Change regcache list to be an hash map
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command-line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a55},
127 @code{cortex-a57},
128 @code{cortex-a72},
129 @code{cortex-a73},
130 @code{cortex-a75},
131 @code{cortex-a76},
132 @code{cortex-a76ae},
133 @code{cortex-a77},
134 @code{ares},
135 @code{cortex-r4},
136 @code{cortex-r4f},
137 @code{cortex-r5},
138 @code{cortex-r7},
139 @code{cortex-r8},
140 @code{cortex-r52},
141 @code{cortex-m35p},
142 @code{cortex-m33},
143 @code{cortex-m23},
144 @code{cortex-m7},
145 @code{cortex-m4},
146 @code{cortex-m3},
147 @code{cortex-m1},
148 @code{cortex-m0},
149 @code{cortex-m0plus},
150 @code{exynos-m1},
151 @code{marvell-pj4},
152 @code{marvell-whitney},
153 @code{neoverse-n1},
154 @code{xgene1},
155 @code{xgene2},
156 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
157 @code{i80200} (Intel XScale processor)
158 @code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
159 and
160 @code{xscale}.
161 The special name @code{all} may be used to allow the
162 assembler to accept instructions valid for any ARM processor.
163
164 In addition to the basic instruction set, the assembler can be told to
165 accept various extension mnemonics that extend the processor using the
166 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
167 is equivalent to specifying @code{-mcpu=ep9312}.
168
169 Multiple extensions may be specified, separated by a @code{+}. The
170 extensions should be specified in ascending alphabetical order.
171
172 Some extensions may be restricted to particular architectures; this is
173 documented in the list of extensions below.
174
175 Extension mnemonics may also be removed from those the assembler accepts.
176 This is done be prepending @code{no} to the option that adds the extension.
177 Extensions that are removed should be listed after all extensions which have
178 been added, again in ascending alphabetical order. For example,
179 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
180
181
182 The following extensions are currently supported:
183 @code{bf16} (BFloat16 extensions for v8.6-A architecture),
184 @code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
185 @code{crc}
186 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
187 @code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
188 @code{fp} (Floating Point Extensions for v8-A architecture),
189 @code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
190 @code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
191 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
192 @code{iwmmxt},
193 @code{iwmmxt2},
194 @code{xscale},
195 @code{maverick},
196 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
197 architectures),
198 @code{os} (Operating System for v6M architecture),
199 @code{predres} (Execution and Data Prediction Restriction Instruction for
200 v8-A architectures, added by default from v8.5-A),
201 @code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
202 default from v8.5-A),
203 @code{sec} (Security Extensions for v6K and v7-A architectures),
204 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
205 @code{virt} (Virtualization Extensions for v7-A architecture, implies
206 @code{idiv}),
207 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
208 @code{ras} (Reliability, Availability and Serviceability extensions
209 for v8-A architecture),
210 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
211 @code{simd})
212 and
213 @code{xscale}.
214
215 @cindex @code{-march=} command-line option, ARM
216 @item -march=@var{architecture}[+@var{extension}@dots{}]
217 This option specifies the target architecture. The assembler will issue
218 an error message if an attempt is made to assemble an instruction which
219 will not execute on the target architecture. The following architecture
220 names are recognized:
221 @code{armv1},
222 @code{armv2},
223 @code{armv2a},
224 @code{armv2s},
225 @code{armv3},
226 @code{armv3m},
227 @code{armv4},
228 @code{armv4xm},
229 @code{armv4t},
230 @code{armv4txm},
231 @code{armv5},
232 @code{armv5t},
233 @code{armv5txm},
234 @code{armv5te},
235 @code{armv5texp},
236 @code{armv6},
237 @code{armv6j},
238 @code{armv6k},
239 @code{armv6z},
240 @code{armv6kz},
241 @code{armv6-m},
242 @code{armv6s-m},
243 @code{armv7},
244 @code{armv7-a},
245 @code{armv7ve},
246 @code{armv7-r},
247 @code{armv7-m},
248 @code{armv7e-m},
249 @code{armv8-a},
250 @code{armv8.1-a},
251 @code{armv8.2-a},
252 @code{armv8.3-a},
253 @code{armv8-r},
254 @code{armv8.4-a},
255 @code{armv8.5-a},
256 @code{armv8-m.base},
257 @code{armv8-m.main},
258 @code{armv8.1-m.main},
259 @code{armv8.6-a},
260 @code{iwmmxt},
261 @code{iwmmxt2}
262 and
263 @code{xscale}.
264 If both @code{-mcpu} and
265 @code{-march} are specified, the assembler will use
266 the setting for @code{-mcpu}.
267
268 The architecture option can be extended with a set extension options. These
269 extensions are context sensitive, i.e. the same extension may mean different
270 things when used with different architectures. When used together with a
271 @code{-mfpu} option, the union of both feature enablement is taken.
272 See their availability and meaning below:
273
274 For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
275
276 @code{+fp}: Enables VFPv2 instructions.
277 @code{+nofp}: Disables all FPU instrunctions.
278
279 For @code{armv7}:
280
281 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
282 @code{+nofp}: Disables all FPU instructions.
283
284 For @code{armv7-a}:
285
286 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
287 @code{+vfpv3-d16}: Alias for @code{+fp}.
288 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
289 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
290 conversion instructions and 16 double-word registers.
291 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
292 instructions and 32 double-word registers.
293 @code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
294 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
295 @code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
296 registers.
297 @code{+neon}: Alias for @code{+simd}.
298 @code{+neon-vfpv3}: Alias for @code{+simd}.
299 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
300 NEONv1 instructions with 32 double-word registers.
301 @code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
302 double-word registers.
303 @code{+mp}: Enables Multiprocessing Extensions.
304 @code{+sec}: Enables Security Extensions.
305 @code{+nofp}: Disables all FPU and NEON instructions.
306 @code{+nosimd}: Disables all NEON instructions.
307
308 For @code{armv7ve}:
309
310 @code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
311 @code{+vfpv4-d16}: Alias for @code{+fp}.
312 @code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
313 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
314 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
315 conversion instructions and 16 double-word registers.
316 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
317 instructions and 32 double-word registers.
318 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
319 @code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
320 double-word registers.
321 @code{+neon-vfpv4}: Alias for @code{+simd}.
322 @code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
323 registers.
324 @code{+neon-vfpv3}: Alias for @code{+neon}.
325 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
326 NEONv1 instructions with 32 double-word registers.
327 double-word registers.
328 @code{+nofp}: Disables all FPU and NEON instructions.
329 @code{+nosimd}: Disables all NEON instructions.
330
331 For @code{armv7-r}:
332
333 @code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
334 double-word registers.
335 @code{+vfpv3xd}: Alias for @code{+fp.sp}.
336 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
337 @code{+vfpv3-d16}: Alias for @code{+fp}.
338 @code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
339 floating-point conversion instructions with 16 double-word registers.
340 @code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
341 conversion instructions with 16 double-word registers.
342 @code{+idiv}: Enables integer division instructions in ARM mode.
343 @code{+nofp}: Disables all FPU instructions.
344
345 For @code{armv7e-m}:
346
347 @code{+fp}: Enables single-precision only VFPv4 instructions with 16
348 double-word registers.
349 @code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
350 @code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
351 double-word registers.
352 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
353 @code{+fpv5-d16"}: Alias for @code{+fp.dp}.
354 @code{+nofp}: Disables all FPU instructions.
355
356 For @code{armv8-m.main}:
357
358 @code{+dsp}: Enables DSP Extension.
359 @code{+fp}: Enables single-precision only VFPv5 instructions with 16
360 double-word registers.
361 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
362 @code{+nofp}: Disables all FPU instructions.
363 @code{+nodsp}: Disables DSP Extension.
364
365 For @code{armv8.1-m.main}:
366
367 @code{+dsp}: Enables DSP Extension.
368 @code{+fp}: Enables single and half precision scalar Floating Point Extensions
369 for Armv8.1-M Mainline with 16 double-word registers.
370 @code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
371 Armv8.1-M Mainline, implies @code{+fp}.
372 @code{+mve}: Enables integer only M-profile Vector Extension for
373 Armv8.1-M Mainline, implies @code{+dsp}.
374 @code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
375 Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
376 @code{+nofp}: Disables all FPU instructions.
377 @code{+nodsp}: Disables DSP Extension.
378 @code{+nomve}: Disables all M-profile Vector Extensions.
379
380 For @code{armv8-a}:
381
382 @code{+crc}: Enables CRC32 Extension.
383 @code{+simd}: Enables VFP and NEON for Armv8-A.
384 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
385 @code{+simd}.
386 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
387 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
388 for Armv8-A.
389 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
390 @code{+nocrypto}: Disables Cryptography Extensions.
391
392 For @code{armv8.1-a}:
393
394 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
395 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
396 @code{+simd}.
397 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
398 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
399 for Armv8-A.
400 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
401 @code{+nocrypto}: Disables Cryptography Extensions.
402
403 For @code{armv8.2-a} and @code{armv8.3-a}:
404
405 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
406 @code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
407 @code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
408 for Armv8.2-A, implies @code{+fp16}.
409 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
410 @code{+simd}.
411 @code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
412 @code{+simd}.
413 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
414 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
415 for Armv8-A.
416 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
417 @code{+nocrypto}: Disables Cryptography Extensions.
418
419 For @code{armv8.4-a}:
420
421 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
422 Armv8.2-A.
423 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
424 Variant Extensions for Armv8.2-A, implies @code{+simd}.
425 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
426 @code{+simd}.
427 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
428 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
429 for Armv8-A.
430 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
431 @code{+nocryptp}: Disables Cryptography Extensions.
432
433 For @code{armv8.5-a}:
434
435 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
436 Armv8.2-A.
437 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
438 Variant Extensions for Armv8.2-A, implies @code{+simd}.
439 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
440 @code{+simd}.
441 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
442 @code{+nocryptp}: Disables Cryptography Extensions.
443
444
445 @cindex @code{-mfpu=} command-line option, ARM
446 @item -mfpu=@var{floating-point-format}
447
448 This option specifies the floating point format to assemble for. The
449 assembler will issue an error message if an attempt is made to assemble
450 an instruction which will not execute on the target floating point unit.
451 The following format options are recognized:
452 @code{softfpa},
453 @code{fpe},
454 @code{fpe2},
455 @code{fpe3},
456 @code{fpa},
457 @code{fpa10},
458 @code{fpa11},
459 @code{arm7500fe},
460 @code{softvfp},
461 @code{softvfp+vfp},
462 @code{vfp},
463 @code{vfp10},
464 @code{vfp10-r0},
465 @code{vfp9},
466 @code{vfpxd},
467 @code{vfpv2},
468 @code{vfpv3},
469 @code{vfpv3-fp16},
470 @code{vfpv3-d16},
471 @code{vfpv3-d16-fp16},
472 @code{vfpv3xd},
473 @code{vfpv3xd-d16},
474 @code{vfpv4},
475 @code{vfpv4-d16},
476 @code{fpv4-sp-d16},
477 @code{fpv5-sp-d16},
478 @code{fpv5-d16},
479 @code{fp-armv8},
480 @code{arm1020t},
481 @code{arm1020e},
482 @code{arm1136jf-s},
483 @code{maverick},
484 @code{neon},
485 @code{neon-vfpv3},
486 @code{neon-fp16},
487 @code{neon-vfpv4},
488 @code{neon-fp-armv8},
489 @code{crypto-neon-fp-armv8},
490 @code{neon-fp-armv8.1}
491 and
492 @code{crypto-neon-fp-armv8.1}.
493
494 In addition to determining which instructions are assembled, this option
495 also affects the way in which the @code{.double} assembler directive behaves
496 when assembling little-endian code.
497
498 The default is dependent on the processor selected. For Architecture 5 or
499 later, the default is to assemble for VFP instructions; for earlier
500 architectures the default is to assemble for FPA instructions.
501
502 @cindex @code{-mfp16-format=} command-line option
503 @item -mfp16-format=@var{format}
504 This option specifies the half-precision floating point format to use
505 when assembling floating point numbers emitted by the @code{.float16}
506 directive.
507 The following format options are recognized:
508 @code{ieee},
509 @code{alternative}.
510 If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
511 point format is used, if @code{alternative} is specified then the Arm
512 alternative half-precision format is used. If this option is set on the
513 command line then the format is fixed and cannot be changed with
514 the @code{float16_format} directive. If this value is not set then
515 the IEEE 754-2008 format is used until the format is explicitly set with
516 the @code{float16_format} directive.
517
518 @cindex @code{-mthumb} command-line option, ARM
519 @item -mthumb
520 This option specifies that the assembler should start assembling Thumb
521 instructions; that is, it should behave as though the file starts with a
522 @code{.code 16} directive.
523
524 @cindex @code{-mthumb-interwork} command-line option, ARM
525 @item -mthumb-interwork
526 This option specifies that the output generated by the assembler should
527 be marked as supporting interworking. It also affects the behaviour
528 of the @code{ADR} and @code{ADRL} pseudo opcodes.
529
530 @cindex @code{-mimplicit-it} command-line option, ARM
531 @item -mimplicit-it=never
532 @itemx -mimplicit-it=always
533 @itemx -mimplicit-it=arm
534 @itemx -mimplicit-it=thumb
535 The @code{-mimplicit-it} option controls the behavior of the assembler when
536 conditional instructions are not enclosed in IT blocks.
537 There are four possible behaviors.
538 If @code{never} is specified, such constructs cause a warning in ARM
539 code and an error in Thumb-2 code.
540 If @code{always} is specified, such constructs are accepted in both
541 ARM and Thumb-2 code, where the IT instruction is added implicitly.
542 If @code{arm} is specified, such constructs are accepted in ARM code
543 and cause an error in Thumb-2 code.
544 If @code{thumb} is specified, such constructs cause a warning in ARM
545 code and are accepted in Thumb-2 code. If you omit this option, the
546 behavior is equivalent to @code{-mimplicit-it=arm}.
547
548 @cindex @code{-mapcs-26} command-line option, ARM
549 @cindex @code{-mapcs-32} command-line option, ARM
550 @item -mapcs-26
551 @itemx -mapcs-32
552 These options specify that the output generated by the assembler should
553 be marked as supporting the indicated version of the Arm Procedure.
554 Calling Standard.
555
556 @cindex @code{-matpcs} command-line option, ARM
557 @item -matpcs
558 This option specifies that the output generated by the assembler should
559 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
560 enabled this option will cause the assembler to create an empty
561 debugging section in the object file called .arm.atpcs. Debuggers can
562 use this to determine the ABI being used by.
563
564 @cindex @code{-mapcs-float} command-line option, ARM
565 @item -mapcs-float
566 This indicates the floating point variant of the APCS should be
567 used. In this variant floating point arguments are passed in FP
568 registers rather than integer registers.
569
570 @cindex @code{-mapcs-reentrant} command-line option, ARM
571 @item -mapcs-reentrant
572 This indicates that the reentrant variant of the APCS should be used.
573 This variant supports position independent code.
574
575 @cindex @code{-mfloat-abi=} command-line option, ARM
576 @item -mfloat-abi=@var{abi}
577 This option specifies that the output generated by the assembler should be
578 marked as using specified floating point ABI.
579 The following values are recognized:
580 @code{soft},
581 @code{softfp}
582 and
583 @code{hard}.
584
585 @cindex @code{-eabi=} command-line option, ARM
586 @item -meabi=@var{ver}
587 This option specifies which EABI version the produced object files should
588 conform to.
589 The following values are recognized:
590 @code{gnu},
591 @code{4}
592 and
593 @code{5}.
594
595 @cindex @code{-EB} command-line option, ARM
596 @item -EB
597 This option specifies that the output generated by the assembler should
598 be marked as being encoded for a big-endian processor.
599
600 Note: If a program is being built for a system with big-endian data
601 and little-endian instructions then it should be assembled with the
602 @option{-EB} option, (all of it, code and data) and then linked with
603 the @option{--be8} option. This will reverse the endianness of the
604 instructions back to little-endian, but leave the data as big-endian.
605
606 @cindex @code{-EL} command-line option, ARM
607 @item -EL
608 This option specifies that the output generated by the assembler should
609 be marked as being encoded for a little-endian processor.
610
611 @cindex @code{-k} command-line option, ARM
612 @cindex PIC code generation for ARM
613 @item -k
614 This option specifies that the output of the assembler should be marked
615 as position-independent code (PIC).
616
617 @cindex @code{--fix-v4bx} command-line option, ARM
618 @item --fix-v4bx
619 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
620 the linker option of the same name.
621
622 @cindex @code{-mwarn-deprecated} command-line option, ARM
623 @item -mwarn-deprecated
624 @itemx -mno-warn-deprecated
625 Enable or disable warnings about using deprecated options or
626 features. The default is to warn.
627
628 @cindex @code{-mccs} command-line option, ARM
629 @item -mccs
630 Turns on CodeComposer Studio assembly syntax compatibility mode.
631
632 @cindex @code{-mwarn-syms} command-line option, ARM
633 @item -mwarn-syms
634 @itemx -mno-warn-syms
635 Enable or disable warnings about symbols that match the names of ARM
636 instructions. The default is to warn.
637
638 @end table
639
640
641 @node ARM Syntax
642 @section Syntax
643 @menu
644 * ARM-Instruction-Set:: Instruction Set
645 * ARM-Chars:: Special Characters
646 * ARM-Regs:: Register Names
647 * ARM-Relocations:: Relocations
648 * ARM-Neon-Alignment:: NEON Alignment Specifiers
649 @end menu
650
651 @node ARM-Instruction-Set
652 @subsection Instruction Set Syntax
653 Two slightly different syntaxes are support for ARM and THUMB
654 instructions. The default, @code{divided}, uses the old style where
655 ARM and THUMB instructions had their own, separate syntaxes. The new,
656 @code{unified} syntax, which can be selected via the @code{.syntax}
657 directive, and has the following main features:
658
659 @itemize @bullet
660 @item
661 Immediate operands do not require a @code{#} prefix.
662
663 @item
664 The @code{IT} instruction may appear, and if it does it is validated
665 against subsequent conditional affixes. In ARM mode it does not
666 generate machine code, in THUMB mode it does.
667
668 @item
669 For ARM instructions the conditional affixes always appear at the end
670 of the instruction. For THUMB instructions conditional affixes can be
671 used, but only inside the scope of an @code{IT} instruction.
672
673 @item
674 All of the instructions new to the V6T2 architecture (and later) are
675 available. (Only a few such instructions can be written in the
676 @code{divided} syntax).
677
678 @item
679 The @code{.N} and @code{.W} suffixes are recognized and honored.
680
681 @item
682 All instructions set the flags if and only if they have an @code{s}
683 affix.
684 @end itemize
685
686 @node ARM-Chars
687 @subsection Special Characters
688
689 @cindex line comment character, ARM
690 @cindex ARM line comment character
691 The presence of a @samp{@@} anywhere on a line indicates the start of
692 a comment that extends to the end of that line.
693
694 If a @samp{#} appears as the first character of a line then the whole
695 line is treated as a comment, but in this case the line could also be
696 a logical line number directive (@pxref{Comments}) or a preprocessor
697 control command (@pxref{Preprocessing}).
698
699 @cindex line separator, ARM
700 @cindex statement separator, ARM
701 @cindex ARM line separator
702 The @samp{;} character can be used instead of a newline to separate
703 statements.
704
705 @cindex immediate character, ARM
706 @cindex ARM immediate character
707 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
708
709 @cindex identifiers, ARM
710 @cindex ARM identifiers
711 *TODO* Explain about /data modifier on symbols.
712
713 @node ARM-Regs
714 @subsection Register Names
715
716 @cindex ARM register names
717 @cindex register names, ARM
718 *TODO* Explain about ARM register naming, and the predefined names.
719
720 @node ARM-Relocations
721 @subsection ARM relocation generation
722
723 @cindex data relocations, ARM
724 @cindex ARM data relocations
725 Specific data relocations can be generated by putting the relocation name
726 in parentheses after the symbol name. For example:
727
728 @smallexample
729 .word foo(TARGET1)
730 @end smallexample
731
732 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
733 @var{foo}.
734 The following relocations are supported:
735 @code{GOT},
736 @code{GOTOFF},
737 @code{TARGET1},
738 @code{TARGET2},
739 @code{SBREL},
740 @code{TLSGD},
741 @code{TLSLDM},
742 @code{TLSLDO},
743 @code{TLSDESC},
744 @code{TLSCALL},
745 @code{GOTTPOFF},
746 @code{GOT_PREL}
747 and
748 @code{TPOFF}.
749
750 For compatibility with older toolchains the assembler also accepts
751 @code{(PLT)} after branch targets. On legacy targets this will
752 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
753 targets it will encode either the @samp{R_ARM_CALL} or
754 @samp{R_ARM_JUMP24} relocation, as appropriate.
755
756 @cindex MOVW and MOVT relocations, ARM
757 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
758 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
759 respectively. For example to load the 32-bit address of foo into r0:
760
761 @smallexample
762 MOVW r0, #:lower16:foo
763 MOVT r0, #:upper16:foo
764 @end smallexample
765
766 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
767 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
768 generated by prefixing the value with @samp{#:lower0_7:#},
769 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
770 respectively. For example to load the 32-bit address of foo into r0:
771
772 @smallexample
773 MOVS r0, #:upper8_15:#foo
774 LSLS r0, r0, #8
775 ADDS r0, #:upper0_7:#foo
776 LSLS r0, r0, #8
777 ADDS r0, #:lower8_15:#foo
778 LSLS r0, r0, #8
779 ADDS r0, #:lower0_7:#foo
780 @end smallexample
781
782 @node ARM-Neon-Alignment
783 @subsection NEON Alignment Specifiers
784
785 @cindex alignment for NEON instructions
786 Some NEON load/store instructions allow an optional address
787 alignment qualifier.
788 The ARM documentation specifies that this is indicated by
789 @samp{@@ @var{align}}. However GAS already interprets
790 the @samp{@@} character as a "line comment" start,
791 so @samp{: @var{align}} is used instead. For example:
792
793 @smallexample
794 vld1.8 @{q0@}, [r0, :128]
795 @end smallexample
796
797 @node ARM Floating Point
798 @section Floating Point
799
800 @cindex floating point, ARM (@sc{ieee})
801 @cindex ARM floating point (@sc{ieee})
802 The ARM family uses @sc{ieee} floating-point numbers.
803
804 @node ARM Directives
805 @section ARM Machine Directives
806
807 @cindex machine directives, ARM
808 @cindex ARM machine directives
809 @table @code
810
811 @c AAAAAAAAAAAAAAAAAAAAAAAAA
812
813 @ifclear ELF
814 @cindex @code{.2byte} directive, ARM
815 @cindex @code{.4byte} directive, ARM
816 @cindex @code{.8byte} directive, ARM
817 @item .2byte @var{expression} [, @var{expression}]*
818 @itemx .4byte @var{expression} [, @var{expression}]*
819 @itemx .8byte @var{expression} [, @var{expression}]*
820 These directives write 2, 4 or 8 byte values to the output section.
821 @end ifclear
822
823 @cindex @code{.align} directive, ARM
824 @item .align @var{expression} [, @var{expression}]
825 This is the generic @var{.align} directive. For the ARM however if the
826 first argument is zero (ie no alignment is needed) the assembler will
827 behave as if the argument had been 2 (ie pad to the next four byte
828 boundary). This is for compatibility with ARM's own assembler.
829
830 @cindex @code{.arch} directive, ARM
831 @item .arch @var{name}
832 Select the target architecture. Valid values for @var{name} are the same as
833 for the @option{-march} command-line option without the instruction set
834 extension.
835
836 Specifying @code{.arch} clears any previously selected architecture
837 extensions.
838
839 @cindex @code{.arch_extension} directive, ARM
840 @item .arch_extension @var{name}
841 Add or remove an architecture extension to the target architecture. Valid
842 values for @var{name} are the same as those accepted as architectural
843 extensions by the @option{-mcpu} and @option{-march} command-line options.
844
845 @code{.arch_extension} may be used multiple times to add or remove extensions
846 incrementally to the architecture being compiled for.
847
848 @cindex @code{.arm} directive, ARM
849 @item .arm
850 This performs the same action as @var{.code 32}.
851
852 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
853
854 @cindex @code{.bss} directive, ARM
855 @item .bss
856 This directive switches to the @code{.bss} section.
857
858 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
859
860 @cindex @code{.cantunwind} directive, ARM
861 @item .cantunwind
862 Prevents unwinding through the current function. No personality routine
863 or exception table data is required or permitted.
864
865 @cindex @code{.code} directive, ARM
866 @item .code @code{[16|32]}
867 This directive selects the instruction set being generated. The value 16
868 selects Thumb, with the value 32 selecting ARM.
869
870 @cindex @code{.cpu} directive, ARM
871 @item .cpu @var{name}
872 Select the target processor. Valid values for @var{name} are the same as
873 for the @option{-mcpu} command-line option without the instruction set
874 extension.
875
876 Specifying @code{.cpu} clears any previously selected architecture
877 extensions.
878
879 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
880
881 @cindex @code{.dn} and @code{.qn} directives, ARM
882 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
883 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
884
885 The @code{dn} and @code{qn} directives are used to create typed
886 and/or indexed register aliases for use in Advanced SIMD Extension
887 (Neon) instructions. The former should be used to create aliases
888 of double-precision registers, and the latter to create aliases of
889 quad-precision registers.
890
891 If these directives are used to create typed aliases, those aliases can
892 be used in Neon instructions instead of writing types after the mnemonic
893 or after each operand. For example:
894
895 @smallexample
896 x .dn d2.f32
897 y .dn d3.f32
898 z .dn d4.f32[1]
899 vmul x,y,z
900 @end smallexample
901
902 This is equivalent to writing the following:
903
904 @smallexample
905 vmul.f32 d2,d3,d4[1]
906 @end smallexample
907
908 Aliases created using @code{dn} or @code{qn} can be destroyed using
909 @code{unreq}.
910
911 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
912
913 @cindex @code{.eabi_attribute} directive, ARM
914 @item .eabi_attribute @var{tag}, @var{value}
915 Set the EABI object attribute @var{tag} to @var{value}.
916
917 The @var{tag} is either an attribute number, or one of the following:
918 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
919 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
920 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
921 @code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
922 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
923 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
924 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
925 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
926 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
927 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
928 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
929 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
930 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
931 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
932 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
933 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
934 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
935 @code{Tag_conformance}, @code{Tag_T2EE_use},
936 @code{Tag_Virtualization_use}
937
938 The @var{value} is either a @code{number}, @code{"string"}, or
939 @code{number, "string"} depending on the tag.
940
941 Note - the following legacy values are also accepted by @var{tag}:
942 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
943 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
944
945 @cindex @code{.even} directive, ARM
946 @item .even
947 This directive aligns to an even-numbered address.
948
949 @cindex @code{.extend} directive, ARM
950 @cindex @code{.ldouble} directive, ARM
951 @item .extend @var{expression} [, @var{expression}]*
952 @itemx .ldouble @var{expression} [, @var{expression}]*
953 These directives write 12byte long double floating-point values to the
954 output section. These are not compatible with current ARM processors
955 or ABIs.
956
957 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
958
959 @cindex @code{.float16} directive, ARM
960 @item .float16 @var{value [,...,value_n]}
961 Place the half precision floating point representation of one or more
962 floating-point values into the current section. The exact format of the
963 encoding is specified by @code{.float16_format}. If the format has not
964 been explicitly set yet (either via the @code{.float16_format} directive or
965 the command line option) then the IEEE 754-2008 format is used.
966
967 @cindex @code{.float16_format} directive, ARM
968 @item .float16_format @var{format}
969 Set the format to use when encoding float16 values emitted by
970 the @code{.float16} directive.
971 Once the format has been set it cannot be changed.
972 @code{format} should be one of the following: @code{ieee} (encode in
973 the IEEE 754-2008 half precision format) or @code{alternative} (encode in
974 the Arm alternative half precision format).
975
976 @anchor{arm_fnend}
977 @cindex @code{.fnend} directive, ARM
978 @item .fnend
979 Marks the end of a function with an unwind table entry. The unwind index
980 table entry is created when this directive is processed.
981
982 If no personality routine has been specified then standard personality
983 routine 0 or 1 will be used, depending on the number of unwind opcodes
984 required.
985
986 @anchor{arm_fnstart}
987 @cindex @code{.fnstart} directive, ARM
988 @item .fnstart
989 Marks the start of a function with an unwind table entry.
990
991 @cindex @code{.force_thumb} directive, ARM
992 @item .force_thumb
993 This directive forces the selection of Thumb instructions, even if the
994 target processor does not support those instructions
995
996 @cindex @code{.fpu} directive, ARM
997 @item .fpu @var{name}
998 Select the floating-point unit to assemble for. Valid values for @var{name}
999 are the same as for the @option{-mfpu} command-line option.
1000
1001 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
1002 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
1003
1004 @cindex @code{.handlerdata} directive, ARM
1005 @item .handlerdata
1006 Marks the end of the current function, and the start of the exception table
1007 entry for that function. Anything between this directive and the
1008 @code{.fnend} directive will be added to the exception table entry.
1009
1010 Must be preceded by a @code{.personality} or @code{.personalityindex}
1011 directive.
1012
1013 @c IIIIIIIIIIIIIIIIIIIIIIIIII
1014
1015 @cindex @code{.inst} directive, ARM
1016 @item .inst @var{opcode} [ , @dots{} ]
1017 @itemx .inst.n @var{opcode} [ , @dots{} ]
1018 @itemx .inst.w @var{opcode} [ , @dots{} ]
1019 Generates the instruction corresponding to the numerical value @var{opcode}.
1020 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1021 specified explicitly, overriding the normal encoding rules.
1022
1023 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1024 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
1025 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
1026
1027 @item .ldouble @var{expression} [, @var{expression}]*
1028 See @code{.extend}.
1029
1030 @cindex @code{.ltorg} directive, ARM
1031 @item .ltorg
1032 This directive causes the current contents of the literal pool to be
1033 dumped into the current section (which is assumed to be the .text
1034 section) at the current location (aligned to a word boundary).
1035 @code{GAS} maintains a separate literal pool for each section and each
1036 sub-section. The @code{.ltorg} directive will only affect the literal
1037 pool of the current section and sub-section. At the end of assembly
1038 all remaining, un-empty literal pools will automatically be dumped.
1039
1040 Note - older versions of @code{GAS} would dump the current literal
1041 pool any time a section change occurred. This is no longer done, since
1042 it prevents accurate control of the placement of literal pools.
1043
1044 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
1045
1046 @cindex @code{.movsp} directive, ARM
1047 @item .movsp @var{reg} [, #@var{offset}]
1048 Tell the unwinder that @var{reg} contains an offset from the current
1049 stack pointer. If @var{offset} is not specified then it is assumed to be
1050 zero.
1051
1052 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
1053 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
1054
1055 @cindex @code{.object_arch} directive, ARM
1056 @item .object_arch @var{name}
1057 Override the architecture recorded in the EABI object attribute section.
1058 Valid values for @var{name} are the same as for the @code{.arch} directive.
1059 Typically this is useful when code uses runtime detection of CPU features.
1060
1061 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
1062
1063 @cindex @code{.packed} directive, ARM
1064 @item .packed @var{expression} [, @var{expression}]*
1065 This directive writes 12-byte packed floating-point values to the
1066 output section. These are not compatible with current ARM processors
1067 or ABIs.
1068
1069 @anchor{arm_pad}
1070 @cindex @code{.pad} directive, ARM
1071 @item .pad #@var{count}
1072 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1073 A positive value indicates the function prologue allocated stack space by
1074 decrementing the stack pointer.
1075
1076 @cindex @code{.personality} directive, ARM
1077 @item .personality @var{name}
1078 Sets the personality routine for the current function to @var{name}.
1079
1080 @cindex @code{.personalityindex} directive, ARM
1081 @item .personalityindex @var{index}
1082 Sets the personality routine for the current function to the EABI standard
1083 routine number @var{index}
1084
1085 @cindex @code{.pool} directive, ARM
1086 @item .pool
1087 This is a synonym for .ltorg.
1088
1089 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1090 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
1091
1092 @cindex @code{.req} directive, ARM
1093 @item @var{name} .req @var{register name}
1094 This creates an alias for @var{register name} called @var{name}. For
1095 example:
1096
1097 @smallexample
1098 foo .req r0
1099 @end smallexample
1100
1101 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
1102
1103 @anchor{arm_save}
1104 @cindex @code{.save} directive, ARM
1105 @item .save @var{reglist}
1106 Generate unwinder annotations to restore the registers in @var{reglist}.
1107 The format of @var{reglist} is the same as the corresponding store-multiple
1108 instruction.
1109
1110 @smallexample
1111 @exdent @emph{core registers}
1112 .save @{r4, r5, r6, lr@}
1113 stmfd sp!, @{r4, r5, r6, lr@}
1114 @exdent @emph{FPA registers}
1115 .save f4, 2
1116 sfmfd f4, 2, [sp]!
1117 @exdent @emph{VFP registers}
1118 .save @{d8, d9, d10@}
1119 fstmdx sp!, @{d8, d9, d10@}
1120 @exdent @emph{iWMMXt registers}
1121 .save @{wr10, wr11@}
1122 wstrd wr11, [sp, #-8]!
1123 wstrd wr10, [sp, #-8]!
1124 or
1125 .save wr11
1126 wstrd wr11, [sp, #-8]!
1127 .save wr10
1128 wstrd wr10, [sp, #-8]!
1129 @end smallexample
1130
1131 @anchor{arm_setfp}
1132 @cindex @code{.setfp} directive, ARM
1133 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1134 Make all unwinder annotations relative to a frame pointer. Without this
1135 the unwinder will use offsets from the stack pointer.
1136
1137 The syntax of this directive is the same as the @code{add} or @code{mov}
1138 instruction used to set the frame pointer. @var{spreg} must be either
1139 @code{sp} or mentioned in a previous @code{.movsp} directive.
1140
1141 @smallexample
1142 .movsp ip
1143 mov ip, sp
1144 @dots{}
1145 .setfp fp, ip, #4
1146 add fp, ip, #4
1147 @end smallexample
1148
1149 @cindex @code{.secrel32} directive, ARM
1150 @item .secrel32 @var{expression} [, @var{expression}]*
1151 This directive emits relocations that evaluate to the section-relative
1152 offset of each expression's symbol. This directive is only supported
1153 for PE targets.
1154
1155 @cindex @code{.syntax} directive, ARM
1156 @item .syntax [@code{unified} | @code{divided}]
1157 This directive sets the Instruction Set Syntax as described in the
1158 @ref{ARM-Instruction-Set} section.
1159
1160 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
1161
1162 @cindex @code{.thumb} directive, ARM
1163 @item .thumb
1164 This performs the same action as @var{.code 16}.
1165
1166 @cindex @code{.thumb_func} directive, ARM
1167 @item .thumb_func
1168 This directive specifies that the following symbol is the name of a
1169 Thumb encoded function. This information is necessary in order to allow
1170 the assembler and linker to generate correct code for interworking
1171 between Arm and Thumb instructions and should be used even if
1172 interworking is not going to be performed. The presence of this
1173 directive also implies @code{.thumb}
1174
1175 This directive is not necessary when generating EABI objects. On these
1176 targets the encoding is implicit when generating Thumb code.
1177
1178 @cindex @code{.thumb_set} directive, ARM
1179 @item .thumb_set
1180 This performs the equivalent of a @code{.set} directive in that it
1181 creates a symbol which is an alias for another symbol (possibly not yet
1182 defined). This directive also has the added property in that it marks
1183 the aliased symbol as being a thumb function entry point, in the same
1184 way that the @code{.thumb_func} directive does.
1185
1186 @cindex @code{.tlsdescseq} directive, ARM
1187 @item .tlsdescseq @var{tls-variable}
1188 This directive is used to annotate parts of an inlined TLS descriptor
1189 trampoline. Normally the trampoline is provided by the linker, and
1190 this directive is not needed.
1191
1192 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
1193
1194 @cindex @code{.unreq} directive, ARM
1195 @item .unreq @var{alias-name}
1196 This undefines a register alias which was previously defined using the
1197 @code{req}, @code{dn} or @code{qn} directives. For example:
1198
1199 @smallexample
1200 foo .req r0
1201 .unreq foo
1202 @end smallexample
1203
1204 An error occurs if the name is undefined. Note - this pseudo op can
1205 be used to delete builtin in register name aliases (eg 'r0'). This
1206 should only be done if it is really necessary.
1207
1208 @cindex @code{.unwind_raw} directive, ARM
1209 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1210 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1211 the stack pointer by @var{offset} bytes.
1212
1213 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1214 @code{.save @{r0@}}
1215
1216 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
1217
1218 @cindex @code{.vsave} directive, ARM
1219 @item .vsave @var{vfp-reglist}
1220 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1221 using FLDMD. Also works for VFPv3 registers
1222 that are to be restored using VLDM.
1223 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1224 instruction.
1225
1226 @smallexample
1227 @exdent @emph{VFP registers}
1228 .vsave @{d8, d9, d10@}
1229 fstmdd sp!, @{d8, d9, d10@}
1230 @exdent @emph{VFPv3 registers}
1231 .vsave @{d15, d16, d17@}
1232 vstm sp!, @{d15, d16, d17@}
1233 @end smallexample
1234
1235 Since FLDMX and FSTMX are now deprecated, this directive should be
1236 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1237
1238 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1239 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1240 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1241 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1242
1243 @end table
1244
1245 @node ARM Opcodes
1246 @section Opcodes
1247
1248 @cindex ARM opcodes
1249 @cindex opcodes for ARM
1250 @code{@value{AS}} implements all the standard ARM opcodes. It also
1251 implements several pseudo opcodes, including several synthetic load
1252 instructions.
1253
1254 @table @code
1255
1256 @cindex @code{NOP} pseudo op, ARM
1257 @item NOP
1258 @smallexample
1259 nop
1260 @end smallexample
1261
1262 This pseudo op will always evaluate to a legal ARM instruction that does
1263 nothing. Currently it will evaluate to MOV r0, r0.
1264
1265 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1266 @item LDR
1267 @smallexample
1268 ldr <register> , = <expression>
1269 @end smallexample
1270
1271 If expression evaluates to a numeric constant then a MOV or MVN
1272 instruction will be used in place of the LDR instruction, if the
1273 constant can be generated by either of these instructions. Otherwise
1274 the constant will be placed into the nearest literal pool (if it not
1275 already there) and a PC relative LDR instruction will be generated.
1276
1277 @cindex @code{ADR reg,<label>} pseudo op, ARM
1278 @item ADR
1279 @smallexample
1280 adr <register> <label>
1281 @end smallexample
1282
1283 This instruction will load the address of @var{label} into the indicated
1284 register. The instruction will evaluate to a PC relative ADD or SUB
1285 instruction depending upon where the label is located. If the label is
1286 out of range, or if it is not defined in the same file (and section) as
1287 the ADR instruction, then an error will be generated. This instruction
1288 will not make use of the literal pool.
1289
1290 If @var{label} is a thumb function symbol, and thumb interworking has
1291 been enabled via the @option{-mthumb-interwork} option then the bottom
1292 bit of the value stored into @var{register} will be set. This allows
1293 the following sequence to work as expected:
1294
1295 @smallexample
1296 adr r0, thumb_function
1297 blx r0
1298 @end smallexample
1299
1300 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1301 @item ADRL
1302 @smallexample
1303 adrl <register> <label>
1304 @end smallexample
1305
1306 This instruction will load the address of @var{label} into the indicated
1307 register. The instruction will evaluate to one or two PC relative ADD
1308 or SUB instructions depending upon where the label is located. If a
1309 second instruction is not needed a NOP instruction will be generated in
1310 its place, so that this instruction is always 8 bytes long.
1311
1312 If the label is out of range, or if it is not defined in the same file
1313 (and section) as the ADRL instruction, then an error will be generated.
1314 This instruction will not make use of the literal pool.
1315
1316 If @var{label} is a thumb function symbol, and thumb interworking has
1317 been enabled via the @option{-mthumb-interwork} option then the bottom
1318 bit of the value stored into @var{register} will be set.
1319
1320 @end table
1321
1322 For information on the ARM or Thumb instruction sets, see @cite{ARM
1323 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1324 Ltd.
1325
1326 @node ARM Mapping Symbols
1327 @section Mapping Symbols
1328
1329 The ARM ELF specification requires that special symbols be inserted
1330 into object files to mark certain features:
1331
1332 @table @code
1333
1334 @cindex @code{$a}
1335 @item $a
1336 At the start of a region of code containing ARM instructions.
1337
1338 @cindex @code{$t}
1339 @item $t
1340 At the start of a region of code containing THUMB instructions.
1341
1342 @cindex @code{$d}
1343 @item $d
1344 At the start of a region of data.
1345
1346 @end table
1347
1348 The assembler will automatically insert these symbols for you - there
1349 is no need to code them yourself. Support for tagging symbols ($b,
1350 $f, $p and $m) which is also mentioned in the current ARM ELF
1351 specification is not implemented. This is because they have been
1352 dropped from the new EABI and so tools cannot rely upon their
1353 presence.
1354
1355 @node ARM Unwinding Tutorial
1356 @section Unwinding
1357
1358 The ABI for the ARM Architecture specifies a standard format for
1359 exception unwind information. This information is used when an
1360 exception is thrown to determine where control should be transferred.
1361 In particular, the unwind information is used to determine which
1362 function called the function that threw the exception, and which
1363 function called that one, and so forth. This information is also used
1364 to restore the values of callee-saved registers in the function
1365 catching the exception.
1366
1367 If you are writing functions in assembly code, and those functions
1368 call other functions that throw exceptions, you must use assembly
1369 pseudo ops to ensure that appropriate exception unwind information is
1370 generated. Otherwise, if one of the functions called by your assembly
1371 code throws an exception, the run-time library will be unable to
1372 unwind the stack through your assembly code and your program will not
1373 behave correctly.
1374
1375 To illustrate the use of these pseudo ops, we will examine the code
1376 that G++ generates for the following C++ input:
1377
1378 @verbatim
1379 void callee (int *);
1380
1381 int
1382 caller ()
1383 {
1384 int i;
1385 callee (&i);
1386 return i;
1387 }
1388 @end verbatim
1389
1390 This example does not show how to throw or catch an exception from
1391 assembly code. That is a much more complex operation and should
1392 always be done in a high-level language, such as C++, that directly
1393 supports exceptions.
1394
1395 The code generated by one particular version of G++ when compiling the
1396 example above is:
1397
1398 @verbatim
1399 _Z6callerv:
1400 .fnstart
1401 .LFB2:
1402 @ Function supports interworking.
1403 @ args = 0, pretend = 0, frame = 8
1404 @ frame_needed = 1, uses_anonymous_args = 0
1405 stmfd sp!, {fp, lr}
1406 .save {fp, lr}
1407 .LCFI0:
1408 .setfp fp, sp, #4
1409 add fp, sp, #4
1410 .LCFI1:
1411 .pad #8
1412 sub sp, sp, #8
1413 .LCFI2:
1414 sub r3, fp, #8
1415 mov r0, r3
1416 bl _Z6calleePi
1417 ldr r3, [fp, #-8]
1418 mov r0, r3
1419 sub sp, fp, #4
1420 ldmfd sp!, {fp, lr}
1421 bx lr
1422 .LFE2:
1423 .fnend
1424 @end verbatim
1425
1426 Of course, the sequence of instructions varies based on the options
1427 you pass to GCC and on the version of GCC in use. The exact
1428 instructions are not important since we are focusing on the pseudo ops
1429 that are used to generate unwind information.
1430
1431 An important assumption made by the unwinder is that the stack frame
1432 does not change during the body of the function. In particular, since
1433 we assume that the assembly code does not itself throw an exception,
1434 the only point where an exception can be thrown is from a call, such
1435 as the @code{bl} instruction above. At each call site, the same saved
1436 registers (including @code{lr}, which indicates the return address)
1437 must be located in the same locations relative to the frame pointer.
1438
1439 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1440 op appears immediately before the first instruction of the function
1441 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1442 op appears immediately after the last instruction of the function.
1443 These pseudo ops specify the range of the function.
1444
1445 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1446 @code{.pad}) matters; their exact locations are irrelevant. In the
1447 example above, the compiler emits the pseudo ops with particular
1448 instructions. That makes it easier to understand the code, but it is
1449 not required for correctness. It would work just as well to emit all
1450 of the pseudo ops other than @code{.fnend} in the same order, but
1451 immediately after @code{.fnstart}.
1452
1453 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1454 indicates registers that have been saved to the stack so that they can
1455 be restored before the function returns. The argument to the
1456 @code{.save} pseudo op is a list of registers to save. If a register
1457 is ``callee-saved'' (as specified by the ABI) and is modified by the
1458 function you are writing, then your code must save the value before it
1459 is modified and restore the original value before the function
1460 returns. If an exception is thrown, the run-time library restores the
1461 values of these registers from their locations on the stack before
1462 returning control to the exception handler. (Of course, if an
1463 exception is not thrown, the function that contains the @code{.save}
1464 pseudo op restores these registers in the function epilogue, as is
1465 done with the @code{ldmfd} instruction above.)
1466
1467 You do not have to save callee-saved registers at the very beginning
1468 of the function and you do not need to use the @code{.save} pseudo op
1469 immediately following the point at which the registers are saved.
1470 However, if you modify a callee-saved register, you must save it on
1471 the stack before modifying it and before calling any functions which
1472 might throw an exception. And, you must use the @code{.save} pseudo
1473 op to indicate that you have done so.
1474
1475 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1476 modification of the stack pointer that does not save any registers.
1477 The argument is the number of bytes (in decimal) that are subtracted
1478 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1479 subtracting from the stack pointer increases the size of the stack.)
1480
1481 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1482 indicates the register that contains the frame pointer. The first
1483 argument is the register that is set, which is typically @code{fp}.
1484 The second argument indicates the register from which the frame
1485 pointer takes its value. The third argument, if present, is the value
1486 (in decimal) added to the register specified by the second argument to
1487 compute the value of the frame pointer. You should not modify the
1488 frame pointer in the body of the function.
1489
1490 If you do not use a frame pointer, then you should not use the
1491 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1492 should avoid modifying the stack pointer outside of the function
1493 prologue. Otherwise, the run-time library will be unable to find
1494 saved registers when it is unwinding the stack.
1495
1496 The pseudo ops described above are sufficient for writing assembly
1497 code that calls functions which may throw exceptions. If you need to
1498 know more about the object-file format used to represent unwind
1499 information, you may consult the @cite{Exception Handling ABI for the
1500 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1501
This page took 0.0641890000000001 seconds and 4 git commands to generate.