f0189ccb443f8f36543fb8ad859bfbe3f4986891
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{ssse3},
155 @code{sse4.1},
156 @code{sse4.2},
157 @code{sse4},
158 @code{nosse},
159 @code{nosse2},
160 @code{nosse3},
161 @code{nossse3},
162 @code{nosse4.1},
163 @code{nosse4.2},
164 @code{nosse4},
165 @code{avx},
166 @code{avx2},
167 @code{noavx},
168 @code{noavx2},
169 @code{adx},
170 @code{rdseed},
171 @code{prfchw},
172 @code{smap},
173 @code{mpx},
174 @code{sha},
175 @code{rdpid},
176 @code{ptwrite},
177 @code{cet},
178 @code{gfni},
179 @code{vaes},
180 @code{vpclmulqdq},
181 @code{prefetchwt1},
182 @code{clflushopt},
183 @code{se1},
184 @code{clwb},
185 @code{movdiri},
186 @code{movdir64b},
187 @code{enqcmd},
188 @code{avx512f},
189 @code{avx512cd},
190 @code{avx512er},
191 @code{avx512pf},
192 @code{avx512vl},
193 @code{avx512bw},
194 @code{avx512dq},
195 @code{avx512ifma},
196 @code{avx512vbmi},
197 @code{avx512_4fmaps},
198 @code{avx512_4vnniw},
199 @code{avx512_vpopcntdq},
200 @code{avx512_vbmi2},
201 @code{avx512_vnni},
202 @code{avx512_bitalg},
203 @code{avx512_bf16},
204 @code{noavx512f},
205 @code{noavx512cd},
206 @code{noavx512er},
207 @code{noavx512pf},
208 @code{noavx512vl},
209 @code{noavx512bw},
210 @code{noavx512dq},
211 @code{noavx512ifma},
212 @code{noavx512vbmi},
213 @code{noavx512_4fmaps},
214 @code{noavx512_4vnniw},
215 @code{noavx512_vpopcntdq},
216 @code{noavx512_vbmi2},
217 @code{noavx512_vnni},
218 @code{noavx512_bitalg},
219 @code{noavx512_vp2intersect},
220 @code{noavx512_bf16},
221 @code{noenqcmd},
222 @code{vmx},
223 @code{vmfunc},
224 @code{smx},
225 @code{xsave},
226 @code{xsaveopt},
227 @code{xsavec},
228 @code{xsaves},
229 @code{aes},
230 @code{pclmul},
231 @code{fsgsbase},
232 @code{rdrnd},
233 @code{f16c},
234 @code{bmi2},
235 @code{fma},
236 @code{movbe},
237 @code{ept},
238 @code{lzcnt},
239 @code{hle},
240 @code{rtm},
241 @code{invpcid},
242 @code{clflush},
243 @code{mwaitx},
244 @code{clzero},
245 @code{wbnoinvd},
246 @code{pconfig},
247 @code{waitpkg},
248 @code{cldemote},
249 @code{rdpru},
250 @code{mcommit},
251 @code{lwp},
252 @code{fma4},
253 @code{xop},
254 @code{cx16},
255 @code{syscall},
256 @code{rdtscp},
257 @code{3dnow},
258 @code{3dnowa},
259 @code{sse4a},
260 @code{sse5},
261 @code{svme},
262 @code{abm} and
263 @code{padlock}.
264 Note that rather than extending a basic instruction set, the extension
265 mnemonics starting with @code{no} revoke the respective functionality.
266
267 When the @code{.arch} directive is used with @option{-march}, the
268 @code{.arch} directive will take precedent.
269
270 @cindex @samp{-mtune=} option, i386
271 @cindex @samp{-mtune=} option, x86-64
272 @item -mtune=@var{CPU}
273 This option specifies a processor to optimize for. When used in
274 conjunction with the @option{-march} option, only instructions
275 of the processor specified by the @option{-march} option will be
276 generated.
277
278 Valid @var{CPU} values are identical to the processor list of
279 @option{-march=@var{CPU}}.
280
281 @cindex @samp{-msse2avx} option, i386
282 @cindex @samp{-msse2avx} option, x86-64
283 @item -msse2avx
284 This option specifies that the assembler should encode SSE instructions
285 with VEX prefix.
286
287 @cindex @samp{-msse-check=} option, i386
288 @cindex @samp{-msse-check=} option, x86-64
289 @item -msse-check=@var{none}
290 @itemx -msse-check=@var{warning}
291 @itemx -msse-check=@var{error}
292 These options control if the assembler should check SSE instructions.
293 @option{-msse-check=@var{none}} will make the assembler not to check SSE
294 instructions, which is the default. @option{-msse-check=@var{warning}}
295 will make the assembler issue a warning for any SSE instruction.
296 @option{-msse-check=@var{error}} will make the assembler issue an error
297 for any SSE instruction.
298
299 @cindex @samp{-mavxscalar=} option, i386
300 @cindex @samp{-mavxscalar=} option, x86-64
301 @item -mavxscalar=@var{128}
302 @itemx -mavxscalar=@var{256}
303 These options control how the assembler should encode scalar AVX
304 instructions. @option{-mavxscalar=@var{128}} will encode scalar
305 AVX instructions with 128bit vector length, which is the default.
306 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307 with 256bit vector length.
308
309 WARNING: Don't use this for production code - due to CPU errata the
310 resulting code may not work on certain models.
311
312 @cindex @samp{-mvexwig=} option, i386
313 @cindex @samp{-mvexwig=} option, x86-64
314 @item -mvexwig=@var{0}
315 @itemx -mvexwig=@var{1}
316 These options control how the assembler should encode VEX.W-ignored (WIG)
317 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318 instructions with vex.w = 0, which is the default.
319 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
320 vex.w = 1.
321
322 WARNING: Don't use this for production code - due to CPU errata the
323 resulting code may not work on certain models.
324
325 @cindex @samp{-mevexlig=} option, i386
326 @cindex @samp{-mevexlig=} option, x86-64
327 @item -mevexlig=@var{128}
328 @itemx -mevexlig=@var{256}
329 @itemx -mevexlig=@var{512}
330 These options control how the assembler should encode length-ignored
331 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332 EVEX instructions with 128bit vector length, which is the default.
333 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334 encode LIG EVEX instructions with 256bit and 512bit vector length,
335 respectively.
336
337 @cindex @samp{-mevexwig=} option, i386
338 @cindex @samp{-mevexwig=} option, x86-64
339 @item -mevexwig=@var{0}
340 @itemx -mevexwig=@var{1}
341 These options control how the assembler should encode w-ignored (WIG)
342 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343 EVEX instructions with evex.w = 0, which is the default.
344 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
345 evex.w = 1.
346
347 @cindex @samp{-mmnemonic=} option, i386
348 @cindex @samp{-mmnemonic=} option, x86-64
349 @item -mmnemonic=@var{att}
350 @itemx -mmnemonic=@var{intel}
351 This option specifies instruction mnemonic for matching instructions.
352 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
353 take precedent.
354
355 @cindex @samp{-msyntax=} option, i386
356 @cindex @samp{-msyntax=} option, x86-64
357 @item -msyntax=@var{att}
358 @itemx -msyntax=@var{intel}
359 This option specifies instruction syntax when processing instructions.
360 The @code{.att_syntax} and @code{.intel_syntax} directives will
361 take precedent.
362
363 @cindex @samp{-mnaked-reg} option, i386
364 @cindex @samp{-mnaked-reg} option, x86-64
365 @item -mnaked-reg
366 This option specifies that registers don't require a @samp{%} prefix.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
368
369 @cindex @samp{-madd-bnd-prefix} option, i386
370 @cindex @samp{-madd-bnd-prefix} option, x86-64
371 @item -madd-bnd-prefix
372 This option forces the assembler to add BND prefix to all branches, even
373 if such prefix was not explicitly specified in the source code.
374
375 @cindex @samp{-mshared} option, i386
376 @cindex @samp{-mshared} option, x86-64
377 @item -mno-shared
378 On ELF target, the assembler normally optimizes out non-PLT relocations
379 against defined non-weak global branch targets with default visibility.
380 The @samp{-mshared} option tells the assembler to generate code which
381 may go into a shared library where all non-weak global branch targets
382 with default visibility can be preempted. The resulting code is
383 slightly bigger. This option only affects the handling of branch
384 instructions.
385
386 @cindex @samp{-mbig-obj} option, x86-64
387 @item -mbig-obj
388 On x86-64 PE/COFF target this option forces the use of big object file
389 format, which allows more than 32768 sections.
390
391 @cindex @samp{-momit-lock-prefix=} option, i386
392 @cindex @samp{-momit-lock-prefix=} option, x86-64
393 @item -momit-lock-prefix=@var{no}
394 @itemx -momit-lock-prefix=@var{yes}
395 These options control how the assembler should encode lock prefix.
396 This option is intended as a workaround for processors, that fail on
397 lock prefix. This option can only be safely used with single-core,
398 single-thread computers
399 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
400 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
401 which is the default.
402
403 @cindex @samp{-mfence-as-lock-add=} option, i386
404 @cindex @samp{-mfence-as-lock-add=} option, x86-64
405 @item -mfence-as-lock-add=@var{no}
406 @itemx -mfence-as-lock-add=@var{yes}
407 These options control how the assembler should encode lfence, mfence and
408 sfence.
409 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
410 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
411 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
412 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
413 sfence as usual, which is the default.
414
415 @cindex @samp{-mrelax-relocations=} option, i386
416 @cindex @samp{-mrelax-relocations=} option, x86-64
417 @item -mrelax-relocations=@var{no}
418 @itemx -mrelax-relocations=@var{yes}
419 These options control whether the assembler should generate relax
420 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
421 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
422 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
423 @option{-mrelax-relocations=@var{no}} will not generate relax
424 relocations. The default can be controlled by a configure option
425 @option{--enable-x86-relax-relocations}.
426
427 @cindex @samp{-malign-branch-boundary=} option, i386
428 @cindex @samp{-malign-branch-boundary=} option, x86-64
429 @item -malign-branch-boundary=@var{NUM}
430 This option controls how the assembler should align branches with segment
431 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
432 no less than 16. Branches will be aligned within @var{NUM} byte
433 boundary. @option{-malign-branch-boundary=0}, which is the default,
434 doesn't align branches.
435
436 @cindex @samp{-malign-branch=} option, i386
437 @cindex @samp{-malign-branch=} option, x86-64
438 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
439 This option specifies types of branches to align. @var{TYPE} is
440 combination of @samp{jcc}, which aligns conditional jumps,
441 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
442 which aligns unconditional jumps, @samp{call} which aligns calls,
443 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
444 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
445
446 @cindex @samp{-malign-branch-prefix-size=} option, i386
447 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
448 @item -malign-branch-prefix-size=@var{NUM}
449 This option specifies the maximum number of prefixes on an instruction
450 to align branches. @var{NUM} should be between 0 and 5. The default
451 @var{NUM} is 5.
452
453 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
454 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
455 @item -mbranches-within-32B-boundaries
456 This option aligns conditional jumps, fused conditional jumps and
457 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
458 on an instruction. It is equivalent to
459 @option{-malign-branch-boundary=32}
460 @option{-malign-branch=jcc+fused+jmp}
461 @option{-malign-branch-prefix-size=5}.
462 The default doesn't align branches.
463
464 @cindex @samp{-mx86-used-note=} option, i386
465 @cindex @samp{-mx86-used-note=} option, x86-64
466 @item -mx86-used-note=@var{no}
467 @itemx -mx86-used-note=@var{yes}
468 These options control whether the assembler should generate
469 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
470 GNU property notes. The default can be controlled by the
471 @option{--enable-x86-used-note} configure option.
472
473 @cindex @samp{-mevexrcig=} option, i386
474 @cindex @samp{-mevexrcig=} option, x86-64
475 @item -mevexrcig=@var{rne}
476 @itemx -mevexrcig=@var{rd}
477 @itemx -mevexrcig=@var{ru}
478 @itemx -mevexrcig=@var{rz}
479 These options control how the assembler should encode SAE-only
480 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
481 of EVEX instruction with 00, which is the default.
482 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
483 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
484 with 01, 10 and 11 RC bits, respectively.
485
486 @cindex @samp{-mamd64} option, x86-64
487 @cindex @samp{-mintel64} option, x86-64
488 @item -mamd64
489 @itemx -mintel64
490 This option specifies that the assembler should accept only AMD64 or
491 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
492 only and AMD64 ISAs.
493
494 @cindex @samp{-O0} option, i386
495 @cindex @samp{-O0} option, x86-64
496 @cindex @samp{-O} option, i386
497 @cindex @samp{-O} option, x86-64
498 @cindex @samp{-O1} option, i386
499 @cindex @samp{-O1} option, x86-64
500 @cindex @samp{-O2} option, i386
501 @cindex @samp{-O2} option, x86-64
502 @cindex @samp{-Os} option, i386
503 @cindex @samp{-Os} option, x86-64
504 @item -O0 | -O | -O1 | -O2 | -Os
505 Optimize instruction encoding with smaller instruction size. @samp{-O}
506 and @samp{-O1} encode 64-bit register load instructions with 64-bit
507 immediate as 32-bit register load instructions with 31-bit or 32-bits
508 immediates, encode 64-bit register clearing instructions with 32-bit
509 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
510 register clearing instructions with 128-bit VEX vector register
511 clearing instructions, encode 128-bit/256-bit EVEX vector
512 register load/store instructions with VEX vector register load/store
513 instructions, and encode 128-bit/256-bit EVEX packed integer logical
514 instructions with 128-bit/256-bit VEX packed integer logical.
515
516 @samp{-O2} includes @samp{-O1} optimization plus encodes
517 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
518 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
519 instructions with commutative source operands will also have their
520 source operands swapped if this allows using the 2-byte VEX prefix form
521 instead of the 3-byte one. Certain forms of AND as well as OR with the
522 same (register) operand specified twice will also be changed to TEST.
523
524 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
525 and 64-bit register tests with immediate as 8-bit register test with
526 immediate. @samp{-O0} turns off this optimization.
527
528 @end table
529 @c man end
530
531 @node i386-Directives
532 @section x86 specific Directives
533
534 @cindex machine directives, x86
535 @cindex x86 machine directives
536 @table @code
537
538 @cindex @code{lcomm} directive, COFF
539 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
540 Reserve @var{length} (an absolute expression) bytes for a local common
541 denoted by @var{symbol}. The section and value of @var{symbol} are
542 those of the new local common. The addresses are allocated in the bss
543 section, so that at run-time the bytes start off zeroed. Since
544 @var{symbol} is not declared global, it is normally not visible to
545 @code{@value{LD}}. The optional third parameter, @var{alignment},
546 specifies the desired alignment of the symbol in the bss section.
547
548 This directive is only available for COFF based x86 targets.
549
550 @cindex @code{largecomm} directive, ELF
551 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
552 This directive behaves in the same way as the @code{comm} directive
553 except that the data is placed into the @var{.lbss} section instead of
554 the @var{.bss} section @ref{Comm}.
555
556 The directive is intended to be used for data which requires a large
557 amount of space, and it is only available for ELF based x86_64
558 targets.
559
560 @cindex @code{value} directive
561 @item .value @var{expression} [, @var{expression}]
562 This directive behaves in the same way as the @code{.short} directive,
563 taking a series of comma separated expressions and storing them as
564 two-byte wide values into the current section.
565
566 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
567
568 @end table
569
570 @node i386-Syntax
571 @section i386 Syntactical Considerations
572 @menu
573 * i386-Variations:: AT&T Syntax versus Intel Syntax
574 * i386-Chars:: Special Characters
575 @end menu
576
577 @node i386-Variations
578 @subsection AT&T Syntax versus Intel Syntax
579
580 @cindex i386 intel_syntax pseudo op
581 @cindex intel_syntax pseudo op, i386
582 @cindex i386 att_syntax pseudo op
583 @cindex att_syntax pseudo op, i386
584 @cindex i386 syntax compatibility
585 @cindex syntax compatibility, i386
586 @cindex x86-64 intel_syntax pseudo op
587 @cindex intel_syntax pseudo op, x86-64
588 @cindex x86-64 att_syntax pseudo op
589 @cindex att_syntax pseudo op, x86-64
590 @cindex x86-64 syntax compatibility
591 @cindex syntax compatibility, x86-64
592
593 @code{@value{AS}} now supports assembly using Intel assembler syntax.
594 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
595 back to the usual AT&T mode for compatibility with the output of
596 @code{@value{GCC}}. Either of these directives may have an optional
597 argument, @code{prefix}, or @code{noprefix} specifying whether registers
598 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
599 different from Intel syntax. We mention these differences because
600 almost all 80386 documents use Intel syntax. Notable differences
601 between the two syntaxes are:
602
603 @cindex immediate operands, i386
604 @cindex i386 immediate operands
605 @cindex register operands, i386
606 @cindex i386 register operands
607 @cindex jump/call operands, i386
608 @cindex i386 jump/call operands
609 @cindex operand delimiters, i386
610
611 @cindex immediate operands, x86-64
612 @cindex x86-64 immediate operands
613 @cindex register operands, x86-64
614 @cindex x86-64 register operands
615 @cindex jump/call operands, x86-64
616 @cindex x86-64 jump/call operands
617 @cindex operand delimiters, x86-64
618 @itemize @bullet
619 @item
620 AT&T immediate operands are preceded by @samp{$}; Intel immediate
621 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
622 AT&T register operands are preceded by @samp{%}; Intel register operands
623 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
624 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
625
626 @cindex i386 source, destination operands
627 @cindex source, destination operands; i386
628 @cindex x86-64 source, destination operands
629 @cindex source, destination operands; x86-64
630 @item
631 AT&T and Intel syntax use the opposite order for source and destination
632 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
633 @samp{source, dest} convention is maintained for compatibility with
634 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
635 instructions with 2 immediate operands, such as the @samp{enter}
636 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
637
638 @cindex mnemonic suffixes, i386
639 @cindex sizes operands, i386
640 @cindex i386 size suffixes
641 @cindex mnemonic suffixes, x86-64
642 @cindex sizes operands, x86-64
643 @cindex x86-64 size suffixes
644 @item
645 In AT&T syntax the size of memory operands is determined from the last
646 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
647 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
648 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
649 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
650 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
651 no other way to disambiguate an instruction. Intel syntax accomplishes this by
652 prefixing memory operands (@emph{not} the instruction mnemonics) with
653 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
654 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
655 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
656 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
657 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
658
659 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
660 instruction with the 64-bit displacement or immediate operand.
661
662 @cindex return instructions, i386
663 @cindex i386 jump, call, return
664 @cindex return instructions, x86-64
665 @cindex x86-64 jump, call, return
666 @item
667 Immediate form long jumps and calls are
668 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
669 Intel syntax is
670 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
671 instruction
672 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
673 @samp{ret far @var{stack-adjust}}.
674
675 @cindex sections, i386
676 @cindex i386 sections
677 @cindex sections, x86-64
678 @cindex x86-64 sections
679 @item
680 The AT&T assembler does not provide support for multiple section
681 programs. Unix style systems expect all programs to be single sections.
682 @end itemize
683
684 @node i386-Chars
685 @subsection Special Characters
686
687 @cindex line comment character, i386
688 @cindex i386 line comment character
689 The presence of a @samp{#} appearing anywhere on a line indicates the
690 start of a comment that extends to the end of that line.
691
692 If a @samp{#} appears as the first character of a line then the whole
693 line is treated as a comment, but in this case the line can also be a
694 logical line number directive (@pxref{Comments}) or a preprocessor
695 control command (@pxref{Preprocessing}).
696
697 If the @option{--divide} command-line option has not been specified
698 then the @samp{/} character appearing anywhere on a line also
699 introduces a line comment.
700
701 @cindex line separator, i386
702 @cindex statement separator, i386
703 @cindex i386 line separator
704 The @samp{;} character can be used to separate statements on the same
705 line.
706
707 @node i386-Mnemonics
708 @section i386-Mnemonics
709 @subsection Instruction Naming
710
711 @cindex i386 instruction naming
712 @cindex instruction naming, i386
713 @cindex x86-64 instruction naming
714 @cindex instruction naming, x86-64
715
716 Instruction mnemonics are suffixed with one character modifiers which
717 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
718 and @samp{q} specify byte, word, long and quadruple word operands. If
719 no suffix is specified by an instruction then @code{@value{AS}} tries to
720 fill in the missing suffix based on the destination register operand
721 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
722 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
723 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
724 assembler which assumes that a missing mnemonic suffix implies long
725 operand size. (This incompatibility does not affect compiler output
726 since compilers always explicitly specify the mnemonic suffix.)
727
728 When there is no sizing suffix and no (suitable) register operands to
729 deduce the size of memory operands, with a few exceptions and where long
730 operand size is possible in the first place, operand size will default
731 to long in 32- and 64-bit modes. Similarly it will default to short in
732 16-bit mode. Noteworthy exceptions are
733
734 @itemize @bullet
735 @item
736 Instructions with an implicit on-stack operand as well as branches,
737 which default to quad in 64-bit mode.
738
739 @item
740 Sign- and zero-extending moves, which default to byte size source
741 operands.
742
743 @item
744 Floating point insns with integer operands, which default to short (for
745 perhaps historical reasons).
746
747 @item
748 CRC32 with a 64-bit destination, which defaults to a quad source
749 operand.
750
751 @end itemize
752
753 Almost all instructions have the same names in AT&T and Intel format.
754 There are a few exceptions. The sign extend and zero extend
755 instructions need two sizes to specify them. They need a size to
756 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
757 is accomplished by using two instruction mnemonic suffixes in AT&T
758 syntax. Base names for sign extend and zero extend are
759 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
760 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
761 are tacked on to this base name, the @emph{from} suffix before the
762 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
763 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
764 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
765 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
766 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
767 quadruple word).
768
769 @cindex encoding options, i386
770 @cindex encoding options, x86-64
771
772 Different encoding options can be specified via pseudo prefixes:
773
774 @itemize @bullet
775 @item
776 @samp{@{disp8@}} -- prefer 8-bit displacement.
777
778 @item
779 @samp{@{disp32@}} -- prefer 32-bit displacement.
780
781 @item
782 @samp{@{load@}} -- prefer load-form instruction.
783
784 @item
785 @samp{@{store@}} -- prefer store-form instruction.
786
787 @item
788 @samp{@{vex@}} -- encode with VEX prefix.
789
790 @item
791 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
792
793 @item
794 @samp{@{evex@}} -- encode with EVEX prefix.
795
796 @item
797 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
798 instructions (x86-64 only). Note that this differs from the @samp{rex}
799 prefix which generates REX prefix unconditionally.
800
801 @item
802 @samp{@{nooptimize@}} -- disable instruction size optimization.
803 @end itemize
804
805 @cindex conversion instructions, i386
806 @cindex i386 conversion instructions
807 @cindex conversion instructions, x86-64
808 @cindex x86-64 conversion instructions
809 The Intel-syntax conversion instructions
810
811 @itemize @bullet
812 @item
813 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
814
815 @item
816 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
817
818 @item
819 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
820
821 @item
822 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
823
824 @item
825 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
826 (x86-64 only),
827
828 @item
829 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
830 @samp{%rdx:%rax} (x86-64 only),
831 @end itemize
832
833 @noindent
834 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
835 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
836 instructions.
837
838 @cindex jump instructions, i386
839 @cindex call instructions, i386
840 @cindex jump instructions, x86-64
841 @cindex call instructions, x86-64
842 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
843 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
844 convention.
845
846 @subsection AT&T Mnemonic versus Intel Mnemonic
847
848 @cindex i386 mnemonic compatibility
849 @cindex mnemonic compatibility, i386
850
851 @code{@value{AS}} supports assembly using Intel mnemonic.
852 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
853 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
854 syntax for compatibility with the output of @code{@value{GCC}}.
855 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
856 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
857 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
858 assembler with different mnemonics from those in Intel IA32 specification.
859 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
860
861 @itemize @bullet
862 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
863 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
864 destination register with both AT&T and Intel mnemonics.
865 @end itemize
866
867 @node i386-Regs
868 @section Register Naming
869
870 @cindex i386 registers
871 @cindex registers, i386
872 @cindex x86-64 registers
873 @cindex registers, x86-64
874 Register operands are always prefixed with @samp{%}. The 80386 registers
875 consist of
876
877 @itemize @bullet
878 @item
879 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
880 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
881 frame pointer), and @samp{%esp} (the stack pointer).
882
883 @item
884 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
885 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
886
887 @item
888 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
889 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
890 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
891 @samp{%cx}, and @samp{%dx})
892
893 @item
894 the 6 section registers @samp{%cs} (code section), @samp{%ds}
895 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
896 and @samp{%gs}.
897
898 @item
899 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
900 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
901
902 @item
903 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
904 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
905
906 @item
907 the 2 test registers @samp{%tr6} and @samp{%tr7}.
908
909 @item
910 the 8 floating point register stack @samp{%st} or equivalently
911 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
912 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
913 These registers are overloaded by 8 MMX registers @samp{%mm0},
914 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
915 @samp{%mm6} and @samp{%mm7}.
916
917 @item
918 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
919 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
920 @end itemize
921
922 The AMD x86-64 architecture extends the register set by:
923
924 @itemize @bullet
925 @item
926 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
927 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
928 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
929 pointer)
930
931 @item
932 the 8 extended registers @samp{%r8}--@samp{%r15}.
933
934 @item
935 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
936
937 @item
938 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
939
940 @item
941 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
942
943 @item
944 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
945
946 @item
947 the 8 debug registers: @samp{%db8}--@samp{%db15}.
948
949 @item
950 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
951 @end itemize
952
953 With the AVX extensions more registers were made available:
954
955 @itemize @bullet
956
957 @item
958 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
959 available in 32-bit mode). The bottom 128 bits are overlaid with the
960 @samp{xmm0}--@samp{xmm15} registers.
961
962 @end itemize
963
964 The AVX2 extensions made in 64-bit mode more registers available:
965
966 @itemize @bullet
967
968 @item
969 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
970 registers @samp{%ymm16}--@samp{%ymm31}.
971
972 @end itemize
973
974 The AVX512 extensions added the following registers:
975
976 @itemize @bullet
977
978 @item
979 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
980 available in 32-bit mode). The bottom 128 bits are overlaid with the
981 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
982 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
983
984 @item
985 the 8 mask registers @samp{%k0}--@samp{%k7}.
986
987 @end itemize
988
989 @node i386-Prefixes
990 @section Instruction Prefixes
991
992 @cindex i386 instruction prefixes
993 @cindex instruction prefixes, i386
994 @cindex prefixes, i386
995 Instruction prefixes are used to modify the following instruction. They
996 are used to repeat string instructions, to provide section overrides, to
997 perform bus lock operations, and to change operand and address sizes.
998 (Most instructions that normally operate on 32-bit operands will use
999 16-bit operands if the instruction has an ``operand size'' prefix.)
1000 Instruction prefixes are best written on the same line as the instruction
1001 they act upon. For example, the @samp{scas} (scan string) instruction is
1002 repeated with:
1003
1004 @smallexample
1005 repne scas %es:(%edi),%al
1006 @end smallexample
1007
1008 You may also place prefixes on the lines immediately preceding the
1009 instruction, but this circumvents checks that @code{@value{AS}} does
1010 with prefixes, and will not work with all prefixes.
1011
1012 Here is a list of instruction prefixes:
1013
1014 @cindex section override prefixes, i386
1015 @itemize @bullet
1016 @item
1017 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1018 @samp{fs}, @samp{gs}. These are automatically added by specifying
1019 using the @var{section}:@var{memory-operand} form for memory references.
1020
1021 @cindex size prefixes, i386
1022 @item
1023 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1024 change 32-bit operands/addresses into 16-bit operands/addresses,
1025 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1026 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1027 @emph{must} appear on the same line of code as the instruction they
1028 modify. For example, in a 16-bit @code{.code16} section, you might
1029 write:
1030
1031 @smallexample
1032 addr32 jmpl *(%ebx)
1033 @end smallexample
1034
1035 @cindex bus lock prefixes, i386
1036 @cindex inhibiting interrupts, i386
1037 @item
1038 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1039 the instruction it precedes. (This is only valid with certain
1040 instructions; see a 80386 manual for details).
1041
1042 @cindex coprocessor wait, i386
1043 @item
1044 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1045 complete the current instruction. This should never be needed for the
1046 80386/80387 combination.
1047
1048 @cindex repeat prefixes, i386
1049 @item
1050 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1051 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1052 times if the current address size is 16-bits).
1053 @cindex REX prefixes, i386
1054 @item
1055 The @samp{rex} family of prefixes is used by x86-64 to encode
1056 extensions to i386 instruction set. The @samp{rex} prefix has four
1057 bits --- an operand size overwrite (@code{64}) used to change operand size
1058 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1059 register set.
1060
1061 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1062 instruction emits @samp{rex} prefix with all the bits set. By omitting
1063 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1064 prefixes as well. Normally, there is no need to write the prefixes
1065 explicitly, since gas will automatically generate them based on the
1066 instruction operands.
1067 @end itemize
1068
1069 @node i386-Memory
1070 @section Memory References
1071
1072 @cindex i386 memory references
1073 @cindex memory references, i386
1074 @cindex x86-64 memory references
1075 @cindex memory references, x86-64
1076 An Intel syntax indirect memory reference of the form
1077
1078 @smallexample
1079 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1080 @end smallexample
1081
1082 @noindent
1083 is translated into the AT&T syntax
1084
1085 @smallexample
1086 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1087 @end smallexample
1088
1089 @noindent
1090 where @var{base} and @var{index} are the optional 32-bit base and
1091 index registers, @var{disp} is the optional displacement, and
1092 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1093 to calculate the address of the operand. If no @var{scale} is
1094 specified, @var{scale} is taken to be 1. @var{section} specifies the
1095 optional section register for the memory operand, and may override the
1096 default section register (see a 80386 manual for section register
1097 defaults). Note that section overrides in AT&T syntax @emph{must}
1098 be preceded by a @samp{%}. If you specify a section override which
1099 coincides with the default section register, @code{@value{AS}} does @emph{not}
1100 output any section register override prefixes to assemble the given
1101 instruction. Thus, section overrides can be specified to emphasize which
1102 section register is used for a given memory operand.
1103
1104 Here are some examples of Intel and AT&T style memory references:
1105
1106 @table @asis
1107 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1108 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1109 missing, and the default section is used (@samp{%ss} for addressing with
1110 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1111
1112 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1113 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1114 @samp{foo}. All other fields are missing. The section register here
1115 defaults to @samp{%ds}.
1116
1117 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1118 This uses the value pointed to by @samp{foo} as a memory operand.
1119 Note that @var{base} and @var{index} are both missing, but there is only
1120 @emph{one} @samp{,}. This is a syntactic exception.
1121
1122 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1123 This selects the contents of the variable @samp{foo} with section
1124 register @var{section} being @samp{%gs}.
1125 @end table
1126
1127 Absolute (as opposed to PC relative) call and jump operands must be
1128 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1129 always chooses PC relative addressing for jump/call labels.
1130
1131 Any instruction that has a memory operand, but no register operand,
1132 @emph{must} specify its size (byte, word, long, or quadruple) with an
1133 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1134 respectively).
1135
1136 The x86-64 architecture adds an RIP (instruction pointer relative)
1137 addressing. This addressing mode is specified by using @samp{rip} as a
1138 base register. Only constant offsets are valid. For example:
1139
1140 @table @asis
1141 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1142 Points to the address 1234 bytes past the end of the current
1143 instruction.
1144
1145 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1146 Points to the @code{symbol} in RIP relative way, this is shorter than
1147 the default absolute addressing.
1148 @end table
1149
1150 Other addressing modes remain unchanged in x86-64 architecture, except
1151 registers used are 64-bit instead of 32-bit.
1152
1153 @node i386-Jumps
1154 @section Handling of Jump Instructions
1155
1156 @cindex jump optimization, i386
1157 @cindex i386 jump optimization
1158 @cindex jump optimization, x86-64
1159 @cindex x86-64 jump optimization
1160 Jump instructions are always optimized to use the smallest possible
1161 displacements. This is accomplished by using byte (8-bit) displacement
1162 jumps whenever the target is sufficiently close. If a byte displacement
1163 is insufficient a long displacement is used. We do not support
1164 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1165 instruction with the @samp{data16} instruction prefix), since the 80386
1166 insists upon masking @samp{%eip} to 16 bits after the word displacement
1167 is added. (See also @pxref{i386-Arch})
1168
1169 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1170 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1171 displacements, so that if you use these instructions (@code{@value{GCC}} does
1172 not use them) you may get an error message (and incorrect code). The AT&T
1173 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1174 to
1175
1176 @smallexample
1177 jcxz cx_zero
1178 jmp cx_nonzero
1179 cx_zero: jmp foo
1180 cx_nonzero:
1181 @end smallexample
1182
1183 @node i386-Float
1184 @section Floating Point
1185
1186 @cindex i386 floating point
1187 @cindex floating point, i386
1188 @cindex x86-64 floating point
1189 @cindex floating point, x86-64
1190 All 80387 floating point types except packed BCD are supported.
1191 (BCD support may be added without much difficulty). These data
1192 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1193 double (64-bit), and extended (80-bit) precision floating point.
1194 Each supported type has an instruction mnemonic suffix and a constructor
1195 associated with it. Instruction mnemonic suffixes specify the operand's
1196 data type. Constructors build these data types into memory.
1197
1198 @cindex @code{float} directive, i386
1199 @cindex @code{single} directive, i386
1200 @cindex @code{double} directive, i386
1201 @cindex @code{tfloat} directive, i386
1202 @cindex @code{float} directive, x86-64
1203 @cindex @code{single} directive, x86-64
1204 @cindex @code{double} directive, x86-64
1205 @cindex @code{tfloat} directive, x86-64
1206 @itemize @bullet
1207 @item
1208 Floating point constructors are @samp{.float} or @samp{.single},
1209 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1210 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1211 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1212 only supports this format via the @samp{fldt} (load 80-bit real to stack
1213 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1214
1215 @cindex @code{word} directive, i386
1216 @cindex @code{long} directive, i386
1217 @cindex @code{int} directive, i386
1218 @cindex @code{quad} directive, i386
1219 @cindex @code{word} directive, x86-64
1220 @cindex @code{long} directive, x86-64
1221 @cindex @code{int} directive, x86-64
1222 @cindex @code{quad} directive, x86-64
1223 @item
1224 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1225 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1226 corresponding instruction mnemonic suffixes are @samp{s} (single),
1227 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1228 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1229 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1230 stack) instructions.
1231 @end itemize
1232
1233 Register to register operations should not use instruction mnemonic suffixes.
1234 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1235 wrote @samp{fst %st, %st(1)}, since all register to register operations
1236 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1237 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1238 then stores the result in the 4 byte location @samp{mem})
1239
1240 @node i386-SIMD
1241 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1242
1243 @cindex MMX, i386
1244 @cindex 3DNow!, i386
1245 @cindex SIMD, i386
1246 @cindex MMX, x86-64
1247 @cindex 3DNow!, x86-64
1248 @cindex SIMD, x86-64
1249
1250 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1251 instructions for integer data), available on Intel's Pentium MMX
1252 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1253 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1254 instruction set (SIMD instructions for 32-bit floating point data)
1255 available on AMD's K6-2 processor and possibly others in the future.
1256
1257 Currently, @code{@value{AS}} does not support Intel's floating point
1258 SIMD, Katmai (KNI).
1259
1260 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1261 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1262 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1263 floating point values. The MMX registers cannot be used at the same time
1264 as the floating point stack.
1265
1266 See Intel and AMD documentation, keeping in mind that the operand order in
1267 instructions is reversed from the Intel syntax.
1268
1269 @node i386-LWP
1270 @section AMD's Lightweight Profiling Instructions
1271
1272 @cindex LWP, i386
1273 @cindex LWP, x86-64
1274
1275 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1276 instruction set, available on AMD's Family 15h (Orochi) processors.
1277
1278 LWP enables applications to collect and manage performance data, and
1279 react to performance events. The collection of performance data
1280 requires no context switches. LWP runs in the context of a thread and
1281 so several counters can be used independently across multiple threads.
1282 LWP can be used in both 64-bit and legacy 32-bit modes.
1283
1284 For detailed information on the LWP instruction set, see the
1285 @cite{AMD Lightweight Profiling Specification} available at
1286 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1287
1288 @node i386-BMI
1289 @section Bit Manipulation Instructions
1290
1291 @cindex BMI, i386
1292 @cindex BMI, x86-64
1293
1294 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1295
1296 BMI instructions provide several instructions implementing individual
1297 bit manipulation operations such as isolation, masking, setting, or
1298 resetting.
1299
1300 @c Need to add a specification citation here when available.
1301
1302 @node i386-TBM
1303 @section AMD's Trailing Bit Manipulation Instructions
1304
1305 @cindex TBM, i386
1306 @cindex TBM, x86-64
1307
1308 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1309 instruction set, available on AMD's BDVER2 processors (Trinity and
1310 Viperfish).
1311
1312 TBM instructions provide instructions implementing individual bit
1313 manipulation operations such as isolating, masking, setting, resetting,
1314 complementing, and operations on trailing zeros and ones.
1315
1316 @c Need to add a specification citation here when available.
1317
1318 @node i386-16bit
1319 @section Writing 16-bit Code
1320
1321 @cindex i386 16-bit code
1322 @cindex 16-bit code, i386
1323 @cindex real-mode code, i386
1324 @cindex @code{code16gcc} directive, i386
1325 @cindex @code{code16} directive, i386
1326 @cindex @code{code32} directive, i386
1327 @cindex @code{code64} directive, i386
1328 @cindex @code{code64} directive, x86-64
1329 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1330 or 64-bit x86-64 code depending on the default configuration,
1331 it also supports writing code to run in real mode or in 16-bit protected
1332 mode code segments. To do this, put a @samp{.code16} or
1333 @samp{.code16gcc} directive before the assembly language instructions to
1334 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1335 32-bit code with the @samp{.code32} directive or 64-bit code with the
1336 @samp{.code64} directive.
1337
1338 @samp{.code16gcc} provides experimental support for generating 16-bit
1339 code from gcc, and differs from @samp{.code16} in that @samp{call},
1340 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1341 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1342 default to 32-bit size. This is so that the stack pointer is
1343 manipulated in the same way over function calls, allowing access to
1344 function parameters at the same stack offsets as in 32-bit mode.
1345 @samp{.code16gcc} also automatically adds address size prefixes where
1346 necessary to use the 32-bit addressing modes that gcc generates.
1347
1348 The code which @code{@value{AS}} generates in 16-bit mode will not
1349 necessarily run on a 16-bit pre-80386 processor. To write code that
1350 runs on such a processor, you must refrain from using @emph{any} 32-bit
1351 constructs which require @code{@value{AS}} to output address or operand
1352 size prefixes.
1353
1354 Note that writing 16-bit code instructions by explicitly specifying a
1355 prefix or an instruction mnemonic suffix within a 32-bit code section
1356 generates different machine instructions than those generated for a
1357 16-bit code segment. In a 32-bit code section, the following code
1358 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1359 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1360
1361 @smallexample
1362 pushw $4
1363 @end smallexample
1364
1365 The same code in a 16-bit code section would generate the machine
1366 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1367 is correct since the processor default operand size is assumed to be 16
1368 bits in a 16-bit code section.
1369
1370 @node i386-Arch
1371 @section Specifying CPU Architecture
1372
1373 @cindex arch directive, i386
1374 @cindex i386 arch directive
1375 @cindex arch directive, x86-64
1376 @cindex x86-64 arch directive
1377
1378 @code{@value{AS}} may be told to assemble for a particular CPU
1379 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1380 directive enables a warning when gas detects an instruction that is not
1381 supported on the CPU specified. The choices for @var{cpu_type} are:
1382
1383 @multitable @columnfractions .20 .20 .20 .20
1384 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1385 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1386 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1387 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1388 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1389 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1390 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1391 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1392 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1393 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1394 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1395 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1396 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1397 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1398 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1399 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1400 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1401 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1402 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1403 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1404 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1405 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1406 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1407 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1408 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1409 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1410 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1411 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1412 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1413 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1414 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1415 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1416 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1417 @item @samp{.mcommit}
1418 @end multitable
1419
1420 Apart from the warning, there are only two other effects on
1421 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1422 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1423 will automatically use a two byte opcode sequence. The larger three
1424 byte opcode sequence is used on the 486 (and when no architecture is
1425 specified) because it executes faster on the 486. Note that you can
1426 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1427 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1428 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1429 conditional jumps will be promoted when necessary to a two instruction
1430 sequence consisting of a conditional jump of the opposite sense around
1431 an unconditional jump to the target.
1432
1433 Following the CPU architecture (but not a sub-architecture, which are those
1434 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1435 control automatic promotion of conditional jumps. @samp{jumps} is the
1436 default, and enables jump promotion; All external jumps will be of the long
1437 variety, and file-local jumps will be promoted as necessary.
1438 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1439 byte offset jumps, and warns about file-local conditional jumps that
1440 @code{@value{AS}} promotes.
1441 Unconditional jumps are treated as for @samp{jumps}.
1442
1443 For example
1444
1445 @smallexample
1446 .arch i8086,nojumps
1447 @end smallexample
1448
1449 @node i386-ISA
1450 @section AMD64 ISA vs. Intel64 ISA
1451
1452 There are some discrepancies between AMD64 and Intel64 ISAs.
1453
1454 @itemize @bullet
1455 @item For @samp{movsxd} with 16-bit destination register, AMD64
1456 supports 32-bit source operand and Intel64 supports 16-bit source
1457 operand.
1458 @end itemize
1459
1460 @node i386-Bugs
1461 @section AT&T Syntax bugs
1462
1463 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1464 assemblers, generate floating point instructions with reversed source
1465 and destination registers in certain cases. Unfortunately, gcc and
1466 possibly many other programs use this reversed syntax, so we're stuck
1467 with it.
1468
1469 For example
1470
1471 @smallexample
1472 fsub %st,%st(3)
1473 @end smallexample
1474 @noindent
1475 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1476 than the expected @samp{%st(3) - %st}. This happens with all the
1477 non-commutative arithmetic floating point operations with two register
1478 operands where the source register is @samp{%st} and the destination
1479 register is @samp{%st(i)}.
1480
1481 @node i386-Notes
1482 @section Notes
1483
1484 @cindex i386 @code{mul}, @code{imul} instructions
1485 @cindex @code{mul} instruction, i386
1486 @cindex @code{imul} instruction, i386
1487 @cindex @code{mul} instruction, x86-64
1488 @cindex @code{imul} instruction, x86-64
1489 There is some trickery concerning the @samp{mul} and @samp{imul}
1490 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1491 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1492 for @samp{imul}) can be output only in the one operand form. Thus,
1493 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1494 the expanding multiply would clobber the @samp{%edx} register, and this
1495 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1496 64-bit product in @samp{%edx:%eax}.
1497
1498 We have added a two operand form of @samp{imul} when the first operand
1499 is an immediate mode expression and the second operand is a register.
1500 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1501 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1502 $69, %eax, %eax}.
1503
This page took 0.089979 seconds and 3 git commands to generate.