* gas/app, gas/as.c, gas/as.h, gas/atof-generic.c, gas/cgen.c,
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include <limits.h>
22 #include "as.h"
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "struc-symbol.h"
31 #include "xtensa-config.h"
32
33 /* Provide default values for new configuration settings. */
34 #ifndef XSHAL_ABI
35 #define XSHAL_ABI 0
36 #endif
37
38 #ifndef uint32
39 #define uint32 unsigned int
40 #endif
41 #ifndef int32
42 #define int32 signed int
43 #endif
44
45 /* Notes:
46
47 Naming conventions (used somewhat inconsistently):
48 The xtensa_ functions are exported
49 The xg_ functions are internal
50
51 We also have a couple of different extensibility mechanisms.
52 1) The idiom replacement:
53 This is used when a line is first parsed to
54 replace an instruction pattern with another instruction
55 It is currently limited to replacements of instructions
56 with constant operands.
57 2) The xtensa-relax.c mechanism that has stronger instruction
58 replacement patterns. When an instruction's immediate field
59 does not fit the next instruction sequence is attempted.
60 In addition, "narrow" opcodes are supported this way. */
61
62
63 /* Define characters with special meanings to GAS. */
64 const char comment_chars[] = "#";
65 const char line_comment_chars[] = "#";
66 const char line_separator_chars[] = ";";
67 const char EXP_CHARS[] = "eE";
68 const char FLT_CHARS[] = "rRsSfFdDxXpP";
69
70
71 /* Flags to indicate whether the hardware supports the density and
72 absolute literals options. */
73
74 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
75 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
76
77 /* Maximum width we would pad an unreachable frag to get alignment. */
78 #define UNREACHABLE_MAX_WIDTH 8
79
80 static vliw_insn cur_vinsn;
81
82 unsigned xtensa_num_pipe_stages;
83 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
84
85 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
86
87 /* Some functions are only valid in the front end. This variable
88 allows us to assert that we haven't crossed over into the
89 back end. */
90 static bfd_boolean past_xtensa_end = FALSE;
91
92 /* Flags for properties of the last instruction in a segment. */
93 #define FLAG_IS_A0_WRITER 0x1
94 #define FLAG_IS_BAD_LOOPEND 0x2
95
96
97 /* We define a special segment names ".literal" to place literals
98 into. The .fini and .init sections are special because they
99 contain code that is moved together by the linker. We give them
100 their own special .fini.literal and .init.literal sections. */
101
102 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
103 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
104 #define INIT_SECTION_NAME xtensa_section_rename (".init")
105 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
106
107
108 /* This type is used for the directive_stack to keep track of the
109 state of the literal collection pools. If lit_prefix is set, it is
110 used to determine the literal section names; otherwise, the literal
111 sections are determined based on the current text section. The
112 lit_seg and lit4_seg fields cache these literal sections, with the
113 current_text_seg field used a tag to indicate whether the cached
114 values are valid. */
115
116 typedef struct lit_state_struct
117 {
118 char *lit_prefix;
119 segT current_text_seg;
120 segT lit_seg;
121 segT lit4_seg;
122 } lit_state;
123
124 static lit_state default_lit_sections;
125
126
127 /* We keep a list of literal segments. The seg_list type is the node
128 for this list. The literal_head pointer is the head of the list,
129 with the literal_head_h dummy node at the start. */
130
131 typedef struct seg_list_struct
132 {
133 struct seg_list_struct *next;
134 segT seg;
135 } seg_list;
136
137 static seg_list literal_head_h;
138 static seg_list *literal_head = &literal_head_h;
139
140
141 /* Lists of symbols. We keep a list of symbols that label the current
142 instruction, so that we can adjust the symbols when inserting alignment
143 for various instructions. We also keep a list of all the symbols on
144 literals, so that we can fix up those symbols when the literals are
145 later moved into the text sections. */
146
147 typedef struct sym_list_struct
148 {
149 struct sym_list_struct *next;
150 symbolS *sym;
151 } sym_list;
152
153 static sym_list *insn_labels = NULL;
154 static sym_list *free_insn_labels = NULL;
155 static sym_list *saved_insn_labels = NULL;
156
157 static sym_list *literal_syms;
158
159
160 /* Flags to determine whether to prefer const16 or l32r
161 if both options are available. */
162 int prefer_const16 = 0;
163 int prefer_l32r = 0;
164
165 /* Global flag to indicate when we are emitting literals. */
166 int generating_literals = 0;
167
168 /* The following PROPERTY table definitions are copied from
169 <elf/xtensa.h> and must be kept in sync with the code there. */
170
171 /* Flags in the property tables to specify whether blocks of memory
172 are literals, instructions, data, or unreachable. For
173 instructions, blocks that begin loop targets and branch targets are
174 designated. Blocks that do not allow density, instruction
175 reordering or transformation are also specified. Finally, for
176 branch targets, branch target alignment priority is included.
177 Alignment of the next block is specified in the current block
178 and the size of the current block does not include any fill required
179 to align to the next block. */
180
181 #define XTENSA_PROP_LITERAL 0x00000001
182 #define XTENSA_PROP_INSN 0x00000002
183 #define XTENSA_PROP_DATA 0x00000004
184 #define XTENSA_PROP_UNREACHABLE 0x00000008
185 /* Instruction only properties at beginning of code. */
186 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
187 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
188 /* Instruction only properties about code. */
189 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
190 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
191 /* Historically, NO_TRANSFORM was a property of instructions,
192 but it should apply to literals under certain circumstances. */
193 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
194
195 /* Branch target alignment information. This transmits information
196 to the linker optimization about the priority of aligning a
197 particular block for branch target alignment: None, low priority,
198 high priority, or required. These only need to be checked in
199 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
200 Common usage is
201
202 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
203 case XTENSA_PROP_BT_ALIGN_NONE:
204 case XTENSA_PROP_BT_ALIGN_LOW:
205 case XTENSA_PROP_BT_ALIGN_HIGH:
206 case XTENSA_PROP_BT_ALIGN_REQUIRE:
207 */
208 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
209
210 /* No branch target alignment. */
211 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
212 /* Low priority branch target alignment. */
213 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
214 /* High priority branch target alignment. */
215 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
216 /* Required branch target alignment. */
217 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
218
219 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
220 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
221 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
222 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
223 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
224
225
226 /* Alignment is specified in the block BEFORE the one that needs
227 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
228 get the required alignment specified as a power of 2. Use
229 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
230 alignment. Be careful of side effects since the SET will evaluate
231 flags twice. Also, note that the SIZE of a block in the property
232 table does not include the alignment size, so the alignment fill
233 must be calculated to determine if two blocks are contiguous.
234 TEXT_ALIGN is not currently implemented but is a placeholder for a
235 possible future implementation. */
236
237 #define XTENSA_PROP_ALIGN 0x00000800
238
239 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
240
241 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
242 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
243 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
244 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
245 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
246
247 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
248
249
250 /* Structure for saving instruction and alignment per-fragment data
251 that will be written to the object file. This structure is
252 equivalent to the actual data that will be written out to the file
253 but is easier to use. We provide a conversion to file flags
254 in frag_flags_to_number. */
255
256 typedef struct frag_flags_struct frag_flags;
257
258 struct frag_flags_struct
259 {
260 /* is_literal should only be used after xtensa_move_literals.
261 If you need to check if you are generating a literal fragment,
262 then use the generating_literals global. */
263
264 unsigned is_literal : 1;
265 unsigned is_insn : 1;
266 unsigned is_data : 1;
267 unsigned is_unreachable : 1;
268
269 /* is_specific_opcode implies no_transform. */
270 unsigned is_no_transform : 1;
271
272 struct
273 {
274 unsigned is_loop_target : 1;
275 unsigned is_branch_target : 1; /* Branch targets have a priority. */
276 unsigned bt_align_priority : 2;
277
278 unsigned is_no_density : 1;
279 /* no_longcalls flag does not need to be placed in the object file. */
280
281 unsigned is_no_reorder : 1;
282
283 /* Uses absolute literal addressing for l32r. */
284 unsigned is_abslit : 1;
285 } insn;
286 unsigned is_align : 1;
287 unsigned alignment : 5;
288 };
289
290
291 /* Structure for saving information about a block of property data
292 for frags that have the same flags. */
293 struct xtensa_block_info_struct
294 {
295 segT sec;
296 bfd_vma offset;
297 size_t size;
298 frag_flags flags;
299 struct xtensa_block_info_struct *next;
300 };
301
302
303 /* Structure for saving the current state before emitting literals. */
304 typedef struct emit_state_struct
305 {
306 const char *name;
307 segT now_seg;
308 subsegT now_subseg;
309 int generating_literals;
310 } emit_state;
311
312
313 /* Opcode placement information */
314
315 typedef unsigned long long bitfield;
316 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
317 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
318 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
319
320 #define MAX_FORMATS 32
321
322 typedef struct op_placement_info_struct
323 {
324 int num_formats;
325 /* A number describing how restrictive the issue is for this
326 opcode. For example, an opcode that fits lots of different
327 formats has a high freedom, as does an opcode that fits
328 only one format but many slots in that format. The most
329 restrictive is the opcode that fits only one slot in one
330 format. */
331 int issuef;
332 xtensa_format narrowest;
333 char narrowest_size;
334 char narrowest_slot;
335
336 /* formats is a bitfield with the Nth bit set
337 if the opcode fits in the Nth xtensa_format. */
338 bitfield formats;
339
340 /* slots[N]'s Mth bit is set if the op fits in the
341 Mth slot of the Nth xtensa_format. */
342 bitfield slots[MAX_FORMATS];
343
344 /* A count of the number of slots in a given format
345 an op can fit (i.e., the bitcount of the slot field above). */
346 char slots_in_format[MAX_FORMATS];
347
348 } op_placement_info, *op_placement_info_table;
349
350 op_placement_info_table op_placement_table;
351
352
353 /* Extra expression types. */
354
355 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
356 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
357 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
358 #define O_pcrel O_md4 /* value is a PC-relative offset */
359 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
360 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
361 #define O_tlscall O_md7 /* TLS_CALL relocation */
362 #define O_tpoff O_md8 /* TPOFF relocation */
363 #define O_dtpoff O_md9 /* DTPOFF relocation */
364
365 struct suffix_reloc_map
366 {
367 char *suffix;
368 int length;
369 bfd_reloc_code_real_type reloc;
370 unsigned char operator;
371 };
372
373 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
374
375 static struct suffix_reloc_map suffix_relocs[] =
376 {
377 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
378 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
379 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
380 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
381 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
382 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
383 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
384 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
385 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
386 { (char *) 0, 0, BFD_RELOC_UNUSED, 0 }
387 };
388
389
390 /* Directives. */
391
392 typedef enum
393 {
394 directive_none = 0,
395 directive_literal,
396 directive_density,
397 directive_transform,
398 directive_freeregs,
399 directive_longcalls,
400 directive_literal_prefix,
401 directive_schedule,
402 directive_absolute_literals,
403 directive_last_directive
404 } directiveE;
405
406 typedef struct
407 {
408 const char *name;
409 bfd_boolean can_be_negated;
410 } directive_infoS;
411
412 const directive_infoS directive_info[] =
413 {
414 { "none", FALSE },
415 { "literal", FALSE },
416 { "density", TRUE },
417 { "transform", TRUE },
418 { "freeregs", FALSE },
419 { "longcalls", TRUE },
420 { "literal_prefix", FALSE },
421 { "schedule", TRUE },
422 { "absolute-literals", TRUE }
423 };
424
425 bfd_boolean directive_state[] =
426 {
427 FALSE, /* none */
428 FALSE, /* literal */
429 #if !XCHAL_HAVE_DENSITY
430 FALSE, /* density */
431 #else
432 TRUE, /* density */
433 #endif
434 TRUE, /* transform */
435 FALSE, /* freeregs */
436 FALSE, /* longcalls */
437 FALSE, /* literal_prefix */
438 FALSE, /* schedule */
439 #if XSHAL_USE_ABSOLUTE_LITERALS
440 TRUE /* absolute_literals */
441 #else
442 FALSE /* absolute_literals */
443 #endif
444 };
445
446
447 /* Directive functions. */
448
449 static void xtensa_begin_directive (int);
450 static void xtensa_end_directive (int);
451 static void xtensa_literal_prefix (void);
452 static void xtensa_literal_position (int);
453 static void xtensa_literal_pseudo (int);
454 static void xtensa_frequency_pseudo (int);
455 static void xtensa_elf_cons (int);
456 static void xtensa_leb128 (int);
457
458 /* Parsing and Idiom Translation. */
459
460 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
461
462 /* Various Other Internal Functions. */
463
464 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
465 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
466 static void xtensa_mark_literal_pool_location (void);
467 static addressT get_expanded_loop_offset (xtensa_opcode);
468 static fragS *get_literal_pool_location (segT);
469 static void set_literal_pool_location (segT, fragS *);
470 static void xtensa_set_frag_assembly_state (fragS *);
471 static void finish_vinsn (vliw_insn *);
472 static bfd_boolean emit_single_op (TInsn *);
473 static int total_frag_text_expansion (fragS *);
474
475 /* Alignment Functions. */
476
477 static int get_text_align_power (unsigned);
478 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
479 static int branch_align_power (segT);
480
481 /* Helpers for xtensa_relax_frag(). */
482
483 static long relax_frag_add_nop (fragS *);
484
485 /* Accessors for additional per-subsegment information. */
486
487 static unsigned get_last_insn_flags (segT, subsegT);
488 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
489 static float get_subseg_total_freq (segT, subsegT);
490 static float get_subseg_target_freq (segT, subsegT);
491 static void set_subseg_freq (segT, subsegT, float, float);
492
493 /* Segment list functions. */
494
495 static void xtensa_move_literals (void);
496 static void xtensa_reorder_segments (void);
497 static void xtensa_switch_to_literal_fragment (emit_state *);
498 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
499 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
500 static void xtensa_restore_emit_state (emit_state *);
501 static segT cache_literal_section (bfd_boolean);
502
503 /* Import from elf32-xtensa.c in BFD library. */
504
505 extern asection *xtensa_make_property_section (asection *, const char *);
506
507 /* op_placement_info functions. */
508
509 static void init_op_placement_info_table (void);
510 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
511 static int xg_get_single_size (xtensa_opcode);
512 static xtensa_format xg_get_single_format (xtensa_opcode);
513 static int xg_get_single_slot (xtensa_opcode);
514
515 /* TInsn and IStack functions. */
516
517 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
518 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
519 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
520 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
521 static bfd_boolean tinsn_check_arguments (const TInsn *);
522 static void tinsn_from_chars (TInsn *, char *, int);
523 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
524 static int get_num_stack_text_bytes (IStack *);
525 static int get_num_stack_literal_bytes (IStack *);
526
527 /* vliw_insn functions. */
528
529 static void xg_init_vinsn (vliw_insn *);
530 static void xg_clear_vinsn (vliw_insn *);
531 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
532 static void xg_free_vinsn (vliw_insn *);
533 static bfd_boolean vinsn_to_insnbuf
534 (vliw_insn *, char *, fragS *, bfd_boolean);
535 static void vinsn_from_chars (vliw_insn *, char *);
536
537 /* Expression Utilities. */
538
539 bfd_boolean expr_is_const (const expressionS *);
540 offsetT get_expr_const (const expressionS *);
541 void set_expr_const (expressionS *, offsetT);
542 bfd_boolean expr_is_register (const expressionS *);
543 offsetT get_expr_register (const expressionS *);
544 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
545 bfd_boolean expr_is_equal (expressionS *, expressionS *);
546 static void copy_expr (expressionS *, const expressionS *);
547
548 /* Section renaming. */
549
550 static void build_section_rename (const char *);
551
552
553 /* ISA imported from bfd. */
554 extern xtensa_isa xtensa_default_isa;
555
556 extern int target_big_endian;
557
558 static xtensa_opcode xtensa_addi_opcode;
559 static xtensa_opcode xtensa_addmi_opcode;
560 static xtensa_opcode xtensa_call0_opcode;
561 static xtensa_opcode xtensa_call4_opcode;
562 static xtensa_opcode xtensa_call8_opcode;
563 static xtensa_opcode xtensa_call12_opcode;
564 static xtensa_opcode xtensa_callx0_opcode;
565 static xtensa_opcode xtensa_callx4_opcode;
566 static xtensa_opcode xtensa_callx8_opcode;
567 static xtensa_opcode xtensa_callx12_opcode;
568 static xtensa_opcode xtensa_const16_opcode;
569 static xtensa_opcode xtensa_entry_opcode;
570 static xtensa_opcode xtensa_extui_opcode;
571 static xtensa_opcode xtensa_movi_opcode;
572 static xtensa_opcode xtensa_movi_n_opcode;
573 static xtensa_opcode xtensa_isync_opcode;
574 static xtensa_opcode xtensa_j_opcode;
575 static xtensa_opcode xtensa_jx_opcode;
576 static xtensa_opcode xtensa_l32r_opcode;
577 static xtensa_opcode xtensa_loop_opcode;
578 static xtensa_opcode xtensa_loopnez_opcode;
579 static xtensa_opcode xtensa_loopgtz_opcode;
580 static xtensa_opcode xtensa_nop_opcode;
581 static xtensa_opcode xtensa_nop_n_opcode;
582 static xtensa_opcode xtensa_or_opcode;
583 static xtensa_opcode xtensa_ret_opcode;
584 static xtensa_opcode xtensa_ret_n_opcode;
585 static xtensa_opcode xtensa_retw_opcode;
586 static xtensa_opcode xtensa_retw_n_opcode;
587 static xtensa_opcode xtensa_rsr_lcount_opcode;
588 static xtensa_opcode xtensa_waiti_opcode;
589
590 \f
591 /* Command-line Options. */
592
593 bfd_boolean use_literal_section = TRUE;
594 enum flix_level produce_flix = FLIX_ALL;
595 static bfd_boolean align_targets = TRUE;
596 static bfd_boolean warn_unaligned_branch_targets = FALSE;
597 static bfd_boolean has_a0_b_retw = FALSE;
598 static bfd_boolean workaround_a0_b_retw = FALSE;
599 static bfd_boolean workaround_b_j_loop_end = FALSE;
600 static bfd_boolean workaround_short_loop = FALSE;
601 static bfd_boolean maybe_has_short_loop = FALSE;
602 static bfd_boolean workaround_close_loop_end = FALSE;
603 static bfd_boolean maybe_has_close_loop_end = FALSE;
604 static bfd_boolean enforce_three_byte_loop_align = FALSE;
605
606 /* When workaround_short_loops is TRUE, all loops with early exits must
607 have at least 3 instructions. workaround_all_short_loops is a modifier
608 to the workaround_short_loop flag. In addition to the
609 workaround_short_loop actions, all straightline loopgtz and loopnez
610 must have at least 3 instructions. */
611
612 static bfd_boolean workaround_all_short_loops = FALSE;
613
614
615 static void
616 xtensa_setup_hw_workarounds (int earliest, int latest)
617 {
618 if (earliest > latest)
619 as_fatal (_("illegal range of target hardware versions"));
620
621 /* Enable all workarounds for pre-T1050.0 hardware. */
622 if (earliest < 105000 || latest < 105000)
623 {
624 workaround_a0_b_retw |= TRUE;
625 workaround_b_j_loop_end |= TRUE;
626 workaround_short_loop |= TRUE;
627 workaround_close_loop_end |= TRUE;
628 workaround_all_short_loops |= TRUE;
629 enforce_three_byte_loop_align = TRUE;
630 }
631 }
632
633
634 enum
635 {
636 option_density = OPTION_MD_BASE,
637 option_no_density,
638
639 option_flix,
640 option_no_generate_flix,
641 option_no_flix,
642
643 option_relax,
644 option_no_relax,
645
646 option_link_relax,
647 option_no_link_relax,
648
649 option_generics,
650 option_no_generics,
651
652 option_transform,
653 option_no_transform,
654
655 option_text_section_literals,
656 option_no_text_section_literals,
657
658 option_absolute_literals,
659 option_no_absolute_literals,
660
661 option_align_targets,
662 option_no_align_targets,
663
664 option_warn_unaligned_targets,
665
666 option_longcalls,
667 option_no_longcalls,
668
669 option_workaround_a0_b_retw,
670 option_no_workaround_a0_b_retw,
671
672 option_workaround_b_j_loop_end,
673 option_no_workaround_b_j_loop_end,
674
675 option_workaround_short_loop,
676 option_no_workaround_short_loop,
677
678 option_workaround_all_short_loops,
679 option_no_workaround_all_short_loops,
680
681 option_workaround_close_loop_end,
682 option_no_workaround_close_loop_end,
683
684 option_no_workarounds,
685
686 option_rename_section_name,
687
688 option_prefer_l32r,
689 option_prefer_const16,
690
691 option_target_hardware
692 };
693
694 const char *md_shortopts = "";
695
696 struct option md_longopts[] =
697 {
698 { "density", no_argument, NULL, option_density },
699 { "no-density", no_argument, NULL, option_no_density },
700
701 { "flix", no_argument, NULL, option_flix },
702 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
703 { "no-allow-flix", no_argument, NULL, option_no_flix },
704
705 /* Both "relax" and "generics" are deprecated and treated as equivalent
706 to the "transform" option. */
707 { "relax", no_argument, NULL, option_relax },
708 { "no-relax", no_argument, NULL, option_no_relax },
709 { "generics", no_argument, NULL, option_generics },
710 { "no-generics", no_argument, NULL, option_no_generics },
711
712 { "transform", no_argument, NULL, option_transform },
713 { "no-transform", no_argument, NULL, option_no_transform },
714 { "text-section-literals", no_argument, NULL, option_text_section_literals },
715 { "no-text-section-literals", no_argument, NULL,
716 option_no_text_section_literals },
717 { "absolute-literals", no_argument, NULL, option_absolute_literals },
718 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
719 /* This option was changed from -align-target to -target-align
720 because it conflicted with the "-al" option. */
721 { "target-align", no_argument, NULL, option_align_targets },
722 { "no-target-align", no_argument, NULL, option_no_align_targets },
723 { "warn-unaligned-targets", no_argument, NULL,
724 option_warn_unaligned_targets },
725 { "longcalls", no_argument, NULL, option_longcalls },
726 { "no-longcalls", no_argument, NULL, option_no_longcalls },
727
728 { "no-workaround-a0-b-retw", no_argument, NULL,
729 option_no_workaround_a0_b_retw },
730 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
731
732 { "no-workaround-b-j-loop-end", no_argument, NULL,
733 option_no_workaround_b_j_loop_end },
734 { "workaround-b-j-loop-end", no_argument, NULL,
735 option_workaround_b_j_loop_end },
736
737 { "no-workaround-short-loops", no_argument, NULL,
738 option_no_workaround_short_loop },
739 { "workaround-short-loops", no_argument, NULL,
740 option_workaround_short_loop },
741
742 { "no-workaround-all-short-loops", no_argument, NULL,
743 option_no_workaround_all_short_loops },
744 { "workaround-all-short-loop", no_argument, NULL,
745 option_workaround_all_short_loops },
746
747 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
748 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
749
750 { "no-workarounds", no_argument, NULL, option_no_workarounds },
751
752 { "no-workaround-close-loop-end", no_argument, NULL,
753 option_no_workaround_close_loop_end },
754 { "workaround-close-loop-end", no_argument, NULL,
755 option_workaround_close_loop_end },
756
757 { "rename-section", required_argument, NULL, option_rename_section_name },
758
759 { "link-relax", no_argument, NULL, option_link_relax },
760 { "no-link-relax", no_argument, NULL, option_no_link_relax },
761
762 { "target-hardware", required_argument, NULL, option_target_hardware },
763
764 { NULL, no_argument, NULL, 0 }
765 };
766
767 size_t md_longopts_size = sizeof md_longopts;
768
769
770 int
771 md_parse_option (int c, char *arg)
772 {
773 switch (c)
774 {
775 case option_density:
776 as_warn (_("--density option is ignored"));
777 return 1;
778 case option_no_density:
779 as_warn (_("--no-density option is ignored"));
780 return 1;
781 case option_link_relax:
782 linkrelax = 1;
783 return 1;
784 case option_no_link_relax:
785 linkrelax = 0;
786 return 1;
787 case option_flix:
788 produce_flix = FLIX_ALL;
789 return 1;
790 case option_no_generate_flix:
791 produce_flix = FLIX_NO_GENERATE;
792 return 1;
793 case option_no_flix:
794 produce_flix = FLIX_NONE;
795 return 1;
796 case option_generics:
797 as_warn (_("--generics is deprecated; use --transform instead"));
798 return md_parse_option (option_transform, arg);
799 case option_no_generics:
800 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
801 return md_parse_option (option_no_transform, arg);
802 case option_relax:
803 as_warn (_("--relax is deprecated; use --transform instead"));
804 return md_parse_option (option_transform, arg);
805 case option_no_relax:
806 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
807 return md_parse_option (option_no_transform, arg);
808 case option_longcalls:
809 directive_state[directive_longcalls] = TRUE;
810 return 1;
811 case option_no_longcalls:
812 directive_state[directive_longcalls] = FALSE;
813 return 1;
814 case option_text_section_literals:
815 use_literal_section = FALSE;
816 return 1;
817 case option_no_text_section_literals:
818 use_literal_section = TRUE;
819 return 1;
820 case option_absolute_literals:
821 if (!absolute_literals_supported)
822 {
823 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
824 return 0;
825 }
826 directive_state[directive_absolute_literals] = TRUE;
827 return 1;
828 case option_no_absolute_literals:
829 directive_state[directive_absolute_literals] = FALSE;
830 return 1;
831
832 case option_workaround_a0_b_retw:
833 workaround_a0_b_retw = TRUE;
834 return 1;
835 case option_no_workaround_a0_b_retw:
836 workaround_a0_b_retw = FALSE;
837 return 1;
838 case option_workaround_b_j_loop_end:
839 workaround_b_j_loop_end = TRUE;
840 return 1;
841 case option_no_workaround_b_j_loop_end:
842 workaround_b_j_loop_end = FALSE;
843 return 1;
844
845 case option_workaround_short_loop:
846 workaround_short_loop = TRUE;
847 return 1;
848 case option_no_workaround_short_loop:
849 workaround_short_loop = FALSE;
850 return 1;
851
852 case option_workaround_all_short_loops:
853 workaround_all_short_loops = TRUE;
854 return 1;
855 case option_no_workaround_all_short_loops:
856 workaround_all_short_loops = FALSE;
857 return 1;
858
859 case option_workaround_close_loop_end:
860 workaround_close_loop_end = TRUE;
861 return 1;
862 case option_no_workaround_close_loop_end:
863 workaround_close_loop_end = FALSE;
864 return 1;
865
866 case option_no_workarounds:
867 workaround_a0_b_retw = FALSE;
868 workaround_b_j_loop_end = FALSE;
869 workaround_short_loop = FALSE;
870 workaround_all_short_loops = FALSE;
871 workaround_close_loop_end = FALSE;
872 return 1;
873
874 case option_align_targets:
875 align_targets = TRUE;
876 return 1;
877 case option_no_align_targets:
878 align_targets = FALSE;
879 return 1;
880
881 case option_warn_unaligned_targets:
882 warn_unaligned_branch_targets = TRUE;
883 return 1;
884
885 case option_rename_section_name:
886 build_section_rename (arg);
887 return 1;
888
889 case 'Q':
890 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
891 should be emitted or not. FIXME: Not implemented. */
892 return 1;
893
894 case option_prefer_l32r:
895 if (prefer_const16)
896 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
897 prefer_l32r = 1;
898 return 1;
899
900 case option_prefer_const16:
901 if (prefer_l32r)
902 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
903 prefer_const16 = 1;
904 return 1;
905
906 case option_target_hardware:
907 {
908 int earliest, latest = 0;
909 if (*arg == 0 || *arg == '-')
910 as_fatal (_("invalid target hardware version"));
911
912 earliest = strtol (arg, &arg, 0);
913
914 if (*arg == 0)
915 latest = earliest;
916 else if (*arg == '-')
917 {
918 if (*++arg == 0)
919 as_fatal (_("invalid target hardware version"));
920 latest = strtol (arg, &arg, 0);
921 }
922 if (*arg != 0)
923 as_fatal (_("invalid target hardware version"));
924
925 xtensa_setup_hw_workarounds (earliest, latest);
926 return 1;
927 }
928
929 case option_transform:
930 /* This option has no affect other than to use the defaults,
931 which are already set. */
932 return 1;
933
934 case option_no_transform:
935 /* This option turns off all transformations of any kind.
936 However, because we want to preserve the state of other
937 directives, we only change its own field. Thus, before
938 you perform any transformation, always check if transform
939 is available. If you use the functions we provide for this
940 purpose, you will be ok. */
941 directive_state[directive_transform] = FALSE;
942 return 1;
943
944 default:
945 return 0;
946 }
947 }
948
949
950 void
951 md_show_usage (FILE *stream)
952 {
953 fputs ("\n\
954 Xtensa options:\n\
955 --[no-]text-section-literals\n\
956 [Do not] put literals in the text section\n\
957 --[no-]absolute-literals\n\
958 [Do not] default to use non-PC-relative literals\n\
959 --[no-]target-align [Do not] try to align branch targets\n\
960 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
961 --[no-]transform [Do not] transform instructions\n\
962 --flix both allow hand-written and generate flix bundles\n\
963 --no-generate-flix allow hand-written but do not generate\n\
964 flix bundles\n\
965 --no-allow-flix neither allow hand-written nor generate\n\
966 flix bundles\n\
967 --rename-section old=new Rename section 'old' to 'new'\n", stream);
968 }
969
970 \f
971 /* Functions related to the list of current label symbols. */
972
973 static void
974 xtensa_add_insn_label (symbolS *sym)
975 {
976 sym_list *l;
977
978 if (!free_insn_labels)
979 l = (sym_list *) xmalloc (sizeof (sym_list));
980 else
981 {
982 l = free_insn_labels;
983 free_insn_labels = l->next;
984 }
985
986 l->sym = sym;
987 l->next = insn_labels;
988 insn_labels = l;
989 }
990
991
992 static void
993 xtensa_clear_insn_labels (void)
994 {
995 sym_list **pl;
996
997 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
998 ;
999 *pl = insn_labels;
1000 insn_labels = NULL;
1001 }
1002
1003
1004 static void
1005 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1006 {
1007 sym_list *lit;
1008
1009 for (lit = insn_labels; lit; lit = lit->next)
1010 {
1011 symbolS *lit_sym = lit->sym;
1012 S_SET_VALUE (lit_sym, new_offset);
1013 symbol_set_frag (lit_sym, new_frag);
1014 }
1015 }
1016
1017 \f
1018 /* Directive data and functions. */
1019
1020 typedef struct state_stackS_struct
1021 {
1022 directiveE directive;
1023 bfd_boolean negated;
1024 bfd_boolean old_state;
1025 const char *file;
1026 unsigned int line;
1027 const void *datum;
1028 struct state_stackS_struct *prev;
1029 } state_stackS;
1030
1031 state_stackS *directive_state_stack;
1032
1033 const pseudo_typeS md_pseudo_table[] =
1034 {
1035 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1036 { "literal_position", xtensa_literal_position, 0 },
1037 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1038 { "long", xtensa_elf_cons, 4 },
1039 { "word", xtensa_elf_cons, 4 },
1040 { "4byte", xtensa_elf_cons, 4 },
1041 { "short", xtensa_elf_cons, 2 },
1042 { "2byte", xtensa_elf_cons, 2 },
1043 { "sleb128", xtensa_leb128, 1},
1044 { "uleb128", xtensa_leb128, 0},
1045 { "begin", xtensa_begin_directive, 0 },
1046 { "end", xtensa_end_directive, 0 },
1047 { "literal", xtensa_literal_pseudo, 0 },
1048 { "frequency", xtensa_frequency_pseudo, 0 },
1049 { NULL, 0, 0 },
1050 };
1051
1052
1053 static bfd_boolean
1054 use_transform (void)
1055 {
1056 /* After md_end, you should be checking frag by frag, rather
1057 than state directives. */
1058 gas_assert (!past_xtensa_end);
1059 return directive_state[directive_transform];
1060 }
1061
1062
1063 static bfd_boolean
1064 do_align_targets (void)
1065 {
1066 /* Do not use this function after md_end; just look at align_targets
1067 instead. There is no target-align directive, so alignment is either
1068 enabled for all frags or not done at all. */
1069 gas_assert (!past_xtensa_end);
1070 return align_targets && use_transform ();
1071 }
1072
1073
1074 static void
1075 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1076 {
1077 char *file;
1078 unsigned int line;
1079 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1080
1081 as_where (&file, &line);
1082
1083 stack->directive = directive;
1084 stack->negated = negated;
1085 stack->old_state = directive_state[directive];
1086 stack->file = file;
1087 stack->line = line;
1088 stack->datum = datum;
1089 stack->prev = directive_state_stack;
1090 directive_state_stack = stack;
1091
1092 directive_state[directive] = !negated;
1093 }
1094
1095
1096 static void
1097 directive_pop (directiveE *directive,
1098 bfd_boolean *negated,
1099 const char **file,
1100 unsigned int *line,
1101 const void **datum)
1102 {
1103 state_stackS *top = directive_state_stack;
1104
1105 if (!directive_state_stack)
1106 {
1107 as_bad (_("unmatched end directive"));
1108 *directive = directive_none;
1109 return;
1110 }
1111
1112 directive_state[directive_state_stack->directive] = top->old_state;
1113 *directive = top->directive;
1114 *negated = top->negated;
1115 *file = top->file;
1116 *line = top->line;
1117 *datum = top->datum;
1118 directive_state_stack = top->prev;
1119 free (top);
1120 }
1121
1122
1123 static void
1124 directive_balance (void)
1125 {
1126 while (directive_state_stack)
1127 {
1128 directiveE directive;
1129 bfd_boolean negated;
1130 const char *file;
1131 unsigned int line;
1132 const void *datum;
1133
1134 directive_pop (&directive, &negated, &file, &line, &datum);
1135 as_warn_where ((char *) file, line,
1136 _(".begin directive with no matching .end directive"));
1137 }
1138 }
1139
1140
1141 static bfd_boolean
1142 inside_directive (directiveE dir)
1143 {
1144 state_stackS *top = directive_state_stack;
1145
1146 while (top && top->directive != dir)
1147 top = top->prev;
1148
1149 return (top != NULL);
1150 }
1151
1152
1153 static void
1154 get_directive (directiveE *directive, bfd_boolean *negated)
1155 {
1156 int len;
1157 unsigned i;
1158 char *directive_string;
1159
1160 if (strncmp (input_line_pointer, "no-", 3) != 0)
1161 *negated = FALSE;
1162 else
1163 {
1164 *negated = TRUE;
1165 input_line_pointer += 3;
1166 }
1167
1168 len = strspn (input_line_pointer,
1169 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1170
1171 /* This code is a hack to make .begin [no-][generics|relax] exactly
1172 equivalent to .begin [no-]transform. We should remove it when
1173 we stop accepting those options. */
1174
1175 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1176 {
1177 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1178 directive_string = "transform";
1179 }
1180 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1181 {
1182 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1183 directive_string = "transform";
1184 }
1185 else
1186 directive_string = input_line_pointer;
1187
1188 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1189 {
1190 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1191 {
1192 input_line_pointer += len;
1193 *directive = (directiveE) i;
1194 if (*negated && !directive_info[i].can_be_negated)
1195 as_bad (_("directive %s cannot be negated"),
1196 directive_info[i].name);
1197 return;
1198 }
1199 }
1200
1201 as_bad (_("unknown directive"));
1202 *directive = (directiveE) XTENSA_UNDEFINED;
1203 }
1204
1205
1206 static void
1207 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1208 {
1209 directiveE directive;
1210 bfd_boolean negated;
1211 emit_state *state;
1212 lit_state *ls;
1213
1214 get_directive (&directive, &negated);
1215 if (directive == (directiveE) XTENSA_UNDEFINED)
1216 {
1217 discard_rest_of_line ();
1218 return;
1219 }
1220
1221 if (cur_vinsn.inside_bundle)
1222 as_bad (_("directives are not valid inside bundles"));
1223
1224 switch (directive)
1225 {
1226 case directive_literal:
1227 if (!inside_directive (directive_literal))
1228 {
1229 /* Previous labels go with whatever follows this directive, not with
1230 the literal, so save them now. */
1231 saved_insn_labels = insn_labels;
1232 insn_labels = NULL;
1233 }
1234 as_warn (_(".begin literal is deprecated; use .literal instead"));
1235 state = (emit_state *) xmalloc (sizeof (emit_state));
1236 xtensa_switch_to_literal_fragment (state);
1237 directive_push (directive_literal, negated, state);
1238 break;
1239
1240 case directive_literal_prefix:
1241 /* Have to flush pending output because a movi relaxed to an l32r
1242 might produce a literal. */
1243 md_flush_pending_output ();
1244 /* Check to see if the current fragment is a literal
1245 fragment. If it is, then this operation is not allowed. */
1246 if (generating_literals)
1247 {
1248 as_bad (_("cannot set literal_prefix inside literal fragment"));
1249 return;
1250 }
1251
1252 /* Allocate the literal state for this section and push
1253 onto the directive stack. */
1254 ls = xmalloc (sizeof (lit_state));
1255 gas_assert (ls);
1256
1257 *ls = default_lit_sections;
1258 directive_push (directive_literal_prefix, negated, ls);
1259
1260 /* Process the new prefix. */
1261 xtensa_literal_prefix ();
1262 break;
1263
1264 case directive_freeregs:
1265 /* This information is currently unused, but we'll accept the statement
1266 and just discard the rest of the line. This won't check the syntax,
1267 but it will accept every correct freeregs directive. */
1268 input_line_pointer += strcspn (input_line_pointer, "\n");
1269 directive_push (directive_freeregs, negated, 0);
1270 break;
1271
1272 case directive_schedule:
1273 md_flush_pending_output ();
1274 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1275 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1276 directive_push (directive_schedule, negated, 0);
1277 xtensa_set_frag_assembly_state (frag_now);
1278 break;
1279
1280 case directive_density:
1281 as_warn (_(".begin [no-]density is ignored"));
1282 break;
1283
1284 case directive_absolute_literals:
1285 md_flush_pending_output ();
1286 if (!absolute_literals_supported && !negated)
1287 {
1288 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1289 break;
1290 }
1291 xtensa_set_frag_assembly_state (frag_now);
1292 directive_push (directive, negated, 0);
1293 break;
1294
1295 default:
1296 md_flush_pending_output ();
1297 xtensa_set_frag_assembly_state (frag_now);
1298 directive_push (directive, negated, 0);
1299 break;
1300 }
1301
1302 demand_empty_rest_of_line ();
1303 }
1304
1305
1306 static void
1307 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1308 {
1309 directiveE begin_directive, end_directive;
1310 bfd_boolean begin_negated, end_negated;
1311 const char *file;
1312 unsigned int line;
1313 emit_state *state;
1314 emit_state **state_ptr;
1315 lit_state *s;
1316
1317 if (cur_vinsn.inside_bundle)
1318 as_bad (_("directives are not valid inside bundles"));
1319
1320 get_directive (&end_directive, &end_negated);
1321
1322 md_flush_pending_output ();
1323
1324 switch (end_directive)
1325 {
1326 case (directiveE) XTENSA_UNDEFINED:
1327 discard_rest_of_line ();
1328 return;
1329
1330 case directive_density:
1331 as_warn (_(".end [no-]density is ignored"));
1332 demand_empty_rest_of_line ();
1333 break;
1334
1335 case directive_absolute_literals:
1336 if (!absolute_literals_supported && !end_negated)
1337 {
1338 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1339 demand_empty_rest_of_line ();
1340 return;
1341 }
1342 break;
1343
1344 default:
1345 break;
1346 }
1347
1348 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1349 directive_pop (&begin_directive, &begin_negated, &file, &line,
1350 (const void **) state_ptr);
1351
1352 if (begin_directive != directive_none)
1353 {
1354 if (begin_directive != end_directive || begin_negated != end_negated)
1355 {
1356 as_bad (_("does not match begin %s%s at %s:%d"),
1357 begin_negated ? "no-" : "",
1358 directive_info[begin_directive].name, file, line);
1359 }
1360 else
1361 {
1362 switch (end_directive)
1363 {
1364 case directive_literal:
1365 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1366 xtensa_restore_emit_state (state);
1367 xtensa_set_frag_assembly_state (frag_now);
1368 free (state);
1369 if (!inside_directive (directive_literal))
1370 {
1371 /* Restore the list of current labels. */
1372 xtensa_clear_insn_labels ();
1373 insn_labels = saved_insn_labels;
1374 }
1375 break;
1376
1377 case directive_literal_prefix:
1378 /* Restore the default collection sections from saved state. */
1379 s = (lit_state *) state;
1380 gas_assert (s);
1381 default_lit_sections = *s;
1382
1383 /* Free the state storage. */
1384 free (s->lit_prefix);
1385 free (s);
1386 break;
1387
1388 case directive_schedule:
1389 case directive_freeregs:
1390 break;
1391
1392 default:
1393 xtensa_set_frag_assembly_state (frag_now);
1394 break;
1395 }
1396 }
1397 }
1398
1399 demand_empty_rest_of_line ();
1400 }
1401
1402
1403 /* Place an aligned literal fragment at the current location. */
1404
1405 static void
1406 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1407 {
1408 md_flush_pending_output ();
1409
1410 if (inside_directive (directive_literal))
1411 as_warn (_(".literal_position inside literal directive; ignoring"));
1412 xtensa_mark_literal_pool_location ();
1413
1414 demand_empty_rest_of_line ();
1415 xtensa_clear_insn_labels ();
1416 }
1417
1418
1419 /* Support .literal label, expr, ... */
1420
1421 static void
1422 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1423 {
1424 emit_state state;
1425 char *p, *base_name;
1426 char c;
1427 segT dest_seg;
1428
1429 if (inside_directive (directive_literal))
1430 {
1431 as_bad (_(".literal not allowed inside .begin literal region"));
1432 ignore_rest_of_line ();
1433 return;
1434 }
1435
1436 md_flush_pending_output ();
1437
1438 /* Previous labels go with whatever follows this directive, not with
1439 the literal, so save them now. */
1440 saved_insn_labels = insn_labels;
1441 insn_labels = NULL;
1442
1443 /* If we are using text-section literals, then this is the right value... */
1444 dest_seg = now_seg;
1445
1446 base_name = input_line_pointer;
1447
1448 xtensa_switch_to_literal_fragment (&state);
1449
1450 /* ...but if we aren't using text-section-literals, then we
1451 need to put them in the section we just switched to. */
1452 if (use_literal_section || directive_state[directive_absolute_literals])
1453 dest_seg = now_seg;
1454
1455 /* All literals are aligned to four-byte boundaries. */
1456 frag_align (2, 0, 0);
1457 record_alignment (now_seg, 2);
1458
1459 c = get_symbol_end ();
1460 /* Just after name is now '\0'. */
1461 p = input_line_pointer;
1462 *p = c;
1463 SKIP_WHITESPACE ();
1464
1465 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1466 {
1467 as_bad (_("expected comma or colon after symbol name; "
1468 "rest of line ignored"));
1469 ignore_rest_of_line ();
1470 xtensa_restore_emit_state (&state);
1471 return;
1472 }
1473 *p = 0;
1474
1475 colon (base_name);
1476
1477 *p = c;
1478 input_line_pointer++; /* skip ',' or ':' */
1479
1480 xtensa_elf_cons (4);
1481
1482 xtensa_restore_emit_state (&state);
1483
1484 /* Restore the list of current labels. */
1485 xtensa_clear_insn_labels ();
1486 insn_labels = saved_insn_labels;
1487 }
1488
1489
1490 static void
1491 xtensa_literal_prefix (void)
1492 {
1493 char *name;
1494 int len;
1495
1496 /* Parse the new prefix from the input_line_pointer. */
1497 SKIP_WHITESPACE ();
1498 len = strspn (input_line_pointer,
1499 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1500 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1501
1502 /* Get a null-terminated copy of the name. */
1503 name = xmalloc (len + 1);
1504 gas_assert (name);
1505 strncpy (name, input_line_pointer, len);
1506 name[len] = 0;
1507
1508 /* Skip the name in the input line. */
1509 input_line_pointer += len;
1510
1511 default_lit_sections.lit_prefix = name;
1512
1513 /* Clear cached literal sections, since the prefix has changed. */
1514 default_lit_sections.lit_seg = NULL;
1515 default_lit_sections.lit4_seg = NULL;
1516 }
1517
1518
1519 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1520
1521 static void
1522 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1523 {
1524 float fall_through_f, target_f;
1525
1526 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1527 if (fall_through_f < 0)
1528 {
1529 as_bad (_("fall through frequency must be greater than 0"));
1530 ignore_rest_of_line ();
1531 return;
1532 }
1533
1534 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (target_f < 0)
1536 {
1537 as_bad (_("branch target frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1543
1544 demand_empty_rest_of_line ();
1545 }
1546
1547
1548 /* Like normal .long/.short/.word, except support @plt, etc.
1549 Clobbers input_line_pointer, checks end-of-line. */
1550
1551 static void
1552 xtensa_elf_cons (int nbytes)
1553 {
1554 expressionS exp;
1555 bfd_reloc_code_real_type reloc;
1556
1557 md_flush_pending_output ();
1558
1559 if (cur_vinsn.inside_bundle)
1560 as_bad (_("directives are not valid inside bundles"));
1561
1562 if (is_it_end_of_statement ())
1563 {
1564 demand_empty_rest_of_line ();
1565 return;
1566 }
1567
1568 do
1569 {
1570 expression (&exp);
1571 if (exp.X_op == O_symbol
1572 && *input_line_pointer == '@'
1573 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1574 != BFD_RELOC_NONE))
1575 {
1576 reloc_howto_type *reloc_howto =
1577 bfd_reloc_type_lookup (stdoutput, reloc);
1578
1579 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1580 as_bad (_("unsupported relocation"));
1581 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1582 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1583 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1584 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1585 as_bad (_("opcode-specific %s relocation used outside "
1586 "an instruction"), reloc_howto->name);
1587 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1588 as_bad (_("%s relocations do not fit in %d bytes"),
1589 reloc_howto->name, nbytes);
1590 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1591 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1592 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1593 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1594 else
1595 {
1596 char *p = frag_more ((int) nbytes);
1597 xtensa_set_frag_assembly_state (frag_now);
1598 fix_new_exp (frag_now, p - frag_now->fr_literal,
1599 nbytes, &exp, reloc_howto->pc_relative, reloc);
1600 }
1601 }
1602 else
1603 {
1604 xtensa_set_frag_assembly_state (frag_now);
1605 emit_expr (&exp, (unsigned int) nbytes);
1606 }
1607 }
1608 while (*input_line_pointer++ == ',');
1609
1610 input_line_pointer--; /* Put terminator back into stream. */
1611 demand_empty_rest_of_line ();
1612 }
1613
1614 static bfd_boolean is_leb128_expr;
1615
1616 static void
1617 xtensa_leb128 (int sign)
1618 {
1619 is_leb128_expr = TRUE;
1620 s_leb128 (sign);
1621 is_leb128_expr = FALSE;
1622 }
1623
1624 \f
1625 /* Parsing and Idiom Translation. */
1626
1627 /* Parse @plt, etc. and return the desired relocation. */
1628 static bfd_reloc_code_real_type
1629 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1630 {
1631 char ident[20];
1632 char *str = *str_p;
1633 char *str2;
1634 int ch;
1635 int len;
1636 struct suffix_reloc_map *ptr;
1637
1638 if (*str++ != '@')
1639 return BFD_RELOC_NONE;
1640
1641 for (ch = *str, str2 = ident;
1642 (str2 < ident + sizeof (ident) - 1
1643 && (ISALNUM (ch) || ch == '@'));
1644 ch = *++str)
1645 {
1646 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1647 }
1648
1649 *str2 = '\0';
1650 len = str2 - ident;
1651
1652 ch = ident[0];
1653 for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++)
1654 if (ch == ptr->suffix[0]
1655 && len == ptr->length
1656 && memcmp (ident, ptr->suffix, ptr->length) == 0)
1657 {
1658 /* Now check for "identifier@suffix+constant". */
1659 if (*str == '-' || *str == '+')
1660 {
1661 char *orig_line = input_line_pointer;
1662 expressionS new_exp;
1663
1664 input_line_pointer = str;
1665 expression (&new_exp);
1666 if (new_exp.X_op == O_constant)
1667 {
1668 exp_p->X_add_number += new_exp.X_add_number;
1669 str = input_line_pointer;
1670 }
1671
1672 if (&input_line_pointer != str_p)
1673 input_line_pointer = orig_line;
1674 }
1675
1676 *str_p = str;
1677 return ptr->reloc;
1678 }
1679
1680 return BFD_RELOC_UNUSED;
1681 }
1682
1683
1684 /* Find the matching operator type. */
1685 static unsigned char
1686 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1687 {
1688 struct suffix_reloc_map *sfx;
1689 unsigned char operator = (unsigned char) -1;
1690
1691 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1692 {
1693 if (sfx->reloc == reloc)
1694 {
1695 operator = sfx->operator;
1696 break;
1697 }
1698 }
1699 gas_assert (operator != (unsigned char) -1);
1700 return operator;
1701 }
1702
1703
1704 /* Find the matching reloc type. */
1705 static bfd_reloc_code_real_type
1706 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1707 {
1708 struct suffix_reloc_map *sfx;
1709 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1710
1711 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1712 {
1713 if (sfx->operator == operator)
1714 {
1715 reloc = sfx->reloc;
1716 break;
1717 }
1718 }
1719
1720 if (is_literal)
1721 {
1722 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1723 return BFD_RELOC_XTENSA_TLSDESC_FN;
1724 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1725 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1726 }
1727
1728 if (reloc == BFD_RELOC_UNUSED)
1729 return BFD_RELOC_32;
1730
1731 return reloc;
1732 }
1733
1734
1735 static const char *
1736 expression_end (const char *name)
1737 {
1738 while (1)
1739 {
1740 switch (*name)
1741 {
1742 case '}':
1743 case ';':
1744 case '\0':
1745 case ',':
1746 case ':':
1747 return name;
1748 case ' ':
1749 case '\t':
1750 ++name;
1751 continue;
1752 default:
1753 return 0;
1754 }
1755 }
1756 }
1757
1758
1759 #define ERROR_REG_NUM ((unsigned) -1)
1760
1761 static unsigned
1762 tc_get_register (const char *prefix)
1763 {
1764 unsigned reg;
1765 const char *next_expr;
1766 const char *old_line_pointer;
1767
1768 SKIP_WHITESPACE ();
1769 old_line_pointer = input_line_pointer;
1770
1771 if (*input_line_pointer == '$')
1772 ++input_line_pointer;
1773
1774 /* Accept "sp" as a synonym for "a1". */
1775 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1776 && expression_end (input_line_pointer + 2))
1777 {
1778 input_line_pointer += 2;
1779 return 1; /* AR[1] */
1780 }
1781
1782 while (*input_line_pointer++ == *prefix++)
1783 ;
1784 --input_line_pointer;
1785 --prefix;
1786
1787 if (*prefix)
1788 {
1789 as_bad (_("bad register name: %s"), old_line_pointer);
1790 return ERROR_REG_NUM;
1791 }
1792
1793 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1794 {
1795 as_bad (_("bad register number: %s"), input_line_pointer);
1796 return ERROR_REG_NUM;
1797 }
1798
1799 reg = 0;
1800
1801 while (ISDIGIT ((int) *input_line_pointer))
1802 reg = reg * 10 + *input_line_pointer++ - '0';
1803
1804 if (!(next_expr = expression_end (input_line_pointer)))
1805 {
1806 as_bad (_("bad register name: %s"), old_line_pointer);
1807 return ERROR_REG_NUM;
1808 }
1809
1810 input_line_pointer = (char *) next_expr;
1811
1812 return reg;
1813 }
1814
1815
1816 static void
1817 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1818 {
1819 xtensa_isa isa = xtensa_default_isa;
1820
1821 /* Check if this is an immediate operand. */
1822 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1823 {
1824 bfd_reloc_code_real_type reloc;
1825 segT t = expression (tok);
1826 if (t == absolute_section
1827 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1828 {
1829 gas_assert (tok->X_op == O_constant);
1830 tok->X_op = O_symbol;
1831 tok->X_add_symbol = &abs_symbol;
1832 }
1833
1834 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1835 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1836 != BFD_RELOC_NONE))
1837 {
1838 switch (reloc)
1839 {
1840 case BFD_RELOC_LO16:
1841 if (tok->X_op == O_constant)
1842 {
1843 tok->X_add_number &= 0xffff;
1844 return;
1845 }
1846 break;
1847 case BFD_RELOC_HI16:
1848 if (tok->X_op == O_constant)
1849 {
1850 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1851 return;
1852 }
1853 break;
1854 case BFD_RELOC_UNUSED:
1855 as_bad (_("unsupported relocation"));
1856 return;
1857 case BFD_RELOC_32_PCREL:
1858 as_bad (_("pcrel relocation not allowed in an instruction"));
1859 return;
1860 default:
1861 break;
1862 }
1863 tok->X_op = map_suffix_reloc_to_operator (reloc);
1864 }
1865 }
1866 else
1867 {
1868 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1869 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1870
1871 if (reg != ERROR_REG_NUM) /* Already errored */
1872 {
1873 uint32 buf = reg;
1874 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1875 as_bad (_("register number out of range"));
1876 }
1877
1878 tok->X_op = O_register;
1879 tok->X_add_symbol = 0;
1880 tok->X_add_number = reg;
1881 }
1882 }
1883
1884
1885 /* Split up the arguments for an opcode or pseudo-op. */
1886
1887 static int
1888 tokenize_arguments (char **args, char *str)
1889 {
1890 char *old_input_line_pointer;
1891 bfd_boolean saw_comma = FALSE;
1892 bfd_boolean saw_arg = FALSE;
1893 bfd_boolean saw_colon = FALSE;
1894 int num_args = 0;
1895 char *arg_end, *arg;
1896 int arg_len;
1897
1898 /* Save and restore input_line_pointer around this function. */
1899 old_input_line_pointer = input_line_pointer;
1900 input_line_pointer = str;
1901
1902 while (*input_line_pointer)
1903 {
1904 SKIP_WHITESPACE ();
1905 switch (*input_line_pointer)
1906 {
1907 case '\0':
1908 case '}':
1909 goto fini;
1910
1911 case ':':
1912 input_line_pointer++;
1913 if (saw_comma || saw_colon || !saw_arg)
1914 goto err;
1915 saw_colon = TRUE;
1916 break;
1917
1918 case ',':
1919 input_line_pointer++;
1920 if (saw_comma || saw_colon || !saw_arg)
1921 goto err;
1922 saw_comma = TRUE;
1923 break;
1924
1925 default:
1926 if (!saw_comma && !saw_colon && saw_arg)
1927 goto err;
1928
1929 arg_end = input_line_pointer + 1;
1930 while (!expression_end (arg_end))
1931 arg_end += 1;
1932
1933 arg_len = arg_end - input_line_pointer;
1934 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1935 args[num_args] = arg;
1936
1937 if (saw_colon)
1938 *arg++ = ':';
1939 strncpy (arg, input_line_pointer, arg_len);
1940 arg[arg_len] = '\0';
1941
1942 input_line_pointer = arg_end;
1943 num_args += 1;
1944 saw_comma = FALSE;
1945 saw_colon = FALSE;
1946 saw_arg = TRUE;
1947 break;
1948 }
1949 }
1950
1951 fini:
1952 if (saw_comma || saw_colon)
1953 goto err;
1954 input_line_pointer = old_input_line_pointer;
1955 return num_args;
1956
1957 err:
1958 if (saw_comma)
1959 as_bad (_("extra comma"));
1960 else if (saw_colon)
1961 as_bad (_("extra colon"));
1962 else if (!saw_arg)
1963 as_bad (_("missing argument"));
1964 else
1965 as_bad (_("missing comma or colon"));
1966 input_line_pointer = old_input_line_pointer;
1967 return -1;
1968 }
1969
1970
1971 /* Parse the arguments to an opcode. Return TRUE on error. */
1972
1973 static bfd_boolean
1974 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1975 {
1976 expressionS *tok, *last_tok;
1977 xtensa_opcode opcode = insn->opcode;
1978 bfd_boolean had_error = TRUE;
1979 xtensa_isa isa = xtensa_default_isa;
1980 int n, num_regs = 0;
1981 int opcode_operand_count;
1982 int opnd_cnt, last_opnd_cnt;
1983 unsigned int next_reg = 0;
1984 char *old_input_line_pointer;
1985
1986 if (insn->insn_type == ITYPE_LITERAL)
1987 opcode_operand_count = 1;
1988 else
1989 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1990
1991 tok = insn->tok;
1992 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1993
1994 /* Save and restore input_line_pointer around this function. */
1995 old_input_line_pointer = input_line_pointer;
1996
1997 last_tok = 0;
1998 last_opnd_cnt = -1;
1999 opnd_cnt = 0;
2000
2001 /* Skip invisible operands. */
2002 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2003 {
2004 opnd_cnt += 1;
2005 tok++;
2006 }
2007
2008 for (n = 0; n < num_args; n++)
2009 {
2010 input_line_pointer = arg_strings[n];
2011 if (*input_line_pointer == ':')
2012 {
2013 xtensa_regfile opnd_rf;
2014 input_line_pointer++;
2015 if (num_regs == 0)
2016 goto err;
2017 gas_assert (opnd_cnt > 0);
2018 num_regs--;
2019 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2020 if (next_reg
2021 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2022 as_warn (_("incorrect register number, ignoring"));
2023 next_reg++;
2024 }
2025 else
2026 {
2027 if (opnd_cnt >= opcode_operand_count)
2028 {
2029 as_warn (_("too many arguments"));
2030 goto err;
2031 }
2032 gas_assert (opnd_cnt < MAX_INSN_ARGS);
2033
2034 expression_maybe_register (opcode, opnd_cnt, tok);
2035 next_reg = tok->X_add_number + 1;
2036
2037 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2038 goto err;
2039 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2040 {
2041 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2042 /* minus 1 because we are seeing one right now */
2043 }
2044 else
2045 num_regs = 0;
2046
2047 last_tok = tok;
2048 last_opnd_cnt = opnd_cnt;
2049 demand_empty_rest_of_line ();
2050
2051 do
2052 {
2053 opnd_cnt += 1;
2054 tok++;
2055 }
2056 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2057 }
2058 }
2059
2060 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2061 goto err;
2062
2063 insn->ntok = tok - insn->tok;
2064 had_error = FALSE;
2065
2066 err:
2067 input_line_pointer = old_input_line_pointer;
2068 return had_error;
2069 }
2070
2071
2072 static int
2073 get_invisible_operands (TInsn *insn)
2074 {
2075 xtensa_isa isa = xtensa_default_isa;
2076 static xtensa_insnbuf slotbuf = NULL;
2077 xtensa_format fmt;
2078 xtensa_opcode opc = insn->opcode;
2079 int slot, opnd, fmt_found;
2080 unsigned val;
2081
2082 if (!slotbuf)
2083 slotbuf = xtensa_insnbuf_alloc (isa);
2084
2085 /* Find format/slot where this can be encoded. */
2086 fmt_found = 0;
2087 slot = 0;
2088 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2089 {
2090 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2091 {
2092 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2093 {
2094 fmt_found = 1;
2095 break;
2096 }
2097 }
2098 if (fmt_found) break;
2099 }
2100
2101 if (!fmt_found)
2102 {
2103 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2104 return -1;
2105 }
2106
2107 /* First encode all the visible operands
2108 (to deal with shared field operands). */
2109 for (opnd = 0; opnd < insn->ntok; opnd++)
2110 {
2111 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2112 && (insn->tok[opnd].X_op == O_register
2113 || insn->tok[opnd].X_op == O_constant))
2114 {
2115 val = insn->tok[opnd].X_add_number;
2116 xtensa_operand_encode (isa, opc, opnd, &val);
2117 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2118 }
2119 }
2120
2121 /* Then pull out the values for the invisible ones. */
2122 for (opnd = 0; opnd < insn->ntok; opnd++)
2123 {
2124 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2125 {
2126 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2127 xtensa_operand_decode (isa, opc, opnd, &val);
2128 insn->tok[opnd].X_add_number = val;
2129 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2130 insn->tok[opnd].X_op = O_register;
2131 else
2132 insn->tok[opnd].X_op = O_constant;
2133 }
2134 }
2135
2136 return 0;
2137 }
2138
2139
2140 static void
2141 xg_reverse_shift_count (char **cnt_argp)
2142 {
2143 char *cnt_arg, *new_arg;
2144 cnt_arg = *cnt_argp;
2145
2146 /* replace the argument with "31-(argument)" */
2147 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2148 sprintf (new_arg, "31-(%s)", cnt_arg);
2149
2150 free (cnt_arg);
2151 *cnt_argp = new_arg;
2152 }
2153
2154
2155 /* If "arg" is a constant expression, return non-zero with the value
2156 in *valp. */
2157
2158 static int
2159 xg_arg_is_constant (char *arg, offsetT *valp)
2160 {
2161 expressionS exp;
2162 char *save_ptr = input_line_pointer;
2163
2164 input_line_pointer = arg;
2165 expression (&exp);
2166 input_line_pointer = save_ptr;
2167
2168 if (exp.X_op == O_constant)
2169 {
2170 *valp = exp.X_add_number;
2171 return 1;
2172 }
2173
2174 return 0;
2175 }
2176
2177
2178 static void
2179 xg_replace_opname (char **popname, char *newop)
2180 {
2181 free (*popname);
2182 *popname = (char *) xmalloc (strlen (newop) + 1);
2183 strcpy (*popname, newop);
2184 }
2185
2186
2187 static int
2188 xg_check_num_args (int *pnum_args,
2189 int expected_num,
2190 char *opname,
2191 char **arg_strings)
2192 {
2193 int num_args = *pnum_args;
2194
2195 if (num_args < expected_num)
2196 {
2197 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2198 num_args, opname, expected_num);
2199 return -1;
2200 }
2201
2202 if (num_args > expected_num)
2203 {
2204 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2205 num_args, opname, expected_num);
2206 while (num_args-- > expected_num)
2207 {
2208 free (arg_strings[num_args]);
2209 arg_strings[num_args] = 0;
2210 }
2211 *pnum_args = expected_num;
2212 return -1;
2213 }
2214
2215 return 0;
2216 }
2217
2218
2219 /* If the register is not specified as part of the opcode,
2220 then get it from the operand and move it to the opcode. */
2221
2222 static int
2223 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2224 {
2225 xtensa_isa isa = xtensa_default_isa;
2226 xtensa_sysreg sr;
2227 char *opname, *new_opname;
2228 const char *sr_name;
2229 int is_user, is_write;
2230
2231 opname = *popname;
2232 if (*opname == '_')
2233 opname += 1;
2234 is_user = (opname[1] == 'u');
2235 is_write = (opname[0] == 'w');
2236
2237 /* Opname == [rw]ur or [rwx]sr... */
2238
2239 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2240 return -1;
2241
2242 /* Check if the argument is a symbolic register name. */
2243 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2244 /* Handle WSR to "INTSET" as a special case. */
2245 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2246 && !strcasecmp (arg_strings[1], "intset"))
2247 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2248 if (sr == XTENSA_UNDEFINED
2249 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2250 {
2251 /* Maybe it's a register number.... */
2252 offsetT val;
2253 if (!xg_arg_is_constant (arg_strings[1], &val))
2254 {
2255 as_bad (_("invalid register '%s' for '%s' instruction"),
2256 arg_strings[1], opname);
2257 return -1;
2258 }
2259 sr = xtensa_sysreg_lookup (isa, val, is_user);
2260 if (sr == XTENSA_UNDEFINED)
2261 {
2262 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2263 (long) val, opname);
2264 return -1;
2265 }
2266 }
2267
2268 /* Remove the last argument, which is now part of the opcode. */
2269 free (arg_strings[1]);
2270 arg_strings[1] = 0;
2271 *pnum_args = 1;
2272
2273 /* Translate the opcode. */
2274 sr_name = xtensa_sysreg_name (isa, sr);
2275 /* Another special case for "WSR.INTSET".... */
2276 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2277 sr_name = "intset";
2278 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2279 sprintf (new_opname, "%s.%s", *popname, sr_name);
2280 free (*popname);
2281 *popname = new_opname;
2282
2283 return 0;
2284 }
2285
2286
2287 static int
2288 xtensa_translate_old_userreg_ops (char **popname)
2289 {
2290 xtensa_isa isa = xtensa_default_isa;
2291 xtensa_sysreg sr;
2292 char *opname, *new_opname;
2293 const char *sr_name;
2294 bfd_boolean has_underbar = FALSE;
2295
2296 opname = *popname;
2297 if (opname[0] == '_')
2298 {
2299 has_underbar = TRUE;
2300 opname += 1;
2301 }
2302
2303 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2304 if (sr != XTENSA_UNDEFINED)
2305 {
2306 /* The new default name ("nnn") is different from the old default
2307 name ("URnnn"). The old default is handled below, and we don't
2308 want to recognize [RW]nnn, so do nothing if the name is the (new)
2309 default. */
2310 static char namebuf[10];
2311 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2312 if (strcmp (namebuf, opname + 1) == 0)
2313 return 0;
2314 }
2315 else
2316 {
2317 offsetT val;
2318 char *end;
2319
2320 /* Only continue if the reg name is "URnnn". */
2321 if (opname[1] != 'u' || opname[2] != 'r')
2322 return 0;
2323 val = strtoul (opname + 3, &end, 10);
2324 if (*end != '\0')
2325 return 0;
2326
2327 sr = xtensa_sysreg_lookup (isa, val, 1);
2328 if (sr == XTENSA_UNDEFINED)
2329 {
2330 as_bad (_("invalid register number (%ld) for '%s'"),
2331 (long) val, opname);
2332 return -1;
2333 }
2334 }
2335
2336 /* Translate the opcode. */
2337 sr_name = xtensa_sysreg_name (isa, sr);
2338 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2339 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2340 opname[0], sr_name);
2341 free (*popname);
2342 *popname = new_opname;
2343
2344 return 0;
2345 }
2346
2347
2348 static int
2349 xtensa_translate_zero_immed (char *old_op,
2350 char *new_op,
2351 char **popname,
2352 int *pnum_args,
2353 char **arg_strings)
2354 {
2355 char *opname;
2356 offsetT val;
2357
2358 opname = *popname;
2359 gas_assert (opname[0] != '_');
2360
2361 if (strcmp (opname, old_op) != 0)
2362 return 0;
2363
2364 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2365 return -1;
2366 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2367 {
2368 xg_replace_opname (popname, new_op);
2369 free (arg_strings[1]);
2370 arg_strings[1] = arg_strings[2];
2371 arg_strings[2] = 0;
2372 *pnum_args = 2;
2373 }
2374
2375 return 0;
2376 }
2377
2378
2379 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2380 Returns non-zero if an error was found. */
2381
2382 static int
2383 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2384 {
2385 char *opname = *popname;
2386 bfd_boolean has_underbar = FALSE;
2387
2388 if (*opname == '_')
2389 {
2390 has_underbar = TRUE;
2391 opname += 1;
2392 }
2393
2394 if (strcmp (opname, "mov") == 0)
2395 {
2396 if (use_transform () && !has_underbar && density_supported)
2397 xg_replace_opname (popname, "mov.n");
2398 else
2399 {
2400 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2401 return -1;
2402 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2403 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2404 strcpy (arg_strings[2], arg_strings[1]);
2405 *pnum_args = 3;
2406 }
2407 return 0;
2408 }
2409
2410 if (strcmp (opname, "bbsi.l") == 0)
2411 {
2412 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2413 return -1;
2414 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2415 if (target_big_endian)
2416 xg_reverse_shift_count (&arg_strings[1]);
2417 return 0;
2418 }
2419
2420 if (strcmp (opname, "bbci.l") == 0)
2421 {
2422 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2423 return -1;
2424 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2425 if (target_big_endian)
2426 xg_reverse_shift_count (&arg_strings[1]);
2427 return 0;
2428 }
2429
2430 /* Don't do anything special with NOPs inside FLIX instructions. They
2431 are handled elsewhere. Real NOP instructions are always available
2432 in configurations with FLIX, so this should never be an issue but
2433 check for it anyway. */
2434 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2435 && strcmp (opname, "nop") == 0)
2436 {
2437 if (use_transform () && !has_underbar && density_supported)
2438 xg_replace_opname (popname, "nop.n");
2439 else
2440 {
2441 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2442 return -1;
2443 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2444 arg_strings[0] = (char *) xmalloc (3);
2445 arg_strings[1] = (char *) xmalloc (3);
2446 arg_strings[2] = (char *) xmalloc (3);
2447 strcpy (arg_strings[0], "a1");
2448 strcpy (arg_strings[1], "a1");
2449 strcpy (arg_strings[2], "a1");
2450 *pnum_args = 3;
2451 }
2452 return 0;
2453 }
2454
2455 /* Recognize [RW]UR and [RWX]SR. */
2456 if ((((opname[0] == 'r' || opname[0] == 'w')
2457 && (opname[1] == 'u' || opname[1] == 's'))
2458 || (opname[0] == 'x' && opname[1] == 's'))
2459 && opname[2] == 'r'
2460 && opname[3] == '\0')
2461 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2462
2463 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2464 [RW]<name> if <name> is the non-default name of a user register. */
2465 if ((opname[0] == 'r' || opname[0] == 'w')
2466 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2467 return xtensa_translate_old_userreg_ops (popname);
2468
2469 /* Relax branches that don't allow comparisons against an immediate value
2470 of zero to the corresponding branches with implicit zero immediates. */
2471 if (!has_underbar && use_transform ())
2472 {
2473 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2474 pnum_args, arg_strings))
2475 return -1;
2476
2477 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2478 pnum_args, arg_strings))
2479 return -1;
2480
2481 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2482 pnum_args, arg_strings))
2483 return -1;
2484
2485 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2486 pnum_args, arg_strings))
2487 return -1;
2488 }
2489
2490 return 0;
2491 }
2492
2493 \f
2494 /* Functions for dealing with the Xtensa ISA. */
2495
2496 /* Currently the assembler only allows us to use a single target per
2497 fragment. Because of this, only one operand for a given
2498 instruction may be symbolic. If there is a PC-relative operand,
2499 the last one is chosen. Otherwise, the result is the number of the
2500 last immediate operand, and if there are none of those, we fail and
2501 return -1. */
2502
2503 static int
2504 get_relaxable_immed (xtensa_opcode opcode)
2505 {
2506 int last_immed = -1;
2507 int noperands, opi;
2508
2509 if (opcode == XTENSA_UNDEFINED)
2510 return -1;
2511
2512 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2513 for (opi = noperands - 1; opi >= 0; opi--)
2514 {
2515 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2516 continue;
2517 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2518 return opi;
2519 if (last_immed == -1
2520 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2521 last_immed = opi;
2522 }
2523 return last_immed;
2524 }
2525
2526
2527 static xtensa_opcode
2528 get_opcode_from_buf (const char *buf, int slot)
2529 {
2530 static xtensa_insnbuf insnbuf = NULL;
2531 static xtensa_insnbuf slotbuf = NULL;
2532 xtensa_isa isa = xtensa_default_isa;
2533 xtensa_format fmt;
2534
2535 if (!insnbuf)
2536 {
2537 insnbuf = xtensa_insnbuf_alloc (isa);
2538 slotbuf = xtensa_insnbuf_alloc (isa);
2539 }
2540
2541 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2542 fmt = xtensa_format_decode (isa, insnbuf);
2543 if (fmt == XTENSA_UNDEFINED)
2544 return XTENSA_UNDEFINED;
2545
2546 if (slot >= xtensa_format_num_slots (isa, fmt))
2547 return XTENSA_UNDEFINED;
2548
2549 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2550 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2551 }
2552
2553
2554 #ifdef TENSILICA_DEBUG
2555
2556 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2557
2558 static void
2559 xtensa_print_insn_table (void)
2560 {
2561 int num_opcodes, num_operands;
2562 xtensa_opcode opcode;
2563 xtensa_isa isa = xtensa_default_isa;
2564
2565 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2566 for (opcode = 0; opcode < num_opcodes; opcode++)
2567 {
2568 int opn;
2569 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2570 num_operands = xtensa_opcode_num_operands (isa, opcode);
2571 for (opn = 0; opn < num_operands; opn++)
2572 {
2573 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2574 continue;
2575 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2576 {
2577 xtensa_regfile opnd_rf =
2578 xtensa_operand_regfile (isa, opcode, opn);
2579 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2580 }
2581 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2582 fputs ("[lLr] ", stderr);
2583 else
2584 fputs ("i ", stderr);
2585 }
2586 fprintf (stderr, "\n");
2587 }
2588 }
2589
2590
2591 static void
2592 print_vliw_insn (xtensa_insnbuf vbuf)
2593 {
2594 xtensa_isa isa = xtensa_default_isa;
2595 xtensa_format f = xtensa_format_decode (isa, vbuf);
2596 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2597 int op;
2598
2599 fprintf (stderr, "format = %d\n", f);
2600
2601 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2602 {
2603 xtensa_opcode opcode;
2604 const char *opname;
2605 int operands;
2606
2607 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2608 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2609 opname = xtensa_opcode_name (isa, opcode);
2610
2611 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2612 fprintf (stderr, " operands = ");
2613 for (operands = 0;
2614 operands < xtensa_opcode_num_operands (isa, opcode);
2615 operands++)
2616 {
2617 unsigned int val;
2618 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2619 continue;
2620 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2621 xtensa_operand_decode (isa, opcode, operands, &val);
2622 fprintf (stderr, "%d ", val);
2623 }
2624 fprintf (stderr, "\n");
2625 }
2626 xtensa_insnbuf_free (isa, sbuf);
2627 }
2628
2629 #endif /* TENSILICA_DEBUG */
2630
2631
2632 static bfd_boolean
2633 is_direct_call_opcode (xtensa_opcode opcode)
2634 {
2635 xtensa_isa isa = xtensa_default_isa;
2636 int n, num_operands;
2637
2638 if (xtensa_opcode_is_call (isa, opcode) != 1)
2639 return FALSE;
2640
2641 num_operands = xtensa_opcode_num_operands (isa, opcode);
2642 for (n = 0; n < num_operands; n++)
2643 {
2644 if (xtensa_operand_is_register (isa, opcode, n) == 0
2645 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2646 return TRUE;
2647 }
2648 return FALSE;
2649 }
2650
2651
2652 /* Convert from BFD relocation type code to slot and operand number.
2653 Returns non-zero on failure. */
2654
2655 static int
2656 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2657 {
2658 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2659 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2660 {
2661 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2662 *is_alt = FALSE;
2663 }
2664 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2665 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2666 {
2667 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2668 *is_alt = TRUE;
2669 }
2670 else
2671 return -1;
2672
2673 return 0;
2674 }
2675
2676
2677 /* Convert from slot number to BFD relocation type code for the
2678 standard PC-relative relocations. Return BFD_RELOC_NONE on
2679 failure. */
2680
2681 static bfd_reloc_code_real_type
2682 encode_reloc (int slot)
2683 {
2684 if (slot < 0 || slot > 14)
2685 return BFD_RELOC_NONE;
2686
2687 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2688 }
2689
2690
2691 /* Convert from slot numbers to BFD relocation type code for the
2692 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2693
2694 static bfd_reloc_code_real_type
2695 encode_alt_reloc (int slot)
2696 {
2697 if (slot < 0 || slot > 14)
2698 return BFD_RELOC_NONE;
2699
2700 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2701 }
2702
2703
2704 static void
2705 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2706 xtensa_format fmt,
2707 int slot,
2708 xtensa_opcode opcode,
2709 int operand,
2710 uint32 value,
2711 const char *file,
2712 unsigned int line)
2713 {
2714 uint32 valbuf = value;
2715
2716 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2717 {
2718 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2719 == 1)
2720 as_bad_where ((char *) file, line,
2721 _("operand %d of '%s' has out of range value '%u'"),
2722 operand + 1,
2723 xtensa_opcode_name (xtensa_default_isa, opcode),
2724 value);
2725 else
2726 as_bad_where ((char *) file, line,
2727 _("operand %d of '%s' has invalid value '%u'"),
2728 operand + 1,
2729 xtensa_opcode_name (xtensa_default_isa, opcode),
2730 value);
2731 return;
2732 }
2733
2734 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2735 slotbuf, valbuf);
2736 }
2737
2738
2739 static uint32
2740 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2741 xtensa_format fmt,
2742 int slot,
2743 xtensa_opcode opcode,
2744 int opnum)
2745 {
2746 uint32 val = 0;
2747 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2748 fmt, slot, slotbuf, &val);
2749 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2750 return val;
2751 }
2752
2753 \f
2754 /* Checks for rules from xtensa-relax tables. */
2755
2756 /* The routine xg_instruction_matches_option_term must return TRUE
2757 when a given option term is true. The meaning of all of the option
2758 terms is given interpretation by this function. */
2759
2760 static bfd_boolean
2761 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2762 {
2763 if (strcmp (option->option_name, "realnop") == 0
2764 || strncmp (option->option_name, "IsaUse", 6) == 0)
2765 {
2766 /* These conditions were evaluated statically when building the
2767 relaxation table. There's no need to reevaluate them now. */
2768 return TRUE;
2769 }
2770 else if (strcmp (option->option_name, "FREEREG") == 0)
2771 return insn->extra_arg.X_op == O_register;
2772 else
2773 {
2774 as_fatal (_("internal error: unknown option name '%s'"),
2775 option->option_name);
2776 }
2777 }
2778
2779
2780 static bfd_boolean
2781 xg_instruction_matches_or_options (TInsn *insn,
2782 const ReqOrOptionList *or_option)
2783 {
2784 const ReqOrOption *option;
2785 /* Must match each of the AND terms. */
2786 for (option = or_option; option != NULL; option = option->next)
2787 {
2788 if (xg_instruction_matches_option_term (insn, option))
2789 return TRUE;
2790 }
2791 return FALSE;
2792 }
2793
2794
2795 static bfd_boolean
2796 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2797 {
2798 const ReqOption *req_options;
2799 /* Must match each of the AND terms. */
2800 for (req_options = options;
2801 req_options != NULL;
2802 req_options = req_options->next)
2803 {
2804 /* Must match one of the OR clauses. */
2805 if (!xg_instruction_matches_or_options (insn,
2806 req_options->or_option_terms))
2807 return FALSE;
2808 }
2809 return TRUE;
2810 }
2811
2812
2813 /* Return the transition rule that matches or NULL if none matches. */
2814
2815 static bfd_boolean
2816 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2817 {
2818 PreconditionList *condition_l;
2819
2820 if (rule->opcode != insn->opcode)
2821 return FALSE;
2822
2823 for (condition_l = rule->conditions;
2824 condition_l != NULL;
2825 condition_l = condition_l->next)
2826 {
2827 expressionS *exp1;
2828 expressionS *exp2;
2829 Precondition *cond = condition_l->precond;
2830
2831 switch (cond->typ)
2832 {
2833 case OP_CONSTANT:
2834 /* The expression must be the constant. */
2835 gas_assert (cond->op_num < insn->ntok);
2836 exp1 = &insn->tok[cond->op_num];
2837 if (expr_is_const (exp1))
2838 {
2839 switch (cond->cmp)
2840 {
2841 case OP_EQUAL:
2842 if (get_expr_const (exp1) != cond->op_data)
2843 return FALSE;
2844 break;
2845 case OP_NOTEQUAL:
2846 if (get_expr_const (exp1) == cond->op_data)
2847 return FALSE;
2848 break;
2849 default:
2850 return FALSE;
2851 }
2852 }
2853 else if (expr_is_register (exp1))
2854 {
2855 switch (cond->cmp)
2856 {
2857 case OP_EQUAL:
2858 if (get_expr_register (exp1) != cond->op_data)
2859 return FALSE;
2860 break;
2861 case OP_NOTEQUAL:
2862 if (get_expr_register (exp1) == cond->op_data)
2863 return FALSE;
2864 break;
2865 default:
2866 return FALSE;
2867 }
2868 }
2869 else
2870 return FALSE;
2871 break;
2872
2873 case OP_OPERAND:
2874 gas_assert (cond->op_num < insn->ntok);
2875 gas_assert (cond->op_data < insn->ntok);
2876 exp1 = &insn->tok[cond->op_num];
2877 exp2 = &insn->tok[cond->op_data];
2878
2879 switch (cond->cmp)
2880 {
2881 case OP_EQUAL:
2882 if (!expr_is_equal (exp1, exp2))
2883 return FALSE;
2884 break;
2885 case OP_NOTEQUAL:
2886 if (expr_is_equal (exp1, exp2))
2887 return FALSE;
2888 break;
2889 }
2890 break;
2891
2892 case OP_LITERAL:
2893 case OP_LABEL:
2894 default:
2895 return FALSE;
2896 }
2897 }
2898 if (!xg_instruction_matches_options (insn, rule->options))
2899 return FALSE;
2900
2901 return TRUE;
2902 }
2903
2904
2905 static int
2906 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2907 {
2908 bfd_boolean a_greater = FALSE;
2909 bfd_boolean b_greater = FALSE;
2910
2911 ReqOptionList *l_a = a->options;
2912 ReqOptionList *l_b = b->options;
2913
2914 /* We only care if they both are the same except for
2915 a const16 vs. an l32r. */
2916
2917 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2918 {
2919 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2920 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2921 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2922 {
2923 if (l_or_a->is_true != l_or_b->is_true)
2924 return 0;
2925 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2926 {
2927 /* This is the case we care about. */
2928 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2929 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2930 {
2931 if (prefer_const16)
2932 a_greater = TRUE;
2933 else
2934 b_greater = TRUE;
2935 }
2936 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2937 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2938 {
2939 if (prefer_const16)
2940 b_greater = TRUE;
2941 else
2942 a_greater = TRUE;
2943 }
2944 else
2945 return 0;
2946 }
2947 l_or_a = l_or_a->next;
2948 l_or_b = l_or_b->next;
2949 }
2950 if (l_or_a || l_or_b)
2951 return 0;
2952
2953 l_a = l_a->next;
2954 l_b = l_b->next;
2955 }
2956 if (l_a || l_b)
2957 return 0;
2958
2959 /* Incomparable if the substitution was used differently in two cases. */
2960 if (a_greater && b_greater)
2961 return 0;
2962
2963 if (b_greater)
2964 return 1;
2965 if (a_greater)
2966 return -1;
2967
2968 return 0;
2969 }
2970
2971
2972 static TransitionRule *
2973 xg_instruction_match (TInsn *insn)
2974 {
2975 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2976 TransitionList *l;
2977 gas_assert (insn->opcode < table->num_opcodes);
2978
2979 /* Walk through all of the possible transitions. */
2980 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2981 {
2982 TransitionRule *rule = l->rule;
2983 if (xg_instruction_matches_rule (insn, rule))
2984 return rule;
2985 }
2986 return NULL;
2987 }
2988
2989 \f
2990 /* Various Other Internal Functions. */
2991
2992 static bfd_boolean
2993 is_unique_insn_expansion (TransitionRule *r)
2994 {
2995 if (!r->to_instr || r->to_instr->next != NULL)
2996 return FALSE;
2997 if (r->to_instr->typ != INSTR_INSTR)
2998 return FALSE;
2999 return TRUE;
3000 }
3001
3002
3003 /* Check if there is exactly one relaxation for INSN that converts it to
3004 another instruction of equal or larger size. If so, and if TARG is
3005 non-null, go ahead and generate the relaxed instruction into TARG. If
3006 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3007 instruction, i.e., ignore relaxations that convert to an instruction of
3008 equal size. In some contexts where this function is used, only
3009 a single widening is allowed and the NARROW_ONLY argument is used to
3010 exclude cases like ADDI being "widened" to an ADDMI, which may
3011 later be relaxed to an ADDMI/ADDI pair. */
3012
3013 bfd_boolean
3014 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3015 {
3016 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3017 TransitionList *l;
3018 TransitionRule *match = 0;
3019
3020 gas_assert (insn->insn_type == ITYPE_INSN);
3021 gas_assert (insn->opcode < table->num_opcodes);
3022
3023 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3024 {
3025 TransitionRule *rule = l->rule;
3026
3027 if (xg_instruction_matches_rule (insn, rule)
3028 && is_unique_insn_expansion (rule)
3029 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3030 <= xg_get_single_size (rule->to_instr->opcode)))
3031 {
3032 if (match)
3033 return FALSE;
3034 match = rule;
3035 }
3036 }
3037 if (!match)
3038 return FALSE;
3039
3040 if (targ)
3041 xg_build_to_insn (targ, insn, match->to_instr);
3042 return TRUE;
3043 }
3044
3045
3046 /* Return the maximum number of bytes this opcode can expand to. */
3047
3048 static int
3049 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3050 {
3051 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3052 TransitionList *l;
3053 int max_size = xg_get_single_size (opcode);
3054
3055 gas_assert (opcode < table->num_opcodes);
3056
3057 for (l = table->table[opcode]; l != NULL; l = l->next)
3058 {
3059 TransitionRule *rule = l->rule;
3060 BuildInstr *build_list;
3061 int this_size = 0;
3062
3063 if (!rule)
3064 continue;
3065 build_list = rule->to_instr;
3066 if (is_unique_insn_expansion (rule))
3067 {
3068 gas_assert (build_list->typ == INSTR_INSTR);
3069 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3070 }
3071 else
3072 for (; build_list != NULL; build_list = build_list->next)
3073 {
3074 switch (build_list->typ)
3075 {
3076 case INSTR_INSTR:
3077 this_size += xg_get_single_size (build_list->opcode);
3078 break;
3079 case INSTR_LITERAL_DEF:
3080 case INSTR_LABEL_DEF:
3081 default:
3082 break;
3083 }
3084 }
3085 if (this_size > max_size)
3086 max_size = this_size;
3087 }
3088 return max_size;
3089 }
3090
3091
3092 /* Return the maximum number of literal bytes this opcode can generate. */
3093
3094 static int
3095 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3096 {
3097 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3098 TransitionList *l;
3099 int max_size = 0;
3100
3101 gas_assert (opcode < table->num_opcodes);
3102
3103 for (l = table->table[opcode]; l != NULL; l = l->next)
3104 {
3105 TransitionRule *rule = l->rule;
3106 BuildInstr *build_list;
3107 int this_size = 0;
3108
3109 if (!rule)
3110 continue;
3111 build_list = rule->to_instr;
3112 if (is_unique_insn_expansion (rule))
3113 {
3114 gas_assert (build_list->typ == INSTR_INSTR);
3115 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3116 }
3117 else
3118 for (; build_list != NULL; build_list = build_list->next)
3119 {
3120 switch (build_list->typ)
3121 {
3122 case INSTR_LITERAL_DEF:
3123 /* Hard-coded 4-byte literal. */
3124 this_size += 4;
3125 break;
3126 case INSTR_INSTR:
3127 case INSTR_LABEL_DEF:
3128 default:
3129 break;
3130 }
3131 }
3132 if (this_size > max_size)
3133 max_size = this_size;
3134 }
3135 return max_size;
3136 }
3137
3138
3139 static bfd_boolean
3140 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3141 {
3142 int steps_taken = 0;
3143 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3144 TransitionList *l;
3145
3146 gas_assert (insn->insn_type == ITYPE_INSN);
3147 gas_assert (insn->opcode < table->num_opcodes);
3148
3149 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3150 {
3151 TransitionRule *rule = l->rule;
3152
3153 if (xg_instruction_matches_rule (insn, rule))
3154 {
3155 if (steps_taken == lateral_steps)
3156 return TRUE;
3157 steps_taken++;
3158 }
3159 }
3160 return FALSE;
3161 }
3162
3163
3164 static symbolS *
3165 get_special_literal_symbol (void)
3166 {
3167 static symbolS *sym = NULL;
3168
3169 if (sym == NULL)
3170 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3171 return sym;
3172 }
3173
3174
3175 static symbolS *
3176 get_special_label_symbol (void)
3177 {
3178 static symbolS *sym = NULL;
3179
3180 if (sym == NULL)
3181 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3182 return sym;
3183 }
3184
3185
3186 static bfd_boolean
3187 xg_valid_literal_expression (const expressionS *exp)
3188 {
3189 switch (exp->X_op)
3190 {
3191 case O_constant:
3192 case O_symbol:
3193 case O_big:
3194 case O_uminus:
3195 case O_subtract:
3196 case O_pltrel:
3197 case O_pcrel:
3198 case O_tlsfunc:
3199 case O_tlsarg:
3200 case O_tpoff:
3201 case O_dtpoff:
3202 return TRUE;
3203 default:
3204 return FALSE;
3205 }
3206 }
3207
3208
3209 /* This will check to see if the value can be converted into the
3210 operand type. It will return TRUE if it does not fit. */
3211
3212 static bfd_boolean
3213 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3214 {
3215 uint32 valbuf = value;
3216 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3217 return TRUE;
3218 return FALSE;
3219 }
3220
3221
3222 /* Assumes: All immeds are constants. Check that all constants fit
3223 into their immeds; return FALSE if not. */
3224
3225 static bfd_boolean
3226 xg_immeds_fit (const TInsn *insn)
3227 {
3228 xtensa_isa isa = xtensa_default_isa;
3229 int i;
3230
3231 int n = insn->ntok;
3232 gas_assert (insn->insn_type == ITYPE_INSN);
3233 for (i = 0; i < n; ++i)
3234 {
3235 const expressionS *expr = &insn->tok[i];
3236 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3237 continue;
3238
3239 switch (expr->X_op)
3240 {
3241 case O_register:
3242 case O_constant:
3243 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3244 return FALSE;
3245 break;
3246
3247 default:
3248 /* The symbol should have a fixup associated with it. */
3249 gas_assert (FALSE);
3250 break;
3251 }
3252 }
3253 return TRUE;
3254 }
3255
3256
3257 /* This should only be called after we have an initial
3258 estimate of the addresses. */
3259
3260 static bfd_boolean
3261 xg_symbolic_immeds_fit (const TInsn *insn,
3262 segT pc_seg,
3263 fragS *pc_frag,
3264 offsetT pc_offset,
3265 long stretch)
3266 {
3267 xtensa_isa isa = xtensa_default_isa;
3268 symbolS *symbolP;
3269 fragS *sym_frag;
3270 offsetT target, pc;
3271 uint32 new_offset;
3272 int i;
3273 int n = insn->ntok;
3274
3275 gas_assert (insn->insn_type == ITYPE_INSN);
3276
3277 for (i = 0; i < n; ++i)
3278 {
3279 const expressionS *expr = &insn->tok[i];
3280 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3281 continue;
3282
3283 switch (expr->X_op)
3284 {
3285 case O_register:
3286 case O_constant:
3287 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3288 return FALSE;
3289 break;
3290
3291 case O_lo16:
3292 case O_hi16:
3293 /* Check for the worst case. */
3294 if (xg_check_operand (0xffff, insn->opcode, i))
3295 return FALSE;
3296 break;
3297
3298 case O_symbol:
3299 /* We only allow symbols for PC-relative references.
3300 If pc_frag == 0, then we don't have frag locations yet. */
3301 if (pc_frag == 0
3302 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3303 return FALSE;
3304
3305 /* If it is a weak symbol or a symbol in a different section,
3306 it cannot be known to fit at assembly time. */
3307 if (S_IS_WEAK (expr->X_add_symbol)
3308 || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3309 {
3310 /* For a direct call with --no-longcalls, be optimistic and
3311 assume it will be in range. If the symbol is weak and
3312 undefined, it may remain undefined at link-time, in which
3313 case it will have a zero value and almost certainly be out
3314 of range for a direct call; thus, relax for undefined weak
3315 symbols even if longcalls is not enabled. */
3316 if (is_direct_call_opcode (insn->opcode)
3317 && ! pc_frag->tc_frag_data.use_longcalls
3318 && (! S_IS_WEAK (expr->X_add_symbol)
3319 || S_IS_DEFINED (expr->X_add_symbol)))
3320 return TRUE;
3321
3322 return FALSE;
3323 }
3324
3325 symbolP = expr->X_add_symbol;
3326 sym_frag = symbol_get_frag (symbolP);
3327 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3328 pc = pc_frag->fr_address + pc_offset;
3329
3330 /* If frag has yet to be reached on this pass, assume it
3331 will move by STRETCH just as we did. If this is not so,
3332 it will be because some frag between grows, and that will
3333 force another pass. Beware zero-length frags. There
3334 should be a faster way to do this. */
3335
3336 if (stretch != 0
3337 && sym_frag->relax_marker != pc_frag->relax_marker
3338 && S_GET_SEGMENT (symbolP) == pc_seg)
3339 {
3340 target += stretch;
3341 }
3342
3343 new_offset = target;
3344 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3345 if (xg_check_operand (new_offset, insn->opcode, i))
3346 return FALSE;
3347 break;
3348
3349 default:
3350 /* The symbol should have a fixup associated with it. */
3351 return FALSE;
3352 }
3353 }
3354
3355 return TRUE;
3356 }
3357
3358
3359 /* Return TRUE on success. */
3360
3361 static bfd_boolean
3362 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3363 {
3364 BuildOp *op;
3365 symbolS *sym;
3366
3367 tinsn_init (targ);
3368 targ->debug_line = insn->debug_line;
3369 targ->loc_directive_seen = insn->loc_directive_seen;
3370 switch (bi->typ)
3371 {
3372 case INSTR_INSTR:
3373 op = bi->ops;
3374 targ->opcode = bi->opcode;
3375 targ->insn_type = ITYPE_INSN;
3376 targ->is_specific_opcode = FALSE;
3377
3378 for (; op != NULL; op = op->next)
3379 {
3380 int op_num = op->op_num;
3381 int op_data = op->op_data;
3382
3383 gas_assert (op->op_num < MAX_INSN_ARGS);
3384
3385 if (targ->ntok <= op_num)
3386 targ->ntok = op_num + 1;
3387
3388 switch (op->typ)
3389 {
3390 case OP_CONSTANT:
3391 set_expr_const (&targ->tok[op_num], op_data);
3392 break;
3393 case OP_OPERAND:
3394 gas_assert (op_data < insn->ntok);
3395 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3396 break;
3397 case OP_FREEREG:
3398 if (insn->extra_arg.X_op != O_register)
3399 return FALSE;
3400 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3401 break;
3402 case OP_LITERAL:
3403 sym = get_special_literal_symbol ();
3404 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3405 if (insn->tok[op_data].X_op == O_tlsfunc
3406 || insn->tok[op_data].X_op == O_tlsarg)
3407 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3408 break;
3409 case OP_LABEL:
3410 sym = get_special_label_symbol ();
3411 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3412 break;
3413 case OP_OPERAND_HI16U:
3414 case OP_OPERAND_LOW16U:
3415 gas_assert (op_data < insn->ntok);
3416 if (expr_is_const (&insn->tok[op_data]))
3417 {
3418 long val;
3419 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3420 val = xg_apply_userdef_op_fn (op->typ,
3421 targ->tok[op_num].
3422 X_add_number);
3423 targ->tok[op_num].X_add_number = val;
3424 }
3425 else
3426 {
3427 /* For const16 we can create relocations for these. */
3428 if (targ->opcode == XTENSA_UNDEFINED
3429 || (targ->opcode != xtensa_const16_opcode))
3430 return FALSE;
3431 gas_assert (op_data < insn->ntok);
3432 /* Need to build a O_lo16 or O_hi16. */
3433 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3434 if (targ->tok[op_num].X_op == O_symbol)
3435 {
3436 if (op->typ == OP_OPERAND_HI16U)
3437 targ->tok[op_num].X_op = O_hi16;
3438 else if (op->typ == OP_OPERAND_LOW16U)
3439 targ->tok[op_num].X_op = O_lo16;
3440 else
3441 return FALSE;
3442 }
3443 }
3444 break;
3445 default:
3446 /* currently handles:
3447 OP_OPERAND_LOW8
3448 OP_OPERAND_HI24S
3449 OP_OPERAND_F32MINUS */
3450 if (xg_has_userdef_op_fn (op->typ))
3451 {
3452 gas_assert (op_data < insn->ntok);
3453 if (expr_is_const (&insn->tok[op_data]))
3454 {
3455 long val;
3456 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3457 val = xg_apply_userdef_op_fn (op->typ,
3458 targ->tok[op_num].
3459 X_add_number);
3460 targ->tok[op_num].X_add_number = val;
3461 }
3462 else
3463 return FALSE; /* We cannot use a relocation for this. */
3464 break;
3465 }
3466 gas_assert (0);
3467 break;
3468 }
3469 }
3470 break;
3471
3472 case INSTR_LITERAL_DEF:
3473 op = bi->ops;
3474 targ->opcode = XTENSA_UNDEFINED;
3475 targ->insn_type = ITYPE_LITERAL;
3476 targ->is_specific_opcode = FALSE;
3477 for (; op != NULL; op = op->next)
3478 {
3479 int op_num = op->op_num;
3480 int op_data = op->op_data;
3481 gas_assert (op->op_num < MAX_INSN_ARGS);
3482
3483 if (targ->ntok <= op_num)
3484 targ->ntok = op_num + 1;
3485
3486 switch (op->typ)
3487 {
3488 case OP_OPERAND:
3489 gas_assert (op_data < insn->ntok);
3490 /* We can only pass resolvable literals through. */
3491 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3492 return FALSE;
3493 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3494 break;
3495 case OP_LITERAL:
3496 case OP_CONSTANT:
3497 case OP_LABEL:
3498 default:
3499 gas_assert (0);
3500 break;
3501 }
3502 }
3503 break;
3504
3505 case INSTR_LABEL_DEF:
3506 op = bi->ops;
3507 targ->opcode = XTENSA_UNDEFINED;
3508 targ->insn_type = ITYPE_LABEL;
3509 targ->is_specific_opcode = FALSE;
3510 /* Literal with no ops is a label? */
3511 gas_assert (op == NULL);
3512 break;
3513
3514 default:
3515 gas_assert (0);
3516 }
3517
3518 return TRUE;
3519 }
3520
3521
3522 /* Return TRUE on success. */
3523
3524 static bfd_boolean
3525 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3526 {
3527 for (; bi != NULL; bi = bi->next)
3528 {
3529 TInsn *next_insn = istack_push_space (istack);
3530
3531 if (!xg_build_to_insn (next_insn, insn, bi))
3532 return FALSE;
3533 }
3534 return TRUE;
3535 }
3536
3537
3538 /* Return TRUE on valid expansion. */
3539
3540 static bfd_boolean
3541 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3542 {
3543 int stack_size = istack->ninsn;
3544 int steps_taken = 0;
3545 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3546 TransitionList *l;
3547
3548 gas_assert (insn->insn_type == ITYPE_INSN);
3549 gas_assert (insn->opcode < table->num_opcodes);
3550
3551 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3552 {
3553 TransitionRule *rule = l->rule;
3554
3555 if (xg_instruction_matches_rule (insn, rule))
3556 {
3557 if (lateral_steps == steps_taken)
3558 {
3559 int i;
3560
3561 /* This is it. Expand the rule to the stack. */
3562 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3563 return FALSE;
3564
3565 /* Check to see if it fits. */
3566 for (i = stack_size; i < istack->ninsn; i++)
3567 {
3568 TInsn *insn = &istack->insn[i];
3569
3570 if (insn->insn_type == ITYPE_INSN
3571 && !tinsn_has_symbolic_operands (insn)
3572 && !xg_immeds_fit (insn))
3573 {
3574 istack->ninsn = stack_size;
3575 return FALSE;
3576 }
3577 }
3578 return TRUE;
3579 }
3580 steps_taken++;
3581 }
3582 }
3583 return FALSE;
3584 }
3585
3586 \f
3587 /* Relax the assembly instruction at least "min_steps".
3588 Return the number of steps taken.
3589
3590 For relaxation to correctly terminate, every relaxation chain must
3591 terminate in one of two ways:
3592
3593 1. If the chain from one instruction to the next consists entirely of
3594 single instructions, then the chain *must* handle all possible
3595 immediates without failing. It must not ever fail because an
3596 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3597 chain is one example. L32R loads 32 bits, and there cannot be an
3598 immediate larger than 32 bits, so it satisfies this condition.
3599 Single instruction relaxation chains are as defined by
3600 xg_is_single_relaxable_instruction.
3601
3602 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3603 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3604
3605 Strictly speaking, in most cases you can violate condition 1 and be OK
3606 -- in particular when the last two instructions have the same single
3607 size. But nevertheless, you should guarantee the above two conditions.
3608
3609 We could fix this so that single-instruction expansions correctly
3610 terminate when they can't handle the range, but the error messages are
3611 worse, and it actually turns out that in every case but one (18-bit wide
3612 branches), you need a multi-instruction expansion to get the full range
3613 anyway. And because 18-bit branches are handled identically to 15-bit
3614 branches, there isn't any point in changing it. */
3615
3616 static int
3617 xg_assembly_relax (IStack *istack,
3618 TInsn *insn,
3619 segT pc_seg,
3620 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3621 offsetT pc_offset, /* offset in fragment */
3622 int min_steps, /* minimum conversion steps */
3623 long stretch) /* number of bytes stretched so far */
3624 {
3625 int steps_taken = 0;
3626
3627 /* Some of its immeds don't fit. Try to build a relaxed version.
3628 This may go through a couple of stages of single instruction
3629 transformations before we get there. */
3630
3631 TInsn single_target;
3632 TInsn current_insn;
3633 int lateral_steps = 0;
3634 int istack_size = istack->ninsn;
3635
3636 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3637 && steps_taken >= min_steps)
3638 {
3639 istack_push (istack, insn);
3640 return steps_taken;
3641 }
3642 current_insn = *insn;
3643
3644 /* Walk through all of the single instruction expansions. */
3645 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3646 {
3647 steps_taken++;
3648 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3649 stretch))
3650 {
3651 if (steps_taken >= min_steps)
3652 {
3653 istack_push (istack, &single_target);
3654 return steps_taken;
3655 }
3656 }
3657 current_insn = single_target;
3658 }
3659
3660 /* Now check for a multi-instruction expansion. */
3661 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3662 {
3663 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3664 stretch))
3665 {
3666 if (steps_taken >= min_steps)
3667 {
3668 istack_push (istack, &current_insn);
3669 return steps_taken;
3670 }
3671 }
3672 steps_taken++;
3673 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3674 {
3675 if (steps_taken >= min_steps)
3676 return steps_taken;
3677 }
3678 lateral_steps++;
3679 istack->ninsn = istack_size;
3680 }
3681
3682 /* It's not going to work -- use the original. */
3683 istack_push (istack, insn);
3684 return steps_taken;
3685 }
3686
3687
3688 static void
3689 xg_finish_frag (char *last_insn,
3690 enum xtensa_relax_statesE frag_state,
3691 enum xtensa_relax_statesE slot0_state,
3692 int max_growth,
3693 bfd_boolean is_insn)
3694 {
3695 /* Finish off this fragment so that it has at LEAST the desired
3696 max_growth. If it doesn't fit in this fragment, close this one
3697 and start a new one. In either case, return a pointer to the
3698 beginning of the growth area. */
3699
3700 fragS *old_frag;
3701
3702 frag_grow (max_growth);
3703 old_frag = frag_now;
3704
3705 frag_now->fr_opcode = last_insn;
3706 if (is_insn)
3707 frag_now->tc_frag_data.is_insn = TRUE;
3708
3709 frag_var (rs_machine_dependent, max_growth, max_growth,
3710 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3711
3712 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3713 xtensa_set_frag_assembly_state (frag_now);
3714
3715 /* Just to make sure that we did not split it up. */
3716 gas_assert (old_frag->fr_next == frag_now);
3717 }
3718
3719
3720 /* Return TRUE if the target frag is one of the next non-empty frags. */
3721
3722 static bfd_boolean
3723 is_next_frag_target (const fragS *fragP, const fragS *target)
3724 {
3725 if (fragP == NULL)
3726 return FALSE;
3727
3728 for (; fragP; fragP = fragP->fr_next)
3729 {
3730 if (fragP == target)
3731 return TRUE;
3732 if (fragP->fr_fix != 0)
3733 return FALSE;
3734 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3735 return FALSE;
3736 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3737 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3738 return FALSE;
3739 if (fragP->fr_type == rs_space)
3740 return FALSE;
3741 }
3742 return FALSE;
3743 }
3744
3745
3746 static bfd_boolean
3747 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3748 {
3749 xtensa_isa isa = xtensa_default_isa;
3750 int i;
3751 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3752 int target_op = -1;
3753 symbolS *sym;
3754 fragS *target_frag;
3755
3756 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3757 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3758 return FALSE;
3759
3760 for (i = 0; i < num_ops; i++)
3761 {
3762 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3763 {
3764 target_op = i;
3765 break;
3766 }
3767 }
3768 if (target_op == -1)
3769 return FALSE;
3770
3771 if (insn->ntok <= target_op)
3772 return FALSE;
3773
3774 if (insn->tok[target_op].X_op != O_symbol)
3775 return FALSE;
3776
3777 sym = insn->tok[target_op].X_add_symbol;
3778 if (sym == NULL)
3779 return FALSE;
3780
3781 if (insn->tok[target_op].X_add_number != 0)
3782 return FALSE;
3783
3784 target_frag = symbol_get_frag (sym);
3785 if (target_frag == NULL)
3786 return FALSE;
3787
3788 if (is_next_frag_target (fragP->fr_next, target_frag)
3789 && S_GET_VALUE (sym) == target_frag->fr_address)
3790 return TRUE;
3791
3792 return FALSE;
3793 }
3794
3795
3796 static void
3797 xg_add_branch_and_loop_targets (TInsn *insn)
3798 {
3799 xtensa_isa isa = xtensa_default_isa;
3800 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3801
3802 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3803 {
3804 int i = 1;
3805 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3806 && insn->tok[i].X_op == O_symbol)
3807 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3808 return;
3809 }
3810
3811 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3812 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3813 {
3814 int i;
3815
3816 for (i = 0; i < insn->ntok && i < num_ops; i++)
3817 {
3818 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3819 && insn->tok[i].X_op == O_symbol)
3820 {
3821 symbolS *sym = insn->tok[i].X_add_symbol;
3822 symbol_get_tc (sym)->is_branch_target = TRUE;
3823 if (S_IS_DEFINED (sym))
3824 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3825 }
3826 }
3827 }
3828 }
3829
3830
3831 /* Return FALSE if no error. */
3832
3833 static bfd_boolean
3834 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3835 {
3836 int num_ops = 0;
3837 BuildOp *b_op;
3838
3839 switch (instr_spec->typ)
3840 {
3841 case INSTR_INSTR:
3842 new_insn->insn_type = ITYPE_INSN;
3843 new_insn->opcode = instr_spec->opcode;
3844 break;
3845 case INSTR_LITERAL_DEF:
3846 new_insn->insn_type = ITYPE_LITERAL;
3847 new_insn->opcode = XTENSA_UNDEFINED;
3848 break;
3849 case INSTR_LABEL_DEF:
3850 abort ();
3851 }
3852 new_insn->is_specific_opcode = FALSE;
3853 new_insn->debug_line = old_insn->debug_line;
3854 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3855
3856 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3857 {
3858 expressionS *exp;
3859 const expressionS *src_exp;
3860
3861 num_ops++;
3862 switch (b_op->typ)
3863 {
3864 case OP_CONSTANT:
3865 /* The expression must be the constant. */
3866 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3867 exp = &new_insn->tok[b_op->op_num];
3868 set_expr_const (exp, b_op->op_data);
3869 break;
3870
3871 case OP_OPERAND:
3872 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3873 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
3874 src_exp = &old_insn->tok[b_op->op_data];
3875 exp = &new_insn->tok[b_op->op_num];
3876 copy_expr (exp, src_exp);
3877 break;
3878
3879 case OP_LITERAL:
3880 case OP_LABEL:
3881 as_bad (_("can't handle generation of literal/labels yet"));
3882 gas_assert (0);
3883
3884 default:
3885 as_bad (_("can't handle undefined OP TYPE"));
3886 gas_assert (0);
3887 }
3888 }
3889
3890 new_insn->ntok = num_ops;
3891 return FALSE;
3892 }
3893
3894
3895 /* Return TRUE if it was simplified. */
3896
3897 static bfd_boolean
3898 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3899 {
3900 TransitionRule *rule;
3901 BuildInstr *insn_spec;
3902
3903 if (old_insn->is_specific_opcode || !density_supported)
3904 return FALSE;
3905
3906 rule = xg_instruction_match (old_insn);
3907 if (rule == NULL)
3908 return FALSE;
3909
3910 insn_spec = rule->to_instr;
3911 /* There should only be one. */
3912 gas_assert (insn_spec != NULL);
3913 gas_assert (insn_spec->next == NULL);
3914 if (insn_spec->next != NULL)
3915 return FALSE;
3916
3917 xg_build_token_insn (insn_spec, old_insn, new_insn);
3918
3919 return TRUE;
3920 }
3921
3922
3923 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3924 l32i.n. (2) Check the number of operands. (3) Place the instruction
3925 tokens into the stack or relax it and place multiple
3926 instructions/literals onto the stack. Return FALSE if no error. */
3927
3928 static bfd_boolean
3929 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3930 {
3931 int noperands;
3932 TInsn new_insn;
3933 bfd_boolean do_expand;
3934
3935 tinsn_init (&new_insn);
3936
3937 /* Narrow it if we can. xg_simplify_insn now does all the
3938 appropriate checking (e.g., for the density option). */
3939 if (xg_simplify_insn (orig_insn, &new_insn))
3940 orig_insn = &new_insn;
3941
3942 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3943 orig_insn->opcode);
3944 if (orig_insn->ntok < noperands)
3945 {
3946 as_bad (_("found %d operands for '%s': Expected %d"),
3947 orig_insn->ntok,
3948 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3949 noperands);
3950 return TRUE;
3951 }
3952 if (orig_insn->ntok > noperands)
3953 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3954 orig_insn->ntok,
3955 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3956 noperands);
3957
3958 /* If there are not enough operands, we will assert above. If there
3959 are too many, just cut out the extras here. */
3960 orig_insn->ntok = noperands;
3961
3962 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3963 return TRUE;
3964
3965 /* Special case for extui opcode which has constraints not handled
3966 by the ordinary operand encoding checks. The number of operands
3967 and related syntax issues have already been checked. */
3968 if (orig_insn->opcode == xtensa_extui_opcode)
3969 {
3970 int shiftimm = orig_insn->tok[2].X_add_number;
3971 int maskimm = orig_insn->tok[3].X_add_number;
3972 if (shiftimm + maskimm > 32)
3973 {
3974 as_bad (_("immediate operands sum to greater than 32"));
3975 return TRUE;
3976 }
3977 }
3978
3979 /* If the instruction will definitely need to be relaxed, it is better
3980 to expand it now for better scheduling. Decide whether to expand
3981 now.... */
3982 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3983
3984 /* Calls should be expanded to longcalls only in the backend relaxation
3985 so that the assembly scheduler will keep the L32R/CALLX instructions
3986 adjacent. */
3987 if (is_direct_call_opcode (orig_insn->opcode))
3988 do_expand = FALSE;
3989
3990 if (tinsn_has_symbolic_operands (orig_insn))
3991 {
3992 /* The values of symbolic operands are not known yet, so only expand
3993 now if an operand is "complex" (e.g., difference of symbols) and
3994 will have to be stored as a literal regardless of the value. */
3995 if (!tinsn_has_complex_operands (orig_insn))
3996 do_expand = FALSE;
3997 }
3998 else if (xg_immeds_fit (orig_insn))
3999 do_expand = FALSE;
4000
4001 if (do_expand)
4002 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4003 else
4004 istack_push (istack, orig_insn);
4005
4006 return FALSE;
4007 }
4008
4009
4010 /* Return TRUE if the section flags are marked linkonce
4011 or the name is .gnu.linkonce.*. */
4012
4013 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4014
4015 static bfd_boolean
4016 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4017 {
4018 flagword flags, link_once_flags;
4019
4020 flags = bfd_get_section_flags (abfd, sec);
4021 link_once_flags = (flags & SEC_LINK_ONCE);
4022
4023 /* Flags might not be set yet. */
4024 if (!link_once_flags
4025 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4026 link_once_flags = SEC_LINK_ONCE;
4027
4028 return (link_once_flags != 0);
4029 }
4030
4031
4032 static void
4033 xtensa_add_literal_sym (symbolS *sym)
4034 {
4035 sym_list *l;
4036
4037 l = (sym_list *) xmalloc (sizeof (sym_list));
4038 l->sym = sym;
4039 l->next = literal_syms;
4040 literal_syms = l;
4041 }
4042
4043
4044 static symbolS *
4045 xtensa_create_literal_symbol (segT sec, fragS *frag)
4046 {
4047 static int lit_num = 0;
4048 static char name[256];
4049 symbolS *symbolP;
4050
4051 sprintf (name, ".L_lit_sym%d", lit_num);
4052
4053 /* Create a local symbol. If it is in a linkonce section, we have to
4054 be careful to make sure that if it is used in a relocation that the
4055 symbol will be in the output file. */
4056 if (get_is_linkonce_section (stdoutput, sec))
4057 {
4058 symbolP = symbol_new (name, sec, 0, frag);
4059 S_CLEAR_EXTERNAL (symbolP);
4060 /* symbolP->local = 1; */
4061 }
4062 else
4063 symbolP = symbol_new (name, sec, 0, frag);
4064
4065 xtensa_add_literal_sym (symbolP);
4066
4067 lit_num++;
4068 return symbolP;
4069 }
4070
4071
4072 /* Currently all literals that are generated here are 32-bit L32R targets. */
4073
4074 static symbolS *
4075 xg_assemble_literal (/* const */ TInsn *insn)
4076 {
4077 emit_state state;
4078 symbolS *lit_sym = NULL;
4079 bfd_reloc_code_real_type reloc;
4080 bfd_boolean pcrel = FALSE;
4081 char *p;
4082
4083 /* size = 4 for L32R. It could easily be larger when we move to
4084 larger constants. Add a parameter later. */
4085 offsetT litsize = 4;
4086 offsetT litalign = 2; /* 2^2 = 4 */
4087 expressionS saved_loc;
4088 expressionS * emit_val;
4089
4090 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4091
4092 gas_assert (insn->insn_type == ITYPE_LITERAL);
4093 gas_assert (insn->ntok == 1); /* must be only one token here */
4094
4095 xtensa_switch_to_literal_fragment (&state);
4096
4097 emit_val = &insn->tok[0];
4098 if (emit_val->X_op == O_big)
4099 {
4100 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4101 if (size > litsize)
4102 {
4103 /* This happens when someone writes a "movi a2, big_number". */
4104 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4105 _("invalid immediate"));
4106 xtensa_restore_emit_state (&state);
4107 return NULL;
4108 }
4109 }
4110
4111 /* Force a 4-byte align here. Note that this opens a new frag, so all
4112 literals done with this function have a frag to themselves. That's
4113 important for the way text section literals work. */
4114 frag_align (litalign, 0, 0);
4115 record_alignment (now_seg, litalign);
4116
4117 switch (emit_val->X_op)
4118 {
4119 case O_pcrel:
4120 pcrel = TRUE;
4121 /* fall through */
4122 case O_pltrel:
4123 case O_tlsfunc:
4124 case O_tlsarg:
4125 case O_tpoff:
4126 case O_dtpoff:
4127 p = frag_more (litsize);
4128 xtensa_set_frag_assembly_state (frag_now);
4129 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4130 if (emit_val->X_add_symbol)
4131 emit_val->X_op = O_symbol;
4132 else
4133 emit_val->X_op = O_constant;
4134 fix_new_exp (frag_now, p - frag_now->fr_literal,
4135 litsize, emit_val, pcrel, reloc);
4136 break;
4137
4138 default:
4139 emit_expr (emit_val, litsize);
4140 break;
4141 }
4142
4143 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
4144 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4145 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4146 lit_sym = frag_now->fr_symbol;
4147
4148 /* Go back. */
4149 xtensa_restore_emit_state (&state);
4150 return lit_sym;
4151 }
4152
4153
4154 static void
4155 xg_assemble_literal_space (/* const */ int size, int slot)
4156 {
4157 emit_state state;
4158 /* We might have to do something about this alignment. It only
4159 takes effect if something is placed here. */
4160 offsetT litalign = 2; /* 2^2 = 4 */
4161 fragS *lit_saved_frag;
4162
4163 gas_assert (size % 4 == 0);
4164
4165 xtensa_switch_to_literal_fragment (&state);
4166
4167 /* Force a 4-byte align here. */
4168 frag_align (litalign, 0, 0);
4169 record_alignment (now_seg, litalign);
4170
4171 frag_grow (size);
4172
4173 lit_saved_frag = frag_now;
4174 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4175 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4176 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4177
4178 /* Go back. */
4179 xtensa_restore_emit_state (&state);
4180 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4181 }
4182
4183
4184 /* Put in a fixup record based on the opcode.
4185 Return TRUE on success. */
4186
4187 static bfd_boolean
4188 xg_add_opcode_fix (TInsn *tinsn,
4189 int opnum,
4190 xtensa_format fmt,
4191 int slot,
4192 expressionS *expr,
4193 fragS *fragP,
4194 offsetT offset)
4195 {
4196 xtensa_opcode opcode = tinsn->opcode;
4197 bfd_reloc_code_real_type reloc;
4198 reloc_howto_type *howto;
4199 int fmt_length;
4200 fixS *the_fix;
4201
4202 reloc = BFD_RELOC_NONE;
4203
4204 /* First try the special cases for "alternate" relocs. */
4205 if (opcode == xtensa_l32r_opcode)
4206 {
4207 if (fragP->tc_frag_data.use_absolute_literals)
4208 reloc = encode_alt_reloc (slot);
4209 }
4210 else if (opcode == xtensa_const16_opcode)
4211 {
4212 if (expr->X_op == O_lo16)
4213 {
4214 reloc = encode_reloc (slot);
4215 expr->X_op = O_symbol;
4216 }
4217 else if (expr->X_op == O_hi16)
4218 {
4219 reloc = encode_alt_reloc (slot);
4220 expr->X_op = O_symbol;
4221 }
4222 }
4223
4224 if (opnum != get_relaxable_immed (opcode))
4225 {
4226 as_bad (_("invalid relocation for operand %i of '%s'"),
4227 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4228 return FALSE;
4229 }
4230
4231 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4232 into the symbol table where the generic portions of the assembler
4233 won't know what to do with them. */
4234 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4235 {
4236 as_bad (_("invalid expression for operand %i of '%s'"),
4237 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4238 return FALSE;
4239 }
4240
4241 /* Next try the generic relocs. */
4242 if (reloc == BFD_RELOC_NONE)
4243 reloc = encode_reloc (slot);
4244 if (reloc == BFD_RELOC_NONE)
4245 {
4246 as_bad (_("invalid relocation in instruction slot %i"), slot);
4247 return FALSE;
4248 }
4249
4250 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4251 if (!howto)
4252 {
4253 as_bad (_("undefined symbol for opcode \"%s\""),
4254 xtensa_opcode_name (xtensa_default_isa, opcode));
4255 return FALSE;
4256 }
4257
4258 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4259 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4260 howto->pc_relative, reloc);
4261 the_fix->fx_no_overflow = 1;
4262 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4263 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4264 the_fix->tc_fix_data.slot = slot;
4265
4266 return TRUE;
4267 }
4268
4269
4270 static bfd_boolean
4271 xg_emit_insn_to_buf (TInsn *tinsn,
4272 char *buf,
4273 fragS *fragP,
4274 offsetT offset,
4275 bfd_boolean build_fix)
4276 {
4277 static xtensa_insnbuf insnbuf = NULL;
4278 bfd_boolean has_symbolic_immed = FALSE;
4279 bfd_boolean ok = TRUE;
4280
4281 if (!insnbuf)
4282 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4283
4284 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4285 if (has_symbolic_immed && build_fix)
4286 {
4287 /* Add a fixup. */
4288 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4289 int slot = xg_get_single_slot (tinsn->opcode);
4290 int opnum = get_relaxable_immed (tinsn->opcode);
4291 expressionS *exp = &tinsn->tok[opnum];
4292
4293 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4294 ok = FALSE;
4295 }
4296 fragP->tc_frag_data.is_insn = TRUE;
4297 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4298 (unsigned char *) buf, 0);
4299 return ok;
4300 }
4301
4302
4303 static void
4304 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4305 {
4306 symbolS *sym = get_special_literal_symbol ();
4307 int i;
4308 if (lit_sym == 0)
4309 return;
4310 gas_assert (insn->insn_type == ITYPE_INSN);
4311 for (i = 0; i < insn->ntok; i++)
4312 if (insn->tok[i].X_add_symbol == sym)
4313 insn->tok[i].X_add_symbol = lit_sym;
4314
4315 }
4316
4317
4318 static void
4319 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4320 {
4321 symbolS *sym = get_special_label_symbol ();
4322 int i;
4323 for (i = 0; i < insn->ntok; i++)
4324 if (insn->tok[i].X_add_symbol == sym)
4325 insn->tok[i].X_add_symbol = label_sym;
4326
4327 }
4328
4329
4330 /* Return TRUE if the instruction can write to the specified
4331 integer register. */
4332
4333 static bfd_boolean
4334 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4335 {
4336 int i;
4337 int num_ops;
4338 xtensa_isa isa = xtensa_default_isa;
4339
4340 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4341
4342 for (i = 0; i < num_ops; i++)
4343 {
4344 char inout;
4345 inout = xtensa_operand_inout (isa, insn->opcode, i);
4346 if ((inout == 'o' || inout == 'm')
4347 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4348 {
4349 xtensa_regfile opnd_rf =
4350 xtensa_operand_regfile (isa, insn->opcode, i);
4351 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4352 {
4353 if ((insn->tok[i].X_op == O_register)
4354 && (insn->tok[i].X_add_number == regnum))
4355 return TRUE;
4356 }
4357 }
4358 }
4359 return FALSE;
4360 }
4361
4362
4363 static bfd_boolean
4364 is_bad_loopend_opcode (const TInsn *tinsn)
4365 {
4366 xtensa_opcode opcode = tinsn->opcode;
4367
4368 if (opcode == XTENSA_UNDEFINED)
4369 return FALSE;
4370
4371 if (opcode == xtensa_call0_opcode
4372 || opcode == xtensa_callx0_opcode
4373 || opcode == xtensa_call4_opcode
4374 || opcode == xtensa_callx4_opcode
4375 || opcode == xtensa_call8_opcode
4376 || opcode == xtensa_callx8_opcode
4377 || opcode == xtensa_call12_opcode
4378 || opcode == xtensa_callx12_opcode
4379 || opcode == xtensa_isync_opcode
4380 || opcode == xtensa_ret_opcode
4381 || opcode == xtensa_ret_n_opcode
4382 || opcode == xtensa_retw_opcode
4383 || opcode == xtensa_retw_n_opcode
4384 || opcode == xtensa_waiti_opcode
4385 || opcode == xtensa_rsr_lcount_opcode)
4386 return TRUE;
4387
4388 return FALSE;
4389 }
4390
4391
4392 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4393 This allows the debugger to add unaligned labels.
4394 Also, the assembler generates stabs labels that need
4395 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4396
4397 static bfd_boolean
4398 is_unaligned_label (symbolS *sym)
4399 {
4400 const char *name = S_GET_NAME (sym);
4401 static size_t fake_size = 0;
4402
4403 if (name
4404 && name[0] == '.'
4405 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4406 return TRUE;
4407
4408 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4409 if (fake_size == 0)
4410 fake_size = strlen (FAKE_LABEL_NAME);
4411
4412 if (name
4413 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4414 && (name[fake_size] == 'F'
4415 || name[fake_size] == 'L'
4416 || (name[fake_size] == 'e'
4417 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4418 return TRUE;
4419
4420 return FALSE;
4421 }
4422
4423
4424 static fragS *
4425 next_non_empty_frag (const fragS *fragP)
4426 {
4427 fragS *next_fragP = fragP->fr_next;
4428
4429 /* Sometimes an empty will end up here due storage allocation issues.
4430 So we have to skip until we find something legit. */
4431 while (next_fragP && next_fragP->fr_fix == 0)
4432 next_fragP = next_fragP->fr_next;
4433
4434 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4435 return NULL;
4436
4437 return next_fragP;
4438 }
4439
4440
4441 static bfd_boolean
4442 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4443 {
4444 xtensa_opcode out_opcode;
4445 const fragS *next_fragP = next_non_empty_frag (fragP);
4446
4447 if (next_fragP == NULL)
4448 return FALSE;
4449
4450 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4451 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4452 {
4453 *opcode = out_opcode;
4454 return TRUE;
4455 }
4456 return FALSE;
4457 }
4458
4459
4460 static int
4461 frag_format_size (const fragS *fragP)
4462 {
4463 static xtensa_insnbuf insnbuf = NULL;
4464 xtensa_isa isa = xtensa_default_isa;
4465 xtensa_format fmt;
4466 int fmt_size;
4467
4468 if (!insnbuf)
4469 insnbuf = xtensa_insnbuf_alloc (isa);
4470
4471 if (fragP == NULL)
4472 return XTENSA_UNDEFINED;
4473
4474 xtensa_insnbuf_from_chars (isa, insnbuf,
4475 (unsigned char *) fragP->fr_literal, 0);
4476
4477 fmt = xtensa_format_decode (isa, insnbuf);
4478 if (fmt == XTENSA_UNDEFINED)
4479 return XTENSA_UNDEFINED;
4480 fmt_size = xtensa_format_length (isa, fmt);
4481
4482 /* If the next format won't be changing due to relaxation, just
4483 return the length of the first format. */
4484 if (fragP->fr_opcode != fragP->fr_literal)
4485 return fmt_size;
4486
4487 /* If during relaxation we have to pull an instruction out of a
4488 multi-slot instruction, we will return the more conservative
4489 number. This works because alignment on bigger instructions
4490 is more restrictive than alignment on smaller instructions.
4491 This is more conservative than we would like, but it happens
4492 infrequently. */
4493
4494 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4495 return fmt_size;
4496
4497 /* If we aren't doing one of our own relaxations or it isn't
4498 slot-based, then the insn size won't change. */
4499 if (fragP->fr_type != rs_machine_dependent)
4500 return fmt_size;
4501 if (fragP->fr_subtype != RELAX_SLOTS)
4502 return fmt_size;
4503
4504 /* If an instruction is about to grow, return the longer size. */
4505 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4506 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4507 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4508 {
4509 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4510 instruction in the relaxed version is of length 3. (The case
4511 where we have to pull the instruction out of a FLIX bundle
4512 is handled conservatively above.) However, frags with opcodes
4513 that are expanding to wide branches end up having formats that
4514 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4515 we can't tell directly what format the relaxer picked. This
4516 is a wart in the design of the relaxer that should someday be
4517 fixed, but would require major changes, or at least should
4518 be accompanied by major changes to make use of that data.
4519
4520 In any event, we can tell that we are expanding from a single-slot
4521 three-byte format to a wider one with the logic below. */
4522
4523 if (fmt_size <= 3 && fragP->tc_frag_data.text_expansion[0] != 3)
4524 return 3 + fragP->tc_frag_data.text_expansion[0];
4525 else
4526 return 3;
4527 }
4528
4529 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4530 return 2 + fragP->tc_frag_data.text_expansion[0];
4531
4532 return fmt_size;
4533 }
4534
4535
4536 static int
4537 next_frag_format_size (const fragS *fragP)
4538 {
4539 const fragS *next_fragP = next_non_empty_frag (fragP);
4540 return frag_format_size (next_fragP);
4541 }
4542
4543
4544 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4545 required two-byte instructions to be treated as three-byte instructions
4546 for loop instruction alignment. This restriction was removed beginning
4547 with Xtensa LX. Now the only requirement on loop instruction alignment
4548 is that the first instruction of the loop must appear at an address that
4549 does not cross a fetch boundary. */
4550
4551 static int
4552 get_loop_align_size (int insn_size)
4553 {
4554 if (insn_size == XTENSA_UNDEFINED)
4555 return xtensa_fetch_width;
4556
4557 if (enforce_three_byte_loop_align && insn_size == 2)
4558 return 3;
4559
4560 return insn_size;
4561 }
4562
4563
4564 /* If the next legit fragment is an end-of-loop marker,
4565 switch its state so it will instantiate a NOP. */
4566
4567 static void
4568 update_next_frag_state (fragS *fragP)
4569 {
4570 fragS *next_fragP = fragP->fr_next;
4571 fragS *new_target = NULL;
4572
4573 if (align_targets)
4574 {
4575 /* We are guaranteed there will be one of these... */
4576 while (!(next_fragP->fr_type == rs_machine_dependent
4577 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4578 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4579 next_fragP = next_fragP->fr_next;
4580
4581 gas_assert (next_fragP->fr_type == rs_machine_dependent
4582 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4583 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4584
4585 /* ...and one of these. */
4586 new_target = next_fragP->fr_next;
4587 while (!(new_target->fr_type == rs_machine_dependent
4588 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4589 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4590 new_target = new_target->fr_next;
4591
4592 gas_assert (new_target->fr_type == rs_machine_dependent
4593 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4594 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4595 }
4596
4597 while (next_fragP && next_fragP->fr_fix == 0)
4598 {
4599 if (next_fragP->fr_type == rs_machine_dependent
4600 && next_fragP->fr_subtype == RELAX_LOOP_END)
4601 {
4602 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4603 return;
4604 }
4605
4606 next_fragP = next_fragP->fr_next;
4607 }
4608 }
4609
4610
4611 static bfd_boolean
4612 next_frag_is_branch_target (const fragS *fragP)
4613 {
4614 /* Sometimes an empty will end up here due to storage allocation issues,
4615 so we have to skip until we find something legit. */
4616 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4617 {
4618 if (fragP->tc_frag_data.is_branch_target)
4619 return TRUE;
4620 if (fragP->fr_fix != 0)
4621 break;
4622 }
4623 return FALSE;
4624 }
4625
4626
4627 static bfd_boolean
4628 next_frag_is_loop_target (const fragS *fragP)
4629 {
4630 /* Sometimes an empty will end up here due storage allocation issues.
4631 So we have to skip until we find something legit. */
4632 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4633 {
4634 if (fragP->tc_frag_data.is_loop_target)
4635 return TRUE;
4636 if (fragP->fr_fix != 0)
4637 break;
4638 }
4639 return FALSE;
4640 }
4641
4642
4643 static addressT
4644 next_frag_pre_opcode_bytes (const fragS *fragp)
4645 {
4646 const fragS *next_fragp = fragp->fr_next;
4647 xtensa_opcode next_opcode;
4648
4649 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4650 return 0;
4651
4652 /* Sometimes an empty will end up here due to storage allocation issues,
4653 so we have to skip until we find something legit. */
4654 while (next_fragp->fr_fix == 0)
4655 next_fragp = next_fragp->fr_next;
4656
4657 if (next_fragp->fr_type != rs_machine_dependent)
4658 return 0;
4659
4660 /* There is some implicit knowledge encoded in here.
4661 The LOOP instructions that are NOT RELAX_IMMED have
4662 been relaxed. Note that we can assume that the LOOP
4663 instruction is in slot 0 because loops aren't bundleable. */
4664 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4665 return get_expanded_loop_offset (next_opcode);
4666
4667 return 0;
4668 }
4669
4670
4671 /* Mark a location where we can later insert literal frags. Update
4672 the section's literal_pool_loc, so subsequent literals can be
4673 placed nearest to their use. */
4674
4675 static void
4676 xtensa_mark_literal_pool_location (void)
4677 {
4678 /* Any labels pointing to the current location need
4679 to be adjusted to after the literal pool. */
4680 emit_state s;
4681 fragS *pool_location;
4682
4683 if (use_literal_section)
4684 return;
4685
4686 /* We stash info in these frags so we can later move the literal's
4687 fixes into this frchain's fix list. */
4688 pool_location = frag_now;
4689 frag_now->tc_frag_data.lit_frchain = frchain_now;
4690 frag_now->tc_frag_data.literal_frag = frag_now;
4691 frag_variant (rs_machine_dependent, 0, 0,
4692 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4693 xtensa_set_frag_assembly_state (frag_now);
4694 frag_now->tc_frag_data.lit_seg = now_seg;
4695 frag_variant (rs_machine_dependent, 0, 0,
4696 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4697 xtensa_set_frag_assembly_state (frag_now);
4698
4699 /* Now put a frag into the literal pool that points to this location. */
4700 set_literal_pool_location (now_seg, pool_location);
4701 xtensa_switch_to_non_abs_literal_fragment (&s);
4702 frag_align (2, 0, 0);
4703 record_alignment (now_seg, 2);
4704
4705 /* Close whatever frag is there. */
4706 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4707 xtensa_set_frag_assembly_state (frag_now);
4708 frag_now->tc_frag_data.literal_frag = pool_location;
4709 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4710 xtensa_restore_emit_state (&s);
4711 xtensa_set_frag_assembly_state (frag_now);
4712 }
4713
4714
4715 /* Build a nop of the correct size into tinsn. */
4716
4717 static void
4718 build_nop (TInsn *tinsn, int size)
4719 {
4720 tinsn_init (tinsn);
4721 switch (size)
4722 {
4723 case 2:
4724 tinsn->opcode = xtensa_nop_n_opcode;
4725 tinsn->ntok = 0;
4726 if (tinsn->opcode == XTENSA_UNDEFINED)
4727 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4728 break;
4729
4730 case 3:
4731 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4732 {
4733 tinsn->opcode = xtensa_or_opcode;
4734 set_expr_const (&tinsn->tok[0], 1);
4735 set_expr_const (&tinsn->tok[1], 1);
4736 set_expr_const (&tinsn->tok[2], 1);
4737 tinsn->ntok = 3;
4738 }
4739 else
4740 tinsn->opcode = xtensa_nop_opcode;
4741
4742 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
4743 }
4744 }
4745
4746
4747 /* Assemble a NOP of the requested size in the buffer. User must have
4748 allocated "buf" with at least "size" bytes. */
4749
4750 static void
4751 assemble_nop (int size, char *buf)
4752 {
4753 static xtensa_insnbuf insnbuf = NULL;
4754 TInsn tinsn;
4755
4756 build_nop (&tinsn, size);
4757
4758 if (!insnbuf)
4759 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4760
4761 tinsn_to_insnbuf (&tinsn, insnbuf);
4762 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4763 (unsigned char *) buf, 0);
4764 }
4765
4766
4767 /* Return the number of bytes for the offset of the expanded loop
4768 instruction. This should be incorporated into the relaxation
4769 specification but is hard-coded here. This is used to auto-align
4770 the loop instruction. It is invalid to call this function if the
4771 configuration does not have loops or if the opcode is not a loop
4772 opcode. */
4773
4774 static addressT
4775 get_expanded_loop_offset (xtensa_opcode opcode)
4776 {
4777 /* This is the OFFSET of the loop instruction in the expanded loop.
4778 This MUST correspond directly to the specification of the loop
4779 expansion. It will be validated on fragment conversion. */
4780 gas_assert (opcode != XTENSA_UNDEFINED);
4781 if (opcode == xtensa_loop_opcode)
4782 return 0;
4783 if (opcode == xtensa_loopnez_opcode)
4784 return 3;
4785 if (opcode == xtensa_loopgtz_opcode)
4786 return 6;
4787 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4788 return 0;
4789 }
4790
4791
4792 static fragS *
4793 get_literal_pool_location (segT seg)
4794 {
4795 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4796 }
4797
4798
4799 static void
4800 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4801 {
4802 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4803 }
4804
4805
4806 /* Set frag assembly state should be called when a new frag is
4807 opened and after a frag has been closed. */
4808
4809 static void
4810 xtensa_set_frag_assembly_state (fragS *fragP)
4811 {
4812 if (!density_supported)
4813 fragP->tc_frag_data.is_no_density = TRUE;
4814
4815 /* This function is called from subsegs_finish, which is called
4816 after xtensa_end, so we can't use "use_transform" or
4817 "use_schedule" here. */
4818 if (!directive_state[directive_transform])
4819 fragP->tc_frag_data.is_no_transform = TRUE;
4820 if (directive_state[directive_longcalls])
4821 fragP->tc_frag_data.use_longcalls = TRUE;
4822 fragP->tc_frag_data.use_absolute_literals =
4823 directive_state[directive_absolute_literals];
4824 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4825 }
4826
4827
4828 static bfd_boolean
4829 relaxable_section (asection *sec)
4830 {
4831 return ((sec->flags & SEC_DEBUGGING) == 0
4832 && strcmp (sec->name, ".eh_frame") != 0);
4833 }
4834
4835
4836 static void
4837 xtensa_mark_frags_for_org (void)
4838 {
4839 segT *seclist;
4840
4841 /* Walk over each fragment of all of the current segments. If we find
4842 a .org frag in any of the segments, mark all frags prior to it as
4843 "no transform", which will prevent linker optimizations from messing
4844 up the .org distance. This should be done after
4845 xtensa_find_unmarked_state_frags, because we don't want to worry here
4846 about that function trashing the data we save here. */
4847
4848 for (seclist = &stdoutput->sections;
4849 seclist && *seclist;
4850 seclist = &(*seclist)->next)
4851 {
4852 segT sec = *seclist;
4853 segment_info_type *seginfo;
4854 fragS *fragP;
4855 flagword flags;
4856 flags = bfd_get_section_flags (stdoutput, sec);
4857 if (flags & SEC_DEBUGGING)
4858 continue;
4859 if (!(flags & SEC_ALLOC))
4860 continue;
4861
4862 seginfo = seg_info (sec);
4863 if (seginfo && seginfo->frchainP)
4864 {
4865 fragS *last_fragP = seginfo->frchainP->frch_root;
4866 for (fragP = seginfo->frchainP->frch_root; fragP;
4867 fragP = fragP->fr_next)
4868 {
4869 /* cvt_frag_to_fill has changed the fr_type of org frags to
4870 rs_fill, so use the value as cached in rs_subtype here. */
4871 if (fragP->fr_subtype == RELAX_ORG)
4872 {
4873 while (last_fragP != fragP->fr_next)
4874 {
4875 last_fragP->tc_frag_data.is_no_transform = TRUE;
4876 last_fragP = last_fragP->fr_next;
4877 }
4878 }
4879 }
4880 }
4881 }
4882 }
4883
4884
4885 static void
4886 xtensa_find_unmarked_state_frags (void)
4887 {
4888 segT *seclist;
4889
4890 /* Walk over each fragment of all of the current segments. For each
4891 unmarked fragment, mark it with the same info as the previous
4892 fragment. */
4893 for (seclist = &stdoutput->sections;
4894 seclist && *seclist;
4895 seclist = &(*seclist)->next)
4896 {
4897 segT sec = *seclist;
4898 segment_info_type *seginfo;
4899 fragS *fragP;
4900 flagword flags;
4901 flags = bfd_get_section_flags (stdoutput, sec);
4902 if (flags & SEC_DEBUGGING)
4903 continue;
4904 if (!(flags & SEC_ALLOC))
4905 continue;
4906
4907 seginfo = seg_info (sec);
4908 if (seginfo && seginfo->frchainP)
4909 {
4910 fragS *last_fragP = 0;
4911 for (fragP = seginfo->frchainP->frch_root; fragP;
4912 fragP = fragP->fr_next)
4913 {
4914 if (fragP->fr_fix != 0
4915 && !fragP->tc_frag_data.is_assembly_state_set)
4916 {
4917 if (last_fragP == 0)
4918 {
4919 as_warn_where (fragP->fr_file, fragP->fr_line,
4920 _("assembly state not set for first frag in section %s"),
4921 sec->name);
4922 }
4923 else
4924 {
4925 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4926 fragP->tc_frag_data.is_no_density =
4927 last_fragP->tc_frag_data.is_no_density;
4928 fragP->tc_frag_data.is_no_transform =
4929 last_fragP->tc_frag_data.is_no_transform;
4930 fragP->tc_frag_data.use_longcalls =
4931 last_fragP->tc_frag_data.use_longcalls;
4932 fragP->tc_frag_data.use_absolute_literals =
4933 last_fragP->tc_frag_data.use_absolute_literals;
4934 }
4935 }
4936 if (fragP->tc_frag_data.is_assembly_state_set)
4937 last_fragP = fragP;
4938 }
4939 }
4940 }
4941 }
4942
4943
4944 static void
4945 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4946 asection *sec,
4947 void *unused ATTRIBUTE_UNUSED)
4948 {
4949 flagword flags = bfd_get_section_flags (abfd, sec);
4950 segment_info_type *seginfo = seg_info (sec);
4951 fragS *frag = seginfo->frchainP->frch_root;
4952
4953 if (flags & SEC_CODE)
4954 {
4955 xtensa_isa isa = xtensa_default_isa;
4956 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4957 while (frag != NULL)
4958 {
4959 if (frag->tc_frag_data.is_branch_target)
4960 {
4961 int op_size;
4962 addressT branch_align, frag_addr;
4963 xtensa_format fmt;
4964
4965 xtensa_insnbuf_from_chars
4966 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4967 fmt = xtensa_format_decode (isa, insnbuf);
4968 op_size = xtensa_format_length (isa, fmt);
4969 branch_align = 1 << branch_align_power (sec);
4970 frag_addr = frag->fr_address % branch_align;
4971 if (frag_addr + op_size > branch_align)
4972 as_warn_where (frag->fr_file, frag->fr_line,
4973 _("unaligned branch target: %d bytes at 0x%lx"),
4974 op_size, (long) frag->fr_address);
4975 }
4976 frag = frag->fr_next;
4977 }
4978 xtensa_insnbuf_free (isa, insnbuf);
4979 }
4980 }
4981
4982
4983 static void
4984 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4985 asection *sec,
4986 void *unused ATTRIBUTE_UNUSED)
4987 {
4988 flagword flags = bfd_get_section_flags (abfd, sec);
4989 segment_info_type *seginfo = seg_info (sec);
4990 fragS *frag = seginfo->frchainP->frch_root;
4991 xtensa_isa isa = xtensa_default_isa;
4992
4993 if (flags & SEC_CODE)
4994 {
4995 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4996 while (frag != NULL)
4997 {
4998 if (frag->tc_frag_data.is_first_loop_insn)
4999 {
5000 int op_size;
5001 addressT frag_addr;
5002 xtensa_format fmt;
5003
5004 xtensa_insnbuf_from_chars
5005 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5006 fmt = xtensa_format_decode (isa, insnbuf);
5007 op_size = xtensa_format_length (isa, fmt);
5008 frag_addr = frag->fr_address % xtensa_fetch_width;
5009
5010 if (frag_addr + op_size > xtensa_fetch_width)
5011 as_warn_where (frag->fr_file, frag->fr_line,
5012 _("unaligned loop: %d bytes at 0x%lx"),
5013 op_size, (long) frag->fr_address);
5014 }
5015 frag = frag->fr_next;
5016 }
5017 xtensa_insnbuf_free (isa, insnbuf);
5018 }
5019 }
5020
5021
5022 static int
5023 xg_apply_fix_value (fixS *fixP, valueT val)
5024 {
5025 xtensa_isa isa = xtensa_default_isa;
5026 static xtensa_insnbuf insnbuf = NULL;
5027 static xtensa_insnbuf slotbuf = NULL;
5028 xtensa_format fmt;
5029 int slot;
5030 bfd_boolean alt_reloc;
5031 xtensa_opcode opcode;
5032 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5033
5034 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5035 || alt_reloc)
5036 as_fatal (_("unexpected fix"));
5037
5038 if (!insnbuf)
5039 {
5040 insnbuf = xtensa_insnbuf_alloc (isa);
5041 slotbuf = xtensa_insnbuf_alloc (isa);
5042 }
5043
5044 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5045 fmt = xtensa_format_decode (isa, insnbuf);
5046 if (fmt == XTENSA_UNDEFINED)
5047 as_fatal (_("undecodable fix"));
5048 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5049 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5050 if (opcode == XTENSA_UNDEFINED)
5051 as_fatal (_("undecodable fix"));
5052
5053 /* CONST16 immediates are not PC-relative, despite the fact that we
5054 reuse the normal PC-relative operand relocations for the low part
5055 of a CONST16 operand. */
5056 if (opcode == xtensa_const16_opcode)
5057 return 0;
5058
5059 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5060 get_relaxable_immed (opcode), val,
5061 fixP->fx_file, fixP->fx_line);
5062
5063 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5064 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5065
5066 return 1;
5067 }
5068
5069 \f
5070 /* External Functions and Other GAS Hooks. */
5071
5072 const char *
5073 xtensa_target_format (void)
5074 {
5075 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5076 }
5077
5078
5079 void
5080 xtensa_file_arch_init (bfd *abfd)
5081 {
5082 bfd_set_private_flags (abfd, 0x100 | 0x200);
5083 }
5084
5085
5086 void
5087 md_number_to_chars (char *buf, valueT val, int n)
5088 {
5089 if (target_big_endian)
5090 number_to_chars_bigendian (buf, val, n);
5091 else
5092 number_to_chars_littleendian (buf, val, n);
5093 }
5094
5095
5096 /* This function is called once, at assembler startup time. It should
5097 set up all the tables, etc. that the MD part of the assembler will
5098 need. */
5099
5100 void
5101 md_begin (void)
5102 {
5103 segT current_section = now_seg;
5104 int current_subsec = now_subseg;
5105 xtensa_isa isa;
5106
5107 xtensa_default_isa = xtensa_isa_init (0, 0);
5108 isa = xtensa_default_isa;
5109
5110 linkrelax = 1;
5111
5112 /* Set up the literal sections. */
5113 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5114
5115 subseg_set (current_section, current_subsec);
5116
5117 xg_init_vinsn (&cur_vinsn);
5118
5119 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5120 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5121 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5122 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5123 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5124 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5125 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5126 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5127 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5128 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5129 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5130 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5131 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5132 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5133 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5134 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5135 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5136 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5137 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5138 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5139 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5140 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5141 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5142 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5143 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5144 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5145 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5146 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5147 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5148 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5149 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5150
5151 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5152
5153 init_op_placement_info_table ();
5154
5155 /* Set up the assembly state. */
5156 if (!frag_now->tc_frag_data.is_assembly_state_set)
5157 xtensa_set_frag_assembly_state (frag_now);
5158 }
5159
5160
5161 /* TC_INIT_FIX_DATA hook */
5162
5163 void
5164 xtensa_init_fix_data (fixS *x)
5165 {
5166 x->tc_fix_data.slot = 0;
5167 x->tc_fix_data.X_add_symbol = NULL;
5168 x->tc_fix_data.X_add_number = 0;
5169 }
5170
5171
5172 /* tc_frob_label hook */
5173
5174 void
5175 xtensa_frob_label (symbolS *sym)
5176 {
5177 float freq;
5178
5179 if (cur_vinsn.inside_bundle)
5180 {
5181 as_bad (_("labels are not valid inside bundles"));
5182 return;
5183 }
5184
5185 freq = get_subseg_target_freq (now_seg, now_subseg);
5186
5187 /* Since the label was already attached to a frag associated with the
5188 previous basic block, it now needs to be reset to the current frag. */
5189 symbol_set_frag (sym, frag_now);
5190 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5191
5192 if (generating_literals)
5193 xtensa_add_literal_sym (sym);
5194 else
5195 xtensa_add_insn_label (sym);
5196
5197 if (symbol_get_tc (sym)->is_loop_target)
5198 {
5199 if ((get_last_insn_flags (now_seg, now_subseg)
5200 & FLAG_IS_BAD_LOOPEND) != 0)
5201 as_bad (_("invalid last instruction for a zero-overhead loop"));
5202
5203 xtensa_set_frag_assembly_state (frag_now);
5204 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5205 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5206
5207 xtensa_set_frag_assembly_state (frag_now);
5208 xtensa_move_labels (frag_now, 0);
5209 }
5210
5211 /* No target aligning in the absolute section. */
5212 if (now_seg != absolute_section
5213 && do_align_targets ()
5214 && !is_unaligned_label (sym)
5215 && !generating_literals)
5216 {
5217 xtensa_set_frag_assembly_state (frag_now);
5218
5219 frag_var (rs_machine_dependent,
5220 0, (int) freq,
5221 RELAX_DESIRE_ALIGN_IF_TARGET,
5222 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5223 xtensa_set_frag_assembly_state (frag_now);
5224 xtensa_move_labels (frag_now, 0);
5225 }
5226
5227 /* We need to mark the following properties even if we aren't aligning. */
5228
5229 /* If the label is already known to be a branch target, i.e., a
5230 forward branch, mark the frag accordingly. Backward branches
5231 are handled by xg_add_branch_and_loop_targets. */
5232 if (symbol_get_tc (sym)->is_branch_target)
5233 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5234
5235 /* Loops only go forward, so they can be identified here. */
5236 if (symbol_get_tc (sym)->is_loop_target)
5237 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5238
5239 dwarf2_emit_label (sym);
5240 }
5241
5242
5243 /* tc_unrecognized_line hook */
5244
5245 int
5246 xtensa_unrecognized_line (int ch)
5247 {
5248 switch (ch)
5249 {
5250 case '{' :
5251 if (cur_vinsn.inside_bundle == 0)
5252 {
5253 /* PR8110: Cannot emit line number info inside a FLIX bundle
5254 when using --gstabs. Temporarily disable debug info. */
5255 generate_lineno_debug ();
5256 if (debug_type == DEBUG_STABS)
5257 {
5258 xt_saved_debug_type = debug_type;
5259 debug_type = DEBUG_NONE;
5260 }
5261
5262 cur_vinsn.inside_bundle = 1;
5263 }
5264 else
5265 {
5266 as_bad (_("extra opening brace"));
5267 return 0;
5268 }
5269 break;
5270
5271 case '}' :
5272 if (cur_vinsn.inside_bundle)
5273 finish_vinsn (&cur_vinsn);
5274 else
5275 {
5276 as_bad (_("extra closing brace"));
5277 return 0;
5278 }
5279 break;
5280 default:
5281 as_bad (_("syntax error"));
5282 return 0;
5283 }
5284 return 1;
5285 }
5286
5287
5288 /* md_flush_pending_output hook */
5289
5290 void
5291 xtensa_flush_pending_output (void)
5292 {
5293 /* This line fixes a bug where automatically generated gstabs info
5294 separates a function label from its entry instruction, ending up
5295 with the literal position between the function label and the entry
5296 instruction and crashing code. It only happens with --gstabs and
5297 --text-section-literals, and when several other obscure relaxation
5298 conditions are met. */
5299 if (outputting_stabs_line_debug)
5300 return;
5301
5302 if (cur_vinsn.inside_bundle)
5303 as_bad (_("missing closing brace"));
5304
5305 /* If there is a non-zero instruction fragment, close it. */
5306 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5307 {
5308 frag_wane (frag_now);
5309 frag_new (0);
5310 xtensa_set_frag_assembly_state (frag_now);
5311 }
5312 frag_now->tc_frag_data.is_insn = FALSE;
5313
5314 xtensa_clear_insn_labels ();
5315 }
5316
5317
5318 /* We had an error while parsing an instruction. The string might look
5319 like this: "insn arg1, arg2 }". If so, we need to see the closing
5320 brace and reset some fields. Otherwise, the vinsn never gets closed
5321 and the num_slots field will grow past the end of the array of slots,
5322 and bad things happen. */
5323
5324 static void
5325 error_reset_cur_vinsn (void)
5326 {
5327 if (cur_vinsn.inside_bundle)
5328 {
5329 if (*input_line_pointer == '}'
5330 || *(input_line_pointer - 1) == '}'
5331 || *(input_line_pointer - 2) == '}')
5332 xg_clear_vinsn (&cur_vinsn);
5333 }
5334 }
5335
5336
5337 void
5338 md_assemble (char *str)
5339 {
5340 xtensa_isa isa = xtensa_default_isa;
5341 char *opname;
5342 unsigned opnamelen;
5343 bfd_boolean has_underbar = FALSE;
5344 char *arg_strings[MAX_INSN_ARGS];
5345 int num_args;
5346 TInsn orig_insn; /* Original instruction from the input. */
5347
5348 tinsn_init (&orig_insn);
5349
5350 /* Split off the opcode. */
5351 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5352 opname = xmalloc (opnamelen + 1);
5353 memcpy (opname, str, opnamelen);
5354 opname[opnamelen] = '\0';
5355
5356 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5357 if (num_args == -1)
5358 {
5359 as_bad (_("syntax error"));
5360 return;
5361 }
5362
5363 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5364 return;
5365
5366 /* Check for an underbar prefix. */
5367 if (*opname == '_')
5368 {
5369 has_underbar = TRUE;
5370 opname += 1;
5371 }
5372
5373 orig_insn.insn_type = ITYPE_INSN;
5374 orig_insn.ntok = 0;
5375 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5376 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5377
5378 /* Special case: Check for "CALLXn.TLS" psuedo op. If found, grab its
5379 extra argument and set the opcode to "CALLXn". */
5380 if (orig_insn.opcode == XTENSA_UNDEFINED
5381 && strncasecmp (opname, "callx", 5) == 0)
5382 {
5383 unsigned long window_size;
5384 char *suffix;
5385
5386 window_size = strtoul (opname + 5, &suffix, 10);
5387 if (suffix != opname + 5
5388 && (window_size == 0
5389 || window_size == 4
5390 || window_size == 8
5391 || window_size == 12)
5392 && strcasecmp (suffix, ".tls") == 0)
5393 {
5394 switch (window_size)
5395 {
5396 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5397 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5398 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5399 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5400 }
5401
5402 if (num_args != 2)
5403 as_bad (_("wrong number of operands for '%s'"), opname);
5404 else
5405 {
5406 bfd_reloc_code_real_type reloc;
5407 char *old_input_line_pointer;
5408 expressionS *tok = &orig_insn.extra_arg;
5409 segT t;
5410
5411 old_input_line_pointer = input_line_pointer;
5412 input_line_pointer = arg_strings[num_args - 1];
5413
5414 t = expression (tok);
5415 if (tok->X_op == O_symbol
5416 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5417 == BFD_RELOC_XTENSA_TLS_CALL))
5418 tok->X_op = map_suffix_reloc_to_operator (reloc);
5419 else
5420 as_bad (_("bad relocation expression for '%s'"), opname);
5421
5422 input_line_pointer = old_input_line_pointer;
5423 num_args -= 1;
5424 }
5425 }
5426 }
5427
5428 /* Special case: Check for "j.l" psuedo op. */
5429 if (orig_insn.opcode == XTENSA_UNDEFINED
5430 && strncasecmp (opname, "j.l", 3) == 0)
5431 {
5432 if (num_args != 2)
5433 as_bad (_("wrong number of operands for '%s'"), opname);
5434 else
5435 {
5436 char *old_input_line_pointer;
5437 expressionS *tok = &orig_insn.extra_arg;
5438
5439 old_input_line_pointer = input_line_pointer;
5440 input_line_pointer = arg_strings[num_args - 1];
5441
5442 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5443 input_line_pointer = old_input_line_pointer;
5444
5445 num_args -= 1;
5446 orig_insn.opcode = xtensa_j_opcode;
5447 }
5448 }
5449
5450 if (orig_insn.opcode == XTENSA_UNDEFINED)
5451 {
5452 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5453 if (fmt == XTENSA_UNDEFINED)
5454 {
5455 as_bad (_("unknown opcode or format name '%s'"), opname);
5456 error_reset_cur_vinsn ();
5457 return;
5458 }
5459 if (!cur_vinsn.inside_bundle)
5460 {
5461 as_bad (_("format names only valid inside bundles"));
5462 error_reset_cur_vinsn ();
5463 return;
5464 }
5465 if (cur_vinsn.format != XTENSA_UNDEFINED)
5466 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5467 opname);
5468 cur_vinsn.format = fmt;
5469 free (has_underbar ? opname - 1 : opname);
5470 error_reset_cur_vinsn ();
5471 return;
5472 }
5473
5474 /* Parse the arguments. */
5475 if (parse_arguments (&orig_insn, num_args, arg_strings))
5476 {
5477 as_bad (_("syntax error"));
5478 error_reset_cur_vinsn ();
5479 return;
5480 }
5481
5482 /* Free the opcode and argument strings, now that they've been parsed. */
5483 free (has_underbar ? opname - 1 : opname);
5484 opname = 0;
5485 while (num_args-- > 0)
5486 free (arg_strings[num_args]);
5487
5488 /* Get expressions for invisible operands. */
5489 if (get_invisible_operands (&orig_insn))
5490 {
5491 error_reset_cur_vinsn ();
5492 return;
5493 }
5494
5495 /* Check for the right number and type of arguments. */
5496 if (tinsn_check_arguments (&orig_insn))
5497 {
5498 error_reset_cur_vinsn ();
5499 return;
5500 }
5501
5502 /* Record the line number for each TInsn, because a FLIX bundle may be
5503 spread across multiple input lines and individual instructions may be
5504 moved around in some cases. */
5505 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5506 dwarf2_where (&orig_insn.debug_line);
5507 dwarf2_consume_line_info ();
5508
5509 xg_add_branch_and_loop_targets (&orig_insn);
5510
5511 /* Check that immediate value for ENTRY is >= 16. */
5512 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5513 {
5514 expressionS *exp = &orig_insn.tok[2];
5515 if (exp->X_op == O_constant && exp->X_add_number < 16)
5516 as_warn (_("entry instruction with stack decrement < 16"));
5517 }
5518
5519 /* Finish it off:
5520 assemble_tokens (opcode, tok, ntok);
5521 expand the tokens from the orig_insn into the
5522 stack of instructions that will not expand
5523 unless required at relaxation time. */
5524
5525 if (!cur_vinsn.inside_bundle)
5526 emit_single_op (&orig_insn);
5527 else /* We are inside a bundle. */
5528 {
5529 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5530 cur_vinsn.num_slots++;
5531 if (*input_line_pointer == '}'
5532 || *(input_line_pointer - 1) == '}'
5533 || *(input_line_pointer - 2) == '}')
5534 finish_vinsn (&cur_vinsn);
5535 }
5536
5537 /* We've just emitted a new instruction so clear the list of labels. */
5538 xtensa_clear_insn_labels ();
5539 }
5540
5541
5542 /* HANDLE_ALIGN hook */
5543
5544 /* For a .align directive, we mark the previous block with the alignment
5545 information. This will be placed in the object file in the
5546 property section corresponding to this section. */
5547
5548 void
5549 xtensa_handle_align (fragS *fragP)
5550 {
5551 if (linkrelax
5552 && ! fragP->tc_frag_data.is_literal
5553 && (fragP->fr_type == rs_align
5554 || fragP->fr_type == rs_align_code)
5555 && fragP->fr_address + fragP->fr_fix > 0
5556 && fragP->fr_offset > 0
5557 && now_seg != bss_section)
5558 {
5559 fragP->tc_frag_data.is_align = TRUE;
5560 fragP->tc_frag_data.alignment = fragP->fr_offset;
5561 }
5562
5563 if (fragP->fr_type == rs_align_test)
5564 {
5565 int count;
5566 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5567 if (count != 0)
5568 as_bad_where (fragP->fr_file, fragP->fr_line,
5569 _("unaligned entry instruction"));
5570 }
5571
5572 if (linkrelax && fragP->fr_type == rs_org)
5573 fragP->fr_subtype = RELAX_ORG;
5574 }
5575
5576
5577 /* TC_FRAG_INIT hook */
5578
5579 void
5580 xtensa_frag_init (fragS *frag)
5581 {
5582 xtensa_set_frag_assembly_state (frag);
5583 }
5584
5585
5586 symbolS *
5587 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5588 {
5589 return NULL;
5590 }
5591
5592
5593 /* Round up a section size to the appropriate boundary. */
5594
5595 valueT
5596 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5597 {
5598 return size; /* Byte alignment is fine. */
5599 }
5600
5601
5602 long
5603 md_pcrel_from (fixS *fixP)
5604 {
5605 char *insn_p;
5606 static xtensa_insnbuf insnbuf = NULL;
5607 static xtensa_insnbuf slotbuf = NULL;
5608 int opnum;
5609 uint32 opnd_value;
5610 xtensa_opcode opcode;
5611 xtensa_format fmt;
5612 int slot;
5613 xtensa_isa isa = xtensa_default_isa;
5614 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5615 bfd_boolean alt_reloc;
5616
5617 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5618 return 0;
5619
5620 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5621 return addr;
5622
5623 if (!insnbuf)
5624 {
5625 insnbuf = xtensa_insnbuf_alloc (isa);
5626 slotbuf = xtensa_insnbuf_alloc (isa);
5627 }
5628
5629 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5630 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5631 fmt = xtensa_format_decode (isa, insnbuf);
5632
5633 if (fmt == XTENSA_UNDEFINED)
5634 as_fatal (_("bad instruction format"));
5635
5636 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5637 as_fatal (_("invalid relocation"));
5638
5639 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5640 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5641
5642 /* Check for "alternate" relocations (operand not specified). None
5643 of the current uses for these are really PC-relative. */
5644 if (alt_reloc || opcode == xtensa_const16_opcode)
5645 {
5646 if (opcode != xtensa_l32r_opcode
5647 && opcode != xtensa_const16_opcode)
5648 as_fatal (_("invalid relocation for '%s' instruction"),
5649 xtensa_opcode_name (isa, opcode));
5650 return 0;
5651 }
5652
5653 opnum = get_relaxable_immed (opcode);
5654 opnd_value = 0;
5655 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5656 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5657 {
5658 as_bad_where (fixP->fx_file,
5659 fixP->fx_line,
5660 _("invalid relocation for operand %d of '%s'"),
5661 opnum, xtensa_opcode_name (isa, opcode));
5662 return 0;
5663 }
5664 return 0 - opnd_value;
5665 }
5666
5667
5668 /* TC_FORCE_RELOCATION hook */
5669
5670 int
5671 xtensa_force_relocation (fixS *fix)
5672 {
5673 switch (fix->fx_r_type)
5674 {
5675 case BFD_RELOC_XTENSA_ASM_EXPAND:
5676 case BFD_RELOC_XTENSA_SLOT0_ALT:
5677 case BFD_RELOC_XTENSA_SLOT1_ALT:
5678 case BFD_RELOC_XTENSA_SLOT2_ALT:
5679 case BFD_RELOC_XTENSA_SLOT3_ALT:
5680 case BFD_RELOC_XTENSA_SLOT4_ALT:
5681 case BFD_RELOC_XTENSA_SLOT5_ALT:
5682 case BFD_RELOC_XTENSA_SLOT6_ALT:
5683 case BFD_RELOC_XTENSA_SLOT7_ALT:
5684 case BFD_RELOC_XTENSA_SLOT8_ALT:
5685 case BFD_RELOC_XTENSA_SLOT9_ALT:
5686 case BFD_RELOC_XTENSA_SLOT10_ALT:
5687 case BFD_RELOC_XTENSA_SLOT11_ALT:
5688 case BFD_RELOC_XTENSA_SLOT12_ALT:
5689 case BFD_RELOC_XTENSA_SLOT13_ALT:
5690 case BFD_RELOC_XTENSA_SLOT14_ALT:
5691 return 1;
5692 default:
5693 break;
5694 }
5695
5696 if (linkrelax && fix->fx_addsy
5697 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5698 return 1;
5699
5700 return generic_force_reloc (fix);
5701 }
5702
5703
5704 /* TC_VALIDATE_FIX_SUB hook */
5705
5706 int
5707 xtensa_validate_fix_sub (fixS *fix)
5708 {
5709 segT add_symbol_segment, sub_symbol_segment;
5710
5711 /* The difference of two symbols should be resolved by the assembler when
5712 linkrelax is not set. If the linker may relax the section containing
5713 the symbols, then an Xtensa DIFF relocation must be generated so that
5714 the linker knows to adjust the difference value. */
5715 if (!linkrelax || fix->fx_addsy == NULL)
5716 return 0;
5717
5718 /* Make sure both symbols are in the same segment, and that segment is
5719 "normal" and relaxable. If the segment is not "normal", then the
5720 fix is not valid. If the segment is not "relaxable", then the fix
5721 should have been handled earlier. */
5722 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5723 if (! SEG_NORMAL (add_symbol_segment) ||
5724 ! relaxable_section (add_symbol_segment))
5725 return 0;
5726 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5727 return (sub_symbol_segment == add_symbol_segment);
5728 }
5729
5730
5731 /* NO_PSEUDO_DOT hook */
5732
5733 /* This function has nothing to do with pseudo dots, but this is the
5734 nearest macro to where the check needs to take place. FIXME: This
5735 seems wrong. */
5736
5737 bfd_boolean
5738 xtensa_check_inside_bundle (void)
5739 {
5740 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5741 as_bad (_("directives are not valid inside bundles"));
5742
5743 /* This function must always return FALSE because it is called via a
5744 macro that has nothing to do with bundling. */
5745 return FALSE;
5746 }
5747
5748
5749 /* md_elf_section_change_hook */
5750
5751 void
5752 xtensa_elf_section_change_hook (void)
5753 {
5754 /* Set up the assembly state. */
5755 if (!frag_now->tc_frag_data.is_assembly_state_set)
5756 xtensa_set_frag_assembly_state (frag_now);
5757 }
5758
5759
5760 /* tc_fix_adjustable hook */
5761
5762 bfd_boolean
5763 xtensa_fix_adjustable (fixS *fixP)
5764 {
5765 /* An offset is not allowed in combination with the difference of two
5766 symbols, but that cannot be easily detected after a local symbol
5767 has been adjusted to a (section+offset) form. Return 0 so that such
5768 an fix will not be adjusted. */
5769 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5770 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5771 return 0;
5772
5773 /* We need the symbol name for the VTABLE entries. */
5774 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5775 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5776 return 0;
5777
5778 return 1;
5779 }
5780
5781
5782 /* tc_symbol_new_hook */
5783
5784 symbolS *expr_symbols = NULL;
5785
5786 void
5787 xtensa_symbol_new_hook (symbolS *sym)
5788 {
5789 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5790 {
5791 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5792 expr_symbols = sym;
5793 }
5794 }
5795
5796
5797 void
5798 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5799 {
5800 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5801 valueT val = 0;
5802
5803 /* Subtracted symbols are only allowed for a few relocation types, and
5804 unless linkrelax is enabled, they should not make it to this point. */
5805 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5806 || fixP->fx_r_type == BFD_RELOC_16
5807 || fixP->fx_r_type == BFD_RELOC_8)))
5808 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5809
5810 switch (fixP->fx_r_type)
5811 {
5812 case BFD_RELOC_32_PCREL:
5813 case BFD_RELOC_32:
5814 case BFD_RELOC_16:
5815 case BFD_RELOC_8:
5816 if (fixP->fx_subsy)
5817 {
5818 switch (fixP->fx_r_type)
5819 {
5820 case BFD_RELOC_8:
5821 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5822 break;
5823 case BFD_RELOC_16:
5824 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5825 break;
5826 case BFD_RELOC_32:
5827 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5828 break;
5829 default:
5830 break;
5831 }
5832
5833 /* An offset is only allowed when it results from adjusting a
5834 local symbol into a section-relative offset. If the offset
5835 came from the original expression, tc_fix_adjustable will have
5836 prevented the fix from being converted to a section-relative
5837 form so that we can flag the error here. */
5838 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5839 as_bad_where (fixP->fx_file, fixP->fx_line,
5840 _("cannot represent subtraction with an offset"));
5841
5842 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5843 - S_GET_VALUE (fixP->fx_subsy));
5844
5845 /* The difference value gets written out, and the DIFF reloc
5846 identifies the address of the subtracted symbol (i.e., the one
5847 with the lowest address). */
5848 *valP = val;
5849 fixP->fx_offset -= val;
5850 fixP->fx_subsy = NULL;
5851 }
5852 else if (! fixP->fx_addsy)
5853 {
5854 val = *valP;
5855 fixP->fx_done = 1;
5856 }
5857 /* fall through */
5858
5859 case BFD_RELOC_XTENSA_PLT:
5860 md_number_to_chars (fixpos, val, fixP->fx_size);
5861 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5862 break;
5863
5864 case BFD_RELOC_XTENSA_TLSDESC_FN:
5865 case BFD_RELOC_XTENSA_TLSDESC_ARG:
5866 case BFD_RELOC_XTENSA_TLS_TPOFF:
5867 case BFD_RELOC_XTENSA_TLS_DTPOFF:
5868 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5869 md_number_to_chars (fixpos, 0, fixP->fx_size);
5870 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5871 break;
5872
5873 case BFD_RELOC_XTENSA_SLOT0_OP:
5874 case BFD_RELOC_XTENSA_SLOT1_OP:
5875 case BFD_RELOC_XTENSA_SLOT2_OP:
5876 case BFD_RELOC_XTENSA_SLOT3_OP:
5877 case BFD_RELOC_XTENSA_SLOT4_OP:
5878 case BFD_RELOC_XTENSA_SLOT5_OP:
5879 case BFD_RELOC_XTENSA_SLOT6_OP:
5880 case BFD_RELOC_XTENSA_SLOT7_OP:
5881 case BFD_RELOC_XTENSA_SLOT8_OP:
5882 case BFD_RELOC_XTENSA_SLOT9_OP:
5883 case BFD_RELOC_XTENSA_SLOT10_OP:
5884 case BFD_RELOC_XTENSA_SLOT11_OP:
5885 case BFD_RELOC_XTENSA_SLOT12_OP:
5886 case BFD_RELOC_XTENSA_SLOT13_OP:
5887 case BFD_RELOC_XTENSA_SLOT14_OP:
5888 if (linkrelax)
5889 {
5890 /* Write the tentative value of a PC-relative relocation to a
5891 local symbol into the instruction. The value will be ignored
5892 by the linker, and it makes the object file disassembly
5893 readable when all branch targets are encoded in relocations. */
5894
5895 gas_assert (fixP->fx_addsy);
5896 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
5897 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5898 {
5899 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5900 - md_pcrel_from (fixP));
5901 (void) xg_apply_fix_value (fixP, val);
5902 }
5903 }
5904 else if (! fixP->fx_addsy)
5905 {
5906 val = *valP;
5907 if (xg_apply_fix_value (fixP, val))
5908 fixP->fx_done = 1;
5909 }
5910 break;
5911
5912 case BFD_RELOC_XTENSA_ASM_EXPAND:
5913 case BFD_RELOC_XTENSA_TLS_FUNC:
5914 case BFD_RELOC_XTENSA_TLS_ARG:
5915 case BFD_RELOC_XTENSA_TLS_CALL:
5916 case BFD_RELOC_XTENSA_SLOT0_ALT:
5917 case BFD_RELOC_XTENSA_SLOT1_ALT:
5918 case BFD_RELOC_XTENSA_SLOT2_ALT:
5919 case BFD_RELOC_XTENSA_SLOT3_ALT:
5920 case BFD_RELOC_XTENSA_SLOT4_ALT:
5921 case BFD_RELOC_XTENSA_SLOT5_ALT:
5922 case BFD_RELOC_XTENSA_SLOT6_ALT:
5923 case BFD_RELOC_XTENSA_SLOT7_ALT:
5924 case BFD_RELOC_XTENSA_SLOT8_ALT:
5925 case BFD_RELOC_XTENSA_SLOT9_ALT:
5926 case BFD_RELOC_XTENSA_SLOT10_ALT:
5927 case BFD_RELOC_XTENSA_SLOT11_ALT:
5928 case BFD_RELOC_XTENSA_SLOT12_ALT:
5929 case BFD_RELOC_XTENSA_SLOT13_ALT:
5930 case BFD_RELOC_XTENSA_SLOT14_ALT:
5931 /* These all need to be resolved at link-time. Do nothing now. */
5932 break;
5933
5934 case BFD_RELOC_VTABLE_INHERIT:
5935 case BFD_RELOC_VTABLE_ENTRY:
5936 fixP->fx_done = 0;
5937 break;
5938
5939 default:
5940 as_bad (_("unhandled local relocation fix %s"),
5941 bfd_get_reloc_code_name (fixP->fx_r_type));
5942 }
5943 }
5944
5945
5946 char *
5947 md_atof (int type, char *litP, int *sizeP)
5948 {
5949 return ieee_md_atof (type, litP, sizeP, target_big_endian);
5950 }
5951
5952
5953 int
5954 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5955 {
5956 return total_frag_text_expansion (fragP);
5957 }
5958
5959
5960 /* Translate internal representation of relocation info to BFD target
5961 format. */
5962
5963 arelent *
5964 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5965 {
5966 arelent *reloc;
5967
5968 reloc = (arelent *) xmalloc (sizeof (arelent));
5969 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5970 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5971 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5972
5973 /* Make sure none of our internal relocations make it this far.
5974 They'd better have been fully resolved by this point. */
5975 gas_assert ((int) fixp->fx_r_type > 0);
5976
5977 reloc->addend = fixp->fx_offset;
5978
5979 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5980 if (reloc->howto == NULL)
5981 {
5982 as_bad_where (fixp->fx_file, fixp->fx_line,
5983 _("cannot represent `%s' relocation in object file"),
5984 bfd_get_reloc_code_name (fixp->fx_r_type));
5985 free (reloc->sym_ptr_ptr);
5986 free (reloc);
5987 return NULL;
5988 }
5989
5990 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5991 as_fatal (_("internal error; cannot generate `%s' relocation"),
5992 bfd_get_reloc_code_name (fixp->fx_r_type));
5993
5994 return reloc;
5995 }
5996
5997 \f
5998 /* Checks for resource conflicts between instructions. */
5999
6000 /* The func unit stuff could be implemented as bit-vectors rather
6001 than the iterative approach here. If it ends up being too
6002 slow, we will switch it. */
6003
6004 resource_table *
6005 new_resource_table (void *data,
6006 int cycles,
6007 int nu,
6008 unit_num_copies_func uncf,
6009 opcode_num_units_func onuf,
6010 opcode_funcUnit_use_unit_func ouuf,
6011 opcode_funcUnit_use_stage_func ousf)
6012 {
6013 int i;
6014 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
6015 rt->data = data;
6016 rt->cycles = cycles;
6017 rt->allocated_cycles = cycles;
6018 rt->num_units = nu;
6019 rt->unit_num_copies = uncf;
6020 rt->opcode_num_units = onuf;
6021 rt->opcode_unit_use = ouuf;
6022 rt->opcode_unit_stage = ousf;
6023
6024 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
6025 for (i = 0; i < cycles; i++)
6026 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
6027
6028 return rt;
6029 }
6030
6031
6032 void
6033 clear_resource_table (resource_table *rt)
6034 {
6035 int i, j;
6036 for (i = 0; i < rt->allocated_cycles; i++)
6037 for (j = 0; j < rt->num_units; j++)
6038 rt->units[i][j] = 0;
6039 }
6040
6041
6042 /* We never shrink it, just fake it into thinking so. */
6043
6044 void
6045 resize_resource_table (resource_table *rt, int cycles)
6046 {
6047 int i, old_cycles;
6048
6049 rt->cycles = cycles;
6050 if (cycles <= rt->allocated_cycles)
6051 return;
6052
6053 old_cycles = rt->allocated_cycles;
6054 rt->allocated_cycles = cycles;
6055
6056 rt->units = xrealloc (rt->units,
6057 rt->allocated_cycles * sizeof (unsigned char *));
6058 for (i = 0; i < old_cycles; i++)
6059 rt->units[i] = xrealloc (rt->units[i],
6060 rt->num_units * sizeof (unsigned char));
6061 for (i = old_cycles; i < cycles; i++)
6062 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
6063 }
6064
6065
6066 bfd_boolean
6067 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6068 {
6069 int i;
6070 int uses = (rt->opcode_num_units) (rt->data, opcode);
6071
6072 for (i = 0; i < uses; i++)
6073 {
6074 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6075 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6076 int copies_in_use = rt->units[stage + cycle][unit];
6077 int copies = (rt->unit_num_copies) (rt->data, unit);
6078 if (copies_in_use >= copies)
6079 return FALSE;
6080 }
6081 return TRUE;
6082 }
6083
6084
6085 void
6086 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6087 {
6088 int i;
6089 int uses = (rt->opcode_num_units) (rt->data, opcode);
6090
6091 for (i = 0; i < uses; i++)
6092 {
6093 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6094 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6095 /* Note that this allows resources to be oversubscribed. That's
6096 essential to the way the optional scheduler works.
6097 resources_available reports when a resource is over-subscribed,
6098 so it's easy to tell. */
6099 rt->units[stage + cycle][unit]++;
6100 }
6101 }
6102
6103
6104 void
6105 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6106 {
6107 int i;
6108 int uses = (rt->opcode_num_units) (rt->data, opcode);
6109
6110 for (i = 0; i < uses; i++)
6111 {
6112 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6113 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6114 gas_assert (rt->units[stage + cycle][unit] > 0);
6115 rt->units[stage + cycle][unit]--;
6116 }
6117 }
6118
6119
6120 /* Wrapper functions make parameterized resource reservation
6121 more convenient. */
6122
6123 int
6124 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6125 {
6126 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6127 return use->unit;
6128 }
6129
6130
6131 int
6132 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6133 {
6134 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6135 return use->stage;
6136 }
6137
6138
6139 /* Note that this function does not check issue constraints, but
6140 solely whether the hardware is available to execute the given
6141 instructions together. It also doesn't check if the tinsns
6142 write the same state, or access the same tieports. That is
6143 checked by check_t1_t2_reads_and_writes. */
6144
6145 static bfd_boolean
6146 resources_conflict (vliw_insn *vinsn)
6147 {
6148 int i;
6149 static resource_table *rt = NULL;
6150
6151 /* This is the most common case by far. Optimize it. */
6152 if (vinsn->num_slots == 1)
6153 return FALSE;
6154
6155 if (rt == NULL)
6156 {
6157 xtensa_isa isa = xtensa_default_isa;
6158 rt = new_resource_table
6159 (isa, xtensa_num_pipe_stages,
6160 xtensa_isa_num_funcUnits (isa),
6161 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6162 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6163 opcode_funcUnit_use_unit,
6164 opcode_funcUnit_use_stage);
6165 }
6166
6167 clear_resource_table (rt);
6168
6169 for (i = 0; i < vinsn->num_slots; i++)
6170 {
6171 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6172 return TRUE;
6173 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6174 }
6175
6176 return FALSE;
6177 }
6178
6179 \f
6180 /* finish_vinsn, emit_single_op and helper functions. */
6181
6182 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6183 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6184 static void xg_assemble_vliw_tokens (vliw_insn *);
6185
6186
6187 /* We have reached the end of a bundle; emit into the frag. */
6188
6189 static void
6190 finish_vinsn (vliw_insn *vinsn)
6191 {
6192 IStack slotstack;
6193 int i;
6194 char *file_name;
6195 unsigned line;
6196
6197 if (find_vinsn_conflicts (vinsn))
6198 {
6199 xg_clear_vinsn (vinsn);
6200 return;
6201 }
6202
6203 /* First, find a format that works. */
6204 if (vinsn->format == XTENSA_UNDEFINED)
6205 vinsn->format = xg_find_narrowest_format (vinsn);
6206
6207 if (xtensa_format_num_slots (xtensa_default_isa, vinsn->format) > 1
6208 && produce_flix == FLIX_NONE)
6209 {
6210 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6211 xg_clear_vinsn (vinsn);
6212 return;
6213 }
6214
6215 if (vinsn->format == XTENSA_UNDEFINED)
6216 {
6217 as_where (&file_name, &line);
6218 as_bad_where (file_name, line,
6219 _("couldn't find a valid instruction format"));
6220 fprintf (stderr, _(" ops were: "));
6221 for (i = 0; i < vinsn->num_slots; i++)
6222 fprintf (stderr, _(" %s;"),
6223 xtensa_opcode_name (xtensa_default_isa,
6224 vinsn->slots[i].opcode));
6225 fprintf (stderr, _("\n"));
6226 xg_clear_vinsn (vinsn);
6227 return;
6228 }
6229
6230 if (vinsn->num_slots
6231 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
6232 {
6233 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6234 xtensa_format_name (xtensa_default_isa, vinsn->format),
6235 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6236 vinsn->num_slots);
6237 xg_clear_vinsn (vinsn);
6238 return;
6239 }
6240
6241 if (resources_conflict (vinsn))
6242 {
6243 as_where (&file_name, &line);
6244 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6245 fprintf (stderr, " ops were: ");
6246 for (i = 0; i < vinsn->num_slots; i++)
6247 fprintf (stderr, " %s;",
6248 xtensa_opcode_name (xtensa_default_isa,
6249 vinsn->slots[i].opcode));
6250 fprintf (stderr, "\n");
6251 xg_clear_vinsn (vinsn);
6252 return;
6253 }
6254
6255 for (i = 0; i < vinsn->num_slots; i++)
6256 {
6257 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6258 {
6259 symbolS *lit_sym = NULL;
6260 int j;
6261 bfd_boolean e = FALSE;
6262 bfd_boolean saved_density = density_supported;
6263
6264 /* We don't want to narrow ops inside multi-slot bundles. */
6265 if (vinsn->num_slots > 1)
6266 density_supported = FALSE;
6267
6268 istack_init (&slotstack);
6269 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6270 {
6271 vinsn->slots[i].opcode =
6272 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6273 vinsn->format, i);
6274 vinsn->slots[i].ntok = 0;
6275 }
6276
6277 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6278 {
6279 e = TRUE;
6280 continue;
6281 }
6282
6283 density_supported = saved_density;
6284
6285 if (e)
6286 {
6287 xg_clear_vinsn (vinsn);
6288 return;
6289 }
6290
6291 for (j = 0; j < slotstack.ninsn; j++)
6292 {
6293 TInsn *insn = &slotstack.insn[j];
6294 if (insn->insn_type == ITYPE_LITERAL)
6295 {
6296 gas_assert (lit_sym == NULL);
6297 lit_sym = xg_assemble_literal (insn);
6298 }
6299 else
6300 {
6301 gas_assert (insn->insn_type == ITYPE_INSN);
6302 if (lit_sym)
6303 xg_resolve_literals (insn, lit_sym);
6304 if (j != slotstack.ninsn - 1)
6305 emit_single_op (insn);
6306 }
6307 }
6308
6309 if (vinsn->num_slots > 1)
6310 {
6311 if (opcode_fits_format_slot
6312 (slotstack.insn[slotstack.ninsn - 1].opcode,
6313 vinsn->format, i))
6314 {
6315 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6316 }
6317 else
6318 {
6319 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6320 if (vinsn->format == XTENSA_UNDEFINED)
6321 vinsn->slots[i].opcode = xtensa_nop_opcode;
6322 else
6323 vinsn->slots[i].opcode
6324 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6325 vinsn->format, i);
6326
6327 vinsn->slots[i].ntok = 0;
6328 }
6329 }
6330 else
6331 {
6332 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6333 vinsn->format = XTENSA_UNDEFINED;
6334 }
6335 }
6336 }
6337
6338 /* Now check resource conflicts on the modified bundle. */
6339 if (resources_conflict (vinsn))
6340 {
6341 as_where (&file_name, &line);
6342 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6343 fprintf (stderr, " ops were: ");
6344 for (i = 0; i < vinsn->num_slots; i++)
6345 fprintf (stderr, " %s;",
6346 xtensa_opcode_name (xtensa_default_isa,
6347 vinsn->slots[i].opcode));
6348 fprintf (stderr, "\n");
6349 xg_clear_vinsn (vinsn);
6350 return;
6351 }
6352
6353 /* First, find a format that works. */
6354 if (vinsn->format == XTENSA_UNDEFINED)
6355 vinsn->format = xg_find_narrowest_format (vinsn);
6356
6357 xg_assemble_vliw_tokens (vinsn);
6358
6359 xg_clear_vinsn (vinsn);
6360 }
6361
6362
6363 /* Given an vliw instruction, what conflicts are there in register
6364 usage and in writes to states and queues?
6365
6366 This function does two things:
6367 1. Reports an error when a vinsn contains illegal combinations
6368 of writes to registers states or queues.
6369 2. Marks individual tinsns as not relaxable if the combination
6370 contains antidependencies.
6371
6372 Job 2 handles things like swap semantics in instructions that need
6373 to be relaxed. For example,
6374
6375 addi a0, a1, 100000
6376
6377 normally would be relaxed to
6378
6379 l32r a0, some_label
6380 add a0, a1, a0
6381
6382 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6383
6384 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6385
6386 then we can't relax it into
6387
6388 l32r a0, some_label
6389 { add a0, a1, a0 ; add a2, a0, a4 ; }
6390
6391 because the value of a0 is trashed before the second add can read it. */
6392
6393 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6394
6395 static bfd_boolean
6396 find_vinsn_conflicts (vliw_insn *vinsn)
6397 {
6398 int i, j;
6399 int branches = 0;
6400 xtensa_isa isa = xtensa_default_isa;
6401
6402 gas_assert (!past_xtensa_end);
6403
6404 for (i = 0 ; i < vinsn->num_slots; i++)
6405 {
6406 TInsn *op1 = &vinsn->slots[i];
6407 if (op1->is_specific_opcode)
6408 op1->keep_wide = TRUE;
6409 else
6410 op1->keep_wide = FALSE;
6411 }
6412
6413 for (i = 0 ; i < vinsn->num_slots; i++)
6414 {
6415 TInsn *op1 = &vinsn->slots[i];
6416
6417 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6418 branches++;
6419
6420 for (j = 0; j < vinsn->num_slots; j++)
6421 {
6422 if (i != j)
6423 {
6424 TInsn *op2 = &vinsn->slots[j];
6425 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6426 switch (conflict_type)
6427 {
6428 case 'c':
6429 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6430 xtensa_opcode_name (isa, op1->opcode), i,
6431 xtensa_opcode_name (isa, op2->opcode), j);
6432 return TRUE;
6433 case 'd':
6434 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6435 xtensa_opcode_name (isa, op1->opcode), i,
6436 xtensa_opcode_name (isa, op2->opcode), j);
6437 return TRUE;
6438 case 'e':
6439 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6440 xtensa_opcode_name (isa, op1->opcode), i,
6441 xtensa_opcode_name (isa, op2->opcode), j);
6442 return TRUE;
6443 case 'f':
6444 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6445 xtensa_opcode_name (isa, op1->opcode), i,
6446 xtensa_opcode_name (isa, op2->opcode), j);
6447 return TRUE;
6448 default:
6449 /* Everything is OK. */
6450 break;
6451 }
6452 op2->is_specific_opcode = (op2->is_specific_opcode
6453 || conflict_type == 'a');
6454 }
6455 }
6456 }
6457
6458 if (branches > 1)
6459 {
6460 as_bad (_("multiple branches or jumps in the same bundle"));
6461 return TRUE;
6462 }
6463
6464 return FALSE;
6465 }
6466
6467
6468 /* Check how the state used by t1 and t2 relate.
6469 Cases found are:
6470
6471 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6472 case B: no relationship between what is read and written (both could
6473 read the same reg though)
6474 case C: t1 writes a register t2 writes (a register conflict within a
6475 bundle)
6476 case D: t1 writes a state that t2 also writes
6477 case E: t1 writes a tie queue that t2 also writes
6478 case F: two volatile queue accesses
6479 */
6480
6481 static char
6482 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6483 {
6484 xtensa_isa isa = xtensa_default_isa;
6485 xtensa_regfile t1_regfile, t2_regfile;
6486 int t1_reg, t2_reg;
6487 int t1_base_reg, t1_last_reg;
6488 int t2_base_reg, t2_last_reg;
6489 char t1_inout, t2_inout;
6490 int i, j;
6491 char conflict = 'b';
6492 int t1_states;
6493 int t2_states;
6494 int t1_interfaces;
6495 int t2_interfaces;
6496 bfd_boolean t1_volatile = FALSE;
6497 bfd_boolean t2_volatile = FALSE;
6498
6499 /* Check registers. */
6500 for (j = 0; j < t2->ntok; j++)
6501 {
6502 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6503 continue;
6504
6505 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6506 t2_base_reg = t2->tok[j].X_add_number;
6507 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6508
6509 for (i = 0; i < t1->ntok; i++)
6510 {
6511 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6512 continue;
6513
6514 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6515
6516 if (t1_regfile != t2_regfile)
6517 continue;
6518
6519 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6520 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6521
6522 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6523 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6524 {
6525 if (t1_inout == 'm' || t1_inout == 'o'
6526 || t2_inout == 'm' || t2_inout == 'o')
6527 {
6528 conflict = 'a';
6529 continue;
6530 }
6531 }
6532
6533 t1_base_reg = t1->tok[i].X_add_number;
6534 t1_last_reg = (t1_base_reg
6535 + xtensa_operand_num_regs (isa, t1->opcode, i));
6536
6537 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6538 {
6539 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6540 {
6541 if (t1_reg != t2_reg)
6542 continue;
6543
6544 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6545 {
6546 conflict = 'a';
6547 continue;
6548 }
6549
6550 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6551 {
6552 conflict = 'a';
6553 continue;
6554 }
6555
6556 if (t1_inout != 'i' && t2_inout != 'i')
6557 return 'c';
6558 }
6559 }
6560 }
6561 }
6562
6563 /* Check states. */
6564 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6565 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6566 for (j = 0; j < t2_states; j++)
6567 {
6568 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6569 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6570 for (i = 0; i < t1_states; i++)
6571 {
6572 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6573 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6574 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6575 continue;
6576
6577 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6578 {
6579 conflict = 'a';
6580 continue;
6581 }
6582
6583 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6584 {
6585 conflict = 'a';
6586 continue;
6587 }
6588
6589 if (t1_inout != 'i' && t2_inout != 'i')
6590 return 'd';
6591 }
6592 }
6593
6594 /* Check tieports. */
6595 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6596 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6597 for (j = 0; j < t2_interfaces; j++)
6598 {
6599 xtensa_interface t2_int
6600 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6601 int t2_class = xtensa_interface_class_id (isa, t2_int);
6602
6603 t2_inout = xtensa_interface_inout (isa, t2_int);
6604 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6605 t2_volatile = TRUE;
6606
6607 for (i = 0; i < t1_interfaces; i++)
6608 {
6609 xtensa_interface t1_int
6610 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6611 int t1_class = xtensa_interface_class_id (isa, t1_int);
6612
6613 t1_inout = xtensa_interface_inout (isa, t1_int);
6614 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6615 t1_volatile = TRUE;
6616
6617 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6618 return 'f';
6619
6620 if (t1_int != t2_int)
6621 continue;
6622
6623 if (t2_inout == 'i' && t1_inout == 'o')
6624 {
6625 conflict = 'a';
6626 continue;
6627 }
6628
6629 if (t1_inout == 'i' && t2_inout == 'o')
6630 {
6631 conflict = 'a';
6632 continue;
6633 }
6634
6635 if (t1_inout != 'i' && t2_inout != 'i')
6636 return 'e';
6637 }
6638 }
6639
6640 return conflict;
6641 }
6642
6643
6644 static xtensa_format
6645 xg_find_narrowest_format (vliw_insn *vinsn)
6646 {
6647 /* Right now we assume that the ops within the vinsn are properly
6648 ordered for the slots that the programmer wanted them in. In
6649 other words, we don't rearrange the ops in hopes of finding a
6650 better format. The scheduler handles that. */
6651
6652 xtensa_isa isa = xtensa_default_isa;
6653 xtensa_format format;
6654 vliw_insn v_copy = *vinsn;
6655 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6656
6657 if (vinsn->num_slots == 1)
6658 return xg_get_single_format (vinsn->slots[0].opcode);
6659
6660 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6661 {
6662 v_copy = *vinsn;
6663 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6664 {
6665 int slot;
6666 int fit = 0;
6667 for (slot = 0; slot < v_copy.num_slots; slot++)
6668 {
6669 if (v_copy.slots[slot].opcode == nop_opcode)
6670 {
6671 v_copy.slots[slot].opcode =
6672 xtensa_format_slot_nop_opcode (isa, format, slot);
6673 v_copy.slots[slot].ntok = 0;
6674 }
6675
6676 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6677 format, slot))
6678 fit++;
6679 else if (v_copy.num_slots > 1)
6680 {
6681 TInsn widened;
6682 /* Try the widened version. */
6683 if (!v_copy.slots[slot].keep_wide
6684 && !v_copy.slots[slot].is_specific_opcode
6685 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6686 &widened, TRUE)
6687 && opcode_fits_format_slot (widened.opcode,
6688 format, slot))
6689 {
6690 v_copy.slots[slot] = widened;
6691 fit++;
6692 }
6693 }
6694 }
6695 if (fit == v_copy.num_slots)
6696 {
6697 *vinsn = v_copy;
6698 xtensa_format_encode (isa, format, vinsn->insnbuf);
6699 vinsn->format = format;
6700 break;
6701 }
6702 }
6703 }
6704
6705 if (format == xtensa_isa_num_formats (isa))
6706 return XTENSA_UNDEFINED;
6707
6708 return format;
6709 }
6710
6711
6712 /* Return the additional space needed in a frag
6713 for possible relaxations of any ops in a VLIW insn.
6714 Also fill out the relaxations that might be required of
6715 each tinsn in the vinsn. */
6716
6717 static int
6718 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6719 {
6720 bfd_boolean finish_frag = FALSE;
6721 int extra_space = 0;
6722 int slot;
6723
6724 for (slot = 0; slot < vinsn->num_slots; slot++)
6725 {
6726 TInsn *tinsn = &vinsn->slots[slot];
6727 if (!tinsn_has_symbolic_operands (tinsn))
6728 {
6729 /* A narrow instruction could be widened later to help
6730 alignment issues. */
6731 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6732 && !tinsn->is_specific_opcode
6733 && vinsn->num_slots == 1)
6734 {
6735 /* Difference in bytes between narrow and wide insns... */
6736 extra_space += 1;
6737 tinsn->subtype = RELAX_NARROW;
6738 }
6739 }
6740 else
6741 {
6742 if (workaround_b_j_loop_end
6743 && tinsn->opcode == xtensa_jx_opcode
6744 && use_transform ())
6745 {
6746 /* Add 2 of these. */
6747 extra_space += 3; /* for the nop size */
6748 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6749 }
6750
6751 /* Need to assemble it with space for the relocation. */
6752 if (xg_is_relaxable_insn (tinsn, 0)
6753 && !tinsn->is_specific_opcode)
6754 {
6755 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6756 int max_literal_size =
6757 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6758
6759 tinsn->literal_space = max_literal_size;
6760
6761 tinsn->subtype = RELAX_IMMED;
6762 extra_space += max_size;
6763 }
6764 else
6765 {
6766 /* A fix record will be added for this instruction prior
6767 to relaxation, so make it end the frag. */
6768 finish_frag = TRUE;
6769 }
6770 }
6771 }
6772 *pfinish_frag = finish_frag;
6773 return extra_space;
6774 }
6775
6776
6777 static void
6778 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6779 {
6780 xtensa_isa isa = xtensa_default_isa;
6781 int slot, chosen_slot;
6782
6783 vinsn->format = xg_get_single_format (tinsn->opcode);
6784 gas_assert (vinsn->format != XTENSA_UNDEFINED);
6785 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6786
6787 chosen_slot = xg_get_single_slot (tinsn->opcode);
6788 for (slot = 0; slot < vinsn->num_slots; slot++)
6789 {
6790 if (slot == chosen_slot)
6791 vinsn->slots[slot] = *tinsn;
6792 else
6793 {
6794 vinsn->slots[slot].opcode =
6795 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6796 vinsn->slots[slot].ntok = 0;
6797 vinsn->slots[slot].insn_type = ITYPE_INSN;
6798 }
6799 }
6800 }
6801
6802
6803 static bfd_boolean
6804 emit_single_op (TInsn *orig_insn)
6805 {
6806 int i;
6807 IStack istack; /* put instructions into here */
6808 symbolS *lit_sym = NULL;
6809 symbolS *label_sym = NULL;
6810
6811 istack_init (&istack);
6812
6813 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6814 Because the scheduling and bundling characteristics of movi and
6815 l32r or const16 are so different, we can do much better if we relax
6816 it prior to scheduling and bundling, rather than after. */
6817 if ((orig_insn->opcode == xtensa_movi_opcode
6818 || orig_insn->opcode == xtensa_movi_n_opcode)
6819 && !cur_vinsn.inside_bundle
6820 && (orig_insn->tok[1].X_op == O_symbol
6821 || orig_insn->tok[1].X_op == O_pltrel
6822 || orig_insn->tok[1].X_op == O_tlsfunc
6823 || orig_insn->tok[1].X_op == O_tlsarg
6824 || orig_insn->tok[1].X_op == O_tpoff
6825 || orig_insn->tok[1].X_op == O_dtpoff)
6826 && !orig_insn->is_specific_opcode && use_transform ())
6827 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6828 else
6829 if (xg_expand_assembly_insn (&istack, orig_insn))
6830 return TRUE;
6831
6832 for (i = 0; i < istack.ninsn; i++)
6833 {
6834 TInsn *insn = &istack.insn[i];
6835 switch (insn->insn_type)
6836 {
6837 case ITYPE_LITERAL:
6838 gas_assert (lit_sym == NULL);
6839 lit_sym = xg_assemble_literal (insn);
6840 break;
6841 case ITYPE_LABEL:
6842 {
6843 static int relaxed_sym_idx = 0;
6844 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6845 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6846 colon (label);
6847 gas_assert (label_sym == NULL);
6848 label_sym = symbol_find_or_make (label);
6849 gas_assert (label_sym);
6850 free (label);
6851 }
6852 break;
6853 case ITYPE_INSN:
6854 {
6855 vliw_insn v;
6856 if (lit_sym)
6857 xg_resolve_literals (insn, lit_sym);
6858 if (label_sym)
6859 xg_resolve_labels (insn, label_sym);
6860 xg_init_vinsn (&v);
6861 bundle_tinsn (insn, &v);
6862 finish_vinsn (&v);
6863 xg_free_vinsn (&v);
6864 }
6865 break;
6866 default:
6867 gas_assert (0);
6868 break;
6869 }
6870 }
6871 return FALSE;
6872 }
6873
6874
6875 static int
6876 total_frag_text_expansion (fragS *fragP)
6877 {
6878 int slot;
6879 int total_expansion = 0;
6880
6881 for (slot = 0; slot < MAX_SLOTS; slot++)
6882 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6883
6884 return total_expansion;
6885 }
6886
6887
6888 /* Emit a vliw instruction to the current fragment. */
6889
6890 static void
6891 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6892 {
6893 bfd_boolean finish_frag;
6894 bfd_boolean is_jump = FALSE;
6895 bfd_boolean is_branch = FALSE;
6896 xtensa_isa isa = xtensa_default_isa;
6897 int insn_size;
6898 int extra_space;
6899 char *f = NULL;
6900 int slot;
6901 struct dwarf2_line_info debug_line;
6902 bfd_boolean loc_directive_seen = FALSE;
6903 TInsn *tinsn;
6904
6905 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
6906
6907 if (generating_literals)
6908 {
6909 static int reported = 0;
6910 if (reported < 4)
6911 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6912 _("cannot assemble into a literal fragment"));
6913 if (reported == 3)
6914 as_bad (_("..."));
6915 reported++;
6916 return;
6917 }
6918
6919 if (frag_now_fix () != 0
6920 && (! frag_now->tc_frag_data.is_insn
6921 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6922 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6923 || (directive_state[directive_longcalls]
6924 != frag_now->tc_frag_data.use_longcalls)
6925 || (directive_state[directive_absolute_literals]
6926 != frag_now->tc_frag_data.use_absolute_literals)))
6927 {
6928 frag_wane (frag_now);
6929 frag_new (0);
6930 xtensa_set_frag_assembly_state (frag_now);
6931 }
6932
6933 if (workaround_a0_b_retw
6934 && vinsn->num_slots == 1
6935 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6936 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6937 && use_transform ())
6938 {
6939 has_a0_b_retw = TRUE;
6940
6941 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6942 After the first assembly pass we will check all of them and
6943 add a nop if needed. */
6944 frag_now->tc_frag_data.is_insn = TRUE;
6945 frag_var (rs_machine_dependent, 4, 4,
6946 RELAX_ADD_NOP_IF_A0_B_RETW,
6947 frag_now->fr_symbol,
6948 frag_now->fr_offset,
6949 NULL);
6950 xtensa_set_frag_assembly_state (frag_now);
6951 frag_now->tc_frag_data.is_insn = TRUE;
6952 frag_var (rs_machine_dependent, 4, 4,
6953 RELAX_ADD_NOP_IF_A0_B_RETW,
6954 frag_now->fr_symbol,
6955 frag_now->fr_offset,
6956 NULL);
6957 xtensa_set_frag_assembly_state (frag_now);
6958 }
6959
6960 for (slot = 0; slot < vinsn->num_slots; slot++)
6961 {
6962 tinsn = &vinsn->slots[slot];
6963
6964 /* See if the instruction implies an aligned section. */
6965 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
6966 record_alignment (now_seg, 2);
6967
6968 /* Determine the best line number for debug info. */
6969 if ((tinsn->loc_directive_seen || !loc_directive_seen)
6970 && (tinsn->debug_line.filenum != debug_line.filenum
6971 || tinsn->debug_line.line < debug_line.line
6972 || tinsn->debug_line.column < debug_line.column))
6973 debug_line = tinsn->debug_line;
6974 if (tinsn->loc_directive_seen)
6975 loc_directive_seen = TRUE;
6976 }
6977
6978 /* Special cases for instructions that force an alignment... */
6979 /* None of these opcodes are bundle-able. */
6980 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6981 {
6982 int max_fill;
6983
6984 /* Remember the symbol that marks the end of the loop in the frag
6985 that marks the start of the loop. This way we can easily find
6986 the end of the loop at the beginning, without adding special code
6987 to mark the loop instructions themselves. */
6988 symbolS *target_sym = NULL;
6989 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6990 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6991
6992 xtensa_set_frag_assembly_state (frag_now);
6993 frag_now->tc_frag_data.is_insn = TRUE;
6994
6995 max_fill = get_text_align_max_fill_size
6996 (get_text_align_power (xtensa_fetch_width),
6997 TRUE, frag_now->tc_frag_data.is_no_density);
6998
6999 if (use_transform ())
7000 frag_var (rs_machine_dependent, max_fill, max_fill,
7001 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7002 else
7003 frag_var (rs_machine_dependent, 0, 0,
7004 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7005 xtensa_set_frag_assembly_state (frag_now);
7006 }
7007
7008 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7009 && !vinsn->slots[0].is_specific_opcode)
7010 {
7011 xtensa_mark_literal_pool_location ();
7012 xtensa_move_labels (frag_now, 0);
7013 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7014 }
7015
7016 if (vinsn->num_slots == 1)
7017 {
7018 if (workaround_a0_b_retw && use_transform ())
7019 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7020 is_register_writer (&vinsn->slots[0], "a", 0));
7021
7022 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7023 is_bad_loopend_opcode (&vinsn->slots[0]));
7024 }
7025 else
7026 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7027
7028 insn_size = xtensa_format_length (isa, vinsn->format);
7029
7030 extra_space = relaxation_requirements (vinsn, &finish_frag);
7031
7032 /* vinsn_to_insnbuf will produce the error. */
7033 if (vinsn->format != XTENSA_UNDEFINED)
7034 {
7035 f = frag_more (insn_size + extra_space);
7036 xtensa_set_frag_assembly_state (frag_now);
7037 frag_now->tc_frag_data.is_insn = TRUE;
7038 }
7039
7040 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7041 if (vinsn->format == XTENSA_UNDEFINED)
7042 return;
7043
7044 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7045
7046 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7047 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7048 &debug_line);
7049
7050 for (slot = 0; slot < vinsn->num_slots; slot++)
7051 {
7052 tinsn = &vinsn->slots[slot];
7053 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7054 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7055 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7056 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7057 if (tinsn->literal_space != 0)
7058 xg_assemble_literal_space (tinsn->literal_space, slot);
7059 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7060
7061 if (tinsn->subtype == RELAX_NARROW)
7062 gas_assert (vinsn->num_slots == 1);
7063 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7064 is_jump = TRUE;
7065 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7066 is_branch = TRUE;
7067
7068 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7069 || tinsn->literal_frag || is_jump || is_branch)
7070 finish_frag = TRUE;
7071 }
7072
7073 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7074 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7075
7076 if (finish_frag)
7077 {
7078 frag_variant (rs_machine_dependent,
7079 extra_space, extra_space, RELAX_SLOTS,
7080 frag_now->fr_symbol, frag_now->fr_offset, f);
7081 xtensa_set_frag_assembly_state (frag_now);
7082 }
7083
7084 /* Special cases for loops:
7085 close_loop_end should be inserted AFTER short_loop.
7086 Make sure that CLOSE loops are processed BEFORE short_loops
7087 when converting them. */
7088
7089 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7090 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7091 && !vinsn->slots[0].is_specific_opcode)
7092 {
7093 if (workaround_short_loop && use_transform ())
7094 {
7095 maybe_has_short_loop = TRUE;
7096 frag_now->tc_frag_data.is_insn = TRUE;
7097 frag_var (rs_machine_dependent, 4, 4,
7098 RELAX_ADD_NOP_IF_SHORT_LOOP,
7099 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7100 frag_now->tc_frag_data.is_insn = TRUE;
7101 frag_var (rs_machine_dependent, 4, 4,
7102 RELAX_ADD_NOP_IF_SHORT_LOOP,
7103 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7104 }
7105
7106 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7107 loop at least 12 bytes away from another loop's end. */
7108 if (workaround_close_loop_end && use_transform ())
7109 {
7110 maybe_has_close_loop_end = TRUE;
7111 frag_now->tc_frag_data.is_insn = TRUE;
7112 frag_var (rs_machine_dependent, 12, 12,
7113 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7114 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7115 }
7116 }
7117
7118 if (use_transform ())
7119 {
7120 if (is_jump)
7121 {
7122 gas_assert (finish_frag);
7123 frag_var (rs_machine_dependent,
7124 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
7125 RELAX_UNREACHABLE,
7126 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7127 xtensa_set_frag_assembly_state (frag_now);
7128 }
7129 else if (is_branch && do_align_targets ())
7130 {
7131 gas_assert (finish_frag);
7132 frag_var (rs_machine_dependent,
7133 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
7134 RELAX_MAYBE_UNREACHABLE,
7135 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7136 xtensa_set_frag_assembly_state (frag_now);
7137 frag_var (rs_machine_dependent,
7138 0, 0,
7139 RELAX_MAYBE_DESIRE_ALIGN,
7140 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7141 xtensa_set_frag_assembly_state (frag_now);
7142 }
7143 }
7144
7145 /* Now, if the original opcode was a call... */
7146 if (do_align_targets ()
7147 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7148 {
7149 float freq = get_subseg_total_freq (now_seg, now_subseg);
7150 frag_now->tc_frag_data.is_insn = TRUE;
7151 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7152 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7153 xtensa_set_frag_assembly_state (frag_now);
7154 }
7155
7156 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7157 {
7158 frag_wane (frag_now);
7159 frag_new (0);
7160 xtensa_set_frag_assembly_state (frag_now);
7161 }
7162 }
7163
7164 \f
7165 /* xtensa_end and helper functions. */
7166
7167 static void xtensa_cleanup_align_frags (void);
7168 static void xtensa_fix_target_frags (void);
7169 static void xtensa_mark_narrow_branches (void);
7170 static void xtensa_mark_zcl_first_insns (void);
7171 static void xtensa_mark_difference_of_two_symbols (void);
7172 static void xtensa_fix_a0_b_retw_frags (void);
7173 static void xtensa_fix_b_j_loop_end_frags (void);
7174 static void xtensa_fix_close_loop_end_frags (void);
7175 static void xtensa_fix_short_loop_frags (void);
7176 static void xtensa_sanity_check (void);
7177 static void xtensa_add_config_info (void);
7178
7179 void
7180 xtensa_end (void)
7181 {
7182 directive_balance ();
7183 xtensa_flush_pending_output ();
7184
7185 past_xtensa_end = TRUE;
7186
7187 xtensa_move_literals ();
7188
7189 xtensa_reorder_segments ();
7190 xtensa_cleanup_align_frags ();
7191 xtensa_fix_target_frags ();
7192 if (workaround_a0_b_retw && has_a0_b_retw)
7193 xtensa_fix_a0_b_retw_frags ();
7194 if (workaround_b_j_loop_end)
7195 xtensa_fix_b_j_loop_end_frags ();
7196
7197 /* "close_loop_end" should be processed BEFORE "short_loop". */
7198 if (workaround_close_loop_end && maybe_has_close_loop_end)
7199 xtensa_fix_close_loop_end_frags ();
7200
7201 if (workaround_short_loop && maybe_has_short_loop)
7202 xtensa_fix_short_loop_frags ();
7203 if (align_targets)
7204 xtensa_mark_narrow_branches ();
7205 xtensa_mark_zcl_first_insns ();
7206
7207 xtensa_sanity_check ();
7208
7209 xtensa_add_config_info ();
7210 }
7211
7212
7213 static void
7214 xtensa_cleanup_align_frags (void)
7215 {
7216 frchainS *frchP;
7217 asection *s;
7218
7219 for (s = stdoutput->sections; s; s = s->next)
7220 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7221 {
7222 fragS *fragP;
7223 /* Walk over all of the fragments in a subsection. */
7224 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7225 {
7226 if ((fragP->fr_type == rs_align
7227 || fragP->fr_type == rs_align_code
7228 || (fragP->fr_type == rs_machine_dependent
7229 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7230 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7231 && fragP->fr_fix == 0)
7232 {
7233 fragS *next = fragP->fr_next;
7234
7235 while (next
7236 && next->fr_fix == 0
7237 && next->fr_type == rs_machine_dependent
7238 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7239 {
7240 frag_wane (next);
7241 next = next->fr_next;
7242 }
7243 }
7244 /* If we don't widen branch targets, then they
7245 will be easier to align. */
7246 if (fragP->tc_frag_data.is_branch_target
7247 && fragP->fr_opcode == fragP->fr_literal
7248 && fragP->fr_type == rs_machine_dependent
7249 && fragP->fr_subtype == RELAX_SLOTS
7250 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7251 frag_wane (fragP);
7252 if (fragP->fr_type == rs_machine_dependent
7253 && fragP->fr_subtype == RELAX_UNREACHABLE)
7254 fragP->tc_frag_data.is_unreachable = TRUE;
7255 }
7256 }
7257 }
7258
7259
7260 /* Re-process all of the fragments looking to convert all of the
7261 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7262 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7263 Otherwise, convert to a .fill 0. */
7264
7265 static void
7266 xtensa_fix_target_frags (void)
7267 {
7268 frchainS *frchP;
7269 asection *s;
7270
7271 /* When this routine is called, all of the subsections are still intact
7272 so we walk over subsections instead of sections. */
7273 for (s = stdoutput->sections; s; s = s->next)
7274 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7275 {
7276 fragS *fragP;
7277
7278 /* Walk over all of the fragments in a subsection. */
7279 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7280 {
7281 if (fragP->fr_type == rs_machine_dependent
7282 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7283 {
7284 if (next_frag_is_branch_target (fragP))
7285 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7286 else
7287 frag_wane (fragP);
7288 }
7289 }
7290 }
7291 }
7292
7293
7294 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7295
7296 static void
7297 xtensa_mark_narrow_branches (void)
7298 {
7299 frchainS *frchP;
7300 asection *s;
7301
7302 for (s = stdoutput->sections; s; s = s->next)
7303 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7304 {
7305 fragS *fragP;
7306 /* Walk over all of the fragments in a subsection. */
7307 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7308 {
7309 if (fragP->fr_type == rs_machine_dependent
7310 && fragP->fr_subtype == RELAX_SLOTS
7311 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7312 {
7313 vliw_insn vinsn;
7314
7315 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7316 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7317
7318 if (vinsn.num_slots == 1
7319 && xtensa_opcode_is_branch (xtensa_default_isa,
7320 vinsn.slots[0].opcode) == 1
7321 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7322 && is_narrow_branch_guaranteed_in_range (fragP,
7323 &vinsn.slots[0]))
7324 {
7325 fragP->fr_subtype = RELAX_SLOTS;
7326 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7327 fragP->tc_frag_data.is_aligning_branch = 1;
7328 }
7329 }
7330 }
7331 }
7332 }
7333
7334
7335 /* A branch is typically widened only when its target is out of
7336 range. However, we would like to widen them to align a subsequent
7337 branch target when possible.
7338
7339 Because the branch relaxation code is so convoluted, the optimal solution
7340 (combining the two cases) is difficult to get right in all circumstances.
7341 We therefore go with an "almost as good" solution, where we only
7342 use for alignment narrow branches that definitely will not expand to a
7343 jump and a branch. These functions find and mark these cases. */
7344
7345 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7346 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7347 We start counting beginning with the frag after the 2-byte branch, so the
7348 maximum offset is (4 - 2) + 63 = 65. */
7349 #define MAX_IMMED6 65
7350
7351 static offsetT unrelaxed_frag_max_size (fragS *);
7352
7353 static bfd_boolean
7354 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7355 {
7356 const expressionS *expr = &tinsn->tok[1];
7357 symbolS *symbolP = expr->X_add_symbol;
7358 offsetT max_distance = expr->X_add_number;
7359 fragS *target_frag;
7360
7361 if (expr->X_op != O_symbol)
7362 return FALSE;
7363
7364 target_frag = symbol_get_frag (symbolP);
7365
7366 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7367 if (is_branch_jmp_to_next (tinsn, fragP))
7368 return FALSE;
7369
7370 /* The branch doesn't branch over it's own frag,
7371 but over the subsequent ones. */
7372 fragP = fragP->fr_next;
7373 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7374 {
7375 max_distance += unrelaxed_frag_max_size (fragP);
7376 fragP = fragP->fr_next;
7377 }
7378 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7379 return TRUE;
7380 return FALSE;
7381 }
7382
7383
7384 static void
7385 xtensa_mark_zcl_first_insns (void)
7386 {
7387 frchainS *frchP;
7388 asection *s;
7389
7390 for (s = stdoutput->sections; s; s = s->next)
7391 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7392 {
7393 fragS *fragP;
7394 /* Walk over all of the fragments in a subsection. */
7395 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7396 {
7397 if (fragP->fr_type == rs_machine_dependent
7398 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7399 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7400 {
7401 /* Find the loop frag. */
7402 fragS *targ_frag = next_non_empty_frag (fragP);
7403 /* Find the first insn frag. */
7404 targ_frag = next_non_empty_frag (targ_frag);
7405
7406 /* Of course, sometimes (mostly for toy test cases) a
7407 zero-cost loop instruction is the last in a section. */
7408 if (targ_frag)
7409 {
7410 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7411 /* Do not widen a frag that is the first instruction of a
7412 zero-cost loop. It makes that loop harder to align. */
7413 if (targ_frag->fr_type == rs_machine_dependent
7414 && targ_frag->fr_subtype == RELAX_SLOTS
7415 && (targ_frag->tc_frag_data.slot_subtypes[0]
7416 == RELAX_NARROW))
7417 {
7418 if (targ_frag->tc_frag_data.is_aligning_branch)
7419 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7420 else
7421 {
7422 frag_wane (targ_frag);
7423 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7424 }
7425 }
7426 }
7427 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7428 frag_wane (fragP);
7429 }
7430 }
7431 }
7432 }
7433
7434
7435 /* When a difference-of-symbols expression is encoded as a uleb128 or
7436 sleb128 value, the linker is unable to adjust that value to account for
7437 link-time relaxation. Mark all the code between such symbols so that
7438 its size cannot be changed by linker relaxation. */
7439
7440 static void
7441 xtensa_mark_difference_of_two_symbols (void)
7442 {
7443 symbolS *expr_sym;
7444
7445 for (expr_sym = expr_symbols; expr_sym;
7446 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7447 {
7448 expressionS *expr = symbol_get_value_expression (expr_sym);
7449
7450 if (expr->X_op == O_subtract)
7451 {
7452 symbolS *left = expr->X_add_symbol;
7453 symbolS *right = expr->X_op_symbol;
7454
7455 /* Difference of two symbols not in the same section
7456 are handled with relocations in the linker. */
7457 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7458 {
7459 fragS *start;
7460 fragS *end;
7461
7462 if (symbol_get_frag (left)->fr_address
7463 <= symbol_get_frag (right)->fr_address)
7464 {
7465 start = symbol_get_frag (left);
7466 end = symbol_get_frag (right);
7467 }
7468 else
7469 {
7470 start = symbol_get_frag (right);
7471 end = symbol_get_frag (left);
7472 }
7473 do
7474 {
7475 start->tc_frag_data.is_no_transform = 1;
7476 start = start->fr_next;
7477 }
7478 while (start && start->fr_address < end->fr_address);
7479 }
7480 }
7481 }
7482 }
7483
7484
7485 /* Re-process all of the fragments looking to convert all of the
7486 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7487 conditional branch or a retw/retw.n, convert this frag to one that
7488 will generate a NOP. In any case close it off with a .fill 0. */
7489
7490 static bfd_boolean next_instrs_are_b_retw (fragS *);
7491
7492 static void
7493 xtensa_fix_a0_b_retw_frags (void)
7494 {
7495 frchainS *frchP;
7496 asection *s;
7497
7498 /* When this routine is called, all of the subsections are still intact
7499 so we walk over subsections instead of sections. */
7500 for (s = stdoutput->sections; s; s = s->next)
7501 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7502 {
7503 fragS *fragP;
7504
7505 /* Walk over all of the fragments in a subsection. */
7506 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7507 {
7508 if (fragP->fr_type == rs_machine_dependent
7509 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7510 {
7511 if (next_instrs_are_b_retw (fragP))
7512 {
7513 if (fragP->tc_frag_data.is_no_transform)
7514 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7515 else
7516 relax_frag_add_nop (fragP);
7517 }
7518 frag_wane (fragP);
7519 }
7520 }
7521 }
7522 }
7523
7524
7525 static bfd_boolean
7526 next_instrs_are_b_retw (fragS *fragP)
7527 {
7528 xtensa_opcode opcode;
7529 xtensa_format fmt;
7530 const fragS *next_fragP = next_non_empty_frag (fragP);
7531 static xtensa_insnbuf insnbuf = NULL;
7532 static xtensa_insnbuf slotbuf = NULL;
7533 xtensa_isa isa = xtensa_default_isa;
7534 int offset = 0;
7535 int slot;
7536 bfd_boolean branch_seen = FALSE;
7537
7538 if (!insnbuf)
7539 {
7540 insnbuf = xtensa_insnbuf_alloc (isa);
7541 slotbuf = xtensa_insnbuf_alloc (isa);
7542 }
7543
7544 if (next_fragP == NULL)
7545 return FALSE;
7546
7547 /* Check for the conditional branch. */
7548 xtensa_insnbuf_from_chars
7549 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7550 fmt = xtensa_format_decode (isa, insnbuf);
7551 if (fmt == XTENSA_UNDEFINED)
7552 return FALSE;
7553
7554 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7555 {
7556 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7557 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7558
7559 branch_seen = (branch_seen
7560 || xtensa_opcode_is_branch (isa, opcode) == 1);
7561 }
7562
7563 if (!branch_seen)
7564 return FALSE;
7565
7566 offset += xtensa_format_length (isa, fmt);
7567 if (offset == next_fragP->fr_fix)
7568 {
7569 next_fragP = next_non_empty_frag (next_fragP);
7570 offset = 0;
7571 }
7572
7573 if (next_fragP == NULL)
7574 return FALSE;
7575
7576 /* Check for the retw/retw.n. */
7577 xtensa_insnbuf_from_chars
7578 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7579 fmt = xtensa_format_decode (isa, insnbuf);
7580
7581 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7582 have no problems. */
7583 if (fmt == XTENSA_UNDEFINED
7584 || xtensa_format_num_slots (isa, fmt) != 1)
7585 return FALSE;
7586
7587 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7588 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7589
7590 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7591 return TRUE;
7592
7593 return FALSE;
7594 }
7595
7596
7597 /* Re-process all of the fragments looking to convert all of the
7598 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7599 loop end label, convert this frag to one that will generate a NOP.
7600 In any case close it off with a .fill 0. */
7601
7602 static bfd_boolean next_instr_is_loop_end (fragS *);
7603
7604 static void
7605 xtensa_fix_b_j_loop_end_frags (void)
7606 {
7607 frchainS *frchP;
7608 asection *s;
7609
7610 /* When this routine is called, all of the subsections are still intact
7611 so we walk over subsections instead of sections. */
7612 for (s = stdoutput->sections; s; s = s->next)
7613 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7614 {
7615 fragS *fragP;
7616
7617 /* Walk over all of the fragments in a subsection. */
7618 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7619 {
7620 if (fragP->fr_type == rs_machine_dependent
7621 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7622 {
7623 if (next_instr_is_loop_end (fragP))
7624 {
7625 if (fragP->tc_frag_data.is_no_transform)
7626 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7627 else
7628 relax_frag_add_nop (fragP);
7629 }
7630 frag_wane (fragP);
7631 }
7632 }
7633 }
7634 }
7635
7636
7637 static bfd_boolean
7638 next_instr_is_loop_end (fragS *fragP)
7639 {
7640 const fragS *next_fragP;
7641
7642 if (next_frag_is_loop_target (fragP))
7643 return FALSE;
7644
7645 next_fragP = next_non_empty_frag (fragP);
7646 if (next_fragP == NULL)
7647 return FALSE;
7648
7649 if (!next_frag_is_loop_target (next_fragP))
7650 return FALSE;
7651
7652 /* If the size is >= 3 then there is more than one instruction here.
7653 The hardware bug will not fire. */
7654 if (next_fragP->fr_fix > 3)
7655 return FALSE;
7656
7657 return TRUE;
7658 }
7659
7660
7661 /* Re-process all of the fragments looking to convert all of the
7662 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7663 not MY loop's loop end within 12 bytes, add enough nops here to
7664 make it at least 12 bytes away. In any case close it off with a
7665 .fill 0. */
7666
7667 static offsetT min_bytes_to_other_loop_end
7668 (fragS *, fragS *, offsetT);
7669
7670 static void
7671 xtensa_fix_close_loop_end_frags (void)
7672 {
7673 frchainS *frchP;
7674 asection *s;
7675
7676 /* When this routine is called, all of the subsections are still intact
7677 so we walk over subsections instead of sections. */
7678 for (s = stdoutput->sections; s; s = s->next)
7679 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7680 {
7681 fragS *fragP;
7682
7683 fragS *current_target = NULL;
7684
7685 /* Walk over all of the fragments in a subsection. */
7686 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7687 {
7688 if (fragP->fr_type == rs_machine_dependent
7689 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7690 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7691 current_target = symbol_get_frag (fragP->fr_symbol);
7692
7693 if (current_target
7694 && fragP->fr_type == rs_machine_dependent
7695 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7696 {
7697 offsetT min_bytes;
7698 int bytes_added = 0;
7699
7700 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7701 /* Max out at 12. */
7702 min_bytes = min_bytes_to_other_loop_end
7703 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7704
7705 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7706 {
7707 if (fragP->tc_frag_data.is_no_transform)
7708 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7709 else
7710 {
7711 while (min_bytes + bytes_added
7712 < REQUIRED_LOOP_DIVIDING_BYTES)
7713 {
7714 int length = 3;
7715
7716 if (fragP->fr_var < length)
7717 as_fatal (_("fr_var %lu < length %d"),
7718 (long) fragP->fr_var, length);
7719 else
7720 {
7721 assemble_nop (length,
7722 fragP->fr_literal + fragP->fr_fix);
7723 fragP->fr_fix += length;
7724 fragP->fr_var -= length;
7725 }
7726 bytes_added += length;
7727 }
7728 }
7729 }
7730 frag_wane (fragP);
7731 }
7732 gas_assert (fragP->fr_type != rs_machine_dependent
7733 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7734 }
7735 }
7736 }
7737
7738
7739 static offsetT unrelaxed_frag_min_size (fragS *);
7740
7741 static offsetT
7742 min_bytes_to_other_loop_end (fragS *fragP,
7743 fragS *current_target,
7744 offsetT max_size)
7745 {
7746 offsetT offset = 0;
7747 fragS *current_fragP;
7748
7749 for (current_fragP = fragP;
7750 current_fragP;
7751 current_fragP = current_fragP->fr_next)
7752 {
7753 if (current_fragP->tc_frag_data.is_loop_target
7754 && current_fragP != current_target)
7755 return offset;
7756
7757 offset += unrelaxed_frag_min_size (current_fragP);
7758
7759 if (offset >= max_size)
7760 return max_size;
7761 }
7762 return max_size;
7763 }
7764
7765
7766 static offsetT
7767 unrelaxed_frag_min_size (fragS *fragP)
7768 {
7769 offsetT size = fragP->fr_fix;
7770
7771 /* Add fill size. */
7772 if (fragP->fr_type == rs_fill)
7773 size += fragP->fr_offset;
7774
7775 return size;
7776 }
7777
7778
7779 static offsetT
7780 unrelaxed_frag_max_size (fragS *fragP)
7781 {
7782 offsetT size = fragP->fr_fix;
7783 switch (fragP->fr_type)
7784 {
7785 case 0:
7786 /* Empty frags created by the obstack allocation scheme
7787 end up with type 0. */
7788 break;
7789 case rs_fill:
7790 case rs_org:
7791 case rs_space:
7792 size += fragP->fr_offset;
7793 break;
7794 case rs_align:
7795 case rs_align_code:
7796 case rs_align_test:
7797 case rs_leb128:
7798 case rs_cfa:
7799 case rs_dwarf2dbg:
7800 /* No further adjustments needed. */
7801 break;
7802 case rs_machine_dependent:
7803 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7804 size += fragP->fr_var;
7805 break;
7806 default:
7807 /* We had darn well better know how big it is. */
7808 gas_assert (0);
7809 break;
7810 }
7811
7812 return size;
7813 }
7814
7815
7816 /* Re-process all of the fragments looking to convert all
7817 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7818
7819 A)
7820 1) the instruction size count to the loop end label
7821 is too short (<= 2 instructions),
7822 2) loop has a jump or branch in it
7823
7824 or B)
7825 1) workaround_all_short_loops is TRUE
7826 2) The generating loop was a 'loopgtz' or 'loopnez'
7827 3) the instruction size count to the loop end label is too short
7828 (<= 2 instructions)
7829 then convert this frag (and maybe the next one) to generate a NOP.
7830 In any case close it off with a .fill 0. */
7831
7832 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7833 static bfd_boolean branch_before_loop_end (fragS *);
7834
7835 static void
7836 xtensa_fix_short_loop_frags (void)
7837 {
7838 frchainS *frchP;
7839 asection *s;
7840
7841 /* When this routine is called, all of the subsections are still intact
7842 so we walk over subsections instead of sections. */
7843 for (s = stdoutput->sections; s; s = s->next)
7844 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7845 {
7846 fragS *fragP;
7847 fragS *current_target = NULL;
7848 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7849
7850 /* Walk over all of the fragments in a subsection. */
7851 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7852 {
7853 if (fragP->fr_type == rs_machine_dependent
7854 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7855 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7856 {
7857 TInsn t_insn;
7858 fragS *loop_frag = next_non_empty_frag (fragP);
7859 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7860 current_target = symbol_get_frag (fragP->fr_symbol);
7861 current_opcode = t_insn.opcode;
7862 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
7863 current_opcode) == 1);
7864 }
7865
7866 if (fragP->fr_type == rs_machine_dependent
7867 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7868 {
7869 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7870 && (branch_before_loop_end (fragP->fr_next)
7871 || (workaround_all_short_loops
7872 && current_opcode != XTENSA_UNDEFINED
7873 && current_opcode != xtensa_loop_opcode)))
7874 {
7875 if (fragP->tc_frag_data.is_no_transform)
7876 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7877 else
7878 relax_frag_add_nop (fragP);
7879 }
7880 frag_wane (fragP);
7881 }
7882 }
7883 }
7884 }
7885
7886
7887 static int unrelaxed_frag_min_insn_count (fragS *);
7888
7889 static int
7890 count_insns_to_loop_end (fragS *base_fragP,
7891 bfd_boolean count_relax_add,
7892 int max_count)
7893 {
7894 fragS *fragP = NULL;
7895 int insn_count = 0;
7896
7897 fragP = base_fragP;
7898
7899 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7900 {
7901 insn_count += unrelaxed_frag_min_insn_count (fragP);
7902 if (insn_count >= max_count)
7903 return max_count;
7904
7905 if (count_relax_add)
7906 {
7907 if (fragP->fr_type == rs_machine_dependent
7908 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7909 {
7910 /* In order to add the appropriate number of
7911 NOPs, we count an instruction for downstream
7912 occurrences. */
7913 insn_count++;
7914 if (insn_count >= max_count)
7915 return max_count;
7916 }
7917 }
7918 }
7919 return insn_count;
7920 }
7921
7922
7923 static int
7924 unrelaxed_frag_min_insn_count (fragS *fragP)
7925 {
7926 xtensa_isa isa = xtensa_default_isa;
7927 static xtensa_insnbuf insnbuf = NULL;
7928 int insn_count = 0;
7929 int offset = 0;
7930
7931 if (!fragP->tc_frag_data.is_insn)
7932 return insn_count;
7933
7934 if (!insnbuf)
7935 insnbuf = xtensa_insnbuf_alloc (isa);
7936
7937 /* Decode the fixed instructions. */
7938 while (offset < fragP->fr_fix)
7939 {
7940 xtensa_format fmt;
7941
7942 xtensa_insnbuf_from_chars
7943 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7944 fmt = xtensa_format_decode (isa, insnbuf);
7945
7946 if (fmt == XTENSA_UNDEFINED)
7947 {
7948 as_fatal (_("undecodable instruction in instruction frag"));
7949 return insn_count;
7950 }
7951 offset += xtensa_format_length (isa, fmt);
7952 insn_count++;
7953 }
7954
7955 return insn_count;
7956 }
7957
7958
7959 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7960
7961 static bfd_boolean
7962 branch_before_loop_end (fragS *base_fragP)
7963 {
7964 fragS *fragP;
7965
7966 for (fragP = base_fragP;
7967 fragP && !fragP->tc_frag_data.is_loop_target;
7968 fragP = fragP->fr_next)
7969 {
7970 if (unrelaxed_frag_has_b_j (fragP))
7971 return TRUE;
7972 }
7973 return FALSE;
7974 }
7975
7976
7977 static bfd_boolean
7978 unrelaxed_frag_has_b_j (fragS *fragP)
7979 {
7980 static xtensa_insnbuf insnbuf = NULL;
7981 xtensa_isa isa = xtensa_default_isa;
7982 int offset = 0;
7983
7984 if (!fragP->tc_frag_data.is_insn)
7985 return FALSE;
7986
7987 if (!insnbuf)
7988 insnbuf = xtensa_insnbuf_alloc (isa);
7989
7990 /* Decode the fixed instructions. */
7991 while (offset < fragP->fr_fix)
7992 {
7993 xtensa_format fmt;
7994 int slot;
7995
7996 xtensa_insnbuf_from_chars
7997 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7998 fmt = xtensa_format_decode (isa, insnbuf);
7999 if (fmt == XTENSA_UNDEFINED)
8000 return FALSE;
8001
8002 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8003 {
8004 xtensa_opcode opcode =
8005 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8006 if (xtensa_opcode_is_branch (isa, opcode) == 1
8007 || xtensa_opcode_is_jump (isa, opcode) == 1)
8008 return TRUE;
8009 }
8010 offset += xtensa_format_length (isa, fmt);
8011 }
8012 return FALSE;
8013 }
8014
8015
8016 /* Checks to be made after initial assembly but before relaxation. */
8017
8018 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8019 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8020
8021 static void
8022 xtensa_sanity_check (void)
8023 {
8024 char *file_name;
8025 unsigned line;
8026 frchainS *frchP;
8027 asection *s;
8028
8029 as_where (&file_name, &line);
8030 for (s = stdoutput->sections; s; s = s->next)
8031 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8032 {
8033 fragS *fragP;
8034
8035 /* Walk over all of the fragments in a subsection. */
8036 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8037 {
8038 if (fragP->fr_type == rs_machine_dependent
8039 && fragP->fr_subtype == RELAX_SLOTS
8040 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8041 {
8042 static xtensa_insnbuf insnbuf = NULL;
8043 TInsn t_insn;
8044
8045 if (fragP->fr_opcode != NULL)
8046 {
8047 if (!insnbuf)
8048 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8049 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8050 tinsn_immed_from_frag (&t_insn, fragP, 0);
8051
8052 if (xtensa_opcode_is_loop (xtensa_default_isa,
8053 t_insn.opcode) == 1)
8054 {
8055 if (is_empty_loop (&t_insn, fragP))
8056 {
8057 new_logical_line (fragP->fr_file, fragP->fr_line);
8058 as_bad (_("invalid empty loop"));
8059 }
8060 if (!is_local_forward_loop (&t_insn, fragP))
8061 {
8062 new_logical_line (fragP->fr_file, fragP->fr_line);
8063 as_bad (_("loop target does not follow "
8064 "loop instruction in section"));
8065 }
8066 }
8067 }
8068 }
8069 }
8070 }
8071 new_logical_line (file_name, line);
8072 }
8073
8074
8075 #define LOOP_IMMED_OPN 1
8076
8077 /* Return TRUE if the loop target is the next non-zero fragment. */
8078
8079 static bfd_boolean
8080 is_empty_loop (const TInsn *insn, fragS *fragP)
8081 {
8082 const expressionS *expr;
8083 symbolS *symbolP;
8084 fragS *next_fragP;
8085
8086 if (insn->insn_type != ITYPE_INSN)
8087 return FALSE;
8088
8089 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8090 return FALSE;
8091
8092 if (insn->ntok <= LOOP_IMMED_OPN)
8093 return FALSE;
8094
8095 expr = &insn->tok[LOOP_IMMED_OPN];
8096
8097 if (expr->X_op != O_symbol)
8098 return FALSE;
8099
8100 symbolP = expr->X_add_symbol;
8101 if (!symbolP)
8102 return FALSE;
8103
8104 if (symbol_get_frag (symbolP) == NULL)
8105 return FALSE;
8106
8107 if (S_GET_VALUE (symbolP) != 0)
8108 return FALSE;
8109
8110 /* Walk through the zero-size fragments from this one. If we find
8111 the target fragment, then this is a zero-size loop. */
8112
8113 for (next_fragP = fragP->fr_next;
8114 next_fragP != NULL;
8115 next_fragP = next_fragP->fr_next)
8116 {
8117 if (next_fragP == symbol_get_frag (symbolP))
8118 return TRUE;
8119 if (next_fragP->fr_fix != 0)
8120 return FALSE;
8121 }
8122 return FALSE;
8123 }
8124
8125
8126 static bfd_boolean
8127 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8128 {
8129 const expressionS *expr;
8130 symbolS *symbolP;
8131 fragS *next_fragP;
8132
8133 if (insn->insn_type != ITYPE_INSN)
8134 return FALSE;
8135
8136 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8137 return FALSE;
8138
8139 if (insn->ntok <= LOOP_IMMED_OPN)
8140 return FALSE;
8141
8142 expr = &insn->tok[LOOP_IMMED_OPN];
8143
8144 if (expr->X_op != O_symbol)
8145 return FALSE;
8146
8147 symbolP = expr->X_add_symbol;
8148 if (!symbolP)
8149 return FALSE;
8150
8151 if (symbol_get_frag (symbolP) == NULL)
8152 return FALSE;
8153
8154 /* Walk through fragments until we find the target.
8155 If we do not find the target, then this is an invalid loop. */
8156
8157 for (next_fragP = fragP->fr_next;
8158 next_fragP != NULL;
8159 next_fragP = next_fragP->fr_next)
8160 {
8161 if (next_fragP == symbol_get_frag (symbolP))
8162 return TRUE;
8163 }
8164
8165 return FALSE;
8166 }
8167
8168
8169 #define XTINFO_NAME "Xtensa_Info"
8170 #define XTINFO_NAMESZ 12
8171 #define XTINFO_TYPE 1
8172
8173 static void
8174 xtensa_add_config_info (void)
8175 {
8176 asection *info_sec;
8177 char *data, *p;
8178 int sz;
8179
8180 info_sec = subseg_new (".xtensa.info", 0);
8181 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8182
8183 data = xmalloc (100);
8184 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8185 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8186 sz = strlen (data) + 1;
8187
8188 /* Add enough null terminators to pad to a word boundary. */
8189 do
8190 data[sz++] = 0;
8191 while ((sz & 3) != 0);
8192
8193 /* Follow the standard note section layout:
8194 First write the length of the name string. */
8195 p = frag_more (4);
8196 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8197
8198 /* Next comes the length of the "descriptor", i.e., the actual data. */
8199 p = frag_more (4);
8200 md_number_to_chars (p, (valueT) sz, 4);
8201
8202 /* Write the note type. */
8203 p = frag_more (4);
8204 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8205
8206 /* Write the name field. */
8207 p = frag_more (XTINFO_NAMESZ);
8208 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8209
8210 /* Finally, write the descriptor. */
8211 p = frag_more (sz);
8212 memcpy (p, data, sz);
8213
8214 free (data);
8215 }
8216
8217 \f
8218 /* Alignment Functions. */
8219
8220 static int
8221 get_text_align_power (unsigned target_size)
8222 {
8223 if (target_size <= 4)
8224 return 2;
8225 gas_assert (target_size == 8);
8226 return 3;
8227 }
8228
8229
8230 static int
8231 get_text_align_max_fill_size (int align_pow,
8232 bfd_boolean use_nops,
8233 bfd_boolean use_no_density)
8234 {
8235 if (!use_nops)
8236 return (1 << align_pow);
8237 if (use_no_density)
8238 return 3 * (1 << align_pow);
8239
8240 return 1 + (1 << align_pow);
8241 }
8242
8243
8244 /* Calculate the minimum bytes of fill needed at "address" to align a
8245 target instruction of size "target_size" so that it does not cross a
8246 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8247 the fill can be an arbitrary number of bytes. Otherwise, the space must
8248 be filled by NOP instructions. */
8249
8250 static int
8251 get_text_align_fill_size (addressT address,
8252 int align_pow,
8253 int target_size,
8254 bfd_boolean use_nops,
8255 bfd_boolean use_no_density)
8256 {
8257 addressT alignment, fill, fill_limit, fill_step;
8258 bfd_boolean skip_one = FALSE;
8259
8260 alignment = (1 << align_pow);
8261 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
8262
8263 if (!use_nops)
8264 {
8265 fill_limit = alignment;
8266 fill_step = 1;
8267 }
8268 else if (!use_no_density)
8269 {
8270 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8271 fill_limit = alignment * 2;
8272 fill_step = 1;
8273 skip_one = TRUE;
8274 }
8275 else
8276 {
8277 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8278 fill_limit = alignment * 3;
8279 fill_step = 3;
8280 }
8281
8282 /* Try all fill sizes until finding one that works. */
8283 for (fill = 0; fill < fill_limit; fill += fill_step)
8284 {
8285 if (skip_one && fill == 1)
8286 continue;
8287 if ((address + fill) >> align_pow
8288 == (address + fill + target_size - 1) >> align_pow)
8289 return fill;
8290 }
8291 gas_assert (0);
8292 return 0;
8293 }
8294
8295
8296 static int
8297 branch_align_power (segT sec)
8298 {
8299 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
8300 is aligned to at least an 8-byte boundary, then a branch target need
8301 only fit within an 8-byte aligned block of memory to avoid a stall.
8302 Otherwise, try to fit branch targets within 4-byte aligned blocks
8303 (which may be insufficient, e.g., if the section has no alignment, but
8304 it's good enough). */
8305 if (xtensa_fetch_width == 8)
8306 {
8307 if (get_recorded_alignment (sec) >= 3)
8308 return 3;
8309 }
8310 else
8311 gas_assert (xtensa_fetch_width == 4);
8312
8313 return 2;
8314 }
8315
8316
8317 /* This will assert if it is not possible. */
8318
8319 static int
8320 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
8321 {
8322 int count = 0;
8323
8324 if (use_no_density)
8325 {
8326 gas_assert (fill_size % 3 == 0);
8327 return (fill_size / 3);
8328 }
8329
8330 gas_assert (fill_size != 1); /* Bad argument. */
8331
8332 while (fill_size > 1)
8333 {
8334 int insn_size = 3;
8335 if (fill_size == 2 || fill_size == 4)
8336 insn_size = 2;
8337 fill_size -= insn_size;
8338 count++;
8339 }
8340 gas_assert (fill_size != 1); /* Bad algorithm. */
8341 return count;
8342 }
8343
8344
8345 static int
8346 get_text_align_nth_nop_size (offsetT fill_size,
8347 int n,
8348 bfd_boolean use_no_density)
8349 {
8350 int count = 0;
8351
8352 if (use_no_density)
8353 return 3;
8354
8355 gas_assert (fill_size != 1); /* Bad argument. */
8356
8357 while (fill_size > 1)
8358 {
8359 int insn_size = 3;
8360 if (fill_size == 2 || fill_size == 4)
8361 insn_size = 2;
8362 fill_size -= insn_size;
8363 count++;
8364 if (n + 1 == count)
8365 return insn_size;
8366 }
8367 gas_assert (0);
8368 return 0;
8369 }
8370
8371
8372 /* For the given fragment, find the appropriate address
8373 for it to begin at if we are using NOPs to align it. */
8374
8375 static addressT
8376 get_noop_aligned_address (fragS *fragP, addressT address)
8377 {
8378 /* The rule is: get next fragment's FIRST instruction. Find
8379 the smallest number of bytes that need to be added to
8380 ensure that the next fragment's FIRST instruction will fit
8381 in a single word.
8382
8383 E.G., 2 bytes : 0, 1, 2 mod 4
8384 3 bytes: 0, 1 mod 4
8385
8386 If the FIRST instruction MIGHT be relaxed,
8387 assume that it will become a 3-byte instruction.
8388
8389 Note again here that LOOP instructions are not bundleable,
8390 and this relaxation only applies to LOOP opcodes. */
8391
8392 int fill_size = 0;
8393 int first_insn_size;
8394 int loop_insn_size;
8395 addressT pre_opcode_bytes;
8396 int align_power;
8397 fragS *first_insn;
8398 xtensa_opcode opcode;
8399 bfd_boolean is_loop;
8400
8401 gas_assert (fragP->fr_type == rs_machine_dependent);
8402 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8403
8404 /* Find the loop frag. */
8405 first_insn = next_non_empty_frag (fragP);
8406 /* Now find the first insn frag. */
8407 first_insn = next_non_empty_frag (first_insn);
8408
8409 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8410 gas_assert (is_loop);
8411 loop_insn_size = xg_get_single_size (opcode);
8412
8413 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8414 pre_opcode_bytes += loop_insn_size;
8415
8416 /* For loops, the alignment depends on the size of the
8417 instruction following the loop, not the LOOP instruction. */
8418
8419 if (first_insn == NULL)
8420 first_insn_size = xtensa_fetch_width;
8421 else
8422 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8423
8424 /* If it was 8, then we'll need a larger alignment for the section. */
8425 align_power = get_text_align_power (first_insn_size);
8426 record_alignment (now_seg, align_power);
8427
8428 fill_size = get_text_align_fill_size
8429 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8430 fragP->tc_frag_data.is_no_density);
8431
8432 return address + fill_size;
8433 }
8434
8435
8436 /* 3 mechanisms for relaxing an alignment:
8437
8438 Align to a power of 2.
8439 Align so the next fragment's instruction does not cross a word boundary.
8440 Align the current instruction so that if the next instruction
8441 were 3 bytes, it would not cross a word boundary.
8442
8443 We can align with:
8444
8445 zeros - This is easy; always insert zeros.
8446 nops - 3-byte and 2-byte instructions
8447 2 - 2-byte nop
8448 3 - 3-byte nop
8449 4 - 2 2-byte nops
8450 >=5 : 3-byte instruction + fn (n-3)
8451 widening - widen previous instructions. */
8452
8453 static offsetT
8454 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8455 {
8456 addressT target_address, loop_insn_offset;
8457 int target_size;
8458 xtensa_opcode loop_opcode;
8459 bfd_boolean is_loop;
8460 int align_power;
8461 offsetT opt_diff;
8462 offsetT branch_align;
8463 fragS *loop_frag;
8464
8465 gas_assert (fragP->fr_type == rs_machine_dependent);
8466 switch (fragP->fr_subtype)
8467 {
8468 case RELAX_DESIRE_ALIGN:
8469 target_size = next_frag_format_size (fragP);
8470 if (target_size == XTENSA_UNDEFINED)
8471 target_size = 3;
8472 align_power = branch_align_power (now_seg);
8473 branch_align = 1 << align_power;
8474 /* Don't count on the section alignment being as large as the target. */
8475 if (target_size > branch_align)
8476 target_size = branch_align;
8477 opt_diff = get_text_align_fill_size (address, align_power,
8478 target_size, FALSE, FALSE);
8479
8480 *max_diff = (opt_diff + branch_align
8481 - (target_size + ((address + opt_diff) % branch_align)));
8482 gas_assert (*max_diff >= opt_diff);
8483 return opt_diff;
8484
8485 case RELAX_ALIGN_NEXT_OPCODE:
8486 /* The next non-empty frag after this one holds the LOOP instruction
8487 that needs to be aligned. The required alignment depends on the
8488 size of the next non-empty frag after the loop frag, i.e., the
8489 first instruction in the loop. */
8490 loop_frag = next_non_empty_frag (fragP);
8491 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
8492 loop_insn_offset = 0;
8493 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8494 gas_assert (is_loop);
8495
8496 /* If the loop has been expanded then the LOOP instruction
8497 could be at an offset from this fragment. */
8498 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
8499 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8500
8501 /* In an ideal world, which is what we are shooting for here,
8502 we wouldn't need to use any NOPs immediately prior to the
8503 LOOP instruction. If this approach fails, relax_frag_loop_align
8504 will call get_noop_aligned_address. */
8505 target_address =
8506 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8507 align_power = get_text_align_power (target_size);
8508 opt_diff = get_text_align_fill_size (target_address, align_power,
8509 target_size, FALSE, FALSE);
8510
8511 *max_diff = xtensa_fetch_width
8512 - ((target_address + opt_diff) % xtensa_fetch_width)
8513 - target_size + opt_diff;
8514 gas_assert (*max_diff >= opt_diff);
8515 return opt_diff;
8516
8517 default:
8518 break;
8519 }
8520 gas_assert (0);
8521 return 0;
8522 }
8523
8524 \f
8525 /* md_relax_frag Hook and Helper Functions. */
8526
8527 static long relax_frag_loop_align (fragS *, long);
8528 static long relax_frag_for_align (fragS *, long);
8529 static long relax_frag_immed
8530 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8531
8532
8533 /* Return the number of bytes added to this fragment, given that the
8534 input has been stretched already by "stretch". */
8535
8536 long
8537 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8538 {
8539 xtensa_isa isa = xtensa_default_isa;
8540 int unreported = fragP->tc_frag_data.unreported_expansion;
8541 long new_stretch = 0;
8542 char *file_name;
8543 unsigned line;
8544 int lit_size;
8545 static xtensa_insnbuf vbuf = NULL;
8546 int slot, num_slots;
8547 xtensa_format fmt;
8548
8549 as_where (&file_name, &line);
8550 new_logical_line (fragP->fr_file, fragP->fr_line);
8551
8552 fragP->tc_frag_data.unreported_expansion = 0;
8553
8554 switch (fragP->fr_subtype)
8555 {
8556 case RELAX_ALIGN_NEXT_OPCODE:
8557 /* Always convert. */
8558 if (fragP->tc_frag_data.relax_seen)
8559 new_stretch = relax_frag_loop_align (fragP, stretch);
8560 break;
8561
8562 case RELAX_LOOP_END:
8563 /* Do nothing. */
8564 break;
8565
8566 case RELAX_LOOP_END_ADD_NOP:
8567 /* Add a NOP and switch to .fill 0. */
8568 new_stretch = relax_frag_add_nop (fragP);
8569 frag_wane (fragP);
8570 break;
8571
8572 case RELAX_DESIRE_ALIGN:
8573 /* Do nothing. The narrowing before this frag will either align
8574 it or not. */
8575 break;
8576
8577 case RELAX_LITERAL:
8578 case RELAX_LITERAL_FINAL:
8579 return 0;
8580
8581 case RELAX_LITERAL_NR:
8582 lit_size = 4;
8583 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8584 gas_assert (unreported == lit_size);
8585 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8586 fragP->fr_var -= lit_size;
8587 fragP->fr_fix += lit_size;
8588 new_stretch = 4;
8589 break;
8590
8591 case RELAX_SLOTS:
8592 if (vbuf == NULL)
8593 vbuf = xtensa_insnbuf_alloc (isa);
8594
8595 xtensa_insnbuf_from_chars
8596 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8597 fmt = xtensa_format_decode (isa, vbuf);
8598 num_slots = xtensa_format_num_slots (isa, fmt);
8599
8600 for (slot = 0; slot < num_slots; slot++)
8601 {
8602 switch (fragP->tc_frag_data.slot_subtypes[slot])
8603 {
8604 case RELAX_NARROW:
8605 if (fragP->tc_frag_data.relax_seen)
8606 new_stretch += relax_frag_for_align (fragP, stretch);
8607 break;
8608
8609 case RELAX_IMMED:
8610 case RELAX_IMMED_STEP1:
8611 case RELAX_IMMED_STEP2:
8612 case RELAX_IMMED_STEP3:
8613 /* Place the immediate. */
8614 new_stretch += relax_frag_immed
8615 (now_seg, fragP, stretch,
8616 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8617 fmt, slot, stretched_p, FALSE);
8618 break;
8619
8620 default:
8621 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8622 break;
8623 }
8624 }
8625 break;
8626
8627 case RELAX_LITERAL_POOL_BEGIN:
8628 case RELAX_LITERAL_POOL_END:
8629 case RELAX_MAYBE_UNREACHABLE:
8630 case RELAX_MAYBE_DESIRE_ALIGN:
8631 /* No relaxation required. */
8632 break;
8633
8634 case RELAX_FILL_NOP:
8635 case RELAX_UNREACHABLE:
8636 if (fragP->tc_frag_data.relax_seen)
8637 new_stretch += relax_frag_for_align (fragP, stretch);
8638 break;
8639
8640 default:
8641 as_bad (_("bad relaxation state"));
8642 }
8643
8644 /* Tell gas we need another relaxation pass. */
8645 if (! fragP->tc_frag_data.relax_seen)
8646 {
8647 fragP->tc_frag_data.relax_seen = TRUE;
8648 *stretched_p = 1;
8649 }
8650
8651 new_logical_line (file_name, line);
8652 return new_stretch;
8653 }
8654
8655
8656 static long
8657 relax_frag_loop_align (fragS *fragP, long stretch)
8658 {
8659 addressT old_address, old_next_address, old_size;
8660 addressT new_address, new_next_address, new_size;
8661 addressT growth;
8662
8663 /* All the frags with relax_frag_for_alignment prior to this one in the
8664 section have been done, hopefully eliminating the need for a NOP here.
8665 But, this will put it in if necessary. */
8666
8667 /* Calculate the old address of this fragment and the next fragment. */
8668 old_address = fragP->fr_address - stretch;
8669 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8670 fragP->tc_frag_data.text_expansion[0]);
8671 old_size = old_next_address - old_address;
8672
8673 /* Calculate the new address of this fragment and the next fragment. */
8674 new_address = fragP->fr_address;
8675 new_next_address =
8676 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8677 new_size = new_next_address - new_address;
8678
8679 growth = new_size - old_size;
8680
8681 /* Fix up the text_expansion field and return the new growth. */
8682 fragP->tc_frag_data.text_expansion[0] += growth;
8683 return growth;
8684 }
8685
8686
8687 /* Add a NOP instruction. */
8688
8689 static long
8690 relax_frag_add_nop (fragS *fragP)
8691 {
8692 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8693 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8694 assemble_nop (length, nop_buf);
8695 fragP->tc_frag_data.is_insn = TRUE;
8696
8697 if (fragP->fr_var < length)
8698 {
8699 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8700 return 0;
8701 }
8702
8703 fragP->fr_fix += length;
8704 fragP->fr_var -= length;
8705 return length;
8706 }
8707
8708
8709 static long future_alignment_required (fragS *, long);
8710
8711 static long
8712 relax_frag_for_align (fragS *fragP, long stretch)
8713 {
8714 /* Overview of the relaxation procedure for alignment:
8715 We can widen with NOPs or by widening instructions or by filling
8716 bytes after jump instructions. Find the opportune places and widen
8717 them if necessary. */
8718
8719 long stretch_me;
8720 long diff;
8721
8722 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
8723 || fragP->fr_subtype == RELAX_UNREACHABLE
8724 || (fragP->fr_subtype == RELAX_SLOTS
8725 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8726
8727 stretch_me = future_alignment_required (fragP, stretch);
8728 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8729 if (diff == 0)
8730 return 0;
8731
8732 if (diff < 0)
8733 {
8734 /* We expanded on a previous pass. Can we shrink now? */
8735 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8736 if (shrink <= stretch && stretch > 0)
8737 {
8738 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8739 return -shrink;
8740 }
8741 return 0;
8742 }
8743
8744 /* Below here, diff > 0. */
8745 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8746
8747 return diff;
8748 }
8749
8750
8751 /* Return the address of the next frag that should be aligned.
8752
8753 By "address" we mean the address it _would_ be at if there
8754 is no action taken to align it between here and the target frag.
8755 In other words, if no narrows and no fill nops are used between
8756 here and the frag to align, _even_if_ some of the frags we use
8757 to align targets have already expanded on a previous relaxation
8758 pass.
8759
8760 Also, count each frag that may be used to help align the target.
8761
8762 Return 0 if there are no frags left in the chain that need to be
8763 aligned. */
8764
8765 static addressT
8766 find_address_of_next_align_frag (fragS **fragPP,
8767 int *wide_nops,
8768 int *narrow_nops,
8769 int *widens,
8770 bfd_boolean *paddable)
8771 {
8772 fragS *fragP = *fragPP;
8773 addressT address = fragP->fr_address;
8774
8775 /* Do not reset the counts to 0. */
8776
8777 while (fragP)
8778 {
8779 /* Limit this to a small search. */
8780 if (*widens >= (int) xtensa_fetch_width)
8781 {
8782 *fragPP = fragP;
8783 return 0;
8784 }
8785 address += fragP->fr_fix;
8786
8787 if (fragP->fr_type == rs_fill)
8788 address += fragP->fr_offset * fragP->fr_var;
8789 else if (fragP->fr_type == rs_machine_dependent)
8790 {
8791 switch (fragP->fr_subtype)
8792 {
8793 case RELAX_UNREACHABLE:
8794 *paddable = TRUE;
8795 break;
8796
8797 case RELAX_FILL_NOP:
8798 (*wide_nops)++;
8799 if (!fragP->tc_frag_data.is_no_density)
8800 (*narrow_nops)++;
8801 break;
8802
8803 case RELAX_SLOTS:
8804 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8805 {
8806 (*widens)++;
8807 break;
8808 }
8809 address += total_frag_text_expansion (fragP);;
8810 break;
8811
8812 case RELAX_IMMED:
8813 address += fragP->tc_frag_data.text_expansion[0];
8814 break;
8815
8816 case RELAX_ALIGN_NEXT_OPCODE:
8817 case RELAX_DESIRE_ALIGN:
8818 *fragPP = fragP;
8819 return address;
8820
8821 case RELAX_MAYBE_UNREACHABLE:
8822 case RELAX_MAYBE_DESIRE_ALIGN:
8823 /* Do nothing. */
8824 break;
8825
8826 default:
8827 /* Just punt if we don't know the type. */
8828 *fragPP = fragP;
8829 return 0;
8830 }
8831 }
8832 else
8833 {
8834 /* Just punt if we don't know the type. */
8835 *fragPP = fragP;
8836 return 0;
8837 }
8838 fragP = fragP->fr_next;
8839 }
8840
8841 *fragPP = fragP;
8842 return 0;
8843 }
8844
8845
8846 static long bytes_to_stretch (fragS *, int, int, int, int);
8847
8848 static long
8849 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8850 {
8851 fragS *this_frag = fragP;
8852 long address;
8853 int num_widens = 0;
8854 int wide_nops = 0;
8855 int narrow_nops = 0;
8856 bfd_boolean paddable = FALSE;
8857 offsetT local_opt_diff;
8858 offsetT opt_diff;
8859 offsetT max_diff;
8860 int stretch_amount = 0;
8861 int local_stretch_amount;
8862 int global_stretch_amount;
8863
8864 address = find_address_of_next_align_frag
8865 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8866
8867 if (!address)
8868 {
8869 if (this_frag->tc_frag_data.is_aligning_branch)
8870 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8871 else
8872 frag_wane (this_frag);
8873 }
8874 else
8875 {
8876 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8877 opt_diff = local_opt_diff;
8878 gas_assert (opt_diff >= 0);
8879 gas_assert (max_diff >= opt_diff);
8880 if (max_diff == 0)
8881 return 0;
8882
8883 if (fragP)
8884 fragP = fragP->fr_next;
8885
8886 while (fragP && opt_diff < max_diff && address)
8887 {
8888 /* We only use these to determine if we can exit early
8889 because there will be plenty of ways to align future
8890 align frags. */
8891 int glob_widens = 0;
8892 int dnn = 0;
8893 int dw = 0;
8894 bfd_boolean glob_pad = 0;
8895 address = find_address_of_next_align_frag
8896 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8897 /* If there is a padable portion, then skip. */
8898 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8899 address = 0;
8900
8901 if (address)
8902 {
8903 offsetT next_m_diff;
8904 offsetT next_o_diff;
8905
8906 /* Downrange frags haven't had stretch added to them yet. */
8907 address += stretch;
8908
8909 /* The address also includes any text expansion from this
8910 frag in a previous pass, but we don't want that. */
8911 address -= this_frag->tc_frag_data.text_expansion[0];
8912
8913 /* Assume we are going to move at least opt_diff. In
8914 reality, we might not be able to, but assuming that
8915 we will helps catch cases where moving opt_diff pushes
8916 the next target from aligned to unaligned. */
8917 address += opt_diff;
8918
8919 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8920
8921 /* Now cleanup for the adjustments to address. */
8922 next_o_diff += opt_diff;
8923 next_m_diff += opt_diff;
8924 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8925 opt_diff = next_o_diff;
8926 if (next_m_diff < max_diff)
8927 max_diff = next_m_diff;
8928 fragP = fragP->fr_next;
8929 }
8930 }
8931
8932 /* If there are enough wideners in between, do it. */
8933 if (paddable)
8934 {
8935 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8936 {
8937 gas_assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8938 return opt_diff;
8939 }
8940 return 0;
8941 }
8942 local_stretch_amount
8943 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8944 num_widens, local_opt_diff);
8945 global_stretch_amount
8946 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8947 num_widens, opt_diff);
8948 /* If the condition below is true, then the frag couldn't
8949 stretch the correct amount for the global case, so we just
8950 optimize locally. We'll rely on the subsequent frags to get
8951 the correct alignment in the global case. */
8952 if (global_stretch_amount < local_stretch_amount)
8953 stretch_amount = local_stretch_amount;
8954 else
8955 stretch_amount = global_stretch_amount;
8956
8957 if (this_frag->fr_subtype == RELAX_SLOTS
8958 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8959 gas_assert (stretch_amount <= 1);
8960 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8961 {
8962 if (this_frag->tc_frag_data.is_no_density)
8963 gas_assert (stretch_amount == 3 || stretch_amount == 0);
8964 else
8965 gas_assert (stretch_amount <= 3);
8966 }
8967 }
8968 return stretch_amount;
8969 }
8970
8971
8972 /* The idea: widen everything you can to get a target or loop aligned,
8973 then start using NOPs.
8974
8975 When we must have a NOP, here is a table of how we decide
8976 (so you don't have to fight through the control flow below):
8977
8978 wide_nops = the number of wide NOPs available for aligning
8979 narrow_nops = the number of narrow NOPs available for aligning
8980 (a subset of wide_nops)
8981 widens = the number of narrow instructions that should be widened
8982
8983 Desired wide narrow
8984 Diff nop nop widens
8985 1 0 0 1
8986 2 0 1 0
8987 3a 1 0 0
8988 b 0 1 1 (case 3a makes this case unnecessary)
8989 4a 1 0 1
8990 b 0 2 0
8991 c 0 1 2 (case 4a makes this case unnecessary)
8992 5a 1 0 2
8993 b 1 1 0
8994 c 0 2 1 (case 5b makes this case unnecessary)
8995 6a 2 0 0
8996 b 1 0 3
8997 c 0 1 4 (case 6b makes this case unnecessary)
8998 d 1 1 1 (case 6a makes this case unnecessary)
8999 e 0 2 2 (case 6a makes this case unnecessary)
9000 f 0 3 0 (case 6a makes this case unnecessary)
9001 7a 1 0 4
9002 b 2 0 1
9003 c 1 1 2 (case 7b makes this case unnecessary)
9004 d 0 1 5 (case 7a makes this case unnecessary)
9005 e 0 2 3 (case 7b makes this case unnecessary)
9006 f 0 3 1 (case 7b makes this case unnecessary)
9007 g 1 2 1 (case 7b makes this case unnecessary)
9008 */
9009
9010 static long
9011 bytes_to_stretch (fragS *this_frag,
9012 int wide_nops,
9013 int narrow_nops,
9014 int num_widens,
9015 int desired_diff)
9016 {
9017 int bytes_short = desired_diff - num_widens;
9018
9019 gas_assert (desired_diff >= 0 && desired_diff < 8);
9020 if (desired_diff == 0)
9021 return 0;
9022
9023 gas_assert (wide_nops > 0 || num_widens > 0);
9024
9025 /* Always prefer widening to NOP-filling. */
9026 if (bytes_short < 0)
9027 {
9028 /* There are enough RELAX_NARROW frags after this one
9029 to align the target without widening this frag in any way. */
9030 return 0;
9031 }
9032
9033 if (bytes_short == 0)
9034 {
9035 /* Widen every narrow between here and the align target
9036 and the align target will be properly aligned. */
9037 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9038 return 0;
9039 else
9040 return 1;
9041 }
9042
9043 /* From here we will need at least one NOP to get an alignment.
9044 However, we may not be able to align at all, in which case,
9045 don't widen. */
9046 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9047 {
9048 switch (desired_diff)
9049 {
9050 case 1:
9051 return 0;
9052 case 2:
9053 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
9054 return 2; /* case 2 */
9055 return 0;
9056 case 3:
9057 if (wide_nops > 1)
9058 return 0;
9059 else
9060 return 3; /* case 3a */
9061 case 4:
9062 if (num_widens >= 1 && wide_nops == 1)
9063 return 3; /* case 4a */
9064 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
9065 return 2; /* case 4b */
9066 return 0;
9067 case 5:
9068 if (num_widens >= 2 && wide_nops == 1)
9069 return 3; /* case 5a */
9070 /* We will need two nops. Are there enough nops
9071 between here and the align target? */
9072 if (wide_nops < 2 || narrow_nops == 0)
9073 return 0;
9074 /* Are there other nops closer that can serve instead? */
9075 if (wide_nops > 2 && narrow_nops > 1)
9076 return 0;
9077 /* Take the density one first, because there might not be
9078 another density one available. */
9079 if (!this_frag->tc_frag_data.is_no_density)
9080 return 2; /* case 5b narrow */
9081 else
9082 return 3; /* case 5b wide */
9083 return 0;
9084 case 6:
9085 if (wide_nops == 2)
9086 return 3; /* case 6a */
9087 else if (num_widens >= 3 && wide_nops == 1)
9088 return 3; /* case 6b */
9089 return 0;
9090 case 7:
9091 if (wide_nops == 1 && num_widens >= 4)
9092 return 3; /* case 7a */
9093 else if (wide_nops == 2 && num_widens >= 1)
9094 return 3; /* case 7b */
9095 return 0;
9096 default:
9097 gas_assert (0);
9098 }
9099 }
9100 else
9101 {
9102 /* We will need a NOP no matter what, but should we widen
9103 this instruction to help?
9104
9105 This is a RELAX_NARROW frag. */
9106 switch (desired_diff)
9107 {
9108 case 1:
9109 gas_assert (0);
9110 return 0;
9111 case 2:
9112 case 3:
9113 return 0;
9114 case 4:
9115 if (wide_nops >= 1 && num_widens == 1)
9116 return 1; /* case 4a */
9117 return 0;
9118 case 5:
9119 if (wide_nops >= 1 && num_widens == 2)
9120 return 1; /* case 5a */
9121 return 0;
9122 case 6:
9123 if (wide_nops >= 2)
9124 return 0; /* case 6a */
9125 else if (wide_nops >= 1 && num_widens == 3)
9126 return 1; /* case 6b */
9127 return 0;
9128 case 7:
9129 if (wide_nops >= 1 && num_widens == 4)
9130 return 1; /* case 7a */
9131 else if (wide_nops >= 2 && num_widens == 1)
9132 return 1; /* case 7b */
9133 return 0;
9134 default:
9135 gas_assert (0);
9136 return 0;
9137 }
9138 }
9139 gas_assert (0);
9140 return 0;
9141 }
9142
9143
9144 static long
9145 relax_frag_immed (segT segP,
9146 fragS *fragP,
9147 long stretch,
9148 int min_steps,
9149 xtensa_format fmt,
9150 int slot,
9151 int *stretched_p,
9152 bfd_boolean estimate_only)
9153 {
9154 TInsn tinsn;
9155 int old_size;
9156 bfd_boolean negatable_branch = FALSE;
9157 bfd_boolean branch_jmp_to_next = FALSE;
9158 bfd_boolean from_wide_insn = FALSE;
9159 xtensa_isa isa = xtensa_default_isa;
9160 IStack istack;
9161 offsetT frag_offset;
9162 int num_steps;
9163 int num_text_bytes, num_literal_bytes;
9164 int literal_diff, total_text_diff, this_text_diff;
9165
9166 gas_assert (fragP->fr_opcode != NULL);
9167
9168 xg_clear_vinsn (&cur_vinsn);
9169 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
9170 if (cur_vinsn.num_slots > 1)
9171 from_wide_insn = TRUE;
9172
9173 tinsn = cur_vinsn.slots[slot];
9174 tinsn_immed_from_frag (&tinsn, fragP, slot);
9175
9176 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
9177 return 0;
9178
9179 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9180 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
9181
9182 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
9183
9184 old_size = xtensa_format_length (isa, fmt);
9185
9186 /* Special case: replace a branch to the next instruction with a NOP.
9187 This is required to work around a hardware bug in T1040.0 and also
9188 serves as an optimization. */
9189
9190 if (branch_jmp_to_next
9191 && ((old_size == 2) || (old_size == 3))
9192 && !next_frag_is_loop_target (fragP))
9193 return 0;
9194
9195 /* Here is the fun stuff: Get the immediate field from this
9196 instruction. If it fits, we are done. If not, find the next
9197 instruction sequence that fits. */
9198
9199 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9200 istack_init (&istack);
9201 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
9202 min_steps, stretch);
9203 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9204
9205 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
9206
9207 /* Figure out the number of bytes needed. */
9208 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9209 literal_diff
9210 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9211 num_text_bytes = get_num_stack_text_bytes (&istack);
9212
9213 if (from_wide_insn)
9214 {
9215 int first = 0;
9216 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
9217 first++;
9218
9219 num_text_bytes += old_size;
9220 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
9221 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
9222 else
9223 {
9224 /* The first instruction in the relaxed sequence will go after
9225 the current wide instruction, and thus its symbolic immediates
9226 might not fit. */
9227
9228 istack_init (&istack);
9229 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
9230 frag_offset + old_size,
9231 min_steps, stretch + old_size);
9232 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9233
9234 fragP->tc_frag_data.slot_subtypes[slot]
9235 = (int) RELAX_IMMED + num_steps;
9236
9237 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9238 literal_diff
9239 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9240
9241 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
9242 }
9243 }
9244
9245 total_text_diff = num_text_bytes - old_size;
9246 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
9247
9248 /* It MUST get larger. If not, we could get an infinite loop. */
9249 gas_assert (num_text_bytes >= 0);
9250 gas_assert (literal_diff >= 0);
9251 gas_assert (total_text_diff >= 0);
9252
9253 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
9254 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
9255 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
9256 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
9257
9258 /* Find the associated expandable literal for this. */
9259 if (literal_diff != 0)
9260 {
9261 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
9262 if (lit_fragP)
9263 {
9264 gas_assert (literal_diff == 4);
9265 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
9266
9267 /* We expect that the literal section state has NOT been
9268 modified yet. */
9269 gas_assert (lit_fragP->fr_type == rs_machine_dependent
9270 && lit_fragP->fr_subtype == RELAX_LITERAL);
9271 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
9272
9273 /* We need to mark this section for another iteration
9274 of relaxation. */
9275 (*stretched_p)++;
9276 }
9277 }
9278
9279 if (negatable_branch && istack.ninsn > 1)
9280 update_next_frag_state (fragP);
9281
9282 return this_text_diff;
9283 }
9284
9285 \f
9286 /* md_convert_frag Hook and Helper Functions. */
9287
9288 static void convert_frag_align_next_opcode (fragS *);
9289 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
9290 static void convert_frag_fill_nop (fragS *);
9291 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
9292
9293 void
9294 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
9295 {
9296 static xtensa_insnbuf vbuf = NULL;
9297 xtensa_isa isa = xtensa_default_isa;
9298 int slot;
9299 int num_slots;
9300 xtensa_format fmt;
9301 char *file_name;
9302 unsigned line;
9303
9304 as_where (&file_name, &line);
9305 new_logical_line (fragp->fr_file, fragp->fr_line);
9306
9307 switch (fragp->fr_subtype)
9308 {
9309 case RELAX_ALIGN_NEXT_OPCODE:
9310 /* Always convert. */
9311 convert_frag_align_next_opcode (fragp);
9312 break;
9313
9314 case RELAX_DESIRE_ALIGN:
9315 /* Do nothing. If not aligned already, too bad. */
9316 break;
9317
9318 case RELAX_LITERAL:
9319 case RELAX_LITERAL_FINAL:
9320 break;
9321
9322 case RELAX_SLOTS:
9323 if (vbuf == NULL)
9324 vbuf = xtensa_insnbuf_alloc (isa);
9325
9326 xtensa_insnbuf_from_chars
9327 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
9328 fmt = xtensa_format_decode (isa, vbuf);
9329 num_slots = xtensa_format_num_slots (isa, fmt);
9330
9331 for (slot = 0; slot < num_slots; slot++)
9332 {
9333 switch (fragp->tc_frag_data.slot_subtypes[slot])
9334 {
9335 case RELAX_NARROW:
9336 convert_frag_narrow (sec, fragp, fmt, slot);
9337 break;
9338
9339 case RELAX_IMMED:
9340 case RELAX_IMMED_STEP1:
9341 case RELAX_IMMED_STEP2:
9342 case RELAX_IMMED_STEP3:
9343 /* Place the immediate. */
9344 convert_frag_immed
9345 (sec, fragp,
9346 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9347 fmt, slot);
9348 break;
9349
9350 default:
9351 /* This is OK because some slots could have
9352 relaxations and others have none. */
9353 break;
9354 }
9355 }
9356 break;
9357
9358 case RELAX_UNREACHABLE:
9359 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
9360 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
9361 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
9362 frag_wane (fragp);
9363 break;
9364
9365 case RELAX_MAYBE_UNREACHABLE:
9366 case RELAX_MAYBE_DESIRE_ALIGN:
9367 frag_wane (fragp);
9368 break;
9369
9370 case RELAX_FILL_NOP:
9371 convert_frag_fill_nop (fragp);
9372 break;
9373
9374 case RELAX_LITERAL_NR:
9375 if (use_literal_section)
9376 {
9377 /* This should have been handled during relaxation. When
9378 relaxing a code segment, literals sometimes need to be
9379 added to the corresponding literal segment. If that
9380 literal segment has already been relaxed, then we end up
9381 in this situation. Marking the literal segments as data
9382 would make this happen less often (since GAS always relaxes
9383 code before data), but we could still get into trouble if
9384 there are instructions in a segment that is not marked as
9385 containing code. Until we can implement a better solution,
9386 cheat and adjust the addresses of all the following frags.
9387 This could break subsequent alignments, but the linker's
9388 literal coalescing will do that anyway. */
9389
9390 fragS *f;
9391 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9392 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
9393 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9394 fragp->fr_var -= 4;
9395 fragp->fr_fix += 4;
9396 for (f = fragp->fr_next; f; f = f->fr_next)
9397 f->fr_address += 4;
9398 }
9399 else
9400 as_bad (_("invalid relaxation fragment result"));
9401 break;
9402 }
9403
9404 fragp->fr_var = 0;
9405 new_logical_line (file_name, line);
9406 }
9407
9408
9409 static void
9410 convert_frag_align_next_opcode (fragS *fragp)
9411 {
9412 char *nop_buf; /* Location for Writing. */
9413 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9414 addressT aligned_address;
9415 offsetT fill_size;
9416 int nop, nop_count;
9417
9418 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9419 fragp->fr_fix);
9420 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9421 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9422 nop_buf = fragp->fr_literal + fragp->fr_fix;
9423
9424 for (nop = 0; nop < nop_count; nop++)
9425 {
9426 int nop_size;
9427 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9428
9429 assemble_nop (nop_size, nop_buf);
9430 nop_buf += nop_size;
9431 }
9432
9433 fragp->fr_fix += fill_size;
9434 fragp->fr_var -= fill_size;
9435 }
9436
9437
9438 static void
9439 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9440 {
9441 TInsn tinsn, single_target;
9442 int size, old_size, diff;
9443 offsetT frag_offset;
9444
9445 gas_assert (slot == 0);
9446 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9447
9448 if (fragP->tc_frag_data.is_aligning_branch == 1)
9449 {
9450 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
9451 || fragP->tc_frag_data.text_expansion[0] == 0);
9452 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9453 fmt, slot);
9454 return;
9455 }
9456
9457 if (fragP->tc_frag_data.text_expansion[0] == 0)
9458 {
9459 /* No conversion. */
9460 fragP->fr_var = 0;
9461 return;
9462 }
9463
9464 gas_assert (fragP->fr_opcode != NULL);
9465
9466 /* Frags in this relaxation state should only contain
9467 single instruction bundles. */
9468 tinsn_immed_from_frag (&tinsn, fragP, 0);
9469
9470 /* Just convert it to a wide form.... */
9471 size = 0;
9472 old_size = xg_get_single_size (tinsn.opcode);
9473
9474 tinsn_init (&single_target);
9475 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9476
9477 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9478 {
9479 as_bad (_("unable to widen instruction"));
9480 return;
9481 }
9482
9483 size = xg_get_single_size (single_target.opcode);
9484 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9485 frag_offset, TRUE);
9486
9487 diff = size - old_size;
9488 gas_assert (diff >= 0);
9489 gas_assert (diff <= fragP->fr_var);
9490 fragP->fr_var -= diff;
9491 fragP->fr_fix += diff;
9492
9493 /* clean it up */
9494 fragP->fr_var = 0;
9495 }
9496
9497
9498 static void
9499 convert_frag_fill_nop (fragS *fragP)
9500 {
9501 char *loc = &fragP->fr_literal[fragP->fr_fix];
9502 int size = fragP->tc_frag_data.text_expansion[0];
9503 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
9504 - fragP->fr_address - fragP->fr_fix));
9505 if (size == 0)
9506 {
9507 /* No conversion. */
9508 fragP->fr_var = 0;
9509 return;
9510 }
9511 assemble_nop (size, loc);
9512 fragP->tc_frag_data.is_insn = TRUE;
9513 fragP->fr_var -= size;
9514 fragP->fr_fix += size;
9515 frag_wane (fragP);
9516 }
9517
9518
9519 static fixS *fix_new_exp_in_seg
9520 (segT, subsegT, fragS *, int, int, expressionS *, int,
9521 bfd_reloc_code_real_type);
9522 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9523
9524 static void
9525 convert_frag_immed (segT segP,
9526 fragS *fragP,
9527 int min_steps,
9528 xtensa_format fmt,
9529 int slot)
9530 {
9531 char *immed_instr = fragP->fr_opcode;
9532 TInsn orig_tinsn;
9533 bfd_boolean expanded = FALSE;
9534 bfd_boolean branch_jmp_to_next = FALSE;
9535 char *fr_opcode = fragP->fr_opcode;
9536 xtensa_isa isa = xtensa_default_isa;
9537 bfd_boolean from_wide_insn = FALSE;
9538 int bytes;
9539 bfd_boolean is_loop;
9540
9541 gas_assert (fr_opcode != NULL);
9542
9543 xg_clear_vinsn (&cur_vinsn);
9544
9545 vinsn_from_chars (&cur_vinsn, fr_opcode);
9546 if (cur_vinsn.num_slots > 1)
9547 from_wide_insn = TRUE;
9548
9549 orig_tinsn = cur_vinsn.slots[slot];
9550 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9551
9552 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9553
9554 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9555 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9556
9557 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9558 {
9559 /* Conversion just inserts a NOP and marks the fix as completed. */
9560 bytes = xtensa_format_length (isa, fmt);
9561 if (bytes >= 4)
9562 {
9563 cur_vinsn.slots[slot].opcode =
9564 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9565 cur_vinsn.slots[slot].ntok = 0;
9566 }
9567 else
9568 {
9569 bytes += fragP->tc_frag_data.text_expansion[0];
9570 gas_assert (bytes == 2 || bytes == 3);
9571 build_nop (&cur_vinsn.slots[0], bytes);
9572 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9573 }
9574 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
9575 xtensa_insnbuf_to_chars
9576 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9577 fragP->fr_var = 0;
9578 }
9579 else
9580 {
9581 /* Here is the fun stuff: Get the immediate field from this
9582 instruction. If it fits, we're done. If not, find the next
9583 instruction sequence that fits. */
9584
9585 IStack istack;
9586 int i;
9587 symbolS *lit_sym = NULL;
9588 int total_size = 0;
9589 int target_offset = 0;
9590 int old_size;
9591 int diff;
9592 symbolS *gen_label = NULL;
9593 offsetT frag_offset;
9594 bfd_boolean first = TRUE;
9595 bfd_boolean last_is_jump;
9596
9597 /* It does not fit. Find something that does and
9598 convert immediately. */
9599 frag_offset = fr_opcode - fragP->fr_literal;
9600 istack_init (&istack);
9601 xg_assembly_relax (&istack, &orig_tinsn,
9602 segP, fragP, frag_offset, min_steps, 0);
9603
9604 old_size = xtensa_format_length (isa, fmt);
9605
9606 /* Assemble this right inline. */
9607
9608 /* First, create the mapping from a label name to the REAL label. */
9609 target_offset = 0;
9610 for (i = 0; i < istack.ninsn; i++)
9611 {
9612 TInsn *tinsn = &istack.insn[i];
9613 fragS *lit_frag;
9614
9615 switch (tinsn->insn_type)
9616 {
9617 case ITYPE_LITERAL:
9618 if (lit_sym != NULL)
9619 as_bad (_("multiple literals in expansion"));
9620 /* First find the appropriate space in the literal pool. */
9621 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9622 if (lit_frag == NULL)
9623 as_bad (_("no registered fragment for literal"));
9624 if (tinsn->ntok != 1)
9625 as_bad (_("number of literal tokens != 1"));
9626
9627 /* Set the literal symbol and add a fixup. */
9628 lit_sym = lit_frag->fr_symbol;
9629 break;
9630
9631 case ITYPE_LABEL:
9632 if (align_targets && !is_loop)
9633 {
9634 fragS *unreach = fragP->fr_next;
9635 while (!(unreach->fr_type == rs_machine_dependent
9636 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9637 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9638 {
9639 unreach = unreach->fr_next;
9640 }
9641
9642 gas_assert (unreach->fr_type == rs_machine_dependent
9643 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9644 || unreach->fr_subtype == RELAX_UNREACHABLE));
9645
9646 target_offset += unreach->tc_frag_data.text_expansion[0];
9647 }
9648 gas_assert (gen_label == NULL);
9649 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9650 fr_opcode - fragP->fr_literal
9651 + target_offset, fragP);
9652 break;
9653
9654 case ITYPE_INSN:
9655 if (first && from_wide_insn)
9656 {
9657 target_offset += xtensa_format_length (isa, fmt);
9658 first = FALSE;
9659 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9660 target_offset += xg_get_single_size (tinsn->opcode);
9661 }
9662 else
9663 target_offset += xg_get_single_size (tinsn->opcode);
9664 break;
9665 }
9666 }
9667
9668 total_size = 0;
9669 first = TRUE;
9670 last_is_jump = FALSE;
9671 for (i = 0; i < istack.ninsn; i++)
9672 {
9673 TInsn *tinsn = &istack.insn[i];
9674 fragS *lit_frag;
9675 int size;
9676 segT target_seg;
9677 bfd_reloc_code_real_type reloc_type;
9678
9679 switch (tinsn->insn_type)
9680 {
9681 case ITYPE_LITERAL:
9682 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9683 /* Already checked. */
9684 gas_assert (lit_frag != NULL);
9685 gas_assert (lit_sym != NULL);
9686 gas_assert (tinsn->ntok == 1);
9687 /* Add a fixup. */
9688 target_seg = S_GET_SEGMENT (lit_sym);
9689 gas_assert (target_seg);
9690 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
9691 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9692 &tinsn->tok[0], FALSE, reloc_type);
9693 break;
9694
9695 case ITYPE_LABEL:
9696 break;
9697
9698 case ITYPE_INSN:
9699 xg_resolve_labels (tinsn, gen_label);
9700 xg_resolve_literals (tinsn, lit_sym);
9701 if (from_wide_insn && first)
9702 {
9703 first = FALSE;
9704 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9705 {
9706 cur_vinsn.slots[slot] = *tinsn;
9707 }
9708 else
9709 {
9710 cur_vinsn.slots[slot].opcode =
9711 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9712 cur_vinsn.slots[slot].ntok = 0;
9713 }
9714 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9715 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
9716 (unsigned char *) immed_instr, 0);
9717 fragP->tc_frag_data.is_insn = TRUE;
9718 size = xtensa_format_length (isa, fmt);
9719 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9720 {
9721 xg_emit_insn_to_buf
9722 (tinsn, immed_instr + size, fragP,
9723 immed_instr - fragP->fr_literal + size, TRUE);
9724 size += xg_get_single_size (tinsn->opcode);
9725 }
9726 }
9727 else
9728 {
9729 size = xg_get_single_size (tinsn->opcode);
9730 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
9731 immed_instr - fragP->fr_literal, TRUE);
9732 }
9733 immed_instr += size;
9734 total_size += size;
9735 break;
9736 }
9737 }
9738
9739 diff = total_size - old_size;
9740 gas_assert (diff >= 0);
9741 if (diff != 0)
9742 expanded = TRUE;
9743 gas_assert (diff <= fragP->fr_var);
9744 fragP->fr_var -= diff;
9745 fragP->fr_fix += diff;
9746 }
9747
9748 /* Check for undefined immediates in LOOP instructions. */
9749 if (is_loop)
9750 {
9751 symbolS *sym;
9752 sym = orig_tinsn.tok[1].X_add_symbol;
9753 if (sym != NULL && !S_IS_DEFINED (sym))
9754 {
9755 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9756 return;
9757 }
9758 sym = orig_tinsn.tok[1].X_op_symbol;
9759 if (sym != NULL && !S_IS_DEFINED (sym))
9760 {
9761 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9762 return;
9763 }
9764 }
9765
9766 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9767 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9768
9769 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9770 {
9771 /* Add an expansion note on the expanded instruction. */
9772 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9773 &orig_tinsn.tok[0], TRUE,
9774 BFD_RELOC_XTENSA_ASM_EXPAND);
9775 }
9776 }
9777
9778
9779 /* Add a new fix expression into the desired segment. We have to
9780 switch to that segment to do this. */
9781
9782 static fixS *
9783 fix_new_exp_in_seg (segT new_seg,
9784 subsegT new_subseg,
9785 fragS *frag,
9786 int where,
9787 int size,
9788 expressionS *exp,
9789 int pcrel,
9790 bfd_reloc_code_real_type r_type)
9791 {
9792 fixS *new_fix;
9793 segT seg = now_seg;
9794 subsegT subseg = now_subseg;
9795
9796 gas_assert (new_seg != 0);
9797 subseg_set (new_seg, new_subseg);
9798
9799 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9800 subseg_set (seg, subseg);
9801 return new_fix;
9802 }
9803
9804
9805 /* Relax a loop instruction so that it can span loop >256 bytes.
9806
9807 loop as, .L1
9808 .L0:
9809 rsr as, LEND
9810 wsr as, LBEG
9811 addi as, as, lo8 (label-.L1)
9812 addmi as, as, mid8 (label-.L1)
9813 wsr as, LEND
9814 isync
9815 rsr as, LCOUNT
9816 addi as, as, 1
9817 .L1:
9818 <<body>>
9819 label:
9820 */
9821
9822 static void
9823 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9824 {
9825 TInsn loop_insn;
9826 TInsn addi_insn;
9827 TInsn addmi_insn;
9828 unsigned long target;
9829 static xtensa_insnbuf insnbuf = NULL;
9830 unsigned int loop_length, loop_length_hi, loop_length_lo;
9831 xtensa_isa isa = xtensa_default_isa;
9832 addressT loop_offset;
9833 addressT addi_offset = 9;
9834 addressT addmi_offset = 12;
9835 fragS *next_fragP;
9836 int target_count;
9837
9838 if (!insnbuf)
9839 insnbuf = xtensa_insnbuf_alloc (isa);
9840
9841 /* Get the loop offset. */
9842 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9843
9844 /* Validate that there really is a LOOP at the loop_offset. Because
9845 loops are not bundleable, we can assume that the instruction will be
9846 in slot 0. */
9847 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9848 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9849
9850 gas_assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9851 addi_offset += loop_offset;
9852 addmi_offset += loop_offset;
9853
9854 gas_assert (tinsn->ntok == 2);
9855 if (tinsn->tok[1].X_op == O_constant)
9856 target = tinsn->tok[1].X_add_number;
9857 else if (tinsn->tok[1].X_op == O_symbol)
9858 {
9859 /* Find the fragment. */
9860 symbolS *sym = tinsn->tok[1].X_add_symbol;
9861 gas_assert (S_GET_SEGMENT (sym) == segP
9862 || S_GET_SEGMENT (sym) == absolute_section);
9863 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9864 }
9865 else
9866 {
9867 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9868 target = 0;
9869 }
9870
9871 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9872 loop_length_hi = loop_length & ~0x0ff;
9873 loop_length_lo = loop_length & 0x0ff;
9874 if (loop_length_lo >= 128)
9875 {
9876 loop_length_lo -= 256;
9877 loop_length_hi += 256;
9878 }
9879
9880 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9881 32512. If the loop is larger than that, then we just fail. */
9882 if (loop_length_hi > 32512)
9883 as_bad_where (fragP->fr_file, fragP->fr_line,
9884 _("loop too long for LOOP instruction"));
9885
9886 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9887 gas_assert (addi_insn.opcode == xtensa_addi_opcode);
9888
9889 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9890 gas_assert (addmi_insn.opcode == xtensa_addmi_opcode);
9891
9892 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9893 tinsn_to_insnbuf (&addi_insn, insnbuf);
9894
9895 fragP->tc_frag_data.is_insn = TRUE;
9896 xtensa_insnbuf_to_chars
9897 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9898
9899 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9900 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9901 xtensa_insnbuf_to_chars
9902 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9903
9904 /* Walk through all of the frags from here to the loop end
9905 and mark them as no_transform to keep them from being modified
9906 by the linker. If we ever have a relocation for the
9907 addi/addmi of the difference of two symbols we can remove this. */
9908
9909 target_count = 0;
9910 for (next_fragP = fragP; next_fragP != NULL;
9911 next_fragP = next_fragP->fr_next)
9912 {
9913 next_fragP->tc_frag_data.is_no_transform = TRUE;
9914 if (next_fragP->tc_frag_data.is_loop_target)
9915 target_count++;
9916 if (target_count == 2)
9917 break;
9918 }
9919 }
9920
9921 \f
9922 /* A map that keeps information on a per-subsegment basis. This is
9923 maintained during initial assembly, but is invalid once the
9924 subsegments are smashed together. I.E., it cannot be used during
9925 the relaxation. */
9926
9927 typedef struct subseg_map_struct
9928 {
9929 /* the key */
9930 segT seg;
9931 subsegT subseg;
9932
9933 /* the data */
9934 unsigned flags;
9935 float total_freq; /* fall-through + branch target frequency */
9936 float target_freq; /* branch target frequency alone */
9937
9938 struct subseg_map_struct *next;
9939 } subseg_map;
9940
9941
9942 static subseg_map *sseg_map = NULL;
9943
9944 static subseg_map *
9945 get_subseg_info (segT seg, subsegT subseg)
9946 {
9947 subseg_map *subseg_e;
9948
9949 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9950 {
9951 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9952 break;
9953 }
9954 return subseg_e;
9955 }
9956
9957
9958 static subseg_map *
9959 add_subseg_info (segT seg, subsegT subseg)
9960 {
9961 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9962 memset (subseg_e, 0, sizeof (subseg_map));
9963 subseg_e->seg = seg;
9964 subseg_e->subseg = subseg;
9965 subseg_e->flags = 0;
9966 /* Start off considering every branch target very important. */
9967 subseg_e->target_freq = 1.0;
9968 subseg_e->total_freq = 1.0;
9969 subseg_e->next = sseg_map;
9970 sseg_map = subseg_e;
9971 return subseg_e;
9972 }
9973
9974
9975 static unsigned
9976 get_last_insn_flags (segT seg, subsegT subseg)
9977 {
9978 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9979 if (subseg_e)
9980 return subseg_e->flags;
9981 return 0;
9982 }
9983
9984
9985 static void
9986 set_last_insn_flags (segT seg,
9987 subsegT subseg,
9988 unsigned fl,
9989 bfd_boolean val)
9990 {
9991 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9992 if (! subseg_e)
9993 subseg_e = add_subseg_info (seg, subseg);
9994 if (val)
9995 subseg_e->flags |= fl;
9996 else
9997 subseg_e->flags &= ~fl;
9998 }
9999
10000
10001 static float
10002 get_subseg_total_freq (segT seg, subsegT subseg)
10003 {
10004 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10005 if (subseg_e)
10006 return subseg_e->total_freq;
10007 return 1.0;
10008 }
10009
10010
10011 static float
10012 get_subseg_target_freq (segT seg, subsegT subseg)
10013 {
10014 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10015 if (subseg_e)
10016 return subseg_e->target_freq;
10017 return 1.0;
10018 }
10019
10020
10021 static void
10022 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
10023 {
10024 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10025 if (! subseg_e)
10026 subseg_e = add_subseg_info (seg, subseg);
10027 subseg_e->total_freq = total_f;
10028 subseg_e->target_freq = target_f;
10029 }
10030
10031 \f
10032 /* Segment Lists and emit_state Stuff. */
10033
10034 static void
10035 xtensa_move_seg_list_to_beginning (seg_list *head)
10036 {
10037 head = head->next;
10038 while (head)
10039 {
10040 segT literal_section = head->seg;
10041
10042 /* Move the literal section to the front of the section list. */
10043 gas_assert (literal_section);
10044 if (literal_section != stdoutput->sections)
10045 {
10046 bfd_section_list_remove (stdoutput, literal_section);
10047 bfd_section_list_prepend (stdoutput, literal_section);
10048 }
10049 head = head->next;
10050 }
10051 }
10052
10053
10054 static void mark_literal_frags (seg_list *);
10055
10056 static void
10057 xtensa_move_literals (void)
10058 {
10059 seg_list *segment;
10060 frchainS *frchain_from, *frchain_to;
10061 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
10062 fragS **frag_splice;
10063 emit_state state;
10064 segT dest_seg;
10065 fixS *fix, *next_fix, **fix_splice;
10066 sym_list *lit;
10067
10068 mark_literal_frags (literal_head->next);
10069
10070 if (use_literal_section)
10071 return;
10072
10073 for (segment = literal_head->next; segment; segment = segment->next)
10074 {
10075 /* Keep the literals for .init and .fini in separate sections. */
10076 if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME)
10077 || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME))
10078 continue;
10079
10080 frchain_from = seg_info (segment->seg)->frchainP;
10081 search_frag = frchain_from->frch_root;
10082 literal_pool = NULL;
10083 frchain_to = NULL;
10084 frag_splice = &(frchain_from->frch_root);
10085
10086 while (!search_frag->tc_frag_data.literal_frag)
10087 {
10088 gas_assert (search_frag->fr_fix == 0
10089 || search_frag->fr_type == rs_align);
10090 search_frag = search_frag->fr_next;
10091 }
10092
10093 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
10094 == RELAX_LITERAL_POOL_BEGIN);
10095 xtensa_switch_section_emit_state (&state, segment->seg, 0);
10096
10097 /* Make sure that all the frags in this series are closed, and
10098 that there is at least one left over of zero-size. This
10099 prevents us from making a segment with an frchain without any
10100 frags in it. */
10101 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10102 xtensa_set_frag_assembly_state (frag_now);
10103 last_frag = frag_now;
10104 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10105 xtensa_set_frag_assembly_state (frag_now);
10106
10107 while (search_frag != frag_now)
10108 {
10109 next_frag = search_frag->fr_next;
10110
10111 /* First, move the frag out of the literal section and
10112 to the appropriate place. */
10113 if (search_frag->tc_frag_data.literal_frag)
10114 {
10115 literal_pool = search_frag->tc_frag_data.literal_frag;
10116 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
10117 frchain_to = literal_pool->tc_frag_data.lit_frchain;
10118 gas_assert (frchain_to);
10119 }
10120 insert_after = literal_pool->tc_frag_data.literal_frag;
10121 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
10122
10123 *frag_splice = next_frag;
10124 search_frag->fr_next = insert_after->fr_next;
10125 insert_after->fr_next = search_frag;
10126 search_frag->tc_frag_data.lit_seg = dest_seg;
10127 literal_pool->tc_frag_data.literal_frag = search_frag;
10128
10129 /* Now move any fixups associated with this frag to the
10130 right section. */
10131 fix = frchain_from->fix_root;
10132 fix_splice = &(frchain_from->fix_root);
10133 while (fix)
10134 {
10135 next_fix = fix->fx_next;
10136 if (fix->fx_frag == search_frag)
10137 {
10138 *fix_splice = next_fix;
10139 fix->fx_next = frchain_to->fix_root;
10140 frchain_to->fix_root = fix;
10141 if (frchain_to->fix_tail == NULL)
10142 frchain_to->fix_tail = fix;
10143 }
10144 else
10145 fix_splice = &(fix->fx_next);
10146 fix = next_fix;
10147 }
10148 search_frag = next_frag;
10149 }
10150
10151 if (frchain_from->fix_root != NULL)
10152 {
10153 frchain_from = seg_info (segment->seg)->frchainP;
10154 as_warn (_("fixes not all moved from %s"), segment->seg->name);
10155
10156 gas_assert (frchain_from->fix_root == NULL);
10157 }
10158 frchain_from->fix_tail = NULL;
10159 xtensa_restore_emit_state (&state);
10160 }
10161
10162 /* Now fix up the SEGMENT value for all the literal symbols. */
10163 for (lit = literal_syms; lit; lit = lit->next)
10164 {
10165 symbolS *lit_sym = lit->sym;
10166 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
10167 if (dest_seg)
10168 S_SET_SEGMENT (lit_sym, dest_seg);
10169 }
10170 }
10171
10172
10173 /* Walk over all the frags for segments in a list and mark them as
10174 containing literals. As clunky as this is, we can't rely on frag_var
10175 and frag_variant to get called in all situations. */
10176
10177 static void
10178 mark_literal_frags (seg_list *segment)
10179 {
10180 frchainS *frchain_from;
10181 fragS *search_frag;
10182
10183 while (segment)
10184 {
10185 frchain_from = seg_info (segment->seg)->frchainP;
10186 search_frag = frchain_from->frch_root;
10187 while (search_frag)
10188 {
10189 search_frag->tc_frag_data.is_literal = TRUE;
10190 search_frag = search_frag->fr_next;
10191 }
10192 segment = segment->next;
10193 }
10194 }
10195
10196
10197 static void
10198 xtensa_reorder_seg_list (seg_list *head, segT after)
10199 {
10200 /* Move all of the sections in the section list to come
10201 after "after" in the gnu segment list. */
10202
10203 head = head->next;
10204 while (head)
10205 {
10206 segT literal_section = head->seg;
10207
10208 /* Move the literal section after "after". */
10209 gas_assert (literal_section);
10210 if (literal_section != after)
10211 {
10212 bfd_section_list_remove (stdoutput, literal_section);
10213 bfd_section_list_insert_after (stdoutput, after, literal_section);
10214 }
10215
10216 head = head->next;
10217 }
10218 }
10219
10220
10221 /* Push all the literal segments to the end of the gnu list. */
10222
10223 static void
10224 xtensa_reorder_segments (void)
10225 {
10226 segT sec;
10227 segT last_sec = 0;
10228 int old_count = 0;
10229 int new_count = 0;
10230
10231 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10232 {
10233 last_sec = sec;
10234 old_count++;
10235 }
10236
10237 /* Now that we have the last section, push all the literal
10238 sections to the end. */
10239 xtensa_reorder_seg_list (literal_head, last_sec);
10240
10241 /* Now perform the final error check. */
10242 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10243 new_count++;
10244 gas_assert (new_count == old_count);
10245 }
10246
10247
10248 /* Change the emit state (seg, subseg, and frag related stuff) to the
10249 correct location. Return a emit_state which can be passed to
10250 xtensa_restore_emit_state to return to current fragment. */
10251
10252 static void
10253 xtensa_switch_to_literal_fragment (emit_state *result)
10254 {
10255 if (directive_state[directive_absolute_literals])
10256 {
10257 segT lit4_seg = cache_literal_section (TRUE);
10258 xtensa_switch_section_emit_state (result, lit4_seg, 0);
10259 }
10260 else
10261 xtensa_switch_to_non_abs_literal_fragment (result);
10262
10263 /* Do a 4-byte align here. */
10264 frag_align (2, 0, 0);
10265 record_alignment (now_seg, 2);
10266 }
10267
10268
10269 static void
10270 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
10271 {
10272 static bfd_boolean recursive = FALSE;
10273 fragS *pool_location = get_literal_pool_location (now_seg);
10274 segT lit_seg;
10275 bfd_boolean is_init =
10276 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
10277 bfd_boolean is_fini =
10278 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
10279
10280 if (pool_location == NULL
10281 && !use_literal_section
10282 && !recursive
10283 && !is_init && ! is_fini)
10284 {
10285 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
10286
10287 /* When we mark a literal pool location, we want to put a frag in
10288 the literal pool that points to it. But to do that, we want to
10289 switch_to_literal_fragment. But literal sections don't have
10290 literal pools, so their location is always null, so we would
10291 recurse forever. This is kind of hacky, but it works. */
10292
10293 recursive = TRUE;
10294 xtensa_mark_literal_pool_location ();
10295 recursive = FALSE;
10296 }
10297
10298 lit_seg = cache_literal_section (FALSE);
10299 xtensa_switch_section_emit_state (result, lit_seg, 0);
10300
10301 if (!use_literal_section
10302 && !is_init && !is_fini
10303 && get_literal_pool_location (now_seg) != pool_location)
10304 {
10305 /* Close whatever frag is there. */
10306 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10307 xtensa_set_frag_assembly_state (frag_now);
10308 frag_now->tc_frag_data.literal_frag = pool_location;
10309 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10310 xtensa_set_frag_assembly_state (frag_now);
10311 }
10312 }
10313
10314
10315 /* Call this function before emitting data into the literal section.
10316 This is a helper function for xtensa_switch_to_literal_fragment.
10317 This is similar to a .section new_now_seg subseg. */
10318
10319 static void
10320 xtensa_switch_section_emit_state (emit_state *state,
10321 segT new_now_seg,
10322 subsegT new_now_subseg)
10323 {
10324 state->name = now_seg->name;
10325 state->now_seg = now_seg;
10326 state->now_subseg = now_subseg;
10327 state->generating_literals = generating_literals;
10328 generating_literals++;
10329 subseg_set (new_now_seg, new_now_subseg);
10330 }
10331
10332
10333 /* Use to restore the emitting into the normal place. */
10334
10335 static void
10336 xtensa_restore_emit_state (emit_state *state)
10337 {
10338 generating_literals = state->generating_literals;
10339 subseg_set (state->now_seg, state->now_subseg);
10340 }
10341
10342
10343 /* Predicate function used to look up a section in a particular group. */
10344
10345 static bfd_boolean
10346 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10347 {
10348 const char *gname = inf;
10349 const char *group_name = elf_group_name (sec);
10350
10351 return (group_name == gname
10352 || (group_name != NULL
10353 && gname != NULL
10354 && strcmp (group_name, gname) == 0));
10355 }
10356
10357
10358 /* Get the literal section to be used for the current text section.
10359 The result may be cached in the default_lit_sections structure. */
10360
10361 static segT
10362 cache_literal_section (bfd_boolean use_abs_literals)
10363 {
10364 const char *text_name, *group_name = 0;
10365 char *base_name, *name, *suffix;
10366 segT *pcached;
10367 segT seg, current_section;
10368 int current_subsec;
10369 bfd_boolean linkonce = FALSE;
10370
10371 /* Save the current section/subsection. */
10372 current_section = now_seg;
10373 current_subsec = now_subseg;
10374
10375 /* Clear the cached values if they are no longer valid. */
10376 if (now_seg != default_lit_sections.current_text_seg)
10377 {
10378 default_lit_sections.current_text_seg = now_seg;
10379 default_lit_sections.lit_seg = NULL;
10380 default_lit_sections.lit4_seg = NULL;
10381 }
10382
10383 /* Check if the literal section is already cached. */
10384 if (use_abs_literals)
10385 pcached = &default_lit_sections.lit4_seg;
10386 else
10387 pcached = &default_lit_sections.lit_seg;
10388
10389 if (*pcached)
10390 return *pcached;
10391
10392 text_name = default_lit_sections.lit_prefix;
10393 if (! text_name || ! *text_name)
10394 {
10395 text_name = segment_name (current_section);
10396 group_name = elf_group_name (current_section);
10397 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
10398 }
10399
10400 base_name = use_abs_literals ? ".lit4" : ".literal";
10401 if (group_name)
10402 {
10403 name = xmalloc (strlen (base_name) + strlen (group_name) + 2);
10404 sprintf (name, "%s.%s", base_name, group_name);
10405 }
10406 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
10407 {
10408 suffix = strchr (text_name + linkonce_len, '.');
10409
10410 name = xmalloc (linkonce_len + strlen (base_name) + 1
10411 + (suffix ? strlen (suffix) : 0));
10412 strcpy (name, ".gnu.linkonce");
10413 strcat (name, base_name);
10414 if (suffix)
10415 strcat (name, suffix);
10416 linkonce = TRUE;
10417 }
10418 else
10419 {
10420 /* If the section name ends with ".text", then replace that suffix
10421 instead of appending an additional suffix. */
10422 size_t len = strlen (text_name);
10423 if (len >= 5 && strcmp (text_name + len - 5, ".text") == 0)
10424 len -= 5;
10425
10426 name = xmalloc (len + strlen (base_name) + 1);
10427 strcpy (name, text_name);
10428 strcpy (name + len, base_name);
10429 }
10430
10431 /* Canonicalize section names to allow renaming literal sections.
10432 The group name, if any, came from the current text section and
10433 has already been canonicalized. */
10434 name = tc_canonicalize_symbol_name (name);
10435
10436 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
10437 (void *) group_name);
10438 if (! seg)
10439 {
10440 flagword flags;
10441
10442 seg = subseg_force_new (name, 0);
10443
10444 if (! use_abs_literals)
10445 {
10446 /* Add the newly created literal segment to the list. */
10447 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10448 n->seg = seg;
10449 n->next = literal_head->next;
10450 literal_head->next = n;
10451 }
10452
10453 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
10454 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
10455 | (use_abs_literals ? SEC_DATA : SEC_CODE));
10456
10457 elf_group_name (seg) = group_name;
10458
10459 bfd_set_section_flags (stdoutput, seg, flags);
10460 bfd_set_section_alignment (stdoutput, seg, 2);
10461 }
10462
10463 *pcached = seg;
10464 subseg_set (current_section, current_subsec);
10465 return seg;
10466 }
10467
10468 \f
10469 /* Property Tables Stuff. */
10470
10471 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10472 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10473 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10474
10475 typedef bfd_boolean (*frag_predicate) (const fragS *);
10476 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10477
10478 static bfd_boolean get_frag_is_literal (const fragS *);
10479 static void xtensa_create_property_segments
10480 (frag_predicate, frag_predicate, const char *, xt_section_type);
10481 static void xtensa_create_xproperty_segments
10482 (frag_flags_fn, const char *, xt_section_type);
10483 static bfd_boolean exclude_section_from_property_tables (segT);
10484 static bfd_boolean section_has_property (segT, frag_predicate);
10485 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10486 static void add_xt_block_frags
10487 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
10488 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10489 static void xtensa_frag_flags_init (frag_flags *);
10490 static void get_frag_property_flags (const fragS *, frag_flags *);
10491 static bfd_vma frag_flags_to_number (const frag_flags *);
10492 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
10493
10494 /* Set up property tables after relaxation. */
10495
10496 void
10497 xtensa_post_relax_hook (void)
10498 {
10499 xtensa_move_seg_list_to_beginning (literal_head);
10500
10501 xtensa_find_unmarked_state_frags ();
10502 xtensa_mark_frags_for_org ();
10503 xtensa_mark_difference_of_two_symbols ();
10504
10505 xtensa_create_property_segments (get_frag_is_literal,
10506 NULL,
10507 XTENSA_LIT_SEC_NAME,
10508 xt_literal_sec);
10509 xtensa_create_xproperty_segments (get_frag_property_flags,
10510 XTENSA_PROP_SEC_NAME,
10511 xt_prop_sec);
10512
10513 if (warn_unaligned_branch_targets)
10514 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10515 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10516 }
10517
10518
10519 /* This function is only meaningful after xtensa_move_literals. */
10520
10521 static bfd_boolean
10522 get_frag_is_literal (const fragS *fragP)
10523 {
10524 gas_assert (fragP != NULL);
10525 return fragP->tc_frag_data.is_literal;
10526 }
10527
10528
10529 static void
10530 xtensa_create_property_segments (frag_predicate property_function,
10531 frag_predicate end_property_function,
10532 const char *section_name_base,
10533 xt_section_type sec_type)
10534 {
10535 segT *seclist;
10536
10537 /* Walk over all of the current segments.
10538 Walk over each fragment
10539 For each non-empty fragment,
10540 Build a property record (append where possible). */
10541
10542 for (seclist = &stdoutput->sections;
10543 seclist && *seclist;
10544 seclist = &(*seclist)->next)
10545 {
10546 segT sec = *seclist;
10547
10548 if (exclude_section_from_property_tables (sec))
10549 continue;
10550
10551 if (section_has_property (sec, property_function))
10552 {
10553 segment_info_type *xt_seg_info;
10554 xtensa_block_info **xt_blocks;
10555 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
10556
10557 prop_sec->output_section = prop_sec;
10558 subseg_set (prop_sec, 0);
10559 xt_seg_info = seg_info (prop_sec);
10560 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10561
10562 /* Walk over all of the frchains here and add new sections. */
10563 add_xt_block_frags (sec, xt_blocks, property_function,
10564 end_property_function);
10565 }
10566 }
10567
10568 /* Now we fill them out.... */
10569
10570 for (seclist = &stdoutput->sections;
10571 seclist && *seclist;
10572 seclist = &(*seclist)->next)
10573 {
10574 segment_info_type *seginfo;
10575 xtensa_block_info *block;
10576 segT sec = *seclist;
10577
10578 seginfo = seg_info (sec);
10579 block = seginfo->tc_segment_info_data.blocks[sec_type];
10580
10581 if (block)
10582 {
10583 xtensa_block_info *cur_block;
10584 int num_recs = 0;
10585 bfd_size_type rec_size;
10586
10587 for (cur_block = block; cur_block; cur_block = cur_block->next)
10588 num_recs++;
10589
10590 rec_size = num_recs * 8;
10591 bfd_set_section_size (stdoutput, sec, rec_size);
10592
10593 if (num_recs)
10594 {
10595 char *frag_data;
10596 int i;
10597
10598 subseg_set (sec, 0);
10599 frag_data = frag_more (rec_size);
10600 cur_block = block;
10601 for (i = 0; i < num_recs; i++)
10602 {
10603 fixS *fix;
10604
10605 /* Write the fixup. */
10606 gas_assert (cur_block);
10607 fix = fix_new (frag_now, i * 8, 4,
10608 section_symbol (cur_block->sec),
10609 cur_block->offset,
10610 FALSE, BFD_RELOC_32);
10611 fix->fx_file = "<internal>";
10612 fix->fx_line = 0;
10613
10614 /* Write the length. */
10615 md_number_to_chars (&frag_data[4 + i * 8],
10616 cur_block->size, 4);
10617 cur_block = cur_block->next;
10618 }
10619 frag_wane (frag_now);
10620 frag_new (0);
10621 frag_wane (frag_now);
10622 }
10623 }
10624 }
10625 }
10626
10627
10628 static void
10629 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10630 const char *section_name_base,
10631 xt_section_type sec_type)
10632 {
10633 segT *seclist;
10634
10635 /* Walk over all of the current segments.
10636 Walk over each fragment.
10637 For each fragment that has instructions,
10638 build an instruction record (append where possible). */
10639
10640 for (seclist = &stdoutput->sections;
10641 seclist && *seclist;
10642 seclist = &(*seclist)->next)
10643 {
10644 segT sec = *seclist;
10645
10646 if (exclude_section_from_property_tables (sec))
10647 continue;
10648
10649 if (section_has_xproperty (sec, flag_fn))
10650 {
10651 segment_info_type *xt_seg_info;
10652 xtensa_block_info **xt_blocks;
10653 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
10654
10655 prop_sec->output_section = prop_sec;
10656 subseg_set (prop_sec, 0);
10657 xt_seg_info = seg_info (prop_sec);
10658 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10659
10660 /* Walk over all of the frchains here and add new sections. */
10661 add_xt_prop_frags (sec, xt_blocks, flag_fn);
10662 }
10663 }
10664
10665 /* Now we fill them out.... */
10666
10667 for (seclist = &stdoutput->sections;
10668 seclist && *seclist;
10669 seclist = &(*seclist)->next)
10670 {
10671 segment_info_type *seginfo;
10672 xtensa_block_info *block;
10673 segT sec = *seclist;
10674
10675 seginfo = seg_info (sec);
10676 block = seginfo->tc_segment_info_data.blocks[sec_type];
10677
10678 if (block)
10679 {
10680 xtensa_block_info *cur_block;
10681 int num_recs = 0;
10682 bfd_size_type rec_size;
10683
10684 for (cur_block = block; cur_block; cur_block = cur_block->next)
10685 num_recs++;
10686
10687 rec_size = num_recs * (8 + 4);
10688 bfd_set_section_size (stdoutput, sec, rec_size);
10689 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10690
10691 if (num_recs)
10692 {
10693 char *frag_data;
10694 int i;
10695
10696 subseg_set (sec, 0);
10697 frag_data = frag_more (rec_size);
10698 cur_block = block;
10699 for (i = 0; i < num_recs; i++)
10700 {
10701 fixS *fix;
10702
10703 /* Write the fixup. */
10704 gas_assert (cur_block);
10705 fix = fix_new (frag_now, i * 12, 4,
10706 section_symbol (cur_block->sec),
10707 cur_block->offset,
10708 FALSE, BFD_RELOC_32);
10709 fix->fx_file = "<internal>";
10710 fix->fx_line = 0;
10711
10712 /* Write the length. */
10713 md_number_to_chars (&frag_data[4 + i * 12],
10714 cur_block->size, 4);
10715 md_number_to_chars (&frag_data[8 + i * 12],
10716 frag_flags_to_number (&cur_block->flags),
10717 4);
10718 cur_block = cur_block->next;
10719 }
10720 frag_wane (frag_now);
10721 frag_new (0);
10722 frag_wane (frag_now);
10723 }
10724 }
10725 }
10726 }
10727
10728
10729 static bfd_boolean
10730 exclude_section_from_property_tables (segT sec)
10731 {
10732 flagword flags = bfd_get_section_flags (stdoutput, sec);
10733
10734 /* Sections that don't contribute to the memory footprint are excluded. */
10735 if ((flags & SEC_DEBUGGING)
10736 || !(flags & SEC_ALLOC)
10737 || (flags & SEC_MERGE))
10738 return TRUE;
10739
10740 /* Linker cie and fde optimizations mess up property entries for
10741 eh_frame sections, but there is nothing inside them relevant to
10742 property tables anyway. */
10743 if (strcmp (sec->name, ".eh_frame") == 0)
10744 return TRUE;
10745
10746 return FALSE;
10747 }
10748
10749
10750 static bfd_boolean
10751 section_has_property (segT sec, frag_predicate property_function)
10752 {
10753 segment_info_type *seginfo = seg_info (sec);
10754 fragS *fragP;
10755
10756 if (seginfo && seginfo->frchainP)
10757 {
10758 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10759 {
10760 if (property_function (fragP)
10761 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10762 return TRUE;
10763 }
10764 }
10765 return FALSE;
10766 }
10767
10768
10769 static bfd_boolean
10770 section_has_xproperty (segT sec, frag_flags_fn property_function)
10771 {
10772 segment_info_type *seginfo = seg_info (sec);
10773 fragS *fragP;
10774
10775 if (seginfo && seginfo->frchainP)
10776 {
10777 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10778 {
10779 frag_flags prop_flags;
10780 property_function (fragP, &prop_flags);
10781 if (!xtensa_frag_flags_is_empty (&prop_flags))
10782 return TRUE;
10783 }
10784 }
10785 return FALSE;
10786 }
10787
10788
10789 /* Two types of block sections exist right now: literal and insns. */
10790
10791 static void
10792 add_xt_block_frags (segT sec,
10793 xtensa_block_info **xt_block,
10794 frag_predicate property_function,
10795 frag_predicate end_property_function)
10796 {
10797 bfd_vma seg_offset;
10798 fragS *fragP;
10799
10800 /* Build it if needed. */
10801 while (*xt_block != NULL)
10802 xt_block = &(*xt_block)->next;
10803 /* We are either at NULL at the beginning or at the end. */
10804
10805 /* Walk through the frags. */
10806 seg_offset = 0;
10807
10808 if (seg_info (sec)->frchainP)
10809 {
10810 for (fragP = seg_info (sec)->frchainP->frch_root;
10811 fragP;
10812 fragP = fragP->fr_next)
10813 {
10814 if (property_function (fragP)
10815 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10816 {
10817 if (*xt_block != NULL)
10818 {
10819 if ((*xt_block)->offset + (*xt_block)->size
10820 == fragP->fr_address)
10821 (*xt_block)->size += fragP->fr_fix;
10822 else
10823 xt_block = &((*xt_block)->next);
10824 }
10825 if (*xt_block == NULL)
10826 {
10827 xtensa_block_info *new_block = (xtensa_block_info *)
10828 xmalloc (sizeof (xtensa_block_info));
10829 new_block->sec = sec;
10830 new_block->offset = fragP->fr_address;
10831 new_block->size = fragP->fr_fix;
10832 new_block->next = NULL;
10833 xtensa_frag_flags_init (&new_block->flags);
10834 *xt_block = new_block;
10835 }
10836 if (end_property_function
10837 && end_property_function (fragP))
10838 {
10839 xt_block = &((*xt_block)->next);
10840 }
10841 }
10842 }
10843 }
10844 }
10845
10846
10847 /* Break the encapsulation of add_xt_prop_frags here. */
10848
10849 static bfd_boolean
10850 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10851 {
10852 if (prop_flags->is_literal
10853 || prop_flags->is_insn
10854 || prop_flags->is_data
10855 || prop_flags->is_unreachable)
10856 return FALSE;
10857 return TRUE;
10858 }
10859
10860
10861 static void
10862 xtensa_frag_flags_init (frag_flags *prop_flags)
10863 {
10864 memset (prop_flags, 0, sizeof (frag_flags));
10865 }
10866
10867
10868 static void
10869 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10870 {
10871 xtensa_frag_flags_init (prop_flags);
10872 if (fragP->tc_frag_data.is_literal)
10873 prop_flags->is_literal = TRUE;
10874 if (fragP->tc_frag_data.is_specific_opcode
10875 || fragP->tc_frag_data.is_no_transform)
10876 {
10877 prop_flags->is_no_transform = TRUE;
10878 if (xtensa_frag_flags_is_empty (prop_flags))
10879 prop_flags->is_data = TRUE;
10880 }
10881 if (fragP->tc_frag_data.is_unreachable)
10882 prop_flags->is_unreachable = TRUE;
10883 else if (fragP->tc_frag_data.is_insn)
10884 {
10885 prop_flags->is_insn = TRUE;
10886 if (fragP->tc_frag_data.is_loop_target)
10887 prop_flags->insn.is_loop_target = TRUE;
10888 if (fragP->tc_frag_data.is_branch_target)
10889 prop_flags->insn.is_branch_target = TRUE;
10890 if (fragP->tc_frag_data.is_no_density)
10891 prop_flags->insn.is_no_density = TRUE;
10892 if (fragP->tc_frag_data.use_absolute_literals)
10893 prop_flags->insn.is_abslit = TRUE;
10894 }
10895 if (fragP->tc_frag_data.is_align)
10896 {
10897 prop_flags->is_align = TRUE;
10898 prop_flags->alignment = fragP->tc_frag_data.alignment;
10899 if (xtensa_frag_flags_is_empty (prop_flags))
10900 prop_flags->is_data = TRUE;
10901 }
10902 }
10903
10904
10905 static bfd_vma
10906 frag_flags_to_number (const frag_flags *prop_flags)
10907 {
10908 bfd_vma num = 0;
10909 if (prop_flags->is_literal)
10910 num |= XTENSA_PROP_LITERAL;
10911 if (prop_flags->is_insn)
10912 num |= XTENSA_PROP_INSN;
10913 if (prop_flags->is_data)
10914 num |= XTENSA_PROP_DATA;
10915 if (prop_flags->is_unreachable)
10916 num |= XTENSA_PROP_UNREACHABLE;
10917 if (prop_flags->insn.is_loop_target)
10918 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10919 if (prop_flags->insn.is_branch_target)
10920 {
10921 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10922 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10923 }
10924
10925 if (prop_flags->insn.is_no_density)
10926 num |= XTENSA_PROP_INSN_NO_DENSITY;
10927 if (prop_flags->is_no_transform)
10928 num |= XTENSA_PROP_NO_TRANSFORM;
10929 if (prop_flags->insn.is_no_reorder)
10930 num |= XTENSA_PROP_INSN_NO_REORDER;
10931 if (prop_flags->insn.is_abslit)
10932 num |= XTENSA_PROP_INSN_ABSLIT;
10933
10934 if (prop_flags->is_align)
10935 {
10936 num |= XTENSA_PROP_ALIGN;
10937 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10938 }
10939
10940 return num;
10941 }
10942
10943
10944 static bfd_boolean
10945 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10946 const frag_flags *prop_flags_2)
10947 {
10948 /* Cannot combine with an end marker. */
10949
10950 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10951 return FALSE;
10952 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10953 return FALSE;
10954 if (prop_flags_1->is_data != prop_flags_2->is_data)
10955 return FALSE;
10956
10957 if (prop_flags_1->is_insn)
10958 {
10959 /* Properties of the beginning of the frag. */
10960 if (prop_flags_2->insn.is_loop_target)
10961 return FALSE;
10962 if (prop_flags_2->insn.is_branch_target)
10963 return FALSE;
10964 if (prop_flags_1->insn.is_no_density !=
10965 prop_flags_2->insn.is_no_density)
10966 return FALSE;
10967 if (prop_flags_1->is_no_transform !=
10968 prop_flags_2->is_no_transform)
10969 return FALSE;
10970 if (prop_flags_1->insn.is_no_reorder !=
10971 prop_flags_2->insn.is_no_reorder)
10972 return FALSE;
10973 if (prop_flags_1->insn.is_abslit !=
10974 prop_flags_2->insn.is_abslit)
10975 return FALSE;
10976 }
10977
10978 if (prop_flags_1->is_align)
10979 return FALSE;
10980
10981 return TRUE;
10982 }
10983
10984
10985 static bfd_vma
10986 xt_block_aligned_size (const xtensa_block_info *xt_block)
10987 {
10988 bfd_vma end_addr;
10989 unsigned align_bits;
10990
10991 if (!xt_block->flags.is_align)
10992 return xt_block->size;
10993
10994 end_addr = xt_block->offset + xt_block->size;
10995 align_bits = xt_block->flags.alignment;
10996 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10997 return end_addr - xt_block->offset;
10998 }
10999
11000
11001 static bfd_boolean
11002 xtensa_xt_block_combine (xtensa_block_info *xt_block,
11003 const xtensa_block_info *xt_block_2)
11004 {
11005 if (xt_block->sec != xt_block_2->sec)
11006 return FALSE;
11007 if (xt_block->offset + xt_block_aligned_size (xt_block)
11008 != xt_block_2->offset)
11009 return FALSE;
11010
11011 if (xt_block_2->size == 0
11012 && (!xt_block_2->flags.is_unreachable
11013 || xt_block->flags.is_unreachable))
11014 {
11015 if (xt_block_2->flags.is_align
11016 && xt_block->flags.is_align)
11017 {
11018 /* Nothing needed. */
11019 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
11020 return TRUE;
11021 }
11022 else
11023 {
11024 if (xt_block_2->flags.is_align)
11025 {
11026 /* Push alignment to previous entry. */
11027 xt_block->flags.is_align = xt_block_2->flags.is_align;
11028 xt_block->flags.alignment = xt_block_2->flags.alignment;
11029 }
11030 return TRUE;
11031 }
11032 }
11033 if (!xtensa_frag_flags_combinable (&xt_block->flags,
11034 &xt_block_2->flags))
11035 return FALSE;
11036
11037 xt_block->size += xt_block_2->size;
11038
11039 if (xt_block_2->flags.is_align)
11040 {
11041 xt_block->flags.is_align = TRUE;
11042 xt_block->flags.alignment = xt_block_2->flags.alignment;
11043 }
11044
11045 return TRUE;
11046 }
11047
11048
11049 static void
11050 add_xt_prop_frags (segT sec,
11051 xtensa_block_info **xt_block,
11052 frag_flags_fn property_function)
11053 {
11054 bfd_vma seg_offset;
11055 fragS *fragP;
11056
11057 /* Build it if needed. */
11058 while (*xt_block != NULL)
11059 {
11060 xt_block = &(*xt_block)->next;
11061 }
11062 /* We are either at NULL at the beginning or at the end. */
11063
11064 /* Walk through the frags. */
11065 seg_offset = 0;
11066
11067 if (seg_info (sec)->frchainP)
11068 {
11069 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
11070 fragP = fragP->fr_next)
11071 {
11072 xtensa_block_info tmp_block;
11073 tmp_block.sec = sec;
11074 tmp_block.offset = fragP->fr_address;
11075 tmp_block.size = fragP->fr_fix;
11076 tmp_block.next = NULL;
11077 property_function (fragP, &tmp_block.flags);
11078
11079 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
11080 /* && fragP->fr_fix != 0) */
11081 {
11082 if ((*xt_block) == NULL
11083 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
11084 {
11085 xtensa_block_info *new_block;
11086 if ((*xt_block) != NULL)
11087 xt_block = &(*xt_block)->next;
11088 new_block = (xtensa_block_info *)
11089 xmalloc (sizeof (xtensa_block_info));
11090 *new_block = tmp_block;
11091 *xt_block = new_block;
11092 }
11093 }
11094 }
11095 }
11096 }
11097
11098 \f
11099 /* op_placement_info_table */
11100
11101 /* op_placement_info makes it easier to determine which
11102 ops can go in which slots. */
11103
11104 static void
11105 init_op_placement_info_table (void)
11106 {
11107 xtensa_isa isa = xtensa_default_isa;
11108 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
11109 xtensa_opcode opcode;
11110 xtensa_format fmt;
11111 int slot;
11112 int num_opcodes = xtensa_isa_num_opcodes (isa);
11113
11114 op_placement_table = (op_placement_info_table)
11115 xmalloc (sizeof (op_placement_info) * num_opcodes);
11116 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
11117
11118 for (opcode = 0; opcode < num_opcodes; opcode++)
11119 {
11120 op_placement_info *opi = &op_placement_table[opcode];
11121 /* FIXME: Make tinsn allocation dynamic. */
11122 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
11123 as_fatal (_("too many operands in instruction"));
11124 opi->narrowest = XTENSA_UNDEFINED;
11125 opi->narrowest_size = 0x7F;
11126 opi->narrowest_slot = 0;
11127 opi->formats = 0;
11128 opi->num_formats = 0;
11129 opi->issuef = 0;
11130 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
11131 {
11132 opi->slots[fmt] = 0;
11133 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
11134 {
11135 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
11136 {
11137 int fmt_length = xtensa_format_length (isa, fmt);
11138 opi->issuef++;
11139 set_bit (fmt, opi->formats);
11140 set_bit (slot, opi->slots[fmt]);
11141 if (fmt_length < opi->narrowest_size
11142 || (fmt_length == opi->narrowest_size
11143 && (xtensa_format_num_slots (isa, fmt)
11144 < xtensa_format_num_slots (isa,
11145 opi->narrowest))))
11146 {
11147 opi->narrowest = fmt;
11148 opi->narrowest_size = fmt_length;
11149 opi->narrowest_slot = slot;
11150 }
11151 }
11152 }
11153 if (opi->formats)
11154 opi->num_formats++;
11155 }
11156 }
11157 xtensa_insnbuf_free (isa, ibuf);
11158 }
11159
11160
11161 bfd_boolean
11162 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
11163 {
11164 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
11165 }
11166
11167
11168 /* If the opcode is available in a single slot format, return its size. */
11169
11170 static int
11171 xg_get_single_size (xtensa_opcode opcode)
11172 {
11173 return op_placement_table[opcode].narrowest_size;
11174 }
11175
11176
11177 static xtensa_format
11178 xg_get_single_format (xtensa_opcode opcode)
11179 {
11180 return op_placement_table[opcode].narrowest;
11181 }
11182
11183
11184 static int
11185 xg_get_single_slot (xtensa_opcode opcode)
11186 {
11187 return op_placement_table[opcode].narrowest_slot;
11188 }
11189
11190 \f
11191 /* Instruction Stack Functions (from "xtensa-istack.h"). */
11192
11193 void
11194 istack_init (IStack *stack)
11195 {
11196 memset (stack, 0, sizeof (IStack));
11197 stack->ninsn = 0;
11198 }
11199
11200
11201 bfd_boolean
11202 istack_empty (IStack *stack)
11203 {
11204 return (stack->ninsn == 0);
11205 }
11206
11207
11208 bfd_boolean
11209 istack_full (IStack *stack)
11210 {
11211 return (stack->ninsn == MAX_ISTACK);
11212 }
11213
11214
11215 /* Return a pointer to the top IStack entry.
11216 It is an error to call this if istack_empty () is TRUE. */
11217
11218 TInsn *
11219 istack_top (IStack *stack)
11220 {
11221 int rec = stack->ninsn - 1;
11222 gas_assert (!istack_empty (stack));
11223 return &stack->insn[rec];
11224 }
11225
11226
11227 /* Add a new TInsn to an IStack.
11228 It is an error to call this if istack_full () is TRUE. */
11229
11230 void
11231 istack_push (IStack *stack, TInsn *insn)
11232 {
11233 int rec = stack->ninsn;
11234 gas_assert (!istack_full (stack));
11235 stack->insn[rec] = *insn;
11236 stack->ninsn++;
11237 }
11238
11239
11240 /* Clear space for the next TInsn on the IStack and return a pointer
11241 to it. It is an error to call this if istack_full () is TRUE. */
11242
11243 TInsn *
11244 istack_push_space (IStack *stack)
11245 {
11246 int rec = stack->ninsn;
11247 TInsn *insn;
11248 gas_assert (!istack_full (stack));
11249 insn = &stack->insn[rec];
11250 tinsn_init (insn);
11251 stack->ninsn++;
11252 return insn;
11253 }
11254
11255
11256 /* Remove the last pushed instruction. It is an error to call this if
11257 istack_empty () returns TRUE. */
11258
11259 void
11260 istack_pop (IStack *stack)
11261 {
11262 int rec = stack->ninsn - 1;
11263 gas_assert (!istack_empty (stack));
11264 stack->ninsn--;
11265 tinsn_init (&stack->insn[rec]);
11266 }
11267
11268 \f
11269 /* TInsn functions. */
11270
11271 void
11272 tinsn_init (TInsn *dst)
11273 {
11274 memset (dst, 0, sizeof (TInsn));
11275 }
11276
11277
11278 /* Return TRUE if ANY of the operands in the insn are symbolic. */
11279
11280 static bfd_boolean
11281 tinsn_has_symbolic_operands (const TInsn *insn)
11282 {
11283 int i;
11284 int n = insn->ntok;
11285
11286 gas_assert (insn->insn_type == ITYPE_INSN);
11287
11288 for (i = 0; i < n; ++i)
11289 {
11290 switch (insn->tok[i].X_op)
11291 {
11292 case O_register:
11293 case O_constant:
11294 break;
11295 default:
11296 return TRUE;
11297 }
11298 }
11299 return FALSE;
11300 }
11301
11302
11303 bfd_boolean
11304 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11305 {
11306 xtensa_isa isa = xtensa_default_isa;
11307 int i;
11308 int n = insn->ntok;
11309
11310 gas_assert (insn->insn_type == ITYPE_INSN);
11311
11312 for (i = 0; i < n; ++i)
11313 {
11314 switch (insn->tok[i].X_op)
11315 {
11316 case O_register:
11317 case O_constant:
11318 break;
11319 case O_big:
11320 case O_illegal:
11321 case O_absent:
11322 /* Errors for these types are caught later. */
11323 break;
11324 case O_hi16:
11325 case O_lo16:
11326 default:
11327 /* Symbolic immediates are only allowed on the last immediate
11328 operand. At this time, CONST16 is the only opcode where we
11329 support non-PC-relative relocations. */
11330 if (i != get_relaxable_immed (insn->opcode)
11331 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11332 && insn->opcode != xtensa_const16_opcode))
11333 {
11334 as_bad (_("invalid symbolic operand"));
11335 return TRUE;
11336 }
11337 }
11338 }
11339 return FALSE;
11340 }
11341
11342
11343 /* For assembly code with complex expressions (e.g. subtraction),
11344 we have to build them in the literal pool so that
11345 their results are calculated correctly after relaxation.
11346 The relaxation only handles expressions that
11347 boil down to SYMBOL + OFFSET. */
11348
11349 static bfd_boolean
11350 tinsn_has_complex_operands (const TInsn *insn)
11351 {
11352 int i;
11353 int n = insn->ntok;
11354 gas_assert (insn->insn_type == ITYPE_INSN);
11355 for (i = 0; i < n; ++i)
11356 {
11357 switch (insn->tok[i].X_op)
11358 {
11359 case O_register:
11360 case O_constant:
11361 case O_symbol:
11362 case O_lo16:
11363 case O_hi16:
11364 break;
11365 default:
11366 return TRUE;
11367 }
11368 }
11369 return FALSE;
11370 }
11371
11372
11373 /* Encode a TInsn opcode and its constant operands into slotbuf.
11374 Return TRUE if there is a symbol in the immediate field. This
11375 function assumes that:
11376 1) The number of operands are correct.
11377 2) The insn_type is ITYPE_INSN.
11378 3) The opcode can be encoded in the specified format and slot.
11379 4) Operands are either O_constant or O_symbol, and all constants fit. */
11380
11381 static bfd_boolean
11382 tinsn_to_slotbuf (xtensa_format fmt,
11383 int slot,
11384 TInsn *tinsn,
11385 xtensa_insnbuf slotbuf)
11386 {
11387 xtensa_isa isa = xtensa_default_isa;
11388 xtensa_opcode opcode = tinsn->opcode;
11389 bfd_boolean has_fixup = FALSE;
11390 int noperands = xtensa_opcode_num_operands (isa, opcode);
11391 int i;
11392
11393 gas_assert (tinsn->insn_type == ITYPE_INSN);
11394 if (noperands != tinsn->ntok)
11395 as_fatal (_("operand number mismatch"));
11396
11397 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11398 {
11399 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11400 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11401 return FALSE;
11402 }
11403
11404 for (i = 0; i < noperands; i++)
11405 {
11406 expressionS *expr = &tinsn->tok[i];
11407 int rc;
11408 unsigned line;
11409 char *file_name;
11410 uint32 opnd_value;
11411
11412 switch (expr->X_op)
11413 {
11414 case O_register:
11415 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11416 break;
11417 /* The register number has already been checked in
11418 expression_maybe_register, so we don't need to check here. */
11419 opnd_value = expr->X_add_number;
11420 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11421 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11422 opnd_value);
11423 if (rc != 0)
11424 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11425 break;
11426
11427 case O_constant:
11428 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11429 break;
11430 as_where (&file_name, &line);
11431 /* It is a constant and we called this function
11432 then we have to try to fit it. */
11433 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11434 expr->X_add_number, file_name, line);
11435 break;
11436
11437 default:
11438 has_fixup = TRUE;
11439 break;
11440 }
11441 }
11442
11443 return has_fixup;
11444 }
11445
11446
11447 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11448 into a multi-slot instruction, fill the other slots with NOPs.
11449 Return TRUE if there is a symbol in the immediate field. See also the
11450 assumptions listed for tinsn_to_slotbuf. */
11451
11452 static bfd_boolean
11453 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11454 {
11455 static xtensa_insnbuf slotbuf = 0;
11456 static vliw_insn vinsn;
11457 xtensa_isa isa = xtensa_default_isa;
11458 bfd_boolean has_fixup = FALSE;
11459 int i;
11460
11461 if (!slotbuf)
11462 {
11463 slotbuf = xtensa_insnbuf_alloc (isa);
11464 xg_init_vinsn (&vinsn);
11465 }
11466
11467 xg_clear_vinsn (&vinsn);
11468
11469 bundle_tinsn (tinsn, &vinsn);
11470
11471 xtensa_format_encode (isa, vinsn.format, insnbuf);
11472
11473 for (i = 0; i < vinsn.num_slots; i++)
11474 {
11475 /* Only one slot may have a fix-up because the rest contains NOPs. */
11476 has_fixup |=
11477 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11478 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11479 }
11480
11481 return has_fixup;
11482 }
11483
11484
11485 /* Check the instruction arguments. Return TRUE on failure. */
11486
11487 static bfd_boolean
11488 tinsn_check_arguments (const TInsn *insn)
11489 {
11490 xtensa_isa isa = xtensa_default_isa;
11491 xtensa_opcode opcode = insn->opcode;
11492 xtensa_regfile t1_regfile, t2_regfile;
11493 int t1_reg, t2_reg;
11494 int t1_base_reg, t1_last_reg;
11495 int t2_base_reg, t2_last_reg;
11496 char t1_inout, t2_inout;
11497 int i, j;
11498
11499 if (opcode == XTENSA_UNDEFINED)
11500 {
11501 as_bad (_("invalid opcode"));
11502 return TRUE;
11503 }
11504
11505 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11506 {
11507 as_bad (_("too few operands"));
11508 return TRUE;
11509 }
11510
11511 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11512 {
11513 as_bad (_("too many operands"));
11514 return TRUE;
11515 }
11516
11517 /* Check registers. */
11518 for (j = 0; j < insn->ntok; j++)
11519 {
11520 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
11521 continue;
11522
11523 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
11524 t2_base_reg = insn->tok[j].X_add_number;
11525 t2_last_reg
11526 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
11527
11528 for (i = 0; i < insn->ntok; i++)
11529 {
11530 if (i == j)
11531 continue;
11532
11533 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
11534 continue;
11535
11536 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
11537
11538 if (t1_regfile != t2_regfile)
11539 continue;
11540
11541 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
11542 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
11543
11544 t1_base_reg = insn->tok[i].X_add_number;
11545 t1_last_reg = (t1_base_reg
11546 + xtensa_operand_num_regs (isa, insn->opcode, i));
11547
11548 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
11549 {
11550 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
11551 {
11552 if (t1_reg != t2_reg)
11553 continue;
11554
11555 if (t1_inout != 'i' && t2_inout != 'i')
11556 {
11557 as_bad (_("multiple writes to the same register"));
11558 return TRUE;
11559 }
11560 }
11561 }
11562 }
11563 }
11564 return FALSE;
11565 }
11566
11567
11568 /* Load an instruction from its encoded form. */
11569
11570 static void
11571 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11572 {
11573 vliw_insn vinsn;
11574
11575 xg_init_vinsn (&vinsn);
11576 vinsn_from_chars (&vinsn, f);
11577
11578 *tinsn = vinsn.slots[slot];
11579 xg_free_vinsn (&vinsn);
11580 }
11581
11582
11583 static void
11584 tinsn_from_insnbuf (TInsn *tinsn,
11585 xtensa_insnbuf slotbuf,
11586 xtensa_format fmt,
11587 int slot)
11588 {
11589 int i;
11590 xtensa_isa isa = xtensa_default_isa;
11591
11592 /* Find the immed. */
11593 tinsn_init (tinsn);
11594 tinsn->insn_type = ITYPE_INSN;
11595 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11596 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11597 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11598 for (i = 0; i < tinsn->ntok; i++)
11599 {
11600 set_expr_const (&tinsn->tok[i],
11601 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11602 tinsn->opcode, i));
11603 }
11604 }
11605
11606
11607 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11608
11609 static void
11610 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11611 {
11612 xtensa_opcode opcode = tinsn->opcode;
11613 int opnum;
11614
11615 if (fragP->tc_frag_data.slot_symbols[slot])
11616 {
11617 opnum = get_relaxable_immed (opcode);
11618 gas_assert (opnum >= 0);
11619 set_expr_symbol_offset (&tinsn->tok[opnum],
11620 fragP->tc_frag_data.slot_symbols[slot],
11621 fragP->tc_frag_data.slot_offsets[slot]);
11622 }
11623 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
11624 }
11625
11626
11627 static int
11628 get_num_stack_text_bytes (IStack *istack)
11629 {
11630 int i;
11631 int text_bytes = 0;
11632
11633 for (i = 0; i < istack->ninsn; i++)
11634 {
11635 TInsn *tinsn = &istack->insn[i];
11636 if (tinsn->insn_type == ITYPE_INSN)
11637 text_bytes += xg_get_single_size (tinsn->opcode);
11638 }
11639 return text_bytes;
11640 }
11641
11642
11643 static int
11644 get_num_stack_literal_bytes (IStack *istack)
11645 {
11646 int i;
11647 int lit_bytes = 0;
11648
11649 for (i = 0; i < istack->ninsn; i++)
11650 {
11651 TInsn *tinsn = &istack->insn[i];
11652 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11653 lit_bytes += 4;
11654 }
11655 return lit_bytes;
11656 }
11657
11658 \f
11659 /* vliw_insn functions. */
11660
11661 static void
11662 xg_init_vinsn (vliw_insn *v)
11663 {
11664 int i;
11665 xtensa_isa isa = xtensa_default_isa;
11666
11667 xg_clear_vinsn (v);
11668
11669 v->insnbuf = xtensa_insnbuf_alloc (isa);
11670 if (v->insnbuf == NULL)
11671 as_fatal (_("out of memory"));
11672
11673 for (i = 0; i < MAX_SLOTS; i++)
11674 {
11675 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11676 if (v->slotbuf[i] == NULL)
11677 as_fatal (_("out of memory"));
11678 }
11679 }
11680
11681
11682 static void
11683 xg_clear_vinsn (vliw_insn *v)
11684 {
11685 int i;
11686
11687 memset (v, 0, offsetof (vliw_insn, insnbuf));
11688
11689 v->format = XTENSA_UNDEFINED;
11690 v->num_slots = 0;
11691 v->inside_bundle = FALSE;
11692
11693 if (xt_saved_debug_type != DEBUG_NONE)
11694 debug_type = xt_saved_debug_type;
11695
11696 for (i = 0; i < MAX_SLOTS; i++)
11697 v->slots[i].opcode = XTENSA_UNDEFINED;
11698 }
11699
11700
11701 static bfd_boolean
11702 vinsn_has_specific_opcodes (vliw_insn *v)
11703 {
11704 int i;
11705
11706 for (i = 0; i < v->num_slots; i++)
11707 {
11708 if (v->slots[i].is_specific_opcode)
11709 return TRUE;
11710 }
11711 return FALSE;
11712 }
11713
11714
11715 static void
11716 xg_free_vinsn (vliw_insn *v)
11717 {
11718 int i;
11719 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11720 for (i = 0; i < MAX_SLOTS; i++)
11721 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11722 }
11723
11724
11725 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11726 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11727
11728 static bfd_boolean
11729 vinsn_to_insnbuf (vliw_insn *vinsn,
11730 char *frag_offset,
11731 fragS *fragP,
11732 bfd_boolean record_fixup)
11733 {
11734 xtensa_isa isa = xtensa_default_isa;
11735 xtensa_format fmt = vinsn->format;
11736 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11737 int slot;
11738 bfd_boolean has_fixup = FALSE;
11739
11740 xtensa_format_encode (isa, fmt, insnbuf);
11741
11742 for (slot = 0; slot < vinsn->num_slots; slot++)
11743 {
11744 TInsn *tinsn = &vinsn->slots[slot];
11745 expressionS *extra_arg = &tinsn->extra_arg;
11746 bfd_boolean tinsn_has_fixup =
11747 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11748 vinsn->slotbuf[slot]);
11749
11750 xtensa_format_set_slot (isa, fmt, slot,
11751 insnbuf, vinsn->slotbuf[slot]);
11752 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
11753 {
11754 if (vinsn->num_slots != 1)
11755 as_bad (_("TLS relocation not allowed in FLIX bundle"));
11756 else if (record_fixup)
11757 /* Instructions that generate TLS relocations should always be
11758 relaxed in the front-end. If "record_fixup" is set, then this
11759 function is being called during back-end relaxation, so flag
11760 the unexpected behavior as an error. */
11761 as_bad (_("unexpected TLS relocation"));
11762 else
11763 fix_new (fragP, frag_offset - fragP->fr_literal,
11764 xtensa_format_length (isa, fmt),
11765 extra_arg->X_add_symbol, extra_arg->X_add_number,
11766 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
11767 }
11768 if (tinsn_has_fixup)
11769 {
11770 int i;
11771 xtensa_opcode opcode = tinsn->opcode;
11772 int noperands = xtensa_opcode_num_operands (isa, opcode);
11773 has_fixup = TRUE;
11774
11775 for (i = 0; i < noperands; i++)
11776 {
11777 expressionS* expr = &tinsn->tok[i];
11778 switch (expr->X_op)
11779 {
11780 case O_symbol:
11781 case O_lo16:
11782 case O_hi16:
11783 if (get_relaxable_immed (opcode) == i)
11784 {
11785 /* Add a fix record for the instruction, except if this
11786 function is being called prior to relaxation, i.e.,
11787 if record_fixup is false, and the instruction might
11788 be relaxed later. */
11789 if (record_fixup
11790 || tinsn->is_specific_opcode
11791 || !xg_is_relaxable_insn (tinsn, 0))
11792 {
11793 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11794 frag_offset - fragP->fr_literal);
11795 }
11796 else
11797 {
11798 if (expr->X_op != O_symbol)
11799 as_bad (_("invalid operand"));
11800 tinsn->symbol = expr->X_add_symbol;
11801 tinsn->offset = expr->X_add_number;
11802 }
11803 }
11804 else
11805 as_bad (_("symbolic operand not allowed"));
11806 break;
11807
11808 case O_constant:
11809 case O_register:
11810 break;
11811
11812 default:
11813 as_bad (_("expression too complex"));
11814 break;
11815 }
11816 }
11817 }
11818 }
11819
11820 return has_fixup;
11821 }
11822
11823
11824 static void
11825 vinsn_from_chars (vliw_insn *vinsn, char *f)
11826 {
11827 static xtensa_insnbuf insnbuf = NULL;
11828 static xtensa_insnbuf slotbuf = NULL;
11829 int i;
11830 xtensa_format fmt;
11831 xtensa_isa isa = xtensa_default_isa;
11832
11833 if (!insnbuf)
11834 {
11835 insnbuf = xtensa_insnbuf_alloc (isa);
11836 slotbuf = xtensa_insnbuf_alloc (isa);
11837 }
11838
11839 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11840 fmt = xtensa_format_decode (isa, insnbuf);
11841 if (fmt == XTENSA_UNDEFINED)
11842 as_fatal (_("cannot decode instruction format"));
11843 vinsn->format = fmt;
11844 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11845
11846 for (i = 0; i < vinsn->num_slots; i++)
11847 {
11848 TInsn *tinsn = &vinsn->slots[i];
11849 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11850 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11851 }
11852 }
11853
11854 \f
11855 /* Expression utilities. */
11856
11857 /* Return TRUE if the expression is an integer constant. */
11858
11859 bfd_boolean
11860 expr_is_const (const expressionS *s)
11861 {
11862 return (s->X_op == O_constant);
11863 }
11864
11865
11866 /* Get the expression constant.
11867 Calling this is illegal if expr_is_const () returns TRUE. */
11868
11869 offsetT
11870 get_expr_const (const expressionS *s)
11871 {
11872 gas_assert (expr_is_const (s));
11873 return s->X_add_number;
11874 }
11875
11876
11877 /* Set the expression to a constant value. */
11878
11879 void
11880 set_expr_const (expressionS *s, offsetT val)
11881 {
11882 s->X_op = O_constant;
11883 s->X_add_number = val;
11884 s->X_add_symbol = NULL;
11885 s->X_op_symbol = NULL;
11886 }
11887
11888
11889 bfd_boolean
11890 expr_is_register (const expressionS *s)
11891 {
11892 return (s->X_op == O_register);
11893 }
11894
11895
11896 /* Get the expression constant.
11897 Calling this is illegal if expr_is_const () returns TRUE. */
11898
11899 offsetT
11900 get_expr_register (const expressionS *s)
11901 {
11902 gas_assert (expr_is_register (s));
11903 return s->X_add_number;
11904 }
11905
11906
11907 /* Set the expression to a symbol + constant offset. */
11908
11909 void
11910 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11911 {
11912 s->X_op = O_symbol;
11913 s->X_add_symbol = sym;
11914 s->X_op_symbol = NULL; /* unused */
11915 s->X_add_number = offset;
11916 }
11917
11918
11919 /* Return TRUE if the two expressions are equal. */
11920
11921 bfd_boolean
11922 expr_is_equal (expressionS *s1, expressionS *s2)
11923 {
11924 if (s1->X_op != s2->X_op)
11925 return FALSE;
11926 if (s1->X_add_symbol != s2->X_add_symbol)
11927 return FALSE;
11928 if (s1->X_op_symbol != s2->X_op_symbol)
11929 return FALSE;
11930 if (s1->X_add_number != s2->X_add_number)
11931 return FALSE;
11932 return TRUE;
11933 }
11934
11935
11936 static void
11937 copy_expr (expressionS *dst, const expressionS *src)
11938 {
11939 memcpy (dst, src, sizeof (expressionS));
11940 }
11941
11942 \f
11943 /* Support for the "--rename-section" option. */
11944
11945 struct rename_section_struct
11946 {
11947 char *old_name;
11948 char *new_name;
11949 struct rename_section_struct *next;
11950 };
11951
11952 static struct rename_section_struct *section_rename;
11953
11954
11955 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11956 entries to the section_rename list. Note: Specifying multiple
11957 renamings separated by colons is not documented and is retained only
11958 for backward compatibility. */
11959
11960 static void
11961 build_section_rename (const char *arg)
11962 {
11963 struct rename_section_struct *r;
11964 char *this_arg = NULL;
11965 char *next_arg = NULL;
11966
11967 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11968 {
11969 char *old_name, *new_name;
11970
11971 if (this_arg)
11972 {
11973 next_arg = strchr (this_arg, ':');
11974 if (next_arg)
11975 {
11976 *next_arg = '\0';
11977 next_arg++;
11978 }
11979 }
11980
11981 old_name = this_arg;
11982 new_name = strchr (this_arg, '=');
11983
11984 if (*old_name == '\0')
11985 {
11986 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11987 continue;
11988 }
11989 if (!new_name || new_name[1] == '\0')
11990 {
11991 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11992 old_name);
11993 continue;
11994 }
11995 *new_name = '\0';
11996 new_name++;
11997
11998 /* Check for invalid section renaming. */
11999 for (r = section_rename; r != NULL; r = r->next)
12000 {
12001 if (strcmp (r->old_name, old_name) == 0)
12002 as_bad (_("section %s renamed multiple times"), old_name);
12003 if (strcmp (r->new_name, new_name) == 0)
12004 as_bad (_("multiple sections remapped to output section %s"),
12005 new_name);
12006 }
12007
12008 /* Now add it. */
12009 r = (struct rename_section_struct *)
12010 xmalloc (sizeof (struct rename_section_struct));
12011 r->old_name = xstrdup (old_name);
12012 r->new_name = xstrdup (new_name);
12013 r->next = section_rename;
12014 section_rename = r;
12015 }
12016 }
12017
12018
12019 char *
12020 xtensa_section_rename (char *name)
12021 {
12022 struct rename_section_struct *r = section_rename;
12023
12024 for (r = section_rename; r != NULL; r = r->next)
12025 {
12026 if (strcmp (r->old_name, name) == 0)
12027 return r->new_name;
12028 }
12029
12030 return name;
12031 }
This page took 0.337439 seconds and 5 git commands to generate.