bfd:
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include <string.h>
22 #include <limits.h>
23 #include "as.h"
24 #include "sb.h"
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
27 #include "frags.h"
28 #include "subsegs.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
34
35 #ifndef uint32
36 #define uint32 unsigned int
37 #endif
38 #ifndef int32
39 #define int32 signed int
40 #endif
41
42 /* Notes:
43
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = "#";
63 const char line_separator_chars[] = ";";
64 const char EXP_CHARS[] = "eE";
65 const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
70
71 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
72 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
80
81 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
85 back end. */
86 static bfd_boolean past_xtensa_end = FALSE;
87
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
91
92
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
108
109 typedef struct lit_state_struct
110 {
111 const char *lit_seg_name;
112 const char *lit4_seg_name;
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
116 segT lit4_seg;
117 segT init_lit_seg;
118 segT fini_lit_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136 static seg_list init_literal_head_h;
137 static seg_list *init_literal_head = &init_literal_head_h;
138 static seg_list fini_literal_head_h;
139 static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148 typedef struct sym_list_struct
149 {
150 struct sym_list_struct *next;
151 symbolS *sym;
152 } sym_list;
153
154 static sym_list *insn_labels = NULL;
155 static sym_list *free_insn_labels = NULL;
156 static sym_list *saved_insn_labels = NULL;
157
158 static sym_list *literal_syms;
159
160
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16 = 0;
164 int prefer_l32r = 0;
165
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals = 0;
168
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206 */
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236 #define XTENSA_PROP_ALIGN 0x00000800
237
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255 typedef struct frag_flags_struct frag_flags;
256
257 struct frag_flags_struct
258 {
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286 };
287
288
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
292 {
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298 };
299
300
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
303 {
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308 } emit_state;
309
310
311 /* Opcode placement information */
312
313 typedef unsigned long long bitfield;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318 #define MAX_FORMATS 32
319
320 typedef struct op_placement_info_struct
321 {
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
328 format. */
329 int issuef;
330 xtensa_format narrowest;
331 char narrowest_size;
332 char narrowest_slot;
333
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
336 bitfield formats;
337
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots[MAX_FORMATS];
341
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format[MAX_FORMATS];
345
346 } op_placement_info, *op_placement_info_table;
347
348 op_placement_info_table op_placement_table;
349
350
351 /* Extra expression types. */
352
353 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
356
357
358 /* Directives. */
359
360 typedef enum
361 {
362 directive_none = 0,
363 directive_literal,
364 directive_density,
365 directive_transform,
366 directive_freeregs,
367 directive_longcalls,
368 directive_literal_prefix,
369 directive_schedule,
370 directive_absolute_literals,
371 directive_last_directive
372 } directiveE;
373
374 typedef struct
375 {
376 const char *name;
377 bfd_boolean can_be_negated;
378 } directive_infoS;
379
380 const directive_infoS directive_info[] =
381 {
382 { "none", FALSE },
383 { "literal", FALSE },
384 { "density", TRUE },
385 { "transform", TRUE },
386 { "freeregs", FALSE },
387 { "longcalls", TRUE },
388 { "literal_prefix", FALSE },
389 { "schedule", TRUE },
390 { "absolute-literals", TRUE }
391 };
392
393 bfd_boolean directive_state[] =
394 {
395 FALSE, /* none */
396 FALSE, /* literal */
397 #if !XCHAL_HAVE_DENSITY
398 FALSE, /* density */
399 #else
400 TRUE, /* density */
401 #endif
402 TRUE, /* transform */
403 FALSE, /* freeregs */
404 FALSE, /* longcalls */
405 FALSE, /* literal_prefix */
406 TRUE, /* schedule */
407 #if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE /* absolute_literals */
409 #else
410 FALSE /* absolute_literals */
411 #endif
412 };
413
414
415 /* Directive functions. */
416
417 static void xtensa_begin_directive (int);
418 static void xtensa_end_directive (int);
419 static void xtensa_literal_prefix (char const *, int);
420 static void xtensa_literal_position (int);
421 static void xtensa_literal_pseudo (int);
422 static void xtensa_frequency_pseudo (int);
423 static void xtensa_elf_cons (int);
424
425 /* Parsing and Idiom Translation. */
426
427 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
428
429 /* Various Other Internal Functions. */
430
431 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
432 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
433 static void xtensa_mark_literal_pool_location (void);
434 static addressT get_expanded_loop_offset (xtensa_opcode);
435 static fragS *get_literal_pool_location (segT);
436 static void set_literal_pool_location (segT, fragS *);
437 static void xtensa_set_frag_assembly_state (fragS *);
438 static void finish_vinsn (vliw_insn *);
439 static bfd_boolean emit_single_op (TInsn *);
440 static int total_frag_text_expansion (fragS *);
441
442 /* Alignment Functions. */
443
444 static int get_text_align_power (unsigned);
445 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
446 static int branch_align_power (segT);
447
448 /* Helpers for xtensa_relax_frag(). */
449
450 static long relax_frag_add_nop (fragS *);
451
452 /* Accessors for additional per-subsegment information. */
453
454 static unsigned get_last_insn_flags (segT, subsegT);
455 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
456 static float get_subseg_total_freq (segT, subsegT);
457 static float get_subseg_target_freq (segT, subsegT);
458 static void set_subseg_freq (segT, subsegT, float, float);
459
460 /* Segment list functions. */
461
462 static void xtensa_move_literals (void);
463 static void xtensa_reorder_segments (void);
464 static void xtensa_switch_to_literal_fragment (emit_state *);
465 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
466 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
467 static void xtensa_restore_emit_state (emit_state *);
468 static void cache_literal_section
469 (seg_list *, const char *, segT *, bfd_boolean);
470
471 /* Import from elf32-xtensa.c in BFD library. */
472
473 extern char *xtensa_get_property_section_name (asection *, const char *);
474
475 /* op_placement_info functions. */
476
477 static void init_op_placement_info_table (void);
478 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
479 static int xg_get_single_size (xtensa_opcode);
480 static xtensa_format xg_get_single_format (xtensa_opcode);
481 static int xg_get_single_slot (xtensa_opcode);
482
483 /* TInsn and IStack functions. */
484
485 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
486 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
487 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
488 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
489 static bfd_boolean tinsn_check_arguments (const TInsn *);
490 static void tinsn_from_chars (TInsn *, char *, int);
491 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
492 static int get_num_stack_text_bytes (IStack *);
493 static int get_num_stack_literal_bytes (IStack *);
494
495 /* vliw_insn functions. */
496
497 static void xg_init_vinsn (vliw_insn *);
498 static void xg_clear_vinsn (vliw_insn *);
499 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
500 static void xg_free_vinsn (vliw_insn *);
501 static bfd_boolean vinsn_to_insnbuf
502 (vliw_insn *, char *, fragS *, bfd_boolean);
503 static void vinsn_from_chars (vliw_insn *, char *);
504
505 /* Expression Utilities. */
506
507 bfd_boolean expr_is_const (const expressionS *);
508 offsetT get_expr_const (const expressionS *);
509 void set_expr_const (expressionS *, offsetT);
510 bfd_boolean expr_is_register (const expressionS *);
511 offsetT get_expr_register (const expressionS *);
512 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
513 bfd_boolean expr_is_equal (expressionS *, expressionS *);
514 static void copy_expr (expressionS *, const expressionS *);
515
516 /* Section renaming. */
517
518 static void build_section_rename (const char *);
519
520
521 /* ISA imported from bfd. */
522 extern xtensa_isa xtensa_default_isa;
523
524 extern int target_big_endian;
525
526 static xtensa_opcode xtensa_addi_opcode;
527 static xtensa_opcode xtensa_addmi_opcode;
528 static xtensa_opcode xtensa_call0_opcode;
529 static xtensa_opcode xtensa_call4_opcode;
530 static xtensa_opcode xtensa_call8_opcode;
531 static xtensa_opcode xtensa_call12_opcode;
532 static xtensa_opcode xtensa_callx0_opcode;
533 static xtensa_opcode xtensa_callx4_opcode;
534 static xtensa_opcode xtensa_callx8_opcode;
535 static xtensa_opcode xtensa_callx12_opcode;
536 static xtensa_opcode xtensa_const16_opcode;
537 static xtensa_opcode xtensa_entry_opcode;
538 static xtensa_opcode xtensa_movi_opcode;
539 static xtensa_opcode xtensa_movi_n_opcode;
540 static xtensa_opcode xtensa_isync_opcode;
541 static xtensa_opcode xtensa_jx_opcode;
542 static xtensa_opcode xtensa_l32r_opcode;
543 static xtensa_opcode xtensa_loop_opcode;
544 static xtensa_opcode xtensa_loopnez_opcode;
545 static xtensa_opcode xtensa_loopgtz_opcode;
546 static xtensa_opcode xtensa_nop_opcode;
547 static xtensa_opcode xtensa_nop_n_opcode;
548 static xtensa_opcode xtensa_or_opcode;
549 static xtensa_opcode xtensa_ret_opcode;
550 static xtensa_opcode xtensa_ret_n_opcode;
551 static xtensa_opcode xtensa_retw_opcode;
552 static xtensa_opcode xtensa_retw_n_opcode;
553 static xtensa_opcode xtensa_rsr_lcount_opcode;
554 static xtensa_opcode xtensa_waiti_opcode;
555
556 \f
557 /* Command-line Options. */
558
559 bfd_boolean use_literal_section = TRUE;
560 static bfd_boolean align_targets = TRUE;
561 static bfd_boolean warn_unaligned_branch_targets = FALSE;
562 static bfd_boolean has_a0_b_retw = FALSE;
563 static bfd_boolean workaround_a0_b_retw = FALSE;
564 static bfd_boolean workaround_b_j_loop_end = FALSE;
565 static bfd_boolean workaround_short_loop = FALSE;
566 static bfd_boolean maybe_has_short_loop = FALSE;
567 static bfd_boolean workaround_close_loop_end = FALSE;
568 static bfd_boolean maybe_has_close_loop_end = FALSE;
569 static bfd_boolean enforce_three_byte_loop_align = FALSE;
570
571 /* When workaround_short_loops is TRUE, all loops with early exits must
572 have at least 3 instructions. workaround_all_short_loops is a modifier
573 to the workaround_short_loop flag. In addition to the
574 workaround_short_loop actions, all straightline loopgtz and loopnez
575 must have at least 3 instructions. */
576
577 static bfd_boolean workaround_all_short_loops = FALSE;
578
579
580 static void
581 xtensa_setup_hw_workarounds (int earliest, int latest)
582 {
583 if (earliest > latest)
584 as_fatal (_("illegal range of target hardware versions"));
585
586 /* Enable all workarounds for pre-T1050.0 hardware. */
587 if (earliest < 105000 || latest < 105000)
588 {
589 workaround_a0_b_retw |= TRUE;
590 workaround_b_j_loop_end |= TRUE;
591 workaround_short_loop |= TRUE;
592 workaround_close_loop_end |= TRUE;
593 workaround_all_short_loops |= TRUE;
594 enforce_three_byte_loop_align = TRUE;
595 }
596 }
597
598
599 enum
600 {
601 option_density = OPTION_MD_BASE,
602 option_no_density,
603
604 option_relax,
605 option_no_relax,
606
607 option_link_relax,
608 option_no_link_relax,
609
610 option_generics,
611 option_no_generics,
612
613 option_transform,
614 option_no_transform,
615
616 option_text_section_literals,
617 option_no_text_section_literals,
618
619 option_absolute_literals,
620 option_no_absolute_literals,
621
622 option_align_targets,
623 option_no_align_targets,
624
625 option_warn_unaligned_targets,
626
627 option_longcalls,
628 option_no_longcalls,
629
630 option_workaround_a0_b_retw,
631 option_no_workaround_a0_b_retw,
632
633 option_workaround_b_j_loop_end,
634 option_no_workaround_b_j_loop_end,
635
636 option_workaround_short_loop,
637 option_no_workaround_short_loop,
638
639 option_workaround_all_short_loops,
640 option_no_workaround_all_short_loops,
641
642 option_workaround_close_loop_end,
643 option_no_workaround_close_loop_end,
644
645 option_no_workarounds,
646
647 option_rename_section_name,
648
649 option_prefer_l32r,
650 option_prefer_const16,
651
652 option_target_hardware
653 };
654
655 const char *md_shortopts = "";
656
657 struct option md_longopts[] =
658 {
659 { "density", no_argument, NULL, option_density },
660 { "no-density", no_argument, NULL, option_no_density },
661
662 /* Both "relax" and "generics" are deprecated and treated as equivalent
663 to the "transform" option. */
664 { "relax", no_argument, NULL, option_relax },
665 { "no-relax", no_argument, NULL, option_no_relax },
666 { "generics", no_argument, NULL, option_generics },
667 { "no-generics", no_argument, NULL, option_no_generics },
668
669 { "transform", no_argument, NULL, option_transform },
670 { "no-transform", no_argument, NULL, option_no_transform },
671 { "text-section-literals", no_argument, NULL, option_text_section_literals },
672 { "no-text-section-literals", no_argument, NULL,
673 option_no_text_section_literals },
674 { "absolute-literals", no_argument, NULL, option_absolute_literals },
675 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
676 /* This option was changed from -align-target to -target-align
677 because it conflicted with the "-al" option. */
678 { "target-align", no_argument, NULL, option_align_targets },
679 { "no-target-align", no_argument, NULL, option_no_align_targets },
680 { "warn-unaligned-targets", no_argument, NULL,
681 option_warn_unaligned_targets },
682 { "longcalls", no_argument, NULL, option_longcalls },
683 { "no-longcalls", no_argument, NULL, option_no_longcalls },
684
685 { "no-workaround-a0-b-retw", no_argument, NULL,
686 option_no_workaround_a0_b_retw },
687 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
688
689 { "no-workaround-b-j-loop-end", no_argument, NULL,
690 option_no_workaround_b_j_loop_end },
691 { "workaround-b-j-loop-end", no_argument, NULL,
692 option_workaround_b_j_loop_end },
693
694 { "no-workaround-short-loops", no_argument, NULL,
695 option_no_workaround_short_loop },
696 { "workaround-short-loops", no_argument, NULL,
697 option_workaround_short_loop },
698
699 { "no-workaround-all-short-loops", no_argument, NULL,
700 option_no_workaround_all_short_loops },
701 { "workaround-all-short-loop", no_argument, NULL,
702 option_workaround_all_short_loops },
703
704 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
705 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
706
707 { "no-workarounds", no_argument, NULL, option_no_workarounds },
708
709 { "no-workaround-close-loop-end", no_argument, NULL,
710 option_no_workaround_close_loop_end },
711 { "workaround-close-loop-end", no_argument, NULL,
712 option_workaround_close_loop_end },
713
714 { "rename-section", required_argument, NULL, option_rename_section_name },
715
716 { "link-relax", no_argument, NULL, option_link_relax },
717 { "no-link-relax", no_argument, NULL, option_no_link_relax },
718
719 { "target-hardware", required_argument, NULL, option_target_hardware },
720
721 { NULL, no_argument, NULL, 0 }
722 };
723
724 size_t md_longopts_size = sizeof md_longopts;
725
726
727 int
728 md_parse_option (int c, char *arg)
729 {
730 switch (c)
731 {
732 case option_density:
733 as_warn (_("--density option is ignored"));
734 return 1;
735 case option_no_density:
736 as_warn (_("--no-density option is ignored"));
737 return 1;
738 case option_link_relax:
739 linkrelax = 1;
740 return 1;
741 case option_no_link_relax:
742 linkrelax = 0;
743 return 1;
744 case option_generics:
745 as_warn (_("--generics is deprecated; use --transform instead"));
746 return md_parse_option (option_transform, arg);
747 case option_no_generics:
748 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
749 return md_parse_option (option_no_transform, arg);
750 case option_relax:
751 as_warn (_("--relax is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_relax:
754 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
756 case option_longcalls:
757 directive_state[directive_longcalls] = TRUE;
758 return 1;
759 case option_no_longcalls:
760 directive_state[directive_longcalls] = FALSE;
761 return 1;
762 case option_text_section_literals:
763 use_literal_section = FALSE;
764 return 1;
765 case option_no_text_section_literals:
766 use_literal_section = TRUE;
767 return 1;
768 case option_absolute_literals:
769 if (!absolute_literals_supported)
770 {
771 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
772 return 0;
773 }
774 directive_state[directive_absolute_literals] = TRUE;
775 return 1;
776 case option_no_absolute_literals:
777 directive_state[directive_absolute_literals] = FALSE;
778 return 1;
779
780 case option_workaround_a0_b_retw:
781 workaround_a0_b_retw = TRUE;
782 return 1;
783 case option_no_workaround_a0_b_retw:
784 workaround_a0_b_retw = FALSE;
785 return 1;
786 case option_workaround_b_j_loop_end:
787 workaround_b_j_loop_end = TRUE;
788 return 1;
789 case option_no_workaround_b_j_loop_end:
790 workaround_b_j_loop_end = FALSE;
791 return 1;
792
793 case option_workaround_short_loop:
794 workaround_short_loop = TRUE;
795 return 1;
796 case option_no_workaround_short_loop:
797 workaround_short_loop = FALSE;
798 return 1;
799
800 case option_workaround_all_short_loops:
801 workaround_all_short_loops = TRUE;
802 return 1;
803 case option_no_workaround_all_short_loops:
804 workaround_all_short_loops = FALSE;
805 return 1;
806
807 case option_workaround_close_loop_end:
808 workaround_close_loop_end = TRUE;
809 return 1;
810 case option_no_workaround_close_loop_end:
811 workaround_close_loop_end = FALSE;
812 return 1;
813
814 case option_no_workarounds:
815 workaround_a0_b_retw = FALSE;
816 workaround_b_j_loop_end = FALSE;
817 workaround_short_loop = FALSE;
818 workaround_all_short_loops = FALSE;
819 workaround_close_loop_end = FALSE;
820 return 1;
821
822 case option_align_targets:
823 align_targets = TRUE;
824 return 1;
825 case option_no_align_targets:
826 align_targets = FALSE;
827 return 1;
828
829 case option_warn_unaligned_targets:
830 warn_unaligned_branch_targets = TRUE;
831 return 1;
832
833 case option_rename_section_name:
834 build_section_rename (arg);
835 return 1;
836
837 case 'Q':
838 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
839 should be emitted or not. FIXME: Not implemented. */
840 return 1;
841
842 case option_prefer_l32r:
843 if (prefer_const16)
844 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
845 prefer_l32r = 1;
846 return 1;
847
848 case option_prefer_const16:
849 if (prefer_l32r)
850 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
851 prefer_const16 = 1;
852 return 1;
853
854 case option_target_hardware:
855 {
856 int earliest, latest = 0;
857 if (*arg == 0 || *arg == '-')
858 as_fatal (_("invalid target hardware version"));
859
860 earliest = strtol (arg, &arg, 0);
861
862 if (*arg == 0)
863 latest = earliest;
864 else if (*arg == '-')
865 {
866 if (*++arg == 0)
867 as_fatal (_("invalid target hardware version"));
868 latest = strtol (arg, &arg, 0);
869 }
870 if (*arg != 0)
871 as_fatal (_("invalid target hardware version"));
872
873 xtensa_setup_hw_workarounds (earliest, latest);
874 return 1;
875 }
876
877 case option_transform:
878 /* This option has no affect other than to use the defaults,
879 which are already set. */
880 return 1;
881
882 case option_no_transform:
883 /* This option turns off all transformations of any kind.
884 However, because we want to preserve the state of other
885 directives, we only change its own field. Thus, before
886 you perform any transformation, always check if transform
887 is available. If you use the functions we provide for this
888 purpose, you will be ok. */
889 directive_state[directive_transform] = FALSE;
890 return 1;
891
892 default:
893 return 0;
894 }
895 }
896
897
898 void
899 md_show_usage (FILE *stream)
900 {
901 fputs ("\n\
902 Xtensa options:\n\
903 --[no-]text-section-literals\n\
904 [Do not] put literals in the text section\n\
905 --[no-]absolute-literals\n\
906 [Do not] default to use non-PC-relative literals\n\
907 --[no-]target-align [Do not] try to align branch targets\n\
908 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
909 --[no-]transform [Do not] transform instructions\n\
910 --rename-section old=new Rename section 'old' to 'new'\n", stream);
911 }
912
913 \f
914 /* Functions related to the list of current label symbols. */
915
916 static void
917 xtensa_add_insn_label (symbolS *sym)
918 {
919 sym_list *l;
920
921 if (!free_insn_labels)
922 l = (sym_list *) xmalloc (sizeof (sym_list));
923 else
924 {
925 l = free_insn_labels;
926 free_insn_labels = l->next;
927 }
928
929 l->sym = sym;
930 l->next = insn_labels;
931 insn_labels = l;
932 }
933
934
935 static void
936 xtensa_clear_insn_labels (void)
937 {
938 sym_list **pl;
939
940 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
941 ;
942 *pl = insn_labels;
943 insn_labels = NULL;
944 }
945
946
947 /* The "loops_ok" argument is provided to allow ignoring labels that
948 define loop ends. This fixes a bug where the NOPs to align a
949 loop opcode were included in a previous zero-cost loop:
950
951 loop a0, loopend
952 <loop1 body>
953 loopend:
954
955 loop a2, loopend2
956 <loop2 body>
957
958 would become:
959
960 loop a0, loopend
961 <loop1 body>
962 nop.n <===== bad!
963 loopend:
964
965 loop a2, loopend2
966 <loop2 body>
967
968 This argument is used to prevent moving the NOP to before the
969 loop-end label, which is what you want in this special case. */
970
971 static void
972 xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
973 {
974 sym_list *lit;
975
976 for (lit = insn_labels; lit; lit = lit->next)
977 {
978 symbolS *lit_sym = lit->sym;
979 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
980 {
981 S_SET_VALUE (lit_sym, new_offset);
982 symbol_set_frag (lit_sym, new_frag);
983 }
984 }
985 }
986
987 \f
988 /* Directive data and functions. */
989
990 typedef struct state_stackS_struct
991 {
992 directiveE directive;
993 bfd_boolean negated;
994 bfd_boolean old_state;
995 const char *file;
996 unsigned int line;
997 const void *datum;
998 struct state_stackS_struct *prev;
999 } state_stackS;
1000
1001 state_stackS *directive_state_stack;
1002
1003 const pseudo_typeS md_pseudo_table[] =
1004 {
1005 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1006 { "literal_position", xtensa_literal_position, 0 },
1007 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1008 { "long", xtensa_elf_cons, 4 },
1009 { "word", xtensa_elf_cons, 4 },
1010 { "short", xtensa_elf_cons, 2 },
1011 { "begin", xtensa_begin_directive, 0 },
1012 { "end", xtensa_end_directive, 0 },
1013 { "literal", xtensa_literal_pseudo, 0 },
1014 { "frequency", xtensa_frequency_pseudo, 0 },
1015 { NULL, 0, 0 },
1016 };
1017
1018
1019 static bfd_boolean
1020 use_transform (void)
1021 {
1022 /* After md_end, you should be checking frag by frag, rather
1023 than state directives. */
1024 assert (!past_xtensa_end);
1025 return directive_state[directive_transform];
1026 }
1027
1028
1029 static bfd_boolean
1030 do_align_targets (void)
1031 {
1032 /* Do not use this function after md_end; just look at align_targets
1033 instead. There is no target-align directive, so alignment is either
1034 enabled for all frags or not done at all. */
1035 assert (!past_xtensa_end);
1036 return align_targets && use_transform ();
1037 }
1038
1039
1040 static void
1041 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1042 {
1043 char *file;
1044 unsigned int line;
1045 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1046
1047 as_where (&file, &line);
1048
1049 stack->directive = directive;
1050 stack->negated = negated;
1051 stack->old_state = directive_state[directive];
1052 stack->file = file;
1053 stack->line = line;
1054 stack->datum = datum;
1055 stack->prev = directive_state_stack;
1056 directive_state_stack = stack;
1057
1058 directive_state[directive] = !negated;
1059 }
1060
1061
1062 static void
1063 directive_pop (directiveE *directive,
1064 bfd_boolean *negated,
1065 const char **file,
1066 unsigned int *line,
1067 const void **datum)
1068 {
1069 state_stackS *top = directive_state_stack;
1070
1071 if (!directive_state_stack)
1072 {
1073 as_bad (_("unmatched end directive"));
1074 *directive = directive_none;
1075 return;
1076 }
1077
1078 directive_state[directive_state_stack->directive] = top->old_state;
1079 *directive = top->directive;
1080 *negated = top->negated;
1081 *file = top->file;
1082 *line = top->line;
1083 *datum = top->datum;
1084 directive_state_stack = top->prev;
1085 free (top);
1086 }
1087
1088
1089 static void
1090 directive_balance (void)
1091 {
1092 while (directive_state_stack)
1093 {
1094 directiveE directive;
1095 bfd_boolean negated;
1096 const char *file;
1097 unsigned int line;
1098 const void *datum;
1099
1100 directive_pop (&directive, &negated, &file, &line, &datum);
1101 as_warn_where ((char *) file, line,
1102 _(".begin directive with no matching .end directive"));
1103 }
1104 }
1105
1106
1107 static bfd_boolean
1108 inside_directive (directiveE dir)
1109 {
1110 state_stackS *top = directive_state_stack;
1111
1112 while (top && top->directive != dir)
1113 top = top->prev;
1114
1115 return (top != NULL);
1116 }
1117
1118
1119 static void
1120 get_directive (directiveE *directive, bfd_boolean *negated)
1121 {
1122 int len;
1123 unsigned i;
1124 char *directive_string;
1125
1126 if (strncmp (input_line_pointer, "no-", 3) != 0)
1127 *negated = FALSE;
1128 else
1129 {
1130 *negated = TRUE;
1131 input_line_pointer += 3;
1132 }
1133
1134 len = strspn (input_line_pointer,
1135 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1136
1137 /* This code is a hack to make .begin [no-][generics|relax] exactly
1138 equivalent to .begin [no-]transform. We should remove it when
1139 we stop accepting those options. */
1140
1141 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1142 {
1143 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1144 directive_string = "transform";
1145 }
1146 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1147 {
1148 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1149 directive_string = "transform";
1150 }
1151 else
1152 directive_string = input_line_pointer;
1153
1154 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1155 {
1156 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1157 {
1158 input_line_pointer += len;
1159 *directive = (directiveE) i;
1160 if (*negated && !directive_info[i].can_be_negated)
1161 as_bad (_("directive %s cannot be negated"),
1162 directive_info[i].name);
1163 return;
1164 }
1165 }
1166
1167 as_bad (_("unknown directive"));
1168 *directive = (directiveE) XTENSA_UNDEFINED;
1169 }
1170
1171
1172 static void
1173 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1174 {
1175 directiveE directive;
1176 bfd_boolean negated;
1177 emit_state *state;
1178 int len;
1179 lit_state *ls;
1180
1181 get_directive (&directive, &negated);
1182 if (directive == (directiveE) XTENSA_UNDEFINED)
1183 {
1184 discard_rest_of_line ();
1185 return;
1186 }
1187
1188 if (cur_vinsn.inside_bundle)
1189 as_bad (_("directives are not valid inside bundles"));
1190
1191 switch (directive)
1192 {
1193 case directive_literal:
1194 if (!inside_directive (directive_literal))
1195 {
1196 /* Previous labels go with whatever follows this directive, not with
1197 the literal, so save them now. */
1198 saved_insn_labels = insn_labels;
1199 insn_labels = NULL;
1200 }
1201 as_warn (_(".begin literal is deprecated; use .literal instead"));
1202 state = (emit_state *) xmalloc (sizeof (emit_state));
1203 xtensa_switch_to_literal_fragment (state);
1204 directive_push (directive_literal, negated, state);
1205 break;
1206
1207 case directive_literal_prefix:
1208 /* Have to flush pending output because a movi relaxed to an l32r
1209 might produce a literal. */
1210 md_flush_pending_output ();
1211 /* Check to see if the current fragment is a literal
1212 fragment. If it is, then this operation is not allowed. */
1213 if (generating_literals)
1214 {
1215 as_bad (_("cannot set literal_prefix inside literal fragment"));
1216 return;
1217 }
1218
1219 /* Allocate the literal state for this section and push
1220 onto the directive stack. */
1221 ls = xmalloc (sizeof (lit_state));
1222 assert (ls);
1223
1224 *ls = default_lit_sections;
1225
1226 directive_push (directive_literal_prefix, negated, ls);
1227
1228 /* Parse the new prefix from the input_line_pointer. */
1229 SKIP_WHITESPACE ();
1230 len = strspn (input_line_pointer,
1231 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1232 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1233
1234 /* Process the new prefix. */
1235 xtensa_literal_prefix (input_line_pointer, len);
1236
1237 /* Skip the name in the input line. */
1238 input_line_pointer += len;
1239 break;
1240
1241 case directive_freeregs:
1242 /* This information is currently unused, but we'll accept the statement
1243 and just discard the rest of the line. This won't check the syntax,
1244 but it will accept every correct freeregs directive. */
1245 input_line_pointer += strcspn (input_line_pointer, "\n");
1246 directive_push (directive_freeregs, negated, 0);
1247 break;
1248
1249 case directive_schedule:
1250 md_flush_pending_output ();
1251 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1252 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1253 directive_push (directive_schedule, negated, 0);
1254 xtensa_set_frag_assembly_state (frag_now);
1255 break;
1256
1257 case directive_density:
1258 as_warn (_(".begin [no-]density is ignored"));
1259 break;
1260
1261 case directive_absolute_literals:
1262 md_flush_pending_output ();
1263 if (!absolute_literals_supported && !negated)
1264 {
1265 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1266 break;
1267 }
1268 xtensa_set_frag_assembly_state (frag_now);
1269 directive_push (directive, negated, 0);
1270 break;
1271
1272 default:
1273 md_flush_pending_output ();
1274 xtensa_set_frag_assembly_state (frag_now);
1275 directive_push (directive, negated, 0);
1276 break;
1277 }
1278
1279 demand_empty_rest_of_line ();
1280 }
1281
1282
1283 static void
1284 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1285 {
1286 directiveE begin_directive, end_directive;
1287 bfd_boolean begin_negated, end_negated;
1288 const char *file;
1289 unsigned int line;
1290 emit_state *state;
1291 emit_state **state_ptr;
1292 lit_state *s;
1293
1294 if (cur_vinsn.inside_bundle)
1295 as_bad (_("directives are not valid inside bundles"));
1296
1297 get_directive (&end_directive, &end_negated);
1298
1299 md_flush_pending_output ();
1300
1301 switch (end_directive)
1302 {
1303 case (directiveE) XTENSA_UNDEFINED:
1304 discard_rest_of_line ();
1305 return;
1306
1307 case directive_density:
1308 as_warn (_(".end [no-]density is ignored"));
1309 demand_empty_rest_of_line ();
1310 break;
1311
1312 case directive_absolute_literals:
1313 if (!absolute_literals_supported && !end_negated)
1314 {
1315 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1316 demand_empty_rest_of_line ();
1317 return;
1318 }
1319 break;
1320
1321 default:
1322 break;
1323 }
1324
1325 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1326 directive_pop (&begin_directive, &begin_negated, &file, &line,
1327 (const void **) state_ptr);
1328
1329 if (begin_directive != directive_none)
1330 {
1331 if (begin_directive != end_directive || begin_negated != end_negated)
1332 {
1333 as_bad (_("does not match begin %s%s at %s:%d"),
1334 begin_negated ? "no-" : "",
1335 directive_info[begin_directive].name, file, line);
1336 }
1337 else
1338 {
1339 switch (end_directive)
1340 {
1341 case directive_literal:
1342 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1343 xtensa_restore_emit_state (state);
1344 xtensa_set_frag_assembly_state (frag_now);
1345 free (state);
1346 if (!inside_directive (directive_literal))
1347 {
1348 /* Restore the list of current labels. */
1349 xtensa_clear_insn_labels ();
1350 insn_labels = saved_insn_labels;
1351 }
1352 break;
1353
1354 case directive_literal_prefix:
1355 /* Restore the default collection sections from saved state. */
1356 s = (lit_state *) state;
1357 assert (s);
1358
1359 default_lit_sections = *s;
1360
1361 /* free the state storage */
1362 free (s);
1363 break;
1364
1365 case directive_schedule:
1366 case directive_freeregs:
1367 break;
1368
1369 default:
1370 xtensa_set_frag_assembly_state (frag_now);
1371 break;
1372 }
1373 }
1374 }
1375
1376 demand_empty_rest_of_line ();
1377 }
1378
1379
1380 /* Place an aligned literal fragment at the current location. */
1381
1382 static void
1383 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1384 {
1385 md_flush_pending_output ();
1386
1387 if (inside_directive (directive_literal))
1388 as_warn (_(".literal_position inside literal directive; ignoring"));
1389 xtensa_mark_literal_pool_location ();
1390
1391 demand_empty_rest_of_line ();
1392 xtensa_clear_insn_labels ();
1393 }
1394
1395
1396 /* Support .literal label, expr, ... */
1397
1398 static void
1399 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1400 {
1401 emit_state state;
1402 char *p, *base_name;
1403 char c;
1404 segT dest_seg;
1405
1406 if (inside_directive (directive_literal))
1407 {
1408 as_bad (_(".literal not allowed inside .begin literal region"));
1409 ignore_rest_of_line ();
1410 return;
1411 }
1412
1413 md_flush_pending_output ();
1414
1415 /* Previous labels go with whatever follows this directive, not with
1416 the literal, so save them now. */
1417 saved_insn_labels = insn_labels;
1418 insn_labels = NULL;
1419
1420 /* If we are using text-section literals, then this is the right value... */
1421 dest_seg = now_seg;
1422
1423 base_name = input_line_pointer;
1424
1425 xtensa_switch_to_literal_fragment (&state);
1426
1427 /* ...but if we aren't using text-section-literals, then we
1428 need to put them in the section we just switched to. */
1429 if (use_literal_section || directive_state[directive_absolute_literals])
1430 dest_seg = now_seg;
1431
1432 /* All literals are aligned to four-byte boundaries. */
1433 frag_align (2, 0, 0);
1434 record_alignment (now_seg, 2);
1435
1436 c = get_symbol_end ();
1437 /* Just after name is now '\0'. */
1438 p = input_line_pointer;
1439 *p = c;
1440 SKIP_WHITESPACE ();
1441
1442 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1443 {
1444 as_bad (_("expected comma or colon after symbol name; "
1445 "rest of line ignored"));
1446 ignore_rest_of_line ();
1447 xtensa_restore_emit_state (&state);
1448 return;
1449 }
1450 *p = 0;
1451
1452 colon (base_name);
1453
1454 *p = c;
1455 input_line_pointer++; /* skip ',' or ':' */
1456
1457 xtensa_elf_cons (4);
1458
1459 xtensa_restore_emit_state (&state);
1460
1461 /* Restore the list of current labels. */
1462 xtensa_clear_insn_labels ();
1463 insn_labels = saved_insn_labels;
1464 }
1465
1466
1467 static void
1468 xtensa_literal_prefix (char const *start, int len)
1469 {
1470 char *name, *linkonce_suffix;
1471 char *newname, *newname4;
1472 size_t linkonce_len;
1473
1474 /* Get a null-terminated copy of the name. */
1475 name = xmalloc (len + 1);
1476 assert (name);
1477
1478 strncpy (name, start, len);
1479 name[len] = 0;
1480
1481 /* Allocate the sections (interesting note: the memory pointing to
1482 the name is actually used for the name by the new section). */
1483
1484 newname = xmalloc (len + strlen (".literal") + 1);
1485 newname4 = xmalloc (len + strlen (".lit4") + 1);
1486
1487 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1488 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1489 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1490 {
1491 strcpy (newname, ".gnu.linkonce.literal");
1492 strcpy (newname4, ".gnu.linkonce.lit4");
1493
1494 strcat (newname, linkonce_suffix);
1495 strcat (newname4, linkonce_suffix);
1496 }
1497 else
1498 {
1499 int suffix_pos = len;
1500
1501 /* If the section name ends with ".text", then replace that suffix
1502 instead of appending an additional suffix. */
1503 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1504 suffix_pos -= 5;
1505
1506 strcpy (newname, name);
1507 strcpy (newname4, name);
1508
1509 strcpy (newname + suffix_pos, ".literal");
1510 strcpy (newname4 + suffix_pos, ".lit4");
1511 }
1512
1513 /* Note that cache_literal_section does not create a segment if
1514 it already exists. */
1515 default_lit_sections.lit_seg = NULL;
1516 default_lit_sections.lit4_seg = NULL;
1517
1518 /* Canonicalizing section names allows renaming literal
1519 sections to occur correctly. */
1520 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1521 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
1522
1523 free (name);
1524 }
1525
1526
1527 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1528
1529 static void
1530 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1531 {
1532 float fall_through_f, target_f;
1533
1534 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (fall_through_f < 0)
1536 {
1537 as_bad (_("fall through frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1543 if (target_f < 0)
1544 {
1545 as_bad (_("branch target frequency must be greater than 0"));
1546 ignore_rest_of_line ();
1547 return;
1548 }
1549
1550 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1551
1552 demand_empty_rest_of_line ();
1553 }
1554
1555
1556 /* Like normal .long/.short/.word, except support @plt, etc.
1557 Clobbers input_line_pointer, checks end-of-line. */
1558
1559 static void
1560 xtensa_elf_cons (int nbytes)
1561 {
1562 expressionS exp;
1563 bfd_reloc_code_real_type reloc;
1564
1565 md_flush_pending_output ();
1566
1567 if (cur_vinsn.inside_bundle)
1568 as_bad (_("directives are not valid inside bundles"));
1569
1570 if (is_it_end_of_statement ())
1571 {
1572 demand_empty_rest_of_line ();
1573 return;
1574 }
1575
1576 do
1577 {
1578 expression (&exp);
1579 if (exp.X_op == O_symbol
1580 && *input_line_pointer == '@'
1581 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1582 != BFD_RELOC_NONE))
1583 {
1584 reloc_howto_type *reloc_howto =
1585 bfd_reloc_type_lookup (stdoutput, reloc);
1586
1587 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1588 as_bad (_("unsupported relocation"));
1589 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1590 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1591 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1592 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1593 as_bad (_("opcode-specific %s relocation used outside "
1594 "an instruction"), reloc_howto->name);
1595 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1596 as_bad (_("%s relocations do not fit in %d bytes"),
1597 reloc_howto->name, nbytes);
1598 else
1599 {
1600 char *p = frag_more ((int) nbytes);
1601 xtensa_set_frag_assembly_state (frag_now);
1602 fix_new_exp (frag_now, p - frag_now->fr_literal,
1603 nbytes, &exp, 0, reloc);
1604 }
1605 }
1606 else
1607 emit_expr (&exp, (unsigned int) nbytes);
1608 }
1609 while (*input_line_pointer++ == ',');
1610
1611 input_line_pointer--; /* Put terminator back into stream. */
1612 demand_empty_rest_of_line ();
1613 }
1614
1615 \f
1616 /* Parsing and Idiom Translation. */
1617
1618 /* Parse @plt, etc. and return the desired relocation. */
1619 static bfd_reloc_code_real_type
1620 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1621 {
1622 struct map_bfd
1623 {
1624 char *string;
1625 int length;
1626 bfd_reloc_code_real_type reloc;
1627 };
1628
1629 char ident[20];
1630 char *str = *str_p;
1631 char *str2;
1632 int ch;
1633 int len;
1634 struct map_bfd *ptr;
1635
1636 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1637
1638 static struct map_bfd mapping[] =
1639 {
1640 MAP ("l", BFD_RELOC_LO16),
1641 MAP ("h", BFD_RELOC_HI16),
1642 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1643 { (char *) 0, 0, BFD_RELOC_UNUSED }
1644 };
1645
1646 if (*str++ != '@')
1647 return BFD_RELOC_NONE;
1648
1649 for (ch = *str, str2 = ident;
1650 (str2 < ident + sizeof (ident) - 1
1651 && (ISALNUM (ch) || ch == '@'));
1652 ch = *++str)
1653 {
1654 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1655 }
1656
1657 *str2 = '\0';
1658 len = str2 - ident;
1659
1660 ch = ident[0];
1661 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1662 if (ch == ptr->string[0]
1663 && len == ptr->length
1664 && memcmp (ident, ptr->string, ptr->length) == 0)
1665 {
1666 /* Now check for "identifier@suffix+constant". */
1667 if (*str == '-' || *str == '+')
1668 {
1669 char *orig_line = input_line_pointer;
1670 expressionS new_exp;
1671
1672 input_line_pointer = str;
1673 expression (&new_exp);
1674 if (new_exp.X_op == O_constant)
1675 {
1676 exp_p->X_add_number += new_exp.X_add_number;
1677 str = input_line_pointer;
1678 }
1679
1680 if (&input_line_pointer != str_p)
1681 input_line_pointer = orig_line;
1682 }
1683
1684 *str_p = str;
1685 return ptr->reloc;
1686 }
1687
1688 return BFD_RELOC_UNUSED;
1689 }
1690
1691
1692 static const char *
1693 expression_end (const char *name)
1694 {
1695 while (1)
1696 {
1697 switch (*name)
1698 {
1699 case '}':
1700 case ';':
1701 case '\0':
1702 case ',':
1703 case ':':
1704 return name;
1705 case ' ':
1706 case '\t':
1707 ++name;
1708 continue;
1709 default:
1710 return 0;
1711 }
1712 }
1713 }
1714
1715
1716 #define ERROR_REG_NUM ((unsigned) -1)
1717
1718 static unsigned
1719 tc_get_register (const char *prefix)
1720 {
1721 unsigned reg;
1722 const char *next_expr;
1723 const char *old_line_pointer;
1724
1725 SKIP_WHITESPACE ();
1726 old_line_pointer = input_line_pointer;
1727
1728 if (*input_line_pointer == '$')
1729 ++input_line_pointer;
1730
1731 /* Accept "sp" as a synonym for "a1". */
1732 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1733 && expression_end (input_line_pointer + 2))
1734 {
1735 input_line_pointer += 2;
1736 return 1; /* AR[1] */
1737 }
1738
1739 while (*input_line_pointer++ == *prefix++)
1740 ;
1741 --input_line_pointer;
1742 --prefix;
1743
1744 if (*prefix)
1745 {
1746 as_bad (_("bad register name: %s"), old_line_pointer);
1747 return ERROR_REG_NUM;
1748 }
1749
1750 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1751 {
1752 as_bad (_("bad register number: %s"), input_line_pointer);
1753 return ERROR_REG_NUM;
1754 }
1755
1756 reg = 0;
1757
1758 while (ISDIGIT ((int) *input_line_pointer))
1759 reg = reg * 10 + *input_line_pointer++ - '0';
1760
1761 if (!(next_expr = expression_end (input_line_pointer)))
1762 {
1763 as_bad (_("bad register name: %s"), old_line_pointer);
1764 return ERROR_REG_NUM;
1765 }
1766
1767 input_line_pointer = (char *) next_expr;
1768
1769 return reg;
1770 }
1771
1772
1773 static void
1774 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1775 {
1776 xtensa_isa isa = xtensa_default_isa;
1777
1778 /* Check if this is an immediate operand. */
1779 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1780 {
1781 bfd_reloc_code_real_type reloc;
1782 segT t = expression (tok);
1783 if (t == absolute_section
1784 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1785 {
1786 assert (tok->X_op == O_constant);
1787 tok->X_op = O_symbol;
1788 tok->X_add_symbol = &abs_symbol;
1789 }
1790
1791 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1792 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1793 && (reloc != BFD_RELOC_NONE))
1794 {
1795 switch (reloc)
1796 {
1797 default:
1798 case BFD_RELOC_UNUSED:
1799 as_bad (_("unsupported relocation"));
1800 break;
1801
1802 case BFD_RELOC_XTENSA_PLT:
1803 tok->X_op = O_pltrel;
1804 break;
1805
1806 case BFD_RELOC_LO16:
1807 if (tok->X_op == O_constant)
1808 tok->X_add_number &= 0xffff;
1809 else
1810 tok->X_op = O_lo16;
1811 break;
1812
1813 case BFD_RELOC_HI16:
1814 if (tok->X_op == O_constant)
1815 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1816 else
1817 tok->X_op = O_hi16;
1818 break;
1819 }
1820 }
1821 }
1822 else
1823 {
1824 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1825 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1826
1827 if (reg != ERROR_REG_NUM) /* Already errored */
1828 {
1829 uint32 buf = reg;
1830 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1831 as_bad (_("register number out of range"));
1832 }
1833
1834 tok->X_op = O_register;
1835 tok->X_add_symbol = 0;
1836 tok->X_add_number = reg;
1837 }
1838 }
1839
1840
1841 /* Split up the arguments for an opcode or pseudo-op. */
1842
1843 static int
1844 tokenize_arguments (char **args, char *str)
1845 {
1846 char *old_input_line_pointer;
1847 bfd_boolean saw_comma = FALSE;
1848 bfd_boolean saw_arg = FALSE;
1849 bfd_boolean saw_colon = FALSE;
1850 int num_args = 0;
1851 char *arg_end, *arg;
1852 int arg_len;
1853
1854 /* Save and restore input_line_pointer around this function. */
1855 old_input_line_pointer = input_line_pointer;
1856 input_line_pointer = str;
1857
1858 while (*input_line_pointer)
1859 {
1860 SKIP_WHITESPACE ();
1861 switch (*input_line_pointer)
1862 {
1863 case '\0':
1864 case '}':
1865 goto fini;
1866
1867 case ':':
1868 input_line_pointer++;
1869 if (saw_comma || saw_colon || !saw_arg)
1870 goto err;
1871 saw_colon = TRUE;
1872 break;
1873
1874 case ',':
1875 input_line_pointer++;
1876 if (saw_comma || saw_colon || !saw_arg)
1877 goto err;
1878 saw_comma = TRUE;
1879 break;
1880
1881 default:
1882 if (!saw_comma && !saw_colon && saw_arg)
1883 goto err;
1884
1885 arg_end = input_line_pointer + 1;
1886 while (!expression_end (arg_end))
1887 arg_end += 1;
1888
1889 arg_len = arg_end - input_line_pointer;
1890 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1891 args[num_args] = arg;
1892
1893 if (saw_colon)
1894 *arg++ = ':';
1895 strncpy (arg, input_line_pointer, arg_len);
1896 arg[arg_len] = '\0';
1897
1898 input_line_pointer = arg_end;
1899 num_args += 1;
1900 saw_comma = FALSE;
1901 saw_colon = FALSE;
1902 saw_arg = TRUE;
1903 break;
1904 }
1905 }
1906
1907 fini:
1908 if (saw_comma || saw_colon)
1909 goto err;
1910 input_line_pointer = old_input_line_pointer;
1911 return num_args;
1912
1913 err:
1914 if (saw_comma)
1915 as_bad (_("extra comma"));
1916 else if (saw_colon)
1917 as_bad (_("extra colon"));
1918 else if (!saw_arg)
1919 as_bad (_("missing argument"));
1920 else
1921 as_bad (_("missing comma or colon"));
1922 input_line_pointer = old_input_line_pointer;
1923 return -1;
1924 }
1925
1926
1927 /* Parse the arguments to an opcode. Return TRUE on error. */
1928
1929 static bfd_boolean
1930 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1931 {
1932 expressionS *tok, *last_tok;
1933 xtensa_opcode opcode = insn->opcode;
1934 bfd_boolean had_error = TRUE;
1935 xtensa_isa isa = xtensa_default_isa;
1936 int n, num_regs = 0;
1937 int opcode_operand_count;
1938 int opnd_cnt, last_opnd_cnt;
1939 unsigned int next_reg = 0;
1940 char *old_input_line_pointer;
1941
1942 if (insn->insn_type == ITYPE_LITERAL)
1943 opcode_operand_count = 1;
1944 else
1945 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1946
1947 tok = insn->tok;
1948 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1949
1950 /* Save and restore input_line_pointer around this function. */
1951 old_input_line_pointer = input_line_pointer;
1952
1953 last_tok = 0;
1954 last_opnd_cnt = -1;
1955 opnd_cnt = 0;
1956
1957 /* Skip invisible operands. */
1958 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1959 {
1960 opnd_cnt += 1;
1961 tok++;
1962 }
1963
1964 for (n = 0; n < num_args; n++)
1965 {
1966 input_line_pointer = arg_strings[n];
1967 if (*input_line_pointer == ':')
1968 {
1969 xtensa_regfile opnd_rf;
1970 input_line_pointer++;
1971 if (num_regs == 0)
1972 goto err;
1973 assert (opnd_cnt > 0);
1974 num_regs--;
1975 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
1976 if (next_reg
1977 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
1978 as_warn (_("incorrect register number, ignoring"));
1979 next_reg++;
1980 }
1981 else
1982 {
1983 if (opnd_cnt >= opcode_operand_count)
1984 {
1985 as_warn (_("too many arguments"));
1986 goto err;
1987 }
1988 assert (opnd_cnt < MAX_INSN_ARGS);
1989
1990 expression_maybe_register (opcode, opnd_cnt, tok);
1991 next_reg = tok->X_add_number + 1;
1992
1993 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1994 goto err;
1995 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
1996 {
1997 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
1998 /* minus 1 because we are seeing one right now */
1999 }
2000 else
2001 num_regs = 0;
2002
2003 last_tok = tok;
2004 last_opnd_cnt = opnd_cnt;
2005
2006 do
2007 {
2008 opnd_cnt += 1;
2009 tok++;
2010 }
2011 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2012 }
2013 }
2014
2015 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2016 goto err;
2017
2018 insn->ntok = tok - insn->tok;
2019 had_error = FALSE;
2020
2021 err:
2022 input_line_pointer = old_input_line_pointer;
2023 return had_error;
2024 }
2025
2026
2027 static int
2028 get_invisible_operands (TInsn *insn)
2029 {
2030 xtensa_isa isa = xtensa_default_isa;
2031 static xtensa_insnbuf slotbuf = NULL;
2032 xtensa_format fmt;
2033 xtensa_opcode opc = insn->opcode;
2034 int slot, opnd, fmt_found;
2035 unsigned val;
2036
2037 if (!slotbuf)
2038 slotbuf = xtensa_insnbuf_alloc (isa);
2039
2040 /* Find format/slot where this can be encoded. */
2041 fmt_found = 0;
2042 slot = 0;
2043 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2044 {
2045 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2046 {
2047 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2048 {
2049 fmt_found = 1;
2050 break;
2051 }
2052 }
2053 if (fmt_found) break;
2054 }
2055
2056 if (!fmt_found)
2057 {
2058 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2059 return -1;
2060 }
2061
2062 /* First encode all the visible operands
2063 (to deal with shared field operands). */
2064 for (opnd = 0; opnd < insn->ntok; opnd++)
2065 {
2066 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2067 && (insn->tok[opnd].X_op == O_register
2068 || insn->tok[opnd].X_op == O_constant))
2069 {
2070 val = insn->tok[opnd].X_add_number;
2071 xtensa_operand_encode (isa, opc, opnd, &val);
2072 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2073 }
2074 }
2075
2076 /* Then pull out the values for the invisible ones. */
2077 for (opnd = 0; opnd < insn->ntok; opnd++)
2078 {
2079 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2080 {
2081 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2082 xtensa_operand_decode (isa, opc, opnd, &val);
2083 insn->tok[opnd].X_add_number = val;
2084 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2085 insn->tok[opnd].X_op = O_register;
2086 else
2087 insn->tok[opnd].X_op = O_constant;
2088 }
2089 }
2090
2091 return 0;
2092 }
2093
2094
2095 static void
2096 xg_reverse_shift_count (char **cnt_argp)
2097 {
2098 char *cnt_arg, *new_arg;
2099 cnt_arg = *cnt_argp;
2100
2101 /* replace the argument with "31-(argument)" */
2102 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2103 sprintf (new_arg, "31-(%s)", cnt_arg);
2104
2105 free (cnt_arg);
2106 *cnt_argp = new_arg;
2107 }
2108
2109
2110 /* If "arg" is a constant expression, return non-zero with the value
2111 in *valp. */
2112
2113 static int
2114 xg_arg_is_constant (char *arg, offsetT *valp)
2115 {
2116 expressionS exp;
2117 char *save_ptr = input_line_pointer;
2118
2119 input_line_pointer = arg;
2120 expression (&exp);
2121 input_line_pointer = save_ptr;
2122
2123 if (exp.X_op == O_constant)
2124 {
2125 *valp = exp.X_add_number;
2126 return 1;
2127 }
2128
2129 return 0;
2130 }
2131
2132
2133 static void
2134 xg_replace_opname (char **popname, char *newop)
2135 {
2136 free (*popname);
2137 *popname = (char *) xmalloc (strlen (newop) + 1);
2138 strcpy (*popname, newop);
2139 }
2140
2141
2142 static int
2143 xg_check_num_args (int *pnum_args,
2144 int expected_num,
2145 char *opname,
2146 char **arg_strings)
2147 {
2148 int num_args = *pnum_args;
2149
2150 if (num_args < expected_num)
2151 {
2152 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2153 num_args, opname, expected_num);
2154 return -1;
2155 }
2156
2157 if (num_args > expected_num)
2158 {
2159 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2160 num_args, opname, expected_num);
2161 while (num_args-- > expected_num)
2162 {
2163 free (arg_strings[num_args]);
2164 arg_strings[num_args] = 0;
2165 }
2166 *pnum_args = expected_num;
2167 return -1;
2168 }
2169
2170 return 0;
2171 }
2172
2173
2174 /* If the register is not specified as part of the opcode,
2175 then get it from the operand and move it to the opcode. */
2176
2177 static int
2178 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2179 {
2180 xtensa_isa isa = xtensa_default_isa;
2181 xtensa_sysreg sr;
2182 char *opname, *new_opname;
2183 const char *sr_name;
2184 int is_user, is_write;
2185
2186 opname = *popname;
2187 if (*opname == '_')
2188 opname += 1;
2189 is_user = (opname[1] == 'u');
2190 is_write = (opname[0] == 'w');
2191
2192 /* Opname == [rw]ur or [rwx]sr... */
2193
2194 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2195 return -1;
2196
2197 /* Check if the argument is a symbolic register name. */
2198 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2199 /* Handle WSR to "INTSET" as a special case. */
2200 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2201 && !strcasecmp (arg_strings[1], "intset"))
2202 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2203 if (sr == XTENSA_UNDEFINED
2204 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2205 {
2206 /* Maybe it's a register number.... */
2207 offsetT val;
2208 if (!xg_arg_is_constant (arg_strings[1], &val))
2209 {
2210 as_bad (_("invalid register '%s' for '%s' instruction"),
2211 arg_strings[1], opname);
2212 return -1;
2213 }
2214 sr = xtensa_sysreg_lookup (isa, val, is_user);
2215 if (sr == XTENSA_UNDEFINED)
2216 {
2217 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2218 (long) val, opname);
2219 return -1;
2220 }
2221 }
2222
2223 /* Remove the last argument, which is now part of the opcode. */
2224 free (arg_strings[1]);
2225 arg_strings[1] = 0;
2226 *pnum_args = 1;
2227
2228 /* Translate the opcode. */
2229 sr_name = xtensa_sysreg_name (isa, sr);
2230 /* Another special case for "WSR.INTSET".... */
2231 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2232 sr_name = "intset";
2233 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2234 sprintf (new_opname, "%s.%s", *popname, sr_name);
2235 free (*popname);
2236 *popname = new_opname;
2237
2238 return 0;
2239 }
2240
2241
2242 static int
2243 xtensa_translate_old_userreg_ops (char **popname)
2244 {
2245 xtensa_isa isa = xtensa_default_isa;
2246 xtensa_sysreg sr;
2247 char *opname, *new_opname;
2248 const char *sr_name;
2249 bfd_boolean has_underbar = FALSE;
2250
2251 opname = *popname;
2252 if (opname[0] == '_')
2253 {
2254 has_underbar = TRUE;
2255 opname += 1;
2256 }
2257
2258 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2259 if (sr != XTENSA_UNDEFINED)
2260 {
2261 /* The new default name ("nnn") is different from the old default
2262 name ("URnnn"). The old default is handled below, and we don't
2263 want to recognize [RW]nnn, so do nothing if the name is the (new)
2264 default. */
2265 static char namebuf[10];
2266 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2267 if (strcmp (namebuf, opname + 1) == 0)
2268 return 0;
2269 }
2270 else
2271 {
2272 offsetT val;
2273 char *end;
2274
2275 /* Only continue if the reg name is "URnnn". */
2276 if (opname[1] != 'u' || opname[2] != 'r')
2277 return 0;
2278 val = strtoul (opname + 3, &end, 10);
2279 if (*end != '\0')
2280 return 0;
2281
2282 sr = xtensa_sysreg_lookup (isa, val, 1);
2283 if (sr == XTENSA_UNDEFINED)
2284 {
2285 as_bad (_("invalid register number (%ld) for '%s'"),
2286 (long) val, opname);
2287 return -1;
2288 }
2289 }
2290
2291 /* Translate the opcode. */
2292 sr_name = xtensa_sysreg_name (isa, sr);
2293 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2294 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2295 opname[0], sr_name);
2296 free (*popname);
2297 *popname = new_opname;
2298
2299 return 0;
2300 }
2301
2302
2303 static int
2304 xtensa_translate_zero_immed (char *old_op,
2305 char *new_op,
2306 char **popname,
2307 int *pnum_args,
2308 char **arg_strings)
2309 {
2310 char *opname;
2311 offsetT val;
2312
2313 opname = *popname;
2314 assert (opname[0] != '_');
2315
2316 if (strcmp (opname, old_op) != 0)
2317 return 0;
2318
2319 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2320 return -1;
2321 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2322 {
2323 xg_replace_opname (popname, new_op);
2324 free (arg_strings[1]);
2325 arg_strings[1] = arg_strings[2];
2326 arg_strings[2] = 0;
2327 *pnum_args = 2;
2328 }
2329
2330 return 0;
2331 }
2332
2333
2334 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2335 Returns non-zero if an error was found. */
2336
2337 static int
2338 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2339 {
2340 char *opname = *popname;
2341 bfd_boolean has_underbar = FALSE;
2342
2343 if (cur_vinsn.inside_bundle)
2344 return 0;
2345
2346 if (*opname == '_')
2347 {
2348 has_underbar = TRUE;
2349 opname += 1;
2350 }
2351
2352 if (strcmp (opname, "mov") == 0)
2353 {
2354 if (use_transform () && !has_underbar && density_supported)
2355 xg_replace_opname (popname, "mov.n");
2356 else
2357 {
2358 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2359 return -1;
2360 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2361 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2362 strcpy (arg_strings[2], arg_strings[1]);
2363 *pnum_args = 3;
2364 }
2365 return 0;
2366 }
2367
2368 if (strcmp (opname, "bbsi.l") == 0)
2369 {
2370 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2371 return -1;
2372 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2373 if (target_big_endian)
2374 xg_reverse_shift_count (&arg_strings[1]);
2375 return 0;
2376 }
2377
2378 if (strcmp (opname, "bbci.l") == 0)
2379 {
2380 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2381 return -1;
2382 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2383 if (target_big_endian)
2384 xg_reverse_shift_count (&arg_strings[1]);
2385 return 0;
2386 }
2387
2388 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2389 && strcmp (opname, "nop") == 0)
2390 {
2391 if (use_transform () && !has_underbar && density_supported)
2392 xg_replace_opname (popname, "nop.n");
2393 else
2394 {
2395 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2396 return -1;
2397 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2398 arg_strings[0] = (char *) xmalloc (3);
2399 arg_strings[1] = (char *) xmalloc (3);
2400 arg_strings[2] = (char *) xmalloc (3);
2401 strcpy (arg_strings[0], "a1");
2402 strcpy (arg_strings[1], "a1");
2403 strcpy (arg_strings[2], "a1");
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
2409 /* Recognize [RW]UR and [RWX]SR. */
2410 if ((((opname[0] == 'r' || opname[0] == 'w')
2411 && (opname[1] == 'u' || opname[1] == 's'))
2412 || (opname[0] == 'x' && opname[1] == 's'))
2413 && opname[2] == 'r'
2414 && opname[3] == '\0')
2415 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2416
2417 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2418 [RW]<name> if <name> is the non-default name of a user register. */
2419 if ((opname[0] == 'r' || opname[0] == 'w')
2420 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2421 return xtensa_translate_old_userreg_ops (popname);
2422
2423 /* Relax branches that don't allow comparisons against an immediate value
2424 of zero to the corresponding branches with implicit zero immediates. */
2425 if (!has_underbar && use_transform ())
2426 {
2427 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2428 pnum_args, arg_strings))
2429 return -1;
2430
2431 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2432 pnum_args, arg_strings))
2433 return -1;
2434
2435 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2436 pnum_args, arg_strings))
2437 return -1;
2438
2439 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2440 pnum_args, arg_strings))
2441 return -1;
2442 }
2443
2444 return 0;
2445 }
2446
2447 \f
2448 /* Functions for dealing with the Xtensa ISA. */
2449
2450 /* Currently the assembler only allows us to use a single target per
2451 fragment. Because of this, only one operand for a given
2452 instruction may be symbolic. If there is a PC-relative operand,
2453 the last one is chosen. Otherwise, the result is the number of the
2454 last immediate operand, and if there are none of those, we fail and
2455 return -1. */
2456
2457 static int
2458 get_relaxable_immed (xtensa_opcode opcode)
2459 {
2460 int last_immed = -1;
2461 int noperands, opi;
2462
2463 if (opcode == XTENSA_UNDEFINED)
2464 return -1;
2465
2466 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2467 for (opi = noperands - 1; opi >= 0; opi--)
2468 {
2469 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2470 continue;
2471 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2472 return opi;
2473 if (last_immed == -1
2474 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2475 last_immed = opi;
2476 }
2477 return last_immed;
2478 }
2479
2480
2481 static xtensa_opcode
2482 get_opcode_from_buf (const char *buf, int slot)
2483 {
2484 static xtensa_insnbuf insnbuf = NULL;
2485 static xtensa_insnbuf slotbuf = NULL;
2486 xtensa_isa isa = xtensa_default_isa;
2487 xtensa_format fmt;
2488
2489 if (!insnbuf)
2490 {
2491 insnbuf = xtensa_insnbuf_alloc (isa);
2492 slotbuf = xtensa_insnbuf_alloc (isa);
2493 }
2494
2495 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2496 fmt = xtensa_format_decode (isa, insnbuf);
2497 if (fmt == XTENSA_UNDEFINED)
2498 return XTENSA_UNDEFINED;
2499
2500 if (slot >= xtensa_format_num_slots (isa, fmt))
2501 return XTENSA_UNDEFINED;
2502
2503 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2504 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2505 }
2506
2507
2508 #ifdef TENSILICA_DEBUG
2509
2510 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2511
2512 static void
2513 xtensa_print_insn_table (void)
2514 {
2515 int num_opcodes, num_operands;
2516 xtensa_opcode opcode;
2517 xtensa_isa isa = xtensa_default_isa;
2518
2519 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2520 for (opcode = 0; opcode < num_opcodes; opcode++)
2521 {
2522 int opn;
2523 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2524 num_operands = xtensa_opcode_num_operands (isa, opcode);
2525 for (opn = 0; opn < num_operands; opn++)
2526 {
2527 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2528 continue;
2529 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2530 {
2531 xtensa_regfile opnd_rf =
2532 xtensa_operand_regfile (isa, opcode, opn);
2533 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2534 }
2535 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2536 fputs ("[lLr] ", stderr);
2537 else
2538 fputs ("i ", stderr);
2539 }
2540 fprintf (stderr, "\n");
2541 }
2542 }
2543
2544
2545 static void
2546 print_vliw_insn (xtensa_insnbuf vbuf)
2547 {
2548 xtensa_isa isa = xtensa_default_isa;
2549 xtensa_format f = xtensa_format_decode (isa, vbuf);
2550 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2551 int op;
2552
2553 fprintf (stderr, "format = %d\n", f);
2554
2555 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2556 {
2557 xtensa_opcode opcode;
2558 const char *opname;
2559 int operands;
2560
2561 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2562 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2563 opname = xtensa_opcode_name (isa, opcode);
2564
2565 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2566 fprintf (stderr, " operands = ");
2567 for (operands = 0;
2568 operands < xtensa_opcode_num_operands (isa, opcode);
2569 operands++)
2570 {
2571 unsigned int val;
2572 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2573 continue;
2574 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2575 xtensa_operand_decode (isa, opcode, operands, &val);
2576 fprintf (stderr, "%d ", val);
2577 }
2578 fprintf (stderr, "\n");
2579 }
2580 xtensa_insnbuf_free (isa, sbuf);
2581 }
2582
2583 #endif /* TENSILICA_DEBUG */
2584
2585
2586 static bfd_boolean
2587 is_direct_call_opcode (xtensa_opcode opcode)
2588 {
2589 xtensa_isa isa = xtensa_default_isa;
2590 int n, num_operands;
2591
2592 if (xtensa_opcode_is_call (isa, opcode) != 1)
2593 return FALSE;
2594
2595 num_operands = xtensa_opcode_num_operands (isa, opcode);
2596 for (n = 0; n < num_operands; n++)
2597 {
2598 if (xtensa_operand_is_register (isa, opcode, n) == 0
2599 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2600 return TRUE;
2601 }
2602 return FALSE;
2603 }
2604
2605
2606 /* Convert from BFD relocation type code to slot and operand number.
2607 Returns non-zero on failure. */
2608
2609 static int
2610 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2611 {
2612 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2613 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2614 {
2615 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2616 *is_alt = FALSE;
2617 }
2618 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2619 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2620 {
2621 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2622 *is_alt = TRUE;
2623 }
2624 else
2625 return -1;
2626
2627 return 0;
2628 }
2629
2630
2631 /* Convert from slot number to BFD relocation type code for the
2632 standard PC-relative relocations. Return BFD_RELOC_NONE on
2633 failure. */
2634
2635 static bfd_reloc_code_real_type
2636 encode_reloc (int slot)
2637 {
2638 if (slot < 0 || slot > 14)
2639 return BFD_RELOC_NONE;
2640
2641 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2642 }
2643
2644
2645 /* Convert from slot numbers to BFD relocation type code for the
2646 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2647
2648 static bfd_reloc_code_real_type
2649 encode_alt_reloc (int slot)
2650 {
2651 if (slot < 0 || slot > 14)
2652 return BFD_RELOC_NONE;
2653
2654 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2655 }
2656
2657
2658 static void
2659 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2660 xtensa_format fmt,
2661 int slot,
2662 xtensa_opcode opcode,
2663 int operand,
2664 uint32 value,
2665 const char *file,
2666 unsigned int line)
2667 {
2668 uint32 valbuf = value;
2669
2670 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2671 {
2672 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2673 == 1)
2674 as_bad_where ((char *) file, line,
2675 _("operand %d of '%s' has out of range value '%u'"),
2676 operand + 1,
2677 xtensa_opcode_name (xtensa_default_isa, opcode),
2678 value);
2679 else
2680 as_bad_where ((char *) file, line,
2681 _("operand %d of '%s' has invalid value '%u'"),
2682 operand + 1,
2683 xtensa_opcode_name (xtensa_default_isa, opcode),
2684 value);
2685 return;
2686 }
2687
2688 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2689 slotbuf, valbuf);
2690 }
2691
2692
2693 static uint32
2694 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int opnum)
2699 {
2700 uint32 val = 0;
2701 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2702 fmt, slot, slotbuf, &val);
2703 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2704 return val;
2705 }
2706
2707 \f
2708 /* Checks for rules from xtensa-relax tables. */
2709
2710 /* The routine xg_instruction_matches_option_term must return TRUE
2711 when a given option term is true. The meaning of all of the option
2712 terms is given interpretation by this function. This is needed when
2713 an option depends on the state of a directive, but there are no such
2714 options in use right now. */
2715
2716 static bfd_boolean
2717 xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2718 const ReqOrOption *option)
2719 {
2720 if (strcmp (option->option_name, "realnop") == 0
2721 || strncmp (option->option_name, "IsaUse", 6) == 0)
2722 {
2723 /* These conditions were evaluated statically when building the
2724 relaxation table. There's no need to reevaluate them now. */
2725 return TRUE;
2726 }
2727 else
2728 {
2729 as_fatal (_("internal error: unknown option name '%s'"),
2730 option->option_name);
2731 }
2732 }
2733
2734
2735 static bfd_boolean
2736 xg_instruction_matches_or_options (TInsn *insn,
2737 const ReqOrOptionList *or_option)
2738 {
2739 const ReqOrOption *option;
2740 /* Must match each of the AND terms. */
2741 for (option = or_option; option != NULL; option = option->next)
2742 {
2743 if (xg_instruction_matches_option_term (insn, option))
2744 return TRUE;
2745 }
2746 return FALSE;
2747 }
2748
2749
2750 static bfd_boolean
2751 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2752 {
2753 const ReqOption *req_options;
2754 /* Must match each of the AND terms. */
2755 for (req_options = options;
2756 req_options != NULL;
2757 req_options = req_options->next)
2758 {
2759 /* Must match one of the OR clauses. */
2760 if (!xg_instruction_matches_or_options (insn,
2761 req_options->or_option_terms))
2762 return FALSE;
2763 }
2764 return TRUE;
2765 }
2766
2767
2768 /* Return the transition rule that matches or NULL if none matches. */
2769
2770 static bfd_boolean
2771 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2772 {
2773 PreconditionList *condition_l;
2774
2775 if (rule->opcode != insn->opcode)
2776 return FALSE;
2777
2778 for (condition_l = rule->conditions;
2779 condition_l != NULL;
2780 condition_l = condition_l->next)
2781 {
2782 expressionS *exp1;
2783 expressionS *exp2;
2784 Precondition *cond = condition_l->precond;
2785
2786 switch (cond->typ)
2787 {
2788 case OP_CONSTANT:
2789 /* The expression must be the constant. */
2790 assert (cond->op_num < insn->ntok);
2791 exp1 = &insn->tok[cond->op_num];
2792 if (expr_is_const (exp1))
2793 {
2794 switch (cond->cmp)
2795 {
2796 case OP_EQUAL:
2797 if (get_expr_const (exp1) != cond->op_data)
2798 return FALSE;
2799 break;
2800 case OP_NOTEQUAL:
2801 if (get_expr_const (exp1) == cond->op_data)
2802 return FALSE;
2803 break;
2804 default:
2805 return FALSE;
2806 }
2807 }
2808 else if (expr_is_register (exp1))
2809 {
2810 switch (cond->cmp)
2811 {
2812 case OP_EQUAL:
2813 if (get_expr_register (exp1) != cond->op_data)
2814 return FALSE;
2815 break;
2816 case OP_NOTEQUAL:
2817 if (get_expr_register (exp1) == cond->op_data)
2818 return FALSE;
2819 break;
2820 default:
2821 return FALSE;
2822 }
2823 }
2824 else
2825 return FALSE;
2826 break;
2827
2828 case OP_OPERAND:
2829 assert (cond->op_num < insn->ntok);
2830 assert (cond->op_data < insn->ntok);
2831 exp1 = &insn->tok[cond->op_num];
2832 exp2 = &insn->tok[cond->op_data];
2833
2834 switch (cond->cmp)
2835 {
2836 case OP_EQUAL:
2837 if (!expr_is_equal (exp1, exp2))
2838 return FALSE;
2839 break;
2840 case OP_NOTEQUAL:
2841 if (expr_is_equal (exp1, exp2))
2842 return FALSE;
2843 break;
2844 }
2845 break;
2846
2847 case OP_LITERAL:
2848 case OP_LABEL:
2849 default:
2850 return FALSE;
2851 }
2852 }
2853 if (!xg_instruction_matches_options (insn, rule->options))
2854 return FALSE;
2855
2856 return TRUE;
2857 }
2858
2859
2860 static int
2861 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2862 {
2863 bfd_boolean a_greater = FALSE;
2864 bfd_boolean b_greater = FALSE;
2865
2866 ReqOptionList *l_a = a->options;
2867 ReqOptionList *l_b = b->options;
2868
2869 /* We only care if they both are the same except for
2870 a const16 vs. an l32r. */
2871
2872 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2873 {
2874 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2875 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2876 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2877 {
2878 if (l_or_a->is_true != l_or_b->is_true)
2879 return 0;
2880 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2881 {
2882 /* This is the case we care about. */
2883 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2884 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2885 {
2886 if (prefer_const16)
2887 a_greater = TRUE;
2888 else
2889 b_greater = TRUE;
2890 }
2891 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2892 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2893 {
2894 if (prefer_const16)
2895 b_greater = TRUE;
2896 else
2897 a_greater = TRUE;
2898 }
2899 else
2900 return 0;
2901 }
2902 l_or_a = l_or_a->next;
2903 l_or_b = l_or_b->next;
2904 }
2905 if (l_or_a || l_or_b)
2906 return 0;
2907
2908 l_a = l_a->next;
2909 l_b = l_b->next;
2910 }
2911 if (l_a || l_b)
2912 return 0;
2913
2914 /* Incomparable if the substitution was used differently in two cases. */
2915 if (a_greater && b_greater)
2916 return 0;
2917
2918 if (b_greater)
2919 return 1;
2920 if (a_greater)
2921 return -1;
2922
2923 return 0;
2924 }
2925
2926
2927 static TransitionRule *
2928 xg_instruction_match (TInsn *insn)
2929 {
2930 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2931 TransitionList *l;
2932 assert (insn->opcode < table->num_opcodes);
2933
2934 /* Walk through all of the possible transitions. */
2935 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2936 {
2937 TransitionRule *rule = l->rule;
2938 if (xg_instruction_matches_rule (insn, rule))
2939 return rule;
2940 }
2941 return NULL;
2942 }
2943
2944 \f
2945 /* Various Other Internal Functions. */
2946
2947 static bfd_boolean
2948 is_unique_insn_expansion (TransitionRule *r)
2949 {
2950 if (!r->to_instr || r->to_instr->next != NULL)
2951 return FALSE;
2952 if (r->to_instr->typ != INSTR_INSTR)
2953 return FALSE;
2954 return TRUE;
2955 }
2956
2957
2958 /* Check if there is exactly one relaxation for INSN that converts it to
2959 another instruction of equal or larger size. If so, and if TARG is
2960 non-null, go ahead and generate the relaxed instruction into TARG. If
2961 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2962 instruction, i.e., ignore relaxations that convert to an instruction of
2963 equal size. In some contexts where this function is used, only
2964 a single widening is allowed and the NARROW_ONLY argument is used to
2965 exclude cases like ADDI being "widened" to an ADDMI, which may
2966 later be relaxed to an ADDMI/ADDI pair. */
2967
2968 bfd_boolean
2969 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
2970 {
2971 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
2972 TransitionList *l;
2973 TransitionRule *match = 0;
2974
2975 assert (insn->insn_type == ITYPE_INSN);
2976 assert (insn->opcode < table->num_opcodes);
2977
2978 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2979 {
2980 TransitionRule *rule = l->rule;
2981
2982 if (xg_instruction_matches_rule (insn, rule)
2983 && is_unique_insn_expansion (rule)
2984 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
2985 <= xg_get_single_size (rule->to_instr->opcode)))
2986 {
2987 if (match)
2988 return FALSE;
2989 match = rule;
2990 }
2991 }
2992 if (!match)
2993 return FALSE;
2994
2995 if (targ)
2996 xg_build_to_insn (targ, insn, match->to_instr);
2997 return TRUE;
2998 }
2999
3000
3001 /* Return the maximum number of bytes this opcode can expand to. */
3002
3003 static int
3004 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3005 {
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
3008 int max_size = xg_get_single_size (opcode);
3009
3010 assert (opcode < table->num_opcodes);
3011
3012 for (l = table->table[opcode]; l != NULL; l = l->next)
3013 {
3014 TransitionRule *rule = l->rule;
3015 BuildInstr *build_list;
3016 int this_size = 0;
3017
3018 if (!rule)
3019 continue;
3020 build_list = rule->to_instr;
3021 if (is_unique_insn_expansion (rule))
3022 {
3023 assert (build_list->typ == INSTR_INSTR);
3024 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3025 }
3026 else
3027 for (; build_list != NULL; build_list = build_list->next)
3028 {
3029 switch (build_list->typ)
3030 {
3031 case INSTR_INSTR:
3032 this_size += xg_get_single_size (build_list->opcode);
3033 break;
3034 case INSTR_LITERAL_DEF:
3035 case INSTR_LABEL_DEF:
3036 default:
3037 break;
3038 }
3039 }
3040 if (this_size > max_size)
3041 max_size = this_size;
3042 }
3043 return max_size;
3044 }
3045
3046
3047 /* Return the maximum number of literal bytes this opcode can generate. */
3048
3049 static int
3050 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3051 {
3052 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3053 TransitionList *l;
3054 int max_size = 0;
3055
3056 assert (opcode < table->num_opcodes);
3057
3058 for (l = table->table[opcode]; l != NULL; l = l->next)
3059 {
3060 TransitionRule *rule = l->rule;
3061 BuildInstr *build_list;
3062 int this_size = 0;
3063
3064 if (!rule)
3065 continue;
3066 build_list = rule->to_instr;
3067 if (is_unique_insn_expansion (rule))
3068 {
3069 assert (build_list->typ == INSTR_INSTR);
3070 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3071 }
3072 else
3073 for (; build_list != NULL; build_list = build_list->next)
3074 {
3075 switch (build_list->typ)
3076 {
3077 case INSTR_LITERAL_DEF:
3078 /* Hard-coded 4-byte literal. */
3079 this_size += 4;
3080 break;
3081 case INSTR_INSTR:
3082 case INSTR_LABEL_DEF:
3083 default:
3084 break;
3085 }
3086 }
3087 if (this_size > max_size)
3088 max_size = this_size;
3089 }
3090 return max_size;
3091 }
3092
3093
3094 static bfd_boolean
3095 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3096 {
3097 int steps_taken = 0;
3098 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3099 TransitionList *l;
3100
3101 assert (insn->insn_type == ITYPE_INSN);
3102 assert (insn->opcode < table->num_opcodes);
3103
3104 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3105 {
3106 TransitionRule *rule = l->rule;
3107
3108 if (xg_instruction_matches_rule (insn, rule))
3109 {
3110 if (steps_taken == lateral_steps)
3111 return TRUE;
3112 steps_taken++;
3113 }
3114 }
3115 return FALSE;
3116 }
3117
3118
3119 static symbolS *
3120 get_special_literal_symbol (void)
3121 {
3122 static symbolS *sym = NULL;
3123
3124 if (sym == NULL)
3125 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3126 return sym;
3127 }
3128
3129
3130 static symbolS *
3131 get_special_label_symbol (void)
3132 {
3133 static symbolS *sym = NULL;
3134
3135 if (sym == NULL)
3136 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3137 return sym;
3138 }
3139
3140
3141 static bfd_boolean
3142 xg_valid_literal_expression (const expressionS *exp)
3143 {
3144 switch (exp->X_op)
3145 {
3146 case O_constant:
3147 case O_symbol:
3148 case O_big:
3149 case O_uminus:
3150 case O_subtract:
3151 case O_pltrel:
3152 return TRUE;
3153 default:
3154 return FALSE;
3155 }
3156 }
3157
3158
3159 /* This will check to see if the value can be converted into the
3160 operand type. It will return TRUE if it does not fit. */
3161
3162 static bfd_boolean
3163 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3164 {
3165 uint32 valbuf = value;
3166 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3167 return TRUE;
3168 return FALSE;
3169 }
3170
3171
3172 /* Assumes: All immeds are constants. Check that all constants fit
3173 into their immeds; return FALSE if not. */
3174
3175 static bfd_boolean
3176 xg_immeds_fit (const TInsn *insn)
3177 {
3178 xtensa_isa isa = xtensa_default_isa;
3179 int i;
3180
3181 int n = insn->ntok;
3182 assert (insn->insn_type == ITYPE_INSN);
3183 for (i = 0; i < n; ++i)
3184 {
3185 const expressionS *expr = &insn->tok[i];
3186 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3187 continue;
3188
3189 switch (expr->X_op)
3190 {
3191 case O_register:
3192 case O_constant:
3193 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3194 return FALSE;
3195 break;
3196
3197 default:
3198 /* The symbol should have a fixup associated with it. */
3199 assert (FALSE);
3200 break;
3201 }
3202 }
3203 return TRUE;
3204 }
3205
3206
3207 /* This should only be called after we have an initial
3208 estimate of the addresses. */
3209
3210 static bfd_boolean
3211 xg_symbolic_immeds_fit (const TInsn *insn,
3212 segT pc_seg,
3213 fragS *pc_frag,
3214 offsetT pc_offset,
3215 long stretch)
3216 {
3217 xtensa_isa isa = xtensa_default_isa;
3218 symbolS *symbolP;
3219 fragS *sym_frag;
3220 offsetT target, pc;
3221 uint32 new_offset;
3222 int i;
3223 int n = insn->ntok;
3224
3225 assert (insn->insn_type == ITYPE_INSN);
3226
3227 for (i = 0; i < n; ++i)
3228 {
3229 const expressionS *expr = &insn->tok[i];
3230 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3231 continue;
3232
3233 switch (expr->X_op)
3234 {
3235 case O_register:
3236 case O_constant:
3237 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3238 return FALSE;
3239 break;
3240
3241 case O_lo16:
3242 case O_hi16:
3243 /* Check for the worst case. */
3244 if (xg_check_operand (0xffff, insn->opcode, i))
3245 return FALSE;
3246 break;
3247
3248 case O_symbol:
3249 /* We only allow symbols for PC-relative references.
3250 If pc_frag == 0, then we don't have frag locations yet. */
3251 if (pc_frag == 0
3252 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3253 return FALSE;
3254
3255 /* If it is a weak symbol, then assume it won't reach. */
3256 if (S_IS_WEAK (expr->X_add_symbol))
3257 return FALSE;
3258
3259 if (is_direct_call_opcode (insn->opcode)
3260 && ! pc_frag->tc_frag_data.use_longcalls)
3261 {
3262 /* If callee is undefined or in a different segment, be
3263 optimistic and assume it will be in range. */
3264 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3265 return TRUE;
3266 }
3267
3268 /* Only references within a segment can be known to fit in the
3269 operands at assembly time. */
3270 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3271 return FALSE;
3272
3273 symbolP = expr->X_add_symbol;
3274 sym_frag = symbol_get_frag (symbolP);
3275 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3276 pc = pc_frag->fr_address + pc_offset;
3277
3278 /* If frag has yet to be reached on this pass, assume it
3279 will move by STRETCH just as we did. If this is not so,
3280 it will be because some frag between grows, and that will
3281 force another pass. Beware zero-length frags. There
3282 should be a faster way to do this. */
3283
3284 if (stretch != 0
3285 && sym_frag->relax_marker != pc_frag->relax_marker
3286 && S_GET_SEGMENT (symbolP) == pc_seg)
3287 {
3288 target += stretch;
3289 }
3290
3291 new_offset = target;
3292 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3293 if (xg_check_operand (new_offset, insn->opcode, i))
3294 return FALSE;
3295 break;
3296
3297 default:
3298 /* The symbol should have a fixup associated with it. */
3299 return FALSE;
3300 }
3301 }
3302
3303 return TRUE;
3304 }
3305
3306
3307 /* Return TRUE on success. */
3308
3309 static bfd_boolean
3310 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3311 {
3312 BuildOp *op;
3313 symbolS *sym;
3314
3315 memset (targ, 0, sizeof (TInsn));
3316 targ->linenum = insn->linenum;
3317 switch (bi->typ)
3318 {
3319 case INSTR_INSTR:
3320 op = bi->ops;
3321 targ->opcode = bi->opcode;
3322 targ->insn_type = ITYPE_INSN;
3323 targ->is_specific_opcode = FALSE;
3324
3325 for (; op != NULL; op = op->next)
3326 {
3327 int op_num = op->op_num;
3328 int op_data = op->op_data;
3329
3330 assert (op->op_num < MAX_INSN_ARGS);
3331
3332 if (targ->ntok <= op_num)
3333 targ->ntok = op_num + 1;
3334
3335 switch (op->typ)
3336 {
3337 case OP_CONSTANT:
3338 set_expr_const (&targ->tok[op_num], op_data);
3339 break;
3340 case OP_OPERAND:
3341 assert (op_data < insn->ntok);
3342 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3343 break;
3344 case OP_LITERAL:
3345 sym = get_special_literal_symbol ();
3346 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3347 break;
3348 case OP_LABEL:
3349 sym = get_special_label_symbol ();
3350 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3351 break;
3352 case OP_OPERAND_HI16U:
3353 case OP_OPERAND_LOW16U:
3354 assert (op_data < insn->ntok);
3355 if (expr_is_const (&insn->tok[op_data]))
3356 {
3357 long val;
3358 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3359 val = xg_apply_userdef_op_fn (op->typ,
3360 targ->tok[op_num].
3361 X_add_number);
3362 targ->tok[op_num].X_add_number = val;
3363 }
3364 else
3365 {
3366 /* For const16 we can create relocations for these. */
3367 if (targ->opcode == XTENSA_UNDEFINED
3368 || (targ->opcode != xtensa_const16_opcode))
3369 return FALSE;
3370 assert (op_data < insn->ntok);
3371 /* Need to build a O_lo16 or O_hi16. */
3372 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3373 if (targ->tok[op_num].X_op == O_symbol)
3374 {
3375 if (op->typ == OP_OPERAND_HI16U)
3376 targ->tok[op_num].X_op = O_hi16;
3377 else if (op->typ == OP_OPERAND_LOW16U)
3378 targ->tok[op_num].X_op = O_lo16;
3379 else
3380 return FALSE;
3381 }
3382 }
3383 break;
3384 default:
3385 /* currently handles:
3386 OP_OPERAND_LOW8
3387 OP_OPERAND_HI24S
3388 OP_OPERAND_F32MINUS */
3389 if (xg_has_userdef_op_fn (op->typ))
3390 {
3391 assert (op_data < insn->ntok);
3392 if (expr_is_const (&insn->tok[op_data]))
3393 {
3394 long val;
3395 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3396 val = xg_apply_userdef_op_fn (op->typ,
3397 targ->tok[op_num].
3398 X_add_number);
3399 targ->tok[op_num].X_add_number = val;
3400 }
3401 else
3402 return FALSE; /* We cannot use a relocation for this. */
3403 break;
3404 }
3405 assert (0);
3406 break;
3407 }
3408 }
3409 break;
3410
3411 case INSTR_LITERAL_DEF:
3412 op = bi->ops;
3413 targ->opcode = XTENSA_UNDEFINED;
3414 targ->insn_type = ITYPE_LITERAL;
3415 targ->is_specific_opcode = FALSE;
3416 for (; op != NULL; op = op->next)
3417 {
3418 int op_num = op->op_num;
3419 int op_data = op->op_data;
3420 assert (op->op_num < MAX_INSN_ARGS);
3421
3422 if (targ->ntok <= op_num)
3423 targ->ntok = op_num + 1;
3424
3425 switch (op->typ)
3426 {
3427 case OP_OPERAND:
3428 assert (op_data < insn->ntok);
3429 /* We can only pass resolvable literals through. */
3430 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3431 return FALSE;
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 break;
3434 case OP_LITERAL:
3435 case OP_CONSTANT:
3436 case OP_LABEL:
3437 default:
3438 assert (0);
3439 break;
3440 }
3441 }
3442 break;
3443
3444 case INSTR_LABEL_DEF:
3445 op = bi->ops;
3446 targ->opcode = XTENSA_UNDEFINED;
3447 targ->insn_type = ITYPE_LABEL;
3448 targ->is_specific_opcode = FALSE;
3449 /* Literal with no ops is a label? */
3450 assert (op == NULL);
3451 break;
3452
3453 default:
3454 assert (0);
3455 }
3456
3457 return TRUE;
3458 }
3459
3460
3461 /* Return TRUE on success. */
3462
3463 static bfd_boolean
3464 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3465 {
3466 for (; bi != NULL; bi = bi->next)
3467 {
3468 TInsn *next_insn = istack_push_space (istack);
3469
3470 if (!xg_build_to_insn (next_insn, insn, bi))
3471 return FALSE;
3472 }
3473 return TRUE;
3474 }
3475
3476
3477 /* Return TRUE on valid expansion. */
3478
3479 static bfd_boolean
3480 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3481 {
3482 int stack_size = istack->ninsn;
3483 int steps_taken = 0;
3484 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3485 TransitionList *l;
3486
3487 assert (insn->insn_type == ITYPE_INSN);
3488 assert (insn->opcode < table->num_opcodes);
3489
3490 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3491 {
3492 TransitionRule *rule = l->rule;
3493
3494 if (xg_instruction_matches_rule (insn, rule))
3495 {
3496 if (lateral_steps == steps_taken)
3497 {
3498 int i;
3499
3500 /* This is it. Expand the rule to the stack. */
3501 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3502 return FALSE;
3503
3504 /* Check to see if it fits. */
3505 for (i = stack_size; i < istack->ninsn; i++)
3506 {
3507 TInsn *insn = &istack->insn[i];
3508
3509 if (insn->insn_type == ITYPE_INSN
3510 && !tinsn_has_symbolic_operands (insn)
3511 && !xg_immeds_fit (insn))
3512 {
3513 istack->ninsn = stack_size;
3514 return FALSE;
3515 }
3516 }
3517 return TRUE;
3518 }
3519 steps_taken++;
3520 }
3521 }
3522 return FALSE;
3523 }
3524
3525 \f
3526 /* Relax the assembly instruction at least "min_steps".
3527 Return the number of steps taken. */
3528
3529 static int
3530 xg_assembly_relax (IStack *istack,
3531 TInsn *insn,
3532 segT pc_seg,
3533 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3534 offsetT pc_offset, /* offset in fragment */
3535 int min_steps, /* minimum conversion steps */
3536 long stretch) /* number of bytes stretched so far */
3537 {
3538 int steps_taken = 0;
3539
3540 /* assert (has no symbolic operands)
3541 Some of its immeds don't fit.
3542 Try to build a relaxed version.
3543 This may go through a couple of stages
3544 of single instruction transformations before
3545 we get there. */
3546
3547 TInsn single_target;
3548 TInsn current_insn;
3549 int lateral_steps = 0;
3550 int istack_size = istack->ninsn;
3551
3552 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3553 && steps_taken >= min_steps)
3554 {
3555 istack_push (istack, insn);
3556 return steps_taken;
3557 }
3558 current_insn = *insn;
3559
3560 /* Walk through all of the single instruction expansions. */
3561 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3562 {
3563 steps_taken++;
3564 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3565 stretch))
3566 {
3567 if (steps_taken >= min_steps)
3568 {
3569 istack_push (istack, &single_target);
3570 return steps_taken;
3571 }
3572 }
3573 current_insn = single_target;
3574 }
3575
3576 /* Now check for a multi-instruction expansion. */
3577 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3578 {
3579 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3580 stretch))
3581 {
3582 if (steps_taken >= min_steps)
3583 {
3584 istack_push (istack, &current_insn);
3585 return steps_taken;
3586 }
3587 }
3588 steps_taken++;
3589 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3590 {
3591 if (steps_taken >= min_steps)
3592 return steps_taken;
3593 }
3594 lateral_steps++;
3595 istack->ninsn = istack_size;
3596 }
3597
3598 /* It's not going to work -- use the original. */
3599 istack_push (istack, insn);
3600 return steps_taken;
3601 }
3602
3603
3604 static void
3605 xg_force_frag_space (int size)
3606 {
3607 /* This may have the side effect of creating a new fragment for the
3608 space to go into. I just do not like the name of the "frag"
3609 functions. */
3610 frag_grow (size);
3611 }
3612
3613
3614 static void
3615 xg_finish_frag (char *last_insn,
3616 enum xtensa_relax_statesE frag_state,
3617 enum xtensa_relax_statesE slot0_state,
3618 int max_growth,
3619 bfd_boolean is_insn)
3620 {
3621 /* Finish off this fragment so that it has at LEAST the desired
3622 max_growth. If it doesn't fit in this fragment, close this one
3623 and start a new one. In either case, return a pointer to the
3624 beginning of the growth area. */
3625
3626 fragS *old_frag;
3627
3628 xg_force_frag_space (max_growth);
3629
3630 old_frag = frag_now;
3631
3632 frag_now->fr_opcode = last_insn;
3633 if (is_insn)
3634 frag_now->tc_frag_data.is_insn = TRUE;
3635
3636 frag_var (rs_machine_dependent, max_growth, max_growth,
3637 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3638
3639 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3640 xtensa_set_frag_assembly_state (frag_now);
3641
3642 /* Just to make sure that we did not split it up. */
3643 assert (old_frag->fr_next == frag_now);
3644 }
3645
3646
3647 /* Return TRUE if the target frag is one of the next non-empty frags. */
3648
3649 static bfd_boolean
3650 is_next_frag_target (const fragS *fragP, const fragS *target)
3651 {
3652 if (fragP == NULL)
3653 return FALSE;
3654
3655 for (; fragP; fragP = fragP->fr_next)
3656 {
3657 if (fragP == target)
3658 return TRUE;
3659 if (fragP->fr_fix != 0)
3660 return FALSE;
3661 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3662 return FALSE;
3663 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3664 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3665 return FALSE;
3666 if (fragP->fr_type == rs_space)
3667 return FALSE;
3668 }
3669 return FALSE;
3670 }
3671
3672
3673 static bfd_boolean
3674 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3675 {
3676 xtensa_isa isa = xtensa_default_isa;
3677 int i;
3678 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3679 int target_op = -1;
3680 symbolS *sym;
3681 fragS *target_frag;
3682
3683 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3684 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3685 return FALSE;
3686
3687 for (i = 0; i < num_ops; i++)
3688 {
3689 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3690 {
3691 target_op = i;
3692 break;
3693 }
3694 }
3695 if (target_op == -1)
3696 return FALSE;
3697
3698 if (insn->ntok <= target_op)
3699 return FALSE;
3700
3701 if (insn->tok[target_op].X_op != O_symbol)
3702 return FALSE;
3703
3704 sym = insn->tok[target_op].X_add_symbol;
3705 if (sym == NULL)
3706 return FALSE;
3707
3708 if (insn->tok[target_op].X_add_number != 0)
3709 return FALSE;
3710
3711 target_frag = symbol_get_frag (sym);
3712 if (target_frag == NULL)
3713 return FALSE;
3714
3715 if (is_next_frag_target (fragP->fr_next, target_frag)
3716 && S_GET_VALUE (sym) == target_frag->fr_address)
3717 return TRUE;
3718
3719 return FALSE;
3720 }
3721
3722
3723 static void
3724 xg_add_branch_and_loop_targets (TInsn *insn)
3725 {
3726 xtensa_isa isa = xtensa_default_isa;
3727 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3728
3729 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3730 {
3731 int i = 1;
3732 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3733 && insn->tok[i].X_op == O_symbol)
3734 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3735 return;
3736 }
3737
3738 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3739 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3740 {
3741 int i;
3742
3743 for (i = 0; i < insn->ntok && i < num_ops; i++)
3744 {
3745 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3746 && insn->tok[i].X_op == O_symbol)
3747 {
3748 symbolS *sym = insn->tok[i].X_add_symbol;
3749 symbol_get_tc (sym)->is_branch_target = TRUE;
3750 if (S_IS_DEFINED (sym))
3751 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3752 }
3753 }
3754 }
3755 }
3756
3757
3758 /* Return FALSE if no error. */
3759
3760 static bfd_boolean
3761 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3762 {
3763 int num_ops = 0;
3764 BuildOp *b_op;
3765
3766 switch (instr_spec->typ)
3767 {
3768 case INSTR_INSTR:
3769 new_insn->insn_type = ITYPE_INSN;
3770 new_insn->opcode = instr_spec->opcode;
3771 new_insn->is_specific_opcode = FALSE;
3772 new_insn->linenum = old_insn->linenum;
3773 break;
3774 case INSTR_LITERAL_DEF:
3775 new_insn->insn_type = ITYPE_LITERAL;
3776 new_insn->opcode = XTENSA_UNDEFINED;
3777 new_insn->is_specific_opcode = FALSE;
3778 new_insn->linenum = old_insn->linenum;
3779 break;
3780 case INSTR_LABEL_DEF:
3781 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3782 break;
3783 }
3784
3785 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3786 {
3787 expressionS *exp;
3788 const expressionS *src_exp;
3789
3790 num_ops++;
3791 switch (b_op->typ)
3792 {
3793 case OP_CONSTANT:
3794 /* The expression must be the constant. */
3795 assert (b_op->op_num < MAX_INSN_ARGS);
3796 exp = &new_insn->tok[b_op->op_num];
3797 set_expr_const (exp, b_op->op_data);
3798 break;
3799
3800 case OP_OPERAND:
3801 assert (b_op->op_num < MAX_INSN_ARGS);
3802 assert (b_op->op_data < (unsigned) old_insn->ntok);
3803 src_exp = &old_insn->tok[b_op->op_data];
3804 exp = &new_insn->tok[b_op->op_num];
3805 copy_expr (exp, src_exp);
3806 break;
3807
3808 case OP_LITERAL:
3809 case OP_LABEL:
3810 as_bad (_("can't handle generation of literal/labels yet"));
3811 assert (0);
3812
3813 default:
3814 as_bad (_("can't handle undefined OP TYPE"));
3815 assert (0);
3816 }
3817 }
3818
3819 new_insn->ntok = num_ops;
3820 return FALSE;
3821 }
3822
3823
3824 /* Return TRUE if it was simplified. */
3825
3826 static bfd_boolean
3827 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3828 {
3829 TransitionRule *rule;
3830 BuildInstr *insn_spec;
3831
3832 if (old_insn->is_specific_opcode || !density_supported)
3833 return FALSE;
3834
3835 rule = xg_instruction_match (old_insn);
3836 if (rule == NULL)
3837 return FALSE;
3838
3839 insn_spec = rule->to_instr;
3840 /* There should only be one. */
3841 assert (insn_spec != NULL);
3842 assert (insn_spec->next == NULL);
3843 if (insn_spec->next != NULL)
3844 return FALSE;
3845
3846 xg_build_token_insn (insn_spec, old_insn, new_insn);
3847
3848 return TRUE;
3849 }
3850
3851
3852 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3853 l32i.n. (2) Check the number of operands. (3) Place the instruction
3854 tokens into the stack or relax it and place multiple
3855 instructions/literals onto the stack. Return FALSE if no error. */
3856
3857 static bfd_boolean
3858 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3859 {
3860 int noperands;
3861 TInsn new_insn;
3862 bfd_boolean do_expand;
3863
3864 memset (&new_insn, 0, sizeof (TInsn));
3865
3866 /* Narrow it if we can. xg_simplify_insn now does all the
3867 appropriate checking (e.g., for the density option). */
3868 if (xg_simplify_insn (orig_insn, &new_insn))
3869 orig_insn = &new_insn;
3870
3871 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3872 orig_insn->opcode);
3873 if (orig_insn->ntok < noperands)
3874 {
3875 as_bad (_("found %d operands for '%s': Expected %d"),
3876 orig_insn->ntok,
3877 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3878 noperands);
3879 return TRUE;
3880 }
3881 if (orig_insn->ntok > noperands)
3882 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3883 orig_insn->ntok,
3884 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3885 noperands);
3886
3887 /* If there are not enough operands, we will assert above. If there
3888 are too many, just cut out the extras here. */
3889 orig_insn->ntok = noperands;
3890
3891 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3892 return TRUE;
3893
3894 /* If the instruction will definitely need to be relaxed, it is better
3895 to expand it now for better scheduling. Decide whether to expand
3896 now.... */
3897 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3898
3899 /* Calls should be expanded to longcalls only in the backend relaxation
3900 so that the assembly scheduler will keep the L32R/CALLX instructions
3901 adjacent. */
3902 if (is_direct_call_opcode (orig_insn->opcode))
3903 do_expand = FALSE;
3904
3905 if (tinsn_has_symbolic_operands (orig_insn))
3906 {
3907 /* The values of symbolic operands are not known yet, so only expand
3908 now if an operand is "complex" (e.g., difference of symbols) and
3909 will have to be stored as a literal regardless of the value. */
3910 if (!tinsn_has_complex_operands (orig_insn))
3911 do_expand = FALSE;
3912 }
3913 else if (xg_immeds_fit (orig_insn))
3914 do_expand = FALSE;
3915
3916 if (do_expand)
3917 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3918 else
3919 istack_push (istack, orig_insn);
3920
3921 return FALSE;
3922 }
3923
3924
3925 /* Return TRUE if the section flags are marked linkonce
3926 or the name is .gnu.linkonce*. */
3927
3928 static bfd_boolean
3929 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3930 {
3931 flagword flags, link_once_flags;
3932
3933 flags = bfd_get_section_flags (abfd, sec);
3934 link_once_flags = (flags & SEC_LINK_ONCE);
3935
3936 /* Flags might not be set yet. */
3937 if (!link_once_flags)
3938 {
3939 static size_t len = sizeof ".gnu.linkonce.t.";
3940
3941 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3942 link_once_flags = SEC_LINK_ONCE;
3943 }
3944 return (link_once_flags != 0);
3945 }
3946
3947
3948 static void
3949 xtensa_add_literal_sym (symbolS *sym)
3950 {
3951 sym_list *l;
3952
3953 l = (sym_list *) xmalloc (sizeof (sym_list));
3954 l->sym = sym;
3955 l->next = literal_syms;
3956 literal_syms = l;
3957 }
3958
3959
3960 static symbolS *
3961 xtensa_create_literal_symbol (segT sec, fragS *frag)
3962 {
3963 static int lit_num = 0;
3964 static char name[256];
3965 symbolS *symbolP;
3966
3967 sprintf (name, ".L_lit_sym%d", lit_num);
3968
3969 /* Create a local symbol. If it is in a linkonce section, we have to
3970 be careful to make sure that if it is used in a relocation that the
3971 symbol will be in the output file. */
3972 if (get_is_linkonce_section (stdoutput, sec))
3973 {
3974 symbolP = symbol_new (name, sec, 0, frag);
3975 S_CLEAR_EXTERNAL (symbolP);
3976 /* symbolP->local = 1; */
3977 }
3978 else
3979 symbolP = symbol_new (name, sec, 0, frag);
3980
3981 xtensa_add_literal_sym (symbolP);
3982
3983 lit_num++;
3984 return symbolP;
3985 }
3986
3987
3988 /* Currently all literals that are generated here are 32-bit L32R targets. */
3989
3990 static symbolS *
3991 xg_assemble_literal (/* const */ TInsn *insn)
3992 {
3993 emit_state state;
3994 symbolS *lit_sym = NULL;
3995
3996 /* size = 4 for L32R. It could easily be larger when we move to
3997 larger constants. Add a parameter later. */
3998 offsetT litsize = 4;
3999 offsetT litalign = 2; /* 2^2 = 4 */
4000 expressionS saved_loc;
4001 expressionS * emit_val;
4002
4003 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4004
4005 assert (insn->insn_type == ITYPE_LITERAL);
4006 assert (insn->ntok == 1); /* must be only one token here */
4007
4008 xtensa_switch_to_literal_fragment (&state);
4009
4010 emit_val = &insn->tok[0];
4011 if (emit_val->X_op == O_big)
4012 {
4013 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4014 if (size > litsize)
4015 {
4016 /* This happens when someone writes a "movi a2, big_number". */
4017 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4018 _("invalid immediate"));
4019 xtensa_restore_emit_state (&state);
4020 return NULL;
4021 }
4022 }
4023
4024 /* Force a 4-byte align here. Note that this opens a new frag, so all
4025 literals done with this function have a frag to themselves. That's
4026 important for the way text section literals work. */
4027 frag_align (litalign, 0, 0);
4028 record_alignment (now_seg, litalign);
4029
4030 if (emit_val->X_op == O_pltrel)
4031 {
4032 char *p = frag_more (litsize);
4033 xtensa_set_frag_assembly_state (frag_now);
4034 if (emit_val->X_add_symbol)
4035 emit_val->X_op = O_symbol;
4036 else
4037 emit_val->X_op = O_constant;
4038 fix_new_exp (frag_now, p - frag_now->fr_literal,
4039 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4040 }
4041 else
4042 emit_expr (emit_val, litsize);
4043
4044 assert (frag_now->tc_frag_data.literal_frag == NULL);
4045 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4046 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4047 lit_sym = frag_now->fr_symbol;
4048
4049 /* Go back. */
4050 xtensa_restore_emit_state (&state);
4051 return lit_sym;
4052 }
4053
4054
4055 static void
4056 xg_assemble_literal_space (/* const */ int size, int slot)
4057 {
4058 emit_state state;
4059 /* We might have to do something about this alignment. It only
4060 takes effect if something is placed here. */
4061 offsetT litalign = 2; /* 2^2 = 4 */
4062 fragS *lit_saved_frag;
4063
4064 assert (size % 4 == 0);
4065
4066 xtensa_switch_to_literal_fragment (&state);
4067
4068 /* Force a 4-byte align here. */
4069 frag_align (litalign, 0, 0);
4070 record_alignment (now_seg, litalign);
4071
4072 xg_force_frag_space (size);
4073
4074 lit_saved_frag = frag_now;
4075 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4076 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4077 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4078
4079 /* Go back. */
4080 xtensa_restore_emit_state (&state);
4081 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4082 }
4083
4084
4085 /* Put in a fixup record based on the opcode.
4086 Return TRUE on success. */
4087
4088 static bfd_boolean
4089 xg_add_opcode_fix (TInsn *tinsn,
4090 int opnum,
4091 xtensa_format fmt,
4092 int slot,
4093 expressionS *expr,
4094 fragS *fragP,
4095 offsetT offset)
4096 {
4097 xtensa_opcode opcode = tinsn->opcode;
4098 bfd_reloc_code_real_type reloc;
4099 reloc_howto_type *howto;
4100 int fmt_length;
4101 fixS *the_fix;
4102
4103 reloc = BFD_RELOC_NONE;
4104
4105 /* First try the special cases for "alternate" relocs. */
4106 if (opcode == xtensa_l32r_opcode)
4107 {
4108 if (fragP->tc_frag_data.use_absolute_literals)
4109 reloc = encode_alt_reloc (slot);
4110 }
4111 else if (opcode == xtensa_const16_opcode)
4112 {
4113 if (expr->X_op == O_lo16)
4114 {
4115 reloc = encode_reloc (slot);
4116 expr->X_op = O_symbol;
4117 }
4118 else if (expr->X_op == O_hi16)
4119 {
4120 reloc = encode_alt_reloc (slot);
4121 expr->X_op = O_symbol;
4122 }
4123 }
4124
4125 if (opnum != get_relaxable_immed (opcode))
4126 {
4127 as_bad (_("invalid relocation for operand %i of '%s'"),
4128 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4129 return FALSE;
4130 }
4131
4132 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4133 into the symbol table where the generic portions of the assembler
4134 won't know what to do with them. */
4135 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4136 {
4137 as_bad (_("invalid expression for operand %i of '%s'"),
4138 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4139 return FALSE;
4140 }
4141
4142 /* Next try the generic relocs. */
4143 if (reloc == BFD_RELOC_NONE)
4144 reloc = encode_reloc (slot);
4145 if (reloc == BFD_RELOC_NONE)
4146 {
4147 as_bad (_("invalid relocation in instruction slot %i"), slot);
4148 return FALSE;
4149 }
4150
4151 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4152 if (!howto)
4153 {
4154 as_bad (_("undefined symbol for opcode \"%s\""),
4155 xtensa_opcode_name (xtensa_default_isa, opcode));
4156 return FALSE;
4157 }
4158
4159 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4160 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4161 howto->pc_relative, reloc);
4162 the_fix->fx_no_overflow = 1;
4163
4164 if (expr->X_add_symbol
4165 && (S_IS_EXTERNAL (expr->X_add_symbol)
4166 || S_IS_WEAK (expr->X_add_symbol)))
4167 the_fix->fx_plt = TRUE;
4168
4169 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4170 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4171 the_fix->tc_fix_data.slot = slot;
4172
4173 return TRUE;
4174 }
4175
4176
4177 static bfd_boolean
4178 xg_emit_insn_to_buf (TInsn *tinsn,
4179 char *buf,
4180 fragS *fragP,
4181 offsetT offset,
4182 bfd_boolean build_fix)
4183 {
4184 static xtensa_insnbuf insnbuf = NULL;
4185 bfd_boolean has_symbolic_immed = FALSE;
4186 bfd_boolean ok = TRUE;
4187
4188 if (!insnbuf)
4189 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4190
4191 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4192 if (has_symbolic_immed && build_fix)
4193 {
4194 /* Add a fixup. */
4195 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4196 int slot = xg_get_single_slot (tinsn->opcode);
4197 int opnum = get_relaxable_immed (tinsn->opcode);
4198 expressionS *exp = &tinsn->tok[opnum];
4199
4200 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4201 ok = FALSE;
4202 }
4203 fragP->tc_frag_data.is_insn = TRUE;
4204 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4205 (unsigned char *) buf, 0);
4206 return ok;
4207 }
4208
4209
4210 static void
4211 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4212 {
4213 symbolS *sym = get_special_literal_symbol ();
4214 int i;
4215 if (lit_sym == 0)
4216 return;
4217 assert (insn->insn_type == ITYPE_INSN);
4218 for (i = 0; i < insn->ntok; i++)
4219 if (insn->tok[i].X_add_symbol == sym)
4220 insn->tok[i].X_add_symbol = lit_sym;
4221
4222 }
4223
4224
4225 static void
4226 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4227 {
4228 symbolS *sym = get_special_label_symbol ();
4229 int i;
4230 for (i = 0; i < insn->ntok; i++)
4231 if (insn->tok[i].X_add_symbol == sym)
4232 insn->tok[i].X_add_symbol = label_sym;
4233
4234 }
4235
4236
4237 /* Return TRUE if the instruction can write to the specified
4238 integer register. */
4239
4240 static bfd_boolean
4241 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4242 {
4243 int i;
4244 int num_ops;
4245 xtensa_isa isa = xtensa_default_isa;
4246
4247 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4248
4249 for (i = 0; i < num_ops; i++)
4250 {
4251 char inout;
4252 inout = xtensa_operand_inout (isa, insn->opcode, i);
4253 if ((inout == 'o' || inout == 'm')
4254 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4255 {
4256 xtensa_regfile opnd_rf =
4257 xtensa_operand_regfile (isa, insn->opcode, i);
4258 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4259 {
4260 if ((insn->tok[i].X_op == O_register)
4261 && (insn->tok[i].X_add_number == regnum))
4262 return TRUE;
4263 }
4264 }
4265 }
4266 return FALSE;
4267 }
4268
4269
4270 static bfd_boolean
4271 is_bad_loopend_opcode (const TInsn *tinsn)
4272 {
4273 xtensa_opcode opcode = tinsn->opcode;
4274
4275 if (opcode == XTENSA_UNDEFINED)
4276 return FALSE;
4277
4278 if (opcode == xtensa_call0_opcode
4279 || opcode == xtensa_callx0_opcode
4280 || opcode == xtensa_call4_opcode
4281 || opcode == xtensa_callx4_opcode
4282 || opcode == xtensa_call8_opcode
4283 || opcode == xtensa_callx8_opcode
4284 || opcode == xtensa_call12_opcode
4285 || opcode == xtensa_callx12_opcode
4286 || opcode == xtensa_isync_opcode
4287 || opcode == xtensa_ret_opcode
4288 || opcode == xtensa_ret_n_opcode
4289 || opcode == xtensa_retw_opcode
4290 || opcode == xtensa_retw_n_opcode
4291 || opcode == xtensa_waiti_opcode
4292 || opcode == xtensa_rsr_lcount_opcode)
4293 return TRUE;
4294
4295 return FALSE;
4296 }
4297
4298
4299 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4300 This allows the debugger to add unaligned labels.
4301 Also, the assembler generates stabs labels that need
4302 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4303
4304 static bfd_boolean
4305 is_unaligned_label (symbolS *sym)
4306 {
4307 const char *name = S_GET_NAME (sym);
4308 static size_t fake_size = 0;
4309
4310 if (name
4311 && name[0] == '.'
4312 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4313 return TRUE;
4314
4315 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4316 if (fake_size == 0)
4317 fake_size = strlen (FAKE_LABEL_NAME);
4318
4319 if (name
4320 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4321 && (name[fake_size] == 'F'
4322 || name[fake_size] == 'L'
4323 || (name[fake_size] == 'e'
4324 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4325 return TRUE;
4326
4327 return FALSE;
4328 }
4329
4330
4331 static fragS *
4332 next_non_empty_frag (const fragS *fragP)
4333 {
4334 fragS *next_fragP = fragP->fr_next;
4335
4336 /* Sometimes an empty will end up here due storage allocation issues.
4337 So we have to skip until we find something legit. */
4338 while (next_fragP && next_fragP->fr_fix == 0)
4339 next_fragP = next_fragP->fr_next;
4340
4341 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4342 return NULL;
4343
4344 return next_fragP;
4345 }
4346
4347
4348 static bfd_boolean
4349 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4350 {
4351 xtensa_opcode out_opcode;
4352 const fragS *next_fragP = next_non_empty_frag (fragP);
4353
4354 if (next_fragP == NULL)
4355 return FALSE;
4356
4357 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4358 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4359 {
4360 *opcode = out_opcode;
4361 return TRUE;
4362 }
4363 return FALSE;
4364 }
4365
4366
4367 static int
4368 frag_format_size (const fragS *fragP)
4369 {
4370 static xtensa_insnbuf insnbuf = NULL;
4371 xtensa_isa isa = xtensa_default_isa;
4372 xtensa_format fmt;
4373 int fmt_size;
4374
4375 if (!insnbuf)
4376 insnbuf = xtensa_insnbuf_alloc (isa);
4377
4378 if (fragP == NULL)
4379 return XTENSA_UNDEFINED;
4380
4381 xtensa_insnbuf_from_chars (isa, insnbuf,
4382 (unsigned char *) fragP->fr_literal, 0);
4383
4384 fmt = xtensa_format_decode (isa, insnbuf);
4385 if (fmt == XTENSA_UNDEFINED)
4386 return XTENSA_UNDEFINED;
4387 fmt_size = xtensa_format_length (isa, fmt);
4388
4389 /* If the next format won't be changing due to relaxation, just
4390 return the length of the first format. */
4391 if (fragP->fr_opcode != fragP->fr_literal)
4392 return fmt_size;
4393
4394 /* If during relaxation we have to pull an instruction out of a
4395 multi-slot instruction, we will return the more conservative
4396 number. This works because alignment on bigger instructions
4397 is more restrictive than alignment on smaller instructions.
4398 This is more conservative than we would like, but it happens
4399 infrequently. */
4400
4401 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4402 return fmt_size;
4403
4404 /* If we aren't doing one of our own relaxations or it isn't
4405 slot-based, then the insn size won't change. */
4406 if (fragP->fr_type != rs_machine_dependent)
4407 return fmt_size;
4408 if (fragP->fr_subtype != RELAX_SLOTS)
4409 return fmt_size;
4410
4411 /* If an instruction is about to grow, return the longer size. */
4412 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4413 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4414 return 3;
4415
4416 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4417 return 2 + fragP->tc_frag_data.text_expansion[0];
4418
4419 return fmt_size;
4420 }
4421
4422
4423 static int
4424 next_frag_format_size (const fragS *fragP)
4425 {
4426 const fragS *next_fragP = next_non_empty_frag (fragP);
4427 return frag_format_size (next_fragP);
4428 }
4429
4430
4431 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4432 required two-byte instructions to be treated as three-byte instructions
4433 for loop instruction alignment. This restriction was removed beginning
4434 with Xtensa LX. Now the only requirement on loop instruction alignment
4435 is that the first instruction of the loop must appear at an address that
4436 does not cross a fetch boundary. */
4437
4438 static int
4439 get_loop_align_size (int insn_size)
4440 {
4441 if (insn_size == XTENSA_UNDEFINED)
4442 return xtensa_fetch_width;
4443
4444 if (enforce_three_byte_loop_align && insn_size == 2)
4445 return 3;
4446
4447 return insn_size;
4448 }
4449
4450
4451 /* If the next legit fragment is an end-of-loop marker,
4452 switch its state so it will instantiate a NOP. */
4453
4454 static void
4455 update_next_frag_state (fragS *fragP)
4456 {
4457 fragS *next_fragP = fragP->fr_next;
4458 fragS *new_target = NULL;
4459
4460 if (align_targets)
4461 {
4462 /* We are guaranteed there will be one of these... */
4463 while (!(next_fragP->fr_type == rs_machine_dependent
4464 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4465 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4466 next_fragP = next_fragP->fr_next;
4467
4468 assert (next_fragP->fr_type == rs_machine_dependent
4469 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4470 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4471
4472 /* ...and one of these. */
4473 new_target = next_fragP->fr_next;
4474 while (!(new_target->fr_type == rs_machine_dependent
4475 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4476 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4477 new_target = new_target->fr_next;
4478
4479 assert (new_target->fr_type == rs_machine_dependent
4480 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4481 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4482 }
4483
4484 while (next_fragP && next_fragP->fr_fix == 0)
4485 {
4486 if (next_fragP->fr_type == rs_machine_dependent
4487 && next_fragP->fr_subtype == RELAX_LOOP_END)
4488 {
4489 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4490 return;
4491 }
4492
4493 next_fragP = next_fragP->fr_next;
4494 }
4495 }
4496
4497
4498 static bfd_boolean
4499 next_frag_is_branch_target (const fragS *fragP)
4500 {
4501 /* Sometimes an empty will end up here due to storage allocation issues,
4502 so we have to skip until we find something legit. */
4503 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4504 {
4505 if (fragP->tc_frag_data.is_branch_target)
4506 return TRUE;
4507 if (fragP->fr_fix != 0)
4508 break;
4509 }
4510 return FALSE;
4511 }
4512
4513
4514 static bfd_boolean
4515 next_frag_is_loop_target (const fragS *fragP)
4516 {
4517 /* Sometimes an empty will end up here due storage allocation issues.
4518 So we have to skip until we find something legit. */
4519 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4520 {
4521 if (fragP->tc_frag_data.is_loop_target)
4522 return TRUE;
4523 if (fragP->fr_fix != 0)
4524 break;
4525 }
4526 return FALSE;
4527 }
4528
4529
4530 static addressT
4531 next_frag_pre_opcode_bytes (const fragS *fragp)
4532 {
4533 const fragS *next_fragp = fragp->fr_next;
4534 xtensa_opcode next_opcode;
4535
4536 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4537 return 0;
4538
4539 /* Sometimes an empty will end up here due to storage allocation issues,
4540 so we have to skip until we find something legit. */
4541 while (next_fragp->fr_fix == 0)
4542 next_fragp = next_fragp->fr_next;
4543
4544 if (next_fragp->fr_type != rs_machine_dependent)
4545 return 0;
4546
4547 /* There is some implicit knowledge encoded in here.
4548 The LOOP instructions that are NOT RELAX_IMMED have
4549 been relaxed. Note that we can assume that the LOOP
4550 instruction is in slot 0 because loops aren't bundleable. */
4551 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4552 return get_expanded_loop_offset (next_opcode);
4553
4554 return 0;
4555 }
4556
4557
4558 /* Mark a location where we can later insert literal frags. Update
4559 the section's literal_pool_loc, so subsequent literals can be
4560 placed nearest to their use. */
4561
4562 static void
4563 xtensa_mark_literal_pool_location (void)
4564 {
4565 /* Any labels pointing to the current location need
4566 to be adjusted to after the literal pool. */
4567 emit_state s;
4568 fragS *pool_location;
4569
4570 if (use_literal_section && !directive_state[directive_absolute_literals])
4571 return;
4572
4573 frag_align (2, 0, 0);
4574 record_alignment (now_seg, 2);
4575
4576 /* We stash info in these frags so we can later move the literal's
4577 fixes into this frchain's fix list. */
4578 pool_location = frag_now;
4579 frag_now->tc_frag_data.lit_frchain = frchain_now;
4580 frag_variant (rs_machine_dependent, 0, 0,
4581 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4582 xtensa_set_frag_assembly_state (frag_now);
4583 frag_now->tc_frag_data.lit_seg = now_seg;
4584 frag_variant (rs_machine_dependent, 0, 0,
4585 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4586 xtensa_set_frag_assembly_state (frag_now);
4587
4588 /* Now put a frag into the literal pool that points to this location. */
4589 set_literal_pool_location (now_seg, pool_location);
4590 xtensa_switch_to_non_abs_literal_fragment (&s);
4591 frag_align (2, 0, 0);
4592 record_alignment (now_seg, 2);
4593
4594 /* Close whatever frag is there. */
4595 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4596 xtensa_set_frag_assembly_state (frag_now);
4597 frag_now->tc_frag_data.literal_frag = pool_location;
4598 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4599 xtensa_restore_emit_state (&s);
4600 xtensa_set_frag_assembly_state (frag_now);
4601 }
4602
4603
4604 /* Build a nop of the correct size into tinsn. */
4605
4606 static void
4607 build_nop (TInsn *tinsn, int size)
4608 {
4609 tinsn_init (tinsn);
4610 switch (size)
4611 {
4612 case 2:
4613 tinsn->opcode = xtensa_nop_n_opcode;
4614 tinsn->ntok = 0;
4615 if (tinsn->opcode == XTENSA_UNDEFINED)
4616 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4617 break;
4618
4619 case 3:
4620 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4621 {
4622 tinsn->opcode = xtensa_or_opcode;
4623 set_expr_const (&tinsn->tok[0], 1);
4624 set_expr_const (&tinsn->tok[1], 1);
4625 set_expr_const (&tinsn->tok[2], 1);
4626 tinsn->ntok = 3;
4627 }
4628 else
4629 tinsn->opcode = xtensa_nop_opcode;
4630
4631 assert (tinsn->opcode != XTENSA_UNDEFINED);
4632 }
4633 }
4634
4635
4636 /* Assemble a NOP of the requested size in the buffer. User must have
4637 allocated "buf" with at least "size" bytes. */
4638
4639 static void
4640 assemble_nop (int size, char *buf)
4641 {
4642 static xtensa_insnbuf insnbuf = NULL;
4643 TInsn tinsn;
4644
4645 build_nop (&tinsn, size);
4646
4647 if (!insnbuf)
4648 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4649
4650 tinsn_to_insnbuf (&tinsn, insnbuf);
4651 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4652 (unsigned char *) buf, 0);
4653 }
4654
4655
4656 /* Return the number of bytes for the offset of the expanded loop
4657 instruction. This should be incorporated into the relaxation
4658 specification but is hard-coded here. This is used to auto-align
4659 the loop instruction. It is invalid to call this function if the
4660 configuration does not have loops or if the opcode is not a loop
4661 opcode. */
4662
4663 static addressT
4664 get_expanded_loop_offset (xtensa_opcode opcode)
4665 {
4666 /* This is the OFFSET of the loop instruction in the expanded loop.
4667 This MUST correspond directly to the specification of the loop
4668 expansion. It will be validated on fragment conversion. */
4669 assert (opcode != XTENSA_UNDEFINED);
4670 if (opcode == xtensa_loop_opcode)
4671 return 0;
4672 if (opcode == xtensa_loopnez_opcode)
4673 return 3;
4674 if (opcode == xtensa_loopgtz_opcode)
4675 return 6;
4676 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4677 return 0;
4678 }
4679
4680
4681 static fragS *
4682 get_literal_pool_location (segT seg)
4683 {
4684 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4685 }
4686
4687
4688 static void
4689 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4690 {
4691 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4692 }
4693
4694
4695 /* Set frag assembly state should be called when a new frag is
4696 opened and after a frag has been closed. */
4697
4698 static void
4699 xtensa_set_frag_assembly_state (fragS *fragP)
4700 {
4701 if (!density_supported)
4702 fragP->tc_frag_data.is_no_density = TRUE;
4703
4704 /* This function is called from subsegs_finish, which is called
4705 after xtensa_end, so we can't use "use_transform" or
4706 "use_schedule" here. */
4707 if (!directive_state[directive_transform])
4708 fragP->tc_frag_data.is_no_transform = TRUE;
4709 if (directive_state[directive_longcalls])
4710 fragP->tc_frag_data.use_longcalls = TRUE;
4711 fragP->tc_frag_data.use_absolute_literals =
4712 directive_state[directive_absolute_literals];
4713 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4714 }
4715
4716
4717 static bfd_boolean
4718 relaxable_section (asection *sec)
4719 {
4720 return (sec->flags & SEC_DEBUGGING) == 0;
4721 }
4722
4723
4724 static void
4725 xtensa_find_unmarked_state_frags (void)
4726 {
4727 segT *seclist;
4728
4729 /* Walk over each fragment of all of the current segments. For each
4730 unmarked fragment, mark it with the same info as the previous
4731 fragment. */
4732 for (seclist = &stdoutput->sections;
4733 seclist && *seclist;
4734 seclist = &(*seclist)->next)
4735 {
4736 segT sec = *seclist;
4737 segment_info_type *seginfo;
4738 fragS *fragP;
4739 flagword flags;
4740 flags = bfd_get_section_flags (stdoutput, sec);
4741 if (flags & SEC_DEBUGGING)
4742 continue;
4743 if (!(flags & SEC_ALLOC))
4744 continue;
4745
4746 seginfo = seg_info (sec);
4747 if (seginfo && seginfo->frchainP)
4748 {
4749 fragS *last_fragP = 0;
4750 for (fragP = seginfo->frchainP->frch_root; fragP;
4751 fragP = fragP->fr_next)
4752 {
4753 if (fragP->fr_fix != 0
4754 && !fragP->tc_frag_data.is_assembly_state_set)
4755 {
4756 if (last_fragP == 0)
4757 {
4758 as_warn_where (fragP->fr_file, fragP->fr_line,
4759 _("assembly state not set for first frag in section %s"),
4760 sec->name);
4761 }
4762 else
4763 {
4764 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4765 fragP->tc_frag_data.is_no_density =
4766 last_fragP->tc_frag_data.is_no_density;
4767 fragP->tc_frag_data.is_no_transform =
4768 last_fragP->tc_frag_data.is_no_transform;
4769 fragP->tc_frag_data.use_longcalls =
4770 last_fragP->tc_frag_data.use_longcalls;
4771 fragP->tc_frag_data.use_absolute_literals =
4772 last_fragP->tc_frag_data.use_absolute_literals;
4773 }
4774 }
4775 if (fragP->tc_frag_data.is_assembly_state_set)
4776 last_fragP = fragP;
4777 }
4778 }
4779 }
4780 }
4781
4782
4783 static void
4784 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4785 asection *sec,
4786 void *unused ATTRIBUTE_UNUSED)
4787 {
4788 flagword flags = bfd_get_section_flags (abfd, sec);
4789 segment_info_type *seginfo = seg_info (sec);
4790 fragS *frag = seginfo->frchainP->frch_root;
4791
4792 if (flags & SEC_CODE)
4793 {
4794 xtensa_isa isa = xtensa_default_isa;
4795 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4796 while (frag != NULL)
4797 {
4798 if (frag->tc_frag_data.is_branch_target)
4799 {
4800 int op_size;
4801 addressT branch_align, frag_addr;
4802 xtensa_format fmt;
4803
4804 xtensa_insnbuf_from_chars
4805 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4806 fmt = xtensa_format_decode (isa, insnbuf);
4807 op_size = xtensa_format_length (isa, fmt);
4808 branch_align = 1 << branch_align_power (sec);
4809 frag_addr = frag->fr_address % branch_align;
4810 if (frag_addr + op_size > branch_align)
4811 as_warn_where (frag->fr_file, frag->fr_line,
4812 _("unaligned branch target: %d bytes at 0x%lx"),
4813 op_size, (long) frag->fr_address);
4814 }
4815 frag = frag->fr_next;
4816 }
4817 xtensa_insnbuf_free (isa, insnbuf);
4818 }
4819 }
4820
4821
4822 static void
4823 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4824 asection *sec,
4825 void *unused ATTRIBUTE_UNUSED)
4826 {
4827 flagword flags = bfd_get_section_flags (abfd, sec);
4828 segment_info_type *seginfo = seg_info (sec);
4829 fragS *frag = seginfo->frchainP->frch_root;
4830 xtensa_isa isa = xtensa_default_isa;
4831
4832 if (flags & SEC_CODE)
4833 {
4834 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4835 while (frag != NULL)
4836 {
4837 if (frag->tc_frag_data.is_first_loop_insn)
4838 {
4839 int op_size;
4840 addressT frag_addr;
4841 xtensa_format fmt;
4842
4843 xtensa_insnbuf_from_chars
4844 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4845 fmt = xtensa_format_decode (isa, insnbuf);
4846 op_size = xtensa_format_length (isa, fmt);
4847 frag_addr = frag->fr_address % xtensa_fetch_width;
4848
4849 if (frag_addr + op_size > xtensa_fetch_width)
4850 as_warn_where (frag->fr_file, frag->fr_line,
4851 _("unaligned loop: %d bytes at 0x%lx"),
4852 op_size, (long) frag->fr_address);
4853 }
4854 frag = frag->fr_next;
4855 }
4856 xtensa_insnbuf_free (isa, insnbuf);
4857 }
4858 }
4859
4860
4861 static int
4862 xg_apply_fix_value (fixS *fixP, valueT val)
4863 {
4864 xtensa_isa isa = xtensa_default_isa;
4865 static xtensa_insnbuf insnbuf = NULL;
4866 static xtensa_insnbuf slotbuf = NULL;
4867 xtensa_format fmt;
4868 int slot;
4869 bfd_boolean alt_reloc;
4870 xtensa_opcode opcode;
4871 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4872
4873 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4874 if (alt_reloc)
4875 as_fatal (_("unexpected fix"));
4876
4877 if (!insnbuf)
4878 {
4879 insnbuf = xtensa_insnbuf_alloc (isa);
4880 slotbuf = xtensa_insnbuf_alloc (isa);
4881 }
4882
4883 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4884 fmt = xtensa_format_decode (isa, insnbuf);
4885 if (fmt == XTENSA_UNDEFINED)
4886 as_fatal (_("undecodable fix"));
4887 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4888 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4889 if (opcode == XTENSA_UNDEFINED)
4890 as_fatal (_("undecodable fix"));
4891
4892 /* CONST16 immediates are not PC-relative, despite the fact that we
4893 reuse the normal PC-relative operand relocations for the low part
4894 of a CONST16 operand. */
4895 if (opcode == xtensa_const16_opcode)
4896 return 0;
4897
4898 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4899 get_relaxable_immed (opcode), val,
4900 fixP->fx_file, fixP->fx_line);
4901
4902 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
4903 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4904
4905 return 1;
4906 }
4907
4908 \f
4909 /* External Functions and Other GAS Hooks. */
4910
4911 const char *
4912 xtensa_target_format (void)
4913 {
4914 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4915 }
4916
4917
4918 void
4919 xtensa_file_arch_init (bfd *abfd)
4920 {
4921 bfd_set_private_flags (abfd, 0x100 | 0x200);
4922 }
4923
4924
4925 void
4926 md_number_to_chars (char *buf, valueT val, int n)
4927 {
4928 if (target_big_endian)
4929 number_to_chars_bigendian (buf, val, n);
4930 else
4931 number_to_chars_littleendian (buf, val, n);
4932 }
4933
4934
4935 /* This function is called once, at assembler startup time. It should
4936 set up all the tables, etc. that the MD part of the assembler will
4937 need. */
4938
4939 void
4940 md_begin (void)
4941 {
4942 segT current_section = now_seg;
4943 int current_subsec = now_subseg;
4944 xtensa_isa isa;
4945
4946 xtensa_default_isa = xtensa_isa_init (0, 0);
4947 isa = xtensa_default_isa;
4948
4949 linkrelax = 1;
4950
4951 /* Set up the .literal, .fini.literal and .init.literal sections. */
4952 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4953 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4954 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4955 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
4956 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
4957
4958 subseg_set (current_section, current_subsec);
4959
4960 xg_init_vinsn (&cur_vinsn);
4961
4962 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4963 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4964 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4965 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4966 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4967 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4968 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4969 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4970 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4971 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
4972 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
4973 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
4974 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4975 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
4976 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
4977 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
4978 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
4979 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4980 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4981 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
4982 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
4983 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4984 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4985 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4986 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4987 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4988 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
4989 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
4990 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
4991
4992 init_op_placement_info_table ();
4993
4994 /* Set up the assembly state. */
4995 if (!frag_now->tc_frag_data.is_assembly_state_set)
4996 xtensa_set_frag_assembly_state (frag_now);
4997 }
4998
4999
5000 /* TC_INIT_FIX_DATA hook */
5001
5002 void
5003 xtensa_init_fix_data (fixS *x)
5004 {
5005 x->tc_fix_data.slot = 0;
5006 x->tc_fix_data.X_add_symbol = NULL;
5007 x->tc_fix_data.X_add_number = 0;
5008 }
5009
5010
5011 /* tc_frob_label hook */
5012
5013 void
5014 xtensa_frob_label (symbolS *sym)
5015 {
5016 float freq;
5017
5018 if (cur_vinsn.inside_bundle)
5019 {
5020 as_bad (_("labels are not valid inside bundles"));
5021 return;
5022 }
5023
5024 freq = get_subseg_target_freq (now_seg, now_subseg);
5025
5026 /* Since the label was already attached to a frag associated with the
5027 previous basic block, it now needs to be reset to the current frag. */
5028 symbol_set_frag (sym, frag_now);
5029 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5030
5031 if (generating_literals)
5032 xtensa_add_literal_sym (sym);
5033 else
5034 xtensa_add_insn_label (sym);
5035
5036 if (symbol_get_tc (sym)->is_loop_target)
5037 {
5038 if ((get_last_insn_flags (now_seg, now_subseg)
5039 & FLAG_IS_BAD_LOOPEND) != 0)
5040 as_bad (_("invalid last instruction for a zero-overhead loop"));
5041
5042 xtensa_set_frag_assembly_state (frag_now);
5043 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5044 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5045
5046 xtensa_set_frag_assembly_state (frag_now);
5047 xtensa_move_labels (frag_now, 0, TRUE);
5048 }
5049
5050 /* No target aligning in the absolute section. */
5051 if (now_seg != absolute_section
5052 && do_align_targets ()
5053 && !is_unaligned_label (sym)
5054 && !generating_literals)
5055 {
5056 xtensa_set_frag_assembly_state (frag_now);
5057
5058 frag_var (rs_machine_dependent,
5059 0, (int) freq,
5060 RELAX_DESIRE_ALIGN_IF_TARGET,
5061 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5062 xtensa_set_frag_assembly_state (frag_now);
5063 xtensa_move_labels (frag_now, 0, TRUE);
5064 }
5065
5066 /* We need to mark the following properties even if we aren't aligning. */
5067
5068 /* If the label is already known to be a branch target, i.e., a
5069 forward branch, mark the frag accordingly. Backward branches
5070 are handled by xg_add_branch_and_loop_targets. */
5071 if (symbol_get_tc (sym)->is_branch_target)
5072 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5073
5074 /* Loops only go forward, so they can be identified here. */
5075 if (symbol_get_tc (sym)->is_loop_target)
5076 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5077
5078 dwarf2_emit_label (sym);
5079 }
5080
5081
5082 /* tc_unrecognized_line hook */
5083
5084 int
5085 xtensa_unrecognized_line (int ch)
5086 {
5087 switch (ch)
5088 {
5089 case '{' :
5090 if (cur_vinsn.inside_bundle == 0)
5091 {
5092 /* PR8110: Cannot emit line number info inside a FLIX bundle
5093 when using --gstabs. Temporarily disable debug info. */
5094 generate_lineno_debug ();
5095 if (debug_type == DEBUG_STABS)
5096 {
5097 xt_saved_debug_type = debug_type;
5098 debug_type = DEBUG_NONE;
5099 }
5100
5101 cur_vinsn.inside_bundle = 1;
5102 }
5103 else
5104 {
5105 as_bad (_("extra opening brace"));
5106 return 0;
5107 }
5108 break;
5109
5110 case '}' :
5111 if (cur_vinsn.inside_bundle)
5112 finish_vinsn (&cur_vinsn);
5113 else
5114 {
5115 as_bad (_("extra closing brace"));
5116 return 0;
5117 }
5118 break;
5119 default:
5120 as_bad (_("syntax error"));
5121 return 0;
5122 }
5123 return 1;
5124 }
5125
5126
5127 /* md_flush_pending_output hook */
5128
5129 void
5130 xtensa_flush_pending_output (void)
5131 {
5132 if (cur_vinsn.inside_bundle)
5133 as_bad (_("missing closing brace"));
5134
5135 /* If there is a non-zero instruction fragment, close it. */
5136 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5137 {
5138 frag_wane (frag_now);
5139 frag_new (0);
5140 xtensa_set_frag_assembly_state (frag_now);
5141 }
5142 frag_now->tc_frag_data.is_insn = FALSE;
5143
5144 xtensa_clear_insn_labels ();
5145 }
5146
5147
5148 /* We had an error while parsing an instruction. The string might look
5149 like this: "insn arg1, arg2 }". If so, we need to see the closing
5150 brace and reset some fields. Otherwise, the vinsn never gets closed
5151 and the num_slots field will grow past the end of the array of slots,
5152 and bad things happen. */
5153
5154 static void
5155 error_reset_cur_vinsn (void)
5156 {
5157 if (cur_vinsn.inside_bundle)
5158 {
5159 if (*input_line_pointer == '}'
5160 || *(input_line_pointer - 1) == '}'
5161 || *(input_line_pointer - 2) == '}')
5162 xg_clear_vinsn (&cur_vinsn);
5163 }
5164 }
5165
5166
5167 void
5168 md_assemble (char *str)
5169 {
5170 xtensa_isa isa = xtensa_default_isa;
5171 char *opname, *file_name;
5172 unsigned opnamelen;
5173 bfd_boolean has_underbar = FALSE;
5174 char *arg_strings[MAX_INSN_ARGS];
5175 int num_args;
5176 TInsn orig_insn; /* Original instruction from the input. */
5177
5178 tinsn_init (&orig_insn);
5179
5180 /* Split off the opcode. */
5181 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5182 opname = xmalloc (opnamelen + 1);
5183 memcpy (opname, str, opnamelen);
5184 opname[opnamelen] = '\0';
5185
5186 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5187 if (num_args == -1)
5188 {
5189 as_bad (_("syntax error"));
5190 return;
5191 }
5192
5193 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5194 return;
5195
5196 /* Check for an underbar prefix. */
5197 if (*opname == '_')
5198 {
5199 has_underbar = TRUE;
5200 opname += 1;
5201 }
5202
5203 orig_insn.insn_type = ITYPE_INSN;
5204 orig_insn.ntok = 0;
5205 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5206
5207 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5208 if (orig_insn.opcode == XTENSA_UNDEFINED)
5209 {
5210 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5211 if (fmt == XTENSA_UNDEFINED)
5212 {
5213 as_bad (_("unknown opcode or format name '%s'"), opname);
5214 error_reset_cur_vinsn ();
5215 return;
5216 }
5217 if (!cur_vinsn.inside_bundle)
5218 {
5219 as_bad (_("format names only valid inside bundles"));
5220 error_reset_cur_vinsn ();
5221 return;
5222 }
5223 if (cur_vinsn.format != XTENSA_UNDEFINED)
5224 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5225 opname);
5226 cur_vinsn.format = fmt;
5227 free (has_underbar ? opname - 1 : opname);
5228 error_reset_cur_vinsn ();
5229 return;
5230 }
5231
5232 /* Parse the arguments. */
5233 if (parse_arguments (&orig_insn, num_args, arg_strings))
5234 {
5235 as_bad (_("syntax error"));
5236 error_reset_cur_vinsn ();
5237 return;
5238 }
5239
5240 /* Free the opcode and argument strings, now that they've been parsed. */
5241 free (has_underbar ? opname - 1 : opname);
5242 opname = 0;
5243 while (num_args-- > 0)
5244 free (arg_strings[num_args]);
5245
5246 /* Get expressions for invisible operands. */
5247 if (get_invisible_operands (&orig_insn))
5248 {
5249 error_reset_cur_vinsn ();
5250 return;
5251 }
5252
5253 /* Check for the right number and type of arguments. */
5254 if (tinsn_check_arguments (&orig_insn))
5255 {
5256 error_reset_cur_vinsn ();
5257 return;
5258 }
5259
5260 /* A FLIX bundle may be spread across multiple input lines. We want to
5261 report the first such line in the debug information. Record the line
5262 number for each TInsn (assume the file name doesn't change), so the
5263 first line can be found later. */
5264 as_where (&file_name, &orig_insn.linenum);
5265
5266 xg_add_branch_and_loop_targets (&orig_insn);
5267
5268 /* Check that immediate value for ENTRY is >= 16. */
5269 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5270 {
5271 expressionS *exp = &orig_insn.tok[2];
5272 if (exp->X_op == O_constant && exp->X_add_number < 16)
5273 as_warn (_("entry instruction with stack decrement < 16"));
5274 }
5275
5276 /* Finish it off:
5277 assemble_tokens (opcode, tok, ntok);
5278 expand the tokens from the orig_insn into the
5279 stack of instructions that will not expand
5280 unless required at relaxation time. */
5281
5282 if (!cur_vinsn.inside_bundle)
5283 emit_single_op (&orig_insn);
5284 else /* We are inside a bundle. */
5285 {
5286 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5287 cur_vinsn.num_slots++;
5288 if (*input_line_pointer == '}'
5289 || *(input_line_pointer - 1) == '}'
5290 || *(input_line_pointer - 2) == '}')
5291 finish_vinsn (&cur_vinsn);
5292 }
5293
5294 /* We've just emitted a new instruction so clear the list of labels. */
5295 xtensa_clear_insn_labels ();
5296 }
5297
5298
5299 /* HANDLE_ALIGN hook */
5300
5301 /* For a .align directive, we mark the previous block with the alignment
5302 information. This will be placed in the object file in the
5303 property section corresponding to this section. */
5304
5305 void
5306 xtensa_handle_align (fragS *fragP)
5307 {
5308 if (linkrelax
5309 && ! fragP->tc_frag_data.is_literal
5310 && (fragP->fr_type == rs_align
5311 || fragP->fr_type == rs_align_code)
5312 && fragP->fr_address + fragP->fr_fix > 0
5313 && fragP->fr_offset > 0
5314 && now_seg != bss_section)
5315 {
5316 fragP->tc_frag_data.is_align = TRUE;
5317 fragP->tc_frag_data.alignment = fragP->fr_offset;
5318 }
5319
5320 if (fragP->fr_type == rs_align_test)
5321 {
5322 int count;
5323 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5324 if (count != 0)
5325 as_bad_where (fragP->fr_file, fragP->fr_line,
5326 _("unaligned entry instruction"));
5327 }
5328 }
5329
5330
5331 /* TC_FRAG_INIT hook */
5332
5333 void
5334 xtensa_frag_init (fragS *frag)
5335 {
5336 xtensa_set_frag_assembly_state (frag);
5337 }
5338
5339
5340 symbolS *
5341 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5342 {
5343 return NULL;
5344 }
5345
5346
5347 /* Round up a section size to the appropriate boundary. */
5348
5349 valueT
5350 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5351 {
5352 return size; /* Byte alignment is fine. */
5353 }
5354
5355
5356 long
5357 md_pcrel_from (fixS *fixP)
5358 {
5359 char *insn_p;
5360 static xtensa_insnbuf insnbuf = NULL;
5361 static xtensa_insnbuf slotbuf = NULL;
5362 int opnum;
5363 uint32 opnd_value;
5364 xtensa_opcode opcode;
5365 xtensa_format fmt;
5366 int slot;
5367 xtensa_isa isa = xtensa_default_isa;
5368 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5369 bfd_boolean alt_reloc;
5370
5371 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5372 return 0;
5373
5374 if (!insnbuf)
5375 {
5376 insnbuf = xtensa_insnbuf_alloc (isa);
5377 slotbuf = xtensa_insnbuf_alloc (isa);
5378 }
5379
5380 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5381 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5382 fmt = xtensa_format_decode (isa, insnbuf);
5383
5384 if (fmt == XTENSA_UNDEFINED)
5385 as_fatal (_("bad instruction format"));
5386
5387 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5388 as_fatal (_("invalid relocation"));
5389
5390 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5391 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5392
5393 /* Check for "alternate" relocations (operand not specified). None
5394 of the current uses for these are really PC-relative. */
5395 if (alt_reloc || opcode == xtensa_const16_opcode)
5396 {
5397 if (opcode != xtensa_l32r_opcode
5398 && opcode != xtensa_const16_opcode)
5399 as_fatal (_("invalid relocation for '%s' instruction"),
5400 xtensa_opcode_name (isa, opcode));
5401 return 0;
5402 }
5403
5404 opnum = get_relaxable_immed (opcode);
5405 opnd_value = 0;
5406 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5407 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5408 {
5409 as_bad_where (fixP->fx_file,
5410 fixP->fx_line,
5411 _("invalid relocation for operand %d of '%s'"),
5412 opnum, xtensa_opcode_name (isa, opcode));
5413 return 0;
5414 }
5415 return 0 - opnd_value;
5416 }
5417
5418
5419 /* TC_FORCE_RELOCATION hook */
5420
5421 int
5422 xtensa_force_relocation (fixS *fix)
5423 {
5424 switch (fix->fx_r_type)
5425 {
5426 case BFD_RELOC_XTENSA_ASM_EXPAND:
5427 case BFD_RELOC_XTENSA_SLOT0_ALT:
5428 case BFD_RELOC_XTENSA_SLOT1_ALT:
5429 case BFD_RELOC_XTENSA_SLOT2_ALT:
5430 case BFD_RELOC_XTENSA_SLOT3_ALT:
5431 case BFD_RELOC_XTENSA_SLOT4_ALT:
5432 case BFD_RELOC_XTENSA_SLOT5_ALT:
5433 case BFD_RELOC_XTENSA_SLOT6_ALT:
5434 case BFD_RELOC_XTENSA_SLOT7_ALT:
5435 case BFD_RELOC_XTENSA_SLOT8_ALT:
5436 case BFD_RELOC_XTENSA_SLOT9_ALT:
5437 case BFD_RELOC_XTENSA_SLOT10_ALT:
5438 case BFD_RELOC_XTENSA_SLOT11_ALT:
5439 case BFD_RELOC_XTENSA_SLOT12_ALT:
5440 case BFD_RELOC_XTENSA_SLOT13_ALT:
5441 case BFD_RELOC_XTENSA_SLOT14_ALT:
5442 return 1;
5443 default:
5444 break;
5445 }
5446
5447 if (linkrelax && fix->fx_addsy
5448 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5449 return 1;
5450
5451 return generic_force_reloc (fix);
5452 }
5453
5454
5455 /* TC_VALIDATE_FIX_SUB hook */
5456
5457 int
5458 xtensa_validate_fix_sub (fixS *fix)
5459 {
5460 segT add_symbol_segment, sub_symbol_segment;
5461
5462 /* The difference of two symbols should be resolved by the assembler when
5463 linkrelax is not set. If the linker may relax the section containing
5464 the symbols, then an Xtensa DIFF relocation must be generated so that
5465 the linker knows to adjust the difference value. */
5466 if (!linkrelax || fix->fx_addsy == NULL)
5467 return 0;
5468
5469 /* Make sure both symbols are in the same segment, and that segment is
5470 "normal" and relaxable. If the segment is not "normal", then the
5471 fix is not valid. If the segment is not "relaxable", then the fix
5472 should have been handled earlier. */
5473 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5474 if (! SEG_NORMAL (add_symbol_segment) ||
5475 ! relaxable_section (add_symbol_segment))
5476 return 0;
5477 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5478 return (sub_symbol_segment == add_symbol_segment);
5479 }
5480
5481
5482 /* NO_PSEUDO_DOT hook */
5483
5484 /* This function has nothing to do with pseudo dots, but this is the
5485 nearest macro to where the check needs to take place. FIXME: This
5486 seems wrong. */
5487
5488 bfd_boolean
5489 xtensa_check_inside_bundle (void)
5490 {
5491 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5492 as_bad (_("directives are not valid inside bundles"));
5493
5494 /* This function must always return FALSE because it is called via a
5495 macro that has nothing to do with bundling. */
5496 return FALSE;
5497 }
5498
5499
5500 /* md_elf_section_change_hook */
5501
5502 void
5503 xtensa_elf_section_change_hook (void)
5504 {
5505 /* Set up the assembly state. */
5506 if (!frag_now->tc_frag_data.is_assembly_state_set)
5507 xtensa_set_frag_assembly_state (frag_now);
5508 }
5509
5510
5511 /* tc_fix_adjustable hook */
5512
5513 bfd_boolean
5514 xtensa_fix_adjustable (fixS *fixP)
5515 {
5516 /* An offset is not allowed in combination with the difference of two
5517 symbols, but that cannot be easily detected after a local symbol
5518 has been adjusted to a (section+offset) form. Return 0 so that such
5519 an fix will not be adjusted. */
5520 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5521 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5522 return 0;
5523
5524 /* We need the symbol name for the VTABLE entries. */
5525 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5526 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5527 return 0;
5528
5529 return 1;
5530 }
5531
5532
5533 void
5534 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5535 {
5536 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5537 valueT val = 0;
5538
5539 /* Subtracted symbols are only allowed for a few relocation types, and
5540 unless linkrelax is enabled, they should not make it to this point. */
5541 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5542 || fixP->fx_r_type == BFD_RELOC_16
5543 || fixP->fx_r_type == BFD_RELOC_8)))
5544 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5545
5546 switch (fixP->fx_r_type)
5547 {
5548 case BFD_RELOC_32:
5549 case BFD_RELOC_16:
5550 case BFD_RELOC_8:
5551 if (fixP->fx_subsy)
5552 {
5553 switch (fixP->fx_r_type)
5554 {
5555 case BFD_RELOC_8:
5556 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5557 break;
5558 case BFD_RELOC_16:
5559 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5560 break;
5561 case BFD_RELOC_32:
5562 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5563 break;
5564 default:
5565 break;
5566 }
5567
5568 /* An offset is only allowed when it results from adjusting a
5569 local symbol into a section-relative offset. If the offset
5570 came from the original expression, tc_fix_adjustable will have
5571 prevented the fix from being converted to a section-relative
5572 form so that we can flag the error here. */
5573 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5574 as_bad_where (fixP->fx_file, fixP->fx_line,
5575 _("cannot represent subtraction with an offset"));
5576
5577 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5578 - S_GET_VALUE (fixP->fx_subsy));
5579
5580 /* The difference value gets written out, and the DIFF reloc
5581 identifies the address of the subtracted symbol (i.e., the one
5582 with the lowest address). */
5583 *valP = val;
5584 fixP->fx_offset -= val;
5585 fixP->fx_subsy = NULL;
5586 }
5587 else if (! fixP->fx_addsy)
5588 {
5589 val = *valP;
5590 fixP->fx_done = 1;
5591 }
5592 /* fall through */
5593
5594 case BFD_RELOC_XTENSA_PLT:
5595 md_number_to_chars (fixpos, val, fixP->fx_size);
5596 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5597 break;
5598
5599 case BFD_RELOC_XTENSA_SLOT0_OP:
5600 case BFD_RELOC_XTENSA_SLOT1_OP:
5601 case BFD_RELOC_XTENSA_SLOT2_OP:
5602 case BFD_RELOC_XTENSA_SLOT3_OP:
5603 case BFD_RELOC_XTENSA_SLOT4_OP:
5604 case BFD_RELOC_XTENSA_SLOT5_OP:
5605 case BFD_RELOC_XTENSA_SLOT6_OP:
5606 case BFD_RELOC_XTENSA_SLOT7_OP:
5607 case BFD_RELOC_XTENSA_SLOT8_OP:
5608 case BFD_RELOC_XTENSA_SLOT9_OP:
5609 case BFD_RELOC_XTENSA_SLOT10_OP:
5610 case BFD_RELOC_XTENSA_SLOT11_OP:
5611 case BFD_RELOC_XTENSA_SLOT12_OP:
5612 case BFD_RELOC_XTENSA_SLOT13_OP:
5613 case BFD_RELOC_XTENSA_SLOT14_OP:
5614 if (linkrelax)
5615 {
5616 /* Write the tentative value of a PC-relative relocation to a
5617 local symbol into the instruction. The value will be ignored
5618 by the linker, and it makes the object file disassembly
5619 readable when all branch targets are encoded in relocations. */
5620
5621 assert (fixP->fx_addsy);
5622 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5623 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5624 {
5625 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5626 - md_pcrel_from (fixP));
5627 (void) xg_apply_fix_value (fixP, val);
5628 }
5629 }
5630 else if (! fixP->fx_addsy)
5631 {
5632 val = *valP;
5633 if (xg_apply_fix_value (fixP, val))
5634 fixP->fx_done = 1;
5635 }
5636 break;
5637
5638 case BFD_RELOC_XTENSA_ASM_EXPAND:
5639 case BFD_RELOC_XTENSA_SLOT0_ALT:
5640 case BFD_RELOC_XTENSA_SLOT1_ALT:
5641 case BFD_RELOC_XTENSA_SLOT2_ALT:
5642 case BFD_RELOC_XTENSA_SLOT3_ALT:
5643 case BFD_RELOC_XTENSA_SLOT4_ALT:
5644 case BFD_RELOC_XTENSA_SLOT5_ALT:
5645 case BFD_RELOC_XTENSA_SLOT6_ALT:
5646 case BFD_RELOC_XTENSA_SLOT7_ALT:
5647 case BFD_RELOC_XTENSA_SLOT8_ALT:
5648 case BFD_RELOC_XTENSA_SLOT9_ALT:
5649 case BFD_RELOC_XTENSA_SLOT10_ALT:
5650 case BFD_RELOC_XTENSA_SLOT11_ALT:
5651 case BFD_RELOC_XTENSA_SLOT12_ALT:
5652 case BFD_RELOC_XTENSA_SLOT13_ALT:
5653 case BFD_RELOC_XTENSA_SLOT14_ALT:
5654 /* These all need to be resolved at link-time. Do nothing now. */
5655 break;
5656
5657 case BFD_RELOC_VTABLE_INHERIT:
5658 case BFD_RELOC_VTABLE_ENTRY:
5659 fixP->fx_done = 0;
5660 break;
5661
5662 default:
5663 as_bad (_("unhandled local relocation fix %s"),
5664 bfd_get_reloc_code_name (fixP->fx_r_type));
5665 }
5666 }
5667
5668
5669 char *
5670 md_atof (int type, char *litP, int *sizeP)
5671 {
5672 int prec;
5673 LITTLENUM_TYPE words[4];
5674 char *t;
5675 int i;
5676
5677 switch (type)
5678 {
5679 case 'f':
5680 prec = 2;
5681 break;
5682
5683 case 'd':
5684 prec = 4;
5685 break;
5686
5687 default:
5688 *sizeP = 0;
5689 return "bad call to md_atof";
5690 }
5691
5692 t = atof_ieee (input_line_pointer, type, words);
5693 if (t)
5694 input_line_pointer = t;
5695
5696 *sizeP = prec * 2;
5697
5698 for (i = prec - 1; i >= 0; i--)
5699 {
5700 int idx = i;
5701 if (target_big_endian)
5702 idx = (prec - 1 - i);
5703
5704 md_number_to_chars (litP, (valueT) words[idx], 2);
5705 litP += 2;
5706 }
5707
5708 return NULL;
5709 }
5710
5711
5712 int
5713 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5714 {
5715 return total_frag_text_expansion (fragP);
5716 }
5717
5718
5719 /* Translate internal representation of relocation info to BFD target
5720 format. */
5721
5722 arelent *
5723 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5724 {
5725 arelent *reloc;
5726
5727 reloc = (arelent *) xmalloc (sizeof (arelent));
5728 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5729 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5730 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5731
5732 /* Make sure none of our internal relocations make it this far.
5733 They'd better have been fully resolved by this point. */
5734 assert ((int) fixp->fx_r_type > 0);
5735
5736 reloc->addend = fixp->fx_offset;
5737
5738 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5739 if (reloc->howto == NULL)
5740 {
5741 as_bad_where (fixp->fx_file, fixp->fx_line,
5742 _("cannot represent `%s' relocation in object file"),
5743 bfd_get_reloc_code_name (fixp->fx_r_type));
5744 free (reloc->sym_ptr_ptr);
5745 free (reloc);
5746 return NULL;
5747 }
5748
5749 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5750 as_fatal (_("internal error? cannot generate `%s' relocation"),
5751 bfd_get_reloc_code_name (fixp->fx_r_type));
5752
5753 return reloc;
5754 }
5755
5756 \f
5757 /* Checks for resource conflicts between instructions. */
5758
5759 /* The func unit stuff could be implemented as bit-vectors rather
5760 than the iterative approach here. If it ends up being too
5761 slow, we will switch it. */
5762
5763 resource_table *
5764 new_resource_table (void *data,
5765 int cycles,
5766 int nu,
5767 unit_num_copies_func uncf,
5768 opcode_num_units_func onuf,
5769 opcode_funcUnit_use_unit_func ouuf,
5770 opcode_funcUnit_use_stage_func ousf)
5771 {
5772 int i;
5773 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5774 rt->data = data;
5775 rt->cycles = cycles;
5776 rt->allocated_cycles = cycles;
5777 rt->num_units = nu;
5778 rt->unit_num_copies = uncf;
5779 rt->opcode_num_units = onuf;
5780 rt->opcode_unit_use = ouuf;
5781 rt->opcode_unit_stage = ousf;
5782
5783 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
5784 for (i = 0; i < cycles; i++)
5785 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
5786
5787 return rt;
5788 }
5789
5790
5791 void
5792 clear_resource_table (resource_table *rt)
5793 {
5794 int i, j;
5795 for (i = 0; i < rt->allocated_cycles; i++)
5796 for (j = 0; j < rt->num_units; j++)
5797 rt->units[i][j] = 0;
5798 }
5799
5800
5801 /* We never shrink it, just fake it into thinking so. */
5802
5803 void
5804 resize_resource_table (resource_table *rt, int cycles)
5805 {
5806 int i, old_cycles;
5807
5808 rt->cycles = cycles;
5809 if (cycles <= rt->allocated_cycles)
5810 return;
5811
5812 old_cycles = rt->allocated_cycles;
5813 rt->allocated_cycles = cycles;
5814
5815 rt->units = xrealloc (rt->units,
5816 rt->allocated_cycles * sizeof (unsigned char *));
5817 for (i = 0; i < old_cycles; i++)
5818 rt->units[i] = xrealloc (rt->units[i],
5819 rt->num_units * sizeof (unsigned char));
5820 for (i = old_cycles; i < cycles; i++)
5821 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
5822 }
5823
5824
5825 bfd_boolean
5826 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5827 {
5828 int i;
5829 int uses = (rt->opcode_num_units) (rt->data, opcode);
5830
5831 for (i = 0; i < uses; i++)
5832 {
5833 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5834 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5835 int copies_in_use = rt->units[stage + cycle][unit];
5836 int copies = (rt->unit_num_copies) (rt->data, unit);
5837 if (copies_in_use >= copies)
5838 return FALSE;
5839 }
5840 return TRUE;
5841 }
5842
5843
5844 void
5845 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5846 {
5847 int i;
5848 int uses = (rt->opcode_num_units) (rt->data, opcode);
5849
5850 for (i = 0; i < uses; i++)
5851 {
5852 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5853 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5854 /* Note that this allows resources to be oversubscribed. That's
5855 essential to the way the optional scheduler works.
5856 resources_available reports when a resource is over-subscribed,
5857 so it's easy to tell. */
5858 rt->units[stage + cycle][unit]++;
5859 }
5860 }
5861
5862
5863 void
5864 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5865 {
5866 int i;
5867 int uses = (rt->opcode_num_units) (rt->data, opcode);
5868
5869 for (i = 0; i < uses; i++)
5870 {
5871 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5872 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5873 assert (rt->units[stage + cycle][unit] > 0);
5874 rt->units[stage + cycle][unit]--;
5875 }
5876 }
5877
5878
5879 /* Wrapper functions make parameterized resource reservation
5880 more convenient. */
5881
5882 int
5883 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5884 {
5885 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5886 return use->unit;
5887 }
5888
5889
5890 int
5891 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5892 {
5893 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5894 return use->stage;
5895 }
5896
5897
5898 /* Note that this function does not check issue constraints, but
5899 solely whether the hardware is available to execute the given
5900 instructions together. It also doesn't check if the tinsns
5901 write the same state, or access the same tieports. That is
5902 checked by check_t1_t2_reads_and_writes. */
5903
5904 static bfd_boolean
5905 resources_conflict (vliw_insn *vinsn)
5906 {
5907 int i;
5908 static resource_table *rt = NULL;
5909
5910 /* This is the most common case by far. Optimize it. */
5911 if (vinsn->num_slots == 1)
5912 return FALSE;
5913
5914 if (rt == NULL)
5915 {
5916 xtensa_isa isa = xtensa_default_isa;
5917 rt = new_resource_table
5918 (isa, xtensa_isa_num_pipe_stages (isa),
5919 xtensa_isa_num_funcUnits (isa),
5920 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5921 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5922 opcode_funcUnit_use_unit,
5923 opcode_funcUnit_use_stage);
5924 }
5925
5926 clear_resource_table (rt);
5927
5928 for (i = 0; i < vinsn->num_slots; i++)
5929 {
5930 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5931 return TRUE;
5932 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5933 }
5934
5935 return FALSE;
5936 }
5937
5938 \f
5939 /* finish_vinsn, emit_single_op and helper functions. */
5940
5941 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5942 static xtensa_format xg_find_narrowest_format (vliw_insn *);
5943 static void xg_assemble_vliw_tokens (vliw_insn *);
5944
5945
5946 /* We have reached the end of a bundle; emit into the frag. */
5947
5948 static void
5949 finish_vinsn (vliw_insn *vinsn)
5950 {
5951 IStack slotstack;
5952 int i;
5953 char *file_name;
5954 unsigned line;
5955
5956 if (find_vinsn_conflicts (vinsn))
5957 {
5958 xg_clear_vinsn (vinsn);
5959 return;
5960 }
5961
5962 /* First, find a format that works. */
5963 if (vinsn->format == XTENSA_UNDEFINED)
5964 vinsn->format = xg_find_narrowest_format (vinsn);
5965
5966 if (vinsn->format == XTENSA_UNDEFINED)
5967 {
5968 as_where (&file_name, &line);
5969 as_bad_where (file_name, line,
5970 _("couldn't find a valid instruction format"));
5971 fprintf (stderr, _(" ops were: "));
5972 for (i = 0; i < vinsn->num_slots; i++)
5973 fprintf (stderr, _(" %s;"),
5974 xtensa_opcode_name (xtensa_default_isa,
5975 vinsn->slots[i].opcode));
5976 fprintf (stderr, _("\n"));
5977 xg_clear_vinsn (vinsn);
5978 return;
5979 }
5980
5981 if (vinsn->num_slots
5982 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
5983 {
5984 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5985 xtensa_format_name (xtensa_default_isa, vinsn->format),
5986 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5987 vinsn->num_slots);
5988 xg_clear_vinsn (vinsn);
5989 return;
5990 }
5991
5992 if (resources_conflict (vinsn))
5993 {
5994 as_where (&file_name, &line);
5995 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
5996 fprintf (stderr, " ops were: ");
5997 for (i = 0; i < vinsn->num_slots; i++)
5998 fprintf (stderr, " %s;",
5999 xtensa_opcode_name (xtensa_default_isa,
6000 vinsn->slots[i].opcode));
6001 fprintf (stderr, "\n");
6002 xg_clear_vinsn (vinsn);
6003 return;
6004 }
6005
6006 for (i = 0; i < vinsn->num_slots; i++)
6007 {
6008 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6009 {
6010 symbolS *lit_sym = NULL;
6011 int j;
6012 bfd_boolean e = FALSE;
6013 bfd_boolean saved_density = density_supported;
6014
6015 /* We don't want to narrow ops inside multi-slot bundles. */
6016 if (vinsn->num_slots > 1)
6017 density_supported = FALSE;
6018
6019 istack_init (&slotstack);
6020 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6021 {
6022 vinsn->slots[i].opcode =
6023 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6024 vinsn->format, i);
6025 vinsn->slots[i].ntok = 0;
6026 }
6027
6028 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6029 {
6030 e = TRUE;
6031 continue;
6032 }
6033
6034 density_supported = saved_density;
6035
6036 if (e)
6037 {
6038 xg_clear_vinsn (vinsn);
6039 return;
6040 }
6041
6042 for (j = 0; j < slotstack.ninsn; j++)
6043 {
6044 TInsn *insn = &slotstack.insn[j];
6045 if (insn->insn_type == ITYPE_LITERAL)
6046 {
6047 assert (lit_sym == NULL);
6048 lit_sym = xg_assemble_literal (insn);
6049 }
6050 else
6051 {
6052 assert (insn->insn_type == ITYPE_INSN);
6053 if (lit_sym)
6054 xg_resolve_literals (insn, lit_sym);
6055 if (j != slotstack.ninsn - 1)
6056 emit_single_op (insn);
6057 }
6058 }
6059
6060 if (vinsn->num_slots > 1)
6061 {
6062 if (opcode_fits_format_slot
6063 (slotstack.insn[slotstack.ninsn - 1].opcode,
6064 vinsn->format, i))
6065 {
6066 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6067 }
6068 else
6069 {
6070 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6071 if (vinsn->format == XTENSA_UNDEFINED)
6072 vinsn->slots[i].opcode = xtensa_nop_opcode;
6073 else
6074 vinsn->slots[i].opcode
6075 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6076 vinsn->format, i);
6077
6078 vinsn->slots[i].ntok = 0;
6079 }
6080 }
6081 else
6082 {
6083 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6084 vinsn->format = XTENSA_UNDEFINED;
6085 }
6086 }
6087 }
6088
6089 /* Now check resource conflicts on the modified bundle. */
6090 if (resources_conflict (vinsn))
6091 {
6092 as_where (&file_name, &line);
6093 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6094 fprintf (stderr, " ops were: ");
6095 for (i = 0; i < vinsn->num_slots; i++)
6096 fprintf (stderr, " %s;",
6097 xtensa_opcode_name (xtensa_default_isa,
6098 vinsn->slots[i].opcode));
6099 fprintf (stderr, "\n");
6100 xg_clear_vinsn (vinsn);
6101 return;
6102 }
6103
6104 /* First, find a format that works. */
6105 if (vinsn->format == XTENSA_UNDEFINED)
6106 vinsn->format = xg_find_narrowest_format (vinsn);
6107
6108 xg_assemble_vliw_tokens (vinsn);
6109
6110 xg_clear_vinsn (vinsn);
6111 }
6112
6113
6114 /* Given an vliw instruction, what conflicts are there in register
6115 usage and in writes to states and queues?
6116
6117 This function does two things:
6118 1. Reports an error when a vinsn contains illegal combinations
6119 of writes to registers states or queues.
6120 2. Marks individual tinsns as not relaxable if the combination
6121 contains antidependencies.
6122
6123 Job 2 handles things like swap semantics in instructions that need
6124 to be relaxed. For example,
6125
6126 addi a0, a1, 100000
6127
6128 normally would be relaxed to
6129
6130 l32r a0, some_label
6131 add a0, a1, a0
6132
6133 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6134
6135 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6136
6137 then we can't relax it into
6138
6139 l32r a0, some_label
6140 { add a0, a1, a0 ; add a2, a0, a4 ; }
6141
6142 because the value of a0 is trashed before the second add can read it. */
6143
6144 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6145
6146 static bfd_boolean
6147 find_vinsn_conflicts (vliw_insn *vinsn)
6148 {
6149 int i, j;
6150 int branches = 0;
6151 xtensa_isa isa = xtensa_default_isa;
6152
6153 assert (!past_xtensa_end);
6154
6155 for (i = 0 ; i < vinsn->num_slots; i++)
6156 {
6157 TInsn *op1 = &vinsn->slots[i];
6158 if (op1->is_specific_opcode)
6159 op1->keep_wide = TRUE;
6160 else
6161 op1->keep_wide = FALSE;
6162 }
6163
6164 for (i = 0 ; i < vinsn->num_slots; i++)
6165 {
6166 TInsn *op1 = &vinsn->slots[i];
6167
6168 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6169 branches++;
6170
6171 for (j = 0; j < vinsn->num_slots; j++)
6172 {
6173 if (i != j)
6174 {
6175 TInsn *op2 = &vinsn->slots[j];
6176 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6177 switch (conflict_type)
6178 {
6179 case 'c':
6180 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6181 xtensa_opcode_name (isa, op1->opcode), i,
6182 xtensa_opcode_name (isa, op2->opcode), j);
6183 return TRUE;
6184 case 'd':
6185 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6186 xtensa_opcode_name (isa, op1->opcode), i,
6187 xtensa_opcode_name (isa, op2->opcode), j);
6188 return TRUE;
6189 case 'e':
6190 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6191 xtensa_opcode_name (isa, op1->opcode), i,
6192 xtensa_opcode_name (isa, op2->opcode), j);
6193 return TRUE;
6194 case 'f':
6195 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6196 xtensa_opcode_name (isa, op1->opcode), i,
6197 xtensa_opcode_name (isa, op2->opcode), j);
6198 return TRUE;
6199 default:
6200 /* Everything is OK. */
6201 break;
6202 }
6203 op2->is_specific_opcode = (op2->is_specific_opcode
6204 || conflict_type == 'a');
6205 }
6206 }
6207 }
6208
6209 if (branches > 1)
6210 {
6211 as_bad (_("multiple branches or jumps in the same bundle"));
6212 return TRUE;
6213 }
6214
6215 return FALSE;
6216 }
6217
6218
6219 /* Check how the state used by t1 and t2 relate.
6220 Cases found are:
6221
6222 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6223 case B: no relationship between what is read and written (both could
6224 read the same reg though)
6225 case C: t1 writes a register t2 writes (a register conflict within a
6226 bundle)
6227 case D: t1 writes a state that t2 also writes
6228 case E: t1 writes a tie queue that t2 also writes
6229 case F: two volatile queue accesses
6230 */
6231
6232 static char
6233 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6234 {
6235 xtensa_isa isa = xtensa_default_isa;
6236 xtensa_regfile t1_regfile, t2_regfile;
6237 int t1_reg, t2_reg;
6238 int t1_base_reg, t1_last_reg;
6239 int t2_base_reg, t2_last_reg;
6240 char t1_inout, t2_inout;
6241 int i, j;
6242 char conflict = 'b';
6243 int t1_states;
6244 int t2_states;
6245 int t1_interfaces;
6246 int t2_interfaces;
6247 bfd_boolean t1_volatile = FALSE;
6248 bfd_boolean t2_volatile = FALSE;
6249
6250 /* Check registers. */
6251 for (j = 0; j < t2->ntok; j++)
6252 {
6253 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6254 continue;
6255
6256 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6257 t2_base_reg = t2->tok[j].X_add_number;
6258 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6259
6260 for (i = 0; i < t1->ntok; i++)
6261 {
6262 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6263 continue;
6264
6265 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6266
6267 if (t1_regfile != t2_regfile)
6268 continue;
6269
6270 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6271 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6272
6273 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6274 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6275 {
6276 if (t1_inout == 'm' || t1_inout == 'o'
6277 || t2_inout == 'm' || t2_inout == 'o')
6278 {
6279 conflict = 'a';
6280 continue;
6281 }
6282 }
6283
6284 t1_base_reg = t1->tok[i].X_add_number;
6285 t1_last_reg = (t1_base_reg
6286 + xtensa_operand_num_regs (isa, t1->opcode, i));
6287
6288 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6289 {
6290 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6291 {
6292 if (t1_reg != t2_reg)
6293 continue;
6294
6295 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6296 {
6297 conflict = 'a';
6298 continue;
6299 }
6300
6301 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6302 {
6303 conflict = 'a';
6304 continue;
6305 }
6306
6307 if (t1_inout != 'i' && t2_inout != 'i')
6308 return 'c';
6309 }
6310 }
6311 }
6312 }
6313
6314 /* Check states. */
6315 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6316 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6317 for (j = 0; j < t2_states; j++)
6318 {
6319 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6320 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6321 for (i = 0; i < t1_states; i++)
6322 {
6323 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6324 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6325 if (t1_so != t2_so)
6326 continue;
6327
6328 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6329 {
6330 conflict = 'a';
6331 continue;
6332 }
6333
6334 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6335 {
6336 conflict = 'a';
6337 continue;
6338 }
6339
6340 if (t1_inout != 'i' && t2_inout != 'i')
6341 return 'd';
6342 }
6343 }
6344
6345 /* Check tieports. */
6346 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6347 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6348 for (j = 0; j < t2_interfaces; j++)
6349 {
6350 xtensa_interface t2_int
6351 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6352 int t2_class = xtensa_interface_class_id (isa, t2_int);
6353
6354 t2_inout = xtensa_interface_inout (isa, t2_int);
6355 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6356 t2_volatile = TRUE;
6357
6358 for (i = 0; i < t1_interfaces; i++)
6359 {
6360 xtensa_interface t1_int
6361 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6362 int t1_class = xtensa_interface_class_id (isa, t1_int);
6363
6364 t1_inout = xtensa_interface_inout (isa, t1_int);
6365 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6366 t1_volatile = TRUE;
6367
6368 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6369 return 'f';
6370
6371 if (t1_int != t2_int)
6372 continue;
6373
6374 if (t2_inout == 'i' && t1_inout == 'o')
6375 {
6376 conflict = 'a';
6377 continue;
6378 }
6379
6380 if (t1_inout == 'i' && t2_inout == 'o')
6381 {
6382 conflict = 'a';
6383 continue;
6384 }
6385
6386 if (t1_inout != 'i' && t2_inout != 'i')
6387 return 'e';
6388 }
6389 }
6390
6391 return conflict;
6392 }
6393
6394
6395 static xtensa_format
6396 xg_find_narrowest_format (vliw_insn *vinsn)
6397 {
6398 /* Right now we assume that the ops within the vinsn are properly
6399 ordered for the slots that the programmer wanted them in. In
6400 other words, we don't rearrange the ops in hopes of finding a
6401 better format. The scheduler handles that. */
6402
6403 xtensa_isa isa = xtensa_default_isa;
6404 xtensa_format format;
6405 vliw_insn v_copy = *vinsn;
6406 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6407
6408 if (vinsn->num_slots == 1)
6409 return xg_get_single_format (vinsn->slots[0].opcode);
6410
6411 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6412 {
6413 v_copy = *vinsn;
6414 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6415 {
6416 int slot;
6417 int fit = 0;
6418 for (slot = 0; slot < v_copy.num_slots; slot++)
6419 {
6420 if (v_copy.slots[slot].opcode == nop_opcode)
6421 {
6422 v_copy.slots[slot].opcode =
6423 xtensa_format_slot_nop_opcode (isa, format, slot);
6424 v_copy.slots[slot].ntok = 0;
6425 }
6426
6427 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6428 format, slot))
6429 fit++;
6430 else if (v_copy.num_slots > 1)
6431 {
6432 TInsn widened;
6433 /* Try the widened version. */
6434 if (!v_copy.slots[slot].keep_wide
6435 && !v_copy.slots[slot].is_specific_opcode
6436 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6437 &widened, TRUE)
6438 && opcode_fits_format_slot (widened.opcode,
6439 format, slot))
6440 {
6441 v_copy.slots[slot] = widened;
6442 fit++;
6443 }
6444 }
6445 }
6446 if (fit == v_copy.num_slots)
6447 {
6448 *vinsn = v_copy;
6449 xtensa_format_encode (isa, format, vinsn->insnbuf);
6450 vinsn->format = format;
6451 break;
6452 }
6453 }
6454 }
6455
6456 if (format == xtensa_isa_num_formats (isa))
6457 return XTENSA_UNDEFINED;
6458
6459 return format;
6460 }
6461
6462
6463 /* Return the additional space needed in a frag
6464 for possible relaxations of any ops in a VLIW insn.
6465 Also fill out the relaxations that might be required of
6466 each tinsn in the vinsn. */
6467
6468 static int
6469 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6470 {
6471 bfd_boolean finish_frag = FALSE;
6472 int extra_space = 0;
6473 int slot;
6474
6475 for (slot = 0; slot < vinsn->num_slots; slot++)
6476 {
6477 TInsn *tinsn = &vinsn->slots[slot];
6478 if (!tinsn_has_symbolic_operands (tinsn))
6479 {
6480 /* A narrow instruction could be widened later to help
6481 alignment issues. */
6482 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6483 && !tinsn->is_specific_opcode
6484 && vinsn->num_slots == 1)
6485 {
6486 /* Difference in bytes between narrow and wide insns... */
6487 extra_space += 1;
6488 tinsn->subtype = RELAX_NARROW;
6489 }
6490 }
6491 else
6492 {
6493 if (workaround_b_j_loop_end
6494 && tinsn->opcode == xtensa_jx_opcode
6495 && use_transform ())
6496 {
6497 /* Add 2 of these. */
6498 extra_space += 3; /* for the nop size */
6499 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6500 }
6501
6502 /* Need to assemble it with space for the relocation. */
6503 if (xg_is_relaxable_insn (tinsn, 0)
6504 && !tinsn->is_specific_opcode)
6505 {
6506 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6507 int max_literal_size =
6508 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6509
6510 tinsn->literal_space = max_literal_size;
6511
6512 tinsn->subtype = RELAX_IMMED;
6513 extra_space += max_size;
6514 }
6515 else
6516 {
6517 /* A fix record will be added for this instruction prior
6518 to relaxation, so make it end the frag. */
6519 finish_frag = TRUE;
6520 }
6521 }
6522 }
6523 *pfinish_frag = finish_frag;
6524 return extra_space;
6525 }
6526
6527
6528 static void
6529 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6530 {
6531 xtensa_isa isa = xtensa_default_isa;
6532 int slot, chosen_slot;
6533
6534 vinsn->format = xg_get_single_format (tinsn->opcode);
6535 assert (vinsn->format != XTENSA_UNDEFINED);
6536 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6537
6538 chosen_slot = xg_get_single_slot (tinsn->opcode);
6539 for (slot = 0; slot < vinsn->num_slots; slot++)
6540 {
6541 if (slot == chosen_slot)
6542 vinsn->slots[slot] = *tinsn;
6543 else
6544 {
6545 vinsn->slots[slot].opcode =
6546 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6547 vinsn->slots[slot].ntok = 0;
6548 vinsn->slots[slot].insn_type = ITYPE_INSN;
6549 }
6550 }
6551 }
6552
6553
6554 static bfd_boolean
6555 emit_single_op (TInsn *orig_insn)
6556 {
6557 int i;
6558 IStack istack; /* put instructions into here */
6559 symbolS *lit_sym = NULL;
6560 symbolS *label_sym = NULL;
6561
6562 istack_init (&istack);
6563
6564 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6565 Because the scheduling and bundling characteristics of movi and
6566 l32r or const16 are so different, we can do much better if we relax
6567 it prior to scheduling and bundling, rather than after. */
6568 if ((orig_insn->opcode == xtensa_movi_opcode
6569 || orig_insn->opcode == xtensa_movi_n_opcode)
6570 && !cur_vinsn.inside_bundle
6571 && (orig_insn->tok[1].X_op == O_symbol
6572 || orig_insn->tok[1].X_op == O_pltrel)
6573 && !orig_insn->is_specific_opcode && use_transform ())
6574 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6575 else
6576 if (xg_expand_assembly_insn (&istack, orig_insn))
6577 return TRUE;
6578
6579 for (i = 0; i < istack.ninsn; i++)
6580 {
6581 TInsn *insn = &istack.insn[i];
6582 switch (insn->insn_type)
6583 {
6584 case ITYPE_LITERAL:
6585 assert (lit_sym == NULL);
6586 lit_sym = xg_assemble_literal (insn);
6587 break;
6588 case ITYPE_LABEL:
6589 {
6590 static int relaxed_sym_idx = 0;
6591 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6592 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6593 colon (label);
6594 assert (label_sym == NULL);
6595 label_sym = symbol_find_or_make (label);
6596 assert (label_sym);
6597 free (label);
6598 }
6599 break;
6600 case ITYPE_INSN:
6601 {
6602 vliw_insn v;
6603 if (lit_sym)
6604 xg_resolve_literals (insn, lit_sym);
6605 if (label_sym)
6606 xg_resolve_labels (insn, label_sym);
6607 xg_init_vinsn (&v);
6608 bundle_tinsn (insn, &v);
6609 finish_vinsn (&v);
6610 xg_free_vinsn (&v);
6611 }
6612 break;
6613 default:
6614 assert (0);
6615 break;
6616 }
6617 }
6618 return FALSE;
6619 }
6620
6621
6622 static int
6623 total_frag_text_expansion (fragS *fragP)
6624 {
6625 int slot;
6626 int total_expansion = 0;
6627
6628 for (slot = 0; slot < MAX_SLOTS; slot++)
6629 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6630
6631 return total_expansion;
6632 }
6633
6634
6635 /* Emit a vliw instruction to the current fragment. */
6636
6637 static void
6638 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6639 {
6640 bfd_boolean finish_frag;
6641 bfd_boolean is_jump = FALSE;
6642 bfd_boolean is_branch = FALSE;
6643 xtensa_isa isa = xtensa_default_isa;
6644 int i;
6645 int insn_size;
6646 int extra_space;
6647 char *f = NULL;
6648 int slot;
6649 unsigned current_line, best_linenum;
6650 char *current_file;
6651
6652 best_linenum = UINT_MAX;
6653
6654 if (generating_literals)
6655 {
6656 static int reported = 0;
6657 if (reported < 4)
6658 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6659 _("cannot assemble into a literal fragment"));
6660 if (reported == 3)
6661 as_bad (_("..."));
6662 reported++;
6663 return;
6664 }
6665
6666 if (frag_now_fix () != 0
6667 && (! frag_now->tc_frag_data.is_insn
6668 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6669 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6670 || (directive_state[directive_longcalls]
6671 != frag_now->tc_frag_data.use_longcalls)
6672 || (directive_state[directive_absolute_literals]
6673 != frag_now->tc_frag_data.use_absolute_literals)))
6674 {
6675 frag_wane (frag_now);
6676 frag_new (0);
6677 xtensa_set_frag_assembly_state (frag_now);
6678 }
6679
6680 if (workaround_a0_b_retw
6681 && vinsn->num_slots == 1
6682 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6683 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6684 && use_transform ())
6685 {
6686 has_a0_b_retw = TRUE;
6687
6688 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6689 After the first assembly pass we will check all of them and
6690 add a nop if needed. */
6691 frag_now->tc_frag_data.is_insn = TRUE;
6692 frag_var (rs_machine_dependent, 4, 4,
6693 RELAX_ADD_NOP_IF_A0_B_RETW,
6694 frag_now->fr_symbol,
6695 frag_now->fr_offset,
6696 NULL);
6697 xtensa_set_frag_assembly_state (frag_now);
6698 frag_now->tc_frag_data.is_insn = TRUE;
6699 frag_var (rs_machine_dependent, 4, 4,
6700 RELAX_ADD_NOP_IF_A0_B_RETW,
6701 frag_now->fr_symbol,
6702 frag_now->fr_offset,
6703 NULL);
6704 xtensa_set_frag_assembly_state (frag_now);
6705 }
6706
6707 for (i = 0; i < vinsn->num_slots; i++)
6708 {
6709 /* See if the instruction implies an aligned section. */
6710 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6711 record_alignment (now_seg, 2);
6712
6713 /* Also determine the best line number for debug info. */
6714 best_linenum = vinsn->slots[i].linenum < best_linenum
6715 ? vinsn->slots[i].linenum : best_linenum;
6716 }
6717
6718 /* Special cases for instructions that force an alignment... */
6719 /* None of these opcodes are bundle-able. */
6720 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6721 {
6722 int max_fill;
6723
6724 /* Remember the symbol that marks the end of the loop in the frag
6725 that marks the start of the loop. This way we can easily find
6726 the end of the loop at the beginning, without adding special code
6727 to mark the loop instructions themselves. */
6728 symbolS *target_sym = NULL;
6729 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6730 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6731
6732 xtensa_set_frag_assembly_state (frag_now);
6733 frag_now->tc_frag_data.is_insn = TRUE;
6734
6735 max_fill = get_text_align_max_fill_size
6736 (get_text_align_power (xtensa_fetch_width),
6737 TRUE, frag_now->tc_frag_data.is_no_density);
6738
6739 if (use_transform ())
6740 frag_var (rs_machine_dependent, max_fill, max_fill,
6741 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6742 else
6743 frag_var (rs_machine_dependent, 0, 0,
6744 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
6745 xtensa_set_frag_assembly_state (frag_now);
6746
6747 xtensa_move_labels (frag_now, 0, FALSE);
6748 }
6749
6750 if (vinsn->slots[0].opcode == xtensa_entry_opcode
6751 && !vinsn->slots[0].is_specific_opcode)
6752 {
6753 xtensa_mark_literal_pool_location ();
6754 xtensa_move_labels (frag_now, 0, TRUE);
6755 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6756 }
6757
6758 if (vinsn->num_slots == 1)
6759 {
6760 if (workaround_a0_b_retw && use_transform ())
6761 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6762 is_register_writer (&vinsn->slots[0], "a", 0));
6763
6764 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6765 is_bad_loopend_opcode (&vinsn->slots[0]));
6766 }
6767 else
6768 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6769
6770 insn_size = xtensa_format_length (isa, vinsn->format);
6771
6772 extra_space = relaxation_requirements (vinsn, &finish_frag);
6773
6774 /* vinsn_to_insnbuf will produce the error. */
6775 if (vinsn->format != XTENSA_UNDEFINED)
6776 {
6777 f = frag_more (insn_size + extra_space);
6778 xtensa_set_frag_assembly_state (frag_now);
6779 frag_now->tc_frag_data.is_insn = TRUE;
6780 }
6781
6782 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
6783 if (vinsn->format == XTENSA_UNDEFINED)
6784 return;
6785
6786 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
6787
6788 /* Temporarily set the logical line number to the one we want to appear
6789 in the debug information. */
6790 as_where (&current_file, &current_line);
6791 new_logical_line (current_file, best_linenum);
6792 dwarf2_emit_insn (insn_size + extra_space);
6793 new_logical_line (current_file, current_line);
6794
6795 for (slot = 0; slot < vinsn->num_slots; slot++)
6796 {
6797 TInsn *tinsn = &vinsn->slots[slot];
6798 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
6799 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6800 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
6801 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6802 if (tinsn->literal_space != 0)
6803 xg_assemble_literal_space (tinsn->literal_space, slot);
6804
6805 if (tinsn->subtype == RELAX_NARROW)
6806 assert (vinsn->num_slots == 1);
6807 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6808 is_jump = TRUE;
6809 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6810 is_branch = TRUE;
6811
6812 if (tinsn->subtype || tinsn->symbol || tinsn->offset
6813 || tinsn->literal_frag || is_jump || is_branch)
6814 finish_frag = TRUE;
6815 }
6816
6817 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6818 frag_now->tc_frag_data.is_specific_opcode = TRUE;
6819
6820 if (finish_frag)
6821 {
6822 frag_variant (rs_machine_dependent,
6823 extra_space, extra_space, RELAX_SLOTS,
6824 frag_now->fr_symbol, frag_now->fr_offset, f);
6825 xtensa_set_frag_assembly_state (frag_now);
6826 }
6827
6828 /* Special cases for loops:
6829 close_loop_end should be inserted AFTER short_loop.
6830 Make sure that CLOSE loops are processed BEFORE short_loops
6831 when converting them. */
6832
6833 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6834 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
6835 && !vinsn->slots[0].is_specific_opcode)
6836 {
6837 if (workaround_short_loop && use_transform ())
6838 {
6839 maybe_has_short_loop = TRUE;
6840 frag_now->tc_frag_data.is_insn = TRUE;
6841 frag_var (rs_machine_dependent, 4, 4,
6842 RELAX_ADD_NOP_IF_SHORT_LOOP,
6843 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6844 frag_now->tc_frag_data.is_insn = TRUE;
6845 frag_var (rs_machine_dependent, 4, 4,
6846 RELAX_ADD_NOP_IF_SHORT_LOOP,
6847 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6848 }
6849
6850 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6851 loop at least 12 bytes away from another loop's end. */
6852 if (workaround_close_loop_end && use_transform ())
6853 {
6854 maybe_has_close_loop_end = TRUE;
6855 frag_now->tc_frag_data.is_insn = TRUE;
6856 frag_var (rs_machine_dependent, 12, 12,
6857 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6858 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6859 }
6860 }
6861
6862 if (use_transform ())
6863 {
6864 if (is_jump)
6865 {
6866 assert (finish_frag);
6867 frag_var (rs_machine_dependent,
6868 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6869 RELAX_UNREACHABLE,
6870 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6871 xtensa_set_frag_assembly_state (frag_now);
6872 }
6873 else if (is_branch && do_align_targets ())
6874 {
6875 assert (finish_frag);
6876 frag_var (rs_machine_dependent,
6877 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6878 RELAX_MAYBE_UNREACHABLE,
6879 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6880 xtensa_set_frag_assembly_state (frag_now);
6881 frag_var (rs_machine_dependent,
6882 0, 0,
6883 RELAX_MAYBE_DESIRE_ALIGN,
6884 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6885 xtensa_set_frag_assembly_state (frag_now);
6886 }
6887 }
6888
6889 /* Now, if the original opcode was a call... */
6890 if (do_align_targets ()
6891 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6892 {
6893 float freq = get_subseg_total_freq (now_seg, now_subseg);
6894 frag_now->tc_frag_data.is_insn = TRUE;
6895 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6896 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6897 xtensa_set_frag_assembly_state (frag_now);
6898 }
6899
6900 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6901 {
6902 frag_wane (frag_now);
6903 frag_new (0);
6904 xtensa_set_frag_assembly_state (frag_now);
6905 }
6906 }
6907
6908 \f
6909 /* xtensa_end and helper functions. */
6910
6911 static void xtensa_cleanup_align_frags (void);
6912 static void xtensa_fix_target_frags (void);
6913 static void xtensa_mark_narrow_branches (void);
6914 static void xtensa_mark_zcl_first_insns (void);
6915 static void xtensa_fix_a0_b_retw_frags (void);
6916 static void xtensa_fix_b_j_loop_end_frags (void);
6917 static void xtensa_fix_close_loop_end_frags (void);
6918 static void xtensa_fix_short_loop_frags (void);
6919 static void xtensa_sanity_check (void);
6920
6921 void
6922 xtensa_end (void)
6923 {
6924 directive_balance ();
6925 xtensa_flush_pending_output ();
6926
6927 past_xtensa_end = TRUE;
6928
6929 xtensa_move_literals ();
6930
6931 xtensa_reorder_segments ();
6932 xtensa_cleanup_align_frags ();
6933 xtensa_fix_target_frags ();
6934 if (workaround_a0_b_retw && has_a0_b_retw)
6935 xtensa_fix_a0_b_retw_frags ();
6936 if (workaround_b_j_loop_end)
6937 xtensa_fix_b_j_loop_end_frags ();
6938
6939 /* "close_loop_end" should be processed BEFORE "short_loop". */
6940 if (workaround_close_loop_end && maybe_has_close_loop_end)
6941 xtensa_fix_close_loop_end_frags ();
6942
6943 if (workaround_short_loop && maybe_has_short_loop)
6944 xtensa_fix_short_loop_frags ();
6945 if (align_targets)
6946 xtensa_mark_narrow_branches ();
6947 xtensa_mark_zcl_first_insns ();
6948
6949 xtensa_sanity_check ();
6950 }
6951
6952
6953 static void
6954 xtensa_cleanup_align_frags (void)
6955 {
6956 frchainS *frchP;
6957 asection *s;
6958
6959 for (s = stdoutput->sections; s; s = s->next)
6960 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
6961 {
6962 fragS *fragP;
6963 /* Walk over all of the fragments in a subsection. */
6964 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6965 {
6966 if ((fragP->fr_type == rs_align
6967 || fragP->fr_type == rs_align_code
6968 || (fragP->fr_type == rs_machine_dependent
6969 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6970 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6971 && fragP->fr_fix == 0)
6972 {
6973 fragS *next = fragP->fr_next;
6974
6975 while (next
6976 && next->fr_fix == 0
6977 && next->fr_type == rs_machine_dependent
6978 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6979 {
6980 frag_wane (next);
6981 next = next->fr_next;
6982 }
6983 }
6984 /* If we don't widen branch targets, then they
6985 will be easier to align. */
6986 if (fragP->tc_frag_data.is_branch_target
6987 && fragP->fr_opcode == fragP->fr_literal
6988 && fragP->fr_type == rs_machine_dependent
6989 && fragP->fr_subtype == RELAX_SLOTS
6990 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6991 frag_wane (fragP);
6992 if (fragP->fr_type == rs_machine_dependent
6993 && fragP->fr_subtype == RELAX_UNREACHABLE)
6994 fragP->tc_frag_data.is_unreachable = TRUE;
6995 }
6996 }
6997 }
6998
6999
7000 /* Re-process all of the fragments looking to convert all of the
7001 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7002 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7003 Otherwise, convert to a .fill 0. */
7004
7005 static void
7006 xtensa_fix_target_frags (void)
7007 {
7008 frchainS *frchP;
7009 asection *s;
7010
7011 /* When this routine is called, all of the subsections are still intact
7012 so we walk over subsections instead of sections. */
7013 for (s = stdoutput->sections; s; s = s->next)
7014 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7015 {
7016 fragS *fragP;
7017
7018 /* Walk over all of the fragments in a subsection. */
7019 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7020 {
7021 if (fragP->fr_type == rs_machine_dependent
7022 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7023 {
7024 if (next_frag_is_branch_target (fragP))
7025 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7026 else
7027 frag_wane (fragP);
7028 }
7029 }
7030 }
7031 }
7032
7033
7034 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7035
7036 static void
7037 xtensa_mark_narrow_branches (void)
7038 {
7039 frchainS *frchP;
7040 asection *s;
7041
7042 for (s = stdoutput->sections; s; s = s->next)
7043 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7044 {
7045 fragS *fragP;
7046 /* Walk over all of the fragments in a subsection. */
7047 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7048 {
7049 if (fragP->fr_type == rs_machine_dependent
7050 && fragP->fr_subtype == RELAX_SLOTS
7051 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7052 {
7053 vliw_insn vinsn;
7054
7055 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7056 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7057
7058 if (vinsn.num_slots == 1
7059 && xtensa_opcode_is_branch (xtensa_default_isa,
7060 vinsn.slots[0].opcode) == 1
7061 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7062 && is_narrow_branch_guaranteed_in_range (fragP,
7063 &vinsn.slots[0]))
7064 {
7065 fragP->fr_subtype = RELAX_SLOTS;
7066 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7067 fragP->tc_frag_data.is_aligning_branch = 1;
7068 }
7069 }
7070 }
7071 }
7072 }
7073
7074
7075 /* A branch is typically widened only when its target is out of
7076 range. However, we would like to widen them to align a subsequent
7077 branch target when possible.
7078
7079 Because the branch relaxation code is so convoluted, the optimal solution
7080 (combining the two cases) is difficult to get right in all circumstances.
7081 We therefore go with an "almost as good" solution, where we only
7082 use for alignment narrow branches that definitely will not expand to a
7083 jump and a branch. These functions find and mark these cases. */
7084
7085 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7086 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7087 We start counting beginning with the frag after the 2-byte branch, so the
7088 maximum offset is (4 - 2) + 63 = 65. */
7089 #define MAX_IMMED6 65
7090
7091 static offsetT unrelaxed_frag_max_size (fragS *);
7092
7093 static bfd_boolean
7094 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7095 {
7096 const expressionS *expr = &tinsn->tok[1];
7097 symbolS *symbolP = expr->X_add_symbol;
7098 offsetT max_distance = expr->X_add_number;
7099 fragS *target_frag;
7100
7101 if (expr->X_op != O_symbol)
7102 return FALSE;
7103
7104 target_frag = symbol_get_frag (symbolP);
7105
7106 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7107 if (is_branch_jmp_to_next (tinsn, fragP))
7108 return FALSE;
7109
7110 /* The branch doesn't branch over it's own frag,
7111 but over the subsequent ones. */
7112 fragP = fragP->fr_next;
7113 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7114 {
7115 max_distance += unrelaxed_frag_max_size (fragP);
7116 fragP = fragP->fr_next;
7117 }
7118 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7119 return TRUE;
7120 return FALSE;
7121 }
7122
7123
7124 static void
7125 xtensa_mark_zcl_first_insns (void)
7126 {
7127 frchainS *frchP;
7128 asection *s;
7129
7130 for (s = stdoutput->sections; s; s = s->next)
7131 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7132 {
7133 fragS *fragP;
7134 /* Walk over all of the fragments in a subsection. */
7135 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7136 {
7137 if (fragP->fr_type == rs_machine_dependent
7138 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7139 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7140 {
7141 /* Find the loop frag. */
7142 fragS *targ_frag = next_non_empty_frag (fragP);
7143 /* Find the first insn frag. */
7144 targ_frag = next_non_empty_frag (targ_frag);
7145
7146 /* Of course, sometimes (mostly for toy test cases) a
7147 zero-cost loop instruction is the last in a section. */
7148 if (targ_frag)
7149 {
7150 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7151 /* Do not widen a frag that is the first instruction of a
7152 zero-cost loop. It makes that loop harder to align. */
7153 if (targ_frag->fr_type == rs_machine_dependent
7154 && targ_frag->fr_subtype == RELAX_SLOTS
7155 && (targ_frag->tc_frag_data.slot_subtypes[0]
7156 == RELAX_NARROW))
7157 {
7158 if (targ_frag->tc_frag_data.is_aligning_branch)
7159 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7160 else
7161 {
7162 frag_wane (targ_frag);
7163 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7164 }
7165 }
7166 }
7167 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7168 frag_wane (fragP);
7169 }
7170 }
7171 }
7172 }
7173
7174
7175 /* Re-process all of the fragments looking to convert all of the
7176 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7177 conditional branch or a retw/retw.n, convert this frag to one that
7178 will generate a NOP. In any case close it off with a .fill 0. */
7179
7180 static bfd_boolean next_instrs_are_b_retw (fragS *);
7181
7182 static void
7183 xtensa_fix_a0_b_retw_frags (void)
7184 {
7185 frchainS *frchP;
7186 asection *s;
7187
7188 /* When this routine is called, all of the subsections are still intact
7189 so we walk over subsections instead of sections. */
7190 for (s = stdoutput->sections; s; s = s->next)
7191 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7192 {
7193 fragS *fragP;
7194
7195 /* Walk over all of the fragments in a subsection. */
7196 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7197 {
7198 if (fragP->fr_type == rs_machine_dependent
7199 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7200 {
7201 if (next_instrs_are_b_retw (fragP))
7202 {
7203 if (fragP->tc_frag_data.is_no_transform)
7204 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7205 else
7206 relax_frag_add_nop (fragP);
7207 }
7208 frag_wane (fragP);
7209 }
7210 }
7211 }
7212 }
7213
7214
7215 static bfd_boolean
7216 next_instrs_are_b_retw (fragS *fragP)
7217 {
7218 xtensa_opcode opcode;
7219 xtensa_format fmt;
7220 const fragS *next_fragP = next_non_empty_frag (fragP);
7221 static xtensa_insnbuf insnbuf = NULL;
7222 static xtensa_insnbuf slotbuf = NULL;
7223 xtensa_isa isa = xtensa_default_isa;
7224 int offset = 0;
7225 int slot;
7226 bfd_boolean branch_seen = FALSE;
7227
7228 if (!insnbuf)
7229 {
7230 insnbuf = xtensa_insnbuf_alloc (isa);
7231 slotbuf = xtensa_insnbuf_alloc (isa);
7232 }
7233
7234 if (next_fragP == NULL)
7235 return FALSE;
7236
7237 /* Check for the conditional branch. */
7238 xtensa_insnbuf_from_chars
7239 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7240 fmt = xtensa_format_decode (isa, insnbuf);
7241 if (fmt == XTENSA_UNDEFINED)
7242 return FALSE;
7243
7244 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7245 {
7246 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7247 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7248
7249 branch_seen = (branch_seen
7250 || xtensa_opcode_is_branch (isa, opcode) == 1);
7251 }
7252
7253 if (!branch_seen)
7254 return FALSE;
7255
7256 offset += xtensa_format_length (isa, fmt);
7257 if (offset == next_fragP->fr_fix)
7258 {
7259 next_fragP = next_non_empty_frag (next_fragP);
7260 offset = 0;
7261 }
7262
7263 if (next_fragP == NULL)
7264 return FALSE;
7265
7266 /* Check for the retw/retw.n. */
7267 xtensa_insnbuf_from_chars
7268 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7269 fmt = xtensa_format_decode (isa, insnbuf);
7270
7271 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7272 have no problems. */
7273 if (fmt == XTENSA_UNDEFINED
7274 || xtensa_format_num_slots (isa, fmt) != 1)
7275 return FALSE;
7276
7277 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7278 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7279
7280 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7281 return TRUE;
7282
7283 return FALSE;
7284 }
7285
7286
7287 /* Re-process all of the fragments looking to convert all of the
7288 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7289 loop end label, convert this frag to one that will generate a NOP.
7290 In any case close it off with a .fill 0. */
7291
7292 static bfd_boolean next_instr_is_loop_end (fragS *);
7293
7294 static void
7295 xtensa_fix_b_j_loop_end_frags (void)
7296 {
7297 frchainS *frchP;
7298 asection *s;
7299
7300 /* When this routine is called, all of the subsections are still intact
7301 so we walk over subsections instead of sections. */
7302 for (s = stdoutput->sections; s; s = s->next)
7303 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7304 {
7305 fragS *fragP;
7306
7307 /* Walk over all of the fragments in a subsection. */
7308 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7309 {
7310 if (fragP->fr_type == rs_machine_dependent
7311 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7312 {
7313 if (next_instr_is_loop_end (fragP))
7314 {
7315 if (fragP->tc_frag_data.is_no_transform)
7316 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7317 else
7318 relax_frag_add_nop (fragP);
7319 }
7320 frag_wane (fragP);
7321 }
7322 }
7323 }
7324 }
7325
7326
7327 static bfd_boolean
7328 next_instr_is_loop_end (fragS *fragP)
7329 {
7330 const fragS *next_fragP;
7331
7332 if (next_frag_is_loop_target (fragP))
7333 return FALSE;
7334
7335 next_fragP = next_non_empty_frag (fragP);
7336 if (next_fragP == NULL)
7337 return FALSE;
7338
7339 if (!next_frag_is_loop_target (next_fragP))
7340 return FALSE;
7341
7342 /* If the size is >= 3 then there is more than one instruction here.
7343 The hardware bug will not fire. */
7344 if (next_fragP->fr_fix > 3)
7345 return FALSE;
7346
7347 return TRUE;
7348 }
7349
7350
7351 /* Re-process all of the fragments looking to convert all of the
7352 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7353 not MY loop's loop end within 12 bytes, add enough nops here to
7354 make it at least 12 bytes away. In any case close it off with a
7355 .fill 0. */
7356
7357 static offsetT min_bytes_to_other_loop_end
7358 (fragS *, fragS *, offsetT);
7359
7360 static void
7361 xtensa_fix_close_loop_end_frags (void)
7362 {
7363 frchainS *frchP;
7364 asection *s;
7365
7366 /* When this routine is called, all of the subsections are still intact
7367 so we walk over subsections instead of sections. */
7368 for (s = stdoutput->sections; s; s = s->next)
7369 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7370 {
7371 fragS *fragP;
7372
7373 fragS *current_target = NULL;
7374
7375 /* Walk over all of the fragments in a subsection. */
7376 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7377 {
7378 if (fragP->fr_type == rs_machine_dependent
7379 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7380 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7381 current_target = symbol_get_frag (fragP->fr_symbol);
7382
7383 if (current_target
7384 && fragP->fr_type == rs_machine_dependent
7385 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7386 {
7387 offsetT min_bytes;
7388 int bytes_added = 0;
7389
7390 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7391 /* Max out at 12. */
7392 min_bytes = min_bytes_to_other_loop_end
7393 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7394
7395 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7396 {
7397 if (fragP->tc_frag_data.is_no_transform)
7398 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7399 else
7400 {
7401 while (min_bytes + bytes_added
7402 < REQUIRED_LOOP_DIVIDING_BYTES)
7403 {
7404 int length = 3;
7405
7406 if (fragP->fr_var < length)
7407 as_fatal (_("fr_var %lu < length %d"),
7408 (long) fragP->fr_var, length);
7409 else
7410 {
7411 assemble_nop (length,
7412 fragP->fr_literal + fragP->fr_fix);
7413 fragP->fr_fix += length;
7414 fragP->fr_var -= length;
7415 }
7416 bytes_added += length;
7417 }
7418 }
7419 }
7420 frag_wane (fragP);
7421 }
7422 assert (fragP->fr_type != rs_machine_dependent
7423 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7424 }
7425 }
7426 }
7427
7428
7429 static offsetT unrelaxed_frag_min_size (fragS *);
7430
7431 static offsetT
7432 min_bytes_to_other_loop_end (fragS *fragP,
7433 fragS *current_target,
7434 offsetT max_size)
7435 {
7436 offsetT offset = 0;
7437 fragS *current_fragP;
7438
7439 for (current_fragP = fragP;
7440 current_fragP;
7441 current_fragP = current_fragP->fr_next)
7442 {
7443 if (current_fragP->tc_frag_data.is_loop_target
7444 && current_fragP != current_target)
7445 return offset;
7446
7447 offset += unrelaxed_frag_min_size (current_fragP);
7448
7449 if (offset >= max_size)
7450 return max_size;
7451 }
7452 return max_size;
7453 }
7454
7455
7456 static offsetT
7457 unrelaxed_frag_min_size (fragS *fragP)
7458 {
7459 offsetT size = fragP->fr_fix;
7460
7461 /* Add fill size. */
7462 if (fragP->fr_type == rs_fill)
7463 size += fragP->fr_offset;
7464
7465 return size;
7466 }
7467
7468
7469 static offsetT
7470 unrelaxed_frag_max_size (fragS *fragP)
7471 {
7472 offsetT size = fragP->fr_fix;
7473 switch (fragP->fr_type)
7474 {
7475 case 0:
7476 /* Empty frags created by the obstack allocation scheme
7477 end up with type 0. */
7478 break;
7479 case rs_fill:
7480 case rs_org:
7481 case rs_space:
7482 size += fragP->fr_offset;
7483 break;
7484 case rs_align:
7485 case rs_align_code:
7486 case rs_align_test:
7487 case rs_leb128:
7488 case rs_cfa:
7489 case rs_dwarf2dbg:
7490 /* No further adjustments needed. */
7491 break;
7492 case rs_machine_dependent:
7493 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7494 size += fragP->fr_var;
7495 break;
7496 default:
7497 /* We had darn well better know how big it is. */
7498 assert (0);
7499 break;
7500 }
7501
7502 return size;
7503 }
7504
7505
7506 /* Re-process all of the fragments looking to convert all
7507 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7508
7509 A)
7510 1) the instruction size count to the loop end label
7511 is too short (<= 2 instructions),
7512 2) loop has a jump or branch in it
7513
7514 or B)
7515 1) workaround_all_short_loops is TRUE
7516 2) The generating loop was a 'loopgtz' or 'loopnez'
7517 3) the instruction size count to the loop end label is too short
7518 (<= 2 instructions)
7519 then convert this frag (and maybe the next one) to generate a NOP.
7520 In any case close it off with a .fill 0. */
7521
7522 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7523 static bfd_boolean branch_before_loop_end (fragS *);
7524
7525 static void
7526 xtensa_fix_short_loop_frags (void)
7527 {
7528 frchainS *frchP;
7529 asection *s;
7530
7531 /* When this routine is called, all of the subsections are still intact
7532 so we walk over subsections instead of sections. */
7533 for (s = stdoutput->sections; s; s = s->next)
7534 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7535 {
7536 fragS *fragP;
7537 fragS *current_target = NULL;
7538 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7539
7540 /* Walk over all of the fragments in a subsection. */
7541 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7542 {
7543 if (fragP->fr_type == rs_machine_dependent
7544 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7545 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7546 {
7547 TInsn t_insn;
7548 fragS *loop_frag = next_non_empty_frag (fragP);
7549 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7550 current_target = symbol_get_frag (fragP->fr_symbol);
7551 current_opcode = t_insn.opcode;
7552 assert (xtensa_opcode_is_loop (xtensa_default_isa,
7553 current_opcode) == 1);
7554 }
7555
7556 if (fragP->fr_type == rs_machine_dependent
7557 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7558 {
7559 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7560 && (branch_before_loop_end (fragP->fr_next)
7561 || (workaround_all_short_loops
7562 && current_opcode != XTENSA_UNDEFINED
7563 && current_opcode != xtensa_loop_opcode)))
7564 {
7565 if (fragP->tc_frag_data.is_no_transform)
7566 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7567 else
7568 relax_frag_add_nop (fragP);
7569 }
7570 frag_wane (fragP);
7571 }
7572 }
7573 }
7574 }
7575
7576
7577 static int unrelaxed_frag_min_insn_count (fragS *);
7578
7579 static int
7580 count_insns_to_loop_end (fragS *base_fragP,
7581 bfd_boolean count_relax_add,
7582 int max_count)
7583 {
7584 fragS *fragP = NULL;
7585 int insn_count = 0;
7586
7587 fragP = base_fragP;
7588
7589 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7590 {
7591 insn_count += unrelaxed_frag_min_insn_count (fragP);
7592 if (insn_count >= max_count)
7593 return max_count;
7594
7595 if (count_relax_add)
7596 {
7597 if (fragP->fr_type == rs_machine_dependent
7598 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7599 {
7600 /* In order to add the appropriate number of
7601 NOPs, we count an instruction for downstream
7602 occurrences. */
7603 insn_count++;
7604 if (insn_count >= max_count)
7605 return max_count;
7606 }
7607 }
7608 }
7609 return insn_count;
7610 }
7611
7612
7613 static int
7614 unrelaxed_frag_min_insn_count (fragS *fragP)
7615 {
7616 xtensa_isa isa = xtensa_default_isa;
7617 static xtensa_insnbuf insnbuf = NULL;
7618 int insn_count = 0;
7619 int offset = 0;
7620
7621 if (!fragP->tc_frag_data.is_insn)
7622 return insn_count;
7623
7624 if (!insnbuf)
7625 insnbuf = xtensa_insnbuf_alloc (isa);
7626
7627 /* Decode the fixed instructions. */
7628 while (offset < fragP->fr_fix)
7629 {
7630 xtensa_format fmt;
7631
7632 xtensa_insnbuf_from_chars
7633 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7634 fmt = xtensa_format_decode (isa, insnbuf);
7635
7636 if (fmt == XTENSA_UNDEFINED)
7637 {
7638 as_fatal (_("undecodable instruction in instruction frag"));
7639 return insn_count;
7640 }
7641 offset += xtensa_format_length (isa, fmt);
7642 insn_count++;
7643 }
7644
7645 return insn_count;
7646 }
7647
7648
7649 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7650
7651 static bfd_boolean
7652 branch_before_loop_end (fragS *base_fragP)
7653 {
7654 fragS *fragP;
7655
7656 for (fragP = base_fragP;
7657 fragP && !fragP->tc_frag_data.is_loop_target;
7658 fragP = fragP->fr_next)
7659 {
7660 if (unrelaxed_frag_has_b_j (fragP))
7661 return TRUE;
7662 }
7663 return FALSE;
7664 }
7665
7666
7667 static bfd_boolean
7668 unrelaxed_frag_has_b_j (fragS *fragP)
7669 {
7670 static xtensa_insnbuf insnbuf = NULL;
7671 xtensa_isa isa = xtensa_default_isa;
7672 int offset = 0;
7673
7674 if (!fragP->tc_frag_data.is_insn)
7675 return FALSE;
7676
7677 if (!insnbuf)
7678 insnbuf = xtensa_insnbuf_alloc (isa);
7679
7680 /* Decode the fixed instructions. */
7681 while (offset < fragP->fr_fix)
7682 {
7683 xtensa_format fmt;
7684 int slot;
7685
7686 xtensa_insnbuf_from_chars
7687 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7688 fmt = xtensa_format_decode (isa, insnbuf);
7689 if (fmt == XTENSA_UNDEFINED)
7690 return FALSE;
7691
7692 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7693 {
7694 xtensa_opcode opcode =
7695 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7696 if (xtensa_opcode_is_branch (isa, opcode) == 1
7697 || xtensa_opcode_is_jump (isa, opcode) == 1)
7698 return TRUE;
7699 }
7700 offset += xtensa_format_length (isa, fmt);
7701 }
7702 return FALSE;
7703 }
7704
7705
7706 /* Checks to be made after initial assembly but before relaxation. */
7707
7708 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7709 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7710
7711 static void
7712 xtensa_sanity_check (void)
7713 {
7714 char *file_name;
7715 unsigned line;
7716 frchainS *frchP;
7717 asection *s;
7718
7719 as_where (&file_name, &line);
7720 for (s = stdoutput->sections; s; s = s->next)
7721 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7722 {
7723 fragS *fragP;
7724
7725 /* Walk over all of the fragments in a subsection. */
7726 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7727 {
7728 /* Currently we only check for empty loops here. */
7729 if (fragP->fr_type == rs_machine_dependent
7730 && fragP->fr_subtype == RELAX_IMMED)
7731 {
7732 static xtensa_insnbuf insnbuf = NULL;
7733 TInsn t_insn;
7734
7735 if (fragP->fr_opcode != NULL)
7736 {
7737 if (!insnbuf)
7738 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7739 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7740 tinsn_immed_from_frag (&t_insn, fragP, 0);
7741
7742 if (xtensa_opcode_is_loop (xtensa_default_isa,
7743 t_insn.opcode) == 1)
7744 {
7745 if (is_empty_loop (&t_insn, fragP))
7746 {
7747 new_logical_line (fragP->fr_file, fragP->fr_line);
7748 as_bad (_("invalid empty loop"));
7749 }
7750 if (!is_local_forward_loop (&t_insn, fragP))
7751 {
7752 new_logical_line (fragP->fr_file, fragP->fr_line);
7753 as_bad (_("loop target does not follow "
7754 "loop instruction in section"));
7755 }
7756 }
7757 }
7758 }
7759 }
7760 }
7761 new_logical_line (file_name, line);
7762 }
7763
7764
7765 #define LOOP_IMMED_OPN 1
7766
7767 /* Return TRUE if the loop target is the next non-zero fragment. */
7768
7769 static bfd_boolean
7770 is_empty_loop (const TInsn *insn, fragS *fragP)
7771 {
7772 const expressionS *expr;
7773 symbolS *symbolP;
7774 fragS *next_fragP;
7775
7776 if (insn->insn_type != ITYPE_INSN)
7777 return FALSE;
7778
7779 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7780 return FALSE;
7781
7782 if (insn->ntok <= LOOP_IMMED_OPN)
7783 return FALSE;
7784
7785 expr = &insn->tok[LOOP_IMMED_OPN];
7786
7787 if (expr->X_op != O_symbol)
7788 return FALSE;
7789
7790 symbolP = expr->X_add_symbol;
7791 if (!symbolP)
7792 return FALSE;
7793
7794 if (symbol_get_frag (symbolP) == NULL)
7795 return FALSE;
7796
7797 if (S_GET_VALUE (symbolP) != 0)
7798 return FALSE;
7799
7800 /* Walk through the zero-size fragments from this one. If we find
7801 the target fragment, then this is a zero-size loop. */
7802
7803 for (next_fragP = fragP->fr_next;
7804 next_fragP != NULL;
7805 next_fragP = next_fragP->fr_next)
7806 {
7807 if (next_fragP == symbol_get_frag (symbolP))
7808 return TRUE;
7809 if (next_fragP->fr_fix != 0)
7810 return FALSE;
7811 }
7812 return FALSE;
7813 }
7814
7815
7816 static bfd_boolean
7817 is_local_forward_loop (const TInsn *insn, fragS *fragP)
7818 {
7819 const expressionS *expr;
7820 symbolS *symbolP;
7821 fragS *next_fragP;
7822
7823 if (insn->insn_type != ITYPE_INSN)
7824 return FALSE;
7825
7826 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7827 return FALSE;
7828
7829 if (insn->ntok <= LOOP_IMMED_OPN)
7830 return FALSE;
7831
7832 expr = &insn->tok[LOOP_IMMED_OPN];
7833
7834 if (expr->X_op != O_symbol)
7835 return FALSE;
7836
7837 symbolP = expr->X_add_symbol;
7838 if (!symbolP)
7839 return FALSE;
7840
7841 if (symbol_get_frag (symbolP) == NULL)
7842 return FALSE;
7843
7844 /* Walk through fragments until we find the target.
7845 If we do not find the target, then this is an invalid loop. */
7846
7847 for (next_fragP = fragP->fr_next;
7848 next_fragP != NULL;
7849 next_fragP = next_fragP->fr_next)
7850 {
7851 if (next_fragP == symbol_get_frag (symbolP))
7852 return TRUE;
7853 }
7854
7855 return FALSE;
7856 }
7857
7858 \f
7859 /* Alignment Functions. */
7860
7861 static int
7862 get_text_align_power (unsigned target_size)
7863 {
7864 if (target_size <= 4)
7865 return 2;
7866 assert (target_size == 8);
7867 return 3;
7868 }
7869
7870
7871 static int
7872 get_text_align_max_fill_size (int align_pow,
7873 bfd_boolean use_nops,
7874 bfd_boolean use_no_density)
7875 {
7876 if (!use_nops)
7877 return (1 << align_pow);
7878 if (use_no_density)
7879 return 3 * (1 << align_pow);
7880
7881 return 1 + (1 << align_pow);
7882 }
7883
7884
7885 /* Calculate the minimum bytes of fill needed at "address" to align a
7886 target instruction of size "target_size" so that it does not cross a
7887 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7888 the fill can be an arbitrary number of bytes. Otherwise, the space must
7889 be filled by NOP instructions. */
7890
7891 static int
7892 get_text_align_fill_size (addressT address,
7893 int align_pow,
7894 int target_size,
7895 bfd_boolean use_nops,
7896 bfd_boolean use_no_density)
7897 {
7898 addressT alignment, fill, fill_limit, fill_step;
7899 bfd_boolean skip_one = FALSE;
7900
7901 alignment = (1 << align_pow);
7902 assert (target_size > 0 && alignment >= (addressT) target_size);
7903
7904 if (!use_nops)
7905 {
7906 fill_limit = alignment;
7907 fill_step = 1;
7908 }
7909 else if (!use_no_density)
7910 {
7911 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7912 fill_limit = alignment * 2;
7913 fill_step = 1;
7914 skip_one = TRUE;
7915 }
7916 else
7917 {
7918 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7919 fill_limit = alignment * 3;
7920 fill_step = 3;
7921 }
7922
7923 /* Try all fill sizes until finding one that works. */
7924 for (fill = 0; fill < fill_limit; fill += fill_step)
7925 {
7926 if (skip_one && fill == 1)
7927 continue;
7928 if ((address + fill) >> align_pow
7929 == (address + fill + target_size - 1) >> align_pow)
7930 return fill;
7931 }
7932 assert (0);
7933 return 0;
7934 }
7935
7936
7937 static int
7938 branch_align_power (segT sec)
7939 {
7940 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7941 is aligned to at least an 8-byte boundary, then a branch target need
7942 only fit within an 8-byte aligned block of memory to avoid a stall.
7943 Otherwise, try to fit branch targets within 4-byte aligned blocks
7944 (which may be insufficient, e.g., if the section has no alignment, but
7945 it's good enough). */
7946 if (xtensa_fetch_width == 8)
7947 {
7948 if (get_recorded_alignment (sec) >= 3)
7949 return 3;
7950 }
7951 else
7952 assert (xtensa_fetch_width == 4);
7953
7954 return 2;
7955 }
7956
7957
7958 /* This will assert if it is not possible. */
7959
7960 static int
7961 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
7962 {
7963 int count = 0;
7964
7965 if (use_no_density)
7966 {
7967 assert (fill_size % 3 == 0);
7968 return (fill_size / 3);
7969 }
7970
7971 assert (fill_size != 1); /* Bad argument. */
7972
7973 while (fill_size > 1)
7974 {
7975 int insn_size = 3;
7976 if (fill_size == 2 || fill_size == 4)
7977 insn_size = 2;
7978 fill_size -= insn_size;
7979 count++;
7980 }
7981 assert (fill_size != 1); /* Bad algorithm. */
7982 return count;
7983 }
7984
7985
7986 static int
7987 get_text_align_nth_nop_size (offsetT fill_size,
7988 int n,
7989 bfd_boolean use_no_density)
7990 {
7991 int count = 0;
7992
7993 if (use_no_density)
7994 return 3;
7995
7996 assert (fill_size != 1); /* Bad argument. */
7997
7998 while (fill_size > 1)
7999 {
8000 int insn_size = 3;
8001 if (fill_size == 2 || fill_size == 4)
8002 insn_size = 2;
8003 fill_size -= insn_size;
8004 count++;
8005 if (n + 1 == count)
8006 return insn_size;
8007 }
8008 assert (0);
8009 return 0;
8010 }
8011
8012
8013 /* For the given fragment, find the appropriate address
8014 for it to begin at if we are using NOPs to align it. */
8015
8016 static addressT
8017 get_noop_aligned_address (fragS *fragP, addressT address)
8018 {
8019 /* The rule is: get next fragment's FIRST instruction. Find
8020 the smallest number of bytes that need to be added to
8021 ensure that the next fragment's FIRST instruction will fit
8022 in a single word.
8023
8024 E.G., 2 bytes : 0, 1, 2 mod 4
8025 3 bytes: 0, 1 mod 4
8026
8027 If the FIRST instruction MIGHT be relaxed,
8028 assume that it will become a 3-byte instruction.
8029
8030 Note again here that LOOP instructions are not bundleable,
8031 and this relaxation only applies to LOOP opcodes. */
8032
8033 int fill_size = 0;
8034 int first_insn_size;
8035 int loop_insn_size;
8036 addressT pre_opcode_bytes;
8037 int align_power;
8038 fragS *first_insn;
8039 xtensa_opcode opcode;
8040 bfd_boolean is_loop;
8041
8042 assert (fragP->fr_type == rs_machine_dependent);
8043 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8044
8045 /* Find the loop frag. */
8046 first_insn = next_non_empty_frag (fragP);
8047 /* Now find the first insn frag. */
8048 first_insn = next_non_empty_frag (first_insn);
8049
8050 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8051 assert (is_loop);
8052 loop_insn_size = xg_get_single_size (opcode);
8053
8054 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8055 pre_opcode_bytes += loop_insn_size;
8056
8057 /* For loops, the alignment depends on the size of the
8058 instruction following the loop, not the LOOP instruction. */
8059
8060 if (first_insn == NULL)
8061 first_insn_size = xtensa_fetch_width;
8062 else
8063 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8064
8065 /* If it was 8, then we'll need a larger alignment for the section. */
8066 align_power = get_text_align_power (first_insn_size);
8067 record_alignment (now_seg, align_power);
8068
8069 fill_size = get_text_align_fill_size
8070 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8071 fragP->tc_frag_data.is_no_density);
8072
8073 return address + fill_size;
8074 }
8075
8076
8077 /* 3 mechanisms for relaxing an alignment:
8078
8079 Align to a power of 2.
8080 Align so the next fragment's instruction does not cross a word boundary.
8081 Align the current instruction so that if the next instruction
8082 were 3 bytes, it would not cross a word boundary.
8083
8084 We can align with:
8085
8086 zeros - This is easy; always insert zeros.
8087 nops - 3-byte and 2-byte instructions
8088 2 - 2-byte nop
8089 3 - 3-byte nop
8090 4 - 2 2-byte nops
8091 >=5 : 3-byte instruction + fn (n-3)
8092 widening - widen previous instructions. */
8093
8094 static offsetT
8095 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8096 {
8097 addressT target_address, loop_insn_offset;
8098 int target_size;
8099 xtensa_opcode loop_opcode;
8100 bfd_boolean is_loop;
8101 int align_power;
8102 offsetT opt_diff;
8103 offsetT branch_align;
8104
8105 assert (fragP->fr_type == rs_machine_dependent);
8106 switch (fragP->fr_subtype)
8107 {
8108 case RELAX_DESIRE_ALIGN:
8109 target_size = next_frag_format_size (fragP);
8110 if (target_size == XTENSA_UNDEFINED)
8111 target_size = 3;
8112 align_power = branch_align_power (now_seg);
8113 branch_align = 1 << align_power;
8114 /* Don't count on the section alignment being as large as the target. */
8115 if (target_size > branch_align)
8116 target_size = branch_align;
8117 opt_diff = get_text_align_fill_size (address, align_power,
8118 target_size, FALSE, FALSE);
8119
8120 *max_diff = (opt_diff + branch_align
8121 - (target_size + ((address + opt_diff) % branch_align)));
8122 assert (*max_diff >= opt_diff);
8123 return opt_diff;
8124
8125 case RELAX_ALIGN_NEXT_OPCODE:
8126 target_size = get_loop_align_size (next_frag_format_size (fragP));
8127 loop_insn_offset = 0;
8128 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8129 assert (is_loop);
8130
8131 /* If the loop has been expanded then the LOOP instruction
8132 could be at an offset from this fragment. */
8133 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8134 != RELAX_IMMED)
8135 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8136
8137 /* In an ideal world, which is what we are shooting for here,
8138 we wouldn't need to use any NOPs immediately prior to the
8139 LOOP instruction. If this approach fails, relax_frag_loop_align
8140 will call get_noop_aligned_address. */
8141 target_address =
8142 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8143 align_power = get_text_align_power (target_size),
8144 opt_diff = get_text_align_fill_size (target_address, align_power,
8145 target_size, FALSE, FALSE);
8146
8147 *max_diff = xtensa_fetch_width
8148 - ((target_address + opt_diff) % xtensa_fetch_width)
8149 - target_size + opt_diff;
8150 assert (*max_diff >= opt_diff);
8151 return opt_diff;
8152
8153 default:
8154 break;
8155 }
8156 assert (0);
8157 return 0;
8158 }
8159
8160 \f
8161 /* md_relax_frag Hook and Helper Functions. */
8162
8163 static long relax_frag_loop_align (fragS *, long);
8164 static long relax_frag_for_align (fragS *, long);
8165 static long relax_frag_immed
8166 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8167
8168
8169 /* Return the number of bytes added to this fragment, given that the
8170 input has been stretched already by "stretch". */
8171
8172 long
8173 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8174 {
8175 xtensa_isa isa = xtensa_default_isa;
8176 int unreported = fragP->tc_frag_data.unreported_expansion;
8177 long new_stretch = 0;
8178 char *file_name;
8179 unsigned line;
8180 int lit_size;
8181 static xtensa_insnbuf vbuf = NULL;
8182 int slot, num_slots;
8183 xtensa_format fmt;
8184
8185 as_where (&file_name, &line);
8186 new_logical_line (fragP->fr_file, fragP->fr_line);
8187
8188 fragP->tc_frag_data.unreported_expansion = 0;
8189
8190 switch (fragP->fr_subtype)
8191 {
8192 case RELAX_ALIGN_NEXT_OPCODE:
8193 /* Always convert. */
8194 if (fragP->tc_frag_data.relax_seen)
8195 new_stretch = relax_frag_loop_align (fragP, stretch);
8196 break;
8197
8198 case RELAX_LOOP_END:
8199 /* Do nothing. */
8200 break;
8201
8202 case RELAX_LOOP_END_ADD_NOP:
8203 /* Add a NOP and switch to .fill 0. */
8204 new_stretch = relax_frag_add_nop (fragP);
8205 frag_wane (fragP);
8206 break;
8207
8208 case RELAX_DESIRE_ALIGN:
8209 /* Do nothing. The narrowing before this frag will either align
8210 it or not. */
8211 break;
8212
8213 case RELAX_LITERAL:
8214 case RELAX_LITERAL_FINAL:
8215 return 0;
8216
8217 case RELAX_LITERAL_NR:
8218 lit_size = 4;
8219 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8220 assert (unreported == lit_size);
8221 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8222 fragP->fr_var -= lit_size;
8223 fragP->fr_fix += lit_size;
8224 new_stretch = 4;
8225 break;
8226
8227 case RELAX_SLOTS:
8228 if (vbuf == NULL)
8229 vbuf = xtensa_insnbuf_alloc (isa);
8230
8231 xtensa_insnbuf_from_chars
8232 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8233 fmt = xtensa_format_decode (isa, vbuf);
8234 num_slots = xtensa_format_num_slots (isa, fmt);
8235
8236 for (slot = 0; slot < num_slots; slot++)
8237 {
8238 switch (fragP->tc_frag_data.slot_subtypes[slot])
8239 {
8240 case RELAX_NARROW:
8241 if (fragP->tc_frag_data.relax_seen)
8242 new_stretch += relax_frag_for_align (fragP, stretch);
8243 break;
8244
8245 case RELAX_IMMED:
8246 case RELAX_IMMED_STEP1:
8247 case RELAX_IMMED_STEP2:
8248 /* Place the immediate. */
8249 new_stretch += relax_frag_immed
8250 (now_seg, fragP, stretch,
8251 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8252 fmt, slot, stretched_p, FALSE);
8253 break;
8254
8255 default:
8256 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8257 break;
8258 }
8259 }
8260 break;
8261
8262 case RELAX_LITERAL_POOL_BEGIN:
8263 case RELAX_LITERAL_POOL_END:
8264 case RELAX_MAYBE_UNREACHABLE:
8265 case RELAX_MAYBE_DESIRE_ALIGN:
8266 /* No relaxation required. */
8267 break;
8268
8269 case RELAX_FILL_NOP:
8270 case RELAX_UNREACHABLE:
8271 if (fragP->tc_frag_data.relax_seen)
8272 new_stretch += relax_frag_for_align (fragP, stretch);
8273 break;
8274
8275 default:
8276 as_bad (_("bad relaxation state"));
8277 }
8278
8279 /* Tell gas we need another relaxation pass. */
8280 if (! fragP->tc_frag_data.relax_seen)
8281 {
8282 fragP->tc_frag_data.relax_seen = TRUE;
8283 *stretched_p = 1;
8284 }
8285
8286 new_logical_line (file_name, line);
8287 return new_stretch;
8288 }
8289
8290
8291 static long
8292 relax_frag_loop_align (fragS *fragP, long stretch)
8293 {
8294 addressT old_address, old_next_address, old_size;
8295 addressT new_address, new_next_address, new_size;
8296 addressT growth;
8297
8298 /* All the frags with relax_frag_for_alignment prior to this one in the
8299 section have been done, hopefully eliminating the need for a NOP here.
8300 But, this will put it in if necessary. */
8301
8302 /* Calculate the old address of this fragment and the next fragment. */
8303 old_address = fragP->fr_address - stretch;
8304 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8305 fragP->tc_frag_data.text_expansion[0]);
8306 old_size = old_next_address - old_address;
8307
8308 /* Calculate the new address of this fragment and the next fragment. */
8309 new_address = fragP->fr_address;
8310 new_next_address =
8311 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8312 new_size = new_next_address - new_address;
8313
8314 growth = new_size - old_size;
8315
8316 /* Fix up the text_expansion field and return the new growth. */
8317 fragP->tc_frag_data.text_expansion[0] += growth;
8318 return growth;
8319 }
8320
8321
8322 /* Add a NOP instruction. */
8323
8324 static long
8325 relax_frag_add_nop (fragS *fragP)
8326 {
8327 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8328 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8329 assemble_nop (length, nop_buf);
8330 fragP->tc_frag_data.is_insn = TRUE;
8331
8332 if (fragP->fr_var < length)
8333 {
8334 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8335 return 0;
8336 }
8337
8338 fragP->fr_fix += length;
8339 fragP->fr_var -= length;
8340 return length;
8341 }
8342
8343
8344 static long future_alignment_required (fragS *, long);
8345
8346 static long
8347 relax_frag_for_align (fragS *fragP, long stretch)
8348 {
8349 /* Overview of the relaxation procedure for alignment:
8350 We can widen with NOPs or by widening instructions or by filling
8351 bytes after jump instructions. Find the opportune places and widen
8352 them if necessary. */
8353
8354 long stretch_me;
8355 long diff;
8356
8357 assert (fragP->fr_subtype == RELAX_FILL_NOP
8358 || fragP->fr_subtype == RELAX_UNREACHABLE
8359 || (fragP->fr_subtype == RELAX_SLOTS
8360 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8361
8362 stretch_me = future_alignment_required (fragP, stretch);
8363 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8364 if (diff == 0)
8365 return 0;
8366
8367 if (diff < 0)
8368 {
8369 /* We expanded on a previous pass. Can we shrink now? */
8370 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8371 if (shrink <= stretch && stretch > 0)
8372 {
8373 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8374 return -shrink;
8375 }
8376 return 0;
8377 }
8378
8379 /* Below here, diff > 0. */
8380 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8381
8382 return diff;
8383 }
8384
8385
8386 /* Return the address of the next frag that should be aligned.
8387
8388 By "address" we mean the address it _would_ be at if there
8389 is no action taken to align it between here and the target frag.
8390 In other words, if no narrows and no fill nops are used between
8391 here and the frag to align, _even_if_ some of the frags we use
8392 to align targets have already expanded on a previous relaxation
8393 pass.
8394
8395 Also, count each frag that may be used to help align the target.
8396
8397 Return 0 if there are no frags left in the chain that need to be
8398 aligned. */
8399
8400 static addressT
8401 find_address_of_next_align_frag (fragS **fragPP,
8402 int *wide_nops,
8403 int *narrow_nops,
8404 int *widens,
8405 bfd_boolean *paddable)
8406 {
8407 fragS *fragP = *fragPP;
8408 addressT address = fragP->fr_address;
8409
8410 /* Do not reset the counts to 0. */
8411
8412 while (fragP)
8413 {
8414 /* Limit this to a small search. */
8415 if (*widens >= (int) xtensa_fetch_width)
8416 {
8417 *fragPP = fragP;
8418 return 0;
8419 }
8420 address += fragP->fr_fix;
8421
8422 if (fragP->fr_type == rs_fill)
8423 address += fragP->fr_offset * fragP->fr_var;
8424 else if (fragP->fr_type == rs_machine_dependent)
8425 {
8426 switch (fragP->fr_subtype)
8427 {
8428 case RELAX_UNREACHABLE:
8429 *paddable = TRUE;
8430 break;
8431
8432 case RELAX_FILL_NOP:
8433 (*wide_nops)++;
8434 if (!fragP->tc_frag_data.is_no_density)
8435 (*narrow_nops)++;
8436 break;
8437
8438 case RELAX_SLOTS:
8439 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8440 {
8441 (*widens)++;
8442 break;
8443 }
8444 address += total_frag_text_expansion (fragP);;
8445 break;
8446
8447 case RELAX_IMMED:
8448 address += fragP->tc_frag_data.text_expansion[0];
8449 break;
8450
8451 case RELAX_ALIGN_NEXT_OPCODE:
8452 case RELAX_DESIRE_ALIGN:
8453 *fragPP = fragP;
8454 return address;
8455
8456 case RELAX_MAYBE_UNREACHABLE:
8457 case RELAX_MAYBE_DESIRE_ALIGN:
8458 /* Do nothing. */
8459 break;
8460
8461 default:
8462 /* Just punt if we don't know the type. */
8463 *fragPP = fragP;
8464 return 0;
8465 }
8466 }
8467 else
8468 {
8469 /* Just punt if we don't know the type. */
8470 *fragPP = fragP;
8471 return 0;
8472 }
8473 fragP = fragP->fr_next;
8474 }
8475
8476 *fragPP = fragP;
8477 return 0;
8478 }
8479
8480
8481 static long bytes_to_stretch (fragS *, int, int, int, int);
8482
8483 static long
8484 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8485 {
8486 fragS *this_frag = fragP;
8487 long address;
8488 int num_widens = 0;
8489 int wide_nops = 0;
8490 int narrow_nops = 0;
8491 bfd_boolean paddable = FALSE;
8492 offsetT local_opt_diff;
8493 offsetT opt_diff;
8494 offsetT max_diff;
8495 int stretch_amount = 0;
8496 int local_stretch_amount;
8497 int global_stretch_amount;
8498
8499 address = find_address_of_next_align_frag
8500 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8501
8502 if (!address)
8503 {
8504 if (this_frag->tc_frag_data.is_aligning_branch)
8505 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8506 else
8507 frag_wane (this_frag);
8508 }
8509 else
8510 {
8511 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8512 opt_diff = local_opt_diff;
8513 assert (opt_diff >= 0);
8514 assert (max_diff >= opt_diff);
8515 if (max_diff == 0)
8516 return 0;
8517
8518 if (fragP)
8519 fragP = fragP->fr_next;
8520
8521 while (fragP && opt_diff < max_diff && address)
8522 {
8523 /* We only use these to determine if we can exit early
8524 because there will be plenty of ways to align future
8525 align frags. */
8526 int glob_widens = 0;
8527 int dnn = 0;
8528 int dw = 0;
8529 bfd_boolean glob_pad = 0;
8530 address = find_address_of_next_align_frag
8531 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8532 /* If there is a padable portion, then skip. */
8533 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8534 address = 0;
8535
8536 if (address)
8537 {
8538 offsetT next_m_diff;
8539 offsetT next_o_diff;
8540
8541 /* Downrange frags haven't had stretch added to them yet. */
8542 address += stretch;
8543
8544 /* The address also includes any text expansion from this
8545 frag in a previous pass, but we don't want that. */
8546 address -= this_frag->tc_frag_data.text_expansion[0];
8547
8548 /* Assume we are going to move at least opt_diff. In
8549 reality, we might not be able to, but assuming that
8550 we will helps catch cases where moving opt_diff pushes
8551 the next target from aligned to unaligned. */
8552 address += opt_diff;
8553
8554 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8555
8556 /* Now cleanup for the adjustments to address. */
8557 next_o_diff += opt_diff;
8558 next_m_diff += opt_diff;
8559 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8560 opt_diff = next_o_diff;
8561 if (next_m_diff < max_diff)
8562 max_diff = next_m_diff;
8563 fragP = fragP->fr_next;
8564 }
8565 }
8566
8567 /* If there are enough wideners in between, do it. */
8568 if (paddable)
8569 {
8570 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8571 {
8572 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8573 return opt_diff;
8574 }
8575 return 0;
8576 }
8577 local_stretch_amount
8578 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8579 num_widens, local_opt_diff);
8580 global_stretch_amount
8581 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8582 num_widens, opt_diff);
8583 /* If the condition below is true, then the frag couldn't
8584 stretch the correct amount for the global case, so we just
8585 optimize locally. We'll rely on the subsequent frags to get
8586 the correct alignment in the global case. */
8587 if (global_stretch_amount < local_stretch_amount)
8588 stretch_amount = local_stretch_amount;
8589 else
8590 stretch_amount = global_stretch_amount;
8591
8592 if (this_frag->fr_subtype == RELAX_SLOTS
8593 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8594 assert (stretch_amount <= 1);
8595 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8596 {
8597 if (this_frag->tc_frag_data.is_no_density)
8598 assert (stretch_amount == 3 || stretch_amount == 0);
8599 else
8600 assert (stretch_amount <= 3);
8601 }
8602 }
8603 return stretch_amount;
8604 }
8605
8606
8607 /* The idea: widen everything you can to get a target or loop aligned,
8608 then start using NOPs.
8609
8610 When we must have a NOP, here is a table of how we decide
8611 (so you don't have to fight through the control flow below):
8612
8613 wide_nops = the number of wide NOPs available for aligning
8614 narrow_nops = the number of narrow NOPs available for aligning
8615 (a subset of wide_nops)
8616 widens = the number of narrow instructions that should be widened
8617
8618 Desired wide narrow
8619 Diff nop nop widens
8620 1 0 0 1
8621 2 0 1 0
8622 3a 1 0 0
8623 b 0 1 1 (case 3a makes this case unnecessary)
8624 4a 1 0 1
8625 b 0 2 0
8626 c 0 1 2 (case 4a makes this case unnecessary)
8627 5a 1 0 2
8628 b 1 1 0
8629 c 0 2 1 (case 5b makes this case unnecessary)
8630 6a 2 0 0
8631 b 1 0 3
8632 c 0 1 4 (case 6b makes this case unnecessary)
8633 d 1 1 1 (case 6a makes this case unnecessary)
8634 e 0 2 2 (case 6a makes this case unnecessary)
8635 f 0 3 0 (case 6a makes this case unnecessary)
8636 7a 1 0 4
8637 b 2 0 1
8638 c 1 1 2 (case 7b makes this case unnecessary)
8639 d 0 1 5 (case 7a makes this case unnecessary)
8640 e 0 2 3 (case 7b makes this case unnecessary)
8641 f 0 3 1 (case 7b makes this case unnecessary)
8642 g 1 2 1 (case 7b makes this case unnecessary)
8643 */
8644
8645 static long
8646 bytes_to_stretch (fragS *this_frag,
8647 int wide_nops,
8648 int narrow_nops,
8649 int num_widens,
8650 int desired_diff)
8651 {
8652 int bytes_short = desired_diff - num_widens;
8653
8654 assert (desired_diff >= 0 && desired_diff < 8);
8655 if (desired_diff == 0)
8656 return 0;
8657
8658 assert (wide_nops > 0 || num_widens > 0);
8659
8660 /* Always prefer widening to NOP-filling. */
8661 if (bytes_short < 0)
8662 {
8663 /* There are enough RELAX_NARROW frags after this one
8664 to align the target without widening this frag in any way. */
8665 return 0;
8666 }
8667
8668 if (bytes_short == 0)
8669 {
8670 /* Widen every narrow between here and the align target
8671 and the align target will be properly aligned. */
8672 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8673 return 0;
8674 else
8675 return 1;
8676 }
8677
8678 /* From here we will need at least one NOP to get an alignment.
8679 However, we may not be able to align at all, in which case,
8680 don't widen. */
8681 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8682 {
8683 switch (desired_diff)
8684 {
8685 case 1:
8686 return 0;
8687 case 2:
8688 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8689 return 2; /* case 2 */
8690 return 0;
8691 case 3:
8692 if (wide_nops > 1)
8693 return 0;
8694 else
8695 return 3; /* case 3a */
8696 case 4:
8697 if (num_widens >= 1 && wide_nops == 1)
8698 return 3; /* case 4a */
8699 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8700 return 2; /* case 4b */
8701 return 0;
8702 case 5:
8703 if (num_widens >= 2 && wide_nops == 1)
8704 return 3; /* case 5a */
8705 /* We will need two nops. Are there enough nops
8706 between here and the align target? */
8707 if (wide_nops < 2 || narrow_nops == 0)
8708 return 0;
8709 /* Are there other nops closer that can serve instead? */
8710 if (wide_nops > 2 && narrow_nops > 1)
8711 return 0;
8712 /* Take the density one first, because there might not be
8713 another density one available. */
8714 if (!this_frag->tc_frag_data.is_no_density)
8715 return 2; /* case 5b narrow */
8716 else
8717 return 3; /* case 5b wide */
8718 return 0;
8719 case 6:
8720 if (wide_nops == 2)
8721 return 3; /* case 6a */
8722 else if (num_widens >= 3 && wide_nops == 1)
8723 return 3; /* case 6b */
8724 return 0;
8725 case 7:
8726 if (wide_nops == 1 && num_widens >= 4)
8727 return 3; /* case 7a */
8728 else if (wide_nops == 2 && num_widens >= 1)
8729 return 3; /* case 7b */
8730 return 0;
8731 default:
8732 assert (0);
8733 }
8734 }
8735 else
8736 {
8737 /* We will need a NOP no matter what, but should we widen
8738 this instruction to help?
8739
8740 This is a RELAX_NARROW frag. */
8741 switch (desired_diff)
8742 {
8743 case 1:
8744 assert (0);
8745 return 0;
8746 case 2:
8747 case 3:
8748 return 0;
8749 case 4:
8750 if (wide_nops >= 1 && num_widens == 1)
8751 return 1; /* case 4a */
8752 return 0;
8753 case 5:
8754 if (wide_nops >= 1 && num_widens == 2)
8755 return 1; /* case 5a */
8756 return 0;
8757 case 6:
8758 if (wide_nops >= 2)
8759 return 0; /* case 6a */
8760 else if (wide_nops >= 1 && num_widens == 3)
8761 return 1; /* case 6b */
8762 return 0;
8763 case 7:
8764 if (wide_nops >= 1 && num_widens == 4)
8765 return 1; /* case 7a */
8766 else if (wide_nops >= 2 && num_widens == 1)
8767 return 1; /* case 7b */
8768 return 0;
8769 default:
8770 assert (0);
8771 return 0;
8772 }
8773 }
8774 assert (0);
8775 return 0;
8776 }
8777
8778
8779 static long
8780 relax_frag_immed (segT segP,
8781 fragS *fragP,
8782 long stretch,
8783 int min_steps,
8784 xtensa_format fmt,
8785 int slot,
8786 int *stretched_p,
8787 bfd_boolean estimate_only)
8788 {
8789 TInsn tinsn;
8790 int old_size;
8791 bfd_boolean negatable_branch = FALSE;
8792 bfd_boolean branch_jmp_to_next = FALSE;
8793 bfd_boolean wide_insn = FALSE;
8794 xtensa_isa isa = xtensa_default_isa;
8795 IStack istack;
8796 offsetT frag_offset;
8797 int num_steps;
8798 fragS *lit_fragP;
8799 int num_text_bytes, num_literal_bytes;
8800 int literal_diff, total_text_diff, this_text_diff, first;
8801
8802 assert (fragP->fr_opcode != NULL);
8803
8804 xg_clear_vinsn (&cur_vinsn);
8805 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
8806 if (cur_vinsn.num_slots > 1)
8807 wide_insn = TRUE;
8808
8809 tinsn = cur_vinsn.slots[slot];
8810 tinsn_immed_from_frag (&tinsn, fragP, slot);
8811
8812 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
8813 return 0;
8814
8815 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
8816 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
8817
8818 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
8819
8820 old_size = xtensa_format_length (isa, fmt);
8821
8822 /* Special case: replace a branch to the next instruction with a NOP.
8823 This is required to work around a hardware bug in T1040.0 and also
8824 serves as an optimization. */
8825
8826 if (branch_jmp_to_next
8827 && ((old_size == 2) || (old_size == 3))
8828 && !next_frag_is_loop_target (fragP))
8829 return 0;
8830
8831 /* Here is the fun stuff: Get the immediate field from this
8832 instruction. If it fits, we are done. If not, find the next
8833 instruction sequence that fits. */
8834
8835 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8836 istack_init (&istack);
8837 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
8838 min_steps, stretch);
8839 if (num_steps < min_steps)
8840 {
8841 as_fatal (_("internal error: relaxation failed"));
8842 return 0;
8843 }
8844
8845 if (num_steps > RELAX_IMMED_MAXSTEPS)
8846 {
8847 as_fatal (_("internal error: relaxation requires too many steps"));
8848 return 0;
8849 }
8850
8851 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
8852
8853 /* Figure out the number of bytes needed. */
8854 lit_fragP = 0;
8855 num_literal_bytes = get_num_stack_literal_bytes (&istack);
8856 literal_diff =
8857 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8858 first = 0;
8859 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8860 first++;
8861 num_text_bytes = get_num_stack_text_bytes (&istack);
8862 if (wide_insn)
8863 {
8864 num_text_bytes += old_size;
8865 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8866 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8867 }
8868 total_text_diff = num_text_bytes - old_size;
8869 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
8870
8871 /* It MUST get larger. If not, we could get an infinite loop. */
8872 assert (num_text_bytes >= 0);
8873 assert (literal_diff >= 0);
8874 assert (total_text_diff >= 0);
8875
8876 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8877 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8878 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8879 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
8880
8881 /* Find the associated expandable literal for this. */
8882 if (literal_diff != 0)
8883 {
8884 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
8885 if (lit_fragP)
8886 {
8887 assert (literal_diff == 4);
8888 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8889
8890 /* We expect that the literal section state has NOT been
8891 modified yet. */
8892 assert (lit_fragP->fr_type == rs_machine_dependent
8893 && lit_fragP->fr_subtype == RELAX_LITERAL);
8894 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8895
8896 /* We need to mark this section for another iteration
8897 of relaxation. */
8898 (*stretched_p)++;
8899 }
8900 }
8901
8902 if (negatable_branch && istack.ninsn > 1)
8903 update_next_frag_state (fragP);
8904
8905 return this_text_diff;
8906 }
8907
8908 \f
8909 /* md_convert_frag Hook and Helper Functions. */
8910
8911 static void convert_frag_align_next_opcode (fragS *);
8912 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8913 static void convert_frag_fill_nop (fragS *);
8914 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8915
8916 void
8917 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
8918 {
8919 static xtensa_insnbuf vbuf = NULL;
8920 xtensa_isa isa = xtensa_default_isa;
8921 int slot;
8922 int num_slots;
8923 xtensa_format fmt;
8924 char *file_name;
8925 unsigned line;
8926
8927 as_where (&file_name, &line);
8928 new_logical_line (fragp->fr_file, fragp->fr_line);
8929
8930 switch (fragp->fr_subtype)
8931 {
8932 case RELAX_ALIGN_NEXT_OPCODE:
8933 /* Always convert. */
8934 convert_frag_align_next_opcode (fragp);
8935 break;
8936
8937 case RELAX_DESIRE_ALIGN:
8938 /* Do nothing. If not aligned already, too bad. */
8939 break;
8940
8941 case RELAX_LITERAL:
8942 case RELAX_LITERAL_FINAL:
8943 break;
8944
8945 case RELAX_SLOTS:
8946 if (vbuf == NULL)
8947 vbuf = xtensa_insnbuf_alloc (isa);
8948
8949 xtensa_insnbuf_from_chars
8950 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
8951 fmt = xtensa_format_decode (isa, vbuf);
8952 num_slots = xtensa_format_num_slots (isa, fmt);
8953
8954 for (slot = 0; slot < num_slots; slot++)
8955 {
8956 switch (fragp->tc_frag_data.slot_subtypes[slot])
8957 {
8958 case RELAX_NARROW:
8959 convert_frag_narrow (sec, fragp, fmt, slot);
8960 break;
8961
8962 case RELAX_IMMED:
8963 case RELAX_IMMED_STEP1:
8964 case RELAX_IMMED_STEP2:
8965 /* Place the immediate. */
8966 convert_frag_immed
8967 (sec, fragp,
8968 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8969 fmt, slot);
8970 break;
8971
8972 default:
8973 /* This is OK because some slots could have
8974 relaxations and others have none. */
8975 break;
8976 }
8977 }
8978 break;
8979
8980 case RELAX_UNREACHABLE:
8981 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8982 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8983 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8984 frag_wane (fragp);
8985 break;
8986
8987 case RELAX_MAYBE_UNREACHABLE:
8988 case RELAX_MAYBE_DESIRE_ALIGN:
8989 frag_wane (fragp);
8990 break;
8991
8992 case RELAX_FILL_NOP:
8993 convert_frag_fill_nop (fragp);
8994 break;
8995
8996 case RELAX_LITERAL_NR:
8997 if (use_literal_section)
8998 {
8999 /* This should have been handled during relaxation. When
9000 relaxing a code segment, literals sometimes need to be
9001 added to the corresponding literal segment. If that
9002 literal segment has already been relaxed, then we end up
9003 in this situation. Marking the literal segments as data
9004 would make this happen less often (since GAS always relaxes
9005 code before data), but we could still get into trouble if
9006 there are instructions in a segment that is not marked as
9007 containing code. Until we can implement a better solution,
9008 cheat and adjust the addresses of all the following frags.
9009 This could break subsequent alignments, but the linker's
9010 literal coalescing will do that anyway. */
9011
9012 fragS *f;
9013 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9014 assert (fragp->tc_frag_data.unreported_expansion == 4);
9015 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9016 fragp->fr_var -= 4;
9017 fragp->fr_fix += 4;
9018 for (f = fragp->fr_next; f; f = f->fr_next)
9019 f->fr_address += 4;
9020 }
9021 else
9022 as_bad (_("invalid relaxation fragment result"));
9023 break;
9024 }
9025
9026 fragp->fr_var = 0;
9027 new_logical_line (file_name, line);
9028 }
9029
9030
9031 static void
9032 convert_frag_align_next_opcode (fragS *fragp)
9033 {
9034 char *nop_buf; /* Location for Writing. */
9035 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9036 addressT aligned_address;
9037 offsetT fill_size;
9038 int nop, nop_count;
9039
9040 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9041 fragp->fr_fix);
9042 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9043 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9044 nop_buf = fragp->fr_literal + fragp->fr_fix;
9045
9046 for (nop = 0; nop < nop_count; nop++)
9047 {
9048 int nop_size;
9049 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9050
9051 assemble_nop (nop_size, nop_buf);
9052 nop_buf += nop_size;
9053 }
9054
9055 fragp->fr_fix += fill_size;
9056 fragp->fr_var -= fill_size;
9057 }
9058
9059
9060 static void
9061 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9062 {
9063 TInsn tinsn, single_target;
9064 int size, old_size, diff;
9065 offsetT frag_offset;
9066
9067 assert (slot == 0);
9068 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9069
9070 if (fragP->tc_frag_data.is_aligning_branch == 1)
9071 {
9072 assert (fragP->tc_frag_data.text_expansion[0] == 1
9073 || fragP->tc_frag_data.text_expansion[0] == 0);
9074 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9075 fmt, slot);
9076 return;
9077 }
9078
9079 if (fragP->tc_frag_data.text_expansion[0] == 0)
9080 {
9081 /* No conversion. */
9082 fragP->fr_var = 0;
9083 return;
9084 }
9085
9086 assert (fragP->fr_opcode != NULL);
9087
9088 /* Frags in this relaxation state should only contain
9089 single instruction bundles. */
9090 tinsn_immed_from_frag (&tinsn, fragP, 0);
9091
9092 /* Just convert it to a wide form.... */
9093 size = 0;
9094 old_size = xg_get_single_size (tinsn.opcode);
9095
9096 tinsn_init (&single_target);
9097 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9098
9099 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9100 {
9101 as_bad (_("unable to widen instruction"));
9102 return;
9103 }
9104
9105 size = xg_get_single_size (single_target.opcode);
9106 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9107 frag_offset, TRUE);
9108
9109 diff = size - old_size;
9110 assert (diff >= 0);
9111 assert (diff <= fragP->fr_var);
9112 fragP->fr_var -= diff;
9113 fragP->fr_fix += diff;
9114
9115 /* clean it up */
9116 fragP->fr_var = 0;
9117 }
9118
9119
9120 static void
9121 convert_frag_fill_nop (fragS *fragP)
9122 {
9123 char *loc = &fragP->fr_literal[fragP->fr_fix];
9124 int size = fragP->tc_frag_data.text_expansion[0];
9125 assert ((unsigned) size == (fragP->fr_next->fr_address
9126 - fragP->fr_address - fragP->fr_fix));
9127 if (size == 0)
9128 {
9129 /* No conversion. */
9130 fragP->fr_var = 0;
9131 return;
9132 }
9133 assemble_nop (size, loc);
9134 fragP->tc_frag_data.is_insn = TRUE;
9135 fragP->fr_var -= size;
9136 fragP->fr_fix += size;
9137 frag_wane (fragP);
9138 }
9139
9140
9141 static fixS *fix_new_exp_in_seg
9142 (segT, subsegT, fragS *, int, int, expressionS *, int,
9143 bfd_reloc_code_real_type);
9144 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9145
9146 static void
9147 convert_frag_immed (segT segP,
9148 fragS *fragP,
9149 int min_steps,
9150 xtensa_format fmt,
9151 int slot)
9152 {
9153 char *immed_instr = fragP->fr_opcode;
9154 TInsn orig_tinsn;
9155 bfd_boolean expanded = FALSE;
9156 bfd_boolean branch_jmp_to_next = FALSE;
9157 char *fr_opcode = fragP->fr_opcode;
9158 xtensa_isa isa = xtensa_default_isa;
9159 bfd_boolean wide_insn = FALSE;
9160 int bytes;
9161 bfd_boolean is_loop;
9162
9163 assert (fr_opcode != NULL);
9164
9165 xg_clear_vinsn (&cur_vinsn);
9166
9167 vinsn_from_chars (&cur_vinsn, fr_opcode);
9168 if (cur_vinsn.num_slots > 1)
9169 wide_insn = TRUE;
9170
9171 orig_tinsn = cur_vinsn.slots[slot];
9172 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9173
9174 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9175
9176 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9177 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9178
9179 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9180 {
9181 /* Conversion just inserts a NOP and marks the fix as completed. */
9182 bytes = xtensa_format_length (isa, fmt);
9183 if (bytes >= 4)
9184 {
9185 cur_vinsn.slots[slot].opcode =
9186 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9187 cur_vinsn.slots[slot].ntok = 0;
9188 }
9189 else
9190 {
9191 bytes += fragP->tc_frag_data.text_expansion[0];
9192 assert (bytes == 2 || bytes == 3);
9193 build_nop (&cur_vinsn.slots[0], bytes);
9194 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9195 }
9196 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
9197 xtensa_insnbuf_to_chars
9198 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9199 fragP->fr_var = 0;
9200 }
9201 else
9202 {
9203 /* Here is the fun stuff: Get the immediate field from this
9204 instruction. If it fits, we're done. If not, find the next
9205 instruction sequence that fits. */
9206
9207 IStack istack;
9208 int i;
9209 symbolS *lit_sym = NULL;
9210 int total_size = 0;
9211 int target_offset = 0;
9212 int old_size;
9213 int diff;
9214 symbolS *gen_label = NULL;
9215 offsetT frag_offset;
9216 bfd_boolean first = TRUE;
9217 bfd_boolean last_is_jump;
9218
9219 /* It does not fit. Find something that does and
9220 convert immediately. */
9221 frag_offset = fr_opcode - fragP->fr_literal;
9222 istack_init (&istack);
9223 xg_assembly_relax (&istack, &orig_tinsn,
9224 segP, fragP, frag_offset, min_steps, 0);
9225
9226 old_size = xtensa_format_length (isa, fmt);
9227
9228 /* Assemble this right inline. */
9229
9230 /* First, create the mapping from a label name to the REAL label. */
9231 target_offset = 0;
9232 for (i = 0; i < istack.ninsn; i++)
9233 {
9234 TInsn *tinsn = &istack.insn[i];
9235 fragS *lit_frag;
9236
9237 switch (tinsn->insn_type)
9238 {
9239 case ITYPE_LITERAL:
9240 if (lit_sym != NULL)
9241 as_bad (_("multiple literals in expansion"));
9242 /* First find the appropriate space in the literal pool. */
9243 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9244 if (lit_frag == NULL)
9245 as_bad (_("no registered fragment for literal"));
9246 if (tinsn->ntok != 1)
9247 as_bad (_("number of literal tokens != 1"));
9248
9249 /* Set the literal symbol and add a fixup. */
9250 lit_sym = lit_frag->fr_symbol;
9251 break;
9252
9253 case ITYPE_LABEL:
9254 if (align_targets && !is_loop)
9255 {
9256 fragS *unreach = fragP->fr_next;
9257 while (!(unreach->fr_type == rs_machine_dependent
9258 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9259 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9260 {
9261 unreach = unreach->fr_next;
9262 }
9263
9264 assert (unreach->fr_type == rs_machine_dependent
9265 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9266 || unreach->fr_subtype == RELAX_UNREACHABLE));
9267
9268 target_offset += unreach->tc_frag_data.text_expansion[0];
9269 }
9270 assert (gen_label == NULL);
9271 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9272 fr_opcode - fragP->fr_literal
9273 + target_offset, fragP);
9274 break;
9275
9276 case ITYPE_INSN:
9277 if (first && wide_insn)
9278 {
9279 target_offset += xtensa_format_length (isa, fmt);
9280 first = FALSE;
9281 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9282 target_offset += xg_get_single_size (tinsn->opcode);
9283 }
9284 else
9285 target_offset += xg_get_single_size (tinsn->opcode);
9286 break;
9287 }
9288 }
9289
9290 total_size = 0;
9291 first = TRUE;
9292 last_is_jump = FALSE;
9293 for (i = 0; i < istack.ninsn; i++)
9294 {
9295 TInsn *tinsn = &istack.insn[i];
9296 fragS *lit_frag;
9297 int size;
9298 segT target_seg;
9299 bfd_reloc_code_real_type reloc_type;
9300
9301 switch (tinsn->insn_type)
9302 {
9303 case ITYPE_LITERAL:
9304 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9305 /* Already checked. */
9306 assert (lit_frag != NULL);
9307 assert (lit_sym != NULL);
9308 assert (tinsn->ntok == 1);
9309 /* Add a fixup. */
9310 target_seg = S_GET_SEGMENT (lit_sym);
9311 assert (target_seg);
9312 if (tinsn->tok[0].X_op == O_pltrel)
9313 reloc_type = BFD_RELOC_XTENSA_PLT;
9314 else
9315 reloc_type = BFD_RELOC_32;
9316 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9317 &tinsn->tok[0], FALSE, reloc_type);
9318 break;
9319
9320 case ITYPE_LABEL:
9321 break;
9322
9323 case ITYPE_INSN:
9324 xg_resolve_labels (tinsn, gen_label);
9325 xg_resolve_literals (tinsn, lit_sym);
9326 if (wide_insn && first)
9327 {
9328 first = FALSE;
9329 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9330 {
9331 cur_vinsn.slots[slot] = *tinsn;
9332 }
9333 else
9334 {
9335 cur_vinsn.slots[slot].opcode =
9336 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9337 cur_vinsn.slots[slot].ntok = 0;
9338 }
9339 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9340 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
9341 (unsigned char *) immed_instr, 0);
9342 fragP->tc_frag_data.is_insn = TRUE;
9343 size = xtensa_format_length (isa, fmt);
9344 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9345 {
9346 xg_emit_insn_to_buf
9347 (tinsn, immed_instr + size, fragP,
9348 immed_instr - fragP->fr_literal + size, TRUE);
9349 size += xg_get_single_size (tinsn->opcode);
9350 }
9351 }
9352 else
9353 {
9354 size = xg_get_single_size (tinsn->opcode);
9355 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
9356 immed_instr - fragP->fr_literal, TRUE);
9357 }
9358 immed_instr += size;
9359 total_size += size;
9360 break;
9361 }
9362 }
9363
9364 diff = total_size - old_size;
9365 assert (diff >= 0);
9366 if (diff != 0)
9367 expanded = TRUE;
9368 assert (diff <= fragP->fr_var);
9369 fragP->fr_var -= diff;
9370 fragP->fr_fix += diff;
9371 }
9372
9373 /* Check for undefined immediates in LOOP instructions. */
9374 if (is_loop)
9375 {
9376 symbolS *sym;
9377 sym = orig_tinsn.tok[1].X_add_symbol;
9378 if (sym != NULL && !S_IS_DEFINED (sym))
9379 {
9380 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9381 return;
9382 }
9383 sym = orig_tinsn.tok[1].X_op_symbol;
9384 if (sym != NULL && !S_IS_DEFINED (sym))
9385 {
9386 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9387 return;
9388 }
9389 }
9390
9391 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9392 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9393
9394 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9395 {
9396 /* Add an expansion note on the expanded instruction. */
9397 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9398 &orig_tinsn.tok[0], TRUE,
9399 BFD_RELOC_XTENSA_ASM_EXPAND);
9400 }
9401 }
9402
9403
9404 /* Add a new fix expression into the desired segment. We have to
9405 switch to that segment to do this. */
9406
9407 static fixS *
9408 fix_new_exp_in_seg (segT new_seg,
9409 subsegT new_subseg,
9410 fragS *frag,
9411 int where,
9412 int size,
9413 expressionS *exp,
9414 int pcrel,
9415 bfd_reloc_code_real_type r_type)
9416 {
9417 fixS *new_fix;
9418 segT seg = now_seg;
9419 subsegT subseg = now_subseg;
9420
9421 assert (new_seg != 0);
9422 subseg_set (new_seg, new_subseg);
9423
9424 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9425 subseg_set (seg, subseg);
9426 return new_fix;
9427 }
9428
9429
9430 /* Relax a loop instruction so that it can span loop >256 bytes.
9431
9432 loop as, .L1
9433 .L0:
9434 rsr as, LEND
9435 wsr as, LBEG
9436 addi as, as, lo8 (label-.L1)
9437 addmi as, as, mid8 (label-.L1)
9438 wsr as, LEND
9439 isync
9440 rsr as, LCOUNT
9441 addi as, as, 1
9442 .L1:
9443 <<body>>
9444 label:
9445 */
9446
9447 static void
9448 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9449 {
9450 TInsn loop_insn;
9451 TInsn addi_insn;
9452 TInsn addmi_insn;
9453 unsigned long target;
9454 static xtensa_insnbuf insnbuf = NULL;
9455 unsigned int loop_length, loop_length_hi, loop_length_lo;
9456 xtensa_isa isa = xtensa_default_isa;
9457 addressT loop_offset;
9458 addressT addi_offset = 9;
9459 addressT addmi_offset = 12;
9460 fragS *next_fragP;
9461 int target_count;
9462
9463 if (!insnbuf)
9464 insnbuf = xtensa_insnbuf_alloc (isa);
9465
9466 /* Get the loop offset. */
9467 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9468
9469 /* Validate that there really is a LOOP at the loop_offset. Because
9470 loops are not bundleable, we can assume that the instruction will be
9471 in slot 0. */
9472 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9473 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9474
9475 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9476 addi_offset += loop_offset;
9477 addmi_offset += loop_offset;
9478
9479 assert (tinsn->ntok == 2);
9480 if (tinsn->tok[1].X_op == O_constant)
9481 target = tinsn->tok[1].X_add_number;
9482 else if (tinsn->tok[1].X_op == O_symbol)
9483 {
9484 /* Find the fragment. */
9485 symbolS *sym = tinsn->tok[1].X_add_symbol;
9486 assert (S_GET_SEGMENT (sym) == segP
9487 || S_GET_SEGMENT (sym) == absolute_section);
9488 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9489 }
9490 else
9491 {
9492 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9493 target = 0;
9494 }
9495
9496 know (symbolP);
9497 know (symbolP->sy_frag);
9498 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9499 || symbol_get_frag (symbolP) == &zero_address_frag);
9500
9501 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9502 loop_length_hi = loop_length & ~0x0ff;
9503 loop_length_lo = loop_length & 0x0ff;
9504 if (loop_length_lo >= 128)
9505 {
9506 loop_length_lo -= 256;
9507 loop_length_hi += 256;
9508 }
9509
9510 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9511 32512. If the loop is larger than that, then we just fail. */
9512 if (loop_length_hi > 32512)
9513 as_bad_where (fragP->fr_file, fragP->fr_line,
9514 _("loop too long for LOOP instruction"));
9515
9516 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9517 assert (addi_insn.opcode == xtensa_addi_opcode);
9518
9519 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9520 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9521
9522 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9523 tinsn_to_insnbuf (&addi_insn, insnbuf);
9524
9525 fragP->tc_frag_data.is_insn = TRUE;
9526 xtensa_insnbuf_to_chars
9527 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9528
9529 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9530 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9531 xtensa_insnbuf_to_chars
9532 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9533
9534 /* Walk through all of the frags from here to the loop end
9535 and mark them as no_transform to keep them from being modified
9536 by the linker. If we ever have a relocation for the
9537 addi/addmi of the difference of two symbols we can remove this. */
9538
9539 target_count = 0;
9540 for (next_fragP = fragP; next_fragP != NULL;
9541 next_fragP = next_fragP->fr_next)
9542 {
9543 next_fragP->tc_frag_data.is_no_transform = TRUE;
9544 if (next_fragP->tc_frag_data.is_loop_target)
9545 target_count++;
9546 if (target_count == 2)
9547 break;
9548 }
9549 }
9550
9551 \f
9552 /* A map that keeps information on a per-subsegment basis. This is
9553 maintained during initial assembly, but is invalid once the
9554 subsegments are smashed together. I.E., it cannot be used during
9555 the relaxation. */
9556
9557 typedef struct subseg_map_struct
9558 {
9559 /* the key */
9560 segT seg;
9561 subsegT subseg;
9562
9563 /* the data */
9564 unsigned flags;
9565 float total_freq; /* fall-through + branch target frequency */
9566 float target_freq; /* branch target frequency alone */
9567
9568 struct subseg_map_struct *next;
9569 } subseg_map;
9570
9571
9572 static subseg_map *sseg_map = NULL;
9573
9574 static subseg_map *
9575 get_subseg_info (segT seg, subsegT subseg)
9576 {
9577 subseg_map *subseg_e;
9578
9579 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9580 {
9581 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9582 break;
9583 }
9584 return subseg_e;
9585 }
9586
9587
9588 static subseg_map *
9589 add_subseg_info (segT seg, subsegT subseg)
9590 {
9591 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9592 memset (subseg_e, 0, sizeof (subseg_map));
9593 subseg_e->seg = seg;
9594 subseg_e->subseg = subseg;
9595 subseg_e->flags = 0;
9596 /* Start off considering every branch target very important. */
9597 subseg_e->target_freq = 1.0;
9598 subseg_e->total_freq = 1.0;
9599 subseg_e->next = sseg_map;
9600 sseg_map = subseg_e;
9601 return subseg_e;
9602 }
9603
9604
9605 static unsigned
9606 get_last_insn_flags (segT seg, subsegT subseg)
9607 {
9608 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9609 if (subseg_e)
9610 return subseg_e->flags;
9611 return 0;
9612 }
9613
9614
9615 static void
9616 set_last_insn_flags (segT seg,
9617 subsegT subseg,
9618 unsigned fl,
9619 bfd_boolean val)
9620 {
9621 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9622 if (! subseg_e)
9623 subseg_e = add_subseg_info (seg, subseg);
9624 if (val)
9625 subseg_e->flags |= fl;
9626 else
9627 subseg_e->flags &= ~fl;
9628 }
9629
9630
9631 static float
9632 get_subseg_total_freq (segT seg, subsegT subseg)
9633 {
9634 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9635 if (subseg_e)
9636 return subseg_e->total_freq;
9637 return 1.0;
9638 }
9639
9640
9641 static float
9642 get_subseg_target_freq (segT seg, subsegT subseg)
9643 {
9644 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9645 if (subseg_e)
9646 return subseg_e->target_freq;
9647 return 1.0;
9648 }
9649
9650
9651 static void
9652 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9653 {
9654 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9655 if (! subseg_e)
9656 subseg_e = add_subseg_info (seg, subseg);
9657 subseg_e->total_freq = total_f;
9658 subseg_e->target_freq = target_f;
9659 }
9660
9661 \f
9662 /* Segment Lists and emit_state Stuff. */
9663
9664 static void
9665 xtensa_move_seg_list_to_beginning (seg_list *head)
9666 {
9667 head = head->next;
9668 while (head)
9669 {
9670 segT literal_section = head->seg;
9671
9672 /* Move the literal section to the front of the section list. */
9673 assert (literal_section);
9674 if (literal_section != stdoutput->sections)
9675 {
9676 bfd_section_list_remove (stdoutput, literal_section);
9677 bfd_section_list_prepend (stdoutput, literal_section);
9678 }
9679 head = head->next;
9680 }
9681 }
9682
9683
9684 static void mark_literal_frags (seg_list *);
9685
9686 static void
9687 xtensa_move_literals (void)
9688 {
9689 seg_list *segment;
9690 frchainS *frchain_from, *frchain_to;
9691 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9692 fragS **frag_splice;
9693 emit_state state;
9694 segT dest_seg;
9695 fixS *fix, *next_fix, **fix_splice;
9696 sym_list *lit;
9697
9698 mark_literal_frags (literal_head->next);
9699 mark_literal_frags (init_literal_head->next);
9700 mark_literal_frags (fini_literal_head->next);
9701
9702 if (use_literal_section)
9703 return;
9704
9705 segment = literal_head->next;
9706 while (segment)
9707 {
9708 frchain_from = seg_info (segment->seg)->frchainP;
9709 search_frag = frchain_from->frch_root;
9710 literal_pool = NULL;
9711 frchain_to = NULL;
9712 frag_splice = &(frchain_from->frch_root);
9713
9714 while (!search_frag->tc_frag_data.literal_frag)
9715 {
9716 assert (search_frag->fr_fix == 0
9717 || search_frag->fr_type == rs_align);
9718 search_frag = search_frag->fr_next;
9719 }
9720
9721 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9722 == RELAX_LITERAL_POOL_BEGIN);
9723 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9724
9725 /* Make sure that all the frags in this series are closed, and
9726 that there is at least one left over of zero-size. This
9727 prevents us from making a segment with an frchain without any
9728 frags in it. */
9729 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9730 xtensa_set_frag_assembly_state (frag_now);
9731 last_frag = frag_now;
9732 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9733 xtensa_set_frag_assembly_state (frag_now);
9734
9735 while (search_frag != frag_now)
9736 {
9737 next_frag = search_frag->fr_next;
9738
9739 /* First, move the frag out of the literal section and
9740 to the appropriate place. */
9741 if (search_frag->tc_frag_data.literal_frag)
9742 {
9743 literal_pool = search_frag->tc_frag_data.literal_frag;
9744 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
9745 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9746 assert (frchain_to);
9747 }
9748 insert_after = literal_pool;
9749
9750 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9751 insert_after = insert_after->fr_next;
9752
9753 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
9754
9755 *frag_splice = next_frag;
9756 search_frag->fr_next = insert_after->fr_next;
9757 insert_after->fr_next = search_frag;
9758 search_frag->tc_frag_data.lit_seg = dest_seg;
9759
9760 /* Now move any fixups associated with this frag to the
9761 right section. */
9762 fix = frchain_from->fix_root;
9763 fix_splice = &(frchain_from->fix_root);
9764 while (fix)
9765 {
9766 next_fix = fix->fx_next;
9767 if (fix->fx_frag == search_frag)
9768 {
9769 *fix_splice = next_fix;
9770 fix->fx_next = frchain_to->fix_root;
9771 frchain_to->fix_root = fix;
9772 if (frchain_to->fix_tail == NULL)
9773 frchain_to->fix_tail = fix;
9774 }
9775 else
9776 fix_splice = &(fix->fx_next);
9777 fix = next_fix;
9778 }
9779 search_frag = next_frag;
9780 }
9781
9782 if (frchain_from->fix_root != NULL)
9783 {
9784 frchain_from = seg_info (segment->seg)->frchainP;
9785 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9786
9787 assert (frchain_from->fix_root == NULL);
9788 }
9789 frchain_from->fix_tail = NULL;
9790 xtensa_restore_emit_state (&state);
9791 segment = segment->next;
9792 }
9793
9794 /* Now fix up the SEGMENT value for all the literal symbols. */
9795 for (lit = literal_syms; lit; lit = lit->next)
9796 {
9797 symbolS *lit_sym = lit->sym;
9798 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
9799 if (dest_seg)
9800 S_SET_SEGMENT (lit_sym, dest_seg);
9801 }
9802 }
9803
9804
9805 /* Walk over all the frags for segments in a list and mark them as
9806 containing literals. As clunky as this is, we can't rely on frag_var
9807 and frag_variant to get called in all situations. */
9808
9809 static void
9810 mark_literal_frags (seg_list *segment)
9811 {
9812 frchainS *frchain_from;
9813 fragS *search_frag;
9814
9815 while (segment)
9816 {
9817 frchain_from = seg_info (segment->seg)->frchainP;
9818 search_frag = frchain_from->frch_root;
9819 while (search_frag)
9820 {
9821 search_frag->tc_frag_data.is_literal = TRUE;
9822 search_frag = search_frag->fr_next;
9823 }
9824 segment = segment->next;
9825 }
9826 }
9827
9828
9829 static void
9830 xtensa_reorder_seg_list (seg_list *head, segT after)
9831 {
9832 /* Move all of the sections in the section list to come
9833 after "after" in the gnu segment list. */
9834
9835 head = head->next;
9836 while (head)
9837 {
9838 segT literal_section = head->seg;
9839
9840 /* Move the literal section after "after". */
9841 assert (literal_section);
9842 if (literal_section != after)
9843 {
9844 bfd_section_list_remove (stdoutput, literal_section);
9845 bfd_section_list_insert_after (stdoutput, after, literal_section);
9846 }
9847
9848 head = head->next;
9849 }
9850 }
9851
9852
9853 /* Push all the literal segments to the end of the gnu list. */
9854
9855 static void
9856 xtensa_reorder_segments (void)
9857 {
9858 segT sec;
9859 segT last_sec = 0;
9860 int old_count = 0;
9861 int new_count = 0;
9862
9863 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9864 {
9865 last_sec = sec;
9866 old_count++;
9867 }
9868
9869 /* Now that we have the last section, push all the literal
9870 sections to the end. */
9871 xtensa_reorder_seg_list (literal_head, last_sec);
9872 xtensa_reorder_seg_list (init_literal_head, last_sec);
9873 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9874
9875 /* Now perform the final error check. */
9876 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9877 new_count++;
9878 assert (new_count == old_count);
9879 }
9880
9881
9882 /* Change the emit state (seg, subseg, and frag related stuff) to the
9883 correct location. Return a emit_state which can be passed to
9884 xtensa_restore_emit_state to return to current fragment. */
9885
9886 static void
9887 xtensa_switch_to_literal_fragment (emit_state *result)
9888 {
9889 if (directive_state[directive_absolute_literals])
9890 {
9891 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9892 &default_lit_sections.lit4_seg, FALSE);
9893 xtensa_switch_section_emit_state (result,
9894 default_lit_sections.lit4_seg, 0);
9895 }
9896 else
9897 xtensa_switch_to_non_abs_literal_fragment (result);
9898
9899 /* Do a 4-byte align here. */
9900 frag_align (2, 0, 0);
9901 record_alignment (now_seg, 2);
9902 }
9903
9904
9905 static void
9906 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
9907 {
9908 /* When we mark a literal pool location, we want to put a frag in
9909 the literal pool that points to it. But to do that, we want to
9910 switch_to_literal_fragment. But literal sections don't have
9911 literal pools, so their location is always null, so we would
9912 recurse forever. This is kind of hacky, but it works. */
9913
9914 static bfd_boolean recursive = FALSE;
9915 fragS *pool_location = get_literal_pool_location (now_seg);
9916 bfd_boolean is_init =
9917 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9918
9919 bfd_boolean is_fini =
9920 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
9921
9922 if (pool_location == NULL
9923 && !use_literal_section
9924 && !recursive
9925 && !is_init && ! is_fini)
9926 {
9927 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
9928 recursive = TRUE;
9929 xtensa_mark_literal_pool_location ();
9930 recursive = FALSE;
9931 }
9932
9933 /* Special case: If we are in the ".fini" or ".init" section, then
9934 we will ALWAYS be generating to the ".fini.literal" and
9935 ".init.literal" sections. */
9936
9937 if (is_init)
9938 {
9939 cache_literal_section (init_literal_head,
9940 default_lit_sections.init_lit_seg_name,
9941 &default_lit_sections.init_lit_seg, TRUE);
9942 xtensa_switch_section_emit_state (result,
9943 default_lit_sections.init_lit_seg, 0);
9944 }
9945 else if (is_fini)
9946 {
9947 cache_literal_section (fini_literal_head,
9948 default_lit_sections.fini_lit_seg_name,
9949 &default_lit_sections.fini_lit_seg, TRUE);
9950 xtensa_switch_section_emit_state (result,
9951 default_lit_sections.fini_lit_seg, 0);
9952 }
9953 else
9954 {
9955 cache_literal_section (literal_head,
9956 default_lit_sections.lit_seg_name,
9957 &default_lit_sections.lit_seg, TRUE);
9958 xtensa_switch_section_emit_state (result,
9959 default_lit_sections.lit_seg, 0);
9960 }
9961
9962 if (!use_literal_section
9963 && !is_init && !is_fini
9964 && get_literal_pool_location (now_seg) != pool_location)
9965 {
9966 /* Close whatever frag is there. */
9967 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9968 xtensa_set_frag_assembly_state (frag_now);
9969 frag_now->tc_frag_data.literal_frag = pool_location;
9970 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9971 xtensa_set_frag_assembly_state (frag_now);
9972 }
9973 }
9974
9975
9976 /* Call this function before emitting data into the literal section.
9977 This is a helper function for xtensa_switch_to_literal_fragment.
9978 This is similar to a .section new_now_seg subseg. */
9979
9980 static void
9981 xtensa_switch_section_emit_state (emit_state *state,
9982 segT new_now_seg,
9983 subsegT new_now_subseg)
9984 {
9985 state->name = now_seg->name;
9986 state->now_seg = now_seg;
9987 state->now_subseg = now_subseg;
9988 state->generating_literals = generating_literals;
9989 generating_literals++;
9990 subseg_set (new_now_seg, new_now_subseg);
9991 }
9992
9993
9994 /* Use to restore the emitting into the normal place. */
9995
9996 static void
9997 xtensa_restore_emit_state (emit_state *state)
9998 {
9999 generating_literals = state->generating_literals;
10000 subseg_set (state->now_seg, state->now_subseg);
10001 }
10002
10003
10004 /* Get a segment of a given name. If the segment is already
10005 present, return it; otherwise, create a new one. */
10006
10007 static void
10008 cache_literal_section (seg_list *head,
10009 const char *name,
10010 segT *pseg,
10011 bfd_boolean is_code)
10012 {
10013 segT current_section = now_seg;
10014 int current_subsec = now_subseg;
10015 segT seg;
10016
10017 if (*pseg != 0)
10018 return;
10019
10020 /* Check if the named section exists. */
10021 for (seg = stdoutput->sections; seg; seg = seg->next)
10022 {
10023 if (!strcmp (segment_name (seg), name))
10024 break;
10025 }
10026
10027 if (!seg)
10028 {
10029 /* Create a new literal section. */
10030 seg = subseg_new (name, (subsegT) 0);
10031 if (head)
10032 {
10033 /* Add the newly created literal segment to the specified list. */
10034 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10035 n->seg = seg;
10036 n->next = head->next;
10037 head->next = n;
10038 }
10039 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
10040 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10041 | (is_code ? SEC_CODE : SEC_DATA));
10042 bfd_set_section_alignment (stdoutput, seg, 2);
10043 }
10044
10045 *pseg = seg;
10046 subseg_set (current_section, current_subsec);
10047 }
10048
10049 \f
10050 /* Property Tables Stuff. */
10051
10052 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10053 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10054 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10055
10056 typedef bfd_boolean (*frag_predicate) (const fragS *);
10057 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10058
10059 static bfd_boolean get_frag_is_literal (const fragS *);
10060 static void xtensa_create_property_segments
10061 (frag_predicate, frag_predicate, const char *, xt_section_type);
10062 static void xtensa_create_xproperty_segments
10063 (frag_flags_fn, const char *, xt_section_type);
10064 static segment_info_type *retrieve_segment_info (segT);
10065 static segT retrieve_xtensa_section (char *);
10066 static bfd_boolean section_has_property (segT, frag_predicate);
10067 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10068 static void add_xt_block_frags
10069 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10070 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10071 static void xtensa_frag_flags_init (frag_flags *);
10072 static void get_frag_property_flags (const fragS *, frag_flags *);
10073 static bfd_vma frag_flags_to_number (const frag_flags *);
10074 static void add_xt_prop_frags
10075 (segT, segT, xtensa_block_info **, frag_flags_fn);
10076
10077 /* Set up property tables after relaxation. */
10078
10079 void
10080 xtensa_post_relax_hook (void)
10081 {
10082 xtensa_move_seg_list_to_beginning (literal_head);
10083 xtensa_move_seg_list_to_beginning (init_literal_head);
10084 xtensa_move_seg_list_to_beginning (fini_literal_head);
10085
10086 xtensa_find_unmarked_state_frags ();
10087
10088 xtensa_create_property_segments (get_frag_is_literal,
10089 NULL,
10090 XTENSA_LIT_SEC_NAME,
10091 xt_literal_sec);
10092 xtensa_create_xproperty_segments (get_frag_property_flags,
10093 XTENSA_PROP_SEC_NAME,
10094 xt_prop_sec);
10095
10096 if (warn_unaligned_branch_targets)
10097 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10098 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10099 }
10100
10101
10102 /* This function is only meaningful after xtensa_move_literals. */
10103
10104 static bfd_boolean
10105 get_frag_is_literal (const fragS *fragP)
10106 {
10107 assert (fragP != NULL);
10108 return fragP->tc_frag_data.is_literal;
10109 }
10110
10111
10112 static void
10113 xtensa_create_property_segments (frag_predicate property_function,
10114 frag_predicate end_property_function,
10115 const char *section_name_base,
10116 xt_section_type sec_type)
10117 {
10118 segT *seclist;
10119
10120 /* Walk over all of the current segments.
10121 Walk over each fragment
10122 For each non-empty fragment,
10123 Build a property record (append where possible). */
10124
10125 for (seclist = &stdoutput->sections;
10126 seclist && *seclist;
10127 seclist = &(*seclist)->next)
10128 {
10129 segT sec = *seclist;
10130 flagword flags;
10131
10132 flags = bfd_get_section_flags (stdoutput, sec);
10133 if (flags & SEC_DEBUGGING)
10134 continue;
10135 if (!(flags & SEC_ALLOC))
10136 continue;
10137
10138 if (section_has_property (sec, property_function))
10139 {
10140 char *property_section_name =
10141 xtensa_get_property_section_name (sec, section_name_base);
10142 segT insn_sec = retrieve_xtensa_section (property_section_name);
10143 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10144 xtensa_block_info **xt_blocks =
10145 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10146 /* Walk over all of the frchains here and add new sections. */
10147 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10148 end_property_function);
10149 }
10150 }
10151
10152 /* Now we fill them out.... */
10153
10154 for (seclist = &stdoutput->sections;
10155 seclist && *seclist;
10156 seclist = &(*seclist)->next)
10157 {
10158 segment_info_type *seginfo;
10159 xtensa_block_info *block;
10160 segT sec = *seclist;
10161
10162 seginfo = seg_info (sec);
10163 block = seginfo->tc_segment_info_data.blocks[sec_type];
10164
10165 if (block)
10166 {
10167 xtensa_block_info *cur_block;
10168 /* This is a section with some data. */
10169 int num_recs = 0;
10170 bfd_size_type rec_size;
10171
10172 for (cur_block = block; cur_block; cur_block = cur_block->next)
10173 num_recs++;
10174
10175 rec_size = num_recs * 8;
10176 bfd_set_section_size (stdoutput, sec, rec_size);
10177
10178 /* In order to make this work with the assembler, we have to
10179 build some frags and then build the "fixups" for it. It
10180 would be easier to just set the contents then set the
10181 arlents. */
10182
10183 if (num_recs)
10184 {
10185 /* Allocate a fragment and leak it. */
10186 fragS *fragP;
10187 bfd_size_type frag_size;
10188 fixS *fixes;
10189 frchainS *frchainP;
10190 int i;
10191 char *frag_data;
10192
10193 frag_size = sizeof (fragS) + rec_size;
10194 fragP = (fragS *) xmalloc (frag_size);
10195
10196 memset (fragP, 0, frag_size);
10197 fragP->fr_address = 0;
10198 fragP->fr_next = NULL;
10199 fragP->fr_fix = rec_size;
10200 fragP->fr_var = 0;
10201 fragP->fr_type = rs_fill;
10202 /* The rest are zeros. */
10203
10204 frchainP = seginfo->frchainP;
10205 frchainP->frch_root = fragP;
10206 frchainP->frch_last = fragP;
10207
10208 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10209 memset (fixes, 0, sizeof (fixS) * num_recs);
10210
10211 seginfo->fix_root = fixes;
10212 seginfo->fix_tail = &fixes[num_recs - 1];
10213 cur_block = block;
10214 frag_data = &fragP->fr_literal[0];
10215 for (i = 0; i < num_recs; i++)
10216 {
10217 fixS *fix = &fixes[i];
10218 assert (cur_block);
10219
10220 /* Write the fixup. */
10221 if (i != num_recs - 1)
10222 fix->fx_next = &fixes[i + 1];
10223 else
10224 fix->fx_next = NULL;
10225 fix->fx_size = 4;
10226 fix->fx_done = 0;
10227 fix->fx_frag = fragP;
10228 fix->fx_where = i * 8;
10229 fix->fx_addsy = section_symbol (cur_block->sec);
10230 fix->fx_offset = cur_block->offset;
10231 fix->fx_r_type = BFD_RELOC_32;
10232 fix->fx_file = "Internal Assembly";
10233 fix->fx_line = 0;
10234
10235 /* Write the length. */
10236 md_number_to_chars (&frag_data[4 + 8 * i],
10237 cur_block->size, 4);
10238 cur_block = cur_block->next;
10239 }
10240 }
10241 }
10242 }
10243 }
10244
10245
10246 static void
10247 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10248 const char *section_name_base,
10249 xt_section_type sec_type)
10250 {
10251 segT *seclist;
10252
10253 /* Walk over all of the current segments.
10254 Walk over each fragment.
10255 For each fragment that has instructions,
10256 build an instruction record (append where possible). */
10257
10258 for (seclist = &stdoutput->sections;
10259 seclist && *seclist;
10260 seclist = &(*seclist)->next)
10261 {
10262 segT sec = *seclist;
10263 flagword flags;
10264
10265 flags = bfd_get_section_flags (stdoutput, sec);
10266 if ((flags & SEC_DEBUGGING)
10267 || !(flags & SEC_ALLOC)
10268 || (flags & SEC_MERGE))
10269 continue;
10270
10271 if (section_has_xproperty (sec, flag_fn))
10272 {
10273 char *property_section_name =
10274 xtensa_get_property_section_name (sec, section_name_base);
10275 segT insn_sec = retrieve_xtensa_section (property_section_name);
10276 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10277 xtensa_block_info **xt_blocks =
10278 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10279 /* Walk over all of the frchains here and add new sections. */
10280 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
10281 }
10282 }
10283
10284 /* Now we fill them out.... */
10285
10286 for (seclist = &stdoutput->sections;
10287 seclist && *seclist;
10288 seclist = &(*seclist)->next)
10289 {
10290 segment_info_type *seginfo;
10291 xtensa_block_info *block;
10292 segT sec = *seclist;
10293
10294 seginfo = seg_info (sec);
10295 block = seginfo->tc_segment_info_data.blocks[sec_type];
10296
10297 if (block)
10298 {
10299 xtensa_block_info *cur_block;
10300 /* This is a section with some data. */
10301 int num_recs = 0;
10302 bfd_size_type rec_size;
10303
10304 for (cur_block = block; cur_block; cur_block = cur_block->next)
10305 num_recs++;
10306
10307 rec_size = num_recs * (8 + 4);
10308 bfd_set_section_size (stdoutput, sec, rec_size);
10309
10310 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10311
10312 /* In order to make this work with the assembler, we have to build
10313 some frags then build the "fixups" for it. It would be easier to
10314 just set the contents then set the arlents. */
10315
10316 if (num_recs)
10317 {
10318 /* Allocate a fragment and (unfortunately) leak it. */
10319 fragS *fragP;
10320 bfd_size_type frag_size;
10321 fixS *fixes;
10322 frchainS *frchainP;
10323 int i;
10324 char *frag_data;
10325
10326 frag_size = sizeof (fragS) + rec_size;
10327 fragP = (fragS *) xmalloc (frag_size);
10328
10329 memset (fragP, 0, frag_size);
10330 fragP->fr_address = 0;
10331 fragP->fr_next = NULL;
10332 fragP->fr_fix = rec_size;
10333 fragP->fr_var = 0;
10334 fragP->fr_type = rs_fill;
10335 /* The rest are zeros. */
10336
10337 frchainP = seginfo->frchainP;
10338 frchainP->frch_root = fragP;
10339 frchainP->frch_last = fragP;
10340
10341 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10342 memset (fixes, 0, sizeof (fixS) * num_recs);
10343
10344 seginfo->fix_root = fixes;
10345 seginfo->fix_tail = &fixes[num_recs - 1];
10346 cur_block = block;
10347 frag_data = &fragP->fr_literal[0];
10348 for (i = 0; i < num_recs; i++)
10349 {
10350 fixS *fix = &fixes[i];
10351 assert (cur_block);
10352
10353 /* Write the fixup. */
10354 if (i != num_recs - 1)
10355 fix->fx_next = &fixes[i + 1];
10356 else
10357 fix->fx_next = NULL;
10358 fix->fx_size = 4;
10359 fix->fx_done = 0;
10360 fix->fx_frag = fragP;
10361 fix->fx_where = i * (8 + 4);
10362 fix->fx_addsy = section_symbol (cur_block->sec);
10363 fix->fx_offset = cur_block->offset;
10364 fix->fx_r_type = BFD_RELOC_32;
10365 fix->fx_file = "Internal Assembly";
10366 fix->fx_line = 0;
10367
10368 /* Write the length. */
10369 md_number_to_chars (&frag_data[4 + (8+4) * i],
10370 cur_block->size, 4);
10371 md_number_to_chars (&frag_data[8 + (8+4) * i],
10372 frag_flags_to_number (&cur_block->flags),
10373 4);
10374 cur_block = cur_block->next;
10375 }
10376 }
10377 }
10378 }
10379 }
10380
10381
10382 static segment_info_type *
10383 retrieve_segment_info (segT seg)
10384 {
10385 segment_info_type *seginfo;
10386 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10387 if (!seginfo)
10388 {
10389 frchainS *frchainP;
10390
10391 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
10392 memset ((void *) seginfo, 0, sizeof (*seginfo));
10393 seginfo->fix_root = NULL;
10394 seginfo->fix_tail = NULL;
10395 seginfo->bfd_section = seg;
10396 seginfo->sym = 0;
10397 /* We will not be dealing with these, only our special ones. */
10398 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
10399
10400 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10401 frchainP->frch_root = NULL;
10402 frchainP->frch_last = NULL;
10403 frchainP->frch_next = NULL;
10404 frchainP->frch_subseg = 0;
10405 frchainP->fix_root = NULL;
10406 frchainP->fix_tail = NULL;
10407 /* Do not init the objstack. */
10408 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10409 /* frchainP->frch_frag_now = fragP; */
10410 frchainP->frch_frag_now = NULL;
10411
10412 seginfo->frchainP = frchainP;
10413 }
10414
10415 return seginfo;
10416 }
10417
10418
10419 static segT
10420 retrieve_xtensa_section (char *sec_name)
10421 {
10422 bfd *abfd = stdoutput;
10423 flagword flags, out_flags, link_once_flags;
10424 segT s;
10425
10426 flags = bfd_get_section_flags (abfd, now_seg);
10427 link_once_flags = (flags & SEC_LINK_ONCE);
10428 if (link_once_flags)
10429 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10430 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10431
10432 s = bfd_make_section_old_way (abfd, sec_name);
10433 if (s == NULL)
10434 as_bad (_("could not create section %s"), sec_name);
10435 if (!bfd_set_section_flags (abfd, s, out_flags))
10436 as_bad (_("invalid flag combination on section %s"), sec_name);
10437
10438 return s;
10439 }
10440
10441
10442 static bfd_boolean
10443 section_has_property (segT sec, frag_predicate property_function)
10444 {
10445 segment_info_type *seginfo = seg_info (sec);
10446 fragS *fragP;
10447
10448 if (seginfo && seginfo->frchainP)
10449 {
10450 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10451 {
10452 if (property_function (fragP)
10453 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10454 return TRUE;
10455 }
10456 }
10457 return FALSE;
10458 }
10459
10460
10461 static bfd_boolean
10462 section_has_xproperty (segT sec, frag_flags_fn property_function)
10463 {
10464 segment_info_type *seginfo = seg_info (sec);
10465 fragS *fragP;
10466
10467 if (seginfo && seginfo->frchainP)
10468 {
10469 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10470 {
10471 frag_flags prop_flags;
10472 property_function (fragP, &prop_flags);
10473 if (!xtensa_frag_flags_is_empty (&prop_flags))
10474 return TRUE;
10475 }
10476 }
10477 return FALSE;
10478 }
10479
10480
10481 /* Two types of block sections exist right now: literal and insns. */
10482
10483 static void
10484 add_xt_block_frags (segT sec,
10485 segT xt_block_sec,
10486 xtensa_block_info **xt_block,
10487 frag_predicate property_function,
10488 frag_predicate end_property_function)
10489 {
10490 segment_info_type *seg_info;
10491 segment_info_type *xt_seg_info;
10492 bfd_vma seg_offset;
10493 fragS *fragP;
10494
10495 xt_seg_info = retrieve_segment_info (xt_block_sec);
10496 seg_info = retrieve_segment_info (sec);
10497
10498 /* Build it if needed. */
10499 while (*xt_block != NULL)
10500 xt_block = &(*xt_block)->next;
10501 /* We are either at NULL at the beginning or at the end. */
10502
10503 /* Walk through the frags. */
10504 seg_offset = 0;
10505
10506 if (seg_info->frchainP)
10507 {
10508 for (fragP = seg_info->frchainP->frch_root;
10509 fragP;
10510 fragP = fragP->fr_next)
10511 {
10512 if (property_function (fragP)
10513 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10514 {
10515 if (*xt_block != NULL)
10516 {
10517 if ((*xt_block)->offset + (*xt_block)->size
10518 == fragP->fr_address)
10519 (*xt_block)->size += fragP->fr_fix;
10520 else
10521 xt_block = &((*xt_block)->next);
10522 }
10523 if (*xt_block == NULL)
10524 {
10525 xtensa_block_info *new_block = (xtensa_block_info *)
10526 xmalloc (sizeof (xtensa_block_info));
10527 new_block->sec = sec;
10528 new_block->offset = fragP->fr_address;
10529 new_block->size = fragP->fr_fix;
10530 new_block->next = NULL;
10531 xtensa_frag_flags_init (&new_block->flags);
10532 *xt_block = new_block;
10533 }
10534 if (end_property_function
10535 && end_property_function (fragP))
10536 {
10537 xt_block = &((*xt_block)->next);
10538 }
10539 }
10540 }
10541 }
10542 }
10543
10544
10545 /* Break the encapsulation of add_xt_prop_frags here. */
10546
10547 static bfd_boolean
10548 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10549 {
10550 if (prop_flags->is_literal
10551 || prop_flags->is_insn
10552 || prop_flags->is_data
10553 || prop_flags->is_unreachable)
10554 return FALSE;
10555 return TRUE;
10556 }
10557
10558
10559 static void
10560 xtensa_frag_flags_init (frag_flags *prop_flags)
10561 {
10562 memset (prop_flags, 0, sizeof (frag_flags));
10563 }
10564
10565
10566 static void
10567 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10568 {
10569 xtensa_frag_flags_init (prop_flags);
10570 if (fragP->tc_frag_data.is_literal)
10571 prop_flags->is_literal = TRUE;
10572 if (fragP->tc_frag_data.is_unreachable)
10573 prop_flags->is_unreachable = TRUE;
10574 else if (fragP->tc_frag_data.is_insn)
10575 {
10576 prop_flags->is_insn = TRUE;
10577 if (fragP->tc_frag_data.is_loop_target)
10578 prop_flags->insn.is_loop_target = TRUE;
10579 if (fragP->tc_frag_data.is_branch_target)
10580 prop_flags->insn.is_branch_target = TRUE;
10581 if (fragP->tc_frag_data.is_specific_opcode
10582 || fragP->tc_frag_data.is_no_transform)
10583 prop_flags->insn.is_no_transform = TRUE;
10584 if (fragP->tc_frag_data.is_no_density)
10585 prop_flags->insn.is_no_density = TRUE;
10586 if (fragP->tc_frag_data.use_absolute_literals)
10587 prop_flags->insn.is_abslit = TRUE;
10588 }
10589 if (fragP->tc_frag_data.is_align)
10590 {
10591 prop_flags->is_align = TRUE;
10592 prop_flags->alignment = fragP->tc_frag_data.alignment;
10593 if (xtensa_frag_flags_is_empty (prop_flags))
10594 prop_flags->is_data = TRUE;
10595 }
10596 }
10597
10598
10599 static bfd_vma
10600 frag_flags_to_number (const frag_flags *prop_flags)
10601 {
10602 bfd_vma num = 0;
10603 if (prop_flags->is_literal)
10604 num |= XTENSA_PROP_LITERAL;
10605 if (prop_flags->is_insn)
10606 num |= XTENSA_PROP_INSN;
10607 if (prop_flags->is_data)
10608 num |= XTENSA_PROP_DATA;
10609 if (prop_flags->is_unreachable)
10610 num |= XTENSA_PROP_UNREACHABLE;
10611 if (prop_flags->insn.is_loop_target)
10612 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10613 if (prop_flags->insn.is_branch_target)
10614 {
10615 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10616 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10617 }
10618
10619 if (prop_flags->insn.is_no_density)
10620 num |= XTENSA_PROP_INSN_NO_DENSITY;
10621 if (prop_flags->insn.is_no_transform)
10622 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10623 if (prop_flags->insn.is_no_reorder)
10624 num |= XTENSA_PROP_INSN_NO_REORDER;
10625 if (prop_flags->insn.is_abslit)
10626 num |= XTENSA_PROP_INSN_ABSLIT;
10627
10628 if (prop_flags->is_align)
10629 {
10630 num |= XTENSA_PROP_ALIGN;
10631 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10632 }
10633
10634 return num;
10635 }
10636
10637
10638 static bfd_boolean
10639 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10640 const frag_flags *prop_flags_2)
10641 {
10642 /* Cannot combine with an end marker. */
10643
10644 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10645 return FALSE;
10646 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10647 return FALSE;
10648 if (prop_flags_1->is_data != prop_flags_2->is_data)
10649 return FALSE;
10650
10651 if (prop_flags_1->is_insn)
10652 {
10653 /* Properties of the beginning of the frag. */
10654 if (prop_flags_2->insn.is_loop_target)
10655 return FALSE;
10656 if (prop_flags_2->insn.is_branch_target)
10657 return FALSE;
10658 if (prop_flags_1->insn.is_no_density !=
10659 prop_flags_2->insn.is_no_density)
10660 return FALSE;
10661 if (prop_flags_1->insn.is_no_transform !=
10662 prop_flags_2->insn.is_no_transform)
10663 return FALSE;
10664 if (prop_flags_1->insn.is_no_reorder !=
10665 prop_flags_2->insn.is_no_reorder)
10666 return FALSE;
10667 if (prop_flags_1->insn.is_abslit !=
10668 prop_flags_2->insn.is_abslit)
10669 return FALSE;
10670 }
10671
10672 if (prop_flags_1->is_align)
10673 return FALSE;
10674
10675 return TRUE;
10676 }
10677
10678
10679 static bfd_vma
10680 xt_block_aligned_size (const xtensa_block_info *xt_block)
10681 {
10682 bfd_vma end_addr;
10683 unsigned align_bits;
10684
10685 if (!xt_block->flags.is_align)
10686 return xt_block->size;
10687
10688 end_addr = xt_block->offset + xt_block->size;
10689 align_bits = xt_block->flags.alignment;
10690 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10691 return end_addr - xt_block->offset;
10692 }
10693
10694
10695 static bfd_boolean
10696 xtensa_xt_block_combine (xtensa_block_info *xt_block,
10697 const xtensa_block_info *xt_block_2)
10698 {
10699 if (xt_block->sec != xt_block_2->sec)
10700 return FALSE;
10701 if (xt_block->offset + xt_block_aligned_size (xt_block)
10702 != xt_block_2->offset)
10703 return FALSE;
10704
10705 if (xt_block_2->size == 0
10706 && (!xt_block_2->flags.is_unreachable
10707 || xt_block->flags.is_unreachable))
10708 {
10709 if (xt_block_2->flags.is_align
10710 && xt_block->flags.is_align)
10711 {
10712 /* Nothing needed. */
10713 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10714 return TRUE;
10715 }
10716 else
10717 {
10718 if (xt_block_2->flags.is_align)
10719 {
10720 /* Push alignment to previous entry. */
10721 xt_block->flags.is_align = xt_block_2->flags.is_align;
10722 xt_block->flags.alignment = xt_block_2->flags.alignment;
10723 }
10724 return TRUE;
10725 }
10726 }
10727 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10728 &xt_block_2->flags))
10729 return FALSE;
10730
10731 xt_block->size += xt_block_2->size;
10732
10733 if (xt_block_2->flags.is_align)
10734 {
10735 xt_block->flags.is_align = TRUE;
10736 xt_block->flags.alignment = xt_block_2->flags.alignment;
10737 }
10738
10739 return TRUE;
10740 }
10741
10742
10743 static void
10744 add_xt_prop_frags (segT sec,
10745 segT xt_block_sec,
10746 xtensa_block_info **xt_block,
10747 frag_flags_fn property_function)
10748 {
10749 segment_info_type *seg_info;
10750 segment_info_type *xt_seg_info;
10751 bfd_vma seg_offset;
10752 fragS *fragP;
10753
10754 xt_seg_info = retrieve_segment_info (xt_block_sec);
10755 seg_info = retrieve_segment_info (sec);
10756 /* Build it if needed. */
10757 while (*xt_block != NULL)
10758 {
10759 xt_block = &(*xt_block)->next;
10760 }
10761 /* We are either at NULL at the beginning or at the end. */
10762
10763 /* Walk through the frags. */
10764 seg_offset = 0;
10765
10766 if (seg_info->frchainP)
10767 {
10768 for (fragP = seg_info->frchainP->frch_root; fragP;
10769 fragP = fragP->fr_next)
10770 {
10771 xtensa_block_info tmp_block;
10772 tmp_block.sec = sec;
10773 tmp_block.offset = fragP->fr_address;
10774 tmp_block.size = fragP->fr_fix;
10775 tmp_block.next = NULL;
10776 property_function (fragP, &tmp_block.flags);
10777
10778 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10779 /* && fragP->fr_fix != 0) */
10780 {
10781 if ((*xt_block) == NULL
10782 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10783 {
10784 xtensa_block_info *new_block;
10785 if ((*xt_block) != NULL)
10786 xt_block = &(*xt_block)->next;
10787 new_block = (xtensa_block_info *)
10788 xmalloc (sizeof (xtensa_block_info));
10789 *new_block = tmp_block;
10790 *xt_block = new_block;
10791 }
10792 }
10793 }
10794 }
10795 }
10796
10797 \f
10798 /* op_placement_info_table */
10799
10800 /* op_placement_info makes it easier to determine which
10801 ops can go in which slots. */
10802
10803 static void
10804 init_op_placement_info_table (void)
10805 {
10806 xtensa_isa isa = xtensa_default_isa;
10807 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10808 xtensa_opcode opcode;
10809 xtensa_format fmt;
10810 int slot;
10811 int num_opcodes = xtensa_isa_num_opcodes (isa);
10812
10813 op_placement_table = (op_placement_info_table)
10814 xmalloc (sizeof (op_placement_info) * num_opcodes);
10815 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10816
10817 for (opcode = 0; opcode < num_opcodes; opcode++)
10818 {
10819 op_placement_info *opi = &op_placement_table[opcode];
10820 /* FIXME: Make tinsn allocation dynamic. */
10821 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10822 as_fatal (_("too many operands in instruction"));
10823 opi->narrowest = XTENSA_UNDEFINED;
10824 opi->narrowest_size = 0x7F;
10825 opi->narrowest_slot = 0;
10826 opi->formats = 0;
10827 opi->num_formats = 0;
10828 opi->issuef = 0;
10829 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10830 {
10831 opi->slots[fmt] = 0;
10832 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10833 {
10834 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10835 {
10836 int fmt_length = xtensa_format_length (isa, fmt);
10837 opi->issuef++;
10838 set_bit (fmt, opi->formats);
10839 set_bit (slot, opi->slots[fmt]);
10840 if (fmt_length < opi->narrowest_size
10841 || (fmt_length == opi->narrowest_size
10842 && (xtensa_format_num_slots (isa, fmt)
10843 < xtensa_format_num_slots (isa,
10844 opi->narrowest))))
10845 {
10846 opi->narrowest = fmt;
10847 opi->narrowest_size = fmt_length;
10848 opi->narrowest_slot = slot;
10849 }
10850 }
10851 }
10852 if (opi->formats)
10853 opi->num_formats++;
10854 }
10855 }
10856 xtensa_insnbuf_free (isa, ibuf);
10857 }
10858
10859
10860 bfd_boolean
10861 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
10862 {
10863 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10864 }
10865
10866
10867 /* If the opcode is available in a single slot format, return its size. */
10868
10869 static int
10870 xg_get_single_size (xtensa_opcode opcode)
10871 {
10872 return op_placement_table[opcode].narrowest_size;
10873 }
10874
10875
10876 static xtensa_format
10877 xg_get_single_format (xtensa_opcode opcode)
10878 {
10879 return op_placement_table[opcode].narrowest;
10880 }
10881
10882
10883 static int
10884 xg_get_single_slot (xtensa_opcode opcode)
10885 {
10886 return op_placement_table[opcode].narrowest_slot;
10887 }
10888
10889 \f
10890 /* Instruction Stack Functions (from "xtensa-istack.h"). */
10891
10892 void
10893 istack_init (IStack *stack)
10894 {
10895 memset (stack, 0, sizeof (IStack));
10896 stack->ninsn = 0;
10897 }
10898
10899
10900 bfd_boolean
10901 istack_empty (IStack *stack)
10902 {
10903 return (stack->ninsn == 0);
10904 }
10905
10906
10907 bfd_boolean
10908 istack_full (IStack *stack)
10909 {
10910 return (stack->ninsn == MAX_ISTACK);
10911 }
10912
10913
10914 /* Return a pointer to the top IStack entry.
10915 It is an error to call this if istack_empty () is TRUE. */
10916
10917 TInsn *
10918 istack_top (IStack *stack)
10919 {
10920 int rec = stack->ninsn - 1;
10921 assert (!istack_empty (stack));
10922 return &stack->insn[rec];
10923 }
10924
10925
10926 /* Add a new TInsn to an IStack.
10927 It is an error to call this if istack_full () is TRUE. */
10928
10929 void
10930 istack_push (IStack *stack, TInsn *insn)
10931 {
10932 int rec = stack->ninsn;
10933 assert (!istack_full (stack));
10934 stack->insn[rec] = *insn;
10935 stack->ninsn++;
10936 }
10937
10938
10939 /* Clear space for the next TInsn on the IStack and return a pointer
10940 to it. It is an error to call this if istack_full () is TRUE. */
10941
10942 TInsn *
10943 istack_push_space (IStack *stack)
10944 {
10945 int rec = stack->ninsn;
10946 TInsn *insn;
10947 assert (!istack_full (stack));
10948 insn = &stack->insn[rec];
10949 memset (insn, 0, sizeof (TInsn));
10950 stack->ninsn++;
10951 return insn;
10952 }
10953
10954
10955 /* Remove the last pushed instruction. It is an error to call this if
10956 istack_empty () returns TRUE. */
10957
10958 void
10959 istack_pop (IStack *stack)
10960 {
10961 int rec = stack->ninsn - 1;
10962 assert (!istack_empty (stack));
10963 stack->ninsn--;
10964 memset (&stack->insn[rec], 0, sizeof (TInsn));
10965 }
10966
10967 \f
10968 /* TInsn functions. */
10969
10970 void
10971 tinsn_init (TInsn *dst)
10972 {
10973 memset (dst, 0, sizeof (TInsn));
10974 }
10975
10976
10977 /* Get the ``num''th token of the TInsn.
10978 It is illegal to call this if num > insn->ntoks. */
10979
10980 expressionS *
10981 tinsn_get_tok (TInsn *insn, int num)
10982 {
10983 assert (num < insn->ntok);
10984 return &insn->tok[num];
10985 }
10986
10987
10988 /* Return TRUE if ANY of the operands in the insn are symbolic. */
10989
10990 static bfd_boolean
10991 tinsn_has_symbolic_operands (const TInsn *insn)
10992 {
10993 int i;
10994 int n = insn->ntok;
10995
10996 assert (insn->insn_type == ITYPE_INSN);
10997
10998 for (i = 0; i < n; ++i)
10999 {
11000 switch (insn->tok[i].X_op)
11001 {
11002 case O_register:
11003 case O_constant:
11004 break;
11005 default:
11006 return TRUE;
11007 }
11008 }
11009 return FALSE;
11010 }
11011
11012
11013 bfd_boolean
11014 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11015 {
11016 xtensa_isa isa = xtensa_default_isa;
11017 int i;
11018 int n = insn->ntok;
11019
11020 assert (insn->insn_type == ITYPE_INSN);
11021
11022 for (i = 0; i < n; ++i)
11023 {
11024 switch (insn->tok[i].X_op)
11025 {
11026 case O_register:
11027 case O_constant:
11028 break;
11029 case O_big:
11030 case O_illegal:
11031 case O_absent:
11032 /* Errors for these types are caught later. */
11033 break;
11034 case O_hi16:
11035 case O_lo16:
11036 default:
11037 /* Symbolic immediates are only allowed on the last immediate
11038 operand. At this time, CONST16 is the only opcode where we
11039 support non-PC-relative relocations. */
11040 if (i != get_relaxable_immed (insn->opcode)
11041 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11042 && insn->opcode != xtensa_const16_opcode))
11043 {
11044 as_bad (_("invalid symbolic operand"));
11045 return TRUE;
11046 }
11047 }
11048 }
11049 return FALSE;
11050 }
11051
11052
11053 /* For assembly code with complex expressions (e.g. subtraction),
11054 we have to build them in the literal pool so that
11055 their results are calculated correctly after relaxation.
11056 The relaxation only handles expressions that
11057 boil down to SYMBOL + OFFSET. */
11058
11059 static bfd_boolean
11060 tinsn_has_complex_operands (const TInsn *insn)
11061 {
11062 int i;
11063 int n = insn->ntok;
11064 assert (insn->insn_type == ITYPE_INSN);
11065 for (i = 0; i < n; ++i)
11066 {
11067 switch (insn->tok[i].X_op)
11068 {
11069 case O_register:
11070 case O_constant:
11071 case O_symbol:
11072 case O_lo16:
11073 case O_hi16:
11074 break;
11075 default:
11076 return TRUE;
11077 }
11078 }
11079 return FALSE;
11080 }
11081
11082
11083 /* Encode a TInsn opcode and its constant operands into slotbuf.
11084 Return TRUE if there is a symbol in the immediate field. This
11085 function assumes that:
11086 1) The number of operands are correct.
11087 2) The insn_type is ITYPE_INSN.
11088 3) The opcode can be encoded in the specified format and slot.
11089 4) Operands are either O_constant or O_symbol, and all constants fit. */
11090
11091 static bfd_boolean
11092 tinsn_to_slotbuf (xtensa_format fmt,
11093 int slot,
11094 TInsn *tinsn,
11095 xtensa_insnbuf slotbuf)
11096 {
11097 xtensa_isa isa = xtensa_default_isa;
11098 xtensa_opcode opcode = tinsn->opcode;
11099 bfd_boolean has_fixup = FALSE;
11100 int noperands = xtensa_opcode_num_operands (isa, opcode);
11101 int i;
11102
11103 assert (tinsn->insn_type == ITYPE_INSN);
11104 if (noperands != tinsn->ntok)
11105 as_fatal (_("operand number mismatch"));
11106
11107 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11108 {
11109 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11110 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11111 return FALSE;
11112 }
11113
11114 for (i = 0; i < noperands; i++)
11115 {
11116 expressionS *expr = &tinsn->tok[i];
11117 int rc;
11118 unsigned line;
11119 char *file_name;
11120 uint32 opnd_value;
11121
11122 switch (expr->X_op)
11123 {
11124 case O_register:
11125 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11126 break;
11127 /* The register number has already been checked in
11128 expression_maybe_register, so we don't need to check here. */
11129 opnd_value = expr->X_add_number;
11130 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11131 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11132 opnd_value);
11133 if (rc != 0)
11134 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11135 break;
11136
11137 case O_constant:
11138 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11139 break;
11140 as_where (&file_name, &line);
11141 /* It is a constant and we called this function
11142 then we have to try to fit it. */
11143 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11144 expr->X_add_number, file_name, line);
11145 break;
11146
11147 default:
11148 has_fixup = TRUE;
11149 break;
11150 }
11151 }
11152
11153 return has_fixup;
11154 }
11155
11156
11157 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11158 into a multi-slot instruction, fill the other slots with NOPs.
11159 Return TRUE if there is a symbol in the immediate field. See also the
11160 assumptions listed for tinsn_to_slotbuf. */
11161
11162 static bfd_boolean
11163 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11164 {
11165 static xtensa_insnbuf slotbuf = 0;
11166 static vliw_insn vinsn;
11167 xtensa_isa isa = xtensa_default_isa;
11168 bfd_boolean has_fixup = FALSE;
11169 int i;
11170
11171 if (!slotbuf)
11172 {
11173 slotbuf = xtensa_insnbuf_alloc (isa);
11174 xg_init_vinsn (&vinsn);
11175 }
11176
11177 xg_clear_vinsn (&vinsn);
11178
11179 bundle_tinsn (tinsn, &vinsn);
11180
11181 xtensa_format_encode (isa, vinsn.format, insnbuf);
11182
11183 for (i = 0; i < vinsn.num_slots; i++)
11184 {
11185 /* Only one slot may have a fix-up because the rest contains NOPs. */
11186 has_fixup |=
11187 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11188 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11189 }
11190
11191 return has_fixup;
11192 }
11193
11194
11195 /* Check the instruction arguments. Return TRUE on failure. */
11196
11197 static bfd_boolean
11198 tinsn_check_arguments (const TInsn *insn)
11199 {
11200 xtensa_isa isa = xtensa_default_isa;
11201 xtensa_opcode opcode = insn->opcode;
11202
11203 if (opcode == XTENSA_UNDEFINED)
11204 {
11205 as_bad (_("invalid opcode"));
11206 return TRUE;
11207 }
11208
11209 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11210 {
11211 as_bad (_("too few operands"));
11212 return TRUE;
11213 }
11214
11215 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11216 {
11217 as_bad (_("too many operands"));
11218 return TRUE;
11219 }
11220 return FALSE;
11221 }
11222
11223
11224 /* Load an instruction from its encoded form. */
11225
11226 static void
11227 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11228 {
11229 vliw_insn vinsn;
11230
11231 xg_init_vinsn (&vinsn);
11232 vinsn_from_chars (&vinsn, f);
11233
11234 *tinsn = vinsn.slots[slot];
11235 xg_free_vinsn (&vinsn);
11236 }
11237
11238
11239 static void
11240 tinsn_from_insnbuf (TInsn *tinsn,
11241 xtensa_insnbuf slotbuf,
11242 xtensa_format fmt,
11243 int slot)
11244 {
11245 int i;
11246 xtensa_isa isa = xtensa_default_isa;
11247
11248 /* Find the immed. */
11249 tinsn_init (tinsn);
11250 tinsn->insn_type = ITYPE_INSN;
11251 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11252 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11253 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11254 for (i = 0; i < tinsn->ntok; i++)
11255 {
11256 set_expr_const (&tinsn->tok[i],
11257 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11258 tinsn->opcode, i));
11259 }
11260 }
11261
11262
11263 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11264
11265 static void
11266 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11267 {
11268 xtensa_opcode opcode = tinsn->opcode;
11269 int opnum;
11270
11271 if (fragP->tc_frag_data.slot_symbols[slot])
11272 {
11273 opnum = get_relaxable_immed (opcode);
11274 assert (opnum >= 0);
11275 set_expr_symbol_offset (&tinsn->tok[opnum],
11276 fragP->tc_frag_data.slot_symbols[slot],
11277 fragP->tc_frag_data.slot_offsets[slot]);
11278 }
11279 }
11280
11281
11282 static int
11283 get_num_stack_text_bytes (IStack *istack)
11284 {
11285 int i;
11286 int text_bytes = 0;
11287
11288 for (i = 0; i < istack->ninsn; i++)
11289 {
11290 TInsn *tinsn = &istack->insn[i];
11291 if (tinsn->insn_type == ITYPE_INSN)
11292 text_bytes += xg_get_single_size (tinsn->opcode);
11293 }
11294 return text_bytes;
11295 }
11296
11297
11298 static int
11299 get_num_stack_literal_bytes (IStack *istack)
11300 {
11301 int i;
11302 int lit_bytes = 0;
11303
11304 for (i = 0; i < istack->ninsn; i++)
11305 {
11306 TInsn *tinsn = &istack->insn[i];
11307 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11308 lit_bytes += 4;
11309 }
11310 return lit_bytes;
11311 }
11312
11313 \f
11314 /* vliw_insn functions. */
11315
11316 static void
11317 xg_init_vinsn (vliw_insn *v)
11318 {
11319 int i;
11320 xtensa_isa isa = xtensa_default_isa;
11321
11322 xg_clear_vinsn (v);
11323
11324 v->insnbuf = xtensa_insnbuf_alloc (isa);
11325 if (v->insnbuf == NULL)
11326 as_fatal (_("out of memory"));
11327
11328 for (i = 0; i < MAX_SLOTS; i++)
11329 {
11330 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11331 if (v->slotbuf[i] == NULL)
11332 as_fatal (_("out of memory"));
11333 }
11334 }
11335
11336
11337 static void
11338 xg_clear_vinsn (vliw_insn *v)
11339 {
11340 int i;
11341
11342 memset (v, 0, offsetof (vliw_insn, insnbuf));
11343
11344 v->format = XTENSA_UNDEFINED;
11345 v->num_slots = 0;
11346 v->inside_bundle = FALSE;
11347
11348 if (xt_saved_debug_type != DEBUG_NONE)
11349 debug_type = xt_saved_debug_type;
11350
11351 for (i = 0; i < MAX_SLOTS; i++)
11352 v->slots[i].opcode = XTENSA_UNDEFINED;
11353 }
11354
11355
11356 static bfd_boolean
11357 vinsn_has_specific_opcodes (vliw_insn *v)
11358 {
11359 int i;
11360
11361 for (i = 0; i < v->num_slots; i++)
11362 {
11363 if (v->slots[i].is_specific_opcode)
11364 return TRUE;
11365 }
11366 return FALSE;
11367 }
11368
11369
11370 static void
11371 xg_free_vinsn (vliw_insn *v)
11372 {
11373 int i;
11374 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11375 for (i = 0; i < MAX_SLOTS; i++)
11376 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11377 }
11378
11379
11380 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11381 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11382
11383 static bfd_boolean
11384 vinsn_to_insnbuf (vliw_insn *vinsn,
11385 char *frag_offset,
11386 fragS *fragP,
11387 bfd_boolean record_fixup)
11388 {
11389 xtensa_isa isa = xtensa_default_isa;
11390 xtensa_format fmt = vinsn->format;
11391 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11392 int slot;
11393 bfd_boolean has_fixup = FALSE;
11394
11395 xtensa_format_encode (isa, fmt, insnbuf);
11396
11397 for (slot = 0; slot < vinsn->num_slots; slot++)
11398 {
11399 TInsn *tinsn = &vinsn->slots[slot];
11400 bfd_boolean tinsn_has_fixup =
11401 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11402 vinsn->slotbuf[slot]);
11403
11404 xtensa_format_set_slot (isa, fmt, slot,
11405 insnbuf, vinsn->slotbuf[slot]);
11406 if (tinsn_has_fixup)
11407 {
11408 int i;
11409 xtensa_opcode opcode = tinsn->opcode;
11410 int noperands = xtensa_opcode_num_operands (isa, opcode);
11411 has_fixup = TRUE;
11412
11413 for (i = 0; i < noperands; i++)
11414 {
11415 expressionS* expr = &tinsn->tok[i];
11416 switch (expr->X_op)
11417 {
11418 case O_symbol:
11419 case O_lo16:
11420 case O_hi16:
11421 if (get_relaxable_immed (opcode) == i)
11422 {
11423 /* Add a fix record for the instruction, except if this
11424 function is being called prior to relaxation, i.e.,
11425 if record_fixup is false, and the instruction might
11426 be relaxed later. */
11427 if (record_fixup
11428 || tinsn->is_specific_opcode
11429 || !xg_is_relaxable_insn (tinsn, 0))
11430 {
11431 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11432 frag_offset - fragP->fr_literal);
11433 }
11434 else
11435 {
11436 if (expr->X_op != O_symbol)
11437 as_bad (_("invalid operand"));
11438 tinsn->symbol = expr->X_add_symbol;
11439 tinsn->offset = expr->X_add_number;
11440 }
11441 }
11442 else
11443 as_bad (_("symbolic operand not allowed"));
11444 break;
11445
11446 case O_constant:
11447 case O_register:
11448 break;
11449
11450 default:
11451 as_bad (_("expression too complex"));
11452 break;
11453 }
11454 }
11455 }
11456 }
11457
11458 return has_fixup;
11459 }
11460
11461
11462 static void
11463 vinsn_from_chars (vliw_insn *vinsn, char *f)
11464 {
11465 static xtensa_insnbuf insnbuf = NULL;
11466 static xtensa_insnbuf slotbuf = NULL;
11467 int i;
11468 xtensa_format fmt;
11469 xtensa_isa isa = xtensa_default_isa;
11470
11471 if (!insnbuf)
11472 {
11473 insnbuf = xtensa_insnbuf_alloc (isa);
11474 slotbuf = xtensa_insnbuf_alloc (isa);
11475 }
11476
11477 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11478 fmt = xtensa_format_decode (isa, insnbuf);
11479 if (fmt == XTENSA_UNDEFINED)
11480 as_fatal (_("cannot decode instruction format"));
11481 vinsn->format = fmt;
11482 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11483
11484 for (i = 0; i < vinsn->num_slots; i++)
11485 {
11486 TInsn *tinsn = &vinsn->slots[i];
11487 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11488 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11489 }
11490 }
11491
11492 \f
11493 /* Expression utilities. */
11494
11495 /* Return TRUE if the expression is an integer constant. */
11496
11497 bfd_boolean
11498 expr_is_const (const expressionS *s)
11499 {
11500 return (s->X_op == O_constant);
11501 }
11502
11503
11504 /* Get the expression constant.
11505 Calling this is illegal if expr_is_const () returns TRUE. */
11506
11507 offsetT
11508 get_expr_const (const expressionS *s)
11509 {
11510 assert (expr_is_const (s));
11511 return s->X_add_number;
11512 }
11513
11514
11515 /* Set the expression to a constant value. */
11516
11517 void
11518 set_expr_const (expressionS *s, offsetT val)
11519 {
11520 s->X_op = O_constant;
11521 s->X_add_number = val;
11522 s->X_add_symbol = NULL;
11523 s->X_op_symbol = NULL;
11524 }
11525
11526
11527 bfd_boolean
11528 expr_is_register (const expressionS *s)
11529 {
11530 return (s->X_op == O_register);
11531 }
11532
11533
11534 /* Get the expression constant.
11535 Calling this is illegal if expr_is_const () returns TRUE. */
11536
11537 offsetT
11538 get_expr_register (const expressionS *s)
11539 {
11540 assert (expr_is_register (s));
11541 return s->X_add_number;
11542 }
11543
11544
11545 /* Set the expression to a symbol + constant offset. */
11546
11547 void
11548 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11549 {
11550 s->X_op = O_symbol;
11551 s->X_add_symbol = sym;
11552 s->X_op_symbol = NULL; /* unused */
11553 s->X_add_number = offset;
11554 }
11555
11556
11557 /* Return TRUE if the two expressions are equal. */
11558
11559 bfd_boolean
11560 expr_is_equal (expressionS *s1, expressionS *s2)
11561 {
11562 if (s1->X_op != s2->X_op)
11563 return FALSE;
11564 if (s1->X_add_symbol != s2->X_add_symbol)
11565 return FALSE;
11566 if (s1->X_op_symbol != s2->X_op_symbol)
11567 return FALSE;
11568 if (s1->X_add_number != s2->X_add_number)
11569 return FALSE;
11570 return TRUE;
11571 }
11572
11573
11574 static void
11575 copy_expr (expressionS *dst, const expressionS *src)
11576 {
11577 memcpy (dst, src, sizeof (expressionS));
11578 }
11579
11580 \f
11581 /* Support for the "--rename-section" option. */
11582
11583 struct rename_section_struct
11584 {
11585 char *old_name;
11586 char *new_name;
11587 struct rename_section_struct *next;
11588 };
11589
11590 static struct rename_section_struct *section_rename;
11591
11592
11593 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11594 entries to the section_rename list. Note: Specifying multiple
11595 renamings separated by colons is not documented and is retained only
11596 for backward compatibility. */
11597
11598 static void
11599 build_section_rename (const char *arg)
11600 {
11601 struct rename_section_struct *r;
11602 char *this_arg = NULL;
11603 char *next_arg = NULL;
11604
11605 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11606 {
11607 char *old_name, *new_name;
11608
11609 if (this_arg)
11610 {
11611 next_arg = strchr (this_arg, ':');
11612 if (next_arg)
11613 {
11614 *next_arg = '\0';
11615 next_arg++;
11616 }
11617 }
11618
11619 old_name = this_arg;
11620 new_name = strchr (this_arg, '=');
11621
11622 if (*old_name == '\0')
11623 {
11624 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11625 continue;
11626 }
11627 if (!new_name || new_name[1] == '\0')
11628 {
11629 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11630 old_name);
11631 continue;
11632 }
11633 *new_name = '\0';
11634 new_name++;
11635
11636 /* Check for invalid section renaming. */
11637 for (r = section_rename; r != NULL; r = r->next)
11638 {
11639 if (strcmp (r->old_name, old_name) == 0)
11640 as_bad (_("section %s renamed multiple times"), old_name);
11641 if (strcmp (r->new_name, new_name) == 0)
11642 as_bad (_("multiple sections remapped to output section %s"),
11643 new_name);
11644 }
11645
11646 /* Now add it. */
11647 r = (struct rename_section_struct *)
11648 xmalloc (sizeof (struct rename_section_struct));
11649 r->old_name = xstrdup (old_name);
11650 r->new_name = xstrdup (new_name);
11651 r->next = section_rename;
11652 section_rename = r;
11653 }
11654 }
11655
11656
11657 char *
11658 xtensa_section_rename (char *name)
11659 {
11660 struct rename_section_struct *r = section_rename;
11661
11662 for (r = section_rename; r != NULL; r = r->next)
11663 {
11664 if (strcmp (r->old_name, name) == 0)
11665 return r->new_name;
11666 }
11667
11668 return name;
11669 }
This page took 0.329946 seconds and 5 git commands to generate.