X86: Remove pcommit instruction
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{prefetchwt1},
171 @code{clflushopt},
172 @code{se1},
173 @code{clwb},
174 @code{avx512f},
175 @code{avx512cd},
176 @code{avx512er},
177 @code{avx512pf},
178 @code{avx512vl},
179 @code{avx512bw},
180 @code{avx512dq},
181 @code{avx512ifma},
182 @code{avx512vbmi},
183 @code{noavx512f},
184 @code{noavx512cd},
185 @code{noavx512er},
186 @code{noavx512pf},
187 @code{noavx512vl},
188 @code{noavx512bw},
189 @code{noavx512dq},
190 @code{noavx512ifma},
191 @code{noavx512vbmi},
192 @code{vmx},
193 @code{vmfunc},
194 @code{smx},
195 @code{xsave},
196 @code{xsaveopt},
197 @code{xsavec},
198 @code{xsaves},
199 @code{aes},
200 @code{pclmul},
201 @code{fsgsbase},
202 @code{rdrnd},
203 @code{f16c},
204 @code{bmi2},
205 @code{fma},
206 @code{movbe},
207 @code{ept},
208 @code{lzcnt},
209 @code{hle},
210 @code{rtm},
211 @code{invpcid},
212 @code{clflush},
213 @code{mwaitx},
214 @code{clzero},
215 @code{lwp},
216 @code{fma4},
217 @code{xop},
218 @code{cx16},
219 @code{syscall},
220 @code{rdtscp},
221 @code{3dnow},
222 @code{3dnowa},
223 @code{sse4a},
224 @code{sse5},
225 @code{svme},
226 @code{abm} and
227 @code{padlock}.
228 Note that rather than extending a basic instruction set, the extension
229 mnemonics starting with @code{no} revoke the respective functionality.
230
231 When the @code{.arch} directive is used with @option{-march}, the
232 @code{.arch} directive will take precedent.
233
234 @cindex @samp{-mtune=} option, i386
235 @cindex @samp{-mtune=} option, x86-64
236 @item -mtune=@var{CPU}
237 This option specifies a processor to optimize for. When used in
238 conjunction with the @option{-march} option, only instructions
239 of the processor specified by the @option{-march} option will be
240 generated.
241
242 Valid @var{CPU} values are identical to the processor list of
243 @option{-march=@var{CPU}}.
244
245 @cindex @samp{-msse2avx} option, i386
246 @cindex @samp{-msse2avx} option, x86-64
247 @item -msse2avx
248 This option specifies that the assembler should encode SSE instructions
249 with VEX prefix.
250
251 @cindex @samp{-msse-check=} option, i386
252 @cindex @samp{-msse-check=} option, x86-64
253 @item -msse-check=@var{none}
254 @itemx -msse-check=@var{warning}
255 @itemx -msse-check=@var{error}
256 These options control if the assembler should check SSE instructions.
257 @option{-msse-check=@var{none}} will make the assembler not to check SSE
258 instructions, which is the default. @option{-msse-check=@var{warning}}
259 will make the assembler issue a warning for any SSE instruction.
260 @option{-msse-check=@var{error}} will make the assembler issue an error
261 for any SSE instruction.
262
263 @cindex @samp{-mavxscalar=} option, i386
264 @cindex @samp{-mavxscalar=} option, x86-64
265 @item -mavxscalar=@var{128}
266 @itemx -mavxscalar=@var{256}
267 These options control how the assembler should encode scalar AVX
268 instructions. @option{-mavxscalar=@var{128}} will encode scalar
269 AVX instructions with 128bit vector length, which is the default.
270 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
271 with 256bit vector length.
272
273 @cindex @samp{-mevexlig=} option, i386
274 @cindex @samp{-mevexlig=} option, x86-64
275 @item -mevexlig=@var{128}
276 @itemx -mevexlig=@var{256}
277 @itemx -mevexlig=@var{512}
278 These options control how the assembler should encode length-ignored
279 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
280 EVEX instructions with 128bit vector length, which is the default.
281 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
282 encode LIG EVEX instructions with 256bit and 512bit vector length,
283 respectively.
284
285 @cindex @samp{-mevexwig=} option, i386
286 @cindex @samp{-mevexwig=} option, x86-64
287 @item -mevexwig=@var{0}
288 @itemx -mevexwig=@var{1}
289 These options control how the assembler should encode w-ignored (WIG)
290 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
291 EVEX instructions with evex.w = 0, which is the default.
292 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
293 evex.w = 1.
294
295 @cindex @samp{-mmnemonic=} option, i386
296 @cindex @samp{-mmnemonic=} option, x86-64
297 @item -mmnemonic=@var{att}
298 @itemx -mmnemonic=@var{intel}
299 This option specifies instruction mnemonic for matching instructions.
300 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
301 take precedent.
302
303 @cindex @samp{-msyntax=} option, i386
304 @cindex @samp{-msyntax=} option, x86-64
305 @item -msyntax=@var{att}
306 @itemx -msyntax=@var{intel}
307 This option specifies instruction syntax when processing instructions.
308 The @code{.att_syntax} and @code{.intel_syntax} directives will
309 take precedent.
310
311 @cindex @samp{-mnaked-reg} option, i386
312 @cindex @samp{-mnaked-reg} option, x86-64
313 @item -mnaked-reg
314 This opetion specifies that registers don't require a @samp{%} prefix.
315 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
316
317 @cindex @samp{-madd-bnd-prefix} option, i386
318 @cindex @samp{-madd-bnd-prefix} option, x86-64
319 @item -madd-bnd-prefix
320 This option forces the assembler to add BND prefix to all branches, even
321 if such prefix was not explicitly specified in the source code.
322
323 @cindex @samp{-mshared} option, i386
324 @cindex @samp{-mshared} option, x86-64
325 @item -mno-shared
326 On ELF target, the assembler normally optimizes out non-PLT relocations
327 against defined non-weak global branch targets with default visibility.
328 The @samp{-mshared} option tells the assembler to generate code which
329 may go into a shared library where all non-weak global branch targets
330 with default visibility can be preempted. The resulting code is
331 slightly bigger. This option only affects the handling of branch
332 instructions.
333
334 @cindex @samp{-mbig-obj} option, x86-64
335 @item -mbig-obj
336 On x86-64 PE/COFF target this option forces the use of big object file
337 format, which allows more than 32768 sections.
338
339 @cindex @samp{-momit-lock-prefix=} option, i386
340 @cindex @samp{-momit-lock-prefix=} option, x86-64
341 @item -momit-lock-prefix=@var{no}
342 @itemx -momit-lock-prefix=@var{yes}
343 These options control how the assembler should encode lock prefix.
344 This option is intended as a workaround for processors, that fail on
345 lock prefix. This option can only be safely used with single-core,
346 single-thread computers
347 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
348 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
349 which is the default.
350
351 @cindex @samp{-mfence-as-lock-add=} option, i386
352 @cindex @samp{-mfence-as-lock-add=} option, x86-64
353 @item -mfence-as-lock-add=@var{no}
354 @itemx -mfence-as-lock-add=@var{yes}
355 These options control how the assembler should encode lfence, mfence and
356 sfence.
357 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
358 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
359 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
360 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
361 sfence as usual, which is the default.
362
363 @cindex @samp{-mrelax-relocations=} option, i386
364 @cindex @samp{-mrelax-relocations=} option, x86-64
365 @item -mrelax-relocations=@var{no}
366 @itemx -mrelax-relocations=@var{yes}
367 These options control whether the assembler should generate relax
368 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
369 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
370 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
371 @option{-mrelax-relocations=@var{no}} will not generate relax
372 relocations. The default can be controlled by a configure option
373 @option{--enable-x86-relax-relocations}.
374
375 @cindex @samp{-mevexrcig=} option, i386
376 @cindex @samp{-mevexrcig=} option, x86-64
377 @item -mevexrcig=@var{rne}
378 @itemx -mevexrcig=@var{rd}
379 @itemx -mevexrcig=@var{ru}
380 @itemx -mevexrcig=@var{rz}
381 These options control how the assembler should encode SAE-only
382 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
383 of EVEX instruction with 00, which is the default.
384 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
385 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
386 with 01, 10 and 11 RC bits, respectively.
387
388 @cindex @samp{-mamd64} option, x86-64
389 @cindex @samp{-mintel64} option, x86-64
390 @item -mamd64
391 @itemx -mintel64
392 This option specifies that the assembler should accept only AMD64 or
393 Intel64 ISA in 64-bit mode. The default is to accept both.
394
395 @end table
396 @c man end
397
398 @node i386-Directives
399 @section x86 specific Directives
400
401 @cindex machine directives, x86
402 @cindex x86 machine directives
403 @table @code
404
405 @cindex @code{lcomm} directive, COFF
406 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
407 Reserve @var{length} (an absolute expression) bytes for a local common
408 denoted by @var{symbol}. The section and value of @var{symbol} are
409 those of the new local common. The addresses are allocated in the bss
410 section, so that at run-time the bytes start off zeroed. Since
411 @var{symbol} is not declared global, it is normally not visible to
412 @code{@value{LD}}. The optional third parameter, @var{alignment},
413 specifies the desired alignment of the symbol in the bss section.
414
415 This directive is only available for COFF based x86 targets.
416
417 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
418 @c .largecomm
419
420 @end table
421
422 @node i386-Syntax
423 @section i386 Syntactical Considerations
424 @menu
425 * i386-Variations:: AT&T Syntax versus Intel Syntax
426 * i386-Chars:: Special Characters
427 @end menu
428
429 @node i386-Variations
430 @subsection AT&T Syntax versus Intel Syntax
431
432 @cindex i386 intel_syntax pseudo op
433 @cindex intel_syntax pseudo op, i386
434 @cindex i386 att_syntax pseudo op
435 @cindex att_syntax pseudo op, i386
436 @cindex i386 syntax compatibility
437 @cindex syntax compatibility, i386
438 @cindex x86-64 intel_syntax pseudo op
439 @cindex intel_syntax pseudo op, x86-64
440 @cindex x86-64 att_syntax pseudo op
441 @cindex att_syntax pseudo op, x86-64
442 @cindex x86-64 syntax compatibility
443 @cindex syntax compatibility, x86-64
444
445 @code{@value{AS}} now supports assembly using Intel assembler syntax.
446 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
447 back to the usual AT&T mode for compatibility with the output of
448 @code{@value{GCC}}. Either of these directives may have an optional
449 argument, @code{prefix}, or @code{noprefix} specifying whether registers
450 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
451 different from Intel syntax. We mention these differences because
452 almost all 80386 documents use Intel syntax. Notable differences
453 between the two syntaxes are:
454
455 @cindex immediate operands, i386
456 @cindex i386 immediate operands
457 @cindex register operands, i386
458 @cindex i386 register operands
459 @cindex jump/call operands, i386
460 @cindex i386 jump/call operands
461 @cindex operand delimiters, i386
462
463 @cindex immediate operands, x86-64
464 @cindex x86-64 immediate operands
465 @cindex register operands, x86-64
466 @cindex x86-64 register operands
467 @cindex jump/call operands, x86-64
468 @cindex x86-64 jump/call operands
469 @cindex operand delimiters, x86-64
470 @itemize @bullet
471 @item
472 AT&T immediate operands are preceded by @samp{$}; Intel immediate
473 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
474 AT&T register operands are preceded by @samp{%}; Intel register operands
475 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
476 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
477
478 @cindex i386 source, destination operands
479 @cindex source, destination operands; i386
480 @cindex x86-64 source, destination operands
481 @cindex source, destination operands; x86-64
482 @item
483 AT&T and Intel syntax use the opposite order for source and destination
484 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
485 @samp{source, dest} convention is maintained for compatibility with
486 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
487 instructions with 2 immediate operands, such as the @samp{enter}
488 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
489
490 @cindex mnemonic suffixes, i386
491 @cindex sizes operands, i386
492 @cindex i386 size suffixes
493 @cindex mnemonic suffixes, x86-64
494 @cindex sizes operands, x86-64
495 @cindex x86-64 size suffixes
496 @item
497 In AT&T syntax the size of memory operands is determined from the last
498 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
499 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
500 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
501 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
502 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
503 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
504 syntax.
505
506 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
507 instruction with the 64-bit displacement or immediate operand.
508
509 @cindex return instructions, i386
510 @cindex i386 jump, call, return
511 @cindex return instructions, x86-64
512 @cindex x86-64 jump, call, return
513 @item
514 Immediate form long jumps and calls are
515 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
516 Intel syntax is
517 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
518 instruction
519 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
520 @samp{ret far @var{stack-adjust}}.
521
522 @cindex sections, i386
523 @cindex i386 sections
524 @cindex sections, x86-64
525 @cindex x86-64 sections
526 @item
527 The AT&T assembler does not provide support for multiple section
528 programs. Unix style systems expect all programs to be single sections.
529 @end itemize
530
531 @node i386-Chars
532 @subsection Special Characters
533
534 @cindex line comment character, i386
535 @cindex i386 line comment character
536 The presence of a @samp{#} appearing anywhere on a line indicates the
537 start of a comment that extends to the end of that line.
538
539 If a @samp{#} appears as the first character of a line then the whole
540 line is treated as a comment, but in this case the line can also be a
541 logical line number directive (@pxref{Comments}) or a preprocessor
542 control command (@pxref{Preprocessing}).
543
544 If the @option{--divide} command line option has not been specified
545 then the @samp{/} character appearing anywhere on a line also
546 introduces a line comment.
547
548 @cindex line separator, i386
549 @cindex statement separator, i386
550 @cindex i386 line separator
551 The @samp{;} character can be used to separate statements on the same
552 line.
553
554 @node i386-Mnemonics
555 @section i386-Mnemonics
556 @subsection Instruction Naming
557
558 @cindex i386 instruction naming
559 @cindex instruction naming, i386
560 @cindex x86-64 instruction naming
561 @cindex instruction naming, x86-64
562
563 Instruction mnemonics are suffixed with one character modifiers which
564 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
565 and @samp{q} specify byte, word, long and quadruple word operands. If
566 no suffix is specified by an instruction then @code{@value{AS}} tries to
567 fill in the missing suffix based on the destination register operand
568 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
569 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
570 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
571 assembler which assumes that a missing mnemonic suffix implies long
572 operand size. (This incompatibility does not affect compiler output
573 since compilers always explicitly specify the mnemonic suffix.)
574
575 Almost all instructions have the same names in AT&T and Intel format.
576 There are a few exceptions. The sign extend and zero extend
577 instructions need two sizes to specify them. They need a size to
578 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
579 is accomplished by using two instruction mnemonic suffixes in AT&T
580 syntax. Base names for sign extend and zero extend are
581 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
582 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
583 are tacked on to this base name, the @emph{from} suffix before the
584 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
585 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
586 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
587 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
588 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
589 quadruple word).
590
591 @cindex encoding options, i386
592 @cindex encoding options, x86-64
593
594 Different encoding options can be specified via optional mnemonic
595 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
596 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
597 prefers 8bit or 32bit displacement in encoding.
598
599 @cindex conversion instructions, i386
600 @cindex i386 conversion instructions
601 @cindex conversion instructions, x86-64
602 @cindex x86-64 conversion instructions
603 The Intel-syntax conversion instructions
604
605 @itemize @bullet
606 @item
607 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
608
609 @item
610 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
611
612 @item
613 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
614
615 @item
616 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
617
618 @item
619 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
620 (x86-64 only),
621
622 @item
623 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
624 @samp{%rdx:%rax} (x86-64 only),
625 @end itemize
626
627 @noindent
628 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
629 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
630 instructions.
631
632 @cindex jump instructions, i386
633 @cindex call instructions, i386
634 @cindex jump instructions, x86-64
635 @cindex call instructions, x86-64
636 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
637 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
638 convention.
639
640 @subsection AT&T Mnemonic versus Intel Mnemonic
641
642 @cindex i386 mnemonic compatibility
643 @cindex mnemonic compatibility, i386
644
645 @code{@value{AS}} supports assembly using Intel mnemonic.
646 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
647 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
648 syntax for compatibility with the output of @code{@value{GCC}}.
649 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
650 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
651 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
652 assembler with different mnemonics from those in Intel IA32 specification.
653 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
654
655 @node i386-Regs
656 @section Register Naming
657
658 @cindex i386 registers
659 @cindex registers, i386
660 @cindex x86-64 registers
661 @cindex registers, x86-64
662 Register operands are always prefixed with @samp{%}. The 80386 registers
663 consist of
664
665 @itemize @bullet
666 @item
667 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
668 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
669 frame pointer), and @samp{%esp} (the stack pointer).
670
671 @item
672 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
673 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
674
675 @item
676 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
677 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
678 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
679 @samp{%cx}, and @samp{%dx})
680
681 @item
682 the 6 section registers @samp{%cs} (code section), @samp{%ds}
683 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
684 and @samp{%gs}.
685
686 @item
687 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
688 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
689
690 @item
691 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
692 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
693
694 @item
695 the 2 test registers @samp{%tr6} and @samp{%tr7}.
696
697 @item
698 the 8 floating point register stack @samp{%st} or equivalently
699 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
700 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
701 These registers are overloaded by 8 MMX registers @samp{%mm0},
702 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
703 @samp{%mm6} and @samp{%mm7}.
704
705 @item
706 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
707 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
708 @end itemize
709
710 The AMD x86-64 architecture extends the register set by:
711
712 @itemize @bullet
713 @item
714 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
715 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
716 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
717 pointer)
718
719 @item
720 the 8 extended registers @samp{%r8}--@samp{%r15}.
721
722 @item
723 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
724
725 @item
726 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
727
728 @item
729 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
730
731 @item
732 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
733
734 @item
735 the 8 debug registers: @samp{%db8}--@samp{%db15}.
736
737 @item
738 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
739 @end itemize
740
741 With the AVX extensions more registers were made available:
742
743 @itemize @bullet
744
745 @item
746 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
747 available in 32-bit mode). The bottom 128 bits are overlaid with the
748 @samp{xmm0}--@samp{xmm15} registers.
749
750 @end itemize
751
752 The AVX2 extensions made in 64-bit mode more registers available:
753
754 @itemize @bullet
755
756 @item
757 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
758 registers @samp{%ymm16}--@samp{%ymm31}.
759
760 @end itemize
761
762 The AVX512 extensions added the following registers:
763
764 @itemize @bullet
765
766 @item
767 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
768 available in 32-bit mode). The bottom 128 bits are overlaid with the
769 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
770 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
771
772 @item
773 the 8 mask registers @samp{%k0}--@samp{%k7}.
774
775 @end itemize
776
777 @node i386-Prefixes
778 @section Instruction Prefixes
779
780 @cindex i386 instruction prefixes
781 @cindex instruction prefixes, i386
782 @cindex prefixes, i386
783 Instruction prefixes are used to modify the following instruction. They
784 are used to repeat string instructions, to provide section overrides, to
785 perform bus lock operations, and to change operand and address sizes.
786 (Most instructions that normally operate on 32-bit operands will use
787 16-bit operands if the instruction has an ``operand size'' prefix.)
788 Instruction prefixes are best written on the same line as the instruction
789 they act upon. For example, the @samp{scas} (scan string) instruction is
790 repeated with:
791
792 @smallexample
793 repne scas %es:(%edi),%al
794 @end smallexample
795
796 You may also place prefixes on the lines immediately preceding the
797 instruction, but this circumvents checks that @code{@value{AS}} does
798 with prefixes, and will not work with all prefixes.
799
800 Here is a list of instruction prefixes:
801
802 @cindex section override prefixes, i386
803 @itemize @bullet
804 @item
805 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
806 @samp{fs}, @samp{gs}. These are automatically added by specifying
807 using the @var{section}:@var{memory-operand} form for memory references.
808
809 @cindex size prefixes, i386
810 @item
811 Operand/Address size prefixes @samp{data16} and @samp{addr16}
812 change 32-bit operands/addresses into 16-bit operands/addresses,
813 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
814 @code{.code16} section) into 32-bit operands/addresses. These prefixes
815 @emph{must} appear on the same line of code as the instruction they
816 modify. For example, in a 16-bit @code{.code16} section, you might
817 write:
818
819 @smallexample
820 addr32 jmpl *(%ebx)
821 @end smallexample
822
823 @cindex bus lock prefixes, i386
824 @cindex inhibiting interrupts, i386
825 @item
826 The bus lock prefix @samp{lock} inhibits interrupts during execution of
827 the instruction it precedes. (This is only valid with certain
828 instructions; see a 80386 manual for details).
829
830 @cindex coprocessor wait, i386
831 @item
832 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
833 complete the current instruction. This should never be needed for the
834 80386/80387 combination.
835
836 @cindex repeat prefixes, i386
837 @item
838 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
839 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
840 times if the current address size is 16-bits).
841 @cindex REX prefixes, i386
842 @item
843 The @samp{rex} family of prefixes is used by x86-64 to encode
844 extensions to i386 instruction set. The @samp{rex} prefix has four
845 bits --- an operand size overwrite (@code{64}) used to change operand size
846 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
847 register set.
848
849 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
850 instruction emits @samp{rex} prefix with all the bits set. By omitting
851 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
852 prefixes as well. Normally, there is no need to write the prefixes
853 explicitly, since gas will automatically generate them based on the
854 instruction operands.
855 @end itemize
856
857 @node i386-Memory
858 @section Memory References
859
860 @cindex i386 memory references
861 @cindex memory references, i386
862 @cindex x86-64 memory references
863 @cindex memory references, x86-64
864 An Intel syntax indirect memory reference of the form
865
866 @smallexample
867 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
868 @end smallexample
869
870 @noindent
871 is translated into the AT&T syntax
872
873 @smallexample
874 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
875 @end smallexample
876
877 @noindent
878 where @var{base} and @var{index} are the optional 32-bit base and
879 index registers, @var{disp} is the optional displacement, and
880 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
881 to calculate the address of the operand. If no @var{scale} is
882 specified, @var{scale} is taken to be 1. @var{section} specifies the
883 optional section register for the memory operand, and may override the
884 default section register (see a 80386 manual for section register
885 defaults). Note that section overrides in AT&T syntax @emph{must}
886 be preceded by a @samp{%}. If you specify a section override which
887 coincides with the default section register, @code{@value{AS}} does @emph{not}
888 output any section register override prefixes to assemble the given
889 instruction. Thus, section overrides can be specified to emphasize which
890 section register is used for a given memory operand.
891
892 Here are some examples of Intel and AT&T style memory references:
893
894 @table @asis
895 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
896 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
897 missing, and the default section is used (@samp{%ss} for addressing with
898 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
899
900 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
901 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
902 @samp{foo}. All other fields are missing. The section register here
903 defaults to @samp{%ds}.
904
905 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
906 This uses the value pointed to by @samp{foo} as a memory operand.
907 Note that @var{base} and @var{index} are both missing, but there is only
908 @emph{one} @samp{,}. This is a syntactic exception.
909
910 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
911 This selects the contents of the variable @samp{foo} with section
912 register @var{section} being @samp{%gs}.
913 @end table
914
915 Absolute (as opposed to PC relative) call and jump operands must be
916 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
917 always chooses PC relative addressing for jump/call labels.
918
919 Any instruction that has a memory operand, but no register operand,
920 @emph{must} specify its size (byte, word, long, or quadruple) with an
921 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
922 respectively).
923
924 The x86-64 architecture adds an RIP (instruction pointer relative)
925 addressing. This addressing mode is specified by using @samp{rip} as a
926 base register. Only constant offsets are valid. For example:
927
928 @table @asis
929 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
930 Points to the address 1234 bytes past the end of the current
931 instruction.
932
933 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
934 Points to the @code{symbol} in RIP relative way, this is shorter than
935 the default absolute addressing.
936 @end table
937
938 Other addressing modes remain unchanged in x86-64 architecture, except
939 registers used are 64-bit instead of 32-bit.
940
941 @node i386-Jumps
942 @section Handling of Jump Instructions
943
944 @cindex jump optimization, i386
945 @cindex i386 jump optimization
946 @cindex jump optimization, x86-64
947 @cindex x86-64 jump optimization
948 Jump instructions are always optimized to use the smallest possible
949 displacements. This is accomplished by using byte (8-bit) displacement
950 jumps whenever the target is sufficiently close. If a byte displacement
951 is insufficient a long displacement is used. We do not support
952 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
953 instruction with the @samp{data16} instruction prefix), since the 80386
954 insists upon masking @samp{%eip} to 16 bits after the word displacement
955 is added. (See also @pxref{i386-Arch})
956
957 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
958 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
959 displacements, so that if you use these instructions (@code{@value{GCC}} does
960 not use them) you may get an error message (and incorrect code). The AT&T
961 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
962 to
963
964 @smallexample
965 jcxz cx_zero
966 jmp cx_nonzero
967 cx_zero: jmp foo
968 cx_nonzero:
969 @end smallexample
970
971 @node i386-Float
972 @section Floating Point
973
974 @cindex i386 floating point
975 @cindex floating point, i386
976 @cindex x86-64 floating point
977 @cindex floating point, x86-64
978 All 80387 floating point types except packed BCD are supported.
979 (BCD support may be added without much difficulty). These data
980 types are 16-, 32-, and 64- bit integers, and single (32-bit),
981 double (64-bit), and extended (80-bit) precision floating point.
982 Each supported type has an instruction mnemonic suffix and a constructor
983 associated with it. Instruction mnemonic suffixes specify the operand's
984 data type. Constructors build these data types into memory.
985
986 @cindex @code{float} directive, i386
987 @cindex @code{single} directive, i386
988 @cindex @code{double} directive, i386
989 @cindex @code{tfloat} directive, i386
990 @cindex @code{float} directive, x86-64
991 @cindex @code{single} directive, x86-64
992 @cindex @code{double} directive, x86-64
993 @cindex @code{tfloat} directive, x86-64
994 @itemize @bullet
995 @item
996 Floating point constructors are @samp{.float} or @samp{.single},
997 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
998 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
999 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1000 only supports this format via the @samp{fldt} (load 80-bit real to stack
1001 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1002
1003 @cindex @code{word} directive, i386
1004 @cindex @code{long} directive, i386
1005 @cindex @code{int} directive, i386
1006 @cindex @code{quad} directive, i386
1007 @cindex @code{word} directive, x86-64
1008 @cindex @code{long} directive, x86-64
1009 @cindex @code{int} directive, x86-64
1010 @cindex @code{quad} directive, x86-64
1011 @item
1012 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1013 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1014 corresponding instruction mnemonic suffixes are @samp{s} (single),
1015 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1016 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1017 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1018 stack) instructions.
1019 @end itemize
1020
1021 Register to register operations should not use instruction mnemonic suffixes.
1022 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1023 wrote @samp{fst %st, %st(1)}, since all register to register operations
1024 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1025 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1026 then stores the result in the 4 byte location @samp{mem})
1027
1028 @node i386-SIMD
1029 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1030
1031 @cindex MMX, i386
1032 @cindex 3DNow!, i386
1033 @cindex SIMD, i386
1034 @cindex MMX, x86-64
1035 @cindex 3DNow!, x86-64
1036 @cindex SIMD, x86-64
1037
1038 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1039 instructions for integer data), available on Intel's Pentium MMX
1040 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1041 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1042 instruction set (SIMD instructions for 32-bit floating point data)
1043 available on AMD's K6-2 processor and possibly others in the future.
1044
1045 Currently, @code{@value{AS}} does not support Intel's floating point
1046 SIMD, Katmai (KNI).
1047
1048 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1049 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1050 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1051 floating point values. The MMX registers cannot be used at the same time
1052 as the floating point stack.
1053
1054 See Intel and AMD documentation, keeping in mind that the operand order in
1055 instructions is reversed from the Intel syntax.
1056
1057 @node i386-LWP
1058 @section AMD's Lightweight Profiling Instructions
1059
1060 @cindex LWP, i386
1061 @cindex LWP, x86-64
1062
1063 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1064 instruction set, available on AMD's Family 15h (Orochi) processors.
1065
1066 LWP enables applications to collect and manage performance data, and
1067 react to performance events. The collection of performance data
1068 requires no context switches. LWP runs in the context of a thread and
1069 so several counters can be used independently across multiple threads.
1070 LWP can be used in both 64-bit and legacy 32-bit modes.
1071
1072 For detailed information on the LWP instruction set, see the
1073 @cite{AMD Lightweight Profiling Specification} available at
1074 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1075
1076 @node i386-BMI
1077 @section Bit Manipulation Instructions
1078
1079 @cindex BMI, i386
1080 @cindex BMI, x86-64
1081
1082 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1083
1084 BMI instructions provide several instructions implementing individual
1085 bit manipulation operations such as isolation, masking, setting, or
1086 resetting.
1087
1088 @c Need to add a specification citation here when available.
1089
1090 @node i386-TBM
1091 @section AMD's Trailing Bit Manipulation Instructions
1092
1093 @cindex TBM, i386
1094 @cindex TBM, x86-64
1095
1096 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1097 instruction set, available on AMD's BDVER2 processors (Trinity and
1098 Viperfish).
1099
1100 TBM instructions provide instructions implementing individual bit
1101 manipulation operations such as isolating, masking, setting, resetting,
1102 complementing, and operations on trailing zeros and ones.
1103
1104 @c Need to add a specification citation here when available.
1105
1106 @node i386-16bit
1107 @section Writing 16-bit Code
1108
1109 @cindex i386 16-bit code
1110 @cindex 16-bit code, i386
1111 @cindex real-mode code, i386
1112 @cindex @code{code16gcc} directive, i386
1113 @cindex @code{code16} directive, i386
1114 @cindex @code{code32} directive, i386
1115 @cindex @code{code64} directive, i386
1116 @cindex @code{code64} directive, x86-64
1117 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1118 or 64-bit x86-64 code depending on the default configuration,
1119 it also supports writing code to run in real mode or in 16-bit protected
1120 mode code segments. To do this, put a @samp{.code16} or
1121 @samp{.code16gcc} directive before the assembly language instructions to
1122 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1123 32-bit code with the @samp{.code32} directive or 64-bit code with the
1124 @samp{.code64} directive.
1125
1126 @samp{.code16gcc} provides experimental support for generating 16-bit
1127 code from gcc, and differs from @samp{.code16} in that @samp{call},
1128 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1129 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1130 default to 32-bit size. This is so that the stack pointer is
1131 manipulated in the same way over function calls, allowing access to
1132 function parameters at the same stack offsets as in 32-bit mode.
1133 @samp{.code16gcc} also automatically adds address size prefixes where
1134 necessary to use the 32-bit addressing modes that gcc generates.
1135
1136 The code which @code{@value{AS}} generates in 16-bit mode will not
1137 necessarily run on a 16-bit pre-80386 processor. To write code that
1138 runs on such a processor, you must refrain from using @emph{any} 32-bit
1139 constructs which require @code{@value{AS}} to output address or operand
1140 size prefixes.
1141
1142 Note that writing 16-bit code instructions by explicitly specifying a
1143 prefix or an instruction mnemonic suffix within a 32-bit code section
1144 generates different machine instructions than those generated for a
1145 16-bit code segment. In a 32-bit code section, the following code
1146 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1147 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1148
1149 @smallexample
1150 pushw $4
1151 @end smallexample
1152
1153 The same code in a 16-bit code section would generate the machine
1154 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1155 is correct since the processor default operand size is assumed to be 16
1156 bits in a 16-bit code section.
1157
1158 @node i386-Arch
1159 @section Specifying CPU Architecture
1160
1161 @cindex arch directive, i386
1162 @cindex i386 arch directive
1163 @cindex arch directive, x86-64
1164 @cindex x86-64 arch directive
1165
1166 @code{@value{AS}} may be told to assemble for a particular CPU
1167 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1168 directive enables a warning when gas detects an instruction that is not
1169 supported on the CPU specified. The choices for @var{cpu_type} are:
1170
1171 @multitable @columnfractions .20 .20 .20 .20
1172 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1173 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1174 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1175 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1176 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1177 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1178 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1179 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1180 @item @samp{generic32} @tab @samp{generic64}
1181 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1182 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1183 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1184 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1185 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1186 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1187 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1188 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1189 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1190 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1191 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1192 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1193 @item @samp{.avx512vbmi} @tab @samp{.clwb}
1194 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1195 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1196 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1197 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpid}
1198 @item @samp{.ptwrite}
1199 @end multitable
1200
1201 Apart from the warning, there are only two other effects on
1202 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1203 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1204 will automatically use a two byte opcode sequence. The larger three
1205 byte opcode sequence is used on the 486 (and when no architecture is
1206 specified) because it executes faster on the 486. Note that you can
1207 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1208 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1209 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1210 conditional jumps will be promoted when necessary to a two instruction
1211 sequence consisting of a conditional jump of the opposite sense around
1212 an unconditional jump to the target.
1213
1214 Following the CPU architecture (but not a sub-architecture, which are those
1215 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1216 control automatic promotion of conditional jumps. @samp{jumps} is the
1217 default, and enables jump promotion; All external jumps will be of the long
1218 variety, and file-local jumps will be promoted as necessary.
1219 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1220 byte offset jumps, and warns about file-local conditional jumps that
1221 @code{@value{AS}} promotes.
1222 Unconditional jumps are treated as for @samp{jumps}.
1223
1224 For example
1225
1226 @smallexample
1227 .arch i8086,nojumps
1228 @end smallexample
1229
1230 @node i386-Bugs
1231 @section AT&T Syntax bugs
1232
1233 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1234 assemblers, generate floating point instructions with reversed source
1235 and destination registers in certain cases. Unfortunately, gcc and
1236 possibly many other programs use this reversed syntax, so we're stuck
1237 with it.
1238
1239 For example
1240
1241 @smallexample
1242 fsub %st,%st(3)
1243 @end smallexample
1244 @noindent
1245 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1246 than the expected @samp{%st(3) - %st}. This happens with all the
1247 non-commutative arithmetic floating point operations with two register
1248 operands where the source register is @samp{%st} and the destination
1249 register is @samp{%st(i)}.
1250
1251 @node i386-Notes
1252 @section Notes
1253
1254 @cindex i386 @code{mul}, @code{imul} instructions
1255 @cindex @code{mul} instruction, i386
1256 @cindex @code{imul} instruction, i386
1257 @cindex @code{mul} instruction, x86-64
1258 @cindex @code{imul} instruction, x86-64
1259 There is some trickery concerning the @samp{mul} and @samp{imul}
1260 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1261 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1262 for @samp{imul}) can be output only in the one operand form. Thus,
1263 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1264 the expanding multiply would clobber the @samp{%edx} register, and this
1265 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1266 64-bit product in @samp{%edx:%eax}.
1267
1268 We have added a two operand form of @samp{imul} when the first operand
1269 is an immediate mode expression and the second operand is a register.
1270 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1271 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1272 $69, %eax, %eax}.
1273
This page took 0.085194 seconds and 5 git commands to generate.