8669879c87f165b9491b40c7d166a466fef3a5cd
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-<N>}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
242 [@b{--statistics}]
243 [@b{-v}] [@b{-version}] [@b{--version}]
244 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
245 [@b{-Z}] [@b{@@@var{FILE}}]
246 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
247 [@b{--elf-stt-common=[no|yes]}]
248 [@b{--generate-missing-build-notes=[no|yes]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset M32C
384
385 @emph{Target M32C options:}
386 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
387 @end ifset
388 @ifset M32R
389
390 @emph{Target M32R options:}
391 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
392 @b{--W[n]p}]
393 @end ifset
394 @ifset M680X0
395
396 @emph{Target M680X0 options:}
397 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
398 @end ifset
399 @ifset M68HC11
400
401 @emph{Target M68HC11 options:}
402 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
403 [@b{-mshort}|@b{-mlong}]
404 [@b{-mshort-double}|@b{-mlong-double}]
405 [@b{--force-long-branches}] [@b{--short-branches}]
406 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
407 [@b{--print-opcodes}] [@b{--generate-example}]
408 @end ifset
409 @ifset MCORE
410
411 @emph{Target MCORE options:}
412 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
413 [@b{-mcpu=[210|340]}]
414 @end ifset
415 @ifset METAG
416
417 @emph{Target Meta options:}
418 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
419 @end ifset
420 @ifset MICROBLAZE
421 @emph{Target MICROBLAZE options:}
422 @c MicroBlaze has no machine-dependent assembler options.
423 @end ifset
424 @ifset MIPS
425
426 @emph{Target MIPS options:}
427 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
428 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
429 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
430 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
431 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
432 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
433 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
434 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
435 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
436 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
437 [@b{-construct-floats}] [@b{-no-construct-floats}]
438 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
439 [@b{-mnan=@var{encoding}}]
440 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
441 [@b{-mips16}] [@b{-no-mips16}]
442 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
443 [@b{-mmicromips}] [@b{-mno-micromips}]
444 [@b{-msmartmips}] [@b{-mno-smartmips}]
445 [@b{-mips3d}] [@b{-no-mips3d}]
446 [@b{-mdmx}] [@b{-no-mdmx}]
447 [@b{-mdsp}] [@b{-mno-dsp}]
448 [@b{-mdspr2}] [@b{-mno-dspr2}]
449 [@b{-mdspr3}] [@b{-mno-dspr3}]
450 [@b{-mmsa}] [@b{-mno-msa}]
451 [@b{-mxpa}] [@b{-mno-xpa}]
452 [@b{-mmt}] [@b{-mno-mt}]
453 [@b{-mmcu}] [@b{-mno-mcu}]
454 [@b{-mcrc}] [@b{-mno-crc}]
455 [@b{-mginv}] [@b{-mno-ginv}]
456 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
457 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
458 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
459 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
460 [@b{-minsn32}] [@b{-mno-insn32}]
461 [@b{-mfix7000}] [@b{-mno-fix7000}]
462 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
463 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
464 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
465 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
466 [@b{-mdebug}] [@b{-no-mdebug}]
467 [@b{-mpdr}] [@b{-mno-pdr}]
468 @end ifset
469 @ifset MMIX
470
471 @emph{Target MMIX options:}
472 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
473 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
474 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
475 [@b{--linker-allocated-gregs}]
476 @end ifset
477 @ifset NIOSII
478
479 @emph{Target Nios II options:}
480 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
481 [@b{-EB}] [@b{-EL}]
482 @end ifset
483 @ifset NDS32
484
485 @emph{Target NDS32 options:}
486 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
487 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
488 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
489 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
490 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
491 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
492 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
493 [@b{-mb2bb}]
494 @end ifset
495 @ifset OPENRISC
496 @c OpenRISC has no machine-dependent assembler options.
497 @end ifset
498 @ifset PDP11
499
500 @emph{Target PDP11 options:}
501 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
502 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
503 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
504 @end ifset
505 @ifset PJ
506
507 @emph{Target picoJava options:}
508 [@b{-mb}|@b{-me}]
509 @end ifset
510 @ifset PPC
511
512 @emph{Target PowerPC options:}
513 [@b{-a32}|@b{-a64}]
514 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
515 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
516 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
517 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
518 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
519 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
520 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
521 [@b{-mregnames}|@b{-mno-regnames}]
522 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
523 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
524 [@b{-msolaris}|@b{-mno-solaris}]
525 [@b{-nops=@var{count}}]
526 @end ifset
527 @ifset PRU
528
529 @emph{Target PRU options:}
530 [@b{-link-relax}]
531 [@b{-mnolink-relax}]
532 [@b{-mno-warn-regname-label}]
533 @end ifset
534 @ifset RISCV
535
536 @emph{Target RISC-V options:}
537 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
538 [@b{-march}=@var{ISA}]
539 [@b{-mabi}=@var{ABI}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 @end ifset
630 @ifset Z80
631
632 @emph{Target Z80 options:}
633 [@b{-march=@var{CPU}@var{[-EXT]}@var{[+EXT]}}]
634 [@b{-local-prefix=}@var{PREFIX}]
635 [@b{-colonless}]
636 [@b{-sdcc}]
637 [@b{-fp-s=}@var{FORMAT}]
638 [@b{-fp-d=}@var{FORMAT}]
639 @end ifset
640 @ifset Z8000
641
642 @c Z8000 has no machine-dependent assembler options
643 @end ifset
644
645 @c man end
646 @end smallexample
647
648 @c man begin OPTIONS
649
650 @table @gcctabopt
651 @include at-file.texi
652
653 @item -a[cdghlmns]
654 Turn on listings, in any of a variety of ways:
655
656 @table @gcctabopt
657 @item -ac
658 omit false conditionals
659
660 @item -ad
661 omit debugging directives
662
663 @item -ag
664 include general information, like @value{AS} version and options passed
665
666 @item -ah
667 include high-level source
668
669 @item -al
670 include assembly
671
672 @item -am
673 include macro expansions
674
675 @item -an
676 omit forms processing
677
678 @item -as
679 include symbols
680
681 @item =file
682 set the name of the listing file
683 @end table
684
685 You may combine these options; for example, use @samp{-aln} for assembly
686 listing without forms processing. The @samp{=file} option, if used, must be
687 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
688
689 @item --alternate
690 Begin in alternate macro mode.
691 @ifclear man
692 @xref{Altmacro,,@code{.altmacro}}.
693 @end ifclear
694
695 @item --compress-debug-sections
696 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
697 ELF ABI. The resulting object file may not be compatible with older
698 linkers and object file utilities. Note if compression would make a
699 given section @emph{larger} then it is not compressed.
700
701 @ifset ELF
702 @cindex @samp{--compress-debug-sections=} option
703 @item --compress-debug-sections=none
704 @itemx --compress-debug-sections=zlib
705 @itemx --compress-debug-sections=zlib-gnu
706 @itemx --compress-debug-sections=zlib-gabi
707 These options control how DWARF debug sections are compressed.
708 @option{--compress-debug-sections=none} is equivalent to
709 @option{--nocompress-debug-sections}.
710 @option{--compress-debug-sections=zlib} and
711 @option{--compress-debug-sections=zlib-gabi} are equivalent to
712 @option{--compress-debug-sections}.
713 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
714 sections using zlib. The debug sections are renamed to begin with
715 @samp{.zdebug}. Note if compression would make a given section
716 @emph{larger} then it is not compressed nor renamed.
717
718 @end ifset
719
720 @item --nocompress-debug-sections
721 Do not compress DWARF debug sections. This is usually the default for all
722 targets except the x86/x86_64, but a configure time option can be used to
723 override this.
724
725 @item -D
726 Ignored. This option is accepted for script compatibility with calls to
727 other assemblers.
728
729 @item --debug-prefix-map @var{old}=@var{new}
730 When assembling files in directory @file{@var{old}}, record debugging
731 information describing them as in @file{@var{new}} instead.
732
733 @item --defsym @var{sym}=@var{value}
734 Define the symbol @var{sym} to be @var{value} before assembling the input file.
735 @var{value} must be an integer constant. As in C, a leading @samp{0x}
736 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
737 value. The value of the symbol can be overridden inside a source file via the
738 use of a @code{.set} pseudo-op.
739
740 @item -f
741 ``fast''---skip whitespace and comment preprocessing (assume source is
742 compiler output).
743
744 @item -g
745 @itemx --gen-debug
746 Generate debugging information for each assembler source line using whichever
747 debug format is preferred by the target. This currently means either STABS,
748 ECOFF or DWARF2.
749
750 @item --gstabs
751 Generate stabs debugging information for each assembler line. This
752 may help debugging assembler code, if the debugger can handle it.
753
754 @item --gstabs+
755 Generate stabs debugging information for each assembler line, with GNU
756 extensions that probably only gdb can handle, and that could make other
757 debuggers crash or refuse to read your program. This
758 may help debugging assembler code. Currently the only GNU extension is
759 the location of the current working directory at assembling time.
760
761 @item --gdwarf-2
762 Generate DWARF2 debugging information for each assembler line. This
763 may help debugging assembler code, if the debugger can handle it. Note---this
764 option is only supported by some targets, not all of them.
765
766 @item --gdwarf-3
767 This option is the same as the @option{--gdwarf-2} option, except that it
768 allows for the possibility of the generation of extra debug information as per
769 version 3 of the DWARF specification. Note - enabling this option does not
770 guarantee the generation of any extra infortmation, the choice to do so is on a
771 per target basis.
772
773 @item --gdwarf-4
774 This option is the same as the @option{--gdwarf-2} option, except that it
775 allows for the possibility of the generation of extra debug information as per
776 version 4 of the DWARF specification. Note - enabling this option does not
777 guarantee the generation of any extra infortmation, the choice to do so is on a
778 per target basis.
779
780 @item --gdwarf-5
781 This option is the same as the @option{--gdwarf-2} option, except that it
782 allows for the possibility of the generation of extra debug information as per
783 version 5 of the DWARF specification. Note - enabling this option does not
784 guarantee the generation of any extra infortmation, the choice to do so is on a
785 per target basis.
786
787 @item --gdwarf-sections
788 Instead of creating a .debug_line section, create a series of
789 .debug_line.@var{foo} sections where @var{foo} is the name of the
790 corresponding code section. For example a code section called @var{.text.func}
791 will have its dwarf line number information placed into a section called
792 @var{.debug_line.text.func}. If the code section is just called @var{.text}
793 then debug line section will still be called just @var{.debug_line} without any
794 suffix.
795
796 @item --gdwarf-cie-version=@var{version}
797 Control which version of DWARF Common Information Entries (CIEs) are produced.
798 When this flag is not specificed the default is version 1, though some targets
799 can modify this default. Other possible values for @var{version} are 3 or 4.
800
801 @ifset ELF
802 @item --size-check=error
803 @itemx --size-check=warning
804 Issue an error or warning for invalid ELF .size directive.
805
806 @item --elf-stt-common=no
807 @itemx --elf-stt-common=yes
808 These options control whether the ELF assembler should generate common
809 symbols with the @code{STT_COMMON} type. The default can be controlled
810 by a configure option @option{--enable-elf-stt-common}.
811
812 @item --generate-missing-build-notes=yes
813 @itemx --generate-missing-build-notes=no
814 These options control whether the ELF assembler should generate GNU Build
815 attribute notes if none are present in the input sources.
816 The default can be controlled by the @option{--enable-generate-build-notes}
817 configure option.
818
819 @end ifset
820
821 @item --help
822 Print a summary of the command-line options and exit.
823
824 @item --target-help
825 Print a summary of all target specific options and exit.
826
827 @item -I @var{dir}
828 Add directory @var{dir} to the search list for @code{.include} directives.
829
830 @item -J
831 Don't warn about signed overflow.
832
833 @item -K
834 @ifclear DIFF-TBL-KLUGE
835 This option is accepted but has no effect on the @value{TARGET} family.
836 @end ifclear
837 @ifset DIFF-TBL-KLUGE
838 Issue warnings when difference tables altered for long displacements.
839 @end ifset
840
841 @item -L
842 @itemx --keep-locals
843 Keep (in the symbol table) local symbols. These symbols start with
844 system-specific local label prefixes, typically @samp{.L} for ELF systems
845 or @samp{L} for traditional a.out systems.
846 @ifclear man
847 @xref{Symbol Names}.
848 @end ifclear
849
850 @item --listing-lhs-width=@var{number}
851 Set the maximum width, in words, of the output data column for an assembler
852 listing to @var{number}.
853
854 @item --listing-lhs-width2=@var{number}
855 Set the maximum width, in words, of the output data column for continuation
856 lines in an assembler listing to @var{number}.
857
858 @item --listing-rhs-width=@var{number}
859 Set the maximum width of an input source line, as displayed in a listing, to
860 @var{number} bytes.
861
862 @item --listing-cont-lines=@var{number}
863 Set the maximum number of lines printed in a listing for a single line of input
864 to @var{number} + 1.
865
866 @item --no-pad-sections
867 Stop the assembler for padding the ends of output sections to the alignment
868 of that section. The default is to pad the sections, but this can waste space
869 which might be needed on targets which have tight memory constraints.
870
871 @item -o @var{objfile}
872 Name the object-file output from @command{@value{AS}} @var{objfile}.
873
874 @item -R
875 Fold the data section into the text section.
876
877 @item --hash-size=@var{number}
878 Set the default size of GAS's hash tables to a prime number close to
879 @var{number}. Increasing this value can reduce the length of time it takes the
880 assembler to perform its tasks, at the expense of increasing the assembler's
881 memory requirements. Similarly reducing this value can reduce the memory
882 requirements at the expense of speed.
883
884 @item --reduce-memory-overheads
885 This option reduces GAS's memory requirements, at the expense of making the
886 assembly processes slower. Currently this switch is a synonym for
887 @samp{--hash-size=4051}, but in the future it may have other effects as well.
888
889 @ifset ELF
890 @item --sectname-subst
891 Honor substitution sequences in section names.
892 @ifclear man
893 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
894 @end ifclear
895 @end ifset
896
897 @item --statistics
898 Print the maximum space (in bytes) and total time (in seconds) used by
899 assembly.
900
901 @item --strip-local-absolute
902 Remove local absolute symbols from the outgoing symbol table.
903
904 @item -v
905 @itemx -version
906 Print the @command{as} version.
907
908 @item --version
909 Print the @command{as} version and exit.
910
911 @item -W
912 @itemx --no-warn
913 Suppress warning messages.
914
915 @item --fatal-warnings
916 Treat warnings as errors.
917
918 @item --warn
919 Don't suppress warning messages or treat them as errors.
920
921 @item -w
922 Ignored.
923
924 @item -x
925 Ignored.
926
927 @item -Z
928 Generate an object file even after errors.
929
930 @item -- | @var{files} @dots{}
931 Standard input, or source files to assemble.
932
933 @end table
934 @c man end
935
936 @ifset AARCH64
937
938 @ifclear man
939 @xref{AArch64 Options}, for the options available when @value{AS} is configured
940 for the 64-bit mode of the ARM Architecture (AArch64).
941 @end ifclear
942
943 @ifset man
944 @c man begin OPTIONS
945 The following options are available when @value{AS} is configured for the
946 64-bit mode of the ARM Architecture (AArch64).
947 @c man end
948 @c man begin INCLUDE
949 @include c-aarch64.texi
950 @c ended inside the included file
951 @end ifset
952
953 @end ifset
954
955 @ifset ALPHA
956
957 @ifclear man
958 @xref{Alpha Options}, for the options available when @value{AS} is configured
959 for an Alpha processor.
960 @end ifclear
961
962 @ifset man
963 @c man begin OPTIONS
964 The following options are available when @value{AS} is configured for an Alpha
965 processor.
966 @c man end
967 @c man begin INCLUDE
968 @include c-alpha.texi
969 @c ended inside the included file
970 @end ifset
971
972 @end ifset
973
974 @c man begin OPTIONS
975 @ifset ARC
976 The following options are available when @value{AS} is configured for an ARC
977 processor.
978
979 @table @gcctabopt
980 @item -mcpu=@var{cpu}
981 This option selects the core processor variant.
982 @item -EB | -EL
983 Select either big-endian (-EB) or little-endian (-EL) output.
984 @item -mcode-density
985 Enable Code Density extenssion instructions.
986 @end table
987 @end ifset
988
989 @ifset ARM
990 The following options are available when @value{AS} is configured for the ARM
991 processor family.
992
993 @table @gcctabopt
994 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
995 Specify which ARM processor variant is the target.
996 @item -march=@var{architecture}[+@var{extension}@dots{}]
997 Specify which ARM architecture variant is used by the target.
998 @item -mfpu=@var{floating-point-format}
999 Select which Floating Point architecture is the target.
1000 @item -mfloat-abi=@var{abi}
1001 Select which floating point ABI is in use.
1002 @item -mthumb
1003 Enable Thumb only instruction decoding.
1004 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
1005 Select which procedure calling convention is in use.
1006 @item -EB | -EL
1007 Select either big-endian (-EB) or little-endian (-EL) output.
1008 @item -mthumb-interwork
1009 Specify that the code has been generated with interworking between Thumb and
1010 ARM code in mind.
1011 @item -mccs
1012 Turns on CodeComposer Studio assembly syntax compatibility mode.
1013 @item -k
1014 Specify that PIC code has been generated.
1015 @end table
1016 @end ifset
1017 @c man end
1018
1019 @ifset Blackfin
1020
1021 @ifclear man
1022 @xref{Blackfin Options}, for the options available when @value{AS} is
1023 configured for the Blackfin processor family.
1024 @end ifclear
1025
1026 @ifset man
1027 @c man begin OPTIONS
1028 The following options are available when @value{AS} is configured for
1029 the Blackfin processor family.
1030 @c man end
1031 @c man begin INCLUDE
1032 @include c-bfin.texi
1033 @c ended inside the included file
1034 @end ifset
1035
1036 @end ifset
1037
1038 @ifset BPF
1039
1040 @ifclear man
1041 @xref{BPF Options}, for the options available when @value{AS} is
1042 configured for the Linux kernel BPF processor family.
1043 @end ifclear
1044
1045 @ifset man
1046 @c man begin OPTIONS
1047 The following options are available when @value{AS} is configured for
1048 the Linux kernel BPF processor family.
1049 @c man end
1050 @c man begin INCLUDE
1051 @include c-bpf.texi
1052 @c ended inside the included file
1053 @end ifset
1054
1055 @end ifset
1056
1057 @c man begin OPTIONS
1058 @ifset CRIS
1059 See the info pages for documentation of the CRIS-specific options.
1060 @end ifset
1061
1062 @ifset CSKY
1063
1064 @ifclear man
1065 @xref{C-SKY Options}, for the options available when @value{AS} is
1066 configured for the C-SKY processor family.
1067 @end ifclear
1068
1069 @ifset man
1070 @c man begin OPTIONS
1071 The following options are available when @value{AS} is configured for
1072 the C-SKY processor family.
1073 @c man end
1074 @c man begin INCLUDE
1075 @include c-csky.texi
1076 @c ended inside the included file
1077 @end ifset
1078
1079 @end ifset
1080
1081 @ifset D10V
1082 The following options are available when @value{AS} is configured for
1083 a D10V processor.
1084 @table @gcctabopt
1085 @cindex D10V optimization
1086 @cindex optimization, D10V
1087 @item -O
1088 Optimize output by parallelizing instructions.
1089 @end table
1090 @end ifset
1091
1092 @ifset D30V
1093 The following options are available when @value{AS} is configured for a D30V
1094 processor.
1095 @table @gcctabopt
1096 @cindex D30V optimization
1097 @cindex optimization, D30V
1098 @item -O
1099 Optimize output by parallelizing instructions.
1100
1101 @cindex D30V nops
1102 @item -n
1103 Warn when nops are generated.
1104
1105 @cindex D30V nops after 32-bit multiply
1106 @item -N
1107 Warn when a nop after a 32-bit multiply instruction is generated.
1108 @end table
1109 @end ifset
1110 @c man end
1111
1112 @ifset EPIPHANY
1113 The following options are available when @value{AS} is configured for the
1114 Adapteva EPIPHANY series.
1115
1116 @ifclear man
1117 @xref{Epiphany Options}, for the options available when @value{AS} is
1118 configured for an Epiphany processor.
1119 @end ifclear
1120
1121 @ifset man
1122 @c man begin OPTIONS
1123 The following options are available when @value{AS} is configured for
1124 an Epiphany processor.
1125 @c man end
1126 @c man begin INCLUDE
1127 @include c-epiphany.texi
1128 @c ended inside the included file
1129 @end ifset
1130
1131 @end ifset
1132
1133 @ifset H8300
1134
1135 @ifclear man
1136 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1137 for an H8/300 processor.
1138 @end ifclear
1139
1140 @ifset man
1141 @c man begin OPTIONS
1142 The following options are available when @value{AS} is configured for an H8/300
1143 processor.
1144 @c man end
1145 @c man begin INCLUDE
1146 @include c-h8300.texi
1147 @c ended inside the included file
1148 @end ifset
1149
1150 @end ifset
1151
1152 @ifset I80386
1153
1154 @ifclear man
1155 @xref{i386-Options}, for the options available when @value{AS} is
1156 configured for an i386 processor.
1157 @end ifclear
1158
1159 @ifset man
1160 @c man begin OPTIONS
1161 The following options are available when @value{AS} is configured for
1162 an i386 processor.
1163 @c man end
1164 @c man begin INCLUDE
1165 @include c-i386.texi
1166 @c ended inside the included file
1167 @end ifset
1168
1169 @end ifset
1170
1171 @c man begin OPTIONS
1172 @ifset IP2K
1173 The following options are available when @value{AS} is configured for the
1174 Ubicom IP2K series.
1175
1176 @table @gcctabopt
1177
1178 @item -mip2022ext
1179 Specifies that the extended IP2022 instructions are allowed.
1180
1181 @item -mip2022
1182 Restores the default behaviour, which restricts the permitted instructions to
1183 just the basic IP2022 ones.
1184
1185 @end table
1186 @end ifset
1187
1188 @ifset M32C
1189 The following options are available when @value{AS} is configured for the
1190 Renesas M32C and M16C processors.
1191
1192 @table @gcctabopt
1193
1194 @item -m32c
1195 Assemble M32C instructions.
1196
1197 @item -m16c
1198 Assemble M16C instructions (the default).
1199
1200 @item -relax
1201 Enable support for link-time relaxations.
1202
1203 @item -h-tick-hex
1204 Support H'00 style hex constants in addition to 0x00 style.
1205
1206 @end table
1207 @end ifset
1208
1209 @ifset M32R
1210 The following options are available when @value{AS} is configured for the
1211 Renesas M32R (formerly Mitsubishi M32R) series.
1212
1213 @table @gcctabopt
1214
1215 @item --m32rx
1216 Specify which processor in the M32R family is the target. The default
1217 is normally the M32R, but this option changes it to the M32RX.
1218
1219 @item --warn-explicit-parallel-conflicts or --Wp
1220 Produce warning messages when questionable parallel constructs are
1221 encountered.
1222
1223 @item --no-warn-explicit-parallel-conflicts or --Wnp
1224 Do not produce warning messages when questionable parallel constructs are
1225 encountered.
1226
1227 @end table
1228 @end ifset
1229
1230 @ifset M680X0
1231 The following options are available when @value{AS} is configured for the
1232 Motorola 68000 series.
1233
1234 @table @gcctabopt
1235
1236 @item -l
1237 Shorten references to undefined symbols, to one word instead of two.
1238
1239 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1240 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1241 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1242 Specify what processor in the 68000 family is the target. The default
1243 is normally the 68020, but this can be changed at configuration time.
1244
1245 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1246 The target machine does (or does not) have a floating-point coprocessor.
1247 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1248 the basic 68000 is not compatible with the 68881, a combination of the
1249 two can be specified, since it's possible to do emulation of the
1250 coprocessor instructions with the main processor.
1251
1252 @item -m68851 | -mno-68851
1253 The target machine does (or does not) have a memory-management
1254 unit coprocessor. The default is to assume an MMU for 68020 and up.
1255
1256 @end table
1257 @end ifset
1258
1259 @ifset NIOSII
1260
1261 @ifclear man
1262 @xref{Nios II Options}, for the options available when @value{AS} is configured
1263 for an Altera Nios II processor.
1264 @end ifclear
1265
1266 @ifset man
1267 @c man begin OPTIONS
1268 The following options are available when @value{AS} is configured for an
1269 Altera Nios II processor.
1270 @c man end
1271 @c man begin INCLUDE
1272 @include c-nios2.texi
1273 @c ended inside the included file
1274 @end ifset
1275 @end ifset
1276
1277 @ifset PDP11
1278
1279 For details about the PDP-11 machine dependent features options,
1280 see @ref{PDP-11-Options}.
1281
1282 @table @gcctabopt
1283 @item -mpic | -mno-pic
1284 Generate position-independent (or position-dependent) code. The
1285 default is @option{-mpic}.
1286
1287 @item -mall
1288 @itemx -mall-extensions
1289 Enable all instruction set extensions. This is the default.
1290
1291 @item -mno-extensions
1292 Disable all instruction set extensions.
1293
1294 @item -m@var{extension} | -mno-@var{extension}
1295 Enable (or disable) a particular instruction set extension.
1296
1297 @item -m@var{cpu}
1298 Enable the instruction set extensions supported by a particular CPU, and
1299 disable all other extensions.
1300
1301 @item -m@var{machine}
1302 Enable the instruction set extensions supported by a particular machine
1303 model, and disable all other extensions.
1304 @end table
1305
1306 @end ifset
1307
1308 @ifset PJ
1309 The following options are available when @value{AS} is configured for
1310 a picoJava processor.
1311
1312 @table @gcctabopt
1313
1314 @cindex PJ endianness
1315 @cindex endianness, PJ
1316 @cindex big endian output, PJ
1317 @item -mb
1318 Generate ``big endian'' format output.
1319
1320 @cindex little endian output, PJ
1321 @item -ml
1322 Generate ``little endian'' format output.
1323
1324 @end table
1325 @end ifset
1326
1327 @ifset PRU
1328
1329 @ifclear man
1330 @xref{PRU Options}, for the options available when @value{AS} is configured
1331 for a PRU processor.
1332 @end ifclear
1333
1334 @ifset man
1335 @c man begin OPTIONS
1336 The following options are available when @value{AS} is configured for a
1337 PRU processor.
1338 @c man end
1339 @c man begin INCLUDE
1340 @include c-pru.texi
1341 @c ended inside the included file
1342 @end ifset
1343 @end ifset
1344
1345 @ifset M68HC11
1346 The following options are available when @value{AS} is configured for the
1347 Motorola 68HC11 or 68HC12 series.
1348
1349 @table @gcctabopt
1350
1351 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1352 Specify what processor is the target. The default is
1353 defined by the configuration option when building the assembler.
1354
1355 @item --xgate-ramoffset
1356 Instruct the linker to offset RAM addresses from S12X address space into
1357 XGATE address space.
1358
1359 @item -mshort
1360 Specify to use the 16-bit integer ABI.
1361
1362 @item -mlong
1363 Specify to use the 32-bit integer ABI.
1364
1365 @item -mshort-double
1366 Specify to use the 32-bit double ABI.
1367
1368 @item -mlong-double
1369 Specify to use the 64-bit double ABI.
1370
1371 @item --force-long-branches
1372 Relative branches are turned into absolute ones. This concerns
1373 conditional branches, unconditional branches and branches to a
1374 sub routine.
1375
1376 @item -S | --short-branches
1377 Do not turn relative branches into absolute ones
1378 when the offset is out of range.
1379
1380 @item --strict-direct-mode
1381 Do not turn the direct addressing mode into extended addressing mode
1382 when the instruction does not support direct addressing mode.
1383
1384 @item --print-insn-syntax
1385 Print the syntax of instruction in case of error.
1386
1387 @item --print-opcodes
1388 Print the list of instructions with syntax and then exit.
1389
1390 @item --generate-example
1391 Print an example of instruction for each possible instruction and then exit.
1392 This option is only useful for testing @command{@value{AS}}.
1393
1394 @end table
1395 @end ifset
1396
1397 @ifset SPARC
1398 The following options are available when @command{@value{AS}} is configured
1399 for the SPARC architecture:
1400
1401 @table @gcctabopt
1402 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1403 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1404 Explicitly select a variant of the SPARC architecture.
1405
1406 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1407 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1408
1409 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1410 UltraSPARC extensions.
1411
1412 @item -xarch=v8plus | -xarch=v8plusa
1413 For compatibility with the Solaris v9 assembler. These options are
1414 equivalent to -Av8plus and -Av8plusa, respectively.
1415
1416 @item -bump
1417 Warn when the assembler switches to another architecture.
1418 @end table
1419 @end ifset
1420
1421 @ifset TIC54X
1422 The following options are available when @value{AS} is configured for the 'c54x
1423 architecture.
1424
1425 @table @gcctabopt
1426 @item -mfar-mode
1427 Enable extended addressing mode. All addresses and relocations will assume
1428 extended addressing (usually 23 bits).
1429 @item -mcpu=@var{CPU_VERSION}
1430 Sets the CPU version being compiled for.
1431 @item -merrors-to-file @var{FILENAME}
1432 Redirect error output to a file, for broken systems which don't support such
1433 behaviour in the shell.
1434 @end table
1435 @end ifset
1436
1437 @ifset MIPS
1438 @c man begin OPTIONS
1439 The following options are available when @value{AS} is configured for
1440 a MIPS processor.
1441
1442 @table @gcctabopt
1443 @item -G @var{num}
1444 This option sets the largest size of an object that can be referenced
1445 implicitly with the @code{gp} register. It is only accepted for targets that
1446 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1447
1448 @cindex MIPS endianness
1449 @cindex endianness, MIPS
1450 @cindex big endian output, MIPS
1451 @item -EB
1452 Generate ``big endian'' format output.
1453
1454 @cindex little endian output, MIPS
1455 @item -EL
1456 Generate ``little endian'' format output.
1457
1458 @cindex MIPS ISA
1459 @item -mips1
1460 @itemx -mips2
1461 @itemx -mips3
1462 @itemx -mips4
1463 @itemx -mips5
1464 @itemx -mips32
1465 @itemx -mips32r2
1466 @itemx -mips32r3
1467 @itemx -mips32r5
1468 @itemx -mips32r6
1469 @itemx -mips64
1470 @itemx -mips64r2
1471 @itemx -mips64r3
1472 @itemx -mips64r5
1473 @itemx -mips64r6
1474 Generate code for a particular MIPS Instruction Set Architecture level.
1475 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1476 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1477 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1478 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1479 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1480 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1481 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1482 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1483 MIPS64 Release 6 ISA processors, respectively.
1484
1485 @item -march=@var{cpu}
1486 Generate code for a particular MIPS CPU.
1487
1488 @item -mtune=@var{cpu}
1489 Schedule and tune for a particular MIPS CPU.
1490
1491 @item -mfix7000
1492 @itemx -mno-fix7000
1493 Cause nops to be inserted if the read of the destination register
1494 of an mfhi or mflo instruction occurs in the following two instructions.
1495
1496 @item -mfix-rm7000
1497 @itemx -mno-fix-rm7000
1498 Cause nops to be inserted if a dmult or dmultu instruction is
1499 followed by a load instruction.
1500
1501 @item -mfix-r5900
1502 @itemx -mno-fix-r5900
1503 Do not attempt to schedule the preceding instruction into the delay slot
1504 of a branch instruction placed at the end of a short loop of six
1505 instructions or fewer and always schedule a @code{nop} instruction there
1506 instead. The short loop bug under certain conditions causes loops to
1507 execute only once or twice, due to a hardware bug in the R5900 chip.
1508
1509 @item -mdebug
1510 @itemx -no-mdebug
1511 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1512 section instead of the standard ELF .stabs sections.
1513
1514 @item -mpdr
1515 @itemx -mno-pdr
1516 Control generation of @code{.pdr} sections.
1517
1518 @item -mgp32
1519 @itemx -mfp32
1520 The register sizes are normally inferred from the ISA and ABI, but these
1521 flags force a certain group of registers to be treated as 32 bits wide at
1522 all times. @samp{-mgp32} controls the size of general-purpose registers
1523 and @samp{-mfp32} controls the size of floating-point registers.
1524
1525 @item -mgp64
1526 @itemx -mfp64
1527 The register sizes are normally inferred from the ISA and ABI, but these
1528 flags force a certain group of registers to be treated as 64 bits wide at
1529 all times. @samp{-mgp64} controls the size of general-purpose registers
1530 and @samp{-mfp64} controls the size of floating-point registers.
1531
1532 @item -mfpxx
1533 The register sizes are normally inferred from the ISA and ABI, but using
1534 this flag in combination with @samp{-mabi=32} enables an ABI variant
1535 which will operate correctly with floating-point registers which are
1536 32 or 64 bits wide.
1537
1538 @item -modd-spreg
1539 @itemx -mno-odd-spreg
1540 Enable use of floating-point operations on odd-numbered single-precision
1541 registers when supported by the ISA. @samp{-mfpxx} implies
1542 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1543
1544 @item -mips16
1545 @itemx -no-mips16
1546 Generate code for the MIPS 16 processor. This is equivalent to putting
1547 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1548 turns off this option.
1549
1550 @item -mmips16e2
1551 @itemx -mno-mips16e2
1552 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1553 to putting @code{.module mips16e2} at the start of the assembly file.
1554 @samp{-mno-mips16e2} turns off this option.
1555
1556 @item -mmicromips
1557 @itemx -mno-micromips
1558 Generate code for the microMIPS processor. This is equivalent to putting
1559 @code{.module micromips} at the start of the assembly file.
1560 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1561 @code{.module nomicromips} at the start of the assembly file.
1562
1563 @item -msmartmips
1564 @itemx -mno-smartmips
1565 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1566 equivalent to putting @code{.module smartmips} at the start of the assembly
1567 file. @samp{-mno-smartmips} turns off this option.
1568
1569 @item -mips3d
1570 @itemx -no-mips3d
1571 Generate code for the MIPS-3D Application Specific Extension.
1572 This tells the assembler to accept MIPS-3D instructions.
1573 @samp{-no-mips3d} turns off this option.
1574
1575 @item -mdmx
1576 @itemx -no-mdmx
1577 Generate code for the MDMX Application Specific Extension.
1578 This tells the assembler to accept MDMX instructions.
1579 @samp{-no-mdmx} turns off this option.
1580
1581 @item -mdsp
1582 @itemx -mno-dsp
1583 Generate code for the DSP Release 1 Application Specific Extension.
1584 This tells the assembler to accept DSP Release 1 instructions.
1585 @samp{-mno-dsp} turns off this option.
1586
1587 @item -mdspr2
1588 @itemx -mno-dspr2
1589 Generate code for the DSP Release 2 Application Specific Extension.
1590 This option implies @samp{-mdsp}.
1591 This tells the assembler to accept DSP Release 2 instructions.
1592 @samp{-mno-dspr2} turns off this option.
1593
1594 @item -mdspr3
1595 @itemx -mno-dspr3
1596 Generate code for the DSP Release 3 Application Specific Extension.
1597 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1598 This tells the assembler to accept DSP Release 3 instructions.
1599 @samp{-mno-dspr3} turns off this option.
1600
1601 @item -mmsa
1602 @itemx -mno-msa
1603 Generate code for the MIPS SIMD Architecture Extension.
1604 This tells the assembler to accept MSA instructions.
1605 @samp{-mno-msa} turns off this option.
1606
1607 @item -mxpa
1608 @itemx -mno-xpa
1609 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1610 This tells the assembler to accept XPA instructions.
1611 @samp{-mno-xpa} turns off this option.
1612
1613 @item -mmt
1614 @itemx -mno-mt
1615 Generate code for the MT Application Specific Extension.
1616 This tells the assembler to accept MT instructions.
1617 @samp{-mno-mt} turns off this option.
1618
1619 @item -mmcu
1620 @itemx -mno-mcu
1621 Generate code for the MCU Application Specific Extension.
1622 This tells the assembler to accept MCU instructions.
1623 @samp{-mno-mcu} turns off this option.
1624
1625 @item -mcrc
1626 @itemx -mno-crc
1627 Generate code for the MIPS cyclic redundancy check (CRC) Application
1628 Specific Extension. This tells the assembler to accept CRC instructions.
1629 @samp{-mno-crc} turns off this option.
1630
1631 @item -mginv
1632 @itemx -mno-ginv
1633 Generate code for the Global INValidate (GINV) Application Specific
1634 Extension. This tells the assembler to accept GINV instructions.
1635 @samp{-mno-ginv} turns off this option.
1636
1637 @item -mloongson-mmi
1638 @itemx -mno-loongson-mmi
1639 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1640 Application Specific Extension. This tells the assembler to accept MMI
1641 instructions.
1642 @samp{-mno-loongson-mmi} turns off this option.
1643
1644 @item -mloongson-cam
1645 @itemx -mno-loongson-cam
1646 Generate code for the Loongson Content Address Memory (CAM) instructions.
1647 This tells the assembler to accept Loongson CAM instructions.
1648 @samp{-mno-loongson-cam} turns off this option.
1649
1650 @item -mloongson-ext
1651 @itemx -mno-loongson-ext
1652 Generate code for the Loongson EXTensions (EXT) instructions.
1653 This tells the assembler to accept Loongson EXT instructions.
1654 @samp{-mno-loongson-ext} turns off this option.
1655
1656 @item -mloongson-ext2
1657 @itemx -mno-loongson-ext2
1658 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1659 This option implies @samp{-mloongson-ext}.
1660 This tells the assembler to accept Loongson EXT2 instructions.
1661 @samp{-mno-loongson-ext2} turns off this option.
1662
1663 @item -minsn32
1664 @itemx -mno-insn32
1665 Only use 32-bit instruction encodings when generating code for the
1666 microMIPS processor. This option inhibits the use of any 16-bit
1667 instructions. This is equivalent to putting @code{.set insn32} at
1668 the start of the assembly file. @samp{-mno-insn32} turns off this
1669 option. This is equivalent to putting @code{.set noinsn32} at the
1670 start of the assembly file. By default @samp{-mno-insn32} is
1671 selected, allowing all instructions to be used.
1672
1673 @item --construct-floats
1674 @itemx --no-construct-floats
1675 The @samp{--no-construct-floats} option disables the construction of
1676 double width floating point constants by loading the two halves of the
1677 value into the two single width floating point registers that make up
1678 the double width register. By default @samp{--construct-floats} is
1679 selected, allowing construction of these floating point constants.
1680
1681 @item --relax-branch
1682 @itemx --no-relax-branch
1683 The @samp{--relax-branch} option enables the relaxation of out-of-range
1684 branches. By default @samp{--no-relax-branch} is selected, causing any
1685 out-of-range branches to produce an error.
1686
1687 @item -mignore-branch-isa
1688 @itemx -mno-ignore-branch-isa
1689 Ignore branch checks for invalid transitions between ISA modes. The
1690 semantics of branches does not provide for an ISA mode switch, so in
1691 most cases the ISA mode a branch has been encoded for has to be the
1692 same as the ISA mode of the branch's target label. Therefore GAS has
1693 checks implemented that verify in branch assembly that the two ISA
1694 modes match. @samp{-mignore-branch-isa} disables these checks. By
1695 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1696 branch requiring a transition between ISA modes to produce an error.
1697
1698 @item -mnan=@var{encoding}
1699 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1700 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1701
1702 @cindex emulation
1703 @item --emulation=@var{name}
1704 This option was formerly used to switch between ELF and ECOFF output
1705 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1706 removed in GAS 2.24, so the option now serves little purpose.
1707 It is retained for backwards compatibility.
1708
1709 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1710 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1711 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1712 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1713 preferred options instead.
1714
1715 @item -nocpp
1716 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1717 the native tools.
1718
1719 @item --trap
1720 @itemx --no-trap
1721 @itemx --break
1722 @itemx --no-break
1723 Control how to deal with multiplication overflow and division by zero.
1724 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1725 (and only work for Instruction Set Architecture level 2 and higher);
1726 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1727 break exception.
1728
1729 @item -n
1730 When this option is used, @command{@value{AS}} will issue a warning every
1731 time it generates a nop instruction from a macro.
1732 @end table
1733 @c man end
1734 @end ifset
1735
1736 @ifset MCORE
1737 The following options are available when @value{AS} is configured for
1738 an MCore processor.
1739
1740 @table @gcctabopt
1741 @item -jsri2bsr
1742 @itemx -nojsri2bsr
1743 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1744 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1745
1746 @item -sifilter
1747 @itemx -nosifilter
1748 Enable or disable the silicon filter behaviour. By default this is disabled.
1749 The default can be overridden by the @samp{-sifilter} command-line option.
1750
1751 @item -relax
1752 Alter jump instructions for long displacements.
1753
1754 @item -mcpu=[210|340]
1755 Select the cpu type on the target hardware. This controls which instructions
1756 can be assembled.
1757
1758 @item -EB
1759 Assemble for a big endian target.
1760
1761 @item -EL
1762 Assemble for a little endian target.
1763
1764 @end table
1765 @end ifset
1766 @c man end
1767
1768 @ifset METAG
1769
1770 @ifclear man
1771 @xref{Meta Options}, for the options available when @value{AS} is configured
1772 for a Meta processor.
1773 @end ifclear
1774
1775 @ifset man
1776 @c man begin OPTIONS
1777 The following options are available when @value{AS} is configured for a
1778 Meta processor.
1779 @c man end
1780 @c man begin INCLUDE
1781 @include c-metag.texi
1782 @c ended inside the included file
1783 @end ifset
1784
1785 @end ifset
1786
1787 @c man begin OPTIONS
1788 @ifset MMIX
1789 See the info pages for documentation of the MMIX-specific options.
1790 @end ifset
1791
1792 @ifset NDS32
1793
1794 @ifclear man
1795 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1796 for a NDS32 processor.
1797 @end ifclear
1798 @c ended inside the included file
1799 @end ifset
1800
1801 @ifset man
1802 @c man begin OPTIONS
1803 The following options are available when @value{AS} is configured for a
1804 NDS32 processor.
1805 @c man end
1806 @c man begin INCLUDE
1807 @include c-nds32.texi
1808 @c ended inside the included file
1809 @end ifset
1810
1811 @c man end
1812 @ifset PPC
1813
1814 @ifclear man
1815 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1816 for a PowerPC processor.
1817 @end ifclear
1818
1819 @ifset man
1820 @c man begin OPTIONS
1821 The following options are available when @value{AS} is configured for a
1822 PowerPC processor.
1823 @c man end
1824 @c man begin INCLUDE
1825 @include c-ppc.texi
1826 @c ended inside the included file
1827 @end ifset
1828
1829 @end ifset
1830
1831 @ifset RISCV
1832
1833 @ifclear man
1834 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1835 for a RISC-V processor.
1836 @end ifclear
1837
1838 @ifset man
1839 @c man begin OPTIONS
1840 The following options are available when @value{AS} is configured for a
1841 RISC-V processor.
1842 @c man end
1843 @c man begin INCLUDE
1844 @include c-riscv.texi
1845 @c ended inside the included file
1846 @end ifset
1847
1848 @end ifset
1849
1850 @c man begin OPTIONS
1851 @ifset RX
1852 See the info pages for documentation of the RX-specific options.
1853 @end ifset
1854
1855 @ifset S390
1856 The following options are available when @value{AS} is configured for the s390
1857 processor family.
1858
1859 @table @gcctabopt
1860 @item -m31
1861 @itemx -m64
1862 Select the word size, either 31/32 bits or 64 bits.
1863 @item -mesa
1864 @item -mzarch
1865 Select the architecture mode, either the Enterprise System
1866 Architecture (esa) or the z/Architecture mode (zarch).
1867 @item -march=@var{processor}
1868 Specify which s390 processor variant is the target, @samp{g5} (or
1869 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1870 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1871 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1872 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1873 (or @samp{arch13}).
1874 @item -mregnames
1875 @itemx -mno-regnames
1876 Allow or disallow symbolic names for registers.
1877 @item -mwarn-areg-zero
1878 Warn whenever the operand for a base or index register has been specified
1879 but evaluates to zero.
1880 @end table
1881 @end ifset
1882 @c man end
1883
1884 @ifset TIC6X
1885
1886 @ifclear man
1887 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1888 for a TMS320C6000 processor.
1889 @end ifclear
1890
1891 @ifset man
1892 @c man begin OPTIONS
1893 The following options are available when @value{AS} is configured for a
1894 TMS320C6000 processor.
1895 @c man end
1896 @c man begin INCLUDE
1897 @include c-tic6x.texi
1898 @c ended inside the included file
1899 @end ifset
1900
1901 @end ifset
1902
1903 @ifset TILEGX
1904
1905 @ifclear man
1906 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1907 for a TILE-Gx processor.
1908 @end ifclear
1909
1910 @ifset man
1911 @c man begin OPTIONS
1912 The following options are available when @value{AS} is configured for a TILE-Gx
1913 processor.
1914 @c man end
1915 @c man begin INCLUDE
1916 @include c-tilegx.texi
1917 @c ended inside the included file
1918 @end ifset
1919
1920 @end ifset
1921
1922 @ifset VISIUM
1923
1924 @ifclear man
1925 @xref{Visium Options}, for the options available when @value{AS} is configured
1926 for a Visium processor.
1927 @end ifclear
1928
1929 @ifset man
1930 @c man begin OPTIONS
1931 The following option is available when @value{AS} is configured for a Visium
1932 processor.
1933 @c man end
1934 @c man begin INCLUDE
1935 @include c-visium.texi
1936 @c ended inside the included file
1937 @end ifset
1938
1939 @end ifset
1940
1941 @ifset XTENSA
1942
1943 @ifclear man
1944 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1945 for an Xtensa processor.
1946 @end ifclear
1947
1948 @ifset man
1949 @c man begin OPTIONS
1950 The following options are available when @value{AS} is configured for an
1951 Xtensa processor.
1952 @c man end
1953 @c man begin INCLUDE
1954 @include c-xtensa.texi
1955 @c ended inside the included file
1956 @end ifset
1957
1958 @end ifset
1959
1960 @ifset Z80
1961
1962 @ifclear man
1963 @xref{Z80 Options}, for the options available when @value{AS} is configured
1964 for an Z80 processor.
1965 @end ifclear
1966
1967 @ifset man
1968 @c man begin OPTIONS
1969 The following options are available when @value{AS} is configured for an
1970 Z80 processor.
1971 @c man end
1972 @c man begin INCLUDE
1973 @include c-z80.texi
1974 @c ended inside the included file
1975 @end ifset
1976
1977 @end ifset
1978
1979 @menu
1980 * Manual:: Structure of this Manual
1981 * GNU Assembler:: The GNU Assembler
1982 * Object Formats:: Object File Formats
1983 * Command Line:: Command Line
1984 * Input Files:: Input Files
1985 * Object:: Output (Object) File
1986 * Errors:: Error and Warning Messages
1987 @end menu
1988
1989 @node Manual
1990 @section Structure of this Manual
1991
1992 @cindex manual, structure and purpose
1993 This manual is intended to describe what you need to know to use
1994 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1995 notation for symbols, constants, and expressions; the directives that
1996 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1997
1998 @ifclear GENERIC
1999 We also cover special features in the @value{TARGET}
2000 configuration of @command{@value{AS}}, including assembler directives.
2001 @end ifclear
2002 @ifset GENERIC
2003 This manual also describes some of the machine-dependent features of
2004 various flavors of the assembler.
2005 @end ifset
2006
2007 @cindex machine instructions (not covered)
2008 On the other hand, this manual is @emph{not} intended as an introduction
2009 to programming in assembly language---let alone programming in general!
2010 In a similar vein, we make no attempt to introduce the machine
2011 architecture; we do @emph{not} describe the instruction set, standard
2012 mnemonics, registers or addressing modes that are standard to a
2013 particular architecture.
2014 @ifset GENERIC
2015 You may want to consult the manufacturer's
2016 machine architecture manual for this information.
2017 @end ifset
2018 @ifclear GENERIC
2019 @ifset H8/300
2020 For information on the H8/300 machine instruction set, see @cite{H8/300
2021 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2022 Programming Manual} (Renesas).
2023 @end ifset
2024 @ifset SH
2025 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2026 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2027 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2028 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2029 @end ifset
2030 @ifset Z8000
2031 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2032 @end ifset
2033 @end ifclear
2034
2035 @c I think this is premature---doc@cygnus.com, 17jan1991
2036 @ignore
2037 Throughout this manual, we assume that you are running @dfn{GNU},
2038 the portable operating system from the @dfn{Free Software
2039 Foundation, Inc.}. This restricts our attention to certain kinds of
2040 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2041 once this assumption is granted examples and definitions need less
2042 qualification.
2043
2044 @command{@value{AS}} is part of a team of programs that turn a high-level
2045 human-readable series of instructions into a low-level
2046 computer-readable series of instructions. Different versions of
2047 @command{@value{AS}} are used for different kinds of computer.
2048 @end ignore
2049
2050 @c There used to be a section "Terminology" here, which defined
2051 @c "contents", "byte", "word", and "long". Defining "word" to any
2052 @c particular size is confusing when the .word directive may generate 16
2053 @c bits on one machine and 32 bits on another; in general, for the user
2054 @c version of this manual, none of these terms seem essential to define.
2055 @c They were used very little even in the former draft of the manual;
2056 @c this draft makes an effort to avoid them (except in names of
2057 @c directives).
2058
2059 @node GNU Assembler
2060 @section The GNU Assembler
2061
2062 @c man begin DESCRIPTION
2063
2064 @sc{gnu} @command{as} is really a family of assemblers.
2065 @ifclear GENERIC
2066 This manual describes @command{@value{AS}}, a member of that family which is
2067 configured for the @value{TARGET} architectures.
2068 @end ifclear
2069 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2070 should find a fairly similar environment when you use it on another
2071 architecture. Each version has much in common with the others,
2072 including object file formats, most assembler directives (often called
2073 @dfn{pseudo-ops}) and assembler syntax.@refill
2074
2075 @cindex purpose of @sc{gnu} assembler
2076 @command{@value{AS}} is primarily intended to assemble the output of the
2077 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2078 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2079 assemble correctly everything that other assemblers for the same
2080 machine would assemble.
2081 @ifset VAX
2082 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2083 @end ifset
2084 @ifset M680X0
2085 @c This remark should appear in generic version of manual; assumption
2086 @c here is that generic version sets M680x0.
2087 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2088 assembler for the same architecture; for example, we know of several
2089 incompatible versions of 680x0 assembly language syntax.
2090 @end ifset
2091
2092 @c man end
2093
2094 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2095 program in one pass of the source file. This has a subtle impact on the
2096 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2097
2098 @node Object Formats
2099 @section Object File Formats
2100
2101 @cindex object file format
2102 The @sc{gnu} assembler can be configured to produce several alternative
2103 object file formats. For the most part, this does not affect how you
2104 write assembly language programs; but directives for debugging symbols
2105 are typically different in different file formats. @xref{Symbol
2106 Attributes,,Symbol Attributes}.
2107 @ifclear GENERIC
2108 @ifclear MULTI-OBJ
2109 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2110 @value{OBJ-NAME} format object files.
2111 @end ifclear
2112 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2113 @ifset HPPA
2114 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2115 SOM or ELF format object files.
2116 @end ifset
2117 @end ifclear
2118
2119 @node Command Line
2120 @section Command Line
2121
2122 @cindex command line conventions
2123
2124 After the program name @command{@value{AS}}, the command line may contain
2125 options and file names. Options may appear in any order, and may be
2126 before, after, or between file names. The order of file names is
2127 significant.
2128
2129 @cindex standard input, as input file
2130 @kindex --
2131 @file{--} (two hyphens) by itself names the standard input file
2132 explicitly, as one of the files for @command{@value{AS}} to assemble.
2133
2134 @cindex options, command line
2135 Except for @samp{--} any command-line argument that begins with a
2136 hyphen (@samp{-}) is an option. Each option changes the behavior of
2137 @command{@value{AS}}. No option changes the way another option works. An
2138 option is a @samp{-} followed by one or more letters; the case of
2139 the letter is important. All options are optional.
2140
2141 Some options expect exactly one file name to follow them. The file
2142 name may either immediately follow the option's letter (compatible
2143 with older assemblers) or it may be the next command argument (@sc{gnu}
2144 standard). These two command lines are equivalent:
2145
2146 @smallexample
2147 @value{AS} -o my-object-file.o mumble.s
2148 @value{AS} -omy-object-file.o mumble.s
2149 @end smallexample
2150
2151 @node Input Files
2152 @section Input Files
2153
2154 @cindex input
2155 @cindex source program
2156 @cindex files, input
2157 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2158 describe the program input to one run of @command{@value{AS}}. The program may
2159 be in one or more files; how the source is partitioned into files
2160 doesn't change the meaning of the source.
2161
2162 @c I added "con" prefix to "catenation" just to prove I can overcome my
2163 @c APL training... doc@cygnus.com
2164 The source program is a concatenation of the text in all the files, in the
2165 order specified.
2166
2167 @c man begin DESCRIPTION
2168 Each time you run @command{@value{AS}} it assembles exactly one source
2169 program. The source program is made up of one or more files.
2170 (The standard input is also a file.)
2171
2172 You give @command{@value{AS}} a command line that has zero or more input file
2173 names. The input files are read (from left file name to right). A
2174 command-line argument (in any position) that has no special meaning
2175 is taken to be an input file name.
2176
2177 If you give @command{@value{AS}} no file names it attempts to read one input file
2178 from the @command{@value{AS}} standard input, which is normally your terminal. You
2179 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2180 to assemble.
2181
2182 Use @samp{--} if you need to explicitly name the standard input file
2183 in your command line.
2184
2185 If the source is empty, @command{@value{AS}} produces a small, empty object
2186 file.
2187
2188 @c man end
2189
2190 @subheading Filenames and Line-numbers
2191
2192 @cindex input file linenumbers
2193 @cindex line numbers, in input files
2194 There are two ways of locating a line in the input file (or files) and
2195 either may be used in reporting error messages. One way refers to a line
2196 number in a physical file; the other refers to a line number in a
2197 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2198
2199 @dfn{Physical files} are those files named in the command line given
2200 to @command{@value{AS}}.
2201
2202 @dfn{Logical files} are simply names declared explicitly by assembler
2203 directives; they bear no relation to physical files. Logical file names help
2204 error messages reflect the original source file, when @command{@value{AS}} source
2205 is itself synthesized from other files. @command{@value{AS}} understands the
2206 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2207 @ref{File,,@code{.file}}.
2208
2209 @node Object
2210 @section Output (Object) File
2211
2212 @cindex object file
2213 @cindex output file
2214 @kindex a.out
2215 @kindex .o
2216 Every time you run @command{@value{AS}} it produces an output file, which is
2217 your assembly language program translated into numbers. This file
2218 is the object file. Its default name is @code{a.out}.
2219 You can give it another name by using the @option{-o} option. Conventionally,
2220 object file names end with @file{.o}. The default name is used for historical
2221 reasons: older assemblers were capable of assembling self-contained programs
2222 directly into a runnable program. (For some formats, this isn't currently
2223 possible, but it can be done for the @code{a.out} format.)
2224
2225 @cindex linker
2226 @kindex ld
2227 The object file is meant for input to the linker @code{@value{LD}}. It contains
2228 assembled program code, information to help @code{@value{LD}} integrate
2229 the assembled program into a runnable file, and (optionally) symbolic
2230 information for the debugger.
2231
2232 @c link above to some info file(s) like the description of a.out.
2233 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2234
2235 @node Errors
2236 @section Error and Warning Messages
2237
2238 @c man begin DESCRIPTION
2239
2240 @cindex error messages
2241 @cindex warning messages
2242 @cindex messages from assembler
2243 @command{@value{AS}} may write warnings and error messages to the standard error
2244 file (usually your terminal). This should not happen when a compiler
2245 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2246 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2247 grave problem that stops the assembly.
2248
2249 @c man end
2250
2251 @cindex format of warning messages
2252 Warning messages have the format
2253
2254 @smallexample
2255 file_name:@b{NNN}:Warning Message Text
2256 @end smallexample
2257
2258 @noindent
2259 @cindex file names and line numbers, in warnings/errors
2260 (where @b{NNN} is a line number). If both a logical file name
2261 (@pxref{File,,@code{.file}}) and a logical line number
2262 @ifset GENERIC
2263 (@pxref{Line,,@code{.line}})
2264 @end ifset
2265 have been given then they will be used, otherwise the file name and line number
2266 in the current assembler source file will be used. The message text is
2267 intended to be self explanatory (in the grand Unix tradition).
2268
2269 Note the file name must be set via the logical version of the @code{.file}
2270 directive, not the DWARF2 version of the @code{.file} directive. For example:
2271
2272 @smallexample
2273 .file 2 "bar.c"
2274 error_assembler_source
2275 .file "foo.c"
2276 .line 30
2277 error_c_source
2278 @end smallexample
2279
2280 produces this output:
2281
2282 @smallexample
2283 Assembler messages:
2284 asm.s:2: Error: no such instruction: `error_assembler_source'
2285 foo.c:31: Error: no such instruction: `error_c_source'
2286 @end smallexample
2287
2288 @cindex format of error messages
2289 Error messages have the format
2290
2291 @smallexample
2292 file_name:@b{NNN}:FATAL:Error Message Text
2293 @end smallexample
2294
2295 The file name and line number are derived as for warning
2296 messages. The actual message text may be rather less explanatory
2297 because many of them aren't supposed to happen.
2298
2299 @node Invoking
2300 @chapter Command-Line Options
2301
2302 @cindex options, all versions of assembler
2303 This chapter describes command-line options available in @emph{all}
2304 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2305 for options specific
2306 @ifclear GENERIC
2307 to the @value{TARGET} target.
2308 @end ifclear
2309 @ifset GENERIC
2310 to particular machine architectures.
2311 @end ifset
2312
2313 @c man begin DESCRIPTION
2314
2315 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2316 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2317 The assembler arguments must be separated from each other (and the @samp{-Wa})
2318 by commas. For example:
2319
2320 @smallexample
2321 gcc -c -g -O -Wa,-alh,-L file.c
2322 @end smallexample
2323
2324 @noindent
2325 This passes two options to the assembler: @samp{-alh} (emit a listing to
2326 standard output with high-level and assembly source) and @samp{-L} (retain
2327 local symbols in the symbol table).
2328
2329 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2330 command-line options are automatically passed to the assembler by the compiler.
2331 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2332 precisely what options it passes to each compilation pass, including the
2333 assembler.)
2334
2335 @c man end
2336
2337 @menu
2338 * a:: -a[cdghlns] enable listings
2339 * alternate:: --alternate enable alternate macro syntax
2340 * D:: -D for compatibility
2341 * f:: -f to work faster
2342 * I:: -I for .include search path
2343 @ifclear DIFF-TBL-KLUGE
2344 * K:: -K for compatibility
2345 @end ifclear
2346 @ifset DIFF-TBL-KLUGE
2347 * K:: -K for difference tables
2348 @end ifset
2349
2350 * L:: -L to retain local symbols
2351 * listing:: --listing-XXX to configure listing output
2352 * M:: -M or --mri to assemble in MRI compatibility mode
2353 * MD:: --MD for dependency tracking
2354 * no-pad-sections:: --no-pad-sections to stop section padding
2355 * o:: -o to name the object file
2356 * R:: -R to join data and text sections
2357 * statistics:: --statistics to see statistics about assembly
2358 * traditional-format:: --traditional-format for compatible output
2359 * v:: -v to announce version
2360 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2361 * Z:: -Z to make object file even after errors
2362 @end menu
2363
2364 @node a
2365 @section Enable Listings: @option{-a[cdghlns]}
2366
2367 @kindex -a
2368 @kindex -ac
2369 @kindex -ad
2370 @kindex -ag
2371 @kindex -ah
2372 @kindex -al
2373 @kindex -an
2374 @kindex -as
2375 @cindex listings, enabling
2376 @cindex assembly listings, enabling
2377
2378 These options enable listing output from the assembler. By itself,
2379 @samp{-a} requests high-level, assembly, and symbols listing.
2380 You can use other letters to select specific options for the list:
2381 @samp{-ah} requests a high-level language listing,
2382 @samp{-al} requests an output-program assembly listing, and
2383 @samp{-as} requests a symbol table listing.
2384 High-level listings require that a compiler debugging option like
2385 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2386 also.
2387
2388 Use the @samp{-ag} option to print a first section with general assembly
2389 information, like @value{AS} version, switches passed, or time stamp.
2390
2391 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2392 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2393 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2394 omitted from the listing.
2395
2396 Use the @samp{-ad} option to omit debugging directives from the
2397 listing.
2398
2399 Once you have specified one of these options, you can further control
2400 listing output and its appearance using the directives @code{.list},
2401 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2402 @code{.sbttl}.
2403 The @samp{-an} option turns off all forms processing.
2404 If you do not request listing output with one of the @samp{-a} options, the
2405 listing-control directives have no effect.
2406
2407 The letters after @samp{-a} may be combined into one option,
2408 @emph{e.g.}, @samp{-aln}.
2409
2410 Note if the assembler source is coming from the standard input (e.g.,
2411 because it
2412 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2413 is being used) then the listing will not contain any comments or preprocessor
2414 directives. This is because the listing code buffers input source lines from
2415 stdin only after they have been preprocessed by the assembler. This reduces
2416 memory usage and makes the code more efficient.
2417
2418 @node alternate
2419 @section @option{--alternate}
2420
2421 @kindex --alternate
2422 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2423
2424 @node D
2425 @section @option{-D}
2426
2427 @kindex -D
2428 This option has no effect whatsoever, but it is accepted to make it more
2429 likely that scripts written for other assemblers also work with
2430 @command{@value{AS}}.
2431
2432 @node f
2433 @section Work Faster: @option{-f}
2434
2435 @kindex -f
2436 @cindex trusted compiler
2437 @cindex faster processing (@option{-f})
2438 @samp{-f} should only be used when assembling programs written by a
2439 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2440 and comment preprocessing on
2441 the input file(s) before assembling them. @xref{Preprocessing,
2442 ,Preprocessing}.
2443
2444 @quotation
2445 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2446 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2447 not work correctly.
2448 @end quotation
2449
2450 @node I
2451 @section @code{.include} Search Path: @option{-I} @var{path}
2452
2453 @kindex -I @var{path}
2454 @cindex paths for @code{.include}
2455 @cindex search path for @code{.include}
2456 @cindex @code{include} directive search path
2457 Use this option to add a @var{path} to the list of directories
2458 @command{@value{AS}} searches for files specified in @code{.include}
2459 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2460 many times as necessary to include a variety of paths. The current
2461 working directory is always searched first; after that, @command{@value{AS}}
2462 searches any @samp{-I} directories in the same order as they were
2463 specified (left to right) on the command line.
2464
2465 @node K
2466 @section Difference Tables: @option{-K}
2467
2468 @kindex -K
2469 @ifclear DIFF-TBL-KLUGE
2470 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2471 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2472 where it can be used to warn when the assembler alters the machine code
2473 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2474 family does not have the addressing limitations that sometimes lead to this
2475 alteration on other platforms.
2476 @end ifclear
2477
2478 @ifset DIFF-TBL-KLUGE
2479 @cindex difference tables, warning
2480 @cindex warning for altered difference tables
2481 @command{@value{AS}} sometimes alters the code emitted for directives of the
2482 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2483 You can use the @samp{-K} option if you want a warning issued when this
2484 is done.
2485 @end ifset
2486
2487 @node L
2488 @section Include Local Symbols: @option{-L}
2489
2490 @kindex -L
2491 @cindex local symbols, retaining in output
2492 Symbols beginning with system-specific local label prefixes, typically
2493 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2494 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2495 such symbols when debugging, because they are intended for the use of
2496 programs (like compilers) that compose assembler programs, not for your
2497 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2498 such symbols, so you do not normally debug with them.
2499
2500 This option tells @command{@value{AS}} to retain those local symbols
2501 in the object file. Usually if you do this you also tell the linker
2502 @code{@value{LD}} to preserve those symbols.
2503
2504 @node listing
2505 @section Configuring listing output: @option{--listing}
2506
2507 The listing feature of the assembler can be enabled via the command-line switch
2508 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2509 hex dump of the corresponding locations in the output object file, and displays
2510 them as a listing file. The format of this listing can be controlled by
2511 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2512 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2513 @code{.psize} (@pxref{Psize}), and
2514 @code{.eject} (@pxref{Eject}) and also by the following switches:
2515
2516 @table @gcctabopt
2517 @item --listing-lhs-width=@samp{number}
2518 @kindex --listing-lhs-width
2519 @cindex Width of first line disassembly output
2520 Sets the maximum width, in words, of the first line of the hex byte dump. This
2521 dump appears on the left hand side of the listing output.
2522
2523 @item --listing-lhs-width2=@samp{number}
2524 @kindex --listing-lhs-width2
2525 @cindex Width of continuation lines of disassembly output
2526 Sets the maximum width, in words, of any further lines of the hex byte dump for
2527 a given input source line. If this value is not specified, it defaults to being
2528 the same as the value specified for @samp{--listing-lhs-width}. If neither
2529 switch is used the default is to one.
2530
2531 @item --listing-rhs-width=@samp{number}
2532 @kindex --listing-rhs-width
2533 @cindex Width of source line output
2534 Sets the maximum width, in characters, of the source line that is displayed
2535 alongside the hex dump. The default value for this parameter is 100. The
2536 source line is displayed on the right hand side of the listing output.
2537
2538 @item --listing-cont-lines=@samp{number}
2539 @kindex --listing-cont-lines
2540 @cindex Maximum number of continuation lines
2541 Sets the maximum number of continuation lines of hex dump that will be
2542 displayed for a given single line of source input. The default value is 4.
2543 @end table
2544
2545 @node M
2546 @section Assemble in MRI Compatibility Mode: @option{-M}
2547
2548 @kindex -M
2549 @cindex MRI compatibility mode
2550 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2551 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2552 compatible with the @code{ASM68K} assembler from Microtec Research.
2553 The exact nature of the
2554 MRI syntax will not be documented here; see the MRI manuals for more
2555 information. Note in particular that the handling of macros and macro
2556 arguments is somewhat different. The purpose of this option is to permit
2557 assembling existing MRI assembler code using @command{@value{AS}}.
2558
2559 The MRI compatibility is not complete. Certain operations of the MRI assembler
2560 depend upon its object file format, and can not be supported using other object
2561 file formats. Supporting these would require enhancing each object file format
2562 individually. These are:
2563
2564 @itemize @bullet
2565 @item global symbols in common section
2566
2567 The m68k MRI assembler supports common sections which are merged by the linker.
2568 Other object file formats do not support this. @command{@value{AS}} handles
2569 common sections by treating them as a single common symbol. It permits local
2570 symbols to be defined within a common section, but it can not support global
2571 symbols, since it has no way to describe them.
2572
2573 @item complex relocations
2574
2575 The MRI assemblers support relocations against a negated section address, and
2576 relocations which combine the start addresses of two or more sections. These
2577 are not support by other object file formats.
2578
2579 @item @code{END} pseudo-op specifying start address
2580
2581 The MRI @code{END} pseudo-op permits the specification of a start address.
2582 This is not supported by other object file formats. The start address may
2583 instead be specified using the @option{-e} option to the linker, or in a linker
2584 script.
2585
2586 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2587
2588 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2589 name to the output file. This is not supported by other object file formats.
2590
2591 @item @code{ORG} pseudo-op
2592
2593 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2594 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2595 which changes the location within the current section. Absolute sections are
2596 not supported by other object file formats. The address of a section may be
2597 assigned within a linker script.
2598 @end itemize
2599
2600 There are some other features of the MRI assembler which are not supported by
2601 @command{@value{AS}}, typically either because they are difficult or because they
2602 seem of little consequence. Some of these may be supported in future releases.
2603
2604 @itemize @bullet
2605
2606 @item EBCDIC strings
2607
2608 EBCDIC strings are not supported.
2609
2610 @item packed binary coded decimal
2611
2612 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2613 and @code{DCB.P} pseudo-ops are not supported.
2614
2615 @item @code{FEQU} pseudo-op
2616
2617 The m68k @code{FEQU} pseudo-op is not supported.
2618
2619 @item @code{NOOBJ} pseudo-op
2620
2621 The m68k @code{NOOBJ} pseudo-op is not supported.
2622
2623 @item @code{OPT} branch control options
2624
2625 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2626 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2627 relaxes all branches, whether forward or backward, to an appropriate size, so
2628 these options serve no purpose.
2629
2630 @item @code{OPT} list control options
2631
2632 The following m68k @code{OPT} list control options are ignored: @code{C},
2633 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2634 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2635
2636 @item other @code{OPT} options
2637
2638 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2639 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2640
2641 @item @code{OPT} @code{D} option is default
2642
2643 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2644 @code{OPT NOD} may be used to turn it off.
2645
2646 @item @code{XREF} pseudo-op.
2647
2648 The m68k @code{XREF} pseudo-op is ignored.
2649
2650 @end itemize
2651
2652 @node MD
2653 @section Dependency Tracking: @option{--MD}
2654
2655 @kindex --MD
2656 @cindex dependency tracking
2657 @cindex make rules
2658
2659 @command{@value{AS}} can generate a dependency file for the file it creates. This
2660 file consists of a single rule suitable for @code{make} describing the
2661 dependencies of the main source file.
2662
2663 The rule is written to the file named in its argument.
2664
2665 This feature is used in the automatic updating of makefiles.
2666
2667 @node no-pad-sections
2668 @section Output Section Padding
2669 @kindex --no-pad-sections
2670 @cindex output section padding
2671 Normally the assembler will pad the end of each output section up to its
2672 alignment boundary. But this can waste space, which can be significant on
2673 memory constrained targets. So the @option{--no-pad-sections} option will
2674 disable this behaviour.
2675
2676 @node o
2677 @section Name the Object File: @option{-o}
2678
2679 @kindex -o
2680 @cindex naming object file
2681 @cindex object file name
2682 There is always one object file output when you run @command{@value{AS}}. By
2683 default it has the name @file{a.out}.
2684 You use this option (which takes exactly one filename) to give the
2685 object file a different name.
2686
2687 Whatever the object file is called, @command{@value{AS}} overwrites any
2688 existing file of the same name.
2689
2690 @node R
2691 @section Join Data and Text Sections: @option{-R}
2692
2693 @kindex -R
2694 @cindex data and text sections, joining
2695 @cindex text and data sections, joining
2696 @cindex joining text and data sections
2697 @cindex merging text and data sections
2698 @option{-R} tells @command{@value{AS}} to write the object file as if all
2699 data-section data lives in the text section. This is only done at
2700 the very last moment: your binary data are the same, but data
2701 section parts are relocated differently. The data section part of
2702 your object file is zero bytes long because all its bytes are
2703 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2704
2705 When you specify @option{-R} it would be possible to generate shorter
2706 address displacements (because we do not have to cross between text and
2707 data section). We refrain from doing this simply for compatibility with
2708 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2709
2710 @ifset COFF-ELF
2711 When @command{@value{AS}} is configured for COFF or ELF output,
2712 this option is only useful if you use sections named @samp{.text} and
2713 @samp{.data}.
2714 @end ifset
2715
2716 @ifset HPPA
2717 @option{-R} is not supported for any of the HPPA targets. Using
2718 @option{-R} generates a warning from @command{@value{AS}}.
2719 @end ifset
2720
2721 @node statistics
2722 @section Display Assembly Statistics: @option{--statistics}
2723
2724 @kindex --statistics
2725 @cindex statistics, about assembly
2726 @cindex time, total for assembly
2727 @cindex space used, maximum for assembly
2728 Use @samp{--statistics} to display two statistics about the resources used by
2729 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2730 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2731 seconds).
2732
2733 @node traditional-format
2734 @section Compatible Output: @option{--traditional-format}
2735
2736 @kindex --traditional-format
2737 For some targets, the output of @command{@value{AS}} is different in some ways
2738 from the output of some existing assembler. This switch requests
2739 @command{@value{AS}} to use the traditional format instead.
2740
2741 For example, it disables the exception frame optimizations which
2742 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2743
2744 @node v
2745 @section Announce Version: @option{-v}
2746
2747 @kindex -v
2748 @kindex -version
2749 @cindex assembler version
2750 @cindex version of assembler
2751 You can find out what version of as is running by including the
2752 option @samp{-v} (which you can also spell as @samp{-version}) on the
2753 command line.
2754
2755 @node W
2756 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2757
2758 @command{@value{AS}} should never give a warning or error message when
2759 assembling compiler output. But programs written by people often
2760 cause @command{@value{AS}} to give a warning that a particular assumption was
2761 made. All such warnings are directed to the standard error file.
2762
2763 @kindex -W
2764 @kindex --no-warn
2765 @cindex suppressing warnings
2766 @cindex warnings, suppressing
2767 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2768 This only affects the warning messages: it does not change any particular of
2769 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2770 are still reported.
2771
2772 @kindex --fatal-warnings
2773 @cindex errors, caused by warnings
2774 @cindex warnings, causing error
2775 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2776 files that generate warnings to be in error.
2777
2778 @kindex --warn
2779 @cindex warnings, switching on
2780 You can switch these options off again by specifying @option{--warn}, which
2781 causes warnings to be output as usual.
2782
2783 @node Z
2784 @section Generate Object File in Spite of Errors: @option{-Z}
2785 @cindex object file, after errors
2786 @cindex errors, continuing after
2787 After an error message, @command{@value{AS}} normally produces no output. If for
2788 some reason you are interested in object file output even after
2789 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2790 option. If there are any errors, @command{@value{AS}} continues anyways, and
2791 writes an object file after a final warning message of the form @samp{@var{n}
2792 errors, @var{m} warnings, generating bad object file.}
2793
2794 @node Syntax
2795 @chapter Syntax
2796
2797 @cindex machine-independent syntax
2798 @cindex syntax, machine-independent
2799 This chapter describes the machine-independent syntax allowed in a
2800 source file. @command{@value{AS}} syntax is similar to what many other
2801 assemblers use; it is inspired by the BSD 4.2
2802 @ifclear VAX
2803 assembler.
2804 @end ifclear
2805 @ifset VAX
2806 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2807 @end ifset
2808
2809 @menu
2810 * Preprocessing:: Preprocessing
2811 * Whitespace:: Whitespace
2812 * Comments:: Comments
2813 * Symbol Intro:: Symbols
2814 * Statements:: Statements
2815 * Constants:: Constants
2816 @end menu
2817
2818 @node Preprocessing
2819 @section Preprocessing
2820
2821 @cindex preprocessing
2822 The @command{@value{AS}} internal preprocessor:
2823 @itemize @bullet
2824 @cindex whitespace, removed by preprocessor
2825 @item
2826 adjusts and removes extra whitespace. It leaves one space or tab before
2827 the keywords on a line, and turns any other whitespace on the line into
2828 a single space.
2829
2830 @cindex comments, removed by preprocessor
2831 @item
2832 removes all comments, replacing them with a single space, or an
2833 appropriate number of newlines.
2834
2835 @cindex constants, converted by preprocessor
2836 @item
2837 converts character constants into the appropriate numeric values.
2838 @end itemize
2839
2840 It does not do macro processing, include file handling, or
2841 anything else you may get from your C compiler's preprocessor. You can
2842 do include file processing with the @code{.include} directive
2843 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2844 to get other ``CPP'' style preprocessing by giving the input file a
2845 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2846 Output, gcc info, Using GNU CC}.
2847
2848 Excess whitespace, comments, and character constants
2849 cannot be used in the portions of the input text that are not
2850 preprocessed.
2851
2852 @cindex turning preprocessing on and off
2853 @cindex preprocessing, turning on and off
2854 @kindex #NO_APP
2855 @kindex #APP
2856 If the first line of an input file is @code{#NO_APP} or if you use the
2857 @samp{-f} option, whitespace and comments are not removed from the input file.
2858 Within an input file, you can ask for whitespace and comment removal in
2859 specific portions of the by putting a line that says @code{#APP} before the
2860 text that may contain whitespace or comments, and putting a line that says
2861 @code{#NO_APP} after this text. This feature is mainly intend to support
2862 @code{asm} statements in compilers whose output is otherwise free of comments
2863 and whitespace.
2864
2865 @node Whitespace
2866 @section Whitespace
2867
2868 @cindex whitespace
2869 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2870 Whitespace is used to separate symbols, and to make programs neater for
2871 people to read. Unless within character constants
2872 (@pxref{Characters,,Character Constants}), any whitespace means the same
2873 as exactly one space.
2874
2875 @node Comments
2876 @section Comments
2877
2878 @cindex comments
2879 There are two ways of rendering comments to @command{@value{AS}}. In both
2880 cases the comment is equivalent to one space.
2881
2882 Anything from @samp{/*} through the next @samp{*/} is a comment.
2883 This means you may not nest these comments.
2884
2885 @smallexample
2886 /*
2887 The only way to include a newline ('\n') in a comment
2888 is to use this sort of comment.
2889 */
2890
2891 /* This sort of comment does not nest. */
2892 @end smallexample
2893
2894 @cindex line comment character
2895 Anything from a @dfn{line comment} character up to the next newline is
2896 considered a comment and is ignored. The line comment character is target
2897 specific, and some targets multiple comment characters. Some targets also have
2898 line comment characters that only work if they are the first character on a
2899 line. Some targets use a sequence of two characters to introduce a line
2900 comment. Some targets can also change their line comment characters depending
2901 upon command-line options that have been used. For more details see the
2902 @emph{Syntax} section in the documentation for individual targets.
2903
2904 If the line comment character is the hash sign (@samp{#}) then it still has the
2905 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2906 to specify logical line numbers:
2907
2908 @kindex #
2909 @cindex lines starting with @code{#}
2910 @cindex logical line numbers
2911 To be compatible with past assemblers, lines that begin with @samp{#} have a
2912 special interpretation. Following the @samp{#} should be an absolute
2913 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2914 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2915 new logical file name. The rest of the line, if any, should be whitespace.
2916
2917 If the first non-whitespace characters on the line are not numeric,
2918 the line is ignored. (Just like a comment.)
2919
2920 @smallexample
2921 # This is an ordinary comment.
2922 # 42-6 "new_file_name" # New logical file name
2923 # This is logical line # 36.
2924 @end smallexample
2925 This feature is deprecated, and may disappear from future versions
2926 of @command{@value{AS}}.
2927
2928 @node Symbol Intro
2929 @section Symbols
2930
2931 @cindex characters used in symbols
2932 @ifclear SPECIAL-SYMS
2933 A @dfn{symbol} is one or more characters chosen from the set of all
2934 letters (both upper and lower case), digits and the three characters
2935 @samp{_.$}.
2936 @end ifclear
2937 @ifset SPECIAL-SYMS
2938 @ifclear GENERIC
2939 @ifset H8
2940 A @dfn{symbol} is one or more characters chosen from the set of all
2941 letters (both upper and lower case), digits and the three characters
2942 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2943 symbol names.)
2944 @end ifset
2945 @end ifclear
2946 @end ifset
2947 @ifset GENERIC
2948 On most machines, you can also use @code{$} in symbol names; exceptions
2949 are noted in @ref{Machine Dependencies}.
2950 @end ifset
2951 No symbol may begin with a digit. Case is significant.
2952 There is no length limit; all characters are significant. Multibyte characters
2953 are supported. Symbols are delimited by characters not in that set, or by the
2954 beginning of a file (since the source program must end with a newline, the end
2955 of a file is not a possible symbol delimiter). @xref{Symbols}.
2956
2957 Symbol names may also be enclosed in double quote @code{"} characters. In such
2958 cases any characters are allowed, except for the NUL character. If a double
2959 quote character is to be included in the symbol name it must be preceeded by a
2960 backslash @code{\} character.
2961 @cindex length of symbols
2962
2963 @node Statements
2964 @section Statements
2965
2966 @cindex statements, structure of
2967 @cindex line separator character
2968 @cindex statement separator character
2969
2970 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2971 @dfn{line separator character}. The line separator character is target
2972 specific and described in the @emph{Syntax} section of each
2973 target's documentation. Not all targets support a line separator character.
2974 The newline or line separator character is considered to be part of the
2975 preceding statement. Newlines and separators within character constants are an
2976 exception: they do not end statements.
2977
2978 @cindex newline, required at file end
2979 @cindex EOF, newline must precede
2980 It is an error to end any statement with end-of-file: the last
2981 character of any input file should be a newline.@refill
2982
2983 An empty statement is allowed, and may include whitespace. It is ignored.
2984
2985 @cindex instructions and directives
2986 @cindex directives and instructions
2987 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2988 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2989 @c 13feb91.
2990 A statement begins with zero or more labels, optionally followed by a
2991 key symbol which determines what kind of statement it is. The key
2992 symbol determines the syntax of the rest of the statement. If the
2993 symbol begins with a dot @samp{.} then the statement is an assembler
2994 directive: typically valid for any computer. If the symbol begins with
2995 a letter the statement is an assembly language @dfn{instruction}: it
2996 assembles into a machine language instruction.
2997 @ifset GENERIC
2998 Different versions of @command{@value{AS}} for different computers
2999 recognize different instructions. In fact, the same symbol may
3000 represent a different instruction in a different computer's assembly
3001 language.@refill
3002 @end ifset
3003
3004 @cindex @code{:} (label)
3005 @cindex label (@code{:})
3006 A label is a symbol immediately followed by a colon (@code{:}).
3007 Whitespace before a label or after a colon is permitted, but you may not
3008 have whitespace between a label's symbol and its colon. @xref{Labels}.
3009
3010 @ifset HPPA
3011 For HPPA targets, labels need not be immediately followed by a colon, but
3012 the definition of a label must begin in column zero. This also implies that
3013 only one label may be defined on each line.
3014 @end ifset
3015
3016 @smallexample
3017 label: .directive followed by something
3018 another_label: # This is an empty statement.
3019 instruction operand_1, operand_2, @dots{}
3020 @end smallexample
3021
3022 @node Constants
3023 @section Constants
3024
3025 @cindex constants
3026 A constant is a number, written so that its value is known by
3027 inspection, without knowing any context. Like this:
3028 @smallexample
3029 @group
3030 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3031 .ascii "Ring the bell\7" # A string constant.
3032 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3033 .float 0f-314159265358979323846264338327\
3034 95028841971.693993751E-40 # - pi, a flonum.
3035 @end group
3036 @end smallexample
3037
3038 @menu
3039 * Characters:: Character Constants
3040 * Numbers:: Number Constants
3041 @end menu
3042
3043 @node Characters
3044 @subsection Character Constants
3045
3046 @cindex character constants
3047 @cindex constants, character
3048 There are two kinds of character constants. A @dfn{character} stands
3049 for one character in one byte and its value may be used in
3050 numeric expressions. String constants (properly called string
3051 @emph{literals}) are potentially many bytes and their values may not be
3052 used in arithmetic expressions.
3053
3054 @menu
3055 * Strings:: Strings
3056 * Chars:: Characters
3057 @end menu
3058
3059 @node Strings
3060 @subsubsection Strings
3061
3062 @cindex string constants
3063 @cindex constants, string
3064 A @dfn{string} is written between double-quotes. It may contain
3065 double-quotes or null characters. The way to get special characters
3066 into a string is to @dfn{escape} these characters: precede them with
3067 a backslash @samp{\} character. For example @samp{\\} represents
3068 one backslash: the first @code{\} is an escape which tells
3069 @command{@value{AS}} to interpret the second character literally as a backslash
3070 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3071 escape character). The complete list of escapes follows.
3072
3073 @cindex escape codes, character
3074 @cindex character escape codes
3075 @c NOTE: Cindex entries must not start with a backlash character.
3076 @c NOTE: This confuses the pdf2texi script when it is creating the
3077 @c NOTE: index based upon the first character and so it generates:
3078 @c NOTE: \initial {\\}
3079 @c NOTE: which then results in the error message:
3080 @c NOTE: Argument of \\ has an extra }.
3081 @c NOTE: So in the index entries below a space character has been
3082 @c NOTE: prepended to avoid this problem.
3083 @table @kbd
3084 @c @item \a
3085 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3086 @c
3087 @cindex @code{ \b} (backspace character)
3088 @cindex backspace (@code{\b})
3089 @item \b
3090 Mnemonic for backspace; for ASCII this is octal code 010.
3091
3092 @c @item \e
3093 @c Mnemonic for EOText; for ASCII this is octal code 004.
3094 @c
3095 @cindex @code{ \f} (formfeed character)
3096 @cindex formfeed (@code{\f})
3097 @item backslash-f
3098 Mnemonic for FormFeed; for ASCII this is octal code 014.
3099
3100 @cindex @code{ \n} (newline character)
3101 @cindex newline (@code{\n})
3102 @item \n
3103 Mnemonic for newline; for ASCII this is octal code 012.
3104
3105 @c @item \p
3106 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3107 @c
3108 @cindex @code{ \r} (carriage return character)
3109 @cindex carriage return (@code{backslash-r})
3110 @item \r
3111 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3112
3113 @c @item \s
3114 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3115 @c other assemblers.
3116 @c
3117 @cindex @code{ \t} (tab)
3118 @cindex tab (@code{\t})
3119 @item \t
3120 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3121
3122 @c @item \v
3123 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3124 @c @item \x @var{digit} @var{digit} @var{digit}
3125 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3126 @c
3127 @cindex @code{ \@var{ddd}} (octal character code)
3128 @cindex octal character code (@code{\@var{ddd}})
3129 @item \ @var{digit} @var{digit} @var{digit}
3130 An octal character code. The numeric code is 3 octal digits.
3131 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3132 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3133
3134 @cindex @code{ \@var{xd...}} (hex character code)
3135 @cindex hex character code (@code{\@var{xd...}})
3136 @item \@code{x} @var{hex-digits...}
3137 A hex character code. All trailing hex digits are combined. Either upper or
3138 lower case @code{x} works.
3139
3140 @cindex @code{ \\} (@samp{\} character)
3141 @cindex backslash (@code{\\})
3142 @item \\
3143 Represents one @samp{\} character.
3144
3145 @c @item \'
3146 @c Represents one @samp{'} (accent acute) character.
3147 @c This is needed in single character literals
3148 @c (@xref{Characters,,Character Constants}.) to represent
3149 @c a @samp{'}.
3150 @c
3151 @cindex @code{ \"} (doublequote character)
3152 @cindex doublequote (@code{\"})
3153 @item \"
3154 Represents one @samp{"} character. Needed in strings to represent
3155 this character, because an unescaped @samp{"} would end the string.
3156
3157 @item \ @var{anything-else}
3158 Any other character when escaped by @kbd{\} gives a warning, but
3159 assembles as if the @samp{\} was not present. The idea is that if
3160 you used an escape sequence you clearly didn't want the literal
3161 interpretation of the following character. However @command{@value{AS}} has no
3162 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3163 code and warns you of the fact.
3164 @end table
3165
3166 Which characters are escapable, and what those escapes represent,
3167 varies widely among assemblers. The current set is what we think
3168 the BSD 4.2 assembler recognizes, and is a subset of what most C
3169 compilers recognize. If you are in doubt, do not use an escape
3170 sequence.
3171
3172 @node Chars
3173 @subsubsection Characters
3174
3175 @cindex single character constant
3176 @cindex character, single
3177 @cindex constant, single character
3178 A single character may be written as a single quote immediately followed by
3179 that character. Some backslash escapes apply to characters, @code{\b},
3180 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3181 as for strings, plus @code{\'} for a single quote. So if you want to write the
3182 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3183 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3184 accent. A newline
3185 @ifclear GENERIC
3186 @ifclear abnormal-separator
3187 (or semicolon @samp{;})
3188 @end ifclear
3189 @ifset abnormal-separator
3190 @ifset H8
3191 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3192 Renesas SH)
3193 @end ifset
3194 @end ifset
3195 @end ifclear
3196 immediately following an acute accent is taken as a literal character
3197 and does not count as the end of a statement. The value of a character
3198 constant in a numeric expression is the machine's byte-wide code for
3199 that character. @command{@value{AS}} assumes your character code is ASCII:
3200 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3201
3202 @node Numbers
3203 @subsection Number Constants
3204
3205 @cindex constants, number
3206 @cindex number constants
3207 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3208 are stored in the target machine. @emph{Integers} are numbers that
3209 would fit into an @code{int} in the C language. @emph{Bignums} are
3210 integers, but they are stored in more than 32 bits. @emph{Flonums}
3211 are floating point numbers, described below.
3212
3213 @menu
3214 * Integers:: Integers
3215 * Bignums:: Bignums
3216 * Flonums:: Flonums
3217 @ifclear GENERIC
3218 @end ifclear
3219 @end menu
3220
3221 @node Integers
3222 @subsubsection Integers
3223 @cindex integers
3224 @cindex constants, integer
3225
3226 @cindex binary integers
3227 @cindex integers, binary
3228 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3229 the binary digits @samp{01}.
3230
3231 @cindex octal integers
3232 @cindex integers, octal
3233 An octal integer is @samp{0} followed by zero or more of the octal
3234 digits (@samp{01234567}).
3235
3236 @cindex decimal integers
3237 @cindex integers, decimal
3238 A decimal integer starts with a non-zero digit followed by zero or
3239 more digits (@samp{0123456789}).
3240
3241 @cindex hexadecimal integers
3242 @cindex integers, hexadecimal
3243 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3244 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3245
3246 Integers have the usual values. To denote a negative integer, use
3247 the prefix operator @samp{-} discussed under expressions
3248 (@pxref{Prefix Ops,,Prefix Operators}).
3249
3250 @node Bignums
3251 @subsubsection Bignums
3252
3253 @cindex bignums
3254 @cindex constants, bignum
3255 A @dfn{bignum} has the same syntax and semantics as an integer
3256 except that the number (or its negative) takes more than 32 bits to
3257 represent in binary. The distinction is made because in some places
3258 integers are permitted while bignums are not.
3259
3260 @node Flonums
3261 @subsubsection Flonums
3262 @cindex flonums
3263 @cindex floating point numbers
3264 @cindex constants, floating point
3265
3266 @cindex precision, floating point
3267 A @dfn{flonum} represents a floating point number. The translation is
3268 indirect: a decimal floating point number from the text is converted by
3269 @command{@value{AS}} to a generic binary floating point number of more than
3270 sufficient precision. This generic floating point number is converted
3271 to a particular computer's floating point format (or formats) by a
3272 portion of @command{@value{AS}} specialized to that computer.
3273
3274 A flonum is written by writing (in order)
3275 @itemize @bullet
3276 @item
3277 The digit @samp{0}.
3278 @ifset HPPA
3279 (@samp{0} is optional on the HPPA.)
3280 @end ifset
3281
3282 @item
3283 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3284 @ifset GENERIC
3285 @kbd{e} is recommended. Case is not important.
3286 @ignore
3287 @c FIXME: verify if flonum syntax really this vague for most cases
3288 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3289 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3290 @end ignore
3291
3292 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3293 one of the letters @samp{DFPRSX} (in upper or lower case).
3294
3295 On the ARC, the letter must be one of the letters @samp{DFRS}
3296 (in upper or lower case).
3297
3298 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3299 @end ifset
3300 @ifclear GENERIC
3301 @ifset ARC
3302 One of the letters @samp{DFRS} (in upper or lower case).
3303 @end ifset
3304 @ifset H8
3305 One of the letters @samp{DFPRSX} (in upper or lower case).
3306 @end ifset
3307 @ifset HPPA
3308 The letter @samp{E} (upper case only).
3309 @end ifset
3310 @end ifclear
3311
3312 @item
3313 An optional sign: either @samp{+} or @samp{-}.
3314
3315 @item
3316 An optional @dfn{integer part}: zero or more decimal digits.
3317
3318 @item
3319 An optional @dfn{fractional part}: @samp{.} followed by zero
3320 or more decimal digits.
3321
3322 @item
3323 An optional exponent, consisting of:
3324
3325 @itemize @bullet
3326 @item
3327 An @samp{E} or @samp{e}.
3328 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3329 @c principle this can perfectly well be different on different targets.
3330 @item
3331 Optional sign: either @samp{+} or @samp{-}.
3332 @item
3333 One or more decimal digits.
3334 @end itemize
3335
3336 @end itemize
3337
3338 At least one of the integer part or the fractional part must be
3339 present. The floating point number has the usual base-10 value.
3340
3341 @command{@value{AS}} does all processing using integers. Flonums are computed
3342 independently of any floating point hardware in the computer running
3343 @command{@value{AS}}.
3344
3345 @node Sections
3346 @chapter Sections and Relocation
3347 @cindex sections
3348 @cindex relocation
3349
3350 @menu
3351 * Secs Background:: Background
3352 * Ld Sections:: Linker Sections
3353 * As Sections:: Assembler Internal Sections
3354 * Sub-Sections:: Sub-Sections
3355 * bss:: bss Section
3356 @end menu
3357
3358 @node Secs Background
3359 @section Background
3360
3361 Roughly, a section is a range of addresses, with no gaps; all data
3362 ``in'' those addresses is treated the same for some particular purpose.
3363 For example there may be a ``read only'' section.
3364
3365 @cindex linker, and assembler
3366 @cindex assembler, and linker
3367 The linker @code{@value{LD}} reads many object files (partial programs) and
3368 combines their contents to form a runnable program. When @command{@value{AS}}
3369 emits an object file, the partial program is assumed to start at address 0.
3370 @code{@value{LD}} assigns the final addresses for the partial program, so that
3371 different partial programs do not overlap. This is actually an
3372 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3373 sections.
3374
3375 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3376 addresses. These blocks slide to their run-time addresses as rigid
3377 units; their length does not change and neither does the order of bytes
3378 within them. Such a rigid unit is called a @emph{section}. Assigning
3379 run-time addresses to sections is called @dfn{relocation}. It includes
3380 the task of adjusting mentions of object-file addresses so they refer to
3381 the proper run-time addresses.
3382 @ifset H8
3383 For the H8/300, and for the Renesas / SuperH SH,
3384 @command{@value{AS}} pads sections if needed to
3385 ensure they end on a word (sixteen bit) boundary.
3386 @end ifset
3387
3388 @cindex standard assembler sections
3389 An object file written by @command{@value{AS}} has at least three sections, any
3390 of which may be empty. These are named @dfn{text}, @dfn{data} and
3391 @dfn{bss} sections.
3392
3393 @ifset COFF-ELF
3394 @ifset GENERIC
3395 When it generates COFF or ELF output,
3396 @end ifset
3397 @command{@value{AS}} can also generate whatever other named sections you specify
3398 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3399 If you do not use any directives that place output in the @samp{.text}
3400 or @samp{.data} sections, these sections still exist, but are empty.
3401 @end ifset
3402
3403 @ifset HPPA
3404 @ifset GENERIC
3405 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3406 @end ifset
3407 @command{@value{AS}} can also generate whatever other named sections you
3408 specify using the @samp{.space} and @samp{.subspace} directives. See
3409 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3410 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3411 assembler directives.
3412
3413 @ifset SOM
3414 Additionally, @command{@value{AS}} uses different names for the standard
3415 text, data, and bss sections when generating SOM output. Program text
3416 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3417 BSS into @samp{$BSS$}.
3418 @end ifset
3419 @end ifset
3420
3421 Within the object file, the text section starts at address @code{0}, the
3422 data section follows, and the bss section follows the data section.
3423
3424 @ifset HPPA
3425 When generating either SOM or ELF output files on the HPPA, the text
3426 section starts at address @code{0}, the data section at address
3427 @code{0x4000000}, and the bss section follows the data section.
3428 @end ifset
3429
3430 To let @code{@value{LD}} know which data changes when the sections are
3431 relocated, and how to change that data, @command{@value{AS}} also writes to the
3432 object file details of the relocation needed. To perform relocation
3433 @code{@value{LD}} must know, each time an address in the object
3434 file is mentioned:
3435 @itemize @bullet
3436 @item
3437 Where in the object file is the beginning of this reference to
3438 an address?
3439 @item
3440 How long (in bytes) is this reference?
3441 @item
3442 Which section does the address refer to? What is the numeric value of
3443 @display
3444 (@var{address}) @minus{} (@var{start-address of section})?
3445 @end display
3446 @item
3447 Is the reference to an address ``Program-Counter relative''?
3448 @end itemize
3449
3450 @cindex addresses, format of
3451 @cindex section-relative addressing
3452 In fact, every address @command{@value{AS}} ever uses is expressed as
3453 @display
3454 (@var{section}) + (@var{offset into section})
3455 @end display
3456 @noindent
3457 Further, most expressions @command{@value{AS}} computes have this section-relative
3458 nature.
3459 @ifset SOM
3460 (For some object formats, such as SOM for the HPPA, some expressions are
3461 symbol-relative instead.)
3462 @end ifset
3463
3464 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3465 @var{N} into section @var{secname}.''
3466
3467 Apart from text, data and bss sections you need to know about the
3468 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3469 addresses in the absolute section remain unchanged. For example, address
3470 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3471 @code{@value{LD}}. Although the linker never arranges two partial programs'
3472 data sections with overlapping addresses after linking, @emph{by definition}
3473 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3474 part of a program is always the same address when the program is running as
3475 address @code{@{absolute@ 239@}} in any other part of the program.
3476
3477 The idea of sections is extended to the @dfn{undefined} section. Any
3478 address whose section is unknown at assembly time is by definition
3479 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3480 Since numbers are always defined, the only way to generate an undefined
3481 address is to mention an undefined symbol. A reference to a named
3482 common block would be such a symbol: its value is unknown at assembly
3483 time so it has section @emph{undefined}.
3484
3485 By analogy the word @emph{section} is used to describe groups of sections in
3486 the linked program. @code{@value{LD}} puts all partial programs' text
3487 sections in contiguous addresses in the linked program. It is
3488 customary to refer to the @emph{text section} of a program, meaning all
3489 the addresses of all partial programs' text sections. Likewise for
3490 data and bss sections.
3491
3492 Some sections are manipulated by @code{@value{LD}}; others are invented for
3493 use of @command{@value{AS}} and have no meaning except during assembly.
3494
3495 @node Ld Sections
3496 @section Linker Sections
3497 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3498
3499 @table @strong
3500
3501 @ifset COFF-ELF
3502 @cindex named sections
3503 @cindex sections, named
3504 @item named sections
3505 @end ifset
3506 @ifset aout
3507 @cindex text section
3508 @cindex data section
3509 @itemx text section
3510 @itemx data section
3511 @end ifset
3512 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3513 separate but equal sections. Anything you can say of one section is
3514 true of another.
3515 @c @ifset aout
3516 When the program is running, however, it is
3517 customary for the text section to be unalterable. The
3518 text section is often shared among processes: it contains
3519 instructions, constants and the like. The data section of a running
3520 program is usually alterable: for example, C variables would be stored
3521 in the data section.
3522 @c @end ifset
3523
3524 @cindex bss section
3525 @item bss section
3526 This section contains zeroed bytes when your program begins running. It
3527 is used to hold uninitialized variables or common storage. The length of
3528 each partial program's bss section is important, but because it starts
3529 out containing zeroed bytes there is no need to store explicit zero
3530 bytes in the object file. The bss section was invented to eliminate
3531 those explicit zeros from object files.
3532
3533 @cindex absolute section
3534 @item absolute section
3535 Address 0 of this section is always ``relocated'' to runtime address 0.
3536 This is useful if you want to refer to an address that @code{@value{LD}} must
3537 not change when relocating. In this sense we speak of absolute
3538 addresses being ``unrelocatable'': they do not change during relocation.
3539
3540 @cindex undefined section
3541 @item undefined section
3542 This ``section'' is a catch-all for address references to objects not in
3543 the preceding sections.
3544 @c FIXME: ref to some other doc on obj-file formats could go here.
3545 @end table
3546
3547 @cindex relocation example
3548 An idealized example of three relocatable sections follows.
3549 @ifset COFF-ELF
3550 The example uses the traditional section names @samp{.text} and @samp{.data}.
3551 @end ifset
3552 Memory addresses are on the horizontal axis.
3553
3554 @c TEXI2ROFF-KILL
3555 @ifnottex
3556 @c END TEXI2ROFF-KILL
3557 @smallexample
3558 +-----+----+--+
3559 partial program # 1: |ttttt|dddd|00|
3560 +-----+----+--+
3561
3562 text data bss
3563 seg. seg. seg.
3564
3565 +---+---+---+
3566 partial program # 2: |TTT|DDD|000|
3567 +---+---+---+
3568
3569 +--+---+-----+--+----+---+-----+~~
3570 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3571 +--+---+-----+--+----+---+-----+~~
3572
3573 addresses: 0 @dots{}
3574 @end smallexample
3575 @c TEXI2ROFF-KILL
3576 @end ifnottex
3577 @need 5000
3578 @tex
3579 \bigskip
3580 \line{\it Partial program \#1: \hfil}
3581 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3582 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3583
3584 \line{\it Partial program \#2: \hfil}
3585 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3586 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3587
3588 \line{\it linked program: \hfil}
3589 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3590 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3591 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3592 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3593
3594 \line{\it addresses: \hfil}
3595 \line{0\dots\hfil}
3596
3597 @end tex
3598 @c END TEXI2ROFF-KILL
3599
3600 @node As Sections
3601 @section Assembler Internal Sections
3602
3603 @cindex internal assembler sections
3604 @cindex sections in messages, internal
3605 These sections are meant only for the internal use of @command{@value{AS}}. They
3606 have no meaning at run-time. You do not really need to know about these
3607 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3608 warning messages, so it might be helpful to have an idea of their
3609 meanings to @command{@value{AS}}. These sections are used to permit the
3610 value of every expression in your assembly language program to be a
3611 section-relative address.
3612
3613 @table @b
3614 @cindex assembler internal logic error
3615 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3616 An internal assembler logic error has been found. This means there is a
3617 bug in the assembler.
3618
3619 @cindex expr (internal section)
3620 @item expr section
3621 The assembler stores complex expression internally as combinations of
3622 symbols. When it needs to represent an expression as a symbol, it puts
3623 it in the expr section.
3624 @c FIXME item debug
3625 @c FIXME item transfer[t] vector preload
3626 @c FIXME item transfer[t] vector postload
3627 @c FIXME item register
3628 @end table
3629
3630 @node Sub-Sections
3631 @section Sub-Sections
3632
3633 @cindex numbered subsections
3634 @cindex grouping data
3635 @ifset aout
3636 Assembled bytes
3637 @ifset COFF-ELF
3638 conventionally
3639 @end ifset
3640 fall into two sections: text and data.
3641 @end ifset
3642 You may have separate groups of
3643 @ifset GENERIC
3644 data in named sections
3645 @end ifset
3646 @ifclear GENERIC
3647 @ifclear aout
3648 data in named sections
3649 @end ifclear
3650 @ifset aout
3651 text or data
3652 @end ifset
3653 @end ifclear
3654 that you want to end up near to each other in the object file, even though they
3655 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3656 use @dfn{subsections} for this purpose. Within each section, there can be
3657 numbered subsections with values from 0 to 8192. Objects assembled into the
3658 same subsection go into the object file together with other objects in the same
3659 subsection. For example, a compiler might want to store constants in the text
3660 section, but might not want to have them interspersed with the program being
3661 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3662 section of code being output, and a @samp{.text 1} before each group of
3663 constants being output.
3664
3665 Subsections are optional. If you do not use subsections, everything
3666 goes in subsection number zero.
3667
3668 @ifset GENERIC
3669 Each subsection is zero-padded up to a multiple of four bytes.
3670 (Subsections may be padded a different amount on different flavors
3671 of @command{@value{AS}}.)
3672 @end ifset
3673 @ifclear GENERIC
3674 @ifset H8
3675 On the H8/300 platform, each subsection is zero-padded to a word
3676 boundary (two bytes).
3677 The same is true on the Renesas SH.
3678 @end ifset
3679 @end ifclear
3680
3681 Subsections appear in your object file in numeric order, lowest numbered
3682 to highest. (All this to be compatible with other people's assemblers.)
3683 The object file contains no representation of subsections; @code{@value{LD}} and
3684 other programs that manipulate object files see no trace of them.
3685 They just see all your text subsections as a text section, and all your
3686 data subsections as a data section.
3687
3688 To specify which subsection you want subsequent statements assembled
3689 into, use a numeric argument to specify it, in a @samp{.text
3690 @var{expression}} or a @samp{.data @var{expression}} statement.
3691 @ifset COFF
3692 @ifset GENERIC
3693 When generating COFF output, you
3694 @end ifset
3695 @ifclear GENERIC
3696 You
3697 @end ifclear
3698 can also use an extra subsection
3699 argument with arbitrary named sections: @samp{.section @var{name},
3700 @var{expression}}.
3701 @end ifset
3702 @ifset ELF
3703 @ifset GENERIC
3704 When generating ELF output, you
3705 @end ifset
3706 @ifclear GENERIC
3707 You
3708 @end ifclear
3709 can also use the @code{.subsection} directive (@pxref{SubSection})
3710 to specify a subsection: @samp{.subsection @var{expression}}.
3711 @end ifset
3712 @var{Expression} should be an absolute expression
3713 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3714 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3715 begins in @code{text 0}. For instance:
3716 @smallexample
3717 .text 0 # The default subsection is text 0 anyway.
3718 .ascii "This lives in the first text subsection. *"
3719 .text 1
3720 .ascii "But this lives in the second text subsection."
3721 .data 0
3722 .ascii "This lives in the data section,"
3723 .ascii "in the first data subsection."
3724 .text 0
3725 .ascii "This lives in the first text section,"
3726 .ascii "immediately following the asterisk (*)."
3727 @end smallexample
3728
3729 Each section has a @dfn{location counter} incremented by one for every byte
3730 assembled into that section. Because subsections are merely a convenience
3731 restricted to @command{@value{AS}} there is no concept of a subsection location
3732 counter. There is no way to directly manipulate a location counter---but the
3733 @code{.align} directive changes it, and any label definition captures its
3734 current value. The location counter of the section where statements are being
3735 assembled is said to be the @dfn{active} location counter.
3736
3737 @node bss
3738 @section bss Section
3739
3740 @cindex bss section
3741 @cindex common variable storage
3742 The bss section is used for local common variable storage.
3743 You may allocate address space in the bss section, but you may
3744 not dictate data to load into it before your program executes. When
3745 your program starts running, all the contents of the bss
3746 section are zeroed bytes.
3747
3748 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3749 @ref{Lcomm,,@code{.lcomm}}.
3750
3751 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3752 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3753
3754 @ifset GENERIC
3755 When assembling for a target which supports multiple sections, such as ELF or
3756 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3757 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3758 section. Typically the section will only contain symbol definitions and
3759 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3760 @end ifset
3761
3762 @node Symbols
3763 @chapter Symbols
3764
3765 @cindex symbols
3766 Symbols are a central concept: the programmer uses symbols to name
3767 things, the linker uses symbols to link, and the debugger uses symbols
3768 to debug.
3769
3770 @quotation
3771 @cindex debuggers, and symbol order
3772 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3773 the same order they were declared. This may break some debuggers.
3774 @end quotation
3775
3776 @menu
3777 * Labels:: Labels
3778 * Setting Symbols:: Giving Symbols Other Values
3779 * Symbol Names:: Symbol Names
3780 * Dot:: The Special Dot Symbol
3781 * Symbol Attributes:: Symbol Attributes
3782 @end menu
3783
3784 @node Labels
3785 @section Labels
3786
3787 @cindex labels
3788 A @dfn{label} is written as a symbol immediately followed by a colon
3789 @samp{:}. The symbol then represents the current value of the
3790 active location counter, and is, for example, a suitable instruction
3791 operand. You are warned if you use the same symbol to represent two
3792 different locations: the first definition overrides any other
3793 definitions.
3794
3795 @ifset HPPA
3796 On the HPPA, the usual form for a label need not be immediately followed by a
3797 colon, but instead must start in column zero. Only one label may be defined on
3798 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3799 provides a special directive @code{.label} for defining labels more flexibly.
3800 @end ifset
3801
3802 @node Setting Symbols
3803 @section Giving Symbols Other Values
3804
3805 @cindex assigning values to symbols
3806 @cindex symbol values, assigning
3807 A symbol can be given an arbitrary value by writing a symbol, followed
3808 by an equals sign @samp{=}, followed by an expression
3809 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3810 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3811 equals sign @samp{=}@samp{=} here represents an equivalent of the
3812 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3813
3814 @ifset Blackfin
3815 Blackfin does not support symbol assignment with @samp{=}.
3816 @end ifset
3817
3818 @node Symbol Names
3819 @section Symbol Names
3820
3821 @cindex symbol names
3822 @cindex names, symbol
3823 @ifclear SPECIAL-SYMS
3824 Symbol names begin with a letter or with one of @samp{._}. On most
3825 machines, you can also use @code{$} in symbol names; exceptions are
3826 noted in @ref{Machine Dependencies}. That character may be followed by any
3827 string of digits, letters, dollar signs (unless otherwise noted for a
3828 particular target machine), and underscores.
3829 @end ifclear
3830 @ifset SPECIAL-SYMS
3831 @ifset H8
3832 Symbol names begin with a letter or with one of @samp{._}. On the
3833 Renesas SH you can also use @code{$} in symbol names. That
3834 character may be followed by any string of digits, letters, dollar signs (save
3835 on the H8/300), and underscores.
3836 @end ifset
3837 @end ifset
3838
3839 Case of letters is significant: @code{foo} is a different symbol name
3840 than @code{Foo}.
3841
3842 Symbol names do not start with a digit. An exception to this rule is made for
3843 Local Labels. See below.
3844
3845 Multibyte characters are supported. To generate a symbol name containing
3846 multibyte characters enclose it within double quotes and use escape codes. cf
3847 @xref{Strings}. Generating a multibyte symbol name from a label is not
3848 currently supported.
3849
3850 Each symbol has exactly one name. Each name in an assembly language program
3851 refers to exactly one symbol. You may use that symbol name any number of times
3852 in a program.
3853
3854 @subheading Local Symbol Names
3855
3856 @cindex local symbol names
3857 @cindex symbol names, local
3858 A local symbol is any symbol beginning with certain local label prefixes.
3859 By default, the local label prefix is @samp{.L} for ELF systems or
3860 @samp{L} for traditional a.out systems, but each target may have its own
3861 set of local label prefixes.
3862 @ifset HPPA
3863 On the HPPA local symbols begin with @samp{L$}.
3864 @end ifset
3865
3866 Local symbols are defined and used within the assembler, but they are
3867 normally not saved in object files. Thus, they are not visible when debugging.
3868 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3869 to retain the local symbols in the object files.
3870
3871 @subheading Local Labels
3872
3873 @cindex local labels
3874 @cindex temporary symbol names
3875 @cindex symbol names, temporary
3876 Local labels are different from local symbols. Local labels help compilers and
3877 programmers use names temporarily. They create symbols which are guaranteed to
3878 be unique over the entire scope of the input source code and which can be
3879 referred to by a simple notation. To define a local label, write a label of
3880 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3881 To refer to the most recent previous definition of that label write
3882 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3883 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3884 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3885
3886 There is no restriction on how you can use these labels, and you can reuse them
3887 too. So that it is possible to repeatedly define the same local label (using
3888 the same number @samp{@b{N}}), although you can only refer to the most recently
3889 defined local label of that number (for a backwards reference) or the next
3890 definition of a specific local label for a forward reference. It is also worth
3891 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3892 implemented in a slightly more efficient manner than the others.
3893
3894 Here is an example:
3895
3896 @smallexample
3897 1: branch 1f
3898 2: branch 1b
3899 1: branch 2f
3900 2: branch 1b
3901 @end smallexample
3902
3903 Which is the equivalent of:
3904
3905 @smallexample
3906 label_1: branch label_3
3907 label_2: branch label_1
3908 label_3: branch label_4
3909 label_4: branch label_3
3910 @end smallexample
3911
3912 Local label names are only a notational device. They are immediately
3913 transformed into more conventional symbol names before the assembler uses them.
3914 The symbol names are stored in the symbol table, appear in error messages, and
3915 are optionally emitted to the object file. The names are constructed using
3916 these parts:
3917
3918 @table @code
3919 @item @emph{local label prefix}
3920 All local symbols begin with the system-specific local label prefix.
3921 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3922 that start with the local label prefix. These labels are
3923 used for symbols you are never intended to see. If you use the
3924 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3925 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3926 you may use them in debugging.
3927
3928 @item @var{number}
3929 This is the number that was used in the local label definition. So if the
3930 label is written @samp{55:} then the number is @samp{55}.
3931
3932 @item @kbd{C-B}
3933 This unusual character is included so you do not accidentally invent a symbol
3934 of the same name. The character has ASCII value of @samp{\002} (control-B).
3935
3936 @item @emph{ordinal number}
3937 This is a serial number to keep the labels distinct. The first definition of
3938 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3939 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3940 the number @samp{1} and its 15th definition gets @samp{15} as well.
3941 @end table
3942
3943 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3944 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3945
3946 @subheading Dollar Local Labels
3947 @cindex dollar local symbols
3948
3949 On some targets @code{@value{AS}} also supports an even more local form of
3950 local labels called dollar labels. These labels go out of scope (i.e., they
3951 become undefined) as soon as a non-local label is defined. Thus they remain
3952 valid for only a small region of the input source code. Normal local labels,
3953 by contrast, remain in scope for the entire file, or until they are redefined
3954 by another occurrence of the same local label.
3955
3956 Dollar labels are defined in exactly the same way as ordinary local labels,
3957 except that they have a dollar sign suffix to their numeric value, e.g.,
3958 @samp{@b{55$:}}.
3959
3960 They can also be distinguished from ordinary local labels by their transformed
3961 names which use ASCII character @samp{\001} (control-A) as the magic character
3962 to distinguish them from ordinary labels. For example, the fifth definition of
3963 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3964
3965 @node Dot
3966 @section The Special Dot Symbol
3967
3968 @cindex dot (symbol)
3969 @cindex @code{.} (symbol)
3970 @cindex current address
3971 @cindex location counter
3972 The special symbol @samp{.} refers to the current address that
3973 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3974 .long .} defines @code{melvin} to contain its own address.
3975 Assigning a value to @code{.} is treated the same as a @code{.org}
3976 directive.
3977 @ifclear no-space-dir
3978 Thus, the expression @samp{.=.+4} is the same as saying
3979 @samp{.space 4}.
3980 @end ifclear
3981
3982 @node Symbol Attributes
3983 @section Symbol Attributes
3984
3985 @cindex symbol attributes
3986 @cindex attributes, symbol
3987 Every symbol has, as well as its name, the attributes ``Value'' and
3988 ``Type''. Depending on output format, symbols can also have auxiliary
3989 attributes.
3990 @ifset INTERNALS
3991 The detailed definitions are in @file{a.out.h}.
3992 @end ifset
3993
3994 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3995 all these attributes, and probably won't warn you. This makes the
3996 symbol an externally defined symbol, which is generally what you
3997 would want.
3998
3999 @menu
4000 * Symbol Value:: Value
4001 * Symbol Type:: Type
4002 @ifset aout
4003 * a.out Symbols:: Symbol Attributes: @code{a.out}
4004 @end ifset
4005 @ifset COFF
4006 * COFF Symbols:: Symbol Attributes for COFF
4007 @end ifset
4008 @ifset SOM
4009 * SOM Symbols:: Symbol Attributes for SOM
4010 @end ifset
4011 @end menu
4012
4013 @node Symbol Value
4014 @subsection Value
4015
4016 @cindex value of a symbol
4017 @cindex symbol value
4018 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4019 location in the text, data, bss or absolute sections the value is the
4020 number of addresses from the start of that section to the label.
4021 Naturally for text, data and bss sections the value of a symbol changes
4022 as @code{@value{LD}} changes section base addresses during linking. Absolute
4023 symbols' values do not change during linking: that is why they are
4024 called absolute.
4025
4026 The value of an undefined symbol is treated in a special way. If it is
4027 0 then the symbol is not defined in this assembler source file, and
4028 @code{@value{LD}} tries to determine its value from other files linked into the
4029 same program. You make this kind of symbol simply by mentioning a symbol
4030 name without defining it. A non-zero value represents a @code{.comm}
4031 common declaration. The value is how much common storage to reserve, in
4032 bytes (addresses). The symbol refers to the first address of the
4033 allocated storage.
4034
4035 @node Symbol Type
4036 @subsection Type
4037
4038 @cindex type of a symbol
4039 @cindex symbol type
4040 The type attribute of a symbol contains relocation (section)
4041 information, any flag settings indicating that a symbol is external, and
4042 (optionally), other information for linkers and debuggers. The exact
4043 format depends on the object-code output format in use.
4044
4045 @ifset aout
4046 @node a.out Symbols
4047 @subsection Symbol Attributes: @code{a.out}
4048
4049 @cindex @code{a.out} symbol attributes
4050 @cindex symbol attributes, @code{a.out}
4051
4052 @menu
4053 * Symbol Desc:: Descriptor
4054 * Symbol Other:: Other
4055 @end menu
4056
4057 @node Symbol Desc
4058 @subsubsection Descriptor
4059
4060 @cindex descriptor, of @code{a.out} symbol
4061 This is an arbitrary 16-bit value. You may establish a symbol's
4062 descriptor value by using a @code{.desc} statement
4063 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4064 @command{@value{AS}}.
4065
4066 @node Symbol Other
4067 @subsubsection Other
4068
4069 @cindex other attribute, of @code{a.out} symbol
4070 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4071 @end ifset
4072
4073 @ifset COFF
4074 @node COFF Symbols
4075 @subsection Symbol Attributes for COFF
4076
4077 @cindex COFF symbol attributes
4078 @cindex symbol attributes, COFF
4079
4080 The COFF format supports a multitude of auxiliary symbol attributes;
4081 like the primary symbol attributes, they are set between @code{.def} and
4082 @code{.endef} directives.
4083
4084 @subsubsection Primary Attributes
4085
4086 @cindex primary attributes, COFF symbols
4087 The symbol name is set with @code{.def}; the value and type,
4088 respectively, with @code{.val} and @code{.type}.
4089
4090 @subsubsection Auxiliary Attributes
4091
4092 @cindex auxiliary attributes, COFF symbols
4093 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4094 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4095 table information for COFF.
4096 @end ifset
4097
4098 @ifset SOM
4099 @node SOM Symbols
4100 @subsection Symbol Attributes for SOM
4101
4102 @cindex SOM symbol attributes
4103 @cindex symbol attributes, SOM
4104
4105 The SOM format for the HPPA supports a multitude of symbol attributes set with
4106 the @code{.EXPORT} and @code{.IMPORT} directives.
4107
4108 The attributes are described in @cite{HP9000 Series 800 Assembly
4109 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4110 @code{EXPORT} assembler directive documentation.
4111 @end ifset
4112
4113 @node Expressions
4114 @chapter Expressions
4115
4116 @cindex expressions
4117 @cindex addresses
4118 @cindex numeric values
4119 An @dfn{expression} specifies an address or numeric value.
4120 Whitespace may precede and/or follow an expression.
4121
4122 The result of an expression must be an absolute number, or else an offset into
4123 a particular section. If an expression is not absolute, and there is not
4124 enough information when @command{@value{AS}} sees the expression to know its
4125 section, a second pass over the source program might be necessary to interpret
4126 the expression---but the second pass is currently not implemented.
4127 @command{@value{AS}} aborts with an error message in this situation.
4128
4129 @menu
4130 * Empty Exprs:: Empty Expressions
4131 * Integer Exprs:: Integer Expressions
4132 @end menu
4133
4134 @node Empty Exprs
4135 @section Empty Expressions
4136
4137 @cindex empty expressions
4138 @cindex expressions, empty
4139 An empty expression has no value: it is just whitespace or null.
4140 Wherever an absolute expression is required, you may omit the
4141 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4142 is compatible with other assemblers.
4143
4144 @node Integer Exprs
4145 @section Integer Expressions
4146
4147 @cindex integer expressions
4148 @cindex expressions, integer
4149 An @dfn{integer expression} is one or more @emph{arguments} delimited
4150 by @emph{operators}.
4151
4152 @menu
4153 * Arguments:: Arguments
4154 * Operators:: Operators
4155 * Prefix Ops:: Prefix Operators
4156 * Infix Ops:: Infix Operators
4157 @end menu
4158
4159 @node Arguments
4160 @subsection Arguments
4161
4162 @cindex expression arguments
4163 @cindex arguments in expressions
4164 @cindex operands in expressions
4165 @cindex arithmetic operands
4166 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4167 contexts arguments are sometimes called ``arithmetic operands''. In
4168 this manual, to avoid confusing them with the ``instruction operands'' of
4169 the machine language, we use the term ``argument'' to refer to parts of
4170 expressions only, reserving the word ``operand'' to refer only to machine
4171 instruction operands.
4172
4173 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4174 @var{section} is one of text, data, bss, absolute,
4175 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4176 integer.
4177
4178 Numbers are usually integers.
4179
4180 A number can be a flonum or bignum. In this case, you are warned
4181 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4182 these 32 bits are an integer. You may write integer-manipulating
4183 instructions that act on exotic constants, compatible with other
4184 assemblers.
4185
4186 @cindex subexpressions
4187 Subexpressions are a left parenthesis @samp{(} followed by an integer
4188 expression, followed by a right parenthesis @samp{)}; or a prefix
4189 operator followed by an argument.
4190
4191 @node Operators
4192 @subsection Operators
4193
4194 @cindex operators, in expressions
4195 @cindex arithmetic functions
4196 @cindex functions, in expressions
4197 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4198 operators are followed by an argument. Infix operators appear
4199 between their arguments. Operators may be preceded and/or followed by
4200 whitespace.
4201
4202 @node Prefix Ops
4203 @subsection Prefix Operator
4204
4205 @cindex prefix operators
4206 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4207 one argument, which must be absolute.
4208
4209 @c the tex/end tex stuff surrounding this small table is meant to make
4210 @c it align, on the printed page, with the similar table in the next
4211 @c section (which is inside an enumerate).
4212 @tex
4213 \global\advance\leftskip by \itemindent
4214 @end tex
4215
4216 @table @code
4217 @item -
4218 @dfn{Negation}. Two's complement negation.
4219 @item ~
4220 @dfn{Complementation}. Bitwise not.
4221 @end table
4222
4223 @tex
4224 \global\advance\leftskip by -\itemindent
4225 @end tex
4226
4227 @node Infix Ops
4228 @subsection Infix Operators
4229
4230 @cindex infix operators
4231 @cindex operators, permitted arguments
4232 @dfn{Infix operators} take two arguments, one on either side. Operators
4233 have precedence, but operations with equal precedence are performed left
4234 to right. Apart from @code{+} or @option{-}, both arguments must be
4235 absolute, and the result is absolute.
4236
4237 @enumerate
4238 @cindex operator precedence
4239 @cindex precedence of operators
4240
4241 @item
4242 Highest Precedence
4243
4244 @table @code
4245 @item *
4246 @dfn{Multiplication}.
4247
4248 @item /
4249 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4250
4251 @item %
4252 @dfn{Remainder}.
4253
4254 @item <<
4255 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4256
4257 @item >>
4258 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4259 @end table
4260
4261 @item
4262 Intermediate precedence
4263
4264 @table @code
4265 @item |
4266
4267 @dfn{Bitwise Inclusive Or}.
4268
4269 @item &
4270 @dfn{Bitwise And}.
4271
4272 @item ^
4273 @dfn{Bitwise Exclusive Or}.
4274
4275 @item !
4276 @dfn{Bitwise Or Not}.
4277 @end table
4278
4279 @item
4280 Low Precedence
4281
4282 @table @code
4283 @cindex addition, permitted arguments
4284 @cindex plus, permitted arguments
4285 @cindex arguments for addition
4286 @item +
4287 @dfn{Addition}. If either argument is absolute, the result has the section of
4288 the other argument. You may not add together arguments from different
4289 sections.
4290
4291 @cindex subtraction, permitted arguments
4292 @cindex minus, permitted arguments
4293 @cindex arguments for subtraction
4294 @item -
4295 @dfn{Subtraction}. If the right argument is absolute, the
4296 result has the section of the left argument.
4297 If both arguments are in the same section, the result is absolute.
4298 You may not subtract arguments from different sections.
4299 @c FIXME is there still something useful to say about undefined - undefined ?
4300
4301 @cindex comparison expressions
4302 @cindex expressions, comparison
4303 @item ==
4304 @dfn{Is Equal To}
4305 @item <>
4306 @itemx !=
4307 @dfn{Is Not Equal To}
4308 @item <
4309 @dfn{Is Less Than}
4310 @item >
4311 @dfn{Is Greater Than}
4312 @item >=
4313 @dfn{Is Greater Than Or Equal To}
4314 @item <=
4315 @dfn{Is Less Than Or Equal To}
4316
4317 The comparison operators can be used as infix operators. A true results has a
4318 value of -1 whereas a false result has a value of 0. Note, these operators
4319 perform signed comparisons.
4320 @end table
4321
4322 @item Lowest Precedence
4323
4324 @table @code
4325 @item &&
4326 @dfn{Logical And}.
4327
4328 @item ||
4329 @dfn{Logical Or}.
4330
4331 These two logical operations can be used to combine the results of sub
4332 expressions. Note, unlike the comparison operators a true result returns a
4333 value of 1 but a false results does still return 0. Also note that the logical
4334 or operator has a slightly lower precedence than logical and.
4335
4336 @end table
4337 @end enumerate
4338
4339 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4340 address; you can only have a defined section in one of the two arguments.
4341
4342 @node Pseudo Ops
4343 @chapter Assembler Directives
4344
4345 @cindex directives, machine independent
4346 @cindex pseudo-ops, machine independent
4347 @cindex machine independent directives
4348 All assembler directives have names that begin with a period (@samp{.}).
4349 The names are case insensitive for most targets, and usually written
4350 in lower case.
4351
4352 This chapter discusses directives that are available regardless of the
4353 target machine configuration for the @sc{gnu} assembler.
4354 @ifset GENERIC
4355 Some machine configurations provide additional directives.
4356 @xref{Machine Dependencies}.
4357 @end ifset
4358 @ifclear GENERIC
4359 @ifset machine-directives
4360 @xref{Machine Dependencies}, for additional directives.
4361 @end ifset
4362 @end ifclear
4363
4364 @menu
4365 * Abort:: @code{.abort}
4366 @ifset COFF
4367 * ABORT (COFF):: @code{.ABORT}
4368 @end ifset
4369
4370 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4371 * Altmacro:: @code{.altmacro}
4372 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4373 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4374 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4375 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4376 * Byte:: @code{.byte @var{expressions}}
4377 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4378 * Comm:: @code{.comm @var{symbol} , @var{length} }
4379 * Data:: @code{.data @var{subsection}}
4380 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4381 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4382 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4383 @ifset COFF
4384 * Def:: @code{.def @var{name}}
4385 @end ifset
4386 @ifset aout
4387 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4388 @end ifset
4389 @ifset COFF
4390 * Dim:: @code{.dim}
4391 @end ifset
4392
4393 * Double:: @code{.double @var{flonums}}
4394 * Eject:: @code{.eject}
4395 * Else:: @code{.else}
4396 * Elseif:: @code{.elseif}
4397 * End:: @code{.end}
4398 @ifset COFF
4399 * Endef:: @code{.endef}
4400 @end ifset
4401
4402 * Endfunc:: @code{.endfunc}
4403 * Endif:: @code{.endif}
4404 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4405 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4406 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4407 * Err:: @code{.err}
4408 * Error:: @code{.error @var{string}}
4409 * Exitm:: @code{.exitm}
4410 * Extern:: @code{.extern}
4411 * Fail:: @code{.fail}
4412 * File:: @code{.file}
4413 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4414 * Float:: @code{.float @var{flonums}}
4415 * Func:: @code{.func}
4416 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4417 @ifset ELF
4418 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4419 * Hidden:: @code{.hidden @var{names}}
4420 @end ifset
4421
4422 * hword:: @code{.hword @var{expressions}}
4423 * Ident:: @code{.ident}
4424 * If:: @code{.if @var{absolute expression}}
4425 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4426 * Include:: @code{.include "@var{file}"}
4427 * Int:: @code{.int @var{expressions}}
4428 @ifset ELF
4429 * Internal:: @code{.internal @var{names}}
4430 @end ifset
4431
4432 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4433 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4434 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4435 * Lflags:: @code{.lflags}
4436 @ifclear no-line-dir
4437 * Line:: @code{.line @var{line-number}}
4438 @end ifclear
4439
4440 * Linkonce:: @code{.linkonce [@var{type}]}
4441 * List:: @code{.list}
4442 * Ln:: @code{.ln @var{line-number}}
4443 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4444 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4445 @ifset ELF
4446 * Local:: @code{.local @var{names}}
4447 @end ifset
4448
4449 * Long:: @code{.long @var{expressions}}
4450 @ignore
4451 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4452 @end ignore
4453
4454 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4455 * MRI:: @code{.mri @var{val}}
4456 * Noaltmacro:: @code{.noaltmacro}
4457 * Nolist:: @code{.nolist}
4458 * Nops:: @code{.nops @var{size}[, @var{control}]}
4459 * Octa:: @code{.octa @var{bignums}}
4460 * Offset:: @code{.offset @var{loc}}
4461 * Org:: @code{.org @var{new-lc}, @var{fill}}
4462 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4463 @ifset ELF
4464 * PopSection:: @code{.popsection}
4465 * Previous:: @code{.previous}
4466 @end ifset
4467
4468 * Print:: @code{.print @var{string}}
4469 @ifset ELF
4470 * Protected:: @code{.protected @var{names}}
4471 @end ifset
4472
4473 * Psize:: @code{.psize @var{lines}, @var{columns}}
4474 * Purgem:: @code{.purgem @var{name}}
4475 @ifset ELF
4476 * PushSection:: @code{.pushsection @var{name}}
4477 @end ifset
4478
4479 * Quad:: @code{.quad @var{bignums}}
4480 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4481 * Rept:: @code{.rept @var{count}}
4482 * Sbttl:: @code{.sbttl "@var{subheading}"}
4483 @ifset COFF
4484 * Scl:: @code{.scl @var{class}}
4485 @end ifset
4486 @ifset COFF-ELF
4487 * Section:: @code{.section @var{name}[, @var{flags}]}
4488 @end ifset
4489
4490 * Set:: @code{.set @var{symbol}, @var{expression}}
4491 * Short:: @code{.short @var{expressions}}
4492 * Single:: @code{.single @var{flonums}}
4493 @ifset COFF-ELF
4494 * Size:: @code{.size [@var{name} , @var{expression}]}
4495 @end ifset
4496 @ifclear no-space-dir
4497 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4498 @end ifclear
4499
4500 * Sleb128:: @code{.sleb128 @var{expressions}}
4501 @ifclear no-space-dir
4502 * Space:: @code{.space @var{size} [,@var{fill}]}
4503 @end ifclear
4504 @ifset have-stabs
4505 * Stab:: @code{.stabd, .stabn, .stabs}
4506 @end ifset
4507
4508 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4509 * Struct:: @code{.struct @var{expression}}
4510 @ifset ELF
4511 * SubSection:: @code{.subsection}
4512 * Symver:: @code{.symver @var{name},@var{name2@@nodename}[,@var{visibility}]}
4513 @end ifset
4514
4515 @ifset COFF
4516 * Tag:: @code{.tag @var{structname}}
4517 @end ifset
4518
4519 * Text:: @code{.text @var{subsection}}
4520 * Title:: @code{.title "@var{heading}"}
4521 @ifset COFF-ELF
4522 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4523 @end ifset
4524
4525 * Uleb128:: @code{.uleb128 @var{expressions}}
4526 @ifset COFF
4527 * Val:: @code{.val @var{addr}}
4528 @end ifset
4529
4530 @ifset ELF
4531 * Version:: @code{.version "@var{string}"}
4532 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4533 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4534 @end ifset
4535
4536 * Warning:: @code{.warning @var{string}}
4537 * Weak:: @code{.weak @var{names}}
4538 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4539 * Word:: @code{.word @var{expressions}}
4540 @ifclear no-space-dir
4541 * Zero:: @code{.zero @var{size}}
4542 @end ifclear
4543 @ifset ELF
4544 * 2byte:: @code{.2byte @var{expressions}}
4545 * 4byte:: @code{.4byte @var{expressions}}
4546 * 8byte:: @code{.8byte @var{bignums}}
4547 @end ifset
4548 * Deprecated:: Deprecated Directives
4549 @end menu
4550
4551 @node Abort
4552 @section @code{.abort}
4553
4554 @cindex @code{abort} directive
4555 @cindex stopping the assembly
4556 This directive stops the assembly immediately. It is for
4557 compatibility with other assemblers. The original idea was that the
4558 assembly language source would be piped into the assembler. If the sender
4559 of the source quit, it could use this directive tells @command{@value{AS}} to
4560 quit also. One day @code{.abort} will not be supported.
4561
4562 @ifset COFF
4563 @node ABORT (COFF)
4564 @section @code{.ABORT} (COFF)
4565
4566 @cindex @code{ABORT} directive
4567 When producing COFF output, @command{@value{AS}} accepts this directive as a
4568 synonym for @samp{.abort}.
4569
4570 @end ifset
4571
4572 @node Align
4573 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4574
4575 @cindex padding the location counter
4576 @cindex @code{align} directive
4577 Pad the location counter (in the current subsection) to a particular storage
4578 boundary. The first expression (which must be absolute) is the alignment
4579 required, as described below. If this expression is omitted then a default
4580 value of 0 is used, effectively disabling alignment requirements.
4581
4582 The second expression (also absolute) gives the fill value to be stored in the
4583 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4584 padding bytes are normally zero. However, on most systems, if the section is
4585 marked as containing code and the fill value is omitted, the space is filled
4586 with no-op instructions.
4587
4588 The third expression is also absolute, and is also optional. If it is present,
4589 it is the maximum number of bytes that should be skipped by this alignment
4590 directive. If doing the alignment would require skipping more bytes than the
4591 specified maximum, then the alignment is not done at all. You can omit the
4592 fill value (the second argument) entirely by simply using two commas after the
4593 required alignment; this can be useful if you want the alignment to be filled
4594 with no-op instructions when appropriate.
4595
4596 The way the required alignment is specified varies from system to system.
4597 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4598 s390, sparc, tic4x and xtensa, the first expression is the
4599 alignment request in bytes. For example @samp{.align 8} advances
4600 the location counter until it is a multiple of 8. If the location counter
4601 is already a multiple of 8, no change is needed. For the tic54x, the
4602 first expression is the alignment request in words.
4603
4604 For other systems, including ppc, i386 using a.out format, arm and
4605 strongarm, it is the
4606 number of low-order zero bits the location counter must have after
4607 advancement. For example @samp{.align 3} advances the location
4608 counter until it is a multiple of 8. If the location counter is already a
4609 multiple of 8, no change is needed.
4610
4611 This inconsistency is due to the different behaviors of the various
4612 native assemblers for these systems which GAS must emulate.
4613 GAS also provides @code{.balign} and @code{.p2align} directives,
4614 described later, which have a consistent behavior across all
4615 architectures (but are specific to GAS).
4616
4617 @node Altmacro
4618 @section @code{.altmacro}
4619 Enable alternate macro mode, enabling:
4620
4621 @ftable @code
4622 @item LOCAL @var{name} [ , @dots{} ]
4623 One additional directive, @code{LOCAL}, is available. It is used to
4624 generate a string replacement for each of the @var{name} arguments, and
4625 replace any instances of @var{name} in each macro expansion. The
4626 replacement string is unique in the assembly, and different for each
4627 separate macro expansion. @code{LOCAL} allows you to write macros that
4628 define symbols, without fear of conflict between separate macro expansions.
4629
4630 @item String delimiters
4631 You can write strings delimited in these other ways besides
4632 @code{"@var{string}"}:
4633
4634 @table @code
4635 @item '@var{string}'
4636 You can delimit strings with single-quote characters.
4637
4638 @item <@var{string}>
4639 You can delimit strings with matching angle brackets.
4640 @end table
4641
4642 @item single-character string escape
4643 To include any single character literally in a string (even if the
4644 character would otherwise have some special meaning), you can prefix the
4645 character with @samp{!} (an exclamation mark). For example, you can
4646 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4647
4648 @item Expression results as strings
4649 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4650 and use the result as a string.
4651 @end ftable
4652
4653 @node Ascii
4654 @section @code{.ascii "@var{string}"}@dots{}
4655
4656 @cindex @code{ascii} directive
4657 @cindex string literals
4658 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4659 separated by commas. It assembles each string (with no automatic
4660 trailing zero byte) into consecutive addresses.
4661
4662 @node Asciz
4663 @section @code{.asciz "@var{string}"}@dots{}
4664
4665 @cindex @code{asciz} directive
4666 @cindex zero-terminated strings
4667 @cindex null-terminated strings
4668 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4669 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4670
4671 @node Balign
4672 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4673
4674 @cindex padding the location counter given number of bytes
4675 @cindex @code{balign} directive
4676 Pad the location counter (in the current subsection) to a particular
4677 storage boundary. The first expression (which must be absolute) is the
4678 alignment request in bytes. For example @samp{.balign 8} advances
4679 the location counter until it is a multiple of 8. If the location counter
4680 is already a multiple of 8, no change is needed. If the expression is omitted
4681 then a default value of 0 is used, effectively disabling alignment requirements.
4682
4683 The second expression (also absolute) gives the fill value to be stored in the
4684 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4685 padding bytes are normally zero. However, on most systems, if the section is
4686 marked as containing code and the fill value is omitted, the space is filled
4687 with no-op instructions.
4688
4689 The third expression is also absolute, and is also optional. If it is present,
4690 it is the maximum number of bytes that should be skipped by this alignment
4691 directive. If doing the alignment would require skipping more bytes than the
4692 specified maximum, then the alignment is not done at all. You can omit the
4693 fill value (the second argument) entirely by simply using two commas after the
4694 required alignment; this can be useful if you want the alignment to be filled
4695 with no-op instructions when appropriate.
4696
4697 @cindex @code{balignw} directive
4698 @cindex @code{balignl} directive
4699 The @code{.balignw} and @code{.balignl} directives are variants of the
4700 @code{.balign} directive. The @code{.balignw} directive treats the fill
4701 pattern as a two byte word value. The @code{.balignl} directives treats the
4702 fill pattern as a four byte longword value. For example, @code{.balignw
4703 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4704 filled in with the value 0x368d (the exact placement of the bytes depends upon
4705 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4706 undefined.
4707
4708 @node Bundle directives
4709 @section Bundle directives
4710 @subsection @code{.bundle_align_mode @var{abs-expr}}
4711 @cindex @code{bundle_align_mode} directive
4712 @cindex bundle
4713 @cindex instruction bundle
4714 @cindex aligned instruction bundle
4715 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4716 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4717 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4718 disabled (which is the default state). If the argument it not zero, it
4719 gives the size of an instruction bundle as a power of two (as for the
4720 @code{.p2align} directive, @pxref{P2align}).
4721
4722 For some targets, it's an ABI requirement that no instruction may span a
4723 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4724 instructions that starts on an aligned boundary. For example, if
4725 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4726 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4727 effect, no single instruction may span a boundary between bundles. If an
4728 instruction would start too close to the end of a bundle for the length of
4729 that particular instruction to fit within the bundle, then the space at the
4730 end of that bundle is filled with no-op instructions so the instruction
4731 starts in the next bundle. As a corollary, it's an error if any single
4732 instruction's encoding is longer than the bundle size.
4733
4734 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4735 @cindex @code{bundle_lock} directive
4736 @cindex @code{bundle_unlock} directive
4737 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4738 allow explicit control over instruction bundle padding. These directives
4739 are only valid when @code{.bundle_align_mode} has been used to enable
4740 aligned instruction bundle mode. It's an error if they appear when
4741 @code{.bundle_align_mode} has not been used at all, or when the last
4742 directive was @w{@code{.bundle_align_mode 0}}.
4743
4744 @cindex bundle-locked
4745 For some targets, it's an ABI requirement that certain instructions may
4746 appear only as part of specified permissible sequences of multiple
4747 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4748 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4749 instruction sequence. For purposes of aligned instruction bundle mode, a
4750 sequence starting with @code{.bundle_lock} and ending with
4751 @code{.bundle_unlock} is treated as a single instruction. That is, the
4752 entire sequence must fit into a single bundle and may not span a bundle
4753 boundary. If necessary, no-op instructions will be inserted before the
4754 first instruction of the sequence so that the whole sequence starts on an
4755 aligned bundle boundary. It's an error if the sequence is longer than the
4756 bundle size.
4757
4758 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4759 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4760 nested. That is, a second @code{.bundle_lock} directive before the next
4761 @code{.bundle_unlock} directive has no effect except that it must be
4762 matched by another closing @code{.bundle_unlock} so that there is the
4763 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4764
4765 @node Byte
4766 @section @code{.byte @var{expressions}}
4767
4768 @cindex @code{byte} directive
4769 @cindex integers, one byte
4770 @code{.byte} expects zero or more expressions, separated by commas.
4771 Each expression is assembled into the next byte.
4772
4773 @node CFI directives
4774 @section CFI directives
4775 @subsection @code{.cfi_sections @var{section_list}}
4776 @cindex @code{cfi_sections} directive
4777 @code{.cfi_sections} may be used to specify whether CFI directives
4778 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4779 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4780 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4781 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4782 directive is not used is @code{.cfi_sections .eh_frame}.
4783
4784 On targets that support compact unwinding tables these can be generated
4785 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4786
4787 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4788 which is used by the @value{TIC6X} target.
4789
4790 The @code{.cfi_sections} directive can be repeated, with the same or different
4791 arguments, provided that CFI generation has not yet started. Once CFI
4792 generation has started however the section list is fixed and any attempts to
4793 redefine it will result in an error.
4794
4795 @subsection @code{.cfi_startproc [simple]}
4796 @cindex @code{cfi_startproc} directive
4797 @code{.cfi_startproc} is used at the beginning of each function that
4798 should have an entry in @code{.eh_frame}. It initializes some internal
4799 data structures. Don't forget to close the function by
4800 @code{.cfi_endproc}.
4801
4802 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4803 it also emits some architecture dependent initial CFI instructions.
4804
4805 @subsection @code{.cfi_endproc}
4806 @cindex @code{cfi_endproc} directive
4807 @code{.cfi_endproc} is used at the end of a function where it closes its
4808 unwind entry previously opened by
4809 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4810
4811 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4812 @cindex @code{cfi_personality} directive
4813 @code{.cfi_personality} defines personality routine and its encoding.
4814 @var{encoding} must be a constant determining how the personality
4815 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4816 argument is not present, otherwise second argument should be
4817 a constant or a symbol name. When using indirect encodings,
4818 the symbol provided should be the location where personality
4819 can be loaded from, not the personality routine itself.
4820 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4821 no personality routine.
4822
4823 @subsection @code{.cfi_personality_id @var{id}}
4824 @cindex @code{cfi_personality_id} directive
4825 @code{cfi_personality_id} defines a personality routine by its index as
4826 defined in a compact unwinding format.
4827 Only valid when generating compact EH frames (i.e.
4828 with @code{.cfi_sections eh_frame_entry}.
4829
4830 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4831 @cindex @code{cfi_fde_data} directive
4832 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4833 used for the current function. These are emitted inline in the
4834 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4835 in the @code{.gnu.extab} section otherwise.
4836 Only valid when generating compact EH frames (i.e.
4837 with @code{.cfi_sections eh_frame_entry}.
4838
4839 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4840 @code{.cfi_lsda} defines LSDA and its encoding.
4841 @var{encoding} must be a constant determining how the LSDA
4842 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4843 argument is not present, otherwise the second argument should be a constant
4844 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4845 meaning that no LSDA is present.
4846
4847 @subsection @code{.cfi_inline_lsda} [@var{align}]
4848 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4849 switches to the corresponding @code{.gnu.extab} section.
4850 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4851 Only valid when generating compact EH frames (i.e.
4852 with @code{.cfi_sections eh_frame_entry}.
4853
4854 The table header and unwinding opcodes will be generated at this point,
4855 so that they are immediately followed by the LSDA data. The symbol
4856 referenced by the @code{.cfi_lsda} directive should still be defined
4857 in case a fallback FDE based encoding is used. The LSDA data is terminated
4858 by a section directive.
4859
4860 The optional @var{align} argument specifies the alignment required.
4861 The alignment is specified as a power of two, as with the
4862 @code{.p2align} directive.
4863
4864 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4865 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4866 address from @var{register} and add @var{offset} to it}.
4867
4868 @subsection @code{.cfi_def_cfa_register @var{register}}
4869 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4870 now on @var{register} will be used instead of the old one. Offset
4871 remains the same.
4872
4873 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4874 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4875 remains the same, but @var{offset} is new. Note that it is the
4876 absolute offset that will be added to a defined register to compute
4877 CFA address.
4878
4879 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4880 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4881 value that is added/subtracted from the previous offset.
4882
4883 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4884 Previous value of @var{register} is saved at offset @var{offset} from
4885 CFA.
4886
4887 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4888 Previous value of @var{register} is CFA + @var{offset}.
4889
4890 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4891 Previous value of @var{register} is saved at offset @var{offset} from
4892 the current CFA register. This is transformed to @code{.cfi_offset}
4893 using the known displacement of the CFA register from the CFA.
4894 This is often easier to use, because the number will match the
4895 code it's annotating.
4896
4897 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4898 Previous value of @var{register1} is saved in register @var{register2}.
4899
4900 @subsection @code{.cfi_restore @var{register}}
4901 @code{.cfi_restore} says that the rule for @var{register} is now the
4902 same as it was at the beginning of the function, after all initial
4903 instruction added by @code{.cfi_startproc} were executed.
4904
4905 @subsection @code{.cfi_undefined @var{register}}
4906 From now on the previous value of @var{register} can't be restored anymore.
4907
4908 @subsection @code{.cfi_same_value @var{register}}
4909 Current value of @var{register} is the same like in the previous frame,
4910 i.e. no restoration needed.
4911
4912 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4913 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4914 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4915 places them in the current row. This is useful for situations where you have
4916 multiple @code{.cfi_*} directives that need to be undone due to the control
4917 flow of the program. For example, we could have something like this (assuming
4918 the CFA is the value of @code{rbp}):
4919
4920 @smallexample
4921 je label
4922 popq %rbx
4923 .cfi_restore %rbx
4924 popq %r12
4925 .cfi_restore %r12
4926 popq %rbp
4927 .cfi_restore %rbp
4928 .cfi_def_cfa %rsp, 8
4929 ret
4930 label:
4931 /* Do something else */
4932 @end smallexample
4933
4934 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4935 to the instructions before @code{label}. This means we'd have to add multiple
4936 @code{.cfi} directives after @code{label} to recreate the original save
4937 locations of the registers, as well as setting the CFA back to the value of
4938 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4939 we can write:
4940
4941 @smallexample
4942 je label
4943 popq %rbx
4944 .cfi_remember_state
4945 .cfi_restore %rbx
4946 popq %r12
4947 .cfi_restore %r12
4948 popq %rbp
4949 .cfi_restore %rbp
4950 .cfi_def_cfa %rsp, 8
4951 ret
4952 label:
4953 .cfi_restore_state
4954 /* Do something else */
4955 @end smallexample
4956
4957 That way, the rules for the instructions after @code{label} will be the same
4958 as before the first @code{.cfi_restore} without having to use multiple
4959 @code{.cfi} directives.
4960
4961 @subsection @code{.cfi_return_column @var{register}}
4962 Change return column @var{register}, i.e. the return address is either
4963 directly in @var{register} or can be accessed by rules for @var{register}.
4964
4965 @subsection @code{.cfi_signal_frame}
4966 Mark current function as signal trampoline.
4967
4968 @subsection @code{.cfi_window_save}
4969 SPARC register window has been saved.
4970
4971 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4972 Allows the user to add arbitrary bytes to the unwind info. One
4973 might use this to add OS-specific CFI opcodes, or generic CFI
4974 opcodes that GAS does not yet support.
4975
4976 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4977 The current value of @var{register} is @var{label}. The value of @var{label}
4978 will be encoded in the output file according to @var{encoding}; see the
4979 description of @code{.cfi_personality} for details on this encoding.
4980
4981 The usefulness of equating a register to a fixed label is probably
4982 limited to the return address register. Here, it can be useful to
4983 mark a code segment that has only one return address which is reached
4984 by a direct branch and no copy of the return address exists in memory
4985 or another register.
4986
4987 @node Comm
4988 @section @code{.comm @var{symbol} , @var{length} }
4989
4990 @cindex @code{comm} directive
4991 @cindex symbol, common
4992 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4993 common symbol in one object file may be merged with a defined or common symbol
4994 of the same name in another object file. If @code{@value{LD}} does not see a
4995 definition for the symbol--just one or more common symbols--then it will
4996 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4997 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4998 the same name, and they do not all have the same size, it will allocate space
4999 using the largest size.
5000
5001 @ifset COFF-ELF
5002 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
5003 an optional third argument. This is the desired alignment of the symbol,
5004 specified for ELF as a byte boundary (for example, an alignment of 16 means
5005 that the least significant 4 bits of the address should be zero), and for PE
5006 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
5007 boundary). The alignment must be an absolute expression, and it must be a
5008 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5009 common symbol, it will use the alignment when placing the symbol. If no
5010 alignment is specified, @command{@value{AS}} will set the alignment to the
5011 largest power of two less than or equal to the size of the symbol, up to a
5012 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5013 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5014 @samp{--section-alignment} option; image file sections in PE are aligned to
5015 multiples of 4096, which is far too large an alignment for ordinary variables.
5016 It is rather the default alignment for (non-debug) sections within object
5017 (@samp{*.o}) files, which are less strictly aligned.}.
5018 @end ifset
5019
5020 @ifset HPPA
5021 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5022 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5023 @end ifset
5024
5025 @node Data
5026 @section @code{.data @var{subsection}}
5027 @cindex @code{data} directive
5028
5029 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5030 end of the data subsection numbered @var{subsection} (which is an
5031 absolute expression). If @var{subsection} is omitted, it defaults
5032 to zero.
5033
5034 @node Dc
5035 @section @code{.dc[@var{size}] @var{expressions}}
5036 @cindex @code{dc} directive
5037
5038 The @code{.dc} directive expects zero or more @var{expressions} separated by
5039 commas. These expressions are evaluated and their values inserted into the
5040 current section. The size of the emitted value depends upon the suffix to the
5041 @code{.dc} directive:
5042
5043 @table @code
5044 @item @samp{.a}
5045 Emits N-bit values, where N is the size of an address on the target system.
5046 @item @samp{.b}
5047 Emits 8-bit values.
5048 @item @samp{.d}
5049 Emits double precision floating-point values.
5050 @item @samp{.l}
5051 Emits 32-bit values.
5052 @item @samp{.s}
5053 Emits single precision floating-point values.
5054 @item @samp{.w}
5055 Emits 16-bit values.
5056 Note - this is true even on targets where the @code{.word} directive would emit
5057 32-bit values.
5058 @item @samp{.x}
5059 Emits long double precision floating-point values.
5060 @end table
5061
5062 If no suffix is used then @samp{.w} is assumed.
5063
5064 The byte ordering is target dependent, as is the size and format of floating
5065 point values.
5066
5067 @node Dcb
5068 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5069 @cindex @code{dcb} directive
5070 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5071 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5072 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5073 @var{size} suffix, if present, must be one of:
5074
5075 @table @code
5076 @item @samp{.b}
5077 Emits single byte values.
5078 @item @samp{.d}
5079 Emits double-precision floating point values.
5080 @item @samp{.l}
5081 Emits 4-byte values.
5082 @item @samp{.s}
5083 Emits single-precision floating point values.
5084 @item @samp{.w}
5085 Emits 2-byte values.
5086 @item @samp{.x}
5087 Emits long double-precision floating point values.
5088 @end table
5089
5090 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5091
5092 The byte ordering is target dependent, as is the size and format of floating
5093 point values.
5094
5095 @node Ds
5096 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5097 @cindex @code{ds} directive
5098 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5099 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5100 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5101 @var{size} suffix, if present, must be one of:
5102
5103 @table @code
5104 @item @samp{.b}
5105 Emits single byte values.
5106 @item @samp{.d}
5107 Emits 8-byte values.
5108 @item @samp{.l}
5109 Emits 4-byte values.
5110 @item @samp{.p}
5111 Emits 12-byte values.
5112 @item @samp{.s}
5113 Emits 4-byte values.
5114 @item @samp{.w}
5115 Emits 2-byte values.
5116 @item @samp{.x}
5117 Emits 12-byte values.
5118 @end table
5119
5120 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5121 suffixes do not indicate that floating-point values are to be inserted.
5122
5123 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5124
5125 The byte ordering is target dependent.
5126
5127
5128 @ifset COFF
5129 @node Def
5130 @section @code{.def @var{name}}
5131
5132 @cindex @code{def} directive
5133 @cindex COFF symbols, debugging
5134 @cindex debugging COFF symbols
5135 Begin defining debugging information for a symbol @var{name}; the
5136 definition extends until the @code{.endef} directive is encountered.
5137 @end ifset
5138
5139 @ifset aout
5140 @node Desc
5141 @section @code{.desc @var{symbol}, @var{abs-expression}}
5142
5143 @cindex @code{desc} directive
5144 @cindex COFF symbol descriptor
5145 @cindex symbol descriptor, COFF
5146 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5147 to the low 16 bits of an absolute expression.
5148
5149 @ifset COFF
5150 The @samp{.desc} directive is not available when @command{@value{AS}} is
5151 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5152 object format. For the sake of compatibility, @command{@value{AS}} accepts
5153 it, but produces no output, when configured for COFF.
5154 @end ifset
5155 @end ifset
5156
5157 @ifset COFF
5158 @node Dim
5159 @section @code{.dim}
5160
5161 @cindex @code{dim} directive
5162 @cindex COFF auxiliary symbol information
5163 @cindex auxiliary symbol information, COFF
5164 This directive is generated by compilers to include auxiliary debugging
5165 information in the symbol table. It is only permitted inside
5166 @code{.def}/@code{.endef} pairs.
5167 @end ifset
5168
5169 @node Double
5170 @section @code{.double @var{flonums}}
5171
5172 @cindex @code{double} directive
5173 @cindex floating point numbers (double)
5174 @code{.double} expects zero or more flonums, separated by commas. It
5175 assembles floating point numbers.
5176 @ifset GENERIC
5177 The exact kind of floating point numbers emitted depends on how
5178 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5179 @end ifset
5180 @ifclear GENERIC
5181 @ifset IEEEFLOAT
5182 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5183 in @sc{ieee} format.
5184 @end ifset
5185 @end ifclear
5186
5187 @node Eject
5188 @section @code{.eject}
5189
5190 @cindex @code{eject} directive
5191 @cindex new page, in listings
5192 @cindex page, in listings
5193 @cindex listing control: new page
5194 Force a page break at this point, when generating assembly listings.
5195
5196 @node Else
5197 @section @code{.else}
5198
5199 @cindex @code{else} directive
5200 @code{.else} is part of the @command{@value{AS}} support for conditional
5201 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5202 of code to be assembled if the condition for the preceding @code{.if}
5203 was false.
5204
5205 @node Elseif
5206 @section @code{.elseif}
5207
5208 @cindex @code{elseif} directive
5209 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5210 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5211 @code{.if} block that would otherwise fill the entire @code{.else} section.
5212
5213 @node End
5214 @section @code{.end}
5215
5216 @cindex @code{end} directive
5217 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5218 process anything in the file past the @code{.end} directive.
5219
5220 @ifset COFF
5221 @node Endef
5222 @section @code{.endef}
5223
5224 @cindex @code{endef} directive
5225 This directive flags the end of a symbol definition begun with
5226 @code{.def}.
5227 @end ifset
5228
5229 @node Endfunc
5230 @section @code{.endfunc}
5231 @cindex @code{endfunc} directive
5232 @code{.endfunc} marks the end of a function specified with @code{.func}.
5233
5234 @node Endif
5235 @section @code{.endif}
5236
5237 @cindex @code{endif} directive
5238 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5239 it marks the end of a block of code that is only assembled
5240 conditionally. @xref{If,,@code{.if}}.
5241
5242 @node Equ
5243 @section @code{.equ @var{symbol}, @var{expression}}
5244
5245 @cindex @code{equ} directive
5246 @cindex assigning values to symbols
5247 @cindex symbols, assigning values to
5248 This directive sets the value of @var{symbol} to @var{expression}.
5249 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5250
5251 @ifset HPPA
5252 The syntax for @code{equ} on the HPPA is
5253 @samp{@var{symbol} .equ @var{expression}}.
5254 @end ifset
5255
5256 @ifset Z80
5257 The syntax for @code{equ} on the Z80 is
5258 @samp{@var{symbol} equ @var{expression}}.
5259 On the Z80 it is an error if @var{symbol} is already defined,
5260 but the symbol is not protected from later redefinition.
5261 Compare @ref{Equiv}.
5262 @end ifset
5263
5264 @node Equiv
5265 @section @code{.equiv @var{symbol}, @var{expression}}
5266 @cindex @code{equiv} directive
5267 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5268 the assembler will signal an error if @var{symbol} is already defined. Note a
5269 symbol which has been referenced but not actually defined is considered to be
5270 undefined.
5271
5272 Except for the contents of the error message, this is roughly equivalent to
5273 @smallexample
5274 .ifdef SYM
5275 .err
5276 .endif
5277 .equ SYM,VAL
5278 @end smallexample
5279 plus it protects the symbol from later redefinition.
5280
5281 @node Eqv
5282 @section @code{.eqv @var{symbol}, @var{expression}}
5283 @cindex @code{eqv} directive
5284 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5285 evaluate the expression or any part of it immediately. Instead each time
5286 the resulting symbol is used in an expression, a snapshot of its current
5287 value is taken.
5288
5289 @node Err
5290 @section @code{.err}
5291 @cindex @code{err} directive
5292 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5293 message and, unless the @option{-Z} option was used, it will not generate an
5294 object file. This can be used to signal an error in conditionally compiled code.
5295
5296 @node Error
5297 @section @code{.error "@var{string}"}
5298 @cindex error directive
5299
5300 Similarly to @code{.err}, this directive emits an error, but you can specify a
5301 string that will be emitted as the error message. If you don't specify the
5302 message, it defaults to @code{".error directive invoked in source file"}.
5303 @xref{Errors, ,Error and Warning Messages}.
5304
5305 @smallexample
5306 .error "This code has not been assembled and tested."
5307 @end smallexample
5308
5309 @node Exitm
5310 @section @code{.exitm}
5311 Exit early from the current macro definition. @xref{Macro}.
5312
5313 @node Extern
5314 @section @code{.extern}
5315
5316 @cindex @code{extern} directive
5317 @code{.extern} is accepted in the source program---for compatibility
5318 with other assemblers---but it is ignored. @command{@value{AS}} treats
5319 all undefined symbols as external.
5320
5321 @node Fail
5322 @section @code{.fail @var{expression}}
5323
5324 @cindex @code{fail} directive
5325 Generates an error or a warning. If the value of the @var{expression} is 500
5326 or more, @command{@value{AS}} will print a warning message. If the value is less
5327 than 500, @command{@value{AS}} will print an error message. The message will
5328 include the value of @var{expression}. This can occasionally be useful inside
5329 complex nested macros or conditional assembly.
5330
5331 @node File
5332 @section @code{.file}
5333 @cindex @code{file} directive
5334
5335 @ifclear no-file-dir
5336 There are two different versions of the @code{.file} directive. Targets
5337 that support DWARF2 line number information use the DWARF2 version of
5338 @code{.file}. Other targets use the default version.
5339
5340 @subheading Default Version
5341
5342 @cindex logical file name
5343 @cindex file name, logical
5344 This version of the @code{.file} directive tells @command{@value{AS}} that we
5345 are about to start a new logical file. The syntax is:
5346
5347 @smallexample
5348 .file @var{string}
5349 @end smallexample
5350
5351 @var{string} is the new file name. In general, the filename is
5352 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5353 to specify an empty file name, you must give the quotes--@code{""}. This
5354 statement may go away in future: it is only recognized to be compatible with
5355 old @command{@value{AS}} programs.
5356
5357 @subheading DWARF2 Version
5358 @end ifclear
5359
5360 When emitting DWARF2 line number information, @code{.file} assigns filenames
5361 to the @code{.debug_line} file name table. The syntax is:
5362
5363 @smallexample
5364 .file @var{fileno} @var{filename}
5365 @end smallexample
5366
5367 The @var{fileno} operand should be a unique positive integer to use as the
5368 index of the entry in the table. The @var{filename} operand is a C string
5369 literal enclosed in double quotes. The @var{filename} can include directory
5370 elements. If it does, then the directory will be added to the directory table
5371 and the basename will be added to the file table.
5372
5373 The detail of filename indices is exposed to the user because the filename
5374 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5375 information, and thus the user must know the exact indices that table
5376 entries will have.
5377
5378 If DWARF-5 support has been enabled via the @option{-gdwarf-5} option then
5379 an extended version of the @code{file} is also allowed:
5380
5381 @smallexample
5382 .file @var{fileno} [@var{dirname}] @var{filename} [md5 @var{value}]
5383 @end smallexample
5384
5385 With this version a separate directory name is allowed, although if this is
5386 used then @var{filename} should not contain any directory components. In
5387 addtion an md5 hash value of the contents of @var{filename} can be provided.
5388 This will be stored in the the file table as well, and can be used by tools
5389 reading the debug information to verify that the contents of the source file
5390 match the contents of the compiled file.
5391
5392 @node Fill
5393 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5394
5395 @cindex @code{fill} directive
5396 @cindex writing patterns in memory
5397 @cindex patterns, writing in memory
5398 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5399 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5400 may be zero or more. @var{Size} may be zero or more, but if it is
5401 more than 8, then it is deemed to have the value 8, compatible with
5402 other people's assemblers. The contents of each @var{repeat} bytes
5403 is taken from an 8-byte number. The highest order 4 bytes are
5404 zero. The lowest order 4 bytes are @var{value} rendered in the
5405 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5406 Each @var{size} bytes in a repetition is taken from the lowest order
5407 @var{size} bytes of this number. Again, this bizarre behavior is
5408 compatible with other people's assemblers.
5409
5410 @var{size} and @var{value} are optional.
5411 If the second comma and @var{value} are absent, @var{value} is
5412 assumed zero. If the first comma and following tokens are absent,
5413 @var{size} is assumed to be 1.
5414
5415 @node Float
5416 @section @code{.float @var{flonums}}
5417
5418 @cindex floating point numbers (single)
5419 @cindex @code{float} directive
5420 This directive assembles zero or more flonums, separated by commas. It
5421 has the same effect as @code{.single}.
5422 @ifset GENERIC
5423 The exact kind of floating point numbers emitted depends on how
5424 @command{@value{AS}} is configured.
5425 @xref{Machine Dependencies}.
5426 @end ifset
5427 @ifclear GENERIC
5428 @ifset IEEEFLOAT
5429 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5430 in @sc{ieee} format.
5431 @end ifset
5432 @end ifclear
5433
5434 @node Func
5435 @section @code{.func @var{name}[,@var{label}]}
5436 @cindex @code{func} directive
5437 @code{.func} emits debugging information to denote function @var{name}, and
5438 is ignored unless the file is assembled with debugging enabled.
5439 Only @samp{--gstabs[+]} is currently supported.
5440 @var{label} is the entry point of the function and if omitted @var{name}
5441 prepended with the @samp{leading char} is used.
5442 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5443 All functions are currently defined to have @code{void} return type.
5444 The function must be terminated with @code{.endfunc}.
5445
5446 @node Global
5447 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5448
5449 @cindex @code{global} directive
5450 @cindex symbol, making visible to linker
5451 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5452 @var{symbol} in your partial program, its value is made available to
5453 other partial programs that are linked with it. Otherwise,
5454 @var{symbol} takes its attributes from a symbol of the same name
5455 from another file linked into the same program.
5456
5457 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5458 compatibility with other assemblers.
5459
5460 @ifset HPPA
5461 On the HPPA, @code{.global} is not always enough to make it accessible to other
5462 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5463 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5464 @end ifset
5465
5466 @ifset ELF
5467 @node Gnu_attribute
5468 @section @code{.gnu_attribute @var{tag},@var{value}}
5469 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5470
5471 @node Hidden
5472 @section @code{.hidden @var{names}}
5473
5474 @cindex @code{hidden} directive
5475 @cindex visibility
5476 This is one of the ELF visibility directives. The other two are
5477 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5478 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5479
5480 This directive overrides the named symbols default visibility (which is set by
5481 their binding: local, global or weak). The directive sets the visibility to
5482 @code{hidden} which means that the symbols are not visible to other components.
5483 Such symbols are always considered to be @code{protected} as well.
5484 @end ifset
5485
5486 @node hword
5487 @section @code{.hword @var{expressions}}
5488
5489 @cindex @code{hword} directive
5490 @cindex integers, 16-bit
5491 @cindex numbers, 16-bit
5492 @cindex sixteen bit integers
5493 This expects zero or more @var{expressions}, and emits
5494 a 16 bit number for each.
5495
5496 @ifset GENERIC
5497 This directive is a synonym for @samp{.short}; depending on the target
5498 architecture, it may also be a synonym for @samp{.word}.
5499 @end ifset
5500 @ifclear GENERIC
5501 @ifset W32
5502 This directive is a synonym for @samp{.short}.
5503 @end ifset
5504 @ifset W16
5505 This directive is a synonym for both @samp{.short} and @samp{.word}.
5506 @end ifset
5507 @end ifclear
5508
5509 @node Ident
5510 @section @code{.ident}
5511
5512 @cindex @code{ident} directive
5513
5514 This directive is used by some assemblers to place tags in object files. The
5515 behavior of this directive varies depending on the target. When using the
5516 a.out object file format, @command{@value{AS}} simply accepts the directive for
5517 source-file compatibility with existing assemblers, but does not emit anything
5518 for it. When using COFF, comments are emitted to the @code{.comment} or
5519 @code{.rdata} section, depending on the target. When using ELF, comments are
5520 emitted to the @code{.comment} section.
5521
5522 @node If
5523 @section @code{.if @var{absolute expression}}
5524
5525 @cindex conditional assembly
5526 @cindex @code{if} directive
5527 @code{.if} marks the beginning of a section of code which is only
5528 considered part of the source program being assembled if the argument
5529 (which must be an @var{absolute expression}) is non-zero. The end of
5530 the conditional section of code must be marked by @code{.endif}
5531 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5532 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5533 If you have several conditions to check, @code{.elseif} may be used to avoid
5534 nesting blocks if/else within each subsequent @code{.else} block.
5535
5536 The following variants of @code{.if} are also supported:
5537 @table @code
5538 @cindex @code{ifdef} directive
5539 @item .ifdef @var{symbol}
5540 Assembles the following section of code if the specified @var{symbol}
5541 has been defined. Note a symbol which has been referenced but not yet defined
5542 is considered to be undefined.
5543
5544 @cindex @code{ifb} directive
5545 @item .ifb @var{text}
5546 Assembles the following section of code if the operand is blank (empty).
5547
5548 @cindex @code{ifc} directive
5549 @item .ifc @var{string1},@var{string2}
5550 Assembles the following section of code if the two strings are the same. The
5551 strings may be optionally quoted with single quotes. If they are not quoted,
5552 the first string stops at the first comma, and the second string stops at the
5553 end of the line. Strings which contain whitespace should be quoted. The
5554 string comparison is case sensitive.
5555
5556 @cindex @code{ifeq} directive
5557 @item .ifeq @var{absolute expression}
5558 Assembles the following section of code if the argument is zero.
5559
5560 @cindex @code{ifeqs} directive
5561 @item .ifeqs @var{string1},@var{string2}
5562 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5563
5564 @cindex @code{ifge} directive
5565 @item .ifge @var{absolute expression}
5566 Assembles the following section of code if the argument is greater than or
5567 equal to zero.
5568
5569 @cindex @code{ifgt} directive
5570 @item .ifgt @var{absolute expression}
5571 Assembles the following section of code if the argument is greater than zero.
5572
5573 @cindex @code{ifle} directive
5574 @item .ifle @var{absolute expression}
5575 Assembles the following section of code if the argument is less than or equal
5576 to zero.
5577
5578 @cindex @code{iflt} directive
5579 @item .iflt @var{absolute expression}
5580 Assembles the following section of code if the argument is less than zero.
5581
5582 @cindex @code{ifnb} directive
5583 @item .ifnb @var{text}
5584 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5585 following section of code if the operand is non-blank (non-empty).
5586
5587 @cindex @code{ifnc} directive
5588 @item .ifnc @var{string1},@var{string2}.
5589 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5590 following section of code if the two strings are not the same.
5591
5592 @cindex @code{ifndef} directive
5593 @cindex @code{ifnotdef} directive
5594 @item .ifndef @var{symbol}
5595 @itemx .ifnotdef @var{symbol}
5596 Assembles the following section of code if the specified @var{symbol}
5597 has not been defined. Both spelling variants are equivalent. Note a symbol
5598 which has been referenced but not yet defined is considered to be undefined.
5599
5600 @cindex @code{ifne} directive
5601 @item .ifne @var{absolute expression}
5602 Assembles the following section of code if the argument is not equal to zero
5603 (in other words, this is equivalent to @code{.if}).
5604
5605 @cindex @code{ifnes} directive
5606 @item .ifnes @var{string1},@var{string2}
5607 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5608 following section of code if the two strings are not the same.
5609 @end table
5610
5611 @node Incbin
5612 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5613
5614 @cindex @code{incbin} directive
5615 @cindex binary files, including
5616 The @code{incbin} directive includes @var{file} verbatim at the current
5617 location. You can control the search paths used with the @samp{-I} command-line
5618 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5619 around @var{file}.
5620
5621 The @var{skip} argument skips a number of bytes from the start of the
5622 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5623 read. Note that the data is not aligned in any way, so it is the user's
5624 responsibility to make sure that proper alignment is provided both before and
5625 after the @code{incbin} directive.
5626
5627 @node Include
5628 @section @code{.include "@var{file}"}
5629
5630 @cindex @code{include} directive
5631 @cindex supporting files, including
5632 @cindex files, including
5633 This directive provides a way to include supporting files at specified
5634 points in your source program. The code from @var{file} is assembled as
5635 if it followed the point of the @code{.include}; when the end of the
5636 included file is reached, assembly of the original file continues. You
5637 can control the search paths used with the @samp{-I} command-line option
5638 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5639 around @var{file}.
5640
5641 @node Int
5642 @section @code{.int @var{expressions}}
5643
5644 @cindex @code{int} directive
5645 @cindex integers, 32-bit
5646 Expect zero or more @var{expressions}, of any section, separated by commas.
5647 For each expression, emit a number that, at run time, is the value of that
5648 expression. The byte order and bit size of the number depends on what kind
5649 of target the assembly is for.
5650
5651 @ifclear GENERIC
5652 @ifset H8
5653 On most forms of the H8/300, @code{.int} emits 16-bit
5654 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5655 32-bit integers.
5656 @end ifset
5657 @end ifclear
5658
5659 @ifset ELF
5660 @node Internal
5661 @section @code{.internal @var{names}}
5662
5663 @cindex @code{internal} directive
5664 @cindex visibility
5665 This is one of the ELF visibility directives. The other two are
5666 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5667 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5668
5669 This directive overrides the named symbols default visibility (which is set by
5670 their binding: local, global or weak). The directive sets the visibility to
5671 @code{internal} which means that the symbols are considered to be @code{hidden}
5672 (i.e., not visible to other components), and that some extra, processor specific
5673 processing must also be performed upon the symbols as well.
5674 @end ifset
5675
5676 @node Irp
5677 @section @code{.irp @var{symbol},@var{values}}@dots{}
5678
5679 @cindex @code{irp} directive
5680 Evaluate a sequence of statements assigning different values to @var{symbol}.
5681 The sequence of statements starts at the @code{.irp} directive, and is
5682 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5683 set to @var{value}, and the sequence of statements is assembled. If no
5684 @var{value} is listed, the sequence of statements is assembled once, with
5685 @var{symbol} set to the null string. To refer to @var{symbol} within the
5686 sequence of statements, use @var{\symbol}.
5687
5688 For example, assembling
5689
5690 @example
5691 .irp param,1,2,3
5692 move d\param,sp@@-
5693 .endr
5694 @end example
5695
5696 is equivalent to assembling
5697
5698 @example
5699 move d1,sp@@-
5700 move d2,sp@@-
5701 move d3,sp@@-
5702 @end example
5703
5704 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5705
5706 @node Irpc
5707 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5708
5709 @cindex @code{irpc} directive
5710 Evaluate a sequence of statements assigning different values to @var{symbol}.
5711 The sequence of statements starts at the @code{.irpc} directive, and is
5712 terminated by an @code{.endr} directive. For each character in @var{value},
5713 @var{symbol} is set to the character, and the sequence of statements is
5714 assembled. If no @var{value} is listed, the sequence of statements is
5715 assembled once, with @var{symbol} set to the null string. To refer to
5716 @var{symbol} within the sequence of statements, use @var{\symbol}.
5717
5718 For example, assembling
5719
5720 @example
5721 .irpc param,123
5722 move d\param,sp@@-
5723 .endr
5724 @end example
5725
5726 is equivalent to assembling
5727
5728 @example
5729 move d1,sp@@-
5730 move d2,sp@@-
5731 move d3,sp@@-
5732 @end example
5733
5734 For some caveats with the spelling of @var{symbol}, see also the discussion
5735 at @xref{Macro}.
5736
5737 @node Lcomm
5738 @section @code{.lcomm @var{symbol} , @var{length}}
5739
5740 @cindex @code{lcomm} directive
5741 @cindex local common symbols
5742 @cindex symbols, local common
5743 Reserve @var{length} (an absolute expression) bytes for a local common
5744 denoted by @var{symbol}. The section and value of @var{symbol} are
5745 those of the new local common. The addresses are allocated in the bss
5746 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5747 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5748 not visible to @code{@value{LD}}.
5749
5750 @ifset GENERIC
5751 Some targets permit a third argument to be used with @code{.lcomm}. This
5752 argument specifies the desired alignment of the symbol in the bss section.
5753 @end ifset
5754
5755 @ifset HPPA
5756 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5757 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5758 @end ifset
5759
5760 @node Lflags
5761 @section @code{.lflags}
5762
5763 @cindex @code{lflags} directive (ignored)
5764 @command{@value{AS}} accepts this directive, for compatibility with other
5765 assemblers, but ignores it.
5766
5767 @ifclear no-line-dir
5768 @node Line
5769 @section @code{.line @var{line-number}}
5770
5771 @cindex @code{line} directive
5772 @cindex logical line number
5773 @ifset aout
5774 Change the logical line number. @var{line-number} must be an absolute
5775 expression. The next line has that logical line number. Therefore any other
5776 statements on the current line (after a statement separator character) are
5777 reported as on logical line number @var{line-number} @minus{} 1. One day
5778 @command{@value{AS}} will no longer support this directive: it is recognized only
5779 for compatibility with existing assembler programs.
5780 @end ifset
5781
5782 Even though this is a directive associated with the @code{a.out} or
5783 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5784 when producing COFF output, and treats @samp{.line} as though it
5785 were the COFF @samp{.ln} @emph{if} it is found outside a
5786 @code{.def}/@code{.endef} pair.
5787
5788 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5789 used by compilers to generate auxiliary symbol information for
5790 debugging.
5791 @end ifclear
5792
5793 @node Linkonce
5794 @section @code{.linkonce [@var{type}]}
5795 @cindex COMDAT
5796 @cindex @code{linkonce} directive
5797 @cindex common sections
5798 Mark the current section so that the linker only includes a single copy of it.
5799 This may be used to include the same section in several different object files,
5800 but ensure that the linker will only include it once in the final output file.
5801 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5802 Duplicate sections are detected based on the section name, so it should be
5803 unique.
5804
5805 This directive is only supported by a few object file formats; as of this
5806 writing, the only object file format which supports it is the Portable
5807 Executable format used on Windows NT.
5808
5809 The @var{type} argument is optional. If specified, it must be one of the
5810 following strings. For example:
5811 @smallexample
5812 .linkonce same_size
5813 @end smallexample
5814 Not all types may be supported on all object file formats.
5815
5816 @table @code
5817 @item discard
5818 Silently discard duplicate sections. This is the default.
5819
5820 @item one_only
5821 Warn if there are duplicate sections, but still keep only one copy.
5822
5823 @item same_size
5824 Warn if any of the duplicates have different sizes.
5825
5826 @item same_contents
5827 Warn if any of the duplicates do not have exactly the same contents.
5828 @end table
5829
5830 @node List
5831 @section @code{.list}
5832
5833 @cindex @code{list} directive
5834 @cindex listing control, turning on
5835 Control (in conjunction with the @code{.nolist} directive) whether or
5836 not assembly listings are generated. These two directives maintain an
5837 internal counter (which is zero initially). @code{.list} increments the
5838 counter, and @code{.nolist} decrements it. Assembly listings are
5839 generated whenever the counter is greater than zero.
5840
5841 By default, listings are disabled. When you enable them (with the
5842 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5843 the initial value of the listing counter is one.
5844
5845 @node Ln
5846 @section @code{.ln @var{line-number}}
5847
5848 @cindex @code{ln} directive
5849 @ifclear no-line-dir
5850 @samp{.ln} is a synonym for @samp{.line}.
5851 @end ifclear
5852 @ifset no-line-dir
5853 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5854 must be an absolute expression. The next line has that logical
5855 line number, so any other statements on the current line (after a
5856 statement separator character @code{;}) are reported as on logical
5857 line number @var{line-number} @minus{} 1.
5858 @end ifset
5859
5860 @node Loc
5861 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5862 @cindex @code{loc} directive
5863 When emitting DWARF2 line number information,
5864 the @code{.loc} directive will add a row to the @code{.debug_line} line
5865 number matrix corresponding to the immediately following assembly
5866 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5867 arguments will be applied to the @code{.debug_line} state machine before
5868 the row is added.
5869
5870 The @var{options} are a sequence of the following tokens in any order:
5871
5872 @table @code
5873 @item basic_block
5874 This option will set the @code{basic_block} register in the
5875 @code{.debug_line} state machine to @code{true}.
5876
5877 @item prologue_end
5878 This option will set the @code{prologue_end} register in the
5879 @code{.debug_line} state machine to @code{true}.
5880
5881 @item epilogue_begin
5882 This option will set the @code{epilogue_begin} register in the
5883 @code{.debug_line} state machine to @code{true}.
5884
5885 @item is_stmt @var{value}
5886 This option will set the @code{is_stmt} register in the
5887 @code{.debug_line} state machine to @code{value}, which must be
5888 either 0 or 1.
5889
5890 @item isa @var{value}
5891 This directive will set the @code{isa} register in the @code{.debug_line}
5892 state machine to @var{value}, which must be an unsigned integer.
5893
5894 @item discriminator @var{value}
5895 This directive will set the @code{discriminator} register in the @code{.debug_line}
5896 state machine to @var{value}, which must be an unsigned integer.
5897
5898 @item view @var{value}
5899 This option causes a row to be added to @code{.debug_line} in reference to the
5900 current address (which might not be the same as that of the following assembly
5901 instruction), and to associate @var{value} with the @code{view} register in the
5902 @code{.debug_line} state machine. If @var{value} is a label, both the
5903 @code{view} register and the label are set to the number of prior @code{.loc}
5904 directives at the same program location. If @var{value} is the literal
5905 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5906 that there aren't any prior @code{.loc} directives at the same program
5907 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5908 the @code{view} register to be reset in this row, even if there are prior
5909 @code{.loc} directives at the same program location.
5910
5911 @end table
5912
5913 @node Loc_mark_labels
5914 @section @code{.loc_mark_labels @var{enable}}
5915 @cindex @code{loc_mark_labels} directive
5916 When emitting DWARF2 line number information,
5917 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5918 to the @code{.debug_line} line number matrix with the @code{basic_block}
5919 register in the state machine set whenever a code label is seen.
5920 The @var{enable} argument should be either 1 or 0, to enable or disable
5921 this function respectively.
5922
5923 @ifset ELF
5924 @node Local
5925 @section @code{.local @var{names}}
5926
5927 @cindex @code{local} directive
5928 This directive, which is available for ELF targets, marks each symbol in
5929 the comma-separated list of @code{names} as a local symbol so that it
5930 will not be externally visible. If the symbols do not already exist,
5931 they will be created.
5932
5933 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5934 accept an alignment argument, which is the case for most ELF targets,
5935 the @code{.local} directive can be used in combination with @code{.comm}
5936 (@pxref{Comm}) to define aligned local common data.
5937 @end ifset
5938
5939 @node Long
5940 @section @code{.long @var{expressions}}
5941
5942 @cindex @code{long} directive
5943 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5944
5945 @ignore
5946 @c no one seems to know what this is for or whether this description is
5947 @c what it really ought to do
5948 @node Lsym
5949 @section @code{.lsym @var{symbol}, @var{expression}}
5950
5951 @cindex @code{lsym} directive
5952 @cindex symbol, not referenced in assembly
5953 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5954 the hash table, ensuring it cannot be referenced by name during the
5955 rest of the assembly. This sets the attributes of the symbol to be
5956 the same as the expression value:
5957 @smallexample
5958 @var{other} = @var{descriptor} = 0
5959 @var{type} = @r{(section of @var{expression})}
5960 @var{value} = @var{expression}
5961 @end smallexample
5962 @noindent
5963 The new symbol is not flagged as external.
5964 @end ignore
5965
5966 @node Macro
5967 @section @code{.macro}
5968
5969 @cindex macros
5970 The commands @code{.macro} and @code{.endm} allow you to define macros that
5971 generate assembly output. For example, this definition specifies a macro
5972 @code{sum} that puts a sequence of numbers into memory:
5973
5974 @example
5975 .macro sum from=0, to=5
5976 .long \from
5977 .if \to-\from
5978 sum "(\from+1)",\to
5979 .endif
5980 .endm
5981 @end example
5982
5983 @noindent
5984 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5985
5986 @example
5987 .long 0
5988 .long 1
5989 .long 2
5990 .long 3
5991 .long 4
5992 .long 5
5993 @end example
5994
5995 @ftable @code
5996 @item .macro @var{macname}
5997 @itemx .macro @var{macname} @var{macargs} @dots{}
5998 @cindex @code{macro} directive
5999 Begin the definition of a macro called @var{macname}. If your macro
6000 definition requires arguments, specify their names after the macro name,
6001 separated by commas or spaces. You can qualify the macro argument to
6002 indicate whether all invocations must specify a non-blank value (through
6003 @samp{:@code{req}}), or whether it takes all of the remaining arguments
6004 (through @samp{:@code{vararg}}). You can supply a default value for any
6005 macro argument by following the name with @samp{=@var{deflt}}. You
6006 cannot define two macros with the same @var{macname} unless it has been
6007 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
6008 definitions. For example, these are all valid @code{.macro} statements:
6009
6010 @table @code
6011 @item .macro comm
6012 Begin the definition of a macro called @code{comm}, which takes no
6013 arguments.
6014
6015 @item .macro plus1 p, p1
6016 @itemx .macro plus1 p p1
6017 Either statement begins the definition of a macro called @code{plus1},
6018 which takes two arguments; within the macro definition, write
6019 @samp{\p} or @samp{\p1} to evaluate the arguments.
6020
6021 @item .macro reserve_str p1=0 p2
6022 Begin the definition of a macro called @code{reserve_str}, with two
6023 arguments. The first argument has a default value, but not the second.
6024 After the definition is complete, you can call the macro either as
6025 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6026 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6027 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6028 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6029
6030 @item .macro m p1:req, p2=0, p3:vararg
6031 Begin the definition of a macro called @code{m}, with at least three
6032 arguments. The first argument must always have a value specified, but
6033 not the second, which instead has a default value. The third formal
6034 will get assigned all remaining arguments specified at invocation time.
6035
6036 When you call a macro, you can specify the argument values either by
6037 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6038 @samp{sum to=17, from=9}.
6039
6040 @end table
6041
6042 Note that since each of the @var{macargs} can be an identifier exactly
6043 as any other one permitted by the target architecture, there may be
6044 occasional problems if the target hand-crafts special meanings to certain
6045 characters when they occur in a special position. For example, if the colon
6046 (@code{:}) is generally permitted to be part of a symbol name, but the
6047 architecture specific code special-cases it when occurring as the final
6048 character of a symbol (to denote a label), then the macro parameter
6049 replacement code will have no way of knowing that and consider the whole
6050 construct (including the colon) an identifier, and check only this
6051 identifier for being the subject to parameter substitution. So for example
6052 this macro definition:
6053
6054 @example
6055 .macro label l
6056 \l:
6057 .endm
6058 @end example
6059
6060 might not work as expected. Invoking @samp{label foo} might not create a label
6061 called @samp{foo} but instead just insert the text @samp{\l:} into the
6062 assembler source, probably generating an error about an unrecognised
6063 identifier.
6064
6065 Similarly problems might occur with the period character (@samp{.})
6066 which is often allowed inside opcode names (and hence identifier names). So
6067 for example constructing a macro to build an opcode from a base name and a
6068 length specifier like this:
6069
6070 @example
6071 .macro opcode base length
6072 \base.\length
6073 .endm
6074 @end example
6075
6076 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6077 instruction but instead generate some kind of error as the assembler tries to
6078 interpret the text @samp{\base.\length}.
6079
6080 There are several possible ways around this problem:
6081
6082 @table @code
6083 @item Insert white space
6084 If it is possible to use white space characters then this is the simplest
6085 solution. eg:
6086
6087 @example
6088 .macro label l
6089 \l :
6090 .endm
6091 @end example
6092
6093 @item Use @samp{\()}
6094 The string @samp{\()} can be used to separate the end of a macro argument from
6095 the following text. eg:
6096
6097 @example
6098 .macro opcode base length
6099 \base\().\length
6100 .endm
6101 @end example
6102
6103 @item Use the alternate macro syntax mode
6104 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6105 used as a separator. eg:
6106
6107 @example
6108 .altmacro
6109 .macro label l
6110 l&:
6111 .endm
6112 @end example
6113 @end table
6114
6115 Note: this problem of correctly identifying string parameters to pseudo ops
6116 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6117 and @code{.irpc} (@pxref{Irpc}) as well.
6118
6119 @item .endm
6120 @cindex @code{endm} directive
6121 Mark the end of a macro definition.
6122
6123 @item .exitm
6124 @cindex @code{exitm} directive
6125 Exit early from the current macro definition.
6126
6127 @cindex number of macros executed
6128 @cindex macros, count executed
6129 @item \@@
6130 @command{@value{AS}} maintains a counter of how many macros it has
6131 executed in this pseudo-variable; you can copy that number to your
6132 output with @samp{\@@}, but @emph{only within a macro definition}.
6133
6134 @item LOCAL @var{name} [ , @dots{} ]
6135 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6136 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6137 @xref{Altmacro,,@code{.altmacro}}.
6138 @end ftable
6139
6140 @node MRI
6141 @section @code{.mri @var{val}}
6142
6143 @cindex @code{mri} directive
6144 @cindex MRI mode, temporarily
6145 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6146 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6147 affects code assembled until the next @code{.mri} directive, or until the end
6148 of the file. @xref{M, MRI mode, MRI mode}.
6149
6150 @node Noaltmacro
6151 @section @code{.noaltmacro}
6152 Disable alternate macro mode. @xref{Altmacro}.
6153
6154 @node Nolist
6155 @section @code{.nolist}
6156
6157 @cindex @code{nolist} directive
6158 @cindex listing control, turning off
6159 Control (in conjunction with the @code{.list} directive) whether or
6160 not assembly listings are generated. These two directives maintain an
6161 internal counter (which is zero initially). @code{.list} increments the
6162 counter, and @code{.nolist} decrements it. Assembly listings are
6163 generated whenever the counter is greater than zero.
6164
6165 @node Nops
6166 @section @code{.nops @var{size}[, @var{control}]}
6167
6168 @cindex @code{nops} directive
6169 @cindex filling memory with no-op instructions
6170 This directive emits @var{size} bytes filled with no-op instructions.
6171 @var{size} is absolute expression, which must be a positve value.
6172 @var{control} controls how no-op instructions should be generated. If
6173 the comma and @var{control} are omitted, @var{control} is assumed to be
6174 zero.
6175
6176 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6177 the size limit of a no-op instruction. The valid values of @var{control}
6178 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6179 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6180 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6181 instruction size limit is set to the maximum supported size.
6182
6183 @node Octa
6184 @section @code{.octa @var{bignums}}
6185
6186 @c FIXME: double size emitted for "octa" on some? Or warn?
6187 @cindex @code{octa} directive
6188 @cindex integer, 16-byte
6189 @cindex sixteen byte integer
6190 This directive expects zero or more bignums, separated by commas. For each
6191 bignum, it emits a 16-byte integer.
6192
6193 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6194 hence @emph{octa}-word for 16 bytes.
6195
6196 @node Offset
6197 @section @code{.offset @var{loc}}
6198
6199 @cindex @code{offset} directive
6200 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6201 be an absolute expression. This directive may be useful for defining
6202 symbols with absolute values. Do not confuse it with the @code{.org}
6203 directive.
6204
6205 @node Org
6206 @section @code{.org @var{new-lc} , @var{fill}}
6207
6208 @cindex @code{org} directive
6209 @cindex location counter, advancing
6210 @cindex advancing location counter
6211 @cindex current address, advancing
6212 Advance the location counter of the current section to
6213 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6214 expression with the same section as the current subsection. That is,
6215 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6216 wrong section, the @code{.org} directive is ignored. To be compatible
6217 with former assemblers, if the section of @var{new-lc} is absolute,
6218 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6219 is the same as the current subsection.
6220
6221 @code{.org} may only increase the location counter, or leave it
6222 unchanged; you cannot use @code{.org} to move the location counter
6223 backwards.
6224
6225 @c double negative used below "not undefined" because this is a specific
6226 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6227 @c section. doc@cygnus.com 18feb91
6228 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6229 may not be undefined. If you really detest this restriction we eagerly await
6230 a chance to share your improved assembler.
6231
6232 Beware that the origin is relative to the start of the section, not
6233 to the start of the subsection. This is compatible with other
6234 people's assemblers.
6235
6236 When the location counter (of the current subsection) is advanced, the
6237 intervening bytes are filled with @var{fill} which should be an
6238 absolute expression. If the comma and @var{fill} are omitted,
6239 @var{fill} defaults to zero.
6240
6241 @node P2align
6242 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6243
6244 @cindex padding the location counter given a power of two
6245 @cindex @code{p2align} directive
6246 Pad the location counter (in the current subsection) to a particular
6247 storage boundary. The first expression (which must be absolute) is the
6248 number of low-order zero bits the location counter must have after
6249 advancement. For example @samp{.p2align 3} advances the location
6250 counter until it is a multiple of 8. If the location counter is already a
6251 multiple of 8, no change is needed. If the expression is omitted then a
6252 default value of 0 is used, effectively disabling alignment requirements.
6253
6254 The second expression (also absolute) gives the fill value to be stored in the
6255 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6256 padding bytes are normally zero. However, on most systems, if the section is
6257 marked as containing code and the fill value is omitted, the space is filled
6258 with no-op instructions.
6259
6260 The third expression is also absolute, and is also optional. If it is present,
6261 it is the maximum number of bytes that should be skipped by this alignment
6262 directive. If doing the alignment would require skipping more bytes than the
6263 specified maximum, then the alignment is not done at all. You can omit the
6264 fill value (the second argument) entirely by simply using two commas after the
6265 required alignment; this can be useful if you want the alignment to be filled
6266 with no-op instructions when appropriate.
6267
6268 @cindex @code{p2alignw} directive
6269 @cindex @code{p2alignl} directive
6270 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6271 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6272 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6273 fill pattern as a four byte longword value. For example, @code{.p2alignw
6274 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6275 filled in with the value 0x368d (the exact placement of the bytes depends upon
6276 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6277 undefined.
6278
6279 @ifset ELF
6280 @node PopSection
6281 @section @code{.popsection}
6282
6283 @cindex @code{popsection} directive
6284 @cindex Section Stack
6285 This is one of the ELF section stack manipulation directives. The others are
6286 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6287 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6288 (@pxref{Previous}).
6289
6290 This directive replaces the current section (and subsection) with the top
6291 section (and subsection) on the section stack. This section is popped off the
6292 stack.
6293 @end ifset
6294
6295 @ifset ELF
6296 @node Previous
6297 @section @code{.previous}
6298
6299 @cindex @code{previous} directive
6300 @cindex Section Stack
6301 This is one of the ELF section stack manipulation directives. The others are
6302 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6303 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6304 (@pxref{PopSection}).
6305
6306 This directive swaps the current section (and subsection) with most recently
6307 referenced section/subsection pair prior to this one. Multiple
6308 @code{.previous} directives in a row will flip between two sections (and their
6309 subsections). For example:
6310
6311 @smallexample
6312 .section A
6313 .subsection 1
6314 .word 0x1234
6315 .subsection 2
6316 .word 0x5678
6317 .previous
6318 .word 0x9abc
6319 @end smallexample
6320
6321 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6322 section A. Whilst:
6323
6324 @smallexample
6325 .section A
6326 .subsection 1
6327 # Now in section A subsection 1
6328 .word 0x1234
6329 .section B
6330 .subsection 0
6331 # Now in section B subsection 0
6332 .word 0x5678
6333 .subsection 1
6334 # Now in section B subsection 1
6335 .word 0x9abc
6336 .previous
6337 # Now in section B subsection 0
6338 .word 0xdef0
6339 @end smallexample
6340
6341 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6342 section B and 0x9abc into subsection 1 of section B.
6343
6344 In terms of the section stack, this directive swaps the current section with
6345 the top section on the section stack.
6346 @end ifset
6347
6348 @node Print
6349 @section @code{.print @var{string}}
6350
6351 @cindex @code{print} directive
6352 @command{@value{AS}} will print @var{string} on the standard output during
6353 assembly. You must put @var{string} in double quotes.
6354
6355 @ifset ELF
6356 @node Protected
6357 @section @code{.protected @var{names}}
6358
6359 @cindex @code{protected} directive
6360 @cindex visibility
6361 This is one of the ELF visibility directives. The other two are
6362 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6363
6364 This directive overrides the named symbols default visibility (which is set by
6365 their binding: local, global or weak). The directive sets the visibility to
6366 @code{protected} which means that any references to the symbols from within the
6367 components that defines them must be resolved to the definition in that
6368 component, even if a definition in another component would normally preempt
6369 this.
6370 @end ifset
6371
6372 @node Psize
6373 @section @code{.psize @var{lines} , @var{columns}}
6374
6375 @cindex @code{psize} directive
6376 @cindex listing control: paper size
6377 @cindex paper size, for listings
6378 Use this directive to declare the number of lines---and, optionally, the
6379 number of columns---to use for each page, when generating listings.
6380
6381 If you do not use @code{.psize}, listings use a default line-count
6382 of 60. You may omit the comma and @var{columns} specification; the
6383 default width is 200 columns.
6384
6385 @command{@value{AS}} generates formfeeds whenever the specified number of
6386 lines is exceeded (or whenever you explicitly request one, using
6387 @code{.eject}).
6388
6389 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6390 those explicitly specified with @code{.eject}.
6391
6392 @node Purgem
6393 @section @code{.purgem @var{name}}
6394
6395 @cindex @code{purgem} directive
6396 Undefine the macro @var{name}, so that later uses of the string will not be
6397 expanded. @xref{Macro}.
6398
6399 @ifset ELF
6400 @node PushSection
6401 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6402
6403 @cindex @code{pushsection} directive
6404 @cindex Section Stack
6405 This is one of the ELF section stack manipulation directives. The others are
6406 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6407 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6408 (@pxref{Previous}).
6409
6410 This directive pushes the current section (and subsection) onto the
6411 top of the section stack, and then replaces the current section and
6412 subsection with @code{name} and @code{subsection}. The optional
6413 @code{flags}, @code{type} and @code{arguments} are treated the same
6414 as in the @code{.section} (@pxref{Section}) directive.
6415 @end ifset
6416
6417 @node Quad
6418 @section @code{.quad @var{bignums}}
6419
6420 @cindex @code{quad} directive
6421 @code{.quad} expects zero or more bignums, separated by commas. For
6422 each bignum, it emits
6423 @ifclear bignum-16
6424 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6425 warning message; and just takes the lowest order 8 bytes of the bignum.
6426 @cindex eight-byte integer
6427 @cindex integer, 8-byte
6428
6429 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6430 hence @emph{quad}-word for 8 bytes.
6431 @end ifclear
6432 @ifset bignum-16
6433 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6434 warning message; and just takes the lowest order 16 bytes of the bignum.
6435 @cindex sixteen-byte integer
6436 @cindex integer, 16-byte
6437 @end ifset
6438
6439 @node Reloc
6440 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6441
6442 @cindex @code{reloc} directive
6443 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6444 @var{expression}. If @var{offset} is a number, the relocation is generated in
6445 the current section. If @var{offset} is an expression that resolves to a
6446 symbol plus offset, the relocation is generated in the given symbol's section.
6447 @var{expression}, if present, must resolve to a symbol plus addend or to an
6448 absolute value, but note that not all targets support an addend. e.g. ELF REL
6449 targets such as i386 store an addend in the section contents rather than in the
6450 relocation. This low level interface does not support addends stored in the
6451 section.
6452
6453 @node Rept
6454 @section @code{.rept @var{count}}
6455
6456 @cindex @code{rept} directive
6457 Repeat the sequence of lines between the @code{.rept} directive and the next
6458 @code{.endr} directive @var{count} times.
6459
6460 For example, assembling
6461
6462 @example
6463 .rept 3
6464 .long 0
6465 .endr
6466 @end example
6467
6468 is equivalent to assembling
6469
6470 @example
6471 .long 0
6472 .long 0
6473 .long 0
6474 @end example
6475
6476 A count of zero is allowed, but nothing is generated. Negative counts are not
6477 allowed and if encountered will be treated as if they were zero.
6478
6479 @node Sbttl
6480 @section @code{.sbttl "@var{subheading}"}
6481
6482 @cindex @code{sbttl} directive
6483 @cindex subtitles for listings
6484 @cindex listing control: subtitle
6485 Use @var{subheading} as the title (third line, immediately after the
6486 title line) when generating assembly listings.
6487
6488 This directive affects subsequent pages, as well as the current page if
6489 it appears within ten lines of the top of a page.
6490
6491 @ifset COFF
6492 @node Scl
6493 @section @code{.scl @var{class}}
6494
6495 @cindex @code{scl} directive
6496 @cindex symbol storage class (COFF)
6497 @cindex COFF symbol storage class
6498 Set the storage-class value for a symbol. This directive may only be
6499 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6500 whether a symbol is static or external, or it may record further
6501 symbolic debugging information.
6502 @end ifset
6503
6504 @ifset COFF-ELF
6505 @node Section
6506 @section @code{.section @var{name}}
6507
6508 @cindex named section
6509 Use the @code{.section} directive to assemble the following code into a section
6510 named @var{name}.
6511
6512 This directive is only supported for targets that actually support arbitrarily
6513 named sections; on @code{a.out} targets, for example, it is not accepted, even
6514 with a standard @code{a.out} section name.
6515
6516 @ifset COFF
6517 @ifset ELF
6518 @c only print the extra heading if both COFF and ELF are set
6519 @subheading COFF Version
6520 @end ifset
6521
6522 @cindex @code{section} directive (COFF version)
6523 For COFF targets, the @code{.section} directive is used in one of the following
6524 ways:
6525
6526 @smallexample
6527 .section @var{name}[, "@var{flags}"]
6528 .section @var{name}[, @var{subsection}]
6529 @end smallexample
6530
6531 If the optional argument is quoted, it is taken as flags to use for the
6532 section. Each flag is a single character. The following flags are recognized:
6533
6534 @table @code
6535 @item b
6536 bss section (uninitialized data)
6537 @item n
6538 section is not loaded
6539 @item w
6540 writable section
6541 @item d
6542 data section
6543 @item e
6544 exclude section from linking
6545 @item r
6546 read-only section
6547 @item x
6548 executable section
6549 @item s
6550 shared section (meaningful for PE targets)
6551 @item a
6552 ignored. (For compatibility with the ELF version)
6553 @item y
6554 section is not readable (meaningful for PE targets)
6555 @item 0-9
6556 single-digit power-of-two section alignment (GNU extension)
6557 @end table
6558
6559 If no flags are specified, the default flags depend upon the section name. If
6560 the section name is not recognized, the default will be for the section to be
6561 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6562 from the section, rather than adding them, so if they are used on their own it
6563 will be as if no flags had been specified at all.
6564
6565 If the optional argument to the @code{.section} directive is not quoted, it is
6566 taken as a subsection number (@pxref{Sub-Sections}).
6567 @end ifset
6568
6569 @ifset ELF
6570 @ifset COFF
6571 @c only print the extra heading if both COFF and ELF are set
6572 @subheading ELF Version
6573 @end ifset
6574
6575 @cindex Section Stack
6576 This is one of the ELF section stack manipulation directives. The others are
6577 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6578 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6579 @code{.previous} (@pxref{Previous}).
6580
6581 @cindex @code{section} directive (ELF version)
6582 For ELF targets, the @code{.section} directive is used like this:
6583
6584 @smallexample
6585 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6586 @end smallexample
6587
6588 @anchor{Section Name Substitutions}
6589 @kindex --sectname-subst
6590 @cindex section name substitution
6591 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6592 argument may contain a substitution sequence. Only @code{%S} is supported
6593 at the moment, and substitutes the current section name. For example:
6594
6595 @smallexample
6596 .macro exception_code
6597 .section %S.exception
6598 [exception code here]
6599 .previous
6600 .endm
6601
6602 .text
6603 [code]
6604 exception_code
6605 [...]
6606
6607 .section .init
6608 [init code]
6609 exception_code
6610 [...]
6611 @end smallexample
6612
6613 The two @code{exception_code} invocations above would create the
6614 @code{.text.exception} and @code{.init.exception} sections respectively.
6615 This is useful e.g. to discriminate between ancillary sections that are
6616 tied to setup code to be discarded after use from ancillary sections that
6617 need to stay resident without having to define multiple @code{exception_code}
6618 macros just for that purpose.
6619
6620 The optional @var{flags} argument is a quoted string which may contain any
6621 combination of the following characters:
6622
6623 @table @code
6624 @item a
6625 section is allocatable
6626 @item d
6627 section is a GNU_MBIND section
6628 @item e
6629 section is excluded from executable and shared library.
6630 @item o
6631 section references a symbol defined in another section (the linked-to
6632 section) in the same file.
6633 @item w
6634 section is writable
6635 @item x
6636 section is executable
6637 @item M
6638 section is mergeable
6639 @item S
6640 section contains zero terminated strings
6641 @item G
6642 section is a member of a section group
6643 @item T
6644 section is used for thread-local-storage
6645 @item ?
6646 section is a member of the previously-current section's group, if any
6647 @item @code{<number>}
6648 a numeric value indicating the bits to be set in the ELF section header's flags
6649 field. Note - if one or more of the alphabetic characters described above is
6650 also included in the flags field, their bit values will be ORed into the
6651 resulting value.
6652 @item @code{<target specific>}
6653 some targets extend this list with their own flag characters
6654 @end table
6655
6656 Note - once a section's flags have been set they cannot be changed. There are
6657 a few exceptions to this rule however. Processor and application specific
6658 flags can be added to an already defined section. The @code{.interp},
6659 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6660 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6661 section may have the executable (@code{x}) flag added.
6662
6663 The optional @var{type} argument may contain one of the following constants:
6664
6665 @table @code
6666 @item @@progbits
6667 section contains data
6668 @item @@nobits
6669 section does not contain data (i.e., section only occupies space)
6670 @item @@note
6671 section contains data which is used by things other than the program
6672 @item @@init_array
6673 section contains an array of pointers to init functions
6674 @item @@fini_array
6675 section contains an array of pointers to finish functions
6676 @item @@preinit_array
6677 section contains an array of pointers to pre-init functions
6678 @item @@@code{<number>}
6679 a numeric value to be set as the ELF section header's type field.
6680 @item @@@code{<target specific>}
6681 some targets extend this list with their own types
6682 @end table
6683
6684 Many targets only support the first three section types. The type may be
6685 enclosed in double quotes if necessary.
6686
6687 Note on targets where the @code{@@} character is the start of a comment (eg
6688 ARM) then another character is used instead. For example the ARM port uses the
6689 @code{%} character.
6690
6691 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6692 special and have fixed types. Any attempt to declare them with a different
6693 type will generate an error from the assembler.
6694
6695 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6696 be specified as well as an extra argument---@var{entsize}---like this:
6697
6698 @smallexample
6699 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6700 @end smallexample
6701
6702 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6703 constants, each @var{entsize} octets long. Sections with both @code{M} and
6704 @code{S} must contain zero terminated strings where each character is
6705 @var{entsize} bytes long. The linker may remove duplicates within sections with
6706 the same name, same entity size and same flags. @var{entsize} must be an
6707 absolute expression. For sections with both @code{M} and @code{S}, a string
6708 which is a suffix of a larger string is considered a duplicate. Thus
6709 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6710 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6711
6712 If @var{flags} contains the @code{o} flag, then the @var{type} argument
6713 must be present along with an additional field like this:
6714
6715 @smallexample
6716 .section @var{name},"@var{flags}"o,@@@var{type},@var{SymbolName}
6717 @end smallexample
6718
6719 The @var{SymbolName} field specifies the symbol name which the section
6720 references.
6721
6722 Note: If both the @var{M} and @var{o} flags are present, then the fields
6723 for the Merge flag should come first, like this:
6724
6725 @smallexample
6726 .section @var{name},"@var{flags}"Mo,@@@var{type},@var{entsize},@var{SymbolName}
6727 @end smallexample
6728
6729 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6730 be present along with an additional field like this:
6731
6732 @smallexample
6733 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6734 @end smallexample
6735
6736 The @var{GroupName} field specifies the name of the section group to which this
6737 particular section belongs. The optional linkage field can contain:
6738
6739 @table @code
6740 @item comdat
6741 indicates that only one copy of this section should be retained
6742 @item .gnu.linkonce
6743 an alias for comdat
6744 @end table
6745
6746 Note: if both the @var{M} and @var{G} flags are present then the fields for
6747 the Merge flag should come first, like this:
6748
6749 @smallexample
6750 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6751 @end smallexample
6752
6753 If both @code{o} flag and @code{G} flag are present, then the
6754 @var{SymbolName} field for @code{o} comes first, like this:
6755
6756 @smallexample
6757 .section @var{name},"@var{flags}"oG,@@@var{type},@var{SymbolName},@var{GroupName}[,@var{linkage}]
6758 @end smallexample
6759
6760 If @var{flags} contains the @code{?} symbol then it may not also contain the
6761 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6762 present. Instead, @code{?} says to consider the section that's current before
6763 this directive. If that section used @code{G}, then the new section will use
6764 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6765 If not, then the @code{?} symbol has no effect.
6766
6767 The optional @var{unique,@code{<number>}} argument must come last. It
6768 assigns @var{@code{<number>}} as a unique section ID to distinguish
6769 different sections with the same section name like these:
6770
6771 @smallexample
6772 .section @var{name},"@var{flags}",@@@var{type},@var{unique,@code{<number>}}
6773 .section @var{name},"@var{flags}"G,@@@var{type},@var{GroupName},[@var{linkage}],@var{unique,@code{<number>}}
6774 .section @var{name},"@var{flags}"MG,@@@var{type},@var{entsize},@var{GroupName}[,@var{linkage}],@var{unique,@code{<number>}}
6775 @end smallexample
6776
6777 The valid values of @var{@code{<number>}} are between 0 and 4294967295.
6778
6779 If no flags are specified, the default flags depend upon the section name. If
6780 the section name is not recognized, the default will be for the section to have
6781 none of the above flags: it will not be allocated in memory, nor writable, nor
6782 executable. The section will contain data.
6783
6784 For ELF targets, the assembler supports another type of @code{.section}
6785 directive for compatibility with the Solaris assembler:
6786
6787 @smallexample
6788 .section "@var{name}"[, @var{flags}...]
6789 @end smallexample
6790
6791 Note that the section name is quoted. There may be a sequence of comma
6792 separated flags:
6793
6794 @table @code
6795 @item #alloc
6796 section is allocatable
6797 @item #write
6798 section is writable
6799 @item #execinstr
6800 section is executable
6801 @item #exclude
6802 section is excluded from executable and shared library.
6803 @item #tls
6804 section is used for thread local storage
6805 @end table
6806
6807 This directive replaces the current section and subsection. See the
6808 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6809 some examples of how this directive and the other section stack directives
6810 work.
6811 @end ifset
6812 @end ifset
6813
6814 @node Set
6815 @section @code{.set @var{symbol}, @var{expression}}
6816
6817 @cindex @code{set} directive
6818 @cindex symbol value, setting
6819 Set the value of @var{symbol} to @var{expression}. This
6820 changes @var{symbol}'s value and type to conform to
6821 @var{expression}. If @var{symbol} was flagged as external, it remains
6822 flagged (@pxref{Symbol Attributes}).
6823
6824 You may @code{.set} a symbol many times in the same assembly provided that the
6825 values given to the symbol are constants. Values that are based on expressions
6826 involving other symbols are allowed, but some targets may restrict this to only
6827 being done once per assembly. This is because those targets do not set the
6828 addresses of symbols at assembly time, but rather delay the assignment until a
6829 final link is performed. This allows the linker a chance to change the code in
6830 the files, changing the location of, and the relative distance between, various
6831 different symbols.
6832
6833 If you @code{.set} a global symbol, the value stored in the object
6834 file is the last value stored into it.
6835
6836 @ifset Z80
6837 On Z80 @code{set} is a real instruction, use @code{.set} or
6838 @samp{@var{symbol} defl @var{expression}} instead.
6839 @end ifset
6840
6841 @node Short
6842 @section @code{.short @var{expressions}}
6843
6844 @cindex @code{short} directive
6845 @ifset GENERIC
6846 @code{.short} is normally the same as @samp{.word}.
6847 @xref{Word,,@code{.word}}.
6848
6849 In some configurations, however, @code{.short} and @code{.word} generate
6850 numbers of different lengths. @xref{Machine Dependencies}.
6851 @end ifset
6852 @ifclear GENERIC
6853 @ifset W16
6854 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6855 @end ifset
6856 @ifset W32
6857 This expects zero or more @var{expressions}, and emits
6858 a 16 bit number for each.
6859 @end ifset
6860 @end ifclear
6861
6862 @node Single
6863 @section @code{.single @var{flonums}}
6864
6865 @cindex @code{single} directive
6866 @cindex floating point numbers (single)
6867 This directive assembles zero or more flonums, separated by commas. It
6868 has the same effect as @code{.float}.
6869 @ifset GENERIC
6870 The exact kind of floating point numbers emitted depends on how
6871 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6872 @end ifset
6873 @ifclear GENERIC
6874 @ifset IEEEFLOAT
6875 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6876 numbers in @sc{ieee} format.
6877 @end ifset
6878 @end ifclear
6879
6880 @ifset COFF-ELF
6881 @node Size
6882 @section @code{.size}
6883
6884 This directive is used to set the size associated with a symbol.
6885
6886 @ifset COFF
6887 @ifset ELF
6888 @c only print the extra heading if both COFF and ELF are set
6889 @subheading COFF Version
6890 @end ifset
6891
6892 @cindex @code{size} directive (COFF version)
6893 For COFF targets, the @code{.size} directive is only permitted inside
6894 @code{.def}/@code{.endef} pairs. It is used like this:
6895
6896 @smallexample
6897 .size @var{expression}
6898 @end smallexample
6899
6900 @end ifset
6901
6902 @ifset ELF
6903 @ifset COFF
6904 @c only print the extra heading if both COFF and ELF are set
6905 @subheading ELF Version
6906 @end ifset
6907
6908 @cindex @code{size} directive (ELF version)
6909 For ELF targets, the @code{.size} directive is used like this:
6910
6911 @smallexample
6912 .size @var{name} , @var{expression}
6913 @end smallexample
6914
6915 This directive sets the size associated with a symbol @var{name}.
6916 The size in bytes is computed from @var{expression} which can make use of label
6917 arithmetic. This directive is typically used to set the size of function
6918 symbols.
6919 @end ifset
6920 @end ifset
6921
6922 @ifclear no-space-dir
6923 @node Skip
6924 @section @code{.skip @var{size} [,@var{fill}]}
6925
6926 @cindex @code{skip} directive
6927 @cindex filling memory
6928 This directive emits @var{size} bytes, each of value @var{fill}. Both
6929 @var{size} and @var{fill} are absolute expressions. If the comma and
6930 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6931 @samp{.space}.
6932 @end ifclear
6933
6934 @node Sleb128
6935 @section @code{.sleb128 @var{expressions}}
6936
6937 @cindex @code{sleb128} directive
6938 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6939 compact, variable length representation of numbers used by the DWARF
6940 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6941
6942 @ifclear no-space-dir
6943 @node Space
6944 @section @code{.space @var{size} [,@var{fill}]}
6945
6946 @cindex @code{space} directive
6947 @cindex filling memory
6948 This directive emits @var{size} bytes, each of value @var{fill}. Both
6949 @var{size} and @var{fill} are absolute expressions. If the comma
6950 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6951 as @samp{.skip}.
6952
6953 @ifset HPPA
6954 @quotation
6955 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6956 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6957 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6958 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6959 for a summary.
6960 @end quotation
6961 @end ifset
6962 @end ifclear
6963
6964 @ifset have-stabs
6965 @node Stab
6966 @section @code{.stabd, .stabn, .stabs}
6967
6968 @cindex symbolic debuggers, information for
6969 @cindex @code{stab@var{x}} directives
6970 There are three directives that begin @samp{.stab}.
6971 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6972 The symbols are not entered in the @command{@value{AS}} hash table: they
6973 cannot be referenced elsewhere in the source file.
6974 Up to five fields are required:
6975
6976 @table @var
6977 @item string
6978 This is the symbol's name. It may contain any character except
6979 @samp{\000}, so is more general than ordinary symbol names. Some
6980 debuggers used to code arbitrarily complex structures into symbol names
6981 using this field.
6982
6983 @item type
6984 An absolute expression. The symbol's type is set to the low 8 bits of
6985 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6986 and debuggers choke on silly bit patterns.
6987
6988 @item other
6989 An absolute expression. The symbol's ``other'' attribute is set to the
6990 low 8 bits of this expression.
6991
6992 @item desc
6993 An absolute expression. The symbol's descriptor is set to the low 16
6994 bits of this expression.
6995
6996 @item value
6997 An absolute expression which becomes the symbol's value.
6998 @end table
6999
7000 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
7001 or @code{.stabs} statement, the symbol has probably already been created;
7002 you get a half-formed symbol in your object file. This is
7003 compatible with earlier assemblers!
7004
7005 @table @code
7006 @cindex @code{stabd} directive
7007 @item .stabd @var{type} , @var{other} , @var{desc}
7008
7009 The ``name'' of the symbol generated is not even an empty string.
7010 It is a null pointer, for compatibility. Older assemblers used a
7011 null pointer so they didn't waste space in object files with empty
7012 strings.
7013
7014 The symbol's value is set to the location counter,
7015 relocatably. When your program is linked, the value of this symbol
7016 is the address of the location counter when the @code{.stabd} was
7017 assembled.
7018
7019 @cindex @code{stabn} directive
7020 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
7021 The name of the symbol is set to the empty string @code{""}.
7022
7023 @cindex @code{stabs} directive
7024 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
7025 All five fields are specified.
7026 @end table
7027 @end ifset
7028 @c end have-stabs
7029
7030 @node String
7031 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7032 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7033
7034 @cindex string, copying to object file
7035 @cindex string8, copying to object file
7036 @cindex string16, copying to object file
7037 @cindex string32, copying to object file
7038 @cindex string64, copying to object file
7039 @cindex @code{string} directive
7040 @cindex @code{string8} directive
7041 @cindex @code{string16} directive
7042 @cindex @code{string32} directive
7043 @cindex @code{string64} directive
7044
7045 Copy the characters in @var{str} to the object file. You may specify more than
7046 one string to copy, separated by commas. Unless otherwise specified for a
7047 particular machine, the assembler marks the end of each string with a 0 byte.
7048 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7049
7050 The variants @code{string16}, @code{string32} and @code{string64} differ from
7051 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7052 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7053 are stored in target endianness byte order.
7054
7055 Example:
7056 @smallexample
7057 .string32 "BYE"
7058 expands to:
7059 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7060 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7061 @end smallexample
7062
7063
7064 @node Struct
7065 @section @code{.struct @var{expression}}
7066
7067 @cindex @code{struct} directive
7068 Switch to the absolute section, and set the section offset to @var{expression},
7069 which must be an absolute expression. You might use this as follows:
7070 @smallexample
7071 .struct 0
7072 field1:
7073 .struct field1 + 4
7074 field2:
7075 .struct field2 + 4
7076 field3:
7077 @end smallexample
7078 This would define the symbol @code{field1} to have the value 0, the symbol
7079 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7080 value 8. Assembly would be left in the absolute section, and you would need to
7081 use a @code{.section} directive of some sort to change to some other section
7082 before further assembly.
7083
7084 @ifset ELF
7085 @node SubSection
7086 @section @code{.subsection @var{name}}
7087
7088 @cindex @code{subsection} directive
7089 @cindex Section Stack
7090 This is one of the ELF section stack manipulation directives. The others are
7091 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7092 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7093 (@pxref{Previous}).
7094
7095 This directive replaces the current subsection with @code{name}. The current
7096 section is not changed. The replaced subsection is put onto the section stack
7097 in place of the then current top of stack subsection.
7098 @end ifset
7099
7100 @ifset ELF
7101 @node Symver
7102 @section @code{.symver}
7103 @cindex @code{symver} directive
7104 @cindex symbol versioning
7105 @cindex versions of symbols
7106 Use the @code{.symver} directive to bind symbols to specific version nodes
7107 within a source file. This is only supported on ELF platforms, and is
7108 typically used when assembling files to be linked into a shared library.
7109 There are cases where it may make sense to use this in objects to be bound
7110 into an application itself so as to override a versioned symbol from a
7111 shared library.
7112
7113 For ELF targets, the @code{.symver} directive can be used like this:
7114 @smallexample
7115 .symver @var{name}, @var{name2@@nodename}[ ,@var{visibility}]
7116 @end smallexample
7117 If the original symbol @var{name} is defined within the file
7118 being assembled, the @code{.symver} directive effectively creates a symbol
7119 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7120 just don't try and create a regular alias is that the @var{@@} character isn't
7121 permitted in symbol names. The @var{name2} part of the name is the actual name
7122 of the symbol by which it will be externally referenced. The name @var{name}
7123 itself is merely a name of convenience that is used so that it is possible to
7124 have definitions for multiple versions of a function within a single source
7125 file, and so that the compiler can unambiguously know which version of a
7126 function is being mentioned. The @var{nodename} portion of the alias should be
7127 the name of a node specified in the version script supplied to the linker when
7128 building a shared library. If you are attempting to override a versioned
7129 symbol from a shared library, then @var{nodename} should correspond to the
7130 nodename of the symbol you are trying to override. The optional argument
7131 @var{visibility} updates the visibility of the original symbol. The valid
7132 visibilities are @code{local}, @code {hidden}, and @code {remove}. The
7133 @code{local} visibility makes the original symbol a local symbol
7134 (@pxref{Local}). The @code{hidden} visibility sets the visibility of the
7135 original symbol to @code{hidden} (@pxref{Hidden}). The @code{remove}
7136 visibility removes the original symbol from the symbol table if it isn't
7137 used in relocation. If visibility isn't specified, the original symbol
7138 is unchanged.
7139
7140 If the symbol @var{name} is not defined within the file being assembled, all
7141 references to @var{name} will be changed to @var{name2@@nodename}. If no
7142 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7143 symbol table.
7144
7145 Another usage of the @code{.symver} directive is:
7146 @smallexample
7147 .symver @var{name}, @var{name2@@@@nodename}
7148 @end smallexample
7149 In this case, the symbol @var{name} must exist and be defined within
7150 the file being assembled. It is similar to @var{name2@@nodename}. The
7151 difference is @var{name2@@@@nodename} will also be used to resolve
7152 references to @var{name2} by the linker.
7153
7154 The third usage of the @code{.symver} directive is:
7155 @smallexample
7156 .symver @var{name}, @var{name2@@@@@@nodename}
7157 @end smallexample
7158 When @var{name} is not defined within the
7159 file being assembled, it is treated as @var{name2@@nodename}. When
7160 @var{name} is defined within the file being assembled, the symbol
7161 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7162 @end ifset
7163
7164 @ifset COFF
7165 @node Tag
7166 @section @code{.tag @var{structname}}
7167
7168 @cindex COFF structure debugging
7169 @cindex structure debugging, COFF
7170 @cindex @code{tag} directive
7171 This directive is generated by compilers to include auxiliary debugging
7172 information in the symbol table. It is only permitted inside
7173 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7174 definitions in the symbol table with instances of those structures.
7175 @end ifset
7176
7177 @node Text
7178 @section @code{.text @var{subsection}}
7179
7180 @cindex @code{text} directive
7181 Tells @command{@value{AS}} to assemble the following statements onto the end of
7182 the text subsection numbered @var{subsection}, which is an absolute
7183 expression. If @var{subsection} is omitted, subsection number zero
7184 is used.
7185
7186 @node Title
7187 @section @code{.title "@var{heading}"}
7188
7189 @cindex @code{title} directive
7190 @cindex listing control: title line
7191 Use @var{heading} as the title (second line, immediately after the
7192 source file name and pagenumber) when generating assembly listings.
7193
7194 This directive affects subsequent pages, as well as the current page if
7195 it appears within ten lines of the top of a page.
7196
7197 @ifset COFF-ELF
7198 @node Type
7199 @section @code{.type}
7200
7201 This directive is used to set the type of a symbol.
7202
7203 @ifset COFF
7204 @ifset ELF
7205 @c only print the extra heading if both COFF and ELF are set
7206 @subheading COFF Version
7207 @end ifset
7208
7209 @cindex COFF symbol type
7210 @cindex symbol type, COFF
7211 @cindex @code{type} directive (COFF version)
7212 For COFF targets, this directive is permitted only within
7213 @code{.def}/@code{.endef} pairs. It is used like this:
7214
7215 @smallexample
7216 .type @var{int}
7217 @end smallexample
7218
7219 This records the integer @var{int} as the type attribute of a symbol table
7220 entry.
7221
7222 @end ifset
7223
7224 @ifset ELF
7225 @ifset COFF
7226 @c only print the extra heading if both COFF and ELF are set
7227 @subheading ELF Version
7228 @end ifset
7229
7230 @cindex ELF symbol type
7231 @cindex symbol type, ELF
7232 @cindex @code{type} directive (ELF version)
7233 For ELF targets, the @code{.type} directive is used like this:
7234
7235 @smallexample
7236 .type @var{name} , @var{type description}
7237 @end smallexample
7238
7239 This sets the type of symbol @var{name} to be either a
7240 function symbol or an object symbol. There are five different syntaxes
7241 supported for the @var{type description} field, in order to provide
7242 compatibility with various other assemblers.
7243
7244 Because some of the characters used in these syntaxes (such as @samp{@@} and
7245 @samp{#}) are comment characters for some architectures, some of the syntaxes
7246 below do not work on all architectures. The first variant will be accepted by
7247 the GNU assembler on all architectures so that variant should be used for
7248 maximum portability, if you do not need to assemble your code with other
7249 assemblers.
7250
7251 The syntaxes supported are:
7252
7253 @smallexample
7254 .type <name> STT_<TYPE_IN_UPPER_CASE>
7255 .type <name>,#<type>
7256 .type <name>,@@<type>
7257 .type <name>,%<type>
7258 .type <name>,"<type>"
7259 @end smallexample
7260
7261 The types supported are:
7262
7263 @table @gcctabopt
7264 @item STT_FUNC
7265 @itemx function
7266 Mark the symbol as being a function name.
7267
7268 @item STT_GNU_IFUNC
7269 @itemx gnu_indirect_function
7270 Mark the symbol as an indirect function when evaluated during reloc
7271 processing. (This is only supported on assemblers targeting GNU systems).
7272
7273 @item STT_OBJECT
7274 @itemx object
7275 Mark the symbol as being a data object.
7276
7277 @item STT_TLS
7278 @itemx tls_object
7279 Mark the symbol as being a thread-local data object.
7280
7281 @item STT_COMMON
7282 @itemx common
7283 Mark the symbol as being a common data object.
7284
7285 @item STT_NOTYPE
7286 @itemx notype
7287 Does not mark the symbol in any way. It is supported just for completeness.
7288
7289 @item gnu_unique_object
7290 Marks the symbol as being a globally unique data object. The dynamic linker
7291 will make sure that in the entire process there is just one symbol with this
7292 name and type in use. (This is only supported on assemblers targeting GNU
7293 systems).
7294
7295 @end table
7296
7297 Changing between incompatible types other than from/to STT_NOTYPE will
7298 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7299 this.
7300
7301 Note: Some targets support extra types in addition to those listed above.
7302
7303 @end ifset
7304 @end ifset
7305
7306 @node Uleb128
7307 @section @code{.uleb128 @var{expressions}}
7308
7309 @cindex @code{uleb128} directive
7310 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7311 compact, variable length representation of numbers used by the DWARF
7312 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7313
7314 @ifset COFF
7315 @node Val
7316 @section @code{.val @var{addr}}
7317
7318 @cindex @code{val} directive
7319 @cindex COFF value attribute
7320 @cindex value attribute, COFF
7321 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7322 records the address @var{addr} as the value attribute of a symbol table
7323 entry.
7324 @end ifset
7325
7326 @ifset ELF
7327 @node Version
7328 @section @code{.version "@var{string}"}
7329
7330 @cindex @code{version} directive
7331 This directive creates a @code{.note} section and places into it an ELF
7332 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7333 @end ifset
7334
7335 @ifset ELF
7336 @node VTableEntry
7337 @section @code{.vtable_entry @var{table}, @var{offset}}
7338
7339 @cindex @code{vtable_entry} directive
7340 This directive finds or creates a symbol @code{table} and creates a
7341 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7342
7343 @node VTableInherit
7344 @section @code{.vtable_inherit @var{child}, @var{parent}}
7345
7346 @cindex @code{vtable_inherit} directive
7347 This directive finds the symbol @code{child} and finds or creates the symbol
7348 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7349 parent whose addend is the value of the child symbol. As a special case the
7350 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7351 @end ifset
7352
7353 @node Warning
7354 @section @code{.warning "@var{string}"}
7355 @cindex warning directive
7356 Similar to the directive @code{.error}
7357 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7358
7359 @node Weak
7360 @section @code{.weak @var{names}}
7361
7362 @cindex @code{weak} directive
7363 This directive sets the weak attribute on the comma separated list of symbol
7364 @code{names}. If the symbols do not already exist, they will be created.
7365
7366 On COFF targets other than PE, weak symbols are a GNU extension. This
7367 directive sets the weak attribute on the comma separated list of symbol
7368 @code{names}. If the symbols do not already exist, they will be created.
7369
7370 On the PE target, weak symbols are supported natively as weak aliases.
7371 When a weak symbol is created that is not an alias, GAS creates an
7372 alternate symbol to hold the default value.
7373
7374 @node Weakref
7375 @section @code{.weakref @var{alias}, @var{target}}
7376
7377 @cindex @code{weakref} directive
7378 This directive creates an alias to the target symbol that enables the symbol to
7379 be referenced with weak-symbol semantics, but without actually making it weak.
7380 If direct references or definitions of the symbol are present, then the symbol
7381 will not be weak, but if all references to it are through weak references, the
7382 symbol will be marked as weak in the symbol table.
7383
7384 The effect is equivalent to moving all references to the alias to a separate
7385 assembly source file, renaming the alias to the symbol in it, declaring the
7386 symbol as weak there, and running a reloadable link to merge the object files
7387 resulting from the assembly of the new source file and the old source file that
7388 had the references to the alias removed.
7389
7390 The alias itself never makes to the symbol table, and is entirely handled
7391 within the assembler.
7392
7393 @node Word
7394 @section @code{.word @var{expressions}}
7395
7396 @cindex @code{word} directive
7397 This directive expects zero or more @var{expressions}, of any section,
7398 separated by commas.
7399 @ifclear GENERIC
7400 @ifset W32
7401 For each expression, @command{@value{AS}} emits a 32-bit number.
7402 @end ifset
7403 @ifset W16
7404 For each expression, @command{@value{AS}} emits a 16-bit number.
7405 @end ifset
7406 @end ifclear
7407 @ifset GENERIC
7408
7409 The size of the number emitted, and its byte order,
7410 depend on what target computer the assembly is for.
7411 @end ifset
7412
7413 @c on sparc the "special treatment to support compilers" doesn't
7414 @c happen---32-bit addressability, period; no long/short jumps.
7415 @ifset DIFF-TBL-KLUGE
7416 @cindex difference tables altered
7417 @cindex altered difference tables
7418 @quotation
7419 @emph{Warning: Special Treatment to support Compilers}
7420 @end quotation
7421
7422 @ifset GENERIC
7423 Machines with a 32-bit address space, but that do less than 32-bit
7424 addressing, require the following special treatment. If the machine of
7425 interest to you does 32-bit addressing (or doesn't require it;
7426 @pxref{Machine Dependencies}), you can ignore this issue.
7427
7428 @end ifset
7429 In order to assemble compiler output into something that works,
7430 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7431 Directives of the form @samp{.word sym1-sym2} are often emitted by
7432 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7433 directive of the form @samp{.word sym1-sym2}, and the difference between
7434 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7435 creates a @dfn{secondary jump table}, immediately before the next label.
7436 This secondary jump table is preceded by a short-jump to the
7437 first byte after the secondary table. This short-jump prevents the flow
7438 of control from accidentally falling into the new table. Inside the
7439 table is a long-jump to @code{sym2}. The original @samp{.word}
7440 contains @code{sym1} minus the address of the long-jump to
7441 @code{sym2}.
7442
7443 If there were several occurrences of @samp{.word sym1-sym2} before the
7444 secondary jump table, all of them are adjusted. If there was a
7445 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7446 long-jump to @code{sym4} is included in the secondary jump table,
7447 and the @code{.word} directives are adjusted to contain @code{sym3}
7448 minus the address of the long-jump to @code{sym4}; and so on, for as many
7449 entries in the original jump table as necessary.
7450
7451 @ifset INTERNALS
7452 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7453 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7454 assembly language programmers.
7455 @end ifset
7456 @end ifset
7457 @c end DIFF-TBL-KLUGE
7458
7459 @ifclear no-space-dir
7460 @node Zero
7461 @section @code{.zero @var{size}}
7462
7463 @cindex @code{zero} directive
7464 @cindex filling memory with zero bytes
7465 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7466 expression. This directive is actually an alias for the @samp{.skip} directive
7467 so it can take an optional second argument of the value to store in the bytes
7468 instead of zero. Using @samp{.zero} in this way would be confusing however.
7469 @end ifclear
7470
7471 @ifset ELF
7472 @node 2byte
7473 @section @code{.2byte @var{expression} [, @var{expression}]*}
7474 @cindex @code{2byte} directive
7475 @cindex two-byte integer
7476 @cindex integer, 2-byte
7477
7478 This directive expects zero or more expressions, separated by commas. If there
7479 are no expressions then the directive does nothing. Otherwise each expression
7480 is evaluated in turn and placed in the next two bytes of the current output
7481 section, using the endian model of the target. If an expression will not fit
7482 in two bytes, a warning message is displayed and the least significant two
7483 bytes of the expression's value are used. If an expression cannot be evaluated
7484 at assembly time then relocations will be generated in order to compute the
7485 value at link time.
7486
7487 This directive does not apply any alignment before or after inserting the
7488 values. As a result of this, if relocations are generated, they may be
7489 different from those used for inserting values with a guaranteed alignment.
7490
7491 This directive is only available for ELF targets,
7492
7493 @node 4byte
7494 @section @code{.4byte @var{expression} [, @var{expression}]*}
7495 @cindex @code{4byte} directive
7496 @cindex four-byte integer
7497 @cindex integer, 4-byte
7498
7499 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7500 long values into the output.
7501
7502 @node 8byte
7503 @section @code{.8byte @var{expression} [, @var{expression}]*}
7504 @cindex @code{8byte} directive
7505 @cindex eight-byte integer
7506 @cindex integer, 8-byte
7507
7508 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7509 byte long bignum values into the output.
7510
7511 @end ifset
7512
7513 @node Deprecated
7514 @section Deprecated Directives
7515
7516 @cindex deprecated directives
7517 @cindex obsolescent directives
7518 One day these directives won't work.
7519 They are included for compatibility with older assemblers.
7520 @table @t
7521 @item .abort
7522 @item .line
7523 @end table
7524
7525 @ifset ELF
7526 @node Object Attributes
7527 @chapter Object Attributes
7528 @cindex object attributes
7529
7530 @command{@value{AS}} assembles source files written for a specific architecture
7531 into object files for that architecture. But not all object files are alike.
7532 Many architectures support incompatible variations. For instance, floating
7533 point arguments might be passed in floating point registers if the object file
7534 requires hardware floating point support---or floating point arguments might be
7535 passed in integer registers if the object file supports processors with no
7536 hardware floating point unit. Or, if two objects are built for different
7537 generations of the same architecture, the combination may require the
7538 newer generation at run-time.
7539
7540 This information is useful during and after linking. At link time,
7541 @command{@value{LD}} can warn about incompatible object files. After link
7542 time, tools like @command{gdb} can use it to process the linked file
7543 correctly.
7544
7545 Compatibility information is recorded as a series of object attributes. Each
7546 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7547 string, and indicates who sets the meaning of the tag. The tag is an integer,
7548 and indicates what property the attribute describes. The value may be a string
7549 or an integer, and indicates how the property affects this object. Missing
7550 attributes are the same as attributes with a zero value or empty string value.
7551
7552 Object attributes were developed as part of the ABI for the ARM Architecture.
7553 The file format is documented in @cite{ELF for the ARM Architecture}.
7554
7555 @menu
7556 * GNU Object Attributes:: @sc{gnu} Object Attributes
7557 * Defining New Object Attributes:: Defining New Object Attributes
7558 @end menu
7559
7560 @node GNU Object Attributes
7561 @section @sc{gnu} Object Attributes
7562
7563 The @code{.gnu_attribute} directive records an object attribute
7564 with vendor @samp{gnu}.
7565
7566 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7567 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7568 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7569 2} is set for architecture-independent attributes and clear for
7570 architecture-dependent ones.
7571
7572 @subsection Common @sc{gnu} attributes
7573
7574 These attributes are valid on all architectures.
7575
7576 @table @r
7577 @item Tag_compatibility (32)
7578 The compatibility attribute takes an integer flag value and a vendor name. If
7579 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7580 then the file is only compatible with the named toolchain. If it is greater
7581 than 1, the file can only be processed by other toolchains under some private
7582 arrangement indicated by the flag value and the vendor name.
7583 @end table
7584
7585 @subsection MIPS Attributes
7586
7587 @table @r
7588 @item Tag_GNU_MIPS_ABI_FP (4)
7589 The floating-point ABI used by this object file. The value will be:
7590
7591 @itemize @bullet
7592 @item
7593 0 for files not affected by the floating-point ABI.
7594 @item
7595 1 for files using the hardware floating-point ABI with a standard
7596 double-precision FPU.
7597 @item
7598 2 for files using the hardware floating-point ABI with a single-precision FPU.
7599 @item
7600 3 for files using the software floating-point ABI.
7601 @item
7602 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7603 floating-point registers, 32-bit general-purpose registers and increased the
7604 number of callee-saved floating-point registers.
7605 @item
7606 5 for files using the hardware floating-point ABI with a double-precision FPU
7607 with either 32-bit or 64-bit floating-point registers and 32-bit
7608 general-purpose registers.
7609 @item
7610 6 for files using the hardware floating-point ABI with 64-bit floating-point
7611 registers and 32-bit general-purpose registers.
7612 @item
7613 7 for files using the hardware floating-point ABI with 64-bit floating-point
7614 registers, 32-bit general-purpose registers and a rule that forbids the
7615 direct use of odd-numbered single-precision floating-point registers.
7616 @end itemize
7617 @end table
7618
7619 @subsection PowerPC Attributes
7620
7621 @table @r
7622 @item Tag_GNU_Power_ABI_FP (4)
7623 The floating-point ABI used by this object file. The value will be:
7624
7625 @itemize @bullet
7626 @item
7627 0 for files not affected by the floating-point ABI.
7628 @item
7629 1 for files using double-precision hardware floating-point ABI.
7630 @item
7631 2 for files using the software floating-point ABI.
7632 @item
7633 3 for files using single-precision hardware floating-point ABI.
7634 @end itemize
7635
7636 @item Tag_GNU_Power_ABI_Vector (8)
7637 The vector ABI used by this object file. The value will be:
7638
7639 @itemize @bullet
7640 @item
7641 0 for files not affected by the vector ABI.
7642 @item
7643 1 for files using general purpose registers to pass vectors.
7644 @item
7645 2 for files using AltiVec registers to pass vectors.
7646 @item
7647 3 for files using SPE registers to pass vectors.
7648 @end itemize
7649 @end table
7650
7651 @subsection IBM z Systems Attributes
7652
7653 @table @r
7654 @item Tag_GNU_S390_ABI_Vector (8)
7655 The vector ABI used by this object file. The value will be:
7656
7657 @itemize @bullet
7658 @item
7659 0 for files not affected by the vector ABI.
7660 @item
7661 1 for files using software vector ABI.
7662 @item
7663 2 for files using hardware vector ABI.
7664 @end itemize
7665 @end table
7666
7667 @subsection MSP430 Attributes
7668
7669 @table @r
7670 @item Tag_GNU_MSP430_Data_Region (4)
7671 The data region used by this object file. The value will be:
7672
7673 @itemize @bullet
7674 @item
7675 0 for files not using the large memory model.
7676 @item
7677 1 for files which have been compiled with the condition that all
7678 data is in the lower memory region, i.e. below address 0x10000.
7679 @item
7680 2 for files which allow data to be placed in the full 20-bit memory range.
7681 @end itemize
7682 @end table
7683
7684 @node Defining New Object Attributes
7685 @section Defining New Object Attributes
7686
7687 If you want to define a new @sc{gnu} object attribute, here are the places you
7688 will need to modify. New attributes should be discussed on the @samp{binutils}
7689 mailing list.
7690
7691 @itemize @bullet
7692 @item
7693 This manual, which is the official register of attributes.
7694 @item
7695 The header for your architecture @file{include/elf}, to define the tag.
7696 @item
7697 The @file{bfd} support file for your architecture, to merge the attribute
7698 and issue any appropriate link warnings.
7699 @item
7700 Test cases in @file{ld/testsuite} for merging and link warnings.
7701 @item
7702 @file{binutils/readelf.c} to display your attribute.
7703 @item
7704 GCC, if you want the compiler to mark the attribute automatically.
7705 @end itemize
7706
7707 @end ifset
7708
7709 @ifset GENERIC
7710 @node Machine Dependencies
7711 @chapter Machine Dependent Features
7712
7713 @cindex machine dependencies
7714 The machine instruction sets are (almost by definition) different on
7715 each machine where @command{@value{AS}} runs. Floating point representations
7716 vary as well, and @command{@value{AS}} often supports a few additional
7717 directives or command-line options for compatibility with other
7718 assemblers on a particular platform. Finally, some versions of
7719 @command{@value{AS}} support special pseudo-instructions for branch
7720 optimization.
7721
7722 This chapter discusses most of these differences, though it does not
7723 include details on any machine's instruction set. For details on that
7724 subject, see the hardware manufacturer's manual.
7725
7726 @menu
7727 @ifset AARCH64
7728 * AArch64-Dependent:: AArch64 Dependent Features
7729 @end ifset
7730 @ifset ALPHA
7731 * Alpha-Dependent:: Alpha Dependent Features
7732 @end ifset
7733 @ifset ARC
7734 * ARC-Dependent:: ARC Dependent Features
7735 @end ifset
7736 @ifset ARM
7737 * ARM-Dependent:: ARM Dependent Features
7738 @end ifset
7739 @ifset AVR
7740 * AVR-Dependent:: AVR Dependent Features
7741 @end ifset
7742 @ifset Blackfin
7743 * Blackfin-Dependent:: Blackfin Dependent Features
7744 @end ifset
7745 @ifset BPF
7746 * BPF-Dependent:: BPF Dependent Features
7747 @end ifset
7748 @ifset CR16
7749 * CR16-Dependent:: CR16 Dependent Features
7750 @end ifset
7751 @ifset CRIS
7752 * CRIS-Dependent:: CRIS Dependent Features
7753 @end ifset
7754 @ifset CSKY
7755 * C-SKY-Dependent:: C-SKY Dependent Features
7756 @end ifset
7757 @ifset D10V
7758 * D10V-Dependent:: D10V Dependent Features
7759 @end ifset
7760 @ifset D30V
7761 * D30V-Dependent:: D30V Dependent Features
7762 @end ifset
7763 @ifset EPIPHANY
7764 * Epiphany-Dependent:: EPIPHANY Dependent Features
7765 @end ifset
7766 @ifset H8/300
7767 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7768 @end ifset
7769 @ifset HPPA
7770 * HPPA-Dependent:: HPPA Dependent Features
7771 @end ifset
7772 @ifset I80386
7773 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7774 @end ifset
7775 @ifset IA64
7776 * IA-64-Dependent:: Intel IA-64 Dependent Features
7777 @end ifset
7778 @ifset IP2K
7779 * IP2K-Dependent:: IP2K Dependent Features
7780 @end ifset
7781 @ifset LM32
7782 * LM32-Dependent:: LM32 Dependent Features
7783 @end ifset
7784 @ifset M32C
7785 * M32C-Dependent:: M32C Dependent Features
7786 @end ifset
7787 @ifset M32R
7788 * M32R-Dependent:: M32R Dependent Features
7789 @end ifset
7790 @ifset M680X0
7791 * M68K-Dependent:: M680x0 Dependent Features
7792 @end ifset
7793 @ifset M68HC11
7794 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7795 @end ifset
7796 @ifset S12Z
7797 * S12Z-Dependent:: S12Z Dependent Features
7798 @end ifset
7799 @ifset METAG
7800 * Meta-Dependent :: Meta Dependent Features
7801 @end ifset
7802 @ifset MICROBLAZE
7803 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7804 @end ifset
7805 @ifset MIPS
7806 * MIPS-Dependent:: MIPS Dependent Features
7807 @end ifset
7808 @ifset MMIX
7809 * MMIX-Dependent:: MMIX Dependent Features
7810 @end ifset
7811 @ifset MSP430
7812 * MSP430-Dependent:: MSP430 Dependent Features
7813 @end ifset
7814 @ifset NDS32
7815 * NDS32-Dependent:: Andes NDS32 Dependent Features
7816 @end ifset
7817 @ifset NIOSII
7818 * NiosII-Dependent:: Altera Nios II Dependent Features
7819 @end ifset
7820 @ifset NS32K
7821 * NS32K-Dependent:: NS32K Dependent Features
7822 @end ifset
7823 @ifset OPENRISC
7824 * OpenRISC-Dependent:: OpenRISC 1000 Features
7825 @end ifset
7826 @ifset PDP11
7827 * PDP-11-Dependent:: PDP-11 Dependent Features
7828 @end ifset
7829 @ifset PJ
7830 * PJ-Dependent:: picoJava Dependent Features
7831 @end ifset
7832 @ifset PPC
7833 * PPC-Dependent:: PowerPC Dependent Features
7834 @end ifset
7835 @ifset PRU
7836 * PRU-Dependent:: PRU Dependent Features
7837 @end ifset
7838 @ifset RISCV
7839 * RISC-V-Dependent:: RISC-V Dependent Features
7840 @end ifset
7841 @ifset RL78
7842 * RL78-Dependent:: RL78 Dependent Features
7843 @end ifset
7844 @ifset RX
7845 * RX-Dependent:: RX Dependent Features
7846 @end ifset
7847 @ifset S390
7848 * S/390-Dependent:: IBM S/390 Dependent Features
7849 @end ifset
7850 @ifset SCORE
7851 * SCORE-Dependent:: SCORE Dependent Features
7852 @end ifset
7853 @ifset SH
7854 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7855 @end ifset
7856 @ifset SPARC
7857 * Sparc-Dependent:: SPARC Dependent Features
7858 @end ifset
7859 @ifset TIC54X
7860 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7861 @end ifset
7862 @ifset TIC6X
7863 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7864 @end ifset
7865 @ifset TILEGX
7866 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7867 @end ifset
7868 @ifset TILEPRO
7869 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7870 @end ifset
7871 @ifset V850
7872 * V850-Dependent:: V850 Dependent Features
7873 @end ifset
7874 @ifset VAX
7875 * Vax-Dependent:: VAX Dependent Features
7876 @end ifset
7877 @ifset VISIUM
7878 * Visium-Dependent:: Visium Dependent Features
7879 @end ifset
7880 @ifset WASM32
7881 * WebAssembly-Dependent:: WebAssembly Dependent Features
7882 @end ifset
7883 @ifset XGATE
7884 * XGATE-Dependent:: XGATE Dependent Features
7885 @end ifset
7886 @ifset XSTORMY16
7887 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7888 @end ifset
7889 @ifset XTENSA
7890 * Xtensa-Dependent:: Xtensa Dependent Features
7891 @end ifset
7892 @ifset Z80
7893 * Z80-Dependent:: Z80 Dependent Features
7894 @end ifset
7895 @ifset Z8000
7896 * Z8000-Dependent:: Z8000 Dependent Features
7897 @end ifset
7898 @end menu
7899
7900 @lowersections
7901 @end ifset
7902
7903 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7904 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7905 @c peculiarity: to preserve cross-references, there must be a node called
7906 @c "Machine Dependencies". Hence the conditional nodenames in each
7907 @c major node below. Node defaulting in makeinfo requires adjacency of
7908 @c node and sectioning commands; hence the repetition of @chapter BLAH
7909 @c in both conditional blocks.
7910
7911 @ifset AARCH64
7912 @include c-aarch64.texi
7913 @end ifset
7914
7915 @ifset ALPHA
7916 @include c-alpha.texi
7917 @end ifset
7918
7919 @ifset ARC
7920 @include c-arc.texi
7921 @end ifset
7922
7923 @ifset ARM
7924 @include c-arm.texi
7925 @end ifset
7926
7927 @ifset AVR
7928 @include c-avr.texi
7929 @end ifset
7930
7931 @ifset Blackfin
7932 @include c-bfin.texi
7933 @end ifset
7934
7935 @ifset BPF
7936 @include c-bpf.texi
7937 @end ifset
7938
7939 @ifset CR16
7940 @include c-cr16.texi
7941 @end ifset
7942
7943 @ifset CRIS
7944 @include c-cris.texi
7945 @end ifset
7946
7947 @ifset CSKY
7948 @include c-csky.texi
7949 @end ifset
7950
7951 @ifset Renesas-all
7952 @ifclear GENERIC
7953 @node Machine Dependencies
7954 @chapter Machine Dependent Features
7955
7956 The machine instruction sets are different on each Renesas chip family,
7957 and there are also some syntax differences among the families. This
7958 chapter describes the specific @command{@value{AS}} features for each
7959 family.
7960
7961 @menu
7962 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7963 * SH-Dependent:: Renesas SH Dependent Features
7964 @end menu
7965 @lowersections
7966 @end ifclear
7967 @end ifset
7968
7969 @ifset D10V
7970 @include c-d10v.texi
7971 @end ifset
7972
7973 @ifset D30V
7974 @include c-d30v.texi
7975 @end ifset
7976
7977 @ifset EPIPHANY
7978 @include c-epiphany.texi
7979 @end ifset
7980
7981 @ifset H8/300
7982 @include c-h8300.texi
7983 @end ifset
7984
7985 @ifset HPPA
7986 @include c-hppa.texi
7987 @end ifset
7988
7989 @ifset I80386
7990 @include c-i386.texi
7991 @end ifset
7992
7993 @ifset IA64
7994 @include c-ia64.texi
7995 @end ifset
7996
7997 @ifset IP2K
7998 @include c-ip2k.texi
7999 @end ifset
8000
8001 @ifset LM32
8002 @include c-lm32.texi
8003 @end ifset
8004
8005 @ifset M32C
8006 @include c-m32c.texi
8007 @end ifset
8008
8009 @ifset M32R
8010 @include c-m32r.texi
8011 @end ifset
8012
8013 @ifset M680X0
8014 @include c-m68k.texi
8015 @end ifset
8016
8017 @ifset M68HC11
8018 @include c-m68hc11.texi
8019 @end ifset
8020
8021 @ifset S12Z
8022 @include c-s12z.texi
8023 @end ifset
8024
8025 @ifset METAG
8026 @include c-metag.texi
8027 @end ifset
8028
8029 @ifset MICROBLAZE
8030 @include c-microblaze.texi
8031 @end ifset
8032
8033 @ifset MIPS
8034 @include c-mips.texi
8035 @end ifset
8036
8037 @ifset MMIX
8038 @include c-mmix.texi
8039 @end ifset
8040
8041 @ifset MSP430
8042 @include c-msp430.texi
8043 @end ifset
8044
8045 @ifset NDS32
8046 @include c-nds32.texi
8047 @end ifset
8048
8049 @ifset NIOSII
8050 @include c-nios2.texi
8051 @end ifset
8052
8053 @ifset NS32K
8054 @include c-ns32k.texi
8055 @end ifset
8056
8057 @ifset OPENRISC
8058 @include c-or1k.texi
8059 @end ifset
8060
8061 @ifset PDP11
8062 @include c-pdp11.texi
8063 @end ifset
8064
8065 @ifset PJ
8066 @include c-pj.texi
8067 @end ifset
8068
8069 @ifset PPC
8070 @include c-ppc.texi
8071 @end ifset
8072
8073 @ifset PRU
8074 @include c-pru.texi
8075 @end ifset
8076
8077 @ifset RISCV
8078 @include c-riscv.texi
8079 @end ifset
8080
8081 @ifset RL78
8082 @include c-rl78.texi
8083 @end ifset
8084
8085 @ifset RX
8086 @include c-rx.texi
8087 @end ifset
8088
8089 @ifset S390
8090 @include c-s390.texi
8091 @end ifset
8092
8093 @ifset SCORE
8094 @include c-score.texi
8095 @end ifset
8096
8097 @ifset SH
8098 @include c-sh.texi
8099 @end ifset
8100
8101 @ifset SPARC
8102 @include c-sparc.texi
8103 @end ifset
8104
8105 @ifset TIC54X
8106 @include c-tic54x.texi
8107 @end ifset
8108
8109 @ifset TIC6X
8110 @include c-tic6x.texi
8111 @end ifset
8112
8113 @ifset TILEGX
8114 @include c-tilegx.texi
8115 @end ifset
8116
8117 @ifset TILEPRO
8118 @include c-tilepro.texi
8119 @end ifset
8120
8121 @ifset V850
8122 @include c-v850.texi
8123 @end ifset
8124
8125 @ifset VAX
8126 @include c-vax.texi
8127 @end ifset
8128
8129 @ifset VISIUM
8130 @include c-visium.texi
8131 @end ifset
8132
8133 @ifset WASM32
8134 @include c-wasm32.texi
8135 @end ifset
8136
8137 @ifset XGATE
8138 @include c-xgate.texi
8139 @end ifset
8140
8141 @ifset XSTORMY16
8142 @include c-xstormy16.texi
8143 @end ifset
8144
8145 @ifset XTENSA
8146 @include c-xtensa.texi
8147 @end ifset
8148
8149 @ifset Z80
8150 @include c-z80.texi
8151 @end ifset
8152
8153 @ifset Z8000
8154 @include c-z8k.texi
8155 @end ifset
8156
8157 @ifset GENERIC
8158 @c reverse effect of @down at top of generic Machine-Dep chapter
8159 @raisesections
8160 @end ifset
8161
8162 @node Reporting Bugs
8163 @chapter Reporting Bugs
8164 @cindex bugs in assembler
8165 @cindex reporting bugs in assembler
8166
8167 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8168
8169 Reporting a bug may help you by bringing a solution to your problem, or it may
8170 not. But in any case the principal function of a bug report is to help the
8171 entire community by making the next version of @command{@value{AS}} work better.
8172 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8173
8174 In order for a bug report to serve its purpose, you must include the
8175 information that enables us to fix the bug.
8176
8177 @menu
8178 * Bug Criteria:: Have you found a bug?
8179 * Bug Reporting:: How to report bugs
8180 @end menu
8181
8182 @node Bug Criteria
8183 @section Have You Found a Bug?
8184 @cindex bug criteria
8185
8186 If you are not sure whether you have found a bug, here are some guidelines:
8187
8188 @itemize @bullet
8189 @cindex fatal signal
8190 @cindex assembler crash
8191 @cindex crash of assembler
8192 @item
8193 If the assembler gets a fatal signal, for any input whatever, that is a
8194 @command{@value{AS}} bug. Reliable assemblers never crash.
8195
8196 @cindex error on valid input
8197 @item
8198 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8199
8200 @cindex invalid input
8201 @item
8202 If @command{@value{AS}} does not produce an error message for invalid input, that
8203 is a bug. However, you should note that your idea of ``invalid input'' might
8204 be our idea of ``an extension'' or ``support for traditional practice''.
8205
8206 @item
8207 If you are an experienced user of assemblers, your suggestions for improvement
8208 of @command{@value{AS}} are welcome in any case.
8209 @end itemize
8210
8211 @node Bug Reporting
8212 @section How to Report Bugs
8213 @cindex bug reports
8214 @cindex assembler bugs, reporting
8215
8216 A number of companies and individuals offer support for @sc{gnu} products. If
8217 you obtained @command{@value{AS}} from a support organization, we recommend you
8218 contact that organization first.
8219
8220 You can find contact information for many support companies and
8221 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8222 distribution.
8223
8224 @ifset BUGURL
8225 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8226 to @value{BUGURL}.
8227 @end ifset
8228
8229 The fundamental principle of reporting bugs usefully is this:
8230 @strong{report all the facts}. If you are not sure whether to state a
8231 fact or leave it out, state it!
8232
8233 Often people omit facts because they think they know what causes the problem
8234 and assume that some details do not matter. Thus, you might assume that the
8235 name of a symbol you use in an example does not matter. Well, probably it does
8236 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8237 happens to fetch from the location where that name is stored in memory;
8238 perhaps, if the name were different, the contents of that location would fool
8239 the assembler into doing the right thing despite the bug. Play it safe and
8240 give a specific, complete example. That is the easiest thing for you to do,
8241 and the most helpful.
8242
8243 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8244 it is new to us. Therefore, always write your bug reports on the assumption
8245 that the bug has not been reported previously.
8246
8247 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8248 bell?'' This cannot help us fix a bug, so it is basically useless. We
8249 respond by asking for enough details to enable us to investigate.
8250 You might as well expedite matters by sending them to begin with.
8251
8252 To enable us to fix the bug, you should include all these things:
8253
8254 @itemize @bullet
8255 @item
8256 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8257 it with the @samp{--version} argument.
8258
8259 Without this, we will not know whether there is any point in looking for
8260 the bug in the current version of @command{@value{AS}}.
8261
8262 @item
8263 Any patches you may have applied to the @command{@value{AS}} source.
8264
8265 @item
8266 The type of machine you are using, and the operating system name and
8267 version number.
8268
8269 @item
8270 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8271 ``@code{gcc-2.7}''.
8272
8273 @item
8274 The command arguments you gave the assembler to assemble your example and
8275 observe the bug. To guarantee you will not omit something important, list them
8276 all. A copy of the Makefile (or the output from make) is sufficient.
8277
8278 If we were to try to guess the arguments, we would probably guess wrong
8279 and then we might not encounter the bug.
8280
8281 @item
8282 A complete input file that will reproduce the bug. If the bug is observed when
8283 the assembler is invoked via a compiler, send the assembler source, not the
8284 high level language source. Most compilers will produce the assembler source
8285 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8286 the options @samp{-v --save-temps}; this will save the assembler source in a
8287 file with an extension of @file{.s}, and also show you exactly how
8288 @command{@value{AS}} is being run.
8289
8290 @item
8291 A description of what behavior you observe that you believe is
8292 incorrect. For example, ``It gets a fatal signal.''
8293
8294 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8295 will certainly notice it. But if the bug is incorrect output, we might not
8296 notice unless it is glaringly wrong. You might as well not give us a chance to
8297 make a mistake.
8298
8299 Even if the problem you experience is a fatal signal, you should still say so
8300 explicitly. Suppose something strange is going on, such as, your copy of
8301 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8302 library on your system. (This has happened!) Your copy might crash and ours
8303 would not. If you told us to expect a crash, then when ours fails to crash, we
8304 would know that the bug was not happening for us. If you had not told us to
8305 expect a crash, then we would not be able to draw any conclusion from our
8306 observations.
8307
8308 @item
8309 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8310 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8311 option. Always send diffs from the old file to the new file. If you even
8312 discuss something in the @command{@value{AS}} source, refer to it by context, not
8313 by line number.
8314
8315 The line numbers in our development sources will not match those in your
8316 sources. Your line numbers would convey no useful information to us.
8317 @end itemize
8318
8319 Here are some things that are not necessary:
8320
8321 @itemize @bullet
8322 @item
8323 A description of the envelope of the bug.
8324
8325 Often people who encounter a bug spend a lot of time investigating
8326 which changes to the input file will make the bug go away and which
8327 changes will not affect it.
8328
8329 This is often time consuming and not very useful, because the way we
8330 will find the bug is by running a single example under the debugger
8331 with breakpoints, not by pure deduction from a series of examples.
8332 We recommend that you save your time for something else.
8333
8334 Of course, if you can find a simpler example to report @emph{instead}
8335 of the original one, that is a convenience for us. Errors in the
8336 output will be easier to spot, running under the debugger will take
8337 less time, and so on.
8338
8339 However, simplification is not vital; if you do not want to do this,
8340 report the bug anyway and send us the entire test case you used.
8341
8342 @item
8343 A patch for the bug.
8344
8345 A patch for the bug does help us if it is a good one. But do not omit
8346 the necessary information, such as the test case, on the assumption that
8347 a patch is all we need. We might see problems with your patch and decide
8348 to fix the problem another way, or we might not understand it at all.
8349
8350 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8351 construct an example that will make the program follow a certain path through
8352 the code. If you do not send us the example, we will not be able to construct
8353 one, so we will not be able to verify that the bug is fixed.
8354
8355 And if we cannot understand what bug you are trying to fix, or why your
8356 patch should be an improvement, we will not install it. A test case will
8357 help us to understand.
8358
8359 @item
8360 A guess about what the bug is or what it depends on.
8361
8362 Such guesses are usually wrong. Even we cannot guess right about such
8363 things without first using the debugger to find the facts.
8364 @end itemize
8365
8366 @node Acknowledgements
8367 @chapter Acknowledgements
8368
8369 If you have contributed to GAS and your name isn't listed here,
8370 it is not meant as a slight. We just don't know about it. Send mail to the
8371 maintainer, and we'll correct the situation. Currently
8372 @c (October 2012),
8373 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8374
8375 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8376 more details?}
8377
8378 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8379 information and the 68k series machines, most of the preprocessing pass, and
8380 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8381
8382 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8383 many bug fixes, including merging support for several processors, breaking GAS
8384 up to handle multiple object file format back ends (including heavy rewrite,
8385 testing, an integration of the coff and b.out back ends), adding configuration
8386 including heavy testing and verification of cross assemblers and file splits
8387 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8388 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8389 port (including considerable amounts of reverse engineering), a SPARC opcode
8390 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8391 assertions and made them work, much other reorganization, cleanup, and lint.
8392
8393 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8394 in format-specific I/O modules.
8395
8396 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8397 has done much work with it since.
8398
8399 The Intel 80386 machine description was written by Eliot Dresselhaus.
8400
8401 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8402
8403 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8404 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8405
8406 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8407 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8408 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8409 support a.out format.
8410
8411 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8412 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8413 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8414 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8415 targets.
8416
8417 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8418 simplified the configuration of which versions accept which directives. He
8419 updated the 68k machine description so that Motorola's opcodes always produced
8420 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8421 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8422 cross-compilation support, and one bug in relaxation that took a week and
8423 required the proverbial one-bit fix.
8424
8425 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8426 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8427 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8428 PowerPC assembler, and made a few other minor patches.
8429
8430 Steve Chamberlain made GAS able to generate listings.
8431
8432 Hewlett-Packard contributed support for the HP9000/300.
8433
8434 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8435 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8436 formats). This work was supported by both the Center for Software Science at
8437 the University of Utah and Cygnus Support.
8438
8439 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8440 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8441 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8442 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8443 and some initial 64-bit support).
8444
8445 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8446
8447 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8448 support for openVMS/Alpha.
8449
8450 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8451 flavors.
8452
8453 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8454 Inc.@: added support for Xtensa processors.
8455
8456 Several engineers at Cygnus Support have also provided many small bug fixes and
8457 configuration enhancements.
8458
8459 Jon Beniston added support for the Lattice Mico32 architecture.
8460
8461 Many others have contributed large or small bugfixes and enhancements. If
8462 you have contributed significant work and are not mentioned on this list, and
8463 want to be, let us know. Some of the history has been lost; we are not
8464 intentionally leaving anyone out.
8465
8466 @node GNU Free Documentation License
8467 @appendix GNU Free Documentation License
8468 @include fdl.texi
8469
8470 @node AS Index
8471 @unnumbered AS Index
8472
8473 @printindex cp
8474
8475 @bye
8476 @c Local Variables:
8477 @c fill-column: 79
8478 @c End:
This page took 0.190226 seconds and 3 git commands to generate.