bfd
[deliverable/binutils-gdb.git] / gas / ehopt.c
1 /* ehopt.c--optimize gcc exception frame information.
2 Copyright 1998, 2000, 2001, 2003, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4 Written by Ian Lance Taylor <ian@cygnus.com>.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "as.h"
24 #include "subsegs.h"
25 #include "struc-symbol.h"
26
27 /* We include this ELF file, even though we may not be assembling for
28 ELF, since the exception frame information is always in a format
29 derived from DWARF. */
30
31 #include "dwarf2.h"
32
33 /* Try to optimize gcc 2.8 exception frame information.
34
35 Exception frame information is emitted for every function in the
36 .eh_frame or .debug_frame sections. Simple information for a function
37 with no exceptions looks like this:
38
39 __FRAME_BEGIN__:
40 .4byte .LLCIE1 / Length of Common Information Entry
41 .LSCIE1:
42 #if .eh_frame
43 .4byte 0x0 / CIE Identifier Tag
44 #elif .debug_frame
45 .4byte 0xffffffff / CIE Identifier Tag
46 #endif
47 .byte 0x1 / CIE Version
48 .byte 0x0 / CIE Augmentation (none)
49 .byte 0x1 / ULEB128 0x1 (CIE Code Alignment Factor)
50 .byte 0x7c / SLEB128 -4 (CIE Data Alignment Factor)
51 .byte 0x8 / CIE RA Column
52 .byte 0xc / DW_CFA_def_cfa
53 .byte 0x4 / ULEB128 0x4
54 .byte 0x4 / ULEB128 0x4
55 .byte 0x88 / DW_CFA_offset, column 0x8
56 .byte 0x1 / ULEB128 0x1
57 .align 4
58 .LECIE1:
59 .set .LLCIE1,.LECIE1-.LSCIE1 / CIE Length Symbol
60 .4byte .LLFDE1 / FDE Length
61 .LSFDE1:
62 .4byte .LSFDE1-__FRAME_BEGIN__ / FDE CIE offset
63 .4byte .LFB1 / FDE initial location
64 .4byte .LFE1-.LFB1 / FDE address range
65 .byte 0x4 / DW_CFA_advance_loc4
66 .4byte .LCFI0-.LFB1
67 .byte 0xe / DW_CFA_def_cfa_offset
68 .byte 0x8 / ULEB128 0x8
69 .byte 0x85 / DW_CFA_offset, column 0x5
70 .byte 0x2 / ULEB128 0x2
71 .byte 0x4 / DW_CFA_advance_loc4
72 .4byte .LCFI1-.LCFI0
73 .byte 0xd / DW_CFA_def_cfa_register
74 .byte 0x5 / ULEB128 0x5
75 .byte 0x4 / DW_CFA_advance_loc4
76 .4byte .LCFI2-.LCFI1
77 .byte 0x2e / DW_CFA_GNU_args_size
78 .byte 0x4 / ULEB128 0x4
79 .byte 0x4 / DW_CFA_advance_loc4
80 .4byte .LCFI3-.LCFI2
81 .byte 0x2e / DW_CFA_GNU_args_size
82 .byte 0x0 / ULEB128 0x0
83 .align 4
84 .LEFDE1:
85 .set .LLFDE1,.LEFDE1-.LSFDE1 / FDE Length Symbol
86
87 The immediate issue we can address in the assembler is the
88 DW_CFA_advance_loc4 followed by a four byte value. The value is
89 the difference of two addresses in the function. Since gcc does
90 not know this value, it always uses four bytes. We will know the
91 value at the end of assembly, so we can do better. */
92
93 struct cie_info
94 {
95 unsigned code_alignment;
96 int z_augmentation;
97 };
98
99 static int get_cie_info (struct cie_info *);
100
101 /* Extract information from the CIE. */
102
103 static int
104 get_cie_info (struct cie_info *info)
105 {
106 fragS *f;
107 fixS *fix;
108 int offset;
109 char CIE_id;
110 char augmentation[10];
111 int iaug;
112 int code_alignment = 0;
113
114 /* We should find the CIE at the start of the section. */
115
116 f = seg_info (now_seg)->frchainP->frch_root;
117 fix = seg_info (now_seg)->frchainP->fix_root;
118
119 /* Look through the frags of the section to find the code alignment. */
120
121 /* First make sure that the CIE Identifier Tag is 0/-1. */
122
123 if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
124 CIE_id = (char)0xff;
125 else
126 CIE_id = 0;
127
128 offset = 4;
129 while (f != NULL && offset >= f->fr_fix)
130 {
131 offset -= f->fr_fix;
132 f = f->fr_next;
133 }
134 if (f == NULL
135 || f->fr_fix - offset < 4
136 || f->fr_literal[offset] != CIE_id
137 || f->fr_literal[offset + 1] != CIE_id
138 || f->fr_literal[offset + 2] != CIE_id
139 || f->fr_literal[offset + 3] != CIE_id)
140 return 0;
141
142 /* Next make sure the CIE version number is 1. */
143
144 offset += 4;
145 while (f != NULL && offset >= f->fr_fix)
146 {
147 offset -= f->fr_fix;
148 f = f->fr_next;
149 }
150 if (f == NULL
151 || f->fr_fix - offset < 1
152 || f->fr_literal[offset] != 1)
153 return 0;
154
155 /* Skip the augmentation (a null terminated string). */
156
157 iaug = 0;
158 ++offset;
159 while (1)
160 {
161 while (f != NULL && offset >= f->fr_fix)
162 {
163 offset -= f->fr_fix;
164 f = f->fr_next;
165 }
166 if (f == NULL)
167 return 0;
168
169 while (offset < f->fr_fix && f->fr_literal[offset] != '\0')
170 {
171 if ((size_t) iaug < (sizeof augmentation) - 1)
172 {
173 augmentation[iaug] = f->fr_literal[offset];
174 ++iaug;
175 }
176 ++offset;
177 }
178 if (offset < f->fr_fix)
179 break;
180 }
181 ++offset;
182 while (f != NULL && offset >= f->fr_fix)
183 {
184 offset -= f->fr_fix;
185 f = f->fr_next;
186 }
187 if (f == NULL)
188 return 0;
189
190 augmentation[iaug] = '\0';
191 if (augmentation[0] == '\0')
192 {
193 /* No augmentation. */
194 }
195 else if (strcmp (augmentation, "eh") == 0)
196 {
197 /* We have to skip a pointer. Unfortunately, we don't know how
198 large it is. We find out by looking for a matching fixup. */
199 while (fix != NULL
200 && (fix->fx_frag != f || fix->fx_where != offset))
201 fix = fix->fx_next;
202 if (fix == NULL)
203 offset += 4;
204 else
205 offset += fix->fx_size;
206 while (f != NULL && offset >= f->fr_fix)
207 {
208 offset -= f->fr_fix;
209 f = f->fr_next;
210 }
211 if (f == NULL)
212 return 0;
213 }
214 else if (augmentation[0] != 'z')
215 return 0;
216
217 /* We're now at the code alignment factor, which is a ULEB128. If
218 it isn't a single byte, forget it. */
219
220 code_alignment = f->fr_literal[offset] & 0xff;
221 if ((code_alignment & 0x80) != 0)
222 code_alignment = 0;
223
224 info->code_alignment = code_alignment;
225 info->z_augmentation = (augmentation[0] == 'z');
226
227 return 1;
228 }
229
230 /* This function is called from emit_expr. It looks for cases which
231 we can optimize.
232
233 Rather than try to parse all this information as we read it, we
234 look for a single byte DW_CFA_advance_loc4 followed by a 4 byte
235 difference. We turn that into a rs_cfa_advance frag, and handle
236 those frags at the end of the assembly. If the gcc output changes
237 somewhat, this optimization may stop working.
238
239 This function returns non-zero if it handled the expression and
240 emit_expr should not do anything, or zero otherwise. It can also
241 change *EXP and *PNBYTES. */
242
243 int
244 check_eh_frame (expressionS *exp, unsigned int *pnbytes)
245 {
246 struct frame_data
247 {
248 enum frame_state
249 {
250 state_idle,
251 state_saw_size,
252 state_saw_cie_offset,
253 state_saw_pc_begin,
254 state_seeing_aug_size,
255 state_skipping_aug,
256 state_wait_loc4,
257 state_saw_loc4,
258 state_error,
259 } state;
260
261 int cie_info_ok;
262 struct cie_info cie_info;
263
264 symbolS *size_end_sym;
265 fragS *loc4_frag;
266 int loc4_fix;
267
268 int aug_size;
269 int aug_shift;
270 };
271
272 static struct frame_data eh_frame_data;
273 static struct frame_data debug_frame_data;
274 struct frame_data *d;
275
276 /* Don't optimize. */
277 if (flag_traditional_format)
278 return 0;
279
280 #ifdef md_allow_eh_opt
281 if (! md_allow_eh_opt)
282 return 0;
283 #endif
284
285 /* Select the proper section data. */
286 if (strcmp (segment_name (now_seg), ".eh_frame") == 0)
287 d = &eh_frame_data;
288 else if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
289 d = &debug_frame_data;
290 else
291 return 0;
292
293 if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym))
294 {
295 /* We have come to the end of the CIE or FDE. See below where
296 we set saw_size. We must check this first because we may now
297 be looking at the next size. */
298 d->state = state_idle;
299 }
300
301 switch (d->state)
302 {
303 case state_idle:
304 if (*pnbytes == 4)
305 {
306 /* This might be the size of the CIE or FDE. We want to know
307 the size so that we don't accidentally optimize across an FDE
308 boundary. We recognize the size in one of two forms: a
309 symbol which will later be defined as a difference, or a
310 subtraction of two symbols. Either way, we can tell when we
311 are at the end of the FDE because the symbol becomes defined
312 (in the case of a subtraction, the end symbol, from which the
313 start symbol is being subtracted). Other ways of describing
314 the size will not be optimized. */
315 if ((exp->X_op == O_symbol || exp->X_op == O_subtract)
316 && ! S_IS_DEFINED (exp->X_add_symbol))
317 {
318 d->state = state_saw_size;
319 d->size_end_sym = exp->X_add_symbol;
320 }
321 }
322 break;
323
324 case state_saw_size:
325 case state_saw_cie_offset:
326 /* Assume whatever form it appears in, it appears atomically. */
327 d->state += 1;
328 break;
329
330 case state_saw_pc_begin:
331 /* Decide whether we should see an augmentation. */
332 if (! d->cie_info_ok
333 && ! (d->cie_info_ok = get_cie_info (&d->cie_info)))
334 d->state = state_error;
335 else if (d->cie_info.z_augmentation)
336 {
337 d->state = state_seeing_aug_size;
338 d->aug_size = 0;
339 d->aug_shift = 0;
340 }
341 else
342 d->state = state_wait_loc4;
343 break;
344
345 case state_seeing_aug_size:
346 /* Bytes == -1 means this comes from an leb128 directive. */
347 if ((int)*pnbytes == -1 && exp->X_op == O_constant)
348 {
349 d->aug_size = exp->X_add_number;
350 d->state = state_skipping_aug;
351 }
352 else if (*pnbytes == 1 && exp->X_op == O_constant)
353 {
354 unsigned char byte = exp->X_add_number;
355 d->aug_size |= (byte & 0x7f) << d->aug_shift;
356 d->aug_shift += 7;
357 if ((byte & 0x80) == 0)
358 d->state = state_skipping_aug;
359 }
360 else
361 d->state = state_error;
362 if (d->state == state_skipping_aug && d->aug_size == 0)
363 d->state = state_wait_loc4;
364 break;
365
366 case state_skipping_aug:
367 if ((int)*pnbytes < 0)
368 d->state = state_error;
369 else
370 {
371 int left = (d->aug_size -= *pnbytes);
372 if (left == 0)
373 d->state = state_wait_loc4;
374 else if (left < 0)
375 d->state = state_error;
376 }
377 break;
378
379 case state_wait_loc4:
380 if (*pnbytes == 1
381 && exp->X_op == O_constant
382 && exp->X_add_number == DW_CFA_advance_loc4)
383 {
384 /* This might be a DW_CFA_advance_loc4. Record the frag and the
385 position within the frag, so that we can change it later. */
386 frag_grow (1);
387 d->state = state_saw_loc4;
388 d->loc4_frag = frag_now;
389 d->loc4_fix = frag_now_fix ();
390 }
391 break;
392
393 case state_saw_loc4:
394 d->state = state_wait_loc4;
395 if (*pnbytes != 4)
396 break;
397 if (exp->X_op == O_constant)
398 {
399 /* This is a case which we can optimize. The two symbols being
400 subtracted were in the same frag and the expression was
401 reduced to a constant. We can do the optimization entirely
402 in this function. */
403 if (exp->X_add_number < 0x40)
404 {
405 d->loc4_frag->fr_literal[d->loc4_fix]
406 = DW_CFA_advance_loc | exp->X_add_number;
407 /* No more bytes needed. */
408 return 1;
409 }
410 else if (exp->X_add_number < 0x100)
411 {
412 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1;
413 *pnbytes = 1;
414 }
415 else if (exp->X_add_number < 0x10000)
416 {
417 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2;
418 *pnbytes = 2;
419 }
420 }
421 else if (exp->X_op == O_subtract && d->cie_info.code_alignment == 1)
422 {
423 /* This is a case we can optimize. The expression was not
424 reduced, so we can not finish the optimization until the end
425 of the assembly. We set up a variant frag which we handle
426 later. */
427 frag_var (rs_cfa, 4, 0, 1 << 3, make_expr_symbol (exp),
428 d->loc4_fix, (char *) d->loc4_frag);
429 return 1;
430 }
431 else if ((exp->X_op == O_divide
432 || exp->X_op == O_right_shift)
433 && d->cie_info.code_alignment > 1)
434 {
435 if (exp->X_add_symbol->bsym
436 && exp->X_op_symbol->bsym
437 && exp->X_add_symbol->sy_value.X_op == O_subtract
438 && exp->X_op_symbol->sy_value.X_op == O_constant
439 && ((exp->X_op == O_divide
440 ? exp->X_op_symbol->sy_value.X_add_number
441 : (offsetT) 1 << exp->X_op_symbol->sy_value.X_add_number)
442 == (offsetT) d->cie_info.code_alignment))
443 {
444 /* This is a case we can optimize as well. The expression was
445 not reduced, so we can not finish the optimization until the
446 end of the assembly. We set up a variant frag which we
447 handle later. */
448 frag_var (rs_cfa, 4, 0, d->cie_info.code_alignment << 3,
449 make_expr_symbol (&exp->X_add_symbol->sy_value),
450 d->loc4_fix, (char *) d->loc4_frag);
451 return 1;
452 }
453 }
454 break;
455
456 case state_error:
457 /* Just skipping everything. */
458 break;
459 }
460
461 return 0;
462 }
463
464 /* The function estimates the size of a rs_cfa variant frag based on
465 the current values of the symbols. It is called before the
466 relaxation loop. We set fr_subtype{0:2} to the expected length. */
467
468 int
469 eh_frame_estimate_size_before_relax (fragS *frag)
470 {
471 offsetT diff;
472 int ca = frag->fr_subtype >> 3;
473 int ret;
474
475 diff = resolve_symbol_value (frag->fr_symbol);
476
477 gas_assert (ca > 0);
478 diff /= ca;
479 if (diff < 0x40)
480 ret = 0;
481 else if (diff < 0x100)
482 ret = 1;
483 else if (diff < 0x10000)
484 ret = 2;
485 else
486 ret = 4;
487
488 frag->fr_subtype = (frag->fr_subtype & ~7) | ret;
489
490 return ret;
491 }
492
493 /* This function relaxes a rs_cfa variant frag based on the current
494 values of the symbols. fr_subtype{0:2} is the current length of
495 the frag. This returns the change in frag length. */
496
497 int
498 eh_frame_relax_frag (fragS *frag)
499 {
500 int oldsize, newsize;
501
502 oldsize = frag->fr_subtype & 7;
503 newsize = eh_frame_estimate_size_before_relax (frag);
504 return newsize - oldsize;
505 }
506
507 /* This function converts a rs_cfa variant frag into a normal fill
508 frag. This is called after all relaxation has been done.
509 fr_subtype{0:2} will be the desired length of the frag. */
510
511 void
512 eh_frame_convert_frag (fragS *frag)
513 {
514 offsetT diff;
515 fragS *loc4_frag;
516 int loc4_fix, ca;
517
518 loc4_frag = (fragS *) frag->fr_opcode;
519 loc4_fix = (int) frag->fr_offset;
520
521 diff = resolve_symbol_value (frag->fr_symbol);
522
523 ca = frag->fr_subtype >> 3;
524 gas_assert (ca > 0);
525 diff /= ca;
526 switch (frag->fr_subtype & 7)
527 {
528 case 0:
529 gas_assert (diff < 0x40);
530 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | diff;
531 break;
532
533 case 1:
534 gas_assert (diff < 0x100);
535 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1;
536 frag->fr_literal[frag->fr_fix] = diff;
537 break;
538
539 case 2:
540 gas_assert (diff < 0x10000);
541 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2;
542 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2);
543 break;
544
545 default:
546 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4);
547 break;
548 }
549
550 frag->fr_fix += frag->fr_subtype & 7;
551 frag->fr_type = rs_fill;
552 frag->fr_subtype = 0;
553 frag->fr_offset = 0;
554 }
This page took 0.039843 seconds and 5 git commands to generate.