Enable Intel PCONFIG instruction.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{btver1},
127 @code{btver2},
128 @code{generic32} and
129 @code{generic64}.
130
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
135 @code{8087},
136 @code{287},
137 @code{387},
138 @code{687},
139 @code{no87},
140 @code{no287},
141 @code{no387},
142 @code{no687},
143 @code{mmx},
144 @code{nommx},
145 @code{sse},
146 @code{sse2},
147 @code{sse3},
148 @code{ssse3},
149 @code{sse4.1},
150 @code{sse4.2},
151 @code{sse4},
152 @code{nosse},
153 @code{nosse2},
154 @code{nosse3},
155 @code{nossse3},
156 @code{nosse4.1},
157 @code{nosse4.2},
158 @code{nosse4},
159 @code{avx},
160 @code{avx2},
161 @code{noavx},
162 @code{noavx2},
163 @code{adx},
164 @code{rdseed},
165 @code{prfchw},
166 @code{smap},
167 @code{mpx},
168 @code{sha},
169 @code{rdpid},
170 @code{ptwrite},
171 @code{cet},
172 @code{gfni},
173 @code{vaes},
174 @code{vpclmulqdq},
175 @code{prefetchwt1},
176 @code{clflushopt},
177 @code{se1},
178 @code{clwb},
179 @code{avx512f},
180 @code{avx512cd},
181 @code{avx512er},
182 @code{avx512pf},
183 @code{avx512vl},
184 @code{avx512bw},
185 @code{avx512dq},
186 @code{avx512ifma},
187 @code{avx512vbmi},
188 @code{avx512_4fmaps},
189 @code{avx512_4vnniw},
190 @code{avx512_vpopcntdq},
191 @code{avx512_vbmi2},
192 @code{avx512_vnni},
193 @code{avx512_bitalg},
194 @code{noavx512f},
195 @code{noavx512cd},
196 @code{noavx512er},
197 @code{noavx512pf},
198 @code{noavx512vl},
199 @code{noavx512bw},
200 @code{noavx512dq},
201 @code{noavx512ifma},
202 @code{noavx512vbmi},
203 @code{noavx512_4fmaps},
204 @code{noavx512_4vnniw},
205 @code{noavx512_vpopcntdq},
206 @code{noavx512_vbmi2},
207 @code{noavx512_vnni},
208 @code{noavx512_bitalg},
209 @code{vmx},
210 @code{vmfunc},
211 @code{smx},
212 @code{xsave},
213 @code{xsaveopt},
214 @code{xsavec},
215 @code{xsaves},
216 @code{aes},
217 @code{pclmul},
218 @code{fsgsbase},
219 @code{rdrnd},
220 @code{f16c},
221 @code{bmi2},
222 @code{fma},
223 @code{movbe},
224 @code{ept},
225 @code{lzcnt},
226 @code{hle},
227 @code{rtm},
228 @code{invpcid},
229 @code{clflush},
230 @code{mwaitx},
231 @code{clzero},
232 @code{wbnoinvd},
233 @code{pconfig},
234 @code{lwp},
235 @code{fma4},
236 @code{xop},
237 @code{cx16},
238 @code{syscall},
239 @code{rdtscp},
240 @code{3dnow},
241 @code{3dnowa},
242 @code{sse4a},
243 @code{sse5},
244 @code{svme},
245 @code{abm} and
246 @code{padlock}.
247 Note that rather than extending a basic instruction set, the extension
248 mnemonics starting with @code{no} revoke the respective functionality.
249
250 When the @code{.arch} directive is used with @option{-march}, the
251 @code{.arch} directive will take precedent.
252
253 @cindex @samp{-mtune=} option, i386
254 @cindex @samp{-mtune=} option, x86-64
255 @item -mtune=@var{CPU}
256 This option specifies a processor to optimize for. When used in
257 conjunction with the @option{-march} option, only instructions
258 of the processor specified by the @option{-march} option will be
259 generated.
260
261 Valid @var{CPU} values are identical to the processor list of
262 @option{-march=@var{CPU}}.
263
264 @cindex @samp{-msse2avx} option, i386
265 @cindex @samp{-msse2avx} option, x86-64
266 @item -msse2avx
267 This option specifies that the assembler should encode SSE instructions
268 with VEX prefix.
269
270 @cindex @samp{-msse-check=} option, i386
271 @cindex @samp{-msse-check=} option, x86-64
272 @item -msse-check=@var{none}
273 @itemx -msse-check=@var{warning}
274 @itemx -msse-check=@var{error}
275 These options control if the assembler should check SSE instructions.
276 @option{-msse-check=@var{none}} will make the assembler not to check SSE
277 instructions, which is the default. @option{-msse-check=@var{warning}}
278 will make the assembler issue a warning for any SSE instruction.
279 @option{-msse-check=@var{error}} will make the assembler issue an error
280 for any SSE instruction.
281
282 @cindex @samp{-mavxscalar=} option, i386
283 @cindex @samp{-mavxscalar=} option, x86-64
284 @item -mavxscalar=@var{128}
285 @itemx -mavxscalar=@var{256}
286 These options control how the assembler should encode scalar AVX
287 instructions. @option{-mavxscalar=@var{128}} will encode scalar
288 AVX instructions with 128bit vector length, which is the default.
289 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
290 with 256bit vector length.
291
292 @cindex @samp{-mevexlig=} option, i386
293 @cindex @samp{-mevexlig=} option, x86-64
294 @item -mevexlig=@var{128}
295 @itemx -mevexlig=@var{256}
296 @itemx -mevexlig=@var{512}
297 These options control how the assembler should encode length-ignored
298 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
299 EVEX instructions with 128bit vector length, which is the default.
300 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
301 encode LIG EVEX instructions with 256bit and 512bit vector length,
302 respectively.
303
304 @cindex @samp{-mevexwig=} option, i386
305 @cindex @samp{-mevexwig=} option, x86-64
306 @item -mevexwig=@var{0}
307 @itemx -mevexwig=@var{1}
308 These options control how the assembler should encode w-ignored (WIG)
309 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
310 EVEX instructions with evex.w = 0, which is the default.
311 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
312 evex.w = 1.
313
314 @cindex @samp{-mmnemonic=} option, i386
315 @cindex @samp{-mmnemonic=} option, x86-64
316 @item -mmnemonic=@var{att}
317 @itemx -mmnemonic=@var{intel}
318 This option specifies instruction mnemonic for matching instructions.
319 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
320 take precedent.
321
322 @cindex @samp{-msyntax=} option, i386
323 @cindex @samp{-msyntax=} option, x86-64
324 @item -msyntax=@var{att}
325 @itemx -msyntax=@var{intel}
326 This option specifies instruction syntax when processing instructions.
327 The @code{.att_syntax} and @code{.intel_syntax} directives will
328 take precedent.
329
330 @cindex @samp{-mnaked-reg} option, i386
331 @cindex @samp{-mnaked-reg} option, x86-64
332 @item -mnaked-reg
333 This option specifies that registers don't require a @samp{%} prefix.
334 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
335
336 @cindex @samp{-madd-bnd-prefix} option, i386
337 @cindex @samp{-madd-bnd-prefix} option, x86-64
338 @item -madd-bnd-prefix
339 This option forces the assembler to add BND prefix to all branches, even
340 if such prefix was not explicitly specified in the source code.
341
342 @cindex @samp{-mshared} option, i386
343 @cindex @samp{-mshared} option, x86-64
344 @item -mno-shared
345 On ELF target, the assembler normally optimizes out non-PLT relocations
346 against defined non-weak global branch targets with default visibility.
347 The @samp{-mshared} option tells the assembler to generate code which
348 may go into a shared library where all non-weak global branch targets
349 with default visibility can be preempted. The resulting code is
350 slightly bigger. This option only affects the handling of branch
351 instructions.
352
353 @cindex @samp{-mbig-obj} option, x86-64
354 @item -mbig-obj
355 On x86-64 PE/COFF target this option forces the use of big object file
356 format, which allows more than 32768 sections.
357
358 @cindex @samp{-momit-lock-prefix=} option, i386
359 @cindex @samp{-momit-lock-prefix=} option, x86-64
360 @item -momit-lock-prefix=@var{no}
361 @itemx -momit-lock-prefix=@var{yes}
362 These options control how the assembler should encode lock prefix.
363 This option is intended as a workaround for processors, that fail on
364 lock prefix. This option can only be safely used with single-core,
365 single-thread computers
366 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
367 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
368 which is the default.
369
370 @cindex @samp{-mfence-as-lock-add=} option, i386
371 @cindex @samp{-mfence-as-lock-add=} option, x86-64
372 @item -mfence-as-lock-add=@var{no}
373 @itemx -mfence-as-lock-add=@var{yes}
374 These options control how the assembler should encode lfence, mfence and
375 sfence.
376 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
377 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
378 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
379 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
380 sfence as usual, which is the default.
381
382 @cindex @samp{-mrelax-relocations=} option, i386
383 @cindex @samp{-mrelax-relocations=} option, x86-64
384 @item -mrelax-relocations=@var{no}
385 @itemx -mrelax-relocations=@var{yes}
386 These options control whether the assembler should generate relax
387 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
388 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
389 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
390 @option{-mrelax-relocations=@var{no}} will not generate relax
391 relocations. The default can be controlled by a configure option
392 @option{--enable-x86-relax-relocations}.
393
394 @cindex @samp{-mevexrcig=} option, i386
395 @cindex @samp{-mevexrcig=} option, x86-64
396 @item -mevexrcig=@var{rne}
397 @itemx -mevexrcig=@var{rd}
398 @itemx -mevexrcig=@var{ru}
399 @itemx -mevexrcig=@var{rz}
400 These options control how the assembler should encode SAE-only
401 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
402 of EVEX instruction with 00, which is the default.
403 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
404 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
405 with 01, 10 and 11 RC bits, respectively.
406
407 @cindex @samp{-mamd64} option, x86-64
408 @cindex @samp{-mintel64} option, x86-64
409 @item -mamd64
410 @itemx -mintel64
411 This option specifies that the assembler should accept only AMD64 or
412 Intel64 ISA in 64-bit mode. The default is to accept both.
413
414 @end table
415 @c man end
416
417 @node i386-Directives
418 @section x86 specific Directives
419
420 @cindex machine directives, x86
421 @cindex x86 machine directives
422 @table @code
423
424 @cindex @code{lcomm} directive, COFF
425 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
426 Reserve @var{length} (an absolute expression) bytes for a local common
427 denoted by @var{symbol}. The section and value of @var{symbol} are
428 those of the new local common. The addresses are allocated in the bss
429 section, so that at run-time the bytes start off zeroed. Since
430 @var{symbol} is not declared global, it is normally not visible to
431 @code{@value{LD}}. The optional third parameter, @var{alignment},
432 specifies the desired alignment of the symbol in the bss section.
433
434 This directive is only available for COFF based x86 targets.
435
436 @cindex @code{largecomm} directive, ELF
437 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
438 This directive behaves in the same way as the @code{comm} directive
439 except that the data is placed into the @var{.lbss} section instead of
440 the @var{.bss} section @ref{Comm}.
441
442 The directive is intended to be used for data which requires a large
443 amount of space, and it is only available for ELF based x86_64
444 targets.
445
446 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
447
448 @end table
449
450 @node i386-Syntax
451 @section i386 Syntactical Considerations
452 @menu
453 * i386-Variations:: AT&T Syntax versus Intel Syntax
454 * i386-Chars:: Special Characters
455 @end menu
456
457 @node i386-Variations
458 @subsection AT&T Syntax versus Intel Syntax
459
460 @cindex i386 intel_syntax pseudo op
461 @cindex intel_syntax pseudo op, i386
462 @cindex i386 att_syntax pseudo op
463 @cindex att_syntax pseudo op, i386
464 @cindex i386 syntax compatibility
465 @cindex syntax compatibility, i386
466 @cindex x86-64 intel_syntax pseudo op
467 @cindex intel_syntax pseudo op, x86-64
468 @cindex x86-64 att_syntax pseudo op
469 @cindex att_syntax pseudo op, x86-64
470 @cindex x86-64 syntax compatibility
471 @cindex syntax compatibility, x86-64
472
473 @code{@value{AS}} now supports assembly using Intel assembler syntax.
474 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
475 back to the usual AT&T mode for compatibility with the output of
476 @code{@value{GCC}}. Either of these directives may have an optional
477 argument, @code{prefix}, or @code{noprefix} specifying whether registers
478 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
479 different from Intel syntax. We mention these differences because
480 almost all 80386 documents use Intel syntax. Notable differences
481 between the two syntaxes are:
482
483 @cindex immediate operands, i386
484 @cindex i386 immediate operands
485 @cindex register operands, i386
486 @cindex i386 register operands
487 @cindex jump/call operands, i386
488 @cindex i386 jump/call operands
489 @cindex operand delimiters, i386
490
491 @cindex immediate operands, x86-64
492 @cindex x86-64 immediate operands
493 @cindex register operands, x86-64
494 @cindex x86-64 register operands
495 @cindex jump/call operands, x86-64
496 @cindex x86-64 jump/call operands
497 @cindex operand delimiters, x86-64
498 @itemize @bullet
499 @item
500 AT&T immediate operands are preceded by @samp{$}; Intel immediate
501 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
502 AT&T register operands are preceded by @samp{%}; Intel register operands
503 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
504 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
505
506 @cindex i386 source, destination operands
507 @cindex source, destination operands; i386
508 @cindex x86-64 source, destination operands
509 @cindex source, destination operands; x86-64
510 @item
511 AT&T and Intel syntax use the opposite order for source and destination
512 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
513 @samp{source, dest} convention is maintained for compatibility with
514 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
515 instructions with 2 immediate operands, such as the @samp{enter}
516 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
517
518 @cindex mnemonic suffixes, i386
519 @cindex sizes operands, i386
520 @cindex i386 size suffixes
521 @cindex mnemonic suffixes, x86-64
522 @cindex sizes operands, x86-64
523 @cindex x86-64 size suffixes
524 @item
525 In AT&T syntax the size of memory operands is determined from the last
526 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
527 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
528 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
529 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
530 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
531 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
532 syntax.
533
534 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
535 instruction with the 64-bit displacement or immediate operand.
536
537 @cindex return instructions, i386
538 @cindex i386 jump, call, return
539 @cindex return instructions, x86-64
540 @cindex x86-64 jump, call, return
541 @item
542 Immediate form long jumps and calls are
543 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
544 Intel syntax is
545 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
546 instruction
547 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
548 @samp{ret far @var{stack-adjust}}.
549
550 @cindex sections, i386
551 @cindex i386 sections
552 @cindex sections, x86-64
553 @cindex x86-64 sections
554 @item
555 The AT&T assembler does not provide support for multiple section
556 programs. Unix style systems expect all programs to be single sections.
557 @end itemize
558
559 @node i386-Chars
560 @subsection Special Characters
561
562 @cindex line comment character, i386
563 @cindex i386 line comment character
564 The presence of a @samp{#} appearing anywhere on a line indicates the
565 start of a comment that extends to the end of that line.
566
567 If a @samp{#} appears as the first character of a line then the whole
568 line is treated as a comment, but in this case the line can also be a
569 logical line number directive (@pxref{Comments}) or a preprocessor
570 control command (@pxref{Preprocessing}).
571
572 If the @option{--divide} command line option has not been specified
573 then the @samp{/} character appearing anywhere on a line also
574 introduces a line comment.
575
576 @cindex line separator, i386
577 @cindex statement separator, i386
578 @cindex i386 line separator
579 The @samp{;} character can be used to separate statements on the same
580 line.
581
582 @node i386-Mnemonics
583 @section i386-Mnemonics
584 @subsection Instruction Naming
585
586 @cindex i386 instruction naming
587 @cindex instruction naming, i386
588 @cindex x86-64 instruction naming
589 @cindex instruction naming, x86-64
590
591 Instruction mnemonics are suffixed with one character modifiers which
592 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
593 and @samp{q} specify byte, word, long and quadruple word operands. If
594 no suffix is specified by an instruction then @code{@value{AS}} tries to
595 fill in the missing suffix based on the destination register operand
596 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
597 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
598 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
599 assembler which assumes that a missing mnemonic suffix implies long
600 operand size. (This incompatibility does not affect compiler output
601 since compilers always explicitly specify the mnemonic suffix.)
602
603 Almost all instructions have the same names in AT&T and Intel format.
604 There are a few exceptions. The sign extend and zero extend
605 instructions need two sizes to specify them. They need a size to
606 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
607 is accomplished by using two instruction mnemonic suffixes in AT&T
608 syntax. Base names for sign extend and zero extend are
609 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
610 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
611 are tacked on to this base name, the @emph{from} suffix before the
612 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
613 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
614 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
615 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
616 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
617 quadruple word).
618
619 @cindex encoding options, i386
620 @cindex encoding options, x86-64
621
622 Different encoding options can be specified via pseudo prefixes:
623
624 @itemize @bullet
625 @item
626 @samp{@{disp8@}} -- prefer 8-bit displacement.
627
628 @item
629 @samp{@{disp32@}} -- prefer 32-bit displacement.
630
631 @item
632 @samp{@{load@}} -- prefer load-form instruction.
633
634 @item
635 @samp{@{store@}} -- prefer store-form instruction.
636
637 @item
638 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
639
640 @item
641 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
642
643 @item
644 @samp{@{evex@}} -- encode with EVEX prefix.
645 @end itemize
646
647 @cindex conversion instructions, i386
648 @cindex i386 conversion instructions
649 @cindex conversion instructions, x86-64
650 @cindex x86-64 conversion instructions
651 The Intel-syntax conversion instructions
652
653 @itemize @bullet
654 @item
655 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
656
657 @item
658 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
659
660 @item
661 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
662
663 @item
664 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
665
666 @item
667 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
668 (x86-64 only),
669
670 @item
671 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
672 @samp{%rdx:%rax} (x86-64 only),
673 @end itemize
674
675 @noindent
676 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
677 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
678 instructions.
679
680 @cindex jump instructions, i386
681 @cindex call instructions, i386
682 @cindex jump instructions, x86-64
683 @cindex call instructions, x86-64
684 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
685 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
686 convention.
687
688 @subsection AT&T Mnemonic versus Intel Mnemonic
689
690 @cindex i386 mnemonic compatibility
691 @cindex mnemonic compatibility, i386
692
693 @code{@value{AS}} supports assembly using Intel mnemonic.
694 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
695 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
696 syntax for compatibility with the output of @code{@value{GCC}}.
697 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
698 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
699 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
700 assembler with different mnemonics from those in Intel IA32 specification.
701 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
702
703 @node i386-Regs
704 @section Register Naming
705
706 @cindex i386 registers
707 @cindex registers, i386
708 @cindex x86-64 registers
709 @cindex registers, x86-64
710 Register operands are always prefixed with @samp{%}. The 80386 registers
711 consist of
712
713 @itemize @bullet
714 @item
715 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
716 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
717 frame pointer), and @samp{%esp} (the stack pointer).
718
719 @item
720 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
721 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
722
723 @item
724 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
725 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
726 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
727 @samp{%cx}, and @samp{%dx})
728
729 @item
730 the 6 section registers @samp{%cs} (code section), @samp{%ds}
731 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
732 and @samp{%gs}.
733
734 @item
735 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
736 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
737
738 @item
739 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
740 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
741
742 @item
743 the 2 test registers @samp{%tr6} and @samp{%tr7}.
744
745 @item
746 the 8 floating point register stack @samp{%st} or equivalently
747 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
748 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
749 These registers are overloaded by 8 MMX registers @samp{%mm0},
750 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
751 @samp{%mm6} and @samp{%mm7}.
752
753 @item
754 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
755 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
756 @end itemize
757
758 The AMD x86-64 architecture extends the register set by:
759
760 @itemize @bullet
761 @item
762 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
763 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
764 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
765 pointer)
766
767 @item
768 the 8 extended registers @samp{%r8}--@samp{%r15}.
769
770 @item
771 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
772
773 @item
774 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
775
776 @item
777 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
778
779 @item
780 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
781
782 @item
783 the 8 debug registers: @samp{%db8}--@samp{%db15}.
784
785 @item
786 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
787 @end itemize
788
789 With the AVX extensions more registers were made available:
790
791 @itemize @bullet
792
793 @item
794 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
795 available in 32-bit mode). The bottom 128 bits are overlaid with the
796 @samp{xmm0}--@samp{xmm15} registers.
797
798 @end itemize
799
800 The AVX2 extensions made in 64-bit mode more registers available:
801
802 @itemize @bullet
803
804 @item
805 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
806 registers @samp{%ymm16}--@samp{%ymm31}.
807
808 @end itemize
809
810 The AVX512 extensions added the following registers:
811
812 @itemize @bullet
813
814 @item
815 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
816 available in 32-bit mode). The bottom 128 bits are overlaid with the
817 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
818 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
819
820 @item
821 the 8 mask registers @samp{%k0}--@samp{%k7}.
822
823 @end itemize
824
825 @node i386-Prefixes
826 @section Instruction Prefixes
827
828 @cindex i386 instruction prefixes
829 @cindex instruction prefixes, i386
830 @cindex prefixes, i386
831 Instruction prefixes are used to modify the following instruction. They
832 are used to repeat string instructions, to provide section overrides, to
833 perform bus lock operations, and to change operand and address sizes.
834 (Most instructions that normally operate on 32-bit operands will use
835 16-bit operands if the instruction has an ``operand size'' prefix.)
836 Instruction prefixes are best written on the same line as the instruction
837 they act upon. For example, the @samp{scas} (scan string) instruction is
838 repeated with:
839
840 @smallexample
841 repne scas %es:(%edi),%al
842 @end smallexample
843
844 You may also place prefixes on the lines immediately preceding the
845 instruction, but this circumvents checks that @code{@value{AS}} does
846 with prefixes, and will not work with all prefixes.
847
848 Here is a list of instruction prefixes:
849
850 @cindex section override prefixes, i386
851 @itemize @bullet
852 @item
853 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
854 @samp{fs}, @samp{gs}. These are automatically added by specifying
855 using the @var{section}:@var{memory-operand} form for memory references.
856
857 @cindex size prefixes, i386
858 @item
859 Operand/Address size prefixes @samp{data16} and @samp{addr16}
860 change 32-bit operands/addresses into 16-bit operands/addresses,
861 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
862 @code{.code16} section) into 32-bit operands/addresses. These prefixes
863 @emph{must} appear on the same line of code as the instruction they
864 modify. For example, in a 16-bit @code{.code16} section, you might
865 write:
866
867 @smallexample
868 addr32 jmpl *(%ebx)
869 @end smallexample
870
871 @cindex bus lock prefixes, i386
872 @cindex inhibiting interrupts, i386
873 @item
874 The bus lock prefix @samp{lock} inhibits interrupts during execution of
875 the instruction it precedes. (This is only valid with certain
876 instructions; see a 80386 manual for details).
877
878 @cindex coprocessor wait, i386
879 @item
880 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
881 complete the current instruction. This should never be needed for the
882 80386/80387 combination.
883
884 @cindex repeat prefixes, i386
885 @item
886 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
887 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
888 times if the current address size is 16-bits).
889 @cindex REX prefixes, i386
890 @item
891 The @samp{rex} family of prefixes is used by x86-64 to encode
892 extensions to i386 instruction set. The @samp{rex} prefix has four
893 bits --- an operand size overwrite (@code{64}) used to change operand size
894 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
895 register set.
896
897 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
898 instruction emits @samp{rex} prefix with all the bits set. By omitting
899 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
900 prefixes as well. Normally, there is no need to write the prefixes
901 explicitly, since gas will automatically generate them based on the
902 instruction operands.
903 @end itemize
904
905 @node i386-Memory
906 @section Memory References
907
908 @cindex i386 memory references
909 @cindex memory references, i386
910 @cindex x86-64 memory references
911 @cindex memory references, x86-64
912 An Intel syntax indirect memory reference of the form
913
914 @smallexample
915 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
916 @end smallexample
917
918 @noindent
919 is translated into the AT&T syntax
920
921 @smallexample
922 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
923 @end smallexample
924
925 @noindent
926 where @var{base} and @var{index} are the optional 32-bit base and
927 index registers, @var{disp} is the optional displacement, and
928 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
929 to calculate the address of the operand. If no @var{scale} is
930 specified, @var{scale} is taken to be 1. @var{section} specifies the
931 optional section register for the memory operand, and may override the
932 default section register (see a 80386 manual for section register
933 defaults). Note that section overrides in AT&T syntax @emph{must}
934 be preceded by a @samp{%}. If you specify a section override which
935 coincides with the default section register, @code{@value{AS}} does @emph{not}
936 output any section register override prefixes to assemble the given
937 instruction. Thus, section overrides can be specified to emphasize which
938 section register is used for a given memory operand.
939
940 Here are some examples of Intel and AT&T style memory references:
941
942 @table @asis
943 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
944 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
945 missing, and the default section is used (@samp{%ss} for addressing with
946 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
947
948 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
949 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
950 @samp{foo}. All other fields are missing. The section register here
951 defaults to @samp{%ds}.
952
953 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
954 This uses the value pointed to by @samp{foo} as a memory operand.
955 Note that @var{base} and @var{index} are both missing, but there is only
956 @emph{one} @samp{,}. This is a syntactic exception.
957
958 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
959 This selects the contents of the variable @samp{foo} with section
960 register @var{section} being @samp{%gs}.
961 @end table
962
963 Absolute (as opposed to PC relative) call and jump operands must be
964 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
965 always chooses PC relative addressing for jump/call labels.
966
967 Any instruction that has a memory operand, but no register operand,
968 @emph{must} specify its size (byte, word, long, or quadruple) with an
969 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
970 respectively).
971
972 The x86-64 architecture adds an RIP (instruction pointer relative)
973 addressing. This addressing mode is specified by using @samp{rip} as a
974 base register. Only constant offsets are valid. For example:
975
976 @table @asis
977 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
978 Points to the address 1234 bytes past the end of the current
979 instruction.
980
981 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
982 Points to the @code{symbol} in RIP relative way, this is shorter than
983 the default absolute addressing.
984 @end table
985
986 Other addressing modes remain unchanged in x86-64 architecture, except
987 registers used are 64-bit instead of 32-bit.
988
989 @node i386-Jumps
990 @section Handling of Jump Instructions
991
992 @cindex jump optimization, i386
993 @cindex i386 jump optimization
994 @cindex jump optimization, x86-64
995 @cindex x86-64 jump optimization
996 Jump instructions are always optimized to use the smallest possible
997 displacements. This is accomplished by using byte (8-bit) displacement
998 jumps whenever the target is sufficiently close. If a byte displacement
999 is insufficient a long displacement is used. We do not support
1000 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1001 instruction with the @samp{data16} instruction prefix), since the 80386
1002 insists upon masking @samp{%eip} to 16 bits after the word displacement
1003 is added. (See also @pxref{i386-Arch})
1004
1005 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1006 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1007 displacements, so that if you use these instructions (@code{@value{GCC}} does
1008 not use them) you may get an error message (and incorrect code). The AT&T
1009 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1010 to
1011
1012 @smallexample
1013 jcxz cx_zero
1014 jmp cx_nonzero
1015 cx_zero: jmp foo
1016 cx_nonzero:
1017 @end smallexample
1018
1019 @node i386-Float
1020 @section Floating Point
1021
1022 @cindex i386 floating point
1023 @cindex floating point, i386
1024 @cindex x86-64 floating point
1025 @cindex floating point, x86-64
1026 All 80387 floating point types except packed BCD are supported.
1027 (BCD support may be added without much difficulty). These data
1028 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1029 double (64-bit), and extended (80-bit) precision floating point.
1030 Each supported type has an instruction mnemonic suffix and a constructor
1031 associated with it. Instruction mnemonic suffixes specify the operand's
1032 data type. Constructors build these data types into memory.
1033
1034 @cindex @code{float} directive, i386
1035 @cindex @code{single} directive, i386
1036 @cindex @code{double} directive, i386
1037 @cindex @code{tfloat} directive, i386
1038 @cindex @code{float} directive, x86-64
1039 @cindex @code{single} directive, x86-64
1040 @cindex @code{double} directive, x86-64
1041 @cindex @code{tfloat} directive, x86-64
1042 @itemize @bullet
1043 @item
1044 Floating point constructors are @samp{.float} or @samp{.single},
1045 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1046 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1047 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1048 only supports this format via the @samp{fldt} (load 80-bit real to stack
1049 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1050
1051 @cindex @code{word} directive, i386
1052 @cindex @code{long} directive, i386
1053 @cindex @code{int} directive, i386
1054 @cindex @code{quad} directive, i386
1055 @cindex @code{word} directive, x86-64
1056 @cindex @code{long} directive, x86-64
1057 @cindex @code{int} directive, x86-64
1058 @cindex @code{quad} directive, x86-64
1059 @item
1060 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1061 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1062 corresponding instruction mnemonic suffixes are @samp{s} (single),
1063 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1064 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1065 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1066 stack) instructions.
1067 @end itemize
1068
1069 Register to register operations should not use instruction mnemonic suffixes.
1070 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1071 wrote @samp{fst %st, %st(1)}, since all register to register operations
1072 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1073 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1074 then stores the result in the 4 byte location @samp{mem})
1075
1076 @node i386-SIMD
1077 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1078
1079 @cindex MMX, i386
1080 @cindex 3DNow!, i386
1081 @cindex SIMD, i386
1082 @cindex MMX, x86-64
1083 @cindex 3DNow!, x86-64
1084 @cindex SIMD, x86-64
1085
1086 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1087 instructions for integer data), available on Intel's Pentium MMX
1088 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1089 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1090 instruction set (SIMD instructions for 32-bit floating point data)
1091 available on AMD's K6-2 processor and possibly others in the future.
1092
1093 Currently, @code{@value{AS}} does not support Intel's floating point
1094 SIMD, Katmai (KNI).
1095
1096 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1097 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1098 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1099 floating point values. The MMX registers cannot be used at the same time
1100 as the floating point stack.
1101
1102 See Intel and AMD documentation, keeping in mind that the operand order in
1103 instructions is reversed from the Intel syntax.
1104
1105 @node i386-LWP
1106 @section AMD's Lightweight Profiling Instructions
1107
1108 @cindex LWP, i386
1109 @cindex LWP, x86-64
1110
1111 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1112 instruction set, available on AMD's Family 15h (Orochi) processors.
1113
1114 LWP enables applications to collect and manage performance data, and
1115 react to performance events. The collection of performance data
1116 requires no context switches. LWP runs in the context of a thread and
1117 so several counters can be used independently across multiple threads.
1118 LWP can be used in both 64-bit and legacy 32-bit modes.
1119
1120 For detailed information on the LWP instruction set, see the
1121 @cite{AMD Lightweight Profiling Specification} available at
1122 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1123
1124 @node i386-BMI
1125 @section Bit Manipulation Instructions
1126
1127 @cindex BMI, i386
1128 @cindex BMI, x86-64
1129
1130 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1131
1132 BMI instructions provide several instructions implementing individual
1133 bit manipulation operations such as isolation, masking, setting, or
1134 resetting.
1135
1136 @c Need to add a specification citation here when available.
1137
1138 @node i386-TBM
1139 @section AMD's Trailing Bit Manipulation Instructions
1140
1141 @cindex TBM, i386
1142 @cindex TBM, x86-64
1143
1144 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1145 instruction set, available on AMD's BDVER2 processors (Trinity and
1146 Viperfish).
1147
1148 TBM instructions provide instructions implementing individual bit
1149 manipulation operations such as isolating, masking, setting, resetting,
1150 complementing, and operations on trailing zeros and ones.
1151
1152 @c Need to add a specification citation here when available.
1153
1154 @node i386-16bit
1155 @section Writing 16-bit Code
1156
1157 @cindex i386 16-bit code
1158 @cindex 16-bit code, i386
1159 @cindex real-mode code, i386
1160 @cindex @code{code16gcc} directive, i386
1161 @cindex @code{code16} directive, i386
1162 @cindex @code{code32} directive, i386
1163 @cindex @code{code64} directive, i386
1164 @cindex @code{code64} directive, x86-64
1165 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1166 or 64-bit x86-64 code depending on the default configuration,
1167 it also supports writing code to run in real mode or in 16-bit protected
1168 mode code segments. To do this, put a @samp{.code16} or
1169 @samp{.code16gcc} directive before the assembly language instructions to
1170 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1171 32-bit code with the @samp{.code32} directive or 64-bit code with the
1172 @samp{.code64} directive.
1173
1174 @samp{.code16gcc} provides experimental support for generating 16-bit
1175 code from gcc, and differs from @samp{.code16} in that @samp{call},
1176 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1177 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1178 default to 32-bit size. This is so that the stack pointer is
1179 manipulated in the same way over function calls, allowing access to
1180 function parameters at the same stack offsets as in 32-bit mode.
1181 @samp{.code16gcc} also automatically adds address size prefixes where
1182 necessary to use the 32-bit addressing modes that gcc generates.
1183
1184 The code which @code{@value{AS}} generates in 16-bit mode will not
1185 necessarily run on a 16-bit pre-80386 processor. To write code that
1186 runs on such a processor, you must refrain from using @emph{any} 32-bit
1187 constructs which require @code{@value{AS}} to output address or operand
1188 size prefixes.
1189
1190 Note that writing 16-bit code instructions by explicitly specifying a
1191 prefix or an instruction mnemonic suffix within a 32-bit code section
1192 generates different machine instructions than those generated for a
1193 16-bit code segment. In a 32-bit code section, the following code
1194 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1195 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1196
1197 @smallexample
1198 pushw $4
1199 @end smallexample
1200
1201 The same code in a 16-bit code section would generate the machine
1202 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1203 is correct since the processor default operand size is assumed to be 16
1204 bits in a 16-bit code section.
1205
1206 @node i386-Arch
1207 @section Specifying CPU Architecture
1208
1209 @cindex arch directive, i386
1210 @cindex i386 arch directive
1211 @cindex arch directive, x86-64
1212 @cindex x86-64 arch directive
1213
1214 @code{@value{AS}} may be told to assemble for a particular CPU
1215 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1216 directive enables a warning when gas detects an instruction that is not
1217 supported on the CPU specified. The choices for @var{cpu_type} are:
1218
1219 @multitable @columnfractions .20 .20 .20 .20
1220 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1221 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1222 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1223 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1224 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1225 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1226 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1227 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1228 @item @samp{generic32} @tab @samp{generic64}
1229 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1230 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1231 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1232 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1233 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1234 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1235 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1236 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1237 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1238 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1239 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1240 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1241 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1242 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1243 @item @samp{.avx512_bitalg}
1244 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1245 @item @samp{.wbnoinvd} @tab @samp{.pconfig}
1246 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1247 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1248 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1249 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1250 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1251 @end multitable
1252
1253 Apart from the warning, there are only two other effects on
1254 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1255 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1256 will automatically use a two byte opcode sequence. The larger three
1257 byte opcode sequence is used on the 486 (and when no architecture is
1258 specified) because it executes faster on the 486. Note that you can
1259 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1260 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1261 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1262 conditional jumps will be promoted when necessary to a two instruction
1263 sequence consisting of a conditional jump of the opposite sense around
1264 an unconditional jump to the target.
1265
1266 Following the CPU architecture (but not a sub-architecture, which are those
1267 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1268 control automatic promotion of conditional jumps. @samp{jumps} is the
1269 default, and enables jump promotion; All external jumps will be of the long
1270 variety, and file-local jumps will be promoted as necessary.
1271 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1272 byte offset jumps, and warns about file-local conditional jumps that
1273 @code{@value{AS}} promotes.
1274 Unconditional jumps are treated as for @samp{jumps}.
1275
1276 For example
1277
1278 @smallexample
1279 .arch i8086,nojumps
1280 @end smallexample
1281
1282 @node i386-Bugs
1283 @section AT&T Syntax bugs
1284
1285 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1286 assemblers, generate floating point instructions with reversed source
1287 and destination registers in certain cases. Unfortunately, gcc and
1288 possibly many other programs use this reversed syntax, so we're stuck
1289 with it.
1290
1291 For example
1292
1293 @smallexample
1294 fsub %st,%st(3)
1295 @end smallexample
1296 @noindent
1297 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1298 than the expected @samp{%st(3) - %st}. This happens with all the
1299 non-commutative arithmetic floating point operations with two register
1300 operands where the source register is @samp{%st} and the destination
1301 register is @samp{%st(i)}.
1302
1303 @node i386-Notes
1304 @section Notes
1305
1306 @cindex i386 @code{mul}, @code{imul} instructions
1307 @cindex @code{mul} instruction, i386
1308 @cindex @code{imul} instruction, i386
1309 @cindex @code{mul} instruction, x86-64
1310 @cindex @code{imul} instruction, x86-64
1311 There is some trickery concerning the @samp{mul} and @samp{imul}
1312 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1313 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1314 for @samp{imul}) can be output only in the one operand form. Thus,
1315 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1316 the expanding multiply would clobber the @samp{%edx} register, and this
1317 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1318 64-bit product in @samp{%edx:%eax}.
1319
1320 We have added a two operand form of @samp{imul} when the first operand
1321 is an immediate mode expression and the second operand is a register.
1322 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1323 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1324 $69, %eax, %eax}.
1325
This page took 0.057362 seconds and 5 git commands to generate.