* config/tc-xtensa.c (xtensa_create_literal_symbol,
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include <string.h>
22 #include <limits.h>
23 #include "as.h"
24 #include "sb.h"
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
27 #include "frags.h"
28 #include "subsegs.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
34
35 #ifndef uint32
36 #define uint32 unsigned int
37 #endif
38 #ifndef int32
39 #define int32 signed int
40 #endif
41
42 /* Notes:
43
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = "#";
63 const char line_separator_chars[] = ";";
64 const char EXP_CHARS[] = "eE";
65 const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
70
71 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
72 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
80
81 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
85 back end. */
86 static bfd_boolean past_xtensa_end = FALSE;
87
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
91
92
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
108
109 typedef struct lit_state_struct
110 {
111 const char *lit_seg_name;
112 const char *lit4_seg_name;
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
116 segT lit4_seg;
117 segT init_lit_seg;
118 segT fini_lit_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136 static seg_list init_literal_head_h;
137 static seg_list *init_literal_head = &init_literal_head_h;
138 static seg_list fini_literal_head_h;
139 static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148 typedef struct sym_list_struct
149 {
150 struct sym_list_struct *next;
151 symbolS *sym;
152 } sym_list;
153
154 static sym_list *insn_labels = NULL;
155 static sym_list *free_insn_labels = NULL;
156 static sym_list *saved_insn_labels = NULL;
157
158 static sym_list *literal_syms;
159
160
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16 = 0;
164 int prefer_l32r = 0;
165
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals = 0;
168
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206 */
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236 #define XTENSA_PROP_ALIGN 0x00000800
237
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255 typedef struct frag_flags_struct frag_flags;
256
257 struct frag_flags_struct
258 {
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286 };
287
288
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
292 {
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298 };
299
300
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
303 {
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308 } emit_state;
309
310
311 /* Opcode placement information */
312
313 typedef unsigned long long bitfield;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318 #define MAX_FORMATS 32
319
320 typedef struct op_placement_info_struct
321 {
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
328 format. */
329 int issuef;
330 xtensa_format narrowest;
331 char narrowest_size;
332 char narrowest_slot;
333
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
336 bitfield formats;
337
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots[MAX_FORMATS];
341
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format[MAX_FORMATS];
345
346 } op_placement_info, *op_placement_info_table;
347
348 op_placement_info_table op_placement_table;
349
350
351 /* Extra expression types. */
352
353 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
356
357
358 /* Directives. */
359
360 typedef enum
361 {
362 directive_none = 0,
363 directive_literal,
364 directive_density,
365 directive_transform,
366 directive_freeregs,
367 directive_longcalls,
368 directive_literal_prefix,
369 directive_schedule,
370 directive_absolute_literals,
371 directive_last_directive
372 } directiveE;
373
374 typedef struct
375 {
376 const char *name;
377 bfd_boolean can_be_negated;
378 } directive_infoS;
379
380 const directive_infoS directive_info[] =
381 {
382 { "none", FALSE },
383 { "literal", FALSE },
384 { "density", TRUE },
385 { "transform", TRUE },
386 { "freeregs", FALSE },
387 { "longcalls", TRUE },
388 { "literal_prefix", FALSE },
389 { "schedule", TRUE },
390 { "absolute-literals", TRUE }
391 };
392
393 bfd_boolean directive_state[] =
394 {
395 FALSE, /* none */
396 FALSE, /* literal */
397 #if !XCHAL_HAVE_DENSITY
398 FALSE, /* density */
399 #else
400 TRUE, /* density */
401 #endif
402 TRUE, /* transform */
403 FALSE, /* freeregs */
404 FALSE, /* longcalls */
405 FALSE, /* literal_prefix */
406 TRUE, /* schedule */
407 #if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE /* absolute_literals */
409 #else
410 FALSE /* absolute_literals */
411 #endif
412 };
413
414
415 /* Directive functions. */
416
417 static void xtensa_begin_directive (int);
418 static void xtensa_end_directive (int);
419 static void xtensa_literal_prefix (char const *, int);
420 static void xtensa_literal_position (int);
421 static void xtensa_literal_pseudo (int);
422 static void xtensa_frequency_pseudo (int);
423 static void xtensa_elf_cons (int);
424
425 /* Parsing and Idiom Translation. */
426
427 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
428
429 /* Various Other Internal Functions. */
430
431 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
432 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
433 static void xtensa_mark_literal_pool_location (void);
434 static addressT get_expanded_loop_offset (xtensa_opcode);
435 static fragS *get_literal_pool_location (segT);
436 static void set_literal_pool_location (segT, fragS *);
437 static void xtensa_set_frag_assembly_state (fragS *);
438 static void finish_vinsn (vliw_insn *);
439 static bfd_boolean emit_single_op (TInsn *);
440 static int total_frag_text_expansion (fragS *);
441
442 /* Alignment Functions. */
443
444 static int get_text_align_power (unsigned);
445 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
446 static int branch_align_power (segT);
447
448 /* Helpers for xtensa_relax_frag(). */
449
450 static long relax_frag_add_nop (fragS *);
451
452 /* Accessors for additional per-subsegment information. */
453
454 static unsigned get_last_insn_flags (segT, subsegT);
455 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
456 static float get_subseg_total_freq (segT, subsegT);
457 static float get_subseg_target_freq (segT, subsegT);
458 static void set_subseg_freq (segT, subsegT, float, float);
459
460 /* Segment list functions. */
461
462 static void xtensa_move_literals (void);
463 static void xtensa_reorder_segments (void);
464 static void xtensa_switch_to_literal_fragment (emit_state *);
465 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
466 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
467 static void xtensa_restore_emit_state (emit_state *);
468 static void cache_literal_section
469 (seg_list *, const char *, segT *, bfd_boolean);
470
471 /* Import from elf32-xtensa.c in BFD library. */
472
473 extern char *xtensa_get_property_section_name (asection *, const char *);
474
475 /* op_placement_info functions. */
476
477 static void init_op_placement_info_table (void);
478 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
479 static int xg_get_single_size (xtensa_opcode);
480 static xtensa_format xg_get_single_format (xtensa_opcode);
481 static int xg_get_single_slot (xtensa_opcode);
482
483 /* TInsn and IStack functions. */
484
485 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
486 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
487 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
488 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
489 static bfd_boolean tinsn_check_arguments (const TInsn *);
490 static void tinsn_from_chars (TInsn *, char *, int);
491 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
492 static int get_num_stack_text_bytes (IStack *);
493 static int get_num_stack_literal_bytes (IStack *);
494
495 /* vliw_insn functions. */
496
497 static void xg_init_vinsn (vliw_insn *);
498 static void xg_clear_vinsn (vliw_insn *);
499 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
500 static void xg_free_vinsn (vliw_insn *);
501 static bfd_boolean vinsn_to_insnbuf
502 (vliw_insn *, char *, fragS *, bfd_boolean);
503 static void vinsn_from_chars (vliw_insn *, char *);
504
505 /* Expression Utilities. */
506
507 bfd_boolean expr_is_const (const expressionS *);
508 offsetT get_expr_const (const expressionS *);
509 void set_expr_const (expressionS *, offsetT);
510 bfd_boolean expr_is_register (const expressionS *);
511 offsetT get_expr_register (const expressionS *);
512 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
513 bfd_boolean expr_is_equal (expressionS *, expressionS *);
514 static void copy_expr (expressionS *, const expressionS *);
515
516 /* Section renaming. */
517
518 static void build_section_rename (const char *);
519
520
521 /* ISA imported from bfd. */
522 extern xtensa_isa xtensa_default_isa;
523
524 extern int target_big_endian;
525
526 static xtensa_opcode xtensa_addi_opcode;
527 static xtensa_opcode xtensa_addmi_opcode;
528 static xtensa_opcode xtensa_call0_opcode;
529 static xtensa_opcode xtensa_call4_opcode;
530 static xtensa_opcode xtensa_call8_opcode;
531 static xtensa_opcode xtensa_call12_opcode;
532 static xtensa_opcode xtensa_callx0_opcode;
533 static xtensa_opcode xtensa_callx4_opcode;
534 static xtensa_opcode xtensa_callx8_opcode;
535 static xtensa_opcode xtensa_callx12_opcode;
536 static xtensa_opcode xtensa_const16_opcode;
537 static xtensa_opcode xtensa_entry_opcode;
538 static xtensa_opcode xtensa_movi_opcode;
539 static xtensa_opcode xtensa_movi_n_opcode;
540 static xtensa_opcode xtensa_isync_opcode;
541 static xtensa_opcode xtensa_jx_opcode;
542 static xtensa_opcode xtensa_l32r_opcode;
543 static xtensa_opcode xtensa_loop_opcode;
544 static xtensa_opcode xtensa_loopnez_opcode;
545 static xtensa_opcode xtensa_loopgtz_opcode;
546 static xtensa_opcode xtensa_nop_opcode;
547 static xtensa_opcode xtensa_nop_n_opcode;
548 static xtensa_opcode xtensa_or_opcode;
549 static xtensa_opcode xtensa_ret_opcode;
550 static xtensa_opcode xtensa_ret_n_opcode;
551 static xtensa_opcode xtensa_retw_opcode;
552 static xtensa_opcode xtensa_retw_n_opcode;
553 static xtensa_opcode xtensa_rsr_lcount_opcode;
554 static xtensa_opcode xtensa_waiti_opcode;
555
556 \f
557 /* Command-line Options. */
558
559 bfd_boolean use_literal_section = TRUE;
560 static bfd_boolean align_targets = TRUE;
561 static bfd_boolean warn_unaligned_branch_targets = FALSE;
562 static bfd_boolean has_a0_b_retw = FALSE;
563 static bfd_boolean workaround_a0_b_retw = FALSE;
564 static bfd_boolean workaround_b_j_loop_end = FALSE;
565 static bfd_boolean workaround_short_loop = FALSE;
566 static bfd_boolean maybe_has_short_loop = FALSE;
567 static bfd_boolean workaround_close_loop_end = FALSE;
568 static bfd_boolean maybe_has_close_loop_end = FALSE;
569 static bfd_boolean enforce_three_byte_loop_align = FALSE;
570
571 /* When workaround_short_loops is TRUE, all loops with early exits must
572 have at least 3 instructions. workaround_all_short_loops is a modifier
573 to the workaround_short_loop flag. In addition to the
574 workaround_short_loop actions, all straightline loopgtz and loopnez
575 must have at least 3 instructions. */
576
577 static bfd_boolean workaround_all_short_loops = FALSE;
578
579
580 static void
581 xtensa_setup_hw_workarounds (int earliest, int latest)
582 {
583 if (earliest > latest)
584 as_fatal (_("illegal range of target hardware versions"));
585
586 /* Enable all workarounds for pre-T1050.0 hardware. */
587 if (earliest < 105000 || latest < 105000)
588 {
589 workaround_a0_b_retw |= TRUE;
590 workaround_b_j_loop_end |= TRUE;
591 workaround_short_loop |= TRUE;
592 workaround_close_loop_end |= TRUE;
593 workaround_all_short_loops |= TRUE;
594 enforce_three_byte_loop_align = TRUE;
595 }
596 }
597
598
599 enum
600 {
601 option_density = OPTION_MD_BASE,
602 option_no_density,
603
604 option_relax,
605 option_no_relax,
606
607 option_link_relax,
608 option_no_link_relax,
609
610 option_generics,
611 option_no_generics,
612
613 option_transform,
614 option_no_transform,
615
616 option_text_section_literals,
617 option_no_text_section_literals,
618
619 option_absolute_literals,
620 option_no_absolute_literals,
621
622 option_align_targets,
623 option_no_align_targets,
624
625 option_warn_unaligned_targets,
626
627 option_longcalls,
628 option_no_longcalls,
629
630 option_workaround_a0_b_retw,
631 option_no_workaround_a0_b_retw,
632
633 option_workaround_b_j_loop_end,
634 option_no_workaround_b_j_loop_end,
635
636 option_workaround_short_loop,
637 option_no_workaround_short_loop,
638
639 option_workaround_all_short_loops,
640 option_no_workaround_all_short_loops,
641
642 option_workaround_close_loop_end,
643 option_no_workaround_close_loop_end,
644
645 option_no_workarounds,
646
647 option_rename_section_name,
648
649 option_prefer_l32r,
650 option_prefer_const16,
651
652 option_target_hardware
653 };
654
655 const char *md_shortopts = "";
656
657 struct option md_longopts[] =
658 {
659 { "density", no_argument, NULL, option_density },
660 { "no-density", no_argument, NULL, option_no_density },
661
662 /* Both "relax" and "generics" are deprecated and treated as equivalent
663 to the "transform" option. */
664 { "relax", no_argument, NULL, option_relax },
665 { "no-relax", no_argument, NULL, option_no_relax },
666 { "generics", no_argument, NULL, option_generics },
667 { "no-generics", no_argument, NULL, option_no_generics },
668
669 { "transform", no_argument, NULL, option_transform },
670 { "no-transform", no_argument, NULL, option_no_transform },
671 { "text-section-literals", no_argument, NULL, option_text_section_literals },
672 { "no-text-section-literals", no_argument, NULL,
673 option_no_text_section_literals },
674 { "absolute-literals", no_argument, NULL, option_absolute_literals },
675 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
676 /* This option was changed from -align-target to -target-align
677 because it conflicted with the "-al" option. */
678 { "target-align", no_argument, NULL, option_align_targets },
679 { "no-target-align", no_argument, NULL, option_no_align_targets },
680 { "warn-unaligned-targets", no_argument, NULL,
681 option_warn_unaligned_targets },
682 { "longcalls", no_argument, NULL, option_longcalls },
683 { "no-longcalls", no_argument, NULL, option_no_longcalls },
684
685 { "no-workaround-a0-b-retw", no_argument, NULL,
686 option_no_workaround_a0_b_retw },
687 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
688
689 { "no-workaround-b-j-loop-end", no_argument, NULL,
690 option_no_workaround_b_j_loop_end },
691 { "workaround-b-j-loop-end", no_argument, NULL,
692 option_workaround_b_j_loop_end },
693
694 { "no-workaround-short-loops", no_argument, NULL,
695 option_no_workaround_short_loop },
696 { "workaround-short-loops", no_argument, NULL,
697 option_workaround_short_loop },
698
699 { "no-workaround-all-short-loops", no_argument, NULL,
700 option_no_workaround_all_short_loops },
701 { "workaround-all-short-loop", no_argument, NULL,
702 option_workaround_all_short_loops },
703
704 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
705 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
706
707 { "no-workarounds", no_argument, NULL, option_no_workarounds },
708
709 { "no-workaround-close-loop-end", no_argument, NULL,
710 option_no_workaround_close_loop_end },
711 { "workaround-close-loop-end", no_argument, NULL,
712 option_workaround_close_loop_end },
713
714 { "rename-section", required_argument, NULL, option_rename_section_name },
715
716 { "link-relax", no_argument, NULL, option_link_relax },
717 { "no-link-relax", no_argument, NULL, option_no_link_relax },
718
719 { "target-hardware", required_argument, NULL, option_target_hardware },
720
721 { NULL, no_argument, NULL, 0 }
722 };
723
724 size_t md_longopts_size = sizeof md_longopts;
725
726
727 int
728 md_parse_option (int c, char *arg)
729 {
730 switch (c)
731 {
732 case option_density:
733 as_warn (_("--density option is ignored"));
734 return 1;
735 case option_no_density:
736 as_warn (_("--no-density option is ignored"));
737 return 1;
738 case option_link_relax:
739 linkrelax = 1;
740 return 1;
741 case option_no_link_relax:
742 linkrelax = 0;
743 return 1;
744 case option_generics:
745 as_warn (_("--generics is deprecated; use --transform instead"));
746 return md_parse_option (option_transform, arg);
747 case option_no_generics:
748 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
749 return md_parse_option (option_no_transform, arg);
750 case option_relax:
751 as_warn (_("--relax is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_relax:
754 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
756 case option_longcalls:
757 directive_state[directive_longcalls] = TRUE;
758 return 1;
759 case option_no_longcalls:
760 directive_state[directive_longcalls] = FALSE;
761 return 1;
762 case option_text_section_literals:
763 use_literal_section = FALSE;
764 return 1;
765 case option_no_text_section_literals:
766 use_literal_section = TRUE;
767 return 1;
768 case option_absolute_literals:
769 if (!absolute_literals_supported)
770 {
771 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
772 return 0;
773 }
774 directive_state[directive_absolute_literals] = TRUE;
775 return 1;
776 case option_no_absolute_literals:
777 directive_state[directive_absolute_literals] = FALSE;
778 return 1;
779
780 case option_workaround_a0_b_retw:
781 workaround_a0_b_retw = TRUE;
782 return 1;
783 case option_no_workaround_a0_b_retw:
784 workaround_a0_b_retw = FALSE;
785 return 1;
786 case option_workaround_b_j_loop_end:
787 workaround_b_j_loop_end = TRUE;
788 return 1;
789 case option_no_workaround_b_j_loop_end:
790 workaround_b_j_loop_end = FALSE;
791 return 1;
792
793 case option_workaround_short_loop:
794 workaround_short_loop = TRUE;
795 return 1;
796 case option_no_workaround_short_loop:
797 workaround_short_loop = FALSE;
798 return 1;
799
800 case option_workaround_all_short_loops:
801 workaround_all_short_loops = TRUE;
802 return 1;
803 case option_no_workaround_all_short_loops:
804 workaround_all_short_loops = FALSE;
805 return 1;
806
807 case option_workaround_close_loop_end:
808 workaround_close_loop_end = TRUE;
809 return 1;
810 case option_no_workaround_close_loop_end:
811 workaround_close_loop_end = FALSE;
812 return 1;
813
814 case option_no_workarounds:
815 workaround_a0_b_retw = FALSE;
816 workaround_b_j_loop_end = FALSE;
817 workaround_short_loop = FALSE;
818 workaround_all_short_loops = FALSE;
819 workaround_close_loop_end = FALSE;
820 return 1;
821
822 case option_align_targets:
823 align_targets = TRUE;
824 return 1;
825 case option_no_align_targets:
826 align_targets = FALSE;
827 return 1;
828
829 case option_warn_unaligned_targets:
830 warn_unaligned_branch_targets = TRUE;
831 return 1;
832
833 case option_rename_section_name:
834 build_section_rename (arg);
835 return 1;
836
837 case 'Q':
838 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
839 should be emitted or not. FIXME: Not implemented. */
840 return 1;
841
842 case option_prefer_l32r:
843 if (prefer_const16)
844 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
845 prefer_l32r = 1;
846 return 1;
847
848 case option_prefer_const16:
849 if (prefer_l32r)
850 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
851 prefer_const16 = 1;
852 return 1;
853
854 case option_target_hardware:
855 {
856 int earliest, latest = 0;
857 if (*arg == 0 || *arg == '-')
858 as_fatal (_("invalid target hardware version"));
859
860 earliest = strtol (arg, &arg, 0);
861
862 if (*arg == 0)
863 latest = earliest;
864 else if (*arg == '-')
865 {
866 if (*++arg == 0)
867 as_fatal (_("invalid target hardware version"));
868 latest = strtol (arg, &arg, 0);
869 }
870 if (*arg != 0)
871 as_fatal (_("invalid target hardware version"));
872
873 xtensa_setup_hw_workarounds (earliest, latest);
874 return 1;
875 }
876
877 case option_transform:
878 /* This option has no affect other than to use the defaults,
879 which are already set. */
880 return 1;
881
882 case option_no_transform:
883 /* This option turns off all transformations of any kind.
884 However, because we want to preserve the state of other
885 directives, we only change its own field. Thus, before
886 you perform any transformation, always check if transform
887 is available. If you use the functions we provide for this
888 purpose, you will be ok. */
889 directive_state[directive_transform] = FALSE;
890 return 1;
891
892 default:
893 return 0;
894 }
895 }
896
897
898 void
899 md_show_usage (FILE *stream)
900 {
901 fputs ("\n\
902 Xtensa options:\n\
903 --[no-]text-section-literals\n\
904 [Do not] put literals in the text section\n\
905 --[no-]absolute-literals\n\
906 [Do not] default to use non-PC-relative literals\n\
907 --[no-]target-align [Do not] try to align branch targets\n\
908 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
909 --[no-]transform [Do not] transform instructions\n\
910 --rename-section old=new Rename section 'old' to 'new'\n", stream);
911 }
912
913 \f
914 /* Functions related to the list of current label symbols. */
915
916 static void
917 xtensa_add_insn_label (symbolS *sym)
918 {
919 sym_list *l;
920
921 if (!free_insn_labels)
922 l = (sym_list *) xmalloc (sizeof (sym_list));
923 else
924 {
925 l = free_insn_labels;
926 free_insn_labels = l->next;
927 }
928
929 l->sym = sym;
930 l->next = insn_labels;
931 insn_labels = l;
932 }
933
934
935 static void
936 xtensa_clear_insn_labels (void)
937 {
938 sym_list **pl;
939
940 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
941 ;
942 *pl = insn_labels;
943 insn_labels = NULL;
944 }
945
946
947 /* The "loops_ok" argument is provided to allow ignoring labels that
948 define loop ends. This fixes a bug where the NOPs to align a
949 loop opcode were included in a previous zero-cost loop:
950
951 loop a0, loopend
952 <loop1 body>
953 loopend:
954
955 loop a2, loopend2
956 <loop2 body>
957
958 would become:
959
960 loop a0, loopend
961 <loop1 body>
962 nop.n <===== bad!
963 loopend:
964
965 loop a2, loopend2
966 <loop2 body>
967
968 This argument is used to prevent moving the NOP to before the
969 loop-end label, which is what you want in this special case. */
970
971 static void
972 xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
973 {
974 sym_list *lit;
975
976 for (lit = insn_labels; lit; lit = lit->next)
977 {
978 symbolS *lit_sym = lit->sym;
979 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
980 {
981 S_SET_VALUE (lit_sym, new_offset);
982 symbol_set_frag (lit_sym, new_frag);
983 }
984 }
985 }
986
987 \f
988 /* Directive data and functions. */
989
990 typedef struct state_stackS_struct
991 {
992 directiveE directive;
993 bfd_boolean negated;
994 bfd_boolean old_state;
995 const char *file;
996 unsigned int line;
997 const void *datum;
998 struct state_stackS_struct *prev;
999 } state_stackS;
1000
1001 state_stackS *directive_state_stack;
1002
1003 const pseudo_typeS md_pseudo_table[] =
1004 {
1005 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1006 { "literal_position", xtensa_literal_position, 0 },
1007 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1008 { "long", xtensa_elf_cons, 4 },
1009 { "word", xtensa_elf_cons, 4 },
1010 { "short", xtensa_elf_cons, 2 },
1011 { "begin", xtensa_begin_directive, 0 },
1012 { "end", xtensa_end_directive, 0 },
1013 { "literal", xtensa_literal_pseudo, 0 },
1014 { "frequency", xtensa_frequency_pseudo, 0 },
1015 { NULL, 0, 0 },
1016 };
1017
1018
1019 static bfd_boolean
1020 use_transform (void)
1021 {
1022 /* After md_end, you should be checking frag by frag, rather
1023 than state directives. */
1024 assert (!past_xtensa_end);
1025 return directive_state[directive_transform];
1026 }
1027
1028
1029 static bfd_boolean
1030 do_align_targets (void)
1031 {
1032 /* Do not use this function after md_end; just look at align_targets
1033 instead. There is no target-align directive, so alignment is either
1034 enabled for all frags or not done at all. */
1035 assert (!past_xtensa_end);
1036 return align_targets && use_transform ();
1037 }
1038
1039
1040 static void
1041 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1042 {
1043 char *file;
1044 unsigned int line;
1045 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1046
1047 as_where (&file, &line);
1048
1049 stack->directive = directive;
1050 stack->negated = negated;
1051 stack->old_state = directive_state[directive];
1052 stack->file = file;
1053 stack->line = line;
1054 stack->datum = datum;
1055 stack->prev = directive_state_stack;
1056 directive_state_stack = stack;
1057
1058 directive_state[directive] = !negated;
1059 }
1060
1061
1062 static void
1063 directive_pop (directiveE *directive,
1064 bfd_boolean *negated,
1065 const char **file,
1066 unsigned int *line,
1067 const void **datum)
1068 {
1069 state_stackS *top = directive_state_stack;
1070
1071 if (!directive_state_stack)
1072 {
1073 as_bad (_("unmatched end directive"));
1074 *directive = directive_none;
1075 return;
1076 }
1077
1078 directive_state[directive_state_stack->directive] = top->old_state;
1079 *directive = top->directive;
1080 *negated = top->negated;
1081 *file = top->file;
1082 *line = top->line;
1083 *datum = top->datum;
1084 directive_state_stack = top->prev;
1085 free (top);
1086 }
1087
1088
1089 static void
1090 directive_balance (void)
1091 {
1092 while (directive_state_stack)
1093 {
1094 directiveE directive;
1095 bfd_boolean negated;
1096 const char *file;
1097 unsigned int line;
1098 const void *datum;
1099
1100 directive_pop (&directive, &negated, &file, &line, &datum);
1101 as_warn_where ((char *) file, line,
1102 _(".begin directive with no matching .end directive"));
1103 }
1104 }
1105
1106
1107 static bfd_boolean
1108 inside_directive (directiveE dir)
1109 {
1110 state_stackS *top = directive_state_stack;
1111
1112 while (top && top->directive != dir)
1113 top = top->prev;
1114
1115 return (top != NULL);
1116 }
1117
1118
1119 static void
1120 get_directive (directiveE *directive, bfd_boolean *negated)
1121 {
1122 int len;
1123 unsigned i;
1124 char *directive_string;
1125
1126 if (strncmp (input_line_pointer, "no-", 3) != 0)
1127 *negated = FALSE;
1128 else
1129 {
1130 *negated = TRUE;
1131 input_line_pointer += 3;
1132 }
1133
1134 len = strspn (input_line_pointer,
1135 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1136
1137 /* This code is a hack to make .begin [no-][generics|relax] exactly
1138 equivalent to .begin [no-]transform. We should remove it when
1139 we stop accepting those options. */
1140
1141 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1142 {
1143 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1144 directive_string = "transform";
1145 }
1146 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1147 {
1148 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1149 directive_string = "transform";
1150 }
1151 else
1152 directive_string = input_line_pointer;
1153
1154 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1155 {
1156 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1157 {
1158 input_line_pointer += len;
1159 *directive = (directiveE) i;
1160 if (*negated && !directive_info[i].can_be_negated)
1161 as_bad (_("directive %s cannot be negated"),
1162 directive_info[i].name);
1163 return;
1164 }
1165 }
1166
1167 as_bad (_("unknown directive"));
1168 *directive = (directiveE) XTENSA_UNDEFINED;
1169 }
1170
1171
1172 static void
1173 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1174 {
1175 directiveE directive;
1176 bfd_boolean negated;
1177 emit_state *state;
1178 int len;
1179 lit_state *ls;
1180
1181 get_directive (&directive, &negated);
1182 if (directive == (directiveE) XTENSA_UNDEFINED)
1183 {
1184 discard_rest_of_line ();
1185 return;
1186 }
1187
1188 if (cur_vinsn.inside_bundle)
1189 as_bad (_("directives are not valid inside bundles"));
1190
1191 switch (directive)
1192 {
1193 case directive_literal:
1194 if (!inside_directive (directive_literal))
1195 {
1196 /* Previous labels go with whatever follows this directive, not with
1197 the literal, so save them now. */
1198 saved_insn_labels = insn_labels;
1199 insn_labels = NULL;
1200 }
1201 as_warn (_(".begin literal is deprecated; use .literal instead"));
1202 state = (emit_state *) xmalloc (sizeof (emit_state));
1203 xtensa_switch_to_literal_fragment (state);
1204 directive_push (directive_literal, negated, state);
1205 break;
1206
1207 case directive_literal_prefix:
1208 /* Have to flush pending output because a movi relaxed to an l32r
1209 might produce a literal. */
1210 md_flush_pending_output ();
1211 /* Check to see if the current fragment is a literal
1212 fragment. If it is, then this operation is not allowed. */
1213 if (generating_literals)
1214 {
1215 as_bad (_("cannot set literal_prefix inside literal fragment"));
1216 return;
1217 }
1218
1219 /* Allocate the literal state for this section and push
1220 onto the directive stack. */
1221 ls = xmalloc (sizeof (lit_state));
1222 assert (ls);
1223
1224 *ls = default_lit_sections;
1225
1226 directive_push (directive_literal_prefix, negated, ls);
1227
1228 /* Parse the new prefix from the input_line_pointer. */
1229 SKIP_WHITESPACE ();
1230 len = strspn (input_line_pointer,
1231 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1232 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1233
1234 /* Process the new prefix. */
1235 xtensa_literal_prefix (input_line_pointer, len);
1236
1237 /* Skip the name in the input line. */
1238 input_line_pointer += len;
1239 break;
1240
1241 case directive_freeregs:
1242 /* This information is currently unused, but we'll accept the statement
1243 and just discard the rest of the line. This won't check the syntax,
1244 but it will accept every correct freeregs directive. */
1245 input_line_pointer += strcspn (input_line_pointer, "\n");
1246 directive_push (directive_freeregs, negated, 0);
1247 break;
1248
1249 case directive_schedule:
1250 md_flush_pending_output ();
1251 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1252 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1253 directive_push (directive_schedule, negated, 0);
1254 xtensa_set_frag_assembly_state (frag_now);
1255 break;
1256
1257 case directive_density:
1258 as_warn (_(".begin [no-]density is ignored"));
1259 break;
1260
1261 case directive_absolute_literals:
1262 md_flush_pending_output ();
1263 if (!absolute_literals_supported && !negated)
1264 {
1265 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1266 break;
1267 }
1268 xtensa_set_frag_assembly_state (frag_now);
1269 directive_push (directive, negated, 0);
1270 break;
1271
1272 default:
1273 md_flush_pending_output ();
1274 xtensa_set_frag_assembly_state (frag_now);
1275 directive_push (directive, negated, 0);
1276 break;
1277 }
1278
1279 demand_empty_rest_of_line ();
1280 }
1281
1282
1283 static void
1284 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1285 {
1286 directiveE begin_directive, end_directive;
1287 bfd_boolean begin_negated, end_negated;
1288 const char *file;
1289 unsigned int line;
1290 emit_state *state;
1291 emit_state **state_ptr;
1292 lit_state *s;
1293
1294 if (cur_vinsn.inside_bundle)
1295 as_bad (_("directives are not valid inside bundles"));
1296
1297 get_directive (&end_directive, &end_negated);
1298
1299 md_flush_pending_output ();
1300
1301 switch (end_directive)
1302 {
1303 case (directiveE) XTENSA_UNDEFINED:
1304 discard_rest_of_line ();
1305 return;
1306
1307 case directive_density:
1308 as_warn (_(".end [no-]density is ignored"));
1309 demand_empty_rest_of_line ();
1310 break;
1311
1312 case directive_absolute_literals:
1313 if (!absolute_literals_supported && !end_negated)
1314 {
1315 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1316 demand_empty_rest_of_line ();
1317 return;
1318 }
1319 break;
1320
1321 default:
1322 break;
1323 }
1324
1325 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1326 directive_pop (&begin_directive, &begin_negated, &file, &line,
1327 (const void **) state_ptr);
1328
1329 if (begin_directive != directive_none)
1330 {
1331 if (begin_directive != end_directive || begin_negated != end_negated)
1332 {
1333 as_bad (_("does not match begin %s%s at %s:%d"),
1334 begin_negated ? "no-" : "",
1335 directive_info[begin_directive].name, file, line);
1336 }
1337 else
1338 {
1339 switch (end_directive)
1340 {
1341 case directive_literal:
1342 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1343 xtensa_restore_emit_state (state);
1344 xtensa_set_frag_assembly_state (frag_now);
1345 free (state);
1346 if (!inside_directive (directive_literal))
1347 {
1348 /* Restore the list of current labels. */
1349 xtensa_clear_insn_labels ();
1350 insn_labels = saved_insn_labels;
1351 }
1352 break;
1353
1354 case directive_literal_prefix:
1355 /* Restore the default collection sections from saved state. */
1356 s = (lit_state *) state;
1357 assert (s);
1358
1359 default_lit_sections = *s;
1360
1361 /* free the state storage */
1362 free (s);
1363 break;
1364
1365 case directive_schedule:
1366 case directive_freeregs:
1367 break;
1368
1369 default:
1370 xtensa_set_frag_assembly_state (frag_now);
1371 break;
1372 }
1373 }
1374 }
1375
1376 demand_empty_rest_of_line ();
1377 }
1378
1379
1380 /* Place an aligned literal fragment at the current location. */
1381
1382 static void
1383 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1384 {
1385 md_flush_pending_output ();
1386
1387 if (inside_directive (directive_literal))
1388 as_warn (_(".literal_position inside literal directive; ignoring"));
1389 xtensa_mark_literal_pool_location ();
1390
1391 demand_empty_rest_of_line ();
1392 xtensa_clear_insn_labels ();
1393 }
1394
1395
1396 /* Support .literal label, expr, ... */
1397
1398 static void
1399 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1400 {
1401 emit_state state;
1402 char *p, *base_name;
1403 char c;
1404 segT dest_seg;
1405
1406 if (inside_directive (directive_literal))
1407 {
1408 as_bad (_(".literal not allowed inside .begin literal region"));
1409 ignore_rest_of_line ();
1410 return;
1411 }
1412
1413 md_flush_pending_output ();
1414
1415 /* Previous labels go with whatever follows this directive, not with
1416 the literal, so save them now. */
1417 saved_insn_labels = insn_labels;
1418 insn_labels = NULL;
1419
1420 /* If we are using text-section literals, then this is the right value... */
1421 dest_seg = now_seg;
1422
1423 base_name = input_line_pointer;
1424
1425 xtensa_switch_to_literal_fragment (&state);
1426
1427 /* ...but if we aren't using text-section-literals, then we
1428 need to put them in the section we just switched to. */
1429 if (use_literal_section || directive_state[directive_absolute_literals])
1430 dest_seg = now_seg;
1431
1432 /* All literals are aligned to four-byte boundaries. */
1433 frag_align (2, 0, 0);
1434 record_alignment (now_seg, 2);
1435
1436 c = get_symbol_end ();
1437 /* Just after name is now '\0'. */
1438 p = input_line_pointer;
1439 *p = c;
1440 SKIP_WHITESPACE ();
1441
1442 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1443 {
1444 as_bad (_("expected comma or colon after symbol name; "
1445 "rest of line ignored"));
1446 ignore_rest_of_line ();
1447 xtensa_restore_emit_state (&state);
1448 return;
1449 }
1450 *p = 0;
1451
1452 colon (base_name);
1453
1454 *p = c;
1455 input_line_pointer++; /* skip ',' or ':' */
1456
1457 xtensa_elf_cons (4);
1458
1459 xtensa_restore_emit_state (&state);
1460
1461 /* Restore the list of current labels. */
1462 xtensa_clear_insn_labels ();
1463 insn_labels = saved_insn_labels;
1464 }
1465
1466
1467 static void
1468 xtensa_literal_prefix (char const *start, int len)
1469 {
1470 char *name, *linkonce_suffix;
1471 char *newname, *newname4;
1472 size_t linkonce_len;
1473
1474 /* Get a null-terminated copy of the name. */
1475 name = xmalloc (len + 1);
1476 assert (name);
1477
1478 strncpy (name, start, len);
1479 name[len] = 0;
1480
1481 /* Allocate the sections (interesting note: the memory pointing to
1482 the name is actually used for the name by the new section). */
1483
1484 newname = xmalloc (len + strlen (".literal") + 1);
1485 newname4 = xmalloc (len + strlen (".lit4") + 1);
1486
1487 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1488 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1489 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1490 {
1491 strcpy (newname, ".gnu.linkonce.literal");
1492 strcpy (newname4, ".gnu.linkonce.lit4");
1493
1494 strcat (newname, linkonce_suffix);
1495 strcat (newname4, linkonce_suffix);
1496 }
1497 else
1498 {
1499 int suffix_pos = len;
1500
1501 /* If the section name ends with ".text", then replace that suffix
1502 instead of appending an additional suffix. */
1503 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1504 suffix_pos -= 5;
1505
1506 strcpy (newname, name);
1507 strcpy (newname4, name);
1508
1509 strcpy (newname + suffix_pos, ".literal");
1510 strcpy (newname4 + suffix_pos, ".lit4");
1511 }
1512
1513 /* Note that cache_literal_section does not create a segment if
1514 it already exists. */
1515 default_lit_sections.lit_seg = NULL;
1516 default_lit_sections.lit4_seg = NULL;
1517
1518 /* Canonicalizing section names allows renaming literal
1519 sections to occur correctly. */
1520 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1521 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
1522
1523 free (name);
1524 }
1525
1526
1527 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1528
1529 static void
1530 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1531 {
1532 float fall_through_f, target_f;
1533
1534 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (fall_through_f < 0)
1536 {
1537 as_bad (_("fall through frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1543 if (target_f < 0)
1544 {
1545 as_bad (_("branch target frequency must be greater than 0"));
1546 ignore_rest_of_line ();
1547 return;
1548 }
1549
1550 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1551
1552 demand_empty_rest_of_line ();
1553 }
1554
1555
1556 /* Like normal .long/.short/.word, except support @plt, etc.
1557 Clobbers input_line_pointer, checks end-of-line. */
1558
1559 static void
1560 xtensa_elf_cons (int nbytes)
1561 {
1562 expressionS exp;
1563 bfd_reloc_code_real_type reloc;
1564
1565 md_flush_pending_output ();
1566
1567 if (cur_vinsn.inside_bundle)
1568 as_bad (_("directives are not valid inside bundles"));
1569
1570 if (is_it_end_of_statement ())
1571 {
1572 demand_empty_rest_of_line ();
1573 return;
1574 }
1575
1576 do
1577 {
1578 expression (&exp);
1579 if (exp.X_op == O_symbol
1580 && *input_line_pointer == '@'
1581 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1582 != BFD_RELOC_NONE))
1583 {
1584 reloc_howto_type *reloc_howto =
1585 bfd_reloc_type_lookup (stdoutput, reloc);
1586
1587 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1588 as_bad (_("unsupported relocation"));
1589 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1590 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1591 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1592 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1593 as_bad (_("opcode-specific %s relocation used outside "
1594 "an instruction"), reloc_howto->name);
1595 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1596 as_bad (_("%s relocations do not fit in %d bytes"),
1597 reloc_howto->name, nbytes);
1598 else
1599 {
1600 char *p = frag_more ((int) nbytes);
1601 xtensa_set_frag_assembly_state (frag_now);
1602 fix_new_exp (frag_now, p - frag_now->fr_literal,
1603 nbytes, &exp, 0, reloc);
1604 }
1605 }
1606 else
1607 emit_expr (&exp, (unsigned int) nbytes);
1608 }
1609 while (*input_line_pointer++ == ',');
1610
1611 input_line_pointer--; /* Put terminator back into stream. */
1612 demand_empty_rest_of_line ();
1613 }
1614
1615 \f
1616 /* Parsing and Idiom Translation. */
1617
1618 /* Parse @plt, etc. and return the desired relocation. */
1619 static bfd_reloc_code_real_type
1620 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1621 {
1622 struct map_bfd
1623 {
1624 char *string;
1625 int length;
1626 bfd_reloc_code_real_type reloc;
1627 };
1628
1629 char ident[20];
1630 char *str = *str_p;
1631 char *str2;
1632 int ch;
1633 int len;
1634 struct map_bfd *ptr;
1635
1636 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1637
1638 static struct map_bfd mapping[] =
1639 {
1640 MAP ("l", BFD_RELOC_LO16),
1641 MAP ("h", BFD_RELOC_HI16),
1642 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1643 { (char *) 0, 0, BFD_RELOC_UNUSED }
1644 };
1645
1646 if (*str++ != '@')
1647 return BFD_RELOC_NONE;
1648
1649 for (ch = *str, str2 = ident;
1650 (str2 < ident + sizeof (ident) - 1
1651 && (ISALNUM (ch) || ch == '@'));
1652 ch = *++str)
1653 {
1654 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1655 }
1656
1657 *str2 = '\0';
1658 len = str2 - ident;
1659
1660 ch = ident[0];
1661 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1662 if (ch == ptr->string[0]
1663 && len == ptr->length
1664 && memcmp (ident, ptr->string, ptr->length) == 0)
1665 {
1666 /* Now check for "identifier@suffix+constant". */
1667 if (*str == '-' || *str == '+')
1668 {
1669 char *orig_line = input_line_pointer;
1670 expressionS new_exp;
1671
1672 input_line_pointer = str;
1673 expression (&new_exp);
1674 if (new_exp.X_op == O_constant)
1675 {
1676 exp_p->X_add_number += new_exp.X_add_number;
1677 str = input_line_pointer;
1678 }
1679
1680 if (&input_line_pointer != str_p)
1681 input_line_pointer = orig_line;
1682 }
1683
1684 *str_p = str;
1685 return ptr->reloc;
1686 }
1687
1688 return BFD_RELOC_UNUSED;
1689 }
1690
1691
1692 static const char *
1693 expression_end (const char *name)
1694 {
1695 while (1)
1696 {
1697 switch (*name)
1698 {
1699 case '}':
1700 case ';':
1701 case '\0':
1702 case ',':
1703 case ':':
1704 return name;
1705 case ' ':
1706 case '\t':
1707 ++name;
1708 continue;
1709 default:
1710 return 0;
1711 }
1712 }
1713 }
1714
1715
1716 #define ERROR_REG_NUM ((unsigned) -1)
1717
1718 static unsigned
1719 tc_get_register (const char *prefix)
1720 {
1721 unsigned reg;
1722 const char *next_expr;
1723 const char *old_line_pointer;
1724
1725 SKIP_WHITESPACE ();
1726 old_line_pointer = input_line_pointer;
1727
1728 if (*input_line_pointer == '$')
1729 ++input_line_pointer;
1730
1731 /* Accept "sp" as a synonym for "a1". */
1732 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1733 && expression_end (input_line_pointer + 2))
1734 {
1735 input_line_pointer += 2;
1736 return 1; /* AR[1] */
1737 }
1738
1739 while (*input_line_pointer++ == *prefix++)
1740 ;
1741 --input_line_pointer;
1742 --prefix;
1743
1744 if (*prefix)
1745 {
1746 as_bad (_("bad register name: %s"), old_line_pointer);
1747 return ERROR_REG_NUM;
1748 }
1749
1750 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1751 {
1752 as_bad (_("bad register number: %s"), input_line_pointer);
1753 return ERROR_REG_NUM;
1754 }
1755
1756 reg = 0;
1757
1758 while (ISDIGIT ((int) *input_line_pointer))
1759 reg = reg * 10 + *input_line_pointer++ - '0';
1760
1761 if (!(next_expr = expression_end (input_line_pointer)))
1762 {
1763 as_bad (_("bad register name: %s"), old_line_pointer);
1764 return ERROR_REG_NUM;
1765 }
1766
1767 input_line_pointer = (char *) next_expr;
1768
1769 return reg;
1770 }
1771
1772
1773 static void
1774 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1775 {
1776 xtensa_isa isa = xtensa_default_isa;
1777
1778 /* Check if this is an immediate operand. */
1779 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1780 {
1781 bfd_reloc_code_real_type reloc;
1782 segT t = expression (tok);
1783 if (t == absolute_section
1784 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1785 {
1786 assert (tok->X_op == O_constant);
1787 tok->X_op = O_symbol;
1788 tok->X_add_symbol = &abs_symbol;
1789 }
1790
1791 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1792 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1793 && (reloc != BFD_RELOC_NONE))
1794 {
1795 switch (reloc)
1796 {
1797 default:
1798 case BFD_RELOC_UNUSED:
1799 as_bad (_("unsupported relocation"));
1800 break;
1801
1802 case BFD_RELOC_XTENSA_PLT:
1803 tok->X_op = O_pltrel;
1804 break;
1805
1806 case BFD_RELOC_LO16:
1807 if (tok->X_op == O_constant)
1808 tok->X_add_number &= 0xffff;
1809 else
1810 tok->X_op = O_lo16;
1811 break;
1812
1813 case BFD_RELOC_HI16:
1814 if (tok->X_op == O_constant)
1815 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1816 else
1817 tok->X_op = O_hi16;
1818 break;
1819 }
1820 }
1821 }
1822 else
1823 {
1824 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1825 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1826
1827 if (reg != ERROR_REG_NUM) /* Already errored */
1828 {
1829 uint32 buf = reg;
1830 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1831 as_bad (_("register number out of range"));
1832 }
1833
1834 tok->X_op = O_register;
1835 tok->X_add_symbol = 0;
1836 tok->X_add_number = reg;
1837 }
1838 }
1839
1840
1841 /* Split up the arguments for an opcode or pseudo-op. */
1842
1843 static int
1844 tokenize_arguments (char **args, char *str)
1845 {
1846 char *old_input_line_pointer;
1847 bfd_boolean saw_comma = FALSE;
1848 bfd_boolean saw_arg = FALSE;
1849 bfd_boolean saw_colon = FALSE;
1850 int num_args = 0;
1851 char *arg_end, *arg;
1852 int arg_len;
1853
1854 /* Save and restore input_line_pointer around this function. */
1855 old_input_line_pointer = input_line_pointer;
1856 input_line_pointer = str;
1857
1858 while (*input_line_pointer)
1859 {
1860 SKIP_WHITESPACE ();
1861 switch (*input_line_pointer)
1862 {
1863 case '\0':
1864 case '}':
1865 goto fini;
1866
1867 case ':':
1868 input_line_pointer++;
1869 if (saw_comma || saw_colon || !saw_arg)
1870 goto err;
1871 saw_colon = TRUE;
1872 break;
1873
1874 case ',':
1875 input_line_pointer++;
1876 if (saw_comma || saw_colon || !saw_arg)
1877 goto err;
1878 saw_comma = TRUE;
1879 break;
1880
1881 default:
1882 if (!saw_comma && !saw_colon && saw_arg)
1883 goto err;
1884
1885 arg_end = input_line_pointer + 1;
1886 while (!expression_end (arg_end))
1887 arg_end += 1;
1888
1889 arg_len = arg_end - input_line_pointer;
1890 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1891 args[num_args] = arg;
1892
1893 if (saw_colon)
1894 *arg++ = ':';
1895 strncpy (arg, input_line_pointer, arg_len);
1896 arg[arg_len] = '\0';
1897
1898 input_line_pointer = arg_end;
1899 num_args += 1;
1900 saw_comma = FALSE;
1901 saw_colon = FALSE;
1902 saw_arg = TRUE;
1903 break;
1904 }
1905 }
1906
1907 fini:
1908 if (saw_comma || saw_colon)
1909 goto err;
1910 input_line_pointer = old_input_line_pointer;
1911 return num_args;
1912
1913 err:
1914 if (saw_comma)
1915 as_bad (_("extra comma"));
1916 else if (saw_colon)
1917 as_bad (_("extra colon"));
1918 else if (!saw_arg)
1919 as_bad (_("missing argument"));
1920 else
1921 as_bad (_("missing comma or colon"));
1922 input_line_pointer = old_input_line_pointer;
1923 return -1;
1924 }
1925
1926
1927 /* Parse the arguments to an opcode. Return TRUE on error. */
1928
1929 static bfd_boolean
1930 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1931 {
1932 expressionS *tok, *last_tok;
1933 xtensa_opcode opcode = insn->opcode;
1934 bfd_boolean had_error = TRUE;
1935 xtensa_isa isa = xtensa_default_isa;
1936 int n, num_regs = 0;
1937 int opcode_operand_count;
1938 int opnd_cnt, last_opnd_cnt;
1939 unsigned int next_reg = 0;
1940 char *old_input_line_pointer;
1941
1942 if (insn->insn_type == ITYPE_LITERAL)
1943 opcode_operand_count = 1;
1944 else
1945 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1946
1947 tok = insn->tok;
1948 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1949
1950 /* Save and restore input_line_pointer around this function. */
1951 old_input_line_pointer = input_line_pointer;
1952
1953 last_tok = 0;
1954 last_opnd_cnt = -1;
1955 opnd_cnt = 0;
1956
1957 /* Skip invisible operands. */
1958 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1959 {
1960 opnd_cnt += 1;
1961 tok++;
1962 }
1963
1964 for (n = 0; n < num_args; n++)
1965 {
1966 input_line_pointer = arg_strings[n];
1967 if (*input_line_pointer == ':')
1968 {
1969 xtensa_regfile opnd_rf;
1970 input_line_pointer++;
1971 if (num_regs == 0)
1972 goto err;
1973 assert (opnd_cnt > 0);
1974 num_regs--;
1975 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
1976 if (next_reg
1977 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
1978 as_warn (_("incorrect register number, ignoring"));
1979 next_reg++;
1980 }
1981 else
1982 {
1983 if (opnd_cnt >= opcode_operand_count)
1984 {
1985 as_warn (_("too many arguments"));
1986 goto err;
1987 }
1988 assert (opnd_cnt < MAX_INSN_ARGS);
1989
1990 expression_maybe_register (opcode, opnd_cnt, tok);
1991 next_reg = tok->X_add_number + 1;
1992
1993 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1994 goto err;
1995 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
1996 {
1997 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
1998 /* minus 1 because we are seeing one right now */
1999 }
2000 else
2001 num_regs = 0;
2002
2003 last_tok = tok;
2004 last_opnd_cnt = opnd_cnt;
2005
2006 do
2007 {
2008 opnd_cnt += 1;
2009 tok++;
2010 }
2011 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2012 }
2013 }
2014
2015 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2016 goto err;
2017
2018 insn->ntok = tok - insn->tok;
2019 had_error = FALSE;
2020
2021 err:
2022 input_line_pointer = old_input_line_pointer;
2023 return had_error;
2024 }
2025
2026
2027 static int
2028 get_invisible_operands (TInsn *insn)
2029 {
2030 xtensa_isa isa = xtensa_default_isa;
2031 static xtensa_insnbuf slotbuf = NULL;
2032 xtensa_format fmt;
2033 xtensa_opcode opc = insn->opcode;
2034 int slot, opnd, fmt_found;
2035 unsigned val;
2036
2037 if (!slotbuf)
2038 slotbuf = xtensa_insnbuf_alloc (isa);
2039
2040 /* Find format/slot where this can be encoded. */
2041 fmt_found = 0;
2042 slot = 0;
2043 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2044 {
2045 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2046 {
2047 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2048 {
2049 fmt_found = 1;
2050 break;
2051 }
2052 }
2053 if (fmt_found) break;
2054 }
2055
2056 if (!fmt_found)
2057 {
2058 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2059 return -1;
2060 }
2061
2062 /* First encode all the visible operands
2063 (to deal with shared field operands). */
2064 for (opnd = 0; opnd < insn->ntok; opnd++)
2065 {
2066 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2067 && (insn->tok[opnd].X_op == O_register
2068 || insn->tok[opnd].X_op == O_constant))
2069 {
2070 val = insn->tok[opnd].X_add_number;
2071 xtensa_operand_encode (isa, opc, opnd, &val);
2072 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2073 }
2074 }
2075
2076 /* Then pull out the values for the invisible ones. */
2077 for (opnd = 0; opnd < insn->ntok; opnd++)
2078 {
2079 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2080 {
2081 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2082 xtensa_operand_decode (isa, opc, opnd, &val);
2083 insn->tok[opnd].X_add_number = val;
2084 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2085 insn->tok[opnd].X_op = O_register;
2086 else
2087 insn->tok[opnd].X_op = O_constant;
2088 }
2089 }
2090
2091 return 0;
2092 }
2093
2094
2095 static void
2096 xg_reverse_shift_count (char **cnt_argp)
2097 {
2098 char *cnt_arg, *new_arg;
2099 cnt_arg = *cnt_argp;
2100
2101 /* replace the argument with "31-(argument)" */
2102 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2103 sprintf (new_arg, "31-(%s)", cnt_arg);
2104
2105 free (cnt_arg);
2106 *cnt_argp = new_arg;
2107 }
2108
2109
2110 /* If "arg" is a constant expression, return non-zero with the value
2111 in *valp. */
2112
2113 static int
2114 xg_arg_is_constant (char *arg, offsetT *valp)
2115 {
2116 expressionS exp;
2117 char *save_ptr = input_line_pointer;
2118
2119 input_line_pointer = arg;
2120 expression (&exp);
2121 input_line_pointer = save_ptr;
2122
2123 if (exp.X_op == O_constant)
2124 {
2125 *valp = exp.X_add_number;
2126 return 1;
2127 }
2128
2129 return 0;
2130 }
2131
2132
2133 static void
2134 xg_replace_opname (char **popname, char *newop)
2135 {
2136 free (*popname);
2137 *popname = (char *) xmalloc (strlen (newop) + 1);
2138 strcpy (*popname, newop);
2139 }
2140
2141
2142 static int
2143 xg_check_num_args (int *pnum_args,
2144 int expected_num,
2145 char *opname,
2146 char **arg_strings)
2147 {
2148 int num_args = *pnum_args;
2149
2150 if (num_args < expected_num)
2151 {
2152 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2153 num_args, opname, expected_num);
2154 return -1;
2155 }
2156
2157 if (num_args > expected_num)
2158 {
2159 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2160 num_args, opname, expected_num);
2161 while (num_args-- > expected_num)
2162 {
2163 free (arg_strings[num_args]);
2164 arg_strings[num_args] = 0;
2165 }
2166 *pnum_args = expected_num;
2167 return -1;
2168 }
2169
2170 return 0;
2171 }
2172
2173
2174 /* If the register is not specified as part of the opcode,
2175 then get it from the operand and move it to the opcode. */
2176
2177 static int
2178 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2179 {
2180 xtensa_isa isa = xtensa_default_isa;
2181 xtensa_sysreg sr;
2182 char *opname, *new_opname;
2183 const char *sr_name;
2184 int is_user, is_write;
2185
2186 opname = *popname;
2187 if (*opname == '_')
2188 opname += 1;
2189 is_user = (opname[1] == 'u');
2190 is_write = (opname[0] == 'w');
2191
2192 /* Opname == [rw]ur or [rwx]sr... */
2193
2194 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2195 return -1;
2196
2197 /* Check if the argument is a symbolic register name. */
2198 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2199 /* Handle WSR to "INTSET" as a special case. */
2200 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2201 && !strcasecmp (arg_strings[1], "intset"))
2202 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2203 if (sr == XTENSA_UNDEFINED
2204 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2205 {
2206 /* Maybe it's a register number.... */
2207 offsetT val;
2208 if (!xg_arg_is_constant (arg_strings[1], &val))
2209 {
2210 as_bad (_("invalid register '%s' for '%s' instruction"),
2211 arg_strings[1], opname);
2212 return -1;
2213 }
2214 sr = xtensa_sysreg_lookup (isa, val, is_user);
2215 if (sr == XTENSA_UNDEFINED)
2216 {
2217 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2218 (long) val, opname);
2219 return -1;
2220 }
2221 }
2222
2223 /* Remove the last argument, which is now part of the opcode. */
2224 free (arg_strings[1]);
2225 arg_strings[1] = 0;
2226 *pnum_args = 1;
2227
2228 /* Translate the opcode. */
2229 sr_name = xtensa_sysreg_name (isa, sr);
2230 /* Another special case for "WSR.INTSET".... */
2231 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2232 sr_name = "intset";
2233 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2234 sprintf (new_opname, "%s.%s", *popname, sr_name);
2235 free (*popname);
2236 *popname = new_opname;
2237
2238 return 0;
2239 }
2240
2241
2242 static int
2243 xtensa_translate_old_userreg_ops (char **popname)
2244 {
2245 xtensa_isa isa = xtensa_default_isa;
2246 xtensa_sysreg sr;
2247 char *opname, *new_opname;
2248 const char *sr_name;
2249 bfd_boolean has_underbar = FALSE;
2250
2251 opname = *popname;
2252 if (opname[0] == '_')
2253 {
2254 has_underbar = TRUE;
2255 opname += 1;
2256 }
2257
2258 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2259 if (sr != XTENSA_UNDEFINED)
2260 {
2261 /* The new default name ("nnn") is different from the old default
2262 name ("URnnn"). The old default is handled below, and we don't
2263 want to recognize [RW]nnn, so do nothing if the name is the (new)
2264 default. */
2265 static char namebuf[10];
2266 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2267 if (strcmp (namebuf, opname + 1) == 0)
2268 return 0;
2269 }
2270 else
2271 {
2272 offsetT val;
2273 char *end;
2274
2275 /* Only continue if the reg name is "URnnn". */
2276 if (opname[1] != 'u' || opname[2] != 'r')
2277 return 0;
2278 val = strtoul (opname + 3, &end, 10);
2279 if (*end != '\0')
2280 return 0;
2281
2282 sr = xtensa_sysreg_lookup (isa, val, 1);
2283 if (sr == XTENSA_UNDEFINED)
2284 {
2285 as_bad (_("invalid register number (%ld) for '%s'"),
2286 (long) val, opname);
2287 return -1;
2288 }
2289 }
2290
2291 /* Translate the opcode. */
2292 sr_name = xtensa_sysreg_name (isa, sr);
2293 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2294 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2295 opname[0], sr_name);
2296 free (*popname);
2297 *popname = new_opname;
2298
2299 return 0;
2300 }
2301
2302
2303 static int
2304 xtensa_translate_zero_immed (char *old_op,
2305 char *new_op,
2306 char **popname,
2307 int *pnum_args,
2308 char **arg_strings)
2309 {
2310 char *opname;
2311 offsetT val;
2312
2313 opname = *popname;
2314 assert (opname[0] != '_');
2315
2316 if (strcmp (opname, old_op) != 0)
2317 return 0;
2318
2319 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2320 return -1;
2321 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2322 {
2323 xg_replace_opname (popname, new_op);
2324 free (arg_strings[1]);
2325 arg_strings[1] = arg_strings[2];
2326 arg_strings[2] = 0;
2327 *pnum_args = 2;
2328 }
2329
2330 return 0;
2331 }
2332
2333
2334 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2335 Returns non-zero if an error was found. */
2336
2337 static int
2338 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2339 {
2340 char *opname = *popname;
2341 bfd_boolean has_underbar = FALSE;
2342
2343 if (cur_vinsn.inside_bundle)
2344 return 0;
2345
2346 if (*opname == '_')
2347 {
2348 has_underbar = TRUE;
2349 opname += 1;
2350 }
2351
2352 if (strcmp (opname, "mov") == 0)
2353 {
2354 if (use_transform () && !has_underbar && density_supported)
2355 xg_replace_opname (popname, "mov.n");
2356 else
2357 {
2358 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2359 return -1;
2360 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2361 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2362 strcpy (arg_strings[2], arg_strings[1]);
2363 *pnum_args = 3;
2364 }
2365 return 0;
2366 }
2367
2368 if (strcmp (opname, "bbsi.l") == 0)
2369 {
2370 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2371 return -1;
2372 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2373 if (target_big_endian)
2374 xg_reverse_shift_count (&arg_strings[1]);
2375 return 0;
2376 }
2377
2378 if (strcmp (opname, "bbci.l") == 0)
2379 {
2380 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2381 return -1;
2382 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2383 if (target_big_endian)
2384 xg_reverse_shift_count (&arg_strings[1]);
2385 return 0;
2386 }
2387
2388 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2389 && strcmp (opname, "nop") == 0)
2390 {
2391 if (use_transform () && !has_underbar && density_supported)
2392 xg_replace_opname (popname, "nop.n");
2393 else
2394 {
2395 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2396 return -1;
2397 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2398 arg_strings[0] = (char *) xmalloc (3);
2399 arg_strings[1] = (char *) xmalloc (3);
2400 arg_strings[2] = (char *) xmalloc (3);
2401 strcpy (arg_strings[0], "a1");
2402 strcpy (arg_strings[1], "a1");
2403 strcpy (arg_strings[2], "a1");
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
2409 /* Recognize [RW]UR and [RWX]SR. */
2410 if ((((opname[0] == 'r' || opname[0] == 'w')
2411 && (opname[1] == 'u' || opname[1] == 's'))
2412 || (opname[0] == 'x' && opname[1] == 's'))
2413 && opname[2] == 'r'
2414 && opname[3] == '\0')
2415 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2416
2417 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2418 [RW]<name> if <name> is the non-default name of a user register. */
2419 if ((opname[0] == 'r' || opname[0] == 'w')
2420 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2421 return xtensa_translate_old_userreg_ops (popname);
2422
2423 /* Relax branches that don't allow comparisons against an immediate value
2424 of zero to the corresponding branches with implicit zero immediates. */
2425 if (!has_underbar && use_transform ())
2426 {
2427 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2428 pnum_args, arg_strings))
2429 return -1;
2430
2431 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2432 pnum_args, arg_strings))
2433 return -1;
2434
2435 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2436 pnum_args, arg_strings))
2437 return -1;
2438
2439 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2440 pnum_args, arg_strings))
2441 return -1;
2442 }
2443
2444 return 0;
2445 }
2446
2447 \f
2448 /* Functions for dealing with the Xtensa ISA. */
2449
2450 /* Currently the assembler only allows us to use a single target per
2451 fragment. Because of this, only one operand for a given
2452 instruction may be symbolic. If there is a PC-relative operand,
2453 the last one is chosen. Otherwise, the result is the number of the
2454 last immediate operand, and if there are none of those, we fail and
2455 return -1. */
2456
2457 static int
2458 get_relaxable_immed (xtensa_opcode opcode)
2459 {
2460 int last_immed = -1;
2461 int noperands, opi;
2462
2463 if (opcode == XTENSA_UNDEFINED)
2464 return -1;
2465
2466 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2467 for (opi = noperands - 1; opi >= 0; opi--)
2468 {
2469 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2470 continue;
2471 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2472 return opi;
2473 if (last_immed == -1
2474 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2475 last_immed = opi;
2476 }
2477 return last_immed;
2478 }
2479
2480
2481 static xtensa_opcode
2482 get_opcode_from_buf (const char *buf, int slot)
2483 {
2484 static xtensa_insnbuf insnbuf = NULL;
2485 static xtensa_insnbuf slotbuf = NULL;
2486 xtensa_isa isa = xtensa_default_isa;
2487 xtensa_format fmt;
2488
2489 if (!insnbuf)
2490 {
2491 insnbuf = xtensa_insnbuf_alloc (isa);
2492 slotbuf = xtensa_insnbuf_alloc (isa);
2493 }
2494
2495 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2496 fmt = xtensa_format_decode (isa, insnbuf);
2497 if (fmt == XTENSA_UNDEFINED)
2498 return XTENSA_UNDEFINED;
2499
2500 if (slot >= xtensa_format_num_slots (isa, fmt))
2501 return XTENSA_UNDEFINED;
2502
2503 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2504 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2505 }
2506
2507
2508 #ifdef TENSILICA_DEBUG
2509
2510 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2511
2512 static void
2513 xtensa_print_insn_table (void)
2514 {
2515 int num_opcodes, num_operands;
2516 xtensa_opcode opcode;
2517 xtensa_isa isa = xtensa_default_isa;
2518
2519 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2520 for (opcode = 0; opcode < num_opcodes; opcode++)
2521 {
2522 int opn;
2523 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2524 num_operands = xtensa_opcode_num_operands (isa, opcode);
2525 for (opn = 0; opn < num_operands; opn++)
2526 {
2527 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2528 continue;
2529 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2530 {
2531 xtensa_regfile opnd_rf =
2532 xtensa_operand_regfile (isa, opcode, opn);
2533 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2534 }
2535 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2536 fputs ("[lLr] ", stderr);
2537 else
2538 fputs ("i ", stderr);
2539 }
2540 fprintf (stderr, "\n");
2541 }
2542 }
2543
2544
2545 static void
2546 print_vliw_insn (xtensa_insnbuf vbuf)
2547 {
2548 xtensa_isa isa = xtensa_default_isa;
2549 xtensa_format f = xtensa_format_decode (isa, vbuf);
2550 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2551 int op;
2552
2553 fprintf (stderr, "format = %d\n", f);
2554
2555 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2556 {
2557 xtensa_opcode opcode;
2558 const char *opname;
2559 int operands;
2560
2561 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2562 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2563 opname = xtensa_opcode_name (isa, opcode);
2564
2565 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2566 fprintf (stderr, " operands = ");
2567 for (operands = 0;
2568 operands < xtensa_opcode_num_operands (isa, opcode);
2569 operands++)
2570 {
2571 unsigned int val;
2572 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2573 continue;
2574 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2575 xtensa_operand_decode (isa, opcode, operands, &val);
2576 fprintf (stderr, "%d ", val);
2577 }
2578 fprintf (stderr, "\n");
2579 }
2580 xtensa_insnbuf_free (isa, sbuf);
2581 }
2582
2583 #endif /* TENSILICA_DEBUG */
2584
2585
2586 static bfd_boolean
2587 is_direct_call_opcode (xtensa_opcode opcode)
2588 {
2589 xtensa_isa isa = xtensa_default_isa;
2590 int n, num_operands;
2591
2592 if (xtensa_opcode_is_call (isa, opcode) == 0)
2593 return FALSE;
2594
2595 num_operands = xtensa_opcode_num_operands (isa, opcode);
2596 for (n = 0; n < num_operands; n++)
2597 {
2598 if (xtensa_operand_is_register (isa, opcode, n) == 0
2599 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2600 return TRUE;
2601 }
2602 return FALSE;
2603 }
2604
2605
2606 /* Convert from BFD relocation type code to slot and operand number.
2607 Returns non-zero on failure. */
2608
2609 static int
2610 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2611 {
2612 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2613 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2614 {
2615 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2616 *is_alt = FALSE;
2617 }
2618 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2619 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2620 {
2621 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2622 *is_alt = TRUE;
2623 }
2624 else
2625 return -1;
2626
2627 return 0;
2628 }
2629
2630
2631 /* Convert from slot number to BFD relocation type code for the
2632 standard PC-relative relocations. Return BFD_RELOC_NONE on
2633 failure. */
2634
2635 static bfd_reloc_code_real_type
2636 encode_reloc (int slot)
2637 {
2638 if (slot < 0 || slot > 14)
2639 return BFD_RELOC_NONE;
2640
2641 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2642 }
2643
2644
2645 /* Convert from slot numbers to BFD relocation type code for the
2646 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2647
2648 static bfd_reloc_code_real_type
2649 encode_alt_reloc (int slot)
2650 {
2651 if (slot < 0 || slot > 14)
2652 return BFD_RELOC_NONE;
2653
2654 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2655 }
2656
2657
2658 static void
2659 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2660 xtensa_format fmt,
2661 int slot,
2662 xtensa_opcode opcode,
2663 int operand,
2664 uint32 value,
2665 const char *file,
2666 unsigned int line)
2667 {
2668 uint32 valbuf = value;
2669
2670 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2671 {
2672 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2673 == 1)
2674 as_bad_where ((char *) file, line,
2675 _("operand %d of '%s' has out of range value '%u'"),
2676 operand + 1,
2677 xtensa_opcode_name (xtensa_default_isa, opcode),
2678 value);
2679 else
2680 as_bad_where ((char *) file, line,
2681 _("operand %d of '%s' has invalid value '%u'"),
2682 operand + 1,
2683 xtensa_opcode_name (xtensa_default_isa, opcode),
2684 value);
2685 return;
2686 }
2687
2688 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2689 slotbuf, valbuf);
2690 }
2691
2692
2693 static uint32
2694 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int opnum)
2699 {
2700 uint32 val = 0;
2701 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2702 fmt, slot, slotbuf, &val);
2703 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2704 return val;
2705 }
2706
2707 \f
2708 /* Checks for rules from xtensa-relax tables. */
2709
2710 /* The routine xg_instruction_matches_option_term must return TRUE
2711 when a given option term is true. The meaning of all of the option
2712 terms is given interpretation by this function. This is needed when
2713 an option depends on the state of a directive, but there are no such
2714 options in use right now. */
2715
2716 static bfd_boolean
2717 xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2718 const ReqOrOption *option)
2719 {
2720 if (strcmp (option->option_name, "realnop") == 0
2721 || strncmp (option->option_name, "IsaUse", 6) == 0)
2722 {
2723 /* These conditions were evaluated statically when building the
2724 relaxation table. There's no need to reevaluate them now. */
2725 return TRUE;
2726 }
2727 else
2728 {
2729 as_fatal (_("internal error: unknown option name '%s'"),
2730 option->option_name);
2731 }
2732 }
2733
2734
2735 static bfd_boolean
2736 xg_instruction_matches_or_options (TInsn *insn,
2737 const ReqOrOptionList *or_option)
2738 {
2739 const ReqOrOption *option;
2740 /* Must match each of the AND terms. */
2741 for (option = or_option; option != NULL; option = option->next)
2742 {
2743 if (xg_instruction_matches_option_term (insn, option))
2744 return TRUE;
2745 }
2746 return FALSE;
2747 }
2748
2749
2750 static bfd_boolean
2751 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2752 {
2753 const ReqOption *req_options;
2754 /* Must match each of the AND terms. */
2755 for (req_options = options;
2756 req_options != NULL;
2757 req_options = req_options->next)
2758 {
2759 /* Must match one of the OR clauses. */
2760 if (!xg_instruction_matches_or_options (insn,
2761 req_options->or_option_terms))
2762 return FALSE;
2763 }
2764 return TRUE;
2765 }
2766
2767
2768 /* Return the transition rule that matches or NULL if none matches. */
2769
2770 static bfd_boolean
2771 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2772 {
2773 PreconditionList *condition_l;
2774
2775 if (rule->opcode != insn->opcode)
2776 return FALSE;
2777
2778 for (condition_l = rule->conditions;
2779 condition_l != NULL;
2780 condition_l = condition_l->next)
2781 {
2782 expressionS *exp1;
2783 expressionS *exp2;
2784 Precondition *cond = condition_l->precond;
2785
2786 switch (cond->typ)
2787 {
2788 case OP_CONSTANT:
2789 /* The expression must be the constant. */
2790 assert (cond->op_num < insn->ntok);
2791 exp1 = &insn->tok[cond->op_num];
2792 if (expr_is_const (exp1))
2793 {
2794 switch (cond->cmp)
2795 {
2796 case OP_EQUAL:
2797 if (get_expr_const (exp1) != cond->op_data)
2798 return FALSE;
2799 break;
2800 case OP_NOTEQUAL:
2801 if (get_expr_const (exp1) == cond->op_data)
2802 return FALSE;
2803 break;
2804 default:
2805 return FALSE;
2806 }
2807 }
2808 else if (expr_is_register (exp1))
2809 {
2810 switch (cond->cmp)
2811 {
2812 case OP_EQUAL:
2813 if (get_expr_register (exp1) != cond->op_data)
2814 return FALSE;
2815 break;
2816 case OP_NOTEQUAL:
2817 if (get_expr_register (exp1) == cond->op_data)
2818 return FALSE;
2819 break;
2820 default:
2821 return FALSE;
2822 }
2823 }
2824 else
2825 return FALSE;
2826 break;
2827
2828 case OP_OPERAND:
2829 assert (cond->op_num < insn->ntok);
2830 assert (cond->op_data < insn->ntok);
2831 exp1 = &insn->tok[cond->op_num];
2832 exp2 = &insn->tok[cond->op_data];
2833
2834 switch (cond->cmp)
2835 {
2836 case OP_EQUAL:
2837 if (!expr_is_equal (exp1, exp2))
2838 return FALSE;
2839 break;
2840 case OP_NOTEQUAL:
2841 if (expr_is_equal (exp1, exp2))
2842 return FALSE;
2843 break;
2844 }
2845 break;
2846
2847 case OP_LITERAL:
2848 case OP_LABEL:
2849 default:
2850 return FALSE;
2851 }
2852 }
2853 if (!xg_instruction_matches_options (insn, rule->options))
2854 return FALSE;
2855
2856 return TRUE;
2857 }
2858
2859
2860 static int
2861 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2862 {
2863 bfd_boolean a_greater = FALSE;
2864 bfd_boolean b_greater = FALSE;
2865
2866 ReqOptionList *l_a = a->options;
2867 ReqOptionList *l_b = b->options;
2868
2869 /* We only care if they both are the same except for
2870 a const16 vs. an l32r. */
2871
2872 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2873 {
2874 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2875 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2876 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2877 {
2878 if (l_or_a->is_true != l_or_b->is_true)
2879 return 0;
2880 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2881 {
2882 /* This is the case we care about. */
2883 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2884 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2885 {
2886 if (prefer_const16)
2887 a_greater = TRUE;
2888 else
2889 b_greater = TRUE;
2890 }
2891 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2892 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2893 {
2894 if (prefer_const16)
2895 b_greater = TRUE;
2896 else
2897 a_greater = TRUE;
2898 }
2899 else
2900 return 0;
2901 }
2902 l_or_a = l_or_a->next;
2903 l_or_b = l_or_b->next;
2904 }
2905 if (l_or_a || l_or_b)
2906 return 0;
2907
2908 l_a = l_a->next;
2909 l_b = l_b->next;
2910 }
2911 if (l_a || l_b)
2912 return 0;
2913
2914 /* Incomparable if the substitution was used differently in two cases. */
2915 if (a_greater && b_greater)
2916 return 0;
2917
2918 if (b_greater)
2919 return 1;
2920 if (a_greater)
2921 return -1;
2922
2923 return 0;
2924 }
2925
2926
2927 static TransitionRule *
2928 xg_instruction_match (TInsn *insn)
2929 {
2930 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2931 TransitionList *l;
2932 assert (insn->opcode < table->num_opcodes);
2933
2934 /* Walk through all of the possible transitions. */
2935 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2936 {
2937 TransitionRule *rule = l->rule;
2938 if (xg_instruction_matches_rule (insn, rule))
2939 return rule;
2940 }
2941 return NULL;
2942 }
2943
2944 \f
2945 /* Various Other Internal Functions. */
2946
2947 static bfd_boolean
2948 is_unique_insn_expansion (TransitionRule *r)
2949 {
2950 if (!r->to_instr || r->to_instr->next != NULL)
2951 return FALSE;
2952 if (r->to_instr->typ != INSTR_INSTR)
2953 return FALSE;
2954 return TRUE;
2955 }
2956
2957
2958 /* Check if there is exactly one relaxation for INSN that converts it to
2959 another instruction of equal or larger size. If so, and if TARG is
2960 non-null, go ahead and generate the relaxed instruction into TARG. If
2961 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2962 instruction, i.e., ignore relaxations that convert to an instruction of
2963 equal size. In some contexts where this function is used, only
2964 a single widening is allowed and the NARROW_ONLY argument is used to
2965 exclude cases like ADDI being "widened" to an ADDMI, which may
2966 later be relaxed to an ADDMI/ADDI pair. */
2967
2968 bfd_boolean
2969 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
2970 {
2971 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
2972 TransitionList *l;
2973 TransitionRule *match = 0;
2974
2975 assert (insn->insn_type == ITYPE_INSN);
2976 assert (insn->opcode < table->num_opcodes);
2977
2978 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2979 {
2980 TransitionRule *rule = l->rule;
2981
2982 if (xg_instruction_matches_rule (insn, rule)
2983 && is_unique_insn_expansion (rule)
2984 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
2985 <= xg_get_single_size (rule->to_instr->opcode)))
2986 {
2987 if (match)
2988 return FALSE;
2989 match = rule;
2990 }
2991 }
2992 if (!match)
2993 return FALSE;
2994
2995 if (targ)
2996 xg_build_to_insn (targ, insn, match->to_instr);
2997 return TRUE;
2998 }
2999
3000
3001 /* Return the maximum number of bytes this opcode can expand to. */
3002
3003 static int
3004 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3005 {
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
3008 int max_size = xg_get_single_size (opcode);
3009
3010 assert (opcode < table->num_opcodes);
3011
3012 for (l = table->table[opcode]; l != NULL; l = l->next)
3013 {
3014 TransitionRule *rule = l->rule;
3015 BuildInstr *build_list;
3016 int this_size = 0;
3017
3018 if (!rule)
3019 continue;
3020 build_list = rule->to_instr;
3021 if (is_unique_insn_expansion (rule))
3022 {
3023 assert (build_list->typ == INSTR_INSTR);
3024 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3025 }
3026 else
3027 for (; build_list != NULL; build_list = build_list->next)
3028 {
3029 switch (build_list->typ)
3030 {
3031 case INSTR_INSTR:
3032 this_size += xg_get_single_size (build_list->opcode);
3033 break;
3034 case INSTR_LITERAL_DEF:
3035 case INSTR_LABEL_DEF:
3036 default:
3037 break;
3038 }
3039 }
3040 if (this_size > max_size)
3041 max_size = this_size;
3042 }
3043 return max_size;
3044 }
3045
3046
3047 /* Return the maximum number of literal bytes this opcode can generate. */
3048
3049 static int
3050 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3051 {
3052 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3053 TransitionList *l;
3054 int max_size = 0;
3055
3056 assert (opcode < table->num_opcodes);
3057
3058 for (l = table->table[opcode]; l != NULL; l = l->next)
3059 {
3060 TransitionRule *rule = l->rule;
3061 BuildInstr *build_list;
3062 int this_size = 0;
3063
3064 if (!rule)
3065 continue;
3066 build_list = rule->to_instr;
3067 if (is_unique_insn_expansion (rule))
3068 {
3069 assert (build_list->typ == INSTR_INSTR);
3070 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3071 }
3072 else
3073 for (; build_list != NULL; build_list = build_list->next)
3074 {
3075 switch (build_list->typ)
3076 {
3077 case INSTR_LITERAL_DEF:
3078 /* Hard-coded 4-byte literal. */
3079 this_size += 4;
3080 break;
3081 case INSTR_INSTR:
3082 case INSTR_LABEL_DEF:
3083 default:
3084 break;
3085 }
3086 }
3087 if (this_size > max_size)
3088 max_size = this_size;
3089 }
3090 return max_size;
3091 }
3092
3093
3094 static bfd_boolean
3095 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3096 {
3097 int steps_taken = 0;
3098 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3099 TransitionList *l;
3100
3101 assert (insn->insn_type == ITYPE_INSN);
3102 assert (insn->opcode < table->num_opcodes);
3103
3104 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3105 {
3106 TransitionRule *rule = l->rule;
3107
3108 if (xg_instruction_matches_rule (insn, rule))
3109 {
3110 if (steps_taken == lateral_steps)
3111 return TRUE;
3112 steps_taken++;
3113 }
3114 }
3115 return FALSE;
3116 }
3117
3118
3119 static symbolS *
3120 get_special_literal_symbol (void)
3121 {
3122 static symbolS *sym = NULL;
3123
3124 if (sym == NULL)
3125 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3126 return sym;
3127 }
3128
3129
3130 static symbolS *
3131 get_special_label_symbol (void)
3132 {
3133 static symbolS *sym = NULL;
3134
3135 if (sym == NULL)
3136 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3137 return sym;
3138 }
3139
3140
3141 static bfd_boolean
3142 xg_valid_literal_expression (const expressionS *exp)
3143 {
3144 switch (exp->X_op)
3145 {
3146 case O_constant:
3147 case O_symbol:
3148 case O_big:
3149 case O_uminus:
3150 case O_subtract:
3151 case O_pltrel:
3152 return TRUE;
3153 default:
3154 return FALSE;
3155 }
3156 }
3157
3158
3159 /* This will check to see if the value can be converted into the
3160 operand type. It will return TRUE if it does not fit. */
3161
3162 static bfd_boolean
3163 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3164 {
3165 uint32 valbuf = value;
3166 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3167 return TRUE;
3168 return FALSE;
3169 }
3170
3171
3172 /* Assumes: All immeds are constants. Check that all constants fit
3173 into their immeds; return FALSE if not. */
3174
3175 static bfd_boolean
3176 xg_immeds_fit (const TInsn *insn)
3177 {
3178 xtensa_isa isa = xtensa_default_isa;
3179 int i;
3180
3181 int n = insn->ntok;
3182 assert (insn->insn_type == ITYPE_INSN);
3183 for (i = 0; i < n; ++i)
3184 {
3185 const expressionS *expr = &insn->tok[i];
3186 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3187 continue;
3188
3189 switch (expr->X_op)
3190 {
3191 case O_register:
3192 case O_constant:
3193 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3194 return FALSE;
3195 break;
3196
3197 default:
3198 /* The symbol should have a fixup associated with it. */
3199 assert (FALSE);
3200 break;
3201 }
3202 }
3203 return TRUE;
3204 }
3205
3206
3207 /* This should only be called after we have an initial
3208 estimate of the addresses. */
3209
3210 static bfd_boolean
3211 xg_symbolic_immeds_fit (const TInsn *insn,
3212 segT pc_seg,
3213 fragS *pc_frag,
3214 offsetT pc_offset,
3215 long stretch)
3216 {
3217 xtensa_isa isa = xtensa_default_isa;
3218 symbolS *symbolP;
3219 fragS *sym_frag;
3220 offsetT target, pc;
3221 uint32 new_offset;
3222 int i;
3223 int n = insn->ntok;
3224
3225 assert (insn->insn_type == ITYPE_INSN);
3226
3227 for (i = 0; i < n; ++i)
3228 {
3229 const expressionS *expr = &insn->tok[i];
3230 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3231 continue;
3232
3233 switch (expr->X_op)
3234 {
3235 case O_register:
3236 case O_constant:
3237 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3238 return FALSE;
3239 break;
3240
3241 case O_lo16:
3242 case O_hi16:
3243 /* Check for the worst case. */
3244 if (xg_check_operand (0xffff, insn->opcode, i))
3245 return FALSE;
3246 break;
3247
3248 case O_symbol:
3249 /* We only allow symbols for PC-relative references.
3250 If pc_frag == 0, then we don't have frag locations yet. */
3251 if (pc_frag == 0
3252 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3253 return FALSE;
3254
3255 /* If it is a weak symbol, then assume it won't reach. */
3256 if (S_IS_WEAK (expr->X_add_symbol))
3257 return FALSE;
3258
3259 if (is_direct_call_opcode (insn->opcode)
3260 && ! pc_frag->tc_frag_data.use_longcalls)
3261 {
3262 /* If callee is undefined or in a different segment, be
3263 optimistic and assume it will be in range. */
3264 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3265 return TRUE;
3266 }
3267
3268 /* Only references within a segment can be known to fit in the
3269 operands at assembly time. */
3270 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3271 return FALSE;
3272
3273 symbolP = expr->X_add_symbol;
3274 sym_frag = symbol_get_frag (symbolP);
3275 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3276 pc = pc_frag->fr_address + pc_offset;
3277
3278 /* If frag has yet to be reached on this pass, assume it
3279 will move by STRETCH just as we did. If this is not so,
3280 it will be because some frag between grows, and that will
3281 force another pass. Beware zero-length frags. There
3282 should be a faster way to do this. */
3283
3284 if (stretch != 0
3285 && sym_frag->relax_marker != pc_frag->relax_marker
3286 && S_GET_SEGMENT (symbolP) == pc_seg)
3287 {
3288 target += stretch;
3289 }
3290
3291 new_offset = target;
3292 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3293 if (xg_check_operand (new_offset, insn->opcode, i))
3294 return FALSE;
3295 break;
3296
3297 default:
3298 /* The symbol should have a fixup associated with it. */
3299 return FALSE;
3300 }
3301 }
3302
3303 return TRUE;
3304 }
3305
3306
3307 /* Return TRUE on success. */
3308
3309 static bfd_boolean
3310 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3311 {
3312 BuildOp *op;
3313 symbolS *sym;
3314
3315 memset (targ, 0, sizeof (TInsn));
3316 targ->linenum = insn->linenum;
3317 switch (bi->typ)
3318 {
3319 case INSTR_INSTR:
3320 op = bi->ops;
3321 targ->opcode = bi->opcode;
3322 targ->insn_type = ITYPE_INSN;
3323 targ->is_specific_opcode = FALSE;
3324
3325 for (; op != NULL; op = op->next)
3326 {
3327 int op_num = op->op_num;
3328 int op_data = op->op_data;
3329
3330 assert (op->op_num < MAX_INSN_ARGS);
3331
3332 if (targ->ntok <= op_num)
3333 targ->ntok = op_num + 1;
3334
3335 switch (op->typ)
3336 {
3337 case OP_CONSTANT:
3338 set_expr_const (&targ->tok[op_num], op_data);
3339 break;
3340 case OP_OPERAND:
3341 assert (op_data < insn->ntok);
3342 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3343 break;
3344 case OP_LITERAL:
3345 sym = get_special_literal_symbol ();
3346 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3347 break;
3348 case OP_LABEL:
3349 sym = get_special_label_symbol ();
3350 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3351 break;
3352 case OP_OPERAND_HI16U:
3353 case OP_OPERAND_LOW16U:
3354 assert (op_data < insn->ntok);
3355 if (expr_is_const (&insn->tok[op_data]))
3356 {
3357 long val;
3358 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3359 val = xg_apply_userdef_op_fn (op->typ,
3360 targ->tok[op_num].
3361 X_add_number);
3362 targ->tok[op_num].X_add_number = val;
3363 }
3364 else
3365 {
3366 /* For const16 we can create relocations for these. */
3367 if (targ->opcode == XTENSA_UNDEFINED
3368 || (targ->opcode != xtensa_const16_opcode))
3369 return FALSE;
3370 assert (op_data < insn->ntok);
3371 /* Need to build a O_lo16 or O_hi16. */
3372 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3373 if (targ->tok[op_num].X_op == O_symbol)
3374 {
3375 if (op->typ == OP_OPERAND_HI16U)
3376 targ->tok[op_num].X_op = O_hi16;
3377 else if (op->typ == OP_OPERAND_LOW16U)
3378 targ->tok[op_num].X_op = O_lo16;
3379 else
3380 return FALSE;
3381 }
3382 }
3383 break;
3384 default:
3385 /* currently handles:
3386 OP_OPERAND_LOW8
3387 OP_OPERAND_HI24S
3388 OP_OPERAND_F32MINUS */
3389 if (xg_has_userdef_op_fn (op->typ))
3390 {
3391 assert (op_data < insn->ntok);
3392 if (expr_is_const (&insn->tok[op_data]))
3393 {
3394 long val;
3395 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3396 val = xg_apply_userdef_op_fn (op->typ,
3397 targ->tok[op_num].
3398 X_add_number);
3399 targ->tok[op_num].X_add_number = val;
3400 }
3401 else
3402 return FALSE; /* We cannot use a relocation for this. */
3403 break;
3404 }
3405 assert (0);
3406 break;
3407 }
3408 }
3409 break;
3410
3411 case INSTR_LITERAL_DEF:
3412 op = bi->ops;
3413 targ->opcode = XTENSA_UNDEFINED;
3414 targ->insn_type = ITYPE_LITERAL;
3415 targ->is_specific_opcode = FALSE;
3416 for (; op != NULL; op = op->next)
3417 {
3418 int op_num = op->op_num;
3419 int op_data = op->op_data;
3420 assert (op->op_num < MAX_INSN_ARGS);
3421
3422 if (targ->ntok <= op_num)
3423 targ->ntok = op_num + 1;
3424
3425 switch (op->typ)
3426 {
3427 case OP_OPERAND:
3428 assert (op_data < insn->ntok);
3429 /* We can only pass resolvable literals through. */
3430 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3431 return FALSE;
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 break;
3434 case OP_LITERAL:
3435 case OP_CONSTANT:
3436 case OP_LABEL:
3437 default:
3438 assert (0);
3439 break;
3440 }
3441 }
3442 break;
3443
3444 case INSTR_LABEL_DEF:
3445 op = bi->ops;
3446 targ->opcode = XTENSA_UNDEFINED;
3447 targ->insn_type = ITYPE_LABEL;
3448 targ->is_specific_opcode = FALSE;
3449 /* Literal with no ops is a label? */
3450 assert (op == NULL);
3451 break;
3452
3453 default:
3454 assert (0);
3455 }
3456
3457 return TRUE;
3458 }
3459
3460
3461 /* Return TRUE on success. */
3462
3463 static bfd_boolean
3464 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3465 {
3466 for (; bi != NULL; bi = bi->next)
3467 {
3468 TInsn *next_insn = istack_push_space (istack);
3469
3470 if (!xg_build_to_insn (next_insn, insn, bi))
3471 return FALSE;
3472 }
3473 return TRUE;
3474 }
3475
3476
3477 /* Return TRUE on valid expansion. */
3478
3479 static bfd_boolean
3480 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3481 {
3482 int stack_size = istack->ninsn;
3483 int steps_taken = 0;
3484 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3485 TransitionList *l;
3486
3487 assert (insn->insn_type == ITYPE_INSN);
3488 assert (insn->opcode < table->num_opcodes);
3489
3490 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3491 {
3492 TransitionRule *rule = l->rule;
3493
3494 if (xg_instruction_matches_rule (insn, rule))
3495 {
3496 if (lateral_steps == steps_taken)
3497 {
3498 int i;
3499
3500 /* This is it. Expand the rule to the stack. */
3501 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3502 return FALSE;
3503
3504 /* Check to see if it fits. */
3505 for (i = stack_size; i < istack->ninsn; i++)
3506 {
3507 TInsn *insn = &istack->insn[i];
3508
3509 if (insn->insn_type == ITYPE_INSN
3510 && !tinsn_has_symbolic_operands (insn)
3511 && !xg_immeds_fit (insn))
3512 {
3513 istack->ninsn = stack_size;
3514 return FALSE;
3515 }
3516 }
3517 return TRUE;
3518 }
3519 steps_taken++;
3520 }
3521 }
3522 return FALSE;
3523 }
3524
3525 \f
3526 /* Relax the assembly instruction at least "min_steps".
3527 Return the number of steps taken. */
3528
3529 static int
3530 xg_assembly_relax (IStack *istack,
3531 TInsn *insn,
3532 segT pc_seg,
3533 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3534 offsetT pc_offset, /* offset in fragment */
3535 int min_steps, /* minimum conversion steps */
3536 long stretch) /* number of bytes stretched so far */
3537 {
3538 int steps_taken = 0;
3539
3540 /* assert (has no symbolic operands)
3541 Some of its immeds don't fit.
3542 Try to build a relaxed version.
3543 This may go through a couple of stages
3544 of single instruction transformations before
3545 we get there. */
3546
3547 TInsn single_target;
3548 TInsn current_insn;
3549 int lateral_steps = 0;
3550 int istack_size = istack->ninsn;
3551
3552 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3553 && steps_taken >= min_steps)
3554 {
3555 istack_push (istack, insn);
3556 return steps_taken;
3557 }
3558 current_insn = *insn;
3559
3560 /* Walk through all of the single instruction expansions. */
3561 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3562 {
3563 steps_taken++;
3564 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3565 stretch))
3566 {
3567 if (steps_taken >= min_steps)
3568 {
3569 istack_push (istack, &single_target);
3570 return steps_taken;
3571 }
3572 }
3573 current_insn = single_target;
3574 }
3575
3576 /* Now check for a multi-instruction expansion. */
3577 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3578 {
3579 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3580 stretch))
3581 {
3582 if (steps_taken >= min_steps)
3583 {
3584 istack_push (istack, &current_insn);
3585 return steps_taken;
3586 }
3587 }
3588 steps_taken++;
3589 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3590 {
3591 if (steps_taken >= min_steps)
3592 return steps_taken;
3593 }
3594 lateral_steps++;
3595 istack->ninsn = istack_size;
3596 }
3597
3598 /* It's not going to work -- use the original. */
3599 istack_push (istack, insn);
3600 return steps_taken;
3601 }
3602
3603
3604 static void
3605 xg_force_frag_space (int size)
3606 {
3607 /* This may have the side effect of creating a new fragment for the
3608 space to go into. I just do not like the name of the "frag"
3609 functions. */
3610 frag_grow (size);
3611 }
3612
3613
3614 static void
3615 xg_finish_frag (char *last_insn,
3616 enum xtensa_relax_statesE frag_state,
3617 enum xtensa_relax_statesE slot0_state,
3618 int max_growth,
3619 bfd_boolean is_insn)
3620 {
3621 /* Finish off this fragment so that it has at LEAST the desired
3622 max_growth. If it doesn't fit in this fragment, close this one
3623 and start a new one. In either case, return a pointer to the
3624 beginning of the growth area. */
3625
3626 fragS *old_frag;
3627
3628 xg_force_frag_space (max_growth);
3629
3630 old_frag = frag_now;
3631
3632 frag_now->fr_opcode = last_insn;
3633 if (is_insn)
3634 frag_now->tc_frag_data.is_insn = TRUE;
3635
3636 frag_var (rs_machine_dependent, max_growth, max_growth,
3637 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3638
3639 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3640 xtensa_set_frag_assembly_state (frag_now);
3641
3642 /* Just to make sure that we did not split it up. */
3643 assert (old_frag->fr_next == frag_now);
3644 }
3645
3646
3647 /* Return TRUE if the target frag is one of the next non-empty frags. */
3648
3649 static bfd_boolean
3650 is_next_frag_target (const fragS *fragP, const fragS *target)
3651 {
3652 if (fragP == NULL)
3653 return FALSE;
3654
3655 for (; fragP; fragP = fragP->fr_next)
3656 {
3657 if (fragP == target)
3658 return TRUE;
3659 if (fragP->fr_fix != 0)
3660 return FALSE;
3661 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3662 return FALSE;
3663 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3664 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3665 return FALSE;
3666 if (fragP->fr_type == rs_space)
3667 return FALSE;
3668 }
3669 return FALSE;
3670 }
3671
3672
3673 static bfd_boolean
3674 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3675 {
3676 xtensa_isa isa = xtensa_default_isa;
3677 int i;
3678 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3679 int target_op = -1;
3680 symbolS *sym;
3681 fragS *target_frag;
3682
3683 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3684 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
3685 return FALSE;
3686
3687 for (i = 0; i < num_ops; i++)
3688 {
3689 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3690 {
3691 target_op = i;
3692 break;
3693 }
3694 }
3695 if (target_op == -1)
3696 return FALSE;
3697
3698 if (insn->ntok <= target_op)
3699 return FALSE;
3700
3701 if (insn->tok[target_op].X_op != O_symbol)
3702 return FALSE;
3703
3704 sym = insn->tok[target_op].X_add_symbol;
3705 if (sym == NULL)
3706 return FALSE;
3707
3708 if (insn->tok[target_op].X_add_number != 0)
3709 return FALSE;
3710
3711 target_frag = symbol_get_frag (sym);
3712 if (target_frag == NULL)
3713 return FALSE;
3714
3715 if (is_next_frag_target (fragP->fr_next, target_frag)
3716 && S_GET_VALUE (sym) == target_frag->fr_address)
3717 return TRUE;
3718
3719 return FALSE;
3720 }
3721
3722
3723 static void
3724 xg_add_branch_and_loop_targets (TInsn *insn)
3725 {
3726 xtensa_isa isa = xtensa_default_isa;
3727 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3728
3729 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3730 {
3731 int i = 1;
3732 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3733 && insn->tok[i].X_op == O_symbol)
3734 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3735 return;
3736 }
3737
3738 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3739 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3740 {
3741 int i;
3742
3743 for (i = 0; i < insn->ntok && i < num_ops; i++)
3744 {
3745 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3746 && insn->tok[i].X_op == O_symbol)
3747 {
3748 symbolS *sym = insn->tok[i].X_add_symbol;
3749 symbol_get_tc (sym)->is_branch_target = TRUE;
3750 if (S_IS_DEFINED (sym))
3751 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3752 }
3753 }
3754 }
3755 }
3756
3757
3758 /* Return FALSE if no error. */
3759
3760 static bfd_boolean
3761 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3762 {
3763 int num_ops = 0;
3764 BuildOp *b_op;
3765
3766 switch (instr_spec->typ)
3767 {
3768 case INSTR_INSTR:
3769 new_insn->insn_type = ITYPE_INSN;
3770 new_insn->opcode = instr_spec->opcode;
3771 new_insn->is_specific_opcode = FALSE;
3772 new_insn->linenum = old_insn->linenum;
3773 break;
3774 case INSTR_LITERAL_DEF:
3775 new_insn->insn_type = ITYPE_LITERAL;
3776 new_insn->opcode = XTENSA_UNDEFINED;
3777 new_insn->is_specific_opcode = FALSE;
3778 new_insn->linenum = old_insn->linenum;
3779 break;
3780 case INSTR_LABEL_DEF:
3781 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3782 break;
3783 }
3784
3785 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3786 {
3787 expressionS *exp;
3788 const expressionS *src_exp;
3789
3790 num_ops++;
3791 switch (b_op->typ)
3792 {
3793 case OP_CONSTANT:
3794 /* The expression must be the constant. */
3795 assert (b_op->op_num < MAX_INSN_ARGS);
3796 exp = &new_insn->tok[b_op->op_num];
3797 set_expr_const (exp, b_op->op_data);
3798 break;
3799
3800 case OP_OPERAND:
3801 assert (b_op->op_num < MAX_INSN_ARGS);
3802 assert (b_op->op_data < (unsigned) old_insn->ntok);
3803 src_exp = &old_insn->tok[b_op->op_data];
3804 exp = &new_insn->tok[b_op->op_num];
3805 copy_expr (exp, src_exp);
3806 break;
3807
3808 case OP_LITERAL:
3809 case OP_LABEL:
3810 as_bad (_("can't handle generation of literal/labels yet"));
3811 assert (0);
3812
3813 default:
3814 as_bad (_("can't handle undefined OP TYPE"));
3815 assert (0);
3816 }
3817 }
3818
3819 new_insn->ntok = num_ops;
3820 return FALSE;
3821 }
3822
3823
3824 /* Return TRUE if it was simplified. */
3825
3826 static bfd_boolean
3827 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3828 {
3829 TransitionRule *rule;
3830 BuildInstr *insn_spec;
3831
3832 if (old_insn->is_specific_opcode || !density_supported)
3833 return FALSE;
3834
3835 rule = xg_instruction_match (old_insn);
3836 if (rule == NULL)
3837 return FALSE;
3838
3839 insn_spec = rule->to_instr;
3840 /* There should only be one. */
3841 assert (insn_spec != NULL);
3842 assert (insn_spec->next == NULL);
3843 if (insn_spec->next != NULL)
3844 return FALSE;
3845
3846 xg_build_token_insn (insn_spec, old_insn, new_insn);
3847
3848 return TRUE;
3849 }
3850
3851
3852 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3853 l32i.n. (2) Check the number of operands. (3) Place the instruction
3854 tokens into the stack or relax it and place multiple
3855 instructions/literals onto the stack. Return FALSE if no error. */
3856
3857 static bfd_boolean
3858 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3859 {
3860 int noperands;
3861 TInsn new_insn;
3862 bfd_boolean do_expand;
3863
3864 memset (&new_insn, 0, sizeof (TInsn));
3865
3866 /* Narrow it if we can. xg_simplify_insn now does all the
3867 appropriate checking (e.g., for the density option). */
3868 if (xg_simplify_insn (orig_insn, &new_insn))
3869 orig_insn = &new_insn;
3870
3871 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3872 orig_insn->opcode);
3873 if (orig_insn->ntok < noperands)
3874 {
3875 as_bad (_("found %d operands for '%s': Expected %d"),
3876 orig_insn->ntok,
3877 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3878 noperands);
3879 return TRUE;
3880 }
3881 if (orig_insn->ntok > noperands)
3882 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3883 orig_insn->ntok,
3884 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3885 noperands);
3886
3887 /* If there are not enough operands, we will assert above. If there
3888 are too many, just cut out the extras here. */
3889 orig_insn->ntok = noperands;
3890
3891 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3892 return TRUE;
3893
3894 /* If the instruction will definitely need to be relaxed, it is better
3895 to expand it now for better scheduling. Decide whether to expand
3896 now.... */
3897 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3898
3899 /* Calls should be expanded to longcalls only in the backend relaxation
3900 so that the assembly scheduler will keep the L32R/CALLX instructions
3901 adjacent. */
3902 if (is_direct_call_opcode (orig_insn->opcode))
3903 do_expand = FALSE;
3904
3905 if (tinsn_has_symbolic_operands (orig_insn))
3906 {
3907 /* The values of symbolic operands are not known yet, so only expand
3908 now if an operand is "complex" (e.g., difference of symbols) and
3909 will have to be stored as a literal regardless of the value. */
3910 if (!tinsn_has_complex_operands (orig_insn))
3911 do_expand = FALSE;
3912 }
3913 else if (xg_immeds_fit (orig_insn))
3914 do_expand = FALSE;
3915
3916 if (do_expand)
3917 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3918 else
3919 istack_push (istack, orig_insn);
3920
3921 return FALSE;
3922 }
3923
3924
3925 /* Return TRUE if the section flags are marked linkonce
3926 or the name is .gnu.linkonce*. */
3927
3928 static bfd_boolean
3929 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3930 {
3931 flagword flags, link_once_flags;
3932
3933 flags = bfd_get_section_flags (abfd, sec);
3934 link_once_flags = (flags & SEC_LINK_ONCE);
3935
3936 /* Flags might not be set yet. */
3937 if (!link_once_flags)
3938 {
3939 static size_t len = sizeof ".gnu.linkonce.t.";
3940
3941 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3942 link_once_flags = SEC_LINK_ONCE;
3943 }
3944 return (link_once_flags != 0);
3945 }
3946
3947
3948 static void
3949 xtensa_add_literal_sym (symbolS *sym)
3950 {
3951 sym_list *l;
3952
3953 l = (sym_list *) xmalloc (sizeof (sym_list));
3954 l->sym = sym;
3955 l->next = literal_syms;
3956 literal_syms = l;
3957 }
3958
3959
3960 static symbolS *
3961 xtensa_create_literal_symbol (segT sec, fragS *frag)
3962 {
3963 static int lit_num = 0;
3964 static char name[256];
3965 symbolS *symbolP;
3966
3967 sprintf (name, ".L_lit_sym%d", lit_num);
3968
3969 /* Create a local symbol. If it is in a linkonce section, we have to
3970 be careful to make sure that if it is used in a relocation that the
3971 symbol will be in the output file. */
3972 if (get_is_linkonce_section (stdoutput, sec))
3973 {
3974 symbolP = symbol_new (name, sec, 0, frag);
3975 S_CLEAR_EXTERNAL (symbolP);
3976 /* symbolP->local = 1; */
3977 }
3978 else
3979 symbolP = symbol_new (name, sec, 0, frag);
3980
3981 xtensa_add_literal_sym (symbolP);
3982
3983 lit_num++;
3984 return symbolP;
3985 }
3986
3987
3988 /* Currently all literals that are generated here are 32-bit L32R targets. */
3989
3990 static symbolS *
3991 xg_assemble_literal (/* const */ TInsn *insn)
3992 {
3993 emit_state state;
3994 symbolS *lit_sym = NULL;
3995
3996 /* size = 4 for L32R. It could easily be larger when we move to
3997 larger constants. Add a parameter later. */
3998 offsetT litsize = 4;
3999 offsetT litalign = 2; /* 2^2 = 4 */
4000 expressionS saved_loc;
4001 expressionS * emit_val;
4002
4003 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4004
4005 assert (insn->insn_type == ITYPE_LITERAL);
4006 assert (insn->ntok == 1); /* must be only one token here */
4007
4008 xtensa_switch_to_literal_fragment (&state);
4009
4010 emit_val = &insn->tok[0];
4011 if (emit_val->X_op == O_big)
4012 {
4013 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4014 if (size > litsize)
4015 {
4016 /* This happens when someone writes a "movi a2, big_number". */
4017 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4018 _("invalid immediate"));
4019 xtensa_restore_emit_state (&state);
4020 return NULL;
4021 }
4022 }
4023
4024 /* Force a 4-byte align here. Note that this opens a new frag, so all
4025 literals done with this function have a frag to themselves. That's
4026 important for the way text section literals work. */
4027 frag_align (litalign, 0, 0);
4028 record_alignment (now_seg, litalign);
4029
4030 if (emit_val->X_op == O_pltrel)
4031 {
4032 char *p = frag_more (litsize);
4033 xtensa_set_frag_assembly_state (frag_now);
4034 if (emit_val->X_add_symbol)
4035 emit_val->X_op = O_symbol;
4036 else
4037 emit_val->X_op = O_constant;
4038 fix_new_exp (frag_now, p - frag_now->fr_literal,
4039 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4040 }
4041 else
4042 emit_expr (emit_val, litsize);
4043
4044 assert (frag_now->tc_frag_data.literal_frag == NULL);
4045 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4046 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4047 lit_sym = frag_now->fr_symbol;
4048
4049 /* Go back. */
4050 xtensa_restore_emit_state (&state);
4051 return lit_sym;
4052 }
4053
4054
4055 static void
4056 xg_assemble_literal_space (/* const */ int size, int slot)
4057 {
4058 emit_state state;
4059 /* We might have to do something about this alignment. It only
4060 takes effect if something is placed here. */
4061 offsetT litalign = 2; /* 2^2 = 4 */
4062 fragS *lit_saved_frag;
4063
4064 assert (size % 4 == 0);
4065
4066 xtensa_switch_to_literal_fragment (&state);
4067
4068 /* Force a 4-byte align here. */
4069 frag_align (litalign, 0, 0);
4070 record_alignment (now_seg, litalign);
4071
4072 xg_force_frag_space (size);
4073
4074 lit_saved_frag = frag_now;
4075 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4076 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4077 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4078
4079 /* Go back. */
4080 xtensa_restore_emit_state (&state);
4081 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4082 }
4083
4084
4085 /* Put in a fixup record based on the opcode.
4086 Return TRUE on success. */
4087
4088 static bfd_boolean
4089 xg_add_opcode_fix (TInsn *tinsn,
4090 int opnum,
4091 xtensa_format fmt,
4092 int slot,
4093 expressionS *expr,
4094 fragS *fragP,
4095 offsetT offset)
4096 {
4097 xtensa_opcode opcode = tinsn->opcode;
4098 bfd_reloc_code_real_type reloc;
4099 reloc_howto_type *howto;
4100 int fmt_length;
4101 fixS *the_fix;
4102
4103 reloc = BFD_RELOC_NONE;
4104
4105 /* First try the special cases for "alternate" relocs. */
4106 if (opcode == xtensa_l32r_opcode)
4107 {
4108 if (fragP->tc_frag_data.use_absolute_literals)
4109 reloc = encode_alt_reloc (slot);
4110 }
4111 else if (opcode == xtensa_const16_opcode)
4112 {
4113 if (expr->X_op == O_lo16)
4114 {
4115 reloc = encode_reloc (slot);
4116 expr->X_op = O_symbol;
4117 }
4118 else if (expr->X_op == O_hi16)
4119 {
4120 reloc = encode_alt_reloc (slot);
4121 expr->X_op = O_symbol;
4122 }
4123 }
4124
4125 if (opnum != get_relaxable_immed (opcode))
4126 {
4127 as_bad (_("invalid relocation for operand %i of '%s'"),
4128 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4129 return FALSE;
4130 }
4131
4132 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4133 into the symbol table where the generic portions of the assembler
4134 won't know what to do with them. */
4135 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4136 {
4137 as_bad (_("invalid expression for operand %i of '%s'"),
4138 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4139 return FALSE;
4140 }
4141
4142 /* Next try the generic relocs. */
4143 if (reloc == BFD_RELOC_NONE)
4144 reloc = encode_reloc (slot);
4145 if (reloc == BFD_RELOC_NONE)
4146 {
4147 as_bad (_("invalid relocation in instruction slot %i"), slot);
4148 return FALSE;
4149 }
4150
4151 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4152 if (!howto)
4153 {
4154 as_bad (_("undefined symbol for opcode \"%s\""),
4155 xtensa_opcode_name (xtensa_default_isa, opcode));
4156 return FALSE;
4157 }
4158
4159 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4160 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4161 howto->pc_relative, reloc);
4162 the_fix->fx_no_overflow = 1;
4163
4164 if (expr->X_add_symbol
4165 && (S_IS_EXTERNAL (expr->X_add_symbol)
4166 || S_IS_WEAK (expr->X_add_symbol)))
4167 the_fix->fx_plt = TRUE;
4168
4169 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4170 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4171 the_fix->tc_fix_data.slot = slot;
4172
4173 return TRUE;
4174 }
4175
4176
4177 static bfd_boolean
4178 xg_emit_insn_to_buf (TInsn *tinsn,
4179 char *buf,
4180 fragS *fragP,
4181 offsetT offset,
4182 bfd_boolean build_fix)
4183 {
4184 static xtensa_insnbuf insnbuf = NULL;
4185 bfd_boolean has_symbolic_immed = FALSE;
4186 bfd_boolean ok = TRUE;
4187
4188 if (!insnbuf)
4189 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4190
4191 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4192 if (has_symbolic_immed && build_fix)
4193 {
4194 /* Add a fixup. */
4195 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4196 int slot = xg_get_single_slot (tinsn->opcode);
4197 int opnum = get_relaxable_immed (tinsn->opcode);
4198 expressionS *exp = &tinsn->tok[opnum];
4199
4200 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4201 ok = FALSE;
4202 }
4203 fragP->tc_frag_data.is_insn = TRUE;
4204 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4205 (unsigned char *) buf, 0);
4206 return ok;
4207 }
4208
4209
4210 static void
4211 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4212 {
4213 symbolS *sym = get_special_literal_symbol ();
4214 int i;
4215 if (lit_sym == 0)
4216 return;
4217 assert (insn->insn_type == ITYPE_INSN);
4218 for (i = 0; i < insn->ntok; i++)
4219 if (insn->tok[i].X_add_symbol == sym)
4220 insn->tok[i].X_add_symbol = lit_sym;
4221
4222 }
4223
4224
4225 static void
4226 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4227 {
4228 symbolS *sym = get_special_label_symbol ();
4229 int i;
4230 for (i = 0; i < insn->ntok; i++)
4231 if (insn->tok[i].X_add_symbol == sym)
4232 insn->tok[i].X_add_symbol = label_sym;
4233
4234 }
4235
4236
4237 /* Return TRUE if the instruction can write to the specified
4238 integer register. */
4239
4240 static bfd_boolean
4241 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4242 {
4243 int i;
4244 int num_ops;
4245 xtensa_isa isa = xtensa_default_isa;
4246
4247 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4248
4249 for (i = 0; i < num_ops; i++)
4250 {
4251 char inout;
4252 inout = xtensa_operand_inout (isa, insn->opcode, i);
4253 if ((inout == 'o' || inout == 'm')
4254 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4255 {
4256 xtensa_regfile opnd_rf =
4257 xtensa_operand_regfile (isa, insn->opcode, i);
4258 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4259 {
4260 if ((insn->tok[i].X_op == O_register)
4261 && (insn->tok[i].X_add_number == regnum))
4262 return TRUE;
4263 }
4264 }
4265 }
4266 return FALSE;
4267 }
4268
4269
4270 static bfd_boolean
4271 is_bad_loopend_opcode (const TInsn *tinsn)
4272 {
4273 xtensa_opcode opcode = tinsn->opcode;
4274
4275 if (opcode == XTENSA_UNDEFINED)
4276 return FALSE;
4277
4278 if (opcode == xtensa_call0_opcode
4279 || opcode == xtensa_callx0_opcode
4280 || opcode == xtensa_call4_opcode
4281 || opcode == xtensa_callx4_opcode
4282 || opcode == xtensa_call8_opcode
4283 || opcode == xtensa_callx8_opcode
4284 || opcode == xtensa_call12_opcode
4285 || opcode == xtensa_callx12_opcode
4286 || opcode == xtensa_isync_opcode
4287 || opcode == xtensa_ret_opcode
4288 || opcode == xtensa_ret_n_opcode
4289 || opcode == xtensa_retw_opcode
4290 || opcode == xtensa_retw_n_opcode
4291 || opcode == xtensa_waiti_opcode
4292 || opcode == xtensa_rsr_lcount_opcode)
4293 return TRUE;
4294
4295 return FALSE;
4296 }
4297
4298
4299 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4300 This allows the debugger to add unaligned labels.
4301 Also, the assembler generates stabs labels that need
4302 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4303
4304 static bfd_boolean
4305 is_unaligned_label (symbolS *sym)
4306 {
4307 const char *name = S_GET_NAME (sym);
4308 static size_t fake_size = 0;
4309
4310 if (name
4311 && name[0] == '.'
4312 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4313 return TRUE;
4314
4315 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4316 if (fake_size == 0)
4317 fake_size = strlen (FAKE_LABEL_NAME);
4318
4319 if (name
4320 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4321 && (name[fake_size] == 'F'
4322 || name[fake_size] == 'L'
4323 || (name[fake_size] == 'e'
4324 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4325 return TRUE;
4326
4327 return FALSE;
4328 }
4329
4330
4331 static fragS *
4332 next_non_empty_frag (const fragS *fragP)
4333 {
4334 fragS *next_fragP = fragP->fr_next;
4335
4336 /* Sometimes an empty will end up here due storage allocation issues.
4337 So we have to skip until we find something legit. */
4338 while (next_fragP && next_fragP->fr_fix == 0)
4339 next_fragP = next_fragP->fr_next;
4340
4341 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4342 return NULL;
4343
4344 return next_fragP;
4345 }
4346
4347
4348 static bfd_boolean
4349 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4350 {
4351 xtensa_opcode out_opcode;
4352 const fragS *next_fragP = next_non_empty_frag (fragP);
4353
4354 if (next_fragP == NULL)
4355 return FALSE;
4356
4357 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4358 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4359 {
4360 *opcode = out_opcode;
4361 return TRUE;
4362 }
4363 return FALSE;
4364 }
4365
4366
4367 static int
4368 frag_format_size (const fragS *fragP)
4369 {
4370 static xtensa_insnbuf insnbuf = NULL;
4371 xtensa_isa isa = xtensa_default_isa;
4372 xtensa_format fmt;
4373 int fmt_size;
4374
4375 if (!insnbuf)
4376 insnbuf = xtensa_insnbuf_alloc (isa);
4377
4378 if (fragP == NULL)
4379 return XTENSA_UNDEFINED;
4380
4381 xtensa_insnbuf_from_chars (isa, insnbuf,
4382 (unsigned char *) fragP->fr_literal, 0);
4383
4384 fmt = xtensa_format_decode (isa, insnbuf);
4385 if (fmt == XTENSA_UNDEFINED)
4386 return XTENSA_UNDEFINED;
4387 fmt_size = xtensa_format_length (isa, fmt);
4388
4389 /* If the next format won't be changing due to relaxation, just
4390 return the length of the first format. */
4391 if (fragP->fr_opcode != fragP->fr_literal)
4392 return fmt_size;
4393
4394 /* If during relaxation we have to pull an instruction out of a
4395 multi-slot instruction, we will return the more conservative
4396 number. This works because alignment on bigger instructions
4397 is more restrictive than alignment on smaller instructions.
4398 This is more conservative than we would like, but it happens
4399 infrequently. */
4400
4401 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4402 return fmt_size;
4403
4404 /* If we aren't doing one of our own relaxations or it isn't
4405 slot-based, then the insn size won't change. */
4406 if (fragP->fr_type != rs_machine_dependent)
4407 return fmt_size;
4408 if (fragP->fr_subtype != RELAX_SLOTS)
4409 return fmt_size;
4410
4411 /* If an instruction is about to grow, return the longer size. */
4412 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4413 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4414 return 3;
4415
4416 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4417 return 2 + fragP->tc_frag_data.text_expansion[0];
4418
4419 return fmt_size;
4420 }
4421
4422
4423 static int
4424 next_frag_format_size (const fragS *fragP)
4425 {
4426 const fragS *next_fragP = next_non_empty_frag (fragP);
4427 return frag_format_size (next_fragP);
4428 }
4429
4430
4431 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4432 required two-byte instructions to be treated as three-byte instructions
4433 for loop instruction alignment. This restriction was removed beginning
4434 with Xtensa LX. Now the only requirement on loop instruction alignment
4435 is that the first instruction of the loop must appear at an address that
4436 does not cross a fetch boundary. */
4437
4438 static int
4439 get_loop_align_size (int insn_size)
4440 {
4441 if (insn_size == XTENSA_UNDEFINED)
4442 return xtensa_fetch_width;
4443
4444 if (enforce_three_byte_loop_align && insn_size == 2)
4445 return 3;
4446
4447 return insn_size;
4448 }
4449
4450
4451 /* If the next legit fragment is an end-of-loop marker,
4452 switch its state so it will instantiate a NOP. */
4453
4454 static void
4455 update_next_frag_state (fragS *fragP)
4456 {
4457 fragS *next_fragP = fragP->fr_next;
4458 fragS *new_target = NULL;
4459
4460 if (align_targets)
4461 {
4462 /* We are guaranteed there will be one of these... */
4463 while (!(next_fragP->fr_type == rs_machine_dependent
4464 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4465 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4466 next_fragP = next_fragP->fr_next;
4467
4468 assert (next_fragP->fr_type == rs_machine_dependent
4469 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4470 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4471
4472 /* ...and one of these. */
4473 new_target = next_fragP->fr_next;
4474 while (!(new_target->fr_type == rs_machine_dependent
4475 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4476 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4477 new_target = new_target->fr_next;
4478
4479 assert (new_target->fr_type == rs_machine_dependent
4480 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4481 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4482 }
4483
4484 while (next_fragP && next_fragP->fr_fix == 0)
4485 {
4486 if (next_fragP->fr_type == rs_machine_dependent
4487 && next_fragP->fr_subtype == RELAX_LOOP_END)
4488 {
4489 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4490 return;
4491 }
4492
4493 next_fragP = next_fragP->fr_next;
4494 }
4495 }
4496
4497
4498 static bfd_boolean
4499 next_frag_is_branch_target (const fragS *fragP)
4500 {
4501 /* Sometimes an empty will end up here due to storage allocation issues,
4502 so we have to skip until we find something legit. */
4503 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4504 {
4505 if (fragP->tc_frag_data.is_branch_target)
4506 return TRUE;
4507 if (fragP->fr_fix != 0)
4508 break;
4509 }
4510 return FALSE;
4511 }
4512
4513
4514 static bfd_boolean
4515 next_frag_is_loop_target (const fragS *fragP)
4516 {
4517 /* Sometimes an empty will end up here due storage allocation issues.
4518 So we have to skip until we find something legit. */
4519 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4520 {
4521 if (fragP->tc_frag_data.is_loop_target)
4522 return TRUE;
4523 if (fragP->fr_fix != 0)
4524 break;
4525 }
4526 return FALSE;
4527 }
4528
4529
4530 static addressT
4531 next_frag_pre_opcode_bytes (const fragS *fragp)
4532 {
4533 const fragS *next_fragp = fragp->fr_next;
4534 xtensa_opcode next_opcode;
4535
4536 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4537 return 0;
4538
4539 /* Sometimes an empty will end up here due to storage allocation issues,
4540 so we have to skip until we find something legit. */
4541 while (next_fragp->fr_fix == 0)
4542 next_fragp = next_fragp->fr_next;
4543
4544 if (next_fragp->fr_type != rs_machine_dependent)
4545 return 0;
4546
4547 /* There is some implicit knowledge encoded in here.
4548 The LOOP instructions that are NOT RELAX_IMMED have
4549 been relaxed. Note that we can assume that the LOOP
4550 instruction is in slot 0 because loops aren't bundleable. */
4551 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4552 return get_expanded_loop_offset (next_opcode);
4553
4554 return 0;
4555 }
4556
4557
4558 /* Mark a location where we can later insert literal frags. Update
4559 the section's literal_pool_loc, so subsequent literals can be
4560 placed nearest to their use. */
4561
4562 static void
4563 xtensa_mark_literal_pool_location (void)
4564 {
4565 /* Any labels pointing to the current location need
4566 to be adjusted to after the literal pool. */
4567 emit_state s;
4568 fragS *pool_location;
4569
4570 if (use_literal_section && !directive_state[directive_absolute_literals])
4571 return;
4572
4573 frag_align (2, 0, 0);
4574 record_alignment (now_seg, 2);
4575
4576 /* We stash info in these frags so we can later move the literal's
4577 fixes into this frchain's fix list. */
4578 pool_location = frag_now;
4579 frag_now->tc_frag_data.lit_frchain = frchain_now;
4580 frag_variant (rs_machine_dependent, 0, 0,
4581 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4582 xtensa_set_frag_assembly_state (frag_now);
4583 frag_now->tc_frag_data.lit_seg = now_seg;
4584 frag_variant (rs_machine_dependent, 0, 0,
4585 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4586 xtensa_set_frag_assembly_state (frag_now);
4587
4588 /* Now put a frag into the literal pool that points to this location. */
4589 set_literal_pool_location (now_seg, pool_location);
4590 xtensa_switch_to_non_abs_literal_fragment (&s);
4591 frag_align (2, 0, 0);
4592 record_alignment (now_seg, 2);
4593
4594 /* Close whatever frag is there. */
4595 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4596 xtensa_set_frag_assembly_state (frag_now);
4597 frag_now->tc_frag_data.literal_frag = pool_location;
4598 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4599 xtensa_restore_emit_state (&s);
4600 xtensa_set_frag_assembly_state (frag_now);
4601 }
4602
4603
4604 /* Build a nop of the correct size into tinsn. */
4605
4606 static void
4607 build_nop (TInsn *tinsn, int size)
4608 {
4609 tinsn_init (tinsn);
4610 switch (size)
4611 {
4612 case 2:
4613 tinsn->opcode = xtensa_nop_n_opcode;
4614 tinsn->ntok = 0;
4615 if (tinsn->opcode == XTENSA_UNDEFINED)
4616 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4617 break;
4618
4619 case 3:
4620 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4621 {
4622 tinsn->opcode = xtensa_or_opcode;
4623 set_expr_const (&tinsn->tok[0], 1);
4624 set_expr_const (&tinsn->tok[1], 1);
4625 set_expr_const (&tinsn->tok[2], 1);
4626 tinsn->ntok = 3;
4627 }
4628 else
4629 tinsn->opcode = xtensa_nop_opcode;
4630
4631 assert (tinsn->opcode != XTENSA_UNDEFINED);
4632 }
4633 }
4634
4635
4636 /* Assemble a NOP of the requested size in the buffer. User must have
4637 allocated "buf" with at least "size" bytes. */
4638
4639 static void
4640 assemble_nop (int size, char *buf)
4641 {
4642 static xtensa_insnbuf insnbuf = NULL;
4643 TInsn tinsn;
4644
4645 build_nop (&tinsn, size);
4646
4647 if (!insnbuf)
4648 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4649
4650 tinsn_to_insnbuf (&tinsn, insnbuf);
4651 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4652 (unsigned char *) buf, 0);
4653 }
4654
4655
4656 /* Return the number of bytes for the offset of the expanded loop
4657 instruction. This should be incorporated into the relaxation
4658 specification but is hard-coded here. This is used to auto-align
4659 the loop instruction. It is invalid to call this function if the
4660 configuration does not have loops or if the opcode is not a loop
4661 opcode. */
4662
4663 static addressT
4664 get_expanded_loop_offset (xtensa_opcode opcode)
4665 {
4666 /* This is the OFFSET of the loop instruction in the expanded loop.
4667 This MUST correspond directly to the specification of the loop
4668 expansion. It will be validated on fragment conversion. */
4669 assert (opcode != XTENSA_UNDEFINED);
4670 if (opcode == xtensa_loop_opcode)
4671 return 0;
4672 if (opcode == xtensa_loopnez_opcode)
4673 return 3;
4674 if (opcode == xtensa_loopgtz_opcode)
4675 return 6;
4676 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4677 return 0;
4678 }
4679
4680
4681 static fragS *
4682 get_literal_pool_location (segT seg)
4683 {
4684 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4685 }
4686
4687
4688 static void
4689 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4690 {
4691 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4692 }
4693
4694
4695 /* Set frag assembly state should be called when a new frag is
4696 opened and after a frag has been closed. */
4697
4698 static void
4699 xtensa_set_frag_assembly_state (fragS *fragP)
4700 {
4701 if (!density_supported)
4702 fragP->tc_frag_data.is_no_density = TRUE;
4703
4704 /* This function is called from subsegs_finish, which is called
4705 after xtensa_end, so we can't use "use_transform" or
4706 "use_schedule" here. */
4707 if (!directive_state[directive_transform])
4708 fragP->tc_frag_data.is_no_transform = TRUE;
4709 if (directive_state[directive_longcalls])
4710 fragP->tc_frag_data.use_longcalls = TRUE;
4711 fragP->tc_frag_data.use_absolute_literals =
4712 directive_state[directive_absolute_literals];
4713 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4714 }
4715
4716
4717 static bfd_boolean
4718 relaxable_section (asection *sec)
4719 {
4720 return (sec->flags & SEC_DEBUGGING) == 0;
4721 }
4722
4723
4724 static void
4725 xtensa_find_unmarked_state_frags (void)
4726 {
4727 segT *seclist;
4728
4729 /* Walk over each fragment of all of the current segments. For each
4730 unmarked fragment, mark it with the same info as the previous
4731 fragment. */
4732 for (seclist = &stdoutput->sections;
4733 seclist && *seclist;
4734 seclist = &(*seclist)->next)
4735 {
4736 segT sec = *seclist;
4737 segment_info_type *seginfo;
4738 fragS *fragP;
4739 flagword flags;
4740 flags = bfd_get_section_flags (stdoutput, sec);
4741 if (flags & SEC_DEBUGGING)
4742 continue;
4743 if (!(flags & SEC_ALLOC))
4744 continue;
4745
4746 seginfo = seg_info (sec);
4747 if (seginfo && seginfo->frchainP)
4748 {
4749 fragS *last_fragP = 0;
4750 for (fragP = seginfo->frchainP->frch_root; fragP;
4751 fragP = fragP->fr_next)
4752 {
4753 if (fragP->fr_fix != 0
4754 && !fragP->tc_frag_data.is_assembly_state_set)
4755 {
4756 if (last_fragP == 0)
4757 {
4758 as_warn_where (fragP->fr_file, fragP->fr_line,
4759 _("assembly state not set for first frag in section %s"),
4760 sec->name);
4761 }
4762 else
4763 {
4764 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4765 fragP->tc_frag_data.is_no_density =
4766 last_fragP->tc_frag_data.is_no_density;
4767 fragP->tc_frag_data.is_no_transform =
4768 last_fragP->tc_frag_data.is_no_transform;
4769 fragP->tc_frag_data.use_longcalls =
4770 last_fragP->tc_frag_data.use_longcalls;
4771 fragP->tc_frag_data.use_absolute_literals =
4772 last_fragP->tc_frag_data.use_absolute_literals;
4773 }
4774 }
4775 if (fragP->tc_frag_data.is_assembly_state_set)
4776 last_fragP = fragP;
4777 }
4778 }
4779 }
4780 }
4781
4782
4783 static void
4784 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4785 asection *sec,
4786 void *unused ATTRIBUTE_UNUSED)
4787 {
4788 flagword flags = bfd_get_section_flags (abfd, sec);
4789 segment_info_type *seginfo = seg_info (sec);
4790 fragS *frag = seginfo->frchainP->frch_root;
4791
4792 if (flags & SEC_CODE)
4793 {
4794 xtensa_isa isa = xtensa_default_isa;
4795 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4796 while (frag != NULL)
4797 {
4798 if (frag->tc_frag_data.is_branch_target)
4799 {
4800 int op_size;
4801 addressT branch_align, frag_addr;
4802 xtensa_format fmt;
4803
4804 xtensa_insnbuf_from_chars
4805 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4806 fmt = xtensa_format_decode (isa, insnbuf);
4807 op_size = xtensa_format_length (isa, fmt);
4808 branch_align = 1 << branch_align_power (sec);
4809 frag_addr = frag->fr_address % branch_align;
4810 if (frag_addr + op_size > branch_align)
4811 as_warn_where (frag->fr_file, frag->fr_line,
4812 _("unaligned branch target: %d bytes at 0x%lx"),
4813 op_size, (long) frag->fr_address);
4814 }
4815 frag = frag->fr_next;
4816 }
4817 xtensa_insnbuf_free (isa, insnbuf);
4818 }
4819 }
4820
4821
4822 static void
4823 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4824 asection *sec,
4825 void *unused ATTRIBUTE_UNUSED)
4826 {
4827 flagword flags = bfd_get_section_flags (abfd, sec);
4828 segment_info_type *seginfo = seg_info (sec);
4829 fragS *frag = seginfo->frchainP->frch_root;
4830 xtensa_isa isa = xtensa_default_isa;
4831
4832 if (flags & SEC_CODE)
4833 {
4834 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4835 while (frag != NULL)
4836 {
4837 if (frag->tc_frag_data.is_first_loop_insn)
4838 {
4839 int op_size;
4840 addressT frag_addr;
4841 xtensa_format fmt;
4842
4843 xtensa_insnbuf_from_chars
4844 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4845 fmt = xtensa_format_decode (isa, insnbuf);
4846 op_size = xtensa_format_length (isa, fmt);
4847 frag_addr = frag->fr_address % xtensa_fetch_width;
4848
4849 if (frag_addr + op_size > xtensa_fetch_width)
4850 as_warn_where (frag->fr_file, frag->fr_line,
4851 _("unaligned loop: %d bytes at 0x%lx"),
4852 op_size, (long) frag->fr_address);
4853 }
4854 frag = frag->fr_next;
4855 }
4856 xtensa_insnbuf_free (isa, insnbuf);
4857 }
4858 }
4859
4860
4861 static int
4862 xg_apply_fix_value (fixS *fixP, valueT val)
4863 {
4864 xtensa_isa isa = xtensa_default_isa;
4865 static xtensa_insnbuf insnbuf = NULL;
4866 static xtensa_insnbuf slotbuf = NULL;
4867 xtensa_format fmt;
4868 int slot;
4869 bfd_boolean alt_reloc;
4870 xtensa_opcode opcode;
4871 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4872
4873 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4874 if (alt_reloc)
4875 as_fatal (_("unexpected fix"));
4876
4877 if (!insnbuf)
4878 {
4879 insnbuf = xtensa_insnbuf_alloc (isa);
4880 slotbuf = xtensa_insnbuf_alloc (isa);
4881 }
4882
4883 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4884 fmt = xtensa_format_decode (isa, insnbuf);
4885 if (fmt == XTENSA_UNDEFINED)
4886 as_fatal (_("undecodable fix"));
4887 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4888 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4889 if (opcode == XTENSA_UNDEFINED)
4890 as_fatal (_("undecodable fix"));
4891
4892 /* CONST16 immediates are not PC-relative, despite the fact that we
4893 reuse the normal PC-relative operand relocations for the low part
4894 of a CONST16 operand. */
4895 if (opcode == xtensa_const16_opcode)
4896 return 0;
4897
4898 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4899 get_relaxable_immed (opcode), val,
4900 fixP->fx_file, fixP->fx_line);
4901
4902 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
4903 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4904
4905 return 1;
4906 }
4907
4908 \f
4909 /* External Functions and Other GAS Hooks. */
4910
4911 const char *
4912 xtensa_target_format (void)
4913 {
4914 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4915 }
4916
4917
4918 void
4919 xtensa_file_arch_init (bfd *abfd)
4920 {
4921 bfd_set_private_flags (abfd, 0x100 | 0x200);
4922 }
4923
4924
4925 void
4926 md_number_to_chars (char *buf, valueT val, int n)
4927 {
4928 if (target_big_endian)
4929 number_to_chars_bigendian (buf, val, n);
4930 else
4931 number_to_chars_littleendian (buf, val, n);
4932 }
4933
4934
4935 /* This function is called once, at assembler startup time. It should
4936 set up all the tables, etc. that the MD part of the assembler will
4937 need. */
4938
4939 void
4940 md_begin (void)
4941 {
4942 segT current_section = now_seg;
4943 int current_subsec = now_subseg;
4944 xtensa_isa isa;
4945
4946 xtensa_default_isa = xtensa_isa_init (0, 0);
4947 isa = xtensa_default_isa;
4948
4949 linkrelax = 1;
4950
4951 /* Set up the .literal, .fini.literal and .init.literal sections. */
4952 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4953 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4954 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4955 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
4956 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
4957
4958 subseg_set (current_section, current_subsec);
4959
4960 xg_init_vinsn (&cur_vinsn);
4961
4962 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4963 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4964 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4965 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4966 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4967 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4968 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4969 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4970 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4971 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
4972 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
4973 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
4974 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4975 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
4976 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
4977 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
4978 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
4979 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4980 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4981 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
4982 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
4983 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4984 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4985 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4986 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4987 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4988 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
4989 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
4990 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
4991
4992 init_op_placement_info_table ();
4993
4994 /* Set up the assembly state. */
4995 if (!frag_now->tc_frag_data.is_assembly_state_set)
4996 xtensa_set_frag_assembly_state (frag_now);
4997 }
4998
4999
5000 /* TC_INIT_FIX_DATA hook */
5001
5002 void
5003 xtensa_init_fix_data (fixS *x)
5004 {
5005 x->tc_fix_data.slot = 0;
5006 x->tc_fix_data.X_add_symbol = NULL;
5007 x->tc_fix_data.X_add_number = 0;
5008 }
5009
5010
5011 /* tc_frob_label hook */
5012
5013 void
5014 xtensa_frob_label (symbolS *sym)
5015 {
5016 float freq;
5017
5018 if (cur_vinsn.inside_bundle)
5019 {
5020 as_bad (_("labels are not valid inside bundles"));
5021 return;
5022 }
5023
5024 freq = get_subseg_target_freq (now_seg, now_subseg);
5025
5026 /* Since the label was already attached to a frag associated with the
5027 previous basic block, it now needs to be reset to the current frag. */
5028 symbol_set_frag (sym, frag_now);
5029 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5030
5031 if (generating_literals)
5032 xtensa_add_literal_sym (sym);
5033 else
5034 xtensa_add_insn_label (sym);
5035
5036 if (symbol_get_tc (sym)->is_loop_target)
5037 {
5038 if ((get_last_insn_flags (now_seg, now_subseg)
5039 & FLAG_IS_BAD_LOOPEND) != 0)
5040 as_bad (_("invalid last instruction for a zero-overhead loop"));
5041
5042 xtensa_set_frag_assembly_state (frag_now);
5043 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5044 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5045
5046 xtensa_set_frag_assembly_state (frag_now);
5047 xtensa_move_labels (frag_now, 0, TRUE);
5048 }
5049
5050 /* No target aligning in the absolute section. */
5051 if (now_seg != absolute_section
5052 && do_align_targets ()
5053 && !is_unaligned_label (sym)
5054 && !generating_literals)
5055 {
5056 xtensa_set_frag_assembly_state (frag_now);
5057
5058 frag_var (rs_machine_dependent,
5059 0, (int) freq,
5060 RELAX_DESIRE_ALIGN_IF_TARGET,
5061 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5062 xtensa_set_frag_assembly_state (frag_now);
5063 xtensa_move_labels (frag_now, 0, TRUE);
5064 }
5065
5066 /* We need to mark the following properties even if we aren't aligning. */
5067
5068 /* If the label is already known to be a branch target, i.e., a
5069 forward branch, mark the frag accordingly. Backward branches
5070 are handled by xg_add_branch_and_loop_targets. */
5071 if (symbol_get_tc (sym)->is_branch_target)
5072 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5073
5074 /* Loops only go forward, so they can be identified here. */
5075 if (symbol_get_tc (sym)->is_loop_target)
5076 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5077
5078 dwarf2_emit_label (sym);
5079 }
5080
5081
5082 /* tc_unrecognized_line hook */
5083
5084 int
5085 xtensa_unrecognized_line (int ch)
5086 {
5087 switch (ch)
5088 {
5089 case '{' :
5090 if (cur_vinsn.inside_bundle == 0)
5091 {
5092 /* PR8110: Cannot emit line number info inside a FLIX bundle
5093 when using --gstabs. Temporarily disable debug info. */
5094 generate_lineno_debug ();
5095 if (debug_type == DEBUG_STABS)
5096 {
5097 xt_saved_debug_type = debug_type;
5098 debug_type = DEBUG_NONE;
5099 }
5100
5101 cur_vinsn.inside_bundle = 1;
5102 }
5103 else
5104 {
5105 as_bad (_("extra opening brace"));
5106 return 0;
5107 }
5108 break;
5109
5110 case '}' :
5111 if (cur_vinsn.inside_bundle)
5112 finish_vinsn (&cur_vinsn);
5113 else
5114 {
5115 as_bad (_("extra closing brace"));
5116 return 0;
5117 }
5118 break;
5119 default:
5120 as_bad (_("syntax error"));
5121 return 0;
5122 }
5123 return 1;
5124 }
5125
5126
5127 /* md_flush_pending_output hook */
5128
5129 void
5130 xtensa_flush_pending_output (void)
5131 {
5132 if (cur_vinsn.inside_bundle)
5133 as_bad (_("missing closing brace"));
5134
5135 /* If there is a non-zero instruction fragment, close it. */
5136 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5137 {
5138 frag_wane (frag_now);
5139 frag_new (0);
5140 xtensa_set_frag_assembly_state (frag_now);
5141 }
5142 frag_now->tc_frag_data.is_insn = FALSE;
5143
5144 xtensa_clear_insn_labels ();
5145 }
5146
5147
5148 /* We had an error while parsing an instruction. The string might look
5149 like this: "insn arg1, arg2 }". If so, we need to see the closing
5150 brace and reset some fields. Otherwise, the vinsn never gets closed
5151 and the num_slots field will grow past the end of the array of slots,
5152 and bad things happen. */
5153
5154 static void
5155 error_reset_cur_vinsn (void)
5156 {
5157 if (cur_vinsn.inside_bundle)
5158 {
5159 if (*input_line_pointer == '}'
5160 || *(input_line_pointer - 1) == '}'
5161 || *(input_line_pointer - 2) == '}')
5162 xg_clear_vinsn (&cur_vinsn);
5163 }
5164 }
5165
5166
5167 void
5168 md_assemble (char *str)
5169 {
5170 xtensa_isa isa = xtensa_default_isa;
5171 char *opname, *file_name;
5172 unsigned opnamelen;
5173 bfd_boolean has_underbar = FALSE;
5174 char *arg_strings[MAX_INSN_ARGS];
5175 int num_args;
5176 TInsn orig_insn; /* Original instruction from the input. */
5177
5178 tinsn_init (&orig_insn);
5179
5180 /* Split off the opcode. */
5181 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5182 opname = xmalloc (opnamelen + 1);
5183 memcpy (opname, str, opnamelen);
5184 opname[opnamelen] = '\0';
5185
5186 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5187 if (num_args == -1)
5188 {
5189 as_bad (_("syntax error"));
5190 return;
5191 }
5192
5193 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5194 return;
5195
5196 /* Check for an underbar prefix. */
5197 if (*opname == '_')
5198 {
5199 has_underbar = TRUE;
5200 opname += 1;
5201 }
5202
5203 orig_insn.insn_type = ITYPE_INSN;
5204 orig_insn.ntok = 0;
5205 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5206
5207 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5208 if (orig_insn.opcode == XTENSA_UNDEFINED)
5209 {
5210 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5211 if (fmt == XTENSA_UNDEFINED)
5212 {
5213 as_bad (_("unknown opcode or format name '%s'"), opname);
5214 error_reset_cur_vinsn ();
5215 return;
5216 }
5217 if (!cur_vinsn.inside_bundle)
5218 {
5219 as_bad (_("format names only valid inside bundles"));
5220 error_reset_cur_vinsn ();
5221 return;
5222 }
5223 if (cur_vinsn.format != XTENSA_UNDEFINED)
5224 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5225 opname);
5226 cur_vinsn.format = fmt;
5227 free (has_underbar ? opname - 1 : opname);
5228 error_reset_cur_vinsn ();
5229 return;
5230 }
5231
5232 /* Parse the arguments. */
5233 if (parse_arguments (&orig_insn, num_args, arg_strings))
5234 {
5235 as_bad (_("syntax error"));
5236 error_reset_cur_vinsn ();
5237 return;
5238 }
5239
5240 /* Free the opcode and argument strings, now that they've been parsed. */
5241 free (has_underbar ? opname - 1 : opname);
5242 opname = 0;
5243 while (num_args-- > 0)
5244 free (arg_strings[num_args]);
5245
5246 /* Get expressions for invisible operands. */
5247 if (get_invisible_operands (&orig_insn))
5248 {
5249 error_reset_cur_vinsn ();
5250 return;
5251 }
5252
5253 /* Check for the right number and type of arguments. */
5254 if (tinsn_check_arguments (&orig_insn))
5255 {
5256 error_reset_cur_vinsn ();
5257 return;
5258 }
5259
5260 /* A FLIX bundle may be spread across multiple input lines. We want to
5261 report the first such line in the debug information. Record the line
5262 number for each TInsn (assume the file name doesn't change), so the
5263 first line can be found later. */
5264 as_where (&file_name, &orig_insn.linenum);
5265
5266 xg_add_branch_and_loop_targets (&orig_insn);
5267
5268 /* Check that immediate value for ENTRY is >= 16. */
5269 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5270 {
5271 expressionS *exp = &orig_insn.tok[2];
5272 if (exp->X_op == O_constant && exp->X_add_number < 16)
5273 as_warn (_("entry instruction with stack decrement < 16"));
5274 }
5275
5276 /* Finish it off:
5277 assemble_tokens (opcode, tok, ntok);
5278 expand the tokens from the orig_insn into the
5279 stack of instructions that will not expand
5280 unless required at relaxation time. */
5281
5282 if (!cur_vinsn.inside_bundle)
5283 emit_single_op (&orig_insn);
5284 else /* We are inside a bundle. */
5285 {
5286 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5287 cur_vinsn.num_slots++;
5288 if (*input_line_pointer == '}'
5289 || *(input_line_pointer - 1) == '}'
5290 || *(input_line_pointer - 2) == '}')
5291 finish_vinsn (&cur_vinsn);
5292 }
5293
5294 /* We've just emitted a new instruction so clear the list of labels. */
5295 xtensa_clear_insn_labels ();
5296 }
5297
5298
5299 /* HANDLE_ALIGN hook */
5300
5301 /* For a .align directive, we mark the previous block with the alignment
5302 information. This will be placed in the object file in the
5303 property section corresponding to this section. */
5304
5305 void
5306 xtensa_handle_align (fragS *fragP)
5307 {
5308 if (linkrelax
5309 && ! fragP->tc_frag_data.is_literal
5310 && (fragP->fr_type == rs_align
5311 || fragP->fr_type == rs_align_code)
5312 && fragP->fr_address + fragP->fr_fix > 0
5313 && fragP->fr_offset > 0
5314 && now_seg != bss_section)
5315 {
5316 fragP->tc_frag_data.is_align = TRUE;
5317 fragP->tc_frag_data.alignment = fragP->fr_offset;
5318 }
5319
5320 if (fragP->fr_type == rs_align_test)
5321 {
5322 int count;
5323 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5324 if (count != 0)
5325 as_bad_where (fragP->fr_file, fragP->fr_line,
5326 _("unaligned entry instruction"));
5327 }
5328 }
5329
5330
5331 /* TC_FRAG_INIT hook */
5332
5333 void
5334 xtensa_frag_init (fragS *frag)
5335 {
5336 xtensa_set_frag_assembly_state (frag);
5337 }
5338
5339
5340 symbolS *
5341 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5342 {
5343 return NULL;
5344 }
5345
5346
5347 /* Round up a section size to the appropriate boundary. */
5348
5349 valueT
5350 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5351 {
5352 return size; /* Byte alignment is fine. */
5353 }
5354
5355
5356 long
5357 md_pcrel_from (fixS *fixP)
5358 {
5359 char *insn_p;
5360 static xtensa_insnbuf insnbuf = NULL;
5361 static xtensa_insnbuf slotbuf = NULL;
5362 int opnum;
5363 uint32 opnd_value;
5364 xtensa_opcode opcode;
5365 xtensa_format fmt;
5366 int slot;
5367 xtensa_isa isa = xtensa_default_isa;
5368 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5369 bfd_boolean alt_reloc;
5370
5371 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5372 return 0;
5373
5374 if (!insnbuf)
5375 {
5376 insnbuf = xtensa_insnbuf_alloc (isa);
5377 slotbuf = xtensa_insnbuf_alloc (isa);
5378 }
5379
5380 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5381 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5382 fmt = xtensa_format_decode (isa, insnbuf);
5383
5384 if (fmt == XTENSA_UNDEFINED)
5385 as_fatal (_("bad instruction format"));
5386
5387 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5388 as_fatal (_("invalid relocation"));
5389
5390 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5391 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5392
5393 /* Check for "alternate" relocations (operand not specified). None
5394 of the current uses for these are really PC-relative. */
5395 if (alt_reloc || opcode == xtensa_const16_opcode)
5396 {
5397 if (opcode != xtensa_l32r_opcode
5398 && opcode != xtensa_const16_opcode)
5399 as_fatal (_("invalid relocation for '%s' instruction"),
5400 xtensa_opcode_name (isa, opcode));
5401 return 0;
5402 }
5403
5404 opnum = get_relaxable_immed (opcode);
5405 opnd_value = 0;
5406 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5407 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5408 {
5409 as_bad_where (fixP->fx_file,
5410 fixP->fx_line,
5411 _("invalid relocation for operand %d of '%s'"),
5412 opnum, xtensa_opcode_name (isa, opcode));
5413 return 0;
5414 }
5415 return 0 - opnd_value;
5416 }
5417
5418
5419 /* TC_FORCE_RELOCATION hook */
5420
5421 int
5422 xtensa_force_relocation (fixS *fix)
5423 {
5424 switch (fix->fx_r_type)
5425 {
5426 case BFD_RELOC_XTENSA_ASM_EXPAND:
5427 case BFD_RELOC_XTENSA_SLOT0_ALT:
5428 case BFD_RELOC_XTENSA_SLOT1_ALT:
5429 case BFD_RELOC_XTENSA_SLOT2_ALT:
5430 case BFD_RELOC_XTENSA_SLOT3_ALT:
5431 case BFD_RELOC_XTENSA_SLOT4_ALT:
5432 case BFD_RELOC_XTENSA_SLOT5_ALT:
5433 case BFD_RELOC_XTENSA_SLOT6_ALT:
5434 case BFD_RELOC_XTENSA_SLOT7_ALT:
5435 case BFD_RELOC_XTENSA_SLOT8_ALT:
5436 case BFD_RELOC_XTENSA_SLOT9_ALT:
5437 case BFD_RELOC_XTENSA_SLOT10_ALT:
5438 case BFD_RELOC_XTENSA_SLOT11_ALT:
5439 case BFD_RELOC_XTENSA_SLOT12_ALT:
5440 case BFD_RELOC_XTENSA_SLOT13_ALT:
5441 case BFD_RELOC_XTENSA_SLOT14_ALT:
5442 return 1;
5443 default:
5444 break;
5445 }
5446
5447 if (linkrelax && fix->fx_addsy
5448 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5449 return 1;
5450
5451 return generic_force_reloc (fix);
5452 }
5453
5454
5455 /* TC_VALIDATE_FIX_SUB hook */
5456
5457 int
5458 xtensa_validate_fix_sub (fixS *fix)
5459 {
5460 segT add_symbol_segment, sub_symbol_segment;
5461
5462 /* The difference of two symbols should be resolved by the assembler when
5463 linkrelax is not set. If the linker may relax the section containing
5464 the symbols, then an Xtensa DIFF relocation must be generated so that
5465 the linker knows to adjust the difference value. */
5466 if (!linkrelax || fix->fx_addsy == NULL)
5467 return 0;
5468
5469 /* Make sure both symbols are in the same segment, and that segment is
5470 "normal" and relaxable. If the segment is not "normal", then the
5471 fix is not valid. If the segment is not "relaxable", then the fix
5472 should have been handled earlier. */
5473 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5474 if (! SEG_NORMAL (add_symbol_segment) ||
5475 ! relaxable_section (add_symbol_segment))
5476 return 0;
5477 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5478 return (sub_symbol_segment == add_symbol_segment);
5479 }
5480
5481
5482 /* NO_PSEUDO_DOT hook */
5483
5484 /* This function has nothing to do with pseudo dots, but this is the
5485 nearest macro to where the check needs to take place. FIXME: This
5486 seems wrong. */
5487
5488 bfd_boolean
5489 xtensa_check_inside_bundle (void)
5490 {
5491 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5492 as_bad (_("directives are not valid inside bundles"));
5493
5494 /* This function must always return FALSE because it is called via a
5495 macro that has nothing to do with bundling. */
5496 return FALSE;
5497 }
5498
5499
5500 /* md_elf_section_change_hook */
5501
5502 void
5503 xtensa_elf_section_change_hook (void)
5504 {
5505 /* Set up the assembly state. */
5506 if (!frag_now->tc_frag_data.is_assembly_state_set)
5507 xtensa_set_frag_assembly_state (frag_now);
5508 }
5509
5510
5511 /* tc_fix_adjustable hook */
5512
5513 bfd_boolean
5514 xtensa_fix_adjustable (fixS *fixP)
5515 {
5516 /* An offset is not allowed in combination with the difference of two
5517 symbols, but that cannot be easily detected after a local symbol
5518 has been adjusted to a (section+offset) form. Return 0 so that such
5519 an fix will not be adjusted. */
5520 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5521 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5522 return 0;
5523
5524 /* We need the symbol name for the VTABLE entries. */
5525 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5526 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5527 return 0;
5528
5529 return 1;
5530 }
5531
5532
5533 void
5534 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5535 {
5536 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5537 valueT val = 0;
5538
5539 /* Subtracted symbols are only allowed for a few relocation types, and
5540 unless linkrelax is enabled, they should not make it to this point. */
5541 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5542 || fixP->fx_r_type == BFD_RELOC_16
5543 || fixP->fx_r_type == BFD_RELOC_8)))
5544 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5545
5546 switch (fixP->fx_r_type)
5547 {
5548 case BFD_RELOC_32:
5549 case BFD_RELOC_16:
5550 case BFD_RELOC_8:
5551 if (fixP->fx_subsy)
5552 {
5553 switch (fixP->fx_r_type)
5554 {
5555 case BFD_RELOC_8:
5556 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5557 break;
5558 case BFD_RELOC_16:
5559 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5560 break;
5561 case BFD_RELOC_32:
5562 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5563 break;
5564 default:
5565 break;
5566 }
5567
5568 /* An offset is only allowed when it results from adjusting a
5569 local symbol into a section-relative offset. If the offset
5570 came from the original expression, tc_fix_adjustable will have
5571 prevented the fix from being converted to a section-relative
5572 form so that we can flag the error here. */
5573 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5574 as_bad_where (fixP->fx_file, fixP->fx_line,
5575 _("cannot represent subtraction with an offset"));
5576
5577 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5578 - S_GET_VALUE (fixP->fx_subsy));
5579
5580 /* The difference value gets written out, and the DIFF reloc
5581 identifies the address of the subtracted symbol (i.e., the one
5582 with the lowest address). */
5583 *valP = val;
5584 fixP->fx_offset -= val;
5585 fixP->fx_subsy = NULL;
5586 }
5587 else if (! fixP->fx_addsy)
5588 {
5589 val = *valP;
5590 fixP->fx_done = 1;
5591 }
5592 /* fall through */
5593
5594 case BFD_RELOC_XTENSA_PLT:
5595 md_number_to_chars (fixpos, val, fixP->fx_size);
5596 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5597 break;
5598
5599 case BFD_RELOC_XTENSA_SLOT0_OP:
5600 case BFD_RELOC_XTENSA_SLOT1_OP:
5601 case BFD_RELOC_XTENSA_SLOT2_OP:
5602 case BFD_RELOC_XTENSA_SLOT3_OP:
5603 case BFD_RELOC_XTENSA_SLOT4_OP:
5604 case BFD_RELOC_XTENSA_SLOT5_OP:
5605 case BFD_RELOC_XTENSA_SLOT6_OP:
5606 case BFD_RELOC_XTENSA_SLOT7_OP:
5607 case BFD_RELOC_XTENSA_SLOT8_OP:
5608 case BFD_RELOC_XTENSA_SLOT9_OP:
5609 case BFD_RELOC_XTENSA_SLOT10_OP:
5610 case BFD_RELOC_XTENSA_SLOT11_OP:
5611 case BFD_RELOC_XTENSA_SLOT12_OP:
5612 case BFD_RELOC_XTENSA_SLOT13_OP:
5613 case BFD_RELOC_XTENSA_SLOT14_OP:
5614 if (linkrelax)
5615 {
5616 /* Write the tentative value of a PC-relative relocation to a
5617 local symbol into the instruction. The value will be ignored
5618 by the linker, and it makes the object file disassembly
5619 readable when all branch targets are encoded in relocations. */
5620
5621 assert (fixP->fx_addsy);
5622 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5623 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5624 {
5625 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5626 - md_pcrel_from (fixP));
5627 (void) xg_apply_fix_value (fixP, val);
5628 }
5629 }
5630 else if (! fixP->fx_addsy)
5631 {
5632 val = *valP;
5633 if (xg_apply_fix_value (fixP, val))
5634 fixP->fx_done = 1;
5635 }
5636 break;
5637
5638 case BFD_RELOC_XTENSA_ASM_EXPAND:
5639 case BFD_RELOC_XTENSA_SLOT0_ALT:
5640 case BFD_RELOC_XTENSA_SLOT1_ALT:
5641 case BFD_RELOC_XTENSA_SLOT2_ALT:
5642 case BFD_RELOC_XTENSA_SLOT3_ALT:
5643 case BFD_RELOC_XTENSA_SLOT4_ALT:
5644 case BFD_RELOC_XTENSA_SLOT5_ALT:
5645 case BFD_RELOC_XTENSA_SLOT6_ALT:
5646 case BFD_RELOC_XTENSA_SLOT7_ALT:
5647 case BFD_RELOC_XTENSA_SLOT8_ALT:
5648 case BFD_RELOC_XTENSA_SLOT9_ALT:
5649 case BFD_RELOC_XTENSA_SLOT10_ALT:
5650 case BFD_RELOC_XTENSA_SLOT11_ALT:
5651 case BFD_RELOC_XTENSA_SLOT12_ALT:
5652 case BFD_RELOC_XTENSA_SLOT13_ALT:
5653 case BFD_RELOC_XTENSA_SLOT14_ALT:
5654 /* These all need to be resolved at link-time. Do nothing now. */
5655 break;
5656
5657 case BFD_RELOC_VTABLE_INHERIT:
5658 case BFD_RELOC_VTABLE_ENTRY:
5659 fixP->fx_done = 0;
5660 break;
5661
5662 default:
5663 as_bad (_("unhandled local relocation fix %s"),
5664 bfd_get_reloc_code_name (fixP->fx_r_type));
5665 }
5666 }
5667
5668
5669 char *
5670 md_atof (int type, char *litP, int *sizeP)
5671 {
5672 int prec;
5673 LITTLENUM_TYPE words[4];
5674 char *t;
5675 int i;
5676
5677 switch (type)
5678 {
5679 case 'f':
5680 prec = 2;
5681 break;
5682
5683 case 'd':
5684 prec = 4;
5685 break;
5686
5687 default:
5688 *sizeP = 0;
5689 return "bad call to md_atof";
5690 }
5691
5692 t = atof_ieee (input_line_pointer, type, words);
5693 if (t)
5694 input_line_pointer = t;
5695
5696 *sizeP = prec * 2;
5697
5698 for (i = prec - 1; i >= 0; i--)
5699 {
5700 int idx = i;
5701 if (target_big_endian)
5702 idx = (prec - 1 - i);
5703
5704 md_number_to_chars (litP, (valueT) words[idx], 2);
5705 litP += 2;
5706 }
5707
5708 return NULL;
5709 }
5710
5711
5712 int
5713 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5714 {
5715 return total_frag_text_expansion (fragP);
5716 }
5717
5718
5719 /* Translate internal representation of relocation info to BFD target
5720 format. */
5721
5722 arelent *
5723 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5724 {
5725 arelent *reloc;
5726
5727 reloc = (arelent *) xmalloc (sizeof (arelent));
5728 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5729 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5730 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5731
5732 /* Make sure none of our internal relocations make it this far.
5733 They'd better have been fully resolved by this point. */
5734 assert ((int) fixp->fx_r_type > 0);
5735
5736 reloc->addend = fixp->fx_offset;
5737
5738 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5739 if (reloc->howto == NULL)
5740 {
5741 as_bad_where (fixp->fx_file, fixp->fx_line,
5742 _("cannot represent `%s' relocation in object file"),
5743 bfd_get_reloc_code_name (fixp->fx_r_type));
5744 free (reloc->sym_ptr_ptr);
5745 free (reloc);
5746 return NULL;
5747 }
5748
5749 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5750 as_fatal (_("internal error? cannot generate `%s' relocation"),
5751 bfd_get_reloc_code_name (fixp->fx_r_type));
5752
5753 return reloc;
5754 }
5755
5756 \f
5757 /* Checks for resource conflicts between instructions. */
5758
5759 /* The func unit stuff could be implemented as bit-vectors rather
5760 than the iterative approach here. If it ends up being too
5761 slow, we will switch it. */
5762
5763 resource_table *
5764 new_resource_table (void *data,
5765 int cycles,
5766 int nu,
5767 unit_num_copies_func uncf,
5768 opcode_num_units_func onuf,
5769 opcode_funcUnit_use_unit_func ouuf,
5770 opcode_funcUnit_use_stage_func ousf)
5771 {
5772 int i;
5773 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5774 rt->data = data;
5775 rt->cycles = cycles;
5776 rt->allocated_cycles = cycles;
5777 rt->num_units = nu;
5778 rt->unit_num_copies = uncf;
5779 rt->opcode_num_units = onuf;
5780 rt->opcode_unit_use = ouuf;
5781 rt->opcode_unit_stage = ousf;
5782
5783 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
5784 for (i = 0; i < cycles; i++)
5785 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
5786
5787 return rt;
5788 }
5789
5790
5791 void
5792 clear_resource_table (resource_table *rt)
5793 {
5794 int i, j;
5795 for (i = 0; i < rt->allocated_cycles; i++)
5796 for (j = 0; j < rt->num_units; j++)
5797 rt->units[i][j] = 0;
5798 }
5799
5800
5801 /* We never shrink it, just fake it into thinking so. */
5802
5803 void
5804 resize_resource_table (resource_table *rt, int cycles)
5805 {
5806 int i, old_cycles;
5807
5808 rt->cycles = cycles;
5809 if (cycles <= rt->allocated_cycles)
5810 return;
5811
5812 old_cycles = rt->allocated_cycles;
5813 rt->allocated_cycles = cycles;
5814
5815 rt->units = xrealloc (rt->units,
5816 rt->allocated_cycles * sizeof (unsigned char *));
5817 for (i = 0; i < old_cycles; i++)
5818 rt->units[i] = xrealloc (rt->units[i],
5819 rt->num_units * sizeof (unsigned char));
5820 for (i = old_cycles; i < cycles; i++)
5821 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
5822 }
5823
5824
5825 bfd_boolean
5826 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5827 {
5828 int i;
5829 int uses = (rt->opcode_num_units) (rt->data, opcode);
5830
5831 for (i = 0; i < uses; i++)
5832 {
5833 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5834 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5835 int copies_in_use = rt->units[stage + cycle][unit];
5836 int copies = (rt->unit_num_copies) (rt->data, unit);
5837 if (copies_in_use >= copies)
5838 return FALSE;
5839 }
5840 return TRUE;
5841 }
5842
5843
5844 void
5845 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5846 {
5847 int i;
5848 int uses = (rt->opcode_num_units) (rt->data, opcode);
5849
5850 for (i = 0; i < uses; i++)
5851 {
5852 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5853 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5854 /* Note that this allows resources to be oversubscribed. That's
5855 essential to the way the optional scheduler works.
5856 resources_available reports when a resource is over-subscribed,
5857 so it's easy to tell. */
5858 rt->units[stage + cycle][unit]++;
5859 }
5860 }
5861
5862
5863 void
5864 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5865 {
5866 int i;
5867 int uses = (rt->opcode_num_units) (rt->data, opcode);
5868
5869 for (i = 0; i < uses; i++)
5870 {
5871 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5872 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5873 assert (rt->units[stage + cycle][unit] > 0);
5874 rt->units[stage + cycle][unit]--;
5875 }
5876 }
5877
5878
5879 /* Wrapper functions make parameterized resource reservation
5880 more convenient. */
5881
5882 int
5883 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5884 {
5885 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5886 return use->unit;
5887 }
5888
5889
5890 int
5891 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5892 {
5893 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5894 return use->stage;
5895 }
5896
5897
5898 /* Note that this function does not check issue constraints, but
5899 solely whether the hardware is available to execute the given
5900 instructions together. It also doesn't check if the tinsns
5901 write the same state, or access the same tieports. That is
5902 checked by check_t1_t2_reads_and_writes. */
5903
5904 static bfd_boolean
5905 resources_conflict (vliw_insn *vinsn)
5906 {
5907 int i;
5908 static resource_table *rt = NULL;
5909
5910 /* This is the most common case by far. Optimize it. */
5911 if (vinsn->num_slots == 1)
5912 return FALSE;
5913
5914 if (rt == NULL)
5915 {
5916 xtensa_isa isa = xtensa_default_isa;
5917 rt = new_resource_table
5918 (isa, xtensa_isa_num_pipe_stages (isa),
5919 xtensa_isa_num_funcUnits (isa),
5920 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5921 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5922 opcode_funcUnit_use_unit,
5923 opcode_funcUnit_use_stage);
5924 }
5925
5926 clear_resource_table (rt);
5927
5928 for (i = 0; i < vinsn->num_slots; i++)
5929 {
5930 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5931 return TRUE;
5932 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5933 }
5934
5935 return FALSE;
5936 }
5937
5938 \f
5939 /* finish_vinsn, emit_single_op and helper functions. */
5940
5941 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5942 static xtensa_format xg_find_narrowest_format (vliw_insn *);
5943 static void xg_assemble_vliw_tokens (vliw_insn *);
5944
5945
5946 /* We have reached the end of a bundle; emit into the frag. */
5947
5948 static void
5949 finish_vinsn (vliw_insn *vinsn)
5950 {
5951 IStack slotstack;
5952 int i;
5953 char *file_name;
5954 unsigned line;
5955
5956 if (find_vinsn_conflicts (vinsn))
5957 {
5958 xg_clear_vinsn (vinsn);
5959 return;
5960 }
5961
5962 /* First, find a format that works. */
5963 if (vinsn->format == XTENSA_UNDEFINED)
5964 vinsn->format = xg_find_narrowest_format (vinsn);
5965
5966 if (vinsn->format == XTENSA_UNDEFINED)
5967 {
5968 as_where (&file_name, &line);
5969 as_bad_where (file_name, line,
5970 _("couldn't find a valid instruction format"));
5971 fprintf (stderr, _(" ops were: "));
5972 for (i = 0; i < vinsn->num_slots; i++)
5973 fprintf (stderr, _(" %s;"),
5974 xtensa_opcode_name (xtensa_default_isa,
5975 vinsn->slots[i].opcode));
5976 fprintf (stderr, _("\n"));
5977 xg_clear_vinsn (vinsn);
5978 return;
5979 }
5980
5981 if (vinsn->num_slots
5982 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
5983 {
5984 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5985 xtensa_format_name (xtensa_default_isa, vinsn->format),
5986 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5987 vinsn->num_slots);
5988 xg_clear_vinsn (vinsn);
5989 return;
5990 }
5991
5992 if (resources_conflict (vinsn))
5993 {
5994 as_where (&file_name, &line);
5995 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
5996 fprintf (stderr, " ops were: ");
5997 for (i = 0; i < vinsn->num_slots; i++)
5998 fprintf (stderr, " %s;",
5999 xtensa_opcode_name (xtensa_default_isa,
6000 vinsn->slots[i].opcode));
6001 fprintf (stderr, "\n");
6002 xg_clear_vinsn (vinsn);
6003 return;
6004 }
6005
6006 for (i = 0; i < vinsn->num_slots; i++)
6007 {
6008 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6009 {
6010 symbolS *lit_sym = NULL;
6011 int j;
6012 bfd_boolean e = FALSE;
6013 bfd_boolean saved_density = density_supported;
6014
6015 /* We don't want to narrow ops inside multi-slot bundles. */
6016 if (vinsn->num_slots > 1)
6017 density_supported = FALSE;
6018
6019 istack_init (&slotstack);
6020 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6021 {
6022 vinsn->slots[i].opcode =
6023 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6024 vinsn->format, i);
6025 vinsn->slots[i].ntok = 0;
6026 }
6027
6028 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6029 {
6030 e = TRUE;
6031 continue;
6032 }
6033
6034 density_supported = saved_density;
6035
6036 if (e)
6037 {
6038 xg_clear_vinsn (vinsn);
6039 return;
6040 }
6041
6042 for (j = 0; j < slotstack.ninsn; j++)
6043 {
6044 TInsn *insn = &slotstack.insn[j];
6045 if (insn->insn_type == ITYPE_LITERAL)
6046 {
6047 assert (lit_sym == NULL);
6048 lit_sym = xg_assemble_literal (insn);
6049 }
6050 else
6051 {
6052 assert (insn->insn_type == ITYPE_INSN);
6053 if (lit_sym)
6054 xg_resolve_literals (insn, lit_sym);
6055 if (j != slotstack.ninsn - 1)
6056 emit_single_op (insn);
6057 }
6058 }
6059
6060 if (vinsn->num_slots > 1)
6061 {
6062 if (opcode_fits_format_slot
6063 (slotstack.insn[slotstack.ninsn - 1].opcode,
6064 vinsn->format, i))
6065 {
6066 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6067 }
6068 else
6069 {
6070 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6071 if (vinsn->format == XTENSA_UNDEFINED)
6072 vinsn->slots[i].opcode = xtensa_nop_opcode;
6073 else
6074 vinsn->slots[i].opcode
6075 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6076 vinsn->format, i);
6077
6078 vinsn->slots[i].ntok = 0;
6079 }
6080 }
6081 else
6082 {
6083 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6084 vinsn->format = XTENSA_UNDEFINED;
6085 }
6086 }
6087 }
6088
6089 /* Now check resource conflicts on the modified bundle. */
6090 if (resources_conflict (vinsn))
6091 {
6092 as_where (&file_name, &line);
6093 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6094 fprintf (stderr, " ops were: ");
6095 for (i = 0; i < vinsn->num_slots; i++)
6096 fprintf (stderr, " %s;",
6097 xtensa_opcode_name (xtensa_default_isa,
6098 vinsn->slots[i].opcode));
6099 fprintf (stderr, "\n");
6100 xg_clear_vinsn (vinsn);
6101 return;
6102 }
6103
6104 /* First, find a format that works. */
6105 if (vinsn->format == XTENSA_UNDEFINED)
6106 vinsn->format = xg_find_narrowest_format (vinsn);
6107
6108 xg_assemble_vliw_tokens (vinsn);
6109
6110 xg_clear_vinsn (vinsn);
6111 }
6112
6113
6114 /* Given an vliw instruction, what conflicts are there in register
6115 usage and in writes to states and queues?
6116
6117 This function does two things:
6118 1. Reports an error when a vinsn contains illegal combinations
6119 of writes to registers states or queues.
6120 2. Marks individual tinsns as not relaxable if the combination
6121 contains antidependencies.
6122
6123 Job 2 handles things like swap semantics in instructions that need
6124 to be relaxed. For example,
6125
6126 addi a0, a1, 100000
6127
6128 normally would be relaxed to
6129
6130 l32r a0, some_label
6131 add a0, a1, a0
6132
6133 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6134
6135 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6136
6137 then we can't relax it into
6138
6139 l32r a0, some_label
6140 { add a0, a1, a0 ; add a2, a0, a4 ; }
6141
6142 because the value of a0 is trashed before the second add can read it. */
6143
6144 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6145
6146 static bfd_boolean
6147 find_vinsn_conflicts (vliw_insn *vinsn)
6148 {
6149 int i, j;
6150 int branches = 0;
6151 xtensa_isa isa = xtensa_default_isa;
6152
6153 assert (!past_xtensa_end);
6154
6155 for (i = 0 ; i < vinsn->num_slots; i++)
6156 {
6157 TInsn *op1 = &vinsn->slots[i];
6158 if (op1->is_specific_opcode)
6159 op1->keep_wide = TRUE;
6160 else
6161 op1->keep_wide = FALSE;
6162 }
6163
6164 for (i = 0 ; i < vinsn->num_slots; i++)
6165 {
6166 TInsn *op1 = &vinsn->slots[i];
6167
6168 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6169 branches++;
6170
6171 for (j = 0; j < vinsn->num_slots; j++)
6172 {
6173 if (i != j)
6174 {
6175 TInsn *op2 = &vinsn->slots[j];
6176 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6177 switch (conflict_type)
6178 {
6179 case 'c':
6180 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6181 xtensa_opcode_name (isa, op1->opcode), i,
6182 xtensa_opcode_name (isa, op2->opcode), j);
6183 return TRUE;
6184 case 'd':
6185 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6186 xtensa_opcode_name (isa, op1->opcode), i,
6187 xtensa_opcode_name (isa, op2->opcode), j);
6188 return TRUE;
6189 case 'e':
6190 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6191 xtensa_opcode_name (isa, op1->opcode), i,
6192 xtensa_opcode_name (isa, op2->opcode), j);
6193 return TRUE;
6194 case 'f':
6195 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6196 xtensa_opcode_name (isa, op1->opcode), i,
6197 xtensa_opcode_name (isa, op2->opcode), j);
6198 return TRUE;
6199 default:
6200 /* Everything is OK. */
6201 break;
6202 }
6203 op2->is_specific_opcode = (op2->is_specific_opcode
6204 || conflict_type == 'a');
6205 }
6206 }
6207 }
6208
6209 if (branches > 1)
6210 {
6211 as_bad (_("multiple branches or jumps in the same bundle"));
6212 return TRUE;
6213 }
6214
6215 return FALSE;
6216 }
6217
6218
6219 /* Check how the state used by t1 and t2 relate.
6220 Cases found are:
6221
6222 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6223 case B: no relationship between what is read and written (both could
6224 read the same reg though)
6225 case C: t1 writes a register t2 writes (a register conflict within a
6226 bundle)
6227 case D: t1 writes a state that t2 also writes
6228 case E: t1 writes a tie queue that t2 also writes
6229 case F: two volatile queue accesses
6230 */
6231
6232 static char
6233 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6234 {
6235 xtensa_isa isa = xtensa_default_isa;
6236 xtensa_regfile t1_regfile, t2_regfile;
6237 int t1_reg, t2_reg;
6238 int t1_base_reg, t1_last_reg;
6239 int t2_base_reg, t2_last_reg;
6240 char t1_inout, t2_inout;
6241 int i, j;
6242 char conflict = 'b';
6243 int t1_states;
6244 int t2_states;
6245 int t1_interfaces;
6246 int t2_interfaces;
6247 bfd_boolean t1_volatile = FALSE;
6248 bfd_boolean t2_volatile = FALSE;
6249
6250 /* Check registers. */
6251 for (j = 0; j < t2->ntok; j++)
6252 {
6253 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6254 continue;
6255
6256 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6257 t2_base_reg = t2->tok[j].X_add_number;
6258 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6259
6260 for (i = 0; i < t1->ntok; i++)
6261 {
6262 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6263 continue;
6264
6265 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6266
6267 if (t1_regfile != t2_regfile)
6268 continue;
6269
6270 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6271 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6272
6273 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6274 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6275 {
6276 if (t1_inout == 'm' || t1_inout == 'o'
6277 || t2_inout == 'm' || t2_inout == 'o')
6278 {
6279 conflict = 'a';
6280 continue;
6281 }
6282 }
6283
6284 t1_base_reg = t1->tok[i].X_add_number;
6285 t1_last_reg = (t1_base_reg
6286 + xtensa_operand_num_regs (isa, t1->opcode, i));
6287
6288 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6289 {
6290 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6291 {
6292 if (t1_reg != t2_reg)
6293 continue;
6294
6295 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6296 {
6297 conflict = 'a';
6298 continue;
6299 }
6300
6301 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6302 {
6303 conflict = 'a';
6304 continue;
6305 }
6306
6307 if (t1_inout != 'i' && t2_inout != 'i')
6308 return 'c';
6309 }
6310 }
6311 }
6312 }
6313
6314 /* Check states. */
6315 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6316 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6317 for (j = 0; j < t2_states; j++)
6318 {
6319 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6320 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6321 for (i = 0; i < t1_states; i++)
6322 {
6323 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6324 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6325 if (t1_so != t2_so)
6326 continue;
6327
6328 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6329 {
6330 conflict = 'a';
6331 continue;
6332 }
6333
6334 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6335 {
6336 conflict = 'a';
6337 continue;
6338 }
6339
6340 if (t1_inout != 'i' && t2_inout != 'i')
6341 return 'd';
6342 }
6343 }
6344
6345 /* Check tieports. */
6346 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6347 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6348 for (j = 0; j < t2_interfaces; j++)
6349 {
6350 xtensa_interface t2_int
6351 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6352 int t2_class = xtensa_interface_class_id (isa, t2_int);
6353
6354 t2_inout = xtensa_interface_inout (isa, t2_int);
6355 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6356 t2_volatile = TRUE;
6357
6358 for (i = 0; i < t1_interfaces; i++)
6359 {
6360 xtensa_interface t1_int
6361 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6362 int t1_class = xtensa_interface_class_id (isa, t1_int);
6363
6364 t1_inout = xtensa_interface_inout (isa, t1_int);
6365 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6366 t1_volatile = TRUE;
6367
6368 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6369 return 'f';
6370
6371 if (t1_int != t2_int)
6372 continue;
6373
6374 if (t2_inout == 'i' && t1_inout == 'o')
6375 {
6376 conflict = 'a';
6377 continue;
6378 }
6379
6380 if (t1_inout == 'i' && t2_inout == 'o')
6381 {
6382 conflict = 'a';
6383 continue;
6384 }
6385
6386 if (t1_inout != 'i' && t2_inout != 'i')
6387 return 'e';
6388 }
6389 }
6390
6391 return conflict;
6392 }
6393
6394
6395 static xtensa_format
6396 xg_find_narrowest_format (vliw_insn *vinsn)
6397 {
6398 /* Right now we assume that the ops within the vinsn are properly
6399 ordered for the slots that the programmer wanted them in. In
6400 other words, we don't rearrange the ops in hopes of finding a
6401 better format. The scheduler handles that. */
6402
6403 xtensa_isa isa = xtensa_default_isa;
6404 xtensa_format format;
6405 vliw_insn v_copy = *vinsn;
6406 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6407
6408 if (vinsn->num_slots == 1)
6409 return xg_get_single_format (vinsn->slots[0].opcode);
6410
6411 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6412 {
6413 v_copy = *vinsn;
6414 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6415 {
6416 int slot;
6417 int fit = 0;
6418 for (slot = 0; slot < v_copy.num_slots; slot++)
6419 {
6420 if (v_copy.slots[slot].opcode == nop_opcode)
6421 {
6422 v_copy.slots[slot].opcode =
6423 xtensa_format_slot_nop_opcode (isa, format, slot);
6424 v_copy.slots[slot].ntok = 0;
6425 }
6426
6427 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6428 format, slot))
6429 fit++;
6430 else if (v_copy.num_slots > 1)
6431 {
6432 TInsn widened;
6433 /* Try the widened version. */
6434 if (!v_copy.slots[slot].keep_wide
6435 && !v_copy.slots[slot].is_specific_opcode
6436 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6437 &widened, TRUE)
6438 && opcode_fits_format_slot (widened.opcode,
6439 format, slot))
6440 {
6441 v_copy.slots[slot] = widened;
6442 fit++;
6443 }
6444 }
6445 }
6446 if (fit == v_copy.num_slots)
6447 {
6448 *vinsn = v_copy;
6449 xtensa_format_encode (isa, format, vinsn->insnbuf);
6450 vinsn->format = format;
6451 break;
6452 }
6453 }
6454 }
6455
6456 if (format == xtensa_isa_num_formats (isa))
6457 return XTENSA_UNDEFINED;
6458
6459 return format;
6460 }
6461
6462
6463 /* Return the additional space needed in a frag
6464 for possible relaxations of any ops in a VLIW insn.
6465 Also fill out the relaxations that might be required of
6466 each tinsn in the vinsn. */
6467
6468 static int
6469 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6470 {
6471 bfd_boolean finish_frag = FALSE;
6472 int extra_space = 0;
6473 int slot;
6474
6475 for (slot = 0; slot < vinsn->num_slots; slot++)
6476 {
6477 TInsn *tinsn = &vinsn->slots[slot];
6478 if (!tinsn_has_symbolic_operands (tinsn))
6479 {
6480 /* A narrow instruction could be widened later to help
6481 alignment issues. */
6482 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6483 && !tinsn->is_specific_opcode
6484 && vinsn->num_slots == 1)
6485 {
6486 /* Difference in bytes between narrow and wide insns... */
6487 extra_space += 1;
6488 tinsn->subtype = RELAX_NARROW;
6489 }
6490 }
6491 else
6492 {
6493 if (workaround_b_j_loop_end
6494 && tinsn->opcode == xtensa_jx_opcode
6495 && use_transform ())
6496 {
6497 /* Add 2 of these. */
6498 extra_space += 3; /* for the nop size */
6499 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6500 }
6501
6502 /* Need to assemble it with space for the relocation. */
6503 if (xg_is_relaxable_insn (tinsn, 0)
6504 && !tinsn->is_specific_opcode)
6505 {
6506 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6507 int max_literal_size =
6508 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6509
6510 tinsn->literal_space = max_literal_size;
6511
6512 tinsn->subtype = RELAX_IMMED;
6513 extra_space += max_size;
6514 }
6515 else
6516 {
6517 /* A fix record will be added for this instruction prior
6518 to relaxation, so make it end the frag. */
6519 finish_frag = TRUE;
6520 }
6521 }
6522 }
6523 *pfinish_frag = finish_frag;
6524 return extra_space;
6525 }
6526
6527
6528 static void
6529 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6530 {
6531 xtensa_isa isa = xtensa_default_isa;
6532 int slot, chosen_slot;
6533
6534 vinsn->format = xg_get_single_format (tinsn->opcode);
6535 assert (vinsn->format != XTENSA_UNDEFINED);
6536 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6537
6538 chosen_slot = xg_get_single_slot (tinsn->opcode);
6539 for (slot = 0; slot < vinsn->num_slots; slot++)
6540 {
6541 if (slot == chosen_slot)
6542 vinsn->slots[slot] = *tinsn;
6543 else
6544 {
6545 vinsn->slots[slot].opcode =
6546 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6547 vinsn->slots[slot].ntok = 0;
6548 vinsn->slots[slot].insn_type = ITYPE_INSN;
6549 }
6550 }
6551 }
6552
6553
6554 static bfd_boolean
6555 emit_single_op (TInsn *orig_insn)
6556 {
6557 int i;
6558 IStack istack; /* put instructions into here */
6559 symbolS *lit_sym = NULL;
6560 symbolS *label_sym = NULL;
6561
6562 istack_init (&istack);
6563
6564 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6565 Because the scheduling and bundling characteristics of movi and
6566 l32r or const16 are so different, we can do much better if we relax
6567 it prior to scheduling and bundling, rather than after. */
6568 if ((orig_insn->opcode == xtensa_movi_opcode
6569 || orig_insn->opcode == xtensa_movi_n_opcode)
6570 && !cur_vinsn.inside_bundle
6571 && (orig_insn->tok[1].X_op == O_symbol
6572 || orig_insn->tok[1].X_op == O_pltrel)
6573 && !orig_insn->is_specific_opcode && use_transform ())
6574 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6575 else
6576 if (xg_expand_assembly_insn (&istack, orig_insn))
6577 return TRUE;
6578
6579 for (i = 0; i < istack.ninsn; i++)
6580 {
6581 TInsn *insn = &istack.insn[i];
6582 switch (insn->insn_type)
6583 {
6584 case ITYPE_LITERAL:
6585 assert (lit_sym == NULL);
6586 lit_sym = xg_assemble_literal (insn);
6587 break;
6588 case ITYPE_LABEL:
6589 {
6590 static int relaxed_sym_idx = 0;
6591 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6592 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6593 colon (label);
6594 assert (label_sym == NULL);
6595 label_sym = symbol_find_or_make (label);
6596 assert (label_sym);
6597 free (label);
6598 }
6599 break;
6600 case ITYPE_INSN:
6601 {
6602 vliw_insn v;
6603 if (lit_sym)
6604 xg_resolve_literals (insn, lit_sym);
6605 if (label_sym)
6606 xg_resolve_labels (insn, label_sym);
6607 xg_init_vinsn (&v);
6608 bundle_tinsn (insn, &v);
6609 finish_vinsn (&v);
6610 xg_free_vinsn (&v);
6611 }
6612 break;
6613 default:
6614 assert (0);
6615 break;
6616 }
6617 }
6618 return FALSE;
6619 }
6620
6621
6622 static int
6623 total_frag_text_expansion (fragS *fragP)
6624 {
6625 int slot;
6626 int total_expansion = 0;
6627
6628 for (slot = 0; slot < MAX_SLOTS; slot++)
6629 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6630
6631 return total_expansion;
6632 }
6633
6634
6635 /* Emit a vliw instruction to the current fragment. */
6636
6637 static void
6638 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6639 {
6640 bfd_boolean finish_frag;
6641 bfd_boolean is_jump = FALSE;
6642 bfd_boolean is_branch = FALSE;
6643 xtensa_isa isa = xtensa_default_isa;
6644 int i;
6645 int insn_size;
6646 int extra_space;
6647 char *f = NULL;
6648 int slot;
6649 unsigned current_line, best_linenum;
6650 char *current_file;
6651
6652 best_linenum = UINT_MAX;
6653
6654 if (generating_literals)
6655 {
6656 static int reported = 0;
6657 if (reported < 4)
6658 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6659 _("cannot assemble into a literal fragment"));
6660 if (reported == 3)
6661 as_bad (_("..."));
6662 reported++;
6663 return;
6664 }
6665
6666 if (frag_now_fix () != 0
6667 && (! frag_now->tc_frag_data.is_insn
6668 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6669 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6670 || (directive_state[directive_longcalls]
6671 != frag_now->tc_frag_data.use_longcalls)
6672 || (directive_state[directive_absolute_literals]
6673 != frag_now->tc_frag_data.use_absolute_literals)))
6674 {
6675 frag_wane (frag_now);
6676 frag_new (0);
6677 xtensa_set_frag_assembly_state (frag_now);
6678 }
6679
6680 if (workaround_a0_b_retw
6681 && vinsn->num_slots == 1
6682 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6683 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6684 && use_transform ())
6685 {
6686 has_a0_b_retw = TRUE;
6687
6688 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6689 After the first assembly pass we will check all of them and
6690 add a nop if needed. */
6691 frag_now->tc_frag_data.is_insn = TRUE;
6692 frag_var (rs_machine_dependent, 4, 4,
6693 RELAX_ADD_NOP_IF_A0_B_RETW,
6694 frag_now->fr_symbol,
6695 frag_now->fr_offset,
6696 NULL);
6697 xtensa_set_frag_assembly_state (frag_now);
6698 frag_now->tc_frag_data.is_insn = TRUE;
6699 frag_var (rs_machine_dependent, 4, 4,
6700 RELAX_ADD_NOP_IF_A0_B_RETW,
6701 frag_now->fr_symbol,
6702 frag_now->fr_offset,
6703 NULL);
6704 xtensa_set_frag_assembly_state (frag_now);
6705 }
6706
6707 for (i = 0; i < vinsn->num_slots; i++)
6708 {
6709 /* See if the instruction implies an aligned section. */
6710 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6711 record_alignment (now_seg, 2);
6712
6713 /* Also determine the best line number for debug info. */
6714 best_linenum = vinsn->slots[i].linenum < best_linenum
6715 ? vinsn->slots[i].linenum : best_linenum;
6716 }
6717
6718 /* Special cases for instructions that force an alignment... */
6719 /* None of these opcodes are bundle-able. */
6720 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6721 {
6722 int max_fill;
6723
6724 /* Remember the symbol that marks the end of the loop in the frag
6725 that marks the start of the loop. This way we can easily find
6726 the end of the loop at the beginning, without adding special code
6727 to mark the loop instructions themselves. */
6728 symbolS *target_sym = NULL;
6729 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6730 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6731
6732 xtensa_set_frag_assembly_state (frag_now);
6733 frag_now->tc_frag_data.is_insn = TRUE;
6734
6735 max_fill = get_text_align_max_fill_size
6736 (get_text_align_power (xtensa_fetch_width),
6737 TRUE, frag_now->tc_frag_data.is_no_density);
6738
6739 if (use_transform ())
6740 frag_var (rs_machine_dependent, max_fill, max_fill,
6741 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6742 else
6743 frag_var (rs_machine_dependent, 0, 0,
6744 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6745 xtensa_set_frag_assembly_state (frag_now);
6746
6747 xtensa_move_labels (frag_now, 0, FALSE);
6748 }
6749
6750 if (vinsn->slots[0].opcode == xtensa_entry_opcode
6751 && !vinsn->slots[0].is_specific_opcode)
6752 {
6753 xtensa_mark_literal_pool_location ();
6754 xtensa_move_labels (frag_now, 0, TRUE);
6755 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6756 }
6757
6758 if (vinsn->num_slots == 1)
6759 {
6760 if (workaround_a0_b_retw && use_transform ())
6761 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6762 is_register_writer (&vinsn->slots[0], "a", 0));
6763
6764 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6765 is_bad_loopend_opcode (&vinsn->slots[0]));
6766 }
6767 else
6768 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6769
6770 insn_size = xtensa_format_length (isa, vinsn->format);
6771
6772 extra_space = relaxation_requirements (vinsn, &finish_frag);
6773
6774 /* vinsn_to_insnbuf will produce the error. */
6775 if (vinsn->format != XTENSA_UNDEFINED)
6776 {
6777 f = frag_more (insn_size + extra_space);
6778 xtensa_set_frag_assembly_state (frag_now);
6779 frag_now->tc_frag_data.is_insn = TRUE;
6780 }
6781
6782 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
6783 if (vinsn->format == XTENSA_UNDEFINED)
6784 return;
6785
6786 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
6787
6788 /* Temporarily set the logical line number to the one we want to appear
6789 in the debug information. */
6790 as_where (&current_file, &current_line);
6791 new_logical_line (current_file, best_linenum);
6792 dwarf2_emit_insn (insn_size + extra_space);
6793 new_logical_line (current_file, current_line);
6794
6795 for (slot = 0; slot < vinsn->num_slots; slot++)
6796 {
6797 TInsn *tinsn = &vinsn->slots[slot];
6798 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
6799 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6800 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
6801 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6802 if (tinsn->literal_space != 0)
6803 xg_assemble_literal_space (tinsn->literal_space, slot);
6804
6805 if (tinsn->subtype == RELAX_NARROW)
6806 assert (vinsn->num_slots == 1);
6807 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6808 is_jump = TRUE;
6809 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6810 is_branch = TRUE;
6811
6812 if (tinsn->subtype || tinsn->symbol || tinsn->offset
6813 || tinsn->literal_frag || is_jump || is_branch)
6814 finish_frag = TRUE;
6815 }
6816
6817 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6818 frag_now->tc_frag_data.is_specific_opcode = TRUE;
6819
6820 if (finish_frag)
6821 {
6822 frag_variant (rs_machine_dependent,
6823 extra_space, extra_space, RELAX_SLOTS,
6824 frag_now->fr_symbol, frag_now->fr_offset, f);
6825 xtensa_set_frag_assembly_state (frag_now);
6826 }
6827
6828 /* Special cases for loops:
6829 close_loop_end should be inserted AFTER short_loop.
6830 Make sure that CLOSE loops are processed BEFORE short_loops
6831 when converting them. */
6832
6833 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6834 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6835 && !vinsn->slots[0].is_specific_opcode)
6836 {
6837 if (workaround_short_loop && use_transform ())
6838 {
6839 maybe_has_short_loop = TRUE;
6840 frag_now->tc_frag_data.is_insn = TRUE;
6841 frag_var (rs_machine_dependent, 4, 4,
6842 RELAX_ADD_NOP_IF_SHORT_LOOP,
6843 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6844 frag_now->tc_frag_data.is_insn = TRUE;
6845 frag_var (rs_machine_dependent, 4, 4,
6846 RELAX_ADD_NOP_IF_SHORT_LOOP,
6847 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6848 }
6849
6850 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6851 loop at least 12 bytes away from another loop's end. */
6852 if (workaround_close_loop_end && use_transform ())
6853 {
6854 maybe_has_close_loop_end = TRUE;
6855 frag_now->tc_frag_data.is_insn = TRUE;
6856 frag_var (rs_machine_dependent, 12, 12,
6857 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6858 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6859 }
6860 }
6861
6862 if (use_transform ())
6863 {
6864 if (is_jump)
6865 {
6866 assert (finish_frag);
6867 frag_var (rs_machine_dependent,
6868 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6869 RELAX_UNREACHABLE,
6870 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6871 xtensa_set_frag_assembly_state (frag_now);
6872 }
6873 else if (is_branch && do_align_targets ())
6874 {
6875 assert (finish_frag);
6876 frag_var (rs_machine_dependent,
6877 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6878 RELAX_MAYBE_UNREACHABLE,
6879 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6880 xtensa_set_frag_assembly_state (frag_now);
6881 frag_var (rs_machine_dependent,
6882 0, 0,
6883 RELAX_MAYBE_DESIRE_ALIGN,
6884 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6885 xtensa_set_frag_assembly_state (frag_now);
6886 }
6887 }
6888
6889 /* Now, if the original opcode was a call... */
6890 if (do_align_targets ()
6891 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6892 {
6893 float freq = get_subseg_total_freq (now_seg, now_subseg);
6894 frag_now->tc_frag_data.is_insn = TRUE;
6895 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6896 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6897 xtensa_set_frag_assembly_state (frag_now);
6898 }
6899
6900 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6901 {
6902 frag_wane (frag_now);
6903 frag_new (0);
6904 xtensa_set_frag_assembly_state (frag_now);
6905 }
6906 }
6907
6908 \f
6909 /* xtensa_end and helper functions. */
6910
6911 static void xtensa_cleanup_align_frags (void);
6912 static void xtensa_fix_target_frags (void);
6913 static void xtensa_mark_narrow_branches (void);
6914 static void xtensa_mark_zcl_first_insns (void);
6915 static void xtensa_fix_a0_b_retw_frags (void);
6916 static void xtensa_fix_b_j_loop_end_frags (void);
6917 static void xtensa_fix_close_loop_end_frags (void);
6918 static void xtensa_fix_short_loop_frags (void);
6919 static void xtensa_sanity_check (void);
6920
6921 void
6922 xtensa_end (void)
6923 {
6924 directive_balance ();
6925 xtensa_flush_pending_output ();
6926
6927 past_xtensa_end = TRUE;
6928
6929 xtensa_move_literals ();
6930
6931 xtensa_reorder_segments ();
6932 xtensa_cleanup_align_frags ();
6933 xtensa_fix_target_frags ();
6934 if (workaround_a0_b_retw && has_a0_b_retw)
6935 xtensa_fix_a0_b_retw_frags ();
6936 if (workaround_b_j_loop_end)
6937 xtensa_fix_b_j_loop_end_frags ();
6938
6939 /* "close_loop_end" should be processed BEFORE "short_loop". */
6940 if (workaround_close_loop_end && maybe_has_close_loop_end)
6941 xtensa_fix_close_loop_end_frags ();
6942
6943 if (workaround_short_loop && maybe_has_short_loop)
6944 xtensa_fix_short_loop_frags ();
6945 if (align_targets)
6946 xtensa_mark_narrow_branches ();
6947 xtensa_mark_zcl_first_insns ();
6948
6949 xtensa_sanity_check ();
6950 }
6951
6952
6953 static void
6954 xtensa_cleanup_align_frags (void)
6955 {
6956 frchainS *frchP;
6957
6958 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6959 {
6960 fragS *fragP;
6961 /* Walk over all of the fragments in a subsection. */
6962 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6963 {
6964 if ((fragP->fr_type == rs_align
6965 || fragP->fr_type == rs_align_code
6966 || (fragP->fr_type == rs_machine_dependent
6967 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6968 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6969 && fragP->fr_fix == 0)
6970 {
6971 fragS *next = fragP->fr_next;
6972
6973 while (next
6974 && next->fr_fix == 0
6975 && next->fr_type == rs_machine_dependent
6976 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6977 {
6978 frag_wane (next);
6979 next = next->fr_next;
6980 }
6981 }
6982 /* If we don't widen branch targets, then they
6983 will be easier to align. */
6984 if (fragP->tc_frag_data.is_branch_target
6985 && fragP->fr_opcode == fragP->fr_literal
6986 && fragP->fr_type == rs_machine_dependent
6987 && fragP->fr_subtype == RELAX_SLOTS
6988 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6989 frag_wane (fragP);
6990 if (fragP->fr_type == rs_machine_dependent
6991 && fragP->fr_subtype == RELAX_UNREACHABLE)
6992 fragP->tc_frag_data.is_unreachable = TRUE;
6993 }
6994 }
6995 }
6996
6997
6998 /* Re-process all of the fragments looking to convert all of the
6999 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7000 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7001 Otherwise, convert to a .fill 0. */
7002
7003 static void
7004 xtensa_fix_target_frags (void)
7005 {
7006 frchainS *frchP;
7007
7008 /* When this routine is called, all of the subsections are still intact
7009 so we walk over subsections instead of sections. */
7010 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7011 {
7012 fragS *fragP;
7013
7014 /* Walk over all of the fragments in a subsection. */
7015 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7016 {
7017 if (fragP->fr_type == rs_machine_dependent
7018 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7019 {
7020 if (next_frag_is_branch_target (fragP))
7021 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7022 else
7023 frag_wane (fragP);
7024 }
7025 }
7026 }
7027 }
7028
7029
7030 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7031
7032 static void
7033 xtensa_mark_narrow_branches (void)
7034 {
7035 frchainS *frchP;
7036
7037 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7038 {
7039 fragS *fragP;
7040 /* Walk over all of the fragments in a subsection. */
7041 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7042 {
7043 if (fragP->fr_type == rs_machine_dependent
7044 && fragP->fr_subtype == RELAX_SLOTS
7045 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7046 {
7047 vliw_insn vinsn;
7048
7049 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7050 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7051
7052 if (vinsn.num_slots == 1
7053 && xtensa_opcode_is_branch (xtensa_default_isa,
7054 vinsn.slots[0].opcode)
7055 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7056 && is_narrow_branch_guaranteed_in_range (fragP,
7057 &vinsn.slots[0]))
7058 {
7059 fragP->fr_subtype = RELAX_SLOTS;
7060 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7061 fragP->tc_frag_data.is_aligning_branch = 1;
7062 }
7063 }
7064 }
7065 }
7066 }
7067
7068
7069 /* A branch is typically widened only when its target is out of
7070 range. However, we would like to widen them to align a subsequent
7071 branch target when possible.
7072
7073 Because the branch relaxation code is so convoluted, the optimal solution
7074 (combining the two cases) is difficult to get right in all circumstances.
7075 We therefore go with an "almost as good" solution, where we only
7076 use for alignment narrow branches that definitely will not expand to a
7077 jump and a branch. These functions find and mark these cases. */
7078
7079 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7080 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7081 We start counting beginning with the frag after the 2-byte branch, so the
7082 maximum offset is (4 - 2) + 63 = 65. */
7083 #define MAX_IMMED6 65
7084
7085 static offsetT unrelaxed_frag_max_size (fragS *);
7086
7087 static bfd_boolean
7088 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7089 {
7090 const expressionS *expr = &tinsn->tok[1];
7091 symbolS *symbolP = expr->X_add_symbol;
7092 offsetT max_distance = expr->X_add_number;
7093 fragS *target_frag;
7094
7095 if (expr->X_op != O_symbol)
7096 return FALSE;
7097
7098 target_frag = symbol_get_frag (symbolP);
7099
7100 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7101 if (is_branch_jmp_to_next (tinsn, fragP))
7102 return FALSE;
7103
7104 /* The branch doesn't branch over it's own frag,
7105 but over the subsequent ones. */
7106 fragP = fragP->fr_next;
7107 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7108 {
7109 max_distance += unrelaxed_frag_max_size (fragP);
7110 fragP = fragP->fr_next;
7111 }
7112 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7113 return TRUE;
7114 return FALSE;
7115 }
7116
7117
7118 static void
7119 xtensa_mark_zcl_first_insns (void)
7120 {
7121 frchainS *frchP;
7122
7123 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7124 {
7125 fragS *fragP;
7126 /* Walk over all of the fragments in a subsection. */
7127 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7128 {
7129 if (fragP->fr_type == rs_machine_dependent
7130 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7131 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7132 {
7133 /* Find the loop frag. */
7134 fragS *targ_frag = next_non_empty_frag (fragP);
7135 /* Find the first insn frag. */
7136 targ_frag = next_non_empty_frag (targ_frag);
7137
7138 /* Of course, sometimes (mostly for toy test cases) a
7139 zero-cost loop instruction is the last in a section. */
7140 if (targ_frag)
7141 {
7142 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7143 /* Do not widen a frag that is the first instruction of a
7144 zero-cost loop. It makes that loop harder to align. */
7145 if (targ_frag->fr_type == rs_machine_dependent
7146 && targ_frag->fr_subtype == RELAX_SLOTS
7147 && (targ_frag->tc_frag_data.slot_subtypes[0]
7148 == RELAX_NARROW))
7149 {
7150 if (targ_frag->tc_frag_data.is_aligning_branch)
7151 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7152 else
7153 {
7154 frag_wane (targ_frag);
7155 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7156 }
7157 }
7158 }
7159 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7160 frag_wane (fragP);
7161 }
7162 }
7163 }
7164 }
7165
7166
7167 /* Re-process all of the fragments looking to convert all of the
7168 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7169 conditional branch or a retw/retw.n, convert this frag to one that
7170 will generate a NOP. In any case close it off with a .fill 0. */
7171
7172 static bfd_boolean next_instrs_are_b_retw (fragS *);
7173
7174 static void
7175 xtensa_fix_a0_b_retw_frags (void)
7176 {
7177 frchainS *frchP;
7178
7179 /* When this routine is called, all of the subsections are still intact
7180 so we walk over subsections instead of sections. */
7181 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7182 {
7183 fragS *fragP;
7184
7185 /* Walk over all of the fragments in a subsection. */
7186 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7187 {
7188 if (fragP->fr_type == rs_machine_dependent
7189 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7190 {
7191 if (next_instrs_are_b_retw (fragP))
7192 {
7193 if (fragP->tc_frag_data.is_no_transform)
7194 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7195 else
7196 relax_frag_add_nop (fragP);
7197 }
7198 frag_wane (fragP);
7199 }
7200 }
7201 }
7202 }
7203
7204
7205 static bfd_boolean
7206 next_instrs_are_b_retw (fragS *fragP)
7207 {
7208 xtensa_opcode opcode;
7209 xtensa_format fmt;
7210 const fragS *next_fragP = next_non_empty_frag (fragP);
7211 static xtensa_insnbuf insnbuf = NULL;
7212 static xtensa_insnbuf slotbuf = NULL;
7213 xtensa_isa isa = xtensa_default_isa;
7214 int offset = 0;
7215 int slot;
7216 bfd_boolean branch_seen = FALSE;
7217
7218 if (!insnbuf)
7219 {
7220 insnbuf = xtensa_insnbuf_alloc (isa);
7221 slotbuf = xtensa_insnbuf_alloc (isa);
7222 }
7223
7224 if (next_fragP == NULL)
7225 return FALSE;
7226
7227 /* Check for the conditional branch. */
7228 xtensa_insnbuf_from_chars
7229 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7230 fmt = xtensa_format_decode (isa, insnbuf);
7231 if (fmt == XTENSA_UNDEFINED)
7232 return FALSE;
7233
7234 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7235 {
7236 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7237 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7238
7239 branch_seen = (branch_seen
7240 || xtensa_opcode_is_branch (isa, opcode) == 1);
7241 }
7242
7243 if (!branch_seen)
7244 return FALSE;
7245
7246 offset += xtensa_format_length (isa, fmt);
7247 if (offset == next_fragP->fr_fix)
7248 {
7249 next_fragP = next_non_empty_frag (next_fragP);
7250 offset = 0;
7251 }
7252
7253 if (next_fragP == NULL)
7254 return FALSE;
7255
7256 /* Check for the retw/retw.n. */
7257 xtensa_insnbuf_from_chars
7258 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7259 fmt = xtensa_format_decode (isa, insnbuf);
7260
7261 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7262 have no problems. */
7263 if (fmt == XTENSA_UNDEFINED
7264 || xtensa_format_num_slots (isa, fmt) != 1)
7265 return FALSE;
7266
7267 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7268 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7269
7270 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7271 return TRUE;
7272
7273 return FALSE;
7274 }
7275
7276
7277 /* Re-process all of the fragments looking to convert all of the
7278 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7279 loop end label, convert this frag to one that will generate a NOP.
7280 In any case close it off with a .fill 0. */
7281
7282 static bfd_boolean next_instr_is_loop_end (fragS *);
7283
7284 static void
7285 xtensa_fix_b_j_loop_end_frags (void)
7286 {
7287 frchainS *frchP;
7288
7289 /* When this routine is called, all of the subsections are still intact
7290 so we walk over subsections instead of sections. */
7291 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7292 {
7293 fragS *fragP;
7294
7295 /* Walk over all of the fragments in a subsection. */
7296 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7297 {
7298 if (fragP->fr_type == rs_machine_dependent
7299 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7300 {
7301 if (next_instr_is_loop_end (fragP))
7302 {
7303 if (fragP->tc_frag_data.is_no_transform)
7304 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7305 else
7306 relax_frag_add_nop (fragP);
7307 }
7308 frag_wane (fragP);
7309 }
7310 }
7311 }
7312 }
7313
7314
7315 static bfd_boolean
7316 next_instr_is_loop_end (fragS *fragP)
7317 {
7318 const fragS *next_fragP;
7319
7320 if (next_frag_is_loop_target (fragP))
7321 return FALSE;
7322
7323 next_fragP = next_non_empty_frag (fragP);
7324 if (next_fragP == NULL)
7325 return FALSE;
7326
7327 if (!next_frag_is_loop_target (next_fragP))
7328 return FALSE;
7329
7330 /* If the size is >= 3 then there is more than one instruction here.
7331 The hardware bug will not fire. */
7332 if (next_fragP->fr_fix > 3)
7333 return FALSE;
7334
7335 return TRUE;
7336 }
7337
7338
7339 /* Re-process all of the fragments looking to convert all of the
7340 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7341 not MY loop's loop end within 12 bytes, add enough nops here to
7342 make it at least 12 bytes away. In any case close it off with a
7343 .fill 0. */
7344
7345 static offsetT min_bytes_to_other_loop_end
7346 (fragS *, fragS *, offsetT);
7347
7348 static void
7349 xtensa_fix_close_loop_end_frags (void)
7350 {
7351 frchainS *frchP;
7352
7353 /* When this routine is called, all of the subsections are still intact
7354 so we walk over subsections instead of sections. */
7355 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7356 {
7357 fragS *fragP;
7358
7359 fragS *current_target = NULL;
7360
7361 /* Walk over all of the fragments in a subsection. */
7362 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7363 {
7364 if (fragP->fr_type == rs_machine_dependent
7365 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7366 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7367 current_target = symbol_get_frag (fragP->fr_symbol);
7368
7369 if (current_target
7370 && fragP->fr_type == rs_machine_dependent
7371 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7372 {
7373 offsetT min_bytes;
7374 int bytes_added = 0;
7375
7376 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7377 /* Max out at 12. */
7378 min_bytes = min_bytes_to_other_loop_end
7379 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7380
7381 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7382 {
7383 if (fragP->tc_frag_data.is_no_transform)
7384 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7385 else
7386 {
7387 while (min_bytes + bytes_added
7388 < REQUIRED_LOOP_DIVIDING_BYTES)
7389 {
7390 int length = 3;
7391
7392 if (fragP->fr_var < length)
7393 as_fatal (_("fr_var %lu < length %d"),
7394 (long) fragP->fr_var, length);
7395 else
7396 {
7397 assemble_nop (length,
7398 fragP->fr_literal + fragP->fr_fix);
7399 fragP->fr_fix += length;
7400 fragP->fr_var -= length;
7401 }
7402 bytes_added += length;
7403 }
7404 }
7405 }
7406 frag_wane (fragP);
7407 }
7408 assert (fragP->fr_type != rs_machine_dependent
7409 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7410 }
7411 }
7412 }
7413
7414
7415 static offsetT unrelaxed_frag_min_size (fragS *);
7416
7417 static offsetT
7418 min_bytes_to_other_loop_end (fragS *fragP,
7419 fragS *current_target,
7420 offsetT max_size)
7421 {
7422 offsetT offset = 0;
7423 fragS *current_fragP;
7424
7425 for (current_fragP = fragP;
7426 current_fragP;
7427 current_fragP = current_fragP->fr_next)
7428 {
7429 if (current_fragP->tc_frag_data.is_loop_target
7430 && current_fragP != current_target)
7431 return offset;
7432
7433 offset += unrelaxed_frag_min_size (current_fragP);
7434
7435 if (offset >= max_size)
7436 return max_size;
7437 }
7438 return max_size;
7439 }
7440
7441
7442 static offsetT
7443 unrelaxed_frag_min_size (fragS *fragP)
7444 {
7445 offsetT size = fragP->fr_fix;
7446
7447 /* Add fill size. */
7448 if (fragP->fr_type == rs_fill)
7449 size += fragP->fr_offset;
7450
7451 return size;
7452 }
7453
7454
7455 static offsetT
7456 unrelaxed_frag_max_size (fragS *fragP)
7457 {
7458 offsetT size = fragP->fr_fix;
7459 switch (fragP->fr_type)
7460 {
7461 case 0:
7462 /* Empty frags created by the obstack allocation scheme
7463 end up with type 0. */
7464 break;
7465 case rs_fill:
7466 case rs_org:
7467 case rs_space:
7468 size += fragP->fr_offset;
7469 break;
7470 case rs_align:
7471 case rs_align_code:
7472 case rs_align_test:
7473 case rs_leb128:
7474 case rs_cfa:
7475 case rs_dwarf2dbg:
7476 /* No further adjustments needed. */
7477 break;
7478 case rs_machine_dependent:
7479 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7480 size += fragP->fr_var;
7481 break;
7482 default:
7483 /* We had darn well better know how big it is. */
7484 assert (0);
7485 break;
7486 }
7487
7488 return size;
7489 }
7490
7491
7492 /* Re-process all of the fragments looking to convert all
7493 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7494
7495 A)
7496 1) the instruction size count to the loop end label
7497 is too short (<= 2 instructions),
7498 2) loop has a jump or branch in it
7499
7500 or B)
7501 1) workaround_all_short_loops is TRUE
7502 2) The generating loop was a 'loopgtz' or 'loopnez'
7503 3) the instruction size count to the loop end label is too short
7504 (<= 2 instructions)
7505 then convert this frag (and maybe the next one) to generate a NOP.
7506 In any case close it off with a .fill 0. */
7507
7508 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7509 static bfd_boolean branch_before_loop_end (fragS *);
7510
7511 static void
7512 xtensa_fix_short_loop_frags (void)
7513 {
7514 frchainS *frchP;
7515
7516 /* When this routine is called, all of the subsections are still intact
7517 so we walk over subsections instead of sections. */
7518 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7519 {
7520 fragS *fragP;
7521 fragS *current_target = NULL;
7522 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7523
7524 /* Walk over all of the fragments in a subsection. */
7525 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7526 {
7527 if (fragP->fr_type == rs_machine_dependent
7528 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7529 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7530 {
7531 TInsn t_insn;
7532 fragS *loop_frag = next_non_empty_frag (fragP);
7533 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7534 current_target = symbol_get_frag (fragP->fr_symbol);
7535 current_opcode = t_insn.opcode;
7536 assert (xtensa_opcode_is_loop (xtensa_default_isa,
7537 current_opcode));
7538 }
7539
7540 if (fragP->fr_type == rs_machine_dependent
7541 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7542 {
7543 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7544 && (branch_before_loop_end (fragP->fr_next)
7545 || (workaround_all_short_loops
7546 && current_opcode != XTENSA_UNDEFINED
7547 && current_opcode != xtensa_loop_opcode)))
7548 {
7549 if (fragP->tc_frag_data.is_no_transform)
7550 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7551 else
7552 relax_frag_add_nop (fragP);
7553 }
7554 frag_wane (fragP);
7555 }
7556 }
7557 }
7558 }
7559
7560
7561 static int unrelaxed_frag_min_insn_count (fragS *);
7562
7563 static int
7564 count_insns_to_loop_end (fragS *base_fragP,
7565 bfd_boolean count_relax_add,
7566 int max_count)
7567 {
7568 fragS *fragP = NULL;
7569 int insn_count = 0;
7570
7571 fragP = base_fragP;
7572
7573 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7574 {
7575 insn_count += unrelaxed_frag_min_insn_count (fragP);
7576 if (insn_count >= max_count)
7577 return max_count;
7578
7579 if (count_relax_add)
7580 {
7581 if (fragP->fr_type == rs_machine_dependent
7582 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7583 {
7584 /* In order to add the appropriate number of
7585 NOPs, we count an instruction for downstream
7586 occurrences. */
7587 insn_count++;
7588 if (insn_count >= max_count)
7589 return max_count;
7590 }
7591 }
7592 }
7593 return insn_count;
7594 }
7595
7596
7597 static int
7598 unrelaxed_frag_min_insn_count (fragS *fragP)
7599 {
7600 xtensa_isa isa = xtensa_default_isa;
7601 static xtensa_insnbuf insnbuf = NULL;
7602 int insn_count = 0;
7603 int offset = 0;
7604
7605 if (!fragP->tc_frag_data.is_insn)
7606 return insn_count;
7607
7608 if (!insnbuf)
7609 insnbuf = xtensa_insnbuf_alloc (isa);
7610
7611 /* Decode the fixed instructions. */
7612 while (offset < fragP->fr_fix)
7613 {
7614 xtensa_format fmt;
7615
7616 xtensa_insnbuf_from_chars
7617 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7618 fmt = xtensa_format_decode (isa, insnbuf);
7619
7620 if (fmt == XTENSA_UNDEFINED)
7621 {
7622 as_fatal (_("undecodable instruction in instruction frag"));
7623 return insn_count;
7624 }
7625 offset += xtensa_format_length (isa, fmt);
7626 insn_count++;
7627 }
7628
7629 return insn_count;
7630 }
7631
7632
7633 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7634
7635 static bfd_boolean
7636 branch_before_loop_end (fragS *base_fragP)
7637 {
7638 fragS *fragP;
7639
7640 for (fragP = base_fragP;
7641 fragP && !fragP->tc_frag_data.is_loop_target;
7642 fragP = fragP->fr_next)
7643 {
7644 if (unrelaxed_frag_has_b_j (fragP))
7645 return TRUE;
7646 }
7647 return FALSE;
7648 }
7649
7650
7651 static bfd_boolean
7652 unrelaxed_frag_has_b_j (fragS *fragP)
7653 {
7654 static xtensa_insnbuf insnbuf = NULL;
7655 xtensa_isa isa = xtensa_default_isa;
7656 int offset = 0;
7657
7658 if (!fragP->tc_frag_data.is_insn)
7659 return FALSE;
7660
7661 if (!insnbuf)
7662 insnbuf = xtensa_insnbuf_alloc (isa);
7663
7664 /* Decode the fixed instructions. */
7665 while (offset < fragP->fr_fix)
7666 {
7667 xtensa_format fmt;
7668 int slot;
7669
7670 xtensa_insnbuf_from_chars
7671 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7672 fmt = xtensa_format_decode (isa, insnbuf);
7673 if (fmt == XTENSA_UNDEFINED)
7674 return FALSE;
7675
7676 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7677 {
7678 xtensa_opcode opcode =
7679 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7680 if (xtensa_opcode_is_branch (isa, opcode) == 1
7681 || xtensa_opcode_is_jump (isa, opcode) == 1)
7682 return TRUE;
7683 }
7684 offset += xtensa_format_length (isa, fmt);
7685 }
7686 return FALSE;
7687 }
7688
7689
7690 /* Checks to be made after initial assembly but before relaxation. */
7691
7692 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7693 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7694
7695 static void
7696 xtensa_sanity_check (void)
7697 {
7698 char *file_name;
7699 unsigned line;
7700
7701 frchainS *frchP;
7702
7703 as_where (&file_name, &line);
7704 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7705 {
7706 fragS *fragP;
7707
7708 /* Walk over all of the fragments in a subsection. */
7709 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7710 {
7711 /* Currently we only check for empty loops here. */
7712 if (fragP->fr_type == rs_machine_dependent
7713 && fragP->fr_subtype == RELAX_IMMED)
7714 {
7715 static xtensa_insnbuf insnbuf = NULL;
7716 TInsn t_insn;
7717
7718 if (fragP->fr_opcode != NULL)
7719 {
7720 if (!insnbuf)
7721 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7722 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7723 tinsn_immed_from_frag (&t_insn, fragP, 0);
7724
7725 if (xtensa_opcode_is_loop (xtensa_default_isa,
7726 t_insn.opcode) == 1)
7727 {
7728 if (is_empty_loop (&t_insn, fragP))
7729 {
7730 new_logical_line (fragP->fr_file, fragP->fr_line);
7731 as_bad (_("invalid empty loop"));
7732 }
7733 if (!is_local_forward_loop (&t_insn, fragP))
7734 {
7735 new_logical_line (fragP->fr_file, fragP->fr_line);
7736 as_bad (_("loop target does not follow "
7737 "loop instruction in section"));
7738 }
7739 }
7740 }
7741 }
7742 }
7743 }
7744 new_logical_line (file_name, line);
7745 }
7746
7747
7748 #define LOOP_IMMED_OPN 1
7749
7750 /* Return TRUE if the loop target is the next non-zero fragment. */
7751
7752 static bfd_boolean
7753 is_empty_loop (const TInsn *insn, fragS *fragP)
7754 {
7755 const expressionS *expr;
7756 symbolS *symbolP;
7757 fragS *next_fragP;
7758
7759 if (insn->insn_type != ITYPE_INSN)
7760 return FALSE;
7761
7762 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7763 return FALSE;
7764
7765 if (insn->ntok <= LOOP_IMMED_OPN)
7766 return FALSE;
7767
7768 expr = &insn->tok[LOOP_IMMED_OPN];
7769
7770 if (expr->X_op != O_symbol)
7771 return FALSE;
7772
7773 symbolP = expr->X_add_symbol;
7774 if (!symbolP)
7775 return FALSE;
7776
7777 if (symbol_get_frag (symbolP) == NULL)
7778 return FALSE;
7779
7780 if (S_GET_VALUE (symbolP) != 0)
7781 return FALSE;
7782
7783 /* Walk through the zero-size fragments from this one. If we find
7784 the target fragment, then this is a zero-size loop. */
7785
7786 for (next_fragP = fragP->fr_next;
7787 next_fragP != NULL;
7788 next_fragP = next_fragP->fr_next)
7789 {
7790 if (next_fragP == symbol_get_frag (symbolP))
7791 return TRUE;
7792 if (next_fragP->fr_fix != 0)
7793 return FALSE;
7794 }
7795 return FALSE;
7796 }
7797
7798
7799 static bfd_boolean
7800 is_local_forward_loop (const TInsn *insn, fragS *fragP)
7801 {
7802 const expressionS *expr;
7803 symbolS *symbolP;
7804 fragS *next_fragP;
7805
7806 if (insn->insn_type != ITYPE_INSN)
7807 return FALSE;
7808
7809 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
7810 return FALSE;
7811
7812 if (insn->ntok <= LOOP_IMMED_OPN)
7813 return FALSE;
7814
7815 expr = &insn->tok[LOOP_IMMED_OPN];
7816
7817 if (expr->X_op != O_symbol)
7818 return FALSE;
7819
7820 symbolP = expr->X_add_symbol;
7821 if (!symbolP)
7822 return FALSE;
7823
7824 if (symbol_get_frag (symbolP) == NULL)
7825 return FALSE;
7826
7827 /* Walk through fragments until we find the target.
7828 If we do not find the target, then this is an invalid loop. */
7829
7830 for (next_fragP = fragP->fr_next;
7831 next_fragP != NULL;
7832 next_fragP = next_fragP->fr_next)
7833 {
7834 if (next_fragP == symbol_get_frag (symbolP))
7835 return TRUE;
7836 }
7837
7838 return FALSE;
7839 }
7840
7841 \f
7842 /* Alignment Functions. */
7843
7844 static int
7845 get_text_align_power (unsigned target_size)
7846 {
7847 if (target_size <= 4)
7848 return 2;
7849 assert (target_size == 8);
7850 return 3;
7851 }
7852
7853
7854 static int
7855 get_text_align_max_fill_size (int align_pow,
7856 bfd_boolean use_nops,
7857 bfd_boolean use_no_density)
7858 {
7859 if (!use_nops)
7860 return (1 << align_pow);
7861 if (use_no_density)
7862 return 3 * (1 << align_pow);
7863
7864 return 1 + (1 << align_pow);
7865 }
7866
7867
7868 /* Calculate the minimum bytes of fill needed at "address" to align a
7869 target instruction of size "target_size" so that it does not cross a
7870 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7871 the fill can be an arbitrary number of bytes. Otherwise, the space must
7872 be filled by NOP instructions. */
7873
7874 static int
7875 get_text_align_fill_size (addressT address,
7876 int align_pow,
7877 int target_size,
7878 bfd_boolean use_nops,
7879 bfd_boolean use_no_density)
7880 {
7881 addressT alignment, fill, fill_limit, fill_step;
7882 bfd_boolean skip_one = FALSE;
7883
7884 alignment = (1 << align_pow);
7885 assert (target_size > 0 && alignment >= (addressT) target_size);
7886
7887 if (!use_nops)
7888 {
7889 fill_limit = alignment;
7890 fill_step = 1;
7891 }
7892 else if (!use_no_density)
7893 {
7894 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7895 fill_limit = alignment * 2;
7896 fill_step = 1;
7897 skip_one = TRUE;
7898 }
7899 else
7900 {
7901 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7902 fill_limit = alignment * 3;
7903 fill_step = 3;
7904 }
7905
7906 /* Try all fill sizes until finding one that works. */
7907 for (fill = 0; fill < fill_limit; fill += fill_step)
7908 {
7909 if (skip_one && fill == 1)
7910 continue;
7911 if ((address + fill) >> align_pow
7912 == (address + fill + target_size - 1) >> align_pow)
7913 return fill;
7914 }
7915 assert (0);
7916 return 0;
7917 }
7918
7919
7920 static int
7921 branch_align_power (segT sec)
7922 {
7923 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7924 is aligned to at least an 8-byte boundary, then a branch target need
7925 only fit within an 8-byte aligned block of memory to avoid a stall.
7926 Otherwise, try to fit branch targets within 4-byte aligned blocks
7927 (which may be insufficient, e.g., if the section has no alignment, but
7928 it's good enough). */
7929 if (xtensa_fetch_width == 8)
7930 {
7931 if (get_recorded_alignment (sec) >= 3)
7932 return 3;
7933 }
7934 else
7935 assert (xtensa_fetch_width == 4);
7936
7937 return 2;
7938 }
7939
7940
7941 /* This will assert if it is not possible. */
7942
7943 static int
7944 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
7945 {
7946 int count = 0;
7947
7948 if (use_no_density)
7949 {
7950 assert (fill_size % 3 == 0);
7951 return (fill_size / 3);
7952 }
7953
7954 assert (fill_size != 1); /* Bad argument. */
7955
7956 while (fill_size > 1)
7957 {
7958 int insn_size = 3;
7959 if (fill_size == 2 || fill_size == 4)
7960 insn_size = 2;
7961 fill_size -= insn_size;
7962 count++;
7963 }
7964 assert (fill_size != 1); /* Bad algorithm. */
7965 return count;
7966 }
7967
7968
7969 static int
7970 get_text_align_nth_nop_size (offsetT fill_size,
7971 int n,
7972 bfd_boolean use_no_density)
7973 {
7974 int count = 0;
7975
7976 if (use_no_density)
7977 return 3;
7978
7979 assert (fill_size != 1); /* Bad argument. */
7980
7981 while (fill_size > 1)
7982 {
7983 int insn_size = 3;
7984 if (fill_size == 2 || fill_size == 4)
7985 insn_size = 2;
7986 fill_size -= insn_size;
7987 count++;
7988 if (n + 1 == count)
7989 return insn_size;
7990 }
7991 assert (0);
7992 return 0;
7993 }
7994
7995
7996 /* For the given fragment, find the appropriate address
7997 for it to begin at if we are using NOPs to align it. */
7998
7999 static addressT
8000 get_noop_aligned_address (fragS *fragP, addressT address)
8001 {
8002 /* The rule is: get next fragment's FIRST instruction. Find
8003 the smallest number of bytes that need to be added to
8004 ensure that the next fragment's FIRST instruction will fit
8005 in a single word.
8006
8007 E.G., 2 bytes : 0, 1, 2 mod 4
8008 3 bytes: 0, 1 mod 4
8009
8010 If the FIRST instruction MIGHT be relaxed,
8011 assume that it will become a 3-byte instruction.
8012
8013 Note again here that LOOP instructions are not bundleable,
8014 and this relaxation only applies to LOOP opcodes. */
8015
8016 int fill_size = 0;
8017 int first_insn_size;
8018 int loop_insn_size;
8019 addressT pre_opcode_bytes;
8020 int align_power;
8021 fragS *first_insn;
8022 xtensa_opcode opcode;
8023 bfd_boolean is_loop;
8024
8025 assert (fragP->fr_type == rs_machine_dependent);
8026 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8027
8028 /* Find the loop frag. */
8029 first_insn = next_non_empty_frag (fragP);
8030 /* Now find the first insn frag. */
8031 first_insn = next_non_empty_frag (first_insn);
8032
8033 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8034 assert (is_loop);
8035 loop_insn_size = xg_get_single_size (opcode);
8036
8037 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8038 pre_opcode_bytes += loop_insn_size;
8039
8040 /* For loops, the alignment depends on the size of the
8041 instruction following the loop, not the LOOP instruction. */
8042
8043 if (first_insn == NULL)
8044 first_insn_size = xtensa_fetch_width;
8045 else
8046 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8047
8048 /* If it was 8, then we'll need a larger alignment for the section. */
8049 align_power = get_text_align_power (first_insn_size);
8050 record_alignment (now_seg, align_power);
8051
8052 fill_size = get_text_align_fill_size
8053 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8054 fragP->tc_frag_data.is_no_density);
8055
8056 return address + fill_size;
8057 }
8058
8059
8060 /* 3 mechanisms for relaxing an alignment:
8061
8062 Align to a power of 2.
8063 Align so the next fragment's instruction does not cross a word boundary.
8064 Align the current instruction so that if the next instruction
8065 were 3 bytes, it would not cross a word boundary.
8066
8067 We can align with:
8068
8069 zeros - This is easy; always insert zeros.
8070 nops - 3-byte and 2-byte instructions
8071 2 - 2-byte nop
8072 3 - 3-byte nop
8073 4 - 2 2-byte nops
8074 >=5 : 3-byte instruction + fn (n-3)
8075 widening - widen previous instructions. */
8076
8077 static offsetT
8078 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8079 {
8080 addressT target_address, loop_insn_offset;
8081 int target_size;
8082 xtensa_opcode loop_opcode;
8083 bfd_boolean is_loop;
8084 int align_power;
8085 offsetT opt_diff;
8086 offsetT branch_align;
8087
8088 assert (fragP->fr_type == rs_machine_dependent);
8089 switch (fragP->fr_subtype)
8090 {
8091 case RELAX_DESIRE_ALIGN:
8092 target_size = next_frag_format_size (fragP);
8093 if (target_size == XTENSA_UNDEFINED)
8094 target_size = 3;
8095 align_power = branch_align_power (now_seg);
8096 branch_align = 1 << align_power;
8097 /* Don't count on the section alignment being as large as the target. */
8098 if (target_size > branch_align)
8099 target_size = branch_align;
8100 opt_diff = get_text_align_fill_size (address, align_power,
8101 target_size, FALSE, FALSE);
8102
8103 *max_diff = (opt_diff + branch_align
8104 - (target_size + ((address + opt_diff) % branch_align)));
8105 assert (*max_diff >= opt_diff);
8106 return opt_diff;
8107
8108 case RELAX_ALIGN_NEXT_OPCODE:
8109 target_size = get_loop_align_size (next_frag_format_size (fragP));
8110 loop_insn_offset = 0;
8111 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8112 assert (is_loop);
8113
8114 /* If the loop has been expanded then the LOOP instruction
8115 could be at an offset from this fragment. */
8116 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8117 != RELAX_IMMED)
8118 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8119
8120 /* In an ideal world, which is what we are shooting for here,
8121 we wouldn't need to use any NOPs immediately prior to the
8122 LOOP instruction. If this approach fails, relax_frag_loop_align
8123 will call get_noop_aligned_address. */
8124 target_address =
8125 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8126 align_power = get_text_align_power (target_size),
8127 opt_diff = get_text_align_fill_size (target_address, align_power,
8128 target_size, FALSE, FALSE);
8129
8130 *max_diff = xtensa_fetch_width
8131 - ((target_address + opt_diff) % xtensa_fetch_width)
8132 - target_size + opt_diff;
8133 assert (*max_diff >= opt_diff);
8134 return opt_diff;
8135
8136 default:
8137 break;
8138 }
8139 assert (0);
8140 return 0;
8141 }
8142
8143 \f
8144 /* md_relax_frag Hook and Helper Functions. */
8145
8146 static long relax_frag_loop_align (fragS *, long);
8147 static long relax_frag_for_align (fragS *, long);
8148 static long relax_frag_immed
8149 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8150
8151
8152 /* Return the number of bytes added to this fragment, given that the
8153 input has been stretched already by "stretch". */
8154
8155 long
8156 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8157 {
8158 xtensa_isa isa = xtensa_default_isa;
8159 int unreported = fragP->tc_frag_data.unreported_expansion;
8160 long new_stretch = 0;
8161 char *file_name;
8162 unsigned line;
8163 int lit_size;
8164 static xtensa_insnbuf vbuf = NULL;
8165 int slot, num_slots;
8166 xtensa_format fmt;
8167
8168 as_where (&file_name, &line);
8169 new_logical_line (fragP->fr_file, fragP->fr_line);
8170
8171 fragP->tc_frag_data.unreported_expansion = 0;
8172
8173 switch (fragP->fr_subtype)
8174 {
8175 case RELAX_ALIGN_NEXT_OPCODE:
8176 /* Always convert. */
8177 if (fragP->tc_frag_data.relax_seen)
8178 new_stretch = relax_frag_loop_align (fragP, stretch);
8179 break;
8180
8181 case RELAX_LOOP_END:
8182 /* Do nothing. */
8183 break;
8184
8185 case RELAX_LOOP_END_ADD_NOP:
8186 /* Add a NOP and switch to .fill 0. */
8187 new_stretch = relax_frag_add_nop (fragP);
8188 frag_wane (fragP);
8189 break;
8190
8191 case RELAX_DESIRE_ALIGN:
8192 /* Do nothing. The narrowing before this frag will either align
8193 it or not. */
8194 break;
8195
8196 case RELAX_LITERAL:
8197 case RELAX_LITERAL_FINAL:
8198 return 0;
8199
8200 case RELAX_LITERAL_NR:
8201 lit_size = 4;
8202 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8203 assert (unreported == lit_size);
8204 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8205 fragP->fr_var -= lit_size;
8206 fragP->fr_fix += lit_size;
8207 new_stretch = 4;
8208 break;
8209
8210 case RELAX_SLOTS:
8211 if (vbuf == NULL)
8212 vbuf = xtensa_insnbuf_alloc (isa);
8213
8214 xtensa_insnbuf_from_chars
8215 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8216 fmt = xtensa_format_decode (isa, vbuf);
8217 num_slots = xtensa_format_num_slots (isa, fmt);
8218
8219 for (slot = 0; slot < num_slots; slot++)
8220 {
8221 switch (fragP->tc_frag_data.slot_subtypes[slot])
8222 {
8223 case RELAX_NARROW:
8224 if (fragP->tc_frag_data.relax_seen)
8225 new_stretch += relax_frag_for_align (fragP, stretch);
8226 break;
8227
8228 case RELAX_IMMED:
8229 case RELAX_IMMED_STEP1:
8230 case RELAX_IMMED_STEP2:
8231 /* Place the immediate. */
8232 new_stretch += relax_frag_immed
8233 (now_seg, fragP, stretch,
8234 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8235 fmt, slot, stretched_p, FALSE);
8236 break;
8237
8238 default:
8239 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8240 break;
8241 }
8242 }
8243 break;
8244
8245 case RELAX_LITERAL_POOL_BEGIN:
8246 case RELAX_LITERAL_POOL_END:
8247 case RELAX_MAYBE_UNREACHABLE:
8248 case RELAX_MAYBE_DESIRE_ALIGN:
8249 /* No relaxation required. */
8250 break;
8251
8252 case RELAX_FILL_NOP:
8253 case RELAX_UNREACHABLE:
8254 if (fragP->tc_frag_data.relax_seen)
8255 new_stretch += relax_frag_for_align (fragP, stretch);
8256 break;
8257
8258 default:
8259 as_bad (_("bad relaxation state"));
8260 }
8261
8262 /* Tell gas we need another relaxation pass. */
8263 if (! fragP->tc_frag_data.relax_seen)
8264 {
8265 fragP->tc_frag_data.relax_seen = TRUE;
8266 *stretched_p = 1;
8267 }
8268
8269 new_logical_line (file_name, line);
8270 return new_stretch;
8271 }
8272
8273
8274 static long
8275 relax_frag_loop_align (fragS *fragP, long stretch)
8276 {
8277 addressT old_address, old_next_address, old_size;
8278 addressT new_address, new_next_address, new_size;
8279 addressT growth;
8280
8281 /* All the frags with relax_frag_for_alignment prior to this one in the
8282 section have been done, hopefully eliminating the need for a NOP here.
8283 But, this will put it in if necessary. */
8284
8285 /* Calculate the old address of this fragment and the next fragment. */
8286 old_address = fragP->fr_address - stretch;
8287 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8288 fragP->tc_frag_data.text_expansion[0]);
8289 old_size = old_next_address - old_address;
8290
8291 /* Calculate the new address of this fragment and the next fragment. */
8292 new_address = fragP->fr_address;
8293 new_next_address =
8294 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8295 new_size = new_next_address - new_address;
8296
8297 growth = new_size - old_size;
8298
8299 /* Fix up the text_expansion field and return the new growth. */
8300 fragP->tc_frag_data.text_expansion[0] += growth;
8301 return growth;
8302 }
8303
8304
8305 /* Add a NOP instruction. */
8306
8307 static long
8308 relax_frag_add_nop (fragS *fragP)
8309 {
8310 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8311 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8312 assemble_nop (length, nop_buf);
8313 fragP->tc_frag_data.is_insn = TRUE;
8314
8315 if (fragP->fr_var < length)
8316 {
8317 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8318 return 0;
8319 }
8320
8321 fragP->fr_fix += length;
8322 fragP->fr_var -= length;
8323 return length;
8324 }
8325
8326
8327 static long future_alignment_required (fragS *, long);
8328
8329 static long
8330 relax_frag_for_align (fragS *fragP, long stretch)
8331 {
8332 /* Overview of the relaxation procedure for alignment:
8333 We can widen with NOPs or by widening instructions or by filling
8334 bytes after jump instructions. Find the opportune places and widen
8335 them if necessary. */
8336
8337 long stretch_me;
8338 long diff;
8339
8340 assert (fragP->fr_subtype == RELAX_FILL_NOP
8341 || fragP->fr_subtype == RELAX_UNREACHABLE
8342 || (fragP->fr_subtype == RELAX_SLOTS
8343 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8344
8345 stretch_me = future_alignment_required (fragP, stretch);
8346 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8347 if (diff == 0)
8348 return 0;
8349
8350 if (diff < 0)
8351 {
8352 /* We expanded on a previous pass. Can we shrink now? */
8353 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8354 if (shrink <= stretch && stretch > 0)
8355 {
8356 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8357 return -shrink;
8358 }
8359 return 0;
8360 }
8361
8362 /* Below here, diff > 0. */
8363 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8364
8365 return diff;
8366 }
8367
8368
8369 /* Return the address of the next frag that should be aligned.
8370
8371 By "address" we mean the address it _would_ be at if there
8372 is no action taken to align it between here and the target frag.
8373 In other words, if no narrows and no fill nops are used between
8374 here and the frag to align, _even_if_ some of the frags we use
8375 to align targets have already expanded on a previous relaxation
8376 pass.
8377
8378 Also, count each frag that may be used to help align the target.
8379
8380 Return 0 if there are no frags left in the chain that need to be
8381 aligned. */
8382
8383 static addressT
8384 find_address_of_next_align_frag (fragS **fragPP,
8385 int *wide_nops,
8386 int *narrow_nops,
8387 int *widens,
8388 bfd_boolean *paddable)
8389 {
8390 fragS *fragP = *fragPP;
8391 addressT address = fragP->fr_address;
8392
8393 /* Do not reset the counts to 0. */
8394
8395 while (fragP)
8396 {
8397 /* Limit this to a small search. */
8398 if (*widens >= (int) xtensa_fetch_width)
8399 {
8400 *fragPP = fragP;
8401 return 0;
8402 }
8403 address += fragP->fr_fix;
8404
8405 if (fragP->fr_type == rs_fill)
8406 address += fragP->fr_offset * fragP->fr_var;
8407 else if (fragP->fr_type == rs_machine_dependent)
8408 {
8409 switch (fragP->fr_subtype)
8410 {
8411 case RELAX_UNREACHABLE:
8412 *paddable = TRUE;
8413 break;
8414
8415 case RELAX_FILL_NOP:
8416 (*wide_nops)++;
8417 if (!fragP->tc_frag_data.is_no_density)
8418 (*narrow_nops)++;
8419 break;
8420
8421 case RELAX_SLOTS:
8422 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8423 {
8424 (*widens)++;
8425 break;
8426 }
8427 address += total_frag_text_expansion (fragP);;
8428 break;
8429
8430 case RELAX_IMMED:
8431 address += fragP->tc_frag_data.text_expansion[0];
8432 break;
8433
8434 case RELAX_ALIGN_NEXT_OPCODE:
8435 case RELAX_DESIRE_ALIGN:
8436 *fragPP = fragP;
8437 return address;
8438
8439 case RELAX_MAYBE_UNREACHABLE:
8440 case RELAX_MAYBE_DESIRE_ALIGN:
8441 /* Do nothing. */
8442 break;
8443
8444 default:
8445 /* Just punt if we don't know the type. */
8446 *fragPP = fragP;
8447 return 0;
8448 }
8449 }
8450 else
8451 {
8452 /* Just punt if we don't know the type. */
8453 *fragPP = fragP;
8454 return 0;
8455 }
8456 fragP = fragP->fr_next;
8457 }
8458
8459 *fragPP = fragP;
8460 return 0;
8461 }
8462
8463
8464 static long bytes_to_stretch (fragS *, int, int, int, int);
8465
8466 static long
8467 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8468 {
8469 fragS *this_frag = fragP;
8470 long address;
8471 int num_widens = 0;
8472 int wide_nops = 0;
8473 int narrow_nops = 0;
8474 bfd_boolean paddable = FALSE;
8475 offsetT local_opt_diff;
8476 offsetT opt_diff;
8477 offsetT max_diff;
8478 int stretch_amount = 0;
8479 int local_stretch_amount;
8480 int global_stretch_amount;
8481
8482 address = find_address_of_next_align_frag
8483 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8484
8485 if (!address)
8486 {
8487 if (this_frag->tc_frag_data.is_aligning_branch)
8488 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8489 else
8490 frag_wane (this_frag);
8491 }
8492 else
8493 {
8494 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8495 opt_diff = local_opt_diff;
8496 assert (opt_diff >= 0);
8497 assert (max_diff >= opt_diff);
8498 if (max_diff == 0)
8499 return 0;
8500
8501 if (fragP)
8502 fragP = fragP->fr_next;
8503
8504 while (fragP && opt_diff < max_diff && address)
8505 {
8506 /* We only use these to determine if we can exit early
8507 because there will be plenty of ways to align future
8508 align frags. */
8509 int glob_widens = 0;
8510 int dnn = 0;
8511 int dw = 0;
8512 bfd_boolean glob_pad = 0;
8513 address = find_address_of_next_align_frag
8514 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8515 /* If there is a padable portion, then skip. */
8516 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8517 address = 0;
8518
8519 if (address)
8520 {
8521 offsetT next_m_diff;
8522 offsetT next_o_diff;
8523
8524 /* Downrange frags haven't had stretch added to them yet. */
8525 address += stretch;
8526
8527 /* The address also includes any text expansion from this
8528 frag in a previous pass, but we don't want that. */
8529 address -= this_frag->tc_frag_data.text_expansion[0];
8530
8531 /* Assume we are going to move at least opt_diff. In
8532 reality, we might not be able to, but assuming that
8533 we will helps catch cases where moving opt_diff pushes
8534 the next target from aligned to unaligned. */
8535 address += opt_diff;
8536
8537 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8538
8539 /* Now cleanup for the adjustments to address. */
8540 next_o_diff += opt_diff;
8541 next_m_diff += opt_diff;
8542 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8543 opt_diff = next_o_diff;
8544 if (next_m_diff < max_diff)
8545 max_diff = next_m_diff;
8546 fragP = fragP->fr_next;
8547 }
8548 }
8549
8550 /* If there are enough wideners in between, do it. */
8551 if (paddable)
8552 {
8553 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8554 {
8555 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8556 return opt_diff;
8557 }
8558 return 0;
8559 }
8560 local_stretch_amount
8561 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8562 num_widens, local_opt_diff);
8563 global_stretch_amount
8564 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8565 num_widens, opt_diff);
8566 /* If the condition below is true, then the frag couldn't
8567 stretch the correct amount for the global case, so we just
8568 optimize locally. We'll rely on the subsequent frags to get
8569 the correct alignment in the global case. */
8570 if (global_stretch_amount < local_stretch_amount)
8571 stretch_amount = local_stretch_amount;
8572 else
8573 stretch_amount = global_stretch_amount;
8574
8575 if (this_frag->fr_subtype == RELAX_SLOTS
8576 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8577 assert (stretch_amount <= 1);
8578 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8579 {
8580 if (this_frag->tc_frag_data.is_no_density)
8581 assert (stretch_amount == 3 || stretch_amount == 0);
8582 else
8583 assert (stretch_amount <= 3);
8584 }
8585 }
8586 return stretch_amount;
8587 }
8588
8589
8590 /* The idea: widen everything you can to get a target or loop aligned,
8591 then start using NOPs.
8592
8593 When we must have a NOP, here is a table of how we decide
8594 (so you don't have to fight through the control flow below):
8595
8596 wide_nops = the number of wide NOPs available for aligning
8597 narrow_nops = the number of narrow NOPs available for aligning
8598 (a subset of wide_nops)
8599 widens = the number of narrow instructions that should be widened
8600
8601 Desired wide narrow
8602 Diff nop nop widens
8603 1 0 0 1
8604 2 0 1 0
8605 3a 1 0 0
8606 b 0 1 1 (case 3a makes this case unnecessary)
8607 4a 1 0 1
8608 b 0 2 0
8609 c 0 1 2 (case 4a makes this case unnecessary)
8610 5a 1 0 2
8611 b 1 1 0
8612 c 0 2 1 (case 5b makes this case unnecessary)
8613 6a 2 0 0
8614 b 1 0 3
8615 c 0 1 4 (case 6b makes this case unnecessary)
8616 d 1 1 1 (case 6a makes this case unnecessary)
8617 e 0 2 2 (case 6a makes this case unnecessary)
8618 f 0 3 0 (case 6a makes this case unnecessary)
8619 7a 1 0 4
8620 b 2 0 1
8621 c 1 1 2 (case 7b makes this case unnecessary)
8622 d 0 1 5 (case 7a makes this case unnecessary)
8623 e 0 2 3 (case 7b makes this case unnecessary)
8624 f 0 3 1 (case 7b makes this case unnecessary)
8625 g 1 2 1 (case 7b makes this case unnecessary)
8626 */
8627
8628 static long
8629 bytes_to_stretch (fragS *this_frag,
8630 int wide_nops,
8631 int narrow_nops,
8632 int num_widens,
8633 int desired_diff)
8634 {
8635 int bytes_short = desired_diff - num_widens;
8636
8637 assert (desired_diff >= 0 && desired_diff < 8);
8638 if (desired_diff == 0)
8639 return 0;
8640
8641 assert (wide_nops > 0 || num_widens > 0);
8642
8643 /* Always prefer widening to NOP-filling. */
8644 if (bytes_short < 0)
8645 {
8646 /* There are enough RELAX_NARROW frags after this one
8647 to align the target without widening this frag in any way. */
8648 return 0;
8649 }
8650
8651 if (bytes_short == 0)
8652 {
8653 /* Widen every narrow between here and the align target
8654 and the align target will be properly aligned. */
8655 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8656 return 0;
8657 else
8658 return 1;
8659 }
8660
8661 /* From here we will need at least one NOP to get an alignment.
8662 However, we may not be able to align at all, in which case,
8663 don't widen. */
8664 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8665 {
8666 switch (desired_diff)
8667 {
8668 case 1:
8669 return 0;
8670 case 2:
8671 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8672 return 2; /* case 2 */
8673 return 0;
8674 case 3:
8675 if (wide_nops > 1)
8676 return 0;
8677 else
8678 return 3; /* case 3a */
8679 case 4:
8680 if (num_widens >= 1 && wide_nops == 1)
8681 return 3; /* case 4a */
8682 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8683 return 2; /* case 4b */
8684 return 0;
8685 case 5:
8686 if (num_widens >= 2 && wide_nops == 1)
8687 return 3; /* case 5a */
8688 /* We will need two nops. Are there enough nops
8689 between here and the align target? */
8690 if (wide_nops < 2 || narrow_nops == 0)
8691 return 0;
8692 /* Are there other nops closer that can serve instead? */
8693 if (wide_nops > 2 && narrow_nops > 1)
8694 return 0;
8695 /* Take the density one first, because there might not be
8696 another density one available. */
8697 if (!this_frag->tc_frag_data.is_no_density)
8698 return 2; /* case 5b narrow */
8699 else
8700 return 3; /* case 5b wide */
8701 return 0;
8702 case 6:
8703 if (wide_nops == 2)
8704 return 3; /* case 6a */
8705 else if (num_widens >= 3 && wide_nops == 1)
8706 return 3; /* case 6b */
8707 return 0;
8708 case 7:
8709 if (wide_nops == 1 && num_widens >= 4)
8710 return 3; /* case 7a */
8711 else if (wide_nops == 2 && num_widens >= 1)
8712 return 3; /* case 7b */
8713 return 0;
8714 default:
8715 assert (0);
8716 }
8717 }
8718 else
8719 {
8720 /* We will need a NOP no matter what, but should we widen
8721 this instruction to help?
8722
8723 This is a RELAX_NARROW frag. */
8724 switch (desired_diff)
8725 {
8726 case 1:
8727 assert (0);
8728 return 0;
8729 case 2:
8730 case 3:
8731 return 0;
8732 case 4:
8733 if (wide_nops >= 1 && num_widens == 1)
8734 return 1; /* case 4a */
8735 return 0;
8736 case 5:
8737 if (wide_nops >= 1 && num_widens == 2)
8738 return 1; /* case 5a */
8739 return 0;
8740 case 6:
8741 if (wide_nops >= 2)
8742 return 0; /* case 6a */
8743 else if (wide_nops >= 1 && num_widens == 3)
8744 return 1; /* case 6b */
8745 return 0;
8746 case 7:
8747 if (wide_nops >= 1 && num_widens == 4)
8748 return 1; /* case 7a */
8749 else if (wide_nops >= 2 && num_widens == 1)
8750 return 1; /* case 7b */
8751 return 0;
8752 default:
8753 assert (0);
8754 return 0;
8755 }
8756 }
8757 assert (0);
8758 return 0;
8759 }
8760
8761
8762 static long
8763 relax_frag_immed (segT segP,
8764 fragS *fragP,
8765 long stretch,
8766 int min_steps,
8767 xtensa_format fmt,
8768 int slot,
8769 int *stretched_p,
8770 bfd_boolean estimate_only)
8771 {
8772 TInsn tinsn;
8773 int old_size;
8774 bfd_boolean negatable_branch = FALSE;
8775 bfd_boolean branch_jmp_to_next = FALSE;
8776 bfd_boolean wide_insn = FALSE;
8777 xtensa_isa isa = xtensa_default_isa;
8778 IStack istack;
8779 offsetT frag_offset;
8780 int num_steps;
8781 fragS *lit_fragP;
8782 int num_text_bytes, num_literal_bytes;
8783 int literal_diff, total_text_diff, this_text_diff, first;
8784
8785 assert (fragP->fr_opcode != NULL);
8786
8787 xg_clear_vinsn (&cur_vinsn);
8788 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
8789 if (cur_vinsn.num_slots > 1)
8790 wide_insn = TRUE;
8791
8792 tinsn = cur_vinsn.slots[slot];
8793 tinsn_immed_from_frag (&tinsn, fragP, slot);
8794
8795 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8796 return 0;
8797
8798 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
8799 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
8800
8801 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
8802
8803 old_size = xtensa_format_length (isa, fmt);
8804
8805 /* Special case: replace a branch to the next instruction with a NOP.
8806 This is required to work around a hardware bug in T1040.0 and also
8807 serves as an optimization. */
8808
8809 if (branch_jmp_to_next
8810 && ((old_size == 2) || (old_size == 3))
8811 && !next_frag_is_loop_target (fragP))
8812 return 0;
8813
8814 /* Here is the fun stuff: Get the immediate field from this
8815 instruction. If it fits, we are done. If not, find the next
8816 instruction sequence that fits. */
8817
8818 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8819 istack_init (&istack);
8820 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
8821 min_steps, stretch);
8822 if (num_steps < min_steps)
8823 {
8824 as_fatal (_("internal error: relaxation failed"));
8825 return 0;
8826 }
8827
8828 if (num_steps > RELAX_IMMED_MAXSTEPS)
8829 {
8830 as_fatal (_("internal error: relaxation requires too many steps"));
8831 return 0;
8832 }
8833
8834 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
8835
8836 /* Figure out the number of bytes needed. */
8837 lit_fragP = 0;
8838 num_literal_bytes = get_num_stack_literal_bytes (&istack);
8839 literal_diff =
8840 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8841 first = 0;
8842 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8843 first++;
8844 num_text_bytes = get_num_stack_text_bytes (&istack);
8845 if (wide_insn)
8846 {
8847 num_text_bytes += old_size;
8848 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8849 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8850 }
8851 total_text_diff = num_text_bytes - old_size;
8852 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
8853
8854 /* It MUST get larger. If not, we could get an infinite loop. */
8855 assert (num_text_bytes >= 0);
8856 assert (literal_diff >= 0);
8857 assert (total_text_diff >= 0);
8858
8859 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8860 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8861 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8862 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
8863
8864 /* Find the associated expandable literal for this. */
8865 if (literal_diff != 0)
8866 {
8867 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
8868 if (lit_fragP)
8869 {
8870 assert (literal_diff == 4);
8871 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8872
8873 /* We expect that the literal section state has NOT been
8874 modified yet. */
8875 assert (lit_fragP->fr_type == rs_machine_dependent
8876 && lit_fragP->fr_subtype == RELAX_LITERAL);
8877 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8878
8879 /* We need to mark this section for another iteration
8880 of relaxation. */
8881 (*stretched_p)++;
8882 }
8883 }
8884
8885 if (negatable_branch && istack.ninsn > 1)
8886 update_next_frag_state (fragP);
8887
8888 return this_text_diff;
8889 }
8890
8891 \f
8892 /* md_convert_frag Hook and Helper Functions. */
8893
8894 static void convert_frag_align_next_opcode (fragS *);
8895 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8896 static void convert_frag_fill_nop (fragS *);
8897 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8898
8899 void
8900 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
8901 {
8902 static xtensa_insnbuf vbuf = NULL;
8903 xtensa_isa isa = xtensa_default_isa;
8904 int slot;
8905 int num_slots;
8906 xtensa_format fmt;
8907 char *file_name;
8908 unsigned line;
8909
8910 as_where (&file_name, &line);
8911 new_logical_line (fragp->fr_file, fragp->fr_line);
8912
8913 switch (fragp->fr_subtype)
8914 {
8915 case RELAX_ALIGN_NEXT_OPCODE:
8916 /* Always convert. */
8917 convert_frag_align_next_opcode (fragp);
8918 break;
8919
8920 case RELAX_DESIRE_ALIGN:
8921 /* Do nothing. If not aligned already, too bad. */
8922 break;
8923
8924 case RELAX_LITERAL:
8925 case RELAX_LITERAL_FINAL:
8926 break;
8927
8928 case RELAX_SLOTS:
8929 if (vbuf == NULL)
8930 vbuf = xtensa_insnbuf_alloc (isa);
8931
8932 xtensa_insnbuf_from_chars
8933 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
8934 fmt = xtensa_format_decode (isa, vbuf);
8935 num_slots = xtensa_format_num_slots (isa, fmt);
8936
8937 for (slot = 0; slot < num_slots; slot++)
8938 {
8939 switch (fragp->tc_frag_data.slot_subtypes[slot])
8940 {
8941 case RELAX_NARROW:
8942 convert_frag_narrow (sec, fragp, fmt, slot);
8943 break;
8944
8945 case RELAX_IMMED:
8946 case RELAX_IMMED_STEP1:
8947 case RELAX_IMMED_STEP2:
8948 /* Place the immediate. */
8949 convert_frag_immed
8950 (sec, fragp,
8951 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8952 fmt, slot);
8953 break;
8954
8955 default:
8956 /* This is OK because some slots could have
8957 relaxations and others have none. */
8958 break;
8959 }
8960 }
8961 break;
8962
8963 case RELAX_UNREACHABLE:
8964 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8965 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8966 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8967 frag_wane (fragp);
8968 break;
8969
8970 case RELAX_MAYBE_UNREACHABLE:
8971 case RELAX_MAYBE_DESIRE_ALIGN:
8972 frag_wane (fragp);
8973 break;
8974
8975 case RELAX_FILL_NOP:
8976 convert_frag_fill_nop (fragp);
8977 break;
8978
8979 case RELAX_LITERAL_NR:
8980 if (use_literal_section)
8981 {
8982 /* This should have been handled during relaxation. When
8983 relaxing a code segment, literals sometimes need to be
8984 added to the corresponding literal segment. If that
8985 literal segment has already been relaxed, then we end up
8986 in this situation. Marking the literal segments as data
8987 would make this happen less often (since GAS always relaxes
8988 code before data), but we could still get into trouble if
8989 there are instructions in a segment that is not marked as
8990 containing code. Until we can implement a better solution,
8991 cheat and adjust the addresses of all the following frags.
8992 This could break subsequent alignments, but the linker's
8993 literal coalescing will do that anyway. */
8994
8995 fragS *f;
8996 fragp->fr_subtype = RELAX_LITERAL_FINAL;
8997 assert (fragp->tc_frag_data.unreported_expansion == 4);
8998 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
8999 fragp->fr_var -= 4;
9000 fragp->fr_fix += 4;
9001 for (f = fragp->fr_next; f; f = f->fr_next)
9002 f->fr_address += 4;
9003 }
9004 else
9005 as_bad (_("invalid relaxation fragment result"));
9006 break;
9007 }
9008
9009 fragp->fr_var = 0;
9010 new_logical_line (file_name, line);
9011 }
9012
9013
9014 static void
9015 convert_frag_align_next_opcode (fragS *fragp)
9016 {
9017 char *nop_buf; /* Location for Writing. */
9018 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9019 addressT aligned_address;
9020 offsetT fill_size;
9021 int nop, nop_count;
9022
9023 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9024 fragp->fr_fix);
9025 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9026 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9027 nop_buf = fragp->fr_literal + fragp->fr_fix;
9028
9029 for (nop = 0; nop < nop_count; nop++)
9030 {
9031 int nop_size;
9032 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9033
9034 assemble_nop (nop_size, nop_buf);
9035 nop_buf += nop_size;
9036 }
9037
9038 fragp->fr_fix += fill_size;
9039 fragp->fr_var -= fill_size;
9040 }
9041
9042
9043 static void
9044 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9045 {
9046 TInsn tinsn, single_target;
9047 int size, old_size, diff;
9048 offsetT frag_offset;
9049
9050 assert (slot == 0);
9051 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9052
9053 if (fragP->tc_frag_data.is_aligning_branch == 1)
9054 {
9055 assert (fragP->tc_frag_data.text_expansion[0] == 1
9056 || fragP->tc_frag_data.text_expansion[0] == 0);
9057 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9058 fmt, slot);
9059 return;
9060 }
9061
9062 if (fragP->tc_frag_data.text_expansion[0] == 0)
9063 {
9064 /* No conversion. */
9065 fragP->fr_var = 0;
9066 return;
9067 }
9068
9069 assert (fragP->fr_opcode != NULL);
9070
9071 /* Frags in this relaxation state should only contain
9072 single instruction bundles. */
9073 tinsn_immed_from_frag (&tinsn, fragP, 0);
9074
9075 /* Just convert it to a wide form.... */
9076 size = 0;
9077 old_size = xg_get_single_size (tinsn.opcode);
9078
9079 tinsn_init (&single_target);
9080 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9081
9082 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9083 {
9084 as_bad (_("unable to widen instruction"));
9085 return;
9086 }
9087
9088 size = xg_get_single_size (single_target.opcode);
9089 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9090 frag_offset, TRUE);
9091
9092 diff = size - old_size;
9093 assert (diff >= 0);
9094 assert (diff <= fragP->fr_var);
9095 fragP->fr_var -= diff;
9096 fragP->fr_fix += diff;
9097
9098 /* clean it up */
9099 fragP->fr_var = 0;
9100 }
9101
9102
9103 static void
9104 convert_frag_fill_nop (fragS *fragP)
9105 {
9106 char *loc = &fragP->fr_literal[fragP->fr_fix];
9107 int size = fragP->tc_frag_data.text_expansion[0];
9108 assert ((unsigned) size == (fragP->fr_next->fr_address
9109 - fragP->fr_address - fragP->fr_fix));
9110 if (size == 0)
9111 {
9112 /* No conversion. */
9113 fragP->fr_var = 0;
9114 return;
9115 }
9116 assemble_nop (size, loc);
9117 fragP->tc_frag_data.is_insn = TRUE;
9118 fragP->fr_var -= size;
9119 fragP->fr_fix += size;
9120 frag_wane (fragP);
9121 }
9122
9123
9124 static fixS *fix_new_exp_in_seg
9125 (segT, subsegT, fragS *, int, int, expressionS *, int,
9126 bfd_reloc_code_real_type);
9127 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9128
9129 static void
9130 convert_frag_immed (segT segP,
9131 fragS *fragP,
9132 int min_steps,
9133 xtensa_format fmt,
9134 int slot)
9135 {
9136 char *immed_instr = fragP->fr_opcode;
9137 TInsn orig_tinsn;
9138 bfd_boolean expanded = FALSE;
9139 bfd_boolean branch_jmp_to_next = FALSE;
9140 char *fr_opcode = fragP->fr_opcode;
9141 xtensa_isa isa = xtensa_default_isa;
9142 bfd_boolean wide_insn = FALSE;
9143 int bytes;
9144 bfd_boolean is_loop;
9145
9146 assert (fr_opcode != NULL);
9147
9148 xg_clear_vinsn (&cur_vinsn);
9149
9150 vinsn_from_chars (&cur_vinsn, fr_opcode);
9151 if (cur_vinsn.num_slots > 1)
9152 wide_insn = TRUE;
9153
9154 orig_tinsn = cur_vinsn.slots[slot];
9155 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9156
9157 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9158
9159 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9160 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9161
9162 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9163 {
9164 /* Conversion just inserts a NOP and marks the fix as completed. */
9165 bytes = xtensa_format_length (isa, fmt);
9166 if (bytes >= 4)
9167 {
9168 cur_vinsn.slots[slot].opcode =
9169 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9170 cur_vinsn.slots[slot].ntok = 0;
9171 }
9172 else
9173 {
9174 bytes += fragP->tc_frag_data.text_expansion[0];
9175 assert (bytes == 2 || bytes == 3);
9176 build_nop (&cur_vinsn.slots[0], bytes);
9177 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9178 }
9179 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
9180 xtensa_insnbuf_to_chars
9181 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9182 fragP->fr_var = 0;
9183 }
9184 else
9185 {
9186 /* Here is the fun stuff: Get the immediate field from this
9187 instruction. If it fits, we're done. If not, find the next
9188 instruction sequence that fits. */
9189
9190 IStack istack;
9191 int i;
9192 symbolS *lit_sym = NULL;
9193 int total_size = 0;
9194 int target_offset = 0;
9195 int old_size;
9196 int diff;
9197 symbolS *gen_label = NULL;
9198 offsetT frag_offset;
9199 bfd_boolean first = TRUE;
9200 bfd_boolean last_is_jump;
9201
9202 /* It does not fit. Find something that does and
9203 convert immediately. */
9204 frag_offset = fr_opcode - fragP->fr_literal;
9205 istack_init (&istack);
9206 xg_assembly_relax (&istack, &orig_tinsn,
9207 segP, fragP, frag_offset, min_steps, 0);
9208
9209 old_size = xtensa_format_length (isa, fmt);
9210
9211 /* Assemble this right inline. */
9212
9213 /* First, create the mapping from a label name to the REAL label. */
9214 target_offset = 0;
9215 for (i = 0; i < istack.ninsn; i++)
9216 {
9217 TInsn *tinsn = &istack.insn[i];
9218 fragS *lit_frag;
9219
9220 switch (tinsn->insn_type)
9221 {
9222 case ITYPE_LITERAL:
9223 if (lit_sym != NULL)
9224 as_bad (_("multiple literals in expansion"));
9225 /* First find the appropriate space in the literal pool. */
9226 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9227 if (lit_frag == NULL)
9228 as_bad (_("no registered fragment for literal"));
9229 if (tinsn->ntok != 1)
9230 as_bad (_("number of literal tokens != 1"));
9231
9232 /* Set the literal symbol and add a fixup. */
9233 lit_sym = lit_frag->fr_symbol;
9234 break;
9235
9236 case ITYPE_LABEL:
9237 if (align_targets && !is_loop)
9238 {
9239 fragS *unreach = fragP->fr_next;
9240 while (!(unreach->fr_type == rs_machine_dependent
9241 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9242 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9243 {
9244 unreach = unreach->fr_next;
9245 }
9246
9247 assert (unreach->fr_type == rs_machine_dependent
9248 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9249 || unreach->fr_subtype == RELAX_UNREACHABLE));
9250
9251 target_offset += unreach->tc_frag_data.text_expansion[0];
9252 }
9253 assert (gen_label == NULL);
9254 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9255 fr_opcode - fragP->fr_literal
9256 + target_offset, fragP);
9257 break;
9258
9259 case ITYPE_INSN:
9260 if (first && wide_insn)
9261 {
9262 target_offset += xtensa_format_length (isa, fmt);
9263 first = FALSE;
9264 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9265 target_offset += xg_get_single_size (tinsn->opcode);
9266 }
9267 else
9268 target_offset += xg_get_single_size (tinsn->opcode);
9269 break;
9270 }
9271 }
9272
9273 total_size = 0;
9274 first = TRUE;
9275 last_is_jump = FALSE;
9276 for (i = 0; i < istack.ninsn; i++)
9277 {
9278 TInsn *tinsn = &istack.insn[i];
9279 fragS *lit_frag;
9280 int size;
9281 segT target_seg;
9282 bfd_reloc_code_real_type reloc_type;
9283
9284 switch (tinsn->insn_type)
9285 {
9286 case ITYPE_LITERAL:
9287 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9288 /* Already checked. */
9289 assert (lit_frag != NULL);
9290 assert (lit_sym != NULL);
9291 assert (tinsn->ntok == 1);
9292 /* Add a fixup. */
9293 target_seg = S_GET_SEGMENT (lit_sym);
9294 assert (target_seg);
9295 if (tinsn->tok[0].X_op == O_pltrel)
9296 reloc_type = BFD_RELOC_XTENSA_PLT;
9297 else
9298 reloc_type = BFD_RELOC_32;
9299 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9300 &tinsn->tok[0], FALSE, reloc_type);
9301 break;
9302
9303 case ITYPE_LABEL:
9304 break;
9305
9306 case ITYPE_INSN:
9307 xg_resolve_labels (tinsn, gen_label);
9308 xg_resolve_literals (tinsn, lit_sym);
9309 if (wide_insn && first)
9310 {
9311 first = FALSE;
9312 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9313 {
9314 cur_vinsn.slots[slot] = *tinsn;
9315 }
9316 else
9317 {
9318 cur_vinsn.slots[slot].opcode =
9319 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9320 cur_vinsn.slots[slot].ntok = 0;
9321 }
9322 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9323 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
9324 (unsigned char *) immed_instr, 0);
9325 fragP->tc_frag_data.is_insn = TRUE;
9326 size = xtensa_format_length (isa, fmt);
9327 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9328 {
9329 xg_emit_insn_to_buf
9330 (tinsn, immed_instr + size, fragP,
9331 immed_instr - fragP->fr_literal + size, TRUE);
9332 size += xg_get_single_size (tinsn->opcode);
9333 }
9334 }
9335 else
9336 {
9337 size = xg_get_single_size (tinsn->opcode);
9338 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
9339 immed_instr - fragP->fr_literal, TRUE);
9340 }
9341 immed_instr += size;
9342 total_size += size;
9343 break;
9344 }
9345 }
9346
9347 diff = total_size - old_size;
9348 assert (diff >= 0);
9349 if (diff != 0)
9350 expanded = TRUE;
9351 assert (diff <= fragP->fr_var);
9352 fragP->fr_var -= diff;
9353 fragP->fr_fix += diff;
9354 }
9355
9356 /* Check for undefined immediates in LOOP instructions. */
9357 if (is_loop)
9358 {
9359 symbolS *sym;
9360 sym = orig_tinsn.tok[1].X_add_symbol;
9361 if (sym != NULL && !S_IS_DEFINED (sym))
9362 {
9363 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9364 return;
9365 }
9366 sym = orig_tinsn.tok[1].X_op_symbol;
9367 if (sym != NULL && !S_IS_DEFINED (sym))
9368 {
9369 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9370 return;
9371 }
9372 }
9373
9374 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9375 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9376
9377 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9378 {
9379 /* Add an expansion note on the expanded instruction. */
9380 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9381 &orig_tinsn.tok[0], TRUE,
9382 BFD_RELOC_XTENSA_ASM_EXPAND);
9383 }
9384 }
9385
9386
9387 /* Add a new fix expression into the desired segment. We have to
9388 switch to that segment to do this. */
9389
9390 static fixS *
9391 fix_new_exp_in_seg (segT new_seg,
9392 subsegT new_subseg,
9393 fragS *frag,
9394 int where,
9395 int size,
9396 expressionS *exp,
9397 int pcrel,
9398 bfd_reloc_code_real_type r_type)
9399 {
9400 fixS *new_fix;
9401 segT seg = now_seg;
9402 subsegT subseg = now_subseg;
9403
9404 assert (new_seg != 0);
9405 subseg_set (new_seg, new_subseg);
9406
9407 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9408 subseg_set (seg, subseg);
9409 return new_fix;
9410 }
9411
9412
9413 /* Relax a loop instruction so that it can span loop >256 bytes.
9414
9415 loop as, .L1
9416 .L0:
9417 rsr as, LEND
9418 wsr as, LBEG
9419 addi as, as, lo8 (label-.L1)
9420 addmi as, as, mid8 (label-.L1)
9421 wsr as, LEND
9422 isync
9423 rsr as, LCOUNT
9424 addi as, as, 1
9425 .L1:
9426 <<body>>
9427 label:
9428 */
9429
9430 static void
9431 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9432 {
9433 TInsn loop_insn;
9434 TInsn addi_insn;
9435 TInsn addmi_insn;
9436 unsigned long target;
9437 static xtensa_insnbuf insnbuf = NULL;
9438 unsigned int loop_length, loop_length_hi, loop_length_lo;
9439 xtensa_isa isa = xtensa_default_isa;
9440 addressT loop_offset;
9441 addressT addi_offset = 9;
9442 addressT addmi_offset = 12;
9443 fragS *next_fragP;
9444 int target_count;
9445
9446 if (!insnbuf)
9447 insnbuf = xtensa_insnbuf_alloc (isa);
9448
9449 /* Get the loop offset. */
9450 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9451
9452 /* Validate that there really is a LOOP at the loop_offset. Because
9453 loops are not bundleable, we can assume that the instruction will be
9454 in slot 0. */
9455 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9456 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9457
9458 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9459 addi_offset += loop_offset;
9460 addmi_offset += loop_offset;
9461
9462 assert (tinsn->ntok == 2);
9463 if (tinsn->tok[1].X_op == O_constant)
9464 target = tinsn->tok[1].X_add_number;
9465 else if (tinsn->tok[1].X_op == O_symbol)
9466 {
9467 /* Find the fragment. */
9468 symbolS *sym = tinsn->tok[1].X_add_symbol;
9469 assert (S_GET_SEGMENT (sym) == segP
9470 || S_GET_SEGMENT (sym) == absolute_section);
9471 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9472 }
9473 else
9474 {
9475 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9476 target = 0;
9477 }
9478
9479 know (symbolP);
9480 know (symbolP->sy_frag);
9481 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9482 || symbol_get_frag (symbolP) == &zero_address_frag);
9483
9484 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9485 loop_length_hi = loop_length & ~0x0ff;
9486 loop_length_lo = loop_length & 0x0ff;
9487 if (loop_length_lo >= 128)
9488 {
9489 loop_length_lo -= 256;
9490 loop_length_hi += 256;
9491 }
9492
9493 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9494 32512. If the loop is larger than that, then we just fail. */
9495 if (loop_length_hi > 32512)
9496 as_bad_where (fragP->fr_file, fragP->fr_line,
9497 _("loop too long for LOOP instruction"));
9498
9499 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9500 assert (addi_insn.opcode == xtensa_addi_opcode);
9501
9502 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9503 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9504
9505 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9506 tinsn_to_insnbuf (&addi_insn, insnbuf);
9507
9508 fragP->tc_frag_data.is_insn = TRUE;
9509 xtensa_insnbuf_to_chars
9510 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9511
9512 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9513 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9514 xtensa_insnbuf_to_chars
9515 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9516
9517 /* Walk through all of the frags from here to the loop end
9518 and mark them as no_transform to keep them from being modified
9519 by the linker. If we ever have a relocation for the
9520 addi/addmi of the difference of two symbols we can remove this. */
9521
9522 target_count = 0;
9523 for (next_fragP = fragP; next_fragP != NULL;
9524 next_fragP = next_fragP->fr_next)
9525 {
9526 next_fragP->tc_frag_data.is_no_transform = TRUE;
9527 if (next_fragP->tc_frag_data.is_loop_target)
9528 target_count++;
9529 if (target_count == 2)
9530 break;
9531 }
9532 }
9533
9534 \f
9535 /* A map that keeps information on a per-subsegment basis. This is
9536 maintained during initial assembly, but is invalid once the
9537 subsegments are smashed together. I.E., it cannot be used during
9538 the relaxation. */
9539
9540 typedef struct subseg_map_struct
9541 {
9542 /* the key */
9543 segT seg;
9544 subsegT subseg;
9545
9546 /* the data */
9547 unsigned flags;
9548 float total_freq; /* fall-through + branch target frequency */
9549 float target_freq; /* branch target frequency alone */
9550
9551 struct subseg_map_struct *next;
9552 } subseg_map;
9553
9554
9555 static subseg_map *sseg_map = NULL;
9556
9557 static subseg_map *
9558 get_subseg_info (segT seg, subsegT subseg)
9559 {
9560 subseg_map *subseg_e;
9561
9562 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9563 {
9564 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9565 break;
9566 }
9567 return subseg_e;
9568 }
9569
9570
9571 static subseg_map *
9572 add_subseg_info (segT seg, subsegT subseg)
9573 {
9574 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9575 memset (subseg_e, 0, sizeof (subseg_map));
9576 subseg_e->seg = seg;
9577 subseg_e->subseg = subseg;
9578 subseg_e->flags = 0;
9579 /* Start off considering every branch target very important. */
9580 subseg_e->target_freq = 1.0;
9581 subseg_e->total_freq = 1.0;
9582 subseg_e->next = sseg_map;
9583 sseg_map = subseg_e;
9584 return subseg_e;
9585 }
9586
9587
9588 static unsigned
9589 get_last_insn_flags (segT seg, subsegT subseg)
9590 {
9591 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9592 if (subseg_e)
9593 return subseg_e->flags;
9594 return 0;
9595 }
9596
9597
9598 static void
9599 set_last_insn_flags (segT seg,
9600 subsegT subseg,
9601 unsigned fl,
9602 bfd_boolean val)
9603 {
9604 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9605 if (! subseg_e)
9606 subseg_e = add_subseg_info (seg, subseg);
9607 if (val)
9608 subseg_e->flags |= fl;
9609 else
9610 subseg_e->flags &= ~fl;
9611 }
9612
9613
9614 static float
9615 get_subseg_total_freq (segT seg, subsegT subseg)
9616 {
9617 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9618 if (subseg_e)
9619 return subseg_e->total_freq;
9620 return 1.0;
9621 }
9622
9623
9624 static float
9625 get_subseg_target_freq (segT seg, subsegT subseg)
9626 {
9627 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9628 if (subseg_e)
9629 return subseg_e->target_freq;
9630 return 1.0;
9631 }
9632
9633
9634 static void
9635 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9636 {
9637 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9638 if (! subseg_e)
9639 subseg_e = add_subseg_info (seg, subseg);
9640 subseg_e->total_freq = total_f;
9641 subseg_e->target_freq = target_f;
9642 }
9643
9644 \f
9645 /* Segment Lists and emit_state Stuff. */
9646
9647 static void
9648 xtensa_move_seg_list_to_beginning (seg_list *head)
9649 {
9650 head = head->next;
9651 while (head)
9652 {
9653 segT literal_section = head->seg;
9654
9655 /* Move the literal section to the front of the section list. */
9656 assert (literal_section);
9657 if (literal_section != stdoutput->sections)
9658 {
9659 bfd_section_list_remove (stdoutput, literal_section);
9660 bfd_section_list_prepend (stdoutput, literal_section);
9661 }
9662 head = head->next;
9663 }
9664 }
9665
9666
9667 static void mark_literal_frags (seg_list *);
9668
9669 static void
9670 xtensa_move_literals (void)
9671 {
9672 seg_list *segment;
9673 frchainS *frchain_from, *frchain_to;
9674 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9675 fragS **frag_splice;
9676 emit_state state;
9677 segT dest_seg;
9678 fixS *fix, *next_fix, **fix_splice;
9679 sym_list *lit;
9680
9681 mark_literal_frags (literal_head->next);
9682 mark_literal_frags (init_literal_head->next);
9683 mark_literal_frags (fini_literal_head->next);
9684
9685 if (use_literal_section)
9686 return;
9687
9688 segment = literal_head->next;
9689 while (segment)
9690 {
9691 frchain_from = seg_info (segment->seg)->frchainP;
9692 search_frag = frchain_from->frch_root;
9693 literal_pool = NULL;
9694 frchain_to = NULL;
9695 frag_splice = &(frchain_from->frch_root);
9696
9697 while (!search_frag->tc_frag_data.literal_frag)
9698 {
9699 assert (search_frag->fr_fix == 0
9700 || search_frag->fr_type == rs_align);
9701 search_frag = search_frag->fr_next;
9702 }
9703
9704 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9705 == RELAX_LITERAL_POOL_BEGIN);
9706 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9707
9708 /* Make sure that all the frags in this series are closed, and
9709 that there is at least one left over of zero-size. This
9710 prevents us from making a segment with an frchain without any
9711 frags in it. */
9712 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9713 xtensa_set_frag_assembly_state (frag_now);
9714 last_frag = frag_now;
9715 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9716 xtensa_set_frag_assembly_state (frag_now);
9717
9718 while (search_frag != frag_now)
9719 {
9720 next_frag = search_frag->fr_next;
9721
9722 /* First, move the frag out of the literal section and
9723 to the appropriate place. */
9724 if (search_frag->tc_frag_data.literal_frag)
9725 {
9726 literal_pool = search_frag->tc_frag_data.literal_frag;
9727 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
9728 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9729 assert (frchain_to);
9730 }
9731 insert_after = literal_pool;
9732
9733 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9734 insert_after = insert_after->fr_next;
9735
9736 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
9737
9738 *frag_splice = next_frag;
9739 search_frag->fr_next = insert_after->fr_next;
9740 insert_after->fr_next = search_frag;
9741 search_frag->tc_frag_data.lit_seg = dest_seg;
9742
9743 /* Now move any fixups associated with this frag to the
9744 right section. */
9745 fix = frchain_from->fix_root;
9746 fix_splice = &(frchain_from->fix_root);
9747 while (fix)
9748 {
9749 next_fix = fix->fx_next;
9750 if (fix->fx_frag == search_frag)
9751 {
9752 *fix_splice = next_fix;
9753 fix->fx_next = frchain_to->fix_root;
9754 frchain_to->fix_root = fix;
9755 if (frchain_to->fix_tail == NULL)
9756 frchain_to->fix_tail = fix;
9757 }
9758 else
9759 fix_splice = &(fix->fx_next);
9760 fix = next_fix;
9761 }
9762 search_frag = next_frag;
9763 }
9764
9765 if (frchain_from->fix_root != NULL)
9766 {
9767 frchain_from = seg_info (segment->seg)->frchainP;
9768 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9769
9770 assert (frchain_from->fix_root == NULL);
9771 }
9772 frchain_from->fix_tail = NULL;
9773 xtensa_restore_emit_state (&state);
9774 segment = segment->next;
9775 }
9776
9777 /* Now fix up the SEGMENT value for all the literal symbols. */
9778 for (lit = literal_syms; lit; lit = lit->next)
9779 {
9780 symbolS *lit_sym = lit->sym;
9781 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
9782 if (dest_seg)
9783 S_SET_SEGMENT (lit_sym, dest_seg);
9784 }
9785 }
9786
9787
9788 /* Walk over all the frags for segments in a list and mark them as
9789 containing literals. As clunky as this is, we can't rely on frag_var
9790 and frag_variant to get called in all situations. */
9791
9792 static void
9793 mark_literal_frags (seg_list *segment)
9794 {
9795 frchainS *frchain_from;
9796 fragS *search_frag;
9797
9798 while (segment)
9799 {
9800 frchain_from = seg_info (segment->seg)->frchainP;
9801 search_frag = frchain_from->frch_root;
9802 while (search_frag)
9803 {
9804 search_frag->tc_frag_data.is_literal = TRUE;
9805 search_frag = search_frag->fr_next;
9806 }
9807 segment = segment->next;
9808 }
9809 }
9810
9811
9812 static void
9813 xtensa_reorder_seg_list (seg_list *head, segT after)
9814 {
9815 /* Move all of the sections in the section list to come
9816 after "after" in the gnu segment list. */
9817
9818 head = head->next;
9819 while (head)
9820 {
9821 segT literal_section = head->seg;
9822
9823 /* Move the literal section after "after". */
9824 assert (literal_section);
9825 if (literal_section != after)
9826 {
9827 bfd_section_list_remove (stdoutput, literal_section);
9828 bfd_section_list_insert_after (stdoutput, after, literal_section);
9829 }
9830
9831 head = head->next;
9832 }
9833 }
9834
9835
9836 /* Push all the literal segments to the end of the gnu list. */
9837
9838 static void
9839 xtensa_reorder_segments (void)
9840 {
9841 segT sec;
9842 segT last_sec = 0;
9843 int old_count = 0;
9844 int new_count = 0;
9845
9846 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9847 {
9848 last_sec = sec;
9849 old_count++;
9850 }
9851
9852 /* Now that we have the last section, push all the literal
9853 sections to the end. */
9854 xtensa_reorder_seg_list (literal_head, last_sec);
9855 xtensa_reorder_seg_list (init_literal_head, last_sec);
9856 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9857
9858 /* Now perform the final error check. */
9859 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9860 new_count++;
9861 assert (new_count == old_count);
9862 }
9863
9864
9865 /* Change the emit state (seg, subseg, and frag related stuff) to the
9866 correct location. Return a emit_state which can be passed to
9867 xtensa_restore_emit_state to return to current fragment. */
9868
9869 static void
9870 xtensa_switch_to_literal_fragment (emit_state *result)
9871 {
9872 if (directive_state[directive_absolute_literals])
9873 {
9874 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9875 &default_lit_sections.lit4_seg, FALSE);
9876 xtensa_switch_section_emit_state (result,
9877 default_lit_sections.lit4_seg, 0);
9878 }
9879 else
9880 xtensa_switch_to_non_abs_literal_fragment (result);
9881
9882 /* Do a 4-byte align here. */
9883 frag_align (2, 0, 0);
9884 record_alignment (now_seg, 2);
9885 }
9886
9887
9888 static void
9889 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
9890 {
9891 /* When we mark a literal pool location, we want to put a frag in
9892 the literal pool that points to it. But to do that, we want to
9893 switch_to_literal_fragment. But literal sections don't have
9894 literal pools, so their location is always null, so we would
9895 recurse forever. This is kind of hacky, but it works. */
9896
9897 static bfd_boolean recursive = FALSE;
9898 fragS *pool_location = get_literal_pool_location (now_seg);
9899 bfd_boolean is_init =
9900 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9901
9902 bfd_boolean is_fini =
9903 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
9904
9905 if (pool_location == NULL
9906 && !use_literal_section
9907 && !recursive
9908 && !is_init && ! is_fini)
9909 {
9910 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
9911 recursive = TRUE;
9912 xtensa_mark_literal_pool_location ();
9913 recursive = FALSE;
9914 }
9915
9916 /* Special case: If we are in the ".fini" or ".init" section, then
9917 we will ALWAYS be generating to the ".fini.literal" and
9918 ".init.literal" sections. */
9919
9920 if (is_init)
9921 {
9922 cache_literal_section (init_literal_head,
9923 default_lit_sections.init_lit_seg_name,
9924 &default_lit_sections.init_lit_seg, TRUE);
9925 xtensa_switch_section_emit_state (result,
9926 default_lit_sections.init_lit_seg, 0);
9927 }
9928 else if (is_fini)
9929 {
9930 cache_literal_section (fini_literal_head,
9931 default_lit_sections.fini_lit_seg_name,
9932 &default_lit_sections.fini_lit_seg, TRUE);
9933 xtensa_switch_section_emit_state (result,
9934 default_lit_sections.fini_lit_seg, 0);
9935 }
9936 else
9937 {
9938 cache_literal_section (literal_head,
9939 default_lit_sections.lit_seg_name,
9940 &default_lit_sections.lit_seg, TRUE);
9941 xtensa_switch_section_emit_state (result,
9942 default_lit_sections.lit_seg, 0);
9943 }
9944
9945 if (!use_literal_section
9946 && !is_init && !is_fini
9947 && get_literal_pool_location (now_seg) != pool_location)
9948 {
9949 /* Close whatever frag is there. */
9950 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9951 xtensa_set_frag_assembly_state (frag_now);
9952 frag_now->tc_frag_data.literal_frag = pool_location;
9953 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9954 xtensa_set_frag_assembly_state (frag_now);
9955 }
9956 }
9957
9958
9959 /* Call this function before emitting data into the literal section.
9960 This is a helper function for xtensa_switch_to_literal_fragment.
9961 This is similar to a .section new_now_seg subseg. */
9962
9963 static void
9964 xtensa_switch_section_emit_state (emit_state *state,
9965 segT new_now_seg,
9966 subsegT new_now_subseg)
9967 {
9968 state->name = now_seg->name;
9969 state->now_seg = now_seg;
9970 state->now_subseg = now_subseg;
9971 state->generating_literals = generating_literals;
9972 generating_literals++;
9973 subseg_set (new_now_seg, new_now_subseg);
9974 }
9975
9976
9977 /* Use to restore the emitting into the normal place. */
9978
9979 static void
9980 xtensa_restore_emit_state (emit_state *state)
9981 {
9982 generating_literals = state->generating_literals;
9983 subseg_set (state->now_seg, state->now_subseg);
9984 }
9985
9986
9987 /* Get a segment of a given name. If the segment is already
9988 present, return it; otherwise, create a new one. */
9989
9990 static void
9991 cache_literal_section (seg_list *head,
9992 const char *name,
9993 segT *pseg,
9994 bfd_boolean is_code)
9995 {
9996 segT current_section = now_seg;
9997 int current_subsec = now_subseg;
9998 segT seg;
9999
10000 if (*pseg != 0)
10001 return;
10002
10003 /* Check if the named section exists. */
10004 for (seg = stdoutput->sections; seg; seg = seg->next)
10005 {
10006 if (!strcmp (segment_name (seg), name))
10007 break;
10008 }
10009
10010 if (!seg)
10011 {
10012 /* Create a new literal section. */
10013 seg = subseg_new (name, (subsegT) 0);
10014 if (head)
10015 {
10016 /* Add the newly created literal segment to the specified list. */
10017 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10018 n->seg = seg;
10019 n->next = head->next;
10020 head->next = n;
10021 }
10022 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
10023 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10024 | (is_code ? SEC_CODE : SEC_DATA));
10025 bfd_set_section_alignment (stdoutput, seg, 2);
10026 }
10027
10028 *pseg = seg;
10029 subseg_set (current_section, current_subsec);
10030 }
10031
10032 \f
10033 /* Property Tables Stuff. */
10034
10035 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10036 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10037 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10038
10039 typedef bfd_boolean (*frag_predicate) (const fragS *);
10040 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10041
10042 static bfd_boolean get_frag_is_literal (const fragS *);
10043 static void xtensa_create_property_segments
10044 (frag_predicate, frag_predicate, const char *, xt_section_type);
10045 static void xtensa_create_xproperty_segments
10046 (frag_flags_fn, const char *, xt_section_type);
10047 static segment_info_type *retrieve_segment_info (segT);
10048 static segT retrieve_xtensa_section (char *);
10049 static bfd_boolean section_has_property (segT, frag_predicate);
10050 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10051 static void add_xt_block_frags
10052 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10053 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10054 static void xtensa_frag_flags_init (frag_flags *);
10055 static void get_frag_property_flags (const fragS *, frag_flags *);
10056 static bfd_vma frag_flags_to_number (const frag_flags *);
10057 static void add_xt_prop_frags
10058 (segT, segT, xtensa_block_info **, frag_flags_fn);
10059
10060 /* Set up property tables after relaxation. */
10061
10062 void
10063 xtensa_post_relax_hook (void)
10064 {
10065 xtensa_move_seg_list_to_beginning (literal_head);
10066 xtensa_move_seg_list_to_beginning (init_literal_head);
10067 xtensa_move_seg_list_to_beginning (fini_literal_head);
10068
10069 xtensa_find_unmarked_state_frags ();
10070
10071 xtensa_create_property_segments (get_frag_is_literal,
10072 NULL,
10073 XTENSA_LIT_SEC_NAME,
10074 xt_literal_sec);
10075 xtensa_create_xproperty_segments (get_frag_property_flags,
10076 XTENSA_PROP_SEC_NAME,
10077 xt_prop_sec);
10078
10079 if (warn_unaligned_branch_targets)
10080 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10081 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10082 }
10083
10084
10085 /* This function is only meaningful after xtensa_move_literals. */
10086
10087 static bfd_boolean
10088 get_frag_is_literal (const fragS *fragP)
10089 {
10090 assert (fragP != NULL);
10091 return fragP->tc_frag_data.is_literal;
10092 }
10093
10094
10095 static void
10096 xtensa_create_property_segments (frag_predicate property_function,
10097 frag_predicate end_property_function,
10098 const char *section_name_base,
10099 xt_section_type sec_type)
10100 {
10101 segT *seclist;
10102
10103 /* Walk over all of the current segments.
10104 Walk over each fragment
10105 For each non-empty fragment,
10106 Build a property record (append where possible). */
10107
10108 for (seclist = &stdoutput->sections;
10109 seclist && *seclist;
10110 seclist = &(*seclist)->next)
10111 {
10112 segT sec = *seclist;
10113 flagword flags;
10114
10115 flags = bfd_get_section_flags (stdoutput, sec);
10116 if (flags & SEC_DEBUGGING)
10117 continue;
10118 if (!(flags & SEC_ALLOC))
10119 continue;
10120
10121 if (section_has_property (sec, property_function))
10122 {
10123 char *property_section_name =
10124 xtensa_get_property_section_name (sec, section_name_base);
10125 segT insn_sec = retrieve_xtensa_section (property_section_name);
10126 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10127 xtensa_block_info **xt_blocks =
10128 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10129 /* Walk over all of the frchains here and add new sections. */
10130 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10131 end_property_function);
10132 }
10133 }
10134
10135 /* Now we fill them out.... */
10136
10137 for (seclist = &stdoutput->sections;
10138 seclist && *seclist;
10139 seclist = &(*seclist)->next)
10140 {
10141 segment_info_type *seginfo;
10142 xtensa_block_info *block;
10143 segT sec = *seclist;
10144
10145 seginfo = seg_info (sec);
10146 block = seginfo->tc_segment_info_data.blocks[sec_type];
10147
10148 if (block)
10149 {
10150 xtensa_block_info *cur_block;
10151 /* This is a section with some data. */
10152 int num_recs = 0;
10153 bfd_size_type rec_size;
10154
10155 for (cur_block = block; cur_block; cur_block = cur_block->next)
10156 num_recs++;
10157
10158 rec_size = num_recs * 8;
10159 bfd_set_section_size (stdoutput, sec, rec_size);
10160
10161 /* In order to make this work with the assembler, we have to
10162 build some frags and then build the "fixups" for it. It
10163 would be easier to just set the contents then set the
10164 arlents. */
10165
10166 if (num_recs)
10167 {
10168 /* Allocate a fragment and leak it. */
10169 fragS *fragP;
10170 bfd_size_type frag_size;
10171 fixS *fixes;
10172 frchainS *frchainP;
10173 int i;
10174 char *frag_data;
10175
10176 frag_size = sizeof (fragS) + rec_size;
10177 fragP = (fragS *) xmalloc (frag_size);
10178
10179 memset (fragP, 0, frag_size);
10180 fragP->fr_address = 0;
10181 fragP->fr_next = NULL;
10182 fragP->fr_fix = rec_size;
10183 fragP->fr_var = 0;
10184 fragP->fr_type = rs_fill;
10185 /* The rest are zeros. */
10186
10187 frchainP = seginfo->frchainP;
10188 frchainP->frch_root = fragP;
10189 frchainP->frch_last = fragP;
10190
10191 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10192 memset (fixes, 0, sizeof (fixS) * num_recs);
10193
10194 seginfo->fix_root = fixes;
10195 seginfo->fix_tail = &fixes[num_recs - 1];
10196 cur_block = block;
10197 frag_data = &fragP->fr_literal[0];
10198 for (i = 0; i < num_recs; i++)
10199 {
10200 fixS *fix = &fixes[i];
10201 assert (cur_block);
10202
10203 /* Write the fixup. */
10204 if (i != num_recs - 1)
10205 fix->fx_next = &fixes[i + 1];
10206 else
10207 fix->fx_next = NULL;
10208 fix->fx_size = 4;
10209 fix->fx_done = 0;
10210 fix->fx_frag = fragP;
10211 fix->fx_where = i * 8;
10212 fix->fx_addsy = section_symbol (cur_block->sec);
10213 fix->fx_offset = cur_block->offset;
10214 fix->fx_r_type = BFD_RELOC_32;
10215 fix->fx_file = "Internal Assembly";
10216 fix->fx_line = 0;
10217
10218 /* Write the length. */
10219 md_number_to_chars (&frag_data[4 + 8 * i],
10220 cur_block->size, 4);
10221 cur_block = cur_block->next;
10222 }
10223 }
10224 }
10225 }
10226 }
10227
10228
10229 static void
10230 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10231 const char *section_name_base,
10232 xt_section_type sec_type)
10233 {
10234 segT *seclist;
10235
10236 /* Walk over all of the current segments.
10237 Walk over each fragment.
10238 For each fragment that has instructions,
10239 build an instruction record (append where possible). */
10240
10241 for (seclist = &stdoutput->sections;
10242 seclist && *seclist;
10243 seclist = &(*seclist)->next)
10244 {
10245 segT sec = *seclist;
10246 flagword flags;
10247
10248 flags = bfd_get_section_flags (stdoutput, sec);
10249 if ((flags & SEC_DEBUGGING)
10250 || !(flags & SEC_ALLOC)
10251 || (flags & SEC_MERGE))
10252 continue;
10253
10254 if (section_has_xproperty (sec, flag_fn))
10255 {
10256 char *property_section_name =
10257 xtensa_get_property_section_name (sec, section_name_base);
10258 segT insn_sec = retrieve_xtensa_section (property_section_name);
10259 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10260 xtensa_block_info **xt_blocks =
10261 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10262 /* Walk over all of the frchains here and add new sections. */
10263 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
10264 }
10265 }
10266
10267 /* Now we fill them out.... */
10268
10269 for (seclist = &stdoutput->sections;
10270 seclist && *seclist;
10271 seclist = &(*seclist)->next)
10272 {
10273 segment_info_type *seginfo;
10274 xtensa_block_info *block;
10275 segT sec = *seclist;
10276
10277 seginfo = seg_info (sec);
10278 block = seginfo->tc_segment_info_data.blocks[sec_type];
10279
10280 if (block)
10281 {
10282 xtensa_block_info *cur_block;
10283 /* This is a section with some data. */
10284 int num_recs = 0;
10285 bfd_size_type rec_size;
10286
10287 for (cur_block = block; cur_block; cur_block = cur_block->next)
10288 num_recs++;
10289
10290 rec_size = num_recs * (8 + 4);
10291 bfd_set_section_size (stdoutput, sec, rec_size);
10292
10293 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10294
10295 /* In order to make this work with the assembler, we have to build
10296 some frags then build the "fixups" for it. It would be easier to
10297 just set the contents then set the arlents. */
10298
10299 if (num_recs)
10300 {
10301 /* Allocate a fragment and (unfortunately) leak it. */
10302 fragS *fragP;
10303 bfd_size_type frag_size;
10304 fixS *fixes;
10305 frchainS *frchainP;
10306 int i;
10307 char *frag_data;
10308
10309 frag_size = sizeof (fragS) + rec_size;
10310 fragP = (fragS *) xmalloc (frag_size);
10311
10312 memset (fragP, 0, frag_size);
10313 fragP->fr_address = 0;
10314 fragP->fr_next = NULL;
10315 fragP->fr_fix = rec_size;
10316 fragP->fr_var = 0;
10317 fragP->fr_type = rs_fill;
10318 /* The rest are zeros. */
10319
10320 frchainP = seginfo->frchainP;
10321 frchainP->frch_root = fragP;
10322 frchainP->frch_last = fragP;
10323
10324 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10325 memset (fixes, 0, sizeof (fixS) * num_recs);
10326
10327 seginfo->fix_root = fixes;
10328 seginfo->fix_tail = &fixes[num_recs - 1];
10329 cur_block = block;
10330 frag_data = &fragP->fr_literal[0];
10331 for (i = 0; i < num_recs; i++)
10332 {
10333 fixS *fix = &fixes[i];
10334 assert (cur_block);
10335
10336 /* Write the fixup. */
10337 if (i != num_recs - 1)
10338 fix->fx_next = &fixes[i + 1];
10339 else
10340 fix->fx_next = NULL;
10341 fix->fx_size = 4;
10342 fix->fx_done = 0;
10343 fix->fx_frag = fragP;
10344 fix->fx_where = i * (8 + 4);
10345 fix->fx_addsy = section_symbol (cur_block->sec);
10346 fix->fx_offset = cur_block->offset;
10347 fix->fx_r_type = BFD_RELOC_32;
10348 fix->fx_file = "Internal Assembly";
10349 fix->fx_line = 0;
10350
10351 /* Write the length. */
10352 md_number_to_chars (&frag_data[4 + (8+4) * i],
10353 cur_block->size, 4);
10354 md_number_to_chars (&frag_data[8 + (8+4) * i],
10355 frag_flags_to_number (&cur_block->flags),
10356 4);
10357 cur_block = cur_block->next;
10358 }
10359 }
10360 }
10361 }
10362 }
10363
10364
10365 static segment_info_type *
10366 retrieve_segment_info (segT seg)
10367 {
10368 segment_info_type *seginfo;
10369 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10370 if (!seginfo)
10371 {
10372 frchainS *frchainP;
10373
10374 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
10375 memset ((void *) seginfo, 0, sizeof (*seginfo));
10376 seginfo->fix_root = NULL;
10377 seginfo->fix_tail = NULL;
10378 seginfo->bfd_section = seg;
10379 seginfo->sym = 0;
10380 /* We will not be dealing with these, only our special ones. */
10381 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
10382
10383 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10384 frchainP->frch_root = NULL;
10385 frchainP->frch_last = NULL;
10386 frchainP->frch_next = NULL;
10387 frchainP->frch_seg = seg;
10388 frchainP->frch_subseg = 0;
10389 frchainP->fix_root = NULL;
10390 frchainP->fix_tail = NULL;
10391 /* Do not init the objstack. */
10392 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10393 /* frchainP->frch_frag_now = fragP; */
10394 frchainP->frch_frag_now = NULL;
10395
10396 seginfo->frchainP = frchainP;
10397 }
10398
10399 return seginfo;
10400 }
10401
10402
10403 static segT
10404 retrieve_xtensa_section (char *sec_name)
10405 {
10406 bfd *abfd = stdoutput;
10407 flagword flags, out_flags, link_once_flags;
10408 segT s;
10409
10410 flags = bfd_get_section_flags (abfd, now_seg);
10411 link_once_flags = (flags & SEC_LINK_ONCE);
10412 if (link_once_flags)
10413 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10414 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10415
10416 s = bfd_make_section_old_way (abfd, sec_name);
10417 if (s == NULL)
10418 as_bad (_("could not create section %s"), sec_name);
10419 if (!bfd_set_section_flags (abfd, s, out_flags))
10420 as_bad (_("invalid flag combination on section %s"), sec_name);
10421
10422 return s;
10423 }
10424
10425
10426 static bfd_boolean
10427 section_has_property (segT sec, frag_predicate property_function)
10428 {
10429 segment_info_type *seginfo = seg_info (sec);
10430 fragS *fragP;
10431
10432 if (seginfo && seginfo->frchainP)
10433 {
10434 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10435 {
10436 if (property_function (fragP)
10437 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10438 return TRUE;
10439 }
10440 }
10441 return FALSE;
10442 }
10443
10444
10445 static bfd_boolean
10446 section_has_xproperty (segT sec, frag_flags_fn property_function)
10447 {
10448 segment_info_type *seginfo = seg_info (sec);
10449 fragS *fragP;
10450
10451 if (seginfo && seginfo->frchainP)
10452 {
10453 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10454 {
10455 frag_flags prop_flags;
10456 property_function (fragP, &prop_flags);
10457 if (!xtensa_frag_flags_is_empty (&prop_flags))
10458 return TRUE;
10459 }
10460 }
10461 return FALSE;
10462 }
10463
10464
10465 /* Two types of block sections exist right now: literal and insns. */
10466
10467 static void
10468 add_xt_block_frags (segT sec,
10469 segT xt_block_sec,
10470 xtensa_block_info **xt_block,
10471 frag_predicate property_function,
10472 frag_predicate end_property_function)
10473 {
10474 segment_info_type *seg_info;
10475 segment_info_type *xt_seg_info;
10476 bfd_vma seg_offset;
10477 fragS *fragP;
10478
10479 xt_seg_info = retrieve_segment_info (xt_block_sec);
10480 seg_info = retrieve_segment_info (sec);
10481
10482 /* Build it if needed. */
10483 while (*xt_block != NULL)
10484 xt_block = &(*xt_block)->next;
10485 /* We are either at NULL at the beginning or at the end. */
10486
10487 /* Walk through the frags. */
10488 seg_offset = 0;
10489
10490 if (seg_info->frchainP)
10491 {
10492 for (fragP = seg_info->frchainP->frch_root;
10493 fragP;
10494 fragP = fragP->fr_next)
10495 {
10496 if (property_function (fragP)
10497 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10498 {
10499 if (*xt_block != NULL)
10500 {
10501 if ((*xt_block)->offset + (*xt_block)->size
10502 == fragP->fr_address)
10503 (*xt_block)->size += fragP->fr_fix;
10504 else
10505 xt_block = &((*xt_block)->next);
10506 }
10507 if (*xt_block == NULL)
10508 {
10509 xtensa_block_info *new_block = (xtensa_block_info *)
10510 xmalloc (sizeof (xtensa_block_info));
10511 new_block->sec = sec;
10512 new_block->offset = fragP->fr_address;
10513 new_block->size = fragP->fr_fix;
10514 new_block->next = NULL;
10515 xtensa_frag_flags_init (&new_block->flags);
10516 *xt_block = new_block;
10517 }
10518 if (end_property_function
10519 && end_property_function (fragP))
10520 {
10521 xt_block = &((*xt_block)->next);
10522 }
10523 }
10524 }
10525 }
10526 }
10527
10528
10529 /* Break the encapsulation of add_xt_prop_frags here. */
10530
10531 static bfd_boolean
10532 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10533 {
10534 if (prop_flags->is_literal
10535 || prop_flags->is_insn
10536 || prop_flags->is_data
10537 || prop_flags->is_unreachable)
10538 return FALSE;
10539 return TRUE;
10540 }
10541
10542
10543 static void
10544 xtensa_frag_flags_init (frag_flags *prop_flags)
10545 {
10546 memset (prop_flags, 0, sizeof (frag_flags));
10547 }
10548
10549
10550 static void
10551 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10552 {
10553 xtensa_frag_flags_init (prop_flags);
10554 if (fragP->tc_frag_data.is_literal)
10555 prop_flags->is_literal = TRUE;
10556 if (fragP->tc_frag_data.is_unreachable)
10557 prop_flags->is_unreachable = TRUE;
10558 else if (fragP->tc_frag_data.is_insn)
10559 {
10560 prop_flags->is_insn = TRUE;
10561 if (fragP->tc_frag_data.is_loop_target)
10562 prop_flags->insn.is_loop_target = TRUE;
10563 if (fragP->tc_frag_data.is_branch_target)
10564 prop_flags->insn.is_branch_target = TRUE;
10565 if (fragP->tc_frag_data.is_specific_opcode
10566 || fragP->tc_frag_data.is_no_transform)
10567 prop_flags->insn.is_no_transform = TRUE;
10568 if (fragP->tc_frag_data.is_no_density)
10569 prop_flags->insn.is_no_density = TRUE;
10570 if (fragP->tc_frag_data.use_absolute_literals)
10571 prop_flags->insn.is_abslit = TRUE;
10572 }
10573 if (fragP->tc_frag_data.is_align)
10574 {
10575 prop_flags->is_align = TRUE;
10576 prop_flags->alignment = fragP->tc_frag_data.alignment;
10577 if (xtensa_frag_flags_is_empty (prop_flags))
10578 prop_flags->is_data = TRUE;
10579 }
10580 }
10581
10582
10583 static bfd_vma
10584 frag_flags_to_number (const frag_flags *prop_flags)
10585 {
10586 bfd_vma num = 0;
10587 if (prop_flags->is_literal)
10588 num |= XTENSA_PROP_LITERAL;
10589 if (prop_flags->is_insn)
10590 num |= XTENSA_PROP_INSN;
10591 if (prop_flags->is_data)
10592 num |= XTENSA_PROP_DATA;
10593 if (prop_flags->is_unreachable)
10594 num |= XTENSA_PROP_UNREACHABLE;
10595 if (prop_flags->insn.is_loop_target)
10596 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10597 if (prop_flags->insn.is_branch_target)
10598 {
10599 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10600 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10601 }
10602
10603 if (prop_flags->insn.is_no_density)
10604 num |= XTENSA_PROP_INSN_NO_DENSITY;
10605 if (prop_flags->insn.is_no_transform)
10606 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10607 if (prop_flags->insn.is_no_reorder)
10608 num |= XTENSA_PROP_INSN_NO_REORDER;
10609 if (prop_flags->insn.is_abslit)
10610 num |= XTENSA_PROP_INSN_ABSLIT;
10611
10612 if (prop_flags->is_align)
10613 {
10614 num |= XTENSA_PROP_ALIGN;
10615 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10616 }
10617
10618 return num;
10619 }
10620
10621
10622 static bfd_boolean
10623 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10624 const frag_flags *prop_flags_2)
10625 {
10626 /* Cannot combine with an end marker. */
10627
10628 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10629 return FALSE;
10630 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10631 return FALSE;
10632 if (prop_flags_1->is_data != prop_flags_2->is_data)
10633 return FALSE;
10634
10635 if (prop_flags_1->is_insn)
10636 {
10637 /* Properties of the beginning of the frag. */
10638 if (prop_flags_2->insn.is_loop_target)
10639 return FALSE;
10640 if (prop_flags_2->insn.is_branch_target)
10641 return FALSE;
10642 if (prop_flags_1->insn.is_no_density !=
10643 prop_flags_2->insn.is_no_density)
10644 return FALSE;
10645 if (prop_flags_1->insn.is_no_transform !=
10646 prop_flags_2->insn.is_no_transform)
10647 return FALSE;
10648 if (prop_flags_1->insn.is_no_reorder !=
10649 prop_flags_2->insn.is_no_reorder)
10650 return FALSE;
10651 if (prop_flags_1->insn.is_abslit !=
10652 prop_flags_2->insn.is_abslit)
10653 return FALSE;
10654 }
10655
10656 if (prop_flags_1->is_align)
10657 return FALSE;
10658
10659 return TRUE;
10660 }
10661
10662
10663 static bfd_vma
10664 xt_block_aligned_size (const xtensa_block_info *xt_block)
10665 {
10666 bfd_vma end_addr;
10667 unsigned align_bits;
10668
10669 if (!xt_block->flags.is_align)
10670 return xt_block->size;
10671
10672 end_addr = xt_block->offset + xt_block->size;
10673 align_bits = xt_block->flags.alignment;
10674 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10675 return end_addr - xt_block->offset;
10676 }
10677
10678
10679 static bfd_boolean
10680 xtensa_xt_block_combine (xtensa_block_info *xt_block,
10681 const xtensa_block_info *xt_block_2)
10682 {
10683 if (xt_block->sec != xt_block_2->sec)
10684 return FALSE;
10685 if (xt_block->offset + xt_block_aligned_size (xt_block)
10686 != xt_block_2->offset)
10687 return FALSE;
10688
10689 if (xt_block_2->size == 0
10690 && (!xt_block_2->flags.is_unreachable
10691 || xt_block->flags.is_unreachable))
10692 {
10693 if (xt_block_2->flags.is_align
10694 && xt_block->flags.is_align)
10695 {
10696 /* Nothing needed. */
10697 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10698 return TRUE;
10699 }
10700 else
10701 {
10702 if (xt_block_2->flags.is_align)
10703 {
10704 /* Push alignment to previous entry. */
10705 xt_block->flags.is_align = xt_block_2->flags.is_align;
10706 xt_block->flags.alignment = xt_block_2->flags.alignment;
10707 }
10708 return TRUE;
10709 }
10710 }
10711 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10712 &xt_block_2->flags))
10713 return FALSE;
10714
10715 xt_block->size += xt_block_2->size;
10716
10717 if (xt_block_2->flags.is_align)
10718 {
10719 xt_block->flags.is_align = TRUE;
10720 xt_block->flags.alignment = xt_block_2->flags.alignment;
10721 }
10722
10723 return TRUE;
10724 }
10725
10726
10727 static void
10728 add_xt_prop_frags (segT sec,
10729 segT xt_block_sec,
10730 xtensa_block_info **xt_block,
10731 frag_flags_fn property_function)
10732 {
10733 segment_info_type *seg_info;
10734 segment_info_type *xt_seg_info;
10735 bfd_vma seg_offset;
10736 fragS *fragP;
10737
10738 xt_seg_info = retrieve_segment_info (xt_block_sec);
10739 seg_info = retrieve_segment_info (sec);
10740 /* Build it if needed. */
10741 while (*xt_block != NULL)
10742 {
10743 xt_block = &(*xt_block)->next;
10744 }
10745 /* We are either at NULL at the beginning or at the end. */
10746
10747 /* Walk through the frags. */
10748 seg_offset = 0;
10749
10750 if (seg_info->frchainP)
10751 {
10752 for (fragP = seg_info->frchainP->frch_root; fragP;
10753 fragP = fragP->fr_next)
10754 {
10755 xtensa_block_info tmp_block;
10756 tmp_block.sec = sec;
10757 tmp_block.offset = fragP->fr_address;
10758 tmp_block.size = fragP->fr_fix;
10759 tmp_block.next = NULL;
10760 property_function (fragP, &tmp_block.flags);
10761
10762 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10763 /* && fragP->fr_fix != 0) */
10764 {
10765 if ((*xt_block) == NULL
10766 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10767 {
10768 xtensa_block_info *new_block;
10769 if ((*xt_block) != NULL)
10770 xt_block = &(*xt_block)->next;
10771 new_block = (xtensa_block_info *)
10772 xmalloc (sizeof (xtensa_block_info));
10773 *new_block = tmp_block;
10774 *xt_block = new_block;
10775 }
10776 }
10777 }
10778 }
10779 }
10780
10781 \f
10782 /* op_placement_info_table */
10783
10784 /* op_placement_info makes it easier to determine which
10785 ops can go in which slots. */
10786
10787 static void
10788 init_op_placement_info_table (void)
10789 {
10790 xtensa_isa isa = xtensa_default_isa;
10791 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10792 xtensa_opcode opcode;
10793 xtensa_format fmt;
10794 int slot;
10795 int num_opcodes = xtensa_isa_num_opcodes (isa);
10796
10797 op_placement_table = (op_placement_info_table)
10798 xmalloc (sizeof (op_placement_info) * num_opcodes);
10799 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10800
10801 for (opcode = 0; opcode < num_opcodes; opcode++)
10802 {
10803 op_placement_info *opi = &op_placement_table[opcode];
10804 /* FIXME: Make tinsn allocation dynamic. */
10805 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10806 as_fatal (_("too many operands in instruction"));
10807 opi->narrowest = XTENSA_UNDEFINED;
10808 opi->narrowest_size = 0x7F;
10809 opi->narrowest_slot = 0;
10810 opi->formats = 0;
10811 opi->num_formats = 0;
10812 opi->issuef = 0;
10813 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10814 {
10815 opi->slots[fmt] = 0;
10816 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10817 {
10818 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10819 {
10820 int fmt_length = xtensa_format_length (isa, fmt);
10821 opi->issuef++;
10822 set_bit (fmt, opi->formats);
10823 set_bit (slot, opi->slots[fmt]);
10824 if (fmt_length < opi->narrowest_size
10825 || (fmt_length == opi->narrowest_size
10826 && (xtensa_format_num_slots (isa, fmt)
10827 < xtensa_format_num_slots (isa,
10828 opi->narrowest))))
10829 {
10830 opi->narrowest = fmt;
10831 opi->narrowest_size = fmt_length;
10832 opi->narrowest_slot = slot;
10833 }
10834 }
10835 }
10836 if (opi->formats)
10837 opi->num_formats++;
10838 }
10839 }
10840 xtensa_insnbuf_free (isa, ibuf);
10841 }
10842
10843
10844 bfd_boolean
10845 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
10846 {
10847 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10848 }
10849
10850
10851 /* If the opcode is available in a single slot format, return its size. */
10852
10853 static int
10854 xg_get_single_size (xtensa_opcode opcode)
10855 {
10856 return op_placement_table[opcode].narrowest_size;
10857 }
10858
10859
10860 static xtensa_format
10861 xg_get_single_format (xtensa_opcode opcode)
10862 {
10863 return op_placement_table[opcode].narrowest;
10864 }
10865
10866
10867 static int
10868 xg_get_single_slot (xtensa_opcode opcode)
10869 {
10870 return op_placement_table[opcode].narrowest_slot;
10871 }
10872
10873 \f
10874 /* Instruction Stack Functions (from "xtensa-istack.h"). */
10875
10876 void
10877 istack_init (IStack *stack)
10878 {
10879 memset (stack, 0, sizeof (IStack));
10880 stack->ninsn = 0;
10881 }
10882
10883
10884 bfd_boolean
10885 istack_empty (IStack *stack)
10886 {
10887 return (stack->ninsn == 0);
10888 }
10889
10890
10891 bfd_boolean
10892 istack_full (IStack *stack)
10893 {
10894 return (stack->ninsn == MAX_ISTACK);
10895 }
10896
10897
10898 /* Return a pointer to the top IStack entry.
10899 It is an error to call this if istack_empty () is TRUE. */
10900
10901 TInsn *
10902 istack_top (IStack *stack)
10903 {
10904 int rec = stack->ninsn - 1;
10905 assert (!istack_empty (stack));
10906 return &stack->insn[rec];
10907 }
10908
10909
10910 /* Add a new TInsn to an IStack.
10911 It is an error to call this if istack_full () is TRUE. */
10912
10913 void
10914 istack_push (IStack *stack, TInsn *insn)
10915 {
10916 int rec = stack->ninsn;
10917 assert (!istack_full (stack));
10918 stack->insn[rec] = *insn;
10919 stack->ninsn++;
10920 }
10921
10922
10923 /* Clear space for the next TInsn on the IStack and return a pointer
10924 to it. It is an error to call this if istack_full () is TRUE. */
10925
10926 TInsn *
10927 istack_push_space (IStack *stack)
10928 {
10929 int rec = stack->ninsn;
10930 TInsn *insn;
10931 assert (!istack_full (stack));
10932 insn = &stack->insn[rec];
10933 memset (insn, 0, sizeof (TInsn));
10934 stack->ninsn++;
10935 return insn;
10936 }
10937
10938
10939 /* Remove the last pushed instruction. It is an error to call this if
10940 istack_empty () returns TRUE. */
10941
10942 void
10943 istack_pop (IStack *stack)
10944 {
10945 int rec = stack->ninsn - 1;
10946 assert (!istack_empty (stack));
10947 stack->ninsn--;
10948 memset (&stack->insn[rec], 0, sizeof (TInsn));
10949 }
10950
10951 \f
10952 /* TInsn functions. */
10953
10954 void
10955 tinsn_init (TInsn *dst)
10956 {
10957 memset (dst, 0, sizeof (TInsn));
10958 }
10959
10960
10961 /* Get the ``num''th token of the TInsn.
10962 It is illegal to call this if num > insn->ntoks. */
10963
10964 expressionS *
10965 tinsn_get_tok (TInsn *insn, int num)
10966 {
10967 assert (num < insn->ntok);
10968 return &insn->tok[num];
10969 }
10970
10971
10972 /* Return TRUE if ANY of the operands in the insn are symbolic. */
10973
10974 static bfd_boolean
10975 tinsn_has_symbolic_operands (const TInsn *insn)
10976 {
10977 int i;
10978 int n = insn->ntok;
10979
10980 assert (insn->insn_type == ITYPE_INSN);
10981
10982 for (i = 0; i < n; ++i)
10983 {
10984 switch (insn->tok[i].X_op)
10985 {
10986 case O_register:
10987 case O_constant:
10988 break;
10989 default:
10990 return TRUE;
10991 }
10992 }
10993 return FALSE;
10994 }
10995
10996
10997 bfd_boolean
10998 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
10999 {
11000 xtensa_isa isa = xtensa_default_isa;
11001 int i;
11002 int n = insn->ntok;
11003
11004 assert (insn->insn_type == ITYPE_INSN);
11005
11006 for (i = 0; i < n; ++i)
11007 {
11008 switch (insn->tok[i].X_op)
11009 {
11010 case O_register:
11011 case O_constant:
11012 break;
11013 case O_big:
11014 case O_illegal:
11015 case O_absent:
11016 /* Errors for these types are caught later. */
11017 break;
11018 case O_hi16:
11019 case O_lo16:
11020 default:
11021 /* Symbolic immediates are only allowed on the last immediate
11022 operand. At this time, CONST16 is the only opcode where we
11023 support non-PC-relative relocations. */
11024 if (i != get_relaxable_immed (insn->opcode)
11025 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11026 && insn->opcode != xtensa_const16_opcode))
11027 {
11028 as_bad (_("invalid symbolic operand"));
11029 return TRUE;
11030 }
11031 }
11032 }
11033 return FALSE;
11034 }
11035
11036
11037 /* For assembly code with complex expressions (e.g. subtraction),
11038 we have to build them in the literal pool so that
11039 their results are calculated correctly after relaxation.
11040 The relaxation only handles expressions that
11041 boil down to SYMBOL + OFFSET. */
11042
11043 static bfd_boolean
11044 tinsn_has_complex_operands (const TInsn *insn)
11045 {
11046 int i;
11047 int n = insn->ntok;
11048 assert (insn->insn_type == ITYPE_INSN);
11049 for (i = 0; i < n; ++i)
11050 {
11051 switch (insn->tok[i].X_op)
11052 {
11053 case O_register:
11054 case O_constant:
11055 case O_symbol:
11056 case O_lo16:
11057 case O_hi16:
11058 break;
11059 default:
11060 return TRUE;
11061 }
11062 }
11063 return FALSE;
11064 }
11065
11066
11067 /* Encode a TInsn opcode and its constant operands into slotbuf.
11068 Return TRUE if there is a symbol in the immediate field. This
11069 function assumes that:
11070 1) The number of operands are correct.
11071 2) The insn_type is ITYPE_INSN.
11072 3) The opcode can be encoded in the specified format and slot.
11073 4) Operands are either O_constant or O_symbol, and all constants fit. */
11074
11075 static bfd_boolean
11076 tinsn_to_slotbuf (xtensa_format fmt,
11077 int slot,
11078 TInsn *tinsn,
11079 xtensa_insnbuf slotbuf)
11080 {
11081 xtensa_isa isa = xtensa_default_isa;
11082 xtensa_opcode opcode = tinsn->opcode;
11083 bfd_boolean has_fixup = FALSE;
11084 int noperands = xtensa_opcode_num_operands (isa, opcode);
11085 int i;
11086
11087 assert (tinsn->insn_type == ITYPE_INSN);
11088 if (noperands != tinsn->ntok)
11089 as_fatal (_("operand number mismatch"));
11090
11091 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11092 {
11093 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11094 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11095 return FALSE;
11096 }
11097
11098 for (i = 0; i < noperands; i++)
11099 {
11100 expressionS *expr = &tinsn->tok[i];
11101 int rc;
11102 unsigned line;
11103 char *file_name;
11104 uint32 opnd_value;
11105
11106 switch (expr->X_op)
11107 {
11108 case O_register:
11109 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11110 break;
11111 /* The register number has already been checked in
11112 expression_maybe_register, so we don't need to check here. */
11113 opnd_value = expr->X_add_number;
11114 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11115 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11116 opnd_value);
11117 if (rc != 0)
11118 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11119 break;
11120
11121 case O_constant:
11122 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11123 break;
11124 as_where (&file_name, &line);
11125 /* It is a constant and we called this function
11126 then we have to try to fit it. */
11127 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11128 expr->X_add_number, file_name, line);
11129 break;
11130
11131 default:
11132 has_fixup = TRUE;
11133 break;
11134 }
11135 }
11136
11137 return has_fixup;
11138 }
11139
11140
11141 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11142 into a multi-slot instruction, fill the other slots with NOPs.
11143 Return TRUE if there is a symbol in the immediate field. See also the
11144 assumptions listed for tinsn_to_slotbuf. */
11145
11146 static bfd_boolean
11147 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11148 {
11149 static xtensa_insnbuf slotbuf = 0;
11150 static vliw_insn vinsn;
11151 xtensa_isa isa = xtensa_default_isa;
11152 bfd_boolean has_fixup = FALSE;
11153 int i;
11154
11155 if (!slotbuf)
11156 {
11157 slotbuf = xtensa_insnbuf_alloc (isa);
11158 xg_init_vinsn (&vinsn);
11159 }
11160
11161 xg_clear_vinsn (&vinsn);
11162
11163 bundle_tinsn (tinsn, &vinsn);
11164
11165 xtensa_format_encode (isa, vinsn.format, insnbuf);
11166
11167 for (i = 0; i < vinsn.num_slots; i++)
11168 {
11169 /* Only one slot may have a fix-up because the rest contains NOPs. */
11170 has_fixup |=
11171 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11172 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11173 }
11174
11175 return has_fixup;
11176 }
11177
11178
11179 /* Check the instruction arguments. Return TRUE on failure. */
11180
11181 static bfd_boolean
11182 tinsn_check_arguments (const TInsn *insn)
11183 {
11184 xtensa_isa isa = xtensa_default_isa;
11185 xtensa_opcode opcode = insn->opcode;
11186
11187 if (opcode == XTENSA_UNDEFINED)
11188 {
11189 as_bad (_("invalid opcode"));
11190 return TRUE;
11191 }
11192
11193 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11194 {
11195 as_bad (_("too few operands"));
11196 return TRUE;
11197 }
11198
11199 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11200 {
11201 as_bad (_("too many operands"));
11202 return TRUE;
11203 }
11204 return FALSE;
11205 }
11206
11207
11208 /* Load an instruction from its encoded form. */
11209
11210 static void
11211 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11212 {
11213 vliw_insn vinsn;
11214
11215 xg_init_vinsn (&vinsn);
11216 vinsn_from_chars (&vinsn, f);
11217
11218 *tinsn = vinsn.slots[slot];
11219 xg_free_vinsn (&vinsn);
11220 }
11221
11222
11223 static void
11224 tinsn_from_insnbuf (TInsn *tinsn,
11225 xtensa_insnbuf slotbuf,
11226 xtensa_format fmt,
11227 int slot)
11228 {
11229 int i;
11230 xtensa_isa isa = xtensa_default_isa;
11231
11232 /* Find the immed. */
11233 tinsn_init (tinsn);
11234 tinsn->insn_type = ITYPE_INSN;
11235 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11236 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11237 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11238 for (i = 0; i < tinsn->ntok; i++)
11239 {
11240 set_expr_const (&tinsn->tok[i],
11241 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11242 tinsn->opcode, i));
11243 }
11244 }
11245
11246
11247 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11248
11249 static void
11250 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11251 {
11252 xtensa_opcode opcode = tinsn->opcode;
11253 int opnum;
11254
11255 if (fragP->tc_frag_data.slot_symbols[slot])
11256 {
11257 opnum = get_relaxable_immed (opcode);
11258 assert (opnum >= 0);
11259 set_expr_symbol_offset (&tinsn->tok[opnum],
11260 fragP->tc_frag_data.slot_symbols[slot],
11261 fragP->tc_frag_data.slot_offsets[slot]);
11262 }
11263 }
11264
11265
11266 static int
11267 get_num_stack_text_bytes (IStack *istack)
11268 {
11269 int i;
11270 int text_bytes = 0;
11271
11272 for (i = 0; i < istack->ninsn; i++)
11273 {
11274 TInsn *tinsn = &istack->insn[i];
11275 if (tinsn->insn_type == ITYPE_INSN)
11276 text_bytes += xg_get_single_size (tinsn->opcode);
11277 }
11278 return text_bytes;
11279 }
11280
11281
11282 static int
11283 get_num_stack_literal_bytes (IStack *istack)
11284 {
11285 int i;
11286 int lit_bytes = 0;
11287
11288 for (i = 0; i < istack->ninsn; i++)
11289 {
11290 TInsn *tinsn = &istack->insn[i];
11291 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11292 lit_bytes += 4;
11293 }
11294 return lit_bytes;
11295 }
11296
11297 \f
11298 /* vliw_insn functions. */
11299
11300 static void
11301 xg_init_vinsn (vliw_insn *v)
11302 {
11303 int i;
11304 xtensa_isa isa = xtensa_default_isa;
11305
11306 xg_clear_vinsn (v);
11307
11308 v->insnbuf = xtensa_insnbuf_alloc (isa);
11309 if (v->insnbuf == NULL)
11310 as_fatal (_("out of memory"));
11311
11312 for (i = 0; i < MAX_SLOTS; i++)
11313 {
11314 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11315 if (v->slotbuf[i] == NULL)
11316 as_fatal (_("out of memory"));
11317 }
11318 }
11319
11320
11321 static void
11322 xg_clear_vinsn (vliw_insn *v)
11323 {
11324 int i;
11325
11326 memset (v, 0, offsetof (vliw_insn, insnbuf));
11327
11328 v->format = XTENSA_UNDEFINED;
11329 v->num_slots = 0;
11330 v->inside_bundle = FALSE;
11331
11332 if (xt_saved_debug_type != DEBUG_NONE)
11333 debug_type = xt_saved_debug_type;
11334
11335 for (i = 0; i < MAX_SLOTS; i++)
11336 v->slots[i].opcode = XTENSA_UNDEFINED;
11337 }
11338
11339
11340 static bfd_boolean
11341 vinsn_has_specific_opcodes (vliw_insn *v)
11342 {
11343 int i;
11344
11345 for (i = 0; i < v->num_slots; i++)
11346 {
11347 if (v->slots[i].is_specific_opcode)
11348 return TRUE;
11349 }
11350 return FALSE;
11351 }
11352
11353
11354 static void
11355 xg_free_vinsn (vliw_insn *v)
11356 {
11357 int i;
11358 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11359 for (i = 0; i < MAX_SLOTS; i++)
11360 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11361 }
11362
11363
11364 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11365 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11366
11367 static bfd_boolean
11368 vinsn_to_insnbuf (vliw_insn *vinsn,
11369 char *frag_offset,
11370 fragS *fragP,
11371 bfd_boolean record_fixup)
11372 {
11373 xtensa_isa isa = xtensa_default_isa;
11374 xtensa_format fmt = vinsn->format;
11375 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11376 int slot;
11377 bfd_boolean has_fixup = FALSE;
11378
11379 xtensa_format_encode (isa, fmt, insnbuf);
11380
11381 for (slot = 0; slot < vinsn->num_slots; slot++)
11382 {
11383 TInsn *tinsn = &vinsn->slots[slot];
11384 bfd_boolean tinsn_has_fixup =
11385 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11386 vinsn->slotbuf[slot]);
11387
11388 xtensa_format_set_slot (isa, fmt, slot,
11389 insnbuf, vinsn->slotbuf[slot]);
11390 if (tinsn_has_fixup)
11391 {
11392 int i;
11393 xtensa_opcode opcode = tinsn->opcode;
11394 int noperands = xtensa_opcode_num_operands (isa, opcode);
11395 has_fixup = TRUE;
11396
11397 for (i = 0; i < noperands; i++)
11398 {
11399 expressionS* expr = &tinsn->tok[i];
11400 switch (expr->X_op)
11401 {
11402 case O_symbol:
11403 case O_lo16:
11404 case O_hi16:
11405 if (get_relaxable_immed (opcode) == i)
11406 {
11407 /* Add a fix record for the instruction, except if this
11408 function is being called prior to relaxation, i.e.,
11409 if record_fixup is false, and the instruction might
11410 be relaxed later. */
11411 if (record_fixup
11412 || tinsn->is_specific_opcode
11413 || !xg_is_relaxable_insn (tinsn, 0))
11414 {
11415 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11416 frag_offset - fragP->fr_literal);
11417 }
11418 else
11419 {
11420 if (expr->X_op != O_symbol)
11421 as_bad (_("invalid operand"));
11422 tinsn->symbol = expr->X_add_symbol;
11423 tinsn->offset = expr->X_add_number;
11424 }
11425 }
11426 else
11427 as_bad (_("symbolic operand not allowed"));
11428 break;
11429
11430 case O_constant:
11431 case O_register:
11432 break;
11433
11434 default:
11435 as_bad (_("expression too complex"));
11436 break;
11437 }
11438 }
11439 }
11440 }
11441
11442 return has_fixup;
11443 }
11444
11445
11446 static void
11447 vinsn_from_chars (vliw_insn *vinsn, char *f)
11448 {
11449 static xtensa_insnbuf insnbuf = NULL;
11450 static xtensa_insnbuf slotbuf = NULL;
11451 int i;
11452 xtensa_format fmt;
11453 xtensa_isa isa = xtensa_default_isa;
11454
11455 if (!insnbuf)
11456 {
11457 insnbuf = xtensa_insnbuf_alloc (isa);
11458 slotbuf = xtensa_insnbuf_alloc (isa);
11459 }
11460
11461 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11462 fmt = xtensa_format_decode (isa, insnbuf);
11463 if (fmt == XTENSA_UNDEFINED)
11464 as_fatal (_("cannot decode instruction format"));
11465 vinsn->format = fmt;
11466 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11467
11468 for (i = 0; i < vinsn->num_slots; i++)
11469 {
11470 TInsn *tinsn = &vinsn->slots[i];
11471 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11472 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11473 }
11474 }
11475
11476 \f
11477 /* Expression utilities. */
11478
11479 /* Return TRUE if the expression is an integer constant. */
11480
11481 bfd_boolean
11482 expr_is_const (const expressionS *s)
11483 {
11484 return (s->X_op == O_constant);
11485 }
11486
11487
11488 /* Get the expression constant.
11489 Calling this is illegal if expr_is_const () returns TRUE. */
11490
11491 offsetT
11492 get_expr_const (const expressionS *s)
11493 {
11494 assert (expr_is_const (s));
11495 return s->X_add_number;
11496 }
11497
11498
11499 /* Set the expression to a constant value. */
11500
11501 void
11502 set_expr_const (expressionS *s, offsetT val)
11503 {
11504 s->X_op = O_constant;
11505 s->X_add_number = val;
11506 s->X_add_symbol = NULL;
11507 s->X_op_symbol = NULL;
11508 }
11509
11510
11511 bfd_boolean
11512 expr_is_register (const expressionS *s)
11513 {
11514 return (s->X_op == O_register);
11515 }
11516
11517
11518 /* Get the expression constant.
11519 Calling this is illegal if expr_is_const () returns TRUE. */
11520
11521 offsetT
11522 get_expr_register (const expressionS *s)
11523 {
11524 assert (expr_is_register (s));
11525 return s->X_add_number;
11526 }
11527
11528
11529 /* Set the expression to a symbol + constant offset. */
11530
11531 void
11532 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11533 {
11534 s->X_op = O_symbol;
11535 s->X_add_symbol = sym;
11536 s->X_op_symbol = NULL; /* unused */
11537 s->X_add_number = offset;
11538 }
11539
11540
11541 /* Return TRUE if the two expressions are equal. */
11542
11543 bfd_boolean
11544 expr_is_equal (expressionS *s1, expressionS *s2)
11545 {
11546 if (s1->X_op != s2->X_op)
11547 return FALSE;
11548 if (s1->X_add_symbol != s2->X_add_symbol)
11549 return FALSE;
11550 if (s1->X_op_symbol != s2->X_op_symbol)
11551 return FALSE;
11552 if (s1->X_add_number != s2->X_add_number)
11553 return FALSE;
11554 return TRUE;
11555 }
11556
11557
11558 static void
11559 copy_expr (expressionS *dst, const expressionS *src)
11560 {
11561 memcpy (dst, src, sizeof (expressionS));
11562 }
11563
11564 \f
11565 /* Support for the "--rename-section" option. */
11566
11567 struct rename_section_struct
11568 {
11569 char *old_name;
11570 char *new_name;
11571 struct rename_section_struct *next;
11572 };
11573
11574 static struct rename_section_struct *section_rename;
11575
11576
11577 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11578 entries to the section_rename list. Note: Specifying multiple
11579 renamings separated by colons is not documented and is retained only
11580 for backward compatibility. */
11581
11582 static void
11583 build_section_rename (const char *arg)
11584 {
11585 struct rename_section_struct *r;
11586 char *this_arg = NULL;
11587 char *next_arg = NULL;
11588
11589 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11590 {
11591 char *old_name, *new_name;
11592
11593 if (this_arg)
11594 {
11595 next_arg = strchr (this_arg, ':');
11596 if (next_arg)
11597 {
11598 *next_arg = '\0';
11599 next_arg++;
11600 }
11601 }
11602
11603 old_name = this_arg;
11604 new_name = strchr (this_arg, '=');
11605
11606 if (*old_name == '\0')
11607 {
11608 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11609 continue;
11610 }
11611 if (!new_name || new_name[1] == '\0')
11612 {
11613 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11614 old_name);
11615 continue;
11616 }
11617 *new_name = '\0';
11618 new_name++;
11619
11620 /* Check for invalid section renaming. */
11621 for (r = section_rename; r != NULL; r = r->next)
11622 {
11623 if (strcmp (r->old_name, old_name) == 0)
11624 as_bad (_("section %s renamed multiple times"), old_name);
11625 if (strcmp (r->new_name, new_name) == 0)
11626 as_bad (_("multiple sections remapped to output section %s"),
11627 new_name);
11628 }
11629
11630 /* Now add it. */
11631 r = (struct rename_section_struct *)
11632 xmalloc (sizeof (struct rename_section_struct));
11633 r->old_name = xstrdup (old_name);
11634 r->new_name = xstrdup (new_name);
11635 r->next = section_rename;
11636 section_rename = r;
11637 }
11638 }
11639
11640
11641 char *
11642 xtensa_section_rename (char *name)
11643 {
11644 struct rename_section_struct *r = section_rename;
11645
11646 for (r = section_rename; r != NULL; r = r->next)
11647 {
11648 if (strcmp (r->old_name, name) == 0)
11649 return r->new_name;
11650 }
11651
11652 return name;
11653 }
This page took 0.354589 seconds and 5 git commands to generate.