4acece439473f8369f4012567b0ce5b538022031
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{serialize},
191 @code{tsxldtrk},
192 @code{avx512f},
193 @code{avx512cd},
194 @code{avx512er},
195 @code{avx512pf},
196 @code{avx512vl},
197 @code{avx512bw},
198 @code{avx512dq},
199 @code{avx512ifma},
200 @code{avx512vbmi},
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
204 @code{avx512_vbmi2},
205 @code{avx512_vnni},
206 @code{avx512_bitalg},
207 @code{avx512_bf16},
208 @code{noavx512f},
209 @code{noavx512cd},
210 @code{noavx512er},
211 @code{noavx512pf},
212 @code{noavx512vl},
213 @code{noavx512bw},
214 @code{noavx512dq},
215 @code{noavx512ifma},
216 @code{noavx512vbmi},
217 @code{noavx512_4fmaps},
218 @code{noavx512_4vnniw},
219 @code{noavx512_vpopcntdq},
220 @code{noavx512_vbmi2},
221 @code{noavx512_vnni},
222 @code{noavx512_bitalg},
223 @code{noavx512_vp2intersect},
224 @code{noavx512_bf16},
225 @code{noenqcmd},
226 @code{noserialize},
227 @code{notsxldtrk},
228 @code{vmx},
229 @code{vmfunc},
230 @code{smx},
231 @code{xsave},
232 @code{xsaveopt},
233 @code{xsavec},
234 @code{xsaves},
235 @code{aes},
236 @code{pclmul},
237 @code{fsgsbase},
238 @code{rdrnd},
239 @code{f16c},
240 @code{bmi2},
241 @code{fma},
242 @code{movbe},
243 @code{ept},
244 @code{lzcnt},
245 @code{popcnt},
246 @code{hle},
247 @code{rtm},
248 @code{invpcid},
249 @code{clflush},
250 @code{mwaitx},
251 @code{clzero},
252 @code{wbnoinvd},
253 @code{pconfig},
254 @code{waitpkg},
255 @code{cldemote},
256 @code{rdpru},
257 @code{mcommit},
258 @code{sev_es},
259 @code{lwp},
260 @code{fma4},
261 @code{xop},
262 @code{cx16},
263 @code{syscall},
264 @code{rdtscp},
265 @code{3dnow},
266 @code{3dnowa},
267 @code{sse4a},
268 @code{sse5},
269 @code{svme} and
270 @code{padlock}.
271 Note that rather than extending a basic instruction set, the extension
272 mnemonics starting with @code{no} revoke the respective functionality.
273
274 When the @code{.arch} directive is used with @option{-march}, the
275 @code{.arch} directive will take precedent.
276
277 @cindex @samp{-mtune=} option, i386
278 @cindex @samp{-mtune=} option, x86-64
279 @item -mtune=@var{CPU}
280 This option specifies a processor to optimize for. When used in
281 conjunction with the @option{-march} option, only instructions
282 of the processor specified by the @option{-march} option will be
283 generated.
284
285 Valid @var{CPU} values are identical to the processor list of
286 @option{-march=@var{CPU}}.
287
288 @cindex @samp{-msse2avx} option, i386
289 @cindex @samp{-msse2avx} option, x86-64
290 @item -msse2avx
291 This option specifies that the assembler should encode SSE instructions
292 with VEX prefix.
293
294 @cindex @samp{-msse-check=} option, i386
295 @cindex @samp{-msse-check=} option, x86-64
296 @item -msse-check=@var{none}
297 @itemx -msse-check=@var{warning}
298 @itemx -msse-check=@var{error}
299 These options control if the assembler should check SSE instructions.
300 @option{-msse-check=@var{none}} will make the assembler not to check SSE
301 instructions, which is the default. @option{-msse-check=@var{warning}}
302 will make the assembler issue a warning for any SSE instruction.
303 @option{-msse-check=@var{error}} will make the assembler issue an error
304 for any SSE instruction.
305
306 @cindex @samp{-mavxscalar=} option, i386
307 @cindex @samp{-mavxscalar=} option, x86-64
308 @item -mavxscalar=@var{128}
309 @itemx -mavxscalar=@var{256}
310 These options control how the assembler should encode scalar AVX
311 instructions. @option{-mavxscalar=@var{128}} will encode scalar
312 AVX instructions with 128bit vector length, which is the default.
313 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314 with 256bit vector length.
315
316 WARNING: Don't use this for production code - due to CPU errata the
317 resulting code may not work on certain models.
318
319 @cindex @samp{-mvexwig=} option, i386
320 @cindex @samp{-mvexwig=} option, x86-64
321 @item -mvexwig=@var{0}
322 @itemx -mvexwig=@var{1}
323 These options control how the assembler should encode VEX.W-ignored (WIG)
324 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325 instructions with vex.w = 0, which is the default.
326 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
327 vex.w = 1.
328
329 WARNING: Don't use this for production code - due to CPU errata the
330 resulting code may not work on certain models.
331
332 @cindex @samp{-mevexlig=} option, i386
333 @cindex @samp{-mevexlig=} option, x86-64
334 @item -mevexlig=@var{128}
335 @itemx -mevexlig=@var{256}
336 @itemx -mevexlig=@var{512}
337 These options control how the assembler should encode length-ignored
338 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339 EVEX instructions with 128bit vector length, which is the default.
340 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341 encode LIG EVEX instructions with 256bit and 512bit vector length,
342 respectively.
343
344 @cindex @samp{-mevexwig=} option, i386
345 @cindex @samp{-mevexwig=} option, x86-64
346 @item -mevexwig=@var{0}
347 @itemx -mevexwig=@var{1}
348 These options control how the assembler should encode w-ignored (WIG)
349 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350 EVEX instructions with evex.w = 0, which is the default.
351 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
352 evex.w = 1.
353
354 @cindex @samp{-mmnemonic=} option, i386
355 @cindex @samp{-mmnemonic=} option, x86-64
356 @item -mmnemonic=@var{att}
357 @itemx -mmnemonic=@var{intel}
358 This option specifies instruction mnemonic for matching instructions.
359 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
360 take precedent.
361
362 @cindex @samp{-msyntax=} option, i386
363 @cindex @samp{-msyntax=} option, x86-64
364 @item -msyntax=@var{att}
365 @itemx -msyntax=@var{intel}
366 This option specifies instruction syntax when processing instructions.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will
368 take precedent.
369
370 @cindex @samp{-mnaked-reg} option, i386
371 @cindex @samp{-mnaked-reg} option, x86-64
372 @item -mnaked-reg
373 This option specifies that registers don't require a @samp{%} prefix.
374 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
375
376 @cindex @samp{-madd-bnd-prefix} option, i386
377 @cindex @samp{-madd-bnd-prefix} option, x86-64
378 @item -madd-bnd-prefix
379 This option forces the assembler to add BND prefix to all branches, even
380 if such prefix was not explicitly specified in the source code.
381
382 @cindex @samp{-mshared} option, i386
383 @cindex @samp{-mshared} option, x86-64
384 @item -mno-shared
385 On ELF target, the assembler normally optimizes out non-PLT relocations
386 against defined non-weak global branch targets with default visibility.
387 The @samp{-mshared} option tells the assembler to generate code which
388 may go into a shared library where all non-weak global branch targets
389 with default visibility can be preempted. The resulting code is
390 slightly bigger. This option only affects the handling of branch
391 instructions.
392
393 @cindex @samp{-mbig-obj} option, x86-64
394 @item -mbig-obj
395 On x86-64 PE/COFF target this option forces the use of big object file
396 format, which allows more than 32768 sections.
397
398 @cindex @samp{-momit-lock-prefix=} option, i386
399 @cindex @samp{-momit-lock-prefix=} option, x86-64
400 @item -momit-lock-prefix=@var{no}
401 @itemx -momit-lock-prefix=@var{yes}
402 These options control how the assembler should encode lock prefix.
403 This option is intended as a workaround for processors, that fail on
404 lock prefix. This option can only be safely used with single-core,
405 single-thread computers
406 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
407 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
408 which is the default.
409
410 @cindex @samp{-mfence-as-lock-add=} option, i386
411 @cindex @samp{-mfence-as-lock-add=} option, x86-64
412 @item -mfence-as-lock-add=@var{no}
413 @itemx -mfence-as-lock-add=@var{yes}
414 These options control how the assembler should encode lfence, mfence and
415 sfence.
416 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
417 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
418 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
419 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
420 sfence as usual, which is the default.
421
422 @cindex @samp{-mrelax-relocations=} option, i386
423 @cindex @samp{-mrelax-relocations=} option, x86-64
424 @item -mrelax-relocations=@var{no}
425 @itemx -mrelax-relocations=@var{yes}
426 These options control whether the assembler should generate relax
427 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
428 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
429 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
430 @option{-mrelax-relocations=@var{no}} will not generate relax
431 relocations. The default can be controlled by a configure option
432 @option{--enable-x86-relax-relocations}.
433
434 @cindex @samp{-malign-branch-boundary=} option, i386
435 @cindex @samp{-malign-branch-boundary=} option, x86-64
436 @item -malign-branch-boundary=@var{NUM}
437 This option controls how the assembler should align branches with segment
438 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
439 no less than 16. Branches will be aligned within @var{NUM} byte
440 boundary. @option{-malign-branch-boundary=0}, which is the default,
441 doesn't align branches.
442
443 @cindex @samp{-malign-branch=} option, i386
444 @cindex @samp{-malign-branch=} option, x86-64
445 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
446 This option specifies types of branches to align. @var{TYPE} is
447 combination of @samp{jcc}, which aligns conditional jumps,
448 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
449 which aligns unconditional jumps, @samp{call} which aligns calls,
450 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
451 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
452
453 @cindex @samp{-malign-branch-prefix-size=} option, i386
454 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
455 @item -malign-branch-prefix-size=@var{NUM}
456 This option specifies the maximum number of prefixes on an instruction
457 to align branches. @var{NUM} should be between 0 and 5. The default
458 @var{NUM} is 5.
459
460 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
461 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
462 @item -mbranches-within-32B-boundaries
463 This option aligns conditional jumps, fused conditional jumps and
464 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
465 on an instruction. It is equivalent to
466 @option{-malign-branch-boundary=32}
467 @option{-malign-branch=jcc+fused+jmp}
468 @option{-malign-branch-prefix-size=5}.
469 The default doesn't align branches.
470
471 @cindex @samp{-mlfence-after-load=} option, i386
472 @cindex @samp{-mlfence-after-load=} option, x86-64
473 @item -mlfence-after-load=@var{no}
474 @itemx -mlfence-after-load=@var{yes}
475 These options control whether the assembler should generate lfence
476 after load instructions. @option{-mlfence-after-load=@var{yes}} will
477 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
478 lfence, which is the default.
479
480 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
481 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
482 @item -mlfence-before-indirect-branch=@var{none}
483 @item -mlfence-before-indirect-branch=@var{all}
484 @item -mlfence-before-indirect-branch=@var{register}
485 @itemx -mlfence-before-indirect-branch=@var{memory}
486 These options control whether the assembler should generate lfence
487 before indirect near branch instructions.
488 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
489 before indirect near branch via register and issue a warning before
490 indirect near branch via memory.
491 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
492 there's no explict @option{-mlfence-before-ret=}.
493 @option{-mlfence-before-indirect-branch=@var{register}} will generate
494 lfence before indirect near branch via register.
495 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
496 warning before indirect near branch via memory.
497 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
498 lfence nor issue warning, which is the default. Note that lfence won't
499 be generated before indirect near branch via register with
500 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
501 after loading branch target register.
502
503 @cindex @samp{-mlfence-before-ret=} option, i386
504 @cindex @samp{-mlfence-before-ret=} option, x86-64
505 @item -mlfence-before-ret=@var{none}
506 @item -mlfence-before-ret=@var{shl}
507 @item -mlfence-before-ret=@var{or}
508 @item -mlfence-before-ret=@var{yes}
509 @itemx -mlfence-before-ret=@var{not}
510 These options control whether the assembler should generate lfence
511 before ret. @option{-mlfence-before-ret=@var{or}} will generate
512 generate or instruction with lfence.
513 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
514 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
515 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
516 generate lfence, which is the default.
517
518 @cindex @samp{-mx86-used-note=} option, i386
519 @cindex @samp{-mx86-used-note=} option, x86-64
520 @item -mx86-used-note=@var{no}
521 @itemx -mx86-used-note=@var{yes}
522 These options control whether the assembler should generate
523 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
524 GNU property notes. The default can be controlled by the
525 @option{--enable-x86-used-note} configure option.
526
527 @cindex @samp{-mevexrcig=} option, i386
528 @cindex @samp{-mevexrcig=} option, x86-64
529 @item -mevexrcig=@var{rne}
530 @itemx -mevexrcig=@var{rd}
531 @itemx -mevexrcig=@var{ru}
532 @itemx -mevexrcig=@var{rz}
533 These options control how the assembler should encode SAE-only
534 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
535 of EVEX instruction with 00, which is the default.
536 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
537 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
538 with 01, 10 and 11 RC bits, respectively.
539
540 @cindex @samp{-mamd64} option, x86-64
541 @cindex @samp{-mintel64} option, x86-64
542 @item -mamd64
543 @itemx -mintel64
544 This option specifies that the assembler should accept only AMD64 or
545 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
546 only and AMD64 ISAs.
547
548 @cindex @samp{-O0} option, i386
549 @cindex @samp{-O0} option, x86-64
550 @cindex @samp{-O} option, i386
551 @cindex @samp{-O} option, x86-64
552 @cindex @samp{-O1} option, i386
553 @cindex @samp{-O1} option, x86-64
554 @cindex @samp{-O2} option, i386
555 @cindex @samp{-O2} option, x86-64
556 @cindex @samp{-Os} option, i386
557 @cindex @samp{-Os} option, x86-64
558 @item -O0 | -O | -O1 | -O2 | -Os
559 Optimize instruction encoding with smaller instruction size. @samp{-O}
560 and @samp{-O1} encode 64-bit register load instructions with 64-bit
561 immediate as 32-bit register load instructions with 31-bit or 32-bits
562 immediates, encode 64-bit register clearing instructions with 32-bit
563 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
564 register clearing instructions with 128-bit VEX vector register
565 clearing instructions, encode 128-bit/256-bit EVEX vector
566 register load/store instructions with VEX vector register load/store
567 instructions, and encode 128-bit/256-bit EVEX packed integer logical
568 instructions with 128-bit/256-bit VEX packed integer logical.
569
570 @samp{-O2} includes @samp{-O1} optimization plus encodes
571 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
572 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
573 instructions with commutative source operands will also have their
574 source operands swapped if this allows using the 2-byte VEX prefix form
575 instead of the 3-byte one. Certain forms of AND as well as OR with the
576 same (register) operand specified twice will also be changed to TEST.
577
578 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
579 and 64-bit register tests with immediate as 8-bit register test with
580 immediate. @samp{-O0} turns off this optimization.
581
582 @end table
583 @c man end
584
585 @node i386-Directives
586 @section x86 specific Directives
587
588 @cindex machine directives, x86
589 @cindex x86 machine directives
590 @table @code
591
592 @cindex @code{lcomm} directive, COFF
593 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
594 Reserve @var{length} (an absolute expression) bytes for a local common
595 denoted by @var{symbol}. The section and value of @var{symbol} are
596 those of the new local common. The addresses are allocated in the bss
597 section, so that at run-time the bytes start off zeroed. Since
598 @var{symbol} is not declared global, it is normally not visible to
599 @code{@value{LD}}. The optional third parameter, @var{alignment},
600 specifies the desired alignment of the symbol in the bss section.
601
602 This directive is only available for COFF based x86 targets.
603
604 @cindex @code{largecomm} directive, ELF
605 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
606 This directive behaves in the same way as the @code{comm} directive
607 except that the data is placed into the @var{.lbss} section instead of
608 the @var{.bss} section @ref{Comm}.
609
610 The directive is intended to be used for data which requires a large
611 amount of space, and it is only available for ELF based x86_64
612 targets.
613
614 @cindex @code{value} directive
615 @item .value @var{expression} [, @var{expression}]
616 This directive behaves in the same way as the @code{.short} directive,
617 taking a series of comma separated expressions and storing them as
618 two-byte wide values into the current section.
619
620 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
621
622 @end table
623
624 @node i386-Syntax
625 @section i386 Syntactical Considerations
626 @menu
627 * i386-Variations:: AT&T Syntax versus Intel Syntax
628 * i386-Chars:: Special Characters
629 @end menu
630
631 @node i386-Variations
632 @subsection AT&T Syntax versus Intel Syntax
633
634 @cindex i386 intel_syntax pseudo op
635 @cindex intel_syntax pseudo op, i386
636 @cindex i386 att_syntax pseudo op
637 @cindex att_syntax pseudo op, i386
638 @cindex i386 syntax compatibility
639 @cindex syntax compatibility, i386
640 @cindex x86-64 intel_syntax pseudo op
641 @cindex intel_syntax pseudo op, x86-64
642 @cindex x86-64 att_syntax pseudo op
643 @cindex att_syntax pseudo op, x86-64
644 @cindex x86-64 syntax compatibility
645 @cindex syntax compatibility, x86-64
646
647 @code{@value{AS}} now supports assembly using Intel assembler syntax.
648 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
649 back to the usual AT&T mode for compatibility with the output of
650 @code{@value{GCC}}. Either of these directives may have an optional
651 argument, @code{prefix}, or @code{noprefix} specifying whether registers
652 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
653 different from Intel syntax. We mention these differences because
654 almost all 80386 documents use Intel syntax. Notable differences
655 between the two syntaxes are:
656
657 @cindex immediate operands, i386
658 @cindex i386 immediate operands
659 @cindex register operands, i386
660 @cindex i386 register operands
661 @cindex jump/call operands, i386
662 @cindex i386 jump/call operands
663 @cindex operand delimiters, i386
664
665 @cindex immediate operands, x86-64
666 @cindex x86-64 immediate operands
667 @cindex register operands, x86-64
668 @cindex x86-64 register operands
669 @cindex jump/call operands, x86-64
670 @cindex x86-64 jump/call operands
671 @cindex operand delimiters, x86-64
672 @itemize @bullet
673 @item
674 AT&T immediate operands are preceded by @samp{$}; Intel immediate
675 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
676 AT&T register operands are preceded by @samp{%}; Intel register operands
677 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
678 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
679
680 @cindex i386 source, destination operands
681 @cindex source, destination operands; i386
682 @cindex x86-64 source, destination operands
683 @cindex source, destination operands; x86-64
684 @item
685 AT&T and Intel syntax use the opposite order for source and destination
686 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
687 @samp{source, dest} convention is maintained for compatibility with
688 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
689 instructions with 2 immediate operands, such as the @samp{enter}
690 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
691
692 @cindex mnemonic suffixes, i386
693 @cindex sizes operands, i386
694 @cindex i386 size suffixes
695 @cindex mnemonic suffixes, x86-64
696 @cindex sizes operands, x86-64
697 @cindex x86-64 size suffixes
698 @item
699 In AT&T syntax the size of memory operands is determined from the last
700 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
701 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
702 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
703 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
704 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
705 no other way to disambiguate an instruction. Intel syntax accomplishes this by
706 prefixing memory operands (@emph{not} the instruction mnemonics) with
707 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
708 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
709 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
710 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
711 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
712
713 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
714 instruction with the 64-bit displacement or immediate operand.
715
716 @cindex return instructions, i386
717 @cindex i386 jump, call, return
718 @cindex return instructions, x86-64
719 @cindex x86-64 jump, call, return
720 @item
721 Immediate form long jumps and calls are
722 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
723 Intel syntax is
724 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
725 instruction
726 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
727 @samp{ret far @var{stack-adjust}}.
728
729 @cindex sections, i386
730 @cindex i386 sections
731 @cindex sections, x86-64
732 @cindex x86-64 sections
733 @item
734 The AT&T assembler does not provide support for multiple section
735 programs. Unix style systems expect all programs to be single sections.
736 @end itemize
737
738 @node i386-Chars
739 @subsection Special Characters
740
741 @cindex line comment character, i386
742 @cindex i386 line comment character
743 The presence of a @samp{#} appearing anywhere on a line indicates the
744 start of a comment that extends to the end of that line.
745
746 If a @samp{#} appears as the first character of a line then the whole
747 line is treated as a comment, but in this case the line can also be a
748 logical line number directive (@pxref{Comments}) or a preprocessor
749 control command (@pxref{Preprocessing}).
750
751 If the @option{--divide} command-line option has not been specified
752 then the @samp{/} character appearing anywhere on a line also
753 introduces a line comment.
754
755 @cindex line separator, i386
756 @cindex statement separator, i386
757 @cindex i386 line separator
758 The @samp{;} character can be used to separate statements on the same
759 line.
760
761 @node i386-Mnemonics
762 @section i386-Mnemonics
763 @subsection Instruction Naming
764
765 @cindex i386 instruction naming
766 @cindex instruction naming, i386
767 @cindex x86-64 instruction naming
768 @cindex instruction naming, x86-64
769
770 Instruction mnemonics are suffixed with one character modifiers which
771 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
772 and @samp{q} specify byte, word, long and quadruple word operands. If
773 no suffix is specified by an instruction then @code{@value{AS}} tries to
774 fill in the missing suffix based on the destination register operand
775 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
776 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
777 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
778 assembler which assumes that a missing mnemonic suffix implies long
779 operand size. (This incompatibility does not affect compiler output
780 since compilers always explicitly specify the mnemonic suffix.)
781
782 When there is no sizing suffix and no (suitable) register operands to
783 deduce the size of memory operands, with a few exceptions and where long
784 operand size is possible in the first place, operand size will default
785 to long in 32- and 64-bit modes. Similarly it will default to short in
786 16-bit mode. Noteworthy exceptions are
787
788 @itemize @bullet
789 @item
790 Instructions with an implicit on-stack operand as well as branches,
791 which default to quad in 64-bit mode.
792
793 @item
794 Sign- and zero-extending moves, which default to byte size source
795 operands.
796
797 @item
798 Floating point insns with integer operands, which default to short (for
799 perhaps historical reasons).
800
801 @item
802 CRC32 with a 64-bit destination, which defaults to a quad source
803 operand.
804
805 @end itemize
806
807 @cindex encoding options, i386
808 @cindex encoding options, x86-64
809
810 Different encoding options can be specified via pseudo prefixes:
811
812 @itemize @bullet
813 @item
814 @samp{@{disp8@}} -- prefer 8-bit displacement.
815
816 @item
817 @samp{@{disp32@}} -- prefer 32-bit displacement.
818
819 @item
820 @samp{@{load@}} -- prefer load-form instruction.
821
822 @item
823 @samp{@{store@}} -- prefer store-form instruction.
824
825 @item
826 @samp{@{vex@}} -- encode with VEX prefix.
827
828 @item
829 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
830
831 @item
832 @samp{@{evex@}} -- encode with EVEX prefix.
833
834 @item
835 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
836 instructions (x86-64 only). Note that this differs from the @samp{rex}
837 prefix which generates REX prefix unconditionally.
838
839 @item
840 @samp{@{nooptimize@}} -- disable instruction size optimization.
841 @end itemize
842
843 @cindex conversion instructions, i386
844 @cindex i386 conversion instructions
845 @cindex conversion instructions, x86-64
846 @cindex x86-64 conversion instructions
847 The Intel-syntax conversion instructions
848
849 @itemize @bullet
850 @item
851 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
852
853 @item
854 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
855
856 @item
857 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
858
859 @item
860 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
861
862 @item
863 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
864 (x86-64 only),
865
866 @item
867 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
868 @samp{%rdx:%rax} (x86-64 only),
869 @end itemize
870
871 @noindent
872 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
873 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
874 instructions.
875
876 @cindex extension instructions, i386
877 @cindex i386 extension instructions
878 @cindex extension instructions, x86-64
879 @cindex x86-64 extension instructions
880 The Intel-syntax extension instructions
881
882 @itemize @bullet
883 @item
884 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
885
886 @item
887 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
888
889 @item
890 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
891 (x86-64 only).
892
893 @item
894 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
895
896 @item
897 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
898 (x86-64 only).
899
900 @item
901 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
902 (x86-64 only).
903
904 @item
905 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
906
907 @item
908 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
909
910 @item
911 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
912 (x86-64 only).
913
914 @item
915 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
916
917 @item
918 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
919 (x86-64 only).
920 @end itemize
921
922 @noindent
923 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
924 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
925 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
926 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
927 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
928
929 @cindex jump instructions, i386
930 @cindex call instructions, i386
931 @cindex jump instructions, x86-64
932 @cindex call instructions, x86-64
933 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
934 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
935 convention.
936
937 @subsection AT&T Mnemonic versus Intel Mnemonic
938
939 @cindex i386 mnemonic compatibility
940 @cindex mnemonic compatibility, i386
941
942 @code{@value{AS}} supports assembly using Intel mnemonic.
943 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
944 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
945 syntax for compatibility with the output of @code{@value{GCC}}.
946 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
947 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
948 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
949 assembler with different mnemonics from those in Intel IA32 specification.
950 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
951
952 @itemize @bullet
953 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
954 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
955 destination register with both AT&T and Intel mnemonics.
956 @end itemize
957
958 @node i386-Regs
959 @section Register Naming
960
961 @cindex i386 registers
962 @cindex registers, i386
963 @cindex x86-64 registers
964 @cindex registers, x86-64
965 Register operands are always prefixed with @samp{%}. The 80386 registers
966 consist of
967
968 @itemize @bullet
969 @item
970 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
971 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
972 frame pointer), and @samp{%esp} (the stack pointer).
973
974 @item
975 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
976 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
977
978 @item
979 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
980 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
981 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
982 @samp{%cx}, and @samp{%dx})
983
984 @item
985 the 6 section registers @samp{%cs} (code section), @samp{%ds}
986 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
987 and @samp{%gs}.
988
989 @item
990 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
991 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
992
993 @item
994 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
995 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
996
997 @item
998 the 2 test registers @samp{%tr6} and @samp{%tr7}.
999
1000 @item
1001 the 8 floating point register stack @samp{%st} or equivalently
1002 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1003 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1004 These registers are overloaded by 8 MMX registers @samp{%mm0},
1005 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1006 @samp{%mm6} and @samp{%mm7}.
1007
1008 @item
1009 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1010 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1011 @end itemize
1012
1013 The AMD x86-64 architecture extends the register set by:
1014
1015 @itemize @bullet
1016 @item
1017 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1018 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1019 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1020 pointer)
1021
1022 @item
1023 the 8 extended registers @samp{%r8}--@samp{%r15}.
1024
1025 @item
1026 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1027
1028 @item
1029 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1030
1031 @item
1032 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1033
1034 @item
1035 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1036
1037 @item
1038 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1039
1040 @item
1041 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1042 @end itemize
1043
1044 With the AVX extensions more registers were made available:
1045
1046 @itemize @bullet
1047
1048 @item
1049 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1050 available in 32-bit mode). The bottom 128 bits are overlaid with the
1051 @samp{xmm0}--@samp{xmm15} registers.
1052
1053 @end itemize
1054
1055 The AVX2 extensions made in 64-bit mode more registers available:
1056
1057 @itemize @bullet
1058
1059 @item
1060 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1061 registers @samp{%ymm16}--@samp{%ymm31}.
1062
1063 @end itemize
1064
1065 The AVX512 extensions added the following registers:
1066
1067 @itemize @bullet
1068
1069 @item
1070 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1071 available in 32-bit mode). The bottom 128 bits are overlaid with the
1072 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1073 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1074
1075 @item
1076 the 8 mask registers @samp{%k0}--@samp{%k7}.
1077
1078 @end itemize
1079
1080 @node i386-Prefixes
1081 @section Instruction Prefixes
1082
1083 @cindex i386 instruction prefixes
1084 @cindex instruction prefixes, i386
1085 @cindex prefixes, i386
1086 Instruction prefixes are used to modify the following instruction. They
1087 are used to repeat string instructions, to provide section overrides, to
1088 perform bus lock operations, and to change operand and address sizes.
1089 (Most instructions that normally operate on 32-bit operands will use
1090 16-bit operands if the instruction has an ``operand size'' prefix.)
1091 Instruction prefixes are best written on the same line as the instruction
1092 they act upon. For example, the @samp{scas} (scan string) instruction is
1093 repeated with:
1094
1095 @smallexample
1096 repne scas %es:(%edi),%al
1097 @end smallexample
1098
1099 You may also place prefixes on the lines immediately preceding the
1100 instruction, but this circumvents checks that @code{@value{AS}} does
1101 with prefixes, and will not work with all prefixes.
1102
1103 Here is a list of instruction prefixes:
1104
1105 @cindex section override prefixes, i386
1106 @itemize @bullet
1107 @item
1108 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1109 @samp{fs}, @samp{gs}. These are automatically added by specifying
1110 using the @var{section}:@var{memory-operand} form for memory references.
1111
1112 @cindex size prefixes, i386
1113 @item
1114 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1115 change 32-bit operands/addresses into 16-bit operands/addresses,
1116 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1117 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1118 @emph{must} appear on the same line of code as the instruction they
1119 modify. For example, in a 16-bit @code{.code16} section, you might
1120 write:
1121
1122 @smallexample
1123 addr32 jmpl *(%ebx)
1124 @end smallexample
1125
1126 @cindex bus lock prefixes, i386
1127 @cindex inhibiting interrupts, i386
1128 @item
1129 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1130 the instruction it precedes. (This is only valid with certain
1131 instructions; see a 80386 manual for details).
1132
1133 @cindex coprocessor wait, i386
1134 @item
1135 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1136 complete the current instruction. This should never be needed for the
1137 80386/80387 combination.
1138
1139 @cindex repeat prefixes, i386
1140 @item
1141 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1142 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1143 times if the current address size is 16-bits).
1144 @cindex REX prefixes, i386
1145 @item
1146 The @samp{rex} family of prefixes is used by x86-64 to encode
1147 extensions to i386 instruction set. The @samp{rex} prefix has four
1148 bits --- an operand size overwrite (@code{64}) used to change operand size
1149 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1150 register set.
1151
1152 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1153 instruction emits @samp{rex} prefix with all the bits set. By omitting
1154 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1155 prefixes as well. Normally, there is no need to write the prefixes
1156 explicitly, since gas will automatically generate them based on the
1157 instruction operands.
1158 @end itemize
1159
1160 @node i386-Memory
1161 @section Memory References
1162
1163 @cindex i386 memory references
1164 @cindex memory references, i386
1165 @cindex x86-64 memory references
1166 @cindex memory references, x86-64
1167 An Intel syntax indirect memory reference of the form
1168
1169 @smallexample
1170 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1171 @end smallexample
1172
1173 @noindent
1174 is translated into the AT&T syntax
1175
1176 @smallexample
1177 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1178 @end smallexample
1179
1180 @noindent
1181 where @var{base} and @var{index} are the optional 32-bit base and
1182 index registers, @var{disp} is the optional displacement, and
1183 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1184 to calculate the address of the operand. If no @var{scale} is
1185 specified, @var{scale} is taken to be 1. @var{section} specifies the
1186 optional section register for the memory operand, and may override the
1187 default section register (see a 80386 manual for section register
1188 defaults). Note that section overrides in AT&T syntax @emph{must}
1189 be preceded by a @samp{%}. If you specify a section override which
1190 coincides with the default section register, @code{@value{AS}} does @emph{not}
1191 output any section register override prefixes to assemble the given
1192 instruction. Thus, section overrides can be specified to emphasize which
1193 section register is used for a given memory operand.
1194
1195 Here are some examples of Intel and AT&T style memory references:
1196
1197 @table @asis
1198 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1199 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1200 missing, and the default section is used (@samp{%ss} for addressing with
1201 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1202
1203 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1204 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1205 @samp{foo}. All other fields are missing. The section register here
1206 defaults to @samp{%ds}.
1207
1208 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1209 This uses the value pointed to by @samp{foo} as a memory operand.
1210 Note that @var{base} and @var{index} are both missing, but there is only
1211 @emph{one} @samp{,}. This is a syntactic exception.
1212
1213 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1214 This selects the contents of the variable @samp{foo} with section
1215 register @var{section} being @samp{%gs}.
1216 @end table
1217
1218 Absolute (as opposed to PC relative) call and jump operands must be
1219 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1220 always chooses PC relative addressing for jump/call labels.
1221
1222 Any instruction that has a memory operand, but no register operand,
1223 @emph{must} specify its size (byte, word, long, or quadruple) with an
1224 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1225 respectively).
1226
1227 The x86-64 architecture adds an RIP (instruction pointer relative)
1228 addressing. This addressing mode is specified by using @samp{rip} as a
1229 base register. Only constant offsets are valid. For example:
1230
1231 @table @asis
1232 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1233 Points to the address 1234 bytes past the end of the current
1234 instruction.
1235
1236 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1237 Points to the @code{symbol} in RIP relative way, this is shorter than
1238 the default absolute addressing.
1239 @end table
1240
1241 Other addressing modes remain unchanged in x86-64 architecture, except
1242 registers used are 64-bit instead of 32-bit.
1243
1244 @node i386-Jumps
1245 @section Handling of Jump Instructions
1246
1247 @cindex jump optimization, i386
1248 @cindex i386 jump optimization
1249 @cindex jump optimization, x86-64
1250 @cindex x86-64 jump optimization
1251 Jump instructions are always optimized to use the smallest possible
1252 displacements. This is accomplished by using byte (8-bit) displacement
1253 jumps whenever the target is sufficiently close. If a byte displacement
1254 is insufficient a long displacement is used. We do not support
1255 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1256 instruction with the @samp{data16} instruction prefix), since the 80386
1257 insists upon masking @samp{%eip} to 16 bits after the word displacement
1258 is added. (See also @pxref{i386-Arch})
1259
1260 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1261 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1262 displacements, so that if you use these instructions (@code{@value{GCC}} does
1263 not use them) you may get an error message (and incorrect code). The AT&T
1264 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1265 to
1266
1267 @smallexample
1268 jcxz cx_zero
1269 jmp cx_nonzero
1270 cx_zero: jmp foo
1271 cx_nonzero:
1272 @end smallexample
1273
1274 @node i386-Float
1275 @section Floating Point
1276
1277 @cindex i386 floating point
1278 @cindex floating point, i386
1279 @cindex x86-64 floating point
1280 @cindex floating point, x86-64
1281 All 80387 floating point types except packed BCD are supported.
1282 (BCD support may be added without much difficulty). These data
1283 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1284 double (64-bit), and extended (80-bit) precision floating point.
1285 Each supported type has an instruction mnemonic suffix and a constructor
1286 associated with it. Instruction mnemonic suffixes specify the operand's
1287 data type. Constructors build these data types into memory.
1288
1289 @cindex @code{float} directive, i386
1290 @cindex @code{single} directive, i386
1291 @cindex @code{double} directive, i386
1292 @cindex @code{tfloat} directive, i386
1293 @cindex @code{float} directive, x86-64
1294 @cindex @code{single} directive, x86-64
1295 @cindex @code{double} directive, x86-64
1296 @cindex @code{tfloat} directive, x86-64
1297 @itemize @bullet
1298 @item
1299 Floating point constructors are @samp{.float} or @samp{.single},
1300 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1301 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1302 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1303 only supports this format via the @samp{fldt} (load 80-bit real to stack
1304 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1305
1306 @cindex @code{word} directive, i386
1307 @cindex @code{long} directive, i386
1308 @cindex @code{int} directive, i386
1309 @cindex @code{quad} directive, i386
1310 @cindex @code{word} directive, x86-64
1311 @cindex @code{long} directive, x86-64
1312 @cindex @code{int} directive, x86-64
1313 @cindex @code{quad} directive, x86-64
1314 @item
1315 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1316 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1317 corresponding instruction mnemonic suffixes are @samp{s} (single),
1318 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1319 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1320 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1321 stack) instructions.
1322 @end itemize
1323
1324 Register to register operations should not use instruction mnemonic suffixes.
1325 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1326 wrote @samp{fst %st, %st(1)}, since all register to register operations
1327 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1328 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1329 then stores the result in the 4 byte location @samp{mem})
1330
1331 @node i386-SIMD
1332 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1333
1334 @cindex MMX, i386
1335 @cindex 3DNow!, i386
1336 @cindex SIMD, i386
1337 @cindex MMX, x86-64
1338 @cindex 3DNow!, x86-64
1339 @cindex SIMD, x86-64
1340
1341 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1342 instructions for integer data), available on Intel's Pentium MMX
1343 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1344 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1345 instruction set (SIMD instructions for 32-bit floating point data)
1346 available on AMD's K6-2 processor and possibly others in the future.
1347
1348 Currently, @code{@value{AS}} does not support Intel's floating point
1349 SIMD, Katmai (KNI).
1350
1351 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1352 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1353 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1354 floating point values. The MMX registers cannot be used at the same time
1355 as the floating point stack.
1356
1357 See Intel and AMD documentation, keeping in mind that the operand order in
1358 instructions is reversed from the Intel syntax.
1359
1360 @node i386-LWP
1361 @section AMD's Lightweight Profiling Instructions
1362
1363 @cindex LWP, i386
1364 @cindex LWP, x86-64
1365
1366 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1367 instruction set, available on AMD's Family 15h (Orochi) processors.
1368
1369 LWP enables applications to collect and manage performance data, and
1370 react to performance events. The collection of performance data
1371 requires no context switches. LWP runs in the context of a thread and
1372 so several counters can be used independently across multiple threads.
1373 LWP can be used in both 64-bit and legacy 32-bit modes.
1374
1375 For detailed information on the LWP instruction set, see the
1376 @cite{AMD Lightweight Profiling Specification} available at
1377 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1378
1379 @node i386-BMI
1380 @section Bit Manipulation Instructions
1381
1382 @cindex BMI, i386
1383 @cindex BMI, x86-64
1384
1385 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1386
1387 BMI instructions provide several instructions implementing individual
1388 bit manipulation operations such as isolation, masking, setting, or
1389 resetting.
1390
1391 @c Need to add a specification citation here when available.
1392
1393 @node i386-TBM
1394 @section AMD's Trailing Bit Manipulation Instructions
1395
1396 @cindex TBM, i386
1397 @cindex TBM, x86-64
1398
1399 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1400 instruction set, available on AMD's BDVER2 processors (Trinity and
1401 Viperfish).
1402
1403 TBM instructions provide instructions implementing individual bit
1404 manipulation operations such as isolating, masking, setting, resetting,
1405 complementing, and operations on trailing zeros and ones.
1406
1407 @c Need to add a specification citation here when available.
1408
1409 @node i386-16bit
1410 @section Writing 16-bit Code
1411
1412 @cindex i386 16-bit code
1413 @cindex 16-bit code, i386
1414 @cindex real-mode code, i386
1415 @cindex @code{code16gcc} directive, i386
1416 @cindex @code{code16} directive, i386
1417 @cindex @code{code32} directive, i386
1418 @cindex @code{code64} directive, i386
1419 @cindex @code{code64} directive, x86-64
1420 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1421 or 64-bit x86-64 code depending on the default configuration,
1422 it also supports writing code to run in real mode or in 16-bit protected
1423 mode code segments. To do this, put a @samp{.code16} or
1424 @samp{.code16gcc} directive before the assembly language instructions to
1425 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1426 32-bit code with the @samp{.code32} directive or 64-bit code with the
1427 @samp{.code64} directive.
1428
1429 @samp{.code16gcc} provides experimental support for generating 16-bit
1430 code from gcc, and differs from @samp{.code16} in that @samp{call},
1431 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1432 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1433 default to 32-bit size. This is so that the stack pointer is
1434 manipulated in the same way over function calls, allowing access to
1435 function parameters at the same stack offsets as in 32-bit mode.
1436 @samp{.code16gcc} also automatically adds address size prefixes where
1437 necessary to use the 32-bit addressing modes that gcc generates.
1438
1439 The code which @code{@value{AS}} generates in 16-bit mode will not
1440 necessarily run on a 16-bit pre-80386 processor. To write code that
1441 runs on such a processor, you must refrain from using @emph{any} 32-bit
1442 constructs which require @code{@value{AS}} to output address or operand
1443 size prefixes.
1444
1445 Note that writing 16-bit code instructions by explicitly specifying a
1446 prefix or an instruction mnemonic suffix within a 32-bit code section
1447 generates different machine instructions than those generated for a
1448 16-bit code segment. In a 32-bit code section, the following code
1449 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1450 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1451
1452 @smallexample
1453 pushw $4
1454 @end smallexample
1455
1456 The same code in a 16-bit code section would generate the machine
1457 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1458 is correct since the processor default operand size is assumed to be 16
1459 bits in a 16-bit code section.
1460
1461 @node i386-Arch
1462 @section Specifying CPU Architecture
1463
1464 @cindex arch directive, i386
1465 @cindex i386 arch directive
1466 @cindex arch directive, x86-64
1467 @cindex x86-64 arch directive
1468
1469 @code{@value{AS}} may be told to assemble for a particular CPU
1470 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1471 directive enables a warning when gas detects an instruction that is not
1472 supported on the CPU specified. The choices for @var{cpu_type} are:
1473
1474 @multitable @columnfractions .20 .20 .20 .20
1475 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1476 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1477 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1478 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1479 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1480 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1481 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1482 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1483 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1484 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1485 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1486 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1487 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1488 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1489 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1490 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1491 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1492 @item @samp{.hle}
1493 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1494 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1495 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1496 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1497 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1498 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1499 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1500 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1501 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1502 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1503 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1504 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1505 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1506 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1507 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1508 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1509 @item @samp{.mcommit} @tab @samp{.sev_es}
1510 @end multitable
1511
1512 Apart from the warning, there are only two other effects on
1513 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1514 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1515 will automatically use a two byte opcode sequence. The larger three
1516 byte opcode sequence is used on the 486 (and when no architecture is
1517 specified) because it executes faster on the 486. Note that you can
1518 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1519 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1520 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1521 conditional jumps will be promoted when necessary to a two instruction
1522 sequence consisting of a conditional jump of the opposite sense around
1523 an unconditional jump to the target.
1524
1525 Following the CPU architecture (but not a sub-architecture, which are those
1526 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1527 control automatic promotion of conditional jumps. @samp{jumps} is the
1528 default, and enables jump promotion; All external jumps will be of the long
1529 variety, and file-local jumps will be promoted as necessary.
1530 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1531 byte offset jumps, and warns about file-local conditional jumps that
1532 @code{@value{AS}} promotes.
1533 Unconditional jumps are treated as for @samp{jumps}.
1534
1535 For example
1536
1537 @smallexample
1538 .arch i8086,nojumps
1539 @end smallexample
1540
1541 @node i386-ISA
1542 @section AMD64 ISA vs. Intel64 ISA
1543
1544 There are some discrepancies between AMD64 and Intel64 ISAs.
1545
1546 @itemize @bullet
1547 @item For @samp{movsxd} with 16-bit destination register, AMD64
1548 supports 32-bit source operand and Intel64 supports 16-bit source
1549 operand.
1550
1551 @item For far branches (with explicit memory operand), both ISAs support
1552 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1553 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1554 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1555 syntax.
1556
1557 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1558 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1559 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1560 operands).
1561
1562 @end itemize
1563
1564 @node i386-Bugs
1565 @section AT&T Syntax bugs
1566
1567 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1568 assemblers, generate floating point instructions with reversed source
1569 and destination registers in certain cases. Unfortunately, gcc and
1570 possibly many other programs use this reversed syntax, so we're stuck
1571 with it.
1572
1573 For example
1574
1575 @smallexample
1576 fsub %st,%st(3)
1577 @end smallexample
1578 @noindent
1579 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1580 than the expected @samp{%st(3) - %st}. This happens with all the
1581 non-commutative arithmetic floating point operations with two register
1582 operands where the source register is @samp{%st} and the destination
1583 register is @samp{%st(i)}.
1584
1585 @node i386-Notes
1586 @section Notes
1587
1588 @cindex i386 @code{mul}, @code{imul} instructions
1589 @cindex @code{mul} instruction, i386
1590 @cindex @code{imul} instruction, i386
1591 @cindex @code{mul} instruction, x86-64
1592 @cindex @code{imul} instruction, x86-64
1593 There is some trickery concerning the @samp{mul} and @samp{imul}
1594 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1595 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1596 for @samp{imul}) can be output only in the one operand form. Thus,
1597 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1598 the expanding multiply would clobber the @samp{%edx} register, and this
1599 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1600 64-bit product in @samp{%edx:%eax}.
1601
1602 We have added a two operand form of @samp{imul} when the first operand
1603 is an immediate mode expression and the second operand is a register.
1604 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1605 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1606 $69, %eax, %eax}.
1607
This page took 0.095036 seconds and 3 git commands to generate.