xtensa: add --auto-litpools option
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.h
1 /* tc-xtensa.h -- Header file for tc-xtensa.c.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #ifndef TC_XTENSA
22 #define TC_XTENSA 1
23
24 struct fix;
25
26 #ifndef OBJ_ELF
27 #error Xtensa support requires ELF object format
28 #endif
29
30 #include "xtensa-isa.h"
31 #include "xtensa-config.h"
32
33 #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
34
35
36 /* Maximum number of opcode slots in a VLIW instruction. */
37 #define MAX_SLOTS 15
38
39
40 /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
41 RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
42 in the fr_var field. For the two exceptions, fr_var is a float value
43 that records the frequency with which the following instruction is
44 executed as a branch target. The aligner uses this information to
45 tell which targets are most important to be aligned. */
46
47 enum xtensa_relax_statesE
48 {
49 RELAX_XTENSA_NONE,
50
51 RELAX_ALIGN_NEXT_OPCODE,
52 /* Use the first opcode of the next fragment to determine the
53 alignment requirements. This is ONLY used for LOOPs currently. */
54
55 RELAX_CHECK_ALIGN_NEXT_OPCODE,
56 /* The next non-empty frag contains a loop instruction. Check to see
57 if it is correctly aligned, but do not align it. */
58
59 RELAX_DESIRE_ALIGN_IF_TARGET,
60 /* These are placed in front of labels and converted to either
61 RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
62 relaxation begins. */
63
64 RELAX_ADD_NOP_IF_A0_B_RETW,
65 /* These are placed in front of conditional branches. Before
66 relaxation begins, they are turned into either NOPs for branches
67 immediately followed by RETW or RETW.N or rs_fills of 0. This is
68 used to avoid a hardware bug in some early versions of the
69 processor. */
70
71 RELAX_ADD_NOP_IF_PRE_LOOP_END,
72 /* These are placed after JX instructions. Before relaxation begins,
73 they are turned into either NOPs, if the JX is one instruction
74 before a loop end label, or rs_fills of 0. This is used to avoid a
75 hardware interlock issue prior to Xtensa version T1040. */
76
77 RELAX_ADD_NOP_IF_SHORT_LOOP,
78 /* These are placed after LOOP instructions and turned into NOPs when:
79 (1) there are less than 3 instructions in the loop; we place 2 of
80 these in a row to add up to 2 NOPS in short loops; or (2) the
81 instructions in the loop do not include a branch or jump.
82 Otherwise they are turned into rs_fills of 0 before relaxation
83 begins. This is used to avoid hardware bug PR3830. */
84
85 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
86 /* These are placed after LOOP instructions and turned into NOPs if
87 there are less than 12 bytes to the end of some other loop's end.
88 Otherwise they are turned into rs_fills of 0 before relaxation
89 begins. This is used to avoid hardware bug PR3830. */
90
91 RELAX_DESIRE_ALIGN,
92 /* The next fragment would like its first instruction to NOT cross an
93 instruction fetch boundary. */
94
95 RELAX_MAYBE_DESIRE_ALIGN,
96 /* The next fragment might like its first instruction to NOT cross an
97 instruction fetch boundary. These are placed after a branch that
98 might be relaxed. If the branch is relaxed, then this frag will be
99 a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
100 frag. */
101
102 RELAX_LOOP_END,
103 /* This will be turned into a NOP or NOP.N if the previous instruction
104 is expanded to negate a loop. */
105
106 RELAX_LOOP_END_ADD_NOP,
107 /* When the code density option is available, this will generate a
108 NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill
109 fragment with a NOP in it. Once a frag has been converted to
110 RELAX_LOOP_END_ADD_NOP, it should never be changed back to
111 RELAX_LOOP_END. */
112
113 RELAX_LITERAL,
114 /* Another fragment could generate an expansion here but has not yet. */
115
116 RELAX_LITERAL_NR,
117 /* Expansion has been generated by an instruction that generates a
118 literal. However, the stretch has NOT been reported yet in this
119 fragment. */
120
121 RELAX_LITERAL_FINAL,
122 /* Expansion has been generated by an instruction that generates a
123 literal. */
124
125 RELAX_LITERAL_POOL_BEGIN,
126 RELAX_LITERAL_POOL_END,
127 RELAX_LITERAL_POOL_CANDIDATE_BEGIN,
128 /* Technically these are not relaxations at all but mark a location
129 to store literals later. Note that fr_var stores the frchain for
130 BEGIN frags and fr_var stores now_seg for END frags. */
131
132 RELAX_NARROW,
133 /* The last instruction in this fragment (at->fr_opcode) can be
134 freely replaced with a single wider instruction if a future
135 alignment desires or needs it. */
136
137 RELAX_IMMED,
138 /* The last instruction in this fragment (at->fr_opcode) contains
139 an immediate or symbol. If the value does not fit, relax the
140 opcode using expansions from the relax table. */
141
142 RELAX_IMMED_STEP1,
143 /* The last instruction in this fragment (at->fr_opcode) contains a
144 literal. It has already been expanded 1 step. */
145
146 RELAX_IMMED_STEP2,
147 /* The last instruction in this fragment (at->fr_opcode) contains a
148 literal. It has already been expanded 2 steps. */
149
150 RELAX_IMMED_STEP3,
151 /* The last instruction in this fragment (at->fr_opcode) contains a
152 literal. It has already been expanded 3 steps. */
153
154 RELAX_SLOTS,
155 /* There are instructions within the last VLIW instruction that need
156 relaxation. Find the relaxation based on the slot info in
157 xtensa_frag_type. Relaxations that deal with particular opcodes
158 are slot-based (e.g., converting a MOVI to an L32R). Relaxations
159 that deal with entire instructions, such as alignment, are not
160 slot-based. */
161
162 RELAX_FILL_NOP,
163 /* This marks the location of a pipeline stall. We can fill these guys
164 in for alignment of any size. */
165
166 RELAX_UNREACHABLE,
167 /* This marks the location as unreachable. The assembler may widen or
168 narrow this area to meet alignment requirements of nearby
169 instructions. */
170
171 RELAX_MAYBE_UNREACHABLE,
172 /* This marks the location as possibly unreachable. These are placed
173 after a branch that may be relaxed into a branch and jump. If the
174 branch is relaxed, then this frag will be converted to a
175 RELAX_UNREACHABLE frag. */
176
177 RELAX_ORG,
178 /* This marks the location as having previously been an rs_org frag.
179 rs_org frags are converted to fill-zero frags immediately after
180 relaxation. However, we need to remember where they were so we can
181 prevent the linker from changing the size of any frag between the
182 section start and the org frag. */
183
184 RELAX_TRAMPOLINE,
185 /* Every few thousand frags, we insert one of these, just in case we may
186 need some space for a trampoline (jump to a jump) because the function
187 has gotten too big. If not needed, it disappears. */
188
189 RELAX_NONE
190 };
191
192 /* This is used as a stopper to bound the number of steps that
193 can be taken. */
194 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
195
196 struct xtensa_frag_type
197 {
198 /* Info about the current state of assembly, e.g., transform,
199 absolute_literals, etc. These need to be passed to the backend and
200 then to the object file.
201
202 When is_assembly_state_set is false, the frag inherits some of the
203 state settings from the previous frag in this segment. Because it
204 is not possible to intercept all fragment closures (frag_more and
205 frag_append_1_char can close a frag), we use a pass after initial
206 assembly to fill in the assembly states. */
207
208 unsigned int is_assembly_state_set : 1;
209 unsigned int is_no_density : 1;
210 unsigned int is_no_transform : 1;
211 unsigned int use_longcalls : 1;
212 unsigned int use_absolute_literals : 1;
213
214 /* Inhibits relaxation of machine-dependent alignment frags the
215 first time through a relaxation.... */
216 unsigned int relax_seen : 1;
217
218 /* Information that is needed in the object file and set when known. */
219 unsigned int is_literal : 1;
220 unsigned int is_loop_target : 1;
221 unsigned int is_branch_target : 1;
222 unsigned int is_insn : 1;
223 unsigned int is_unreachable : 1;
224
225 unsigned int is_specific_opcode : 1; /* also implies no_transform */
226
227 unsigned int is_align : 1;
228 unsigned int is_text_align : 1;
229 unsigned int alignment : 5;
230
231 /* A frag with this bit set is the first in a loop that actually
232 contains an instruction. */
233 unsigned int is_first_loop_insn : 1;
234
235 /* A frag with this bit set is a branch that we are using to
236 align branch targets as if it were a normal narrow instruction. */
237 unsigned int is_aligning_branch : 1;
238
239 /* For text fragments that can generate literals at relax time, this
240 variable points to the frag where the literal will be stored. For
241 literal frags, this variable points to the nearest literal pool
242 location frag. This literal frag will be moved to after this
243 location. For RELAX_LITERAL_POOL_BEGIN frags, this field points
244 to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
245 frag, to make moving frags for this literal pool efficient. */
246 fragS *literal_frag;
247
248 /* The destination segment for literal frags. (Note that this is only
249 valid after xtensa_move_literals.) This field is also used for
250 LITERAL_POOL_END frags. */
251 segT lit_seg;
252
253 /* Frag chain for LITERAL_POOL_BEGIN frags. */
254 struct frchain *lit_frchain;
255
256 /* For the relaxation scheme, some literal fragments can have their
257 expansions modified by an instruction that relaxes. */
258 int text_expansion[MAX_SLOTS];
259 int literal_expansion[MAX_SLOTS];
260 int unreported_expansion;
261
262 /* For slots that have a free register for relaxation, record that
263 register. */
264 expressionS free_reg[MAX_SLOTS];
265
266 /* For text fragments that can generate literals at relax time: */
267 fragS *literal_frags[MAX_SLOTS];
268 enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
269 symbolS *slot_symbols[MAX_SLOTS];
270 offsetT slot_offsets[MAX_SLOTS];
271
272 /* When marking frags after this one in the chain as no transform,
273 cache the last one in the chain, so that we can skip to the
274 end of the chain. */
275 fragS *no_transform_end;
276 };
277
278
279 /* For VLIW support, we need to know what slot a fixup applies to. */
280 typedef struct xtensa_fix_data_struct
281 {
282 int slot;
283 symbolS *X_add_symbol;
284 offsetT X_add_number;
285 } xtensa_fix_data;
286
287
288 /* Structure to record xtensa-specific symbol information. */
289 typedef struct xtensa_symfield_type
290 {
291 unsigned int is_loop_target : 1;
292 unsigned int is_branch_target : 1;
293 symbolS *next_expr_symbol;
294 } xtensa_symfield_type;
295
296
297 /* Structure for saving information about a block of property data
298 for frags that have the same flags. The forward reference is
299 in this header file. The actual definition is in tc-xtensa.c. */
300 struct xtensa_block_info_struct;
301 typedef struct xtensa_block_info_struct xtensa_block_info;
302
303
304 /* Property section types. */
305 typedef enum
306 {
307 xt_literal_sec,
308 xt_prop_sec,
309 max_xt_sec
310 } xt_section_type;
311
312 typedef struct xtensa_segment_info_struct
313 {
314 fragS *literal_pool_loc;
315 xtensa_block_info *blocks[max_xt_sec];
316 } xtensa_segment_info;
317
318
319 extern const char *xtensa_target_format (void);
320 extern void xtensa_init_fix_data (struct fix *);
321 extern void xtensa_frag_init (fragS *);
322 extern int xtensa_force_relocation (struct fix *);
323 extern int xtensa_validate_fix_sub (struct fix *);
324 extern void xtensa_frob_label (struct symbol *);
325 extern void xtensa_end (void);
326 extern void xtensa_post_relax_hook (void);
327 extern void xtensa_file_arch_init (bfd *);
328 extern void xtensa_flush_pending_output (void);
329 extern bfd_boolean xtensa_fix_adjustable (struct fix *);
330 extern void xtensa_symbol_new_hook (symbolS *);
331 extern long xtensa_relax_frag (fragS *, long, int *);
332 extern void xtensa_elf_section_change_hook (void);
333 extern int xtensa_unrecognized_line (int);
334 extern bfd_boolean xtensa_check_inside_bundle (void);
335 extern void xtensa_handle_align (fragS *);
336 extern char *xtensa_section_rename (char *);
337
338 #define TARGET_FORMAT xtensa_target_format ()
339 #define TARGET_ARCH bfd_arch_xtensa
340 #define TC_SEGMENT_INFO_TYPE xtensa_segment_info
341 #define TC_SYMFIELD_TYPE struct xtensa_symfield_type
342 #define TC_FIX_TYPE xtensa_fix_data
343 #define TC_INIT_FIX_DATA(x) xtensa_init_fix_data (x)
344 #define TC_FRAG_TYPE struct xtensa_frag_type
345 #define TC_FRAG_INIT(frag) xtensa_frag_init (frag)
346 #define TC_FORCE_RELOCATION(fix) xtensa_force_relocation (fix)
347 #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
348 (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
349 #define TC_VALIDATE_FIX_SUB(fix, seg) xtensa_validate_fix_sub (fix)
350 #define NO_PSEUDO_DOT xtensa_check_inside_bundle ()
351 #define tc_canonicalize_symbol_name(s) xtensa_section_rename (s)
352 #define tc_canonicalize_section_name(s) xtensa_section_rename (s)
353 #define tc_init_after_args() xtensa_file_arch_init (stdoutput)
354 #define tc_fix_adjustable(fix) xtensa_fix_adjustable (fix)
355 #define tc_frob_label(sym) xtensa_frob_label (sym)
356 #define tc_unrecognized_line(ch) xtensa_unrecognized_line (ch)
357 #define tc_symbol_new_hook(sym) xtensa_symbol_new_hook (sym)
358 #define md_do_align(a,b,c,d,e) xtensa_flush_pending_output ()
359 #define md_elf_section_change_hook xtensa_elf_section_change_hook
360 #define md_end xtensa_end
361 #define md_flush_pending_output() xtensa_flush_pending_output ()
362 #define md_operand(x)
363 #define TEXT_SECTION_NAME xtensa_section_rename (".text")
364 #define DATA_SECTION_NAME xtensa_section_rename (".data")
365 #define BSS_SECTION_NAME xtensa_section_rename (".bss")
366 #define HANDLE_ALIGN(fragP) xtensa_handle_align (fragP)
367 #define MAX_MEM_FOR_RS_ALIGN_CODE 1
368
369
370 /* The renumber_section function must be mapped over all the sections
371 after calling xtensa_post_relax_hook. That function is static in
372 write.c so it cannot be called from xtensa_post_relax_hook itself. */
373
374 #define md_post_relax_hook \
375 do \
376 { \
377 int i = 0; \
378 xtensa_post_relax_hook (); \
379 bfd_map_over_sections (stdoutput, renumber_sections, &i); \
380 } \
381 while (0)
382
383
384 /* Because xtensa relaxation can insert a new literal into the middle of
385 fragment and thus require re-running the relaxation pass on the
386 section, we need an explicit flag here. We explicitly use the name
387 "stretched" here to avoid changing the source code in write.c. */
388
389 #define md_relax_frag(segment, fragP, stretch) \
390 xtensa_relax_frag (fragP, stretch, &stretched)
391
392 /* Only allow call frame debug info optimization when linker relaxation is
393 not enabled as otherwise we could generate the DWARF directives without
394 the relocs necessary to patch them up. */
395 #define md_allow_eh_opt (linkrelax == 0)
396
397 #define LOCAL_LABELS_FB 1
398 #define WORKING_DOT_WORD 1
399 #define DOUBLESLASH_LINE_COMMENTS
400 #define TC_HANDLES_FX_DONE
401 #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
402 #define TC_LINKRELAX_FIXUP(SEG) 0
403 #define MD_APPLY_SYM_VALUE(FIX) 0
404 #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
405
406 /* Use line number format that is amenable to linker relaxation. */
407 #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
408
409
410 /* Resource reservation info functions. */
411
412 /* Returns the number of copies of a particular unit. */
413 typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
414
415 /* Returns the number of units the opcode uses. */
416 typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
417
418 /* Given an opcode and an index into the opcode's funcUnit list,
419 returns the unit used for the index. */
420 typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
421
422 /* Given an opcode and an index into the opcode's funcUnit list,
423 returns the cycle during which the unit is used. */
424 typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
425
426 /* The above typedefs parameterize the resource_table so that the
427 optional scheduler doesn't need its own resource reservation system.
428
429 For simple resource checking, which is all that happens normally,
430 the functions will be as follows (with some wrapping to make the
431 interface more convenient):
432
433 unit_num_copies_func = xtensa_funcUnit_num_copies
434 opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
435 opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
436 opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
437
438 Of course the optional scheduler has its own reservation table
439 and functions. */
440
441 int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
442 int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
443
444 typedef struct
445 {
446 void *data;
447 int cycles;
448 int allocated_cycles;
449 int num_units;
450 unit_num_copies_func unit_num_copies;
451 opcode_num_units_func opcode_num_units;
452 opcode_funcUnit_use_unit_func opcode_unit_use;
453 opcode_funcUnit_use_stage_func opcode_unit_stage;
454 unsigned char **units;
455 } resource_table;
456
457 resource_table *new_resource_table
458 (void *, int, int, unit_num_copies_func, opcode_num_units_func,
459 opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
460 void resize_resource_table (resource_table *, int);
461 void clear_resource_table (resource_table *);
462 bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
463 void reserve_resources (resource_table *, xtensa_opcode, int);
464 void release_resources (resource_table *, xtensa_opcode, int);
465
466 #endif /* TC_XTENSA */
This page took 0.037938 seconds and 4 git commands to generate.