7333 /* If the size is >= 3 then there is more than one instruction here.
7334 The hardware bug will not fire. */
7335 if (next_fragP->fr_fix > 3)
7336 return FALSE;
7337
7338 return TRUE;
7339 }
7340
7341
7342 /* Re-process all of the fragments looking to convert all of the
7343 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7344 not MY loop's loop end within 12 bytes, add enough nops here to
7345 make it at least 12 bytes away. In any case close it off with a
7346 .fill 0. */
7347
7348 static offsetT min_bytes_to_other_loop_end
7349 (fragS *, fragS *, offsetT);
7350
7351 static void
7352 xtensa_fix_close_loop_end_frags (void)
7353 {
7354 frchainS *frchP;
7355
7356 /* When this routine is called, all of the subsections are still intact
7357 so we walk over subsections instead of sections. */
7358 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7359 {
7360 fragS *fragP;
7361
7362 fragS *current_target = NULL;
7363
7364 /* Walk over all of the fragments in a subsection. */
7365 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7366 {
7367 if (fragP->fr_type == rs_machine_dependent
7368 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7369 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7370 current_target = symbol_get_frag (fragP->fr_symbol);
7371
7372 if (current_target
7373 && fragP->fr_type == rs_machine_dependent
7374 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7375 {
7376 offsetT min_bytes;
7377 int bytes_added = 0;
7378
7379 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7380 /* Max out at 12. */
7381 min_bytes = min_bytes_to_other_loop_end
7382 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7383
7384 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7385 {
7386 if (fragP->tc_frag_data.is_no_transform)
7387 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7388 else
7389 {
7390 while (min_bytes + bytes_added
7391 < REQUIRED_LOOP_DIVIDING_BYTES)
7392 {
7393 int length = 3;
7394
7395 if (fragP->fr_var < length)
7396 as_fatal (_("fr_var %lu < length %d"),
7397 (long) fragP->fr_var, length);
7398 else
7399 {
7400 assemble_nop (length,
7401 fragP->fr_literal + fragP->fr_fix);
7402 fragP->fr_fix += length;
7403 fragP->fr_var -= length;
7404 }
7405 bytes_added += length;
7406 }
7407 }
7408 }
7409 frag_wane (fragP);
7410 }
7411 assert (fragP->fr_type != rs_machine_dependent
7412 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7413 }
7414 }
7415 }
7416
7417
7418 static offsetT unrelaxed_frag_min_size (fragS *);
7419
7420 static offsetT
7421 min_bytes_to_other_loop_end (fragS *fragP,
7422 fragS *current_target,
7423 offsetT max_size)
7424 {
7425 offsetT offset = 0;
7426 fragS *current_fragP;
7427
7428 for (current_fragP = fragP;
7429 current_fragP;
7430 current_fragP = current_fragP->fr_next)
7431 {
7432 if (current_fragP->tc_frag_data.is_loop_target
7433 && current_fragP != current_target)
7434 return offset;
7435
7436 offset += unrelaxed_frag_min_size (current_fragP);
7437
7438 if (offset >= max_size)
7439 return max_size;
7440 }
7441 return max_size;
7442 }
7443
7444
7445 static offsetT
7446 unrelaxed_frag_min_size (fragS *fragP)
7447 {
7448 offsetT size = fragP->fr_fix;
7449
7450 /* Add fill size. */
7451 if (fragP->fr_type == rs_fill)
7452 size += fragP->fr_offset;
7453
7454 return size;
7455 }
7456
7457
7458 static offsetT
7459 unrelaxed_frag_max_size (fragS *fragP)
7460 {
7461 offsetT size = fragP->fr_fix;
7462 switch (fragP->fr_type)
7463 {
7464 case 0:
7465 /* Empty frags created by the obstack allocation scheme
7466 end up with type 0. */
7467 break;
7468 case rs_fill:
7469 case rs_org:
7470 case rs_space:
7471 size += fragP->fr_offset;
7472 break;
7473 case rs_align:
7474 case rs_align_code:
7475 case rs_align_test:
7476 case rs_leb128:
7477 case rs_cfa:
7478 case rs_dwarf2dbg:
7479 /* No further adjustments needed. */
7480 break;
7481 case rs_machine_dependent:
7482 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7483 size += fragP->fr_var;
7484 break;
7485 default:
7486 /* We had darn well better know how big it is. */
7487 assert (0);
7488 break;
7489 }
7490
7491 return size;
7492 }
7493
7494
7495 /* Re-process all of the fragments looking to convert all
7496 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7497
7498 A)
7499 1) the instruction size count to the loop end label
7500 is too short (<= 2 instructions),
7501 2) loop has a jump or branch in it
7502
7503 or B)
7504 1) workaround_all_short_loops is TRUE
7505 2) The generating loop was a 'loopgtz' or 'loopnez'
7506 3) the instruction size count to the loop end label is too short
7507 (<= 2 instructions)
7508 then convert this frag (and maybe the next one) to generate a NOP.
7509 In any case close it off with a .fill 0. */
7510
7511 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7512 static bfd_boolean branch_before_loop_end (fragS *);
7513
7514 static void
7515 xtensa_fix_short_loop_frags (void)
7516 {
7517 frchainS *frchP;
7518
7519 /* When this routine is called, all of the subsections are still intact
7520 so we walk over subsections instead of sections. */
7521 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7522 {
7523 fragS *fragP;
7524 fragS *current_target = NULL;
7525 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7526
7527 /* Walk over all of the fragments in a subsection. */
7528 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7529 {
7530 if (fragP->fr_type == rs_machine_dependent
7531 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7532 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7533 {
7534 TInsn t_insn;
7535 fragS *loop_frag = next_non_empty_frag (fragP);
7536 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7537 current_target = symbol_get_frag (fragP->fr_symbol);
7538 current_opcode = t_insn.opcode;
7539 assert (xtensa_opcode_is_loop (xtensa_default_isa,
7540 current_opcode));
7541 }
7542
7543 if (fragP->fr_type == rs_machine_dependent
7544 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7545 {
7546 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7547 && (branch_before_loop_end (fragP->fr_next)
7548 || (workaround_all_short_loops
7549 && current_opcode != XTENSA_UNDEFINED
7550 && current_opcode != xtensa_loop_opcode)))
7551 {
7552 if (fragP->tc_frag_data.is_no_transform)
7553 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7554 else
7555 relax_frag_add_nop (fragP);
7556 }
7557 frag_wane (fragP);
7558 }
7559 }
7560 }
7561 }
7562
7563
7564 static int unrelaxed_frag_min_insn_count (fragS *);
7565
7566 static int
7567 count_insns_to_loop_end (fragS *base_fragP,
7568 bfd_boolean count_relax_add,
7569 int max_count)
7570 {
7571 fragS *fragP = NULL;
7572 int insn_count = 0;
7573
7574 fragP = base_fragP;
7575
7576 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7577 {
7578 insn_count += unrelaxed_frag_min_insn_count (fragP);
7579 if (insn_count >= max_count)
7580 return max_count;
7581
7582 if (count_relax_add)
7583 {
7584 if (fragP->fr_type == rs_machine_dependent
7585 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7586 {
7587 /* In order to add the appropriate number of
7588 NOPs, we count an instruction for downstream
7589 occurrences. */
7590 insn_count++;
7591 if (insn_count >= max_count)
7592 return max_count;
7593 }
7594 }
7595 }
7596 return insn_count;
7597 }
7598
7599
7600 static int
7601 unrelaxed_frag_min_insn_count (fragS *fragP)
7602 {
7603 xtensa_isa isa = xtensa_default_isa;
7604 static xtensa_insnbuf insnbuf = NULL;
7605 int insn_count = 0;
7606 int offset = 0;
7607
7608 if (!fragP->tc_frag_data.is_insn)
7609 return insn_count;
7610
7611 if (!insnbuf)
7612 insnbuf = xtensa_insnbuf_alloc (isa);
7613
7614 /* Decode the fixed instructions. */
7615 while (offset < fragP->fr_fix)
7616 {
7617 xtensa_format fmt;
7618
7619 xtensa_insnbuf_from_chars
7620 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7621 fmt = xtensa_format_decode (isa, insnbuf);
7622
7623 if (fmt == XTENSA_UNDEFINED)
7624 {
7625 as_fatal (_("undecodable instruction in instruction frag"));
7626 return insn_count;
7627 }
7628 offset += xtensa_format_length (isa, fmt);
7629 insn_count++;
7630 }
7631
7632 return insn_count;
7633 }
7634
7635
7636 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7637
7638 static bfd_boolean
7639 branch_before_loop_end (fragS *base_fragP)
7640 {
7641 fragS *fragP;
7642
7643 for (fragP = base_fragP;
7644 fragP && !fragP->tc_frag_data.is_loop_target;
7645 fragP = fragP->fr_next)
7646 {
7647 if (unrelaxed_frag_has_b_j (fragP))
7648 return TRUE;
7649 }
7650 return FALSE;
7651 }
7652
7653
7654 static bfd_boolean
7655 unrelaxed_frag_has_b_j (fragS *fragP)
7656 {
7657 static xtensa_insnbuf insnbuf = NULL;
7658 xtensa_isa isa = xtensa_default_isa;
7659 int offset = 0;
7660
7661 if (!fragP->tc_frag_data.is_insn)
7662 return FALSE;
7663
7664 if (!insnbuf)
7665 insnbuf = xtensa_insnbuf_alloc (isa);
7666
7667 /* Decode the fixed instructions. */
7668 while (offset < fragP->fr_fix)
7669 {
7670 xtensa_format fmt;
7671 int slot;
7672
7673 xtensa_insnbuf_from_chars
7674 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7675 fmt = xtensa_format_decode (isa, insnbuf);
7676 if (fmt == XTENSA_UNDEFINED)
7677 return FALSE;
7678
7679 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7680 {
7681 xtensa_opcode opcode =
7682 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7683 if (xtensa_opcode_is_branch (isa, opcode) == 1
7684 || xtensa_opcode_is_jump (isa, opcode) == 1)
7685 return TRUE;
7686 }
7687 offset += xtensa_format_length (isa, fmt);
7688 }
7689 return FALSE;
7690 }
7691
7692
7693 /* Checks to be made after initial assembly but before relaxation. */
7694
7695 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7696 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7697
7698 static void
7699 xtensa_sanity_check (void)
7700 {
7701 char *file_name;
7702 unsigned line;
7703
7704 frchainS *frchP;
7705
7706 as_where (&file_name, &line);
7707 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7708 {
7709 fragS *fragP;
7710
7711 /* Walk over all of the fragments in a subsection. */
7712 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7713 {
7714 /* Currently we only check for empty loops here. */
7715 if (fragP->fr_type == rs_machine_dependent
7716 && fragP->fr_subtype == RELAX_IMMED)
7717 {
7718 static xtensa_insnbuf insnbuf = NULL;
7719 TInsn t_insn;
7720
7721 if (fragP->fr_opcode != NULL)
7722 {
7723 if (!insnbuf)
7724 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7725 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7726 tinsn_immed_from_frag (&t_insn, fragP, 0);
7727
7728 if (xtensa_opcode_is_loop (xtensa_default_isa,
7729 t_insn.opcode) == 1)
7730 {
7731 if (is_empty_loop (&t_insn, fragP))
7732 {
7733 new_logical_line (fragP->fr_file, fragP->fr_line);
7734 as_bad (_("invalid empty loop"));
7735 }
7736 if (!is_local_forward_loop (&t_insn, fragP))
7737 {
7738 new_logical_line (fragP->fr_file, fragP->fr_line);
7739 as_bad (_("loop target does not follow "
7740 "loop instruction in section"));
7741 }
7742 }
7743 }
7744 }
7745 }
7746 }
7747 new_logical_line (file_name, line);
7748 }
7749
7750
7751 #define LOOP_IMMED_OPN 1
7752
7753 /* Return TRUE if the loop target is the next non-zero fragment. */
7754
7755 static bfd_boolean
7756 is_empty_loop (const TInsn *insn, fragS *fragP)
7757 {
7758 const expressionS *expr;
7759 symbolS *symbolP;
7760 fragS *next_fragP;
7761
7762 if (insn->insn_type != ITYPE_INSN)
7763 return FALSE;
7764
7765 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7766 return FALSE;
7767
7768 if (insn->ntok <= LOOP_IMMED_OPN)
7769 return FALSE;
7770
7771 expr = &insn->tok[LOOP_IMMED_OPN];
7772
7773 if (expr->X_op != O_symbol)
7774 return FALSE;
7775
7776 symbolP = expr->X_add_symbol;
7777 if (!symbolP)
7778 return FALSE;
7779
7780 if (symbol_get_frag (symbolP) == NULL)
7781 return FALSE;
7782
7783 if (S_GET_VALUE (symbolP) != 0)
7784 return FALSE;
7785
7786 /* Walk through the zero-size fragments from this one. If we find
7787 the target fragment, then this is a zero-size loop. */
7788
7789 for (next_fragP = fragP->fr_next;
7790 next_fragP != NULL;
7791 next_fragP = next_fragP->fr_next)
7792 {
7793 if (next_fragP == symbol_get_frag (symbolP))
7794 return TRUE;
7795 if (next_fragP->fr_fix != 0)
7796 return FALSE;
7797 }
7798 return FALSE;
7799 }
7800
7801
7802 static bfd_boolean
7803 is_local_forward_loop (const TInsn *insn, fragS *fragP)
7804 {
7805 const expressionS *expr;
7806 symbolS *symbolP;
7807 fragS *next_fragP;
7808
7809 if (insn->insn_type != ITYPE_INSN)
7810 return FALSE;
7811
7812 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
7813 return FALSE;
7814
7815 if (insn->ntok <= LOOP_IMMED_OPN)
7816 return FALSE;
7817
7818 expr = &insn->tok[LOOP_IMMED_OPN];
7819
7820 if (expr->X_op != O_symbol)
7821 return FALSE;
7822
7823 symbolP = expr->X_add_symbol;
7824 if (!symbolP)
7825 return FALSE;
7826
7827 if (symbol_get_frag (symbolP) == NULL)
7828 return FALSE;
7829
7830 /* Walk through fragments until we find the target.
7831 If we do not find the target, then this is an invalid loop. */
7832
7833 for (next_fragP = fragP->fr_next;
7834 next_fragP != NULL;
7835 next_fragP = next_fragP->fr_next)
7836 {
7837 if (next_fragP == symbol_get_frag (symbolP))
7838 return TRUE;
7839 }
7840
7841 return FALSE;
7842 }
7843
7844 \f
7845 /* Alignment Functions. */
7846
7847 static int
7848 get_text_align_power (unsigned target_size)
7849 {
7850 if (target_size <= 4)
7851 return 2;
7852 assert (target_size == 8);
7853 return 3;
7854 }
7855
7856
7857 static int
7858 get_text_align_max_fill_size (int align_pow,
7859 bfd_boolean use_nops,
7860 bfd_boolean use_no_density)
7861 {
7862 if (!use_nops)
7863 return (1 << align_pow);
7864 if (use_no_density)
7865 return 3 * (1 << align_pow);
7866
7867 return 1 + (1 << align_pow);
7868 }
7869
7870
7871 /* Calculate the minimum bytes of fill needed at "address" to align a
7872 target instruction of size "target_size" so that it does not cross a
7873 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7874 the fill can be an arbitrary number of bytes. Otherwise, the space must
7875 be filled by NOP instructions. */
7876
7877 static int
7878 get_text_align_fill_size (addressT address,
7879 int align_pow,
7880 int target_size,
7881 bfd_boolean use_nops,
7882 bfd_boolean use_no_density)
7883 {
7884 addressT alignment, fill, fill_limit, fill_step;
7885 bfd_boolean skip_one = FALSE;
7886
7887 alignment = (1 << align_pow);
7888 assert (target_size > 0 && alignment >= (addressT) target_size);
7889
7890 if (!use_nops)
7891 {
7892 fill_limit = alignment;
7893 fill_step = 1;
7894 }
7895 else if (!use_no_density)
7896 {
7897 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7898 fill_limit = alignment * 2;
7899 fill_step = 1;
7900 skip_one = TRUE;
7901 }
7902 else
7903 {
7904 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7905 fill_limit = alignment * 3;
7906 fill_step = 3;
7907 }
7908
7909 /* Try all fill sizes until finding one that works. */
7910 for (fill = 0; fill < fill_limit; fill += fill_step)
7911 {
7912 if (skip_one && fill == 1)
7913 continue;
7914 if ((address + fill) >> align_pow
7915 == (address + fill + target_size - 1) >> align_pow)
7916 return fill;
7917 }
7918 assert (0);
7919 return 0;
7920 }
7921
7922
7923 static int
7924 branch_align_power (segT sec)
7925 {
7926 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7927 is aligned to at least an 8-byte boundary, then a branch target need
7928 only fit within an 8-byte aligned block of memory to avoid a stall.
7929 Otherwise, try to fit branch targets within 4-byte aligned blocks
7930 (which may be insufficient, e.g., if the section has no alignment, but
7931 it's good enough). */
7932 if (xtensa_fetch_width == 8)
7933 {
7934 if (get_recorded_alignment (sec) >= 3)
7935 return 3;
7936 }
7937 else
7938 assert (xtensa_fetch_width == 4);
7939
7940 return 2;
7941 }
7942
7943
7944 /* This will assert if it is not possible. */
7945
7946 static int
7947 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
7948 {
7949 int count = 0;
7950
7951 if (use_no_density)
7952 {
7953 assert (fill_size % 3 == 0);
7954 return (fill_size / 3);
7955 }
7956
7957 assert (fill_size != 1); /* Bad argument. */
7958
7959 while (fill_size > 1)
7960 {
7961 int insn_size = 3;
7962 if (fill_size == 2 || fill_size == 4)
7963 insn_size = 2;
7964 fill_size -= insn_size;
7965 count++;
7966 }
7967 assert (fill_size != 1); /* Bad algorithm. */
7968 return count;
7969 }
7970
7971
7972 static int
7973 get_text_align_nth_nop_size (offsetT fill_size,
7974 int n,
7975 bfd_boolean use_no_density)
7976 {
7977 int count = 0;
7978
7979 if (use_no_density)
7980 return 3;
7981
7982 assert (fill_size != 1); /* Bad argument. */
7983
7984 while (fill_size > 1)
7985 {
7986 int insn_size = 3;
7987 if (fill_size == 2 || fill_size == 4)
7988 insn_size = 2;
7989 fill_size -= insn_size;
7990 count++;
7991 if (n + 1 == count)
7992 return insn_size;
7993 }
7994 assert (0);
7995 return 0;
7996 }
7997
7998
7999 /* For the given fragment, find the appropriate address
8000 for it to begin at if we are using NOPs to align it. */
8001
8002 static addressT
8003 get_noop_aligned_address (fragS *fragP, addressT address)
8004 {
8005 /* The rule is: get next fragment's FIRST instruction. Find
8006 the smallest number of bytes that need to be added to
8007 ensure that the next fragment's FIRST instruction will fit
8008 in a single word.
8009
8010 E.G., 2 bytes : 0, 1, 2 mod 4
8011 3 bytes: 0, 1 mod 4
8012
8013 If the FIRST instruction MIGHT be relaxed,
8014 assume that it will become a 3-byte instruction.
8015
8016 Note again here that LOOP instructions are not bundleable,
8017 and this relaxation only applies to LOOP opcodes. */
8018
8019 int fill_size = 0;
8020 int first_insn_size;
8021 int loop_insn_size;
8022 addressT pre_opcode_bytes;
8023 int align_power;
8024 fragS *first_insn;
8025 xtensa_opcode opcode;
8026 bfd_boolean is_loop;
8027
8028 assert (fragP->fr_type == rs_machine_dependent);
8029 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8030
8031 /* Find the loop frag. */
8032 first_insn = next_non_empty_frag (fragP);
8033 /* Now find the first insn frag. */
8034 first_insn = next_non_empty_frag (first_insn);
8035
8036 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8037 assert (is_loop);
8038 loop_insn_size = xg_get_single_size (opcode);
8039
8040 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8041 pre_opcode_bytes += loop_insn_size;
8042
8043 /* For loops, the alignment depends on the size of the
8044 instruction following the loop, not the LOOP instruction. */
8045
8046 if (first_insn == NULL)
8047 first_insn_size = xtensa_fetch_width;
8048 else
8049 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8050
8051 /* If it was 8, then we'll need a larger alignment for the section. */
8052 align_power = get_text_align_power (first_insn_size);
8053 record_alignment (now_seg, align_power);
8054
8055 fill_size = get_text_align_fill_size
8056 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8057 fragP->tc_frag_data.is_no_density);
8058
8059 return address + fill_size;
8060 }
8061
8062
8063 /* 3 mechanisms for relaxing an alignment:
8064
8065 Align to a power of 2.
8066 Align so the next fragment's instruction does not cross a word boundary.
8067 Align the current instruction so that if the next instruction
8068 were 3 bytes, it would not cross a word boundary.
8069
8070 We can align with:
8071
8072 zeros - This is easy; always insert zeros.
8073 nops - 3-byte and 2-byte instructions
8074 2 - 2-byte nop
8075 3 - 3-byte nop
8076 4 - 2 2-byte nops
8077 >=5 : 3-byte instruction + fn (n-3)
8078 widening - widen previous instructions. */
8079
8080 static offsetT
8081 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8082 {
8083 addressT target_address, loop_insn_offset;
8084 int target_size;
8085 xtensa_opcode loop_opcode;
8086 bfd_boolean is_loop;
8087 int align_power;
8088 offsetT opt_diff;
8089 offsetT branch_align;
8090
8091 assert (fragP->fr_type == rs_machine_dependent);
8092 switch (fragP->fr_subtype)
8093 {
8094 case RELAX_DESIRE_ALIGN:
8095 target_size = next_frag_format_size (fragP);
8096 if (target_size == XTENSA_UNDEFINED)
8097 target_size = 3;
8098 align_power = branch_align_power (now_seg);
8099 branch_align = 1 << align_power;
8100 /* Don't count on the section alignment being as large as the target. */
8101 if (target_size > branch_align)
8102 target_size = branch_align;
8103 opt_diff = get_text_align_fill_size (address, align_power,
8104 target_size, FALSE, FALSE);
8105
8106 *max_diff = (opt_diff + branch_align
8107 - (target_size + ((address + opt_diff) % branch_align)));
8108 assert (*max_diff >= opt_diff);
8109 return opt_diff;
8110
8111 case RELAX_ALIGN_NEXT_OPCODE:
8112 target_size = get_loop_align_size (next_frag_format_size (fragP));
8113 loop_insn_offset = 0;
8114 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8115 assert (is_loop);
8116
8117 /* If the loop has been expanded then the LOOP instruction
8118 could be at an offset from this fragment. */
8119 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8120 != RELAX_IMMED)
8121 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8122
8123 /* In an ideal world, which is what we are shooting for here,
8124 we wouldn't need to use any NOPs immediately prior to the
8125 LOOP instruction. If this approach fails, relax_frag_loop_align
8126 will call get_noop_aligned_address. */
8127 target_address =
8128 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8129 align_power = get_text_align_power (target_size),
8130 opt_diff = get_text_align_fill_size (target_address, align_power,
8131 target_size, FALSE, FALSE);
8132
8133 *max_diff = xtensa_fetch_width
8134 - ((target_address + opt_diff) % xtensa_fetch_width)
8135 - target_size + opt_diff;
8136 assert (*max_diff >= opt_diff);
8137 return opt_diff;
8138
8139 default:
8140 break;
8141 }
8142 assert (0);
8143 return 0;
8144 }
8145
8146 \f
8147 /* md_relax_frag Hook and Helper Functions. */
8148
8149 static long relax_frag_loop_align (fragS *, long);
8150 static long relax_frag_for_align (fragS *, long);
8151 static long relax_frag_immed
8152 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8153
8154
8155 /* Return the number of bytes added to this fragment, given that the
8156 input has been stretched already by "stretch". */
8157
8158 long
8159 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8160 {
8161 xtensa_isa isa = xtensa_default_isa;
8162 int unreported = fragP->tc_frag_data.unreported_expansion;
8163 long new_stretch = 0;
8164 char *file_name;
8165 unsigned line;
8166 int lit_size;
8167 static xtensa_insnbuf vbuf = NULL;
8168 int slot, num_slots;
8169 xtensa_format fmt;
8170
8171 as_where (&file_name, &line);
8172 new_logical_line (fragP->fr_file, fragP->fr_line);
8173
8174 fragP->tc_frag_data.unreported_expansion = 0;
8175
8176 switch (fragP->fr_subtype)
8177 {
8178 case RELAX_ALIGN_NEXT_OPCODE:
8179 /* Always convert. */
8180 if (fragP->tc_frag_data.relax_seen)
8181 new_stretch = relax_frag_loop_align (fragP, stretch);
8182 break;
8183
8184 case RELAX_LOOP_END:
8185 /* Do nothing. */
8186 break;
8187
8188 case RELAX_LOOP_END_ADD_NOP:
8189 /* Add a NOP and switch to .fill 0. */
8190 new_stretch = relax_frag_add_nop (fragP);
8191 frag_wane (fragP);
8192 break;
8193
8194 case RELAX_DESIRE_ALIGN:
8195 /* Do nothing. The narrowing before this frag will either align
8196 it or not. */
8197 break;
8198
8199 case RELAX_LITERAL:
8200 case RELAX_LITERAL_FINAL:
8201 return 0;
8202
8203 case RELAX_LITERAL_NR:
8204 lit_size = 4;
8205 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8206 assert (unreported == lit_size);
8207 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8208 fragP->fr_var -= lit_size;
8209 fragP->fr_fix += lit_size;
8210 new_stretch = 4;
8211 break;
8212
8213 case RELAX_SLOTS:
8214 if (vbuf == NULL)
8215 vbuf = xtensa_insnbuf_alloc (isa);
8216
8217 xtensa_insnbuf_from_chars
8218 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8219 fmt = xtensa_format_decode (isa, vbuf);
8220 num_slots = xtensa_format_num_slots (isa, fmt);
8221
8222 for (slot = 0; slot < num_slots; slot++)
8223 {
8224 switch (fragP->tc_frag_data.slot_subtypes[slot])
8225 {
8226 case RELAX_NARROW:
8227 if (fragP->tc_frag_data.relax_seen)
8228 new_stretch += relax_frag_for_align (fragP, stretch);
8229 break;
8230
8231 case RELAX_IMMED:
8232 case RELAX_IMMED_STEP1:
8233 case RELAX_IMMED_STEP2:
8234 /* Place the immediate. */
8235 new_stretch += relax_frag_immed
8236 (now_seg, fragP, stretch,
8237 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8238 fmt, slot, stretched_p, FALSE);
8239 break;
8240
8241 default:
8242 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8243 break;
8244 }
8245 }
8246 break;
8247
8248 case RELAX_LITERAL_POOL_BEGIN:
8249 case RELAX_LITERAL_POOL_END:
8250 case RELAX_MAYBE_UNREACHABLE:
8251 case RELAX_MAYBE_DESIRE_ALIGN:
8252 /* No relaxation required. */
8253 break;
8254
8255 case RELAX_FILL_NOP:
8256 case RELAX_UNREACHABLE:
8257 if (fragP->tc_frag_data.relax_seen)
8258 new_stretch += relax_frag_for_align (fragP, stretch);
8259 break;
8260
8261 default:
8262 as_bad (_("bad relaxation state"));
8263 }
8264
8265 /* Tell gas we need another relaxation pass. */
8266 if (! fragP->tc_frag_data.relax_seen)
8267 {
8268 fragP->tc_frag_data.relax_seen = TRUE;
8269 *stretched_p = 1;
8270 }
8271
8272 new_logical_line (file_name, line);
8273 return new_stretch;
8274 }
8275
8276
8277 static long
8278 relax_frag_loop_align (fragS *fragP, long stretch)
8279 {
8280 addressT old_address, old_next_address, old_size;
8281 addressT new_address, new_next_address, new_size;
8282 addressT growth;
8283
8284 /* All the frags with relax_frag_for_alignment prior to this one in the
8285 section have been done, hopefully eliminating the need for a NOP here.
8286 But, this will put it in if necessary. */
8287
8288 /* Calculate the old address of this fragment and the next fragment. */
8289 old_address = fragP->fr_address - stretch;
8290 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8291 fragP->tc_frag_data.text_expansion[0]);
8292 old_size = old_next_address - old_address;
8293
8294 /* Calculate the new address of this fragment and the next fragment. */
8295 new_address = fragP->fr_address;
8296 new_next_address =
8297 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8298 new_size = new_next_address - new_address;
8299
8300 growth = new_size - old_size;
8301
8302 /* Fix up the text_expansion field and return the new growth. */
8303 fragP->tc_frag_data.text_expansion[0] += growth;
8304 return growth;
8305 }
8306
8307
8308 /* Add a NOP instruction. */
8309
8310 static long
8311 relax_frag_add_nop (fragS *fragP)
8312 {
8313 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8314 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8315 assemble_nop (length, nop_buf);
8316 fragP->tc_frag_data.is_insn = TRUE;
8317
8318 if (fragP->fr_var < length)
8319 {
8320 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8321 return 0;
8322 }
8323
8324 fragP->fr_fix += length;
8325 fragP->fr_var -= length;
8326 return length;
8327 }
8328
8329
8330 static long future_alignment_required (fragS *, long);
8331
8332 static long
8333 relax_frag_for_align (fragS *fragP, long stretch)
8334 {
8335 /* Overview of the relaxation procedure for alignment:
8336 We can widen with NOPs or by widening instructions or by filling
8337 bytes after jump instructions. Find the opportune places and widen
8338 them if necessary. */
8339
8340 long stretch_me;
8341 long diff;
8342
8343 assert (fragP->fr_subtype == RELAX_FILL_NOP
8344 || fragP->fr_subtype == RELAX_UNREACHABLE
8345 || (fragP->fr_subtype == RELAX_SLOTS
8346 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8347
8348 stretch_me = future_alignment_required (fragP, stretch);
8349 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8350 if (diff == 0)
8351 return 0;
8352
8353 if (diff < 0)
8354 {
8355 /* We expanded on a previous pass. Can we shrink now? */
8356 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8357 if (shrink <= stretch && stretch > 0)
8358 {
8359 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8360 return -shrink;
8361 }
8362 return 0;
8363 }
8364
8365 /* Below here, diff > 0. */
8366 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8367
8368 return diff;
8369 }
8370
8371
8372 /* Return the address of the next frag that should be aligned.
8373
8374 By "address" we mean the address it _would_ be at if there
8375 is no action taken to align it between here and the target frag.
8376 In other words, if no narrows and no fill nops are used between
8377 here and the frag to align, _even_if_ some of the frags we use
8378 to align targets have already expanded on a previous relaxation
8379 pass.
8380
8381 Also, count each frag that may be used to help align the target.
8382
8383 Return 0 if there are no frags left in the chain that need to be
8384 aligned. */
8385
8386 static addressT
8387 find_address_of_next_align_frag (fragS **fragPP,
8388 int *wide_nops,
8389 int *narrow_nops,
8390 int *widens,
8391 bfd_boolean *paddable)
8392 {
8393 fragS *fragP = *fragPP;
8394 addressT address = fragP->fr_address;
8395
8396 /* Do not reset the counts to 0. */
8397
8398 while (fragP)
8399 {
8400 /* Limit this to a small search. */
8401 if (*widens >= (int) xtensa_fetch_width)
8402 {
8403 *fragPP = fragP;
8404 return 0;
8405 }
8406 address += fragP->fr_fix;
8407
8408 if (fragP->fr_type == rs_fill)
8409 address += fragP->fr_offset * fragP->fr_var;
8410 else if (fragP->fr_type == rs_machine_dependent)
8411 {
8412 switch (fragP->fr_subtype)
8413 {
8414 case RELAX_UNREACHABLE:
8415 *paddable = TRUE;
8416 break;
8417
8418 case RELAX_FILL_NOP:
8419 (*wide_nops)++;
8420 if (!fragP->tc_frag_data.is_no_density)
8421 (*narrow_nops)++;
8422 break;
8423
8424 case RELAX_SLOTS:
8425 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8426 {
8427 (*widens)++;
8428 break;
8429 }
8430 address += total_frag_text_expansion (fragP);;
8431 break;
8432
8433 case RELAX_IMMED:
8434 address += fragP->tc_frag_data.text_expansion[0];
8435 break;
8436
8437 case RELAX_ALIGN_NEXT_OPCODE:
8438 case RELAX_DESIRE_ALIGN:
8439 *fragPP = fragP;
8440 return address;
8441
8442 case RELAX_MAYBE_UNREACHABLE:
8443 case RELAX_MAYBE_DESIRE_ALIGN:
8444 /* Do nothing. */
8445 break;
8446
8447 default:
8448 /* Just punt if we don't know the type. */
8449 *fragPP = fragP;
8450 return 0;
8451 }
8452 }
8453 else
8454 {
8455 /* Just punt if we don't know the type. */
8456 *fragPP = fragP;
8457 return 0;
8458 }
8459 fragP = fragP->fr_next;
8460 }
8461
8462 *fragPP = fragP;
8463 return 0;
8464 }
8465
8466
8467 static long bytes_to_stretch (fragS *, int, int, int, int);
8468
8469 static long
8470 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8471 {
8472 fragS *this_frag = fragP;
8473 long address;
8474 int num_widens = 0;
8475 int wide_nops = 0;
8476 int narrow_nops = 0;
8477 bfd_boolean paddable = FALSE;
8478 offsetT local_opt_diff;
8479 offsetT opt_diff;
8480 offsetT max_diff;
8481 int stretch_amount = 0;
8482 int local_stretch_amount;
8483 int global_stretch_amount;
8484
8485 address = find_address_of_next_align_frag
8486 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8487
8488 if (!address)
8489 {
8490 if (this_frag->tc_frag_data.is_aligning_branch)
8491 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8492 else
8493 frag_wane (this_frag);
8494 }
8495 else
8496 {
8497 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8498 opt_diff = local_opt_diff;
8499 assert (opt_diff >= 0);
8500 assert (max_diff >= opt_diff);
8501 if (max_diff == 0)
8502 return 0;
8503
8504 if (fragP)
8505 fragP = fragP->fr_next;
8506
8507 while (fragP && opt_diff < max_diff && address)
8508 {
8509 /* We only use these to determine if we can exit early
8510 because there will be plenty of ways to align future
8511 align frags. */
8512 int glob_widens = 0;
8513 int dnn = 0;
8514 int dw = 0;
8515 bfd_boolean glob_pad = 0;
8516 address = find_address_of_next_align_frag
8517 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8518 /* If there is a padable portion, then skip. */
8519 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8520 address = 0;
8521
8522 if (address)
8523 {
8524 offsetT next_m_diff;
8525 offsetT next_o_diff;
8526
8527 /* Downrange frags haven't had stretch added to them yet. */
8528 address += stretch;
8529
8530 /* The address also includes any text expansion from this
8531 frag in a previous pass, but we don't want that. */
8532 address -= this_frag->tc_frag_data.text_expansion[0];
8533
8534 /* Assume we are going to move at least opt_diff. In
8535 reality, we might not be able to, but assuming that
8536 we will helps catch cases where moving opt_diff pushes
8537 the next target from aligned to unaligned. */
8538 address += opt_diff;
8539
8540 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8541
8542 /* Now cleanup for the adjustments to address. */
8543 next_o_diff += opt_diff;
8544 next_m_diff += opt_diff;
8545 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8546 opt_diff = next_o_diff;
8547 if (next_m_diff < max_diff)
8548 max_diff = next_m_diff;
8549 fragP = fragP->fr_next;
8550 }
8551 }
8552
8553 /* If there are enough wideners in between, do it. */
8554 if (paddable)
8555 {
8556 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8557 {
8558 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8559 return opt_diff;
8560 }
8561 return 0;
8562 }
8563 local_stretch_amount
8564 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8565 num_widens, local_opt_diff);
8566 global_stretch_amount
8567 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8568 num_widens, opt_diff);
8569 /* If the condition below is true, then the frag couldn't
8570 stretch the correct amount for the global case, so we just
8571 optimize locally. We'll rely on the subsequent frags to get
8572 the correct alignment in the global case. */
8573 if (global_stretch_amount < local_stretch_amount)
8574 stretch_amount = local_stretch_amount;
8575 else
8576 stretch_amount = global_stretch_amount;
8577
8578 if (this_frag->fr_subtype == RELAX_SLOTS
8579 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8580 assert (stretch_amount <= 1);
8581 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8582 {
8583 if (this_frag->tc_frag_data.is_no_density)
8584 assert (stretch_amount == 3 || stretch_amount == 0);
8585 else
8586 assert (stretch_amount <= 3);
8587 }
8588 }
8589 return stretch_amount;
8590 }
8591
8592
8593 /* The idea: widen everything you can to get a target or loop aligned,
8594 then start using NOPs.
8595
8596 When we must have a NOP, here is a table of how we decide
8597 (so you don't have to fight through the control flow below):
8598
8599 wide_nops = the number of wide NOPs available for aligning
8600 narrow_nops = the number of narrow NOPs available for aligning
8601 (a subset of wide_nops)
8602 widens = the number of narrow instructions that should be widened
8603
8604 Desired wide narrow
8605 Diff nop nop widens
8606 1 0 0 1
8607 2 0 1 0
8608 3a 1 0 0
8609 b 0 1 1 (case 3a makes this case unnecessary)
8610 4a 1 0 1
8611 b 0 2 0
8612 c 0 1 2 (case 4a makes this case unnecessary)
8613 5a 1 0 2
8614 b 1 1 0
8615 c 0 2 1 (case 5b makes this case unnecessary)
8616 6a 2 0 0
8617 b 1 0 3
8618 c 0 1 4 (case 6b makes this case unneccesary)
8619 d 1 1 1 (case 6a makes this case unnecessary)
8620 e 0 2 2 (case 6a makes this case unnecessary)
8621 f 0 3 0 (case 6a makes this case unnecessary)
8622 7a 1 0 4
8623 b 2 0 1
8624 c 1 1 2 (case 7b makes this case unnecessary)
8625 d 0 1 5 (case 7a makes this case unnecessary)
8626 e 0 2 3 (case 7b makes this case unnecessary)
8627 f 0 3 1 (case 7b makes this case unnecessary)
8628 g 1 2 1 (case 7b makes this case unnecessary)
8629 */
8630
8631 static long
8632 bytes_to_stretch (fragS *this_frag,
8633 int wide_nops,
8634 int narrow_nops,
8635 int num_widens,
8636 int desired_diff)
8637 {
8638 int bytes_short = desired_diff - num_widens;
8639
8640 assert (desired_diff >= 0 && desired_diff < 8);
8641 if (desired_diff == 0)
8642 return 0;
8643
8644 assert (wide_nops > 0 || num_widens > 0);
8645
8646 /* Always prefer widening to NOP-filling. */
8647 if (bytes_short < 0)
8648 {
8649 /* There are enough RELAX_NARROW frags after this one
8650 to align the target without widening this frag in any way. */
8651 return 0;
8652 }
8653
8654 if (bytes_short == 0)
8655 {
8656 /* Widen every narrow between here and the align target
8657 and the align target will be properly aligned. */
8658 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8659 return 0;
8660 else
8661 return 1;
8662 }
8663
8664 /* From here we will need at least one NOP to get an alignment.
8665 However, we may not be able to align at all, in which case,
8666 don't widen. */
8667 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8668 {
8669 switch (desired_diff)
8670 {
8671 case 1:
8672 return 0;
8673 case 2:
8674 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8675 return 2; /* case 2 */
8676 return 0;
8677 case 3:
8678 if (wide_nops > 1)
8679 return 0;
8680 else
8681 return 3; /* case 3a */
8682 case 4:
8683 if (num_widens >= 1 && wide_nops == 1)
8684 return 3; /* case 4a */
8685 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8686 return 2; /* case 4b */
8687 return 0;
8688 case 5:
8689 if (num_widens >= 2 && wide_nops == 1)
8690 return 3; /* case 5a */
8691 /* We will need two nops. Are there enough nops
8692 between here and the align target? */
8693 if (wide_nops < 2 || narrow_nops == 0)
8694 return 0;
8695 /* Are there other nops closer that can serve instead? */
8696 if (wide_nops > 2 && narrow_nops > 1)
8697 return 0;
8698 /* Take the density one first, because there might not be
8699 another density one available. */
8700 if (!this_frag->tc_frag_data.is_no_density)
8701 return 2; /* case 5b narrow */
8702 else
8703 return 3; /* case 5b wide */
8704 return 0;
8705 case 6:
8706 if (wide_nops == 2)
8707 return 3; /* case 6a */
8708 else if (num_widens >= 3 && wide_nops == 1)
8709 return 3; /* case 6b */
8710 return 0;
8711 case 7:
8712 if (wide_nops == 1 && num_widens >= 4)
8713 return 3; /* case 7a */
8714 else if (wide_nops == 2 && num_widens >= 1)
8715 return 3; /* case 7b */
8716 return 0;
8717 default:
8718 assert (0);
8719 }
8720 }
8721 else
8722 {
8723 /* We will need a NOP no matter what, but should we widen
8724 this instruction to help?
8725
8726 This is a RELAX_NARROW frag. */
8727 switch (desired_diff)
8728 {
8729 case 1:
8730 assert (0);
8731 return 0;
8732 case 2:
8733 case 3:
8734 return 0;
8735 case 4:
8736 if (wide_nops >= 1 && num_widens == 1)
8737 return 1; /* case 4a */
8738 return 0;
8739 case 5:
8740 if (wide_nops >= 1 && num_widens == 2)
8741 return 1; /* case 5a */
8742 return 0;
8743 case 6:
8744 if (wide_nops >= 2)
8745 return 0; /* case 6a */
8746 else if (wide_nops >= 1 && num_widens == 3)
8747 return 1; /* case 6b */
8748 return 0;
8749 case 7:
8750 if (wide_nops >= 1 && num_widens == 4)
8751 return 1; /* case 7a */
8752 else if (wide_nops >= 2 && num_widens == 1)
8753 return 1; /* case 7b */
8754 return 0;
8755 default:
8756 assert (0);
8757 return 0;
8758 }
8759 }
8760 assert (0);
8761 return 0;
8762 }
8763
8764
8765 static long
8766 relax_frag_immed (segT segP,
8767 fragS *fragP,
8768 long stretch,
8769 int min_steps,
8770 xtensa_format fmt,
8771 int slot,
8772 int *stretched_p,
8773 bfd_boolean estimate_only)
8774 {
8775 TInsn tinsn;
8776 int old_size;
8777 bfd_boolean negatable_branch = FALSE;
8778 bfd_boolean branch_jmp_to_next = FALSE;
8779 bfd_boolean wide_insn = FALSE;
8780 xtensa_isa isa = xtensa_default_isa;
8781 IStack istack;
8782 offsetT frag_offset;
8783 int num_steps;
8784 fragS *lit_fragP;
8785 int num_text_bytes, num_literal_bytes;
8786 int literal_diff, total_text_diff, this_text_diff, first;
8787
8788 assert (fragP->fr_opcode != NULL);
8789
8790 xg_clear_vinsn (&cur_vinsn);
8791 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
8792 if (cur_vinsn.num_slots > 1)
8793 wide_insn = TRUE;
8794
8795 tinsn = cur_vinsn.slots[slot];
8796 tinsn_immed_from_frag (&tinsn, fragP, slot);
8797
8798 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8799 return 0;
8800
8801 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
8802 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
8803
8804 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
8805
8806 old_size = xtensa_format_length (isa, fmt);
8807
8808 /* Special case: replace a branch to the next instruction with a NOP.
8809 This is required to work around a hardware bug in T1040.0 and also
8810 serves as an optimization. */
8811
8812 if (branch_jmp_to_next
8813 && ((old_size == 2) || (old_size == 3))
8814 && !next_frag_is_loop_target (fragP))
8815 return 0;
8816
8817 /* Here is the fun stuff: Get the immediate field from this
8818 instruction. If it fits, we are done. If not, find the next
8819 instruction sequence that fits. */
8820
8821 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8822 istack_init (&istack);
8823 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
8824 min_steps, stretch);
8825 if (num_steps < min_steps)
8826 {
8827 as_fatal (_("internal error: relaxation failed"));
8828 return 0;
8829 }
8830
8831 if (num_steps > RELAX_IMMED_MAXSTEPS)
8832 {
8833 as_fatal (_("internal error: relaxation requires too many steps"));
8834 return 0;
8835 }
8836
8837 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
8838
8839 /* Figure out the number of bytes needed. */
8840 lit_fragP = 0;
8841 num_literal_bytes = get_num_stack_literal_bytes (&istack);
8842 literal_diff =
8843 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8844 first = 0;
8845 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8846 first++;
8847 num_text_bytes = get_num_stack_text_bytes (&istack);
8848 if (wide_insn)
8849 {
8850 num_text_bytes += old_size;
8851 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8852 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8853 }
8854 total_text_diff = num_text_bytes - old_size;
8855 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
8856
8857 /* It MUST get larger. If not, we could get an infinite loop. */
8858 assert (num_text_bytes >= 0);
8859 assert (literal_diff >= 0);
8860 assert (total_text_diff >= 0);
8861
8862 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8863 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8864 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8865 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
8866
8867 /* Find the associated expandable literal for this. */
8868 if (literal_diff != 0)
8869 {
8870 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
8871 if (lit_fragP)
8872 {
8873 assert (literal_diff == 4);
8874 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8875
8876 /* We expect that the literal section state has NOT been
8877 modified yet. */
8878 assert (lit_fragP->fr_type == rs_machine_dependent
8879 && lit_fragP->fr_subtype == RELAX_LITERAL);
8880 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8881
8882 /* We need to mark this section for another iteration
8883 of relaxation. */
8884 (*stretched_p)++;
8885 }
8886 }
8887
8888 if (negatable_branch && istack.ninsn > 1)
8889 update_next_frag_state (fragP);
8890
8891 return this_text_diff;
8892 }
8893
8894 \f
8895 /* md_convert_frag Hook and Helper Functions. */
8896
8897 static void convert_frag_align_next_opcode (fragS *);
8898 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8899 static void convert_frag_fill_nop (fragS *);
8900 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8901
8902 void
8903 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
8904 {
8905 static xtensa_insnbuf vbuf = NULL;
8906 xtensa_isa isa = xtensa_default_isa;
8907 int slot;
8908 int num_slots;
8909 xtensa_format fmt;
8910 char *file_name;
8911 unsigned line;
8912
8913 as_where (&file_name, &line);
8914 new_logical_line (fragp->fr_file, fragp->fr_line);
8915
8916 switch (fragp->fr_subtype)
8917 {
8918 case RELAX_ALIGN_NEXT_OPCODE:
8919 /* Always convert. */
8920 convert_frag_align_next_opcode (fragp);
8921 break;
8922
8923 case RELAX_DESIRE_ALIGN:
8924 /* Do nothing. If not aligned already, too bad. */
8925 break;
8926
8927 case RELAX_LITERAL:
8928 case RELAX_LITERAL_FINAL:
8929 break;
8930
8931 case RELAX_SLOTS:
8932 if (vbuf == NULL)
8933 vbuf = xtensa_insnbuf_alloc (isa);
8934
8935 xtensa_insnbuf_from_chars
8936 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
8937 fmt = xtensa_format_decode (isa, vbuf);
8938 num_slots = xtensa_format_num_slots (isa, fmt);
8939
8940 for (slot = 0; slot < num_slots; slot++)
8941 {
8942 switch (fragp->tc_frag_data.slot_subtypes[slot])
8943 {
8944 case RELAX_NARROW:
8945 convert_frag_narrow (sec, fragp, fmt, slot);
8946 break;
8947
8948 case RELAX_IMMED:
8949 case RELAX_IMMED_STEP1:
8950 case RELAX_IMMED_STEP2:
8951 /* Place the immediate. */
8952 convert_frag_immed
8953 (sec, fragp,
8954 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8955 fmt, slot);
8956 break;
8957
8958 default:
8959 /* This is OK because some slots could have
8960 relaxations and others have none. */
8961 break;
8962 }
8963 }
8964 break;
8965
8966 case RELAX_UNREACHABLE:
8967 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8968 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8969 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8970 frag_wane (fragp);
8971 break;
8972
8973 case RELAX_MAYBE_UNREACHABLE:
8974 case RELAX_MAYBE_DESIRE_ALIGN:
8975 frag_wane (fragp);
8976 break;
8977
8978 case RELAX_FILL_NOP:
8979 convert_frag_fill_nop (fragp);
8980 break;
8981
8982 case RELAX_LITERAL_NR:
8983 if (use_literal_section)
8984 {
8985 /* This should have been handled during relaxation. When
8986 relaxing a code segment, literals sometimes need to be
8987 added to the corresponding literal segment. If that
8988 literal segment has already been relaxed, then we end up
8989 in this situation. Marking the literal segments as data
8990 would make this happen less often (since GAS always relaxes
8991 code before data), but we could still get into trouble if
8992 there are instructions in a segment that is not marked as
8993 containing code. Until we can implement a better solution,
8994 cheat and adjust the addresses of all the following frags.
8995 This could break subsequent alignments, but the linker's
8996 literal coalescing will do that anyway. */
8997
8998 fragS *f;
8999 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9000 assert (fragp->tc_frag_data.unreported_expansion == 4);
9001 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9002 fragp->fr_var -= 4;
9003 fragp->fr_fix += 4;
9004 for (f = fragp->fr_next; f; f = f->fr_next)
9005 f->fr_address += 4;
9006 }
9007 else
9008 as_bad (_("invalid relaxation fragment result"));
9009 break;
9010 }
9011
9012 fragp->fr_var = 0;
9013 new_logical_line (file_name, line);
9014 }
9015
9016
9017 static void
9018 convert_frag_align_next_opcode (fragS *fragp)
9019 {
9020 char *nop_buf; /* Location for Writing. */
9021 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9022 addressT aligned_address;
9023 offsetT fill_size;
9024 int nop, nop_count;
9025
9026 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9027 fragp->fr_fix);
9028 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9029 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9030 nop_buf = fragp->fr_literal + fragp->fr_fix;
9031
9032 for (nop = 0; nop < nop_count; nop++)
9033 {
9034 int nop_size;
9035 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9036
9037 assemble_nop (nop_size, nop_buf);
9038 nop_buf += nop_size;
9039 }
9040
9041 fragp->fr_fix += fill_size;
9042 fragp->fr_var -= fill_size;
9043 }
9044
9045
9046 static void
9047 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9048 {
9049 TInsn tinsn, single_target;
9050 int size, old_size, diff;
9051 offsetT frag_offset;
9052
9053 assert (slot == 0);
9054 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9055
9056 if (fragP->tc_frag_data.is_aligning_branch == 1)
9057 {
9058 assert (fragP->tc_frag_data.text_expansion[0] == 1
9059 || fragP->tc_frag_data.text_expansion[0] == 0);
9060 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9061 fmt, slot);
9062 return;
9063 }
9064
9065 if (fragP->tc_frag_data.text_expansion[0] == 0)
9066 {
9067 /* No conversion. */
9068 fragP->fr_var = 0;
9069 return;
9070 }
9071
9072 assert (fragP->fr_opcode != NULL);
9073
9074 /* Frags in this relaxation state should only contain
9075 single instruction bundles. */
9076 tinsn_immed_from_frag (&tinsn, fragP, 0);
9077
9078 /* Just convert it to a wide form.... */
9079 size = 0;
9080 old_size = xg_get_single_size (tinsn.opcode);
9081
9082 tinsn_init (&single_target);
9083 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9084
9085 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9086 {
9087 as_bad (_("unable to widen instruction"));
9088 return;
9089 }
9090
9091 size = xg_get_single_size (single_target.opcode);
9092 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9093 frag_offset, TRUE);
9094
9095 diff = size - old_size;
9096 assert (diff >= 0);
9097 assert (diff <= fragP->fr_var);
9098 fragP->fr_var -= diff;
9099 fragP->fr_fix += diff;
9100
9101 /* clean it up */
9102 fragP->fr_var = 0;
9103 }
9104
9105
9106 static void
9107 convert_frag_fill_nop (fragS *fragP)
9108 {
9109 char *loc = &fragP->fr_literal[fragP->fr_fix];
9110 int size = fragP->tc_frag_data.text_expansion[0];
9111 assert ((unsigned) size == (fragP->fr_next->fr_address
9112 - fragP->fr_address - fragP->fr_fix));
9113 if (size == 0)
9114 {
9115 /* No conversion. */
9116 fragP->fr_var = 0;
9117 return;
9118 }
9119 assemble_nop (size, loc);
9120 fragP->tc_frag_data.is_insn = TRUE;
9121 fragP->fr_var -= size;
9122 fragP->fr_fix += size;
9123 frag_wane (fragP);
9124 }
9125
9126
9127 static fixS *fix_new_exp_in_seg
9128 (segT, subsegT, fragS *, int, int, expressionS *, int,
9129 bfd_reloc_code_real_type);
9130 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9131
9132 static void
9133 convert_frag_immed (segT segP,
9134 fragS *fragP,
9135 int min_steps,
9136 xtensa_format fmt,
9137 int slot)
9138 {
9139 char *immed_instr = fragP->fr_opcode;
9140 TInsn orig_tinsn;
9141 bfd_boolean expanded = FALSE;
9142 bfd_boolean branch_jmp_to_next = FALSE;
9143 char *fr_opcode = fragP->fr_opcode;
9144 xtensa_isa isa = xtensa_default_isa;
9145 bfd_boolean wide_insn = FALSE;
9146 int bytes;
9147 bfd_boolean is_loop;
9148
9149 assert (fr_opcode != NULL);
9150
9151 xg_clear_vinsn (&cur_vinsn);
9152
9153 vinsn_from_chars (&cur_vinsn, fr_opcode);
9154 if (cur_vinsn.num_slots > 1)
9155 wide_insn = TRUE;
9156
9157 orig_tinsn = cur_vinsn.slots[slot];
9158 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9159
9160 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9161
9162 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9163 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9164
9165 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9166 {
9167 /* Conversion just inserts a NOP and marks the fix as completed. */
9168 bytes = xtensa_format_length (isa, fmt);
9169 if (bytes >= 4)
9170 {
9171 cur_vinsn.slots[slot].opcode =
9172 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9173 cur_vinsn.slots[slot].ntok = 0;
9174 }
9175 else
9176 {
9177 bytes += fragP->tc_frag_data.text_expansion[0];
9178 assert (bytes == 2 || bytes == 3);
9179 build_nop (&cur_vinsn.slots[0], bytes);
9180 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9181 }
9182 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
9183 xtensa_insnbuf_to_chars
9184 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9185 fragP->fr_var = 0;
9186 }
9187 else
9188 {
9189 /* Here is the fun stuff: Get the immediate field from this
9190 instruction. If it fits, we're done. If not, find the next
9191 instruction sequence that fits. */
9192
9193 IStack istack;
9194 int i;
9195 symbolS *lit_sym = NULL;
9196 int total_size = 0;
9197 int target_offset = 0;
9198 int old_size;
9199 int diff;
9200 symbolS *gen_label = NULL;
9201 offsetT frag_offset;
9202 bfd_boolean first = TRUE;
9203 bfd_boolean last_is_jump;
9204
9205 /* It does not fit. Find something that does and
9206 convert immediately. */
9207 frag_offset = fr_opcode - fragP->fr_literal;
9208 istack_init (&istack);
9209 xg_assembly_relax (&istack, &orig_tinsn,
9210 segP, fragP, frag_offset, min_steps, 0);
9211
9212 old_size = xtensa_format_length (isa, fmt);
9213
9214 /* Assemble this right inline. */
9215
9216 /* First, create the mapping from a label name to the REAL label. */
9217 target_offset = 0;
9218 for (i = 0; i < istack.ninsn; i++)
9219 {
9220 TInsn *tinsn = &istack.insn[i];
9221 fragS *lit_frag;
9222
9223 switch (tinsn->insn_type)
9224 {
9225 case ITYPE_LITERAL:
9226 if (lit_sym != NULL)
9227 as_bad (_("multiple literals in expansion"));
9228 /* First find the appropriate space in the literal pool. */
9229 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9230 if (lit_frag == NULL)
9231 as_bad (_("no registered fragment for literal"));
9232 if (tinsn->ntok != 1)
9233 as_bad (_("number of literal tokens != 1"));
9234
9235 /* Set the literal symbol and add a fixup. */
9236 lit_sym = lit_frag->fr_symbol;
9237 break;
9238
9239 case ITYPE_LABEL:
9240 if (align_targets && !is_loop)
9241 {
9242 fragS *unreach = fragP->fr_next;
9243 while (!(unreach->fr_type == rs_machine_dependent
9244 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9245 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9246 {
9247 unreach = unreach->fr_next;
9248 }
9249
9250 assert (unreach->fr_type == rs_machine_dependent
9251 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9252 || unreach->fr_subtype == RELAX_UNREACHABLE));
9253
9254 target_offset += unreach->tc_frag_data.text_expansion[0];
9255 }
9256 assert (gen_label == NULL);
9257 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9258 fr_opcode - fragP->fr_literal
9259 + target_offset, fragP);
9260 break;
9261
9262 case ITYPE_INSN:
9263 if (first && wide_insn)
9264 {
9265 target_offset += xtensa_format_length (isa, fmt);
9266 first = FALSE;
9267 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9268 target_offset += xg_get_single_size (tinsn->opcode);
9269 }
9270 else
9271 target_offset += xg_get_single_size (tinsn->opcode);
9272 break;
9273 }
9274 }
9275
9276 total_size = 0;
9277 first = TRUE;
9278 last_is_jump = FALSE;
9279 for (i = 0; i < istack.ninsn; i++)
9280 {
9281 TInsn *tinsn = &istack.insn[i];
9282 fragS *lit_frag;
9283 int size;
9284 segT target_seg;
9285 bfd_reloc_code_real_type reloc_type;
9286
9287 switch (tinsn->insn_type)
9288 {
9289 case ITYPE_LITERAL:
9290 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9291 /* Already checked. */
9292 assert (lit_frag != NULL);
9293 assert (lit_sym != NULL);
9294 assert (tinsn->ntok == 1);
9295 /* Add a fixup. */
9296 target_seg = S_GET_SEGMENT (lit_sym);
9297 assert (target_seg);
9298 if (tinsn->tok[0].X_op == O_pltrel)
9299 reloc_type = BFD_RELOC_XTENSA_PLT;
9300 else
9301 reloc_type = BFD_RELOC_32;
9302 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9303 &tinsn->tok[0], FALSE, reloc_type);
9304 break;
9305
9306 case ITYPE_LABEL:
9307 break;
9308
9309 case ITYPE_INSN:
9310 xg_resolve_labels (tinsn, gen_label);
9311 xg_resolve_literals (tinsn, lit_sym);
9312 if (wide_insn && first)
9313 {
9314 first = FALSE;
9315 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9316 {
9317 cur_vinsn.slots[slot] = *tinsn;
9318 }
9319 else
9320 {
9321 cur_vinsn.slots[slot].opcode =
9322 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9323 cur_vinsn.slots[slot].ntok = 0;
9324 }
9325 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9326 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
9327 (unsigned char *) immed_instr, 0);
9328 fragP->tc_frag_data.is_insn = TRUE;
9329 size = xtensa_format_length (isa, fmt);
9330 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9331 {
9332 xg_emit_insn_to_buf
9333 (tinsn, immed_instr + size, fragP,
9334 immed_instr - fragP->fr_literal + size, TRUE);
9335 size += xg_get_single_size (tinsn->opcode);
9336 }
9337 }
9338 else
9339 {
9340 size = xg_get_single_size (tinsn->opcode);
9341 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
9342 immed_instr - fragP->fr_literal, TRUE);
9343 }
9344 immed_instr += size;
9345 total_size += size;
9346 break;
9347 }
9348 }
9349
9350 diff = total_size - old_size;
9351 assert (diff >= 0);
9352 if (diff != 0)
9353 expanded = TRUE;
9354 assert (diff <= fragP->fr_var);
9355 fragP->fr_var -= diff;
9356 fragP->fr_fix += diff;
9357 }
9358
9359 /* Check for undefined immediates in LOOP instructions. */
9360 if (is_loop)
9361 {
9362 symbolS *sym;
9363 sym = orig_tinsn.tok[1].X_add_symbol;
9364 if (sym != NULL && !S_IS_DEFINED (sym))
9365 {
9366 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9367 return;
9368 }
9369 sym = orig_tinsn.tok[1].X_op_symbol;
9370 if (sym != NULL && !S_IS_DEFINED (sym))
9371 {
9372 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9373 return;
9374 }
9375 }
9376
9377 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9378 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9379
9380 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9381 {
9382 /* Add an expansion note on the expanded instruction. */
9383 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9384 &orig_tinsn.tok[0], TRUE,
9385 BFD_RELOC_XTENSA_ASM_EXPAND);
9386 }
9387 }
9388
9389
9390 /* Add a new fix expression into the desired segment. We have to
9391 switch to that segment to do this. */
9392
9393 static fixS *
9394 fix_new_exp_in_seg (segT new_seg,
9395 subsegT new_subseg,
9396 fragS *frag,
9397 int where,
9398 int size,
9399 expressionS *exp,
9400 int pcrel,
9401 bfd_reloc_code_real_type r_type)
9402 {
9403 fixS *new_fix;
9404 segT seg = now_seg;
9405 subsegT subseg = now_subseg;
9406
9407 assert (new_seg != 0);
9408 subseg_set (new_seg, new_subseg);
9409
9410 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9411 subseg_set (seg, subseg);
9412 return new_fix;
9413 }
9414
9415
9416 /* Relax a loop instruction so that it can span loop >256 bytes.
9417
9418 loop as, .L1
9419 .L0:
9420 rsr as, LEND
9421 wsr as, LBEG
9422 addi as, as, lo8 (label-.L1)
9423 addmi as, as, mid8 (label-.L1)
9424 wsr as, LEND
9425 isync
9426 rsr as, LCOUNT
9427 addi as, as, 1
9428 .L1:
9429 <<body>>
9430 label:
9431 */
9432
9433 static void
9434 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9435 {
9436 TInsn loop_insn;
9437 TInsn addi_insn;
9438 TInsn addmi_insn;
9439 unsigned long target;
9440 static xtensa_insnbuf insnbuf = NULL;
9441 unsigned int loop_length, loop_length_hi, loop_length_lo;
9442 xtensa_isa isa = xtensa_default_isa;
9443 addressT loop_offset;
9444 addressT addi_offset = 9;
9445 addressT addmi_offset = 12;
9446 fragS *next_fragP;
9447 int target_count;
9448
9449 if (!insnbuf)
9450 insnbuf = xtensa_insnbuf_alloc (isa);
9451
9452 /* Get the loop offset. */
9453 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9454
9455 /* Validate that there really is a LOOP at the loop_offset. Because
9456 loops are not bundleable, we can assume that the instruction will be
9457 in slot 0. */
9458 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9459 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9460
9461 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9462 addi_offset += loop_offset;
9463 addmi_offset += loop_offset;
9464
9465 assert (tinsn->ntok == 2);
9466 if (tinsn->tok[1].X_op == O_constant)
9467 target = tinsn->tok[1].X_add_number;
9468 else if (tinsn->tok[1].X_op == O_symbol)
9469 {
9470 /* Find the fragment. */
9471 symbolS *sym = tinsn->tok[1].X_add_symbol;
9472 assert (S_GET_SEGMENT (sym) == segP
9473 || S_GET_SEGMENT (sym) == absolute_section);
9474 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9475 }
9476 else
9477 {
9478 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9479 target = 0;
9480 }
9481
9482 know (symbolP);
9483 know (symbolP->sy_frag);
9484 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9485 || symbol_get_frag (symbolP) == &zero_address_frag);
9486
9487 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9488 loop_length_hi = loop_length & ~0x0ff;
9489 loop_length_lo = loop_length & 0x0ff;
9490 if (loop_length_lo >= 128)
9491 {
9492 loop_length_lo -= 256;
9493 loop_length_hi += 256;
9494 }
9495
9496 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9497 32512. If the loop is larger than that, then we just fail. */
9498 if (loop_length_hi > 32512)
9499 as_bad_where (fragP->fr_file, fragP->fr_line,
9500 _("loop too long for LOOP instruction"));
9501
9502 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9503 assert (addi_insn.opcode == xtensa_addi_opcode);
9504
9505 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9506 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9507
9508 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9509 tinsn_to_insnbuf (&addi_insn, insnbuf);
9510
9511 fragP->tc_frag_data.is_insn = TRUE;
9512 xtensa_insnbuf_to_chars
9513 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9514
9515 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9516 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9517 xtensa_insnbuf_to_chars
9518 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9519
9520 /* Walk through all of the frags from here to the loop end
9521 and mark them as no_transform to keep them from being modified
9522 by the linker. If we ever have a relocation for the
9523 addi/addmi of the difference of two symbols we can remove this. */
9524
9525 target_count = 0;
9526 for (next_fragP = fragP; next_fragP != NULL;
9527 next_fragP = next_fragP->fr_next)
9528 {
9529 next_fragP->tc_frag_data.is_no_transform = TRUE;
9530 if (next_fragP->tc_frag_data.is_loop_target)
9531 target_count++;
9532 if (target_count == 2)
9533 break;
9534 }
9535 }
9536
9537 \f
9538 /* A map that keeps information on a per-subsegment basis. This is
9539 maintained during initial assembly, but is invalid once the
9540 subsegments are smashed together. I.E., it cannot be used during
9541 the relaxation. */
9542
9543 typedef struct subseg_map_struct
9544 {
9545 /* the key */
9546 segT seg;
9547 subsegT subseg;
9548
9549 /* the data */
9550 unsigned flags;
9551 float total_freq; /* fall-through + branch target frequency */
9552 float target_freq; /* branch target frequency alone */
9553
9554 struct subseg_map_struct *next;
9555 } subseg_map;
9556
9557
9558 static subseg_map *sseg_map = NULL;
9559
9560 static subseg_map *
9561 get_subseg_info (segT seg, subsegT subseg)
9562 {
9563 subseg_map *subseg_e;
9564
9565 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9566 {
9567 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9568 break;
9569 }
9570 return subseg_e;
9571 }
9572
9573
9574 static subseg_map *
9575 add_subseg_info (segT seg, subsegT subseg)
9576 {
9577 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9578 memset (subseg_e, 0, sizeof (subseg_map));
9579 subseg_e->seg = seg;
9580 subseg_e->subseg = subseg;
9581 subseg_e->flags = 0;
9582 /* Start off considering every branch target very important. */
9583 subseg_e->target_freq = 1.0;
9584 subseg_e->total_freq = 1.0;
9585 subseg_e->next = sseg_map;
9586 sseg_map = subseg_e;
9587 return subseg_e;
9588 }
9589
9590
9591 static unsigned
9592 get_last_insn_flags (segT seg, subsegT subseg)
9593 {
9594 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9595 if (subseg_e)
9596 return subseg_e->flags;
9597 return 0;
9598 }
9599
9600
9601 static void
9602 set_last_insn_flags (segT seg,
9603 subsegT subseg,
9604 unsigned fl,
9605 bfd_boolean val)
9606 {
9607 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9608 if (! subseg_e)
9609 subseg_e = add_subseg_info (seg, subseg);
9610 if (val)
9611 subseg_e->flags |= fl;
9612 else
9613 subseg_e->flags &= ~fl;
9614 }
9615
9616
9617 static float
9618 get_subseg_total_freq (segT seg, subsegT subseg)
9619 {
9620 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9621 if (subseg_e)
9622 return subseg_e->total_freq;
9623 return 1.0;
9624 }
9625
9626
9627 static float
9628 get_subseg_target_freq (segT seg, subsegT subseg)
9629 {
9630 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9631 if (subseg_e)
9632 return subseg_e->target_freq;
9633 return 1.0;
9634 }
9635
9636
9637 static void
9638 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9639 {
9640 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9641 if (! subseg_e)
9642 subseg_e = add_subseg_info (seg, subseg);
9643 subseg_e->total_freq = total_f;
9644 subseg_e->target_freq = target_f;
9645 }
9646
9647 \f
9648 /* Segment Lists and emit_state Stuff. */
9649
9650 static void
9651 xtensa_move_seg_list_to_beginning (seg_list *head)
9652 {
9653 head = head->next;
9654 while (head)
9655 {
9656 segT literal_section = head->seg;
9657
9658 /* Move the literal section to the front of the section list. */
9659 assert (literal_section);
9660 if (literal_section != stdoutput->sections)
9661 {
9662 bfd_section_list_remove (stdoutput, literal_section);
9663 bfd_section_list_prepend (stdoutput, literal_section);
9664 }
9665 head = head->next;
9666 }
9667 }
9668
9669
9670 static void mark_literal_frags (seg_list *);
9671
9672 static void
9673 xtensa_move_literals (void)
9674 {
9675 seg_list *segment;
9676 frchainS *frchain_from, *frchain_to;
9677 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9678 fragS **frag_splice;
9679 emit_state state;
9680 segT dest_seg;
9681 fixS *fix, *next_fix, **fix_splice;
9682 sym_list *lit;
9683
9684 mark_literal_frags (literal_head->next);
9685 mark_literal_frags (init_literal_head->next);
9686 mark_literal_frags (fini_literal_head->next);
9687
9688 if (use_literal_section)
9689 return;
9690
9691 segment = literal_head->next;
9692 while (segment)
9693 {
9694 frchain_from = seg_info (segment->seg)->frchainP;
9695 search_frag = frchain_from->frch_root;
9696 literal_pool = NULL;
9697 frchain_to = NULL;
9698 frag_splice = &(frchain_from->frch_root);
9699
9700 while (!search_frag->tc_frag_data.literal_frag)
9701 {
9702 assert (search_frag->fr_fix == 0
9703 || search_frag->fr_type == rs_align);
9704 search_frag = search_frag->fr_next;
9705 }
9706
9707 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9708 == RELAX_LITERAL_POOL_BEGIN);
9709 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9710
9711 /* Make sure that all the frags in this series are closed, and
9712 that there is at least one left over of zero-size. This
9713 prevents us from making a segment with an frchain without any
9714 frags in it. */
9715 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9716 xtensa_set_frag_assembly_state (frag_now);
9717 last_frag = frag_now;
9718 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9719 xtensa_set_frag_assembly_state (frag_now);
9720
9721 while (search_frag != frag_now)
9722 {
9723 next_frag = search_frag->fr_next;
9724
9725 /* First, move the frag out of the literal section and
9726 to the appropriate place. */
9727 if (search_frag->tc_frag_data.literal_frag)
9728 {
9729 literal_pool = search_frag->tc_frag_data.literal_frag;
9730 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
9731 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9732 assert (frchain_to);
9733 }
9734 insert_after = literal_pool;
9735
9736 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9737 insert_after = insert_after->fr_next;
9738
9739 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
9740
9741 *frag_splice = next_frag;
9742 search_frag->fr_next = insert_after->fr_next;
9743 insert_after->fr_next = search_frag;
9744 search_frag->tc_frag_data.lit_seg = dest_seg;
9745
9746 /* Now move any fixups associated with this frag to the
9747 right section. */
9748 fix = frchain_from->fix_root;
9749 fix_splice = &(frchain_from->fix_root);
9750 while (fix)
9751 {
9752 next_fix = fix->fx_next;
9753 if (fix->fx_frag == search_frag)
9754 {
9755 *fix_splice = next_fix;
9756 fix->fx_next = frchain_to->fix_root;
9757 frchain_to->fix_root = fix;
9758 if (frchain_to->fix_tail == NULL)
9759 frchain_to->fix_tail = fix;
9760 }
9761 else
9762 fix_splice = &(fix->fx_next);
9763 fix = next_fix;
9764 }
9765 search_frag = next_frag;
9766 }
9767
9768 if (frchain_from->fix_root != NULL)
9769 {
9770 frchain_from = seg_info (segment->seg)->frchainP;
9771 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9772
9773 assert (frchain_from->fix_root == NULL);
9774 }
9775 frchain_from->fix_tail = NULL;
9776 xtensa_restore_emit_state (&state);
9777 segment = segment->next;
9778 }
9779
9780 /* Now fix up the SEGMENT value for all the literal symbols. */
9781 for (lit = literal_syms; lit; lit = lit->next)
9782 {
9783 symbolS *lit_sym = lit->sym;
9784 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
9785 if (dest_seg)
9786 S_SET_SEGMENT (lit_sym, dest_seg);
9787 }
9788 }
9789
9790
9791 /* Walk over all the frags for segments in a list and mark them as
9792 containing literals. As clunky as this is, we can't rely on frag_var
9793 and frag_variant to get called in all situations. */
9794
9795 static void
9796 mark_literal_frags (seg_list *segment)
9797 {
9798 frchainS *frchain_from;
9799 fragS *search_frag;
9800
9801 while (segment)
9802 {
9803 frchain_from = seg_info (segment->seg)->frchainP;
9804 search_frag = frchain_from->frch_root;
9805 while (search_frag)
9806 {
9807 search_frag->tc_frag_data.is_literal = TRUE;
9808 search_frag = search_frag->fr_next;
9809 }
9810 segment = segment->next;
9811 }
9812 }
9813
9814
9815 static void
9816 xtensa_reorder_seg_list (seg_list *head, segT after)
9817 {
9818 /* Move all of the sections in the section list to come
9819 after "after" in the gnu segment list. */
9820
9821 head = head->next;
9822 while (head)
9823 {
9824 segT literal_section = head->seg;
9825
9826 /* Move the literal section after "after". */
9827 assert (literal_section);
9828 if (literal_section != after)
9829 {
9830 bfd_section_list_remove (stdoutput, literal_section);
9831 bfd_section_list_insert_after (stdoutput, after, literal_section);
9832 }
9833
9834 head = head->next;
9835 }
9836 }
9837
9838
9839 /* Push all the literal segments to the end of the gnu list. */
9840
9841 static void
9842 xtensa_reorder_segments (void)
9843 {
9844 segT sec;
9845 segT last_sec = 0;
9846 int old_count = 0;
9847 int new_count = 0;
9848
9849 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9850 {
9851 last_sec = sec;
9852 old_count++;
9853 }
9854
9855 /* Now that we have the last section, push all the literal
9856 sections to the end. */
9857 xtensa_reorder_seg_list (literal_head, last_sec);
9858 xtensa_reorder_seg_list (init_literal_head, last_sec);
9859 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9860
9861 /* Now perform the final error check. */
9862 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9863 new_count++;
9864 assert (new_count == old_count);
9865 }
9866
9867
9868 /* Change the emit state (seg, subseg, and frag related stuff) to the
9869 correct location. Return a emit_state which can be passed to
9870 xtensa_restore_emit_state to return to current fragment. */
9871
9872 static void
9873 xtensa_switch_to_literal_fragment (emit_state *result)
9874 {
9875 if (directive_state[directive_absolute_literals])
9876 {
9877 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9878 &default_lit_sections.lit4_seg, FALSE);
9879 xtensa_switch_section_emit_state (result,
9880 default_lit_sections.lit4_seg, 0);
9881 }
9882 else
9883 xtensa_switch_to_non_abs_literal_fragment (result);
9884
9885 /* Do a 4-byte align here. */
9886 frag_align (2, 0, 0);
9887 record_alignment (now_seg, 2);
9888 }
9889
9890
9891 static void
9892 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
9893 {
9894 /* When we mark a literal pool location, we want to put a frag in
9895 the literal pool that points to it. But to do that, we want to
9896 switch_to_literal_fragment. But literal sections don't have
9897 literal pools, so their location is always null, so we would
9898 recurse forever. This is kind of hacky, but it works. */
9899
9900 static bfd_boolean recursive = FALSE;
9901 fragS *pool_location = get_literal_pool_location (now_seg);
9902 bfd_boolean is_init =
9903 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9904
9905 bfd_boolean is_fini =
9906 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
9907
9908 if (pool_location == NULL
9909 && !use_literal_section
9910 && !recursive
9911 && !is_init && ! is_fini)
9912 {
9913 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
9914 recursive = TRUE;
9915 xtensa_mark_literal_pool_location ();
9916 recursive = FALSE;
9917 }
9918
9919 /* Special case: If we are in the ".fini" or ".init" section, then
9920 we will ALWAYS be generating to the ".fini.literal" and
9921 ".init.literal" sections. */
9922
9923 if (is_init)
9924 {
9925 cache_literal_section (init_literal_head,
9926 default_lit_sections.init_lit_seg_name,
9927 &default_lit_sections.init_lit_seg, TRUE);
9928 xtensa_switch_section_emit_state (result,
9929 default_lit_sections.init_lit_seg, 0);
9930 }
9931 else if (is_fini)
9932 {
9933 cache_literal_section (fini_literal_head,
9934 default_lit_sections.fini_lit_seg_name,
9935 &default_lit_sections.fini_lit_seg, TRUE);
9936 xtensa_switch_section_emit_state (result,
9937 default_lit_sections.fini_lit_seg, 0);
9938 }
9939 else
9940 {
9941 cache_literal_section (literal_head,
9942 default_lit_sections.lit_seg_name,
9943 &default_lit_sections.lit_seg, TRUE);
9944 xtensa_switch_section_emit_state (result,
9945 default_lit_sections.lit_seg, 0);
9946 }
9947
9948 if (!use_literal_section
9949 && !is_init && !is_fini
9950 && get_literal_pool_location (now_seg) != pool_location)
9951 {
9952 /* Close whatever frag is there. */
9953 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9954 xtensa_set_frag_assembly_state (frag_now);
9955 frag_now->tc_frag_data.literal_frag = pool_location;
9956 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9957 xtensa_set_frag_assembly_state (frag_now);
9958 }
9959 }
9960
9961
9962 /* Call this function before emitting data into the literal section.
9963 This is a helper function for xtensa_switch_to_literal_fragment.
9964 This is similar to a .section new_now_seg subseg. */
9965
9966 static void
9967 xtensa_switch_section_emit_state (emit_state *state,
9968 segT new_now_seg,
9969 subsegT new_now_subseg)
9970 {
9971 state->name = now_seg->name;
9972 state->now_seg = now_seg;
9973 state->now_subseg = now_subseg;
9974 state->generating_literals = generating_literals;
9975 generating_literals++;
9976 subseg_set (new_now_seg, new_now_subseg);
9977 }
9978
9979
9980 /* Use to restore the emitting into the normal place. */
9981
9982 static void
9983 xtensa_restore_emit_state (emit_state *state)
9984 {
9985 generating_literals = state->generating_literals;
9986 subseg_set (state->now_seg, state->now_subseg);
9987 }
9988
9989
9990 /* Get a segment of a given name. If the segment is already
9991 present, return it; otherwise, create a new one. */
9992
9993 static void
9994 cache_literal_section (seg_list *head,
9995 const char *name,
9996 segT *pseg,
9997 bfd_boolean is_code)
9998 {
9999 segT current_section = now_seg;
10000 int current_subsec = now_subseg;
10001 segT seg;
10002
10003 if (*pseg != 0)
10004 return;
10005
10006 /* Check if the named section exists. */
10007 for (seg = stdoutput->sections; seg; seg = seg->next)
10008 {
10009 if (!strcmp (segment_name (seg), name))
10010 break;
10011 }
10012
10013 if (!seg)
10014 {
10015 /* Create a new literal section. */
10016 seg = subseg_new (name, (subsegT) 0);
10017 if (head)
10018 {
10019 /* Add the newly created literal segment to the specified list. */
10020 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10021 n->seg = seg;
10022 n->next = head->next;
10023 head->next = n;
10024 }
10025 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
10026 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10027 | (is_code ? SEC_CODE : SEC_DATA));
10028 bfd_set_section_alignment (stdoutput, seg, 2);
10029 }
10030
10031 *pseg = seg;
10032 subseg_set (current_section, current_subsec);
10033 }
10034
10035 \f
10036 /* Property Tables Stuff. */
10037
10038 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10039 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10040 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10041
10042 typedef bfd_boolean (*frag_predicate) (const fragS *);
10043 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10044
10045 static bfd_boolean get_frag_is_literal (const fragS *);
10046 static void xtensa_create_property_segments
10047 (frag_predicate, frag_predicate, const char *, xt_section_type);
10048 static void xtensa_create_xproperty_segments
10049 (frag_flags_fn, const char *, xt_section_type);
10050 static segment_info_type *retrieve_segment_info (segT);
10051 static segT retrieve_xtensa_section (char *);
10052 static bfd_boolean section_has_property (segT, frag_predicate);
10053 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10054 static void add_xt_block_frags
10055 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10056 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10057 static void xtensa_frag_flags_init (frag_flags *);
10058 static void get_frag_property_flags (const fragS *, frag_flags *);
10059 static bfd_vma frag_flags_to_number (const frag_flags *);
10060 static void add_xt_prop_frags
10061 (segT, segT, xtensa_block_info **, frag_flags_fn);
10062
10063 /* Set up property tables after relaxation. */
10064
10065 void
10066 xtensa_post_relax_hook (void)
10067 {
10068 xtensa_move_seg_list_to_beginning (literal_head);
10069 xtensa_move_seg_list_to_beginning (init_literal_head);
10070 xtensa_move_seg_list_to_beginning (fini_literal_head);
10071
10072 xtensa_find_unmarked_state_frags ();
10073
10074 xtensa_create_property_segments (get_frag_is_literal,
10075 NULL,
10076 XTENSA_LIT_SEC_NAME,
10077 xt_literal_sec);
10078 xtensa_create_xproperty_segments (get_frag_property_flags,
10079 XTENSA_PROP_SEC_NAME,
10080 xt_prop_sec);
10081
10082 if (warn_unaligned_branch_targets)
10083 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10084 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10085 }
10086
10087
10088 /* This function is only meaningful after xtensa_move_literals. */
10089
10090 static bfd_boolean
10091 get_frag_is_literal (const fragS *fragP)
10092 {
10093 assert (fragP != NULL);
10094 return fragP->tc_frag_data.is_literal;
10095 }
10096
10097
10098 static void
10099 xtensa_create_property_segments (frag_predicate property_function,
10100 frag_predicate end_property_function,
10101 const char *section_name_base,
10102 xt_section_type sec_type)
10103 {
10104 segT *seclist;
10105
10106 /* Walk over all of the current segments.
10107 Walk over each fragment
10108 For each non-empty fragment,
10109 Build a property record (append where possible). */
10110
10111 for (seclist = &stdoutput->sections;
10112 seclist && *seclist;
10113 seclist = &(*seclist)->next)
10114 {
10115 segT sec = *seclist;
10116 flagword flags;
10117
10118 flags = bfd_get_section_flags (stdoutput, sec);
10119 if (flags & SEC_DEBUGGING)
10120 continue;
10121 if (!(flags & SEC_ALLOC))
10122 continue;
10123
10124 if (section_has_property (sec, property_function))
10125 {
10126 char *property_section_name =
10127 xtensa_get_property_section_name (sec, section_name_base);
10128 segT insn_sec = retrieve_xtensa_section (property_section_name);
10129 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10130 xtensa_block_info **xt_blocks =
10131 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10132 /* Walk over all of the frchains here and add new sections. */
10133 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10134 end_property_function);
10135 }
10136 }
10137
10138 /* Now we fill them out.... */
10139
10140 for (seclist = &stdoutput->sections;
10141 seclist && *seclist;
10142 seclist = &(*seclist)->next)
10143 {
10144 segment_info_type *seginfo;
10145 xtensa_block_info *block;
10146 segT sec = *seclist;
10147
10148 seginfo = seg_info (sec);
10149 block = seginfo->tc_segment_info_data.blocks[sec_type];
10150
10151 if (block)
10152 {
10153 xtensa_block_info *cur_block;
10154 /* This is a section with some data. */
10155 int num_recs = 0;
10156 bfd_size_type rec_size;
10157
10158 for (cur_block = block; cur_block; cur_block = cur_block->next)
10159 num_recs++;
10160
10161 rec_size = num_recs * 8;
10162 bfd_set_section_size (stdoutput, sec, rec_size);
10163
10164 /* In order to make this work with the assembler, we have to
10165 build some frags and then build the "fixups" for it. It
10166 would be easier to just set the contents then set the
10167 arlents. */
10168
10169 if (num_recs)
10170 {
10171 /* Allocate a fragment and leak it. */
10172 fragS *fragP;
10173 bfd_size_type frag_size;
10174 fixS *fixes;
10175 frchainS *frchainP;
10176 int i;
10177 char *frag_data;
10178
10179 frag_size = sizeof (fragS) + rec_size;
10180 fragP = (fragS *) xmalloc (frag_size);
10181
10182 memset (fragP, 0, frag_size);
10183 fragP->fr_address = 0;
10184 fragP->fr_next = NULL;
10185 fragP->fr_fix = rec_size;
10186 fragP->fr_var = 0;
10187 fragP->fr_type = rs_fill;
10188 /* The rest are zeros. */
10189
10190 frchainP = seginfo->frchainP;
10191 frchainP->frch_root = fragP;
10192 frchainP->frch_last = fragP;
10193
10194 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10195 memset (fixes, 0, sizeof (fixS) * num_recs);
10196
10197 seginfo->fix_root = fixes;
10198 seginfo->fix_tail = &fixes[num_recs - 1];
10199 cur_block = block;
10200 frag_data = &fragP->fr_literal[0];
10201 for (i = 0; i < num_recs; i++)
10202 {
10203 fixS *fix = &fixes[i];
10204 assert (cur_block);
10205
10206 /* Write the fixup. */
10207 if (i != num_recs - 1)
10208 fix->fx_next = &fixes[i + 1];
10209 else
10210 fix->fx_next = NULL;
10211 fix->fx_size = 4;
10212 fix->fx_done = 0;
10213 fix->fx_frag = fragP;
10214 fix->fx_where = i * 8;
10215 fix->fx_addsy = section_symbol (cur_block->sec);
10216 fix->fx_offset = cur_block->offset;
10217 fix->fx_r_type = BFD_RELOC_32;
10218 fix->fx_file = "Internal Assembly";
10219 fix->fx_line = 0;
10220
10221 /* Write the length. */
10222 md_number_to_chars (&frag_data[4 + 8 * i],
10223 cur_block->size, 4);
10224 cur_block = cur_block->next;
10225 }
10226 }
10227 }
10228 }
10229 }
10230
10231
10232 static void
10233 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10234 const char *section_name_base,
10235 xt_section_type sec_type)
10236 {
10237 segT *seclist;
10238
10239 /* Walk over all of the current segments.
10240 Walk over each fragment.
10241 For each fragment that has instructions,
10242 build an instruction record (append where possible). */
10243
10244 for (seclist = &stdoutput->sections;
10245 seclist && *seclist;
10246 seclist = &(*seclist)->next)
10247 {
10248 segT sec = *seclist;
10249 flagword flags;
10250
10251 flags = bfd_get_section_flags (stdoutput, sec);
10252 if ((flags & SEC_DEBUGGING)
10253 || !(flags & SEC_ALLOC)
10254 || (flags & SEC_MERGE))
10255 continue;
10256
10257 if (section_has_xproperty (sec, flag_fn))
10258 {
10259 char *property_section_name =
10260 xtensa_get_property_section_name (sec, section_name_base);
10261 segT insn_sec = retrieve_xtensa_section (property_section_name);
10262 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10263 xtensa_block_info **xt_blocks =
10264 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10265 /* Walk over all of the frchains here and add new sections. */
10266 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
10267 }
10268 }
10269
10270 /* Now we fill them out.... */
10271
10272 for (seclist = &stdoutput->sections;
10273 seclist && *seclist;
10274 seclist = &(*seclist)->next)
10275 {
10276 segment_info_type *seginfo;
10277 xtensa_block_info *block;
10278 segT sec = *seclist;
10279
10280 seginfo = seg_info (sec);
10281 block = seginfo->tc_segment_info_data.blocks[sec_type];
10282
10283 if (block)
10284 {
10285 xtensa_block_info *cur_block;
10286 /* This is a section with some data. */
10287 int num_recs = 0;
10288 bfd_size_type rec_size;
10289
10290 for (cur_block = block; cur_block; cur_block = cur_block->next)
10291 num_recs++;
10292
10293 rec_size = num_recs * (8 + 4);
10294 bfd_set_section_size (stdoutput, sec, rec_size);
10295
10296 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10297
10298 /* In order to make this work with the assembler, we have to build
10299 some frags then build the "fixups" for it. It would be easier to
10300 just set the contents then set the arlents. */
10301
10302 if (num_recs)
10303 {
10304 /* Allocate a fragment and (unfortunately) leak it. */
10305 fragS *fragP;
10306 bfd_size_type frag_size;
10307 fixS *fixes;
10308 frchainS *frchainP;
10309 int i;
10310 char *frag_data;
10311
10312 frag_size = sizeof (fragS) + rec_size;
10313 fragP = (fragS *) xmalloc (frag_size);
10314
10315 memset (fragP, 0, frag_size);
10316 fragP->fr_address = 0;
10317 fragP->fr_next = NULL;
10318 fragP->fr_fix = rec_size;
10319 fragP->fr_var = 0;
10320 fragP->fr_type = rs_fill;
10321 /* The rest are zeros. */
10322
10323 frchainP = seginfo->frchainP;
10324 frchainP->frch_root = fragP;
10325 frchainP->frch_last = fragP;
10326
10327 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10328 memset (fixes, 0, sizeof (fixS) * num_recs);
10329
10330 seginfo->fix_root = fixes;
10331 seginfo->fix_tail = &fixes[num_recs - 1];
10332 cur_block = block;
10333 frag_data = &fragP->fr_literal[0];
10334 for (i = 0; i < num_recs; i++)
10335 {
10336 fixS *fix = &fixes[i];
10337 assert (cur_block);
10338
10339 /* Write the fixup. */
10340 if (i != num_recs - 1)
10341 fix->fx_next = &fixes[i + 1];
10342 else
10343 fix->fx_next = NULL;
10344 fix->fx_size = 4;
10345 fix->fx_done = 0;
10346 fix->fx_frag = fragP;
10347 fix->fx_where = i * (8 + 4);
10348 fix->fx_addsy = section_symbol (cur_block->sec);
10349 fix->fx_offset = cur_block->offset;
10350 fix->fx_r_type = BFD_RELOC_32;
10351 fix->fx_file = "Internal Assembly";
10352 fix->fx_line = 0;
10353
10354 /* Write the length. */
10355 md_number_to_chars (&frag_data[4 + (8+4) * i],
10356 cur_block->size, 4);
10357 md_number_to_chars (&frag_data[8 + (8+4) * i],
10358 frag_flags_to_number (&cur_block->flags),
10359 4);
10360 cur_block = cur_block->next;
10361 }
10362 }
10363 }
10364 }
10365 }
10366
10367
10368 static segment_info_type *
10369 retrieve_segment_info (segT seg)
10370 {
10371 segment_info_type *seginfo;
10372 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10373 if (!seginfo)
10374 {
10375 frchainS *frchainP;
10376
10377 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
10378 memset ((void *) seginfo, 0, sizeof (*seginfo));
10379 seginfo->fix_root = NULL;
10380 seginfo->fix_tail = NULL;
10381 seginfo->bfd_section = seg;
10382 seginfo->sym = 0;
10383 /* We will not be dealing with these, only our special ones. */
10384 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
10385
10386 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10387 frchainP->frch_root = NULL;
10388 frchainP->frch_last = NULL;
10389 frchainP->frch_next = NULL;
10390 frchainP->frch_seg = seg;
10391 frchainP->frch_subseg = 0;
10392 frchainP->fix_root = NULL;
10393 frchainP->fix_tail = NULL;
10394 /* Do not init the objstack. */
10395 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10396 /* frchainP->frch_frag_now = fragP; */
10397 frchainP->frch_frag_now = NULL;
10398
10399 seginfo->frchainP = frchainP;
10400 }
10401
10402 return seginfo;
10403 }
10404
10405
10406 static segT
10407 retrieve_xtensa_section (char *sec_name)
10408 {
10409 bfd *abfd = stdoutput;
10410 flagword flags, out_flags, link_once_flags;
10411 segT s;
10412
10413 flags = bfd_get_section_flags (abfd, now_seg);
10414 link_once_flags = (flags & SEC_LINK_ONCE);
10415 if (link_once_flags)
10416 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10417 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10418
10419 s = bfd_make_section_old_way (abfd, sec_name);
10420 if (s == NULL)
10421 as_bad (_("could not create section %s"), sec_name);
10422 if (!bfd_set_section_flags (abfd, s, out_flags))
10423 as_bad (_("invalid flag combination on section %s"), sec_name);
10424
10425 return s;
10426 }
10427
10428
10429 static bfd_boolean
10430 section_has_property (segT sec, frag_predicate property_function)
10431 {
10432 segment_info_type *seginfo = seg_info (sec);
10433 fragS *fragP;
10434
10435 if (seginfo && seginfo->frchainP)
10436 {
10437 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10438 {
10439 if (property_function (fragP)
10440 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10441 return TRUE;
10442 }
10443 }
10444 return FALSE;
10445 }
10446
10447
10448 static bfd_boolean
10449 section_has_xproperty (segT sec, frag_flags_fn property_function)
10450 {
10451 segment_info_type *seginfo = seg_info (sec);
10452 fragS *fragP;
10453
10454 if (seginfo && seginfo->frchainP)
10455 {
10456 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10457 {
10458 frag_flags prop_flags;
10459 property_function (fragP, &prop_flags);
10460 if (!xtensa_frag_flags_is_empty (&prop_flags))
10461 return TRUE;
10462 }
10463 }
10464 return FALSE;
10465 }
10466
10467
10468 /* Two types of block sections exist right now: literal and insns. */
10469
10470 static void
10471 add_xt_block_frags (segT sec,
10472 segT xt_block_sec,
10473 xtensa_block_info **xt_block,
10474 frag_predicate property_function,
10475 frag_predicate end_property_function)
10476 {
10477 segment_info_type *seg_info;
10478 segment_info_type *xt_seg_info;
10479 bfd_vma seg_offset;
10480 fragS *fragP;
10481
10482 xt_seg_info = retrieve_segment_info (xt_block_sec);
10483 seg_info = retrieve_segment_info (sec);
10484
10485 /* Build it if needed. */
10486 while (*xt_block != NULL)
10487 xt_block = &(*xt_block)->next;
10488 /* We are either at NULL at the beginning or at the end. */
10489
10490 /* Walk through the frags. */
10491 seg_offset = 0;
10492
10493 if (seg_info->frchainP)
10494 {
10495 for (fragP = seg_info->frchainP->frch_root;
10496 fragP;
10497 fragP = fragP->fr_next)
10498 {
10499 if (property_function (fragP)
10500 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10501 {
10502 if (*xt_block != NULL)
10503 {
10504 if ((*xt_block)->offset + (*xt_block)->size
10505 == fragP->fr_address)
10506 (*xt_block)->size += fragP->fr_fix;
10507 else
10508 xt_block = &((*xt_block)->next);
10509 }
10510 if (*xt_block == NULL)
10511 {
10512 xtensa_block_info *new_block = (xtensa_block_info *)
10513 xmalloc (sizeof (xtensa_block_info));
10514 new_block->sec = sec;
10515 new_block->offset = fragP->fr_address;
10516 new_block->size = fragP->fr_fix;
10517 new_block->next = NULL;
10518 xtensa_frag_flags_init (&new_block->flags);
10519 *xt_block = new_block;
10520 }
10521 if (end_property_function
10522 && end_property_function (fragP))
10523 {
10524 xt_block = &((*xt_block)->next);
10525 }
10526 }
10527 }
10528 }
10529 }
10530
10531
10532 /* Break the encapsulation of add_xt_prop_frags here. */
10533
10534 static bfd_boolean
10535 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10536 {
10537 if (prop_flags->is_literal
10538 || prop_flags->is_insn
10539 || prop_flags->is_data
10540 || prop_flags->is_unreachable)
10541 return FALSE;
10542 return TRUE;
10543 }
10544
10545
10546 static void
10547 xtensa_frag_flags_init (frag_flags *prop_flags)
10548 {
10549 memset (prop_flags, 0, sizeof (frag_flags));
10550 }
10551
10552
10553 static void
10554 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10555 {
10556 xtensa_frag_flags_init (prop_flags);
10557 if (fragP->tc_frag_data.is_literal)
10558 prop_flags->is_literal = TRUE;
10559 if (fragP->tc_frag_data.is_unreachable)
10560 prop_flags->is_unreachable = TRUE;
10561 else if (fragP->tc_frag_data.is_insn)
10562 {
10563 prop_flags->is_insn = TRUE;
10564 if (fragP->tc_frag_data.is_loop_target)
10565 prop_flags->insn.is_loop_target = TRUE;
10566 if (fragP->tc_frag_data.is_branch_target)
10567 prop_flags->insn.is_branch_target = TRUE;
10568 if (fragP->tc_frag_data.is_specific_opcode
10569 || fragP->tc_frag_data.is_no_transform)
10570 prop_flags->insn.is_no_transform = TRUE;
10571 if (fragP->tc_frag_data.is_no_density)
10572 prop_flags->insn.is_no_density = TRUE;
10573 if (fragP->tc_frag_data.use_absolute_literals)
10574 prop_flags->insn.is_abslit = TRUE;
10575 }
10576 if (fragP->tc_frag_data.is_align)
10577 {
10578 prop_flags->is_align = TRUE;
10579 prop_flags->alignment = fragP->tc_frag_data.alignment;
10580 if (xtensa_frag_flags_is_empty (prop_flags))
10581 prop_flags->is_data = TRUE;
10582 }
10583 }
10584
10585
10586 static bfd_vma
10587 frag_flags_to_number (const frag_flags *prop_flags)
10588 {
10589 bfd_vma num = 0;
10590 if (prop_flags->is_literal)
10591 num |= XTENSA_PROP_LITERAL;
10592 if (prop_flags->is_insn)
10593 num |= XTENSA_PROP_INSN;
10594 if (prop_flags->is_data)
10595 num |= XTENSA_PROP_DATA;
10596 if (prop_flags->is_unreachable)
10597 num |= XTENSA_PROP_UNREACHABLE;
10598 if (prop_flags->insn.is_loop_target)
10599 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10600 if (prop_flags->insn.is_branch_target)
10601 {
10602 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10603 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10604 }
10605
10606 if (prop_flags->insn.is_no_density)
10607 num |= XTENSA_PROP_INSN_NO_DENSITY;
10608 if (prop_flags->insn.is_no_transform)
10609 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10610 if (prop_flags->insn.is_no_reorder)
10611 num |= XTENSA_PROP_INSN_NO_REORDER;
10612 if (prop_flags->insn.is_abslit)
10613 num |= XTENSA_PROP_INSN_ABSLIT;
10614
10615 if (prop_flags->is_align)
10616 {
10617 num |= XTENSA_PROP_ALIGN;
10618 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10619 }
10620
10621 return num;
10622 }
10623
10624
10625 static bfd_boolean
10626 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10627 const frag_flags *prop_flags_2)
10628 {
10629 /* Cannot combine with an end marker. */
10630
10631 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10632 return FALSE;
10633 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10634 return FALSE;
10635 if (prop_flags_1->is_data != prop_flags_2->is_data)
10636 return FALSE;
10637
10638 if (prop_flags_1->is_insn)
10639 {
10640 /* Properties of the beginning of the frag. */
10641 if (prop_flags_2->insn.is_loop_target)
10642 return FALSE;
10643 if (prop_flags_2->insn.is_branch_target)
10644 return FALSE;
10645 if (prop_flags_1->insn.is_no_density !=
10646 prop_flags_2->insn.is_no_density)
10647 return FALSE;
10648 if (prop_flags_1->insn.is_no_transform !=
10649 prop_flags_2->insn.is_no_transform)
10650 return FALSE;
10651 if (prop_flags_1->insn.is_no_reorder !=
10652 prop_flags_2->insn.is_no_reorder)
10653 return FALSE;
10654 if (prop_flags_1->insn.is_abslit !=
10655 prop_flags_2->insn.is_abslit)
10656 return FALSE;
10657 }
10658
10659 if (prop_flags_1->is_align)
10660 return FALSE;
10661
10662 return TRUE;
10663 }
10664
10665
10666 static bfd_vma
10667 xt_block_aligned_size (const xtensa_block_info *xt_block)
10668 {
10669 bfd_vma end_addr;
10670 unsigned align_bits;
10671
10672 if (!xt_block->flags.is_align)
10673 return xt_block->size;
10674
10675 end_addr = xt_block->offset + xt_block->size;
10676 align_bits = xt_block->flags.alignment;
10677 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10678 return end_addr - xt_block->offset;
10679 }
10680
10681
10682 static bfd_boolean
10683 xtensa_xt_block_combine (xtensa_block_info *xt_block,
10684 const xtensa_block_info *xt_block_2)
10685 {
10686 if (xt_block->sec != xt_block_2->sec)
10687 return FALSE;
10688 if (xt_block->offset + xt_block_aligned_size (xt_block)
10689 != xt_block_2->offset)
10690 return FALSE;
10691
10692 if (xt_block_2->size == 0
10693 && (!xt_block_2->flags.is_unreachable
10694 || xt_block->flags.is_unreachable))
10695 {
10696 if (xt_block_2->flags.is_align
10697 && xt_block->flags.is_align)
10698 {
10699 /* Nothing needed. */
10700 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10701 return TRUE;
10702 }
10703 else
10704 {
10705 if (xt_block_2->flags.is_align)
10706 {
10707 /* Push alignment to previous entry. */
10708 xt_block->flags.is_align = xt_block_2->flags.is_align;
10709 xt_block->flags.alignment = xt_block_2->flags.alignment;
10710 }
10711 return TRUE;
10712 }
10713 }
10714 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10715 &xt_block_2->flags))
10716 return FALSE;
10717
10718 xt_block->size += xt_block_2->size;
10719
10720 if (xt_block_2->flags.is_align)
10721 {
10722 xt_block->flags.is_align = TRUE;
10723 xt_block->flags.alignment = xt_block_2->flags.alignment;
10724 }
10725
10726 return TRUE;
10727 }
10728
10729
10730 static void
10731 add_xt_prop_frags (segT sec,
10732 segT xt_block_sec,
10733 xtensa_block_info **xt_block,
10734 frag_flags_fn property_function)
10735 {
10736 segment_info_type *seg_info;
10737 segment_info_type *xt_seg_info;
10738 bfd_vma seg_offset;
10739 fragS *fragP;
10740
10741 xt_seg_info = retrieve_segment_info (xt_block_sec);
10742 seg_info = retrieve_segment_info (sec);
10743 /* Build it if needed. */
10744 while (*xt_block != NULL)
10745 {
10746 xt_block = &(*xt_block)->next;
10747 }
10748 /* We are either at NULL at the beginning or at the end. */
10749
10750 /* Walk through the frags. */
10751 seg_offset = 0;
10752
10753 if (seg_info->frchainP)
10754 {
10755 for (fragP = seg_info->frchainP->frch_root; fragP;
10756 fragP = fragP->fr_next)
10757 {
10758 xtensa_block_info tmp_block;
10759 tmp_block.sec = sec;
10760 tmp_block.offset = fragP->fr_address;
10761 tmp_block.size = fragP->fr_fix;
10762 tmp_block.next = NULL;
10763 property_function (fragP, &tmp_block.flags);
10764
10765 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10766 /* && fragP->fr_fix != 0) */
10767 {
10768 if ((*xt_block) == NULL
10769 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10770 {
10771 xtensa_block_info *new_block;
10772 if ((*xt_block) != NULL)
10773 xt_block = &(*xt_block)->next;
10774 new_block = (xtensa_block_info *)
10775 xmalloc (sizeof (xtensa_block_info));
10776 *new_block = tmp_block;
10777 *xt_block = new_block;
10778 }
10779 }
10780 }
10781 }
10782 }
10783
10784 \f
10785 /* op_placement_info_table */
10786
10787 /* op_placement_info makes it easier to determine which
10788 ops can go in which slots. */
10789
10790 static void
10791 init_op_placement_info_table (void)
10792 {
10793 xtensa_isa isa = xtensa_default_isa;
10794 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10795 xtensa_opcode opcode;
10796 xtensa_format fmt;
10797 int slot;
10798 int num_opcodes = xtensa_isa_num_opcodes (isa);
10799
10800 op_placement_table = (op_placement_info_table)
10801 xmalloc (sizeof (op_placement_info) * num_opcodes);
10802 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10803
10804 for (opcode = 0; opcode < num_opcodes; opcode++)
10805 {
10806 op_placement_info *opi = &op_placement_table[opcode];
10807 /* FIXME: Make tinsn allocation dynamic. */
10808 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10809 as_fatal (_("too many operands in instruction"));
10810 opi->narrowest = XTENSA_UNDEFINED;
10811 opi->narrowest_size = 0x7F;
10812 opi->narrowest_slot = 0;
10813 opi->formats = 0;
10814 opi->num_formats = 0;
10815 opi->issuef = 0;
10816 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10817 {
10818 opi->slots[fmt] = 0;
10819 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10820 {
10821 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10822 {
10823 int fmt_length = xtensa_format_length (isa, fmt);
10824 opi->issuef++;
10825 set_bit (fmt, opi->formats);
10826 set_bit (slot, opi->slots[fmt]);
10827 if (fmt_length < opi->narrowest_size
10828 || (fmt_length == opi->narrowest_size
10829 && (xtensa_format_num_slots (isa, fmt)
10830 < xtensa_format_num_slots (isa,
10831 opi->narrowest))))
10832 {
10833 opi->narrowest = fmt;
10834 opi->narrowest_size = fmt_length;
10835 opi->narrowest_slot = slot;
10836 }
10837 }
10838 }
10839 if (opi->formats)
10840 opi->num_formats++;
10841 }
10842 }
10843 xtensa_insnbuf_free (isa, ibuf);
10844 }
10845
10846
10847 bfd_boolean
10848 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
10849 {
10850 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10851 }
10852
10853
10854 /* If the opcode is available in a single slot format, return its size. */
10855
10856 static int
10857 xg_get_single_size (xtensa_opcode opcode)
10858 {
10859 return op_placement_table[opcode].narrowest_size;
10860 }
10861
10862
10863 static xtensa_format
10864 xg_get_single_format (xtensa_opcode opcode)
10865 {
10866 return op_placement_table[opcode].narrowest;
10867 }
10868
10869
10870 static int
10871 xg_get_single_slot (xtensa_opcode opcode)
10872 {
10873 return op_placement_table[opcode].narrowest_slot;
10874 }
10875
10876 \f
10877 /* Instruction Stack Functions (from "xtensa-istack.h"). */
10878
10879 void
10880 istack_init (IStack *stack)
10881 {
10882 memset (stack, 0, sizeof (IStack));
10883 stack->ninsn = 0;
10884 }
10885
10886
10887 bfd_boolean
10888 istack_empty (IStack *stack)
10889 {
10890 return (stack->ninsn == 0);
10891 }
10892
10893
10894 bfd_boolean
10895 istack_full (IStack *stack)
10896 {
10897 return (stack->ninsn == MAX_ISTACK);
10898 }
10899
10900
10901 /* Return a pointer to the top IStack entry.
10902 It is an error to call this if istack_empty () is TRUE. */
10903
10904 TInsn *
10905 istack_top (IStack *stack)
10906 {
10907 int rec = stack->ninsn - 1;
10908 assert (!istack_empty (stack));
10909 return &stack->insn[rec];
10910 }
10911
10912
10913 /* Add a new TInsn to an IStack.
10914 It is an error to call this if istack_full () is TRUE. */
10915
10916 void
10917 istack_push (IStack *stack, TInsn *insn)
10918 {
10919 int rec = stack->ninsn;
10920 assert (!istack_full (stack));
10921 stack->insn[rec] = *insn;
10922 stack->ninsn++;
10923 }
10924
10925
10926 /* Clear space for the next TInsn on the IStack and return a pointer
10927 to it. It is an error to call this if istack_full () is TRUE. */
10928
10929 TInsn *
10930 istack_push_space (IStack *stack)
10931 {
10932 int rec = stack->ninsn;
10933 TInsn *insn;
10934 assert (!istack_full (stack));
10935 insn = &stack->insn[rec];
10936 memset (insn, 0, sizeof (TInsn));
10937 stack->ninsn++;
10938 return insn;
10939 }
10940
10941
10942 /* Remove the last pushed instruction. It is an error to call this if
10943 istack_empty () returns TRUE. */
10944
10945 void
10946 istack_pop (IStack *stack)
10947 {
10948 int rec = stack->ninsn - 1;
10949 assert (!istack_empty (stack));
10950 stack->ninsn--;
10951 memset (&stack->insn[rec], 0, sizeof (TInsn));
10952 }
10953
10954 \f
10955 /* TInsn functions. */
10956
10957 void
10958 tinsn_init (TInsn *dst)
10959 {
10960 memset (dst, 0, sizeof (TInsn));
10961 }
10962
10963
10964 /* Get the ``num''th token of the TInsn.
10965 It is illegal to call this if num > insn->ntoks. */
10966
10967 expressionS *
10968 tinsn_get_tok (TInsn *insn, int num)
10969 {
10970 assert (num < insn->ntok);
10971 return &insn->tok[num];
10972 }
10973
10974
10975 /* Return TRUE if ANY of the operands in the insn are symbolic. */
10976
10977 static bfd_boolean
10978 tinsn_has_symbolic_operands (const TInsn *insn)
10979 {
10980 int i;
10981 int n = insn->ntok;
10982
10983 assert (insn->insn_type == ITYPE_INSN);
10984
10985 for (i = 0; i < n; ++i)
10986 {
10987 switch (insn->tok[i].X_op)
10988 {
10989 case O_register:
10990 case O_constant:
10991 break;
10992 default:
10993 return TRUE;
10994 }
10995 }
10996 return FALSE;
10997 }
10998
10999
11000 bfd_boolean
11001 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11002 {
11003 xtensa_isa isa = xtensa_default_isa;
11004 int i;
11005 int n = insn->ntok;
11006
11007 assert (insn->insn_type == ITYPE_INSN);
11008
11009 for (i = 0; i < n; ++i)
11010 {
11011 switch (insn->tok[i].X_op)
11012 {
11013 case O_register:
11014 case O_constant:
11015 break;
11016 case O_big:
11017 case O_illegal:
11018 case O_absent:
11019 /* Errors for these types are caught later. */
11020 break;
11021 case O_hi16:
11022 case O_lo16:
11023 default:
11024 /* Symbolic immediates are only allowed on the last immediate
11025 operand. At this time, CONST16 is the only opcode where we
11026 support non-PC-relative relocations. */
11027 if (i != get_relaxable_immed (insn->opcode)
11028 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11029 && insn->opcode != xtensa_const16_opcode))
11030 {
11031 as_bad (_("invalid symbolic operand"));
11032 return TRUE;
11033 }
11034 }
11035 }
11036 return FALSE;
11037 }
11038
11039
11040 /* For assembly code with complex expressions (e.g. subtraction),
11041 we have to build them in the literal pool so that
11042 their results are calculated correctly after relaxation.
11043 The relaxation only handles expressions that
11044 boil down to SYMBOL + OFFSET. */
11045
11046 static bfd_boolean
11047 tinsn_has_complex_operands (const TInsn *insn)
11048 {
11049 int i;
11050 int n = insn->ntok;
11051 assert (insn->insn_type == ITYPE_INSN);
11052 for (i = 0; i < n; ++i)
11053 {
11054 switch (insn->tok[i].X_op)
11055 {
11056 case O_register:
11057 case O_constant:
11058 case O_symbol:
11059 case O_lo16:
11060 case O_hi16:
11061 break;
11062 default:
11063 return TRUE;
11064 }
11065 }
11066 return FALSE;
11067 }
11068
11069
11070 /* Encode a TInsn opcode and its constant operands into slotbuf.
11071 Return TRUE if there is a symbol in the immediate field. This
11072 function assumes that:
11073 1) The number of operands are correct.
11074 2) The insn_type is ITYPE_INSN.
11075 3) The opcode can be encoded in the specified format and slot.
11076 4) Operands are either O_constant or O_symbol, and all constants fit. */
11077
11078 static bfd_boolean
11079 tinsn_to_slotbuf (xtensa_format fmt,
11080 int slot,
11081 TInsn *tinsn,
11082 xtensa_insnbuf slotbuf)
11083 {
11084 xtensa_isa isa = xtensa_default_isa;
11085 xtensa_opcode opcode = tinsn->opcode;
11086 bfd_boolean has_fixup = FALSE;
11087 int noperands = xtensa_opcode_num_operands (isa, opcode);
11088 int i;
11089
11090 assert (tinsn->insn_type == ITYPE_INSN);
11091 if (noperands != tinsn->ntok)
11092 as_fatal (_("operand number mismatch"));
11093
11094 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11095 {
11096 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11097 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11098 return FALSE;
11099 }
11100
11101 for (i = 0; i < noperands; i++)
11102 {
11103 expressionS *expr = &tinsn->tok[i];
11104 int rc;
11105 unsigned line;
11106 char *file_name;
11107 uint32 opnd_value;
11108
11109 switch (expr->X_op)
11110 {
11111 case O_register:
11112 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11113 break;
11114 /* The register number has already been checked in
11115 expression_maybe_register, so we don't need to check here. */
11116 opnd_value = expr->X_add_number;
11117 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11118 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11119 opnd_value);
11120 if (rc != 0)
11121 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11122 break;
11123
11124 case O_constant:
11125 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11126 break;
11127 as_where (&file_name, &line);
11128 /* It is a constant and we called this function
11129 then we have to try to fit it. */
11130 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11131 expr->X_add_number, file_name, line);
11132 break;
11133
11134 default:
11135 has_fixup = TRUE;
11136 break;
11137 }
11138 }
11139
11140 return has_fixup;
11141 }
11142
11143
11144 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11145 into a multi-slot instruction, fill the other slots with NOPs.
11146 Return TRUE if there is a symbol in the immediate field. See also the
11147 assumptions listed for tinsn_to_slotbuf. */
11148
11149 static bfd_boolean
11150 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11151 {
11152 static xtensa_insnbuf slotbuf = 0;
11153 static vliw_insn vinsn;
11154 xtensa_isa isa = xtensa_default_isa;
11155 bfd_boolean has_fixup = FALSE;
11156 int i;
11157
11158 if (!slotbuf)
11159 {
11160 slotbuf = xtensa_insnbuf_alloc (isa);
11161 xg_init_vinsn (&vinsn);
11162 }
11163
11164 xg_clear_vinsn (&vinsn);
11165
11166 bundle_tinsn (tinsn, &vinsn);
11167
11168 xtensa_format_encode (isa, vinsn.format, insnbuf);
11169
11170 for (i = 0; i < vinsn.num_slots; i++)
11171 {
11172 /* Only one slot may have a fix-up because the rest contains NOPs. */
11173 has_fixup |=
11174 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11175 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11176 }
11177
11178 return has_fixup;
11179 }
11180
11181
11182 /* Check the instruction arguments. Return TRUE on failure. */
11183
11184 static bfd_boolean
11185 tinsn_check_arguments (const TInsn *insn)
11186 {
11187 xtensa_isa isa = xtensa_default_isa;
11188 xtensa_opcode opcode = insn->opcode;
11189
11190 if (opcode == XTENSA_UNDEFINED)
11191 {
11192 as_bad (_("invalid opcode"));
11193 return TRUE;
11194 }
11195
11196 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11197 {
11198 as_bad (_("too few operands"));
11199 return TRUE;
11200 }
11201
11202 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11203 {
11204 as_bad (_("too many operands"));
11205 return TRUE;
11206 }
11207 return FALSE;
11208 }
11209
11210
11211 /* Load an instruction from its encoded form. */
11212
11213 static void
11214 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11215 {
11216 vliw_insn vinsn;
11217
11218 xg_init_vinsn (&vinsn);
11219 vinsn_from_chars (&vinsn, f);
11220
11221 *tinsn = vinsn.slots[slot];
11222 xg_free_vinsn (&vinsn);
11223 }
11224
11225
11226 static void
11227 tinsn_from_insnbuf (TInsn *tinsn,
11228 xtensa_insnbuf slotbuf,
11229 xtensa_format fmt,
11230 int slot)
11231 {
11232 int i;
11233 xtensa_isa isa = xtensa_default_isa;
11234
11235 /* Find the immed. */
11236 tinsn_init (tinsn);
11237 tinsn->insn_type = ITYPE_INSN;
11238 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11239 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11240 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11241 for (i = 0; i < tinsn->ntok; i++)
11242 {
11243 set_expr_const (&tinsn->tok[i],
11244 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11245 tinsn->opcode, i));
11246 }
11247 }
11248
11249
11250 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11251
11252 static void
11253 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11254 {
11255 xtensa_opcode opcode = tinsn->opcode;
11256 int opnum;
11257
11258 if (fragP->tc_frag_data.slot_symbols[slot])
11259 {
11260 opnum = get_relaxable_immed (opcode);
11261 assert (opnum >= 0);
11262 set_expr_symbol_offset (&tinsn->tok[opnum],
11263 fragP->tc_frag_data.slot_symbols[slot],
11264 fragP->tc_frag_data.slot_offsets[slot]);
11265 }
11266 }
11267
11268
11269 static int
11270 get_num_stack_text_bytes (IStack *istack)
11271 {
11272 int i;
11273 int text_bytes = 0;
11274
11275 for (i = 0; i < istack->ninsn; i++)
11276 {
11277 TInsn *tinsn = &istack->insn[i];
11278 if (tinsn->insn_type == ITYPE_INSN)
11279 text_bytes += xg_get_single_size (tinsn->opcode);
11280 }
11281 return text_bytes;
11282 }
11283
11284
11285 static int
11286 get_num_stack_literal_bytes (IStack *istack)
11287 {
11288 int i;
11289 int lit_bytes = 0;
11290
11291 for (i = 0; i < istack->ninsn; i++)
11292 {
11293 TInsn *tinsn = &istack->insn[i];
11294 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11295 lit_bytes += 4;
11296 }
11297 return lit_bytes;
11298 }
11299
11300 \f
11301 /* vliw_insn functions. */
11302
11303 static void
11304 xg_init_vinsn (vliw_insn *v)
11305 {
11306 int i;
11307 xtensa_isa isa = xtensa_default_isa;
11308
11309 xg_clear_vinsn (v);
11310
11311 v->insnbuf = xtensa_insnbuf_alloc (isa);
11312 if (v->insnbuf == NULL)
11313 as_fatal (_("out of memory"));
11314
11315 for (i = 0; i < MAX_SLOTS; i++)
11316 {
11317 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11318 if (v->slotbuf[i] == NULL)
11319 as_fatal (_("out of memory"));
11320 }
11321 }
11322
11323
11324 static void
11325 xg_clear_vinsn (vliw_insn *v)
11326 {
11327 int i;
11328
11329 memset (v, 0, offsetof (vliw_insn, insnbuf));
11330
11331 v->format = XTENSA_UNDEFINED;
11332 v->num_slots = 0;
11333 v->inside_bundle = FALSE;
11334
11335 if (xt_saved_debug_type != DEBUG_NONE)
11336 debug_type = xt_saved_debug_type;
11337
11338 for (i = 0; i < MAX_SLOTS; i++)
11339 v->slots[i].opcode = XTENSA_UNDEFINED;
11340 }
11341
11342
11343 static bfd_boolean
11344 vinsn_has_specific_opcodes (vliw_insn *v)
11345 {
11346 int i;
11347
11348 for (i = 0; i < v->num_slots; i++)
11349 {
11350 if (v->slots[i].is_specific_opcode)
11351 return TRUE;
11352 }
11353 return FALSE;
11354 }
11355
11356
11357 static void
11358 xg_free_vinsn (vliw_insn *v)
11359 {
11360 int i;
11361 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11362 for (i = 0; i < MAX_SLOTS; i++)
11363 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11364 }
11365
11366
11367 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11368 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11369
11370 static bfd_boolean
11371 vinsn_to_insnbuf (vliw_insn *vinsn,
11372 char *frag_offset,
11373 fragS *fragP,
11374 bfd_boolean record_fixup)
11375 {
11376 xtensa_isa isa = xtensa_default_isa;
11377 xtensa_format fmt = vinsn->format;
11378 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11379 int slot;
11380 bfd_boolean has_fixup = FALSE;
11381
11382 xtensa_format_encode (isa, fmt, insnbuf);
11383
11384 for (slot = 0; slot < vinsn->num_slots; slot++)
11385 {
11386 TInsn *tinsn = &vinsn->slots[slot];
11387 bfd_boolean tinsn_has_fixup =
11388 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11389 vinsn->slotbuf[slot]);
11390
11391 xtensa_format_set_slot (isa, fmt, slot,
11392 insnbuf, vinsn->slotbuf[slot]);
11393 if (tinsn_has_fixup)
11394 {
11395 int i;
11396 xtensa_opcode opcode = tinsn->opcode;
11397 int noperands = xtensa_opcode_num_operands (isa, opcode);
11398 has_fixup = TRUE;
11399
11400 for (i = 0; i < noperands; i++)
11401 {
11402 expressionS* expr = &tinsn->tok[i];
11403 switch (expr->X_op)
11404 {
11405 case O_symbol:
11406 case O_lo16:
11407 case O_hi16:
11408 if (get_relaxable_immed (opcode) == i)
11409 {
11410 /* Add a fix record for the instruction, except if this
11411 function is being called prior to relaxation, i.e.,
11412 if record_fixup is false, and the instruction might
11413 be relaxed later. */
11414 if (record_fixup
11415 || tinsn->is_specific_opcode
11416 || !xg_is_relaxable_insn (tinsn, 0))
11417 {
11418 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11419 frag_offset - fragP->fr_literal);
11420 }
11421 else
11422 {
11423 if (expr->X_op != O_symbol)
11424 as_bad (_("invalid operand"));
11425 tinsn->symbol = expr->X_add_symbol;
11426 tinsn->offset = expr->X_add_number;
11427 }
11428 }
11429 else
11430 as_bad (_("symbolic operand not allowed"));
11431 break;
11432
11433 case O_constant:
11434 case O_register:
11435 break;
11436
11437 default:
11438 as_bad (_("expression too complex"));
11439 break;
11440 }
11441 }
11442 }
11443 }
11444
11445 return has_fixup;
11446 }
11447
11448
11449 static void
11450 vinsn_from_chars (vliw_insn *vinsn, char *f)
11451 {
11452 static xtensa_insnbuf insnbuf = NULL;
11453 static xtensa_insnbuf slotbuf = NULL;
11454 int i;
11455 xtensa_format fmt;
11456 xtensa_isa isa = xtensa_default_isa;
11457
11458 if (!insnbuf)
11459 {
11460 insnbuf = xtensa_insnbuf_alloc (isa);
11461 slotbuf = xtensa_insnbuf_alloc (isa);
11462 }
11463
11464 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11465 fmt = xtensa_format_decode (isa, insnbuf);
11466 if (fmt == XTENSA_UNDEFINED)
11467 as_fatal (_("cannot decode instruction format"));
11468 vinsn->format = fmt;
11469 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11470
11471 for (i = 0; i < vinsn->num_slots; i++)
11472 {
11473 TInsn *tinsn = &vinsn->slots[i];
11474 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11475 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11476 }
11477 }
11478
11479 \f
11480 /* Expression utilities. */
11481
11482 /* Return TRUE if the expression is an integer constant. */
11483
11484 bfd_boolean
11485 expr_is_const (const expressionS *s)
11486 {
11487 return (s->X_op == O_constant);
11488 }
11489
11490
11491 /* Get the expression constant.
11492 Calling this is illegal if expr_is_const () returns TRUE. */
11493
11494 offsetT
11495 get_expr_const (const expressionS *s)
11496 {
11497 assert (expr_is_const (s));
11498 return s->X_add_number;
11499 }
11500
11501
11502 /* Set the expression to a constant value. */
11503
11504 void
11505 set_expr_const (expressionS *s, offsetT val)
11506 {
11507 s->X_op = O_constant;
11508 s->X_add_number = val;
11509 s->X_add_symbol = NULL;
11510 s->X_op_symbol = NULL;
11511 }
11512
11513
11514 bfd_boolean
11515 expr_is_register (const expressionS *s)
11516 {
11517 return (s->X_op == O_register);
11518 }
11519
11520
11521 /* Get the expression constant.
11522 Calling this is illegal if expr_is_const () returns TRUE. */
11523
11524 offsetT
11525 get_expr_register (const expressionS *s)
11526 {
11527 assert (expr_is_register (s));
11528 return s->X_add_number;
11529 }
11530
11531
11532 /* Set the expression to a symbol + constant offset. */
11533
11534 void
11535 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11536 {
11537 s->X_op = O_symbol;
11538 s->X_add_symbol = sym;
11539 s->X_op_symbol = NULL; /* unused */
11540 s->X_add_number = offset;
11541 }
11542
11543
11544 /* Return TRUE if the two expressions are equal. */
11545
11546 bfd_boolean
11547 expr_is_equal (expressionS *s1, expressionS *s2)
11548 {
11549 if (s1->X_op != s2->X_op)
11550 return FALSE;
11551 if (s1->X_add_symbol != s2->X_add_symbol)
11552 return FALSE;
11553 if (s1->X_op_symbol != s2->X_op_symbol)
11554 return FALSE;
11555 if (s1->X_add_number != s2->X_add_number)
11556 return FALSE;
11557 return TRUE;
11558 }
11559
11560
11561 static void
11562 copy_expr (expressionS *dst, const expressionS *src)
11563 {
11564 memcpy (dst, src, sizeof (expressionS));
11565 }
11566
11567 \f
11568 /* Support for the "--rename-section" option. */
11569
11570 struct rename_section_struct
11571 {
11572 char *old_name;
11573 char *new_name;
11574 struct rename_section_struct *next;
11575 };
11576
11577 static struct rename_section_struct *section_rename;
11578
11579
11580 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11581 entries to the section_rename list. Note: Specifying multiple
11582 renamings separated by colons is not documented and is retained only
11583 for backward compatibility. */
11584
11585 static void
11586 build_section_rename (const char *arg)
11587 {
11588 struct rename_section_struct *r;
11589 char *this_arg = NULL;
11590 char *next_arg = NULL;
11591
11592 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11593 {
11594 char *old_name, *new_name;
11595
11596 if (this_arg)
11597 {
11598 next_arg = strchr (this_arg, ':');
11599 if (next_arg)
11600 {
11601 *next_arg = '\0';
11602 next_arg++;
11603 }
11604 }
11605
11606 old_name = this_arg;
11607 new_name = strchr (this_arg, '=');
11608
11609 if (*old_name == '\0')
11610 {
11611 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11612 continue;
11613 }
11614 if (!new_name || new_name[1] == '\0')
11615 {
11616 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11617 old_name);
11618 continue;
11619 }
11620 *new_name = '\0';
11621 new_name++;
11622
11623 /* Check for invalid section renaming. */
11624 for (r = section_rename; r != NULL; r = r->next)
11625 {
11626 if (strcmp (r->old_name, old_name) == 0)
11627 as_bad (_("section %s renamed multiple times"), old_name);
11628 if (strcmp (r->new_name, new_name) == 0)
11629 as_bad (_("multiple sections remapped to output section %s"),
11630 new_name);
11631 }
11632
11633 /* Now add it. */
11634 r = (struct rename_section_struct *)
11635 xmalloc (sizeof (struct rename_section_struct));
11636 r->old_name = xstrdup (old_name);
11637 r->new_name = xstrdup (new_name);
11638 r->next = section_rename;
11639 section_rename = r;
11640 }
11641 }
11642
11643
11644 char *
11645 xtensa_section_rename (char *name)
11646 {
11647 struct rename_section_struct *r = section_rename;
11648
11649 for (r = section_rename; r != NULL; r = r->next)
11650 {
11651 if (strcmp (r->old_name, name) == 0)
11652 return r->new_name;
11653 }
11654
11655 return name;
11656 }
This page took 0.379297 seconds and 5 git commands to generate.