Enable Intel MOVDIRI, MOVDIR64B instructions.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{btver1},
127 @code{btver2},
128 @code{generic32} and
129 @code{generic64}.
130
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
135 @code{8087},
136 @code{287},
137 @code{387},
138 @code{687},
139 @code{no87},
140 @code{no287},
141 @code{no387},
142 @code{no687},
143 @code{mmx},
144 @code{nommx},
145 @code{sse},
146 @code{sse2},
147 @code{sse3},
148 @code{ssse3},
149 @code{sse4.1},
150 @code{sse4.2},
151 @code{sse4},
152 @code{nosse},
153 @code{nosse2},
154 @code{nosse3},
155 @code{nossse3},
156 @code{nosse4.1},
157 @code{nosse4.2},
158 @code{nosse4},
159 @code{avx},
160 @code{avx2},
161 @code{noavx},
162 @code{noavx2},
163 @code{adx},
164 @code{rdseed},
165 @code{prfchw},
166 @code{smap},
167 @code{mpx},
168 @code{sha},
169 @code{rdpid},
170 @code{ptwrite},
171 @code{cet},
172 @code{gfni},
173 @code{vaes},
174 @code{vpclmulqdq},
175 @code{prefetchwt1},
176 @code{clflushopt},
177 @code{se1},
178 @code{clwb},
179 @code{movdiri},
180 @code{movdir64b},
181 @code{avx512f},
182 @code{avx512cd},
183 @code{avx512er},
184 @code{avx512pf},
185 @code{avx512vl},
186 @code{avx512bw},
187 @code{avx512dq},
188 @code{avx512ifma},
189 @code{avx512vbmi},
190 @code{avx512_4fmaps},
191 @code{avx512_4vnniw},
192 @code{avx512_vpopcntdq},
193 @code{avx512_vbmi2},
194 @code{avx512_vnni},
195 @code{avx512_bitalg},
196 @code{noavx512f},
197 @code{noavx512cd},
198 @code{noavx512er},
199 @code{noavx512pf},
200 @code{noavx512vl},
201 @code{noavx512bw},
202 @code{noavx512dq},
203 @code{noavx512ifma},
204 @code{noavx512vbmi},
205 @code{noavx512_4fmaps},
206 @code{noavx512_4vnniw},
207 @code{noavx512_vpopcntdq},
208 @code{noavx512_vbmi2},
209 @code{noavx512_vnni},
210 @code{noavx512_bitalg},
211 @code{vmx},
212 @code{vmfunc},
213 @code{smx},
214 @code{xsave},
215 @code{xsaveopt},
216 @code{xsavec},
217 @code{xsaves},
218 @code{aes},
219 @code{pclmul},
220 @code{fsgsbase},
221 @code{rdrnd},
222 @code{f16c},
223 @code{bmi2},
224 @code{fma},
225 @code{movbe},
226 @code{ept},
227 @code{lzcnt},
228 @code{hle},
229 @code{rtm},
230 @code{invpcid},
231 @code{clflush},
232 @code{mwaitx},
233 @code{clzero},
234 @code{wbnoinvd},
235 @code{pconfig},
236 @code{waitpkg},
237 @code{cldemote},
238 @code{lwp},
239 @code{fma4},
240 @code{xop},
241 @code{cx16},
242 @code{syscall},
243 @code{rdtscp},
244 @code{3dnow},
245 @code{3dnowa},
246 @code{sse4a},
247 @code{sse5},
248 @code{svme},
249 @code{abm} and
250 @code{padlock}.
251 Note that rather than extending a basic instruction set, the extension
252 mnemonics starting with @code{no} revoke the respective functionality.
253
254 When the @code{.arch} directive is used with @option{-march}, the
255 @code{.arch} directive will take precedent.
256
257 @cindex @samp{-mtune=} option, i386
258 @cindex @samp{-mtune=} option, x86-64
259 @item -mtune=@var{CPU}
260 This option specifies a processor to optimize for. When used in
261 conjunction with the @option{-march} option, only instructions
262 of the processor specified by the @option{-march} option will be
263 generated.
264
265 Valid @var{CPU} values are identical to the processor list of
266 @option{-march=@var{CPU}}.
267
268 @cindex @samp{-msse2avx} option, i386
269 @cindex @samp{-msse2avx} option, x86-64
270 @item -msse2avx
271 This option specifies that the assembler should encode SSE instructions
272 with VEX prefix.
273
274 @cindex @samp{-msse-check=} option, i386
275 @cindex @samp{-msse-check=} option, x86-64
276 @item -msse-check=@var{none}
277 @itemx -msse-check=@var{warning}
278 @itemx -msse-check=@var{error}
279 These options control if the assembler should check SSE instructions.
280 @option{-msse-check=@var{none}} will make the assembler not to check SSE
281 instructions, which is the default. @option{-msse-check=@var{warning}}
282 will make the assembler issue a warning for any SSE instruction.
283 @option{-msse-check=@var{error}} will make the assembler issue an error
284 for any SSE instruction.
285
286 @cindex @samp{-mavxscalar=} option, i386
287 @cindex @samp{-mavxscalar=} option, x86-64
288 @item -mavxscalar=@var{128}
289 @itemx -mavxscalar=@var{256}
290 These options control how the assembler should encode scalar AVX
291 instructions. @option{-mavxscalar=@var{128}} will encode scalar
292 AVX instructions with 128bit vector length, which is the default.
293 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
294 with 256bit vector length.
295
296 @cindex @samp{-mevexlig=} option, i386
297 @cindex @samp{-mevexlig=} option, x86-64
298 @item -mevexlig=@var{128}
299 @itemx -mevexlig=@var{256}
300 @itemx -mevexlig=@var{512}
301 These options control how the assembler should encode length-ignored
302 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
303 EVEX instructions with 128bit vector length, which is the default.
304 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
305 encode LIG EVEX instructions with 256bit and 512bit vector length,
306 respectively.
307
308 @cindex @samp{-mevexwig=} option, i386
309 @cindex @samp{-mevexwig=} option, x86-64
310 @item -mevexwig=@var{0}
311 @itemx -mevexwig=@var{1}
312 These options control how the assembler should encode w-ignored (WIG)
313 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
314 EVEX instructions with evex.w = 0, which is the default.
315 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
316 evex.w = 1.
317
318 @cindex @samp{-mmnemonic=} option, i386
319 @cindex @samp{-mmnemonic=} option, x86-64
320 @item -mmnemonic=@var{att}
321 @itemx -mmnemonic=@var{intel}
322 This option specifies instruction mnemonic for matching instructions.
323 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
324 take precedent.
325
326 @cindex @samp{-msyntax=} option, i386
327 @cindex @samp{-msyntax=} option, x86-64
328 @item -msyntax=@var{att}
329 @itemx -msyntax=@var{intel}
330 This option specifies instruction syntax when processing instructions.
331 The @code{.att_syntax} and @code{.intel_syntax} directives will
332 take precedent.
333
334 @cindex @samp{-mnaked-reg} option, i386
335 @cindex @samp{-mnaked-reg} option, x86-64
336 @item -mnaked-reg
337 This option specifies that registers don't require a @samp{%} prefix.
338 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
339
340 @cindex @samp{-madd-bnd-prefix} option, i386
341 @cindex @samp{-madd-bnd-prefix} option, x86-64
342 @item -madd-bnd-prefix
343 This option forces the assembler to add BND prefix to all branches, even
344 if such prefix was not explicitly specified in the source code.
345
346 @cindex @samp{-mshared} option, i386
347 @cindex @samp{-mshared} option, x86-64
348 @item -mno-shared
349 On ELF target, the assembler normally optimizes out non-PLT relocations
350 against defined non-weak global branch targets with default visibility.
351 The @samp{-mshared} option tells the assembler to generate code which
352 may go into a shared library where all non-weak global branch targets
353 with default visibility can be preempted. The resulting code is
354 slightly bigger. This option only affects the handling of branch
355 instructions.
356
357 @cindex @samp{-mbig-obj} option, x86-64
358 @item -mbig-obj
359 On x86-64 PE/COFF target this option forces the use of big object file
360 format, which allows more than 32768 sections.
361
362 @cindex @samp{-momit-lock-prefix=} option, i386
363 @cindex @samp{-momit-lock-prefix=} option, x86-64
364 @item -momit-lock-prefix=@var{no}
365 @itemx -momit-lock-prefix=@var{yes}
366 These options control how the assembler should encode lock prefix.
367 This option is intended as a workaround for processors, that fail on
368 lock prefix. This option can only be safely used with single-core,
369 single-thread computers
370 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
371 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
372 which is the default.
373
374 @cindex @samp{-mfence-as-lock-add=} option, i386
375 @cindex @samp{-mfence-as-lock-add=} option, x86-64
376 @item -mfence-as-lock-add=@var{no}
377 @itemx -mfence-as-lock-add=@var{yes}
378 These options control how the assembler should encode lfence, mfence and
379 sfence.
380 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
381 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
382 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
383 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
384 sfence as usual, which is the default.
385
386 @cindex @samp{-mrelax-relocations=} option, i386
387 @cindex @samp{-mrelax-relocations=} option, x86-64
388 @item -mrelax-relocations=@var{no}
389 @itemx -mrelax-relocations=@var{yes}
390 These options control whether the assembler should generate relax
391 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
392 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
393 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
394 @option{-mrelax-relocations=@var{no}} will not generate relax
395 relocations. The default can be controlled by a configure option
396 @option{--enable-x86-relax-relocations}.
397
398 @cindex @samp{-mevexrcig=} option, i386
399 @cindex @samp{-mevexrcig=} option, x86-64
400 @item -mevexrcig=@var{rne}
401 @itemx -mevexrcig=@var{rd}
402 @itemx -mevexrcig=@var{ru}
403 @itemx -mevexrcig=@var{rz}
404 These options control how the assembler should encode SAE-only
405 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
406 of EVEX instruction with 00, which is the default.
407 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
408 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
409 with 01, 10 and 11 RC bits, respectively.
410
411 @cindex @samp{-mamd64} option, x86-64
412 @cindex @samp{-mintel64} option, x86-64
413 @item -mamd64
414 @itemx -mintel64
415 This option specifies that the assembler should accept only AMD64 or
416 Intel64 ISA in 64-bit mode. The default is to accept both.
417
418 @cindex @samp{-O0} option, i386
419 @cindex @samp{-O0} option, x86-64
420 @cindex @samp{-O} option, i386
421 @cindex @samp{-O} option, x86-64
422 @cindex @samp{-O1} option, i386
423 @cindex @samp{-O1} option, x86-64
424 @cindex @samp{-O2} option, i386
425 @cindex @samp{-O2} option, x86-64
426 @cindex @samp{-Os} option, i386
427 @cindex @samp{-Os} option, x86-64
428 @item -O0 | -O | -O1 | -O2 | -Os
429 Optimize instruction encoding with smaller instruction size. @samp{-O}
430 and @samp{-O1} encode 64-bit register load instructions with 64-bit
431 immediate as 32-bit register load instructions with 31-bit or 32-bits
432 immediates and encode 64-bit register clearing instructions with 32-bit
433 register clearing instructions. @samp{-O2} includes @samp{-O1}
434 optimization plus encodes 256-bit and 512-bit vector register clearing
435 instructions with 128-bit vector register clearing instructions.
436 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
437 and 64-bit register tests with immediate as 8-bit register test with
438 immediate. @samp{-O0} turns off this optimization.
439
440 @end table
441 @c man end
442
443 @node i386-Directives
444 @section x86 specific Directives
445
446 @cindex machine directives, x86
447 @cindex x86 machine directives
448 @table @code
449
450 @cindex @code{lcomm} directive, COFF
451 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
452 Reserve @var{length} (an absolute expression) bytes for a local common
453 denoted by @var{symbol}. The section and value of @var{symbol} are
454 those of the new local common. The addresses are allocated in the bss
455 section, so that at run-time the bytes start off zeroed. Since
456 @var{symbol} is not declared global, it is normally not visible to
457 @code{@value{LD}}. The optional third parameter, @var{alignment},
458 specifies the desired alignment of the symbol in the bss section.
459
460 This directive is only available for COFF based x86 targets.
461
462 @cindex @code{largecomm} directive, ELF
463 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
464 This directive behaves in the same way as the @code{comm} directive
465 except that the data is placed into the @var{.lbss} section instead of
466 the @var{.bss} section @ref{Comm}.
467
468 The directive is intended to be used for data which requires a large
469 amount of space, and it is only available for ELF based x86_64
470 targets.
471
472 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
473
474 @end table
475
476 @node i386-Syntax
477 @section i386 Syntactical Considerations
478 @menu
479 * i386-Variations:: AT&T Syntax versus Intel Syntax
480 * i386-Chars:: Special Characters
481 @end menu
482
483 @node i386-Variations
484 @subsection AT&T Syntax versus Intel Syntax
485
486 @cindex i386 intel_syntax pseudo op
487 @cindex intel_syntax pseudo op, i386
488 @cindex i386 att_syntax pseudo op
489 @cindex att_syntax pseudo op, i386
490 @cindex i386 syntax compatibility
491 @cindex syntax compatibility, i386
492 @cindex x86-64 intel_syntax pseudo op
493 @cindex intel_syntax pseudo op, x86-64
494 @cindex x86-64 att_syntax pseudo op
495 @cindex att_syntax pseudo op, x86-64
496 @cindex x86-64 syntax compatibility
497 @cindex syntax compatibility, x86-64
498
499 @code{@value{AS}} now supports assembly using Intel assembler syntax.
500 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
501 back to the usual AT&T mode for compatibility with the output of
502 @code{@value{GCC}}. Either of these directives may have an optional
503 argument, @code{prefix}, or @code{noprefix} specifying whether registers
504 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
505 different from Intel syntax. We mention these differences because
506 almost all 80386 documents use Intel syntax. Notable differences
507 between the two syntaxes are:
508
509 @cindex immediate operands, i386
510 @cindex i386 immediate operands
511 @cindex register operands, i386
512 @cindex i386 register operands
513 @cindex jump/call operands, i386
514 @cindex i386 jump/call operands
515 @cindex operand delimiters, i386
516
517 @cindex immediate operands, x86-64
518 @cindex x86-64 immediate operands
519 @cindex register operands, x86-64
520 @cindex x86-64 register operands
521 @cindex jump/call operands, x86-64
522 @cindex x86-64 jump/call operands
523 @cindex operand delimiters, x86-64
524 @itemize @bullet
525 @item
526 AT&T immediate operands are preceded by @samp{$}; Intel immediate
527 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
528 AT&T register operands are preceded by @samp{%}; Intel register operands
529 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
530 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
531
532 @cindex i386 source, destination operands
533 @cindex source, destination operands; i386
534 @cindex x86-64 source, destination operands
535 @cindex source, destination operands; x86-64
536 @item
537 AT&T and Intel syntax use the opposite order for source and destination
538 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
539 @samp{source, dest} convention is maintained for compatibility with
540 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
541 instructions with 2 immediate operands, such as the @samp{enter}
542 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
543
544 @cindex mnemonic suffixes, i386
545 @cindex sizes operands, i386
546 @cindex i386 size suffixes
547 @cindex mnemonic suffixes, x86-64
548 @cindex sizes operands, x86-64
549 @cindex x86-64 size suffixes
550 @item
551 In AT&T syntax the size of memory operands is determined from the last
552 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
553 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
554 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
555 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
556 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
557 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
558 syntax.
559
560 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
561 instruction with the 64-bit displacement or immediate operand.
562
563 @cindex return instructions, i386
564 @cindex i386 jump, call, return
565 @cindex return instructions, x86-64
566 @cindex x86-64 jump, call, return
567 @item
568 Immediate form long jumps and calls are
569 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
570 Intel syntax is
571 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
572 instruction
573 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
574 @samp{ret far @var{stack-adjust}}.
575
576 @cindex sections, i386
577 @cindex i386 sections
578 @cindex sections, x86-64
579 @cindex x86-64 sections
580 @item
581 The AT&T assembler does not provide support for multiple section
582 programs. Unix style systems expect all programs to be single sections.
583 @end itemize
584
585 @node i386-Chars
586 @subsection Special Characters
587
588 @cindex line comment character, i386
589 @cindex i386 line comment character
590 The presence of a @samp{#} appearing anywhere on a line indicates the
591 start of a comment that extends to the end of that line.
592
593 If a @samp{#} appears as the first character of a line then the whole
594 line is treated as a comment, but in this case the line can also be a
595 logical line number directive (@pxref{Comments}) or a preprocessor
596 control command (@pxref{Preprocessing}).
597
598 If the @option{--divide} command line option has not been specified
599 then the @samp{/} character appearing anywhere on a line also
600 introduces a line comment.
601
602 @cindex line separator, i386
603 @cindex statement separator, i386
604 @cindex i386 line separator
605 The @samp{;} character can be used to separate statements on the same
606 line.
607
608 @node i386-Mnemonics
609 @section i386-Mnemonics
610 @subsection Instruction Naming
611
612 @cindex i386 instruction naming
613 @cindex instruction naming, i386
614 @cindex x86-64 instruction naming
615 @cindex instruction naming, x86-64
616
617 Instruction mnemonics are suffixed with one character modifiers which
618 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
619 and @samp{q} specify byte, word, long and quadruple word operands. If
620 no suffix is specified by an instruction then @code{@value{AS}} tries to
621 fill in the missing suffix based on the destination register operand
622 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
623 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
624 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
625 assembler which assumes that a missing mnemonic suffix implies long
626 operand size. (This incompatibility does not affect compiler output
627 since compilers always explicitly specify the mnemonic suffix.)
628
629 Almost all instructions have the same names in AT&T and Intel format.
630 There are a few exceptions. The sign extend and zero extend
631 instructions need two sizes to specify them. They need a size to
632 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
633 is accomplished by using two instruction mnemonic suffixes in AT&T
634 syntax. Base names for sign extend and zero extend are
635 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
636 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
637 are tacked on to this base name, the @emph{from} suffix before the
638 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
639 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
640 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
641 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
642 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
643 quadruple word).
644
645 @cindex encoding options, i386
646 @cindex encoding options, x86-64
647
648 Different encoding options can be specified via pseudo prefixes:
649
650 @itemize @bullet
651 @item
652 @samp{@{disp8@}} -- prefer 8-bit displacement.
653
654 @item
655 @samp{@{disp32@}} -- prefer 32-bit displacement.
656
657 @item
658 @samp{@{load@}} -- prefer load-form instruction.
659
660 @item
661 @samp{@{store@}} -- prefer store-form instruction.
662
663 @item
664 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
665
666 @item
667 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
668
669 @item
670 @samp{@{evex@}} -- encode with EVEX prefix.
671
672 @item
673 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
674 instructions (x86-64 only). Note that this differs from the @samp{rex}
675 prefix which generates REX prefix unconditionally.
676
677 @item
678 @samp{@{nooptimize@}} -- disable instruction size optimization.
679 @end itemize
680
681 @cindex conversion instructions, i386
682 @cindex i386 conversion instructions
683 @cindex conversion instructions, x86-64
684 @cindex x86-64 conversion instructions
685 The Intel-syntax conversion instructions
686
687 @itemize @bullet
688 @item
689 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
690
691 @item
692 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
693
694 @item
695 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
696
697 @item
698 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
699
700 @item
701 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
702 (x86-64 only),
703
704 @item
705 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
706 @samp{%rdx:%rax} (x86-64 only),
707 @end itemize
708
709 @noindent
710 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
711 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
712 instructions.
713
714 @cindex jump instructions, i386
715 @cindex call instructions, i386
716 @cindex jump instructions, x86-64
717 @cindex call instructions, x86-64
718 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
719 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
720 convention.
721
722 @subsection AT&T Mnemonic versus Intel Mnemonic
723
724 @cindex i386 mnemonic compatibility
725 @cindex mnemonic compatibility, i386
726
727 @code{@value{AS}} supports assembly using Intel mnemonic.
728 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
729 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
730 syntax for compatibility with the output of @code{@value{GCC}}.
731 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
732 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
733 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
734 assembler with different mnemonics from those in Intel IA32 specification.
735 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
736
737 @node i386-Regs
738 @section Register Naming
739
740 @cindex i386 registers
741 @cindex registers, i386
742 @cindex x86-64 registers
743 @cindex registers, x86-64
744 Register operands are always prefixed with @samp{%}. The 80386 registers
745 consist of
746
747 @itemize @bullet
748 @item
749 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
750 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
751 frame pointer), and @samp{%esp} (the stack pointer).
752
753 @item
754 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
755 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
756
757 @item
758 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
759 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
760 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
761 @samp{%cx}, and @samp{%dx})
762
763 @item
764 the 6 section registers @samp{%cs} (code section), @samp{%ds}
765 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
766 and @samp{%gs}.
767
768 @item
769 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
770 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
771
772 @item
773 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
774 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
775
776 @item
777 the 2 test registers @samp{%tr6} and @samp{%tr7}.
778
779 @item
780 the 8 floating point register stack @samp{%st} or equivalently
781 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
782 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
783 These registers are overloaded by 8 MMX registers @samp{%mm0},
784 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
785 @samp{%mm6} and @samp{%mm7}.
786
787 @item
788 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
789 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
790 @end itemize
791
792 The AMD x86-64 architecture extends the register set by:
793
794 @itemize @bullet
795 @item
796 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
797 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
798 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
799 pointer)
800
801 @item
802 the 8 extended registers @samp{%r8}--@samp{%r15}.
803
804 @item
805 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
806
807 @item
808 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
809
810 @item
811 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
812
813 @item
814 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
815
816 @item
817 the 8 debug registers: @samp{%db8}--@samp{%db15}.
818
819 @item
820 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
821 @end itemize
822
823 With the AVX extensions more registers were made available:
824
825 @itemize @bullet
826
827 @item
828 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
829 available in 32-bit mode). The bottom 128 bits are overlaid with the
830 @samp{xmm0}--@samp{xmm15} registers.
831
832 @end itemize
833
834 The AVX2 extensions made in 64-bit mode more registers available:
835
836 @itemize @bullet
837
838 @item
839 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
840 registers @samp{%ymm16}--@samp{%ymm31}.
841
842 @end itemize
843
844 The AVX512 extensions added the following registers:
845
846 @itemize @bullet
847
848 @item
849 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
850 available in 32-bit mode). The bottom 128 bits are overlaid with the
851 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
852 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
853
854 @item
855 the 8 mask registers @samp{%k0}--@samp{%k7}.
856
857 @end itemize
858
859 @node i386-Prefixes
860 @section Instruction Prefixes
861
862 @cindex i386 instruction prefixes
863 @cindex instruction prefixes, i386
864 @cindex prefixes, i386
865 Instruction prefixes are used to modify the following instruction. They
866 are used to repeat string instructions, to provide section overrides, to
867 perform bus lock operations, and to change operand and address sizes.
868 (Most instructions that normally operate on 32-bit operands will use
869 16-bit operands if the instruction has an ``operand size'' prefix.)
870 Instruction prefixes are best written on the same line as the instruction
871 they act upon. For example, the @samp{scas} (scan string) instruction is
872 repeated with:
873
874 @smallexample
875 repne scas %es:(%edi),%al
876 @end smallexample
877
878 You may also place prefixes on the lines immediately preceding the
879 instruction, but this circumvents checks that @code{@value{AS}} does
880 with prefixes, and will not work with all prefixes.
881
882 Here is a list of instruction prefixes:
883
884 @cindex section override prefixes, i386
885 @itemize @bullet
886 @item
887 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
888 @samp{fs}, @samp{gs}. These are automatically added by specifying
889 using the @var{section}:@var{memory-operand} form for memory references.
890
891 @cindex size prefixes, i386
892 @item
893 Operand/Address size prefixes @samp{data16} and @samp{addr16}
894 change 32-bit operands/addresses into 16-bit operands/addresses,
895 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
896 @code{.code16} section) into 32-bit operands/addresses. These prefixes
897 @emph{must} appear on the same line of code as the instruction they
898 modify. For example, in a 16-bit @code{.code16} section, you might
899 write:
900
901 @smallexample
902 addr32 jmpl *(%ebx)
903 @end smallexample
904
905 @cindex bus lock prefixes, i386
906 @cindex inhibiting interrupts, i386
907 @item
908 The bus lock prefix @samp{lock} inhibits interrupts during execution of
909 the instruction it precedes. (This is only valid with certain
910 instructions; see a 80386 manual for details).
911
912 @cindex coprocessor wait, i386
913 @item
914 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
915 complete the current instruction. This should never be needed for the
916 80386/80387 combination.
917
918 @cindex repeat prefixes, i386
919 @item
920 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
921 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
922 times if the current address size is 16-bits).
923 @cindex REX prefixes, i386
924 @item
925 The @samp{rex} family of prefixes is used by x86-64 to encode
926 extensions to i386 instruction set. The @samp{rex} prefix has four
927 bits --- an operand size overwrite (@code{64}) used to change operand size
928 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
929 register set.
930
931 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
932 instruction emits @samp{rex} prefix with all the bits set. By omitting
933 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
934 prefixes as well. Normally, there is no need to write the prefixes
935 explicitly, since gas will automatically generate them based on the
936 instruction operands.
937 @end itemize
938
939 @node i386-Memory
940 @section Memory References
941
942 @cindex i386 memory references
943 @cindex memory references, i386
944 @cindex x86-64 memory references
945 @cindex memory references, x86-64
946 An Intel syntax indirect memory reference of the form
947
948 @smallexample
949 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
950 @end smallexample
951
952 @noindent
953 is translated into the AT&T syntax
954
955 @smallexample
956 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
957 @end smallexample
958
959 @noindent
960 where @var{base} and @var{index} are the optional 32-bit base and
961 index registers, @var{disp} is the optional displacement, and
962 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
963 to calculate the address of the operand. If no @var{scale} is
964 specified, @var{scale} is taken to be 1. @var{section} specifies the
965 optional section register for the memory operand, and may override the
966 default section register (see a 80386 manual for section register
967 defaults). Note that section overrides in AT&T syntax @emph{must}
968 be preceded by a @samp{%}. If you specify a section override which
969 coincides with the default section register, @code{@value{AS}} does @emph{not}
970 output any section register override prefixes to assemble the given
971 instruction. Thus, section overrides can be specified to emphasize which
972 section register is used for a given memory operand.
973
974 Here are some examples of Intel and AT&T style memory references:
975
976 @table @asis
977 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
978 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
979 missing, and the default section is used (@samp{%ss} for addressing with
980 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
981
982 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
983 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
984 @samp{foo}. All other fields are missing. The section register here
985 defaults to @samp{%ds}.
986
987 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
988 This uses the value pointed to by @samp{foo} as a memory operand.
989 Note that @var{base} and @var{index} are both missing, but there is only
990 @emph{one} @samp{,}. This is a syntactic exception.
991
992 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
993 This selects the contents of the variable @samp{foo} with section
994 register @var{section} being @samp{%gs}.
995 @end table
996
997 Absolute (as opposed to PC relative) call and jump operands must be
998 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
999 always chooses PC relative addressing for jump/call labels.
1000
1001 Any instruction that has a memory operand, but no register operand,
1002 @emph{must} specify its size (byte, word, long, or quadruple) with an
1003 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1004 respectively).
1005
1006 The x86-64 architecture adds an RIP (instruction pointer relative)
1007 addressing. This addressing mode is specified by using @samp{rip} as a
1008 base register. Only constant offsets are valid. For example:
1009
1010 @table @asis
1011 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1012 Points to the address 1234 bytes past the end of the current
1013 instruction.
1014
1015 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1016 Points to the @code{symbol} in RIP relative way, this is shorter than
1017 the default absolute addressing.
1018 @end table
1019
1020 Other addressing modes remain unchanged in x86-64 architecture, except
1021 registers used are 64-bit instead of 32-bit.
1022
1023 @node i386-Jumps
1024 @section Handling of Jump Instructions
1025
1026 @cindex jump optimization, i386
1027 @cindex i386 jump optimization
1028 @cindex jump optimization, x86-64
1029 @cindex x86-64 jump optimization
1030 Jump instructions are always optimized to use the smallest possible
1031 displacements. This is accomplished by using byte (8-bit) displacement
1032 jumps whenever the target is sufficiently close. If a byte displacement
1033 is insufficient a long displacement is used. We do not support
1034 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1035 instruction with the @samp{data16} instruction prefix), since the 80386
1036 insists upon masking @samp{%eip} to 16 bits after the word displacement
1037 is added. (See also @pxref{i386-Arch})
1038
1039 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1040 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1041 displacements, so that if you use these instructions (@code{@value{GCC}} does
1042 not use them) you may get an error message (and incorrect code). The AT&T
1043 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1044 to
1045
1046 @smallexample
1047 jcxz cx_zero
1048 jmp cx_nonzero
1049 cx_zero: jmp foo
1050 cx_nonzero:
1051 @end smallexample
1052
1053 @node i386-Float
1054 @section Floating Point
1055
1056 @cindex i386 floating point
1057 @cindex floating point, i386
1058 @cindex x86-64 floating point
1059 @cindex floating point, x86-64
1060 All 80387 floating point types except packed BCD are supported.
1061 (BCD support may be added without much difficulty). These data
1062 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1063 double (64-bit), and extended (80-bit) precision floating point.
1064 Each supported type has an instruction mnemonic suffix and a constructor
1065 associated with it. Instruction mnemonic suffixes specify the operand's
1066 data type. Constructors build these data types into memory.
1067
1068 @cindex @code{float} directive, i386
1069 @cindex @code{single} directive, i386
1070 @cindex @code{double} directive, i386
1071 @cindex @code{tfloat} directive, i386
1072 @cindex @code{float} directive, x86-64
1073 @cindex @code{single} directive, x86-64
1074 @cindex @code{double} directive, x86-64
1075 @cindex @code{tfloat} directive, x86-64
1076 @itemize @bullet
1077 @item
1078 Floating point constructors are @samp{.float} or @samp{.single},
1079 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1080 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1081 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1082 only supports this format via the @samp{fldt} (load 80-bit real to stack
1083 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1084
1085 @cindex @code{word} directive, i386
1086 @cindex @code{long} directive, i386
1087 @cindex @code{int} directive, i386
1088 @cindex @code{quad} directive, i386
1089 @cindex @code{word} directive, x86-64
1090 @cindex @code{long} directive, x86-64
1091 @cindex @code{int} directive, x86-64
1092 @cindex @code{quad} directive, x86-64
1093 @item
1094 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1095 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1096 corresponding instruction mnemonic suffixes are @samp{s} (single),
1097 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1098 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1099 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1100 stack) instructions.
1101 @end itemize
1102
1103 Register to register operations should not use instruction mnemonic suffixes.
1104 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1105 wrote @samp{fst %st, %st(1)}, since all register to register operations
1106 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1107 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1108 then stores the result in the 4 byte location @samp{mem})
1109
1110 @node i386-SIMD
1111 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1112
1113 @cindex MMX, i386
1114 @cindex 3DNow!, i386
1115 @cindex SIMD, i386
1116 @cindex MMX, x86-64
1117 @cindex 3DNow!, x86-64
1118 @cindex SIMD, x86-64
1119
1120 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1121 instructions for integer data), available on Intel's Pentium MMX
1122 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1123 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1124 instruction set (SIMD instructions for 32-bit floating point data)
1125 available on AMD's K6-2 processor and possibly others in the future.
1126
1127 Currently, @code{@value{AS}} does not support Intel's floating point
1128 SIMD, Katmai (KNI).
1129
1130 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1131 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1132 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1133 floating point values. The MMX registers cannot be used at the same time
1134 as the floating point stack.
1135
1136 See Intel and AMD documentation, keeping in mind that the operand order in
1137 instructions is reversed from the Intel syntax.
1138
1139 @node i386-LWP
1140 @section AMD's Lightweight Profiling Instructions
1141
1142 @cindex LWP, i386
1143 @cindex LWP, x86-64
1144
1145 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1146 instruction set, available on AMD's Family 15h (Orochi) processors.
1147
1148 LWP enables applications to collect and manage performance data, and
1149 react to performance events. The collection of performance data
1150 requires no context switches. LWP runs in the context of a thread and
1151 so several counters can be used independently across multiple threads.
1152 LWP can be used in both 64-bit and legacy 32-bit modes.
1153
1154 For detailed information on the LWP instruction set, see the
1155 @cite{AMD Lightweight Profiling Specification} available at
1156 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1157
1158 @node i386-BMI
1159 @section Bit Manipulation Instructions
1160
1161 @cindex BMI, i386
1162 @cindex BMI, x86-64
1163
1164 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1165
1166 BMI instructions provide several instructions implementing individual
1167 bit manipulation operations such as isolation, masking, setting, or
1168 resetting.
1169
1170 @c Need to add a specification citation here when available.
1171
1172 @node i386-TBM
1173 @section AMD's Trailing Bit Manipulation Instructions
1174
1175 @cindex TBM, i386
1176 @cindex TBM, x86-64
1177
1178 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1179 instruction set, available on AMD's BDVER2 processors (Trinity and
1180 Viperfish).
1181
1182 TBM instructions provide instructions implementing individual bit
1183 manipulation operations such as isolating, masking, setting, resetting,
1184 complementing, and operations on trailing zeros and ones.
1185
1186 @c Need to add a specification citation here when available.
1187
1188 @node i386-16bit
1189 @section Writing 16-bit Code
1190
1191 @cindex i386 16-bit code
1192 @cindex 16-bit code, i386
1193 @cindex real-mode code, i386
1194 @cindex @code{code16gcc} directive, i386
1195 @cindex @code{code16} directive, i386
1196 @cindex @code{code32} directive, i386
1197 @cindex @code{code64} directive, i386
1198 @cindex @code{code64} directive, x86-64
1199 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1200 or 64-bit x86-64 code depending on the default configuration,
1201 it also supports writing code to run in real mode or in 16-bit protected
1202 mode code segments. To do this, put a @samp{.code16} or
1203 @samp{.code16gcc} directive before the assembly language instructions to
1204 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1205 32-bit code with the @samp{.code32} directive or 64-bit code with the
1206 @samp{.code64} directive.
1207
1208 @samp{.code16gcc} provides experimental support for generating 16-bit
1209 code from gcc, and differs from @samp{.code16} in that @samp{call},
1210 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1211 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1212 default to 32-bit size. This is so that the stack pointer is
1213 manipulated in the same way over function calls, allowing access to
1214 function parameters at the same stack offsets as in 32-bit mode.
1215 @samp{.code16gcc} also automatically adds address size prefixes where
1216 necessary to use the 32-bit addressing modes that gcc generates.
1217
1218 The code which @code{@value{AS}} generates in 16-bit mode will not
1219 necessarily run on a 16-bit pre-80386 processor. To write code that
1220 runs on such a processor, you must refrain from using @emph{any} 32-bit
1221 constructs which require @code{@value{AS}} to output address or operand
1222 size prefixes.
1223
1224 Note that writing 16-bit code instructions by explicitly specifying a
1225 prefix or an instruction mnemonic suffix within a 32-bit code section
1226 generates different machine instructions than those generated for a
1227 16-bit code segment. In a 32-bit code section, the following code
1228 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1229 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1230
1231 @smallexample
1232 pushw $4
1233 @end smallexample
1234
1235 The same code in a 16-bit code section would generate the machine
1236 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1237 is correct since the processor default operand size is assumed to be 16
1238 bits in a 16-bit code section.
1239
1240 @node i386-Arch
1241 @section Specifying CPU Architecture
1242
1243 @cindex arch directive, i386
1244 @cindex i386 arch directive
1245 @cindex arch directive, x86-64
1246 @cindex x86-64 arch directive
1247
1248 @code{@value{AS}} may be told to assemble for a particular CPU
1249 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1250 directive enables a warning when gas detects an instruction that is not
1251 supported on the CPU specified. The choices for @var{cpu_type} are:
1252
1253 @multitable @columnfractions .20 .20 .20 .20
1254 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1255 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1256 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1257 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1258 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1259 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1260 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1261 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1262 @item @samp{generic32} @tab @samp{generic64}
1263 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1264 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1265 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1266 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1267 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1268 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1269 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1270 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1271 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1272 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1273 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1274 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1275 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1276 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1277 @item @samp{.avx512_bitalg}
1278 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1279 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1280 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1281 @item @samp{.movdiri} @tab @samp{.movdir64b}
1282 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1283 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1284 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1285 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1286 @end multitable
1287
1288 Apart from the warning, there are only two other effects on
1289 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1290 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1291 will automatically use a two byte opcode sequence. The larger three
1292 byte opcode sequence is used on the 486 (and when no architecture is
1293 specified) because it executes faster on the 486. Note that you can
1294 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1295 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1296 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1297 conditional jumps will be promoted when necessary to a two instruction
1298 sequence consisting of a conditional jump of the opposite sense around
1299 an unconditional jump to the target.
1300
1301 Following the CPU architecture (but not a sub-architecture, which are those
1302 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1303 control automatic promotion of conditional jumps. @samp{jumps} is the
1304 default, and enables jump promotion; All external jumps will be of the long
1305 variety, and file-local jumps will be promoted as necessary.
1306 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1307 byte offset jumps, and warns about file-local conditional jumps that
1308 @code{@value{AS}} promotes.
1309 Unconditional jumps are treated as for @samp{jumps}.
1310
1311 For example
1312
1313 @smallexample
1314 .arch i8086,nojumps
1315 @end smallexample
1316
1317 @node i386-Bugs
1318 @section AT&T Syntax bugs
1319
1320 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1321 assemblers, generate floating point instructions with reversed source
1322 and destination registers in certain cases. Unfortunately, gcc and
1323 possibly many other programs use this reversed syntax, so we're stuck
1324 with it.
1325
1326 For example
1327
1328 @smallexample
1329 fsub %st,%st(3)
1330 @end smallexample
1331 @noindent
1332 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1333 than the expected @samp{%st(3) - %st}. This happens with all the
1334 non-commutative arithmetic floating point operations with two register
1335 operands where the source register is @samp{%st} and the destination
1336 register is @samp{%st(i)}.
1337
1338 @node i386-Notes
1339 @section Notes
1340
1341 @cindex i386 @code{mul}, @code{imul} instructions
1342 @cindex @code{mul} instruction, i386
1343 @cindex @code{imul} instruction, i386
1344 @cindex @code{mul} instruction, x86-64
1345 @cindex @code{imul} instruction, x86-64
1346 There is some trickery concerning the @samp{mul} and @samp{imul}
1347 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1348 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1349 for @samp{imul}) can be output only in the one operand form. Thus,
1350 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1351 the expanding multiply would clobber the @samp{%edx} register, and this
1352 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1353 64-bit product in @samp{%edx:%eax}.
1354
1355 We have added a two operand form of @samp{imul} when the first operand
1356 is an immediate mode expression and the second operand is a register.
1357 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1358 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1359 $69, %eax, %eax}.
1360
This page took 0.058907 seconds and 5 git commands to generate.