Add support for CPUID PREFETCHWT1
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991-2013 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{bdver2},
121 @code{bdver3},
122 @code{bdver4},
123 @code{btver1},
124 @code{btver2},
125 @code{generic32} and
126 @code{generic64}.
127
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
132 @code{8087},
133 @code{287},
134 @code{387},
135 @code{no87},
136 @code{mmx},
137 @code{nommx},
138 @code{sse},
139 @code{sse2},
140 @code{sse3},
141 @code{ssse3},
142 @code{sse4.1},
143 @code{sse4.2},
144 @code{sse4},
145 @code{nosse},
146 @code{avx},
147 @code{avx2},
148 @code{adx},
149 @code{rdseed},
150 @code{prfchw},
151 @code{smap},
152 @code{mpx},
153 @code{sha},
154 @code{avx512f},
155 @code{avx512cd},
156 @code{avx512er},
157 @code{avx512pf},
158 @code{noavx},
159 @code{vmx},
160 @code{vmfunc},
161 @code{smx},
162 @code{xsave},
163 @code{xsaveopt},
164 @code{aes},
165 @code{pclmul},
166 @code{fsgsbase},
167 @code{rdrnd},
168 @code{f16c},
169 @code{bmi2},
170 @code{fma},
171 @code{movbe},
172 @code{ept},
173 @code{lzcnt},
174 @code{hle},
175 @code{rtm},
176 @code{invpcid},
177 @code{clflush},
178 @code{lwp},
179 @code{fma4},
180 @code{xop},
181 @code{cx16},
182 @code{syscall},
183 @code{rdtscp},
184 @code{3dnow},
185 @code{3dnowa},
186 @code{sse4a},
187 @code{sse5},
188 @code{svme},
189 @code{abm} and
190 @code{padlock}.
191 Note that rather than extending a basic instruction set, the extension
192 mnemonics starting with @code{no} revoke the respective functionality.
193
194 When the @code{.arch} directive is used with @option{-march}, the
195 @code{.arch} directive will take precedent.
196
197 @cindex @samp{-mtune=} option, i386
198 @cindex @samp{-mtune=} option, x86-64
199 @item -mtune=@var{CPU}
200 This option specifies a processor to optimize for. When used in
201 conjunction with the @option{-march} option, only instructions
202 of the processor specified by the @option{-march} option will be
203 generated.
204
205 Valid @var{CPU} values are identical to the processor list of
206 @option{-march=@var{CPU}}.
207
208 @cindex @samp{-msse2avx} option, i386
209 @cindex @samp{-msse2avx} option, x86-64
210 @item -msse2avx
211 This option specifies that the assembler should encode SSE instructions
212 with VEX prefix.
213
214 @cindex @samp{-msse-check=} option, i386
215 @cindex @samp{-msse-check=} option, x86-64
216 @item -msse-check=@var{none}
217 @itemx -msse-check=@var{warning}
218 @itemx -msse-check=@var{error}
219 These options control if the assembler should check SSE instructions.
220 @option{-msse-check=@var{none}} will make the assembler not to check SSE
221 instructions, which is the default. @option{-msse-check=@var{warning}}
222 will make the assembler issue a warning for any SSE instruction.
223 @option{-msse-check=@var{error}} will make the assembler issue an error
224 for any SSE instruction.
225
226 @cindex @samp{-mavxscalar=} option, i386
227 @cindex @samp{-mavxscalar=} option, x86-64
228 @item -mavxscalar=@var{128}
229 @itemx -mavxscalar=@var{256}
230 These options control how the assembler should encode scalar AVX
231 instructions. @option{-mavxscalar=@var{128}} will encode scalar
232 AVX instructions with 128bit vector length, which is the default.
233 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
234 with 256bit vector length.
235
236 @cindex @samp{-mevexlig=} option, i386
237 @cindex @samp{-mevexlig=} option, x86-64
238 @item -mevexlig=@var{128}
239 @itemx -mevexlig=@var{256}
240 @itemx -mevexlig=@var{512}
241 These options control how the assembler should encode length-ignored
242 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
243 EVEX instructions with 128bit vector length, which is the default.
244 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
245 encode LIG EVEX instructions with 256bit and 512bit vector length,
246 respectively.
247
248 @cindex @samp{-mevexwig=} option, i386
249 @cindex @samp{-mevexwig=} option, x86-64
250 @item -mevexwig=@var{0}
251 @itemx -mevexwig=@var{1}
252 These options control how the assembler should encode w-ignored (WIG)
253 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
254 EVEX instructions with evex.w = 0, which is the default.
255 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
256 evex.w = 1.
257
258 @cindex @samp{-mmnemonic=} option, i386
259 @cindex @samp{-mmnemonic=} option, x86-64
260 @item -mmnemonic=@var{att}
261 @itemx -mmnemonic=@var{intel}
262 This option specifies instruction mnemonic for matching instructions.
263 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
264 take precedent.
265
266 @cindex @samp{-msyntax=} option, i386
267 @cindex @samp{-msyntax=} option, x86-64
268 @item -msyntax=@var{att}
269 @itemx -msyntax=@var{intel}
270 This option specifies instruction syntax when processing instructions.
271 The @code{.att_syntax} and @code{.intel_syntax} directives will
272 take precedent.
273
274 @cindex @samp{-mnaked-reg} option, i386
275 @cindex @samp{-mnaked-reg} option, x86-64
276 @item -mnaked-reg
277 This opetion specifies that registers don't require a @samp{%} prefix.
278 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
279
280 @cindex @samp{-madd-bnd-prefix} option, i386
281 @cindex @samp{-madd-bnd-prefix} option, x86-64
282 @item -madd-bnd-prefix
283 This option forces the assembler to add BND prefix to all branches, even
284 if such prefix was not explicitly specified in the source code.
285
286 @end table
287 @c man end
288
289 @node i386-Directives
290 @section x86 specific Directives
291
292 @cindex machine directives, x86
293 @cindex x86 machine directives
294 @table @code
295
296 @cindex @code{lcomm} directive, COFF
297 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
298 Reserve @var{length} (an absolute expression) bytes for a local common
299 denoted by @var{symbol}. The section and value of @var{symbol} are
300 those of the new local common. The addresses are allocated in the bss
301 section, so that at run-time the bytes start off zeroed. Since
302 @var{symbol} is not declared global, it is normally not visible to
303 @code{@value{LD}}. The optional third parameter, @var{alignment},
304 specifies the desired alignment of the symbol in the bss section.
305
306 This directive is only available for COFF based x86 targets.
307
308 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
309 @c .largecomm
310
311 @end table
312
313 @node i386-Syntax
314 @section i386 Syntactical Considerations
315 @menu
316 * i386-Variations:: AT&T Syntax versus Intel Syntax
317 * i386-Chars:: Special Characters
318 @end menu
319
320 @node i386-Variations
321 @subsection AT&T Syntax versus Intel Syntax
322
323 @cindex i386 intel_syntax pseudo op
324 @cindex intel_syntax pseudo op, i386
325 @cindex i386 att_syntax pseudo op
326 @cindex att_syntax pseudo op, i386
327 @cindex i386 syntax compatibility
328 @cindex syntax compatibility, i386
329 @cindex x86-64 intel_syntax pseudo op
330 @cindex intel_syntax pseudo op, x86-64
331 @cindex x86-64 att_syntax pseudo op
332 @cindex att_syntax pseudo op, x86-64
333 @cindex x86-64 syntax compatibility
334 @cindex syntax compatibility, x86-64
335
336 @code{@value{AS}} now supports assembly using Intel assembler syntax.
337 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
338 back to the usual AT&T mode for compatibility with the output of
339 @code{@value{GCC}}. Either of these directives may have an optional
340 argument, @code{prefix}, or @code{noprefix} specifying whether registers
341 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
342 different from Intel syntax. We mention these differences because
343 almost all 80386 documents use Intel syntax. Notable differences
344 between the two syntaxes are:
345
346 @cindex immediate operands, i386
347 @cindex i386 immediate operands
348 @cindex register operands, i386
349 @cindex i386 register operands
350 @cindex jump/call operands, i386
351 @cindex i386 jump/call operands
352 @cindex operand delimiters, i386
353
354 @cindex immediate operands, x86-64
355 @cindex x86-64 immediate operands
356 @cindex register operands, x86-64
357 @cindex x86-64 register operands
358 @cindex jump/call operands, x86-64
359 @cindex x86-64 jump/call operands
360 @cindex operand delimiters, x86-64
361 @itemize @bullet
362 @item
363 AT&T immediate operands are preceded by @samp{$}; Intel immediate
364 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
365 AT&T register operands are preceded by @samp{%}; Intel register operands
366 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
367 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
368
369 @cindex i386 source, destination operands
370 @cindex source, destination operands; i386
371 @cindex x86-64 source, destination operands
372 @cindex source, destination operands; x86-64
373 @item
374 AT&T and Intel syntax use the opposite order for source and destination
375 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
376 @samp{source, dest} convention is maintained for compatibility with
377 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
378 instructions with 2 immediate operands, such as the @samp{enter}
379 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
380
381 @cindex mnemonic suffixes, i386
382 @cindex sizes operands, i386
383 @cindex i386 size suffixes
384 @cindex mnemonic suffixes, x86-64
385 @cindex sizes operands, x86-64
386 @cindex x86-64 size suffixes
387 @item
388 In AT&T syntax the size of memory operands is determined from the last
389 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
390 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
391 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
392 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
393 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
394 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
395 syntax.
396
397 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
398 instruction with the 64-bit displacement or immediate operand.
399
400 @cindex return instructions, i386
401 @cindex i386 jump, call, return
402 @cindex return instructions, x86-64
403 @cindex x86-64 jump, call, return
404 @item
405 Immediate form long jumps and calls are
406 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
407 Intel syntax is
408 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
409 instruction
410 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
411 @samp{ret far @var{stack-adjust}}.
412
413 @cindex sections, i386
414 @cindex i386 sections
415 @cindex sections, x86-64
416 @cindex x86-64 sections
417 @item
418 The AT&T assembler does not provide support for multiple section
419 programs. Unix style systems expect all programs to be single sections.
420 @end itemize
421
422 @node i386-Chars
423 @subsection Special Characters
424
425 @cindex line comment character, i386
426 @cindex i386 line comment character
427 The presence of a @samp{#} appearing anywhere on a line indicates the
428 start of a comment that extends to the end of that line.
429
430 If a @samp{#} appears as the first character of a line then the whole
431 line is treated as a comment, but in this case the line can also be a
432 logical line number directive (@pxref{Comments}) or a preprocessor
433 control command (@pxref{Preprocessing}).
434
435 If the @option{--divide} command line option has not been specified
436 then the @samp{/} character appearing anywhere on a line also
437 introduces a line comment.
438
439 @cindex line separator, i386
440 @cindex statement separator, i386
441 @cindex i386 line separator
442 The @samp{;} character can be used to separate statements on the same
443 line.
444
445 @node i386-Mnemonics
446 @section Instruction Naming
447
448 @cindex i386 instruction naming
449 @cindex instruction naming, i386
450 @cindex x86-64 instruction naming
451 @cindex instruction naming, x86-64
452
453 Instruction mnemonics are suffixed with one character modifiers which
454 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
455 and @samp{q} specify byte, word, long and quadruple word operands. If
456 no suffix is specified by an instruction then @code{@value{AS}} tries to
457 fill in the missing suffix based on the destination register operand
458 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
459 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
460 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
461 assembler which assumes that a missing mnemonic suffix implies long
462 operand size. (This incompatibility does not affect compiler output
463 since compilers always explicitly specify the mnemonic suffix.)
464
465 Almost all instructions have the same names in AT&T and Intel format.
466 There are a few exceptions. The sign extend and zero extend
467 instructions need two sizes to specify them. They need a size to
468 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
469 is accomplished by using two instruction mnemonic suffixes in AT&T
470 syntax. Base names for sign extend and zero extend are
471 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
472 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
473 are tacked on to this base name, the @emph{from} suffix before the
474 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
475 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
476 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
477 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
478 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
479 quadruple word).
480
481 @cindex encoding options, i386
482 @cindex encoding options, x86-64
483
484 Different encoding options can be specified via optional mnemonic
485 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
486 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
487 prefers 8bit or 32bit displacement in encoding.
488
489 @cindex conversion instructions, i386
490 @cindex i386 conversion instructions
491 @cindex conversion instructions, x86-64
492 @cindex x86-64 conversion instructions
493 The Intel-syntax conversion instructions
494
495 @itemize @bullet
496 @item
497 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
498
499 @item
500 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
501
502 @item
503 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
504
505 @item
506 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
507
508 @item
509 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
510 (x86-64 only),
511
512 @item
513 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
514 @samp{%rdx:%rax} (x86-64 only),
515 @end itemize
516
517 @noindent
518 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
519 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
520 instructions.
521
522 @cindex jump instructions, i386
523 @cindex call instructions, i386
524 @cindex jump instructions, x86-64
525 @cindex call instructions, x86-64
526 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
527 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
528 convention.
529
530 @section AT&T Mnemonic versus Intel Mnemonic
531
532 @cindex i386 mnemonic compatibility
533 @cindex mnemonic compatibility, i386
534
535 @code{@value{AS}} supports assembly using Intel mnemonic.
536 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
537 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
538 syntax for compatibility with the output of @code{@value{GCC}}.
539 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
540 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
541 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
542 assembler with different mnemonics from those in Intel IA32 specification.
543 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
544
545 @node i386-Regs
546 @section Register Naming
547
548 @cindex i386 registers
549 @cindex registers, i386
550 @cindex x86-64 registers
551 @cindex registers, x86-64
552 Register operands are always prefixed with @samp{%}. The 80386 registers
553 consist of
554
555 @itemize @bullet
556 @item
557 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
558 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
559 frame pointer), and @samp{%esp} (the stack pointer).
560
561 @item
562 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
563 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
564
565 @item
566 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
567 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
568 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
569 @samp{%cx}, and @samp{%dx})
570
571 @item
572 the 6 section registers @samp{%cs} (code section), @samp{%ds}
573 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
574 and @samp{%gs}.
575
576 @item
577 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
578 @samp{%cr3}.
579
580 @item
581 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
582 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
583
584 @item
585 the 2 test registers @samp{%tr6} and @samp{%tr7}.
586
587 @item
588 the 8 floating point register stack @samp{%st} or equivalently
589 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
590 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
591 These registers are overloaded by 8 MMX registers @samp{%mm0},
592 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
593 @samp{%mm6} and @samp{%mm7}.
594
595 @item
596 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
597 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
598 @end itemize
599
600 The AMD x86-64 architecture extends the register set by:
601
602 @itemize @bullet
603 @item
604 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
605 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
606 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
607 pointer)
608
609 @item
610 the 8 extended registers @samp{%r8}--@samp{%r15}.
611
612 @item
613 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
614
615 @item
616 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
617
618 @item
619 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
620
621 @item
622 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
623
624 @item
625 the 8 debug registers: @samp{%db8}--@samp{%db15}.
626
627 @item
628 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
629 @end itemize
630
631 @node i386-Prefixes
632 @section Instruction Prefixes
633
634 @cindex i386 instruction prefixes
635 @cindex instruction prefixes, i386
636 @cindex prefixes, i386
637 Instruction prefixes are used to modify the following instruction. They
638 are used to repeat string instructions, to provide section overrides, to
639 perform bus lock operations, and to change operand and address sizes.
640 (Most instructions that normally operate on 32-bit operands will use
641 16-bit operands if the instruction has an ``operand size'' prefix.)
642 Instruction prefixes are best written on the same line as the instruction
643 they act upon. For example, the @samp{scas} (scan string) instruction is
644 repeated with:
645
646 @smallexample
647 repne scas %es:(%edi),%al
648 @end smallexample
649
650 You may also place prefixes on the lines immediately preceding the
651 instruction, but this circumvents checks that @code{@value{AS}} does
652 with prefixes, and will not work with all prefixes.
653
654 Here is a list of instruction prefixes:
655
656 @cindex section override prefixes, i386
657 @itemize @bullet
658 @item
659 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
660 @samp{fs}, @samp{gs}. These are automatically added by specifying
661 using the @var{section}:@var{memory-operand} form for memory references.
662
663 @cindex size prefixes, i386
664 @item
665 Operand/Address size prefixes @samp{data16} and @samp{addr16}
666 change 32-bit operands/addresses into 16-bit operands/addresses,
667 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
668 @code{.code16} section) into 32-bit operands/addresses. These prefixes
669 @emph{must} appear on the same line of code as the instruction they
670 modify. For example, in a 16-bit @code{.code16} section, you might
671 write:
672
673 @smallexample
674 addr32 jmpl *(%ebx)
675 @end smallexample
676
677 @cindex bus lock prefixes, i386
678 @cindex inhibiting interrupts, i386
679 @item
680 The bus lock prefix @samp{lock} inhibits interrupts during execution of
681 the instruction it precedes. (This is only valid with certain
682 instructions; see a 80386 manual for details).
683
684 @cindex coprocessor wait, i386
685 @item
686 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
687 complete the current instruction. This should never be needed for the
688 80386/80387 combination.
689
690 @cindex repeat prefixes, i386
691 @item
692 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
693 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
694 times if the current address size is 16-bits).
695 @cindex REX prefixes, i386
696 @item
697 The @samp{rex} family of prefixes is used by x86-64 to encode
698 extensions to i386 instruction set. The @samp{rex} prefix has four
699 bits --- an operand size overwrite (@code{64}) used to change operand size
700 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
701 register set.
702
703 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
704 instruction emits @samp{rex} prefix with all the bits set. By omitting
705 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
706 prefixes as well. Normally, there is no need to write the prefixes
707 explicitly, since gas will automatically generate them based on the
708 instruction operands.
709 @end itemize
710
711 @node i386-Memory
712 @section Memory References
713
714 @cindex i386 memory references
715 @cindex memory references, i386
716 @cindex x86-64 memory references
717 @cindex memory references, x86-64
718 An Intel syntax indirect memory reference of the form
719
720 @smallexample
721 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
722 @end smallexample
723
724 @noindent
725 is translated into the AT&T syntax
726
727 @smallexample
728 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
729 @end smallexample
730
731 @noindent
732 where @var{base} and @var{index} are the optional 32-bit base and
733 index registers, @var{disp} is the optional displacement, and
734 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
735 to calculate the address of the operand. If no @var{scale} is
736 specified, @var{scale} is taken to be 1. @var{section} specifies the
737 optional section register for the memory operand, and may override the
738 default section register (see a 80386 manual for section register
739 defaults). Note that section overrides in AT&T syntax @emph{must}
740 be preceded by a @samp{%}. If you specify a section override which
741 coincides with the default section register, @code{@value{AS}} does @emph{not}
742 output any section register override prefixes to assemble the given
743 instruction. Thus, section overrides can be specified to emphasize which
744 section register is used for a given memory operand.
745
746 Here are some examples of Intel and AT&T style memory references:
747
748 @table @asis
749 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
750 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
751 missing, and the default section is used (@samp{%ss} for addressing with
752 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
753
754 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
755 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
756 @samp{foo}. All other fields are missing. The section register here
757 defaults to @samp{%ds}.
758
759 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
760 This uses the value pointed to by @samp{foo} as a memory operand.
761 Note that @var{base} and @var{index} are both missing, but there is only
762 @emph{one} @samp{,}. This is a syntactic exception.
763
764 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
765 This selects the contents of the variable @samp{foo} with section
766 register @var{section} being @samp{%gs}.
767 @end table
768
769 Absolute (as opposed to PC relative) call and jump operands must be
770 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
771 always chooses PC relative addressing for jump/call labels.
772
773 Any instruction that has a memory operand, but no register operand,
774 @emph{must} specify its size (byte, word, long, or quadruple) with an
775 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
776 respectively).
777
778 The x86-64 architecture adds an RIP (instruction pointer relative)
779 addressing. This addressing mode is specified by using @samp{rip} as a
780 base register. Only constant offsets are valid. For example:
781
782 @table @asis
783 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
784 Points to the address 1234 bytes past the end of the current
785 instruction.
786
787 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
788 Points to the @code{symbol} in RIP relative way, this is shorter than
789 the default absolute addressing.
790 @end table
791
792 Other addressing modes remain unchanged in x86-64 architecture, except
793 registers used are 64-bit instead of 32-bit.
794
795 @node i386-Jumps
796 @section Handling of Jump Instructions
797
798 @cindex jump optimization, i386
799 @cindex i386 jump optimization
800 @cindex jump optimization, x86-64
801 @cindex x86-64 jump optimization
802 Jump instructions are always optimized to use the smallest possible
803 displacements. This is accomplished by using byte (8-bit) displacement
804 jumps whenever the target is sufficiently close. If a byte displacement
805 is insufficient a long displacement is used. We do not support
806 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
807 instruction with the @samp{data16} instruction prefix), since the 80386
808 insists upon masking @samp{%eip} to 16 bits after the word displacement
809 is added. (See also @pxref{i386-Arch})
810
811 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
812 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
813 displacements, so that if you use these instructions (@code{@value{GCC}} does
814 not use them) you may get an error message (and incorrect code). The AT&T
815 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
816 to
817
818 @smallexample
819 jcxz cx_zero
820 jmp cx_nonzero
821 cx_zero: jmp foo
822 cx_nonzero:
823 @end smallexample
824
825 @node i386-Float
826 @section Floating Point
827
828 @cindex i386 floating point
829 @cindex floating point, i386
830 @cindex x86-64 floating point
831 @cindex floating point, x86-64
832 All 80387 floating point types except packed BCD are supported.
833 (BCD support may be added without much difficulty). These data
834 types are 16-, 32-, and 64- bit integers, and single (32-bit),
835 double (64-bit), and extended (80-bit) precision floating point.
836 Each supported type has an instruction mnemonic suffix and a constructor
837 associated with it. Instruction mnemonic suffixes specify the operand's
838 data type. Constructors build these data types into memory.
839
840 @cindex @code{float} directive, i386
841 @cindex @code{single} directive, i386
842 @cindex @code{double} directive, i386
843 @cindex @code{tfloat} directive, i386
844 @cindex @code{float} directive, x86-64
845 @cindex @code{single} directive, x86-64
846 @cindex @code{double} directive, x86-64
847 @cindex @code{tfloat} directive, x86-64
848 @itemize @bullet
849 @item
850 Floating point constructors are @samp{.float} or @samp{.single},
851 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
852 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
853 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
854 only supports this format via the @samp{fldt} (load 80-bit real to stack
855 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
856
857 @cindex @code{word} directive, i386
858 @cindex @code{long} directive, i386
859 @cindex @code{int} directive, i386
860 @cindex @code{quad} directive, i386
861 @cindex @code{word} directive, x86-64
862 @cindex @code{long} directive, x86-64
863 @cindex @code{int} directive, x86-64
864 @cindex @code{quad} directive, x86-64
865 @item
866 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
867 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
868 corresponding instruction mnemonic suffixes are @samp{s} (single),
869 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
870 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
871 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
872 stack) instructions.
873 @end itemize
874
875 Register to register operations should not use instruction mnemonic suffixes.
876 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
877 wrote @samp{fst %st, %st(1)}, since all register to register operations
878 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
879 which converts @samp{%st} from 80-bit to 64-bit floating point format,
880 then stores the result in the 4 byte location @samp{mem})
881
882 @node i386-SIMD
883 @section Intel's MMX and AMD's 3DNow! SIMD Operations
884
885 @cindex MMX, i386
886 @cindex 3DNow!, i386
887 @cindex SIMD, i386
888 @cindex MMX, x86-64
889 @cindex 3DNow!, x86-64
890 @cindex SIMD, x86-64
891
892 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
893 instructions for integer data), available on Intel's Pentium MMX
894 processors and Pentium II processors, AMD's K6 and K6-2 processors,
895 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
896 instruction set (SIMD instructions for 32-bit floating point data)
897 available on AMD's K6-2 processor and possibly others in the future.
898
899 Currently, @code{@value{AS}} does not support Intel's floating point
900 SIMD, Katmai (KNI).
901
902 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
903 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
904 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
905 floating point values. The MMX registers cannot be used at the same time
906 as the floating point stack.
907
908 See Intel and AMD documentation, keeping in mind that the operand order in
909 instructions is reversed from the Intel syntax.
910
911 @node i386-LWP
912 @section AMD's Lightweight Profiling Instructions
913
914 @cindex LWP, i386
915 @cindex LWP, x86-64
916
917 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
918 instruction set, available on AMD's Family 15h (Orochi) processors.
919
920 LWP enables applications to collect and manage performance data, and
921 react to performance events. The collection of performance data
922 requires no context switches. LWP runs in the context of a thread and
923 so several counters can be used independently across multiple threads.
924 LWP can be used in both 64-bit and legacy 32-bit modes.
925
926 For detailed information on the LWP instruction set, see the
927 @cite{AMD Lightweight Profiling Specification} available at
928 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
929
930 @node i386-BMI
931 @section Bit Manipulation Instructions
932
933 @cindex BMI, i386
934 @cindex BMI, x86-64
935
936 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
937
938 BMI instructions provide several instructions implementing individual
939 bit manipulation operations such as isolation, masking, setting, or
940 resetting.
941
942 @c Need to add a specification citation here when available.
943
944 @node i386-TBM
945 @section AMD's Trailing Bit Manipulation Instructions
946
947 @cindex TBM, i386
948 @cindex TBM, x86-64
949
950 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
951 instruction set, available on AMD's BDVER2 processors (Trinity and
952 Viperfish).
953
954 TBM instructions provide instructions implementing individual bit
955 manipulation operations such as isolating, masking, setting, resetting,
956 complementing, and operations on trailing zeros and ones.
957
958 @c Need to add a specification citation here when available.
959
960 @node i386-16bit
961 @section Writing 16-bit Code
962
963 @cindex i386 16-bit code
964 @cindex 16-bit code, i386
965 @cindex real-mode code, i386
966 @cindex @code{code16gcc} directive, i386
967 @cindex @code{code16} directive, i386
968 @cindex @code{code32} directive, i386
969 @cindex @code{code64} directive, i386
970 @cindex @code{code64} directive, x86-64
971 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
972 or 64-bit x86-64 code depending on the default configuration,
973 it also supports writing code to run in real mode or in 16-bit protected
974 mode code segments. To do this, put a @samp{.code16} or
975 @samp{.code16gcc} directive before the assembly language instructions to
976 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
977 32-bit code with the @samp{.code32} directive or 64-bit code with the
978 @samp{.code64} directive.
979
980 @samp{.code16gcc} provides experimental support for generating 16-bit
981 code from gcc, and differs from @samp{.code16} in that @samp{call},
982 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
983 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
984 default to 32-bit size. This is so that the stack pointer is
985 manipulated in the same way over function calls, allowing access to
986 function parameters at the same stack offsets as in 32-bit mode.
987 @samp{.code16gcc} also automatically adds address size prefixes where
988 necessary to use the 32-bit addressing modes that gcc generates.
989
990 The code which @code{@value{AS}} generates in 16-bit mode will not
991 necessarily run on a 16-bit pre-80386 processor. To write code that
992 runs on such a processor, you must refrain from using @emph{any} 32-bit
993 constructs which require @code{@value{AS}} to output address or operand
994 size prefixes.
995
996 Note that writing 16-bit code instructions by explicitly specifying a
997 prefix or an instruction mnemonic suffix within a 32-bit code section
998 generates different machine instructions than those generated for a
999 16-bit code segment. In a 32-bit code section, the following code
1000 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1001 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1002
1003 @smallexample
1004 pushw $4
1005 @end smallexample
1006
1007 The same code in a 16-bit code section would generate the machine
1008 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1009 is correct since the processor default operand size is assumed to be 16
1010 bits in a 16-bit code section.
1011
1012 @node i386-Bugs
1013 @section AT&T Syntax bugs
1014
1015 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1016 assemblers, generate floating point instructions with reversed source
1017 and destination registers in certain cases. Unfortunately, gcc and
1018 possibly many other programs use this reversed syntax, so we're stuck
1019 with it.
1020
1021 For example
1022
1023 @smallexample
1024 fsub %st,%st(3)
1025 @end smallexample
1026 @noindent
1027 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1028 than the expected @samp{%st(3) - %st}. This happens with all the
1029 non-commutative arithmetic floating point operations with two register
1030 operands where the source register is @samp{%st} and the destination
1031 register is @samp{%st(i)}.
1032
1033 @node i386-Arch
1034 @section Specifying CPU Architecture
1035
1036 @cindex arch directive, i386
1037 @cindex i386 arch directive
1038 @cindex arch directive, x86-64
1039 @cindex x86-64 arch directive
1040
1041 @code{@value{AS}} may be told to assemble for a particular CPU
1042 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1043 directive enables a warning when gas detects an instruction that is not
1044 supported on the CPU specified. The choices for @var{cpu_type} are:
1045
1046 @multitable @columnfractions .20 .20 .20 .20
1047 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1048 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1049 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1050 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1051 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1052 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1053 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1054 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1055 @item @samp{generic32} @tab @samp{generic64}
1056 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1057 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1058 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1059 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1060 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1061 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1062 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1063 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1064 @item @samp{.smap} @tab @samp{.mpx}
1065 @item @samp{.smap} @tab @samp{.sha}
1066 @item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
1067 @item @samp{.smap} @tab @samp{.prefetchwt1}
1068 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1069 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1070 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1071 @item @samp{.padlock}
1072 @item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1073 @item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1074 @item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1075 @item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1076 @item @samp{.cx16} @tab @samp{.padlock}
1077 @end multitable
1078
1079 Apart from the warning, there are only two other effects on
1080 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1081 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1082 will automatically use a two byte opcode sequence. The larger three
1083 byte opcode sequence is used on the 486 (and when no architecture is
1084 specified) because it executes faster on the 486. Note that you can
1085 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1086 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1087 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1088 conditional jumps will be promoted when necessary to a two instruction
1089 sequence consisting of a conditional jump of the opposite sense around
1090 an unconditional jump to the target.
1091
1092 Following the CPU architecture (but not a sub-architecture, which are those
1093 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1094 control automatic promotion of conditional jumps. @samp{jumps} is the
1095 default, and enables jump promotion; All external jumps will be of the long
1096 variety, and file-local jumps will be promoted as necessary.
1097 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1098 byte offset jumps, and warns about file-local conditional jumps that
1099 @code{@value{AS}} promotes.
1100 Unconditional jumps are treated as for @samp{jumps}.
1101
1102 For example
1103
1104 @smallexample
1105 .arch i8086,nojumps
1106 @end smallexample
1107
1108 @node i386-Notes
1109 @section Notes
1110
1111 @cindex i386 @code{mul}, @code{imul} instructions
1112 @cindex @code{mul} instruction, i386
1113 @cindex @code{imul} instruction, i386
1114 @cindex @code{mul} instruction, x86-64
1115 @cindex @code{imul} instruction, x86-64
1116 There is some trickery concerning the @samp{mul} and @samp{imul}
1117 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1118 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1119 for @samp{imul}) can be output only in the one operand form. Thus,
1120 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1121 the expanding multiply would clobber the @samp{%edx} register, and this
1122 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1123 64-bit product in @samp{%edx:%eax}.
1124
1125 We have added a two operand form of @samp{imul} when the first operand
1126 is an immediate mode expression and the second operand is a register.
1127 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1128 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1129 $69, %eax, %eax}.
1130
This page took 0.056061 seconds and 5 git commands to generate.