Update year range in copyright notice of all files.
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 static void floating_constant (expressionS * expressionP);
39 static valueT generic_bignum_to_int32 (void);
40 #ifdef BFD64
41 static valueT generic_bignum_to_int64 (void);
42 #endif
43 static void integer_constant (int radix, expressionS * expressionP);
44 static void mri_char_constant (expressionS *);
45 static void clean_up_expression (expressionS * expressionP);
46 static segT operand (expressionS *, enum expr_mode);
47 static operatorT operatorf (int *);
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 const char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 zero.X_extrabit = 0;
89 clean_up_expression (&zero);
90 expressionP = &zero;
91 }
92
93 /* Putting constant symbols in absolute_section rather than
94 expr_section is convenient for the old a.out code, for which
95 S_GET_SEGMENT does not always retrieve the value put in by
96 S_SET_SEGMENT. */
97 symbolP = symbol_create (FAKE_LABEL_NAME,
98 (expressionP->X_op == O_constant
99 ? absolute_section
100 : expressionP->X_op == O_register
101 ? reg_section
102 : expr_section),
103 0, &zero_address_frag);
104 symbol_set_value_expression (symbolP, expressionP);
105
106 if (expressionP->X_op == O_constant)
107 resolve_symbol_value (symbolP);
108
109 n = XNEW (struct expr_symbol_line);
110 n->sym = symbolP;
111 n->file = as_where (&n->line);
112 n->next = expr_symbol_lines;
113 expr_symbol_lines = n;
114
115 return symbolP;
116 }
117
118 /* Return the file and line number for an expr symbol. Return
119 non-zero if something was found, 0 if no information is known for
120 the symbol. */
121
122 int
123 expr_symbol_where (symbolS *sym, const char **pfile, unsigned int *pline)
124 {
125 struct expr_symbol_line *l;
126
127 for (l = expr_symbol_lines; l != NULL; l = l->next)
128 {
129 if (l->sym == sym)
130 {
131 *pfile = l->file;
132 *pline = l->line;
133 return 1;
134 }
135 }
136
137 return 0;
138 }
139 \f
140 /* Utilities for building expressions.
141 Since complex expressions are recorded as symbols for use in other
142 expressions these return a symbolS * and not an expressionS *.
143 These explicitly do not take an "add_number" argument. */
144 /* ??? For completeness' sake one might want expr_build_symbol.
145 It would just return its argument. */
146
147 /* Build an expression for an unsigned constant.
148 The corresponding one for signed constants is missing because
149 there's currently no need for it. One could add an unsigned_p flag
150 but that seems more clumsy. */
151
152 symbolS *
153 expr_build_uconstant (offsetT value)
154 {
155 expressionS e;
156
157 e.X_op = O_constant;
158 e.X_add_number = value;
159 e.X_unsigned = 1;
160 e.X_extrabit = 0;
161 return make_expr_symbol (&e);
162 }
163
164 /* Build an expression for the current location ('.'). */
165
166 symbolS *
167 expr_build_dot (void)
168 {
169 expressionS e;
170
171 current_location (&e);
172 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
173 }
174 \f
175 /* Build any floating-point literal here.
176 Also build any bignum literal here. */
177
178 /* Seems atof_machine can backscan through generic_bignum and hit whatever
179 happens to be loaded before it in memory. And its way too complicated
180 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
181 and never write into the early words, thus they'll always be zero.
182 I hate Dean's floating-point code. Bleh. */
183 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
184
185 FLONUM_TYPE generic_floating_point_number = {
186 &generic_bignum[6], /* low. (JF: Was 0) */
187 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
188 0, /* leader. */
189 0, /* exponent. */
190 0 /* sign. */
191 };
192
193 \f
194 static void
195 floating_constant (expressionS *expressionP)
196 {
197 /* input_line_pointer -> floating-point constant. */
198 int error_code;
199
200 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
201 &generic_floating_point_number);
202
203 if (error_code)
204 {
205 if (error_code == ERROR_EXPONENT_OVERFLOW)
206 {
207 as_bad (_("bad floating-point constant: exponent overflow"));
208 }
209 else
210 {
211 as_bad (_("bad floating-point constant: unknown error code=%d"),
212 error_code);
213 }
214 }
215 expressionP->X_op = O_big;
216 /* input_line_pointer -> just after constant, which may point to
217 whitespace. */
218 expressionP->X_add_number = -1;
219 }
220
221 static valueT
222 generic_bignum_to_int32 (void)
223 {
224 valueT number =
225 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
226 | (generic_bignum[0] & LITTLENUM_MASK);
227 number &= 0xffffffff;
228 return number;
229 }
230
231 #ifdef BFD64
232 static valueT
233 generic_bignum_to_int64 (void)
234 {
235 valueT number =
236 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
237 << LITTLENUM_NUMBER_OF_BITS)
238 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
243 return number;
244 }
245 #endif
246
247 static void
248 integer_constant (int radix, expressionS *expressionP)
249 {
250 char *start; /* Start of number. */
251 char *suffix = NULL;
252 char c;
253 valueT number; /* Offset or (absolute) value. */
254 short int digit; /* Value of next digit in current radix. */
255 short int maxdig = 0; /* Highest permitted digit value. */
256 int too_many_digits = 0; /* If we see >= this number of. */
257 char *name; /* Points to name of symbol. */
258 symbolS *symbolP; /* Points to symbol. */
259
260 int small; /* True if fits in 32 bits. */
261
262 /* May be bignum, or may fit in 32 bits. */
263 /* Most numbers fit into 32 bits, and we want this case to be fast.
264 so we pretend it will fit into 32 bits. If, after making up a 32
265 bit number, we realise that we have scanned more digits than
266 comfortably fit into 32 bits, we re-scan the digits coding them
267 into a bignum. For decimal and octal numbers we are
268 conservative: Some numbers may be assumed bignums when in fact
269 they do fit into 32 bits. Numbers of any radix can have excess
270 leading zeros: We strive to recognise this and cast them back
271 into 32 bits. We must check that the bignum really is more than
272 32 bits, and change it back to a 32-bit number if it fits. The
273 number we are looking for is expected to be positive, but if it
274 fits into 32 bits as an unsigned number, we let it be a 32-bit
275 number. The cavalier approach is for speed in ordinary cases. */
276 /* This has been extended for 64 bits. We blindly assume that if
277 you're compiling in 64-bit mode, the target is a 64-bit machine.
278 This should be cleaned up. */
279
280 #ifdef BFD64
281 #define valuesize 64
282 #else /* includes non-bfd case, mostly */
283 #define valuesize 32
284 #endif
285
286 if (is_end_of_line[(unsigned char) *input_line_pointer])
287 {
288 expressionP->X_op = O_absent;
289 return;
290 }
291
292 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
293 {
294 int flt = 0;
295
296 /* In MRI mode, the number may have a suffix indicating the
297 radix. For that matter, it might actually be a floating
298 point constant. */
299 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
300 {
301 if (*suffix == 'e' || *suffix == 'E')
302 flt = 1;
303 }
304
305 if (suffix == input_line_pointer)
306 {
307 radix = 10;
308 suffix = NULL;
309 }
310 else
311 {
312 c = *--suffix;
313 c = TOUPPER (c);
314 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
315 we distinguish between 'B' and 'b'. This is the case for
316 Z80. */
317 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
318 radix = 2;
319 else if (c == 'D')
320 radix = 10;
321 else if (c == 'O' || c == 'Q')
322 radix = 8;
323 else if (c == 'H')
324 radix = 16;
325 else if (suffix[1] == '.' || c == 'E' || flt)
326 {
327 floating_constant (expressionP);
328 return;
329 }
330 else
331 {
332 radix = 10;
333 suffix = NULL;
334 }
335 }
336 }
337
338 switch (radix)
339 {
340 case 2:
341 maxdig = 2;
342 too_many_digits = valuesize + 1;
343 break;
344 case 8:
345 maxdig = radix = 8;
346 too_many_digits = (valuesize + 2) / 3 + 1;
347 break;
348 case 16:
349 maxdig = radix = 16;
350 too_many_digits = (valuesize + 3) / 4 + 1;
351 break;
352 case 10:
353 maxdig = radix = 10;
354 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
355 }
356 #undef valuesize
357 start = input_line_pointer;
358 c = *input_line_pointer++;
359 for (number = 0;
360 (digit = hex_value (c)) < maxdig;
361 c = *input_line_pointer++)
362 {
363 number = number * radix + digit;
364 }
365 /* c contains character after number. */
366 /* input_line_pointer->char after c. */
367 small = (input_line_pointer - start - 1) < too_many_digits;
368
369 if (radix == 16 && c == '_')
370 {
371 /* This is literal of the form 0x333_0_12345678_1.
372 This example is equivalent to 0x00000333000000001234567800000001. */
373
374 int num_little_digits = 0;
375 int i;
376 input_line_pointer = start; /* -> 1st digit. */
377
378 know (LITTLENUM_NUMBER_OF_BITS == 16);
379
380 for (c = '_'; c == '_'; num_little_digits += 2)
381 {
382
383 /* Convert one 64-bit word. */
384 int ndigit = 0;
385 number = 0;
386 for (c = *input_line_pointer++;
387 (digit = hex_value (c)) < maxdig;
388 c = *(input_line_pointer++))
389 {
390 number = number * radix + digit;
391 ndigit++;
392 }
393
394 /* Check for 8 digit per word max. */
395 if (ndigit > 8)
396 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
397
398 /* Add this chunk to the bignum.
399 Shift things down 2 little digits. */
400 know (LITTLENUM_NUMBER_OF_BITS == 16);
401 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
402 i >= 2;
403 i--)
404 generic_bignum[i] = generic_bignum[i - 2];
405
406 /* Add the new digits as the least significant new ones. */
407 generic_bignum[0] = number & 0xffffffff;
408 generic_bignum[1] = number >> 16;
409 }
410
411 /* Again, c is char after number, input_line_pointer->after c. */
412
413 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
414 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
415
416 gas_assert (num_little_digits >= 4);
417
418 if (num_little_digits != 8)
419 as_bad (_("a bignum with underscores must have exactly 4 words"));
420
421 /* We might have some leading zeros. These can be trimmed to give
422 us a change to fit this constant into a small number. */
423 while (generic_bignum[num_little_digits - 1] == 0
424 && num_little_digits > 1)
425 num_little_digits--;
426
427 if (num_little_digits <= 2)
428 {
429 /* will fit into 32 bits. */
430 number = generic_bignum_to_int32 ();
431 small = 1;
432 }
433 #ifdef BFD64
434 else if (num_little_digits <= 4)
435 {
436 /* Will fit into 64 bits. */
437 number = generic_bignum_to_int64 ();
438 small = 1;
439 }
440 #endif
441 else
442 {
443 small = 0;
444
445 /* Number of littlenums in the bignum. */
446 number = num_little_digits;
447 }
448 }
449 else if (!small)
450 {
451 /* We saw a lot of digits. manufacture a bignum the hard way. */
452 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
453 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
454 long carry;
455
456 leader = generic_bignum;
457 generic_bignum[0] = 0;
458 generic_bignum[1] = 0;
459 generic_bignum[2] = 0;
460 generic_bignum[3] = 0;
461 input_line_pointer = start; /* -> 1st digit. */
462 c = *input_line_pointer++;
463 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
464 {
465 for (pointer = generic_bignum; pointer <= leader; pointer++)
466 {
467 long work;
468
469 work = carry + radix * *pointer;
470 *pointer = work & LITTLENUM_MASK;
471 carry = work >> LITTLENUM_NUMBER_OF_BITS;
472 }
473 if (carry)
474 {
475 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
476 {
477 /* Room to grow a longer bignum. */
478 *++leader = carry;
479 }
480 }
481 }
482 /* Again, c is char after number. */
483 /* input_line_pointer -> after c. */
484 know (LITTLENUM_NUMBER_OF_BITS == 16);
485 if (leader < generic_bignum + 2)
486 {
487 /* Will fit into 32 bits. */
488 number = generic_bignum_to_int32 ();
489 small = 1;
490 }
491 #ifdef BFD64
492 else if (leader < generic_bignum + 4)
493 {
494 /* Will fit into 64 bits. */
495 number = generic_bignum_to_int64 ();
496 small = 1;
497 }
498 #endif
499 else
500 {
501 /* Number of littlenums in the bignum. */
502 number = leader - generic_bignum + 1;
503 }
504 }
505
506 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
507 && suffix != NULL
508 && input_line_pointer - 1 == suffix)
509 c = *input_line_pointer++;
510
511 #ifndef tc_allow_U_suffix
512 #define tc_allow_U_suffix 1
513 #endif
514 /* PR 19910: Look for, and ignore, a U suffix to the number. */
515 if (tc_allow_U_suffix && (c == 'U' || c == 'u'))
516 c = * input_line_pointer++;
517
518 #ifndef tc_allow_L_suffix
519 #define tc_allow_L_suffix 1
520 #endif
521 /* PR 20732: Look for, and ignore, a L or LL suffix to the number. */
522 if (tc_allow_L_suffix)
523 while (c == 'L' || c == 'l')
524 c = * input_line_pointer++;
525
526 if (small)
527 {
528 /* Here with number, in correct radix. c is the next char.
529 Note that unlike un*x, we allow "011f" "0x9f" to both mean
530 the same as the (conventional) "9f".
531 This is simply easier than checking for strict canonical
532 form. Syntax sux! */
533
534 if (LOCAL_LABELS_FB && c == 'b')
535 {
536 /* Backward ref to local label.
537 Because it is backward, expect it to be defined. */
538 /* Construct a local label. */
539 name = fb_label_name ((int) number, 0);
540
541 /* Seen before, or symbol is defined: OK. */
542 symbolP = symbol_find (name);
543 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
544 {
545 /* Local labels are never absolute. Don't waste time
546 checking absoluteness. */
547 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
548
549 expressionP->X_op = O_symbol;
550 expressionP->X_add_symbol = symbolP;
551 }
552 else
553 {
554 /* Either not seen or not defined. */
555 /* @@ Should print out the original string instead of
556 the parsed number. */
557 as_bad (_("backward ref to unknown label \"%d:\""),
558 (int) number);
559 expressionP->X_op = O_constant;
560 }
561
562 expressionP->X_add_number = 0;
563 } /* case 'b' */
564 else if (LOCAL_LABELS_FB && c == 'f')
565 {
566 /* Forward reference. Expect symbol to be undefined or
567 unknown. undefined: seen it before. unknown: never seen
568 it before.
569
570 Construct a local label name, then an undefined symbol.
571 Don't create a xseg frag for it: caller may do that.
572 Just return it as never seen before. */
573 name = fb_label_name ((int) number, 1);
574 symbolP = symbol_find_or_make (name);
575 /* We have no need to check symbol properties. */
576 #ifndef many_segments
577 /* Since "know" puts its arg into a "string", we
578 can't have newlines in the argument. */
579 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
580 #endif
581 expressionP->X_op = O_symbol;
582 expressionP->X_add_symbol = symbolP;
583 expressionP->X_add_number = 0;
584 } /* case 'f' */
585 else if (LOCAL_LABELS_DOLLAR && c == '$')
586 {
587 /* If the dollar label is *currently* defined, then this is just
588 another reference to it. If it is not *currently* defined,
589 then this is a fresh instantiation of that number, so create
590 it. */
591
592 if (dollar_label_defined ((long) number))
593 {
594 name = dollar_label_name ((long) number, 0);
595 symbolP = symbol_find (name);
596 know (symbolP != NULL);
597 }
598 else
599 {
600 name = dollar_label_name ((long) number, 1);
601 symbolP = symbol_find_or_make (name);
602 }
603
604 expressionP->X_op = O_symbol;
605 expressionP->X_add_symbol = symbolP;
606 expressionP->X_add_number = 0;
607 } /* case '$' */
608 else
609 {
610 expressionP->X_op = O_constant;
611 expressionP->X_add_number = number;
612 input_line_pointer--; /* Restore following character. */
613 } /* Really just a number. */
614 }
615 else
616 {
617 /* Not a small number. */
618 expressionP->X_op = O_big;
619 expressionP->X_add_number = number; /* Number of littlenums. */
620 input_line_pointer--; /* -> char following number. */
621 }
622 }
623
624 /* Parse an MRI multi character constant. */
625
626 static void
627 mri_char_constant (expressionS *expressionP)
628 {
629 int i;
630
631 if (*input_line_pointer == '\''
632 && input_line_pointer[1] != '\'')
633 {
634 expressionP->X_op = O_constant;
635 expressionP->X_add_number = 0;
636 return;
637 }
638
639 /* In order to get the correct byte ordering, we must build the
640 number in reverse. */
641 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
642 {
643 int j;
644
645 generic_bignum[i] = 0;
646 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
647 {
648 if (*input_line_pointer == '\'')
649 {
650 if (input_line_pointer[1] != '\'')
651 break;
652 ++input_line_pointer;
653 }
654 generic_bignum[i] <<= 8;
655 generic_bignum[i] += *input_line_pointer;
656 ++input_line_pointer;
657 }
658
659 if (i < SIZE_OF_LARGE_NUMBER - 1)
660 {
661 /* If there is more than one littlenum, left justify the
662 last one to make it match the earlier ones. If there is
663 only one, we can just use the value directly. */
664 for (; j < CHARS_PER_LITTLENUM; j++)
665 generic_bignum[i] <<= 8;
666 }
667
668 if (*input_line_pointer == '\''
669 && input_line_pointer[1] != '\'')
670 break;
671 }
672
673 if (i < 0)
674 {
675 as_bad (_("character constant too large"));
676 i = 0;
677 }
678
679 if (i > 0)
680 {
681 int c;
682 int j;
683
684 c = SIZE_OF_LARGE_NUMBER - i;
685 for (j = 0; j < c; j++)
686 generic_bignum[j] = generic_bignum[i + j];
687 i = c;
688 }
689
690 know (LITTLENUM_NUMBER_OF_BITS == 16);
691 if (i > 2)
692 {
693 expressionP->X_op = O_big;
694 expressionP->X_add_number = i;
695 }
696 else
697 {
698 expressionP->X_op = O_constant;
699 if (i < 2)
700 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
701 else
702 expressionP->X_add_number =
703 (((generic_bignum[1] & LITTLENUM_MASK)
704 << LITTLENUM_NUMBER_OF_BITS)
705 | (generic_bignum[0] & LITTLENUM_MASK));
706 }
707
708 /* Skip the final closing quote. */
709 ++input_line_pointer;
710 }
711
712 /* Return an expression representing the current location. This
713 handles the magic symbol `.'. */
714
715 void
716 current_location (expressionS *expressionp)
717 {
718 if (now_seg == absolute_section)
719 {
720 expressionp->X_op = O_constant;
721 expressionp->X_add_number = abs_section_offset;
722 }
723 else
724 {
725 expressionp->X_op = O_symbol;
726 expressionp->X_add_symbol = &dot_symbol;
727 expressionp->X_add_number = 0;
728 }
729 }
730
731 /* In: Input_line_pointer points to 1st char of operand, which may
732 be a space.
733
734 Out: An expressionS.
735 The operand may have been empty: in this case X_op == O_absent.
736 Input_line_pointer->(next non-blank) char after operand. */
737
738 static segT
739 operand (expressionS *expressionP, enum expr_mode mode)
740 {
741 char c;
742 symbolS *symbolP; /* Points to symbol. */
743 char *name; /* Points to name of symbol. */
744 segT segment;
745
746 /* All integers are regarded as unsigned unless they are negated.
747 This is because the only thing which cares whether a number is
748 unsigned is the code in emit_expr which extends constants into
749 bignums. It should only sign extend negative numbers, so that
750 something like ``.quad 0x80000000'' is not sign extended even
751 though it appears negative if valueT is 32 bits. */
752 expressionP->X_unsigned = 1;
753 expressionP->X_extrabit = 0;
754
755 /* Digits, assume it is a bignum. */
756
757 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
758 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
759
760 if (is_end_of_line[(unsigned char) c])
761 goto eol;
762
763 switch (c)
764 {
765 case '1':
766 case '2':
767 case '3':
768 case '4':
769 case '5':
770 case '6':
771 case '7':
772 case '8':
773 case '9':
774 input_line_pointer--;
775
776 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
777 ? 0 : 10,
778 expressionP);
779 break;
780
781 #ifdef LITERAL_PREFIXDOLLAR_HEX
782 case '$':
783 /* $L is the start of a local label, not a hex constant. */
784 if (* input_line_pointer == 'L')
785 goto isname;
786 integer_constant (16, expressionP);
787 break;
788 #endif
789
790 #ifdef LITERAL_PREFIXPERCENT_BIN
791 case '%':
792 integer_constant (2, expressionP);
793 break;
794 #endif
795
796 case '0':
797 /* Non-decimal radix. */
798
799 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
800 {
801 char *s;
802
803 /* Check for a hex or float constant. */
804 for (s = input_line_pointer; hex_p (*s); s++)
805 ;
806 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
807 {
808 --input_line_pointer;
809 integer_constant (0, expressionP);
810 break;
811 }
812 }
813 c = *input_line_pointer;
814 switch (c)
815 {
816 case 'o':
817 case 'O':
818 case 'q':
819 case 'Q':
820 case '8':
821 case '9':
822 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
823 {
824 integer_constant (0, expressionP);
825 break;
826 }
827 /* Fall through. */
828 default:
829 default_case:
830 if (c && strchr (FLT_CHARS, c))
831 {
832 input_line_pointer++;
833 floating_constant (expressionP);
834 expressionP->X_add_number = - TOLOWER (c);
835 }
836 else
837 {
838 /* The string was only zero. */
839 expressionP->X_op = O_constant;
840 expressionP->X_add_number = 0;
841 }
842
843 break;
844
845 case 'x':
846 case 'X':
847 if (flag_m68k_mri)
848 goto default_case;
849 input_line_pointer++;
850 integer_constant (16, expressionP);
851 break;
852
853 case 'b':
854 if (LOCAL_LABELS_FB && !flag_m68k_mri
855 && input_line_pointer[1] != '0'
856 && input_line_pointer[1] != '1')
857 {
858 /* Parse this as a back reference to label 0. */
859 input_line_pointer--;
860 integer_constant (10, expressionP);
861 break;
862 }
863 /* Otherwise, parse this as a binary number. */
864 /* Fall through. */
865 case 'B':
866 if (input_line_pointer[1] == '0'
867 || input_line_pointer[1] == '1')
868 {
869 input_line_pointer++;
870 integer_constant (2, expressionP);
871 break;
872 }
873 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
874 input_line_pointer++;
875 goto default_case;
876
877 case '0':
878 case '1':
879 case '2':
880 case '3':
881 case '4':
882 case '5':
883 case '6':
884 case '7':
885 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
886 ? 0 : 8,
887 expressionP);
888 break;
889
890 case 'f':
891 if (LOCAL_LABELS_FB)
892 {
893 int is_label = 1;
894
895 /* If it says "0f" and it could possibly be a floating point
896 number, make it one. Otherwise, make it a local label,
897 and try to deal with parsing the rest later. */
898 if (!is_end_of_line[(unsigned char) input_line_pointer[1]]
899 && strchr (FLT_CHARS, 'f') != NULL)
900 {
901 char *cp = input_line_pointer + 1;
902
903 atof_generic (&cp, ".", EXP_CHARS,
904 &generic_floating_point_number);
905
906 /* Was nothing parsed, or does it look like an
907 expression? */
908 is_label = (cp == input_line_pointer + 1
909 || (cp == input_line_pointer + 2
910 && (cp[-1] == '-' || cp[-1] == '+'))
911 || *cp == 'f'
912 || *cp == 'b');
913 }
914 if (is_label)
915 {
916 input_line_pointer--;
917 integer_constant (10, expressionP);
918 break;
919 }
920 }
921 /* Fall through. */
922
923 case 'd':
924 case 'D':
925 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
926 {
927 integer_constant (0, expressionP);
928 break;
929 }
930 /* Fall through. */
931 case 'F':
932 case 'r':
933 case 'e':
934 case 'E':
935 case 'g':
936 case 'G':
937 input_line_pointer++;
938 floating_constant (expressionP);
939 expressionP->X_add_number = - TOLOWER (c);
940 break;
941
942 case '$':
943 if (LOCAL_LABELS_DOLLAR)
944 {
945 integer_constant (10, expressionP);
946 break;
947 }
948 else
949 goto default_case;
950 }
951
952 break;
953
954 #ifndef NEED_INDEX_OPERATOR
955 case '[':
956 # ifdef md_need_index_operator
957 if (md_need_index_operator())
958 goto de_fault;
959 # endif
960 #endif
961 /* Fall through. */
962 case '(':
963 /* Didn't begin with digit & not a name. */
964 segment = expr (0, expressionP, mode);
965 /* expression () will pass trailing whitespace. */
966 if ((c == '(' && *input_line_pointer != ')')
967 || (c == '[' && *input_line_pointer != ']'))
968 {
969 if (* input_line_pointer)
970 as_bad (_("found '%c', expected: '%c'"),
971 * input_line_pointer, c == '(' ? ')' : ']');
972 else
973 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
974 }
975 else
976 input_line_pointer++;
977 SKIP_WHITESPACE ();
978 /* Here with input_line_pointer -> char after "(...)". */
979 return segment;
980
981 #ifdef TC_M68K
982 case 'E':
983 if (! flag_m68k_mri || *input_line_pointer != '\'')
984 goto de_fault;
985 as_bad (_("EBCDIC constants are not supported"));
986 /* Fall through. */
987 case 'A':
988 if (! flag_m68k_mri || *input_line_pointer != '\'')
989 goto de_fault;
990 ++input_line_pointer;
991 #endif
992 /* Fall through. */
993 case '\'':
994 if (! flag_m68k_mri)
995 {
996 /* Warning: to conform to other people's assemblers NO
997 ESCAPEMENT is permitted for a single quote. The next
998 character, parity errors and all, is taken as the value
999 of the operand. VERY KINKY. */
1000 expressionP->X_op = O_constant;
1001 expressionP->X_add_number = *input_line_pointer++;
1002 break;
1003 }
1004
1005 mri_char_constant (expressionP);
1006 break;
1007
1008 #ifdef TC_M68K
1009 case '"':
1010 /* Double quote is the bitwise not operator in MRI mode. */
1011 if (! flag_m68k_mri)
1012 goto de_fault;
1013 #endif
1014 /* Fall through. */
1015 case '~':
1016 /* '~' is permitted to start a label on the Delta. */
1017 if (is_name_beginner (c))
1018 goto isname;
1019 /* Fall through. */
1020 case '!':
1021 case '-':
1022 case '+':
1023 {
1024 #ifdef md_operator
1025 unary:
1026 #endif
1027 operand (expressionP, mode);
1028 if (expressionP->X_op == O_constant)
1029 {
1030 /* input_line_pointer -> char after operand. */
1031 if (c == '-')
1032 {
1033 expressionP->X_add_number
1034 = - (addressT) expressionP->X_add_number;
1035 /* Notice: '-' may overflow: no warning is given.
1036 This is compatible with other people's
1037 assemblers. Sigh. */
1038 expressionP->X_unsigned = 0;
1039 if (expressionP->X_add_number)
1040 expressionP->X_extrabit ^= 1;
1041 }
1042 else if (c == '~' || c == '"')
1043 expressionP->X_add_number = ~ expressionP->X_add_number;
1044 else if (c == '!')
1045 expressionP->X_add_number = ! expressionP->X_add_number;
1046 }
1047 else if (expressionP->X_op == O_big
1048 && expressionP->X_add_number <= 0
1049 && c == '-'
1050 && (generic_floating_point_number.sign == '+'
1051 || generic_floating_point_number.sign == 'P'))
1052 {
1053 /* Negative flonum (eg, -1.000e0). */
1054 if (generic_floating_point_number.sign == '+')
1055 generic_floating_point_number.sign = '-';
1056 else
1057 generic_floating_point_number.sign = 'N';
1058 }
1059 else if (expressionP->X_op == O_big
1060 && expressionP->X_add_number > 0)
1061 {
1062 int i;
1063
1064 if (c == '~' || c == '-')
1065 {
1066 for (i = 0; i < expressionP->X_add_number; ++i)
1067 generic_bignum[i] = ~generic_bignum[i];
1068
1069 /* Extend the bignum to at least the size of .octa. */
1070 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1071 {
1072 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1073 for (; i < expressionP->X_add_number; ++i)
1074 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1075 }
1076
1077 if (c == '-')
1078 for (i = 0; i < expressionP->X_add_number; ++i)
1079 {
1080 generic_bignum[i] += 1;
1081 if (generic_bignum[i])
1082 break;
1083 }
1084 }
1085 else if (c == '!')
1086 {
1087 for (i = 0; i < expressionP->X_add_number; ++i)
1088 if (generic_bignum[i] != 0)
1089 break;
1090 expressionP->X_add_number = i >= expressionP->X_add_number;
1091 expressionP->X_op = O_constant;
1092 expressionP->X_unsigned = 1;
1093 expressionP->X_extrabit = 0;
1094 }
1095 }
1096 else if (expressionP->X_op != O_illegal
1097 && expressionP->X_op != O_absent)
1098 {
1099 if (c != '+')
1100 {
1101 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1102 if (c == '-')
1103 expressionP->X_op = O_uminus;
1104 else if (c == '~' || c == '"')
1105 expressionP->X_op = O_bit_not;
1106 else
1107 expressionP->X_op = O_logical_not;
1108 expressionP->X_add_number = 0;
1109 }
1110 }
1111 else
1112 as_warn (_("Unary operator %c ignored because bad operand follows"),
1113 c);
1114 }
1115 break;
1116
1117 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1118 case '$':
1119 /* '$' is the program counter when in MRI mode, or when
1120 DOLLAR_DOT is defined. */
1121 #ifndef DOLLAR_DOT
1122 if (! flag_m68k_mri)
1123 goto de_fault;
1124 #endif
1125 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1126 {
1127 /* In MRI mode and on Z80, '$' is also used as the prefix
1128 for a hexadecimal constant. */
1129 integer_constant (16, expressionP);
1130 break;
1131 }
1132
1133 if (is_part_of_name (*input_line_pointer))
1134 goto isname;
1135
1136 current_location (expressionP);
1137 break;
1138 #endif
1139
1140 case '.':
1141 if (!is_part_of_name (*input_line_pointer))
1142 {
1143 current_location (expressionP);
1144 break;
1145 }
1146 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1147 && ! is_part_of_name (input_line_pointer[8]))
1148 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1149 && ! is_part_of_name (input_line_pointer[7])))
1150 {
1151 int start;
1152
1153 start = (input_line_pointer[1] == 't'
1154 || input_line_pointer[1] == 'T');
1155 input_line_pointer += start ? 8 : 7;
1156 SKIP_WHITESPACE ();
1157 if (*input_line_pointer != '(')
1158 as_bad (_("syntax error in .startof. or .sizeof."));
1159 else
1160 {
1161 char *buf;
1162
1163 ++input_line_pointer;
1164 SKIP_WHITESPACE ();
1165 c = get_symbol_name (& name);
1166
1167 buf = concat (start ? ".startof." : ".sizeof.", name,
1168 (char *) NULL);
1169 symbolP = symbol_make (buf);
1170 free (buf);
1171
1172 expressionP->X_op = O_symbol;
1173 expressionP->X_add_symbol = symbolP;
1174 expressionP->X_add_number = 0;
1175
1176 *input_line_pointer = c;
1177 SKIP_WHITESPACE_AFTER_NAME ();
1178 if (*input_line_pointer != ')')
1179 as_bad (_("syntax error in .startof. or .sizeof."));
1180 else
1181 ++input_line_pointer;
1182 }
1183 break;
1184 }
1185 else
1186 {
1187 goto isname;
1188 }
1189
1190 case ',':
1191 eol:
1192 /* Can't imagine any other kind of operand. */
1193 expressionP->X_op = O_absent;
1194 input_line_pointer--;
1195 break;
1196
1197 #ifdef TC_M68K
1198 case '%':
1199 if (! flag_m68k_mri)
1200 goto de_fault;
1201 integer_constant (2, expressionP);
1202 break;
1203
1204 case '@':
1205 if (! flag_m68k_mri)
1206 goto de_fault;
1207 integer_constant (8, expressionP);
1208 break;
1209
1210 case ':':
1211 if (! flag_m68k_mri)
1212 goto de_fault;
1213
1214 /* In MRI mode, this is a floating point constant represented
1215 using hexadecimal digits. */
1216
1217 ++input_line_pointer;
1218 integer_constant (16, expressionP);
1219 break;
1220
1221 case '*':
1222 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1223 goto de_fault;
1224
1225 current_location (expressionP);
1226 break;
1227 #endif
1228
1229 default:
1230 #if defined(md_need_index_operator) || defined(TC_M68K)
1231 de_fault:
1232 #endif
1233 if (is_name_beginner (c) || c == '"') /* Here if did not begin with a digit. */
1234 {
1235 /* Identifier begins here.
1236 This is kludged for speed, so code is repeated. */
1237 isname:
1238 -- input_line_pointer;
1239 c = get_symbol_name (&name);
1240
1241 #ifdef md_operator
1242 {
1243 operatorT op = md_operator (name, 1, &c);
1244
1245 switch (op)
1246 {
1247 case O_uminus:
1248 restore_line_pointer (c);
1249 c = '-';
1250 goto unary;
1251 case O_bit_not:
1252 restore_line_pointer (c);
1253 c = '~';
1254 goto unary;
1255 case O_logical_not:
1256 restore_line_pointer (c);
1257 c = '!';
1258 goto unary;
1259 case O_illegal:
1260 as_bad (_("invalid use of operator \"%s\""), name);
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 if (op != O_absent && op != O_illegal)
1267 {
1268 restore_line_pointer (c);
1269 expr (9, expressionP, mode);
1270 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1271 expressionP->X_op_symbol = NULL;
1272 expressionP->X_add_number = 0;
1273 expressionP->X_op = op;
1274 break;
1275 }
1276 }
1277 #endif
1278
1279 #ifdef md_parse_name
1280 /* This is a hook for the backend to parse certain names
1281 specially in certain contexts. If a name always has a
1282 specific value, it can often be handled by simply
1283 entering it in the symbol table. */
1284 if (md_parse_name (name, expressionP, mode, &c))
1285 {
1286 restore_line_pointer (c);
1287 break;
1288 }
1289 #endif
1290
1291 #ifdef TC_I960
1292 /* The MRI i960 assembler permits
1293 lda sizeof code,g13
1294 FIXME: This should use md_parse_name. */
1295 if (flag_mri
1296 && (strcasecmp (name, "sizeof") == 0
1297 || strcasecmp (name, "startof") == 0))
1298 {
1299 int start;
1300 char *buf;
1301
1302 start = (name[1] == 't'
1303 || name[1] == 'T');
1304
1305 *input_line_pointer = c;
1306 SKIP_WHITESPACE_AFTER_NAME ();
1307
1308 c = get_symbol_name (& name);
1309
1310 buf = concat (start ? ".startof." : ".sizeof.", name,
1311 (char *) NULL);
1312 symbolP = symbol_make (buf);
1313 free (buf);
1314
1315 expressionP->X_op = O_symbol;
1316 expressionP->X_add_symbol = symbolP;
1317 expressionP->X_add_number = 0;
1318
1319 *input_line_pointer = c;
1320 SKIP_WHITESPACE_AFTER_NAME ();
1321 break;
1322 }
1323 #endif
1324
1325 symbolP = symbol_find_or_make (name);
1326
1327 /* If we have an absolute symbol or a reg, then we know its
1328 value now. */
1329 segment = S_GET_SEGMENT (symbolP);
1330 if (mode != expr_defer
1331 && segment == absolute_section
1332 && !S_FORCE_RELOC (symbolP, 0))
1333 {
1334 expressionP->X_op = O_constant;
1335 expressionP->X_add_number = S_GET_VALUE (symbolP);
1336 }
1337 else if (mode != expr_defer && segment == reg_section)
1338 {
1339 expressionP->X_op = O_register;
1340 expressionP->X_add_number = S_GET_VALUE (symbolP);
1341 }
1342 else
1343 {
1344 expressionP->X_op = O_symbol;
1345 expressionP->X_add_symbol = symbolP;
1346 expressionP->X_add_number = 0;
1347 }
1348
1349 restore_line_pointer (c);
1350 }
1351 else
1352 {
1353 /* Let the target try to parse it. Success is indicated by changing
1354 the X_op field to something other than O_absent and pointing
1355 input_line_pointer past the expression. If it can't parse the
1356 expression, X_op and input_line_pointer should be unchanged. */
1357 expressionP->X_op = O_absent;
1358 --input_line_pointer;
1359 md_operand (expressionP);
1360 if (expressionP->X_op == O_absent)
1361 {
1362 ++input_line_pointer;
1363 as_bad (_("bad expression"));
1364 expressionP->X_op = O_constant;
1365 expressionP->X_add_number = 0;
1366 }
1367 }
1368 break;
1369 }
1370
1371 /* It is more 'efficient' to clean up the expressionS when they are
1372 created. Doing it here saves lines of code. */
1373 clean_up_expression (expressionP);
1374 SKIP_ALL_WHITESPACE (); /* -> 1st char after operand. */
1375 know (*input_line_pointer != ' ');
1376
1377 /* The PA port needs this information. */
1378 if (expressionP->X_add_symbol)
1379 symbol_mark_used (expressionP->X_add_symbol);
1380
1381 if (mode != expr_defer)
1382 {
1383 expressionP->X_add_symbol
1384 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1385 expressionP->X_op_symbol
1386 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1387 }
1388
1389 switch (expressionP->X_op)
1390 {
1391 default:
1392 return absolute_section;
1393 case O_symbol:
1394 return S_GET_SEGMENT (expressionP->X_add_symbol);
1395 case O_register:
1396 return reg_section;
1397 }
1398 }
1399 \f
1400 /* Internal. Simplify a struct expression for use by expr (). */
1401
1402 /* In: address of an expressionS.
1403 The X_op field of the expressionS may only take certain values.
1404 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1405
1406 Out: expressionS may have been modified:
1407 Unused fields zeroed to help expr (). */
1408
1409 static void
1410 clean_up_expression (expressionS *expressionP)
1411 {
1412 switch (expressionP->X_op)
1413 {
1414 case O_illegal:
1415 case O_absent:
1416 expressionP->X_add_number = 0;
1417 /* Fall through. */
1418 case O_big:
1419 case O_constant:
1420 case O_register:
1421 expressionP->X_add_symbol = NULL;
1422 /* Fall through. */
1423 case O_symbol:
1424 case O_uminus:
1425 case O_bit_not:
1426 expressionP->X_op_symbol = NULL;
1427 break;
1428 default:
1429 break;
1430 }
1431 }
1432 \f
1433 /* Expression parser. */
1434
1435 /* We allow an empty expression, and just assume (absolute,0) silently.
1436 Unary operators and parenthetical expressions are treated as operands.
1437 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1438
1439 We used to do an aho/ullman shift-reduce parser, but the logic got so
1440 warped that I flushed it and wrote a recursive-descent parser instead.
1441 Now things are stable, would anybody like to write a fast parser?
1442 Most expressions are either register (which does not even reach here)
1443 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1444 So I guess it doesn't really matter how inefficient more complex expressions
1445 are parsed.
1446
1447 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1448 Also, we have consumed any leading or trailing spaces (operand does that)
1449 and done all intervening operators.
1450
1451 This returns the segment of the result, which will be
1452 absolute_section or the segment of a symbol. */
1453
1454 #undef __
1455 #define __ O_illegal
1456 #ifndef O_SINGLE_EQ
1457 #define O_SINGLE_EQ O_illegal
1458 #endif
1459
1460 /* Maps ASCII -> operators. */
1461 static const operatorT op_encoding[256] = {
1462 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1463 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1464
1465 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1466 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1467 __, __, __, __, __, __, __, __,
1468 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1469 __, __, __, __, __, __, __, __,
1470 __, __, __, __, __, __, __, __,
1471 __, __, __, __, __, __, __, __,
1472 __, __, __,
1473 #ifdef NEED_INDEX_OPERATOR
1474 O_index,
1475 #else
1476 __,
1477 #endif
1478 __, __, O_bit_exclusive_or, __,
1479 __, __, __, __, __, __, __, __,
1480 __, __, __, __, __, __, __, __,
1481 __, __, __, __, __, __, __, __,
1482 __, __, __, __, O_bit_inclusive_or, __, __, __,
1483
1484 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1485 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1486 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1487 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1488 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1489 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1490 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1491 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1492 };
1493
1494 /* Rank Examples
1495 0 operand, (expression)
1496 1 ||
1497 2 &&
1498 3 == <> < <= >= >
1499 4 + -
1500 5 used for * / % in MRI mode
1501 6 & ^ ! |
1502 7 * / % << >>
1503 8 unary - unary ~
1504 */
1505 static operator_rankT op_rank[O_max] = {
1506 0, /* O_illegal */
1507 0, /* O_absent */
1508 0, /* O_constant */
1509 0, /* O_symbol */
1510 0, /* O_symbol_rva */
1511 0, /* O_register */
1512 0, /* O_big */
1513 9, /* O_uminus */
1514 9, /* O_bit_not */
1515 9, /* O_logical_not */
1516 8, /* O_multiply */
1517 8, /* O_divide */
1518 8, /* O_modulus */
1519 8, /* O_left_shift */
1520 8, /* O_right_shift */
1521 7, /* O_bit_inclusive_or */
1522 7, /* O_bit_or_not */
1523 7, /* O_bit_exclusive_or */
1524 7, /* O_bit_and */
1525 5, /* O_add */
1526 5, /* O_subtract */
1527 4, /* O_eq */
1528 4, /* O_ne */
1529 4, /* O_lt */
1530 4, /* O_le */
1531 4, /* O_ge */
1532 4, /* O_gt */
1533 3, /* O_logical_and */
1534 2, /* O_logical_or */
1535 1, /* O_index */
1536 };
1537
1538 /* Unfortunately, in MRI mode for the m68k, multiplication and
1539 division have lower precedence than the bit wise operators. This
1540 function sets the operator precedences correctly for the current
1541 mode. Also, MRI uses a different bit_not operator, and this fixes
1542 that as well. */
1543
1544 #define STANDARD_MUL_PRECEDENCE 8
1545 #define MRI_MUL_PRECEDENCE 6
1546
1547 void
1548 expr_set_precedence (void)
1549 {
1550 if (flag_m68k_mri)
1551 {
1552 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1553 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1554 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1555 }
1556 else
1557 {
1558 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1559 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1560 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1561 }
1562 }
1563
1564 void
1565 expr_set_rank (operatorT op, operator_rankT rank)
1566 {
1567 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1568 op_rank[op] = rank;
1569 }
1570
1571 /* Initialize the expression parser. */
1572
1573 void
1574 expr_begin (void)
1575 {
1576 expr_set_precedence ();
1577
1578 /* Verify that X_op field is wide enough. */
1579 {
1580 expressionS e;
1581 e.X_op = O_max;
1582 gas_assert (e.X_op == O_max);
1583 }
1584 }
1585 \f
1586 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1587 sets NUM_CHARS to the number of characters in the operator.
1588 Does not advance INPUT_LINE_POINTER. */
1589
1590 static inline operatorT
1591 operatorf (int *num_chars)
1592 {
1593 int c;
1594 operatorT ret;
1595
1596 c = *input_line_pointer & 0xff;
1597 *num_chars = 1;
1598
1599 if (is_end_of_line[c])
1600 return O_illegal;
1601
1602 #ifdef md_operator
1603 if (is_name_beginner (c))
1604 {
1605 char *name;
1606 char ec = get_symbol_name (& name);
1607
1608 ret = md_operator (name, 2, &ec);
1609 switch (ret)
1610 {
1611 case O_absent:
1612 *input_line_pointer = ec;
1613 input_line_pointer = name;
1614 break;
1615 case O_uminus:
1616 case O_bit_not:
1617 case O_logical_not:
1618 as_bad (_("invalid use of operator \"%s\""), name);
1619 ret = O_illegal;
1620 /* FALLTHROUGH */
1621 default:
1622 *input_line_pointer = ec;
1623 *num_chars = input_line_pointer - name;
1624 input_line_pointer = name;
1625 return ret;
1626 }
1627 }
1628 #endif
1629
1630 switch (c)
1631 {
1632 default:
1633 ret = op_encoding[c];
1634 #ifdef md_operator
1635 if (ret == O_illegal)
1636 {
1637 char *start = input_line_pointer;
1638
1639 ret = md_operator (NULL, 2, NULL);
1640 if (ret != O_illegal)
1641 *num_chars = input_line_pointer - start;
1642 input_line_pointer = start;
1643 }
1644 #endif
1645 return ret;
1646
1647 case '+':
1648 case '-':
1649 return op_encoding[c];
1650
1651 case '<':
1652 switch (input_line_pointer[1])
1653 {
1654 default:
1655 return op_encoding[c];
1656 case '<':
1657 ret = O_left_shift;
1658 break;
1659 case '>':
1660 ret = O_ne;
1661 break;
1662 case '=':
1663 ret = O_le;
1664 break;
1665 }
1666 *num_chars = 2;
1667 return ret;
1668
1669 case '=':
1670 if (input_line_pointer[1] != '=')
1671 return op_encoding[c];
1672
1673 *num_chars = 2;
1674 return O_eq;
1675
1676 case '>':
1677 switch (input_line_pointer[1])
1678 {
1679 default:
1680 return op_encoding[c];
1681 case '>':
1682 ret = O_right_shift;
1683 break;
1684 case '=':
1685 ret = O_ge;
1686 break;
1687 }
1688 *num_chars = 2;
1689 return ret;
1690
1691 case '!':
1692 switch (input_line_pointer[1])
1693 {
1694 case '!':
1695 /* We accept !! as equivalent to ^ for MRI compatibility. */
1696 *num_chars = 2;
1697 return O_bit_exclusive_or;
1698 case '=':
1699 /* We accept != as equivalent to <>. */
1700 *num_chars = 2;
1701 return O_ne;
1702 default:
1703 if (flag_m68k_mri)
1704 return O_bit_inclusive_or;
1705 return op_encoding[c];
1706 }
1707
1708 case '|':
1709 if (input_line_pointer[1] != '|')
1710 return op_encoding[c];
1711
1712 *num_chars = 2;
1713 return O_logical_or;
1714
1715 case '&':
1716 if (input_line_pointer[1] != '&')
1717 return op_encoding[c];
1718
1719 *num_chars = 2;
1720 return O_logical_and;
1721 }
1722
1723 /* NOTREACHED */
1724 }
1725
1726 /* Implement "word-size + 1 bit" addition for
1727 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1728 is used so that the full range of unsigned word values and the full range of
1729 signed word values can be represented in an O_constant expression, which is
1730 useful e.g. for .sleb128 directives. */
1731
1732 void
1733 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1734 {
1735 valueT ures = resultP->X_add_number;
1736 valueT uamount = amount;
1737
1738 resultP->X_add_number += amount;
1739
1740 resultP->X_extrabit ^= rhs_highbit;
1741
1742 if (ures + uamount < ures)
1743 resultP->X_extrabit ^= 1;
1744 }
1745
1746 /* Similarly, for subtraction. */
1747
1748 void
1749 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1750 {
1751 valueT ures = resultP->X_add_number;
1752 valueT uamount = amount;
1753
1754 resultP->X_add_number -= amount;
1755
1756 resultP->X_extrabit ^= rhs_highbit;
1757
1758 if (ures < uamount)
1759 resultP->X_extrabit ^= 1;
1760 }
1761
1762 /* Parse an expression. */
1763
1764 segT
1765 expr (int rankarg, /* Larger # is higher rank. */
1766 expressionS *resultP, /* Deliver result here. */
1767 enum expr_mode mode /* Controls behavior. */)
1768 {
1769 operator_rankT rank = (operator_rankT) rankarg;
1770 segT retval;
1771 expressionS right;
1772 operatorT op_left;
1773 operatorT op_right;
1774 int op_chars;
1775
1776 know (rankarg >= 0);
1777
1778 /* Save the value of dot for the fixup code. */
1779 if (rank == 0)
1780 {
1781 dot_value = frag_now_fix ();
1782 dot_frag = frag_now;
1783 }
1784
1785 retval = operand (resultP, mode);
1786
1787 /* operand () gobbles spaces. */
1788 know (*input_line_pointer != ' ');
1789
1790 op_left = operatorf (&op_chars);
1791 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1792 {
1793 segT rightseg;
1794 offsetT frag_off;
1795
1796 input_line_pointer += op_chars; /* -> after operator. */
1797
1798 right.X_md = 0;
1799 rightseg = expr (op_rank[(int) op_left], &right, mode);
1800 if (right.X_op == O_absent)
1801 {
1802 as_warn (_("missing operand; zero assumed"));
1803 right.X_op = O_constant;
1804 right.X_add_number = 0;
1805 right.X_add_symbol = NULL;
1806 right.X_op_symbol = NULL;
1807 }
1808
1809 know (*input_line_pointer != ' ');
1810
1811 if (op_left == O_index)
1812 {
1813 if (*input_line_pointer != ']')
1814 as_bad ("missing right bracket");
1815 else
1816 {
1817 ++input_line_pointer;
1818 SKIP_WHITESPACE ();
1819 }
1820 }
1821
1822 op_right = operatorf (&op_chars);
1823
1824 know (op_right == O_illegal || op_left == O_index
1825 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1826 know ((int) op_left >= (int) O_multiply);
1827 #ifndef md_operator
1828 know ((int) op_left <= (int) O_index);
1829 #else
1830 know ((int) op_left < (int) O_max);
1831 #endif
1832
1833 /* input_line_pointer->after right-hand quantity. */
1834 /* left-hand quantity in resultP. */
1835 /* right-hand quantity in right. */
1836 /* operator in op_left. */
1837
1838 if (resultP->X_op == O_big)
1839 {
1840 if (resultP->X_add_number > 0)
1841 as_warn (_("left operand is a bignum; integer 0 assumed"));
1842 else
1843 as_warn (_("left operand is a float; integer 0 assumed"));
1844 resultP->X_op = O_constant;
1845 resultP->X_add_number = 0;
1846 resultP->X_add_symbol = NULL;
1847 resultP->X_op_symbol = NULL;
1848 }
1849 if (right.X_op == O_big)
1850 {
1851 if (right.X_add_number > 0)
1852 as_warn (_("right operand is a bignum; integer 0 assumed"));
1853 else
1854 as_warn (_("right operand is a float; integer 0 assumed"));
1855 right.X_op = O_constant;
1856 right.X_add_number = 0;
1857 right.X_add_symbol = NULL;
1858 right.X_op_symbol = NULL;
1859 }
1860
1861 /* Optimize common cases. */
1862 #ifdef md_optimize_expr
1863 if (md_optimize_expr (resultP, op_left, &right))
1864 {
1865 /* Skip. */
1866 ;
1867 }
1868 else
1869 #endif
1870 #ifndef md_register_arithmetic
1871 # define md_register_arithmetic 1
1872 #endif
1873 if (op_left == O_add && right.X_op == O_constant
1874 && (md_register_arithmetic || resultP->X_op != O_register))
1875 {
1876 /* X + constant. */
1877 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1878 }
1879 /* This case comes up in PIC code. */
1880 else if (op_left == O_subtract
1881 && right.X_op == O_symbol
1882 && resultP->X_op == O_symbol
1883 && retval == rightseg
1884 #ifdef md_allow_local_subtract
1885 && md_allow_local_subtract (resultP, & right, rightseg)
1886 #endif
1887 && ((SEG_NORMAL (rightseg)
1888 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1889 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1890 || right.X_add_symbol == resultP->X_add_symbol)
1891 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1892 symbol_get_frag (right.X_add_symbol),
1893 &frag_off))
1894 {
1895 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1896 - S_GET_VALUE (right.X_add_symbol);
1897 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1898 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1899 add_to_result (resultP, symval_diff, symval_diff < 0);
1900 resultP->X_op = O_constant;
1901 resultP->X_add_symbol = 0;
1902 }
1903 else if (op_left == O_subtract && right.X_op == O_constant
1904 && (md_register_arithmetic || resultP->X_op != O_register))
1905 {
1906 /* X - constant. */
1907 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1908 }
1909 else if (op_left == O_add && resultP->X_op == O_constant
1910 && (md_register_arithmetic || right.X_op != O_register))
1911 {
1912 /* Constant + X. */
1913 resultP->X_op = right.X_op;
1914 resultP->X_add_symbol = right.X_add_symbol;
1915 resultP->X_op_symbol = right.X_op_symbol;
1916 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1917 retval = rightseg;
1918 }
1919 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1920 {
1921 /* Constant OP constant. */
1922 offsetT v = right.X_add_number;
1923 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1924 {
1925 as_warn (_("division by zero"));
1926 v = 1;
1927 }
1928 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1929 && (op_left == O_left_shift || op_left == O_right_shift))
1930 {
1931 as_warn_value_out_of_range (_("shift count"), v, 0,
1932 sizeof(valueT) * CHAR_BIT - 1,
1933 NULL, 0);
1934 resultP->X_add_number = v = 0;
1935 }
1936 switch (op_left)
1937 {
1938 default: goto general;
1939 case O_multiply: resultP->X_add_number *= v; break;
1940 case O_divide: resultP->X_add_number /= v; break;
1941 case O_modulus: resultP->X_add_number %= v; break;
1942 case O_left_shift: resultP->X_add_number <<= v; break;
1943 case O_right_shift:
1944 /* We always use unsigned shifts, to avoid relying on
1945 characteristics of the compiler used to compile gas. */
1946 resultP->X_add_number =
1947 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1948 break;
1949 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1950 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1951 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1952 case O_bit_and: resultP->X_add_number &= v; break;
1953 /* Constant + constant (O_add) is handled by the
1954 previous if statement for constant + X, so is omitted
1955 here. */
1956 case O_subtract:
1957 subtract_from_result (resultP, v, 0);
1958 break;
1959 case O_eq:
1960 resultP->X_add_number =
1961 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1962 break;
1963 case O_ne:
1964 resultP->X_add_number =
1965 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1966 break;
1967 case O_lt:
1968 resultP->X_add_number =
1969 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1970 break;
1971 case O_le:
1972 resultP->X_add_number =
1973 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1974 break;
1975 case O_ge:
1976 resultP->X_add_number =
1977 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1978 break;
1979 case O_gt:
1980 resultP->X_add_number =
1981 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1982 break;
1983 case O_logical_and:
1984 resultP->X_add_number = resultP->X_add_number && v;
1985 break;
1986 case O_logical_or:
1987 resultP->X_add_number = resultP->X_add_number || v;
1988 break;
1989 }
1990 }
1991 else if (resultP->X_op == O_symbol
1992 && right.X_op == O_symbol
1993 && (op_left == O_add
1994 || op_left == O_subtract
1995 || (resultP->X_add_number == 0
1996 && right.X_add_number == 0)))
1997 {
1998 /* Symbol OP symbol. */
1999 resultP->X_op = op_left;
2000 resultP->X_op_symbol = right.X_add_symbol;
2001 if (op_left == O_add)
2002 add_to_result (resultP, right.X_add_number, right.X_extrabit);
2003 else if (op_left == O_subtract)
2004 {
2005 subtract_from_result (resultP, right.X_add_number,
2006 right.X_extrabit);
2007 if (retval == rightseg
2008 && SEG_NORMAL (retval)
2009 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2010 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2011 {
2012 retval = absolute_section;
2013 rightseg = absolute_section;
2014 }
2015 }
2016 }
2017 else
2018 {
2019 general:
2020 /* The general case. */
2021 resultP->X_add_symbol = make_expr_symbol (resultP);
2022 resultP->X_op_symbol = make_expr_symbol (&right);
2023 resultP->X_op = op_left;
2024 resultP->X_add_number = 0;
2025 resultP->X_unsigned = 1;
2026 resultP->X_extrabit = 0;
2027 }
2028
2029 if (retval != rightseg)
2030 {
2031 if (retval == undefined_section)
2032 ;
2033 else if (rightseg == undefined_section)
2034 retval = rightseg;
2035 else if (retval == expr_section)
2036 ;
2037 else if (rightseg == expr_section)
2038 retval = rightseg;
2039 else if (retval == reg_section)
2040 ;
2041 else if (rightseg == reg_section)
2042 retval = rightseg;
2043 else if (rightseg == absolute_section)
2044 ;
2045 else if (retval == absolute_section)
2046 retval = rightseg;
2047 #ifdef DIFF_EXPR_OK
2048 else if (op_left == O_subtract)
2049 ;
2050 #endif
2051 else
2052 as_bad (_("operation combines symbols in different segments"));
2053 }
2054
2055 op_left = op_right;
2056 } /* While next operator is >= this rank. */
2057
2058 /* The PA port needs this information. */
2059 if (resultP->X_add_symbol)
2060 symbol_mark_used (resultP->X_add_symbol);
2061
2062 if (rank == 0 && mode == expr_evaluate)
2063 resolve_expression (resultP);
2064
2065 return resultP->X_op == O_constant ? absolute_section : retval;
2066 }
2067
2068 /* Resolve an expression without changing any symbols/sub-expressions
2069 used. */
2070
2071 int
2072 resolve_expression (expressionS *expressionP)
2073 {
2074 /* Help out with CSE. */
2075 valueT final_val = expressionP->X_add_number;
2076 symbolS *add_symbol = expressionP->X_add_symbol;
2077 symbolS *orig_add_symbol = add_symbol;
2078 symbolS *op_symbol = expressionP->X_op_symbol;
2079 operatorT op = expressionP->X_op;
2080 valueT left, right;
2081 segT seg_left, seg_right;
2082 fragS *frag_left, *frag_right;
2083 offsetT frag_off;
2084
2085 switch (op)
2086 {
2087 default:
2088 return 0;
2089
2090 case O_constant:
2091 case O_register:
2092 left = 0;
2093 break;
2094
2095 case O_symbol:
2096 case O_symbol_rva:
2097 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2098 return 0;
2099
2100 break;
2101
2102 case O_uminus:
2103 case O_bit_not:
2104 case O_logical_not:
2105 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2106 return 0;
2107
2108 if (seg_left != absolute_section)
2109 return 0;
2110
2111 if (op == O_logical_not)
2112 left = !left;
2113 else if (op == O_uminus)
2114 left = -left;
2115 else
2116 left = ~left;
2117 op = O_constant;
2118 break;
2119
2120 case O_multiply:
2121 case O_divide:
2122 case O_modulus:
2123 case O_left_shift:
2124 case O_right_shift:
2125 case O_bit_inclusive_or:
2126 case O_bit_or_not:
2127 case O_bit_exclusive_or:
2128 case O_bit_and:
2129 case O_add:
2130 case O_subtract:
2131 case O_eq:
2132 case O_ne:
2133 case O_lt:
2134 case O_le:
2135 case O_ge:
2136 case O_gt:
2137 case O_logical_and:
2138 case O_logical_or:
2139 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2140 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2141 return 0;
2142
2143 /* Simplify addition or subtraction of a constant by folding the
2144 constant into X_add_number. */
2145 if (op == O_add)
2146 {
2147 if (seg_right == absolute_section)
2148 {
2149 final_val += right;
2150 op = O_symbol;
2151 break;
2152 }
2153 else if (seg_left == absolute_section)
2154 {
2155 final_val += left;
2156 left = right;
2157 seg_left = seg_right;
2158 add_symbol = op_symbol;
2159 orig_add_symbol = expressionP->X_op_symbol;
2160 op = O_symbol;
2161 break;
2162 }
2163 }
2164 else if (op == O_subtract)
2165 {
2166 if (seg_right == absolute_section)
2167 {
2168 final_val -= right;
2169 op = O_symbol;
2170 break;
2171 }
2172 }
2173
2174 /* Equality and non-equality tests are permitted on anything.
2175 Subtraction, and other comparison operators are permitted if
2176 both operands are in the same section.
2177 Shifts by constant zero are permitted on anything.
2178 Multiplies, bit-ors, and bit-ands with constant zero are
2179 permitted on anything.
2180 Multiplies and divides by constant one are permitted on
2181 anything.
2182 Binary operations with both operands being the same register
2183 or undefined symbol are permitted if the result doesn't depend
2184 on the input value.
2185 Otherwise, both operands must be absolute. We already handled
2186 the case of addition or subtraction of a constant above. */
2187 frag_off = 0;
2188 if (!(seg_left == absolute_section
2189 && seg_right == absolute_section)
2190 && !(op == O_eq || op == O_ne)
2191 && !((op == O_subtract
2192 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2193 && seg_left == seg_right
2194 && (finalize_syms
2195 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2196 && (seg_left != reg_section || left == right)
2197 && (seg_left != undefined_section || add_symbol == op_symbol)))
2198 {
2199 if ((seg_left == absolute_section && left == 0)
2200 || (seg_right == absolute_section && right == 0))
2201 {
2202 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2203 {
2204 if (!(seg_right == absolute_section && right == 0))
2205 {
2206 seg_left = seg_right;
2207 left = right;
2208 add_symbol = op_symbol;
2209 orig_add_symbol = expressionP->X_op_symbol;
2210 }
2211 op = O_symbol;
2212 break;
2213 }
2214 else if (op == O_left_shift || op == O_right_shift)
2215 {
2216 if (!(seg_left == absolute_section && left == 0))
2217 {
2218 op = O_symbol;
2219 break;
2220 }
2221 }
2222 else if (op != O_multiply
2223 && op != O_bit_or_not && op != O_bit_and)
2224 return 0;
2225 }
2226 else if (op == O_multiply
2227 && seg_left == absolute_section && left == 1)
2228 {
2229 seg_left = seg_right;
2230 left = right;
2231 add_symbol = op_symbol;
2232 orig_add_symbol = expressionP->X_op_symbol;
2233 op = O_symbol;
2234 break;
2235 }
2236 else if ((op == O_multiply || op == O_divide)
2237 && seg_right == absolute_section && right == 1)
2238 {
2239 op = O_symbol;
2240 break;
2241 }
2242 else if (!(left == right
2243 && ((seg_left == reg_section && seg_right == reg_section)
2244 || (seg_left == undefined_section
2245 && seg_right == undefined_section
2246 && add_symbol == op_symbol))))
2247 return 0;
2248 else if (op == O_bit_and || op == O_bit_inclusive_or)
2249 {
2250 op = O_symbol;
2251 break;
2252 }
2253 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2254 return 0;
2255 }
2256
2257 right += frag_off / OCTETS_PER_BYTE;
2258 switch (op)
2259 {
2260 case O_add: left += right; break;
2261 case O_subtract: left -= right; break;
2262 case O_multiply: left *= right; break;
2263 case O_divide:
2264 if (right == 0)
2265 return 0;
2266 left = (offsetT) left / (offsetT) right;
2267 break;
2268 case O_modulus:
2269 if (right == 0)
2270 return 0;
2271 left = (offsetT) left % (offsetT) right;
2272 break;
2273 case O_left_shift: left <<= right; break;
2274 case O_right_shift: left >>= right; break;
2275 case O_bit_inclusive_or: left |= right; break;
2276 case O_bit_or_not: left |= ~right; break;
2277 case O_bit_exclusive_or: left ^= right; break;
2278 case O_bit_and: left &= right; break;
2279 case O_eq:
2280 case O_ne:
2281 left = (left == right
2282 && seg_left == seg_right
2283 && (finalize_syms || frag_left == frag_right)
2284 && (seg_left != undefined_section
2285 || add_symbol == op_symbol)
2286 ? ~ (valueT) 0 : 0);
2287 if (op == O_ne)
2288 left = ~left;
2289 break;
2290 case O_lt:
2291 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2292 break;
2293 case O_le:
2294 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2295 break;
2296 case O_ge:
2297 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2298 break;
2299 case O_gt:
2300 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2301 break;
2302 case O_logical_and: left = left && right; break;
2303 case O_logical_or: left = left || right; break;
2304 default: abort ();
2305 }
2306
2307 op = O_constant;
2308 break;
2309 }
2310
2311 if (op == O_symbol)
2312 {
2313 if (seg_left == absolute_section)
2314 op = O_constant;
2315 else if (seg_left == reg_section && final_val == 0)
2316 op = O_register;
2317 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2318 final_val += left;
2319 expressionP->X_add_symbol = add_symbol;
2320 }
2321 expressionP->X_op = op;
2322
2323 if (op == O_constant || op == O_register)
2324 final_val += left;
2325 expressionP->X_add_number = final_val;
2326
2327 return 1;
2328 }
2329 \f
2330 /* This lives here because it belongs equally in expr.c & read.c.
2331 expr.c is just a branch office read.c anyway, and putting it
2332 here lessens the crowd at read.c.
2333
2334 Assume input_line_pointer is at start of symbol name, or the
2335 start of a double quote enclosed symbol name.
2336 Advance input_line_pointer past symbol name.
2337 Turn that character into a '\0', returning its former value,
2338 which may be the closing double quote.
2339 This allows a string compare (RMS wants symbol names to be strings)
2340 of the symbol name.
2341 There will always be a char following symbol name, because all good
2342 lines end in end-of-line. */
2343
2344 char
2345 get_symbol_name (char ** ilp_return)
2346 {
2347 char c;
2348
2349 * ilp_return = input_line_pointer;
2350 /* We accept \001 in a name in case this is being called with a
2351 constructed string. */
2352 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2353 {
2354 while (is_part_of_name (c = *input_line_pointer++)
2355 || c == '\001')
2356 ;
2357 if (is_name_ender (c))
2358 c = *input_line_pointer++;
2359 }
2360 else if (c == '"')
2361 {
2362 bfd_boolean backslash_seen;
2363
2364 * ilp_return = input_line_pointer;
2365 do
2366 {
2367 backslash_seen = c == '\\';
2368 c = * input_line_pointer ++;
2369 }
2370 while (c != 0 && (c != '"' || backslash_seen));
2371
2372 if (c == 0)
2373 as_warn (_("missing closing '\"'"));
2374 }
2375 *--input_line_pointer = 0;
2376 return c;
2377 }
2378
2379 /* Replace the NUL character pointed to by input_line_pointer
2380 with C. If C is \" then advance past it. Return the character
2381 now pointed to by input_line_pointer. */
2382
2383 char
2384 restore_line_pointer (char c)
2385 {
2386 * input_line_pointer = c;
2387 if (c == '"')
2388 c = * ++ input_line_pointer;
2389 return c;
2390 }
2391
2392 unsigned int
2393 get_single_number (void)
2394 {
2395 expressionS exp;
2396 operand (&exp, expr_normal);
2397 return exp.X_add_number;
2398 }
This page took 0.077982 seconds and 5 git commands to generate.