Add Intel MCU support to gas
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{no87},
138 @code{mmx},
139 @code{nommx},
140 @code{sse},
141 @code{sse2},
142 @code{sse3},
143 @code{ssse3},
144 @code{sse4.1},
145 @code{sse4.2},
146 @code{sse4},
147 @code{nosse},
148 @code{avx},
149 @code{avx2},
150 @code{adx},
151 @code{rdseed},
152 @code{prfchw},
153 @code{smap},
154 @code{mpx},
155 @code{sha},
156 @code{prefetchwt1},
157 @code{clflushopt},
158 @code{se1},
159 @code{clwb},
160 @code{pcommit},
161 @code{avx512f},
162 @code{avx512cd},
163 @code{avx512er},
164 @code{avx512pf},
165 @code{avx512vl},
166 @code{avx512bw},
167 @code{avx512dq},
168 @code{avx512ifma},
169 @code{avx512vbmi},
170 @code{noavx},
171 @code{vmx},
172 @code{vmfunc},
173 @code{smx},
174 @code{xsave},
175 @code{xsaveopt},
176 @code{xsavec},
177 @code{xsaves},
178 @code{aes},
179 @code{pclmul},
180 @code{fsgsbase},
181 @code{rdrnd},
182 @code{f16c},
183 @code{bmi2},
184 @code{fma},
185 @code{movbe},
186 @code{ept},
187 @code{lzcnt},
188 @code{hle},
189 @code{rtm},
190 @code{invpcid},
191 @code{clflush},
192 @code{clzero},
193 @code{lwp},
194 @code{fma4},
195 @code{xop},
196 @code{cx16},
197 @code{syscall},
198 @code{rdtscp},
199 @code{3dnow},
200 @code{3dnowa},
201 @code{sse4a},
202 @code{sse5},
203 @code{svme},
204 @code{abm} and
205 @code{padlock}.
206 Note that rather than extending a basic instruction set, the extension
207 mnemonics starting with @code{no} revoke the respective functionality.
208
209 When the @code{.arch} directive is used with @option{-march}, the
210 @code{.arch} directive will take precedent.
211
212 @cindex @samp{-mtune=} option, i386
213 @cindex @samp{-mtune=} option, x86-64
214 @item -mtune=@var{CPU}
215 This option specifies a processor to optimize for. When used in
216 conjunction with the @option{-march} option, only instructions
217 of the processor specified by the @option{-march} option will be
218 generated.
219
220 Valid @var{CPU} values are identical to the processor list of
221 @option{-march=@var{CPU}}.
222
223 @cindex @samp{-msse2avx} option, i386
224 @cindex @samp{-msse2avx} option, x86-64
225 @item -msse2avx
226 This option specifies that the assembler should encode SSE instructions
227 with VEX prefix.
228
229 @cindex @samp{-msse-check=} option, i386
230 @cindex @samp{-msse-check=} option, x86-64
231 @item -msse-check=@var{none}
232 @itemx -msse-check=@var{warning}
233 @itemx -msse-check=@var{error}
234 These options control if the assembler should check SSE instructions.
235 @option{-msse-check=@var{none}} will make the assembler not to check SSE
236 instructions, which is the default. @option{-msse-check=@var{warning}}
237 will make the assembler issue a warning for any SSE instruction.
238 @option{-msse-check=@var{error}} will make the assembler issue an error
239 for any SSE instruction.
240
241 @cindex @samp{-mavxscalar=} option, i386
242 @cindex @samp{-mavxscalar=} option, x86-64
243 @item -mavxscalar=@var{128}
244 @itemx -mavxscalar=@var{256}
245 These options control how the assembler should encode scalar AVX
246 instructions. @option{-mavxscalar=@var{128}} will encode scalar
247 AVX instructions with 128bit vector length, which is the default.
248 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249 with 256bit vector length.
250
251 @cindex @samp{-mevexlig=} option, i386
252 @cindex @samp{-mevexlig=} option, x86-64
253 @item -mevexlig=@var{128}
254 @itemx -mevexlig=@var{256}
255 @itemx -mevexlig=@var{512}
256 These options control how the assembler should encode length-ignored
257 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258 EVEX instructions with 128bit vector length, which is the default.
259 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260 encode LIG EVEX instructions with 256bit and 512bit vector length,
261 respectively.
262
263 @cindex @samp{-mevexwig=} option, i386
264 @cindex @samp{-mevexwig=} option, x86-64
265 @item -mevexwig=@var{0}
266 @itemx -mevexwig=@var{1}
267 These options control how the assembler should encode w-ignored (WIG)
268 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269 EVEX instructions with evex.w = 0, which is the default.
270 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271 evex.w = 1.
272
273 @cindex @samp{-mmnemonic=} option, i386
274 @cindex @samp{-mmnemonic=} option, x86-64
275 @item -mmnemonic=@var{att}
276 @itemx -mmnemonic=@var{intel}
277 This option specifies instruction mnemonic for matching instructions.
278 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279 take precedent.
280
281 @cindex @samp{-msyntax=} option, i386
282 @cindex @samp{-msyntax=} option, x86-64
283 @item -msyntax=@var{att}
284 @itemx -msyntax=@var{intel}
285 This option specifies instruction syntax when processing instructions.
286 The @code{.att_syntax} and @code{.intel_syntax} directives will
287 take precedent.
288
289 @cindex @samp{-mnaked-reg} option, i386
290 @cindex @samp{-mnaked-reg} option, x86-64
291 @item -mnaked-reg
292 This opetion specifies that registers don't require a @samp{%} prefix.
293 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
294
295 @cindex @samp{-madd-bnd-prefix} option, i386
296 @cindex @samp{-madd-bnd-prefix} option, x86-64
297 @item -madd-bnd-prefix
298 This option forces the assembler to add BND prefix to all branches, even
299 if such prefix was not explicitly specified in the source code.
300
301 @cindex @samp{-mno-shared} option, i386
302 @cindex @samp{-mno-shared} option, x86-64
303 @item -mno-shared
304 On ELF target, the assembler normally generates code which can go into a
305 shared library where non-weak symbols can be preempted. The
306 @samp{-mno-shared} option tells the assembler to generate code not for
307 a shared library, where non-weak symbols won't be preempted. The
308 resulting code is slightly smaller. This option mainly affects the
309 handling of branch instructions.
310
311 @cindex @samp{-mbig-obj} option, x86-64
312 @item -mbig-obj
313 On x86-64 PE/COFF target this option forces the use of big object file
314 format, which allows more than 32768 sections.
315
316 @cindex @samp{-momit-lock-prefix=} option, i386
317 @cindex @samp{-momit-lock-prefix=} option, x86-64
318 @item -momit-lock-prefix=@var{no}
319 @itemx -momit-lock-prefix=@var{yes}
320 These options control how the assembler should encode lock prefix.
321 This option is intended as a workaround for processors, that fail on
322 lock prefix. This option can only be safely used with single-core,
323 single-thread computers
324 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
325 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
326 which is the default.
327
328 @cindex @samp{-mevexrcig=} option, i386
329 @cindex @samp{-mevexrcig=} option, x86-64
330 @item -mevexrcig=@var{rne}
331 @itemx -mevexrcig=@var{rd}
332 @itemx -mevexrcig=@var{ru}
333 @itemx -mevexrcig=@var{rz}
334 These options control how the assembler should encode SAE-only
335 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
336 of EVEX instruction with 00, which is the default.
337 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
338 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
339 with 01, 10 and 11 RC bits, respectively.
340
341 @end table
342 @c man end
343
344 @node i386-Directives
345 @section x86 specific Directives
346
347 @cindex machine directives, x86
348 @cindex x86 machine directives
349 @table @code
350
351 @cindex @code{lcomm} directive, COFF
352 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
353 Reserve @var{length} (an absolute expression) bytes for a local common
354 denoted by @var{symbol}. The section and value of @var{symbol} are
355 those of the new local common. The addresses are allocated in the bss
356 section, so that at run-time the bytes start off zeroed. Since
357 @var{symbol} is not declared global, it is normally not visible to
358 @code{@value{LD}}. The optional third parameter, @var{alignment},
359 specifies the desired alignment of the symbol in the bss section.
360
361 This directive is only available for COFF based x86 targets.
362
363 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
364 @c .largecomm
365
366 @end table
367
368 @node i386-Syntax
369 @section i386 Syntactical Considerations
370 @menu
371 * i386-Variations:: AT&T Syntax versus Intel Syntax
372 * i386-Chars:: Special Characters
373 @end menu
374
375 @node i386-Variations
376 @subsection AT&T Syntax versus Intel Syntax
377
378 @cindex i386 intel_syntax pseudo op
379 @cindex intel_syntax pseudo op, i386
380 @cindex i386 att_syntax pseudo op
381 @cindex att_syntax pseudo op, i386
382 @cindex i386 syntax compatibility
383 @cindex syntax compatibility, i386
384 @cindex x86-64 intel_syntax pseudo op
385 @cindex intel_syntax pseudo op, x86-64
386 @cindex x86-64 att_syntax pseudo op
387 @cindex att_syntax pseudo op, x86-64
388 @cindex x86-64 syntax compatibility
389 @cindex syntax compatibility, x86-64
390
391 @code{@value{AS}} now supports assembly using Intel assembler syntax.
392 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
393 back to the usual AT&T mode for compatibility with the output of
394 @code{@value{GCC}}. Either of these directives may have an optional
395 argument, @code{prefix}, or @code{noprefix} specifying whether registers
396 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
397 different from Intel syntax. We mention these differences because
398 almost all 80386 documents use Intel syntax. Notable differences
399 between the two syntaxes are:
400
401 @cindex immediate operands, i386
402 @cindex i386 immediate operands
403 @cindex register operands, i386
404 @cindex i386 register operands
405 @cindex jump/call operands, i386
406 @cindex i386 jump/call operands
407 @cindex operand delimiters, i386
408
409 @cindex immediate operands, x86-64
410 @cindex x86-64 immediate operands
411 @cindex register operands, x86-64
412 @cindex x86-64 register operands
413 @cindex jump/call operands, x86-64
414 @cindex x86-64 jump/call operands
415 @cindex operand delimiters, x86-64
416 @itemize @bullet
417 @item
418 AT&T immediate operands are preceded by @samp{$}; Intel immediate
419 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
420 AT&T register operands are preceded by @samp{%}; Intel register operands
421 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
422 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
423
424 @cindex i386 source, destination operands
425 @cindex source, destination operands; i386
426 @cindex x86-64 source, destination operands
427 @cindex source, destination operands; x86-64
428 @item
429 AT&T and Intel syntax use the opposite order for source and destination
430 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
431 @samp{source, dest} convention is maintained for compatibility with
432 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
433 instructions with 2 immediate operands, such as the @samp{enter}
434 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
435
436 @cindex mnemonic suffixes, i386
437 @cindex sizes operands, i386
438 @cindex i386 size suffixes
439 @cindex mnemonic suffixes, x86-64
440 @cindex sizes operands, x86-64
441 @cindex x86-64 size suffixes
442 @item
443 In AT&T syntax the size of memory operands is determined from the last
444 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
445 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
446 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
447 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
448 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
449 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
450 syntax.
451
452 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
453 instruction with the 64-bit displacement or immediate operand.
454
455 @cindex return instructions, i386
456 @cindex i386 jump, call, return
457 @cindex return instructions, x86-64
458 @cindex x86-64 jump, call, return
459 @item
460 Immediate form long jumps and calls are
461 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
462 Intel syntax is
463 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
464 instruction
465 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
466 @samp{ret far @var{stack-adjust}}.
467
468 @cindex sections, i386
469 @cindex i386 sections
470 @cindex sections, x86-64
471 @cindex x86-64 sections
472 @item
473 The AT&T assembler does not provide support for multiple section
474 programs. Unix style systems expect all programs to be single sections.
475 @end itemize
476
477 @node i386-Chars
478 @subsection Special Characters
479
480 @cindex line comment character, i386
481 @cindex i386 line comment character
482 The presence of a @samp{#} appearing anywhere on a line indicates the
483 start of a comment that extends to the end of that line.
484
485 If a @samp{#} appears as the first character of a line then the whole
486 line is treated as a comment, but in this case the line can also be a
487 logical line number directive (@pxref{Comments}) or a preprocessor
488 control command (@pxref{Preprocessing}).
489
490 If the @option{--divide} command line option has not been specified
491 then the @samp{/} character appearing anywhere on a line also
492 introduces a line comment.
493
494 @cindex line separator, i386
495 @cindex statement separator, i386
496 @cindex i386 line separator
497 The @samp{;} character can be used to separate statements on the same
498 line.
499
500 @node i386-Mnemonics
501 @section i386-Mnemonics
502 @subsection Instruction Naming
503
504 @cindex i386 instruction naming
505 @cindex instruction naming, i386
506 @cindex x86-64 instruction naming
507 @cindex instruction naming, x86-64
508
509 Instruction mnemonics are suffixed with one character modifiers which
510 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
511 and @samp{q} specify byte, word, long and quadruple word operands. If
512 no suffix is specified by an instruction then @code{@value{AS}} tries to
513 fill in the missing suffix based on the destination register operand
514 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
515 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
516 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
517 assembler which assumes that a missing mnemonic suffix implies long
518 operand size. (This incompatibility does not affect compiler output
519 since compilers always explicitly specify the mnemonic suffix.)
520
521 Almost all instructions have the same names in AT&T and Intel format.
522 There are a few exceptions. The sign extend and zero extend
523 instructions need two sizes to specify them. They need a size to
524 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
525 is accomplished by using two instruction mnemonic suffixes in AT&T
526 syntax. Base names for sign extend and zero extend are
527 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
528 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
529 are tacked on to this base name, the @emph{from} suffix before the
530 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
531 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
532 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
533 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
534 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
535 quadruple word).
536
537 @cindex encoding options, i386
538 @cindex encoding options, x86-64
539
540 Different encoding options can be specified via optional mnemonic
541 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
542 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
543 prefers 8bit or 32bit displacement in encoding.
544
545 @cindex conversion instructions, i386
546 @cindex i386 conversion instructions
547 @cindex conversion instructions, x86-64
548 @cindex x86-64 conversion instructions
549 The Intel-syntax conversion instructions
550
551 @itemize @bullet
552 @item
553 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
554
555 @item
556 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
557
558 @item
559 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
560
561 @item
562 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
563
564 @item
565 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
566 (x86-64 only),
567
568 @item
569 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
570 @samp{%rdx:%rax} (x86-64 only),
571 @end itemize
572
573 @noindent
574 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
575 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
576 instructions.
577
578 @cindex jump instructions, i386
579 @cindex call instructions, i386
580 @cindex jump instructions, x86-64
581 @cindex call instructions, x86-64
582 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
583 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
584 convention.
585
586 @subsection AT&T Mnemonic versus Intel Mnemonic
587
588 @cindex i386 mnemonic compatibility
589 @cindex mnemonic compatibility, i386
590
591 @code{@value{AS}} supports assembly using Intel mnemonic.
592 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
593 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
594 syntax for compatibility with the output of @code{@value{GCC}}.
595 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
596 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
597 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
598 assembler with different mnemonics from those in Intel IA32 specification.
599 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
600
601 @node i386-Regs
602 @section Register Naming
603
604 @cindex i386 registers
605 @cindex registers, i386
606 @cindex x86-64 registers
607 @cindex registers, x86-64
608 Register operands are always prefixed with @samp{%}. The 80386 registers
609 consist of
610
611 @itemize @bullet
612 @item
613 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
614 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
615 frame pointer), and @samp{%esp} (the stack pointer).
616
617 @item
618 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
619 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
620
621 @item
622 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
623 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
624 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
625 @samp{%cx}, and @samp{%dx})
626
627 @item
628 the 6 section registers @samp{%cs} (code section), @samp{%ds}
629 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
630 and @samp{%gs}.
631
632 @item
633 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
634 @samp{%cr3}.
635
636 @item
637 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
638 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
639
640 @item
641 the 2 test registers @samp{%tr6} and @samp{%tr7}.
642
643 @item
644 the 8 floating point register stack @samp{%st} or equivalently
645 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
646 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
647 These registers are overloaded by 8 MMX registers @samp{%mm0},
648 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
649 @samp{%mm6} and @samp{%mm7}.
650
651 @item
652 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
653 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
654 @end itemize
655
656 The AMD x86-64 architecture extends the register set by:
657
658 @itemize @bullet
659 @item
660 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
661 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
662 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
663 pointer)
664
665 @item
666 the 8 extended registers @samp{%r8}--@samp{%r15}.
667
668 @item
669 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
670
671 @item
672 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
673
674 @item
675 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
676
677 @item
678 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
679
680 @item
681 the 8 debug registers: @samp{%db8}--@samp{%db15}.
682
683 @item
684 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
685 @end itemize
686
687 @node i386-Prefixes
688 @section Instruction Prefixes
689
690 @cindex i386 instruction prefixes
691 @cindex instruction prefixes, i386
692 @cindex prefixes, i386
693 Instruction prefixes are used to modify the following instruction. They
694 are used to repeat string instructions, to provide section overrides, to
695 perform bus lock operations, and to change operand and address sizes.
696 (Most instructions that normally operate on 32-bit operands will use
697 16-bit operands if the instruction has an ``operand size'' prefix.)
698 Instruction prefixes are best written on the same line as the instruction
699 they act upon. For example, the @samp{scas} (scan string) instruction is
700 repeated with:
701
702 @smallexample
703 repne scas %es:(%edi),%al
704 @end smallexample
705
706 You may also place prefixes on the lines immediately preceding the
707 instruction, but this circumvents checks that @code{@value{AS}} does
708 with prefixes, and will not work with all prefixes.
709
710 Here is a list of instruction prefixes:
711
712 @cindex section override prefixes, i386
713 @itemize @bullet
714 @item
715 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
716 @samp{fs}, @samp{gs}. These are automatically added by specifying
717 using the @var{section}:@var{memory-operand} form for memory references.
718
719 @cindex size prefixes, i386
720 @item
721 Operand/Address size prefixes @samp{data16} and @samp{addr16}
722 change 32-bit operands/addresses into 16-bit operands/addresses,
723 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
724 @code{.code16} section) into 32-bit operands/addresses. These prefixes
725 @emph{must} appear on the same line of code as the instruction they
726 modify. For example, in a 16-bit @code{.code16} section, you might
727 write:
728
729 @smallexample
730 addr32 jmpl *(%ebx)
731 @end smallexample
732
733 @cindex bus lock prefixes, i386
734 @cindex inhibiting interrupts, i386
735 @item
736 The bus lock prefix @samp{lock} inhibits interrupts during execution of
737 the instruction it precedes. (This is only valid with certain
738 instructions; see a 80386 manual for details).
739
740 @cindex coprocessor wait, i386
741 @item
742 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
743 complete the current instruction. This should never be needed for the
744 80386/80387 combination.
745
746 @cindex repeat prefixes, i386
747 @item
748 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
749 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
750 times if the current address size is 16-bits).
751 @cindex REX prefixes, i386
752 @item
753 The @samp{rex} family of prefixes is used by x86-64 to encode
754 extensions to i386 instruction set. The @samp{rex} prefix has four
755 bits --- an operand size overwrite (@code{64}) used to change operand size
756 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
757 register set.
758
759 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
760 instruction emits @samp{rex} prefix with all the bits set. By omitting
761 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
762 prefixes as well. Normally, there is no need to write the prefixes
763 explicitly, since gas will automatically generate them based on the
764 instruction operands.
765 @end itemize
766
767 @node i386-Memory
768 @section Memory References
769
770 @cindex i386 memory references
771 @cindex memory references, i386
772 @cindex x86-64 memory references
773 @cindex memory references, x86-64
774 An Intel syntax indirect memory reference of the form
775
776 @smallexample
777 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
778 @end smallexample
779
780 @noindent
781 is translated into the AT&T syntax
782
783 @smallexample
784 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
785 @end smallexample
786
787 @noindent
788 where @var{base} and @var{index} are the optional 32-bit base and
789 index registers, @var{disp} is the optional displacement, and
790 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
791 to calculate the address of the operand. If no @var{scale} is
792 specified, @var{scale} is taken to be 1. @var{section} specifies the
793 optional section register for the memory operand, and may override the
794 default section register (see a 80386 manual for section register
795 defaults). Note that section overrides in AT&T syntax @emph{must}
796 be preceded by a @samp{%}. If you specify a section override which
797 coincides with the default section register, @code{@value{AS}} does @emph{not}
798 output any section register override prefixes to assemble the given
799 instruction. Thus, section overrides can be specified to emphasize which
800 section register is used for a given memory operand.
801
802 Here are some examples of Intel and AT&T style memory references:
803
804 @table @asis
805 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
806 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
807 missing, and the default section is used (@samp{%ss} for addressing with
808 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
809
810 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
811 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
812 @samp{foo}. All other fields are missing. The section register here
813 defaults to @samp{%ds}.
814
815 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
816 This uses the value pointed to by @samp{foo} as a memory operand.
817 Note that @var{base} and @var{index} are both missing, but there is only
818 @emph{one} @samp{,}. This is a syntactic exception.
819
820 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
821 This selects the contents of the variable @samp{foo} with section
822 register @var{section} being @samp{%gs}.
823 @end table
824
825 Absolute (as opposed to PC relative) call and jump operands must be
826 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
827 always chooses PC relative addressing for jump/call labels.
828
829 Any instruction that has a memory operand, but no register operand,
830 @emph{must} specify its size (byte, word, long, or quadruple) with an
831 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
832 respectively).
833
834 The x86-64 architecture adds an RIP (instruction pointer relative)
835 addressing. This addressing mode is specified by using @samp{rip} as a
836 base register. Only constant offsets are valid. For example:
837
838 @table @asis
839 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
840 Points to the address 1234 bytes past the end of the current
841 instruction.
842
843 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
844 Points to the @code{symbol} in RIP relative way, this is shorter than
845 the default absolute addressing.
846 @end table
847
848 Other addressing modes remain unchanged in x86-64 architecture, except
849 registers used are 64-bit instead of 32-bit.
850
851 @node i386-Jumps
852 @section Handling of Jump Instructions
853
854 @cindex jump optimization, i386
855 @cindex i386 jump optimization
856 @cindex jump optimization, x86-64
857 @cindex x86-64 jump optimization
858 Jump instructions are always optimized to use the smallest possible
859 displacements. This is accomplished by using byte (8-bit) displacement
860 jumps whenever the target is sufficiently close. If a byte displacement
861 is insufficient a long displacement is used. We do not support
862 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
863 instruction with the @samp{data16} instruction prefix), since the 80386
864 insists upon masking @samp{%eip} to 16 bits after the word displacement
865 is added. (See also @pxref{i386-Arch})
866
867 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
868 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
869 displacements, so that if you use these instructions (@code{@value{GCC}} does
870 not use them) you may get an error message (and incorrect code). The AT&T
871 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
872 to
873
874 @smallexample
875 jcxz cx_zero
876 jmp cx_nonzero
877 cx_zero: jmp foo
878 cx_nonzero:
879 @end smallexample
880
881 @node i386-Float
882 @section Floating Point
883
884 @cindex i386 floating point
885 @cindex floating point, i386
886 @cindex x86-64 floating point
887 @cindex floating point, x86-64
888 All 80387 floating point types except packed BCD are supported.
889 (BCD support may be added without much difficulty). These data
890 types are 16-, 32-, and 64- bit integers, and single (32-bit),
891 double (64-bit), and extended (80-bit) precision floating point.
892 Each supported type has an instruction mnemonic suffix and a constructor
893 associated with it. Instruction mnemonic suffixes specify the operand's
894 data type. Constructors build these data types into memory.
895
896 @cindex @code{float} directive, i386
897 @cindex @code{single} directive, i386
898 @cindex @code{double} directive, i386
899 @cindex @code{tfloat} directive, i386
900 @cindex @code{float} directive, x86-64
901 @cindex @code{single} directive, x86-64
902 @cindex @code{double} directive, x86-64
903 @cindex @code{tfloat} directive, x86-64
904 @itemize @bullet
905 @item
906 Floating point constructors are @samp{.float} or @samp{.single},
907 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
908 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
909 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
910 only supports this format via the @samp{fldt} (load 80-bit real to stack
911 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
912
913 @cindex @code{word} directive, i386
914 @cindex @code{long} directive, i386
915 @cindex @code{int} directive, i386
916 @cindex @code{quad} directive, i386
917 @cindex @code{word} directive, x86-64
918 @cindex @code{long} directive, x86-64
919 @cindex @code{int} directive, x86-64
920 @cindex @code{quad} directive, x86-64
921 @item
922 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
923 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
924 corresponding instruction mnemonic suffixes are @samp{s} (single),
925 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
926 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
927 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
928 stack) instructions.
929 @end itemize
930
931 Register to register operations should not use instruction mnemonic suffixes.
932 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
933 wrote @samp{fst %st, %st(1)}, since all register to register operations
934 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
935 which converts @samp{%st} from 80-bit to 64-bit floating point format,
936 then stores the result in the 4 byte location @samp{mem})
937
938 @node i386-SIMD
939 @section Intel's MMX and AMD's 3DNow! SIMD Operations
940
941 @cindex MMX, i386
942 @cindex 3DNow!, i386
943 @cindex SIMD, i386
944 @cindex MMX, x86-64
945 @cindex 3DNow!, x86-64
946 @cindex SIMD, x86-64
947
948 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
949 instructions for integer data), available on Intel's Pentium MMX
950 processors and Pentium II processors, AMD's K6 and K6-2 processors,
951 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
952 instruction set (SIMD instructions for 32-bit floating point data)
953 available on AMD's K6-2 processor and possibly others in the future.
954
955 Currently, @code{@value{AS}} does not support Intel's floating point
956 SIMD, Katmai (KNI).
957
958 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
959 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
960 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
961 floating point values. The MMX registers cannot be used at the same time
962 as the floating point stack.
963
964 See Intel and AMD documentation, keeping in mind that the operand order in
965 instructions is reversed from the Intel syntax.
966
967 @node i386-LWP
968 @section AMD's Lightweight Profiling Instructions
969
970 @cindex LWP, i386
971 @cindex LWP, x86-64
972
973 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
974 instruction set, available on AMD's Family 15h (Orochi) processors.
975
976 LWP enables applications to collect and manage performance data, and
977 react to performance events. The collection of performance data
978 requires no context switches. LWP runs in the context of a thread and
979 so several counters can be used independently across multiple threads.
980 LWP can be used in both 64-bit and legacy 32-bit modes.
981
982 For detailed information on the LWP instruction set, see the
983 @cite{AMD Lightweight Profiling Specification} available at
984 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
985
986 @node i386-BMI
987 @section Bit Manipulation Instructions
988
989 @cindex BMI, i386
990 @cindex BMI, x86-64
991
992 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
993
994 BMI instructions provide several instructions implementing individual
995 bit manipulation operations such as isolation, masking, setting, or
996 resetting.
997
998 @c Need to add a specification citation here when available.
999
1000 @node i386-TBM
1001 @section AMD's Trailing Bit Manipulation Instructions
1002
1003 @cindex TBM, i386
1004 @cindex TBM, x86-64
1005
1006 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1007 instruction set, available on AMD's BDVER2 processors (Trinity and
1008 Viperfish).
1009
1010 TBM instructions provide instructions implementing individual bit
1011 manipulation operations such as isolating, masking, setting, resetting,
1012 complementing, and operations on trailing zeros and ones.
1013
1014 @c Need to add a specification citation here when available.
1015
1016 @node i386-16bit
1017 @section Writing 16-bit Code
1018
1019 @cindex i386 16-bit code
1020 @cindex 16-bit code, i386
1021 @cindex real-mode code, i386
1022 @cindex @code{code16gcc} directive, i386
1023 @cindex @code{code16} directive, i386
1024 @cindex @code{code32} directive, i386
1025 @cindex @code{code64} directive, i386
1026 @cindex @code{code64} directive, x86-64
1027 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1028 or 64-bit x86-64 code depending on the default configuration,
1029 it also supports writing code to run in real mode or in 16-bit protected
1030 mode code segments. To do this, put a @samp{.code16} or
1031 @samp{.code16gcc} directive before the assembly language instructions to
1032 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1033 32-bit code with the @samp{.code32} directive or 64-bit code with the
1034 @samp{.code64} directive.
1035
1036 @samp{.code16gcc} provides experimental support for generating 16-bit
1037 code from gcc, and differs from @samp{.code16} in that @samp{call},
1038 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1039 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1040 default to 32-bit size. This is so that the stack pointer is
1041 manipulated in the same way over function calls, allowing access to
1042 function parameters at the same stack offsets as in 32-bit mode.
1043 @samp{.code16gcc} also automatically adds address size prefixes where
1044 necessary to use the 32-bit addressing modes that gcc generates.
1045
1046 The code which @code{@value{AS}} generates in 16-bit mode will not
1047 necessarily run on a 16-bit pre-80386 processor. To write code that
1048 runs on such a processor, you must refrain from using @emph{any} 32-bit
1049 constructs which require @code{@value{AS}} to output address or operand
1050 size prefixes.
1051
1052 Note that writing 16-bit code instructions by explicitly specifying a
1053 prefix or an instruction mnemonic suffix within a 32-bit code section
1054 generates different machine instructions than those generated for a
1055 16-bit code segment. In a 32-bit code section, the following code
1056 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1057 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1058
1059 @smallexample
1060 pushw $4
1061 @end smallexample
1062
1063 The same code in a 16-bit code section would generate the machine
1064 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1065 is correct since the processor default operand size is assumed to be 16
1066 bits in a 16-bit code section.
1067
1068 @node i386-Arch
1069 @section Specifying CPU Architecture
1070
1071 @cindex arch directive, i386
1072 @cindex i386 arch directive
1073 @cindex arch directive, x86-64
1074 @cindex x86-64 arch directive
1075
1076 @code{@value{AS}} may be told to assemble for a particular CPU
1077 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1078 directive enables a warning when gas detects an instruction that is not
1079 supported on the CPU specified. The choices for @var{cpu_type} are:
1080
1081 @multitable @columnfractions .20 .20 .20 .20
1082 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1083 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1084 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1085 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1086 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1087 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1088 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1089 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1090 @item @samp{generic32} @tab @samp{generic64}
1091 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1092 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1093 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1094 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1095 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1096 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1097 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1098 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1099 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1100 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1101 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1102 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1103 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1104 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1105 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1106 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1107 @item @samp{.padlock} @tab @samp{.clzero}
1108 @end multitable
1109
1110 Apart from the warning, there are only two other effects on
1111 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1112 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1113 will automatically use a two byte opcode sequence. The larger three
1114 byte opcode sequence is used on the 486 (and when no architecture is
1115 specified) because it executes faster on the 486. Note that you can
1116 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1117 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1118 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1119 conditional jumps will be promoted when necessary to a two instruction
1120 sequence consisting of a conditional jump of the opposite sense around
1121 an unconditional jump to the target.
1122
1123 Following the CPU architecture (but not a sub-architecture, which are those
1124 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1125 control automatic promotion of conditional jumps. @samp{jumps} is the
1126 default, and enables jump promotion; All external jumps will be of the long
1127 variety, and file-local jumps will be promoted as necessary.
1128 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1129 byte offset jumps, and warns about file-local conditional jumps that
1130 @code{@value{AS}} promotes.
1131 Unconditional jumps are treated as for @samp{jumps}.
1132
1133 For example
1134
1135 @smallexample
1136 .arch i8086,nojumps
1137 @end smallexample
1138
1139 @node i386-Bugs
1140 @section AT&T Syntax bugs
1141
1142 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1143 assemblers, generate floating point instructions with reversed source
1144 and destination registers in certain cases. Unfortunately, gcc and
1145 possibly many other programs use this reversed syntax, so we're stuck
1146 with it.
1147
1148 For example
1149
1150 @smallexample
1151 fsub %st,%st(3)
1152 @end smallexample
1153 @noindent
1154 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1155 than the expected @samp{%st(3) - %st}. This happens with all the
1156 non-commutative arithmetic floating point operations with two register
1157 operands where the source register is @samp{%st} and the destination
1158 register is @samp{%st(i)}.
1159
1160 @node i386-Notes
1161 @section Notes
1162
1163 @cindex i386 @code{mul}, @code{imul} instructions
1164 @cindex @code{mul} instruction, i386
1165 @cindex @code{imul} instruction, i386
1166 @cindex @code{mul} instruction, x86-64
1167 @cindex @code{imul} instruction, x86-64
1168 There is some trickery concerning the @samp{mul} and @samp{imul}
1169 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1170 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1171 for @samp{imul}) can be output only in the one operand form. Thus,
1172 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1173 the expanding multiply would clobber the @samp{%edx} register, and this
1174 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1175 64-bit product in @samp{%edx:%eax}.
1176
1177 We have added a two operand form of @samp{imul} when the first operand
1178 is an immediate mode expression and the second operand is a register.
1179 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1180 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1181 $69, %eax, %eax}.
1182
This page took 0.061334 seconds and 5 git commands to generate.