gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-<N>}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
242 [@b{--statistics}]
243 [@b{-v}] [@b{-version}] [@b{--version}]
244 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
245 [@b{-Z}] [@b{@@@var{FILE}}]
246 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
247 [@b{--elf-stt-common=[no|yes]}]
248 [@b{--generate-missing-build-notes=[no|yes]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset M32C
384
385 @emph{Target M32C options:}
386 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
387 @end ifset
388 @ifset M32R
389
390 @emph{Target M32R options:}
391 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
392 @b{--W[n]p}]
393 @end ifset
394 @ifset M680X0
395
396 @emph{Target M680X0 options:}
397 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
398 @end ifset
399 @ifset M68HC11
400
401 @emph{Target M68HC11 options:}
402 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
403 [@b{-mshort}|@b{-mlong}]
404 [@b{-mshort-double}|@b{-mlong-double}]
405 [@b{--force-long-branches}] [@b{--short-branches}]
406 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
407 [@b{--print-opcodes}] [@b{--generate-example}]
408 @end ifset
409 @ifset MCORE
410
411 @emph{Target MCORE options:}
412 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
413 [@b{-mcpu=[210|340]}]
414 @end ifset
415 @ifset METAG
416
417 @emph{Target Meta options:}
418 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
419 @end ifset
420 @ifset MICROBLAZE
421 @emph{Target MICROBLAZE options:}
422 @c MicroBlaze has no machine-dependent assembler options.
423 @end ifset
424 @ifset MIPS
425
426 @emph{Target MIPS options:}
427 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
428 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
429 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
430 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
431 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
432 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
433 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
434 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
435 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
436 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
437 [@b{-construct-floats}] [@b{-no-construct-floats}]
438 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
439 [@b{-mnan=@var{encoding}}]
440 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
441 [@b{-mips16}] [@b{-no-mips16}]
442 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
443 [@b{-mmicromips}] [@b{-mno-micromips}]
444 [@b{-msmartmips}] [@b{-mno-smartmips}]
445 [@b{-mips3d}] [@b{-no-mips3d}]
446 [@b{-mdmx}] [@b{-no-mdmx}]
447 [@b{-mdsp}] [@b{-mno-dsp}]
448 [@b{-mdspr2}] [@b{-mno-dspr2}]
449 [@b{-mdspr3}] [@b{-mno-dspr3}]
450 [@b{-mmsa}] [@b{-mno-msa}]
451 [@b{-mxpa}] [@b{-mno-xpa}]
452 [@b{-mmt}] [@b{-mno-mt}]
453 [@b{-mmcu}] [@b{-mno-mcu}]
454 [@b{-mcrc}] [@b{-mno-crc}]
455 [@b{-mginv}] [@b{-mno-ginv}]
456 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
457 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
458 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
459 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
460 [@b{-minsn32}] [@b{-mno-insn32}]
461 [@b{-mfix7000}] [@b{-mno-fix7000}]
462 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
463 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
464 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
465 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
466 [@b{-mdebug}] [@b{-no-mdebug}]
467 [@b{-mpdr}] [@b{-mno-pdr}]
468 @end ifset
469 @ifset MMIX
470
471 @emph{Target MMIX options:}
472 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
473 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
474 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
475 [@b{--linker-allocated-gregs}]
476 @end ifset
477 @ifset NIOSII
478
479 @emph{Target Nios II options:}
480 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
481 [@b{-EB}] [@b{-EL}]
482 @end ifset
483 @ifset NDS32
484
485 @emph{Target NDS32 options:}
486 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
487 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
488 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
489 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
490 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
491 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
492 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
493 [@b{-mb2bb}]
494 @end ifset
495 @ifset OPENRISC
496 @c OpenRISC has no machine-dependent assembler options.
497 @end ifset
498 @ifset PDP11
499
500 @emph{Target PDP11 options:}
501 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
502 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
503 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
504 @end ifset
505 @ifset PJ
506
507 @emph{Target picoJava options:}
508 [@b{-mb}|@b{-me}]
509 @end ifset
510 @ifset PPC
511
512 @emph{Target PowerPC options:}
513 [@b{-a32}|@b{-a64}]
514 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
515 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
516 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
517 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
518 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
519 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
520 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
521 [@b{-mregnames}|@b{-mno-regnames}]
522 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
523 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
524 [@b{-msolaris}|@b{-mno-solaris}]
525 [@b{-nops=@var{count}}]
526 @end ifset
527 @ifset PRU
528
529 @emph{Target PRU options:}
530 [@b{-link-relax}]
531 [@b{-mnolink-relax}]
532 [@b{-mno-warn-regname-label}]
533 @end ifset
534 @ifset RISCV
535
536 @emph{Target RISC-V options:}
537 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
538 [@b{-march}=@var{ISA}]
539 [@b{-mabi}=@var{ABI}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 @end ifset
630 @ifset Z80
631
632 @emph{Target Z80 options:}
633 [@b{-march=@var{CPU}@var{[-EXT]}@var{[+EXT]}}]
634 [@b{-local-prefix=}@var{PREFIX}]
635 [@b{-colonless}]
636 [@b{-sdcc}]
637 [@b{-fp-s=}@var{FORMAT}]
638 [@b{-fp-d=}@var{FORMAT}]
639 @end ifset
640 @ifset Z8000
641
642 @c Z8000 has no machine-dependent assembler options
643 @end ifset
644
645 @c man end
646 @end smallexample
647
648 @c man begin OPTIONS
649
650 @table @gcctabopt
651 @include at-file.texi
652
653 @item -a[cdghlmns]
654 Turn on listings, in any of a variety of ways:
655
656 @table @gcctabopt
657 @item -ac
658 omit false conditionals
659
660 @item -ad
661 omit debugging directives
662
663 @item -ag
664 include general information, like @value{AS} version and options passed
665
666 @item -ah
667 include high-level source
668
669 @item -al
670 include assembly
671
672 @item -am
673 include macro expansions
674
675 @item -an
676 omit forms processing
677
678 @item -as
679 include symbols
680
681 @item =file
682 set the name of the listing file
683 @end table
684
685 You may combine these options; for example, use @samp{-aln} for assembly
686 listing without forms processing. The @samp{=file} option, if used, must be
687 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
688
689 @item --alternate
690 Begin in alternate macro mode.
691 @ifclear man
692 @xref{Altmacro,,@code{.altmacro}}.
693 @end ifclear
694
695 @item --compress-debug-sections
696 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
697 ELF ABI. The resulting object file may not be compatible with older
698 linkers and object file utilities. Note if compression would make a
699 given section @emph{larger} then it is not compressed.
700
701 @ifset ELF
702 @cindex @samp{--compress-debug-sections=} option
703 @item --compress-debug-sections=none
704 @itemx --compress-debug-sections=zlib
705 @itemx --compress-debug-sections=zlib-gnu
706 @itemx --compress-debug-sections=zlib-gabi
707 These options control how DWARF debug sections are compressed.
708 @option{--compress-debug-sections=none} is equivalent to
709 @option{--nocompress-debug-sections}.
710 @option{--compress-debug-sections=zlib} and
711 @option{--compress-debug-sections=zlib-gabi} are equivalent to
712 @option{--compress-debug-sections}.
713 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
714 sections using zlib. The debug sections are renamed to begin with
715 @samp{.zdebug}. Note if compression would make a given section
716 @emph{larger} then it is not compressed nor renamed.
717
718 @end ifset
719
720 @item --nocompress-debug-sections
721 Do not compress DWARF debug sections. This is usually the default for all
722 targets except the x86/x86_64, but a configure time option can be used to
723 override this.
724
725 @item -D
726 Ignored. This option is accepted for script compatibility with calls to
727 other assemblers.
728
729 @item --debug-prefix-map @var{old}=@var{new}
730 When assembling files in directory @file{@var{old}}, record debugging
731 information describing them as in @file{@var{new}} instead.
732
733 @item --defsym @var{sym}=@var{value}
734 Define the symbol @var{sym} to be @var{value} before assembling the input file.
735 @var{value} must be an integer constant. As in C, a leading @samp{0x}
736 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
737 value. The value of the symbol can be overridden inside a source file via the
738 use of a @code{.set} pseudo-op.
739
740 @item -f
741 ``fast''---skip whitespace and comment preprocessing (assume source is
742 compiler output).
743
744 @item -g
745 @itemx --gen-debug
746 Generate debugging information for each assembler source line using whichever
747 debug format is preferred by the target. This currently means either STABS,
748 ECOFF or DWARF2.
749
750 @item --gstabs
751 Generate stabs debugging information for each assembler line. This
752 may help debugging assembler code, if the debugger can handle it.
753
754 @item --gstabs+
755 Generate stabs debugging information for each assembler line, with GNU
756 extensions that probably only gdb can handle, and that could make other
757 debuggers crash or refuse to read your program. This
758 may help debugging assembler code. Currently the only GNU extension is
759 the location of the current working directory at assembling time.
760
761 @item --gdwarf-2
762 Generate DWARF2 debugging information for each assembler line. This
763 may help debugging assembler code, if the debugger can handle it. Note---this
764 option is only supported by some targets, not all of them.
765
766 @item --gdwarf-3
767 This option is the same as the @option{--gdwarf-2} option, except that it
768 allows for the possibility of the generation of extra debug information as per
769 version 3 of the DWARF specification. Note - enabling this option does not
770 guarantee the generation of any extra infortmation, the choice to do so is on a
771 per target basis.
772
773 @item --gdwarf-4
774 This option is the same as the @option{--gdwarf-2} option, except that it
775 allows for the possibility of the generation of extra debug information as per
776 version 4 of the DWARF specification. Note - enabling this option does not
777 guarantee the generation of any extra infortmation, the choice to do so is on a
778 per target basis.
779
780 @item --gdwarf-5
781 This option is the same as the @option{--gdwarf-2} option, except that it
782 allows for the possibility of the generation of extra debug information as per
783 version 5 of the DWARF specification. Note - enabling this option does not
784 guarantee the generation of any extra infortmation, the choice to do so is on a
785 per target basis.
786
787 @item --gdwarf-sections
788 Instead of creating a .debug_line section, create a series of
789 .debug_line.@var{foo} sections where @var{foo} is the name of the
790 corresponding code section. For example a code section called @var{.text.func}
791 will have its dwarf line number information placed into a section called
792 @var{.debug_line.text.func}. If the code section is just called @var{.text}
793 then debug line section will still be called just @var{.debug_line} without any
794 suffix.
795
796 @item --gdwarf-cie-version=@var{version}
797 Control which version of DWARF Common Information Entries (CIEs) are produced.
798 When this flag is not specificed the default is version 1, though some targets
799 can modify this default. Other possible values for @var{version} are 3 or 4.
800
801 @ifset ELF
802 @item --size-check=error
803 @itemx --size-check=warning
804 Issue an error or warning for invalid ELF .size directive.
805
806 @item --elf-stt-common=no
807 @itemx --elf-stt-common=yes
808 These options control whether the ELF assembler should generate common
809 symbols with the @code{STT_COMMON} type. The default can be controlled
810 by a configure option @option{--enable-elf-stt-common}.
811
812 @item --generate-missing-build-notes=yes
813 @itemx --generate-missing-build-notes=no
814 These options control whether the ELF assembler should generate GNU Build
815 attribute notes if none are present in the input sources.
816 The default can be controlled by the @option{--enable-generate-build-notes}
817 configure option.
818
819 @end ifset
820
821 @item --help
822 Print a summary of the command-line options and exit.
823
824 @item --target-help
825 Print a summary of all target specific options and exit.
826
827 @item -I @var{dir}
828 Add directory @var{dir} to the search list for @code{.include} directives.
829
830 @item -J
831 Don't warn about signed overflow.
832
833 @item -K
834 @ifclear DIFF-TBL-KLUGE
835 This option is accepted but has no effect on the @value{TARGET} family.
836 @end ifclear
837 @ifset DIFF-TBL-KLUGE
838 Issue warnings when difference tables altered for long displacements.
839 @end ifset
840
841 @item -L
842 @itemx --keep-locals
843 Keep (in the symbol table) local symbols. These symbols start with
844 system-specific local label prefixes, typically @samp{.L} for ELF systems
845 or @samp{L} for traditional a.out systems.
846 @ifclear man
847 @xref{Symbol Names}.
848 @end ifclear
849
850 @item --listing-lhs-width=@var{number}
851 Set the maximum width, in words, of the output data column for an assembler
852 listing to @var{number}.
853
854 @item --listing-lhs-width2=@var{number}
855 Set the maximum width, in words, of the output data column for continuation
856 lines in an assembler listing to @var{number}.
857
858 @item --listing-rhs-width=@var{number}
859 Set the maximum width of an input source line, as displayed in a listing, to
860 @var{number} bytes.
861
862 @item --listing-cont-lines=@var{number}
863 Set the maximum number of lines printed in a listing for a single line of input
864 to @var{number} + 1.
865
866 @item --no-pad-sections
867 Stop the assembler for padding the ends of output sections to the alignment
868 of that section. The default is to pad the sections, but this can waste space
869 which might be needed on targets which have tight memory constraints.
870
871 @item -o @var{objfile}
872 Name the object-file output from @command{@value{AS}} @var{objfile}.
873
874 @item -R
875 Fold the data section into the text section.
876
877 @item --hash-size=@var{number}
878 Set the default size of GAS's hash tables to a prime number close to
879 @var{number}. Increasing this value can reduce the length of time it takes the
880 assembler to perform its tasks, at the expense of increasing the assembler's
881 memory requirements. Similarly reducing this value can reduce the memory
882 requirements at the expense of speed.
883
884 @item --reduce-memory-overheads
885 This option reduces GAS's memory requirements, at the expense of making the
886 assembly processes slower. Currently this switch is a synonym for
887 @samp{--hash-size=4051}, but in the future it may have other effects as well.
888
889 @ifset ELF
890 @item --sectname-subst
891 Honor substitution sequences in section names.
892 @ifclear man
893 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
894 @end ifclear
895 @end ifset
896
897 @item --statistics
898 Print the maximum space (in bytes) and total time (in seconds) used by
899 assembly.
900
901 @item --strip-local-absolute
902 Remove local absolute symbols from the outgoing symbol table.
903
904 @item -v
905 @itemx -version
906 Print the @command{as} version.
907
908 @item --version
909 Print the @command{as} version and exit.
910
911 @item -W
912 @itemx --no-warn
913 Suppress warning messages.
914
915 @item --fatal-warnings
916 Treat warnings as errors.
917
918 @item --warn
919 Don't suppress warning messages or treat them as errors.
920
921 @item -w
922 Ignored.
923
924 @item -x
925 Ignored.
926
927 @item -Z
928 Generate an object file even after errors.
929
930 @item -- | @var{files} @dots{}
931 Standard input, or source files to assemble.
932
933 @end table
934 @c man end
935
936 @ifset AARCH64
937
938 @ifclear man
939 @xref{AArch64 Options}, for the options available when @value{AS} is configured
940 for the 64-bit mode of the ARM Architecture (AArch64).
941 @end ifclear
942
943 @ifset man
944 @c man begin OPTIONS
945 The following options are available when @value{AS} is configured for the
946 64-bit mode of the ARM Architecture (AArch64).
947 @c man end
948 @c man begin INCLUDE
949 @include c-aarch64.texi
950 @c ended inside the included file
951 @end ifset
952
953 @end ifset
954
955 @ifset ALPHA
956
957 @ifclear man
958 @xref{Alpha Options}, for the options available when @value{AS} is configured
959 for an Alpha processor.
960 @end ifclear
961
962 @ifset man
963 @c man begin OPTIONS
964 The following options are available when @value{AS} is configured for an Alpha
965 processor.
966 @c man end
967 @c man begin INCLUDE
968 @include c-alpha.texi
969 @c ended inside the included file
970 @end ifset
971
972 @end ifset
973
974 @c man begin OPTIONS
975 @ifset ARC
976 The following options are available when @value{AS} is configured for an ARC
977 processor.
978
979 @table @gcctabopt
980 @item -mcpu=@var{cpu}
981 This option selects the core processor variant.
982 @item -EB | -EL
983 Select either big-endian (-EB) or little-endian (-EL) output.
984 @item -mcode-density
985 Enable Code Density extenssion instructions.
986 @end table
987 @end ifset
988
989 @ifset ARM
990 The following options are available when @value{AS} is configured for the ARM
991 processor family.
992
993 @table @gcctabopt
994 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
995 Specify which ARM processor variant is the target.
996 @item -march=@var{architecture}[+@var{extension}@dots{}]
997 Specify which ARM architecture variant is used by the target.
998 @item -mfpu=@var{floating-point-format}
999 Select which Floating Point architecture is the target.
1000 @item -mfloat-abi=@var{abi}
1001 Select which floating point ABI is in use.
1002 @item -mthumb
1003 Enable Thumb only instruction decoding.
1004 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
1005 Select which procedure calling convention is in use.
1006 @item -EB | -EL
1007 Select either big-endian (-EB) or little-endian (-EL) output.
1008 @item -mthumb-interwork
1009 Specify that the code has been generated with interworking between Thumb and
1010 ARM code in mind.
1011 @item -mccs
1012 Turns on CodeComposer Studio assembly syntax compatibility mode.
1013 @item -k
1014 Specify that PIC code has been generated.
1015 @end table
1016 @end ifset
1017 @c man end
1018
1019 @ifset Blackfin
1020
1021 @ifclear man
1022 @xref{Blackfin Options}, for the options available when @value{AS} is
1023 configured for the Blackfin processor family.
1024 @end ifclear
1025
1026 @ifset man
1027 @c man begin OPTIONS
1028 The following options are available when @value{AS} is configured for
1029 the Blackfin processor family.
1030 @c man end
1031 @c man begin INCLUDE
1032 @include c-bfin.texi
1033 @c ended inside the included file
1034 @end ifset
1035
1036 @end ifset
1037
1038 @ifset BPF
1039
1040 @ifclear man
1041 @xref{BPF Options}, for the options available when @value{AS} is
1042 configured for the Linux kernel BPF processor family.
1043 @end ifclear
1044
1045 @ifset man
1046 @c man begin OPTIONS
1047 The following options are available when @value{AS} is configured for
1048 the Linux kernel BPF processor family.
1049 @c man end
1050 @c man begin INCLUDE
1051 @include c-bpf.texi
1052 @c ended inside the included file
1053 @end ifset
1054
1055 @end ifset
1056
1057 @c man begin OPTIONS
1058 @ifset CRIS
1059 See the info pages for documentation of the CRIS-specific options.
1060 @end ifset
1061
1062 @ifset CSKY
1063
1064 @ifclear man
1065 @xref{C-SKY Options}, for the options available when @value{AS} is
1066 configured for the C-SKY processor family.
1067 @end ifclear
1068
1069 @ifset man
1070 @c man begin OPTIONS
1071 The following options are available when @value{AS} is configured for
1072 the C-SKY processor family.
1073 @c man end
1074 @c man begin INCLUDE
1075 @include c-csky.texi
1076 @c ended inside the included file
1077 @end ifset
1078
1079 @end ifset
1080
1081 @ifset D10V
1082 The following options are available when @value{AS} is configured for
1083 a D10V processor.
1084 @table @gcctabopt
1085 @cindex D10V optimization
1086 @cindex optimization, D10V
1087 @item -O
1088 Optimize output by parallelizing instructions.
1089 @end table
1090 @end ifset
1091
1092 @ifset D30V
1093 The following options are available when @value{AS} is configured for a D30V
1094 processor.
1095 @table @gcctabopt
1096 @cindex D30V optimization
1097 @cindex optimization, D30V
1098 @item -O
1099 Optimize output by parallelizing instructions.
1100
1101 @cindex D30V nops
1102 @item -n
1103 Warn when nops are generated.
1104
1105 @cindex D30V nops after 32-bit multiply
1106 @item -N
1107 Warn when a nop after a 32-bit multiply instruction is generated.
1108 @end table
1109 @end ifset
1110 @c man end
1111
1112 @ifset EPIPHANY
1113 The following options are available when @value{AS} is configured for the
1114 Adapteva EPIPHANY series.
1115
1116 @ifclear man
1117 @xref{Epiphany Options}, for the options available when @value{AS} is
1118 configured for an Epiphany processor.
1119 @end ifclear
1120
1121 @ifset man
1122 @c man begin OPTIONS
1123 The following options are available when @value{AS} is configured for
1124 an Epiphany processor.
1125 @c man end
1126 @c man begin INCLUDE
1127 @include c-epiphany.texi
1128 @c ended inside the included file
1129 @end ifset
1130
1131 @end ifset
1132
1133 @ifset H8300
1134
1135 @ifclear man
1136 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1137 for an H8/300 processor.
1138 @end ifclear
1139
1140 @ifset man
1141 @c man begin OPTIONS
1142 The following options are available when @value{AS} is configured for an H8/300
1143 processor.
1144 @c man end
1145 @c man begin INCLUDE
1146 @include c-h8300.texi
1147 @c ended inside the included file
1148 @end ifset
1149
1150 @end ifset
1151
1152 @ifset I80386
1153
1154 @ifclear man
1155 @xref{i386-Options}, for the options available when @value{AS} is
1156 configured for an i386 processor.
1157 @end ifclear
1158
1159 @ifset man
1160 @c man begin OPTIONS
1161 The following options are available when @value{AS} is configured for
1162 an i386 processor.
1163 @c man end
1164 @c man begin INCLUDE
1165 @include c-i386.texi
1166 @c ended inside the included file
1167 @end ifset
1168
1169 @end ifset
1170
1171 @c man begin OPTIONS
1172 @ifset IP2K
1173 The following options are available when @value{AS} is configured for the
1174 Ubicom IP2K series.
1175
1176 @table @gcctabopt
1177
1178 @item -mip2022ext
1179 Specifies that the extended IP2022 instructions are allowed.
1180
1181 @item -mip2022
1182 Restores the default behaviour, which restricts the permitted instructions to
1183 just the basic IP2022 ones.
1184
1185 @end table
1186 @end ifset
1187
1188 @ifset M32C
1189 The following options are available when @value{AS} is configured for the
1190 Renesas M32C and M16C processors.
1191
1192 @table @gcctabopt
1193
1194 @item -m32c
1195 Assemble M32C instructions.
1196
1197 @item -m16c
1198 Assemble M16C instructions (the default).
1199
1200 @item -relax
1201 Enable support for link-time relaxations.
1202
1203 @item -h-tick-hex
1204 Support H'00 style hex constants in addition to 0x00 style.
1205
1206 @end table
1207 @end ifset
1208
1209 @ifset M32R
1210 The following options are available when @value{AS} is configured for the
1211 Renesas M32R (formerly Mitsubishi M32R) series.
1212
1213 @table @gcctabopt
1214
1215 @item --m32rx
1216 Specify which processor in the M32R family is the target. The default
1217 is normally the M32R, but this option changes it to the M32RX.
1218
1219 @item --warn-explicit-parallel-conflicts or --Wp
1220 Produce warning messages when questionable parallel constructs are
1221 encountered.
1222
1223 @item --no-warn-explicit-parallel-conflicts or --Wnp
1224 Do not produce warning messages when questionable parallel constructs are
1225 encountered.
1226
1227 @end table
1228 @end ifset
1229
1230 @ifset M680X0
1231 The following options are available when @value{AS} is configured for the
1232 Motorola 68000 series.
1233
1234 @table @gcctabopt
1235
1236 @item -l
1237 Shorten references to undefined symbols, to one word instead of two.
1238
1239 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1240 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1241 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1242 Specify what processor in the 68000 family is the target. The default
1243 is normally the 68020, but this can be changed at configuration time.
1244
1245 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1246 The target machine does (or does not) have a floating-point coprocessor.
1247 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1248 the basic 68000 is not compatible with the 68881, a combination of the
1249 two can be specified, since it's possible to do emulation of the
1250 coprocessor instructions with the main processor.
1251
1252 @item -m68851 | -mno-68851
1253 The target machine does (or does not) have a memory-management
1254 unit coprocessor. The default is to assume an MMU for 68020 and up.
1255
1256 @end table
1257 @end ifset
1258
1259 @ifset NIOSII
1260
1261 @ifclear man
1262 @xref{Nios II Options}, for the options available when @value{AS} is configured
1263 for an Altera Nios II processor.
1264 @end ifclear
1265
1266 @ifset man
1267 @c man begin OPTIONS
1268 The following options are available when @value{AS} is configured for an
1269 Altera Nios II processor.
1270 @c man end
1271 @c man begin INCLUDE
1272 @include c-nios2.texi
1273 @c ended inside the included file
1274 @end ifset
1275 @end ifset
1276
1277 @ifset PDP11
1278
1279 For details about the PDP-11 machine dependent features options,
1280 see @ref{PDP-11-Options}.
1281
1282 @table @gcctabopt
1283 @item -mpic | -mno-pic
1284 Generate position-independent (or position-dependent) code. The
1285 default is @option{-mpic}.
1286
1287 @item -mall
1288 @itemx -mall-extensions
1289 Enable all instruction set extensions. This is the default.
1290
1291 @item -mno-extensions
1292 Disable all instruction set extensions.
1293
1294 @item -m@var{extension} | -mno-@var{extension}
1295 Enable (or disable) a particular instruction set extension.
1296
1297 @item -m@var{cpu}
1298 Enable the instruction set extensions supported by a particular CPU, and
1299 disable all other extensions.
1300
1301 @item -m@var{machine}
1302 Enable the instruction set extensions supported by a particular machine
1303 model, and disable all other extensions.
1304 @end table
1305
1306 @end ifset
1307
1308 @ifset PJ
1309 The following options are available when @value{AS} is configured for
1310 a picoJava processor.
1311
1312 @table @gcctabopt
1313
1314 @cindex PJ endianness
1315 @cindex endianness, PJ
1316 @cindex big endian output, PJ
1317 @item -mb
1318 Generate ``big endian'' format output.
1319
1320 @cindex little endian output, PJ
1321 @item -ml
1322 Generate ``little endian'' format output.
1323
1324 @end table
1325 @end ifset
1326
1327 @ifset PRU
1328
1329 @ifclear man
1330 @xref{PRU Options}, for the options available when @value{AS} is configured
1331 for a PRU processor.
1332 @end ifclear
1333
1334 @ifset man
1335 @c man begin OPTIONS
1336 The following options are available when @value{AS} is configured for a
1337 PRU processor.
1338 @c man end
1339 @c man begin INCLUDE
1340 @include c-pru.texi
1341 @c ended inside the included file
1342 @end ifset
1343 @end ifset
1344
1345 @ifset M68HC11
1346 The following options are available when @value{AS} is configured for the
1347 Motorola 68HC11 or 68HC12 series.
1348
1349 @table @gcctabopt
1350
1351 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1352 Specify what processor is the target. The default is
1353 defined by the configuration option when building the assembler.
1354
1355 @item --xgate-ramoffset
1356 Instruct the linker to offset RAM addresses from S12X address space into
1357 XGATE address space.
1358
1359 @item -mshort
1360 Specify to use the 16-bit integer ABI.
1361
1362 @item -mlong
1363 Specify to use the 32-bit integer ABI.
1364
1365 @item -mshort-double
1366 Specify to use the 32-bit double ABI.
1367
1368 @item -mlong-double
1369 Specify to use the 64-bit double ABI.
1370
1371 @item --force-long-branches
1372 Relative branches are turned into absolute ones. This concerns
1373 conditional branches, unconditional branches and branches to a
1374 sub routine.
1375
1376 @item -S | --short-branches
1377 Do not turn relative branches into absolute ones
1378 when the offset is out of range.
1379
1380 @item --strict-direct-mode
1381 Do not turn the direct addressing mode into extended addressing mode
1382 when the instruction does not support direct addressing mode.
1383
1384 @item --print-insn-syntax
1385 Print the syntax of instruction in case of error.
1386
1387 @item --print-opcodes
1388 Print the list of instructions with syntax and then exit.
1389
1390 @item --generate-example
1391 Print an example of instruction for each possible instruction and then exit.
1392 This option is only useful for testing @command{@value{AS}}.
1393
1394 @end table
1395 @end ifset
1396
1397 @ifset SPARC
1398 The following options are available when @command{@value{AS}} is configured
1399 for the SPARC architecture:
1400
1401 @table @gcctabopt
1402 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1403 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1404 Explicitly select a variant of the SPARC architecture.
1405
1406 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1407 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1408
1409 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1410 UltraSPARC extensions.
1411
1412 @item -xarch=v8plus | -xarch=v8plusa
1413 For compatibility with the Solaris v9 assembler. These options are
1414 equivalent to -Av8plus and -Av8plusa, respectively.
1415
1416 @item -bump
1417 Warn when the assembler switches to another architecture.
1418 @end table
1419 @end ifset
1420
1421 @ifset TIC54X
1422 The following options are available when @value{AS} is configured for the 'c54x
1423 architecture.
1424
1425 @table @gcctabopt
1426 @item -mfar-mode
1427 Enable extended addressing mode. All addresses and relocations will assume
1428 extended addressing (usually 23 bits).
1429 @item -mcpu=@var{CPU_VERSION}
1430 Sets the CPU version being compiled for.
1431 @item -merrors-to-file @var{FILENAME}
1432 Redirect error output to a file, for broken systems which don't support such
1433 behaviour in the shell.
1434 @end table
1435 @end ifset
1436
1437 @ifset MIPS
1438 @c man begin OPTIONS
1439 The following options are available when @value{AS} is configured for
1440 a MIPS processor.
1441
1442 @table @gcctabopt
1443 @item -G @var{num}
1444 This option sets the largest size of an object that can be referenced
1445 implicitly with the @code{gp} register. It is only accepted for targets that
1446 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1447
1448 @cindex MIPS endianness
1449 @cindex endianness, MIPS
1450 @cindex big endian output, MIPS
1451 @item -EB
1452 Generate ``big endian'' format output.
1453
1454 @cindex little endian output, MIPS
1455 @item -EL
1456 Generate ``little endian'' format output.
1457
1458 @cindex MIPS ISA
1459 @item -mips1
1460 @itemx -mips2
1461 @itemx -mips3
1462 @itemx -mips4
1463 @itemx -mips5
1464 @itemx -mips32
1465 @itemx -mips32r2
1466 @itemx -mips32r3
1467 @itemx -mips32r5
1468 @itemx -mips32r6
1469 @itemx -mips64
1470 @itemx -mips64r2
1471 @itemx -mips64r3
1472 @itemx -mips64r5
1473 @itemx -mips64r6
1474 Generate code for a particular MIPS Instruction Set Architecture level.
1475 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1476 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1477 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1478 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1479 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1480 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1481 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1482 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1483 MIPS64 Release 6 ISA processors, respectively.
1484
1485 @item -march=@var{cpu}
1486 Generate code for a particular MIPS CPU.
1487
1488 @item -mtune=@var{cpu}
1489 Schedule and tune for a particular MIPS CPU.
1490
1491 @item -mfix7000
1492 @itemx -mno-fix7000
1493 Cause nops to be inserted if the read of the destination register
1494 of an mfhi or mflo instruction occurs in the following two instructions.
1495
1496 @item -mfix-rm7000
1497 @itemx -mno-fix-rm7000
1498 Cause nops to be inserted if a dmult or dmultu instruction is
1499 followed by a load instruction.
1500
1501 @item -mfix-r5900
1502 @itemx -mno-fix-r5900
1503 Do not attempt to schedule the preceding instruction into the delay slot
1504 of a branch instruction placed at the end of a short loop of six
1505 instructions or fewer and always schedule a @code{nop} instruction there
1506 instead. The short loop bug under certain conditions causes loops to
1507 execute only once or twice, due to a hardware bug in the R5900 chip.
1508
1509 @item -mdebug
1510 @itemx -no-mdebug
1511 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1512 section instead of the standard ELF .stabs sections.
1513
1514 @item -mpdr
1515 @itemx -mno-pdr
1516 Control generation of @code{.pdr} sections.
1517
1518 @item -mgp32
1519 @itemx -mfp32
1520 The register sizes are normally inferred from the ISA and ABI, but these
1521 flags force a certain group of registers to be treated as 32 bits wide at
1522 all times. @samp{-mgp32} controls the size of general-purpose registers
1523 and @samp{-mfp32} controls the size of floating-point registers.
1524
1525 @item -mgp64
1526 @itemx -mfp64
1527 The register sizes are normally inferred from the ISA and ABI, but these
1528 flags force a certain group of registers to be treated as 64 bits wide at
1529 all times. @samp{-mgp64} controls the size of general-purpose registers
1530 and @samp{-mfp64} controls the size of floating-point registers.
1531
1532 @item -mfpxx
1533 The register sizes are normally inferred from the ISA and ABI, but using
1534 this flag in combination with @samp{-mabi=32} enables an ABI variant
1535 which will operate correctly with floating-point registers which are
1536 32 or 64 bits wide.
1537
1538 @item -modd-spreg
1539 @itemx -mno-odd-spreg
1540 Enable use of floating-point operations on odd-numbered single-precision
1541 registers when supported by the ISA. @samp{-mfpxx} implies
1542 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1543
1544 @item -mips16
1545 @itemx -no-mips16
1546 Generate code for the MIPS 16 processor. This is equivalent to putting
1547 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1548 turns off this option.
1549
1550 @item -mmips16e2
1551 @itemx -mno-mips16e2
1552 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1553 to putting @code{.module mips16e2} at the start of the assembly file.
1554 @samp{-mno-mips16e2} turns off this option.
1555
1556 @item -mmicromips
1557 @itemx -mno-micromips
1558 Generate code for the microMIPS processor. This is equivalent to putting
1559 @code{.module micromips} at the start of the assembly file.
1560 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1561 @code{.module nomicromips} at the start of the assembly file.
1562
1563 @item -msmartmips
1564 @itemx -mno-smartmips
1565 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1566 equivalent to putting @code{.module smartmips} at the start of the assembly
1567 file. @samp{-mno-smartmips} turns off this option.
1568
1569 @item -mips3d
1570 @itemx -no-mips3d
1571 Generate code for the MIPS-3D Application Specific Extension.
1572 This tells the assembler to accept MIPS-3D instructions.
1573 @samp{-no-mips3d} turns off this option.
1574
1575 @item -mdmx
1576 @itemx -no-mdmx
1577 Generate code for the MDMX Application Specific Extension.
1578 This tells the assembler to accept MDMX instructions.
1579 @samp{-no-mdmx} turns off this option.
1580
1581 @item -mdsp
1582 @itemx -mno-dsp
1583 Generate code for the DSP Release 1 Application Specific Extension.
1584 This tells the assembler to accept DSP Release 1 instructions.
1585 @samp{-mno-dsp} turns off this option.
1586
1587 @item -mdspr2
1588 @itemx -mno-dspr2
1589 Generate code for the DSP Release 2 Application Specific Extension.
1590 This option implies @samp{-mdsp}.
1591 This tells the assembler to accept DSP Release 2 instructions.
1592 @samp{-mno-dspr2} turns off this option.
1593
1594 @item -mdspr3
1595 @itemx -mno-dspr3
1596 Generate code for the DSP Release 3 Application Specific Extension.
1597 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1598 This tells the assembler to accept DSP Release 3 instructions.
1599 @samp{-mno-dspr3} turns off this option.
1600
1601 @item -mmsa
1602 @itemx -mno-msa
1603 Generate code for the MIPS SIMD Architecture Extension.
1604 This tells the assembler to accept MSA instructions.
1605 @samp{-mno-msa} turns off this option.
1606
1607 @item -mxpa
1608 @itemx -mno-xpa
1609 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1610 This tells the assembler to accept XPA instructions.
1611 @samp{-mno-xpa} turns off this option.
1612
1613 @item -mmt
1614 @itemx -mno-mt
1615 Generate code for the MT Application Specific Extension.
1616 This tells the assembler to accept MT instructions.
1617 @samp{-mno-mt} turns off this option.
1618
1619 @item -mmcu
1620 @itemx -mno-mcu
1621 Generate code for the MCU Application Specific Extension.
1622 This tells the assembler to accept MCU instructions.
1623 @samp{-mno-mcu} turns off this option.
1624
1625 @item -mcrc
1626 @itemx -mno-crc
1627 Generate code for the MIPS cyclic redundancy check (CRC) Application
1628 Specific Extension. This tells the assembler to accept CRC instructions.
1629 @samp{-mno-crc} turns off this option.
1630
1631 @item -mginv
1632 @itemx -mno-ginv
1633 Generate code for the Global INValidate (GINV) Application Specific
1634 Extension. This tells the assembler to accept GINV instructions.
1635 @samp{-mno-ginv} turns off this option.
1636
1637 @item -mloongson-mmi
1638 @itemx -mno-loongson-mmi
1639 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1640 Application Specific Extension. This tells the assembler to accept MMI
1641 instructions.
1642 @samp{-mno-loongson-mmi} turns off this option.
1643
1644 @item -mloongson-cam
1645 @itemx -mno-loongson-cam
1646 Generate code for the Loongson Content Address Memory (CAM) instructions.
1647 This tells the assembler to accept Loongson CAM instructions.
1648 @samp{-mno-loongson-cam} turns off this option.
1649
1650 @item -mloongson-ext
1651 @itemx -mno-loongson-ext
1652 Generate code for the Loongson EXTensions (EXT) instructions.
1653 This tells the assembler to accept Loongson EXT instructions.
1654 @samp{-mno-loongson-ext} turns off this option.
1655
1656 @item -mloongson-ext2
1657 @itemx -mno-loongson-ext2
1658 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1659 This option implies @samp{-mloongson-ext}.
1660 This tells the assembler to accept Loongson EXT2 instructions.
1661 @samp{-mno-loongson-ext2} turns off this option.
1662
1663 @item -minsn32
1664 @itemx -mno-insn32
1665 Only use 32-bit instruction encodings when generating code for the
1666 microMIPS processor. This option inhibits the use of any 16-bit
1667 instructions. This is equivalent to putting @code{.set insn32} at
1668 the start of the assembly file. @samp{-mno-insn32} turns off this
1669 option. This is equivalent to putting @code{.set noinsn32} at the
1670 start of the assembly file. By default @samp{-mno-insn32} is
1671 selected, allowing all instructions to be used.
1672
1673 @item --construct-floats
1674 @itemx --no-construct-floats
1675 The @samp{--no-construct-floats} option disables the construction of
1676 double width floating point constants by loading the two halves of the
1677 value into the two single width floating point registers that make up
1678 the double width register. By default @samp{--construct-floats} is
1679 selected, allowing construction of these floating point constants.
1680
1681 @item --relax-branch
1682 @itemx --no-relax-branch
1683 The @samp{--relax-branch} option enables the relaxation of out-of-range
1684 branches. By default @samp{--no-relax-branch} is selected, causing any
1685 out-of-range branches to produce an error.
1686
1687 @item -mignore-branch-isa
1688 @itemx -mno-ignore-branch-isa
1689 Ignore branch checks for invalid transitions between ISA modes. The
1690 semantics of branches does not provide for an ISA mode switch, so in
1691 most cases the ISA mode a branch has been encoded for has to be the
1692 same as the ISA mode of the branch's target label. Therefore GAS has
1693 checks implemented that verify in branch assembly that the two ISA
1694 modes match. @samp{-mignore-branch-isa} disables these checks. By
1695 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1696 branch requiring a transition between ISA modes to produce an error.
1697
1698 @item -mnan=@var{encoding}
1699 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1700 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1701
1702 @cindex emulation
1703 @item --emulation=@var{name}
1704 This option was formerly used to switch between ELF and ECOFF output
1705 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1706 removed in GAS 2.24, so the option now serves little purpose.
1707 It is retained for backwards compatibility.
1708
1709 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1710 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1711 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1712 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1713 preferred options instead.
1714
1715 @item -nocpp
1716 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1717 the native tools.
1718
1719 @item --trap
1720 @itemx --no-trap
1721 @itemx --break
1722 @itemx --no-break
1723 Control how to deal with multiplication overflow and division by zero.
1724 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1725 (and only work for Instruction Set Architecture level 2 and higher);
1726 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1727 break exception.
1728
1729 @item -n
1730 When this option is used, @command{@value{AS}} will issue a warning every
1731 time it generates a nop instruction from a macro.
1732 @end table
1733 @c man end
1734 @end ifset
1735
1736 @ifset MCORE
1737 The following options are available when @value{AS} is configured for
1738 an MCore processor.
1739
1740 @table @gcctabopt
1741 @item -jsri2bsr
1742 @itemx -nojsri2bsr
1743 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1744 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1745
1746 @item -sifilter
1747 @itemx -nosifilter
1748 Enable or disable the silicon filter behaviour. By default this is disabled.
1749 The default can be overridden by the @samp{-sifilter} command-line option.
1750
1751 @item -relax
1752 Alter jump instructions for long displacements.
1753
1754 @item -mcpu=[210|340]
1755 Select the cpu type on the target hardware. This controls which instructions
1756 can be assembled.
1757
1758 @item -EB
1759 Assemble for a big endian target.
1760
1761 @item -EL
1762 Assemble for a little endian target.
1763
1764 @end table
1765 @end ifset
1766 @c man end
1767
1768 @ifset METAG
1769
1770 @ifclear man
1771 @xref{Meta Options}, for the options available when @value{AS} is configured
1772 for a Meta processor.
1773 @end ifclear
1774
1775 @ifset man
1776 @c man begin OPTIONS
1777 The following options are available when @value{AS} is configured for a
1778 Meta processor.
1779 @c man end
1780 @c man begin INCLUDE
1781 @include c-metag.texi
1782 @c ended inside the included file
1783 @end ifset
1784
1785 @end ifset
1786
1787 @c man begin OPTIONS
1788 @ifset MMIX
1789 See the info pages for documentation of the MMIX-specific options.
1790 @end ifset
1791
1792 @ifset NDS32
1793
1794 @ifclear man
1795 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1796 for a NDS32 processor.
1797 @end ifclear
1798 @c ended inside the included file
1799 @end ifset
1800
1801 @ifset man
1802 @c man begin OPTIONS
1803 The following options are available when @value{AS} is configured for a
1804 NDS32 processor.
1805 @c man end
1806 @c man begin INCLUDE
1807 @include c-nds32.texi
1808 @c ended inside the included file
1809 @end ifset
1810
1811 @c man end
1812 @ifset PPC
1813
1814 @ifclear man
1815 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1816 for a PowerPC processor.
1817 @end ifclear
1818
1819 @ifset man
1820 @c man begin OPTIONS
1821 The following options are available when @value{AS} is configured for a
1822 PowerPC processor.
1823 @c man end
1824 @c man begin INCLUDE
1825 @include c-ppc.texi
1826 @c ended inside the included file
1827 @end ifset
1828
1829 @end ifset
1830
1831 @ifset RISCV
1832
1833 @ifclear man
1834 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1835 for a RISC-V processor.
1836 @end ifclear
1837
1838 @ifset man
1839 @c man begin OPTIONS
1840 The following options are available when @value{AS} is configured for a
1841 RISC-V processor.
1842 @c man end
1843 @c man begin INCLUDE
1844 @include c-riscv.texi
1845 @c ended inside the included file
1846 @end ifset
1847
1848 @end ifset
1849
1850 @c man begin OPTIONS
1851 @ifset RX
1852 See the info pages for documentation of the RX-specific options.
1853 @end ifset
1854
1855 @ifset S390
1856 The following options are available when @value{AS} is configured for the s390
1857 processor family.
1858
1859 @table @gcctabopt
1860 @item -m31
1861 @itemx -m64
1862 Select the word size, either 31/32 bits or 64 bits.
1863 @item -mesa
1864 @item -mzarch
1865 Select the architecture mode, either the Enterprise System
1866 Architecture (esa) or the z/Architecture mode (zarch).
1867 @item -march=@var{processor}
1868 Specify which s390 processor variant is the target, @samp{g5} (or
1869 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1870 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1871 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1872 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1873 (or @samp{arch13}).
1874 @item -mregnames
1875 @itemx -mno-regnames
1876 Allow or disallow symbolic names for registers.
1877 @item -mwarn-areg-zero
1878 Warn whenever the operand for a base or index register has been specified
1879 but evaluates to zero.
1880 @end table
1881 @end ifset
1882 @c man end
1883
1884 @ifset TIC6X
1885
1886 @ifclear man
1887 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1888 for a TMS320C6000 processor.
1889 @end ifclear
1890
1891 @ifset man
1892 @c man begin OPTIONS
1893 The following options are available when @value{AS} is configured for a
1894 TMS320C6000 processor.
1895 @c man end
1896 @c man begin INCLUDE
1897 @include c-tic6x.texi
1898 @c ended inside the included file
1899 @end ifset
1900
1901 @end ifset
1902
1903 @ifset TILEGX
1904
1905 @ifclear man
1906 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1907 for a TILE-Gx processor.
1908 @end ifclear
1909
1910 @ifset man
1911 @c man begin OPTIONS
1912 The following options are available when @value{AS} is configured for a TILE-Gx
1913 processor.
1914 @c man end
1915 @c man begin INCLUDE
1916 @include c-tilegx.texi
1917 @c ended inside the included file
1918 @end ifset
1919
1920 @end ifset
1921
1922 @ifset VISIUM
1923
1924 @ifclear man
1925 @xref{Visium Options}, for the options available when @value{AS} is configured
1926 for a Visium processor.
1927 @end ifclear
1928
1929 @ifset man
1930 @c man begin OPTIONS
1931 The following option is available when @value{AS} is configured for a Visium
1932 processor.
1933 @c man end
1934 @c man begin INCLUDE
1935 @include c-visium.texi
1936 @c ended inside the included file
1937 @end ifset
1938
1939 @end ifset
1940
1941 @ifset XTENSA
1942
1943 @ifclear man
1944 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1945 for an Xtensa processor.
1946 @end ifclear
1947
1948 @ifset man
1949 @c man begin OPTIONS
1950 The following options are available when @value{AS} is configured for an
1951 Xtensa processor.
1952 @c man end
1953 @c man begin INCLUDE
1954 @include c-xtensa.texi
1955 @c ended inside the included file
1956 @end ifset
1957
1958 @end ifset
1959
1960 @ifset Z80
1961
1962 @ifclear man
1963 @xref{Z80 Options}, for the options available when @value{AS} is configured
1964 for an Z80 processor.
1965 @end ifclear
1966
1967 @ifset man
1968 @c man begin OPTIONS
1969 The following options are available when @value{AS} is configured for an
1970 Z80 processor.
1971 @c man end
1972 @c man begin INCLUDE
1973 @include c-z80.texi
1974 @c ended inside the included file
1975 @end ifset
1976
1977 @end ifset
1978
1979 @menu
1980 * Manual:: Structure of this Manual
1981 * GNU Assembler:: The GNU Assembler
1982 * Object Formats:: Object File Formats
1983 * Command Line:: Command Line
1984 * Input Files:: Input Files
1985 * Object:: Output (Object) File
1986 * Errors:: Error and Warning Messages
1987 @end menu
1988
1989 @node Manual
1990 @section Structure of this Manual
1991
1992 @cindex manual, structure and purpose
1993 This manual is intended to describe what you need to know to use
1994 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1995 notation for symbols, constants, and expressions; the directives that
1996 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1997
1998 @ifclear GENERIC
1999 We also cover special features in the @value{TARGET}
2000 configuration of @command{@value{AS}}, including assembler directives.
2001 @end ifclear
2002 @ifset GENERIC
2003 This manual also describes some of the machine-dependent features of
2004 various flavors of the assembler.
2005 @end ifset
2006
2007 @cindex machine instructions (not covered)
2008 On the other hand, this manual is @emph{not} intended as an introduction
2009 to programming in assembly language---let alone programming in general!
2010 In a similar vein, we make no attempt to introduce the machine
2011 architecture; we do @emph{not} describe the instruction set, standard
2012 mnemonics, registers or addressing modes that are standard to a
2013 particular architecture.
2014 @ifset GENERIC
2015 You may want to consult the manufacturer's
2016 machine architecture manual for this information.
2017 @end ifset
2018 @ifclear GENERIC
2019 @ifset H8/300
2020 For information on the H8/300 machine instruction set, see @cite{H8/300
2021 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2022 Programming Manual} (Renesas).
2023 @end ifset
2024 @ifset SH
2025 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2026 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2027 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2028 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2029 @end ifset
2030 @ifset Z8000
2031 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2032 @end ifset
2033 @end ifclear
2034
2035 @c I think this is premature---doc@cygnus.com, 17jan1991
2036 @ignore
2037 Throughout this manual, we assume that you are running @dfn{GNU},
2038 the portable operating system from the @dfn{Free Software
2039 Foundation, Inc.}. This restricts our attention to certain kinds of
2040 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2041 once this assumption is granted examples and definitions need less
2042 qualification.
2043
2044 @command{@value{AS}} is part of a team of programs that turn a high-level
2045 human-readable series of instructions into a low-level
2046 computer-readable series of instructions. Different versions of
2047 @command{@value{AS}} are used for different kinds of computer.
2048 @end ignore
2049
2050 @c There used to be a section "Terminology" here, which defined
2051 @c "contents", "byte", "word", and "long". Defining "word" to any
2052 @c particular size is confusing when the .word directive may generate 16
2053 @c bits on one machine and 32 bits on another; in general, for the user
2054 @c version of this manual, none of these terms seem essential to define.
2055 @c They were used very little even in the former draft of the manual;
2056 @c this draft makes an effort to avoid them (except in names of
2057 @c directives).
2058
2059 @node GNU Assembler
2060 @section The GNU Assembler
2061
2062 @c man begin DESCRIPTION
2063
2064 @sc{gnu} @command{as} is really a family of assemblers.
2065 @ifclear GENERIC
2066 This manual describes @command{@value{AS}}, a member of that family which is
2067 configured for the @value{TARGET} architectures.
2068 @end ifclear
2069 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2070 should find a fairly similar environment when you use it on another
2071 architecture. Each version has much in common with the others,
2072 including object file formats, most assembler directives (often called
2073 @dfn{pseudo-ops}) and assembler syntax.@refill
2074
2075 @cindex purpose of @sc{gnu} assembler
2076 @command{@value{AS}} is primarily intended to assemble the output of the
2077 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2078 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2079 assemble correctly everything that other assemblers for the same
2080 machine would assemble.
2081 @ifset VAX
2082 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2083 @end ifset
2084 @ifset M680X0
2085 @c This remark should appear in generic version of manual; assumption
2086 @c here is that generic version sets M680x0.
2087 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2088 assembler for the same architecture; for example, we know of several
2089 incompatible versions of 680x0 assembly language syntax.
2090 @end ifset
2091
2092 @c man end
2093
2094 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2095 program in one pass of the source file. This has a subtle impact on the
2096 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2097
2098 @node Object Formats
2099 @section Object File Formats
2100
2101 @cindex object file format
2102 The @sc{gnu} assembler can be configured to produce several alternative
2103 object file formats. For the most part, this does not affect how you
2104 write assembly language programs; but directives for debugging symbols
2105 are typically different in different file formats. @xref{Symbol
2106 Attributes,,Symbol Attributes}.
2107 @ifclear GENERIC
2108 @ifclear MULTI-OBJ
2109 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2110 @value{OBJ-NAME} format object files.
2111 @end ifclear
2112 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2113 @ifset HPPA
2114 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2115 SOM or ELF format object files.
2116 @end ifset
2117 @end ifclear
2118
2119 @node Command Line
2120 @section Command Line
2121
2122 @cindex command line conventions
2123
2124 After the program name @command{@value{AS}}, the command line may contain
2125 options and file names. Options may appear in any order, and may be
2126 before, after, or between file names. The order of file names is
2127 significant.
2128
2129 @cindex standard input, as input file
2130 @kindex --
2131 @file{--} (two hyphens) by itself names the standard input file
2132 explicitly, as one of the files for @command{@value{AS}} to assemble.
2133
2134 @cindex options, command line
2135 Except for @samp{--} any command-line argument that begins with a
2136 hyphen (@samp{-}) is an option. Each option changes the behavior of
2137 @command{@value{AS}}. No option changes the way another option works. An
2138 option is a @samp{-} followed by one or more letters; the case of
2139 the letter is important. All options are optional.
2140
2141 Some options expect exactly one file name to follow them. The file
2142 name may either immediately follow the option's letter (compatible
2143 with older assemblers) or it may be the next command argument (@sc{gnu}
2144 standard). These two command lines are equivalent:
2145
2146 @smallexample
2147 @value{AS} -o my-object-file.o mumble.s
2148 @value{AS} -omy-object-file.o mumble.s
2149 @end smallexample
2150
2151 @node Input Files
2152 @section Input Files
2153
2154 @cindex input
2155 @cindex source program
2156 @cindex files, input
2157 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2158 describe the program input to one run of @command{@value{AS}}. The program may
2159 be in one or more files; how the source is partitioned into files
2160 doesn't change the meaning of the source.
2161
2162 @c I added "con" prefix to "catenation" just to prove I can overcome my
2163 @c APL training... doc@cygnus.com
2164 The source program is a concatenation of the text in all the files, in the
2165 order specified.
2166
2167 @c man begin DESCRIPTION
2168 Each time you run @command{@value{AS}} it assembles exactly one source
2169 program. The source program is made up of one or more files.
2170 (The standard input is also a file.)
2171
2172 You give @command{@value{AS}} a command line that has zero or more input file
2173 names. The input files are read (from left file name to right). A
2174 command-line argument (in any position) that has no special meaning
2175 is taken to be an input file name.
2176
2177 If you give @command{@value{AS}} no file names it attempts to read one input file
2178 from the @command{@value{AS}} standard input, which is normally your terminal. You
2179 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2180 to assemble.
2181
2182 Use @samp{--} if you need to explicitly name the standard input file
2183 in your command line.
2184
2185 If the source is empty, @command{@value{AS}} produces a small, empty object
2186 file.
2187
2188 @c man end
2189
2190 @subheading Filenames and Line-numbers
2191
2192 @cindex input file linenumbers
2193 @cindex line numbers, in input files
2194 There are two ways of locating a line in the input file (or files) and
2195 either may be used in reporting error messages. One way refers to a line
2196 number in a physical file; the other refers to a line number in a
2197 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2198
2199 @dfn{Physical files} are those files named in the command line given
2200 to @command{@value{AS}}.
2201
2202 @dfn{Logical files} are simply names declared explicitly by assembler
2203 directives; they bear no relation to physical files. Logical file names help
2204 error messages reflect the original source file, when @command{@value{AS}} source
2205 is itself synthesized from other files. @command{@value{AS}} understands the
2206 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2207 @ref{File,,@code{.file}}.
2208
2209 @node Object
2210 @section Output (Object) File
2211
2212 @cindex object file
2213 @cindex output file
2214 @kindex a.out
2215 @kindex .o
2216 Every time you run @command{@value{AS}} it produces an output file, which is
2217 your assembly language program translated into numbers. This file
2218 is the object file. Its default name is @code{a.out}.
2219 You can give it another name by using the @option{-o} option. Conventionally,
2220 object file names end with @file{.o}. The default name is used for historical
2221 reasons: older assemblers were capable of assembling self-contained programs
2222 directly into a runnable program. (For some formats, this isn't currently
2223 possible, but it can be done for the @code{a.out} format.)
2224
2225 @cindex linker
2226 @kindex ld
2227 The object file is meant for input to the linker @code{@value{LD}}. It contains
2228 assembled program code, information to help @code{@value{LD}} integrate
2229 the assembled program into a runnable file, and (optionally) symbolic
2230 information for the debugger.
2231
2232 @c link above to some info file(s) like the description of a.out.
2233 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2234
2235 @node Errors
2236 @section Error and Warning Messages
2237
2238 @c man begin DESCRIPTION
2239
2240 @cindex error messages
2241 @cindex warning messages
2242 @cindex messages from assembler
2243 @command{@value{AS}} may write warnings and error messages to the standard error
2244 file (usually your terminal). This should not happen when a compiler
2245 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2246 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2247 grave problem that stops the assembly.
2248
2249 @c man end
2250
2251 @cindex format of warning messages
2252 Warning messages have the format
2253
2254 @smallexample
2255 file_name:@b{NNN}:Warning Message Text
2256 @end smallexample
2257
2258 @noindent
2259 @cindex file names and line numbers, in warnings/errors
2260 (where @b{NNN} is a line number). If both a logical file name
2261 (@pxref{File,,@code{.file}}) and a logical line number
2262 @ifset GENERIC
2263 (@pxref{Line,,@code{.line}})
2264 @end ifset
2265 have been given then they will be used, otherwise the file name and line number
2266 in the current assembler source file will be used. The message text is
2267 intended to be self explanatory (in the grand Unix tradition).
2268
2269 Note the file name must be set via the logical version of the @code{.file}
2270 directive, not the DWARF2 version of the @code{.file} directive. For example:
2271
2272 @smallexample
2273 .file 2 "bar.c"
2274 error_assembler_source
2275 .file "foo.c"
2276 .line 30
2277 error_c_source
2278 @end smallexample
2279
2280 produces this output:
2281
2282 @smallexample
2283 Assembler messages:
2284 asm.s:2: Error: no such instruction: `error_assembler_source'
2285 foo.c:31: Error: no such instruction: `error_c_source'
2286 @end smallexample
2287
2288 @cindex format of error messages
2289 Error messages have the format
2290
2291 @smallexample
2292 file_name:@b{NNN}:FATAL:Error Message Text
2293 @end smallexample
2294
2295 The file name and line number are derived as for warning
2296 messages. The actual message text may be rather less explanatory
2297 because many of them aren't supposed to happen.
2298
2299 @node Invoking
2300 @chapter Command-Line Options
2301
2302 @cindex options, all versions of assembler
2303 This chapter describes command-line options available in @emph{all}
2304 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2305 for options specific
2306 @ifclear GENERIC
2307 to the @value{TARGET} target.
2308 @end ifclear
2309 @ifset GENERIC
2310 to particular machine architectures.
2311 @end ifset
2312
2313 @c man begin DESCRIPTION
2314
2315 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2316 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2317 The assembler arguments must be separated from each other (and the @samp{-Wa})
2318 by commas. For example:
2319
2320 @smallexample
2321 gcc -c -g -O -Wa,-alh,-L file.c
2322 @end smallexample
2323
2324 @noindent
2325 This passes two options to the assembler: @samp{-alh} (emit a listing to
2326 standard output with high-level and assembly source) and @samp{-L} (retain
2327 local symbols in the symbol table).
2328
2329 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2330 command-line options are automatically passed to the assembler by the compiler.
2331 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2332 precisely what options it passes to each compilation pass, including the
2333 assembler.)
2334
2335 @c man end
2336
2337 @menu
2338 * a:: -a[cdghlns] enable listings
2339 * alternate:: --alternate enable alternate macro syntax
2340 * D:: -D for compatibility
2341 * f:: -f to work faster
2342 * I:: -I for .include search path
2343 @ifclear DIFF-TBL-KLUGE
2344 * K:: -K for compatibility
2345 @end ifclear
2346 @ifset DIFF-TBL-KLUGE
2347 * K:: -K for difference tables
2348 @end ifset
2349
2350 * L:: -L to retain local symbols
2351 * listing:: --listing-XXX to configure listing output
2352 * M:: -M or --mri to assemble in MRI compatibility mode
2353 * MD:: --MD for dependency tracking
2354 * no-pad-sections:: --no-pad-sections to stop section padding
2355 * o:: -o to name the object file
2356 * R:: -R to join data and text sections
2357 * statistics:: --statistics to see statistics about assembly
2358 * traditional-format:: --traditional-format for compatible output
2359 * v:: -v to announce version
2360 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2361 * Z:: -Z to make object file even after errors
2362 @end menu
2363
2364 @node a
2365 @section Enable Listings: @option{-a[cdghlns]}
2366
2367 @kindex -a
2368 @kindex -ac
2369 @kindex -ad
2370 @kindex -ag
2371 @kindex -ah
2372 @kindex -al
2373 @kindex -an
2374 @kindex -as
2375 @cindex listings, enabling
2376 @cindex assembly listings, enabling
2377
2378 These options enable listing output from the assembler. By itself,
2379 @samp{-a} requests high-level, assembly, and symbols listing.
2380 You can use other letters to select specific options for the list:
2381 @samp{-ah} requests a high-level language listing,
2382 @samp{-al} requests an output-program assembly listing, and
2383 @samp{-as} requests a symbol table listing.
2384 High-level listings require that a compiler debugging option like
2385 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2386 also.
2387
2388 Use the @samp{-ag} option to print a first section with general assembly
2389 information, like @value{AS} version, switches passed, or time stamp.
2390
2391 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2392 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2393 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2394 omitted from the listing.
2395
2396 Use the @samp{-ad} option to omit debugging directives from the
2397 listing.
2398
2399 Once you have specified one of these options, you can further control
2400 listing output and its appearance using the directives @code{.list},
2401 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2402 @code{.sbttl}.
2403 The @samp{-an} option turns off all forms processing.
2404 If you do not request listing output with one of the @samp{-a} options, the
2405 listing-control directives have no effect.
2406
2407 The letters after @samp{-a} may be combined into one option,
2408 @emph{e.g.}, @samp{-aln}.
2409
2410 Note if the assembler source is coming from the standard input (e.g.,
2411 because it
2412 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2413 is being used) then the listing will not contain any comments or preprocessor
2414 directives. This is because the listing code buffers input source lines from
2415 stdin only after they have been preprocessed by the assembler. This reduces
2416 memory usage and makes the code more efficient.
2417
2418 @node alternate
2419 @section @option{--alternate}
2420
2421 @kindex --alternate
2422 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2423
2424 @node D
2425 @section @option{-D}
2426
2427 @kindex -D
2428 This option has no effect whatsoever, but it is accepted to make it more
2429 likely that scripts written for other assemblers also work with
2430 @command{@value{AS}}.
2431
2432 @node f
2433 @section Work Faster: @option{-f}
2434
2435 @kindex -f
2436 @cindex trusted compiler
2437 @cindex faster processing (@option{-f})
2438 @samp{-f} should only be used when assembling programs written by a
2439 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2440 and comment preprocessing on
2441 the input file(s) before assembling them. @xref{Preprocessing,
2442 ,Preprocessing}.
2443
2444 @quotation
2445 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2446 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2447 not work correctly.
2448 @end quotation
2449
2450 @node I
2451 @section @code{.include} Search Path: @option{-I} @var{path}
2452
2453 @kindex -I @var{path}
2454 @cindex paths for @code{.include}
2455 @cindex search path for @code{.include}
2456 @cindex @code{include} directive search path
2457 Use this option to add a @var{path} to the list of directories
2458 @command{@value{AS}} searches for files specified in @code{.include}
2459 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2460 many times as necessary to include a variety of paths. The current
2461 working directory is always searched first; after that, @command{@value{AS}}
2462 searches any @samp{-I} directories in the same order as they were
2463 specified (left to right) on the command line.
2464
2465 @node K
2466 @section Difference Tables: @option{-K}
2467
2468 @kindex -K
2469 @ifclear DIFF-TBL-KLUGE
2470 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2471 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2472 where it can be used to warn when the assembler alters the machine code
2473 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2474 family does not have the addressing limitations that sometimes lead to this
2475 alteration on other platforms.
2476 @end ifclear
2477
2478 @ifset DIFF-TBL-KLUGE
2479 @cindex difference tables, warning
2480 @cindex warning for altered difference tables
2481 @command{@value{AS}} sometimes alters the code emitted for directives of the
2482 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2483 You can use the @samp{-K} option if you want a warning issued when this
2484 is done.
2485 @end ifset
2486
2487 @node L
2488 @section Include Local Symbols: @option{-L}
2489
2490 @kindex -L
2491 @cindex local symbols, retaining in output
2492 Symbols beginning with system-specific local label prefixes, typically
2493 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2494 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2495 such symbols when debugging, because they are intended for the use of
2496 programs (like compilers) that compose assembler programs, not for your
2497 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2498 such symbols, so you do not normally debug with them.
2499
2500 This option tells @command{@value{AS}} to retain those local symbols
2501 in the object file. Usually if you do this you also tell the linker
2502 @code{@value{LD}} to preserve those symbols.
2503
2504 @node listing
2505 @section Configuring listing output: @option{--listing}
2506
2507 The listing feature of the assembler can be enabled via the command-line switch
2508 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2509 hex dump of the corresponding locations in the output object file, and displays
2510 them as a listing file. The format of this listing can be controlled by
2511 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2512 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2513 @code{.psize} (@pxref{Psize}), and
2514 @code{.eject} (@pxref{Eject}) and also by the following switches:
2515
2516 @table @gcctabopt
2517 @item --listing-lhs-width=@samp{number}
2518 @kindex --listing-lhs-width
2519 @cindex Width of first line disassembly output
2520 Sets the maximum width, in words, of the first line of the hex byte dump. This
2521 dump appears on the left hand side of the listing output.
2522
2523 @item --listing-lhs-width2=@samp{number}
2524 @kindex --listing-lhs-width2
2525 @cindex Width of continuation lines of disassembly output
2526 Sets the maximum width, in words, of any further lines of the hex byte dump for
2527 a given input source line. If this value is not specified, it defaults to being
2528 the same as the value specified for @samp{--listing-lhs-width}. If neither
2529 switch is used the default is to one.
2530
2531 @item --listing-rhs-width=@samp{number}
2532 @kindex --listing-rhs-width
2533 @cindex Width of source line output
2534 Sets the maximum width, in characters, of the source line that is displayed
2535 alongside the hex dump. The default value for this parameter is 100. The
2536 source line is displayed on the right hand side of the listing output.
2537
2538 @item --listing-cont-lines=@samp{number}
2539 @kindex --listing-cont-lines
2540 @cindex Maximum number of continuation lines
2541 Sets the maximum number of continuation lines of hex dump that will be
2542 displayed for a given single line of source input. The default value is 4.
2543 @end table
2544
2545 @node M
2546 @section Assemble in MRI Compatibility Mode: @option{-M}
2547
2548 @kindex -M
2549 @cindex MRI compatibility mode
2550 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2551 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2552 compatible with the @code{ASM68K} assembler from Microtec Research.
2553 The exact nature of the
2554 MRI syntax will not be documented here; see the MRI manuals for more
2555 information. Note in particular that the handling of macros and macro
2556 arguments is somewhat different. The purpose of this option is to permit
2557 assembling existing MRI assembler code using @command{@value{AS}}.
2558
2559 The MRI compatibility is not complete. Certain operations of the MRI assembler
2560 depend upon its object file format, and can not be supported using other object
2561 file formats. Supporting these would require enhancing each object file format
2562 individually. These are:
2563
2564 @itemize @bullet
2565 @item global symbols in common section
2566
2567 The m68k MRI assembler supports common sections which are merged by the linker.
2568 Other object file formats do not support this. @command{@value{AS}} handles
2569 common sections by treating them as a single common symbol. It permits local
2570 symbols to be defined within a common section, but it can not support global
2571 symbols, since it has no way to describe them.
2572
2573 @item complex relocations
2574
2575 The MRI assemblers support relocations against a negated section address, and
2576 relocations which combine the start addresses of two or more sections. These
2577 are not support by other object file formats.
2578
2579 @item @code{END} pseudo-op specifying start address
2580
2581 The MRI @code{END} pseudo-op permits the specification of a start address.
2582 This is not supported by other object file formats. The start address may
2583 instead be specified using the @option{-e} option to the linker, or in a linker
2584 script.
2585
2586 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2587
2588 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2589 name to the output file. This is not supported by other object file formats.
2590
2591 @item @code{ORG} pseudo-op
2592
2593 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2594 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2595 which changes the location within the current section. Absolute sections are
2596 not supported by other object file formats. The address of a section may be
2597 assigned within a linker script.
2598 @end itemize
2599
2600 There are some other features of the MRI assembler which are not supported by
2601 @command{@value{AS}}, typically either because they are difficult or because they
2602 seem of little consequence. Some of these may be supported in future releases.
2603
2604 @itemize @bullet
2605
2606 @item EBCDIC strings
2607
2608 EBCDIC strings are not supported.
2609
2610 @item packed binary coded decimal
2611
2612 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2613 and @code{DCB.P} pseudo-ops are not supported.
2614
2615 @item @code{FEQU} pseudo-op
2616
2617 The m68k @code{FEQU} pseudo-op is not supported.
2618
2619 @item @code{NOOBJ} pseudo-op
2620
2621 The m68k @code{NOOBJ} pseudo-op is not supported.
2622
2623 @item @code{OPT} branch control options
2624
2625 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2626 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2627 relaxes all branches, whether forward or backward, to an appropriate size, so
2628 these options serve no purpose.
2629
2630 @item @code{OPT} list control options
2631
2632 The following m68k @code{OPT} list control options are ignored: @code{C},
2633 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2634 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2635
2636 @item other @code{OPT} options
2637
2638 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2639 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2640
2641 @item @code{OPT} @code{D} option is default
2642
2643 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2644 @code{OPT NOD} may be used to turn it off.
2645
2646 @item @code{XREF} pseudo-op.
2647
2648 The m68k @code{XREF} pseudo-op is ignored.
2649
2650 @end itemize
2651
2652 @node MD
2653 @section Dependency Tracking: @option{--MD}
2654
2655 @kindex --MD
2656 @cindex dependency tracking
2657 @cindex make rules
2658
2659 @command{@value{AS}} can generate a dependency file for the file it creates. This
2660 file consists of a single rule suitable for @code{make} describing the
2661 dependencies of the main source file.
2662
2663 The rule is written to the file named in its argument.
2664
2665 This feature is used in the automatic updating of makefiles.
2666
2667 @node no-pad-sections
2668 @section Output Section Padding
2669 @kindex --no-pad-sections
2670 @cindex output section padding
2671 Normally the assembler will pad the end of each output section up to its
2672 alignment boundary. But this can waste space, which can be significant on
2673 memory constrained targets. So the @option{--no-pad-sections} option will
2674 disable this behaviour.
2675
2676 @node o
2677 @section Name the Object File: @option{-o}
2678
2679 @kindex -o
2680 @cindex naming object file
2681 @cindex object file name
2682 There is always one object file output when you run @command{@value{AS}}. By
2683 default it has the name @file{a.out}.
2684 You use this option (which takes exactly one filename) to give the
2685 object file a different name.
2686
2687 Whatever the object file is called, @command{@value{AS}} overwrites any
2688 existing file of the same name.
2689
2690 @node R
2691 @section Join Data and Text Sections: @option{-R}
2692
2693 @kindex -R
2694 @cindex data and text sections, joining
2695 @cindex text and data sections, joining
2696 @cindex joining text and data sections
2697 @cindex merging text and data sections
2698 @option{-R} tells @command{@value{AS}} to write the object file as if all
2699 data-section data lives in the text section. This is only done at
2700 the very last moment: your binary data are the same, but data
2701 section parts are relocated differently. The data section part of
2702 your object file is zero bytes long because all its bytes are
2703 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2704
2705 When you specify @option{-R} it would be possible to generate shorter
2706 address displacements (because we do not have to cross between text and
2707 data section). We refrain from doing this simply for compatibility with
2708 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2709
2710 @ifset COFF-ELF
2711 When @command{@value{AS}} is configured for COFF or ELF output,
2712 this option is only useful if you use sections named @samp{.text} and
2713 @samp{.data}.
2714 @end ifset
2715
2716 @ifset HPPA
2717 @option{-R} is not supported for any of the HPPA targets. Using
2718 @option{-R} generates a warning from @command{@value{AS}}.
2719 @end ifset
2720
2721 @node statistics
2722 @section Display Assembly Statistics: @option{--statistics}
2723
2724 @kindex --statistics
2725 @cindex statistics, about assembly
2726 @cindex time, total for assembly
2727 @cindex space used, maximum for assembly
2728 Use @samp{--statistics} to display two statistics about the resources used by
2729 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2730 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2731 seconds).
2732
2733 @node traditional-format
2734 @section Compatible Output: @option{--traditional-format}
2735
2736 @kindex --traditional-format
2737 For some targets, the output of @command{@value{AS}} is different in some ways
2738 from the output of some existing assembler. This switch requests
2739 @command{@value{AS}} to use the traditional format instead.
2740
2741 For example, it disables the exception frame optimizations which
2742 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2743
2744 @node v
2745 @section Announce Version: @option{-v}
2746
2747 @kindex -v
2748 @kindex -version
2749 @cindex assembler version
2750 @cindex version of assembler
2751 You can find out what version of as is running by including the
2752 option @samp{-v} (which you can also spell as @samp{-version}) on the
2753 command line.
2754
2755 @node W
2756 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2757
2758 @command{@value{AS}} should never give a warning or error message when
2759 assembling compiler output. But programs written by people often
2760 cause @command{@value{AS}} to give a warning that a particular assumption was
2761 made. All such warnings are directed to the standard error file.
2762
2763 @kindex -W
2764 @kindex --no-warn
2765 @cindex suppressing warnings
2766 @cindex warnings, suppressing
2767 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2768 This only affects the warning messages: it does not change any particular of
2769 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2770 are still reported.
2771
2772 @kindex --fatal-warnings
2773 @cindex errors, caused by warnings
2774 @cindex warnings, causing error
2775 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2776 files that generate warnings to be in error.
2777
2778 @kindex --warn
2779 @cindex warnings, switching on
2780 You can switch these options off again by specifying @option{--warn}, which
2781 causes warnings to be output as usual.
2782
2783 @node Z
2784 @section Generate Object File in Spite of Errors: @option{-Z}
2785 @cindex object file, after errors
2786 @cindex errors, continuing after
2787 After an error message, @command{@value{AS}} normally produces no output. If for
2788 some reason you are interested in object file output even after
2789 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2790 option. If there are any errors, @command{@value{AS}} continues anyways, and
2791 writes an object file after a final warning message of the form @samp{@var{n}
2792 errors, @var{m} warnings, generating bad object file.}
2793
2794 @node Syntax
2795 @chapter Syntax
2796
2797 @cindex machine-independent syntax
2798 @cindex syntax, machine-independent
2799 This chapter describes the machine-independent syntax allowed in a
2800 source file. @command{@value{AS}} syntax is similar to what many other
2801 assemblers use; it is inspired by the BSD 4.2
2802 @ifclear VAX
2803 assembler.
2804 @end ifclear
2805 @ifset VAX
2806 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2807 @end ifset
2808
2809 @menu
2810 * Preprocessing:: Preprocessing
2811 * Whitespace:: Whitespace
2812 * Comments:: Comments
2813 * Symbol Intro:: Symbols
2814 * Statements:: Statements
2815 * Constants:: Constants
2816 @end menu
2817
2818 @node Preprocessing
2819 @section Preprocessing
2820
2821 @cindex preprocessing
2822 The @command{@value{AS}} internal preprocessor:
2823 @itemize @bullet
2824 @cindex whitespace, removed by preprocessor
2825 @item
2826 adjusts and removes extra whitespace. It leaves one space or tab before
2827 the keywords on a line, and turns any other whitespace on the line into
2828 a single space.
2829
2830 @cindex comments, removed by preprocessor
2831 @item
2832 removes all comments, replacing them with a single space, or an
2833 appropriate number of newlines.
2834
2835 @cindex constants, converted by preprocessor
2836 @item
2837 converts character constants into the appropriate numeric values.
2838 @end itemize
2839
2840 It does not do macro processing, include file handling, or
2841 anything else you may get from your C compiler's preprocessor. You can
2842 do include file processing with the @code{.include} directive
2843 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2844 to get other ``CPP'' style preprocessing by giving the input file a
2845 @samp{.S} suffix. @url{https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#Overall-Options,
2846 See the 'Options Controlling the Kind of Output' section of the GCC manual for
2847 more details}
2848
2849 Excess whitespace, comments, and character constants
2850 cannot be used in the portions of the input text that are not
2851 preprocessed.
2852
2853 @cindex turning preprocessing on and off
2854 @cindex preprocessing, turning on and off
2855 @kindex #NO_APP
2856 @kindex #APP
2857 If the first line of an input file is @code{#NO_APP} or if you use the
2858 @samp{-f} option, whitespace and comments are not removed from the input file.
2859 Within an input file, you can ask for whitespace and comment removal in
2860 specific portions of the by putting a line that says @code{#APP} before the
2861 text that may contain whitespace or comments, and putting a line that says
2862 @code{#NO_APP} after this text. This feature is mainly intend to support
2863 @code{asm} statements in compilers whose output is otherwise free of comments
2864 and whitespace.
2865
2866 @node Whitespace
2867 @section Whitespace
2868
2869 @cindex whitespace
2870 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2871 Whitespace is used to separate symbols, and to make programs neater for
2872 people to read. Unless within character constants
2873 (@pxref{Characters,,Character Constants}), any whitespace means the same
2874 as exactly one space.
2875
2876 @node Comments
2877 @section Comments
2878
2879 @cindex comments
2880 There are two ways of rendering comments to @command{@value{AS}}. In both
2881 cases the comment is equivalent to one space.
2882
2883 Anything from @samp{/*} through the next @samp{*/} is a comment.
2884 This means you may not nest these comments.
2885
2886 @smallexample
2887 /*
2888 The only way to include a newline ('\n') in a comment
2889 is to use this sort of comment.
2890 */
2891
2892 /* This sort of comment does not nest. */
2893 @end smallexample
2894
2895 @cindex line comment character
2896 Anything from a @dfn{line comment} character up to the next newline is
2897 considered a comment and is ignored. The line comment character is target
2898 specific, and some targets multiple comment characters. Some targets also have
2899 line comment characters that only work if they are the first character on a
2900 line. Some targets use a sequence of two characters to introduce a line
2901 comment. Some targets can also change their line comment characters depending
2902 upon command-line options that have been used. For more details see the
2903 @emph{Syntax} section in the documentation for individual targets.
2904
2905 If the line comment character is the hash sign (@samp{#}) then it still has the
2906 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2907 to specify logical line numbers:
2908
2909 @kindex #
2910 @cindex lines starting with @code{#}
2911 @cindex logical line numbers
2912 To be compatible with past assemblers, lines that begin with @samp{#} have a
2913 special interpretation. Following the @samp{#} should be an absolute
2914 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2915 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2916 new logical file name. The rest of the line, if any, should be whitespace.
2917
2918 If the first non-whitespace characters on the line are not numeric,
2919 the line is ignored. (Just like a comment.)
2920
2921 @smallexample
2922 # This is an ordinary comment.
2923 # 42-6 "new_file_name" # New logical file name
2924 # This is logical line # 36.
2925 @end smallexample
2926 This feature is deprecated, and may disappear from future versions
2927 of @command{@value{AS}}.
2928
2929 @node Symbol Intro
2930 @section Symbols
2931
2932 @cindex characters used in symbols
2933 @ifclear SPECIAL-SYMS
2934 A @dfn{symbol} is one or more characters chosen from the set of all
2935 letters (both upper and lower case), digits and the three characters
2936 @samp{_.$}.
2937 @end ifclear
2938 @ifset SPECIAL-SYMS
2939 @ifclear GENERIC
2940 @ifset H8
2941 A @dfn{symbol} is one or more characters chosen from the set of all
2942 letters (both upper and lower case), digits and the three characters
2943 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2944 symbol names.)
2945 @end ifset
2946 @end ifclear
2947 @end ifset
2948 @ifset GENERIC
2949 On most machines, you can also use @code{$} in symbol names; exceptions
2950 are noted in @ref{Machine Dependencies}.
2951 @end ifset
2952 No symbol may begin with a digit. Case is significant.
2953 There is no length limit; all characters are significant. Multibyte characters
2954 are supported. Symbols are delimited by characters not in that set, or by the
2955 beginning of a file (since the source program must end with a newline, the end
2956 of a file is not a possible symbol delimiter). @xref{Symbols}.
2957
2958 Symbol names may also be enclosed in double quote @code{"} characters. In such
2959 cases any characters are allowed, except for the NUL character. If a double
2960 quote character is to be included in the symbol name it must be preceeded by a
2961 backslash @code{\} character.
2962 @cindex length of symbols
2963
2964 @node Statements
2965 @section Statements
2966
2967 @cindex statements, structure of
2968 @cindex line separator character
2969 @cindex statement separator character
2970
2971 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2972 @dfn{line separator character}. The line separator character is target
2973 specific and described in the @emph{Syntax} section of each
2974 target's documentation. Not all targets support a line separator character.
2975 The newline or line separator character is considered to be part of the
2976 preceding statement. Newlines and separators within character constants are an
2977 exception: they do not end statements.
2978
2979 @cindex newline, required at file end
2980 @cindex EOF, newline must precede
2981 It is an error to end any statement with end-of-file: the last
2982 character of any input file should be a newline.@refill
2983
2984 An empty statement is allowed, and may include whitespace. It is ignored.
2985
2986 @cindex instructions and directives
2987 @cindex directives and instructions
2988 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2989 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2990 @c 13feb91.
2991 A statement begins with zero or more labels, optionally followed by a
2992 key symbol which determines what kind of statement it is. The key
2993 symbol determines the syntax of the rest of the statement. If the
2994 symbol begins with a dot @samp{.} then the statement is an assembler
2995 directive: typically valid for any computer. If the symbol begins with
2996 a letter the statement is an assembly language @dfn{instruction}: it
2997 assembles into a machine language instruction.
2998 @ifset GENERIC
2999 Different versions of @command{@value{AS}} for different computers
3000 recognize different instructions. In fact, the same symbol may
3001 represent a different instruction in a different computer's assembly
3002 language.@refill
3003 @end ifset
3004
3005 @cindex @code{:} (label)
3006 @cindex label (@code{:})
3007 A label is a symbol immediately followed by a colon (@code{:}).
3008 Whitespace before a label or after a colon is permitted, but you may not
3009 have whitespace between a label's symbol and its colon. @xref{Labels}.
3010
3011 @ifset HPPA
3012 For HPPA targets, labels need not be immediately followed by a colon, but
3013 the definition of a label must begin in column zero. This also implies that
3014 only one label may be defined on each line.
3015 @end ifset
3016
3017 @smallexample
3018 label: .directive followed by something
3019 another_label: # This is an empty statement.
3020 instruction operand_1, operand_2, @dots{}
3021 @end smallexample
3022
3023 @node Constants
3024 @section Constants
3025
3026 @cindex constants
3027 A constant is a number, written so that its value is known by
3028 inspection, without knowing any context. Like this:
3029 @smallexample
3030 @group
3031 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3032 .ascii "Ring the bell\7" # A string constant.
3033 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3034 .float 0f-314159265358979323846264338327\
3035 95028841971.693993751E-40 # - pi, a flonum.
3036 @end group
3037 @end smallexample
3038
3039 @menu
3040 * Characters:: Character Constants
3041 * Numbers:: Number Constants
3042 @end menu
3043
3044 @node Characters
3045 @subsection Character Constants
3046
3047 @cindex character constants
3048 @cindex constants, character
3049 There are two kinds of character constants. A @dfn{character} stands
3050 for one character in one byte and its value may be used in
3051 numeric expressions. String constants (properly called string
3052 @emph{literals}) are potentially many bytes and their values may not be
3053 used in arithmetic expressions.
3054
3055 @menu
3056 * Strings:: Strings
3057 * Chars:: Characters
3058 @end menu
3059
3060 @node Strings
3061 @subsubsection Strings
3062
3063 @cindex string constants
3064 @cindex constants, string
3065 A @dfn{string} is written between double-quotes. It may contain
3066 double-quotes or null characters. The way to get special characters
3067 into a string is to @dfn{escape} these characters: precede them with
3068 a backslash @samp{\} character. For example @samp{\\} represents
3069 one backslash: the first @code{\} is an escape which tells
3070 @command{@value{AS}} to interpret the second character literally as a backslash
3071 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3072 escape character). The complete list of escapes follows.
3073
3074 @cindex escape codes, character
3075 @cindex character escape codes
3076 @c NOTE: Cindex entries must not start with a backlash character.
3077 @c NOTE: This confuses the pdf2texi script when it is creating the
3078 @c NOTE: index based upon the first character and so it generates:
3079 @c NOTE: \initial {\\}
3080 @c NOTE: which then results in the error message:
3081 @c NOTE: Argument of \\ has an extra }.
3082 @c NOTE: So in the index entries below a space character has been
3083 @c NOTE: prepended to avoid this problem.
3084 @table @kbd
3085 @c @item \a
3086 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3087 @c
3088 @cindex @code{ \b} (backspace character)
3089 @cindex backspace (@code{\b})
3090 @item \b
3091 Mnemonic for backspace; for ASCII this is octal code 010.
3092
3093 @c @item \e
3094 @c Mnemonic for EOText; for ASCII this is octal code 004.
3095 @c
3096 @cindex @code{ \f} (formfeed character)
3097 @cindex formfeed (@code{\f})
3098 @item backslash-f
3099 Mnemonic for FormFeed; for ASCII this is octal code 014.
3100
3101 @cindex @code{ \n} (newline character)
3102 @cindex newline (@code{\n})
3103 @item \n
3104 Mnemonic for newline; for ASCII this is octal code 012.
3105
3106 @c @item \p
3107 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3108 @c
3109 @cindex @code{ \r} (carriage return character)
3110 @cindex carriage return (@code{backslash-r})
3111 @item \r
3112 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3113
3114 @c @item \s
3115 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3116 @c other assemblers.
3117 @c
3118 @cindex @code{ \t} (tab)
3119 @cindex tab (@code{\t})
3120 @item \t
3121 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3122
3123 @c @item \v
3124 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3125 @c @item \x @var{digit} @var{digit} @var{digit}
3126 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3127 @c
3128 @cindex @code{ \@var{ddd}} (octal character code)
3129 @cindex octal character code (@code{\@var{ddd}})
3130 @item \ @var{digit} @var{digit} @var{digit}
3131 An octal character code. The numeric code is 3 octal digits.
3132 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3133 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3134
3135 @cindex @code{ \@var{xd...}} (hex character code)
3136 @cindex hex character code (@code{\@var{xd...}})
3137 @item \@code{x} @var{hex-digits...}
3138 A hex character code. All trailing hex digits are combined. Either upper or
3139 lower case @code{x} works.
3140
3141 @cindex @code{ \\} (@samp{\} character)
3142 @cindex backslash (@code{\\})
3143 @item \\
3144 Represents one @samp{\} character.
3145
3146 @c @item \'
3147 @c Represents one @samp{'} (accent acute) character.
3148 @c This is needed in single character literals
3149 @c (@xref{Characters,,Character Constants}.) to represent
3150 @c a @samp{'}.
3151 @c
3152 @cindex @code{ \"} (doublequote character)
3153 @cindex doublequote (@code{\"})
3154 @item \"
3155 Represents one @samp{"} character. Needed in strings to represent
3156 this character, because an unescaped @samp{"} would end the string.
3157
3158 @item \ @var{anything-else}
3159 Any other character when escaped by @kbd{\} gives a warning, but
3160 assembles as if the @samp{\} was not present. The idea is that if
3161 you used an escape sequence you clearly didn't want the literal
3162 interpretation of the following character. However @command{@value{AS}} has no
3163 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3164 code and warns you of the fact.
3165 @end table
3166
3167 Which characters are escapable, and what those escapes represent,
3168 varies widely among assemblers. The current set is what we think
3169 the BSD 4.2 assembler recognizes, and is a subset of what most C
3170 compilers recognize. If you are in doubt, do not use an escape
3171 sequence.
3172
3173 @node Chars
3174 @subsubsection Characters
3175
3176 @cindex single character constant
3177 @cindex character, single
3178 @cindex constant, single character
3179 A single character may be written as a single quote immediately followed by
3180 that character. Some backslash escapes apply to characters, @code{\b},
3181 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3182 as for strings, plus @code{\'} for a single quote. So if you want to write the
3183 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3184 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3185 accent. A newline
3186 @ifclear GENERIC
3187 @ifclear abnormal-separator
3188 (or semicolon @samp{;})
3189 @end ifclear
3190 @ifset abnormal-separator
3191 @ifset H8
3192 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3193 Renesas SH)
3194 @end ifset
3195 @end ifset
3196 @end ifclear
3197 immediately following an acute accent is taken as a literal character
3198 and does not count as the end of a statement. The value of a character
3199 constant in a numeric expression is the machine's byte-wide code for
3200 that character. @command{@value{AS}} assumes your character code is ASCII:
3201 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3202
3203 @node Numbers
3204 @subsection Number Constants
3205
3206 @cindex constants, number
3207 @cindex number constants
3208 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3209 are stored in the target machine. @emph{Integers} are numbers that
3210 would fit into an @code{int} in the C language. @emph{Bignums} are
3211 integers, but they are stored in more than 32 bits. @emph{Flonums}
3212 are floating point numbers, described below.
3213
3214 @menu
3215 * Integers:: Integers
3216 * Bignums:: Bignums
3217 * Flonums:: Flonums
3218 @ifclear GENERIC
3219 @end ifclear
3220 @end menu
3221
3222 @node Integers
3223 @subsubsection Integers
3224 @cindex integers
3225 @cindex constants, integer
3226
3227 @cindex binary integers
3228 @cindex integers, binary
3229 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3230 the binary digits @samp{01}.
3231
3232 @cindex octal integers
3233 @cindex integers, octal
3234 An octal integer is @samp{0} followed by zero or more of the octal
3235 digits (@samp{01234567}).
3236
3237 @cindex decimal integers
3238 @cindex integers, decimal
3239 A decimal integer starts with a non-zero digit followed by zero or
3240 more digits (@samp{0123456789}).
3241
3242 @cindex hexadecimal integers
3243 @cindex integers, hexadecimal
3244 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3245 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3246
3247 Integers have the usual values. To denote a negative integer, use
3248 the prefix operator @samp{-} discussed under expressions
3249 (@pxref{Prefix Ops,,Prefix Operators}).
3250
3251 @node Bignums
3252 @subsubsection Bignums
3253
3254 @cindex bignums
3255 @cindex constants, bignum
3256 A @dfn{bignum} has the same syntax and semantics as an integer
3257 except that the number (or its negative) takes more than 32 bits to
3258 represent in binary. The distinction is made because in some places
3259 integers are permitted while bignums are not.
3260
3261 @node Flonums
3262 @subsubsection Flonums
3263 @cindex flonums
3264 @cindex floating point numbers
3265 @cindex constants, floating point
3266
3267 @cindex precision, floating point
3268 A @dfn{flonum} represents a floating point number. The translation is
3269 indirect: a decimal floating point number from the text is converted by
3270 @command{@value{AS}} to a generic binary floating point number of more than
3271 sufficient precision. This generic floating point number is converted
3272 to a particular computer's floating point format (or formats) by a
3273 portion of @command{@value{AS}} specialized to that computer.
3274
3275 A flonum is written by writing (in order)
3276 @itemize @bullet
3277 @item
3278 The digit @samp{0}.
3279 @ifset HPPA
3280 (@samp{0} is optional on the HPPA.)
3281 @end ifset
3282
3283 @item
3284 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3285 @ifset GENERIC
3286 @kbd{e} is recommended. Case is not important.
3287 @ignore
3288 @c FIXME: verify if flonum syntax really this vague for most cases
3289 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3290 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3291 @end ignore
3292
3293 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3294 one of the letters @samp{DFPRSX} (in upper or lower case).
3295
3296 On the ARC, the letter must be one of the letters @samp{DFRS}
3297 (in upper or lower case).
3298
3299 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3300 @end ifset
3301 @ifclear GENERIC
3302 @ifset ARC
3303 One of the letters @samp{DFRS} (in upper or lower case).
3304 @end ifset
3305 @ifset H8
3306 One of the letters @samp{DFPRSX} (in upper or lower case).
3307 @end ifset
3308 @ifset HPPA
3309 The letter @samp{E} (upper case only).
3310 @end ifset
3311 @end ifclear
3312
3313 @item
3314 An optional sign: either @samp{+} or @samp{-}.
3315
3316 @item
3317 An optional @dfn{integer part}: zero or more decimal digits.
3318
3319 @item
3320 An optional @dfn{fractional part}: @samp{.} followed by zero
3321 or more decimal digits.
3322
3323 @item
3324 An optional exponent, consisting of:
3325
3326 @itemize @bullet
3327 @item
3328 An @samp{E} or @samp{e}.
3329 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3330 @c principle this can perfectly well be different on different targets.
3331 @item
3332 Optional sign: either @samp{+} or @samp{-}.
3333 @item
3334 One or more decimal digits.
3335 @end itemize
3336
3337 @end itemize
3338
3339 At least one of the integer part or the fractional part must be
3340 present. The floating point number has the usual base-10 value.
3341
3342 @command{@value{AS}} does all processing using integers. Flonums are computed
3343 independently of any floating point hardware in the computer running
3344 @command{@value{AS}}.
3345
3346 @node Sections
3347 @chapter Sections and Relocation
3348 @cindex sections
3349 @cindex relocation
3350
3351 @menu
3352 * Secs Background:: Background
3353 * Ld Sections:: Linker Sections
3354 * As Sections:: Assembler Internal Sections
3355 * Sub-Sections:: Sub-Sections
3356 * bss:: bss Section
3357 @end menu
3358
3359 @node Secs Background
3360 @section Background
3361
3362 Roughly, a section is a range of addresses, with no gaps; all data
3363 ``in'' those addresses is treated the same for some particular purpose.
3364 For example there may be a ``read only'' section.
3365
3366 @cindex linker, and assembler
3367 @cindex assembler, and linker
3368 The linker @code{@value{LD}} reads many object files (partial programs) and
3369 combines their contents to form a runnable program. When @command{@value{AS}}
3370 emits an object file, the partial program is assumed to start at address 0.
3371 @code{@value{LD}} assigns the final addresses for the partial program, so that
3372 different partial programs do not overlap. This is actually an
3373 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3374 sections.
3375
3376 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3377 addresses. These blocks slide to their run-time addresses as rigid
3378 units; their length does not change and neither does the order of bytes
3379 within them. Such a rigid unit is called a @emph{section}. Assigning
3380 run-time addresses to sections is called @dfn{relocation}. It includes
3381 the task of adjusting mentions of object-file addresses so they refer to
3382 the proper run-time addresses.
3383 @ifset H8
3384 For the H8/300, and for the Renesas / SuperH SH,
3385 @command{@value{AS}} pads sections if needed to
3386 ensure they end on a word (sixteen bit) boundary.
3387 @end ifset
3388
3389 @cindex standard assembler sections
3390 An object file written by @command{@value{AS}} has at least three sections, any
3391 of which may be empty. These are named @dfn{text}, @dfn{data} and
3392 @dfn{bss} sections.
3393
3394 @ifset COFF-ELF
3395 @ifset GENERIC
3396 When it generates COFF or ELF output,
3397 @end ifset
3398 @command{@value{AS}} can also generate whatever other named sections you specify
3399 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3400 If you do not use any directives that place output in the @samp{.text}
3401 or @samp{.data} sections, these sections still exist, but are empty.
3402 @end ifset
3403
3404 @ifset HPPA
3405 @ifset GENERIC
3406 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3407 @end ifset
3408 @command{@value{AS}} can also generate whatever other named sections you
3409 specify using the @samp{.space} and @samp{.subspace} directives. See
3410 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3411 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3412 assembler directives.
3413
3414 @ifset SOM
3415 Additionally, @command{@value{AS}} uses different names for the standard
3416 text, data, and bss sections when generating SOM output. Program text
3417 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3418 BSS into @samp{$BSS$}.
3419 @end ifset
3420 @end ifset
3421
3422 Within the object file, the text section starts at address @code{0}, the
3423 data section follows, and the bss section follows the data section.
3424
3425 @ifset HPPA
3426 When generating either SOM or ELF output files on the HPPA, the text
3427 section starts at address @code{0}, the data section at address
3428 @code{0x4000000}, and the bss section follows the data section.
3429 @end ifset
3430
3431 To let @code{@value{LD}} know which data changes when the sections are
3432 relocated, and how to change that data, @command{@value{AS}} also writes to the
3433 object file details of the relocation needed. To perform relocation
3434 @code{@value{LD}} must know, each time an address in the object
3435 file is mentioned:
3436 @itemize @bullet
3437 @item
3438 Where in the object file is the beginning of this reference to
3439 an address?
3440 @item
3441 How long (in bytes) is this reference?
3442 @item
3443 Which section does the address refer to? What is the numeric value of
3444 @display
3445 (@var{address}) @minus{} (@var{start-address of section})?
3446 @end display
3447 @item
3448 Is the reference to an address ``Program-Counter relative''?
3449 @end itemize
3450
3451 @cindex addresses, format of
3452 @cindex section-relative addressing
3453 In fact, every address @command{@value{AS}} ever uses is expressed as
3454 @display
3455 (@var{section}) + (@var{offset into section})
3456 @end display
3457 @noindent
3458 Further, most expressions @command{@value{AS}} computes have this section-relative
3459 nature.
3460 @ifset SOM
3461 (For some object formats, such as SOM for the HPPA, some expressions are
3462 symbol-relative instead.)
3463 @end ifset
3464
3465 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3466 @var{N} into section @var{secname}.''
3467
3468 Apart from text, data and bss sections you need to know about the
3469 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3470 addresses in the absolute section remain unchanged. For example, address
3471 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3472 @code{@value{LD}}. Although the linker never arranges two partial programs'
3473 data sections with overlapping addresses after linking, @emph{by definition}
3474 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3475 part of a program is always the same address when the program is running as
3476 address @code{@{absolute@ 239@}} in any other part of the program.
3477
3478 The idea of sections is extended to the @dfn{undefined} section. Any
3479 address whose section is unknown at assembly time is by definition
3480 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3481 Since numbers are always defined, the only way to generate an undefined
3482 address is to mention an undefined symbol. A reference to a named
3483 common block would be such a symbol: its value is unknown at assembly
3484 time so it has section @emph{undefined}.
3485
3486 By analogy the word @emph{section} is used to describe groups of sections in
3487 the linked program. @code{@value{LD}} puts all partial programs' text
3488 sections in contiguous addresses in the linked program. It is
3489 customary to refer to the @emph{text section} of a program, meaning all
3490 the addresses of all partial programs' text sections. Likewise for
3491 data and bss sections.
3492
3493 Some sections are manipulated by @code{@value{LD}}; others are invented for
3494 use of @command{@value{AS}} and have no meaning except during assembly.
3495
3496 @node Ld Sections
3497 @section Linker Sections
3498 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3499
3500 @table @strong
3501
3502 @ifset COFF-ELF
3503 @cindex named sections
3504 @cindex sections, named
3505 @item named sections
3506 @end ifset
3507 @ifset aout
3508 @cindex text section
3509 @cindex data section
3510 @itemx text section
3511 @itemx data section
3512 @end ifset
3513 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3514 separate but equal sections. Anything you can say of one section is
3515 true of another.
3516 @c @ifset aout
3517 When the program is running, however, it is
3518 customary for the text section to be unalterable. The
3519 text section is often shared among processes: it contains
3520 instructions, constants and the like. The data section of a running
3521 program is usually alterable: for example, C variables would be stored
3522 in the data section.
3523 @c @end ifset
3524
3525 @cindex bss section
3526 @item bss section
3527 This section contains zeroed bytes when your program begins running. It
3528 is used to hold uninitialized variables or common storage. The length of
3529 each partial program's bss section is important, but because it starts
3530 out containing zeroed bytes there is no need to store explicit zero
3531 bytes in the object file. The bss section was invented to eliminate
3532 those explicit zeros from object files.
3533
3534 @cindex absolute section
3535 @item absolute section
3536 Address 0 of this section is always ``relocated'' to runtime address 0.
3537 This is useful if you want to refer to an address that @code{@value{LD}} must
3538 not change when relocating. In this sense we speak of absolute
3539 addresses being ``unrelocatable'': they do not change during relocation.
3540
3541 @cindex undefined section
3542 @item undefined section
3543 This ``section'' is a catch-all for address references to objects not in
3544 the preceding sections.
3545 @c FIXME: ref to some other doc on obj-file formats could go here.
3546 @end table
3547
3548 @cindex relocation example
3549 An idealized example of three relocatable sections follows.
3550 @ifset COFF-ELF
3551 The example uses the traditional section names @samp{.text} and @samp{.data}.
3552 @end ifset
3553 Memory addresses are on the horizontal axis.
3554
3555 @c TEXI2ROFF-KILL
3556 @ifnottex
3557 @c END TEXI2ROFF-KILL
3558 @smallexample
3559 +-----+----+--+
3560 partial program # 1: |ttttt|dddd|00|
3561 +-----+----+--+
3562
3563 text data bss
3564 seg. seg. seg.
3565
3566 +---+---+---+
3567 partial program # 2: |TTT|DDD|000|
3568 +---+---+---+
3569
3570 +--+---+-----+--+----+---+-----+~~
3571 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3572 +--+---+-----+--+----+---+-----+~~
3573
3574 addresses: 0 @dots{}
3575 @end smallexample
3576 @c TEXI2ROFF-KILL
3577 @end ifnottex
3578 @need 5000
3579 @tex
3580 \bigskip
3581 \line{\it Partial program \#1: \hfil}
3582 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3583 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3584
3585 \line{\it Partial program \#2: \hfil}
3586 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3587 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3588
3589 \line{\it linked program: \hfil}
3590 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3591 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3592 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3593 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3594
3595 \line{\it addresses: \hfil}
3596 \line{0\dots\hfil}
3597
3598 @end tex
3599 @c END TEXI2ROFF-KILL
3600
3601 @node As Sections
3602 @section Assembler Internal Sections
3603
3604 @cindex internal assembler sections
3605 @cindex sections in messages, internal
3606 These sections are meant only for the internal use of @command{@value{AS}}. They
3607 have no meaning at run-time. You do not really need to know about these
3608 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3609 warning messages, so it might be helpful to have an idea of their
3610 meanings to @command{@value{AS}}. These sections are used to permit the
3611 value of every expression in your assembly language program to be a
3612 section-relative address.
3613
3614 @table @b
3615 @cindex assembler internal logic error
3616 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3617 An internal assembler logic error has been found. This means there is a
3618 bug in the assembler.
3619
3620 @cindex expr (internal section)
3621 @item expr section
3622 The assembler stores complex expression internally as combinations of
3623 symbols. When it needs to represent an expression as a symbol, it puts
3624 it in the expr section.
3625 @c FIXME item debug
3626 @c FIXME item transfer[t] vector preload
3627 @c FIXME item transfer[t] vector postload
3628 @c FIXME item register
3629 @end table
3630
3631 @node Sub-Sections
3632 @section Sub-Sections
3633
3634 @cindex numbered subsections
3635 @cindex grouping data
3636 @ifset aout
3637 Assembled bytes
3638 @ifset COFF-ELF
3639 conventionally
3640 @end ifset
3641 fall into two sections: text and data.
3642 @end ifset
3643 You may have separate groups of
3644 @ifset GENERIC
3645 data in named sections
3646 @end ifset
3647 @ifclear GENERIC
3648 @ifclear aout
3649 data in named sections
3650 @end ifclear
3651 @ifset aout
3652 text or data
3653 @end ifset
3654 @end ifclear
3655 that you want to end up near to each other in the object file, even though they
3656 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3657 use @dfn{subsections} for this purpose. Within each section, there can be
3658 numbered subsections with values from 0 to 8192. Objects assembled into the
3659 same subsection go into the object file together with other objects in the same
3660 subsection. For example, a compiler might want to store constants in the text
3661 section, but might not want to have them interspersed with the program being
3662 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3663 section of code being output, and a @samp{.text 1} before each group of
3664 constants being output.
3665
3666 Subsections are optional. If you do not use subsections, everything
3667 goes in subsection number zero.
3668
3669 @ifset GENERIC
3670 Each subsection is zero-padded up to a multiple of four bytes.
3671 (Subsections may be padded a different amount on different flavors
3672 of @command{@value{AS}}.)
3673 @end ifset
3674 @ifclear GENERIC
3675 @ifset H8
3676 On the H8/300 platform, each subsection is zero-padded to a word
3677 boundary (two bytes).
3678 The same is true on the Renesas SH.
3679 @end ifset
3680 @end ifclear
3681
3682 Subsections appear in your object file in numeric order, lowest numbered
3683 to highest. (All this to be compatible with other people's assemblers.)
3684 The object file contains no representation of subsections; @code{@value{LD}} and
3685 other programs that manipulate object files see no trace of them.
3686 They just see all your text subsections as a text section, and all your
3687 data subsections as a data section.
3688
3689 To specify which subsection you want subsequent statements assembled
3690 into, use a numeric argument to specify it, in a @samp{.text
3691 @var{expression}} or a @samp{.data @var{expression}} statement.
3692 @ifset COFF
3693 @ifset GENERIC
3694 When generating COFF output, you
3695 @end ifset
3696 @ifclear GENERIC
3697 You
3698 @end ifclear
3699 can also use an extra subsection
3700 argument with arbitrary named sections: @samp{.section @var{name},
3701 @var{expression}}.
3702 @end ifset
3703 @ifset ELF
3704 @ifset GENERIC
3705 When generating ELF output, you
3706 @end ifset
3707 @ifclear GENERIC
3708 You
3709 @end ifclear
3710 can also use the @code{.subsection} directive (@pxref{SubSection})
3711 to specify a subsection: @samp{.subsection @var{expression}}.
3712 @end ifset
3713 @var{Expression} should be an absolute expression
3714 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3715 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3716 begins in @code{text 0}. For instance:
3717 @smallexample
3718 .text 0 # The default subsection is text 0 anyway.
3719 .ascii "This lives in the first text subsection. *"
3720 .text 1
3721 .ascii "But this lives in the second text subsection."
3722 .data 0
3723 .ascii "This lives in the data section,"
3724 .ascii "in the first data subsection."
3725 .text 0
3726 .ascii "This lives in the first text section,"
3727 .ascii "immediately following the asterisk (*)."
3728 @end smallexample
3729
3730 Each section has a @dfn{location counter} incremented by one for every byte
3731 assembled into that section. Because subsections are merely a convenience
3732 restricted to @command{@value{AS}} there is no concept of a subsection location
3733 counter. There is no way to directly manipulate a location counter---but the
3734 @code{.align} directive changes it, and any label definition captures its
3735 current value. The location counter of the section where statements are being
3736 assembled is said to be the @dfn{active} location counter.
3737
3738 @node bss
3739 @section bss Section
3740
3741 @cindex bss section
3742 @cindex common variable storage
3743 The bss section is used for local common variable storage.
3744 You may allocate address space in the bss section, but you may
3745 not dictate data to load into it before your program executes. When
3746 your program starts running, all the contents of the bss
3747 section are zeroed bytes.
3748
3749 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3750 @ref{Lcomm,,@code{.lcomm}}.
3751
3752 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3753 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3754
3755 @ifset GENERIC
3756 When assembling for a target which supports multiple sections, such as ELF or
3757 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3758 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3759 section. Typically the section will only contain symbol definitions and
3760 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3761 @end ifset
3762
3763 @node Symbols
3764 @chapter Symbols
3765
3766 @cindex symbols
3767 Symbols are a central concept: the programmer uses symbols to name
3768 things, the linker uses symbols to link, and the debugger uses symbols
3769 to debug.
3770
3771 @quotation
3772 @cindex debuggers, and symbol order
3773 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3774 the same order they were declared. This may break some debuggers.
3775 @end quotation
3776
3777 @menu
3778 * Labels:: Labels
3779 * Setting Symbols:: Giving Symbols Other Values
3780 * Symbol Names:: Symbol Names
3781 * Dot:: The Special Dot Symbol
3782 * Symbol Attributes:: Symbol Attributes
3783 @end menu
3784
3785 @node Labels
3786 @section Labels
3787
3788 @cindex labels
3789 A @dfn{label} is written as a symbol immediately followed by a colon
3790 @samp{:}. The symbol then represents the current value of the
3791 active location counter, and is, for example, a suitable instruction
3792 operand. You are warned if you use the same symbol to represent two
3793 different locations: the first definition overrides any other
3794 definitions.
3795
3796 @ifset HPPA
3797 On the HPPA, the usual form for a label need not be immediately followed by a
3798 colon, but instead must start in column zero. Only one label may be defined on
3799 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3800 provides a special directive @code{.label} for defining labels more flexibly.
3801 @end ifset
3802
3803 @node Setting Symbols
3804 @section Giving Symbols Other Values
3805
3806 @cindex assigning values to symbols
3807 @cindex symbol values, assigning
3808 A symbol can be given an arbitrary value by writing a symbol, followed
3809 by an equals sign @samp{=}, followed by an expression
3810 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3811 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3812 equals sign @samp{=}@samp{=} here represents an equivalent of the
3813 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3814
3815 @ifset Blackfin
3816 Blackfin does not support symbol assignment with @samp{=}.
3817 @end ifset
3818
3819 @node Symbol Names
3820 @section Symbol Names
3821
3822 @cindex symbol names
3823 @cindex names, symbol
3824 @ifclear SPECIAL-SYMS
3825 Symbol names begin with a letter or with one of @samp{._}. On most
3826 machines, you can also use @code{$} in symbol names; exceptions are
3827 noted in @ref{Machine Dependencies}. That character may be followed by any
3828 string of digits, letters, dollar signs (unless otherwise noted for a
3829 particular target machine), and underscores.
3830 @end ifclear
3831 @ifset SPECIAL-SYMS
3832 @ifset H8
3833 Symbol names begin with a letter or with one of @samp{._}. On the
3834 Renesas SH you can also use @code{$} in symbol names. That
3835 character may be followed by any string of digits, letters, dollar signs (save
3836 on the H8/300), and underscores.
3837 @end ifset
3838 @end ifset
3839
3840 Case of letters is significant: @code{foo} is a different symbol name
3841 than @code{Foo}.
3842
3843 Symbol names do not start with a digit. An exception to this rule is made for
3844 Local Labels. See below.
3845
3846 Multibyte characters are supported. To generate a symbol name containing
3847 multibyte characters enclose it within double quotes and use escape codes. cf
3848 @xref{Strings}. Generating a multibyte symbol name from a label is not
3849 currently supported.
3850
3851 Each symbol has exactly one name. Each name in an assembly language program
3852 refers to exactly one symbol. You may use that symbol name any number of times
3853 in a program.
3854
3855 @subheading Local Symbol Names
3856
3857 @cindex local symbol names
3858 @cindex symbol names, local
3859 A local symbol is any symbol beginning with certain local label prefixes.
3860 By default, the local label prefix is @samp{.L} for ELF systems or
3861 @samp{L} for traditional a.out systems, but each target may have its own
3862 set of local label prefixes.
3863 @ifset HPPA
3864 On the HPPA local symbols begin with @samp{L$}.
3865 @end ifset
3866
3867 Local symbols are defined and used within the assembler, but they are
3868 normally not saved in object files. Thus, they are not visible when debugging.
3869 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3870 to retain the local symbols in the object files.
3871
3872 @subheading Local Labels
3873
3874 @cindex local labels
3875 @cindex temporary symbol names
3876 @cindex symbol names, temporary
3877 Local labels are different from local symbols. Local labels help compilers and
3878 programmers use names temporarily. They create symbols which are guaranteed to
3879 be unique over the entire scope of the input source code and which can be
3880 referred to by a simple notation. To define a local label, write a label of
3881 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3882 To refer to the most recent previous definition of that label write
3883 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3884 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3885 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3886
3887 There is no restriction on how you can use these labels, and you can reuse them
3888 too. So that it is possible to repeatedly define the same local label (using
3889 the same number @samp{@b{N}}), although you can only refer to the most recently
3890 defined local label of that number (for a backwards reference) or the next
3891 definition of a specific local label for a forward reference. It is also worth
3892 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3893 implemented in a slightly more efficient manner than the others.
3894
3895 Here is an example:
3896
3897 @smallexample
3898 1: branch 1f
3899 2: branch 1b
3900 1: branch 2f
3901 2: branch 1b
3902 @end smallexample
3903
3904 Which is the equivalent of:
3905
3906 @smallexample
3907 label_1: branch label_3
3908 label_2: branch label_1
3909 label_3: branch label_4
3910 label_4: branch label_3
3911 @end smallexample
3912
3913 Local label names are only a notational device. They are immediately
3914 transformed into more conventional symbol names before the assembler uses them.
3915 The symbol names are stored in the symbol table, appear in error messages, and
3916 are optionally emitted to the object file. The names are constructed using
3917 these parts:
3918
3919 @table @code
3920 @item @emph{local label prefix}
3921 All local symbols begin with the system-specific local label prefix.
3922 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3923 that start with the local label prefix. These labels are
3924 used for symbols you are never intended to see. If you use the
3925 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3926 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3927 you may use them in debugging.
3928
3929 @item @var{number}
3930 This is the number that was used in the local label definition. So if the
3931 label is written @samp{55:} then the number is @samp{55}.
3932
3933 @item @kbd{C-B}
3934 This unusual character is included so you do not accidentally invent a symbol
3935 of the same name. The character has ASCII value of @samp{\002} (control-B).
3936
3937 @item @emph{ordinal number}
3938 This is a serial number to keep the labels distinct. The first definition of
3939 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3940 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3941 the number @samp{1} and its 15th definition gets @samp{15} as well.
3942 @end table
3943
3944 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3945 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3946
3947 @subheading Dollar Local Labels
3948 @cindex dollar local symbols
3949
3950 On some targets @code{@value{AS}} also supports an even more local form of
3951 local labels called dollar labels. These labels go out of scope (i.e., they
3952 become undefined) as soon as a non-local label is defined. Thus they remain
3953 valid for only a small region of the input source code. Normal local labels,
3954 by contrast, remain in scope for the entire file, or until they are redefined
3955 by another occurrence of the same local label.
3956
3957 Dollar labels are defined in exactly the same way as ordinary local labels,
3958 except that they have a dollar sign suffix to their numeric value, e.g.,
3959 @samp{@b{55$:}}.
3960
3961 They can also be distinguished from ordinary local labels by their transformed
3962 names which use ASCII character @samp{\001} (control-A) as the magic character
3963 to distinguish them from ordinary labels. For example, the fifth definition of
3964 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3965
3966 @node Dot
3967 @section The Special Dot Symbol
3968
3969 @cindex dot (symbol)
3970 @cindex @code{.} (symbol)
3971 @cindex current address
3972 @cindex location counter
3973 The special symbol @samp{.} refers to the current address that
3974 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3975 .long .} defines @code{melvin} to contain its own address.
3976 Assigning a value to @code{.} is treated the same as a @code{.org}
3977 directive.
3978 @ifclear no-space-dir
3979 Thus, the expression @samp{.=.+4} is the same as saying
3980 @samp{.space 4}.
3981 @end ifclear
3982
3983 @node Symbol Attributes
3984 @section Symbol Attributes
3985
3986 @cindex symbol attributes
3987 @cindex attributes, symbol
3988 Every symbol has, as well as its name, the attributes ``Value'' and
3989 ``Type''. Depending on output format, symbols can also have auxiliary
3990 attributes.
3991 @ifset INTERNALS
3992 The detailed definitions are in @file{a.out.h}.
3993 @end ifset
3994
3995 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3996 all these attributes, and probably won't warn you. This makes the
3997 symbol an externally defined symbol, which is generally what you
3998 would want.
3999
4000 @menu
4001 * Symbol Value:: Value
4002 * Symbol Type:: Type
4003 @ifset aout
4004 * a.out Symbols:: Symbol Attributes: @code{a.out}
4005 @end ifset
4006 @ifset COFF
4007 * COFF Symbols:: Symbol Attributes for COFF
4008 @end ifset
4009 @ifset SOM
4010 * SOM Symbols:: Symbol Attributes for SOM
4011 @end ifset
4012 @end menu
4013
4014 @node Symbol Value
4015 @subsection Value
4016
4017 @cindex value of a symbol
4018 @cindex symbol value
4019 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4020 location in the text, data, bss or absolute sections the value is the
4021 number of addresses from the start of that section to the label.
4022 Naturally for text, data and bss sections the value of a symbol changes
4023 as @code{@value{LD}} changes section base addresses during linking. Absolute
4024 symbols' values do not change during linking: that is why they are
4025 called absolute.
4026
4027 The value of an undefined symbol is treated in a special way. If it is
4028 0 then the symbol is not defined in this assembler source file, and
4029 @code{@value{LD}} tries to determine its value from other files linked into the
4030 same program. You make this kind of symbol simply by mentioning a symbol
4031 name without defining it. A non-zero value represents a @code{.comm}
4032 common declaration. The value is how much common storage to reserve, in
4033 bytes (addresses). The symbol refers to the first address of the
4034 allocated storage.
4035
4036 @node Symbol Type
4037 @subsection Type
4038
4039 @cindex type of a symbol
4040 @cindex symbol type
4041 The type attribute of a symbol contains relocation (section)
4042 information, any flag settings indicating that a symbol is external, and
4043 (optionally), other information for linkers and debuggers. The exact
4044 format depends on the object-code output format in use.
4045
4046 @ifset aout
4047 @node a.out Symbols
4048 @subsection Symbol Attributes: @code{a.out}
4049
4050 @cindex @code{a.out} symbol attributes
4051 @cindex symbol attributes, @code{a.out}
4052
4053 @menu
4054 * Symbol Desc:: Descriptor
4055 * Symbol Other:: Other
4056 @end menu
4057
4058 @node Symbol Desc
4059 @subsubsection Descriptor
4060
4061 @cindex descriptor, of @code{a.out} symbol
4062 This is an arbitrary 16-bit value. You may establish a symbol's
4063 descriptor value by using a @code{.desc} statement
4064 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4065 @command{@value{AS}}.
4066
4067 @node Symbol Other
4068 @subsubsection Other
4069
4070 @cindex other attribute, of @code{a.out} symbol
4071 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4072 @end ifset
4073
4074 @ifset COFF
4075 @node COFF Symbols
4076 @subsection Symbol Attributes for COFF
4077
4078 @cindex COFF symbol attributes
4079 @cindex symbol attributes, COFF
4080
4081 The COFF format supports a multitude of auxiliary symbol attributes;
4082 like the primary symbol attributes, they are set between @code{.def} and
4083 @code{.endef} directives.
4084
4085 @subsubsection Primary Attributes
4086
4087 @cindex primary attributes, COFF symbols
4088 The symbol name is set with @code{.def}; the value and type,
4089 respectively, with @code{.val} and @code{.type}.
4090
4091 @subsubsection Auxiliary Attributes
4092
4093 @cindex auxiliary attributes, COFF symbols
4094 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4095 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4096 table information for COFF.
4097 @end ifset
4098
4099 @ifset SOM
4100 @node SOM Symbols
4101 @subsection Symbol Attributes for SOM
4102
4103 @cindex SOM symbol attributes
4104 @cindex symbol attributes, SOM
4105
4106 The SOM format for the HPPA supports a multitude of symbol attributes set with
4107 the @code{.EXPORT} and @code{.IMPORT} directives.
4108
4109 The attributes are described in @cite{HP9000 Series 800 Assembly
4110 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4111 @code{EXPORT} assembler directive documentation.
4112 @end ifset
4113
4114 @node Expressions
4115 @chapter Expressions
4116
4117 @cindex expressions
4118 @cindex addresses
4119 @cindex numeric values
4120 An @dfn{expression} specifies an address or numeric value.
4121 Whitespace may precede and/or follow an expression.
4122
4123 The result of an expression must be an absolute number, or else an offset into
4124 a particular section. If an expression is not absolute, and there is not
4125 enough information when @command{@value{AS}} sees the expression to know its
4126 section, a second pass over the source program might be necessary to interpret
4127 the expression---but the second pass is currently not implemented.
4128 @command{@value{AS}} aborts with an error message in this situation.
4129
4130 @menu
4131 * Empty Exprs:: Empty Expressions
4132 * Integer Exprs:: Integer Expressions
4133 @end menu
4134
4135 @node Empty Exprs
4136 @section Empty Expressions
4137
4138 @cindex empty expressions
4139 @cindex expressions, empty
4140 An empty expression has no value: it is just whitespace or null.
4141 Wherever an absolute expression is required, you may omit the
4142 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4143 is compatible with other assemblers.
4144
4145 @node Integer Exprs
4146 @section Integer Expressions
4147
4148 @cindex integer expressions
4149 @cindex expressions, integer
4150 An @dfn{integer expression} is one or more @emph{arguments} delimited
4151 by @emph{operators}.
4152
4153 @menu
4154 * Arguments:: Arguments
4155 * Operators:: Operators
4156 * Prefix Ops:: Prefix Operators
4157 * Infix Ops:: Infix Operators
4158 @end menu
4159
4160 @node Arguments
4161 @subsection Arguments
4162
4163 @cindex expression arguments
4164 @cindex arguments in expressions
4165 @cindex operands in expressions
4166 @cindex arithmetic operands
4167 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4168 contexts arguments are sometimes called ``arithmetic operands''. In
4169 this manual, to avoid confusing them with the ``instruction operands'' of
4170 the machine language, we use the term ``argument'' to refer to parts of
4171 expressions only, reserving the word ``operand'' to refer only to machine
4172 instruction operands.
4173
4174 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4175 @var{section} is one of text, data, bss, absolute,
4176 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4177 integer.
4178
4179 Numbers are usually integers.
4180
4181 A number can be a flonum or bignum. In this case, you are warned
4182 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4183 these 32 bits are an integer. You may write integer-manipulating
4184 instructions that act on exotic constants, compatible with other
4185 assemblers.
4186
4187 @cindex subexpressions
4188 Subexpressions are a left parenthesis @samp{(} followed by an integer
4189 expression, followed by a right parenthesis @samp{)}; or a prefix
4190 operator followed by an argument.
4191
4192 @node Operators
4193 @subsection Operators
4194
4195 @cindex operators, in expressions
4196 @cindex arithmetic functions
4197 @cindex functions, in expressions
4198 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4199 operators are followed by an argument. Infix operators appear
4200 between their arguments. Operators may be preceded and/or followed by
4201 whitespace.
4202
4203 @node Prefix Ops
4204 @subsection Prefix Operator
4205
4206 @cindex prefix operators
4207 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4208 one argument, which must be absolute.
4209
4210 @c the tex/end tex stuff surrounding this small table is meant to make
4211 @c it align, on the printed page, with the similar table in the next
4212 @c section (which is inside an enumerate).
4213 @tex
4214 \global\advance\leftskip by \itemindent
4215 @end tex
4216
4217 @table @code
4218 @item -
4219 @dfn{Negation}. Two's complement negation.
4220 @item ~
4221 @dfn{Complementation}. Bitwise not.
4222 @end table
4223
4224 @tex
4225 \global\advance\leftskip by -\itemindent
4226 @end tex
4227
4228 @node Infix Ops
4229 @subsection Infix Operators
4230
4231 @cindex infix operators
4232 @cindex operators, permitted arguments
4233 @dfn{Infix operators} take two arguments, one on either side. Operators
4234 have precedence, but operations with equal precedence are performed left
4235 to right. Apart from @code{+} or @option{-}, both arguments must be
4236 absolute, and the result is absolute.
4237
4238 @enumerate
4239 @cindex operator precedence
4240 @cindex precedence of operators
4241
4242 @item
4243 Highest Precedence
4244
4245 @table @code
4246 @item *
4247 @dfn{Multiplication}.
4248
4249 @item /
4250 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4251
4252 @item %
4253 @dfn{Remainder}.
4254
4255 @item <<
4256 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4257
4258 @item >>
4259 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4260 @end table
4261
4262 @item
4263 Intermediate precedence
4264
4265 @table @code
4266 @item |
4267
4268 @dfn{Bitwise Inclusive Or}.
4269
4270 @item &
4271 @dfn{Bitwise And}.
4272
4273 @item ^
4274 @dfn{Bitwise Exclusive Or}.
4275
4276 @item !
4277 @dfn{Bitwise Or Not}.
4278 @end table
4279
4280 @item
4281 Low Precedence
4282
4283 @table @code
4284 @cindex addition, permitted arguments
4285 @cindex plus, permitted arguments
4286 @cindex arguments for addition
4287 @item +
4288 @dfn{Addition}. If either argument is absolute, the result has the section of
4289 the other argument. You may not add together arguments from different
4290 sections.
4291
4292 @cindex subtraction, permitted arguments
4293 @cindex minus, permitted arguments
4294 @cindex arguments for subtraction
4295 @item -
4296 @dfn{Subtraction}. If the right argument is absolute, the
4297 result has the section of the left argument.
4298 If both arguments are in the same section, the result is absolute.
4299 You may not subtract arguments from different sections.
4300 @c FIXME is there still something useful to say about undefined - undefined ?
4301
4302 @cindex comparison expressions
4303 @cindex expressions, comparison
4304 @item ==
4305 @dfn{Is Equal To}
4306 @item <>
4307 @itemx !=
4308 @dfn{Is Not Equal To}
4309 @item <
4310 @dfn{Is Less Than}
4311 @item >
4312 @dfn{Is Greater Than}
4313 @item >=
4314 @dfn{Is Greater Than Or Equal To}
4315 @item <=
4316 @dfn{Is Less Than Or Equal To}
4317
4318 The comparison operators can be used as infix operators. A true results has a
4319 value of -1 whereas a false result has a value of 0. Note, these operators
4320 perform signed comparisons.
4321 @end table
4322
4323 @item Lowest Precedence
4324
4325 @table @code
4326 @item &&
4327 @dfn{Logical And}.
4328
4329 @item ||
4330 @dfn{Logical Or}.
4331
4332 These two logical operations can be used to combine the results of sub
4333 expressions. Note, unlike the comparison operators a true result returns a
4334 value of 1 but a false results does still return 0. Also note that the logical
4335 or operator has a slightly lower precedence than logical and.
4336
4337 @end table
4338 @end enumerate
4339
4340 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4341 address; you can only have a defined section in one of the two arguments.
4342
4343 @node Pseudo Ops
4344 @chapter Assembler Directives
4345
4346 @cindex directives, machine independent
4347 @cindex pseudo-ops, machine independent
4348 @cindex machine independent directives
4349 All assembler directives have names that begin with a period (@samp{.}).
4350 The names are case insensitive for most targets, and usually written
4351 in lower case.
4352
4353 This chapter discusses directives that are available regardless of the
4354 target machine configuration for the @sc{gnu} assembler.
4355 @ifset GENERIC
4356 Some machine configurations provide additional directives.
4357 @xref{Machine Dependencies}.
4358 @end ifset
4359 @ifclear GENERIC
4360 @ifset machine-directives
4361 @xref{Machine Dependencies}, for additional directives.
4362 @end ifset
4363 @end ifclear
4364
4365 @menu
4366 * Abort:: @code{.abort}
4367 @ifset COFF
4368 * ABORT (COFF):: @code{.ABORT}
4369 @end ifset
4370
4371 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4372 * Altmacro:: @code{.altmacro}
4373 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4374 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4375 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4376 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4377 * Byte:: @code{.byte @var{expressions}}
4378 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4379 * Comm:: @code{.comm @var{symbol} , @var{length} }
4380 * Data:: @code{.data @var{subsection}}
4381 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4382 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4383 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4384 @ifset COFF
4385 * Def:: @code{.def @var{name}}
4386 @end ifset
4387 @ifset aout
4388 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4389 @end ifset
4390 @ifset COFF
4391 * Dim:: @code{.dim}
4392 @end ifset
4393
4394 * Double:: @code{.double @var{flonums}}
4395 * Eject:: @code{.eject}
4396 * Else:: @code{.else}
4397 * Elseif:: @code{.elseif}
4398 * End:: @code{.end}
4399 @ifset COFF
4400 * Endef:: @code{.endef}
4401 @end ifset
4402
4403 * Endfunc:: @code{.endfunc}
4404 * Endif:: @code{.endif}
4405 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4406 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4407 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4408 * Err:: @code{.err}
4409 * Error:: @code{.error @var{string}}
4410 * Exitm:: @code{.exitm}
4411 * Extern:: @code{.extern}
4412 * Fail:: @code{.fail}
4413 * File:: @code{.file}
4414 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4415 * Float:: @code{.float @var{flonums}}
4416 * Func:: @code{.func}
4417 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4418 @ifset ELF
4419 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4420 * Hidden:: @code{.hidden @var{names}}
4421 @end ifset
4422
4423 * hword:: @code{.hword @var{expressions}}
4424 * Ident:: @code{.ident}
4425 * If:: @code{.if @var{absolute expression}}
4426 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4427 * Include:: @code{.include "@var{file}"}
4428 * Int:: @code{.int @var{expressions}}
4429 @ifset ELF
4430 * Internal:: @code{.internal @var{names}}
4431 @end ifset
4432
4433 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4434 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4435 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4436 * Lflags:: @code{.lflags}
4437 @ifclear no-line-dir
4438 * Line:: @code{.line @var{line-number}}
4439 @end ifclear
4440
4441 * Linkonce:: @code{.linkonce [@var{type}]}
4442 * List:: @code{.list}
4443 * Ln:: @code{.ln @var{line-number}}
4444 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4445 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4446 @ifset ELF
4447 * Local:: @code{.local @var{names}}
4448 @end ifset
4449
4450 * Long:: @code{.long @var{expressions}}
4451 @ignore
4452 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4453 @end ignore
4454
4455 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4456 * MRI:: @code{.mri @var{val}}
4457 * Noaltmacro:: @code{.noaltmacro}
4458 * Nolist:: @code{.nolist}
4459 * Nops:: @code{.nops @var{size}[, @var{control}]}
4460 * Octa:: @code{.octa @var{bignums}}
4461 * Offset:: @code{.offset @var{loc}}
4462 * Org:: @code{.org @var{new-lc}, @var{fill}}
4463 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4464 @ifset ELF
4465 * PopSection:: @code{.popsection}
4466 * Previous:: @code{.previous}
4467 @end ifset
4468
4469 * Print:: @code{.print @var{string}}
4470 @ifset ELF
4471 * Protected:: @code{.protected @var{names}}
4472 @end ifset
4473
4474 * Psize:: @code{.psize @var{lines}, @var{columns}}
4475 * Purgem:: @code{.purgem @var{name}}
4476 @ifset ELF
4477 * PushSection:: @code{.pushsection @var{name}}
4478 @end ifset
4479
4480 * Quad:: @code{.quad @var{bignums}}
4481 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4482 * Rept:: @code{.rept @var{count}}
4483 * Sbttl:: @code{.sbttl "@var{subheading}"}
4484 @ifset COFF
4485 * Scl:: @code{.scl @var{class}}
4486 @end ifset
4487 @ifset COFF-ELF
4488 * Section:: @code{.section @var{name}[, @var{flags}]}
4489 @end ifset
4490
4491 * Set:: @code{.set @var{symbol}, @var{expression}}
4492 * Short:: @code{.short @var{expressions}}
4493 * Single:: @code{.single @var{flonums}}
4494 @ifset COFF-ELF
4495 * Size:: @code{.size [@var{name} , @var{expression}]}
4496 @end ifset
4497 @ifclear no-space-dir
4498 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4499 @end ifclear
4500
4501 * Sleb128:: @code{.sleb128 @var{expressions}}
4502 @ifclear no-space-dir
4503 * Space:: @code{.space @var{size} [,@var{fill}]}
4504 @end ifclear
4505 @ifset have-stabs
4506 * Stab:: @code{.stabd, .stabn, .stabs}
4507 @end ifset
4508
4509 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4510 * Struct:: @code{.struct @var{expression}}
4511 @ifset ELF
4512 * SubSection:: @code{.subsection}
4513 * Symver:: @code{.symver @var{name},@var{name2@@nodename}[,@var{visibility}]}
4514 @end ifset
4515
4516 @ifset COFF
4517 * Tag:: @code{.tag @var{structname}}
4518 @end ifset
4519
4520 * Text:: @code{.text @var{subsection}}
4521 * Title:: @code{.title "@var{heading}"}
4522 @ifset COFF-ELF
4523 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4524 @end ifset
4525
4526 * Uleb128:: @code{.uleb128 @var{expressions}}
4527 @ifset COFF
4528 * Val:: @code{.val @var{addr}}
4529 @end ifset
4530
4531 @ifset ELF
4532 * Version:: @code{.version "@var{string}"}
4533 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4534 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4535 @end ifset
4536
4537 * Warning:: @code{.warning @var{string}}
4538 * Weak:: @code{.weak @var{names}}
4539 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4540 * Word:: @code{.word @var{expressions}}
4541 @ifclear no-space-dir
4542 * Zero:: @code{.zero @var{size}}
4543 @end ifclear
4544 @ifset ELF
4545 * 2byte:: @code{.2byte @var{expressions}}
4546 * 4byte:: @code{.4byte @var{expressions}}
4547 * 8byte:: @code{.8byte @var{bignums}}
4548 @end ifset
4549 * Deprecated:: Deprecated Directives
4550 @end menu
4551
4552 @node Abort
4553 @section @code{.abort}
4554
4555 @cindex @code{abort} directive
4556 @cindex stopping the assembly
4557 This directive stops the assembly immediately. It is for
4558 compatibility with other assemblers. The original idea was that the
4559 assembly language source would be piped into the assembler. If the sender
4560 of the source quit, it could use this directive tells @command{@value{AS}} to
4561 quit also. One day @code{.abort} will not be supported.
4562
4563 @ifset COFF
4564 @node ABORT (COFF)
4565 @section @code{.ABORT} (COFF)
4566
4567 @cindex @code{ABORT} directive
4568 When producing COFF output, @command{@value{AS}} accepts this directive as a
4569 synonym for @samp{.abort}.
4570
4571 @end ifset
4572
4573 @node Align
4574 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4575
4576 @cindex padding the location counter
4577 @cindex @code{align} directive
4578 Pad the location counter (in the current subsection) to a particular storage
4579 boundary. The first expression (which must be absolute) is the alignment
4580 required, as described below. If this expression is omitted then a default
4581 value of 0 is used, effectively disabling alignment requirements.
4582
4583 The second expression (also absolute) gives the fill value to be stored in the
4584 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4585 padding bytes are normally zero. However, on most systems, if the section is
4586 marked as containing code and the fill value is omitted, the space is filled
4587 with no-op instructions.
4588
4589 The third expression is also absolute, and is also optional. If it is present,
4590 it is the maximum number of bytes that should be skipped by this alignment
4591 directive. If doing the alignment would require skipping more bytes than the
4592 specified maximum, then the alignment is not done at all. You can omit the
4593 fill value (the second argument) entirely by simply using two commas after the
4594 required alignment; this can be useful if you want the alignment to be filled
4595 with no-op instructions when appropriate.
4596
4597 The way the required alignment is specified varies from system to system.
4598 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4599 s390, sparc, tic4x and xtensa, the first expression is the
4600 alignment request in bytes. For example @samp{.align 8} advances
4601 the location counter until it is a multiple of 8. If the location counter
4602 is already a multiple of 8, no change is needed. For the tic54x, the
4603 first expression is the alignment request in words.
4604
4605 For other systems, including ppc, i386 using a.out format, arm and
4606 strongarm, it is the
4607 number of low-order zero bits the location counter must have after
4608 advancement. For example @samp{.align 3} advances the location
4609 counter until it is a multiple of 8. If the location counter is already a
4610 multiple of 8, no change is needed.
4611
4612 This inconsistency is due to the different behaviors of the various
4613 native assemblers for these systems which GAS must emulate.
4614 GAS also provides @code{.balign} and @code{.p2align} directives,
4615 described later, which have a consistent behavior across all
4616 architectures (but are specific to GAS).
4617
4618 @node Altmacro
4619 @section @code{.altmacro}
4620 Enable alternate macro mode, enabling:
4621
4622 @ftable @code
4623 @item LOCAL @var{name} [ , @dots{} ]
4624 One additional directive, @code{LOCAL}, is available. It is used to
4625 generate a string replacement for each of the @var{name} arguments, and
4626 replace any instances of @var{name} in each macro expansion. The
4627 replacement string is unique in the assembly, and different for each
4628 separate macro expansion. @code{LOCAL} allows you to write macros that
4629 define symbols, without fear of conflict between separate macro expansions.
4630
4631 @item String delimiters
4632 You can write strings delimited in these other ways besides
4633 @code{"@var{string}"}:
4634
4635 @table @code
4636 @item '@var{string}'
4637 You can delimit strings with single-quote characters.
4638
4639 @item <@var{string}>
4640 You can delimit strings with matching angle brackets.
4641 @end table
4642
4643 @item single-character string escape
4644 To include any single character literally in a string (even if the
4645 character would otherwise have some special meaning), you can prefix the
4646 character with @samp{!} (an exclamation mark). For example, you can
4647 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4648
4649 @item Expression results as strings
4650 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4651 and use the result as a string.
4652 @end ftable
4653
4654 @node Ascii
4655 @section @code{.ascii "@var{string}"}@dots{}
4656
4657 @cindex @code{ascii} directive
4658 @cindex string literals
4659 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4660 separated by commas. It assembles each string (with no automatic
4661 trailing zero byte) into consecutive addresses.
4662
4663 @node Asciz
4664 @section @code{.asciz "@var{string}"}@dots{}
4665
4666 @cindex @code{asciz} directive
4667 @cindex zero-terminated strings
4668 @cindex null-terminated strings
4669 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4670 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4671
4672 @node Balign
4673 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4674
4675 @cindex padding the location counter given number of bytes
4676 @cindex @code{balign} directive
4677 Pad the location counter (in the current subsection) to a particular
4678 storage boundary. The first expression (which must be absolute) is the
4679 alignment request in bytes. For example @samp{.balign 8} advances
4680 the location counter until it is a multiple of 8. If the location counter
4681 is already a multiple of 8, no change is needed. If the expression is omitted
4682 then a default value of 0 is used, effectively disabling alignment requirements.
4683
4684 The second expression (also absolute) gives the fill value to be stored in the
4685 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4686 padding bytes are normally zero. However, on most systems, if the section is
4687 marked as containing code and the fill value is omitted, the space is filled
4688 with no-op instructions.
4689
4690 The third expression is also absolute, and is also optional. If it is present,
4691 it is the maximum number of bytes that should be skipped by this alignment
4692 directive. If doing the alignment would require skipping more bytes than the
4693 specified maximum, then the alignment is not done at all. You can omit the
4694 fill value (the second argument) entirely by simply using two commas after the
4695 required alignment; this can be useful if you want the alignment to be filled
4696 with no-op instructions when appropriate.
4697
4698 @cindex @code{balignw} directive
4699 @cindex @code{balignl} directive
4700 The @code{.balignw} and @code{.balignl} directives are variants of the
4701 @code{.balign} directive. The @code{.balignw} directive treats the fill
4702 pattern as a two byte word value. The @code{.balignl} directives treats the
4703 fill pattern as a four byte longword value. For example, @code{.balignw
4704 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4705 filled in with the value 0x368d (the exact placement of the bytes depends upon
4706 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4707 undefined.
4708
4709 @node Bundle directives
4710 @section Bundle directives
4711 @subsection @code{.bundle_align_mode @var{abs-expr}}
4712 @cindex @code{bundle_align_mode} directive
4713 @cindex bundle
4714 @cindex instruction bundle
4715 @cindex aligned instruction bundle
4716 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4717 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4718 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4719 disabled (which is the default state). If the argument it not zero, it
4720 gives the size of an instruction bundle as a power of two (as for the
4721 @code{.p2align} directive, @pxref{P2align}).
4722
4723 For some targets, it's an ABI requirement that no instruction may span a
4724 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4725 instructions that starts on an aligned boundary. For example, if
4726 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4727 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4728 effect, no single instruction may span a boundary between bundles. If an
4729 instruction would start too close to the end of a bundle for the length of
4730 that particular instruction to fit within the bundle, then the space at the
4731 end of that bundle is filled with no-op instructions so the instruction
4732 starts in the next bundle. As a corollary, it's an error if any single
4733 instruction's encoding is longer than the bundle size.
4734
4735 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4736 @cindex @code{bundle_lock} directive
4737 @cindex @code{bundle_unlock} directive
4738 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4739 allow explicit control over instruction bundle padding. These directives
4740 are only valid when @code{.bundle_align_mode} has been used to enable
4741 aligned instruction bundle mode. It's an error if they appear when
4742 @code{.bundle_align_mode} has not been used at all, or when the last
4743 directive was @w{@code{.bundle_align_mode 0}}.
4744
4745 @cindex bundle-locked
4746 For some targets, it's an ABI requirement that certain instructions may
4747 appear only as part of specified permissible sequences of multiple
4748 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4749 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4750 instruction sequence. For purposes of aligned instruction bundle mode, a
4751 sequence starting with @code{.bundle_lock} and ending with
4752 @code{.bundle_unlock} is treated as a single instruction. That is, the
4753 entire sequence must fit into a single bundle and may not span a bundle
4754 boundary. If necessary, no-op instructions will be inserted before the
4755 first instruction of the sequence so that the whole sequence starts on an
4756 aligned bundle boundary. It's an error if the sequence is longer than the
4757 bundle size.
4758
4759 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4760 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4761 nested. That is, a second @code{.bundle_lock} directive before the next
4762 @code{.bundle_unlock} directive has no effect except that it must be
4763 matched by another closing @code{.bundle_unlock} so that there is the
4764 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4765
4766 @node Byte
4767 @section @code{.byte @var{expressions}}
4768
4769 @cindex @code{byte} directive
4770 @cindex integers, one byte
4771 @code{.byte} expects zero or more expressions, separated by commas.
4772 Each expression is assembled into the next byte.
4773
4774 @node CFI directives
4775 @section CFI directives
4776 @subsection @code{.cfi_sections @var{section_list}}
4777 @cindex @code{cfi_sections} directive
4778 @code{.cfi_sections} may be used to specify whether CFI directives
4779 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4780 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4781 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4782 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4783 directive is not used is @code{.cfi_sections .eh_frame}.
4784
4785 On targets that support compact unwinding tables these can be generated
4786 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4787
4788 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4789 which is used by the @value{TIC6X} target.
4790
4791 The @code{.cfi_sections} directive can be repeated, with the same or different
4792 arguments, provided that CFI generation has not yet started. Once CFI
4793 generation has started however the section list is fixed and any attempts to
4794 redefine it will result in an error.
4795
4796 @subsection @code{.cfi_startproc [simple]}
4797 @cindex @code{cfi_startproc} directive
4798 @code{.cfi_startproc} is used at the beginning of each function that
4799 should have an entry in @code{.eh_frame}. It initializes some internal
4800 data structures. Don't forget to close the function by
4801 @code{.cfi_endproc}.
4802
4803 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4804 it also emits some architecture dependent initial CFI instructions.
4805
4806 @subsection @code{.cfi_endproc}
4807 @cindex @code{cfi_endproc} directive
4808 @code{.cfi_endproc} is used at the end of a function where it closes its
4809 unwind entry previously opened by
4810 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4811
4812 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4813 @cindex @code{cfi_personality} directive
4814 @code{.cfi_personality} defines personality routine and its encoding.
4815 @var{encoding} must be a constant determining how the personality
4816 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4817 argument is not present, otherwise second argument should be
4818 a constant or a symbol name. When using indirect encodings,
4819 the symbol provided should be the location where personality
4820 can be loaded from, not the personality routine itself.
4821 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4822 no personality routine.
4823
4824 @subsection @code{.cfi_personality_id @var{id}}
4825 @cindex @code{cfi_personality_id} directive
4826 @code{cfi_personality_id} defines a personality routine by its index as
4827 defined in a compact unwinding format.
4828 Only valid when generating compact EH frames (i.e.
4829 with @code{.cfi_sections eh_frame_entry}.
4830
4831 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4832 @cindex @code{cfi_fde_data} directive
4833 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4834 used for the current function. These are emitted inline in the
4835 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4836 in the @code{.gnu.extab} section otherwise.
4837 Only valid when generating compact EH frames (i.e.
4838 with @code{.cfi_sections eh_frame_entry}.
4839
4840 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4841 @code{.cfi_lsda} defines LSDA and its encoding.
4842 @var{encoding} must be a constant determining how the LSDA
4843 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4844 argument is not present, otherwise the second argument should be a constant
4845 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4846 meaning that no LSDA is present.
4847
4848 @subsection @code{.cfi_inline_lsda} [@var{align}]
4849 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4850 switches to the corresponding @code{.gnu.extab} section.
4851 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4852 Only valid when generating compact EH frames (i.e.
4853 with @code{.cfi_sections eh_frame_entry}.
4854
4855 The table header and unwinding opcodes will be generated at this point,
4856 so that they are immediately followed by the LSDA data. The symbol
4857 referenced by the @code{.cfi_lsda} directive should still be defined
4858 in case a fallback FDE based encoding is used. The LSDA data is terminated
4859 by a section directive.
4860
4861 The optional @var{align} argument specifies the alignment required.
4862 The alignment is specified as a power of two, as with the
4863 @code{.p2align} directive.
4864
4865 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4866 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4867 address from @var{register} and add @var{offset} to it}.
4868
4869 @subsection @code{.cfi_def_cfa_register @var{register}}
4870 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4871 now on @var{register} will be used instead of the old one. Offset
4872 remains the same.
4873
4874 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4875 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4876 remains the same, but @var{offset} is new. Note that it is the
4877 absolute offset that will be added to a defined register to compute
4878 CFA address.
4879
4880 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4881 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4882 value that is added/subtracted from the previous offset.
4883
4884 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4885 Previous value of @var{register} is saved at offset @var{offset} from
4886 CFA.
4887
4888 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4889 Previous value of @var{register} is CFA + @var{offset}.
4890
4891 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4892 Previous value of @var{register} is saved at offset @var{offset} from
4893 the current CFA register. This is transformed to @code{.cfi_offset}
4894 using the known displacement of the CFA register from the CFA.
4895 This is often easier to use, because the number will match the
4896 code it's annotating.
4897
4898 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4899 Previous value of @var{register1} is saved in register @var{register2}.
4900
4901 @subsection @code{.cfi_restore @var{register}}
4902 @code{.cfi_restore} says that the rule for @var{register} is now the
4903 same as it was at the beginning of the function, after all initial
4904 instruction added by @code{.cfi_startproc} were executed.
4905
4906 @subsection @code{.cfi_undefined @var{register}}
4907 From now on the previous value of @var{register} can't be restored anymore.
4908
4909 @subsection @code{.cfi_same_value @var{register}}
4910 Current value of @var{register} is the same like in the previous frame,
4911 i.e. no restoration needed.
4912
4913 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4914 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4915 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4916 places them in the current row. This is useful for situations where you have
4917 multiple @code{.cfi_*} directives that need to be undone due to the control
4918 flow of the program. For example, we could have something like this (assuming
4919 the CFA is the value of @code{rbp}):
4920
4921 @smallexample
4922 je label
4923 popq %rbx
4924 .cfi_restore %rbx
4925 popq %r12
4926 .cfi_restore %r12
4927 popq %rbp
4928 .cfi_restore %rbp
4929 .cfi_def_cfa %rsp, 8
4930 ret
4931 label:
4932 /* Do something else */
4933 @end smallexample
4934
4935 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4936 to the instructions before @code{label}. This means we'd have to add multiple
4937 @code{.cfi} directives after @code{label} to recreate the original save
4938 locations of the registers, as well as setting the CFA back to the value of
4939 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4940 we can write:
4941
4942 @smallexample
4943 je label
4944 popq %rbx
4945 .cfi_remember_state
4946 .cfi_restore %rbx
4947 popq %r12
4948 .cfi_restore %r12
4949 popq %rbp
4950 .cfi_restore %rbp
4951 .cfi_def_cfa %rsp, 8
4952 ret
4953 label:
4954 .cfi_restore_state
4955 /* Do something else */
4956 @end smallexample
4957
4958 That way, the rules for the instructions after @code{label} will be the same
4959 as before the first @code{.cfi_restore} without having to use multiple
4960 @code{.cfi} directives.
4961
4962 @subsection @code{.cfi_return_column @var{register}}
4963 Change return column @var{register}, i.e. the return address is either
4964 directly in @var{register} or can be accessed by rules for @var{register}.
4965
4966 @subsection @code{.cfi_signal_frame}
4967 Mark current function as signal trampoline.
4968
4969 @subsection @code{.cfi_window_save}
4970 SPARC register window has been saved.
4971
4972 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4973 Allows the user to add arbitrary bytes to the unwind info. One
4974 might use this to add OS-specific CFI opcodes, or generic CFI
4975 opcodes that GAS does not yet support.
4976
4977 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4978 The current value of @var{register} is @var{label}. The value of @var{label}
4979 will be encoded in the output file according to @var{encoding}; see the
4980 description of @code{.cfi_personality} for details on this encoding.
4981
4982 The usefulness of equating a register to a fixed label is probably
4983 limited to the return address register. Here, it can be useful to
4984 mark a code segment that has only one return address which is reached
4985 by a direct branch and no copy of the return address exists in memory
4986 or another register.
4987
4988 @node Comm
4989 @section @code{.comm @var{symbol} , @var{length} }
4990
4991 @cindex @code{comm} directive
4992 @cindex symbol, common
4993 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4994 common symbol in one object file may be merged with a defined or common symbol
4995 of the same name in another object file. If @code{@value{LD}} does not see a
4996 definition for the symbol--just one or more common symbols--then it will
4997 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4998 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4999 the same name, and they do not all have the same size, it will allocate space
5000 using the largest size.
5001
5002 @ifset COFF-ELF
5003 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
5004 an optional third argument. This is the desired alignment of the symbol,
5005 specified for ELF as a byte boundary (for example, an alignment of 16 means
5006 that the least significant 4 bits of the address should be zero), and for PE
5007 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
5008 boundary). The alignment must be an absolute expression, and it must be a
5009 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5010 common symbol, it will use the alignment when placing the symbol. If no
5011 alignment is specified, @command{@value{AS}} will set the alignment to the
5012 largest power of two less than or equal to the size of the symbol, up to a
5013 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5014 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5015 @samp{--section-alignment} option; image file sections in PE are aligned to
5016 multiples of 4096, which is far too large an alignment for ordinary variables.
5017 It is rather the default alignment for (non-debug) sections within object
5018 (@samp{*.o}) files, which are less strictly aligned.}.
5019 @end ifset
5020
5021 @ifset HPPA
5022 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5023 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5024 @end ifset
5025
5026 @node Data
5027 @section @code{.data @var{subsection}}
5028 @cindex @code{data} directive
5029
5030 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5031 end of the data subsection numbered @var{subsection} (which is an
5032 absolute expression). If @var{subsection} is omitted, it defaults
5033 to zero.
5034
5035 @node Dc
5036 @section @code{.dc[@var{size}] @var{expressions}}
5037 @cindex @code{dc} directive
5038
5039 The @code{.dc} directive expects zero or more @var{expressions} separated by
5040 commas. These expressions are evaluated and their values inserted into the
5041 current section. The size of the emitted value depends upon the suffix to the
5042 @code{.dc} directive:
5043
5044 @table @code
5045 @item @samp{.a}
5046 Emits N-bit values, where N is the size of an address on the target system.
5047 @item @samp{.b}
5048 Emits 8-bit values.
5049 @item @samp{.d}
5050 Emits double precision floating-point values.
5051 @item @samp{.l}
5052 Emits 32-bit values.
5053 @item @samp{.s}
5054 Emits single precision floating-point values.
5055 @item @samp{.w}
5056 Emits 16-bit values.
5057 Note - this is true even on targets where the @code{.word} directive would emit
5058 32-bit values.
5059 @item @samp{.x}
5060 Emits long double precision floating-point values.
5061 @end table
5062
5063 If no suffix is used then @samp{.w} is assumed.
5064
5065 The byte ordering is target dependent, as is the size and format of floating
5066 point values.
5067
5068 @node Dcb
5069 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5070 @cindex @code{dcb} directive
5071 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5072 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5073 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5074 @var{size} suffix, if present, must be one of:
5075
5076 @table @code
5077 @item @samp{.b}
5078 Emits single byte values.
5079 @item @samp{.d}
5080 Emits double-precision floating point values.
5081 @item @samp{.l}
5082 Emits 4-byte values.
5083 @item @samp{.s}
5084 Emits single-precision floating point values.
5085 @item @samp{.w}
5086 Emits 2-byte values.
5087 @item @samp{.x}
5088 Emits long double-precision floating point values.
5089 @end table
5090
5091 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5092
5093 The byte ordering is target dependent, as is the size and format of floating
5094 point values.
5095
5096 @node Ds
5097 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5098 @cindex @code{ds} directive
5099 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5100 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5101 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5102 @var{size} suffix, if present, must be one of:
5103
5104 @table @code
5105 @item @samp{.b}
5106 Emits single byte values.
5107 @item @samp{.d}
5108 Emits 8-byte values.
5109 @item @samp{.l}
5110 Emits 4-byte values.
5111 @item @samp{.p}
5112 Emits 12-byte values.
5113 @item @samp{.s}
5114 Emits 4-byte values.
5115 @item @samp{.w}
5116 Emits 2-byte values.
5117 @item @samp{.x}
5118 Emits 12-byte values.
5119 @end table
5120
5121 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5122 suffixes do not indicate that floating-point values are to be inserted.
5123
5124 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5125
5126 The byte ordering is target dependent.
5127
5128
5129 @ifset COFF
5130 @node Def
5131 @section @code{.def @var{name}}
5132
5133 @cindex @code{def} directive
5134 @cindex COFF symbols, debugging
5135 @cindex debugging COFF symbols
5136 Begin defining debugging information for a symbol @var{name}; the
5137 definition extends until the @code{.endef} directive is encountered.
5138 @end ifset
5139
5140 @ifset aout
5141 @node Desc
5142 @section @code{.desc @var{symbol}, @var{abs-expression}}
5143
5144 @cindex @code{desc} directive
5145 @cindex COFF symbol descriptor
5146 @cindex symbol descriptor, COFF
5147 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5148 to the low 16 bits of an absolute expression.
5149
5150 @ifset COFF
5151 The @samp{.desc} directive is not available when @command{@value{AS}} is
5152 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5153 object format. For the sake of compatibility, @command{@value{AS}} accepts
5154 it, but produces no output, when configured for COFF.
5155 @end ifset
5156 @end ifset
5157
5158 @ifset COFF
5159 @node Dim
5160 @section @code{.dim}
5161
5162 @cindex @code{dim} directive
5163 @cindex COFF auxiliary symbol information
5164 @cindex auxiliary symbol information, COFF
5165 This directive is generated by compilers to include auxiliary debugging
5166 information in the symbol table. It is only permitted inside
5167 @code{.def}/@code{.endef} pairs.
5168 @end ifset
5169
5170 @node Double
5171 @section @code{.double @var{flonums}}
5172
5173 @cindex @code{double} directive
5174 @cindex floating point numbers (double)
5175 @code{.double} expects zero or more flonums, separated by commas. It
5176 assembles floating point numbers.
5177 @ifset GENERIC
5178 The exact kind of floating point numbers emitted depends on how
5179 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5180 @end ifset
5181 @ifclear GENERIC
5182 @ifset IEEEFLOAT
5183 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5184 in @sc{ieee} format.
5185 @end ifset
5186 @end ifclear
5187
5188 @node Eject
5189 @section @code{.eject}
5190
5191 @cindex @code{eject} directive
5192 @cindex new page, in listings
5193 @cindex page, in listings
5194 @cindex listing control: new page
5195 Force a page break at this point, when generating assembly listings.
5196
5197 @node Else
5198 @section @code{.else}
5199
5200 @cindex @code{else} directive
5201 @code{.else} is part of the @command{@value{AS}} support for conditional
5202 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5203 of code to be assembled if the condition for the preceding @code{.if}
5204 was false.
5205
5206 @node Elseif
5207 @section @code{.elseif}
5208
5209 @cindex @code{elseif} directive
5210 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5211 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5212 @code{.if} block that would otherwise fill the entire @code{.else} section.
5213
5214 @node End
5215 @section @code{.end}
5216
5217 @cindex @code{end} directive
5218 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5219 process anything in the file past the @code{.end} directive.
5220
5221 @ifset COFF
5222 @node Endef
5223 @section @code{.endef}
5224
5225 @cindex @code{endef} directive
5226 This directive flags the end of a symbol definition begun with
5227 @code{.def}.
5228 @end ifset
5229
5230 @node Endfunc
5231 @section @code{.endfunc}
5232 @cindex @code{endfunc} directive
5233 @code{.endfunc} marks the end of a function specified with @code{.func}.
5234
5235 @node Endif
5236 @section @code{.endif}
5237
5238 @cindex @code{endif} directive
5239 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5240 it marks the end of a block of code that is only assembled
5241 conditionally. @xref{If,,@code{.if}}.
5242
5243 @node Equ
5244 @section @code{.equ @var{symbol}, @var{expression}}
5245
5246 @cindex @code{equ} directive
5247 @cindex assigning values to symbols
5248 @cindex symbols, assigning values to
5249 This directive sets the value of @var{symbol} to @var{expression}.
5250 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5251
5252 @ifset HPPA
5253 The syntax for @code{equ} on the HPPA is
5254 @samp{@var{symbol} .equ @var{expression}}.
5255 @end ifset
5256
5257 @ifset Z80
5258 The syntax for @code{equ} on the Z80 is
5259 @samp{@var{symbol} equ @var{expression}}.
5260 On the Z80 it is an error if @var{symbol} is already defined,
5261 but the symbol is not protected from later redefinition.
5262 Compare @ref{Equiv}.
5263 @end ifset
5264
5265 @node Equiv
5266 @section @code{.equiv @var{symbol}, @var{expression}}
5267 @cindex @code{equiv} directive
5268 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5269 the assembler will signal an error if @var{symbol} is already defined. Note a
5270 symbol which has been referenced but not actually defined is considered to be
5271 undefined.
5272
5273 Except for the contents of the error message, this is roughly equivalent to
5274 @smallexample
5275 .ifdef SYM
5276 .err
5277 .endif
5278 .equ SYM,VAL
5279 @end smallexample
5280 plus it protects the symbol from later redefinition.
5281
5282 @node Eqv
5283 @section @code{.eqv @var{symbol}, @var{expression}}
5284 @cindex @code{eqv} directive
5285 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5286 evaluate the expression or any part of it immediately. Instead each time
5287 the resulting symbol is used in an expression, a snapshot of its current
5288 value is taken.
5289
5290 @node Err
5291 @section @code{.err}
5292 @cindex @code{err} directive
5293 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5294 message and, unless the @option{-Z} option was used, it will not generate an
5295 object file. This can be used to signal an error in conditionally compiled code.
5296
5297 @node Error
5298 @section @code{.error "@var{string}"}
5299 @cindex error directive
5300
5301 Similarly to @code{.err}, this directive emits an error, but you can specify a
5302 string that will be emitted as the error message. If you don't specify the
5303 message, it defaults to @code{".error directive invoked in source file"}.
5304 @xref{Errors, ,Error and Warning Messages}.
5305
5306 @smallexample
5307 .error "This code has not been assembled and tested."
5308 @end smallexample
5309
5310 @node Exitm
5311 @section @code{.exitm}
5312 Exit early from the current macro definition. @xref{Macro}.
5313
5314 @node Extern
5315 @section @code{.extern}
5316
5317 @cindex @code{extern} directive
5318 @code{.extern} is accepted in the source program---for compatibility
5319 with other assemblers---but it is ignored. @command{@value{AS}} treats
5320 all undefined symbols as external.
5321
5322 @node Fail
5323 @section @code{.fail @var{expression}}
5324
5325 @cindex @code{fail} directive
5326 Generates an error or a warning. If the value of the @var{expression} is 500
5327 or more, @command{@value{AS}} will print a warning message. If the value is less
5328 than 500, @command{@value{AS}} will print an error message. The message will
5329 include the value of @var{expression}. This can occasionally be useful inside
5330 complex nested macros or conditional assembly.
5331
5332 @node File
5333 @section @code{.file}
5334 @cindex @code{file} directive
5335
5336 @ifclear no-file-dir
5337 There are two different versions of the @code{.file} directive. Targets
5338 that support DWARF2 line number information use the DWARF2 version of
5339 @code{.file}. Other targets use the default version.
5340
5341 @subheading Default Version
5342
5343 @cindex logical file name
5344 @cindex file name, logical
5345 This version of the @code{.file} directive tells @command{@value{AS}} that we
5346 are about to start a new logical file. The syntax is:
5347
5348 @smallexample
5349 .file @var{string}
5350 @end smallexample
5351
5352 @var{string} is the new file name. In general, the filename is
5353 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5354 to specify an empty file name, you must give the quotes--@code{""}. This
5355 statement may go away in future: it is only recognized to be compatible with
5356 old @command{@value{AS}} programs.
5357
5358 @subheading DWARF2 Version
5359 @end ifclear
5360
5361 When emitting DWARF2 line number information, @code{.file} assigns filenames
5362 to the @code{.debug_line} file name table. The syntax is:
5363
5364 @smallexample
5365 .file @var{fileno} @var{filename}
5366 @end smallexample
5367
5368 The @var{fileno} operand should be a unique positive integer to use as the
5369 index of the entry in the table. The @var{filename} operand is a C string
5370 literal enclosed in double quotes. The @var{filename} can include directory
5371 elements. If it does, then the directory will be added to the directory table
5372 and the basename will be added to the file table.
5373
5374 The detail of filename indices is exposed to the user because the filename
5375 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5376 information, and thus the user must know the exact indices that table
5377 entries will have.
5378
5379 If DWARF-5 support has been enabled via the @option{-gdwarf-5} option then
5380 an extended version of the @code{file} is also allowed:
5381
5382 @smallexample
5383 .file @var{fileno} [@var{dirname}] @var{filename} [md5 @var{value}]
5384 @end smallexample
5385
5386 With this version a separate directory name is allowed, although if this is
5387 used then @var{filename} should not contain any directory components. In
5388 addtion an md5 hash value of the contents of @var{filename} can be provided.
5389 This will be stored in the the file table as well, and can be used by tools
5390 reading the debug information to verify that the contents of the source file
5391 match the contents of the compiled file.
5392
5393 @node Fill
5394 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5395
5396 @cindex @code{fill} directive
5397 @cindex writing patterns in memory
5398 @cindex patterns, writing in memory
5399 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5400 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5401 may be zero or more. @var{Size} may be zero or more, but if it is
5402 more than 8, then it is deemed to have the value 8, compatible with
5403 other people's assemblers. The contents of each @var{repeat} bytes
5404 is taken from an 8-byte number. The highest order 4 bytes are
5405 zero. The lowest order 4 bytes are @var{value} rendered in the
5406 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5407 Each @var{size} bytes in a repetition is taken from the lowest order
5408 @var{size} bytes of this number. Again, this bizarre behavior is
5409 compatible with other people's assemblers.
5410
5411 @var{size} and @var{value} are optional.
5412 If the second comma and @var{value} are absent, @var{value} is
5413 assumed zero. If the first comma and following tokens are absent,
5414 @var{size} is assumed to be 1.
5415
5416 @node Float
5417 @section @code{.float @var{flonums}}
5418
5419 @cindex floating point numbers (single)
5420 @cindex @code{float} directive
5421 This directive assembles zero or more flonums, separated by commas. It
5422 has the same effect as @code{.single}.
5423 @ifset GENERIC
5424 The exact kind of floating point numbers emitted depends on how
5425 @command{@value{AS}} is configured.
5426 @xref{Machine Dependencies}.
5427 @end ifset
5428 @ifclear GENERIC
5429 @ifset IEEEFLOAT
5430 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5431 in @sc{ieee} format.
5432 @end ifset
5433 @end ifclear
5434
5435 @node Func
5436 @section @code{.func @var{name}[,@var{label}]}
5437 @cindex @code{func} directive
5438 @code{.func} emits debugging information to denote function @var{name}, and
5439 is ignored unless the file is assembled with debugging enabled.
5440 Only @samp{--gstabs[+]} is currently supported.
5441 @var{label} is the entry point of the function and if omitted @var{name}
5442 prepended with the @samp{leading char} is used.
5443 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5444 All functions are currently defined to have @code{void} return type.
5445 The function must be terminated with @code{.endfunc}.
5446
5447 @node Global
5448 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5449
5450 @cindex @code{global} directive
5451 @cindex symbol, making visible to linker
5452 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5453 @var{symbol} in your partial program, its value is made available to
5454 other partial programs that are linked with it. Otherwise,
5455 @var{symbol} takes its attributes from a symbol of the same name
5456 from another file linked into the same program.
5457
5458 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5459 compatibility with other assemblers.
5460
5461 @ifset HPPA
5462 On the HPPA, @code{.global} is not always enough to make it accessible to other
5463 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5464 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5465 @end ifset
5466
5467 @ifset ELF
5468 @node Gnu_attribute
5469 @section @code{.gnu_attribute @var{tag},@var{value}}
5470 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5471
5472 @node Hidden
5473 @section @code{.hidden @var{names}}
5474
5475 @cindex @code{hidden} directive
5476 @cindex visibility
5477 This is one of the ELF visibility directives. The other two are
5478 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5479 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5480
5481 This directive overrides the named symbols default visibility (which is set by
5482 their binding: local, global or weak). The directive sets the visibility to
5483 @code{hidden} which means that the symbols are not visible to other components.
5484 Such symbols are always considered to be @code{protected} as well.
5485 @end ifset
5486
5487 @node hword
5488 @section @code{.hword @var{expressions}}
5489
5490 @cindex @code{hword} directive
5491 @cindex integers, 16-bit
5492 @cindex numbers, 16-bit
5493 @cindex sixteen bit integers
5494 This expects zero or more @var{expressions}, and emits
5495 a 16 bit number for each.
5496
5497 @ifset GENERIC
5498 This directive is a synonym for @samp{.short}; depending on the target
5499 architecture, it may also be a synonym for @samp{.word}.
5500 @end ifset
5501 @ifclear GENERIC
5502 @ifset W32
5503 This directive is a synonym for @samp{.short}.
5504 @end ifset
5505 @ifset W16
5506 This directive is a synonym for both @samp{.short} and @samp{.word}.
5507 @end ifset
5508 @end ifclear
5509
5510 @node Ident
5511 @section @code{.ident}
5512
5513 @cindex @code{ident} directive
5514
5515 This directive is used by some assemblers to place tags in object files. The
5516 behavior of this directive varies depending on the target. When using the
5517 a.out object file format, @command{@value{AS}} simply accepts the directive for
5518 source-file compatibility with existing assemblers, but does not emit anything
5519 for it. When using COFF, comments are emitted to the @code{.comment} or
5520 @code{.rdata} section, depending on the target. When using ELF, comments are
5521 emitted to the @code{.comment} section.
5522
5523 @node If
5524 @section @code{.if @var{absolute expression}}
5525
5526 @cindex conditional assembly
5527 @cindex @code{if} directive
5528 @code{.if} marks the beginning of a section of code which is only
5529 considered part of the source program being assembled if the argument
5530 (which must be an @var{absolute expression}) is non-zero. The end of
5531 the conditional section of code must be marked by @code{.endif}
5532 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5533 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5534 If you have several conditions to check, @code{.elseif} may be used to avoid
5535 nesting blocks if/else within each subsequent @code{.else} block.
5536
5537 The following variants of @code{.if} are also supported:
5538 @table @code
5539 @cindex @code{ifdef} directive
5540 @item .ifdef @var{symbol}
5541 Assembles the following section of code if the specified @var{symbol}
5542 has been defined. Note a symbol which has been referenced but not yet defined
5543 is considered to be undefined.
5544
5545 @cindex @code{ifb} directive
5546 @item .ifb @var{text}
5547 Assembles the following section of code if the operand is blank (empty).
5548
5549 @cindex @code{ifc} directive
5550 @item .ifc @var{string1},@var{string2}
5551 Assembles the following section of code if the two strings are the same. The
5552 strings may be optionally quoted with single quotes. If they are not quoted,
5553 the first string stops at the first comma, and the second string stops at the
5554 end of the line. Strings which contain whitespace should be quoted. The
5555 string comparison is case sensitive.
5556
5557 @cindex @code{ifeq} directive
5558 @item .ifeq @var{absolute expression}
5559 Assembles the following section of code if the argument is zero.
5560
5561 @cindex @code{ifeqs} directive
5562 @item .ifeqs @var{string1},@var{string2}
5563 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5564
5565 @cindex @code{ifge} directive
5566 @item .ifge @var{absolute expression}
5567 Assembles the following section of code if the argument is greater than or
5568 equal to zero.
5569
5570 @cindex @code{ifgt} directive
5571 @item .ifgt @var{absolute expression}
5572 Assembles the following section of code if the argument is greater than zero.
5573
5574 @cindex @code{ifle} directive
5575 @item .ifle @var{absolute expression}
5576 Assembles the following section of code if the argument is less than or equal
5577 to zero.
5578
5579 @cindex @code{iflt} directive
5580 @item .iflt @var{absolute expression}
5581 Assembles the following section of code if the argument is less than zero.
5582
5583 @cindex @code{ifnb} directive
5584 @item .ifnb @var{text}
5585 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5586 following section of code if the operand is non-blank (non-empty).
5587
5588 @cindex @code{ifnc} directive
5589 @item .ifnc @var{string1},@var{string2}.
5590 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5591 following section of code if the two strings are not the same.
5592
5593 @cindex @code{ifndef} directive
5594 @cindex @code{ifnotdef} directive
5595 @item .ifndef @var{symbol}
5596 @itemx .ifnotdef @var{symbol}
5597 Assembles the following section of code if the specified @var{symbol}
5598 has not been defined. Both spelling variants are equivalent. Note a symbol
5599 which has been referenced but not yet defined is considered to be undefined.
5600
5601 @cindex @code{ifne} directive
5602 @item .ifne @var{absolute expression}
5603 Assembles the following section of code if the argument is not equal to zero
5604 (in other words, this is equivalent to @code{.if}).
5605
5606 @cindex @code{ifnes} directive
5607 @item .ifnes @var{string1},@var{string2}
5608 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5609 following section of code if the two strings are not the same.
5610 @end table
5611
5612 @node Incbin
5613 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5614
5615 @cindex @code{incbin} directive
5616 @cindex binary files, including
5617 The @code{incbin} directive includes @var{file} verbatim at the current
5618 location. You can control the search paths used with the @samp{-I} command-line
5619 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5620 around @var{file}.
5621
5622 The @var{skip} argument skips a number of bytes from the start of the
5623 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5624 read. Note that the data is not aligned in any way, so it is the user's
5625 responsibility to make sure that proper alignment is provided both before and
5626 after the @code{incbin} directive.
5627
5628 @node Include
5629 @section @code{.include "@var{file}"}
5630
5631 @cindex @code{include} directive
5632 @cindex supporting files, including
5633 @cindex files, including
5634 This directive provides a way to include supporting files at specified
5635 points in your source program. The code from @var{file} is assembled as
5636 if it followed the point of the @code{.include}; when the end of the
5637 included file is reached, assembly of the original file continues. You
5638 can control the search paths used with the @samp{-I} command-line option
5639 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5640 around @var{file}.
5641
5642 @node Int
5643 @section @code{.int @var{expressions}}
5644
5645 @cindex @code{int} directive
5646 @cindex integers, 32-bit
5647 Expect zero or more @var{expressions}, of any section, separated by commas.
5648 For each expression, emit a number that, at run time, is the value of that
5649 expression. The byte order and bit size of the number depends on what kind
5650 of target the assembly is for.
5651
5652 @ifclear GENERIC
5653 @ifset H8
5654 On most forms of the H8/300, @code{.int} emits 16-bit
5655 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5656 32-bit integers.
5657 @end ifset
5658 @end ifclear
5659
5660 @ifset ELF
5661 @node Internal
5662 @section @code{.internal @var{names}}
5663
5664 @cindex @code{internal} directive
5665 @cindex visibility
5666 This is one of the ELF visibility directives. The other two are
5667 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5668 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5669
5670 This directive overrides the named symbols default visibility (which is set by
5671 their binding: local, global or weak). The directive sets the visibility to
5672 @code{internal} which means that the symbols are considered to be @code{hidden}
5673 (i.e., not visible to other components), and that some extra, processor specific
5674 processing must also be performed upon the symbols as well.
5675 @end ifset
5676
5677 @node Irp
5678 @section @code{.irp @var{symbol},@var{values}}@dots{}
5679
5680 @cindex @code{irp} directive
5681 Evaluate a sequence of statements assigning different values to @var{symbol}.
5682 The sequence of statements starts at the @code{.irp} directive, and is
5683 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5684 set to @var{value}, and the sequence of statements is assembled. If no
5685 @var{value} is listed, the sequence of statements is assembled once, with
5686 @var{symbol} set to the null string. To refer to @var{symbol} within the
5687 sequence of statements, use @var{\symbol}.
5688
5689 For example, assembling
5690
5691 @example
5692 .irp param,1,2,3
5693 move d\param,sp@@-
5694 .endr
5695 @end example
5696
5697 is equivalent to assembling
5698
5699 @example
5700 move d1,sp@@-
5701 move d2,sp@@-
5702 move d3,sp@@-
5703 @end example
5704
5705 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5706
5707 @node Irpc
5708 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5709
5710 @cindex @code{irpc} directive
5711 Evaluate a sequence of statements assigning different values to @var{symbol}.
5712 The sequence of statements starts at the @code{.irpc} directive, and is
5713 terminated by an @code{.endr} directive. For each character in @var{value},
5714 @var{symbol} is set to the character, and the sequence of statements is
5715 assembled. If no @var{value} is listed, the sequence of statements is
5716 assembled once, with @var{symbol} set to the null string. To refer to
5717 @var{symbol} within the sequence of statements, use @var{\symbol}.
5718
5719 For example, assembling
5720
5721 @example
5722 .irpc param,123
5723 move d\param,sp@@-
5724 .endr
5725 @end example
5726
5727 is equivalent to assembling
5728
5729 @example
5730 move d1,sp@@-
5731 move d2,sp@@-
5732 move d3,sp@@-
5733 @end example
5734
5735 For some caveats with the spelling of @var{symbol}, see also the discussion
5736 at @xref{Macro}.
5737
5738 @node Lcomm
5739 @section @code{.lcomm @var{symbol} , @var{length}}
5740
5741 @cindex @code{lcomm} directive
5742 @cindex local common symbols
5743 @cindex symbols, local common
5744 Reserve @var{length} (an absolute expression) bytes for a local common
5745 denoted by @var{symbol}. The section and value of @var{symbol} are
5746 those of the new local common. The addresses are allocated in the bss
5747 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5748 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5749 not visible to @code{@value{LD}}.
5750
5751 @ifset GENERIC
5752 Some targets permit a third argument to be used with @code{.lcomm}. This
5753 argument specifies the desired alignment of the symbol in the bss section.
5754 @end ifset
5755
5756 @ifset HPPA
5757 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5758 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5759 @end ifset
5760
5761 @node Lflags
5762 @section @code{.lflags}
5763
5764 @cindex @code{lflags} directive (ignored)
5765 @command{@value{AS}} accepts this directive, for compatibility with other
5766 assemblers, but ignores it.
5767
5768 @ifclear no-line-dir
5769 @node Line
5770 @section @code{.line @var{line-number}}
5771
5772 @cindex @code{line} directive
5773 @cindex logical line number
5774 @ifset aout
5775 Change the logical line number. @var{line-number} must be an absolute
5776 expression. The next line has that logical line number. Therefore any other
5777 statements on the current line (after a statement separator character) are
5778 reported as on logical line number @var{line-number} @minus{} 1. One day
5779 @command{@value{AS}} will no longer support this directive: it is recognized only
5780 for compatibility with existing assembler programs.
5781 @end ifset
5782
5783 Even though this is a directive associated with the @code{a.out} or
5784 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5785 when producing COFF output, and treats @samp{.line} as though it
5786 were the COFF @samp{.ln} @emph{if} it is found outside a
5787 @code{.def}/@code{.endef} pair.
5788
5789 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5790 used by compilers to generate auxiliary symbol information for
5791 debugging.
5792 @end ifclear
5793
5794 @node Linkonce
5795 @section @code{.linkonce [@var{type}]}
5796 @cindex COMDAT
5797 @cindex @code{linkonce} directive
5798 @cindex common sections
5799 Mark the current section so that the linker only includes a single copy of it.
5800 This may be used to include the same section in several different object files,
5801 but ensure that the linker will only include it once in the final output file.
5802 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5803 Duplicate sections are detected based on the section name, so it should be
5804 unique.
5805
5806 This directive is only supported by a few object file formats; as of this
5807 writing, the only object file format which supports it is the Portable
5808 Executable format used on Windows NT.
5809
5810 The @var{type} argument is optional. If specified, it must be one of the
5811 following strings. For example:
5812 @smallexample
5813 .linkonce same_size
5814 @end smallexample
5815 Not all types may be supported on all object file formats.
5816
5817 @table @code
5818 @item discard
5819 Silently discard duplicate sections. This is the default.
5820
5821 @item one_only
5822 Warn if there are duplicate sections, but still keep only one copy.
5823
5824 @item same_size
5825 Warn if any of the duplicates have different sizes.
5826
5827 @item same_contents
5828 Warn if any of the duplicates do not have exactly the same contents.
5829 @end table
5830
5831 @node List
5832 @section @code{.list}
5833
5834 @cindex @code{list} directive
5835 @cindex listing control, turning on
5836 Control (in conjunction with the @code{.nolist} directive) whether or
5837 not assembly listings are generated. These two directives maintain an
5838 internal counter (which is zero initially). @code{.list} increments the
5839 counter, and @code{.nolist} decrements it. Assembly listings are
5840 generated whenever the counter is greater than zero.
5841
5842 By default, listings are disabled. When you enable them (with the
5843 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5844 the initial value of the listing counter is one.
5845
5846 @node Ln
5847 @section @code{.ln @var{line-number}}
5848
5849 @cindex @code{ln} directive
5850 @ifclear no-line-dir
5851 @samp{.ln} is a synonym for @samp{.line}.
5852 @end ifclear
5853 @ifset no-line-dir
5854 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5855 must be an absolute expression. The next line has that logical
5856 line number, so any other statements on the current line (after a
5857 statement separator character @code{;}) are reported as on logical
5858 line number @var{line-number} @minus{} 1.
5859 @end ifset
5860
5861 @node Loc
5862 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5863 @cindex @code{loc} directive
5864 When emitting DWARF2 line number information,
5865 the @code{.loc} directive will add a row to the @code{.debug_line} line
5866 number matrix corresponding to the immediately following assembly
5867 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5868 arguments will be applied to the @code{.debug_line} state machine before
5869 the row is added.
5870
5871 The @var{options} are a sequence of the following tokens in any order:
5872
5873 @table @code
5874 @item basic_block
5875 This option will set the @code{basic_block} register in the
5876 @code{.debug_line} state machine to @code{true}.
5877
5878 @item prologue_end
5879 This option will set the @code{prologue_end} register in the
5880 @code{.debug_line} state machine to @code{true}.
5881
5882 @item epilogue_begin
5883 This option will set the @code{epilogue_begin} register in the
5884 @code{.debug_line} state machine to @code{true}.
5885
5886 @item is_stmt @var{value}
5887 This option will set the @code{is_stmt} register in the
5888 @code{.debug_line} state machine to @code{value}, which must be
5889 either 0 or 1.
5890
5891 @item isa @var{value}
5892 This directive will set the @code{isa} register in the @code{.debug_line}
5893 state machine to @var{value}, which must be an unsigned integer.
5894
5895 @item discriminator @var{value}
5896 This directive will set the @code{discriminator} register in the @code{.debug_line}
5897 state machine to @var{value}, which must be an unsigned integer.
5898
5899 @item view @var{value}
5900 This option causes a row to be added to @code{.debug_line} in reference to the
5901 current address (which might not be the same as that of the following assembly
5902 instruction), and to associate @var{value} with the @code{view} register in the
5903 @code{.debug_line} state machine. If @var{value} is a label, both the
5904 @code{view} register and the label are set to the number of prior @code{.loc}
5905 directives at the same program location. If @var{value} is the literal
5906 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5907 that there aren't any prior @code{.loc} directives at the same program
5908 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5909 the @code{view} register to be reset in this row, even if there are prior
5910 @code{.loc} directives at the same program location.
5911
5912 @end table
5913
5914 @node Loc_mark_labels
5915 @section @code{.loc_mark_labels @var{enable}}
5916 @cindex @code{loc_mark_labels} directive
5917 When emitting DWARF2 line number information,
5918 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5919 to the @code{.debug_line} line number matrix with the @code{basic_block}
5920 register in the state machine set whenever a code label is seen.
5921 The @var{enable} argument should be either 1 or 0, to enable or disable
5922 this function respectively.
5923
5924 @ifset ELF
5925 @node Local
5926 @section @code{.local @var{names}}
5927
5928 @cindex @code{local} directive
5929 This directive, which is available for ELF targets, marks each symbol in
5930 the comma-separated list of @code{names} as a local symbol so that it
5931 will not be externally visible. If the symbols do not already exist,
5932 they will be created.
5933
5934 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5935 accept an alignment argument, which is the case for most ELF targets,
5936 the @code{.local} directive can be used in combination with @code{.comm}
5937 (@pxref{Comm}) to define aligned local common data.
5938 @end ifset
5939
5940 @node Long
5941 @section @code{.long @var{expressions}}
5942
5943 @cindex @code{long} directive
5944 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5945
5946 @ignore
5947 @c no one seems to know what this is for or whether this description is
5948 @c what it really ought to do
5949 @node Lsym
5950 @section @code{.lsym @var{symbol}, @var{expression}}
5951
5952 @cindex @code{lsym} directive
5953 @cindex symbol, not referenced in assembly
5954 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5955 the hash table, ensuring it cannot be referenced by name during the
5956 rest of the assembly. This sets the attributes of the symbol to be
5957 the same as the expression value:
5958 @smallexample
5959 @var{other} = @var{descriptor} = 0
5960 @var{type} = @r{(section of @var{expression})}
5961 @var{value} = @var{expression}
5962 @end smallexample
5963 @noindent
5964 The new symbol is not flagged as external.
5965 @end ignore
5966
5967 @node Macro
5968 @section @code{.macro}
5969
5970 @cindex macros
5971 The commands @code{.macro} and @code{.endm} allow you to define macros that
5972 generate assembly output. For example, this definition specifies a macro
5973 @code{sum} that puts a sequence of numbers into memory:
5974
5975 @example
5976 .macro sum from=0, to=5
5977 .long \from
5978 .if \to-\from
5979 sum "(\from+1)",\to
5980 .endif
5981 .endm
5982 @end example
5983
5984 @noindent
5985 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5986
5987 @example
5988 .long 0
5989 .long 1
5990 .long 2
5991 .long 3
5992 .long 4
5993 .long 5
5994 @end example
5995
5996 @ftable @code
5997 @item .macro @var{macname}
5998 @itemx .macro @var{macname} @var{macargs} @dots{}
5999 @cindex @code{macro} directive
6000 Begin the definition of a macro called @var{macname}. If your macro
6001 definition requires arguments, specify their names after the macro name,
6002 separated by commas or spaces. You can qualify the macro argument to
6003 indicate whether all invocations must specify a non-blank value (through
6004 @samp{:@code{req}}), or whether it takes all of the remaining arguments
6005 (through @samp{:@code{vararg}}). You can supply a default value for any
6006 macro argument by following the name with @samp{=@var{deflt}}. You
6007 cannot define two macros with the same @var{macname} unless it has been
6008 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
6009 definitions. For example, these are all valid @code{.macro} statements:
6010
6011 @table @code
6012 @item .macro comm
6013 Begin the definition of a macro called @code{comm}, which takes no
6014 arguments.
6015
6016 @item .macro plus1 p, p1
6017 @itemx .macro plus1 p p1
6018 Either statement begins the definition of a macro called @code{plus1},
6019 which takes two arguments; within the macro definition, write
6020 @samp{\p} or @samp{\p1} to evaluate the arguments.
6021
6022 @item .macro reserve_str p1=0 p2
6023 Begin the definition of a macro called @code{reserve_str}, with two
6024 arguments. The first argument has a default value, but not the second.
6025 After the definition is complete, you can call the macro either as
6026 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6027 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6028 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6029 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6030
6031 @item .macro m p1:req, p2=0, p3:vararg
6032 Begin the definition of a macro called @code{m}, with at least three
6033 arguments. The first argument must always have a value specified, but
6034 not the second, which instead has a default value. The third formal
6035 will get assigned all remaining arguments specified at invocation time.
6036
6037 When you call a macro, you can specify the argument values either by
6038 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6039 @samp{sum to=17, from=9}.
6040
6041 @end table
6042
6043 Note that since each of the @var{macargs} can be an identifier exactly
6044 as any other one permitted by the target architecture, there may be
6045 occasional problems if the target hand-crafts special meanings to certain
6046 characters when they occur in a special position. For example, if the colon
6047 (@code{:}) is generally permitted to be part of a symbol name, but the
6048 architecture specific code special-cases it when occurring as the final
6049 character of a symbol (to denote a label), then the macro parameter
6050 replacement code will have no way of knowing that and consider the whole
6051 construct (including the colon) an identifier, and check only this
6052 identifier for being the subject to parameter substitution. So for example
6053 this macro definition:
6054
6055 @example
6056 .macro label l
6057 \l:
6058 .endm
6059 @end example
6060
6061 might not work as expected. Invoking @samp{label foo} might not create a label
6062 called @samp{foo} but instead just insert the text @samp{\l:} into the
6063 assembler source, probably generating an error about an unrecognised
6064 identifier.
6065
6066 Similarly problems might occur with the period character (@samp{.})
6067 which is often allowed inside opcode names (and hence identifier names). So
6068 for example constructing a macro to build an opcode from a base name and a
6069 length specifier like this:
6070
6071 @example
6072 .macro opcode base length
6073 \base.\length
6074 .endm
6075 @end example
6076
6077 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6078 instruction but instead generate some kind of error as the assembler tries to
6079 interpret the text @samp{\base.\length}.
6080
6081 There are several possible ways around this problem:
6082
6083 @table @code
6084 @item Insert white space
6085 If it is possible to use white space characters then this is the simplest
6086 solution. eg:
6087
6088 @example
6089 .macro label l
6090 \l :
6091 .endm
6092 @end example
6093
6094 @item Use @samp{\()}
6095 The string @samp{\()} can be used to separate the end of a macro argument from
6096 the following text. eg:
6097
6098 @example
6099 .macro opcode base length
6100 \base\().\length
6101 .endm
6102 @end example
6103
6104 @item Use the alternate macro syntax mode
6105 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6106 used as a separator. eg:
6107
6108 @example
6109 .altmacro
6110 .macro label l
6111 l&:
6112 .endm
6113 @end example
6114 @end table
6115
6116 Note: this problem of correctly identifying string parameters to pseudo ops
6117 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6118 and @code{.irpc} (@pxref{Irpc}) as well.
6119
6120 @item .endm
6121 @cindex @code{endm} directive
6122 Mark the end of a macro definition.
6123
6124 @item .exitm
6125 @cindex @code{exitm} directive
6126 Exit early from the current macro definition.
6127
6128 @cindex number of macros executed
6129 @cindex macros, count executed
6130 @item \@@
6131 @command{@value{AS}} maintains a counter of how many macros it has
6132 executed in this pseudo-variable; you can copy that number to your
6133 output with @samp{\@@}, but @emph{only within a macro definition}.
6134
6135 @item LOCAL @var{name} [ , @dots{} ]
6136 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6137 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6138 @xref{Altmacro,,@code{.altmacro}}.
6139 @end ftable
6140
6141 @node MRI
6142 @section @code{.mri @var{val}}
6143
6144 @cindex @code{mri} directive
6145 @cindex MRI mode, temporarily
6146 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6147 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6148 affects code assembled until the next @code{.mri} directive, or until the end
6149 of the file. @xref{M, MRI mode, MRI mode}.
6150
6151 @node Noaltmacro
6152 @section @code{.noaltmacro}
6153 Disable alternate macro mode. @xref{Altmacro}.
6154
6155 @node Nolist
6156 @section @code{.nolist}
6157
6158 @cindex @code{nolist} directive
6159 @cindex listing control, turning off
6160 Control (in conjunction with the @code{.list} directive) whether or
6161 not assembly listings are generated. These two directives maintain an
6162 internal counter (which is zero initially). @code{.list} increments the
6163 counter, and @code{.nolist} decrements it. Assembly listings are
6164 generated whenever the counter is greater than zero.
6165
6166 @node Nops
6167 @section @code{.nops @var{size}[, @var{control}]}
6168
6169 @cindex @code{nops} directive
6170 @cindex filling memory with no-op instructions
6171 This directive emits @var{size} bytes filled with no-op instructions.
6172 @var{size} is absolute expression, which must be a positve value.
6173 @var{control} controls how no-op instructions should be generated. If
6174 the comma and @var{control} are omitted, @var{control} is assumed to be
6175 zero.
6176
6177 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6178 the size limit of a no-op instruction. The valid values of @var{control}
6179 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6180 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6181 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6182 instruction size limit is set to the maximum supported size.
6183
6184 @node Octa
6185 @section @code{.octa @var{bignums}}
6186
6187 @c FIXME: double size emitted for "octa" on some? Or warn?
6188 @cindex @code{octa} directive
6189 @cindex integer, 16-byte
6190 @cindex sixteen byte integer
6191 This directive expects zero or more bignums, separated by commas. For each
6192 bignum, it emits a 16-byte integer.
6193
6194 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6195 hence @emph{octa}-word for 16 bytes.
6196
6197 @node Offset
6198 @section @code{.offset @var{loc}}
6199
6200 @cindex @code{offset} directive
6201 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6202 be an absolute expression. This directive may be useful for defining
6203 symbols with absolute values. Do not confuse it with the @code{.org}
6204 directive.
6205
6206 @node Org
6207 @section @code{.org @var{new-lc} , @var{fill}}
6208
6209 @cindex @code{org} directive
6210 @cindex location counter, advancing
6211 @cindex advancing location counter
6212 @cindex current address, advancing
6213 Advance the location counter of the current section to
6214 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6215 expression with the same section as the current subsection. That is,
6216 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6217 wrong section, the @code{.org} directive is ignored. To be compatible
6218 with former assemblers, if the section of @var{new-lc} is absolute,
6219 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6220 is the same as the current subsection.
6221
6222 @code{.org} may only increase the location counter, or leave it
6223 unchanged; you cannot use @code{.org} to move the location counter
6224 backwards.
6225
6226 @c double negative used below "not undefined" because this is a specific
6227 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6228 @c section. doc@cygnus.com 18feb91
6229 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6230 may not be undefined. If you really detest this restriction we eagerly await
6231 a chance to share your improved assembler.
6232
6233 Beware that the origin is relative to the start of the section, not
6234 to the start of the subsection. This is compatible with other
6235 people's assemblers.
6236
6237 When the location counter (of the current subsection) is advanced, the
6238 intervening bytes are filled with @var{fill} which should be an
6239 absolute expression. If the comma and @var{fill} are omitted,
6240 @var{fill} defaults to zero.
6241
6242 @node P2align
6243 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6244
6245 @cindex padding the location counter given a power of two
6246 @cindex @code{p2align} directive
6247 Pad the location counter (in the current subsection) to a particular
6248 storage boundary. The first expression (which must be absolute) is the
6249 number of low-order zero bits the location counter must have after
6250 advancement. For example @samp{.p2align 3} advances the location
6251 counter until it is a multiple of 8. If the location counter is already a
6252 multiple of 8, no change is needed. If the expression is omitted then a
6253 default value of 0 is used, effectively disabling alignment requirements.
6254
6255 The second expression (also absolute) gives the fill value to be stored in the
6256 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6257 padding bytes are normally zero. However, on most systems, if the section is
6258 marked as containing code and the fill value is omitted, the space is filled
6259 with no-op instructions.
6260
6261 The third expression is also absolute, and is also optional. If it is present,
6262 it is the maximum number of bytes that should be skipped by this alignment
6263 directive. If doing the alignment would require skipping more bytes than the
6264 specified maximum, then the alignment is not done at all. You can omit the
6265 fill value (the second argument) entirely by simply using two commas after the
6266 required alignment; this can be useful if you want the alignment to be filled
6267 with no-op instructions when appropriate.
6268
6269 @cindex @code{p2alignw} directive
6270 @cindex @code{p2alignl} directive
6271 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6272 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6273 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6274 fill pattern as a four byte longword value. For example, @code{.p2alignw
6275 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6276 filled in with the value 0x368d (the exact placement of the bytes depends upon
6277 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6278 undefined.
6279
6280 @ifset ELF
6281 @node PopSection
6282 @section @code{.popsection}
6283
6284 @cindex @code{popsection} directive
6285 @cindex Section Stack
6286 This is one of the ELF section stack manipulation directives. The others are
6287 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6288 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6289 (@pxref{Previous}).
6290
6291 This directive replaces the current section (and subsection) with the top
6292 section (and subsection) on the section stack. This section is popped off the
6293 stack.
6294 @end ifset
6295
6296 @ifset ELF
6297 @node Previous
6298 @section @code{.previous}
6299
6300 @cindex @code{previous} directive
6301 @cindex Section Stack
6302 This is one of the ELF section stack manipulation directives. The others are
6303 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6304 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6305 (@pxref{PopSection}).
6306
6307 This directive swaps the current section (and subsection) with most recently
6308 referenced section/subsection pair prior to this one. Multiple
6309 @code{.previous} directives in a row will flip between two sections (and their
6310 subsections). For example:
6311
6312 @smallexample
6313 .section A
6314 .subsection 1
6315 .word 0x1234
6316 .subsection 2
6317 .word 0x5678
6318 .previous
6319 .word 0x9abc
6320 @end smallexample
6321
6322 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6323 section A. Whilst:
6324
6325 @smallexample
6326 .section A
6327 .subsection 1
6328 # Now in section A subsection 1
6329 .word 0x1234
6330 .section B
6331 .subsection 0
6332 # Now in section B subsection 0
6333 .word 0x5678
6334 .subsection 1
6335 # Now in section B subsection 1
6336 .word 0x9abc
6337 .previous
6338 # Now in section B subsection 0
6339 .word 0xdef0
6340 @end smallexample
6341
6342 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6343 section B and 0x9abc into subsection 1 of section B.
6344
6345 In terms of the section stack, this directive swaps the current section with
6346 the top section on the section stack.
6347 @end ifset
6348
6349 @node Print
6350 @section @code{.print @var{string}}
6351
6352 @cindex @code{print} directive
6353 @command{@value{AS}} will print @var{string} on the standard output during
6354 assembly. You must put @var{string} in double quotes.
6355
6356 @ifset ELF
6357 @node Protected
6358 @section @code{.protected @var{names}}
6359
6360 @cindex @code{protected} directive
6361 @cindex visibility
6362 This is one of the ELF visibility directives. The other two are
6363 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6364
6365 This directive overrides the named symbols default visibility (which is set by
6366 their binding: local, global or weak). The directive sets the visibility to
6367 @code{protected} which means that any references to the symbols from within the
6368 components that defines them must be resolved to the definition in that
6369 component, even if a definition in another component would normally preempt
6370 this.
6371 @end ifset
6372
6373 @node Psize
6374 @section @code{.psize @var{lines} , @var{columns}}
6375
6376 @cindex @code{psize} directive
6377 @cindex listing control: paper size
6378 @cindex paper size, for listings
6379 Use this directive to declare the number of lines---and, optionally, the
6380 number of columns---to use for each page, when generating listings.
6381
6382 If you do not use @code{.psize}, listings use a default line-count
6383 of 60. You may omit the comma and @var{columns} specification; the
6384 default width is 200 columns.
6385
6386 @command{@value{AS}} generates formfeeds whenever the specified number of
6387 lines is exceeded (or whenever you explicitly request one, using
6388 @code{.eject}).
6389
6390 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6391 those explicitly specified with @code{.eject}.
6392
6393 @node Purgem
6394 @section @code{.purgem @var{name}}
6395
6396 @cindex @code{purgem} directive
6397 Undefine the macro @var{name}, so that later uses of the string will not be
6398 expanded. @xref{Macro}.
6399
6400 @ifset ELF
6401 @node PushSection
6402 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6403
6404 @cindex @code{pushsection} directive
6405 @cindex Section Stack
6406 This is one of the ELF section stack manipulation directives. The others are
6407 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6408 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6409 (@pxref{Previous}).
6410
6411 This directive pushes the current section (and subsection) onto the
6412 top of the section stack, and then replaces the current section and
6413 subsection with @code{name} and @code{subsection}. The optional
6414 @code{flags}, @code{type} and @code{arguments} are treated the same
6415 as in the @code{.section} (@pxref{Section}) directive.
6416 @end ifset
6417
6418 @node Quad
6419 @section @code{.quad @var{bignums}}
6420
6421 @cindex @code{quad} directive
6422 @code{.quad} expects zero or more bignums, separated by commas. For
6423 each bignum, it emits
6424 @ifclear bignum-16
6425 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6426 warning message; and just takes the lowest order 8 bytes of the bignum.
6427 @cindex eight-byte integer
6428 @cindex integer, 8-byte
6429
6430 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6431 hence @emph{quad}-word for 8 bytes.
6432 @end ifclear
6433 @ifset bignum-16
6434 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6435 warning message; and just takes the lowest order 16 bytes of the bignum.
6436 @cindex sixteen-byte integer
6437 @cindex integer, 16-byte
6438 @end ifset
6439
6440 @node Reloc
6441 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6442
6443 @cindex @code{reloc} directive
6444 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6445 @var{expression}. If @var{offset} is a number, the relocation is generated in
6446 the current section. If @var{offset} is an expression that resolves to a
6447 symbol plus offset, the relocation is generated in the given symbol's section.
6448 @var{expression}, if present, must resolve to a symbol plus addend or to an
6449 absolute value, but note that not all targets support an addend. e.g. ELF REL
6450 targets such as i386 store an addend in the section contents rather than in the
6451 relocation. This low level interface does not support addends stored in the
6452 section.
6453
6454 @node Rept
6455 @section @code{.rept @var{count}}
6456
6457 @cindex @code{rept} directive
6458 Repeat the sequence of lines between the @code{.rept} directive and the next
6459 @code{.endr} directive @var{count} times.
6460
6461 For example, assembling
6462
6463 @example
6464 .rept 3
6465 .long 0
6466 .endr
6467 @end example
6468
6469 is equivalent to assembling
6470
6471 @example
6472 .long 0
6473 .long 0
6474 .long 0
6475 @end example
6476
6477 A count of zero is allowed, but nothing is generated. Negative counts are not
6478 allowed and if encountered will be treated as if they were zero.
6479
6480 @node Sbttl
6481 @section @code{.sbttl "@var{subheading}"}
6482
6483 @cindex @code{sbttl} directive
6484 @cindex subtitles for listings
6485 @cindex listing control: subtitle
6486 Use @var{subheading} as the title (third line, immediately after the
6487 title line) when generating assembly listings.
6488
6489 This directive affects subsequent pages, as well as the current page if
6490 it appears within ten lines of the top of a page.
6491
6492 @ifset COFF
6493 @node Scl
6494 @section @code{.scl @var{class}}
6495
6496 @cindex @code{scl} directive
6497 @cindex symbol storage class (COFF)
6498 @cindex COFF symbol storage class
6499 Set the storage-class value for a symbol. This directive may only be
6500 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6501 whether a symbol is static or external, or it may record further
6502 symbolic debugging information.
6503 @end ifset
6504
6505 @ifset COFF-ELF
6506 @node Section
6507 @section @code{.section @var{name}}
6508
6509 @cindex named section
6510 Use the @code{.section} directive to assemble the following code into a section
6511 named @var{name}.
6512
6513 This directive is only supported for targets that actually support arbitrarily
6514 named sections; on @code{a.out} targets, for example, it is not accepted, even
6515 with a standard @code{a.out} section name.
6516
6517 @ifset COFF
6518 @ifset ELF
6519 @c only print the extra heading if both COFF and ELF are set
6520 @subheading COFF Version
6521 @end ifset
6522
6523 @cindex @code{section} directive (COFF version)
6524 For COFF targets, the @code{.section} directive is used in one of the following
6525 ways:
6526
6527 @smallexample
6528 .section @var{name}[, "@var{flags}"]
6529 .section @var{name}[, @var{subsection}]
6530 @end smallexample
6531
6532 If the optional argument is quoted, it is taken as flags to use for the
6533 section. Each flag is a single character. The following flags are recognized:
6534
6535 @table @code
6536 @item b
6537 bss section (uninitialized data)
6538 @item n
6539 section is not loaded
6540 @item w
6541 writable section
6542 @item d
6543 data section
6544 @item e
6545 exclude section from linking
6546 @item r
6547 read-only section
6548 @item x
6549 executable section
6550 @item s
6551 shared section (meaningful for PE targets)
6552 @item a
6553 ignored. (For compatibility with the ELF version)
6554 @item y
6555 section is not readable (meaningful for PE targets)
6556 @item 0-9
6557 single-digit power-of-two section alignment (GNU extension)
6558 @end table
6559
6560 If no flags are specified, the default flags depend upon the section name. If
6561 the section name is not recognized, the default will be for the section to be
6562 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6563 from the section, rather than adding them, so if they are used on their own it
6564 will be as if no flags had been specified at all.
6565
6566 If the optional argument to the @code{.section} directive is not quoted, it is
6567 taken as a subsection number (@pxref{Sub-Sections}).
6568 @end ifset
6569
6570 @ifset ELF
6571 @ifset COFF
6572 @c only print the extra heading if both COFF and ELF are set
6573 @subheading ELF Version
6574 @end ifset
6575
6576 @cindex Section Stack
6577 This is one of the ELF section stack manipulation directives. The others are
6578 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6579 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6580 @code{.previous} (@pxref{Previous}).
6581
6582 @cindex @code{section} directive (ELF version)
6583 For ELF targets, the @code{.section} directive is used like this:
6584
6585 @smallexample
6586 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6587 @end smallexample
6588
6589 @anchor{Section Name Substitutions}
6590 @kindex --sectname-subst
6591 @cindex section name substitution
6592 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6593 argument may contain a substitution sequence. Only @code{%S} is supported
6594 at the moment, and substitutes the current section name. For example:
6595
6596 @smallexample
6597 .macro exception_code
6598 .section %S.exception
6599 [exception code here]
6600 .previous
6601 .endm
6602
6603 .text
6604 [code]
6605 exception_code
6606 [...]
6607
6608 .section .init
6609 [init code]
6610 exception_code
6611 [...]
6612 @end smallexample
6613
6614 The two @code{exception_code} invocations above would create the
6615 @code{.text.exception} and @code{.init.exception} sections respectively.
6616 This is useful e.g. to discriminate between ancillary sections that are
6617 tied to setup code to be discarded after use from ancillary sections that
6618 need to stay resident without having to define multiple @code{exception_code}
6619 macros just for that purpose.
6620
6621 The optional @var{flags} argument is a quoted string which may contain any
6622 combination of the following characters:
6623
6624 @table @code
6625 @item a
6626 section is allocatable
6627 @item d
6628 section is a GNU_MBIND section
6629 @item e
6630 section is excluded from executable and shared library.
6631 @item o
6632 section references a symbol defined in another section (the linked-to
6633 section) in the same file.
6634 @item w
6635 section is writable
6636 @item x
6637 section is executable
6638 @item M
6639 section is mergeable
6640 @item S
6641 section contains zero terminated strings
6642 @item G
6643 section is a member of a section group
6644 @item T
6645 section is used for thread-local-storage
6646 @item ?
6647 section is a member of the previously-current section's group, if any
6648 @item @code{<number>}
6649 a numeric value indicating the bits to be set in the ELF section header's flags
6650 field. Note - if one or more of the alphabetic characters described above is
6651 also included in the flags field, their bit values will be ORed into the
6652 resulting value.
6653 @item @code{<target specific>}
6654 some targets extend this list with their own flag characters
6655 @end table
6656
6657 Note - once a section's flags have been set they cannot be changed. There are
6658 a few exceptions to this rule however. Processor and application specific
6659 flags can be added to an already defined section. The @code{.interp},
6660 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6661 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6662 section may have the executable (@code{x}) flag added.
6663
6664 The optional @var{type} argument may contain one of the following constants:
6665
6666 @table @code
6667 @item @@progbits
6668 section contains data
6669 @item @@nobits
6670 section does not contain data (i.e., section only occupies space)
6671 @item @@note
6672 section contains data which is used by things other than the program
6673 @item @@init_array
6674 section contains an array of pointers to init functions
6675 @item @@fini_array
6676 section contains an array of pointers to finish functions
6677 @item @@preinit_array
6678 section contains an array of pointers to pre-init functions
6679 @item @@@code{<number>}
6680 a numeric value to be set as the ELF section header's type field.
6681 @item @@@code{<target specific>}
6682 some targets extend this list with their own types
6683 @end table
6684
6685 Many targets only support the first three section types. The type may be
6686 enclosed in double quotes if necessary.
6687
6688 Note on targets where the @code{@@} character is the start of a comment (eg
6689 ARM) then another character is used instead. For example the ARM port uses the
6690 @code{%} character.
6691
6692 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6693 special and have fixed types. Any attempt to declare them with a different
6694 type will generate an error from the assembler.
6695
6696 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6697 be specified as well as an extra argument---@var{entsize}---like this:
6698
6699 @smallexample
6700 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6701 @end smallexample
6702
6703 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6704 constants, each @var{entsize} octets long. Sections with both @code{M} and
6705 @code{S} must contain zero terminated strings where each character is
6706 @var{entsize} bytes long. The linker may remove duplicates within sections with
6707 the same name, same entity size and same flags. @var{entsize} must be an
6708 absolute expression. For sections with both @code{M} and @code{S}, a string
6709 which is a suffix of a larger string is considered a duplicate. Thus
6710 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6711 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6712
6713 If @var{flags} contains the @code{o} flag, then the @var{type} argument
6714 must be present along with an additional field like this:
6715
6716 @smallexample
6717 .section @var{name},"@var{flags}"o,@@@var{type},@var{SymbolName}
6718 @end smallexample
6719
6720 The @var{SymbolName} field specifies the symbol name which the section
6721 references.
6722
6723 Note: If both the @var{M} and @var{o} flags are present, then the fields
6724 for the Merge flag should come first, like this:
6725
6726 @smallexample
6727 .section @var{name},"@var{flags}"Mo,@@@var{type},@var{entsize},@var{SymbolName}
6728 @end smallexample
6729
6730 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6731 be present along with an additional field like this:
6732
6733 @smallexample
6734 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6735 @end smallexample
6736
6737 The @var{GroupName} field specifies the name of the section group to which this
6738 particular section belongs. The optional linkage field can contain:
6739
6740 @table @code
6741 @item comdat
6742 indicates that only one copy of this section should be retained
6743 @item .gnu.linkonce
6744 an alias for comdat
6745 @end table
6746
6747 Note: if both the @var{M} and @var{G} flags are present then the fields for
6748 the Merge flag should come first, like this:
6749
6750 @smallexample
6751 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6752 @end smallexample
6753
6754 If both @code{o} flag and @code{G} flag are present, then the
6755 @var{SymbolName} field for @code{o} comes first, like this:
6756
6757 @smallexample
6758 .section @var{name},"@var{flags}"oG,@@@var{type},@var{SymbolName},@var{GroupName}[,@var{linkage}]
6759 @end smallexample
6760
6761 If @var{flags} contains the @code{?} symbol then it may not also contain the
6762 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6763 present. Instead, @code{?} says to consider the section that's current before
6764 this directive. If that section used @code{G}, then the new section will use
6765 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6766 If not, then the @code{?} symbol has no effect.
6767
6768 The optional @var{unique,@code{<number>}} argument must come last. It
6769 assigns @var{@code{<number>}} as a unique section ID to distinguish
6770 different sections with the same section name like these:
6771
6772 @smallexample
6773 .section @var{name},"@var{flags}",@@@var{type},@var{unique,@code{<number>}}
6774 .section @var{name},"@var{flags}"G,@@@var{type},@var{GroupName},[@var{linkage}],@var{unique,@code{<number>}}
6775 .section @var{name},"@var{flags}"MG,@@@var{type},@var{entsize},@var{GroupName}[,@var{linkage}],@var{unique,@code{<number>}}
6776 @end smallexample
6777
6778 The valid values of @var{@code{<number>}} are between 0 and 4294967295.
6779
6780 If no flags are specified, the default flags depend upon the section name. If
6781 the section name is not recognized, the default will be for the section to have
6782 none of the above flags: it will not be allocated in memory, nor writable, nor
6783 executable. The section will contain data.
6784
6785 For ELF targets, the assembler supports another type of @code{.section}
6786 directive for compatibility with the Solaris assembler:
6787
6788 @smallexample
6789 .section "@var{name}"[, @var{flags}...]
6790 @end smallexample
6791
6792 Note that the section name is quoted. There may be a sequence of comma
6793 separated flags:
6794
6795 @table @code
6796 @item #alloc
6797 section is allocatable
6798 @item #write
6799 section is writable
6800 @item #execinstr
6801 section is executable
6802 @item #exclude
6803 section is excluded from executable and shared library.
6804 @item #tls
6805 section is used for thread local storage
6806 @end table
6807
6808 This directive replaces the current section and subsection. See the
6809 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6810 some examples of how this directive and the other section stack directives
6811 work.
6812 @end ifset
6813 @end ifset
6814
6815 @node Set
6816 @section @code{.set @var{symbol}, @var{expression}}
6817
6818 @cindex @code{set} directive
6819 @cindex symbol value, setting
6820 Set the value of @var{symbol} to @var{expression}. This
6821 changes @var{symbol}'s value and type to conform to
6822 @var{expression}. If @var{symbol} was flagged as external, it remains
6823 flagged (@pxref{Symbol Attributes}).
6824
6825 You may @code{.set} a symbol many times in the same assembly provided that the
6826 values given to the symbol are constants. Values that are based on expressions
6827 involving other symbols are allowed, but some targets may restrict this to only
6828 being done once per assembly. This is because those targets do not set the
6829 addresses of symbols at assembly time, but rather delay the assignment until a
6830 final link is performed. This allows the linker a chance to change the code in
6831 the files, changing the location of, and the relative distance between, various
6832 different symbols.
6833
6834 If you @code{.set} a global symbol, the value stored in the object
6835 file is the last value stored into it.
6836
6837 @ifset Z80
6838 On Z80 @code{set} is a real instruction, use @code{.set} or
6839 @samp{@var{symbol} defl @var{expression}} instead.
6840 @end ifset
6841
6842 @node Short
6843 @section @code{.short @var{expressions}}
6844
6845 @cindex @code{short} directive
6846 @ifset GENERIC
6847 @code{.short} is normally the same as @samp{.word}.
6848 @xref{Word,,@code{.word}}.
6849
6850 In some configurations, however, @code{.short} and @code{.word} generate
6851 numbers of different lengths. @xref{Machine Dependencies}.
6852 @end ifset
6853 @ifclear GENERIC
6854 @ifset W16
6855 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6856 @end ifset
6857 @ifset W32
6858 This expects zero or more @var{expressions}, and emits
6859 a 16 bit number for each.
6860 @end ifset
6861 @end ifclear
6862
6863 @node Single
6864 @section @code{.single @var{flonums}}
6865
6866 @cindex @code{single} directive
6867 @cindex floating point numbers (single)
6868 This directive assembles zero or more flonums, separated by commas. It
6869 has the same effect as @code{.float}.
6870 @ifset GENERIC
6871 The exact kind of floating point numbers emitted depends on how
6872 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6873 @end ifset
6874 @ifclear GENERIC
6875 @ifset IEEEFLOAT
6876 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6877 numbers in @sc{ieee} format.
6878 @end ifset
6879 @end ifclear
6880
6881 @ifset COFF-ELF
6882 @node Size
6883 @section @code{.size}
6884
6885 This directive is used to set the size associated with a symbol.
6886
6887 @ifset COFF
6888 @ifset ELF
6889 @c only print the extra heading if both COFF and ELF are set
6890 @subheading COFF Version
6891 @end ifset
6892
6893 @cindex @code{size} directive (COFF version)
6894 For COFF targets, the @code{.size} directive is only permitted inside
6895 @code{.def}/@code{.endef} pairs. It is used like this:
6896
6897 @smallexample
6898 .size @var{expression}
6899 @end smallexample
6900
6901 @end ifset
6902
6903 @ifset ELF
6904 @ifset COFF
6905 @c only print the extra heading if both COFF and ELF are set
6906 @subheading ELF Version
6907 @end ifset
6908
6909 @cindex @code{size} directive (ELF version)
6910 For ELF targets, the @code{.size} directive is used like this:
6911
6912 @smallexample
6913 .size @var{name} , @var{expression}
6914 @end smallexample
6915
6916 This directive sets the size associated with a symbol @var{name}.
6917 The size in bytes is computed from @var{expression} which can make use of label
6918 arithmetic. This directive is typically used to set the size of function
6919 symbols.
6920 @end ifset
6921 @end ifset
6922
6923 @ifclear no-space-dir
6924 @node Skip
6925 @section @code{.skip @var{size} [,@var{fill}]}
6926
6927 @cindex @code{skip} directive
6928 @cindex filling memory
6929 This directive emits @var{size} bytes, each of value @var{fill}. Both
6930 @var{size} and @var{fill} are absolute expressions. If the comma and
6931 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6932 @samp{.space}.
6933 @end ifclear
6934
6935 @node Sleb128
6936 @section @code{.sleb128 @var{expressions}}
6937
6938 @cindex @code{sleb128} directive
6939 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6940 compact, variable length representation of numbers used by the DWARF
6941 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6942
6943 @ifclear no-space-dir
6944 @node Space
6945 @section @code{.space @var{size} [,@var{fill}]}
6946
6947 @cindex @code{space} directive
6948 @cindex filling memory
6949 This directive emits @var{size} bytes, each of value @var{fill}. Both
6950 @var{size} and @var{fill} are absolute expressions. If the comma
6951 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6952 as @samp{.skip}.
6953
6954 @ifset HPPA
6955 @quotation
6956 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6957 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6958 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6959 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6960 for a summary.
6961 @end quotation
6962 @end ifset
6963 @end ifclear
6964
6965 @ifset have-stabs
6966 @node Stab
6967 @section @code{.stabd, .stabn, .stabs}
6968
6969 @cindex symbolic debuggers, information for
6970 @cindex @code{stab@var{x}} directives
6971 There are three directives that begin @samp{.stab}.
6972 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6973 The symbols are not entered in the @command{@value{AS}} hash table: they
6974 cannot be referenced elsewhere in the source file.
6975 Up to five fields are required:
6976
6977 @table @var
6978 @item string
6979 This is the symbol's name. It may contain any character except
6980 @samp{\000}, so is more general than ordinary symbol names. Some
6981 debuggers used to code arbitrarily complex structures into symbol names
6982 using this field.
6983
6984 @item type
6985 An absolute expression. The symbol's type is set to the low 8 bits of
6986 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6987 and debuggers choke on silly bit patterns.
6988
6989 @item other
6990 An absolute expression. The symbol's ``other'' attribute is set to the
6991 low 8 bits of this expression.
6992
6993 @item desc
6994 An absolute expression. The symbol's descriptor is set to the low 16
6995 bits of this expression.
6996
6997 @item value
6998 An absolute expression which becomes the symbol's value.
6999 @end table
7000
7001 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
7002 or @code{.stabs} statement, the symbol has probably already been created;
7003 you get a half-formed symbol in your object file. This is
7004 compatible with earlier assemblers!
7005
7006 @table @code
7007 @cindex @code{stabd} directive
7008 @item .stabd @var{type} , @var{other} , @var{desc}
7009
7010 The ``name'' of the symbol generated is not even an empty string.
7011 It is a null pointer, for compatibility. Older assemblers used a
7012 null pointer so they didn't waste space in object files with empty
7013 strings.
7014
7015 The symbol's value is set to the location counter,
7016 relocatably. When your program is linked, the value of this symbol
7017 is the address of the location counter when the @code{.stabd} was
7018 assembled.
7019
7020 @cindex @code{stabn} directive
7021 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
7022 The name of the symbol is set to the empty string @code{""}.
7023
7024 @cindex @code{stabs} directive
7025 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
7026 All five fields are specified.
7027 @end table
7028 @end ifset
7029 @c end have-stabs
7030
7031 @node String
7032 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7033 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7034
7035 @cindex string, copying to object file
7036 @cindex string8, copying to object file
7037 @cindex string16, copying to object file
7038 @cindex string32, copying to object file
7039 @cindex string64, copying to object file
7040 @cindex @code{string} directive
7041 @cindex @code{string8} directive
7042 @cindex @code{string16} directive
7043 @cindex @code{string32} directive
7044 @cindex @code{string64} directive
7045
7046 Copy the characters in @var{str} to the object file. You may specify more than
7047 one string to copy, separated by commas. Unless otherwise specified for a
7048 particular machine, the assembler marks the end of each string with a 0 byte.
7049 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7050
7051 The variants @code{string16}, @code{string32} and @code{string64} differ from
7052 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7053 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7054 are stored in target endianness byte order.
7055
7056 Example:
7057 @smallexample
7058 .string32 "BYE"
7059 expands to:
7060 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7061 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7062 @end smallexample
7063
7064
7065 @node Struct
7066 @section @code{.struct @var{expression}}
7067
7068 @cindex @code{struct} directive
7069 Switch to the absolute section, and set the section offset to @var{expression},
7070 which must be an absolute expression. You might use this as follows:
7071 @smallexample
7072 .struct 0
7073 field1:
7074 .struct field1 + 4
7075 field2:
7076 .struct field2 + 4
7077 field3:
7078 @end smallexample
7079 This would define the symbol @code{field1} to have the value 0, the symbol
7080 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7081 value 8. Assembly would be left in the absolute section, and you would need to
7082 use a @code{.section} directive of some sort to change to some other section
7083 before further assembly.
7084
7085 @ifset ELF
7086 @node SubSection
7087 @section @code{.subsection @var{name}}
7088
7089 @cindex @code{subsection} directive
7090 @cindex Section Stack
7091 This is one of the ELF section stack manipulation directives. The others are
7092 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7093 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7094 (@pxref{Previous}).
7095
7096 This directive replaces the current subsection with @code{name}. The current
7097 section is not changed. The replaced subsection is put onto the section stack
7098 in place of the then current top of stack subsection.
7099 @end ifset
7100
7101 @ifset ELF
7102 @node Symver
7103 @section @code{.symver}
7104 @cindex @code{symver} directive
7105 @cindex symbol versioning
7106 @cindex versions of symbols
7107 Use the @code{.symver} directive to bind symbols to specific version nodes
7108 within a source file. This is only supported on ELF platforms, and is
7109 typically used when assembling files to be linked into a shared library.
7110 There are cases where it may make sense to use this in objects to be bound
7111 into an application itself so as to override a versioned symbol from a
7112 shared library.
7113
7114 For ELF targets, the @code{.symver} directive can be used like this:
7115 @smallexample
7116 .symver @var{name}, @var{name2@@nodename}[ ,@var{visibility}]
7117 @end smallexample
7118 If the original symbol @var{name} is defined within the file
7119 being assembled, the @code{.symver} directive effectively creates a symbol
7120 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7121 just don't try and create a regular alias is that the @var{@@} character isn't
7122 permitted in symbol names. The @var{name2} part of the name is the actual name
7123 of the symbol by which it will be externally referenced. The name @var{name}
7124 itself is merely a name of convenience that is used so that it is possible to
7125 have definitions for multiple versions of a function within a single source
7126 file, and so that the compiler can unambiguously know which version of a
7127 function is being mentioned. The @var{nodename} portion of the alias should be
7128 the name of a node specified in the version script supplied to the linker when
7129 building a shared library. If you are attempting to override a versioned
7130 symbol from a shared library, then @var{nodename} should correspond to the
7131 nodename of the symbol you are trying to override. The optional argument
7132 @var{visibility} updates the visibility of the original symbol. The valid
7133 visibilities are @code{local}, @code{hidden}, and @code{remove}. The
7134 @code{local} visibility makes the original symbol a local symbol
7135 (@pxref{Local}). The @code{hidden} visibility sets the visibility of the
7136 original symbol to @code{hidden} (@pxref{Hidden}). The @code{remove}
7137 visibility removes the original symbol from the symbol table. If visibility
7138 isn't specified, the original symbol is unchanged.
7139
7140 If the symbol @var{name} is not defined within the file being assembled, all
7141 references to @var{name} will be changed to @var{name2@@nodename}. If no
7142 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7143 symbol table.
7144
7145 Another usage of the @code{.symver} directive is:
7146 @smallexample
7147 .symver @var{name}, @var{name2@@@@nodename}
7148 @end smallexample
7149 In this case, the symbol @var{name} must exist and be defined within
7150 the file being assembled. It is similar to @var{name2@@nodename}. The
7151 difference is @var{name2@@@@nodename} will also be used to resolve
7152 references to @var{name2} by the linker.
7153
7154 The third usage of the @code{.symver} directive is:
7155 @smallexample
7156 .symver @var{name}, @var{name2@@@@@@nodename}
7157 @end smallexample
7158 When @var{name} is not defined within the
7159 file being assembled, it is treated as @var{name2@@nodename}. When
7160 @var{name} is defined within the file being assembled, the symbol
7161 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7162 @end ifset
7163
7164 @ifset COFF
7165 @node Tag
7166 @section @code{.tag @var{structname}}
7167
7168 @cindex COFF structure debugging
7169 @cindex structure debugging, COFF
7170 @cindex @code{tag} directive
7171 This directive is generated by compilers to include auxiliary debugging
7172 information in the symbol table. It is only permitted inside
7173 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7174 definitions in the symbol table with instances of those structures.
7175 @end ifset
7176
7177 @node Text
7178 @section @code{.text @var{subsection}}
7179
7180 @cindex @code{text} directive
7181 Tells @command{@value{AS}} to assemble the following statements onto the end of
7182 the text subsection numbered @var{subsection}, which is an absolute
7183 expression. If @var{subsection} is omitted, subsection number zero
7184 is used.
7185
7186 @node Title
7187 @section @code{.title "@var{heading}"}
7188
7189 @cindex @code{title} directive
7190 @cindex listing control: title line
7191 Use @var{heading} as the title (second line, immediately after the
7192 source file name and pagenumber) when generating assembly listings.
7193
7194 This directive affects subsequent pages, as well as the current page if
7195 it appears within ten lines of the top of a page.
7196
7197 @ifset COFF-ELF
7198 @node Type
7199 @section @code{.type}
7200
7201 This directive is used to set the type of a symbol.
7202
7203 @ifset COFF
7204 @ifset ELF
7205 @c only print the extra heading if both COFF and ELF are set
7206 @subheading COFF Version
7207 @end ifset
7208
7209 @cindex COFF symbol type
7210 @cindex symbol type, COFF
7211 @cindex @code{type} directive (COFF version)
7212 For COFF targets, this directive is permitted only within
7213 @code{.def}/@code{.endef} pairs. It is used like this:
7214
7215 @smallexample
7216 .type @var{int}
7217 @end smallexample
7218
7219 This records the integer @var{int} as the type attribute of a symbol table
7220 entry.
7221
7222 @end ifset
7223
7224 @ifset ELF
7225 @ifset COFF
7226 @c only print the extra heading if both COFF and ELF are set
7227 @subheading ELF Version
7228 @end ifset
7229
7230 @cindex ELF symbol type
7231 @cindex symbol type, ELF
7232 @cindex @code{type} directive (ELF version)
7233 For ELF targets, the @code{.type} directive is used like this:
7234
7235 @smallexample
7236 .type @var{name} , @var{type description}
7237 @end smallexample
7238
7239 This sets the type of symbol @var{name} to be either a
7240 function symbol or an object symbol. There are five different syntaxes
7241 supported for the @var{type description} field, in order to provide
7242 compatibility with various other assemblers.
7243
7244 Because some of the characters used in these syntaxes (such as @samp{@@} and
7245 @samp{#}) are comment characters for some architectures, some of the syntaxes
7246 below do not work on all architectures. The first variant will be accepted by
7247 the GNU assembler on all architectures so that variant should be used for
7248 maximum portability, if you do not need to assemble your code with other
7249 assemblers.
7250
7251 The syntaxes supported are:
7252
7253 @smallexample
7254 .type <name> STT_<TYPE_IN_UPPER_CASE>
7255 .type <name>,#<type>
7256 .type <name>,@@<type>
7257 .type <name>,%<type>
7258 .type <name>,"<type>"
7259 @end smallexample
7260
7261 The types supported are:
7262
7263 @table @gcctabopt
7264 @item STT_FUNC
7265 @itemx function
7266 Mark the symbol as being a function name.
7267
7268 @item STT_GNU_IFUNC
7269 @itemx gnu_indirect_function
7270 Mark the symbol as an indirect function when evaluated during reloc
7271 processing. (This is only supported on assemblers targeting GNU systems).
7272
7273 @item STT_OBJECT
7274 @itemx object
7275 Mark the symbol as being a data object.
7276
7277 @item STT_TLS
7278 @itemx tls_object
7279 Mark the symbol as being a thread-local data object.
7280
7281 @item STT_COMMON
7282 @itemx common
7283 Mark the symbol as being a common data object.
7284
7285 @item STT_NOTYPE
7286 @itemx notype
7287 Does not mark the symbol in any way. It is supported just for completeness.
7288
7289 @item gnu_unique_object
7290 Marks the symbol as being a globally unique data object. The dynamic linker
7291 will make sure that in the entire process there is just one symbol with this
7292 name and type in use. (This is only supported on assemblers targeting GNU
7293 systems).
7294
7295 @end table
7296
7297 Changing between incompatible types other than from/to STT_NOTYPE will
7298 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7299 this.
7300
7301 Note: Some targets support extra types in addition to those listed above.
7302
7303 @end ifset
7304 @end ifset
7305
7306 @node Uleb128
7307 @section @code{.uleb128 @var{expressions}}
7308
7309 @cindex @code{uleb128} directive
7310 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7311 compact, variable length representation of numbers used by the DWARF
7312 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7313
7314 @ifset COFF
7315 @node Val
7316 @section @code{.val @var{addr}}
7317
7318 @cindex @code{val} directive
7319 @cindex COFF value attribute
7320 @cindex value attribute, COFF
7321 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7322 records the address @var{addr} as the value attribute of a symbol table
7323 entry.
7324 @end ifset
7325
7326 @ifset ELF
7327 @node Version
7328 @section @code{.version "@var{string}"}
7329
7330 @cindex @code{version} directive
7331 This directive creates a @code{.note} section and places into it an ELF
7332 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7333 @end ifset
7334
7335 @ifset ELF
7336 @node VTableEntry
7337 @section @code{.vtable_entry @var{table}, @var{offset}}
7338
7339 @cindex @code{vtable_entry} directive
7340 This directive finds or creates a symbol @code{table} and creates a
7341 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7342
7343 @node VTableInherit
7344 @section @code{.vtable_inherit @var{child}, @var{parent}}
7345
7346 @cindex @code{vtable_inherit} directive
7347 This directive finds the symbol @code{child} and finds or creates the symbol
7348 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7349 parent whose addend is the value of the child symbol. As a special case the
7350 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7351 @end ifset
7352
7353 @node Warning
7354 @section @code{.warning "@var{string}"}
7355 @cindex warning directive
7356 Similar to the directive @code{.error}
7357 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7358
7359 @node Weak
7360 @section @code{.weak @var{names}}
7361
7362 @cindex @code{weak} directive
7363 This directive sets the weak attribute on the comma separated list of symbol
7364 @code{names}. If the symbols do not already exist, they will be created.
7365
7366 On COFF targets other than PE, weak symbols are a GNU extension. This
7367 directive sets the weak attribute on the comma separated list of symbol
7368 @code{names}. If the symbols do not already exist, they will be created.
7369
7370 On the PE target, weak symbols are supported natively as weak aliases.
7371 When a weak symbol is created that is not an alias, GAS creates an
7372 alternate symbol to hold the default value.
7373
7374 @node Weakref
7375 @section @code{.weakref @var{alias}, @var{target}}
7376
7377 @cindex @code{weakref} directive
7378 This directive creates an alias to the target symbol that enables the symbol to
7379 be referenced with weak-symbol semantics, but without actually making it weak.
7380 If direct references or definitions of the symbol are present, then the symbol
7381 will not be weak, but if all references to it are through weak references, the
7382 symbol will be marked as weak in the symbol table.
7383
7384 The effect is equivalent to moving all references to the alias to a separate
7385 assembly source file, renaming the alias to the symbol in it, declaring the
7386 symbol as weak there, and running a reloadable link to merge the object files
7387 resulting from the assembly of the new source file and the old source file that
7388 had the references to the alias removed.
7389
7390 The alias itself never makes to the symbol table, and is entirely handled
7391 within the assembler.
7392
7393 @node Word
7394 @section @code{.word @var{expressions}}
7395
7396 @cindex @code{word} directive
7397 This directive expects zero or more @var{expressions}, of any section,
7398 separated by commas.
7399 @ifclear GENERIC
7400 @ifset W32
7401 For each expression, @command{@value{AS}} emits a 32-bit number.
7402 @end ifset
7403 @ifset W16
7404 For each expression, @command{@value{AS}} emits a 16-bit number.
7405 @end ifset
7406 @end ifclear
7407 @ifset GENERIC
7408
7409 The size of the number emitted, and its byte order,
7410 depend on what target computer the assembly is for.
7411 @end ifset
7412
7413 @c on sparc the "special treatment to support compilers" doesn't
7414 @c happen---32-bit addressability, period; no long/short jumps.
7415 @ifset DIFF-TBL-KLUGE
7416 @cindex difference tables altered
7417 @cindex altered difference tables
7418 @quotation
7419 @emph{Warning: Special Treatment to support Compilers}
7420 @end quotation
7421
7422 @ifset GENERIC
7423 Machines with a 32-bit address space, but that do less than 32-bit
7424 addressing, require the following special treatment. If the machine of
7425 interest to you does 32-bit addressing (or doesn't require it;
7426 @pxref{Machine Dependencies}), you can ignore this issue.
7427
7428 @end ifset
7429 In order to assemble compiler output into something that works,
7430 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7431 Directives of the form @samp{.word sym1-sym2} are often emitted by
7432 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7433 directive of the form @samp{.word sym1-sym2}, and the difference between
7434 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7435 creates a @dfn{secondary jump table}, immediately before the next label.
7436 This secondary jump table is preceded by a short-jump to the
7437 first byte after the secondary table. This short-jump prevents the flow
7438 of control from accidentally falling into the new table. Inside the
7439 table is a long-jump to @code{sym2}. The original @samp{.word}
7440 contains @code{sym1} minus the address of the long-jump to
7441 @code{sym2}.
7442
7443 If there were several occurrences of @samp{.word sym1-sym2} before the
7444 secondary jump table, all of them are adjusted. If there was a
7445 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7446 long-jump to @code{sym4} is included in the secondary jump table,
7447 and the @code{.word} directives are adjusted to contain @code{sym3}
7448 minus the address of the long-jump to @code{sym4}; and so on, for as many
7449 entries in the original jump table as necessary.
7450
7451 @ifset INTERNALS
7452 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7453 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7454 assembly language programmers.
7455 @end ifset
7456 @end ifset
7457 @c end DIFF-TBL-KLUGE
7458
7459 @ifclear no-space-dir
7460 @node Zero
7461 @section @code{.zero @var{size}}
7462
7463 @cindex @code{zero} directive
7464 @cindex filling memory with zero bytes
7465 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7466 expression. This directive is actually an alias for the @samp{.skip} directive
7467 so it can take an optional second argument of the value to store in the bytes
7468 instead of zero. Using @samp{.zero} in this way would be confusing however.
7469 @end ifclear
7470
7471 @ifset ELF
7472 @node 2byte
7473 @section @code{.2byte @var{expression} [, @var{expression}]*}
7474 @cindex @code{2byte} directive
7475 @cindex two-byte integer
7476 @cindex integer, 2-byte
7477
7478 This directive expects zero or more expressions, separated by commas. If there
7479 are no expressions then the directive does nothing. Otherwise each expression
7480 is evaluated in turn and placed in the next two bytes of the current output
7481 section, using the endian model of the target. If an expression will not fit
7482 in two bytes, a warning message is displayed and the least significant two
7483 bytes of the expression's value are used. If an expression cannot be evaluated
7484 at assembly time then relocations will be generated in order to compute the
7485 value at link time.
7486
7487 This directive does not apply any alignment before or after inserting the
7488 values. As a result of this, if relocations are generated, they may be
7489 different from those used for inserting values with a guaranteed alignment.
7490
7491 This directive is only available for ELF targets,
7492
7493 @node 4byte
7494 @section @code{.4byte @var{expression} [, @var{expression}]*}
7495 @cindex @code{4byte} directive
7496 @cindex four-byte integer
7497 @cindex integer, 4-byte
7498
7499 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7500 long values into the output.
7501
7502 @node 8byte
7503 @section @code{.8byte @var{expression} [, @var{expression}]*}
7504 @cindex @code{8byte} directive
7505 @cindex eight-byte integer
7506 @cindex integer, 8-byte
7507
7508 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7509 byte long bignum values into the output.
7510
7511 @end ifset
7512
7513 @node Deprecated
7514 @section Deprecated Directives
7515
7516 @cindex deprecated directives
7517 @cindex obsolescent directives
7518 One day these directives won't work.
7519 They are included for compatibility with older assemblers.
7520 @table @t
7521 @item .abort
7522 @item .line
7523 @end table
7524
7525 @ifset ELF
7526 @node Object Attributes
7527 @chapter Object Attributes
7528 @cindex object attributes
7529
7530 @command{@value{AS}} assembles source files written for a specific architecture
7531 into object files for that architecture. But not all object files are alike.
7532 Many architectures support incompatible variations. For instance, floating
7533 point arguments might be passed in floating point registers if the object file
7534 requires hardware floating point support---or floating point arguments might be
7535 passed in integer registers if the object file supports processors with no
7536 hardware floating point unit. Or, if two objects are built for different
7537 generations of the same architecture, the combination may require the
7538 newer generation at run-time.
7539
7540 This information is useful during and after linking. At link time,
7541 @command{@value{LD}} can warn about incompatible object files. After link
7542 time, tools like @command{gdb} can use it to process the linked file
7543 correctly.
7544
7545 Compatibility information is recorded as a series of object attributes. Each
7546 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7547 string, and indicates who sets the meaning of the tag. The tag is an integer,
7548 and indicates what property the attribute describes. The value may be a string
7549 or an integer, and indicates how the property affects this object. Missing
7550 attributes are the same as attributes with a zero value or empty string value.
7551
7552 Object attributes were developed as part of the ABI for the ARM Architecture.
7553 The file format is documented in @cite{ELF for the ARM Architecture}.
7554
7555 @menu
7556 * GNU Object Attributes:: @sc{gnu} Object Attributes
7557 * Defining New Object Attributes:: Defining New Object Attributes
7558 @end menu
7559
7560 @node GNU Object Attributes
7561 @section @sc{gnu} Object Attributes
7562
7563 The @code{.gnu_attribute} directive records an object attribute
7564 with vendor @samp{gnu}.
7565
7566 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7567 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7568 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7569 2} is set for architecture-independent attributes and clear for
7570 architecture-dependent ones.
7571
7572 @subsection Common @sc{gnu} attributes
7573
7574 These attributes are valid on all architectures.
7575
7576 @table @r
7577 @item Tag_compatibility (32)
7578 The compatibility attribute takes an integer flag value and a vendor name. If
7579 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7580 then the file is only compatible with the named toolchain. If it is greater
7581 than 1, the file can only be processed by other toolchains under some private
7582 arrangement indicated by the flag value and the vendor name.
7583 @end table
7584
7585 @subsection MIPS Attributes
7586
7587 @table @r
7588 @item Tag_GNU_MIPS_ABI_FP (4)
7589 The floating-point ABI used by this object file. The value will be:
7590
7591 @itemize @bullet
7592 @item
7593 0 for files not affected by the floating-point ABI.
7594 @item
7595 1 for files using the hardware floating-point ABI with a standard
7596 double-precision FPU.
7597 @item
7598 2 for files using the hardware floating-point ABI with a single-precision FPU.
7599 @item
7600 3 for files using the software floating-point ABI.
7601 @item
7602 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7603 floating-point registers, 32-bit general-purpose registers and increased the
7604 number of callee-saved floating-point registers.
7605 @item
7606 5 for files using the hardware floating-point ABI with a double-precision FPU
7607 with either 32-bit or 64-bit floating-point registers and 32-bit
7608 general-purpose registers.
7609 @item
7610 6 for files using the hardware floating-point ABI with 64-bit floating-point
7611 registers and 32-bit general-purpose registers.
7612 @item
7613 7 for files using the hardware floating-point ABI with 64-bit floating-point
7614 registers, 32-bit general-purpose registers and a rule that forbids the
7615 direct use of odd-numbered single-precision floating-point registers.
7616 @end itemize
7617 @end table
7618
7619 @subsection PowerPC Attributes
7620
7621 @table @r
7622 @item Tag_GNU_Power_ABI_FP (4)
7623 The floating-point ABI used by this object file. The value will be:
7624
7625 @itemize @bullet
7626 @item
7627 0 for files not affected by the floating-point ABI.
7628 @item
7629 1 for files using double-precision hardware floating-point ABI.
7630 @item
7631 2 for files using the software floating-point ABI.
7632 @item
7633 3 for files using single-precision hardware floating-point ABI.
7634 @end itemize
7635
7636 @item Tag_GNU_Power_ABI_Vector (8)
7637 The vector ABI used by this object file. The value will be:
7638
7639 @itemize @bullet
7640 @item
7641 0 for files not affected by the vector ABI.
7642 @item
7643 1 for files using general purpose registers to pass vectors.
7644 @item
7645 2 for files using AltiVec registers to pass vectors.
7646 @item
7647 3 for files using SPE registers to pass vectors.
7648 @end itemize
7649 @end table
7650
7651 @subsection IBM z Systems Attributes
7652
7653 @table @r
7654 @item Tag_GNU_S390_ABI_Vector (8)
7655 The vector ABI used by this object file. The value will be:
7656
7657 @itemize @bullet
7658 @item
7659 0 for files not affected by the vector ABI.
7660 @item
7661 1 for files using software vector ABI.
7662 @item
7663 2 for files using hardware vector ABI.
7664 @end itemize
7665 @end table
7666
7667 @subsection MSP430 Attributes
7668
7669 @table @r
7670 @item Tag_GNU_MSP430_Data_Region (4)
7671 The data region used by this object file. The value will be:
7672
7673 @itemize @bullet
7674 @item
7675 0 for files not using the large memory model.
7676 @item
7677 1 for files which have been compiled with the condition that all
7678 data is in the lower memory region, i.e. below address 0x10000.
7679 @item
7680 2 for files which allow data to be placed in the full 20-bit memory range.
7681 @end itemize
7682 @end table
7683
7684 @node Defining New Object Attributes
7685 @section Defining New Object Attributes
7686
7687 If you want to define a new @sc{gnu} object attribute, here are the places you
7688 will need to modify. New attributes should be discussed on the @samp{binutils}
7689 mailing list.
7690
7691 @itemize @bullet
7692 @item
7693 This manual, which is the official register of attributes.
7694 @item
7695 The header for your architecture @file{include/elf}, to define the tag.
7696 @item
7697 The @file{bfd} support file for your architecture, to merge the attribute
7698 and issue any appropriate link warnings.
7699 @item
7700 Test cases in @file{ld/testsuite} for merging and link warnings.
7701 @item
7702 @file{binutils/readelf.c} to display your attribute.
7703 @item
7704 GCC, if you want the compiler to mark the attribute automatically.
7705 @end itemize
7706
7707 @end ifset
7708
7709 @ifset GENERIC
7710 @node Machine Dependencies
7711 @chapter Machine Dependent Features
7712
7713 @cindex machine dependencies
7714 The machine instruction sets are (almost by definition) different on
7715 each machine where @command{@value{AS}} runs. Floating point representations
7716 vary as well, and @command{@value{AS}} often supports a few additional
7717 directives or command-line options for compatibility with other
7718 assemblers on a particular platform. Finally, some versions of
7719 @command{@value{AS}} support special pseudo-instructions for branch
7720 optimization.
7721
7722 This chapter discusses most of these differences, though it does not
7723 include details on any machine's instruction set. For details on that
7724 subject, see the hardware manufacturer's manual.
7725
7726 @menu
7727 @ifset AARCH64
7728 * AArch64-Dependent:: AArch64 Dependent Features
7729 @end ifset
7730 @ifset ALPHA
7731 * Alpha-Dependent:: Alpha Dependent Features
7732 @end ifset
7733 @ifset ARC
7734 * ARC-Dependent:: ARC Dependent Features
7735 @end ifset
7736 @ifset ARM
7737 * ARM-Dependent:: ARM Dependent Features
7738 @end ifset
7739 @ifset AVR
7740 * AVR-Dependent:: AVR Dependent Features
7741 @end ifset
7742 @ifset Blackfin
7743 * Blackfin-Dependent:: Blackfin Dependent Features
7744 @end ifset
7745 @ifset BPF
7746 * BPF-Dependent:: BPF Dependent Features
7747 @end ifset
7748 @ifset CR16
7749 * CR16-Dependent:: CR16 Dependent Features
7750 @end ifset
7751 @ifset CRIS
7752 * CRIS-Dependent:: CRIS Dependent Features
7753 @end ifset
7754 @ifset CSKY
7755 * C-SKY-Dependent:: C-SKY Dependent Features
7756 @end ifset
7757 @ifset D10V
7758 * D10V-Dependent:: D10V Dependent Features
7759 @end ifset
7760 @ifset D30V
7761 * D30V-Dependent:: D30V Dependent Features
7762 @end ifset
7763 @ifset EPIPHANY
7764 * Epiphany-Dependent:: EPIPHANY Dependent Features
7765 @end ifset
7766 @ifset H8/300
7767 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7768 @end ifset
7769 @ifset HPPA
7770 * HPPA-Dependent:: HPPA Dependent Features
7771 @end ifset
7772 @ifset I80386
7773 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7774 @end ifset
7775 @ifset IA64
7776 * IA-64-Dependent:: Intel IA-64 Dependent Features
7777 @end ifset
7778 @ifset IP2K
7779 * IP2K-Dependent:: IP2K Dependent Features
7780 @end ifset
7781 @ifset LM32
7782 * LM32-Dependent:: LM32 Dependent Features
7783 @end ifset
7784 @ifset M32C
7785 * M32C-Dependent:: M32C Dependent Features
7786 @end ifset
7787 @ifset M32R
7788 * M32R-Dependent:: M32R Dependent Features
7789 @end ifset
7790 @ifset M680X0
7791 * M68K-Dependent:: M680x0 Dependent Features
7792 @end ifset
7793 @ifset M68HC11
7794 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7795 @end ifset
7796 @ifset S12Z
7797 * S12Z-Dependent:: S12Z Dependent Features
7798 @end ifset
7799 @ifset METAG
7800 * Meta-Dependent :: Meta Dependent Features
7801 @end ifset
7802 @ifset MICROBLAZE
7803 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7804 @end ifset
7805 @ifset MIPS
7806 * MIPS-Dependent:: MIPS Dependent Features
7807 @end ifset
7808 @ifset MMIX
7809 * MMIX-Dependent:: MMIX Dependent Features
7810 @end ifset
7811 @ifset MSP430
7812 * MSP430-Dependent:: MSP430 Dependent Features
7813 @end ifset
7814 @ifset NDS32
7815 * NDS32-Dependent:: Andes NDS32 Dependent Features
7816 @end ifset
7817 @ifset NIOSII
7818 * NiosII-Dependent:: Altera Nios II Dependent Features
7819 @end ifset
7820 @ifset NS32K
7821 * NS32K-Dependent:: NS32K Dependent Features
7822 @end ifset
7823 @ifset OPENRISC
7824 * OpenRISC-Dependent:: OpenRISC 1000 Features
7825 @end ifset
7826 @ifset PDP11
7827 * PDP-11-Dependent:: PDP-11 Dependent Features
7828 @end ifset
7829 @ifset PJ
7830 * PJ-Dependent:: picoJava Dependent Features
7831 @end ifset
7832 @ifset PPC
7833 * PPC-Dependent:: PowerPC Dependent Features
7834 @end ifset
7835 @ifset PRU
7836 * PRU-Dependent:: PRU Dependent Features
7837 @end ifset
7838 @ifset RISCV
7839 * RISC-V-Dependent:: RISC-V Dependent Features
7840 @end ifset
7841 @ifset RL78
7842 * RL78-Dependent:: RL78 Dependent Features
7843 @end ifset
7844 @ifset RX
7845 * RX-Dependent:: RX Dependent Features
7846 @end ifset
7847 @ifset S390
7848 * S/390-Dependent:: IBM S/390 Dependent Features
7849 @end ifset
7850 @ifset SCORE
7851 * SCORE-Dependent:: SCORE Dependent Features
7852 @end ifset
7853 @ifset SH
7854 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7855 @end ifset
7856 @ifset SPARC
7857 * Sparc-Dependent:: SPARC Dependent Features
7858 @end ifset
7859 @ifset TIC54X
7860 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7861 @end ifset
7862 @ifset TIC6X
7863 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7864 @end ifset
7865 @ifset TILEGX
7866 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7867 @end ifset
7868 @ifset TILEPRO
7869 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7870 @end ifset
7871 @ifset V850
7872 * V850-Dependent:: V850 Dependent Features
7873 @end ifset
7874 @ifset VAX
7875 * Vax-Dependent:: VAX Dependent Features
7876 @end ifset
7877 @ifset VISIUM
7878 * Visium-Dependent:: Visium Dependent Features
7879 @end ifset
7880 @ifset WASM32
7881 * WebAssembly-Dependent:: WebAssembly Dependent Features
7882 @end ifset
7883 @ifset XGATE
7884 * XGATE-Dependent:: XGATE Dependent Features
7885 @end ifset
7886 @ifset XSTORMY16
7887 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7888 @end ifset
7889 @ifset XTENSA
7890 * Xtensa-Dependent:: Xtensa Dependent Features
7891 @end ifset
7892 @ifset Z80
7893 * Z80-Dependent:: Z80 Dependent Features
7894 @end ifset
7895 @ifset Z8000
7896 * Z8000-Dependent:: Z8000 Dependent Features
7897 @end ifset
7898 @end menu
7899
7900 @lowersections
7901 @end ifset
7902
7903 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7904 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7905 @c peculiarity: to preserve cross-references, there must be a node called
7906 @c "Machine Dependencies". Hence the conditional nodenames in each
7907 @c major node below. Node defaulting in makeinfo requires adjacency of
7908 @c node and sectioning commands; hence the repetition of @chapter BLAH
7909 @c in both conditional blocks.
7910
7911 @ifset AARCH64
7912 @include c-aarch64.texi
7913 @end ifset
7914
7915 @ifset ALPHA
7916 @include c-alpha.texi
7917 @end ifset
7918
7919 @ifset ARC
7920 @include c-arc.texi
7921 @end ifset
7922
7923 @ifset ARM
7924 @include c-arm.texi
7925 @end ifset
7926
7927 @ifset AVR
7928 @include c-avr.texi
7929 @end ifset
7930
7931 @ifset Blackfin
7932 @include c-bfin.texi
7933 @end ifset
7934
7935 @ifset BPF
7936 @include c-bpf.texi
7937 @end ifset
7938
7939 @ifset CR16
7940 @include c-cr16.texi
7941 @end ifset
7942
7943 @ifset CRIS
7944 @include c-cris.texi
7945 @end ifset
7946
7947 @ifset CSKY
7948 @include c-csky.texi
7949 @end ifset
7950
7951 @ifset Renesas-all
7952 @ifclear GENERIC
7953 @node Machine Dependencies
7954 @chapter Machine Dependent Features
7955
7956 The machine instruction sets are different on each Renesas chip family,
7957 and there are also some syntax differences among the families. This
7958 chapter describes the specific @command{@value{AS}} features for each
7959 family.
7960
7961 @menu
7962 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7963 * SH-Dependent:: Renesas SH Dependent Features
7964 @end menu
7965 @lowersections
7966 @end ifclear
7967 @end ifset
7968
7969 @ifset D10V
7970 @include c-d10v.texi
7971 @end ifset
7972
7973 @ifset D30V
7974 @include c-d30v.texi
7975 @end ifset
7976
7977 @ifset EPIPHANY
7978 @include c-epiphany.texi
7979 @end ifset
7980
7981 @ifset H8/300
7982 @include c-h8300.texi
7983 @end ifset
7984
7985 @ifset HPPA
7986 @include c-hppa.texi
7987 @end ifset
7988
7989 @ifset I80386
7990 @include c-i386.texi
7991 @end ifset
7992
7993 @ifset IA64
7994 @include c-ia64.texi
7995 @end ifset
7996
7997 @ifset IP2K
7998 @include c-ip2k.texi
7999 @end ifset
8000
8001 @ifset LM32
8002 @include c-lm32.texi
8003 @end ifset
8004
8005 @ifset M32C
8006 @include c-m32c.texi
8007 @end ifset
8008
8009 @ifset M32R
8010 @include c-m32r.texi
8011 @end ifset
8012
8013 @ifset M680X0
8014 @include c-m68k.texi
8015 @end ifset
8016
8017 @ifset M68HC11
8018 @include c-m68hc11.texi
8019 @end ifset
8020
8021 @ifset S12Z
8022 @include c-s12z.texi
8023 @end ifset
8024
8025 @ifset METAG
8026 @include c-metag.texi
8027 @end ifset
8028
8029 @ifset MICROBLAZE
8030 @include c-microblaze.texi
8031 @end ifset
8032
8033 @ifset MIPS
8034 @include c-mips.texi
8035 @end ifset
8036
8037 @ifset MMIX
8038 @include c-mmix.texi
8039 @end ifset
8040
8041 @ifset MSP430
8042 @include c-msp430.texi
8043 @end ifset
8044
8045 @ifset NDS32
8046 @include c-nds32.texi
8047 @end ifset
8048
8049 @ifset NIOSII
8050 @include c-nios2.texi
8051 @end ifset
8052
8053 @ifset NS32K
8054 @include c-ns32k.texi
8055 @end ifset
8056
8057 @ifset OPENRISC
8058 @include c-or1k.texi
8059 @end ifset
8060
8061 @ifset PDP11
8062 @include c-pdp11.texi
8063 @end ifset
8064
8065 @ifset PJ
8066 @include c-pj.texi
8067 @end ifset
8068
8069 @ifset PPC
8070 @include c-ppc.texi
8071 @end ifset
8072
8073 @ifset PRU
8074 @include c-pru.texi
8075 @end ifset
8076
8077 @ifset RISCV
8078 @include c-riscv.texi
8079 @end ifset
8080
8081 @ifset RL78
8082 @include c-rl78.texi
8083 @end ifset
8084
8085 @ifset RX
8086 @include c-rx.texi
8087 @end ifset
8088
8089 @ifset S390
8090 @include c-s390.texi
8091 @end ifset
8092
8093 @ifset SCORE
8094 @include c-score.texi
8095 @end ifset
8096
8097 @ifset SH
8098 @include c-sh.texi
8099 @end ifset
8100
8101 @ifset SPARC
8102 @include c-sparc.texi
8103 @end ifset
8104
8105 @ifset TIC54X
8106 @include c-tic54x.texi
8107 @end ifset
8108
8109 @ifset TIC6X
8110 @include c-tic6x.texi
8111 @end ifset
8112
8113 @ifset TILEGX
8114 @include c-tilegx.texi
8115 @end ifset
8116
8117 @ifset TILEPRO
8118 @include c-tilepro.texi
8119 @end ifset
8120
8121 @ifset V850
8122 @include c-v850.texi
8123 @end ifset
8124
8125 @ifset VAX
8126 @include c-vax.texi
8127 @end ifset
8128
8129 @ifset VISIUM
8130 @include c-visium.texi
8131 @end ifset
8132
8133 @ifset WASM32
8134 @include c-wasm32.texi
8135 @end ifset
8136
8137 @ifset XGATE
8138 @include c-xgate.texi
8139 @end ifset
8140
8141 @ifset XSTORMY16
8142 @include c-xstormy16.texi
8143 @end ifset
8144
8145 @ifset XTENSA
8146 @include c-xtensa.texi
8147 @end ifset
8148
8149 @ifset Z80
8150 @include c-z80.texi
8151 @end ifset
8152
8153 @ifset Z8000
8154 @include c-z8k.texi
8155 @end ifset
8156
8157 @ifset GENERIC
8158 @c reverse effect of @down at top of generic Machine-Dep chapter
8159 @raisesections
8160 @end ifset
8161
8162 @node Reporting Bugs
8163 @chapter Reporting Bugs
8164 @cindex bugs in assembler
8165 @cindex reporting bugs in assembler
8166
8167 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8168
8169 Reporting a bug may help you by bringing a solution to your problem, or it may
8170 not. But in any case the principal function of a bug report is to help the
8171 entire community by making the next version of @command{@value{AS}} work better.
8172 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8173
8174 In order for a bug report to serve its purpose, you must include the
8175 information that enables us to fix the bug.
8176
8177 @menu
8178 * Bug Criteria:: Have you found a bug?
8179 * Bug Reporting:: How to report bugs
8180 @end menu
8181
8182 @node Bug Criteria
8183 @section Have You Found a Bug?
8184 @cindex bug criteria
8185
8186 If you are not sure whether you have found a bug, here are some guidelines:
8187
8188 @itemize @bullet
8189 @cindex fatal signal
8190 @cindex assembler crash
8191 @cindex crash of assembler
8192 @item
8193 If the assembler gets a fatal signal, for any input whatever, that is a
8194 @command{@value{AS}} bug. Reliable assemblers never crash.
8195
8196 @cindex error on valid input
8197 @item
8198 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8199
8200 @cindex invalid input
8201 @item
8202 If @command{@value{AS}} does not produce an error message for invalid input, that
8203 is a bug. However, you should note that your idea of ``invalid input'' might
8204 be our idea of ``an extension'' or ``support for traditional practice''.
8205
8206 @item
8207 If you are an experienced user of assemblers, your suggestions for improvement
8208 of @command{@value{AS}} are welcome in any case.
8209 @end itemize
8210
8211 @node Bug Reporting
8212 @section How to Report Bugs
8213 @cindex bug reports
8214 @cindex assembler bugs, reporting
8215
8216 A number of companies and individuals offer support for @sc{gnu} products. If
8217 you obtained @command{@value{AS}} from a support organization, we recommend you
8218 contact that organization first.
8219
8220 You can find contact information for many support companies and
8221 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8222 distribution.
8223
8224 @ifset BUGURL
8225 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8226 to @value{BUGURL}.
8227 @end ifset
8228
8229 The fundamental principle of reporting bugs usefully is this:
8230 @strong{report all the facts}. If you are not sure whether to state a
8231 fact or leave it out, state it!
8232
8233 Often people omit facts because they think they know what causes the problem
8234 and assume that some details do not matter. Thus, you might assume that the
8235 name of a symbol you use in an example does not matter. Well, probably it does
8236 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8237 happens to fetch from the location where that name is stored in memory;
8238 perhaps, if the name were different, the contents of that location would fool
8239 the assembler into doing the right thing despite the bug. Play it safe and
8240 give a specific, complete example. That is the easiest thing for you to do,
8241 and the most helpful.
8242
8243 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8244 it is new to us. Therefore, always write your bug reports on the assumption
8245 that the bug has not been reported previously.
8246
8247 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8248 bell?'' This cannot help us fix a bug, so it is basically useless. We
8249 respond by asking for enough details to enable us to investigate.
8250 You might as well expedite matters by sending them to begin with.
8251
8252 To enable us to fix the bug, you should include all these things:
8253
8254 @itemize @bullet
8255 @item
8256 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8257 it with the @samp{--version} argument.
8258
8259 Without this, we will not know whether there is any point in looking for
8260 the bug in the current version of @command{@value{AS}}.
8261
8262 @item
8263 Any patches you may have applied to the @command{@value{AS}} source.
8264
8265 @item
8266 The type of machine you are using, and the operating system name and
8267 version number.
8268
8269 @item
8270 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8271 ``@code{gcc-2.7}''.
8272
8273 @item
8274 The command arguments you gave the assembler to assemble your example and
8275 observe the bug. To guarantee you will not omit something important, list them
8276 all. A copy of the Makefile (or the output from make) is sufficient.
8277
8278 If we were to try to guess the arguments, we would probably guess wrong
8279 and then we might not encounter the bug.
8280
8281 @item
8282 A complete input file that will reproduce the bug. If the bug is observed when
8283 the assembler is invoked via a compiler, send the assembler source, not the
8284 high level language source. Most compilers will produce the assembler source
8285 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8286 the options @samp{-v --save-temps}; this will save the assembler source in a
8287 file with an extension of @file{.s}, and also show you exactly how
8288 @command{@value{AS}} is being run.
8289
8290 @item
8291 A description of what behavior you observe that you believe is
8292 incorrect. For example, ``It gets a fatal signal.''
8293
8294 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8295 will certainly notice it. But if the bug is incorrect output, we might not
8296 notice unless it is glaringly wrong. You might as well not give us a chance to
8297 make a mistake.
8298
8299 Even if the problem you experience is a fatal signal, you should still say so
8300 explicitly. Suppose something strange is going on, such as, your copy of
8301 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8302 library on your system. (This has happened!) Your copy might crash and ours
8303 would not. If you told us to expect a crash, then when ours fails to crash, we
8304 would know that the bug was not happening for us. If you had not told us to
8305 expect a crash, then we would not be able to draw any conclusion from our
8306 observations.
8307
8308 @item
8309 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8310 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8311 option. Always send diffs from the old file to the new file. If you even
8312 discuss something in the @command{@value{AS}} source, refer to it by context, not
8313 by line number.
8314
8315 The line numbers in our development sources will not match those in your
8316 sources. Your line numbers would convey no useful information to us.
8317 @end itemize
8318
8319 Here are some things that are not necessary:
8320
8321 @itemize @bullet
8322 @item
8323 A description of the envelope of the bug.
8324
8325 Often people who encounter a bug spend a lot of time investigating
8326 which changes to the input file will make the bug go away and which
8327 changes will not affect it.
8328
8329 This is often time consuming and not very useful, because the way we
8330 will find the bug is by running a single example under the debugger
8331 with breakpoints, not by pure deduction from a series of examples.
8332 We recommend that you save your time for something else.
8333
8334 Of course, if you can find a simpler example to report @emph{instead}
8335 of the original one, that is a convenience for us. Errors in the
8336 output will be easier to spot, running under the debugger will take
8337 less time, and so on.
8338
8339 However, simplification is not vital; if you do not want to do this,
8340 report the bug anyway and send us the entire test case you used.
8341
8342 @item
8343 A patch for the bug.
8344
8345 A patch for the bug does help us if it is a good one. But do not omit
8346 the necessary information, such as the test case, on the assumption that
8347 a patch is all we need. We might see problems with your patch and decide
8348 to fix the problem another way, or we might not understand it at all.
8349
8350 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8351 construct an example that will make the program follow a certain path through
8352 the code. If you do not send us the example, we will not be able to construct
8353 one, so we will not be able to verify that the bug is fixed.
8354
8355 And if we cannot understand what bug you are trying to fix, or why your
8356 patch should be an improvement, we will not install it. A test case will
8357 help us to understand.
8358
8359 @item
8360 A guess about what the bug is or what it depends on.
8361
8362 Such guesses are usually wrong. Even we cannot guess right about such
8363 things without first using the debugger to find the facts.
8364 @end itemize
8365
8366 @node Acknowledgements
8367 @chapter Acknowledgements
8368
8369 If you have contributed to GAS and your name isn't listed here,
8370 it is not meant as a slight. We just don't know about it. Send mail to the
8371 maintainer, and we'll correct the situation. Currently
8372 @c (October 2012),
8373 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8374
8375 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8376 more details?}
8377
8378 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8379 information and the 68k series machines, most of the preprocessing pass, and
8380 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8381
8382 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8383 many bug fixes, including merging support for several processors, breaking GAS
8384 up to handle multiple object file format back ends (including heavy rewrite,
8385 testing, an integration of the coff and b.out back ends), adding configuration
8386 including heavy testing and verification of cross assemblers and file splits
8387 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8388 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8389 port (including considerable amounts of reverse engineering), a SPARC opcode
8390 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8391 assertions and made them work, much other reorganization, cleanup, and lint.
8392
8393 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8394 in format-specific I/O modules.
8395
8396 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8397 has done much work with it since.
8398
8399 The Intel 80386 machine description was written by Eliot Dresselhaus.
8400
8401 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8402
8403 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8404 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8405
8406 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8407 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8408 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8409 support a.out format.
8410
8411 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8412 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8413 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8414 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8415 targets.
8416
8417 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8418 simplified the configuration of which versions accept which directives. He
8419 updated the 68k machine description so that Motorola's opcodes always produced
8420 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8421 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8422 cross-compilation support, and one bug in relaxation that took a week and
8423 required the proverbial one-bit fix.
8424
8425 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8426 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8427 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8428 PowerPC assembler, and made a few other minor patches.
8429
8430 Steve Chamberlain made GAS able to generate listings.
8431
8432 Hewlett-Packard contributed support for the HP9000/300.
8433
8434 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8435 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8436 formats). This work was supported by both the Center for Software Science at
8437 the University of Utah and Cygnus Support.
8438
8439 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8440 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8441 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8442 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8443 and some initial 64-bit support).
8444
8445 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8446
8447 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8448 support for openVMS/Alpha.
8449
8450 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8451 flavors.
8452
8453 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8454 Inc.@: added support for Xtensa processors.
8455
8456 Several engineers at Cygnus Support have also provided many small bug fixes and
8457 configuration enhancements.
8458
8459 Jon Beniston added support for the Lattice Mico32 architecture.
8460
8461 Many others have contributed large or small bugfixes and enhancements. If
8462 you have contributed significant work and are not mentioned on this list, and
8463 want to be, let us know. Some of the history has been lost; we are not
8464 intentionally leaving anyone out.
8465
8466 @node GNU Free Documentation License
8467 @appendix GNU Free Documentation License
8468 @include fdl.texi
8469
8470 @node AS Index
8471 @unnumbered AS Index
8472
8473 @printindex cp
8474
8475 @bye
8476 @c Local Variables:
8477 @c fill-column: 79
8478 @c End:
This page took 0.205528 seconds and 4 git commands to generate.