7e5f5c257e02a9a44a7f1f3e3a7ebb722cb81c96
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{avx512f},
187 @code{avx512cd},
188 @code{avx512er},
189 @code{avx512pf},
190 @code{avx512vl},
191 @code{avx512bw},
192 @code{avx512dq},
193 @code{avx512ifma},
194 @code{avx512vbmi},
195 @code{avx512_4fmaps},
196 @code{avx512_4vnniw},
197 @code{avx512_vpopcntdq},
198 @code{avx512_vbmi2},
199 @code{avx512_vnni},
200 @code{avx512_bitalg},
201 @code{noavx512f},
202 @code{noavx512cd},
203 @code{noavx512er},
204 @code{noavx512pf},
205 @code{noavx512vl},
206 @code{noavx512bw},
207 @code{noavx512dq},
208 @code{noavx512ifma},
209 @code{noavx512vbmi},
210 @code{noavx512_4fmaps},
211 @code{noavx512_4vnniw},
212 @code{noavx512_vpopcntdq},
213 @code{noavx512_vbmi2},
214 @code{noavx512_vnni},
215 @code{noavx512_bitalg},
216 @code{vmx},
217 @code{vmfunc},
218 @code{smx},
219 @code{xsave},
220 @code{xsaveopt},
221 @code{xsavec},
222 @code{xsaves},
223 @code{aes},
224 @code{pclmul},
225 @code{fsgsbase},
226 @code{rdrnd},
227 @code{f16c},
228 @code{bmi2},
229 @code{fma},
230 @code{movbe},
231 @code{ept},
232 @code{lzcnt},
233 @code{hle},
234 @code{rtm},
235 @code{invpcid},
236 @code{clflush},
237 @code{mwaitx},
238 @code{clzero},
239 @code{wbnoinvd},
240 @code{pconfig},
241 @code{waitpkg},
242 @code{cldemote},
243 @code{lwp},
244 @code{fma4},
245 @code{xop},
246 @code{cx16},
247 @code{syscall},
248 @code{rdtscp},
249 @code{3dnow},
250 @code{3dnowa},
251 @code{sse4a},
252 @code{sse5},
253 @code{svme},
254 @code{abm} and
255 @code{padlock}.
256 Note that rather than extending a basic instruction set, the extension
257 mnemonics starting with @code{no} revoke the respective functionality.
258
259 When the @code{.arch} directive is used with @option{-march}, the
260 @code{.arch} directive will take precedent.
261
262 @cindex @samp{-mtune=} option, i386
263 @cindex @samp{-mtune=} option, x86-64
264 @item -mtune=@var{CPU}
265 This option specifies a processor to optimize for. When used in
266 conjunction with the @option{-march} option, only instructions
267 of the processor specified by the @option{-march} option will be
268 generated.
269
270 Valid @var{CPU} values are identical to the processor list of
271 @option{-march=@var{CPU}}.
272
273 @cindex @samp{-msse2avx} option, i386
274 @cindex @samp{-msse2avx} option, x86-64
275 @item -msse2avx
276 This option specifies that the assembler should encode SSE instructions
277 with VEX prefix.
278
279 @cindex @samp{-msse-check=} option, i386
280 @cindex @samp{-msse-check=} option, x86-64
281 @item -msse-check=@var{none}
282 @itemx -msse-check=@var{warning}
283 @itemx -msse-check=@var{error}
284 These options control if the assembler should check SSE instructions.
285 @option{-msse-check=@var{none}} will make the assembler not to check SSE
286 instructions, which is the default. @option{-msse-check=@var{warning}}
287 will make the assembler issue a warning for any SSE instruction.
288 @option{-msse-check=@var{error}} will make the assembler issue an error
289 for any SSE instruction.
290
291 @cindex @samp{-mavxscalar=} option, i386
292 @cindex @samp{-mavxscalar=} option, x86-64
293 @item -mavxscalar=@var{128}
294 @itemx -mavxscalar=@var{256}
295 These options control how the assembler should encode scalar AVX
296 instructions. @option{-mavxscalar=@var{128}} will encode scalar
297 AVX instructions with 128bit vector length, which is the default.
298 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299 with 256bit vector length.
300
301 @cindex @samp{-mvexwig=} option, i386
302 @cindex @samp{-mvexwig=} option, x86-64
303 @item -mvexwig=@var{0}
304 @itemx -mvexwig=@var{1}
305 These options control how the assembler should encode VEX.W-ignored (WIG)
306 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
307 instructions with vex.w = 0, which is the default.
308 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
309 vex.w = 1.
310
311 @cindex @samp{-mevexlig=} option, i386
312 @cindex @samp{-mevexlig=} option, x86-64
313 @item -mevexlig=@var{128}
314 @itemx -mevexlig=@var{256}
315 @itemx -mevexlig=@var{512}
316 These options control how the assembler should encode length-ignored
317 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
318 EVEX instructions with 128bit vector length, which is the default.
319 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
320 encode LIG EVEX instructions with 256bit and 512bit vector length,
321 respectively.
322
323 @cindex @samp{-mevexwig=} option, i386
324 @cindex @samp{-mevexwig=} option, x86-64
325 @item -mevexwig=@var{0}
326 @itemx -mevexwig=@var{1}
327 These options control how the assembler should encode w-ignored (WIG)
328 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
329 EVEX instructions with evex.w = 0, which is the default.
330 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
331 evex.w = 1.
332
333 @cindex @samp{-mmnemonic=} option, i386
334 @cindex @samp{-mmnemonic=} option, x86-64
335 @item -mmnemonic=@var{att}
336 @itemx -mmnemonic=@var{intel}
337 This option specifies instruction mnemonic for matching instructions.
338 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
339 take precedent.
340
341 @cindex @samp{-msyntax=} option, i386
342 @cindex @samp{-msyntax=} option, x86-64
343 @item -msyntax=@var{att}
344 @itemx -msyntax=@var{intel}
345 This option specifies instruction syntax when processing instructions.
346 The @code{.att_syntax} and @code{.intel_syntax} directives will
347 take precedent.
348
349 @cindex @samp{-mnaked-reg} option, i386
350 @cindex @samp{-mnaked-reg} option, x86-64
351 @item -mnaked-reg
352 This option specifies that registers don't require a @samp{%} prefix.
353 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
354
355 @cindex @samp{-madd-bnd-prefix} option, i386
356 @cindex @samp{-madd-bnd-prefix} option, x86-64
357 @item -madd-bnd-prefix
358 This option forces the assembler to add BND prefix to all branches, even
359 if such prefix was not explicitly specified in the source code.
360
361 @cindex @samp{-mshared} option, i386
362 @cindex @samp{-mshared} option, x86-64
363 @item -mno-shared
364 On ELF target, the assembler normally optimizes out non-PLT relocations
365 against defined non-weak global branch targets with default visibility.
366 The @samp{-mshared} option tells the assembler to generate code which
367 may go into a shared library where all non-weak global branch targets
368 with default visibility can be preempted. The resulting code is
369 slightly bigger. This option only affects the handling of branch
370 instructions.
371
372 @cindex @samp{-mbig-obj} option, x86-64
373 @item -mbig-obj
374 On x86-64 PE/COFF target this option forces the use of big object file
375 format, which allows more than 32768 sections.
376
377 @cindex @samp{-momit-lock-prefix=} option, i386
378 @cindex @samp{-momit-lock-prefix=} option, x86-64
379 @item -momit-lock-prefix=@var{no}
380 @itemx -momit-lock-prefix=@var{yes}
381 These options control how the assembler should encode lock prefix.
382 This option is intended as a workaround for processors, that fail on
383 lock prefix. This option can only be safely used with single-core,
384 single-thread computers
385 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
386 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
387 which is the default.
388
389 @cindex @samp{-mfence-as-lock-add=} option, i386
390 @cindex @samp{-mfence-as-lock-add=} option, x86-64
391 @item -mfence-as-lock-add=@var{no}
392 @itemx -mfence-as-lock-add=@var{yes}
393 These options control how the assembler should encode lfence, mfence and
394 sfence.
395 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
396 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
397 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
398 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
399 sfence as usual, which is the default.
400
401 @cindex @samp{-mrelax-relocations=} option, i386
402 @cindex @samp{-mrelax-relocations=} option, x86-64
403 @item -mrelax-relocations=@var{no}
404 @itemx -mrelax-relocations=@var{yes}
405 These options control whether the assembler should generate relax
406 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
407 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
408 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
409 @option{-mrelax-relocations=@var{no}} will not generate relax
410 relocations. The default can be controlled by a configure option
411 @option{--enable-x86-relax-relocations}.
412
413 @cindex @samp{-mx86-used-note=} option, i386
414 @cindex @samp{-mx86-used-note=} option, x86-64
415 @item -mx86-used-note=@var{no}
416 @itemx -mx86-used-note=@var{yes}
417 These options control whether the assembler should generate
418 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
419 GNU property notes. The default can be controlled by the
420 @option{--enable-x86-used-note} configure option.
421
422 @cindex @samp{-mevexrcig=} option, i386
423 @cindex @samp{-mevexrcig=} option, x86-64
424 @item -mevexrcig=@var{rne}
425 @itemx -mevexrcig=@var{rd}
426 @itemx -mevexrcig=@var{ru}
427 @itemx -mevexrcig=@var{rz}
428 These options control how the assembler should encode SAE-only
429 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
430 of EVEX instruction with 00, which is the default.
431 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
432 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
433 with 01, 10 and 11 RC bits, respectively.
434
435 @cindex @samp{-mamd64} option, x86-64
436 @cindex @samp{-mintel64} option, x86-64
437 @item -mamd64
438 @itemx -mintel64
439 This option specifies that the assembler should accept only AMD64 or
440 Intel64 ISA in 64-bit mode. The default is to accept both.
441
442 @cindex @samp{-O0} option, i386
443 @cindex @samp{-O0} option, x86-64
444 @cindex @samp{-O} option, i386
445 @cindex @samp{-O} option, x86-64
446 @cindex @samp{-O1} option, i386
447 @cindex @samp{-O1} option, x86-64
448 @cindex @samp{-O2} option, i386
449 @cindex @samp{-O2} option, x86-64
450 @cindex @samp{-Os} option, i386
451 @cindex @samp{-Os} option, x86-64
452 @item -O0 | -O | -O1 | -O2 | -Os
453 Optimize instruction encoding with smaller instruction size. @samp{-O}
454 and @samp{-O1} encode 64-bit register load instructions with 64-bit
455 immediate as 32-bit register load instructions with 31-bit or 32-bits
456 immediates, encode 64-bit register clearing instructions with 32-bit
457 register clearing instructions and encode 256-bit/512-bit VEX/EVEX
458 vector register clearing instructions with 128-bit VEX vector register
459 clearing instructions. @samp{-O2} includes @samp{-O1} optimization plus
460 encodes 256-bit/512-bit EVEX vector register clearing instructions with
461 128-bit EVEX vector register clearing instructions.
462 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
463 and 64-bit register tests with immediate as 8-bit register test with
464 immediate. @samp{-O0} turns off this optimization.
465
466 @end table
467 @c man end
468
469 @node i386-Directives
470 @section x86 specific Directives
471
472 @cindex machine directives, x86
473 @cindex x86 machine directives
474 @table @code
475
476 @cindex @code{lcomm} directive, COFF
477 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
478 Reserve @var{length} (an absolute expression) bytes for a local common
479 denoted by @var{symbol}. The section and value of @var{symbol} are
480 those of the new local common. The addresses are allocated in the bss
481 section, so that at run-time the bytes start off zeroed. Since
482 @var{symbol} is not declared global, it is normally not visible to
483 @code{@value{LD}}. The optional third parameter, @var{alignment},
484 specifies the desired alignment of the symbol in the bss section.
485
486 This directive is only available for COFF based x86 targets.
487
488 @cindex @code{largecomm} directive, ELF
489 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
490 This directive behaves in the same way as the @code{comm} directive
491 except that the data is placed into the @var{.lbss} section instead of
492 the @var{.bss} section @ref{Comm}.
493
494 The directive is intended to be used for data which requires a large
495 amount of space, and it is only available for ELF based x86_64
496 targets.
497
498 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
499
500 @end table
501
502 @node i386-Syntax
503 @section i386 Syntactical Considerations
504 @menu
505 * i386-Variations:: AT&T Syntax versus Intel Syntax
506 * i386-Chars:: Special Characters
507 @end menu
508
509 @node i386-Variations
510 @subsection AT&T Syntax versus Intel Syntax
511
512 @cindex i386 intel_syntax pseudo op
513 @cindex intel_syntax pseudo op, i386
514 @cindex i386 att_syntax pseudo op
515 @cindex att_syntax pseudo op, i386
516 @cindex i386 syntax compatibility
517 @cindex syntax compatibility, i386
518 @cindex x86-64 intel_syntax pseudo op
519 @cindex intel_syntax pseudo op, x86-64
520 @cindex x86-64 att_syntax pseudo op
521 @cindex att_syntax pseudo op, x86-64
522 @cindex x86-64 syntax compatibility
523 @cindex syntax compatibility, x86-64
524
525 @code{@value{AS}} now supports assembly using Intel assembler syntax.
526 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
527 back to the usual AT&T mode for compatibility with the output of
528 @code{@value{GCC}}. Either of these directives may have an optional
529 argument, @code{prefix}, or @code{noprefix} specifying whether registers
530 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
531 different from Intel syntax. We mention these differences because
532 almost all 80386 documents use Intel syntax. Notable differences
533 between the two syntaxes are:
534
535 @cindex immediate operands, i386
536 @cindex i386 immediate operands
537 @cindex register operands, i386
538 @cindex i386 register operands
539 @cindex jump/call operands, i386
540 @cindex i386 jump/call operands
541 @cindex operand delimiters, i386
542
543 @cindex immediate operands, x86-64
544 @cindex x86-64 immediate operands
545 @cindex register operands, x86-64
546 @cindex x86-64 register operands
547 @cindex jump/call operands, x86-64
548 @cindex x86-64 jump/call operands
549 @cindex operand delimiters, x86-64
550 @itemize @bullet
551 @item
552 AT&T immediate operands are preceded by @samp{$}; Intel immediate
553 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
554 AT&T register operands are preceded by @samp{%}; Intel register operands
555 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
556 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
557
558 @cindex i386 source, destination operands
559 @cindex source, destination operands; i386
560 @cindex x86-64 source, destination operands
561 @cindex source, destination operands; x86-64
562 @item
563 AT&T and Intel syntax use the opposite order for source and destination
564 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
565 @samp{source, dest} convention is maintained for compatibility with
566 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
567 instructions with 2 immediate operands, such as the @samp{enter}
568 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
569
570 @cindex mnemonic suffixes, i386
571 @cindex sizes operands, i386
572 @cindex i386 size suffixes
573 @cindex mnemonic suffixes, x86-64
574 @cindex sizes operands, x86-64
575 @cindex x86-64 size suffixes
576 @item
577 In AT&T syntax the size of memory operands is determined from the last
578 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
579 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
580 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
581 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
582 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
583 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
584 syntax.
585
586 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
587 instruction with the 64-bit displacement or immediate operand.
588
589 @cindex return instructions, i386
590 @cindex i386 jump, call, return
591 @cindex return instructions, x86-64
592 @cindex x86-64 jump, call, return
593 @item
594 Immediate form long jumps and calls are
595 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
596 Intel syntax is
597 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
598 instruction
599 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
600 @samp{ret far @var{stack-adjust}}.
601
602 @cindex sections, i386
603 @cindex i386 sections
604 @cindex sections, x86-64
605 @cindex x86-64 sections
606 @item
607 The AT&T assembler does not provide support for multiple section
608 programs. Unix style systems expect all programs to be single sections.
609 @end itemize
610
611 @node i386-Chars
612 @subsection Special Characters
613
614 @cindex line comment character, i386
615 @cindex i386 line comment character
616 The presence of a @samp{#} appearing anywhere on a line indicates the
617 start of a comment that extends to the end of that line.
618
619 If a @samp{#} appears as the first character of a line then the whole
620 line is treated as a comment, but in this case the line can also be a
621 logical line number directive (@pxref{Comments}) or a preprocessor
622 control command (@pxref{Preprocessing}).
623
624 If the @option{--divide} command-line option has not been specified
625 then the @samp{/} character appearing anywhere on a line also
626 introduces a line comment.
627
628 @cindex line separator, i386
629 @cindex statement separator, i386
630 @cindex i386 line separator
631 The @samp{;} character can be used to separate statements on the same
632 line.
633
634 @node i386-Mnemonics
635 @section i386-Mnemonics
636 @subsection Instruction Naming
637
638 @cindex i386 instruction naming
639 @cindex instruction naming, i386
640 @cindex x86-64 instruction naming
641 @cindex instruction naming, x86-64
642
643 Instruction mnemonics are suffixed with one character modifiers which
644 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
645 and @samp{q} specify byte, word, long and quadruple word operands. If
646 no suffix is specified by an instruction then @code{@value{AS}} tries to
647 fill in the missing suffix based on the destination register operand
648 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
649 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
650 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
651 assembler which assumes that a missing mnemonic suffix implies long
652 operand size. (This incompatibility does not affect compiler output
653 since compilers always explicitly specify the mnemonic suffix.)
654
655 Almost all instructions have the same names in AT&T and Intel format.
656 There are a few exceptions. The sign extend and zero extend
657 instructions need two sizes to specify them. They need a size to
658 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
659 is accomplished by using two instruction mnemonic suffixes in AT&T
660 syntax. Base names for sign extend and zero extend are
661 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
662 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
663 are tacked on to this base name, the @emph{from} suffix before the
664 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
665 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
666 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
667 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
668 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
669 quadruple word).
670
671 @cindex encoding options, i386
672 @cindex encoding options, x86-64
673
674 Different encoding options can be specified via pseudo prefixes:
675
676 @itemize @bullet
677 @item
678 @samp{@{disp8@}} -- prefer 8-bit displacement.
679
680 @item
681 @samp{@{disp32@}} -- prefer 32-bit displacement.
682
683 @item
684 @samp{@{load@}} -- prefer load-form instruction.
685
686 @item
687 @samp{@{store@}} -- prefer store-form instruction.
688
689 @item
690 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
691
692 @item
693 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
694
695 @item
696 @samp{@{evex@}} -- encode with EVEX prefix.
697
698 @item
699 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
700 instructions (x86-64 only). Note that this differs from the @samp{rex}
701 prefix which generates REX prefix unconditionally.
702
703 @item
704 @samp{@{nooptimize@}} -- disable instruction size optimization.
705 @end itemize
706
707 @cindex conversion instructions, i386
708 @cindex i386 conversion instructions
709 @cindex conversion instructions, x86-64
710 @cindex x86-64 conversion instructions
711 The Intel-syntax conversion instructions
712
713 @itemize @bullet
714 @item
715 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
716
717 @item
718 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
719
720 @item
721 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
722
723 @item
724 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
725
726 @item
727 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
728 (x86-64 only),
729
730 @item
731 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
732 @samp{%rdx:%rax} (x86-64 only),
733 @end itemize
734
735 @noindent
736 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
737 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
738 instructions.
739
740 @cindex jump instructions, i386
741 @cindex call instructions, i386
742 @cindex jump instructions, x86-64
743 @cindex call instructions, x86-64
744 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
745 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
746 convention.
747
748 @subsection AT&T Mnemonic versus Intel Mnemonic
749
750 @cindex i386 mnemonic compatibility
751 @cindex mnemonic compatibility, i386
752
753 @code{@value{AS}} supports assembly using Intel mnemonic.
754 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
755 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
756 syntax for compatibility with the output of @code{@value{GCC}}.
757 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
758 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
759 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
760 assembler with different mnemonics from those in Intel IA32 specification.
761 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
762
763 @node i386-Regs
764 @section Register Naming
765
766 @cindex i386 registers
767 @cindex registers, i386
768 @cindex x86-64 registers
769 @cindex registers, x86-64
770 Register operands are always prefixed with @samp{%}. The 80386 registers
771 consist of
772
773 @itemize @bullet
774 @item
775 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
776 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
777 frame pointer), and @samp{%esp} (the stack pointer).
778
779 @item
780 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
781 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
782
783 @item
784 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
785 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
786 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
787 @samp{%cx}, and @samp{%dx})
788
789 @item
790 the 6 section registers @samp{%cs} (code section), @samp{%ds}
791 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
792 and @samp{%gs}.
793
794 @item
795 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
796 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
797
798 @item
799 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
800 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
801
802 @item
803 the 2 test registers @samp{%tr6} and @samp{%tr7}.
804
805 @item
806 the 8 floating point register stack @samp{%st} or equivalently
807 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
808 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
809 These registers are overloaded by 8 MMX registers @samp{%mm0},
810 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
811 @samp{%mm6} and @samp{%mm7}.
812
813 @item
814 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
815 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
816 @end itemize
817
818 The AMD x86-64 architecture extends the register set by:
819
820 @itemize @bullet
821 @item
822 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
823 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
824 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
825 pointer)
826
827 @item
828 the 8 extended registers @samp{%r8}--@samp{%r15}.
829
830 @item
831 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
832
833 @item
834 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
835
836 @item
837 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
838
839 @item
840 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
841
842 @item
843 the 8 debug registers: @samp{%db8}--@samp{%db15}.
844
845 @item
846 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
847 @end itemize
848
849 With the AVX extensions more registers were made available:
850
851 @itemize @bullet
852
853 @item
854 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
855 available in 32-bit mode). The bottom 128 bits are overlaid with the
856 @samp{xmm0}--@samp{xmm15} registers.
857
858 @end itemize
859
860 The AVX2 extensions made in 64-bit mode more registers available:
861
862 @itemize @bullet
863
864 @item
865 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
866 registers @samp{%ymm16}--@samp{%ymm31}.
867
868 @end itemize
869
870 The AVX512 extensions added the following registers:
871
872 @itemize @bullet
873
874 @item
875 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
876 available in 32-bit mode). The bottom 128 bits are overlaid with the
877 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
878 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
879
880 @item
881 the 8 mask registers @samp{%k0}--@samp{%k7}.
882
883 @end itemize
884
885 @node i386-Prefixes
886 @section Instruction Prefixes
887
888 @cindex i386 instruction prefixes
889 @cindex instruction prefixes, i386
890 @cindex prefixes, i386
891 Instruction prefixes are used to modify the following instruction. They
892 are used to repeat string instructions, to provide section overrides, to
893 perform bus lock operations, and to change operand and address sizes.
894 (Most instructions that normally operate on 32-bit operands will use
895 16-bit operands if the instruction has an ``operand size'' prefix.)
896 Instruction prefixes are best written on the same line as the instruction
897 they act upon. For example, the @samp{scas} (scan string) instruction is
898 repeated with:
899
900 @smallexample
901 repne scas %es:(%edi),%al
902 @end smallexample
903
904 You may also place prefixes on the lines immediately preceding the
905 instruction, but this circumvents checks that @code{@value{AS}} does
906 with prefixes, and will not work with all prefixes.
907
908 Here is a list of instruction prefixes:
909
910 @cindex section override prefixes, i386
911 @itemize @bullet
912 @item
913 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
914 @samp{fs}, @samp{gs}. These are automatically added by specifying
915 using the @var{section}:@var{memory-operand} form for memory references.
916
917 @cindex size prefixes, i386
918 @item
919 Operand/Address size prefixes @samp{data16} and @samp{addr16}
920 change 32-bit operands/addresses into 16-bit operands/addresses,
921 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
922 @code{.code16} section) into 32-bit operands/addresses. These prefixes
923 @emph{must} appear on the same line of code as the instruction they
924 modify. For example, in a 16-bit @code{.code16} section, you might
925 write:
926
927 @smallexample
928 addr32 jmpl *(%ebx)
929 @end smallexample
930
931 @cindex bus lock prefixes, i386
932 @cindex inhibiting interrupts, i386
933 @item
934 The bus lock prefix @samp{lock} inhibits interrupts during execution of
935 the instruction it precedes. (This is only valid with certain
936 instructions; see a 80386 manual for details).
937
938 @cindex coprocessor wait, i386
939 @item
940 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
941 complete the current instruction. This should never be needed for the
942 80386/80387 combination.
943
944 @cindex repeat prefixes, i386
945 @item
946 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
947 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
948 times if the current address size is 16-bits).
949 @cindex REX prefixes, i386
950 @item
951 The @samp{rex} family of prefixes is used by x86-64 to encode
952 extensions to i386 instruction set. The @samp{rex} prefix has four
953 bits --- an operand size overwrite (@code{64}) used to change operand size
954 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
955 register set.
956
957 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
958 instruction emits @samp{rex} prefix with all the bits set. By omitting
959 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
960 prefixes as well. Normally, there is no need to write the prefixes
961 explicitly, since gas will automatically generate them based on the
962 instruction operands.
963 @end itemize
964
965 @node i386-Memory
966 @section Memory References
967
968 @cindex i386 memory references
969 @cindex memory references, i386
970 @cindex x86-64 memory references
971 @cindex memory references, x86-64
972 An Intel syntax indirect memory reference of the form
973
974 @smallexample
975 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
976 @end smallexample
977
978 @noindent
979 is translated into the AT&T syntax
980
981 @smallexample
982 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
983 @end smallexample
984
985 @noindent
986 where @var{base} and @var{index} are the optional 32-bit base and
987 index registers, @var{disp} is the optional displacement, and
988 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
989 to calculate the address of the operand. If no @var{scale} is
990 specified, @var{scale} is taken to be 1. @var{section} specifies the
991 optional section register for the memory operand, and may override the
992 default section register (see a 80386 manual for section register
993 defaults). Note that section overrides in AT&T syntax @emph{must}
994 be preceded by a @samp{%}. If you specify a section override which
995 coincides with the default section register, @code{@value{AS}} does @emph{not}
996 output any section register override prefixes to assemble the given
997 instruction. Thus, section overrides can be specified to emphasize which
998 section register is used for a given memory operand.
999
1000 Here are some examples of Intel and AT&T style memory references:
1001
1002 @table @asis
1003 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1004 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1005 missing, and the default section is used (@samp{%ss} for addressing with
1006 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1007
1008 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1009 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1010 @samp{foo}. All other fields are missing. The section register here
1011 defaults to @samp{%ds}.
1012
1013 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1014 This uses the value pointed to by @samp{foo} as a memory operand.
1015 Note that @var{base} and @var{index} are both missing, but there is only
1016 @emph{one} @samp{,}. This is a syntactic exception.
1017
1018 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1019 This selects the contents of the variable @samp{foo} with section
1020 register @var{section} being @samp{%gs}.
1021 @end table
1022
1023 Absolute (as opposed to PC relative) call and jump operands must be
1024 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1025 always chooses PC relative addressing for jump/call labels.
1026
1027 Any instruction that has a memory operand, but no register operand,
1028 @emph{must} specify its size (byte, word, long, or quadruple) with an
1029 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1030 respectively).
1031
1032 The x86-64 architecture adds an RIP (instruction pointer relative)
1033 addressing. This addressing mode is specified by using @samp{rip} as a
1034 base register. Only constant offsets are valid. For example:
1035
1036 @table @asis
1037 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1038 Points to the address 1234 bytes past the end of the current
1039 instruction.
1040
1041 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1042 Points to the @code{symbol} in RIP relative way, this is shorter than
1043 the default absolute addressing.
1044 @end table
1045
1046 Other addressing modes remain unchanged in x86-64 architecture, except
1047 registers used are 64-bit instead of 32-bit.
1048
1049 @node i386-Jumps
1050 @section Handling of Jump Instructions
1051
1052 @cindex jump optimization, i386
1053 @cindex i386 jump optimization
1054 @cindex jump optimization, x86-64
1055 @cindex x86-64 jump optimization
1056 Jump instructions are always optimized to use the smallest possible
1057 displacements. This is accomplished by using byte (8-bit) displacement
1058 jumps whenever the target is sufficiently close. If a byte displacement
1059 is insufficient a long displacement is used. We do not support
1060 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1061 instruction with the @samp{data16} instruction prefix), since the 80386
1062 insists upon masking @samp{%eip} to 16 bits after the word displacement
1063 is added. (See also @pxref{i386-Arch})
1064
1065 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1066 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1067 displacements, so that if you use these instructions (@code{@value{GCC}} does
1068 not use them) you may get an error message (and incorrect code). The AT&T
1069 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1070 to
1071
1072 @smallexample
1073 jcxz cx_zero
1074 jmp cx_nonzero
1075 cx_zero: jmp foo
1076 cx_nonzero:
1077 @end smallexample
1078
1079 @node i386-Float
1080 @section Floating Point
1081
1082 @cindex i386 floating point
1083 @cindex floating point, i386
1084 @cindex x86-64 floating point
1085 @cindex floating point, x86-64
1086 All 80387 floating point types except packed BCD are supported.
1087 (BCD support may be added without much difficulty). These data
1088 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1089 double (64-bit), and extended (80-bit) precision floating point.
1090 Each supported type has an instruction mnemonic suffix and a constructor
1091 associated with it. Instruction mnemonic suffixes specify the operand's
1092 data type. Constructors build these data types into memory.
1093
1094 @cindex @code{float} directive, i386
1095 @cindex @code{single} directive, i386
1096 @cindex @code{double} directive, i386
1097 @cindex @code{tfloat} directive, i386
1098 @cindex @code{float} directive, x86-64
1099 @cindex @code{single} directive, x86-64
1100 @cindex @code{double} directive, x86-64
1101 @cindex @code{tfloat} directive, x86-64
1102 @itemize @bullet
1103 @item
1104 Floating point constructors are @samp{.float} or @samp{.single},
1105 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1106 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1107 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1108 only supports this format via the @samp{fldt} (load 80-bit real to stack
1109 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1110
1111 @cindex @code{word} directive, i386
1112 @cindex @code{long} directive, i386
1113 @cindex @code{int} directive, i386
1114 @cindex @code{quad} directive, i386
1115 @cindex @code{word} directive, x86-64
1116 @cindex @code{long} directive, x86-64
1117 @cindex @code{int} directive, x86-64
1118 @cindex @code{quad} directive, x86-64
1119 @item
1120 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1121 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1122 corresponding instruction mnemonic suffixes are @samp{s} (single),
1123 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1124 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1125 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1126 stack) instructions.
1127 @end itemize
1128
1129 Register to register operations should not use instruction mnemonic suffixes.
1130 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1131 wrote @samp{fst %st, %st(1)}, since all register to register operations
1132 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1133 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1134 then stores the result in the 4 byte location @samp{mem})
1135
1136 @node i386-SIMD
1137 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1138
1139 @cindex MMX, i386
1140 @cindex 3DNow!, i386
1141 @cindex SIMD, i386
1142 @cindex MMX, x86-64
1143 @cindex 3DNow!, x86-64
1144 @cindex SIMD, x86-64
1145
1146 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1147 instructions for integer data), available on Intel's Pentium MMX
1148 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1149 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1150 instruction set (SIMD instructions for 32-bit floating point data)
1151 available on AMD's K6-2 processor and possibly others in the future.
1152
1153 Currently, @code{@value{AS}} does not support Intel's floating point
1154 SIMD, Katmai (KNI).
1155
1156 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1157 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1158 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1159 floating point values. The MMX registers cannot be used at the same time
1160 as the floating point stack.
1161
1162 See Intel and AMD documentation, keeping in mind that the operand order in
1163 instructions is reversed from the Intel syntax.
1164
1165 @node i386-LWP
1166 @section AMD's Lightweight Profiling Instructions
1167
1168 @cindex LWP, i386
1169 @cindex LWP, x86-64
1170
1171 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1172 instruction set, available on AMD's Family 15h (Orochi) processors.
1173
1174 LWP enables applications to collect and manage performance data, and
1175 react to performance events. The collection of performance data
1176 requires no context switches. LWP runs in the context of a thread and
1177 so several counters can be used independently across multiple threads.
1178 LWP can be used in both 64-bit and legacy 32-bit modes.
1179
1180 For detailed information on the LWP instruction set, see the
1181 @cite{AMD Lightweight Profiling Specification} available at
1182 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1183
1184 @node i386-BMI
1185 @section Bit Manipulation Instructions
1186
1187 @cindex BMI, i386
1188 @cindex BMI, x86-64
1189
1190 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1191
1192 BMI instructions provide several instructions implementing individual
1193 bit manipulation operations such as isolation, masking, setting, or
1194 resetting.
1195
1196 @c Need to add a specification citation here when available.
1197
1198 @node i386-TBM
1199 @section AMD's Trailing Bit Manipulation Instructions
1200
1201 @cindex TBM, i386
1202 @cindex TBM, x86-64
1203
1204 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1205 instruction set, available on AMD's BDVER2 processors (Trinity and
1206 Viperfish).
1207
1208 TBM instructions provide instructions implementing individual bit
1209 manipulation operations such as isolating, masking, setting, resetting,
1210 complementing, and operations on trailing zeros and ones.
1211
1212 @c Need to add a specification citation here when available.
1213
1214 @node i386-16bit
1215 @section Writing 16-bit Code
1216
1217 @cindex i386 16-bit code
1218 @cindex 16-bit code, i386
1219 @cindex real-mode code, i386
1220 @cindex @code{code16gcc} directive, i386
1221 @cindex @code{code16} directive, i386
1222 @cindex @code{code32} directive, i386
1223 @cindex @code{code64} directive, i386
1224 @cindex @code{code64} directive, x86-64
1225 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1226 or 64-bit x86-64 code depending on the default configuration,
1227 it also supports writing code to run in real mode or in 16-bit protected
1228 mode code segments. To do this, put a @samp{.code16} or
1229 @samp{.code16gcc} directive before the assembly language instructions to
1230 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1231 32-bit code with the @samp{.code32} directive or 64-bit code with the
1232 @samp{.code64} directive.
1233
1234 @samp{.code16gcc} provides experimental support for generating 16-bit
1235 code from gcc, and differs from @samp{.code16} in that @samp{call},
1236 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1237 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1238 default to 32-bit size. This is so that the stack pointer is
1239 manipulated in the same way over function calls, allowing access to
1240 function parameters at the same stack offsets as in 32-bit mode.
1241 @samp{.code16gcc} also automatically adds address size prefixes where
1242 necessary to use the 32-bit addressing modes that gcc generates.
1243
1244 The code which @code{@value{AS}} generates in 16-bit mode will not
1245 necessarily run on a 16-bit pre-80386 processor. To write code that
1246 runs on such a processor, you must refrain from using @emph{any} 32-bit
1247 constructs which require @code{@value{AS}} to output address or operand
1248 size prefixes.
1249
1250 Note that writing 16-bit code instructions by explicitly specifying a
1251 prefix or an instruction mnemonic suffix within a 32-bit code section
1252 generates different machine instructions than those generated for a
1253 16-bit code segment. In a 32-bit code section, the following code
1254 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1255 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1256
1257 @smallexample
1258 pushw $4
1259 @end smallexample
1260
1261 The same code in a 16-bit code section would generate the machine
1262 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1263 is correct since the processor default operand size is assumed to be 16
1264 bits in a 16-bit code section.
1265
1266 @node i386-Arch
1267 @section Specifying CPU Architecture
1268
1269 @cindex arch directive, i386
1270 @cindex i386 arch directive
1271 @cindex arch directive, x86-64
1272 @cindex x86-64 arch directive
1273
1274 @code{@value{AS}} may be told to assemble for a particular CPU
1275 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1276 directive enables a warning when gas detects an instruction that is not
1277 supported on the CPU specified. The choices for @var{cpu_type} are:
1278
1279 @multitable @columnfractions .20 .20 .20 .20
1280 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1281 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1282 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1283 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1284 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1285 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1286 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1287 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1288 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1289 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1290 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1291 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1292 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1293 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1294 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1295 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1296 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1297 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1298 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1299 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1300 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1301 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1302 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1303 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1304 @item @samp{.avx512_bitalg}
1305 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1306 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1307 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1308 @item @samp{.movdiri} @tab @samp{.movdir64b}
1309 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1310 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1311 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1312 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1313 @end multitable
1314
1315 Apart from the warning, there are only two other effects on
1316 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1317 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1318 will automatically use a two byte opcode sequence. The larger three
1319 byte opcode sequence is used on the 486 (and when no architecture is
1320 specified) because it executes faster on the 486. Note that you can
1321 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1322 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1323 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1324 conditional jumps will be promoted when necessary to a two instruction
1325 sequence consisting of a conditional jump of the opposite sense around
1326 an unconditional jump to the target.
1327
1328 Following the CPU architecture (but not a sub-architecture, which are those
1329 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1330 control automatic promotion of conditional jumps. @samp{jumps} is the
1331 default, and enables jump promotion; All external jumps will be of the long
1332 variety, and file-local jumps will be promoted as necessary.
1333 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1334 byte offset jumps, and warns about file-local conditional jumps that
1335 @code{@value{AS}} promotes.
1336 Unconditional jumps are treated as for @samp{jumps}.
1337
1338 For example
1339
1340 @smallexample
1341 .arch i8086,nojumps
1342 @end smallexample
1343
1344 @node i386-Bugs
1345 @section AT&T Syntax bugs
1346
1347 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1348 assemblers, generate floating point instructions with reversed source
1349 and destination registers in certain cases. Unfortunately, gcc and
1350 possibly many other programs use this reversed syntax, so we're stuck
1351 with it.
1352
1353 For example
1354
1355 @smallexample
1356 fsub %st,%st(3)
1357 @end smallexample
1358 @noindent
1359 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1360 than the expected @samp{%st(3) - %st}. This happens with all the
1361 non-commutative arithmetic floating point operations with two register
1362 operands where the source register is @samp{%st} and the destination
1363 register is @samp{%st(i)}.
1364
1365 @node i386-Notes
1366 @section Notes
1367
1368 @cindex i386 @code{mul}, @code{imul} instructions
1369 @cindex @code{mul} instruction, i386
1370 @cindex @code{imul} instruction, i386
1371 @cindex @code{mul} instruction, x86-64
1372 @cindex @code{imul} instruction, x86-64
1373 There is some trickery concerning the @samp{mul} and @samp{imul}
1374 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1375 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1376 for @samp{imul}) can be output only in the one operand form. Thus,
1377 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1378 the expanding multiply would clobber the @samp{%edx} register, and this
1379 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1380 64-bit product in @samp{%edx:%eax}.
1381
1382 We have added a two operand form of @samp{imul} when the first operand
1383 is an immediate mode expression and the second operand is a register.
1384 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1385 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1386 $69, %eax, %eax}.
1387
This page took 0.091535 seconds and 3 git commands to generate.