* config/obj-ecoff.c (ecoff_frob_file_before_fix): Correct section
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
19 MA 02111-1307, USA. */
20
21 #include <string.h>
22 #include <limits.h>
23 #include "as.h"
24 #include "sb.h"
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
27 #include "frags.h"
28 #include "subsegs.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
34
35 #ifndef uint32
36 #define uint32 unsigned int
37 #endif
38 #ifndef int32
39 #define int32 signed int
40 #endif
41
42 /* Notes:
43
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = "#";
63 const char line_separator_chars[] = ";";
64 const char EXP_CHARS[] = "eE";
65 const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
70
71 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
72 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
80
81 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
85 back end. */
86 static bfd_boolean past_xtensa_end = FALSE;
87
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
91
92
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
108
109 typedef struct lit_state_struct
110 {
111 const char *lit_seg_name;
112 const char *lit4_seg_name;
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
116 segT lit4_seg;
117 segT init_lit_seg;
118 segT fini_lit_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136 static seg_list init_literal_head_h;
137 static seg_list *init_literal_head = &init_literal_head_h;
138 static seg_list fini_literal_head_h;
139 static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148 typedef struct sym_list_struct
149 {
150 struct sym_list_struct *next;
151 symbolS *sym;
152 } sym_list;
153
154 static sym_list *insn_labels = NULL;
155 static sym_list *free_insn_labels = NULL;
156 static sym_list *saved_insn_labels = NULL;
157
158 static sym_list *literal_syms;
159
160
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16 = 0;
164 int prefer_l32r = 0;
165
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals = 0;
168
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206 */
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236 #define XTENSA_PROP_ALIGN 0x00000800
237
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255 typedef struct frag_flags_struct frag_flags;
256
257 struct frag_flags_struct
258 {
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286 };
287
288
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
292 {
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298 };
299
300
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
303 {
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308 } emit_state;
309
310
311 /* Opcode placement information */
312
313 typedef unsigned long long bitfield;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318 #define MAX_FORMATS 32
319
320 typedef struct op_placement_info_struct
321 {
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
328 format. */
329 int issuef;
330 /* The single format (i.e., if the op can live in a bundle by itself),
331 narrowest format, and widest format the op can be bundled in
332 and their sizes: */
333 xtensa_format single;
334 xtensa_format narrowest;
335 xtensa_format widest;
336 char narrowest_size;
337 char widest_size;
338 char single_size;
339
340 /* formats is a bitfield with the Nth bit set
341 if the opcode fits in the Nth xtensa_format. */
342 bitfield formats;
343
344 /* slots[N]'s Mth bit is set if the op fits in the
345 Mth slot of the Nth xtensa_format. */
346 bitfield slots[MAX_FORMATS];
347
348 /* A count of the number of slots in a given format
349 an op can fit (i.e., the bitcount of the slot field above). */
350 char slots_in_format[MAX_FORMATS];
351
352 } op_placement_info, *op_placement_info_table;
353
354 op_placement_info_table op_placement_table;
355
356
357 /* Extra expression types. */
358
359 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
360 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
361 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
362
363
364 /* Directives. */
365
366 typedef enum
367 {
368 directive_none = 0,
369 directive_literal,
370 directive_density,
371 directive_transform,
372 directive_freeregs,
373 directive_longcalls,
374 directive_literal_prefix,
375 directive_schedule,
376 directive_absolute_literals,
377 directive_last_directive
378 } directiveE;
379
380 typedef struct
381 {
382 const char *name;
383 bfd_boolean can_be_negated;
384 } directive_infoS;
385
386 const directive_infoS directive_info[] =
387 {
388 { "none", FALSE },
389 { "literal", FALSE },
390 { "density", TRUE },
391 { "transform", TRUE },
392 { "freeregs", FALSE },
393 { "longcalls", TRUE },
394 { "literal_prefix", FALSE },
395 { "schedule", TRUE },
396 { "absolute-literals", TRUE }
397 };
398
399 bfd_boolean directive_state[] =
400 {
401 FALSE, /* none */
402 FALSE, /* literal */
403 #if !XCHAL_HAVE_DENSITY
404 FALSE, /* density */
405 #else
406 TRUE, /* density */
407 #endif
408 TRUE, /* transform */
409 FALSE, /* freeregs */
410 FALSE, /* longcalls */
411 FALSE, /* literal_prefix */
412 TRUE, /* schedule */
413 #if XSHAL_USE_ABSOLUTE_LITERALS
414 TRUE /* absolute_literals */
415 #else
416 FALSE /* absolute_literals */
417 #endif
418 };
419
420
421 /* Directive functions. */
422
423 static void xtensa_begin_directive (int);
424 static void xtensa_end_directive (int);
425 static void xtensa_dwarf2_directive_loc (int);
426 static void xtensa_literal_prefix (char const *, int);
427 static void xtensa_literal_position (int);
428 static void xtensa_literal_pseudo (int);
429 static void xtensa_frequency_pseudo (int);
430 static void xtensa_elf_cons (int);
431
432 /* Parsing and Idiom Translation. */
433
434 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
435
436 /* Various Other Internal Functions. */
437
438 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
439 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
440 static void xtensa_mark_literal_pool_location (void);
441 static addressT get_expanded_loop_offset (xtensa_opcode);
442 static fragS *get_literal_pool_location (segT);
443 static void set_literal_pool_location (segT, fragS *);
444 static void xtensa_set_frag_assembly_state (fragS *);
445 static void finish_vinsn (vliw_insn *);
446 static bfd_boolean emit_single_op (TInsn *);
447 static int total_frag_text_expansion (fragS *);
448
449 /* Alignment Functions. */
450
451 static int get_text_align_power (unsigned);
452 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
453 static int branch_align_power (segT);
454
455 /* Helpers for xtensa_relax_frag(). */
456
457 static long relax_frag_add_nop (fragS *);
458
459 /* Accessors for additional per-subsegment information. */
460
461 static unsigned get_last_insn_flags (segT, subsegT);
462 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
463 static float get_subseg_total_freq (segT, subsegT);
464 static float get_subseg_target_freq (segT, subsegT);
465 static void set_subseg_freq (segT, subsegT, float, float);
466
467 /* Segment list functions. */
468
469 static void xtensa_move_literals (void);
470 static void xtensa_reorder_segments (void);
471 static void xtensa_switch_to_literal_fragment (emit_state *);
472 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
473 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
474 static void xtensa_restore_emit_state (emit_state *);
475 static void cache_literal_section
476 (seg_list *, const char *, segT *, bfd_boolean);
477
478 /* Import from elf32-xtensa.c in BFD library. */
479
480 extern char *xtensa_get_property_section_name (asection *, const char *);
481
482 /* op_placement_info functions. */
483
484 static void init_op_placement_info_table (void);
485 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
486 static int xg_get_single_size (xtensa_opcode);
487 static xtensa_format xg_get_single_format (xtensa_opcode);
488
489 /* TInsn and IStack functions. */
490
491 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
492 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
493 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
494 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
495 static bfd_boolean tinsn_check_arguments (const TInsn *);
496 static void tinsn_from_chars (TInsn *, char *, int);
497 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
498 static int get_num_stack_text_bytes (IStack *);
499 static int get_num_stack_literal_bytes (IStack *);
500
501 /* vliw_insn functions. */
502
503 static void xg_init_vinsn (vliw_insn *);
504 static void xg_clear_vinsn (vliw_insn *);
505 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
506 static void xg_free_vinsn (vliw_insn *);
507 static bfd_boolean vinsn_to_insnbuf
508 (vliw_insn *, char *, fragS *, bfd_boolean);
509 static void vinsn_from_chars (vliw_insn *, char *);
510
511 /* Expression Utilities. */
512
513 bfd_boolean expr_is_const (const expressionS *);
514 offsetT get_expr_const (const expressionS *);
515 void set_expr_const (expressionS *, offsetT);
516 bfd_boolean expr_is_register (const expressionS *);
517 offsetT get_expr_register (const expressionS *);
518 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
519 static void set_expr_symbol_offset_diff
520 (expressionS *, symbolS *, symbolS *, offsetT);
521 bfd_boolean expr_is_equal (expressionS *, expressionS *);
522 static void copy_expr (expressionS *, const expressionS *);
523
524 /* Section renaming. */
525
526 static void build_section_rename (const char *);
527
528
529 /* ISA imported from bfd. */
530 extern xtensa_isa xtensa_default_isa;
531
532 extern int target_big_endian;
533
534 static xtensa_opcode xtensa_addi_opcode;
535 static xtensa_opcode xtensa_addmi_opcode;
536 static xtensa_opcode xtensa_call0_opcode;
537 static xtensa_opcode xtensa_call4_opcode;
538 static xtensa_opcode xtensa_call8_opcode;
539 static xtensa_opcode xtensa_call12_opcode;
540 static xtensa_opcode xtensa_callx0_opcode;
541 static xtensa_opcode xtensa_callx4_opcode;
542 static xtensa_opcode xtensa_callx8_opcode;
543 static xtensa_opcode xtensa_callx12_opcode;
544 static xtensa_opcode xtensa_const16_opcode;
545 static xtensa_opcode xtensa_entry_opcode;
546 static xtensa_opcode xtensa_movi_opcode;
547 static xtensa_opcode xtensa_movi_n_opcode;
548 static xtensa_opcode xtensa_isync_opcode;
549 static xtensa_opcode xtensa_jx_opcode;
550 static xtensa_opcode xtensa_l32r_opcode;
551 static xtensa_opcode xtensa_loop_opcode;
552 static xtensa_opcode xtensa_loopnez_opcode;
553 static xtensa_opcode xtensa_loopgtz_opcode;
554 static xtensa_opcode xtensa_nop_opcode;
555 static xtensa_opcode xtensa_nop_n_opcode;
556 static xtensa_opcode xtensa_or_opcode;
557 static xtensa_opcode xtensa_ret_opcode;
558 static xtensa_opcode xtensa_ret_n_opcode;
559 static xtensa_opcode xtensa_retw_opcode;
560 static xtensa_opcode xtensa_retw_n_opcode;
561 static xtensa_opcode xtensa_rsr_lcount_opcode;
562 static xtensa_opcode xtensa_waiti_opcode;
563
564 \f
565 /* Command-line Options. */
566
567 bfd_boolean use_literal_section = TRUE;
568 static bfd_boolean align_targets = TRUE;
569 static bfd_boolean warn_unaligned_branch_targets = FALSE;
570 static bfd_boolean has_a0_b_retw = FALSE;
571 static bfd_boolean workaround_a0_b_retw = FALSE;
572 static bfd_boolean workaround_b_j_loop_end = FALSE;
573 static bfd_boolean workaround_short_loop = FALSE;
574 static bfd_boolean maybe_has_short_loop = FALSE;
575 static bfd_boolean workaround_close_loop_end = FALSE;
576 static bfd_boolean maybe_has_close_loop_end = FALSE;
577
578 /* When workaround_short_loops is TRUE, all loops with early exits must
579 have at least 3 instructions. workaround_all_short_loops is a modifier
580 to the workaround_short_loop flag. In addition to the
581 workaround_short_loop actions, all straightline loopgtz and loopnez
582 must have at least 3 instructions. */
583
584 static bfd_boolean workaround_all_short_loops = FALSE;
585
586
587 static void
588 xtensa_setup_hw_workarounds (int earliest, int latest)
589 {
590 if (earliest > latest)
591 as_fatal (_("illegal range of target hardware versions"));
592
593 /* Enable all workarounds for pre-T1050.0 hardware. */
594 if (earliest < 105000 || latest < 105000)
595 {
596 workaround_a0_b_retw |= TRUE;
597 workaround_b_j_loop_end |= TRUE;
598 workaround_short_loop |= TRUE;
599 workaround_close_loop_end |= TRUE;
600 workaround_all_short_loops |= TRUE;
601 }
602 }
603
604
605 enum
606 {
607 option_density = OPTION_MD_BASE,
608 option_no_density,
609
610 option_relax,
611 option_no_relax,
612
613 option_link_relax,
614 option_no_link_relax,
615
616 option_generics,
617 option_no_generics,
618
619 option_transform,
620 option_no_transform,
621
622 option_text_section_literals,
623 option_no_text_section_literals,
624
625 option_absolute_literals,
626 option_no_absolute_literals,
627
628 option_align_targets,
629 option_no_align_targets,
630
631 option_warn_unaligned_targets,
632
633 option_longcalls,
634 option_no_longcalls,
635
636 option_workaround_a0_b_retw,
637 option_no_workaround_a0_b_retw,
638
639 option_workaround_b_j_loop_end,
640 option_no_workaround_b_j_loop_end,
641
642 option_workaround_short_loop,
643 option_no_workaround_short_loop,
644
645 option_workaround_all_short_loops,
646 option_no_workaround_all_short_loops,
647
648 option_workaround_close_loop_end,
649 option_no_workaround_close_loop_end,
650
651 option_no_workarounds,
652
653 option_rename_section_name,
654
655 option_prefer_l32r,
656 option_prefer_const16,
657
658 option_target_hardware
659 };
660
661 const char *md_shortopts = "";
662
663 struct option md_longopts[] =
664 {
665 { "density", no_argument, NULL, option_density },
666 { "no-density", no_argument, NULL, option_no_density },
667
668 /* Both "relax" and "generics" are deprecated and treated as equivalent
669 to the "transform" option. */
670 { "relax", no_argument, NULL, option_relax },
671 { "no-relax", no_argument, NULL, option_no_relax },
672 { "generics", no_argument, NULL, option_generics },
673 { "no-generics", no_argument, NULL, option_no_generics },
674
675 { "transform", no_argument, NULL, option_transform },
676 { "no-transform", no_argument, NULL, option_no_transform },
677 { "text-section-literals", no_argument, NULL, option_text_section_literals },
678 { "no-text-section-literals", no_argument, NULL,
679 option_no_text_section_literals },
680 { "absolute-literals", no_argument, NULL, option_absolute_literals },
681 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
682 /* This option was changed from -align-target to -target-align
683 because it conflicted with the "-al" option. */
684 { "target-align", no_argument, NULL, option_align_targets },
685 { "no-target-align", no_argument, NULL, option_no_align_targets },
686 { "warn-unaligned-targets", no_argument, NULL,
687 option_warn_unaligned_targets },
688 { "longcalls", no_argument, NULL, option_longcalls },
689 { "no-longcalls", no_argument, NULL, option_no_longcalls },
690
691 { "no-workaround-a0-b-retw", no_argument, NULL,
692 option_no_workaround_a0_b_retw },
693 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
694
695 { "no-workaround-b-j-loop-end", no_argument, NULL,
696 option_no_workaround_b_j_loop_end },
697 { "workaround-b-j-loop-end", no_argument, NULL,
698 option_workaround_b_j_loop_end },
699
700 { "no-workaround-short-loops", no_argument, NULL,
701 option_no_workaround_short_loop },
702 { "workaround-short-loops", no_argument, NULL,
703 option_workaround_short_loop },
704
705 { "no-workaround-all-short-loops", no_argument, NULL,
706 option_no_workaround_all_short_loops },
707 { "workaround-all-short-loop", no_argument, NULL,
708 option_workaround_all_short_loops },
709
710 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
711 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
712
713 { "no-workarounds", no_argument, NULL, option_no_workarounds },
714
715 { "no-workaround-close-loop-end", no_argument, NULL,
716 option_no_workaround_close_loop_end },
717 { "workaround-close-loop-end", no_argument, NULL,
718 option_workaround_close_loop_end },
719
720 { "rename-section", required_argument, NULL, option_rename_section_name },
721
722 { "link-relax", no_argument, NULL, option_link_relax },
723 { "no-link-relax", no_argument, NULL, option_no_link_relax },
724
725 { "target-hardware", required_argument, NULL, option_target_hardware },
726
727 { NULL, no_argument, NULL, 0 }
728 };
729
730 size_t md_longopts_size = sizeof md_longopts;
731
732
733 int
734 md_parse_option (int c, char *arg)
735 {
736 switch (c)
737 {
738 case option_density:
739 as_warn (_("--density option is ignored"));
740 return 1;
741 case option_no_density:
742 as_warn (_("--no-density option is ignored"));
743 return 1;
744 case option_link_relax:
745 linkrelax = 1;
746 return 1;
747 case option_no_link_relax:
748 linkrelax = 0;
749 return 1;
750 case option_generics:
751 as_warn (_("--generics is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_generics:
754 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
756 case option_relax:
757 as_warn (_("--relax is deprecated; use --transform instead"));
758 return md_parse_option (option_transform, arg);
759 case option_no_relax:
760 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
761 return md_parse_option (option_no_transform, arg);
762 case option_longcalls:
763 directive_state[directive_longcalls] = TRUE;
764 return 1;
765 case option_no_longcalls:
766 directive_state[directive_longcalls] = FALSE;
767 return 1;
768 case option_text_section_literals:
769 use_literal_section = FALSE;
770 return 1;
771 case option_no_text_section_literals:
772 use_literal_section = TRUE;
773 return 1;
774 case option_absolute_literals:
775 if (!absolute_literals_supported)
776 {
777 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
778 return 0;
779 }
780 directive_state[directive_absolute_literals] = TRUE;
781 return 1;
782 case option_no_absolute_literals:
783 directive_state[directive_absolute_literals] = FALSE;
784 return 1;
785
786 case option_workaround_a0_b_retw:
787 workaround_a0_b_retw = TRUE;
788 return 1;
789 case option_no_workaround_a0_b_retw:
790 workaround_a0_b_retw = FALSE;
791 return 1;
792 case option_workaround_b_j_loop_end:
793 workaround_b_j_loop_end = TRUE;
794 return 1;
795 case option_no_workaround_b_j_loop_end:
796 workaround_b_j_loop_end = FALSE;
797 return 1;
798
799 case option_workaround_short_loop:
800 workaround_short_loop = TRUE;
801 return 1;
802 case option_no_workaround_short_loop:
803 workaround_short_loop = FALSE;
804 return 1;
805
806 case option_workaround_all_short_loops:
807 workaround_all_short_loops = TRUE;
808 return 1;
809 case option_no_workaround_all_short_loops:
810 workaround_all_short_loops = FALSE;
811 return 1;
812
813 case option_workaround_close_loop_end:
814 workaround_close_loop_end = TRUE;
815 return 1;
816 case option_no_workaround_close_loop_end:
817 workaround_close_loop_end = FALSE;
818 return 1;
819
820 case option_no_workarounds:
821 workaround_a0_b_retw = FALSE;
822 workaround_b_j_loop_end = FALSE;
823 workaround_short_loop = FALSE;
824 workaround_all_short_loops = FALSE;
825 workaround_close_loop_end = FALSE;
826 return 1;
827
828 case option_align_targets:
829 align_targets = TRUE;
830 return 1;
831 case option_no_align_targets:
832 align_targets = FALSE;
833 return 1;
834
835 case option_warn_unaligned_targets:
836 warn_unaligned_branch_targets = TRUE;
837 return 1;
838
839 case option_rename_section_name:
840 build_section_rename (arg);
841 return 1;
842
843 case 'Q':
844 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
845 should be emitted or not. FIXME: Not implemented. */
846 return 1;
847
848 case option_prefer_l32r:
849 if (prefer_const16)
850 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
851 prefer_l32r = 1;
852 return 1;
853
854 case option_prefer_const16:
855 if (prefer_l32r)
856 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
857 prefer_const16 = 1;
858 return 1;
859
860 case option_target_hardware:
861 {
862 int earliest, latest = 0;
863 if (*arg == 0 || *arg == '-')
864 as_fatal (_("invalid target hardware version"));
865
866 earliest = strtol (arg, &arg, 0);
867
868 if (*arg == 0)
869 latest = earliest;
870 else if (*arg == '-')
871 {
872 if (*++arg == 0)
873 as_fatal (_("invalid target hardware version"));
874 latest = strtol (arg, &arg, 0);
875 }
876 if (*arg != 0)
877 as_fatal (_("invalid target hardware version"));
878
879 xtensa_setup_hw_workarounds (earliest, latest);
880 return 1;
881 }
882
883 case option_transform:
884 /* This option has no affect other than to use the defaults,
885 which are already set. */
886 return 1;
887
888 case option_no_transform:
889 /* This option turns off all transformations of any kind.
890 However, because we want to preserve the state of other
891 directives, we only change its own field. Thus, before
892 you perform any transformation, always check if transform
893 is available. If you use the functions we provide for this
894 purpose, you will be ok. */
895 directive_state[directive_transform] = FALSE;
896 return 1;
897
898 default:
899 return 0;
900 }
901 }
902
903
904 void
905 md_show_usage (FILE *stream)
906 {
907 fputs ("\n\
908 Xtensa options:\n\
909 --[no-]text-section-literals\n\
910 [Do not] put literals in the text section\n\
911 --[no-]absolute-literals\n\
912 [Do not] default to use non-PC-relative literals\n\
913 --[no-]target-align [Do not] try to align branch targets\n\
914 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
915 --[no-]transform [Do not] transform instructions\n\
916 --rename-section old=new Rename section 'old' to 'new'\n", stream);
917 }
918
919 \f
920 /* Functions related to the list of current label symbols. */
921
922 static void
923 xtensa_add_insn_label (symbolS *sym)
924 {
925 sym_list *l;
926
927 if (!free_insn_labels)
928 l = (sym_list *) xmalloc (sizeof (sym_list));
929 else
930 {
931 l = free_insn_labels;
932 free_insn_labels = l->next;
933 }
934
935 l->sym = sym;
936 l->next = insn_labels;
937 insn_labels = l;
938 }
939
940
941 static void
942 xtensa_clear_insn_labels (void)
943 {
944 sym_list **pl;
945
946 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
947 ;
948 *pl = insn_labels;
949 insn_labels = NULL;
950 }
951
952
953 /* The "loops_ok" argument is provided to allow ignoring labels that
954 define loop ends. This fixes a bug where the NOPs to align a
955 loop opcode were included in a previous zero-cost loop:
956
957 loop a0, loopend
958 <loop1 body>
959 loopend:
960
961 loop a2, loopend2
962 <loop2 body>
963
964 would become:
965
966 loop a0, loopend
967 <loop1 body>
968 nop.n <===== bad!
969 loopend:
970
971 loop a2, loopend2
972 <loop2 body>
973
974 This argument is used to prevent moving the NOP to before the
975 loop-end label, which is what you want in this special case. */
976
977 static void
978 xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
979 {
980 sym_list *lit;
981
982 for (lit = insn_labels; lit; lit = lit->next)
983 {
984 symbolS *lit_sym = lit->sym;
985 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
986 {
987 S_SET_VALUE (lit_sym, new_offset);
988 symbol_set_frag (lit_sym, new_frag);
989 }
990 }
991 }
992
993 \f
994 /* Directive data and functions. */
995
996 typedef struct state_stackS_struct
997 {
998 directiveE directive;
999 bfd_boolean negated;
1000 bfd_boolean old_state;
1001 const char *file;
1002 unsigned int line;
1003 const void *datum;
1004 struct state_stackS_struct *prev;
1005 } state_stackS;
1006
1007 state_stackS *directive_state_stack;
1008
1009 const pseudo_typeS md_pseudo_table[] =
1010 {
1011 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1012 { "literal_position", xtensa_literal_position, 0 },
1013 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1014 { "long", xtensa_elf_cons, 4 },
1015 { "word", xtensa_elf_cons, 4 },
1016 { "short", xtensa_elf_cons, 2 },
1017 { "begin", xtensa_begin_directive, 0 },
1018 { "end", xtensa_end_directive, 0 },
1019 { "loc", xtensa_dwarf2_directive_loc, 0 },
1020 { "literal", xtensa_literal_pseudo, 0 },
1021 { "frequency", xtensa_frequency_pseudo, 0 },
1022 { NULL, 0, 0 },
1023 };
1024
1025
1026 static bfd_boolean
1027 use_transform (void)
1028 {
1029 /* After md_end, you should be checking frag by frag, rather
1030 than state directives. */
1031 assert (!past_xtensa_end);
1032 return directive_state[directive_transform];
1033 }
1034
1035
1036 static bfd_boolean
1037 do_align_targets (void)
1038 {
1039 /* Do not use this function after md_end; just look at align_targets
1040 instead. There is no target-align directive, so alignment is either
1041 enabled for all frags or not done at all. */
1042 assert (!past_xtensa_end);
1043 return align_targets && use_transform ();
1044 }
1045
1046
1047 static void
1048 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1049 {
1050 char *file;
1051 unsigned int line;
1052 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1053
1054 as_where (&file, &line);
1055
1056 stack->directive = directive;
1057 stack->negated = negated;
1058 stack->old_state = directive_state[directive];
1059 stack->file = file;
1060 stack->line = line;
1061 stack->datum = datum;
1062 stack->prev = directive_state_stack;
1063 directive_state_stack = stack;
1064
1065 directive_state[directive] = !negated;
1066 }
1067
1068
1069 static void
1070 directive_pop (directiveE *directive,
1071 bfd_boolean *negated,
1072 const char **file,
1073 unsigned int *line,
1074 const void **datum)
1075 {
1076 state_stackS *top = directive_state_stack;
1077
1078 if (!directive_state_stack)
1079 {
1080 as_bad (_("unmatched end directive"));
1081 *directive = directive_none;
1082 return;
1083 }
1084
1085 directive_state[directive_state_stack->directive] = top->old_state;
1086 *directive = top->directive;
1087 *negated = top->negated;
1088 *file = top->file;
1089 *line = top->line;
1090 *datum = top->datum;
1091 directive_state_stack = top->prev;
1092 free (top);
1093 }
1094
1095
1096 static void
1097 directive_balance (void)
1098 {
1099 while (directive_state_stack)
1100 {
1101 directiveE directive;
1102 bfd_boolean negated;
1103 const char *file;
1104 unsigned int line;
1105 const void *datum;
1106
1107 directive_pop (&directive, &negated, &file, &line, &datum);
1108 as_warn_where ((char *) file, line,
1109 _(".begin directive with no matching .end directive"));
1110 }
1111 }
1112
1113
1114 static bfd_boolean
1115 inside_directive (directiveE dir)
1116 {
1117 state_stackS *top = directive_state_stack;
1118
1119 while (top && top->directive != dir)
1120 top = top->prev;
1121
1122 return (top != NULL);
1123 }
1124
1125
1126 static void
1127 get_directive (directiveE *directive, bfd_boolean *negated)
1128 {
1129 int len;
1130 unsigned i;
1131 char *directive_string;
1132
1133 if (strncmp (input_line_pointer, "no-", 3) != 0)
1134 *negated = FALSE;
1135 else
1136 {
1137 *negated = TRUE;
1138 input_line_pointer += 3;
1139 }
1140
1141 len = strspn (input_line_pointer,
1142 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1143
1144 /* This code is a hack to make .begin [no-][generics|relax] exactly
1145 equivalent to .begin [no-]transform. We should remove it when
1146 we stop accepting those options. */
1147
1148 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1149 {
1150 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1151 directive_string = "transform";
1152 }
1153 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1154 {
1155 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1156 directive_string = "transform";
1157 }
1158 else
1159 directive_string = input_line_pointer;
1160
1161 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1162 {
1163 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1164 {
1165 input_line_pointer += len;
1166 *directive = (directiveE) i;
1167 if (*negated && !directive_info[i].can_be_negated)
1168 as_bad (_("directive %s cannot be negated"),
1169 directive_info[i].name);
1170 return;
1171 }
1172 }
1173
1174 as_bad (_("unknown directive"));
1175 *directive = (directiveE) XTENSA_UNDEFINED;
1176 }
1177
1178
1179 static void
1180 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1181 {
1182 directiveE directive;
1183 bfd_boolean negated;
1184 emit_state *state;
1185 int len;
1186 lit_state *ls;
1187
1188 get_directive (&directive, &negated);
1189 if (directive == (directiveE) XTENSA_UNDEFINED)
1190 {
1191 discard_rest_of_line ();
1192 return;
1193 }
1194
1195 if (cur_vinsn.inside_bundle)
1196 as_bad (_("directives are not valid inside bundles"));
1197
1198 switch (directive)
1199 {
1200 case directive_literal:
1201 if (!inside_directive (directive_literal))
1202 {
1203 /* Previous labels go with whatever follows this directive, not with
1204 the literal, so save them now. */
1205 saved_insn_labels = insn_labels;
1206 insn_labels = NULL;
1207 }
1208 as_warn (_(".begin literal is deprecated; use .literal instead"));
1209 state = (emit_state *) xmalloc (sizeof (emit_state));
1210 xtensa_switch_to_literal_fragment (state);
1211 directive_push (directive_literal, negated, state);
1212 break;
1213
1214 case directive_literal_prefix:
1215 /* Have to flush pending output because a movi relaxed to an l32r
1216 might produce a literal. */
1217 md_flush_pending_output ();
1218 /* Check to see if the current fragment is a literal
1219 fragment. If it is, then this operation is not allowed. */
1220 if (generating_literals)
1221 {
1222 as_bad (_("cannot set literal_prefix inside literal fragment"));
1223 return;
1224 }
1225
1226 /* Allocate the literal state for this section and push
1227 onto the directive stack. */
1228 ls = xmalloc (sizeof (lit_state));
1229 assert (ls);
1230
1231 *ls = default_lit_sections;
1232
1233 directive_push (directive_literal_prefix, negated, ls);
1234
1235 /* Parse the new prefix from the input_line_pointer. */
1236 SKIP_WHITESPACE ();
1237 len = strspn (input_line_pointer,
1238 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1239 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1240
1241 /* Process the new prefix. */
1242 xtensa_literal_prefix (input_line_pointer, len);
1243
1244 /* Skip the name in the input line. */
1245 input_line_pointer += len;
1246 break;
1247
1248 case directive_freeregs:
1249 /* This information is currently unused, but we'll accept the statement
1250 and just discard the rest of the line. This won't check the syntax,
1251 but it will accept every correct freeregs directive. */
1252 input_line_pointer += strcspn (input_line_pointer, "\n");
1253 directive_push (directive_freeregs, negated, 0);
1254 break;
1255
1256 case directive_schedule:
1257 md_flush_pending_output ();
1258 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1259 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1260 directive_push (directive_schedule, negated, 0);
1261 xtensa_set_frag_assembly_state (frag_now);
1262 break;
1263
1264 case directive_density:
1265 as_warn (_(".begin [no-]density is ignored"));
1266 break;
1267
1268 case directive_absolute_literals:
1269 md_flush_pending_output ();
1270 if (!absolute_literals_supported && !negated)
1271 {
1272 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1273 break;
1274 }
1275 xtensa_set_frag_assembly_state (frag_now);
1276 directive_push (directive, negated, 0);
1277 break;
1278
1279 default:
1280 md_flush_pending_output ();
1281 xtensa_set_frag_assembly_state (frag_now);
1282 directive_push (directive, negated, 0);
1283 break;
1284 }
1285
1286 demand_empty_rest_of_line ();
1287 }
1288
1289
1290 static void
1291 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1292 {
1293 directiveE begin_directive, end_directive;
1294 bfd_boolean begin_negated, end_negated;
1295 const char *file;
1296 unsigned int line;
1297 emit_state *state;
1298 emit_state **state_ptr;
1299 lit_state *s;
1300
1301 if (cur_vinsn.inside_bundle)
1302 as_bad (_("directives are not valid inside bundles"));
1303
1304 get_directive (&end_directive, &end_negated);
1305
1306 md_flush_pending_output ();
1307
1308 switch (end_directive)
1309 {
1310 case (directiveE) XTENSA_UNDEFINED:
1311 discard_rest_of_line ();
1312 return;
1313
1314 case directive_density:
1315 as_warn (_(".end [no-]density is ignored"));
1316 demand_empty_rest_of_line ();
1317 break;
1318
1319 case directive_absolute_literals:
1320 if (!absolute_literals_supported && !end_negated)
1321 {
1322 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1323 demand_empty_rest_of_line ();
1324 return;
1325 }
1326 break;
1327
1328 default:
1329 break;
1330 }
1331
1332 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1333 directive_pop (&begin_directive, &begin_negated, &file, &line,
1334 (const void **) state_ptr);
1335
1336 if (begin_directive != directive_none)
1337 {
1338 if (begin_directive != end_directive || begin_negated != end_negated)
1339 {
1340 as_bad (_("does not match begin %s%s at %s:%d"),
1341 begin_negated ? "no-" : "",
1342 directive_info[begin_directive].name, file, line);
1343 }
1344 else
1345 {
1346 switch (end_directive)
1347 {
1348 case directive_literal:
1349 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1350 xtensa_restore_emit_state (state);
1351 xtensa_set_frag_assembly_state (frag_now);
1352 free (state);
1353 if (!inside_directive (directive_literal))
1354 {
1355 /* Restore the list of current labels. */
1356 xtensa_clear_insn_labels ();
1357 insn_labels = saved_insn_labels;
1358 }
1359 break;
1360
1361 case directive_literal_prefix:
1362 /* Restore the default collection sections from saved state. */
1363 s = (lit_state *) state;
1364 assert (s);
1365
1366 if (use_literal_section)
1367 default_lit_sections = *s;
1368
1369 /* free the state storage */
1370 free (s);
1371 break;
1372
1373 case directive_schedule:
1374 case directive_freeregs:
1375 break;
1376
1377 default:
1378 xtensa_set_frag_assembly_state (frag_now);
1379 break;
1380 }
1381 }
1382 }
1383
1384 demand_empty_rest_of_line ();
1385 }
1386
1387
1388 /* Wrap dwarf2 functions so that we correctly support the .loc directive. */
1389
1390 static bfd_boolean xtensa_loc_directive_seen = FALSE;
1391
1392 static void
1393 xtensa_dwarf2_directive_loc (int x)
1394 {
1395 xtensa_loc_directive_seen = TRUE;
1396 dwarf2_directive_loc (x);
1397 }
1398
1399
1400 static void
1401 xtensa_dwarf2_emit_insn (int size, struct dwarf2_line_info *loc)
1402 {
1403 if (debug_type != DEBUG_DWARF2 && ! xtensa_loc_directive_seen)
1404 return;
1405 xtensa_loc_directive_seen = FALSE;
1406 dwarf2_gen_line_info (frag_now_fix () - size, loc);
1407 }
1408
1409
1410 /* Place an aligned literal fragment at the current location. */
1411
1412 static void
1413 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1414 {
1415 md_flush_pending_output ();
1416
1417 if (inside_directive (directive_literal))
1418 as_warn (_(".literal_position inside literal directive; ignoring"));
1419 xtensa_mark_literal_pool_location ();
1420
1421 demand_empty_rest_of_line ();
1422 xtensa_clear_insn_labels ();
1423 }
1424
1425
1426 /* Support .literal label, expr, ... */
1427
1428 static void
1429 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1430 {
1431 emit_state state;
1432 char *p, *base_name;
1433 char c;
1434 segT dest_seg;
1435
1436 if (inside_directive (directive_literal))
1437 {
1438 as_bad (_(".literal not allowed inside .begin literal region"));
1439 ignore_rest_of_line ();
1440 return;
1441 }
1442
1443 md_flush_pending_output ();
1444
1445 /* Previous labels go with whatever follows this directive, not with
1446 the literal, so save them now. */
1447 saved_insn_labels = insn_labels;
1448 insn_labels = NULL;
1449
1450 /* If we are using text-section literals, then this is the right value... */
1451 dest_seg = now_seg;
1452
1453 base_name = input_line_pointer;
1454
1455 xtensa_switch_to_literal_fragment (&state);
1456
1457 /* ...but if we aren't using text-section-literals, then we
1458 need to put them in the section we just switched to. */
1459 if (use_literal_section || directive_state[directive_absolute_literals])
1460 dest_seg = now_seg;
1461
1462 /* All literals are aligned to four-byte boundaries. */
1463 frag_align (2, 0, 0);
1464 record_alignment (now_seg, 2);
1465
1466 c = get_symbol_end ();
1467 /* Just after name is now '\0'. */
1468 p = input_line_pointer;
1469 *p = c;
1470 SKIP_WHITESPACE ();
1471
1472 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1473 {
1474 as_bad (_("expected comma or colon after symbol name; "
1475 "rest of line ignored"));
1476 ignore_rest_of_line ();
1477 xtensa_restore_emit_state (&state);
1478 return;
1479 }
1480 *p = 0;
1481
1482 colon (base_name);
1483
1484 *p = c;
1485 input_line_pointer++; /* skip ',' or ':' */
1486
1487 xtensa_elf_cons (4);
1488
1489 xtensa_restore_emit_state (&state);
1490
1491 /* Restore the list of current labels. */
1492 xtensa_clear_insn_labels ();
1493 insn_labels = saved_insn_labels;
1494 }
1495
1496
1497 static void
1498 xtensa_literal_prefix (char const *start, int len)
1499 {
1500 char *name, *linkonce_suffix;
1501 char *newname, *newname4;
1502 size_t linkonce_len;
1503
1504 /* Get a null-terminated copy of the name. */
1505 name = xmalloc (len + 1);
1506 assert (name);
1507
1508 strncpy (name, start, len);
1509 name[len] = 0;
1510
1511 /* Allocate the sections (interesting note: the memory pointing to
1512 the name is actually used for the name by the new section). */
1513
1514 newname = xmalloc (len + strlen (".literal") + 1);
1515 newname4 = xmalloc (len + strlen (".lit4") + 1);
1516
1517 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1518 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1519 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1520 {
1521 strcpy (newname, ".gnu.linkonce.literal");
1522 strcpy (newname4, ".gnu.linkonce.lit4");
1523
1524 strcat (newname, linkonce_suffix);
1525 strcat (newname4, linkonce_suffix);
1526 }
1527 else
1528 {
1529 int suffix_pos = len;
1530
1531 /* If the section name ends with ".text", then replace that suffix
1532 instead of appending an additional suffix. */
1533 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1534 suffix_pos -= 5;
1535
1536 strcpy (newname, name);
1537 strcpy (newname4, name);
1538
1539 strcpy (newname + suffix_pos, ".literal");
1540 strcpy (newname4 + suffix_pos, ".lit4");
1541 }
1542
1543 /* Note that cache_literal_section does not create a segment if
1544 it already exists. */
1545 default_lit_sections.lit_seg = NULL;
1546 default_lit_sections.lit4_seg = NULL;
1547
1548 /* Canonicalizing section names allows renaming literal
1549 sections to occur correctly. */
1550 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1551 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
1552
1553 free (name);
1554 }
1555
1556
1557 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1558
1559 static void
1560 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1561 {
1562 float fall_through_f, target_f;
1563
1564 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1565 if (fall_through_f < 0)
1566 {
1567 as_bad (_("fall through frequency must be greater than 0"));
1568 ignore_rest_of_line ();
1569 return;
1570 }
1571
1572 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1573 if (target_f < 0)
1574 {
1575 as_bad (_("branch target frequency must be greater than 0"));
1576 ignore_rest_of_line ();
1577 return;
1578 }
1579
1580 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1581
1582 demand_empty_rest_of_line ();
1583 }
1584
1585
1586 /* Like normal .long/.short/.word, except support @plt, etc.
1587 Clobbers input_line_pointer, checks end-of-line. */
1588
1589 static void
1590 xtensa_elf_cons (int nbytes)
1591 {
1592 expressionS exp;
1593 bfd_reloc_code_real_type reloc;
1594
1595 md_flush_pending_output ();
1596
1597 if (cur_vinsn.inside_bundle)
1598 as_bad (_("directives are not valid inside bundles"));
1599
1600 if (is_it_end_of_statement ())
1601 {
1602 demand_empty_rest_of_line ();
1603 return;
1604 }
1605
1606 do
1607 {
1608 expression (&exp);
1609 if (exp.X_op == O_symbol
1610 && *input_line_pointer == '@'
1611 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1612 != BFD_RELOC_NONE))
1613 {
1614 reloc_howto_type *reloc_howto =
1615 bfd_reloc_type_lookup (stdoutput, reloc);
1616
1617 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1618 as_bad (_("unsupported relocation"));
1619 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1620 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1621 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1622 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1623 as_bad (_("opcode-specific %s relocation used outside "
1624 "an instruction"), reloc_howto->name);
1625 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1626 as_bad (_("%s relocations do not fit in %d bytes"),
1627 reloc_howto->name, nbytes);
1628 else
1629 {
1630 char *p = frag_more ((int) nbytes);
1631 xtensa_set_frag_assembly_state (frag_now);
1632 fix_new_exp (frag_now, p - frag_now->fr_literal,
1633 nbytes, &exp, 0, reloc);
1634 }
1635 }
1636 else
1637 emit_expr (&exp, (unsigned int) nbytes);
1638 }
1639 while (*input_line_pointer++ == ',');
1640
1641 input_line_pointer--; /* Put terminator back into stream. */
1642 demand_empty_rest_of_line ();
1643 }
1644
1645 \f
1646 /* Parsing and Idiom Translation. */
1647
1648 /* Parse @plt, etc. and return the desired relocation. */
1649 static bfd_reloc_code_real_type
1650 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1651 {
1652 struct map_bfd
1653 {
1654 char *string;
1655 int length;
1656 bfd_reloc_code_real_type reloc;
1657 };
1658
1659 char ident[20];
1660 char *str = *str_p;
1661 char *str2;
1662 int ch;
1663 int len;
1664 struct map_bfd *ptr;
1665
1666 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1667
1668 static struct map_bfd mapping[] =
1669 {
1670 MAP ("l", BFD_RELOC_LO16),
1671 MAP ("h", BFD_RELOC_HI16),
1672 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1673 { (char *) 0, 0, BFD_RELOC_UNUSED }
1674 };
1675
1676 if (*str++ != '@')
1677 return BFD_RELOC_NONE;
1678
1679 for (ch = *str, str2 = ident;
1680 (str2 < ident + sizeof (ident) - 1
1681 && (ISALNUM (ch) || ch == '@'));
1682 ch = *++str)
1683 {
1684 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1685 }
1686
1687 *str2 = '\0';
1688 len = str2 - ident;
1689
1690 ch = ident[0];
1691 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1692 if (ch == ptr->string[0]
1693 && len == ptr->length
1694 && memcmp (ident, ptr->string, ptr->length) == 0)
1695 {
1696 /* Now check for "identifier@suffix+constant". */
1697 if (*str == '-' || *str == '+')
1698 {
1699 char *orig_line = input_line_pointer;
1700 expressionS new_exp;
1701
1702 input_line_pointer = str;
1703 expression (&new_exp);
1704 if (new_exp.X_op == O_constant)
1705 {
1706 exp_p->X_add_number += new_exp.X_add_number;
1707 str = input_line_pointer;
1708 }
1709
1710 if (&input_line_pointer != str_p)
1711 input_line_pointer = orig_line;
1712 }
1713
1714 *str_p = str;
1715 return ptr->reloc;
1716 }
1717
1718 return BFD_RELOC_UNUSED;
1719 }
1720
1721
1722 static const char *
1723 expression_end (const char *name)
1724 {
1725 while (1)
1726 {
1727 switch (*name)
1728 {
1729 case '}':
1730 case ';':
1731 case '\0':
1732 case ',':
1733 case ':':
1734 return name;
1735 case ' ':
1736 case '\t':
1737 ++name;
1738 continue;
1739 default:
1740 return 0;
1741 }
1742 }
1743 }
1744
1745
1746 #define ERROR_REG_NUM ((unsigned) -1)
1747
1748 static unsigned
1749 tc_get_register (const char *prefix)
1750 {
1751 unsigned reg;
1752 const char *next_expr;
1753 const char *old_line_pointer;
1754
1755 SKIP_WHITESPACE ();
1756 old_line_pointer = input_line_pointer;
1757
1758 if (*input_line_pointer == '$')
1759 ++input_line_pointer;
1760
1761 /* Accept "sp" as a synonym for "a1". */
1762 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1763 && expression_end (input_line_pointer + 2))
1764 {
1765 input_line_pointer += 2;
1766 return 1; /* AR[1] */
1767 }
1768
1769 while (*input_line_pointer++ == *prefix++)
1770 ;
1771 --input_line_pointer;
1772 --prefix;
1773
1774 if (*prefix)
1775 {
1776 as_bad (_("bad register name: %s"), old_line_pointer);
1777 return ERROR_REG_NUM;
1778 }
1779
1780 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1781 {
1782 as_bad (_("bad register number: %s"), input_line_pointer);
1783 return ERROR_REG_NUM;
1784 }
1785
1786 reg = 0;
1787
1788 while (ISDIGIT ((int) *input_line_pointer))
1789 reg = reg * 10 + *input_line_pointer++ - '0';
1790
1791 if (!(next_expr = expression_end (input_line_pointer)))
1792 {
1793 as_bad (_("bad register name: %s"), old_line_pointer);
1794 return ERROR_REG_NUM;
1795 }
1796
1797 input_line_pointer = (char *) next_expr;
1798
1799 return reg;
1800 }
1801
1802
1803 static void
1804 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1805 {
1806 xtensa_isa isa = xtensa_default_isa;
1807
1808 /* Check if this is an immediate operand. */
1809 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1810 {
1811 bfd_reloc_code_real_type reloc;
1812 segT t = expression (tok);
1813 if (t == absolute_section
1814 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1815 {
1816 assert (tok->X_op == O_constant);
1817 tok->X_op = O_symbol;
1818 tok->X_add_symbol = &abs_symbol;
1819 }
1820
1821 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1822 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1823 && (reloc != BFD_RELOC_NONE))
1824 {
1825 switch (reloc)
1826 {
1827 default:
1828 case BFD_RELOC_UNUSED:
1829 as_bad (_("unsupported relocation"));
1830 break;
1831
1832 case BFD_RELOC_XTENSA_PLT:
1833 tok->X_op = O_pltrel;
1834 break;
1835
1836 case BFD_RELOC_LO16:
1837 if (tok->X_op == O_constant)
1838 tok->X_add_number &= 0xffff;
1839 else
1840 tok->X_op = O_lo16;
1841 break;
1842
1843 case BFD_RELOC_HI16:
1844 if (tok->X_op == O_constant)
1845 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1846 else
1847 tok->X_op = O_hi16;
1848 break;
1849 }
1850 }
1851 }
1852 else
1853 {
1854 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1855 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1856
1857 if (reg != ERROR_REG_NUM) /* Already errored */
1858 {
1859 uint32 buf = reg;
1860 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1861 as_bad (_("register number out of range"));
1862 }
1863
1864 tok->X_op = O_register;
1865 tok->X_add_symbol = 0;
1866 tok->X_add_number = reg;
1867 }
1868 }
1869
1870
1871 /* Split up the arguments for an opcode or pseudo-op. */
1872
1873 static int
1874 tokenize_arguments (char **args, char *str)
1875 {
1876 char *old_input_line_pointer;
1877 bfd_boolean saw_comma = FALSE;
1878 bfd_boolean saw_arg = FALSE;
1879 bfd_boolean saw_colon = FALSE;
1880 int num_args = 0;
1881 char *arg_end, *arg;
1882 int arg_len;
1883
1884 /* Save and restore input_line_pointer around this function. */
1885 old_input_line_pointer = input_line_pointer;
1886 input_line_pointer = str;
1887
1888 while (*input_line_pointer)
1889 {
1890 SKIP_WHITESPACE ();
1891 switch (*input_line_pointer)
1892 {
1893 case '\0':
1894 case '}':
1895 goto fini;
1896
1897 case ':':
1898 input_line_pointer++;
1899 if (saw_comma || saw_colon || !saw_arg)
1900 goto err;
1901 saw_colon = TRUE;
1902 break;
1903
1904 case ',':
1905 input_line_pointer++;
1906 if (saw_comma || saw_colon || !saw_arg)
1907 goto err;
1908 saw_comma = TRUE;
1909 break;
1910
1911 default:
1912 if (!saw_comma && !saw_colon && saw_arg)
1913 goto err;
1914
1915 arg_end = input_line_pointer + 1;
1916 while (!expression_end (arg_end))
1917 arg_end += 1;
1918
1919 arg_len = arg_end - input_line_pointer;
1920 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1921 args[num_args] = arg;
1922
1923 if (saw_colon)
1924 *arg++ = ':';
1925 strncpy (arg, input_line_pointer, arg_len);
1926 arg[arg_len] = '\0';
1927
1928 input_line_pointer = arg_end;
1929 num_args += 1;
1930 saw_comma = FALSE;
1931 saw_colon = FALSE;
1932 saw_arg = TRUE;
1933 break;
1934 }
1935 }
1936
1937 fini:
1938 if (saw_comma || saw_colon)
1939 goto err;
1940 input_line_pointer = old_input_line_pointer;
1941 return num_args;
1942
1943 err:
1944 if (saw_comma)
1945 as_bad (_("extra comma"));
1946 else if (saw_colon)
1947 as_bad (_("extra colon"));
1948 else if (!saw_arg)
1949 as_bad (_("missing argument"));
1950 else
1951 as_bad (_("missing comma or colon"));
1952 input_line_pointer = old_input_line_pointer;
1953 return -1;
1954 }
1955
1956
1957 /* Parse the arguments to an opcode. Return TRUE on error. */
1958
1959 static bfd_boolean
1960 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1961 {
1962 expressionS *tok, *last_tok;
1963 xtensa_opcode opcode = insn->opcode;
1964 bfd_boolean had_error = TRUE;
1965 xtensa_isa isa = xtensa_default_isa;
1966 int n, num_regs = 0;
1967 int opcode_operand_count;
1968 int opnd_cnt, last_opnd_cnt;
1969 unsigned int next_reg = 0;
1970 char *old_input_line_pointer;
1971
1972 if (insn->insn_type == ITYPE_LITERAL)
1973 opcode_operand_count = 1;
1974 else
1975 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1976
1977 tok = insn->tok;
1978 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1979
1980 /* Save and restore input_line_pointer around this function. */
1981 old_input_line_pointer = input_line_pointer;
1982
1983 last_tok = 0;
1984 last_opnd_cnt = -1;
1985 opnd_cnt = 0;
1986
1987 /* Skip invisible operands. */
1988 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1989 {
1990 opnd_cnt += 1;
1991 tok++;
1992 }
1993
1994 for (n = 0; n < num_args; n++)
1995 {
1996 input_line_pointer = arg_strings[n];
1997 if (*input_line_pointer == ':')
1998 {
1999 xtensa_regfile opnd_rf;
2000 input_line_pointer++;
2001 if (num_regs == 0)
2002 goto err;
2003 assert (opnd_cnt > 0);
2004 num_regs--;
2005 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2006 if (next_reg
2007 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2008 as_warn (_("incorrect register number, ignoring"));
2009 next_reg++;
2010 }
2011 else
2012 {
2013 if (opnd_cnt >= opcode_operand_count)
2014 {
2015 as_warn (_("too many arguments"));
2016 goto err;
2017 }
2018 assert (opnd_cnt < MAX_INSN_ARGS);
2019
2020 expression_maybe_register (opcode, opnd_cnt, tok);
2021 next_reg = tok->X_add_number + 1;
2022
2023 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2024 goto err;
2025 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2026 {
2027 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2028 /* minus 1 because we are seeing one right now */
2029 }
2030 else
2031 num_regs = 0;
2032
2033 last_tok = tok;
2034 last_opnd_cnt = opnd_cnt;
2035
2036 do
2037 {
2038 opnd_cnt += 1;
2039 tok++;
2040 }
2041 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2042 }
2043 }
2044
2045 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2046 goto err;
2047
2048 insn->ntok = tok - insn->tok;
2049 had_error = FALSE;
2050
2051 err:
2052 input_line_pointer = old_input_line_pointer;
2053 return had_error;
2054 }
2055
2056
2057 static int
2058 get_invisible_operands (TInsn *insn)
2059 {
2060 xtensa_isa isa = xtensa_default_isa;
2061 static xtensa_insnbuf slotbuf = NULL;
2062 xtensa_format fmt;
2063 xtensa_opcode opc = insn->opcode;
2064 int slot, opnd, fmt_found;
2065 unsigned val;
2066
2067 if (!slotbuf)
2068 slotbuf = xtensa_insnbuf_alloc (isa);
2069
2070 /* Find format/slot where this can be encoded. */
2071 fmt_found = 0;
2072 slot = 0;
2073 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2074 {
2075 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2076 {
2077 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2078 {
2079 fmt_found = 1;
2080 break;
2081 }
2082 }
2083 if (fmt_found) break;
2084 }
2085
2086 if (!fmt_found)
2087 {
2088 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2089 return -1;
2090 }
2091
2092 /* First encode all the visible operands
2093 (to deal with shared field operands). */
2094 for (opnd = 0; opnd < insn->ntok; opnd++)
2095 {
2096 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2097 && (insn->tok[opnd].X_op == O_register
2098 || insn->tok[opnd].X_op == O_constant))
2099 {
2100 val = insn->tok[opnd].X_add_number;
2101 xtensa_operand_encode (isa, opc, opnd, &val);
2102 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2103 }
2104 }
2105
2106 /* Then pull out the values for the invisible ones. */
2107 for (opnd = 0; opnd < insn->ntok; opnd++)
2108 {
2109 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2110 {
2111 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2112 xtensa_operand_decode (isa, opc, opnd, &val);
2113 insn->tok[opnd].X_add_number = val;
2114 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2115 insn->tok[opnd].X_op = O_register;
2116 else
2117 insn->tok[opnd].X_op = O_constant;
2118 }
2119 }
2120
2121 return 0;
2122 }
2123
2124
2125 static void
2126 xg_reverse_shift_count (char **cnt_argp)
2127 {
2128 char *cnt_arg, *new_arg;
2129 cnt_arg = *cnt_argp;
2130
2131 /* replace the argument with "31-(argument)" */
2132 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2133 sprintf (new_arg, "31-(%s)", cnt_arg);
2134
2135 free (cnt_arg);
2136 *cnt_argp = new_arg;
2137 }
2138
2139
2140 /* If "arg" is a constant expression, return non-zero with the value
2141 in *valp. */
2142
2143 static int
2144 xg_arg_is_constant (char *arg, offsetT *valp)
2145 {
2146 expressionS exp;
2147 char *save_ptr = input_line_pointer;
2148
2149 input_line_pointer = arg;
2150 expression (&exp);
2151 input_line_pointer = save_ptr;
2152
2153 if (exp.X_op == O_constant)
2154 {
2155 *valp = exp.X_add_number;
2156 return 1;
2157 }
2158
2159 return 0;
2160 }
2161
2162
2163 static void
2164 xg_replace_opname (char **popname, char *newop)
2165 {
2166 free (*popname);
2167 *popname = (char *) xmalloc (strlen (newop) + 1);
2168 strcpy (*popname, newop);
2169 }
2170
2171
2172 static int
2173 xg_check_num_args (int *pnum_args,
2174 int expected_num,
2175 char *opname,
2176 char **arg_strings)
2177 {
2178 int num_args = *pnum_args;
2179
2180 if (num_args < expected_num)
2181 {
2182 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2183 num_args, opname, expected_num);
2184 return -1;
2185 }
2186
2187 if (num_args > expected_num)
2188 {
2189 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2190 num_args, opname, expected_num);
2191 while (num_args-- > expected_num)
2192 {
2193 free (arg_strings[num_args]);
2194 arg_strings[num_args] = 0;
2195 }
2196 *pnum_args = expected_num;
2197 return -1;
2198 }
2199
2200 return 0;
2201 }
2202
2203
2204 /* If the register is not specified as part of the opcode,
2205 then get it from the operand and move it to the opcode. */
2206
2207 static int
2208 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2209 {
2210 xtensa_isa isa = xtensa_default_isa;
2211 xtensa_sysreg sr;
2212 char *opname, *new_opname;
2213 const char *sr_name;
2214 int is_user, is_write;
2215 bfd_boolean has_underbar = FALSE;
2216
2217 opname = *popname;
2218 if (*opname == '_')
2219 {
2220 has_underbar = TRUE;
2221 opname += 1;
2222 }
2223 is_user = (opname[1] == 'u');
2224 is_write = (opname[0] == 'w');
2225
2226 /* Opname == [rw]ur or [rwx]sr... */
2227
2228 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2229 return -1;
2230
2231 /* Check if the argument is a symbolic register name. */
2232 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2233 /* Handle WSR to "INTSET" as a special case. */
2234 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2235 && !strcasecmp (arg_strings[1], "intset"))
2236 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2237 if (sr == XTENSA_UNDEFINED
2238 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2239 {
2240 /* Maybe it's a register number.... */
2241 offsetT val;
2242 if (!xg_arg_is_constant (arg_strings[1], &val))
2243 {
2244 as_bad (_("invalid register '%s' for '%s' instruction"),
2245 arg_strings[1], opname);
2246 return -1;
2247 }
2248 sr = xtensa_sysreg_lookup (isa, val, is_user);
2249 if (sr == XTENSA_UNDEFINED)
2250 {
2251 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2252 (long) val, opname);
2253 return -1;
2254 }
2255 }
2256
2257 /* Remove the last argument, which is now part of the opcode. */
2258 free (arg_strings[1]);
2259 arg_strings[1] = 0;
2260 *pnum_args = 1;
2261
2262 /* Translate the opcode. */
2263 sr_name = xtensa_sysreg_name (isa, sr);
2264 /* Another special case for "WSR.INTSET".... */
2265 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2266 sr_name = "intset";
2267 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2268 sprintf (new_opname, "%s%s.%s", (has_underbar ? "_" : ""),
2269 *popname, sr_name);
2270 free (*popname);
2271 *popname = new_opname;
2272
2273 return 0;
2274 }
2275
2276
2277 static int
2278 xtensa_translate_old_userreg_ops (char **popname)
2279 {
2280 xtensa_isa isa = xtensa_default_isa;
2281 xtensa_sysreg sr;
2282 char *opname, *new_opname;
2283 const char *sr_name;
2284 bfd_boolean has_underbar = FALSE;
2285
2286 opname = *popname;
2287 if (opname[0] == '_')
2288 {
2289 has_underbar = TRUE;
2290 opname += 1;
2291 }
2292
2293 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2294 if (sr != XTENSA_UNDEFINED)
2295 {
2296 /* The new default name ("nnn") is different from the old default
2297 name ("URnnn"). The old default is handled below, and we don't
2298 want to recognize [RW]nnn, so do nothing if the name is the (new)
2299 default. */
2300 static char namebuf[10];
2301 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2302 if (strcmp (namebuf, opname + 1) == 0)
2303 return 0;
2304 }
2305 else
2306 {
2307 offsetT val;
2308 char *end;
2309
2310 /* Only continue if the reg name is "URnnn". */
2311 if (opname[1] != 'u' || opname[2] != 'r')
2312 return 0;
2313 val = strtoul (opname + 3, &end, 10);
2314 if (*end != '\0')
2315 return 0;
2316
2317 sr = xtensa_sysreg_lookup (isa, val, 1);
2318 if (sr == XTENSA_UNDEFINED)
2319 {
2320 as_bad (_("invalid register number (%ld) for '%s'"),
2321 (long) val, opname);
2322 return -1;
2323 }
2324 }
2325
2326 /* Translate the opcode. */
2327 sr_name = xtensa_sysreg_name (isa, sr);
2328 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2329 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2330 opname[0], sr_name);
2331 free (*popname);
2332 *popname = new_opname;
2333
2334 return 0;
2335 }
2336
2337
2338 static int
2339 xtensa_translate_zero_immed (char *old_op,
2340 char *new_op,
2341 char **popname,
2342 int *pnum_args,
2343 char **arg_strings)
2344 {
2345 char *opname;
2346 offsetT val;
2347
2348 opname = *popname;
2349 assert (opname[0] != '_');
2350
2351 if (strcmp (opname, old_op) != 0)
2352 return 0;
2353
2354 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2355 return -1;
2356 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2357 {
2358 xg_replace_opname (popname, new_op);
2359 free (arg_strings[1]);
2360 arg_strings[1] = arg_strings[2];
2361 arg_strings[2] = 0;
2362 *pnum_args = 2;
2363 }
2364
2365 return 0;
2366 }
2367
2368
2369 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2370 Returns non-zero if an error was found. */
2371
2372 static int
2373 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2374 {
2375 char *opname = *popname;
2376 bfd_boolean has_underbar = FALSE;
2377
2378 if (cur_vinsn.inside_bundle)
2379 return 0;
2380
2381 if (*opname == '_')
2382 {
2383 has_underbar = TRUE;
2384 opname += 1;
2385 }
2386
2387 if (strcmp (opname, "mov") == 0)
2388 {
2389 if (use_transform () && !has_underbar && density_supported)
2390 xg_replace_opname (popname, "mov.n");
2391 else
2392 {
2393 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2394 return -1;
2395 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2396 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2397 strcpy (arg_strings[2], arg_strings[1]);
2398 *pnum_args = 3;
2399 }
2400 return 0;
2401 }
2402
2403 if (strcmp (opname, "bbsi.l") == 0)
2404 {
2405 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2406 return -1;
2407 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2408 if (target_big_endian)
2409 xg_reverse_shift_count (&arg_strings[1]);
2410 return 0;
2411 }
2412
2413 if (strcmp (opname, "bbci.l") == 0)
2414 {
2415 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2416 return -1;
2417 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2418 if (target_big_endian)
2419 xg_reverse_shift_count (&arg_strings[1]);
2420 return 0;
2421 }
2422
2423 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2424 && strcmp (opname, "nop") == 0)
2425 {
2426 if (use_transform () && !has_underbar && density_supported)
2427 xg_replace_opname (popname, "nop.n");
2428 else
2429 {
2430 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2431 return -1;
2432 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2433 arg_strings[0] = (char *) xmalloc (3);
2434 arg_strings[1] = (char *) xmalloc (3);
2435 arg_strings[2] = (char *) xmalloc (3);
2436 strcpy (arg_strings[0], "a1");
2437 strcpy (arg_strings[1], "a1");
2438 strcpy (arg_strings[2], "a1");
2439 *pnum_args = 3;
2440 }
2441 return 0;
2442 }
2443
2444 /* Recognize [RW]UR and [RWX]SR. */
2445 if ((((opname[0] == 'r' || opname[0] == 'w')
2446 && (opname[1] == 'u' || opname[1] == 's'))
2447 || (opname[0] == 'x' && opname[1] == 's'))
2448 && opname[2] == 'r'
2449 && opname[3] == '\0')
2450 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2451
2452 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2453 [RW]<name> if <name> is the non-default name of a user register. */
2454 if ((opname[0] == 'r' || opname[0] == 'w')
2455 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2456 return xtensa_translate_old_userreg_ops (popname);
2457
2458 /* Relax branches that don't allow comparisons against an immediate value
2459 of zero to the corresponding branches with implicit zero immediates. */
2460 if (!has_underbar && use_transform ())
2461 {
2462 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2463 pnum_args, arg_strings))
2464 return -1;
2465
2466 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2467 pnum_args, arg_strings))
2468 return -1;
2469
2470 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2471 pnum_args, arg_strings))
2472 return -1;
2473
2474 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2475 pnum_args, arg_strings))
2476 return -1;
2477 }
2478
2479 return 0;
2480 }
2481
2482 \f
2483 /* Functions for dealing with the Xtensa ISA. */
2484
2485 /* Currently the assembler only allows us to use a single target per
2486 fragment. Because of this, only one operand for a given
2487 instruction may be symbolic. If there is a PC-relative operand,
2488 the last one is chosen. Otherwise, the result is the number of the
2489 last immediate operand, and if there are none of those, we fail and
2490 return -1. */
2491
2492 static int
2493 get_relaxable_immed (xtensa_opcode opcode)
2494 {
2495 int last_immed = -1;
2496 int noperands, opi;
2497
2498 if (opcode == XTENSA_UNDEFINED)
2499 return -1;
2500
2501 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2502 for (opi = noperands - 1; opi >= 0; opi--)
2503 {
2504 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2505 continue;
2506 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2507 return opi;
2508 if (last_immed == -1
2509 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2510 last_immed = opi;
2511 }
2512 return last_immed;
2513 }
2514
2515
2516 static xtensa_opcode
2517 get_opcode_from_buf (const char *buf, int slot)
2518 {
2519 static xtensa_insnbuf insnbuf = NULL;
2520 static xtensa_insnbuf slotbuf = NULL;
2521 xtensa_isa isa = xtensa_default_isa;
2522 xtensa_format fmt;
2523
2524 if (!insnbuf)
2525 {
2526 insnbuf = xtensa_insnbuf_alloc (isa);
2527 slotbuf = xtensa_insnbuf_alloc (isa);
2528 }
2529
2530 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2531 fmt = xtensa_format_decode (isa, insnbuf);
2532 if (fmt == XTENSA_UNDEFINED)
2533 return XTENSA_UNDEFINED;
2534
2535 if (slot >= xtensa_format_num_slots (isa, fmt))
2536 return XTENSA_UNDEFINED;
2537
2538 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2539 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2540 }
2541
2542
2543 #ifdef TENSILICA_DEBUG
2544
2545 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2546
2547 static void
2548 xtensa_print_insn_table (void)
2549 {
2550 int num_opcodes, num_operands;
2551 xtensa_opcode opcode;
2552 xtensa_isa isa = xtensa_default_isa;
2553
2554 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2555 for (opcode = 0; opcode < num_opcodes; opcode++)
2556 {
2557 int opn;
2558 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2559 num_operands = xtensa_opcode_num_operands (isa, opcode);
2560 for (opn = 0; opn < num_operands; opn++)
2561 {
2562 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2563 continue;
2564 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2565 {
2566 xtensa_regfile opnd_rf =
2567 xtensa_operand_regfile (isa, opcode, opn);
2568 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2569 }
2570 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2571 fputs ("[lLr] ", stderr);
2572 else
2573 fputs ("i ", stderr);
2574 }
2575 fprintf (stderr, "\n");
2576 }
2577 }
2578
2579
2580 static void
2581 print_vliw_insn (xtensa_insnbuf vbuf)
2582 {
2583 xtensa_isa isa = xtensa_default_isa;
2584 xtensa_format f = xtensa_format_decode (isa, vbuf);
2585 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2586 int op;
2587
2588 fprintf (stderr, "format = %d\n", f);
2589
2590 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2591 {
2592 xtensa_opcode opcode;
2593 const char *opname;
2594 int operands;
2595
2596 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2597 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2598 opname = xtensa_opcode_name (isa, opcode);
2599
2600 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2601 fprintf (stderr, " operands = ");
2602 for (operands = 0;
2603 operands < xtensa_opcode_num_operands (isa, opcode);
2604 operands++)
2605 {
2606 unsigned int val;
2607 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2608 continue;
2609 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2610 xtensa_operand_decode (isa, opcode, operands, &val);
2611 fprintf (stderr, "%d ", val);
2612 }
2613 fprintf (stderr, "\n");
2614 }
2615 xtensa_insnbuf_free (isa, sbuf);
2616 }
2617
2618 #endif /* TENSILICA_DEBUG */
2619
2620
2621 static bfd_boolean
2622 is_direct_call_opcode (xtensa_opcode opcode)
2623 {
2624 xtensa_isa isa = xtensa_default_isa;
2625 int n, num_operands;
2626
2627 if (xtensa_opcode_is_call (isa, opcode) == 0)
2628 return FALSE;
2629
2630 num_operands = xtensa_opcode_num_operands (isa, opcode);
2631 for (n = 0; n < num_operands; n++)
2632 {
2633 if (xtensa_operand_is_register (isa, opcode, n) == 0
2634 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2635 return TRUE;
2636 }
2637 return FALSE;
2638 }
2639
2640
2641 /* Convert from BFD relocation type code to slot and operand number.
2642 Returns non-zero on failure. */
2643
2644 static int
2645 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2646 {
2647 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2648 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2649 {
2650 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2651 *is_alt = FALSE;
2652 }
2653 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2654 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2655 {
2656 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2657 *is_alt = TRUE;
2658 }
2659 else
2660 return -1;
2661
2662 return 0;
2663 }
2664
2665
2666 /* Convert from slot number to BFD relocation type code for the
2667 standard PC-relative relocations. Return BFD_RELOC_NONE on
2668 failure. */
2669
2670 static bfd_reloc_code_real_type
2671 encode_reloc (int slot)
2672 {
2673 if (slot < 0 || slot > 14)
2674 return BFD_RELOC_NONE;
2675
2676 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2677 }
2678
2679
2680 /* Convert from slot numbers to BFD relocation type code for the
2681 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2682
2683 static bfd_reloc_code_real_type
2684 encode_alt_reloc (int slot)
2685 {
2686 if (slot < 0 || slot > 14)
2687 return BFD_RELOC_NONE;
2688
2689 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2690 }
2691
2692
2693 static void
2694 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int operand,
2699 uint32 value,
2700 const char *file,
2701 unsigned int line)
2702 {
2703 uint32 valbuf = value;
2704
2705 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2706 {
2707 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2708 == 1)
2709 as_bad_where ((char *) file, line,
2710 _("operand %u is out of range for '%s'"), value,
2711 xtensa_opcode_name (xtensa_default_isa, opcode));
2712 else
2713 as_bad_where ((char *) file, line,
2714 _("operand %u is invalid for '%s'"), value,
2715 xtensa_opcode_name (xtensa_default_isa, opcode));
2716 return;
2717 }
2718
2719 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2720 slotbuf, valbuf);
2721 }
2722
2723
2724 static uint32
2725 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2726 xtensa_format fmt,
2727 int slot,
2728 xtensa_opcode opcode,
2729 int opnum)
2730 {
2731 uint32 val = 0;
2732 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2733 fmt, slot, slotbuf, &val);
2734 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2735 return val;
2736 }
2737
2738 \f
2739 /* Checks for rules from xtensa-relax tables. */
2740
2741 /* The routine xg_instruction_matches_option_term must return TRUE
2742 when a given option term is true. The meaning of all of the option
2743 terms is given interpretation by this function. This is needed when
2744 an option depends on the state of a directive, but there are no such
2745 options in use right now. */
2746
2747 static bfd_boolean
2748 xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2749 const ReqOrOption *option)
2750 {
2751 if (strcmp (option->option_name, "realnop") == 0
2752 || strncmp (option->option_name, "IsaUse", 6) == 0)
2753 {
2754 /* These conditions were evaluated statically when building the
2755 relaxation table. There's no need to reevaluate them now. */
2756 return TRUE;
2757 }
2758 else
2759 {
2760 as_fatal (_("internal error: unknown option name '%s'"),
2761 option->option_name);
2762 }
2763 }
2764
2765
2766 static bfd_boolean
2767 xg_instruction_matches_or_options (TInsn *insn,
2768 const ReqOrOptionList *or_option)
2769 {
2770 const ReqOrOption *option;
2771 /* Must match each of the AND terms. */
2772 for (option = or_option; option != NULL; option = option->next)
2773 {
2774 if (xg_instruction_matches_option_term (insn, option))
2775 return TRUE;
2776 }
2777 return FALSE;
2778 }
2779
2780
2781 static bfd_boolean
2782 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2783 {
2784 const ReqOption *req_options;
2785 /* Must match each of the AND terms. */
2786 for (req_options = options;
2787 req_options != NULL;
2788 req_options = req_options->next)
2789 {
2790 /* Must match one of the OR clauses. */
2791 if (!xg_instruction_matches_or_options (insn,
2792 req_options->or_option_terms))
2793 return FALSE;
2794 }
2795 return TRUE;
2796 }
2797
2798
2799 /* Return the transition rule that matches or NULL if none matches. */
2800
2801 static bfd_boolean
2802 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2803 {
2804 PreconditionList *condition_l;
2805
2806 if (rule->opcode != insn->opcode)
2807 return FALSE;
2808
2809 for (condition_l = rule->conditions;
2810 condition_l != NULL;
2811 condition_l = condition_l->next)
2812 {
2813 expressionS *exp1;
2814 expressionS *exp2;
2815 Precondition *cond = condition_l->precond;
2816
2817 switch (cond->typ)
2818 {
2819 case OP_CONSTANT:
2820 /* The expression must be the constant. */
2821 assert (cond->op_num < insn->ntok);
2822 exp1 = &insn->tok[cond->op_num];
2823 if (expr_is_const (exp1))
2824 {
2825 switch (cond->cmp)
2826 {
2827 case OP_EQUAL:
2828 if (get_expr_const (exp1) != cond->op_data)
2829 return FALSE;
2830 break;
2831 case OP_NOTEQUAL:
2832 if (get_expr_const (exp1) == cond->op_data)
2833 return FALSE;
2834 break;
2835 default:
2836 return FALSE;
2837 }
2838 }
2839 else if (expr_is_register (exp1))
2840 {
2841 switch (cond->cmp)
2842 {
2843 case OP_EQUAL:
2844 if (get_expr_register (exp1) != cond->op_data)
2845 return FALSE;
2846 break;
2847 case OP_NOTEQUAL:
2848 if (get_expr_register (exp1) == cond->op_data)
2849 return FALSE;
2850 break;
2851 default:
2852 return FALSE;
2853 }
2854 }
2855 else
2856 return FALSE;
2857 break;
2858
2859 case OP_OPERAND:
2860 assert (cond->op_num < insn->ntok);
2861 assert (cond->op_data < insn->ntok);
2862 exp1 = &insn->tok[cond->op_num];
2863 exp2 = &insn->tok[cond->op_data];
2864
2865 switch (cond->cmp)
2866 {
2867 case OP_EQUAL:
2868 if (!expr_is_equal (exp1, exp2))
2869 return FALSE;
2870 break;
2871 case OP_NOTEQUAL:
2872 if (expr_is_equal (exp1, exp2))
2873 return FALSE;
2874 break;
2875 }
2876 break;
2877
2878 case OP_LITERAL:
2879 case OP_LABEL:
2880 default:
2881 return FALSE;
2882 }
2883 }
2884 if (!xg_instruction_matches_options (insn, rule->options))
2885 return FALSE;
2886
2887 return TRUE;
2888 }
2889
2890
2891 static int
2892 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2893 {
2894 bfd_boolean a_greater = FALSE;
2895 bfd_boolean b_greater = FALSE;
2896
2897 ReqOptionList *l_a = a->options;
2898 ReqOptionList *l_b = b->options;
2899
2900 /* We only care if they both are the same except for
2901 a const16 vs. an l32r. */
2902
2903 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2904 {
2905 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2906 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2907 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2908 {
2909 if (l_or_a->is_true != l_or_b->is_true)
2910 return 0;
2911 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2912 {
2913 /* This is the case we care about. */
2914 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2915 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2916 {
2917 if (prefer_const16)
2918 a_greater = TRUE;
2919 else
2920 b_greater = TRUE;
2921 }
2922 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2923 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2924 {
2925 if (prefer_const16)
2926 b_greater = TRUE;
2927 else
2928 a_greater = TRUE;
2929 }
2930 else
2931 return 0;
2932 }
2933 l_or_a = l_or_a->next;
2934 l_or_b = l_or_b->next;
2935 }
2936 if (l_or_a || l_or_b)
2937 return 0;
2938
2939 l_a = l_a->next;
2940 l_b = l_b->next;
2941 }
2942 if (l_a || l_b)
2943 return 0;
2944
2945 /* Incomparable if the substitution was used differently in two cases. */
2946 if (a_greater && b_greater)
2947 return 0;
2948
2949 if (b_greater)
2950 return 1;
2951 if (a_greater)
2952 return -1;
2953
2954 return 0;
2955 }
2956
2957
2958 static TransitionRule *
2959 xg_instruction_match (TInsn *insn)
2960 {
2961 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2962 TransitionList *l;
2963 assert (insn->opcode < table->num_opcodes);
2964
2965 /* Walk through all of the possible transitions. */
2966 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2967 {
2968 TransitionRule *rule = l->rule;
2969 if (xg_instruction_matches_rule (insn, rule))
2970 return rule;
2971 }
2972 return NULL;
2973 }
2974
2975 \f
2976 /* Various Other Internal Functions. */
2977
2978 static bfd_boolean
2979 is_unique_insn_expansion (TransitionRule *r)
2980 {
2981 if (!r->to_instr || r->to_instr->next != NULL)
2982 return FALSE;
2983 if (r->to_instr->typ != INSTR_INSTR)
2984 return FALSE;
2985 return TRUE;
2986 }
2987
2988
2989 /* Check if there is exactly one relaxation for INSN that converts it to
2990 another instruction of equal or larger size. If so, and if TARG is
2991 non-null, go ahead and generate the relaxed instruction into TARG. If
2992 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2993 instruction, i.e., ignore relaxations that convert to an instruction of
2994 equal size. In some contexts where this function is used, only
2995 a single widening is allowed and the NARROW_ONLY argument is used to
2996 exclude cases like ADDI being "widened" to an ADDMI, which may
2997 later be relaxed to an ADDMI/ADDI pair. */
2998
2999 bfd_boolean
3000 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3001 {
3002 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3003 TransitionList *l;
3004 TransitionRule *match = 0;
3005
3006 assert (insn->insn_type == ITYPE_INSN);
3007 assert (insn->opcode < table->num_opcodes);
3008
3009 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3010 {
3011 TransitionRule *rule = l->rule;
3012
3013 if (xg_instruction_matches_rule (insn, rule)
3014 && is_unique_insn_expansion (rule)
3015 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3016 <= xg_get_single_size (rule->to_instr->opcode)))
3017 {
3018 if (match)
3019 return FALSE;
3020 match = rule;
3021 }
3022 }
3023 if (!match)
3024 return FALSE;
3025
3026 if (targ)
3027 xg_build_to_insn (targ, insn, match->to_instr);
3028 return TRUE;
3029 }
3030
3031
3032 /* Return the maximum number of bytes this opcode can expand to. */
3033
3034 static int
3035 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3036 {
3037 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3038 TransitionList *l;
3039 int max_size = xg_get_single_size (opcode);
3040
3041 assert (opcode < table->num_opcodes);
3042
3043 for (l = table->table[opcode]; l != NULL; l = l->next)
3044 {
3045 TransitionRule *rule = l->rule;
3046 BuildInstr *build_list;
3047 int this_size = 0;
3048
3049 if (!rule)
3050 continue;
3051 build_list = rule->to_instr;
3052 if (is_unique_insn_expansion (rule))
3053 {
3054 assert (build_list->typ == INSTR_INSTR);
3055 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3056 }
3057 else
3058 for (; build_list != NULL; build_list = build_list->next)
3059 {
3060 switch (build_list->typ)
3061 {
3062 case INSTR_INSTR:
3063 this_size += xg_get_single_size (build_list->opcode);
3064 break;
3065 case INSTR_LITERAL_DEF:
3066 case INSTR_LABEL_DEF:
3067 default:
3068 break;
3069 }
3070 }
3071 if (this_size > max_size)
3072 max_size = this_size;
3073 }
3074 return max_size;
3075 }
3076
3077
3078 /* Return the maximum number of literal bytes this opcode can generate. */
3079
3080 static int
3081 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3082 {
3083 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3084 TransitionList *l;
3085 int max_size = 0;
3086
3087 assert (opcode < table->num_opcodes);
3088
3089 for (l = table->table[opcode]; l != NULL; l = l->next)
3090 {
3091 TransitionRule *rule = l->rule;
3092 BuildInstr *build_list;
3093 int this_size = 0;
3094
3095 if (!rule)
3096 continue;
3097 build_list = rule->to_instr;
3098 if (is_unique_insn_expansion (rule))
3099 {
3100 assert (build_list->typ == INSTR_INSTR);
3101 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3102 }
3103 else
3104 for (; build_list != NULL; build_list = build_list->next)
3105 {
3106 switch (build_list->typ)
3107 {
3108 case INSTR_LITERAL_DEF:
3109 /* Hard-coded 4-byte literal. */
3110 this_size += 4;
3111 break;
3112 case INSTR_INSTR:
3113 case INSTR_LABEL_DEF:
3114 default:
3115 break;
3116 }
3117 }
3118 if (this_size > max_size)
3119 max_size = this_size;
3120 }
3121 return max_size;
3122 }
3123
3124
3125 static bfd_boolean
3126 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3127 {
3128 int steps_taken = 0;
3129 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3130 TransitionList *l;
3131
3132 assert (insn->insn_type == ITYPE_INSN);
3133 assert (insn->opcode < table->num_opcodes);
3134
3135 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3136 {
3137 TransitionRule *rule = l->rule;
3138
3139 if (xg_instruction_matches_rule (insn, rule))
3140 {
3141 if (steps_taken == lateral_steps)
3142 return TRUE;
3143 steps_taken++;
3144 }
3145 }
3146 return FALSE;
3147 }
3148
3149
3150 static symbolS *
3151 get_special_literal_symbol (void)
3152 {
3153 static symbolS *sym = NULL;
3154
3155 if (sym == NULL)
3156 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3157 return sym;
3158 }
3159
3160
3161 static symbolS *
3162 get_special_label_symbol (void)
3163 {
3164 static symbolS *sym = NULL;
3165
3166 if (sym == NULL)
3167 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3168 return sym;
3169 }
3170
3171
3172 static bfd_boolean
3173 xg_valid_literal_expression (const expressionS *exp)
3174 {
3175 switch (exp->X_op)
3176 {
3177 case O_constant:
3178 case O_symbol:
3179 case O_big:
3180 case O_uminus:
3181 case O_subtract:
3182 case O_pltrel:
3183 return TRUE;
3184 default:
3185 return FALSE;
3186 }
3187 }
3188
3189
3190 /* This will check to see if the value can be converted into the
3191 operand type. It will return TRUE if it does not fit. */
3192
3193 static bfd_boolean
3194 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3195 {
3196 uint32 valbuf = value;
3197 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3198 return TRUE;
3199 return FALSE;
3200 }
3201
3202
3203 /* Assumes: All immeds are constants. Check that all constants fit
3204 into their immeds; return FALSE if not. */
3205
3206 static bfd_boolean
3207 xg_immeds_fit (const TInsn *insn)
3208 {
3209 xtensa_isa isa = xtensa_default_isa;
3210 int i;
3211
3212 int n = insn->ntok;
3213 assert (insn->insn_type == ITYPE_INSN);
3214 for (i = 0; i < n; ++i)
3215 {
3216 const expressionS *expr = &insn->tok[i];
3217 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3218 continue;
3219
3220 switch (expr->X_op)
3221 {
3222 case O_register:
3223 case O_constant:
3224 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3225 return FALSE;
3226 break;
3227
3228 default:
3229 /* The symbol should have a fixup associated with it. */
3230 assert (FALSE);
3231 break;
3232 }
3233 }
3234 return TRUE;
3235 }
3236
3237
3238 /* This should only be called after we have an initial
3239 estimate of the addresses. */
3240
3241 static bfd_boolean
3242 xg_symbolic_immeds_fit (const TInsn *insn,
3243 segT pc_seg,
3244 fragS *pc_frag,
3245 offsetT pc_offset,
3246 long stretch)
3247 {
3248 xtensa_isa isa = xtensa_default_isa;
3249 symbolS *symbolP;
3250 fragS *sym_frag;
3251 offsetT target, pc;
3252 uint32 new_offset;
3253 int i;
3254 int n = insn->ntok;
3255
3256 assert (insn->insn_type == ITYPE_INSN);
3257
3258 for (i = 0; i < n; ++i)
3259 {
3260 const expressionS *expr = &insn->tok[i];
3261 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3262 continue;
3263
3264 switch (expr->X_op)
3265 {
3266 case O_register:
3267 case O_constant:
3268 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3269 return FALSE;
3270 break;
3271
3272 case O_lo16:
3273 case O_hi16:
3274 /* Check for the worst case. */
3275 if (xg_check_operand (0xffff, insn->opcode, i))
3276 return FALSE;
3277 break;
3278
3279 case O_symbol:
3280 /* We only allow symbols for PC-relative references.
3281 If pc_frag == 0, then we don't have frag locations yet. */
3282 if (pc_frag == 0
3283 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3284 return FALSE;
3285
3286 /* If it is a weak symbol, then assume it won't reach. */
3287 if (S_IS_WEAK (expr->X_add_symbol))
3288 return FALSE;
3289
3290 if (is_direct_call_opcode (insn->opcode)
3291 && ! pc_frag->tc_frag_data.use_longcalls)
3292 {
3293 /* If callee is undefined or in a different segment, be
3294 optimistic and assume it will be in range. */
3295 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3296 return TRUE;
3297 }
3298
3299 /* Only references within a segment can be known to fit in the
3300 operands at assembly time. */
3301 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3302 return FALSE;
3303
3304 symbolP = expr->X_add_symbol;
3305 sym_frag = symbol_get_frag (symbolP);
3306 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3307 pc = pc_frag->fr_address + pc_offset;
3308
3309 /* If frag has yet to be reached on this pass, assume it
3310 will move by STRETCH just as we did. If this is not so,
3311 it will be because some frag between grows, and that will
3312 force another pass. Beware zero-length frags. There
3313 should be a faster way to do this. */
3314
3315 if (stretch != 0
3316 && sym_frag->relax_marker != pc_frag->relax_marker
3317 && S_GET_SEGMENT (symbolP) == pc_seg)
3318 {
3319 target += stretch;
3320 }
3321
3322 new_offset = target;
3323 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3324 if (xg_check_operand (new_offset, insn->opcode, i))
3325 return FALSE;
3326 break;
3327
3328 default:
3329 /* The symbol should have a fixup associated with it. */
3330 return FALSE;
3331 }
3332 }
3333
3334 return TRUE;
3335 }
3336
3337
3338 /* Return TRUE on success. */
3339
3340 static bfd_boolean
3341 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3342 {
3343 BuildOp *op;
3344 symbolS *sym;
3345
3346 memset (targ, 0, sizeof (TInsn));
3347 targ->loc = insn->loc;
3348 switch (bi->typ)
3349 {
3350 case INSTR_INSTR:
3351 op = bi->ops;
3352 targ->opcode = bi->opcode;
3353 targ->insn_type = ITYPE_INSN;
3354 targ->is_specific_opcode = FALSE;
3355
3356 for (; op != NULL; op = op->next)
3357 {
3358 int op_num = op->op_num;
3359 int op_data = op->op_data;
3360
3361 assert (op->op_num < MAX_INSN_ARGS);
3362
3363 if (targ->ntok <= op_num)
3364 targ->ntok = op_num + 1;
3365
3366 switch (op->typ)
3367 {
3368 case OP_CONSTANT:
3369 set_expr_const (&targ->tok[op_num], op_data);
3370 break;
3371 case OP_OPERAND:
3372 assert (op_data < insn->ntok);
3373 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3374 break;
3375 case OP_LITERAL:
3376 sym = get_special_literal_symbol ();
3377 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3378 break;
3379 case OP_LABEL:
3380 sym = get_special_label_symbol ();
3381 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3382 break;
3383 case OP_OPERAND_HI16U:
3384 case OP_OPERAND_LOW16U:
3385 assert (op_data < insn->ntok);
3386 if (expr_is_const (&insn->tok[op_data]))
3387 {
3388 long val;
3389 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3390 val = xg_apply_userdef_op_fn (op->typ,
3391 targ->tok[op_num].
3392 X_add_number);
3393 targ->tok[op_num].X_add_number = val;
3394 }
3395 else
3396 {
3397 /* For const16 we can create relocations for these. */
3398 if (targ->opcode == XTENSA_UNDEFINED
3399 || (targ->opcode != xtensa_const16_opcode))
3400 return FALSE;
3401 assert (op_data < insn->ntok);
3402 /* Need to build a O_lo16 or O_hi16. */
3403 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3404 if (targ->tok[op_num].X_op == O_symbol)
3405 {
3406 if (op->typ == OP_OPERAND_HI16U)
3407 targ->tok[op_num].X_op = O_hi16;
3408 else if (op->typ == OP_OPERAND_LOW16U)
3409 targ->tok[op_num].X_op = O_lo16;
3410 else
3411 return FALSE;
3412 }
3413 }
3414 break;
3415 default:
3416 /* currently handles:
3417 OP_OPERAND_LOW8
3418 OP_OPERAND_HI24S
3419 OP_OPERAND_F32MINUS */
3420 if (xg_has_userdef_op_fn (op->typ))
3421 {
3422 assert (op_data < insn->ntok);
3423 if (expr_is_const (&insn->tok[op_data]))
3424 {
3425 long val;
3426 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3427 val = xg_apply_userdef_op_fn (op->typ,
3428 targ->tok[op_num].
3429 X_add_number);
3430 targ->tok[op_num].X_add_number = val;
3431 }
3432 else
3433 return FALSE; /* We cannot use a relocation for this. */
3434 break;
3435 }
3436 assert (0);
3437 break;
3438 }
3439 }
3440 break;
3441
3442 case INSTR_LITERAL_DEF:
3443 op = bi->ops;
3444 targ->opcode = XTENSA_UNDEFINED;
3445 targ->insn_type = ITYPE_LITERAL;
3446 targ->is_specific_opcode = FALSE;
3447 for (; op != NULL; op = op->next)
3448 {
3449 int op_num = op->op_num;
3450 int op_data = op->op_data;
3451 assert (op->op_num < MAX_INSN_ARGS);
3452
3453 if (targ->ntok <= op_num)
3454 targ->ntok = op_num + 1;
3455
3456 switch (op->typ)
3457 {
3458 case OP_OPERAND:
3459 assert (op_data < insn->ntok);
3460 /* We can only pass resolvable literals through. */
3461 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3462 return FALSE;
3463 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3464 break;
3465 case OP_LITERAL:
3466 case OP_CONSTANT:
3467 case OP_LABEL:
3468 default:
3469 assert (0);
3470 break;
3471 }
3472 }
3473 break;
3474
3475 case INSTR_LABEL_DEF:
3476 op = bi->ops;
3477 targ->opcode = XTENSA_UNDEFINED;
3478 targ->insn_type = ITYPE_LABEL;
3479 targ->is_specific_opcode = FALSE;
3480 /* Literal with no ops is a label? */
3481 assert (op == NULL);
3482 break;
3483
3484 default:
3485 assert (0);
3486 }
3487
3488 return TRUE;
3489 }
3490
3491
3492 /* Return TRUE on success. */
3493
3494 static bfd_boolean
3495 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3496 {
3497 for (; bi != NULL; bi = bi->next)
3498 {
3499 TInsn *next_insn = istack_push_space (istack);
3500
3501 if (!xg_build_to_insn (next_insn, insn, bi))
3502 return FALSE;
3503 }
3504 return TRUE;
3505 }
3506
3507
3508 /* Return TRUE on valid expansion. */
3509
3510 static bfd_boolean
3511 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3512 {
3513 int stack_size = istack->ninsn;
3514 int steps_taken = 0;
3515 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3516 TransitionList *l;
3517
3518 assert (insn->insn_type == ITYPE_INSN);
3519 assert (insn->opcode < table->num_opcodes);
3520
3521 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3522 {
3523 TransitionRule *rule = l->rule;
3524
3525 if (xg_instruction_matches_rule (insn, rule))
3526 {
3527 if (lateral_steps == steps_taken)
3528 {
3529 int i;
3530
3531 /* This is it. Expand the rule to the stack. */
3532 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3533 return FALSE;
3534
3535 /* Check to see if it fits. */
3536 for (i = stack_size; i < istack->ninsn; i++)
3537 {
3538 TInsn *insn = &istack->insn[i];
3539
3540 if (insn->insn_type == ITYPE_INSN
3541 && !tinsn_has_symbolic_operands (insn)
3542 && !xg_immeds_fit (insn))
3543 {
3544 istack->ninsn = stack_size;
3545 return FALSE;
3546 }
3547 }
3548 return TRUE;
3549 }
3550 steps_taken++;
3551 }
3552 }
3553 return FALSE;
3554 }
3555
3556 \f
3557 /* Relax the assembly instruction at least "min_steps".
3558 Return the number of steps taken. */
3559
3560 static int
3561 xg_assembly_relax (IStack *istack,
3562 TInsn *insn,
3563 segT pc_seg,
3564 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3565 offsetT pc_offset, /* offset in fragment */
3566 int min_steps, /* minimum conversion steps */
3567 long stretch) /* number of bytes stretched so far */
3568 {
3569 int steps_taken = 0;
3570
3571 /* assert (has no symbolic operands)
3572 Some of its immeds don't fit.
3573 Try to build a relaxed version.
3574 This may go through a couple of stages
3575 of single instruction transformations before
3576 we get there. */
3577
3578 TInsn single_target;
3579 TInsn current_insn;
3580 int lateral_steps = 0;
3581 int istack_size = istack->ninsn;
3582
3583 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3584 && steps_taken >= min_steps)
3585 {
3586 istack_push (istack, insn);
3587 return steps_taken;
3588 }
3589 current_insn = *insn;
3590
3591 /* Walk through all of the single instruction expansions. */
3592 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3593 {
3594 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3595 stretch))
3596 {
3597 steps_taken++;
3598 if (steps_taken >= min_steps)
3599 {
3600 istack_push (istack, &single_target);
3601 return steps_taken;
3602 }
3603 }
3604 current_insn = single_target;
3605 }
3606
3607 /* Now check for a multi-instruction expansion. */
3608 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3609 {
3610 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3611 stretch))
3612 {
3613 if (steps_taken >= min_steps)
3614 {
3615 istack_push (istack, &current_insn);
3616 return steps_taken;
3617 }
3618 }
3619 steps_taken++;
3620 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3621 {
3622 if (steps_taken >= min_steps)
3623 return steps_taken;
3624 }
3625 lateral_steps++;
3626 istack->ninsn = istack_size;
3627 }
3628
3629 /* It's not going to work -- use the original. */
3630 istack_push (istack, insn);
3631 return steps_taken;
3632 }
3633
3634
3635 static void
3636 xg_force_frag_space (int size)
3637 {
3638 /* This may have the side effect of creating a new fragment for the
3639 space to go into. I just do not like the name of the "frag"
3640 functions. */
3641 frag_grow (size);
3642 }
3643
3644
3645 static void
3646 xg_finish_frag (char *last_insn,
3647 enum xtensa_relax_statesE frag_state,
3648 enum xtensa_relax_statesE slot0_state,
3649 int max_growth,
3650 bfd_boolean is_insn)
3651 {
3652 /* Finish off this fragment so that it has at LEAST the desired
3653 max_growth. If it doesn't fit in this fragment, close this one
3654 and start a new one. In either case, return a pointer to the
3655 beginning of the growth area. */
3656
3657 fragS *old_frag;
3658
3659 xg_force_frag_space (max_growth);
3660
3661 old_frag = frag_now;
3662
3663 frag_now->fr_opcode = last_insn;
3664 if (is_insn)
3665 frag_now->tc_frag_data.is_insn = TRUE;
3666
3667 frag_var (rs_machine_dependent, max_growth, max_growth,
3668 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3669
3670 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3671 xtensa_set_frag_assembly_state (frag_now);
3672
3673 /* Just to make sure that we did not split it up. */
3674 assert (old_frag->fr_next == frag_now);
3675 }
3676
3677
3678 /* Return TRUE if the target frag is one of the next non-empty frags. */
3679
3680 static bfd_boolean
3681 is_next_frag_target (const fragS *fragP, const fragS *target)
3682 {
3683 if (fragP == NULL)
3684 return FALSE;
3685
3686 for (; fragP; fragP = fragP->fr_next)
3687 {
3688 if (fragP == target)
3689 return TRUE;
3690 if (fragP->fr_fix != 0)
3691 return FALSE;
3692 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3693 return FALSE;
3694 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3695 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3696 return FALSE;
3697 if (fragP->fr_type == rs_space)
3698 return FALSE;
3699 }
3700 return FALSE;
3701 }
3702
3703
3704 static bfd_boolean
3705 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3706 {
3707 xtensa_isa isa = xtensa_default_isa;
3708 int i;
3709 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3710 int target_op = -1;
3711 symbolS *sym;
3712 fragS *target_frag;
3713
3714 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3715 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
3716 return FALSE;
3717
3718 for (i = 0; i < num_ops; i++)
3719 {
3720 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3721 {
3722 target_op = i;
3723 break;
3724 }
3725 }
3726 if (target_op == -1)
3727 return FALSE;
3728
3729 if (insn->ntok <= target_op)
3730 return FALSE;
3731
3732 if (insn->tok[target_op].X_op != O_symbol)
3733 return FALSE;
3734
3735 sym = insn->tok[target_op].X_add_symbol;
3736 if (sym == NULL)
3737 return FALSE;
3738
3739 if (insn->tok[target_op].X_add_number != 0)
3740 return FALSE;
3741
3742 target_frag = symbol_get_frag (sym);
3743 if (target_frag == NULL)
3744 return FALSE;
3745
3746 if (is_next_frag_target (fragP->fr_next, target_frag)
3747 && S_GET_VALUE (sym) == target_frag->fr_address)
3748 return TRUE;
3749
3750 return FALSE;
3751 }
3752
3753
3754 static void
3755 xg_add_branch_and_loop_targets (TInsn *insn)
3756 {
3757 xtensa_isa isa = xtensa_default_isa;
3758 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3759
3760 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3761 {
3762 int i = 1;
3763 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3764 && insn->tok[i].X_op == O_symbol)
3765 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3766 return;
3767 }
3768
3769 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3770 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3771 {
3772 int i;
3773
3774 for (i = 0; i < insn->ntok && i < num_ops; i++)
3775 {
3776 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3777 && insn->tok[i].X_op == O_symbol)
3778 {
3779 symbolS *sym = insn->tok[i].X_add_symbol;
3780 symbol_get_tc (sym)->is_branch_target = TRUE;
3781 if (S_IS_DEFINED (sym))
3782 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3783 }
3784 }
3785 }
3786 }
3787
3788
3789 /* Return FALSE if no error. */
3790
3791 static bfd_boolean
3792 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3793 {
3794 int num_ops = 0;
3795 BuildOp *b_op;
3796
3797 switch (instr_spec->typ)
3798 {
3799 case INSTR_INSTR:
3800 new_insn->insn_type = ITYPE_INSN;
3801 new_insn->opcode = instr_spec->opcode;
3802 new_insn->is_specific_opcode = FALSE;
3803 new_insn->loc = old_insn->loc;
3804 break;
3805 case INSTR_LITERAL_DEF:
3806 new_insn->insn_type = ITYPE_LITERAL;
3807 new_insn->opcode = XTENSA_UNDEFINED;
3808 new_insn->is_specific_opcode = FALSE;
3809 new_insn->loc = old_insn->loc;
3810 break;
3811 case INSTR_LABEL_DEF:
3812 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3813 break;
3814 }
3815
3816 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3817 {
3818 expressionS *exp;
3819 const expressionS *src_exp;
3820
3821 num_ops++;
3822 switch (b_op->typ)
3823 {
3824 case OP_CONSTANT:
3825 /* The expression must be the constant. */
3826 assert (b_op->op_num < MAX_INSN_ARGS);
3827 exp = &new_insn->tok[b_op->op_num];
3828 set_expr_const (exp, b_op->op_data);
3829 break;
3830
3831 case OP_OPERAND:
3832 assert (b_op->op_num < MAX_INSN_ARGS);
3833 assert (b_op->op_data < (unsigned) old_insn->ntok);
3834 src_exp = &old_insn->tok[b_op->op_data];
3835 exp = &new_insn->tok[b_op->op_num];
3836 copy_expr (exp, src_exp);
3837 break;
3838
3839 case OP_LITERAL:
3840 case OP_LABEL:
3841 as_bad (_("can't handle generation of literal/labels yet"));
3842 assert (0);
3843
3844 default:
3845 as_bad (_("can't handle undefined OP TYPE"));
3846 assert (0);
3847 }
3848 }
3849
3850 new_insn->ntok = num_ops;
3851 return FALSE;
3852 }
3853
3854
3855 /* Return TRUE if it was simplified. */
3856
3857 static bfd_boolean
3858 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3859 {
3860 TransitionRule *rule;
3861 BuildInstr *insn_spec;
3862
3863 if (old_insn->is_specific_opcode || !density_supported)
3864 return FALSE;
3865
3866 rule = xg_instruction_match (old_insn);
3867 if (rule == NULL)
3868 return FALSE;
3869
3870 insn_spec = rule->to_instr;
3871 /* There should only be one. */
3872 assert (insn_spec != NULL);
3873 assert (insn_spec->next == NULL);
3874 if (insn_spec->next != NULL)
3875 return FALSE;
3876
3877 xg_build_token_insn (insn_spec, old_insn, new_insn);
3878
3879 return TRUE;
3880 }
3881
3882
3883 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3884 l32i.n. (2) Check the number of operands. (3) Place the instruction
3885 tokens into the stack or relax it and place multiple
3886 instructions/literals onto the stack. Return FALSE if no error. */
3887
3888 static bfd_boolean
3889 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3890 {
3891 int noperands;
3892 TInsn new_insn;
3893 bfd_boolean do_expand;
3894
3895 memset (&new_insn, 0, sizeof (TInsn));
3896
3897 /* Narrow it if we can. xg_simplify_insn now does all the
3898 appropriate checking (e.g., for the density option). */
3899 if (xg_simplify_insn (orig_insn, &new_insn))
3900 orig_insn = &new_insn;
3901
3902 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3903 orig_insn->opcode);
3904 if (orig_insn->ntok < noperands)
3905 {
3906 as_bad (_("found %d operands for '%s': Expected %d"),
3907 orig_insn->ntok,
3908 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3909 noperands);
3910 return TRUE;
3911 }
3912 if (orig_insn->ntok > noperands)
3913 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3914 orig_insn->ntok,
3915 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3916 noperands);
3917
3918 /* If there are not enough operands, we will assert above. If there
3919 are too many, just cut out the extras here. */
3920 orig_insn->ntok = noperands;
3921
3922 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3923 return TRUE;
3924
3925 /* If the instruction will definitely need to be relaxed, it is better
3926 to expand it now for better scheduling. Decide whether to expand
3927 now.... */
3928 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3929
3930 /* Calls should be expanded to longcalls only in the backend relaxation
3931 so that the assembly scheduler will keep the L32R/CALLX instructions
3932 adjacent. */
3933 if (is_direct_call_opcode (orig_insn->opcode))
3934 do_expand = FALSE;
3935
3936 if (tinsn_has_symbolic_operands (orig_insn))
3937 {
3938 /* The values of symbolic operands are not known yet, so only expand
3939 now if an operand is "complex" (e.g., difference of symbols) and
3940 will have to be stored as a literal regardless of the value. */
3941 if (!tinsn_has_complex_operands (orig_insn))
3942 do_expand = FALSE;
3943 }
3944 else if (xg_immeds_fit (orig_insn))
3945 do_expand = FALSE;
3946
3947 if (do_expand)
3948 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3949 else
3950 istack_push (istack, orig_insn);
3951
3952 return FALSE;
3953 }
3954
3955
3956 /* Return TRUE if the section flags are marked linkonce
3957 or the name is .gnu.linkonce*. */
3958
3959 static bfd_boolean
3960 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3961 {
3962 flagword flags, link_once_flags;
3963
3964 flags = bfd_get_section_flags (abfd, sec);
3965 link_once_flags = (flags & SEC_LINK_ONCE);
3966
3967 /* Flags might not be set yet. */
3968 if (!link_once_flags)
3969 {
3970 static size_t len = sizeof ".gnu.linkonce.t.";
3971
3972 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3973 link_once_flags = SEC_LINK_ONCE;
3974 }
3975 return (link_once_flags != 0);
3976 }
3977
3978
3979 static void
3980 xtensa_add_literal_sym (symbolS *sym)
3981 {
3982 sym_list *l;
3983
3984 l = (sym_list *) xmalloc (sizeof (sym_list));
3985 l->sym = sym;
3986 l->next = literal_syms;
3987 literal_syms = l;
3988 }
3989
3990
3991 static symbolS *
3992 xtensa_create_literal_symbol (segT sec, fragS *frag)
3993 {
3994 static int lit_num = 0;
3995 static char name[256];
3996 symbolS *symbolP;
3997
3998 sprintf (name, ".L_lit_sym%d", lit_num);
3999
4000 /* Create a local symbol. If it is in a linkonce section, we have to
4001 be careful to make sure that if it is used in a relocation that the
4002 symbol will be in the output file. */
4003 if (get_is_linkonce_section (stdoutput, sec))
4004 {
4005 symbolP = symbol_new (name, sec, 0, frag);
4006 S_CLEAR_EXTERNAL (symbolP);
4007 /* symbolP->local = 1; */
4008 }
4009 else
4010 symbolP = symbol_new (name, sec, 0, frag);
4011
4012 xtensa_add_literal_sym (symbolP);
4013
4014 frag->tc_frag_data.is_literal = TRUE;
4015 lit_num++;
4016 return symbolP;
4017 }
4018
4019
4020 /* Currently all literals that are generated here are 32-bit L32R targets. */
4021
4022 static symbolS *
4023 xg_assemble_literal (/* const */ TInsn *insn)
4024 {
4025 emit_state state;
4026 symbolS *lit_sym = NULL;
4027
4028 /* size = 4 for L32R. It could easily be larger when we move to
4029 larger constants. Add a parameter later. */
4030 offsetT litsize = 4;
4031 offsetT litalign = 2; /* 2^2 = 4 */
4032 expressionS saved_loc;
4033 expressionS * emit_val;
4034
4035 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4036
4037 assert (insn->insn_type == ITYPE_LITERAL);
4038 assert (insn->ntok == 1); /* must be only one token here */
4039
4040 xtensa_switch_to_literal_fragment (&state);
4041
4042 emit_val = &insn->tok[0];
4043 if (emit_val->X_op == O_big)
4044 {
4045 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4046 if (size > litsize)
4047 {
4048 /* This happens when someone writes a "movi a2, big_number". */
4049 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4050 _("invalid immediate"));
4051 xtensa_restore_emit_state (&state);
4052 return NULL;
4053 }
4054 }
4055
4056 /* Force a 4-byte align here. Note that this opens a new frag, so all
4057 literals done with this function have a frag to themselves. That's
4058 important for the way text section literals work. */
4059 frag_align (litalign, 0, 0);
4060 record_alignment (now_seg, litalign);
4061
4062 if (emit_val->X_op == O_pltrel)
4063 {
4064 char *p = frag_more (litsize);
4065 xtensa_set_frag_assembly_state (frag_now);
4066 if (emit_val->X_add_symbol)
4067 emit_val->X_op = O_symbol;
4068 else
4069 emit_val->X_op = O_constant;
4070 fix_new_exp (frag_now, p - frag_now->fr_literal,
4071 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4072 }
4073 else
4074 emit_expr (emit_val, litsize);
4075
4076 assert (frag_now->tc_frag_data.literal_frag == NULL);
4077 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4078 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4079 lit_sym = frag_now->fr_symbol;
4080 frag_now->tc_frag_data.is_literal = TRUE;
4081
4082 /* Go back. */
4083 xtensa_restore_emit_state (&state);
4084 return lit_sym;
4085 }
4086
4087
4088 static void
4089 xg_assemble_literal_space (/* const */ int size, int slot)
4090 {
4091 emit_state state;
4092 /* We might have to do something about this alignment. It only
4093 takes effect if something is placed here. */
4094 offsetT litalign = 2; /* 2^2 = 4 */
4095 fragS *lit_saved_frag;
4096
4097 assert (size % 4 == 0);
4098
4099 xtensa_switch_to_literal_fragment (&state);
4100
4101 /* Force a 4-byte align here. */
4102 frag_align (litalign, 0, 0);
4103 record_alignment (now_seg, litalign);
4104
4105 xg_force_frag_space (size);
4106
4107 lit_saved_frag = frag_now;
4108 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4109 frag_now->tc_frag_data.is_literal = TRUE;
4110 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4111 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4112
4113 /* Go back. */
4114 xtensa_restore_emit_state (&state);
4115 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4116 }
4117
4118
4119 /* Put in a fixup record based on the opcode.
4120 Return TRUE on success. */
4121
4122 static bfd_boolean
4123 xg_add_opcode_fix (TInsn *tinsn,
4124 int opnum,
4125 xtensa_format fmt,
4126 int slot,
4127 expressionS *expr,
4128 fragS *fragP,
4129 offsetT offset)
4130 {
4131 xtensa_opcode opcode = tinsn->opcode;
4132 bfd_reloc_code_real_type reloc;
4133 reloc_howto_type *howto;
4134 int fmt_length;
4135 fixS *the_fix;
4136
4137 reloc = BFD_RELOC_NONE;
4138
4139 /* First try the special cases for "alternate" relocs. */
4140 if (opcode == xtensa_l32r_opcode)
4141 {
4142 if (fragP->tc_frag_data.use_absolute_literals)
4143 reloc = encode_alt_reloc (slot);
4144 }
4145 else if (opcode == xtensa_const16_opcode)
4146 {
4147 if (expr->X_op == O_lo16)
4148 {
4149 reloc = encode_reloc (slot);
4150 expr->X_op = O_symbol;
4151 }
4152 else if (expr->X_op == O_hi16)
4153 {
4154 reloc = encode_alt_reloc (slot);
4155 expr->X_op = O_symbol;
4156 }
4157 }
4158
4159 if (opnum != get_relaxable_immed (opcode))
4160 {
4161 as_bad (_("invalid relocation for operand %i of '%s'"),
4162 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4163 return FALSE;
4164 }
4165
4166 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4167 into the symbol table where the generic portions of the assembler
4168 won't know what to do with them. */
4169 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4170 {
4171 as_bad (_("invalid expression for operand %i of '%s'"),
4172 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4173 return FALSE;
4174 }
4175
4176 /* Next try the generic relocs. */
4177 if (reloc == BFD_RELOC_NONE)
4178 reloc = encode_reloc (slot);
4179 if (reloc == BFD_RELOC_NONE)
4180 {
4181 as_bad (_("invalid relocation in instruction slot %i"), slot);
4182 return FALSE;
4183 }
4184
4185 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4186 if (!howto)
4187 {
4188 as_bad (_("undefined symbol for opcode \"%s\""),
4189 xtensa_opcode_name (xtensa_default_isa, opcode));
4190 return FALSE;
4191 }
4192
4193 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4194 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4195 howto->pc_relative, reloc);
4196 the_fix->fx_no_overflow = 1;
4197
4198 if (expr->X_add_symbol
4199 && (S_IS_EXTERNAL (expr->X_add_symbol)
4200 || S_IS_WEAK (expr->X_add_symbol)))
4201 the_fix->fx_plt = TRUE;
4202
4203 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4204 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4205 the_fix->tc_fix_data.slot = slot;
4206
4207 return TRUE;
4208 }
4209
4210
4211 static bfd_boolean
4212 xg_emit_insn_to_buf (TInsn *tinsn,
4213 xtensa_format fmt,
4214 char *buf,
4215 fragS *fragP,
4216 offsetT offset,
4217 bfd_boolean build_fix)
4218 {
4219 static xtensa_insnbuf insnbuf = NULL;
4220 bfd_boolean has_symbolic_immed = FALSE;
4221 bfd_boolean ok = TRUE;
4222 if (!insnbuf)
4223 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4224
4225 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4226 if (has_symbolic_immed && build_fix)
4227 {
4228 /* Add a fixup. */
4229 int opnum = get_relaxable_immed (tinsn->opcode);
4230 expressionS *exp = &tinsn->tok[opnum];
4231
4232 if (!xg_add_opcode_fix (tinsn, opnum, fmt, 0, exp, fragP, offset))
4233 ok = FALSE;
4234 }
4235 fragP->tc_frag_data.is_insn = TRUE;
4236 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4237 (unsigned char *) buf, 0);
4238 return ok;
4239 }
4240
4241
4242 static void
4243 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4244 {
4245 symbolS *sym = get_special_literal_symbol ();
4246 int i;
4247 if (lit_sym == 0)
4248 return;
4249 assert (insn->insn_type == ITYPE_INSN);
4250 for (i = 0; i < insn->ntok; i++)
4251 if (insn->tok[i].X_add_symbol == sym)
4252 insn->tok[i].X_add_symbol = lit_sym;
4253
4254 }
4255
4256
4257 static void
4258 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4259 {
4260 symbolS *sym = get_special_label_symbol ();
4261 int i;
4262 /* assert (!insn->is_literal); */
4263 for (i = 0; i < insn->ntok; i++)
4264 if (insn->tok[i].X_add_symbol == sym)
4265 insn->tok[i].X_add_symbol = label_sym;
4266
4267 }
4268
4269
4270 /* Return TRUE if the instruction can write to the specified
4271 integer register. */
4272
4273 static bfd_boolean
4274 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4275 {
4276 int i;
4277 int num_ops;
4278 xtensa_isa isa = xtensa_default_isa;
4279
4280 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4281
4282 for (i = 0; i < num_ops; i++)
4283 {
4284 char inout;
4285 inout = xtensa_operand_inout (isa, insn->opcode, i);
4286 if ((inout == 'o' || inout == 'm')
4287 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4288 {
4289 xtensa_regfile opnd_rf =
4290 xtensa_operand_regfile (isa, insn->opcode, i);
4291 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4292 {
4293 if ((insn->tok[i].X_op == O_register)
4294 && (insn->tok[i].X_add_number == regnum))
4295 return TRUE;
4296 }
4297 }
4298 }
4299 return FALSE;
4300 }
4301
4302
4303 static bfd_boolean
4304 is_bad_loopend_opcode (const TInsn *tinsn)
4305 {
4306 xtensa_opcode opcode = tinsn->opcode;
4307
4308 if (opcode == XTENSA_UNDEFINED)
4309 return FALSE;
4310
4311 if (opcode == xtensa_call0_opcode
4312 || opcode == xtensa_callx0_opcode
4313 || opcode == xtensa_call4_opcode
4314 || opcode == xtensa_callx4_opcode
4315 || opcode == xtensa_call8_opcode
4316 || opcode == xtensa_callx8_opcode
4317 || opcode == xtensa_call12_opcode
4318 || opcode == xtensa_callx12_opcode
4319 || opcode == xtensa_isync_opcode
4320 || opcode == xtensa_ret_opcode
4321 || opcode == xtensa_ret_n_opcode
4322 || opcode == xtensa_retw_opcode
4323 || opcode == xtensa_retw_n_opcode
4324 || opcode == xtensa_waiti_opcode
4325 || opcode == xtensa_rsr_lcount_opcode)
4326 return TRUE;
4327
4328 return FALSE;
4329 }
4330
4331
4332 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4333 This allows the debugger to add unaligned labels.
4334 Also, the assembler generates stabs labels that need
4335 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4336
4337 static bfd_boolean
4338 is_unaligned_label (symbolS *sym)
4339 {
4340 const char *name = S_GET_NAME (sym);
4341 static size_t fake_size = 0;
4342
4343 if (name
4344 && name[0] == '.'
4345 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4346 return TRUE;
4347
4348 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4349 if (fake_size == 0)
4350 fake_size = strlen (FAKE_LABEL_NAME);
4351
4352 if (name
4353 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4354 && (name[fake_size] == 'F'
4355 || name[fake_size] == 'L'
4356 || (name[fake_size] == 'e'
4357 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4358 return TRUE;
4359
4360 return FALSE;
4361 }
4362
4363
4364 static fragS *
4365 next_non_empty_frag (const fragS *fragP)
4366 {
4367 fragS *next_fragP = fragP->fr_next;
4368
4369 /* Sometimes an empty will end up here due storage allocation issues.
4370 So we have to skip until we find something legit. */
4371 while (next_fragP && next_fragP->fr_fix == 0)
4372 next_fragP = next_fragP->fr_next;
4373
4374 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4375 return NULL;
4376
4377 return next_fragP;
4378 }
4379
4380
4381 static bfd_boolean
4382 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4383 {
4384 xtensa_opcode out_opcode;
4385 const fragS *next_fragP = next_non_empty_frag (fragP);
4386
4387 if (next_fragP == NULL)
4388 return FALSE;
4389
4390 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4391 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4392 {
4393 *opcode = out_opcode;
4394 return TRUE;
4395 }
4396 return FALSE;
4397 }
4398
4399
4400 static int
4401 frag_format_size (const fragS *fragP)
4402 {
4403 static xtensa_insnbuf insnbuf = NULL;
4404 xtensa_isa isa = xtensa_default_isa;
4405 xtensa_format fmt;
4406 int fmt_size;
4407
4408 if (!insnbuf)
4409 insnbuf = xtensa_insnbuf_alloc (isa);
4410
4411 if (fragP == NULL)
4412 return XTENSA_UNDEFINED;
4413
4414 xtensa_insnbuf_from_chars (isa, insnbuf,
4415 (unsigned char *) fragP->fr_literal, 0);
4416
4417 fmt = xtensa_format_decode (isa, insnbuf);
4418 if (fmt == XTENSA_UNDEFINED)
4419 return XTENSA_UNDEFINED;
4420 fmt_size = xtensa_format_length (isa, fmt);
4421
4422 /* If the next format won't be changing due to relaxation, just
4423 return the length of the first format. */
4424 if (fragP->fr_opcode != fragP->fr_literal)
4425 return fmt_size;
4426
4427 /* If during relaxation we have to pull an instruction out of a
4428 multi-slot instruction, we will return the more conservative
4429 number. This works because alignment on bigger instructions
4430 is more restrictive than alignment on smaller instructions.
4431 This is more conservative than we would like, but it happens
4432 infrequently. */
4433
4434 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4435 return fmt_size;
4436
4437 /* If we aren't doing one of our own relaxations or it isn't
4438 slot-based, then the insn size won't change. */
4439 if (fragP->fr_type != rs_machine_dependent)
4440 return fmt_size;
4441 if (fragP->fr_subtype != RELAX_SLOTS)
4442 return fmt_size;
4443
4444 /* If an instruction is about to grow, return the longer size. */
4445 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4446 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4447 return 3;
4448
4449 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4450 return 2 + fragP->tc_frag_data.text_expansion[0];
4451
4452 return fmt_size;
4453 }
4454
4455
4456 static int
4457 next_frag_format_size (const fragS *fragP)
4458 {
4459 const fragS *next_fragP = next_non_empty_frag (fragP);
4460 return frag_format_size (next_fragP);
4461 }
4462
4463
4464 /* If the next legit fragment is an end-of-loop marker,
4465 switch its state so it will instantiate a NOP. */
4466
4467 static void
4468 update_next_frag_state (fragS *fragP)
4469 {
4470 fragS *next_fragP = fragP->fr_next;
4471 fragS *new_target = NULL;
4472
4473 if (align_targets)
4474 {
4475 /* We are guaranteed there will be one of these... */
4476 while (!(next_fragP->fr_type == rs_machine_dependent
4477 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4478 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4479 next_fragP = next_fragP->fr_next;
4480
4481 assert (next_fragP->fr_type == rs_machine_dependent
4482 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4483 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4484
4485 /* ...and one of these. */
4486 new_target = next_fragP->fr_next;
4487 while (!(new_target->fr_type == rs_machine_dependent
4488 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4489 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4490 new_target = new_target->fr_next;
4491
4492 assert (new_target->fr_type == rs_machine_dependent
4493 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4494 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4495 }
4496
4497 while (next_fragP && next_fragP->fr_fix == 0)
4498 {
4499 if (next_fragP->fr_type == rs_machine_dependent
4500 && next_fragP->fr_subtype == RELAX_LOOP_END)
4501 {
4502 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4503 return;
4504 }
4505
4506 next_fragP = next_fragP->fr_next;
4507 }
4508 }
4509
4510
4511 static bfd_boolean
4512 next_frag_is_branch_target (const fragS *fragP)
4513 {
4514 /* Sometimes an empty will end up here due to storage allocation issues,
4515 so we have to skip until we find something legit. */
4516 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4517 {
4518 if (fragP->tc_frag_data.is_branch_target)
4519 return TRUE;
4520 if (fragP->fr_fix != 0)
4521 break;
4522 }
4523 return FALSE;
4524 }
4525
4526
4527 static bfd_boolean
4528 next_frag_is_loop_target (const fragS *fragP)
4529 {
4530 /* Sometimes an empty will end up here due storage allocation issues.
4531 So we have to skip until we find something legit. */
4532 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4533 {
4534 if (fragP->tc_frag_data.is_loop_target)
4535 return TRUE;
4536 if (fragP->fr_fix != 0)
4537 break;
4538 }
4539 return FALSE;
4540 }
4541
4542
4543 static addressT
4544 next_frag_pre_opcode_bytes (const fragS *fragp)
4545 {
4546 const fragS *next_fragp = fragp->fr_next;
4547 xtensa_opcode next_opcode;
4548
4549 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4550 return 0;
4551
4552 /* Sometimes an empty will end up here due to storage allocation issues,
4553 so we have to skip until we find something legit. */
4554 while (next_fragp->fr_fix == 0)
4555 next_fragp = next_fragp->fr_next;
4556
4557 if (next_fragp->fr_type != rs_machine_dependent)
4558 return 0;
4559
4560 /* There is some implicit knowledge encoded in here.
4561 The LOOP instructions that are NOT RELAX_IMMED have
4562 been relaxed. Note that we can assume that the LOOP
4563 instruction is in slot 0 because loops aren't bundleable. */
4564 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4565 return get_expanded_loop_offset (next_opcode);
4566
4567 return 0;
4568 }
4569
4570
4571 /* Mark a location where we can later insert literal frags. Update
4572 the section's literal_pool_loc, so subsequent literals can be
4573 placed nearest to their use. */
4574
4575 static void
4576 xtensa_mark_literal_pool_location (void)
4577 {
4578 /* Any labels pointing to the current location need
4579 to be adjusted to after the literal pool. */
4580 emit_state s;
4581 fragS *pool_location;
4582
4583 if (use_literal_section && !directive_state[directive_absolute_literals])
4584 return;
4585
4586 frag_align (2, 0, 0);
4587 record_alignment (now_seg, 2);
4588
4589 /* We stash info in these frags so we can later move the literal's
4590 fixes into this frchain's fix list. */
4591 pool_location = frag_now;
4592 frag_now->tc_frag_data.lit_frchain = frchain_now;
4593 frag_variant (rs_machine_dependent, 0, 0,
4594 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4595 xtensa_set_frag_assembly_state (frag_now);
4596 frag_now->tc_frag_data.lit_seg = now_seg;
4597 frag_variant (rs_machine_dependent, 0, 0,
4598 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4599 xtensa_set_frag_assembly_state (frag_now);
4600
4601 /* Now put a frag into the literal pool that points to this location. */
4602 set_literal_pool_location (now_seg, pool_location);
4603 xtensa_switch_to_non_abs_literal_fragment (&s);
4604 frag_align (2, 0, 0);
4605 record_alignment (now_seg, 2);
4606
4607 /* Close whatever frag is there. */
4608 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4609 xtensa_set_frag_assembly_state (frag_now);
4610 frag_now->tc_frag_data.literal_frag = pool_location;
4611 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4612 xtensa_restore_emit_state (&s);
4613 xtensa_set_frag_assembly_state (frag_now);
4614 }
4615
4616
4617 /* Build a nop of the correct size into tinsn. */
4618
4619 static void
4620 build_nop (TInsn *tinsn, int size)
4621 {
4622 tinsn_init (tinsn);
4623 switch (size)
4624 {
4625 case 2:
4626 tinsn->opcode = xtensa_nop_n_opcode;
4627 tinsn->ntok = 0;
4628 if (tinsn->opcode == XTENSA_UNDEFINED)
4629 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4630 break;
4631
4632 case 3:
4633 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4634 {
4635 tinsn->opcode = xtensa_or_opcode;
4636 set_expr_const (&tinsn->tok[0], 1);
4637 set_expr_const (&tinsn->tok[1], 1);
4638 set_expr_const (&tinsn->tok[2], 1);
4639 tinsn->ntok = 3;
4640 }
4641 else
4642 tinsn->opcode = xtensa_nop_opcode;
4643
4644 assert (tinsn->opcode != XTENSA_UNDEFINED);
4645 }
4646 }
4647
4648
4649 /* Assemble a NOP of the requested size in the buffer. User must have
4650 allocated "buf" with at least "size" bytes. */
4651
4652 static void
4653 assemble_nop (int size, char *buf)
4654 {
4655 static xtensa_insnbuf insnbuf = NULL;
4656 TInsn tinsn;
4657
4658 build_nop (&tinsn, size);
4659
4660 if (!insnbuf)
4661 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4662
4663 tinsn_to_insnbuf (&tinsn, insnbuf);
4664 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4665 (unsigned char *) buf, 0);
4666 }
4667
4668
4669 /* Return the number of bytes for the offset of the expanded loop
4670 instruction. This should be incorporated into the relaxation
4671 specification but is hard-coded here. This is used to auto-align
4672 the loop instruction. It is invalid to call this function if the
4673 configuration does not have loops or if the opcode is not a loop
4674 opcode. */
4675
4676 static addressT
4677 get_expanded_loop_offset (xtensa_opcode opcode)
4678 {
4679 /* This is the OFFSET of the loop instruction in the expanded loop.
4680 This MUST correspond directly to the specification of the loop
4681 expansion. It will be validated on fragment conversion. */
4682 assert (opcode != XTENSA_UNDEFINED);
4683 if (opcode == xtensa_loop_opcode)
4684 return 0;
4685 if (opcode == xtensa_loopnez_opcode)
4686 return 3;
4687 if (opcode == xtensa_loopgtz_opcode)
4688 return 6;
4689 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4690 return 0;
4691 }
4692
4693
4694 static fragS *
4695 get_literal_pool_location (segT seg)
4696 {
4697 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4698 }
4699
4700
4701 static void
4702 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4703 {
4704 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4705 }
4706
4707
4708 /* Set frag assembly state should be called when a new frag is
4709 opened and after a frag has been closed. */
4710
4711 static void
4712 xtensa_set_frag_assembly_state (fragS *fragP)
4713 {
4714 if (!density_supported)
4715 fragP->tc_frag_data.is_no_density = TRUE;
4716
4717 /* This function is called from subsegs_finish, which is called
4718 after xtensa_end, so we can't use "use_transform" or
4719 "use_schedule" here. */
4720 if (!directive_state[directive_transform])
4721 fragP->tc_frag_data.is_no_transform = TRUE;
4722 if (directive_state[directive_longcalls])
4723 fragP->tc_frag_data.use_longcalls = TRUE;
4724 fragP->tc_frag_data.use_absolute_literals =
4725 directive_state[directive_absolute_literals];
4726 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4727 }
4728
4729
4730 static bfd_boolean
4731 relaxable_section (asection *sec)
4732 {
4733 return (sec->flags & SEC_DEBUGGING) == 0;
4734 }
4735
4736
4737 static void
4738 xtensa_find_unmarked_state_frags (void)
4739 {
4740 segT *seclist;
4741
4742 /* Walk over each fragment of all of the current segments. For each
4743 unmarked fragment, mark it with the same info as the previous
4744 fragment. */
4745 for (seclist = &stdoutput->sections;
4746 seclist && *seclist;
4747 seclist = &(*seclist)->next)
4748 {
4749 segT sec = *seclist;
4750 segment_info_type *seginfo;
4751 fragS *fragP;
4752 flagword flags;
4753 flags = bfd_get_section_flags (stdoutput, sec);
4754 if (flags & SEC_DEBUGGING)
4755 continue;
4756 if (!(flags & SEC_ALLOC))
4757 continue;
4758
4759 seginfo = seg_info (sec);
4760 if (seginfo && seginfo->frchainP)
4761 {
4762 fragS *last_fragP = 0;
4763 for (fragP = seginfo->frchainP->frch_root; fragP;
4764 fragP = fragP->fr_next)
4765 {
4766 if (fragP->fr_fix != 0
4767 && !fragP->tc_frag_data.is_assembly_state_set)
4768 {
4769 if (last_fragP == 0)
4770 {
4771 as_warn_where (fragP->fr_file, fragP->fr_line,
4772 _("assembly state not set for first frag in section %s"),
4773 sec->name);
4774 }
4775 else
4776 {
4777 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4778 fragP->tc_frag_data.is_no_density =
4779 last_fragP->tc_frag_data.is_no_density;
4780 fragP->tc_frag_data.is_no_transform =
4781 last_fragP->tc_frag_data.is_no_transform;
4782 fragP->tc_frag_data.use_longcalls =
4783 last_fragP->tc_frag_data.use_longcalls;
4784 fragP->tc_frag_data.use_absolute_literals =
4785 last_fragP->tc_frag_data.use_absolute_literals;
4786 }
4787 }
4788 if (fragP->tc_frag_data.is_assembly_state_set)
4789 last_fragP = fragP;
4790 }
4791 }
4792 }
4793 }
4794
4795
4796 static void
4797 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4798 asection *sec,
4799 void *unused ATTRIBUTE_UNUSED)
4800 {
4801 flagword flags = bfd_get_section_flags (abfd, sec);
4802 segment_info_type *seginfo = seg_info (sec);
4803 fragS *frag = seginfo->frchainP->frch_root;
4804
4805 if (flags & SEC_CODE)
4806 {
4807 xtensa_isa isa = xtensa_default_isa;
4808 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4809 while (frag != NULL)
4810 {
4811 if (frag->tc_frag_data.is_branch_target)
4812 {
4813 int op_size;
4814 addressT branch_align, frag_addr;
4815 xtensa_format fmt;
4816
4817 xtensa_insnbuf_from_chars
4818 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4819 fmt = xtensa_format_decode (isa, insnbuf);
4820 op_size = xtensa_format_length (isa, fmt);
4821 branch_align = 1 << branch_align_power (sec);
4822 frag_addr = frag->fr_address % branch_align;
4823 if (frag_addr + op_size > branch_align)
4824 as_warn_where (frag->fr_file, frag->fr_line,
4825 _("unaligned branch target: %d bytes at 0x%lx"),
4826 op_size, (long) frag->fr_address);
4827 }
4828 frag = frag->fr_next;
4829 }
4830 xtensa_insnbuf_free (isa, insnbuf);
4831 }
4832 }
4833
4834
4835 static void
4836 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4837 asection *sec,
4838 void *unused ATTRIBUTE_UNUSED)
4839 {
4840 flagword flags = bfd_get_section_flags (abfd, sec);
4841 segment_info_type *seginfo = seg_info (sec);
4842 fragS *frag = seginfo->frchainP->frch_root;
4843 xtensa_isa isa = xtensa_default_isa;
4844
4845 if (flags & SEC_CODE)
4846 {
4847 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4848 while (frag != NULL)
4849 {
4850 if (frag->tc_frag_data.is_first_loop_insn)
4851 {
4852 int op_size;
4853 addressT frag_addr;
4854 xtensa_format fmt;
4855
4856 xtensa_insnbuf_from_chars
4857 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4858 fmt = xtensa_format_decode (isa, insnbuf);
4859 op_size = xtensa_format_length (isa, fmt);
4860 frag_addr = frag->fr_address % xtensa_fetch_width;
4861
4862 if (frag_addr + op_size > xtensa_fetch_width)
4863 as_warn_where (frag->fr_file, frag->fr_line,
4864 _("unaligned loop: %d bytes at 0x%lx"),
4865 op_size, (long) frag->fr_address);
4866 }
4867 frag = frag->fr_next;
4868 }
4869 xtensa_insnbuf_free (isa, insnbuf);
4870 }
4871 }
4872
4873
4874 static int
4875 xg_apply_fix_value (fixS *fixP, valueT val)
4876 {
4877 xtensa_isa isa = xtensa_default_isa;
4878 static xtensa_insnbuf insnbuf = NULL;
4879 static xtensa_insnbuf slotbuf = NULL;
4880 xtensa_format fmt;
4881 int slot;
4882 bfd_boolean alt_reloc;
4883 xtensa_opcode opcode;
4884 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4885
4886 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4887 if (alt_reloc)
4888 as_fatal (_("unexpected fix"));
4889
4890 if (!insnbuf)
4891 {
4892 insnbuf = xtensa_insnbuf_alloc (isa);
4893 slotbuf = xtensa_insnbuf_alloc (isa);
4894 }
4895
4896 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4897 fmt = xtensa_format_decode (isa, insnbuf);
4898 if (fmt == XTENSA_UNDEFINED)
4899 as_fatal (_("undecodable fix"));
4900 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4901 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4902 if (opcode == XTENSA_UNDEFINED)
4903 as_fatal (_("undecodable fix"));
4904
4905 /* CONST16 immediates are not PC-relative, despite the fact that we
4906 reuse the normal PC-relative operand relocations for the low part
4907 of a CONST16 operand. */
4908 if (opcode == xtensa_const16_opcode)
4909 return 0;
4910
4911 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4912 get_relaxable_immed (opcode), val,
4913 fixP->fx_file, fixP->fx_line);
4914
4915 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
4916 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
4917
4918 return 1;
4919 }
4920
4921 \f
4922 /* External Functions and Other GAS Hooks. */
4923
4924 const char *
4925 xtensa_target_format (void)
4926 {
4927 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4928 }
4929
4930
4931 void
4932 xtensa_file_arch_init (bfd *abfd)
4933 {
4934 bfd_set_private_flags (abfd, 0x100 | 0x200);
4935 }
4936
4937
4938 void
4939 md_number_to_chars (char *buf, valueT val, int n)
4940 {
4941 if (target_big_endian)
4942 number_to_chars_bigendian (buf, val, n);
4943 else
4944 number_to_chars_littleendian (buf, val, n);
4945 }
4946
4947
4948 /* This function is called once, at assembler startup time. It should
4949 set up all the tables, etc. that the MD part of the assembler will
4950 need. */
4951
4952 void
4953 md_begin (void)
4954 {
4955 segT current_section = now_seg;
4956 int current_subsec = now_subseg;
4957 xtensa_isa isa;
4958
4959 xtensa_default_isa = xtensa_isa_init (0, 0);
4960 isa = xtensa_default_isa;
4961
4962 linkrelax = 1;
4963
4964 /* Set up the .literal, .fini.literal and .init.literal sections. */
4965 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4966 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4967 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4968 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
4969 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
4970
4971 subseg_set (current_section, current_subsec);
4972
4973 xg_init_vinsn (&cur_vinsn);
4974
4975 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4976 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4977 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4978 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4979 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4980 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4981 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4982 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4983 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4984 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
4985 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
4986 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
4987 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4988 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
4989 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
4990 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
4991 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
4992 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4993 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4994 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
4995 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
4996 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4997 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4998 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4999 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5000 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5001 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5002 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5003 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5004
5005 init_op_placement_info_table ();
5006
5007 /* Set up the assembly state. */
5008 if (!frag_now->tc_frag_data.is_assembly_state_set)
5009 xtensa_set_frag_assembly_state (frag_now);
5010 }
5011
5012
5013 /* TC_INIT_FIX_DATA hook */
5014
5015 void
5016 xtensa_init_fix_data (fixS *x)
5017 {
5018 x->tc_fix_data.slot = 0;
5019 x->tc_fix_data.X_add_symbol = NULL;
5020 x->tc_fix_data.X_add_number = 0;
5021 }
5022
5023
5024 /* tc_frob_label hook */
5025
5026 void
5027 xtensa_frob_label (symbolS *sym)
5028 {
5029 float freq = get_subseg_target_freq (now_seg, now_subseg);
5030
5031 /* Since the label was already attached to a frag associated with the
5032 previous basic block, it now needs to be reset to the current frag. */
5033 symbol_set_frag (sym, frag_now);
5034 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5035
5036 if (generating_literals)
5037 xtensa_add_literal_sym (sym);
5038 else
5039 xtensa_add_insn_label (sym);
5040
5041 if (symbol_get_tc (sym)->is_loop_target)
5042 {
5043 if ((get_last_insn_flags (now_seg, now_subseg)
5044 & FLAG_IS_BAD_LOOPEND) != 0)
5045 as_bad (_("invalid last instruction for a zero-overhead loop"));
5046
5047 xtensa_set_frag_assembly_state (frag_now);
5048 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5049 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5050
5051 xtensa_set_frag_assembly_state (frag_now);
5052 xtensa_move_labels (frag_now, 0, TRUE);
5053 }
5054
5055 /* No target aligning in the absolute section. */
5056 if (now_seg != absolute_section
5057 && do_align_targets ()
5058 && !is_unaligned_label (sym)
5059 && !generating_literals)
5060 {
5061 xtensa_set_frag_assembly_state (frag_now);
5062
5063 frag_var (rs_machine_dependent,
5064 0, (int) freq,
5065 RELAX_DESIRE_ALIGN_IF_TARGET,
5066 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5067 xtensa_set_frag_assembly_state (frag_now);
5068 xtensa_move_labels (frag_now, 0, TRUE);
5069 }
5070
5071 /* We need to mark the following properties even if we aren't aligning. */
5072
5073 /* If the label is already known to be a branch target, i.e., a
5074 forward branch, mark the frag accordingly. Backward branches
5075 are handled by xg_add_branch_and_loop_targets. */
5076 if (symbol_get_tc (sym)->is_branch_target)
5077 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5078
5079 /* Loops only go forward, so they can be identified here. */
5080 if (symbol_get_tc (sym)->is_loop_target)
5081 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5082 }
5083
5084
5085 /* tc_unrecognized_line hook */
5086
5087 int
5088 xtensa_unrecognized_line (int ch)
5089 {
5090 switch (ch)
5091 {
5092 case '{' :
5093 if (cur_vinsn.inside_bundle == 0)
5094 {
5095 /* PR8110: Cannot emit line number info inside a FLIX bundle
5096 when using --gstabs. Temporarily disable debug info. */
5097 generate_lineno_debug ();
5098 if (debug_type == DEBUG_STABS)
5099 {
5100 xt_saved_debug_type = debug_type;
5101 debug_type = DEBUG_NONE;
5102 }
5103
5104 cur_vinsn.inside_bundle = 1;
5105 }
5106 else
5107 {
5108 as_bad (_("extra opening brace"));
5109 return 0;
5110 }
5111 break;
5112
5113 case '}' :
5114 if (cur_vinsn.inside_bundle)
5115 finish_vinsn (&cur_vinsn);
5116 else
5117 {
5118 as_bad (_("extra closing brace"));
5119 return 0;
5120 }
5121 break;
5122 default:
5123 as_bad (_("syntax error"));
5124 return 0;
5125 }
5126 return 1;
5127 }
5128
5129
5130 /* md_flush_pending_output hook */
5131
5132 void
5133 xtensa_flush_pending_output (void)
5134 {
5135 if (cur_vinsn.inside_bundle)
5136 as_bad (_("missing closing brace"));
5137
5138 /* If there is a non-zero instruction fragment, close it. */
5139 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5140 {
5141 frag_wane (frag_now);
5142 frag_new (0);
5143 xtensa_set_frag_assembly_state (frag_now);
5144 }
5145 frag_now->tc_frag_data.is_insn = FALSE;
5146
5147 xtensa_clear_insn_labels ();
5148 }
5149
5150
5151 /* We had an error while parsing an instruction. The string might look
5152 like this: "insn arg1, arg2 }". If so, we need to see the closing
5153 brace and reset some fields. Otherwise, the vinsn never gets closed
5154 and the num_slots field will grow past the end of the array of slots,
5155 and bad things happen. */
5156
5157 static void
5158 error_reset_cur_vinsn (void)
5159 {
5160 if (cur_vinsn.inside_bundle)
5161 {
5162 if (*input_line_pointer == '}'
5163 || *(input_line_pointer - 1) == '}'
5164 || *(input_line_pointer - 2) == '}')
5165 xg_clear_vinsn (&cur_vinsn);
5166 }
5167 }
5168
5169
5170 void
5171 md_assemble (char *str)
5172 {
5173 xtensa_isa isa = xtensa_default_isa;
5174 char *opname;
5175 unsigned opnamelen;
5176 bfd_boolean has_underbar = FALSE;
5177 char *arg_strings[MAX_INSN_ARGS];
5178 int num_args;
5179 TInsn orig_insn; /* Original instruction from the input. */
5180
5181 tinsn_init (&orig_insn);
5182
5183 /* Split off the opcode. */
5184 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5185 opname = xmalloc (opnamelen + 1);
5186 memcpy (opname, str, opnamelen);
5187 opname[opnamelen] = '\0';
5188
5189 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5190 if (num_args == -1)
5191 {
5192 as_bad (_("syntax error"));
5193 return;
5194 }
5195
5196 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5197 return;
5198
5199 /* Check for an underbar prefix. */
5200 if (*opname == '_')
5201 {
5202 has_underbar = TRUE;
5203 opname += 1;
5204 }
5205
5206 orig_insn.insn_type = ITYPE_INSN;
5207 orig_insn.ntok = 0;
5208 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5209
5210 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5211 if (orig_insn.opcode == XTENSA_UNDEFINED)
5212 {
5213 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5214 if (fmt == XTENSA_UNDEFINED)
5215 {
5216 as_bad (_("unknown opcode or format name '%s'"), opname);
5217 error_reset_cur_vinsn ();
5218 return;
5219 }
5220 if (!cur_vinsn.inside_bundle)
5221 {
5222 as_bad (_("format names only valid inside bundles"));
5223 error_reset_cur_vinsn ();
5224 return;
5225 }
5226 if (cur_vinsn.format != XTENSA_UNDEFINED)
5227 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5228 opname);
5229 cur_vinsn.format = fmt;
5230 free (has_underbar ? opname - 1 : opname);
5231 error_reset_cur_vinsn ();
5232 return;
5233 }
5234
5235 /* Parse the arguments. */
5236 if (parse_arguments (&orig_insn, num_args, arg_strings))
5237 {
5238 as_bad (_("syntax error"));
5239 error_reset_cur_vinsn ();
5240 return;
5241 }
5242
5243 /* Free the opcode and argument strings, now that they've been parsed. */
5244 free (has_underbar ? opname - 1 : opname);
5245 opname = 0;
5246 while (num_args-- > 0)
5247 free (arg_strings[num_args]);
5248
5249 /* Get expressions for invisible operands. */
5250 if (get_invisible_operands (&orig_insn))
5251 {
5252 error_reset_cur_vinsn ();
5253 return;
5254 }
5255
5256 /* Check for the right number and type of arguments. */
5257 if (tinsn_check_arguments (&orig_insn))
5258 {
5259 error_reset_cur_vinsn ();
5260 return;
5261 }
5262
5263 dwarf2_where (&orig_insn.loc);
5264
5265 xg_add_branch_and_loop_targets (&orig_insn);
5266
5267 /* Special-case for "entry" instruction. */
5268 if (orig_insn.opcode == xtensa_entry_opcode)
5269 {
5270 /* Check that the third opcode (#2) is >= 16. */
5271 if (orig_insn.ntok >= 3)
5272 {
5273 expressionS *exp = &orig_insn.tok[2];
5274 switch (exp->X_op)
5275 {
5276 case O_constant:
5277 if (exp->X_add_number < 16)
5278 as_warn (_("entry instruction with stack decrement < 16"));
5279 break;
5280
5281 default:
5282 as_warn (_("entry instruction with non-constant decrement"));
5283 }
5284 }
5285 }
5286
5287 /* Finish it off:
5288 assemble_tokens (opcode, tok, ntok);
5289 expand the tokens from the orig_insn into the
5290 stack of instructions that will not expand
5291 unless required at relaxation time. */
5292
5293 if (!cur_vinsn.inside_bundle)
5294 emit_single_op (&orig_insn);
5295 else /* We are inside a bundle. */
5296 {
5297 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5298 cur_vinsn.num_slots++;
5299 if (*input_line_pointer == '}'
5300 || *(input_line_pointer - 1) == '}'
5301 || *(input_line_pointer - 2) == '}')
5302 finish_vinsn (&cur_vinsn);
5303 }
5304
5305 /* We've just emitted a new instruction so clear the list of labels. */
5306 xtensa_clear_insn_labels ();
5307 }
5308
5309
5310 /* HANDLE_ALIGN hook */
5311
5312 /* For a .align directive, we mark the previous block with the alignment
5313 information. This will be placed in the object file in the
5314 property section corresponding to this section. */
5315
5316 void
5317 xtensa_handle_align (fragS *fragP)
5318 {
5319 if (linkrelax
5320 && ! fragP->tc_frag_data.is_literal
5321 && (fragP->fr_type == rs_align
5322 || fragP->fr_type == rs_align_code)
5323 && fragP->fr_address + fragP->fr_fix > 0
5324 && fragP->fr_offset > 0
5325 && now_seg != bss_section)
5326 {
5327 fragP->tc_frag_data.is_align = TRUE;
5328 fragP->tc_frag_data.alignment = fragP->fr_offset;
5329 }
5330
5331 if (fragP->fr_type == rs_align_test)
5332 {
5333 int count;
5334 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5335 if (count != 0)
5336 as_bad_where (fragP->fr_file, fragP->fr_line,
5337 _("unaligned entry instruction"));
5338 }
5339 }
5340
5341
5342 /* TC_FRAG_INIT hook */
5343
5344 void
5345 xtensa_frag_init (fragS *frag)
5346 {
5347 xtensa_set_frag_assembly_state (frag);
5348 }
5349
5350
5351 symbolS *
5352 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5353 {
5354 return NULL;
5355 }
5356
5357
5358 /* Round up a section size to the appropriate boundary. */
5359
5360 valueT
5361 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5362 {
5363 return size; /* Byte alignment is fine. */
5364 }
5365
5366
5367 long
5368 md_pcrel_from (fixS *fixP)
5369 {
5370 char *insn_p;
5371 static xtensa_insnbuf insnbuf = NULL;
5372 static xtensa_insnbuf slotbuf = NULL;
5373 int opnum;
5374 uint32 opnd_value;
5375 xtensa_opcode opcode;
5376 xtensa_format fmt;
5377 int slot;
5378 xtensa_isa isa = xtensa_default_isa;
5379 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5380 bfd_boolean alt_reloc;
5381
5382 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5383 return 0;
5384
5385 if (!insnbuf)
5386 {
5387 insnbuf = xtensa_insnbuf_alloc (isa);
5388 slotbuf = xtensa_insnbuf_alloc (isa);
5389 }
5390
5391 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5392 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5393 fmt = xtensa_format_decode (isa, insnbuf);
5394
5395 if (fmt == XTENSA_UNDEFINED)
5396 as_fatal (_("bad instruction format"));
5397
5398 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5399 as_fatal (_("invalid relocation"));
5400
5401 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5402 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5403
5404 /* Check for "alternate" relocations (operand not specified). None
5405 of the current uses for these are really PC-relative. */
5406 if (alt_reloc || opcode == xtensa_const16_opcode)
5407 {
5408 if (opcode != xtensa_l32r_opcode
5409 && opcode != xtensa_const16_opcode)
5410 as_fatal (_("invalid relocation for '%s' instruction"),
5411 xtensa_opcode_name (isa, opcode));
5412 return 0;
5413 }
5414
5415 opnum = get_relaxable_immed (opcode);
5416 opnd_value = 0;
5417 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5418 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5419 {
5420 as_bad_where (fixP->fx_file,
5421 fixP->fx_line,
5422 _("invalid relocation for operand %d of '%s'"),
5423 opnum, xtensa_opcode_name (isa, opcode));
5424 return 0;
5425 }
5426 return 0 - opnd_value;
5427 }
5428
5429
5430 /* TC_FORCE_RELOCATION hook */
5431
5432 int
5433 xtensa_force_relocation (fixS *fix)
5434 {
5435 switch (fix->fx_r_type)
5436 {
5437 case BFD_RELOC_XTENSA_ASM_EXPAND:
5438 case BFD_RELOC_XTENSA_SLOT0_ALT:
5439 case BFD_RELOC_XTENSA_SLOT1_ALT:
5440 case BFD_RELOC_XTENSA_SLOT2_ALT:
5441 case BFD_RELOC_XTENSA_SLOT3_ALT:
5442 case BFD_RELOC_XTENSA_SLOT4_ALT:
5443 case BFD_RELOC_XTENSA_SLOT5_ALT:
5444 case BFD_RELOC_XTENSA_SLOT6_ALT:
5445 case BFD_RELOC_XTENSA_SLOT7_ALT:
5446 case BFD_RELOC_XTENSA_SLOT8_ALT:
5447 case BFD_RELOC_XTENSA_SLOT9_ALT:
5448 case BFD_RELOC_XTENSA_SLOT10_ALT:
5449 case BFD_RELOC_XTENSA_SLOT11_ALT:
5450 case BFD_RELOC_XTENSA_SLOT12_ALT:
5451 case BFD_RELOC_XTENSA_SLOT13_ALT:
5452 case BFD_RELOC_XTENSA_SLOT14_ALT:
5453 return 1;
5454 default:
5455 break;
5456 }
5457
5458 if (linkrelax && fix->fx_addsy
5459 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5460 return 1;
5461
5462 return generic_force_reloc (fix);
5463 }
5464
5465
5466 /* TC_VALIDATE_FIX_SUB hook */
5467
5468 int
5469 xtensa_validate_fix_sub (fixS *fix)
5470 {
5471 segT add_symbol_segment, sub_symbol_segment;
5472
5473 /* The difference of two symbols should be resolved by the assembler when
5474 linkrelax is not set. If the linker may relax the section containing
5475 the symbols, then an Xtensa DIFF relocation must be generated so that
5476 the linker knows to adjust the difference value. */
5477 if (!linkrelax || fix->fx_addsy == NULL)
5478 return 0;
5479
5480 /* Make sure both symbols are in the same segment, and that segment is
5481 "normal" and relaxable. If the segment is not "normal", then the
5482 fix is not valid. If the segment is not "relaxable", then the fix
5483 should have been handled earlier. */
5484 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5485 if (! SEG_NORMAL (add_symbol_segment) ||
5486 ! relaxable_section (add_symbol_segment))
5487 return 0;
5488 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5489 return (sub_symbol_segment == add_symbol_segment);
5490 }
5491
5492
5493 /* NO_PSEUDO_DOT hook */
5494
5495 /* This function has nothing to do with pseudo dots, but this is the
5496 nearest macro to where the check needs to take place. FIXME: This
5497 seems wrong. */
5498
5499 bfd_boolean
5500 xtensa_check_inside_bundle (void)
5501 {
5502 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5503 as_bad (_("directives are not valid inside bundles"));
5504
5505 /* This function must always return FALSE because it is called via a
5506 macro that has nothing to do with bundling. */
5507 return FALSE;
5508 }
5509
5510
5511 /* md_elf_section_change_hook */
5512
5513 void
5514 xtensa_elf_section_change_hook (void)
5515 {
5516 /* Set up the assembly state. */
5517 if (!frag_now->tc_frag_data.is_assembly_state_set)
5518 xtensa_set_frag_assembly_state (frag_now);
5519 }
5520
5521
5522 /* tc_fix_adjustable hook */
5523
5524 bfd_boolean
5525 xtensa_fix_adjustable (fixS *fixP)
5526 {
5527 /* An offset is not allowed in combination with the difference of two
5528 symbols, but that cannot be easily detected after a local symbol
5529 has been adjusted to a (section+offset) form. Return 0 so that such
5530 an fix will not be adjusted. */
5531 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5532 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5533 return 0;
5534
5535 /* We need the symbol name for the VTABLE entries. */
5536 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5537 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5538 return 0;
5539
5540 return 1;
5541 }
5542
5543
5544 void
5545 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg)
5546 {
5547 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5548 valueT val;
5549
5550 switch (fixP->fx_r_type)
5551 {
5552 case BFD_RELOC_32:
5553 case BFD_RELOC_16:
5554 case BFD_RELOC_8:
5555 if (linkrelax && fixP->fx_subsy)
5556 {
5557 switch (fixP->fx_r_type)
5558 {
5559 case BFD_RELOC_8:
5560 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5561 break;
5562 case BFD_RELOC_16:
5563 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5564 break;
5565 case BFD_RELOC_32:
5566 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5567 break;
5568 default:
5569 break;
5570 }
5571
5572 /* An offset is only allowed when it results from adjusting a
5573 local symbol into a section-relative offset. If the offset
5574 came from the original expression, tc_fix_adjustable will have
5575 prevented the fix from being converted to a section-relative
5576 form so that we can flag the error here. */
5577 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5578 as_bad_where (fixP->fx_file, fixP->fx_line,
5579 _("cannot represent subtraction with an offset"));
5580
5581 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5582 - S_GET_VALUE (fixP->fx_subsy));
5583
5584 /* The difference value gets written out, and the DIFF reloc
5585 identifies the address of the subtracted symbol (i.e., the one
5586 with the lowest address). */
5587 *valP = val;
5588 fixP->fx_offset -= val;
5589 fixP->fx_subsy = NULL;
5590 }
5591 else if (! fixP->fx_addsy)
5592 {
5593 val = *valP;
5594 fixP->fx_done = 1;
5595 }
5596 else
5597 break;
5598 md_number_to_chars (fixpos, val, fixP->fx_size);
5599 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5600 break;
5601
5602 case BFD_RELOC_XTENSA_SLOT0_OP:
5603 case BFD_RELOC_XTENSA_SLOT1_OP:
5604 case BFD_RELOC_XTENSA_SLOT2_OP:
5605 case BFD_RELOC_XTENSA_SLOT3_OP:
5606 case BFD_RELOC_XTENSA_SLOT4_OP:
5607 case BFD_RELOC_XTENSA_SLOT5_OP:
5608 case BFD_RELOC_XTENSA_SLOT6_OP:
5609 case BFD_RELOC_XTENSA_SLOT7_OP:
5610 case BFD_RELOC_XTENSA_SLOT8_OP:
5611 case BFD_RELOC_XTENSA_SLOT9_OP:
5612 case BFD_RELOC_XTENSA_SLOT10_OP:
5613 case BFD_RELOC_XTENSA_SLOT11_OP:
5614 case BFD_RELOC_XTENSA_SLOT12_OP:
5615 case BFD_RELOC_XTENSA_SLOT13_OP:
5616 case BFD_RELOC_XTENSA_SLOT14_OP:
5617 if (linkrelax)
5618 {
5619 /* Write the tentative value of a PC-relative relocation to a
5620 local symbol into the instruction. The value will be ignored
5621 by the linker, and it makes the object file disassembly
5622 readable when all branch targets are encoded in relocations. */
5623
5624 assert (fixP->fx_addsy);
5625 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5626 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5627 {
5628 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5629 - md_pcrel_from (fixP));
5630 (void) xg_apply_fix_value (fixP, val);
5631 }
5632 }
5633 else if (! fixP->fx_addsy)
5634 {
5635 val = *valP;
5636 if (xg_apply_fix_value (fixP, val))
5637 fixP->fx_done = 1;
5638 }
5639 break;
5640
5641 case BFD_RELOC_XTENSA_PLT:
5642 case BFD_RELOC_XTENSA_ASM_EXPAND:
5643 case BFD_RELOC_XTENSA_SLOT0_ALT:
5644 case BFD_RELOC_XTENSA_SLOT1_ALT:
5645 case BFD_RELOC_XTENSA_SLOT2_ALT:
5646 case BFD_RELOC_XTENSA_SLOT3_ALT:
5647 case BFD_RELOC_XTENSA_SLOT4_ALT:
5648 case BFD_RELOC_XTENSA_SLOT5_ALT:
5649 case BFD_RELOC_XTENSA_SLOT6_ALT:
5650 case BFD_RELOC_XTENSA_SLOT7_ALT:
5651 case BFD_RELOC_XTENSA_SLOT8_ALT:
5652 case BFD_RELOC_XTENSA_SLOT9_ALT:
5653 case BFD_RELOC_XTENSA_SLOT10_ALT:
5654 case BFD_RELOC_XTENSA_SLOT11_ALT:
5655 case BFD_RELOC_XTENSA_SLOT12_ALT:
5656 case BFD_RELOC_XTENSA_SLOT13_ALT:
5657 case BFD_RELOC_XTENSA_SLOT14_ALT:
5658 /* These all need to be resolved at link-time. Do nothing now. */
5659 break;
5660
5661 case BFD_RELOC_VTABLE_INHERIT:
5662 case BFD_RELOC_VTABLE_ENTRY:
5663 fixP->fx_done = 0;
5664 break;
5665
5666 default:
5667 as_bad (_("unhandled local relocation fix %s"),
5668 bfd_get_reloc_code_name (fixP->fx_r_type));
5669 }
5670 }
5671
5672
5673 char *
5674 md_atof (int type, char *litP, int *sizeP)
5675 {
5676 int prec;
5677 LITTLENUM_TYPE words[4];
5678 char *t;
5679 int i;
5680
5681 switch (type)
5682 {
5683 case 'f':
5684 prec = 2;
5685 break;
5686
5687 case 'd':
5688 prec = 4;
5689 break;
5690
5691 default:
5692 *sizeP = 0;
5693 return "bad call to md_atof";
5694 }
5695
5696 t = atof_ieee (input_line_pointer, type, words);
5697 if (t)
5698 input_line_pointer = t;
5699
5700 *sizeP = prec * 2;
5701
5702 for (i = prec - 1; i >= 0; i--)
5703 {
5704 int idx = i;
5705 if (target_big_endian)
5706 idx = (prec - 1 - i);
5707
5708 md_number_to_chars (litP, (valueT) words[idx], 2);
5709 litP += 2;
5710 }
5711
5712 return NULL;
5713 }
5714
5715
5716 int
5717 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5718 {
5719 return total_frag_text_expansion (fragP);
5720 }
5721
5722
5723 /* Translate internal representation of relocation info to BFD target
5724 format. */
5725
5726 arelent *
5727 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5728 {
5729 arelent *reloc;
5730
5731 reloc = (arelent *) xmalloc (sizeof (arelent));
5732 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5733 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5734 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5735
5736 /* Make sure none of our internal relocations make it this far.
5737 They'd better have been fully resolved by this point. */
5738 assert ((int) fixp->fx_r_type > 0);
5739
5740 reloc->addend = fixp->fx_offset;
5741
5742 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5743 if (reloc->howto == NULL)
5744 {
5745 as_bad_where (fixp->fx_file, fixp->fx_line,
5746 _("cannot represent `%s' relocation in object file"),
5747 bfd_get_reloc_code_name (fixp->fx_r_type));
5748 free (reloc->sym_ptr_ptr);
5749 free (reloc);
5750 return NULL;
5751 }
5752
5753 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5754 as_fatal (_("internal error? cannot generate `%s' relocation"),
5755 bfd_get_reloc_code_name (fixp->fx_r_type));
5756
5757 return reloc;
5758 }
5759
5760 \f
5761 /* Checks for resource conflicts between instructions. */
5762
5763 /* The func unit stuff could be implemented as bit-vectors rather
5764 than the iterative approach here. If it ends up being too
5765 slow, we will switch it. */
5766
5767 resource_table *
5768 new_resource_table (void *data,
5769 int cycles,
5770 int nu,
5771 unit_num_copies_func uncf,
5772 opcode_num_units_func onuf,
5773 opcode_funcUnit_use_unit_func ouuf,
5774 opcode_funcUnit_use_stage_func ousf)
5775 {
5776 int i;
5777 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5778 rt->data = data;
5779 rt->cycles = cycles;
5780 rt->allocated_cycles = cycles;
5781 rt->num_units = nu;
5782 rt->unit_num_copies = uncf;
5783 rt->opcode_num_units = onuf;
5784 rt->opcode_unit_use = ouuf;
5785 rt->opcode_unit_stage = ousf;
5786
5787 rt->units = (char **) xcalloc (cycles, sizeof (char *));
5788 for (i = 0; i < cycles; i++)
5789 rt->units[i] = (char *) xcalloc (nu, sizeof (char));
5790
5791 return rt;
5792 }
5793
5794
5795 void
5796 clear_resource_table (resource_table *rt)
5797 {
5798 int i, j;
5799 for (i = 0; i < rt->allocated_cycles; i++)
5800 for (j = 0; j < rt->num_units; j++)
5801 rt->units[i][j] = 0;
5802 }
5803
5804
5805 /* We never shrink it, just fake it into thinking so. */
5806
5807 void
5808 resize_resource_table (resource_table *rt, int cycles)
5809 {
5810 int i, old_cycles;
5811
5812 rt->cycles = cycles;
5813 if (cycles <= rt->allocated_cycles)
5814 return;
5815
5816 old_cycles = rt->allocated_cycles;
5817 rt->allocated_cycles = cycles;
5818
5819 rt->units = xrealloc (rt->units, sizeof (char *) * rt->allocated_cycles);
5820 for (i = 0; i < old_cycles; i++)
5821 rt->units[i] = xrealloc (rt->units[i], sizeof (char) * rt->num_units);
5822 for (i = old_cycles; i < cycles; i++)
5823 rt->units[i] = xcalloc (rt->num_units, sizeof (char));
5824 }
5825
5826
5827 bfd_boolean
5828 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5829 {
5830 int i;
5831 int uses = (rt->opcode_num_units) (rt->data, opcode);
5832
5833 for (i = 0; i < uses; i++)
5834 {
5835 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5836 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5837 int copies_in_use = rt->units[stage + cycle][unit];
5838 int copies = (rt->unit_num_copies) (rt->data, unit);
5839 if (copies_in_use >= copies)
5840 return FALSE;
5841 }
5842 return TRUE;
5843 }
5844
5845
5846 void
5847 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5848 {
5849 int i;
5850 int uses = (rt->opcode_num_units) (rt->data, opcode);
5851
5852 for (i = 0; i < uses; i++)
5853 {
5854 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5855 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5856 /* Note that this allows resources to be oversubscribed. That's
5857 essential to the way the optional scheduler works.
5858 resources_available reports when a resource is over-subscribed,
5859 so it's easy to tell. */
5860 rt->units[stage + cycle][unit]++;
5861 }
5862 }
5863
5864
5865 void
5866 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5867 {
5868 int i;
5869 int uses = (rt->opcode_num_units) (rt->data, opcode);
5870
5871 for (i = 0; i < uses; i++)
5872 {
5873 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5874 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5875 rt->units[stage + cycle][unit]--;
5876 assert (rt->units[stage + cycle][unit] >= 0);
5877 }
5878 }
5879
5880
5881 /* Wrapper functions make parameterized resource reservation
5882 more convenient. */
5883
5884 int
5885 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5886 {
5887 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5888 return use->unit;
5889 }
5890
5891
5892 int
5893 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5894 {
5895 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5896 return use->stage;
5897 }
5898
5899
5900 /* Note that this function does not check issue constraints, but
5901 solely whether the hardware is available to execute the given
5902 instructions together. It also doesn't check if the tinsns
5903 write the same state, or access the same tieports. That is
5904 checked by check_t1_t2_reads_and_writes. */
5905
5906 static bfd_boolean
5907 resources_conflict (vliw_insn *vinsn)
5908 {
5909 int i;
5910 static resource_table *rt = NULL;
5911
5912 /* This is the most common case by far. Optimize it. */
5913 if (vinsn->num_slots == 1)
5914 return FALSE;
5915
5916 if (rt == NULL)
5917 {
5918 xtensa_isa isa = xtensa_default_isa;
5919 rt = new_resource_table
5920 (isa, xtensa_isa_num_pipe_stages (isa),
5921 xtensa_isa_num_funcUnits (isa),
5922 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5923 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5924 opcode_funcUnit_use_unit,
5925 opcode_funcUnit_use_stage);
5926 }
5927
5928 clear_resource_table (rt);
5929
5930 for (i = 0; i < vinsn->num_slots; i++)
5931 {
5932 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5933 return TRUE;
5934 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5935 }
5936
5937 return FALSE;
5938 }
5939
5940 \f
5941 /* finish_vinsn, emit_single_op and helper functions. */
5942
5943 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5944 static xtensa_format xg_find_narrowest_format (vliw_insn *);
5945 static void bundle_single_op (TInsn *);
5946 static void xg_assemble_vliw_tokens (vliw_insn *);
5947
5948
5949 /* We have reached the end of a bundle; emit into the frag. */
5950
5951 static void
5952 finish_vinsn (vliw_insn *vinsn)
5953 {
5954 IStack slotstack;
5955 int i;
5956 char *file_name;
5957 unsigned line;
5958
5959 if (find_vinsn_conflicts (vinsn))
5960 {
5961 xg_clear_vinsn (vinsn);
5962 return;
5963 }
5964
5965 /* First, find a format that works. */
5966 if (vinsn->format == XTENSA_UNDEFINED)
5967 vinsn->format = xg_find_narrowest_format (vinsn);
5968
5969 if (vinsn->format == XTENSA_UNDEFINED)
5970 {
5971 as_where (&file_name, &line);
5972 as_bad_where (file_name, line,
5973 _("couldn't find a valid instruction format"));
5974 fprintf (stderr, _(" ops were: "));
5975 for (i = 0; i < vinsn->num_slots; i++)
5976 fprintf (stderr, _(" %s;"),
5977 xtensa_opcode_name (xtensa_default_isa,
5978 vinsn->slots[i].opcode));
5979 fprintf (stderr, _("\n"));
5980 xg_clear_vinsn (vinsn);
5981 return;
5982 }
5983
5984 if (vinsn->num_slots
5985 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
5986 {
5987 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5988 xtensa_format_name (xtensa_default_isa, vinsn->format),
5989 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5990 vinsn->num_slots);
5991 xg_clear_vinsn (vinsn);
5992 return;
5993 }
5994
5995 if (resources_conflict (vinsn))
5996 {
5997 as_where (&file_name, &line);
5998 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
5999 fprintf (stderr, " ops were: ");
6000 for (i = 0; i < vinsn->num_slots; i++)
6001 fprintf (stderr, " %s;",
6002 xtensa_opcode_name (xtensa_default_isa,
6003 vinsn->slots[i].opcode));
6004 fprintf (stderr, "\n");
6005 xg_clear_vinsn (vinsn);
6006 return;
6007 }
6008
6009 for (i = 0; i < vinsn->num_slots; i++)
6010 {
6011 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6012 {
6013 symbolS *lit_sym = NULL;
6014 int j;
6015 bfd_boolean e = FALSE;
6016 bfd_boolean saved_density = density_supported;
6017
6018 /* We don't want to narrow ops inside multi-slot bundles. */
6019 if (vinsn->num_slots > 1)
6020 density_supported = FALSE;
6021
6022 istack_init (&slotstack);
6023 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6024 {
6025 vinsn->slots[i].opcode =
6026 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6027 vinsn->format, i);
6028 vinsn->slots[i].ntok = 0;
6029 }
6030
6031 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6032 {
6033 e = TRUE;
6034 continue;
6035 }
6036
6037 density_supported = saved_density;
6038
6039 if (e)
6040 {
6041 xg_clear_vinsn (vinsn);
6042 return;
6043 }
6044
6045 for (j = 0; j < slotstack.ninsn; j++)
6046 {
6047 TInsn *insn = &slotstack.insn[j];
6048 if (insn->insn_type == ITYPE_LITERAL)
6049 {
6050 assert (lit_sym == NULL);
6051 lit_sym = xg_assemble_literal (insn);
6052 }
6053 else
6054 {
6055 assert (insn->insn_type == ITYPE_INSN);
6056 if (lit_sym)
6057 xg_resolve_literals (insn, lit_sym);
6058 if (j != slotstack.ninsn - 1)
6059 emit_single_op (insn);
6060 }
6061 }
6062
6063 if (vinsn->num_slots > 1)
6064 {
6065 if (opcode_fits_format_slot
6066 (slotstack.insn[slotstack.ninsn - 1].opcode,
6067 vinsn->format, i))
6068 {
6069 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6070 }
6071 else
6072 {
6073 bundle_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6074 if (vinsn->format == XTENSA_UNDEFINED)
6075 vinsn->slots[i].opcode = xtensa_nop_opcode;
6076 else
6077 vinsn->slots[i].opcode
6078 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6079 vinsn->format, i);
6080
6081 vinsn->slots[i].ntok = 0;
6082 }
6083 }
6084 else
6085 {
6086 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6087 vinsn->format = XTENSA_UNDEFINED;
6088 }
6089 }
6090 }
6091
6092 /* Now check resource conflicts on the modified bundle. */
6093 if (resources_conflict (vinsn))
6094 {
6095 as_where (&file_name, &line);
6096 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6097 fprintf (stderr, " ops were: ");
6098 for (i = 0; i < vinsn->num_slots; i++)
6099 fprintf (stderr, " %s;",
6100 xtensa_opcode_name (xtensa_default_isa,
6101 vinsn->slots[i].opcode));
6102 fprintf (stderr, "\n");
6103 xg_clear_vinsn (vinsn);
6104 return;
6105 }
6106
6107 /* First, find a format that works. */
6108 if (vinsn->format == XTENSA_UNDEFINED)
6109 vinsn->format = xg_find_narrowest_format (vinsn);
6110
6111 xg_assemble_vliw_tokens (vinsn);
6112
6113 xg_clear_vinsn (vinsn);
6114 }
6115
6116
6117 /* Given an vliw instruction, what conflicts are there in register
6118 usage and in writes to states and queues?
6119
6120 This function does two things:
6121 1. Reports an error when a vinsn contains illegal combinations
6122 of writes to registers states or queues.
6123 2. Marks individual tinsns as not relaxable if the combination
6124 contains antidependencies.
6125
6126 Job 2 handles things like swap semantics in instructions that need
6127 to be relaxed. For example,
6128
6129 addi a0, a1, 100000
6130
6131 normally would be relaxed to
6132
6133 l32r a0, some_label
6134 add a0, a1, a0
6135
6136 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6137
6138 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6139
6140 then we can't relax it into
6141
6142 l32r a0, some_label
6143 { add a0, a1, a0 ; add a2, a0, a4 ; }
6144
6145 because the value of a0 is trashed before the second add can read it. */
6146
6147 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6148
6149 static bfd_boolean
6150 find_vinsn_conflicts (vliw_insn *vinsn)
6151 {
6152 int i, j;
6153 int branches = 0;
6154 xtensa_isa isa = xtensa_default_isa;
6155
6156 assert (!past_xtensa_end);
6157
6158 for (i = 0 ; i < vinsn->num_slots; i++)
6159 {
6160 TInsn *op1 = &vinsn->slots[i];
6161 if (op1->is_specific_opcode)
6162 op1->keep_wide = TRUE;
6163 else
6164 op1->keep_wide = FALSE;
6165 }
6166
6167 for (i = 0 ; i < vinsn->num_slots; i++)
6168 {
6169 TInsn *op1 = &vinsn->slots[i];
6170
6171 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6172 branches++;
6173
6174 for (j = 0; j < vinsn->num_slots; j++)
6175 {
6176 if (i != j)
6177 {
6178 TInsn *op2 = &vinsn->slots[j];
6179 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6180 switch (conflict_type)
6181 {
6182 case 'c':
6183 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6184 xtensa_opcode_name (isa, op1->opcode), i,
6185 xtensa_opcode_name (isa, op2->opcode), j);
6186 return TRUE;
6187 case 'd':
6188 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6189 xtensa_opcode_name (isa, op1->opcode), i,
6190 xtensa_opcode_name (isa, op2->opcode), j);
6191 return TRUE;
6192 case 'e':
6193 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same queue"),
6194 xtensa_opcode_name (isa, op1->opcode), i,
6195 xtensa_opcode_name (isa, op2->opcode), j);
6196 return TRUE;
6197 case 'f':
6198 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile queue accesses"),
6199 xtensa_opcode_name (isa, op1->opcode), i,
6200 xtensa_opcode_name (isa, op2->opcode), j);
6201 return TRUE;
6202 default:
6203 /* Everything is OK. */
6204 break;
6205 }
6206 op2->is_specific_opcode = (op2->is_specific_opcode
6207 || conflict_type == 'a');
6208 }
6209 }
6210 }
6211
6212 if (branches > 1)
6213 {
6214 as_bad (_("multiple branches or jumps in the same bundle"));
6215 return TRUE;
6216 }
6217
6218 return FALSE;
6219 }
6220
6221
6222 /* Check how the state used by t1 and t2 relate.
6223 Cases found are:
6224
6225 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6226 case B: no relationship between what is read and written (both could
6227 read the same reg though)
6228 case C: t1 writes a register t2 writes (a register conflict within a
6229 bundle)
6230 case D: t1 writes a state that t2 also writes
6231 case E: t1 writes a tie queue that t2 also writes
6232 case F: two volatile queue accesses
6233 */
6234
6235 static char
6236 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6237 {
6238 xtensa_isa isa = xtensa_default_isa;
6239 xtensa_regfile t1_regfile, t2_regfile;
6240 int t1_reg, t2_reg;
6241 int t1_base_reg, t1_last_reg;
6242 int t2_base_reg, t2_last_reg;
6243 char t1_inout, t2_inout;
6244 int i, j;
6245 char conflict = 'b';
6246 int t1_states;
6247 int t2_states;
6248 int t1_interfaces;
6249 int t2_interfaces;
6250 bfd_boolean t1_volatile = FALSE;
6251 bfd_boolean t2_volatile = FALSE;
6252
6253 /* Check registers. */
6254 for (j = 0; j < t2->ntok; j++)
6255 {
6256 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6257 continue;
6258
6259 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6260 t2_base_reg = t2->tok[j].X_add_number;
6261 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6262
6263 for (i = 0; i < t1->ntok; i++)
6264 {
6265 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6266 continue;
6267
6268 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6269
6270 if (t1_regfile != t2_regfile)
6271 continue;
6272
6273 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6274 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6275
6276 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6277 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6278 {
6279 if (t1_inout == 'm' || t1_inout == 'o'
6280 || t2_inout == 'm' || t2_inout == 'o')
6281 {
6282 conflict = 'a';
6283 continue;
6284 }
6285 }
6286
6287 t1_base_reg = t1->tok[i].X_add_number;
6288 t1_last_reg = (t1_base_reg
6289 + xtensa_operand_num_regs (isa, t1->opcode, i));
6290
6291 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6292 {
6293 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6294 {
6295 if (t1_reg != t2_reg)
6296 continue;
6297
6298 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6299 {
6300 conflict = 'a';
6301 continue;
6302 }
6303
6304 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6305 {
6306 conflict = 'a';
6307 continue;
6308 }
6309
6310 if (t1_inout != 'i' && t2_inout != 'i')
6311 return 'c';
6312 }
6313 }
6314 }
6315 }
6316
6317 /* Check states. */
6318 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6319 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6320 for (j = 0; j < t2_states; j++)
6321 {
6322 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6323 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6324 for (i = 0; i < t1_states; i++)
6325 {
6326 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6327 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6328 if (t1_so != t2_so)
6329 continue;
6330
6331 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6332 {
6333 conflict = 'a';
6334 continue;
6335 }
6336
6337 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6338 {
6339 conflict = 'a';
6340 continue;
6341 }
6342
6343 if (t1_inout != 'i' && t2_inout != 'i')
6344 return 'd';
6345 }
6346 }
6347
6348 /* Check tieports. */
6349 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6350 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6351 for (j = 0; j < t2_interfaces; j++)
6352 {
6353 xtensa_interface t2_int
6354 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6355 int t2_class = xtensa_interface_class_id (isa, t2_int);
6356
6357 t2_inout = xtensa_interface_inout (isa, j);
6358 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6359 t2_volatile = TRUE;
6360
6361 for (i = 0; i < t1_interfaces; i++)
6362 {
6363 xtensa_interface t1_int
6364 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6365 int t1_class = xtensa_interface_class_id (isa, t1_int);
6366
6367 t1_inout = xtensa_interface_inout (isa, i);
6368 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6369 t1_volatile = TRUE;
6370
6371 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6372 return 'f';
6373
6374 if (t1_int != t2_int)
6375 continue;
6376
6377 if (t2_inout == 'i' && t1_inout == 'o')
6378 {
6379 conflict = 'a';
6380 continue;
6381 }
6382
6383 if (t1_inout == 'i' && t2_inout == 'o')
6384 {
6385 conflict = 'a';
6386 continue;
6387 }
6388
6389 if (t1_inout != 'i' && t2_inout != 'i')
6390 return 'e';
6391 }
6392 }
6393
6394 return conflict;
6395 }
6396
6397
6398 static xtensa_format
6399 xg_find_narrowest_format (vliw_insn *vinsn)
6400 {
6401 /* Right now we assume that the ops within the vinsn are properly
6402 ordered for the slots that the programmer wanted them in. In
6403 other words, we don't rearrange the ops in hopes of finding a
6404 better format. The scheduler handles that. */
6405
6406 xtensa_isa isa = xtensa_default_isa;
6407 xtensa_format format;
6408 vliw_insn v_copy = *vinsn;
6409 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6410
6411 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6412 {
6413 v_copy = *vinsn;
6414 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6415 {
6416 int slot;
6417 int fit = 0;
6418 for (slot = 0; slot < v_copy.num_slots; slot++)
6419 {
6420 if (v_copy.slots[slot].opcode == nop_opcode)
6421 {
6422 v_copy.slots[slot].opcode =
6423 xtensa_format_slot_nop_opcode (isa, format, slot);
6424 v_copy.slots[slot].ntok = 0;
6425 }
6426
6427 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6428 format, slot))
6429 fit++;
6430 else if (v_copy.num_slots > 1)
6431 {
6432 TInsn widened;
6433 /* Try the widened version. */
6434 if (!v_copy.slots[slot].keep_wide
6435 && !v_copy.slots[slot].is_specific_opcode
6436 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6437 &widened, TRUE)
6438 && opcode_fits_format_slot (widened.opcode,
6439 format, slot))
6440 {
6441 v_copy.slots[slot] = widened;
6442 fit++;
6443 }
6444 }
6445 }
6446 if (fit == v_copy.num_slots)
6447 {
6448 *vinsn = v_copy;
6449 xtensa_format_encode (isa, format, vinsn->insnbuf);
6450 vinsn->format = format;
6451 break;
6452 }
6453 }
6454 }
6455
6456 if (format == xtensa_isa_num_formats (isa))
6457 return XTENSA_UNDEFINED;
6458
6459 return format;
6460 }
6461
6462
6463 /* Return the additional space needed in a frag
6464 for possible relaxations of any ops in a VLIW insn.
6465 Also fill out the relaxations that might be required of
6466 each tinsn in the vinsn. */
6467
6468 static int
6469 relaxation_requirements (vliw_insn *vinsn)
6470 {
6471 int extra_space = 0;
6472 int slot;
6473
6474 for (slot = 0; slot < vinsn->num_slots; slot++)
6475 {
6476 TInsn *tinsn = &vinsn->slots[slot];
6477 if (!tinsn_has_symbolic_operands (tinsn))
6478 {
6479 /* A narrow instruction could be widened later to help
6480 alignment issues. */
6481 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6482 && !tinsn->is_specific_opcode
6483 && vinsn->num_slots == 1)
6484 {
6485 /* Difference in bytes between narrow and wide insns... */
6486 extra_space += 1;
6487 tinsn->subtype = RELAX_NARROW;
6488 tinsn->record_fix = TRUE;
6489 break;
6490 }
6491 else
6492 {
6493 tinsn->record_fix = FALSE;
6494 /* No extra_space needed. */
6495 }
6496 }
6497 else
6498 {
6499 if (workaround_b_j_loop_end
6500 && tinsn->opcode == xtensa_jx_opcode
6501 && use_transform ())
6502 {
6503 /* Add 2 of these. */
6504 extra_space += 3; /* for the nop size */
6505 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6506 }
6507
6508 /* Need to assemble it with space for the relocation. */
6509 if (xg_is_relaxable_insn (tinsn, 0)
6510 && !tinsn->is_specific_opcode)
6511 {
6512 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6513 int max_literal_size =
6514 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6515
6516 tinsn->literal_space = max_literal_size;
6517
6518 tinsn->subtype = RELAX_IMMED;
6519 tinsn->record_fix = FALSE;
6520 extra_space += max_size;
6521 }
6522 else
6523 {
6524 tinsn->record_fix = TRUE;
6525 /* No extra space needed. */
6526 }
6527 }
6528 }
6529 return extra_space;
6530 }
6531
6532
6533 static void
6534 bundle_single_op (TInsn *orig_insn)
6535 {
6536 xtensa_isa isa = xtensa_default_isa;
6537 vliw_insn v;
6538 int slot;
6539
6540 xg_init_vinsn (&v);
6541 v.format = op_placement_table[orig_insn->opcode].narrowest;
6542 assert (v.format != XTENSA_UNDEFINED);
6543 v.num_slots = xtensa_format_num_slots (isa, v.format);
6544
6545 for (slot = 0;
6546 !opcode_fits_format_slot (orig_insn->opcode, v.format, slot);
6547 slot++)
6548 {
6549 v.slots[slot].opcode =
6550 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6551 v.slots[slot].ntok = 0;
6552 v.slots[slot].insn_type = ITYPE_INSN;
6553 }
6554
6555 v.slots[slot] = *orig_insn;
6556 slot++;
6557
6558 for ( ; slot < v.num_slots; slot++)
6559 {
6560 v.slots[slot].opcode =
6561 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6562 v.slots[slot].ntok = 0;
6563 v.slots[slot].insn_type = ITYPE_INSN;
6564 }
6565
6566 finish_vinsn (&v);
6567 xg_free_vinsn (&v);
6568 }
6569
6570
6571 static bfd_boolean
6572 emit_single_op (TInsn *orig_insn)
6573 {
6574 int i;
6575 IStack istack; /* put instructions into here */
6576 symbolS *lit_sym = NULL;
6577 symbolS *label_sym = NULL;
6578
6579 istack_init (&istack);
6580
6581 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6582 Because the scheduling and bundling characteristics of movi and
6583 l32r or const16 are so different, we can do much better if we relax
6584 it prior to scheduling and bundling, rather than after. */
6585 if ((orig_insn->opcode == xtensa_movi_opcode
6586 || orig_insn->opcode == xtensa_movi_n_opcode)
6587 && !cur_vinsn.inside_bundle
6588 && (orig_insn->tok[1].X_op == O_symbol
6589 || orig_insn->tok[1].X_op == O_pltrel))
6590 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6591 else
6592 if (xg_expand_assembly_insn (&istack, orig_insn))
6593 return TRUE;
6594
6595 for (i = 0; i < istack.ninsn; i++)
6596 {
6597 TInsn *insn = &istack.insn[i];
6598 switch (insn->insn_type)
6599 {
6600 case ITYPE_LITERAL:
6601 assert (lit_sym == NULL);
6602 lit_sym = xg_assemble_literal (insn);
6603 break;
6604 case ITYPE_LABEL:
6605 {
6606 static int relaxed_sym_idx = 0;
6607 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6608 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6609 colon (label);
6610 assert (label_sym == NULL);
6611 label_sym = symbol_find_or_make (label);
6612 assert (label_sym);
6613 free (label);
6614 }
6615 break;
6616 case ITYPE_INSN:
6617 if (lit_sym)
6618 xg_resolve_literals (insn, lit_sym);
6619 if (label_sym)
6620 xg_resolve_labels (insn, label_sym);
6621 bundle_single_op (insn);
6622 break;
6623 default:
6624 assert (0);
6625 break;
6626 }
6627 }
6628 return FALSE;
6629 }
6630
6631
6632 static int
6633 total_frag_text_expansion (fragS *fragP)
6634 {
6635 int slot;
6636 int total_expansion = 0;
6637
6638 for (slot = 0; slot < MAX_SLOTS; slot++)
6639 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6640
6641 return total_expansion;
6642 }
6643
6644
6645 /* Emit a vliw instruction to the current fragment. */
6646
6647 static void
6648 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6649 {
6650 bfd_boolean finish_frag = FALSE;
6651 bfd_boolean is_jump = FALSE;
6652 bfd_boolean is_branch = FALSE;
6653 xtensa_isa isa = xtensa_default_isa;
6654 int i;
6655 int insn_size;
6656 int extra_space;
6657 char *f = NULL;
6658 int slot;
6659 struct dwarf2_line_info best_loc;
6660
6661 best_loc.line = INT_MAX;
6662
6663 if (generating_literals)
6664 {
6665 static int reported = 0;
6666 if (reported < 4)
6667 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6668 _("cannot assemble into a literal fragment"));
6669 if (reported == 3)
6670 as_bad (_("..."));
6671 reported++;
6672 return;
6673 }
6674
6675 if (frag_now_fix () != 0
6676 && (! frag_now->tc_frag_data.is_insn
6677 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6678 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6679 || (directive_state[directive_longcalls]
6680 != frag_now->tc_frag_data.use_longcalls)
6681 || (directive_state[directive_absolute_literals]
6682 != frag_now->tc_frag_data.use_absolute_literals)))
6683 {
6684 frag_wane (frag_now);
6685 frag_new (0);
6686 xtensa_set_frag_assembly_state (frag_now);
6687 }
6688
6689 if (workaround_a0_b_retw
6690 && vinsn->num_slots == 1
6691 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6692 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6693 && use_transform ())
6694 {
6695 has_a0_b_retw = TRUE;
6696
6697 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6698 After the first assembly pass we will check all of them and
6699 add a nop if needed. */
6700 frag_now->tc_frag_data.is_insn = TRUE;
6701 frag_var (rs_machine_dependent, 4, 4,
6702 RELAX_ADD_NOP_IF_A0_B_RETW,
6703 frag_now->fr_symbol,
6704 frag_now->fr_offset,
6705 NULL);
6706 xtensa_set_frag_assembly_state (frag_now);
6707 frag_now->tc_frag_data.is_insn = TRUE;
6708 frag_var (rs_machine_dependent, 4, 4,
6709 RELAX_ADD_NOP_IF_A0_B_RETW,
6710 frag_now->fr_symbol,
6711 frag_now->fr_offset,
6712 NULL);
6713 xtensa_set_frag_assembly_state (frag_now);
6714 }
6715
6716 for (i = 0; i < vinsn->num_slots; i++)
6717 {
6718 /* See if the instruction implies an aligned section. */
6719 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6720 record_alignment (now_seg, 2);
6721
6722 /* Also determine the best line number for debug info. */
6723 best_loc = vinsn->slots[i].loc.line < best_loc.line
6724 ? vinsn->slots[i].loc : best_loc;
6725 }
6726
6727 /* Special cases for instructions that force an alignment... */
6728 /* None of these opcodes are bundle-able. */
6729 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6730 {
6731 int max_fill;
6732
6733 xtensa_set_frag_assembly_state (frag_now);
6734 frag_now->tc_frag_data.is_insn = TRUE;
6735
6736 max_fill = get_text_align_max_fill_size
6737 (get_text_align_power (xtensa_fetch_width),
6738 TRUE, frag_now->tc_frag_data.is_no_density);
6739
6740 if (use_transform ())
6741 frag_var (rs_machine_dependent, max_fill, max_fill,
6742 RELAX_ALIGN_NEXT_OPCODE,
6743 frag_now->fr_symbol,
6744 frag_now->fr_offset,
6745 NULL);
6746 else
6747 frag_var (rs_machine_dependent, 0, 0,
6748 RELAX_CHECK_ALIGN_NEXT_OPCODE, 0, 0, NULL);
6749 xtensa_set_frag_assembly_state (frag_now);
6750
6751 xtensa_move_labels (frag_now, 0, FALSE);
6752 }
6753
6754 if (vinsn->slots[0].opcode == xtensa_entry_opcode
6755 && !vinsn->slots[0].is_specific_opcode)
6756 {
6757 xtensa_mark_literal_pool_location ();
6758 xtensa_move_labels (frag_now, 0, TRUE);
6759 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6760 }
6761
6762 if (vinsn->num_slots == 1)
6763 {
6764 if (workaround_a0_b_retw && use_transform ())
6765 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6766 is_register_writer (&vinsn->slots[0], "a", 0));
6767
6768 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6769 is_bad_loopend_opcode (&vinsn->slots[0]));
6770 }
6771 else
6772 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6773
6774 insn_size = xtensa_format_length (isa, vinsn->format);
6775
6776 extra_space = relaxation_requirements (vinsn);
6777
6778 /* vinsn_to_insnbuf will produce the error. */
6779 if (vinsn->format != XTENSA_UNDEFINED)
6780 {
6781 f = frag_more (insn_size + extra_space);
6782 xtensa_set_frag_assembly_state (frag_now);
6783 frag_now->tc_frag_data.is_insn = TRUE;
6784 }
6785
6786 vinsn_to_insnbuf (vinsn, f, frag_now, TRUE);
6787 if (vinsn->format == XTENSA_UNDEFINED)
6788 return;
6789
6790 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
6791
6792 xtensa_dwarf2_emit_insn (insn_size - extra_space, &best_loc);
6793
6794 for (slot = 0; slot < vinsn->num_slots; slot++)
6795 {
6796 TInsn *tinsn = &vinsn->slots[slot];
6797 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
6798 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6799 frag_now->tc_frag_data.slot_sub_symbols[slot] = tinsn->sub_symbol;
6800 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
6801 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6802 if (tinsn->literal_space != 0)
6803 xg_assemble_literal_space (tinsn->literal_space, slot);
6804
6805 if (tinsn->subtype == RELAX_NARROW)
6806 assert (vinsn->num_slots == 1);
6807 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6808 is_jump = TRUE;
6809 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6810 is_branch = TRUE;
6811
6812 if (tinsn->subtype || tinsn->symbol || tinsn->record_fix
6813 || tinsn->offset || tinsn->literal_frag || is_jump || is_branch)
6814 finish_frag = TRUE;
6815 }
6816
6817 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6818 frag_now->tc_frag_data.is_specific_opcode = TRUE;
6819
6820 if (finish_frag)
6821 {
6822 frag_variant (rs_machine_dependent,
6823 extra_space, extra_space, RELAX_SLOTS,
6824 frag_now->fr_symbol, frag_now->fr_offset, f);
6825 xtensa_set_frag_assembly_state (frag_now);
6826 }
6827
6828 /* Special cases for loops:
6829 close_loop_end should be inserted AFTER short_loop.
6830 Make sure that CLOSE loops are processed BEFORE short_loops
6831 when converting them. */
6832
6833 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6834 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6835 && !vinsn->slots[0].is_specific_opcode)
6836 {
6837 if (workaround_short_loop && use_transform ())
6838 {
6839 maybe_has_short_loop = TRUE;
6840 frag_now->tc_frag_data.is_insn = TRUE;
6841 frag_var (rs_machine_dependent, 4, 4,
6842 RELAX_ADD_NOP_IF_SHORT_LOOP,
6843 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6844 frag_now->tc_frag_data.is_insn = TRUE;
6845 frag_var (rs_machine_dependent, 4, 4,
6846 RELAX_ADD_NOP_IF_SHORT_LOOP,
6847 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6848 }
6849
6850 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6851 loop at least 12 bytes away from another loop's end. */
6852 if (workaround_close_loop_end && use_transform ())
6853 {
6854 maybe_has_close_loop_end = TRUE;
6855 frag_now->tc_frag_data.is_insn = TRUE;
6856 frag_var (rs_machine_dependent, 12, 12,
6857 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6858 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6859 }
6860 }
6861
6862 if (use_transform ())
6863 {
6864 if (is_jump)
6865 {
6866 assert (finish_frag);
6867 frag_var (rs_machine_dependent,
6868 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6869 RELAX_UNREACHABLE,
6870 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6871 xtensa_set_frag_assembly_state (frag_now);
6872 }
6873 else if (is_branch && do_align_targets ())
6874 {
6875 assert (finish_frag);
6876 frag_var (rs_machine_dependent,
6877 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6878 RELAX_MAYBE_UNREACHABLE,
6879 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6880 xtensa_set_frag_assembly_state (frag_now);
6881 frag_var (rs_machine_dependent,
6882 0, 0,
6883 RELAX_MAYBE_DESIRE_ALIGN,
6884 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6885 xtensa_set_frag_assembly_state (frag_now);
6886 }
6887 }
6888
6889 /* Now, if the original opcode was a call... */
6890 if (do_align_targets ()
6891 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6892 {
6893 float freq = get_subseg_total_freq (now_seg, now_subseg);
6894 frag_now->tc_frag_data.is_insn = TRUE;
6895 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6896 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6897 xtensa_set_frag_assembly_state (frag_now);
6898 }
6899
6900 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6901 {
6902 frag_wane (frag_now);
6903 frag_new (0);
6904 xtensa_set_frag_assembly_state (frag_now);
6905 }
6906 }
6907
6908 \f
6909 /* xtensa_end and helper functions. */
6910
6911 static void xtensa_cleanup_align_frags (void);
6912 static void xtensa_fix_target_frags (void);
6913 static void xtensa_mark_narrow_branches (void);
6914 static void xtensa_mark_zcl_first_insns (void);
6915 static void xtensa_fix_a0_b_retw_frags (void);
6916 static void xtensa_fix_b_j_loop_end_frags (void);
6917 static void xtensa_fix_close_loop_end_frags (void);
6918 static void xtensa_fix_short_loop_frags (void);
6919 static void xtensa_sanity_check (void);
6920
6921 void
6922 xtensa_end (void)
6923 {
6924 directive_balance ();
6925 xtensa_flush_pending_output ();
6926
6927 past_xtensa_end = TRUE;
6928
6929 xtensa_move_literals ();
6930
6931 xtensa_reorder_segments ();
6932 xtensa_cleanup_align_frags ();
6933 xtensa_fix_target_frags ();
6934 if (workaround_a0_b_retw && has_a0_b_retw)
6935 xtensa_fix_a0_b_retw_frags ();
6936 if (workaround_b_j_loop_end)
6937 xtensa_fix_b_j_loop_end_frags ();
6938
6939 /* "close_loop_end" should be processed BEFORE "short_loop". */
6940 if (workaround_close_loop_end && maybe_has_close_loop_end)
6941 xtensa_fix_close_loop_end_frags ();
6942
6943 if (workaround_short_loop && maybe_has_short_loop)
6944 xtensa_fix_short_loop_frags ();
6945 xtensa_mark_narrow_branches ();
6946 xtensa_mark_zcl_first_insns ();
6947
6948 xtensa_sanity_check ();
6949 }
6950
6951
6952 static void
6953 xtensa_cleanup_align_frags (void)
6954 {
6955 frchainS *frchP;
6956
6957 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6958 {
6959 fragS *fragP;
6960 /* Walk over all of the fragments in a subsection. */
6961 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6962 {
6963 if ((fragP->fr_type == rs_align
6964 || fragP->fr_type == rs_align_code
6965 || (fragP->fr_type == rs_machine_dependent
6966 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6967 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6968 && fragP->fr_fix == 0)
6969 {
6970 fragS *next = fragP->fr_next;
6971
6972 while (next
6973 && next->fr_fix == 0
6974 && next->fr_type == rs_machine_dependent
6975 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6976 {
6977 frag_wane (next);
6978 next = next->fr_next;
6979 }
6980 }
6981 /* If we don't widen branch targets, then they
6982 will be easier to align. */
6983 if (fragP->tc_frag_data.is_branch_target
6984 && fragP->fr_opcode == fragP->fr_literal
6985 && fragP->fr_type == rs_machine_dependent
6986 && fragP->fr_subtype == RELAX_SLOTS
6987 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6988 frag_wane (fragP);
6989 if (fragP->fr_type == rs_machine_dependent
6990 && fragP->fr_subtype == RELAX_UNREACHABLE)
6991 fragP->tc_frag_data.is_unreachable = TRUE;
6992 }
6993 }
6994 }
6995
6996
6997 /* Re-process all of the fragments looking to convert all of the
6998 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
6999 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7000 Otherwise, convert to a .fill 0. */
7001
7002 static void
7003 xtensa_fix_target_frags (void)
7004 {
7005 frchainS *frchP;
7006
7007 /* When this routine is called, all of the subsections are still intact
7008 so we walk over subsections instead of sections. */
7009 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7010 {
7011 fragS *fragP;
7012
7013 /* Walk over all of the fragments in a subsection. */
7014 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7015 {
7016 if (fragP->fr_type == rs_machine_dependent
7017 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7018 {
7019 if (next_frag_is_branch_target (fragP))
7020 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7021 else
7022 frag_wane (fragP);
7023 }
7024 }
7025 }
7026 }
7027
7028
7029 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7030
7031 static void
7032 xtensa_mark_narrow_branches (void)
7033 {
7034 frchainS *frchP;
7035
7036 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7037 {
7038 fragS *fragP;
7039 /* Walk over all of the fragments in a subsection. */
7040 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7041 {
7042 if (fragP->fr_type == rs_machine_dependent
7043 && fragP->fr_subtype == RELAX_SLOTS
7044 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7045 {
7046 vliw_insn vinsn;
7047 const expressionS *expr;
7048 symbolS *symbolP;
7049
7050 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7051 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7052
7053 expr = &vinsn.slots[0].tok[1];
7054 symbolP = expr->X_add_symbol;
7055
7056 if (vinsn.num_slots == 1
7057 && xtensa_opcode_is_branch (xtensa_default_isa,
7058 vinsn.slots[0].opcode)
7059 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7060 && is_narrow_branch_guaranteed_in_range (fragP,
7061 &vinsn.slots[0]))
7062 {
7063 fragP->fr_subtype = RELAX_SLOTS;
7064 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7065 }
7066 }
7067 }
7068 }
7069 }
7070
7071
7072 /* A branch is typically widened only when its target is out of
7073 range. However, we would like to widen them to align a subsequent
7074 branch target when possible.
7075
7076 Because the branch relaxation code is so convoluted, the optimal solution
7077 (combining the two cases) is difficult to get right in all circumstances.
7078 We therefore go with an "almost as good" solution, where we only
7079 use for alignment narrow branches that definitely will not expand to a
7080 jump and a branch. These functions find and mark these cases. */
7081
7082 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7083 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7084 We start counting beginning with the frag after the 2-byte branch, so the
7085 maximum offset is (4 - 2) + 63 = 65. */
7086 #define MAX_IMMED6 65
7087
7088 static offsetT unrelaxed_frag_max_size (fragS *);
7089
7090 static bfd_boolean
7091 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7092 {
7093 const expressionS *expr = &tinsn->tok[1];
7094 symbolS *symbolP = expr->X_add_symbol;
7095 fragS *target_frag = symbol_get_frag (symbolP);
7096 offsetT max_distance = expr->X_add_number;
7097 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7098 if (is_branch_jmp_to_next (tinsn, fragP))
7099 return FALSE;
7100
7101 /* The branch doesn't branch over it's own frag,
7102 but over the subsequent ones. */
7103 fragP = fragP->fr_next;
7104 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7105 {
7106 max_distance += unrelaxed_frag_max_size (fragP);
7107 fragP = fragP->fr_next;
7108 }
7109 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7110 return TRUE;
7111 return FALSE;
7112 }
7113
7114
7115 static void
7116 xtensa_mark_zcl_first_insns (void)
7117 {
7118 frchainS *frchP;
7119
7120 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7121 {
7122 fragS *fragP;
7123 /* Walk over all of the fragments in a subsection. */
7124 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7125 {
7126 if (fragP->fr_type == rs_machine_dependent
7127 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7128 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7129 {
7130 /* Find the loop frag. */
7131 fragS *targ_frag = next_non_empty_frag (fragP);
7132 /* Find the first insn frag. */
7133 targ_frag = next_non_empty_frag (targ_frag);
7134
7135 /* Of course, sometimes (mostly for toy test cases) a
7136 zero-cost loop instruction is the last in a section. */
7137 if (targ_frag)
7138 {
7139 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7140 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7141 frag_wane (fragP);
7142 }
7143 }
7144 }
7145 }
7146 }
7147
7148
7149 /* Re-process all of the fragments looking to convert all of the
7150 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7151 conditional branch or a retw/retw.n, convert this frag to one that
7152 will generate a NOP. In any case close it off with a .fill 0. */
7153
7154 static bfd_boolean next_instrs_are_b_retw (fragS *);
7155
7156 static void
7157 xtensa_fix_a0_b_retw_frags (void)
7158 {
7159 frchainS *frchP;
7160
7161 /* When this routine is called, all of the subsections are still intact
7162 so we walk over subsections instead of sections. */
7163 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7164 {
7165 fragS *fragP;
7166
7167 /* Walk over all of the fragments in a subsection. */
7168 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7169 {
7170 if (fragP->fr_type == rs_machine_dependent
7171 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7172 {
7173 if (next_instrs_are_b_retw (fragP))
7174 {
7175 if (fragP->tc_frag_data.is_no_transform)
7176 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7177 else
7178 relax_frag_add_nop (fragP);
7179 }
7180 frag_wane (fragP);
7181 }
7182 }
7183 }
7184 }
7185
7186
7187 static bfd_boolean
7188 next_instrs_are_b_retw (fragS *fragP)
7189 {
7190 xtensa_opcode opcode;
7191 xtensa_format fmt;
7192 const fragS *next_fragP = next_non_empty_frag (fragP);
7193 static xtensa_insnbuf insnbuf = NULL;
7194 static xtensa_insnbuf slotbuf = NULL;
7195 xtensa_isa isa = xtensa_default_isa;
7196 int offset = 0;
7197 int slot;
7198 bfd_boolean branch_seen = FALSE;
7199
7200 if (!insnbuf)
7201 {
7202 insnbuf = xtensa_insnbuf_alloc (isa);
7203 slotbuf = xtensa_insnbuf_alloc (isa);
7204 }
7205
7206 if (next_fragP == NULL)
7207 return FALSE;
7208
7209 /* Check for the conditional branch. */
7210 xtensa_insnbuf_from_chars
7211 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7212 fmt = xtensa_format_decode (isa, insnbuf);
7213 if (fmt == XTENSA_UNDEFINED)
7214 return FALSE;
7215
7216 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7217 {
7218 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7219 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7220
7221 branch_seen = (branch_seen
7222 || xtensa_opcode_is_branch (isa, opcode) == 1);
7223 }
7224
7225 if (!branch_seen)
7226 return FALSE;
7227
7228 offset += xtensa_format_length (isa, fmt);
7229 if (offset == next_fragP->fr_fix)
7230 {
7231 next_fragP = next_non_empty_frag (next_fragP);
7232 offset = 0;
7233 }
7234
7235 if (next_fragP == NULL)
7236 return FALSE;
7237
7238 /* Check for the retw/retw.n. */
7239 xtensa_insnbuf_from_chars
7240 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7241 fmt = xtensa_format_decode (isa, insnbuf);
7242
7243 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7244 have no problems. */
7245 if (fmt == XTENSA_UNDEFINED
7246 || xtensa_format_num_slots (isa, fmt) != 1)
7247 return FALSE;
7248
7249 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7250 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7251
7252 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7253 return TRUE;
7254
7255 return FALSE;
7256 }
7257
7258
7259 /* Re-process all of the fragments looking to convert all of the
7260 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7261 loop end label, convert this frag to one that will generate a NOP.
7262 In any case close it off with a .fill 0. */
7263
7264 static bfd_boolean next_instr_is_loop_end (fragS *);
7265
7266 static void
7267 xtensa_fix_b_j_loop_end_frags (void)
7268 {
7269 frchainS *frchP;
7270
7271 /* When this routine is called, all of the subsections are still intact
7272 so we walk over subsections instead of sections. */
7273 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7274 {
7275 fragS *fragP;
7276
7277 /* Walk over all of the fragments in a subsection. */
7278 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7279 {
7280 if (fragP->fr_type == rs_machine_dependent
7281 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7282 {
7283 if (next_instr_is_loop_end (fragP))
7284 {
7285 if (fragP->tc_frag_data.is_no_transform)
7286 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7287 else
7288 relax_frag_add_nop (fragP);
7289 }
7290 frag_wane (fragP);
7291 }
7292 }
7293 }
7294 }
7295
7296
7297 static bfd_boolean
7298 next_instr_is_loop_end (fragS *fragP)
7299 {
7300 const fragS *next_fragP;
7301
7302 if (next_frag_is_loop_target (fragP))
7303 return FALSE;
7304
7305 next_fragP = next_non_empty_frag (fragP);
7306 if (next_fragP == NULL)
7307 return FALSE;
7308
7309 if (!next_frag_is_loop_target (next_fragP))
7310 return FALSE;
7311
7312 /* If the size is >= 3 then there is more than one instruction here.
7313 The hardware bug will not fire. */
7314 if (next_fragP->fr_fix > 3)
7315 return FALSE;
7316
7317 return TRUE;
7318 }
7319
7320
7321 /* Re-process all of the fragments looking to convert all of the
7322 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7323 not MY loop's loop end within 12 bytes, add enough nops here to
7324 make it at least 12 bytes away. In any case close it off with a
7325 .fill 0. */
7326
7327 static offsetT min_bytes_to_other_loop_end
7328 (fragS *, fragS *, offsetT, offsetT);
7329
7330 static void
7331 xtensa_fix_close_loop_end_frags (void)
7332 {
7333 frchainS *frchP;
7334
7335 /* When this routine is called, all of the subsections are still intact
7336 so we walk over subsections instead of sections. */
7337 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7338 {
7339 fragS *fragP;
7340
7341 fragS *current_target = NULL;
7342 offsetT current_offset = 0;
7343
7344 /* Walk over all of the fragments in a subsection. */
7345 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7346 {
7347 if (fragP->fr_type == rs_machine_dependent
7348 && ((fragP->fr_subtype == RELAX_IMMED)
7349 || ((fragP->fr_subtype == RELAX_SLOTS)
7350 && (fragP->tc_frag_data.slot_subtypes[0]
7351 == RELAX_IMMED))))
7352 {
7353 /* Read it. If the instruction is a loop, get the target. */
7354 TInsn t_insn;
7355 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7356 if (xtensa_opcode_is_loop (xtensa_default_isa,
7357 t_insn.opcode) == 1)
7358 {
7359 /* Get the current fragment target. */
7360 if (fragP->tc_frag_data.slot_symbols[0])
7361 {
7362 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7363 current_target = symbol_get_frag (sym);
7364 current_offset = fragP->fr_offset;
7365 }
7366 }
7367 }
7368
7369 if (current_target
7370 && fragP->fr_type == rs_machine_dependent
7371 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7372 {
7373 offsetT min_bytes;
7374 int bytes_added = 0;
7375
7376 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7377 /* Max out at 12. */
7378 min_bytes = min_bytes_to_other_loop_end
7379 (fragP->fr_next, current_target, current_offset,
7380 REQUIRED_LOOP_DIVIDING_BYTES);
7381
7382 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7383 {
7384 if (fragP->tc_frag_data.is_no_transform)
7385 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7386 else
7387 {
7388 while (min_bytes + bytes_added
7389 < REQUIRED_LOOP_DIVIDING_BYTES)
7390 {
7391 int length = 3;
7392
7393 if (fragP->fr_var < length)
7394 as_fatal (_("fr_var %lu < length %d"),
7395 (long) fragP->fr_var, length);
7396 else
7397 {
7398 assemble_nop (length,
7399 fragP->fr_literal + fragP->fr_fix);
7400 fragP->fr_fix += length;
7401 fragP->fr_var -= length;
7402 }
7403 bytes_added += length;
7404 }
7405 }
7406 }
7407 frag_wane (fragP);
7408 }
7409 assert (fragP->fr_type != rs_machine_dependent
7410 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7411 }
7412 }
7413 }
7414
7415
7416 static offsetT unrelaxed_frag_min_size (fragS *);
7417
7418 static offsetT
7419 min_bytes_to_other_loop_end (fragS *fragP,
7420 fragS *current_target,
7421 offsetT current_offset,
7422 offsetT max_size)
7423 {
7424 offsetT offset = 0;
7425 fragS *current_fragP;
7426
7427 for (current_fragP = fragP;
7428 current_fragP;
7429 current_fragP = current_fragP->fr_next)
7430 {
7431 if (current_fragP->tc_frag_data.is_loop_target
7432 && current_fragP != current_target)
7433 return offset + current_offset;
7434
7435 offset += unrelaxed_frag_min_size (current_fragP);
7436
7437 if (offset + current_offset >= max_size)
7438 return max_size;
7439 }
7440 return max_size;
7441 }
7442
7443
7444 static offsetT
7445 unrelaxed_frag_min_size (fragS *fragP)
7446 {
7447 offsetT size = fragP->fr_fix;
7448
7449 /* Add fill size. */
7450 if (fragP->fr_type == rs_fill)
7451 size += fragP->fr_offset;
7452
7453 return size;
7454 }
7455
7456
7457 static offsetT
7458 unrelaxed_frag_max_size (fragS *fragP)
7459 {
7460 offsetT size = fragP->fr_fix;
7461 switch (fragP->fr_type)
7462 {
7463 case 0:
7464 /* Empty frags created by the obstack allocation scheme
7465 end up with type 0. */
7466 break;
7467 case rs_fill:
7468 case rs_org:
7469 case rs_space:
7470 size += fragP->fr_offset;
7471 break;
7472 case rs_align:
7473 case rs_align_code:
7474 case rs_align_test:
7475 case rs_leb128:
7476 case rs_cfa:
7477 case rs_dwarf2dbg:
7478 /* No further adjustments needed. */
7479 break;
7480 case rs_machine_dependent:
7481 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7482 size += fragP->fr_var;
7483 break;
7484 default:
7485 /* We had darn well better know how big it is. */
7486 assert (0);
7487 break;
7488 }
7489
7490 return size;
7491 }
7492
7493
7494 /* Re-process all of the fragments looking to convert all
7495 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7496
7497 A)
7498 1) the instruction size count to the loop end label
7499 is too short (<= 2 instructions),
7500 2) loop has a jump or branch in it
7501
7502 or B)
7503 1) workaround_all_short_loops is TRUE
7504 2) The generating loop was a 'loopgtz' or 'loopnez'
7505 3) the instruction size count to the loop end label is too short
7506 (<= 2 instructions)
7507 then convert this frag (and maybe the next one) to generate a NOP.
7508 In any case close it off with a .fill 0. */
7509
7510 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7511 static bfd_boolean branch_before_loop_end (fragS *);
7512
7513 static void
7514 xtensa_fix_short_loop_frags (void)
7515 {
7516 frchainS *frchP;
7517
7518 /* When this routine is called, all of the subsections are still intact
7519 so we walk over subsections instead of sections. */
7520 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7521 {
7522 fragS *fragP;
7523 fragS *current_target = NULL;
7524 offsetT current_offset = 0;
7525 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7526
7527 /* Walk over all of the fragments in a subsection. */
7528 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7529 {
7530 /* Check on the current loop. */
7531 if (fragP->fr_type == rs_machine_dependent
7532 && ((fragP->fr_subtype == RELAX_IMMED)
7533 || ((fragP->fr_subtype == RELAX_SLOTS)
7534 && (fragP->tc_frag_data.slot_subtypes[0]
7535 == RELAX_IMMED))))
7536 {
7537 TInsn t_insn;
7538
7539 /* Read it. If the instruction is a loop, get the target. */
7540 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7541 if (xtensa_opcode_is_loop (xtensa_default_isa,
7542 t_insn.opcode) == 1)
7543 {
7544 /* Get the current fragment target. */
7545 if (fragP->tc_frag_data.slot_symbols[0])
7546 {
7547 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7548 current_target = symbol_get_frag (sym);
7549 current_offset = fragP->fr_offset;
7550 current_opcode = t_insn.opcode;
7551 }
7552 }
7553 }
7554
7555 if (fragP->fr_type == rs_machine_dependent
7556 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7557 {
7558 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7559 && (branch_before_loop_end (fragP->fr_next)
7560 || (workaround_all_short_loops
7561 && current_opcode != XTENSA_UNDEFINED
7562 && current_opcode != xtensa_loop_opcode)))
7563 {
7564 if (fragP->tc_frag_data.is_no_transform)
7565 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7566 else
7567 relax_frag_add_nop (fragP);
7568 }
7569 frag_wane (fragP);
7570 }
7571 }
7572 }
7573 }
7574
7575
7576 static int unrelaxed_frag_min_insn_count (fragS *);
7577
7578 static int
7579 count_insns_to_loop_end (fragS *base_fragP,
7580 bfd_boolean count_relax_add,
7581 int max_count)
7582 {
7583 fragS *fragP = NULL;
7584 int insn_count = 0;
7585
7586 fragP = base_fragP;
7587
7588 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7589 {
7590 insn_count += unrelaxed_frag_min_insn_count (fragP);
7591 if (insn_count >= max_count)
7592 return max_count;
7593
7594 if (count_relax_add)
7595 {
7596 if (fragP->fr_type == rs_machine_dependent
7597 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7598 {
7599 /* In order to add the appropriate number of
7600 NOPs, we count an instruction for downstream
7601 occurrences. */
7602 insn_count++;
7603 if (insn_count >= max_count)
7604 return max_count;
7605 }
7606 }
7607 }
7608 return insn_count;
7609 }
7610
7611
7612 static int
7613 unrelaxed_frag_min_insn_count (fragS *fragP)
7614 {
7615 xtensa_isa isa = xtensa_default_isa;
7616 static xtensa_insnbuf insnbuf = NULL;
7617 int insn_count = 0;
7618 int offset = 0;
7619
7620 if (!fragP->tc_frag_data.is_insn)
7621 return insn_count;
7622
7623 if (!insnbuf)
7624 insnbuf = xtensa_insnbuf_alloc (isa);
7625
7626 /* Decode the fixed instructions. */
7627 while (offset < fragP->fr_fix)
7628 {
7629 xtensa_format fmt;
7630
7631 xtensa_insnbuf_from_chars
7632 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7633 fmt = xtensa_format_decode (isa, insnbuf);
7634
7635 if (fmt == XTENSA_UNDEFINED)
7636 {
7637 as_fatal (_("undecodable instruction in instruction frag"));
7638 return insn_count;
7639 }
7640 offset += xtensa_format_length (isa, fmt);
7641 insn_count++;
7642 }
7643
7644 return insn_count;
7645 }
7646
7647
7648 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7649
7650 static bfd_boolean
7651 branch_before_loop_end (fragS *base_fragP)
7652 {
7653 fragS *fragP;
7654
7655 for (fragP = base_fragP;
7656 fragP && !fragP->tc_frag_data.is_loop_target;
7657 fragP = fragP->fr_next)
7658 {
7659 if (unrelaxed_frag_has_b_j (fragP))
7660 return TRUE;
7661 }
7662 return FALSE;
7663 }
7664
7665
7666 static bfd_boolean
7667 unrelaxed_frag_has_b_j (fragS *fragP)
7668 {
7669 static xtensa_insnbuf insnbuf = NULL;
7670 xtensa_isa isa = xtensa_default_isa;
7671 int offset = 0;
7672
7673 if (!fragP->tc_frag_data.is_insn)
7674 return FALSE;
7675
7676 if (!insnbuf)
7677 insnbuf = xtensa_insnbuf_alloc (isa);
7678
7679 /* Decode the fixed instructions. */
7680 while (offset < fragP->fr_fix)
7681 {
7682 xtensa_format fmt;
7683 int slot;
7684
7685 xtensa_insnbuf_from_chars
7686 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7687 fmt = xtensa_format_decode (isa, insnbuf);
7688 if (fmt == XTENSA_UNDEFINED)
7689 return FALSE;
7690
7691 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7692 {
7693 xtensa_opcode opcode =
7694 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7695 if (xtensa_opcode_is_branch (isa, opcode) == 1
7696 || xtensa_opcode_is_jump (isa, opcode) == 1)
7697 return TRUE;
7698 }
7699 offset += xtensa_format_length (isa, fmt);
7700 }
7701 return FALSE;
7702 }
7703
7704
7705 /* Checks to be made after initial assembly but before relaxation. */
7706
7707 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7708 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7709
7710 static void
7711 xtensa_sanity_check (void)
7712 {
7713 char *file_name;
7714 unsigned line;
7715
7716 frchainS *frchP;
7717
7718 as_where (&file_name, &line);
7719 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7720 {
7721 fragS *fragP;
7722
7723 /* Walk over all of the fragments in a subsection. */
7724 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7725 {
7726 /* Currently we only check for empty loops here. */
7727 if (fragP->fr_type == rs_machine_dependent
7728 && fragP->fr_subtype == RELAX_IMMED)
7729 {
7730 static xtensa_insnbuf insnbuf = NULL;
7731 TInsn t_insn;
7732
7733 if (fragP->fr_opcode != NULL)
7734 {
7735 if (!insnbuf)
7736 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7737 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7738 tinsn_immed_from_frag (&t_insn, fragP, 0);
7739
7740 if (xtensa_opcode_is_loop (xtensa_default_isa,
7741 t_insn.opcode) == 1)
7742 {
7743 if (is_empty_loop (&t_insn, fragP))
7744 {
7745 new_logical_line (fragP->fr_file, fragP->fr_line);
7746 as_bad (_("invalid empty loop"));
7747 }
7748 if (!is_local_forward_loop (&t_insn, fragP))
7749 {
7750 new_logical_line (fragP->fr_file, fragP->fr_line);
7751 as_bad (_("loop target does not follow "
7752 "loop instruction in section"));
7753 }
7754 }
7755 }
7756 }
7757 }
7758 }
7759 new_logical_line (file_name, line);
7760 }
7761
7762
7763 #define LOOP_IMMED_OPN 1
7764
7765 /* Return TRUE if the loop target is the next non-zero fragment. */
7766
7767 static bfd_boolean
7768 is_empty_loop (const TInsn *insn, fragS *fragP)
7769 {
7770 const expressionS *expr;
7771 symbolS *symbolP;
7772 fragS *next_fragP;
7773
7774 if (insn->insn_type != ITYPE_INSN)
7775 return FALSE;
7776
7777 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
7778 return FALSE;
7779
7780 if (insn->ntok <= LOOP_IMMED_OPN)
7781 return FALSE;
7782
7783 expr = &insn->tok[LOOP_IMMED_OPN];
7784
7785 if (expr->X_op != O_symbol)
7786 return FALSE;
7787
7788 symbolP = expr->X_add_symbol;
7789 if (!symbolP)
7790 return FALSE;
7791
7792 if (symbol_get_frag (symbolP) == NULL)
7793 return FALSE;
7794
7795 if (S_GET_VALUE (symbolP) != 0)
7796 return FALSE;
7797
7798 /* Walk through the zero-size fragments from this one. If we find
7799 the target fragment, then this is a zero-size loop. */
7800
7801 for (next_fragP = fragP->fr_next;
7802 next_fragP != NULL;
7803 next_fragP = next_fragP->fr_next)
7804 {
7805 if (next_fragP == symbol_get_frag (symbolP))
7806 return TRUE;
7807 if (next_fragP->fr_fix != 0)
7808 return FALSE;
7809 }
7810 return FALSE;
7811 }
7812
7813
7814 static bfd_boolean
7815 is_local_forward_loop (const TInsn *insn, fragS *fragP)
7816 {
7817 const expressionS *expr;
7818 symbolS *symbolP;
7819 fragS *next_fragP;
7820
7821 if (insn->insn_type != ITYPE_INSN)
7822 return FALSE;
7823
7824 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
7825 return FALSE;
7826
7827 if (insn->ntok <= LOOP_IMMED_OPN)
7828 return FALSE;
7829
7830 expr = &insn->tok[LOOP_IMMED_OPN];
7831
7832 if (expr->X_op != O_symbol)
7833 return FALSE;
7834
7835 symbolP = expr->X_add_symbol;
7836 if (!symbolP)
7837 return FALSE;
7838
7839 if (symbol_get_frag (symbolP) == NULL)
7840 return FALSE;
7841
7842 /* Walk through fragments until we find the target.
7843 If we do not find the target, then this is an invalid loop. */
7844
7845 for (next_fragP = fragP->fr_next;
7846 next_fragP != NULL;
7847 next_fragP = next_fragP->fr_next)
7848 {
7849 if (next_fragP == symbol_get_frag (symbolP))
7850 return TRUE;
7851 }
7852
7853 return FALSE;
7854 }
7855
7856 \f
7857 /* Alignment Functions. */
7858
7859 static int
7860 get_text_align_power (unsigned target_size)
7861 {
7862 int i = 0;
7863 unsigned power = 1;
7864
7865 assert (target_size <= INT_MAX);
7866 while (target_size > power)
7867 {
7868 power <<= 1;
7869 i += 1;
7870 }
7871 return i;
7872 }
7873
7874
7875 static int
7876 get_text_align_max_fill_size (int align_pow,
7877 bfd_boolean use_nops,
7878 bfd_boolean use_no_density)
7879 {
7880 if (!use_nops)
7881 return (1 << align_pow);
7882 if (use_no_density)
7883 return 3 * (1 << align_pow);
7884
7885 return 1 + (1 << align_pow);
7886 }
7887
7888
7889 /* Calculate the minimum bytes of fill needed at "address" to align a
7890 target instruction of size "target_size" so that it does not cross a
7891 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7892 the fill can be an arbitrary number of bytes. Otherwise, the space must
7893 be filled by NOP instructions. */
7894
7895 static int
7896 get_text_align_fill_size (addressT address,
7897 int align_pow,
7898 int target_size,
7899 bfd_boolean use_nops,
7900 bfd_boolean use_no_density)
7901 {
7902 addressT alignment, fill, fill_limit, fill_step;
7903 bfd_boolean skip_one = FALSE;
7904
7905 alignment = (1 << align_pow);
7906 assert (target_size > 0 && alignment >= (addressT) target_size);
7907
7908 if (!use_nops)
7909 {
7910 fill_limit = alignment;
7911 fill_step = 1;
7912 }
7913 else if (!use_no_density)
7914 {
7915 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7916 fill_limit = alignment * 2;
7917 fill_step = 1;
7918 skip_one = TRUE;
7919 }
7920 else
7921 {
7922 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7923 fill_limit = alignment * 3;
7924 fill_step = 3;
7925 }
7926
7927 /* Try all fill sizes until finding one that works. */
7928 for (fill = 0; fill < fill_limit; fill += fill_step)
7929 {
7930 if (skip_one && fill == 1)
7931 continue;
7932 if ((address + fill) >> align_pow
7933 == (address + fill + target_size - 1) >> align_pow)
7934 return fill;
7935 }
7936 assert (0);
7937 return 0;
7938 }
7939
7940
7941 static int
7942 branch_align_power (segT sec)
7943 {
7944 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7945 is aligned to at least an 8-byte boundary, then a branch target need
7946 only fit within an 8-byte aligned block of memory to avoid a stall.
7947 Otherwise, try to fit branch targets within 4-byte aligned blocks
7948 (which may be insufficient, e.g., if the section has no alignment, but
7949 it's good enough). */
7950 if (xtensa_fetch_width == 8)
7951 {
7952 if (get_recorded_alignment (sec) >= 3)
7953 return 3;
7954 }
7955 else
7956 assert (xtensa_fetch_width == 4);
7957
7958 return 2;
7959 }
7960
7961
7962 /* This will assert if it is not possible. */
7963
7964 static int
7965 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
7966 {
7967 int count = 0;
7968
7969 if (use_no_density)
7970 {
7971 assert (fill_size % 3 == 0);
7972 return (fill_size / 3);
7973 }
7974
7975 assert (fill_size != 1); /* Bad argument. */
7976
7977 while (fill_size > 1)
7978 {
7979 int insn_size = 3;
7980 if (fill_size == 2 || fill_size == 4)
7981 insn_size = 2;
7982 fill_size -= insn_size;
7983 count++;
7984 }
7985 assert (fill_size != 1); /* Bad algorithm. */
7986 return count;
7987 }
7988
7989
7990 static int
7991 get_text_align_nth_nop_size (offsetT fill_size,
7992 int n,
7993 bfd_boolean use_no_density)
7994 {
7995 int count = 0;
7996
7997 if (use_no_density)
7998 return 3;
7999
8000 assert (fill_size != 1); /* Bad argument. */
8001
8002 while (fill_size > 1)
8003 {
8004 int insn_size = 3;
8005 if (fill_size == 2 || fill_size == 4)
8006 insn_size = 2;
8007 fill_size -= insn_size;
8008 count++;
8009 if (n + 1 == count)
8010 return insn_size;
8011 }
8012 assert (0);
8013 return 0;
8014 }
8015
8016
8017 /* For the given fragment, find the appropriate address
8018 for it to begin at if we are using NOPs to align it. */
8019
8020 static addressT
8021 get_noop_aligned_address (fragS *fragP, addressT address)
8022 {
8023 /* The rule is: get next fragment's FIRST instruction. Find
8024 the smallest number of bytes that need to be added to
8025 ensure that the next fragment's FIRST instruction will fit
8026 in a single word.
8027
8028 E.G., 2 bytes : 0, 1, 2 mod 4
8029 3 bytes: 0, 1 mod 4
8030
8031 If the FIRST instruction MIGHT be relaxed,
8032 assume that it will become a 3-byte instruction.
8033
8034 Note again here that LOOP instructions are not bundleable,
8035 and this relaxation only applies to LOOP opcodes. */
8036
8037 int fill_size = 0;
8038 int first_insn_size;
8039 int loop_insn_size;
8040 addressT pre_opcode_bytes;
8041 int align_power;
8042 fragS *first_insn;
8043 xtensa_opcode opcode;
8044 bfd_boolean is_loop;
8045
8046 assert (fragP->fr_type == rs_machine_dependent);
8047 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8048
8049 /* Find the loop frag. */
8050 first_insn = next_non_empty_frag (fragP);
8051 /* Now find the first insn frag. */
8052 first_insn = next_non_empty_frag (first_insn);
8053
8054 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8055 assert (is_loop);
8056 loop_insn_size = xg_get_single_size (opcode);
8057
8058 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8059 pre_opcode_bytes += loop_insn_size;
8060
8061 /* For loops, the alignment depends on the size of the
8062 instruction following the loop, not the LOOP instruction. */
8063
8064 if (first_insn == NULL)
8065 return address;
8066
8067 assert (first_insn->tc_frag_data.is_first_loop_insn);
8068
8069 first_insn_size = frag_format_size (first_insn);
8070
8071 if (first_insn_size == 2 || first_insn_size == XTENSA_UNDEFINED)
8072 first_insn_size = 3; /* ISA specifies this */
8073
8074 /* If it was 8, then we'll need a larger alignment for the section. */
8075 align_power = get_text_align_power (first_insn_size);
8076 record_alignment (now_seg, align_power);
8077
8078 fill_size = get_text_align_fill_size
8079 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8080 fragP->tc_frag_data.is_no_density);
8081
8082 return address + fill_size;
8083 }
8084
8085
8086 /* 3 mechanisms for relaxing an alignment:
8087
8088 Align to a power of 2.
8089 Align so the next fragment's instruction does not cross a word boundary.
8090 Align the current instruction so that if the next instruction
8091 were 3 bytes, it would not cross a word boundary.
8092
8093 We can align with:
8094
8095 zeros - This is easy; always insert zeros.
8096 nops - 3-byte and 2-byte instructions
8097 2 - 2-byte nop
8098 3 - 3-byte nop
8099 4 - 2 2-byte nops
8100 >=5 : 3-byte instruction + fn (n-3)
8101 widening - widen previous instructions. */
8102
8103 static offsetT
8104 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8105 {
8106 addressT target_address, loop_insn_offset;
8107 int target_size;
8108 xtensa_opcode loop_opcode;
8109 bfd_boolean is_loop;
8110 int align_power;
8111 offsetT opt_diff;
8112 offsetT branch_align;
8113
8114 assert (fragP->fr_type == rs_machine_dependent);
8115 switch (fragP->fr_subtype)
8116 {
8117 case RELAX_DESIRE_ALIGN:
8118 target_size = next_frag_format_size (fragP);
8119 if (target_size == XTENSA_UNDEFINED)
8120 target_size = 3;
8121 align_power = branch_align_power (now_seg);
8122 branch_align = 1 << align_power;
8123 /* Don't count on the section alignment being as large as the target. */
8124 if (target_size > branch_align)
8125 target_size = branch_align;
8126 opt_diff = get_text_align_fill_size (address, align_power,
8127 target_size, FALSE, FALSE);
8128
8129 *max_diff = (opt_diff + branch_align
8130 - (target_size + ((address + opt_diff) % branch_align)));
8131 assert (*max_diff >= opt_diff);
8132 return opt_diff;
8133
8134 case RELAX_ALIGN_NEXT_OPCODE:
8135 target_size = next_frag_format_size (fragP);
8136 loop_insn_offset = 0;
8137 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8138 assert (is_loop);
8139
8140 /* If the loop has been expanded then the LOOP instruction
8141 could be at an offset from this fragment. */
8142 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8143 != RELAX_IMMED)
8144 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8145
8146 if (target_size == 2)
8147 target_size = 3; /* ISA specifies this */
8148
8149 /* In an ideal world, which is what we are shooting for here,
8150 we wouldn't need to use any NOPs immediately prior to the
8151 LOOP instruction. If this approach fails, relax_frag_loop_align
8152 will call get_noop_aligned_address. */
8153 target_address =
8154 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8155 align_power = get_text_align_power (target_size),
8156 opt_diff = get_text_align_fill_size (target_address, align_power,
8157 target_size, FALSE, FALSE);
8158
8159 *max_diff = xtensa_fetch_width
8160 - ((target_address + opt_diff) % xtensa_fetch_width)
8161 - target_size + opt_diff;
8162 assert (*max_diff >= opt_diff);
8163 return opt_diff;
8164
8165 default:
8166 break;
8167 }
8168 assert (0);
8169 return 0;
8170 }
8171
8172 \f
8173 /* md_relax_frag Hook and Helper Functions. */
8174
8175 static long relax_frag_loop_align (fragS *, long);
8176 static long relax_frag_for_align (fragS *, long);
8177 static long relax_frag_immed
8178 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8179
8180
8181 /* Return the number of bytes added to this fragment, given that the
8182 input has been stretched already by "stretch". */
8183
8184 long
8185 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8186 {
8187 xtensa_isa isa = xtensa_default_isa;
8188 int unreported = fragP->tc_frag_data.unreported_expansion;
8189 long new_stretch = 0;
8190 char *file_name;
8191 unsigned line;
8192 int lit_size;
8193 static xtensa_insnbuf vbuf = NULL;
8194 int slot, num_slots;
8195 xtensa_format fmt;
8196
8197 as_where (&file_name, &line);
8198 new_logical_line (fragP->fr_file, fragP->fr_line);
8199
8200 fragP->tc_frag_data.unreported_expansion = 0;
8201
8202 switch (fragP->fr_subtype)
8203 {
8204 case RELAX_ALIGN_NEXT_OPCODE:
8205 /* Always convert. */
8206 if (fragP->tc_frag_data.relax_seen)
8207 new_stretch = relax_frag_loop_align (fragP, stretch);
8208 break;
8209
8210 case RELAX_LOOP_END:
8211 /* Do nothing. */
8212 break;
8213
8214 case RELAX_LOOP_END_ADD_NOP:
8215 /* Add a NOP and switch to .fill 0. */
8216 new_stretch = relax_frag_add_nop (fragP);
8217 frag_wane (fragP);
8218 break;
8219
8220 case RELAX_DESIRE_ALIGN:
8221 /* Do nothing. The narrowing before this frag will either align
8222 it or not. */
8223 break;
8224
8225 case RELAX_LITERAL:
8226 case RELAX_LITERAL_FINAL:
8227 return 0;
8228
8229 case RELAX_LITERAL_NR:
8230 lit_size = 4;
8231 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8232 assert (unreported == lit_size);
8233 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8234 fragP->fr_var -= lit_size;
8235 fragP->fr_fix += lit_size;
8236 new_stretch = 4;
8237 break;
8238
8239 case RELAX_SLOTS:
8240 if (vbuf == NULL)
8241 vbuf = xtensa_insnbuf_alloc (isa);
8242
8243 xtensa_insnbuf_from_chars
8244 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8245 fmt = xtensa_format_decode (isa, vbuf);
8246 num_slots = xtensa_format_num_slots (isa, fmt);
8247
8248 for (slot = 0; slot < num_slots; slot++)
8249 {
8250 switch (fragP->tc_frag_data.slot_subtypes[slot])
8251 {
8252 case RELAX_NARROW:
8253 if (fragP->tc_frag_data.relax_seen)
8254 new_stretch += relax_frag_for_align (fragP, stretch);
8255 break;
8256
8257 case RELAX_IMMED:
8258 case RELAX_IMMED_STEP1:
8259 case RELAX_IMMED_STEP2:
8260 /* Place the immediate. */
8261 new_stretch += relax_frag_immed
8262 (now_seg, fragP, stretch,
8263 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8264 fmt, slot, stretched_p, FALSE);
8265 break;
8266
8267 default:
8268 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8269 break;
8270 }
8271 }
8272 break;
8273
8274 case RELAX_LITERAL_POOL_BEGIN:
8275 case RELAX_LITERAL_POOL_END:
8276 case RELAX_MAYBE_UNREACHABLE:
8277 case RELAX_MAYBE_DESIRE_ALIGN:
8278 /* No relaxation required. */
8279 break;
8280
8281 case RELAX_FILL_NOP:
8282 case RELAX_UNREACHABLE:
8283 if (fragP->tc_frag_data.relax_seen)
8284 new_stretch += relax_frag_for_align (fragP, stretch);
8285 break;
8286
8287 default:
8288 as_bad (_("bad relaxation state"));
8289 }
8290
8291 /* Tell gas we need another relaxation pass. */
8292 if (! fragP->tc_frag_data.relax_seen)
8293 {
8294 fragP->tc_frag_data.relax_seen = TRUE;
8295 *stretched_p = 1;
8296 }
8297
8298 new_logical_line (file_name, line);
8299 return new_stretch;
8300 }
8301
8302
8303 static long
8304 relax_frag_loop_align (fragS *fragP, long stretch)
8305 {
8306 addressT old_address, old_next_address, old_size;
8307 addressT new_address, new_next_address, new_size;
8308 addressT growth;
8309
8310 /* All the frags with relax_frag_for_alignment prior to this one in the
8311 section have been done, hopefully eliminating the need for a NOP here.
8312 But, this will put it in if necessary. */
8313
8314 /* Calculate the old address of this fragment and the next fragment. */
8315 old_address = fragP->fr_address - stretch;
8316 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8317 fragP->tc_frag_data.text_expansion[0]);
8318 old_size = old_next_address - old_address;
8319
8320 /* Calculate the new address of this fragment and the next fragment. */
8321 new_address = fragP->fr_address;
8322 new_next_address =
8323 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8324 new_size = new_next_address - new_address;
8325
8326 growth = new_size - old_size;
8327
8328 /* Fix up the text_expansion field and return the new growth. */
8329 fragP->tc_frag_data.text_expansion[0] += growth;
8330 return growth;
8331 }
8332
8333
8334 /* Add a NOP instruction. */
8335
8336 static long
8337 relax_frag_add_nop (fragS *fragP)
8338 {
8339 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8340 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8341 assemble_nop (length, nop_buf);
8342 fragP->tc_frag_data.is_insn = TRUE;
8343
8344 if (fragP->fr_var < length)
8345 {
8346 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8347 return 0;
8348 }
8349
8350 fragP->fr_fix += length;
8351 fragP->fr_var -= length;
8352 return length;
8353 }
8354
8355
8356 static long future_alignment_required (fragS *, long);
8357
8358 static long
8359 relax_frag_for_align (fragS *fragP, long stretch)
8360 {
8361 /* Overview of the relaxation procedure for alignment:
8362 We can widen with NOPs or by widening instructions or by filling
8363 bytes after jump instructions. Find the opportune places and widen
8364 them if necessary. */
8365
8366 long stretch_me;
8367 long diff;
8368
8369 assert (fragP->fr_subtype == RELAX_FILL_NOP
8370 || fragP->fr_subtype == RELAX_UNREACHABLE
8371 || (fragP->fr_subtype == RELAX_SLOTS
8372 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8373
8374 stretch_me = future_alignment_required (fragP, stretch);
8375 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8376 if (diff == 0)
8377 return 0;
8378
8379 if (diff < 0)
8380 {
8381 /* We expanded on a previous pass. Can we shrink now? */
8382 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8383 if (shrink <= stretch && stretch > 0)
8384 {
8385 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8386 return -shrink;
8387 }
8388 return 0;
8389 }
8390
8391 /* Below here, diff > 0. */
8392 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8393
8394 return diff;
8395 }
8396
8397
8398 /* Return the address of the next frag that should be aligned.
8399
8400 By "address" we mean the address it _would_ be at if there
8401 is no action taken to align it between here and the target frag.
8402 In other words, if no narrows and no fill nops are used between
8403 here and the frag to align, _even_if_ some of the frags we use
8404 to align targets have already expanded on a previous relaxation
8405 pass.
8406
8407 Also, count each frag that may be used to help align the target.
8408
8409 Return 0 if there are no frags left in the chain that need to be
8410 aligned. */
8411
8412 static addressT
8413 find_address_of_next_align_frag (fragS **fragPP,
8414 int *wide_nops,
8415 int *narrow_nops,
8416 int *widens,
8417 bfd_boolean *paddable)
8418 {
8419 fragS *fragP = *fragPP;
8420 addressT address = fragP->fr_address;
8421
8422 /* Do not reset the counts to 0. */
8423
8424 while (fragP)
8425 {
8426 /* Limit this to a small search. */
8427 if (*widens > 8)
8428 {
8429 *fragPP = fragP;
8430 return 0;
8431 }
8432 address += fragP->fr_fix;
8433
8434 if (fragP->fr_type == rs_fill)
8435 address += fragP->fr_offset * fragP->fr_var;
8436 else if (fragP->fr_type == rs_machine_dependent)
8437 {
8438 switch (fragP->fr_subtype)
8439 {
8440 case RELAX_UNREACHABLE:
8441 *paddable = TRUE;
8442 break;
8443
8444 case RELAX_FILL_NOP:
8445 (*wide_nops)++;
8446 if (!fragP->tc_frag_data.is_no_density)
8447 (*narrow_nops)++;
8448 break;
8449
8450 case RELAX_SLOTS:
8451 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8452 {
8453 (*widens)++;
8454 break;
8455 }
8456 address += total_frag_text_expansion (fragP);;
8457 break;
8458
8459 case RELAX_IMMED:
8460 address += fragP->tc_frag_data.text_expansion[0];
8461 break;
8462
8463 case RELAX_ALIGN_NEXT_OPCODE:
8464 case RELAX_DESIRE_ALIGN:
8465 *fragPP = fragP;
8466 return address;
8467
8468 case RELAX_MAYBE_UNREACHABLE:
8469 case RELAX_MAYBE_DESIRE_ALIGN:
8470 /* Do nothing. */
8471 break;
8472
8473 default:
8474 /* Just punt if we don't know the type. */
8475 *fragPP = fragP;
8476 return 0;
8477 }
8478 }
8479 else
8480 {
8481 /* Just punt if we don't know the type. */
8482 *fragPP = fragP;
8483 return 0;
8484 }
8485 fragP = fragP->fr_next;
8486 }
8487
8488 *fragPP = fragP;
8489 return 0;
8490 }
8491
8492
8493 static long bytes_to_stretch (fragS *, int, int, int, int);
8494
8495 static long
8496 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8497 {
8498 fragS *this_frag = fragP;
8499 long address;
8500 int num_widens = 0;
8501 int wide_nops = 0;
8502 int narrow_nops = 0;
8503 bfd_boolean paddable = FALSE;
8504 offsetT local_opt_diff;
8505 offsetT opt_diff;
8506 offsetT max_diff;
8507 int stretch_amount = 0;
8508 int local_stretch_amount;
8509 int global_stretch_amount;
8510
8511 address = find_address_of_next_align_frag
8512 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8513
8514 if (address)
8515 {
8516 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8517 opt_diff = local_opt_diff;
8518 assert (opt_diff >= 0);
8519 assert (max_diff >= opt_diff);
8520 if (max_diff == 0)
8521 return 0;
8522
8523 if (fragP)
8524 fragP = fragP->fr_next;
8525
8526 while (fragP && opt_diff < max_diff && address)
8527 {
8528 /* We only use these to determine if we can exit early
8529 because there will be plenty of ways to align future
8530 align frags. */
8531 int glob_widens = 0;
8532 int dnn = 0;
8533 int dw = 0;
8534 bfd_boolean glob_pad = 0;
8535 address = find_address_of_next_align_frag
8536 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8537 /* If there is a padable portion, then skip. */
8538 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8539 break;
8540
8541 if (address)
8542 {
8543 offsetT next_m_diff;
8544 offsetT next_o_diff;
8545
8546 /* Downrange frags haven't had stretch added to them yet. */
8547 address += stretch;
8548
8549 /* The address also includes any text expansion from this
8550 frag in a previous pass, but we don't want that. */
8551 address -= this_frag->tc_frag_data.text_expansion[0];
8552
8553 /* Assume we are going to move at least opt_diff. In
8554 reality, we might not be able to, but assuming that
8555 we will helps catch cases where moving opt_diff pushes
8556 the next target from aligned to unaligned. */
8557 address += opt_diff;
8558
8559 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8560
8561 /* Now cleanup for the adjustments to address. */
8562 next_o_diff += opt_diff;
8563 next_m_diff += opt_diff;
8564 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8565 opt_diff = next_o_diff;
8566 if (next_m_diff < max_diff)
8567 max_diff = next_m_diff;
8568 fragP = fragP->fr_next;
8569 }
8570 }
8571
8572 /* If there are enough wideners in between, do it. */
8573 if (paddable)
8574 {
8575 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8576 {
8577 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8578 return opt_diff;
8579 }
8580 return 0;
8581 }
8582 local_stretch_amount
8583 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8584 num_widens, local_opt_diff);
8585 global_stretch_amount
8586 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8587 num_widens, opt_diff);
8588 /* If the condition below is true, then the frag couldn't
8589 stretch the correct amount for the global case, so we just
8590 optimize locally. We'll rely on the subsequent frags to get
8591 the correct alignment in the global case. */
8592 if (global_stretch_amount < local_stretch_amount)
8593 stretch_amount = local_stretch_amount;
8594 else
8595 stretch_amount = global_stretch_amount;
8596
8597 if (this_frag->fr_subtype == RELAX_SLOTS
8598 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8599 assert (stretch_amount <= 1);
8600 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8601 {
8602 if (this_frag->tc_frag_data.is_no_density)
8603 assert (stretch_amount == 3 || stretch_amount == 0);
8604 else
8605 assert (stretch_amount <= 3);
8606 }
8607 }
8608 return stretch_amount;
8609 }
8610
8611
8612 /* The idea: widen everything you can to get a target or loop aligned,
8613 then start using NOPs.
8614
8615 When we must have a NOP, here is a table of how we decide
8616 (so you don't have to fight through the control flow below):
8617
8618 wide_nops = the number of wide NOPs available for aligning
8619 narrow_nops = the number of narrow NOPs available for aligning
8620 (a subset of wide_nops)
8621 widens = the number of narrow instructions that should be widened
8622
8623 Desired wide narrow
8624 Diff nop nop widens
8625 1 0 0 1
8626 2 0 1 0
8627 3a 1 0 0
8628 b 0 1 1 (case 3a makes this case unnecessary)
8629 4a 1 0 1
8630 b 0 2 0
8631 c 0 1 2 (case 4a makes this case unnecessary)
8632 5a 1 0 2
8633 b 1 1 0
8634 c 0 2 1 (case 5b makes this case unnecessary)
8635 6a 2 0 0
8636 b 1 0 3
8637 c 0 1 4 (case 6b makes this case unneccesary)
8638 d 1 1 1 (case 6a makes this case unnecessary)
8639 e 0 2 2 (case 6a makes this case unnecessary)
8640 f 0 3 0 (case 6a makes this case unnecessary)
8641 7a 1 0 4
8642 b 2 0 1
8643 c 1 1 2 (case 7b makes this case unnecessary)
8644 d 0 1 5 (case 7a makes this case unnecessary)
8645 e 0 2 3 (case 7b makes this case unnecessary)
8646 f 0 3 1 (case 7b makes this case unnecessary)
8647 g 1 2 1 (case 7b makes this case unnecessary)
8648 */
8649
8650 static long
8651 bytes_to_stretch (fragS *this_frag,
8652 int wide_nops,
8653 int narrow_nops,
8654 int num_widens,
8655 int desired_diff)
8656 {
8657 int bytes_short = desired_diff - num_widens;
8658
8659 assert (desired_diff >= 0 && desired_diff < 8);
8660 if (desired_diff == 0)
8661 return 0;
8662
8663 assert (wide_nops > 0 || num_widens > 0);
8664
8665 /* Always prefer widening to NOP-filling. */
8666 if (bytes_short < 0)
8667 {
8668 /* There are enough RELAX_NARROW frags after this one
8669 to align the target without widening this frag in any way. */
8670 return 0;
8671 }
8672
8673 if (bytes_short == 0)
8674 {
8675 /* Widen every narrow between here and the align target
8676 and the align target will be properly aligned. */
8677 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8678 return 0;
8679 else
8680 return 1;
8681 }
8682
8683 /* From here we will need at least one NOP to get an alignment.
8684 However, we may not be able to align at all, in which case,
8685 don't widen. */
8686 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8687 {
8688 switch (desired_diff)
8689 {
8690 case 1:
8691 return 0;
8692 case 2:
8693 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8694 return 2; /* case 2 */
8695 return 0;
8696 case 3:
8697 if (wide_nops > 1)
8698 return 0;
8699 else
8700 return 3; /* case 3a */
8701 case 4:
8702 if (num_widens >= 1 && wide_nops == 1)
8703 return 3; /* case 4a */
8704 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8705 return 2; /* case 4b */
8706 return 0;
8707 case 5:
8708 if (num_widens >= 2 && wide_nops == 1)
8709 return 3; /* case 5a */
8710 /* We will need two nops. Are there enough nops
8711 between here and the align target? */
8712 if (wide_nops < 2 || narrow_nops == 0)
8713 return 0;
8714 /* Are there other nops closer that can serve instead? */
8715 if (wide_nops > 2 && narrow_nops > 1)
8716 return 0;
8717 /* Take the density one first, because there might not be
8718 another density one available. */
8719 if (!this_frag->tc_frag_data.is_no_density)
8720 return 2; /* case 5b narrow */
8721 else
8722 return 3; /* case 5b wide */
8723 return 0;
8724 case 6:
8725 if (wide_nops == 2)
8726 return 3; /* case 6a */
8727 else if (num_widens >= 3 && wide_nops == 1)
8728 return 3; /* case 6b */
8729 return 0;
8730 case 7:
8731 if (wide_nops == 1 && num_widens >= 4)
8732 return 3; /* case 7a */
8733 else if (wide_nops == 2 && num_widens >= 1)
8734 return 3; /* case 7b */
8735 return 0;
8736 default:
8737 assert (0);
8738 }
8739 }
8740 else
8741 {
8742 /* We will need a NOP no matter what, but should we widen
8743 this instruction to help?
8744
8745 This is a RELAX_FRAG_NARROW frag. */
8746 switch (desired_diff)
8747 {
8748 case 1:
8749 assert (0);
8750 return 0;
8751 case 2:
8752 case 3:
8753 return 0;
8754 case 4:
8755 if (wide_nops >= 1 && num_widens == 1)
8756 return 1; /* case 4a */
8757 return 0;
8758 case 5:
8759 if (wide_nops >= 1 && num_widens == 2)
8760 return 1; /* case 5a */
8761 return 0;
8762 case 6:
8763 if (wide_nops >= 2)
8764 return 0; /* case 6a */
8765 else if (wide_nops >= 1 && num_widens == 3)
8766 return 1; /* case 6b */
8767 return 0;
8768 case 7:
8769 if (wide_nops >= 1 && num_widens == 4)
8770 return 1; /* case 7a */
8771 else if (wide_nops >= 2 && num_widens == 1)
8772 return 1; /* case 7b */
8773 return 0;
8774 default:
8775 assert (0);
8776 return 0;
8777 }
8778 }
8779 assert (0);
8780 return 0;
8781 }
8782
8783
8784 static long
8785 relax_frag_immed (segT segP,
8786 fragS *fragP,
8787 long stretch,
8788 int min_steps,
8789 xtensa_format fmt,
8790 int slot,
8791 int *stretched_p,
8792 bfd_boolean estimate_only)
8793 {
8794 TInsn tinsn;
8795 vliw_insn orig_vinsn;
8796 int old_size;
8797 bfd_boolean negatable_branch = FALSE;
8798 bfd_boolean branch_jmp_to_next = FALSE;
8799 bfd_boolean wide_insn = FALSE;
8800 xtensa_isa isa = xtensa_default_isa;
8801 IStack istack;
8802 offsetT frag_offset;
8803 int num_steps;
8804 fragS *lit_fragP;
8805 int num_text_bytes, num_literal_bytes;
8806 int literal_diff, total_text_diff, this_text_diff, first;
8807
8808 assert (fragP->fr_opcode != NULL);
8809
8810 xg_init_vinsn (&orig_vinsn);
8811 vinsn_from_chars (&orig_vinsn, fragP->fr_opcode);
8812 if (xtensa_format_num_slots (isa, fmt) > 1)
8813 wide_insn = TRUE;
8814
8815 tinsn = orig_vinsn.slots[slot];
8816 tinsn_immed_from_frag (&tinsn, fragP, slot);
8817
8818 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8819 return 0;
8820
8821 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
8822 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
8823
8824 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
8825
8826 old_size = xtensa_format_length (isa, fmt);
8827
8828 /* Special case: replace a branch to the next instruction with a NOP.
8829 This is required to work around a hardware bug in T1040.0 and also
8830 serves as an optimization. */
8831
8832 if (branch_jmp_to_next
8833 && ((old_size == 2) || (old_size == 3))
8834 && !next_frag_is_loop_target (fragP))
8835 return 0;
8836
8837 /* Here is the fun stuff: Get the immediate field from this
8838 instruction. If it fits, we are done. If not, find the next
8839 instruction sequence that fits. */
8840
8841 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8842 istack_init (&istack);
8843 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
8844 min_steps, stretch);
8845 if (num_steps < min_steps)
8846 {
8847 as_fatal (_("internal error: relaxation failed"));
8848 return 0;
8849 }
8850
8851 if (num_steps > RELAX_IMMED_MAXSTEPS)
8852 {
8853 as_fatal (_("internal error: relaxation requires too many steps"));
8854 return 0;
8855 }
8856
8857 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
8858
8859 /* Figure out the number of bytes needed. */
8860 lit_fragP = 0;
8861 num_literal_bytes = get_num_stack_literal_bytes (&istack);
8862 literal_diff =
8863 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8864 first = 0;
8865 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8866 first++;
8867 num_text_bytes = get_num_stack_text_bytes (&istack);
8868 if (wide_insn)
8869 {
8870 num_text_bytes += old_size;
8871 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8872 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8873 }
8874 total_text_diff = num_text_bytes - old_size;
8875 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
8876
8877 /* It MUST get larger. If not, we could get an infinite loop. */
8878 assert (num_text_bytes >= 0);
8879 assert (literal_diff >= 0);
8880 assert (total_text_diff >= 0);
8881
8882 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8883 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8884 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8885 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
8886
8887 /* Find the associated expandable literal for this. */
8888 if (literal_diff != 0)
8889 {
8890 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
8891 if (lit_fragP)
8892 {
8893 assert (literal_diff == 4);
8894 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8895
8896 /* We expect that the literal section state has NOT been
8897 modified yet. */
8898 assert (lit_fragP->fr_type == rs_machine_dependent
8899 && lit_fragP->fr_subtype == RELAX_LITERAL);
8900 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8901
8902 /* We need to mark this section for another iteration
8903 of relaxation. */
8904 (*stretched_p)++;
8905 }
8906 }
8907
8908 if (negatable_branch && istack.ninsn > 1)
8909 update_next_frag_state (fragP);
8910
8911 return this_text_diff;
8912 }
8913
8914 \f
8915 /* md_convert_frag Hook and Helper Functions. */
8916
8917 static void convert_frag_align_next_opcode (fragS *);
8918 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8919 static void convert_frag_fill_nop (fragS *);
8920 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8921
8922 void
8923 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
8924 {
8925 static xtensa_insnbuf vbuf = NULL;
8926 xtensa_isa isa = xtensa_default_isa;
8927 int slot;
8928 int num_slots;
8929 xtensa_format fmt;
8930 char *file_name;
8931 unsigned line;
8932
8933 as_where (&file_name, &line);
8934 new_logical_line (fragp->fr_file, fragp->fr_line);
8935
8936 switch (fragp->fr_subtype)
8937 {
8938 case RELAX_ALIGN_NEXT_OPCODE:
8939 /* Always convert. */
8940 convert_frag_align_next_opcode (fragp);
8941 break;
8942
8943 case RELAX_DESIRE_ALIGN:
8944 /* Do nothing. If not aligned already, too bad. */
8945 break;
8946
8947 case RELAX_LITERAL:
8948 case RELAX_LITERAL_FINAL:
8949 break;
8950
8951 case RELAX_SLOTS:
8952 if (vbuf == NULL)
8953 vbuf = xtensa_insnbuf_alloc (isa);
8954
8955 xtensa_insnbuf_from_chars
8956 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
8957 fmt = xtensa_format_decode (isa, vbuf);
8958 num_slots = xtensa_format_num_slots (isa, fmt);
8959
8960 for (slot = 0; slot < num_slots; slot++)
8961 {
8962 switch (fragp->tc_frag_data.slot_subtypes[slot])
8963 {
8964 case RELAX_NARROW:
8965 convert_frag_narrow (sec, fragp, fmt, slot);
8966 break;
8967
8968 case RELAX_IMMED:
8969 case RELAX_IMMED_STEP1:
8970 case RELAX_IMMED_STEP2:
8971 /* Place the immediate. */
8972 convert_frag_immed
8973 (sec, fragp,
8974 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8975 fmt, slot);
8976 break;
8977
8978 default:
8979 /* This is OK because some slots could have
8980 relaxations and others have none. */
8981 break;
8982 }
8983 }
8984 break;
8985
8986 case RELAX_UNREACHABLE:
8987 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8988 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8989 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8990 frag_wane (fragp);
8991 break;
8992
8993 case RELAX_MAYBE_UNREACHABLE:
8994 case RELAX_MAYBE_DESIRE_ALIGN:
8995 frag_wane (fragp);
8996 break;
8997
8998 case RELAX_FILL_NOP:
8999 convert_frag_fill_nop (fragp);
9000 break;
9001
9002 case RELAX_LITERAL_NR:
9003 if (use_literal_section)
9004 {
9005 /* This should have been handled during relaxation. When
9006 relaxing a code segment, literals sometimes need to be
9007 added to the corresponding literal segment. If that
9008 literal segment has already been relaxed, then we end up
9009 in this situation. Marking the literal segments as data
9010 would make this happen less often (since GAS always relaxes
9011 code before data), but we could still get into trouble if
9012 there are instructions in a segment that is not marked as
9013 containing code. Until we can implement a better solution,
9014 cheat and adjust the addresses of all the following frags.
9015 This could break subsequent alignments, but the linker's
9016 literal coalescing will do that anyway. */
9017
9018 fragS *f;
9019 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9020 assert (fragp->tc_frag_data.unreported_expansion == 4);
9021 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9022 fragp->fr_var -= 4;
9023 fragp->fr_fix += 4;
9024 for (f = fragp->fr_next; f; f = f->fr_next)
9025 f->fr_address += 4;
9026 }
9027 else
9028 as_bad (_("invalid relaxation fragment result"));
9029 break;
9030 }
9031
9032 fragp->fr_var = 0;
9033 new_logical_line (file_name, line);
9034 }
9035
9036
9037 static void
9038 convert_frag_align_next_opcode (fragS *fragp)
9039 {
9040 char *nop_buf; /* Location for Writing. */
9041 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9042 addressT aligned_address;
9043 offsetT fill_size;
9044 int nop, nop_count;
9045
9046 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9047 fragp->fr_fix);
9048 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9049 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9050 nop_buf = fragp->fr_literal + fragp->fr_fix;
9051
9052 for (nop = 0; nop < nop_count; nop++)
9053 {
9054 int nop_size;
9055 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9056
9057 assemble_nop (nop_size, nop_buf);
9058 nop_buf += nop_size;
9059 }
9060
9061 fragp->fr_fix += fill_size;
9062 fragp->fr_var -= fill_size;
9063 }
9064
9065
9066 static void
9067 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9068 {
9069 TInsn tinsn, single_target;
9070 xtensa_format single_fmt;
9071 int size, old_size, diff;
9072 offsetT frag_offset;
9073
9074 assert (slot == 0);
9075 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9076
9077 if (xtensa_opcode_is_branch (xtensa_default_isa, tinsn.opcode) == 1)
9078 {
9079 assert (fragP->tc_frag_data.text_expansion[0] == 1
9080 || fragP->tc_frag_data.text_expansion[0] == 0);
9081 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9082 fmt, slot);
9083 return;
9084 }
9085
9086 if (fragP->tc_frag_data.text_expansion[0] == 0)
9087 {
9088 /* No conversion. */
9089 fragP->fr_var = 0;
9090 return;
9091 }
9092
9093 assert (fragP->fr_opcode != NULL);
9094
9095 /* Frags in this relaxation state should only contain
9096 single instruction bundles. */
9097 tinsn_immed_from_frag (&tinsn, fragP, 0);
9098
9099 /* Just convert it to a wide form.... */
9100 size = 0;
9101 old_size = xg_get_single_size (tinsn.opcode);
9102
9103 tinsn_init (&single_target);
9104 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9105
9106 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9107 {
9108 as_bad (_("unable to widen instruction"));
9109 return;
9110 }
9111
9112 size = xg_get_single_size (single_target.opcode);
9113 single_fmt = xg_get_single_format (single_target.opcode);
9114
9115 xg_emit_insn_to_buf (&single_target, single_fmt, fragP->fr_opcode,
9116 fragP, frag_offset, TRUE);
9117
9118 diff = size - old_size;
9119 assert (diff >= 0);
9120 assert (diff <= fragP->fr_var);
9121 fragP->fr_var -= diff;
9122 fragP->fr_fix += diff;
9123
9124 /* clean it up */
9125 fragP->fr_var = 0;
9126 }
9127
9128
9129 static void
9130 convert_frag_fill_nop (fragS *fragP)
9131 {
9132 char *loc = &fragP->fr_literal[fragP->fr_fix];
9133 int size = fragP->tc_frag_data.text_expansion[0];
9134 assert ((unsigned) size == (fragP->fr_next->fr_address
9135 - fragP->fr_address - fragP->fr_fix));
9136 if (size == 0)
9137 {
9138 /* No conversion. */
9139 fragP->fr_var = 0;
9140 return;
9141 }
9142 assemble_nop (size, loc);
9143 fragP->tc_frag_data.is_insn = TRUE;
9144 fragP->fr_var -= size;
9145 fragP->fr_fix += size;
9146 frag_wane (fragP);
9147 }
9148
9149
9150 static fixS *fix_new_exp_in_seg
9151 (segT, subsegT, fragS *, int, int, expressionS *, int,
9152 bfd_reloc_code_real_type);
9153 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9154
9155 static void
9156 convert_frag_immed (segT segP,
9157 fragS *fragP,
9158 int min_steps,
9159 xtensa_format fmt,
9160 int slot)
9161 {
9162 char *immed_instr = fragP->fr_opcode;
9163 TInsn orig_tinsn;
9164 bfd_boolean expanded = FALSE;
9165 bfd_boolean branch_jmp_to_next = FALSE;
9166 char *fr_opcode = fragP->fr_opcode;
9167 vliw_insn orig_vinsn;
9168 xtensa_isa isa = xtensa_default_isa;
9169 bfd_boolean wide_insn = FALSE;
9170 int bytes;
9171 bfd_boolean is_loop;
9172
9173 assert (fr_opcode != NULL);
9174
9175 xg_init_vinsn (&orig_vinsn);
9176
9177 vinsn_from_chars (&orig_vinsn, fr_opcode);
9178 if (xtensa_format_num_slots (isa, fmt) > 1)
9179 wide_insn = TRUE;
9180
9181 orig_tinsn = orig_vinsn.slots[slot];
9182 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9183
9184 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9185
9186 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9187 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9188
9189 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9190 {
9191 /* Conversion just inserts a NOP and marks the fix as completed. */
9192 bytes = xtensa_format_length (isa, fmt);
9193 if (bytes >= 4)
9194 {
9195 orig_vinsn.slots[slot].opcode =
9196 xtensa_format_slot_nop_opcode (isa, orig_vinsn.format, slot);
9197 orig_vinsn.slots[slot].ntok = 0;
9198 }
9199 else
9200 {
9201 bytes += fragP->tc_frag_data.text_expansion[0];
9202 assert (bytes == 2 || bytes == 3);
9203 build_nop (&orig_vinsn.slots[0], bytes);
9204 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9205 }
9206 vinsn_to_insnbuf (&orig_vinsn, fr_opcode, frag_now, FALSE);
9207 xtensa_insnbuf_to_chars
9208 (isa, orig_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9209 fragP->fr_var = 0;
9210 }
9211 else
9212 {
9213 /* Here is the fun stuff: Get the immediate field from this
9214 instruction. If it fits, we're done. If not, find the next
9215 instruction sequence that fits. */
9216
9217 IStack istack;
9218 int i;
9219 symbolS *lit_sym = NULL;
9220 int total_size = 0;
9221 int target_offset = 0;
9222 int old_size;
9223 int diff;
9224 symbolS *gen_label = NULL;
9225 offsetT frag_offset;
9226 bfd_boolean first = TRUE;
9227 bfd_boolean last_is_jump;
9228
9229 /* It does not fit. Find something that does and
9230 convert immediately. */
9231 frag_offset = fr_opcode - fragP->fr_literal;
9232 istack_init (&istack);
9233 xg_assembly_relax (&istack, &orig_tinsn,
9234 segP, fragP, frag_offset, min_steps, 0);
9235
9236 old_size = xtensa_format_length (isa, fmt);
9237
9238 /* Assemble this right inline. */
9239
9240 /* First, create the mapping from a label name to the REAL label. */
9241 target_offset = 0;
9242 for (i = 0; i < istack.ninsn; i++)
9243 {
9244 TInsn *tinsn = &istack.insn[i];
9245 fragS *lit_frag;
9246
9247 switch (tinsn->insn_type)
9248 {
9249 case ITYPE_LITERAL:
9250 if (lit_sym != NULL)
9251 as_bad (_("multiple literals in expansion"));
9252 /* First find the appropriate space in the literal pool. */
9253 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9254 if (lit_frag == NULL)
9255 as_bad (_("no registered fragment for literal"));
9256 if (tinsn->ntok != 1)
9257 as_bad (_("number of literal tokens != 1"));
9258
9259 /* Set the literal symbol and add a fixup. */
9260 lit_sym = lit_frag->fr_symbol;
9261 break;
9262
9263 case ITYPE_LABEL:
9264 if (align_targets && !is_loop)
9265 {
9266 fragS *unreach = fragP->fr_next;
9267 while (!(unreach->fr_type == rs_machine_dependent
9268 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9269 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9270 {
9271 unreach = unreach->fr_next;
9272 }
9273
9274 assert (unreach->fr_type == rs_machine_dependent
9275 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9276 || unreach->fr_subtype == RELAX_UNREACHABLE));
9277
9278 target_offset += unreach->tc_frag_data.text_expansion[0];
9279 }
9280 assert (gen_label == NULL);
9281 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9282 fr_opcode - fragP->fr_literal
9283 + target_offset, fragP);
9284 break;
9285
9286 case ITYPE_INSN:
9287 if (first && wide_insn)
9288 {
9289 target_offset += xtensa_format_length (isa, fmt);
9290 first = FALSE;
9291 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9292 target_offset += xg_get_single_size (tinsn->opcode);
9293 }
9294 else
9295 target_offset += xg_get_single_size (tinsn->opcode);
9296 break;
9297 }
9298 }
9299
9300 total_size = 0;
9301 first = TRUE;
9302 last_is_jump = FALSE;
9303 for (i = 0; i < istack.ninsn; i++)
9304 {
9305 TInsn *tinsn = &istack.insn[i];
9306 fragS *lit_frag;
9307 int size;
9308 segT target_seg;
9309 bfd_reloc_code_real_type reloc_type;
9310
9311 switch (tinsn->insn_type)
9312 {
9313 case ITYPE_LITERAL:
9314 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9315 /* Already checked. */
9316 assert (lit_frag != NULL);
9317 assert (lit_sym != NULL);
9318 assert (tinsn->ntok == 1);
9319 /* Add a fixup. */
9320 target_seg = S_GET_SEGMENT (lit_sym);
9321 assert (target_seg);
9322 if (tinsn->tok[0].X_op == O_pltrel)
9323 reloc_type = BFD_RELOC_XTENSA_PLT;
9324 else
9325 reloc_type = BFD_RELOC_32;
9326 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9327 &tinsn->tok[0], FALSE, reloc_type);
9328 break;
9329
9330 case ITYPE_LABEL:
9331 break;
9332
9333 case ITYPE_INSN:
9334 xg_resolve_labels (tinsn, gen_label);
9335 xg_resolve_literals (tinsn, lit_sym);
9336 if (wide_insn && first)
9337 {
9338 first = FALSE;
9339 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9340 {
9341 tinsn->record_fix = TRUE;
9342 orig_vinsn.slots[slot] = *tinsn;
9343 }
9344 else
9345 {
9346 orig_vinsn.slots[slot].opcode =
9347 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9348 orig_vinsn.slots[slot].ntok = 0;
9349 orig_vinsn.slots[slot].record_fix = FALSE;
9350 }
9351 vinsn_to_insnbuf (&orig_vinsn, immed_instr, fragP, TRUE);
9352 xtensa_insnbuf_to_chars (isa, orig_vinsn.insnbuf,
9353 (unsigned char *) immed_instr, 0);
9354 fragP->tc_frag_data.is_insn = TRUE;
9355 size = xtensa_format_length (isa, fmt);
9356 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9357 {
9358 xtensa_format single_fmt =
9359 xg_get_single_format (tinsn->opcode);
9360
9361 xg_emit_insn_to_buf
9362 (tinsn, single_fmt, immed_instr + size, fragP,
9363 immed_instr - fragP->fr_literal + size, TRUE);
9364 size += xg_get_single_size (tinsn->opcode);
9365 }
9366 }
9367 else
9368 {
9369 xtensa_format single_format;
9370 size = xg_get_single_size (tinsn->opcode);
9371 single_format = xg_get_single_format (tinsn->opcode);
9372 xg_emit_insn_to_buf (tinsn, single_format, immed_instr,
9373 fragP,
9374 immed_instr - fragP->fr_literal, TRUE);
9375 }
9376 immed_instr += size;
9377 total_size += size;
9378 break;
9379 }
9380 }
9381
9382 diff = total_size - old_size;
9383 assert (diff >= 0);
9384 if (diff != 0)
9385 expanded = TRUE;
9386 assert (diff <= fragP->fr_var);
9387 fragP->fr_var -= diff;
9388 fragP->fr_fix += diff;
9389 }
9390
9391 /* Clean it up. */
9392 xg_free_vinsn (&orig_vinsn);
9393
9394 /* Check for undefined immediates in LOOP instructions. */
9395 if (is_loop)
9396 {
9397 symbolS *sym;
9398 sym = orig_tinsn.tok[1].X_add_symbol;
9399 if (sym != NULL && !S_IS_DEFINED (sym))
9400 {
9401 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9402 return;
9403 }
9404 sym = orig_tinsn.tok[1].X_op_symbol;
9405 if (sym != NULL && !S_IS_DEFINED (sym))
9406 {
9407 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9408 return;
9409 }
9410 }
9411
9412 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9413 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9414
9415 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9416 {
9417 /* Add an expansion note on the expanded instruction. */
9418 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9419 &orig_tinsn.tok[0], TRUE,
9420 BFD_RELOC_XTENSA_ASM_EXPAND);
9421 }
9422 }
9423
9424
9425 /* Add a new fix expression into the desired segment. We have to
9426 switch to that segment to do this. */
9427
9428 static fixS *
9429 fix_new_exp_in_seg (segT new_seg,
9430 subsegT new_subseg,
9431 fragS *frag,
9432 int where,
9433 int size,
9434 expressionS *exp,
9435 int pcrel,
9436 bfd_reloc_code_real_type r_type)
9437 {
9438 fixS *new_fix;
9439 segT seg = now_seg;
9440 subsegT subseg = now_subseg;
9441
9442 assert (new_seg != 0);
9443 subseg_set (new_seg, new_subseg);
9444
9445 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9446 subseg_set (seg, subseg);
9447 return new_fix;
9448 }
9449
9450
9451 /* Relax a loop instruction so that it can span loop >256 bytes.
9452
9453 loop as, .L1
9454 .L0:
9455 rsr as, LEND
9456 wsr as, LBEG
9457 addi as, as, lo8 (label-.L1)
9458 addmi as, as, mid8 (label-.L1)
9459 wsr as, LEND
9460 isync
9461 rsr as, LCOUNT
9462 addi as, as, 1
9463 .L1:
9464 <<body>>
9465 label:
9466 */
9467
9468 static void
9469 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9470 {
9471 TInsn loop_insn;
9472 TInsn addi_insn;
9473 TInsn addmi_insn;
9474 unsigned long target;
9475 static xtensa_insnbuf insnbuf = NULL;
9476 unsigned int loop_length, loop_length_hi, loop_length_lo;
9477 xtensa_isa isa = xtensa_default_isa;
9478 addressT loop_offset;
9479 addressT addi_offset = 9;
9480 addressT addmi_offset = 12;
9481 fragS *next_fragP;
9482 int target_count;
9483
9484 if (!insnbuf)
9485 insnbuf = xtensa_insnbuf_alloc (isa);
9486
9487 /* Get the loop offset. */
9488 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9489
9490 /* Validate that there really is a LOOP at the loop_offset. Because
9491 loops are not bundleable, we can assume that the instruction will be
9492 in slot 0. */
9493 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9494 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9495
9496 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9497 addi_offset += loop_offset;
9498 addmi_offset += loop_offset;
9499
9500 assert (tinsn->ntok == 2);
9501 if (tinsn->tok[1].X_op == O_constant)
9502 target = tinsn->tok[1].X_add_number;
9503 else if (tinsn->tok[1].X_op == O_symbol)
9504 {
9505 /* Find the fragment. */
9506 symbolS *sym = tinsn->tok[1].X_add_symbol;
9507 assert (S_GET_SEGMENT (sym) == segP
9508 || S_GET_SEGMENT (sym) == absolute_section);
9509 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9510 }
9511 else
9512 {
9513 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9514 target = 0;
9515 }
9516
9517 know (symbolP);
9518 know (symbolP->sy_frag);
9519 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9520 || symbol_get_frag (symbolP) == &zero_address_frag);
9521
9522 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9523 loop_length_hi = loop_length & ~0x0ff;
9524 loop_length_lo = loop_length & 0x0ff;
9525 if (loop_length_lo >= 128)
9526 {
9527 loop_length_lo -= 256;
9528 loop_length_hi += 256;
9529 }
9530
9531 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9532 32512. If the loop is larger than that, then we just fail. */
9533 if (loop_length_hi > 32512)
9534 as_bad_where (fragP->fr_file, fragP->fr_line,
9535 _("loop too long for LOOP instruction"));
9536
9537 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9538 assert (addi_insn.opcode == xtensa_addi_opcode);
9539
9540 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9541 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9542
9543 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9544 tinsn_to_insnbuf (&addi_insn, insnbuf);
9545
9546 fragP->tc_frag_data.is_insn = TRUE;
9547 xtensa_insnbuf_to_chars
9548 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9549
9550 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9551 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9552 xtensa_insnbuf_to_chars
9553 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9554
9555 /* Walk through all of the frags from here to the loop end
9556 and mark them as no_transform to keep them from being modified
9557 by the linker. If we ever have a relocation for the
9558 addi/addmi of the difference of two symbols we can remove this. */
9559
9560 target_count = 0;
9561 for (next_fragP = fragP; next_fragP != NULL;
9562 next_fragP = next_fragP->fr_next)
9563 {
9564 next_fragP->tc_frag_data.is_no_transform = TRUE;
9565 if (next_fragP->tc_frag_data.is_loop_target)
9566 target_count++;
9567 if (target_count == 2)
9568 break;
9569 }
9570 }
9571
9572 \f
9573 /* A map that keeps information on a per-subsegment basis. This is
9574 maintained during initial assembly, but is invalid once the
9575 subsegments are smashed together. I.E., it cannot be used during
9576 the relaxation. */
9577
9578 typedef struct subseg_map_struct
9579 {
9580 /* the key */
9581 segT seg;
9582 subsegT subseg;
9583
9584 /* the data */
9585 unsigned flags;
9586 float total_freq; /* fall-through + branch target frequency */
9587 float target_freq; /* branch target frequency alone */
9588
9589 struct subseg_map_struct *next;
9590 } subseg_map;
9591
9592
9593 static subseg_map *sseg_map = NULL;
9594
9595 static subseg_map *
9596 get_subseg_info (segT seg, subsegT subseg)
9597 {
9598 subseg_map *subseg_e;
9599
9600 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9601 {
9602 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9603 break;
9604 }
9605 return subseg_e;
9606 }
9607
9608
9609 static subseg_map *
9610 add_subseg_info (segT seg, subsegT subseg)
9611 {
9612 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9613 memset (subseg_e, 0, sizeof (subseg_map));
9614 subseg_e->seg = seg;
9615 subseg_e->subseg = subseg;
9616 subseg_e->flags = 0;
9617 /* Start off considering every branch target very important. */
9618 subseg_e->target_freq = 1.0;
9619 subseg_e->total_freq = 1.0;
9620 subseg_e->next = sseg_map;
9621 sseg_map = subseg_e;
9622 return subseg_e;
9623 }
9624
9625
9626 static unsigned
9627 get_last_insn_flags (segT seg, subsegT subseg)
9628 {
9629 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9630 if (subseg_e)
9631 return subseg_e->flags;
9632 return 0;
9633 }
9634
9635
9636 static void
9637 set_last_insn_flags (segT seg,
9638 subsegT subseg,
9639 unsigned fl,
9640 bfd_boolean val)
9641 {
9642 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9643 if (! subseg_e)
9644 subseg_e = add_subseg_info (seg, subseg);
9645 if (val)
9646 subseg_e->flags |= fl;
9647 else
9648 subseg_e->flags &= ~fl;
9649 }
9650
9651
9652 static float
9653 get_subseg_total_freq (segT seg, subsegT subseg)
9654 {
9655 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9656 if (subseg_e)
9657 return subseg_e->total_freq;
9658 return 1.0;
9659 }
9660
9661
9662 static float
9663 get_subseg_target_freq (segT seg, subsegT subseg)
9664 {
9665 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9666 if (subseg_e)
9667 return subseg_e->target_freq;
9668 return 1.0;
9669 }
9670
9671
9672 static void
9673 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9674 {
9675 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9676 if (! subseg_e)
9677 subseg_e = add_subseg_info (seg, subseg);
9678 subseg_e->total_freq = total_f;
9679 subseg_e->target_freq = target_f;
9680 }
9681
9682 \f
9683 /* Segment Lists and emit_state Stuff. */
9684
9685 static void
9686 xtensa_move_seg_list_to_beginning (seg_list *head)
9687 {
9688 head = head->next;
9689 while (head)
9690 {
9691 segT literal_section = head->seg;
9692
9693 /* Move the literal section to the front of the section list. */
9694 assert (literal_section);
9695 if (literal_section != stdoutput->sections)
9696 {
9697 bfd_section_list_remove (stdoutput, literal_section);
9698 bfd_section_list_prepend (stdoutput, literal_section);
9699 }
9700 head = head->next;
9701 }
9702 }
9703
9704
9705 static void mark_literal_frags (seg_list *);
9706
9707 static void
9708 xtensa_move_literals (void)
9709 {
9710 seg_list *segment;
9711 frchainS *frchain_from, *frchain_to;
9712 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9713 fragS **frag_splice;
9714 emit_state state;
9715 segT dest_seg;
9716 fixS *fix, *next_fix, **fix_splice;
9717 sym_list *lit;
9718
9719 mark_literal_frags (literal_head->next);
9720 mark_literal_frags (init_literal_head->next);
9721 mark_literal_frags (fini_literal_head->next);
9722
9723 if (use_literal_section)
9724 return;
9725
9726 segment = literal_head->next;
9727 while (segment)
9728 {
9729 frchain_from = seg_info (segment->seg)->frchainP;
9730 search_frag = frchain_from->frch_root;
9731 literal_pool = NULL;
9732 frchain_to = NULL;
9733 frag_splice = &(frchain_from->frch_root);
9734
9735 while (!search_frag->tc_frag_data.literal_frag)
9736 {
9737 assert (search_frag->fr_fix == 0
9738 || search_frag->fr_type == rs_align);
9739 search_frag = search_frag->fr_next;
9740 }
9741
9742 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9743 == RELAX_LITERAL_POOL_BEGIN);
9744 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9745
9746 /* Make sure that all the frags in this series are closed, and
9747 that there is at least one left over of zero-size. This
9748 prevents us from making a segment with an frchain without any
9749 frags in it. */
9750 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9751 xtensa_set_frag_assembly_state (frag_now);
9752 last_frag = frag_now;
9753 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9754 xtensa_set_frag_assembly_state (frag_now);
9755
9756 while (search_frag != frag_now)
9757 {
9758 next_frag = search_frag->fr_next;
9759
9760 /* First, move the frag out of the literal section and
9761 to the appropriate place. */
9762 if (search_frag->tc_frag_data.literal_frag)
9763 {
9764 literal_pool = search_frag->tc_frag_data.literal_frag;
9765 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
9766 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9767 assert (frchain_to);
9768 }
9769 insert_after = literal_pool;
9770
9771 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9772 insert_after = insert_after->fr_next;
9773
9774 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
9775
9776 *frag_splice = next_frag;
9777 search_frag->fr_next = insert_after->fr_next;
9778 insert_after->fr_next = search_frag;
9779 search_frag->tc_frag_data.lit_seg = dest_seg;
9780
9781 /* Now move any fixups associated with this frag to the
9782 right section. */
9783 fix = frchain_from->fix_root;
9784 fix_splice = &(frchain_from->fix_root);
9785 while (fix)
9786 {
9787 next_fix = fix->fx_next;
9788 if (fix->fx_frag == search_frag)
9789 {
9790 *fix_splice = next_fix;
9791 fix->fx_next = frchain_to->fix_root;
9792 frchain_to->fix_root = fix;
9793 if (frchain_to->fix_tail == NULL)
9794 frchain_to->fix_tail = fix;
9795 }
9796 else
9797 fix_splice = &(fix->fx_next);
9798 fix = next_fix;
9799 }
9800 search_frag = next_frag;
9801 }
9802
9803 if (frchain_from->fix_root != NULL)
9804 {
9805 frchain_from = seg_info (segment->seg)->frchainP;
9806 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9807
9808 assert (frchain_from->fix_root == NULL);
9809 }
9810 frchain_from->fix_tail = NULL;
9811 xtensa_restore_emit_state (&state);
9812 segment = segment->next;
9813 }
9814
9815 /* Now fix up the SEGMENT value for all the literal symbols. */
9816 for (lit = literal_syms; lit; lit = lit->next)
9817 {
9818 symbolS *lit_sym = lit->sym;
9819 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
9820 if (dest_seg)
9821 S_SET_SEGMENT (lit_sym, dest_seg);
9822 }
9823 }
9824
9825
9826 /* Walk over all the frags for segments in a list and mark them as
9827 containing literals. As clunky as this is, we can't rely on frag_var
9828 and frag_variant to get called in all situations. */
9829
9830 static void
9831 mark_literal_frags (seg_list *segment)
9832 {
9833 frchainS *frchain_from;
9834 fragS *search_frag;
9835
9836 while (segment)
9837 {
9838 frchain_from = seg_info (segment->seg)->frchainP;
9839 search_frag = frchain_from->frch_root;
9840 while (search_frag)
9841 {
9842 search_frag->tc_frag_data.is_literal = TRUE;
9843 search_frag = search_frag->fr_next;
9844 }
9845 segment = segment->next;
9846 }
9847 }
9848
9849
9850 static void
9851 xtensa_reorder_seg_list (seg_list *head, segT after)
9852 {
9853 /* Move all of the sections in the section list to come
9854 after "after" in the gnu segment list. */
9855
9856 head = head->next;
9857 while (head)
9858 {
9859 segT literal_section = head->seg;
9860
9861 /* Move the literal section after "after". */
9862 assert (literal_section);
9863 if (literal_section != after)
9864 {
9865 bfd_section_list_remove (stdoutput, literal_section);
9866 bfd_section_list_insert_after (stdoutput, after, literal_section);
9867 }
9868
9869 head = head->next;
9870 }
9871 }
9872
9873
9874 /* Push all the literal segments to the end of the gnu list. */
9875
9876 static void
9877 xtensa_reorder_segments (void)
9878 {
9879 segT sec;
9880 segT last_sec = 0;
9881 int old_count = 0;
9882 int new_count = 0;
9883
9884 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9885 {
9886 last_sec = sec;
9887 old_count++;
9888 }
9889
9890 /* Now that we have the last section, push all the literal
9891 sections to the end. */
9892 xtensa_reorder_seg_list (literal_head, last_sec);
9893 xtensa_reorder_seg_list (init_literal_head, last_sec);
9894 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9895
9896 /* Now perform the final error check. */
9897 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9898 new_count++;
9899 assert (new_count == old_count);
9900 }
9901
9902
9903 /* Change the emit state (seg, subseg, and frag related stuff) to the
9904 correct location. Return a emit_state which can be passed to
9905 xtensa_restore_emit_state to return to current fragment. */
9906
9907 static void
9908 xtensa_switch_to_literal_fragment (emit_state *result)
9909 {
9910 if (directive_state[directive_absolute_literals])
9911 {
9912 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9913 &default_lit_sections.lit4_seg, FALSE);
9914 xtensa_switch_section_emit_state (result,
9915 default_lit_sections.lit4_seg, 0);
9916 }
9917 else
9918 xtensa_switch_to_non_abs_literal_fragment (result);
9919
9920 /* Do a 4-byte align here. */
9921 frag_align (2, 0, 0);
9922 record_alignment (now_seg, 2);
9923 }
9924
9925
9926 static void
9927 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
9928 {
9929 /* When we mark a literal pool location, we want to put a frag in
9930 the literal pool that points to it. But to do that, we want to
9931 switch_to_literal_fragment. But literal sections don't have
9932 literal pools, so their location is always null, so we would
9933 recurse forever. This is kind of hacky, but it works. */
9934
9935 static bfd_boolean recursive = FALSE;
9936 fragS *pool_location = get_literal_pool_location (now_seg);
9937 bfd_boolean is_init =
9938 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9939
9940 bfd_boolean is_fini =
9941 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
9942
9943 if (pool_location == NULL
9944 && !use_literal_section
9945 && !recursive
9946 && !is_init && ! is_fini)
9947 {
9948 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
9949 recursive = TRUE;
9950 xtensa_mark_literal_pool_location ();
9951 recursive = FALSE;
9952 }
9953
9954 /* Special case: If we are in the ".fini" or ".init" section, then
9955 we will ALWAYS be generating to the ".fini.literal" and
9956 ".init.literal" sections. */
9957
9958 if (is_init)
9959 {
9960 cache_literal_section (init_literal_head,
9961 default_lit_sections.init_lit_seg_name,
9962 &default_lit_sections.init_lit_seg, TRUE);
9963 xtensa_switch_section_emit_state (result,
9964 default_lit_sections.init_lit_seg, 0);
9965 }
9966 else if (is_fini)
9967 {
9968 cache_literal_section (fini_literal_head,
9969 default_lit_sections.fini_lit_seg_name,
9970 &default_lit_sections.fini_lit_seg, TRUE);
9971 xtensa_switch_section_emit_state (result,
9972 default_lit_sections.fini_lit_seg, 0);
9973 }
9974 else
9975 {
9976 cache_literal_section (literal_head,
9977 default_lit_sections.lit_seg_name,
9978 &default_lit_sections.lit_seg, TRUE);
9979 xtensa_switch_section_emit_state (result,
9980 default_lit_sections.lit_seg, 0);
9981 }
9982
9983 if (!use_literal_section
9984 && !is_init && !is_fini
9985 && get_literal_pool_location (now_seg) != pool_location)
9986 {
9987 /* Close whatever frag is there. */
9988 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9989 xtensa_set_frag_assembly_state (frag_now);
9990 frag_now->tc_frag_data.literal_frag = pool_location;
9991 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
9992 xtensa_set_frag_assembly_state (frag_now);
9993 }
9994 }
9995
9996
9997 /* Call this function before emitting data into the literal section.
9998 This is a helper function for xtensa_switch_to_literal_fragment.
9999 This is similar to a .section new_now_seg subseg. */
10000
10001 static void
10002 xtensa_switch_section_emit_state (emit_state *state,
10003 segT new_now_seg,
10004 subsegT new_now_subseg)
10005 {
10006 state->name = now_seg->name;
10007 state->now_seg = now_seg;
10008 state->now_subseg = now_subseg;
10009 state->generating_literals = generating_literals;
10010 generating_literals++;
10011 subseg_set (new_now_seg, new_now_subseg);
10012 }
10013
10014
10015 /* Use to restore the emitting into the normal place. */
10016
10017 static void
10018 xtensa_restore_emit_state (emit_state *state)
10019 {
10020 generating_literals = state->generating_literals;
10021 subseg_set (state->now_seg, state->now_subseg);
10022 }
10023
10024
10025 /* Get a segment of a given name. If the segment is already
10026 present, return it; otherwise, create a new one. */
10027
10028 static void
10029 cache_literal_section (seg_list *head,
10030 const char *name,
10031 segT *pseg,
10032 bfd_boolean is_code)
10033 {
10034 segT current_section = now_seg;
10035 int current_subsec = now_subseg;
10036 segT seg;
10037
10038 if (*pseg != 0)
10039 return;
10040
10041 /* Check if the named section exists. */
10042 for (seg = stdoutput->sections; seg; seg = seg->next)
10043 {
10044 if (!strcmp (segment_name (seg), name))
10045 break;
10046 }
10047
10048 if (!seg)
10049 {
10050 /* Create a new literal section. */
10051 seg = subseg_new (name, (subsegT) 0);
10052 if (head)
10053 {
10054 /* Add the newly created literal segment to the specified list. */
10055 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10056 n->seg = seg;
10057 n->next = head->next;
10058 head->next = n;
10059 }
10060 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
10061 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10062 | (is_code ? SEC_CODE : SEC_DATA));
10063 bfd_set_section_alignment (stdoutput, seg, 2);
10064 }
10065
10066 *pseg = seg;
10067 subseg_set (current_section, current_subsec);
10068 }
10069
10070 \f
10071 /* Property Tables Stuff. */
10072
10073 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10074 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10075 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10076
10077 typedef bfd_boolean (*frag_predicate) (const fragS *);
10078 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10079
10080 static bfd_boolean get_frag_is_literal (const fragS *);
10081 static void xtensa_create_property_segments
10082 (frag_predicate, frag_predicate, const char *, xt_section_type);
10083 static void xtensa_create_xproperty_segments
10084 (frag_flags_fn, const char *, xt_section_type);
10085 static segment_info_type *retrieve_segment_info (segT);
10086 static segT retrieve_xtensa_section (char *);
10087 static bfd_boolean section_has_property (segT, frag_predicate);
10088 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10089 static void add_xt_block_frags
10090 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10091 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10092 static void xtensa_frag_flags_init (frag_flags *);
10093 static void get_frag_property_flags (const fragS *, frag_flags *);
10094 static bfd_vma frag_flags_to_number (const frag_flags *);
10095 static void add_xt_prop_frags
10096 (segT, segT, xtensa_block_info **, frag_flags_fn);
10097
10098 /* Set up property tables after relaxation. */
10099
10100 void
10101 xtensa_post_relax_hook (void)
10102 {
10103 xtensa_move_seg_list_to_beginning (literal_head);
10104 xtensa_move_seg_list_to_beginning (init_literal_head);
10105 xtensa_move_seg_list_to_beginning (fini_literal_head);
10106
10107 xtensa_find_unmarked_state_frags ();
10108
10109 if (use_literal_section)
10110 xtensa_create_property_segments (get_frag_is_literal,
10111 NULL,
10112 XTENSA_LIT_SEC_NAME,
10113 xt_literal_sec);
10114 xtensa_create_xproperty_segments (get_frag_property_flags,
10115 XTENSA_PROP_SEC_NAME,
10116 xt_prop_sec);
10117
10118 if (warn_unaligned_branch_targets)
10119 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10120 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10121 }
10122
10123
10124 /* This function is only meaningful after xtensa_move_literals. */
10125
10126 static bfd_boolean
10127 get_frag_is_literal (const fragS *fragP)
10128 {
10129 assert (fragP != NULL);
10130 return fragP->tc_frag_data.is_literal;
10131 }
10132
10133
10134 static void
10135 xtensa_create_property_segments (frag_predicate property_function,
10136 frag_predicate end_property_function,
10137 const char *section_name_base,
10138 xt_section_type sec_type)
10139 {
10140 segT *seclist;
10141
10142 /* Walk over all of the current segments.
10143 Walk over each fragment
10144 For each non-empty fragment,
10145 Build a property record (append where possible). */
10146
10147 for (seclist = &stdoutput->sections;
10148 seclist && *seclist;
10149 seclist = &(*seclist)->next)
10150 {
10151 segT sec = *seclist;
10152 flagword flags;
10153
10154 flags = bfd_get_section_flags (stdoutput, sec);
10155 if (flags & SEC_DEBUGGING)
10156 continue;
10157 if (!(flags & SEC_ALLOC))
10158 continue;
10159
10160 if (section_has_property (sec, property_function))
10161 {
10162 char *property_section_name =
10163 xtensa_get_property_section_name (sec, section_name_base);
10164 segT insn_sec = retrieve_xtensa_section (property_section_name);
10165 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10166 xtensa_block_info **xt_blocks =
10167 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10168 /* Walk over all of the frchains here and add new sections. */
10169 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10170 end_property_function);
10171 }
10172 }
10173
10174 /* Now we fill them out.... */
10175
10176 for (seclist = &stdoutput->sections;
10177 seclist && *seclist;
10178 seclist = &(*seclist)->next)
10179 {
10180 segment_info_type *seginfo;
10181 xtensa_block_info *block;
10182 segT sec = *seclist;
10183
10184 seginfo = seg_info (sec);
10185 block = seginfo->tc_segment_info_data.blocks[sec_type];
10186
10187 if (block)
10188 {
10189 xtensa_block_info *cur_block;
10190 /* This is a section with some data. */
10191 int num_recs = 0;
10192 bfd_size_type rec_size;
10193
10194 for (cur_block = block; cur_block; cur_block = cur_block->next)
10195 num_recs++;
10196
10197 rec_size = num_recs * 8;
10198 bfd_set_section_size (stdoutput, sec, rec_size);
10199
10200 /* In order to make this work with the assembler, we have to
10201 build some frags and then build the "fixups" for it. It
10202 would be easier to just set the contents then set the
10203 arlents. */
10204
10205 if (num_recs)
10206 {
10207 /* Allocate a fragment and leak it. */
10208 fragS *fragP;
10209 bfd_size_type frag_size;
10210 fixS *fixes;
10211 frchainS *frchainP;
10212 int i;
10213 char *frag_data;
10214
10215 frag_size = sizeof (fragS) + rec_size;
10216 fragP = (fragS *) xmalloc (frag_size);
10217
10218 memset (fragP, 0, frag_size);
10219 fragP->fr_address = 0;
10220 fragP->fr_next = NULL;
10221 fragP->fr_fix = rec_size;
10222 fragP->fr_var = 0;
10223 fragP->fr_type = rs_fill;
10224 /* The rest are zeros. */
10225
10226 frchainP = seginfo->frchainP;
10227 frchainP->frch_root = fragP;
10228 frchainP->frch_last = fragP;
10229
10230 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10231 memset (fixes, 0, sizeof (fixS) * num_recs);
10232
10233 seginfo->fix_root = fixes;
10234 seginfo->fix_tail = &fixes[num_recs - 1];
10235 cur_block = block;
10236 frag_data = &fragP->fr_literal[0];
10237 for (i = 0; i < num_recs; i++)
10238 {
10239 fixS *fix = &fixes[i];
10240 assert (cur_block);
10241
10242 /* Write the fixup. */
10243 if (i != num_recs - 1)
10244 fix->fx_next = &fixes[i + 1];
10245 else
10246 fix->fx_next = NULL;
10247 fix->fx_size = 4;
10248 fix->fx_done = 0;
10249 fix->fx_frag = fragP;
10250 fix->fx_where = i * 8;
10251 fix->fx_addsy = section_symbol (cur_block->sec);
10252 fix->fx_offset = cur_block->offset;
10253 fix->fx_r_type = BFD_RELOC_32;
10254 fix->fx_file = "Internal Assembly";
10255 fix->fx_line = 0;
10256
10257 /* Write the length. */
10258 md_number_to_chars (&frag_data[4 + 8 * i],
10259 cur_block->size, 4);
10260 cur_block = cur_block->next;
10261 }
10262 }
10263 }
10264 }
10265 }
10266
10267
10268 static void
10269 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10270 const char *section_name_base,
10271 xt_section_type sec_type)
10272 {
10273 segT *seclist;
10274
10275 /* Walk over all of the current segments.
10276 Walk over each fragment.
10277 For each fragment that has instructions,
10278 build an instruction record (append where possible). */
10279
10280 for (seclist = &stdoutput->sections;
10281 seclist && *seclist;
10282 seclist = &(*seclist)->next)
10283 {
10284 segT sec = *seclist;
10285 flagword flags;
10286
10287 flags = bfd_get_section_flags (stdoutput, sec);
10288 if ((flags & SEC_DEBUGGING)
10289 || !(flags & SEC_ALLOC)
10290 || (flags & SEC_MERGE))
10291 continue;
10292
10293 if (section_has_xproperty (sec, flag_fn))
10294 {
10295 char *property_section_name =
10296 xtensa_get_property_section_name (sec, section_name_base);
10297 segT insn_sec = retrieve_xtensa_section (property_section_name);
10298 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10299 xtensa_block_info **xt_blocks =
10300 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10301 /* Walk over all of the frchains here and add new sections. */
10302 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
10303 }
10304 }
10305
10306 /* Now we fill them out.... */
10307
10308 for (seclist = &stdoutput->sections;
10309 seclist && *seclist;
10310 seclist = &(*seclist)->next)
10311 {
10312 segment_info_type *seginfo;
10313 xtensa_block_info *block;
10314 segT sec = *seclist;
10315
10316 seginfo = seg_info (sec);
10317 block = seginfo->tc_segment_info_data.blocks[sec_type];
10318
10319 if (block)
10320 {
10321 xtensa_block_info *cur_block;
10322 /* This is a section with some data. */
10323 int num_recs = 0;
10324 bfd_size_type rec_size;
10325
10326 for (cur_block = block; cur_block; cur_block = cur_block->next)
10327 num_recs++;
10328
10329 rec_size = num_recs * (8 + 4);
10330 bfd_set_section_size (stdoutput, sec, rec_size);
10331
10332 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10333
10334 /* In order to make this work with the assembler, we have to build
10335 some frags then build the "fixups" for it. It would be easier to
10336 just set the contents then set the arlents. */
10337
10338 if (num_recs)
10339 {
10340 /* Allocate a fragment and (unfortunately) leak it. */
10341 fragS *fragP;
10342 bfd_size_type frag_size;
10343 fixS *fixes;
10344 frchainS *frchainP;
10345 int i;
10346 char *frag_data;
10347
10348 frag_size = sizeof (fragS) + rec_size;
10349 fragP = (fragS *) xmalloc (frag_size);
10350
10351 memset (fragP, 0, frag_size);
10352 fragP->fr_address = 0;
10353 fragP->fr_next = NULL;
10354 fragP->fr_fix = rec_size;
10355 fragP->fr_var = 0;
10356 fragP->fr_type = rs_fill;
10357 /* The rest are zeros. */
10358
10359 frchainP = seginfo->frchainP;
10360 frchainP->frch_root = fragP;
10361 frchainP->frch_last = fragP;
10362
10363 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10364 memset (fixes, 0, sizeof (fixS) * num_recs);
10365
10366 seginfo->fix_root = fixes;
10367 seginfo->fix_tail = &fixes[num_recs - 1];
10368 cur_block = block;
10369 frag_data = &fragP->fr_literal[0];
10370 for (i = 0; i < num_recs; i++)
10371 {
10372 fixS *fix = &fixes[i];
10373 assert (cur_block);
10374
10375 /* Write the fixup. */
10376 if (i != num_recs - 1)
10377 fix->fx_next = &fixes[i + 1];
10378 else
10379 fix->fx_next = NULL;
10380 fix->fx_size = 4;
10381 fix->fx_done = 0;
10382 fix->fx_frag = fragP;
10383 fix->fx_where = i * (8 + 4);
10384 fix->fx_addsy = section_symbol (cur_block->sec);
10385 fix->fx_offset = cur_block->offset;
10386 fix->fx_r_type = BFD_RELOC_32;
10387 fix->fx_file = "Internal Assembly";
10388 fix->fx_line = 0;
10389
10390 /* Write the length. */
10391 md_number_to_chars (&frag_data[4 + (8+4) * i],
10392 cur_block->size, 4);
10393 md_number_to_chars (&frag_data[8 + (8+4) * i],
10394 frag_flags_to_number (&cur_block->flags),
10395 4);
10396 cur_block = cur_block->next;
10397 }
10398 }
10399 }
10400 }
10401 }
10402
10403
10404 static segment_info_type *
10405 retrieve_segment_info (segT seg)
10406 {
10407 segment_info_type *seginfo;
10408 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10409 if (!seginfo)
10410 {
10411 frchainS *frchainP;
10412
10413 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
10414 memset ((void *) seginfo, 0, sizeof (*seginfo));
10415 seginfo->fix_root = NULL;
10416 seginfo->fix_tail = NULL;
10417 seginfo->bfd_section = seg;
10418 seginfo->sym = 0;
10419 /* We will not be dealing with these, only our special ones. */
10420 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
10421
10422 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10423 frchainP->frch_root = NULL;
10424 frchainP->frch_last = NULL;
10425 frchainP->frch_next = NULL;
10426 frchainP->frch_seg = seg;
10427 frchainP->frch_subseg = 0;
10428 frchainP->fix_root = NULL;
10429 frchainP->fix_tail = NULL;
10430 /* Do not init the objstack. */
10431 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10432 /* frchainP->frch_frag_now = fragP; */
10433 frchainP->frch_frag_now = NULL;
10434
10435 seginfo->frchainP = frchainP;
10436 }
10437
10438 return seginfo;
10439 }
10440
10441
10442 static segT
10443 retrieve_xtensa_section (char *sec_name)
10444 {
10445 bfd *abfd = stdoutput;
10446 flagword flags, out_flags, link_once_flags;
10447 segT s;
10448
10449 flags = bfd_get_section_flags (abfd, now_seg);
10450 link_once_flags = (flags & SEC_LINK_ONCE);
10451 if (link_once_flags)
10452 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10453 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10454
10455 s = bfd_make_section_old_way (abfd, sec_name);
10456 if (s == NULL)
10457 as_bad (_("could not create section %s"), sec_name);
10458 if (!bfd_set_section_flags (abfd, s, out_flags))
10459 as_bad (_("invalid flag combination on section %s"), sec_name);
10460
10461 return s;
10462 }
10463
10464
10465 static bfd_boolean
10466 section_has_property (segT sec, frag_predicate property_function)
10467 {
10468 segment_info_type *seginfo = seg_info (sec);
10469 fragS *fragP;
10470
10471 if (seginfo && seginfo->frchainP)
10472 {
10473 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10474 {
10475 if (property_function (fragP)
10476 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10477 return TRUE;
10478 }
10479 }
10480 return FALSE;
10481 }
10482
10483
10484 static bfd_boolean
10485 section_has_xproperty (segT sec, frag_flags_fn property_function)
10486 {
10487 segment_info_type *seginfo = seg_info (sec);
10488 fragS *fragP;
10489
10490 if (seginfo && seginfo->frchainP)
10491 {
10492 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10493 {
10494 frag_flags prop_flags;
10495 property_function (fragP, &prop_flags);
10496 if (!xtensa_frag_flags_is_empty (&prop_flags))
10497 return TRUE;
10498 }
10499 }
10500 return FALSE;
10501 }
10502
10503
10504 /* Two types of block sections exist right now: literal and insns. */
10505
10506 static void
10507 add_xt_block_frags (segT sec,
10508 segT xt_block_sec,
10509 xtensa_block_info **xt_block,
10510 frag_predicate property_function,
10511 frag_predicate end_property_function)
10512 {
10513 segment_info_type *seg_info;
10514 segment_info_type *xt_seg_info;
10515 bfd_vma seg_offset;
10516 fragS *fragP;
10517
10518 xt_seg_info = retrieve_segment_info (xt_block_sec);
10519 seg_info = retrieve_segment_info (sec);
10520
10521 /* Build it if needed. */
10522 while (*xt_block != NULL)
10523 xt_block = &(*xt_block)->next;
10524 /* We are either at NULL at the beginning or at the end. */
10525
10526 /* Walk through the frags. */
10527 seg_offset = 0;
10528
10529 if (seg_info->frchainP)
10530 {
10531 for (fragP = seg_info->frchainP->frch_root;
10532 fragP;
10533 fragP = fragP->fr_next)
10534 {
10535 if (property_function (fragP)
10536 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10537 {
10538 if (*xt_block != NULL)
10539 {
10540 if ((*xt_block)->offset + (*xt_block)->size
10541 == fragP->fr_address)
10542 (*xt_block)->size += fragP->fr_fix;
10543 else
10544 xt_block = &((*xt_block)->next);
10545 }
10546 if (*xt_block == NULL)
10547 {
10548 xtensa_block_info *new_block = (xtensa_block_info *)
10549 xmalloc (sizeof (xtensa_block_info));
10550 new_block->sec = sec;
10551 new_block->offset = fragP->fr_address;
10552 new_block->size = fragP->fr_fix;
10553 new_block->next = NULL;
10554 xtensa_frag_flags_init (&new_block->flags);
10555 *xt_block = new_block;
10556 }
10557 if (end_property_function
10558 && end_property_function (fragP))
10559 {
10560 xt_block = &((*xt_block)->next);
10561 }
10562 }
10563 }
10564 }
10565 }
10566
10567
10568 /* Break the encapsulation of add_xt_prop_frags here. */
10569
10570 static bfd_boolean
10571 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10572 {
10573 if (prop_flags->is_literal
10574 || prop_flags->is_insn
10575 || prop_flags->is_data
10576 || prop_flags->is_unreachable)
10577 return FALSE;
10578 return TRUE;
10579 }
10580
10581
10582 static void
10583 xtensa_frag_flags_init (frag_flags *prop_flags)
10584 {
10585 memset (prop_flags, 0, sizeof (frag_flags));
10586 }
10587
10588
10589 static void
10590 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10591 {
10592 xtensa_frag_flags_init (prop_flags);
10593 if (fragP->tc_frag_data.is_literal)
10594 prop_flags->is_literal = TRUE;
10595 if (fragP->tc_frag_data.is_unreachable)
10596 prop_flags->is_unreachable = TRUE;
10597 else if (fragP->tc_frag_data.is_insn)
10598 {
10599 prop_flags->is_insn = TRUE;
10600 if (fragP->tc_frag_data.is_loop_target)
10601 prop_flags->insn.is_loop_target = TRUE;
10602 if (fragP->tc_frag_data.is_branch_target)
10603 prop_flags->insn.is_branch_target = TRUE;
10604 if (fragP->tc_frag_data.is_specific_opcode
10605 || fragP->tc_frag_data.is_no_transform)
10606 prop_flags->insn.is_no_transform = TRUE;
10607 if (fragP->tc_frag_data.is_no_density)
10608 prop_flags->insn.is_no_density = TRUE;
10609 if (fragP->tc_frag_data.use_absolute_literals)
10610 prop_flags->insn.is_abslit = TRUE;
10611 }
10612 if (fragP->tc_frag_data.is_align)
10613 {
10614 prop_flags->is_align = TRUE;
10615 prop_flags->alignment = fragP->tc_frag_data.alignment;
10616 if (xtensa_frag_flags_is_empty (prop_flags))
10617 prop_flags->is_data = TRUE;
10618 }
10619 }
10620
10621
10622 static bfd_vma
10623 frag_flags_to_number (const frag_flags *prop_flags)
10624 {
10625 bfd_vma num = 0;
10626 if (prop_flags->is_literal)
10627 num |= XTENSA_PROP_LITERAL;
10628 if (prop_flags->is_insn)
10629 num |= XTENSA_PROP_INSN;
10630 if (prop_flags->is_data)
10631 num |= XTENSA_PROP_DATA;
10632 if (prop_flags->is_unreachable)
10633 num |= XTENSA_PROP_UNREACHABLE;
10634 if (prop_flags->insn.is_loop_target)
10635 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10636 if (prop_flags->insn.is_branch_target)
10637 {
10638 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10639 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10640 }
10641
10642 if (prop_flags->insn.is_no_density)
10643 num |= XTENSA_PROP_INSN_NO_DENSITY;
10644 if (prop_flags->insn.is_no_transform)
10645 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10646 if (prop_flags->insn.is_no_reorder)
10647 num |= XTENSA_PROP_INSN_NO_REORDER;
10648 if (prop_flags->insn.is_abslit)
10649 num |= XTENSA_PROP_INSN_ABSLIT;
10650
10651 if (prop_flags->is_align)
10652 {
10653 num |= XTENSA_PROP_ALIGN;
10654 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10655 }
10656
10657 return num;
10658 }
10659
10660
10661 static bfd_boolean
10662 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10663 const frag_flags *prop_flags_2)
10664 {
10665 /* Cannot combine with an end marker. */
10666
10667 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10668 return FALSE;
10669 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10670 return FALSE;
10671 if (prop_flags_1->is_data != prop_flags_2->is_data)
10672 return FALSE;
10673
10674 if (prop_flags_1->is_insn)
10675 {
10676 /* Properties of the beginning of the frag. */
10677 if (prop_flags_2->insn.is_loop_target)
10678 return FALSE;
10679 if (prop_flags_2->insn.is_branch_target)
10680 return FALSE;
10681 if (prop_flags_1->insn.is_no_density !=
10682 prop_flags_2->insn.is_no_density)
10683 return FALSE;
10684 if (prop_flags_1->insn.is_no_transform !=
10685 prop_flags_2->insn.is_no_transform)
10686 return FALSE;
10687 if (prop_flags_1->insn.is_no_reorder !=
10688 prop_flags_2->insn.is_no_reorder)
10689 return FALSE;
10690 if (prop_flags_1->insn.is_abslit !=
10691 prop_flags_2->insn.is_abslit)
10692 return FALSE;
10693 }
10694
10695 if (prop_flags_1->is_align)
10696 return FALSE;
10697
10698 return TRUE;
10699 }
10700
10701
10702 static bfd_vma
10703 xt_block_aligned_size (const xtensa_block_info *xt_block)
10704 {
10705 bfd_vma end_addr;
10706 unsigned align_bits;
10707
10708 if (!xt_block->flags.is_align)
10709 return xt_block->size;
10710
10711 end_addr = xt_block->offset + xt_block->size;
10712 align_bits = xt_block->flags.alignment;
10713 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10714 return end_addr - xt_block->offset;
10715 }
10716
10717
10718 static bfd_boolean
10719 xtensa_xt_block_combine (xtensa_block_info *xt_block,
10720 const xtensa_block_info *xt_block_2)
10721 {
10722 if (xt_block->sec != xt_block_2->sec)
10723 return FALSE;
10724 if (xt_block->offset + xt_block_aligned_size (xt_block)
10725 != xt_block_2->offset)
10726 return FALSE;
10727
10728 if (xt_block_2->size == 0
10729 && (!xt_block_2->flags.is_unreachable
10730 || xt_block->flags.is_unreachable))
10731 {
10732 if (xt_block_2->flags.is_align
10733 && xt_block->flags.is_align)
10734 {
10735 /* Nothing needed. */
10736 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10737 return TRUE;
10738 }
10739 else
10740 {
10741 if (xt_block_2->flags.is_align)
10742 {
10743 /* Push alignment to previous entry. */
10744 xt_block->flags.is_align = xt_block_2->flags.is_align;
10745 xt_block->flags.alignment = xt_block_2->flags.alignment;
10746 }
10747 return TRUE;
10748 }
10749 }
10750 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10751 &xt_block_2->flags))
10752 return FALSE;
10753
10754 xt_block->size += xt_block_2->size;
10755
10756 if (xt_block_2->flags.is_align)
10757 {
10758 xt_block->flags.is_align = TRUE;
10759 xt_block->flags.alignment = xt_block_2->flags.alignment;
10760 }
10761
10762 return TRUE;
10763 }
10764
10765
10766 static void
10767 add_xt_prop_frags (segT sec,
10768 segT xt_block_sec,
10769 xtensa_block_info **xt_block,
10770 frag_flags_fn property_function)
10771 {
10772 segment_info_type *seg_info;
10773 segment_info_type *xt_seg_info;
10774 bfd_vma seg_offset;
10775 fragS *fragP;
10776
10777 xt_seg_info = retrieve_segment_info (xt_block_sec);
10778 seg_info = retrieve_segment_info (sec);
10779 /* Build it if needed. */
10780 while (*xt_block != NULL)
10781 {
10782 xt_block = &(*xt_block)->next;
10783 }
10784 /* We are either at NULL at the beginning or at the end. */
10785
10786 /* Walk through the frags. */
10787 seg_offset = 0;
10788
10789 if (seg_info->frchainP)
10790 {
10791 for (fragP = seg_info->frchainP->frch_root; fragP;
10792 fragP = fragP->fr_next)
10793 {
10794 xtensa_block_info tmp_block;
10795 tmp_block.sec = sec;
10796 tmp_block.offset = fragP->fr_address;
10797 tmp_block.size = fragP->fr_fix;
10798 tmp_block.next = NULL;
10799 property_function (fragP, &tmp_block.flags);
10800
10801 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10802 /* && fragP->fr_fix != 0) */
10803 {
10804 if ((*xt_block) == NULL
10805 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10806 {
10807 xtensa_block_info *new_block;
10808 if ((*xt_block) != NULL)
10809 xt_block = &(*xt_block)->next;
10810 new_block = (xtensa_block_info *)
10811 xmalloc (sizeof (xtensa_block_info));
10812 *new_block = tmp_block;
10813 *xt_block = new_block;
10814 }
10815 }
10816 }
10817 }
10818 }
10819
10820 \f
10821 /* op_placement_info_table */
10822
10823 /* op_placement_info makes it easier to determine which
10824 ops can go in which slots. */
10825
10826 static void
10827 init_op_placement_info_table (void)
10828 {
10829 xtensa_isa isa = xtensa_default_isa;
10830 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10831 xtensa_opcode opcode;
10832 xtensa_format fmt;
10833 int slot;
10834 int num_opcodes = xtensa_isa_num_opcodes (isa);
10835
10836 op_placement_table = (op_placement_info_table)
10837 xmalloc (sizeof (op_placement_info) * num_opcodes);
10838 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10839
10840 for (opcode = 0; opcode < num_opcodes; opcode++)
10841 {
10842 op_placement_info *opi = &op_placement_table[opcode];
10843 /* FIXME: Make tinsn allocation dynamic. */
10844 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10845 as_fatal (_("too many operands in instruction"));
10846 opi->single = XTENSA_UNDEFINED;
10847 opi->single_size = 0;
10848 opi->widest = XTENSA_UNDEFINED;
10849 opi->widest_size = 0;
10850 opi->narrowest = XTENSA_UNDEFINED;
10851 opi->narrowest_size = 0x7F;
10852 opi->formats = 0;
10853 opi->num_formats = 0;
10854 opi->issuef = 0;
10855 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10856 {
10857 opi->slots[fmt] = 0;
10858 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10859 {
10860 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10861 {
10862 int fmt_length = xtensa_format_length (isa, fmt);
10863 opi->issuef++;
10864 set_bit (fmt, opi->formats);
10865 set_bit (slot, opi->slots[fmt]);
10866 /* opi->slot_count[fmt]++; */
10867 if (fmt_length < opi->narrowest_size)
10868 {
10869 opi->narrowest = fmt;
10870 opi->narrowest_size = fmt_length;
10871 }
10872 if (fmt_length > opi->widest_size)
10873 {
10874 opi->widest = fmt;
10875 opi->widest_size = fmt_length;
10876 }
10877 if (xtensa_format_num_slots (isa, fmt) == 1)
10878 {
10879 if (opi->single_size == 0
10880 || fmt_length < opi->single_size)
10881 {
10882 opi->single = fmt;
10883 opi->single_size = fmt_length;
10884 }
10885 }
10886 }
10887 }
10888 if (opi->formats)
10889 opi->num_formats++;
10890 }
10891 }
10892 xtensa_insnbuf_free (isa, ibuf);
10893 }
10894
10895
10896 bfd_boolean
10897 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
10898 {
10899 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10900 }
10901
10902
10903 /* If the opcode is available in a single slot format, return its size. */
10904
10905 static int
10906 xg_get_single_size (xtensa_opcode opcode)
10907 {
10908 assert (op_placement_table[opcode].single != XTENSA_UNDEFINED);
10909 return op_placement_table[opcode].single_size;
10910 }
10911
10912
10913 static xtensa_format
10914 xg_get_single_format (xtensa_opcode opcode)
10915 {
10916 return op_placement_table[opcode].single;
10917 }
10918
10919 \f
10920 /* Instruction Stack Functions (from "xtensa-istack.h"). */
10921
10922 void
10923 istack_init (IStack *stack)
10924 {
10925 memset (stack, 0, sizeof (IStack));
10926 stack->ninsn = 0;
10927 }
10928
10929
10930 bfd_boolean
10931 istack_empty (IStack *stack)
10932 {
10933 return (stack->ninsn == 0);
10934 }
10935
10936
10937 bfd_boolean
10938 istack_full (IStack *stack)
10939 {
10940 return (stack->ninsn == MAX_ISTACK);
10941 }
10942
10943
10944 /* Return a pointer to the top IStack entry.
10945 It is an error to call this if istack_empty () is TRUE. */
10946
10947 TInsn *
10948 istack_top (IStack *stack)
10949 {
10950 int rec = stack->ninsn - 1;
10951 assert (!istack_empty (stack));
10952 return &stack->insn[rec];
10953 }
10954
10955
10956 /* Add a new TInsn to an IStack.
10957 It is an error to call this if istack_full () is TRUE. */
10958
10959 void
10960 istack_push (IStack *stack, TInsn *insn)
10961 {
10962 int rec = stack->ninsn;
10963 assert (!istack_full (stack));
10964 stack->insn[rec] = *insn;
10965 stack->ninsn++;
10966 }
10967
10968
10969 /* Clear space for the next TInsn on the IStack and return a pointer
10970 to it. It is an error to call this if istack_full () is TRUE. */
10971
10972 TInsn *
10973 istack_push_space (IStack *stack)
10974 {
10975 int rec = stack->ninsn;
10976 TInsn *insn;
10977 assert (!istack_full (stack));
10978 insn = &stack->insn[rec];
10979 memset (insn, 0, sizeof (TInsn));
10980 stack->ninsn++;
10981 return insn;
10982 }
10983
10984
10985 /* Remove the last pushed instruction. It is an error to call this if
10986 istack_empty () returns TRUE. */
10987
10988 void
10989 istack_pop (IStack *stack)
10990 {
10991 int rec = stack->ninsn - 1;
10992 assert (!istack_empty (stack));
10993 stack->ninsn--;
10994 memset (&stack->insn[rec], 0, sizeof (TInsn));
10995 }
10996
10997 \f
10998 /* TInsn functions. */
10999
11000 void
11001 tinsn_init (TInsn *dst)
11002 {
11003 memset (dst, 0, sizeof (TInsn));
11004 }
11005
11006
11007 /* Get the ``num''th token of the TInsn.
11008 It is illegal to call this if num > insn->ntoks. */
11009
11010 expressionS *
11011 tinsn_get_tok (TInsn *insn, int num)
11012 {
11013 assert (num < insn->ntok);
11014 return &insn->tok[num];
11015 }
11016
11017
11018 /* Return TRUE if ANY of the operands in the insn are symbolic. */
11019
11020 static bfd_boolean
11021 tinsn_has_symbolic_operands (const TInsn *insn)
11022 {
11023 int i;
11024 int n = insn->ntok;
11025
11026 assert (insn->insn_type == ITYPE_INSN);
11027
11028 for (i = 0; i < n; ++i)
11029 {
11030 switch (insn->tok[i].X_op)
11031 {
11032 case O_register:
11033 case O_constant:
11034 break;
11035 default:
11036 return TRUE;
11037 }
11038 }
11039 return FALSE;
11040 }
11041
11042
11043 bfd_boolean
11044 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11045 {
11046 xtensa_isa isa = xtensa_default_isa;
11047 int i;
11048 int n = insn->ntok;
11049
11050 assert (insn->insn_type == ITYPE_INSN);
11051
11052 for (i = 0; i < n; ++i)
11053 {
11054 switch (insn->tok[i].X_op)
11055 {
11056 case O_register:
11057 case O_constant:
11058 break;
11059 case O_big:
11060 case O_illegal:
11061 case O_absent:
11062 /* Errors for these types are caught later. */
11063 break;
11064 case O_hi16:
11065 case O_lo16:
11066 default:
11067 /* Symbolic immediates are only allowed on the last immediate
11068 operand. At this time, CONST16 is the only opcode where we
11069 support non-PC-relative relocations. (It isn't necessary
11070 to complain about non-PC-relative relocations here, but
11071 otherwise, no error is reported until the relocations are
11072 generated, and the assembler won't get that far if there
11073 are any other errors. It's nice to see all the problems
11074 at once.) */
11075 if (i != get_relaxable_immed (insn->opcode)
11076 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11077 && insn->opcode != xtensa_const16_opcode))
11078 {
11079 as_bad (_("invalid symbolic operand %d on '%s'"),
11080 i, xtensa_opcode_name (isa, insn->opcode));
11081 return TRUE;
11082 }
11083 }
11084 }
11085 return FALSE;
11086 }
11087
11088
11089 /* For assembly code with complex expressions (e.g. subtraction),
11090 we have to build them in the literal pool so that
11091 their results are calculated correctly after relaxation.
11092 The relaxation only handles expressions that
11093 boil down to SYMBOL + OFFSET. */
11094
11095 static bfd_boolean
11096 tinsn_has_complex_operands (const TInsn *insn)
11097 {
11098 int i;
11099 int n = insn->ntok;
11100 assert (insn->insn_type == ITYPE_INSN);
11101 for (i = 0; i < n; ++i)
11102 {
11103 switch (insn->tok[i].X_op)
11104 {
11105 case O_register:
11106 case O_constant:
11107 case O_symbol:
11108 case O_lo16:
11109 case O_hi16:
11110 break;
11111 default:
11112 return TRUE;
11113 }
11114 }
11115 return FALSE;
11116 }
11117
11118
11119 /* Convert the constant operands in the tinsn to insnbuf.
11120 Return TRUE if there is a symbol in the immediate field.
11121
11122 Before this is called,
11123 1) the number of operands are correct
11124 2) the tinsn is a ITYPE_INSN
11125 3) ONLY the relaxable_ is built
11126 4) All operands are O_constant, O_symbol. All constants fit
11127 The return value tells whether there are any remaining O_symbols. */
11128
11129 static bfd_boolean
11130 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11131 {
11132 static xtensa_insnbuf slotbuf = 0;
11133 xtensa_isa isa = xtensa_default_isa;
11134 xtensa_opcode opcode = tinsn->opcode;
11135 xtensa_format fmt = xg_get_single_format (opcode);
11136 bfd_boolean has_fixup = FALSE;
11137 int noperands = xtensa_opcode_num_operands (isa, opcode);
11138 int i;
11139 uint32 opnd_value;
11140 char *file_name;
11141 unsigned line;
11142
11143 if (!slotbuf)
11144 slotbuf = xtensa_insnbuf_alloc (isa);
11145
11146 assert (tinsn->insn_type == ITYPE_INSN);
11147 if (noperands != tinsn->ntok)
11148 as_fatal (_("operand number mismatch"));
11149
11150 if (xtensa_opcode_encode (isa, fmt, 0, slotbuf, opcode))
11151 as_fatal (_("cannot encode opcode"));
11152
11153 for (i = 0; i < noperands; ++i)
11154 {
11155 expressionS *expr = &tinsn->tok[i];
11156 switch (expr->X_op)
11157 {
11158 case O_register:
11159 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11160 break;
11161 /* The register number has already been checked in
11162 expression_maybe_register, so we don't need to check here. */
11163 opnd_value = expr->X_add_number;
11164 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11165 xtensa_operand_set_field (isa, opcode, i, fmt, 0,
11166 slotbuf, opnd_value);
11167 break;
11168
11169 case O_constant:
11170 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11171 break;
11172 as_where (&file_name, &line);
11173 /* It is a constant and we called this function,
11174 then we have to try to fit it. */
11175 xtensa_insnbuf_set_operand (slotbuf, fmt, 0, opcode, i,
11176 expr->X_add_number, file_name, line);
11177 break;
11178
11179 default:
11180 has_fixup = TRUE;
11181 break;
11182 }
11183 }
11184
11185 xtensa_format_encode (isa, fmt, insnbuf);
11186 xtensa_format_set_slot (isa, fmt, 0, insnbuf, slotbuf);
11187
11188 return has_fixup;
11189 }
11190
11191
11192 /* Convert the constant operands in the tinsn to slotbuf.
11193 Return TRUE if there is a symbol in the immediate field.
11194 (Eventually this should replace tinsn_to_insnbuf.) */
11195
11196 /* Before this is called,
11197 1) the number of operands are correct
11198 2) the tinsn is a ITYPE_INSN
11199 3) ONLY the relaxable_ is built
11200 4) All operands are
11201 O_constant, O_symbol
11202 All constants fit
11203
11204 The return value tells whether there are any remaining O_symbols. */
11205
11206 static bfd_boolean
11207 tinsn_to_slotbuf (xtensa_format fmt,
11208 int slot,
11209 TInsn *tinsn,
11210 xtensa_insnbuf slotbuf)
11211 {
11212 xtensa_isa isa = xtensa_default_isa;
11213 xtensa_opcode opcode = tinsn->opcode;
11214 bfd_boolean has_fixup = FALSE;
11215 int noperands = xtensa_opcode_num_operands (isa, opcode);
11216 int i;
11217
11218 *((int *) &slotbuf[0]) = 0;
11219 *((int *) &slotbuf[1]) = 0;
11220 assert (tinsn->insn_type == ITYPE_INSN);
11221 if (noperands != tinsn->ntok)
11222 as_fatal (_("operand number mismatch"));
11223
11224 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11225 {
11226 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11227 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11228 return FALSE;
11229 }
11230
11231 for (i = 0; i < noperands; i++)
11232 {
11233 expressionS *expr = &tinsn->tok[i];
11234 int rc;
11235 unsigned line;
11236 char *file_name;
11237 uint32 opnd_value;
11238
11239 switch (expr->X_op)
11240 {
11241 case O_register:
11242 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11243 break;
11244 /* The register number has already been checked in
11245 expression_maybe_register, so we don't need to check here. */
11246 opnd_value = expr->X_add_number;
11247 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11248 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11249 opnd_value);
11250 if (rc != 0)
11251 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11252 break;
11253
11254 case O_constant:
11255 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11256 break;
11257 as_where (&file_name, &line);
11258 /* It is a constant and we called this function
11259 then we have to try to fit it. */
11260 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11261 expr->X_add_number, file_name, line);
11262 break;
11263
11264 default:
11265 has_fixup = TRUE;
11266 break;
11267 }
11268 }
11269
11270 return has_fixup;
11271 }
11272
11273
11274 /* Check the instruction arguments. Return TRUE on failure. */
11275
11276 static bfd_boolean
11277 tinsn_check_arguments (const TInsn *insn)
11278 {
11279 xtensa_isa isa = xtensa_default_isa;
11280 xtensa_opcode opcode = insn->opcode;
11281
11282 if (opcode == XTENSA_UNDEFINED)
11283 {
11284 as_bad (_("invalid opcode"));
11285 return TRUE;
11286 }
11287
11288 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11289 {
11290 as_bad (_("too few operands"));
11291 return TRUE;
11292 }
11293
11294 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11295 {
11296 as_bad (_("too many operands"));
11297 return TRUE;
11298 }
11299 return FALSE;
11300 }
11301
11302
11303 /* Load an instruction from its encoded form. */
11304
11305 static void
11306 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11307 {
11308 vliw_insn vinsn;
11309
11310 xg_init_vinsn (&vinsn);
11311 vinsn_from_chars (&vinsn, f);
11312
11313 *tinsn = vinsn.slots[slot];
11314 xg_free_vinsn (&vinsn);
11315 }
11316
11317
11318 static void
11319 tinsn_from_insnbuf (TInsn *tinsn,
11320 xtensa_insnbuf slotbuf,
11321 xtensa_format fmt,
11322 int slot)
11323 {
11324 int i;
11325 xtensa_isa isa = xtensa_default_isa;
11326
11327 /* Find the immed. */
11328 tinsn_init (tinsn);
11329 tinsn->insn_type = ITYPE_INSN;
11330 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11331 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11332 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11333 for (i = 0; i < tinsn->ntok; i++)
11334 {
11335 set_expr_const (&tinsn->tok[i],
11336 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11337 tinsn->opcode, i));
11338 }
11339 }
11340
11341
11342 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11343
11344 static void
11345 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11346 {
11347 xtensa_opcode opcode = tinsn->opcode;
11348 int opnum;
11349
11350 if (fragP->tc_frag_data.slot_symbols[slot])
11351 {
11352 opnum = get_relaxable_immed (opcode);
11353 assert (opnum >= 0);
11354 if (fragP->tc_frag_data.slot_sub_symbols[slot])
11355 {
11356 set_expr_symbol_offset_diff
11357 (&tinsn->tok[opnum],
11358 fragP->tc_frag_data.slot_symbols[slot],
11359 fragP->tc_frag_data.slot_sub_symbols[slot],
11360 fragP->tc_frag_data.slot_offsets[slot]);
11361 }
11362 else
11363 {
11364 set_expr_symbol_offset
11365 (&tinsn->tok[opnum],
11366 fragP->tc_frag_data.slot_symbols[slot],
11367 fragP->tc_frag_data.slot_offsets[slot]);
11368 }
11369 }
11370 }
11371
11372
11373 static int
11374 get_num_stack_text_bytes (IStack *istack)
11375 {
11376 int i;
11377 int text_bytes = 0;
11378
11379 for (i = 0; i < istack->ninsn; i++)
11380 {
11381 TInsn *tinsn = &istack->insn[i];
11382 if (tinsn->insn_type == ITYPE_INSN)
11383 text_bytes += xg_get_single_size (tinsn->opcode);
11384 }
11385 return text_bytes;
11386 }
11387
11388
11389 static int
11390 get_num_stack_literal_bytes (IStack *istack)
11391 {
11392 int i;
11393 int lit_bytes = 0;
11394
11395 for (i = 0; i < istack->ninsn; i++)
11396 {
11397 TInsn *tinsn = &istack->insn[i];
11398 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11399 lit_bytes += 4;
11400 }
11401 return lit_bytes;
11402 }
11403
11404 \f
11405 /* vliw_insn functions. */
11406
11407 static void
11408 xg_init_vinsn (vliw_insn *v)
11409 {
11410 int i;
11411 xtensa_isa isa = xtensa_default_isa;
11412
11413 xg_clear_vinsn (v);
11414
11415 v->insnbuf = xtensa_insnbuf_alloc (isa);
11416 if (v->insnbuf == NULL)
11417 as_fatal (_("out of memory"));
11418
11419 for (i = 0; i < MAX_SLOTS; i++)
11420 {
11421 tinsn_init (&v->slots[i]);
11422 v->slots[i].opcode = XTENSA_UNDEFINED;
11423 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11424 if (v->slotbuf[i] == NULL)
11425 as_fatal (_("out of memory"));
11426 }
11427 }
11428
11429
11430 static void
11431 xg_clear_vinsn (vliw_insn *v)
11432 {
11433 int i;
11434 v->format = XTENSA_UNDEFINED;
11435 v->num_slots = 0;
11436 v->inside_bundle = FALSE;
11437
11438 if (xt_saved_debug_type != DEBUG_NONE)
11439 debug_type = xt_saved_debug_type;
11440
11441 for (i = 0; i < MAX_SLOTS; i++)
11442 {
11443 memset (&v->slots[i], 0, sizeof (TInsn));
11444 v->slots[i].opcode = XTENSA_UNDEFINED;
11445 }
11446 }
11447
11448
11449 static bfd_boolean
11450 vinsn_has_specific_opcodes (vliw_insn *v)
11451 {
11452 int i;
11453
11454 for (i = 0; i < v->num_slots; i++)
11455 {
11456 if (v->slots[i].is_specific_opcode)
11457 return TRUE;
11458 }
11459 return FALSE;
11460 }
11461
11462
11463 static void
11464 xg_free_vinsn (vliw_insn *v)
11465 {
11466 int i;
11467 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11468 for (i = 0; i < MAX_SLOTS; i++)
11469 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11470 }
11471
11472
11473 /* Before this is called, we should have
11474 filled out the following fields:
11475
11476 1) the number of operands for each opcode are correct
11477 2) the tinsn in the slots are ITYPE_INSN
11478 3) ONLY the relaxable_ is built
11479 4) All operands are
11480 O_constant, O_symbol
11481 All constants fit
11482
11483 The return value tells whether there are any remaining O_symbols. */
11484
11485 static bfd_boolean
11486 vinsn_to_insnbuf (vliw_insn *vinsn,
11487 char *frag_offset,
11488 fragS *fragP,
11489 bfd_boolean record_fixup)
11490 {
11491 xtensa_isa isa = xtensa_default_isa;
11492 xtensa_format fmt = vinsn->format;
11493 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11494 int slot;
11495 bfd_boolean has_fixup = FALSE;
11496
11497 xtensa_format_encode (isa, fmt, insnbuf);
11498
11499 for (slot = 0; slot < vinsn->num_slots; slot++)
11500 {
11501 TInsn *tinsn = &vinsn->slots[slot];
11502 bfd_boolean tinsn_has_fixup =
11503 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11504 vinsn->slotbuf[slot]);
11505
11506 xtensa_format_set_slot (isa, fmt, slot,
11507 insnbuf, vinsn->slotbuf[slot]);
11508 /* tinsn_has_fixup tracks if there is a fixup at all.
11509 record_fixup controls globally. I.E., we use this
11510 function from several places, some of which are after
11511 fixups have already been recorded. Finally,
11512 tinsn->record_fixup controls based on the individual ops,
11513 which may or may not need it based on the relaxation
11514 requirements. */
11515 if (tinsn_has_fixup && record_fixup)
11516 {
11517 int i;
11518 xtensa_opcode opcode = tinsn->opcode;
11519 int noperands = xtensa_opcode_num_operands (isa, opcode);
11520 has_fixup = TRUE;
11521
11522 for (i = 0; i < noperands; i++)
11523 {
11524 expressionS* expr = &tinsn->tok[i];
11525 switch (expr->X_op)
11526 {
11527 case O_symbol:
11528 case O_lo16:
11529 case O_hi16:
11530 if (get_relaxable_immed (opcode) == i)
11531 {
11532 if (tinsn->record_fix || expr->X_op != O_symbol)
11533 {
11534 if (!xg_add_opcode_fix
11535 (tinsn, i, fmt, slot, expr, fragP,
11536 frag_offset - fragP->fr_literal))
11537 as_bad (_("instruction with constant operands does not fit"));
11538 }
11539 else
11540 {
11541 tinsn->symbol = expr->X_add_symbol;
11542 tinsn->offset = expr->X_add_number;
11543 }
11544 }
11545 else
11546 as_bad (_("invalid operand %d on '%s'"),
11547 i, xtensa_opcode_name (isa, opcode));
11548 break;
11549
11550 case O_constant:
11551 case O_register:
11552 break;
11553
11554 case O_subtract:
11555 if (get_relaxable_immed (opcode) == i)
11556 {
11557 if (tinsn->record_fix)
11558 as_bad (_("invalid subtract operand"));
11559 else
11560 {
11561 tinsn->symbol = expr->X_add_symbol;
11562 tinsn->sub_symbol = expr->X_op_symbol;
11563 tinsn->offset = expr->X_add_number;
11564 }
11565 }
11566 else
11567 as_bad (_("invalid operand %d on '%s'"),
11568 i, xtensa_opcode_name (isa, opcode));
11569 break;
11570
11571 default:
11572 as_bad (_("invalid expression for operand %d on '%s'"),
11573 i, xtensa_opcode_name (isa, opcode));
11574 break;
11575 }
11576 }
11577 }
11578 }
11579
11580 return has_fixup;
11581 }
11582
11583
11584 static void
11585 vinsn_from_chars (vliw_insn *vinsn, char *f)
11586 {
11587 static xtensa_insnbuf insnbuf = NULL;
11588 static xtensa_insnbuf slotbuf = NULL;
11589 int i;
11590 xtensa_format fmt;
11591 xtensa_isa isa = xtensa_default_isa;
11592
11593 if (!insnbuf)
11594 {
11595 insnbuf = xtensa_insnbuf_alloc (isa);
11596 slotbuf = xtensa_insnbuf_alloc (isa);
11597 }
11598
11599 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11600 fmt = xtensa_format_decode (isa, insnbuf);
11601 if (fmt == XTENSA_UNDEFINED)
11602 as_fatal (_("cannot decode instruction format"));
11603 vinsn->format = fmt;
11604 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11605
11606 for (i = 0; i < vinsn->num_slots; i++)
11607 {
11608 TInsn *tinsn = &vinsn->slots[i];
11609 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11610 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11611 }
11612 }
11613
11614 \f
11615 /* Expression utilities. */
11616
11617 /* Return TRUE if the expression is an integer constant. */
11618
11619 bfd_boolean
11620 expr_is_const (const expressionS *s)
11621 {
11622 return (s->X_op == O_constant);
11623 }
11624
11625
11626 /* Get the expression constant.
11627 Calling this is illegal if expr_is_const () returns TRUE. */
11628
11629 offsetT
11630 get_expr_const (const expressionS *s)
11631 {
11632 assert (expr_is_const (s));
11633 return s->X_add_number;
11634 }
11635
11636
11637 /* Set the expression to a constant value. */
11638
11639 void
11640 set_expr_const (expressionS *s, offsetT val)
11641 {
11642 s->X_op = O_constant;
11643 s->X_add_number = val;
11644 s->X_add_symbol = NULL;
11645 s->X_op_symbol = NULL;
11646 }
11647
11648
11649 bfd_boolean
11650 expr_is_register (const expressionS *s)
11651 {
11652 return (s->X_op == O_register);
11653 }
11654
11655
11656 /* Get the expression constant.
11657 Calling this is illegal if expr_is_const () returns TRUE. */
11658
11659 offsetT
11660 get_expr_register (const expressionS *s)
11661 {
11662 assert (expr_is_register (s));
11663 return s->X_add_number;
11664 }
11665
11666
11667 /* Set the expression to a symbol + constant offset. */
11668
11669 void
11670 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11671 {
11672 s->X_op = O_symbol;
11673 s->X_add_symbol = sym;
11674 s->X_op_symbol = NULL; /* unused */
11675 s->X_add_number = offset;
11676 }
11677
11678
11679 /* Set the expression to symbol - minus_sym + offset. */
11680
11681 static void
11682 set_expr_symbol_offset_diff (expressionS *s,
11683 symbolS *sym,
11684 symbolS *minus_sym,
11685 offsetT offset)
11686 {
11687 s->X_op = O_subtract;
11688 s->X_add_symbol = sym;
11689 s->X_op_symbol = minus_sym; /* unused */
11690 s->X_add_number = offset;
11691 }
11692
11693
11694 /* Return TRUE if the two expressions are equal. */
11695
11696 bfd_boolean
11697 expr_is_equal (expressionS *s1, expressionS *s2)
11698 {
11699 if (s1->X_op != s2->X_op)
11700 return FALSE;
11701 if (s1->X_add_symbol != s2->X_add_symbol)
11702 return FALSE;
11703 if (s1->X_op_symbol != s2->X_op_symbol)
11704 return FALSE;
11705 if (s1->X_add_number != s2->X_add_number)
11706 return FALSE;
11707 return TRUE;
11708 }
11709
11710
11711 static void
11712 copy_expr (expressionS *dst, const expressionS *src)
11713 {
11714 memcpy (dst, src, sizeof (expressionS));
11715 }
11716
11717 \f
11718 /* Support for the "--rename-section" option. */
11719
11720 struct rename_section_struct
11721 {
11722 char *old_name;
11723 char *new_name;
11724 struct rename_section_struct *next;
11725 };
11726
11727 static struct rename_section_struct *section_rename;
11728
11729
11730 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11731 entries to the section_rename list. Note: Specifying multiple
11732 renamings separated by colons is not documented and is retained only
11733 for backward compatibility. */
11734
11735 static void
11736 build_section_rename (const char *arg)
11737 {
11738 struct rename_section_struct *r;
11739 char *this_arg = NULL;
11740 char *next_arg = NULL;
11741
11742 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11743 {
11744 char *old_name, *new_name;
11745
11746 if (this_arg)
11747 {
11748 next_arg = strchr (this_arg, ':');
11749 if (next_arg)
11750 {
11751 *next_arg = '\0';
11752 next_arg++;
11753 }
11754 }
11755
11756 old_name = this_arg;
11757 new_name = strchr (this_arg, '=');
11758
11759 if (*old_name == '\0')
11760 {
11761 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11762 continue;
11763 }
11764 if (!new_name || new_name[1] == '\0')
11765 {
11766 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11767 old_name);
11768 continue;
11769 }
11770 *new_name = '\0';
11771 new_name++;
11772
11773 /* Check for invalid section renaming. */
11774 for (r = section_rename; r != NULL; r = r->next)
11775 {
11776 if (strcmp (r->old_name, old_name) == 0)
11777 as_bad (_("section %s renamed multiple times"), old_name);
11778 if (strcmp (r->new_name, new_name) == 0)
11779 as_bad (_("multiple sections remapped to output section %s"),
11780 new_name);
11781 }
11782
11783 /* Now add it. */
11784 r = (struct rename_section_struct *)
11785 xmalloc (sizeof (struct rename_section_struct));
11786 r->old_name = xstrdup (old_name);
11787 r->new_name = xstrdup (new_name);
11788 r->next = section_rename;
11789 section_rename = r;
11790 }
11791 }
11792
11793
11794 char *
11795 xtensa_section_rename (char *name)
11796 {
11797 struct rename_section_struct *r = section_rename;
11798
11799 for (r = section_rename; r != NULL; r = r->next)
11800 {
11801 if (strcmp (r->old_name, name) == 0)
11802 return r->new_name;
11803 }
11804
11805 return name;
11806 }
This page took 0.913029 seconds and 5 git commands to generate.