Replace CpuSSE3 with CpuCX16 for cmpxchg16b
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
7
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
17
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
21
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
25
26 @menu
27 * i386-Options:: Options
28 * i386-Directives:: X86 specific directives
29 * i386-Syntax:: Syntactical considerations
30 * i386-Mnemonics:: Instruction Naming
31 * i386-Regs:: Register Naming
32 * i386-Prefixes:: Instruction Prefixes
33 * i386-Memory:: Memory References
34 * i386-Jumps:: Handling of Jump Instructions
35 * i386-Float:: Floating Point
36 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP:: AMD's Lightweight Profiling Instructions
38 * i386-BMI:: Bit Manipulation Instruction
39 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
40 * i386-16bit:: Writing 16-bit Code
41 * i386-Arch:: Specifying an x86 CPU architecture
42 * i386-Bugs:: AT&T Syntax bugs
43 * i386-Notes:: Notes
44 @end menu
45
46 @node i386-Options
47 @section Options
48
49 @cindex options for i386
50 @cindex options for x86-64
51 @cindex i386 options
52 @cindex x86-64 options
53
54 The i386 version of @code{@value{AS}} has a few machine
55 dependent options:
56
57 @c man begin OPTIONS
58 @table @gcctabopt
59 @cindex @samp{--32} option, i386
60 @cindex @samp{--32} option, x86-64
61 @cindex @samp{--x32} option, i386
62 @cindex @samp{--x32} option, x86-64
63 @cindex @samp{--64} option, i386
64 @cindex @samp{--64} option, x86-64
65 @item --32 | --x32 | --64
66 Select the word size, either 32 bits or 64 bits. @samp{--32}
67 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 respectively.
70
71 These options are only available with the ELF object file format, and
72 require that the necessary BFD support has been included (on a 32-bit
73 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74 usage and use x86-64 as target platform).
75
76 @item -n
77 By default, x86 GAS replaces multiple nop instructions used for
78 alignment within code sections with multi-byte nop instructions such
79 as leal 0(%esi,1),%esi. This switch disables the optimization.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{btver1},
124 @code{btver2},
125 @code{generic32} and
126 @code{generic64}.
127
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
132 @code{8087},
133 @code{287},
134 @code{387},
135 @code{no87},
136 @code{mmx},
137 @code{nommx},
138 @code{sse},
139 @code{sse2},
140 @code{sse3},
141 @code{ssse3},
142 @code{sse4.1},
143 @code{sse4.2},
144 @code{sse4},
145 @code{nosse},
146 @code{avx},
147 @code{avx2},
148 @code{adx},
149 @code{rdseed},
150 @code{prfchw},
151 @code{noavx},
152 @code{vmx},
153 @code{vmfunc},
154 @code{smx},
155 @code{xsave},
156 @code{xsaveopt},
157 @code{aes},
158 @code{pclmul},
159 @code{fsgsbase},
160 @code{rdrnd},
161 @code{f16c},
162 @code{bmi2},
163 @code{fma},
164 @code{movbe},
165 @code{ept},
166 @code{lzcnt},
167 @code{hle},
168 @code{rtm},
169 @code{invpcid},
170 @code{clflush},
171 @code{lwp},
172 @code{fma4},
173 @code{xop},
174 @code{cx16},
175 @code{syscall},
176 @code{rdtscp},
177 @code{3dnow},
178 @code{3dnowa},
179 @code{sse4a},
180 @code{sse5},
181 @code{svme},
182 @code{abm} and
183 @code{padlock}.
184 Note that rather than extending a basic instruction set, the extension
185 mnemonics starting with @code{no} revoke the respective functionality.
186
187 When the @code{.arch} directive is used with @option{-march}, the
188 @code{.arch} directive will take precedent.
189
190 @cindex @samp{-mtune=} option, i386
191 @cindex @samp{-mtune=} option, x86-64
192 @item -mtune=@var{CPU}
193 This option specifies a processor to optimize for. When used in
194 conjunction with the @option{-march} option, only instructions
195 of the processor specified by the @option{-march} option will be
196 generated.
197
198 Valid @var{CPU} values are identical to the processor list of
199 @option{-march=@var{CPU}}.
200
201 @cindex @samp{-msse2avx} option, i386
202 @cindex @samp{-msse2avx} option, x86-64
203 @item -msse2avx
204 This option specifies that the assembler should encode SSE instructions
205 with VEX prefix.
206
207 @cindex @samp{-msse-check=} option, i386
208 @cindex @samp{-msse-check=} option, x86-64
209 @item -msse-check=@var{none}
210 @itemx -msse-check=@var{warning}
211 @itemx -msse-check=@var{error}
212 These options control if the assembler should check SSE intructions.
213 @option{-msse-check=@var{none}} will make the assembler not to check SSE
214 instructions, which is the default. @option{-msse-check=@var{warning}}
215 will make the assembler issue a warning for any SSE intruction.
216 @option{-msse-check=@var{error}} will make the assembler issue an error
217 for any SSE intruction.
218
219 @cindex @samp{-mavxscalar=} option, i386
220 @cindex @samp{-mavxscalar=} option, x86-64
221 @item -mavxscalar=@var{128}
222 @itemx -mavxscalar=@var{256}
223 These options control how the assembler should encode scalar AVX
224 instructions. @option{-mavxscalar=@var{128}} will encode scalar
225 AVX instructions with 128bit vector length, which is the default.
226 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
227 with 256bit vector length.
228
229 @cindex @samp{-mmnemonic=} option, i386
230 @cindex @samp{-mmnemonic=} option, x86-64
231 @item -mmnemonic=@var{att}
232 @itemx -mmnemonic=@var{intel}
233 This option specifies instruction mnemonic for matching instructions.
234 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
235 take precedent.
236
237 @cindex @samp{-msyntax=} option, i386
238 @cindex @samp{-msyntax=} option, x86-64
239 @item -msyntax=@var{att}
240 @itemx -msyntax=@var{intel}
241 This option specifies instruction syntax when processing instructions.
242 The @code{.att_syntax} and @code{.intel_syntax} directives will
243 take precedent.
244
245 @cindex @samp{-mnaked-reg} option, i386
246 @cindex @samp{-mnaked-reg} option, x86-64
247 @item -mnaked-reg
248 This opetion specifies that registers don't require a @samp{%} prefix.
249 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
250
251 @end table
252 @c man end
253
254 @node i386-Directives
255 @section x86 specific Directives
256
257 @cindex machine directives, x86
258 @cindex x86 machine directives
259 @table @code
260
261 @cindex @code{lcomm} directive, COFF
262 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
263 Reserve @var{length} (an absolute expression) bytes for a local common
264 denoted by @var{symbol}. The section and value of @var{symbol} are
265 those of the new local common. The addresses are allocated in the bss
266 section, so that at run-time the bytes start off zeroed. Since
267 @var{symbol} is not declared global, it is normally not visible to
268 @code{@value{LD}}. The optional third parameter, @var{alignment},
269 specifies the desired alignment of the symbol in the bss section.
270
271 This directive is only available for COFF based x86 targets.
272
273 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
274 @c .largecomm
275
276 @end table
277
278 @node i386-Syntax
279 @section i386 Syntactical Considerations
280 @menu
281 * i386-Variations:: AT&T Syntax versus Intel Syntax
282 * i386-Chars:: Special Characters
283 @end menu
284
285 @node i386-Variations
286 @subsection AT&T Syntax versus Intel Syntax
287
288 @cindex i386 intel_syntax pseudo op
289 @cindex intel_syntax pseudo op, i386
290 @cindex i386 att_syntax pseudo op
291 @cindex att_syntax pseudo op, i386
292 @cindex i386 syntax compatibility
293 @cindex syntax compatibility, i386
294 @cindex x86-64 intel_syntax pseudo op
295 @cindex intel_syntax pseudo op, x86-64
296 @cindex x86-64 att_syntax pseudo op
297 @cindex att_syntax pseudo op, x86-64
298 @cindex x86-64 syntax compatibility
299 @cindex syntax compatibility, x86-64
300
301 @code{@value{AS}} now supports assembly using Intel assembler syntax.
302 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
303 back to the usual AT&T mode for compatibility with the output of
304 @code{@value{GCC}}. Either of these directives may have an optional
305 argument, @code{prefix}, or @code{noprefix} specifying whether registers
306 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
307 different from Intel syntax. We mention these differences because
308 almost all 80386 documents use Intel syntax. Notable differences
309 between the two syntaxes are:
310
311 @cindex immediate operands, i386
312 @cindex i386 immediate operands
313 @cindex register operands, i386
314 @cindex i386 register operands
315 @cindex jump/call operands, i386
316 @cindex i386 jump/call operands
317 @cindex operand delimiters, i386
318
319 @cindex immediate operands, x86-64
320 @cindex x86-64 immediate operands
321 @cindex register operands, x86-64
322 @cindex x86-64 register operands
323 @cindex jump/call operands, x86-64
324 @cindex x86-64 jump/call operands
325 @cindex operand delimiters, x86-64
326 @itemize @bullet
327 @item
328 AT&T immediate operands are preceded by @samp{$}; Intel immediate
329 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
330 AT&T register operands are preceded by @samp{%}; Intel register operands
331 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
332 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
333
334 @cindex i386 source, destination operands
335 @cindex source, destination operands; i386
336 @cindex x86-64 source, destination operands
337 @cindex source, destination operands; x86-64
338 @item
339 AT&T and Intel syntax use the opposite order for source and destination
340 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
341 @samp{source, dest} convention is maintained for compatibility with
342 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
343 instructions with 2 immediate operands, such as the @samp{enter}
344 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
345
346 @cindex mnemonic suffixes, i386
347 @cindex sizes operands, i386
348 @cindex i386 size suffixes
349 @cindex mnemonic suffixes, x86-64
350 @cindex sizes operands, x86-64
351 @cindex x86-64 size suffixes
352 @item
353 In AT&T syntax the size of memory operands is determined from the last
354 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
355 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
356 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
357 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
358 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
359 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
360 syntax.
361
362 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
363 instruction with the 64-bit displacement or immediate operand.
364
365 @cindex return instructions, i386
366 @cindex i386 jump, call, return
367 @cindex return instructions, x86-64
368 @cindex x86-64 jump, call, return
369 @item
370 Immediate form long jumps and calls are
371 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
372 Intel syntax is
373 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
374 instruction
375 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
376 @samp{ret far @var{stack-adjust}}.
377
378 @cindex sections, i386
379 @cindex i386 sections
380 @cindex sections, x86-64
381 @cindex x86-64 sections
382 @item
383 The AT&T assembler does not provide support for multiple section
384 programs. Unix style systems expect all programs to be single sections.
385 @end itemize
386
387 @node i386-Chars
388 @subsection Special Characters
389
390 @cindex line comment character, i386
391 @cindex i386 line comment character
392 The presence of a @samp{#} appearing anywhere on a line indicates the
393 start of a comment that extends to the end of that line.
394
395 If a @samp{#} appears as the first character of a line then the whole
396 line is treated as a comment, but in this case the line can also be a
397 logical line number directive (@pxref{Comments}) or a preprocessor
398 control command (@pxref{Preprocessing}).
399
400 If the @option{--divide} command line option has not been specified
401 then the @samp{/} character appearing anywhere on a line also
402 introduces a line comment.
403
404 @cindex line separator, i386
405 @cindex statement separator, i386
406 @cindex i386 line separator
407 The @samp{;} character can be used to separate statements on the same
408 line.
409
410 @node i386-Mnemonics
411 @section Instruction Naming
412
413 @cindex i386 instruction naming
414 @cindex instruction naming, i386
415 @cindex x86-64 instruction naming
416 @cindex instruction naming, x86-64
417
418 Instruction mnemonics are suffixed with one character modifiers which
419 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
420 and @samp{q} specify byte, word, long and quadruple word operands. If
421 no suffix is specified by an instruction then @code{@value{AS}} tries to
422 fill in the missing suffix based on the destination register operand
423 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
424 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
425 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
426 assembler which assumes that a missing mnemonic suffix implies long
427 operand size. (This incompatibility does not affect compiler output
428 since compilers always explicitly specify the mnemonic suffix.)
429
430 Almost all instructions have the same names in AT&T and Intel format.
431 There are a few exceptions. The sign extend and zero extend
432 instructions need two sizes to specify them. They need a size to
433 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
434 is accomplished by using two instruction mnemonic suffixes in AT&T
435 syntax. Base names for sign extend and zero extend are
436 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
437 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
438 are tacked on to this base name, the @emph{from} suffix before the
439 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
440 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
441 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
442 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
443 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
444 quadruple word).
445
446 @cindex encoding options, i386
447 @cindex encoding options, x86-64
448
449 Different encoding options can be specified via optional mnemonic
450 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
451 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
452 prefers 8bit or 32bit displacement in encoding.
453
454 @cindex conversion instructions, i386
455 @cindex i386 conversion instructions
456 @cindex conversion instructions, x86-64
457 @cindex x86-64 conversion instructions
458 The Intel-syntax conversion instructions
459
460 @itemize @bullet
461 @item
462 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
463
464 @item
465 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
466
467 @item
468 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
469
470 @item
471 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
472
473 @item
474 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
475 (x86-64 only),
476
477 @item
478 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
479 @samp{%rdx:%rax} (x86-64 only),
480 @end itemize
481
482 @noindent
483 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
484 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
485 instructions.
486
487 @cindex jump instructions, i386
488 @cindex call instructions, i386
489 @cindex jump instructions, x86-64
490 @cindex call instructions, x86-64
491 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
492 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
493 convention.
494
495 @section AT&T Mnemonic versus Intel Mnemonic
496
497 @cindex i386 mnemonic compatibility
498 @cindex mnemonic compatibility, i386
499
500 @code{@value{AS}} supports assembly using Intel mnemonic.
501 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
502 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
503 syntax for compatibility with the output of @code{@value{GCC}}.
504 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
505 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
506 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
507 assembler with different mnemonics from those in Intel IA32 specification.
508 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
509
510 @node i386-Regs
511 @section Register Naming
512
513 @cindex i386 registers
514 @cindex registers, i386
515 @cindex x86-64 registers
516 @cindex registers, x86-64
517 Register operands are always prefixed with @samp{%}. The 80386 registers
518 consist of
519
520 @itemize @bullet
521 @item
522 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
523 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
524 frame pointer), and @samp{%esp} (the stack pointer).
525
526 @item
527 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
528 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
529
530 @item
531 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
532 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
533 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
534 @samp{%cx}, and @samp{%dx})
535
536 @item
537 the 6 section registers @samp{%cs} (code section), @samp{%ds}
538 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
539 and @samp{%gs}.
540
541 @item
542 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
543 @samp{%cr3}.
544
545 @item
546 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
547 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
548
549 @item
550 the 2 test registers @samp{%tr6} and @samp{%tr7}.
551
552 @item
553 the 8 floating point register stack @samp{%st} or equivalently
554 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
555 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
556 These registers are overloaded by 8 MMX registers @samp{%mm0},
557 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
558 @samp{%mm6} and @samp{%mm7}.
559
560 @item
561 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
562 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
563 @end itemize
564
565 The AMD x86-64 architecture extends the register set by:
566
567 @itemize @bullet
568 @item
569 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
570 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
571 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
572 pointer)
573
574 @item
575 the 8 extended registers @samp{%r8}--@samp{%r15}.
576
577 @item
578 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
579
580 @item
581 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
582
583 @item
584 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
585
586 @item
587 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
588
589 @item
590 the 8 debug registers: @samp{%db8}--@samp{%db15}.
591
592 @item
593 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
594 @end itemize
595
596 @node i386-Prefixes
597 @section Instruction Prefixes
598
599 @cindex i386 instruction prefixes
600 @cindex instruction prefixes, i386
601 @cindex prefixes, i386
602 Instruction prefixes are used to modify the following instruction. They
603 are used to repeat string instructions, to provide section overrides, to
604 perform bus lock operations, and to change operand and address sizes.
605 (Most instructions that normally operate on 32-bit operands will use
606 16-bit operands if the instruction has an ``operand size'' prefix.)
607 Instruction prefixes are best written on the same line as the instruction
608 they act upon. For example, the @samp{scas} (scan string) instruction is
609 repeated with:
610
611 @smallexample
612 repne scas %es:(%edi),%al
613 @end smallexample
614
615 You may also place prefixes on the lines immediately preceding the
616 instruction, but this circumvents checks that @code{@value{AS}} does
617 with prefixes, and will not work with all prefixes.
618
619 Here is a list of instruction prefixes:
620
621 @cindex section override prefixes, i386
622 @itemize @bullet
623 @item
624 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
625 @samp{fs}, @samp{gs}. These are automatically added by specifying
626 using the @var{section}:@var{memory-operand} form for memory references.
627
628 @cindex size prefixes, i386
629 @item
630 Operand/Address size prefixes @samp{data16} and @samp{addr16}
631 change 32-bit operands/addresses into 16-bit operands/addresses,
632 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
633 @code{.code16} section) into 32-bit operands/addresses. These prefixes
634 @emph{must} appear on the same line of code as the instruction they
635 modify. For example, in a 16-bit @code{.code16} section, you might
636 write:
637
638 @smallexample
639 addr32 jmpl *(%ebx)
640 @end smallexample
641
642 @cindex bus lock prefixes, i386
643 @cindex inhibiting interrupts, i386
644 @item
645 The bus lock prefix @samp{lock} inhibits interrupts during execution of
646 the instruction it precedes. (This is only valid with certain
647 instructions; see a 80386 manual for details).
648
649 @cindex coprocessor wait, i386
650 @item
651 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
652 complete the current instruction. This should never be needed for the
653 80386/80387 combination.
654
655 @cindex repeat prefixes, i386
656 @item
657 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
658 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
659 times if the current address size is 16-bits).
660 @cindex REX prefixes, i386
661 @item
662 The @samp{rex} family of prefixes is used by x86-64 to encode
663 extensions to i386 instruction set. The @samp{rex} prefix has four
664 bits --- an operand size overwrite (@code{64}) used to change operand size
665 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
666 register set.
667
668 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
669 instruction emits @samp{rex} prefix with all the bits set. By omitting
670 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
671 prefixes as well. Normally, there is no need to write the prefixes
672 explicitly, since gas will automatically generate them based on the
673 instruction operands.
674 @end itemize
675
676 @node i386-Memory
677 @section Memory References
678
679 @cindex i386 memory references
680 @cindex memory references, i386
681 @cindex x86-64 memory references
682 @cindex memory references, x86-64
683 An Intel syntax indirect memory reference of the form
684
685 @smallexample
686 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
687 @end smallexample
688
689 @noindent
690 is translated into the AT&T syntax
691
692 @smallexample
693 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
694 @end smallexample
695
696 @noindent
697 where @var{base} and @var{index} are the optional 32-bit base and
698 index registers, @var{disp} is the optional displacement, and
699 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
700 to calculate the address of the operand. If no @var{scale} is
701 specified, @var{scale} is taken to be 1. @var{section} specifies the
702 optional section register for the memory operand, and may override the
703 default section register (see a 80386 manual for section register
704 defaults). Note that section overrides in AT&T syntax @emph{must}
705 be preceded by a @samp{%}. If you specify a section override which
706 coincides with the default section register, @code{@value{AS}} does @emph{not}
707 output any section register override prefixes to assemble the given
708 instruction. Thus, section overrides can be specified to emphasize which
709 section register is used for a given memory operand.
710
711 Here are some examples of Intel and AT&T style memory references:
712
713 @table @asis
714 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
715 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
716 missing, and the default section is used (@samp{%ss} for addressing with
717 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
718
719 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
720 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
721 @samp{foo}. All other fields are missing. The section register here
722 defaults to @samp{%ds}.
723
724 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
725 This uses the value pointed to by @samp{foo} as a memory operand.
726 Note that @var{base} and @var{index} are both missing, but there is only
727 @emph{one} @samp{,}. This is a syntactic exception.
728
729 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
730 This selects the contents of the variable @samp{foo} with section
731 register @var{section} being @samp{%gs}.
732 @end table
733
734 Absolute (as opposed to PC relative) call and jump operands must be
735 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
736 always chooses PC relative addressing for jump/call labels.
737
738 Any instruction that has a memory operand, but no register operand,
739 @emph{must} specify its size (byte, word, long, or quadruple) with an
740 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
741 respectively).
742
743 The x86-64 architecture adds an RIP (instruction pointer relative)
744 addressing. This addressing mode is specified by using @samp{rip} as a
745 base register. Only constant offsets are valid. For example:
746
747 @table @asis
748 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
749 Points to the address 1234 bytes past the end of the current
750 instruction.
751
752 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
753 Points to the @code{symbol} in RIP relative way, this is shorter than
754 the default absolute addressing.
755 @end table
756
757 Other addressing modes remain unchanged in x86-64 architecture, except
758 registers used are 64-bit instead of 32-bit.
759
760 @node i386-Jumps
761 @section Handling of Jump Instructions
762
763 @cindex jump optimization, i386
764 @cindex i386 jump optimization
765 @cindex jump optimization, x86-64
766 @cindex x86-64 jump optimization
767 Jump instructions are always optimized to use the smallest possible
768 displacements. This is accomplished by using byte (8-bit) displacement
769 jumps whenever the target is sufficiently close. If a byte displacement
770 is insufficient a long displacement is used. We do not support
771 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
772 instruction with the @samp{data16} instruction prefix), since the 80386
773 insists upon masking @samp{%eip} to 16 bits after the word displacement
774 is added. (See also @pxref{i386-Arch})
775
776 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
777 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
778 displacements, so that if you use these instructions (@code{@value{GCC}} does
779 not use them) you may get an error message (and incorrect code). The AT&T
780 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
781 to
782
783 @smallexample
784 jcxz cx_zero
785 jmp cx_nonzero
786 cx_zero: jmp foo
787 cx_nonzero:
788 @end smallexample
789
790 @node i386-Float
791 @section Floating Point
792
793 @cindex i386 floating point
794 @cindex floating point, i386
795 @cindex x86-64 floating point
796 @cindex floating point, x86-64
797 All 80387 floating point types except packed BCD are supported.
798 (BCD support may be added without much difficulty). These data
799 types are 16-, 32-, and 64- bit integers, and single (32-bit),
800 double (64-bit), and extended (80-bit) precision floating point.
801 Each supported type has an instruction mnemonic suffix and a constructor
802 associated with it. Instruction mnemonic suffixes specify the operand's
803 data type. Constructors build these data types into memory.
804
805 @cindex @code{float} directive, i386
806 @cindex @code{single} directive, i386
807 @cindex @code{double} directive, i386
808 @cindex @code{tfloat} directive, i386
809 @cindex @code{float} directive, x86-64
810 @cindex @code{single} directive, x86-64
811 @cindex @code{double} directive, x86-64
812 @cindex @code{tfloat} directive, x86-64
813 @itemize @bullet
814 @item
815 Floating point constructors are @samp{.float} or @samp{.single},
816 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
817 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
818 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
819 only supports this format via the @samp{fldt} (load 80-bit real to stack
820 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
821
822 @cindex @code{word} directive, i386
823 @cindex @code{long} directive, i386
824 @cindex @code{int} directive, i386
825 @cindex @code{quad} directive, i386
826 @cindex @code{word} directive, x86-64
827 @cindex @code{long} directive, x86-64
828 @cindex @code{int} directive, x86-64
829 @cindex @code{quad} directive, x86-64
830 @item
831 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
832 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
833 corresponding instruction mnemonic suffixes are @samp{s} (single),
834 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
835 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
836 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
837 stack) instructions.
838 @end itemize
839
840 Register to register operations should not use instruction mnemonic suffixes.
841 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
842 wrote @samp{fst %st, %st(1)}, since all register to register operations
843 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
844 which converts @samp{%st} from 80-bit to 64-bit floating point format,
845 then stores the result in the 4 byte location @samp{mem})
846
847 @node i386-SIMD
848 @section Intel's MMX and AMD's 3DNow! SIMD Operations
849
850 @cindex MMX, i386
851 @cindex 3DNow!, i386
852 @cindex SIMD, i386
853 @cindex MMX, x86-64
854 @cindex 3DNow!, x86-64
855 @cindex SIMD, x86-64
856
857 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
858 instructions for integer data), available on Intel's Pentium MMX
859 processors and Pentium II processors, AMD's K6 and K6-2 processors,
860 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
861 instruction set (SIMD instructions for 32-bit floating point data)
862 available on AMD's K6-2 processor and possibly others in the future.
863
864 Currently, @code{@value{AS}} does not support Intel's floating point
865 SIMD, Katmai (KNI).
866
867 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
868 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
869 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
870 floating point values. The MMX registers cannot be used at the same time
871 as the floating point stack.
872
873 See Intel and AMD documentation, keeping in mind that the operand order in
874 instructions is reversed from the Intel syntax.
875
876 @node i386-LWP
877 @section AMD's Lightweight Profiling Instructions
878
879 @cindex LWP, i386
880 @cindex LWP, x86-64
881
882 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
883 instruction set, available on AMD's Family 15h (Orochi) processors.
884
885 LWP enables applications to collect and manage performance data, and
886 react to performance events. The collection of performance data
887 requires no context switches. LWP runs in the context of a thread and
888 so several counters can be used independently across multiple threads.
889 LWP can be used in both 64-bit and legacy 32-bit modes.
890
891 For detailed information on the LWP instruction set, see the
892 @cite{AMD Lightweight Profiling Specification} available at
893 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
894
895 @node i386-BMI
896 @section Bit Manipulation Instructions
897
898 @cindex BMI, i386
899 @cindex BMI, x86-64
900
901 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
902
903 BMI instructions provide several instructions implementing individual
904 bit manipulation operations such as isolation, masking, setting, or
905 resetting.
906
907 @c Need to add a specification citation here when available.
908
909 @node i386-TBM
910 @section AMD's Trailing Bit Manipulation Instructions
911
912 @cindex TBM, i386
913 @cindex TBM, x86-64
914
915 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
916 instruction set, available on AMD's BDVER2 processors (Trinity and
917 Viperfish).
918
919 TBM instructions provide instructions implementing individual bit
920 manipulation operations such as isolating, masking, setting, resetting,
921 complementing, and operations on trailing zeros and ones.
922
923 @c Need to add a specification citation here when available.
924
925 @node i386-16bit
926 @section Writing 16-bit Code
927
928 @cindex i386 16-bit code
929 @cindex 16-bit code, i386
930 @cindex real-mode code, i386
931 @cindex @code{code16gcc} directive, i386
932 @cindex @code{code16} directive, i386
933 @cindex @code{code32} directive, i386
934 @cindex @code{code64} directive, i386
935 @cindex @code{code64} directive, x86-64
936 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
937 or 64-bit x86-64 code depending on the default configuration,
938 it also supports writing code to run in real mode or in 16-bit protected
939 mode code segments. To do this, put a @samp{.code16} or
940 @samp{.code16gcc} directive before the assembly language instructions to
941 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
942 32-bit code with the @samp{.code32} directive or 64-bit code with the
943 @samp{.code64} directive.
944
945 @samp{.code16gcc} provides experimental support for generating 16-bit
946 code from gcc, and differs from @samp{.code16} in that @samp{call},
947 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
948 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
949 default to 32-bit size. This is so that the stack pointer is
950 manipulated in the same way over function calls, allowing access to
951 function parameters at the same stack offsets as in 32-bit mode.
952 @samp{.code16gcc} also automatically adds address size prefixes where
953 necessary to use the 32-bit addressing modes that gcc generates.
954
955 The code which @code{@value{AS}} generates in 16-bit mode will not
956 necessarily run on a 16-bit pre-80386 processor. To write code that
957 runs on such a processor, you must refrain from using @emph{any} 32-bit
958 constructs which require @code{@value{AS}} to output address or operand
959 size prefixes.
960
961 Note that writing 16-bit code instructions by explicitly specifying a
962 prefix or an instruction mnemonic suffix within a 32-bit code section
963 generates different machine instructions than those generated for a
964 16-bit code segment. In a 32-bit code section, the following code
965 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
966 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
967
968 @smallexample
969 pushw $4
970 @end smallexample
971
972 The same code in a 16-bit code section would generate the machine
973 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
974 is correct since the processor default operand size is assumed to be 16
975 bits in a 16-bit code section.
976
977 @node i386-Bugs
978 @section AT&T Syntax bugs
979
980 The UnixWare assembler, and probably other AT&T derived ix86 Unix
981 assemblers, generate floating point instructions with reversed source
982 and destination registers in certain cases. Unfortunately, gcc and
983 possibly many other programs use this reversed syntax, so we're stuck
984 with it.
985
986 For example
987
988 @smallexample
989 fsub %st,%st(3)
990 @end smallexample
991 @noindent
992 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
993 than the expected @samp{%st(3) - %st}. This happens with all the
994 non-commutative arithmetic floating point operations with two register
995 operands where the source register is @samp{%st} and the destination
996 register is @samp{%st(i)}.
997
998 @node i386-Arch
999 @section Specifying CPU Architecture
1000
1001 @cindex arch directive, i386
1002 @cindex i386 arch directive
1003 @cindex arch directive, x86-64
1004 @cindex x86-64 arch directive
1005
1006 @code{@value{AS}} may be told to assemble for a particular CPU
1007 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1008 directive enables a warning when gas detects an instruction that is not
1009 supported on the CPU specified. The choices for @var{cpu_type} are:
1010
1011 @multitable @columnfractions .20 .20 .20 .20
1012 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1013 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1014 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1015 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1016 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1017 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1018 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1019 @item @samp{btver1} @tab @samp{btver2}
1020 @item @samp{generic32} @tab @samp{generic64}
1021 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1022 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1023 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1024 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1025 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1026 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1027 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1028 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1029 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1030 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1031 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1032 @item @samp{.padlock}
1033 @end multitable
1034
1035 Apart from the warning, there are only two other effects on
1036 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1037 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1038 will automatically use a two byte opcode sequence. The larger three
1039 byte opcode sequence is used on the 486 (and when no architecture is
1040 specified) because it executes faster on the 486. Note that you can
1041 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1042 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1043 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1044 conditional jumps will be promoted when necessary to a two instruction
1045 sequence consisting of a conditional jump of the opposite sense around
1046 an unconditional jump to the target.
1047
1048 Following the CPU architecture (but not a sub-architecture, which are those
1049 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1050 control automatic promotion of conditional jumps. @samp{jumps} is the
1051 default, and enables jump promotion; All external jumps will be of the long
1052 variety, and file-local jumps will be promoted as necessary.
1053 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1054 byte offset jumps, and warns about file-local conditional jumps that
1055 @code{@value{AS}} promotes.
1056 Unconditional jumps are treated as for @samp{jumps}.
1057
1058 For example
1059
1060 @smallexample
1061 .arch i8086,nojumps
1062 @end smallexample
1063
1064 @node i386-Notes
1065 @section Notes
1066
1067 @cindex i386 @code{mul}, @code{imul} instructions
1068 @cindex @code{mul} instruction, i386
1069 @cindex @code{imul} instruction, i386
1070 @cindex @code{mul} instruction, x86-64
1071 @cindex @code{imul} instruction, x86-64
1072 There is some trickery concerning the @samp{mul} and @samp{imul}
1073 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1074 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1075 for @samp{imul}) can be output only in the one operand form. Thus,
1076 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1077 the expanding multiply would clobber the @samp{%edx} register, and this
1078 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1079 64-bit product in @samp{%edx:%eax}.
1080
1081 We have added a two operand form of @samp{imul} when the first operand
1082 is an immediate mode expression and the second operand is a register.
1083 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1084 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1085 $69, %eax, %eax}.
1086
This page took 0.081877 seconds and 5 git commands to generate.