x86-64: optimize certain commutative VEX-encoded insns
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{lwp},
249 @code{fma4},
250 @code{xop},
251 @code{cx16},
252 @code{syscall},
253 @code{rdtscp},
254 @code{3dnow},
255 @code{3dnowa},
256 @code{sse4a},
257 @code{sse5},
258 @code{svme},
259 @code{abm} and
260 @code{padlock}.
261 Note that rather than extending a basic instruction set, the extension
262 mnemonics starting with @code{no} revoke the respective functionality.
263
264 When the @code{.arch} directive is used with @option{-march}, the
265 @code{.arch} directive will take precedent.
266
267 @cindex @samp{-mtune=} option, i386
268 @cindex @samp{-mtune=} option, x86-64
269 @item -mtune=@var{CPU}
270 This option specifies a processor to optimize for. When used in
271 conjunction with the @option{-march} option, only instructions
272 of the processor specified by the @option{-march} option will be
273 generated.
274
275 Valid @var{CPU} values are identical to the processor list of
276 @option{-march=@var{CPU}}.
277
278 @cindex @samp{-msse2avx} option, i386
279 @cindex @samp{-msse2avx} option, x86-64
280 @item -msse2avx
281 This option specifies that the assembler should encode SSE instructions
282 with VEX prefix.
283
284 @cindex @samp{-msse-check=} option, i386
285 @cindex @samp{-msse-check=} option, x86-64
286 @item -msse-check=@var{none}
287 @itemx -msse-check=@var{warning}
288 @itemx -msse-check=@var{error}
289 These options control if the assembler should check SSE instructions.
290 @option{-msse-check=@var{none}} will make the assembler not to check SSE
291 instructions, which is the default. @option{-msse-check=@var{warning}}
292 will make the assembler issue a warning for any SSE instruction.
293 @option{-msse-check=@var{error}} will make the assembler issue an error
294 for any SSE instruction.
295
296 @cindex @samp{-mavxscalar=} option, i386
297 @cindex @samp{-mavxscalar=} option, x86-64
298 @item -mavxscalar=@var{128}
299 @itemx -mavxscalar=@var{256}
300 These options control how the assembler should encode scalar AVX
301 instructions. @option{-mavxscalar=@var{128}} will encode scalar
302 AVX instructions with 128bit vector length, which is the default.
303 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304 with 256bit vector length.
305
306 WARNING: Don't use this for production code - due to CPU errata the
307 resulting code may not work on certain models.
308
309 @cindex @samp{-mvexwig=} option, i386
310 @cindex @samp{-mvexwig=} option, x86-64
311 @item -mvexwig=@var{0}
312 @itemx -mvexwig=@var{1}
313 These options control how the assembler should encode VEX.W-ignored (WIG)
314 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315 instructions with vex.w = 0, which is the default.
316 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317 vex.w = 1.
318
319 WARNING: Don't use this for production code - due to CPU errata the
320 resulting code may not work on certain models.
321
322 @cindex @samp{-mevexlig=} option, i386
323 @cindex @samp{-mevexlig=} option, x86-64
324 @item -mevexlig=@var{128}
325 @itemx -mevexlig=@var{256}
326 @itemx -mevexlig=@var{512}
327 These options control how the assembler should encode length-ignored
328 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329 EVEX instructions with 128bit vector length, which is the default.
330 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331 encode LIG EVEX instructions with 256bit and 512bit vector length,
332 respectively.
333
334 @cindex @samp{-mevexwig=} option, i386
335 @cindex @samp{-mevexwig=} option, x86-64
336 @item -mevexwig=@var{0}
337 @itemx -mevexwig=@var{1}
338 These options control how the assembler should encode w-ignored (WIG)
339 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340 EVEX instructions with evex.w = 0, which is the default.
341 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342 evex.w = 1.
343
344 @cindex @samp{-mmnemonic=} option, i386
345 @cindex @samp{-mmnemonic=} option, x86-64
346 @item -mmnemonic=@var{att}
347 @itemx -mmnemonic=@var{intel}
348 This option specifies instruction mnemonic for matching instructions.
349 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350 take precedent.
351
352 @cindex @samp{-msyntax=} option, i386
353 @cindex @samp{-msyntax=} option, x86-64
354 @item -msyntax=@var{att}
355 @itemx -msyntax=@var{intel}
356 This option specifies instruction syntax when processing instructions.
357 The @code{.att_syntax} and @code{.intel_syntax} directives will
358 take precedent.
359
360 @cindex @samp{-mnaked-reg} option, i386
361 @cindex @samp{-mnaked-reg} option, x86-64
362 @item -mnaked-reg
363 This option specifies that registers don't require a @samp{%} prefix.
364 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
365
366 @cindex @samp{-madd-bnd-prefix} option, i386
367 @cindex @samp{-madd-bnd-prefix} option, x86-64
368 @item -madd-bnd-prefix
369 This option forces the assembler to add BND prefix to all branches, even
370 if such prefix was not explicitly specified in the source code.
371
372 @cindex @samp{-mshared} option, i386
373 @cindex @samp{-mshared} option, x86-64
374 @item -mno-shared
375 On ELF target, the assembler normally optimizes out non-PLT relocations
376 against defined non-weak global branch targets with default visibility.
377 The @samp{-mshared} option tells the assembler to generate code which
378 may go into a shared library where all non-weak global branch targets
379 with default visibility can be preempted. The resulting code is
380 slightly bigger. This option only affects the handling of branch
381 instructions.
382
383 @cindex @samp{-mbig-obj} option, x86-64
384 @item -mbig-obj
385 On x86-64 PE/COFF target this option forces the use of big object file
386 format, which allows more than 32768 sections.
387
388 @cindex @samp{-momit-lock-prefix=} option, i386
389 @cindex @samp{-momit-lock-prefix=} option, x86-64
390 @item -momit-lock-prefix=@var{no}
391 @itemx -momit-lock-prefix=@var{yes}
392 These options control how the assembler should encode lock prefix.
393 This option is intended as a workaround for processors, that fail on
394 lock prefix. This option can only be safely used with single-core,
395 single-thread computers
396 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398 which is the default.
399
400 @cindex @samp{-mfence-as-lock-add=} option, i386
401 @cindex @samp{-mfence-as-lock-add=} option, x86-64
402 @item -mfence-as-lock-add=@var{no}
403 @itemx -mfence-as-lock-add=@var{yes}
404 These options control how the assembler should encode lfence, mfence and
405 sfence.
406 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
409 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410 sfence as usual, which is the default.
411
412 @cindex @samp{-mrelax-relocations=} option, i386
413 @cindex @samp{-mrelax-relocations=} option, x86-64
414 @item -mrelax-relocations=@var{no}
415 @itemx -mrelax-relocations=@var{yes}
416 These options control whether the assembler should generate relax
417 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420 @option{-mrelax-relocations=@var{no}} will not generate relax
421 relocations. The default can be controlled by a configure option
422 @option{--enable-x86-relax-relocations}.
423
424 @cindex @samp{-mx86-used-note=} option, i386
425 @cindex @samp{-mx86-used-note=} option, x86-64
426 @item -mx86-used-note=@var{no}
427 @itemx -mx86-used-note=@var{yes}
428 These options control whether the assembler should generate
429 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430 GNU property notes. The default can be controlled by the
431 @option{--enable-x86-used-note} configure option.
432
433 @cindex @samp{-mevexrcig=} option, i386
434 @cindex @samp{-mevexrcig=} option, x86-64
435 @item -mevexrcig=@var{rne}
436 @itemx -mevexrcig=@var{rd}
437 @itemx -mevexrcig=@var{ru}
438 @itemx -mevexrcig=@var{rz}
439 These options control how the assembler should encode SAE-only
440 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441 of EVEX instruction with 00, which is the default.
442 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444 with 01, 10 and 11 RC bits, respectively.
445
446 @cindex @samp{-mamd64} option, x86-64
447 @cindex @samp{-mintel64} option, x86-64
448 @item -mamd64
449 @itemx -mintel64
450 This option specifies that the assembler should accept only AMD64 or
451 Intel64 ISA in 64-bit mode. The default is to accept both.
452
453 @cindex @samp{-O0} option, i386
454 @cindex @samp{-O0} option, x86-64
455 @cindex @samp{-O} option, i386
456 @cindex @samp{-O} option, x86-64
457 @cindex @samp{-O1} option, i386
458 @cindex @samp{-O1} option, x86-64
459 @cindex @samp{-O2} option, i386
460 @cindex @samp{-O2} option, x86-64
461 @cindex @samp{-Os} option, i386
462 @cindex @samp{-Os} option, x86-64
463 @item -O0 | -O | -O1 | -O2 | -Os
464 Optimize instruction encoding with smaller instruction size. @samp{-O}
465 and @samp{-O1} encode 64-bit register load instructions with 64-bit
466 immediate as 32-bit register load instructions with 31-bit or 32-bits
467 immediates, encode 64-bit register clearing instructions with 32-bit
468 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469 register clearing instructions with 128-bit VEX vector register
470 clearing instructions, encode 128-bit/256-bit EVEX vector
471 register load/store instructions with VEX vector register load/store
472 instructions, and encode 128-bit/256-bit EVEX packed integer logical
473 instructions with 128-bit/256-bit VEX packed integer logical.
474
475 @samp{-O2} includes @samp{-O1} optimization plus encodes
476 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
477 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
478 instructions with commutative source operands will also have their
479 source operands swapped if this allows using the 2-byte VEX prefix form
480 instead of the 3-byte one.
481
482 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
483 and 64-bit register tests with immediate as 8-bit register test with
484 immediate. @samp{-O0} turns off this optimization.
485
486 @end table
487 @c man end
488
489 @node i386-Directives
490 @section x86 specific Directives
491
492 @cindex machine directives, x86
493 @cindex x86 machine directives
494 @table @code
495
496 @cindex @code{lcomm} directive, COFF
497 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
498 Reserve @var{length} (an absolute expression) bytes for a local common
499 denoted by @var{symbol}. The section and value of @var{symbol} are
500 those of the new local common. The addresses are allocated in the bss
501 section, so that at run-time the bytes start off zeroed. Since
502 @var{symbol} is not declared global, it is normally not visible to
503 @code{@value{LD}}. The optional third parameter, @var{alignment},
504 specifies the desired alignment of the symbol in the bss section.
505
506 This directive is only available for COFF based x86 targets.
507
508 @cindex @code{largecomm} directive, ELF
509 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
510 This directive behaves in the same way as the @code{comm} directive
511 except that the data is placed into the @var{.lbss} section instead of
512 the @var{.bss} section @ref{Comm}.
513
514 The directive is intended to be used for data which requires a large
515 amount of space, and it is only available for ELF based x86_64
516 targets.
517
518 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
519
520 @end table
521
522 @node i386-Syntax
523 @section i386 Syntactical Considerations
524 @menu
525 * i386-Variations:: AT&T Syntax versus Intel Syntax
526 * i386-Chars:: Special Characters
527 @end menu
528
529 @node i386-Variations
530 @subsection AT&T Syntax versus Intel Syntax
531
532 @cindex i386 intel_syntax pseudo op
533 @cindex intel_syntax pseudo op, i386
534 @cindex i386 att_syntax pseudo op
535 @cindex att_syntax pseudo op, i386
536 @cindex i386 syntax compatibility
537 @cindex syntax compatibility, i386
538 @cindex x86-64 intel_syntax pseudo op
539 @cindex intel_syntax pseudo op, x86-64
540 @cindex x86-64 att_syntax pseudo op
541 @cindex att_syntax pseudo op, x86-64
542 @cindex x86-64 syntax compatibility
543 @cindex syntax compatibility, x86-64
544
545 @code{@value{AS}} now supports assembly using Intel assembler syntax.
546 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
547 back to the usual AT&T mode for compatibility with the output of
548 @code{@value{GCC}}. Either of these directives may have an optional
549 argument, @code{prefix}, or @code{noprefix} specifying whether registers
550 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
551 different from Intel syntax. We mention these differences because
552 almost all 80386 documents use Intel syntax. Notable differences
553 between the two syntaxes are:
554
555 @cindex immediate operands, i386
556 @cindex i386 immediate operands
557 @cindex register operands, i386
558 @cindex i386 register operands
559 @cindex jump/call operands, i386
560 @cindex i386 jump/call operands
561 @cindex operand delimiters, i386
562
563 @cindex immediate operands, x86-64
564 @cindex x86-64 immediate operands
565 @cindex register operands, x86-64
566 @cindex x86-64 register operands
567 @cindex jump/call operands, x86-64
568 @cindex x86-64 jump/call operands
569 @cindex operand delimiters, x86-64
570 @itemize @bullet
571 @item
572 AT&T immediate operands are preceded by @samp{$}; Intel immediate
573 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
574 AT&T register operands are preceded by @samp{%}; Intel register operands
575 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
576 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
577
578 @cindex i386 source, destination operands
579 @cindex source, destination operands; i386
580 @cindex x86-64 source, destination operands
581 @cindex source, destination operands; x86-64
582 @item
583 AT&T and Intel syntax use the opposite order for source and destination
584 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
585 @samp{source, dest} convention is maintained for compatibility with
586 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
587 instructions with 2 immediate operands, such as the @samp{enter}
588 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
589
590 @cindex mnemonic suffixes, i386
591 @cindex sizes operands, i386
592 @cindex i386 size suffixes
593 @cindex mnemonic suffixes, x86-64
594 @cindex sizes operands, x86-64
595 @cindex x86-64 size suffixes
596 @item
597 In AT&T syntax the size of memory operands is determined from the last
598 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
599 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
600 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
601 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
602 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
603 no other way to disambiguate an instruction. Intel syntax accomplishes this by
604 prefixing memory operands (@emph{not} the instruction mnemonics) with
605 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
606 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
607 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
608 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
609 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
610
611 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
612 instruction with the 64-bit displacement or immediate operand.
613
614 @cindex return instructions, i386
615 @cindex i386 jump, call, return
616 @cindex return instructions, x86-64
617 @cindex x86-64 jump, call, return
618 @item
619 Immediate form long jumps and calls are
620 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
621 Intel syntax is
622 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
623 instruction
624 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
625 @samp{ret far @var{stack-adjust}}.
626
627 @cindex sections, i386
628 @cindex i386 sections
629 @cindex sections, x86-64
630 @cindex x86-64 sections
631 @item
632 The AT&T assembler does not provide support for multiple section
633 programs. Unix style systems expect all programs to be single sections.
634 @end itemize
635
636 @node i386-Chars
637 @subsection Special Characters
638
639 @cindex line comment character, i386
640 @cindex i386 line comment character
641 The presence of a @samp{#} appearing anywhere on a line indicates the
642 start of a comment that extends to the end of that line.
643
644 If a @samp{#} appears as the first character of a line then the whole
645 line is treated as a comment, but in this case the line can also be a
646 logical line number directive (@pxref{Comments}) or a preprocessor
647 control command (@pxref{Preprocessing}).
648
649 If the @option{--divide} command-line option has not been specified
650 then the @samp{/} character appearing anywhere on a line also
651 introduces a line comment.
652
653 @cindex line separator, i386
654 @cindex statement separator, i386
655 @cindex i386 line separator
656 The @samp{;} character can be used to separate statements on the same
657 line.
658
659 @node i386-Mnemonics
660 @section i386-Mnemonics
661 @subsection Instruction Naming
662
663 @cindex i386 instruction naming
664 @cindex instruction naming, i386
665 @cindex x86-64 instruction naming
666 @cindex instruction naming, x86-64
667
668 Instruction mnemonics are suffixed with one character modifiers which
669 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
670 and @samp{q} specify byte, word, long and quadruple word operands. If
671 no suffix is specified by an instruction then @code{@value{AS}} tries to
672 fill in the missing suffix based on the destination register operand
673 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
674 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
675 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
676 assembler which assumes that a missing mnemonic suffix implies long
677 operand size. (This incompatibility does not affect compiler output
678 since compilers always explicitly specify the mnemonic suffix.)
679
680 Almost all instructions have the same names in AT&T and Intel format.
681 There are a few exceptions. The sign extend and zero extend
682 instructions need two sizes to specify them. They need a size to
683 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
684 is accomplished by using two instruction mnemonic suffixes in AT&T
685 syntax. Base names for sign extend and zero extend are
686 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
687 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
688 are tacked on to this base name, the @emph{from} suffix before the
689 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
690 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
691 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
692 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
693 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
694 quadruple word).
695
696 @cindex encoding options, i386
697 @cindex encoding options, x86-64
698
699 Different encoding options can be specified via pseudo prefixes:
700
701 @itemize @bullet
702 @item
703 @samp{@{disp8@}} -- prefer 8-bit displacement.
704
705 @item
706 @samp{@{disp32@}} -- prefer 32-bit displacement.
707
708 @item
709 @samp{@{load@}} -- prefer load-form instruction.
710
711 @item
712 @samp{@{store@}} -- prefer store-form instruction.
713
714 @item
715 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
716
717 @item
718 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
719
720 @item
721 @samp{@{evex@}} -- encode with EVEX prefix.
722
723 @item
724 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
725 instructions (x86-64 only). Note that this differs from the @samp{rex}
726 prefix which generates REX prefix unconditionally.
727
728 @item
729 @samp{@{nooptimize@}} -- disable instruction size optimization.
730 @end itemize
731
732 @cindex conversion instructions, i386
733 @cindex i386 conversion instructions
734 @cindex conversion instructions, x86-64
735 @cindex x86-64 conversion instructions
736 The Intel-syntax conversion instructions
737
738 @itemize @bullet
739 @item
740 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
741
742 @item
743 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
744
745 @item
746 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
747
748 @item
749 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
750
751 @item
752 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
753 (x86-64 only),
754
755 @item
756 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
757 @samp{%rdx:%rax} (x86-64 only),
758 @end itemize
759
760 @noindent
761 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
762 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
763 instructions.
764
765 @cindex jump instructions, i386
766 @cindex call instructions, i386
767 @cindex jump instructions, x86-64
768 @cindex call instructions, x86-64
769 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
770 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
771 convention.
772
773 @subsection AT&T Mnemonic versus Intel Mnemonic
774
775 @cindex i386 mnemonic compatibility
776 @cindex mnemonic compatibility, i386
777
778 @code{@value{AS}} supports assembly using Intel mnemonic.
779 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
780 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
781 syntax for compatibility with the output of @code{@value{GCC}}.
782 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
783 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
784 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
785 assembler with different mnemonics from those in Intel IA32 specification.
786 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
787
788 @node i386-Regs
789 @section Register Naming
790
791 @cindex i386 registers
792 @cindex registers, i386
793 @cindex x86-64 registers
794 @cindex registers, x86-64
795 Register operands are always prefixed with @samp{%}. The 80386 registers
796 consist of
797
798 @itemize @bullet
799 @item
800 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
801 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
802 frame pointer), and @samp{%esp} (the stack pointer).
803
804 @item
805 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
806 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
807
808 @item
809 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
810 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
811 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
812 @samp{%cx}, and @samp{%dx})
813
814 @item
815 the 6 section registers @samp{%cs} (code section), @samp{%ds}
816 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
817 and @samp{%gs}.
818
819 @item
820 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
821 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
822
823 @item
824 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
825 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
826
827 @item
828 the 2 test registers @samp{%tr6} and @samp{%tr7}.
829
830 @item
831 the 8 floating point register stack @samp{%st} or equivalently
832 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
833 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
834 These registers are overloaded by 8 MMX registers @samp{%mm0},
835 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
836 @samp{%mm6} and @samp{%mm7}.
837
838 @item
839 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
840 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
841 @end itemize
842
843 The AMD x86-64 architecture extends the register set by:
844
845 @itemize @bullet
846 @item
847 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
848 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
849 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
850 pointer)
851
852 @item
853 the 8 extended registers @samp{%r8}--@samp{%r15}.
854
855 @item
856 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
857
858 @item
859 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
860
861 @item
862 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
863
864 @item
865 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
866
867 @item
868 the 8 debug registers: @samp{%db8}--@samp{%db15}.
869
870 @item
871 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
872 @end itemize
873
874 With the AVX extensions more registers were made available:
875
876 @itemize @bullet
877
878 @item
879 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
880 available in 32-bit mode). The bottom 128 bits are overlaid with the
881 @samp{xmm0}--@samp{xmm15} registers.
882
883 @end itemize
884
885 The AVX2 extensions made in 64-bit mode more registers available:
886
887 @itemize @bullet
888
889 @item
890 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
891 registers @samp{%ymm16}--@samp{%ymm31}.
892
893 @end itemize
894
895 The AVX512 extensions added the following registers:
896
897 @itemize @bullet
898
899 @item
900 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
901 available in 32-bit mode). The bottom 128 bits are overlaid with the
902 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
903 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
904
905 @item
906 the 8 mask registers @samp{%k0}--@samp{%k7}.
907
908 @end itemize
909
910 @node i386-Prefixes
911 @section Instruction Prefixes
912
913 @cindex i386 instruction prefixes
914 @cindex instruction prefixes, i386
915 @cindex prefixes, i386
916 Instruction prefixes are used to modify the following instruction. They
917 are used to repeat string instructions, to provide section overrides, to
918 perform bus lock operations, and to change operand and address sizes.
919 (Most instructions that normally operate on 32-bit operands will use
920 16-bit operands if the instruction has an ``operand size'' prefix.)
921 Instruction prefixes are best written on the same line as the instruction
922 they act upon. For example, the @samp{scas} (scan string) instruction is
923 repeated with:
924
925 @smallexample
926 repne scas %es:(%edi),%al
927 @end smallexample
928
929 You may also place prefixes on the lines immediately preceding the
930 instruction, but this circumvents checks that @code{@value{AS}} does
931 with prefixes, and will not work with all prefixes.
932
933 Here is a list of instruction prefixes:
934
935 @cindex section override prefixes, i386
936 @itemize @bullet
937 @item
938 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
939 @samp{fs}, @samp{gs}. These are automatically added by specifying
940 using the @var{section}:@var{memory-operand} form for memory references.
941
942 @cindex size prefixes, i386
943 @item
944 Operand/Address size prefixes @samp{data16} and @samp{addr16}
945 change 32-bit operands/addresses into 16-bit operands/addresses,
946 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
947 @code{.code16} section) into 32-bit operands/addresses. These prefixes
948 @emph{must} appear on the same line of code as the instruction they
949 modify. For example, in a 16-bit @code{.code16} section, you might
950 write:
951
952 @smallexample
953 addr32 jmpl *(%ebx)
954 @end smallexample
955
956 @cindex bus lock prefixes, i386
957 @cindex inhibiting interrupts, i386
958 @item
959 The bus lock prefix @samp{lock} inhibits interrupts during execution of
960 the instruction it precedes. (This is only valid with certain
961 instructions; see a 80386 manual for details).
962
963 @cindex coprocessor wait, i386
964 @item
965 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
966 complete the current instruction. This should never be needed for the
967 80386/80387 combination.
968
969 @cindex repeat prefixes, i386
970 @item
971 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
972 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
973 times if the current address size is 16-bits).
974 @cindex REX prefixes, i386
975 @item
976 The @samp{rex} family of prefixes is used by x86-64 to encode
977 extensions to i386 instruction set. The @samp{rex} prefix has four
978 bits --- an operand size overwrite (@code{64}) used to change operand size
979 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
980 register set.
981
982 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
983 instruction emits @samp{rex} prefix with all the bits set. By omitting
984 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
985 prefixes as well. Normally, there is no need to write the prefixes
986 explicitly, since gas will automatically generate them based on the
987 instruction operands.
988 @end itemize
989
990 @node i386-Memory
991 @section Memory References
992
993 @cindex i386 memory references
994 @cindex memory references, i386
995 @cindex x86-64 memory references
996 @cindex memory references, x86-64
997 An Intel syntax indirect memory reference of the form
998
999 @smallexample
1000 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1001 @end smallexample
1002
1003 @noindent
1004 is translated into the AT&T syntax
1005
1006 @smallexample
1007 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1008 @end smallexample
1009
1010 @noindent
1011 where @var{base} and @var{index} are the optional 32-bit base and
1012 index registers, @var{disp} is the optional displacement, and
1013 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1014 to calculate the address of the operand. If no @var{scale} is
1015 specified, @var{scale} is taken to be 1. @var{section} specifies the
1016 optional section register for the memory operand, and may override the
1017 default section register (see a 80386 manual for section register
1018 defaults). Note that section overrides in AT&T syntax @emph{must}
1019 be preceded by a @samp{%}. If you specify a section override which
1020 coincides with the default section register, @code{@value{AS}} does @emph{not}
1021 output any section register override prefixes to assemble the given
1022 instruction. Thus, section overrides can be specified to emphasize which
1023 section register is used for a given memory operand.
1024
1025 Here are some examples of Intel and AT&T style memory references:
1026
1027 @table @asis
1028 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1029 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1030 missing, and the default section is used (@samp{%ss} for addressing with
1031 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1032
1033 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1034 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1035 @samp{foo}. All other fields are missing. The section register here
1036 defaults to @samp{%ds}.
1037
1038 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1039 This uses the value pointed to by @samp{foo} as a memory operand.
1040 Note that @var{base} and @var{index} are both missing, but there is only
1041 @emph{one} @samp{,}. This is a syntactic exception.
1042
1043 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1044 This selects the contents of the variable @samp{foo} with section
1045 register @var{section} being @samp{%gs}.
1046 @end table
1047
1048 Absolute (as opposed to PC relative) call and jump operands must be
1049 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1050 always chooses PC relative addressing for jump/call labels.
1051
1052 Any instruction that has a memory operand, but no register operand,
1053 @emph{must} specify its size (byte, word, long, or quadruple) with an
1054 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1055 respectively).
1056
1057 The x86-64 architecture adds an RIP (instruction pointer relative)
1058 addressing. This addressing mode is specified by using @samp{rip} as a
1059 base register. Only constant offsets are valid. For example:
1060
1061 @table @asis
1062 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1063 Points to the address 1234 bytes past the end of the current
1064 instruction.
1065
1066 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1067 Points to the @code{symbol} in RIP relative way, this is shorter than
1068 the default absolute addressing.
1069 @end table
1070
1071 Other addressing modes remain unchanged in x86-64 architecture, except
1072 registers used are 64-bit instead of 32-bit.
1073
1074 @node i386-Jumps
1075 @section Handling of Jump Instructions
1076
1077 @cindex jump optimization, i386
1078 @cindex i386 jump optimization
1079 @cindex jump optimization, x86-64
1080 @cindex x86-64 jump optimization
1081 Jump instructions are always optimized to use the smallest possible
1082 displacements. This is accomplished by using byte (8-bit) displacement
1083 jumps whenever the target is sufficiently close. If a byte displacement
1084 is insufficient a long displacement is used. We do not support
1085 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1086 instruction with the @samp{data16} instruction prefix), since the 80386
1087 insists upon masking @samp{%eip} to 16 bits after the word displacement
1088 is added. (See also @pxref{i386-Arch})
1089
1090 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1091 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1092 displacements, so that if you use these instructions (@code{@value{GCC}} does
1093 not use them) you may get an error message (and incorrect code). The AT&T
1094 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1095 to
1096
1097 @smallexample
1098 jcxz cx_zero
1099 jmp cx_nonzero
1100 cx_zero: jmp foo
1101 cx_nonzero:
1102 @end smallexample
1103
1104 @node i386-Float
1105 @section Floating Point
1106
1107 @cindex i386 floating point
1108 @cindex floating point, i386
1109 @cindex x86-64 floating point
1110 @cindex floating point, x86-64
1111 All 80387 floating point types except packed BCD are supported.
1112 (BCD support may be added without much difficulty). These data
1113 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1114 double (64-bit), and extended (80-bit) precision floating point.
1115 Each supported type has an instruction mnemonic suffix and a constructor
1116 associated with it. Instruction mnemonic suffixes specify the operand's
1117 data type. Constructors build these data types into memory.
1118
1119 @cindex @code{float} directive, i386
1120 @cindex @code{single} directive, i386
1121 @cindex @code{double} directive, i386
1122 @cindex @code{tfloat} directive, i386
1123 @cindex @code{float} directive, x86-64
1124 @cindex @code{single} directive, x86-64
1125 @cindex @code{double} directive, x86-64
1126 @cindex @code{tfloat} directive, x86-64
1127 @itemize @bullet
1128 @item
1129 Floating point constructors are @samp{.float} or @samp{.single},
1130 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1131 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1132 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1133 only supports this format via the @samp{fldt} (load 80-bit real to stack
1134 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1135
1136 @cindex @code{word} directive, i386
1137 @cindex @code{long} directive, i386
1138 @cindex @code{int} directive, i386
1139 @cindex @code{quad} directive, i386
1140 @cindex @code{word} directive, x86-64
1141 @cindex @code{long} directive, x86-64
1142 @cindex @code{int} directive, x86-64
1143 @cindex @code{quad} directive, x86-64
1144 @item
1145 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1146 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1147 corresponding instruction mnemonic suffixes are @samp{s} (single),
1148 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1149 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1150 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1151 stack) instructions.
1152 @end itemize
1153
1154 Register to register operations should not use instruction mnemonic suffixes.
1155 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1156 wrote @samp{fst %st, %st(1)}, since all register to register operations
1157 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1158 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1159 then stores the result in the 4 byte location @samp{mem})
1160
1161 @node i386-SIMD
1162 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1163
1164 @cindex MMX, i386
1165 @cindex 3DNow!, i386
1166 @cindex SIMD, i386
1167 @cindex MMX, x86-64
1168 @cindex 3DNow!, x86-64
1169 @cindex SIMD, x86-64
1170
1171 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1172 instructions for integer data), available on Intel's Pentium MMX
1173 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1174 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1175 instruction set (SIMD instructions for 32-bit floating point data)
1176 available on AMD's K6-2 processor and possibly others in the future.
1177
1178 Currently, @code{@value{AS}} does not support Intel's floating point
1179 SIMD, Katmai (KNI).
1180
1181 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1182 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1183 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1184 floating point values. The MMX registers cannot be used at the same time
1185 as the floating point stack.
1186
1187 See Intel and AMD documentation, keeping in mind that the operand order in
1188 instructions is reversed from the Intel syntax.
1189
1190 @node i386-LWP
1191 @section AMD's Lightweight Profiling Instructions
1192
1193 @cindex LWP, i386
1194 @cindex LWP, x86-64
1195
1196 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1197 instruction set, available on AMD's Family 15h (Orochi) processors.
1198
1199 LWP enables applications to collect and manage performance data, and
1200 react to performance events. The collection of performance data
1201 requires no context switches. LWP runs in the context of a thread and
1202 so several counters can be used independently across multiple threads.
1203 LWP can be used in both 64-bit and legacy 32-bit modes.
1204
1205 For detailed information on the LWP instruction set, see the
1206 @cite{AMD Lightweight Profiling Specification} available at
1207 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1208
1209 @node i386-BMI
1210 @section Bit Manipulation Instructions
1211
1212 @cindex BMI, i386
1213 @cindex BMI, x86-64
1214
1215 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1216
1217 BMI instructions provide several instructions implementing individual
1218 bit manipulation operations such as isolation, masking, setting, or
1219 resetting.
1220
1221 @c Need to add a specification citation here when available.
1222
1223 @node i386-TBM
1224 @section AMD's Trailing Bit Manipulation Instructions
1225
1226 @cindex TBM, i386
1227 @cindex TBM, x86-64
1228
1229 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1230 instruction set, available on AMD's BDVER2 processors (Trinity and
1231 Viperfish).
1232
1233 TBM instructions provide instructions implementing individual bit
1234 manipulation operations such as isolating, masking, setting, resetting,
1235 complementing, and operations on trailing zeros and ones.
1236
1237 @c Need to add a specification citation here when available.
1238
1239 @node i386-16bit
1240 @section Writing 16-bit Code
1241
1242 @cindex i386 16-bit code
1243 @cindex 16-bit code, i386
1244 @cindex real-mode code, i386
1245 @cindex @code{code16gcc} directive, i386
1246 @cindex @code{code16} directive, i386
1247 @cindex @code{code32} directive, i386
1248 @cindex @code{code64} directive, i386
1249 @cindex @code{code64} directive, x86-64
1250 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1251 or 64-bit x86-64 code depending on the default configuration,
1252 it also supports writing code to run in real mode or in 16-bit protected
1253 mode code segments. To do this, put a @samp{.code16} or
1254 @samp{.code16gcc} directive before the assembly language instructions to
1255 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1256 32-bit code with the @samp{.code32} directive or 64-bit code with the
1257 @samp{.code64} directive.
1258
1259 @samp{.code16gcc} provides experimental support for generating 16-bit
1260 code from gcc, and differs from @samp{.code16} in that @samp{call},
1261 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1262 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1263 default to 32-bit size. This is so that the stack pointer is
1264 manipulated in the same way over function calls, allowing access to
1265 function parameters at the same stack offsets as in 32-bit mode.
1266 @samp{.code16gcc} also automatically adds address size prefixes where
1267 necessary to use the 32-bit addressing modes that gcc generates.
1268
1269 The code which @code{@value{AS}} generates in 16-bit mode will not
1270 necessarily run on a 16-bit pre-80386 processor. To write code that
1271 runs on such a processor, you must refrain from using @emph{any} 32-bit
1272 constructs which require @code{@value{AS}} to output address or operand
1273 size prefixes.
1274
1275 Note that writing 16-bit code instructions by explicitly specifying a
1276 prefix or an instruction mnemonic suffix within a 32-bit code section
1277 generates different machine instructions than those generated for a
1278 16-bit code segment. In a 32-bit code section, the following code
1279 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1280 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1281
1282 @smallexample
1283 pushw $4
1284 @end smallexample
1285
1286 The same code in a 16-bit code section would generate the machine
1287 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1288 is correct since the processor default operand size is assumed to be 16
1289 bits in a 16-bit code section.
1290
1291 @node i386-Arch
1292 @section Specifying CPU Architecture
1293
1294 @cindex arch directive, i386
1295 @cindex i386 arch directive
1296 @cindex arch directive, x86-64
1297 @cindex x86-64 arch directive
1298
1299 @code{@value{AS}} may be told to assemble for a particular CPU
1300 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1301 directive enables a warning when gas detects an instruction that is not
1302 supported on the CPU specified. The choices for @var{cpu_type} are:
1303
1304 @multitable @columnfractions .20 .20 .20 .20
1305 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1306 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1307 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1308 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1309 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1310 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1311 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1312 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1313 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1314 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1315 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1316 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1317 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1318 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1319 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1320 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1321 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1322 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1323 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1324 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1325 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1326 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1327 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1328 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1329 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1330 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1331 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1332 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1333 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1334 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1335 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1336 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1337 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1338 @end multitable
1339
1340 Apart from the warning, there are only two other effects on
1341 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1342 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1343 will automatically use a two byte opcode sequence. The larger three
1344 byte opcode sequence is used on the 486 (and when no architecture is
1345 specified) because it executes faster on the 486. Note that you can
1346 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1347 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1348 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1349 conditional jumps will be promoted when necessary to a two instruction
1350 sequence consisting of a conditional jump of the opposite sense around
1351 an unconditional jump to the target.
1352
1353 Following the CPU architecture (but not a sub-architecture, which are those
1354 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1355 control automatic promotion of conditional jumps. @samp{jumps} is the
1356 default, and enables jump promotion; All external jumps will be of the long
1357 variety, and file-local jumps will be promoted as necessary.
1358 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1359 byte offset jumps, and warns about file-local conditional jumps that
1360 @code{@value{AS}} promotes.
1361 Unconditional jumps are treated as for @samp{jumps}.
1362
1363 For example
1364
1365 @smallexample
1366 .arch i8086,nojumps
1367 @end smallexample
1368
1369 @node i386-Bugs
1370 @section AT&T Syntax bugs
1371
1372 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1373 assemblers, generate floating point instructions with reversed source
1374 and destination registers in certain cases. Unfortunately, gcc and
1375 possibly many other programs use this reversed syntax, so we're stuck
1376 with it.
1377
1378 For example
1379
1380 @smallexample
1381 fsub %st,%st(3)
1382 @end smallexample
1383 @noindent
1384 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1385 than the expected @samp{%st(3) - %st}. This happens with all the
1386 non-commutative arithmetic floating point operations with two register
1387 operands where the source register is @samp{%st} and the destination
1388 register is @samp{%st(i)}.
1389
1390 @node i386-Notes
1391 @section Notes
1392
1393 @cindex i386 @code{mul}, @code{imul} instructions
1394 @cindex @code{mul} instruction, i386
1395 @cindex @code{imul} instruction, i386
1396 @cindex @code{mul} instruction, x86-64
1397 @cindex @code{imul} instruction, x86-64
1398 There is some trickery concerning the @samp{mul} and @samp{imul}
1399 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1400 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1401 for @samp{imul}) can be output only in the one operand form. Thus,
1402 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1403 the expanding multiply would clobber the @samp{%edx} register, and this
1404 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1405 64-bit product in @samp{%edx:%eax}.
1406
1407 We have added a two operand form of @samp{imul} when the first operand
1408 is an immediate mode expression and the second operand is a register.
1409 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1410 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1411 $69, %eax, %eax}.
1412
This page took 0.061465 seconds and 4 git commands to generate.