Add -mshared option to x86 ELF assembler
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{no87},
138 @code{mmx},
139 @code{nommx},
140 @code{sse},
141 @code{sse2},
142 @code{sse3},
143 @code{ssse3},
144 @code{sse4.1},
145 @code{sse4.2},
146 @code{sse4},
147 @code{nosse},
148 @code{avx},
149 @code{avx2},
150 @code{adx},
151 @code{rdseed},
152 @code{prfchw},
153 @code{smap},
154 @code{mpx},
155 @code{sha},
156 @code{prefetchwt1},
157 @code{clflushopt},
158 @code{se1},
159 @code{clwb},
160 @code{pcommit},
161 @code{avx512f},
162 @code{avx512cd},
163 @code{avx512er},
164 @code{avx512pf},
165 @code{avx512vl},
166 @code{avx512bw},
167 @code{avx512dq},
168 @code{avx512ifma},
169 @code{avx512vbmi},
170 @code{noavx},
171 @code{vmx},
172 @code{vmfunc},
173 @code{smx},
174 @code{xsave},
175 @code{xsaveopt},
176 @code{xsavec},
177 @code{xsaves},
178 @code{aes},
179 @code{pclmul},
180 @code{fsgsbase},
181 @code{rdrnd},
182 @code{f16c},
183 @code{bmi2},
184 @code{fma},
185 @code{movbe},
186 @code{ept},
187 @code{lzcnt},
188 @code{hle},
189 @code{rtm},
190 @code{invpcid},
191 @code{clflush},
192 @code{clzero},
193 @code{lwp},
194 @code{fma4},
195 @code{xop},
196 @code{cx16},
197 @code{syscall},
198 @code{rdtscp},
199 @code{3dnow},
200 @code{3dnowa},
201 @code{sse4a},
202 @code{sse5},
203 @code{svme},
204 @code{abm} and
205 @code{padlock}.
206 Note that rather than extending a basic instruction set, the extension
207 mnemonics starting with @code{no} revoke the respective functionality.
208
209 When the @code{.arch} directive is used with @option{-march}, the
210 @code{.arch} directive will take precedent.
211
212 @cindex @samp{-mtune=} option, i386
213 @cindex @samp{-mtune=} option, x86-64
214 @item -mtune=@var{CPU}
215 This option specifies a processor to optimize for. When used in
216 conjunction with the @option{-march} option, only instructions
217 of the processor specified by the @option{-march} option will be
218 generated.
219
220 Valid @var{CPU} values are identical to the processor list of
221 @option{-march=@var{CPU}}.
222
223 @cindex @samp{-msse2avx} option, i386
224 @cindex @samp{-msse2avx} option, x86-64
225 @item -msse2avx
226 This option specifies that the assembler should encode SSE instructions
227 with VEX prefix.
228
229 @cindex @samp{-msse-check=} option, i386
230 @cindex @samp{-msse-check=} option, x86-64
231 @item -msse-check=@var{none}
232 @itemx -msse-check=@var{warning}
233 @itemx -msse-check=@var{error}
234 These options control if the assembler should check SSE instructions.
235 @option{-msse-check=@var{none}} will make the assembler not to check SSE
236 instructions, which is the default. @option{-msse-check=@var{warning}}
237 will make the assembler issue a warning for any SSE instruction.
238 @option{-msse-check=@var{error}} will make the assembler issue an error
239 for any SSE instruction.
240
241 @cindex @samp{-mavxscalar=} option, i386
242 @cindex @samp{-mavxscalar=} option, x86-64
243 @item -mavxscalar=@var{128}
244 @itemx -mavxscalar=@var{256}
245 These options control how the assembler should encode scalar AVX
246 instructions. @option{-mavxscalar=@var{128}} will encode scalar
247 AVX instructions with 128bit vector length, which is the default.
248 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249 with 256bit vector length.
250
251 @cindex @samp{-mevexlig=} option, i386
252 @cindex @samp{-mevexlig=} option, x86-64
253 @item -mevexlig=@var{128}
254 @itemx -mevexlig=@var{256}
255 @itemx -mevexlig=@var{512}
256 These options control how the assembler should encode length-ignored
257 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258 EVEX instructions with 128bit vector length, which is the default.
259 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260 encode LIG EVEX instructions with 256bit and 512bit vector length,
261 respectively.
262
263 @cindex @samp{-mevexwig=} option, i386
264 @cindex @samp{-mevexwig=} option, x86-64
265 @item -mevexwig=@var{0}
266 @itemx -mevexwig=@var{1}
267 These options control how the assembler should encode w-ignored (WIG)
268 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269 EVEX instructions with evex.w = 0, which is the default.
270 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271 evex.w = 1.
272
273 @cindex @samp{-mmnemonic=} option, i386
274 @cindex @samp{-mmnemonic=} option, x86-64
275 @item -mmnemonic=@var{att}
276 @itemx -mmnemonic=@var{intel}
277 This option specifies instruction mnemonic for matching instructions.
278 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279 take precedent.
280
281 @cindex @samp{-msyntax=} option, i386
282 @cindex @samp{-msyntax=} option, x86-64
283 @item -msyntax=@var{att}
284 @itemx -msyntax=@var{intel}
285 This option specifies instruction syntax when processing instructions.
286 The @code{.att_syntax} and @code{.intel_syntax} directives will
287 take precedent.
288
289 @cindex @samp{-mnaked-reg} option, i386
290 @cindex @samp{-mnaked-reg} option, x86-64
291 @item -mnaked-reg
292 This opetion specifies that registers don't require a @samp{%} prefix.
293 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
294
295 @cindex @samp{-madd-bnd-prefix} option, i386
296 @cindex @samp{-madd-bnd-prefix} option, x86-64
297 @item -madd-bnd-prefix
298 This option forces the assembler to add BND prefix to all branches, even
299 if such prefix was not explicitly specified in the source code.
300
301 @cindex @samp{-mshared} option, i386
302 @cindex @samp{-mshared} option, x86-64
303 @item -mno-shared
304 On ELF target, the assembler normally optimizes out non-PLT relocations
305 against defined non-weak global branch targets with default visibility.
306 The @samp{-mshared} option tells the assembler to generate code which
307 may go into a shared library where all non-weak global branch targets
308 with default visibility can be preempted. The resulting code is
309 slightly bigger. This option only affects the handling of branch
310 instructions.
311
312 @cindex @samp{-mbig-obj} option, x86-64
313 @item -mbig-obj
314 On x86-64 PE/COFF target this option forces the use of big object file
315 format, which allows more than 32768 sections.
316
317 @cindex @samp{-momit-lock-prefix=} option, i386
318 @cindex @samp{-momit-lock-prefix=} option, x86-64
319 @item -momit-lock-prefix=@var{no}
320 @itemx -momit-lock-prefix=@var{yes}
321 These options control how the assembler should encode lock prefix.
322 This option is intended as a workaround for processors, that fail on
323 lock prefix. This option can only be safely used with single-core,
324 single-thread computers
325 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
326 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
327 which is the default.
328
329 @cindex @samp{-mevexrcig=} option, i386
330 @cindex @samp{-mevexrcig=} option, x86-64
331 @item -mevexrcig=@var{rne}
332 @itemx -mevexrcig=@var{rd}
333 @itemx -mevexrcig=@var{ru}
334 @itemx -mevexrcig=@var{rz}
335 These options control how the assembler should encode SAE-only
336 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
337 of EVEX instruction with 00, which is the default.
338 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
339 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
340 with 01, 10 and 11 RC bits, respectively.
341
342 @end table
343 @c man end
344
345 @node i386-Directives
346 @section x86 specific Directives
347
348 @cindex machine directives, x86
349 @cindex x86 machine directives
350 @table @code
351
352 @cindex @code{lcomm} directive, COFF
353 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
354 Reserve @var{length} (an absolute expression) bytes for a local common
355 denoted by @var{symbol}. The section and value of @var{symbol} are
356 those of the new local common. The addresses are allocated in the bss
357 section, so that at run-time the bytes start off zeroed. Since
358 @var{symbol} is not declared global, it is normally not visible to
359 @code{@value{LD}}. The optional third parameter, @var{alignment},
360 specifies the desired alignment of the symbol in the bss section.
361
362 This directive is only available for COFF based x86 targets.
363
364 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
365 @c .largecomm
366
367 @end table
368
369 @node i386-Syntax
370 @section i386 Syntactical Considerations
371 @menu
372 * i386-Variations:: AT&T Syntax versus Intel Syntax
373 * i386-Chars:: Special Characters
374 @end menu
375
376 @node i386-Variations
377 @subsection AT&T Syntax versus Intel Syntax
378
379 @cindex i386 intel_syntax pseudo op
380 @cindex intel_syntax pseudo op, i386
381 @cindex i386 att_syntax pseudo op
382 @cindex att_syntax pseudo op, i386
383 @cindex i386 syntax compatibility
384 @cindex syntax compatibility, i386
385 @cindex x86-64 intel_syntax pseudo op
386 @cindex intel_syntax pseudo op, x86-64
387 @cindex x86-64 att_syntax pseudo op
388 @cindex att_syntax pseudo op, x86-64
389 @cindex x86-64 syntax compatibility
390 @cindex syntax compatibility, x86-64
391
392 @code{@value{AS}} now supports assembly using Intel assembler syntax.
393 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
394 back to the usual AT&T mode for compatibility with the output of
395 @code{@value{GCC}}. Either of these directives may have an optional
396 argument, @code{prefix}, or @code{noprefix} specifying whether registers
397 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
398 different from Intel syntax. We mention these differences because
399 almost all 80386 documents use Intel syntax. Notable differences
400 between the two syntaxes are:
401
402 @cindex immediate operands, i386
403 @cindex i386 immediate operands
404 @cindex register operands, i386
405 @cindex i386 register operands
406 @cindex jump/call operands, i386
407 @cindex i386 jump/call operands
408 @cindex operand delimiters, i386
409
410 @cindex immediate operands, x86-64
411 @cindex x86-64 immediate operands
412 @cindex register operands, x86-64
413 @cindex x86-64 register operands
414 @cindex jump/call operands, x86-64
415 @cindex x86-64 jump/call operands
416 @cindex operand delimiters, x86-64
417 @itemize @bullet
418 @item
419 AT&T immediate operands are preceded by @samp{$}; Intel immediate
420 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
421 AT&T register operands are preceded by @samp{%}; Intel register operands
422 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
423 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
424
425 @cindex i386 source, destination operands
426 @cindex source, destination operands; i386
427 @cindex x86-64 source, destination operands
428 @cindex source, destination operands; x86-64
429 @item
430 AT&T and Intel syntax use the opposite order for source and destination
431 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
432 @samp{source, dest} convention is maintained for compatibility with
433 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
434 instructions with 2 immediate operands, such as the @samp{enter}
435 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
436
437 @cindex mnemonic suffixes, i386
438 @cindex sizes operands, i386
439 @cindex i386 size suffixes
440 @cindex mnemonic suffixes, x86-64
441 @cindex sizes operands, x86-64
442 @cindex x86-64 size suffixes
443 @item
444 In AT&T syntax the size of memory operands is determined from the last
445 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
446 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
447 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
448 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
449 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
450 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
451 syntax.
452
453 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
454 instruction with the 64-bit displacement or immediate operand.
455
456 @cindex return instructions, i386
457 @cindex i386 jump, call, return
458 @cindex return instructions, x86-64
459 @cindex x86-64 jump, call, return
460 @item
461 Immediate form long jumps and calls are
462 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
463 Intel syntax is
464 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
465 instruction
466 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
467 @samp{ret far @var{stack-adjust}}.
468
469 @cindex sections, i386
470 @cindex i386 sections
471 @cindex sections, x86-64
472 @cindex x86-64 sections
473 @item
474 The AT&T assembler does not provide support for multiple section
475 programs. Unix style systems expect all programs to be single sections.
476 @end itemize
477
478 @node i386-Chars
479 @subsection Special Characters
480
481 @cindex line comment character, i386
482 @cindex i386 line comment character
483 The presence of a @samp{#} appearing anywhere on a line indicates the
484 start of a comment that extends to the end of that line.
485
486 If a @samp{#} appears as the first character of a line then the whole
487 line is treated as a comment, but in this case the line can also be a
488 logical line number directive (@pxref{Comments}) or a preprocessor
489 control command (@pxref{Preprocessing}).
490
491 If the @option{--divide} command line option has not been specified
492 then the @samp{/} character appearing anywhere on a line also
493 introduces a line comment.
494
495 @cindex line separator, i386
496 @cindex statement separator, i386
497 @cindex i386 line separator
498 The @samp{;} character can be used to separate statements on the same
499 line.
500
501 @node i386-Mnemonics
502 @section i386-Mnemonics
503 @subsection Instruction Naming
504
505 @cindex i386 instruction naming
506 @cindex instruction naming, i386
507 @cindex x86-64 instruction naming
508 @cindex instruction naming, x86-64
509
510 Instruction mnemonics are suffixed with one character modifiers which
511 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
512 and @samp{q} specify byte, word, long and quadruple word operands. If
513 no suffix is specified by an instruction then @code{@value{AS}} tries to
514 fill in the missing suffix based on the destination register operand
515 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
516 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
517 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
518 assembler which assumes that a missing mnemonic suffix implies long
519 operand size. (This incompatibility does not affect compiler output
520 since compilers always explicitly specify the mnemonic suffix.)
521
522 Almost all instructions have the same names in AT&T and Intel format.
523 There are a few exceptions. The sign extend and zero extend
524 instructions need two sizes to specify them. They need a size to
525 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
526 is accomplished by using two instruction mnemonic suffixes in AT&T
527 syntax. Base names for sign extend and zero extend are
528 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
529 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
530 are tacked on to this base name, the @emph{from} suffix before the
531 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
532 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
533 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
534 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
535 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
536 quadruple word).
537
538 @cindex encoding options, i386
539 @cindex encoding options, x86-64
540
541 Different encoding options can be specified via optional mnemonic
542 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
543 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
544 prefers 8bit or 32bit displacement in encoding.
545
546 @cindex conversion instructions, i386
547 @cindex i386 conversion instructions
548 @cindex conversion instructions, x86-64
549 @cindex x86-64 conversion instructions
550 The Intel-syntax conversion instructions
551
552 @itemize @bullet
553 @item
554 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
555
556 @item
557 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
558
559 @item
560 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
561
562 @item
563 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
564
565 @item
566 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
567 (x86-64 only),
568
569 @item
570 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
571 @samp{%rdx:%rax} (x86-64 only),
572 @end itemize
573
574 @noindent
575 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
576 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
577 instructions.
578
579 @cindex jump instructions, i386
580 @cindex call instructions, i386
581 @cindex jump instructions, x86-64
582 @cindex call instructions, x86-64
583 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
584 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
585 convention.
586
587 @subsection AT&T Mnemonic versus Intel Mnemonic
588
589 @cindex i386 mnemonic compatibility
590 @cindex mnemonic compatibility, i386
591
592 @code{@value{AS}} supports assembly using Intel mnemonic.
593 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
594 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
595 syntax for compatibility with the output of @code{@value{GCC}}.
596 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
597 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
598 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
599 assembler with different mnemonics from those in Intel IA32 specification.
600 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
601
602 @node i386-Regs
603 @section Register Naming
604
605 @cindex i386 registers
606 @cindex registers, i386
607 @cindex x86-64 registers
608 @cindex registers, x86-64
609 Register operands are always prefixed with @samp{%}. The 80386 registers
610 consist of
611
612 @itemize @bullet
613 @item
614 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
615 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
616 frame pointer), and @samp{%esp} (the stack pointer).
617
618 @item
619 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
620 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
621
622 @item
623 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
624 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
625 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
626 @samp{%cx}, and @samp{%dx})
627
628 @item
629 the 6 section registers @samp{%cs} (code section), @samp{%ds}
630 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
631 and @samp{%gs}.
632
633 @item
634 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
635 @samp{%cr3}.
636
637 @item
638 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
639 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
640
641 @item
642 the 2 test registers @samp{%tr6} and @samp{%tr7}.
643
644 @item
645 the 8 floating point register stack @samp{%st} or equivalently
646 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
647 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
648 These registers are overloaded by 8 MMX registers @samp{%mm0},
649 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
650 @samp{%mm6} and @samp{%mm7}.
651
652 @item
653 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
654 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
655 @end itemize
656
657 The AMD x86-64 architecture extends the register set by:
658
659 @itemize @bullet
660 @item
661 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
662 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
663 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
664 pointer)
665
666 @item
667 the 8 extended registers @samp{%r8}--@samp{%r15}.
668
669 @item
670 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
671
672 @item
673 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
674
675 @item
676 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
677
678 @item
679 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
680
681 @item
682 the 8 debug registers: @samp{%db8}--@samp{%db15}.
683
684 @item
685 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
686 @end itemize
687
688 @node i386-Prefixes
689 @section Instruction Prefixes
690
691 @cindex i386 instruction prefixes
692 @cindex instruction prefixes, i386
693 @cindex prefixes, i386
694 Instruction prefixes are used to modify the following instruction. They
695 are used to repeat string instructions, to provide section overrides, to
696 perform bus lock operations, and to change operand and address sizes.
697 (Most instructions that normally operate on 32-bit operands will use
698 16-bit operands if the instruction has an ``operand size'' prefix.)
699 Instruction prefixes are best written on the same line as the instruction
700 they act upon. For example, the @samp{scas} (scan string) instruction is
701 repeated with:
702
703 @smallexample
704 repne scas %es:(%edi),%al
705 @end smallexample
706
707 You may also place prefixes on the lines immediately preceding the
708 instruction, but this circumvents checks that @code{@value{AS}} does
709 with prefixes, and will not work with all prefixes.
710
711 Here is a list of instruction prefixes:
712
713 @cindex section override prefixes, i386
714 @itemize @bullet
715 @item
716 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
717 @samp{fs}, @samp{gs}. These are automatically added by specifying
718 using the @var{section}:@var{memory-operand} form for memory references.
719
720 @cindex size prefixes, i386
721 @item
722 Operand/Address size prefixes @samp{data16} and @samp{addr16}
723 change 32-bit operands/addresses into 16-bit operands/addresses,
724 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
725 @code{.code16} section) into 32-bit operands/addresses. These prefixes
726 @emph{must} appear on the same line of code as the instruction they
727 modify. For example, in a 16-bit @code{.code16} section, you might
728 write:
729
730 @smallexample
731 addr32 jmpl *(%ebx)
732 @end smallexample
733
734 @cindex bus lock prefixes, i386
735 @cindex inhibiting interrupts, i386
736 @item
737 The bus lock prefix @samp{lock} inhibits interrupts during execution of
738 the instruction it precedes. (This is only valid with certain
739 instructions; see a 80386 manual for details).
740
741 @cindex coprocessor wait, i386
742 @item
743 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
744 complete the current instruction. This should never be needed for the
745 80386/80387 combination.
746
747 @cindex repeat prefixes, i386
748 @item
749 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
750 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
751 times if the current address size is 16-bits).
752 @cindex REX prefixes, i386
753 @item
754 The @samp{rex} family of prefixes is used by x86-64 to encode
755 extensions to i386 instruction set. The @samp{rex} prefix has four
756 bits --- an operand size overwrite (@code{64}) used to change operand size
757 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
758 register set.
759
760 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
761 instruction emits @samp{rex} prefix with all the bits set. By omitting
762 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
763 prefixes as well. Normally, there is no need to write the prefixes
764 explicitly, since gas will automatically generate them based on the
765 instruction operands.
766 @end itemize
767
768 @node i386-Memory
769 @section Memory References
770
771 @cindex i386 memory references
772 @cindex memory references, i386
773 @cindex x86-64 memory references
774 @cindex memory references, x86-64
775 An Intel syntax indirect memory reference of the form
776
777 @smallexample
778 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
779 @end smallexample
780
781 @noindent
782 is translated into the AT&T syntax
783
784 @smallexample
785 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
786 @end smallexample
787
788 @noindent
789 where @var{base} and @var{index} are the optional 32-bit base and
790 index registers, @var{disp} is the optional displacement, and
791 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
792 to calculate the address of the operand. If no @var{scale} is
793 specified, @var{scale} is taken to be 1. @var{section} specifies the
794 optional section register for the memory operand, and may override the
795 default section register (see a 80386 manual for section register
796 defaults). Note that section overrides in AT&T syntax @emph{must}
797 be preceded by a @samp{%}. If you specify a section override which
798 coincides with the default section register, @code{@value{AS}} does @emph{not}
799 output any section register override prefixes to assemble the given
800 instruction. Thus, section overrides can be specified to emphasize which
801 section register is used for a given memory operand.
802
803 Here are some examples of Intel and AT&T style memory references:
804
805 @table @asis
806 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
807 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
808 missing, and the default section is used (@samp{%ss} for addressing with
809 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
810
811 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
812 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
813 @samp{foo}. All other fields are missing. The section register here
814 defaults to @samp{%ds}.
815
816 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
817 This uses the value pointed to by @samp{foo} as a memory operand.
818 Note that @var{base} and @var{index} are both missing, but there is only
819 @emph{one} @samp{,}. This is a syntactic exception.
820
821 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
822 This selects the contents of the variable @samp{foo} with section
823 register @var{section} being @samp{%gs}.
824 @end table
825
826 Absolute (as opposed to PC relative) call and jump operands must be
827 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
828 always chooses PC relative addressing for jump/call labels.
829
830 Any instruction that has a memory operand, but no register operand,
831 @emph{must} specify its size (byte, word, long, or quadruple) with an
832 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
833 respectively).
834
835 The x86-64 architecture adds an RIP (instruction pointer relative)
836 addressing. This addressing mode is specified by using @samp{rip} as a
837 base register. Only constant offsets are valid. For example:
838
839 @table @asis
840 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
841 Points to the address 1234 bytes past the end of the current
842 instruction.
843
844 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
845 Points to the @code{symbol} in RIP relative way, this is shorter than
846 the default absolute addressing.
847 @end table
848
849 Other addressing modes remain unchanged in x86-64 architecture, except
850 registers used are 64-bit instead of 32-bit.
851
852 @node i386-Jumps
853 @section Handling of Jump Instructions
854
855 @cindex jump optimization, i386
856 @cindex i386 jump optimization
857 @cindex jump optimization, x86-64
858 @cindex x86-64 jump optimization
859 Jump instructions are always optimized to use the smallest possible
860 displacements. This is accomplished by using byte (8-bit) displacement
861 jumps whenever the target is sufficiently close. If a byte displacement
862 is insufficient a long displacement is used. We do not support
863 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
864 instruction with the @samp{data16} instruction prefix), since the 80386
865 insists upon masking @samp{%eip} to 16 bits after the word displacement
866 is added. (See also @pxref{i386-Arch})
867
868 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
869 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
870 displacements, so that if you use these instructions (@code{@value{GCC}} does
871 not use them) you may get an error message (and incorrect code). The AT&T
872 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
873 to
874
875 @smallexample
876 jcxz cx_zero
877 jmp cx_nonzero
878 cx_zero: jmp foo
879 cx_nonzero:
880 @end smallexample
881
882 @node i386-Float
883 @section Floating Point
884
885 @cindex i386 floating point
886 @cindex floating point, i386
887 @cindex x86-64 floating point
888 @cindex floating point, x86-64
889 All 80387 floating point types except packed BCD are supported.
890 (BCD support may be added without much difficulty). These data
891 types are 16-, 32-, and 64- bit integers, and single (32-bit),
892 double (64-bit), and extended (80-bit) precision floating point.
893 Each supported type has an instruction mnemonic suffix and a constructor
894 associated with it. Instruction mnemonic suffixes specify the operand's
895 data type. Constructors build these data types into memory.
896
897 @cindex @code{float} directive, i386
898 @cindex @code{single} directive, i386
899 @cindex @code{double} directive, i386
900 @cindex @code{tfloat} directive, i386
901 @cindex @code{float} directive, x86-64
902 @cindex @code{single} directive, x86-64
903 @cindex @code{double} directive, x86-64
904 @cindex @code{tfloat} directive, x86-64
905 @itemize @bullet
906 @item
907 Floating point constructors are @samp{.float} or @samp{.single},
908 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
909 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
910 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
911 only supports this format via the @samp{fldt} (load 80-bit real to stack
912 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
913
914 @cindex @code{word} directive, i386
915 @cindex @code{long} directive, i386
916 @cindex @code{int} directive, i386
917 @cindex @code{quad} directive, i386
918 @cindex @code{word} directive, x86-64
919 @cindex @code{long} directive, x86-64
920 @cindex @code{int} directive, x86-64
921 @cindex @code{quad} directive, x86-64
922 @item
923 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
924 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
925 corresponding instruction mnemonic suffixes are @samp{s} (single),
926 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
927 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
928 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
929 stack) instructions.
930 @end itemize
931
932 Register to register operations should not use instruction mnemonic suffixes.
933 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
934 wrote @samp{fst %st, %st(1)}, since all register to register operations
935 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
936 which converts @samp{%st} from 80-bit to 64-bit floating point format,
937 then stores the result in the 4 byte location @samp{mem})
938
939 @node i386-SIMD
940 @section Intel's MMX and AMD's 3DNow! SIMD Operations
941
942 @cindex MMX, i386
943 @cindex 3DNow!, i386
944 @cindex SIMD, i386
945 @cindex MMX, x86-64
946 @cindex 3DNow!, x86-64
947 @cindex SIMD, x86-64
948
949 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
950 instructions for integer data), available on Intel's Pentium MMX
951 processors and Pentium II processors, AMD's K6 and K6-2 processors,
952 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
953 instruction set (SIMD instructions for 32-bit floating point data)
954 available on AMD's K6-2 processor and possibly others in the future.
955
956 Currently, @code{@value{AS}} does not support Intel's floating point
957 SIMD, Katmai (KNI).
958
959 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
960 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
961 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
962 floating point values. The MMX registers cannot be used at the same time
963 as the floating point stack.
964
965 See Intel and AMD documentation, keeping in mind that the operand order in
966 instructions is reversed from the Intel syntax.
967
968 @node i386-LWP
969 @section AMD's Lightweight Profiling Instructions
970
971 @cindex LWP, i386
972 @cindex LWP, x86-64
973
974 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
975 instruction set, available on AMD's Family 15h (Orochi) processors.
976
977 LWP enables applications to collect and manage performance data, and
978 react to performance events. The collection of performance data
979 requires no context switches. LWP runs in the context of a thread and
980 so several counters can be used independently across multiple threads.
981 LWP can be used in both 64-bit and legacy 32-bit modes.
982
983 For detailed information on the LWP instruction set, see the
984 @cite{AMD Lightweight Profiling Specification} available at
985 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
986
987 @node i386-BMI
988 @section Bit Manipulation Instructions
989
990 @cindex BMI, i386
991 @cindex BMI, x86-64
992
993 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
994
995 BMI instructions provide several instructions implementing individual
996 bit manipulation operations such as isolation, masking, setting, or
997 resetting.
998
999 @c Need to add a specification citation here when available.
1000
1001 @node i386-TBM
1002 @section AMD's Trailing Bit Manipulation Instructions
1003
1004 @cindex TBM, i386
1005 @cindex TBM, x86-64
1006
1007 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1008 instruction set, available on AMD's BDVER2 processors (Trinity and
1009 Viperfish).
1010
1011 TBM instructions provide instructions implementing individual bit
1012 manipulation operations such as isolating, masking, setting, resetting,
1013 complementing, and operations on trailing zeros and ones.
1014
1015 @c Need to add a specification citation here when available.
1016
1017 @node i386-16bit
1018 @section Writing 16-bit Code
1019
1020 @cindex i386 16-bit code
1021 @cindex 16-bit code, i386
1022 @cindex real-mode code, i386
1023 @cindex @code{code16gcc} directive, i386
1024 @cindex @code{code16} directive, i386
1025 @cindex @code{code32} directive, i386
1026 @cindex @code{code64} directive, i386
1027 @cindex @code{code64} directive, x86-64
1028 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1029 or 64-bit x86-64 code depending on the default configuration,
1030 it also supports writing code to run in real mode or in 16-bit protected
1031 mode code segments. To do this, put a @samp{.code16} or
1032 @samp{.code16gcc} directive before the assembly language instructions to
1033 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1034 32-bit code with the @samp{.code32} directive or 64-bit code with the
1035 @samp{.code64} directive.
1036
1037 @samp{.code16gcc} provides experimental support for generating 16-bit
1038 code from gcc, and differs from @samp{.code16} in that @samp{call},
1039 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1040 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1041 default to 32-bit size. This is so that the stack pointer is
1042 manipulated in the same way over function calls, allowing access to
1043 function parameters at the same stack offsets as in 32-bit mode.
1044 @samp{.code16gcc} also automatically adds address size prefixes where
1045 necessary to use the 32-bit addressing modes that gcc generates.
1046
1047 The code which @code{@value{AS}} generates in 16-bit mode will not
1048 necessarily run on a 16-bit pre-80386 processor. To write code that
1049 runs on such a processor, you must refrain from using @emph{any} 32-bit
1050 constructs which require @code{@value{AS}} to output address or operand
1051 size prefixes.
1052
1053 Note that writing 16-bit code instructions by explicitly specifying a
1054 prefix or an instruction mnemonic suffix within a 32-bit code section
1055 generates different machine instructions than those generated for a
1056 16-bit code segment. In a 32-bit code section, the following code
1057 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1058 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1059
1060 @smallexample
1061 pushw $4
1062 @end smallexample
1063
1064 The same code in a 16-bit code section would generate the machine
1065 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1066 is correct since the processor default operand size is assumed to be 16
1067 bits in a 16-bit code section.
1068
1069 @node i386-Arch
1070 @section Specifying CPU Architecture
1071
1072 @cindex arch directive, i386
1073 @cindex i386 arch directive
1074 @cindex arch directive, x86-64
1075 @cindex x86-64 arch directive
1076
1077 @code{@value{AS}} may be told to assemble for a particular CPU
1078 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1079 directive enables a warning when gas detects an instruction that is not
1080 supported on the CPU specified. The choices for @var{cpu_type} are:
1081
1082 @multitable @columnfractions .20 .20 .20 .20
1083 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1084 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1085 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1086 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1087 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1088 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1089 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1090 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1091 @item @samp{generic32} @tab @samp{generic64}
1092 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1093 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1094 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1095 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1096 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1097 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1098 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1099 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1100 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1101 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1102 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1103 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1104 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1105 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1106 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1107 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1108 @item @samp{.padlock} @tab @samp{.clzero}
1109 @end multitable
1110
1111 Apart from the warning, there are only two other effects on
1112 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1113 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1114 will automatically use a two byte opcode sequence. The larger three
1115 byte opcode sequence is used on the 486 (and when no architecture is
1116 specified) because it executes faster on the 486. Note that you can
1117 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1118 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1119 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1120 conditional jumps will be promoted when necessary to a two instruction
1121 sequence consisting of a conditional jump of the opposite sense around
1122 an unconditional jump to the target.
1123
1124 Following the CPU architecture (but not a sub-architecture, which are those
1125 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1126 control automatic promotion of conditional jumps. @samp{jumps} is the
1127 default, and enables jump promotion; All external jumps will be of the long
1128 variety, and file-local jumps will be promoted as necessary.
1129 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1130 byte offset jumps, and warns about file-local conditional jumps that
1131 @code{@value{AS}} promotes.
1132 Unconditional jumps are treated as for @samp{jumps}.
1133
1134 For example
1135
1136 @smallexample
1137 .arch i8086,nojumps
1138 @end smallexample
1139
1140 @node i386-Bugs
1141 @section AT&T Syntax bugs
1142
1143 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1144 assemblers, generate floating point instructions with reversed source
1145 and destination registers in certain cases. Unfortunately, gcc and
1146 possibly many other programs use this reversed syntax, so we're stuck
1147 with it.
1148
1149 For example
1150
1151 @smallexample
1152 fsub %st,%st(3)
1153 @end smallexample
1154 @noindent
1155 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1156 than the expected @samp{%st(3) - %st}. This happens with all the
1157 non-commutative arithmetic floating point operations with two register
1158 operands where the source register is @samp{%st} and the destination
1159 register is @samp{%st(i)}.
1160
1161 @node i386-Notes
1162 @section Notes
1163
1164 @cindex i386 @code{mul}, @code{imul} instructions
1165 @cindex @code{mul} instruction, i386
1166 @cindex @code{imul} instruction, i386
1167 @cindex @code{mul} instruction, x86-64
1168 @cindex @code{imul} instruction, x86-64
1169 There is some trickery concerning the @samp{mul} and @samp{imul}
1170 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1171 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1172 for @samp{imul}) can be output only in the one operand form. Thus,
1173 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1174 the expanding multiply would clobber the @samp{%edx} register, and this
1175 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1176 64-bit product in @samp{%edx:%eax}.
1177
1178 We have added a two operand form of @samp{imul} when the first operand
1179 is an immediate mode expression and the second operand is a register.
1180 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1181 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1182 $69, %eax, %eax}.
1183
This page took 0.056085 seconds and 5 git commands to generate.