[ARM] Add ARMv8.3 command line option and feature flag
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2016 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a57},
127 @code{cortex-a72},
128 @code{cortex-a73},
129 @code{cortex-r4},
130 @code{cortex-r4f},
131 @code{cortex-r5},
132 @code{cortex-r7},
133 @code{cortex-r8},
134 @code{cortex-m33},
135 @code{cortex-m23},
136 @code{cortex-m7},
137 @code{cortex-m4},
138 @code{cortex-m3},
139 @code{cortex-m1},
140 @code{cortex-m0},
141 @code{cortex-m0plus},
142 @code{exynos-m1},
143 @code{marvell-pj4},
144 @code{marvell-whitney},
145 @code{falkor},
146 @code{qdf24xx},
147 @code{xgene1},
148 @code{xgene2},
149 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
150 @code{i80200} (Intel XScale processor)
151 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
152 and
153 @code{xscale}.
154 The special name @code{all} may be used to allow the
155 assembler to accept instructions valid for any ARM processor.
156
157 In addition to the basic instruction set, the assembler can be told to
158 accept various extension mnemonics that extend the processor using the
159 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
160 is equivalent to specifying @code{-mcpu=ep9312}.
161
162 Multiple extensions may be specified, separated by a @code{+}. The
163 extensions should be specified in ascending alphabetical order.
164
165 Some extensions may be restricted to particular architectures; this is
166 documented in the list of extensions below.
167
168 Extension mnemonics may also be removed from those the assembler accepts.
169 This is done be prepending @code{no} to the option that adds the extension.
170 Extensions that are removed should be listed after all extensions which have
171 been added, again in ascending alphabetical order. For example,
172 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
173
174
175 The following extensions are currently supported:
176 @code{crc}
177 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
178 @code{fp} (Floating Point Extensions for v8-A architecture),
179 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
180 @code{iwmmxt},
181 @code{iwmmxt2},
182 @code{xscale},
183 @code{maverick},
184 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
185 architectures),
186 @code{os} (Operating System for v6M architecture),
187 @code{sec} (Security Extensions for v6K and v7-A architectures),
188 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
189 @code{virt} (Virtualization Extensions for v7-A architecture, implies
190 @code{idiv}),
191 @code{pan} (Priviliged Access Never Extensions for v8-A architecture),
192 @code{ras} (Reliability, Availability and Serviceability extensions
193 for v8-A architecture),
194 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
195 @code{simd})
196 and
197 @code{xscale}.
198
199 @cindex @code{-march=} command line option, ARM
200 @item -march=@var{architecture}[+@var{extension}@dots{}]
201 This option specifies the target architecture. The assembler will issue
202 an error message if an attempt is made to assemble an instruction which
203 will not execute on the target architecture. The following architecture
204 names are recognized:
205 @code{armv1},
206 @code{armv2},
207 @code{armv2a},
208 @code{armv2s},
209 @code{armv3},
210 @code{armv3m},
211 @code{armv4},
212 @code{armv4xm},
213 @code{armv4t},
214 @code{armv4txm},
215 @code{armv5},
216 @code{armv5t},
217 @code{armv5txm},
218 @code{armv5te},
219 @code{armv5texp},
220 @code{armv6},
221 @code{armv6j},
222 @code{armv6k},
223 @code{armv6z},
224 @code{armv6kz},
225 @code{armv6-m},
226 @code{armv6s-m},
227 @code{armv7},
228 @code{armv7-a},
229 @code{armv7ve},
230 @code{armv7-r},
231 @code{armv7-m},
232 @code{armv7e-m},
233 @code{armv8-a},
234 @code{armv8.1-a},
235 @code{armv8.2-a},
236 @code{armv8.3-a},
237 @code{iwmmxt}
238 @code{iwmmxt2}
239 and
240 @code{xscale}.
241 If both @code{-mcpu} and
242 @code{-march} are specified, the assembler will use
243 the setting for @code{-mcpu}.
244
245 The architecture option can be extended with the same instruction set
246 extension options as the @code{-mcpu} option.
247
248 @cindex @code{-mfpu=} command line option, ARM
249 @item -mfpu=@var{floating-point-format}
250
251 This option specifies the floating point format to assemble for. The
252 assembler will issue an error message if an attempt is made to assemble
253 an instruction which will not execute on the target floating point unit.
254 The following format options are recognized:
255 @code{softfpa},
256 @code{fpe},
257 @code{fpe2},
258 @code{fpe3},
259 @code{fpa},
260 @code{fpa10},
261 @code{fpa11},
262 @code{arm7500fe},
263 @code{softvfp},
264 @code{softvfp+vfp},
265 @code{vfp},
266 @code{vfp10},
267 @code{vfp10-r0},
268 @code{vfp9},
269 @code{vfpxd},
270 @code{vfpv2},
271 @code{vfpv3},
272 @code{vfpv3-fp16},
273 @code{vfpv3-d16},
274 @code{vfpv3-d16-fp16},
275 @code{vfpv3xd},
276 @code{vfpv3xd-d16},
277 @code{vfpv4},
278 @code{vfpv4-d16},
279 @code{fpv4-sp-d16},
280 @code{fpv5-sp-d16},
281 @code{fpv5-d16},
282 @code{fp-armv8},
283 @code{arm1020t},
284 @code{arm1020e},
285 @code{arm1136jf-s},
286 @code{maverick},
287 @code{neon},
288 @code{neon-vfpv4},
289 @code{neon-fp-armv8},
290 @code{crypto-neon-fp-armv8},
291 @code{neon-fp-armv8.1}
292 and
293 @code{crypto-neon-fp-armv8.1}.
294
295 In addition to determining which instructions are assembled, this option
296 also affects the way in which the @code{.double} assembler directive behaves
297 when assembling little-endian code.
298
299 The default is dependent on the processor selected. For Architecture 5 or
300 later, the default is to assembler for VFP instructions; for earlier
301 architectures the default is to assemble for FPA instructions.
302
303 @cindex @code{-mthumb} command line option, ARM
304 @item -mthumb
305 This option specifies that the assembler should start assembling Thumb
306 instructions; that is, it should behave as though the file starts with a
307 @code{.code 16} directive.
308
309 @cindex @code{-mthumb-interwork} command line option, ARM
310 @item -mthumb-interwork
311 This option specifies that the output generated by the assembler should
312 be marked as supporting interworking.
313
314 @cindex @code{-mimplicit-it} command line option, ARM
315 @item -mimplicit-it=never
316 @itemx -mimplicit-it=always
317 @itemx -mimplicit-it=arm
318 @itemx -mimplicit-it=thumb
319 The @code{-mimplicit-it} option controls the behavior of the assembler when
320 conditional instructions are not enclosed in IT blocks.
321 There are four possible behaviors.
322 If @code{never} is specified, such constructs cause a warning in ARM
323 code and an error in Thumb-2 code.
324 If @code{always} is specified, such constructs are accepted in both
325 ARM and Thumb-2 code, where the IT instruction is added implicitly.
326 If @code{arm} is specified, such constructs are accepted in ARM code
327 and cause an error in Thumb-2 code.
328 If @code{thumb} is specified, such constructs cause a warning in ARM
329 code and are accepted in Thumb-2 code. If you omit this option, the
330 behavior is equivalent to @code{-mimplicit-it=arm}.
331
332 @cindex @code{-mapcs-26} command line option, ARM
333 @cindex @code{-mapcs-32} command line option, ARM
334 @item -mapcs-26
335 @itemx -mapcs-32
336 These options specify that the output generated by the assembler should
337 be marked as supporting the indicated version of the Arm Procedure.
338 Calling Standard.
339
340 @cindex @code{-matpcs} command line option, ARM
341 @item -matpcs
342 This option specifies that the output generated by the assembler should
343 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
344 enabled this option will cause the assembler to create an empty
345 debugging section in the object file called .arm.atpcs. Debuggers can
346 use this to determine the ABI being used by.
347
348 @cindex @code{-mapcs-float} command line option, ARM
349 @item -mapcs-float
350 This indicates the floating point variant of the APCS should be
351 used. In this variant floating point arguments are passed in FP
352 registers rather than integer registers.
353
354 @cindex @code{-mapcs-reentrant} command line option, ARM
355 @item -mapcs-reentrant
356 This indicates that the reentrant variant of the APCS should be used.
357 This variant supports position independent code.
358
359 @cindex @code{-mfloat-abi=} command line option, ARM
360 @item -mfloat-abi=@var{abi}
361 This option specifies that the output generated by the assembler should be
362 marked as using specified floating point ABI.
363 The following values are recognized:
364 @code{soft},
365 @code{softfp}
366 and
367 @code{hard}.
368
369 @cindex @code{-eabi=} command line option, ARM
370 @item -meabi=@var{ver}
371 This option specifies which EABI version the produced object files should
372 conform to.
373 The following values are recognized:
374 @code{gnu},
375 @code{4}
376 and
377 @code{5}.
378
379 @cindex @code{-EB} command line option, ARM
380 @item -EB
381 This option specifies that the output generated by the assembler should
382 be marked as being encoded for a big-endian processor.
383
384 Note: If a program is being built for a system with big-endian data
385 and little-endian instructions then it should be assembled with the
386 @option{-EB} option, (all of it, code and data) and then linked with
387 the @option{--be8} option. This will reverse the endianness of the
388 instructions back to little-endian, but leave the data as big-endian.
389
390 @cindex @code{-EL} command line option, ARM
391 @item -EL
392 This option specifies that the output generated by the assembler should
393 be marked as being encoded for a little-endian processor.
394
395 @cindex @code{-k} command line option, ARM
396 @cindex PIC code generation for ARM
397 @item -k
398 This option specifies that the output of the assembler should be marked
399 as position-independent code (PIC).
400
401 @cindex @code{--fix-v4bx} command line option, ARM
402 @item --fix-v4bx
403 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
404 the linker option of the same name.
405
406 @cindex @code{-mwarn-deprecated} command line option, ARM
407 @item -mwarn-deprecated
408 @itemx -mno-warn-deprecated
409 Enable or disable warnings about using deprecated options or
410 features. The default is to warn.
411
412 @cindex @code{-mccs} command line option, ARM
413 @item -mccs
414 Turns on CodeComposer Studio assembly syntax compatibility mode.
415
416 @cindex @code{-mwarn-syms} command line option, ARM
417 @item -mwarn-syms
418 @itemx -mno-warn-syms
419 Enable or disable warnings about symbols that match the names of ARM
420 instructions. The default is to warn.
421
422 @end table
423
424
425 @node ARM Syntax
426 @section Syntax
427 @menu
428 * ARM-Instruction-Set:: Instruction Set
429 * ARM-Chars:: Special Characters
430 * ARM-Regs:: Register Names
431 * ARM-Relocations:: Relocations
432 * ARM-Neon-Alignment:: NEON Alignment Specifiers
433 @end menu
434
435 @node ARM-Instruction-Set
436 @subsection Instruction Set Syntax
437 Two slightly different syntaxes are support for ARM and THUMB
438 instructions. The default, @code{divided}, uses the old style where
439 ARM and THUMB instructions had their own, separate syntaxes. The new,
440 @code{unified} syntax, which can be selected via the @code{.syntax}
441 directive, and has the following main features:
442
443 @itemize @bullet
444 @item
445 Immediate operands do not require a @code{#} prefix.
446
447 @item
448 The @code{IT} instruction may appear, and if it does it is validated
449 against subsequent conditional affixes. In ARM mode it does not
450 generate machine code, in THUMB mode it does.
451
452 @item
453 For ARM instructions the conditional affixes always appear at the end
454 of the instruction. For THUMB instructions conditional affixes can be
455 used, but only inside the scope of an @code{IT} instruction.
456
457 @item
458 All of the instructions new to the V6T2 architecture (and later) are
459 available. (Only a few such instructions can be written in the
460 @code{divided} syntax).
461
462 @item
463 The @code{.N} and @code{.W} suffixes are recognized and honored.
464
465 @item
466 All instructions set the flags if and only if they have an @code{s}
467 affix.
468 @end itemize
469
470 @node ARM-Chars
471 @subsection Special Characters
472
473 @cindex line comment character, ARM
474 @cindex ARM line comment character
475 The presence of a @samp{@@} anywhere on a line indicates the start of
476 a comment that extends to the end of that line.
477
478 If a @samp{#} appears as the first character of a line then the whole
479 line is treated as a comment, but in this case the line could also be
480 a logical line number directive (@pxref{Comments}) or a preprocessor
481 control command (@pxref{Preprocessing}).
482
483 @cindex line separator, ARM
484 @cindex statement separator, ARM
485 @cindex ARM line separator
486 The @samp{;} character can be used instead of a newline to separate
487 statements.
488
489 @cindex immediate character, ARM
490 @cindex ARM immediate character
491 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
492
493 @cindex identifiers, ARM
494 @cindex ARM identifiers
495 *TODO* Explain about /data modifier on symbols.
496
497 @node ARM-Regs
498 @subsection Register Names
499
500 @cindex ARM register names
501 @cindex register names, ARM
502 *TODO* Explain about ARM register naming, and the predefined names.
503
504 @node ARM-Relocations
505 @subsection ARM relocation generation
506
507 @cindex data relocations, ARM
508 @cindex ARM data relocations
509 Specific data relocations can be generated by putting the relocation name
510 in parentheses after the symbol name. For example:
511
512 @smallexample
513 .word foo(TARGET1)
514 @end smallexample
515
516 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
517 @var{foo}.
518 The following relocations are supported:
519 @code{GOT},
520 @code{GOTOFF},
521 @code{TARGET1},
522 @code{TARGET2},
523 @code{SBREL},
524 @code{TLSGD},
525 @code{TLSLDM},
526 @code{TLSLDO},
527 @code{TLSDESC},
528 @code{TLSCALL},
529 @code{GOTTPOFF},
530 @code{GOT_PREL}
531 and
532 @code{TPOFF}.
533
534 For compatibility with older toolchains the assembler also accepts
535 @code{(PLT)} after branch targets. On legacy targets this will
536 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
537 targets it will encode either the @samp{R_ARM_CALL} or
538 @samp{R_ARM_JUMP24} relocation, as appropriate.
539
540 @cindex MOVW and MOVT relocations, ARM
541 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
542 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
543 respectively. For example to load the 32-bit address of foo into r0:
544
545 @smallexample
546 MOVW r0, #:lower16:foo
547 MOVT r0, #:upper16:foo
548 @end smallexample
549
550 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
551 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
552 generated by prefixing the value with @samp{#:lower0_7:#},
553 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
554 respectively. For example to load the 32-bit address of foo into r0:
555
556 @smallexample
557 MOVS r0, #:upper8_15:#foo
558 LSLS r0, r0, #8
559 ADDS r0, #:upper0_7:#foo
560 LSLS r0, r0, #8
561 ADDS r0, #:lower8_15:#foo
562 LSLS r0, r0, #8
563 ADDS r0, #:lower0_7:#foo
564 @end smallexample
565
566 @node ARM-Neon-Alignment
567 @subsection NEON Alignment Specifiers
568
569 @cindex alignment for NEON instructions
570 Some NEON load/store instructions allow an optional address
571 alignment qualifier.
572 The ARM documentation specifies that this is indicated by
573 @samp{@@ @var{align}}. However GAS already interprets
574 the @samp{@@} character as a "line comment" start,
575 so @samp{: @var{align}} is used instead. For example:
576
577 @smallexample
578 vld1.8 @{q0@}, [r0, :128]
579 @end smallexample
580
581 @node ARM Floating Point
582 @section Floating Point
583
584 @cindex floating point, ARM (@sc{ieee})
585 @cindex ARM floating point (@sc{ieee})
586 The ARM family uses @sc{ieee} floating-point numbers.
587
588 @node ARM Directives
589 @section ARM Machine Directives
590
591 @cindex machine directives, ARM
592 @cindex ARM machine directives
593 @table @code
594
595 @c AAAAAAAAAAAAAAAAAAAAAAAAA
596
597 @cindex @code{.2byte} directive, ARM
598 @cindex @code{.4byte} directive, ARM
599 @cindex @code{.8byte} directive, ARM
600 @item .2byte @var{expression} [, @var{expression}]*
601 @itemx .4byte @var{expression} [, @var{expression}]*
602 @itemx .8byte @var{expression} [, @var{expression}]*
603 These directives write 2, 4 or 8 byte values to the output section.
604
605 @cindex @code{.align} directive, ARM
606 @item .align @var{expression} [, @var{expression}]
607 This is the generic @var{.align} directive. For the ARM however if the
608 first argument is zero (ie no alignment is needed) the assembler will
609 behave as if the argument had been 2 (ie pad to the next four byte
610 boundary). This is for compatibility with ARM's own assembler.
611
612 @cindex @code{.arch} directive, ARM
613 @item .arch @var{name}
614 Select the target architecture. Valid values for @var{name} are the same as
615 for the @option{-march} commandline option.
616
617 Specifying @code{.arch} clears any previously selected architecture
618 extensions.
619
620 @cindex @code{.arch_extension} directive, ARM
621 @item .arch_extension @var{name}
622 Add or remove an architecture extension to the target architecture. Valid
623 values for @var{name} are the same as those accepted as architectural
624 extensions by the @option{-mcpu} commandline option.
625
626 @code{.arch_extension} may be used multiple times to add or remove extensions
627 incrementally to the architecture being compiled for.
628
629 @cindex @code{.arm} directive, ARM
630 @item .arm
631 This performs the same action as @var{.code 32}.
632
633 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
634
635 @cindex @code{.bss} directive, ARM
636 @item .bss
637 This directive switches to the @code{.bss} section.
638
639 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
640
641 @cindex @code{.cantunwind} directive, ARM
642 @item .cantunwind
643 Prevents unwinding through the current function. No personality routine
644 or exception table data is required or permitted.
645
646 @cindex @code{.code} directive, ARM
647 @item .code @code{[16|32]}
648 This directive selects the instruction set being generated. The value 16
649 selects Thumb, with the value 32 selecting ARM.
650
651 @cindex @code{.cpu} directive, ARM
652 @item .cpu @var{name}
653 Select the target processor. Valid values for @var{name} are the same as
654 for the @option{-mcpu} commandline option.
655
656 Specifying @code{.cpu} clears any previously selected architecture
657 extensions.
658
659 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
660
661 @cindex @code{.dn} and @code{.qn} directives, ARM
662 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
663 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
664
665 The @code{dn} and @code{qn} directives are used to create typed
666 and/or indexed register aliases for use in Advanced SIMD Extension
667 (Neon) instructions. The former should be used to create aliases
668 of double-precision registers, and the latter to create aliases of
669 quad-precision registers.
670
671 If these directives are used to create typed aliases, those aliases can
672 be used in Neon instructions instead of writing types after the mnemonic
673 or after each operand. For example:
674
675 @smallexample
676 x .dn d2.f32
677 y .dn d3.f32
678 z .dn d4.f32[1]
679 vmul x,y,z
680 @end smallexample
681
682 This is equivalent to writing the following:
683
684 @smallexample
685 vmul.f32 d2,d3,d4[1]
686 @end smallexample
687
688 Aliases created using @code{dn} or @code{qn} can be destroyed using
689 @code{unreq}.
690
691 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
692
693 @cindex @code{.eabi_attribute} directive, ARM
694 @item .eabi_attribute @var{tag}, @var{value}
695 Set the EABI object attribute @var{tag} to @var{value}.
696
697 The @var{tag} is either an attribute number, or one of the following:
698 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
699 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
700 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
701 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
702 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
703 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
704 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
705 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
706 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
707 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
708 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
709 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
710 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
711 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
712 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
713 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
714 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
715 @code{Tag_conformance}, @code{Tag_T2EE_use},
716 @code{Tag_Virtualization_use}
717
718 The @var{value} is either a @code{number}, @code{"string"}, or
719 @code{number, "string"} depending on the tag.
720
721 Note - the following legacy values are also accepted by @var{tag}:
722 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
723 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
724
725 @cindex @code{.even} directive, ARM
726 @item .even
727 This directive aligns to an even-numbered address.
728
729 @cindex @code{.extend} directive, ARM
730 @cindex @code{.ldouble} directive, ARM
731 @item .extend @var{expression} [, @var{expression}]*
732 @itemx .ldouble @var{expression} [, @var{expression}]*
733 These directives write 12byte long double floating-point values to the
734 output section. These are not compatible with current ARM processors
735 or ABIs.
736
737 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
738
739 @anchor{arm_fnend}
740 @cindex @code{.fnend} directive, ARM
741 @item .fnend
742 Marks the end of a function with an unwind table entry. The unwind index
743 table entry is created when this directive is processed.
744
745 If no personality routine has been specified then standard personality
746 routine 0 or 1 will be used, depending on the number of unwind opcodes
747 required.
748
749 @anchor{arm_fnstart}
750 @cindex @code{.fnstart} directive, ARM
751 @item .fnstart
752 Marks the start of a function with an unwind table entry.
753
754 @cindex @code{.force_thumb} directive, ARM
755 @item .force_thumb
756 This directive forces the selection of Thumb instructions, even if the
757 target processor does not support those instructions
758
759 @cindex @code{.fpu} directive, ARM
760 @item .fpu @var{name}
761 Select the floating-point unit to assemble for. Valid values for @var{name}
762 are the same as for the @option{-mfpu} commandline option.
763
764 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
765 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
766
767 @cindex @code{.handlerdata} directive, ARM
768 @item .handlerdata
769 Marks the end of the current function, and the start of the exception table
770 entry for that function. Anything between this directive and the
771 @code{.fnend} directive will be added to the exception table entry.
772
773 Must be preceded by a @code{.personality} or @code{.personalityindex}
774 directive.
775
776 @c IIIIIIIIIIIIIIIIIIIIIIIIII
777
778 @cindex @code{.inst} directive, ARM
779 @item .inst @var{opcode} [ , @dots{} ]
780 @itemx .inst.n @var{opcode} [ , @dots{} ]
781 @itemx .inst.w @var{opcode} [ , @dots{} ]
782 Generates the instruction corresponding to the numerical value @var{opcode}.
783 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
784 specified explicitly, overriding the normal encoding rules.
785
786 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
787 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
788 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
789
790 @item .ldouble @var{expression} [, @var{expression}]*
791 See @code{.extend}.
792
793 @cindex @code{.ltorg} directive, ARM
794 @item .ltorg
795 This directive causes the current contents of the literal pool to be
796 dumped into the current section (which is assumed to be the .text
797 section) at the current location (aligned to a word boundary).
798 @code{GAS} maintains a separate literal pool for each section and each
799 sub-section. The @code{.ltorg} directive will only affect the literal
800 pool of the current section and sub-section. At the end of assembly
801 all remaining, un-empty literal pools will automatically be dumped.
802
803 Note - older versions of @code{GAS} would dump the current literal
804 pool any time a section change occurred. This is no longer done, since
805 it prevents accurate control of the placement of literal pools.
806
807 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
808
809 @cindex @code{.movsp} directive, ARM
810 @item .movsp @var{reg} [, #@var{offset}]
811 Tell the unwinder that @var{reg} contains an offset from the current
812 stack pointer. If @var{offset} is not specified then it is assumed to be
813 zero.
814
815 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
816 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
817
818 @cindex @code{.object_arch} directive, ARM
819 @item .object_arch @var{name}
820 Override the architecture recorded in the EABI object attribute section.
821 Valid values for @var{name} are the same as for the @code{.arch} directive.
822 Typically this is useful when code uses runtime detection of CPU features.
823
824 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
825
826 @cindex @code{.packed} directive, ARM
827 @item .packed @var{expression} [, @var{expression}]*
828 This directive writes 12-byte packed floating-point values to the
829 output section. These are not compatible with current ARM processors
830 or ABIs.
831
832 @anchor{arm_pad}
833 @cindex @code{.pad} directive, ARM
834 @item .pad #@var{count}
835 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
836 A positive value indicates the function prologue allocated stack space by
837 decrementing the stack pointer.
838
839 @cindex @code{.personality} directive, ARM
840 @item .personality @var{name}
841 Sets the personality routine for the current function to @var{name}.
842
843 @cindex @code{.personalityindex} directive, ARM
844 @item .personalityindex @var{index}
845 Sets the personality routine for the current function to the EABI standard
846 routine number @var{index}
847
848 @cindex @code{.pool} directive, ARM
849 @item .pool
850 This is a synonym for .ltorg.
851
852 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
853 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
854
855 @cindex @code{.req} directive, ARM
856 @item @var{name} .req @var{register name}
857 This creates an alias for @var{register name} called @var{name}. For
858 example:
859
860 @smallexample
861 foo .req r0
862 @end smallexample
863
864 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
865
866 @anchor{arm_save}
867 @cindex @code{.save} directive, ARM
868 @item .save @var{reglist}
869 Generate unwinder annotations to restore the registers in @var{reglist}.
870 The format of @var{reglist} is the same as the corresponding store-multiple
871 instruction.
872
873 @smallexample
874 @exdent @emph{core registers}
875 .save @{r4, r5, r6, lr@}
876 stmfd sp!, @{r4, r5, r6, lr@}
877 @exdent @emph{FPA registers}
878 .save f4, 2
879 sfmfd f4, 2, [sp]!
880 @exdent @emph{VFP registers}
881 .save @{d8, d9, d10@}
882 fstmdx sp!, @{d8, d9, d10@}
883 @exdent @emph{iWMMXt registers}
884 .save @{wr10, wr11@}
885 wstrd wr11, [sp, #-8]!
886 wstrd wr10, [sp, #-8]!
887 or
888 .save wr11
889 wstrd wr11, [sp, #-8]!
890 .save wr10
891 wstrd wr10, [sp, #-8]!
892 @end smallexample
893
894 @anchor{arm_setfp}
895 @cindex @code{.setfp} directive, ARM
896 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
897 Make all unwinder annotations relative to a frame pointer. Without this
898 the unwinder will use offsets from the stack pointer.
899
900 The syntax of this directive is the same as the @code{add} or @code{mov}
901 instruction used to set the frame pointer. @var{spreg} must be either
902 @code{sp} or mentioned in a previous @code{.movsp} directive.
903
904 @smallexample
905 .movsp ip
906 mov ip, sp
907 @dots{}
908 .setfp fp, ip, #4
909 add fp, ip, #4
910 @end smallexample
911
912 @cindex @code{.secrel32} directive, ARM
913 @item .secrel32 @var{expression} [, @var{expression}]*
914 This directive emits relocations that evaluate to the section-relative
915 offset of each expression's symbol. This directive is only supported
916 for PE targets.
917
918 @cindex @code{.syntax} directive, ARM
919 @item .syntax [@code{unified} | @code{divided}]
920 This directive sets the Instruction Set Syntax as described in the
921 @ref{ARM-Instruction-Set} section.
922
923 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
924
925 @cindex @code{.thumb} directive, ARM
926 @item .thumb
927 This performs the same action as @var{.code 16}.
928
929 @cindex @code{.thumb_func} directive, ARM
930 @item .thumb_func
931 This directive specifies that the following symbol is the name of a
932 Thumb encoded function. This information is necessary in order to allow
933 the assembler and linker to generate correct code for interworking
934 between Arm and Thumb instructions and should be used even if
935 interworking is not going to be performed. The presence of this
936 directive also implies @code{.thumb}
937
938 This directive is not neccessary when generating EABI objects. On these
939 targets the encoding is implicit when generating Thumb code.
940
941 @cindex @code{.thumb_set} directive, ARM
942 @item .thumb_set
943 This performs the equivalent of a @code{.set} directive in that it
944 creates a symbol which is an alias for another symbol (possibly not yet
945 defined). This directive also has the added property in that it marks
946 the aliased symbol as being a thumb function entry point, in the same
947 way that the @code{.thumb_func} directive does.
948
949 @cindex @code{.tlsdescseq} directive, ARM
950 @item .tlsdescseq @var{tls-variable}
951 This directive is used to annotate parts of an inlined TLS descriptor
952 trampoline. Normally the trampoline is provided by the linker, and
953 this directive is not needed.
954
955 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
956
957 @cindex @code{.unreq} directive, ARM
958 @item .unreq @var{alias-name}
959 This undefines a register alias which was previously defined using the
960 @code{req}, @code{dn} or @code{qn} directives. For example:
961
962 @smallexample
963 foo .req r0
964 .unreq foo
965 @end smallexample
966
967 An error occurs if the name is undefined. Note - this pseudo op can
968 be used to delete builtin in register name aliases (eg 'r0'). This
969 should only be done if it is really necessary.
970
971 @cindex @code{.unwind_raw} directive, ARM
972 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
973 Insert one of more arbitary unwind opcode bytes, which are known to adjust
974 the stack pointer by @var{offset} bytes.
975
976 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
977 @code{.save @{r0@}}
978
979 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
980
981 @cindex @code{.vsave} directive, ARM
982 @item .vsave @var{vfp-reglist}
983 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
984 using FLDMD. Also works for VFPv3 registers
985 that are to be restored using VLDM.
986 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
987 instruction.
988
989 @smallexample
990 @exdent @emph{VFP registers}
991 .vsave @{d8, d9, d10@}
992 fstmdd sp!, @{d8, d9, d10@}
993 @exdent @emph{VFPv3 registers}
994 .vsave @{d15, d16, d17@}
995 vstm sp!, @{d15, d16, d17@}
996 @end smallexample
997
998 Since FLDMX and FSTMX are now deprecated, this directive should be
999 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1000
1001 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1002 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1003 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1004 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1005
1006 @end table
1007
1008 @node ARM Opcodes
1009 @section Opcodes
1010
1011 @cindex ARM opcodes
1012 @cindex opcodes for ARM
1013 @code{@value{AS}} implements all the standard ARM opcodes. It also
1014 implements several pseudo opcodes, including several synthetic load
1015 instructions.
1016
1017 @table @code
1018
1019 @cindex @code{NOP} pseudo op, ARM
1020 @item NOP
1021 @smallexample
1022 nop
1023 @end smallexample
1024
1025 This pseudo op will always evaluate to a legal ARM instruction that does
1026 nothing. Currently it will evaluate to MOV r0, r0.
1027
1028 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1029 @item LDR
1030 @smallexample
1031 ldr <register> , = <expression>
1032 @end smallexample
1033
1034 If expression evaluates to a numeric constant then a MOV or MVN
1035 instruction will be used in place of the LDR instruction, if the
1036 constant can be generated by either of these instructions. Otherwise
1037 the constant will be placed into the nearest literal pool (if it not
1038 already there) and a PC relative LDR instruction will be generated.
1039
1040 @cindex @code{ADR reg,<label>} pseudo op, ARM
1041 @item ADR
1042 @smallexample
1043 adr <register> <label>
1044 @end smallexample
1045
1046 This instruction will load the address of @var{label} into the indicated
1047 register. The instruction will evaluate to a PC relative ADD or SUB
1048 instruction depending upon where the label is located. If the label is
1049 out of range, or if it is not defined in the same file (and section) as
1050 the ADR instruction, then an error will be generated. This instruction
1051 will not make use of the literal pool.
1052
1053 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1054 @item ADRL
1055 @smallexample
1056 adrl <register> <label>
1057 @end smallexample
1058
1059 This instruction will load the address of @var{label} into the indicated
1060 register. The instruction will evaluate to one or two PC relative ADD
1061 or SUB instructions depending upon where the label is located. If a
1062 second instruction is not needed a NOP instruction will be generated in
1063 its place, so that this instruction is always 8 bytes long.
1064
1065 If the label is out of range, or if it is not defined in the same file
1066 (and section) as the ADRL instruction, then an error will be generated.
1067 This instruction will not make use of the literal pool.
1068
1069 @end table
1070
1071 For information on the ARM or Thumb instruction sets, see @cite{ARM
1072 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1073 Ltd.
1074
1075 @node ARM Mapping Symbols
1076 @section Mapping Symbols
1077
1078 The ARM ELF specification requires that special symbols be inserted
1079 into object files to mark certain features:
1080
1081 @table @code
1082
1083 @cindex @code{$a}
1084 @item $a
1085 At the start of a region of code containing ARM instructions.
1086
1087 @cindex @code{$t}
1088 @item $t
1089 At the start of a region of code containing THUMB instructions.
1090
1091 @cindex @code{$d}
1092 @item $d
1093 At the start of a region of data.
1094
1095 @end table
1096
1097 The assembler will automatically insert these symbols for you - there
1098 is no need to code them yourself. Support for tagging symbols ($b,
1099 $f, $p and $m) which is also mentioned in the current ARM ELF
1100 specification is not implemented. This is because they have been
1101 dropped from the new EABI and so tools cannot rely upon their
1102 presence.
1103
1104 @node ARM Unwinding Tutorial
1105 @section Unwinding
1106
1107 The ABI for the ARM Architecture specifies a standard format for
1108 exception unwind information. This information is used when an
1109 exception is thrown to determine where control should be transferred.
1110 In particular, the unwind information is used to determine which
1111 function called the function that threw the exception, and which
1112 function called that one, and so forth. This information is also used
1113 to restore the values of callee-saved registers in the function
1114 catching the exception.
1115
1116 If you are writing functions in assembly code, and those functions
1117 call other functions that throw exceptions, you must use assembly
1118 pseudo ops to ensure that appropriate exception unwind information is
1119 generated. Otherwise, if one of the functions called by your assembly
1120 code throws an exception, the run-time library will be unable to
1121 unwind the stack through your assembly code and your program will not
1122 behave correctly.
1123
1124 To illustrate the use of these pseudo ops, we will examine the code
1125 that G++ generates for the following C++ input:
1126
1127 @verbatim
1128 void callee (int *);
1129
1130 int
1131 caller ()
1132 {
1133 int i;
1134 callee (&i);
1135 return i;
1136 }
1137 @end verbatim
1138
1139 This example does not show how to throw or catch an exception from
1140 assembly code. That is a much more complex operation and should
1141 always be done in a high-level language, such as C++, that directly
1142 supports exceptions.
1143
1144 The code generated by one particular version of G++ when compiling the
1145 example above is:
1146
1147 @verbatim
1148 _Z6callerv:
1149 .fnstart
1150 .LFB2:
1151 @ Function supports interworking.
1152 @ args = 0, pretend = 0, frame = 8
1153 @ frame_needed = 1, uses_anonymous_args = 0
1154 stmfd sp!, {fp, lr}
1155 .save {fp, lr}
1156 .LCFI0:
1157 .setfp fp, sp, #4
1158 add fp, sp, #4
1159 .LCFI1:
1160 .pad #8
1161 sub sp, sp, #8
1162 .LCFI2:
1163 sub r3, fp, #8
1164 mov r0, r3
1165 bl _Z6calleePi
1166 ldr r3, [fp, #-8]
1167 mov r0, r3
1168 sub sp, fp, #4
1169 ldmfd sp!, {fp, lr}
1170 bx lr
1171 .LFE2:
1172 .fnend
1173 @end verbatim
1174
1175 Of course, the sequence of instructions varies based on the options
1176 you pass to GCC and on the version of GCC in use. The exact
1177 instructions are not important since we are focusing on the pseudo ops
1178 that are used to generate unwind information.
1179
1180 An important assumption made by the unwinder is that the stack frame
1181 does not change during the body of the function. In particular, since
1182 we assume that the assembly code does not itself throw an exception,
1183 the only point where an exception can be thrown is from a call, such
1184 as the @code{bl} instruction above. At each call site, the same saved
1185 registers (including @code{lr}, which indicates the return address)
1186 must be located in the same locations relative to the frame pointer.
1187
1188 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1189 op appears immediately before the first instruction of the function
1190 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1191 op appears immediately after the last instruction of the function.
1192 These pseudo ops specify the range of the function.
1193
1194 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1195 @code{.pad}) matters; their exact locations are irrelevant. In the
1196 example above, the compiler emits the pseudo ops with particular
1197 instructions. That makes it easier to understand the code, but it is
1198 not required for correctness. It would work just as well to emit all
1199 of the pseudo ops other than @code{.fnend} in the same order, but
1200 immediately after @code{.fnstart}.
1201
1202 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1203 indicates registers that have been saved to the stack so that they can
1204 be restored before the function returns. The argument to the
1205 @code{.save} pseudo op is a list of registers to save. If a register
1206 is ``callee-saved'' (as specified by the ABI) and is modified by the
1207 function you are writing, then your code must save the value before it
1208 is modified and restore the original value before the function
1209 returns. If an exception is thrown, the run-time library restores the
1210 values of these registers from their locations on the stack before
1211 returning control to the exception handler. (Of course, if an
1212 exception is not thrown, the function that contains the @code{.save}
1213 pseudo op restores these registers in the function epilogue, as is
1214 done with the @code{ldmfd} instruction above.)
1215
1216 You do not have to save callee-saved registers at the very beginning
1217 of the function and you do not need to use the @code{.save} pseudo op
1218 immediately following the point at which the registers are saved.
1219 However, if you modify a callee-saved register, you must save it on
1220 the stack before modifying it and before calling any functions which
1221 might throw an exception. And, you must use the @code{.save} pseudo
1222 op to indicate that you have done so.
1223
1224 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1225 modification of the stack pointer that does not save any registers.
1226 The argument is the number of bytes (in decimal) that are subtracted
1227 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1228 subtracting from the stack pointer increases the size of the stack.)
1229
1230 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1231 indicates the register that contains the frame pointer. The first
1232 argument is the register that is set, which is typically @code{fp}.
1233 The second argument indicates the register from which the frame
1234 pointer takes its value. The third argument, if present, is the value
1235 (in decimal) added to the register specified by the second argument to
1236 compute the value of the frame pointer. You should not modify the
1237 frame pointer in the body of the function.
1238
1239 If you do not use a frame pointer, then you should not use the
1240 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1241 should avoid modifying the stack pointer outside of the function
1242 prologue. Otherwise, the run-time library will be unable to find
1243 saved registers when it is unwinding the stack.
1244
1245 The pseudo ops described above are sufficient for writing assembly
1246 code that calls functions which may throw exceptions. If you need to
1247 know more about the object-file format used to represent unwind
1248 information, you may consult the @cite{Exception Handling ABI for the
1249 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1250
This page took 0.063763 seconds and 4 git commands to generate.