Update the address and phone number of the FSF
[deliverable/binutils-gdb.git] / gas / ehopt.c
1 /* ehopt.c--optimize gcc exception frame information.
2 Copyright 1998, 2000, 2001, 2003 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor <ian@cygnus.com>.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "as.h"
23 #include "subsegs.h"
24
25 /* We include this ELF file, even though we may not be assembling for
26 ELF, since the exception frame information is always in a format
27 derived from DWARF. */
28
29 #include "elf/dwarf2.h"
30
31 /* Try to optimize gcc 2.8 exception frame information.
32
33 Exception frame information is emitted for every function in the
34 .eh_frame or .debug_frame sections. Simple information for a function
35 with no exceptions looks like this:
36
37 __FRAME_BEGIN__:
38 .4byte .LLCIE1 / Length of Common Information Entry
39 .LSCIE1:
40 #if .eh_frame
41 .4byte 0x0 / CIE Identifier Tag
42 #elif .debug_frame
43 .4byte 0xffffffff / CIE Identifier Tag
44 #endif
45 .byte 0x1 / CIE Version
46 .byte 0x0 / CIE Augmentation (none)
47 .byte 0x1 / ULEB128 0x1 (CIE Code Alignment Factor)
48 .byte 0x7c / SLEB128 -4 (CIE Data Alignment Factor)
49 .byte 0x8 / CIE RA Column
50 .byte 0xc / DW_CFA_def_cfa
51 .byte 0x4 / ULEB128 0x4
52 .byte 0x4 / ULEB128 0x4
53 .byte 0x88 / DW_CFA_offset, column 0x8
54 .byte 0x1 / ULEB128 0x1
55 .align 4
56 .LECIE1:
57 .set .LLCIE1,.LECIE1-.LSCIE1 / CIE Length Symbol
58 .4byte .LLFDE1 / FDE Length
59 .LSFDE1:
60 .4byte .LSFDE1-__FRAME_BEGIN__ / FDE CIE offset
61 .4byte .LFB1 / FDE initial location
62 .4byte .LFE1-.LFB1 / FDE address range
63 .byte 0x4 / DW_CFA_advance_loc4
64 .4byte .LCFI0-.LFB1
65 .byte 0xe / DW_CFA_def_cfa_offset
66 .byte 0x8 / ULEB128 0x8
67 .byte 0x85 / DW_CFA_offset, column 0x5
68 .byte 0x2 / ULEB128 0x2
69 .byte 0x4 / DW_CFA_advance_loc4
70 .4byte .LCFI1-.LCFI0
71 .byte 0xd / DW_CFA_def_cfa_register
72 .byte 0x5 / ULEB128 0x5
73 .byte 0x4 / DW_CFA_advance_loc4
74 .4byte .LCFI2-.LCFI1
75 .byte 0x2e / DW_CFA_GNU_args_size
76 .byte 0x4 / ULEB128 0x4
77 .byte 0x4 / DW_CFA_advance_loc4
78 .4byte .LCFI3-.LCFI2
79 .byte 0x2e / DW_CFA_GNU_args_size
80 .byte 0x0 / ULEB128 0x0
81 .align 4
82 .LEFDE1:
83 .set .LLFDE1,.LEFDE1-.LSFDE1 / FDE Length Symbol
84
85 The immediate issue we can address in the assembler is the
86 DW_CFA_advance_loc4 followed by a four byte value. The value is
87 the difference of two addresses in the function. Since gcc does
88 not know this value, it always uses four bytes. We will know the
89 value at the end of assembly, so we can do better. */
90
91 struct cie_info
92 {
93 unsigned code_alignment;
94 int z_augmentation;
95 };
96
97 static int get_cie_info (struct cie_info *);
98
99 /* Extract information from the CIE. */
100
101 static int
102 get_cie_info (struct cie_info *info)
103 {
104 fragS *f;
105 fixS *fix;
106 int offset;
107 char CIE_id;
108 char augmentation[10];
109 int iaug;
110 int code_alignment = 0;
111
112 /* We should find the CIE at the start of the section. */
113
114 #if defined (BFD_ASSEMBLER) || defined (MANY_SEGMENTS)
115 f = seg_info (now_seg)->frchainP->frch_root;
116 #else
117 f = frchain_now->frch_root;
118 #endif
119 #ifdef BFD_ASSEMBLER
120 fix = seg_info (now_seg)->frchainP->fix_root;
121 #else
122 fix = *seg_fix_rootP;
123 #endif
124
125 /* Look through the frags of the section to find the code alignment. */
126
127 /* First make sure that the CIE Identifier Tag is 0/-1. */
128
129 if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
130 CIE_id = (char)0xff;
131 else
132 CIE_id = 0;
133
134 offset = 4;
135 while (f != NULL && offset >= f->fr_fix)
136 {
137 offset -= f->fr_fix;
138 f = f->fr_next;
139 }
140 if (f == NULL
141 || f->fr_fix - offset < 4
142 || f->fr_literal[offset] != CIE_id
143 || f->fr_literal[offset + 1] != CIE_id
144 || f->fr_literal[offset + 2] != CIE_id
145 || f->fr_literal[offset + 3] != CIE_id)
146 return 0;
147
148 /* Next make sure the CIE version number is 1. */
149
150 offset += 4;
151 while (f != NULL && offset >= f->fr_fix)
152 {
153 offset -= f->fr_fix;
154 f = f->fr_next;
155 }
156 if (f == NULL
157 || f->fr_fix - offset < 1
158 || f->fr_literal[offset] != 1)
159 return 0;
160
161 /* Skip the augmentation (a null terminated string). */
162
163 iaug = 0;
164 ++offset;
165 while (1)
166 {
167 while (f != NULL && offset >= f->fr_fix)
168 {
169 offset -= f->fr_fix;
170 f = f->fr_next;
171 }
172 if (f == NULL)
173 return 0;
174
175 while (offset < f->fr_fix && f->fr_literal[offset] != '\0')
176 {
177 if ((size_t) iaug < (sizeof augmentation) - 1)
178 {
179 augmentation[iaug] = f->fr_literal[offset];
180 ++iaug;
181 }
182 ++offset;
183 }
184 if (offset < f->fr_fix)
185 break;
186 }
187 ++offset;
188 while (f != NULL && offset >= f->fr_fix)
189 {
190 offset -= f->fr_fix;
191 f = f->fr_next;
192 }
193 if (f == NULL)
194 return 0;
195
196 augmentation[iaug] = '\0';
197 if (augmentation[0] == '\0')
198 {
199 /* No augmentation. */
200 }
201 else if (strcmp (augmentation, "eh") == 0)
202 {
203 /* We have to skip a pointer. Unfortunately, we don't know how
204 large it is. We find out by looking for a matching fixup. */
205 while (fix != NULL
206 && (fix->fx_frag != f || fix->fx_where != offset))
207 fix = fix->fx_next;
208 if (fix == NULL)
209 offset += 4;
210 else
211 offset += fix->fx_size;
212 while (f != NULL && offset >= f->fr_fix)
213 {
214 offset -= f->fr_fix;
215 f = f->fr_next;
216 }
217 if (f == NULL)
218 return 0;
219 }
220 else if (augmentation[0] != 'z')
221 return 0;
222
223 /* We're now at the code alignment factor, which is a ULEB128. If
224 it isn't a single byte, forget it. */
225
226 code_alignment = f->fr_literal[offset] & 0xff;
227 if ((code_alignment & 0x80) != 0)
228 code_alignment = 0;
229
230 info->code_alignment = code_alignment;
231 info->z_augmentation = (augmentation[0] == 'z');
232
233 return 1;
234 }
235
236 /* This function is called from emit_expr. It looks for cases which
237 we can optimize.
238
239 Rather than try to parse all this information as we read it, we
240 look for a single byte DW_CFA_advance_loc4 followed by a 4 byte
241 difference. We turn that into a rs_cfa_advance frag, and handle
242 those frags at the end of the assembly. If the gcc output changes
243 somewhat, this optimization may stop working.
244
245 This function returns non-zero if it handled the expression and
246 emit_expr should not do anything, or zero otherwise. It can also
247 change *EXP and *PNBYTES. */
248
249 int
250 check_eh_frame (expressionS *exp, unsigned int *pnbytes)
251 {
252 struct frame_data
253 {
254 enum frame_state
255 {
256 state_idle,
257 state_saw_size,
258 state_saw_cie_offset,
259 state_saw_pc_begin,
260 state_seeing_aug_size,
261 state_skipping_aug,
262 state_wait_loc4,
263 state_saw_loc4,
264 state_error,
265 } state;
266
267 int cie_info_ok;
268 struct cie_info cie_info;
269
270 symbolS *size_end_sym;
271 fragS *loc4_frag;
272 int loc4_fix;
273
274 int aug_size;
275 int aug_shift;
276 };
277
278 static struct frame_data eh_frame_data;
279 static struct frame_data debug_frame_data;
280 struct frame_data *d;
281
282 /* Don't optimize. */
283 if (flag_traditional_format)
284 return 0;
285
286 /* Select the proper section data. */
287 if (strcmp (segment_name (now_seg), ".eh_frame") == 0)
288 d = &eh_frame_data;
289 else if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
290 d = &debug_frame_data;
291 else
292 return 0;
293
294 if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym))
295 {
296 /* We have come to the end of the CIE or FDE. See below where
297 we set saw_size. We must check this first because we may now
298 be looking at the next size. */
299 d->state = state_idle;
300 }
301
302 switch (d->state)
303 {
304 case state_idle:
305 if (*pnbytes == 4)
306 {
307 /* This might be the size of the CIE or FDE. We want to know
308 the size so that we don't accidentally optimize across an FDE
309 boundary. We recognize the size in one of two forms: a
310 symbol which will later be defined as a difference, or a
311 subtraction of two symbols. Either way, we can tell when we
312 are at the end of the FDE because the symbol becomes defined
313 (in the case of a subtraction, the end symbol, from which the
314 start symbol is being subtracted). Other ways of describing
315 the size will not be optimized. */
316 if ((exp->X_op == O_symbol || exp->X_op == O_subtract)
317 && ! S_IS_DEFINED (exp->X_add_symbol))
318 {
319 d->state = state_saw_size;
320 d->size_end_sym = exp->X_add_symbol;
321 }
322 }
323 break;
324
325 case state_saw_size:
326 case state_saw_cie_offset:
327 /* Assume whatever form it appears in, it appears atomically. */
328 d->state += 1;
329 break;
330
331 case state_saw_pc_begin:
332 /* Decide whether we should see an augmentation. */
333 if (! d->cie_info_ok
334 && ! (d->cie_info_ok = get_cie_info (&d->cie_info)))
335 d->state = state_error;
336 else if (d->cie_info.z_augmentation)
337 {
338 d->state = state_seeing_aug_size;
339 d->aug_size = 0;
340 d->aug_shift = 0;
341 }
342 else
343 d->state = state_wait_loc4;
344 break;
345
346 case state_seeing_aug_size:
347 /* Bytes == -1 means this comes from an leb128 directive. */
348 if ((int)*pnbytes == -1 && exp->X_op == O_constant)
349 {
350 d->aug_size = exp->X_add_number;
351 d->state = state_skipping_aug;
352 }
353 else if (*pnbytes == 1 && exp->X_op == O_constant)
354 {
355 unsigned char byte = exp->X_add_number;
356 d->aug_size |= (byte & 0x7f) << d->aug_shift;
357 d->aug_shift += 7;
358 if ((byte & 0x80) == 0)
359 d->state = state_skipping_aug;
360 }
361 else
362 d->state = state_error;
363 if (d->state == state_skipping_aug && d->aug_size == 0)
364 d->state = state_wait_loc4;
365 break;
366
367 case state_skipping_aug:
368 if ((int)*pnbytes < 0)
369 d->state = state_error;
370 else
371 {
372 int left = (d->aug_size -= *pnbytes);
373 if (left == 0)
374 d->state = state_wait_loc4;
375 else if (left < 0)
376 d->state = state_error;
377 }
378 break;
379
380 case state_wait_loc4:
381 if (*pnbytes == 1
382 && exp->X_op == O_constant
383 && exp->X_add_number == DW_CFA_advance_loc4)
384 {
385 /* This might be a DW_CFA_advance_loc4. Record the frag and the
386 position within the frag, so that we can change it later. */
387 frag_grow (1);
388 d->state = state_saw_loc4;
389 d->loc4_frag = frag_now;
390 d->loc4_fix = frag_now_fix ();
391 }
392 break;
393
394 case state_saw_loc4:
395 d->state = state_wait_loc4;
396 if (*pnbytes != 4)
397 break;
398 if (exp->X_op == O_constant)
399 {
400 /* This is a case which we can optimize. The two symbols being
401 subtracted were in the same frag and the expression was
402 reduced to a constant. We can do the optimization entirely
403 in this function. */
404 if (d->cie_info.code_alignment > 0
405 && exp->X_add_number % d->cie_info.code_alignment == 0
406 && exp->X_add_number / d->cie_info.code_alignment < 0x40)
407 {
408 d->loc4_frag->fr_literal[d->loc4_fix]
409 = DW_CFA_advance_loc
410 | (exp->X_add_number / d->cie_info.code_alignment);
411 /* No more bytes needed. */
412 return 1;
413 }
414 else if (exp->X_add_number < 0x100)
415 {
416 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1;
417 *pnbytes = 1;
418 }
419 else if (exp->X_add_number < 0x10000)
420 {
421 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2;
422 *pnbytes = 2;
423 }
424 }
425 else if (exp->X_op == O_subtract)
426 {
427 /* This is a case we can optimize. The expression was not
428 reduced, so we can not finish the optimization until the end
429 of the assembly. We set up a variant frag which we handle
430 later. */
431 int fr_subtype;
432
433 if (d->cie_info.code_alignment > 0)
434 fr_subtype = d->cie_info.code_alignment << 3;
435 else
436 fr_subtype = 0;
437
438 frag_var (rs_cfa, 4, 0, fr_subtype, make_expr_symbol (exp),
439 d->loc4_fix, (char *) d->loc4_frag);
440 return 1;
441 }
442 break;
443
444 case state_error:
445 /* Just skipping everything. */
446 break;
447 }
448
449 return 0;
450 }
451
452 /* The function estimates the size of a rs_cfa variant frag based on
453 the current values of the symbols. It is called before the
454 relaxation loop. We set fr_subtype{0:2} to the expected length. */
455
456 int
457 eh_frame_estimate_size_before_relax (fragS *frag)
458 {
459 offsetT diff;
460 int ca = frag->fr_subtype >> 3;
461 int ret;
462
463 diff = resolve_symbol_value (frag->fr_symbol);
464
465 if (ca > 0 && diff % ca == 0 && diff / ca < 0x40)
466 ret = 0;
467 else if (diff < 0x100)
468 ret = 1;
469 else if (diff < 0x10000)
470 ret = 2;
471 else
472 ret = 4;
473
474 frag->fr_subtype = (frag->fr_subtype & ~7) | ret;
475
476 return ret;
477 }
478
479 /* This function relaxes a rs_cfa variant frag based on the current
480 values of the symbols. fr_subtype{0:2} is the current length of
481 the frag. This returns the change in frag length. */
482
483 int
484 eh_frame_relax_frag (fragS *frag)
485 {
486 int oldsize, newsize;
487
488 oldsize = frag->fr_subtype & 7;
489 newsize = eh_frame_estimate_size_before_relax (frag);
490 return newsize - oldsize;
491 }
492
493 /* This function converts a rs_cfa variant frag into a normal fill
494 frag. This is called after all relaxation has been done.
495 fr_subtype{0:2} will be the desired length of the frag. */
496
497 void
498 eh_frame_convert_frag (fragS *frag)
499 {
500 offsetT diff;
501 fragS *loc4_frag;
502 int loc4_fix;
503
504 loc4_frag = (fragS *) frag->fr_opcode;
505 loc4_fix = (int) frag->fr_offset;
506
507 diff = resolve_symbol_value (frag->fr_symbol);
508
509 switch (frag->fr_subtype & 7)
510 {
511 case 0:
512 {
513 int ca = frag->fr_subtype >> 3;
514 assert (ca > 0 && diff % ca == 0 && diff / ca < 0x40);
515 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | (diff / ca);
516 }
517 break;
518
519 case 1:
520 assert (diff < 0x100);
521 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1;
522 frag->fr_literal[frag->fr_fix] = diff;
523 break;
524
525 case 2:
526 assert (diff < 0x10000);
527 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2;
528 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2);
529 break;
530
531 default:
532 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4);
533 break;
534 }
535
536 frag->fr_fix += frag->fr_subtype & 7;
537 frag->fr_type = rs_fill;
538 frag->fr_subtype = 0;
539 frag->fr_offset = 0;
540 }
This page took 0.06515 seconds and 5 git commands to generate.