df7313d7d4957a386228ed4c7d844297e26a4519
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996-2013 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-r4},
123 @code{cortex-r4f},
124 @code{cortex-r5},
125 @code{cortex-r7},
126 @code{cortex-m4},
127 @code{cortex-m3},
128 @code{cortex-m1},
129 @code{cortex-m0},
130 @code{cortex-m0plus},
131 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
132 @code{i80200} (Intel XScale processor)
133 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
134 and
135 @code{xscale}.
136 The special name @code{all} may be used to allow the
137 assembler to accept instructions valid for any ARM processor.
138
139 In addition to the basic instruction set, the assembler can be told to
140 accept various extension mnemonics that extend the processor using the
141 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
142 is equivalent to specifying @code{-mcpu=ep9312}.
143
144 Multiple extensions may be specified, separated by a @code{+}. The
145 extensions should be specified in ascending alphabetical order.
146
147 Some extensions may be restricted to particular architectures; this is
148 documented in the list of extensions below.
149
150 Extension mnemonics may also be removed from those the assembler accepts.
151 This is done be prepending @code{no} to the option that adds the extension.
152 Extensions that are removed should be listed after all extensions which have
153 been added, again in ascending alphabetical order. For example,
154 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
155
156
157 The following extensions are currently supported:
158 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
159 @code{fp} (Floating Point Extensions for v8-A architecture),
160 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
161 @code{iwmmxt},
162 @code{iwmmxt2},
163 @code{maverick},
164 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
165 @code{os} (Operating System for v6M architecture),
166 @code{sec} (Security Extensions for v6K and v7-A architectures),
167 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
168 @code{virt} (Virtualization Extensions for v7-A architecture, implies
169 @code{idiv}),
170 and
171 @code{xscale}.
172
173 @cindex @code{-march=} command line option, ARM
174 @item -march=@var{architecture}[+@var{extension}@dots{}]
175 This option specifies the target architecture. The assembler will issue
176 an error message if an attempt is made to assemble an instruction which
177 will not execute on the target architecture. The following architecture
178 names are recognized:
179 @code{armv1},
180 @code{armv2},
181 @code{armv2a},
182 @code{armv2s},
183 @code{armv3},
184 @code{armv3m},
185 @code{armv4},
186 @code{armv4xm},
187 @code{armv4t},
188 @code{armv4txm},
189 @code{armv5},
190 @code{armv5t},
191 @code{armv5txm},
192 @code{armv5te},
193 @code{armv5texp},
194 @code{armv6},
195 @code{armv6j},
196 @code{armv6k},
197 @code{armv6z},
198 @code{armv6zk},
199 @code{armv6-m},
200 @code{armv6s-m},
201 @code{armv7},
202 @code{armv7-a},
203 @code{armv7ve},
204 @code{armv7-r},
205 @code{armv7-m},
206 @code{armv7e-m},
207 @code{armv8-a},
208 @code{iwmmxt}
209 and
210 @code{xscale}.
211 If both @code{-mcpu} and
212 @code{-march} are specified, the assembler will use
213 the setting for @code{-mcpu}.
214
215 The architecture option can be extended with the same instruction set
216 extension options as the @code{-mcpu} option.
217
218 @cindex @code{-mfpu=} command line option, ARM
219 @item -mfpu=@var{floating-point-format}
220
221 This option specifies the floating point format to assemble for. The
222 assembler will issue an error message if an attempt is made to assemble
223 an instruction which will not execute on the target floating point unit.
224 The following format options are recognized:
225 @code{softfpa},
226 @code{fpe},
227 @code{fpe2},
228 @code{fpe3},
229 @code{fpa},
230 @code{fpa10},
231 @code{fpa11},
232 @code{arm7500fe},
233 @code{softvfp},
234 @code{softvfp+vfp},
235 @code{vfp},
236 @code{vfp10},
237 @code{vfp10-r0},
238 @code{vfp9},
239 @code{vfpxd},
240 @code{vfpv2},
241 @code{vfpv3},
242 @code{vfpv3-fp16},
243 @code{vfpv3-d16},
244 @code{vfpv3-d16-fp16},
245 @code{vfpv3xd},
246 @code{vfpv3xd-d16},
247 @code{vfpv4},
248 @code{vfpv4-d16},
249 @code{fpv4-sp-d16},
250 @code{fp-armv8},
251 @code{arm1020t},
252 @code{arm1020e},
253 @code{arm1136jf-s},
254 @code{maverick},
255 @code{neon},
256 @code{neon-vfpv4},
257 @code{neon-fp-armv8},
258 and
259 @code{crypto-neon-fp-armv8}.
260
261 In addition to determining which instructions are assembled, this option
262 also affects the way in which the @code{.double} assembler directive behaves
263 when assembling little-endian code.
264
265 The default is dependent on the processor selected. For Architecture 5 or
266 later, the default is to assembler for VFP instructions; for earlier
267 architectures the default is to assemble for FPA instructions.
268
269 @cindex @code{-mthumb} command line option, ARM
270 @item -mthumb
271 This option specifies that the assembler should start assembling Thumb
272 instructions; that is, it should behave as though the file starts with a
273 @code{.code 16} directive.
274
275 @cindex @code{-mthumb-interwork} command line option, ARM
276 @item -mthumb-interwork
277 This option specifies that the output generated by the assembler should
278 be marked as supporting interworking.
279
280 @cindex @code{-mimplicit-it} command line option, ARM
281 @item -mimplicit-it=never
282 @itemx -mimplicit-it=always
283 @itemx -mimplicit-it=arm
284 @itemx -mimplicit-it=thumb
285 The @code{-mimplicit-it} option controls the behavior of the assembler when
286 conditional instructions are not enclosed in IT blocks.
287 There are four possible behaviors.
288 If @code{never} is specified, such constructs cause a warning in ARM
289 code and an error in Thumb-2 code.
290 If @code{always} is specified, such constructs are accepted in both
291 ARM and Thumb-2 code, where the IT instruction is added implicitly.
292 If @code{arm} is specified, such constructs are accepted in ARM code
293 and cause an error in Thumb-2 code.
294 If @code{thumb} is specified, such constructs cause a warning in ARM
295 code and are accepted in Thumb-2 code. If you omit this option, the
296 behavior is equivalent to @code{-mimplicit-it=arm}.
297
298 @cindex @code{-mapcs-26} command line option, ARM
299 @cindex @code{-mapcs-32} command line option, ARM
300 @item -mapcs-26
301 @itemx -mapcs-32
302 These options specify that the output generated by the assembler should
303 be marked as supporting the indicated version of the Arm Procedure.
304 Calling Standard.
305
306 @cindex @code{-matpcs} command line option, ARM
307 @item -matpcs
308 This option specifies that the output generated by the assembler should
309 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
310 enabled this option will cause the assembler to create an empty
311 debugging section in the object file called .arm.atpcs. Debuggers can
312 use this to determine the ABI being used by.
313
314 @cindex @code{-mapcs-float} command line option, ARM
315 @item -mapcs-float
316 This indicates the floating point variant of the APCS should be
317 used. In this variant floating point arguments are passed in FP
318 registers rather than integer registers.
319
320 @cindex @code{-mapcs-reentrant} command line option, ARM
321 @item -mapcs-reentrant
322 This indicates that the reentrant variant of the APCS should be used.
323 This variant supports position independent code.
324
325 @cindex @code{-mfloat-abi=} command line option, ARM
326 @item -mfloat-abi=@var{abi}
327 This option specifies that the output generated by the assembler should be
328 marked as using specified floating point ABI.
329 The following values are recognized:
330 @code{soft},
331 @code{softfp}
332 and
333 @code{hard}.
334
335 @cindex @code{-eabi=} command line option, ARM
336 @item -meabi=@var{ver}
337 This option specifies which EABI version the produced object files should
338 conform to.
339 The following values are recognized:
340 @code{gnu},
341 @code{4}
342 and
343 @code{5}.
344
345 @cindex @code{-EB} command line option, ARM
346 @item -EB
347 This option specifies that the output generated by the assembler should
348 be marked as being encoded for a big-endian processor.
349
350 @cindex @code{-EL} command line option, ARM
351 @item -EL
352 This option specifies that the output generated by the assembler should
353 be marked as being encoded for a little-endian processor.
354
355 @cindex @code{-k} command line option, ARM
356 @cindex PIC code generation for ARM
357 @item -k
358 This option specifies that the output of the assembler should be marked
359 as position-independent code (PIC).
360
361 @cindex @code{--fix-v4bx} command line option, ARM
362 @item --fix-v4bx
363 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
364 the linker option of the same name.
365
366 @cindex @code{-mwarn-deprecated} command line option, ARM
367 @item -mwarn-deprecated
368 @itemx -mno-warn-deprecated
369 Enable or disable warnings about using deprecated options or
370 features. The default is to warn.
371
372 @end table
373
374
375 @node ARM Syntax
376 @section Syntax
377 @menu
378 * ARM-Instruction-Set:: Instruction Set
379 * ARM-Chars:: Special Characters
380 * ARM-Regs:: Register Names
381 * ARM-Relocations:: Relocations
382 * ARM-Neon-Alignment:: NEON Alignment Specifiers
383 @end menu
384
385 @node ARM-Instruction-Set
386 @subsection Instruction Set Syntax
387 Two slightly different syntaxes are support for ARM and THUMB
388 instructions. The default, @code{divided}, uses the old style where
389 ARM and THUMB instructions had their own, separate syntaxes. The new,
390 @code{unified} syntax, which can be selected via the @code{.syntax}
391 directive, and has the following main features:
392
393 @itemize @bullet
394 @item
395 Immediate operands do not require a @code{#} prefix.
396
397 @item
398 The @code{IT} instruction may appear, and if it does it is validated
399 against subsequent conditional affixes. In ARM mode it does not
400 generate machine code, in THUMB mode it does.
401
402 @item
403 For ARM instructions the conditional affixes always appear at the end
404 of the instruction. For THUMB instructions conditional affixes can be
405 used, but only inside the scope of an @code{IT} instruction.
406
407 @item
408 All of the instructions new to the V6T2 architecture (and later) are
409 available. (Only a few such instructions can be written in the
410 @code{divided} syntax).
411
412 @item
413 The @code{.N} and @code{.W} suffixes are recognized and honored.
414
415 @item
416 All instructions set the flags if and only if they have an @code{s}
417 affix.
418 @end itemize
419
420 @node ARM-Chars
421 @subsection Special Characters
422
423 @cindex line comment character, ARM
424 @cindex ARM line comment character
425 The presence of a @samp{@@} anywhere on a line indicates the start of
426 a comment that extends to the end of that line.
427
428 If a @samp{#} appears as the first character of a line then the whole
429 line is treated as a comment, but in this case the line could also be
430 a logical line number directive (@pxref{Comments}) or a preprocessor
431 control command (@pxref{Preprocessing}).
432
433 @cindex line separator, ARM
434 @cindex statement separator, ARM
435 @cindex ARM line separator
436 The @samp{;} character can be used instead of a newline to separate
437 statements.
438
439 @cindex immediate character, ARM
440 @cindex ARM immediate character
441 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
442
443 @cindex identifiers, ARM
444 @cindex ARM identifiers
445 *TODO* Explain about /data modifier on symbols.
446
447 @node ARM-Regs
448 @subsection Register Names
449
450 @cindex ARM register names
451 @cindex register names, ARM
452 *TODO* Explain about ARM register naming, and the predefined names.
453
454 @node ARM-Relocations
455 @subsection ARM relocation generation
456
457 @cindex data relocations, ARM
458 @cindex ARM data relocations
459 Specific data relocations can be generated by putting the relocation name
460 in parentheses after the symbol name. For example:
461
462 @smallexample
463 .word foo(TARGET1)
464 @end smallexample
465
466 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
467 @var{foo}.
468 The following relocations are supported:
469 @code{GOT},
470 @code{GOTOFF},
471 @code{TARGET1},
472 @code{TARGET2},
473 @code{SBREL},
474 @code{TLSGD},
475 @code{TLSLDM},
476 @code{TLSLDO},
477 @code{TLSDESC},
478 @code{TLSCALL},
479 @code{GOTTPOFF},
480 @code{GOT_PREL}
481 and
482 @code{TPOFF}.
483
484 For compatibility with older toolchains the assembler also accepts
485 @code{(PLT)} after branch targets. On legacy targets this will
486 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
487 targets it will encode either the @samp{R_ARM_CALL} or
488 @samp{R_ARM_JUMP24} relocation, as appropriate.
489
490 @cindex MOVW and MOVT relocations, ARM
491 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
492 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
493 respectively. For example to load the 32-bit address of foo into r0:
494
495 @smallexample
496 MOVW r0, #:lower16:foo
497 MOVT r0, #:upper16:foo
498 @end smallexample
499
500 @node ARM-Neon-Alignment
501 @subsection NEON Alignment Specifiers
502
503 @cindex alignment for NEON instructions
504 Some NEON load/store instructions allow an optional address
505 alignment qualifier.
506 The ARM documentation specifies that this is indicated by
507 @samp{@@ @var{align}}. However GAS already interprets
508 the @samp{@@} character as a "line comment" start,
509 so @samp{: @var{align}} is used instead. For example:
510
511 @smallexample
512 vld1.8 @{q0@}, [r0, :128]
513 @end smallexample
514
515 @node ARM Floating Point
516 @section Floating Point
517
518 @cindex floating point, ARM (@sc{ieee})
519 @cindex ARM floating point (@sc{ieee})
520 The ARM family uses @sc{ieee} floating-point numbers.
521
522 @node ARM Directives
523 @section ARM Machine Directives
524
525 @cindex machine directives, ARM
526 @cindex ARM machine directives
527 @table @code
528
529 @c AAAAAAAAAAAAAAAAAAAAAAAAA
530
531 @cindex @code{.2byte} directive, ARM
532 @cindex @code{.4byte} directive, ARM
533 @cindex @code{.8byte} directive, ARM
534 @item .2byte @var{expression} [, @var{expression}]*
535 @itemx .4byte @var{expression} [, @var{expression}]*
536 @itemx .8byte @var{expression} [, @var{expression}]*
537 These directives write 2, 4 or 8 byte values to the output section.
538
539 @cindex @code{.align} directive, ARM
540 @item .align @var{expression} [, @var{expression}]
541 This is the generic @var{.align} directive. For the ARM however if the
542 first argument is zero (ie no alignment is needed) the assembler will
543 behave as if the argument had been 2 (ie pad to the next four byte
544 boundary). This is for compatibility with ARM's own assembler.
545
546 @cindex @code{.arch} directive, ARM
547 @item .arch @var{name}
548 Select the target architecture. Valid values for @var{name} are the same as
549 for the @option{-march} commandline option.
550
551 Specifying @code{.arch} clears any previously selected architecture
552 extensions.
553
554 @cindex @code{.arch_extension} directive, ARM
555 @item .arch_extension @var{name}
556 Add or remove an architecture extension to the target architecture. Valid
557 values for @var{name} are the same as those accepted as architectural
558 extensions by the @option{-mcpu} commandline option.
559
560 @code{.arch_extension} may be used multiple times to add or remove extensions
561 incrementally to the architecture being compiled for.
562
563 @cindex @code{.arm} directive, ARM
564 @item .arm
565 This performs the same action as @var{.code 32}.
566
567 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
568
569 @cindex @code{.bss} directive, ARM
570 @item .bss
571 This directive switches to the @code{.bss} section.
572
573 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
574
575 @cindex @code{.cantunwind} directive, ARM
576 @item .cantunwind
577 Prevents unwinding through the current function. No personality routine
578 or exception table data is required or permitted.
579
580 @cindex @code{.code} directive, ARM
581 @item .code @code{[16|32]}
582 This directive selects the instruction set being generated. The value 16
583 selects Thumb, with the value 32 selecting ARM.
584
585 @cindex @code{.cpu} directive, ARM
586 @item .cpu @var{name}
587 Select the target processor. Valid values for @var{name} are the same as
588 for the @option{-mcpu} commandline option.
589
590 Specifying @code{.cpu} clears any previously selected architecture
591 extensions.
592
593 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
594
595 @cindex @code{.dn} and @code{.qn} directives, ARM
596 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
597 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
598
599 The @code{dn} and @code{qn} directives are used to create typed
600 and/or indexed register aliases for use in Advanced SIMD Extension
601 (Neon) instructions. The former should be used to create aliases
602 of double-precision registers, and the latter to create aliases of
603 quad-precision registers.
604
605 If these directives are used to create typed aliases, those aliases can
606 be used in Neon instructions instead of writing types after the mnemonic
607 or after each operand. For example:
608
609 @smallexample
610 x .dn d2.f32
611 y .dn d3.f32
612 z .dn d4.f32[1]
613 vmul x,y,z
614 @end smallexample
615
616 This is equivalent to writing the following:
617
618 @smallexample
619 vmul.f32 d2,d3,d4[1]
620 @end smallexample
621
622 Aliases created using @code{dn} or @code{qn} can be destroyed using
623 @code{unreq}.
624
625 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
626
627 @cindex @code{.eabi_attribute} directive, ARM
628 @item .eabi_attribute @var{tag}, @var{value}
629 Set the EABI object attribute @var{tag} to @var{value}.
630
631 The @var{tag} is either an attribute number, or one of the following:
632 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
633 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
634 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
635 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
636 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
637 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
638 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
639 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
640 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
641 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
642 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
643 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
644 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
645 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
646 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
647 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
648 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
649 @code{Tag_conformance}, @code{Tag_T2EE_use},
650 @code{Tag_Virtualization_use}
651
652 The @var{value} is either a @code{number}, @code{"string"}, or
653 @code{number, "string"} depending on the tag.
654
655 Note - the following legacy values are also accepted by @var{tag}:
656 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
657 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
658
659 @cindex @code{.even} directive, ARM
660 @item .even
661 This directive aligns to an even-numbered address.
662
663 @cindex @code{.extend} directive, ARM
664 @cindex @code{.ldouble} directive, ARM
665 @item .extend @var{expression} [, @var{expression}]*
666 @itemx .ldouble @var{expression} [, @var{expression}]*
667 These directives write 12byte long double floating-point values to the
668 output section. These are not compatible with current ARM processors
669 or ABIs.
670
671 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
672
673 @anchor{arm_fnend}
674 @cindex @code{.fnend} directive, ARM
675 @item .fnend
676 Marks the end of a function with an unwind table entry. The unwind index
677 table entry is created when this directive is processed.
678
679 If no personality routine has been specified then standard personality
680 routine 0 or 1 will be used, depending on the number of unwind opcodes
681 required.
682
683 @anchor{arm_fnstart}
684 @cindex @code{.fnstart} directive, ARM
685 @item .fnstart
686 Marks the start of a function with an unwind table entry.
687
688 @cindex @code{.force_thumb} directive, ARM
689 @item .force_thumb
690 This directive forces the selection of Thumb instructions, even if the
691 target processor does not support those instructions
692
693 @cindex @code{.fpu} directive, ARM
694 @item .fpu @var{name}
695 Select the floating-point unit to assemble for. Valid values for @var{name}
696 are the same as for the @option{-mfpu} commandline option.
697
698 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
699 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
700
701 @cindex @code{.handlerdata} directive, ARM
702 @item .handlerdata
703 Marks the end of the current function, and the start of the exception table
704 entry for that function. Anything between this directive and the
705 @code{.fnend} directive will be added to the exception table entry.
706
707 Must be preceded by a @code{.personality} or @code{.personalityindex}
708 directive.
709
710 @c IIIIIIIIIIIIIIIIIIIIIIIIII
711
712 @cindex @code{.inst} directive, ARM
713 @item .inst @var{opcode} [ , @dots{} ]
714 @itemx .inst.n @var{opcode} [ , @dots{} ]
715 @itemx .inst.w @var{opcode} [ , @dots{} ]
716 Generates the instruction corresponding to the numerical value @var{opcode}.
717 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
718 specified explicitly, overriding the normal encoding rules.
719
720 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
721 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
722 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
723
724 @item .ldouble @var{expression} [, @var{expression}]*
725 See @code{.extend}.
726
727 @cindex @code{.ltorg} directive, ARM
728 @item .ltorg
729 This directive causes the current contents of the literal pool to be
730 dumped into the current section (which is assumed to be the .text
731 section) at the current location (aligned to a word boundary).
732 @code{GAS} maintains a separate literal pool for each section and each
733 sub-section. The @code{.ltorg} directive will only affect the literal
734 pool of the current section and sub-section. At the end of assembly
735 all remaining, un-empty literal pools will automatically be dumped.
736
737 Note - older versions of @code{GAS} would dump the current literal
738 pool any time a section change occurred. This is no longer done, since
739 it prevents accurate control of the placement of literal pools.
740
741 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
742
743 @cindex @code{.movsp} directive, ARM
744 @item .movsp @var{reg} [, #@var{offset}]
745 Tell the unwinder that @var{reg} contains an offset from the current
746 stack pointer. If @var{offset} is not specified then it is assumed to be
747 zero.
748
749 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
750 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
751
752 @cindex @code{.object_arch} directive, ARM
753 @item .object_arch @var{name}
754 Override the architecture recorded in the EABI object attribute section.
755 Valid values for @var{name} are the same as for the @code{.arch} directive.
756 Typically this is useful when code uses runtime detection of CPU features.
757
758 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
759
760 @cindex @code{.packed} directive, ARM
761 @item .packed @var{expression} [, @var{expression}]*
762 This directive writes 12-byte packed floating-point values to the
763 output section. These are not compatible with current ARM processors
764 or ABIs.
765
766 @anchor{arm_pad}
767 @cindex @code{.pad} directive, ARM
768 @item .pad #@var{count}
769 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
770 A positive value indicates the function prologue allocated stack space by
771 decrementing the stack pointer.
772
773 @cindex @code{.personality} directive, ARM
774 @item .personality @var{name}
775 Sets the personality routine for the current function to @var{name}.
776
777 @cindex @code{.personalityindex} directive, ARM
778 @item .personalityindex @var{index}
779 Sets the personality routine for the current function to the EABI standard
780 routine number @var{index}
781
782 @cindex @code{.pool} directive, ARM
783 @item .pool
784 This is a synonym for .ltorg.
785
786 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
787 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
788
789 @cindex @code{.req} directive, ARM
790 @item @var{name} .req @var{register name}
791 This creates an alias for @var{register name} called @var{name}. For
792 example:
793
794 @smallexample
795 foo .req r0
796 @end smallexample
797
798 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
799
800 @anchor{arm_save}
801 @cindex @code{.save} directive, ARM
802 @item .save @var{reglist}
803 Generate unwinder annotations to restore the registers in @var{reglist}.
804 The format of @var{reglist} is the same as the corresponding store-multiple
805 instruction.
806
807 @smallexample
808 @exdent @emph{core registers}
809 .save @{r4, r5, r6, lr@}
810 stmfd sp!, @{r4, r5, r6, lr@}
811 @exdent @emph{FPA registers}
812 .save f4, 2
813 sfmfd f4, 2, [sp]!
814 @exdent @emph{VFP registers}
815 .save @{d8, d9, d10@}
816 fstmdx sp!, @{d8, d9, d10@}
817 @exdent @emph{iWMMXt registers}
818 .save @{wr10, wr11@}
819 wstrd wr11, [sp, #-8]!
820 wstrd wr10, [sp, #-8]!
821 or
822 .save wr11
823 wstrd wr11, [sp, #-8]!
824 .save wr10
825 wstrd wr10, [sp, #-8]!
826 @end smallexample
827
828 @anchor{arm_setfp}
829 @cindex @code{.setfp} directive, ARM
830 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
831 Make all unwinder annotations relative to a frame pointer. Without this
832 the unwinder will use offsets from the stack pointer.
833
834 The syntax of this directive is the same as the @code{add} or @code{mov}
835 instruction used to set the frame pointer. @var{spreg} must be either
836 @code{sp} or mentioned in a previous @code{.movsp} directive.
837
838 @smallexample
839 .movsp ip
840 mov ip, sp
841 @dots{}
842 .setfp fp, ip, #4
843 add fp, ip, #4
844 @end smallexample
845
846 @cindex @code{.secrel32} directive, ARM
847 @item .secrel32 @var{expression} [, @var{expression}]*
848 This directive emits relocations that evaluate to the section-relative
849 offset of each expression's symbol. This directive is only supported
850 for PE targets.
851
852 @cindex @code{.syntax} directive, ARM
853 @item .syntax [@code{unified} | @code{divided}]
854 This directive sets the Instruction Set Syntax as described in the
855 @ref{ARM-Instruction-Set} section.
856
857 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
858
859 @cindex @code{.thumb} directive, ARM
860 @item .thumb
861 This performs the same action as @var{.code 16}.
862
863 @cindex @code{.thumb_func} directive, ARM
864 @item .thumb_func
865 This directive specifies that the following symbol is the name of a
866 Thumb encoded function. This information is necessary in order to allow
867 the assembler and linker to generate correct code for interworking
868 between Arm and Thumb instructions and should be used even if
869 interworking is not going to be performed. The presence of this
870 directive also implies @code{.thumb}
871
872 This directive is not neccessary when generating EABI objects. On these
873 targets the encoding is implicit when generating Thumb code.
874
875 @cindex @code{.thumb_set} directive, ARM
876 @item .thumb_set
877 This performs the equivalent of a @code{.set} directive in that it
878 creates a symbol which is an alias for another symbol (possibly not yet
879 defined). This directive also has the added property in that it marks
880 the aliased symbol as being a thumb function entry point, in the same
881 way that the @code{.thumb_func} directive does.
882
883 @cindex @code{.tlsdescseq} directive, ARM
884 @item .tlsdescseq @var{tls-variable}
885 This directive is used to annotate parts of an inlined TLS descriptor
886 trampoline. Normally the trampoline is provided by the linker, and
887 this directive is not needed.
888
889 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
890
891 @cindex @code{.unreq} directive, ARM
892 @item .unreq @var{alias-name}
893 This undefines a register alias which was previously defined using the
894 @code{req}, @code{dn} or @code{qn} directives. For example:
895
896 @smallexample
897 foo .req r0
898 .unreq foo
899 @end smallexample
900
901 An error occurs if the name is undefined. Note - this pseudo op can
902 be used to delete builtin in register name aliases (eg 'r0'). This
903 should only be done if it is really necessary.
904
905 @cindex @code{.unwind_raw} directive, ARM
906 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
907 Insert one of more arbitary unwind opcode bytes, which are known to adjust
908 the stack pointer by @var{offset} bytes.
909
910 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
911 @code{.save @{r0@}}
912
913 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
914
915 @cindex @code{.vsave} directive, ARM
916 @item .vsave @var{vfp-reglist}
917 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
918 using FLDMD. Also works for VFPv3 registers
919 that are to be restored using VLDM.
920 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
921 instruction.
922
923 @smallexample
924 @exdent @emph{VFP registers}
925 .vsave @{d8, d9, d10@}
926 fstmdd sp!, @{d8, d9, d10@}
927 @exdent @emph{VFPv3 registers}
928 .vsave @{d15, d16, d17@}
929 vstm sp!, @{d15, d16, d17@}
930 @end smallexample
931
932 Since FLDMX and FSTMX are now deprecated, this directive should be
933 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
934
935 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
936 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
937 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
938 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
939
940 @end table
941
942 @node ARM Opcodes
943 @section Opcodes
944
945 @cindex ARM opcodes
946 @cindex opcodes for ARM
947 @code{@value{AS}} implements all the standard ARM opcodes. It also
948 implements several pseudo opcodes, including several synthetic load
949 instructions.
950
951 @table @code
952
953 @cindex @code{NOP} pseudo op, ARM
954 @item NOP
955 @smallexample
956 nop
957 @end smallexample
958
959 This pseudo op will always evaluate to a legal ARM instruction that does
960 nothing. Currently it will evaluate to MOV r0, r0.
961
962 @cindex @code{LDR reg,=<label>} pseudo op, ARM
963 @item LDR
964 @smallexample
965 ldr <register> , = <expression>
966 @end smallexample
967
968 If expression evaluates to a numeric constant then a MOV or MVN
969 instruction will be used in place of the LDR instruction, if the
970 constant can be generated by either of these instructions. Otherwise
971 the constant will be placed into the nearest literal pool (if it not
972 already there) and a PC relative LDR instruction will be generated.
973
974 @cindex @code{ADR reg,<label>} pseudo op, ARM
975 @item ADR
976 @smallexample
977 adr <register> <label>
978 @end smallexample
979
980 This instruction will load the address of @var{label} into the indicated
981 register. The instruction will evaluate to a PC relative ADD or SUB
982 instruction depending upon where the label is located. If the label is
983 out of range, or if it is not defined in the same file (and section) as
984 the ADR instruction, then an error will be generated. This instruction
985 will not make use of the literal pool.
986
987 @cindex @code{ADRL reg,<label>} pseudo op, ARM
988 @item ADRL
989 @smallexample
990 adrl <register> <label>
991 @end smallexample
992
993 This instruction will load the address of @var{label} into the indicated
994 register. The instruction will evaluate to one or two PC relative ADD
995 or SUB instructions depending upon where the label is located. If a
996 second instruction is not needed a NOP instruction will be generated in
997 its place, so that this instruction is always 8 bytes long.
998
999 If the label is out of range, or if it is not defined in the same file
1000 (and section) as the ADRL instruction, then an error will be generated.
1001 This instruction will not make use of the literal pool.
1002
1003 @end table
1004
1005 For information on the ARM or Thumb instruction sets, see @cite{ARM
1006 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1007 Ltd.
1008
1009 @node ARM Mapping Symbols
1010 @section Mapping Symbols
1011
1012 The ARM ELF specification requires that special symbols be inserted
1013 into object files to mark certain features:
1014
1015 @table @code
1016
1017 @cindex @code{$a}
1018 @item $a
1019 At the start of a region of code containing ARM instructions.
1020
1021 @cindex @code{$t}
1022 @item $t
1023 At the start of a region of code containing THUMB instructions.
1024
1025 @cindex @code{$d}
1026 @item $d
1027 At the start of a region of data.
1028
1029 @end table
1030
1031 The assembler will automatically insert these symbols for you - there
1032 is no need to code them yourself. Support for tagging symbols ($b,
1033 $f, $p and $m) which is also mentioned in the current ARM ELF
1034 specification is not implemented. This is because they have been
1035 dropped from the new EABI and so tools cannot rely upon their
1036 presence.
1037
1038 @node ARM Unwinding Tutorial
1039 @section Unwinding
1040
1041 The ABI for the ARM Architecture specifies a standard format for
1042 exception unwind information. This information is used when an
1043 exception is thrown to determine where control should be transferred.
1044 In particular, the unwind information is used to determine which
1045 function called the function that threw the exception, and which
1046 function called that one, and so forth. This information is also used
1047 to restore the values of callee-saved registers in the function
1048 catching the exception.
1049
1050 If you are writing functions in assembly code, and those functions
1051 call other functions that throw exceptions, you must use assembly
1052 pseudo ops to ensure that appropriate exception unwind information is
1053 generated. Otherwise, if one of the functions called by your assembly
1054 code throws an exception, the run-time library will be unable to
1055 unwind the stack through your assembly code and your program will not
1056 behave correctly.
1057
1058 To illustrate the use of these pseudo ops, we will examine the code
1059 that G++ generates for the following C++ input:
1060
1061 @verbatim
1062 void callee (int *);
1063
1064 int
1065 caller ()
1066 {
1067 int i;
1068 callee (&i);
1069 return i;
1070 }
1071 @end verbatim
1072
1073 This example does not show how to throw or catch an exception from
1074 assembly code. That is a much more complex operation and should
1075 always be done in a high-level language, such as C++, that directly
1076 supports exceptions.
1077
1078 The code generated by one particular version of G++ when compiling the
1079 example above is:
1080
1081 @verbatim
1082 _Z6callerv:
1083 .fnstart
1084 .LFB2:
1085 @ Function supports interworking.
1086 @ args = 0, pretend = 0, frame = 8
1087 @ frame_needed = 1, uses_anonymous_args = 0
1088 stmfd sp!, {fp, lr}
1089 .save {fp, lr}
1090 .LCFI0:
1091 .setfp fp, sp, #4
1092 add fp, sp, #4
1093 .LCFI1:
1094 .pad #8
1095 sub sp, sp, #8
1096 .LCFI2:
1097 sub r3, fp, #8
1098 mov r0, r3
1099 bl _Z6calleePi
1100 ldr r3, [fp, #-8]
1101 mov r0, r3
1102 sub sp, fp, #4
1103 ldmfd sp!, {fp, lr}
1104 bx lr
1105 .LFE2:
1106 .fnend
1107 @end verbatim
1108
1109 Of course, the sequence of instructions varies based on the options
1110 you pass to GCC and on the version of GCC in use. The exact
1111 instructions are not important since we are focusing on the pseudo ops
1112 that are used to generate unwind information.
1113
1114 An important assumption made by the unwinder is that the stack frame
1115 does not change during the body of the function. In particular, since
1116 we assume that the assembly code does not itself throw an exception,
1117 the only point where an exception can be thrown is from a call, such
1118 as the @code{bl} instruction above. At each call site, the same saved
1119 registers (including @code{lr}, which indicates the return address)
1120 must be located in the same locations relative to the frame pointer.
1121
1122 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1123 op appears immediately before the first instruction of the function
1124 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1125 op appears immediately after the last instruction of the function.
1126 These pseudo ops specify the range of the function.
1127
1128 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1129 @code{.pad}) matters; their exact locations are irrelevant. In the
1130 example above, the compiler emits the pseudo ops with particular
1131 instructions. That makes it easier to understand the code, but it is
1132 not required for correctness. It would work just as well to emit all
1133 of the pseudo ops other than @code{.fnend} in the same order, but
1134 immediately after @code{.fnstart}.
1135
1136 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1137 indicates registers that have been saved to the stack so that they can
1138 be restored before the function returns. The argument to the
1139 @code{.save} pseudo op is a list of registers to save. If a register
1140 is ``callee-saved'' (as specified by the ABI) and is modified by the
1141 function you are writing, then your code must save the value before it
1142 is modified and restore the original value before the function
1143 returns. If an exception is thrown, the run-time library restores the
1144 values of these registers from their locations on the stack before
1145 returning control to the exception handler. (Of course, if an
1146 exception is not thrown, the function that contains the @code{.save}
1147 pseudo op restores these registers in the function epilogue, as is
1148 done with the @code{ldmfd} instruction above.)
1149
1150 You do not have to save callee-saved registers at the very beginning
1151 of the function and you do not need to use the @code{.save} pseudo op
1152 immediately following the point at which the registers are saved.
1153 However, if you modify a callee-saved register, you must save it on
1154 the stack before modifying it and before calling any functions which
1155 might throw an exception. And, you must use the @code{.save} pseudo
1156 op to indicate that you have done so.
1157
1158 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1159 modification of the stack pointer that does not save any registers.
1160 The argument is the number of bytes (in decimal) that are subtracted
1161 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1162 subtracting from the stack pointer increases the size of the stack.)
1163
1164 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1165 indicates the register that contains the frame pointer. The first
1166 argument is the register that is set, which is typically @code{fp}.
1167 The second argument indicates the register from which the frame
1168 pointer takes its value. The third argument, if present, is the value
1169 (in decimal) added to the register specified by the second argument to
1170 compute the value of the frame pointer. You should not modify the
1171 frame pointer in the body of the function.
1172
1173 If you do not use a frame pointer, then you should not use the
1174 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1175 should avoid modifying the stack pointer outside of the function
1176 prologue. Otherwise, the run-time library will be unable to find
1177 saved registers when it is unwinding the stack.
1178
1179 The pseudo ops described above are sufficient for writing assembly
1180 code that calls functions which may throw exceptions. If you need to
1181 know more about the object-file format used to represent unwind
1182 information, you may consult the @cite{Exception Handling ABI for the
1183 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.051411 seconds and 3 git commands to generate.