Add support for AVX512BW instructions and their AVX512VL versions.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{bdver2},
121 @code{bdver3},
122 @code{bdver4},
123 @code{btver1},
124 @code{btver2},
125 @code{generic32} and
126 @code{generic64}.
127
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
132 @code{8087},
133 @code{287},
134 @code{387},
135 @code{no87},
136 @code{mmx},
137 @code{nommx},
138 @code{sse},
139 @code{sse2},
140 @code{sse3},
141 @code{ssse3},
142 @code{sse4.1},
143 @code{sse4.2},
144 @code{sse4},
145 @code{nosse},
146 @code{avx},
147 @code{avx2},
148 @code{adx},
149 @code{rdseed},
150 @code{prfchw},
151 @code{smap},
152 @code{mpx},
153 @code{sha},
154 @code{avx512f},
155 @code{avx512cd},
156 @code{avx512er},
157 @code{avx512pf},
158 @code{noavx},
159 @code{vmx},
160 @code{vmfunc},
161 @code{smx},
162 @code{xsave},
163 @code{xsaveopt},
164 @code{aes},
165 @code{pclmul},
166 @code{fsgsbase},
167 @code{rdrnd},
168 @code{f16c},
169 @code{bmi2},
170 @code{fma},
171 @code{movbe},
172 @code{ept},
173 @code{lzcnt},
174 @code{hle},
175 @code{rtm},
176 @code{invpcid},
177 @code{clflush},
178 @code{lwp},
179 @code{fma4},
180 @code{xop},
181 @code{cx16},
182 @code{syscall},
183 @code{rdtscp},
184 @code{3dnow},
185 @code{3dnowa},
186 @code{sse4a},
187 @code{sse5},
188 @code{svme},
189 @code{abm} and
190 @code{padlock}.
191 @code{avx512bw},
192 @code{avx512vl},
193 Note that rather than extending a basic instruction set, the extension
194 mnemonics starting with @code{no} revoke the respective functionality.
195
196 When the @code{.arch} directive is used with @option{-march}, the
197 @code{.arch} directive will take precedent.
198
199 @cindex @samp{-mtune=} option, i386
200 @cindex @samp{-mtune=} option, x86-64
201 @item -mtune=@var{CPU}
202 This option specifies a processor to optimize for. When used in
203 conjunction with the @option{-march} option, only instructions
204 of the processor specified by the @option{-march} option will be
205 generated.
206
207 Valid @var{CPU} values are identical to the processor list of
208 @option{-march=@var{CPU}}.
209
210 @cindex @samp{-msse2avx} option, i386
211 @cindex @samp{-msse2avx} option, x86-64
212 @item -msse2avx
213 This option specifies that the assembler should encode SSE instructions
214 with VEX prefix.
215
216 @cindex @samp{-msse-check=} option, i386
217 @cindex @samp{-msse-check=} option, x86-64
218 @item -msse-check=@var{none}
219 @itemx -msse-check=@var{warning}
220 @itemx -msse-check=@var{error}
221 These options control if the assembler should check SSE instructions.
222 @option{-msse-check=@var{none}} will make the assembler not to check SSE
223 instructions, which is the default. @option{-msse-check=@var{warning}}
224 will make the assembler issue a warning for any SSE instruction.
225 @option{-msse-check=@var{error}} will make the assembler issue an error
226 for any SSE instruction.
227
228 @cindex @samp{-mavxscalar=} option, i386
229 @cindex @samp{-mavxscalar=} option, x86-64
230 @item -mavxscalar=@var{128}
231 @itemx -mavxscalar=@var{256}
232 These options control how the assembler should encode scalar AVX
233 instructions. @option{-mavxscalar=@var{128}} will encode scalar
234 AVX instructions with 128bit vector length, which is the default.
235 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
236 with 256bit vector length.
237
238 @cindex @samp{-mevexlig=} option, i386
239 @cindex @samp{-mevexlig=} option, x86-64
240 @item -mevexlig=@var{128}
241 @itemx -mevexlig=@var{256}
242 @itemx -mevexlig=@var{512}
243 These options control how the assembler should encode length-ignored
244 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
245 EVEX instructions with 128bit vector length, which is the default.
246 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
247 encode LIG EVEX instructions with 256bit and 512bit vector length,
248 respectively.
249
250 @cindex @samp{-mevexwig=} option, i386
251 @cindex @samp{-mevexwig=} option, x86-64
252 @item -mevexwig=@var{0}
253 @itemx -mevexwig=@var{1}
254 These options control how the assembler should encode w-ignored (WIG)
255 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
256 EVEX instructions with evex.w = 0, which is the default.
257 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
258 evex.w = 1.
259
260 @cindex @samp{-mmnemonic=} option, i386
261 @cindex @samp{-mmnemonic=} option, x86-64
262 @item -mmnemonic=@var{att}
263 @itemx -mmnemonic=@var{intel}
264 This option specifies instruction mnemonic for matching instructions.
265 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
266 take precedent.
267
268 @cindex @samp{-msyntax=} option, i386
269 @cindex @samp{-msyntax=} option, x86-64
270 @item -msyntax=@var{att}
271 @itemx -msyntax=@var{intel}
272 This option specifies instruction syntax when processing instructions.
273 The @code{.att_syntax} and @code{.intel_syntax} directives will
274 take precedent.
275
276 @cindex @samp{-mnaked-reg} option, i386
277 @cindex @samp{-mnaked-reg} option, x86-64
278 @item -mnaked-reg
279 This opetion specifies that registers don't require a @samp{%} prefix.
280 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
281
282 @cindex @samp{-madd-bnd-prefix} option, i386
283 @cindex @samp{-madd-bnd-prefix} option, x86-64
284 @item -madd-bnd-prefix
285 This option forces the assembler to add BND prefix to all branches, even
286 if such prefix was not explicitly specified in the source code.
287
288 @cindex @samp{-mbig-obj} option, x86-64
289 @item -mbig-obj
290 On x86-64 PE/COFF target this option forces the use of big object file
291 format, which allows more than 32768 sections.
292
293 @end table
294 @c man end
295
296 @node i386-Directives
297 @section x86 specific Directives
298
299 @cindex machine directives, x86
300 @cindex x86 machine directives
301 @table @code
302
303 @cindex @code{lcomm} directive, COFF
304 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
305 Reserve @var{length} (an absolute expression) bytes for a local common
306 denoted by @var{symbol}. The section and value of @var{symbol} are
307 those of the new local common. The addresses are allocated in the bss
308 section, so that at run-time the bytes start off zeroed. Since
309 @var{symbol} is not declared global, it is normally not visible to
310 @code{@value{LD}}. The optional third parameter, @var{alignment},
311 specifies the desired alignment of the symbol in the bss section.
312
313 This directive is only available for COFF based x86 targets.
314
315 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
316 @c .largecomm
317
318 @end table
319
320 @node i386-Syntax
321 @section i386 Syntactical Considerations
322 @menu
323 * i386-Variations:: AT&T Syntax versus Intel Syntax
324 * i386-Chars:: Special Characters
325 @end menu
326
327 @node i386-Variations
328 @subsection AT&T Syntax versus Intel Syntax
329
330 @cindex i386 intel_syntax pseudo op
331 @cindex intel_syntax pseudo op, i386
332 @cindex i386 att_syntax pseudo op
333 @cindex att_syntax pseudo op, i386
334 @cindex i386 syntax compatibility
335 @cindex syntax compatibility, i386
336 @cindex x86-64 intel_syntax pseudo op
337 @cindex intel_syntax pseudo op, x86-64
338 @cindex x86-64 att_syntax pseudo op
339 @cindex att_syntax pseudo op, x86-64
340 @cindex x86-64 syntax compatibility
341 @cindex syntax compatibility, x86-64
342
343 @code{@value{AS}} now supports assembly using Intel assembler syntax.
344 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
345 back to the usual AT&T mode for compatibility with the output of
346 @code{@value{GCC}}. Either of these directives may have an optional
347 argument, @code{prefix}, or @code{noprefix} specifying whether registers
348 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
349 different from Intel syntax. We mention these differences because
350 almost all 80386 documents use Intel syntax. Notable differences
351 between the two syntaxes are:
352
353 @cindex immediate operands, i386
354 @cindex i386 immediate operands
355 @cindex register operands, i386
356 @cindex i386 register operands
357 @cindex jump/call operands, i386
358 @cindex i386 jump/call operands
359 @cindex operand delimiters, i386
360
361 @cindex immediate operands, x86-64
362 @cindex x86-64 immediate operands
363 @cindex register operands, x86-64
364 @cindex x86-64 register operands
365 @cindex jump/call operands, x86-64
366 @cindex x86-64 jump/call operands
367 @cindex operand delimiters, x86-64
368 @itemize @bullet
369 @item
370 AT&T immediate operands are preceded by @samp{$}; Intel immediate
371 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
372 AT&T register operands are preceded by @samp{%}; Intel register operands
373 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
374 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
375
376 @cindex i386 source, destination operands
377 @cindex source, destination operands; i386
378 @cindex x86-64 source, destination operands
379 @cindex source, destination operands; x86-64
380 @item
381 AT&T and Intel syntax use the opposite order for source and destination
382 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
383 @samp{source, dest} convention is maintained for compatibility with
384 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
385 instructions with 2 immediate operands, such as the @samp{enter}
386 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
387
388 @cindex mnemonic suffixes, i386
389 @cindex sizes operands, i386
390 @cindex i386 size suffixes
391 @cindex mnemonic suffixes, x86-64
392 @cindex sizes operands, x86-64
393 @cindex x86-64 size suffixes
394 @item
395 In AT&T syntax the size of memory operands is determined from the last
396 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
397 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
398 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
399 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
400 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
401 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
402 syntax.
403
404 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
405 instruction with the 64-bit displacement or immediate operand.
406
407 @cindex return instructions, i386
408 @cindex i386 jump, call, return
409 @cindex return instructions, x86-64
410 @cindex x86-64 jump, call, return
411 @item
412 Immediate form long jumps and calls are
413 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
414 Intel syntax is
415 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
416 instruction
417 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
418 @samp{ret far @var{stack-adjust}}.
419
420 @cindex sections, i386
421 @cindex i386 sections
422 @cindex sections, x86-64
423 @cindex x86-64 sections
424 @item
425 The AT&T assembler does not provide support for multiple section
426 programs. Unix style systems expect all programs to be single sections.
427 @end itemize
428
429 @node i386-Chars
430 @subsection Special Characters
431
432 @cindex line comment character, i386
433 @cindex i386 line comment character
434 The presence of a @samp{#} appearing anywhere on a line indicates the
435 start of a comment that extends to the end of that line.
436
437 If a @samp{#} appears as the first character of a line then the whole
438 line is treated as a comment, but in this case the line can also be a
439 logical line number directive (@pxref{Comments}) or a preprocessor
440 control command (@pxref{Preprocessing}).
441
442 If the @option{--divide} command line option has not been specified
443 then the @samp{/} character appearing anywhere on a line also
444 introduces a line comment.
445
446 @cindex line separator, i386
447 @cindex statement separator, i386
448 @cindex i386 line separator
449 The @samp{;} character can be used to separate statements on the same
450 line.
451
452 @node i386-Mnemonics
453 @section Instruction Naming
454
455 @cindex i386 instruction naming
456 @cindex instruction naming, i386
457 @cindex x86-64 instruction naming
458 @cindex instruction naming, x86-64
459
460 Instruction mnemonics are suffixed with one character modifiers which
461 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
462 and @samp{q} specify byte, word, long and quadruple word operands. If
463 no suffix is specified by an instruction then @code{@value{AS}} tries to
464 fill in the missing suffix based on the destination register operand
465 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
466 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
467 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
468 assembler which assumes that a missing mnemonic suffix implies long
469 operand size. (This incompatibility does not affect compiler output
470 since compilers always explicitly specify the mnemonic suffix.)
471
472 Almost all instructions have the same names in AT&T and Intel format.
473 There are a few exceptions. The sign extend and zero extend
474 instructions need two sizes to specify them. They need a size to
475 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
476 is accomplished by using two instruction mnemonic suffixes in AT&T
477 syntax. Base names for sign extend and zero extend are
478 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
479 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
480 are tacked on to this base name, the @emph{from} suffix before the
481 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
482 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
483 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
484 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
485 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
486 quadruple word).
487
488 @cindex encoding options, i386
489 @cindex encoding options, x86-64
490
491 Different encoding options can be specified via optional mnemonic
492 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
493 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
494 prefers 8bit or 32bit displacement in encoding.
495
496 @cindex conversion instructions, i386
497 @cindex i386 conversion instructions
498 @cindex conversion instructions, x86-64
499 @cindex x86-64 conversion instructions
500 The Intel-syntax conversion instructions
501
502 @itemize @bullet
503 @item
504 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
505
506 @item
507 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
508
509 @item
510 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
511
512 @item
513 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
514
515 @item
516 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
517 (x86-64 only),
518
519 @item
520 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
521 @samp{%rdx:%rax} (x86-64 only),
522 @end itemize
523
524 @noindent
525 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
526 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
527 instructions.
528
529 @cindex jump instructions, i386
530 @cindex call instructions, i386
531 @cindex jump instructions, x86-64
532 @cindex call instructions, x86-64
533 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
534 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
535 convention.
536
537 @section AT&T Mnemonic versus Intel Mnemonic
538
539 @cindex i386 mnemonic compatibility
540 @cindex mnemonic compatibility, i386
541
542 @code{@value{AS}} supports assembly using Intel mnemonic.
543 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
544 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
545 syntax for compatibility with the output of @code{@value{GCC}}.
546 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
547 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
548 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
549 assembler with different mnemonics from those in Intel IA32 specification.
550 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
551
552 @node i386-Regs
553 @section Register Naming
554
555 @cindex i386 registers
556 @cindex registers, i386
557 @cindex x86-64 registers
558 @cindex registers, x86-64
559 Register operands are always prefixed with @samp{%}. The 80386 registers
560 consist of
561
562 @itemize @bullet
563 @item
564 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
565 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
566 frame pointer), and @samp{%esp} (the stack pointer).
567
568 @item
569 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
570 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
571
572 @item
573 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
574 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
575 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
576 @samp{%cx}, and @samp{%dx})
577
578 @item
579 the 6 section registers @samp{%cs} (code section), @samp{%ds}
580 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
581 and @samp{%gs}.
582
583 @item
584 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
585 @samp{%cr3}.
586
587 @item
588 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
589 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
590
591 @item
592 the 2 test registers @samp{%tr6} and @samp{%tr7}.
593
594 @item
595 the 8 floating point register stack @samp{%st} or equivalently
596 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
597 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
598 These registers are overloaded by 8 MMX registers @samp{%mm0},
599 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
600 @samp{%mm6} and @samp{%mm7}.
601
602 @item
603 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
604 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
605 @end itemize
606
607 The AMD x86-64 architecture extends the register set by:
608
609 @itemize @bullet
610 @item
611 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
612 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
613 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
614 pointer)
615
616 @item
617 the 8 extended registers @samp{%r8}--@samp{%r15}.
618
619 @item
620 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
621
622 @item
623 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
624
625 @item
626 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
627
628 @item
629 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
630
631 @item
632 the 8 debug registers: @samp{%db8}--@samp{%db15}.
633
634 @item
635 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
636 @end itemize
637
638 @node i386-Prefixes
639 @section Instruction Prefixes
640
641 @cindex i386 instruction prefixes
642 @cindex instruction prefixes, i386
643 @cindex prefixes, i386
644 Instruction prefixes are used to modify the following instruction. They
645 are used to repeat string instructions, to provide section overrides, to
646 perform bus lock operations, and to change operand and address sizes.
647 (Most instructions that normally operate on 32-bit operands will use
648 16-bit operands if the instruction has an ``operand size'' prefix.)
649 Instruction prefixes are best written on the same line as the instruction
650 they act upon. For example, the @samp{scas} (scan string) instruction is
651 repeated with:
652
653 @smallexample
654 repne scas %es:(%edi),%al
655 @end smallexample
656
657 You may also place prefixes on the lines immediately preceding the
658 instruction, but this circumvents checks that @code{@value{AS}} does
659 with prefixes, and will not work with all prefixes.
660
661 Here is a list of instruction prefixes:
662
663 @cindex section override prefixes, i386
664 @itemize @bullet
665 @item
666 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
667 @samp{fs}, @samp{gs}. These are automatically added by specifying
668 using the @var{section}:@var{memory-operand} form for memory references.
669
670 @cindex size prefixes, i386
671 @item
672 Operand/Address size prefixes @samp{data16} and @samp{addr16}
673 change 32-bit operands/addresses into 16-bit operands/addresses,
674 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
675 @code{.code16} section) into 32-bit operands/addresses. These prefixes
676 @emph{must} appear on the same line of code as the instruction they
677 modify. For example, in a 16-bit @code{.code16} section, you might
678 write:
679
680 @smallexample
681 addr32 jmpl *(%ebx)
682 @end smallexample
683
684 @cindex bus lock prefixes, i386
685 @cindex inhibiting interrupts, i386
686 @item
687 The bus lock prefix @samp{lock} inhibits interrupts during execution of
688 the instruction it precedes. (This is only valid with certain
689 instructions; see a 80386 manual for details).
690
691 @cindex coprocessor wait, i386
692 @item
693 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
694 complete the current instruction. This should never be needed for the
695 80386/80387 combination.
696
697 @cindex repeat prefixes, i386
698 @item
699 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
700 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
701 times if the current address size is 16-bits).
702 @cindex REX prefixes, i386
703 @item
704 The @samp{rex} family of prefixes is used by x86-64 to encode
705 extensions to i386 instruction set. The @samp{rex} prefix has four
706 bits --- an operand size overwrite (@code{64}) used to change operand size
707 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
708 register set.
709
710 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
711 instruction emits @samp{rex} prefix with all the bits set. By omitting
712 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
713 prefixes as well. Normally, there is no need to write the prefixes
714 explicitly, since gas will automatically generate them based on the
715 instruction operands.
716 @end itemize
717
718 @node i386-Memory
719 @section Memory References
720
721 @cindex i386 memory references
722 @cindex memory references, i386
723 @cindex x86-64 memory references
724 @cindex memory references, x86-64
725 An Intel syntax indirect memory reference of the form
726
727 @smallexample
728 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
729 @end smallexample
730
731 @noindent
732 is translated into the AT&T syntax
733
734 @smallexample
735 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
736 @end smallexample
737
738 @noindent
739 where @var{base} and @var{index} are the optional 32-bit base and
740 index registers, @var{disp} is the optional displacement, and
741 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
742 to calculate the address of the operand. If no @var{scale} is
743 specified, @var{scale} is taken to be 1. @var{section} specifies the
744 optional section register for the memory operand, and may override the
745 default section register (see a 80386 manual for section register
746 defaults). Note that section overrides in AT&T syntax @emph{must}
747 be preceded by a @samp{%}. If you specify a section override which
748 coincides with the default section register, @code{@value{AS}} does @emph{not}
749 output any section register override prefixes to assemble the given
750 instruction. Thus, section overrides can be specified to emphasize which
751 section register is used for a given memory operand.
752
753 Here are some examples of Intel and AT&T style memory references:
754
755 @table @asis
756 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
757 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
758 missing, and the default section is used (@samp{%ss} for addressing with
759 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
760
761 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
762 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
763 @samp{foo}. All other fields are missing. The section register here
764 defaults to @samp{%ds}.
765
766 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
767 This uses the value pointed to by @samp{foo} as a memory operand.
768 Note that @var{base} and @var{index} are both missing, but there is only
769 @emph{one} @samp{,}. This is a syntactic exception.
770
771 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
772 This selects the contents of the variable @samp{foo} with section
773 register @var{section} being @samp{%gs}.
774 @end table
775
776 Absolute (as opposed to PC relative) call and jump operands must be
777 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
778 always chooses PC relative addressing for jump/call labels.
779
780 Any instruction that has a memory operand, but no register operand,
781 @emph{must} specify its size (byte, word, long, or quadruple) with an
782 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
783 respectively).
784
785 The x86-64 architecture adds an RIP (instruction pointer relative)
786 addressing. This addressing mode is specified by using @samp{rip} as a
787 base register. Only constant offsets are valid. For example:
788
789 @table @asis
790 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
791 Points to the address 1234 bytes past the end of the current
792 instruction.
793
794 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
795 Points to the @code{symbol} in RIP relative way, this is shorter than
796 the default absolute addressing.
797 @end table
798
799 Other addressing modes remain unchanged in x86-64 architecture, except
800 registers used are 64-bit instead of 32-bit.
801
802 @node i386-Jumps
803 @section Handling of Jump Instructions
804
805 @cindex jump optimization, i386
806 @cindex i386 jump optimization
807 @cindex jump optimization, x86-64
808 @cindex x86-64 jump optimization
809 Jump instructions are always optimized to use the smallest possible
810 displacements. This is accomplished by using byte (8-bit) displacement
811 jumps whenever the target is sufficiently close. If a byte displacement
812 is insufficient a long displacement is used. We do not support
813 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
814 instruction with the @samp{data16} instruction prefix), since the 80386
815 insists upon masking @samp{%eip} to 16 bits after the word displacement
816 is added. (See also @pxref{i386-Arch})
817
818 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
819 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
820 displacements, so that if you use these instructions (@code{@value{GCC}} does
821 not use them) you may get an error message (and incorrect code). The AT&T
822 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
823 to
824
825 @smallexample
826 jcxz cx_zero
827 jmp cx_nonzero
828 cx_zero: jmp foo
829 cx_nonzero:
830 @end smallexample
831
832 @node i386-Float
833 @section Floating Point
834
835 @cindex i386 floating point
836 @cindex floating point, i386
837 @cindex x86-64 floating point
838 @cindex floating point, x86-64
839 All 80387 floating point types except packed BCD are supported.
840 (BCD support may be added without much difficulty). These data
841 types are 16-, 32-, and 64- bit integers, and single (32-bit),
842 double (64-bit), and extended (80-bit) precision floating point.
843 Each supported type has an instruction mnemonic suffix and a constructor
844 associated with it. Instruction mnemonic suffixes specify the operand's
845 data type. Constructors build these data types into memory.
846
847 @cindex @code{float} directive, i386
848 @cindex @code{single} directive, i386
849 @cindex @code{double} directive, i386
850 @cindex @code{tfloat} directive, i386
851 @cindex @code{float} directive, x86-64
852 @cindex @code{single} directive, x86-64
853 @cindex @code{double} directive, x86-64
854 @cindex @code{tfloat} directive, x86-64
855 @itemize @bullet
856 @item
857 Floating point constructors are @samp{.float} or @samp{.single},
858 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
859 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
860 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
861 only supports this format via the @samp{fldt} (load 80-bit real to stack
862 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
863
864 @cindex @code{word} directive, i386
865 @cindex @code{long} directive, i386
866 @cindex @code{int} directive, i386
867 @cindex @code{quad} directive, i386
868 @cindex @code{word} directive, x86-64
869 @cindex @code{long} directive, x86-64
870 @cindex @code{int} directive, x86-64
871 @cindex @code{quad} directive, x86-64
872 @item
873 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
874 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
875 corresponding instruction mnemonic suffixes are @samp{s} (single),
876 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
877 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
878 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
879 stack) instructions.
880 @end itemize
881
882 Register to register operations should not use instruction mnemonic suffixes.
883 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
884 wrote @samp{fst %st, %st(1)}, since all register to register operations
885 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
886 which converts @samp{%st} from 80-bit to 64-bit floating point format,
887 then stores the result in the 4 byte location @samp{mem})
888
889 @node i386-SIMD
890 @section Intel's MMX and AMD's 3DNow! SIMD Operations
891
892 @cindex MMX, i386
893 @cindex 3DNow!, i386
894 @cindex SIMD, i386
895 @cindex MMX, x86-64
896 @cindex 3DNow!, x86-64
897 @cindex SIMD, x86-64
898
899 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
900 instructions for integer data), available on Intel's Pentium MMX
901 processors and Pentium II processors, AMD's K6 and K6-2 processors,
902 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
903 instruction set (SIMD instructions for 32-bit floating point data)
904 available on AMD's K6-2 processor and possibly others in the future.
905
906 Currently, @code{@value{AS}} does not support Intel's floating point
907 SIMD, Katmai (KNI).
908
909 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
910 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
911 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
912 floating point values. The MMX registers cannot be used at the same time
913 as the floating point stack.
914
915 See Intel and AMD documentation, keeping in mind that the operand order in
916 instructions is reversed from the Intel syntax.
917
918 @node i386-LWP
919 @section AMD's Lightweight Profiling Instructions
920
921 @cindex LWP, i386
922 @cindex LWP, x86-64
923
924 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
925 instruction set, available on AMD's Family 15h (Orochi) processors.
926
927 LWP enables applications to collect and manage performance data, and
928 react to performance events. The collection of performance data
929 requires no context switches. LWP runs in the context of a thread and
930 so several counters can be used independently across multiple threads.
931 LWP can be used in both 64-bit and legacy 32-bit modes.
932
933 For detailed information on the LWP instruction set, see the
934 @cite{AMD Lightweight Profiling Specification} available at
935 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
936
937 @node i386-BMI
938 @section Bit Manipulation Instructions
939
940 @cindex BMI, i386
941 @cindex BMI, x86-64
942
943 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
944
945 BMI instructions provide several instructions implementing individual
946 bit manipulation operations such as isolation, masking, setting, or
947 resetting.
948
949 @c Need to add a specification citation here when available.
950
951 @node i386-TBM
952 @section AMD's Trailing Bit Manipulation Instructions
953
954 @cindex TBM, i386
955 @cindex TBM, x86-64
956
957 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
958 instruction set, available on AMD's BDVER2 processors (Trinity and
959 Viperfish).
960
961 TBM instructions provide instructions implementing individual bit
962 manipulation operations such as isolating, masking, setting, resetting,
963 complementing, and operations on trailing zeros and ones.
964
965 @c Need to add a specification citation here when available.
966
967 @node i386-16bit
968 @section Writing 16-bit Code
969
970 @cindex i386 16-bit code
971 @cindex 16-bit code, i386
972 @cindex real-mode code, i386
973 @cindex @code{code16gcc} directive, i386
974 @cindex @code{code16} directive, i386
975 @cindex @code{code32} directive, i386
976 @cindex @code{code64} directive, i386
977 @cindex @code{code64} directive, x86-64
978 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
979 or 64-bit x86-64 code depending on the default configuration,
980 it also supports writing code to run in real mode or in 16-bit protected
981 mode code segments. To do this, put a @samp{.code16} or
982 @samp{.code16gcc} directive before the assembly language instructions to
983 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
984 32-bit code with the @samp{.code32} directive or 64-bit code with the
985 @samp{.code64} directive.
986
987 @samp{.code16gcc} provides experimental support for generating 16-bit
988 code from gcc, and differs from @samp{.code16} in that @samp{call},
989 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
990 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
991 default to 32-bit size. This is so that the stack pointer is
992 manipulated in the same way over function calls, allowing access to
993 function parameters at the same stack offsets as in 32-bit mode.
994 @samp{.code16gcc} also automatically adds address size prefixes where
995 necessary to use the 32-bit addressing modes that gcc generates.
996
997 The code which @code{@value{AS}} generates in 16-bit mode will not
998 necessarily run on a 16-bit pre-80386 processor. To write code that
999 runs on such a processor, you must refrain from using @emph{any} 32-bit
1000 constructs which require @code{@value{AS}} to output address or operand
1001 size prefixes.
1002
1003 Note that writing 16-bit code instructions by explicitly specifying a
1004 prefix or an instruction mnemonic suffix within a 32-bit code section
1005 generates different machine instructions than those generated for a
1006 16-bit code segment. In a 32-bit code section, the following code
1007 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1008 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1009
1010 @smallexample
1011 pushw $4
1012 @end smallexample
1013
1014 The same code in a 16-bit code section would generate the machine
1015 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1016 is correct since the processor default operand size is assumed to be 16
1017 bits in a 16-bit code section.
1018
1019 @node i386-Bugs
1020 @section AT&T Syntax bugs
1021
1022 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1023 assemblers, generate floating point instructions with reversed source
1024 and destination registers in certain cases. Unfortunately, gcc and
1025 possibly many other programs use this reversed syntax, so we're stuck
1026 with it.
1027
1028 For example
1029
1030 @smallexample
1031 fsub %st,%st(3)
1032 @end smallexample
1033 @noindent
1034 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1035 than the expected @samp{%st(3) - %st}. This happens with all the
1036 non-commutative arithmetic floating point operations with two register
1037 operands where the source register is @samp{%st} and the destination
1038 register is @samp{%st(i)}.
1039
1040 @node i386-Arch
1041 @section Specifying CPU Architecture
1042
1043 @cindex arch directive, i386
1044 @cindex i386 arch directive
1045 @cindex arch directive, x86-64
1046 @cindex x86-64 arch directive
1047
1048 @code{@value{AS}} may be told to assemble for a particular CPU
1049 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1050 directive enables a warning when gas detects an instruction that is not
1051 supported on the CPU specified. The choices for @var{cpu_type} are:
1052
1053 @multitable @columnfractions .20 .20 .20 .20
1054 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1055 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1056 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1057 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1058 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1059 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1060 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1061 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1062 @item @samp{generic32} @tab @samp{generic64}
1063 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1064 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1065 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1066 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1067 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1068 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1069 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1070 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1071 @item @samp{.smap} @tab @samp{.mpx}
1072 @item @samp{.smap} @tab @samp{.sha}
1073 @item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
1074 @item @samp{.smap} @tab @samp{.prefetchwt1}
1075 @item @samp{.smap} @tab @samp{.avx512vl} @tab @samp{.avx512bw}
1076 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1077 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1078 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1079 @item @samp{.padlock}
1080 @item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1081 @item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1082 @item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1083 @item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1084 @item @samp{.cx16} @tab @samp{.padlock}
1085 @end multitable
1086
1087 Apart from the warning, there are only two other effects on
1088 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1089 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1090 will automatically use a two byte opcode sequence. The larger three
1091 byte opcode sequence is used on the 486 (and when no architecture is
1092 specified) because it executes faster on the 486. Note that you can
1093 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1094 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1095 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1096 conditional jumps will be promoted when necessary to a two instruction
1097 sequence consisting of a conditional jump of the opposite sense around
1098 an unconditional jump to the target.
1099
1100 Following the CPU architecture (but not a sub-architecture, which are those
1101 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1102 control automatic promotion of conditional jumps. @samp{jumps} is the
1103 default, and enables jump promotion; All external jumps will be of the long
1104 variety, and file-local jumps will be promoted as necessary.
1105 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1106 byte offset jumps, and warns about file-local conditional jumps that
1107 @code{@value{AS}} promotes.
1108 Unconditional jumps are treated as for @samp{jumps}.
1109
1110 For example
1111
1112 @smallexample
1113 .arch i8086,nojumps
1114 @end smallexample
1115
1116 @node i386-Notes
1117 @section Notes
1118
1119 @cindex i386 @code{mul}, @code{imul} instructions
1120 @cindex @code{mul} instruction, i386
1121 @cindex @code{imul} instruction, i386
1122 @cindex @code{mul} instruction, x86-64
1123 @cindex @code{imul} instruction, x86-64
1124 There is some trickery concerning the @samp{mul} and @samp{imul}
1125 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1126 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1127 for @samp{imul}) can be output only in the one operand form. Thus,
1128 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1129 the expanding multiply would clobber the @samp{%edx} register, and this
1130 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1131 64-bit product in @samp{%edx:%eax}.
1132
1133 We have added a two operand form of @samp{imul} when the first operand
1134 is an immediate mode expression and the second operand is a register.
1135 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1136 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1137 $69, %eax, %eax}.
1138
This page took 0.072171 seconds and 5 git commands to generate.