x86: improve handling of insns with ambiguous operand sizes
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{rdpru},
249 @code{mcommit},
250 @code{lwp},
251 @code{fma4},
252 @code{xop},
253 @code{cx16},
254 @code{syscall},
255 @code{rdtscp},
256 @code{3dnow},
257 @code{3dnowa},
258 @code{sse4a},
259 @code{sse5},
260 @code{svme},
261 @code{abm} and
262 @code{padlock}.
263 Note that rather than extending a basic instruction set, the extension
264 mnemonics starting with @code{no} revoke the respective functionality.
265
266 When the @code{.arch} directive is used with @option{-march}, the
267 @code{.arch} directive will take precedent.
268
269 @cindex @samp{-mtune=} option, i386
270 @cindex @samp{-mtune=} option, x86-64
271 @item -mtune=@var{CPU}
272 This option specifies a processor to optimize for. When used in
273 conjunction with the @option{-march} option, only instructions
274 of the processor specified by the @option{-march} option will be
275 generated.
276
277 Valid @var{CPU} values are identical to the processor list of
278 @option{-march=@var{CPU}}.
279
280 @cindex @samp{-msse2avx} option, i386
281 @cindex @samp{-msse2avx} option, x86-64
282 @item -msse2avx
283 This option specifies that the assembler should encode SSE instructions
284 with VEX prefix.
285
286 @cindex @samp{-msse-check=} option, i386
287 @cindex @samp{-msse-check=} option, x86-64
288 @item -msse-check=@var{none}
289 @itemx -msse-check=@var{warning}
290 @itemx -msse-check=@var{error}
291 These options control if the assembler should check SSE instructions.
292 @option{-msse-check=@var{none}} will make the assembler not to check SSE
293 instructions, which is the default. @option{-msse-check=@var{warning}}
294 will make the assembler issue a warning for any SSE instruction.
295 @option{-msse-check=@var{error}} will make the assembler issue an error
296 for any SSE instruction.
297
298 @cindex @samp{-mavxscalar=} option, i386
299 @cindex @samp{-mavxscalar=} option, x86-64
300 @item -mavxscalar=@var{128}
301 @itemx -mavxscalar=@var{256}
302 These options control how the assembler should encode scalar AVX
303 instructions. @option{-mavxscalar=@var{128}} will encode scalar
304 AVX instructions with 128bit vector length, which is the default.
305 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306 with 256bit vector length.
307
308 WARNING: Don't use this for production code - due to CPU errata the
309 resulting code may not work on certain models.
310
311 @cindex @samp{-mvexwig=} option, i386
312 @cindex @samp{-mvexwig=} option, x86-64
313 @item -mvexwig=@var{0}
314 @itemx -mvexwig=@var{1}
315 These options control how the assembler should encode VEX.W-ignored (WIG)
316 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317 instructions with vex.w = 0, which is the default.
318 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319 vex.w = 1.
320
321 WARNING: Don't use this for production code - due to CPU errata the
322 resulting code may not work on certain models.
323
324 @cindex @samp{-mevexlig=} option, i386
325 @cindex @samp{-mevexlig=} option, x86-64
326 @item -mevexlig=@var{128}
327 @itemx -mevexlig=@var{256}
328 @itemx -mevexlig=@var{512}
329 These options control how the assembler should encode length-ignored
330 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331 EVEX instructions with 128bit vector length, which is the default.
332 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333 encode LIG EVEX instructions with 256bit and 512bit vector length,
334 respectively.
335
336 @cindex @samp{-mevexwig=} option, i386
337 @cindex @samp{-mevexwig=} option, x86-64
338 @item -mevexwig=@var{0}
339 @itemx -mevexwig=@var{1}
340 These options control how the assembler should encode w-ignored (WIG)
341 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342 EVEX instructions with evex.w = 0, which is the default.
343 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344 evex.w = 1.
345
346 @cindex @samp{-mmnemonic=} option, i386
347 @cindex @samp{-mmnemonic=} option, x86-64
348 @item -mmnemonic=@var{att}
349 @itemx -mmnemonic=@var{intel}
350 This option specifies instruction mnemonic for matching instructions.
351 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352 take precedent.
353
354 @cindex @samp{-msyntax=} option, i386
355 @cindex @samp{-msyntax=} option, x86-64
356 @item -msyntax=@var{att}
357 @itemx -msyntax=@var{intel}
358 This option specifies instruction syntax when processing instructions.
359 The @code{.att_syntax} and @code{.intel_syntax} directives will
360 take precedent.
361
362 @cindex @samp{-mnaked-reg} option, i386
363 @cindex @samp{-mnaked-reg} option, x86-64
364 @item -mnaked-reg
365 This option specifies that registers don't require a @samp{%} prefix.
366 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
367
368 @cindex @samp{-madd-bnd-prefix} option, i386
369 @cindex @samp{-madd-bnd-prefix} option, x86-64
370 @item -madd-bnd-prefix
371 This option forces the assembler to add BND prefix to all branches, even
372 if such prefix was not explicitly specified in the source code.
373
374 @cindex @samp{-mshared} option, i386
375 @cindex @samp{-mshared} option, x86-64
376 @item -mno-shared
377 On ELF target, the assembler normally optimizes out non-PLT relocations
378 against defined non-weak global branch targets with default visibility.
379 The @samp{-mshared} option tells the assembler to generate code which
380 may go into a shared library where all non-weak global branch targets
381 with default visibility can be preempted. The resulting code is
382 slightly bigger. This option only affects the handling of branch
383 instructions.
384
385 @cindex @samp{-mbig-obj} option, x86-64
386 @item -mbig-obj
387 On x86-64 PE/COFF target this option forces the use of big object file
388 format, which allows more than 32768 sections.
389
390 @cindex @samp{-momit-lock-prefix=} option, i386
391 @cindex @samp{-momit-lock-prefix=} option, x86-64
392 @item -momit-lock-prefix=@var{no}
393 @itemx -momit-lock-prefix=@var{yes}
394 These options control how the assembler should encode lock prefix.
395 This option is intended as a workaround for processors, that fail on
396 lock prefix. This option can only be safely used with single-core,
397 single-thread computers
398 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400 which is the default.
401
402 @cindex @samp{-mfence-as-lock-add=} option, i386
403 @cindex @samp{-mfence-as-lock-add=} option, x86-64
404 @item -mfence-as-lock-add=@var{no}
405 @itemx -mfence-as-lock-add=@var{yes}
406 These options control how the assembler should encode lfence, mfence and
407 sfence.
408 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
411 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412 sfence as usual, which is the default.
413
414 @cindex @samp{-mrelax-relocations=} option, i386
415 @cindex @samp{-mrelax-relocations=} option, x86-64
416 @item -mrelax-relocations=@var{no}
417 @itemx -mrelax-relocations=@var{yes}
418 These options control whether the assembler should generate relax
419 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422 @option{-mrelax-relocations=@var{no}} will not generate relax
423 relocations. The default can be controlled by a configure option
424 @option{--enable-x86-relax-relocations}.
425
426 @cindex @samp{-malign-branch-boundary=} option, i386
427 @cindex @samp{-malign-branch-boundary=} option, x86-64
428 @item -malign-branch-boundary=@var{NUM}
429 This option controls how the assembler should align branches with segment
430 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431 no less than 16. Branches will be aligned within @var{NUM} byte
432 boundary. @option{-malign-branch-boundary=0}, which is the default,
433 doesn't align branches.
434
435 @cindex @samp{-malign-branch=} option, i386
436 @cindex @samp{-malign-branch=} option, x86-64
437 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438 This option specifies types of branches to align. @var{TYPE} is
439 combination of @samp{jcc}, which aligns conditional jumps,
440 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441 which aligns unconditional jumps, @samp{call} which aligns calls,
442 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
444
445 @cindex @samp{-malign-branch-prefix-size=} option, i386
446 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
447 @item -malign-branch-prefix-size=@var{NUM}
448 This option specifies the maximum number of prefixes on an instruction
449 to align branches. @var{NUM} should be between 0 and 5. The default
450 @var{NUM} is 5.
451
452 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
453 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
454 @item -mbranches-within-32B-boundaries
455 This option aligns conditional jumps, fused conditional jumps and
456 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
457 on an instruction. It is equivalent to
458 @option{-malign-branch-boundary=32}
459 @option{-malign-branch=jcc+fused+jmp}
460 @option{-malign-branch-prefix-size=5}.
461 The default doesn't align branches.
462
463 @cindex @samp{-mx86-used-note=} option, i386
464 @cindex @samp{-mx86-used-note=} option, x86-64
465 @item -mx86-used-note=@var{no}
466 @itemx -mx86-used-note=@var{yes}
467 These options control whether the assembler should generate
468 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
469 GNU property notes. The default can be controlled by the
470 @option{--enable-x86-used-note} configure option.
471
472 @cindex @samp{-mevexrcig=} option, i386
473 @cindex @samp{-mevexrcig=} option, x86-64
474 @item -mevexrcig=@var{rne}
475 @itemx -mevexrcig=@var{rd}
476 @itemx -mevexrcig=@var{ru}
477 @itemx -mevexrcig=@var{rz}
478 These options control how the assembler should encode SAE-only
479 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
480 of EVEX instruction with 00, which is the default.
481 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
482 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
483 with 01, 10 and 11 RC bits, respectively.
484
485 @cindex @samp{-mamd64} option, x86-64
486 @cindex @samp{-mintel64} option, x86-64
487 @item -mamd64
488 @itemx -mintel64
489 This option specifies that the assembler should accept only AMD64 or
490 Intel64 ISA in 64-bit mode. The default is to accept both.
491
492 @cindex @samp{-O0} option, i386
493 @cindex @samp{-O0} option, x86-64
494 @cindex @samp{-O} option, i386
495 @cindex @samp{-O} option, x86-64
496 @cindex @samp{-O1} option, i386
497 @cindex @samp{-O1} option, x86-64
498 @cindex @samp{-O2} option, i386
499 @cindex @samp{-O2} option, x86-64
500 @cindex @samp{-Os} option, i386
501 @cindex @samp{-Os} option, x86-64
502 @item -O0 | -O | -O1 | -O2 | -Os
503 Optimize instruction encoding with smaller instruction size. @samp{-O}
504 and @samp{-O1} encode 64-bit register load instructions with 64-bit
505 immediate as 32-bit register load instructions with 31-bit or 32-bits
506 immediates, encode 64-bit register clearing instructions with 32-bit
507 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
508 register clearing instructions with 128-bit VEX vector register
509 clearing instructions, encode 128-bit/256-bit EVEX vector
510 register load/store instructions with VEX vector register load/store
511 instructions, and encode 128-bit/256-bit EVEX packed integer logical
512 instructions with 128-bit/256-bit VEX packed integer logical.
513
514 @samp{-O2} includes @samp{-O1} optimization plus encodes
515 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
516 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
517 instructions with commutative source operands will also have their
518 source operands swapped if this allows using the 2-byte VEX prefix form
519 instead of the 3-byte one. Certain forms of AND as well as OR with the
520 same (register) operand specified twice will also be changed to TEST.
521
522 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
523 and 64-bit register tests with immediate as 8-bit register test with
524 immediate. @samp{-O0} turns off this optimization.
525
526 @end table
527 @c man end
528
529 @node i386-Directives
530 @section x86 specific Directives
531
532 @cindex machine directives, x86
533 @cindex x86 machine directives
534 @table @code
535
536 @cindex @code{lcomm} directive, COFF
537 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
538 Reserve @var{length} (an absolute expression) bytes for a local common
539 denoted by @var{symbol}. The section and value of @var{symbol} are
540 those of the new local common. The addresses are allocated in the bss
541 section, so that at run-time the bytes start off zeroed. Since
542 @var{symbol} is not declared global, it is normally not visible to
543 @code{@value{LD}}. The optional third parameter, @var{alignment},
544 specifies the desired alignment of the symbol in the bss section.
545
546 This directive is only available for COFF based x86 targets.
547
548 @cindex @code{largecomm} directive, ELF
549 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
550 This directive behaves in the same way as the @code{comm} directive
551 except that the data is placed into the @var{.lbss} section instead of
552 the @var{.bss} section @ref{Comm}.
553
554 The directive is intended to be used for data which requires a large
555 amount of space, and it is only available for ELF based x86_64
556 targets.
557
558 @cindex @code{value} directive
559 @item .value @var{expression} [, @var{expression}]
560 This directive behaves in the same way as the @code{.short} directive,
561 taking a series of comma separated expressions and storing them as
562 two-byte wide values into the current section.
563
564 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
565
566 @end table
567
568 @node i386-Syntax
569 @section i386 Syntactical Considerations
570 @menu
571 * i386-Variations:: AT&T Syntax versus Intel Syntax
572 * i386-Chars:: Special Characters
573 @end menu
574
575 @node i386-Variations
576 @subsection AT&T Syntax versus Intel Syntax
577
578 @cindex i386 intel_syntax pseudo op
579 @cindex intel_syntax pseudo op, i386
580 @cindex i386 att_syntax pseudo op
581 @cindex att_syntax pseudo op, i386
582 @cindex i386 syntax compatibility
583 @cindex syntax compatibility, i386
584 @cindex x86-64 intel_syntax pseudo op
585 @cindex intel_syntax pseudo op, x86-64
586 @cindex x86-64 att_syntax pseudo op
587 @cindex att_syntax pseudo op, x86-64
588 @cindex x86-64 syntax compatibility
589 @cindex syntax compatibility, x86-64
590
591 @code{@value{AS}} now supports assembly using Intel assembler syntax.
592 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
593 back to the usual AT&T mode for compatibility with the output of
594 @code{@value{GCC}}. Either of these directives may have an optional
595 argument, @code{prefix}, or @code{noprefix} specifying whether registers
596 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
597 different from Intel syntax. We mention these differences because
598 almost all 80386 documents use Intel syntax. Notable differences
599 between the two syntaxes are:
600
601 @cindex immediate operands, i386
602 @cindex i386 immediate operands
603 @cindex register operands, i386
604 @cindex i386 register operands
605 @cindex jump/call operands, i386
606 @cindex i386 jump/call operands
607 @cindex operand delimiters, i386
608
609 @cindex immediate operands, x86-64
610 @cindex x86-64 immediate operands
611 @cindex register operands, x86-64
612 @cindex x86-64 register operands
613 @cindex jump/call operands, x86-64
614 @cindex x86-64 jump/call operands
615 @cindex operand delimiters, x86-64
616 @itemize @bullet
617 @item
618 AT&T immediate operands are preceded by @samp{$}; Intel immediate
619 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
620 AT&T register operands are preceded by @samp{%}; Intel register operands
621 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
622 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
623
624 @cindex i386 source, destination operands
625 @cindex source, destination operands; i386
626 @cindex x86-64 source, destination operands
627 @cindex source, destination operands; x86-64
628 @item
629 AT&T and Intel syntax use the opposite order for source and destination
630 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
631 @samp{source, dest} convention is maintained for compatibility with
632 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
633 instructions with 2 immediate operands, such as the @samp{enter}
634 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
635
636 @cindex mnemonic suffixes, i386
637 @cindex sizes operands, i386
638 @cindex i386 size suffixes
639 @cindex mnemonic suffixes, x86-64
640 @cindex sizes operands, x86-64
641 @cindex x86-64 size suffixes
642 @item
643 In AT&T syntax the size of memory operands is determined from the last
644 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
645 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
646 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
647 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
648 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
649 no other way to disambiguate an instruction. Intel syntax accomplishes this by
650 prefixing memory operands (@emph{not} the instruction mnemonics) with
651 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
652 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
653 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
654 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
655 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
656
657 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
658 instruction with the 64-bit displacement or immediate operand.
659
660 @cindex return instructions, i386
661 @cindex i386 jump, call, return
662 @cindex return instructions, x86-64
663 @cindex x86-64 jump, call, return
664 @item
665 Immediate form long jumps and calls are
666 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
667 Intel syntax is
668 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
669 instruction
670 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
671 @samp{ret far @var{stack-adjust}}.
672
673 @cindex sections, i386
674 @cindex i386 sections
675 @cindex sections, x86-64
676 @cindex x86-64 sections
677 @item
678 The AT&T assembler does not provide support for multiple section
679 programs. Unix style systems expect all programs to be single sections.
680 @end itemize
681
682 @node i386-Chars
683 @subsection Special Characters
684
685 @cindex line comment character, i386
686 @cindex i386 line comment character
687 The presence of a @samp{#} appearing anywhere on a line indicates the
688 start of a comment that extends to the end of that line.
689
690 If a @samp{#} appears as the first character of a line then the whole
691 line is treated as a comment, but in this case the line can also be a
692 logical line number directive (@pxref{Comments}) or a preprocessor
693 control command (@pxref{Preprocessing}).
694
695 If the @option{--divide} command-line option has not been specified
696 then the @samp{/} character appearing anywhere on a line also
697 introduces a line comment.
698
699 @cindex line separator, i386
700 @cindex statement separator, i386
701 @cindex i386 line separator
702 The @samp{;} character can be used to separate statements on the same
703 line.
704
705 @node i386-Mnemonics
706 @section i386-Mnemonics
707 @subsection Instruction Naming
708
709 @cindex i386 instruction naming
710 @cindex instruction naming, i386
711 @cindex x86-64 instruction naming
712 @cindex instruction naming, x86-64
713
714 Instruction mnemonics are suffixed with one character modifiers which
715 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
716 and @samp{q} specify byte, word, long and quadruple word operands. If
717 no suffix is specified by an instruction then @code{@value{AS}} tries to
718 fill in the missing suffix based on the destination register operand
719 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
720 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
721 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
722 assembler which assumes that a missing mnemonic suffix implies long
723 operand size. (This incompatibility does not affect compiler output
724 since compilers always explicitly specify the mnemonic suffix.)
725
726 When there is no sizing suffix and no (suitable) register operands to
727 deduce the size of memory operands, with a few exceptions and where long
728 operand size is possible in the first place, operand size will default
729 to long in 32- and 64-bit modes. Similarly it will default to short in
730 16-bit mode. Noteworthy exceptions are
731
732 @itemize @bullet
733 @item
734 Instructions with an implicit on-stack operand as well as branches,
735 which default to quad in 64-bit mode.
736
737 @item
738 Sign- and zero-extending moves, which default to byte size source
739 operands.
740
741 @item
742 Floating point insns with integer operands, which default to short (for
743 perhaps historical reasons).
744
745 @item
746 CRC32 with a 64-bit destination, which defaults to a quad source
747 operand.
748
749 @end itemize
750
751 Almost all instructions have the same names in AT&T and Intel format.
752 There are a few exceptions. The sign extend and zero extend
753 instructions need two sizes to specify them. They need a size to
754 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
755 is accomplished by using two instruction mnemonic suffixes in AT&T
756 syntax. Base names for sign extend and zero extend are
757 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
758 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
759 are tacked on to this base name, the @emph{from} suffix before the
760 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
761 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
762 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
763 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
764 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
765 quadruple word).
766
767 @cindex encoding options, i386
768 @cindex encoding options, x86-64
769
770 Different encoding options can be specified via pseudo prefixes:
771
772 @itemize @bullet
773 @item
774 @samp{@{disp8@}} -- prefer 8-bit displacement.
775
776 @item
777 @samp{@{disp32@}} -- prefer 32-bit displacement.
778
779 @item
780 @samp{@{load@}} -- prefer load-form instruction.
781
782 @item
783 @samp{@{store@}} -- prefer store-form instruction.
784
785 @item
786 @samp{@{vex@}} -- encode with VEX prefix.
787
788 @item
789 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
790
791 @item
792 @samp{@{evex@}} -- encode with EVEX prefix.
793
794 @item
795 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
796 instructions (x86-64 only). Note that this differs from the @samp{rex}
797 prefix which generates REX prefix unconditionally.
798
799 @item
800 @samp{@{nooptimize@}} -- disable instruction size optimization.
801 @end itemize
802
803 @cindex conversion instructions, i386
804 @cindex i386 conversion instructions
805 @cindex conversion instructions, x86-64
806 @cindex x86-64 conversion instructions
807 The Intel-syntax conversion instructions
808
809 @itemize @bullet
810 @item
811 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
812
813 @item
814 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
815
816 @item
817 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
818
819 @item
820 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
821
822 @item
823 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
824 (x86-64 only),
825
826 @item
827 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
828 @samp{%rdx:%rax} (x86-64 only),
829 @end itemize
830
831 @noindent
832 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
833 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
834 instructions.
835
836 @cindex jump instructions, i386
837 @cindex call instructions, i386
838 @cindex jump instructions, x86-64
839 @cindex call instructions, x86-64
840 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
841 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
842 convention.
843
844 @subsection AT&T Mnemonic versus Intel Mnemonic
845
846 @cindex i386 mnemonic compatibility
847 @cindex mnemonic compatibility, i386
848
849 @code{@value{AS}} supports assembly using Intel mnemonic.
850 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
851 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
852 syntax for compatibility with the output of @code{@value{GCC}}.
853 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
854 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
855 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
856 assembler with different mnemonics from those in Intel IA32 specification.
857 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
858
859 @node i386-Regs
860 @section Register Naming
861
862 @cindex i386 registers
863 @cindex registers, i386
864 @cindex x86-64 registers
865 @cindex registers, x86-64
866 Register operands are always prefixed with @samp{%}. The 80386 registers
867 consist of
868
869 @itemize @bullet
870 @item
871 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
872 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
873 frame pointer), and @samp{%esp} (the stack pointer).
874
875 @item
876 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
877 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
878
879 @item
880 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
881 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
882 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
883 @samp{%cx}, and @samp{%dx})
884
885 @item
886 the 6 section registers @samp{%cs} (code section), @samp{%ds}
887 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
888 and @samp{%gs}.
889
890 @item
891 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
892 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
893
894 @item
895 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
896 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
897
898 @item
899 the 2 test registers @samp{%tr6} and @samp{%tr7}.
900
901 @item
902 the 8 floating point register stack @samp{%st} or equivalently
903 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
904 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
905 These registers are overloaded by 8 MMX registers @samp{%mm0},
906 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
907 @samp{%mm6} and @samp{%mm7}.
908
909 @item
910 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
911 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
912 @end itemize
913
914 The AMD x86-64 architecture extends the register set by:
915
916 @itemize @bullet
917 @item
918 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
919 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
920 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
921 pointer)
922
923 @item
924 the 8 extended registers @samp{%r8}--@samp{%r15}.
925
926 @item
927 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
928
929 @item
930 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
931
932 @item
933 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
934
935 @item
936 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
937
938 @item
939 the 8 debug registers: @samp{%db8}--@samp{%db15}.
940
941 @item
942 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
943 @end itemize
944
945 With the AVX extensions more registers were made available:
946
947 @itemize @bullet
948
949 @item
950 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
951 available in 32-bit mode). The bottom 128 bits are overlaid with the
952 @samp{xmm0}--@samp{xmm15} registers.
953
954 @end itemize
955
956 The AVX2 extensions made in 64-bit mode more registers available:
957
958 @itemize @bullet
959
960 @item
961 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
962 registers @samp{%ymm16}--@samp{%ymm31}.
963
964 @end itemize
965
966 The AVX512 extensions added the following registers:
967
968 @itemize @bullet
969
970 @item
971 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
972 available in 32-bit mode). The bottom 128 bits are overlaid with the
973 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
974 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
975
976 @item
977 the 8 mask registers @samp{%k0}--@samp{%k7}.
978
979 @end itemize
980
981 @node i386-Prefixes
982 @section Instruction Prefixes
983
984 @cindex i386 instruction prefixes
985 @cindex instruction prefixes, i386
986 @cindex prefixes, i386
987 Instruction prefixes are used to modify the following instruction. They
988 are used to repeat string instructions, to provide section overrides, to
989 perform bus lock operations, and to change operand and address sizes.
990 (Most instructions that normally operate on 32-bit operands will use
991 16-bit operands if the instruction has an ``operand size'' prefix.)
992 Instruction prefixes are best written on the same line as the instruction
993 they act upon. For example, the @samp{scas} (scan string) instruction is
994 repeated with:
995
996 @smallexample
997 repne scas %es:(%edi),%al
998 @end smallexample
999
1000 You may also place prefixes on the lines immediately preceding the
1001 instruction, but this circumvents checks that @code{@value{AS}} does
1002 with prefixes, and will not work with all prefixes.
1003
1004 Here is a list of instruction prefixes:
1005
1006 @cindex section override prefixes, i386
1007 @itemize @bullet
1008 @item
1009 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1010 @samp{fs}, @samp{gs}. These are automatically added by specifying
1011 using the @var{section}:@var{memory-operand} form for memory references.
1012
1013 @cindex size prefixes, i386
1014 @item
1015 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1016 change 32-bit operands/addresses into 16-bit operands/addresses,
1017 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1018 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1019 @emph{must} appear on the same line of code as the instruction they
1020 modify. For example, in a 16-bit @code{.code16} section, you might
1021 write:
1022
1023 @smallexample
1024 addr32 jmpl *(%ebx)
1025 @end smallexample
1026
1027 @cindex bus lock prefixes, i386
1028 @cindex inhibiting interrupts, i386
1029 @item
1030 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1031 the instruction it precedes. (This is only valid with certain
1032 instructions; see a 80386 manual for details).
1033
1034 @cindex coprocessor wait, i386
1035 @item
1036 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1037 complete the current instruction. This should never be needed for the
1038 80386/80387 combination.
1039
1040 @cindex repeat prefixes, i386
1041 @item
1042 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1043 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1044 times if the current address size is 16-bits).
1045 @cindex REX prefixes, i386
1046 @item
1047 The @samp{rex} family of prefixes is used by x86-64 to encode
1048 extensions to i386 instruction set. The @samp{rex} prefix has four
1049 bits --- an operand size overwrite (@code{64}) used to change operand size
1050 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1051 register set.
1052
1053 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1054 instruction emits @samp{rex} prefix with all the bits set. By omitting
1055 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1056 prefixes as well. Normally, there is no need to write the prefixes
1057 explicitly, since gas will automatically generate them based on the
1058 instruction operands.
1059 @end itemize
1060
1061 @node i386-Memory
1062 @section Memory References
1063
1064 @cindex i386 memory references
1065 @cindex memory references, i386
1066 @cindex x86-64 memory references
1067 @cindex memory references, x86-64
1068 An Intel syntax indirect memory reference of the form
1069
1070 @smallexample
1071 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1072 @end smallexample
1073
1074 @noindent
1075 is translated into the AT&T syntax
1076
1077 @smallexample
1078 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1079 @end smallexample
1080
1081 @noindent
1082 where @var{base} and @var{index} are the optional 32-bit base and
1083 index registers, @var{disp} is the optional displacement, and
1084 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1085 to calculate the address of the operand. If no @var{scale} is
1086 specified, @var{scale} is taken to be 1. @var{section} specifies the
1087 optional section register for the memory operand, and may override the
1088 default section register (see a 80386 manual for section register
1089 defaults). Note that section overrides in AT&T syntax @emph{must}
1090 be preceded by a @samp{%}. If you specify a section override which
1091 coincides with the default section register, @code{@value{AS}} does @emph{not}
1092 output any section register override prefixes to assemble the given
1093 instruction. Thus, section overrides can be specified to emphasize which
1094 section register is used for a given memory operand.
1095
1096 Here are some examples of Intel and AT&T style memory references:
1097
1098 @table @asis
1099 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1100 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1101 missing, and the default section is used (@samp{%ss} for addressing with
1102 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1103
1104 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1105 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1106 @samp{foo}. All other fields are missing. The section register here
1107 defaults to @samp{%ds}.
1108
1109 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1110 This uses the value pointed to by @samp{foo} as a memory operand.
1111 Note that @var{base} and @var{index} are both missing, but there is only
1112 @emph{one} @samp{,}. This is a syntactic exception.
1113
1114 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1115 This selects the contents of the variable @samp{foo} with section
1116 register @var{section} being @samp{%gs}.
1117 @end table
1118
1119 Absolute (as opposed to PC relative) call and jump operands must be
1120 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1121 always chooses PC relative addressing for jump/call labels.
1122
1123 Any instruction that has a memory operand, but no register operand,
1124 @emph{must} specify its size (byte, word, long, or quadruple) with an
1125 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1126 respectively).
1127
1128 The x86-64 architecture adds an RIP (instruction pointer relative)
1129 addressing. This addressing mode is specified by using @samp{rip} as a
1130 base register. Only constant offsets are valid. For example:
1131
1132 @table @asis
1133 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1134 Points to the address 1234 bytes past the end of the current
1135 instruction.
1136
1137 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1138 Points to the @code{symbol} in RIP relative way, this is shorter than
1139 the default absolute addressing.
1140 @end table
1141
1142 Other addressing modes remain unchanged in x86-64 architecture, except
1143 registers used are 64-bit instead of 32-bit.
1144
1145 @node i386-Jumps
1146 @section Handling of Jump Instructions
1147
1148 @cindex jump optimization, i386
1149 @cindex i386 jump optimization
1150 @cindex jump optimization, x86-64
1151 @cindex x86-64 jump optimization
1152 Jump instructions are always optimized to use the smallest possible
1153 displacements. This is accomplished by using byte (8-bit) displacement
1154 jumps whenever the target is sufficiently close. If a byte displacement
1155 is insufficient a long displacement is used. We do not support
1156 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1157 instruction with the @samp{data16} instruction prefix), since the 80386
1158 insists upon masking @samp{%eip} to 16 bits after the word displacement
1159 is added. (See also @pxref{i386-Arch})
1160
1161 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1162 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1163 displacements, so that if you use these instructions (@code{@value{GCC}} does
1164 not use them) you may get an error message (and incorrect code). The AT&T
1165 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1166 to
1167
1168 @smallexample
1169 jcxz cx_zero
1170 jmp cx_nonzero
1171 cx_zero: jmp foo
1172 cx_nonzero:
1173 @end smallexample
1174
1175 @node i386-Float
1176 @section Floating Point
1177
1178 @cindex i386 floating point
1179 @cindex floating point, i386
1180 @cindex x86-64 floating point
1181 @cindex floating point, x86-64
1182 All 80387 floating point types except packed BCD are supported.
1183 (BCD support may be added without much difficulty). These data
1184 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1185 double (64-bit), and extended (80-bit) precision floating point.
1186 Each supported type has an instruction mnemonic suffix and a constructor
1187 associated with it. Instruction mnemonic suffixes specify the operand's
1188 data type. Constructors build these data types into memory.
1189
1190 @cindex @code{float} directive, i386
1191 @cindex @code{single} directive, i386
1192 @cindex @code{double} directive, i386
1193 @cindex @code{tfloat} directive, i386
1194 @cindex @code{float} directive, x86-64
1195 @cindex @code{single} directive, x86-64
1196 @cindex @code{double} directive, x86-64
1197 @cindex @code{tfloat} directive, x86-64
1198 @itemize @bullet
1199 @item
1200 Floating point constructors are @samp{.float} or @samp{.single},
1201 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1202 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1203 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1204 only supports this format via the @samp{fldt} (load 80-bit real to stack
1205 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1206
1207 @cindex @code{word} directive, i386
1208 @cindex @code{long} directive, i386
1209 @cindex @code{int} directive, i386
1210 @cindex @code{quad} directive, i386
1211 @cindex @code{word} directive, x86-64
1212 @cindex @code{long} directive, x86-64
1213 @cindex @code{int} directive, x86-64
1214 @cindex @code{quad} directive, x86-64
1215 @item
1216 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1217 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1218 corresponding instruction mnemonic suffixes are @samp{s} (single),
1219 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1220 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1221 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1222 stack) instructions.
1223 @end itemize
1224
1225 Register to register operations should not use instruction mnemonic suffixes.
1226 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1227 wrote @samp{fst %st, %st(1)}, since all register to register operations
1228 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1229 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1230 then stores the result in the 4 byte location @samp{mem})
1231
1232 @node i386-SIMD
1233 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1234
1235 @cindex MMX, i386
1236 @cindex 3DNow!, i386
1237 @cindex SIMD, i386
1238 @cindex MMX, x86-64
1239 @cindex 3DNow!, x86-64
1240 @cindex SIMD, x86-64
1241
1242 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1243 instructions for integer data), available on Intel's Pentium MMX
1244 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1245 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1246 instruction set (SIMD instructions for 32-bit floating point data)
1247 available on AMD's K6-2 processor and possibly others in the future.
1248
1249 Currently, @code{@value{AS}} does not support Intel's floating point
1250 SIMD, Katmai (KNI).
1251
1252 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1253 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1254 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1255 floating point values. The MMX registers cannot be used at the same time
1256 as the floating point stack.
1257
1258 See Intel and AMD documentation, keeping in mind that the operand order in
1259 instructions is reversed from the Intel syntax.
1260
1261 @node i386-LWP
1262 @section AMD's Lightweight Profiling Instructions
1263
1264 @cindex LWP, i386
1265 @cindex LWP, x86-64
1266
1267 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1268 instruction set, available on AMD's Family 15h (Orochi) processors.
1269
1270 LWP enables applications to collect and manage performance data, and
1271 react to performance events. The collection of performance data
1272 requires no context switches. LWP runs in the context of a thread and
1273 so several counters can be used independently across multiple threads.
1274 LWP can be used in both 64-bit and legacy 32-bit modes.
1275
1276 For detailed information on the LWP instruction set, see the
1277 @cite{AMD Lightweight Profiling Specification} available at
1278 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1279
1280 @node i386-BMI
1281 @section Bit Manipulation Instructions
1282
1283 @cindex BMI, i386
1284 @cindex BMI, x86-64
1285
1286 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1287
1288 BMI instructions provide several instructions implementing individual
1289 bit manipulation operations such as isolation, masking, setting, or
1290 resetting.
1291
1292 @c Need to add a specification citation here when available.
1293
1294 @node i386-TBM
1295 @section AMD's Trailing Bit Manipulation Instructions
1296
1297 @cindex TBM, i386
1298 @cindex TBM, x86-64
1299
1300 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1301 instruction set, available on AMD's BDVER2 processors (Trinity and
1302 Viperfish).
1303
1304 TBM instructions provide instructions implementing individual bit
1305 manipulation operations such as isolating, masking, setting, resetting,
1306 complementing, and operations on trailing zeros and ones.
1307
1308 @c Need to add a specification citation here when available.
1309
1310 @node i386-16bit
1311 @section Writing 16-bit Code
1312
1313 @cindex i386 16-bit code
1314 @cindex 16-bit code, i386
1315 @cindex real-mode code, i386
1316 @cindex @code{code16gcc} directive, i386
1317 @cindex @code{code16} directive, i386
1318 @cindex @code{code32} directive, i386
1319 @cindex @code{code64} directive, i386
1320 @cindex @code{code64} directive, x86-64
1321 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1322 or 64-bit x86-64 code depending on the default configuration,
1323 it also supports writing code to run in real mode or in 16-bit protected
1324 mode code segments. To do this, put a @samp{.code16} or
1325 @samp{.code16gcc} directive before the assembly language instructions to
1326 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1327 32-bit code with the @samp{.code32} directive or 64-bit code with the
1328 @samp{.code64} directive.
1329
1330 @samp{.code16gcc} provides experimental support for generating 16-bit
1331 code from gcc, and differs from @samp{.code16} in that @samp{call},
1332 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1333 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1334 default to 32-bit size. This is so that the stack pointer is
1335 manipulated in the same way over function calls, allowing access to
1336 function parameters at the same stack offsets as in 32-bit mode.
1337 @samp{.code16gcc} also automatically adds address size prefixes where
1338 necessary to use the 32-bit addressing modes that gcc generates.
1339
1340 The code which @code{@value{AS}} generates in 16-bit mode will not
1341 necessarily run on a 16-bit pre-80386 processor. To write code that
1342 runs on such a processor, you must refrain from using @emph{any} 32-bit
1343 constructs which require @code{@value{AS}} to output address or operand
1344 size prefixes.
1345
1346 Note that writing 16-bit code instructions by explicitly specifying a
1347 prefix or an instruction mnemonic suffix within a 32-bit code section
1348 generates different machine instructions than those generated for a
1349 16-bit code segment. In a 32-bit code section, the following code
1350 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1351 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1352
1353 @smallexample
1354 pushw $4
1355 @end smallexample
1356
1357 The same code in a 16-bit code section would generate the machine
1358 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1359 is correct since the processor default operand size is assumed to be 16
1360 bits in a 16-bit code section.
1361
1362 @node i386-Arch
1363 @section Specifying CPU Architecture
1364
1365 @cindex arch directive, i386
1366 @cindex i386 arch directive
1367 @cindex arch directive, x86-64
1368 @cindex x86-64 arch directive
1369
1370 @code{@value{AS}} may be told to assemble for a particular CPU
1371 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1372 directive enables a warning when gas detects an instruction that is not
1373 supported on the CPU specified. The choices for @var{cpu_type} are:
1374
1375 @multitable @columnfractions .20 .20 .20 .20
1376 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1377 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1378 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1379 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1380 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1381 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1382 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1383 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1384 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1385 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1386 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1387 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1388 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1389 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1390 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1391 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1392 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1393 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1394 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1395 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1396 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1397 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1398 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1399 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1400 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1401 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1402 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1403 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1404 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1405 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1406 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1407 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1408 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1409 @item @samp{.mcommit}
1410 @end multitable
1411
1412 Apart from the warning, there are only two other effects on
1413 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1414 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1415 will automatically use a two byte opcode sequence. The larger three
1416 byte opcode sequence is used on the 486 (and when no architecture is
1417 specified) because it executes faster on the 486. Note that you can
1418 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1419 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1420 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1421 conditional jumps will be promoted when necessary to a two instruction
1422 sequence consisting of a conditional jump of the opposite sense around
1423 an unconditional jump to the target.
1424
1425 Following the CPU architecture (but not a sub-architecture, which are those
1426 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1427 control automatic promotion of conditional jumps. @samp{jumps} is the
1428 default, and enables jump promotion; All external jumps will be of the long
1429 variety, and file-local jumps will be promoted as necessary.
1430 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1431 byte offset jumps, and warns about file-local conditional jumps that
1432 @code{@value{AS}} promotes.
1433 Unconditional jumps are treated as for @samp{jumps}.
1434
1435 For example
1436
1437 @smallexample
1438 .arch i8086,nojumps
1439 @end smallexample
1440
1441 @node i386-Bugs
1442 @section AT&T Syntax bugs
1443
1444 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1445 assemblers, generate floating point instructions with reversed source
1446 and destination registers in certain cases. Unfortunately, gcc and
1447 possibly many other programs use this reversed syntax, so we're stuck
1448 with it.
1449
1450 For example
1451
1452 @smallexample
1453 fsub %st,%st(3)
1454 @end smallexample
1455 @noindent
1456 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1457 than the expected @samp{%st(3) - %st}. This happens with all the
1458 non-commutative arithmetic floating point operations with two register
1459 operands where the source register is @samp{%st} and the destination
1460 register is @samp{%st(i)}.
1461
1462 @node i386-Notes
1463 @section Notes
1464
1465 @cindex i386 @code{mul}, @code{imul} instructions
1466 @cindex @code{mul} instruction, i386
1467 @cindex @code{imul} instruction, i386
1468 @cindex @code{mul} instruction, x86-64
1469 @cindex @code{imul} instruction, x86-64
1470 There is some trickery concerning the @samp{mul} and @samp{imul}
1471 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1472 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1473 for @samp{imul}) can be output only in the one operand form. Thus,
1474 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1475 the expanding multiply would clobber the @samp{%edx} register, and this
1476 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1477 64-bit product in @samp{%edx:%eax}.
1478
1479 We have added a two operand form of @samp{imul} when the first operand
1480 is an immediate mode expression and the second operand is a register.
1481 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1482 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1483 $69, %eax, %eax}.
1484
This page took 0.06886 seconds and 4 git commands to generate.