Enable Intel AVX512_VBMI2 instructions.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{prefetchwt1},
172 @code{clflushopt},
173 @code{se1},
174 @code{clwb},
175 @code{avx512f},
176 @code{avx512cd},
177 @code{avx512er},
178 @code{avx512pf},
179 @code{avx512vl},
180 @code{avx512bw},
181 @code{avx512dq},
182 @code{avx512ifma},
183 @code{avx512vbmi},
184 @code{avx512_4fmaps},
185 @code{avx512_4vnniw},
186 @code{avx512_vpopcntdq},
187 @code{avx512_vbmi2},
188 @code{noavx512f},
189 @code{noavx512cd},
190 @code{noavx512er},
191 @code{noavx512pf},
192 @code{noavx512vl},
193 @code{noavx512bw},
194 @code{noavx512dq},
195 @code{noavx512ifma},
196 @code{noavx512vbmi},
197 @code{noavx512_4fmaps},
198 @code{noavx512_4vnniw},
199 @code{noavx512_vpopcntdq},
200 @code{noavx512_vbmi2},
201 @code{vmx},
202 @code{vmfunc},
203 @code{smx},
204 @code{xsave},
205 @code{xsaveopt},
206 @code{xsavec},
207 @code{xsaves},
208 @code{aes},
209 @code{pclmul},
210 @code{fsgsbase},
211 @code{rdrnd},
212 @code{f16c},
213 @code{bmi2},
214 @code{fma},
215 @code{movbe},
216 @code{ept},
217 @code{lzcnt},
218 @code{hle},
219 @code{rtm},
220 @code{invpcid},
221 @code{clflush},
222 @code{mwaitx},
223 @code{clzero},
224 @code{lwp},
225 @code{fma4},
226 @code{xop},
227 @code{cx16},
228 @code{syscall},
229 @code{rdtscp},
230 @code{3dnow},
231 @code{3dnowa},
232 @code{sse4a},
233 @code{sse5},
234 @code{svme},
235 @code{abm} and
236 @code{padlock}.
237 Note that rather than extending a basic instruction set, the extension
238 mnemonics starting with @code{no} revoke the respective functionality.
239
240 When the @code{.arch} directive is used with @option{-march}, the
241 @code{.arch} directive will take precedent.
242
243 @cindex @samp{-mtune=} option, i386
244 @cindex @samp{-mtune=} option, x86-64
245 @item -mtune=@var{CPU}
246 This option specifies a processor to optimize for. When used in
247 conjunction with the @option{-march} option, only instructions
248 of the processor specified by the @option{-march} option will be
249 generated.
250
251 Valid @var{CPU} values are identical to the processor list of
252 @option{-march=@var{CPU}}.
253
254 @cindex @samp{-msse2avx} option, i386
255 @cindex @samp{-msse2avx} option, x86-64
256 @item -msse2avx
257 This option specifies that the assembler should encode SSE instructions
258 with VEX prefix.
259
260 @cindex @samp{-msse-check=} option, i386
261 @cindex @samp{-msse-check=} option, x86-64
262 @item -msse-check=@var{none}
263 @itemx -msse-check=@var{warning}
264 @itemx -msse-check=@var{error}
265 These options control if the assembler should check SSE instructions.
266 @option{-msse-check=@var{none}} will make the assembler not to check SSE
267 instructions, which is the default. @option{-msse-check=@var{warning}}
268 will make the assembler issue a warning for any SSE instruction.
269 @option{-msse-check=@var{error}} will make the assembler issue an error
270 for any SSE instruction.
271
272 @cindex @samp{-mavxscalar=} option, i386
273 @cindex @samp{-mavxscalar=} option, x86-64
274 @item -mavxscalar=@var{128}
275 @itemx -mavxscalar=@var{256}
276 These options control how the assembler should encode scalar AVX
277 instructions. @option{-mavxscalar=@var{128}} will encode scalar
278 AVX instructions with 128bit vector length, which is the default.
279 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
280 with 256bit vector length.
281
282 @cindex @samp{-mevexlig=} option, i386
283 @cindex @samp{-mevexlig=} option, x86-64
284 @item -mevexlig=@var{128}
285 @itemx -mevexlig=@var{256}
286 @itemx -mevexlig=@var{512}
287 These options control how the assembler should encode length-ignored
288 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
289 EVEX instructions with 128bit vector length, which is the default.
290 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
291 encode LIG EVEX instructions with 256bit and 512bit vector length,
292 respectively.
293
294 @cindex @samp{-mevexwig=} option, i386
295 @cindex @samp{-mevexwig=} option, x86-64
296 @item -mevexwig=@var{0}
297 @itemx -mevexwig=@var{1}
298 These options control how the assembler should encode w-ignored (WIG)
299 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
300 EVEX instructions with evex.w = 0, which is the default.
301 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
302 evex.w = 1.
303
304 @cindex @samp{-mmnemonic=} option, i386
305 @cindex @samp{-mmnemonic=} option, x86-64
306 @item -mmnemonic=@var{att}
307 @itemx -mmnemonic=@var{intel}
308 This option specifies instruction mnemonic for matching instructions.
309 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
310 take precedent.
311
312 @cindex @samp{-msyntax=} option, i386
313 @cindex @samp{-msyntax=} option, x86-64
314 @item -msyntax=@var{att}
315 @itemx -msyntax=@var{intel}
316 This option specifies instruction syntax when processing instructions.
317 The @code{.att_syntax} and @code{.intel_syntax} directives will
318 take precedent.
319
320 @cindex @samp{-mnaked-reg} option, i386
321 @cindex @samp{-mnaked-reg} option, x86-64
322 @item -mnaked-reg
323 This option specifies that registers don't require a @samp{%} prefix.
324 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
325
326 @cindex @samp{-madd-bnd-prefix} option, i386
327 @cindex @samp{-madd-bnd-prefix} option, x86-64
328 @item -madd-bnd-prefix
329 This option forces the assembler to add BND prefix to all branches, even
330 if such prefix was not explicitly specified in the source code.
331
332 @cindex @samp{-mshared} option, i386
333 @cindex @samp{-mshared} option, x86-64
334 @item -mno-shared
335 On ELF target, the assembler normally optimizes out non-PLT relocations
336 against defined non-weak global branch targets with default visibility.
337 The @samp{-mshared} option tells the assembler to generate code which
338 may go into a shared library where all non-weak global branch targets
339 with default visibility can be preempted. The resulting code is
340 slightly bigger. This option only affects the handling of branch
341 instructions.
342
343 @cindex @samp{-mbig-obj} option, x86-64
344 @item -mbig-obj
345 On x86-64 PE/COFF target this option forces the use of big object file
346 format, which allows more than 32768 sections.
347
348 @cindex @samp{-momit-lock-prefix=} option, i386
349 @cindex @samp{-momit-lock-prefix=} option, x86-64
350 @item -momit-lock-prefix=@var{no}
351 @itemx -momit-lock-prefix=@var{yes}
352 These options control how the assembler should encode lock prefix.
353 This option is intended as a workaround for processors, that fail on
354 lock prefix. This option can only be safely used with single-core,
355 single-thread computers
356 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
357 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
358 which is the default.
359
360 @cindex @samp{-mfence-as-lock-add=} option, i386
361 @cindex @samp{-mfence-as-lock-add=} option, x86-64
362 @item -mfence-as-lock-add=@var{no}
363 @itemx -mfence-as-lock-add=@var{yes}
364 These options control how the assembler should encode lfence, mfence and
365 sfence.
366 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
367 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
368 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
369 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
370 sfence as usual, which is the default.
371
372 @cindex @samp{-mrelax-relocations=} option, i386
373 @cindex @samp{-mrelax-relocations=} option, x86-64
374 @item -mrelax-relocations=@var{no}
375 @itemx -mrelax-relocations=@var{yes}
376 These options control whether the assembler should generate relax
377 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
378 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
379 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
380 @option{-mrelax-relocations=@var{no}} will not generate relax
381 relocations. The default can be controlled by a configure option
382 @option{--enable-x86-relax-relocations}.
383
384 @cindex @samp{-mevexrcig=} option, i386
385 @cindex @samp{-mevexrcig=} option, x86-64
386 @item -mevexrcig=@var{rne}
387 @itemx -mevexrcig=@var{rd}
388 @itemx -mevexrcig=@var{ru}
389 @itemx -mevexrcig=@var{rz}
390 These options control how the assembler should encode SAE-only
391 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
392 of EVEX instruction with 00, which is the default.
393 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
394 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
395 with 01, 10 and 11 RC bits, respectively.
396
397 @cindex @samp{-mamd64} option, x86-64
398 @cindex @samp{-mintel64} option, x86-64
399 @item -mamd64
400 @itemx -mintel64
401 This option specifies that the assembler should accept only AMD64 or
402 Intel64 ISA in 64-bit mode. The default is to accept both.
403
404 @end table
405 @c man end
406
407 @node i386-Directives
408 @section x86 specific Directives
409
410 @cindex machine directives, x86
411 @cindex x86 machine directives
412 @table @code
413
414 @cindex @code{lcomm} directive, COFF
415 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
416 Reserve @var{length} (an absolute expression) bytes for a local common
417 denoted by @var{symbol}. The section and value of @var{symbol} are
418 those of the new local common. The addresses are allocated in the bss
419 section, so that at run-time the bytes start off zeroed. Since
420 @var{symbol} is not declared global, it is normally not visible to
421 @code{@value{LD}}. The optional third parameter, @var{alignment},
422 specifies the desired alignment of the symbol in the bss section.
423
424 This directive is only available for COFF based x86 targets.
425
426 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
427 @c .largecomm
428
429 @end table
430
431 @node i386-Syntax
432 @section i386 Syntactical Considerations
433 @menu
434 * i386-Variations:: AT&T Syntax versus Intel Syntax
435 * i386-Chars:: Special Characters
436 @end menu
437
438 @node i386-Variations
439 @subsection AT&T Syntax versus Intel Syntax
440
441 @cindex i386 intel_syntax pseudo op
442 @cindex intel_syntax pseudo op, i386
443 @cindex i386 att_syntax pseudo op
444 @cindex att_syntax pseudo op, i386
445 @cindex i386 syntax compatibility
446 @cindex syntax compatibility, i386
447 @cindex x86-64 intel_syntax pseudo op
448 @cindex intel_syntax pseudo op, x86-64
449 @cindex x86-64 att_syntax pseudo op
450 @cindex att_syntax pseudo op, x86-64
451 @cindex x86-64 syntax compatibility
452 @cindex syntax compatibility, x86-64
453
454 @code{@value{AS}} now supports assembly using Intel assembler syntax.
455 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
456 back to the usual AT&T mode for compatibility with the output of
457 @code{@value{GCC}}. Either of these directives may have an optional
458 argument, @code{prefix}, or @code{noprefix} specifying whether registers
459 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
460 different from Intel syntax. We mention these differences because
461 almost all 80386 documents use Intel syntax. Notable differences
462 between the two syntaxes are:
463
464 @cindex immediate operands, i386
465 @cindex i386 immediate operands
466 @cindex register operands, i386
467 @cindex i386 register operands
468 @cindex jump/call operands, i386
469 @cindex i386 jump/call operands
470 @cindex operand delimiters, i386
471
472 @cindex immediate operands, x86-64
473 @cindex x86-64 immediate operands
474 @cindex register operands, x86-64
475 @cindex x86-64 register operands
476 @cindex jump/call operands, x86-64
477 @cindex x86-64 jump/call operands
478 @cindex operand delimiters, x86-64
479 @itemize @bullet
480 @item
481 AT&T immediate operands are preceded by @samp{$}; Intel immediate
482 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
483 AT&T register operands are preceded by @samp{%}; Intel register operands
484 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
485 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
486
487 @cindex i386 source, destination operands
488 @cindex source, destination operands; i386
489 @cindex x86-64 source, destination operands
490 @cindex source, destination operands; x86-64
491 @item
492 AT&T and Intel syntax use the opposite order for source and destination
493 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
494 @samp{source, dest} convention is maintained for compatibility with
495 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
496 instructions with 2 immediate operands, such as the @samp{enter}
497 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
498
499 @cindex mnemonic suffixes, i386
500 @cindex sizes operands, i386
501 @cindex i386 size suffixes
502 @cindex mnemonic suffixes, x86-64
503 @cindex sizes operands, x86-64
504 @cindex x86-64 size suffixes
505 @item
506 In AT&T syntax the size of memory operands is determined from the last
507 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
508 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
509 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
510 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
511 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
512 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
513 syntax.
514
515 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
516 instruction with the 64-bit displacement or immediate operand.
517
518 @cindex return instructions, i386
519 @cindex i386 jump, call, return
520 @cindex return instructions, x86-64
521 @cindex x86-64 jump, call, return
522 @item
523 Immediate form long jumps and calls are
524 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
525 Intel syntax is
526 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
527 instruction
528 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
529 @samp{ret far @var{stack-adjust}}.
530
531 @cindex sections, i386
532 @cindex i386 sections
533 @cindex sections, x86-64
534 @cindex x86-64 sections
535 @item
536 The AT&T assembler does not provide support for multiple section
537 programs. Unix style systems expect all programs to be single sections.
538 @end itemize
539
540 @node i386-Chars
541 @subsection Special Characters
542
543 @cindex line comment character, i386
544 @cindex i386 line comment character
545 The presence of a @samp{#} appearing anywhere on a line indicates the
546 start of a comment that extends to the end of that line.
547
548 If a @samp{#} appears as the first character of a line then the whole
549 line is treated as a comment, but in this case the line can also be a
550 logical line number directive (@pxref{Comments}) or a preprocessor
551 control command (@pxref{Preprocessing}).
552
553 If the @option{--divide} command line option has not been specified
554 then the @samp{/} character appearing anywhere on a line also
555 introduces a line comment.
556
557 @cindex line separator, i386
558 @cindex statement separator, i386
559 @cindex i386 line separator
560 The @samp{;} character can be used to separate statements on the same
561 line.
562
563 @node i386-Mnemonics
564 @section i386-Mnemonics
565 @subsection Instruction Naming
566
567 @cindex i386 instruction naming
568 @cindex instruction naming, i386
569 @cindex x86-64 instruction naming
570 @cindex instruction naming, x86-64
571
572 Instruction mnemonics are suffixed with one character modifiers which
573 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
574 and @samp{q} specify byte, word, long and quadruple word operands. If
575 no suffix is specified by an instruction then @code{@value{AS}} tries to
576 fill in the missing suffix based on the destination register operand
577 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
578 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
579 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
580 assembler which assumes that a missing mnemonic suffix implies long
581 operand size. (This incompatibility does not affect compiler output
582 since compilers always explicitly specify the mnemonic suffix.)
583
584 Almost all instructions have the same names in AT&T and Intel format.
585 There are a few exceptions. The sign extend and zero extend
586 instructions need two sizes to specify them. They need a size to
587 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
588 is accomplished by using two instruction mnemonic suffixes in AT&T
589 syntax. Base names for sign extend and zero extend are
590 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
591 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
592 are tacked on to this base name, the @emph{from} suffix before the
593 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
594 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
595 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
596 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
597 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
598 quadruple word).
599
600 @cindex encoding options, i386
601 @cindex encoding options, x86-64
602
603 Different encoding options can be specified via pseudo prefixes:
604
605 @itemize @bullet
606 @item
607 @samp{@{disp8@}} -- prefer 8-bit displacement.
608
609 @item
610 @samp{@{disp32@}} -- prefer 32-bit displacement.
611
612 @item
613 @samp{@{load@}} -- prefer load-form instruction.
614
615 @item
616 @samp{@{store@}} -- prefer store-form instruction.
617
618 @item
619 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
620
621 @item
622 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
623
624 @item
625 @samp{@{evex@}} -- encode with EVEX prefix.
626 @end itemize
627
628 @cindex conversion instructions, i386
629 @cindex i386 conversion instructions
630 @cindex conversion instructions, x86-64
631 @cindex x86-64 conversion instructions
632 The Intel-syntax conversion instructions
633
634 @itemize @bullet
635 @item
636 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
637
638 @item
639 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
640
641 @item
642 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
643
644 @item
645 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
646
647 @item
648 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
649 (x86-64 only),
650
651 @item
652 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
653 @samp{%rdx:%rax} (x86-64 only),
654 @end itemize
655
656 @noindent
657 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
658 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
659 instructions.
660
661 @cindex jump instructions, i386
662 @cindex call instructions, i386
663 @cindex jump instructions, x86-64
664 @cindex call instructions, x86-64
665 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
666 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
667 convention.
668
669 @subsection AT&T Mnemonic versus Intel Mnemonic
670
671 @cindex i386 mnemonic compatibility
672 @cindex mnemonic compatibility, i386
673
674 @code{@value{AS}} supports assembly using Intel mnemonic.
675 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
676 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
677 syntax for compatibility with the output of @code{@value{GCC}}.
678 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
679 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
680 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
681 assembler with different mnemonics from those in Intel IA32 specification.
682 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
683
684 @node i386-Regs
685 @section Register Naming
686
687 @cindex i386 registers
688 @cindex registers, i386
689 @cindex x86-64 registers
690 @cindex registers, x86-64
691 Register operands are always prefixed with @samp{%}. The 80386 registers
692 consist of
693
694 @itemize @bullet
695 @item
696 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
697 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
698 frame pointer), and @samp{%esp} (the stack pointer).
699
700 @item
701 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
702 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
703
704 @item
705 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
706 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
707 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
708 @samp{%cx}, and @samp{%dx})
709
710 @item
711 the 6 section registers @samp{%cs} (code section), @samp{%ds}
712 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
713 and @samp{%gs}.
714
715 @item
716 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
717 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
718
719 @item
720 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
721 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
722
723 @item
724 the 2 test registers @samp{%tr6} and @samp{%tr7}.
725
726 @item
727 the 8 floating point register stack @samp{%st} or equivalently
728 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
729 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
730 These registers are overloaded by 8 MMX registers @samp{%mm0},
731 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
732 @samp{%mm6} and @samp{%mm7}.
733
734 @item
735 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
736 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
737 @end itemize
738
739 The AMD x86-64 architecture extends the register set by:
740
741 @itemize @bullet
742 @item
743 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
744 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
745 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
746 pointer)
747
748 @item
749 the 8 extended registers @samp{%r8}--@samp{%r15}.
750
751 @item
752 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
753
754 @item
755 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
756
757 @item
758 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
759
760 @item
761 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
762
763 @item
764 the 8 debug registers: @samp{%db8}--@samp{%db15}.
765
766 @item
767 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
768 @end itemize
769
770 With the AVX extensions more registers were made available:
771
772 @itemize @bullet
773
774 @item
775 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
776 available in 32-bit mode). The bottom 128 bits are overlaid with the
777 @samp{xmm0}--@samp{xmm15} registers.
778
779 @end itemize
780
781 The AVX2 extensions made in 64-bit mode more registers available:
782
783 @itemize @bullet
784
785 @item
786 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
787 registers @samp{%ymm16}--@samp{%ymm31}.
788
789 @end itemize
790
791 The AVX512 extensions added the following registers:
792
793 @itemize @bullet
794
795 @item
796 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
797 available in 32-bit mode). The bottom 128 bits are overlaid with the
798 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
799 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
800
801 @item
802 the 8 mask registers @samp{%k0}--@samp{%k7}.
803
804 @end itemize
805
806 @node i386-Prefixes
807 @section Instruction Prefixes
808
809 @cindex i386 instruction prefixes
810 @cindex instruction prefixes, i386
811 @cindex prefixes, i386
812 Instruction prefixes are used to modify the following instruction. They
813 are used to repeat string instructions, to provide section overrides, to
814 perform bus lock operations, and to change operand and address sizes.
815 (Most instructions that normally operate on 32-bit operands will use
816 16-bit operands if the instruction has an ``operand size'' prefix.)
817 Instruction prefixes are best written on the same line as the instruction
818 they act upon. For example, the @samp{scas} (scan string) instruction is
819 repeated with:
820
821 @smallexample
822 repne scas %es:(%edi),%al
823 @end smallexample
824
825 You may also place prefixes on the lines immediately preceding the
826 instruction, but this circumvents checks that @code{@value{AS}} does
827 with prefixes, and will not work with all prefixes.
828
829 Here is a list of instruction prefixes:
830
831 @cindex section override prefixes, i386
832 @itemize @bullet
833 @item
834 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
835 @samp{fs}, @samp{gs}. These are automatically added by specifying
836 using the @var{section}:@var{memory-operand} form for memory references.
837
838 @cindex size prefixes, i386
839 @item
840 Operand/Address size prefixes @samp{data16} and @samp{addr16}
841 change 32-bit operands/addresses into 16-bit operands/addresses,
842 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
843 @code{.code16} section) into 32-bit operands/addresses. These prefixes
844 @emph{must} appear on the same line of code as the instruction they
845 modify. For example, in a 16-bit @code{.code16} section, you might
846 write:
847
848 @smallexample
849 addr32 jmpl *(%ebx)
850 @end smallexample
851
852 @cindex bus lock prefixes, i386
853 @cindex inhibiting interrupts, i386
854 @item
855 The bus lock prefix @samp{lock} inhibits interrupts during execution of
856 the instruction it precedes. (This is only valid with certain
857 instructions; see a 80386 manual for details).
858
859 @cindex coprocessor wait, i386
860 @item
861 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
862 complete the current instruction. This should never be needed for the
863 80386/80387 combination.
864
865 @cindex repeat prefixes, i386
866 @item
867 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
868 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
869 times if the current address size is 16-bits).
870 @cindex REX prefixes, i386
871 @item
872 The @samp{rex} family of prefixes is used by x86-64 to encode
873 extensions to i386 instruction set. The @samp{rex} prefix has four
874 bits --- an operand size overwrite (@code{64}) used to change operand size
875 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
876 register set.
877
878 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
879 instruction emits @samp{rex} prefix with all the bits set. By omitting
880 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
881 prefixes as well. Normally, there is no need to write the prefixes
882 explicitly, since gas will automatically generate them based on the
883 instruction operands.
884 @end itemize
885
886 @node i386-Memory
887 @section Memory References
888
889 @cindex i386 memory references
890 @cindex memory references, i386
891 @cindex x86-64 memory references
892 @cindex memory references, x86-64
893 An Intel syntax indirect memory reference of the form
894
895 @smallexample
896 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
897 @end smallexample
898
899 @noindent
900 is translated into the AT&T syntax
901
902 @smallexample
903 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
904 @end smallexample
905
906 @noindent
907 where @var{base} and @var{index} are the optional 32-bit base and
908 index registers, @var{disp} is the optional displacement, and
909 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
910 to calculate the address of the operand. If no @var{scale} is
911 specified, @var{scale} is taken to be 1. @var{section} specifies the
912 optional section register for the memory operand, and may override the
913 default section register (see a 80386 manual for section register
914 defaults). Note that section overrides in AT&T syntax @emph{must}
915 be preceded by a @samp{%}. If you specify a section override which
916 coincides with the default section register, @code{@value{AS}} does @emph{not}
917 output any section register override prefixes to assemble the given
918 instruction. Thus, section overrides can be specified to emphasize which
919 section register is used for a given memory operand.
920
921 Here are some examples of Intel and AT&T style memory references:
922
923 @table @asis
924 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
925 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
926 missing, and the default section is used (@samp{%ss} for addressing with
927 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
928
929 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
930 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
931 @samp{foo}. All other fields are missing. The section register here
932 defaults to @samp{%ds}.
933
934 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
935 This uses the value pointed to by @samp{foo} as a memory operand.
936 Note that @var{base} and @var{index} are both missing, but there is only
937 @emph{one} @samp{,}. This is a syntactic exception.
938
939 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
940 This selects the contents of the variable @samp{foo} with section
941 register @var{section} being @samp{%gs}.
942 @end table
943
944 Absolute (as opposed to PC relative) call and jump operands must be
945 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
946 always chooses PC relative addressing for jump/call labels.
947
948 Any instruction that has a memory operand, but no register operand,
949 @emph{must} specify its size (byte, word, long, or quadruple) with an
950 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
951 respectively).
952
953 The x86-64 architecture adds an RIP (instruction pointer relative)
954 addressing. This addressing mode is specified by using @samp{rip} as a
955 base register. Only constant offsets are valid. For example:
956
957 @table @asis
958 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
959 Points to the address 1234 bytes past the end of the current
960 instruction.
961
962 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
963 Points to the @code{symbol} in RIP relative way, this is shorter than
964 the default absolute addressing.
965 @end table
966
967 Other addressing modes remain unchanged in x86-64 architecture, except
968 registers used are 64-bit instead of 32-bit.
969
970 @node i386-Jumps
971 @section Handling of Jump Instructions
972
973 @cindex jump optimization, i386
974 @cindex i386 jump optimization
975 @cindex jump optimization, x86-64
976 @cindex x86-64 jump optimization
977 Jump instructions are always optimized to use the smallest possible
978 displacements. This is accomplished by using byte (8-bit) displacement
979 jumps whenever the target is sufficiently close. If a byte displacement
980 is insufficient a long displacement is used. We do not support
981 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
982 instruction with the @samp{data16} instruction prefix), since the 80386
983 insists upon masking @samp{%eip} to 16 bits after the word displacement
984 is added. (See also @pxref{i386-Arch})
985
986 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
987 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
988 displacements, so that if you use these instructions (@code{@value{GCC}} does
989 not use them) you may get an error message (and incorrect code). The AT&T
990 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
991 to
992
993 @smallexample
994 jcxz cx_zero
995 jmp cx_nonzero
996 cx_zero: jmp foo
997 cx_nonzero:
998 @end smallexample
999
1000 @node i386-Float
1001 @section Floating Point
1002
1003 @cindex i386 floating point
1004 @cindex floating point, i386
1005 @cindex x86-64 floating point
1006 @cindex floating point, x86-64
1007 All 80387 floating point types except packed BCD are supported.
1008 (BCD support may be added without much difficulty). These data
1009 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1010 double (64-bit), and extended (80-bit) precision floating point.
1011 Each supported type has an instruction mnemonic suffix and a constructor
1012 associated with it. Instruction mnemonic suffixes specify the operand's
1013 data type. Constructors build these data types into memory.
1014
1015 @cindex @code{float} directive, i386
1016 @cindex @code{single} directive, i386
1017 @cindex @code{double} directive, i386
1018 @cindex @code{tfloat} directive, i386
1019 @cindex @code{float} directive, x86-64
1020 @cindex @code{single} directive, x86-64
1021 @cindex @code{double} directive, x86-64
1022 @cindex @code{tfloat} directive, x86-64
1023 @itemize @bullet
1024 @item
1025 Floating point constructors are @samp{.float} or @samp{.single},
1026 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1027 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1028 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1029 only supports this format via the @samp{fldt} (load 80-bit real to stack
1030 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1031
1032 @cindex @code{word} directive, i386
1033 @cindex @code{long} directive, i386
1034 @cindex @code{int} directive, i386
1035 @cindex @code{quad} directive, i386
1036 @cindex @code{word} directive, x86-64
1037 @cindex @code{long} directive, x86-64
1038 @cindex @code{int} directive, x86-64
1039 @cindex @code{quad} directive, x86-64
1040 @item
1041 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1042 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1043 corresponding instruction mnemonic suffixes are @samp{s} (single),
1044 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1045 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1046 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1047 stack) instructions.
1048 @end itemize
1049
1050 Register to register operations should not use instruction mnemonic suffixes.
1051 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1052 wrote @samp{fst %st, %st(1)}, since all register to register operations
1053 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1054 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1055 then stores the result in the 4 byte location @samp{mem})
1056
1057 @node i386-SIMD
1058 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1059
1060 @cindex MMX, i386
1061 @cindex 3DNow!, i386
1062 @cindex SIMD, i386
1063 @cindex MMX, x86-64
1064 @cindex 3DNow!, x86-64
1065 @cindex SIMD, x86-64
1066
1067 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1068 instructions for integer data), available on Intel's Pentium MMX
1069 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1070 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1071 instruction set (SIMD instructions for 32-bit floating point data)
1072 available on AMD's K6-2 processor and possibly others in the future.
1073
1074 Currently, @code{@value{AS}} does not support Intel's floating point
1075 SIMD, Katmai (KNI).
1076
1077 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1078 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1079 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1080 floating point values. The MMX registers cannot be used at the same time
1081 as the floating point stack.
1082
1083 See Intel and AMD documentation, keeping in mind that the operand order in
1084 instructions is reversed from the Intel syntax.
1085
1086 @node i386-LWP
1087 @section AMD's Lightweight Profiling Instructions
1088
1089 @cindex LWP, i386
1090 @cindex LWP, x86-64
1091
1092 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1093 instruction set, available on AMD's Family 15h (Orochi) processors.
1094
1095 LWP enables applications to collect and manage performance data, and
1096 react to performance events. The collection of performance data
1097 requires no context switches. LWP runs in the context of a thread and
1098 so several counters can be used independently across multiple threads.
1099 LWP can be used in both 64-bit and legacy 32-bit modes.
1100
1101 For detailed information on the LWP instruction set, see the
1102 @cite{AMD Lightweight Profiling Specification} available at
1103 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1104
1105 @node i386-BMI
1106 @section Bit Manipulation Instructions
1107
1108 @cindex BMI, i386
1109 @cindex BMI, x86-64
1110
1111 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1112
1113 BMI instructions provide several instructions implementing individual
1114 bit manipulation operations such as isolation, masking, setting, or
1115 resetting.
1116
1117 @c Need to add a specification citation here when available.
1118
1119 @node i386-TBM
1120 @section AMD's Trailing Bit Manipulation Instructions
1121
1122 @cindex TBM, i386
1123 @cindex TBM, x86-64
1124
1125 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1126 instruction set, available on AMD's BDVER2 processors (Trinity and
1127 Viperfish).
1128
1129 TBM instructions provide instructions implementing individual bit
1130 manipulation operations such as isolating, masking, setting, resetting,
1131 complementing, and operations on trailing zeros and ones.
1132
1133 @c Need to add a specification citation here when available.
1134
1135 @node i386-16bit
1136 @section Writing 16-bit Code
1137
1138 @cindex i386 16-bit code
1139 @cindex 16-bit code, i386
1140 @cindex real-mode code, i386
1141 @cindex @code{code16gcc} directive, i386
1142 @cindex @code{code16} directive, i386
1143 @cindex @code{code32} directive, i386
1144 @cindex @code{code64} directive, i386
1145 @cindex @code{code64} directive, x86-64
1146 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1147 or 64-bit x86-64 code depending on the default configuration,
1148 it also supports writing code to run in real mode or in 16-bit protected
1149 mode code segments. To do this, put a @samp{.code16} or
1150 @samp{.code16gcc} directive before the assembly language instructions to
1151 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1152 32-bit code with the @samp{.code32} directive or 64-bit code with the
1153 @samp{.code64} directive.
1154
1155 @samp{.code16gcc} provides experimental support for generating 16-bit
1156 code from gcc, and differs from @samp{.code16} in that @samp{call},
1157 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1158 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1159 default to 32-bit size. This is so that the stack pointer is
1160 manipulated in the same way over function calls, allowing access to
1161 function parameters at the same stack offsets as in 32-bit mode.
1162 @samp{.code16gcc} also automatically adds address size prefixes where
1163 necessary to use the 32-bit addressing modes that gcc generates.
1164
1165 The code which @code{@value{AS}} generates in 16-bit mode will not
1166 necessarily run on a 16-bit pre-80386 processor. To write code that
1167 runs on such a processor, you must refrain from using @emph{any} 32-bit
1168 constructs which require @code{@value{AS}} to output address or operand
1169 size prefixes.
1170
1171 Note that writing 16-bit code instructions by explicitly specifying a
1172 prefix or an instruction mnemonic suffix within a 32-bit code section
1173 generates different machine instructions than those generated for a
1174 16-bit code segment. In a 32-bit code section, the following code
1175 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1176 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1177
1178 @smallexample
1179 pushw $4
1180 @end smallexample
1181
1182 The same code in a 16-bit code section would generate the machine
1183 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1184 is correct since the processor default operand size is assumed to be 16
1185 bits in a 16-bit code section.
1186
1187 @node i386-Arch
1188 @section Specifying CPU Architecture
1189
1190 @cindex arch directive, i386
1191 @cindex i386 arch directive
1192 @cindex arch directive, x86-64
1193 @cindex x86-64 arch directive
1194
1195 @code{@value{AS}} may be told to assemble for a particular CPU
1196 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1197 directive enables a warning when gas detects an instruction that is not
1198 supported on the CPU specified. The choices for @var{cpu_type} are:
1199
1200 @multitable @columnfractions .20 .20 .20 .20
1201 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1202 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1203 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1204 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1205 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1206 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1207 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1208 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1209 @item @samp{generic32} @tab @samp{generic64}
1210 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1211 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1212 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1213 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1214 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1215 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1216 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1217 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1218 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1219 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1220 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1221 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1222 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1223 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2}
1224 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1225 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1226 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1227 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1228 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1229 @end multitable
1230
1231 Apart from the warning, there are only two other effects on
1232 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1233 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1234 will automatically use a two byte opcode sequence. The larger three
1235 byte opcode sequence is used on the 486 (and when no architecture is
1236 specified) because it executes faster on the 486. Note that you can
1237 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1238 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1239 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1240 conditional jumps will be promoted when necessary to a two instruction
1241 sequence consisting of a conditional jump of the opposite sense around
1242 an unconditional jump to the target.
1243
1244 Following the CPU architecture (but not a sub-architecture, which are those
1245 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1246 control automatic promotion of conditional jumps. @samp{jumps} is the
1247 default, and enables jump promotion; All external jumps will be of the long
1248 variety, and file-local jumps will be promoted as necessary.
1249 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1250 byte offset jumps, and warns about file-local conditional jumps that
1251 @code{@value{AS}} promotes.
1252 Unconditional jumps are treated as for @samp{jumps}.
1253
1254 For example
1255
1256 @smallexample
1257 .arch i8086,nojumps
1258 @end smallexample
1259
1260 @node i386-Bugs
1261 @section AT&T Syntax bugs
1262
1263 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1264 assemblers, generate floating point instructions with reversed source
1265 and destination registers in certain cases. Unfortunately, gcc and
1266 possibly many other programs use this reversed syntax, so we're stuck
1267 with it.
1268
1269 For example
1270
1271 @smallexample
1272 fsub %st,%st(3)
1273 @end smallexample
1274 @noindent
1275 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1276 than the expected @samp{%st(3) - %st}. This happens with all the
1277 non-commutative arithmetic floating point operations with two register
1278 operands where the source register is @samp{%st} and the destination
1279 register is @samp{%st(i)}.
1280
1281 @node i386-Notes
1282 @section Notes
1283
1284 @cindex i386 @code{mul}, @code{imul} instructions
1285 @cindex @code{mul} instruction, i386
1286 @cindex @code{imul} instruction, i386
1287 @cindex @code{mul} instruction, x86-64
1288 @cindex @code{imul} instruction, x86-64
1289 There is some trickery concerning the @samp{mul} and @samp{imul}
1290 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1291 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1292 for @samp{imul}) can be output only in the one operand form. Thus,
1293 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1294 the expanding multiply would clobber the @samp{%edx} register, and this
1295 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1296 64-bit product in @samp{%edx:%eax}.
1297
1298 We have added a two operand form of @samp{imul} when the first operand
1299 is an immediate mode expression and the second operand is a register.
1300 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1301 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1302 $69, %eax, %eax}.
1303
This page took 0.057577 seconds and 5 git commands to generate.